3645200003468132 r005 Re(z^2+c),c=-19/52+21/40*I,n=23 3645200006522286 v002 sum(1/(5^n+(7*n^2-11*n+54)),n=1..infinity) 3645200007204844 m001 (Zeta(1,-1)-gamma)/(exp(1/exp(1))+Lehmer) 3645200010179541 r005 Im(z^2+c),c=13/40+7/40*I,n=56 3645200022766057 r009 Im(z^3+c),c=-7/19+20/61*I,n=22 3645200038137198 a001 7/10946*28657^(13/33) 3645200043163879 s001 sum(exp(-Pi/4)^(n-1)*A182289[n],n=1..infinity) 3645200085342442 m001 (Zeta(1,-1)+CareFree)/(FellerTornier-ZetaP(3)) 3645200093761894 m005 (3*Pi-5)/(1/3*Pi+1/6) 3645200093761894 m006 (3*Pi-5)/(1/3*Pi+1/6) 3645200093761894 m008 (3*Pi-5)/(1/3*Pi+1/6) 3645200114906119 b008 1/2+E^Sqrt[Coth[1]] 3645200133912769 r005 Re(z^2+c),c=-49/48+17/55*I,n=8 3645200141875526 r009 Im(z^3+c),c=-33/106+29/47*I,n=5 3645200143478471 m001 (Backhouse-Paris)/(Zeta(1,2)+BesselI(1,1)) 3645200153262063 m008 (3/4*Pi^6-4)/(2/3*Pi^3-1) 3645200163258163 a001 105937*1364^(25/51) 3645200168330721 r005 Im(z^2+c),c=-113/126+11/43*I,n=5 3645200168484648 b008 3+Log[48]/6 3645200175804816 m005 (1/3*Catalan+2/5)/(7/9*Zeta(3)+1) 3645200176497771 a007 Real Root Of -321*x^4-939*x^3+929*x^2+256*x-217 3645200195477616 m001 (Shi(1)+GAMMA(13/24))^Conway 3645200198041884 l006 ln(6996/10073) 3645200214506929 r008 a(0)=2,K{-n^6,2-8*n^3+2*n^2+2*n} 3645200222274313 r009 Im(z^3+c),c=-59/114+10/47*I,n=51 3645200250609166 r009 Re(z^3+c),c=-13/25+29/61*I,n=14 3645200251008567 r002 9th iterates of z^2 + 3645200256803475 r008 a(0)=0,K{-n^6,23-18*n-40*n^2+7*n^3} 3645200261168758 m001 (Landau-Psi(2,1/3))/(-Lehmer+TreeGrowth2nd) 3645200265740966 r005 Im(z^2+c),c=5/94+18/43*I,n=36 3645200268679255 m001 (Kac-Landau)/(sin(1/5*Pi)-BesselI(1,1)) 3645200273951482 s002 sum(A265143[n]/((exp(n)+1)*n),n=1..infinity) 3645200287810660 p004 log(15923/11059) 3645200315650081 a005 (1/cos(40/209*Pi))^150 3645200324162627 r009 Im(z^3+c),c=-31/122+3/8*I,n=19 3645200335327306 r005 Re(z^2+c),c=9/32+3/53*I,n=23 3645200336123136 a007 Real Root Of -150*x^4+948*x^3-182*x^2-24*x+64 3645200336385306 a007 Real Root Of 413*x^4-989*x^3-700*x^2-632*x+364 3645200344231222 m001 Riemann3rdZero^(Conway*FeigenbaumAlpha) 3645200369708973 a001 329*24476^(47/51) 3645200375316459 a001 329*6643838879^(7/17) 3645200379647771 a001 123/13*514229^(4/39) 3645200383032365 h001 (4/11*exp(1)+5/11)/(5/11*exp(2)+3/5) 3645200383577911 h001 (-2*exp(2)+5)/(-9*exp(8)+4) 3645200393215600 a007 Real Root Of 78*x^4-403*x^3+37*x^2-773*x+295 3645200407148648 m005 (1/2*Catalan-2/3)/(4*Zeta(3)+11/12) 3645200407327869 m001 (ln(Pi)-sin(1/12*Pi))/(exp(1/Pi)+GAMMA(11/12)) 3645200442381754 l006 ln(4063/5850) 3645200445664354 m001 Tribonacci/exp(Khintchine)^2/GAMMA(1/24) 3645200446117570 m008 (3*Pi^4-1/4)/(5/6*Pi^6-1/6) 3645200447689036 r009 Im(z^3+c),c=-7/78+41/57*I,n=2 3645200458229977 m001 GAMMA(11/12)/(BesselJ(0,1)-PlouffeB) 3645200459865652 r009 Re(z^3+c),c=-55/126+22/63*I,n=5 3645200464440518 h005 exp(cos(Pi*4/15)/cos(Pi*17/52)) 3645200464621025 r005 Im(z^2+c),c=15/122+13/36*I,n=10 3645200467279419 r005 Re(z^2+c),c=-13/10+34/213*I,n=2 3645200486026731 q001 3/823 3645200486620496 a007 Real Root Of 40*x^4-454*x^3+975*x^2+521*x+73 3645200501948154 k002 Champernowne real with 73*n^2-210*n+173 3645200505044184 a003 cos(Pi*13/48)/cos(Pi*42/95) 3645200506235188 a007 Real Root Of -2*x^4-730*x^3-349*x^2+328*x-336 3645200506706103 r005 Re(z^2+c),c=11/48+26/49*I,n=7 3645200509602926 a007 Real Root Of 34*x^4-219*x^3-953*x^2+946*x-499 3645200519945377 r009 Im(z^3+c),c=-7/24+21/58*I,n=24 3645200521609199 a001 3571/233*8^(5/12) 3645200524512420 m005 (1/2*gamma-3)/(58/9+4/9*5^(1/2)) 3645200525468824 m002 1/(E^Pi*Pi^5)+Log[Pi]/Pi 3645200543538854 r009 Im(z^3+c),c=-13/29+5/18*I,n=53 3645200549066084 a007 Real Root Of -77*x^4-25*x^3+784*x^2-545*x-20 3645200577939009 r009 Im(z^3+c),c=-7/24+21/58*I,n=25 3645200579051608 a007 Real Root Of -199*x^4-804*x^3-341*x^2-260*x-224 3645200583872416 m005 (1/2*gamma-5/12)/(8/9*gamma+3) 3645200591181669 r005 Im(z^2+c),c=13/64+17/55*I,n=46 3645200595270876 m009 (40*Catalan+5*Pi^2-3/4)/(6*Psi(1,2/3)+5) 3645200596272795 m001 GAMMA(5/6)^(3^(1/3))*BesselJ(1,1)^(3^(1/3)) 3645200597693919 r005 Re(z^2+c),c=-1/118+9/49*I,n=11 3645200605634536 r009 Im(z^3+c),c=-55/122+8/29*I,n=45 3645200606083019 r009 Re(z^3+c),c=-29/66+19/34*I,n=10 3645200630630845 r009 Im(z^3+c),c=-21/50+24/41*I,n=47 3645200640435219 s002 sum(A054687[n]/(10^n+1),n=1..infinity) 3645200651292276 m002 5+3/Pi^3+Pi^3*Cosh[Pi] 3645200656170397 r005 Im(z^2+c),c=-1/5+19/34*I,n=46 3645200659243517 m001 1/exp(GAMMA(2/3))/FibonacciFactorial*sqrt(3) 3645200659971615 a001 9227465/843*199^(5/22) 3645200661466615 a007 Real Root Of 258*x^4+869*x^3-218*x^2+142*x-47 3645200671360459 r009 Re(z^3+c),c=-53/122+7/30*I,n=25 3645200675883997 m001 (2^(1/3)+ln(5))/(DuboisRaymond+Lehmer) 3645200681040942 m001 (1-exp(1/Pi))/(Stephens+ZetaP(2)) 3645200685802989 l006 ln(241/9228) 3645200687957098 r005 Im(z^2+c),c=-11/10+7/162*I,n=24 3645200692109782 m001 (GAMMA(23/24)-AlladiGrinstead)/(Conway-Rabbit) 3645200698081722 m001 (2^(1/3))^2/RenyiParking*ln(GAMMA(1/6)) 3645200698807779 r005 Re(z^2+c),c=-21/44+13/53*I,n=48 3645200708111416 r002 61th iterates of z^2 + 3645200712593436 r005 Im(z^2+c),c=-69/82+1/45*I,n=34 3645200722292959 r009 Im(z^3+c),c=-7/24+21/58*I,n=27 3645200723725525 a007 Real Root Of -467*x^4+532*x^3+278*x^2+712*x-314 3645200723871243 r009 Im(z^3+c),c=-7/24+21/58*I,n=28 3645200748631402 r009 Im(z^3+c),c=-7/24+21/58*I,n=31 3645200749127305 r002 50th iterates of z^2 + 3645200749550069 r009 Im(z^3+c),c=-7/24+21/58*I,n=30 3645200752788760 r009 Im(z^3+c),c=-7/24+21/58*I,n=34 3645200753113000 r009 Im(z^3+c),c=-7/24+21/58*I,n=33 3645200753480545 r009 Im(z^3+c),c=-7/24+21/58*I,n=37 3645200753559110 r009 Im(z^3+c),c=-7/24+21/58*I,n=36 3645200753594752 r009 Im(z^3+c),c=-7/24+21/58*I,n=40 3645200753611318 r009 Im(z^3+c),c=-7/24+21/58*I,n=39 3645200753613474 r009 Im(z^3+c),c=-7/24+21/58*I,n=43 3645200753616524 r009 Im(z^3+c),c=-7/24+21/58*I,n=46 3645200753616719 r009 Im(z^3+c),c=-7/24+21/58*I,n=42 3645200753617018 r009 Im(z^3+c),c=-7/24+21/58*I,n=49 3645200753617097 r009 Im(z^3+c),c=-7/24+21/58*I,n=52 3645200753617110 r009 Im(z^3+c),c=-7/24+21/58*I,n=55 3645200753617112 r009 Im(z^3+c),c=-7/24+21/58*I,n=58 3645200753617112 r009 Im(z^3+c),c=-7/24+21/58*I,n=61 3645200753617112 r009 Im(z^3+c),c=-7/24+21/58*I,n=64 3645200753617113 r009 Im(z^3+c),c=-7/24+21/58*I,n=63 3645200753617113 r009 Im(z^3+c),c=-7/24+21/58*I,n=62 3645200753617113 r009 Im(z^3+c),c=-7/24+21/58*I,n=60 3645200753617113 r009 Im(z^3+c),c=-7/24+21/58*I,n=59 3645200753617113 r009 Im(z^3+c),c=-7/24+21/58*I,n=57 3645200753617113 r009 Im(z^3+c),c=-7/24+21/58*I,n=56 3645200753617113 r009 Im(z^3+c),c=-7/24+21/58*I,n=54 3645200753617117 r009 Im(z^3+c),c=-7/24+21/58*I,n=51 3645200753617119 r009 Im(z^3+c),c=-7/24+21/58*I,n=53 3645200753617128 r009 Im(z^3+c),c=-7/24+21/58*I,n=48 3645200753617131 r009 Im(z^3+c),c=-7/24+21/58*I,n=45 3645200753617157 r009 Im(z^3+c),c=-7/24+21/58*I,n=50 3645200753617412 r009 Im(z^3+c),c=-7/24+21/58*I,n=47 3645200753619111 r009 Im(z^3+c),c=-7/24+21/58*I,n=44 3645200753630375 r009 Im(z^3+c),c=-7/24+21/58*I,n=41 3645200753704664 r009 Im(z^3+c),c=-7/24+21/58*I,n=38 3645200754192275 r009 Im(z^3+c),c=-7/24+21/58*I,n=35 3645200757378126 r009 Im(z^3+c),c=-7/24+21/58*I,n=32 3645200769946767 m005 (1/2*exp(1)+2/7)/(5/6*2^(1/2)-8/11) 3645200771555965 l006 ln(5193/7477) 3645200772216480 r005 Re(z^2+c),c=-39/82+16/63*I,n=31 3645200777734391 a007 Real Root Of -331*x^4-171*x^3+607*x^2+945*x-411 3645200778101125 r009 Im(z^3+c),c=-7/24+21/58*I,n=29 3645200788174883 r008 a(0)=0,K{-n^6,-45+13*n^3+40*n^2-35*n} 3645200793365956 m001 (1+cos(1/5*Pi))/(BesselI(0,2)+FeigenbaumD) 3645200794976608 a003 cos(Pi*1/117)*sin(Pi*12/101) 3645200820964799 m005 (1/2*Zeta(3)-3/10)/(1/11*Catalan-10/11) 3645200831796875 m005 (1/3*gamma+2/9)/(9/10*5^(1/2)-7/8) 3645200861459496 m001 MadelungNaCl/ArtinRank2^2/ln(GAMMA(1/3)) 3645200880036050 r005 Im(z^2+c),c=-5/82+27/56*I,n=20 3645200890912969 m001 1/BesselK(1,1)*Bloch^2*ln(GAMMA(1/3)) 3645200897946307 r005 Im(z^2+c),c=-19/30+5/72*I,n=45 3645200903055136 m001 ln(GAMMA(1/24))*CareFree*GAMMA(13/24) 3645200912318503 r009 Im(z^3+c),c=-7/24+21/58*I,n=26 3645200915168355 a007 Real Root Of -128*x^4-510*x^3-175*x^2+24*x+310 3645200946764663 m005 (1/2*2^(1/2)+4)/(1/2*Catalan+5/6) 3645200961214494 r009 Im(z^3+c),c=-29/54+11/30*I,n=29 3645200962318526 r005 Re(z^2+c),c=-49/102+9/40*I,n=30 3645200983074989 l006 ln(6323/9104) 3645200984883703 r009 Re(z^3+c),c=-65/126+20/61*I,n=59 3645200999913792 m006 (1/6*exp(2*Pi)-3/5)/(3/5/Pi-1/6) 3645201002312661 m001 Pi^(1/2)/arctan(1/3)*Robbin 3645201009508353 m001 (Zeta(3)-ln(2))/(BesselI(1,2)-DuboisRaymond) 3645201014501687 a001 2584/3*2139295485799^(5/17) 3645201035752052 m001 (ln(Pi)+KomornikLoreti)/(LaplaceLimit-Porter) 3645201077537143 a007 Real Root Of 157*x^4+469*x^3-177*x^2+512*x-785 3645201077904083 r009 Im(z^3+c),c=-17/118+19/47*I,n=5 3645201082346700 r005 Im(z^2+c),c=-79/118+15/41*I,n=20 3645201084087874 r009 Im(z^3+c),c=-9/64+52/63*I,n=16 3645201089329406 r005 Re(z^2+c),c=-8/19+29/55*I,n=15 3645201097199299 r002 9th iterates of z^2 + 3645201107756095 a001 2255*1149851^(9/17) 3645201108488819 m001 (CopelandErdos+PlouffeB)/(3^(1/2)+Ei(1,1)) 3645201113670983 a007 Real Root Of -988*x^4+429*x^3+456*x^2+931*x+317 3645201116327648 a001 726103*9349^(3/17) 3645201120996060 a001 28657/3*24476^(10/17) 3645201122135498 a001 832040/3*24476^(13/51) 3645201123635316 a001 5702887/3*64079^(1/17) 3645201123638086 a001 121393/3*119218851371^(3/17) 3645201123642246 a001 105937*167761^(5/17) 3645201123685869 a001 514229/3*439204^(4/17) 3645201123687405 a001 726103*817138163596^(1/17) 3645201123687617 a001 3524578/3*228826127^(1/17) 3645201123687961 a001 1346269/3*54018521^(2/17) 3645201123690316 a001 514229/3*192900153618^(2/17) 3645201123690316 a001 514229/3*33385282^(3/17) 3645201123817079 a001 75025/3*1568397607^(4/17) 3645201124575304 a001 28657/3*20633239^(6/17) 3645201124575307 a001 28657/3*599074578^(5/17) 3645201124575741 a001 28657/3*1860498^(7/17) 3645201124910800 a001 75025/3*39603^(8/17) 3645201125232867 r009 Im(z^3+c),c=-3/98+6/13*I,n=2 3645201125561735 a001 3524578/3*15127^(2/17) 3645201129772279 a001 10946/3*5600748293801^(4/17) 3645201134361475 r009 Re(z^3+c),c=-5/11+12/43*I,n=10 3645201134414427 a001 28657/3*15127^(21/34) 3645201135599252 r005 Re(z^2+c),c=35/118+2/29*I,n=62 3645201162226505 a001 514229/3*5778^(6/17) 3645201178116851 a007 Real Root Of 110*x^4+211*x^3-885*x^2-496*x+750 3645201187124472 m005 (1/2*3^(1/2)+5)/(2/3*3^(1/2)+5/11) 3645201188436269 m001 MinimumGamma/(RenyiParking^Pi) 3645201199506788 a001 28657/3*5778^(35/51) 3645201200605490 r002 10th iterates of z^2 + 3645201200886680 a001 2255*5778^(29/34) 3645201201830680 l006 ln(210/8041) 3645201209124428 m001 (Paris+Weierstrass)/(exp(1)-ln(Pi)) 3645201213070891 b008 2+19*Csch[Pi] 3645201224268497 r005 Re(z^2+c),c=-67/106+11/37*I,n=27 3645201232411871 a007 Real Root Of 53*x^4-979*x^3-561*x^2-74*x+148 3645201235454774 r005 Re(z^2+c),c=11/78+13/29*I,n=26 3645201249810861 m001 (Psi(1,1/3)+GAMMA(5/6))/(Champernowne+Otter) 3645201255645184 r005 Im(z^2+c),c=1/50+23/50*I,n=4 3645201257524592 r005 Im(z^2+c),c=41/114+2/9*I,n=37 3645201259159069 m001 (sin(1)+gamma(3))/exp(Pi) 3645201260083483 h001 (4/11*exp(1)+1/7)/(4/11*exp(2)+5/12) 3645201263236932 h001 (-10*exp(1)+1)/(-exp(1)+2) 3645201263236932 m005 (2*exp(1)-1/5)/(2*exp(1)-4) 3645201266731011 m008 (5/6*Pi^5+4)/(3/4*Pi^4-2) 3645201268877559 r002 51th iterates of z^2 + 3645201271130263 r005 Im(z^2+c),c=5/36+9/25*I,n=23 3645201275808503 r005 Im(z^2+c),c=2/11+11/34*I,n=12 3645201292788511 a007 Real Root Of 236*x^4+904*x^3+428*x^2+784*x-711 3645201319831819 p001 sum((-1)^n/(605*n+274)/(256^n),n=0..infinity) 3645201321589174 a005 (1/sin(88/199*Pi))^217 3645201335980036 r009 Im(z^3+c),c=-17/32+18/59*I,n=24 3645201337221884 r005 Im(z^2+c),c=5/122+20/41*I,n=10 3645201351343088 m001 1/Tribonacci/KhintchineLevy*exp(Zeta(5))^2 3645201355554576 p004 log(30977/809) 3645201374105343 r009 Im(z^3+c),c=-17/46+18/55*I,n=28 3645201374569662 m001 (sin(1)+GAMMA(2/3))/(-gamma(2)+Lehmer) 3645201382408281 s002 sum(A069350[n]/(n^2*10^n-1),n=1..infinity) 3645201388475690 r005 Re(z^2+c),c=-15/32+12/41*I,n=49 3645201397028760 m005 (1/2*3^(1/2)-3/8)/(2/3*Zeta(3)-2/3) 3645201400438218 a007 Real Root Of 211*x^4+917*x^3+664*x^2+586*x+475 3645201404761723 b008 ArcSec[2+CosIntegral[Pi/14]] 3645201406107750 r005 Re(z^2+c),c=-21/52+28/55*I,n=63 3645201409539882 a001 1597/3*141422324^(8/17) 3645201409539882 a001 1597/3*73681302247^(6/17) 3645201409574804 a001 1597/3*271443^(12/17) 3645201409799186 a001 1597/3*103682^(13/17) 3645201418982150 a003 cos(Pi*26/111)-cos(Pi*23/61) 3645201439241821 r009 Re(z^3+c),c=-5/14+25/39*I,n=57 3645201443111419 a003 cos(Pi*23/111)*cos(Pi*23/66) 3645201449557782 m005 (1/3*exp(1)+1/2)/(1/3*2^(1/2)-6/7) 3645201451321478 r002 53th iterates of z^2 + 3645201452779567 m001 ln(Niven)^2*GlaisherKinkelin^2/GAMMA(17/24) 3645201455691941 l006 ln(2963/3073) 3645201468887234 r005 Re(z^2+c),c=-7/58+17/27*I,n=23 3645201473185982 p001 sum(1/(303*n+286)/n/(5^n),n=1..infinity) 3645201476844833 r005 Re(z^2+c),c=-119/110+35/52*I,n=2 3645201482732693 m002 Pi^2/E^Pi+Pi^4+Pi^5*Cosh[Pi] 3645201499188181 a007 Real Root Of -276*x^4-754*x^3+803*x^2-641*x-797 3645201504954155 k002 Champernowne real with 147/2*n^2-423/2*n+174 3645201520542778 r005 Re(z^2+c),c=-81/106+4/53*I,n=22 3645201532221412 r005 Re(z^2+c),c=25/86+4/61*I,n=44 3645201557029207 a007 Real Root Of x^4+363*x^3-554*x^2+45*x-524 3645201569232362 m001 Pi^GAMMA(2/3)*Pi^KomornikLoreti 3645201569767393 r005 Im(z^2+c),c=19/58+1/17*I,n=29 3645201570115975 m001 BesselK(0,1)*LaplaceLimit*Mills 3645201574885196 r005 Re(z^2+c),c=-37/82+15/43*I,n=23 3645201582466501 p004 log(23747/16493) 3645201584680791 m005 (1/3*gamma+2/7)/(6*5^(1/2)-3/10) 3645201592107459 a003 cos(Pi*29/85)-cos(Pi*51/110) 3645201594036732 r005 Im(z^2+c),c=-15/82+29/47*I,n=40 3645201596367677 m001 1/2*2^(1/2)*MertensB3/Sierpinski 3645201604640481 r005 Re(z^2+c),c=-45/106+11/24*I,n=42 3645201608057185 a001 75025/3*2207^(11/17) 3645201617357076 a007 Real Root Of 325*x^4+966*x^3-823*x^2-208*x-415 3645201618724662 r005 Re(z^2+c),c=-25/56+17/44*I,n=35 3645201631662688 a007 Real Root Of -118*x^4-184*x^3+730*x^2-601*x+31 3645201634621609 r009 Im(z^3+c),c=-13/29+5/18*I,n=50 3645201635594686 r005 Re(z^2+c),c=-71/122+23/48*I,n=3 3645201641637206 m001 ((1+3^(1/2))^(1/2)+GaussAGM)/(Rabbit-Trott2nd) 3645201665828818 r005 Im(z^2+c),c=-5/13+22/45*I,n=11 3645201668021724 r005 Im(z^2+c),c=9/62+7/19*I,n=5 3645201671500031 m001 GAMMA(5/6)*exp(Salem)/Zeta(9)^2 3645201673312731 m001 BesselJ(0,1)*sin(1/5*Pi)^HardHexagonsEntropy 3645201689688180 a001 3/121393*21^(6/47) 3645201694404915 a001 29/10610209857723*75025^(3/13) 3645201696448323 m001 sin(1/12*Pi)^(cos(1)/Sarnak) 3645201700958010 a007 Real Root Of 805*x^4+930*x^3+918*x^2-348*x-218 3645201704052535 a007 Real Root Of 228*x^4+505*x^3+344*x^2-718*x-287 3645201717468043 m001 Paris^(2^(1/2))/(GAMMA(23/24)^(2^(1/2))) 3645201724350162 m009 (32/5*Catalan+4/5*Pi^2+4)/(2/5*Psi(1,1/3)+5/6) 3645201738650883 r005 Re(z^2+c),c=-17/40+9/19*I,n=45 3645201766925468 m001 1/FeigenbaumD*ln(FransenRobinson)/GAMMA(11/12) 3645201777084500 m001 (ln(5)-gamma(1))/(Salem-TravellingSalesman) 3645201777944142 r009 Im(z^3+c),c=-7/24+21/58*I,n=23 3645201778677807 r005 Im(z^2+c),c=15/98+35/64*I,n=29 3645201780283744 r005 Re(z^2+c),c=-23/102+40/49*I,n=36 3645201781650550 m008 (2*Pi^2-2)/(5*Pi^4-2/5) 3645201783004125 r009 Re(z^3+c),c=-35/102+52/61*I,n=2 3645201783890343 a001 322/2504730781961*121393^(2/7) 3645201783904494 a001 161/3278735159921*3524578^(2/7) 3645201795820277 a001 322/956722026041*4181^(2/7) 3645201805517501 a001 311187/46*322^(7/24) 3645201813087920 r005 Re(z^2+c),c=-12/25+13/57*I,n=45 3645201835300925 m008 (1/5*Pi-1/3)/(5/6*Pi^4-1/4) 3645201838869056 r005 Im(z^2+c),c=-2/3+17/54*I,n=12 3645201846900631 r005 Re(z^2+c),c=-37/58+7/36*I,n=4 3645201849114682 m006 (exp(2*Pi)+1)/(3/5*exp(Pi)+5/6) 3645201854305942 a001 18/75025*610^(14/33) 3645201854883485 m003 433/12+Sqrt[5]/(8*ProductLog[1/2+Sqrt[5]/2]) 3645201856940734 a003 sin(Pi*8/79)/sin(Pi*22/67) 3645201858424890 m005 (-1/44+1/4*5^(1/2))/(125/126+3/14*5^(1/2)) 3645201868025413 m002 2+E^Pi/Pi+Pi^3/Log[Pi] 3645201871049554 r005 Im(z^2+c),c=-23/54+22/41*I,n=44 3645201872251079 a007 Real Root Of 234*x^4-629*x^3-423*x^2-314*x+197 3645201894083867 r005 Im(z^2+c),c=23/60+13/62*I,n=44 3645201896593799 l006 ln(179/6854) 3645201908812343 r005 Im(z^2+c),c=13/64+17/55*I,n=47 3645201909382061 m001 (-FeigenbaumC+TreeGrowth2nd)/(exp(1)+ln(3)) 3645201911921357 a007 Real Root Of 70*x^4+249*x^3+213*x^2+646*x-774 3645201937121131 r005 Re(z^2+c),c=-14/29+11/57*I,n=14 3645201941498692 r009 Im(z^3+c),c=-5/28+15/38*I,n=10 3645201951697713 a007 Real Root Of 117*x^4+101*x^3+744*x^2-683*x-345 3645201955126515 l006 ln(1130/1627) 3645201955498623 m001 (Kolakoski+Thue)/(BesselK(1,1)-GAMMA(11/12)) 3645201961479049 a007 Real Root Of -43*x^4+390*x^3-753*x^2-182*x-629 3645201967564521 a005 (1/cos(7/53*Pi))^482 3645201975598836 p003 LerchPhi(1/16,2,11/210) 3645201981283548 a005 (1/cos(16/217*Pi))^388 3645201997141987 r005 Re(z^2+c),c=-8/17+25/57*I,n=25 3645201997959245 m001 (BesselI(0,1)+Cahen)/(FeigenbaumC+Magata) 3645202018599116 l003 hypergeom([1,1,3/2],[2/3,1/3],47/78) 3645202019046759 r005 Re(z^2+c),c=-19/26+10/101*I,n=64 3645202039225146 a003 sin(Pi*3/40)/sin(Pi*25/113) 3645202042436895 a007 Real Root Of 178*x^4+590*x^3-297*x^2-428*x-464 3645202044554072 h001 (6/11*exp(1)+5/6)/(1/9*exp(1)+1/3) 3645202058369087 r005 Re(z^2+c),c=29/106+3/64*I,n=11 3645202058725286 m001 arctan(1/2)^(BesselI(0,2)*Stephens) 3645202058978400 r005 Re(z^2+c),c=-23/52+11/27*I,n=49 3645202085049045 r002 60th iterates of z^2 + 3645202108799808 h001 (2/7*exp(2)+3/7)/(10/11*exp(2)+1/4) 3645202128033853 m001 1/5*(2*Pi/GAMMA(5/6))^Zeta(1/2)*5^(1/2) 3645202128033853 m001 GAMMA(1/6)^Zeta(1/2)/sqrt(5) 3645202135395186 r009 Im(z^3+c),c=-16/31+5/34*I,n=15 3645202139542461 s002 sum(A078793[n]/(exp(pi*n)-1),n=1..infinity) 3645202143743681 m001 (GAMMA(5/6)+Thue)/(Psi(2,1/3)+sin(1/5*Pi)) 3645202167363353 a007 Real Root Of 36*x^4-546*x^3-270*x^2-149*x+116 3645202186874179 h003 exp(Pi*(11^(1/2)+3^(1/4)+11^(3/4))) 3645202199265232 a007 Real Root Of -896*x^4+349*x^3+835*x^2+886*x-435 3645202213878589 a007 Real Root Of 19*x^4+676*x^3-578*x^2+969*x-131 3645202219233187 a007 Real Root Of 266*x^4+774*x^3-929*x^2-578*x+762 3645202219558113 r005 Im(z^2+c),c=-5/56+15/29*I,n=18 3645202221553934 r005 Im(z^2+c),c=-19/94+13/22*I,n=9 3645202226298648 m001 Magata+Niven-Porter 3645202233226434 h005 exp(cos(Pi*6/25)+cos(Pi*17/55)) 3645202240729050 p003 LerchPhi(1/1024,4,7/172) 3645202249056035 p003 LerchPhi(1/512,4,7/172) 3645202260502753 m001 (Khinchin-Tetranacci)/(TwinPrimes-ZetaP(2)) 3645202265445902 m001 (1+2^(1/3))/(-MertensB2+PrimesInBinary) 3645202265713309 p003 LerchPhi(1/256,4,7/172) 3645202266375178 r005 Im(z^2+c),c=1/10+19/49*I,n=34 3645202282508592 m002 3+(E^Pi*Coth[Pi])/36 3645202284735739 r005 Re(z^2+c),c=49/114+19/58*I,n=4 3645202299381867 m001 FeigenbaumB^(3^(1/3))*Weierstrass 3645202300641271 p003 LerchPhi(1/125,4,7/172) 3645202308890656 m001 (3^(1/2)+CareFree)/(-Conway+HardyLittlewoodC3) 3645202311119121 k007 concat of cont frac of 3645202317712372 p003 LerchPhi(1/100,4,7/172) 3645202320786056 r002 45th iterates of z^2 + 3645202334304186 r005 Re(z^2+c),c=-59/122+11/58*I,n=19 3645202355858759 r009 Im(z^3+c),c=-21/64+8/23*I,n=6 3645202365749745 p003 LerchPhi(1/64,4,7/172) 3645202365845237 m005 (1/2*Zeta(3)+2/5)/(-1/33+3/22*5^(1/2)) 3645202373113960 a007 Real Root Of 511*x^4-107*x^3-518*x^2-804*x+30 3645202386655917 p001 sum(1/(613*n+275)/(128^n),n=0..infinity) 3645202390121320 r009 Im(z^3+c),c=-11/25+7/37*I,n=3 3645202396498203 a007 Real Root Of 681*x^4-523*x^3-374*x^2-716*x+324 3645202400184442 r005 Re(z^2+c),c=-77/78+9/44*I,n=16 3645202405502634 r009 Re(z^3+c),c=-19/52+7/51*I,n=17 3645202416562056 a001 144/710647*3^(31/58) 3645202416629245 a007 Real Root Of -617*x^4+803*x^3-255*x^2+887*x+407 3645202418348734 m001 FeigenbaumMu^(exp(1)*Niven) 3645202430432178 a007 Real Root Of -913*x^4-158*x^3-103*x^2+444*x+184 3645202431329995 s002 sum(A143665[n]/((2*n+1)!),n=1..infinity) 3645202436628200 r005 Im(z^2+c),c=13/64+17/55*I,n=51 3645202445537491 r009 Re(z^3+c),c=-13/34+13/19*I,n=26 3645202462663881 r005 Re(z^2+c),c=-45/98+3/41*I,n=5 3645202464308515 a007 Real Root Of 227*x^4-420*x^3+725*x^2-459*x-288 3645202467701872 m001 1/exp(CareFree)^2/Champernowne^2/TreeGrowth2nd 3645202478010153 m001 (arctan(1/2)+Ei(1,1))/(ArtinRank2+Salem) 3645202482975015 a001 2178309/521*199^(9/22) 3645202485608015 m001 Zeta(1/2)^BesselK(0,1)/arctan(1/3) 3645202488763920 a001 29/2178309*6765^(7/11) 3645202488857910 m001 (-Ei(1,1)+ArtinRank2)/(Si(Pi)-cos(1)) 3645202492224783 r005 Im(z^2+c),c=8/29+5/22*I,n=15 3645202492233146 r009 Im(z^3+c),c=-5/94+43/53*I,n=10 3645202495884926 p001 sum((-1)^n/(526*n+267)/(12^n),n=0..infinity) 3645202498901045 a001 29/1836311903*267914296^(7/11) 3645202498901045 a001 29/53316291173*53316291173^(7/11) 3645202498901045 a001 29/1548008755920*10610209857723^(7/11) 3645202498901301 a001 29/63245986*1346269^(7/11) 3645202499380584 p003 LerchPhi(1/32,4,7/172) 3645202507960156 k002 Champernowne real with 74*n^2-213*n+175 3645202511613079 a003 cos(Pi*3/59)/cos(Pi*26/63) 3645202513456498 m001 (Trott-ThueMorse)/(BesselJ(1,1)+Robbin) 3645202514070808 a007 Real Root Of 283*x^4+900*x^3-603*x^2-624*x-636 3645202536858767 g001 Psi(3/10,53/71) 3645202542325798 m001 1/exp(CareFree)^2/FeigenbaumAlpha/GAMMA(1/3) 3645202547668729 m001 (Zeta(1,2)-exp(1))/(Paris+ZetaQ(4)) 3645202550638922 h001 (4/7*exp(1)+1/4)/(6/11*exp(2)+11/12) 3645202557727250 m001 (2^(1/3)+Si(Pi))/(-cos(1/5*Pi)+Sarnak) 3645202558596990 m001 (cos(1)-gamma(1))/(-Bloch+GaussKuzminWirsing) 3645202569221084 m001 Robbin^ReciprocalFibonacci/(Robbin^Catalan) 3645202572133546 h002 exp(23/(13^(1/2)+2^(1/4))^(1/2)) 3645202574339045 p003 LerchPhi(1/25,4,7/172) 3645202597084550 m001 1/exp(Rabbit)*Kolakoski*cos(Pi/12)^2 3645202607302282 a007 Real Root Of 239*x^4+956*x^3+376*x^2+516*x+992 3645202618150171 a007 Real Root Of -583*x^4+964*x^3+325*x^2+986*x-439 3645202618876707 m001 (Bloch-ln(2)/ln(10))/(-Cahen+ZetaP(3)) 3645202621593838 m001 (-Cahen+Sarnak)/(GAMMA(5/6)-exp(Pi)) 3645202621697167 r005 Im(z^2+c),c=-3/5+7/73*I,n=16 3645202629043170 m005 (1/2*gamma-1/4)/(1/2*exp(1)-3/10) 3645202631871128 m001 1/exp(GAMMA(17/24))*LaplaceLimit^2*sqrt(3)^2 3645202632270845 r009 Im(z^3+c),c=-11/29+19/59*I,n=27 3645202635423053 r002 20th iterates of z^2 + 3645202636069350 r009 Im(z^3+c),c=-5/118+11/24*I,n=2 3645202657946032 r005 Re(z^2+c),c=-27/94+32/49*I,n=22 3645202659823843 s001 sum(exp(-2*Pi/3)^n*A163687[n],n=1..infinity) 3645202667127994 a007 Real Root Of -279*x^4-862*x^3+347*x^2-715*x+291 3645202720913987 a001 233/10749957122*2^(3/4) 3645202721857947 r005 Re(z^2+c),c=3/29+43/54*I,n=4 3645202745392644 r005 Im(z^2+c),c=-1/118+26/57*I,n=27 3645202748632028 r005 Re(z^2+c),c=-51/106+7/32*I,n=28 3645202762375443 r005 Im(z^2+c),c=13/64+17/55*I,n=50 3645202765596394 m001 (-LaplaceLimit+Otter)/(BesselI(0,1)-Ei(1)) 3645202767506138 p003 LerchPhi(1/16,4,7/172) 3645202774535555 p003 LerchPhi(1/100,1,152/55) 3645202820985575 r009 Im(z^3+c),c=-27/58+14/53*I,n=35 3645202822345660 m001 ln(2+3^(1/2))+Grothendieck*Mills 3645202826343162 m001 (Bloch-Si(Pi))/(-FeigenbaumB+Kolakoski) 3645202840939853 m001 (CopelandErdos-KhinchinHarmonic)/(Pi+1) 3645202871352327 r009 Im(z^3+c),c=-13/29+5/18*I,n=49 3645202882405504 l006 ln(148/5667) 3645202882657707 r002 43th iterates of z^2 + 3645202888707786 m005 (3/5*Pi-5/6)/(exp(1)+1/6) 3645202891915591 r009 Im(z^3+c),c=-5/9+7/22*I,n=9 3645202894634689 r005 Im(z^2+c),c=13/64+17/55*I,n=55 3645202900072772 r005 Im(z^2+c),c=-4/21+21/38*I,n=51 3645202902629591 r009 Im(z^3+c),c=-41/98+18/61*I,n=7 3645202904311116 r009 Im(z^3+c),c=-9/46+16/41*I,n=7 3645202917273742 a007 Real Root Of -977*x^4+817*x^3-88*x^2+728*x-276 3645202931934722 r005 Im(z^2+c),c=13/64+17/55*I,n=56 3645202946905569 p003 LerchPhi(1/12,4,7/172) 3645202955353479 m001 (Landau-Salem)/(exp(-1/2*Pi)+GAMMA(7/12)) 3645202958024480 r005 Im(z^2+c),c=13/110+24/41*I,n=24 3645202960930479 a003 cos(Pi*40/103)/sin(Pi*47/120) 3645202961558673 l006 ln(6107/8793) 3645202963370305 r002 29th iterates of z^2 + 3645202974087386 r005 Re(z^2+c),c=19/66+3/38*I,n=2 3645202993871236 a007 Real Root Of -318*x^4-913*x^3+603*x^2-811*x+955 3645202997689979 r005 Im(z^2+c),c=13/64+17/55*I,n=60 3645202999329534 a001 9/17*75025^(37/47) 3645203001985876 r005 Re(z^2+c),c=29/94+1/15*I,n=40 3645203006333061 a007 Real Root Of -463*x^4+215*x^3+745*x^2+868*x+236 3645203010770275 r005 Im(z^2+c),c=13/64+17/55*I,n=52 3645203011963451 a007 Real Root Of -283*x^4+999*x^3-188*x^2+822*x+378 3645203015443560 r005 Re(z^2+c),c=-29/31+7/50*I,n=10 3645203029419597 r005 Im(z^2+c),c=13/64+17/55*I,n=61 3645203030328682 r005 Re(z^2+c),c=-53/114+3/17*I,n=6 3645203032673253 r005 Im(z^2+c),c=13/64+17/55*I,n=64 3645203032992648 a007 Real Root Of 738*x^4-703*x^3+5*x^2-906*x-378 3645203033632431 r009 Re(z^3+c),c=-5/27+55/63*I,n=4 3645203036403320 r005 Im(z^2+c),c=13/64+17/55*I,n=59 3645203050997087 b008 29/9+CosIntegral[2] 3645203052407207 r005 Im(z^2+c),c=13/64+17/55*I,n=63 3645203057396803 r005 Re(z^2+c),c=-37/82+13/35*I,n=54 3645203060540586 r005 Im(z^2+c),c=13/64+17/55*I,n=62 3645203071608471 m005 (1/2*Pi+8/9)/(7/10*Zeta(3)-1/6) 3645203084931350 a001 832040/3*843^(13/34) 3645203088050065 r005 Im(z^2+c),c=13/64+17/55*I,n=57 3645203090804482 p003 LerchPhi(1/10,4,7/172) 3645203091772429 a007 Real Root Of 398*x^4+529*x^3-107*x^2-817*x-265 3645203108642689 r002 64th iterates of z^2 + 3645203114840792 r005 Im(z^2+c),c=13/64+17/55*I,n=58 3645203115677885 m005 (1/2*5^(1/2)-5/7)/(4/7*gamma+7/9) 3645203139325782 r002 10th iterates of z^2 + 3645203143013878 m005 (1/3*2^(1/2)-2/9)/(5/8*Catalan+1/9) 3645203148428957 m001 exp(-1/2*Pi)^(Pi*2^(1/2)/GAMMA(3/4))*Trott 3645203153139534 r005 Re(z^2+c),c=-67/114+13/62*I,n=11 3645203155661773 r005 Im(z^2+c),c=13/64+17/55*I,n=54 3645203158271172 r002 13th iterates of z^2 + 3645203174919791 a003 sin(Pi*14/109)*sin(Pi*25/66) 3645203178229971 m001 (PlouffeB+ZetaQ(4))/(Ei(1,1)-GAMMA(7/12)) 3645203182396007 m001 GAMMA(1/6)^2/Bloch/ln(GAMMA(7/12))^2 3645203189565596 m005 (1/3*exp(1)+1/7)/(3/7*3^(1/2)-5/11) 3645203190063449 l006 ln(4977/7166) 3645203196496453 a007 Real Root Of -209*x^4-662*x^3-803*x^2+353*x+207 3645203200582542 a005 (1/sin(58/151*Pi))^87 3645203233991091 r002 3th iterates of z^2 + 3645203235741038 r005 Re(z^2+c),c=-21/44+13/53*I,n=50 3645203243462447 a007 Real Root Of -701*x^4-208*x^3+947*x^2+597*x-321 3645203244513984 h001 (-10*exp(1)+4)/(-exp(4)-9) 3645203259414306 m006 (4*ln(Pi)-3/5)/(5/Pi-1/2) 3645203280212339 r005 Im(z^2+c),c=7/23+10/49*I,n=33 3645203290080525 r002 23th iterates of z^2 + 3645203307293751 p003 LerchPhi(1/8,4,7/172) 3645203320234365 m001 FellerTornier/(AlladiGrinstead^gamma) 3645203326922593 a005 (1/sin(92/215*Pi))^139 3645203333430848 v002 sum(1/(5^n*(26*n^2-17*n+52)),n=1..infinity) 3645203336730346 r005 Re(z^2+c),c=-11/28+29/59*I,n=30 3645203342282871 r005 Im(z^2+c),c=-1/66+21/46*I,n=14 3645203356031546 m005 (1/2*Zeta(3)+5/12)/(4/9*exp(1)-4) 3645203361599345 r009 Re(z^3+c),c=-7/106+31/47*I,n=61 3645203365224502 m002 Pi^3+Pi^5+Pi^5*Csch[Pi]+Tanh[Pi] 3645203366046548 r005 Im(z^2+c),c=13/64+17/55*I,n=53 3645203380382935 r009 Re(z^3+c),c=-13/56+15/16*I,n=14 3645203399850075 a007 Real Root Of -765*x^4+525*x^3+727*x^2+849*x-418 3645203404265665 s002 sum(A100816[n]/(n^3*2^n-1),n=1..infinity) 3645203408651475 m001 (CopelandErdos-Rabbit)/(Pi^(1/2)-Bloch) 3645203417449571 r009 Im(z^3+c),c=-13/94+32/39*I,n=64 3645203423196874 l005 ln(sec(53/66)) 3645203435782617 r005 Im(z^2+c),c=-31/25+8/17*I,n=3 3645203439622819 r005 Im(z^2+c),c=17/66+8/31*I,n=47 3645203449846662 m002 Pi^4*Coth[Pi]+2*Sinh[Pi]^2 3645203462059350 r005 Im(z^2+c),c=-9/74+15/29*I,n=23 3645203462076873 a001 123/4181*3^(8/41) 3645203462879571 a007 Real Root Of -955*x^4-766*x^3-819*x^2+676*x+335 3645203464737834 r005 Im(z^2+c),c=1/126+25/56*I,n=34 3645203474551498 m001 (GolombDickman+1)/(Backhouse+3) 3645203478703617 r005 Im(z^2+c),c=-23/86+36/59*I,n=63 3645203502868504 a007 Real Root Of 449*x^4-326*x^3+714*x^2-772*x-400 3645203506897378 p003 LerchPhi(1/64,6,226/191) 3645203507328095 r002 16th iterates of z^2 + 3645203510966157 k002 Champernowne real with 149/2*n^2-429/2*n+176 3645203511055761 r009 Re(z^3+c),c=-75/122+34/63*I,n=41 3645203533940569 r009 Im(z^3+c),c=-11/29+19/59*I,n=26 3645203543641795 m001 BesselI(1,1)^Zeta(3)+Pi 3645203549093452 r005 Re(z^2+c),c=-17/36+15/56*I,n=24 3645203551892180 r002 27th iterates of z^2 + 3645203552808087 l006 ln(3847/5539) 3645203562545484 m001 (ln(gamma)-ln(2))/(Khinchin+Sarnak) 3645203565228661 r009 Im(z^3+c),c=-17/31+14/39*I,n=36 3645203569184476 r005 Re(z^2+c),c=-13/36+29/46*I,n=57 3645203579264536 r005 Im(z^2+c),c=-15/122+29/60*I,n=10 3645203599553914 a001 9227465/322*123^(1/20) 3645203601478219 r002 16th iterates of z^2 + 3645203607317508 m005 (1/2*2^(1/2)-8/11)/(1/3*Catalan-1/4) 3645203615871077 r005 Im(z^2+c),c=4/15+29/64*I,n=29 3645203616693855 m001 (Zeta(3)+Zeta(5))/(2*Pi/GAMMA(5/6)+Stephens) 3645203618385668 r005 Re(z^2+c),c=-33/86+23/59*I,n=9 3645203629883715 r005 Re(z^2+c),c=-14/29+9/43*I,n=38 3645203646051409 h001 (3/7*exp(2)+11/12)/(1/9*exp(1)+9/11) 3645203646466695 m001 sin(Pi/5)+2*GAMMA(7/12) 3645203649370462 m001 Gompertz/(sin(1)+Kolakoski) 3645203669850045 p003 LerchPhi(1/6,4,7/172) 3645203677283750 r005 Re(z^2+c),c=-49/122+16/59*I,n=4 3645203679369250 q001 1387/3805 3645203690405721 h001 (-8*exp(4)-5)/(-2*exp(4)-12) 3645203693639245 m001 (-Kolakoski+Magata)/(2^(1/2)-ArtinRank2) 3645203704108608 a001 64079/3*987^(41/55) 3645203708058129 a007 Real Root Of 252*x^4+909*x^3-184*x^2-388*x+566 3645203709002970 m001 BesselI(1,2)+Totient+TravellingSalesman 3645203713201902 b008 ArcCoth[5*Sqrt[11]]^2 3645203727348921 r005 Im(z^2+c),c=-87/74+1/21*I,n=50 3645203729477692 r009 Im(z^3+c),c=-41/86+13/51*I,n=52 3645203737304190 r005 Im(z^2+c),c=13/64+17/55*I,n=45 3645203761872574 r005 Im(z^2+c),c=3/34+19/48*I,n=26 3645203772433400 a001 3571/3*121393^(15/17) 3645203781800417 a007 Real Root Of 703*x^4-185*x^3+475*x^2-476*x-258 3645203811558947 r009 Im(z^3+c),c=-45/98+5/18*I,n=13 3645203827850745 l006 ln(6564/9451) 3645203832514774 a001 3/3010349*4^(29/31) 3645203835994331 r005 Re(z^2+c),c=-53/94+15/47*I,n=16 3645203863881306 m001 StolarskyHarborth^Stephens/MasserGramain 3645203866468702 r009 Im(z^3+c),c=-15/34+17/60*I,n=24 3645203866788944 m001 (Kolakoski+ZetaQ(3))/(BesselI(0,1)-Zeta(1,2)) 3645203881770542 m008 (1/5*Pi^4-5)/(4*Pi^2+1/4) 3645203882371686 r005 Im(z^2+c),c=-37/54+5/18*I,n=51 3645203899552752 m001 1/ln(Paris)^2*KhintchineLevy^2/FeigenbaumD^2 3645203902792982 h001 (5/6*exp(2)+4/9)/(1/5*exp(2)+1/3) 3645203904485424 p001 sum(1/(550*n+523)/n/(256^n),n=1..infinity) 3645203936285443 m001 (Pi-exp(-1/2*Pi))/(QuadraticClass-ZetaP(4)) 3645203954913563 r005 Im(z^2+c),c=29/122+5/18*I,n=41 3645203961497644 p003 LerchPhi(1/5,4,7/172) 3645203976189747 r005 Im(z^2+c),c=13/64+17/55*I,n=49 3645203976343000 a007 Real Root Of 225*x^4+903*x^3+312*x^2+288*x+916 3645203976656984 m001 (Ei(1)-MertensB3)/(QuadraticClass+Robbin) 3645203985723763 r005 Re(z^2+c),c=25/66+7/19*I,n=4 3645203998931265 s002 sum(A180840[n]/(n^2*2^n+1),n=1..infinity) 3645204019750137 m001 (3^(1/2)+Shi(1))/BesselJ(0,1) 3645204025415072 r005 Im(z^2+c),c=-29/52+4/61*I,n=62 3645204026044412 a003 sin(Pi*8/111)-sin(Pi*10/119) 3645204034040104 a001 161/1292*89^(11/46) 3645204045044352 m001 sin(Pi/5)^GAMMA(1/4)*FeigenbaumAlpha 3645204052001951 r005 Re(z^2+c),c=-59/122+1/8*I,n=10 3645204054442432 r005 Im(z^2+c),c=13/64+17/55*I,n=48 3645204072052844 r005 Im(z^2+c),c=9/50+17/50*I,n=8 3645204085270897 m008 (2*Pi^5+1/3)/(4/5*Pi-5/6) 3645204087817139 r002 12th iterates of z^2 + 3645204097045953 m005 (1/2*Pi-9/10)/(5/6*Pi-7/9) 3645204130305054 r005 Re(z^2+c),c=-25/54+9/28*I,n=40 3645204130622864 r005 Im(z^2+c),c=-81/74+12/47*I,n=14 3645204141984905 a007 Real Root Of 186*x^4+829*x^3+250*x^2-985*x+401 3645204144893522 m008 (2*Pi^5-3)/(5*Pi+1) 3645204168302927 s001 sum(exp(-Pi/2)^n*A057216[n],n=1..infinity) 3645204176673800 m001 1/Robbin/CareFree/exp(sqrt(Pi)) 3645204179814543 r005 Re(z^2+c),c=-25/54+22/51*I,n=25 3645204186710408 m001 (Champernowne-Mills)/(Sierpinski+TwinPrimes) 3645204193696408 m001 (GAMMA(5/6)-GAMMA(17/24))/(RenyiParking-Salem) 3645204195138683 r002 5th iterates of z^2 + 3645204198321708 m001 Pi*2^(1/2)/GAMMA(3/4)/(cos(1)^ZetaQ(3)) 3645204199035306 a007 Real Root Of 851*x^4-601*x^3+555*x^2-752*x-392 3645204208471558 m001 (Lehmer+Riemann3rdZero)/(gamma(3)-CareFree) 3645204217283602 l006 ln(2717/3912) 3645204234443963 m001 FeigenbaumMu*QuadraticClass^Zeta(1,-1) 3645204246858080 m002 (ProductLog[Pi]*Sech[Pi])/3-Sinh[Pi]/Pi 3645204247189661 m004 75*Pi*Csc[Sqrt[5]*Pi]+5*Pi*Tanh[Sqrt[5]*Pi] 3645204274484259 a007 Real Root Of -615*x^4+638*x^3+881*x^2+702*x-393 3645204312745366 r002 7th iterates of z^2 + 3645204314341723 r005 Re(z^2+c),c=-35/82+11/23*I,n=36 3645204322184950 r005 Im(z^2+c),c=-1/118+26/57*I,n=33 3645204331214378 m001 (PlouffeB-PrimesInBinary)/(ln(5)-3^(1/3)) 3645204335838910 m001 (Psi(1,1/3)-exp(Pi))/(FeigenbaumMu+ZetaQ(3)) 3645204339205493 r005 Re(z^2+c),c=15/118+37/58*I,n=27 3645204340576947 r005 Im(z^2+c),c=-1/6+17/30*I,n=29 3645204340887705 r005 Re(z^2+c),c=-75/98+1/62*I,n=54 3645204342422637 r005 Re(z^2+c),c=-7/16+19/43*I,n=40 3645204342645700 a001 987/521*3^(28/47) 3645204345379062 m001 Pi*2^(1/2)/GAMMA(3/4)/MertensB3*Totient 3645204351698931 m005 (1/2*5^(1/2)+5/8)/(1/10*exp(1)-3/4) 3645204368460203 r002 56th iterates of z^2 + 3645204383528559 r002 2th iterates of z^2 + 3645204386014666 r005 Im(z^2+c),c=5/14+29/63*I,n=5 3645204390611274 l006 ln(117/4480) 3645204414305641 r005 Im(z^2+c),c=13/64+17/55*I,n=43 3645204416150378 m001 1/exp((3^(1/3)))/CareFree^2*BesselJ(0,1) 3645204433733196 r009 Im(z^3+c),c=-13/62+7/17*I,n=3 3645204437803761 m001 (ln(Pi)-Pi^(1/2))/(FeigenbaumB-TwinPrimes) 3645204458786167 m001 1/Robbin^2/ln(HardHexagonsEntropy)^2*sqrt(Pi) 3645204491185050 a003 sin(Pi*35/113)/cos(Pi*44/103) 3645204495773551 m004 5*Pi+75*Pi*Csc[Sqrt[5]*Pi] 3645204498172043 m001 1/exp(PrimesInBinary)*Paris^2*LambertW(1) 3645204507974701 r002 11th iterates of z^2 + 3645204510971223 m001 gamma(1)^FeigenbaumC/(gamma(1)^LambertW(1)) 3645204513972158 k002 Champernowne real with 75*n^2-216*n+177 3645204522330822 l006 ln(1643/1649) 3645204525768782 a001 38*1548008755920^(14/19) 3645204529186374 r002 42th iterates of z^2 + 3645204530286249 m005 (1/2*Catalan+1/8)/(1/3*Zeta(3)-2) 3645204533637525 r005 Re(z^2+c),c=-16/21+1/42*I,n=36 3645204539921590 m001 (Champernowne-Lehmer)/(gamma(3)+GAMMA(17/24)) 3645204544590833 m001 Pi-(Psi(2,1/3)-Ei(1,1))*BesselK(1,1) 3645204548721754 r005 Re(z^2+c),c=-55/118+15/49*I,n=42 3645204560697518 q001 1087/2982 3645204563561154 m001 arctan(1/2)/(MadelungNaCl-PlouffeB) 3645204564831322 m001 (MertensB3-Porter)/(cos(1/5*Pi)-BesselJ(1,1)) 3645204573234226 r005 Im(z^2+c),c=-17/42+3/50*I,n=12 3645204588630886 m001 (Ei(1)+3^(1/3))/(PlouffeB+TreeGrowth2nd) 3645204595961616 a007 Real Root Of -98*x^4+244*x^3-212*x^2+195*x-53 3645204598025678 m001 2*Pi/GAMMA(5/6)+MertensB2-Otter 3645204611177949 r009 Re(z^3+c),c=-13/27+12/41*I,n=58 3645204630476254 r005 Im(z^2+c),c=5/94+18/43*I,n=39 3645204636676321 b008 -4/7+Sech[E^(-1)] 3645204643249288 r005 Im(z^2+c),c=-5/54+31/64*I,n=11 3645204644618069 r009 Im(z^3+c),c=-7/110+33/47*I,n=2 3645204664474913 r009 Im(z^3+c),c=-9/52+19/48*I,n=13 3645204666493224 m001 ln(sqrt(1+sqrt(3)))*GAMMA(23/24)/sqrt(2) 3645204694097964 r005 Im(z^2+c),c=27/110+10/37*I,n=37 3645204707869511 a007 Real Root Of -873*x^4+485*x^3+325*x^2+526*x-243 3645204725166260 a007 Real Root Of -144*x^4-649*x^3-616*x^2-449*x+538 3645204732147841 m005 (1/2*5^(1/2)-1/12)/(3/8*5^(1/2)+2) 3645204735298292 a001 1346269/322*322^(3/8) 3645204744357835 m004 5*Pi*Coth[Sqrt[5]*Pi]+75*Pi*Csc[Sqrt[5]*Pi] 3645204752248013 m005 (1/2*5^(1/2)+7/11)/(8/11*Catalan-5/7) 3645204760913409 m001 MadelungNaCl*(GaussKuzminWirsing+Grothendieck) 3645204764753457 r005 Re(z^2+c),c=-39/82+12/47*I,n=41 3645204786075629 r005 Im(z^2+c),c=-61/118+26/45*I,n=24 3645204790048720 r005 Im(z^2+c),c=13/64+19/63*I,n=12 3645204790909696 m001 (Pi-LambertW(1))/(ArtinRank2+ZetaQ(3)) 3645204792296806 a007 Real Root Of 823*x^4-742*x^3+408*x^2-293*x+74 3645204800980428 r002 61th iterates of z^2 + 3645204807053746 a001 1730726404001/4*21^(7/10) 3645204811204871 l006 ln(4304/6197) 3645204813085585 a007 Real Root Of -315*x^4-91*x^3+334*x^2+873*x+275 3645204831879971 r005 Im(z^2+c),c=5/16+6/31*I,n=52 3645204834770666 m001 BesselK(1,1)/(Salem+Weierstrass) 3645204837878291 a007 Real Root Of 941*x^4-453*x^3-537*x^2-389*x-109 3645204870410695 h001 (1/6*exp(1)+6/11)/(7/9*exp(1)+5/8) 3645204875542084 r005 Re(z^2+c),c=-8/17+15/53*I,n=45 3645204897025433 p004 log(27073/18803) 3645204908295602 r005 Im(z^2+c),c=-5/82+17/35*I,n=47 3645204915194307 q001 1/274333 3645204915527551 r005 Im(z^2+c),c=5/29+15/46*I,n=11 3645204925832944 b008 -6+(-1/14+Pi)*Pi 3645204963824054 r009 Im(z^3+c),c=-10/19+16/43*I,n=46 3645204966798444 m001 (Khinchin+MertensB1)/(Paris+Rabbit) 3645204979309769 r009 Im(z^3+c),c=-7/13+16/63*I,n=45 3645204979376155 a001 233/322*64079^(45/46) 3645204979954982 a001 144/521*20633239^(7/10) 3645204979954988 a001 144/521*17393796001^(1/2) 3645204979954988 a001 144/521*14662949395604^(7/18) 3645204979954988 a001 144/521*505019158607^(7/16) 3645204979954988 a001 144/521*599074578^(7/12) 3645204979961303 a001 144/521*710647^(7/8) 3645204980128036 a001 233/322*167761^(9/10) 3645204980228858 a001 233/322*439204^(5/6) 3645204980244565 a001 233/322*7881196^(15/22) 3645204980244600 a001 233/322*20633239^(9/14) 3645204980244605 a001 233/322*2537720636^(1/2) 3645204980244605 a001 233/322*312119004989^(9/22) 3645204980244605 a001 233/322*14662949395604^(5/14) 3645204980244605 a001 233/322*192900153618^(5/12) 3645204980244605 a001 233/322*28143753123^(9/20) 3645204980244605 a001 233/322*228826127^(9/16) 3645204980244607 a001 233/322*33385282^(5/8) 3645204980245395 a001 233/322*1860498^(3/4) 3645204980562502 a001 233/322*103682^(15/16) 3645204996672490 r005 Re(z^2+c),c=-21/44+13/53*I,n=45 3645204997993755 m001 (GAMMA(19/24)+FeigenbaumC)/(Psi(1,1/3)-Si(Pi)) 3645205003936897 a007 Real Root Of 977*x^4-571*x^3+100*x^2-387*x+14 3645205006209522 r009 Im(z^3+c),c=-1/86+48/59*I,n=18 3645205008135695 m005 (1/2*Zeta(3)-3/8)/(-37/99+4/9*5^(1/2)) 3645205014739035 r002 14th iterates of z^2 + 3645205026552897 r005 Im(z^2+c),c=-9/46+19/33*I,n=28 3645205029005186 r009 Im(z^3+c),c=-43/98+17/56*I,n=5 3645205031482983 p004 log(31643/21977) 3645205034296764 r005 Im(z^2+c),c=-9/74+29/56*I,n=54 3645205035832607 m001 (-Riemann1stZero+Robbin)/(Bloch-sin(1)) 3645205041010874 a001 24157817/2207*199^(5/22) 3645205042825771 r005 Re(z^2+c),c=-5/12+27/56*I,n=50 3645205047297358 a007 Real Root Of 343*x^4+995*x^3-695*x^2+975*x+423 3645205055559507 a007 Real Root Of 226*x^4+875*x^3+453*x^2+724*x-901 3645205059468223 m001 Niven/(FeigenbaumDelta+ZetaQ(3)) 3645205065383264 m001 Khinchin^ZetaP(2)/(Riemann3rdZero^ZetaP(2)) 3645205072061206 r009 Im(z^3+c),c=-17/46+18/55*I,n=31 3645205072460062 m005 (1/2*Zeta(3)-1/10)/(51/55+1/5*5^(1/2)) 3645205076293725 m001 LaplaceLimit/ln(MertensB1)/FeigenbaumKappa 3645205082710293 r005 Re(z^2+c),c=13/40+19/37*I,n=27 3645205085128486 l006 ln(5891/8482) 3645205085939185 a001 14930352/521*76^(1/18) 3645205099172853 m001 (GAMMA(17/24)-Backhouse)/(Champernowne-Lehmer) 3645205118311921 m001 cos(1)^GAMMA(2/3)/(exp(-1/2*Pi)^GAMMA(2/3)) 3645205134789061 m005 (17/30+1/6*5^(1/2))/(8/11*exp(1)+3/5) 3645205140800529 r009 Im(z^3+c),c=-13/90+36/47*I,n=2 3645205143057714 p003 LerchPhi(1/3,4,7/172) 3645205152913001 a007 Real Root Of 240*x^4+684*x^3-697*x^2+131*x+495 3645205168600592 a005 (1/cos(49/123*Pi))^19 3645205169903852 m001 arctan(1/2)^BesselI(0,2)*Riemann2ndZero 3645205176121917 r005 Re(z^2+c),c=-10/31+13/22*I,n=32 3645205191845261 a003 sin(Pi*7/79)-sin(Pi*17/77) 3645205193517871 r005 Re(z^2+c),c=-59/122+13/64*I,n=36 3645205204513740 r005 Re(z^2+c),c=-33/58+25/51*I,n=64 3645205222631307 r005 Re(z^2+c),c=-19/48+31/52*I,n=22 3645205230110483 a007 Real Root Of 233*x^4+675*x^3-302*x^2+989*x-826 3645205231456334 r005 Im(z^2+c),c=7/114+12/29*I,n=21 3645205237603528 a007 Real Root Of 201*x^4+719*x^3+127*x^2+726*x+296 3645205243402062 a001 1/103682*18^(23/50) 3645205248491418 m001 (2*Pi/GAMMA(5/6)-CareFree)/(Mills+Trott2nd) 3645205255946851 m001 (ln(3)+4)/(-3^(1/2)+1/3) 3645205281059200 m001 (gamma(3)+GAMMA(23/24))/(Pi-arctan(1/3)) 3645205282604784 b008 ProductLog[139+EulerGamma] 3645205286093211 a001 47/139583862445*17711^(5/7) 3645205287755294 a001 47/1548008755920*514229^(5/7) 3645205295932208 m001 1/Catalan^2/ln(LaplaceLimit)^2/GAMMA(11/24) 3645205301134734 r005 Re(z^2+c),c=-11/25+21/61*I,n=13 3645205302807608 r004 Re(z^2+c),c=-21/16-1/24*I,z(0)=-1,n=21 3645205321006189 a007 Real Root Of 84*x^4+41*x^3-869*x^2+194*x-591 3645205324637909 a007 Real Root Of 326*x^4+876*x^3-964*x^2+834*x+721 3645205325447873 r009 Re(z^3+c),c=-19/46+36/53*I,n=6 3645205328991243 s001 sum(exp(-Pi/3)^(n-1)*A287463[n],n=1..infinity) 3645205347739103 b008 13*Sqrt[6]*Log[Pi] 3645205349272838 m001 exp(1/Pi)+exp(1/2)^GAMMA(13/24) 3645205357020137 a007 Real Root Of -268*x^4-945*x^3-119*x^2-992*x-489 3645205370045172 r005 Im(z^2+c),c=-45/62+1/14*I,n=46 3645205380691756 r005 Im(z^2+c),c=-1/34+25/53*I,n=19 3645205382467163 m005 (1/2*exp(1)+6)/(11/12*Zeta(3)-9/10) 3645205390031186 a007 Real Root Of 167*x^4+440*x^3-377*x^2+865*x-11 3645205391120797 r009 Im(z^3+c),c=-17/46+18/55*I,n=15 3645205400035490 p003 LerchPhi(1/100,6,33/19) 3645205410993209 r005 Re(z^2+c),c=1/102+11/47*I,n=19 3645205419884548 r005 Im(z^2+c),c=17/56+35/47*I,n=3 3645205423923940 a007 Real Root Of -119*x^4+829*x^3-760*x^2-168*x+82 3645205431820823 r005 Im(z^2+c),c=-29/118+18/29*I,n=61 3645205436643431 r009 Im(z^3+c),c=-11/118+11/27*I,n=6 3645205442200919 a007 Real Root Of 182*x^4+32*x^3+361*x^2-931*x-389 3645205442443470 m009 (4/5*Psi(1,1/3)-5)/(1/6*Psi(1,2/3)+1/3) 3645205465638533 m005 (1/2*5^(1/2)+4/5)/(1/12*Pi+5) 3645205467469896 a007 Real Root Of 64*x^4+210*x^3+23*x^2+629*x+859 3645205479391278 m008 (3/5*Pi^4-2)/(1/6*Pi^4-3/4) 3645205481730616 a007 Real Root Of 269*x^4+767*x^3-515*x^2+891*x-253 3645205483868871 m005 (1/2*Catalan-1/12)/(1/4*Zeta(3)+8/11) 3645205487373493 r009 Im(z^3+c),c=-3/34+43/54*I,n=24 3645205490188432 l006 ln(203/7773) 3645205499245318 a007 Real Root Of -361*x^4+40*x^3-153*x^2+920*x+364 3645205504851271 m005 (1/2*5^(1/2)-2/9)/(5*gamma-3/7) 3645205507394769 r009 Im(z^3+c),c=-23/62+16/49*I,n=26 3645205516978159 k002 Champernowne real with 151/2*n^2-435/2*n+178 3645205520969981 r005 Re(z^2+c),c=-37/78+17/54*I,n=19 3645205538169572 r009 Re(z^3+c),c=-15/38+8/51*I,n=5 3645205544419961 m001 1/Zeta(7)/Riemann2ndZero^2/ln(cos(1)) 3645205553139060 r005 Re(z^2+c),c=8/25+14/29*I,n=5 3645205588977682 m005 (1/2*Pi+7/10)/(-9/35+1/7*5^(1/2)) 3645205594039763 a001 6557470319842/7*322^(4/17) 3645205598633407 r009 Im(z^3+c),c=-17/46+17/52*I,n=13 3645205606291185 m001 (FeigenbaumC+PrimesInBinary)/(Sarnak-Totient) 3645205622740987 m001 (1-sin(1/5*Pi))/(gamma(3)+GAMMA(5/6)) 3645205650526542 a001 28657/3*843^(15/17) 3645205667247019 a001 1/3*139583862445^(12/19) 3645205676871549 p001 sum((-1)^n/(565*n+269)/(16^n),n=0..infinity) 3645205680196769 a001 31622993/2889*199^(5/22) 3645205704982467 a001 29/610*2178309^(19/31) 3645205705818591 m004 36+(Sec[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/3 3645205744152063 a007 Real Root Of 7*x^4-196*x^3-611*x^2+607*x-398 3645205758532518 r009 Im(z^3+c),c=-19/86+5/13*I,n=12 3645205764743203 r005 Re(z^2+c),c=-29/66+5/12*I,n=62 3645205773452752 a001 165580141/15127*199^(5/22) 3645205777159812 a007 Real Root Of -883*x^4-606*x^3+963*x^2+598*x-301 3645205777358280 m004 36+Sec[Sqrt[5]*Pi]/3 3645205778171385 a007 Real Root Of 882*x^4-810*x^3-688*x^2-693*x-216 3645205779884712 a007 Real Root Of 106*x^4+199*x^3-677*x^2+102*x+291 3645205787058618 a001 433494437/39603*199^(5/22) 3645205789043686 a001 567451585/51841*199^(5/22) 3645205789333304 a001 2971215073/271443*199^(5/22) 3645205789375559 a001 7778742049/710647*199^(5/22) 3645205789381724 a001 10182505537/930249*199^(5/22) 3645205789382623 a001 53316291173/4870847*199^(5/22) 3645205789382754 a001 139583862445/12752043*199^(5/22) 3645205789382773 a001 182717648081/16692641*199^(5/22) 3645205789382776 a001 956722026041/87403803*199^(5/22) 3645205789382777 a001 2504730781961/228826127*199^(5/22) 3645205789382777 a001 3278735159921/299537289*199^(5/22) 3645205789382777 a001 10610209857723/969323029*199^(5/22) 3645205789382777 a001 4052739537881/370248451*199^(5/22) 3645205789382777 a001 387002188980/35355581*199^(5/22) 3645205789382778 a001 591286729879/54018521*199^(5/22) 3645205789382785 a001 7787980473/711491*199^(5/22) 3645205789382835 a001 21566892818/1970299*199^(5/22) 3645205789383179 a001 32951280099/3010349*199^(5/22) 3645205789385534 a001 12586269025/1149851*199^(5/22) 3645205789401674 a001 1201881744/109801*199^(5/22) 3645205789512298 a001 1836311903/167761*199^(5/22) 3645205789815937 m001 1/ln(FeigenbaumC)*FeigenbaumB^2/Pi 3645205790270527 a001 701408733/64079*199^(5/22) 3645205794445883 h001 (1/7*exp(1)+5/8)/(8/9*exp(1)+4/11) 3645205795467505 a001 10946*199^(5/22) 3645205802532833 m009 (2*Psi(1,2/3)-3/5)/(20/3*Catalan+5/6*Pi^2+5/6) 3645205815314129 m001 (-Gompertz+Tribonacci)/(5^(1/2)+GAMMA(19/24)) 3645205828018960 l006 ln(1587/2285) 3645205831088123 a001 102334155/9349*199^(5/22) 3645205848124641 a001 103682/3*1597^(12/19) 3645205856914461 m001 1/exp(GAMMA(1/12))*Kolakoski*GAMMA(5/12)^2 3645205859497657 h001 (4/7*exp(2)+7/12)/(2/9*exp(1)+5/7) 3645205866727656 m001 (ln(5)+FeigenbaumD)/(HeathBrownMoroz+Salem) 3645205874053393 m001 (sin(1/12*Pi)+Paris)/(ZetaP(3)-ZetaP(4)) 3645205891702810 a007 Real Root Of 680*x^4+669*x^3-939*x^2-929*x+419 3645205892074511 m005 (1/3*2^(1/2)+1/11)/(5/7*Catalan-1/2) 3645205895808785 a001 4/233*377^(28/31) 3645205902994246 l004 cosh(157/115*Pi) 3645205909874649 m005 (1/3*gamma+1/5)/(-2/3+1/4*5^(1/2)) 3645205935764468 r009 Im(z^3+c),c=-17/46+18/55*I,n=32 3645205953747879 r005 Im(z^2+c),c=7/94+17/42*I,n=23 3645205967070272 a007 Real Root Of -537*x^4+149*x^3+200*x^2+471*x-196 3645205974684548 r009 Im(z^3+c),c=-17/46+18/55*I,n=35 3645205980370704 l006 ln(7192/7459) 3645205987905892 m005 (1/2*Catalan-1/7)/(5/12*Zeta(3)+4/11) 3645206001536343 a007 Real Root Of -200*x^4+227*x^3-39*x^2+504*x-186 3645206006077189 m001 Pi*2^(1/2)/GAMMA(3/4)+Trott+ZetaQ(3) 3645206013481538 a007 Real Root Of 225*x^4-117*x^3+227*x^2-838*x+277 3645206016793071 r005 Re(z^2+c),c=-55/122+21/58*I,n=25 3645206040412617 m001 (Pi+FeigenbaumC)/(FeigenbaumKappa+ZetaQ(3)) 3645206040589217 a003 cos(Pi*45/107)+cos(Pi*37/80) 3645206054191233 a007 Real Root Of -202*x^4-589*x^3+499*x^2-x+502 3645206073113049 a007 Real Root Of 77*x^4+190*x^3-281*x^2+354*x+632 3645206073209479 r009 Im(z^3+c),c=-17/46+18/55*I,n=34 3645206075235488 a001 39088169/3571*199^(5/22) 3645206088325498 m001 (OneNinth+Tetranacci)/(3^(1/2)-GAMMA(19/24)) 3645206088598988 m001 exp(GAMMA(17/24))^2/GAMMA(1/24)*cos(Pi/5)^2 3645206089442924 a001 1/3572*(1/2*5^(1/2)+1/2)^4*47^(1/6) 3645206101956835 r009 Im(z^3+c),c=-17/46+18/55*I,n=38 3645206109890316 a007 Real Root Of -280*x^4+236*x^3-552*x^2+212*x+167 3645206112947549 r005 Im(z^2+c),c=17/66+8/31*I,n=49 3645206113941639 q001 787/2159 3645206114422684 a008 Real Root of (1+2*x-5*x^2-6*x^3+4*x^4-5*x^5) 3645206119618427 a005 (1/cos(9/154*Pi))^348 3645206120793019 a007 Real Root Of 345*x^4-167*x^3+889*x^2-65*x-156 3645206131974959 a007 Real Root Of -98*x^4-426*x^3-345*x^2-453*x-398 3645206136367690 m001 Zeta(3)^PrimesInBinary-TravellingSalesman 3645206141504449 a007 Real Root Of -791*x^4+698*x^3-2*x^2+890*x-344 3645206145137639 r009 Im(z^3+c),c=-17/46+18/55*I,n=41 3645206145481038 r009 Im(z^3+c),c=-17/46+18/55*I,n=42 3645206149357258 r009 Im(z^3+c),c=-17/46+18/55*I,n=45 3645206150886594 r009 Im(z^3+c),c=-17/46+18/55*I,n=39 3645206151099137 r009 Im(z^3+c),c=-17/46+18/55*I,n=48 3645206151292263 r009 Im(z^3+c),c=-17/46+18/55*I,n=49 3645206151385659 r009 Im(z^3+c),c=-17/46+18/55*I,n=52 3645206151451219 r009 Im(z^3+c),c=-17/46+18/55*I,n=55 3645206151465970 r009 Im(z^3+c),c=-17/46+18/55*I,n=56 3645206151466857 r009 Im(z^3+c),c=-17/46+18/55*I,n=59 3645206151468713 r009 Im(z^3+c),c=-17/46+18/55*I,n=58 3645206151469129 r009 Im(z^3+c),c=-17/46+18/55*I,n=62 3645206151469974 r009 Im(z^3+c),c=-17/46+18/55*I,n=63 3645206151470349 r009 Im(z^3+c),c=-17/46+18/55*I,n=64 3645206151470750 r009 Im(z^3+c),c=-17/46+18/55*I,n=61 3645206151471535 r009 Im(z^3+c),c=-17/46+18/55*I,n=60 3645206151473626 r009 Im(z^3+c),c=-17/46+18/55*I,n=51 3645206151478850 r009 Im(z^3+c),c=-17/46+18/55*I,n=57 3645206151495311 r009 Im(z^3+c),c=-17/46+18/55*I,n=54 3645206151496125 r009 Im(z^3+c),c=-17/46+18/55*I,n=53 3645206151677056 r009 Im(z^3+c),c=-17/46+18/55*I,n=50 3645206151786836 r009 Im(z^3+c),c=-17/46+18/55*I,n=46 3645206152214726 r009 Im(z^3+c),c=-17/46+18/55*I,n=47 3645206152402138 r009 Im(z^3+c),c=-17/46+18/55*I,n=44 3645206155971984 r009 Im(z^3+c),c=-17/46+18/55*I,n=43 3645206157799309 m001 (Khinchin-MertensB2)/(Ei(1)-3^(1/3)) 3645206169702315 a007 Real Root Of -82*x^4-363*x^3-87*x^2+650*x+421 3645206171543143 r009 Im(z^3+c),c=-17/46+18/55*I,n=40 3645206177844853 m001 LandauRamanujan/ArtinRank2*exp(Zeta(3)) 3645206192131527 m005 (1/2*gamma+1/5)/(8/9*2^(1/2)+1/12) 3645206193259633 r009 Im(z^3+c),c=-17/46+18/55*I,n=37 3645206195313055 r005 Im(z^2+c),c=9/94+16/41*I,n=21 3645206210679685 a007 Real Root Of -363*x^4+62*x^3-64*x^2+935*x-34 3645206214338439 a007 Real Root Of 855*x^4-175*x^3+8*x^2-824*x-325 3645206215399414 b008 -14/3+Sqrt[7]*Pi 3645206216931893 a007 Real Root Of 571*x^4-120*x^3+480*x^2-780*x-364 3645206223148171 r009 Im(z^3+c),c=-17/46+18/55*I,n=27 3645206226471312 r005 Re(z^2+c),c=-33/74+24/61*I,n=42 3645206229690198 r009 Im(z^3+c),c=-41/90+14/51*I,n=20 3645206240728611 r009 Im(z^3+c),c=-17/46+18/55*I,n=36 3645206251043065 r002 9th iterates of z^2 + 3645206257567160 m004 -125*Pi+(25*Sqrt[5]*Pi)/6-Cot[Sqrt[5]*Pi] 3645206265643934 a001 123/55*13^(4/21) 3645206283961326 r009 Im(z^3+c),c=-23/62+16/49*I,n=22 3645206297966303 m005 (1/2*2^(1/2)-4/5)/(4/11*3^(1/2)-3/8) 3645206299301431 m001 (Paris+Rabbit)/(Robbin-TreeGrowth2nd) 3645206310841805 a007 Real Root Of 351*x^4-355*x^3-496*x^2-623*x+304 3645206312146479 m002 Pi^4+Pi^5*Cosh[Pi]+5*Sech[Pi] 3645206313699386 a007 Real Root Of -150*x^4+33*x^3+827*x^2+903*x-438 3645206315057014 m005 (1/2*Catalan-6/7)/(1/6*Pi+4/7) 3645206315174382 m001 (MertensB3+Trott)/(1+Khinchin) 3645206322841999 r009 Im(z^3+c),c=-35/54+1/62*I,n=2 3645206324614578 m001 (FeigenbaumMu-GaussAGM)/(ln(Pi)-Ei(1)) 3645206326916609 m001 FeigenbaumMu-MadelungNaCl+MasserGramainDelta 3645206332689451 r002 9th iterates of z^2 + 3645206346180678 b008 1/4+(7+Sqrt[3])^(-1) 3645206364259817 a007 Real Root Of -548*x^4+637*x^3-492*x^2+623*x+333 3645206385797385 r005 Re(z^2+c),c=-79/110+8/39*I,n=41 3645206402756618 a007 Real Root Of 142*x^4+385*x^3-473*x^2+69*x+113 3645206403775736 h001 (8/9*exp(2)+11/12)/(4/7*exp(1)+1/2) 3645206423880740 r005 Im(z^2+c),c=-45/82+9/17*I,n=17 3645206436667756 r005 Re(z^2+c),c=-49/110+13/33*I,n=62 3645206450764080 r005 Im(z^2+c),c=11/82+4/11*I,n=28 3645206459962306 r005 Re(z^2+c),c=-35/58+5/17*I,n=11 3645206468481410 m001 (Gompertz+Grothendieck)/(Zeta(3)+ln(gamma)) 3645206471129536 l006 ln(6805/9798) 3645206475464072 r005 Re(z^2+c),c=1/3+23/57*I,n=33 3645206486217874 m001 (GaussAGM-ZetaP(4))/(exp(1/Pi)+CareFree) 3645206492857561 r005 Re(z^2+c),c=-37/32+13/64*I,n=26 3645206496672136 a007 Real Root Of -621*x^4+456*x^3-944*x^2+994*x-35 3645206509799600 p003 LerchPhi(1/125,5,268/219) 3645206510353012 r005 Im(z^2+c),c=-14/25+27/62*I,n=17 3645206513309765 s001 sum(exp(-3*Pi/4)^n*A079470[n],n=1..infinity) 3645206513370886 s001 sum(exp(-Pi)^(n-1)*A120479[n],n=1..infinity) 3645206519984160 k002 Champernowne real with 76*n^2-219*n+179 3645206521793503 r005 Re(z^2+c),c=-29/60+15/32*I,n=42 3645206541968227 r009 Im(z^3+c),c=-11/86+13/32*I,n=5 3645206562719576 m001 (PlouffeB+ZetaQ(2))/(cos(1/5*Pi)+Cahen) 3645206572089269 a007 Real Root Of 236*x^4+737*x^3-701*x^2-795*x+446 3645206573069450 r005 Re(z^2+c),c=-65/106+23/57*I,n=61 3645206588593388 m001 (ln(5)+TreeGrowth2nd)/(Psi(2,1/3)-ln(3)) 3645206597648958 m001 (exp(Pi)+GAMMA(23/24))/(-Cahen+Mills) 3645206606542861 r005 Re(z^2+c),c=-23/54+31/64*I,n=53 3645206609014115 a007 Real Root Of 308*x^4+906*x^3-528*x^2+946*x-33 3645206616201918 m001 1/ln(GolombDickman)^2*FeigenbaumDelta/gamma 3645206619013322 m004 (225*Sqrt[5]*Pi)/8-Cosh[Sqrt[5]*Pi] 3645206623802269 a007 Real Root Of 210*x^4+593*x^3-825*x^2-791*x-276 3645206635104319 r002 31th iterates of z^2 + 3645206652461421 r005 Re(z^2+c),c=47/102+6/43*I,n=5 3645206655477551 r009 Im(z^3+c),c=-17/46+18/55*I,n=33 3645206656741922 p003 LerchPhi(1/2,4,7/172) 3645206658461519 h001 (1/8*exp(1)+2/7)/(5/12*exp(1)+7/12) 3645206665031908 m001 (Bloch-HeathBrownMoroz)/(Landau+RenyiParking) 3645206665738528 r009 Im(z^3+c),c=-11/32+18/53*I,n=12 3645206666724868 l006 ln(5218/7513) 3645206673975684 r004 Re(z^2+c),c=3/38+3/14*I,z(0)=I,n=8 3645206676950817 m001 (5^(1/2)+GAMMA(3/4))/(-polylog(4,1/2)+Porter) 3645206678603828 m001 exp(1/exp(1))^ErdosBorwein+Tribonacci 3645206678728655 a007 Real Root Of 322*x^4+921*x^3-885*x^2-483 3645206687226940 a001 47/12586269025*610^(5/7) 3645206697912758 m005 (1/3*Pi-1/2)/(5/9*Zeta(3)+5/6) 3645206705862352 r005 Im(z^2+c),c=17/66+8/31*I,n=53 3645206707121230 a001 3571/3*14930352^(13/17) 3645206720977441 r002 13th iterates of z^2 + 3645206733377930 a007 Real Root Of 114*x^4-810*x^3-41*x^2-793*x+29 3645206734512772 a007 Real Root Of -297*x^4-972*x^3+438*x^2+342*x+785 3645206751073462 m001 (Bloch*MadelungNaCl-MinimumGamma)/MadelungNaCl 3645206758319871 k005 Champernowne real with floor(sqrt(2)*(110*n+148)) 3645206758319871 k005 Champernowne real with floor(Catalan*(170*n+228)) 3645206765961666 m001 (ln(3)-2*Pi/GAMMA(5/6))/(FeigenbaumB-Rabbit) 3645206768329881 k001 Champernowne real with 156*n+208 3645206768329881 k005 Champernowne real with floor(log(3)*(142*n+190)) 3645206772403958 p003 LerchPhi(1/3,6,257/100) 3645206781269126 a007 Real Root Of -8*x^4-274*x^3+625*x^2-634*x-310 3645206782763751 m002 Pi^2+E^Pi*Log[Pi]+ProductLog[Pi]*Sech[Pi] 3645206795939203 m001 HardHexagonsEntropy/FellerTornier/KhinchinLevy 3645206803761046 a007 Real Root Of -680*x^4-199*x^3+607*x^2+502*x-242 3645206811081079 p001 sum(1/(549*n+524)/n/(256^n),n=1..infinity) 3645206822004489 a001 322/13*1346269^(17/25) 3645206824518798 m005 (1/2*gamma+1/9)/(4/5*gamma-4/7) 3645206830749523 a001 7/34*3^(13/25) 3645206859549408 m002 -Pi^3-Pi^4*Csch[Pi]+3*Tanh[Pi] 3645206898157825 a007 Real Root Of 162*x^4+789*x^3+791*x^2+121*x-456 3645206899769324 r005 Re(z^2+c),c=-47/110+21/44*I,n=40 3645206900986026 m001 1/Zeta(9)*ln(GAMMA(13/24))^2/sin(Pi/12)^2 3645206914572836 p004 log(23197/16111) 3645206915952413 a007 Real Root Of 445*x^4-186*x^3-882*x^2-737*x+387 3645206940158843 r005 Re(z^2+c),c=-37/98+10/19*I,n=43 3645206941344220 m001 (Zeta(3)-cos(1))/(PlouffeB+Totient) 3645206953658387 a007 Real Root Of -725*x^4+607*x^3+676*x^2+446*x-269 3645206957559032 m001 (OneNinth-Rabbit)/(GAMMA(11/12)+Gompertz) 3645206964772596 r002 15th iterates of z^2 + 3645206979047142 m004 -4/3-5*Sqrt[5]*Pi+3*Csch[Sqrt[5]*Pi] 3645206979469457 m004 -4/3+6/E^(Sqrt[5]*Pi)-5*Sqrt[5]*Pi 3645206979891772 m004 -4/3-5*Sqrt[5]*Pi+3*Sech[Sqrt[5]*Pi] 3645206984743231 a007 Real Root Of 114*x^4+203*x^3-966*x^2-782*x-310 3645206986122856 l006 ln(86/3293) 3645206987858374 m005 (1/3*gamma+1/2)/(7/10*2^(1/2)-4/5) 3645207019736598 m001 (BesselI(1,2)+Backhouse)/(Chi(1)-gamma(3)) 3645207021139574 a007 Real Root Of 401*x^4+774*x^3+838*x^2-376*x-218 3645207024362464 m005 (-5/8+1/4*5^(1/2))/(5/6*gamma-3/10) 3645207024867403 a001 620166*4181^(13/17) 3645207033297767 l006 ln(3631/5228) 3645207033772874 m001 (BesselI(1,1)+FeigenbaumD)/(Porter-Stephens) 3645207044651590 r005 Im(z^2+c),c=-4/3+11/246*I,n=35 3645207059774729 r005 Im(z^2+c),c=7/86+25/63*I,n=10 3645207087649518 b008 1/2+Sqrt[6]*E^(1/4) 3645207095629780 m001 ln(FeigenbaumKappa)*Sierpinski*arctan(1/2) 3645207108461205 r009 Im(z^3+c),c=-55/122+8/29*I,n=41 3645207123365194 m001 FeigenbaumDelta*FeigenbaumKappa*Stephens 3645207128096021 r005 Im(z^2+c),c=-31/22+1/67*I,n=17 3645207134736161 m004 6+50*Pi+(125*Pi)/Log[Sqrt[5]*Pi] 3645207156831828 a007 Real Root Of 287*x^4-810*x^3-933*x^2-49*x+176 3645207191499681 r005 Im(z^2+c),c=3/17+11/28*I,n=8 3645207205730865 m001 ln(2+3^(1/2))*LandauRamanujan2nd*PlouffeB 3645207207662550 a007 Real Root Of 128*x^4+264*x^3-571*x^2+780*x+618 3645207214997062 m005 (-29/44+1/4*5^(1/2))/(1/3*5^(1/2)+2) 3645207216035740 a007 Real Root Of 211*x^4+918*x^3+600*x^2+281*x+262 3645207221388832 m001 BesselJ(1,1)*ln(GolombDickman)^2/GAMMA(1/3) 3645207230825756 m002 -7+Pi^3+Cosh[Pi]*ProductLog[Pi] 3645207254077061 r005 Re(z^2+c),c=-29/48+3/31*I,n=6 3645207258288811 r005 Im(z^2+c),c=37/126+2/11*I,n=10 3645207267441508 a001 1/3567*(1/2*5^(1/2)+1/2)^14*29^(13/16) 3645207277291153 m001 Si(Pi)+GAMMA(17/24)*HardHexagonsEntropy 3645207282722709 m001 FeigenbaumB-MadelungNaCl^Khinchin 3645207291843568 a003 sin(Pi*14/95)*sin(Pi*31/102) 3645207292535604 s002 sum(A228745[n]/(n*exp(pi*n)+1),n=1..infinity) 3645207298658172 r002 39th iterates of z^2 + 3645207306017159 a003 cos(Pi*17/63)*cos(Pi*11/35) 3645207325060068 r005 Im(z^2+c),c=11/36+11/59*I,n=16 3645207331922289 m001 (Zeta(1,2)+Cahen)/(Porter-TwinPrimes) 3645207335999003 p001 sum(1/(346*n+241)/n/(5^n),n=1..infinity) 3645207337457556 r009 Im(z^3+c),c=-7/24+21/58*I,n=20 3645207341293671 r002 44th iterates of z^2 + 3645207345956058 r005 Im(z^2+c),c=-7/10+45/182*I,n=18 3645207347374036 a007 Real Root Of 215*x^4+697*x^3-267*x^2+300*x+441 3645207350683101 r009 Im(z^3+c),c=-45/86+11/43*I,n=34 3645207357619167 m002 (4*Csch[Pi])/3+Tanh[Pi]/4 3645207370351040 l006 ln(5675/8171) 3645207372108152 r009 Re(z^3+c),c=-37/126+46/63*I,n=8 3645207374509476 r005 Im(z^2+c),c=-2/31+23/47*I,n=25 3645207378042574 r005 Im(z^2+c),c=-5/86+24/49*I,n=19 3645207402641282 a007 Real Root Of -382*x^4+841*x^3-953*x^2+82*x+204 3645207428262202 a007 Real Root Of -855*x^4+403*x^3+69*x^2+975*x-369 3645207435575831 r005 Re(z^2+c),c=-67/122+1/56*I,n=8 3645207439198855 q001 1274/3495 3645207448869272 m001 BesselK(0,1)-StolarskyHarborth^ln(Pi) 3645207475540900 r005 Re(z^2+c),c=1/102+11/47*I,n=22 3645207497139719 a001 3/2584*2178309^(16/29) 3645207518090305 h001 (-9*exp(3/2)+1)/(-4*exp(2/3)-3) 3645207518594552 r005 Re(z^2+c),c=1/102+11/47*I,n=23 3645207520795441 r005 Im(z^2+c),c=-67/122+3/46*I,n=44 3645207522990161 k002 Champernowne real with 153/2*n^2-441/2*n+180 3645207561796142 a007 Real Root Of -139*x^4-299*x^3+640*x^2-560*x-486 3645207563978374 m001 1/sqrt(2)^2*ln(log(1+sqrt(2)))/sqrt(3) 3645207568004831 r009 Im(z^3+c),c=-17/46+18/55*I,n=30 3645207572711076 r005 Re(z^2+c),c=1/102+11/47*I,n=26 3645207579046478 r005 Re(z^2+c),c=1/102+11/47*I,n=27 3645207579288356 r005 Re(z^2+c),c=1/102+11/47*I,n=30 3645207579441296 r005 Re(z^2+c),c=1/102+11/47*I,n=29 3645207579531048 r005 Re(z^2+c),c=1/102+11/47*I,n=33 3645207579543064 r005 Re(z^2+c),c=1/102+11/47*I,n=34 3645207579547854 r005 Re(z^2+c),c=1/102+11/47*I,n=37 3645207579548733 r005 Re(z^2+c),c=1/102+11/47*I,n=40 3645207579548737 r005 Re(z^2+c),c=1/102+11/47*I,n=41 3645207579548763 r005 Re(z^2+c),c=1/102+11/47*I,n=44 3645207579548765 r005 Re(z^2+c),c=1/102+11/47*I,n=45 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=48 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=51 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=47 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=52 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=55 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=59 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=56 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=58 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=62 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=63 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=64 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=61 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=60 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=57 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=54 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=53 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=49 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=50 3645207579548766 r005 Re(z^2+c),c=1/102+11/47*I,n=46 3645207579548770 r005 Re(z^2+c),c=1/102+11/47*I,n=43 3645207579548776 r005 Re(z^2+c),c=1/102+11/47*I,n=42 3645207579548803 r005 Re(z^2+c),c=1/102+11/47*I,n=38 3645207579548939 r005 Re(z^2+c),c=1/102+11/47*I,n=39 3645207579549255 r005 Re(z^2+c),c=1/102+11/47*I,n=36 3645207579553064 r005 Re(z^2+c),c=1/102+11/47*I,n=35 3645207579591114 r005 Re(z^2+c),c=1/102+11/47*I,n=32 3645207579607763 r005 Re(z^2+c),c=1/102+11/47*I,n=31 3645207580959825 r005 Re(z^2+c),c=1/102+11/47*I,n=28 3645207585393819 a007 Real Root Of 214*x^4+585*x^3-541*x^2+744*x+452 3645207587211678 r005 Re(z^2+c),c=1/102+11/47*I,n=25 3645207592918035 r005 Re(z^2+c),c=1/4+32/55*I,n=35 3645207594171347 m001 Pi+Ei(1,1)*UniversalParabolic 3645207608359973 m001 Otter/(MasserGramain-BesselI(1,1)) 3645207608785953 r005 Re(z^2+c),c=1/102+11/47*I,n=24 3645207614314001 r005 Re(z^2+c),c=11/60+5/14*I,n=26 3645207615596132 m001 (Conway-PolyaRandomWalk3D)/(Trott2nd-ZetaQ(2)) 3645207616570701 r005 Im(z^2+c),c=1/30+25/58*I,n=35 3645207620073600 m001 (Catalan-FeigenbaumC)/(Paris+Riemann3rdZero) 3645207622654495 r005 Im(z^2+c),c=-29/106+23/40*I,n=56 3645207625048166 r009 Im(z^3+c),c=-13/29+5/18*I,n=46 3645207627933619 a008 Real Root of (3+7*x+x^2+12*x^3) 3645207638696522 m001 (GaussAGM-Rabbit)/(ln(Pi)+BesselI(0,2)) 3645207660641614 a007 Real Root Of 320*x^4+929*x^3-799*x^2+304*x+223 3645207662675675 a001 123/1597*1346269^(25/27) 3645207665079427 a001 416020/161*322^(11/24) 3645207665313642 m009 (1/4*Pi^2+2/5)/(4/3*Catalan+1/6*Pi^2+5) 3645207671557079 m006 (1/5*Pi^2-4/5)/(3/5*exp(2*Pi)+3/4) 3645207676062415 h001 (7/9*exp(1)+5/12)/(8/9*exp(2)+3/8) 3645207685529842 r009 Im(z^3+c),c=-17/46+18/55*I,n=29 3645207690385010 m001 exp(Zeta(5))^2/RenyiParking/cos(1)^2 3645207701197471 r005 Im(z^2+c),c=9/26+17/64*I,n=16 3645207708514635 s002 sum(A248011[n]/(exp(pi*n)-1),n=1..infinity) 3645207709175980 r002 40th iterates of z^2 + 3645207711286998 r005 Im(z^2+c),c=29/106+7/29*I,n=29 3645207712238671 m005 (1/2*Catalan+2/9)/(1/2*3^(1/2)+1) 3645207713913968 r005 Im(z^2+c),c=9/52+1/3*I,n=12 3645207719497906 a007 Real Root Of -755*x^4+257*x^3+471*x^2+234*x-147 3645207734766785 r009 Im(z^3+c),c=-25/126+16/43*I,n=2 3645207738609132 r005 Re(z^2+c),c=-45/106+1/38*I,n=3 3645207748647308 a001 3732588/341*199^(5/22) 3645207749895652 s002 sum(A005577[n]/(n*exp(n)+1),n=1..infinity) 3645207753989723 s002 sum(A197776[n]/(n^2*exp(n)+1),n=1..infinity) 3645207758477347 r005 Im(z^2+c),c=-7/110+19/39*I,n=40 3645207788828100 m001 (Ei(1)+Porter)/(RenyiParking+ZetaP(3)) 3645207790617835 m001 (1+Zeta(5))/(-CopelandErdos+Kolakoski) 3645207792113693 b008 51*DawsonF[6]^2 3645207793967160 a007 Real Root Of 110*x^4-427*x^3-933*x^2-736*x+411 3645207802199740 m003 1+5*Log[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2]/3 3645207802462310 a001 2178309/76*9349^(43/55) 3645207807205490 m001 (FeigenbaumKappa-ThueMorse)/(ln(Pi)+3^(1/3)) 3645207816002943 r005 Re(z^2+c),c=-5/46+35/54*I,n=50 3645207818123413 a001 1/24487*(1/2*5^(1/2)+1/2)^5*47^(13/24) 3645207821204789 r005 Re(z^2+c),c=1/102+11/47*I,n=20 3645207822039346 m001 (Riemann3rdZero+Trott)/(sin(1/5*Pi)+Paris) 3645207829334539 a001 98209/38*24476^(52/55) 3645207829425206 a007 Real Root Of -344*x^4-954*x^3+922*x^2-732*x-391 3645207838169379 r005 Im(z^2+c),c=13/64+17/55*I,n=44 3645207840648193 m002 5+Pi^3+(Pi^3*Sech[Pi])/6 3645207847217379 m001 ln(2^(1/2)+1)^Salem*Magata^Salem 3645207850986770 m005 (1/2*3^(1/2)+7/9)/(2/5*exp(1)-7/11) 3645207857907215 s002 sum(A261452[n]/((2^n+1)/n),n=1..infinity) 3645207877059644 p001 sum((-1)^n/(561*n+266)/(10^n),n=0..infinity) 3645207879911714 b008 13+5*Sqrt[22] 3645207887357364 a001 1364/1597*10946^(28/43) 3645207902488467 a003 sin(Pi*7/71)/cos(Pi*17/92) 3645207910563324 a007 Real Root Of 241*x^4+639*x^3-980*x^2-607*x-791 3645207926142459 m002 Pi^4+Pi^5*Cosh[Pi]+5*Csch[Pi] 3645207928482433 a007 Real Root Of 60*x^4-464*x^3+594*x^2+843*x+915 3645207936847511 r009 Im(z^3+c),c=-55/122+8/29*I,n=46 3645207937363734 m001 (Zeta(1/2)+ArtinRank2)/(FeigenbaumC+MertensB1) 3645207960513951 r005 Re(z^2+c),c=1/102+11/47*I,n=18 3645207966516559 r005 Im(z^2+c),c=9/29+7/40*I,n=18 3645207968599932 r005 Re(z^2+c),c=1/102+11/47*I,n=21 3645207969098777 l006 ln(2044/2943) 3645207970687910 a007 Real Root Of -224*x^4+216*x^3-441*x^2+908*x+404 3645207972147664 r005 Re(z^2+c),c=-11/46+34/57*I,n=27 3645207975308209 m005 (1/2*Zeta(3)+1/5)/(197/168+11/24*5^(1/2)) 3645207994662495 m001 (2^(1/3)-gamma)/(cos(1)+MertensB3) 3645207998857063 m005 (1/2*gamma+8/11)/(-7/15+1/3*5^(1/2)) 3645208009410689 m005 (3/44+1/4*5^(1/2))/(2/11*3^(1/2)-1/7) 3645208011141174 r005 Re(z^2+c),c=-11/60+12/19*I,n=57 3645208017691419 a007 Real Root Of -886*x^4+219*x^3+149*x^2+371*x-150 3645208032530222 m009 (1/4*Psi(1,1/3)+1/3)/(3/5*Psi(1,2/3)+6) 3645208043090264 r009 Re(z^3+c),c=-29/64+10/39*I,n=24 3645208046782385 a007 Real Root Of 505*x^4+870*x^3+974*x^2-496*x-277 3645208048137272 a007 Real Root Of 298*x^4+176*x^3-213*x^2-948*x-314 3645208048713662 r005 Im(z^2+c),c=-19/122+7/13*I,n=35 3645208071350101 a007 Real Root Of -664*x^4-195*x^3+19*x^2+895*x+326 3645208073425004 m001 GAMMA(13/24)^2*ln(GAMMA(1/4))*GAMMA(23/24)^2 3645208091094536 r009 Re(z^3+c),c=-29/70+11/53*I,n=16 3645208118262648 m001 (-exp(-1/2*Pi)+Stephens)/(Psi(1,1/3)+gamma(3)) 3645208133192330 a005 (1/sin(18/181*Pi))^5 3645208136380993 m004 5*Pi*Csc[Sqrt[5]*Pi]^2+3*Sin[Sqrt[5]*Pi] 3645208136714886 m001 (2^(1/3)+Cahen)/(-Stephens+ZetaQ(2)) 3645208158298410 a007 Real Root Of 779*x^4-47*x^3-412*x^2-109*x+83 3645208159060827 m001 1/Zeta(1/2)*GAMMA(11/12)*exp(cos(Pi/5))^2 3645208160815959 m001 (Ei(1,1)+GAMMA(19/24))/(Magata+PrimesInBinary) 3645208169105072 m001 (ln(2)+gamma(1))/(GolombDickman-Kolakoski) 3645208183629507 r005 Im(z^2+c),c=-121/90+2/55*I,n=6 3645208198443466 a007 Real Root Of -181*x^4-841*x^3-655*x^2+245*x+819 3645208207700609 r005 Im(z^2+c),c=9/26+11/42*I,n=7 3645208223040044 a001 76/13*2178309^(32/35) 3645208228619918 r005 Re(z^2+c),c=-29/78+29/53*I,n=44 3645208255509295 a007 Real Root Of -207*x^4-612*x^3+686*x^2+839*x+848 3645208289520105 a003 cos(Pi*29/80)-cos(Pi*14/29) 3645208301494082 m001 (Ei(1)-2*Pi/GAMMA(5/6))/(FeigenbaumB+ZetaP(3)) 3645208302097752 m001 (sin(1)+Ei(1,1))/(Conway+ErdosBorwein) 3645208307242037 r005 Im(z^2+c),c=4/27+10/33*I,n=3 3645208317361505 r009 Im(z^3+c),c=-9/56+43/55*I,n=2 3645208323894917 l006 ln(227/8692) 3645208329621714 r005 Re(z^2+c),c=-21/44+11/45*I,n=31 3645208342048821 m005 (1/2*3^(1/2)-11/12)/(5/12*2^(1/2)+4/5) 3645208355944790 r002 25th iterates of z^2 + 3645208365586166 r009 Re(z^3+c),c=-5/98+32/43*I,n=62 3645208374104746 m001 (Catalan-Zeta(1/2))/(-LaplaceLimit+Trott) 3645208377762904 a007 Real Root Of -512*x^4+741*x^3+991*x^2+325*x-277 3645208382588509 m005 (1/2*Catalan-5/12)/(4/9*3^(1/2)+4/11) 3645208407042541 m004 -E^(Sqrt[5]*Pi)/3+10/Pi+Sqrt[5]*Pi 3645208417806619 r005 Im(z^2+c),c=-5/82+17/35*I,n=40 3645208419139440 r009 Im(z^3+c),c=-13/29+5/18*I,n=45 3645208424214813 h001 (3/7*exp(1)+6/7)/(7/10*exp(2)+3/8) 3645208440325558 a007 Real Root Of -267*x^4+159*x^3+736*x^2+739*x+184 3645208457107017 m001 (ln(2)+gamma(1))/(Zeta(1,2)-LandauRamanujan) 3645208461497035 r005 Im(z^2+c),c=-4/27+17/32*I,n=55 3645208464746207 m001 Khinchin*(Conway+ZetaQ(2)) 3645208467416774 a007 Real Root Of -267*x^4-681*x^3+853*x^2-927*x-557 3645208478921817 r005 Im(z^2+c),c=-43/34+10/67*I,n=6 3645208484790569 l006 ln(6589/9487) 3645208488873497 b008 Csch[Sqrt[3+E^(-5)]] 3645208493973596 m001 ((1+3^(1/2))^(1/2)-Landau*Magata)/Landau 3645208494153481 r005 Im(z^2+c),c=-3/122+30/49*I,n=38 3645208501692957 m001 sin(1/5*Pi)*ln(2)^Conway 3645208510885916 m009 (1/2*Psi(1,3/4)+3)/(3/5*Psi(1,2/3)-2/3) 3645208513266865 r005 Re(z^2+c),c=-14/29+12/55*I,n=13 3645208522872279 r005 Re(z^2+c),c=-13/29+23/60*I,n=58 3645208525996162 k002 Champernowne real with 77*n^2-222*n+181 3645208527276146 m001 (arctan(1/3)-Artin)/(FeigenbaumKappa+ZetaP(4)) 3645208551040547 r005 Im(z^2+c),c=17/66+8/31*I,n=44 3645208563138492 m005 (1/2*exp(1)+9/10)/(6/7*gamma+1/8) 3645208576338904 m001 (Catalan-GAMMA(13/24))/(MasserGramain+Totient) 3645208576531646 r005 Im(z^2+c),c=-7/110+13/20*I,n=34 3645208578838583 m001 Ei(1,1)+Soldner 3645208586739617 m006 (1/3*ln(Pi)-1/6)/(4/5*Pi^2-2) 3645208594374440 a003 cos(Pi*21/106)*cos(Pi*17/35) 3645208598442722 r009 Re(z^3+c),c=-1/78+45/56*I,n=54 3645208602426016 r005 Im(z^2+c),c=-7/50+29/55*I,n=53 3645208603999783 r005 Im(z^2+c),c=5/48+5/13*I,n=18 3645208616103776 r005 Im(z^2+c),c=-2/17+33/64*I,n=38 3645208632597221 r005 Im(z^2+c),c=-2/19+27/53*I,n=45 3645208639635622 r009 Re(z^3+c),c=-23/50+11/38*I,n=13 3645208641406471 m009 (1/12*Pi^2+5)/(1/3*Psi(1,3/4)+3/4) 3645208645508063 m005 (-1/3+1/4*5^(1/2))/(3/7*Pi-8/11) 3645208645740450 r005 Im(z^2+c),c=-1/8+31/60*I,n=28 3645208651132484 a007 Real Root Of 187*x^4+568*x^3-346*x^2+461*x+773 3645208666864775 a001 75025/843*521^(25/26) 3645208684436929 r004 Im(z^2+c),c=-1/16+13/22*I,z(0)=I,n=5 3645208684509920 r009 Re(z^3+c),c=-6/13+15/56*I,n=42 3645208688133827 r009 Re(z^3+c),c=-47/102+2/7*I,n=10 3645208688150691 m001 Robbin/Niven^2*ln(GAMMA(19/24)) 3645208706292863 m001 BesselI(1,2)*(GAMMA(2/3)-Zeta(1,2)) 3645208709377190 r009 Re(z^3+c),c=-23/54+33/58*I,n=59 3645208712792772 r002 40th iterates of z^2 + 3645208716341125 a007 Real Root Of 102*x^4+146*x^3-720*x^2+264*x-408 3645208716710037 l006 ln(4545/6544) 3645208717446676 p004 log(33581/877) 3645208723404582 a005 (1/cos(22/211*Pi))^993 3645208731951143 m001 (ln(3)+ln(2+3^(1/2))*Bloch)/Bloch 3645208735037729 r005 Im(z^2+c),c=3/118+17/39*I,n=34 3645208738278882 m001 (cos(1)+Cahen)/(-FeigenbaumMu+FellerTornier) 3645208743649594 r002 8th iterates of z^2 + 3645208758703706 m005 (1/2*Pi-4/7)/(Pi-2/5) 3645208773687355 m001 1/TwinPrimes^2/MinimumGamma^2/exp(cos(1))^2 3645208811505369 r005 Im(z^2+c),c=-53/86+21/55*I,n=35 3645208817519762 r005 Re(z^2+c),c=-19/26+13/127*I,n=25 3645208823732903 r002 7th iterates of z^2 + 3645208826090985 a007 Real Root Of -727*x^4+903*x^3+719*x^2+576*x+171 3645208871716720 m007 (-1/6*gamma-1/3*ln(2)+1)/(-2*gamma+3) 3645208873106061 r005 Im(z^2+c),c=-13/122+16/31*I,n=24 3645208898131721 a008 Real Root of x^2-x-133240 3645208901337137 r005 Re(z^2+c),c=-23/90+29/45*I,n=53 3645208916725223 r005 Im(z^2+c),c=-5/66+16/33*I,n=10 3645208927055116 a001 322/4052739537881*987^(8/9) 3645208940415397 r009 Re(z^3+c),c=-13/66+43/56*I,n=5 3645208953449551 p001 sum((-1)^n/(470*n+257)/(5^n),n=0..infinity) 3645208955997443 r005 Re(z^2+c),c=-7/15+10/33*I,n=46 3645208968652719 r005 Re(z^2+c),c=31/94+4/31*I,n=12 3645208972462977 r005 Re(z^2+c),c=-41/86+8/31*I,n=21 3645208997825659 a001 2584/843*2^(1/4) 3645209005143131 r005 Re(z^2+c),c=-37/60+1/10*I,n=6 3645209009217304 r005 Re(z^2+c),c=-21/44+13/53*I,n=52 3645209011604240 s002 sum(A108500[n]/(n*10^n-1),n=1..infinity) 3645209017077562 r005 Re(z^2+c),c=-9/14+59/222*I,n=22 3645209027659753 m005 (1/3*Catalan+1/4)/(53/48+3/16*5^(1/2)) 3645209027682196 a001 4976784/281*199^(3/22) 3645209033573370 a007 Real Root Of 257*x^4+759*x^3-571*x^2+111*x-621 3645209039598547 m005 (1/3*2^(1/2)-1/5)/(1/12*3^(1/2)-8/9) 3645209062555178 r005 Re(z^2+c),c=-39/82+15/59*I,n=29 3645209062948684 m001 Magata*FeigenbaumB^2/ln(sqrt(5))^2 3645209079832751 r005 Im(z^2+c),c=13/60+11/37*I,n=29 3645209081602496 m001 1/ArtinRank2*ln(Cahen)/log(2+sqrt(3))^2 3645209097309634 m001 (Pi+arctan(1/2))/(DuboisRaymond+Kolakoski) 3645209100061386 a007 Real Root Of 468*x^4-418*x^3+580*x^2-815*x+232 3645209102612906 r005 Re(z^2+c),c=-31/98+13/32*I,n=4 3645209115966989 r005 Im(z^2+c),c=17/66+8/31*I,n=54 3645209117994839 r009 Re(z^3+c),c=-59/122+13/46*I,n=16 3645209125066204 r005 Im(z^2+c),c=-19/90+32/57*I,n=53 3645209139840118 l006 ln(141/5399) 3645209150534492 l006 ln(4229/4386) 3645209161597094 r005 Im(z^2+c),c=-71/110+18/47*I,n=32 3645209170096462 r002 20th iterates of z^2 + 3645209171634198 a001 4/7778742049*2178309^(12/13) 3645209171634340 a001 4/2504730781961*1134903170^(12/13) 3645209194697117 r005 Re(z^2+c),c=-69/98+11/54*I,n=41 3645209199697767 r005 Re(z^2+c),c=-25/54+13/37*I,n=24 3645209202967962 m006 (1/2/Pi+1)/(4/5*Pi+2/3) 3645209203672832 a007 Real Root Of 416*x^4-811*x^3-768*x^2-428*x+290 3645209210131616 a001 4/24157817*4181^(12/13) 3645209228442380 a007 Real Root Of -201*x^4-956*x^3-647*x^2+591*x-65 3645209236586674 m004 -6+5/Pi+ProductLog[Sqrt[5]*Pi]/2 3645209247316628 r005 Im(z^2+c),c=7/44+10/29*I,n=27 3645209254268949 r005 Im(z^2+c),c=-1/74+17/37*I,n=26 3645209254670554 m001 (-arctan(1/3)+exp(1/Pi))/(Si(Pi)+Zeta(5)) 3645209269450456 b008 1+27*E^(13/5) 3645209271983941 r002 32th iterates of z^2 + 3645209304188391 r005 Im(z^2+c),c=27/118+21/58*I,n=9 3645209304498167 r005 Im(z^2+c),c=-17/26+9/128*I,n=38 3645209306556092 r005 Im(z^2+c),c=2/7+5/22*I,n=42 3645209312361557 r004 Re(z^2+c),c=7/38+4/13*I,z(0)=exp(7/8*I*Pi),n=6 3645209323006593 r002 9th iterates of z^2 + 3645209323840736 r005 Im(z^2+c),c=-13/82+22/41*I,n=49 3645209327712561 l006 ln(2501/3601) 3645209335374917 r009 Im(z^3+c),c=-45/98+17/52*I,n=8 3645209354251892 r002 24th iterates of z^2 + 3645209377875562 m001 (-HardyLittlewoodC3+Paris)/(1+Bloch) 3645209399700493 r005 Im(z^2+c),c=-1/6+28/43*I,n=50 3645209407426113 r009 Re(z^3+c),c=-55/114+17/36*I,n=26 3645209434291874 b008 Sqrt[Pi]+7*ExpIntegralEi[2] 3645209441454788 r005 Im(z^2+c),c=-47/90+26/57*I,n=18 3645209452452997 m001 1/GAMMA(11/12)^2*FransenRobinson/ln(Zeta(7))^2 3645209454297346 a001 843/8*75025^(27/29) 3645209455175188 r005 Re(z^2+c),c=3/50+26/41*I,n=42 3645209459318028 a007 Real Root Of -706*x^4+932*x^3-143*x^2+237*x+163 3645209468006533 r009 Im(z^3+c),c=-29/56+9/64*I,n=34 3645209469865523 m005 (5*Catalan+1/2)/(2/3*Catalan-3/4) 3645209471994709 a008 Real Root of x^2-x-132511 3645209478632291 a007 Real Root Of 350*x^4+947*x^3-996*x^2+740*x+5 3645209482183053 r005 Im(z^2+c),c=-2/13+9/17*I,n=28 3645209487861062 m001 GAMMA(7/12)/(BesselK(0,1)-ZetaQ(4)) 3645209514736159 a003 sin(Pi*5/106)/sin(Pi*15/113) 3645209514763922 m006 (1/2*Pi+1/3)/(5*ln(Pi)-1/2) 3645209518922579 p001 sum(1/(394*n+279)/(25^n),n=0..infinity) 3645209523790079 a007 Real Root Of 207*x^4+961*x^3+941*x^2+898*x+769 3645209526103536 r002 12th iterates of z^2 + 3645209528100216 k002 Champernowne real with 155/2*n^2-447/2*n+182 3645209546205920 r005 Im(z^2+c),c=-103/126+4/21*I,n=9 3645209578314287 m001 GAMMA(7/12)*(5^(1/2)+ZetaR(2)) 3645209580838323 q001 487/1336 3645209583735251 r009 Im(z^3+c),c=-15/29+10/43*I,n=48 3645209584441346 m001 ln(HardHexagonsEntropy)^2*Si(Pi)*sqrt(Pi) 3645209590110745 p003 LerchPhi(1/2,4,429/181) 3645209598468723 r005 Re(z^2+c),c=-67/90+1/8*I,n=58 3645209599664869 r009 Im(z^3+c),c=-21/62+11/32*I,n=10 3645209602216374 m005 (1/2*2^(1/2)+5/9)/(5/11*Zeta(3)-1/5) 3645209624664069 a007 Real Root Of -916*x^4-450*x^3+693*x^2+488*x-232 3645209630558122 h001 (3/4*exp(1)+4/11)/(7/8*exp(2)+1/8) 3645209652230012 a007 Real Root Of -819*x^4+326*x^3-442*x^2+535*x+284 3645209668786660 m001 ZetaR(2)^LandauRamanujan/(ZetaR(2)^(3^(1/3))) 3645209670759281 m001 (1-ln(2^(1/2)+1))/(KomornikLoreti+Porter) 3645209676131638 m001 KhinchinHarmonic^ArtinRank2-Tribonacci 3645209695774952 m001 (BesselJ(1,1)-GAMMA(23/24))/(Mills-Porter) 3645209699688006 a001 121393/843*521^(23/26) 3645209702387051 a007 Real Root Of -573*x^4-386*x^3+865*x^2+990*x-447 3645209715258893 a001 1/11592*4181^(22/49) 3645209721268075 p001 sum(1/(548*n+525)/n/(256^n),n=1..infinity) 3645209729285728 a007 Real Root Of -161*x^4-495*x^3+412*x^2+284*x+11 3645209739758878 r005 Im(z^2+c),c=-21/34+68/101*I,n=5 3645209795697248 a007 Real Root Of -569*x^4-571*x^3-224*x^2+957*x+361 3645209803193131 r005 Re(z^2+c),c=-51/122+29/62*I,n=42 3645209804917613 a001 3571/4181*10946^(28/43) 3645209806711895 a007 Real Root Of 30*x^4-41*x^3-609*x^2-475*x-922 3645209808706377 b008 Pi+Sec[5]/7 3645209812209206 r008 a(0)=0,K{-n^6,29-12*n^3-51*n^2+61*n} 3645209812599450 r009 Re(z^3+c),c=-39/86+12/47*I,n=20 3645209824607471 a001 7778742049^(3/19) 3645209830940857 a001 18/75025*2^(35/58) 3645209836414946 l006 ln(5459/7860) 3645209838945285 r005 Re(z^2+c),c=37/106+19/60*I,n=29 3645209846386568 m001 exp(GAMMA(3/4))*Magata*Pi 3645209849305157 r005 Im(z^2+c),c=-135/94+7/48*I,n=5 3645209866291353 m001 ZetaP(2)^BesselI(0,1)-ZetaQ(4) 3645209875866688 b008 Pi+ProductLog[5/6] 3645209891166669 m006 (1/6*ln(Pi)+1/2)/(5/6*exp(Pi)-1/3) 3645209894360842 r002 28th iterates of z^2 + 3645209896004794 m005 (1/2*gamma+3/10)/(4/7*3^(1/2)+5/8) 3645209910904439 m001 (CareFree*LaplaceLimit-Sarnak)/CareFree 3645209917263908 a003 sin(Pi*1/10)/cos(Pi*21/118) 3645209927615716 a001 3010349/3*317811^(11/17) 3645209943550832 a001 15127/3*1134903170^(11/17) 3645209949944275 a007 Real Root Of 153*x^4+610*x^3+172*x^2-144*x-278 3645209955967703 a007 Real Root Of 202*x^4+857*x^3+379*x^2-373*x-551 3645209967393995 s002 sum(A128068[n]/(n*exp(pi*n)+1),n=1..infinity) 3645209989092083 m001 (Trott2nd-Thue)/(gamma(3)+BesselI(0,2)) 3645209993021261 m005 (1/2*gamma+1/8)/(4/11*exp(1)-7/8) 3645210003781889 r005 Re(z^2+c),c=-21/44+13/53*I,n=46 3645210015859171 m004 5*Pi+75*Pi*Coth[Sqrt[5]*Pi]*Csc[Sqrt[5]*Pi] 3645210030995737 m001 (Pi+CareFree)/(HardyLittlewoodC4+RenyiParking) 3645210053128538 m005 (1/2*exp(1)+1/4)/(7/10*Zeta(3)-2/5) 3645210053134205 m001 (-exp(-1/2*Pi)+4)/(cos(1)+1/2) 3645210058924937 a007 Real Root Of 296*x^4-544*x^3-122*x^2-342*x+162 3645210060348751 m001 (GAMMA(2/3)-cos(1))/(Conway+Riemann2ndZero) 3645210069900350 r005 Im(z^2+c),c=-31/74+38/63*I,n=31 3645210070926329 a007 Real Root Of 247*x^4+896*x^3-53*x^2-339*x-743 3645210071530694 r002 5th iterates of z^2 + 3645210074994317 s002 sum(A214866[n]/((2*n)!),n=1..infinity) 3645210082128770 m001 (3^(1/2)-Landau)/(-Paris+ReciprocalFibonacci) 3645210084685904 a001 9349/10946*10946^(28/43) 3645210084837045 l006 ln(196/7505) 3645210092193908 r005 Im(z^2+c),c=-81/106+1/60*I,n=32 3645210119098190 r009 Re(z^3+c),c=-13/32+38/63*I,n=3 3645210125503549 a001 24476/28657*10946^(28/43) 3645210135139287 a001 13201/15456*10946^(28/43) 3645210138886213 r005 Im(z^2+c),c=-23/106+32/57*I,n=26 3645210150730240 a001 15127/17711*10946^(28/43) 3645210156502341 m001 LaplaceLimit^Ei(1)/(GAMMA(5/6)^Ei(1)) 3645210159256799 r009 Im(z^3+c),c=-29/78+15/46*I,n=23 3645210172271864 r005 Im(z^2+c),c=-33/118+27/47*I,n=56 3645210176590986 r002 13th iterates of z^2 + 3645210194188481 m005 (1/2*gamma-7/12)/(6*2^(1/2)-2/5) 3645210209673071 p001 sum(1/(385*n+278)/(32^n),n=0..infinity) 3645210229414851 a007 Real Root Of 845*x^4-197*x^3-910*x^2-801*x-28 3645210235438743 m005 (1/2*exp(1)-8/9)/(3/4*gamma+6/7) 3645210249911826 r005 Re(z^2+c),c=-63/122+5/13*I,n=14 3645210257592220 a001 1926/2255*10946^(28/43) 3645210261379310 r005 Re(z^2+c),c=-23/50+19/56*I,n=29 3645210262072651 s001 sum(exp(-4*Pi/5)^n*A022376[n],n=1..infinity) 3645210264757216 r005 Re(z^2+c),c=11/30+21/41*I,n=3 3645210266524683 l006 ln(2958/4259) 3645210276911302 r005 Re(z^2+c),c=-25/56+25/64*I,n=54 3645210279255769 r005 Im(z^2+c),c=-7/29+27/46*I,n=64 3645210284611994 a007 Real Root Of 142*x^4+721*x^3+745*x^2-15*x-103 3645210288162771 b008 -2+5^Sqrt[2+Pi] 3645210300378630 s003 concatenated sequence A068143 3645210306702386 a005 (1/cos(19/230*Pi))^1052 3645210315360630 s003 concatenated sequence A264961 3645210322944828 r002 41th iterates of z^2 + 3645210339419349 r009 Im(z^3+c),c=-12/29+19/63*I,n=25 3645210378723031 m001 ln(Zeta(5))*LambertW(1)*sqrt(Pi) 3645210379541501 r005 Re(z^2+c),c=-55/122+17/58*I,n=13 3645210387411919 m001 (CareFree+Weierstrass)/(Artin-ArtinRank2) 3645210394920893 m001 Pi*Paris*Salem 3645210401383911 m001 (-CopelandErdos+Lehmer)/(Catalan-Ei(1)) 3645210411054291 a007 Real Root Of 906*x^4-176*x^3-594*x^2-306*x+183 3645210412059298 s002 sum(A203431[n]/((2*n+1)!),n=1..infinity) 3645210413304334 m001 1/exp(Pi)*Rabbit/sin(1) 3645210413304334 m001 Rabbit/sin(1)/exp(Pi) 3645210439526579 r002 10th iterates of z^2 + 3645210439743216 r005 Im(z^2+c),c=-37/34+32/125*I,n=40 3645210441439788 r005 Im(z^2+c),c=13/50+12/47*I,n=30 3645210442192275 a007 Real Root Of -178*x^4+892*x^3-896*x^2+468*x+336 3645210450312093 p003 LerchPhi(1/64,2,314/189) 3645210454882838 m001 ZetaP(2)^(QuadraticClass/ln(2)) 3645210456432784 r005 Re(z^2+c),c=-35/74+17/63*I,n=36 3645210457792781 r005 Re(z^2+c),c=-31/66+17/58*I,n=10 3645210458127685 a007 Real Root Of -140*x^4+625*x^3+677*x^2+788*x-405 3645210458566223 r005 Im(z^2+c),c=19/62+5/33*I,n=12 3645210477156853 m001 1/exp(LambertW(1))^2/GAMMA(7/12)/gamma 3645210478034587 a001 34/123*64079^(37/57) 3645210485459338 r005 Im(z^2+c),c=15/56+8/29*I,n=10 3645210490907860 m005 (1/2*exp(1)-4/11)/(10/11*Pi-1/8) 3645210497197365 b008 36+CosIntegral[4/3] 3645210502407714 m005 (1/3*Catalan-1/9)/(3/11*Zeta(3)+5) 3645210506437285 m001 cos(1)/Lehmer/Riemann3rdZero 3645210510073942 r005 Re(z^2+c),c=-15/32+17/58*I,n=37 3645210511987663 r005 Im(z^2+c),c=-59/122+17/33*I,n=56 3645210517930392 r005 Im(z^2+c),c=15/62+13/49*I,n=13 3645210523176253 a007 Real Root Of -952*x^4+181*x^3-861*x^2+535*x+335 3645210531100816 k002 Champernowne real with 78*n^2-225*n+183 3645210554797039 a003 cos(Pi*1/24)-cos(Pi*29/102) 3645210565195409 r005 Re(z^2+c),c=-23/86+53/55*I,n=4 3645210565863075 r009 Re(z^3+c),c=-65/114+23/49*I,n=29 3645210571514592 m005 (1/2*2^(1/2)+10/11)/(5/6*3^(1/2)-1) 3645210594868182 a001 514229/322*322^(13/24) 3645210602069421 a003 cos(Pi*2/107)-sin(Pi*26/119) 3645210615691500 l006 ln(251/9611) 3645210620612324 r005 Im(z^2+c),c=-1/15+26/53*I,n=25 3645210626948449 m001 RenyiParking^(GAMMA(19/24)*Otter) 3645210630780990 s003 concatenated sequence A188630 3645210634949124 l006 ln(6373/9176) 3645210635197411 r009 Re(z^3+c),c=-27/64+13/60*I,n=17 3645210642206719 a003 cos(Pi*44/115)/sin(Pi*43/95) 3645210648870546 r009 Re(z^3+c),c=-17/36+7/25*I,n=31 3645210656907624 m001 (BesselJ(1,1)+Sarnak)/(3^(1/2)-Zeta(1/2)) 3645210657901675 a003 cos(Pi*1/16)*sin(Pi*4/33) 3645210660839989 r009 Re(z^3+c),c=-1/19+17/39*I,n=8 3645210665549819 m002 5/E^(2*Pi)-Cosh[Pi]/Pi^3 3645210679981279 a007 Real Root Of 943*x^4+441*x^3+934*x^2-992*x-481 3645210684370117 r009 Im(z^3+c),c=-1/50+26/63*I,n=9 3645210693828442 a007 Real Root Of 845*x^4-898*x^3-943*x^2-549*x+354 3645210698674541 s002 sum(A064188[n]/(pi^n+1),n=1..infinity) 3645210724538754 a007 Real Root Of 325*x^4+893*x^3-990*x^2+539*x+991 3645210732758893 a001 196418/843*521^(21/26) 3645210733423151 m001 ln(log(2+sqrt(3)))^2/BesselK(1,1)/sin(Pi/5)^2 3645210738094836 m003 7/2+Sqrt[5]/(32*Log[1/2+Sqrt[5]/2]) 3645210754317617 r005 Im(z^2+c),c=-17/110+31/58*I,n=64 3645210763370313 a007 Real Root Of 11*x^4-273*x^3-910*x^2+754*x-325 3645210772150679 a007 Real Root Of -420*x^4+918*x^3+267*x^2+265*x+113 3645210784314019 m001 ReciprocalFibonacci^CopelandErdos*Trott2nd 3645210805569308 m001 (arctan(1/2)+Cahen)/(Otter+StolarskyHarborth) 3645210822390142 m001 sin(1)/Zeta(1,-1)/HardHexagonsEntropy 3645210830498843 m006 (2/3*exp(Pi)+2/5)/(3*ln(Pi)-3) 3645210847617594 m001 (FeigenbaumAlpha-Kac)/(sin(1/5*Pi)+gamma(1)) 3645210850690005 a001 3524578/521*199^(7/22) 3645210877153549 a007 Real Root Of 290*x^4+875*x^3-481*x^2+509*x-574 3645210888936008 r005 Im(z^2+c),c=17/66+8/31*I,n=58 3645210891820181 m005 (1/3*Zeta(3)-3/8)/(1/6*gamma-1/6) 3645210896525284 p001 sum(floor(nd*n)/(35*n+9)/(64^n),n=0..infinity) 3645210897843926 m005 (1/2*Pi+5/11)/(1/7*5^(1/2)-3/8) 3645210900290783 r002 13th iterates of z^2 + 3645210908041282 a007 Real Root Of -317*x^4-839*x^3+949*x^2-996*x-909 3645210920791853 r005 Im(z^2+c),c=-17/94+23/42*I,n=58 3645210930025623 a007 Real Root Of -942*x^4-141*x^3-84*x^2+760*x+298 3645210940508261 r009 Im(z^3+c),c=-12/25+11/41*I,n=17 3645210951192968 m005 (1/2*Pi+1/12)/(1/9*Catalan-5/9) 3645210954070489 l006 ln(3415/4917) 3645210983009334 m001 MertensB1^ZetaQ(4)/(MertensB1^cos(1/12*Pi)) 3645210985551240 r009 Re(z^3+c),c=-29/64+9/35*I,n=32 3645210989962032 a007 Real Root Of 723*x^4-125*x^3+613*x^2+308*x+12 3645210990035151 a001 2207/2584*10946^(28/43) 3645210999104215 r005 Re(z^2+c),c=-53/118+11/29*I,n=43 3645210999331400 m001 (KhinchinLevy+Totient)/(Zeta(3)-Ei(1)) 3645211010827140 s001 sum(exp(-3*Pi/4)^n*A038066[n],n=1..infinity) 3645211012250711 a007 Real Root Of 51*x^4+75*x^3-292*x^2+426*x+61 3645211028763352 r005 Im(z^2+c),c=17/66+8/31*I,n=59 3645211029402756 r002 40th iterates of z^2 + 3645211062984501 r005 Im(z^2+c),c=-7/10+40/179*I,n=60 3645211077956564 m001 exp(Pi)*Porter+FeigenbaumAlpha 3645211082028792 r009 Re(z^3+c),c=-7/23+43/63*I,n=52 3645211112211122 k008 concat of cont frac of 3645211115228466 r005 Re(z^2+c),c=43/110+17/28*I,n=5 3645211118833920 g001 GAMMA(7/8,95/101) 3645211121111118 k007 concat of cont frac of 3645211137477705 r009 Re(z^3+c),c=-31/64+8/27*I,n=58 3645211145243798 m001 (Magata+Thue)/(MadelungNaCl-gamma) 3645211148376374 r009 Im(z^3+c),c=-25/46+13/46*I,n=37 3645211150116223 m005 (1/2*2^(1/2)+8/9)/(7/8*Catalan-4/11) 3645211161885860 p003 LerchPhi(1/1024,1,45/164) 3645211175574162 r002 53th iterates of z^2 + 3645211188504204 m002 -Cosh[Pi]+Pi^5*Log[Pi]*ProductLog[Pi] 3645211192098001 a007 Real Root Of 233*x^4+647*x^3-393*x^2+983*x-995 3645211193309342 a007 Real Root Of 180*x^4+922*x^3+696*x^2-879*x+425 3645211194559677 m004 Sqrt[5]*Pi+16*Sec[Sqrt[5]*Pi]^2 3645211195901488 s002 sum(A049390[n]/((10^n-1)/n),n=1..infinity) 3645211201200795 s002 sum(A186278[n]/(n^3*exp(n)+1),n=1..infinity) 3645211211320118 k006 concat of cont frac of 3645211223703985 r005 Im(z^2+c),c=-7/12+11/24*I,n=19 3645211242316470 r005 Im(z^2+c),c=-6/23+38/63*I,n=56 3645211246601353 r002 7th iterates of z^2 + 3645211247779094 m001 ln(2+3^(1/2))*(Si(Pi)+Catalan) 3645211247779094 m001 ln(2+sqrt(3))*(Catalan+Si(Pi)) 3645211255586291 a007 Real Root Of -195*x^4-501*x^3+562*x^2-837*x-356 3645211267352879 a007 Real Root Of 902*x^4-990*x^3+266*x^2-566*x+203 3645211269745453 a007 Real Root Of 197*x^4+570*x^3-472*x^2+468*x+804 3645211281422298 a007 Real Root Of -134*x^4-193*x^3+941*x^2-425*x+258 3645211296477978 r005 Re(z^2+c),c=-23/18+7/187*I,n=46 3645211298796588 r005 Im(z^2+c),c=-11/70+15/28*I,n=43 3645211312377841 r009 Re(z^3+c),c=-6/31+19/25*I,n=24 3645211318576338 p004 log(16067/11159) 3645211339411213 k008 concat of cont frac of 3645211350913357 a001 167761/34*32951280099^(3/11) 3645211350952115 a007 Real Root Of -23*x^4+560*x^3+570*x^2+819*x-401 3645211351042189 a001 3010349/34*832040^(3/11) 3645211351050097 a001 710647/34*165580141^(3/11) 3645211353367041 a001 39603/34*6557470319842^(3/11) 3645211356735779 r009 Re(z^3+c),c=-10/23+11/50*I,n=9 3645211362417103 a001 12752043/34*4181^(3/11) 3645211369646368 r005 Re(z^2+c),c=9/82+33/56*I,n=43 3645211377919495 m001 (sin(1/5*Pi)+exp(1/Pi))/(OneNinth-ZetaQ(2)) 3645211380741556 p001 sum((-1)^n/(607*n+274)/(256^n),n=0..infinity) 3645211403161323 m001 GAMMA(7/12)*Riemann3rdZero-Grothendieck 3645211403668447 r009 Im(z^3+c),c=-23/106+12/31*I,n=6 3645211408200475 a007 Real Root Of 769*x^4-272*x^3-843*x^2-953*x+459 3645211419244901 a007 Real Root Of -71*x^4+572*x^3-942*x^2+883*x+476 3645211436991094 a007 Real Root Of -114*x^4-655*x^3-734*x^2+925*x+405 3645211441114911 k008 concat of cont frac of 3645211444701815 r005 Im(z^2+c),c=3/94+7/15*I,n=4 3645211454550542 r002 5th iterates of z^2 + 3645211459646385 r002 6th iterates of z^2 + 3645211467563814 a007 Real Root Of 640*x^4-379*x^3+69*x^2-711*x-298 3645211479318518 l006 ln(3872/5575) 3645211485289573 r009 Re(z^3+c),c=-13/82+37/51*I,n=17 3645211489719713 a007 Real Root Of 920*x^4-845*x^3+380*x^2-913*x+307 3645211490801763 r005 Im(z^2+c),c=17/66+5/19*I,n=12 3645211495229816 l006 ln(9724/10085) 3645211499112746 a003 sin(Pi*1/32)-sin(Pi*15/98) 3645211504529012 m001 (Pi-Landau)/(Sarnak-Trott) 3645211529782729 m001 (3^(1/3)+Kac)/(Psi(2,1/3)-ln(5)) 3645211534101416 k002 Champernowne real with 157/2*n^2-453/2*n+184 3645211539077972 m001 FeigenbaumC^(2^(1/2))*FeigenbaumC^Sarnak 3645211541304778 r005 Im(z^2+c),c=9/58+8/23*I,n=27 3645211544894082 m001 FeigenbaumKappa*ln(ErdosBorwein)*LambertW(1) 3645211552597101 a007 Real Root Of -757*x^4-668*x^3-240*x^2+896*x-249 3645211567174235 r009 Im(z^3+c),c=-7/19+20/61*I,n=20 3645211569995114 r005 Im(z^2+c),c=-55/86+3/43*I,n=51 3645211579097002 r005 Re(z^2+c),c=19/70+2/37*I,n=46 3645211579428570 m001 FeigenbaumD*(cos(1/5*Pi)-ln(gamma)) 3645211582921457 r005 Im(z^2+c),c=-1/14+29/59*I,n=37 3645211586795789 p001 sum(1/(454*n+323)/(3^n),n=0..infinity) 3645211588265557 a003 cos(Pi*19/117)*cos(Pi*41/113) 3645211595604753 a007 Real Root Of -123*x^4-355*x^3+475*x^2+238*x-922 3645211613121517 k009 concat of cont frac of 3645211627891529 p004 log(17383/12073) 3645211629435966 l005 ln(tanh(329/116*Pi)) 3645211636005504 s002 sum(A172788[n]/(n^2*pi^n+1),n=1..infinity) 3645211636006052 s002 sum(A172784[n]/(n^2*pi^n+1),n=1..infinity) 3645211656009231 r005 Im(z^2+c),c=-21/29+3/62*I,n=63 3645211664307479 m006 (5/Pi+1/5)/(5*Pi^2-1/5) 3645211670913746 r009 Re(z^3+c),c=-19/34+20/43*I,n=23 3645211686660507 r005 Im(z^2+c),c=-23/32+2/57*I,n=26 3645211724881433 a007 Real Root Of 179*x^4+406*x^3-839*x^2+426*x+762 3645211748394287 r005 Re(z^2+c),c=2/21+9/23*I,n=36 3645211751269066 a007 Real Root Of 301*x^4+976*x^3-513*x^2-218*x+151 3645211756960235 r005 Re(z^2+c),c=-45/94+7/29*I,n=25 3645211765735589 a001 377*521^(19/26) 3645211791525235 r009 Im(z^3+c),c=-31/66+6/23*I,n=47 3645211804520807 a003 sin(Pi*30/103)/cos(Pi*37/86) 3645211810813185 r009 Im(z^3+c),c=-35/66+11/47*I,n=64 3645211820292171 p004 log(26459/691) 3645211827419178 r005 Re(z^2+c),c=-59/122+13/60*I,n=14 3645211832437504 a003 cos(Pi*13/70)/cos(Pi*29/68) 3645211835495497 r009 Re(z^3+c),c=-29/64+9/35*I,n=25 3645211838439949 r005 Re(z^2+c),c=-21/44+13/53*I,n=57 3645211838714132 m001 1/GAMMA(7/24)^2/GAMMA(1/3)^2/ln(Zeta(9))^2 3645211840427397 r005 Im(z^2+c),c=17/66+8/31*I,n=64 3645211841084732 m001 (Backhouse-Rabbit)/(GAMMA(2/3)+ln(2)) 3645211848809945 a001 1568397607/233*317811^(2/15) 3645211848810907 a001 599074578/233*433494437^(2/15) 3645211848810907 a001 228826127/233*591286729879^(2/15) 3645211875587490 m001 (MertensB3-Niven)/(cos(1/5*Pi)-FeigenbaumC) 3645211877327694 r005 Re(z^2+c),c=21/62+19/50*I,n=6 3645211888188843 m001 1/CareFree^2/GlaisherKinkelin*exp(sin(1)) 3645211893668700 l006 ln(4329/6233) 3645211923640619 r005 Re(z^2+c),c=-31/82+19/33*I,n=43 3645211930926216 q001 1161/3185 3645211931414380 m001 (Cahen+Porter)/(1-BesselK(0,1)) 3645211933724045 r009 Im(z^3+c),c=-3/118+35/44*I,n=6 3645211944540635 r005 Re(z^2+c),c=-35/106+5/8*I,n=22 3645211958148184 p003 LerchPhi(1/64,1,605/218) 3645211976643498 r005 Im(z^2+c),c=17/66+8/31*I,n=63 3645211986238692 p004 log(34883/911) 3645211988266097 m005 (1/3*Zeta(3)+2/3)/(5/9*Zeta(3)-3/8) 3645212018637199 r005 Im(z^2+c),c=49/114+13/38*I,n=33 3645212032309480 m005 (1/2*2^(1/2)+3/10)/(5/7*3^(1/2)-4) 3645212039790324 a001 23184*7^(10/43) 3645212049084183 r005 Im(z^2+c),c=-11/13+3/13*I,n=6 3645212078904342 m008 (3*Pi^3-1/3)/(5/6*Pi^5-3/4) 3645212081073162 r005 Im(z^2+c),c=17/66+8/31*I,n=52 3645212084464498 m005 (1/2*2^(1/2)-10/11)/(3/10*gamma-8/11) 3645212112512123 k007 concat of cont frac of 3645212121270340 a007 Real Root Of -535*x^4+179*x^3-289*x^2+483*x+18 3645212123456309 r009 Re(z^3+c),c=-37/78+9/32*I,n=20 3645212127280914 m006 (1/5*Pi+3/4)/(2/5*Pi^2-1/6) 3645212127280914 m008 (1/5*Pi+3/4)/(2/5*Pi^2-1/6) 3645212139431158 r002 5th iterates of z^2 + 3645212157520852 h001 (7/10*exp(1)+7/9)/(10/11*exp(2)+7/11) 3645212162235316 a007 Real Root Of -543*x^4+317*x^3-897*x^2+263*x+240 3645212167066024 p004 log(33797/23473) 3645212168478786 a007 Real Root Of -16*x^4+71*x^3+371*x^2+926*x-390 3645212177208616 p001 sum((-1)^n/(69*n+16)/n/(32^n),n=0..infinity) 3645212181415131 k007 concat of cont frac of 3645212182470287 r005 Re(z^2+c),c=-31/66+10/41*I,n=15 3645212184111385 k008 concat of cont frac of 3645212186480097 m001 ln(CareFree)*Champernowne/KhintchineLevy 3645212189215230 r009 Re(z^3+c),c=-9/38+17/31*I,n=2 3645212193723437 r005 Re(z^2+c),c=-12/25+13/56*I,n=23 3645212197015005 a007 Real Root Of 299*x^4+982*x^3-377*x^2+308*x+905 3645212202782752 r002 16th iterates of z^2 + 3645212209658211 r002 32th iterates of z^2 + 3645212211010120 k006 concat of cont frac of 3645212222034083 r005 Re(z^2+c),c=-27/70+26/53*I,n=20 3645212228888893 l006 ln(4786/6891) 3645212235462439 a001 9349/610*8^(5/12) 3645212241453417 m001 (ln(gamma)-FeigenbaumC)/(Kac+Trott2nd) 3645212245768013 a007 Real Root Of 863*x^4-165*x^3-165*x^2-375*x-138 3645212250178591 r005 Re(z^2+c),c=-51/118+26/59*I,n=59 3645212257938884 r009 Re(z^3+c),c=-11/25+6/25*I,n=21 3645212266116535 m009 (5*Psi(1,2/3)+2/5)/(5/12*Pi^2+1/5) 3645212274920623 a007 Real Root Of -182*x^4+368*x^3+271*x^2+429*x-207 3645212278460132 r005 Im(z^2+c),c=-7/46+33/62*I,n=33 3645212281241806 r005 Im(z^2+c),c=-23/54+3/50*I,n=24 3645212295852517 r005 Im(z^2+c),c=-13/10+9/254*I,n=21 3645212298211152 k006 concat of cont frac of 3645212306610705 r002 3th iterates of z^2 + 3645212311134182 k009 concat of cont frac of 3645212321456092 r009 Im(z^3+c),c=-5/23+22/57*I,n=8 3645212338326732 a007 Real Root Of 168*x^4+560*x^3-250*x^2-448*x-849 3645212353705522 r005 Re(z^2+c),c=-21/44+13/53*I,n=59 3645212359467975 r005 Im(z^2+c),c=-3/74+28/59*I,n=32 3645212359902064 p001 sum(1/(612*n+275)/(128^n),n=0..infinity) 3645212360725799 a007 Real Root Of -195*x^4+436*x^3-416*x^2+903*x+409 3645212370143592 a003 cos(Pi*4/61)/sin(Pi*9/104) 3645212376228393 r005 Im(z^2+c),c=17/66+8/31*I,n=60 3645212379520846 m001 (Bloch*CopelandErdos-FeigenbaumC)/Bloch 3645212383263926 h001 (4/7*exp(2)+3/8)/(4/11*exp(1)+3/11) 3645212383824604 a001 620166*701408733^(2/23) 3645212384352812 a001 4870847/3*10946^(2/23) 3645212389000295 m001 BesselJ(1,1)/ln(CareFree)^2*Zeta(7)^2 3645212396794416 r009 Re(z^3+c),c=-29/56+3/23*I,n=43 3645212403175474 r005 Im(z^2+c),c=-87/64+2/47*I,n=26 3645212412864148 m001 (LambertW(1)+Tribonacci)/TwinPrimes 3645212417490825 m001 (GaussAGM+OneNinth)/Sierpinski 3645212421102879 r008 a(0)=2,K{-n^6,-3+4*n^3+8*n^2-8*n} 3645212440929951 b008 7/5+BesselI[2,3] 3645212463753046 r005 Im(z^2+c),c=-11/16+3/119*I,n=17 3645212468912062 r005 Re(z^2+c),c=-23/18+8/225*I,n=54 3645212480460321 r002 3th iterates of z^2 + 3645212485326990 a007 Real Root Of 250*x^4+89*x^3+690*x^2+68*x-67 3645212487063268 r005 Re(z^2+c),c=-21/44+13/53*I,n=55 3645212505670920 l006 ln(5243/7549) 3645212507461449 l006 ln(55/2106) 3645212510191833 a007 Real Root Of 740*x^4-721*x^3+353*x^2-121*x-139 3645212510651759 m001 (arctan(1/3)+PlouffeB)/(BesselI(0,1)-exp(Pi)) 3645212526209976 r005 Re(z^2+c),c=-11/70+6/11*I,n=5 3645212530354100 a008 Real Root of x^4-8*x^2-19*x-1 3645212537102016 k002 Champernowne real with 79*n^2-228*n+185 3645212542236690 m003 -5+Cosh[1/2+Sqrt[5]/2]/3+Log[1/2+Sqrt[5]/2] 3645212549564310 a007 Real Root Of 662*x^4+41*x^3+152*x^2-730*x-296 3645212563722447 m005 (1/2*Pi-4/5)/(11/12*2^(1/2)+9/11) 3645212583308605 m001 Ei(1)-FeigenbaumDelta*KhinchinLevy 3645212600341196 m001 (ln(2)-Kac)/(KhinchinLevy+LaplaceLimit) 3645212602800265 r005 Im(z^2+c),c=-163/110+7/55*I,n=5 3645212605335057 m005 (1/2*2^(1/2)+2)/(1/8*Catalan-6/7) 3645212627970185 r005 Re(z^2+c),c=-51/110+12/35*I,n=24 3645212631046355 r005 Re(z^2+c),c=-33/82+34/61*I,n=23 3645212635053075 p001 sum(1/(547*n+526)/n/(256^n),n=1..infinity) 3645212645574749 m002 3-Log[Pi]/4+ProductLog[Pi]^(-1) 3645212649608843 p003 LerchPhi(1/1024,5,64/33) 3645212655247551 r005 Im(z^2+c),c=17/66+8/31*I,n=62 3645212662261874 m001 ln(GAMMA(3/4))*FeigenbaumB^2*sin(Pi/12) 3645212665970330 r005 Re(z^2+c),c=-13/12+7/29*I,n=28 3645212667522840 a001 199/9227465*46368^(5/19) 3645212667612083 a001 199/1134903170*4052739537881^(5/19) 3645212667612083 a001 199/102334155*433494437^(5/19) 3645212669259592 r005 Re(z^2+c),c=-33/74+27/64*I,n=30 3645212672900206 m001 MasserGramainDelta^exp(-1/2*Pi)*arctan(1/3) 3645212675125173 m001 (BesselJ(0,1)-Psi(2,1/3))/(Zeta(1/2)+gamma(1)) 3645212676982518 r009 Im(z^3+c),c=-67/122+11/56*I,n=56 3645212680003454 p001 sum(1/(583*n+315)/(3^n),n=0..infinity) 3645212699064924 a007 Real Root Of -713*x^4+374*x^3-202*x^2+720*x+320 3645212701719075 r002 5th iterates of z^2 + 3645212711178026 r002 44th iterates of z^2 + 3645212715614909 a007 Real Root Of 59*x^4-4*x^3-678*x^2+274*x-603 3645212738070701 l006 ln(5700/8207) 3645212745691067 m005 (13/4+1/4*5^(1/2))/(2/9*gamma+11/12) 3645212746415821 r009 Re(z^3+c),c=-61/126+24/53*I,n=29 3645212750391708 b008 Pi-7*Sech[1/4] 3645212751355237 r005 Im(z^2+c),c=-20/23+5/22*I,n=54 3645212751999344 a007 Real Root Of 240*x^4+896*x^3+310*x^2+694*x-565 3645212769423256 a007 Real Root Of 541*x^4-380*x^3-846*x^2-720*x-178 3645212778272235 a007 Real Root Of 197*x^4+693*x^3+8*x^2+495*x+482 3645212780334378 a007 Real Root Of 217*x^4+899*x^3+144*x^2-848*x+226 3645212794589318 h001 (1/5*exp(1)+1/3)/(9/11*exp(1)+2/11) 3645212796915823 a007 Real Root Of 142*x^4+655*x^3+336*x^2-458*x+520 3645212798748667 a001 514229/843*521^(17/26) 3645212815974577 r009 Re(z^3+c),c=-13/40+1/18*I,n=7 3645212816793287 a001 5/39603*521^(10/59) 3645212827070841 m001 (ln(2+3^(1/2))+FeigenbaumAlpha)^FeigenbaumD 3645212828897398 r005 Im(z^2+c),c=9/122+15/37*I,n=26 3645212836978068 r005 Im(z^2+c),c=-59/122+1/16*I,n=41 3645212837631955 m001 1/ln(GAMMA(1/24))/TwinPrimes/log(2+sqrt(3)) 3645212840093579 m005 (5*Catalan-1/4)/(2/3*exp(1)-3) 3645212848132699 r009 Re(z^3+c),c=-13/54+40/63*I,n=2 3645212861276778 m001 (Zeta(3)-sin(1/5*Pi))/(Zeta(1,2)-RenyiParking) 3645212861382173 a001 64079/3*591286729879^(9/17) 3645212862090406 a001 370248451/3*46368^(9/17) 3645212862270078 a001 4870847/3*165580141^(9/17) 3645212907365466 m001 AlladiGrinstead*MertensB2+FransenRobinson 3645212911149016 m005 (1/3*Zeta(3)+1/9)/(7/12*Pi-3/7) 3645212923004383 a007 Real Root Of -19*x^4-681*x^3+429*x^2+215*x-804 3645212926259233 a007 Real Root Of -841*x^4-484*x^3+993*x^2+802*x-386 3645212929801423 m002 30+3*Pi^4*Log[Pi] 3645212935970981 l006 ln(6157/8865) 3645212941153653 r005 Im(z^2+c),c=17/66+8/31*I,n=57 3645212942891375 m001 ln(Zeta(3))^2*ErdosBorwein*sin(Pi/12)^2 3645213015010129 a003 cos(Pi*32/83)/sin(Pi*47/113) 3645213018185364 m006 (4/5*exp(Pi)+3/5)/(3/5/Pi+1/3) 3645213025922341 m001 (cos(1)-sin(1))/(Artin+ZetaP(2)) 3645213031416817 r005 Im(z^2+c),c=-3/19+22/39*I,n=26 3645213034222063 r005 Im(z^2+c),c=-77/114+5/61*I,n=43 3645213047803041 a001 196418/2207*521^(25/26) 3645213052846575 r009 Re(z^3+c),c=-63/122+15/47*I,n=55 3645213061419414 r005 Re(z^2+c),c=-21/44+13/53*I,n=61 3645213071608018 m001 1/GAMMA(1/4)*ln(ErdosBorwein)^2*sin(Pi/5) 3645213077025761 r005 Im(z^2+c),c=17/66+8/31*I,n=61 3645213086100021 a005 (1/cos(2/167*Pi))^1827 3645213106523079 l006 ln(6614/9523) 3645213116928137 r005 Im(z^2+c),c=-9/82+22/43*I,n=40 3645213117203586 a001 11/2*1597^(10/39) 3645213120716127 a007 Real Root Of 895*x^4+794*x^3-811*x^2-871*x+371 3645213122403124 m001 BesselK(0,1)*BesselI(0,2)+Khinchin 3645213142579078 a001 29/13*2584^(1/16) 3645213144090959 r009 Re(z^3+c),c=-31/78+11/57*I,n=6 3645213144425758 a007 Real Root Of 182*x^4+515*x^3-616*x^2-85*x+686 3645213149996843 p004 log(28297/739) 3645213152206757 m001 (BesselJ(1,1)-Kac)/(sin(1/12*Pi)-exp(-1/2*Pi)) 3645213171521291 k008 concat of cont frac of 3645213180813804 m005 (1/3*5^(1/2)-1/9)/(4/9*2^(1/2)-5/11) 3645213199116646 r005 Re(z^2+c),c=-63/62+10/57*I,n=16 3645213207316627 r005 Re(z^2+c),c=-2/3+100/229*I,n=7 3645213214118694 r005 Im(z^2+c),c=-13/22+47/111*I,n=23 3645213215307946 r005 Re(z^2+c),c=-35/74+10/37*I,n=46 3645213227356566 r005 Re(z^2+c),c=-7/12+9/95*I,n=6 3645213263471113 m001 (Pi^(1/2)*FeigenbaumD+Niven)/Pi^(1/2) 3645213266752870 r005 Re(z^2+c),c=-21/44+13/53*I,n=54 3645213269349060 m001 (Artin+StolarskyHarborth)/(2^(1/2)+Zeta(1,-1)) 3645213273968825 s002 sum(A160249[n]/(n^3*exp(n)+1),n=1..infinity) 3645213274562473 m001 DuboisRaymond-FeigenbaumMu^Shi(1) 3645213276411796 r005 Re(z^2+c),c=-57/106+25/59*I,n=22 3645213278720261 r005 Re(z^2+c),c=-21/44+13/53*I,n=64 3645213289784074 m005 (1/3*5^(1/2)-1/7)/(7/9*3^(1/2)-3) 3645213299727782 l006 ln(5495/5699) 3645213310404457 a007 Real Root Of 978*x^4-719*x^3-805*x^2-539*x+321 3645213332233670 g005 GAMMA(7/11)*GAMMA(2/9)*GAMMA(3/4)/GAMMA(5/11) 3645213352627084 a007 Real Root Of -904*x^4+776*x^3-509*x^2-102*x+84 3645213381355990 m001 (Zeta(5)-Ei(1))/(ErdosBorwein+RenyiParking) 3645213396126133 r005 Re(z^2+c),c=-7/10+35/162*I,n=24 3645213408731523 a001 39088169/2207*199^(3/22) 3645213427224214 r005 Im(z^2+c),c=11/102+13/34*I,n=31 3645213427316524 m001 MadelungNaCl^ln(2+3^(1/2))*ZetaP(3) 3645213432109906 r002 9i'th iterates of 2*x/(1-x^2) of 3645213432160045 r009 Im(z^3+c),c=-11/24+17/40*I,n=3 3645213437693458 m005 (1/3*Zeta(3)+1/6)/(11/12*Zeta(3)+5/11) 3645213438935695 r002 12th iterates of z^2 + 3645213439345017 a007 Real Root Of 774*x^4-532*x^3-931*x^2-626*x+364 3645213443689975 m002 -E^Pi-4*Pi*Log[Pi]+ProductLog[Pi] 3645213466938969 m001 (Backhouse+Stephens)/(LambertW(1)+gamma(2)) 3645213469515811 r009 Re(z^3+c),c=-19/52+7/51*I,n=18 3645213472131131 a001 6765/2207*2^(1/4) 3645213484977364 a007 Real Root Of -391*x^4+284*x^3-144*x^2+832*x-291 3645213493056007 s001 sum(exp(-Pi/4)^(n-1)*A052988[n],n=1..infinity) 3645213499030721 r002 2th iterates of z^2 + 3645213501245655 a001 5/4870847*1364^(48/59) 3645213504204168 h001 (5/7*exp(2)+5/8)/(3/8*exp(1)+3/5) 3645213506794854 r005 Re(z^2+c),c=-21/44+13/53*I,n=63 3645213524645506 a001 317811/322*322^(5/8) 3645213532288335 a007 Real Root Of -881*x^4-955*x^3-940*x^2+902*x+423 3645213539060645 h001 (-9*exp(3)-10)/(-6*exp(2)-8) 3645213540102616 k002 Champernowne real with 159/2*n^2-459/2*n+186 3645213543636710 m001 (Chi(1)-arctan(1/3))/(-BesselI(1,2)+ZetaP(3)) 3645213546332557 r005 Im(z^2+c),c=13/64+17/55*I,n=40 3645213550208131 r002 45th iterates of z^2 + 3645213553863027 r009 Im(z^3+c),c=-2/21+34/47*I,n=2 3645213559384871 r005 Re(z^2+c),c=-21/44+13/53*I,n=62 3645213566031529 m001 FellerTornier/(cos(1/5*Pi)^Stephens) 3645213567493515 r009 Im(z^3+c),c=-55/122+8/29*I,n=37 3645213571035021 a007 Real Root Of 24*x^4+878*x^3+97*x^2-633*x+549 3645213575588625 m005 (1/2*Catalan-11/12)/(4/7*Zeta(3)+4/7) 3645213586465346 r009 Re(z^3+c),c=-9/19+15/53*I,n=56 3645213593460659 m001 (Ei(1)+BesselI(0,2))/(DuboisRaymond-Totient) 3645213598287554 a001 3524578/199*76^(1/6) 3645213608323688 a001 76/233*4181^(11/38) 3645213618078398 m001 Magata^(5^(1/2)*Bloch) 3645213618081401 m005 (1/3*2^(1/2)+2/5)/(7/8*3^(1/2)+7/8) 3645213628842504 r009 Im(z^3+c),c=-10/21+44/57*I,n=3 3645213628988642 q001 674/1849 3645213629226355 a007 Real Root Of 189*x^3+866*x^2+903*x+939 3645213633478047 r002 5th iterates of z^2 + 3645213633896055 r009 Im(z^3+c),c=-6/11+23/63*I,n=15 3645213639343250 a001 4106118243/233*233^(2/15) 3645213649616170 h005 exp(sin(Pi*7/43)+sin(Pi*11/37)) 3645213659444162 r005 Im(z^2+c),c=35/122+7/31*I,n=28 3645213668423632 p004 log(15661/409) 3645213680986678 a007 Real Root Of -620*x^4+781*x^3+523*x^2+504*x+163 3645213682242058 a007 Real Root Of -278*x^4-971*x^3+196*x^2-54*x-749 3645213686974200 a001 514229/5778*521^(25/26) 3645213696231643 r005 Re(z^2+c),c=-23/102+38/61*I,n=27 3645213699224139 m005 (1/2*3^(1/2)+6/7)/(9/10*2^(1/2)-6) 3645213703037435 r005 Im(z^2+c),c=7/122+29/57*I,n=10 3645213704121526 m001 ln(Lehmer)^2/GlaisherKinkelin/BesselJ(0,1)^2 3645213713666329 a005 (1/sin(90/211*Pi))^648 3645213714549911 r009 Im(z^3+c),c=-9/64+25/63*I,n=4 3645213720945943 r005 Im(z^2+c),c=19/82+17/60*I,n=28 3645213722428553 r005 Im(z^2+c),c=17/66+16/37*I,n=17 3645213727490469 r005 Im(z^2+c),c=-5/94+22/49*I,n=8 3645213727672550 r002 44th iterates of z^2 + 3645213751407344 m001 Cahen^KhinchinHarmonic-Paris 3645213769429536 a007 Real Root Of -130*x^4-231*x^3+660*x^2-952*x-476 3645213772004587 h001 (7/9*exp(1)+1/5)/(1/6*exp(1)+2/11) 3645213780228034 a001 1346269/15127*521^(25/26) 3645213797031880 m001 exp(GAMMA(3/4))^2/Ei(1)^2*GAMMA(5/6) 3645213800144185 m001 (ZetaP(2)+ZetaQ(2))/(Si(Pi)-arctan(1/2)) 3645213802107090 m005 (1/3*5^(1/2)-1/11)/(1/6*gamma+1/12) 3645213802242279 a001 2178309/24476*521^(25/26) 3645213815151117 k007 concat of cont frac of 3645213831748252 a001 832040/843*521^(15/26) 3645213832618146 r005 Im(z^2+c),c=-15/58+25/42*I,n=56 3645213834093647 r005 Im(z^2+c),c=-25/106+31/56*I,n=13 3645213837862076 a001 832040/9349*521^(25/26) 3645213839069584 r005 Im(z^2+c),c=17/66+8/31*I,n=55 3645213862639352 r005 Im(z^2+c),c=23/90+34/63*I,n=44 3645213865409295 m001 (ln(Pi)+KhinchinHarmonic)/(Kolakoski-ZetaQ(4)) 3645213869091236 m001 (GAMMA(5/6)-Magata)/(Paris-Sarnak) 3645213870298627 r005 Im(z^2+c),c=41/122+10/61*I,n=23 3645213873629631 r005 Re(z^2+c),c=-13/28+13/49*I,n=15 3645213877437224 m001 TreeGrowth2nd*ln(LandauRamanujan)*GAMMA(7/24) 3645213878672568 m001 (MadelungNaCl-Shi(1))/(MertensB2+Thue) 3645213888121000 r005 Re(z^2+c),c=-43/110+19/40*I,n=19 3645213905061973 r002 27th iterates of z^2 + 3645213906502171 r005 Re(z^2+c),c=-14/29+4/21*I,n=14 3645213920013075 r005 Im(z^2+c),c=-5/32+22/43*I,n=16 3645213923097536 m001 (-Kac+MadelungNaCl)/(5^(1/2)+sin(1)) 3645213930149600 m005 (1/3*5^(1/2)+1/3)/(8/9*Pi+1/6) 3645213930701550 a001 5/15127*11^(2/49) 3645213938811147 r005 Im(z^2+c),c=-13/98+10/19*I,n=8 3645213941796925 r005 Im(z^2+c),c=-75/62+3/62*I,n=47 3645213944496756 a001 24476/1597*8^(5/12) 3645213945172119 m001 OneNinth^2*Rabbit^2/ln(GAMMA(19/24)) 3645213953798066 a007 Real Root Of 240*x^4+929*x^3+274*x^2+324*x+163 3645213962553499 r005 Re(z^2+c),c=-35/82+31/48*I,n=6 3645213963333782 m001 Khinchin^Trott-MasserGramain 3645213963379372 a007 Real Root Of 312*x^4-984*x^3+819*x^2-930*x-501 3645213966492391 r009 Re(z^3+c),c=-31/94+2/29*I,n=7 3645213967538114 r005 Im(z^2+c),c=13/42+12/61*I,n=41 3645213969626888 r005 Re(z^2+c),c=-8/21+27/55*I,n=20 3645213981972665 a001 1/1602508992*267914296^(13/19) 3645213981972665 a001 3/2504730781961*2504730781961^(13/19) 3645213982580065 a001 3/9227465*28657^(13/19) 3645213989130178 m005 (1/2*gamma-7/10)/(7/11*Zeta(3)+4/11) 3645213999996416 m005 (1/3*3^(1/2)+3/4)/(1/9*gamma+3/10) 3645214003684225 a007 Real Root Of 278*x^4-437*x^3-107*x^2-284*x+134 3645214019738179 m001 (GAMMA(11/12)-Pi^(1/2))/(MertensB1+Niven) 3645214024768216 r005 Im(z^2+c),c=-49/50+19/63*I,n=19 3645214043400896 h001 (1/4*exp(2)+7/8)/(8/9*exp(2)+9/10) 3645214043592360 r002 3th iterates of z^2 + 3645214047918885 a001 34111385/1926*199^(3/22) 3645214051154642 a007 Real Root Of 549*x^4-76*x^3-499*x^2-695*x+26 3645214053864787 r002 28th iterates of z^2 + 3645214073041490 h001 (1/12*exp(1)+2/11)/(1/9*exp(1)+9/11) 3645214073050827 r002 4th iterates of z^2 + 3645214080780392 a001 317811/2207*521^(23/26) 3645214082003813 a001 317811/3571*521^(25/26) 3645214082524579 r009 Im(z^3+c),c=-7/19+20/61*I,n=23 3645214083521406 m001 (Chi(1)-gamma)/(-ln(2+3^(1/2))+BesselK(1,1)) 3645214092766142 a001 46/3*4181^(19/50) 3645214106910545 a007 Real Root Of 816*x^4+16*x^3-688*x^2-452*x+241 3645214116052690 r005 Im(z^2+c),c=-3/29+30/59*I,n=45 3645214124924401 a001 17711/5778*2^(1/4) 3645214141175084 a001 267914296/15127*199^(3/22) 3645214142452143 m001 Sierpinski*exp(MadelungNaCl)^2/GAMMA(7/12)^2 3645214144165008 r005 Im(z^2+c),c=-5/118+29/61*I,n=46 3645214150059483 m001 (-FellerTornier+Paris)/(2^(1/3)-BesselI(0,1)) 3645214153168456 r009 Im(z^3+c),c=-23/56+17/56*I,n=27 3645214154780980 a001 17711*199^(3/22) 3645214156766053 a001 1836311903/103682*199^(3/22) 3645214157055672 a001 1602508992/90481*199^(3/22) 3645214157097927 a001 12586269025/710647*199^(3/22) 3645214157104091 a001 10983760033/620166*199^(3/22) 3645214157104991 a001 86267571272/4870847*199^(3/22) 3645214157105122 a001 75283811239/4250681*199^(3/22) 3645214157105141 a001 591286729879/33385282*199^(3/22) 3645214157105144 a001 516002918640/29134601*199^(3/22) 3645214157105144 a001 4052739537881/228826127*199^(3/22) 3645214157105144 a001 3536736619241/199691526*199^(3/22) 3645214157105145 a001 6557470319842/370248451*199^(3/22) 3645214157105145 a001 2504730781961/141422324*199^(3/22) 3645214157105146 a001 956722026041/54018521*199^(3/22) 3645214157105153 a001 365435296162/20633239*199^(3/22) 3645214157105203 a001 139583862445/7881196*199^(3/22) 3645214157105547 a001 53316291173/3010349*199^(3/22) 3645214157107902 a001 20365011074/1149851*199^(3/22) 3645214157124041 a001 7778742049/439204*199^(3/22) 3645214157234666 a001 2971215073/167761*199^(3/22) 3645214157992896 a001 1134903170/64079*199^(3/22) 3645214161885162 r005 Re(z^2+c),c=-21/44+13/53*I,n=60 3645214163189886 a001 433494437/24476*199^(3/22) 3645214168015689 m001 Ei(1)*FeigenbaumC+ZetaP(3) 3645214175320318 a007 Real Root Of -419*x^4+921*x^3-51*x^2+552*x+260 3645214180335573 m001 (LambertW(1)+Artin)/(Kolakoski+KomornikLoreti) 3645214188286160 b008 (4*E^(1/8))/9+Pi 3645214193841634 a001 64079/4181*8^(5/12) 3645214198810586 a001 165580141/9349*199^(3/22) 3645214204602675 a007 Real Root Of -884*x^4-269*x^3+327*x^2+314*x+11 3645214220165675 a001 6624/2161*2^(1/4) 3645214224560539 m001 (exp(Pi)+ln(gamma))/(gamma(1)+Trott) 3645214230220564 a001 167761/10946*8^(5/12) 3645214234061190 a001 121393/39603*2^(1/4) 3645214235528178 a001 439204/28657*8^(5/12) 3645214235761198 r002 5th iterates of z^2 + 3645214236088518 a001 317811/103682*2^(1/4) 3645214236302549 a001 1149851/75025*8^(5/12) 3645214236383862 m001 (StolarskyHarborth-Trott)/(Backhouse+PlouffeB) 3645214236384301 a001 832040/271443*2^(1/4) 3645214236415528 a001 3010349/196418*8^(5/12) 3645214236427456 a001 311187/101521*2^(1/4) 3645214236432011 a001 7881196/514229*8^(5/12) 3645214236433752 a001 5702887/1860498*2^(1/4) 3645214236434416 a001 20633239/1346269*8^(5/12) 3645214236434670 a001 14930352/4870847*2^(1/4) 3645214236434767 a001 54018521/3524578*8^(5/12) 3645214236434804 a001 39088169/12752043*2^(1/4) 3645214236434818 a001 141422324/9227465*8^(5/12) 3645214236434824 a001 14619165/4769326*2^(1/4) 3645214236434826 a001 370248451/24157817*8^(5/12) 3645214236434827 a001 267914296/87403803*2^(1/4) 3645214236434827 a001 969323029/63245986*8^(5/12) 3645214236434827 a001 701408733/228826127*2^(1/4) 3645214236434827 a001 2537720636/165580141*8^(5/12) 3645214236434827 a001 1836311903/599074578*2^(1/4) 3645214236434827 a001 6643838879/433494437*8^(5/12) 3645214236434827 a001 686789568/224056801*2^(1/4) 3645214236434827 a001 17393796001/1134903170*8^(5/12) 3645214236434827 a001 12586269025/4106118243*2^(1/4) 3645214236434827 a001 45537549124/2971215073*8^(5/12) 3645214236434827 a001 32951280099/10749957122*2^(1/4) 3645214236434827 a001 119218851371/7778742049*8^(5/12) 3645214236434827 a001 86267571272/28143753123*2^(1/4) 3645214236434827 a001 312119004989/20365011074*8^(5/12) 3645214236434827 a001 32264490531/10525900321*2^(1/4) 3645214236434827 a001 817138163596/53316291173*8^(5/12) 3645214236434827 a001 591286729879/192900153618*2^(1/4) 3645214236434827 a001 2139295485799/139583862445*8^(5/12) 3645214236434827 a001 1548008755920/505019158607*2^(1/4) 3645214236434827 a001 14662949395604/956722026041*8^(5/12) 3645214236434827 a001 1515744265389/494493258286*2^(1/4) 3645214236434827 a001 2504730781961/817138163596*2^(1/4) 3645214236434827 a001 494493258286/32264490531*8^(5/12) 3645214236434827 a001 956722026041/312119004989*2^(1/4) 3645214236434827 a001 1322157322203/86267571272*8^(5/12) 3645214236434827 a001 365435296162/119218851371*2^(1/4) 3645214236434827 a001 505019158607/32951280099*8^(5/12) 3645214236434827 a001 139583862445/45537549124*2^(1/4) 3645214236434827 a001 192900153618/12586269025*8^(5/12) 3645214236434827 a001 53316291173/17393796001*2^(1/4) 3645214236434827 a001 10525900321/686789568*8^(5/12) 3645214236434827 a001 20365011074/6643838879*2^(1/4) 3645214236434827 a001 28143753123/1836311903*8^(5/12) 3645214236434827 a001 7778742049/2537720636*2^(1/4) 3645214236434827 a001 10749957122/701408733*8^(5/12) 3645214236434827 a001 2971215073/969323029*2^(1/4) 3645214236434827 a001 4106118243/267914296*8^(5/12) 3645214236434827 a001 1134903170/370248451*2^(1/4) 3645214236434827 a001 224056801/14619165*8^(5/12) 3645214236434827 a001 433494437/141422324*2^(1/4) 3645214236434828 a001 599074578/39088169*8^(5/12) 3645214236434828 a001 165580141/54018521*2^(1/4) 3645214236434830 a001 228826127/14930352*8^(5/12) 3645214236434836 a001 63245986/20633239*2^(1/4) 3645214236434850 a001 87403803/5702887*8^(5/12) 3645214236434887 a001 24157817/7881196*2^(1/4) 3645214236434984 a001 4769326/311187*8^(5/12) 3645214236435238 a001 9227465/3010349*2^(1/4) 3645214236435903 a001 12752043/832040*8^(5/12) 3645214236437643 a001 3524578/1149851*2^(1/4) 3645214236442199 a001 4870847/317811*8^(5/12) 3645214236454126 a001 1346269/439204*2^(1/4) 3645214236485353 a001 1860498/121393*8^(5/12) 3645214236567105 a001 514229/167761*2^(1/4) 3645214236781136 a001 101521/6624*8^(5/12) 3645214237341476 a001 196418/64079*2^(1/4) 3645214238808464 a001 271443/17711*8^(5/12) 3645214242649090 a001 75025/24476*2^(1/4) 3645214249329906 a007 Real Root Of -208*x^4-647*x^3+465*x^2+478*x+950 3645214252703980 a001 103682/6765*8^(5/12) 3645214258212776 r009 Im(z^3+c),c=-25/126+23/56*I,n=3 3645214259432404 m002 -Pi^(-2)+Pi*Cosh[Pi]*Coth[Pi] 3645214279028021 a001 28657/9349*2^(1/4) 3645214282525897 h001 (9/10*exp(2)+7/11)/(5/8*exp(1)+3/10) 3645214286726522 m005 (1/2*5^(1/2)-5)/(9/10*gamma+6/11) 3645214298201186 a007 Real Root Of 521*x^4+709*x^3+892*x^2-800*x-385 3645214299570307 m001 (3^(1/3)+FibonacciFactorial*Gompertz)/Gompertz 3645214334750252 s001 sum(exp(-3*Pi/4)^n*A056815[n],n=1..infinity) 3645214338560677 m001 (Totient+Thue)/(BesselK(1,1)+HeathBrownMoroz) 3645214345114178 m001 1/Sierpinski^2/ln(Paris)/sqrt(Pi) 3645214345621881 r002 59th iterates of z^2 + 3645214346699096 r005 Im(z^2+c),c=2/25+2/5*I,n=17 3645214347945260 a001 39603/2584*8^(5/12) 3645214358030038 a007 Real Root Of 294*x^4+786*x^3-829*x^2+523*x-916 3645214358426968 a003 sin(Pi*15/116)*sin(Pi*40/107) 3645214404500823 m005 (1/3*exp(1)-2/7)/(8/9*5^(1/2)-2/7) 3645214412435406 m001 (MertensB3-Tribonacci)/(ln(5)-Ei(1,1)) 3645214415159199 r005 Re(z^2+c),c=-21/46+23/54*I,n=13 3645214428740049 m001 1/cos(1)^2*GAMMA(1/12)^2*ln(sqrt(5)) 3645214438742970 m001 1/exp(MadelungNaCl)^2*Champernowne*Paris^2 3645214442958513 a001 63245986/3571*199^(3/22) 3645214450926761 p001 sum(1/(387*n+302)/(5^n),n=0..infinity) 3645214453499753 l006 ln(244/9343) 3645214456703547 r005 Re(z^2+c),c=-9/14+4/109*I,n=8 3645214487925158 a007 Real Root Of -377*x^4-x^3-304*x^2+203*x+121 3645214494255682 m001 FeigenbaumMu+Ei(1,1)^Niven 3645214495053631 r005 Re(z^2+c),c=-39/86+19/50*I,n=29 3645214499738598 r005 Re(z^2+c),c=-15/31+10/53*I,n=17 3645214513507821 r002 30th iterates of z^2 + 3645214520968641 a007 Real Root Of -129*x^4+974*x^3+479*x^2+923*x-445 3645214522414605 m001 (-Artin+1/3)/(-exp(gamma)+2/3) 3645214523157702 a007 Real Root Of -846*x^4-317*x^3-286*x^2+640*x-165 3645214528372944 a001 10946/3571*2^(1/4) 3645214529069938 a007 Real Root Of 248*x^4+926*x^3+232*x^2+446*x-392 3645214540959358 m005 (1/2*2^(1/2)-4/5)/(8/11*exp(1)+4/7) 3645214543103216 k002 Champernowne real with 80*n^2-231*n+187 3645214551992716 r009 Re(z^3+c),c=-59/122+17/55*I,n=24 3645214552662053 a001 233/3*87403803^(10/17) 3645214556309295 a007 Real Root Of 171*x^4+562*x^3-205*x^2+60*x-28 3645214577829217 m005 (1/2*5^(1/2)-6/11)/(7/8*2^(1/2)+1/3) 3645214579103906 m005 (1/2*5^(1/2)+5/6)/(2*exp(1)-1/12) 3645214579971092 m005 (-35/12+1/12*5^(1/2))/(19/10+5/2*5^(1/2)) 3645214596651878 m001 (KhinchinLevy-Khinchin)/(Zeta(5)-Kac) 3645214617029674 a001 123*(1/2*5^(1/2)+1/2)^18*11^(15/22) 3645214629573652 m001 (Grothendieck+Otter*Sierpinski)/Sierpinski 3645214640291575 m004 -E^(Sqrt[5]*Pi)/3+(5*Pi*Log[Sqrt[5]*Pi])/3 3645214646222682 h001 (-4*exp(1/3)+8)/(-exp(-1)+7) 3645214655178049 a003 sin(Pi*3/31)/cos(Pi*23/119) 3645214660060710 a001 15456/41*123^(19/20) 3645214664064829 m005 (1/3*exp(1)+1/9)/(3/11*5^(1/2)-8/9) 3645214680637944 a007 Real Root Of 168*x^4+465*x^3-242*x^2+962*x-417 3645214681755346 r005 Re(z^2+c),c=-33/70+8/29*I,n=29 3645214689863903 r009 Re(z^3+c),c=-8/19+8/37*I,n=20 3645214704120760 m001 (GAMMA(17/24)+FeigenbaumKappa)/(Kac+Paris) 3645214719974037 a001 416020/2889*521^(23/26) 3645214729836793 m005 (3/4*gamma+4/5)/(4/5*gamma-4/5) 3645214729836793 m007 (-3/4*gamma-4/5)/(-4/5*gamma+4/5) 3645214732693391 a005 (1/sin(77/194*Pi))^628 3645214734860837 r009 Im(z^3+c),c=-53/110+12/49*I,n=24 3645214737421123 m005 (1/2*exp(1)+5/9)/(2/7*Zeta(3)+2/11) 3645214737489073 a008 Real Root of x^4-98*x^2-204*x+382 3645214740355019 r005 Re(z^2+c),c=-41/98+5/11*I,n=34 3645214745011071 r009 Im(z^3+c),c=-29/90+5/11*I,n=3 3645214745085236 a007 Real Root Of -354*x^4+39*x^3-847*x^2+972*x+475 3645214755975497 r005 Re(z^2+c),c=-25/56+11/26*I,n=32 3645214762187172 r005 Im(z^2+c),c=-15/122+14/27*I,n=60 3645214771437718 r005 Im(z^2+c),c=-29/102+31/53*I,n=62 3645214782529036 r002 21th iterates of z^2 + 3645214785021576 h001 (2/7*exp(2)+3/8)/(4/5*exp(2)+10/11) 3645214792053274 r005 Im(z^2+c),c=-9/98+27/53*I,n=21 3645214797773362 m001 Khinchin/(Zeta(1/2)+Sarnak) 3645214813231152 a001 311187/2161*521^(23/26) 3645214815198127 r009 Re(z^3+c),c=-15/32+21/62*I,n=12 3645214818517817 a007 Real Root Of 235*x^4+558*x^3-885*x^2+618*x-452 3645214823599600 m001 (Tribonacci+Thue*TwinPrimes)/TwinPrimes 3645214854879748 r005 Re(z^2+c),c=-45/106+24/49*I,n=53 3645214860502326 r002 45th iterates of z^2 + 3645214863529116 r005 Re(z^2+c),c=-21/44+13/53*I,n=58 3645214864753396 a001 1346269/843*521^(1/2) 3645214870867221 a001 1346269/9349*521^(23/26) 3645214872742368 m005 (1/2*Catalan+1/5)/(9/10*gamma-7/10) 3645214875369995 a003 cos(Pi*21/73)-sin(Pi*34/77) 3645214880128484 r005 Im(z^2+c),c=-15/74+34/61*I,n=56 3645214892154892 m006 (2*exp(2*Pi)+1/3)/(1/3/Pi-2/5) 3645214900860413 r005 Im(z^2+c),c=11/98+25/59*I,n=7 3645214905306545 r009 Re(z^3+c),c=-15/31+11/37*I,n=29 3645214906343514 m001 (2^(1/2)+Zeta(5))/(-Pi^(1/2)+Niven) 3645214909202845 r005 Im(z^2+c),c=3/44+24/59*I,n=16 3645214912954690 r005 Im(z^2+c),c=-11/74+27/47*I,n=18 3645214924084824 a007 Real Root Of 197*x^4-662*x^3-182*x^2-929*x-350 3645214943278422 m001 (polylog(4,1/2)+ErdosBorwein)/(Mills-Sarnak) 3645214944668743 r005 Re(z^2+c),c=-21/44+13/53*I,n=56 3645214951168491 a007 Real Root Of -972*x^4+671*x^3-620*x^2+565*x+338 3645214960004733 l004 sinh(235/112*Pi) 3645214966451083 a007 Real Root Of 571*x^4-615*x^3+241*x^2-121*x-116 3645214969234718 a007 Real Root Of 288*x^4+900*x^3-405*x^2+529*x+53 3645214974121592 a001 5/439204*3571^(25/59) 3645214989532963 m001 GAMMA(2/3)/(BesselK(0,1)^ln(Pi)) 3645215000738837 a001 2161/141*8^(5/12) 3645215002038911 r005 Im(z^2+c),c=-119/94+2/63*I,n=5 3645215004994400 m001 (exp(1)+BesselI(0,1))/(OneNinth+ZetaQ(4)) 3645215019806485 l006 ln(189/7237) 3645215027588704 a001 7/4181*17711^(11/14) 3645215053131046 r005 Re(z^2+c),c=-14/29+5/26*I,n=14 3645215062178848 m001 1/cos(1)*exp(FransenRobinson)/sin(1) 3645215064466864 m005 (1/2*5^(1/2)-4)/(1/12*Catalan+5/7) 3645215071120285 a001 7/165580141*12586269025^(11/14) 3645215071120285 a001 7/32951280099*10610209857723^(11/14) 3645215071121335 a001 7/832040*14930352^(11/14) 3645215078620042 r005 Re(z^2+c),c=-37/86+8/33*I,n=4 3645215080201436 m001 GAMMA(3/4)+Pi*csc(7/24*Pi)/GAMMA(17/24)-Robbin 3645215095186599 a001 5/64079*24476^(9/59) 3645215096086448 a001 5/710647*39603^(22/59) 3645215100581761 g005 GAMMA(3/11)*GAMMA(5/8)*GAMMA(1/7)/GAMMA(1/9) 3645215102116832 m005 (1/3*gamma-1/6)/(3/7*2^(1/2)+1/10) 3645215104946914 a001 5/4870847*15127^(36/59) 3645215105289843 a007 Real Root Of 648*x^4+225*x^3+125*x^2-661*x+202 3645215106218158 r004 Im(z^2+c),c=2/7+5/22*I,z(0)=exp(5/8*I*Pi),n=51 3645215111037955 m001 (Cahen+QuadraticClass)/(GAMMA(2/3)-Pi^(1/2)) 3645215111259431 r005 Im(z^2+c),c=17/66+8/31*I,n=56 3645215113794126 a001 514229/2207*521^(21/26) 3645215114668356 m001 (GAMMA(3/4)+Bloch)/(PisotVijayaraghavan-Thue) 3645215115017548 a001 514229/3571*521^(23/26) 3645215127170652 r005 Im(z^2+c),c=5/94+18/43*I,n=31 3645215129326012 r005 Im(z^2+c),c=1/16+26/63*I,n=29 3645215141135162 m001 (1-exp(1/Pi))/(-Otter+Tetranacci) 3645215147715131 m005 (4/5*gamma+1/4)/(1/3*2^(1/2)-2/3) 3645215158096247 p001 sum((-1)^n/(325*n+253)/(5^n),n=0..infinity) 3645215169251478 a001 5/4870847*5778^(40/59) 3645215218395934 m005 (17/30+1/6*5^(1/2))/(3/7*3^(1/2)-1) 3645215222374328 m001 Champernowne^Kolakoski+ZetaP(3) 3645215243233715 r005 Re(z^2+c),c=-49/110+27/50*I,n=49 3645215249018383 m001 (PrimesInBinary-Rabbit)/(GAMMA(3/4)-Mills) 3645215250034883 r009 Re(z^3+c),c=-3/52+21/40*I,n=16 3645215256939139 r005 Im(z^2+c),c=-11/60+25/47*I,n=18 3645215263531622 a007 Real Root Of -548*x^4-345*x^3+940*x^2+956*x-447 3645215275531399 a007 Real Root Of -493*x^4-856*x^3-585*x^2+952*x+392 3645215275678540 m005 (1/2*gamma-1/11)/(2/5*Pi-5/7) 3645215302043820 r005 Re(z^2+c),c=-89/66+6/55*I,n=8 3645215316362664 a001 123/8*514229^(13/54) 3645215328795736 a007 Real Root Of 316*x^4+233*x^3+215*x^2-464*x-192 3645215349933182 a007 Real Root Of 704*x^4+521*x^3-395*x^2-305*x+126 3645215351116363 r009 Im(z^3+c),c=-19/52+4/11*I,n=4 3645215355339519 a007 Real Root Of -263*x^4-756*x^3+795*x^2+76*x-469 3645215356885076 r005 Re(z^2+c),c=-10/19+11/59*I,n=4 3645215373144152 m001 (FellerTornier-sin(1))/(Paris+Riemann1stZero) 3645215404311125 l006 ln(457/658) 3645215417504901 m001 (-Landau+Trott)/(BesselI(0,1)+DuboisRaymond) 3645215419418993 r009 Re(z^3+c),c=-43/90+9/31*I,n=29 3645215420766691 m005 (1/2*exp(1)-2/7)/(6/11*3^(1/2)+2) 3645215424840782 r005 Re(z^2+c),c=-21/44+13/53*I,n=53 3645215433279384 b008 15*Gamma[2/9,1] 3645215444562898 r005 Im(z^2+c),c=27/82+11/64*I,n=48 3645215453877381 a001 123/610*28657^(3/52) 3645215470826990 r008 a(0)=4,K{-n^6,-3+3*n^3-4*n^2+7*n} 3645215473009366 r009 Re(z^3+c),c=-17/36+9/32*I,n=45 3645215494038739 h001 (5/8*exp(2)+3/5)/(1/6*exp(2)+1/5) 3645215494309642 a001 17/930249*7^(11/31) 3645215516429876 r005 Im(z^2+c),c=-73/106+1/40*I,n=17 3645215522527032 r002 3th iterates of z^2 + 3645215531563159 h001 (10/11*exp(2)+5/8)/(7/12*exp(1)+3/7) 3645215537939371 m005 (1/2*5^(1/2)-6/7)/(9/11*2^(1/2)+6) 3645215538851492 m001 GAMMA(7/12)^exp(1)*GAMMA(1/12) 3645215540131505 r002 7th iterates of z^2 + 3645215545945119 m001 (FeigenbaumC+Landau)/(TwinPrimes-ZetaQ(3)) 3645215546103816 k002 Champernowne real with 161/2*n^2-465/2*n+188 3645215552442762 p001 sum(1/(546*n+527)/n/(256^n),n=1..infinity) 3645215553427690 r005 Im(z^2+c),c=-23/34+32/115*I,n=18 3645215560444182 m001 LambertW(1)/(FeigenbaumDelta^exp(gamma)) 3645215571068395 m002 -6-Pi^3-6*Csch[Pi]+ProductLog[Pi] 3645215615565209 v003 sum((2*n^3-n^2-8*n+14)/n^(n-2),n=1..infinity) 3645215621203132 m001 (MasserGramain+Rabbit)/(Zeta(5)+FeigenbaumD) 3645215622295806 m001 (Backhouse-Kac)/(ln(gamma)+arctan(1/3)) 3645215623137701 m001 (Catalan+BesselJ(1,1))/(LandauRamanujan+Otter) 3645215652569211 r009 Im(z^3+c),c=-13/122+20/49*I,n=5 3645215661083357 r005 Im(z^2+c),c=-5/118+10/21*I,n=25 3645215661434884 r005 Re(z^2+c),c=-23/60+23/42*I,n=61 3645215666020565 a001 5/4870847*2207^(45/59) 3645215673716233 a007 Real Root Of 166*x^4+562*x^3+129*x^2+809*x-853 3645215675186448 a001 5/15127*322^(1/59) 3645215676219815 m001 FeigenbaumAlpha+MertensB2+OneNinth 3645215678859670 m001 ln(GAMMA(17/24))^2*BesselJ(1,1)*log(2+sqrt(3)) 3645215680512471 m001 Pi/(RenyiParking-ln(5)) 3645215690478248 a007 Real Root Of -248*x^4-700*x^3+642*x^2-451*x-293 3645215697337891 m005 (1/2*gamma+2/9)/(2/3*Zeta(3)+3/5) 3645215706547849 g005 GAMMA(1/7)/GAMMA(9/10)/GAMMA(5/6)/GAMMA(3/5) 3645215708318335 m001 (-gamma(2)+Trott)/(Psi(2,1/3)-Zeta(3)) 3645215731418982 a007 Real Root Of 350*x^4+973*x^3-967*x^2+314*x-674 3645215734906729 r005 Im(z^2+c),c=-7/110+19/39*I,n=44 3645215738508236 r005 Im(z^2+c),c=-51/62+1/48*I,n=22 3645215740515313 r002 6th iterates of z^2 + 3645215746567771 m007 (-3/5*gamma-6/5*ln(2)-1/5)/(-1/2*gamma+2/3) 3645215752979433 a001 1346269/5778*521^(21/26) 3645215755377057 a001 121393/1364*521^(25/26) 3645215757319921 a007 Real Root Of 17*x^4-444*x^3+288*x^2-19*x-67 3645215761040411 r005 Re(z^2+c),c=-45/98+1/3*I,n=30 3645215765824145 a007 Real Root Of -148*x^4-325*x^3+744*x^2+9*x+536 3645215766718931 m005 (1/2*gamma-3/7)/(2/9*gamma-1/6) 3645215776636955 m005 (1/2*exp(1)+3/8)/(4/11*Pi-2/3) 3645215782745514 r005 Re(z^2+c),c=-12/25+13/57*I,n=47 3645215784328243 m002 Pi*Cosh[Pi]+(4*Sech[Pi])/Pi^2 3645215787341569 r002 31th iterates of z^2 + 3645215796921422 a001 370248451/3*267914296^(7/17) 3645215796921445 a001 4250681*956722026041^(7/17) 3645215796974755 a001 10749957122/3*75025^(7/17) 3645215811213221 k007 concat of cont frac of 3645215816672257 m001 sin(1/12*Pi)*Grothendieck^Lehmer 3645215830316674 r009 Re(z^3+c),c=-43/82+14/45*I,n=23 3645215839869122 m001 sin(1/5*Pi)*(MinimumGamma-sin(1)) 3645215858887905 a007 Real Root Of -152*x^4-327*x^3+609*x^2-619*x+650 3645215867741383 m001 (Champernowne+MinimumGamma)/(1-BesselI(1,1)) 3645215895044722 l006 ln(6761/7012) 3645215895317452 r009 Re(z^3+c),c=-53/118+31/64*I,n=10 3645215897756821 a001 726103/281*521^(11/26) 3645215903870648 a001 2178309/9349*521^(21/26) 3645215918712955 q001 861/2362 3645215924487104 m001 (Zeta(3)+3^(1/3))/(FeigenbaumDelta+Sierpinski) 3645215932642783 r005 Re(z^2+c),c=-35/74+10/37*I,n=41 3645215944002636 a003 sin(Pi*22/63)-sin(Pi*23/61) 3645215944512557 m002 36+(6*Sech[Pi])/Log[Pi] 3645215945412644 m001 (Backhouse+MinimumGamma)/(cos(1/5*Pi)-ln(5)) 3645215954258012 a007 Real Root Of 716*x^4+561*x^3+632*x^2-317*x-185 3645215964342817 m001 1/3*Kolakoski*3^(2/3)*Robbin 3645215975270893 r002 5th iterates of z^2 + 3645215991829986 r009 Im(z^3+c),c=-45/98+7/26*I,n=31 3645216007844819 r005 Im(z^2+c),c=39/110+27/64*I,n=21 3645216010274690 a001 281/329*10946^(28/43) 3645216012678475 m001 1/BesselK(1,1)^2/exp(FeigenbaumD)*GAMMA(11/24) 3645216014189849 p004 log(35879/24919) 3645216019097916 b008 10/Pi+Tanh[1/2] 3645216022610798 r005 Re(z^2+c),c=-55/118+7/23*I,n=34 3645216039217424 r005 Im(z^2+c),c=13/48+15/64*I,n=14 3645216041078523 m005 (1/2*2^(1/2)+2/7)/(1/4*gamma-5/12) 3645216050991053 l006 ln(134/5131) 3645216056917006 m001 (gamma(3)+Cahen)/(CareFree-QuadraticClass) 3645216058563587 m001 (Backhouse+Kac)/(LandauRamanujan2nd-Trott) 3645216072794869 a007 Real Root Of 219*x^4+985*x^3+471*x^2-771*x-26 3645216075316852 a007 Real Root Of 931*x^4-992*x^3-749*x^2-669*x+375 3645216101185134 m009 (1/5*Psi(1,3/4)+1/2)/(1/8*Pi^2-4) 3645216103594728 m001 BesselI(0,1)^GAMMA(7/12)/(Landau^GAMMA(7/12)) 3645216110851590 r009 Re(z^3+c),c=-14/31+12/47*I,n=37 3645216114412500 r002 2th iterates of z^2 + 3645216116374178 a001 24157817/1364*199^(3/22) 3645216119833612 r005 Im(z^2+c),c=-23/32+9/35*I,n=16 3645216123354000 a001 7*(1/2*5^(1/2)+1/2)^3*18^(1/14) 3645216146794368 a001 832040/2207*521^(19/26) 3645216148017790 a001 832040/3571*521^(21/26) 3645216161172779 r009 Im(z^3+c),c=-35/102+16/47*I,n=20 3645216179015539 r005 Re(z^2+c),c=-39/82+13/50*I,n=25 3645216199549124 m001 Zeta(1/2)/exp(BesselK(1,1))^2/Zeta(3) 3645216212940599 m001 (Rabbit-ZetaQ(4))/(ln(2+3^(1/2))+Kac) 3645216236691700 a007 Real Root Of -374*x^4+148*x^3-524*x^2+686*x-181 3645216237409367 a001 4181/1364*2^(1/4) 3645216238004503 m001 (ArtinRank2-Kac)/(BesselJ(1,1)+GAMMA(7/12)) 3645216257395603 r009 Im(z^3+c),c=-27/118+13/34*I,n=10 3645216271708789 p004 log(33811/883) 3645216275441635 a007 Real Root Of 811*x^4-609*x^3-694*x^2-992*x+469 3645216282286863 m001 CareFree*(arctan(1/2)+ZetaQ(2)) 3645216289041134 a007 Real Root Of -208*x^4-522*x^3+702*x^2-654*x-271 3645216296289897 a007 Real Root Of 261*x^4+973*x^3+220*x^2+445*x-255 3645216312606030 r005 Re(z^2+c),c=-43/102+17/35*I,n=58 3645216312731896 r005 Re(z^2+c),c=-131/102+1/48*I,n=22 3645216317062507 a001 7/34*89^(7/55) 3645216327207382 r005 Re(z^2+c),c=-13/28+17/54*I,n=42 3645216330116809 r005 Re(z^2+c),c=25/114+9/17*I,n=57 3645216331839439 m001 cos(1)^GAMMA(7/24)/(cos(1)^(3^(1/3))) 3645216345120595 r005 Im(z^2+c),c=-28/25+2/45*I,n=21 3645216350371296 a003 sin(Pi*6/113)/sin(Pi*14/93) 3645216355342737 r005 Im(z^2+c),c=-22/17+2/59*I,n=45 3645216366774333 m005 (1/2*Catalan+3/8)/(5/11*Pi+6/7) 3645216374999607 m001 Khinchin^GAMMA(7/12)/(Khinchin^Ei(1,1)) 3645216391522519 a007 Real Root Of 893*x^4-919*x^3+972*x^2-638*x-422 3645216392552605 m001 (Chi(1)-CopelandErdos)/(PlouffeB+Salem) 3645216405713884 r005 Re(z^2+c),c=-37/30+6/29*I,n=4 3645216417055235 r005 Re(z^2+c),c=-53/110+12/55*I,n=27 3645216433202211 a007 Real Root Of 125*x^4-256*x^3+469*x^2-656*x+187 3645216435325329 m001 (LambertW(1)-ln(gamma))/(OneNinth+Otter) 3645216449843497 a001 377/843*6643838879^(1/2) 3645216454461275 a001 98209/161*322^(17/24) 3645216460990999 a005 (1/cos(7/151*Pi))^1636 3645216476752869 s002 sum(A289213[n]/(n*pi^n+1),n=1..infinity) 3645216476941599 s002 sum(A289213[n]/(n*pi^n-1),n=1..infinity) 3645216499018175 a003 cos(Pi*37/97)/sin(Pi*13/27) 3645216508301387 a001 18/29*(1/2*5^(1/2)+1/2)^32*29^(1/18) 3645216527092863 r005 Re(z^2+c),c=-29/48+21/62*I,n=25 3645216529446859 a007 Real Root Of 214*x^4+643*x^3-227*x^2+738*x-933 3645216539308646 h001 (-2*exp(6)+7)/(-2*exp(7)-1) 3645216549104417 k002 Champernowne real with 81*n^2-234*n+189 3645216561527783 a007 Real Root Of -108*x^4-624*x^3-726*x^2+754*x+343 3645216568349731 r005 Re(z^2+c),c=5/17+4/59*I,n=49 3645216574607115 r005 Im(z^2+c),c=-25/46+33/61*I,n=39 3645216583285525 r005 Im(z^2+c),c=-29/52+4/61*I,n=60 3645216586070513 r001 49i'th iterates of 2*x^2-1 of 3645216597111542 r009 Re(z^3+c),c=-47/98+9/31*I,n=57 3645216604062362 m001 (gamma(1)-GAMMA(11/12))/(OneNinth-ZetaP(4)) 3645216609342143 r005 Re(z^2+c),c=4/17+1/61*I,n=25 3645216609493965 m001 Ei(1)^2*exp(Trott)*Zeta(9)^2 3645216626369604 m001 GAMMA(17/24)/(ReciprocalFibonacci-Zeta(1,-1)) 3645216640974360 r009 Im(z^3+c),c=-57/122+1/4*I,n=15 3645216641858240 h001 (9/11*exp(1)+2/9)/(8/9*exp(2)+1/7) 3645216645358138 r005 Im(z^2+c),c=9/29+7/36*I,n=15 3645216646217336 m005 (1/3*exp(1)-1/8)/(10/11*2^(1/2)+6/7) 3645216659892535 m001 (Robbin-TwinPrimes)/(FeigenbaumB+Magata) 3645216694941524 r005 Re(z^2+c),c=-51/82+10/21*I,n=9 3645216696728114 r005 Im(z^2+c),c=-53/82+6/17*I,n=35 3645216704498184 a001 3/370248451*123^(5/16) 3645216708148112 r005 Im(z^2+c),c=-9/10+59/189*I,n=7 3645216719914901 r005 Im(z^2+c),c=-65/126+3/47*I,n=29 3645216731714326 m005 (1/2*Pi+7/10)/(7/11*5^(1/2)-4/5) 3645216743393799 m001 FeigenbaumMu^KhinchinLevy-ln(2^(1/2)+1) 3645216744076492 r005 Im(z^2+c),c=-23/110+37/53*I,n=41 3645216748700512 m001 arctan(1/2)/(FellerTornier^MasserGramainDelta) 3645216773665977 r005 Re(z^2+c),c=47/126+17/57*I,n=25 3645216777562370 a003 sin(Pi*3/62)/cos(Pi*4/11) 3645216778349911 k005 Champernowne real with floor(Catalan*(171*n+227)) 3645216785495493 m001 (Champernowne-Khinchin)/(ln(2)-gamma(2)) 3645216785983110 a001 726103/1926*521^(19/26) 3645216788359921 k001 Champernowne real with 157*n+207 3645216788359921 k005 Champernowne real with floor(sqrt(2)*(111*n+147)) 3645216788359921 k005 Champernowne real with floor(Pi*(50*n+66)) 3645216788369931 k005 Champernowne real with floor(log(3)*(143*n+189)) 3645216788449660 a001 98209/682*521^(23/26) 3645216792218146 r002 29th iterates of z^2 + 3645216793777765 r005 Im(z^2+c),c=-11/78+31/57*I,n=17 3645216798379941 k005 Champernowne real with floor(exp(1)*(58*n+76)) 3645216799782402 r009 Im(z^3+c),c=-67/126+14/59*I,n=55 3645216800469514 m001 GAMMA(11/12)/RenyiParking/exp(GAMMA(2/3)) 3645216807370261 p004 log(29599/773) 3645216832048325 r009 Re(z^3+c),c=-53/110+12/41*I,n=35 3645216838540929 m001 exp(OneNinth)/Khintchine*Zeta(1,2)^2 3645216850383276 m001 (Artin+FeigenbaumB)/(2^(1/2)+Ei(1)) 3645216853623163 r009 Re(z^3+c),c=-10/27+7/31*I,n=2 3645216854318022 r004 Im(z^2+c),c=1/7+5/14*I,z(0)=exp(7/8*I*Pi),n=38 3645216855148356 m005 (1/3*5^(1/2)+1/5)/(1/9*Pi-3/8) 3645216859779384 a007 Real Root Of 421*x^4-869*x^3-791*x^2-884*x+462 3645216860582705 r002 45th iterates of z^2 + 3645216869909634 m001 (Zeta(1/2)+gamma(2))/(Kac+Magata) 3645216893125021 r009 Re(z^3+c),c=-19/52+35/51*I,n=11 3645216905225175 r009 Re(z^3+c),c=-5/64+26/47*I,n=6 3645216927149296 r005 Re(z^2+c),c=-51/106+13/59*I,n=37 3645216928432285 a007 Real Root Of 288*x^4+967*x^3-486*x^2-738*x-244 3645216930780822 a007 Real Root Of 73*x^4+110*x^3-520*x^2+402*x+814 3645216956711100 r009 Re(z^3+c),c=-7/122+25/48*I,n=15 3645216959863908 m001 (GAMMA(13/24)-Kac)/(MadelungNaCl+MertensB2) 3645216962520002 a007 Real Root Of -196*x^4+91*x^3+279*x^2+744*x+242 3645216962524654 r002 2th iterates of z^2 + 3645216965984920 l006 ln(213/8156) 3645216972542591 r005 Re(z^2+c),c=-39/82+21/59*I,n=19 3645216981458634 s002 sum(A180840[n]/(n^2*2^n-1),n=1..infinity) 3645216983950344 a007 Real Root Of 314*x^4+969*x^3-781*x^2-405*x+396 3645216996449488 m001 (ln(Pi)-Backhouse)/(QuadraticClass-Trott2nd) 3645216999465555 r005 Re(z^2+c),c=-41/118+31/55*I,n=55 3645217041563473 r005 Re(z^2+c),c=-25/54+15/47*I,n=30 3645217054239006 a007 Real Root Of -317*x^4+42*x^3+155*x^2+576*x+197 3645217076488958 r005 Re(z^2+c),c=-7/15+7/25*I,n=10 3645217101825755 m005 (1/2*Catalan-8/11)/(1/5*Catalan+5/9) 3645217106000872 r009 Re(z^3+c),c=-3/70+32/43*I,n=24 3645217123898207 m005 (1/2*2^(1/2)-5/7)/(5*gamma-11/12) 3645217140356403 r002 42th iterates of z^2 + 3645217158765677 r005 Im(z^2+c),c=-1/3+25/44*I,n=52 3645217163876548 a007 Real Root Of 53*x^4-x^3-542*x^2+625*x+74 3645217179800168 a001 1346269/2207*521^(17/26) 3645217181023590 a001 1346269/3571*521^(19/26) 3645217187205478 m001 (FellerTornier+Sarnak)/(2^(1/2)+Backhouse) 3645217189554965 a003 cos(Pi*3/107)-sin(Pi*36/73) 3645217200610199 m001 (BesselI(0,2)-Shi(1))/(-Magata+ZetaQ(2)) 3645217210438431 r005 Im(z^2+c),c=-31/74+8/15*I,n=37 3645217216792228 r005 Re(z^2+c),c=-23/74+7/12*I,n=42 3645217229157444 r005 Re(z^2+c),c=-9/7+1/44*I,n=6 3645217231937087 r005 Im(z^2+c),c=15/44+7/43*I,n=13 3645217243939312 m001 (GAMMA(3/4)+Conway)/(RenyiParking-ZetaQ(2)) 3645217273074933 m001 (gamma(1)-Artin)/(FeigenbaumB-Rabbit) 3645217274944362 m005 (1/3*Catalan+3/7)/(1/12*Catalan+1/8) 3645217277956214 r009 Re(z^3+c),c=-45/106+13/59*I,n=18 3645217282402908 m001 (Zeta(5)-cos(1))/(-BesselI(1,1)+Tetranacci) 3645217287722591 m005 (1/2*5^(1/2)-1/10)/(6/7*Pi+1/10) 3645217289706810 r002 6th iterates of z^2 + 3645217310777550 m006 (3/5*Pi-1/6)/(1/4*ln(Pi)-5) 3645217345179817 r005 Re(z^2+c),c=-37/98+14/27*I,n=38 3645217349236908 m001 Shi(1)^Totient/Otter 3645217357768990 r005 Re(z^2+c),c=9/25+8/15*I,n=5 3645217361536583 m001 ZetaQ(2)^Grothendieck*ZetaQ(2)^FeigenbaumAlpha 3645217372289332 r005 Re(z^2+c),c=-19/26+1/122*I,n=16 3645217380230721 m001 (Champernowne-Trott)/(ln(2+3^(1/2))+Pi^(1/2)) 3645217392301947 r005 Re(z^2+c),c=-43/94+19/55*I,n=40 3645217392848749 r005 Im(z^2+c),c=-11/70+37/61*I,n=38 3645217395412002 a001 24157817/843*199^(1/22) 3645217404672596 r005 Im(z^2+c),c=2/13+15/43*I,n=27 3645217420570105 r005 Re(z^2+c),c=-8/17+15/53*I,n=41 3645217425479216 r005 Re(z^2+c),c=-15/34+16/39*I,n=57 3645217426300420 a007 Real Root Of -252*x^4-798*x^3+349*x^2-119*x+770 3645217429165978 m005 (1/3*Pi-2/9)/(-41/112+1/16*5^(1/2)) 3645217433125412 r005 Im(z^2+c),c=-7/36+16/29*I,n=47 3645217436013530 m001 1/ln(GAMMA(1/24))/Paris/log(1+sqrt(2)) 3645217440983154 r009 Im(z^3+c),c=-5/24+15/41*I,n=2 3645217457685741 r005 Re(z^2+c),c=-141/122+8/41*I,n=56 3645217464480993 a007 Real Root Of 28*x^4-677*x^3-544*x^2-986*x+464 3645217470003678 r005 Re(z^2+c),c=31/98+4/51*I,n=63 3645217494585695 m005 (1/2*2^(1/2)+7/11)/(2*2^(1/2)+6/7) 3645217501136798 s002 sum(A074479[n]/((2*n+1)!),n=1..infinity) 3645217506230126 m002 -E^Pi-Pi^2/5+4*Pi^4 3645217507253705 r002 29th iterates of z^2 + 3645217533435723 m001 GAMMA(1/3)*BesselJ(1,1)/exp(GAMMA(19/24)) 3645217538657720 a003 cos(Pi*24/89)/cos(Pi*19/43) 3645217549273601 r009 Im(z^3+c),c=-31/82+19/59*I,n=13 3645217552105017 k002 Champernowne real with 163/2*n^2-471/2*n+190 3645217575537373 m001 1/ln(Paris)^2*Backhouse^2/Trott 3645217582732207 r005 Im(z^2+c),c=-15/82+41/60*I,n=17 3645217605308988 m001 (BesselJ(1,1)+AlladiGrinstead)/(Bloch+Otter) 3645217610737809 m001 (1+ln(2))/(-exp(1/Pi)+Tribonacci) 3645217613576988 m001 1/GAMMA(7/12)^2/Ei(1)*ln(sinh(1)) 3645217615325556 r005 Im(z^2+c),c=1/70+27/61*I,n=33 3645217624784297 m001 TwinPrimes/(Otter-ln(Pi)) 3645217628556776 m001 (-Ei(1)+LaplaceLimit)/(5^(1/2)+ln(Pi)) 3645217644395038 r005 Im(z^2+c),c=13/114+19/50*I,n=15 3645217671706772 l006 ln(8027/8325) 3645217675972069 m001 (Pi^(1/2)+ArtinRank2)/(BesselK(0,1)-ln(3)) 3645217680036607 m005 (29/36+1/4*5^(1/2))/(4/9*gamma-4) 3645217681357785 r005 Im(z^2+c),c=-1/8+23/39*I,n=24 3645217693446032 l006 ln(6639/9559) 3645217699131145 a007 Real Root Of 177*x^4+579*x^3-116*x^2+515*x+212 3645217702380020 r005 Im(z^2+c),c=-119/118+5/16*I,n=33 3645217710135705 a007 Real Root Of -278*x^4-825*x^3+482*x^2-715*x+113 3645217711049163 a001 1/3*987^(17/49) 3645217715545508 m001 gamma(3)^(MasserGramain*OrthogonalArrays) 3645217718068434 r002 46th iterates of z^2 + 3645217735405204 m001 (MertensB2+Niven)/(Backhouse-CareFree) 3645217746586654 r005 Re(z^2+c),c=-7/94+17/27*I,n=30 3645217776211439 r005 Im(z^2+c),c=-2/29+31/50*I,n=25 3645217778215178 m001 HardyLittlewoodC3-Thue^gamma(3) 3645217813856881 a007 Real Root Of -980*x^4+366*x^3-420*x^2+593*x+307 3645217821428072 a001 317811/1364*521^(21/26) 3645217822839931 a007 Real Root Of -354*x^4+599*x^3-971*x^2-426*x+9 3645217853543847 g007 Psi(2,5/12)+Psi(2,3/8)-Psi(2,9/11)-Psi(2,3/11) 3645217861657179 r005 Im(z^2+c),c=-39/56+9/58*I,n=21 3645217862668698 l006 ln(6182/8901) 3645217872299018 m007 (-3/5*gamma-3/4)/(-3*gamma-9*ln(2)+3/2*Pi+1/4) 3645217876110489 r004 Re(z^2+c),c=-3/22-7/20*I,z(0)=I,n=5 3645217879979968 a007 Real Root Of 447*x^4+675*x^3+754*x^2-693*x-328 3645217891681593 m004 -6+Sqrt[5]*Pi+4/ProductLog[Sqrt[5]*Pi] 3645217897527966 r002 2th iterates of z^2 + 3645217917617579 b008 2/15+Sqrt[37/3] 3645217920704550 a007 Real Root Of 548*x^4+147*x^3-921*x^2-676*x+352 3645217920837001 r005 Re(z^2+c),c=-25/56+23/59*I,n=36 3645217927437208 r005 Re(z^2+c),c=-17/36+30/59*I,n=58 3645217927554809 r005 Im(z^2+c),c=-15/29+29/54*I,n=52 3645217927689274 r002 13th iterates of z^2 + 3645217933864131 r005 Im(z^2+c),c=-1/32+38/47*I,n=27 3645217944076687 r009 Im(z^3+c),c=-7/18+19/60*I,n=27 3645217973760464 a007 Real Root Of -534*x^4-43*x^3+671*x^2+817*x+216 3645217973885392 r005 Im(z^2+c),c=-15/14+7/169*I,n=18 3645217982511987 a007 Real Root Of 571*x^4+15*x^3-239*x^2-914*x-33 3645217984794015 r009 Re(z^3+c),c=-2/11+57/64*I,n=28 3645217990196578 r009 Im(z^3+c),c=-17/46+18/55*I,n=26 3645218010311284 r009 Im(z^3+c),c=-27/74+7/11*I,n=57 3645218052367163 r005 Re(z^2+c),c=23/106+29/59*I,n=12 3645218058907871 l006 ln(5725/8243) 3645218078644326 g006 1/2*Pi^2-Psi(1,10/11)-Psi(1,5/7)-Psi(1,4/7) 3645218098994024 r005 Re(z^2+c),c=-19/98+17/28*I,n=19 3645218127096209 a007 Real Root Of 947*x^4-206*x^3+410*x^2-5*x-83 3645218132764102 a007 Real Root Of 159*x^4-934*x^3+757*x^2-824*x-449 3645218136312260 a005 (1/cos(15/143*Pi))^856 3645218136667719 r005 Im(z^2+c),c=-1/102+8/13*I,n=26 3645218150358435 a007 Real Root Of -671*x^4-388*x^3-880*x^2+941*x+453 3645218152359799 r009 Im(z^3+c),c=-8/19+15/52*I,n=7 3645218159808324 m001 GaussKuzminWirsing-Rabbit^Salem 3645218177715275 m001 exp(GAMMA(5/12))*GAMMA(1/24)/cos(1) 3645218181828079 m001 GolombDickman^Backhouse+Pi 3645218181828079 m001 Pi+GolombDickman^Backhouse 3645218183257530 a007 Real Root Of 764*x^4-849*x^3+617*x^2+468*x+34 3645218193817351 r009 Im(z^3+c),c=-11/58+20/51*I,n=9 3645218201520583 m005 (1/2*3^(1/2)-1/2)/(3/5*Catalan+5/11) 3645218209018184 m001 Zeta(3)/(BesselK(0,1)^GlaisherKinkelin) 3645218212804249 a001 987*521^(15/26) 3645218214027672 a001 2178309/3571*521^(17/26) 3645218219507373 m001 1/exp(Ei(1))/Riemann2ndZero^2/cos(Pi/12)^2 3645218240860336 a001 1/199*(1/2*5^(1/2)+1/2)^26*3^(17/19) 3645218266297417 r005 Im(z^2+c),c=7/40+23/59*I,n=8 3645218277521170 r005 Re(z^2+c),c=-11/23+7/29*I,n=27 3645218289194609 l006 ln(5268/7585) 3645218302717183 m001 exp(1/2)/RenyiParking*sqrt(1+sqrt(3)) 3645218305374336 r009 Re(z^3+c),c=-12/25+17/58*I,n=32 3645218326087837 a007 Real Root Of -225*x^4-819*x^3-161*x^2-831*x-833 3645218342422930 m005 (1/2*Zeta(3)-7/9)/(6/7*Zeta(3)-6/11) 3645218349832852 r005 Im(z^2+c),c=-1/6+35/58*I,n=38 3645218350623601 m001 (Shi(1)-gamma(1))/(Khinchin+PrimesInBinary) 3645218352010695 r005 Re(z^2+c),c=9/82+11/48*I,n=3 3645218361913065 m001 (BesselI(1,2)-LambertW(1))/FransenRobinson 3645218368039712 r005 Im(z^2+c),c=-19/28+5/16*I,n=21 3645218379263362 r005 Re(z^2+c),c=1/102+11/47*I,n=17 3645218389926175 r005 Im(z^2+c),c=-3/56+13/27*I,n=26 3645218397948440 r005 Im(z^2+c),c=41/122+11/64*I,n=41 3645218417945690 q001 1235/3388 3645218425978641 r005 Im(z^2+c),c=11/50+18/53*I,n=9 3645218440277178 r009 Im(z^3+c),c=-13/38+15/44*I,n=20 3645218440964713 a007 Real Root Of -215*x^4-611*x^3-785*x^2+825*x-29 3645218446428434 m001 (BesselI(1,1)+Rabbit)/(sin(1/5*Pi)+Zeta(1,2)) 3645218449027377 r005 Im(z^2+c),c=-12/31+22/39*I,n=64 3645218471560043 m001 (-OrthogonalArrays+ZetaP(4))/(Shi(1)-ln(2)) 3645218473443834 p001 sum(1/(545*n+528)/n/(256^n),n=1..infinity) 3645218473774093 r005 Re(z^2+c),c=-15/32+12/41*I,n=47 3645218474016243 r005 Im(z^2+c),c=17/82+15/49*I,n=18 3645218493392736 r005 Im(z^2+c),c=-7/36+4/7*I,n=28 3645218499442472 h001 (10/11*exp(2)+4/9)/(5/9*exp(1)+5/11) 3645218506317710 r009 Re(z^3+c),c=-17/64+11/15*I,n=45 3645218510984197 m001 (TwinPrimes+2/3)/(GAMMA(13/24)+2) 3645218517853905 r009 Im(z^3+c),c=-23/62+11/35*I,n=3 3645218517997920 l006 ln(79/3025) 3645218521287528 m001 (Si(Pi)-ln(gamma))/(-polylog(4,1/2)+Salem) 3645218533709027 r005 Re(z^2+c),c=19/102+16/37*I,n=42 3645218547326972 m001 (Thue+ZetaQ(4))/(Zeta(3)-cos(1/12*Pi)) 3645218555105617 k002 Champernowne real with 82*n^2-237*n+191 3645218563231513 l006 ln(4811/6927) 3645218565486920 m001 (-Khinchin+Sarnak)/(Psi(2,1/3)+Conway) 3645218595042543 r005 Im(z^2+c),c=35/102+7/44*I,n=50 3645218600294100 a007 Real Root Of 64*x^4-49*x^3-974*x^2-6*x-753 3645218602815101 m005 (1/2*gamma-2/11)/(2/5*2^(1/2)-3/11) 3645218612407583 a007 Real Root Of 75*x^4+87*x^3-14*x^2-847*x-304 3645218619290312 r005 Im(z^2+c),c=-83/126+14/43*I,n=59 3645218623921461 r009 Re(z^3+c),c=-3/44+16/23*I,n=61 3645218636929323 r005 Im(z^2+c),c=-3/98+27/58*I,n=15 3645218642065584 a007 Real Root Of -850*x^4+962*x^3+795*x^2+773*x-419 3645218645287411 m005 (1/2*gamma-6/7)/(8/11*3^(1/2)+3/10) 3645218671037274 r005 Im(z^2+c),c=-1/74+28/61*I,n=39 3645218675088983 r005 Im(z^2+c),c=-67/102+17/45*I,n=52 3645218682035204 m001 ln(MertensB1)^2*GolombDickman/GAMMA(7/24) 3645218707587664 m002 E^Pi+Pi^5+Pi^3*Log[Pi]*Tanh[Pi] 3645218718669185 r005 Im(z^2+c),c=-5/26+23/41*I,n=40 3645218726135811 a007 Real Root Of -294*x^4-835*x^3+813*x^2-260*x-286 3645218726889965 a001 817138163596/3*6765^(5/17) 3645218731575283 a001 6643838879/3*86267571272^(5/17) 3645218731575283 a001 73681302247/3*24157817^(5/17) 3645218732397988 r005 Re(z^2+c),c=37/86+7/20*I,n=13 3645218732793773 m001 Psi(1,1/3)^(FeigenbaumDelta*Riemann2ndZero) 3645218742819501 r005 Re(z^2+c),c=39/122+11/20*I,n=4 3645218778154057 m001 (gamma+Kolakoski)/(-Paris+Weierstrass) 3645218783408220 a001 29*(1/2*5^(1/2)+1/2)^14*3^(4/11) 3645218790289338 m001 (ln(Pi)+Conway)/(FeigenbaumAlpha-FeigenbaumC) 3645218793752613 r005 Re(z^2+c),c=-97/126+4/19*I,n=6 3645218798423347 a003 cos(Pi*17/97)-cos(Pi*25/74) 3645218807189663 a007 Real Root Of -278*x^4-805*x^3+806*x^2+290*x+440 3645218814167197 a007 Real Root Of 196*x^4-751*x^3+847*x^2-918*x+255 3645218831717581 a003 cos(Pi*3/86)/sin(Pi*8/91) 3645218833624478 a001 5/1860498*843^(43/59) 3645218849955536 h001 (-4*exp(7)-7)/(-3*exp(6)+5) 3645218852270460 r005 Re(z^2+c),c=-63/86+16/55*I,n=16 3645218854442866 a001 514229/1364*521^(19/26) 3645218865692247 m001 1/Ei(1)/exp(Paris)^2*sin(1) 3645218870715002 m001 GAMMA(3/4)*GAMMA(17/24)^2*ln(GAMMA(7/12))^2 3645218872105542 r009 Re(z^3+c),c=-1/50+53/57*I,n=26 3645218872118974 r009 Re(z^3+c),c=-1/50+53/57*I,n=28 3645218872123861 r009 Re(z^3+c),c=-1/50+53/57*I,n=30 3645218872124827 r009 Re(z^3+c),c=-1/50+53/57*I,n=32 3645218872124971 r009 Re(z^3+c),c=-1/50+53/57*I,n=34 3645218872124988 r009 Re(z^3+c),c=-1/50+53/57*I,n=36 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=52 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=54 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=56 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=58 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=60 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=62 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=64 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=50 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=48 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=46 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=44 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=42 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=40 3645218872124989 r009 Re(z^3+c),c=-1/50+53/57*I,n=38 3645218872174533 r009 Re(z^3+c),c=-1/50+53/57*I,n=24 3645218873650721 r009 Re(z^3+c),c=-1/50+53/57*I,n=22 3645218878349704 r009 Re(z^3+c),c=-5/78+37/59*I,n=29 3645218878545320 r005 Im(z^2+c),c=-9/10+66/245*I,n=10 3645218879242408 m001 FeigenbaumB*(AlladiGrinstead+FeigenbaumMu) 3645218885331058 r002 17th iterates of z^2 + 3645218888304463 r009 Re(z^3+c),c=-1/50+53/57*I,n=20 3645218890068938 m005 (1/2*Catalan+1/2)/(7/9*5^(1/2)+8/9) 3645218894794757 l006 ln(4354/6269) 3645218899809761 r005 Re(z^2+c),c=-7/15+10/33*I,n=48 3645218900830405 a007 Real Root Of 197*x^4-849*x^3-452*x^2-950*x+444 3645218908760203 m001 (-BesselI(0,2)+Tribonacci)/(1+exp(-1/2*Pi)) 3645218909123625 r005 Im(z^2+c),c=-67/126+2/31*I,n=47 3645218911674286 a007 Real Root Of -693*x^4+322*x^3+13*x^2+927*x-343 3645218921143213 m001 BesselI(1,2)/(sqrt(5)+GAMMA(5/12)) 3645218937777354 a007 Real Root Of 327*x^4+987*x^3-667*x^2+189*x-377 3645218946498801 a001 9/5473*13^(9/29) 3645218961500249 r005 Im(z^2+c),c=-13/54+31/54*I,n=55 3645218964293873 l006 ln(9293/9638) 3645218978345282 a007 Real Root Of 991*x^4+689*x^3-383*x^2-694*x+253 3645218985574409 m006 (3/5*ln(Pi)-1/5)/(3/4*exp(Pi)-4) 3645218990854427 m001 Mills-Rabbit^ZetaP(3) 3645218996172977 r009 Re(z^3+c),c=-1/50+53/57*I,n=18 3645219007190174 a007 Real Root Of 231*x^4+660*x^3-877*x^2-872*x-343 3645219018876351 p003 LerchPhi(1/2,2,240/127) 3645219045690870 m001 1/exp(Catalan)^2/FeigenbaumB*Ei(1) 3645219047367813 a007 Real Root Of -192*x^4+365*x^3+887*x^2+754*x-407 3645219050906314 m006 (1/3*exp(2*Pi)-4/5)/(5*Pi^2-3/5) 3645219061102175 a007 Real Root Of 220*x^4+927*x^3+190*x^2-743*x+824 3645219093408919 a007 Real Root Of 217*x^4+777*x^3-54*x^2-164*x-559 3645219096439115 m005 (1/2*2^(1/2)+6/11)/(5/6*Pi+9/11) 3645219105422731 r005 Re(z^2+c),c=-17/62+30/41*I,n=6 3645219107081116 a001 2207/34*6765^(9/46) 3645219110586406 m001 (Robbin-Trott)/(BesselJ(1,1)-MertensB1) 3645219130739378 m001 (GAMMA(7/12)-Trott)/(cos(1/5*Pi)-GAMMA(3/4)) 3645219136923675 r009 Re(z^3+c),c=-25/52+11/31*I,n=9 3645219143035618 m001 (-Ei(1,1)+exp(-1/2*Pi))/(2^(1/2)-ln(3)) 3645219151511970 a001 1/55*13^(16/59) 3645219153726540 r009 Im(z^3+c),c=-45/122+20/51*I,n=3 3645219166067594 m001 (Shi(1)+Ei(1))/(HardyLittlewoodC3+ZetaP(3)) 3645219168434229 m001 (Robbin+Totient)/(ln(gamma)+ln(3)) 3645219170634162 p003 LerchPhi(1/64,6,67/122) 3645219173990833 a005 (1/sin(92/199*Pi))^1495 3645219174570622 q001 1422/3901 3645219176395530 p001 sum(1/(391*n+89)/n/(6^n),n=1..infinity) 3645219181885917 m006 (2/3*exp(Pi)+5/6)/(5/6*exp(2*Pi)-1/6) 3645219187327091 a007 Real Root Of -323*x^4-105*x^3+168*x^2+731*x-278 3645219191734894 a008 Real Root of x^3+x^2-246*x+835 3645219212111623 a007 Real Root Of -271*x^4-848*x^3+710*x^2+924*x+708 3645219218423910 a001 5702887/521*199^(5/22) 3645219232207800 r005 Im(z^2+c),c=-7/12+21/47*I,n=56 3645219233573160 m001 (-ln(2+3^(1/2))+Zeta(1,2))/(Chi(1)-Ei(1,1)) 3645219234527075 m001 (ln(Pi)-KomornikLoreti)/(Tribonacci-ZetaP(4)) 3645219245809392 a001 3524578/2207*521^(1/2) 3645219247670968 m005 (1/5*exp(1)+4/5)/(5*gamma+4/5) 3645219257367034 a001 11/75025*55^(5/22) 3645219264351444 r005 Re(z^2+c),c=-35/78+9/23*I,n=25 3645219281080744 r005 Im(z^2+c),c=-5/22+25/44*I,n=57 3645219302436103 a007 Real Root Of -823*x^4+12*x^3-303*x^2+450*x-16 3645219304122627 l006 ln(3897/5611) 3645219316808372 r005 Re(z^2+c),c=-5/7+24/103*I,n=30 3645219321211202 m001 (Zeta(3)-GAMMA(3/4))/(Conway-LaplaceLimit) 3645219322787896 a007 Real Root Of -302*x^4-800*x^3+927*x^2-463*x+567 3645219322973303 r005 Re(z^2+c),c=-151/114+41/46*I,n=2 3645219363076252 m001 (GAMMA(3/4)-ln(5))/(gamma(3)-GAMMA(11/12)) 3645219367976431 m005 (1/2*2^(1/2)-4/11)/(19/7+3*5^(1/2)) 3645219383891856 m001 (Shi(1)+LambertW(1))/(-sin(1/12*Pi)+CareFree) 3645219384184914 a001 121393/322*322^(19/24) 3645219389890064 m001 (Pi-Zeta(5))/(GAMMA(19/24)-Gompertz) 3645219393296096 m001 (arctan(1/2)+2*Pi/GAMMA(5/6))/Zeta(1,-1) 3645219413562846 s002 sum(A034982[n]/(n^2*2^n+1),n=1..infinity) 3645219417100482 r009 Re(z^3+c),c=-1/52+46/47*I,n=10 3645219419023107 s002 sum(A034982[n]/(n^2*2^n-1),n=1..infinity) 3645219429822698 m006 (2/5*exp(Pi)+4)/(2/Pi+3) 3645219435483613 m001 (GaussKuzminWirsing+ln(2+sqrt(3)))^GAMMA(1/3) 3645219437815785 a008 Real Root of x^4-x^3-14*x^2+48*x+136 3645219441494909 r009 Re(z^3+c),c=-1/52+46/47*I,n=12 3645219441747007 r009 Re(z^3+c),c=-1/52+46/47*I,n=18 3645219441747014 r009 Re(z^3+c),c=-1/52+46/47*I,n=20 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=28 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=30 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=36 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=38 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=46 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=48 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=52 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=54 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=56 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=50 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=44 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=42 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=40 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=34 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=32 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=26 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=24 3645219441747015 r009 Re(z^3+c),c=-1/52+46/47*I,n=22 3645219441747341 r009 Re(z^3+c),c=-1/52+46/47*I,n=16 3645219441762161 r009 Re(z^3+c),c=-1/52+46/47*I,n=14 3645219442798952 a007 Real Root Of 146*x^4+185*x^3+910*x^2-731*x-381 3645219446038600 m001 ln(5)/(3^(1/2)+FeigenbaumD) 3645219459581248 r005 Re(z^2+c),c=-61/82+11/43*I,n=4 3645219461680910 r009 Re(z^3+c),c=-1/52+46/47*I,n=8 3645219469450960 a007 Real Root Of 72*x^4+222*x^3-365*x^2-585*x+758 3645219474243108 a001 2/15127*18^(20/57) 3645219475058738 a001 5778/377*8^(5/12) 3645219487966014 r002 21th iterates of z^2 + 3645219488966759 m002 -6-36/Log[Pi]+Tanh[Pi] 3645219500808837 a001 4/121393*21^(15/19) 3645219527533837 r005 Im(z^2+c),c=-5/46+23/45*I,n=50 3645219528178131 m001 gamma(3)*PisotVijayaraghavan*Totient 3645219530241398 m006 (3/5/Pi-4)/(1/6*Pi^2-3/5) 3645219533384565 m004 -6-6*Sqrt[5]*Pi+6*Log[Sqrt[5]*Pi] 3645219539255698 m006 (3/5*Pi+1/3)/(3/4*ln(Pi)-1/4) 3645219557824327 h001 (7/11*exp(1)+6/11)/(3/4*exp(2)+7/10) 3645219558106217 k002 Champernowne real with 165/2*n^2-477/2*n+192 3645219560873986 r009 Im(z^3+c),c=-31/64+23/50*I,n=19 3645219574764826 r005 Im(z^2+c),c=27/82+7/62*I,n=15 3645219583029094 r009 Im(z^3+c),c=-8/25+6/17*I,n=6 3645219583866383 a007 Real Root Of -204*x^4+118*x^3-811*x^2+115*x+159 3645219590490649 r005 Im(z^2+c),c=-11/56+19/36*I,n=15 3645219606241601 r002 36th iterates of z^2 + 3645219606241601 r002 36th iterates of z^2 + 3645219607111704 r005 Im(z^2+c),c=-29/106+23/36*I,n=37 3645219610278026 r009 Re(z^3+c),c=-1/50+53/57*I,n=16 3645219633616286 r009 Re(z^3+c),c=-1/18+28/53*I,n=9 3645219670258458 m001 ln(FeigenbaumB)^2/Khintchine*Niven^2 3645219673958013 a007 Real Root Of 555*x^4+991*x^3+528*x^2-664*x-274 3645219677614790 r005 Re(z^2+c),c=-2/5+16/31*I,n=63 3645219685721213 a007 Real Root Of 831*x^4-833*x^3-319*x^2-853*x+379 3645219686208938 a001 28657/843*1364^(29/30) 3645219707863574 p004 log(25423/17657) 3645219713166708 h001 (-2*exp(3)-3)/(-3*exp(2/3)-6) 3645219716061648 r009 Im(z^3+c),c=-15/28+6/23*I,n=61 3645219720457288 r005 Im(z^2+c),c=-41/60+14/47*I,n=3 3645219736448367 a001 514229/3*322^(9/17) 3645219740199298 r005 Im(z^2+c),c=5/94+18/43*I,n=42 3645219746189018 h001 (-3*exp(2)+4)/(-9*exp(4)-7) 3645219752294327 h001 (2/11*exp(1)+4/9)/(11/12*exp(1)+1/12) 3645219752914004 a007 Real Root Of -168*x^4-483*x^3+203*x^2-989*x-35 3645219759054695 r005 Re(z^2+c),c=-23/31+38/53*I,n=3 3645219775959678 a001 39603/55*121393^(25/47) 3645219782039418 r009 Im(z^3+c),c=-53/98+15/44*I,n=23 3645219784581456 l006 ln(261/9994) 3645219801421280 r005 Re(z^2+c),c=-23/18+8/179*I,n=58 3645219801434804 r005 Im(z^2+c),c=-25/54+8/55*I,n=4 3645219814389559 r005 Im(z^2+c),c=-17/42+35/62*I,n=60 3645219815600194 a001 15456/281*1364^(9/10) 3645219819901145 r005 Re(z^2+c),c=-9/29+19/33*I,n=12 3645219822207936 l006 ln(3440/4953) 3645219824128440 h001 (-8*exp(3/2)+6)/(-8*exp(1/2)+5) 3645219829757700 r002 12th iterates of z^2 + 3645219853439182 r005 Re(z^2+c),c=-47/98+3/13*I,n=43 3645219884997727 a001 9227465/5778*521^(1/2) 3645219887444168 a001 610*521^(17/26) 3645219901473807 r002 13th iterates of z^2 + 3645219911282381 r005 Re(z^2+c),c=31/98+2/39*I,n=51 3645219921340627 a007 Real Root Of -327*x^4-920*x^3+900*x^2-349*x-57 3645219922794893 m001 gamma^exp(-Pi)/GAMMA(1/3) 3645219940091641 m001 (cos(1)+GAMMA(19/24))/(-Bloch+ZetaQ(4)) 3645219944037492 b008 2^(-E+Pi)*E 3645219946686912 a001 75025/843*1364^(5/6) 3645219951482384 r009 Im(z^3+c),c=-29/102+17/46*I,n=6 3645219971492338 p001 sum(1/(301*n+283)/(16^n),n=0..infinity) 3645219972636084 a007 Real Root Of -186*x^4-920*x^3-733*x^2+642*x+359 3645219974280007 m001 Khinchin^BesselJ(1,1)/(Khinchin^MinimumGamma) 3645219976751789 r005 Re(z^2+c),c=-41/94+11/25*I,n=37 3645219978254068 a001 24157817/15127*521^(1/2) 3645219984112883 m001 (arctan(1/2)+CopelandErdos)/(GAMMA(3/4)+ln(2)) 3645219987130087 m001 BesselI(1,2)-GAMMA(13/24)^FeigenbaumKappa 3645219991859985 a001 63245986/39603*521^(1/2) 3645219993845061 a001 165580141/103682*521^(1/2) 3645219994134680 a001 433494437/271443*521^(1/2) 3645219994176935 a001 1134903170/710647*521^(1/2) 3645219994183100 a001 2971215073/1860498*521^(1/2) 3645219994183999 a001 7778742049/4870847*521^(1/2) 3645219994184130 a001 20365011074/12752043*521^(1/2) 3645219994184149 a001 53316291173/33385282*521^(1/2) 3645219994184152 a001 139583862445/87403803*521^(1/2) 3645219994184153 a001 365435296162/228826127*521^(1/2) 3645219994184153 a001 956722026041/599074578*521^(1/2) 3645219994184153 a001 2504730781961/1568397607*521^(1/2) 3645219994184153 a001 6557470319842/4106118243*521^(1/2) 3645219994184153 a001 10610209857723/6643838879*521^(1/2) 3645219994184153 a001 4052739537881/2537720636*521^(1/2) 3645219994184153 a001 1548008755920/969323029*521^(1/2) 3645219994184153 a001 591286729879/370248451*521^(1/2) 3645219994184153 a001 225851433717/141422324*521^(1/2) 3645219994184154 a001 86267571272/54018521*521^(1/2) 3645219994184161 a001 32951280099/20633239*521^(1/2) 3645219994184211 a001 12586269025/7881196*521^(1/2) 3645219994184555 a001 4807526976/3010349*521^(1/2) 3645219994186910 a001 1836311903/1149851*521^(1/2) 3645219994203050 a001 701408733/439204*521^(1/2) 3645219994313674 a001 267914296/167761*521^(1/2) 3645219995071906 a001 102334155/64079*521^(1/2) 3645220000268904 a001 39088169/24476*521^(1/2) 3645220010450587 p004 log(16963/443) 3645220012549961 r002 5th iterates of z^2 + 3645220035320742 a005 (1/sin(44/103*Pi))^49 3645220035889658 a001 14930352/9349*521^(1/2) 3645220039548099 r005 Im(z^2+c),c=-93/82+16/53*I,n=5 3645220053556512 m001 (GAMMA(3/4)-sin(1))/(Cahen+HardyLittlewoodC5) 3645220073666300 s002 sum(A204861[n]/((exp(n)+1)/n),n=1..infinity) 3645220077126028 a001 121393/843*1364^(23/30) 3645220078526995 r009 Im(z^3+c),c=-57/106+8/21*I,n=22 3645220086689112 m001 (LaplaceLimit+ZetaP(3))/(sin(1)+Backhouse) 3645220087836056 m001 (Totient-TravellingSalesman)/(gamma(1)-Paris) 3645220090994490 r002 13th iterates of z^2 + 3645220091424957 a001 4/377*233^(12/53) 3645220099476855 r002 7th iterates of z^2 + 3645220116473406 a007 Real Root Of 528*x^4-390*x^3+61*x^2-770*x-317 3645220117619837 a007 Real Root Of -260*x^4-905*x^3+350*x^2+917*x+763 3645220131234057 m005 (17/66+1/6*5^(1/2))/(5/6*Zeta(3)+8/11) 3645220136543662 l006 ln(6423/9248) 3645220161030854 r009 Re(z^3+c),c=-15/46+4/63*I,n=4 3645220169017777 a007 Real Root Of 211*x^4+951*x^3+787*x^2+491*x+141 3645220173549752 r005 Re(z^2+c),c=-23/50+13/35*I,n=24 3645220188175697 r005 Re(z^2+c),c=-79/122+28/61*I,n=35 3645220189083542 m002 -Pi^5+(3*Pi^3*Cosh[Pi])/4 3645220200334007 p003 LerchPhi(1/512,1,250/91) 3645220207812513 a001 196418/843*1364^(7/10) 3645220218957667 r009 Im(z^3+c),c=-47/98+11/41*I,n=17 3645220230770637 r005 Re(z^2+c),c=-8/21+19/42*I,n=14 3645220231436322 r002 4th iterates of z^2 + 3645220250993567 p001 sum((-1)^n/(413*n+271)/(32^n),n=0..infinity) 3645220264046754 m001 ln(Riemann2ndZero)*ErdosBorwein^2*arctan(1/2) 3645220272834687 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12)+Porter)/(1-ln(3)) 3645220280037956 a001 1597*521^(1/2) 3645220281010707 m001 Bloch^ln(3)/Zeta(3) 3645220289229285 s001 sum(exp(-3*Pi/5)^n*A162194[n],n=1..infinity) 3645220291567123 m002 -(Pi^5*Log[Pi])+E^Pi*Pi^3*Tanh[Pi] 3645220299536689 r005 Re(z^2+c),c=-49/102+9/44*I,n=17 3645220302965514 s002 sum(A092615[n]/(pi^n-1),n=1..infinity) 3645220306099921 a007 Real Root Of 926*x^4+844*x^3+365*x^2-856*x-336 3645220316136013 a007 Real Root Of -330*x^4+676*x^3+42*x^2+465*x-202 3645220329630863 r005 Im(z^2+c),c=3/118+29/42*I,n=3 3645220334361723 l006 ln(182/6969) 3645220336495414 m001 1/TwinPrimes^2*exp(Riemann1stZero)^2*Catalan^2 3645220338404518 a001 377*1364^(19/30) 3645220353318793 r009 Re(z^3+c),c=-21/50+11/51*I,n=15 3645220387760955 m002 -(Cosh[Pi]/Pi^5)+Pi^3*Log[Pi]+Tanh[Pi] 3645220393783561 m006 (2*Pi^2-1/3)/(5*ln(Pi)-2/5) 3645220399317641 r005 Im(z^2+c),c=5/18+13/55*I,n=46 3645220418867643 m001 (Pi*csc(1/24*Pi)/GAMMA(23/24)-ZetaQ(3))/Cahen 3645220432347972 r005 Re(z^2+c),c=-2/3+115/254*I,n=12 3645220448808806 a007 Real Root Of 173*x^4+536*x^3-251*x^2+606*x+961 3645220454888357 r009 Re(z^3+c),c=-29/56+8/41*I,n=23 3645220456596380 r005 Re(z^2+c),c=-29/60+1/36*I,n=9 3645220464926167 r009 Im(z^3+c),c=-10/29+18/53*I,n=23 3645220467564419 m005 (1/3*2^(1/2)-1/10)/(7/11*3^(1/2)-1/12) 3645220469032617 a001 514229/843*1364^(17/30) 3645220469965431 a001 123/4052739537881*13^(1/14) 3645220481393626 m001 (Backhouse+Totient)/ZetaP(4) 3645220482187333 m005 (5/6+1/4*5^(1/2))/(-3/2+1/2*5^(1/2)) 3645220499036072 l006 ln(2983/4295) 3645220500744484 m005 (-11/42+1/6*5^(1/2))/(4*Catalan-5/8) 3645220503657242 m001 (BesselK(0,1)+Zeta(3))/(-sin(1/5*Pi)+Landau) 3645220541410627 r005 Im(z^2+c),c=-33/62+23/47*I,n=33 3645220542516914 r005 Re(z^2+c),c=-47/48+23/64*I,n=4 3645220559803183 b008 1+Gamma[CosIntegral[1]] 3645220559898472 r005 Re(z^2+c),c=-10/21+20/57*I,n=19 3645220561106817 k002 Champernowne real with 83*n^2-240*n+193 3645220571434021 a007 Real Root Of 157*x^4+326*x^3-865*x^2+355*x+858 3645220588347973 r005 Im(z^2+c),c=-11/102+12/19*I,n=54 3645220595106456 r005 Re(z^2+c),c=-13/18+1/57*I,n=14 3645220599646936 a001 832040/843*1364^(1/2) 3645220618424229 m001 (cos(1)+ArtinRank2)/(Otter+TreeGrowth2nd) 3645220626394537 m002 5+Pi^3*Cosh[Pi]+Log[Pi]*Sech[Pi] 3645220631274923 r005 Im(z^2+c),c=-4/27+32/57*I,n=18 3645220644210048 m001 DuboisRaymond/HardHexagonsEntropy*MertensB1 3645220657291575 r005 Im(z^2+c),c=11/28+10/49*I,n=60 3645220661626474 m001 1/ln(TwinPrimes)*Rabbit*Zeta(1/2)^2 3645220666433584 s002 sum(A072602[n]/(2^n+1),n=1..infinity) 3645220667312398 s002 sum(A067962[n]/(n^2*2^n+1),n=1..infinity) 3645220670501653 r002 5th iterates of z^2 + 3645220678597919 p004 log(37339/25933) 3645220686222842 a007 Real Root Of 223*x^4+462*x^3-977*x^2+861*x-875 3645220702887081 r009 Re(z^3+c),c=-8/17+17/61*I,n=35 3645220711183889 r004 Im(z^2+c),c=2/7+5/22*I,z(0)=exp(3/8*I*Pi),n=52 3645220721034420 r005 Re(z^2+c),c=5/19+8/13*I,n=4 3645220722864082 b008 1/3+Cos[Sqrt[2]]/5 3645220730266524 a001 1346269/843*1364^(13/30) 3645220747887189 b008 3*RiemannR[38] 3645220754129056 r005 Re(z^2+c),c=-12/25+13/57*I,n=52 3645220767597227 r005 Re(z^2+c),c=-11/30+27/52*I,n=28 3645220768077886 r005 Re(z^2+c),c=-21/44+13/53*I,n=51 3645220798190295 r009 Im(z^3+c),c=-13/29+5/18*I,n=41 3645220801281292 r005 Im(z^2+c),c=-17/40+29/49*I,n=28 3645220830078949 a001 329/281*64079^(43/46) 3645220830883894 a001 377/2207*439204^(17/18) 3645220830901696 a001 377/2207*7881196^(17/22) 3645220830901741 a001 377/2207*45537549124^(1/2) 3645220830901744 a001 377/2207*33385282^(17/24) 3645220830901758 a001 377/2207*12752043^(3/4) 3645220830902637 a001 377/2207*1860498^(17/20) 3645220830908806 a001 329/281*969323029^(1/2) 3645220833180153 a001 329/281*39603^(43/44) 3645220840195430 r005 Im(z^2+c),c=5/122+17/40*I,n=19 3645220840393285 r005 Im(z^2+c),c=7/19+16/57*I,n=39 3645220840804759 m001 (-KomornikLoreti+TreeGrowth2nd)/(Bloch-sin(1)) 3645220860884107 a001 726103/281*1364^(11/30) 3645220863119184 m001 (ln(5)-ArtinRank2)/(MertensB2+Porter) 3645220884578644 r005 Im(z^2+c),c=17/66+8/31*I,n=50 3645220893281012 a007 Real Root Of 235*x^4+900*x^3+184*x^2-113*x-756 3645220899304298 m001 (GAMMA(5/6)-Conway)/(Otter+Tribonacci) 3645220902166881 a001 521/6765*4181^(11/59) 3645220903797362 r009 Re(z^3+c),c=-7/106+37/54*I,n=23 3645220909439805 r005 Re(z^2+c),c=29/78+6/43*I,n=19 3645220918828992 r009 Re(z^3+c),c=-23/58+11/61*I,n=9 3645220920451028 a001 1346269/1364*521^(15/26) 3645220921669700 l006 ln(5509/7932) 3645220923141471 m001 ln(gamma)/ln(Pi)/ln(2+3^(1/2)) 3645220923141471 m001 log(gamma)/ln(Pi)/ln(2+sqrt(3)) 3645220925738630 m001 GAMMA(11/12)/exp(Ei(1))^2*GAMMA(7/12) 3645220926406735 m001 CareFree*ArtinRank2*exp(Zeta(9))^2 3645220933465054 a007 Real Root Of 600*x^4-518*x^3-552*x^2-176*x+152 3645220939701223 b008 ArcCsc[E^Cosh[1/4]] 3645220940009648 m001 (3^(1/3))^2/exp(ArtinRank2)^2/sqrt(2) 3645220958842920 r002 10th iterates of z^2 + 3645220960466495 m005 (1/3*gamma+1/5)/(7/8*gamma+4/7) 3645220964104256 r005 Im(z^2+c),c=13/38+7/46*I,n=63 3645220971143528 a007 Real Root Of -411*x^4+395*x^3-238*x^2-118*x+15 3645220973688855 s002 sum(A226937[n]/(n^2*exp(n)+1),n=1..infinity) 3645220984215162 a005 (1/cos(11/68*Pi))^180 3645220986866587 s002 sum(A093047[n]/(n^3*pi^n+1),n=1..infinity) 3645220991502462 a001 3524578/843*1364^(3/10) 3645220993309167 m001 Rabbit/(Pi^(1/2)+ZetaP(3)) 3645220995644372 m001 GAMMA(5/6)^ArtinRank2-Sarnak 3645221008044164 m001 1/LambertW(1)*GolombDickman/ln(gamma)^2 3645221017946028 r009 Im(z^3+c),c=-11/56+25/64*I,n=9 3645221022542528 r005 Re(z^2+c),c=-25/58+20/59*I,n=9 3645221032824286 r005 Re(z^2+c),c=3/16+13/36*I,n=25 3645221038808840 a001 3/89*46368^(17/39) 3645221039618969 a007 Real Root Of -102*x^4-272*x^3+241*x^2-191*x+936 3645221041150846 m003 -1/2+Sqrt[5]/16+(13*Tanh[1/2+Sqrt[5]/2])/3 3645221063114030 m001 1/ln(TwinPrimes)/TreeGrowth2nd/GAMMA(3/4)^2 3645221070498869 m001 1/ln(GAMMA(11/12))/GAMMA(1/3)^2*sqrt(2) 3645221075972257 r005 Im(z^2+c),c=13/64+17/55*I,n=39 3645221078474348 a007 Real Root Of 946*x^4-16*x^3-54*x^2-685*x-260 3645221078747813 r005 Im(z^2+c),c=17/66+8/31*I,n=51 3645221086897945 r005 Im(z^2+c),c=5/94+18/43*I,n=43 3645221091266355 m001 1/Robbin*KhintchineLevy*ln(GAMMA(3/4)) 3645221091645393 r009 Re(z^3+c),c=-1/18+31/59*I,n=9 3645221107115459 r005 Im(z^2+c),c=-2/15+17/32*I,n=24 3645221111320123 k007 concat of cont frac of 3645221126273895 r005 Re(z^2+c),c=-1/26+24/31*I,n=48 3645221131313957 r009 Re(z^3+c),c=-1/50+53/57*I,n=12 3645221132761555 r002 34th iterates of z^2 + 3645221134900019 b008 8+39*(6+Pi) 3645221137786134 r005 Re(z^2+c),c=9/46+19/51*I,n=27 3645221139211212 k006 concat of cont frac of 3645221141675883 p003 LerchPhi(1/1024,1,291/106) 3645221142105004 m006 (3/4*ln(Pi)-4/5)/(3*exp(2*Pi)-1/3) 3645221168242132 r005 Re(z^2+c),c=-14/29+9/47*I,n=14 3645221169248146 m005 (1/2*2^(1/2)-11/12)/(7/8*Pi+3) 3645221176021109 m001 (2^(1/2)+3^(1/3))/(Champernowne+TwinPrimes) 3645221178036640 m001 (Zeta(5)-gamma(2))/(HeathBrownMoroz+Trott2nd) 3645221181587565 r005 Im(z^2+c),c=25/82+11/53*I,n=24 3645221187546571 m001 1/GAMMA(5/12)*Trott^2/exp(exp(1)) 3645221188282142 m001 ln((2^(1/3)))*MinimumGamma^2/GAMMA(2/3) 3645221190830145 m001 Zeta(1,2)-exp(1)^FeigenbaumMu 3645221202465900 a001 682/305*55^(5/41) 3645221209309745 a007 Real Root Of -275*x^4-805*x^3+711*x^2-300*x-978 3645221213250897 r005 Re(z^2+c),c=9/25+7/23*I,n=28 3645221213280684 r005 Im(z^2+c),c=3/26+23/61*I,n=33 3645221216595007 m001 (Ei(1)+Pi^(1/2))/(Backhouse-FeigenbaumKappa) 3645221217172566 a003 cos(Pi*44/101)/cos(Pi*55/114) 3645221224726036 m005 (1/2*exp(1)-1/8)/(4/5*3^(1/2)+2) 3645221232127251 k007 concat of cont frac of 3645221236662565 r005 Re(z^2+c),c=-1/38+13/22*I,n=10 3645221239758921 a007 Real Root Of 892*x^4+7*x^3+961*x^2-349*x-14 3645221250843791 r005 Im(z^2+c),c=5/44+22/43*I,n=11 3645221252738712 a001 9227465/843*1364^(1/6) 3645221265482835 a007 Real Root Of 862*x^4+411*x^3+35*x^2-570*x+168 3645221269640029 r002 58th iterates of z^2 + 3645221279329899 h001 (1/12*exp(1)+3/7)/(3/8*exp(1)+7/9) 3645221287047458 m001 (CareFree-FeigenbaumD)/(ln(Pi)-BesselK(1,1)) 3645221290892546 r005 Re(z^2+c),c=-25/54+9/28*I,n=35 3645221302878165 m001 (-exp(-1/2*Pi)+Landau)/(cos(1)+Zeta(1/2)) 3645221304526086 m005 (1/2*Catalan-4)/(5/12*3^(1/2)+1/4) 3645221306914070 r008 a(0)=4,K{-n^6,-7-12*n^3+12*n^2+8*n} 3645221307922399 a001 10946/843*3571^(33/34) 3645221315131511 k007 concat of cont frac of 3645221316328412 a001 17711/843*3571^(31/34) 3645221319205268 m001 Riemann1stZero^2*exp(FeigenbaumB)/(2^(1/3)) 3645221336355271 a001 28657/843*3571^(29/34) 3645221351111315 k007 concat of cont frac of 3645221351943363 a001 15456/281*3571^(27/34) 3645221369226912 a001 75025/843*3571^(25/34) 3645221370384428 m005 (3*Pi-1/6)/(2/5*exp(1)-5/6) 3645221371646668 r005 Im(z^2+c),c=-17/82+5/9*I,n=44 3645221374850863 r005 Im(z^2+c),c=19/64+9/35*I,n=12 3645221383356857 a001 4976784/281*1364^(1/10) 3645221385862855 a001 121393/843*3571^(23/34) 3645221391205353 r005 Im(z^2+c),c=23/74+9/46*I,n=55 3645221396098157 p001 sum((-1)^n/(609*n+274)/(256^n),n=0..infinity) 3645221398063005 p001 sum(1/(544*n+529)/n/(256^n),n=1..infinity) 3645221402746161 a001 196418/843*3571^(21/34) 3645221403296572 a003 sin(Pi*11/111)/sin(Pi*27/85) 3645221408345432 m001 (ln(5)+ZetaP(4))/(1+Pi*2^(1/2)/GAMMA(3/4)) 3645221419534983 a001 377*3571^(19/34) 3645221420765526 l006 ln(2526/3637) 3645221436359895 a001 514229/843*3571^(1/2) 3645221437475152 m005 (23/20+1/4*5^(1/2))/(1/8*Catalan-7/12) 3645221445679526 r005 Re(z^2+c),c=-33/70+17/61*I,n=46 3645221453171022 a001 832040/843*3571^(15/34) 3645221458653519 r005 Im(z^2+c),c=-61/94+4/59*I,n=52 3645221464447491 a001 2584/843*24476^(13/14) 3645221466877901 r009 Im(z^3+c),c=-18/29+6/35*I,n=2 3645221469987414 a001 1346269/843*3571^(13/34) 3645221470083972 a001 2584/843*439204^(13/18) 3645221470090356 a001 377/5778*7881196^(5/6) 3645221470090399 a001 377/5778*20633239^(11/14) 3645221470090405 a001 377/5778*2537720636^(11/18) 3645221470090405 a001 377/5778*312119004989^(1/2) 3645221470090405 a001 377/5778*3461452808002^(11/24) 3645221470090405 a001 377/5778*28143753123^(11/20) 3645221470090405 a001 377/5778*1568397607^(5/8) 3645221470090405 a001 377/5778*228826127^(11/16) 3645221470091371 a001 377/5778*1860498^(11/12) 3645221470097585 a001 2584/843*7881196^(13/22) 3645221470097620 a001 2584/843*141422324^(1/2) 3645221470097620 a001 2584/843*73681302247^(3/8) 3645221470097622 a001 2584/843*33385282^(13/24) 3645221470098305 a001 2584/843*1860498^(13/20) 3645221470134725 a001 2584/843*271443^(3/4) 3645221470373132 a001 2584/843*103682^(13/16) 3645221472157679 a001 2584/843*39603^(39/44) 3645221474948918 h001 (5/9*exp(1)+11/12)/(5/6*exp(2)+1/2) 3645221479050579 m001 GAMMA(2/3)-Pi^(1/2)+ZetaQ(2) 3645221485629461 a001 2584/843*15127^(39/40) 3645221486801795 a001 726103/281*3571^(11/34) 3645221499449267 r005 Re(z^2+c),c=-1/25+39/59*I,n=14 3645221519703206 r005 Re(z^2+c),c=-27/56+13/61*I,n=23 3645221524941027 a001 2255/281*9349^(35/38) 3645221526691388 a007 Real Root Of -518*x^4+487*x^3+876*x^2+999*x-495 3645221534040317 m001 (-GAMMA(19/24)+PlouffeB)/(cos(1)+exp(1/Pi)) 3645221534189515 b008 1+E-Pi/43 3645221539110110 a007 Real Root Of -490*x^4+445*x^3-939*x^2+129*x+202 3645221542937006 a001 17711/843*9349^(31/38) 3645221548343957 a001 28657/843*9349^(29/38) 3645221549150902 a001 10946/843*9349^(33/38) 3645221549312139 a001 15456/281*9349^(27/38) 3645221551975780 a001 75025/843*9349^(25/38) 3645221553991813 a001 121393/843*9349^(23/38) 3645221554773584 m005 (1/2*Catalan-2/11)/(6/7*Zeta(3)-3/11) 3645221556255211 a001 196418/843*9349^(21/38) 3645221558145807 m005 (1/2*2^(1/2)+1/2)/(6/35+1/14*5^(1/2)) 3645221558283383 a001 2255/281*24476^(5/6) 3645221558424124 a001 377*9349^(1/2) 3645221560629126 a001 514229/843*9349^(17/38) 3645221562820344 a001 832040/843*9349^(15/38) 3645221563263346 a001 2255/281*167761^(7/10) 3645221563346793 a001 377/15127*2139295485799^(1/2) 3645221563354007 a001 2255/281*20633239^(1/2) 3645221563354011 a001 2255/281*2537720636^(7/18) 3645221563354011 a001 2255/281*17393796001^(5/14) 3645221563354011 a001 2255/281*312119004989^(7/22) 3645221563354011 a001 2255/281*14662949395604^(5/18) 3645221563354011 a001 2255/281*28143753123^(7/20) 3645221563354011 a001 2255/281*599074578^(5/12) 3645221563354011 a001 2255/281*228826127^(7/16) 3645221563354626 a001 2255/281*1860498^(7/12) 3645221563358522 a001 2255/281*710647^(5/8) 3645221564107417 k002 Champernowne real with 167/2*n^2-483/2*n+194 3645221565016827 a001 1346269/843*9349^(13/38) 3645221565202782 a001 2255/281*39603^(35/44) 3645221566490153 b008 287/8+EulerGamma 3645221567211299 a001 726103/281*9349^(11/38) 3645221572468807 a001 17711/843*24476^(31/42) 3645221574468184 a007 Real Root Of 839*x^4+421*x^3-696*x^2-889*x-226 3645221575033385 a001 15456/281*24476^(9/14) 3645221575791749 a001 75025/843*24476^(25/42) 3645221575902505 a001 121393/843*24476^(23/42) 3645221575970480 a001 28657/843*24476^(29/42) 3645221576260624 a001 196418/843*24476^(1/2) 3645221576524260 a001 377*24476^(19/42) 3645221576823985 a001 514229/843*24476^(17/42) 3645221576952661 a001 377/39603*7881196^(21/22) 3645221576952710 a001 377/39603*20633239^(9/10) 3645221576952717 a001 377/39603*2537720636^(7/10) 3645221576952717 a001 377/39603*17393796001^(9/14) 3645221576952717 a001 377/39603*14662949395604^(1/2) 3645221576952717 a001 377/39603*505019158607^(9/16) 3645221576952717 a001 377/39603*192900153618^(7/12) 3645221576952717 a001 377/39603*599074578^(3/4) 3645221576952720 a001 377/39603*33385282^(7/8) 3645221576959734 a001 17711/843*3010349^(1/2) 3645221576959935 a001 17711/843*9062201101803^(1/4) 3645221577109925 a001 832040/843*24476^(5/14) 3645221577292843 a001 2255/281*15127^(7/8) 3645221577401131 a001 1346269/843*24476^(13/42) 3645221577690325 a001 726103/281*24476^(11/42) 3645221577980287 a001 3524578/843*24476^(3/14) 3645221578269957 a001 5702887/843*24476^(1/6) 3645221578597418 a001 17711/843*39603^(31/44) 3645221578790755 a001 121393/843*64079^(1/2) 3645221578849476 a001 4976784/281*24476^(1/14) 3645221578935564 a001 15456/281*439204^(1/2) 3645221578944989 a001 15456/281*7881196^(9/22) 3645221578945013 a001 15456/281*2537720636^(3/10) 3645221578945013 a001 15456/281*14662949395604^(3/14) 3645221578945013 a001 15456/281*192900153618^(1/4) 3645221578945014 a001 15456/281*33385282^(3/8) 3645221578945487 a001 15456/281*1860498^(9/20) 3645221579135752 a001 15456/281*103682^(9/16) 3645221579234632 a001 121393/843*4106118243^(1/4) 3645221579244195 a001 832040/843*167761^(3/10) 3645221579269669 a001 377/710647*2537720636^(5/6) 3645221579269669 a001 377/710647*312119004989^(15/22) 3645221579269669 a001 377/710647*3461452808002^(5/8) 3645221579269669 a001 377/710647*28143753123^(3/4) 3645221579269669 a001 377/710647*228826127^(15/16) 3645221579271161 a001 9227465/843*167761^(1/10) 3645221579276864 a001 377/12752043*1322157322203^(3/4) 3645221579276883 a001 377/33385282*17393796001^(13/14) 3645221579276883 a001 377/33385282*14662949395604^(13/18) 3645221579276883 a001 377/33385282*505019158607^(13/16) 3645221579276883 a001 377/33385282*73681302247^(7/8) 3645221579276886 a001 377/87403803*312119004989^(19/22) 3645221579276886 a001 377/87403803*817138163596^(5/6) 3645221579276886 a001 377/87403803*3461452808002^(19/24) 3645221579276886 a001 377/87403803*28143753123^(19/20) 3645221579276887 a001 377/228826127*312119004989^(9/10) 3645221579276887 a001 377/228826127*14662949395604^(11/14) 3645221579276887 a001 377/228826127*192900153618^(11/12) 3645221579276887 a001 377/10749957122*3461452808002^(23/24) 3645221579276887 a001 377/28143753123*14662949395604^(17/18) 3645221579276887 a001 377*817138163596^(1/6) 3645221579276887 a001 13/599786069*14662949395604^(13/14) 3645221579276887 a001 377/969323029*312119004989^(21/22) 3645221579276887 a001 377/969323029*14662949395604^(5/6) 3645221579276887 a001 377/969323029*505019158607^(15/16) 3645221579276887 a001 377*87403803^(1/4) 3645221579276888 a001 377/54018521*9062201101803^(3/4) 3645221579276945 a001 377/7881196*2537720636^(17/18) 3645221579276945 a001 377/7881196*45537549124^(5/6) 3645221579276945 a001 377/7881196*312119004989^(17/22) 3645221579276945 a001 377/7881196*3461452808002^(17/24) 3645221579276945 a001 377/7881196*28143753123^(17/20) 3645221579277289 a001 377/3010349*2537720636^(9/10) 3645221579277289 a001 377/3010349*14662949395604^(9/14) 3645221579277289 a001 377/3010349*192900153618^(3/4) 3645221579277802 a001 832040/843*439204^(5/18) 3645221579279644 a001 377/1149851*17393796001^(11/14) 3645221579279644 a001 377/1149851*14662949395604^(11/18) 3645221579279644 a001 377/1149851*505019158607^(11/16) 3645221579279644 a001 377/1149851*1568397607^(7/8) 3645221579279644 a001 377/1149851*599074578^(11/12) 3645221579281014 a001 3524578/843*439204^(1/6) 3645221579283038 a001 832040/843*7881196^(5/22) 3645221579283050 a001 832040/843*20633239^(3/14) 3645221579283052 a001 4976784/281*439204^(1/18) 3645221579283052 a001 832040/843*2537720636^(1/6) 3645221579283052 a001 832040/843*312119004989^(3/22) 3645221579283052 a001 832040/843*28143753123^(3/20) 3645221579283052 a001 832040/843*228826127^(3/16) 3645221579283052 a001 832040/843*33385282^(5/24) 3645221579283315 a001 832040/843*1860498^(1/4) 3645221579283941 a001 726103/281*7881196^(1/6) 3645221579283951 a001 726103/281*312119004989^(1/10) 3645221579283951 a001 726103/281*1568397607^(1/8) 3645221579284081 a001 5702887/843*20633239^(1/10) 3645221579284082 a001 5702887/843*17393796001^(1/14) 3645221579284082 a001 5702887/843*14662949395604^(1/18) 3645221579284082 a001 5702887/843*599074578^(1/12) 3645221579284099 a001 4976784/281*7881196^(1/22) 3645221579284102 a001 4976784/281*33385282^(1/24) 3645221579284113 a001 9227465/843*20633239^(1/14) 3645221579284113 a001 9227465/843*2537720636^(1/18) 3645221579284113 a001 9227465/843*312119004989^(1/22) 3645221579284113 a001 9227465/843*28143753123^(1/20) 3645221579284113 a001 9227465/843*228826127^(1/16) 3645221579284154 a001 4976784/281*1860498^(1/20) 3645221579284155 a001 3524578/843*7881196^(3/22) 3645221579284163 a001 3524578/843*2537720636^(1/10) 3645221579284163 a001 3524578/843*14662949395604^(1/14) 3645221579284163 a001 3524578/843*192900153618^(1/12) 3645221579284164 a001 3524578/843*33385282^(1/8) 3645221579284201 a001 9227465/843*1860498^(1/12) 3645221579284321 a001 3524578/843*1860498^(3/20) 3645221579284507 a001 1346269/843*141422324^(1/6) 3645221579284507 a001 1346269/843*73681302247^(1/8) 3645221579284984 a001 5702887/843*710647^(1/8) 3645221579286862 a001 514229/843*45537549124^(1/6) 3645221579286867 a001 514229/843*12752043^(1/4) 3645221579295653 a001 196418/843*439204^(7/18) 3645221579296875 a001 1346269/843*271443^(1/4) 3645221579302983 a001 196418/843*7881196^(7/22) 3645221579302999 a001 196418/843*20633239^(3/10) 3645221579303002 a001 196418/843*17393796001^(3/14) 3645221579303002 a001 196418/843*14662949395604^(1/6) 3645221579303002 a001 196418/843*599074578^(1/4) 3645221579303003 a001 196418/843*33385282^(7/24) 3645221579303370 a001 196418/843*1860498^(7/20) 3645221579305295 a001 4976784/281*103682^(1/16) 3645221579305708 a001 196418/843*710647^(3/8) 3645221579347743 a001 3524578/843*103682^(3/16) 3645221579348865 a001 75025/843*167761^(1/2) 3645221579389018 a001 832040/843*103682^(5/16) 3645221579406408 a001 377/167761*4106118243^(3/4) 3645221579406411 a001 377/167761*33385282^(23/24) 3645221579413623 a001 75025/843*20633239^(5/14) 3645221579413626 a001 75025/843*2537720636^(5/18) 3645221579413626 a001 75025/843*312119004989^(5/22) 3645221579413626 a001 75025/843*3461452808002^(5/24) 3645221579413626 a001 75025/843*28143753123^(1/4) 3645221579413626 a001 75025/843*228826127^(5/16) 3645221579414065 a001 75025/843*1860498^(5/12) 3645221579451354 a001 196418/843*103682^(7/16) 3645221579864993 a001 726103/281*39603^(1/4) 3645221579971193 a001 1346269/843*39603^(13/44) 3645221580075382 a001 832040/843*39603^(15/44) 3645221580164632 a001 377/64079*20633239^(13/14) 3645221580164640 a001 377/64079*141422324^(5/6) 3645221580164640 a001 377/64079*2537720636^(13/18) 3645221580164640 a001 377/64079*312119004989^(13/22) 3645221580164640 a001 377/64079*3461452808002^(13/24) 3645221580164640 a001 377/64079*73681302247^(5/8) 3645221580164640 a001 377/64079*28143753123^(13/20) 3645221580164640 a001 377/64079*228826127^(13/16) 3645221580170480 a001 28657/843*1149851^(1/2) 3645221580171858 a001 28657/843*1322157322203^(1/4) 3645221580184836 a001 514229/843*39603^(17/44) 3645221580193142 r002 5th iterates of z^2 + 3645221580280505 a001 377*39603^(19/44) 3645221580371208 a001 15456/281*39603^(27/44) 3645221580381618 a001 4181/843*9349^(37/38) 3645221580412264 a001 196418/843*39603^(21/44) 3645221580449539 a001 121393/843*39603^(23/44) 3645221580587981 a001 10946/843*24476^(11/14) 3645221580734177 a001 75025/843*39603^(25/44) 3645221581275375 a001 9227465/843*15127^(1/8) 3645221581703697 a001 28657/843*39603^(29/44) 3645221583664727 a001 726103/281*15127^(11/40) 3645221584461787 a001 1346269/843*15127^(13/40) 3645221585256837 a001 832040/843*15127^(3/8) 3645221585357311 a001 10946/843*439204^(11/18) 3645221585361641 a001 13/844*5600748293801^(1/2) 3645221585368830 a001 10946/843*7881196^(1/2) 3645221585368859 a001 10946/843*312119004989^(3/10) 3645221585368859 a001 10946/843*1568397607^(3/8) 3645221585368860 a001 10946/843*33385282^(11/24) 3645221585369438 a001 10946/843*1860498^(11/20) 3645221585601984 a001 10946/843*103682^(11/16) 3645221586057151 a001 514229/843*15127^(17/40) 3645221586843681 a001 377*15127^(19/40) 3645221587111986 a001 10946/843*39603^(3/4) 3645221587666301 a001 196418/843*15127^(21/40) 3645221588382975 a001 4976784/281*5778^(1/12) 3645221588394436 a001 121393/843*15127^(23/40) 3645221589305758 a001 17711/843*15127^(31/40) 3645221589369935 a001 75025/843*15127^(5/8) 3645221589697826 a001 15456/281*15127^(27/40) 3645221591721176 a001 28657/843*15127^(29/40) 3645221592439251 a007 Real Root Of 136*x^4+431*x^3-75*x^2+745*x+576 3645221596232174 r009 Re(z^3+c),c=-12/31+9/53*I,n=18 3645221596804013 m001 (Psi(2,1/3)-exp(Pi))/(cos(1)+ErdosBorwein) 3645221598511186 a001 10946/843*15127^(33/40) 3645221606580784 a001 3524578/843*5778^(1/4) 3645221612646488 a001 726103/281*5778^(11/36) 3645221615629252 a001 4181/843*24476^(37/42) 3645221618712959 a001 1346269/843*5778^(13/36) 3645221620982362 a001 377/9349*7881196^(19/22) 3645221620982413 a001 377/9349*817138163596^(1/2) 3645221620982414 a001 377/9349*87403803^(3/4) 3645221620982416 a001 377/9349*33385282^(19/24) 3645221620983414 a001 377/9349*1860498^(19/20) 3645221620989630 a001 4181/843*54018521^(1/2) 3645221621154136 m001 1/exp(PrimesInBinary)/MadelungNaCl/Zeta(5) 3645221622944046 a001 4181/843*39603^(37/44) 3645221624777420 a001 832040/843*5778^(5/12) 3645221627865391 p001 sum((-1)^n/(601*n+271)/(25^n),n=0..infinity) 3645221630847146 a001 514229/843*5778^(17/36) 3645221635724967 a001 4181/843*15127^(37/40) 3645221636903086 a001 377*5778^(19/36) 3645221641816548 r005 Im(z^2+c),c=-67/98+13/49*I,n=30 3645221642970506 a008 Real Root of x^4+14*x^2-128*x+104 3645221642995117 a001 196418/843*5778^(7/12) 3645221648992663 a001 121393/843*5778^(23/36) 3645221649155056 r009 Im(z^3+c),c=-5/102+26/57*I,n=2 3645221655237573 a001 75025/843*5778^(25/36) 3645221660834876 a001 15456/281*5778^(3/4) 3645221666231506 a001 2139295485799/3*4807526976^(3/17) 3645221666231577 a001 3020733700601*1346269^(3/17) 3645221668127637 a001 28657/843*5778^(29/36) 3645221669507537 a001 2255/281*5778^(35/36) 3645221670981630 a001 17711/843*5778^(31/36) 3645221684295602 m001 polylog(4,1/2)*(Bloch-Salem) 3645221685456470 a001 10946/843*5778^(11/12) 3645221693625840 p001 sum((-1)^n/(328*n+109)/n/(6^n),n=1..infinity) 3645221695928018 m001 Ei(1)*(Pi*csc(11/24*Pi)/GAMMA(13/24)-ZetaQ(3)) 3645221714374968 a003 cos(Pi*16/101)-sin(Pi*39/106) 3645221727492890 l006 ln(103/3944) 3645221734222834 r005 Re(z^2+c),c=-12/25+13/57*I,n=50 3645221737572275 a005 (1/cos(23/206*Pi))^717 3645221739232103 a007 Real Root Of 188*x^4+833*x^3+442*x^2-505*x-560 3645221739850462 r004 Im(z^2+c),c=-1/5-5/9*I,z(0)=I,n=25 3645221740049582 r002 5th iterates of z^2 + 3645221744890547 r005 Re(z^2+c),c=-19/48+10/19*I,n=19 3645221752712597 m001 ln(Catalan)*Salem^2/gamma^2 3645221752717683 m001 (3^(1/2)+Kolakoski)^HardHexagonsEntropy 3645221755579088 r002 3th iterates of z^2 + 3645221769712270 a007 Real Root Of -479*x^4-334*x^3-107*x^2+978*x+363 3645221775940902 m001 (Niven+Robbin)/(Trott-TwinPrimes) 3645221776471382 a001 63245986/2207*199^(1/22) 3645221795235946 s002 sum(A256129[n]/(n*pi^n-1),n=1..infinity) 3645221803175083 r005 Re(z^2+c),c=-14/29+5/24*I,n=30 3645221806879664 p004 log(10253/7121) 3645221810981211 r002 47th iterates of z^2 + 3645221828861529 a001 1/7*(1/2*5^(1/2)+1/2)^10*11^(7/23) 3645221834461212 r005 Re(z^2+c),c=-61/102+22/53*I,n=59 3645221836537943 a001 726103/281*2207^(11/32) 3645221850552151 a001 3/34*377^(11/46) 3645221859198153 a001 1597/843*24476^(41/42) 3645221864346774 a001 1597/843*64079^(41/46) 3645221865130837 a001 377/3571*119218851371^(1/2) 3645221865138032 a001 1597/843*370248451^(1/2) 3645221866616138 m002 -5/E^Pi+Pi^4+Pi^5/Log[Pi] 3645221867303736 a001 1597/843*39603^(41/44) 3645221883311954 a001 1346269/843*2207^(13/32) 3645221890377471 r005 Re(z^2+c),c=-12/25+13/57*I,n=54 3645221893882538 m005 (1/3*2^(1/2)-2/11)/(-1/10+2/5*5^(1/2)) 3645221896356546 r005 Re(z^2+c),c=-37/78+6/23*I,n=29 3645221898982431 r009 Re(z^3+c),c=-3/94+41/55*I,n=20 3645221930083954 a001 832040/843*2207^(15/32) 3645221942555580 m008 (3*Pi^4-1/3)/(5/6*Pi^6-2/5) 3645221945137499 r009 Re(z^3+c),c=-1/50+53/57*I,n=14 3645221951543026 r009 Im(z^3+c),c=-5/29+50/63*I,n=2 3645221953456169 a001 2178309/1364*521^(1/2) 3645221955194041 r009 Re(z^3+c),c=-23/66+11/17*I,n=36 3645221964496163 r008 a(0)=0,K{-n^6,33-15*n^3-40*n^2+49*n} 3645221976861220 a001 514229/843*2207^(17/32) 3645221977110367 r004 Re(z^2+c),c=-2/3-2/11*I,z(0)=-1,n=16 3645221979286143 r005 Re(z^2+c),c=43/118+5/51*I,n=49 3645221981287945 r005 Im(z^2+c),c=7/78+25/61*I,n=11 3645221981531012 m001 (-HardyLittlewoodC4+Trott)/(GAMMA(2/3)-cos(1)) 3645221982161386 r005 Re(z^2+c),c=-65/114+6/13*I,n=3 3645221988863402 r002 5th iterates of z^2 + 3645221990621069 r008 a(0)=4,K{-n^6,8+2*n^3+n^2-4*n} 3645222019137398 l006 ln(4595/6616) 3645222023624702 a001 377*2207^(19/32) 3645222041977292 a007 Real Root Of x^4+366*x^3+540*x^2+477*x-273 3645222042912253 r005 Im(z^2+c),c=19/60+3/16*I,n=62 3645222053773987 a007 Real Root Of -655*x^4+752*x^3+322*x^2+79*x+34 3645222059572262 r005 Re(z^2+c),c=5/42+35/59*I,n=34 3645222063241333 r005 Re(z^2+c),c=-65/126+6/31*I,n=11 3645222070424274 a001 196418/843*2207^(21/32) 3645222072225253 r009 Im(z^3+c),c=-15/34+15/53*I,n=35 3645222091451156 m001 (TwinPrimes+ZetaP(4))/(FeigenbaumD-Robbin) 3645222098046745 a007 Real Root Of 984*x^4-959*x^3-662*x^2-672*x+362 3645222110407051 l005 sec(697/92) 3645222115705026 s001 sum(exp(-Pi/2)^(n-1)*A099643[n],n=1..infinity) 3645222117129362 a001 121393/843*2207^(23/32) 3645222121111111 k007 concat of cont frac of 3645222138029729 r005 Re(z^2+c),c=-5/13+37/64*I,n=39 3645222138167827 m008 (1/6*Pi-1/4)/(3/4*Pi^4+2) 3645222151514557 r009 Im(z^3+c),c=-35/122+4/11*I,n=11 3645222152921765 m001 GolombDickman+BesselJZeros(0,1)^(2^(1/3)) 3645222156086971 r005 Re(z^2+c),c=-9/26+3/5*I,n=3 3645222164081815 a001 75025/843*2207^(25/32) 3645222182532685 m001 (Kac-Paris)/(exp(1/exp(1))+HeathBrownMoroz) 3645222193570992 m001 1/exp(sinh(1))/Porter*sqrt(3) 3645222203738343 a007 Real Root Of 171*x^4+412*x^3-777*x^2+60*x+307 3645222206939665 m005 (1/2*3^(1/2)+1/4)/(11/12*Pi+2/11) 3645222210386661 a001 15456/281*2207^(27/32) 3645222215829308 m003 36+Cos[1/2+Sqrt[5]/2]+Sin[1/2+Sqrt[5]/2]/2 3645222224638644 p001 sum((-1)^n/(446*n+383)/n/(3^n),n=1..infinity) 3645222228602456 a001 843*75025^(3/23) 3645222239309242 r009 Re(z^3+c),c=-1/17+31/57*I,n=22 3645222245951216 l006 ln(6664/9595) 3645222251476916 a007 Real Root Of 432*x^4-970*x^3+385*x^2-980*x-463 3645222253037662 m001 (Pi+exp(Pi))*(BesselK(0,1)+cos(1/12*Pi)) 3645222256586264 r005 Re(z^2+c),c=-53/86+15/41*I,n=55 3645222256749981 a005 (1/cos(8/233*Pi))^1407 3645222258386967 a001 28657/843*2207^(29/32) 3645222268727050 r005 Re(z^2+c),c=-13/27+12/55*I,n=40 3645222292018131 a007 Real Root Of -95*x^4-603*x^3-777*x^2+436*x-520 3645222299320534 r004 Re(z^2+c),c=-17/38+5/16*I,z(0)=-1,n=22 3645222300735216 a007 Real Root Of 957*x^4-411*x^3+842*x^2-662*x-390 3645222300928994 a007 Real Root Of -937*x^4-842*x^3+338*x^2+879*x-308 3645222301948503 a001 17711/843*2207^(31/32) 3645222303184794 h001 (-2*exp(4)+6)/(-7*exp(6)-7) 3645222311620332 m001 1/exp(GAMMA(5/24))/Magata*Zeta(7) 3645222314158273 a001 75025/322*322^(7/8) 3645222337473168 r005 Re(z^2+c),c=11/78+19/41*I,n=23 3645222355683870 p001 sum(1/(611*n+275)/(128^n),n=0..infinity) 3645222357592378 m001 (exp(1/Pi)+GAMMA(7/12))/(Landau-Totient) 3645222373483158 r005 Im(z^2+c),c=-59/122+1/16*I,n=43 3645222375005639 v002 sum(1/(5^n+(12*n^2-22*n+58)),n=1..infinity) 3645222385000691 r005 Im(z^2+c),c=-11/118+34/35*I,n=11 3645222406673983 b008 1/144+ArcSinh[19] 3645222415660211 a001 165580141/5778*199^(1/22) 3645222417781422 m001 1/OneNinth^2*Champernowne/ln(GAMMA(11/12))^2 3645222425901036 r002 43th iterates of z^2 + 3645222430466883 a007 Real Root Of 292*x^4+814*x^3-664*x^2+759*x-539 3645222432876014 m001 (LaplaceLimit+Magata)/(Otter-Tribonacci) 3645222452268379 r005 Re(z^2+c),c=-11/26+20/43*I,n=54 3645222455433303 m008 (2/3*Pi^2-1)/(5*Pi^5+3/5) 3645222473210003 r005 Re(z^2+c),c=-31/74+6/17*I,n=11 3645222484021139 m003 -4+(17*Sqrt[5])/64-Tan[1/2+Sqrt[5]/2]/3 3645222493000929 r005 Im(z^2+c),c=5/94+18/43*I,n=46 3645222506805959 m005 (1/3*exp(1)-2/5)/(54/55+2/11*5^(1/2)) 3645222508916623 a001 433494437/15127*199^(1/22) 3645222522522551 a001 1134903170/39603*199^(1/22) 3645222524507629 a001 2971215073/103682*199^(1/22) 3645222524797248 a001 7778742049/271443*199^(1/22) 3645222524839503 a001 20365011074/710647*199^(1/22) 3645222524845668 a001 53316291173/1860498*199^(1/22) 3645222524846567 a001 139583862445/4870847*199^(1/22) 3645222524846698 a001 365435296162/12752043*199^(1/22) 3645222524846717 a001 956722026041/33385282*199^(1/22) 3645222524846720 a001 2504730781961/87403803*199^(1/22) 3645222524846721 a001 6557470319842/228826127*199^(1/22) 3645222524846721 a001 10610209857723/370248451*199^(1/22) 3645222524846721 a001 4052739537881/141422324*199^(1/22) 3645222524846722 a001 1548008755920/54018521*199^(1/22) 3645222524846729 a001 591286729879/20633239*199^(1/22) 3645222524846779 a001 225851433717/7881196*199^(1/22) 3645222524847123 a001 86267571272/3010349*199^(1/22) 3645222524849478 a001 32951280099/1149851*199^(1/22) 3645222524865618 a001 12586269025/439204*199^(1/22) 3645222524976242 a001 4807526976/167761*199^(1/22) 3645222525734475 a001 28657*199^(1/22) 3645222527081500 r005 Re(z^2+c),c=-29/74+44/45*I,n=4 3645222530931477 a001 701408733/24476*199^(1/22) 3645222540913486 r005 Im(z^2+c),c=-7/52+14/27*I,n=25 3645222541749540 r009 Re(z^3+c),c=-10/27+37/44*I,n=2 3645222559360843 r005 Re(z^2+c),c=-19/40+8/31*I,n=33 3645222566552258 a001 267914296/9349*199^(1/22) 3645222567108017 k002 Champernowne real with 84*n^2-243*n+195 3645222569575066 a007 Real Root Of -648*x^4+212*x^3-153*x^2+978*x-335 3645222586876487 m001 (BesselK(1,1)+FeigenbaumD)/(OneNinth-Paris) 3645222595688313 r005 Re(z^2+c),c=-47/98+3/13*I,n=41 3645222595952197 a008 Real Root of x^2-x-133241 3645222628676860 r004 Re(z^2+c),c=-43/46-2/13*I,z(0)=-1,n=5 3645222634314487 r009 Im(z^3+c),c=-31/122+3/8*I,n=16 3645222663029836 m001 Porter/(exp(1)+Mills) 3645222704177166 m001 (ln(3)-Backhouse)/(ZetaP(3)-ZetaP(4)) 3645222717140056 p003 LerchPhi(1/32,1,483/172) 3645222720893102 a001 1/141*8^(37/47) 3645222731169346 r005 Im(z^2+c),c=29/122+5/18*I,n=45 3645222731335973 m001 Ei(1)*(KomornikLoreti-Riemann2ndZero) 3645222734261343 r009 Im(z^3+c),c=-23/58+16/55*I,n=6 3645222740809171 r005 Re(z^2+c),c=29/122+1/46*I,n=16 3645222749677392 l006 ln(2069/2979) 3645222750426638 m001 2^(1/3)*FransenRobinson+OneNinth 3645222760348832 r005 Re(z^2+c),c=-7/94+47/61*I,n=51 3645222779754772 r005 Re(z^2+c),c=-25/58+14/33*I,n=29 3645222780030398 a007 Real Root Of -409*x^4-463*x^3+454*x^2+876*x-350 3645222782499047 m001 (Psi(1,1/3)+Lehmer)/(-Magata+Weierstrass) 3645222784206432 r009 Re(z^3+c),c=-19/48+2/11*I,n=14 3645222785910403 r002 18th iterates of z^2 + 3645222789706502 a007 Real Root Of 672*x^4-495*x^3-461*x^2-879*x-295 3645222790436615 h001 (-9*exp(3/2)-8)/(-7*exp(3)+8) 3645222800561337 a007 Real Root Of -956*x^4-91*x^3-997*x^2+878*x+465 3645222801913117 a007 Real Root Of -748*x^4-891*x^3-75*x^2+598*x+198 3645222802261473 m001 (FeigenbaumAlpha+Niven)/(ln(Pi)-gamma(2)) 3645222806371461 r002 8th iterates of z^2 + 3645222807091862 r005 Im(z^2+c),c=2/11+17/52*I,n=31 3645222810700745 a001 102334155/3571*199^(1/22) 3645222811748684 r009 Re(z^3+c),c=-43/106+8/41*I,n=13 3645222815018468 m001 (Zeta(1,2)-Kac)/(Magata+QuadraticClass) 3645222817378548 m001 (Zeta(1,2)-CareFree)/(Ei(1)-exp(1/exp(1))) 3645222824094370 r005 Re(z^2+c),c=-31/70+19/43*I,n=35 3645222829882264 l006 ln(230/8807) 3645222844512687 m002 1-Sinh[Pi]+Log[Pi]*ProductLog[Pi]*Sinh[Pi] 3645222853540874 r005 Im(z^2+c),c=-7/26+29/52*I,n=29 3645222861643557 a001 5702887/843*843^(1/4) 3645222866507779 r009 Re(z^3+c),c=-41/102+4/21*I,n=19 3645222869024926 r009 Im(z^3+c),c=-21/44+14/55*I,n=41 3645222870078430 m001 (cos(1/5*Pi)-ln(Pi))/(StolarskyHarborth+Trott) 3645222872832439 m001 (Ei(1,1)+Cahen)/(Niven+Robbin) 3645222894960679 r002 15th iterates of z^2 + 3645222910648829 m001 (exp(Pi)+ln(2))/(-GAMMA(5/6)+Weierstrass) 3645222911267017 v002 sum(1/(2^n*(19*n^2-45*n+45)),n=1..infinity) 3645222938194342 m001 Psi(2,1/3)/(ZetaP(2)-ln(2)/ln(10)) 3645222966084299 m001 sin(1)^2*ln(FeigenbaumC)/sinh(1) 3645222978379245 a003 cos(Pi*1/118)*sin(Pi*12/101) 3645222979367063 a007 Real Root Of 535*x^4-198*x^3-475*x^2-398*x-101 3645222982425191 a007 Real Root Of 12*x^4+420*x^3-614*x^2+753*x-780 3645222984977214 r009 Im(z^3+c),c=-23/44+5/43*I,n=25 3645222989115447 a007 Real Root Of 945*x^4-525*x^3+371*x^2-767*x-371 3645222990023903 m001 exp(-1/2*Pi)^FeigenbaumAlpha+GAMMA(1/4) 3645222995583197 a001 8/64079*322^(58/59) 3645222995749288 r005 Re(z^2+c),c=-5/44+31/49*I,n=23 3645223027599414 a007 Real Root Of 710*x^4-284*x^3-997*x^2-854*x+445 3645223042095448 r005 Im(z^2+c),c=-19/86+22/39*I,n=43 3645223043238028 a008 Real Root of (-2+7*x-4*x^2-x^4-8*x^8) 3645223044181876 a001 24157817/843*322^(1/24) 3645223047629400 r005 Re(z^2+c),c=-55/122+23/63*I,n=14 3645223048583562 s002 sum(A049390[n]/((10^n+1)/n),n=1..infinity) 3645223051047938 r009 Re(z^3+c),c=-57/118+11/51*I,n=9 3645223071831162 m001 (Pi-Psi(1,1/3)/exp(gamma))/ln(2) 3645223116240342 m005 (1/2*3^(1/2)+6/11)/(2*5^(1/2)-3/5) 3645223121878733 r005 Im(z^2+c),c=-21/106+34/61*I,n=48 3645223123769606 m001 Artin/FeigenbaumAlpha/HardyLittlewoodC5 3645223125044776 m001 (Pi-Zeta(3))/(HardHexagonsEntropy-Tetranacci) 3645223128199124 b008 Log[45*Csch[1]] 3645223130795610 r005 Im(z^2+c),c=-59/122+1/16*I,n=30 3645223134345783 a007 Real Root Of 327*x^4+988*x^3-910*x^2-825*x-796 3645223136941737 r005 Re(z^2+c),c=-15/32+12/41*I,n=51 3645223138054249 m001 Niven^2/GaussKuzminWirsing^2/ln(BesselK(0,1)) 3645223182504520 m006 (2/5/Pi-5)/(1/4*exp(2*Pi)-1/5) 3645223192478755 r002 4th iterates of z^2 + 3645223195848857 m001 (Cahen-Paris)/(Porter+Trott2nd) 3645223196705782 r005 Re(z^2+c),c=21/86+1/35*I,n=5 3645223206176793 r005 Re(z^2+c),c=-15/74+30/37*I,n=9 3645223206216337 m001 MadelungNaCl^MertensB3/gamma 3645223207442093 a008 Real Root of x^2-x-132512 3645223215818998 r005 Im(z^2+c),c=-27/122+19/33*I,n=36 3645223228672264 m001 (-Tribonacci+ZetaP(3))/(1-2*Pi/GAMMA(5/6)) 3645223229913090 m001 (ln(3)-Champernowne)/(RenyiParking+Tetranacci) 3645223234270069 r005 Re(z^2+c),c=17/98+10/29*I,n=38 3645223259803367 r002 4th iterates of z^2 + 3645223268160793 m001 Paris^(Totient/GaussKuzminWirsing) 3645223288581648 r009 Im(z^3+c),c=-13/38+16/47*I,n=12 3645223291305767 m009 (48*Catalan+6*Pi^2-1)/(5/6*Psi(1,2/3)+1/4) 3645223294198273 r005 Re(z^2+c),c=-12/25+13/57*I,n=56 3645223297407490 r005 Im(z^2+c),c=-17/94+22/41*I,n=15 3645223301635270 m001 1/ln(MinimumGamma)^2*Kolakoski^2/Zeta(3) 3645223309445011 r002 32th iterates of z^2 + 3645223314568354 a001 8/3*6643838879^(8/19) 3645223318551047 a001 4106118243/610*317811^(2/15) 3645223318552010 a001 1568397607/610*433494437^(2/15) 3645223318552010 a001 299537289/305*591286729879^(2/15) 3645223324725767 m009 (1/6*Psi(1,2/3)-1)/(32/5*Catalan+4/5*Pi^2-1/3) 3645223333474097 l006 ln(5750/8279) 3645223343282282 s002 sum(A230035[n]/(n*10^n-1),n=1..infinity) 3645223343282299 s002 sum(A051267[n]/(n*10^n-1),n=1..infinity) 3645223350250759 r005 Im(z^2+c),c=17/106+19/55*I,n=17 3645223356410993 a007 Real Root Of 98*x^4+183*x^3-378*x^2+912*x-92 3645223368169218 a008 Real Root of x^4+5*x^2-243 3645223375448488 m005 (1/2*Catalan-11/12)/(3/7*5^(1/2)+3/10) 3645223384339770 h001 (1/8*exp(2)+8/9)/(4/7*exp(2)+3/4) 3645223388829961 a007 Real Root Of -432*x^4-121*x^3+486*x^2+617*x-276 3645223389965048 r005 Re(z^2+c),c=-37/86+19/43*I,n=46 3645223394947757 r002 27th iterates of z^2 + 3645223415496450 a001 199/24157817*102334155^(21/22) 3645223415496451 a001 199/591286729879*4052739537881^(21/22) 3645223417836651 r002 5th iterates of z^2 + 3645223422645299 m008 (3/5*Pi+4/5)/(3/4*Pi^4+3/5) 3645223435384933 m005 (1/2*3^(1/2)+1/10)/(2*Catalan+9/11) 3645223438319737 r005 Im(z^2+c),c=-25/86+28/55*I,n=12 3645223442290049 r005 Im(z^2+c),c=-5/46+27/32*I,n=60 3645223447195899 m001 ZetaP(3)^(Otter/ln(2)*ln(10)) 3645223460024094 a003 cos(Pi*29/85)*cos(Pi*49/103) 3645223485657755 a003 cos(Pi*29/89)-sin(Pi*28/81) 3645223508398921 m001 (HardyLittlewoodC5-MertensB2)/(Niven+ZetaQ(3)) 3645223512029429 m001 ln(Kolakoski)^2/FeigenbaumDelta*LambertW(1)^2 3645223513376703 m001 (Mills+TwinPrimes)/(Psi(2,1/3)+GAMMA(19/24)) 3645223519353648 m001 FeigenbaumKappa/(exp(1/exp(1))^FeigenbaumMu) 3645223525294410 r005 Re(z^2+c),c=-31/98+33/61*I,n=5 3645223526892024 m006 (3*Pi+1/3)/(5*exp(2*Pi)-1/2) 3645223527957383 m001 Pi*2^(1/2)/GAMMA(3/4)*Si(Pi)^ZetaQ(3) 3645223532034446 r009 Im(z^3+c),c=-7/32+26/63*I,n=3 3645223536927537 r002 13th iterates of z^2 + 3645223537687618 a001 610/843*64079^(45/46) 3645223538439504 a001 610/843*167761^(9/10) 3645223538540326 a001 610/843*439204^(5/6) 3645223538549902 a001 377/1364*20633239^(7/10) 3645223538549908 a001 377/1364*17393796001^(1/2) 3645223538549908 a001 377/1364*14662949395604^(7/18) 3645223538549908 a001 377/1364*505019158607^(7/16) 3645223538549908 a001 377/1364*599074578^(7/12) 3645223538556033 a001 610/843*7881196^(15/22) 3645223538556068 a001 610/843*20633239^(9/14) 3645223538556073 a001 610/843*2537720636^(1/2) 3645223538556073 a001 610/843*312119004989^(9/22) 3645223538556073 a001 610/843*14662949395604^(5/14) 3645223538556073 a001 610/843*192900153618^(5/12) 3645223538556073 a001 610/843*28143753123^(9/20) 3645223538556073 a001 610/843*228826127^(9/16) 3645223538556075 a001 610/843*33385282^(5/8) 3645223538556224 a001 377/1364*710647^(7/8) 3645223538556863 a001 610/843*1860498^(3/4) 3645223538873972 a001 610/843*103682^(15/16) 3645223540885134 m001 (Si(Pi)-Zeta(3))/(-GAMMA(13/24)+MinimumGamma) 3645223545498470 m005 (1/2*2^(1/2)-2/11)/(9/10*5^(1/2)-4/7) 3645223552750104 m003 9/2+(33*Sqrt[5])/64+Tan[1/2+Sqrt[5]/2]/4 3645223555352821 m001 1/exp(FeigenbaumB)^2/Khintchine/GAMMA(5/24)^2 3645223560658041 a007 Real Root Of -632*x^4-580*x^3+267*x^2+976*x-352 3645223570108617 k002 Champernowne real with 169/2*n^2-489/2*n+196 3645223587946372 r004 Re(z^2+c),c=-7/10-4/23*I,z(0)=-1,n=35 3645223594420472 a001 726103/281*843^(11/28) 3645223620455609 r005 Im(z^2+c),c=-27/106+34/57*I,n=27 3645223625846463 a007 Real Root Of 20*x^4+746*x^3+603*x^2-573*x-879 3645223626934361 r005 Re(z^2+c),c=-21/44+13/53*I,n=47 3645223633250759 m001 1/Bloch^2/Cahen*exp(sqrt(1+sqrt(3))) 3645223650711709 r002 30th iterates of z^2 + 3645223658537196 a007 Real Root Of 481*x^4+152*x^3-716*x^2-910*x+411 3645223661611920 l006 ln(3681/5300) 3645223663881954 r005 Im(z^2+c),c=17/60+14/61*I,n=32 3645223702246630 a008 Real Root of x^4-2*x^3-30*x^2-22*x+45 3645223713524262 m001 (Chi(1)+gamma)/(Magata+Weierstrass) 3645223723945194 l006 ln(127/4863) 3645223726151112 m001 (Zeta(1,2)+Khinchin)/(Otter+Tribonacci) 3645223746060526 a003 cos(Pi*11/47)*cos(Pi*36/107) 3645223758450863 r005 Re(z^2+c),c=1/19+34/53*I,n=31 3645223765020107 m001 (Cahen+Tribonacci)/(ln(Pi)-arctan(1/2)) 3645223766107717 a007 Real Root Of -601*x^4+193*x^3-940*x^2+667*x+388 3645223773767821 r005 Im(z^2+c),c=-5/6+32/173*I,n=42 3645223778161151 a007 Real Root Of 860*x^4+36*x^3-314*x^2-319*x-88 3645223779671631 r005 Im(z^2+c),c=-13/22+30/67*I,n=6 3645223782599828 a007 Real Root Of 295*x^4+884*x^3-698*x^2+73*x+273 3645223791592620 r005 Re(z^2+c),c=-67/110+18/49*I,n=12 3645223806136632 r005 Im(z^2+c),c=-5/23+43/62*I,n=20 3645223808490959 m002 -1-Log[Pi]/Pi^4+5/ProductLog[Pi] 3645223811029947 m001 (Zeta(3)-LaplaceLimit)/(Magata-Tetranacci) 3645223818999179 r005 Re(z^2+c),c=-12/25+13/57*I,n=61 3645223823279518 r002 42th iterates of z^2 + 3645223825683899 a007 Real Root Of -341*x^4-954*x^3+841*x^2-501*x+998 3645223834620856 m001 (5^(1/2)*GAMMA(5/6)+BesselI(1,2))/GAMMA(5/6) 3645223834620856 m001 (sqrt(5)*GAMMA(5/6)+BesselI(1,2))/GAMMA(5/6) 3645223834969999 m001 (arctan(1/3)+Artin)/(MertensB3+Stephens) 3645223836619272 r005 Im(z^2+c),c=11/56+17/54*I,n=24 3645223850583155 r009 Re(z^3+c),c=-25/66+3/19*I,n=13 3645223851420083 m005 (1/2*3^(1/2)-3/10)/(1/5*5^(1/2)-2) 3645223856820534 r005 Im(z^2+c),c=21/50+1/3*I,n=11 3645223861441736 r005 Re(z^2+c),c=-13/31+23/48*I,n=54 3645223867027753 m001 1/Zeta(3)/Riemann1stZero^2*exp(sqrt(5))^2 3645223878672284 r005 Im(z^2+c),c=-23/18+13/29*I,n=4 3645223885102207 r002 35th iterates of z^2 + 3645223910745889 a007 Real Root Of 967*x^4+851*x^3+313*x^2-114*x-59 3645223914591410 h001 (3/10*exp(2)+6/7)/(1/10*exp(1)+4/7) 3645223916033716 r005 Im(z^2+c),c=-1/66+6/13*I,n=19 3645223921037561 m005 (1/24+1/6*5^(1/2))/(6/7*Zeta(3)-11/12) 3645223922223763 m001 (Grothendieck+ZetaP(2))/(Ei(1,1)-FeigenbaumB) 3645223925214093 r005 Re(z^2+c),c=-12/25+13/57*I,n=59 3645223927622620 m005 (1/2*2^(1/2)-2/7)/(2/9*Zeta(3)+8/9) 3645223930109165 r005 Re(z^2+c),c=-12/25+13/57*I,n=63 3645223942142193 p001 sum((-1)^n/(503*n+346)/n/(32^n),n=1..infinity) 3645223947892489 a005 (1/cos(7/116*Pi))^581 3645223960809606 a001 1346269/843*843^(13/28) 3645223965489135 s001 sum(1/10^(n-1)*A229815[n]/n!^2,n=1..infinity) 3645223969997569 r009 Re(z^3+c),c=-49/122+37/62*I,n=49 3645223970001828 h001 (5/7*exp(1)+3/4)/(10/11*exp(2)+2/3) 3645223971625911 r005 Re(z^2+c),c=-19/40+22/53*I,n=8 3645223976796132 m001 1/GAMMA(5/12)^2/GAMMA(23/24)/ln(arctan(1/2))^2 3645223980515374 m001 GAMMA(3/4)^2/Si(Pi)^2/ln(sqrt(2))^2 3645223986965625 a007 Real Root Of -287*x^4-835*x^3+777*x^2+277*x+914 3645223987946547 s002 sum(A265052[n]/(n^3*exp(n)+1),n=1..infinity) 3645224018081299 l006 ln(5293/7621) 3645224028283195 r005 Im(z^2+c),c=41/114+11/52*I,n=14 3645224028294672 r009 Re(z^3+c),c=-21/58+44/63*I,n=56 3645224049013067 a007 Real Root Of -275*x^4-738*x^3+944*x^2+101*x+633 3645224059648744 a001 199/987*2584^(21/22) 3645224066512839 a001 75025/2207*1364^(29/30) 3645224070622385 m005 (2/3+5/12*5^(1/2))/(2/3*gamma+4) 3645224074797643 a007 Real Root Of 880*x^4-264*x^3-995*x^2-402*x+276 3645224079786189 a003 cos(Pi*8/103)/cos(Pi*29/59) 3645224082265764 r005 Im(z^2+c),c=-81/118+3/46*I,n=43 3645224088490845 r005 Re(z^2+c),c=-7/5+3/53*I,n=12 3645224104160630 s002 sum(A073521[n]/(n*10^n-1),n=1..infinity) 3645224122736740 r005 Re(z^2+c),c=-5/8+57/158*I,n=2 3645224141633524 m001 Pi*2^(1/2)/GAMMA(3/4)+Bloch-ZetaP(2) 3645224141912727 h001 (2/11*exp(1)+3/5)/(9/11*exp(1)+7/9) 3645224143777522 r005 Im(z^2+c),c=-103/118+13/57*I,n=54 3645224145725370 a007 Real Root Of 841*x^4+875*x^3+884*x^2-900*x-418 3645224151089204 a007 Real Root Of -246*x^4-978*x^3-78*x^2+611*x-673 3645224155764083 r005 Re(z^2+c),c=-3/4+3/118*I,n=22 3645224158914202 r005 Re(z^2+c),c=-49/106+16/49*I,n=28 3645224162865871 p004 log(35879/937) 3645224171539961 q001 187/513 3645224171539961 r002 2th iterates of z^2 + 3645224171539961 r002 2th iterates of z^2 + 3645224171539961 r002 2th iterates of z^2 + 3645224171539961 r005 Im(z^2+c),c=-79/114+17/18*I,n=2 3645224172628290 m001 FeigenbaumC/exp(GlaisherKinkelin)*GAMMA(1/3)^2 3645224172917999 r005 Im(z^2+c),c=23/90+15/53*I,n=11 3645224177784406 r002 4th iterates of z^2 + 3645224180522670 r005 Re(z^2+c),c=-12/25+13/57*I,n=58 3645224196952102 a001 121393/2207*1364^(9/10) 3645224208112254 l006 ln(6905/9942) 3645224212171264 m001 (PrimesInBinary-ZetaP(4))/(GAMMA(23/24)-Paris) 3645224242917234 r009 Im(z^3+c),c=-35/86+19/60*I,n=7 3645224245277306 r005 Re(z^2+c),c=-15/34+23/56*I,n=40 3645224256531489 a007 Real Root Of 282*x^4+804*x^3-989*x^2-778*x-542 3645224266685666 r002 5th iterates of z^2 + 3645224275896069 r005 Re(z^2+c),c=-31/70+23/57*I,n=60 3645224280033709 m001 (arctan(1/2)+BesselK(1,1))/(Backhouse+Porter) 3645224286897544 r005 Re(z^2+c),c=-15/31+11/51*I,n=13 3645224310313921 r009 Re(z^3+c),c=-13/27+7/24*I,n=38 3645224317154601 r005 Re(z^2+c),c=-12/25+13/57*I,n=64 3645224321573405 m002 5+Pi^3*Cosh[Pi]+Csch[Pi]*Log[Pi] 3645224325623452 m002 -(ProductLog[Pi]^2/E^Pi)+Sech[Pi] 3645224326095473 p004 log(26153/683) 3645224326307007 p001 sum(1/(543*n+530)/n/(256^n),n=1..infinity) 3645224327196765 a001 832040/843*843^(15/28) 3645224327638735 a001 196418/2207*1364^(5/6) 3645224327757120 a007 Real Root Of 536*x^4-231*x^3+617*x^2-717*x-364 3645224328273552 a001 199/10946*20365011074^(17/24) 3645224339472400 m001 (gamma(2)+AlladiGrinstead)/(Chi(1)-Shi(1)) 3645224339472400 m001 (gamma(2)+AlladiGrinstead)/Ei(1,1) 3645224343460153 r005 Re(z^2+c),c=-41/66+11/56*I,n=11 3645224345507192 r009 Im(z^3+c),c=-31/90+19/56*I,n=12 3645224350535163 r005 Re(z^2+c),c=-6/13+19/58*I,n=22 3645224355715770 r005 Re(z^2+c),c=-37/29+2/49*I,n=30 3645224363538461 m001 (Thue-ZetaP(4))/(AlladiGrinstead-Otter) 3645224374310565 r005 Im(z^2+c),c=-3/106+30/61*I,n=13 3645224402696072 r005 Im(z^2+c),c=1/66+23/52*I,n=27 3645224411902569 m005 (1/3*Catalan+1/5)/(11/12*gamma+6/7) 3645224421382172 m005 (5/6*Catalan+3/4)/(3/5*2^(1/2)-5) 3645224422174645 a005 (1/cos(33/229*Pi))^576 3645224433184568 r002 2i'th iterates of 2*x/(1-x^2) of 3645224443610009 r009 Re(z^3+c),c=-21/58+44/63*I,n=61 3645224445882435 a001 5778/89*196418^(17/24) 3645224446985989 m005 (1/2*exp(1)-3/11)/(4/5*2^(1/2)-5/6) 3645224449380626 a001 322/2971215073*8^(7/12) 3645224458230887 a001 317811/2207*1364^(23/30) 3645224459678195 r005 Re(z^2+c),c=-12/25+13/57*I,n=62 3645224467032079 p004 log(29333/28283) 3645224474446291 r005 Im(z^2+c),c=5/94+18/43*I,n=50 3645224475802987 r002 13th iterates of z^2 + 3645224481207712 a007 Real Root Of -142*x^4-728*x^3-613*x^2+514*x-171 3645224484120250 a001 39088169/1364*199^(1/22) 3645224489795918 r002 2th iterates of z^2 + 3645224492093206 r005 Re(z^2+c),c=-12/25+13/57*I,n=60 3645224495689523 r005 Re(z^2+c),c=-12/25+13/57*I,n=49 3645224496099906 r005 Re(z^2+c),c=29/82+7/54*I,n=49 3645224501172522 r005 Re(z^2+c),c=-89/122+7/8*I,n=3 3645224504288391 r005 Re(z^2+c),c=-12/25+13/57*I,n=57 3645224504612607 a007 Real Root Of -804*x^4-657*x^3+612*x^2+685*x-285 3645224517491878 r005 Im(z^2+c),c=-18/29+4/59*I,n=40 3645224519697547 m001 1/exp(Riemann2ndZero)*LandauRamanujan^2*sin(1) 3645224540462696 m001 1/exp(GAMMA(13/24))*MadelungNaCl*Zeta(5)^2 3645224543921752 r005 Im(z^2+c),c=5/94+18/43*I,n=49 3645224547573244 r002 5th iterates of z^2 + 3645224549303172 a001 3571/1597*55^(5/41) 3645224550096593 m001 (OrthogonalArrays+Salem)/(GAMMA(17/24)-gamma) 3645224559963225 m001 ln(Sierpinski)^2/LaplaceLimit/GAMMA(11/24)^2 3645224560016094 r005 Im(z^2+c),c=-139/118+2/55*I,n=5 3645224564011045 m005 (1/3*2^(1/2)+1/7)/(6/7*Catalan+9/10) 3645224567865065 s002 sum(A142675[n]/(n*exp(pi*n)+1),n=1..infinity) 3645224568143532 m005 (1/2*2^(1/2)-4)/(1/7*Pi+5/11) 3645224573109217 k002 Champernowne real with 85*n^2-246*n+197 3645224588859134 a001 514229/2207*1364^(7/10) 3645224620264552 m002 -3+E^Pi+Pi^2+6*ProductLog[Pi] 3645224627417133 a007 Real Root Of 143*x^4+388*x^3-470*x^2+305*x+902 3645224627887364 r005 Im(z^2+c),c=-47/78+4/49*I,n=20 3645224637955551 r005 Re(z^2+c),c=-3/34+53/63*I,n=27 3645224638400315 b008 E+Cos[5/13] 3645224641337762 r005 Re(z^2+c),c=-41/114+20/39*I,n=25 3645224643145289 r005 Re(z^2+c),c=7/58+16/59*I,n=21 3645224657422990 s002 sum(A254760[n]/(n*exp(n)-1),n=1..infinity) 3645224657767811 a008 Real Root of x^5-2*x^4-14*x^3+31*x^2-2*x-17 3645224664894197 m005 (1/3*Zeta(3)+2/7)/(167/154+5/14*5^(1/2)) 3645224669234578 m001 FeigenbaumMu^(3^(1/3))/(Backhouse^(3^(1/3))) 3645224676657785 r005 Re(z^2+c),c=-25/44+12/59*I,n=9 3645224680600976 m001 exp(Riemann1stZero)/MadelungNaCl^2*cos(Pi/5) 3645224687572775 a007 Real Root Of -381*x^4+362*x^3-616*x^2+488*x+284 3645224693589227 a001 514229/843*843^(17/28) 3645224693594301 h001 (3/10*exp(2)+4/11)/(9/10*exp(2)+3/7) 3645224705591445 a001 98209/2889*1364^(29/30) 3645224709875885 r002 4th iterates of z^2 + 3645224713004348 a008 Real Root of x^3+238*x-916 3645224719473600 a001 832040/2207*1364^(19/30) 3645224719480484 m005 (1/2*Zeta(3)+8/9)/(2/5*exp(1)+3) 3645224720742195 r005 Im(z^2+c),c=-2/29+26/53*I,n=31 3645224720898235 m001 arctan(1/3)*(cos(1)+Lehmer) 3645224721839562 a007 Real Root Of -878*x^4-181*x^3+19*x^2+891*x+329 3645224742160499 m005 (1/3*gamma+3/5)/(2/9*5^(1/2)-5/7) 3645224747938956 h001 (3/7*exp(2)+2/7)/(1/11*exp(1)+7/10) 3645224754935624 r005 Im(z^2+c),c=5/94+18/43*I,n=53 3645224757900921 a001 1/322*3^(7/48) 3645224762321228 m001 (Cahen+FransenRobinson)/(ln(2)-GAMMA(13/24)) 3645224766319384 m005 (1/3*Catalan-1/2)/(7/11*5^(1/2)-8/9) 3645224771251705 p003 LerchPhi(1/256,5,417/215) 3645224783286552 m001 (-MertensB3+ZetaQ(2))/(BesselI(1,1)-Catalan) 3645224784076631 m001 (cos(1/12*Pi)+Cahen)^exp(1) 3645224784076631 m001 (cos(Pi/12)+Cahen)^exp(1) 3645224788174834 h001 (2/9*exp(2)+4/11)/(7/11*exp(2)+4/5) 3645224796876237 b008 Gamma[3+Tanh[2/3]] 3645224797226744 r005 Im(z^2+c),c=-5/32+6/11*I,n=29 3645224797291831 a003 cos(Pi*19/85)/cos(Pi*37/75) 3645224798831776 a001 514229/15127*1364^(29/30) 3645224801232643 m003 -17/4+(Sqrt[5]*Coth[1/2+Sqrt[5]/2])/4 3645224807897270 r005 Im(z^2+c),c=-17/30+6/91*I,n=56 3645224809085811 a003 sin(Pi*6/89)/cos(Pi*7/23) 3645224810305916 r005 Re(z^2+c),c=-59/122+13/64*I,n=40 3645224812435358 a001 1346269/39603*1364^(29/30) 3645224814594173 m005 (1/2*Pi+1/3)/(1/4*gamma-2/3) 3645224815646728 a001 2178309/64079*1364^(29/30) 3645224820842833 a001 208010/6119*1364^(29/30) 3645224822592518 m009 (4*Catalan+1/2*Pi^2+5)/(Psi(1,2/3)+2/3) 3645224832078634 l006 ln(1612/2321) 3645224836183611 a001 105937/1926*1364^(9/10) 3645224841763597 m006 (5/6/Pi+3/4)/(1/4*exp(Pi)-3) 3645224844799106 a007 Real Root Of 390*x^4+506*x^3+830*x^2-994*x-455 3645224845727963 r005 Im(z^2+c),c=-9/17+21/47*I,n=10 3645224849661798 r005 Re(z^2+c),c=37/122+2/53*I,n=60 3645224850093337 a001 1346269/2207*1364^(17/30) 3645224853107934 g007 Psi(2,3/7)+Psi(2,2/5)-14*Zeta(3)-Psi(2,3/8) 3645224856457472 a001 317811/9349*1364^(29/30) 3645224858004694 m005 (1/3*Pi-1/9)/(3/11*Pi-3/5) 3645224863873587 r005 Re(z^2+c),c=33/122+17/38*I,n=59 3645224867091781 a007 Real Root Of 508*x^4+234*x^3+393*x^2-368*x-184 3645224871021407 m001 (-Niven+StronglyCareFree)/(Si(Pi)+ArtinRank2) 3645224874398369 a005 (1/cos(52/141*Pi))^14 3645224888836956 a003 sin(Pi*4/101)-sin(Pi*13/80) 3645224903410958 r005 Re(z^2+c),c=-9/22+17/59*I,n=6 3645224911184321 r004 Im(z^2+c),c=2/7+5/22*I,z(0)=exp(5/8*I*Pi),n=50 3645224927099981 a001 2/710647*199^(15/31) 3645224929446250 a001 832040/15127*1364^(9/10) 3645224933605047 a007 Real Root Of -945*x^4-176*x^3+710*x^2+979*x-426 3645224940966765 m005 (1/2*2^(1/2)-7/9)/(5/9*exp(1)+3/7) 3645224941494774 m001 (Stephens-ZetaP(3))/(Ei(1)-Kolakoski) 3645224943053086 a001 726103/13201*1364^(9/10) 3645224943350467 m001 ln(CareFree)^2/FeigenbaumDelta/Khintchine^2 3645224945038297 a001 5702887/103682*1364^(9/10) 3645224945327935 a001 4976784/90481*1364^(9/10) 3645224945370193 a001 39088169/710647*1364^(9/10) 3645224945376358 a001 831985/15126*1364^(9/10) 3645224945377258 a001 267914296/4870847*1364^(9/10) 3645224945377389 a001 233802911/4250681*1364^(9/10) 3645224945377408 a001 1836311903/33385282*1364^(9/10) 3645224945377411 a001 1602508992/29134601*1364^(9/10) 3645224945377411 a001 12586269025/228826127*1364^(9/10) 3645224945377411 a001 10983760033/199691526*1364^(9/10) 3645224945377411 a001 86267571272/1568397607*1364^(9/10) 3645224945377411 a001 75283811239/1368706081*1364^(9/10) 3645224945377411 a001 591286729879/10749957122*1364^(9/10) 3645224945377411 a001 12585437040/228811001*1364^(9/10) 3645224945377411 a001 4052739537881/73681302247*1364^(9/10) 3645224945377411 a001 3536736619241/64300051206*1364^(9/10) 3645224945377411 a001 6557470319842/119218851371*1364^(9/10) 3645224945377411 a001 2504730781961/45537549124*1364^(9/10) 3645224945377411 a001 956722026041/17393796001*1364^(9/10) 3645224945377411 a001 365435296162/6643838879*1364^(9/10) 3645224945377411 a001 139583862445/2537720636*1364^(9/10) 3645224945377411 a001 53316291173/969323029*1364^(9/10) 3645224945377411 a001 20365011074/370248451*1364^(9/10) 3645224945377412 a001 7778742049/141422324*1364^(9/10) 3645224945377413 a001 2971215073/54018521*1364^(9/10) 3645224945377420 a001 1134903170/20633239*1364^(9/10) 3645224945377470 a001 433494437/7881196*1364^(9/10) 3645224945377814 a001 165580141/3010349*1364^(9/10) 3645224945380169 a001 63245986/1149851*1364^(9/10) 3645224945396310 a001 24157817/439204*1364^(9/10) 3645224945506942 a001 9227465/167761*1364^(9/10) 3645224946265225 a001 3524578/64079*1364^(9/10) 3645224948721131 a007 Real Root Of 117*x^4-717*x^3-439*x^2-915*x-312 3645224951462574 a001 1346269/24476*1364^(9/10) 3645224966811872 a001 514229/5778*1364^(5/6) 3645224980711067 a001 987*1364^(1/2) 3645224983440812 s002 sum(A032386[n]/(exp(n)-1),n=1..infinity) 3645224986137967 r005 Im(z^2+c),c=5/94+18/43*I,n=57 3645224987085733 a001 514229/9349*1364^(9/10) 3645224991969755 a001 10749957122/1597*317811^(2/15) 3645224991970718 a001 4106118243/1597*433494437^(2/15) 3645224991970718 a001 1568397607/1597*591286729879^(2/15) 3645224999469090 r005 Re(z^2+c),c=-35/31+5/7*I,n=2 3645225008938747 r002 3th iterates of z^2 + 3645225012816157 m001 Tribonacci^2*ln(Magata)*Zeta(1,2)^2 3645225022270326 a003 cos(Pi*18/101)-cos(Pi*18/53) 3645225024868792 r005 Im(z^2+c),c=5/94+18/43*I,n=56 3645225028382521 r005 Im(z^2+c),c=2/21+17/44*I,n=13 3645225033566876 r005 Im(z^2+c),c=5/94+18/43*I,n=60 3645225037600407 a001 9349/4181*55^(5/41) 3645225038419651 r009 Im(z^3+c),c=-10/29+18/53*I,n=24 3645225042304697 m001 GAMMA(7/24)^2/exp(LaplaceLimit)^2*Zeta(3)^2 3645225045233706 r002 31i'th iterates of 2*x/(1-x^2) of 3645225052871841 a007 Real Root Of 808*x^4-362*x^3+570*x^2-314*x-222 3645225059289940 r005 Im(z^2+c),c=5/94+18/43*I,n=54 3645225059569320 r005 Im(z^2+c),c=5/94+18/43*I,n=64 3645225059937448 p001 sum(1/(40*n+29)/(8^n),n=0..infinity) 3645225059967940 a001 377*843^(19/28) 3645225060065994 a001 1346269/15127*1364^(5/6) 3645225061546045 r009 Im(z^3+c),c=-67/114+13/28*I,n=22 3645225064723581 r005 Im(z^2+c),c=5/94+18/43*I,n=61 3645225068103336 r005 Im(z^2+c),c=5/94+18/43*I,n=63 3645225073671588 a001 3524578/39603*1364^(5/6) 3645225074787841 r005 Im(z^2+c),c=1/11+13/33*I,n=34 3645225075656617 a001 9227465/103682*1364^(5/6) 3645225075946229 a001 24157817/271443*1364^(5/6) 3645225075988483 a001 63245986/710647*1364^(5/6) 3645225075994648 a001 165580141/1860498*1364^(5/6) 3645225075995547 a001 433494437/4870847*1364^(5/6) 3645225075995678 a001 1134903170/12752043*1364^(5/6) 3645225075995697 a001 2971215073/33385282*1364^(5/6) 3645225075995700 a001 7778742049/87403803*1364^(5/6) 3645225075995701 a001 20365011074/228826127*1364^(5/6) 3645225075995701 a001 53316291173/599074578*1364^(5/6) 3645225075995701 a001 139583862445/1568397607*1364^(5/6) 3645225075995701 a001 365435296162/4106118243*1364^(5/6) 3645225075995701 a001 956722026041/10749957122*1364^(5/6) 3645225075995701 a001 2504730781961/28143753123*1364^(5/6) 3645225075995701 a001 6557470319842/73681302247*1364^(5/6) 3645225075995701 a001 10610209857723/119218851371*1364^(5/6) 3645225075995701 a001 4052739537881/45537549124*1364^(5/6) 3645225075995701 a001 1548008755920/17393796001*1364^(5/6) 3645225075995701 a001 591286729879/6643838879*1364^(5/6) 3645225075995701 a001 225851433717/2537720636*1364^(5/6) 3645225075995701 a001 86267571272/969323029*1364^(5/6) 3645225075995701 a001 32951280099/370248451*1364^(5/6) 3645225075995701 a001 12586269025/141422324*1364^(5/6) 3645225075995702 a001 4807526976/54018521*1364^(5/6) 3645225075995709 a001 1836311903/20633239*1364^(5/6) 3645225075995759 a001 3524667/39604*1364^(5/6) 3645225075996103 a001 267914296/3010349*1364^(5/6) 3645225075998458 a001 102334155/1149851*1364^(5/6) 3645225076014597 a001 39088169/439204*1364^(5/6) 3645225076125219 a001 14930352/167761*1364^(5/6) 3645225076883433 a001 5702887/64079*1364^(5/6) 3645225082080307 a001 2178309/24476*1364^(5/6) 3645225085761367 l006 ln(151/5782) 3645225094051624 r005 Im(z^2+c),c=5/94+18/43*I,n=62 3645225096775611 r005 Im(z^2+c),c=29/118+11/40*I,n=16 3645225097426352 a001 416020/2889*1364^(23/30) 3645225100563858 a001 121393/3571*1364^(29/30) 3645225103254021 r005 Im(z^2+c),c=5/94+18/43*I,n=59 3645225108842018 a001 12238/5473*55^(5/41) 3645225109089986 a001 5374978561/305*233^(2/15) 3645225114400992 r005 Re(z^2+c),c=-9/19+5/18*I,n=19 3645225117700214 a001 832040/9349*1364^(5/6) 3645225119236030 a001 64079/28657*55^(5/41) 3645225122184783 r005 Im(z^2+c),c=5/94+18/43*I,n=58 3645225125659882 a001 39603/17711*55^(5/41) 3645225138710735 p004 log(20231/14051) 3645225140962966 a001 2207/8*21^(39/46) 3645225148208487 m005 (1/3*gamma-3/4)/(9/11+7/22*5^(1/2)) 3645225152871757 a001 15127/6765*55^(5/41) 3645225157077009 r005 Re(z^2+c),c=-9/19+5/33*I,n=8 3645225175121887 r009 Im(z^3+c),c=-25/62+7/29*I,n=3 3645225190683732 a001 311187/2161*1364^(23/30) 3645225200110884 m001 (-polylog(4,1/2)+ZetaQ(4))/(Chi(1)+gamma) 3645225201809258 a007 Real Root Of -219*x^4-795*x^3-239*x^2-942*x-98 3645225211972315 a001 987/2207*6643838879^(1/2) 3645225216474421 h001 (6/7*exp(1)+1/8)/(8/9*exp(2)+1/6) 3645225228046102 a001 1346269/5778*1364^(7/10) 3645225231250523 a001 196418/3571*1364^(9/10) 3645225236118383 a001 28143753123/4181*317811^(2/15) 3645225236119345 a001 4106118243/4181*591286729879^(2/15) 3645225236119345 a001 10749957122/4181*433494437^(2/15) 3645225236568828 a007 Real Root Of -72*x^4+342*x^3-572*x^2+999*x+458 3645225239377262 r002 27th iterates of z^2 + 3645225243486378 a001 144*322^(23/24) 3645225244320222 m001 Robbin^2/exp(FeigenbaumB)^2*TreeGrowth2nd 3645225245176994 m001 (Pi^(1/2)+Champernowne)/(OneNinth+ThueMorse) 3645225245482471 r009 Im(z^3+c),c=-41/78+19/61*I,n=31 3645225247675574 r005 Im(z^2+c),c=8/29+5/21*I,n=31 3645225248319965 a001 1346269/9349*1364^(23/30) 3645225249891519 r005 Im(z^2+c),c=5/94+18/43*I,n=55 3645225250252894 r005 Im(z^2+c),c=37/110+2/13*I,n=61 3645225262438443 r005 Im(z^2+c),c=5/94+18/43*I,n=52 3645225262713214 m001 (OneNinth-ThueMorse)/(Ei(1,1)-GAMMA(11/12)) 3645225263219693 r009 Im(z^3+c),c=-35/86+31/53*I,n=14 3645225263907745 h001 (1/9*exp(1)+4/7)/(5/7*exp(1)+5/11) 3645225271739191 a001 73681302247/10946*317811^(2/15) 3645225271740153 a001 5374978561/5473*591286729879^(2/15) 3645225271740153 a001 28143753123/10946*433494437^(2/15) 3645225276936196 a001 192900153618/28657*317811^(2/15) 3645225276937159 a001 28143753123/28657*591286729879^(2/15) 3645225276937159 a001 73681302247/28657*433494437^(2/15) 3645225277694429 a001 505019158607/75025*317811^(2/15) 3645225277695392 a001 73681302247/75025*591286729879^(2/15) 3645225277695392 a001 192900153618/75025*433494437^(2/15) 3645225277805054 a001 1322157322203/196418*317811^(2/15) 3645225277806016 a001 96450076809/98209*591286729879^(2/15) 3645225277806016 a001 505019158607/196418*433494437^(2/15) 3645225277821194 a001 3461452808002/514229*317811^(2/15) 3645225277822156 a001 505019158607/514229*591286729879^(2/15) 3645225277822156 a001 1322157322203/514229*433494437^(2/15) 3645225277823549 a001 9062201101803/1346269*317811^(2/15) 3645225277823892 a001 23725150497407/3524578*317811^(2/15) 3645225277824105 a001 14662949395604/2178309*317811^(2/15) 3645225277824511 a001 1322157322203/1346269*591286729879^(2/15) 3645225277824511 a001 3461452808002/1346269*433494437^(2/15) 3645225277824855 a001 1730726404001/1762289*591286729879^(2/15) 3645225277824855 a001 9062201101803/3524578*433494437^(2/15) 3645225277824905 a001 9062201101803/9227465*591286729879^(2/15) 3645225277824905 a001 23725150497407/9227465*433494437^(2/15) 3645225277824912 a001 23725150497407/24157817*591286729879^(2/15) 3645225277824917 a001 192933544679/196452*591286729879^(2/15) 3645225277824936 a001 5600748293801/5702887*591286729879^(2/15) 3645225277824936 a001 14662949395604/5702887*433494437^(2/15) 3645225277825004 a001 5600748293801/832040*317811^(2/15) 3645225277825067 a001 2139295485799/2178309*591286729879^(2/15) 3645225277825067 a001 5600748293801/2178309*433494437^(2/15) 3645225277825966 a001 204284540899/208010*591286729879^(2/15) 3645225277825966 a001 2139295485799/832040*433494437^(2/15) 3645225277831169 a001 2139295485799/317811*317811^(2/15) 3645225277832131 a001 312119004989/317811*591286729879^(2/15) 3645225277832131 a001 817138163596/317811*433494437^(2/15) 3645225277873424 a001 817138163596/121393*317811^(2/15) 3645225277874386 a001 119218851371/121393*591286729879^(2/15) 3645225277874386 a001 312119004989/121393*433494437^(2/15) 3645225278163043 a001 312119004989/46368*317811^(2/15) 3645225278164005 a001 11384387281/11592*591286729879^(2/15) 3645225278164005 a001 119218851371/46368*433494437^(2/15) 3645225280148123 a001 119218851371/17711*317811^(2/15) 3645225280149085 a001 17393796001/17711*591286729879^(2/15) 3645225280149085 a001 45537549124/17711*433494437^(2/15) 3645225289369338 a001 1/39603*7^(10/53) 3645225291493350 a001 6/7*196418^(4/13) 3645225293754061 a001 45537549124/6765*317811^(2/15) 3645225293755023 a001 6643838879/6765*591286729879^(2/15) 3645225293755023 a001 17393796001/6765*433494437^(2/15) 3645225294398542 r005 Im(z^2+c),c=5/94+18/43*I,n=47 3645225302528213 m001 (FeigenbaumKappa+FellerTornier)/(1+Zeta(1/2)) 3645225303996755 a007 Real Root Of 203*x^4+653*x^3-93*x^2+546*x-987 3645225318905074 a007 Real Root Of 279*x^4+847*x^3-589*x^2-61*x-631 3645225319729485 r009 Re(z^3+c),c=-35/86+26/45*I,n=12 3645225320595522 p003 LerchPhi(1/6,6,301/173) 3645225321302242 a001 3524578/15127*1364^(7/10) 3645225322102217 m001 (ln(2)+Lehmer)/(exp(1)+cos(1/5*Pi)) 3645225325998243 m001 GolombDickman/(Porter^OrthogonalArrays) 3645225327588355 r002 7th iterates of z^2 + 3645225334908130 a001 9227465/39603*1364^(7/10) 3645225336893203 a001 24157817/103682*1364^(7/10) 3645225337182821 a001 63245986/271443*1364^(7/10) 3645225337225075 a001 165580141/710647*1364^(7/10) 3645225337231240 a001 433494437/1860498*1364^(7/10) 3645225337232140 a001 1134903170/4870847*1364^(7/10) 3645225337232271 a001 2971215073/12752043*1364^(7/10) 3645225337232290 a001 7778742049/33385282*1364^(7/10) 3645225337232293 a001 20365011074/87403803*1364^(7/10) 3645225337232293 a001 53316291173/228826127*1364^(7/10) 3645225337232293 a001 139583862445/599074578*1364^(7/10) 3645225337232293 a001 365435296162/1568397607*1364^(7/10) 3645225337232293 a001 956722026041/4106118243*1364^(7/10) 3645225337232293 a001 2504730781961/10749957122*1364^(7/10) 3645225337232293 a001 6557470319842/28143753123*1364^(7/10) 3645225337232293 a001 10610209857723/45537549124*1364^(7/10) 3645225337232293 a001 4052739537881/17393796001*1364^(7/10) 3645225337232293 a001 1548008755920/6643838879*1364^(7/10) 3645225337232293 a001 591286729879/2537720636*1364^(7/10) 3645225337232293 a001 225851433717/969323029*1364^(7/10) 3645225337232293 a001 86267571272/370248451*1364^(7/10) 3645225337232294 a001 63246219/271444*1364^(7/10) 3645225337232295 a001 12586269025/54018521*1364^(7/10) 3645225337232302 a001 4807526976/20633239*1364^(7/10) 3645225337232352 a001 1836311903/7881196*1364^(7/10) 3645225337232696 a001 701408733/3010349*1364^(7/10) 3645225337235050 a001 267914296/1149851*1364^(7/10) 3645225337251190 a001 102334155/439204*1364^(7/10) 3645225337273401 a005 (1/cos(33/149*Pi))^31 3645225337361815 a001 39088169/167761*1364^(7/10) 3645225338120045 a001 14930352/64079*1364^(7/10) 3645225339384727 a001 2889/1292*55^(5/41) 3645225342813444 r005 Im(z^2+c),c=-5/6+41/202*I,n=9 3645225343317032 a001 5702887/24476*1364^(7/10) 3645225344162573 r005 Re(z^2+c),c=-61/86+5/21*I,n=35 3645225345273399 r005 Re(z^2+c),c=33/74+11/31*I,n=5 3645225358663845 a001 726103/1926*1364^(19/30) 3645225361842707 a001 317811/3571*1364^(5/6) 3645225369778426 r008 a(0)=0,K{-n^6,59-12*n^2-20*n^3} 3645225372566115 a001 9227465/2207*1364^(3/10) 3645225373329828 a007 Real Root Of 544*x^4+971*x^3+597*x^2-933*x-382 3645225374723332 a007 Real Root Of 169*x^4+578*x^3-20*x^2+299*x-487 3645225376879368 m002 Cosh[Pi]+3/Log[Pi]+Pi^5*Log[Pi] 3645225378937709 a001 2178309/9349*1364^(7/10) 3645225379850571 m005 (1/2*2^(1/2)+6)/(2/5*Pi+7/12) 3645225387010550 a001 17393796001/2584*317811^(2/15) 3645225387011512 a001 33391061/34*591286729879^(2/15) 3645225387011512 a001 6643838879/2584*433494437^(2/15) 3645225405242475 m005 (1/2*3^(1/2)+4)/(5/7*Pi-10/11) 3645225405306138 r005 Re(z^2+c),c=-55/118+15/59*I,n=13 3645225415883964 r009 Im(z^3+c),c=-5/14+1/3*I,n=8 3645225418200388 a007 Real Root Of -487*x^4-490*x^3-998*x^2+284*x+221 3645225420266198 r005 Re(z^2+c),c=21/58+21/64*I,n=37 3645225426382780 a001 196418/843*843^(3/4) 3645225434065696 h001 (2/7*exp(1)+7/11)/(1/2*exp(2)+2/11) 3645225441467354 a007 Real Root Of -300*x^4-805*x^3+886*x^2-357*x+903 3645225457688072 r009 Im(z^3+c),c=-17/46+18/55*I,n=22 3645225479589540 r005 Re(z^2+c),c=-47/110+23/51*I,n=49 3645225485058662 r005 Re(z^2+c),c=-8/17+13/54*I,n=15 3645225486335307 s001 sum(1/10^(n-1)*A273498[n]/n!^2,n=1..infinity) 3645225491953469 a007 Real Root Of 911*x^4+105*x^3+39*x^2-924*x-353 3645225492470986 a001 514229/3571*1364^(23/30) 3645225497606449 r005 Re(z^2+c),c=-25/18+44/105*I,n=2 3645225515580150 r005 Im(z^2+c),c=-5/122+17/35*I,n=16 3645225517042233 r002 36th iterates of z^2 + 3645225525860867 r009 Re(z^3+c),c=-17/36+11/38*I,n=21 3645225530244330 m004 -4-125*Pi+5*Sqrt[5]*Pi*Tan[Sqrt[5]*Pi] 3645225533844854 a007 Real Root Of 119*x^4+257*x^3-496*x^2+792*x+915 3645225534694420 a007 Real Root Of -945*x^4+324*x^3-95*x^2+716*x+306 3645225540231519 r005 Im(z^2+c),c=5/94+18/43*I,n=51 3645225546144122 m009 (1/6*Psi(1,1/3)-4)/(6*Psi(1,1/3)+3) 3645225551238635 l006 ln(5991/8626) 3645225559733484 r005 Re(z^2+c),c=31/122+22/43*I,n=56 3645225560921418 r009 Im(z^3+c),c=-39/94+40/63*I,n=10 3645225566328012 m001 (Pi-Zeta(1,2))/(Cahen+PlouffeB) 3645225576109817 k002 Champernowne real with 171/2*n^2-495/2*n+198 3645225582528756 b008 2+(-4+Pi^2)^2 3645225587327860 a001 13/11*4^(13/16) 3645225599569343 m001 (arctan(1/2)-Sierpinski)/LandauRamanujan2nd 3645225610498716 m001 (-sin(1)+3)/(sin(Pi/12)+1/3) 3645225619900589 a001 5702887/5778*1364^(1/2) 3645225622095299 p004 log(23557/16361) 3645225622508757 r005 Re(z^2+c),c=5/54+19/49*I,n=19 3645225623085485 a001 832040/3571*1364^(7/10) 3645225633802721 a001 24157817/2207*1364^(1/6) 3645225652163877 m001 Pi+ln(2)/ln(10)*(2^(1/2)+sin(1/12*Pi)) 3645225660798056 a007 Real Root Of -443*x^4-176*x^3+125*x^2+729*x-266 3645225662729243 m001 Robbin^(ReciprocalFibonacci/exp(1/Pi)) 3645225662888171 m001 BesselJZeros(0,1)/((2/3)^GAMMA(23/24)) 3645225683789475 a001 28657/2207*3571^(33/34) 3645225690884699 r005 Re(z^2+c),c=-12/25+13/57*I,n=55 3645225699377585 a001 46368/2207*3571^(31/34) 3645225701853411 m001 Ei(1)^2*FransenRobinson*exp(GAMMA(17/24)) 3645225713151265 p004 log(31667/827) 3645225713157103 a001 14930352/15127*1364^(1/2) 3645225716661155 a001 75025/2207*3571^(29/34) 3645225722206677 m001 Chi(1)^Rabbit-polylog(4,1/2) 3645225725603773 m005 (1/2*5^(1/2)-5)/(7/11*Zeta(3)+3/10) 3645225726763045 a001 39088169/39603*1364^(1/2) 3645225728748125 a001 102334155/103682*1364^(1/2) 3645225729037745 a001 267914296/271443*1364^(1/2) 3645225729079999 a001 701408733/710647*1364^(1/2) 3645225729086164 a001 1836311903/1860498*1364^(1/2) 3645225729087064 a001 4807526976/4870847*1364^(1/2) 3645225729087195 a001 12586269025/12752043*1364^(1/2) 3645225729087214 a001 32951280099/33385282*1364^(1/2) 3645225729087217 a001 86267571272/87403803*1364^(1/2) 3645225729087217 a001 225851433717/228826127*1364^(1/2) 3645225729087217 a001 591286729879/599074578*1364^(1/2) 3645225729087217 a001 1548008755920/1568397607*1364^(1/2) 3645225729087217 a001 4052739537881/4106118243*1364^(1/2) 3645225729087217 a001 4807525989/4870846*1364^(1/2) 3645225729087217 a001 6557470319842/6643838879*1364^(1/2) 3645225729087217 a001 2504730781961/2537720636*1364^(1/2) 3645225729087217 a001 956722026041/969323029*1364^(1/2) 3645225729087218 a001 365435296162/370248451*1364^(1/2) 3645225729087218 a001 139583862445/141422324*1364^(1/2) 3645225729087219 a001 53316291173/54018521*1364^(1/2) 3645225729087226 a001 20365011074/20633239*1364^(1/2) 3645225729087276 a001 7778742049/7881196*1364^(1/2) 3645225729087620 a001 2971215073/3010349*1364^(1/2) 3645225729089975 a001 1134903170/1149851*1364^(1/2) 3645225729106114 a001 433494437/439204*1364^(1/2) 3645225729216739 a001 165580141/167761*1364^(1/2) 3645225729974972 a001 63245986/64079*1364^(1/2) 3645225733297118 a001 121393/2207*3571^(27/34) 3645225735171980 a001 24157817/24476*1364^(1/2) 3645225737418434 a001 20365011074/47*18^(14/19) 3645225749537671 m005 (3/5*Pi+1/4)/(4*2^(1/2)+1/5) 3645225749867089 r005 Re(z^2+c),c=-33/52+13/44*I,n=27 3645225750180444 a001 196418/2207*3571^(25/34) 3645225751992046 a001 505019158607/233*2^(3/4) 3645225753705254 a001 1346269/3571*1364^(19/30) 3645225762167240 a007 Real Root Of 861*x^4-380*x^3-440*x^2-968*x-328 3645225763930424 m001 (2^(1/2)+Gompertz)^Si(Pi) 3645225764421033 a001 39088169/2207*1364^(1/10) 3645225766969286 a001 317811/2207*3571^(23/34) 3645225770240248 r005 Re(z^2+c),c=-67/118+13/37*I,n=21 3645225770792800 a001 9227465/9349*1364^(1/2) 3645225783794218 a001 514229/2207*3571^(21/34) 3645225785020213 a007 Real Root Of -613*x^4-821*x^3-427*x^2+744*x+299 3645225785554305 m006 (3/4/Pi+3)/(1/6*exp(2*Pi)-2/5) 3645225792533307 r005 Re(z^2+c),c=-21/44+13/53*I,n=49 3645225792703173 a001 121393/843*843^(23/28) 3645225796338476 h001 (1/6*exp(2)+10/11)/(7/10*exp(2)+7/10) 3645225800605365 a001 832040/2207*3571^(19/34) 3645225814610479 a007 Real Root Of -37*x^4-157*x^3-141*x^2-257*x-135 3645225815976215 l006 ln(4379/6305) 3645225817338147 r005 Im(z^2+c),c=8/25+4/63*I,n=37 3645225817421777 a001 1346269/2207*3571^(1/2) 3645225834236179 a001 987*3571^(15/34) 3645225843903095 r005 Re(z^2+c),c=-7/10+27/68*I,n=5 3645225848107343 m001 (FeigenbaumMu+Khinchin)/(Niven+Trott) 3645225851143900 a001 329/1926*439204^(17/18) 3645225851161702 a001 329/1926*7881196^(17/22) 3645225851161747 a001 329/1926*45537549124^(1/2) 3645225851161750 a001 329/1926*33385282^(17/24) 3645225851161764 a001 329/1926*12752043^(3/4) 3645225851161898 a001 2584/2207*969323029^(1/2) 3645225851162643 a001 329/1926*1860498^(17/20) 3645225853433248 a001 2584/2207*39603^(43/44) 3645225863197089 r005 Im(z^2+c),c=-20/27+1/51*I,n=38 3645225870867573 m001 MertensB3-exp(1)*GolombDickman 3645225871499506 r005 Im(z^2+c),c=-3/16+28/51*I,n=42 3645225876628659 r005 Im(z^2+c),c=-5/8+29/67*I,n=63 3645225883128567 r002 44th iterates of z^2 + 3645225884323017 a001 2178309/3571*1364^(17/30) 3645225902056542 m001 (Chi(1)+FeigenbaumD)/cos(1/12*Pi) 3645225919374230 m001 1/Salem/ln(GlaisherKinkelin)/Zeta(1,2) 3645225919611311 a001 17711/2207*9349^(35/38) 3645225925018268 a001 28657/2207*9349^(33/38) 3645225925825214 a001 10946/2207*9349^(37/38) 3645225925986452 a001 46368/2207*9349^(31/38) 3645225928650096 a001 75025/2207*9349^(29/38) 3645225930397895 r009 Re(z^3+c),c=-55/122+15/59*I,n=29 3645225930666131 a001 121393/2207*9349^(27/38) 3645225932929532 a001 196418/2207*9349^(25/38) 3645225933461152 s002 sum(A067962[n]/(n^2*2^n-1),n=1..infinity) 3645225933671384 a007 Real Root Of 202*x^4+706*x^3-126*x^2+166*x+810 3645225935098447 a001 317811/2207*9349^(23/38) 3645225937303452 a001 514229/2207*9349^(21/38) 3645225937946575 r009 Im(z^3+c),c=-3/74+25/31*I,n=8 3645225938768265 a001 6765/2207*24476^(13/14) 3645225939494672 a001 832040/2207*9349^(1/2) 3645225941691158 a001 1346269/2207*9349^(17/38) 3645225943885633 a001 987*9349^(15/38) 3645225944404753 a001 6765/2207*439204^(13/18) 3645225944418199 a001 141/2161*7881196^(5/6) 3645225944418241 a001 141/2161*20633239^(11/14) 3645225944418248 a001 141/2161*2537720636^(11/18) 3645225944418248 a001 141/2161*312119004989^(1/2) 3645225944418248 a001 141/2161*3461452808002^(11/24) 3645225944418248 a001 141/2161*28143753123^(11/20) 3645225944418248 a001 141/2161*1568397607^(5/8) 3645225944418248 a001 141/2161*228826127^(11/16) 3645225944418366 a001 6765/2207*7881196^(13/22) 3645225944418401 a001 6765/2207*141422324^(1/2) 3645225944418401 a001 6765/2207*73681302247^(3/8) 3645225944418403 a001 6765/2207*33385282^(13/24) 3645225944419086 a001 6765/2207*1860498^(13/20) 3645225944419213 a001 141/2161*1860498^(11/12) 3645225944455506 a001 6765/2207*271443^(3/4) 3645225944693914 a001 6765/2207*103682^(13/16) 3645225946478463 a001 6765/2207*39603^(39/44) 3645225952953707 a001 17711/2207*24476^(5/6) 3645225953330620 a007 Real Root Of 174*x^4-156*x^3+257*x^2-969*x-398 3645225954034749 m001 FeigenbaumDelta-Zeta(1/2)^BesselI(0,2) 3645225954034749 m001 Zeta(1/2)^BesselI(0,2)-FeigenbaumDelta 3645225955518288 a001 46368/2207*24476^(31/42) 3645225956160509 m001 ln(GolombDickman)^2*Bloch^2/FeigenbaumKappa 3645225956276652 a001 75025/2207*24476^(29/42) 3645225956387408 a001 121393/2207*24476^(9/14) 3645225956455384 a001 28657/2207*24476^(11/14) 3645225956745529 a001 196418/2207*24476^(25/42) 3645225957009164 a001 317811/2207*24476^(23/42) 3645225957308890 a001 514229/2207*24476^(1/2) 3645225957594830 a001 832040/2207*24476^(19/42) 3645225957886036 a001 1346269/2207*24476^(17/42) 3645225957933676 a001 17711/2207*167761^(7/10) 3645225958024188 a001 329/13201*2139295485799^(1/2) 3645225958024337 a001 17711/2207*20633239^(1/2) 3645225958024342 a001 17711/2207*2537720636^(7/18) 3645225958024342 a001 17711/2207*17393796001^(5/14) 3645225958024342 a001 17711/2207*312119004989^(7/22) 3645225958024342 a001 17711/2207*14662949395604^(5/18) 3645225958024342 a001 17711/2207*505019158607^(5/16) 3645225958024342 a001 17711/2207*28143753123^(7/20) 3645225958024342 a001 17711/2207*599074578^(5/12) 3645225958024342 a001 17711/2207*228826127^(7/16) 3645225958024956 a001 17711/2207*1860498^(7/12) 3645225958028853 a001 17711/2207*710647^(5/8) 3645225958175231 a001 987*24476^(5/14) 3645225958825686 a005 (1/sin(89/193*Pi))^1406 3645225959044645 a001 9227465/2207*24476^(3/14) 3645225959334384 a001 14930352/2207*24476^(1/6) 3645225959873115 a001 17711/2207*39603^(35/44) 3645225959897418 a001 317811/2207*64079^(1/2) 3645225959913887 a001 39088169/2207*24476^(1/14) 3645225959950261 a001 6765/2207*15127^(39/40) 3645225960009212 a001 21/2206*7881196^(21/22) 3645225960009220 a001 46368/2207*3010349^(1/2) 3645225960009260 a001 21/2206*20633239^(9/10) 3645225960009268 a001 21/2206*2537720636^(7/10) 3645225960009268 a001 21/2206*17393796001^(9/14) 3645225960009268 a001 21/2206*14662949395604^(1/2) 3645225960009268 a001 21/2206*505019158607^(9/16) 3645225960009268 a001 21/2206*192900153618^(7/12) 3645225960009268 a001 21/2206*599074578^(3/4) 3645225960009271 a001 21/2206*33385282^(7/8) 3645225960009422 a001 46368/2207*9062201101803^(1/4) 3645225960289592 a001 121393/2207*439204^(1/2) 3645225960299017 a001 121393/2207*7881196^(9/22) 3645225960299041 a001 121393/2207*2537720636^(3/10) 3645225960299041 a001 121393/2207*14662949395604^(3/14) 3645225960299041 a001 121393/2207*192900153618^(1/4) 3645225960299042 a001 121393/2207*33385282^(3/8) 3645225960299515 a001 121393/2207*1860498^(9/20) 3645225960302650 a001 196418/2207*167761^(1/2) 3645225960309504 a001 987*167761^(3/10) 3645225960335563 a001 24157817/2207*167761^(1/10) 3645225960341296 a001 317811/2207*4106118243^(1/4) 3645225960343111 a001 987*439204^(5/18) 3645225960343922 a001 514229/2207*439204^(7/18) 3645225960345373 a001 9227465/2207*439204^(1/6) 3645225960347307 a001 329/620166*2537720636^(5/6) 3645225960347307 a001 329/620166*312119004989^(15/22) 3645225960347307 a001 329/620166*3461452808002^(5/8) 3645225960347307 a001 329/620166*28143753123^(3/4) 3645225960347307 a001 329/620166*228826127^(15/16) 3645225960347461 a001 832040/2207*817138163596^(1/6) 3645225960347461 a001 832040/2207*87403803^(1/4) 3645225960347463 a001 39088169/2207*439204^(1/18) 3645225960348347 a001 987*7881196^(5/22) 3645225960348357 a001 141/4769326*1322157322203^(3/4) 3645225960348358 a001 987*20633239^(3/14) 3645225960348360 a001 329/29134601*17393796001^(13/14) 3645225960348360 a001 329/29134601*14662949395604^(13/18) 3645225960348360 a001 329/29134601*505019158607^(13/16) 3645225960348360 a001 329/29134601*73681302247^(7/8) 3645225960348360 a001 21/4868641*312119004989^(19/22) 3645225960348360 a001 21/4868641*817138163596^(5/6) 3645225960348360 a001 21/4868641*3461452808002^(19/24) 3645225960348360 a001 21/4868641*28143753123^(19/20) 3645225960348360 a001 329/199691526*312119004989^(9/10) 3645225960348360 a001 329/199691526*14662949395604^(11/14) 3645225960348360 a001 329/199691526*192900153618^(11/12) 3645225960348360 a001 987*2537720636^(1/6) 3645225960348360 a001 329/9381251041*3461452808002^(23/24) 3645225960348360 a001 141/10525900321*14662949395604^(17/18) 3645225960348360 a001 987*312119004989^(3/22) 3645225960348360 a001 987*28143753123^(3/20) 3645225960348360 a001 987/45537549124*14662949395604^(13/14) 3645225960348360 a001 987/2537720636*312119004989^(21/22) 3645225960348360 a001 987/2537720636*14662949395604^(5/6) 3645225960348360 a001 987/2537720636*505019158607^(15/16) 3645225960348360 a001 987*228826127^(3/16) 3645225960348360 a001 987/141422324*9062201101803^(3/4) 3645225960348361 a001 987*33385282^(5/24) 3645225960348369 a001 987/20633239*2537720636^(17/18) 3645225960348369 a001 987/20633239*45537549124^(5/6) 3645225960348369 a001 987/20633239*312119004989^(17/22) 3645225960348369 a001 987/20633239*3461452808002^(17/24) 3645225960348369 a001 987/20633239*28143753123^(17/20) 3645225960348419 a001 987/7881196*2537720636^(9/10) 3645225960348419 a001 987/7881196*14662949395604^(9/14) 3645225960348419 a001 987/7881196*192900153618^(3/4) 3645225960348482 a001 5702887/2207*7881196^(1/6) 3645225960348491 a001 5702887/2207*312119004989^(1/10) 3645225960348491 a001 5702887/2207*1568397607^(1/8) 3645225960348510 a001 14930352/2207*20633239^(1/10) 3645225960348510 a001 14930352/2207*17393796001^(1/14) 3645225960348510 a001 14930352/2207*14662949395604^(1/18) 3645225960348510 a001 14930352/2207*599074578^(1/12) 3645225960348511 a001 39088169/2207*7881196^(1/22) 3645225960348513 a001 39088169/2207*33385282^(1/24) 3645225960348514 a001 9227465/2207*7881196^(3/22) 3645225960348514 a001 24157817/2207*20633239^(1/14) 3645225960348515 a001 24157817/2207*2537720636^(1/18) 3645225960348515 a001 24157817/2207*312119004989^(1/22) 3645225960348515 a001 24157817/2207*28143753123^(1/20) 3645225960348515 a001 24157817/2207*228826127^(1/16) 3645225960348522 a001 9227465/2207*2537720636^(1/10) 3645225960348522 a001 9227465/2207*14662949395604^(1/14) 3645225960348522 a001 9227465/2207*192900153618^(1/12) 3645225960348523 a001 9227465/2207*33385282^(1/8) 3645225960348566 a001 39088169/2207*1860498^(1/20) 3645225960348572 a001 3524578/2207*141422324^(1/6) 3645225960348572 a001 3524578/2207*73681302247^(1/8) 3645225960348603 a001 24157817/2207*1860498^(1/12) 3645225960348623 a001 987*1860498^(1/4) 3645225960348680 a001 9227465/2207*1860498^(3/20) 3645225960348762 a001 987/3010349*17393796001^(11/14) 3645225960348762 a001 987/3010349*14662949395604^(11/18) 3645225960348762 a001 987/3010349*505019158607^(11/16) 3645225960348762 a001 987/3010349*1568397607^(7/8) 3645225960348762 a001 987/3010349*599074578^(11/12) 3645225960348916 a001 1346269/2207*45537549124^(1/6) 3645225960348922 a001 1346269/2207*12752043^(1/4) 3645225960349413 a001 14930352/2207*710647^(1/8) 3645225960351252 a001 514229/2207*7881196^(7/22) 3645225960351268 a001 514229/2207*20633239^(3/10) 3645225960351271 a001 514229/2207*17393796001^(3/14) 3645225960351271 a001 514229/2207*14662949395604^(1/6) 3645225960351271 a001 514229/2207*599074578^(1/4) 3645225960351272 a001 514229/2207*33385282^(7/24) 3645225960351639 a001 514229/2207*1860498^(7/20) 3645225960353977 a001 514229/2207*710647^(3/8) 3645225960360941 a001 3524578/2207*271443^(1/4) 3645225960367257 a001 987/439204*4106118243^(3/4) 3645225960367260 a001 987/439204*33385282^(23/24) 3645225960367408 a001 196418/2207*20633239^(5/14) 3645225960367411 a001 196418/2207*2537720636^(5/18) 3645225960367411 a001 196418/2207*312119004989^(5/22) 3645225960367411 a001 196418/2207*3461452808002^(5/24) 3645225960367411 a001 196418/2207*28143753123^(1/4) 3645225960367411 a001 196418/2207*228826127^(5/16) 3645225960367849 a001 196418/2207*1860498^(5/12) 3645225960369706 a001 39088169/2207*103682^(1/16) 3645225960412102 a001 9227465/2207*103682^(3/16) 3645225960454326 a001 987*103682^(5/16) 3645225960476657 a001 75025/2207*1149851^(1/2) 3645225960477874 a001 987/167761*20633239^(13/14) 3645225960477882 a001 987/167761*141422324^(5/6) 3645225960477882 a001 987/167761*2537720636^(13/18) 3645225960477882 a001 987/167761*312119004989^(13/22) 3645225960477882 a001 987/167761*3461452808002^(13/24) 3645225960477882 a001 987/167761*73681302247^(5/8) 3645225960477882 a001 987/167761*28143753123^(13/20) 3645225960477882 a001 987/167761*228826127^(13/16) 3645225960478035 a001 75025/2207*1322157322203^(1/4) 3645225960489780 a001 121393/2207*103682^(9/16) 3645225960499624 a001 514229/2207*103682^(7/16) 3645225960929534 a001 5702887/2207*39603^(1/4) 3645225961072890 a001 10946/2207*24476^(37/42) 3645225961140691 a001 987*39603^(15/44) 3645225961224720 a001 28657/2207*439204^(11/18) 3645225961236115 a001 987/64079*5600748293801^(1/2) 3645225961236239 a001 28657/2207*7881196^(1/2) 3645225961236268 a001 28657/2207*312119004989^(3/10) 3645225961236268 a001 28657/2207*1568397607^(3/8) 3645225961236270 a001 28657/2207*33385282^(11/24) 3645225961236848 a001 28657/2207*1860498^(11/20) 3645225961246892 a001 1346269/2207*39603^(17/44) 3645225961351080 a001 832040/2207*39603^(19/44) 3645225961460535 a001 514229/2207*39603^(21/44) 3645225961469394 a001 28657/2207*103682^(11/16) 3645225961523264 r005 Im(z^2+c),c=1/60+15/34*I,n=39 3645225961556204 a001 317811/2207*39603^(23/44) 3645225961646906 a001 46368/2207*39603^(31/44) 3645225961687963 a001 196418/2207*39603^(25/44) 3645225961725237 a001 121393/2207*39603^(27/44) 3645225962009876 a001 75025/2207*39603^(29/44) 3645225962339779 a001 24157817/2207*15127^(1/8) 3645225962979398 a001 28657/2207*39603^(3/4) 3645225963962678 a005 (1/cos(5/189*Pi))^1040 3645225965608827 a007 Real Root Of 444*x^4-715*x^3+151*x^2-934*x-403 3645225966322152 a001 987*15127^(3/8) 3645225966433071 a001 987/24476*7881196^(19/22) 3645225966433122 a001 987/24476*817138163596^(1/2) 3645225966433122 a001 987/24476*87403803^(3/4) 3645225966433124 a001 987/24476*33385282^(19/24) 3645225966433275 a001 10946/2207*54018521^(1/2) 3645225966434122 a001 987/24476*1860498^(19/20) 3645225967119214 a001 1346269/2207*15127^(17/40) 3645225967914264 a001 832040/2207*15127^(19/40) 3645225968387693 a001 10946/2207*39603^(37/44) 3645225968714580 a001 514229/2207*15127^(21/40) 3645225969447398 a001 39088169/2207*5778^(1/12) 3645225969501110 a001 317811/2207*15127^(23/40) 3645225970323731 a001 196418/2207*15127^(5/8) 3645225971051867 a001 121393/2207*15127^(27/40) 3645225971963190 a001 17711/2207*15127^(7/8) 3645225972027367 a001 75025/2207*15127^(29/40) 3645225972355259 a001 46368/2207*15127^(31/40) 3645225973979176 a001 4976784/281*322^(1/8) 3645225974378611 a001 28657/2207*15127^(33/40) 3645225981168629 a001 10946/2207*15127^(37/40) 3645225986119135 r009 Re(z^3+c),c=-59/114+17/58*I,n=12 3645225987645176 a001 9227465/2207*5778^(1/4) 3645225996114203 a001 4181/2207*24476^(41/42) 3645226002053937 a001 987/9349*119218851371^(1/2) 3645226002054090 a001 4181/2207*370248451^(1/2) 3645226002615920 m005 (5/66+1/6*5^(1/2))/(4/9*3^(1/2)-2) 3645226004219796 a001 4181/2207*39603^(41/44) 3645226005842783 a001 987*5778^(5/12) 3645226011755568 a001 24157817/5778*1364^(3/10) 3645226011909262 a001 1346269/2207*5778^(17/36) 3645226014941552 a001 3524578/3571*1364^(1/2) 3645226017973730 a001 832040/2207*5778^(19/36) 3645226022172512 m003 -31/6+Sqrt[5]/4+2*Log[1/2+Sqrt[5]/2] 3645226024043463 a001 514229/2207*5778^(7/12) 3645226026200163 a001 6643838879/987*317811^(2/15) 3645226026201125 a001 969323029/987*591286729879^(2/15) 3645226026201125 a001 2537720636/987*433494437^(2/15) 3645226030099411 a001 317811/2207*5778^(23/36) 3645226036191449 a001 196418/2207*5778^(25/36) 3645226037812944 a007 Real Root Of -323*x^4-682*x^3-764*x^2+507*x+259 3645226041645418 r009 Im(z^3+c),c=-55/122+8/29*I,n=31 3645226042189002 a001 121393/2207*5778^(3/4) 3645226046335825 a007 Real Root Of -569*x^4+541*x^3+899*x^2+333*x-257 3645226048433920 a001 75025/2207*5778^(29/36) 3645226050258522 r005 Im(z^2+c),c=5/94+18/43*I,n=45 3645226054031229 a001 46368/2207*5778^(31/36) 3645226061324000 a001 28657/2207*5778^(11/12) 3645226064177996 a001 17711/2207*5778^(35/36) 3645226065789789 a007 Real Root Of 280*x^4+936*x^3-247*x^2+43*x-662 3645226074049656 l006 ln(175/6701) 3645226081809669 r009 Im(z^3+c),c=-9/26+20/59*I,n=16 3645226083181236 r005 Re(z^2+c),c=-27/46+13/43*I,n=5 3645226086328896 b008 47*JacobiSD[2,2] 3645226105012071 a001 63245986/15127*1364^(3/10) 3645226114405079 r005 Im(z^2+c),c=-17/62+36/61*I,n=28 3645226118211702 a001 3571/3*514229^(4/47) 3645226118618012 a001 165580141/39603*1364^(3/10) 3645226118912957 r005 Re(z^2+c),c=-29/60+8/39*I,n=40 3645226120603092 a001 433494437/103682*1364^(3/10) 3645226120892711 a001 1134903170/271443*1364^(3/10) 3645226120934966 a001 2971215073/710647*1364^(3/10) 3645226120941131 a001 7778742049/1860498*1364^(3/10) 3645226120942030 a001 20365011074/4870847*1364^(3/10) 3645226120942161 a001 53316291173/12752043*1364^(3/10) 3645226120942180 a001 139583862445/33385282*1364^(3/10) 3645226120942183 a001 365435296162/87403803*1364^(3/10) 3645226120942184 a001 956722026041/228826127*1364^(3/10) 3645226120942184 a001 2504730781961/599074578*1364^(3/10) 3645226120942184 a001 6557470319842/1568397607*1364^(3/10) 3645226120942184 a001 10610209857723/2537720636*1364^(3/10) 3645226120942184 a001 4052739537881/969323029*1364^(3/10) 3645226120942184 a001 1548008755920/370248451*1364^(3/10) 3645226120942184 a001 591286729879/141422324*1364^(3/10) 3645226120942185 a001 225851433717/54018521*1364^(3/10) 3645226120942192 a001 86267571272/20633239*1364^(3/10) 3645226120942242 a001 32951280099/7881196*1364^(3/10) 3645226120942586 a001 12586269025/3010349*1364^(3/10) 3645226120944941 a001 4807526976/1149851*1364^(3/10) 3645226120961081 a001 1836311903/439204*1364^(3/10) 3645226121071705 a001 701408733/167761*1364^(3/10) 3645226121829938 a001 267914296/64079*1364^(3/10) 3645226122789555 m001 (GAMMA(17/24)-ArtinRank2)/(CareFree-Landau) 3645226127026945 a001 102334155/24476*1364^(3/10) 3645226128442277 r002 18th iterates of z^2 + 3645226159270966 a001 75025/843*843^(25/28) 3645226162647762 a001 4181*1364^(3/10) 3645226166774601 m005 (1/2*3^(1/2)+7/10)/(5/9*gamma-4/11) 3645226194832619 r005 Im(z^2+c),c=-3/5+8/121*I,n=31 3645226199027638 a007 Real Root Of -172*x^4-769*x^3-754*x^2-798*x+231 3645226201340270 m002 E^Pi+Cosh[Pi]+Pi^5*Coth[Pi]*ProductLog[Pi] 3645226203352239 a007 Real Root Of -652*x^4+322*x^3-979*x^2+806*x+451 3645226212309237 r005 Re(z^2+c),c=-23/58+11/32*I,n=6 3645226214639061 r002 58i'th iterates of 2*x/(1-x^2) of 3645226215137101 h001 (7/10*exp(2)+1/7)/(4/9*exp(1)+1/4) 3645226222129072 m005 (1/2*gamma-3/11)/(5/6*gamma-11/12) 3645226229314612 r005 Im(z^2+c),c=29/122+5/18*I,n=46 3645226245334329 a001 1597/2207*64079^(45/46) 3645226246086216 a001 1597/2207*167761^(9/10) 3645226246187038 a001 1597/2207*439204^(5/6) 3645226246202648 a001 987/3571*20633239^(7/10) 3645226246202654 a001 987/3571*17393796001^(1/2) 3645226246202654 a001 987/3571*14662949395604^(7/18) 3645226246202654 a001 987/3571*505019158607^(7/16) 3645226246202654 a001 987/3571*599074578^(7/12) 3645226246202745 a001 1597/2207*7881196^(15/22) 3645226246202780 a001 1597/2207*20633239^(9/14) 3645226246202785 a001 1597/2207*2537720636^(1/2) 3645226246202785 a001 1597/2207*312119004989^(9/22) 3645226246202785 a001 1597/2207*14662949395604^(5/14) 3645226246202785 a001 1597/2207*192900153618^(5/12) 3645226246202785 a001 1597/2207*28143753123^(9/20) 3645226246202785 a001 1597/2207*228826127^(9/16) 3645226246202787 a001 1597/2207*33385282^(5/8) 3645226246203575 a001 1597/2207*1860498^(3/4) 3645226246208970 a001 987/3571*710647^(7/8) 3645226246520684 a001 1597/2207*103682^(15/16) 3645226268725292 r002 9th iterates of z^2 + 3645226269638129 r005 Re(z^2+c),c=-11/23+11/46*I,n=42 3645226272992226 a001 31622993/2889*1364^(1/6) 3645226282106544 r009 Re(z^3+c),c=-31/64+18/47*I,n=18 3645226289901640 r005 Re(z^2+c),c=-7/16+7/17*I,n=23 3645226291615722 r002 18th iterates of z^2 + 3645226311149684 a001 987*2207^(15/32) 3645226315313977 r005 Re(z^2+c),c=2/25+27/43*I,n=52 3645226317025955 h001 (2/11*exp(1)+5/11)/(7/10*exp(1)+7/10) 3645226319495167 m001 ln(Riemann1stZero)/Magata/Zeta(1/2)^2 3645226322220757 a001 75025/5778*3571^(33/34) 3645226323883357 r009 Im(z^3+c),c=-12/25+16/63*I,n=14 3645226332887088 a001 3/3010349*199^(17/25) 3645226338856722 a001 121393/5778*3571^(31/34) 3645226339930196 a008 Real Root of x^4-2*x^3+34*x^2+18*x-11 3645226355740051 a001 98209/2889*3571^(29/34) 3645226357314502 a007 Real Root Of -881*x^4-51*x^3-714*x^2+867*x+424 3645226357923752 a001 1346269/2207*2207^(17/32) 3645226361785364 r005 Re(z^2+c),c=-35/74+5/14*I,n=14 3645226366248737 a001 165580141/15127*1364^(1/6) 3645226372528896 a001 105937/1926*3571^(27/34) 3645226379147540 r009 Im(z^3+c),c=-13/29+5/18*I,n=42 3645226379854679 a001 433494437/39603*1364^(1/6) 3645226380691517 m001 (exp(1/Pi)+KhinchinHarmonic*Sarnak)/Sarnak 3645226381839759 a001 567451585/51841*1364^(1/6) 3645226382129378 a001 2971215073/271443*1364^(1/6) 3645226382171633 a001 7778742049/710647*1364^(1/6) 3645226382177798 a001 10182505537/930249*1364^(1/6) 3645226382178698 a001 53316291173/4870847*1364^(1/6) 3645226382178829 a001 139583862445/12752043*1364^(1/6) 3645226382178848 a001 182717648081/16692641*1364^(1/6) 3645226382178851 a001 956722026041/87403803*1364^(1/6) 3645226382178851 a001 2504730781961/228826127*1364^(1/6) 3645226382178851 a001 3278735159921/299537289*1364^(1/6) 3645226382178851 a001 10610209857723/969323029*1364^(1/6) 3645226382178851 a001 4052739537881/370248451*1364^(1/6) 3645226382178851 a001 387002188980/35355581*1364^(1/6) 3645226382178852 a001 591286729879/54018521*1364^(1/6) 3645226382178860 a001 7787980473/711491*1364^(1/6) 3645226382178910 a001 21566892818/1970299*1364^(1/6) 3645226382179253 a001 32951280099/3010349*1364^(1/6) 3645226382181608 a001 12586269025/1149851*1364^(1/6) 3645226382197748 a001 1201881744/109801*1364^(1/6) 3645226382308373 a001 1836311903/167761*1364^(1/6) 3645226383066606 a001 701408733/64079*1364^(1/6) 3645226388263614 a001 10946*1364^(1/6) 3645226389175629 l006 ln(2767/3984) 3645226389353831 a001 514229/5778*3571^(25/34) 3645226394635474 m001 (Thue+ZetaQ(3))/(ln(gamma)-FeigenbaumC) 3645226395495881 m005 (1/2*exp(1)-2/11)/(1/9*5^(1/2)-4/7) 3645226398779882 a007 Real Root Of -25*x^4-924*x^3-448*x^2+511*x-910 3645226403610563 a001 34111385/1926*1364^(1/10) 3645226404695810 a001 832040/2207*2207^(19/32) 3645226405994294 r009 Re(z^3+c),c=-9/19+13/46*I,n=30 3645226406164980 a001 416020/2889*3571^(23/34) 3645226406796487 a001 14930352/3571*1364^(3/10) 3645226415366644 a001 196418/15127*3571^(33/34) 3645226419181687 a001 10946/47*76^(3/29) 3645226422981396 a001 1346269/5778*3571^(21/34) 3645226423884433 a001 102334155/9349*1364^(1/6) 3645226425401746 r005 Re(z^2+c),c=-35/78+8/21*I,n=47 3645226428956447 a001 514229/39603*3571^(33/34) 3645226430939172 a001 1346269/103682*3571^(33/34) 3645226431407230 a001 2178309/167761*3571^(33/34) 3645226432150632 r005 Im(z^2+c),c=5/94+18/43*I,n=48 3645226432155489 a001 317811/15127*3571^(31/34) 3645226432164564 a001 832040/64079*3571^(33/34) 3645226437355406 a001 10959/844*3571^(33/34) 3645226439795800 a001 726103/1926*3571^(19/34) 3645226443062349 r005 Re(z^2+c),c=-9/110+33/35*I,n=4 3645226443966330 r009 Im(z^3+c),c=-51/98+11/53*I,n=58 3645226445767596 a001 832040/39603*3571^(31/34) 3645226447753576 a001 46347/2206*3571^(31/34) 3645226448980424 a001 514229/15127*3571^(29/34) 3645226448980979 a001 1346269/64079*3571^(31/34) 3645226450116039 a001 12238*233^(33/53) 3645226451473134 a001 514229/2207*2207^(21/32) 3645226454180341 a001 514229/24476*3571^(31/34) 3645226456610972 a001 1762289/2889*3571^(1/2) 3645226462253886 r008 a(0)=3,K{-n^6,64-7*n^3-17*n^2-42*n} 3645226462584012 a001 1346269/39603*3571^(29/34) 3645226465791574 a001 832040/15127*3571^(27/34) 3645226465795383 a001 2178309/64079*3571^(29/34) 3645226470991491 a001 208010/6119*3571^(29/34) 3645226471816308 m001 PlouffeB*(HardyLittlewoodC5-Salem) 3645226472933971 a001 121393/9349*3571^(33/34) 3645226475832276 r005 Re(z^2+c),c=1/122+20/33*I,n=12 3645226479398416 a001 726103/13201*3571^(27/34) 3645226482607990 a001 1346269/15127*3571^(25/34) 3645226487807907 a001 1346269/24476*3571^(27/34) 3645226489817301 a001 196418/9349*3571^(31/34) 3645226490351442 a001 1292/2889*6643838879^(1/2) 3645226496867077 a001 267914296/15127*1364^(1/10) 3645226496980697 m001 ZetaQ(4)/(BesselJ(1,1)^cos(1/12*Pi)) 3645226498236673 a001 317811/2207*2207^(23/32) 3645226499422394 a001 311187/2161*3571^(23/34) 3645226504622311 a001 2178309/24476*3571^(25/34) 3645226506606146 a001 317811/9349*3571^(29/34) 3645226508642393 a007 Real Root Of 53*x^4-62*x^3-753*x^2+408*x-868 3645226510473020 a001 17711*1364^(1/10) 3645226511679186 a001 14662949395604/233*102334155^(2/21) 3645226511679186 a001 5600748293801/233*2504730781961^(2/21) 3645226512458100 a001 1836311903/103682*1364^(1/10) 3645226512747719 a001 1602508992/90481*1364^(1/10) 3645226512789974 a001 12586269025/710647*1364^(1/10) 3645226512796139 a001 10983760033/620166*1364^(1/10) 3645226512797038 a001 86267571272/4870847*1364^(1/10) 3645226512797170 a001 75283811239/4250681*1364^(1/10) 3645226512797189 a001 591286729879/33385282*1364^(1/10) 3645226512797192 a001 516002918640/29134601*1364^(1/10) 3645226512797192 a001 4052739537881/228826127*1364^(1/10) 3645226512797192 a001 3536736619241/199691526*1364^(1/10) 3645226512797192 a001 6557470319842/370248451*1364^(1/10) 3645226512797192 a001 2504730781961/141422324*1364^(1/10) 3645226512797193 a001 956722026041/54018521*1364^(1/10) 3645226512797201 a001 365435296162/20633239*1364^(1/10) 3645226512797251 a001 139583862445/7881196*1364^(1/10) 3645226512797594 a001 53316291173/3010349*1364^(1/10) 3645226512799949 a001 20365011074/1149851*1364^(1/10) 3645226512816089 a001 7778742049/439204*1364^(1/10) 3645226512926714 a001 2971215073/167761*1364^(1/10) 3645226513684947 a001 1134903170/64079*1364^(1/10) 3645226516895275 r005 Re(z^2+c),c=-141/110+1/35*I,n=42 3645226518881955 a001 433494437/24476*1364^(1/10) 3645226523243144 m009 (1/3*Pi^2-1/5)/(4/5*Psi(1,1/3)+2/5) 3645226523431082 a001 514229/9349*3571^(27/34) 3645226525191188 a001 15456/281*843^(27/28) 3645226526822628 r005 Re(z^2+c),c=-55/118+5/16*I,n=24 3645226533655508 r009 Re(z^3+c),c=-55/122+16/63*I,n=21 3645226539913433 m005 (1/2*3^(1/2)-5)/(8/11*gamma+5/7) 3645226540242232 a001 832040/9349*3571^(25/34) 3645226545036302 a001 196418/2207*2207^(25/32) 3645226549867438 a001 9227465/15127*3571^(1/2) 3645226552788400 b008 -2*E^3+EulerGamma+Pi 3645226554502775 a001 165580141/9349*1364^(1/10) 3645226557058648 a001 1346269/9349*3571^(23/34) 3645226559817764 a001 28657/5778*9349^(37/38) 3645226560785947 a001 2576/321*9349^(35/38) 3645226563449592 a001 75025/5778*9349^(33/38) 3645226563473373 a001 24157817/39603*3571^(1/2) 3645226565458452 a001 31622993/51841*3571^(1/2) 3645226565465628 a001 121393/5778*9349^(31/38) 3645226565748071 a001 165580141/271443*3571^(1/2) 3645226565790326 a001 433494437/710647*3571^(1/2) 3645226565796491 a001 567451585/930249*3571^(1/2) 3645226565797391 a001 2971215073/4870847*3571^(1/2) 3645226565797522 a001 7778742049/12752043*3571^(1/2) 3645226565797541 a001 10182505537/16692641*3571^(1/2) 3645226565797544 a001 53316291173/87403803*3571^(1/2) 3645226565797544 a001 139583862445/228826127*3571^(1/2) 3645226565797544 a001 182717648081/299537289*3571^(1/2) 3645226565797544 a001 956722026041/1568397607*3571^(1/2) 3645226565797544 a001 2504730781961/4106118243*3571^(1/2) 3645226565797544 a001 3278735159921/5374978561*3571^(1/2) 3645226565797544 a001 10610209857723/17393796001*3571^(1/2) 3645226565797544 a001 4052739537881/6643838879*3571^(1/2) 3645226565797544 a001 1134903780/1860499*3571^(1/2) 3645226565797544 a001 591286729879/969323029*3571^(1/2) 3645226565797544 a001 225851433717/370248451*3571^(1/2) 3645226565797544 a001 21566892818/35355581*3571^(1/2) 3645226565797545 a001 32951280099/54018521*3571^(1/2) 3645226565797553 a001 1144206275/1875749*3571^(1/2) 3645226565797603 a001 1201881744/1970299*3571^(1/2) 3645226565797946 a001 1836311903/3010349*3571^(1/2) 3645226565800301 a001 701408733/1149851*3571^(1/2) 3645226565816441 a001 66978574/109801*3571^(1/2) 3645226565927066 a001 9303105/15251*3571^(1/2) 3645226566685299 a001 39088169/64079*3571^(1/2) 3645226566916649 m001 (1-Ei(1))/(FeigenbaumC+GolombDickman) 3645226567729029 a001 98209/2889*9349^(29/38) 3645226569897944 a001 105937/1926*9349^(27/38) 3645226571882303 a001 3732588/6119*3571^(1/2) 3645226572102950 a001 514229/5778*9349^(25/38) 3645226573873053 a001 2178309/9349*3571^(21/34) 3645226574294171 a001 416020/2889*9349^(23/38) 3645226576490657 a001 1346269/5778*9349^(21/38) 3645226578685132 a001 726103/1926*9349^(1/2) 3645226579110418 k002 Champernowne real with 86*n^2-249*n+199 3645226583590111 a001 2584/15127*439204^(17/18) 3645226583607913 a001 2584/15127*7881196^(17/22) 3645226583607958 a001 2584/15127*45537549124^(1/2) 3645226583607961 a001 2584/15127*33385282^(17/24) 3645226583607962 a001 2255/1926*969323029^(1/2) 3645226583607975 a001 2584/15127*12752043^(3/4) 3645226583608854 a001 2584/15127*1860498^(17/20) 3645226585879312 a001 2255/1926*39603^(43/44) 3645226590792950 m001 (TwinPrimes+ZetaP(2))/(ln(5)+3^(1/3)) 3645226591563768 a001 17711/5778*24476^(13/14) 3645226591741448 a001 121393/2207*2207^(27/32) 3645226593735907 r005 Re(z^2+c),c=-7/15+12/47*I,n=15 3645226594128349 a001 2576/321*24476^(5/6) 3645226594886714 a001 75025/5778*24476^(11/14) 3645226594997470 a001 121393/5778*24476^(31/42) 3645226595065446 a001 28657/5778*24476^(37/42) 3645226595355590 a001 98209/2889*24476^(29/42) 3645226595619226 a001 105937/1926*24476^(9/14) 3645226595918952 a001 514229/5778*24476^(25/42) 3645226596204892 a001 416020/2889*24476^(23/42) 3645226596496098 a001 1346269/5778*24476^(1/2) 3645226596785293 a001 726103/1926*24476^(19/42) 3645226597200257 a001 17711/5778*439204^(13/18) 3645226597213852 a001 2584/39603*7881196^(5/6) 3645226597213870 a001 17711/5778*7881196^(13/22) 3645226597213895 a001 2584/39603*20633239^(11/14) 3645226597213901 a001 2584/39603*2537720636^(11/18) 3645226597213901 a001 2584/39603*312119004989^(1/2) 3645226597213901 a001 2584/39603*3461452808002^(11/24) 3645226597213901 a001 2584/39603*28143753123^(11/20) 3645226597213901 a001 2584/39603*1568397607^(5/8) 3645226597213901 a001 2584/39603*228826127^(11/16) 3645226597213904 a001 17711/5778*141422324^(1/2) 3645226597213905 a001 17711/5778*73681302247^(3/8) 3645226597213906 a001 17711/5778*33385282^(13/24) 3645226597214589 a001 17711/5778*1860498^(13/20) 3645226597214867 a001 2584/39603*1860498^(11/12) 3645226597251009 a001 17711/5778*271443^(3/4) 3645226597364925 a001 5702887/5778*24476^(5/14) 3645226597489417 a001 17711/5778*103682^(13/16) 3645226598234201 a001 24157817/5778*24476^(3/14) 3645226598523949 a001 39088169/5778*24476^(1/6) 3645226599093146 a001 416020/2889*64079^(1/2) 3645226599103451 a001 34111385/1926*24476^(1/14) 3645226599108320 a001 2576/321*167761^(7/10) 3645226599198981 a001 2576/321*20633239^(1/2) 3645226599198982 a001 1292/51841*2139295485799^(1/2) 3645226599198985 a001 2576/321*2537720636^(7/18) 3645226599198985 a001 2576/321*17393796001^(5/14) 3645226599198985 a001 2576/321*14662949395604^(5/18) 3645226599198985 a001 2576/321*505019158607^(5/16) 3645226599198985 a001 2576/321*28143753123^(7/20) 3645226599198985 a001 2576/321*599074578^(5/12) 3645226599198985 a001 2576/321*228826127^(7/16) 3645226599199599 a001 2576/321*1860498^(7/12) 3645226599203496 a001 2576/321*710647^(5/8) 3645226599273967 a001 17711/5778*39603^(39/44) 3645226599476073 a001 514229/5778*167761^(1/2) 3645226599488403 a001 121393/5778*3010349^(1/2) 3645226599488545 a001 2584/271443*7881196^(21/22) 3645226599488593 a001 2584/271443*20633239^(9/10) 3645226599488601 a001 2584/271443*2537720636^(7/10) 3645226599488601 a001 2584/271443*17393796001^(9/14) 3645226599488601 a001 2584/271443*14662949395604^(1/2) 3645226599488601 a001 2584/271443*505019158607^(9/16) 3645226599488601 a001 2584/271443*192900153618^(7/12) 3645226599488601 a001 2584/271443*599074578^(3/4) 3645226599488604 a001 2584/271443*33385282^(7/8) 3645226599488604 a001 121393/5778*9062201101803^(1/4) 3645226599499198 a001 5702887/5778*167761^(3/10) 3645226599521411 a001 105937/1926*439204^(1/2) 3645226599525125 a001 31622993/2889*167761^(1/10) 3645226599530835 a001 105937/1926*7881196^(9/22) 3645226599530859 a001 105937/1926*2537720636^(3/10) 3645226599530859 a001 105937/1926*14662949395604^(3/14) 3645226599530859 a001 105937/1926*192900153618^(1/4) 3645226599530860 a001 105937/1926*33385282^(3/8) 3645226599531130 a001 1346269/5778*439204^(7/18) 3645226599531333 a001 105937/1926*1860498^(9/20) 3645226599532805 a001 5702887/5778*439204^(5/18) 3645226599534929 a001 24157817/5778*439204^(1/6) 3645226599537024 a001 416020/2889*4106118243^(1/4) 3645226599537027 a001 34111385/1926*439204^(1/18) 3645226599537920 a001 2584/4870847*2537720636^(5/6) 3645226599537920 a001 2584/4870847*312119004989^(15/22) 3645226599537920 a001 2584/4870847*3461452808002^(5/8) 3645226599537920 a001 2584/4870847*28143753123^(3/4) 3645226599537920 a001 2584/4870847*228826127^(15/16) 3645226599537923 a001 726103/1926*817138163596^(1/6) 3645226599537923 a001 726103/1926*87403803^(1/4) 3645226599538041 a001 5702887/5778*7881196^(5/22) 3645226599538053 a001 5702887/5778*20633239^(3/14) 3645226599538055 a001 5702887/5778*2537720636^(1/6) 3645226599538055 a001 5702887/5778*312119004989^(3/22) 3645226599538055 a001 5702887/5778*28143753123^(3/20) 3645226599538055 a001 5702887/5778*228826127^(3/16) 3645226599538055 a001 5702887/5778*33385282^(5/24) 3645226599538064 a001 2584*7881196^(1/6) 3645226599538070 a001 24157817/5778*7881196^(3/22) 3645226599538073 a001 2584/87403803*1322157322203^(3/4) 3645226599538074 a001 2584/228826127*17393796001^(13/14) 3645226599538074 a001 2584/228826127*14662949395604^(13/18) 3645226599538074 a001 2584/228826127*505019158607^(13/16) 3645226599538074 a001 2584/228826127*73681302247^(7/8) 3645226599538074 a001 1292/299537289*312119004989^(19/22) 3645226599538074 a001 1292/299537289*817138163596^(5/6) 3645226599538074 a001 1292/299537289*3461452808002^(19/24) 3645226599538074 a001 1292/299537289*28143753123^(19/20) 3645226599538074 a001 2584/1568397607*312119004989^(9/10) 3645226599538074 a001 2584/1568397607*14662949395604^(11/14) 3645226599538074 a001 2584/1568397607*192900153618^(11/12) 3645226599538074 a001 2584/73681302247*3461452808002^(23/24) 3645226599538074 a001 1292/96450076809*14662949395604^(17/18) 3645226599538074 a001 2584*312119004989^(1/10) 3645226599538074 a001 2584/119218851371*14662949395604^(13/14) 3645226599538074 a001 2584/6643838879*312119004989^(21/22) 3645226599538074 a001 2584/6643838879*14662949395604^(5/6) 3645226599538074 a001 2584/6643838879*505019158607^(15/16) 3645226599538074 a001 2584*1568397607^(1/8) 3645226599538074 a001 2584/370248451*9062201101803^(3/4) 3645226599538074 a001 34111385/1926*7881196^(1/22) 3645226599538075 a001 2584/54018521*2537720636^(17/18) 3645226599538075 a001 2584/54018521*45537549124^(5/6) 3645226599538075 a001 2584/54018521*312119004989^(17/22) 3645226599538075 a001 2584/54018521*3461452808002^(17/24) 3645226599538075 a001 2584/54018521*28143753123^(17/20) 3645226599538076 a001 39088169/5778*20633239^(1/10) 3645226599538077 a001 39088169/5778*17393796001^(1/14) 3645226599538077 a001 39088169/5778*14662949395604^(1/18) 3645226599538077 a001 39088169/5778*505019158607^(1/16) 3645226599538077 a001 39088169/5778*599074578^(1/12) 3645226599538077 a001 31622993/2889*20633239^(1/14) 3645226599538077 a001 34111385/1926*33385282^(1/24) 3645226599538077 a001 31622993/2889*2537720636^(1/18) 3645226599538077 a001 31622993/2889*312119004989^(1/22) 3645226599538077 a001 31622993/2889*28143753123^(1/20) 3645226599538077 a001 31622993/2889*228826127^(1/16) 3645226599538078 a001 24157817/5778*2537720636^(1/10) 3645226599538078 a001 24157817/5778*14662949395604^(1/14) 3645226599538078 a001 24157817/5778*192900153618^(1/12) 3645226599538079 a001 24157817/5778*33385282^(1/8) 3645226599538082 a001 2584/20633239*2537720636^(9/10) 3645226599538082 a001 2584/20633239*14662949395604^(9/14) 3645226599538082 a001 2584/20633239*192900153618^(3/4) 3645226599538086 a001 9227465/5778*141422324^(1/6) 3645226599538086 a001 9227465/5778*73681302247^(1/8) 3645226599538130 a001 34111385/1926*1860498^(1/20) 3645226599538132 a001 646/1970299*17393796001^(11/14) 3645226599538132 a001 646/1970299*14662949395604^(11/18) 3645226599538132 a001 646/1970299*505019158607^(11/16) 3645226599538132 a001 646/1970299*1568397607^(7/8) 3645226599538132 a001 646/1970299*599074578^(11/12) 3645226599538136 a001 1762289/2889*45537549124^(1/6) 3645226599538141 a001 1762289/2889*12752043^(1/4) 3645226599538165 a001 31622993/2889*1860498^(1/12) 3645226599538236 a001 24157817/5778*1860498^(3/20) 3645226599538318 a001 5702887/5778*1860498^(1/4) 3645226599538461 a001 1346269/5778*7881196^(7/22) 3645226599538477 a001 1346269/5778*20633239^(3/10) 3645226599538479 a001 1346269/5778*17393796001^(3/14) 3645226599538479 a001 1346269/5778*14662949395604^(1/6) 3645226599538479 a001 1346269/5778*599074578^(1/4) 3645226599538480 a001 1346269/5778*33385282^(7/24) 3645226599538848 a001 1346269/5778*1860498^(7/20) 3645226599538979 a001 39088169/5778*710647^(1/8) 3645226599540831 a001 2584/1149851*4106118243^(3/4) 3645226599540831 a001 514229/5778*20633239^(5/14) 3645226599540834 a001 2584/1149851*33385282^(23/24) 3645226599540834 a001 514229/5778*2537720636^(5/18) 3645226599540834 a001 514229/5778*312119004989^(5/22) 3645226599540834 a001 514229/5778*3461452808002^(5/24) 3645226599540834 a001 514229/5778*28143753123^(1/4) 3645226599540834 a001 514229/5778*228826127^(5/16) 3645226599541186 a001 1346269/5778*710647^(3/8) 3645226599541273 a001 514229/5778*1860498^(5/12) 3645226599550454 a001 9227465/5778*271443^(1/4) 3645226599555595 a001 98209/2889*1149851^(1/2) 3645226599556963 a001 34/5779*20633239^(13/14) 3645226599556971 a001 34/5779*141422324^(5/6) 3645226599556971 a001 34/5779*2537720636^(13/18) 3645226599556971 a001 34/5779*312119004989^(13/22) 3645226599556971 a001 34/5779*3461452808002^(13/24) 3645226599556971 a001 34/5779*73681302247^(5/8) 3645226599556971 a001 34/5779*28143753123^(13/20) 3645226599556971 a001 34/5779*228826127^(13/16) 3645226599556974 a001 98209/2889*1322157322203^(1/4) 3645226599559270 a001 34111385/1926*103682^(1/16) 3645226599601658 a001 24157817/5778*103682^(3/16) 3645226599644021 a001 5702887/5778*103682^(5/16) 3645226599656051 a001 75025/5778*439204^(11/18) 3645226599667569 a001 75025/5778*7881196^(1/2) 3645226599667595 a001 2584/167761*5600748293801^(1/2) 3645226599667599 a001 75025/5778*312119004989^(3/10) 3645226599667599 a001 75025/5778*1568397607^(3/8) 3645226599667600 a001 75025/5778*33385282^(11/24) 3645226599668178 a001 75025/5778*1860498^(11/20) 3645226599682952 a001 5473/2889*24476^(41/42) 3645226599686832 a001 1346269/5778*103682^(7/16) 3645226599721598 a001 105937/1926*103682^(9/16) 3645226599900725 a001 75025/5778*103682^(11/16) 3645226600119117 a001 2584*39603^(1/4) 3645226600425778 a001 2584/64079*7881196^(19/22) 3645226600425829 a001 2584/64079*817138163596^(1/2) 3645226600425829 a001 2584/64079*87403803^(3/4) 3645226600425831 a001 2584/64079*33385282^(19/24) 3645226600425831 a001 28657/5778*54018521^(1/2) 3645226600426829 a001 2584/64079*1860498^(19/20) 3645226600541543 a001 726103/1926*39603^(19/44) 3645226600647743 a001 1346269/5778*39603^(21/44) 3645226600751932 a001 416020/2889*39603^(23/44) 3645226600798409 s002 sum(A290029[n]/((exp(n)-1)/n),n=1..infinity) 3645226600861387 a001 514229/5778*39603^(25/44) 3645226600957056 a001 105937/1926*39603^(27/44) 3645226601047758 a001 2576/321*39603^(35/44) 3645226601088815 a001 98209/2889*39603^(29/44) 3645226601126089 a001 121393/5778*39603^(31/44) 3645226601410728 a001 75025/5778*39603^(3/4) 3645226601529342 a001 31622993/2889*15127^(1/8) 3645226602380250 a001 28657/5778*39603^(37/44) 3645226605511848 a001 5702887/5778*15127^(3/8) 3645226605622836 a001 646/6119*119218851371^(1/2) 3645226605622840 a001 5473/2889*370248451^(1/2) 3645226607104728 a001 726103/1926*15127^(19/40) 3645226607503105 a001 5702887/9349*3571^(1/2) 3645226607788546 a001 5473/2889*39603^(41/44) 3645226607901790 a001 1346269/5778*15127^(21/40) 3645226608636963 a001 34111385/1926*5778^(1/12) 3645226608696840 a001 416020/2889*15127^(23/40) 3645226609497156 a001 514229/5778*15127^(5/8) 3645226610283687 a001 105937/1926*15127^(27/40) 3645226611106308 a001 98209/2889*15127^(29/40) 3645226611834444 a001 121393/5778*15127^(31/40) 3645226612745767 a001 17711/5778*15127^(39/40) 3645226612809944 a001 75025/5778*15127^(33/40) 3645226613137836 a001 2576/321*15127^(7/8) 3645226613657936 r009 Im(z^3+c),c=-4/19+19/49*I,n=8 3645226615161189 a001 28657/5778*15127^(37/40) 3645226617763898 a001 2207/987*55^(5/41) 3645226626834737 a001 24157817/5778*5778^(1/4) 3645226638693959 a001 75025/2207*2207^(29/32) 3645226641127091 a001 4181/5778*167761^(9/10) 3645226641227913 a001 4181/5778*439204^(5/6) 3645226641243620 a001 4181/5778*7881196^(15/22) 3645226641243652 a001 2584/9349*20633239^(7/10) 3645226641243655 a001 4181/5778*20633239^(9/14) 3645226641243658 a001 2584/9349*17393796001^(1/2) 3645226641243658 a001 2584/9349*14662949395604^(7/18) 3645226641243658 a001 2584/9349*505019158607^(7/16) 3645226641243658 a001 2584/9349*599074578^(7/12) 3645226641243660 a001 4181/5778*2537720636^(1/2) 3645226641243660 a001 4181/5778*312119004989^(9/22) 3645226641243660 a001 4181/5778*14662949395604^(5/14) 3645226641243660 a001 4181/5778*192900153618^(5/12) 3645226641243660 a001 4181/5778*28143753123^(9/20) 3645226641243661 a001 4181/5778*228826127^(9/16) 3645226641243663 a001 4181/5778*33385282^(5/8) 3645226641244450 a001 4181/5778*1860498^(3/4) 3645226641249973 a001 2584/9349*710647^(7/8) 3645226641561559 a001 4181/5778*103682^(15/16) 3645226645032485 a001 5702887/5778*5778^(5/12) 3645226651149509 r009 Im(z^3+c),c=-23/56+17/56*I,n=33 3645226652316049 a001 75025/15127*9349^(37/38) 3645226654332085 a001 121393/15127*9349^(35/38) 3645226655852633 m001 (Pi*csc(11/24*Pi)/GAMMA(13/24))^Bloch-1 3645226656595486 a001 196418/15127*9349^(33/38) 3645226657164203 a001 726103/1926*5778^(19/36) 3645226658764401 a001 317811/15127*9349^(31/38) 3645226660969407 a001 514229/15127*9349^(29/38) 3645226663160628 a001 832040/15127*9349^(27/38) 3645226663230683 a001 1346269/5778*5778^(7/12) 3645226665357114 a001 1346269/15127*9349^(25/38) 3645226665811367 a001 196418/39603*9349^(37/38) 3645226666827845 r005 Re(z^2+c),c=-53/98+2/57*I,n=8 3645226667551589 a001 311187/2161*9349^(23/38) 3645226667780308 a001 514229/103682*9349^(37/38) 3645226667980283 a001 105937/13201*9349^(35/38) 3645226668033178 a001 39088169/3571*1364^(1/6) 3645226668067572 a001 1346269/271443*9349^(37/38) 3645226668135386 a001 2178309/439204*9349^(37/38) 3645226668245111 a001 75640/15251*9349^(37/38) 3645226668664326 r002 3th iterates of z^2 + 3645226668997180 a001 317811/64079*9349^(37/38) 3645226669295151 a001 416020/2889*5778^(23/36) 3645226669341838 m001 (Niven+StronglyCareFree)/(Kac-Mills) 3645226669971528 a001 416020/51841*9349^(35/38) 3645226670185289 a001 514229/39603*9349^(33/38) 3645226670262047 a001 726103/90481*9349^(35/38) 3645226670441597 a001 1346269/167761*9349^(35/38) 3645226671202185 a001 514229/64079*9349^(35/38) 3645226671941782 a001 5702887/15127*9349^(1/2) 3645226672168014 a001 1346269/103682*9349^(33/38) 3645226672376509 a001 832040/39603*9349^(31/38) 3645226672636072 a001 2178309/167761*9349^(33/38) 3645226673393406 a001 832040/64079*9349^(33/38) 3645226674151933 a001 121393/24476*9349^(37/38) 3645226674362489 a001 46347/2206*9349^(31/38) 3645226674572995 a001 1346269/39603*9349^(29/38) 3645226675364886 a001 514229/5778*5778^(25/36) 3645226675589892 a001 1346269/64079*9349^(31/38) 3645226676415333 a001 98209/12238*9349^(35/38) 3645226676767470 a001 726103/13201*9349^(27/38) 3645226676864480 a001 6765/15127*6643838879^(1/2) 3645226677784367 a001 2178309/64079*9349^(29/38) 3645226678584249 a001 10959/844*9349^(33/38) 3645226680789255 a001 514229/24476*9349^(31/38) 3645226681420835 a001 105937/1926*5778^(3/4) 3645226682980475 a001 208010/6119*9349^(29/38) 3645226684998861 a001 46368/2207*2207^(31/32) 3645226685176962 a001 1346269/24476*9349^(27/38) 3645226685547744 a001 4976784/13201*9349^(1/2) 3645226686805367 a001 6624/2161*24476^(13/14) 3645226687371436 a001 2178309/24476*9349^(25/38) 3645226687512874 a001 98209/2889*5778^(29/36) 3645226687532827 a001 39088169/103682*9349^(1/2) 3645226687563732 a001 75025/15127*24476^(37/42) 3645226687674488 a001 121393/15127*24476^(5/6) 3645226687742464 a001 28657/15127*24476^(41/42) 3645226687822447 a001 34111385/90481*9349^(1/2) 3645226687864702 a001 267914296/710647*9349^(1/2) 3645226687870867 a001 233802911/620166*9349^(1/2) 3645226687871766 a001 1836311903/4870847*9349^(1/2) 3645226687871897 a001 1602508992/4250681*9349^(1/2) 3645226687871916 a001 12586269025/33385282*9349^(1/2) 3645226687871919 a001 10983760033/29134601*9349^(1/2) 3645226687871920 a001 86267571272/228826127*9349^(1/2) 3645226687871920 a001 267913919/710646*9349^(1/2) 3645226687871920 a001 591286729879/1568397607*9349^(1/2) 3645226687871920 a001 516002918640/1368706081*9349^(1/2) 3645226687871920 a001 4052739537881/10749957122*9349^(1/2) 3645226687871920 a001 3536736619241/9381251041*9349^(1/2) 3645226687871920 a001 6557470319842/17393796001*9349^(1/2) 3645226687871920 a001 2504730781961/6643838879*9349^(1/2) 3645226687871920 a001 956722026041/2537720636*9349^(1/2) 3645226687871920 a001 365435296162/969323029*9349^(1/2) 3645226687871920 a001 139583862445/370248451*9349^(1/2) 3645226687871920 a001 53316291173/141422324*9349^(1/2) 3645226687871921 a001 20365011074/54018521*9349^(1/2) 3645226687871928 a001 7778742049/20633239*9349^(1/2) 3645226687871978 a001 2971215073/7881196*9349^(1/2) 3645226687872322 a001 1134903170/3010349*9349^(1/2) 3645226687874677 a001 433494437/1149851*9349^(1/2) 3645226687890817 a001 165580141/439204*9349^(1/2) 3645226688001441 a001 63245986/167761*9349^(1/2) 3645226688032608 a001 196418/15127*24476^(11/14) 3645226688296244 a001 317811/15127*24476^(31/42) 3645226688595969 a001 514229/15127*24476^(29/42) 3645226688759676 a001 24157817/64079*9349^(1/2) 3645226688803156 p004 log(37181/971) 3645226688881910 a001 832040/15127*24476^(9/14) 3645226689173116 a001 1346269/15127*24476^(25/42) 3645226689462311 a001 311187/2161*24476^(23/42) 3645226689752274 a001 3524578/15127*24476^(1/2) 3645226690452576 a001 2255/13201*439204^(17/18) 3645226690470378 a001 2255/13201*7881196^(17/22) 3645226690470424 a001 2255/13201*45537549124^(1/2) 3645226690470424 a001 17711/15127*969323029^(1/2) 3645226690470426 a001 2255/13201*33385282^(17/24) 3645226690470440 a001 2255/13201*12752043^(3/4) 3645226690471319 a001 2255/13201*1860498^(17/20) 3645226690621463 a001 14930352/15127*24476^(5/14) 3645226691490719 a001 63245986/15127*24476^(3/14) 3645226691780469 a001 6765*24476^(1/6) 3645226692350565 a001 311187/2161*64079^(1/2) 3645226692359970 a001 267914296/15127*24476^(1/14) 3645226692441856 a001 6624/2161*439204^(13/18) 3645226692455455 a001 6765/103682*7881196^(5/6) 3645226692455469 a001 6624/2161*7881196^(13/22) 3645226692455497 a001 6765/103682*20633239^(11/14) 3645226692455504 a001 6624/2161*141422324^(1/2) 3645226692455504 a001 6765/103682*2537720636^(11/18) 3645226692455504 a001 6765/103682*312119004989^(1/2) 3645226692455504 a001 6765/103682*3461452808002^(11/24) 3645226692455504 a001 6765/103682*28143753123^(11/20) 3645226692455504 a001 6765/103682*1568397607^(5/8) 3645226692455504 a001 6765/103682*228826127^(11/16) 3645226692455504 a001 6624/2161*73681302247^(3/8) 3645226692455506 a001 6624/2161*33385282^(13/24) 3645226692456189 a001 6624/2161*1860498^(13/20) 3645226692456469 a001 6765/103682*1860498^(11/12) 3645226692492609 a001 6624/2161*271443^(3/4) 3645226692654458 a001 121393/15127*167761^(7/10) 3645226692730238 a001 1346269/15127*167761^(1/2) 3645226692731016 a001 6624/2161*103682^(13/16) 3645226692741774 a001 17711/15127*39603^(43/44) 3645226692745119 a001 121393/15127*20633239^(1/2) 3645226692745123 a001 2255/90481*2139295485799^(1/2) 3645226692745123 a001 121393/15127*2537720636^(7/18) 3645226692745123 a001 121393/15127*17393796001^(5/14) 3645226692745123 a001 121393/15127*312119004989^(7/22) 3645226692745123 a001 121393/15127*14662949395604^(5/18) 3645226692745123 a001 121393/15127*505019158607^(5/16) 3645226692745123 a001 121393/15127*28143753123^(7/20) 3645226692745123 a001 121393/15127*599074578^(5/12) 3645226692745123 a001 121393/15127*228826127^(7/16) 3645226692745738 a001 121393/15127*1860498^(7/12) 3645226692749635 a001 121393/15127*710647^(5/8) 3645226692755736 a001 14930352/15127*167761^(3/10) 3645226692778250 r002 5th iterates of z^2 + 3645226692781644 a001 165580141/15127*167761^(1/10) 3645226692784095 a001 832040/15127*439204^(1/2) 3645226692787177 a001 317811/15127*3010349^(1/2) 3645226692787306 a001 3524578/15127*439204^(7/18) 3645226692787322 a001 6765/710647*7881196^(21/22) 3645226692787370 a001 6765/710647*20633239^(9/10) 3645226692787378 a001 6765/710647*2537720636^(7/10) 3645226692787378 a001 6765/710647*17393796001^(9/14) 3645226692787378 a001 6765/710647*14662949395604^(1/2) 3645226692787378 a001 6765/710647*505019158607^(9/16) 3645226692787378 a001 6765/710647*192900153618^(7/12) 3645226692787378 a001 6765/710647*599074578^(3/4) 3645226692787378 a001 317811/15127*9062201101803^(1/4) 3645226692787381 a001 6765/710647*33385282^(7/8) 3645226692789344 a001 14930352/15127*439204^(5/18) 3645226692791447 a001 63245986/15127*439204^(1/6) 3645226692793519 a001 832040/15127*7881196^(9/22) 3645226692793543 a001 832040/15127*2537720636^(3/10) 3645226692793543 a001 832040/15127*14662949395604^(3/14) 3645226692793543 a001 832040/15127*192900153618^(1/4) 3645226692793544 a001 832040/15127*33385282^(3/8) 3645226692793546 a001 267914296/15127*439204^(1/18) 3645226692794017 a001 832040/15127*1860498^(9/20) 3645226692794443 a001 311187/2161*4106118243^(1/4) 3645226692794574 a001 2255/4250681*2537720636^(5/6) 3645226692794574 a001 2255/4250681*312119004989^(15/22) 3645226692794574 a001 2255/4250681*3461452808002^(5/8) 3645226692794574 a001 2255/4250681*28143753123^(3/4) 3645226692794574 a001 2255/4250681*228826127^(15/16) 3645226692794574 a001 5702887/15127*817138163596^(1/6) 3645226692794574 a001 5702887/15127*87403803^(1/4) 3645226692794580 a001 14930352/15127*7881196^(5/22) 3645226692794586 a001 39088169/15127*7881196^(1/6) 3645226692794588 a001 63245986/15127*7881196^(3/22) 3645226692794591 a001 14930352/15127*20633239^(3/14) 3645226692794593 a001 14930352/15127*2537720636^(1/6) 3645226692794593 a001 14930352/15127*312119004989^(3/22) 3645226692794593 a001 14930352/15127*28143753123^(3/20) 3645226692794593 a001 14930352/15127*228826127^(3/16) 3645226692794594 a001 267914296/15127*7881196^(1/22) 3645226692794594 a001 14930352/15127*33385282^(5/24) 3645226692794595 a001 6765*20633239^(1/10) 3645226692794596 a001 165580141/15127*20633239^(1/14) 3645226692794596 a001 39088169/15127*312119004989^(1/10) 3645226692794596 a001 39088169/15127*1568397607^(1/8) 3645226692794596 a001 6765/228826127*1322157322203^(3/4) 3645226692794596 a001 2255/199691526*17393796001^(13/14) 3645226692794596 a001 2255/199691526*14662949395604^(13/18) 3645226692794596 a001 2255/199691526*505019158607^(13/16) 3645226692794596 a001 2255/199691526*73681302247^(7/8) 3645226692794596 a001 6765/1568397607*312119004989^(19/22) 3645226692794596 a001 6765/1568397607*3461452808002^(19/24) 3645226692794596 a001 6765/1568397607*28143753123^(19/20) 3645226692794596 a001 2255/1368706081*312119004989^(9/10) 3645226692794596 a001 2255/1368706081*14662949395604^(11/14) 3645226692794596 a001 2255/1368706081*192900153618^(11/12) 3645226692794596 a001 6765*17393796001^(1/14) 3645226692794596 a001 2255/64300051206*3461452808002^(23/24) 3645226692794596 a001 6765*14662949395604^(1/18) 3645226692794596 a001 6765*505019158607^(1/16) 3645226692794596 a001 615/28374454999*14662949395604^(13/14) 3645226692794596 a001 6765/17393796001*312119004989^(21/22) 3645226692794596 a001 6765/17393796001*14662949395604^(5/6) 3645226692794596 a001 6765/17393796001*505019158607^(15/16) 3645226692794596 a001 6765*599074578^(1/12) 3645226692794596 a001 6765/969323029*9062201101803^(3/4) 3645226692794596 a001 165580141/15127*2537720636^(1/18) 3645226692794596 a001 165580141/15127*312119004989^(1/22) 3645226692794596 a001 165580141/15127*28143753123^(1/20) 3645226692794596 a001 165580141/15127*228826127^(1/16) 3645226692794596 a001 6765/141422324*2537720636^(17/18) 3645226692794596 a001 6765/141422324*45537549124^(5/6) 3645226692794596 a001 6765/141422324*312119004989^(17/22) 3645226692794596 a001 6765/141422324*3461452808002^(17/24) 3645226692794596 a001 6765/141422324*28143753123^(17/20) 3645226692794596 a001 267914296/15127*33385282^(1/24) 3645226692794596 a001 63245986/15127*2537720636^(1/10) 3645226692794596 a001 63245986/15127*14662949395604^(1/14) 3645226692794596 a001 63245986/15127*192900153618^(1/12) 3645226692794597 a001 63245986/15127*33385282^(1/8) 3645226692794597 a001 6765/54018521*2537720636^(9/10) 3645226692794597 a001 6765/54018521*14662949395604^(9/14) 3645226692794597 a001 6765/54018521*192900153618^(3/4) 3645226692794597 a001 24157817/15127*141422324^(1/6) 3645226692794597 a001 24157817/15127*73681302247^(1/8) 3645226692794605 a001 615/1875749*17393796001^(11/14) 3645226692794605 a001 615/1875749*14662949395604^(11/18) 3645226692794605 a001 615/1875749*505019158607^(11/16) 3645226692794605 a001 615/1875749*1568397607^(7/8) 3645226692794605 a001 615/1875749*599074578^(11/12) 3645226692794605 a001 9227465/15127*45537549124^(1/6) 3645226692794610 a001 9227465/15127*12752043^(1/4) 3645226692794636 a001 3524578/15127*7881196^(7/22) 3645226692794649 a001 267914296/15127*1860498^(1/20) 3645226692794652 a001 3524578/15127*20633239^(3/10) 3645226692794655 a001 3524578/15127*17393796001^(3/14) 3645226692794655 a001 3524578/15127*14662949395604^(1/6) 3645226692794655 a001 3524578/15127*599074578^(1/4) 3645226692794656 a001 3524578/15127*33385282^(7/24) 3645226692794684 a001 165580141/15127*1860498^(1/12) 3645226692794754 a001 63245986/15127*1860498^(3/20) 3645226692794856 a001 14930352/15127*1860498^(1/4) 3645226692794995 a001 1346269/15127*20633239^(5/14) 3645226692794998 a001 6765/3010349*4106118243^(3/4) 3645226692794998 a001 1346269/15127*2537720636^(5/18) 3645226692794998 a001 1346269/15127*312119004989^(5/22) 3645226692794998 a001 1346269/15127*3461452808002^(5/24) 3645226692794998 a001 1346269/15127*28143753123^(1/4) 3645226692794999 a001 1346269/15127*228826127^(5/16) 3645226692795002 a001 6765/3010349*33385282^(23/24) 3645226692795024 a001 3524578/15127*1860498^(7/20) 3645226692795437 a001 1346269/15127*1860498^(5/12) 3645226692795498 a001 6765*710647^(1/8) 3645226692795975 a001 514229/15127*1149851^(1/2) 3645226692797345 a001 6765/1149851*20633239^(13/14) 3645226692797353 a001 6765/1149851*141422324^(5/6) 3645226692797353 a001 6765/1149851*2537720636^(13/18) 3645226692797353 a001 6765/1149851*312119004989^(13/22) 3645226692797353 a001 6765/1149851*3461452808002^(13/24) 3645226692797353 a001 6765/1149851*73681302247^(5/8) 3645226692797353 a001 6765/1149851*28143753123^(13/20) 3645226692797353 a001 6765/1149851*228826127^(13/16) 3645226692797353 a001 514229/15127*1322157322203^(1/4) 3645226692797362 a001 3524578/15127*710647^(3/8) 3645226692801945 a001 196418/15127*439204^(11/18) 3645226692806966 a001 24157817/15127*271443^(1/4) 3645226692813464 a001 196418/15127*7881196^(1/2) 3645226692813493 a001 6765/439204*5600748293801^(1/2) 3645226692813493 a001 196418/15127*312119004989^(3/10) 3645226692813493 a001 196418/15127*1568397607^(3/8) 3645226692813495 a001 196418/15127*33385282^(11/24) 3645226692814072 a001 196418/15127*1860498^(11/20) 3645226692815789 a001 267914296/15127*103682^(1/16) 3645226692858176 a001 63245986/15127*103682^(3/16) 3645226692900559 a001 14930352/15127*103682^(5/16) 3645226692924067 a001 615/15251*7881196^(19/22) 3645226692924117 a001 75025/15127*54018521^(1/2) 3645226692924118 a001 615/15251*817138163596^(1/2) 3645226692924118 a001 615/15251*87403803^(3/4) 3645226692924120 a001 615/15251*33385282^(19/24) 3645226692925118 a001 615/15251*1860498^(19/20) 3645226692943008 a001 3524578/15127*103682^(7/16) 3645226692984283 a001 832040/15127*103682^(9/16) 3645226693046619 a001 196418/15127*103682^(11/16) 3645226693375639 a001 39088169/15127*39603^(1/4) 3645226693510429 a001 121393/5778*5778^(31/36) 3645226693682351 a001 6765/64079*119218851371^(1/2) 3645226693682351 a001 28657/15127*370248451^(1/2) 3645226693956691 a001 9227465/24476*9349^(1/2) 3645226694009351 a001 311187/2161*39603^(23/44) 3645226694115551 a001 1346269/15127*39603^(25/44) 3645226694219740 a001 832040/15127*39603^(27/44) 3645226694329194 a001 514229/15127*39603^(29/44) 3645226694424863 a001 317811/15127*39603^(31/44) 3645226694515566 a001 6624/2161*39603^(39/44) 3645226694556623 a001 196418/15127*39603^(3/4) 3645226694593897 a001 121393/15127*39603^(35/44) 3645226694785861 a001 165580141/15127*15127^(1/8) 3645226694878536 a001 75025/15127*39603^(37/44) 3645226695848057 a001 28657/15127*39603^(41/44) 3645226697352419 r002 5th iterates of z^2 + 3645226698762789 a001 10946/15127*167761^(9/10) 3645226698768386 a001 14930352/15127*15127^(3/8) 3645226698863612 a001 10946/15127*439204^(5/6) 3645226698879319 a001 10946/15127*7881196^(15/22) 3645226698879353 a001 6765/24476*20633239^(7/10) 3645226698879354 a001 10946/15127*20633239^(9/14) 3645226698879359 a001 6765/24476*17393796001^(1/2) 3645226698879359 a001 6765/24476*14662949395604^(7/18) 3645226698879359 a001 6765/24476*505019158607^(7/16) 3645226698879359 a001 6765/24476*599074578^(7/12) 3645226698879359 a001 10946/15127*2537720636^(1/2) 3645226698879359 a001 10946/15127*312119004989^(9/22) 3645226698879359 a001 10946/15127*14662949395604^(5/14) 3645226698879359 a001 10946/15127*192900153618^(5/12) 3645226698879359 a001 10946/15127*28143753123^(9/20) 3645226698879359 a001 10946/15127*228826127^(9/16) 3645226698879361 a001 10946/15127*33385282^(5/8) 3645226698880149 a001 10946/15127*1860498^(3/4) 3645226698885675 a001 6765/24476*710647^(7/8) 3645226699197258 a001 10946/15127*103682^(15/16) 3645226699755347 a001 75025/5778*5778^(11/12) 3645226700590174 a001 75025/39603*24476^(41/42) 3645226700700930 a001 121393/39603*24476^(13/14) 3645226701059050 a001 196418/39603*24476^(37/42) 3645226701322686 a001 105937/13201*24476^(5/6) 3645226701622411 a001 514229/39603*24476^(11/14) 3645226701893483 a001 267914296/15127*5778^(1/12) 3645226701908352 a001 832040/39603*24476^(31/42) 3645226701954259 a001 311187/2161*15127^(23/40) 3645226702199558 a001 1346269/39603*24476^(29/42) 3645226702464629 a001 98209/51841*24476^(41/42) 3645226702488753 a001 726103/13201*24476^(9/14) 3645226702728265 a001 317811/103682*24476^(13/14) 3645226702738109 a001 514229/271443*24476^(41/42) 3645226702751321 a001 1346269/15127*15127^(5/8) 3645226702778009 a001 1346269/710647*24476^(41/42) 3645226702787428 a001 2178309/1149851*24476^(41/42) 3645226702802668 a001 208010/109801*24476^(41/42) 3645226702907128 a001 317811/167761*24476^(41/42) 3645226703024049 a001 832040/271443*24476^(13/14) 3645226703027991 a001 514229/103682*24476^(37/42) 3645226703067203 a001 311187/101521*24476^(13/14) 3645226703073500 a001 5702887/1860498*24476^(13/14) 3645226703074418 a001 14930352/4870847*24476^(13/14) 3645226703074552 a001 39088169/12752043*24476^(13/14) 3645226703074572 a001 14619165/4769326*24476^(13/14) 3645226703074575 a001 267914296/87403803*24476^(13/14) 3645226703074575 a001 701408733/228826127*24476^(13/14) 3645226703074575 a001 1836311903/599074578*24476^(13/14) 3645226703074575 a001 686789568/224056801*24476^(13/14) 3645226703074575 a001 12586269025/4106118243*24476^(13/14) 3645226703074575 a001 32951280099/10749957122*24476^(13/14) 3645226703074575 a001 86267571272/28143753123*24476^(13/14) 3645226703074575 a001 32264490531/10525900321*24476^(13/14) 3645226703074575 a001 591286729879/192900153618*24476^(13/14) 3645226703074575 a001 1548008755920/505019158607*24476^(13/14) 3645226703074575 a001 1515744265389/494493258286*24476^(13/14) 3645226703074575 a001 2504730781961/817138163596*24476^(13/14) 3645226703074575 a001 956722026041/312119004989*24476^(13/14) 3645226703074575 a001 365435296162/119218851371*24476^(13/14) 3645226703074575 a001 139583862445/45537549124*24476^(13/14) 3645226703074575 a001 53316291173/17393796001*24476^(13/14) 3645226703074575 a001 20365011074/6643838879*24476^(13/14) 3645226703074575 a001 7778742049/2537720636*24476^(13/14) 3645226703074575 a001 2971215073/969323029*24476^(13/14) 3645226703074575 a001 1134903170/370248451*24476^(13/14) 3645226703074575 a001 433494437/141422324*24476^(13/14) 3645226703074576 a001 165580141/54018521*24476^(13/14) 3645226703074584 a001 63245986/20633239*24476^(13/14) 3645226703074635 a001 24157817/7881196*24476^(13/14) 3645226703074986 a001 9227465/3010349*24476^(13/14) 3645226703077391 a001 3524578/1149851*24476^(13/14) 3645226703093874 a001 1346269/439204*24476^(13/14) 3645226703206854 a001 514229/167761*24476^(13/14) 3645226703313931 a001 416020/51841*24476^(5/6) 3645226703315255 a001 1346269/271443*24476^(37/42) 3645226703358167 a001 9227465/39603*24476^(1/2) 3645226703383069 a001 2178309/439204*24476^(37/42) 3645226703492794 a001 75640/15251*24476^(37/42) 3645226703546371 a001 832040/15127*15127^(27/40) 3645226703604450 a001 726103/90481*24476^(5/6) 3645226703605137 a001 1346269/103682*24476^(11/14) 3645226703623107 a001 121393/64079*24476^(41/42) 3645226703646836 a001 5702887/710647*24476^(5/6) 3645226703653020 a001 829464/103361*24476^(5/6) 3645226703653922 a001 39088169/4870847*24476^(5/6) 3645226703654054 a001 34111385/4250681*24476^(5/6) 3645226703654073 a001 133957148/16692641*24476^(5/6) 3645226703654076 a001 233802911/29134601*24476^(5/6) 3645226703654076 a001 1836311903/228826127*24476^(5/6) 3645226703654076 a001 267084832/33281921*24476^(5/6) 3645226703654076 a001 12586269025/1568397607*24476^(5/6) 3645226703654076 a001 10983760033/1368706081*24476^(5/6) 3645226703654076 a001 43133785636/5374978561*24476^(5/6) 3645226703654076 a001 75283811239/9381251041*24476^(5/6) 3645226703654076 a001 591286729879/73681302247*24476^(5/6) 3645226703654076 a001 86000486440/10716675201*24476^(5/6) 3645226703654076 a001 4052739537881/505019158607*24476^(5/6) 3645226703654076 a001 3278735159921/408569081798*24476^(5/6) 3645226703654076 a001 2504730781961/312119004989*24476^(5/6) 3645226703654076 a001 956722026041/119218851371*24476^(5/6) 3645226703654076 a001 182717648081/22768774562*24476^(5/6) 3645226703654076 a001 139583862445/17393796001*24476^(5/6) 3645226703654076 a001 53316291173/6643838879*24476^(5/6) 3645226703654076 a001 10182505537/1268860318*24476^(5/6) 3645226703654076 a001 7778742049/969323029*24476^(5/6) 3645226703654076 a001 2971215073/370248451*24476^(5/6) 3645226703654077 a001 567451585/70711162*24476^(5/6) 3645226703654078 a001 433494437/54018521*24476^(5/6) 3645226703654085 a001 165580141/20633239*24476^(5/6) 3645226703654135 a001 31622993/3940598*24476^(5/6) 3645226703654480 a001 24157817/3010349*24476^(5/6) 3645226703656842 a001 9227465/1149851*24476^(5/6) 3645226703673032 a001 1762289/219602*24476^(5/6) 3645226703784000 a001 1346269/167761*24476^(5/6) 3645226703894332 a001 46347/2206*24476^(31/42) 3645226703894413 a001 3524578/271443*24476^(11/14) 3645226703936618 a001 9227465/710647*24476^(11/14) 3645226703942775 a001 24157817/1860498*24476^(11/14) 3645226703943673 a001 63245986/4870847*24476^(11/14) 3645226703943805 a001 165580141/12752043*24476^(11/14) 3645226703943824 a001 433494437/33385282*24476^(11/14) 3645226703943826 a001 1134903170/87403803*24476^(11/14) 3645226703943827 a001 2971215073/228826127*24476^(11/14) 3645226703943827 a001 7778742049/599074578*24476^(11/14) 3645226703943827 a001 20365011074/1568397607*24476^(11/14) 3645226703943827 a001 53316291173/4106118243*24476^(11/14) 3645226703943827 a001 139583862445/10749957122*24476^(11/14) 3645226703943827 a001 365435296162/28143753123*24476^(11/14) 3645226703943827 a001 956722026041/73681302247*24476^(11/14) 3645226703943827 a001 2504730781961/192900153618*24476^(11/14) 3645226703943827 a001 10610209857723/817138163596*24476^(11/14) 3645226703943827 a001 4052739537881/312119004989*24476^(11/14) 3645226703943827 a001 1548008755920/119218851371*24476^(11/14) 3645226703943827 a001 591286729879/45537549124*24476^(11/14) 3645226703943827 a001 7787980473/599786069*24476^(11/14) 3645226703943827 a001 86267571272/6643838879*24476^(11/14) 3645226703943827 a001 32951280099/2537720636*24476^(11/14) 3645226703943827 a001 12586269025/969323029*24476^(11/14) 3645226703943827 a001 4807526976/370248451*24476^(11/14) 3645226703943827 a001 1836311903/141422324*24476^(11/14) 3645226703943828 a001 701408733/54018521*24476^(11/14) 3645226703943835 a001 9238424/711491*24476^(11/14) 3645226703943886 a001 102334155/7881196*24476^(11/14) 3645226703944229 a001 39088169/3010349*24476^(11/14) 3645226703946581 a001 14930352/1149851*24476^(11/14) 3645226703962701 a001 5702887/439204*24476^(11/14) 3645226703981227 a001 196418/64079*24476^(13/14) 3645226704073195 a001 2178309/167761*24476^(11/14) 3645226704076367 a001 17711/39603*6643838879^(1/2) 3645226704227409 a001 39088169/39603*24476^(5/14) 3645226704244863 a001 317811/64079*24476^(37/42) 3645226704346687 a001 514229/15127*15127^(29/40) 3645226704473964 a001 5702887/103682*24476^(9/14) 3645226704544588 a001 514229/64079*24476^(5/6) 3645226704763603 a001 4976784/90481*24476^(9/14) 3645226704805860 a001 39088169/710647*24476^(9/14) 3645226704812026 a001 831985/15126*24476^(9/14) 3645226704812925 a001 267914296/4870847*24476^(9/14) 3645226704813056 a001 233802911/4250681*24476^(9/14) 3645226704813075 a001 1836311903/33385282*24476^(9/14) 3645226704813078 a001 1602508992/29134601*24476^(9/14) 3645226704813079 a001 12586269025/228826127*24476^(9/14) 3645226704813079 a001 10983760033/199691526*24476^(9/14) 3645226704813079 a001 86267571272/1568397607*24476^(9/14) 3645226704813079 a001 75283811239/1368706081*24476^(9/14) 3645226704813079 a001 591286729879/10749957122*24476^(9/14) 3645226704813079 a001 12585437040/228811001*24476^(9/14) 3645226704813079 a001 4052739537881/73681302247*24476^(9/14) 3645226704813079 a001 3536736619241/64300051206*24476^(9/14) 3645226704813079 a001 6557470319842/119218851371*24476^(9/14) 3645226704813079 a001 2504730781961/45537549124*24476^(9/14) 3645226704813079 a001 956722026041/17393796001*24476^(9/14) 3645226704813079 a001 365435296162/6643838879*24476^(9/14) 3645226704813079 a001 139583862445/2537720636*24476^(9/14) 3645226704813079 a001 53316291173/969323029*24476^(9/14) 3645226704813079 a001 20365011074/370248451*24476^(9/14) 3645226704813079 a001 7778742049/141422324*24476^(9/14) 3645226704813080 a001 2971215073/54018521*24476^(9/14) 3645226704813087 a001 1134903170/20633239*24476^(9/14) 3645226704813137 a001 433494437/7881196*24476^(9/14) 3645226704813481 a001 165580141/3010349*24476^(9/14) 3645226704815836 a001 63245986/1149851*24476^(9/14) 3645226704830529 a001 832040/64079*24476^(11/14) 3645226704831977 a001 24157817/439204*24476^(9/14) 3645226704942609 a001 9227465/167761*24476^(9/14) 3645226705096662 a001 165580141/39603*24476^(3/14) 3645226705121735 a001 1346269/64079*24476^(31/42) 3645226705133218 a001 317811/15127*15127^(31/40) 3645226705174721 r009 Re(z^3+c),c=-57/94+10/39*I,n=8 3645226705343240 a001 24157817/103682*24476^(1/2) 3645226705352658 a001 2576/321*5778^(35/36) 3645226705386412 a001 267914296/39603*24476^(1/6) 3645226705410929 a001 2178309/64079*24476^(29/42) 3645226705632858 a001 63245986/271443*24476^(1/2) 3645226705675113 a001 165580141/710647*24476^(1/2) 3645226705681278 a001 433494437/1860498*24476^(1/2) 3645226705682177 a001 1134903170/4870847*24476^(1/2) 3645226705682308 a001 2971215073/12752043*24476^(1/2) 3645226705682327 a001 7778742049/33385282*24476^(1/2) 3645226705682330 a001 20365011074/87403803*24476^(1/2) 3645226705682331 a001 53316291173/228826127*24476^(1/2) 3645226705682331 a001 139583862445/599074578*24476^(1/2) 3645226705682331 a001 365435296162/1568397607*24476^(1/2) 3645226705682331 a001 956722026041/4106118243*24476^(1/2) 3645226705682331 a001 2504730781961/10749957122*24476^(1/2) 3645226705682331 a001 6557470319842/28143753123*24476^(1/2) 3645226705682331 a001 10610209857723/45537549124*24476^(1/2) 3645226705682331 a001 4052739537881/17393796001*24476^(1/2) 3645226705682331 a001 1548008755920/6643838879*24476^(1/2) 3645226705682331 a001 591286729879/2537720636*24476^(1/2) 3645226705682331 a001 225851433717/969323029*24476^(1/2) 3645226705682331 a001 86267571272/370248451*24476^(1/2) 3645226705682331 a001 63246219/271444*24476^(1/2) 3645226705682332 a001 12586269025/54018521*24476^(1/2) 3645226705682339 a001 4807526976/20633239*24476^(1/2) 3645226705682389 a001 1836311903/7881196*24476^(1/2) 3645226705682733 a001 701408733/3010349*24476^(1/2) 3645226705685088 a001 267914296/1149851*24476^(1/2) 3645226705700892 a001 3524578/64079*24476^(9/14) 3645226705701227 a001 102334155/439204*24476^(1/2) 3645226705811852 a001 39088169/167761*24476^(1/2) 3645226705955839 a001 196418/15127*15127^(33/40) 3645226705956640 a001 5702887/39603*64079^(1/2) 3645226705965914 a001 17711*24476^(1/14) 3645226706043600 a001 17711/103682*439204^(17/18) 3645226706061402 a001 17711/103682*7881196^(17/22) 3645226706061447 a001 15456/13201*969323029^(1/2) 3645226706061447 a001 17711/103682*45537549124^(1/2) 3645226706061450 a001 17711/103682*33385282^(17/24) 3645226706061464 a001 17711/103682*12752043^(3/4) 3645226706062342 a001 17711/103682*1860498^(17/20) 3645226706212490 a001 102334155/103682*24476^(5/14) 3645226706302656 a001 105937/13201*167761^(7/10) 3645226706335837 a001 3524578/39603*167761^(1/2) 3645226706337419 a001 121393/39603*439204^(13/18) 3645226706351018 a001 17711/271443*7881196^(5/6) 3645226706351032 a001 121393/39603*7881196^(13/22) 3645226706351060 a001 17711/271443*20633239^(11/14) 3645226706351066 a001 121393/39603*141422324^(1/2) 3645226706351067 a001 17711/271443*2537720636^(11/18) 3645226706351067 a001 17711/271443*312119004989^(1/2) 3645226706351067 a001 17711/271443*3461452808002^(11/24) 3645226706351067 a001 17711/271443*28143753123^(11/20) 3645226706351067 a001 17711/271443*1568397607^(5/8) 3645226706351067 a001 121393/39603*73681302247^(3/8) 3645226706351067 a001 17711/271443*228826127^(11/16) 3645226706351068 a001 121393/39603*33385282^(13/24) 3645226706351751 a001 121393/39603*1860498^(13/20) 3645226706352032 a001 17711/271443*1860498^(11/12) 3645226706361682 a001 39088169/39603*167761^(3/10) 3645226706387587 a001 433494437/39603*167761^(1/10) 3645226706388171 a001 121393/39603*271443^(3/4) 3645226706390937 a001 726103/13201*439204^(1/2) 3645226706391748 a001 514229/39603*439204^(11/18) 3645226706393199 a001 9227465/39603*439204^(7/18) 3645226706393317 a001 105937/13201*20633239^(1/2) 3645226706393321 a001 17711/710647*2139295485799^(1/2) 3645226706393321 a001 105937/13201*2537720636^(7/18) 3645226706393321 a001 105937/13201*17393796001^(5/14) 3645226706393321 a001 105937/13201*312119004989^(7/22) 3645226706393321 a001 105937/13201*14662949395604^(5/18) 3645226706393321 a001 105937/13201*505019158607^(5/16) 3645226706393321 a001 105937/13201*28143753123^(7/20) 3645226706393321 a001 105937/13201*599074578^(5/12) 3645226706393321 a001 105937/13201*228826127^(7/16) 3645226706393936 a001 105937/13201*1860498^(7/12) 3645226706395290 a001 39088169/39603*439204^(5/18) 3645226706397390 a001 165580141/39603*439204^(1/6) 3645226706397833 a001 105937/13201*710647^(5/8) 3645226706399285 a001 832040/39603*3010349^(1/2) 3645226706399430 a001 17711/1860498*7881196^(21/22) 3645226706399479 a001 17711/1860498*20633239^(9/10) 3645226706399486 a001 17711/1860498*2537720636^(7/10) 3645226706399486 a001 17711/1860498*17393796001^(9/14) 3645226706399486 a001 17711/1860498*14662949395604^(1/2) 3645226706399486 a001 17711/1860498*505019158607^(9/16) 3645226706399486 a001 17711/1860498*192900153618^(7/12) 3645226706399486 a001 832040/39603*9062201101803^(1/4) 3645226706399486 a001 17711/1860498*599074578^(3/4) 3645226706399489 a001 17711/1860498*33385282^(7/8) 3645226706399490 a001 17711*439204^(1/18) 3645226706399563 a001 1346269/39603*1149851^(1/2) 3645226706400362 a001 726103/13201*7881196^(9/22) 3645226706400386 a001 726103/13201*2537720636^(3/10) 3645226706400386 a001 726103/13201*14662949395604^(3/14) 3645226706400386 a001 726103/13201*192900153618^(1/4) 3645226706400387 a001 726103/13201*33385282^(3/8) 3645226706400517 a001 5702887/39603*4106118243^(1/4) 3645226706400526 a001 39088169/39603*7881196^(5/22) 3645226706400529 a001 9227465/39603*7881196^(7/22) 3645226706400530 a001 34111385/13201*7881196^(1/6) 3645226706400531 a001 165580141/39603*7881196^(3/22) 3645226706400536 a001 17711/33385282*2537720636^(5/6) 3645226706400536 a001 17711/33385282*312119004989^(15/22) 3645226706400536 a001 17711/33385282*3461452808002^(5/8) 3645226706400536 a001 17711/33385282*28143753123^(3/4) 3645226706400536 a001 4976784/13201*817138163596^(1/6) 3645226706400536 a001 17711/33385282*228826127^(15/16) 3645226706400536 a001 4976784/13201*87403803^(1/4) 3645226706400537 a001 17711*7881196^(1/22) 3645226706400537 a001 39088169/39603*20633239^(3/14) 3645226706400539 a001 267914296/39603*20633239^(1/10) 3645226706400539 a001 433494437/39603*20633239^(1/14) 3645226706400539 a001 39088169/39603*2537720636^(1/6) 3645226706400539 a001 39088169/39603*312119004989^(3/22) 3645226706400539 a001 39088169/39603*28143753123^(3/20) 3645226706400539 a001 39088169/39603*228826127^(3/16) 3645226706400539 a001 34111385/13201*312119004989^(1/10) 3645226706400539 a001 34111385/13201*1568397607^(1/8) 3645226706400539 a001 17711/599074578*1322157322203^(3/4) 3645226706400539 a001 267914296/39603*17393796001^(1/14) 3645226706400539 a001 267914296/39603*14662949395604^(1/18) 3645226706400539 a001 267914296/39603*505019158607^(1/16) 3645226706400539 a001 267914296/39603*599074578^(1/12) 3645226706400539 a001 17711/1568397607*17393796001^(13/14) 3645226706400539 a001 17711/1568397607*14662949395604^(13/18) 3645226706400539 a001 17711/1568397607*505019158607^(13/16) 3645226706400539 a001 17711/1568397607*73681302247^(7/8) 3645226706400539 a001 17711/4106118243*312119004989^(19/22) 3645226706400539 a001 17711/4106118243*3461452808002^(19/24) 3645226706400539 a001 17711/4106118243*28143753123^(19/20) 3645226706400539 a001 17711/10749957122*312119004989^(9/10) 3645226706400539 a001 17711/10749957122*14662949395604^(11/14) 3645226706400539 a001 17711/10749957122*192900153618^(11/12) 3645226706400539 a001 17711/505019158607*3461452808002^(23/24) 3645226706400539 a001 17711/1322157322203*14662949395604^(17/18) 3645226706400539 a001 17711/817138163596*14662949395604^(13/14) 3645226706400539 a001 17711/45537549124*312119004989^(21/22) 3645226706400539 a001 17711/45537549124*14662949395604^(5/6) 3645226706400539 a001 17711/45537549124*505019158607^(15/16) 3645226706400539 a001 17711/2537720636*9062201101803^(3/4) 3645226706400539 a001 433494437/39603*2537720636^(1/18) 3645226706400539 a001 433494437/39603*312119004989^(1/22) 3645226706400539 a001 433494437/39603*28143753123^(1/20) 3645226706400539 a001 433494437/39603*228826127^(1/16) 3645226706400539 a001 17711/370248451*2537720636^(17/18) 3645226706400539 a001 17711/370248451*45537549124^(5/6) 3645226706400539 a001 17711/370248451*312119004989^(17/22) 3645226706400539 a001 17711/370248451*3461452808002^(17/24) 3645226706400539 a001 17711/370248451*28143753123^(17/20) 3645226706400539 a001 165580141/39603*2537720636^(1/10) 3645226706400539 a001 165580141/39603*14662949395604^(1/14) 3645226706400539 a001 165580141/39603*192900153618^(1/12) 3645226706400540 a001 17711*33385282^(1/24) 3645226706400540 a001 63245986/39603*141422324^(1/6) 3645226706400540 a001 17711/141422324*2537720636^(9/10) 3645226706400540 a001 17711/141422324*14662949395604^(9/14) 3645226706400540 a001 17711/141422324*192900153618^(3/4) 3645226706400540 a001 63245986/39603*73681302247^(1/8) 3645226706400540 a001 39088169/39603*33385282^(5/24) 3645226706400540 a001 165580141/39603*33385282^(1/8) 3645226706400541 a001 17711/54018521*17393796001^(11/14) 3645226706400541 a001 17711/54018521*14662949395604^(11/18) 3645226706400541 a001 17711/54018521*505019158607^(11/16) 3645226706400541 a001 17711/54018521*1568397607^(7/8) 3645226706400541 a001 24157817/39603*45537549124^(1/6) 3645226706400541 a001 17711/54018521*599074578^(11/12) 3645226706400545 a001 9227465/39603*20633239^(3/10) 3645226706400546 a001 24157817/39603*12752043^(1/4) 3645226706400548 a001 9227465/39603*17393796001^(3/14) 3645226706400548 a001 9227465/39603*14662949395604^(1/6) 3645226706400548 a001 9227465/39603*599074578^(1/4) 3645226706400549 a001 9227465/39603*33385282^(7/24) 3645226706400592 a001 17711*1860498^(1/20) 3645226706400595 a001 3524578/39603*20633239^(5/14) 3645226706400598 a001 89/39604*4106118243^(3/4) 3645226706400598 a001 3524578/39603*2537720636^(5/18) 3645226706400598 a001 3524578/39603*312119004989^(5/22) 3645226706400598 a001 3524578/39603*3461452808002^(5/24) 3645226706400598 a001 3524578/39603*28143753123^(1/4) 3645226706400598 a001 3524578/39603*228826127^(5/16) 3645226706400601 a001 89/39604*33385282^(23/24) 3645226706400627 a001 433494437/39603*1860498^(1/12) 3645226706400697 a001 165580141/39603*1860498^(3/20) 3645226706400802 a001 39088169/39603*1860498^(1/4) 3645226706400860 a001 726103/13201*1860498^(9/20) 3645226706400917 a001 9227465/39603*1860498^(7/20) 3645226706400934 a001 17711/3010349*20633239^(13/14) 3645226706400942 a001 17711/3010349*141422324^(5/6) 3645226706400942 a001 17711/3010349*2537720636^(13/18) 3645226706400942 a001 17711/3010349*312119004989^(13/22) 3645226706400942 a001 17711/3010349*3461452808002^(13/24) 3645226706400942 a001 17711/3010349*73681302247^(5/8) 3645226706400942 a001 17711/3010349*28143753123^(13/20) 3645226706400942 a001 1346269/39603*1322157322203^(1/4) 3645226706400942 a001 17711/3010349*228826127^(13/16) 3645226706401037 a001 3524578/39603*1860498^(5/12) 3645226706401442 a001 267914296/39603*710647^(1/8) 3645226706403255 a001 9227465/39603*710647^(3/8) 3645226706403267 a001 514229/39603*7881196^(1/2) 3645226706403296 a001 17711/1149851*5600748293801^(1/2) 3645226706403296 a001 514229/39603*312119004989^(3/10) 3645226706403296 a001 514229/39603*1568397607^(3/8) 3645226706403298 a001 514229/39603*33385282^(11/24) 3645226706403876 a001 514229/39603*1860498^(11/20) 3645226706412908 a001 63245986/39603*271443^(1/4) 3645226706419386 a001 17711/439204*7881196^(19/22) 3645226706419436 a001 196418/39603*54018521^(1/2) 3645226706419436 a001 17711/439204*817138163596^(1/2) 3645226706419437 a001 17711/439204*87403803^(3/4) 3645226706419439 a001 17711/439204*33385282^(19/24) 3645226706420437 a001 17711/439204*1860498^(19/20) 3645226706421733 a001 17711*103682^(1/16) 3645226706464119 a001 165580141/39603*103682^(3/16) 3645226706502110 a001 267914296/271443*24476^(5/14) 3645226706506505 a001 39088169/39603*103682^(5/16) 3645226706530061 a001 75025/39603*370248451^(1/2) 3645226706530061 a001 17711/167761*119218851371^(1/2) 3645226706544364 a001 701408733/710647*24476^(5/14) 3645226706548901 a001 9227465/39603*103682^(7/16) 3645226706550529 a001 1836311903/1860498*24476^(5/14) 3645226706551429 a001 4807526976/4870847*24476^(5/14) 3645226706551560 a001 12586269025/12752043*24476^(5/14) 3645226706551579 a001 32951280099/33385282*24476^(5/14) 3645226706551582 a001 86267571272/87403803*24476^(5/14) 3645226706551582 a001 225851433717/228826127*24476^(5/14) 3645226706551582 a001 591286729879/599074578*24476^(5/14) 3645226706551582 a001 1548008755920/1568397607*24476^(5/14) 3645226706551582 a001 4052739537881/4106118243*24476^(5/14) 3645226706551582 a001 4807525989/4870846*24476^(5/14) 3645226706551582 a001 6557470319842/6643838879*24476^(5/14) 3645226706551582 a001 2504730781961/2537720636*24476^(5/14) 3645226706551582 a001 956722026041/969323029*24476^(5/14) 3645226706551582 a001 365435296162/370248451*24476^(5/14) 3645226706551583 a001 139583862445/141422324*24476^(5/14) 3645226706551584 a001 53316291173/54018521*24476^(5/14) 3645226706551591 a001 20365011074/20633239*24476^(5/14) 3645226706551641 a001 7778742049/7881196*24476^(5/14) 3645226706551985 a001 2971215073/3010349*24476^(5/14) 3645226706554339 a001 1134903170/1149851*24476^(5/14) 3645226706570082 a001 14930352/64079*24476^(1/2) 3645226706570479 a001 433494437/439204*24476^(5/14) 3645226706591125 a001 726103/13201*103682^(9/16) 3645226706626579 a001 121393/39603*103682^(13/16) 3645226706636422 a001 514229/39603*103682^(11/16) 3645226706681104 a001 165580141/167761*24476^(5/14) 3645226706683975 a001 121393/15127*15127^(7/8) 3645226706981583 a001 34111385/13201*39603^(1/4) 3645226707081742 a001 433494437/103682*24476^(3/14) 3645226707171725 a001 28657/39603*167761^(9/10) 3645226707272547 a001 28657/39603*439204^(5/6) 3645226707288254 a001 28657/39603*7881196^(15/22) 3645226707288288 a001 17711/64079*20633239^(7/10) 3645226707288289 a001 28657/39603*20633239^(9/14) 3645226707288294 a001 17711/64079*17393796001^(1/2) 3645226707288294 a001 17711/64079*14662949395604^(7/18) 3645226707288294 a001 17711/64079*505019158607^(7/16) 3645226707288294 a001 28657/39603*2537720636^(1/2) 3645226707288294 a001 28657/39603*312119004989^(9/22) 3645226707288294 a001 28657/39603*14662949395604^(5/14) 3645226707288294 a001 28657/39603*192900153618^(5/12) 3645226707288294 a001 28657/39603*28143753123^(9/20) 3645226707288294 a001 17711/64079*599074578^(7/12) 3645226707288294 a001 28657/39603*228826127^(9/16) 3645226707288296 a001 28657/39603*33385282^(5/8) 3645226707289084 a001 28657/39603*1860498^(3/4) 3645226707294610 a001 17711/64079*710647^(7/8) 3645226707371361 a001 1134903170/271443*24476^(3/14) 3645226707371493 a001 701408733/103682*24476^(1/6) 3645226707413616 a001 2971215073/710647*24476^(3/14) 3645226707419781 a001 7778742049/1860498*24476^(3/14) 3645226707420681 a001 20365011074/4870847*24476^(3/14) 3645226707420812 a001 53316291173/12752043*24476^(3/14) 3645226707420831 a001 139583862445/33385282*24476^(3/14) 3645226707420834 a001 365435296162/87403803*24476^(3/14) 3645226707420834 a001 956722026041/228826127*24476^(3/14) 3645226707420834 a001 2504730781961/599074578*24476^(3/14) 3645226707420834 a001 6557470319842/1568397607*24476^(3/14) 3645226707420834 a001 10610209857723/2537720636*24476^(3/14) 3645226707420834 a001 4052739537881/969323029*24476^(3/14) 3645226707420834 a001 1548008755920/370248451*24476^(3/14) 3645226707420834 a001 591286729879/141422324*24476^(3/14) 3645226707420836 a001 225851433717/54018521*24476^(3/14) 3645226707420843 a001 86267571272/20633239*24476^(3/14) 3645226707420893 a001 32951280099/7881196*24476^(3/14) 3645226707421237 a001 12586269025/3010349*24476^(3/14) 3645226707423591 a001 4807526976/1149851*24476^(3/14) 3645226707439338 a001 63245986/64079*24476^(5/14) 3645226707439731 a001 1836311903/439204*24476^(3/14) 3645226707550356 a001 701408733/167761*24476^(3/14) 3645226707606193 a001 28657/39603*103682^(15/16) 3645226707659475 a001 75025/15127*15127^(37/40) 3645226707661112 a001 1836311903/271443*24476^(1/6) 3645226707703367 a001 686789568/101521*24476^(1/6) 3645226707709532 a001 12586269025/1860498*24476^(1/6) 3645226707710431 a001 32951280099/4870847*24476^(1/6) 3645226707710562 a001 86267571272/12752043*24476^(1/6) 3645226707710582 a001 32264490531/4769326*24476^(1/6) 3645226707710584 a001 591286729879/87403803*24476^(1/6) 3645226707710585 a001 1548008755920/228826127*24476^(1/6) 3645226707710585 a001 4052739537881/599074578*24476^(1/6) 3645226707710585 a001 1515744265389/224056801*24476^(1/6) 3645226707710585 a001 6557470319842/969323029*24476^(1/6) 3645226707710585 a001 2504730781961/370248451*24476^(1/6) 3645226707710585 a001 956722026041/141422324*24476^(1/6) 3645226707710586 a001 365435296162/54018521*24476^(1/6) 3645226707710593 a001 139583862445/20633239*24476^(1/6) 3645226707710644 a001 53316291173/7881196*24476^(1/6) 3645226707710987 a001 20365011074/3010349*24476^(1/6) 3645226707713342 a001 7778742049/1149851*24476^(1/6) 3645226707729482 a001 2971215073/439204*24476^(1/6) 3645226707826583 a001 726103/13201*39603^(27/44) 3645226707840107 a001 1134903170/167761*24476^(1/6) 3645226707932783 a001 1346269/39603*39603^(29/44) 3645226707941739 a001 7465176/51841*64079^(1/2) 3645226707950994 a001 1836311903/103682*24476^(1/14) 3645226707987367 a001 6624/2161*15127^(39/40) 3645226708036972 a001 832040/39603*39603^(31/44) 3645226708046528 a001 23184/51841*6643838879^(1/2) 3645226708146426 a001 514229/39603*39603^(3/4) 3645226708231361 a001 39088169/271443*64079^(1/2) 3645226708240613 a001 1602508992/90481*24476^(1/14) 3645226708242095 a001 105937/13201*39603^(35/44) 3645226708273616 a001 14619165/101521*64079^(1/2) 3645226708279781 a001 133957148/930249*64079^(1/2) 3645226708280681 a001 701408733/4870847*64079^(1/2) 3645226708280812 a001 1836311903/12752043*64079^(1/2) 3645226708280831 a001 14930208/103681*64079^(1/2) 3645226708280834 a001 12586269025/87403803*64079^(1/2) 3645226708280834 a001 32951280099/228826127*64079^(1/2) 3645226708280835 a001 43133785636/299537289*64079^(1/2) 3645226708280835 a001 32264490531/224056801*64079^(1/2) 3645226708280835 a001 591286729879/4106118243*64079^(1/2) 3645226708280835 a001 774004377960/5374978561*64079^(1/2) 3645226708280835 a001 4052739537881/28143753123*64079^(1/2) 3645226708280835 a001 1515744265389/10525900321*64079^(1/2) 3645226708280835 a001 3278735159921/22768774562*64079^(1/2) 3645226708280835 a001 2504730781961/17393796001*64079^(1/2) 3645226708280835 a001 956722026041/6643838879*64079^(1/2) 3645226708280835 a001 182717648081/1268860318*64079^(1/2) 3645226708280835 a001 139583862445/969323029*64079^(1/2) 3645226708280835 a001 53316291173/370248451*64079^(1/2) 3645226708280835 a001 10182505537/70711162*64079^(1/2) 3645226708280836 a001 7778742049/54018521*64079^(1/2) 3645226708280843 a001 2971215073/20633239*64079^(1/2) 3645226708280893 a001 567451585/3940598*64079^(1/2) 3645226708281237 a001 433494437/3010349*64079^(1/2) 3645226708282868 a001 12586269025/710647*24476^(1/14) 3645226708283592 a001 165580141/1149851*64079^(1/2) 3645226708289033 a001 10983760033/620166*24476^(1/14) 3645226708289932 a001 86267571272/4870847*24476^(1/14) 3645226708290064 a001 75283811239/4250681*24476^(1/14) 3645226708290083 a001 591286729879/33385282*24476^(1/14) 3645226708290086 a001 516002918640/29134601*24476^(1/14) 3645226708290086 a001 4052739537881/228826127*24476^(1/14) 3645226708290086 a001 3536736619241/199691526*24476^(1/14) 3645226708290086 a001 6557470319842/370248451*24476^(1/14) 3645226708290086 a001 2504730781961/141422324*24476^(1/14) 3645226708290087 a001 956722026041/54018521*24476^(1/14) 3645226708290095 a001 365435296162/20633239*24476^(1/14) 3645226708290145 a001 139583862445/7881196*24476^(1/14) 3645226708290488 a001 53316291173/3010349*24476^(1/14) 3645226708292843 a001 20365011074/1149851*24476^(1/14) 3645226708293902 a001 416020/51841*167761^(7/10) 3645226708299732 a001 31622993/219602*64079^(1/2) 3645226708308589 a001 267914296/64079*24476^(3/14) 3645226708308983 a001 7778742049/439204*24476^(1/14) 3645226708318300 a001 15456/90481*439204^(17/18) 3645226708320868 a001 9227465/103682*167761^(1/2) 3645226708332798 a001 15456/13201*39603^(43/44) 3645226708336102 a001 15456/90481*7881196^(17/22) 3645226708336147 a001 121393/103682*969323029^(1/2) 3645226708336147 a001 15456/90481*45537549124^(1/2) 3645226708336149 a001 15456/90481*33385282^(17/24) 3645226708336164 a001 15456/90481*12752043^(3/4) 3645226708337042 a001 15456/90481*1860498^(17/20) 3645226708346763 a001 102334155/103682*167761^(3/10) 3645226708364754 a001 317811/103682*439204^(13/18) 3645226708372668 a001 567451585/51841*167761^(1/10) 3645226708373854 a001 196418/39603*39603^(37/44) 3645226708374474 a001 1346269/103682*439204^(11/18) 3645226708376149 a001 5702887/103682*439204^(1/2) 3645226708378272 a001 24157817/103682*439204^(7/18) 3645226708378353 a001 6624/101521*7881196^(5/6) 3645226708378367 a001 317811/103682*7881196^(13/22) 3645226708378395 a001 6624/101521*20633239^(11/14) 3645226708378402 a001 317811/103682*141422324^(1/2) 3645226708378402 a001 6624/101521*2537720636^(11/18) 3645226708378402 a001 6624/101521*312119004989^(1/2) 3645226708378402 a001 6624/101521*3461452808002^(11/24) 3645226708378402 a001 6624/101521*28143753123^(11/20) 3645226708378402 a001 317811/103682*73681302247^(3/8) 3645226708378402 a001 6624/101521*1568397607^(5/8) 3645226708378402 a001 6624/101521*228826127^(11/16) 3645226708378404 a001 317811/103682*33385282^(13/24) 3645226708379086 a001 317811/103682*1860498^(13/20) 3645226708379367 a001 6624/101521*1860498^(11/12) 3645226708380371 a001 102334155/103682*439204^(5/18) 3645226708382470 a001 433494437/103682*439204^(1/6) 3645226708384300 a001 1762289/51841*1149851^(1/2) 3645226708384562 a001 416020/51841*20633239^(1/2) 3645226708384567 a001 416020/51841*2537720636^(7/18) 3645226708384567 a001 2576/103361*2139295485799^(1/2) 3645226708384567 a001 416020/51841*17393796001^(5/14) 3645226708384567 a001 416020/51841*312119004989^(7/22) 3645226708384567 a001 416020/51841*14662949395604^(5/18) 3645226708384567 a001 416020/51841*28143753123^(7/20) 3645226708384567 a001 416020/51841*599074578^(5/12) 3645226708384567 a001 416020/51841*228826127^(7/16) 3645226708384570 a001 1836311903/103682*439204^(1/18) 3645226708385181 a001 416020/51841*1860498^(7/12) 3645226708385265 a001 46347/2206*3010349^(1/2) 3645226708385410 a001 46368/4870847*7881196^(21/22) 3645226708385458 a001 46368/4870847*20633239^(9/10) 3645226708385466 a001 46368/4870847*2537720636^(7/10) 3645226708385466 a001 46368/4870847*17393796001^(9/14) 3645226708385466 a001 46368/4870847*14662949395604^(1/2) 3645226708385466 a001 46368/4870847*505019158607^(9/16) 3645226708385466 a001 46368/4870847*192900153618^(7/12) 3645226708385466 a001 46347/2206*9062201101803^(1/4) 3645226708385466 a001 46368/4870847*599074578^(3/4) 3645226708385469 a001 46368/4870847*33385282^(7/8) 3645226708385573 a001 5702887/103682*7881196^(9/22) 3645226708385597 a001 5702887/103682*2537720636^(3/10) 3645226708385597 a001 5702887/103682*14662949395604^(3/14) 3645226708385597 a001 5702887/103682*192900153618^(1/4) 3645226708385599 a001 5702887/103682*33385282^(3/8) 3645226708385602 a001 24157817/103682*7881196^(7/22) 3645226708385606 a001 102334155/103682*7881196^(5/22) 3645226708385610 a001 133957148/51841*7881196^(1/6) 3645226708385612 a001 433494437/103682*7881196^(3/22) 3645226708385617 a001 7465176/51841*4106118243^(1/4) 3645226708385617 a001 1836311903/103682*7881196^(1/22) 3645226708385618 a001 102334155/103682*20633239^(3/14) 3645226708385618 a001 24157817/103682*20633239^(3/10) 3645226708385619 a001 701408733/103682*20633239^(1/10) 3645226708385619 a001 567451585/51841*20633239^(1/14) 3645226708385619 a001 15456/29134601*2537720636^(5/6) 3645226708385619 a001 15456/29134601*312119004989^(15/22) 3645226708385619 a001 15456/29134601*3461452808002^(5/8) 3645226708385619 a001 15456/29134601*28143753123^(3/4) 3645226708385619 a001 39088169/103682*817138163596^(1/6) 3645226708385619 a001 15456/29134601*228826127^(15/16) 3645226708385619 a001 39088169/103682*87403803^(1/4) 3645226708385620 a001 102334155/103682*2537720636^(1/6) 3645226708385620 a001 102334155/103682*312119004989^(3/22) 3645226708385620 a001 102334155/103682*28143753123^(3/20) 3645226708385620 a001 102334155/103682*228826127^(3/16) 3645226708385620 a001 133957148/51841*312119004989^(1/10) 3645226708385620 a001 133957148/51841*1568397607^(1/8) 3645226708385620 a001 165580141/103682*141422324^(1/6) 3645226708385620 a001 6624/224056801*1322157322203^(3/4) 3645226708385620 a001 701408733/103682*17393796001^(1/14) 3645226708385620 a001 701408733/103682*14662949395604^(1/18) 3645226708385620 a001 701408733/103682*505019158607^(1/16) 3645226708385620 a001 701408733/103682*599074578^(1/12) 3645226708385620 a001 15456/1368706081*17393796001^(13/14) 3645226708385620 a001 15456/1368706081*14662949395604^(13/18) 3645226708385620 a001 15456/1368706081*505019158607^(13/16) 3645226708385620 a001 15456/1368706081*73681302247^(7/8) 3645226708385620 a001 23184/5374978561*312119004989^(19/22) 3645226708385620 a001 23184/5374978561*3461452808002^(19/24) 3645226708385620 a001 23184/5374978561*28143753123^(19/20) 3645226708385620 a001 15456/9381251041*312119004989^(9/10) 3645226708385620 a001 15456/9381251041*14662949395604^(11/14) 3645226708385620 a001 15456/9381251041*192900153618^(11/12) 3645226708385620 a001 15456/440719107401*3461452808002^(23/24) 3645226708385620 a001 144/10749853441*14662949395604^(17/18) 3645226708385620 a001 46368/119218851371*312119004989^(21/22) 3645226708385620 a001 46368/119218851371*14662949395604^(5/6) 3645226708385620 a001 46368/119218851371*505019158607^(15/16) 3645226708385620 a001 46368/6643838879*9062201101803^(3/4) 3645226708385620 a001 567451585/51841*2537720636^(1/18) 3645226708385620 a001 567451585/51841*312119004989^(1/22) 3645226708385620 a001 567451585/51841*28143753123^(1/20) 3645226708385620 a001 46368/969323029*2537720636^(17/18) 3645226708385620 a001 433494437/103682*2537720636^(1/10) 3645226708385620 a001 46368/969323029*45537549124^(5/6) 3645226708385620 a001 46368/969323029*312119004989^(17/22) 3645226708385620 a001 46368/969323029*3461452808002^(17/24) 3645226708385620 a001 46368/969323029*28143753123^(17/20) 3645226708385620 a001 433494437/103682*14662949395604^(1/14) 3645226708385620 a001 433494437/103682*192900153618^(1/12) 3645226708385620 a001 567451585/51841*228826127^(1/16) 3645226708385620 a001 46368/370248451*2537720636^(9/10) 3645226708385620 a001 46368/370248451*14662949395604^(9/14) 3645226708385620 a001 46368/370248451*192900153618^(3/4) 3645226708385620 a001 165580141/103682*73681302247^(1/8) 3645226708385620 a001 1836311903/103682*33385282^(1/24) 3645226708385620 a001 11592/35355581*17393796001^(11/14) 3645226708385620 a001 11592/35355581*14662949395604^(11/18) 3645226708385620 a001 11592/35355581*505019158607^(11/16) 3645226708385620 a001 31622993/51841*45537549124^(1/6) 3645226708385620 a001 11592/35355581*1568397607^(7/8) 3645226708385620 a001 11592/35355581*599074578^(11/12) 3645226708385620 a001 433494437/103682*33385282^(1/8) 3645226708385620 a001 102334155/103682*33385282^(5/24) 3645226708385621 a001 24157817/103682*17393796001^(3/14) 3645226708385621 a001 24157817/103682*14662949395604^(1/6) 3645226708385621 a001 24157817/103682*599074578^(1/4) 3645226708385622 a001 24157817/103682*33385282^(7/24) 3645226708385625 a001 9227465/103682*20633239^(5/14) 3645226708385626 a001 31622993/51841*12752043^(1/4) 3645226708385628 a001 9227465/103682*2537720636^(5/18) 3645226708385628 a001 9227465/103682*312119004989^(5/22) 3645226708385628 a001 9227465/103682*28143753123^(1/4) 3645226708385628 a001 46368/20633239*4106118243^(3/4) 3645226708385628 a001 9227465/103682*228826127^(5/16) 3645226708385631 a001 46368/20633239*33385282^(23/24) 3645226708385671 a001 11592/1970299*20633239^(13/14) 3645226708385672 a001 1836311903/103682*1860498^(1/20) 3645226708385678 a001 11592/1970299*141422324^(5/6) 3645226708385678 a001 11592/1970299*2537720636^(13/18) 3645226708385678 a001 11592/1970299*312119004989^(13/22) 3645226708385678 a001 11592/1970299*3461452808002^(13/24) 3645226708385678 a001 11592/1970299*73681302247^(5/8) 3645226708385678 a001 11592/1970299*28143753123^(13/20) 3645226708385678 a001 1762289/51841*1322157322203^(1/4) 3645226708385679 a001 11592/1970299*228826127^(13/16) 3645226708385708 a001 567451585/51841*1860498^(1/12) 3645226708385778 a001 433494437/103682*1860498^(3/20) 3645226708385883 a001 102334155/103682*1860498^(1/4) 3645226708385990 a001 24157817/103682*1860498^(7/20) 3645226708385993 a001 1346269/103682*7881196^(1/2) 3645226708386022 a001 46368/3010349*5600748293801^(1/2) 3645226708386022 a001 1346269/103682*312119004989^(3/10) 3645226708386022 a001 1346269/103682*1568397607^(3/8) 3645226708386024 a001 1346269/103682*33385282^(11/24) 3645226708386067 a001 9227465/103682*1860498^(5/12) 3645226708386071 a001 5702887/103682*1860498^(9/20) 3645226708386522 a001 701408733/103682*710647^(1/8) 3645226708386601 a001 1346269/103682*1860498^(11/20) 3645226708388326 a001 46368/1149851*7881196^(19/22) 3645226708388328 a001 24157817/103682*710647^(3/8) 3645226708388376 a001 514229/103682*54018521^(1/2) 3645226708388377 a001 46368/1149851*817138163596^(1/2) 3645226708388377 a001 46368/1149851*87403803^(3/4) 3645226708388379 a001 46368/1149851*33385282^(19/24) 3645226708389078 a001 416020/51841*710647^(5/8) 3645226708389377 a001 46368/1149851*1860498^(19/20) 3645226708391804 a001 433494437/39603*15127^(1/8) 3645226708397988 a001 165580141/103682*271443^(1/4) 3645226708398572 a001 75025/103682*167761^(9/10) 3645226708404517 a001 98209/51841*370248451^(1/2) 3645226708404517 a001 11592/109801*119218851371^(1/2) 3645226708406813 a001 1836311903/103682*103682^(1/16) 3645226708410357 a001 24157817/167761*64079^(1/2) 3645226708411129 a001 121393/39603*39603^(39/44) 3645226708415506 a001 317811/103682*271443^(3/4) 3645226708419608 a001 2971215073/167761*24476^(1/14) 3645226708449200 a001 433494437/103682*103682^(3/16) 3645226708491586 a001 102334155/103682*103682^(5/16) 3645226708499394 a001 75025/103682*439204^(5/6) 3645226708515101 a001 75025/103682*7881196^(15/22) 3645226708515135 a001 46368/167761*20633239^(7/10) 3645226708515136 a001 75025/103682*20633239^(9/14) 3645226708515141 a001 75025/103682*2537720636^(1/2) 3645226708515141 a001 46368/167761*17393796001^(1/2) 3645226708515141 a001 46368/167761*14662949395604^(7/18) 3645226708515141 a001 46368/167761*505019158607^(7/16) 3645226708515141 a001 75025/103682*312119004989^(9/22) 3645226708515141 a001 75025/103682*14662949395604^(5/14) 3645226708515141 a001 75025/103682*192900153618^(5/12) 3645226708515141 a001 75025/103682*28143753123^(9/20) 3645226708515141 a001 46368/167761*599074578^(7/12) 3645226708515142 a001 75025/103682*228826127^(9/16) 3645226708515144 a001 75025/103682*33385282^(5/8) 3645226708515931 a001 75025/103682*1860498^(3/4) 3645226708521457 a001 46368/167761*710647^(7/8) 3645226708530495 a001 11592/6119*24476^(41/42) 3645226708533974 a001 24157817/103682*103682^(7/16) 3645226708576337 a001 5702887/103682*103682^(9/16) 3645226708577567 a001 196418/271443*167761^(9/10) 3645226708584420 a001 726103/90481*167761^(7/10) 3645226708598340 a001 433494437/64079*24476^(1/6) 3645226708603682 a001 514229/710647*167761^(9/10) 3645226708607492 a001 1346269/1860498*167761^(9/10) 3645226708608048 a001 3524578/4870847*167761^(9/10) 3645226708608129 a001 9227465/12752043*167761^(9/10) 3645226708608140 a001 24157817/33385282*167761^(9/10) 3645226708608142 a001 63245986/87403803*167761^(9/10) 3645226708608142 a001 165580141/228826127*167761^(9/10) 3645226708608142 a001 433494437/599074578*167761^(9/10) 3645226708608142 a001 1134903170/1568397607*167761^(9/10) 3645226708608142 a001 2971215073/4106118243*167761^(9/10) 3645226708608142 a001 7778742049/10749957122*167761^(9/10) 3645226708608142 a001 20365011074/28143753123*167761^(9/10) 3645226708608142 a001 53316291173/73681302247*167761^(9/10) 3645226708608142 a001 139583862445/192900153618*167761^(9/10) 3645226708608142 a001 10610209857723/14662949395604*167761^(9/10) 3645226708608142 a001 591286729879/817138163596*167761^(9/10) 3645226708608142 a001 225851433717/312119004989*167761^(9/10) 3645226708608142 a001 86267571272/119218851371*167761^(9/10) 3645226708608142 a001 32951280099/45537549124*167761^(9/10) 3645226708608142 a001 12586269025/17393796001*167761^(9/10) 3645226708608142 a001 4807526976/6643838879*167761^(9/10) 3645226708608142 a001 1836311903/2537720636*167761^(9/10) 3645226708608142 a001 701408733/969323029*167761^(9/10) 3645226708608142 a001 267914296/370248451*167761^(9/10) 3645226708608143 a001 102334155/141422324*167761^(9/10) 3645226708608143 a001 39088169/54018521*167761^(9/10) 3645226708608148 a001 14930352/20633239*167761^(9/10) 3645226708608179 a001 5702887/7881196*167761^(9/10) 3645226708608391 a001 2178309/3010349*167761^(9/10) 3645226708609846 a001 832040/1149851*167761^(9/10) 3645226708610480 a001 24157817/271443*167761^(1/2) 3645226708619148 a001 1346269/103682*103682^(11/16) 3645226708619821 a001 317811/439204*167761^(9/10) 3645226708625766 a001 121393/271443*6643838879^(1/2) 3645226708626806 a001 5702887/710647*167761^(7/10) 3645226708632990 a001 829464/103361*167761^(7/10) 3645226708633893 a001 39088169/4870847*167761^(7/10) 3645226708634024 a001 34111385/4250681*167761^(7/10) 3645226708634044 a001 133957148/16692641*167761^(7/10) 3645226708634046 a001 233802911/29134601*167761^(7/10) 3645226708634047 a001 1836311903/228826127*167761^(7/10) 3645226708634047 a001 267084832/33281921*167761^(7/10) 3645226708634047 a001 12586269025/1568397607*167761^(7/10) 3645226708634047 a001 10983760033/1368706081*167761^(7/10) 3645226708634047 a001 43133785636/5374978561*167761^(7/10) 3645226708634047 a001 75283811239/9381251041*167761^(7/10) 3645226708634047 a001 591286729879/73681302247*167761^(7/10) 3645226708634047 a001 86000486440/10716675201*167761^(7/10) 3645226708634047 a001 4052739537881/505019158607*167761^(7/10) 3645226708634047 a001 3278735159921/408569081798*167761^(7/10) 3645226708634047 a001 2504730781961/312119004989*167761^(7/10) 3645226708634047 a001 956722026041/119218851371*167761^(7/10) 3645226708634047 a001 182717648081/22768774562*167761^(7/10) 3645226708634047 a001 139583862445/17393796001*167761^(7/10) 3645226708634047 a001 53316291173/6643838879*167761^(7/10) 3645226708634047 a001 10182505537/1268860318*167761^(7/10) 3645226708634047 a001 7778742049/969323029*167761^(7/10) 3645226708634047 a001 2971215073/370248451*167761^(7/10) 3645226708634047 a001 567451585/70711162*167761^(7/10) 3645226708634048 a001 433494437/54018521*167761^(7/10) 3645226708634055 a001 165580141/20633239*167761^(7/10) 3645226708634106 a001 31622993/3940598*167761^(7/10) 3645226708634450 a001 24157817/3010349*167761^(7/10) 3645226708636383 a001 267914296/271443*167761^(3/10) 3645226708636812 a001 9227465/1149851*167761^(7/10) 3645226708650174 a001 121393/710647*439204^(17/18) 3645226708652733 a001 63245986/710647*167761^(1/2) 3645226708653002 a001 1762289/219602*167761^(7/10) 3645226708653914 a001 317811/103682*103682^(13/16) 3645226708658898 a001 165580141/1860498*167761^(1/2) 3645226708659798 a001 433494437/4870847*167761^(1/2) 3645226708659929 a001 1134903170/12752043*167761^(1/2) 3645226708659948 a001 2971215073/33385282*167761^(1/2) 3645226708659951 a001 7778742049/87403803*167761^(1/2) 3645226708659951 a001 20365011074/228826127*167761^(1/2) 3645226708659951 a001 53316291173/599074578*167761^(1/2) 3645226708659951 a001 139583862445/1568397607*167761^(1/2) 3645226708659951 a001 365435296162/4106118243*167761^(1/2) 3645226708659951 a001 956722026041/10749957122*167761^(1/2) 3645226708659951 a001 2504730781961/28143753123*167761^(1/2) 3645226708659951 a001 6557470319842/73681302247*167761^(1/2) 3645226708659951 a001 10610209857723/119218851371*167761^(1/2) 3645226708659951 a001 4052739537881/45537549124*167761^(1/2) 3645226708659951 a001 1548008755920/17393796001*167761^(1/2) 3645226708659951 a001 591286729879/6643838879*167761^(1/2) 3645226708659951 a001 225851433717/2537720636*167761^(1/2) 3645226708659951 a001 86267571272/969323029*167761^(1/2) 3645226708659951 a001 32951280099/370248451*167761^(1/2) 3645226708659951 a001 12586269025/141422324*167761^(1/2) 3645226708659952 a001 4807526976/54018521*167761^(1/2) 3645226708659960 a001 1836311903/20633239*167761^(1/2) 3645226708660010 a001 3524667/39604*167761^(1/2) 3645226708660353 a001 267914296/3010349*167761^(1/2) 3645226708660538 a001 832040/271443*439204^(13/18) 3645226708662287 a001 2971215073/271443*167761^(1/10) 3645226708662708 a001 102334155/1149851*167761^(1/2) 3645226708663750 a001 3524578/271443*439204^(11/18) 3645226708665787 a001 4976784/90481*439204^(1/2) 3645226708667890 a001 63245986/271443*439204^(7/18) 3645226708667976 a001 121393/710647*7881196^(17/22) 3645226708668021 a001 105937/90481*969323029^(1/2) 3645226708668021 a001 121393/710647*45537549124^(1/2) 3645226708668023 a001 121393/710647*33385282^(17/24) 3645226708668038 a001 121393/710647*12752043^(3/4) 3645226708668916 a001 121393/710647*1860498^(17/20) 3645226708669990 a001 267914296/271443*439204^(5/18) 3645226708672090 a001 1134903170/271443*439204^(1/6) 3645226708673869 a001 9227465/271443*1149851^(1/2) 3645226708674137 a001 121393/1860498*7881196^(5/6) 3645226708674151 a001 832040/271443*7881196^(13/22) 3645226708674179 a001 121393/1860498*20633239^(11/14) 3645226708674186 a001 832040/271443*141422324^(1/2) 3645226708674186 a001 121393/1860498*2537720636^(11/18) 3645226708674186 a001 121393/1860498*312119004989^(1/2) 3645226708674186 a001 121393/1860498*3461452808002^(11/24) 3645226708674186 a001 832040/271443*73681302247^(3/8) 3645226708674186 a001 121393/1860498*28143753123^(11/20) 3645226708674186 a001 121393/1860498*1568397607^(5/8) 3645226708674186 a001 121393/1860498*228826127^(11/16) 3645226708674188 a001 832040/271443*33385282^(13/24) 3645226708674189 a001 1602508992/90481*439204^(1/18) 3645226708674871 a001 832040/271443*1860498^(13/20) 3645226708675016 a001 5702887/271443*3010349^(1/2) 3645226708675081 a001 726103/90481*20633239^(1/2) 3645226708675085 a001 726103/90481*2537720636^(7/18) 3645226708675085 a001 726103/90481*17393796001^(5/14) 3645226708675085 a001 121393/4870847*2139295485799^(1/2) 3645226708675085 a001 726103/90481*312119004989^(7/22) 3645226708675085 a001 726103/90481*14662949395604^(5/18) 3645226708675085 a001 726103/90481*505019158607^(5/16) 3645226708675085 a001 726103/90481*28143753123^(7/20) 3645226708675085 a001 726103/90481*599074578^(5/12) 3645226708675086 a001 726103/90481*228826127^(7/16) 3645226708675151 a001 121393/1860498*1860498^(11/12) 3645226708675161 a001 121393/12752043*7881196^(21/22) 3645226708675209 a001 121393/12752043*20633239^(9/10) 3645226708675212 a001 4976784/90481*7881196^(9/22) 3645226708675217 a001 121393/12752043*2537720636^(7/10) 3645226708675217 a001 121393/12752043*17393796001^(9/14) 3645226708675217 a001 121393/12752043*14662949395604^(1/2) 3645226708675217 a001 121393/12752043*505019158607^(9/16) 3645226708675217 a001 121393/12752043*192900153618^(7/12) 3645226708675217 a001 5702887/271443*9062201101803^(1/4) 3645226708675217 a001 121393/12752043*599074578^(3/4) 3645226708675220 a001 121393/12752043*33385282^(7/8) 3645226708675221 a001 63245986/271443*7881196^(7/22) 3645226708675226 a001 267914296/271443*7881196^(5/22) 3645226708675229 a001 233802911/90481*7881196^(1/6) 3645226708675231 a001 1134903170/271443*7881196^(3/22) 3645226708675236 a001 4976784/90481*2537720636^(3/10) 3645226708675236 a001 4976784/90481*14662949395604^(3/14) 3645226708675236 a001 4976784/90481*192900153618^(1/4) 3645226708675236 a001 1602508992/90481*7881196^(1/22) 3645226708675237 a001 63245986/271443*20633239^(3/10) 3645226708675237 a001 4976784/90481*33385282^(3/8) 3645226708675237 a001 267914296/271443*20633239^(3/14) 3645226708675237 a001 24157817/271443*20633239^(5/14) 3645226708675238 a001 1836311903/271443*20633239^(1/10) 3645226708675239 a001 2971215073/271443*20633239^(1/14) 3645226708675239 a001 39088169/271443*4106118243^(1/4) 3645226708675239 a001 121393/228826127*2537720636^(5/6) 3645226708675239 a001 121393/228826127*312119004989^(15/22) 3645226708675239 a001 121393/228826127*3461452808002^(5/8) 3645226708675239 a001 34111385/90481*817138163596^(1/6) 3645226708675239 a001 121393/228826127*28143753123^(3/4) 3645226708675239 a001 433494437/271443*141422324^(1/6) 3645226708675239 a001 267914296/271443*2537720636^(1/6) 3645226708675239 a001 267914296/271443*312119004989^(3/22) 3645226708675239 a001 267914296/271443*28143753123^(3/20) 3645226708675239 a001 121393/228826127*228826127^(15/16) 3645226708675239 a001 233802911/90481*312119004989^(1/10) 3645226708675239 a001 233802911/90481*1568397607^(1/8) 3645226708675239 a001 1836311903/271443*17393796001^(1/14) 3645226708675239 a001 121393/4106118243*1322157322203^(3/4) 3645226708675239 a001 1836311903/271443*14662949395604^(1/18) 3645226708675239 a001 1836311903/271443*505019158607^(1/16) 3645226708675239 a001 121393/10749957122*17393796001^(13/14) 3645226708675239 a001 121393/10749957122*14662949395604^(13/18) 3645226708675239 a001 121393/10749957122*505019158607^(13/16) 3645226708675239 a001 121393/10749957122*73681302247^(7/8) 3645226708675239 a001 121393/28143753123*312119004989^(19/22) 3645226708675239 a001 121393/28143753123*817138163596^(5/6) 3645226708675239 a001 121393/28143753123*3461452808002^(19/24) 3645226708675239 a001 121393/73681302247*312119004989^(9/10) 3645226708675239 a001 121393/73681302247*14662949395604^(11/14) 3645226708675239 a001 121393/73681302247*192900153618^(11/12) 3645226708675239 a001 121393/28143753123*28143753123^(19/20) 3645226708675239 a001 121393/3461452808002*3461452808002^(23/24) 3645226708675239 a001 121393/312119004989*312119004989^(21/22) 3645226708675239 a001 121393/312119004989*14662949395604^(5/6) 3645226708675239 a001 121393/312119004989*505019158607^(15/16) 3645226708675239 a001 121393/17393796001*9062201101803^(3/4) 3645226708675239 a001 121393/2537720636*2537720636^(17/18) 3645226708675239 a001 2971215073/271443*2537720636^(1/18) 3645226708675239 a001 2971215073/271443*312119004989^(1/22) 3645226708675239 a001 2971215073/271443*28143753123^(1/20) 3645226708675239 a001 1134903170/271443*2537720636^(1/10) 3645226708675239 a001 121393/2537720636*45537549124^(5/6) 3645226708675239 a001 121393/2537720636*312119004989^(17/22) 3645226708675239 a001 121393/2537720636*3461452808002^(17/24) 3645226708675239 a001 1134903170/271443*14662949395604^(1/14) 3645226708675239 a001 121393/2537720636*28143753123^(17/20) 3645226708675239 a001 1836311903/271443*599074578^(1/12) 3645226708675239 a001 267914296/271443*228826127^(3/16) 3645226708675239 a001 121393/969323029*2537720636^(9/10) 3645226708675239 a001 121393/969323029*14662949395604^(9/14) 3645226708675239 a001 121393/969323029*192900153618^(3/4) 3645226708675239 a001 433494437/271443*73681302247^(1/8) 3645226708675239 a001 2971215073/271443*228826127^(1/16) 3645226708675239 a001 121393/370248451*17393796001^(11/14) 3645226708675239 a001 121393/370248451*14662949395604^(11/18) 3645226708675239 a001 121393/370248451*505019158607^(11/16) 3645226708675239 a001 165580141/271443*45537549124^(1/6) 3645226708675239 a001 121393/370248451*1568397607^(7/8) 3645226708675239 a001 121393/370248451*599074578^(11/12) 3645226708675239 a001 34111385/90481*87403803^(1/4) 3645226708675239 a001 1602508992/90481*33385282^(1/24) 3645226708675239 a001 63245986/271443*17393796001^(3/14) 3645226708675239 a001 63245986/271443*14662949395604^(1/6) 3645226708675239 a001 63245986/271443*599074578^(1/4) 3645226708675240 a001 1134903170/271443*33385282^(1/8) 3645226708675240 a001 121393/20633239*20633239^(13/14) 3645226708675240 a001 267914296/271443*33385282^(5/24) 3645226708675240 a001 63245986/271443*33385282^(7/24) 3645226708675240 a001 24157817/271443*2537720636^(5/18) 3645226708675240 a001 24157817/271443*312119004989^(5/22) 3645226708675240 a001 24157817/271443*3461452808002^(5/24) 3645226708675240 a001 24157817/271443*28143753123^(1/4) 3645226708675240 a001 121393/54018521*4106118243^(3/4) 3645226708675240 a001 24157817/271443*228826127^(5/16) 3645226708675243 a001 121393/54018521*33385282^(23/24) 3645226708675245 a001 165580141/271443*12752043^(1/4) 3645226708675248 a001 121393/20633239*141422324^(5/6) 3645226708675248 a001 121393/20633239*2537720636^(13/18) 3645226708675248 a001 121393/20633239*312119004989^(13/22) 3645226708675248 a001 121393/20633239*3461452808002^(13/24) 3645226708675248 a001 121393/20633239*73681302247^(5/8) 3645226708675248 a001 9227465/271443*1322157322203^(1/4) 3645226708675248 a001 121393/20633239*28143753123^(13/20) 3645226708675248 a001 121393/20633239*228826127^(13/16) 3645226708675268 a001 3524578/271443*7881196^(1/2) 3645226708675292 a001 1602508992/90481*1860498^(1/20) 3645226708675298 a001 121393/7881196*5600748293801^(1/2) 3645226708675298 a001 3524578/271443*312119004989^(3/10) 3645226708675298 a001 3524578/271443*1568397607^(3/8) 3645226708675299 a001 3524578/271443*33385282^(11/24) 3645226708675327 a001 2971215073/271443*1860498^(1/12) 3645226708675397 a001 1134903170/271443*1860498^(3/20) 3645226708675502 a001 267914296/271443*1860498^(1/4) 3645226708675591 a001 121393/3010349*7881196^(19/22) 3645226708675608 a001 63245986/271443*1860498^(7/20) 3645226708675641 a001 1346269/271443*54018521^(1/2) 3645226708675641 a001 121393/3010349*817138163596^(1/2) 3645226708675642 a001 121393/3010349*87403803^(3/4) 3645226708675644 a001 121393/3010349*33385282^(19/24) 3645226708675679 a001 24157817/271443*1860498^(5/12) 3645226708675700 a001 726103/90481*1860498^(7/12) 3645226708675710 a001 4976784/90481*1860498^(9/20) 3645226708675877 a001 3524578/271443*1860498^(11/20) 3645226708676141 a001 1836311903/271443*710647^(1/8) 3645226708676642 a001 121393/3010349*1860498^(19/20) 3645226708677946 a001 63245986/271443*710647^(3/8) 3645226708677996 a001 514229/271443*370248451^(1/2) 3645226708677996 a001 121393/1149851*119218851371^(1/2) 3645226708678389 a001 196418/271443*439204^(5/6) 3645226708678637 a001 701408733/710647*167761^(3/10) 3645226708678848 a001 39088169/439204*167761^(1/2) 3645226708679597 a001 726103/90481*710647^(5/8) 3645226708684802 a001 1836311903/1860498*167761^(3/10) 3645226708685702 a001 4807526976/4870847*167761^(3/10) 3645226708685833 a001 12586269025/12752043*167761^(3/10) 3645226708685852 a001 32951280099/33385282*167761^(3/10) 3645226708685855 a001 86267571272/87403803*167761^(3/10) 3645226708685855 a001 225851433717/228826127*167761^(3/10) 3645226708685855 a001 591286729879/599074578*167761^(3/10) 3645226708685855 a001 1548008755920/1568397607*167761^(3/10) 3645226708685855 a001 4052739537881/4106118243*167761^(3/10) 3645226708685855 a001 4807525989/4870846*167761^(3/10) 3645226708685855 a001 6557470319842/6643838879*167761^(3/10) 3645226708685855 a001 2504730781961/2537720636*167761^(3/10) 3645226708685855 a001 956722026041/969323029*167761^(3/10) 3645226708685856 a001 365435296162/370248451*167761^(3/10) 3645226708685856 a001 139583862445/141422324*167761^(3/10) 3645226708685857 a001 53316291173/54018521*167761^(3/10) 3645226708685864 a001 20365011074/20633239*167761^(3/10) 3645226708685914 a001 7778742049/7881196*167761^(3/10) 3645226708686258 a001 2971215073/3010349*167761^(3/10) 3645226708687607 a001 433494437/271443*271443^(1/4) 3645226708688191 a001 121393/167761*167761^(9/10) 3645226708688613 a001 1134903170/1149851*167761^(3/10) 3645226708694096 a001 196418/271443*7881196^(15/22) 3645226708694130 a001 121393/439204*20633239^(7/10) 3645226708694131 a001 196418/271443*20633239^(9/14) 3645226708694136 a001 196418/271443*2537720636^(1/2) 3645226708694136 a001 121393/439204*17393796001^(1/2) 3645226708694136 a001 121393/439204*14662949395604^(7/18) 3645226708694136 a001 121393/439204*505019158607^(7/16) 3645226708694136 a001 196418/271443*312119004989^(9/22) 3645226708694136 a001 196418/271443*14662949395604^(5/14) 3645226708694136 a001 196418/271443*192900153618^(5/12) 3645226708694136 a001 196418/271443*28143753123^(9/20) 3645226708694136 a001 121393/439204*599074578^(7/12) 3645226708694136 a001 196418/271443*228826127^(9/16) 3645226708694138 a001 196418/271443*33385282^(5/8) 3645226708694926 a001 196418/271443*1860498^(3/4) 3645226708695767 a001 75025/39603*39603^(41/44) 3645226708696432 a001 1602508992/90481*103682^(1/16) 3645226708698594 a001 105937/620166*439204^(17/18) 3645226708700452 a001 121393/439204*710647^(7/8) 3645226708703693 a001 311187/101521*439204^(13/18) 3645226708704504 a001 514229/710647*439204^(5/6) 3645226708704542 a001 7778742049/710647*167761^(1/10) 3645226708704752 a001 433494437/439204*167761^(3/10) 3645226708705658 a001 832040/4870847*439204^(17/18) 3645226708705954 a001 9227465/710647*439204^(11/18) 3645226708706689 a001 726103/4250681*439204^(17/18) 3645226708706839 a001 5702887/33385282*439204^(17/18) 3645226708706861 a001 4976784/29134601*439204^(17/18) 3645226708706864 a001 39088169/228826127*439204^(17/18) 3645226708706865 a001 34111385/199691526*439204^(17/18) 3645226708706865 a001 267914296/1568397607*439204^(17/18) 3645226708706865 a001 233802911/1368706081*439204^(17/18) 3645226708706865 a001 1836311903/10749957122*439204^(17/18) 3645226708706865 a001 1602508992/9381251041*439204^(17/18) 3645226708706865 a001 12586269025/73681302247*439204^(17/18) 3645226708706865 a001 10983760033/64300051206*439204^(17/18) 3645226708706865 a001 86267571272/505019158607*439204^(17/18) 3645226708706865 a001 75283811239/440719107401*439204^(17/18) 3645226708706865 a001 2504730781961/14662949395604*439204^(17/18) 3645226708706865 a001 139583862445/817138163596*439204^(17/18) 3645226708706865 a001 53316291173/312119004989*439204^(17/18) 3645226708706865 a001 20365011074/119218851371*439204^(17/18) 3645226708706865 a001 7778742049/45537549124*439204^(17/18) 3645226708706865 a001 2971215073/17393796001*439204^(17/18) 3645226708706865 a001 1134903170/6643838879*439204^(17/18) 3645226708706865 a001 433494437/2537720636*439204^(17/18) 3645226708706865 a001 165580141/969323029*439204^(17/18) 3645226708706865 a001 63245986/370248451*439204^(17/18) 3645226708706866 a001 24157817/141422324*439204^(17/18) 3645226708706875 a001 9227465/54018521*439204^(17/18) 3645226708706932 a001 3524578/20633239*439204^(17/18) 3645226708707326 a001 1346269/7881196*439204^(17/18) 3645226708708045 a001 39088169/710647*439204^(1/2) 3645226708708314 a001 1346269/1860498*439204^(5/6) 3645226708708870 a001 3524578/4870847*439204^(5/6) 3645226708708951 a001 9227465/12752043*439204^(5/6) 3645226708708963 a001 24157817/33385282*439204^(5/6) 3645226708708964 a001 63245986/87403803*439204^(5/6) 3645226708708964 a001 165580141/228826127*439204^(5/6) 3645226708708965 a001 433494437/599074578*439204^(5/6) 3645226708708965 a001 1134903170/1568397607*439204^(5/6) 3645226708708965 a001 2971215073/4106118243*439204^(5/6) 3645226708708965 a001 7778742049/10749957122*439204^(5/6) 3645226708708965 a001 20365011074/28143753123*439204^(5/6) 3645226708708965 a001 53316291173/73681302247*439204^(5/6) 3645226708708965 a001 139583862445/192900153618*439204^(5/6) 3645226708708965 a001 365435296162/505019158607*439204^(5/6) 3645226708708965 a001 10610209857723/14662949395604*439204^(5/6) 3645226708708965 a001 225851433717/312119004989*439204^(5/6) 3645226708708965 a001 86267571272/119218851371*439204^(5/6) 3645226708708965 a001 32951280099/45537549124*439204^(5/6) 3645226708708965 a001 12586269025/17393796001*439204^(5/6) 3645226708708965 a001 4807526976/6643838879*439204^(5/6) 3645226708708965 a001 1836311903/2537720636*439204^(5/6) 3645226708708965 a001 701408733/969323029*439204^(5/6) 3645226708708965 a001 267914296/370248451*439204^(5/6) 3645226708708965 a001 102334155/141422324*439204^(5/6) 3645226708708965 a001 39088169/54018521*439204^(5/6) 3645226708708970 a001 14930352/20633239*439204^(5/6) 3645226708709001 a001 5702887/7881196*439204^(5/6) 3645226708709213 a001 2178309/3010349*439204^(5/6) 3645226708709989 a001 5702887/1860498*439204^(13/18) 3645226708710024 a001 514229/3010349*439204^(17/18) 3645226708710145 a001 165580141/710647*439204^(7/18) 3645226708710276 a001 317811/710647*6643838879^(1/2) 3645226708710668 a001 832040/1149851*439204^(5/6) 3645226708710707 a001 10182505537/930249*167761^(1/10) 3645226708710907 a001 14930352/4870847*439204^(13/18) 3645226708711041 a001 39088169/12752043*439204^(13/18) 3645226708711061 a001 14619165/4769326*439204^(13/18) 3645226708711064 a001 267914296/87403803*439204^(13/18) 3645226708711064 a001 701408733/228826127*439204^(13/18) 3645226708711064 a001 1836311903/599074578*439204^(13/18) 3645226708711064 a001 686789568/224056801*439204^(13/18) 3645226708711064 a001 12586269025/4106118243*439204^(13/18) 3645226708711064 a001 32951280099/10749957122*439204^(13/18) 3645226708711064 a001 86267571272/28143753123*439204^(13/18) 3645226708711064 a001 32264490531/10525900321*439204^(13/18) 3645226708711064 a001 591286729879/192900153618*439204^(13/18) 3645226708711064 a001 1548008755920/505019158607*439204^(13/18) 3645226708711064 a001 1515744265389/494493258286*439204^(13/18) 3645226708711064 a001 2504730781961/817138163596*439204^(13/18) 3645226708711064 a001 956722026041/312119004989*439204^(13/18) 3645226708711064 a001 365435296162/119218851371*439204^(13/18) 3645226708711064 a001 139583862445/45537549124*439204^(13/18) 3645226708711064 a001 53316291173/17393796001*439204^(13/18) 3645226708711064 a001 20365011074/6643838879*439204^(13/18) 3645226708711064 a001 7778742049/2537720636*439204^(13/18) 3645226708711064 a001 2971215073/969323029*439204^(13/18) 3645226708711064 a001 1134903170/370248451*439204^(13/18) 3645226708711064 a001 433494437/141422324*439204^(13/18) 3645226708711065 a001 165580141/54018521*439204^(13/18) 3645226708711073 a001 63245986/20633239*439204^(13/18) 3645226708711124 a001 24157817/7881196*439204^(13/18) 3645226708711291 a001 832040/271443*271443^(3/4) 3645226708711475 a001 9227465/3010349*439204^(13/18) 3645226708711606 a001 53316291173/4870847*167761^(1/10) 3645226708711737 a001 139583862445/12752043*167761^(1/10) 3645226708711757 a001 182717648081/16692641*167761^(1/10) 3645226708711759 a001 956722026041/87403803*167761^(1/10) 3645226708711760 a001 2504730781961/228826127*167761^(1/10) 3645226708711760 a001 3278735159921/299537289*167761^(1/10) 3645226708711760 a001 10610209857723/969323029*167761^(1/10) 3645226708711760 a001 4052739537881/370248451*167761^(1/10) 3645226708711760 a001 387002188980/35355581*167761^(1/10) 3645226708711761 a001 591286729879/54018521*167761^(1/10) 3645226708711768 a001 7787980473/711491*167761^(1/10) 3645226708711819 a001 21566892818/1970299*167761^(1/10) 3645226708712112 a001 24157817/1860498*439204^(11/18) 3645226708712162 a001 32951280099/3010349*167761^(1/10) 3645226708712245 a001 701408733/710647*439204^(5/18) 3645226708713010 a001 63245986/4870847*439204^(11/18) 3645226708713141 a001 165580141/12752043*439204^(11/18) 3645226708713161 a001 433494437/33385282*439204^(11/18) 3645226708713163 a001 1134903170/87403803*439204^(11/18) 3645226708713164 a001 2971215073/228826127*439204^(11/18) 3645226708713164 a001 7778742049/599074578*439204^(11/18) 3645226708713164 a001 20365011074/1568397607*439204^(11/18) 3645226708713164 a001 53316291173/4106118243*439204^(11/18) 3645226708713164 a001 139583862445/10749957122*439204^(11/18) 3645226708713164 a001 365435296162/28143753123*439204^(11/18) 3645226708713164 a001 956722026041/73681302247*439204^(11/18) 3645226708713164 a001 2504730781961/192900153618*439204^(11/18) 3645226708713164 a001 10610209857723/817138163596*439204^(11/18) 3645226708713164 a001 4052739537881/312119004989*439204^(11/18) 3645226708713164 a001 1548008755920/119218851371*439204^(11/18) 3645226708713164 a001 591286729879/45537549124*439204^(11/18) 3645226708713164 a001 7787980473/599786069*439204^(11/18) 3645226708713164 a001 86267571272/6643838879*439204^(11/18) 3645226708713164 a001 32951280099/2537720636*439204^(11/18) 3645226708713164 a001 12586269025/969323029*439204^(11/18) 3645226708713164 a001 4807526976/370248451*439204^(11/18) 3645226708713164 a001 1836311903/141422324*439204^(11/18) 3645226708713165 a001 701408733/54018521*439204^(11/18) 3645226708713172 a001 9238424/711491*439204^(11/18) 3645226708713222 a001 102334155/7881196*439204^(11/18) 3645226708713566 a001 39088169/3010349*439204^(11/18) 3645226708713880 a001 3524578/1149851*439204^(13/18) 3645226708714210 a001 831985/15126*439204^(1/2) 3645226708714345 a001 2971215073/710647*439204^(1/6) 3645226708714517 a001 12586269025/1149851*167761^(1/10) 3645226708715110 a001 267914296/4870847*439204^(1/2) 3645226708715241 a001 233802911/4250681*439204^(1/2) 3645226708715260 a001 1836311903/33385282*439204^(1/2) 3645226708715263 a001 1602508992/29134601*439204^(1/2) 3645226708715263 a001 12586269025/228826127*439204^(1/2) 3645226708715264 a001 10983760033/199691526*439204^(1/2) 3645226708715264 a001 86267571272/1568397607*439204^(1/2) 3645226708715264 a001 75283811239/1368706081*439204^(1/2) 3645226708715264 a001 591286729879/10749957122*439204^(1/2) 3645226708715264 a001 12585437040/228811001*439204^(1/2) 3645226708715264 a001 4052739537881/73681302247*439204^(1/2) 3645226708715264 a001 3536736619241/64300051206*439204^(1/2) 3645226708715264 a001 6557470319842/119218851371*439204^(1/2) 3645226708715264 a001 2504730781961/45537549124*439204^(1/2) 3645226708715264 a001 956722026041/17393796001*439204^(1/2) 3645226708715264 a001 365435296162/6643838879*439204^(1/2) 3645226708715264 a001 139583862445/2537720636*439204^(1/2) 3645226708715264 a001 53316291173/969323029*439204^(1/2) 3645226708715264 a001 20365011074/370248451*439204^(1/2) 3645226708715264 a001 7778742049/141422324*439204^(1/2) 3645226708715265 a001 2971215073/54018521*439204^(1/2) 3645226708715272 a001 1134903170/20633239*439204^(1/2) 3645226708715322 a001 433494437/7881196*439204^(1/2) 3645226708715666 a001 165580141/3010349*439204^(1/2) 3645226708715918 a001 14930352/1149851*439204^(11/18) 3645226708716117 a001 24157817/710647*1149851^(1/2) 3645226708716310 a001 433494437/1860498*439204^(7/18) 3645226708716396 a001 105937/620166*7881196^(17/22) 3645226708716441 a001 832040/710647*969323029^(1/2) 3645226708716441 a001 105937/620166*45537549124^(1/2) 3645226708716443 a001 105937/620166*33385282^(17/24) 3645226708716444 a001 12586269025/710647*439204^(1/18) 3645226708716458 a001 105937/620166*12752043^(3/4) 3645226708717210 a001 1134903170/4870847*439204^(7/18) 3645226708717290 a001 14930352/710647*3010349^(1/2) 3645226708717291 a001 317811/4870847*7881196^(5/6) 3645226708717306 a001 311187/101521*7881196^(13/22) 3645226708717334 a001 317811/4870847*20633239^(11/14) 3645226708717336 a001 105937/620166*1860498^(17/20) 3645226708717340 a001 311187/101521*141422324^(1/2) 3645226708717340 a001 317811/4870847*2537720636^(11/18) 3645226708717340 a001 317811/4870847*312119004989^(1/2) 3645226708717340 a001 317811/4870847*3461452808002^(11/24) 3645226708717340 a001 311187/101521*73681302247^(3/8) 3645226708717340 a001 317811/4870847*28143753123^(11/20) 3645226708717340 a001 317811/4870847*1568397607^(5/8) 3645226708717340 a001 317811/4870847*228826127^(11/16) 3645226708717341 a001 2971215073/12752043*439204^(7/18) 3645226708717342 a001 311187/101521*33385282^(13/24) 3645226708717360 a001 7778742049/33385282*439204^(7/18) 3645226708717363 a001 20365011074/87403803*439204^(7/18) 3645226708717363 a001 53316291173/228826127*439204^(7/18) 3645226708717363 a001 139583862445/599074578*439204^(7/18) 3645226708717363 a001 365435296162/1568397607*439204^(7/18) 3645226708717363 a001 956722026041/4106118243*439204^(7/18) 3645226708717363 a001 2504730781961/10749957122*439204^(7/18) 3645226708717363 a001 6557470319842/28143753123*439204^(7/18) 3645226708717363 a001 10610209857723/45537549124*439204^(7/18) 3645226708717363 a001 4052739537881/17393796001*439204^(7/18) 3645226708717363 a001 1548008755920/6643838879*439204^(7/18) 3645226708717363 a001 591286729879/2537720636*439204^(7/18) 3645226708717363 a001 225851433717/969323029*439204^(7/18) 3645226708717363 a001 86267571272/370248451*439204^(7/18) 3645226708717363 a001 63246219/271444*439204^(7/18) 3645226708717364 a001 12586269025/54018521*439204^(7/18) 3645226708717372 a001 4807526976/20633239*439204^(7/18) 3645226708717422 a001 1836311903/7881196*439204^(7/18) 3645226708717435 a001 317811/33385282*7881196^(21/22) 3645226708717467 a001 5702887/710647*20633239^(1/2) 3645226708717470 a001 39088169/710647*7881196^(9/22) 3645226708717472 a001 5702887/710647*2537720636^(7/18) 3645226708717472 a001 5702887/710647*17393796001^(5/14) 3645226708717472 a001 105937/4250681*2139295485799^(1/2) 3645226708717472 a001 5702887/710647*312119004989^(7/22) 3645226708717472 a001 5702887/710647*505019158607^(5/16) 3645226708717472 a001 5702887/710647*28143753123^(7/20) 3645226708717472 a001 5702887/710647*599074578^(5/12) 3645226708717472 a001 5702887/710647*228826127^(7/16) 3645226708717473 a001 9227465/710647*7881196^(1/2) 3645226708717475 a001 165580141/710647*7881196^(7/22) 3645226708717481 a001 701408733/710647*7881196^(5/22) 3645226708717483 a001 317811/33385282*20633239^(9/10) 3645226708717484 a001 1836311903/710647*7881196^(1/6) 3645226708717486 a001 2971215073/710647*7881196^(3/22) 3645226708717487 a001 317811/54018521*20633239^(13/14) 3645226708717491 a001 317811/33385282*2537720636^(7/10) 3645226708717491 a001 317811/33385282*17393796001^(9/14) 3645226708717491 a001 317811/33385282*14662949395604^(1/2) 3645226708717491 a001 14930352/710647*9062201101803^(1/4) 3645226708717491 a001 317811/33385282*192900153618^(7/12) 3645226708717491 a001 317811/33385282*599074578^(3/4) 3645226708717491 a001 63245986/710647*20633239^(5/14) 3645226708717491 a001 12586269025/710647*7881196^(1/22) 3645226708717491 a001 165580141/710647*20633239^(3/10) 3645226708717492 a001 701408733/710647*20633239^(3/14) 3645226708717493 a001 686789568/101521*20633239^(1/10) 3645226708717493 a001 7778742049/710647*20633239^(1/14) 3645226708717494 a001 39088169/710647*2537720636^(3/10) 3645226708717494 a001 39088169/710647*14662949395604^(3/14) 3645226708717494 a001 39088169/710647*192900153618^(1/4) 3645226708717494 a001 317811/33385282*33385282^(7/8) 3645226708717494 a001 14619165/101521*4106118243^(1/4) 3645226708717494 a001 1134903170/710647*141422324^(1/6) 3645226708717494 a001 377/710646*2537720636^(5/6) 3645226708717494 a001 377/710646*312119004989^(15/22) 3645226708717494 a001 377/710646*3461452808002^(5/8) 3645226708717494 a001 267914296/710647*817138163596^(1/6) 3645226708717494 a001 377/710646*28143753123^(3/4) 3645226708717494 a001 701408733/710647*2537720636^(1/6) 3645226708717494 a001 701408733/710647*312119004989^(3/22) 3645226708717494 a001 701408733/710647*28143753123^(3/20) 3645226708717494 a001 317811/6643838879*2537720636^(17/18) 3645226708717494 a001 1836311903/710647*312119004989^(1/10) 3645226708717494 a001 686789568/101521*17393796001^(1/14) 3645226708717494 a001 317811/10749957122*1322157322203^(3/4) 3645226708717494 a001 1836311903/710647*1568397607^(1/8) 3645226708717494 a001 7778742049/710647*2537720636^(1/18) 3645226708717494 a001 105937/9381251041*17393796001^(13/14) 3645226708717494 a001 105937/9381251041*14662949395604^(13/18) 3645226708717494 a001 105937/9381251041*505019158607^(13/16) 3645226708717494 a001 105937/9381251041*73681302247^(7/8) 3645226708717494 a001 317811/73681302247*312119004989^(19/22) 3645226708717494 a001 317811/73681302247*3461452808002^(19/24) 3645226708717494 a001 105937/64300051206*312119004989^(9/10) 3645226708717494 a001 105937/64300051206*14662949395604^(11/14) 3645226708717494 a001 317811/817138163596*312119004989^(21/22) 3645226708717494 a001 317811/23725150497407*14662949395604^(17/18) 3645226708717494 a001 10959/505618944676*14662949395604^(13/14) 3645226708717494 a001 105937/3020733700601*3461452808002^(23/24) 3645226708717494 a001 317811/817138163596*505019158607^(15/16) 3645226708717494 a001 317811/45537549124*9062201101803^(3/4) 3645226708717494 a001 317811/73681302247*28143753123^(19/20) 3645226708717494 a001 7778742049/710647*312119004989^(1/22) 3645226708717494 a001 7778742049/710647*28143753123^(1/20) 3645226708717494 a001 2971215073/710647*2537720636^(1/10) 3645226708717494 a001 317811/2537720636*2537720636^(9/10) 3645226708717494 a001 317811/6643838879*45537549124^(5/6) 3645226708717494 a001 317811/6643838879*312119004989^(17/22) 3645226708717494 a001 317811/6643838879*3461452808002^(17/24) 3645226708717494 a001 2971215073/710647*14662949395604^(1/14) 3645226708717494 a001 2971215073/710647*192900153618^(1/12) 3645226708717494 a001 317811/6643838879*28143753123^(17/20) 3645226708717494 a001 317811/2537720636*14662949395604^(9/14) 3645226708717494 a001 317811/2537720636*192900153618^(3/4) 3645226708717494 a001 1134903170/710647*73681302247^(1/8) 3645226708717494 a001 686789568/101521*599074578^(1/12) 3645226708717494 a001 317811/969323029*17393796001^(11/14) 3645226708717494 a001 433494437/710647*45537549124^(1/6) 3645226708717494 a001 317811/969323029*14662949395604^(11/18) 3645226708717494 a001 317811/969323029*505019158607^(11/16) 3645226708717494 a001 7778742049/710647*228826127^(1/16) 3645226708717494 a001 317811/969323029*1568397607^(7/8) 3645226708717494 a001 701408733/710647*228826127^(3/16) 3645226708717494 a001 317811/969323029*599074578^(11/12) 3645226708717494 a001 165580141/710647*17393796001^(3/14) 3645226708717494 a001 165580141/710647*14662949395604^(1/6) 3645226708717494 a001 165580141/710647*599074578^(1/4) 3645226708717494 a001 377/710646*228826127^(15/16) 3645226708717494 a001 267914296/710647*87403803^(1/4) 3645226708717494 a001 12586269025/710647*33385282^(1/24) 3645226708717494 a001 63245986/710647*2537720636^(5/18) 3645226708717494 a001 63245986/710647*312119004989^(5/22) 3645226708717494 a001 63245986/710647*3461452808002^(5/24) 3645226708717494 a001 63245986/710647*28143753123^(1/4) 3645226708717494 a001 317811/141422324*4106118243^(3/4) 3645226708717494 a001 63245986/710647*228826127^(5/16) 3645226708717494 a001 2971215073/710647*33385282^(1/8) 3645226708717495 a001 701408733/710647*33385282^(5/24) 3645226708717495 a001 39088169/710647*33385282^(3/8) 3645226708717495 a001 165580141/710647*33385282^(7/24) 3645226708717495 a001 317811/54018521*141422324^(5/6) 3645226708717495 a001 317811/54018521*2537720636^(13/18) 3645226708717495 a001 317811/54018521*312119004989^(13/22) 3645226708717495 a001 317811/54018521*3461452808002^(13/24) 3645226708717495 a001 24157817/710647*1322157322203^(1/4) 3645226708717495 a001 317811/54018521*73681302247^(5/8) 3645226708717495 a001 317811/54018521*28143753123^(13/20) 3645226708717495 a001 317811/54018521*228826127^(13/16) 3645226708717497 a001 317811/141422324*33385282^(23/24) 3645226708717500 a001 433494437/710647*12752043^(1/4) 3645226708717502 a001 317811/7881196*7881196^(19/22) 3645226708717503 a001 10959/711491*5600748293801^(1/2) 3645226708717503 a001 9227465/710647*312119004989^(3/10) 3645226708717503 a001 9227465/710647*1568397607^(3/8) 3645226708717504 a001 9227465/710647*33385282^(11/24) 3645226708717547 a001 12586269025/710647*1860498^(1/20) 3645226708717552 a001 3524578/710647*54018521^(1/2) 3645226708717553 a001 317811/7881196*817138163596^(1/2) 3645226708717553 a001 317811/7881196*87403803^(3/4) 3645226708717555 a001 317811/7881196*33385282^(19/24) 3645226708717582 a001 7778742049/710647*1860498^(1/12) 3645226708717652 a001 2971215073/710647*1860498^(3/20) 3645226708717757 a001 701408733/710647*1860498^(1/4) 3645226708717765 a001 701408733/3010349*439204^(7/18) 3645226708717863 a001 165580141/710647*1860498^(7/20) 3645226708717896 a001 1346269/710647*370248451^(1/2) 3645226708717896 a001 317811/3010349*119218851371^(1/2) 3645226708717933 a001 63245986/710647*1860498^(5/12) 3645226708717967 a001 39088169/710647*1860498^(9/20) 3645226708718021 a001 63245986/1149851*439204^(1/2) 3645226708718025 a001 311187/101521*1860498^(13/20) 3645226708718082 a001 9227465/710647*1860498^(11/20) 3645226708718086 a001 5702887/710647*1860498^(7/12) 3645226708718306 a001 317811/4870847*1860498^(11/12) 3645226708718396 a001 686789568/101521*710647^(1/8) 3645226708718410 a001 1836311903/1860498*439204^(5/18) 3645226708718553 a001 317811/7881196*1860498^(19/20) 3645226708719309 a001 4807526976/4870847*439204^(5/18) 3645226708719440 a001 12586269025/12752043*439204^(5/18) 3645226708719460 a001 32951280099/33385282*439204^(5/18) 3645226708719462 a001 86267571272/87403803*439204^(5/18) 3645226708719463 a001 225851433717/228826127*439204^(5/18) 3645226708719463 a001 591286729879/599074578*439204^(5/18) 3645226708719463 a001 1548008755920/1568397607*439204^(5/18) 3645226708719463 a001 4052739537881/4106118243*439204^(5/18) 3645226708719463 a001 4807525989/4870846*439204^(5/18) 3645226708719463 a001 6557470319842/6643838879*439204^(5/18) 3645226708719463 a001 2504730781961/2537720636*439204^(5/18) 3645226708719463 a001 956722026041/969323029*439204^(5/18) 3645226708719463 a001 365435296162/370248451*439204^(5/18) 3645226708719463 a001 139583862445/141422324*439204^(5/18) 3645226708719464 a001 53316291173/54018521*439204^(5/18) 3645226708719471 a001 20365011074/20633239*439204^(5/18) 3645226708719522 a001 7778742049/7881196*439204^(5/18) 3645226708719865 a001 2971215073/3010349*439204^(5/18) 3645226708720120 a001 267914296/1149851*439204^(7/18) 3645226708720201 a001 165580141/710647*710647^(3/8) 3645226708720211 a001 514229/710647*7881196^(15/22) 3645226708720245 a001 317811/1149851*20633239^(7/10) 3645226708720246 a001 514229/710647*20633239^(9/14) 3645226708720251 a001 514229/710647*2537720636^(1/2) 3645226708720251 a001 317811/1149851*17393796001^(1/2) 3645226708720251 a001 514229/710647*312119004989^(9/22) 3645226708720251 a001 317811/1149851*14662949395604^(7/18) 3645226708720251 a001 317811/1149851*505019158607^(7/16) 3645226708720251 a001 514229/710647*14662949395604^(5/14) 3645226708720251 a001 514229/710647*192900153618^(5/12) 3645226708720251 a001 514229/710647*28143753123^(9/20) 3645226708720251 a001 317811/1149851*599074578^(7/12) 3645226708720251 a001 514229/710647*228826127^(9/16) 3645226708720253 a001 514229/710647*33385282^(5/8) 3645226708720509 a001 7778742049/1860498*439204^(1/6) 3645226708720643 a001 317811/439204*439204^(5/6) 3645226708721041 a001 514229/710647*1860498^(3/4) 3645226708721409 a001 20365011074/4870847*439204^(1/6) 3645226708721540 a001 53316291173/12752043*439204^(1/6) 3645226708721559 a001 139583862445/33385282*439204^(1/6) 3645226708721562 a001 365435296162/87403803*439204^(1/6) 3645226708721562 a001 956722026041/228826127*439204^(1/6) 3645226708721562 a001 2504730781961/599074578*439204^(1/6) 3645226708721563 a001 6557470319842/1568397607*439204^(1/6) 3645226708721563 a001 10610209857723/2537720636*439204^(1/6) 3645226708721563 a001 4052739537881/969323029*439204^(1/6) 3645226708721563 a001 1548008755920/370248451*439204^(1/6) 3645226708721563 a001 591286729879/141422324*439204^(1/6) 3645226708721564 a001 225851433717/54018521*439204^(1/6) 3645226708721571 a001 86267571272/20633239*439204^(1/6) 3645226708721621 a001 32951280099/7881196*439204^(1/6) 3645226708721965 a001 12586269025/3010349*439204^(1/6) 3645226708721983 a001 5702887/710647*710647^(5/8) 3645226708722220 a001 1134903170/1149851*439204^(5/18) 3645226708722281 a001 31622993/930249*1149851^(1/2) 3645226708722606 a001 416020/930249*6643838879^(1/2) 3645226708722609 a001 10983760033/620166*439204^(1/18) 3645226708723180 a001 165580141/4870847*1149851^(1/2) 3645226708723311 a001 433494437/12752043*1149851^(1/2) 3645226708723330 a001 567451585/16692641*1149851^(1/2) 3645226708723333 a001 2971215073/87403803*1149851^(1/2) 3645226708723333 a001 7778742049/228826127*1149851^(1/2) 3645226708723333 a001 10182505537/299537289*1149851^(1/2) 3645226708723333 a001 53316291173/1568397607*1149851^(1/2) 3645226708723333 a001 139583862445/4106118243*1149851^(1/2) 3645226708723333 a001 182717648081/5374978561*1149851^(1/2) 3645226708723333 a001 956722026041/28143753123*1149851^(1/2) 3645226708723333 a001 2504730781961/73681302247*1149851^(1/2) 3645226708723333 a001 3278735159921/96450076809*1149851^(1/2) 3645226708723333 a001 10610209857723/312119004989*1149851^(1/2) 3645226708723333 a001 4052739537881/119218851371*1149851^(1/2) 3645226708723333 a001 387002188980/11384387281*1149851^(1/2) 3645226708723333 a001 591286729879/17393796001*1149851^(1/2) 3645226708723333 a001 225851433717/6643838879*1149851^(1/2) 3645226708723333 a001 1135099622/33391061*1149851^(1/2) 3645226708723333 a001 32951280099/969323029*1149851^(1/2) 3645226708723334 a001 12586269025/370248451*1149851^(1/2) 3645226708723334 a001 1201881744/35355581*1149851^(1/2) 3645226708723335 a001 1836311903/54018521*1149851^(1/2) 3645226708723342 a001 701408733/20633239*1149851^(1/2) 3645226708723392 a001 66978574/1970299*1149851^(1/2) 3645226708723457 a001 39088169/1860498*3010349^(1/2) 3645226708723460 a001 832040/4870847*7881196^(17/22) 3645226708723505 a001 726103/620166*969323029^(1/2) 3645226708723505 a001 832040/4870847*45537549124^(1/2) 3645226708723508 a001 832040/4870847*33385282^(17/24) 3645226708723509 a001 86267571272/4870847*439204^(1/18) 3645226708723522 a001 832040/4870847*12752043^(3/4) 3645226708723588 a001 832040/12752043*7881196^(5/6) 3645226708723602 a001 5702887/1860498*7881196^(13/22) 3645226708723602 a001 832040/87403803*7881196^(21/22) 3645226708723617 a001 75640/1875749*7881196^(19/22) 3645226708723630 a001 832040/12752043*20633239^(11/14) 3645226708723631 a001 24157817/1860498*7881196^(1/2) 3645226708723635 a001 831985/15126*7881196^(9/22) 3645226708723636 a001 5702887/1860498*141422324^(1/2) 3645226708723636 a001 832040/12752043*2537720636^(11/18) 3645226708723636 a001 832040/12752043*312119004989^(1/2) 3645226708723636 a001 832040/12752043*3461452808002^(11/24) 3645226708723636 a001 5702887/1860498*73681302247^(3/8) 3645226708723636 a001 832040/12752043*28143753123^(11/20) 3645226708723636 a001 832040/12752043*1568397607^(5/8) 3645226708723637 a001 832040/12752043*228826127^(11/16) 3645226708723638 a001 5702887/1860498*33385282^(13/24) 3645226708723640 a001 75283811239/4250681*439204^(1/18) 3645226708723640 a001 433494437/1860498*7881196^(7/22) 3645226708723646 a001 1836311903/1860498*7881196^(5/22) 3645226708723649 a001 267084832/103361*7881196^(1/6) 3645226708723651 a001 832040/87403803*20633239^(9/10) 3645226708723651 a001 7778742049/1860498*7881196^(3/22) 3645226708723651 a001 208010/35355581*20633239^(13/14) 3645226708723651 a001 829464/103361*20633239^(1/2) 3645226708723656 a001 829464/103361*2537720636^(7/18) 3645226708723656 a001 829464/103361*17393796001^(5/14) 3645226708723656 a001 829464/103361*312119004989^(7/22) 3645226708723656 a001 416020/16692641*2139295485799^(1/2) 3645226708723656 a001 829464/103361*14662949395604^(5/18) 3645226708723656 a001 829464/103361*28143753123^(7/20) 3645226708723656 a001 829464/103361*599074578^(5/12) 3645226708723656 a001 829464/103361*228826127^(7/16) 3645226708723656 a001 165580141/1860498*20633239^(5/14) 3645226708723656 a001 10983760033/620166*7881196^(1/22) 3645226708723656 a001 433494437/1860498*20633239^(3/10) 3645226708723657 a001 1836311903/1860498*20633239^(3/14) 3645226708723658 a001 12586269025/1860498*20633239^(1/10) 3645226708723658 a001 10182505537/930249*20633239^(1/14) 3645226708723658 a001 832040/87403803*2537720636^(7/10) 3645226708723658 a001 832040/87403803*17393796001^(9/14) 3645226708723658 a001 832040/87403803*14662949395604^(1/2) 3645226708723658 a001 39088169/1860498*9062201101803^(1/4) 3645226708723658 a001 832040/87403803*505019158607^(9/16) 3645226708723658 a001 832040/87403803*192900153618^(7/12) 3645226708723658 a001 832040/87403803*599074578^(3/4) 3645226708723659 a001 831985/15126*2537720636^(3/10) 3645226708723659 a001 831985/15126*14662949395604^(3/14) 3645226708723659 a001 831985/15126*192900153618^(1/4) 3645226708723659 a001 2971215073/1860498*141422324^(1/6) 3645226708723659 a001 591286729879/33385282*439204^(1/18) 3645226708723659 a001 133957148/930249*4106118243^(1/4) 3645226708723659 a001 832040/1568397607*2537720636^(5/6) 3645226708723659 a001 832040/1568397607*312119004989^(15/22) 3645226708723659 a001 233802911/620166*817138163596^(1/6) 3645226708723659 a001 832040/1568397607*28143753123^(3/4) 3645226708723659 a001 832040/17393796001*2537720636^(17/18) 3645226708723659 a001 832040/6643838879*2537720636^(9/10) 3645226708723659 a001 1836311903/1860498*2537720636^(1/6) 3645226708723659 a001 1836311903/1860498*312119004989^(3/22) 3645226708723659 a001 1836311903/1860498*28143753123^(3/20) 3645226708723659 a001 7778742049/1860498*2537720636^(1/10) 3645226708723659 a001 267084832/103361*312119004989^(1/10) 3645226708723659 a001 10182505537/930249*2537720636^(1/18) 3645226708723659 a001 832040/73681302247*17393796001^(13/14) 3645226708723659 a001 12586269025/1860498*17393796001^(1/14) 3645226708723659 a001 12586269025/1860498*14662949395604^(1/18) 3645226708723659 a001 12586269025/1860498*505019158607^(1/16) 3645226708723659 a001 832040/73681302247*14662949395604^(13/18) 3645226708723659 a001 832040/73681302247*505019158607^(13/16) 3645226708723659 a001 416020/96450076809*312119004989^(19/22) 3645226708723659 a001 416020/96450076809*3461452808002^(19/24) 3645226708723659 a001 832040/73681302247*73681302247^(7/8) 3645226708723659 a001 832040/505019158607*312119004989^(9/10) 3645226708723659 a001 832040/2139295485799*312119004989^(21/22) 3645226708723659 a001 832040/23725150497407*3461452808002^(23/24) 3645226708723659 a001 832040/2139295485799*14662949395604^(5/6) 3645226708723659 a001 832040/2139295485799*505019158607^(15/16) 3645226708723659 a001 832040/505019158607*192900153618^(11/12) 3645226708723659 a001 832040/119218851371*9062201101803^(3/4) 3645226708723659 a001 10182505537/930249*312119004989^(1/22) 3645226708723659 a001 10182505537/930249*28143753123^(1/20) 3645226708723659 a001 416020/96450076809*28143753123^(19/20) 3645226708723659 a001 832040/17393796001*45537549124^(5/6) 3645226708723659 a001 832040/17393796001*312119004989^(17/22) 3645226708723659 a001 7778742049/1860498*14662949395604^(1/14) 3645226708723659 a001 832040/17393796001*28143753123^(17/20) 3645226708723659 a001 832040/6643838879*14662949395604^(9/14) 3645226708723659 a001 832040/6643838879*192900153618^(3/4) 3645226708723659 a001 2971215073/1860498*73681302247^(1/8) 3645226708723659 a001 267084832/103361*1568397607^(1/8) 3645226708723659 a001 610/1860499*17393796001^(11/14) 3645226708723659 a001 567451585/930249*45537549124^(1/6) 3645226708723659 a001 610/1860499*14662949395604^(11/18) 3645226708723659 a001 610/1860499*505019158607^(11/16) 3645226708723659 a001 12586269025/1860498*599074578^(1/12) 3645226708723659 a001 610/1860499*1568397607^(7/8) 3645226708723659 a001 433494437/1860498*17393796001^(3/14) 3645226708723659 a001 433494437/1860498*14662949395604^(1/6) 3645226708723659 a001 10182505537/930249*228826127^(1/16) 3645226708723659 a001 433494437/1860498*599074578^(1/4) 3645226708723659 a001 610/1860499*599074578^(11/12) 3645226708723659 a001 1836311903/1860498*228826127^(3/16) 3645226708723659 a001 165580141/1860498*2537720636^(5/18) 3645226708723659 a001 165580141/1860498*312119004989^(5/22) 3645226708723659 a001 165580141/1860498*3461452808002^(5/24) 3645226708723659 a001 165580141/1860498*28143753123^(1/4) 3645226708723659 a001 832040/370248451*4106118243^(3/4) 3645226708723659 a001 208010/35355581*141422324^(5/6) 3645226708723659 a001 165580141/1860498*228826127^(5/16) 3645226708723659 a001 832040/1568397607*228826127^(15/16) 3645226708723659 a001 233802911/620166*87403803^(1/4) 3645226708723659 a001 10983760033/620166*33385282^(1/24) 3645226708723659 a001 208010/35355581*2537720636^(13/18) 3645226708723659 a001 208010/35355581*312119004989^(13/22) 3645226708723659 a001 208010/35355581*3461452808002^(13/24) 3645226708723659 a001 208010/35355581*73681302247^(5/8) 3645226708723659 a001 208010/35355581*28143753123^(13/20) 3645226708723659 a001 208010/35355581*228826127^(13/16) 3645226708723659 a001 7778742049/1860498*33385282^(1/8) 3645226708723660 a001 1836311903/1860498*33385282^(5/24) 3645226708723660 a001 433494437/1860498*33385282^(7/24) 3645226708723660 a001 831985/15126*33385282^(3/8) 3645226708723660 a001 24157817/1860498*312119004989^(3/10) 3645226708723660 a001 832040/54018521*5600748293801^(1/2) 3645226708723660 a001 24157817/1860498*1568397607^(3/8) 3645226708723661 a001 832040/87403803*33385282^(7/8) 3645226708723662 a001 24157817/1860498*33385282^(11/24) 3645226708723662 a001 516002918640/29134601*439204^(1/18) 3645226708723662 a001 832040/370248451*33385282^(23/24) 3645226708723662 a001 4052739537881/228826127*439204^(1/18) 3645226708723662 a001 3536736619241/199691526*439204^(1/18) 3645226708723662 a001 6557470319842/370248451*439204^(1/18) 3645226708723662 a001 2504730781961/141422324*439204^(1/18) 3645226708723663 a001 956722026041/54018521*439204^(1/18) 3645226708723665 a001 567451585/930249*12752043^(1/4) 3645226708723667 a001 9227465/1860498*54018521^(1/2) 3645226708723667 a001 75640/1875749*817138163596^(1/2) 3645226708723668 a001 75640/1875749*87403803^(3/4) 3645226708723670 a001 75640/1875749*33385282^(19/24) 3645226708723671 a001 365435296162/20633239*439204^(1/18) 3645226708723712 a001 10983760033/620166*1860498^(1/20) 3645226708723718 a001 1762289/930249*370248451^(1/2) 3645226708723718 a001 208010/1970299*119218851371^(1/2) 3645226708723721 a001 139583862445/7881196*439204^(1/18) 3645226708723736 a001 102334155/3010349*1149851^(1/2) 3645226708723747 a001 10182505537/930249*1860498^(1/12) 3645226708723817 a001 7778742049/1860498*1860498^(3/20) 3645226708723922 a001 1836311903/1860498*1860498^(1/4) 3645226708724021 a001 1346269/1860498*7881196^(15/22) 3645226708724027 a001 433494437/1860498*1860498^(7/20) 3645226708724055 a001 832040/3010349*20633239^(7/10) 3645226708724056 a001 1346269/1860498*20633239^(9/14) 3645226708724061 a001 1346269/1860498*2537720636^(1/2) 3645226708724061 a001 832040/3010349*17393796001^(1/2) 3645226708724061 a001 1346269/1860498*312119004989^(9/22) 3645226708724061 a001 1346269/1860498*14662949395604^(5/14) 3645226708724061 a001 832040/3010349*505019158607^(7/16) 3645226708724061 a001 1346269/1860498*192900153618^(5/12) 3645226708724061 a001 1346269/1860498*28143753123^(9/20) 3645226708724061 a001 832040/3010349*599074578^(7/12) 3645226708724061 a001 1346269/1860498*228826127^(9/16) 3645226708724063 a001 1346269/1860498*33385282^(5/8) 3645226708724064 a001 53316291173/3010349*439204^(1/18) 3645226708724098 a001 165580141/1860498*1860498^(5/12) 3645226708724133 a001 831985/15126*1860498^(9/20) 3645226708724239 a001 24157817/1860498*1860498^(11/20) 3645226708724270 a001 829464/103361*1860498^(7/12) 3645226708724320 a001 4807526976/1149851*439204^(1/6) 3645226708724321 a001 5702887/1860498*1860498^(13/20) 3645226708724357 a001 102334155/4870847*3010349^(1/2) 3645226708724400 a001 832040/4870847*1860498^(17/20) 3645226708724405 a001 2178309/4870847*6643838879^(1/2) 3645226708724488 a001 267914296/12752043*3010349^(1/2) 3645226708724491 a001 726103/4250681*7881196^(17/22) 3645226708724502 a001 46347/4868641*7881196^(21/22) 3645226708724506 a001 311187/4769326*7881196^(5/6) 3645226708724508 a001 701408733/33385282*3010349^(1/2) 3645226708724509 a001 2178309/54018521*7881196^(19/22) 3645226708724510 a001 1836311903/87403803*3010349^(1/2) 3645226708724511 a001 102287808/4868641*3010349^(1/2) 3645226708724511 a001 12586269025/599074578*3010349^(1/2) 3645226708724511 a001 32951280099/1568397607*3010349^(1/2) 3645226708724511 a001 86267571272/4106118243*3010349^(1/2) 3645226708724511 a001 225851433717/10749957122*3010349^(1/2) 3645226708724511 a001 591286729879/28143753123*3010349^(1/2) 3645226708724511 a001 1548008755920/73681302247*3010349^(1/2) 3645226708724511 a001 4052739537881/192900153618*3010349^(1/2) 3645226708724511 a001 225749145909/10745088481*3010349^(1/2) 3645226708724511 a001 6557470319842/312119004989*3010349^(1/2) 3645226708724511 a001 2504730781961/119218851371*3010349^(1/2) 3645226708724511 a001 956722026041/45537549124*3010349^(1/2) 3645226708724511 a001 365435296162/17393796001*3010349^(1/2) 3645226708724511 a001 139583862445/6643838879*3010349^(1/2) 3645226708724511 a001 53316291173/2537720636*3010349^(1/2) 3645226708724511 a001 20365011074/969323029*3010349^(1/2) 3645226708724511 a001 7778742049/370248451*3010349^(1/2) 3645226708724511 a001 2971215073/141422324*3010349^(1/2) 3645226708724512 a001 1134903170/54018521*3010349^(1/2) 3645226708724519 a001 433494437/20633239*3010349^(1/2) 3645226708724520 a001 14930352/4870847*7881196^(13/22) 3645226708724529 a001 63245986/4870847*7881196^(1/2) 3645226708724534 a001 267914296/4870847*7881196^(9/22) 3645226708724536 a001 5702887/4870847*969323029^(1/2) 3645226708724536 a001 726103/4250681*45537549124^(1/2) 3645226708724538 a001 726103/4250681*33385282^(17/24) 3645226708724540 a001 1134903170/4870847*7881196^(7/22) 3645226708724545 a001 4807526976/4870847*7881196^(5/22) 3645226708724548 a001 311187/4769326*20633239^(11/14) 3645226708724549 a001 12586269025/4870847*7881196^(1/6) 3645226708724550 a001 20365011074/4870847*7881196^(3/22) 3645226708724550 a001 2178309/370248451*20633239^(13/14) 3645226708724551 a001 46347/4868641*20633239^(9/10) 3645226708724553 a001 726103/4250681*12752043^(3/4) 3645226708724554 a001 39088169/4870847*20633239^(1/2) 3645226708724555 a001 14930352/4870847*141422324^(1/2) 3645226708724555 a001 311187/4769326*2537720636^(11/18) 3645226708724555 a001 311187/4769326*312119004989^(1/2) 3645226708724555 a001 311187/4769326*3461452808002^(11/24) 3645226708724555 a001 14930352/4870847*73681302247^(3/8) 3645226708724555 a001 311187/4769326*28143753123^(11/20) 3645226708724555 a001 311187/4769326*1568397607^(5/8) 3645226708724555 a001 311187/4769326*228826127^(11/16) 3645226708724555 a001 433494437/4870847*20633239^(5/14) 3645226708724556 a001 86267571272/4870847*7881196^(1/22) 3645226708724556 a001 1134903170/4870847*20633239^(3/10) 3645226708724557 a001 4807526976/4870847*20633239^(3/14) 3645226708724557 a001 14930352/4870847*33385282^(13/24) 3645226708724558 a001 32951280099/4870847*20633239^(1/10) 3645226708724558 a001 53316291173/4870847*20633239^(1/14) 3645226708724558 a001 39088169/4870847*2537720636^(7/18) 3645226708724558 a001 39088169/4870847*17393796001^(5/14) 3645226708724558 a001 39088169/4870847*312119004989^(7/22) 3645226708724558 a001 39088169/4870847*14662949395604^(5/18) 3645226708724558 a001 39088169/4870847*505019158607^(5/16) 3645226708724558 a001 39088169/4870847*28143753123^(7/20) 3645226708724558 a001 39088169/4870847*599074578^(5/12) 3645226708724558 a001 39088169/4870847*228826127^(7/16) 3645226708724558 a001 2178309/370248451*141422324^(5/6) 3645226708724558 a001 46347/4868641*2537720636^(7/10) 3645226708724558 a001 46347/4868641*17393796001^(9/14) 3645226708724558 a001 46347/4868641*14662949395604^(1/2) 3645226708724558 a001 102334155/4870847*9062201101803^(1/4) 3645226708724558 a001 46347/4868641*505019158607^(9/16) 3645226708724558 a001 46347/4868641*192900153618^(7/12) 3645226708724558 a001 46347/4868641*599074578^(3/4) 3645226708724558 a001 7778742049/4870847*141422324^(1/6) 3645226708724558 a001 267914296/4870847*2537720636^(3/10) 3645226708724558 a001 267914296/4870847*14662949395604^(3/14) 3645226708724558 a001 267914296/4870847*192900153618^(1/4) 3645226708724558 a001 701408733/4870847*4106118243^(1/4) 3645226708724558 a001 726103/1368706081*2537720636^(5/6) 3645226708724558 a001 2178309/45537549124*2537720636^(17/18) 3645226708724558 a001 2178309/17393796001*2537720636^(9/10) 3645226708724558 a001 726103/1368706081*312119004989^(15/22) 3645226708724558 a001 1836311903/4870847*817138163596^(1/6) 3645226708724558 a001 726103/1368706081*3461452808002^(5/8) 3645226708724558 a001 726103/1368706081*28143753123^(3/4) 3645226708724558 a001 4807526976/4870847*2537720636^(1/6) 3645226708724558 a001 20365011074/4870847*2537720636^(1/10) 3645226708724558 a001 4807526976/4870847*312119004989^(3/22) 3645226708724558 a001 53316291173/4870847*2537720636^(1/18) 3645226708724558 a001 4807526976/4870847*28143753123^(3/20) 3645226708724558 a001 726103/64300051206*17393796001^(13/14) 3645226708724558 a001 12586269025/4870847*312119004989^(1/10) 3645226708724558 a001 32951280099/4870847*17393796001^(1/14) 3645226708724558 a001 32951280099/4870847*14662949395604^(1/18) 3645226708724558 a001 32951280099/4870847*505019158607^(1/16) 3645226708724558 a001 311187/10525900321*1322157322203^(3/4) 3645226708724558 a001 726103/64300051206*14662949395604^(13/18) 3645226708724558 a001 726103/64300051206*505019158607^(13/16) 3645226708724558 a001 46347/10745088481*312119004989^(19/22) 3645226708724558 a001 2178309/5600748293801*312119004989^(21/22) 3645226708724558 a001 46347/10745088481*3461452808002^(19/24) 3645226708724558 a001 2178309/5600748293801*14662949395604^(5/6) 3645226708724558 a001 2178309/5600748293801*505019158607^(15/16) 3645226708724558 a001 2178309/312119004989*9062201101803^(3/4) 3645226708724558 a001 726103/440719107401*192900153618^(11/12) 3645226708724558 a001 53316291173/4870847*312119004989^(1/22) 3645226708724558 a001 2178309/45537549124*45537549124^(5/6) 3645226708724558 a001 53316291173/4870847*28143753123^(1/20) 3645226708724558 a001 726103/64300051206*73681302247^(7/8) 3645226708724558 a001 2178309/45537549124*312119004989^(17/22) 3645226708724558 a001 20365011074/4870847*14662949395604^(1/14) 3645226708724558 a001 2178309/45537549124*3461452808002^(17/24) 3645226708724558 a001 46347/10745088481*28143753123^(19/20) 3645226708724558 a001 2178309/45537549124*28143753123^(17/20) 3645226708724558 a001 2178309/17393796001*14662949395604^(9/14) 3645226708724558 a001 2178309/17393796001*192900153618^(3/4) 3645226708724558 a001 7778742049/4870847*73681302247^(1/8) 3645226708724558 a001 2178309/6643838879*17393796001^(11/14) 3645226708724558 a001 2971215073/4870847*45537549124^(1/6) 3645226708724558 a001 2178309/6643838879*14662949395604^(11/18) 3645226708724558 a001 2178309/6643838879*505019158607^(11/16) 3645226708724558 a001 12586269025/4870847*1568397607^(1/8) 3645226708724558 a001 1134903170/4870847*17393796001^(3/14) 3645226708724558 a001 1134903170/4870847*14662949395604^(1/6) 3645226708724558 a001 32951280099/4870847*599074578^(1/12) 3645226708724558 a001 2178309/6643838879*1568397607^(7/8) 3645226708724558 a001 1134903170/4870847*599074578^(1/4) 3645226708724558 a001 433494437/4870847*2537720636^(5/18) 3645226708724558 a001 433494437/4870847*312119004989^(5/22) 3645226708724558 a001 433494437/4870847*3461452808002^(5/24) 3645226708724558 a001 433494437/4870847*28143753123^(1/4) 3645226708724558 a001 2178309/969323029*4106118243^(3/4) 3645226708724558 a001 53316291173/4870847*228826127^(1/16) 3645226708724558 a001 2178309/6643838879*599074578^(11/12) 3645226708724558 a001 4807526976/4870847*228826127^(3/16) 3645226708724558 a001 433494437/4870847*228826127^(5/16) 3645226708724558 a001 2178309/370248451*2537720636^(13/18) 3645226708724558 a001 2178309/370248451*312119004989^(13/22) 3645226708724558 a001 2178309/370248451*3461452808002^(13/24) 3645226708724558 a001 165580141/4870847*1322157322203^(1/4) 3645226708724558 a001 2178309/370248451*73681302247^(5/8) 3645226708724558 a001 2178309/370248451*28143753123^(13/20) 3645226708724558 a001 726103/1368706081*228826127^(15/16) 3645226708724558 a001 2178309/370248451*228826127^(13/16) 3645226708724558 a001 1836311903/4870847*87403803^(1/4) 3645226708724558 a001 86267571272/4870847*33385282^(1/24) 3645226708724559 a001 63245986/4870847*312119004989^(3/10) 3645226708724559 a001 2178309/141422324*5600748293801^(1/2) 3645226708724559 a001 63245986/4870847*1568397607^(3/8) 3645226708724559 a001 20365011074/4870847*33385282^(1/8) 3645226708724559 a001 24157817/4870847*54018521^(1/2) 3645226708724559 a001 4807526976/4870847*33385282^(5/24) 3645226708724559 a001 1134903170/4870847*33385282^(7/24) 3645226708724560 a001 267914296/4870847*33385282^(3/8) 3645226708724560 a001 2178309/54018521*817138163596^(1/2) 3645226708724560 a001 2178309/54018521*87403803^(3/4) 3645226708724560 a001 63245986/4870847*33385282^(11/24) 3645226708724561 a001 46347/4868641*33385282^(7/8) 3645226708724561 a001 12586269025/1860498*710647^(1/8) 3645226708724561 a001 2178309/969323029*33385282^(23/24) 3645226708724562 a001 2178309/54018521*33385282^(19/24) 3645226708724564 a001 2971215073/4870847*12752043^(1/4) 3645226708724567 a001 9227465/4870847*370248451^(1/2) 3645226708724567 a001 2178309/20633239*119218851371^(1/2) 3645226708724570 a001 165580141/7881196*3010349^(1/2) 3645226708724577 a001 3524578/4870847*7881196^(15/22) 3645226708724602 a001 832040/12752043*1860498^(11/12) 3645226708724611 a001 86267571272/4870847*1860498^(1/20) 3645226708724611 a001 2178309/7881196*20633239^(7/10) 3645226708724612 a001 3524578/4870847*20633239^(9/14) 3645226708724617 a001 3524578/4870847*2537720636^(1/2) 3645226708724617 a001 2178309/7881196*17393796001^(1/2) 3645226708724617 a001 3524578/4870847*312119004989^(9/22) 3645226708724617 a001 2178309/7881196*14662949395604^(7/18) 3645226708724617 a001 2178309/7881196*505019158607^(7/16) 3645226708724617 a001 3524578/4870847*192900153618^(5/12) 3645226708724617 a001 3524578/4870847*28143753123^(9/20) 3645226708724617 a001 2178309/7881196*599074578^(7/12) 3645226708724617 a001 3524578/4870847*228826127^(9/16) 3645226708724619 a001 3524578/4870847*33385282^(5/8) 3645226708724634 a001 5702887/599074578*7881196^(21/22) 3645226708724639 a001 5702887/141422324*7881196^(19/22) 3645226708724640 a001 5702887/87403803*7881196^(5/6) 3645226708724641 a001 5702887/33385282*7881196^(17/22) 3645226708724646 a001 53316291173/4870847*1860498^(1/12) 3645226708724653 a001 14930352/1568397607*7881196^(21/22) 3645226708724654 a001 39088169/12752043*7881196^(13/22) 3645226708724656 a001 39088169/4106118243*7881196^(21/22) 3645226708724656 a001 102334155/10749957122*7881196^(21/22) 3645226708724656 a001 267914296/28143753123*7881196^(21/22) 3645226708724656 a001 701408733/73681302247*7881196^(21/22) 3645226708724656 a001 1836311903/192900153618*7881196^(21/22) 3645226708724656 a001 102287808/10745088481*7881196^(21/22) 3645226708724656 a001 12586269025/1322157322203*7881196^(21/22) 3645226708724656 a001 32951280099/3461452808002*7881196^(21/22) 3645226708724656 a001 86267571272/9062201101803*7881196^(21/22) 3645226708724656 a001 225851433717/23725150497407*7881196^(21/22) 3645226708724656 a001 139583862445/14662949395604*7881196^(21/22) 3645226708724656 a001 53316291173/5600748293801*7881196^(21/22) 3645226708724656 a001 20365011074/2139295485799*7881196^(21/22) 3645226708724656 a001 7778742049/817138163596*7881196^(21/22) 3645226708724656 a001 2971215073/312119004989*7881196^(21/22) 3645226708724656 a001 1134903170/119218851371*7881196^(21/22) 3645226708724656 a001 433494437/45537549124*7881196^(21/22) 3645226708724656 a001 165580141/17393796001*7881196^(21/22) 3645226708724656 a001 63245986/6643838879*7881196^(21/22) 3645226708724657 a001 24157817/2537720636*7881196^(21/22) 3645226708724658 a001 14930352/370248451*7881196^(19/22) 3645226708724658 a001 9227465/12752043*7881196^(15/22) 3645226708724660 a001 14930352/228826127*7881196^(5/6) 3645226708724660 a001 165580141/12752043*7881196^(1/2) 3645226708724661 a001 39088169/969323029*7881196^(19/22) 3645226708724661 a001 9303105/230701876*7881196^(19/22) 3645226708724661 a001 267914296/6643838879*7881196^(19/22) 3645226708724661 a001 701408733/17393796001*7881196^(19/22) 3645226708724661 a001 1836311903/45537549124*7881196^(19/22) 3645226708724661 a001 4807526976/119218851371*7881196^(19/22) 3645226708724661 a001 1144206275/28374454999*7881196^(19/22) 3645226708724661 a001 32951280099/817138163596*7881196^(19/22) 3645226708724661 a001 86267571272/2139295485799*7881196^(19/22) 3645226708724661 a001 225851433717/5600748293801*7881196^(19/22) 3645226708724661 a001 365435296162/9062201101803*7881196^(19/22) 3645226708724661 a001 139583862445/3461452808002*7881196^(19/22) 3645226708724661 a001 53316291173/1322157322203*7881196^(19/22) 3645226708724661 a001 20365011074/505019158607*7881196^(19/22) 3645226708724661 a001 7778742049/192900153618*7881196^(19/22) 3645226708724661 a001 2971215073/73681302247*7881196^(19/22) 3645226708724661 a001 1134903170/28143753123*7881196^(19/22) 3645226708724661 a001 433494437/10749957122*7881196^(19/22) 3645226708724661 a001 165580141/4106118243*7881196^(19/22) 3645226708724661 a001 63245986/1568397607*7881196^(19/22) 3645226708724663 a001 24157817/599074578*7881196^(19/22) 3645226708724663 a001 39088169/599074578*7881196^(5/6) 3645226708724663 a001 4976784/29134601*7881196^(17/22) 3645226708724663 a001 14619165/224056801*7881196^(5/6) 3645226708724663 a001 267914296/4106118243*7881196^(5/6) 3645226708724663 a001 701408733/10749957122*7881196^(5/6) 3645226708724663 a001 1836311903/28143753123*7881196^(5/6) 3645226708724663 a001 686789568/10525900321*7881196^(5/6) 3645226708724663 a001 12586269025/192900153618*7881196^(5/6) 3645226708724663 a001 32951280099/505019158607*7881196^(5/6) 3645226708724663 a001 86267571272/1322157322203*7881196^(5/6) 3645226708724663 a001 32264490531/494493258286*7881196^(5/6) 3645226708724663 a001 591286729879/9062201101803*7881196^(5/6) 3645226708724663 a001 1548008755920/23725150497407*7881196^(5/6) 3645226708724663 a001 139583862445/2139295485799*7881196^(5/6) 3645226708724663 a001 53316291173/817138163596*7881196^(5/6) 3645226708724663 a001 20365011074/312119004989*7881196^(5/6) 3645226708724663 a001 7778742049/119218851371*7881196^(5/6) 3645226708724663 a001 2971215073/45537549124*7881196^(5/6) 3645226708724663 a001 1134903170/17393796001*7881196^(5/6) 3645226708724663 a001 433494437/6643838879*7881196^(5/6) 3645226708724663 a001 165580141/2537720636*7881196^(5/6) 3645226708724663 a001 63245986/969323029*7881196^(5/6) 3645226708724664 a001 24157817/370248451*7881196^(5/6) 3645226708724665 a001 9227465/969323029*7881196^(21/22) 3645226708724666 a001 233802911/4250681*7881196^(9/22) 3645226708724666 a001 39088169/228826127*7881196^(17/22) 3645226708724667 a001 34111385/199691526*7881196^(17/22) 3645226708724667 a001 267914296/1568397607*7881196^(17/22) 3645226708724667 a001 233802911/1368706081*7881196^(17/22) 3645226708724667 a001 1836311903/10749957122*7881196^(17/22) 3645226708724667 a001 1602508992/9381251041*7881196^(17/22) 3645226708724667 a001 12586269025/73681302247*7881196^(17/22) 3645226708724667 a001 10983760033/64300051206*7881196^(17/22) 3645226708724667 a001 86267571272/505019158607*7881196^(17/22) 3645226708724667 a001 75283811239/440719107401*7881196^(17/22) 3645226708724667 a001 2504730781961/14662949395604*7881196^(17/22) 3645226708724667 a001 139583862445/817138163596*7881196^(17/22) 3645226708724667 a001 53316291173/312119004989*7881196^(17/22) 3645226708724667 a001 20365011074/119218851371*7881196^(17/22) 3645226708724667 a001 7778742049/45537549124*7881196^(17/22) 3645226708724667 a001 2971215073/17393796001*7881196^(17/22) 3645226708724667 a001 1134903170/6643838879*7881196^(17/22) 3645226708724667 a001 433494437/2537720636*7881196^(17/22) 3645226708724667 a001 165580141/969323029*7881196^(17/22) 3645226708724667 a001 63245986/370248451*7881196^(17/22) 3645226708724667 a001 5702887/12752043*6643838879^(1/2) 3645226708724668 a001 75640/1875749*1860498^(19/20) 3645226708724668 a001 24157817/141422324*7881196^(17/22) 3645226708724670 a001 9227465/228826127*7881196^(19/22) 3645226708724670 a001 24157817/33385282*7881196^(15/22) 3645226708724671 a001 2971215073/12752043*7881196^(7/22) 3645226708724672 a001 63245986/87403803*7881196^(15/22) 3645226708724672 a001 9227465/141422324*7881196^(5/6) 3645226708724672 a001 165580141/228826127*7881196^(15/22) 3645226708724672 a001 433494437/599074578*7881196^(15/22) 3645226708724672 a001 1134903170/1568397607*7881196^(15/22) 3645226708724672 a001 2971215073/4106118243*7881196^(15/22) 3645226708724672 a001 7778742049/10749957122*7881196^(15/22) 3645226708724672 a001 20365011074/28143753123*7881196^(15/22) 3645226708724672 a001 53316291173/73681302247*7881196^(15/22) 3645226708724672 a001 139583862445/192900153618*7881196^(15/22) 3645226708724672 a001 365435296162/505019158607*7881196^(15/22) 3645226708724672 a001 10610209857723/14662949395604*7881196^(15/22) 3645226708724672 a001 225851433717/312119004989*7881196^(15/22) 3645226708724672 a001 86267571272/119218851371*7881196^(15/22) 3645226708724672 a001 32951280099/45537549124*7881196^(15/22) 3645226708724672 a001 12586269025/17393796001*7881196^(15/22) 3645226708724672 a001 4807526976/6643838879*7881196^(15/22) 3645226708724672 a001 1836311903/2537720636*7881196^(15/22) 3645226708724672 a001 701408733/969323029*7881196^(15/22) 3645226708724672 a001 267914296/370248451*7881196^(15/22) 3645226708724672 a001 102334155/141422324*7881196^(15/22) 3645226708724673 a001 39088169/54018521*7881196^(15/22) 3645226708724674 a001 14619165/4769326*7881196^(13/22) 3645226708724676 a001 12586269025/12752043*7881196^(5/22) 3645226708724676 a001 9227465/54018521*7881196^(17/22) 3645226708724677 a001 267914296/87403803*7881196^(13/22) 3645226708724677 a001 701408733/228826127*7881196^(13/22) 3645226708724677 a001 14930352/20633239*7881196^(15/22) 3645226708724677 a001 1836311903/599074578*7881196^(13/22) 3645226708724677 a001 686789568/224056801*7881196^(13/22) 3645226708724677 a001 12586269025/4106118243*7881196^(13/22) 3645226708724677 a001 32951280099/10749957122*7881196^(13/22) 3645226708724677 a001 86267571272/28143753123*7881196^(13/22) 3645226708724677 a001 32264490531/10525900321*7881196^(13/22) 3645226708724677 a001 591286729879/192900153618*7881196^(13/22) 3645226708724677 a001 1548008755920/505019158607*7881196^(13/22) 3645226708724677 a001 1515744265389/494493258286*7881196^(13/22) 3645226708724677 a001 2504730781961/817138163596*7881196^(13/22) 3645226708724677 a001 956722026041/312119004989*7881196^(13/22) 3645226708724677 a001 365435296162/119218851371*7881196^(13/22) 3645226708724677 a001 139583862445/45537549124*7881196^(13/22) 3645226708724677 a001 53316291173/17393796001*7881196^(13/22) 3645226708724677 a001 20365011074/6643838879*7881196^(13/22) 3645226708724677 a001 7778742049/2537720636*7881196^(13/22) 3645226708724677 a001 2971215073/969323029*7881196^(13/22) 3645226708724677 a001 1134903170/370248451*7881196^(13/22) 3645226708724678 a001 433494437/141422324*7881196^(13/22) 3645226708724679 a001 165580141/54018521*7881196^(13/22) 3645226708724679 a001 433494437/33385282*7881196^(1/2) 3645226708724680 a001 10983760033/4250681*7881196^(1/6) 3645226708724682 a001 53316291173/12752043*7881196^(3/22) 3645226708724682 a001 5702887/969323029*20633239^(13/14) 3645226708724682 a001 5702887/599074578*20633239^(9/10) 3645226708724682 a001 1134903170/87403803*7881196^(1/2) 3645226708724682 a001 5702887/87403803*20633239^(11/14) 3645226708724683 a001 2971215073/228826127*7881196^(1/2) 3645226708724683 a001 7778742049/599074578*7881196^(1/2) 3645226708724683 a001 20365011074/1568397607*7881196^(1/2) 3645226708724683 a001 53316291173/4106118243*7881196^(1/2) 3645226708724683 a001 139583862445/10749957122*7881196^(1/2) 3645226708724683 a001 365435296162/28143753123*7881196^(1/2) 3645226708724683 a001 956722026041/73681302247*7881196^(1/2) 3645226708724683 a001 2504730781961/192900153618*7881196^(1/2) 3645226708724683 a001 10610209857723/817138163596*7881196^(1/2) 3645226708724683 a001 4052739537881/312119004989*7881196^(1/2) 3645226708724683 a001 1548008755920/119218851371*7881196^(1/2) 3645226708724683 a001 591286729879/45537549124*7881196^(1/2) 3645226708724683 a001 7787980473/599786069*7881196^(1/2) 3645226708724683 a001 86267571272/6643838879*7881196^(1/2) 3645226708724683 a001 32951280099/2537720636*7881196^(1/2) 3645226708724683 a001 12586269025/969323029*7881196^(1/2) 3645226708724683 a001 4807526976/370248451*7881196^(1/2) 3645226708724683 a001 1836311903/141422324*7881196^(1/2) 3645226708724684 a001 701408733/54018521*7881196^(1/2) 3645226708724685 a001 1836311903/33385282*7881196^(9/22) 3645226708724685 a001 34111385/4250681*20633239^(1/2) 3645226708724686 a001 63245986/20633239*7881196^(13/22) 3645226708724686 a001 4976784/4250681*969323029^(1/2) 3645226708724686 a001 5702887/33385282*45537549124^(1/2) 3645226708724687 a001 1134903170/12752043*20633239^(5/14) 3645226708724687 a001 75283811239/4250681*7881196^(1/22) 3645226708724687 a001 2971215073/12752043*20633239^(3/10) 3645226708724688 a001 1602508992/29134601*7881196^(9/22) 3645226708724688 a001 12586269025/12752043*20633239^(3/14) 3645226708724688 a001 12586269025/228826127*7881196^(9/22) 3645226708724688 a001 10983760033/199691526*7881196^(9/22) 3645226708724688 a001 86267571272/1568397607*7881196^(9/22) 3645226708724688 a001 75283811239/1368706081*7881196^(9/22) 3645226708724688 a001 591286729879/10749957122*7881196^(9/22) 3645226708724688 a001 12585437040/228811001*7881196^(9/22) 3645226708724688 a001 4052739537881/73681302247*7881196^(9/22) 3645226708724688 a001 3536736619241/64300051206*7881196^(9/22) 3645226708724688 a001 6557470319842/119218851371*7881196^(9/22) 3645226708724688 a001 2504730781961/45537549124*7881196^(9/22) 3645226708724688 a001 956722026041/17393796001*7881196^(9/22) 3645226708724688 a001 365435296162/6643838879*7881196^(9/22) 3645226708724688 a001 139583862445/2537720636*7881196^(9/22) 3645226708724688 a001 53316291173/969323029*7881196^(9/22) 3645226708724688 a001 20365011074/370248451*7881196^(9/22) 3645226708724688 a001 7778742049/141422324*7881196^(9/22) 3645226708724689 a001 5702887/33385282*33385282^(17/24) 3645226708724689 a001 86267571272/12752043*20633239^(1/10) 3645226708724689 a001 139583862445/12752043*20633239^(1/14) 3645226708724689 a001 39088169/12752043*141422324^(1/2) 3645226708724689 a001 5702887/87403803*2537720636^(11/18) 3645226708724689 a001 5702887/87403803*312119004989^(1/2) 3645226708724689 a001 5702887/87403803*3461452808002^(11/24) 3645226708724689 a001 39088169/12752043*73681302247^(3/8) 3645226708724689 a001 5702887/87403803*28143753123^(11/20) 3645226708724689 a001 5702887/87403803*1568397607^(5/8) 3645226708724689 a001 63245986/12752043*54018521^(1/2) 3645226708724689 a001 5702887/87403803*228826127^(11/16) 3645226708724689 a001 2971215073/54018521*7881196^(9/22) 3645226708724689 a001 5702887/969323029*141422324^(5/6) 3645226708724690 a001 34111385/4250681*2537720636^(7/18) 3645226708724690 a001 34111385/4250681*17393796001^(5/14) 3645226708724690 a001 34111385/4250681*312119004989^(7/22) 3645226708724690 a001 34111385/4250681*14662949395604^(5/18) 3645226708724690 a001 34111385/4250681*505019158607^(5/16) 3645226708724690 a001 34111385/4250681*28143753123^(7/20) 3645226708724690 a001 34111385/4250681*599074578^(5/12) 3645226708724690 a001 34111385/4250681*228826127^(7/16) 3645226708724690 a001 20365011074/12752043*141422324^(1/6) 3645226708724690 a001 5702887/599074578*2537720636^(7/10) 3645226708724690 a001 5702887/599074578*17393796001^(9/14) 3645226708724690 a001 267914296/12752043*9062201101803^(1/4) 3645226708724690 a001 5702887/599074578*505019158607^(9/16) 3645226708724690 a001 5702887/599074578*192900153618^(7/12) 3645226708724690 a001 5702887/599074578*599074578^(3/4) 3645226708724690 a001 233802911/4250681*2537720636^(3/10) 3645226708724690 a001 233802911/4250681*14662949395604^(3/14) 3645226708724690 a001 233802911/4250681*192900153618^(1/4) 3645226708724690 a001 5702887/119218851371*2537720636^(17/18) 3645226708724690 a001 1597/12752044*2537720636^(9/10) 3645226708724690 a001 5702887/10749957122*2537720636^(5/6) 3645226708724690 a001 1836311903/12752043*4106118243^(1/4) 3645226708724690 a001 12586269025/12752043*2537720636^(1/6) 3645226708724690 a001 53316291173/12752043*2537720636^(1/10) 3645226708724690 a001 5702887/10749957122*312119004989^(15/22) 3645226708724690 a001 1602508992/4250681*817138163596^(1/6) 3645226708724690 a001 139583862445/12752043*2537720636^(1/18) 3645226708724690 a001 5702887/10749957122*28143753123^(3/4) 3645226708724690 a001 5702887/505019158607*17393796001^(13/14) 3645226708724690 a001 12586269025/12752043*312119004989^(3/22) 3645226708724690 a001 12586269025/12752043*28143753123^(3/20) 3645226708724690 a001 5702887/119218851371*45537549124^(5/6) 3645226708724690 a001 86267571272/12752043*17393796001^(1/14) 3645226708724690 a001 10983760033/4250681*312119004989^(1/10) 3645226708724690 a001 86267571272/12752043*14662949395604^(1/18) 3645226708724690 a001 86267571272/12752043*505019158607^(1/16) 3645226708724690 a001 5702887/192900153618*1322157322203^(3/4) 3645226708724690 a001 5702887/14662949395604*312119004989^(21/22) 3645226708724690 a001 5702887/1322157322203*312119004989^(19/22) 3645226708724690 a001 5702887/3461452808002*312119004989^(9/10) 3645226708724690 a001 5702887/505019158607*14662949395604^(13/18) 3645226708724690 a001 5702887/1322157322203*3461452808002^(19/24) 3645226708724690 a001 5702887/3461452808002*14662949395604^(11/14) 3645226708724690 a001 5702887/14662949395604*505019158607^(15/16) 3645226708724690 a001 139583862445/12752043*312119004989^(1/22) 3645226708724690 a001 5702887/3461452808002*192900153618^(11/12) 3645226708724690 a001 5702887/119218851371*312119004989^(17/22) 3645226708724690 a001 53316291173/12752043*14662949395604^(1/14) 3645226708724690 a001 53316291173/12752043*192900153618^(1/12) 3645226708724690 a001 139583862445/12752043*28143753123^(1/20) 3645226708724690 a001 5702887/505019158607*73681302247^(7/8) 3645226708724690 a001 1597/12752044*14662949395604^(9/14) 3645226708724690 a001 1597/12752044*192900153618^(3/4) 3645226708724690 a001 20365011074/12752043*73681302247^(1/8) 3645226708724690 a001 5702887/17393796001*17393796001^(11/14) 3645226708724690 a001 5702887/119218851371*28143753123^(17/20) 3645226708724690 a001 5702887/1322157322203*28143753123^(19/20) 3645226708724690 a001 7778742049/12752043*45537549124^(1/6) 3645226708724690 a001 5702887/17393796001*14662949395604^(11/18) 3645226708724690 a001 5702887/17393796001*505019158607^(11/16) 3645226708724690 a001 2971215073/12752043*17393796001^(3/14) 3645226708724690 a001 2971215073/12752043*14662949395604^(1/6) 3645226708724690 a001 10983760033/4250681*1568397607^(1/8) 3645226708724690 a001 1134903170/12752043*2537720636^(5/18) 3645226708724690 a001 1134903170/12752043*312119004989^(5/22) 3645226708724690 a001 1134903170/12752043*3461452808002^(5/24) 3645226708724690 a001 1134903170/12752043*28143753123^(1/4) 3645226708724690 a001 5702887/2537720636*4106118243^(3/4) 3645226708724690 a001 86267571272/12752043*599074578^(1/12) 3645226708724690 a001 5702887/17393796001*1568397607^(7/8) 3645226708724690 a001 2971215073/12752043*599074578^(1/4) 3645226708724690 a001 5702887/969323029*2537720636^(13/18) 3645226708724690 a001 5702887/969323029*312119004989^(13/22) 3645226708724690 a001 5702887/969323029*3461452808002^(13/24) 3645226708724690 a001 433494437/12752043*1322157322203^(1/4) 3645226708724690 a001 5702887/969323029*73681302247^(5/8) 3645226708724690 a001 5702887/969323029*28143753123^(13/20) 3645226708724690 a001 139583862445/12752043*228826127^(1/16) 3645226708724690 a001 5702887/17393796001*599074578^(11/12) 3645226708724690 a001 12586269025/12752043*228826127^(3/16) 3645226708724690 a001 1134903170/12752043*228826127^(5/16) 3645226708724690 a001 165580141/12752043*312119004989^(3/10) 3645226708724690 a001 165580141/12752043*1568397607^(3/8) 3645226708724690 a001 5702887/969323029*228826127^(13/16) 3645226708724690 a001 5702887/10749957122*228826127^(15/16) 3645226708724690 a001 1602508992/4250681*87403803^(1/4) 3645226708724690 a001 75283811239/4250681*33385282^(1/24) 3645226708724690 a001 5702887/141422324*817138163596^(1/2) 3645226708724690 a001 53316291173/12752043*33385282^(1/8) 3645226708724690 a001 7778742049/33385282*7881196^(7/22) 3645226708724690 a001 5702887/141422324*87403803^(3/4) 3645226708724690 a001 12586269025/12752043*33385282^(5/24) 3645226708724691 a001 2971215073/12752043*33385282^(7/24) 3645226708724691 a001 233802911/4250681*33385282^(3/8) 3645226708724691 a001 24157817/12752043*370248451^(1/2) 3645226708724691 a001 5702887/54018521*119218851371^(1/2) 3645226708724691 a001 39088169/12752043*33385282^(13/24) 3645226708724691 a001 165580141/12752043*33385282^(11/24) 3645226708724691 a001 9238424/711491*7881196^(1/2) 3645226708724692 a001 5702887/20633239*20633239^(7/10) 3645226708724692 a001 5702887/141422324*33385282^(19/24) 3645226708724692 a001 5702887/599074578*33385282^(7/8) 3645226708724693 a001 9227465/12752043*20633239^(9/14) 3645226708724693 a001 5702887/2537720636*33385282^(23/24) 3645226708724693 a001 20365011074/87403803*7881196^(7/22) 3645226708724693 a001 53316291173/228826127*7881196^(7/22) 3645226708724693 a001 139583862445/599074578*7881196^(7/22) 3645226708724693 a001 365435296162/1568397607*7881196^(7/22) 3645226708724693 a001 956722026041/4106118243*7881196^(7/22) 3645226708724693 a001 2504730781961/10749957122*7881196^(7/22) 3645226708724693 a001 6557470319842/28143753123*7881196^(7/22) 3645226708724693 a001 10610209857723/45537549124*7881196^(7/22) 3645226708724693 a001 4052739537881/17393796001*7881196^(7/22) 3645226708724693 a001 1548008755920/6643838879*7881196^(7/22) 3645226708724693 a001 591286729879/2537720636*7881196^(7/22) 3645226708724693 a001 225851433717/969323029*7881196^(7/22) 3645226708724693 a001 86267571272/370248451*7881196^(7/22) 3645226708724694 a001 63246219/271444*7881196^(7/22) 3645226708724695 a001 12586269025/54018521*7881196^(7/22) 3645226708724695 a001 7778742049/12752043*12752043^(1/4) 3645226708724695 a001 32951280099/33385282*7881196^(5/22) 3645226708724697 a001 1134903170/20633239*7881196^(9/22) 3645226708724698 a001 9227465/12752043*2537720636^(1/2) 3645226708724698 a001 5702887/20633239*17393796001^(1/2) 3645226708724698 a001 9227465/12752043*312119004989^(9/22) 3645226708724698 a001 5702887/20633239*14662949395604^(7/18) 3645226708724698 a001 5702887/20633239*505019158607^(7/16) 3645226708724698 a001 9227465/12752043*192900153618^(5/12) 3645226708724698 a001 9227465/12752043*28143753123^(9/20) 3645226708724698 a001 5702887/20633239*599074578^(7/12) 3645226708724698 a001 86267571272/87403803*7881196^(5/22) 3645226708724698 a001 9227465/12752043*228826127^(9/16) 3645226708724699 a001 225851433717/228826127*7881196^(5/22) 3645226708724699 a001 591286729879/599074578*7881196^(5/22) 3645226708724699 a001 1548008755920/1568397607*7881196^(5/22) 3645226708724699 a001 4052739537881/4106118243*7881196^(5/22) 3645226708724699 a001 4807525989/4870846*7881196^(5/22) 3645226708724699 a001 6557470319842/6643838879*7881196^(5/22) 3645226708724699 a001 2504730781961/2537720636*7881196^(5/22) 3645226708724699 a001 956722026041/969323029*7881196^(5/22) 3645226708724699 a001 365435296162/370248451*7881196^(5/22) 3645226708724699 a001 139583862445/141422324*7881196^(5/22) 3645226708724699 a001 43133785636/16692641*7881196^(1/6) 3645226708724700 a001 53316291173/54018521*7881196^(5/22) 3645226708724700 a001 9227465/12752043*33385282^(5/8) 3645226708724701 a001 139583862445/33385282*7881196^(3/22) 3645226708724701 a001 196452/33391061*20633239^(13/14) 3645226708724701 a001 14930352/1568397607*20633239^(9/10) 3645226708724702 a001 75283811239/29134601*7881196^(1/6) 3645226708724702 a001 4807526976/20633239*7881196^(7/22) 3645226708724702 a001 14930352/228826127*20633239^(11/14) 3645226708724702 a001 591286729879/228826127*7881196^(1/6) 3645226708724702 a001 86000486440/33281921*7881196^(1/6) 3645226708724702 a001 4052739537881/1568397607*7881196^(1/6) 3645226708724702 a001 3536736619241/1368706081*7881196^(1/6) 3645226708724702 a001 3278735159921/1268860318*7881196^(1/6) 3645226708724702 a001 2504730781961/969323029*7881196^(1/6) 3645226708724702 a001 956722026041/370248451*7881196^(1/6) 3645226708724702 a001 182717648081/70711162*7881196^(1/6) 3645226708724703 a001 5702887/33385282*12752043^(3/4) 3645226708724703 a001 139583862445/54018521*7881196^(1/6) 3645226708724704 a001 365435296162/87403803*7881196^(3/22) 3645226708724704 a001 39088169/6643838879*20633239^(13/14) 3645226708724704 a001 39088169/4106118243*20633239^(9/10) 3645226708724704 a001 956722026041/228826127*7881196^(3/22) 3645226708724704 a001 102334155/17393796001*20633239^(13/14) 3645226708724704 a001 14930352/54018521*20633239^(7/10) 3645226708724704 a001 2504730781961/599074578*7881196^(3/22) 3645226708724704 a001 6557470319842/1568397607*7881196^(3/22) 3645226708724704 a001 10610209857723/2537720636*7881196^(3/22) 3645226708724704 a001 4052739537881/969323029*7881196^(3/22) 3645226708724704 a001 1548008755920/370248451*7881196^(3/22) 3645226708724704 a001 66978574/11384387281*20633239^(13/14) 3645226708724704 a001 701408733/119218851371*20633239^(13/14) 3645226708724704 a001 1836311903/312119004989*20633239^(13/14) 3645226708724704 a001 1201881744/204284540899*20633239^(13/14) 3645226708724704 a001 12586269025/2139295485799*20633239^(13/14) 3645226708724704 a001 32951280099/5600748293801*20633239^(13/14) 3645226708724704 a001 1135099622/192933544679*20633239^(13/14) 3645226708724704 a001 139583862445/23725150497407*20633239^(13/14) 3645226708724704 a001 53316291173/9062201101803*20633239^(13/14) 3645226708724704 a001 10182505537/1730726404001*20633239^(13/14) 3645226708724704 a001 7778742049/1322157322203*20633239^(13/14) 3645226708724704 a001 2971215073/505019158607*20633239^(13/14) 3645226708724704 a001 567451585/96450076809*20633239^(13/14) 3645226708724704 a001 433494437/73681302247*20633239^(13/14) 3645226708724704 a001 165580141/28143753123*20633239^(13/14) 3645226708724704 a001 591286729879/141422324*7881196^(3/22) 3645226708724704 a001 102334155/10749957122*20633239^(9/10) 3645226708724704 a001 31622993/5374978561*20633239^(13/14) 3645226708724704 a001 267914296/28143753123*20633239^(9/10) 3645226708724704 a001 701408733/73681302247*20633239^(9/10) 3645226708724704 a001 1836311903/192900153618*20633239^(9/10) 3645226708724704 a001 102287808/10745088481*20633239^(9/10) 3645226708724704 a001 12586269025/1322157322203*20633239^(9/10) 3645226708724704 a001 32951280099/3461452808002*20633239^(9/10) 3645226708724704 a001 86267571272/9062201101803*20633239^(9/10) 3645226708724704 a001 225851433717/23725150497407*20633239^(9/10) 3645226708724704 a001 139583862445/14662949395604*20633239^(9/10) 3645226708724704 a001 53316291173/5600748293801*20633239^(9/10) 3645226708724704 a001 20365011074/2139295485799*20633239^(9/10) 3645226708724704 a001 7778742049/817138163596*20633239^(9/10) 3645226708724704 a001 2971215073/312119004989*20633239^(9/10) 3645226708724704 a001 1134903170/119218851371*20633239^(9/10) 3645226708724704 a001 433494437/45537549124*20633239^(9/10) 3645226708724704 a001 165580141/17393796001*20633239^(9/10) 3645226708724704 a001 133957148/16692641*20633239^(1/2) 3645226708724704 a001 24157817/33385282*20633239^(9/14) 3645226708724704 a001 63245986/6643838879*20633239^(9/10) 3645226708724705 a001 39088169/599074578*20633239^(11/14) 3645226708724705 a001 14619165/224056801*20633239^(11/14) 3645226708724705 a001 225851433717/54018521*7881196^(3/22) 3645226708724705 a001 267914296/4106118243*20633239^(11/14) 3645226708724705 a001 701408733/10749957122*20633239^(11/14) 3645226708724705 a001 1836311903/28143753123*20633239^(11/14) 3645226708724705 a001 686789568/10525900321*20633239^(11/14) 3645226708724705 a001 12586269025/192900153618*20633239^(11/14) 3645226708724705 a001 32951280099/505019158607*20633239^(11/14) 3645226708724705 a001 86267571272/1322157322203*20633239^(11/14) 3645226708724705 a001 32264490531/494493258286*20633239^(11/14) 3645226708724705 a001 1548008755920/23725150497407*20633239^(11/14) 3645226708724705 a001 365435296162/5600748293801*20633239^(11/14) 3645226708724705 a001 139583862445/2139295485799*20633239^(11/14) 3645226708724705 a001 53316291173/817138163596*20633239^(11/14) 3645226708724705 a001 20365011074/312119004989*20633239^(11/14) 3645226708724705 a001 7778742049/119218851371*20633239^(11/14) 3645226708724705 a001 2971215073/45537549124*20633239^(11/14) 3645226708724705 a001 1134903170/17393796001*20633239^(11/14) 3645226708724705 a001 433494437/6643838879*20633239^(11/14) 3645226708724705 a001 24157817/4106118243*20633239^(13/14) 3645226708724705 a001 165580141/2537720636*20633239^(11/14) 3645226708724705 a001 63245986/969323029*20633239^(11/14) 3645226708724705 a001 7465176/16692641*6643838879^(1/2) 3645226708724706 a001 24157817/2537720636*20633239^(9/10) 3645226708724706 a001 2971215073/33385282*20633239^(5/14) 3645226708724706 a001 39088169/141422324*20633239^(7/10) 3645226708724706 a001 102334155/370248451*20633239^(7/10) 3645226708724706 a001 267914296/969323029*20633239^(7/10) 3645226708724706 a001 701408733/2537720636*20633239^(7/10) 3645226708724706 a001 1836311903/6643838879*20633239^(7/10) 3645226708724706 a001 4807526976/17393796001*20633239^(7/10) 3645226708724706 a001 12586269025/45537549124*20633239^(7/10) 3645226708724706 a001 32951280099/119218851371*20633239^(7/10) 3645226708724706 a001 86267571272/312119004989*20633239^(7/10) 3645226708724706 a001 225851433717/817138163596*20633239^(7/10) 3645226708724706 a001 1548008755920/5600748293801*20633239^(7/10) 3645226708724706 a001 139583862445/505019158607*20633239^(7/10) 3645226708724706 a001 53316291173/192900153618*20633239^(7/10) 3645226708724706 a001 20365011074/73681302247*20633239^(7/10) 3645226708724706 a001 7778742049/28143753123*20633239^(7/10) 3645226708724706 a001 2971215073/10749957122*20633239^(7/10) 3645226708724706 a001 1134903170/4106118243*20633239^(7/10) 3645226708724706 a001 433494437/1568397607*20633239^(7/10) 3645226708724706 a001 165580141/599074578*20633239^(7/10) 3645226708724706 a001 591286729879/33385282*7881196^(1/22) 3645226708724706 a001 63245986/228826127*20633239^(7/10) 3645226708724706 a001 7778742049/33385282*20633239^(3/10) 3645226708724706 a001 63245986/87403803*20633239^(9/14) 3645226708724706 a001 165580141/228826127*20633239^(9/14) 3645226708724706 a001 433494437/599074578*20633239^(9/14) 3645226708724706 a001 1134903170/1568397607*20633239^(9/14) 3645226708724706 a001 2971215073/4106118243*20633239^(9/14) 3645226708724706 a001 7778742049/10749957122*20633239^(9/14) 3645226708724706 a001 20365011074/28143753123*20633239^(9/14) 3645226708724706 a001 53316291173/73681302247*20633239^(9/14) 3645226708724706 a001 139583862445/192900153618*20633239^(9/14) 3645226708724706 a001 10610209857723/14662949395604*20633239^(9/14) 3645226708724706 a001 591286729879/817138163596*20633239^(9/14) 3645226708724706 a001 225851433717/312119004989*20633239^(9/14) 3645226708724706 a001 86267571272/119218851371*20633239^(9/14) 3645226708724706 a001 32951280099/45537549124*20633239^(9/14) 3645226708724706 a001 12586269025/17393796001*20633239^(9/14) 3645226708724706 a001 4807526976/6643838879*20633239^(9/14) 3645226708724706 a001 1836311903/2537720636*20633239^(9/14) 3645226708724707 a001 701408733/969323029*20633239^(9/14) 3645226708724707 a001 267914296/370248451*20633239^(9/14) 3645226708724707 a001 24157817/370248451*20633239^(11/14) 3645226708724707 a001 102334155/141422324*20633239^(9/14) 3645226708724707 a001 24157817/87403803*20633239^(7/10) 3645226708724707 a001 32951280099/33385282*20633239^(3/14) 3645226708724707 a001 20365011074/20633239*7881196^(5/22) 3645226708724707 a001 233802911/29134601*20633239^(1/2) 3645226708724707 a001 39088169/54018521*20633239^(9/14) 3645226708724708 a001 1836311903/228826127*20633239^(1/2) 3645226708724708 a001 267084832/33281921*20633239^(1/2) 3645226708724708 a001 12586269025/1568397607*20633239^(1/2) 3645226708724708 a001 10983760033/1368706081*20633239^(1/2) 3645226708724708 a001 43133785636/5374978561*20633239^(1/2) 3645226708724708 a001 75283811239/9381251041*20633239^(1/2) 3645226708724708 a001 591286729879/73681302247*20633239^(1/2) 3645226708724708 a001 86000486440/10716675201*20633239^(1/2) 3645226708724708 a001 4052739537881/505019158607*20633239^(1/2) 3645226708724708 a001 3278735159921/408569081798*20633239^(1/2) 3645226708724708 a001 2504730781961/312119004989*20633239^(1/2) 3645226708724708 a001 956722026041/119218851371*20633239^(1/2) 3645226708724708 a001 182717648081/22768774562*20633239^(1/2) 3645226708724708 a001 139583862445/17393796001*20633239^(1/2) 3645226708724708 a001 53316291173/6643838879*20633239^(1/2) 3645226708724708 a001 10182505537/1268860318*20633239^(1/2) 3645226708724708 a001 7778742049/969323029*20633239^(1/2) 3645226708724708 a001 2971215073/370248451*20633239^(1/2) 3645226708724708 a001 32264490531/4769326*20633239^(1/10) 3645226708724708 a001 567451585/70711162*20633239^(1/2) 3645226708724708 a001 182717648081/16692641*20633239^(1/14) 3645226708724708 a001 165580141/33385282*54018521^(1/2) 3645226708724708 a001 39088169/33385282*969323029^(1/2) 3645226708724708 a001 4976784/29134601*45537549124^(1/2) 3645226708724708 a001 5702887/7881196*7881196^(15/22) 3645226708724708 a001 7778742049/87403803*20633239^(5/14) 3645226708724709 a001 14619165/4769326*141422324^(1/2) 3645226708724709 a001 196452/33391061*141422324^(5/6) 3645226708724709 a001 14930352/228826127*2537720636^(11/18) 3645226708724709 a001 14930352/228826127*312119004989^(1/2) 3645226708724709 a001 14930352/228826127*3461452808002^(11/24) 3645226708724709 a001 14619165/4769326*73681302247^(3/8) 3645226708724709 a001 14930352/228826127*28143753123^(11/20) 3645226708724709 a001 14930352/228826127*1568397607^(5/8) 3645226708724709 a001 53316291173/33385282*141422324^(1/6) 3645226708724709 a001 14930352/228826127*228826127^(11/16) 3645226708724709 a001 133957148/16692641*2537720636^(7/18) 3645226708724709 a001 133957148/16692641*17393796001^(5/14) 3645226708724709 a001 133957148/16692641*312119004989^(7/22) 3645226708724709 a001 133957148/16692641*14662949395604^(5/18) 3645226708724709 a001 133957148/16692641*505019158607^(5/16) 3645226708724709 a001 133957148/16692641*28143753123^(7/20) 3645226708724709 a001 133957148/16692641*599074578^(5/12) 3645226708724709 a001 14930352/1568397607*2537720636^(7/10) 3645226708724709 a001 14930352/1568397607*17393796001^(9/14) 3645226708724709 a001 14930352/1568397607*14662949395604^(1/2) 3645226708724709 a001 14930352/1568397607*505019158607^(9/16) 3645226708724709 a001 14930352/1568397607*192900153618^(7/12) 3645226708724709 a001 14930352/312119004989*2537720636^(17/18) 3645226708724709 a001 14930352/119218851371*2537720636^(9/10) 3645226708724709 a001 4976784/9381251041*2537720636^(5/6) 3645226708724709 a001 1836311903/33385282*2537720636^(3/10) 3645226708724709 a001 1836311903/33385282*14662949395604^(3/14) 3645226708724709 a001 1836311903/33385282*192900153618^(1/4) 3645226708724709 a001 32951280099/33385282*2537720636^(1/6) 3645226708724709 a001 2971215073/33385282*2537720636^(5/18) 3645226708724709 a001 139583862445/33385282*2537720636^(1/10) 3645226708724709 a001 182717648081/16692641*2537720636^(1/18) 3645226708724709 a001 4976784/440719107401*17393796001^(13/14) 3645226708724709 a001 3732588/11384387281*17393796001^(11/14) 3645226708724709 a001 4976784/9381251041*312119004989^(15/22) 3645226708724709 a001 12586269025/33385282*817138163596^(1/6) 3645226708724709 a001 4976784/9381251041*3461452808002^(5/8) 3645226708724709 a001 14930352/312119004989*45537549124^(5/6) 3645226708724709 a001 4976784/9381251041*28143753123^(3/4) 3645226708724709 a001 32264490531/4769326*17393796001^(1/14) 3645226708724709 a001 32951280099/33385282*312119004989^(3/22) 3645226708724709 a001 43133785636/16692641*312119004989^(1/10) 3645226708724709 a001 4976784/3020733700601*312119004989^(9/10) 3645226708724709 a001 7465176/1730726404001*312119004989^(19/22) 3645226708724709 a001 32264490531/4769326*14662949395604^(1/18) 3645226708724709 a001 14930352/505019158607*1322157322203^(3/4) 3645226708724709 a001 14930352/2139295485799*9062201101803^(3/4) 3645226708724709 a001 14930352/312119004989*312119004989^(17/22) 3645226708724709 a001 4976784/440719107401*505019158607^(13/16) 3645226708724709 a001 139583862445/33385282*14662949395604^(1/14) 3645226708724709 a001 4976784/3020733700601*192900153618^(11/12) 3645226708724709 a001 182717648081/16692641*28143753123^(1/20) 3645226708724709 a001 14930352/119218851371*14662949395604^(9/14) 3645226708724709 a001 14930352/119218851371*192900153618^(3/4) 3645226708724709 a001 53316291173/33385282*73681302247^(1/8) 3645226708724709 a001 4976784/440719107401*73681302247^(7/8) 3645226708724709 a001 10182505537/16692641*45537549124^(1/6) 3645226708724709 a001 3732588/11384387281*14662949395604^(11/18) 3645226708724709 a001 3732588/11384387281*505019158607^(11/16) 3645226708724709 a001 14930352/312119004989*28143753123^(17/20) 3645226708724709 a001 7465176/1730726404001*28143753123^(19/20) 3645226708724709 a001 7778742049/33385282*17393796001^(3/14) 3645226708724709 a001 7778742049/33385282*14662949395604^(1/6) 3645226708724709 a001 14930208/103681*4106118243^(1/4) 3645226708724709 a001 2971215073/33385282*312119004989^(5/22) 3645226708724709 a001 2971215073/33385282*3461452808002^(5/24) 3645226708724709 a001 2971215073/33385282*28143753123^(1/4) 3645226708724709 a001 196452/33391061*2537720636^(13/18) 3645226708724709 a001 43133785636/16692641*1568397607^(1/8) 3645226708724709 a001 14930352/6643838879*4106118243^(3/4) 3645226708724709 a001 196452/33391061*312119004989^(13/22) 3645226708724709 a001 196452/33391061*3461452808002^(13/24) 3645226708724709 a001 196452/33391061*73681302247^(5/8) 3645226708724709 a001 196452/33391061*28143753123^(13/20) 3645226708724709 a001 32264490531/4769326*599074578^(1/12) 3645226708724709 a001 3732588/11384387281*1568397607^(7/8) 3645226708724709 a001 7778742049/33385282*599074578^(1/4) 3645226708724709 a001 433494437/33385282*312119004989^(3/10) 3645226708724709 a001 14930352/969323029*5600748293801^(1/2) 3645226708724709 a001 182717648081/16692641*228826127^(1/16) 3645226708724709 a001 433494437/33385282*1568397607^(3/8) 3645226708724709 a001 14930352/1568397607*599074578^(3/4) 3645226708724709 a001 3732588/11384387281*599074578^(11/12) 3645226708724709 a001 32951280099/33385282*228826127^(3/16) 3645226708724709 a001 133957148/16692641*228826127^(7/16) 3645226708724709 a001 2971215073/33385282*228826127^(5/16) 3645226708724709 a001 14930352/370248451*817138163596^(1/2) 3645226708724709 a001 196452/33391061*228826127^(13/16) 3645226708724709 a001 4976784/9381251041*228826127^(15/16) 3645226708724709 a001 12586269025/33385282*87403803^(1/4) 3645226708724709 a001 516002918640/29134601*7881196^(1/22) 3645226708724709 a001 591286729879/33385282*33385282^(1/24) 3645226708724709 a001 20365011074/228826127*20633239^(5/14) 3645226708724709 a001 31622993/16692641*370248451^(1/2) 3645226708724709 a001 3732588/35355581*119218851371^(1/2) 3645226708724709 a001 53316291173/599074578*20633239^(5/14) 3645226708724709 a001 139583862445/1568397607*20633239^(5/14) 3645226708724709 a001 365435296162/4106118243*20633239^(5/14) 3645226708724709 a001 956722026041/10749957122*20633239^(5/14) 3645226708724709 a001 2504730781961/28143753123*20633239^(5/14) 3645226708724709 a001 6557470319842/73681302247*20633239^(5/14) 3645226708724709 a001 10610209857723/119218851371*20633239^(5/14) 3645226708724709 a001 4052739537881/45537549124*20633239^(5/14) 3645226708724709 a001 1548008755920/17393796001*20633239^(5/14) 3645226708724709 a001 591286729879/6643838879*20633239^(5/14) 3645226708724709 a001 225851433717/2537720636*20633239^(5/14) 3645226708724709 a001 86267571272/969323029*20633239^(5/14) 3645226708724709 a001 20365011074/87403803*20633239^(3/10) 3645226708724709 a001 32951280099/370248451*20633239^(5/14) 3645226708724709 a001 433494437/54018521*20633239^(1/2) 3645226708724709 a001 14930352/370248451*87403803^(3/4) 3645226708724709 a001 12586269025/141422324*20633239^(5/14) 3645226708724709 a001 139583862445/33385282*33385282^(1/8) 3645226708724709 a001 4052739537881/228826127*7881196^(1/22) 3645226708724709 a001 3536736619241/199691526*7881196^(1/22) 3645226708724709 a001 6557470319842/370248451*7881196^(1/22) 3645226708724709 a001 53316291173/228826127*20633239^(3/10) 3645226708724709 a001 32951280099/33385282*33385282^(5/24) 3645226708724709 a001 139583862445/599074578*20633239^(3/10) 3645226708724709 a001 365435296162/1568397607*20633239^(3/10) 3645226708724709 a001 956722026041/4106118243*20633239^(3/10) 3645226708724709 a001 2504730781961/10749957122*20633239^(3/10) 3645226708724709 a001 6557470319842/28143753123*20633239^(3/10) 3645226708724709 a001 10610209857723/45537549124*20633239^(3/10) 3645226708724709 a001 4052739537881/17393796001*20633239^(3/10) 3645226708724709 a001 1548008755920/6643838879*20633239^(3/10) 3645226708724709 a001 591286729879/2537720636*20633239^(3/10) 3645226708724709 a001 225851433717/969323029*20633239^(3/10) 3645226708724709 a001 86267571272/370248451*20633239^(3/10) 3645226708724710 a001 2504730781961/141422324*7881196^(1/22) 3645226708724710 a001 63246219/271444*20633239^(3/10) 3645226708724710 a001 7778742049/33385282*33385282^(7/24) 3645226708724710 a001 86267571272/87403803*20633239^(3/14) 3645226708724710 a001 1836311903/33385282*33385282^(3/8) 3645226708724710 a001 24157817/33385282*2537720636^(1/2) 3645226708724710 a001 14930352/54018521*17393796001^(1/2) 3645226708724710 a001 24157817/33385282*312119004989^(9/22) 3645226708724710 a001 14930352/54018521*14662949395604^(7/18) 3645226708724710 a001 24157817/33385282*14662949395604^(5/14) 3645226708724710 a001 14930352/54018521*505019158607^(7/16) 3645226708724710 a001 24157817/33385282*192900153618^(5/12) 3645226708724710 a001 24157817/33385282*28143753123^(9/20) 3645226708724710 a001 14930352/54018521*599074578^(7/12) 3645226708724710 a001 24157817/33385282*228826127^(9/16) 3645226708724710 a001 225851433717/228826127*20633239^(3/14) 3645226708724710 a001 591286729879/599074578*20633239^(3/14) 3645226708724710 a001 1548008755920/1568397607*20633239^(3/14) 3645226708724710 a001 4052739537881/4106118243*20633239^(3/14) 3645226708724710 a001 4807525989/4870846*20633239^(3/14) 3645226708724710 a001 6557470319842/6643838879*20633239^(3/14) 3645226708724710 a001 2504730781961/2537720636*20633239^(3/14) 3645226708724710 a001 956722026041/969323029*20633239^(3/14) 3645226708724710 a001 4807526976/54018521*20633239^(5/14) 3645226708724710 a001 365435296162/370248451*20633239^(3/14) 3645226708724710 a001 433494437/33385282*33385282^(11/24) 3645226708724710 a001 139583862445/141422324*20633239^(3/14) 3645226708724710 a001 14619165/4769326*33385282^(13/24) 3645226708724711 a001 4976784/29134601*33385282^(17/24) 3645226708724711 a001 956722026041/54018521*7881196^(1/22) 3645226708724711 a001 591286729879/87403803*20633239^(1/10) 3645226708724711 a001 12586269025/54018521*20633239^(3/10) 3645226708724711 a001 53316291173/20633239*7881196^(1/6) 3645226708724711 a001 433494437/87403803*54018521^(1/2) 3645226708724711 a001 956722026041/87403803*20633239^(1/14) 3645226708724711 a001 39088169/87403803*6643838879^(1/2) 3645226708724711 a001 1548008755920/228826127*20633239^(1/10) 3645226708724711 a001 4052739537881/599074578*20633239^(1/10) 3645226708724711 a001 1515744265389/224056801*20633239^(1/10) 3645226708724711 a001 6557470319842/969323029*20633239^(1/10) 3645226708724711 a001 2504730781961/370248451*20633239^(1/10) 3645226708724711 a001 9227465/33385282*20633239^(7/10) 3645226708724711 a001 1134903170/228826127*54018521^(1/2) 3645226708724711 a001 2504730781961/228826127*20633239^(1/14) 3645226708724711 a001 956722026041/141422324*20633239^(1/10) 3645226708724711 a001 14930352/370248451*33385282^(19/24) 3645226708724711 a001 2971215073/599074578*54018521^(1/2) 3645226708724711 a001 39088169/6643838879*141422324^(5/6) 3645226708724711 a001 7778742049/1568397607*54018521^(1/2) 3645226708724711 a001 20365011074/4106118243*54018521^(1/2) 3645226708724711 a001 53316291173/10749957122*54018521^(1/2) 3645226708724711 a001 139583862445/28143753123*54018521^(1/2) 3645226708724711 a001 365435296162/73681302247*54018521^(1/2) 3645226708724711 a001 956722026041/192900153618*54018521^(1/2) 3645226708724711 a001 2504730781961/505019158607*54018521^(1/2) 3645226708724711 a001 10610209857723/2139295485799*54018521^(1/2) 3645226708724711 a001 140728068720/28374454999*54018521^(1/2) 3645226708724711 a001 591286729879/119218851371*54018521^(1/2) 3645226708724711 a001 225851433717/45537549124*54018521^(1/2) 3645226708724711 a001 86267571272/17393796001*54018521^(1/2) 3645226708724711 a001 32951280099/6643838879*54018521^(1/2) 3645226708724711 a001 1144206275/230701876*54018521^(1/2) 3645226708724711 a001 3278735159921/299537289*20633239^(1/14) 3645226708724711 a001 4807526976/969323029*54018521^(1/2) 3645226708724711 a001 10610209857723/969323029*20633239^(1/14) 3645226708724711 a001 1836311903/370248451*54018521^(1/2) 3645226708724711 a001 53316291173/54018521*20633239^(3/14) 3645226708724711 a001 4052739537881/370248451*20633239^(1/14) 3645226708724711 a001 267914296/87403803*141422324^(1/2) 3645226708724711 a001 34111385/29134601*969323029^(1/2) 3645226708724711 a001 39088169/228826127*45537549124^(1/2) 3645226708724711 a001 139583862445/87403803*141422324^(1/6) 3645226708724712 a001 39088169/599074578*2537720636^(11/18) 3645226708724712 a001 39088169/599074578*312119004989^(1/2) 3645226708724712 a001 39088169/599074578*3461452808002^(11/24) 3645226708724712 a001 267914296/87403803*73681302247^(3/8) 3645226708724712 a001 39088169/599074578*28143753123^(11/20) 3645226708724712 a001 39088169/599074578*1568397607^(5/8) 3645226708724712 a001 233802911/29134601*2537720636^(7/18) 3645226708724712 a001 233802911/29134601*17393796001^(5/14) 3645226708724712 a001 233802911/29134601*312119004989^(7/22) 3645226708724712 a001 39088169/1568397607*2139295485799^(1/2) 3645226708724712 a001 233802911/29134601*14662949395604^(5/18) 3645226708724712 a001 233802911/29134601*28143753123^(7/20) 3645226708724712 a001 39088169/4106118243*2537720636^(7/10) 3645226708724712 a001 4181/87403804*2537720636^(17/18) 3645226708724712 a001 39088169/312119004989*2537720636^(9/10) 3645226708724712 a001 39088169/73681302247*2537720636^(5/6) 3645226708724712 a001 39088169/6643838879*2537720636^(13/18) 3645226708724712 a001 39088169/4106118243*17393796001^(9/14) 3645226708724712 a001 39088169/4106118243*14662949395604^(1/2) 3645226708724712 a001 1836311903/87403803*9062201101803^(1/4) 3645226708724712 a001 39088169/4106118243*505019158607^(9/16) 3645226708724712 a001 39088169/4106118243*192900153618^(7/12) 3645226708724712 a001 1602508992/29134601*2537720636^(3/10) 3645226708724712 a001 7778742049/87403803*2537720636^(5/18) 3645226708724712 a001 86267571272/87403803*2537720636^(1/6) 3645226708724712 a001 365435296162/87403803*2537720636^(1/10) 3645226708724712 a001 1602508992/29134601*14662949395604^(3/14) 3645226708724712 a001 1602508992/29134601*192900153618^(1/4) 3645226708724712 a001 956722026041/87403803*2537720636^(1/18) 3645226708724712 a001 39088169/3461452808002*17393796001^(13/14) 3645226708724712 a001 39088169/119218851371*17393796001^(11/14) 3645226708724712 a001 4181/87403804*45537549124^(5/6) 3645226708724712 a001 591286729879/87403803*17393796001^(1/14) 3645226708724712 a001 20365011074/87403803*17393796001^(3/14) 3645226708724712 a001 39088169/73681302247*312119004989^(15/22) 3645226708724712 a001 10983760033/29134601*817138163596^(1/6) 3645226708724712 a001 39088169/73681302247*3461452808002^(5/8) 3645226708724712 a001 86267571272/87403803*312119004989^(3/22) 3645226708724712 a001 53316291173/87403803*45537549124^(1/6) 3645226708724712 a001 39088169/23725150497407*312119004989^(9/10) 3645226708724712 a001 39088169/3461452808002*14662949395604^(13/18) 3645226708724712 a001 365435296162/87403803*14662949395604^(1/14) 3645226708724712 a001 365435296162/87403803*192900153618^(1/12) 3645226708724712 a001 39088169/312119004989*14662949395604^(9/14) 3645226708724712 a001 39088169/23725150497407*192900153618^(11/12) 3645226708724712 a001 39088169/312119004989*192900153618^(3/4) 3645226708724712 a001 139583862445/87403803*73681302247^(1/8) 3645226708724712 a001 956722026041/87403803*28143753123^(1/20) 3645226708724712 a001 39088169/119218851371*14662949395604^(11/18) 3645226708724712 a001 39088169/119218851371*505019158607^(11/16) 3645226708724712 a001 39088169/3461452808002*73681302247^(7/8) 3645226708724712 a001 86267571272/87403803*28143753123^(3/20) 3645226708724712 a001 20365011074/87403803*14662949395604^(1/6) 3645226708724712 a001 39088169/73681302247*28143753123^(3/4) 3645226708724712 a001 4181/87403804*28143753123^(17/20) 3645226708724712 a001 39088169/9062201101803*28143753123^(19/20) 3645226708724712 a001 7778742049/87403803*312119004989^(5/22) 3645226708724712 a001 7778742049/87403803*3461452808002^(5/24) 3645226708724712 a001 7778742049/87403803*28143753123^(1/4) 3645226708724712 a001 12586269025/87403803*4106118243^(1/4) 3645226708724712 a001 39088169/6643838879*312119004989^(13/22) 3645226708724712 a001 39088169/6643838879*3461452808002^(13/24) 3645226708724712 a001 2971215073/87403803*1322157322203^(1/4) 3645226708724712 a001 39088169/6643838879*73681302247^(5/8) 3645226708724712 a001 39088169/6643838879*28143753123^(13/20) 3645226708724712 a001 39088169/17393796001*4106118243^(3/4) 3645226708724712 a001 75283811239/29134601*1568397607^(1/8) 3645226708724712 a001 1134903170/87403803*312119004989^(3/10) 3645226708724712 a001 39088169/2537720636*5600748293801^(1/2) 3645226708724712 a001 591286729879/87403803*599074578^(1/12) 3645226708724712 a001 1134903170/87403803*1568397607^(3/8) 3645226708724712 a001 39088169/119218851371*1568397607^(7/8) 3645226708724712 a001 20365011074/87403803*599074578^(1/4) 3645226708724712 a001 233802911/29134601*599074578^(5/12) 3645226708724712 a001 39088169/969323029*817138163596^(1/2) 3645226708724712 a001 956722026041/87403803*228826127^(1/16) 3645226708724712 a001 39088169/4106118243*599074578^(3/4) 3645226708724712 a001 39088169/119218851371*599074578^(11/12) 3645226708724712 a001 86267571272/87403803*228826127^(3/16) 3645226708724712 a001 165580141/87403803*370248451^(1/2) 3645226708724712 a001 7778742049/87403803*228826127^(5/16) 3645226708724712 a001 39088169/370248451*119218851371^(1/2) 3645226708724712 a001 233802911/29134601*228826127^(7/16) 3645226708724712 a001 701408733/141422324*54018521^(1/2) 3645226708724712 a001 39088169/599074578*228826127^(11/16) 3645226708724712 a001 387002188980/35355581*20633239^(1/14) 3645226708724712 a001 39088169/6643838879*228826127^(13/16) 3645226708724712 a001 39088169/73681302247*228826127^(15/16) 3645226708724712 a001 14930352/1568397607*33385282^(7/8) 3645226708724712 a001 10983760033/29134601*87403803^(1/4) 3645226708724712 a001 516002918640/29134601*33385282^(1/24) 3645226708724712 a001 63245986/87403803*2537720636^(1/2) 3645226708724712 a001 39088169/141422324*17393796001^(1/2) 3645226708724712 a001 63245986/87403803*312119004989^(9/22) 3645226708724712 a001 39088169/141422324*14662949395604^(7/18) 3645226708724712 a001 63245986/87403803*14662949395604^(5/14) 3645226708724712 a001 39088169/141422324*505019158607^(7/16) 3645226708724712 a001 63245986/87403803*192900153618^(5/12) 3645226708724712 a001 63245986/87403803*28143753123^(9/20) 3645226708724712 a001 39088169/141422324*599074578^(7/12) 3645226708724712 a001 63245986/87403803*228826127^(9/16) 3645226708724712 a001 102334155/17393796001*141422324^(5/6) 3645226708724712 a001 14930352/20633239*20633239^(9/14) 3645226708724712 a001 701408733/228826127*141422324^(1/2) 3645226708724712 a001 66978574/11384387281*141422324^(5/6) 3645226708724712 a001 701408733/119218851371*141422324^(5/6) 3645226708724712 a001 1836311903/312119004989*141422324^(5/6) 3645226708724712 a001 1201881744/204284540899*141422324^(5/6) 3645226708724712 a001 12586269025/2139295485799*141422324^(5/6) 3645226708724712 a001 32951280099/5600748293801*141422324^(5/6) 3645226708724712 a001 1135099622/192933544679*141422324^(5/6) 3645226708724712 a001 139583862445/23725150497407*141422324^(5/6) 3645226708724712 a001 53316291173/9062201101803*141422324^(5/6) 3645226708724712 a001 10182505537/1730726404001*141422324^(5/6) 3645226708724712 a001 7778742049/1322157322203*141422324^(5/6) 3645226708724712 a001 2971215073/505019158607*141422324^(5/6) 3645226708724712 a001 567451585/96450076809*141422324^(5/6) 3645226708724712 a001 433494437/73681302247*141422324^(5/6) 3645226708724712 a001 102334155/228826127*6643838879^(1/2) 3645226708724712 a001 14930352/6643838879*33385282^(23/24) 3645226708724712 a001 165580141/28143753123*141422324^(5/6) 3645226708724712 a001 39088169/969323029*87403803^(3/4) 3645226708724712 a001 1836311903/599074578*141422324^(1/2) 3645226708724712 a001 365435296162/228826127*141422324^(1/6) 3645226708724712 a001 686789568/224056801*141422324^(1/2) 3645226708724712 a001 12586269025/4106118243*141422324^(1/2) 3645226708724712 a001 32951280099/10749957122*141422324^(1/2) 3645226708724712 a001 86267571272/28143753123*141422324^(1/2) 3645226708724712 a001 32264490531/10525900321*141422324^(1/2) 3645226708724712 a001 591286729879/192900153618*141422324^(1/2) 3645226708724712 a001 1548008755920/505019158607*141422324^(1/2) 3645226708724712 a001 1515744265389/494493258286*141422324^(1/2) 3645226708724712 a001 2504730781961/817138163596*141422324^(1/2) 3645226708724712 a001 956722026041/312119004989*141422324^(1/2) 3645226708724712 a001 365435296162/119218851371*141422324^(1/2) 3645226708724712 a001 139583862445/45537549124*141422324^(1/2) 3645226708724712 a001 53316291173/17393796001*141422324^(1/2) 3645226708724712 a001 20365011074/6643838879*141422324^(1/2) 3645226708724712 a001 7778742049/2537720636*141422324^(1/2) 3645226708724712 a001 2971215073/969323029*141422324^(1/2) 3645226708724712 a001 267914296/228826127*969323029^(1/2) 3645226708724712 a001 34111385/199691526*45537549124^(1/2) 3645226708724712 a001 433494437/228826127*370248451^(1/2) 3645226708724712 a001 14619165/224056801*2537720636^(11/18) 3645226708724712 a001 14619165/224056801*312119004989^(1/2) 3645226708724712 a001 14619165/224056801*3461452808002^(11/24) 3645226708724712 a001 701408733/228826127*73681302247^(3/8) 3645226708724712 a001 14619165/224056801*28143753123^(11/20) 3645226708724712 a001 14619165/224056801*1568397607^(5/8) 3645226708724712 a001 102334155/2139295485799*2537720636^(17/18) 3645226708724712 a001 102334155/817138163596*2537720636^(9/10) 3645226708724712 a001 34111385/64300051206*2537720636^(5/6) 3645226708724712 a001 1836311903/228826127*2537720636^(7/18) 3645226708724712 a001 102334155/10749957122*2537720636^(7/10) 3645226708724712 a001 102334155/17393796001*2537720636^(13/18) 3645226708724712 a001 1836311903/228826127*17393796001^(5/14) 3645226708724712 a001 1836311903/228826127*312119004989^(7/22) 3645226708724712 a001 1836311903/228826127*14662949395604^(5/18) 3645226708724712 a001 1836311903/228826127*505019158607^(5/16) 3645226708724712 a001 1836311903/228826127*28143753123^(7/20) 3645226708724712 a001 12586269025/228826127*2537720636^(3/10) 3645226708724712 a001 20365011074/228826127*2537720636^(5/18) 3645226708724712 a001 225851433717/228826127*2537720636^(1/6) 3645226708724712 a001 956722026041/228826127*2537720636^(1/10) 3645226708724712 a001 102334155/10749957122*17393796001^(9/14) 3645226708724712 a001 102287808/4868641*9062201101803^(1/4) 3645226708724712 a001 102334155/10749957122*505019158607^(9/16) 3645226708724712 a001 102334155/10749957122*192900153618^(7/12) 3645226708724712 a001 2504730781961/228826127*2537720636^(1/18) 3645226708724712 a001 34111385/3020733700601*17393796001^(13/14) 3645226708724712 a001 9303105/28374454999*17393796001^(11/14) 3645226708724712 a001 12586269025/228826127*14662949395604^(3/14) 3645226708724712 a001 12586269025/228826127*192900153618^(1/4) 3645226708724712 a001 53316291173/228826127*17393796001^(3/14) 3645226708724712 a001 102334155/2139295485799*45537549124^(5/6) 3645226708724712 a001 1548008755920/228826127*17393796001^(1/14) 3645226708724712 a001 139583862445/228826127*45537549124^(1/6) 3645226708724712 a001 34111385/64300051206*312119004989^(15/22) 3645226708724712 a001 86267571272/228826127*817138163596^(1/6) 3645226708724712 a001 34111385/64300051206*3461452808002^(5/8) 3645226708724712 a001 102334155/23725150497407*312119004989^(19/22) 3645226708724712 a001 102334155/2139295485799*312119004989^(17/22) 3645226708724712 a001 225851433717/228826127*312119004989^(3/22) 3645226708724712 a001 2504730781961/228826127*312119004989^(1/22) 3645226708724712 a001 102334155/14662949395604*9062201101803^(3/4) 3645226708724712 a001 102334155/2139295485799*3461452808002^(17/24) 3645226708724712 a001 102334155/817138163596*14662949395604^(9/14) 3645226708724712 a001 9303105/28374454999*505019158607^(11/16) 3645226708724712 a001 102334155/817138163596*192900153618^(3/4) 3645226708724712 a001 365435296162/228826127*73681302247^(1/8) 3645226708724712 a001 2504730781961/228826127*28143753123^(1/20) 3645226708724712 a001 53316291173/228826127*14662949395604^(1/6) 3645226708724712 a001 34111385/3020733700601*73681302247^(7/8) 3645226708724712 a001 225851433717/228826127*28143753123^(3/20) 3645226708724712 a001 20365011074/228826127*312119004989^(5/22) 3645226708724712 a001 20365011074/228826127*28143753123^(1/4) 3645226708724712 a001 34111385/64300051206*28143753123^(3/4) 3645226708724712 a001 102334155/2139295485799*28143753123^(17/20) 3645226708724712 a001 102334155/23725150497407*28143753123^(19/20) 3645226708724712 a001 102334155/17393796001*312119004989^(13/22) 3645226708724712 a001 102334155/17393796001*3461452808002^(13/24) 3645226708724712 a001 102334155/17393796001*73681302247^(5/8) 3645226708724712 a001 102334155/17393796001*28143753123^(13/20) 3645226708724712 a001 32951280099/228826127*4106118243^(1/4) 3645226708724712 a001 2971215073/228826127*312119004989^(3/10) 3645226708724712 a001 102334155/6643838879*5600748293801^(1/2) 3645226708724712 a001 102334155/45537549124*4106118243^(3/4) 3645226708724712 a001 591286729879/228826127*1568397607^(1/8) 3645226708724712 a001 9303105/230701876*817138163596^(1/2) 3645226708724712 a001 2971215073/228826127*1568397607^(3/8) 3645226708724712 a001 1548008755920/228826127*599074578^(1/12) 3645226708724712 a001 365435296162/87403803*33385282^(1/8) 3645226708724712 a001 9303105/28374454999*1568397607^(7/8) 3645226708724712 a001 53316291173/228826127*599074578^(1/4) 3645226708724712 a001 102334155/969323029*119218851371^(1/2) 3645226708724712 a001 1836311903/228826127*599074578^(5/12) 3645226708724712 a001 2504730781961/228826127*228826127^(1/16) 3645226708724712 a001 1134903170/370248451*141422324^(1/2) 3645226708724712 a001 102334155/10749957122*599074578^(3/4) 3645226708724712 a001 9303105/28374454999*599074578^(11/12) 3645226708724712 a001 225851433717/228826127*228826127^(3/16) 3645226708724712 a001 20365011074/228826127*228826127^(5/16) 3645226708724712 a001 165580141/228826127*2537720636^(1/2) 3645226708724712 a001 102334155/370248451*17393796001^(1/2) 3645226708724712 a001 102334155/370248451*14662949395604^(7/18) 3645226708724712 a001 165580141/228826127*14662949395604^(5/14) 3645226708724712 a001 102334155/370248451*505019158607^(7/16) 3645226708724712 a001 165580141/228826127*192900153618^(5/12) 3645226708724712 a001 165580141/228826127*28143753123^(9/20) 3645226708724712 a001 956722026041/599074578*141422324^(1/6) 3645226708724712 a001 1836311903/228826127*228826127^(7/16) 3645226708724712 a001 102334155/370248451*599074578^(7/12) 3645226708724712 a001 2504730781961/1568397607*141422324^(1/6) 3645226708724712 a001 6557470319842/4106118243*141422324^(1/6) 3645226708724712 a001 10610209857723/6643838879*141422324^(1/6) 3645226708724712 a001 4052739537881/2537720636*141422324^(1/6) 3645226708724712 a001 1548008755920/969323029*141422324^(1/6) 3645226708724712 a001 14619165/224056801*228826127^(11/16) 3645226708724712 a001 567451585/299537289*370248451^(1/2) 3645226708724712 a001 133957148/299537289*6643838879^(1/2) 3645226708724712 a001 2971215073/1568397607*370248451^(1/2) 3645226708724712 a001 233802911/199691526*969323029^(1/2) 3645226708724712 a001 7778742049/4106118243*370248451^(1/2) 3645226708724712 a001 10182505537/5374978561*370248451^(1/2) 3645226708724712 a001 53316291173/28143753123*370248451^(1/2) 3645226708724712 a001 139583862445/73681302247*370248451^(1/2) 3645226708724712 a001 182717648081/96450076809*370248451^(1/2) 3645226708724712 a001 956722026041/505019158607*370248451^(1/2) 3645226708724712 a001 10610209857723/5600748293801*370248451^(1/2) 3645226708724712 a001 591286729879/312119004989*370248451^(1/2) 3645226708724712 a001 225851433717/119218851371*370248451^(1/2) 3645226708724712 a001 21566892818/11384387281*370248451^(1/2) 3645226708724712 a001 32951280099/17393796001*370248451^(1/2) 3645226708724712 a001 12586269025/6643838879*370248451^(1/2) 3645226708724712 a001 102334155/17393796001*228826127^(13/16) 3645226708724712 a001 1201881744/634430159*370248451^(1/2) 3645226708724712 a001 267914296/1568397607*45537549124^(1/2) 3645226708724712 a001 267914296/4106118243*2537720636^(11/18) 3645226708724712 a001 267914296/5600748293801*2537720636^(17/18) 3645226708724712 a001 267914296/2139295485799*2537720636^(9/10) 3645226708724712 a001 267914296/505019158607*2537720636^(5/6) 3645226708724712 a001 66978574/11384387281*2537720636^(13/18) 3645226708724712 a001 267914296/28143753123*2537720636^(7/10) 3645226708724712 a001 267084832/33281921*2537720636^(7/18) 3645226708724712 a001 267914296/4106118243*312119004989^(1/2) 3645226708724712 a001 267914296/4106118243*3461452808002^(11/24) 3645226708724712 a001 1836311903/599074578*73681302247^(3/8) 3645226708724712 a001 267914296/4106118243*28143753123^(11/20) 3645226708724712 a001 10983760033/199691526*2537720636^(3/10) 3645226708724712 a001 53316291173/599074578*2537720636^(5/18) 3645226708724712 a001 591286729879/599074578*2537720636^(1/6) 3645226708724712 a001 2504730781961/599074578*2537720636^(1/10) 3645226708724712 a001 267084832/33281921*17393796001^(5/14) 3645226708724712 a001 267084832/33281921*312119004989^(7/22) 3645226708724712 a001 133957148/5374978561*2139295485799^(1/2) 3645226708724712 a001 3278735159921/299537289*2537720636^(1/18) 3645226708724712 a001 267084832/33281921*28143753123^(7/20) 3645226708724712 a001 267914296/28143753123*17393796001^(9/14) 3645226708724712 a001 267914296/23725150497407*17393796001^(13/14) 3645226708724712 a001 66978574/204284540899*17393796001^(11/14) 3645226708724712 a001 12586269025/599074578*9062201101803^(1/4) 3645226708724712 a001 267914296/28143753123*505019158607^(9/16) 3645226708724712 a001 267914296/28143753123*192900153618^(7/12) 3645226708724712 a001 139583862445/599074578*17393796001^(3/14) 3645226708724712 a001 267914296/5600748293801*45537549124^(5/6) 3645226708724712 a001 4052739537881/599074578*17393796001^(1/14) 3645226708724712 a001 10983760033/199691526*14662949395604^(3/14) 3645226708724712 a001 10983760033/199691526*192900153618^(1/4) 3645226708724712 a001 182717648081/299537289*45537549124^(1/6) 3645226708724712 a001 267914296/505019158607*312119004989^(15/22) 3645226708724712 a001 267914296/5600748293801*312119004989^(17/22) 3645226708724712 a001 267913919/710646*817138163596^(1/6) 3645226708724712 a001 267914296/505019158607*3461452808002^(5/8) 3645226708724712 a001 2504730781961/599074578*14662949395604^(1/14) 3645226708724712 a001 2504730781961/599074578*192900153618^(1/12) 3645226708724712 a001 267914296/23725150497407*505019158607^(13/16) 3645226708724712 a001 139583862445/599074578*14662949395604^(1/6) 3645226708724712 a001 267914296/2139295485799*192900153618^(3/4) 3645226708724712 a001 956722026041/599074578*73681302247^(1/8) 3645226708724712 a001 3278735159921/299537289*28143753123^(1/20) 3645226708724712 a001 53316291173/599074578*312119004989^(5/22) 3645226708724712 a001 53316291173/599074578*3461452808002^(5/24) 3645226708724712 a001 267914296/23725150497407*73681302247^(7/8) 3645226708724712 a001 591286729879/599074578*28143753123^(3/20) 3645226708724712 a001 53316291173/599074578*28143753123^(1/4) 3645226708724712 a001 66978574/11384387281*312119004989^(13/22) 3645226708724712 a001 66978574/11384387281*3461452808002^(13/24) 3645226708724712 a001 10182505537/299537289*1322157322203^(1/4) 3645226708724712 a001 66978574/11384387281*73681302247^(5/8) 3645226708724712 a001 267914296/505019158607*28143753123^(3/4) 3645226708724712 a001 267914296/5600748293801*28143753123^(17/20) 3645226708724712 a001 66978574/11384387281*28143753123^(13/20) 3645226708724712 a001 7778742049/599074578*312119004989^(3/10) 3645226708724712 a001 43133785636/299537289*4106118243^(1/4) 3645226708724712 a001 267914296/6643838879*817138163596^(1/2) 3645226708724712 a001 267914296/119218851371*4106118243^(3/4) 3645226708724712 a001 86000486440/33281921*1568397607^(1/8) 3645226708724712 a001 1836311903/969323029*370248451^(1/2) 3645226708724712 a001 66978574/634430159*119218851371^(1/2) 3645226708724712 a001 7778742049/599074578*1568397607^(3/8) 3645226708724712 a001 267914296/4106118243*1568397607^(5/8) 3645226708724712 a001 4052739537881/599074578*599074578^(1/12) 3645226708724712 a001 66978574/204284540899*1568397607^(7/8) 3645226708724712 a001 139583862445/599074578*599074578^(1/4) 3645226708724712 a001 433494437/599074578*2537720636^(1/2) 3645226708724712 a001 267914296/969323029*17393796001^(1/2) 3645226708724712 a001 267914296/969323029*14662949395604^(7/18) 3645226708724712 a001 433494437/599074578*14662949395604^(5/14) 3645226708724712 a001 267914296/969323029*505019158607^(7/16) 3645226708724712 a001 433494437/599074578*192900153618^(5/12) 3645226708724712 a001 433494437/599074578*28143753123^(9/20) 3645226708724712 a001 267084832/33281921*599074578^(5/12) 3645226708724712 a001 3278735159921/299537289*228826127^(1/16) 3645226708724712 a001 34111385/64300051206*228826127^(15/16) 3645226708724712 a001 165580141/228826127*228826127^(9/16) 3645226708724712 a001 591286729879/370248451*141422324^(1/6) 3645226708724712 a001 1836311903/1568397607*969323029^(1/2) 3645226708724712 a001 701408733/1568397607*6643838879^(1/2) 3645226708724712 a001 267914296/28143753123*599074578^(3/4) 3645226708724712 a001 1602508992/1368706081*969323029^(1/2) 3645226708724712 a001 701408733/14662949395604*2537720636^(17/18) 3645226708724712 a001 701408733/5600748293801*2537720636^(9/10) 3645226708724712 a001 12586269025/10749957122*969323029^(1/2) 3645226708724712 a001 233802911/440719107401*2537720636^(5/6) 3645226708724712 a001 10983760033/9381251041*969323029^(1/2) 3645226708724712 a001 86267571272/73681302247*969323029^(1/2) 3645226708724712 a001 75283811239/64300051206*969323029^(1/2) 3645226708724712 a001 2504730781961/2139295485799*969323029^(1/2) 3645226708724712 a001 365435296162/312119004989*969323029^(1/2) 3645226708724712 a001 139583862445/119218851371*969323029^(1/2) 3645226708724712 a001 53316291173/45537549124*969323029^(1/2) 3645226708724712 a001 20365011074/17393796001*969323029^(1/2) 3645226708724712 a001 701408733/119218851371*2537720636^(13/18) 3645226708724712 a001 701408733/73681302247*2537720636^(7/10) 3645226708724712 a001 701408733/10749957122*2537720636^(11/18) 3645226708724712 a001 7778742049/6643838879*969323029^(1/2) 3645226708724712 a001 12586269025/1568397607*2537720636^(7/18) 3645226708724712 a001 233802911/1368706081*45537549124^(1/2) 3645226708724712 a001 86267571272/1568397607*2537720636^(3/10) 3645226708724712 a001 139583862445/1568397607*2537720636^(5/18) 3645226708724712 a001 1548008755920/1568397607*2537720636^(1/6) 3645226708724712 a001 6557470319842/1568397607*2537720636^(1/10) 3645226708724712 a001 701408733/10749957122*312119004989^(1/2) 3645226708724712 a001 701408733/10749957122*3461452808002^(11/24) 3645226708724712 a001 686789568/224056801*73681302247^(3/8) 3645226708724712 a001 701408733/10749957122*28143753123^(11/20) 3645226708724712 a001 701408733/2139295485799*17393796001^(11/14) 3645226708724712 a001 12586269025/1568397607*17393796001^(5/14) 3645226708724712 a001 701408733/73681302247*17393796001^(9/14) 3645226708724712 a001 12586269025/1568397607*312119004989^(7/22) 3645226708724712 a001 233802911/9381251041*2139295485799^(1/2) 3645226708724712 a001 12586269025/1568397607*14662949395604^(5/18) 3645226708724712 a001 12586269025/1568397607*28143753123^(7/20) 3645226708724712 a001 365435296162/1568397607*17393796001^(3/14) 3645226708724712 a001 701408733/14662949395604*45537549124^(5/6) 3645226708724712 a001 1515744265389/224056801*17393796001^(1/14) 3645226708724712 a001 701408733/73681302247*14662949395604^(1/2) 3645226708724712 a001 32951280099/1568397607*9062201101803^(1/4) 3645226708724712 a001 701408733/73681302247*505019158607^(9/16) 3645226708724712 a001 701408733/73681302247*192900153618^(7/12) 3645226708724712 a001 956722026041/1568397607*45537549124^(1/6) 3645226708724712 a001 86267571272/1568397607*14662949395604^(3/14) 3645226708724712 a001 86267571272/1568397607*192900153618^(1/4) 3645226708724712 a001 233802911/440719107401*312119004989^(15/22) 3645226708724712 a001 4052739537881/1568397607*312119004989^(1/10) 3645226708724712 a001 1515744265389/224056801*14662949395604^(1/18) 3645226708724712 a001 701408733/2139295485799*14662949395604^(11/18) 3645226708724712 a001 701408733/2139295485799*505019158607^(11/16) 3645226708724712 a001 139583862445/1568397607*312119004989^(5/22) 3645226708724712 a001 139583862445/1568397607*3461452808002^(5/24) 3645226708724712 a001 2504730781961/1568397607*73681302247^(1/8) 3645226708724712 a001 701408733/119218851371*312119004989^(13/22) 3645226708724712 a001 701408733/119218851371*3461452808002^(13/24) 3645226708724712 a001 53316291173/1568397607*1322157322203^(1/4) 3645226708724712 a001 701408733/119218851371*73681302247^(5/8) 3645226708724712 a001 1548008755920/1568397607*28143753123^(3/20) 3645226708724712 a001 139583862445/1568397607*28143753123^(1/4) 3645226708724712 a001 20365011074/1568397607*312119004989^(3/10) 3645226708724712 a001 701408733/45537549124*5600748293801^(1/2) 3645226708724712 a001 701408733/119218851371*28143753123^(13/20) 3645226708724712 a001 233802911/440719107401*28143753123^(3/4) 3645226708724712 a001 701408733/14662949395604*28143753123^(17/20) 3645226708724712 a001 701408733/17393796001*817138163596^(1/2) 3645226708724712 a001 32264490531/224056801*4106118243^(1/4) 3645226708724712 a001 701408733/6643838879*119218851371^(1/2) 3645226708724712 a001 3524667/1568437211*4106118243^(3/4) 3645226708724712 a001 4052739537881/1568397607*1568397607^(1/8) 3645226708724712 a001 2971215073/2537720636*969323029^(1/2) 3645226708724712 a001 1134903170/1568397607*2537720636^(1/2) 3645226708724712 a001 20365011074/1568397607*1568397607^(3/8) 3645226708724712 a001 701408733/2537720636*17393796001^(1/2) 3645226708724712 a001 1134903170/1568397607*312119004989^(9/22) 3645226708724712 a001 701408733/2537720636*14662949395604^(7/18) 3645226708724712 a001 1134903170/1568397607*14662949395604^(5/14) 3645226708724712 a001 701408733/2537720636*505019158607^(7/16) 3645226708724712 a001 1134903170/1568397607*192900153618^(5/12) 3645226708724712 a001 1134903170/1568397607*28143753123^(9/20) 3645226708724712 a001 66978574/204284540899*599074578^(11/12) 3645226708724712 a001 1836311903/14662949395604*2537720636^(9/10) 3645226708724712 a001 1836311903/3461452808002*2537720636^(5/6) 3645226708724712 a001 1515744265389/224056801*599074578^(1/12) 3645226708724712 a001 1836311903/312119004989*2537720636^(13/18) 3645226708724712 a001 1836311903/192900153618*2537720636^(7/10) 3645226708724712 a001 701408733/10749957122*1568397607^(5/8) 3645226708724712 a001 1836311903/28143753123*2537720636^(11/18) 3645226708724712 a001 1602508992/3020733700601*2537720636^(5/6) 3645226708724712 a001 12586269025/23725150497407*2537720636^(5/6) 3645226708724712 a001 1836311903/4106118243*6643838879^(1/2) 3645226708724712 a001 7778742049/14662949395604*2537720636^(5/6) 3645226708724712 a001 1201881744/204284540899*2537720636^(13/18) 3645226708724712 a001 10983760033/1368706081*2537720636^(7/18) 3645226708724712 a001 102287808/10745088481*2537720636^(7/10) 3645226708724712 a001 2971215073/23725150497407*2537720636^(9/10) 3645226708724712 a001 2971215073/4106118243*2537720636^(1/2) 3645226708724712 a001 12586269025/2139295485799*2537720636^(13/18) 3645226708724712 a001 32951280099/5600748293801*2537720636^(13/18) 3645226708724712 a001 1135099622/192933544679*2537720636^(13/18) 3645226708724712 a001 139583862445/23725150497407*2537720636^(13/18) 3645226708724712 a001 53316291173/9062201101803*2537720636^(13/18) 3645226708724712 a001 10182505537/1730726404001*2537720636^(13/18) 3645226708724712 a001 12586269025/1322157322203*2537720636^(7/10) 3645226708724712 a001 32951280099/3461452808002*2537720636^(7/10) 3645226708724712 a001 7778742049/1322157322203*2537720636^(13/18) 3645226708724712 a001 86267571272/9062201101803*2537720636^(7/10) 3645226708724712 a001 225851433717/23725150497407*2537720636^(7/10) 3645226708724712 a001 139583862445/14662949395604*2537720636^(7/10) 3645226708724712 a001 53316291173/5600748293801*2537720636^(7/10) 3645226708724712 a001 20365011074/2139295485799*2537720636^(7/10) 3645226708724712 a001 2971215073/5600748293801*2537720636^(5/6) 3645226708724712 a001 75283811239/1368706081*2537720636^(3/10) 3645226708724712 a001 7778742049/817138163596*2537720636^(7/10) 3645226708724712 a001 686789568/10525900321*2537720636^(11/18) 3645226708724712 a001 365435296162/4106118243*2537720636^(5/18) 3645226708724712 a001 267914296/969323029*599074578^(7/12) 3645226708724712 a001 12586269025/192900153618*2537720636^(11/18) 3645226708724712 a001 32951280099/505019158607*2537720636^(11/18) 3645226708724712 a001 86267571272/1322157322203*2537720636^(11/18) 3645226708724712 a001 32264490531/494493258286*2537720636^(11/18) 3645226708724712 a001 591286729879/9062201101803*2537720636^(11/18) 3645226708724712 a001 139583862445/2139295485799*2537720636^(11/18) 3645226708724712 a001 53316291173/817138163596*2537720636^(11/18) 3645226708724712 a001 20365011074/312119004989*2537720636^(11/18) 3645226708724712 a001 7778742049/119218851371*2537720636^(11/18) 3645226708724712 a001 2971215073/505019158607*2537720636^(13/18) 3645226708724712 a001 2971215073/312119004989*2537720636^(7/10) 3645226708724712 a001 4052739537881/4106118243*2537720636^(1/6) 3645226708724712 a001 7778742049/10749957122*2537720636^(1/2) 3645226708724712 a001 20365011074/28143753123*2537720636^(1/2) 3645226708724712 a001 53316291173/73681302247*2537720636^(1/2) 3645226708724712 a001 139583862445/192900153618*2537720636^(1/2) 3645226708724712 a001 10610209857723/14662949395604*2537720636^(1/2) 3645226708724712 a001 591286729879/817138163596*2537720636^(1/2) 3645226708724712 a001 225851433717/312119004989*2537720636^(1/2) 3645226708724712 a001 86267571272/119218851371*2537720636^(1/2) 3645226708724712 a001 32951280099/45537549124*2537720636^(1/2) 3645226708724712 a001 12586269025/17393796001*2537720636^(1/2) 3645226708724712 a001 2971215073/45537549124*2537720636^(11/18) 3645226708724712 a001 43133785636/5374978561*2537720636^(7/18) 3645226708724712 a001 1836311903/10749957122*45537549124^(1/2) 3645226708724712 a001 4807526976/6643838879*2537720636^(1/2) 3645226708724712 a001 1836311903/5600748293801*17393796001^(11/14) 3645226708724712 a001 75283811239/9381251041*2537720636^(7/18) 3645226708724712 a001 1836311903/192900153618*17393796001^(9/14) 3645226708724712 a001 10983760033/1368706081*17393796001^(5/14) 3645226708724712 a001 1836311903/28143753123*312119004989^(1/2) 3645226708724712 a001 1836311903/28143753123*3461452808002^(11/24) 3645226708724712 a001 591286729879/73681302247*2537720636^(7/18) 3645226708724712 a001 12586269025/4106118243*73681302247^(3/8) 3645226708724712 a001 86000486440/10716675201*2537720636^(7/18) 3645226708724712 a001 4052739537881/505019158607*2537720636^(7/18) 3645226708724712 a001 3278735159921/408569081798*2537720636^(7/18) 3645226708724712 a001 2504730781961/312119004989*2537720636^(7/18) 3645226708724712 a001 956722026041/119218851371*2537720636^(7/18) 3645226708724712 a001 956722026041/4106118243*17393796001^(3/14) 3645226708724712 a001 182717648081/22768774562*2537720636^(7/18) 3645226708724712 a001 1836311903/28143753123*28143753123^(11/20) 3645226708724712 a001 10983760033/1368706081*312119004989^(7/22) 3645226708724712 a001 10983760033/1368706081*14662949395604^(5/18) 3645226708724712 a001 10983760033/1368706081*505019158607^(5/16) 3645226708724712 a001 2504730781961/4106118243*45537549124^(1/6) 3645226708724712 a001 1836311903/192900153618*14662949395604^(1/2) 3645226708724712 a001 1836311903/192900153618*505019158607^(9/16) 3645226708724712 a001 1836311903/192900153618*192900153618^(7/12) 3645226708724712 a001 1836311903/3461452808002*312119004989^(15/22) 3645226708724712 a001 3536736619241/1368706081*312119004989^(1/10) 3645226708724712 a001 1836311903/312119004989*312119004989^(13/22) 3645226708724712 a001 1836311903/312119004989*3461452808002^(13/24) 3645226708724712 a001 139583862445/4106118243*1322157322203^(1/4) 3645226708724712 a001 1836311903/14662949395604*192900153618^(3/4) 3645226708724712 a001 6557470319842/4106118243*73681302247^(1/8) 3645226708724712 a001 53316291173/4106118243*312119004989^(3/10) 3645226708724712 a001 1836311903/119218851371*5600748293801^(1/2) 3645226708724712 a001 1836311903/312119004989*73681302247^(5/8) 3645226708724712 a001 4052739537881/4106118243*28143753123^(3/20) 3645226708724712 a001 10983760033/1368706081*28143753123^(7/20) 3645226708724712 a001 365435296162/4106118243*28143753123^(1/4) 3645226708724712 a001 1836311903/45537549124*817138163596^(1/2) 3645226708724712 a001 1836311903/312119004989*28143753123^(13/20) 3645226708724712 a001 1836311903/3461452808002*28143753123^(3/4) 3645226708724712 a001 139583862445/17393796001*2537720636^(7/18) 3645226708724712 a001 1836311903/17393796001*119218851371^(1/2) 3645226708724712 a001 591286729879/10749957122*2537720636^(3/10) 3645226708724712 a001 956722026041/10749957122*2537720636^(5/18) 3645226708724712 a001 701408733/2139295485799*1568397607^(7/8) 3645226708724712 a001 12585437040/228811001*2537720636^(3/10) 3645226708724712 a001 4052739537881/73681302247*2537720636^(3/10) 3645226708724712 a001 3536736619241/64300051206*2537720636^(3/10) 3645226708724712 a001 6557470319842/119218851371*2537720636^(3/10) 3645226708724712 a001 2504730781961/45537549124*2537720636^(3/10) 3645226708724712 a001 591286729879/4106118243*4106118243^(1/4) 3645226708724712 a001 2504730781961/28143753123*2537720636^(5/18) 3645226708724712 a001 6557470319842/73681302247*2537720636^(5/18) 3645226708724712 a001 956722026041/17393796001*2537720636^(3/10) 3645226708724712 a001 10610209857723/119218851371*2537720636^(5/18) 3645226708724712 a001 4052739537881/45537549124*2537720636^(5/18) 3645226708724712 a001 1548008755920/17393796001*2537720636^(5/18) 3645226708724712 a001 1836311903/6643838879*17393796001^(1/2) 3645226708724712 a001 53316291173/6643838879*2537720636^(7/18) 3645226708724712 a001 2971215073/4106118243*312119004989^(9/22) 3645226708724712 a001 1836311903/6643838879*14662949395604^(7/18) 3645226708724712 a001 2971215073/4106118243*14662949395604^(5/14) 3645226708724712 a001 1836311903/6643838879*505019158607^(7/16) 3645226708724712 a001 2971215073/4106118243*192900153618^(5/12) 3645226708724712 a001 2971215073/4106118243*28143753123^(9/20) 3645226708724712 a001 4807525989/4870846*2537720636^(1/6) 3645226708724712 a001 2403763488/5374978561*6643838879^(1/2) 3645226708724712 a001 365435296162/6643838879*2537720636^(3/10) 3645226708724712 a001 591286729879/6643838879*2537720636^(5/18) 3645226708724712 a001 1836311903/817138163596*4106118243^(3/4) 3645226708724712 a001 12586269025/28143753123*6643838879^(1/2) 3645226708724712 a001 32951280099/73681302247*6643838879^(1/2) 3645226708724712 a001 43133785636/96450076809*6643838879^(1/2) 3645226708724712 a001 225851433717/505019158607*6643838879^(1/2) 3645226708724712 a001 591286729879/1322157322203*6643838879^(1/2) 3645226708724712 a001 10610209857723/23725150497407*6643838879^(1/2) 3645226708724712 a001 182717648081/408569081798*6643838879^(1/2) 3645226708724712 a001 139583862445/312119004989*6643838879^(1/2) 3645226708724712 a001 1201881744/3665737348901*17393796001^(11/14) 3645226708724712 a001 53316291173/119218851371*6643838879^(1/2) 3645226708724712 a001 102287808/10745088481*17393796001^(9/14) 3645226708724712 a001 10182505537/22768774562*6643838879^(1/2) 3645226708724712 a001 1602508992/9381251041*45537549124^(1/2) 3645226708724712 a001 43133785636/5374978561*17393796001^(5/14) 3645226708724712 a001 2504730781961/10749957122*17393796001^(3/14) 3645226708724712 a001 686789568/10525900321*312119004989^(1/2) 3645226708724712 a001 686789568/10525900321*3461452808002^(11/24) 3645226708724712 a001 32951280099/10749957122*73681302247^(3/8) 3645226708724712 a001 3278735159921/5374978561*45537549124^(1/6) 3645226708724712 a001 43133785636/5374978561*312119004989^(7/22) 3645226708724712 a001 267084832/10716675201*2139295485799^(1/2) 3645226708724712 a001 43133785636/5374978561*14662949395604^(5/18) 3645226708724712 a001 1602508992/3020733700601*312119004989^(15/22) 3645226708724712 a001 102287808/10745088481*14662949395604^(1/2) 3645226708724712 a001 102287808/10745088481*505019158607^(9/16) 3645226708724712 a001 1201881744/204284540899*3461452808002^(13/24) 3645226708724712 a001 1201881744/3665737348901*505019158607^(11/16) 3645226708724712 a001 139583862445/10749957122*312119004989^(3/10) 3645226708724712 a001 102287808/10745088481*192900153618^(7/12) 3645226708724712 a001 4807526976/119218851371*817138163596^(1/2) 3645226708724712 a001 1201881744/204284540899*73681302247^(5/8) 3645226708724712 a001 3536736619241/1368706081*1568397607^(1/8) 3645226708724712 a001 4807525989/4870846*28143753123^(3/20) 3645226708724712 a001 956722026041/10749957122*28143753123^(1/4) 3645226708724712 a001 43133785636/5374978561*28143753123^(7/20) 3645226708724712 a001 1201881744/11384387281*119218851371^(1/2) 3645226708724712 a001 686789568/10525900321*28143753123^(11/20) 3645226708724712 a001 1201881744/204284540899*28143753123^(13/20) 3645226708724712 a001 1602508992/3020733700601*28143753123^(3/4) 3645226708724712 a001 4807526976/17393796001*17393796001^(1/2) 3645226708724712 a001 7778742049/10749957122*312119004989^(9/22) 3645226708724712 a001 4807526976/17393796001*14662949395604^(7/18) 3645226708724712 a001 7778742049/10749957122*14662949395604^(5/14) 3645226708724712 a001 4807526976/17393796001*505019158607^(7/16) 3645226708724712 a001 7778742049/10749957122*192900153618^(5/12) 3645226708724712 a001 7778742049/10749957122*28143753123^(9/20) 3645226708724712 a001 7778742049/17393796001*6643838879^(1/2) 3645226708724712 a001 12586269025/1322157322203*17393796001^(9/14) 3645226708724712 a001 6557470319842/6643838879*2537720636^(1/6) 3645226708724712 a001 75283811239/9381251041*17393796001^(5/14) 3645226708724712 a001 12586269025/45537549124*17393796001^(1/2) 3645226708724712 a001 32951280099/3461452808002*17393796001^(9/14) 3645226708724712 a001 86267571272/9062201101803*17393796001^(9/14) 3645226708724712 a001 225851433717/23725150497407*17393796001^(9/14) 3645226708724712 a001 139583862445/14662949395604*17393796001^(9/14) 3645226708724712 a001 53316291173/5600748293801*17393796001^(9/14) 3645226708724712 a001 6557470319842/28143753123*17393796001^(3/14) 3645226708724712 a001 32951280099/119218851371*17393796001^(1/2) 3645226708724712 a001 12586269025/73681302247*45537549124^(1/2) 3645226708724712 a001 86267571272/312119004989*17393796001^(1/2) 3645226708724712 a001 225851433717/817138163596*17393796001^(1/2) 3645226708724712 a001 1548008755920/5600748293801*17393796001^(1/2) 3645226708724712 a001 139583862445/505019158607*17393796001^(1/2) 3645226708724712 a001 20365011074/2139295485799*17393796001^(9/14) 3645226708724712 a001 53316291173/192900153618*17393796001^(1/2) 3645226708724712 a001 591286729879/73681302247*17393796001^(5/14) 3645226708724712 a001 20365011074/73681302247*17393796001^(1/2) 3645226708724712 a001 12586269025/192900153618*312119004989^(1/2) 3645226708724712 a001 12586269025/192900153618*3461452808002^(11/24) 3645226708724712 a001 12586269025/2139295485799*312119004989^(13/22) 3645226708724712 a001 12586269025/505019158607*2139295485799^(1/2) 3645226708724712 a001 12586269025/1322157322203*14662949395604^(1/2) 3645226708724712 a001 12585437040/228811001*14662949395604^(3/14) 3645226708724712 a001 12586269025/1322157322203*505019158607^(9/16) 3645226708724712 a001 12585437040/228811001*192900153618^(1/4) 3645226708724712 a001 1144206275/28374454999*817138163596^(1/2) 3645226708724712 a001 12586269025/1322157322203*192900153618^(7/12) 3645226708724712 a001 12586269025/119218851371*119218851371^(1/2) 3645226708724712 a001 86267571272/28143753123*73681302247^(3/8) 3645226708724712 a001 86000486440/10716675201*17393796001^(5/14) 3645226708724712 a001 4052739537881/505019158607*17393796001^(5/14) 3645226708724712 a001 3536736619241/440719107401*17393796001^(5/14) 3645226708724712 a001 3278735159921/408569081798*17393796001^(5/14) 3645226708724712 a001 2504730781961/312119004989*17393796001^(5/14) 3645226708724712 a001 12586269025/2139295485799*73681302247^(5/8) 3645226708724712 a001 956722026041/119218851371*17393796001^(5/14) 3645226708724712 a001 2504730781961/28143753123*28143753123^(1/4) 3645226708724712 a001 75283811239/9381251041*28143753123^(7/20) 3645226708724712 a001 20365011074/28143753123*312119004989^(9/22) 3645226708724712 a001 12586269025/45537549124*14662949395604^(7/18) 3645226708724712 a001 12586269025/45537549124*505019158607^(7/16) 3645226708724712 a001 20365011074/28143753123*192900153618^(5/12) 3645226708724712 a001 182717648081/22768774562*17393796001^(5/14) 3645226708724712 a001 12586269025/192900153618*28143753123^(11/20) 3645226708724712 a001 10983760033/64300051206*45537549124^(1/2) 3645226708724712 a001 12586269025/2139295485799*28143753123^(13/20) 3645226708724712 a001 12586269025/23725150497407*28143753123^(3/4) 3645226708724712 a001 86267571272/505019158607*45537549124^(1/2) 3645226708724712 a001 75283811239/440719107401*45537549124^(1/2) 3645226708724712 a001 2504730781961/14662949395604*45537549124^(1/2) 3645226708724712 a001 139583862445/817138163596*45537549124^(1/2) 3645226708724712 a001 10610209857723/45537549124*17393796001^(3/14) 3645226708724712 a001 20365011074/28143753123*28143753123^(9/20) 3645226708724712 a001 32951280099/312119004989*119218851371^(1/2) 3645226708724712 a001 32951280099/505019158607*312119004989^(1/2) 3645226708724712 a001 32951280099/5600748293801*312119004989^(13/22) 3645226708724712 a001 32951280099/505019158607*3461452808002^(11/24) 3645226708724712 a001 10983760033/440719107401*2139295485799^(1/2) 3645226708724712 a001 1548008755920/73681302247*9062201101803^(1/4) 3645226708724712 a001 32951280099/3461452808002*505019158607^(9/16) 3645226708724712 a001 4052739537881/73681302247*192900153618^(1/4) 3645226708724712 a001 32951280099/3461452808002*192900153618^(7/12) 3645226708724712 a001 53316291173/312119004989*45537549124^(1/2) 3645226708724712 a001 32264490531/10525900321*73681302247^(3/8) 3645226708724712 a001 32951280099/119218851371*14662949395604^(7/18) 3645226708724712 a001 53316291173/73681302247*14662949395604^(5/14) 3645226708724712 a001 32951280099/119218851371*505019158607^(7/16) 3645226708724712 a001 53316291173/73681302247*192900153618^(5/12) 3645226708724712 a001 32951280099/5600748293801*73681302247^(5/8) 3645226708724712 a001 21566892818/204284540899*119218851371^(1/2) 3645226708724712 a001 225851433717/2139295485799*119218851371^(1/2) 3645226708724712 a001 182717648081/1730726404001*119218851371^(1/2) 3645226708724712 a001 1135099622/192933544679*312119004989^(13/22) 3645226708724712 a001 4052739537881/192900153618*9062201101803^(1/4) 3645226708724712 a001 1135099622/192933544679*3461452808002^(13/24) 3645226708724712 a001 139583862445/1322157322203*119218851371^(1/2) 3645226708724712 a001 32264490531/494493258286*312119004989^(1/2) 3645226708724712 a001 225749145909/10745088481*9062201101803^(1/4) 3645226708724712 a001 139583862445/2139295485799*312119004989^(1/2) 3645226708724712 a001 225851433717/312119004989*192900153618^(5/12) 3645226708724712 a001 53316291173/505019158607*119218851371^(1/2) 3645226708724712 a001 86267571272/119218851371*312119004989^(9/22) 3645226708724712 a001 591286729879/192900153618*73681302247^(3/8) 3645226708724712 a001 53316291173/192900153618*14662949395604^(7/18) 3645226708724712 a001 53316291173/192900153618*505019158607^(7/16) 3645226708724712 a001 86267571272/119218851371*192900153618^(5/12) 3645226708724712 a001 1548008755920/505019158607*73681302247^(3/8) 3645226708724712 a001 1548008755920/119218851371*312119004989^(3/10) 3645226708724712 a001 6557470319842/119218851371*192900153618^(1/4) 3645226708724712 a001 956722026041/312119004989*73681302247^(3/8) 3645226708724712 a001 53316291173/5600748293801*192900153618^(7/12) 3645226708724712 a001 1135099622/192933544679*73681302247^(5/8) 3645226708724712 a001 139583862445/23725150497407*73681302247^(5/8) 3645226708724712 a001 6557470319842/73681302247*28143753123^(1/4) 3645226708724712 a001 365435296162/119218851371*73681302247^(3/8) 3645226708724712 a001 53316291173/9062201101803*73681302247^(5/8) 3645226708724712 a001 591286729879/73681302247*28143753123^(7/20) 3645226708724712 a001 32951280099/45537549124*312119004989^(9/22) 3645226708724712 a001 20365011074/73681302247*14662949395604^(7/18) 3645226708724712 a001 20365011074/73681302247*505019158607^(7/16) 3645226708724712 a001 32951280099/45537549124*192900153618^(5/12) 3645226708724712 a001 20365011074/119218851371*45537549124^(1/2) 3645226708724712 a001 10610209857723/119218851371*28143753123^(1/4) 3645226708724712 a001 7778742049/28143753123*17393796001^(1/2) 3645226708724712 a001 86000486440/10716675201*28143753123^(7/20) 3645226708724712 a001 10182505537/96450076809*119218851371^(1/2) 3645226708724712 a001 4052739537881/505019158607*28143753123^(7/20) 3645226708724712 a001 3278735159921/408569081798*28143753123^(7/20) 3645226708724712 a001 2504730781961/312119004989*28143753123^(7/20) 3645226708724712 a001 10182505537/1730726404001*312119004989^(13/22) 3645226708724712 a001 10182505537/408569081798*2139295485799^(1/2) 3645226708724712 a001 182717648081/22768774562*14662949395604^(5/18) 3645226708724712 a001 2504730781961/45537549124*192900153618^(1/4) 3645226708724712 a001 20365011074/312119004989*3461452808002^(11/24) 3645226708724712 a001 20365011074/2139295485799*192900153618^(7/12) 3645226708724712 a001 32951280099/505019158607*28143753123^(11/20) 3645226708724712 a001 956722026041/119218851371*28143753123^(7/20) 3645226708724712 a001 139583862445/192900153618*28143753123^(9/20) 3645226708724712 a001 139583862445/45537549124*73681302247^(3/8) 3645226708724712 a001 591286729879/817138163596*28143753123^(9/20) 3645226708724712 a001 225851433717/312119004989*28143753123^(9/20) 3645226708724712 a001 10182505537/1730726404001*73681302247^(5/8) 3645226708724712 a001 86267571272/119218851371*28143753123^(9/20) 3645226708724712 a001 32951280099/5600748293801*28143753123^(13/20) 3645226708724712 a001 86267571272/1322157322203*28143753123^(11/20) 3645226708724712 a001 32264490531/494493258286*28143753123^(11/20) 3645226708724712 a001 591286729879/9062201101803*28143753123^(11/20) 3645226708724712 a001 365435296162/5600748293801*28143753123^(11/20) 3645226708724712 a001 139583862445/2139295485799*28143753123^(11/20) 3645226708724712 a001 7778742049/23725150497407*17393796001^(11/14) 3645226708724712 a001 53316291173/817138163596*28143753123^(11/20) 3645226708724712 a001 1135099622/192933544679*28143753123^(13/20) 3645226708724712 a001 4052739537881/45537549124*28143753123^(1/4) 3645226708724712 a001 32951280099/45537549124*28143753123^(9/20) 3645226708724712 a001 53316291173/9062201101803*28143753123^(13/20) 3645226708724712 a001 182717648081/22768774562*28143753123^(7/20) 3645226708724712 a001 7778742049/817138163596*17393796001^(9/14) 3645226708724712 a001 20365011074/312119004989*28143753123^(11/20) 3645226708724712 a001 10182505537/1730726404001*28143753123^(13/20) 3645226708724712 a001 12586269025/17393796001*312119004989^(9/22) 3645226708724712 a001 12586269025/17393796001*14662949395604^(5/14) 3645226708724712 a001 7778742049/28143753123*505019158607^(7/16) 3645226708724712 a001 12586269025/17393796001*192900153618^(5/12) 3645226708724712 a001 139583862445/17393796001*17393796001^(5/14) 3645226708724712 a001 4052739537881/17393796001*17393796001^(3/14) 3645226708724712 a001 12586269025/17393796001*28143753123^(9/20) 3645226708724712 a001 7778742049/73681302247*119218851371^(1/2) 3645226708724712 a001 10610209857723/17393796001*45537549124^(1/6) 3645226708724712 a001 7778742049/192900153618*817138163596^(1/2) 3645226708724712 a001 7778742049/1322157322203*312119004989^(13/22) 3645226708724712 a001 1548008755920/17393796001*312119004989^(5/22) 3645226708724712 a001 1548008755920/17393796001*3461452808002^(5/24) 3645226708724712 a001 7778742049/817138163596*505019158607^(9/16) 3645226708724712 a001 139583862445/17393796001*312119004989^(7/22) 3645226708724712 a001 139583862445/17393796001*14662949395604^(5/18) 3645226708724712 a001 139583862445/17393796001*505019158607^(5/16) 3645226708724712 a001 7778742049/817138163596*192900153618^(7/12) 3645226708724712 a001 7778742049/119218851371*312119004989^(1/2) 3645226708724712 a001 7778742049/119218851371*3461452808002^(11/24) 3645226708724712 a001 7778742049/1322157322203*73681302247^(5/8) 3645226708724712 a001 53316291173/17393796001*73681302247^(3/8) 3645226708724712 a001 7778742049/45537549124*45537549124^(1/2) 3645226708724712 a001 1548008755920/17393796001*28143753123^(1/4) 3645226708724712 a001 139583862445/17393796001*28143753123^(7/20) 3645226708724712 a001 7778742049/119218851371*28143753123^(11/20) 3645226708724712 a001 7778742049/1322157322203*28143753123^(13/20) 3645226708724712 a001 7778742049/14662949395604*28143753123^(3/4) 3645226708724712 a001 774004377960/5374978561*4106118243^(1/4) 3645226708724712 a001 1134903170/23725150497407*2537720636^(17/18) 3645226708724712 a001 2971215073/10749957122*17393796001^(1/2) 3645226708724712 a001 4052739537881/28143753123*4106118243^(1/4) 3645226708724712 a001 4807526976/6643838879*312119004989^(9/22) 3645226708724712 a001 2971215073/10749957122*14662949395604^(7/18) 3645226708724712 a001 4807526976/6643838879*14662949395604^(5/14) 3645226708724712 a001 2971215073/10749957122*505019158607^(7/16) 3645226708724712 a001 4807526976/6643838879*192900153618^(5/12) 3645226708724712 a001 4807526976/6643838879*28143753123^(9/20) 3645226708724712 a001 1515744265389/10525900321*4106118243^(1/4) 3645226708724712 a001 3278735159921/22768774562*4106118243^(1/4) 3645226708724712 a001 1134903170/9062201101803*2537720636^(9/10) 3645226708724712 a001 2504730781961/17393796001*4106118243^(1/4) 3645226708724712 a001 1836311903/2537720636*2537720636^(1/2) 3645226708724712 a001 2971215073/9062201101803*17393796001^(11/14) 3645226708724712 a001 2971215073/312119004989*17393796001^(9/14) 3645226708724712 a001 2971215073/28143753123*119218851371^(1/2) 3645226708724712 a001 53316291173/6643838879*17393796001^(5/14) 3645226708724712 a001 1548008755920/6643838879*17393796001^(3/14) 3645226708724712 a001 2971215073/73681302247*817138163596^(1/2) 3645226708724712 a001 4052739537881/6643838879*45537549124^(1/6) 3645226708724712 a001 86267571272/6643838879*312119004989^(3/10) 3645226708724712 a001 2971215073/192900153618*5600748293801^(1/2) 3645226708724712 a001 2971215073/505019158607*312119004989^(13/22) 3645226708724712 a001 2971215073/505019158607*3461452808002^(13/24) 3645226708724712 a001 2504730781961/6643838879*817138163596^(1/6) 3645226708724712 a001 1548008755920/6643838879*14662949395604^(1/6) 3645226708724712 a001 2971215073/9062201101803*505019158607^(11/16) 3645226708724712 a001 2971215073/312119004989*14662949395604^(1/2) 3645226708724712 a001 139583862445/6643838879*9062201101803^(1/4) 3645226708724712 a001 2971215073/312119004989*505019158607^(9/16) 3645226708724712 a001 2971215073/23725150497407*192900153618^(3/4) 3645226708724712 a001 10610209857723/6643838879*73681302247^(1/8) 3645226708724712 a001 2971215073/312119004989*192900153618^(7/12) 3645226708724712 a001 53316291173/6643838879*312119004989^(7/22) 3645226708724712 a001 2971215073/119218851371*2139295485799^(1/2) 3645226708724712 a001 53316291173/6643838879*14662949395604^(5/18) 3645226708724712 a001 2971215073/505019158607*73681302247^(5/8) 3645226708724712 a001 6557470319842/6643838879*28143753123^(3/20) 3645226708724712 a001 591286729879/6643838879*28143753123^(1/4) 3645226708724712 a001 2971215073/45537549124*312119004989^(1/2) 3645226708724712 a001 2971215073/45537549124*3461452808002^(11/24) 3645226708724712 a001 53316291173/6643838879*28143753123^(7/20) 3645226708724712 a001 20365011074/6643838879*73681302247^(3/8) 3645226708724712 a001 2971215073/505019158607*28143753123^(13/20) 3645226708724712 a001 2971215073/5600748293801*28143753123^(3/4) 3645226708724712 a001 2971215073/45537549124*28143753123^(11/20) 3645226708724712 a001 2971215073/17393796001*45537549124^(1/2) 3645226708724712 a001 1134903170/2139295485799*2537720636^(5/6) 3645226708724712 a001 2971215073/6643838879*6643838879^(1/2) 3645226708724712 a001 4807526976/2139295485799*4106118243^(3/4) 3645226708724712 a001 956722026041/6643838879*4106118243^(1/4) 3645226708724712 a001 567451585/96450076809*2537720636^(13/18) 3645226708724712 a001 12586269025/5600748293801*4106118243^(3/4) 3645226708724712 a001 32951280099/14662949395604*4106118243^(3/4) 3645226708724712 a001 53316291173/23725150497407*4106118243^(3/4) 3645226708724712 a001 20365011074/9062201101803*4106118243^(3/4) 3645226708724712 a001 1134903170/119218851371*2537720636^(7/10) 3645226708724712 a001 7778742049/3461452808002*4106118243^(3/4) 3645226708724712 a001 1134903170/17393796001*2537720636^(11/18) 3645226708724712 a001 2971215073/1322157322203*4106118243^(3/4) 3645226708724712 a001 53316291173/4106118243*1568397607^(3/8) 3645226708724712 a001 1134903170/4106118243*17393796001^(1/2) 3645226708724712 a001 10182505537/1268860318*2537720636^(7/18) 3645226708724712 a001 1836311903/2537720636*312119004989^(9/22) 3645226708724712 a001 1134903170/4106118243*14662949395604^(7/18) 3645226708724712 a001 1836311903/2537720636*14662949395604^(5/14) 3645226708724712 a001 1134903170/4106118243*505019158607^(7/16) 3645226708724712 a001 1836311903/2537720636*192900153618^(5/12) 3645226708724712 a001 1836311903/2537720636*28143753123^(9/20) 3645226708724712 a001 139583862445/2537720636*2537720636^(3/10) 3645226708724712 a001 225851433717/2537720636*2537720636^(5/18) 3645226708724712 a001 2504730781961/2537720636*2537720636^(1/6) 3645226708724712 a001 10610209857723/2537720636*2537720636^(1/10) 3645226708724712 a001 139583862445/10749957122*1568397607^(3/8) 3645226708724712 a001 567451585/5374978561*119218851371^(1/2) 3645226708724712 a001 365435296162/28143753123*1568397607^(3/8) 3645226708724712 a001 956722026041/73681302247*1568397607^(3/8) 3645226708724712 a001 2504730781961/192900153618*1568397607^(3/8) 3645226708724712 a001 10610209857723/817138163596*1568397607^(3/8) 3645226708724712 a001 4052739537881/312119004989*1568397607^(3/8) 3645226708724712 a001 1548008755920/119218851371*1568397607^(3/8) 3645226708724712 a001 567451585/1730726404001*17393796001^(11/14) 3645226708724712 a001 591286729879/45537549124*1568397607^(3/8) 3645226708724712 a001 1134903170/119218851371*17393796001^(9/14) 3645226708724712 a001 1134903170/28143753123*817138163596^(1/2) 3645226708724712 a001 591286729879/2537720636*17393796001^(3/14) 3645226708724712 a001 10182505537/1268860318*17393796001^(5/14) 3645226708724712 a001 1134903170/23725150497407*45537549124^(5/6) 3645226708724712 a001 32951280099/2537720636*312119004989^(3/10) 3645226708724712 a001 1134903170/73681302247*5600748293801^(1/2) 3645226708724712 a001 1134903780/1860499*45537549124^(1/6) 3645226708724712 a001 567451585/96450076809*312119004989^(13/22) 3645226708724712 a001 1135099622/33391061*1322157322203^(1/4) 3645226708724712 a001 1134903170/2139295485799*312119004989^(15/22) 3645226708724712 a001 225851433717/2537720636*3461452808002^(5/24) 3645226708724712 a001 1134903170/9062201101803*14662949395604^(9/14) 3645226708724712 a001 10610209857723/2537720636*192900153618^(1/12) 3645226708724712 a001 139583862445/2537720636*14662949395604^(3/14) 3645226708724712 a001 1134903170/9062201101803*192900153618^(3/4) 3645226708724712 a001 4052739537881/2537720636*73681302247^(1/8) 3645226708724712 a001 1134903170/119218851371*14662949395604^(1/2) 3645226708724712 a001 53316291173/2537720636*9062201101803^(1/4) 3645226708724712 a001 1134903170/119218851371*505019158607^(9/16) 3645226708724712 a001 1134903170/119218851371*192900153618^(7/12) 3645226708724712 a001 2504730781961/2537720636*28143753123^(3/20) 3645226708724712 a001 225851433717/2537720636*28143753123^(1/4) 3645226708724712 a001 7787980473/599786069*1568397607^(3/8) 3645226708724712 a001 10182505537/1268860318*312119004989^(7/22) 3645226708724712 a001 10182505537/1268860318*14662949395604^(5/18) 3645226708724712 a001 10182505537/1268860318*505019158607^(5/16) 3645226708724712 a001 567451585/96450076809*28143753123^(13/20) 3645226708724712 a001 10182505537/1268860318*28143753123^(7/20) 3645226708724712 a001 1134903170/2139295485799*28143753123^(3/4) 3645226708724712 a001 1134903170/23725150497407*28143753123^(17/20) 3645226708724712 a001 1134903170/17393796001*312119004989^(1/2) 3645226708724712 a001 1134903170/17393796001*3461452808002^(11/24) 3645226708724712 a001 7778742049/2537720636*73681302247^(3/8) 3645226708724712 a001 1134903170/17393796001*28143753123^(11/20) 3645226708724712 a001 182717648081/1268860318*4106118243^(1/4) 3645226708724712 a001 86267571272/6643838879*1568397607^(3/8) 3645226708724712 a001 1134903170/6643838879*45537549124^(1/2) 3645226708724712 a001 1836311903/28143753123*1568397607^(5/8) 3645226708724712 a001 1134903170/505019158607*4106118243^(3/4) 3645226708724712 a001 3278735159921/1268860318*1568397607^(1/8) 3645226708724712 a001 686789568/10525900321*1568397607^(5/8) 3645226708724712 a001 12586269025/192900153618*1568397607^(5/8) 3645226708724712 a001 32951280099/505019158607*1568397607^(5/8) 3645226708724712 a001 86267571272/1322157322203*1568397607^(5/8) 3645226708724712 a001 32264490531/494493258286*1568397607^(5/8) 3645226708724712 a001 591286729879/9062201101803*1568397607^(5/8) 3645226708724712 a001 1548008755920/23725150497407*1568397607^(5/8) 3645226708724712 a001 139583862445/2139295485799*1568397607^(5/8) 3645226708724712 a001 53316291173/817138163596*1568397607^(5/8) 3645226708724712 a001 20365011074/312119004989*1568397607^(5/8) 3645226708724712 a001 7778742049/119218851371*1568397607^(5/8) 3645226708724712 a001 2971215073/45537549124*1568397607^(5/8) 3645226708724712 a001 365435296162/1568397607*599074578^(1/4) 3645226708724712 a001 1836311903/5600748293801*1568397607^(7/8) 3645226708724712 a001 567451585/1268860318*6643838879^(1/2) 3645226708724712 a001 32951280099/2537720636*1568397607^(3/8) 3645226708724712 a001 1201881744/3665737348901*1568397607^(7/8) 3645226708724712 a001 7778742049/23725150497407*1568397607^(7/8) 3645226708724712 a001 2971215073/9062201101803*1568397607^(7/8) 3645226708724712 a001 1134903170/17393796001*1568397607^(5/8) 3645226708724712 a001 567451585/1730726404001*1568397607^(7/8) 3645226708724712 a001 701408733/969323029*2537720636^(1/2) 3645226708724712 a001 956722026041/4106118243*599074578^(1/4) 3645226708724712 a001 433494437/1568397607*17393796001^(1/2) 3645226708724712 a001 433494437/1568397607*14662949395604^(7/18) 3645226708724712 a001 701408733/969323029*14662949395604^(5/14) 3645226708724712 a001 433494437/1568397607*505019158607^(7/16) 3645226708724712 a001 701408733/969323029*192900153618^(5/12) 3645226708724712 a001 701408733/969323029*28143753123^(9/20) 3645226708724712 a001 1134903170/969323029*969323029^(1/2) 3645226708724712 a001 2504730781961/10749957122*599074578^(1/4) 3645226708724712 a001 6557470319842/28143753123*599074578^(1/4) 3645226708724712 a001 10610209857723/45537549124*599074578^(1/4) 3645226708724712 a001 4052739537881/17393796001*599074578^(1/4) 3645226708724712 a001 1548008755920/6643838879*599074578^(1/4) 3645226708724712 a001 12586269025/1568397607*599074578^(5/12) 3645226708724712 a001 591286729879/599074578*228826127^(3/16) 3645226708724712 a001 591286729879/2537720636*599074578^(1/4) 3645226708724712 a001 433494437/9062201101803*2537720636^(17/18) 3645226708724712 a001 433494437/3461452808002*2537720636^(9/10) 3645226708724712 a001 433494437/817138163596*2537720636^(5/6) 3645226708724712 a001 433494437/73681302247*2537720636^(13/18) 3645226708724712 a001 433494437/45537549124*2537720636^(7/10) 3645226708724712 a001 433494437/6643838879*2537720636^(11/18) 3645226708724712 a001 433494437/4106118243*119218851371^(1/2) 3645226708724712 a001 7778742049/969323029*2537720636^(7/18) 3645226708724712 a001 53316291173/969323029*2537720636^(3/10) 3645226708724712 a001 86267571272/969323029*2537720636^(5/18) 3645226708724712 a001 956722026041/969323029*2537720636^(1/6) 3645226708724712 a001 4052739537881/969323029*2537720636^(1/10) 3645226708724712 a001 433494437/10749957122*817138163596^(1/2) 3645226708724712 a001 10610209857723/969323029*2537720636^(1/18) 3645226708724712 a001 433494437/1322157322203*17393796001^(11/14) 3645226708724712 a001 433494437/45537549124*17393796001^(9/14) 3645226708724712 a001 12586269025/969323029*312119004989^(3/10) 3645226708724712 a001 225851433717/969323029*17393796001^(3/14) 3645226708724712 a001 433494437/9062201101803*45537549124^(5/6) 3645226708724712 a001 6557470319842/969323029*17393796001^(1/14) 3645226708724712 a001 433494437/73681302247*312119004989^(13/22) 3645226708724712 a001 32951280099/969323029*1322157322203^(1/4) 3645226708724712 a001 591286729879/969323029*45537549124^(1/6) 3645226708724712 a001 433494437/73681302247*73681302247^(5/8) 3645226708724712 a001 86267571272/969323029*312119004989^(5/22) 3645226708724712 a001 86267571272/969323029*3461452808002^(5/24) 3645226708724712 a001 225851433717/969323029*14662949395604^(1/6) 3645226708724712 a001 433494437/1322157322203*14662949395604^(11/18) 3645226708724712 a001 10610209857723/969323029*312119004989^(1/22) 3645226708724712 a001 365435296162/969323029*817138163596^(1/6) 3645226708724712 a001 433494437/1322157322203*505019158607^(11/16) 3645226708724712 a001 433494437/3461452808002*192900153618^(3/4) 3645226708724712 a001 1548008755920/969323029*73681302247^(1/8) 3645226708724712 a001 10610209857723/969323029*28143753123^(1/20) 3645226708724712 a001 53316291173/969323029*14662949395604^(3/14) 3645226708724712 a001 53316291173/969323029*192900153618^(1/4) 3645226708724712 a001 956722026041/969323029*28143753123^(3/20) 3645226708724712 a001 86267571272/969323029*28143753123^(1/4) 3645226708724712 a001 433494437/45537549124*14662949395604^(1/2) 3645226708724712 a001 20365011074/969323029*9062201101803^(1/4) 3645226708724712 a001 433494437/45537549124*505019158607^(9/16) 3645226708724712 a001 433494437/45537549124*192900153618^(7/12) 3645226708724712 a001 433494437/73681302247*28143753123^(13/20) 3645226708724712 a001 433494437/817138163596*28143753123^(3/4) 3645226708724712 a001 433494437/9062201101803*28143753123^(17/20) 3645226708724712 a001 7778742049/969323029*17393796001^(5/14) 3645226708724712 a001 7778742049/969323029*312119004989^(7/22) 3645226708724712 a001 433494437/17393796001*2139295485799^(1/2) 3645226708724712 a001 7778742049/969323029*14662949395604^(5/18) 3645226708724712 a001 7778742049/969323029*28143753123^(7/20) 3645226708724712 a001 139583862445/969323029*4106118243^(1/4) 3645226708724712 a001 433494437/6643838879*312119004989^(1/2) 3645226708724712 a001 433494437/6643838879*3461452808002^(11/24) 3645226708724712 a001 2971215073/969323029*73681302247^(3/8) 3645226708724712 a001 433494437/6643838879*28143753123^(11/20) 3645226708724712 a001 10983760033/1368706081*599074578^(5/12) 3645226708724712 a001 433494437/192900153618*4106118243^(3/4) 3645226708724712 a001 2504730781961/969323029*1568397607^(1/8) 3645226708724712 a001 43133785636/5374978561*599074578^(5/12) 3645226708724712 a001 75283811239/9381251041*599074578^(5/12) 3645226708724712 a001 591286729879/73681302247*599074578^(5/12) 3645226708724712 a001 86000486440/10716675201*599074578^(5/12) 3645226708724712 a001 4052739537881/505019158607*599074578^(5/12) 3645226708724712 a001 3278735159921/408569081798*599074578^(5/12) 3645226708724712 a001 2504730781961/312119004989*599074578^(5/12) 3645226708724712 a001 956722026041/119218851371*599074578^(5/12) 3645226708724712 a001 182717648081/22768774562*599074578^(5/12) 3645226708724712 a001 139583862445/17393796001*599074578^(5/12) 3645226708724712 a001 53316291173/6643838879*599074578^(5/12) 3645226708724712 a001 12586269025/969323029*1568397607^(3/8) 3645226708724712 a001 433494437/2537720636*45537549124^(1/2) 3645226708724712 a001 6557470319842/969323029*599074578^(1/12) 3645226708724712 a001 10182505537/1268860318*599074578^(5/12) 3645226708724712 a001 433494437/6643838879*1568397607^(5/8) 3645226708724712 a001 701408733/2537720636*599074578^(7/12) 3645226708724712 a001 433494437/1322157322203*1568397607^(7/8) 3645226708724712 a001 1836311903/6643838879*599074578^(7/12) 3645226708724712 a001 4807526976/17393796001*599074578^(7/12) 3645226708724712 a001 12586269025/45537549124*599074578^(7/12) 3645226708724712 a001 32951280099/119218851371*599074578^(7/12) 3645226708724712 a001 86267571272/312119004989*599074578^(7/12) 3645226708724712 a001 225851433717/817138163596*599074578^(7/12) 3645226708724712 a001 1548008755920/5600748293801*599074578^(7/12) 3645226708724712 a001 139583862445/505019158607*599074578^(7/12) 3645226708724712 a001 53316291173/192900153618*599074578^(7/12) 3645226708724712 a001 20365011074/73681302247*599074578^(7/12) 3645226708724712 a001 7778742049/28143753123*599074578^(7/12) 3645226708724712 a001 2971215073/10749957122*599074578^(7/12) 3645226708724712 a001 701408733/73681302247*599074578^(3/4) 3645226708724712 a001 1134903170/4106118243*599074578^(7/12) 3645226708724712 a001 225851433717/969323029*599074578^(1/4) 3645226708724712 a001 1836311903/192900153618*599074578^(3/4) 3645226708724712 a001 102287808/10745088481*599074578^(3/4) 3645226708724712 a001 12586269025/1322157322203*599074578^(3/4) 3645226708724712 a001 32951280099/3461452808002*599074578^(3/4) 3645226708724712 a001 86267571272/9062201101803*599074578^(3/4) 3645226708724712 a001 225851433717/23725150497407*599074578^(3/4) 3645226708724712 a001 139583862445/14662949395604*599074578^(3/4) 3645226708724712 a001 53316291173/5600748293801*599074578^(3/4) 3645226708724712 a001 20365011074/2139295485799*599074578^(3/4) 3645226708724712 a001 7778742049/817138163596*599074578^(3/4) 3645226708724712 a001 2971215073/312119004989*599074578^(3/4) 3645226708724712 a001 433494437/969323029*6643838879^(1/2) 3645226708724712 a001 701408733/2139295485799*599074578^(11/12) 3645226708724712 a001 7778742049/969323029*599074578^(5/12) 3645226708724712 a001 1134903170/119218851371*599074578^(3/4) 3645226708724712 a001 10610209857723/969323029*228826127^(1/16) 3645226708724712 a001 433494437/1568397607*599074578^(7/12) 3645226708724712 a001 1836311903/5600748293801*599074578^(11/12) 3645226708724712 a001 1201881744/3665737348901*599074578^(11/12) 3645226708724712 a001 7778742049/23725150497407*599074578^(11/12) 3645226708724712 a001 2971215073/9062201101803*599074578^(11/12) 3645226708724712 a001 567451585/1730726404001*599074578^(11/12) 3645226708724712 a001 433494437/45537549124*599074578^(3/4) 3645226708724712 a001 1548008755920/1568397607*228826127^(3/16) 3645226708724712 a001 53316291173/599074578*228826127^(5/16) 3645226708724712 a001 701408733/370248451*370248451^(1/2) 3645226708724712 a001 4052739537881/4106118243*228826127^(3/16) 3645226708724712 a001 4807525989/4870846*228826127^(3/16) 3645226708724712 a001 6557470319842/6643838879*228826127^(3/16) 3645226708724712 a001 433494437/1322157322203*599074578^(11/12) 3645226708724712 a001 2504730781961/2537720636*228826127^(3/16) 3645226708724712 a001 267914296/370248451*2537720636^(1/2) 3645226708724712 a001 165580141/599074578*17393796001^(1/2) 3645226708724712 a001 267914296/370248451*312119004989^(9/22) 3645226708724712 a001 165580141/599074578*14662949395604^(7/18) 3645226708724712 a001 165580141/599074578*505019158607^(7/16) 3645226708724712 a001 267914296/370248451*192900153618^(5/12) 3645226708724712 a001 267914296/370248451*28143753123^(9/20) 3645226708724712 a001 956722026041/969323029*228826127^(3/16) 3645226708724712 a001 267084832/33281921*228826127^(7/16) 3645226708724712 a001 139583862445/1568397607*228826127^(5/16) 3645226708724712 a001 365435296162/4106118243*228826127^(5/16) 3645226708724712 a001 956722026041/10749957122*228826127^(5/16) 3645226708724712 a001 2504730781961/28143753123*228826127^(5/16) 3645226708724712 a001 6557470319842/73681302247*228826127^(5/16) 3645226708724712 a001 10610209857723/119218851371*228826127^(5/16) 3645226708724712 a001 4052739537881/45537549124*228826127^(5/16) 3645226708724712 a001 1548008755920/17393796001*228826127^(5/16) 3645226708724712 a001 591286729879/6643838879*228826127^(5/16) 3645226708724712 a001 225851433717/2537720636*228826127^(5/16) 3645226708724712 a001 165580141/599074578*599074578^(7/12) 3645226708724712 a001 24157817/33385282*33385282^(5/8) 3645226708724712 a001 165580141/1568397607*119218851371^(1/2) 3645226708724712 a001 86267571272/969323029*228826127^(5/16) 3645226708724712 a001 165580141/3461452808002*2537720636^(17/18) 3645226708724712 a001 165580141/1322157322203*2537720636^(9/10) 3645226708724712 a001 165580141/312119004989*2537720636^(5/6) 3645226708724712 a001 165580141/28143753123*2537720636^(13/18) 3645226708724712 a001 165580141/17393796001*2537720636^(7/10) 3645226708724712 a001 165580141/4106118243*817138163596^(1/2) 3645226708724712 a001 20365011074/370248451*2537720636^(3/10) 3645226708724712 a001 32951280099/370248451*2537720636^(5/18) 3645226708724712 a001 2971215073/370248451*2537720636^(7/18) 3645226708724712 a001 365435296162/370248451*2537720636^(1/6) 3645226708724712 a001 1548008755920/370248451*2537720636^(1/10) 3645226708724712 a001 4807526976/370248451*312119004989^(3/10) 3645226708724712 a001 165580141/10749957122*5600748293801^(1/2) 3645226708724712 a001 4052739537881/370248451*2537720636^(1/18) 3645226708724712 a001 165580141/14662949395604*17393796001^(13/14) 3645226708724712 a001 165580141/505019158607*17393796001^(11/14) 3645226708724712 a001 165580141/28143753123*312119004989^(13/22) 3645226708724712 a001 165580141/28143753123*3461452808002^(13/24) 3645226708724712 a001 12586269025/370248451*1322157322203^(1/4) 3645226708724712 a001 165580141/28143753123*73681302247^(5/8) 3645226708724712 a001 86267571272/370248451*17393796001^(3/14) 3645226708724712 a001 165580141/28143753123*28143753123^(13/20) 3645226708724712 a001 165580141/3461452808002*45537549124^(5/6) 3645226708724712 a001 2504730781961/370248451*17393796001^(1/14) 3645226708724712 a001 32951280099/370248451*312119004989^(5/22) 3645226708724712 a001 32951280099/370248451*3461452808002^(5/24) 3645226708724712 a001 225851433717/370248451*45537549124^(1/6) 3645226708724712 a001 86267571272/370248451*14662949395604^(1/6) 3645226708724712 a001 165580141/3461452808002*312119004989^(17/22) 3645226708724712 a001 1548008755920/370248451*14662949395604^(1/14) 3645226708724712 a001 1548008755920/370248451*192900153618^(1/12) 3645226708724712 a001 139583862445/370248451*817138163596^(1/6) 3645226708724712 a001 165580141/1322157322203*192900153618^(3/4) 3645226708724712 a001 4052739537881/370248451*28143753123^(1/20) 3645226708724712 a001 32951280099/370248451*28143753123^(1/4) 3645226708724712 a001 165580141/14662949395604*73681302247^(7/8) 3645226708724712 a001 365435296162/370248451*28143753123^(3/20) 3645226708724712 a001 20365011074/370248451*14662949395604^(3/14) 3645226708724712 a001 20365011074/370248451*192900153618^(1/4) 3645226708724712 a001 165580141/312119004989*28143753123^(3/4) 3645226708724712 a001 165580141/3461452808002*28143753123^(17/20) 3645226708724712 a001 165580141/17393796001*17393796001^(9/14) 3645226708724712 a001 165580141/17393796001*14662949395604^(1/2) 3645226708724712 a001 7778742049/370248451*9062201101803^(1/4) 3645226708724712 a001 165580141/17393796001*505019158607^(9/16) 3645226708724712 a001 165580141/17393796001*192900153618^(7/12) 3645226708724712 a001 53316291173/370248451*4106118243^(1/4) 3645226708724712 a001 2971215073/370248451*17393796001^(5/14) 3645226708724712 a001 2971215073/370248451*312119004989^(7/22) 3645226708724712 a001 165580141/6643838879*2139295485799^(1/2) 3645226708724712 a001 2971215073/370248451*14662949395604^(5/18) 3645226708724712 a001 2971215073/370248451*28143753123^(7/20) 3645226708724712 a001 165580141/73681302247*4106118243^(3/4) 3645226708724712 a001 956722026041/370248451*1568397607^(1/8) 3645226708724712 a001 165580141/2537720636*2537720636^(11/18) 3645226708724712 a001 4807526976/370248451*1568397607^(3/8) 3645226708724712 a001 165580141/2537720636*312119004989^(1/2) 3645226708724712 a001 165580141/2537720636*3461452808002^(11/24) 3645226708724712 a001 1134903170/370248451*73681302247^(3/8) 3645226708724712 a001 165580141/2537720636*28143753123^(11/20) 3645226708724712 a001 2504730781961/370248451*599074578^(1/12) 3645226708724712 a001 165580141/505019158607*1568397607^(7/8) 3645226708724712 a001 165580141/2537720636*1568397607^(5/8) 3645226708724712 a001 433494437/370248451*969323029^(1/2) 3645226708724712 a001 12586269025/1568397607*228826127^(7/16) 3645226708724712 a001 86267571272/370248451*599074578^(1/4) 3645226708724712 a001 10983760033/1368706081*228826127^(7/16) 3645226708724712 a001 31622993/5374978561*141422324^(5/6) 3645226708724712 a001 43133785636/5374978561*228826127^(7/16) 3645226708724712 a001 75283811239/9381251041*228826127^(7/16) 3645226708724712 a001 591286729879/73681302247*228826127^(7/16) 3645226708724712 a001 86000486440/10716675201*228826127^(7/16) 3645226708724712 a001 4052739537881/505019158607*228826127^(7/16) 3645226708724712 a001 3536736619241/440719107401*228826127^(7/16) 3645226708724712 a001 3278735159921/408569081798*228826127^(7/16) 3645226708724712 a001 2504730781961/312119004989*228826127^(7/16) 3645226708724712 a001 956722026041/119218851371*228826127^(7/16) 3645226708724712 a001 182717648081/22768774562*228826127^(7/16) 3645226708724712 a001 139583862445/17393796001*228826127^(7/16) 3645226708724712 a001 165580141/969323029*45537549124^(1/2) 3645226708724712 a001 53316291173/6643838879*228826127^(7/16) 3645226708724712 a001 2971215073/370248451*599074578^(5/12) 3645226708724712 a001 4052739537881/370248451*228826127^(1/16) 3645226708724712 a001 10182505537/1268860318*228826127^(7/16) 3645226708724712 a001 433494437/599074578*228826127^(9/16) 3645226708724712 a001 165580141/17393796001*599074578^(3/4) 3645226708724712 a001 7778742049/969323029*228826127^(7/16) 3645226708724712 a001 165580141/505019158607*599074578^(11/12) 3645226708724712 a001 267914296/4106118243*228826127^(11/16) 3645226708724712 a001 1134903170/1568397607*228826127^(9/16) 3645226708724712 a001 2971215073/4106118243*228826127^(9/16) 3645226708724712 a001 7778742049/10749957122*228826127^(9/16) 3645226708724712 a001 20365011074/28143753123*228826127^(9/16) 3645226708724712 a001 53316291173/73681302247*228826127^(9/16) 3645226708724712 a001 139583862445/192900153618*228826127^(9/16) 3645226708724712 a001 10610209857723/14662949395604*228826127^(9/16) 3645226708724712 a001 591286729879/817138163596*228826127^(9/16) 3645226708724712 a001 225851433717/312119004989*228826127^(9/16) 3645226708724712 a001 86267571272/119218851371*228826127^(9/16) 3645226708724712 a001 32951280099/45537549124*228826127^(9/16) 3645226708724712 a001 12586269025/17393796001*228826127^(9/16) 3645226708724712 a001 4807526976/6643838879*228826127^(9/16) 3645226708724712 a001 1836311903/2537720636*228826127^(9/16) 3645226708724712 a001 365435296162/370248451*228826127^(3/16) 3645226708724712 a001 701408733/969323029*228826127^(9/16) 3645226708724712 a001 701408733/10749957122*228826127^(11/16) 3645226708724712 a001 66978574/11384387281*228826127^(13/16) 3645226708724712 a001 1836311903/28143753123*228826127^(11/16) 3645226708724712 a001 686789568/10525900321*228826127^(11/16) 3645226708724712 a001 12586269025/192900153618*228826127^(11/16) 3645226708724712 a001 32951280099/505019158607*228826127^(11/16) 3645226708724712 a001 86267571272/1322157322203*228826127^(11/16) 3645226708724712 a001 32264490531/494493258286*228826127^(11/16) 3645226708724712 a001 591286729879/9062201101803*228826127^(11/16) 3645226708724712 a001 1548008755920/23725150497407*228826127^(11/16) 3645226708724712 a001 365435296162/5600748293801*228826127^(11/16) 3645226708724712 a001 139583862445/2139295485799*228826127^(11/16) 3645226708724712 a001 53316291173/817138163596*228826127^(11/16) 3645226708724712 a001 20365011074/312119004989*228826127^(11/16) 3645226708724712 a001 7778742049/119218851371*228826127^(11/16) 3645226708724712 a001 2971215073/45537549124*228826127^(11/16) 3645226708724712 a001 32951280099/370248451*228826127^(5/16) 3645226708724712 a001 1134903170/17393796001*228826127^(11/16) 3645226708724712 a001 86267571272/228826127*87403803^(1/4) 3645226708724712 a001 433494437/6643838879*228826127^(11/16) 3645226708724712 a001 165580141/370248451*6643838879^(1/2) 3645226708724712 a001 701408733/119218851371*228826127^(13/16) 3645226708724712 a001 267914296/505019158607*228826127^(15/16) 3645226708724712 a001 267914296/370248451*228826127^(9/16) 3645226708724712 a001 1836311903/312119004989*228826127^(13/16) 3645226708724712 a001 1201881744/204284540899*228826127^(13/16) 3645226708724712 a001 12586269025/2139295485799*228826127^(13/16) 3645226708724712 a001 32951280099/5600748293801*228826127^(13/16) 3645226708724712 a001 1135099622/192933544679*228826127^(13/16) 3645226708724712 a001 139583862445/23725150497407*228826127^(13/16) 3645226708724712 a001 53316291173/9062201101803*228826127^(13/16) 3645226708724712 a001 10182505537/1730726404001*228826127^(13/16) 3645226708724712 a001 7778742049/1322157322203*228826127^(13/16) 3645226708724712 a001 2971215073/505019158607*228826127^(13/16) 3645226708724712 a001 567451585/96450076809*228826127^(13/16) 3645226708724712 a001 2971215073/370248451*228826127^(7/16) 3645226708724712 a001 433494437/73681302247*228826127^(13/16) 3645226708724712 a001 233802911/440719107401*228826127^(15/16) 3645226708724712 a001 1836311903/3461452808002*228826127^(15/16) 3645226708724712 a001 1602508992/3020733700601*228826127^(15/16) 3645226708724712 a001 12586269025/23725150497407*228826127^(15/16) 3645226708724712 a001 7778742049/14662949395604*228826127^(15/16) 3645226708724712 a001 2971215073/5600748293801*228826127^(15/16) 3645226708724712 a001 1134903170/2139295485799*228826127^(15/16) 3645226708724712 a001 4052739537881/228826127*33385282^(1/24) 3645226708724712 a001 433494437/817138163596*228826127^(15/16) 3645226708724712 a001 165580141/2537720636*228826127^(11/16) 3645226708724712 a001 165580141/28143753123*228826127^(13/16) 3645226708724712 a001 165580141/312119004989*228826127^(15/16) 3645226708724712 a001 433494437/141422324*141422324^(1/2) 3645226708724712 a001 267913919/710646*87403803^(1/4) 3645226708724712 a001 102334155/141422324*2537720636^(1/2) 3645226708724712 a001 63245986/228826127*17393796001^(1/2) 3645226708724712 a001 102334155/141422324*312119004989^(9/22) 3645226708724712 a001 102334155/141422324*14662949395604^(5/14) 3645226708724712 a001 63245986/228826127*505019158607^(7/16) 3645226708724712 a001 102334155/141422324*192900153618^(5/12) 3645226708724712 a001 102334155/141422324*28143753123^(9/20) 3645226708724712 a001 591286729879/1568397607*87403803^(1/4) 3645226708724712 a001 63245986/228826127*599074578^(7/12) 3645226708724712 a001 516002918640/1368706081*87403803^(1/4) 3645226708724712 a001 4052739537881/10749957122*87403803^(1/4) 3645226708724712 a001 3536736619241/9381251041*87403803^(1/4) 3645226708724712 a001 6557470319842/17393796001*87403803^(1/4) 3645226708724712 a001 2504730781961/6643838879*87403803^(1/4) 3645226708724712 a001 956722026041/2537720636*87403803^(1/4) 3645226708724712 a001 365435296162/969323029*87403803^(1/4) 3645226708724712 a001 3536736619241/199691526*33385282^(1/24) 3645226708724712 a001 139583862445/370248451*87403803^(1/4) 3645226708724712 a001 102334155/141422324*228826127^(9/16) 3645226708724712 a001 225851433717/141422324*141422324^(1/6) 3645226708724712 a001 66978574/35355581*370248451^(1/2) 3645226708724712 a001 6557470319842/370248451*33385282^(1/24) 3645226708724712 a001 31622993/299537289*119218851371^(1/2) 3645226708724712 a001 63245986/1568397607*817138163596^(1/2) 3645226708724712 a001 63245986/1322157322203*2537720636^(17/18) 3645226708724712 a001 63245986/505019158607*2537720636^(9/10) 3645226708724712 a001 63245986/119218851371*2537720636^(5/6) 3645226708724712 a001 31622993/5374978561*2537720636^(13/18) 3645226708724712 a001 63245986/6643838879*2537720636^(7/10) 3645226708724712 a001 1836311903/141422324*312119004989^(3/10) 3645226708724712 a001 63245986/4106118243*5600748293801^(1/2) 3645226708724712 a001 12586269025/141422324*2537720636^(5/18) 3645226708724712 a001 7778742049/141422324*2537720636^(3/10) 3645226708724712 a001 139583862445/141422324*2537720636^(1/6) 3645226708724712 a001 591286729879/141422324*2537720636^(1/10) 3645226708724712 a001 31622993/5374978561*312119004989^(13/22) 3645226708724712 a001 31622993/5374978561*3461452808002^(13/24) 3645226708724712 a001 1201881744/35355581*1322157322203^(1/4) 3645226708724712 a001 387002188980/35355581*2537720636^(1/18) 3645226708724712 a001 31622993/5374978561*73681302247^(5/8) 3645226708724712 a001 31622993/5374978561*28143753123^(13/20) 3645226708724712 a001 63245986/5600748293801*17393796001^(13/14) 3645226708724712 a001 31622993/96450076809*17393796001^(11/14) 3645226708724712 a001 12586269025/141422324*312119004989^(5/22) 3645226708724712 a001 12586269025/141422324*3461452808002^(5/24) 3645226708724712 a001 12586269025/141422324*28143753123^(1/4) 3645226708724712 a001 63246219/271444*17393796001^(3/14) 3645226708724712 a001 63245986/1322157322203*45537549124^(5/6) 3645226708724712 a001 956722026041/141422324*17393796001^(1/14) 3645226708724712 a001 63246219/271444*14662949395604^(1/6) 3645226708724712 a001 21566892818/35355581*45537549124^(1/6) 3645226708724712 a001 31622993/96450076809*14662949395604^(11/18) 3645226708724712 a001 31622993/96450076809*505019158607^(11/16) 3645226708724712 a001 31622993/7331474697802*312119004989^(19/22) 3645226708724712 a001 63245986/1322157322203*312119004989^(17/22) 3645226708724712 a001 591286729879/141422324*14662949395604^(1/14) 3645226708724712 a001 31622993/7331474697802*3461452808002^(19/24) 3645226708724712 a001 182717648081/70711162*312119004989^(1/10) 3645226708724712 a001 139583862445/141422324*312119004989^(3/22) 3645226708724712 a001 63245986/505019158607*192900153618^(3/4) 3645226708724712 a001 225851433717/141422324*73681302247^(1/8) 3645226708724712 a001 387002188980/35355581*28143753123^(1/20) 3645226708724712 a001 63245986/119218851371*312119004989^(15/22) 3645226708724712 a001 53316291173/141422324*817138163596^(1/6) 3645226708724712 a001 63245986/119218851371*3461452808002^(5/8) 3645226708724712 a001 63245986/5600748293801*73681302247^(7/8) 3645226708724712 a001 139583862445/141422324*28143753123^(3/20) 3645226708724712 a001 63245986/119218851371*28143753123^(3/4) 3645226708724712 a001 63245986/1322157322203*28143753123^(17/20) 3645226708724712 a001 31622993/7331474697802*28143753123^(19/20) 3645226708724712 a001 7778742049/141422324*14662949395604^(3/14) 3645226708724712 a001 7778742049/141422324*192900153618^(1/4) 3645226708724712 a001 10182505537/70711162*4106118243^(1/4) 3645226708724712 a001 63245986/6643838879*17393796001^(9/14) 3645226708724712 a001 2971215073/141422324*9062201101803^(1/4) 3645226708724712 a001 63245986/6643838879*505019158607^(9/16) 3645226708724712 a001 63245986/6643838879*192900153618^(7/12) 3645226708724712 a001 63245986/28143753123*4106118243^(3/4) 3645226708724712 a001 182717648081/70711162*1568397607^(1/8) 3645226708724712 a001 1836311903/141422324*1568397607^(3/8) 3645226708724712 a001 567451585/70711162*2537720636^(7/18) 3645226708724712 a001 567451585/70711162*17393796001^(5/14) 3645226708724712 a001 567451585/70711162*312119004989^(7/22) 3645226708724712 a001 31622993/1268860318*2139295485799^(1/2) 3645226708724712 a001 567451585/70711162*505019158607^(5/16) 3645226708724712 a001 567451585/70711162*28143753123^(7/20) 3645226708724712 a001 956722026041/141422324*599074578^(1/12) 3645226708724712 a001 31622993/96450076809*1568397607^(7/8) 3645226708724712 a001 63246219/271444*599074578^(1/4) 3645226708724712 a001 63245986/969323029*2537720636^(11/18) 3645226708724712 a001 63245986/969323029*312119004989^(1/2) 3645226708724712 a001 63245986/969323029*3461452808002^(11/24) 3645226708724712 a001 433494437/141422324*73681302247^(3/8) 3645226708724712 a001 63245986/969323029*28143753123^(11/20) 3645226708724712 a001 387002188980/35355581*228826127^(1/16) 3645226708724712 a001 567451585/70711162*599074578^(5/12) 3645226708724712 a001 63245986/969323029*1568397607^(5/8) 3645226708724712 a001 63245986/6643838879*599074578^(3/4) 3645226708724712 a001 31622993/96450076809*599074578^(11/12) 3645226708724712 a001 139583862445/141422324*228826127^(3/16) 3645226708724712 a001 12586269025/141422324*228826127^(5/16) 3645226708724712 a001 86267571272/87403803*33385282^(5/24) 3645226708724712 a001 165580141/141422324*969323029^(1/2) 3645226708724712 a001 63245986/370248451*45537549124^(1/2) 3645226708724712 a001 567451585/70711162*228826127^(7/16) 3645226708724712 a001 63245986/969323029*228826127^(11/16) 3645226708724712 a001 31622993/5374978561*228826127^(13/16) 3645226708724712 a001 63245986/119218851371*228826127^(15/16) 3645226708724712 a001 9303105/230701876*87403803^(3/4) 3645226708724712 a001 53316291173/141422324*87403803^(1/4) 3645226708724712 a001 2504730781961/141422324*33385282^(1/24) 3645226708724712 a001 956722026041/228826127*33385282^(1/8) 3645226708724712 a001 267914296/6643838879*87403803^(3/4) 3645226708724712 a001 701408733/17393796001*87403803^(3/4) 3645226708724712 a001 1836311903/45537549124*87403803^(3/4) 3645226708724712 a001 4807526976/119218851371*87403803^(3/4) 3645226708724712 a001 1144206275/28374454999*87403803^(3/4) 3645226708724712 a001 32951280099/817138163596*87403803^(3/4) 3645226708724712 a001 86267571272/2139295485799*87403803^(3/4) 3645226708724712 a001 225851433717/5600748293801*87403803^(3/4) 3645226708724712 a001 591286729879/14662949395604*87403803^(3/4) 3645226708724712 a001 365435296162/9062201101803*87403803^(3/4) 3645226708724712 a001 139583862445/3461452808002*87403803^(3/4) 3645226708724712 a001 53316291173/1322157322203*87403803^(3/4) 3645226708724712 a001 20365011074/505019158607*87403803^(3/4) 3645226708724712 a001 7778742049/192900153618*87403803^(3/4) 3645226708724712 a001 2971215073/73681302247*87403803^(3/4) 3645226708724712 a001 1134903170/28143753123*87403803^(3/4) 3645226708724712 a001 433494437/10749957122*87403803^(3/4) 3645226708724712 a001 31622993/70711162*6643838879^(1/2) 3645226708724712 a001 165580141/4106118243*87403803^(3/4) 3645226708724712 a001 365435296162/54018521*20633239^(1/10) 3645226708724712 a001 2504730781961/599074578*33385282^(1/8) 3645226708724712 a001 6557470319842/1568397607*33385282^(1/8) 3645226708724712 a001 10610209857723/2537720636*33385282^(1/8) 3645226708724712 a001 4052739537881/969323029*33385282^(1/8) 3645226708724712 a001 1548008755920/370248451*33385282^(1/8) 3645226708724712 a001 20365011074/87403803*33385282^(7/24) 3645226708724713 a001 63245986/1568397607*87403803^(3/4) 3645226708724713 a001 86267571272/20633239*7881196^(3/22) 3645226708724713 a001 591286729879/141422324*33385282^(1/8) 3645226708724713 a001 9227465/1568397607*20633239^(13/14) 3645226708724713 a001 225851433717/228826127*33385282^(5/24) 3645226708724713 a001 267914296/54018521*54018521^(1/2) 3645226708724713 a001 591286729879/54018521*20633239^(1/14) 3645226708724713 a001 591286729879/599074578*33385282^(5/24) 3645226708724713 a001 1548008755920/1568397607*33385282^(5/24) 3645226708724713 a001 4052739537881/4106118243*33385282^(5/24) 3645226708724713 a001 4807525989/4870846*33385282^(5/24) 3645226708724713 a001 6557470319842/6643838879*33385282^(5/24) 3645226708724713 a001 2504730781961/2537720636*33385282^(5/24) 3645226708724713 a001 956722026041/969323029*33385282^(5/24) 3645226708724713 a001 365435296162/370248451*33385282^(5/24) 3645226708724713 a001 1602508992/29134601*33385282^(3/8) 3645226708724713 a001 39088169/54018521*2537720636^(1/2) 3645226708724713 a001 24157817/87403803*17393796001^(1/2) 3645226708724713 a001 39088169/54018521*312119004989^(9/22) 3645226708724713 a001 24157817/87403803*14662949395604^(7/18) 3645226708724713 a001 39088169/54018521*14662949395604^(5/14) 3645226708724713 a001 24157817/87403803*505019158607^(7/16) 3645226708724713 a001 39088169/54018521*192900153618^(5/12) 3645226708724713 a001 39088169/54018521*28143753123^(9/20) 3645226708724713 a001 24157817/87403803*599074578^(7/12) 3645226708724713 a001 39088169/54018521*228826127^(9/16) 3645226708724713 a001 9227465/969323029*20633239^(9/10) 3645226708724713 a001 139583862445/141422324*33385282^(5/24) 3645226708724713 a001 53316291173/228826127*33385282^(7/24) 3645226708724713 a001 139583862445/599074578*33385282^(7/24) 3645226708724713 a001 365435296162/1568397607*33385282^(7/24) 3645226708724713 a001 956722026041/4106118243*33385282^(7/24) 3645226708724713 a001 2504730781961/10749957122*33385282^(7/24) 3645226708724713 a001 6557470319842/28143753123*33385282^(7/24) 3645226708724713 a001 10610209857723/45537549124*33385282^(7/24) 3645226708724713 a001 4052739537881/17393796001*33385282^(7/24) 3645226708724713 a001 1548008755920/6643838879*33385282^(7/24) 3645226708724713 a001 591286729879/2537720636*33385282^(7/24) 3645226708724713 a001 225851433717/969323029*33385282^(7/24) 3645226708724713 a001 86267571272/370248451*33385282^(7/24) 3645226708724713 a001 1134903170/87403803*33385282^(11/24) 3645226708724713 a001 24157817/4106118243*141422324^(5/6) 3645226708724713 a001 63246219/271444*33385282^(7/24) 3645226708724713 a001 12586269025/228826127*33385282^(3/8) 3645226708724713 a001 102334155/54018521*370248451^(1/2) 3645226708724713 a001 24157817/228826127*119218851371^(1/2) 3645226708724713 a001 165580141/54018521*141422324^(1/2) 3645226708724713 a001 10983760033/199691526*33385282^(3/8) 3645226708724713 a001 86267571272/54018521*141422324^(1/6) 3645226708724713 a001 86267571272/1568397607*33385282^(3/8) 3645226708724713 a001 75283811239/1368706081*33385282^(3/8) 3645226708724713 a001 591286729879/10749957122*33385282^(3/8) 3645226708724713 a001 12585437040/228811001*33385282^(3/8) 3645226708724713 a001 4052739537881/73681302247*33385282^(3/8) 3645226708724713 a001 3536736619241/64300051206*33385282^(3/8) 3645226708724713 a001 6557470319842/119218851371*33385282^(3/8) 3645226708724713 a001 2504730781961/45537549124*33385282^(3/8) 3645226708724713 a001 956722026041/17393796001*33385282^(3/8) 3645226708724713 a001 365435296162/6643838879*33385282^(3/8) 3645226708724713 a001 139583862445/2537720636*33385282^(3/8) 3645226708724713 a001 53316291173/969323029*33385282^(3/8) 3645226708724713 a001 24157817/599074578*817138163596^(1/2) 3645226708724713 a001 701408733/54018521*312119004989^(3/10) 3645226708724713 a001 24157817/1568397607*5600748293801^(1/2) 3645226708724713 a001 701408733/54018521*1568397607^(3/8) 3645226708724713 a001 24157817/4106118243*2537720636^(13/18) 3645226708724713 a001 24157817/505019158607*2537720636^(17/18) 3645226708724713 a001 24157817/192900153618*2537720636^(9/10) 3645226708724713 a001 24157817/45537549124*2537720636^(5/6) 3645226708724713 a001 24157817/4106118243*312119004989^(13/22) 3645226708724713 a001 24157817/4106118243*3461452808002^(13/24) 3645226708724713 a001 1836311903/54018521*1322157322203^(1/4) 3645226708724713 a001 24157817/4106118243*73681302247^(5/8) 3645226708724713 a001 24157817/4106118243*28143753123^(13/20) 3645226708724713 a001 4807526976/54018521*2537720636^(5/18) 3645226708724713 a001 53316291173/54018521*2537720636^(1/6) 3645226708724713 a001 2971215073/54018521*2537720636^(3/10) 3645226708724713 a001 225851433717/54018521*2537720636^(1/10) 3645226708724713 a001 4807526976/54018521*312119004989^(5/22) 3645226708724713 a001 4807526976/54018521*3461452808002^(5/24) 3645226708724713 a001 591286729879/54018521*2537720636^(1/18) 3645226708724713 a001 4807526976/54018521*28143753123^(1/4) 3645226708724713 a001 24157817/2139295485799*17393796001^(13/14) 3645226708724713 a001 24157817/73681302247*17393796001^(11/14) 3645226708724713 a001 12586269025/54018521*17393796001^(3/14) 3645226708724713 a001 12586269025/54018521*14662949395604^(1/6) 3645226708724713 a001 24157817/505019158607*45537549124^(5/6) 3645226708724713 a001 32951280099/54018521*45537549124^(1/6) 3645226708724713 a001 365435296162/54018521*17393796001^(1/14) 3645226708724713 a001 24157817/73681302247*14662949395604^(11/18) 3645226708724713 a001 24157817/73681302247*505019158607^(11/16) 3645226708724713 a001 24157817/192900153618*14662949395604^(9/14) 3645226708724713 a001 24157817/505019158607*312119004989^(17/22) 3645226708724713 a001 24157817/14662949395604*312119004989^(9/10) 3645226708724713 a001 24157817/192900153618*192900153618^(3/4) 3645226708724713 a001 225851433717/54018521*14662949395604^(1/14) 3645226708724713 a001 24157817/2139295485799*14662949395604^(13/18) 3645226708724713 a001 365435296162/54018521*505019158607^(1/16) 3645226708724713 a001 24157817/817138163596*1322157322203^(3/4) 3645226708724713 a001 24157817/2139295485799*505019158607^(13/16) 3645226708724713 a001 139583862445/54018521*312119004989^(1/10) 3645226708724713 a001 24157817/14662949395604*192900153618^(11/12) 3645226708724713 a001 591286729879/54018521*28143753123^(1/20) 3645226708724713 a001 53316291173/54018521*312119004989^(3/22) 3645226708724713 a001 24157817/2139295485799*73681302247^(7/8) 3645226708724713 a001 53316291173/54018521*28143753123^(3/20) 3645226708724713 a001 24157817/45537549124*312119004989^(15/22) 3645226708724713 a001 20365011074/54018521*817138163596^(1/6) 3645226708724713 a001 24157817/505019158607*28143753123^(17/20) 3645226708724713 a001 24157817/5600748293801*28143753123^(19/20) 3645226708724713 a001 24157817/45537549124*28143753123^(3/4) 3645226708724713 a001 7778742049/54018521*4106118243^(1/4) 3645226708724713 a001 2971215073/54018521*14662949395604^(3/14) 3645226708724713 a001 2971215073/54018521*192900153618^(1/4) 3645226708724713 a001 24157817/10749957122*4106118243^(3/4) 3645226708724713 a001 24157817/2537720636*2537720636^(7/10) 3645226708724713 a001 139583862445/54018521*1568397607^(1/8) 3645226708724713 a001 24157817/2537720636*17393796001^(9/14) 3645226708724713 a001 1134903170/54018521*9062201101803^(1/4) 3645226708724713 a001 24157817/2537720636*505019158607^(9/16) 3645226708724713 a001 24157817/2537720636*192900153618^(7/12) 3645226708724713 a001 365435296162/54018521*599074578^(1/12) 3645226708724713 a001 24157817/73681302247*1568397607^(7/8) 3645226708724713 a001 12586269025/54018521*599074578^(1/4) 3645226708724713 a001 433494437/54018521*2537720636^(7/18) 3645226708724713 a001 20365011074/370248451*33385282^(3/8) 3645226708724713 a001 433494437/54018521*17393796001^(5/14) 3645226708724713 a001 433494437/54018521*312119004989^(7/22) 3645226708724713 a001 24157817/969323029*2139295485799^(1/2) 3645226708724713 a001 433494437/54018521*14662949395604^(5/18) 3645226708724713 a001 433494437/54018521*28143753123^(7/20) 3645226708724713 a001 591286729879/54018521*228826127^(1/16) 3645226708724713 a001 433494437/54018521*599074578^(5/12) 3645226708724713 a001 24157817/2537720636*599074578^(3/4) 3645226708724713 a001 24157817/73681302247*599074578^(11/12) 3645226708724713 a001 53316291173/54018521*228826127^(3/16) 3645226708724713 a001 4807526976/54018521*228826127^(5/16) 3645226708724713 a001 24157817/370248451*2537720636^(11/18) 3645226708724713 a001 24157817/370248451*312119004989^(1/2) 3645226708724713 a001 24157817/370248451*3461452808002^(11/24) 3645226708724713 a001 165580141/54018521*73681302247^(3/8) 3645226708724713 a001 24157817/370248451*28143753123^(11/20) 3645226708724713 a001 24157817/370248451*1568397607^(5/8) 3645226708724713 a001 433494437/54018521*228826127^(7/16) 3645226708724713 a001 267914296/87403803*33385282^(13/24) 3645226708724713 a001 24157817/4106118243*228826127^(13/16) 3645226708724713 a001 24157817/45537549124*228826127^(15/16) 3645226708724713 a001 24157817/370248451*228826127^(11/16) 3645226708724713 a001 20365011074/54018521*87403803^(1/4) 3645226708724713 a001 956722026041/54018521*33385282^(1/24) 3645226708724713 a001 7778742049/141422324*33385282^(3/8) 3645226708724713 a001 2971215073/228826127*33385282^(11/24) 3645226708724713 a001 63245986/54018521*969323029^(1/2) 3645226708724713 a001 24157817/141422324*45537549124^(1/2) 3645226708724713 a001 7778742049/599074578*33385282^(11/24) 3645226708724713 a001 20365011074/1568397607*33385282^(11/24) 3645226708724714 a001 53316291173/4106118243*33385282^(11/24) 3645226708724714 a001 139583862445/10749957122*33385282^(11/24) 3645226708724714 a001 365435296162/28143753123*33385282^(11/24) 3645226708724714 a001 956722026041/73681302247*33385282^(11/24) 3645226708724714 a001 2504730781961/192900153618*33385282^(11/24) 3645226708724714 a001 10610209857723/817138163596*33385282^(11/24) 3645226708724714 a001 4052739537881/312119004989*33385282^(11/24) 3645226708724714 a001 1548008755920/119218851371*33385282^(11/24) 3645226708724714 a001 591286729879/45537549124*33385282^(11/24) 3645226708724714 a001 7787980473/599786069*33385282^(11/24) 3645226708724714 a001 86267571272/6643838879*33385282^(11/24) 3645226708724714 a001 32951280099/2537720636*33385282^(11/24) 3645226708724714 a001 12586269025/969323029*33385282^(11/24) 3645226708724714 a001 4807526976/370248451*33385282^(11/24) 3645226708724714 a001 24157817/599074578*87403803^(3/4) 3645226708724714 a001 225851433717/54018521*33385282^(1/8) 3645226708724714 a001 1836311903/141422324*33385282^(11/24) 3645226708724714 a001 701408733/228826127*33385282^(13/24) 3645226708724714 a001 63245986/87403803*33385282^(5/8) 3645226708724714 a001 1836311903/599074578*33385282^(13/24) 3645226708724714 a001 39088169/228826127*33385282^(17/24) 3645226708724714 a001 686789568/224056801*33385282^(13/24) 3645226708724714 a001 12586269025/4106118243*33385282^(13/24) 3645226708724714 a001 32951280099/10749957122*33385282^(13/24) 3645226708724714 a001 86267571272/28143753123*33385282^(13/24) 3645226708724714 a001 32264490531/10525900321*33385282^(13/24) 3645226708724714 a001 591286729879/192900153618*33385282^(13/24) 3645226708724714 a001 1548008755920/505019158607*33385282^(13/24) 3645226708724714 a001 1515744265389/494493258286*33385282^(13/24) 3645226708724714 a001 2504730781961/817138163596*33385282^(13/24) 3645226708724714 a001 956722026041/312119004989*33385282^(13/24) 3645226708724714 a001 365435296162/119218851371*33385282^(13/24) 3645226708724714 a001 139583862445/45537549124*33385282^(13/24) 3645226708724714 a001 53316291173/17393796001*33385282^(13/24) 3645226708724714 a001 20365011074/6643838879*33385282^(13/24) 3645226708724714 a001 7778742049/2537720636*33385282^(13/24) 3645226708724714 a001 2971215073/969323029*33385282^(13/24) 3645226708724714 a001 1134903170/370248451*33385282^(13/24) 3645226708724714 a001 53316291173/54018521*33385282^(5/24) 3645226708724714 a001 433494437/141422324*33385282^(13/24) 3645226708724714 a001 165580141/228826127*33385282^(5/8) 3645226708724714 a001 9227465/141422324*20633239^(11/14) 3645226708724714 a001 433494437/599074578*33385282^(5/8) 3645226708724714 a001 1134903170/1568397607*33385282^(5/8) 3645226708724714 a001 2971215073/4106118243*33385282^(5/8) 3645226708724714 a001 7778742049/10749957122*33385282^(5/8) 3645226708724714 a001 20365011074/28143753123*33385282^(5/8) 3645226708724714 a001 53316291173/73681302247*33385282^(5/8) 3645226708724714 a001 139583862445/192900153618*33385282^(5/8) 3645226708724714 a001 365435296162/505019158607*33385282^(5/8) 3645226708724714 a001 10610209857723/14662949395604*33385282^(5/8) 3645226708724714 a001 225851433717/312119004989*33385282^(5/8) 3645226708724714 a001 86267571272/119218851371*33385282^(5/8) 3645226708724714 a001 32951280099/45537549124*33385282^(5/8) 3645226708724714 a001 12586269025/17393796001*33385282^(5/8) 3645226708724714 a001 4807526976/6643838879*33385282^(5/8) 3645226708724714 a001 1836311903/2537720636*33385282^(5/8) 3645226708724714 a001 701408733/969323029*33385282^(5/8) 3645226708724714 a001 267914296/370248451*33385282^(5/8) 3645226708724714 a001 39088169/969323029*33385282^(19/24) 3645226708724714 a001 102334155/141422324*33385282^(5/8) 3645226708724714 a001 12586269025/54018521*33385282^(7/24) 3645226708724714 a001 34111385/199691526*33385282^(17/24) 3645226708724714 a001 267914296/1568397607*33385282^(17/24) 3645226708724714 a001 233802911/1368706081*33385282^(17/24) 3645226708724714 a001 1836311903/10749957122*33385282^(17/24) 3645226708724714 a001 1602508992/9381251041*33385282^(17/24) 3645226708724714 a001 12586269025/73681302247*33385282^(17/24) 3645226708724714 a001 10983760033/64300051206*33385282^(17/24) 3645226708724714 a001 86267571272/505019158607*33385282^(17/24) 3645226708724714 a001 75283811239/440719107401*33385282^(17/24) 3645226708724714 a001 2504730781961/14662949395604*33385282^(17/24) 3645226708724714 a001 139583862445/817138163596*33385282^(17/24) 3645226708724714 a001 53316291173/312119004989*33385282^(17/24) 3645226708724714 a001 20365011074/119218851371*33385282^(17/24) 3645226708724714 a001 7778742049/45537549124*33385282^(17/24) 3645226708724714 a001 2971215073/17393796001*33385282^(17/24) 3645226708724714 a001 1134903170/6643838879*33385282^(17/24) 3645226708724714 a001 433494437/2537720636*33385282^(17/24) 3645226708724714 a001 10182505537/16692641*12752043^(1/4) 3645226708724714 a001 165580141/969323029*33385282^(17/24) 3645226708724714 a001 39088169/4106118243*33385282^(7/8) 3645226708724714 a001 2971215073/54018521*33385282^(3/8) 3645226708724715 a001 24157817/54018521*6643838879^(1/2) 3645226708724715 a001 9303105/230701876*33385282^(19/24) 3645226708724715 a001 63245986/370248451*33385282^(17/24) 3645226708724715 a001 267914296/6643838879*33385282^(19/24) 3645226708724715 a001 701408733/17393796001*33385282^(19/24) 3645226708724715 a001 1836311903/45537549124*33385282^(19/24) 3645226708724715 a001 4807526976/119218851371*33385282^(19/24) 3645226708724715 a001 1144206275/28374454999*33385282^(19/24) 3645226708724715 a001 32951280099/817138163596*33385282^(19/24) 3645226708724715 a001 86267571272/2139295485799*33385282^(19/24) 3645226708724715 a001 225851433717/5600748293801*33385282^(19/24) 3645226708724715 a001 591286729879/14662949395604*33385282^(19/24) 3645226708724715 a001 365435296162/9062201101803*33385282^(19/24) 3645226708724715 a001 139583862445/3461452808002*33385282^(19/24) 3645226708724715 a001 53316291173/1322157322203*33385282^(19/24) 3645226708724715 a001 20365011074/505019158607*33385282^(19/24) 3645226708724715 a001 7778742049/192900153618*33385282^(19/24) 3645226708724715 a001 2971215073/73681302247*33385282^(19/24) 3645226708724715 a001 1134903170/28143753123*33385282^(19/24) 3645226708724715 a001 433494437/10749957122*33385282^(19/24) 3645226708724715 a001 165580141/4106118243*33385282^(19/24) 3645226708724715 a001 39088169/17393796001*33385282^(23/24) 3645226708724715 a001 3524578/370248451*7881196^(21/22) 3645226708724715 a001 701408733/54018521*33385282^(11/24) 3645226708724715 a001 63245986/1568397607*33385282^(19/24) 3645226708724715 a001 102334155/10749957122*33385282^(7/8) 3645226708724715 a001 39088169/54018521*33385282^(5/8) 3645226708724715 a001 267914296/28143753123*33385282^(7/8) 3645226708724715 a001 701408733/73681302247*33385282^(7/8) 3645226708724715 a001 1836311903/192900153618*33385282^(7/8) 3645226708724715 a001 102287808/10745088481*33385282^(7/8) 3645226708724715 a001 12586269025/1322157322203*33385282^(7/8) 3645226708724715 a001 32951280099/3461452808002*33385282^(7/8) 3645226708724715 a001 86267571272/9062201101803*33385282^(7/8) 3645226708724715 a001 225851433717/23725150497407*33385282^(7/8) 3645226708724715 a001 139583862445/14662949395604*33385282^(7/8) 3645226708724715 a001 53316291173/5600748293801*33385282^(7/8) 3645226708724715 a001 20365011074/2139295485799*33385282^(7/8) 3645226708724715 a001 7778742049/817138163596*33385282^(7/8) 3645226708724715 a001 2971215073/312119004989*33385282^(7/8) 3645226708724715 a001 1134903170/119218851371*33385282^(7/8) 3645226708724715 a001 433494437/45537549124*33385282^(7/8) 3645226708724715 a001 165580141/17393796001*33385282^(7/8) 3645226708724715 a001 63245986/6643838879*33385282^(7/8) 3645226708724715 a001 165580141/54018521*33385282^(13/24) 3645226708724715 a001 102334155/45537549124*33385282^(23/24) 3645226708724715 a001 267914296/119218851371*33385282^(23/24) 3645226708724715 a001 3524667/1568437211*33385282^(23/24) 3645226708724715 a001 1836311903/817138163596*33385282^(23/24) 3645226708724715 a001 4807526976/2139295485799*33385282^(23/24) 3645226708724715 a001 12586269025/5600748293801*33385282^(23/24) 3645226708724715 a001 32951280099/14662949395604*33385282^(23/24) 3645226708724715 a001 53316291173/23725150497407*33385282^(23/24) 3645226708724715 a001 20365011074/9062201101803*33385282^(23/24) 3645226708724715 a001 7778742049/3461452808002*33385282^(23/24) 3645226708724715 a001 2971215073/1322157322203*33385282^(23/24) 3645226708724715 a001 1134903170/505019158607*33385282^(23/24) 3645226708724715 a001 433494437/192900153618*33385282^(23/24) 3645226708724715 a001 165580141/73681302247*33385282^(23/24) 3645226708724715 a001 63245986/28143753123*33385282^(23/24) 3645226708724716 a001 24157817/141422324*33385282^(17/24) 3645226708724716 a001 24157817/599074578*33385282^(19/24) 3645226708724716 a001 24157817/2537720636*33385282^(7/8) 3645226708724716 a001 165580141/20633239*20633239^(1/2) 3645226708724716 a001 20365011074/4870847*1860498^(3/20) 3645226708724716 a001 24157817/10749957122*33385282^(23/24) 3645226708724717 a001 53316291173/87403803*12752043^(1/4) 3645226708724717 a001 14930352/20633239*2537720636^(1/2) 3645226708724717 a001 9227465/33385282*17393796001^(1/2) 3645226708724717 a001 14930352/20633239*312119004989^(9/22) 3645226708724717 a001 9227465/33385282*14662949395604^(7/18) 3645226708724717 a001 14930352/20633239*14662949395604^(5/14) 3645226708724717 a001 9227465/33385282*505019158607^(7/16) 3645226708724717 a001 14930352/20633239*192900153618^(5/12) 3645226708724717 a001 14930352/20633239*28143753123^(9/20) 3645226708724717 a001 9227465/33385282*599074578^(7/12) 3645226708724717 a001 14930352/20633239*228826127^(9/16) 3645226708724718 a001 1836311903/20633239*20633239^(5/14) 3645226708724718 a001 139583862445/228826127*12752043^(1/4) 3645226708724718 a001 182717648081/299537289*12752043^(1/4) 3645226708724718 a001 956722026041/1568397607*12752043^(1/4) 3645226708724718 a001 2504730781961/4106118243*12752043^(1/4) 3645226708724718 a001 3278735159921/5374978561*12752043^(1/4) 3645226708724718 a001 10610209857723/17393796001*12752043^(1/4) 3645226708724718 a001 4052739537881/6643838879*12752043^(1/4) 3645226708724718 a001 1134903780/1860499*12752043^(1/4) 3645226708724718 a001 591286729879/969323029*12752043^(1/4) 3645226708724718 a001 225851433717/370248451*12752043^(1/4) 3645226708724718 a001 21566892818/35355581*12752043^(1/4) 3645226708724718 a001 365435296162/20633239*7881196^(1/22) 3645226708724718 a001 4807526976/20633239*20633239^(3/10) 3645226708724719 a001 20365011074/20633239*20633239^(3/14) 3645226708724719 a001 32951280099/54018521*12752043^(1/4) 3645226708724719 a001 14930352/20633239*33385282^(5/8) 3645226708724720 a001 3524578/87403803*7881196^(19/22) 3645226708724720 a001 139583862445/20633239*20633239^(1/10) 3645226708724720 a001 9303105/1875749*54018521^(1/2) 3645226708724720 a001 7787980473/711491*20633239^(1/14) 3645226708724720 a001 39088169/20633239*370248451^(1/2) 3645226708724720 a001 9227465/87403803*119218851371^(1/2) 3645226708724720 a001 9227465/1568397607*141422324^(5/6) 3645226708724720 a001 9227465/228826127*817138163596^(1/2) 3645226708724721 a001 32951280099/20633239*141422324^(1/6) 3645226708724721 a001 9238424/711491*312119004989^(3/10) 3645226708724721 a001 9227465/599074578*5600748293801^(1/2) 3645226708724721 a001 9238424/711491*1568397607^(3/8) 3645226708724721 a001 9227465/1568397607*2537720636^(13/18) 3645226708724721 a001 9227465/1568397607*312119004989^(13/22) 3645226708724721 a001 701408733/20633239*1322157322203^(1/4) 3645226708724721 a001 9227465/1568397607*73681302247^(5/8) 3645226708724721 a001 9227465/1568397607*28143753123^(13/20) 3645226708724721 a001 9227465/192900153618*2537720636^(17/18) 3645226708724721 a001 9227465/73681302247*2537720636^(9/10) 3645226708724721 a001 9227465/17393796001*2537720636^(5/6) 3645226708724721 a001 1836311903/20633239*2537720636^(5/18) 3645226708724721 a001 1836311903/20633239*312119004989^(5/22) 3645226708724721 a001 1836311903/20633239*3461452808002^(5/24) 3645226708724721 a001 1836311903/20633239*28143753123^(1/4) 3645226708724721 a001 20365011074/20633239*2537720636^(1/6) 3645226708724721 a001 86267571272/20633239*2537720636^(1/10) 3645226708724721 a001 9227465/4106118243*4106118243^(3/4) 3645226708724721 a001 4807526976/20633239*17393796001^(3/14) 3645226708724721 a001 4807526976/20633239*14662949395604^(1/6) 3645226708724721 a001 7787980473/711491*2537720636^(1/18) 3645226708724721 a001 9227465/28143753123*17393796001^(11/14) 3645226708724721 a001 9227465/817138163596*17393796001^(13/14) 3645226708724721 a001 1144206275/1875749*45537549124^(1/6) 3645226708724721 a001 9227465/28143753123*14662949395604^(11/18) 3645226708724721 a001 9227465/28143753123*505019158607^(11/16) 3645226708724721 a001 9227465/192900153618*45537549124^(5/6) 3645226708724721 a001 139583862445/20633239*17393796001^(1/14) 3645226708724721 a001 9227465/73681302247*14662949395604^(9/14) 3645226708724721 a001 32951280099/20633239*73681302247^(1/8) 3645226708724721 a001 9227465/192900153618*312119004989^(17/22) 3645226708724721 a001 86267571272/20633239*14662949395604^(1/14) 3645226708724721 a001 86267571272/20633239*192900153618^(1/12) 3645226708724721 a001 9227465/5600748293801*312119004989^(9/10) 3645226708724721 a001 9227465/2139295485799*312119004989^(19/22) 3645226708724721 a001 7787980473/711491*312119004989^(1/22) 3645226708724721 a001 9227465/1322157322203*9062201101803^(3/4) 3645226708724721 a001 9227465/817138163596*14662949395604^(13/18) 3645226708724721 a001 9227465/23725150497407*505019158607^(15/16) 3645226708724721 a001 139583862445/20633239*14662949395604^(1/18) 3645226708724721 a001 9227465/312119004989*1322157322203^(3/4) 3645226708724721 a001 9227465/5600748293801*192900153618^(11/12) 3645226708724721 a001 7787980473/711491*28143753123^(1/20) 3645226708724721 a001 53316291173/20633239*312119004989^(1/10) 3645226708724721 a001 9227465/817138163596*73681302247^(7/8) 3645226708724721 a001 20365011074/20633239*312119004989^(3/22) 3645226708724721 a001 20365011074/20633239*28143753123^(3/20) 3645226708724721 a001 9227465/192900153618*28143753123^(17/20) 3645226708724721 a001 9227465/2139295485799*28143753123^(19/20) 3645226708724721 a001 9227465/17393796001*312119004989^(15/22) 3645226708724721 a001 7778742049/20633239*817138163596^(1/6) 3645226708724721 a001 9227465/17393796001*3461452808002^(5/8) 3645226708724721 a001 9227465/17393796001*28143753123^(3/4) 3645226708724721 a001 2971215073/20633239*4106118243^(1/4) 3645226708724721 a001 53316291173/20633239*1568397607^(1/8) 3645226708724721 a001 1134903170/20633239*2537720636^(3/10) 3645226708724721 a001 1134903170/20633239*14662949395604^(3/14) 3645226708724721 a001 1134903170/20633239*192900153618^(1/4) 3645226708724721 a001 139583862445/20633239*599074578^(1/12) 3645226708724721 a001 9227465/28143753123*1568397607^(7/8) 3645226708724721 a001 4807526976/20633239*599074578^(1/4) 3645226708724721 a001 9227465/969323029*2537720636^(7/10) 3645226708724721 a001 9227465/969323029*17393796001^(9/14) 3645226708724721 a001 9227465/969323029*14662949395604^(1/2) 3645226708724721 a001 433494437/20633239*9062201101803^(1/4) 3645226708724721 a001 9227465/969323029*505019158607^(9/16) 3645226708724721 a001 9227465/969323029*192900153618^(7/12) 3645226708724721 a001 7787980473/711491*228826127^(1/16) 3645226708724721 a001 9227465/28143753123*599074578^(11/12) 3645226708724721 a001 9227465/969323029*599074578^(3/4) 3645226708724721 a001 20365011074/20633239*228826127^(3/16) 3645226708724721 a001 1836311903/20633239*228826127^(5/16) 3645226708724721 a001 165580141/20633239*2537720636^(7/18) 3645226708724721 a001 165580141/20633239*17393796001^(5/14) 3645226708724721 a001 165580141/20633239*312119004989^(7/22) 3645226708724721 a001 165580141/20633239*14662949395604^(5/18) 3645226708724721 a001 165580141/20633239*505019158607^(5/16) 3645226708724721 a001 165580141/20633239*28143753123^(7/20) 3645226708724721 a001 165580141/20633239*599074578^(5/12) 3645226708724721 a001 9227465/1568397607*228826127^(13/16) 3645226708724721 a001 165580141/20633239*228826127^(7/16) 3645226708724721 a001 9227465/17393796001*228826127^(15/16) 3645226708724721 a001 63245986/20633239*141422324^(1/2) 3645226708724721 a001 7778742049/20633239*87403803^(1/4) 3645226708724721 a001 365435296162/20633239*33385282^(1/24) 3645226708724721 a001 9227465/141422324*2537720636^(11/18) 3645226708724721 a001 9227465/141422324*312119004989^(1/2) 3645226708724721 a001 9227465/141422324*3461452808002^(11/24) 3645226708724721 a001 63245986/20633239*73681302247^(3/8) 3645226708724721 a001 9227465/141422324*28143753123^(11/20) 3645226708724721 a001 9227465/141422324*1568397607^(5/8) 3645226708724721 a001 9227465/141422324*228826127^(11/16) 3645226708724721 a001 9227465/228826127*87403803^(3/4) 3645226708724721 a001 86267571272/20633239*33385282^(1/8) 3645226708724721 a001 20365011074/20633239*33385282^(5/24) 3645226708724722 a001 4807526976/20633239*33385282^(7/24) 3645226708724722 a001 1134903170/20633239*33385282^(3/8) 3645226708724722 a001 24157817/20633239*969323029^(1/2) 3645226708724722 a001 9227465/54018521*45537549124^(1/2) 3645226708724722 a001 9238424/711491*33385282^(11/24) 3645226708724723 a001 63245986/20633239*33385282^(13/24) 3645226708724723 a001 3524578/54018521*7881196^(5/6) 3645226708724723 a001 9227465/228826127*33385282^(19/24) 3645226708724723 a001 9227465/969323029*33385282^(7/8) 3645226708724724 a001 9227465/4106118243*33385282^(23/24) 3645226708724724 a001 9227465/54018521*33385282^(17/24) 3645226708724725 a001 4976784/29134601*12752043^(3/4) 3645226708724726 a001 1144206275/1875749*12752043^(1/4) 3645226708724728 a001 39088169/228826127*12752043^(3/4) 3645226708724729 a001 34111385/199691526*12752043^(3/4) 3645226708724729 a001 267914296/1568397607*12752043^(3/4) 3645226708724729 a001 233802911/1368706081*12752043^(3/4) 3645226708724729 a001 1836311903/10749957122*12752043^(3/4) 3645226708724729 a001 1602508992/9381251041*12752043^(3/4) 3645226708724729 a001 12586269025/73681302247*12752043^(3/4) 3645226708724729 a001 10983760033/64300051206*12752043^(3/4) 3645226708724729 a001 86267571272/505019158607*12752043^(3/4) 3645226708724729 a001 75283811239/440719107401*12752043^(3/4) 3645226708724729 a001 2504730781961/14662949395604*12752043^(3/4) 3645226708724729 a001 139583862445/817138163596*12752043^(3/4) 3645226708724729 a001 53316291173/312119004989*12752043^(3/4) 3645226708724729 a001 20365011074/119218851371*12752043^(3/4) 3645226708724729 a001 7778742049/45537549124*12752043^(3/4) 3645226708724729 a001 2971215073/17393796001*12752043^(3/4) 3645226708724729 a001 1134903170/6643838879*12752043^(3/4) 3645226708724729 a001 433494437/2537720636*12752043^(3/4) 3645226708724729 a001 165580141/969323029*12752043^(3/4) 3645226708724729 a001 63245986/370248451*12752043^(3/4) 3645226708724729 a001 9227465/20633239*6643838879^(1/2) 3645226708724730 a001 24157817/141422324*12752043^(3/4) 3645226708724734 a001 3524578/20633239*7881196^(17/22) 3645226708724737 a001 24157817/7881196*7881196^(13/22) 3645226708724739 a001 9227465/54018521*12752043^(3/4) 3645226708724741 a001 102334155/7881196*7881196^(1/2) 3645226708724742 a001 75283811239/4250681*1860498^(1/20) 3645226708724742 a001 3524578/12752043*20633239^(7/10) 3645226708724743 a001 5702887/7881196*20633239^(9/14) 3645226708724747 a001 433494437/7881196*7881196^(9/22) 3645226708724748 a001 5702887/7881196*2537720636^(1/2) 3645226708724748 a001 3524578/12752043*17393796001^(1/2) 3645226708724748 a001 5702887/7881196*312119004989^(9/22) 3645226708724748 a001 3524578/12752043*14662949395604^(7/18) 3645226708724748 a001 3524578/12752043*505019158607^(7/16) 3645226708724748 a001 5702887/7881196*192900153618^(5/12) 3645226708724748 a001 5702887/7881196*28143753123^(9/20) 3645226708724748 a001 3524578/12752043*599074578^(7/12) 3645226708724748 a001 5702887/7881196*228826127^(9/16) 3645226708724750 a001 5702887/7881196*33385282^(5/8) 3645226708724752 a001 1836311903/7881196*7881196^(7/22) 3645226708724757 a001 7778742049/7881196*7881196^(5/22) 3645226708724761 a001 10182505537/3940598*7881196^(1/6) 3645226708724761 a001 591286729879/33385282*1860498^(1/20) 3645226708724763 a001 32951280099/7881196*7881196^(3/22) 3645226708724763 a001 1762289/299537289*20633239^(13/14) 3645226708724763 a001 3524578/370248451*20633239^(9/10) 3645226708724764 a001 516002918640/29134601*1860498^(1/20) 3645226708724765 a001 4052739537881/228826127*1860498^(1/20) 3645226708724765 a001 3536736619241/199691526*1860498^(1/20) 3645226708724765 a001 6557470319842/370248451*1860498^(1/20) 3645226708724765 a001 2504730781961/141422324*1860498^(1/20) 3645226708724765 a001 3524578/54018521*20633239^(11/14) 3645226708724766 a001 956722026041/54018521*1860498^(1/20) 3645226708724767 a001 31622993/3940598*20633239^(1/2) 3645226708724767 a001 3732588/1970299*370248451^(1/2) 3645226708724767 a001 1762289/16692641*119218851371^(1/2) 3645226708724768 a001 3524667/39604*20633239^(5/14) 3645226708724768 a001 139583862445/7881196*7881196^(1/22) 3645226708724768 a001 1836311903/7881196*20633239^(3/10) 3645226708724769 a001 7778742049/7881196*20633239^(3/14) 3645226708724770 a001 39088169/7881196*54018521^(1/2) 3645226708724770 a001 53316291173/7881196*20633239^(1/10) 3645226708724770 a001 21566892818/1970299*20633239^(1/14) 3645226708724770 a001 3524578/87403803*817138163596^(1/2) 3645226708724771 a001 1762289/299537289*141422324^(5/6) 3645226708724771 a001 3524578/87403803*87403803^(3/4) 3645226708724771 a001 102334155/7881196*312119004989^(3/10) 3645226708724771 a001 3524578/228826127*5600748293801^(1/2) 3645226708724771 a001 102334155/7881196*1568397607^(3/8) 3645226708724771 a001 12586269025/7881196*141422324^(1/6) 3645226708724771 a001 1762289/299537289*2537720636^(13/18) 3645226708724771 a001 1762289/299537289*312119004989^(13/22) 3645226708724771 a001 1762289/299537289*3461452808002^(13/24) 3645226708724771 a001 66978574/1970299*1322157322203^(1/4) 3645226708724771 a001 1762289/299537289*73681302247^(5/8) 3645226708724771 a001 1762289/299537289*28143753123^(13/20) 3645226708724771 a001 3524667/39604*2537720636^(5/18) 3645226708724771 a001 3524667/39604*312119004989^(5/22) 3645226708724771 a001 3524667/39604*3461452808002^(5/24) 3645226708724771 a001 3524667/39604*28143753123^(1/4) 3645226708724771 a001 3524578/1568397607*4106118243^(3/4) 3645226708724771 a001 3524578/73681302247*2537720636^(17/18) 3645226708724771 a001 3524578/28143753123*2537720636^(9/10) 3645226708724771 a001 3524578/6643838879*2537720636^(5/6) 3645226708724771 a001 1836311903/7881196*17393796001^(3/14) 3645226708724771 a001 1836311903/7881196*14662949395604^(1/6) 3645226708724771 a001 7778742049/7881196*2537720636^(1/6) 3645226708724771 a001 32951280099/7881196*2537720636^(1/10) 3645226708724771 a001 1762289/5374978561*17393796001^(11/14) 3645226708724771 a001 1201881744/1970299*45537549124^(1/6) 3645226708724771 a001 21566892818/1970299*2537720636^(1/18) 3645226708724771 a001 1762289/5374978561*14662949395604^(11/18) 3645226708724771 a001 1762289/5374978561*505019158607^(11/16) 3645226708724771 a001 3524578/312119004989*17393796001^(13/14) 3645226708724771 a001 3524578/28143753123*14662949395604^(9/14) 3645226708724771 a001 3524578/28143753123*192900153618^(3/4) 3645226708724771 a001 12586269025/7881196*73681302247^(1/8) 3645226708724771 a001 3524578/73681302247*45537549124^(5/6) 3645226708724771 a001 3524578/73681302247*312119004989^(17/22) 3645226708724771 a001 32951280099/7881196*14662949395604^(1/14) 3645226708724771 a001 32951280099/7881196*192900153618^(1/12) 3645226708724771 a001 53316291173/7881196*17393796001^(1/14) 3645226708724771 a001 21566892818/1970299*312119004989^(1/22) 3645226708724771 a001 3524578/2139295485799*312119004989^(9/10) 3645226708724771 a001 1762289/408569081798*312119004989^(19/22) 3645226708724771 a001 3524578/505019158607*9062201101803^(3/4) 3645226708724771 a001 1762289/408569081798*3461452808002^(19/24) 3645226708724771 a001 3524578/9062201101803*505019158607^(15/16) 3645226708724771 a001 3524578/312119004989*14662949395604^(13/18) 3645226708724771 a001 3524578/312119004989*505019158607^(13/16) 3645226708724771 a001 3524578/2139295485799*192900153618^(11/12) 3645226708724771 a001 21566892818/1970299*28143753123^(1/20) 3645226708724771 a001 53316291173/7881196*14662949395604^(1/18) 3645226708724771 a001 3524578/119218851371*1322157322203^(3/4) 3645226708724771 a001 3524578/312119004989*73681302247^(7/8) 3645226708724771 a001 10182505537/3940598*312119004989^(1/10) 3645226708724771 a001 3524578/73681302247*28143753123^(17/20) 3645226708724771 a001 1762289/408569081798*28143753123^(19/20) 3645226708724771 a001 7778742049/7881196*312119004989^(3/22) 3645226708724771 a001 7778742049/7881196*28143753123^(3/20) 3645226708724771 a001 3524578/6643838879*312119004989^(15/22) 3645226708724771 a001 2971215073/7881196*817138163596^(1/6) 3645226708724771 a001 3524578/6643838879*3461452808002^(5/8) 3645226708724771 a001 3524578/6643838879*28143753123^(3/4) 3645226708724771 a001 10182505537/3940598*1568397607^(1/8) 3645226708724771 a001 567451585/3940598*4106118243^(1/4) 3645226708724771 a001 53316291173/7881196*599074578^(1/12) 3645226708724771 a001 1762289/5374978561*1568397607^(7/8) 3645226708724771 a001 1836311903/7881196*599074578^(1/4) 3645226708724771 a001 433494437/7881196*2537720636^(3/10) 3645226708724771 a001 433494437/7881196*14662949395604^(3/14) 3645226708724771 a001 433494437/7881196*192900153618^(1/4) 3645226708724771 a001 21566892818/1970299*228826127^(1/16) 3645226708724771 a001 1762289/5374978561*599074578^(11/12) 3645226708724771 a001 7778742049/7881196*228826127^(3/16) 3645226708724771 a001 3524667/39604*228826127^(5/16) 3645226708724771 a001 3524578/370248451*2537720636^(7/10) 3645226708724771 a001 3524578/370248451*17393796001^(9/14) 3645226708724771 a001 165580141/7881196*9062201101803^(1/4) 3645226708724771 a001 3524578/370248451*505019158607^(9/16) 3645226708724771 a001 3524578/370248451*192900153618^(7/12) 3645226708724771 a001 3524578/370248451*599074578^(3/4) 3645226708724771 a001 1762289/299537289*228826127^(13/16) 3645226708724771 a001 3524578/6643838879*228826127^(15/16) 3645226708724771 a001 2971215073/7881196*87403803^(1/4) 3645226708724771 a001 139583862445/7881196*33385282^(1/24) 3645226708724771 a001 31622993/3940598*2537720636^(7/18) 3645226708724771 a001 31622993/3940598*17393796001^(5/14) 3645226708724771 a001 31622993/3940598*312119004989^(7/22) 3645226708724771 a001 1762289/70711162*2139295485799^(1/2) 3645226708724771 a001 31622993/3940598*505019158607^(5/16) 3645226708724771 a001 31622993/3940598*28143753123^(7/20) 3645226708724771 a001 31622993/3940598*599074578^(5/12) 3645226708724771 a001 31622993/3940598*228826127^(7/16) 3645226708724771 a001 32951280099/7881196*33385282^(1/8) 3645226708724771 a001 7778742049/7881196*33385282^(5/24) 3645226708724772 a001 1836311903/7881196*33385282^(7/24) 3645226708724772 a001 24157817/7881196*141422324^(1/2) 3645226708724772 a001 433494437/7881196*33385282^(3/8) 3645226708724772 a001 3524578/54018521*2537720636^(11/18) 3645226708724772 a001 3524578/54018521*312119004989^(1/2) 3645226708724772 a001 3524578/54018521*3461452808002^(11/24) 3645226708724772 a001 24157817/7881196*73681302247^(3/8) 3645226708724772 a001 3524578/54018521*28143753123^(11/20) 3645226708724772 a001 3524578/54018521*1568397607^(5/8) 3645226708724772 a001 3524578/54018521*228826127^(11/16) 3645226708724772 a001 102334155/7881196*33385282^(11/24) 3645226708724773 a001 3524578/87403803*33385282^(19/24) 3645226708724773 a001 365435296162/20633239*1860498^(1/20) 3645226708724774 a001 3524578/370248451*33385282^(7/8) 3645226708724774 a001 24157817/7881196*33385282^(13/24) 3645226708724774 a001 3524578/1568397607*33385282^(23/24) 3645226708724776 a001 1201881744/1970299*12752043^(1/4) 3645226708724777 a001 139583862445/12752043*1860498^(1/12) 3645226708724779 a001 9227465/7881196*969323029^(1/2) 3645226708724779 a001 3524578/20633239*45537549124^(1/2) 3645226708724782 a001 3524578/20633239*33385282^(17/24) 3645226708724796 a001 3524578/20633239*12752043^(3/4) 3645226708724796 a001 182717648081/16692641*1860498^(1/12) 3645226708724799 a001 956722026041/87403803*1860498^(1/12) 3645226708724800 a001 2504730781961/228826127*1860498^(1/12) 3645226708724800 a001 3278735159921/299537289*1860498^(1/12) 3645226708724800 a001 10610209857723/969323029*1860498^(1/12) 3645226708724800 a001 4052739537881/370248451*1860498^(1/12) 3645226708724800 a001 387002188980/35355581*1860498^(1/12) 3645226708724801 a001 591286729879/54018521*1860498^(1/12) 3645226708724808 a001 7787980473/711491*1860498^(1/12) 3645226708724822 a001 4807526976/4870847*1860498^(1/4) 3645226708724823 a001 139583862445/7881196*1860498^(1/20) 3645226708724829 a001 1762289/3940598*6643838879^(1/2) 3645226708724848 a001 53316291173/12752043*1860498^(3/20) 3645226708724851 a001 1346269/1860498*1860498^(3/4) 3645226708724858 a001 21566892818/1970299*1860498^(1/12) 3645226708724867 a001 139583862445/33385282*1860498^(3/20) 3645226708724869 a001 365435296162/87403803*1860498^(3/20) 3645226708724870 a001 956722026041/228826127*1860498^(3/20) 3645226708724870 a001 2504730781961/599074578*1860498^(3/20) 3645226708724870 a001 6557470319842/1568397607*1860498^(3/20) 3645226708724870 a001 10610209857723/2537720636*1860498^(3/20) 3645226708724870 a001 4052739537881/969323029*1860498^(3/20) 3645226708724870 a001 1548008755920/370248451*1860498^(3/20) 3645226708724870 a001 591286729879/141422324*1860498^(3/20) 3645226708724871 a001 225851433717/54018521*1860498^(3/20) 3645226708724879 a001 86267571272/20633239*1860498^(3/20) 3645226708724913 a001 63245986/3010349*3010349^(1/2) 3645226708724921 a001 2178309/3010349*7881196^(15/22) 3645226708724927 a001 1134903170/4870847*1860498^(7/20) 3645226708724929 a001 32951280099/7881196*1860498^(3/20) 3645226708724953 a001 12586269025/12752043*1860498^(1/4) 3645226708724955 a001 1346269/4870847*20633239^(7/10) 3645226708724955 a001 2178309/3010349*20633239^(9/14) 3645226708724961 a001 2178309/3010349*2537720636^(1/2) 3645226708724961 a001 1346269/4870847*17393796001^(1/2) 3645226708724961 a001 2178309/3010349*312119004989^(9/22) 3645226708724961 a001 1346269/4870847*14662949395604^(7/18) 3645226708724961 a001 1346269/4870847*505019158607^(7/16) 3645226708724961 a001 2178309/3010349*192900153618^(5/12) 3645226708724961 a001 2178309/3010349*28143753123^(9/20) 3645226708724961 a001 1346269/4870847*599074578^(7/12) 3645226708724961 a001 2178309/3010349*228826127^(9/16) 3645226708724963 a001 2178309/3010349*33385282^(5/8) 3645226708724972 a001 32951280099/33385282*1860498^(1/4) 3645226708724975 a001 86267571272/87403803*1860498^(1/4) 3645226708724975 a001 225851433717/228826127*1860498^(1/4) 3645226708724975 a001 591286729879/599074578*1860498^(1/4) 3645226708724975 a001 1548008755920/1568397607*1860498^(1/4) 3645226708724975 a001 4052739537881/4106118243*1860498^(1/4) 3645226708724975 a001 4807525989/4870846*1860498^(1/4) 3645226708724975 a001 6557470319842/6643838879*1860498^(1/4) 3645226708724975 a001 2504730781961/2537720636*1860498^(1/4) 3645226708724975 a001 956722026041/969323029*1860498^(1/4) 3645226708724975 a001 365435296162/370248451*1860498^(1/4) 3645226708724975 a001 139583862445/141422324*1860498^(1/4) 3645226708724977 a001 53316291173/54018521*1860498^(1/4) 3645226708724984 a001 20365011074/20633239*1860498^(1/4) 3645226708724997 a001 433494437/4870847*1860498^(5/12) 3645226708725032 a001 267914296/4870847*1860498^(9/20) 3645226708725034 a001 7778742049/7881196*1860498^(1/4) 3645226708725058 a001 2971215073/12752043*1860498^(7/20) 3645226708725058 a001 1346269/141422324*7881196^(21/22) 3645226708725060 a001 1346269/33385282*7881196^(19/22) 3645226708725074 a001 1346269/20633239*7881196^(5/6) 3645226708725077 a001 7778742049/33385282*1860498^(7/20) 3645226708725080 a001 20365011074/87403803*1860498^(7/20) 3645226708725081 a001 53316291173/228826127*1860498^(7/20) 3645226708725081 a001 139583862445/599074578*1860498^(7/20) 3645226708725081 a001 365435296162/1568397607*1860498^(7/20) 3645226708725081 a001 956722026041/4106118243*1860498^(7/20) 3645226708725081 a001 2504730781961/10749957122*1860498^(7/20) 3645226708725081 a001 6557470319842/28143753123*1860498^(7/20) 3645226708725081 a001 10610209857723/45537549124*1860498^(7/20) 3645226708725081 a001 4052739537881/17393796001*1860498^(7/20) 3645226708725081 a001 1548008755920/6643838879*1860498^(7/20) 3645226708725081 a001 591286729879/2537720636*1860498^(7/20) 3645226708725081 a001 225851433717/969323029*1860498^(7/20) 3645226708725081 a001 86267571272/370248451*1860498^(7/20) 3645226708725081 a001 63246219/271444*1860498^(7/20) 3645226708725082 a001 12586269025/54018521*1860498^(7/20) 3645226708725084 a001 39088169/3010349*7881196^(1/2) 3645226708725088 a001 9227465/3010349*7881196^(13/22) 3645226708725089 a001 4807526976/20633239*1860498^(7/20) 3645226708725090 a001 165580141/3010349*7881196^(9/22) 3645226708725092 a001 5702887/3010349*370248451^(1/2) 3645226708725092 a001 1346269/12752043*119218851371^(1/2) 3645226708725096 a001 701408733/3010349*7881196^(7/22) 3645226708725101 a001 2971215073/3010349*7881196^(5/22) 3645226708725104 a001 7778742049/3010349*7881196^(1/6) 3645226708725106 a001 1346269/228826127*20633239^(13/14) 3645226708725106 a001 12586269025/3010349*7881196^(3/22) 3645226708725107 a001 1346269/141422324*20633239^(9/10) 3645226708725110 a001 14930352/3010349*54018521^(1/2) 3645226708725111 a001 1346269/33385282*817138163596^(1/2) 3645226708725111 a001 267914296/3010349*20633239^(5/14) 3645226708725111 a001 24157817/3010349*20633239^(1/2) 3645226708725111 a001 1346269/33385282*87403803^(3/4) 3645226708725112 a001 53316291173/3010349*7881196^(1/22) 3645226708725112 a001 701408733/3010349*20633239^(3/10) 3645226708725112 a001 2971215073/3010349*20633239^(3/14) 3645226708725113 a001 20365011074/3010349*20633239^(1/10) 3645226708725114 a001 1346269/33385282*33385282^(19/24) 3645226708725114 a001 32951280099/3010349*20633239^(1/14) 3645226708725114 a001 1346269/87403803*5600748293801^(1/2) 3645226708725114 a001 39088169/3010349*1568397607^(3/8) 3645226708725114 a001 1346269/228826127*141422324^(5/6) 3645226708725114 a001 1346269/228826127*2537720636^(13/18) 3645226708725114 a001 1346269/228826127*312119004989^(13/22) 3645226708725114 a001 102334155/3010349*1322157322203^(1/4) 3645226708725114 a001 1346269/228826127*73681302247^(5/8) 3645226708725114 a001 1346269/228826127*28143753123^(13/20) 3645226708725114 a001 4807526976/3010349*141422324^(1/6) 3645226708725114 a001 1346269/228826127*228826127^(13/16) 3645226708725114 a001 267914296/3010349*2537720636^(5/18) 3645226708725114 a001 267914296/3010349*312119004989^(5/22) 3645226708725114 a001 267914296/3010349*3461452808002^(5/24) 3645226708725114 a001 267914296/3010349*28143753123^(1/4) 3645226708725114 a001 1346269/599074578*4106118243^(3/4) 3645226708725114 a001 701408733/3010349*17393796001^(3/14) 3645226708725114 a001 701408733/3010349*14662949395604^(1/6) 3645226708725114 a001 1346269/10749957122*2537720636^(9/10) 3645226708725114 a001 1346269/28143753123*2537720636^(17/18) 3645226708725114 a001 1346269/4106118243*17393796001^(11/14) 3645226708725114 a001 1836311903/3010349*45537549124^(1/6) 3645226708725114 a001 1346269/4106118243*14662949395604^(11/18) 3645226708725114 a001 1346269/4106118243*505019158607^(11/16) 3645226708725114 a001 12586269025/3010349*2537720636^(1/10) 3645226708725114 a001 32951280099/3010349*2537720636^(1/18) 3645226708725114 a001 1346269/10749957122*14662949395604^(9/14) 3645226708725114 a001 1346269/10749957122*192900153618^(3/4) 3645226708725114 a001 4807526976/3010349*73681302247^(1/8) 3645226708725114 a001 2971215073/3010349*2537720636^(1/6) 3645226708725114 a001 1346269/119218851371*17393796001^(13/14) 3645226708725114 a001 1346269/28143753123*45537549124^(5/6) 3645226708725114 a001 1346269/28143753123*312119004989^(17/22) 3645226708725114 a001 12586269025/3010349*14662949395604^(1/14) 3645226708725114 a001 12586269025/3010349*192900153618^(1/12) 3645226708725114 a001 1346269/28143753123*28143753123^(17/20) 3645226708725114 a001 32951280099/3010349*312119004989^(1/22) 3645226708725114 a001 32951280099/3010349*28143753123^(1/20) 3645226708725114 a001 1346269/192900153618*9062201101803^(3/4) 3645226708725114 a001 1346269/3461452808002*312119004989^(21/22) 3645226708725114 a001 1346269/312119004989*312119004989^(19/22) 3645226708725114 a001 1346269/3461452808002*505019158607^(15/16) 3645226708725114 a001 1346269/312119004989*817138163596^(5/6) 3645226708725114 a001 1346269/312119004989*3461452808002^(19/24) 3645226708725114 a001 1346269/817138163596*192900153618^(11/12) 3645226708725114 a001 1346269/119218851371*14662949395604^(13/18) 3645226708725114 a001 1346269/119218851371*505019158607^(13/16) 3645226708725114 a001 1346269/119218851371*73681302247^(7/8) 3645226708725114 a001 20365011074/3010349*17393796001^(1/14) 3645226708725114 a001 20365011074/3010349*14662949395604^(1/18) 3645226708725114 a001 1346269/45537549124*1322157322203^(3/4) 3645226708725114 a001 1346269/312119004989*28143753123^(19/20) 3645226708725114 a001 7778742049/3010349*312119004989^(1/10) 3645226708725114 a001 2971215073/3010349*312119004989^(3/22) 3645226708725114 a001 2971215073/3010349*28143753123^(3/20) 3645226708725114 a001 1346269/2537720636*2537720636^(5/6) 3645226708725114 a001 7778742049/3010349*1568397607^(1/8) 3645226708725114 a001 1346269/2537720636*312119004989^(15/22) 3645226708725114 a001 1134903170/3010349*817138163596^(1/6) 3645226708725114 a001 1346269/2537720636*28143753123^(3/4) 3645226708725114 a001 20365011074/3010349*599074578^(1/12) 3645226708725114 a001 701408733/3010349*599074578^(1/4) 3645226708725114 a001 1346269/4106118243*1568397607^(7/8) 3645226708725114 a001 433494437/3010349*4106118243^(1/4) 3645226708725114 a001 32951280099/3010349*228826127^(1/16) 3645226708725114 a001 1346269/4106118243*599074578^(11/12) 3645226708725114 a001 267914296/3010349*228826127^(5/16) 3645226708725114 a001 2971215073/3010349*228826127^(3/16) 3645226708725114 a001 165580141/3010349*2537720636^(3/10) 3645226708725114 a001 165580141/3010349*14662949395604^(3/14) 3645226708725114 a001 165580141/3010349*192900153618^(1/4) 3645226708725114 a001 1346269/2537720636*228826127^(15/16) 3645226708725114 a001 1134903170/3010349*87403803^(1/4) 3645226708725114 a001 53316291173/3010349*33385282^(1/24) 3645226708725114 a001 1346269/141422324*2537720636^(7/10) 3645226708725114 a001 1346269/141422324*17393796001^(9/14) 3645226708725114 a001 1346269/141422324*14662949395604^(1/2) 3645226708725114 a001 1346269/141422324*505019158607^(9/16) 3645226708725114 a001 1346269/141422324*192900153618^(7/12) 3645226708725114 a001 1346269/141422324*599074578^(3/4) 3645226708725115 a001 12586269025/3010349*33385282^(1/8) 3645226708725115 a001 2971215073/3010349*33385282^(5/24) 3645226708725115 a001 701408733/3010349*33385282^(7/24) 3645226708725115 a001 39088169/3010349*33385282^(11/24) 3645226708725115 a001 24157817/3010349*2537720636^(7/18) 3645226708725115 a001 24157817/3010349*17393796001^(5/14) 3645226708725115 a001 24157817/3010349*312119004989^(7/22) 3645226708725115 a001 1346269/54018521*2139295485799^(1/2) 3645226708725115 a001 24157817/3010349*14662949395604^(5/18) 3645226708725115 a001 24157817/3010349*28143753123^(7/20) 3645226708725116 a001 165580141/3010349*33385282^(3/8) 3645226708725116 a001 24157817/3010349*599074578^(5/12) 3645226708725116 a001 24157817/3010349*228826127^(7/16) 3645226708725116 a001 1346269/20633239*20633239^(11/14) 3645226708725117 a001 1346269/141422324*33385282^(7/8) 3645226708725117 a001 1346269/599074578*33385282^(23/24) 3645226708725120 a001 1836311903/3010349*12752043^(1/4) 3645226708725123 a001 9227465/3010349*141422324^(1/2) 3645226708725123 a001 1346269/20633239*2537720636^(11/18) 3645226708725123 a001 1346269/20633239*312119004989^(1/2) 3645226708725123 a001 1346269/20633239*3461452808002^(11/24) 3645226708725123 a001 9227465/3010349*73681302247^(3/8) 3645226708725123 a001 1346269/20633239*28143753123^(11/20) 3645226708725123 a001 1346269/20633239*1568397607^(5/8) 3645226708725123 a001 1346269/20633239*228826127^(11/16) 3645226708725125 a001 9227465/3010349*33385282^(13/24) 3645226708725128 a001 1346269/7881196*7881196^(17/22) 3645226708725128 a001 1134903170/12752043*1860498^(5/12) 3645226708725138 a001 63245986/4870847*1860498^(11/20) 3645226708725139 a001 1836311903/7881196*1860498^(7/20) 3645226708725148 a001 2971215073/33385282*1860498^(5/12) 3645226708725150 a001 7778742049/87403803*1860498^(5/12) 3645226708725151 a001 20365011074/228826127*1860498^(5/12) 3645226708725151 a001 53316291173/599074578*1860498^(5/12) 3645226708725151 a001 139583862445/1568397607*1860498^(5/12) 3645226708725151 a001 365435296162/4106118243*1860498^(5/12) 3645226708725151 a001 956722026041/10749957122*1860498^(5/12) 3645226708725151 a001 2504730781961/28143753123*1860498^(5/12) 3645226708725151 a001 6557470319842/73681302247*1860498^(5/12) 3645226708725151 a001 10610209857723/119218851371*1860498^(5/12) 3645226708725151 a001 4052739537881/45537549124*1860498^(5/12) 3645226708725151 a001 1548008755920/17393796001*1860498^(5/12) 3645226708725151 a001 591286729879/6643838879*1860498^(5/12) 3645226708725151 a001 225851433717/2537720636*1860498^(5/12) 3645226708725151 a001 86267571272/969323029*1860498^(5/12) 3645226708725151 a001 32951280099/370248451*1860498^(5/12) 3645226708725151 a001 12586269025/141422324*1860498^(5/12) 3645226708725152 a001 4807526976/54018521*1860498^(5/12) 3645226708725159 a001 1836311903/20633239*1860498^(5/12) 3645226708725163 a001 233802911/4250681*1860498^(9/20) 3645226708725167 a001 53316291173/3010349*1860498^(1/20) 3645226708725172 a001 39088169/4870847*1860498^(7/12) 3645226708725173 a001 3524578/3010349*969323029^(1/2) 3645226708725173 a001 1346269/7881196*45537549124^(1/2) 3645226708725175 a001 1346269/7881196*33385282^(17/24) 3645226708725183 a001 1836311903/33385282*1860498^(9/20) 3645226708725185 a001 1602508992/29134601*1860498^(9/20) 3645226708725186 a001 12586269025/228826127*1860498^(9/20) 3645226708725186 a001 10983760033/199691526*1860498^(9/20) 3645226708725186 a001 86267571272/1568397607*1860498^(9/20) 3645226708725186 a001 75283811239/1368706081*1860498^(9/20) 3645226708725186 a001 591286729879/10749957122*1860498^(9/20) 3645226708725186 a001 12585437040/228811001*1860498^(9/20) 3645226708725186 a001 4052739537881/73681302247*1860498^(9/20) 3645226708725186 a001 3536736619241/64300051206*1860498^(9/20) 3645226708725186 a001 6557470319842/119218851371*1860498^(9/20) 3645226708725186 a001 2504730781961/45537549124*1860498^(9/20) 3645226708725186 a001 956722026041/17393796001*1860498^(9/20) 3645226708725186 a001 365435296162/6643838879*1860498^(9/20) 3645226708725186 a001 139583862445/2537720636*1860498^(9/20) 3645226708725186 a001 53316291173/969323029*1860498^(9/20) 3645226708725186 a001 20365011074/370248451*1860498^(9/20) 3645226708725186 a001 7778742049/141422324*1860498^(9/20) 3645226708725187 a001 2971215073/54018521*1860498^(9/20) 3645226708725190 a001 1346269/7881196*12752043^(3/4) 3645226708725194 a001 1134903170/20633239*1860498^(9/20) 3645226708725202 a001 32951280099/3010349*1860498^(1/12) 3645226708725209 a001 3524667/39604*1860498^(5/12) 3645226708725240 a001 14930352/4870847*1860498^(13/20) 3645226708725245 a001 433494437/7881196*1860498^(9/20) 3645226708725269 a001 165580141/12752043*1860498^(11/20) 3645226708725272 a001 12586269025/3010349*1860498^(3/20) 3645226708725288 a001 433494437/33385282*1860498^(11/20) 3645226708725291 a001 1134903170/87403803*1860498^(11/20) 3645226708725291 a001 2971215073/228826127*1860498^(11/20) 3645226708725291 a001 7778742049/599074578*1860498^(11/20) 3645226708725291 a001 20365011074/1568397607*1860498^(11/20) 3645226708725291 a001 53316291173/4106118243*1860498^(11/20) 3645226708725291 a001 139583862445/10749957122*1860498^(11/20) 3645226708725291 a001 365435296162/28143753123*1860498^(11/20) 3645226708725291 a001 956722026041/73681302247*1860498^(11/20) 3645226708725291 a001 2504730781961/192900153618*1860498^(11/20) 3645226708725291 a001 10610209857723/817138163596*1860498^(11/20) 3645226708725291 a001 4052739537881/312119004989*1860498^(11/20) 3645226708725291 a001 1548008755920/119218851371*1860498^(11/20) 3645226708725291 a001 591286729879/45537549124*1860498^(11/20) 3645226708725291 a001 7787980473/599786069*1860498^(11/20) 3645226708725291 a001 86267571272/6643838879*1860498^(11/20) 3645226708725291 a001 32951280099/2537720636*1860498^(11/20) 3645226708725291 a001 12586269025/969323029*1860498^(11/20) 3645226708725291 a001 4807526976/370248451*1860498^(11/20) 3645226708725291 a001 1836311903/141422324*1860498^(11/20) 3645226708725292 a001 701408733/54018521*1860498^(11/20) 3645226708725300 a001 9238424/711491*1860498^(11/20) 3645226708725304 a001 34111385/4250681*1860498^(7/12) 3645226708725323 a001 133957148/16692641*1860498^(7/12) 3645226708725326 a001 233802911/29134601*1860498^(7/12) 3645226708725326 a001 1836311903/228826127*1860498^(7/12) 3645226708725326 a001 267084832/33281921*1860498^(7/12) 3645226708725326 a001 12586269025/1568397607*1860498^(7/12) 3645226708725326 a001 10983760033/1368706081*1860498^(7/12) 3645226708725326 a001 43133785636/5374978561*1860498^(7/12) 3645226708725326 a001 75283811239/9381251041*1860498^(7/12) 3645226708725326 a001 591286729879/73681302247*1860498^(7/12) 3645226708725326 a001 86000486440/10716675201*1860498^(7/12) 3645226708725326 a001 4052739537881/505019158607*1860498^(7/12) 3645226708725326 a001 3278735159921/408569081798*1860498^(7/12) 3645226708725326 a001 2504730781961/312119004989*1860498^(7/12) 3645226708725326 a001 956722026041/119218851371*1860498^(7/12) 3645226708725326 a001 182717648081/22768774562*1860498^(7/12) 3645226708725326 a001 139583862445/17393796001*1860498^(7/12) 3645226708725326 a001 53316291173/6643838879*1860498^(7/12) 3645226708725326 a001 10182505537/1268860318*1860498^(7/12) 3645226708725326 a001 7778742049/969323029*1860498^(7/12) 3645226708725326 a001 2971215073/370248451*1860498^(7/12) 3645226708725326 a001 567451585/70711162*1860498^(7/12) 3645226708725328 a001 433494437/54018521*1860498^(7/12) 3645226708725335 a001 165580141/20633239*1860498^(7/12) 3645226708725350 a001 102334155/7881196*1860498^(11/20) 3645226708725374 a001 39088169/12752043*1860498^(13/20) 3645226708725378 a001 2971215073/3010349*1860498^(1/4) 3645226708725385 a001 31622993/3940598*1860498^(7/12) 3645226708725393 a001 14619165/4769326*1860498^(13/20) 3645226708725396 a001 267914296/87403803*1860498^(13/20) 3645226708725396 a001 701408733/228826127*1860498^(13/20) 3645226708725397 a001 1836311903/599074578*1860498^(13/20) 3645226708725397 a001 686789568/224056801*1860498^(13/20) 3645226708725397 a001 12586269025/4106118243*1860498^(13/20) 3645226708725397 a001 32951280099/10749957122*1860498^(13/20) 3645226708725397 a001 86267571272/28143753123*1860498^(13/20) 3645226708725397 a001 32264490531/10525900321*1860498^(13/20) 3645226708725397 a001 591286729879/192900153618*1860498^(13/20) 3645226708725397 a001 1548008755920/505019158607*1860498^(13/20) 3645226708725397 a001 1515744265389/494493258286*1860498^(13/20) 3645226708725397 a001 2504730781961/817138163596*1860498^(13/20) 3645226708725397 a001 956722026041/312119004989*1860498^(13/20) 3645226708725397 a001 365435296162/119218851371*1860498^(13/20) 3645226708725397 a001 139583862445/45537549124*1860498^(13/20) 3645226708725397 a001 53316291173/17393796001*1860498^(13/20) 3645226708725397 a001 20365011074/6643838879*1860498^(13/20) 3645226708725397 a001 7778742049/2537720636*1860498^(13/20) 3645226708725397 a001 2971215073/969323029*1860498^(13/20) 3645226708725397 a001 1134903170/370248451*1860498^(13/20) 3645226708725397 a001 433494437/141422324*1860498^(13/20) 3645226708725398 a001 165580141/54018521*1860498^(13/20) 3645226708725405 a001 63245986/20633239*1860498^(13/20) 3645226708725407 a001 3524578/4870847*1860498^(3/4) 3645226708725431 a001 726103/4250681*1860498^(17/20) 3645226708725456 a001 24157817/7881196*1860498^(13/20) 3645226708725461 a001 32951280099/4870847*710647^(1/8) 3645226708725483 a001 701408733/3010349*1860498^(7/20) 3645226708725488 a001 9227465/12752043*1860498^(3/4) 3645226708725500 a001 24157817/33385282*1860498^(3/4) 3645226708725502 a001 63245986/87403803*1860498^(3/4) 3645226708725502 a001 165580141/228826127*1860498^(3/4) 3645226708725502 a001 433494437/599074578*1860498^(3/4) 3645226708725502 a001 1134903170/1568397607*1860498^(3/4) 3645226708725502 a001 2971215073/4106118243*1860498^(3/4) 3645226708725502 a001 7778742049/10749957122*1860498^(3/4) 3645226708725502 a001 20365011074/28143753123*1860498^(3/4) 3645226708725502 a001 53316291173/73681302247*1860498^(3/4) 3645226708725502 a001 139583862445/192900153618*1860498^(3/4) 3645226708725502 a001 10610209857723/14662949395604*1860498^(3/4) 3645226708725502 a001 591286729879/817138163596*1860498^(3/4) 3645226708725502 a001 225851433717/312119004989*1860498^(3/4) 3645226708725502 a001 86267571272/119218851371*1860498^(3/4) 3645226708725502 a001 32951280099/45537549124*1860498^(3/4) 3645226708725502 a001 12586269025/17393796001*1860498^(3/4) 3645226708725502 a001 4807526976/6643838879*1860498^(3/4) 3645226708725502 a001 1836311903/2537720636*1860498^(3/4) 3645226708725502 a001 701408733/969323029*1860498^(3/4) 3645226708725502 a001 267914296/370248451*1860498^(3/4) 3645226708725502 a001 102334155/141422324*1860498^(3/4) 3645226708725503 a001 39088169/54018521*1860498^(3/4) 3645226708725507 a001 14930352/20633239*1860498^(3/4) 3645226708725516 a001 1346269/3010349*6643838879^(1/2) 3645226708725520 a001 311187/4769326*1860498^(11/12) 3645226708725538 a001 5702887/7881196*1860498^(3/4) 3645226708725553 a001 267914296/3010349*1860498^(5/12) 3645226708725560 a001 2178309/54018521*1860498^(19/20) 3645226708725581 a001 5702887/33385282*1860498^(17/20) 3645226708725588 a001 165580141/3010349*1860498^(9/20) 3645226708725592 a001 86267571272/12752043*710647^(1/8) 3645226708725603 a001 4976784/29134601*1860498^(17/20) 3645226708725607 a001 39088169/228826127*1860498^(17/20) 3645226708725607 a001 34111385/199691526*1860498^(17/20) 3645226708725607 a001 267914296/1568397607*1860498^(17/20) 3645226708725607 a001 233802911/1368706081*1860498^(17/20) 3645226708725607 a001 1836311903/10749957122*1860498^(17/20) 3645226708725607 a001 1602508992/9381251041*1860498^(17/20) 3645226708725607 a001 12586269025/73681302247*1860498^(17/20) 3645226708725607 a001 10983760033/64300051206*1860498^(17/20) 3645226708725607 a001 86267571272/505019158607*1860498^(17/20) 3645226708725607 a001 75283811239/440719107401*1860498^(17/20) 3645226708725607 a001 2504730781961/14662949395604*1860498^(17/20) 3645226708725607 a001 139583862445/817138163596*1860498^(17/20) 3645226708725607 a001 53316291173/312119004989*1860498^(17/20) 3645226708725607 a001 20365011074/119218851371*1860498^(17/20) 3645226708725607 a001 7778742049/45537549124*1860498^(17/20) 3645226708725607 a001 2971215073/17393796001*1860498^(17/20) 3645226708725607 a001 1134903170/6643838879*1860498^(17/20) 3645226708725607 a001 433494437/2537720636*1860498^(17/20) 3645226708725607 a001 165580141/969323029*1860498^(17/20) 3645226708725607 a001 63245986/370248451*1860498^(17/20) 3645226708725609 a001 24157817/141422324*1860498^(17/20) 3645226708725611 a001 32264490531/4769326*710647^(1/8) 3645226708725614 a001 591286729879/87403803*710647^(1/8) 3645226708725614 a001 1548008755920/228826127*710647^(1/8) 3645226708725614 a001 4052739537881/599074578*710647^(1/8) 3645226708725614 a001 1515744265389/224056801*710647^(1/8) 3645226708725614 a001 6557470319842/969323029*710647^(1/8) 3645226708725614 a001 2504730781961/370248451*710647^(1/8) 3645226708725614 a001 956722026041/141422324*710647^(1/8) 3645226708725616 a001 365435296162/54018521*710647^(1/8) 3645226708725617 a001 9227465/54018521*1860498^(17/20) 3645226708725623 a001 139583862445/20633239*710647^(1/8) 3645226708725654 a001 5702887/87403803*1860498^(11/12) 3645226708725673 a001 53316291173/7881196*710647^(1/8) 3645226708725674 a001 14930352/228826127*1860498^(11/12) 3645226708725674 a001 3524578/20633239*1860498^(17/20) 3645226708725677 a001 39088169/599074578*1860498^(11/12) 3645226708725677 a001 14619165/224056801*1860498^(11/12) 3645226708725677 a001 267914296/4106118243*1860498^(11/12) 3645226708725677 a001 701408733/10749957122*1860498^(11/12) 3645226708725677 a001 1836311903/28143753123*1860498^(11/12) 3645226708725677 a001 686789568/10525900321*1860498^(11/12) 3645226708725677 a001 12586269025/192900153618*1860498^(11/12) 3645226708725677 a001 32951280099/505019158607*1860498^(11/12) 3645226708725677 a001 86267571272/1322157322203*1860498^(11/12) 3645226708725677 a001 32264490531/494493258286*1860498^(11/12) 3645226708725677 a001 591286729879/9062201101803*1860498^(11/12) 3645226708725677 a001 1548008755920/23725150497407*1860498^(11/12) 3645226708725677 a001 139583862445/2139295485799*1860498^(11/12) 3645226708725677 a001 53316291173/817138163596*1860498^(11/12) 3645226708725677 a001 20365011074/312119004989*1860498^(11/12) 3645226708725677 a001 7778742049/119218851371*1860498^(11/12) 3645226708725677 a001 2971215073/45537549124*1860498^(11/12) 3645226708725677 a001 1134903170/17393796001*1860498^(11/12) 3645226708725677 a001 433494437/6643838879*1860498^(11/12) 3645226708725677 a001 165580141/2537720636*1860498^(11/12) 3645226708725678 a001 63245986/969323029*1860498^(11/12) 3645226708725679 a001 24157817/370248451*1860498^(11/12) 3645226708725686 a001 9227465/141422324*1860498^(11/12) 3645226708725690 a001 5702887/141422324*1860498^(19/20) 3645226708725693 a001 39088169/3010349*1860498^(11/20) 3645226708725709 a001 14930352/370248451*1860498^(19/20) 3645226708725712 a001 39088169/969323029*1860498^(19/20) 3645226708725712 a001 9303105/230701876*1860498^(19/20) 3645226708725712 a001 267914296/6643838879*1860498^(19/20) 3645226708725712 a001 701408733/17393796001*1860498^(19/20) 3645226708725712 a001 1836311903/45537549124*1860498^(19/20) 3645226708725712 a001 4807526976/119218851371*1860498^(19/20) 3645226708725712 a001 1144206275/28374454999*1860498^(19/20) 3645226708725712 a001 32951280099/817138163596*1860498^(19/20) 3645226708725712 a001 86267571272/2139295485799*1860498^(19/20) 3645226708725712 a001 225851433717/5600748293801*1860498^(19/20) 3645226708725712 a001 591286729879/14662949395604*1860498^(19/20) 3645226708725712 a001 365435296162/9062201101803*1860498^(19/20) 3645226708725712 a001 139583862445/3461452808002*1860498^(19/20) 3645226708725712 a001 53316291173/1322157322203*1860498^(19/20) 3645226708725712 a001 20365011074/505019158607*1860498^(19/20) 3645226708725712 a001 7778742049/192900153618*1860498^(19/20) 3645226708725712 a001 2971215073/73681302247*1860498^(19/20) 3645226708725712 a001 1134903170/28143753123*1860498^(19/20) 3645226708725712 a001 433494437/10749957122*1860498^(19/20) 3645226708725712 a001 165580141/4106118243*1860498^(19/20) 3645226708725713 a001 63245986/1568397607*1860498^(19/20) 3645226708725714 a001 24157817/599074578*1860498^(19/20) 3645226708725721 a001 9227465/228826127*1860498^(19/20) 3645226708725730 a001 24157817/3010349*1860498^(7/12) 3645226708725737 a001 3524578/54018521*1860498^(11/12) 3645226708725750 a001 2178309/3010349*1860498^(3/4) 3645226708725771 a001 3524578/87403803*1860498^(19/20) 3645226708725807 a001 9227465/3010349*1860498^(13/20) 3645226708726016 a001 20365011074/3010349*710647^(1/8) 3645226708726068 a001 1346269/7881196*1860498^(17/20) 3645226708726088 a001 1346269/20633239*1860498^(11/12) 3645226708726090 a001 39088169/1149851*1149851^(1/2) 3645226708726111 a001 1346269/33385282*1860498^(19/20) 3645226708726366 a001 433494437/1860498*710647^(3/8) 3645226708726376 a001 832040/1149851*7881196^(15/22) 3645226708726410 a001 514229/1860498*20633239^(7/10) 3645226708726410 a001 832040/1149851*20633239^(9/14) 3645226708726416 a001 832040/1149851*2537720636^(1/2) 3645226708726416 a001 514229/1860498*17393796001^(1/2) 3645226708726416 a001 832040/1149851*312119004989^(9/22) 3645226708726416 a001 514229/1860498*14662949395604^(7/18) 3645226708726416 a001 514229/1860498*505019158607^(7/16) 3645226708726416 a001 832040/1149851*192900153618^(5/12) 3645226708726416 a001 832040/1149851*28143753123^(9/20) 3645226708726416 a001 514229/1860498*599074578^(7/12) 3645226708726416 a001 832040/1149851*228826127^(9/16) 3645226708726418 a001 832040/1149851*33385282^(5/8) 3645226708726419 a001 20365011074/1149851*439204^(1/18) 3645226708726567 a001 317811/1149851*710647^(7/8) 3645226708727206 a001 832040/1149851*1860498^(3/4) 3645226708727265 a001 1134903170/4870847*710647^(3/8) 3645226708727269 a001 24157817/1149851*3010349^(1/2) 3645226708727315 a001 2178309/1149851*370248451^(1/2) 3645226708727315 a001 514229/4870847*119218851371^(1/2) 3645226708727396 a001 514229/12752043*7881196^(19/22) 3645226708727396 a001 2971215073/12752043*710647^(3/8) 3645226708727414 a001 514229/54018521*7881196^(21/22) 3645226708727415 a001 7778742049/33385282*710647^(3/8) 3645226708727418 a001 20365011074/87403803*710647^(3/8) 3645226708727419 a001 53316291173/228826127*710647^(3/8) 3645226708727419 a001 139583862445/599074578*710647^(3/8) 3645226708727419 a001 365435296162/1568397607*710647^(3/8) 3645226708727419 a001 956722026041/4106118243*710647^(3/8) 3645226708727419 a001 2504730781961/10749957122*710647^(3/8) 3645226708727419 a001 6557470319842/28143753123*710647^(3/8) 3645226708727419 a001 10610209857723/45537549124*710647^(3/8) 3645226708727419 a001 4052739537881/17393796001*710647^(3/8) 3645226708727419 a001 1548008755920/6643838879*710647^(3/8) 3645226708727419 a001 591286729879/2537720636*710647^(3/8) 3645226708727419 a001 225851433717/969323029*710647^(3/8) 3645226708727419 a001 86267571272/370248451*710647^(3/8) 3645226708727419 a001 63246219/271444*710647^(3/8) 3645226708727420 a001 12586269025/54018521*710647^(3/8) 3645226708727427 a001 4807526976/20633239*710647^(3/8) 3645226708727436 a001 14930352/1149851*7881196^(1/2) 3645226708727445 a001 63245986/1149851*7881196^(9/22) 3645226708727446 a001 5702887/1149851*54018521^(1/2) 3645226708727447 a001 514229/12752043*817138163596^(1/2) 3645226708727447 a001 514229/12752043*87403803^(3/4) 3645226708727449 a001 514229/12752043*33385282^(19/24) 3645226708727450 a001 267914296/1149851*7881196^(7/22) 3645226708727456 a001 1134903170/1149851*7881196^(5/22) 3645226708727459 a001 2971215073/1149851*7881196^(1/6) 3645226708727461 a001 514229/87403803*20633239^(13/14) 3645226708727461 a001 4807526976/1149851*7881196^(3/22) 3645226708727463 a001 514229/54018521*20633239^(9/10) 3645226708727466 a001 14930352/1149851*312119004989^(3/10) 3645226708727466 a001 514229/33385282*5600748293801^(1/2) 3645226708727466 a001 14930352/1149851*1568397607^(3/8) 3645226708727466 a001 102334155/1149851*20633239^(5/14) 3645226708727466 a001 20365011074/1149851*7881196^(1/22) 3645226708727466 a001 267914296/1149851*20633239^(3/10) 3645226708727467 a001 1134903170/1149851*20633239^(3/14) 3645226708727467 a001 14930352/1149851*33385282^(11/24) 3645226708727468 a001 7778742049/1149851*20633239^(1/10) 3645226708727468 a001 514229/87403803*141422324^(5/6) 3645226708727468 a001 12586269025/1149851*20633239^(1/14) 3645226708727469 a001 514229/87403803*2537720636^(13/18) 3645226708727469 a001 514229/87403803*312119004989^(13/22) 3645226708727469 a001 514229/87403803*3461452808002^(13/24) 3645226708727469 a001 39088169/1149851*1322157322203^(1/4) 3645226708727469 a001 514229/87403803*73681302247^(5/8) 3645226708727469 a001 514229/87403803*28143753123^(13/20) 3645226708727469 a001 514229/87403803*228826127^(13/16) 3645226708727469 a001 102334155/1149851*2537720636^(5/18) 3645226708727469 a001 102334155/1149851*312119004989^(5/22) 3645226708727469 a001 102334155/1149851*3461452808002^(5/24) 3645226708727469 a001 102334155/1149851*28143753123^(1/4) 3645226708727469 a001 514229/228826127*4106118243^(3/4) 3645226708727469 a001 102334155/1149851*228826127^(5/16) 3645226708727469 a001 1836311903/1149851*141422324^(1/6) 3645226708727469 a001 267914296/1149851*17393796001^(3/14) 3645226708727469 a001 267914296/1149851*14662949395604^(1/6) 3645226708727469 a001 267914296/1149851*599074578^(1/4) 3645226708727469 a001 514229/1568397607*17393796001^(11/14) 3645226708727469 a001 701408733/1149851*45537549124^(1/6) 3645226708727469 a001 514229/1568397607*14662949395604^(11/18) 3645226708727469 a001 514229/1568397607*505019158607^(11/16) 3645226708727469 a001 514229/4106118243*2537720636^(9/10) 3645226708727469 a001 514229/10749957122*2537720636^(17/18) 3645226708727469 a001 514229/4106118243*14662949395604^(9/14) 3645226708727469 a001 1836311903/1149851*73681302247^(1/8) 3645226708727469 a001 514229/1568397607*1568397607^(7/8) 3645226708727469 a001 4807526976/1149851*2537720636^(1/10) 3645226708727469 a001 12586269025/1149851*2537720636^(1/18) 3645226708727469 a001 514229/10749957122*45537549124^(5/6) 3645226708727469 a001 514229/10749957122*312119004989^(17/22) 3645226708727469 a001 4807526976/1149851*14662949395604^(1/14) 3645226708727469 a001 4807526976/1149851*192900153618^(1/12) 3645226708727469 a001 514229/10749957122*28143753123^(17/20) 3645226708727469 a001 514229/45537549124*17393796001^(13/14) 3645226708727469 a001 12586269025/1149851*312119004989^(1/22) 3645226708727469 a001 12586269025/1149851*28143753123^(1/20) 3645226708727469 a001 514229/73681302247*9062201101803^(3/4) 3645226708727469 a001 514229/1322157322203*312119004989^(21/22) 3645226708727469 a001 514229/1322157322203*14662949395604^(5/6) 3645226708727469 a001 514229/14662949395604*3461452808002^(23/24) 3645226708727469 a001 514229/1322157322203*505019158607^(15/16) 3645226708727469 a001 514229/312119004989*14662949395604^(11/14) 3645226708727469 a001 514229/312119004989*192900153618^(11/12) 3645226708727469 a001 514229/119218851371*312119004989^(19/22) 3645226708727469 a001 514229/119218851371*817138163596^(5/6) 3645226708727469 a001 514229/119218851371*3461452808002^(19/24) 3645226708727469 a001 514229/45537549124*14662949395604^(13/18) 3645226708727469 a001 514229/45537549124*505019158607^(13/16) 3645226708727469 a001 514229/45537549124*73681302247^(7/8) 3645226708727469 a001 514229/119218851371*28143753123^(19/20) 3645226708727469 a001 7778742049/1149851*17393796001^(1/14) 3645226708727469 a001 514229/17393796001*1322157322203^(3/4) 3645226708727469 a001 7778742049/1149851*14662949395604^(1/18) 3645226708727469 a001 2971215073/1149851*312119004989^(1/10) 3645226708727469 a001 2971215073/1149851*1568397607^(1/8) 3645226708727469 a001 1134903170/1149851*2537720636^(1/6) 3645226708727469 a001 1134903170/1149851*312119004989^(3/22) 3645226708727469 a001 1134903170/1149851*28143753123^(3/20) 3645226708727469 a001 7778742049/1149851*599074578^(1/12) 3645226708727469 a001 514229/969323029*2537720636^(5/6) 3645226708727469 a001 514229/969323029*312119004989^(15/22) 3645226708727469 a001 514229/969323029*3461452808002^(5/8) 3645226708727469 a001 433494437/1149851*817138163596^(1/6) 3645226708727469 a001 514229/969323029*28143753123^(3/4) 3645226708727469 a001 12586269025/1149851*228826127^(1/16) 3645226708727469 a001 514229/1568397607*599074578^(11/12) 3645226708727469 a001 1134903170/1149851*228826127^(3/16) 3645226708727469 a001 165580141/1149851*4106118243^(1/4) 3645226708727469 a001 514229/969323029*228826127^(15/16) 3645226708727469 a001 433494437/1149851*87403803^(1/4) 3645226708727469 a001 20365011074/1149851*33385282^(1/24) 3645226708727469 a001 63245986/1149851*2537720636^(3/10) 3645226708727469 a001 63245986/1149851*14662949395604^(3/14) 3645226708727469 a001 63245986/1149851*192900153618^(1/4) 3645226708727469 a001 4807526976/1149851*33385282^(1/8) 3645226708727470 a001 1134903170/1149851*33385282^(5/24) 3645226708727470 a001 267914296/1149851*33385282^(7/24) 3645226708727470 a001 514229/54018521*2537720636^(7/10) 3645226708727470 a001 514229/54018521*17393796001^(9/14) 3645226708727470 a001 514229/54018521*14662949395604^(1/2) 3645226708727470 a001 24157817/1149851*9062201101803^(1/4) 3645226708727470 a001 514229/54018521*192900153618^(7/12) 3645226708727470 a001 514229/54018521*599074578^(3/4) 3645226708727470 a001 63245986/1149851*33385282^(3/8) 3645226708727472 a001 514229/228826127*33385282^(23/24) 3645226708727473 a001 514229/54018521*33385282^(7/8) 3645226708727473 a001 9227465/1149851*20633239^(1/2) 3645226708727475 a001 701408733/1149851*12752043^(1/4) 3645226708727477 a001 1836311903/7881196*710647^(3/8) 3645226708727478 a001 9227465/1149851*2537720636^(7/18) 3645226708727478 a001 9227465/1149851*17393796001^(5/14) 3645226708727478 a001 9227465/1149851*312119004989^(7/22) 3645226708727478 a001 514229/20633239*2139295485799^(1/2) 3645226708727478 a001 9227465/1149851*14662949395604^(5/18) 3645226708727478 a001 9227465/1149851*28143753123^(7/20) 3645226708727478 a001 9227465/1149851*599074578^(5/12) 3645226708727478 a001 9227465/1149851*228826127^(7/16) 3645226708727479 a001 514229/7881196*7881196^(5/6) 3645226708727493 a001 3524578/1149851*7881196^(13/22) 3645226708727521 a001 514229/7881196*20633239^(11/14) 3645226708727522 a001 20365011074/1149851*1860498^(1/20) 3645226708727528 a001 3524578/1149851*141422324^(1/2) 3645226708727528 a001 514229/7881196*2537720636^(11/18) 3645226708727528 a001 514229/7881196*312119004989^(1/2) 3645226708727528 a001 514229/7881196*3461452808002^(11/24) 3645226708727528 a001 3524578/1149851*73681302247^(3/8) 3645226708727528 a001 514229/7881196*28143753123^(11/20) 3645226708727528 a001 514229/7881196*1568397607^(5/8) 3645226708727528 a001 514229/7881196*228826127^(11/16) 3645226708727529 a001 3524578/1149851*33385282^(13/24) 3645226708727557 a001 12586269025/1149851*1860498^(1/12) 3645226708727627 a001 4807526976/1149851*1860498^(3/20) 3645226708727732 a001 1134903170/1149851*1860498^(1/4) 3645226708727821 a001 701408733/3010349*710647^(3/8) 3645226708727826 a001 514229/3010349*7881196^(17/22) 3645226708727838 a001 267914296/1149851*1860498^(7/20) 3645226708727871 a001 1346269/1149851*969323029^(1/2) 3645226708727871 a001 514229/3010349*45537549124^(1/2) 3645226708727874 a001 514229/3010349*33385282^(17/24) 3645226708727888 a001 514229/3010349*12752043^(3/4) 3645226708727908 a001 102334155/1149851*1860498^(5/12) 3645226708727943 a001 63245986/1149851*1860498^(9/20) 3645226708728045 a001 14930352/1149851*1860498^(11/20) 3645226708728092 a001 9227465/1149851*1860498^(7/12) 3645226708728167 a001 829464/103361*710647^(5/8) 3645226708728212 a001 3524578/1149851*1860498^(13/20) 3645226708728371 a001 7778742049/1149851*710647^(1/8) 3645226708728447 a001 514229/12752043*1860498^(19/20) 3645226708728493 a001 514229/7881196*1860498^(11/12) 3645226708728519 a001 196418/1149851*439204^(17/18) 3645226708728766 a001 514229/3010349*1860498^(17/20) 3645226708729069 a001 39088169/4870847*710647^(5/8) 3645226708729201 a001 34111385/4250681*710647^(5/8) 3645226708729220 a001 133957148/16692641*710647^(5/8) 3645226708729223 a001 233802911/29134601*710647^(5/8) 3645226708729223 a001 1836311903/228826127*710647^(5/8) 3645226708729223 a001 267084832/33281921*710647^(5/8) 3645226708729223 a001 12586269025/1568397607*710647^(5/8) 3645226708729223 a001 10983760033/1368706081*710647^(5/8) 3645226708729223 a001 43133785636/5374978561*710647^(5/8) 3645226708729223 a001 75283811239/9381251041*710647^(5/8) 3645226708729223 a001 591286729879/73681302247*710647^(5/8) 3645226708729223 a001 86000486440/10716675201*710647^(5/8) 3645226708729223 a001 4052739537881/505019158607*710647^(5/8) 3645226708729223 a001 3536736619241/440719107401*710647^(5/8) 3645226708729223 a001 3278735159921/408569081798*710647^(5/8) 3645226708729223 a001 2504730781961/312119004989*710647^(5/8) 3645226708729223 a001 956722026041/119218851371*710647^(5/8) 3645226708729223 a001 182717648081/22768774562*710647^(5/8) 3645226708729223 a001 139583862445/17393796001*710647^(5/8) 3645226708729223 a001 53316291173/6643838879*710647^(5/8) 3645226708729223 a001 10182505537/1268860318*710647^(5/8) 3645226708729223 a001 7778742049/969323029*710647^(5/8) 3645226708729223 a001 2971215073/370248451*710647^(5/8) 3645226708729223 a001 567451585/70711162*710647^(5/8) 3645226708729225 a001 433494437/54018521*710647^(5/8) 3645226708729232 a001 165580141/20633239*710647^(5/8) 3645226708729282 a001 31622993/3940598*710647^(5/8) 3645226708729627 a001 24157817/3010349*710647^(5/8) 3645226708729862 a001 1134903170/710647*271443^(1/4) 3645226708730176 a001 267914296/1149851*710647^(3/8) 3645226708730226 a001 514229/1149851*6643838879^(1/2) 3645226708730363 a001 1346269/439204*439204^(13/18) 3645226708730377 a001 832040/3010349*710647^(7/8) 3645226708730657 a001 1201881744/109801*167761^(1/10) 3645226708730933 a001 2178309/7881196*710647^(7/8) 3645226708731014 a001 5702887/20633239*710647^(7/8) 3645226708731026 a001 14930352/54018521*710647^(7/8) 3645226708731027 a001 39088169/141422324*710647^(7/8) 3645226708731028 a001 102334155/370248451*710647^(7/8) 3645226708731028 a001 267914296/969323029*710647^(7/8) 3645226708731028 a001 701408733/2537720636*710647^(7/8) 3645226708731028 a001 1836311903/6643838879*710647^(7/8) 3645226708731028 a001 4807526976/17393796001*710647^(7/8) 3645226708731028 a001 12586269025/45537549124*710647^(7/8) 3645226708731028 a001 32951280099/119218851371*710647^(7/8) 3645226708731028 a001 86267571272/312119004989*710647^(7/8) 3645226708731028 a001 225851433717/817138163596*710647^(7/8) 3645226708731028 a001 1548008755920/5600748293801*710647^(7/8) 3645226708731028 a001 139583862445/505019158607*710647^(7/8) 3645226708731028 a001 53316291173/192900153618*710647^(7/8) 3645226708731028 a001 20365011074/73681302247*710647^(7/8) 3645226708731028 a001 7778742049/28143753123*710647^(7/8) 3645226708731028 a001 2971215073/10749957122*710647^(7/8) 3645226708731028 a001 1134903170/4106118243*710647^(7/8) 3645226708731028 a001 433494437/1568397607*710647^(7/8) 3645226708731028 a001 165580141/599074578*710647^(7/8) 3645226708731028 a001 63245986/228826127*710647^(7/8) 3645226708731029 a001 24157817/87403803*710647^(7/8) 3645226708731033 a001 9227465/33385282*710647^(7/8) 3645226708731064 a001 3524578/12752043*710647^(7/8) 3645226708731276 a001 1346269/4870847*710647^(7/8) 3645226708731989 a001 9227465/1149851*710647^(5/8) 3645226708732038 a001 5702887/439204*439204^(11/18) 3645226708732732 a001 514229/1860498*710647^(7/8) 3645226708734162 a001 24157817/439204*439204^(1/2) 3645226708736027 a001 2971215073/1860498*271443^(1/4) 3645226708736260 a001 102334155/439204*439204^(7/18) 3645226708736351 a001 317811/439204*7881196^(15/22) 3645226708736385 a001 196418/710647*20633239^(7/10) 3645226708736385 a001 317811/439204*20633239^(9/14) 3645226708736391 a001 317811/439204*2537720636^(1/2) 3645226708736391 a001 196418/710647*17393796001^(1/2) 3645226708736391 a001 196418/710647*14662949395604^(7/18) 3645226708736391 a001 196418/710647*505019158607^(7/16) 3645226708736391 a001 317811/439204*312119004989^(9/22) 3645226708736391 a001 317811/439204*14662949395604^(5/14) 3645226708736391 a001 317811/439204*192900153618^(5/12) 3645226708736391 a001 317811/439204*28143753123^(9/20) 3645226708736391 a001 196418/710647*599074578^(7/12) 3645226708736391 a001 317811/439204*228826127^(9/16) 3645226708736393 a001 317811/439204*33385282^(5/8) 3645226708736927 a001 7778742049/4870847*271443^(1/4) 3645226708737058 a001 20365011074/12752043*271443^(1/4) 3645226708737077 a001 53316291173/33385282*271443^(1/4) 3645226708737080 a001 139583862445/87403803*271443^(1/4) 3645226708737080 a001 365435296162/228826127*271443^(1/4) 3645226708737080 a001 956722026041/599074578*271443^(1/4) 3645226708737080 a001 2504730781961/1568397607*271443^(1/4) 3645226708737080 a001 6557470319842/4106118243*271443^(1/4) 3645226708737080 a001 10610209857723/6643838879*271443^(1/4) 3645226708737080 a001 4052739537881/2537720636*271443^(1/4) 3645226708737080 a001 1548008755920/969323029*271443^(1/4) 3645226708737080 a001 591286729879/370248451*271443^(1/4) 3645226708737080 a001 225851433717/141422324*271443^(1/4) 3645226708737081 a001 86267571272/54018521*271443^(1/4) 3645226708737089 a001 32951280099/20633239*271443^(1/4) 3645226708737139 a001 12586269025/7881196*271443^(1/4) 3645226708737181 a001 317811/439204*1860498^(3/4) 3645226708737482 a001 4807526976/3010349*271443^(1/4) 3645226708738360 a001 433494437/439204*439204^(5/18) 3645226708738687 a001 12586269025/710647*103682^(1/16) 3645226708738819 a001 1134903170/271443*103682^(3/16) 3645226708739837 a001 1836311903/1149851*271443^(1/4) 3645226708740459 a001 1836311903/439204*439204^(1/6) 3645226708742227 a001 196452/5779*1149851^(1/2) 3645226708742556 a001 208010/109801*370248451^(1/2) 3645226708742556 a001 98209/930249*119218851371^(1/2) 3645226708742559 a001 7778742049/439204*439204^(1/18) 3645226708742707 a001 196418/710647*710647^(7/8) 3645226708743405 a001 196418/4870847*7881196^(19/22) 3645226708743416 a001 9227465/439204*3010349^(1/2) 3645226708743455 a001 2178309/439204*54018521^(1/2) 3645226708743455 a001 196418/4870847*817138163596^(1/2) 3645226708743456 a001 196418/4870847*87403803^(3/4) 3645226708743458 a001 196418/4870847*33385282^(19/24) 3645226708743557 a001 5702887/439204*7881196^(1/2) 3645226708743562 a001 196418/20633239*7881196^(21/22) 3645226708743586 a001 24157817/439204*7881196^(9/22) 3645226708743587 a001 196418/12752043*5600748293801^(1/2) 3645226708743587 a001 5702887/439204*312119004989^(3/10) 3645226708743587 a001 5702887/439204*1568397607^(3/8) 3645226708743588 a001 5702887/439204*33385282^(11/24) 3645226708743590 a001 102334155/439204*7881196^(7/22) 3645226708743596 a001 433494437/439204*7881196^(5/22) 3645226708743598 a001 98209/16692641*20633239^(13/14) 3645226708743599 a001 567451585/219602*7881196^(1/6) 3645226708743601 a001 1836311903/439204*7881196^(3/22) 3645226708743605 a001 39088169/439204*20633239^(5/14) 3645226708743606 a001 98209/16692641*141422324^(5/6) 3645226708743606 a001 98209/16692641*2537720636^(13/18) 3645226708743606 a001 98209/16692641*312119004989^(13/22) 3645226708743606 a001 98209/16692641*3461452808002^(13/24) 3645226708743606 a001 196452/5779*1322157322203^(1/4) 3645226708743606 a001 98209/16692641*73681302247^(5/8) 3645226708743606 a001 98209/16692641*28143753123^(13/20) 3645226708743606 a001 98209/16692641*228826127^(13/16) 3645226708743606 a001 7778742049/439204*7881196^(1/22) 3645226708743606 a001 102334155/439204*20633239^(3/10) 3645226708743607 a001 433494437/439204*20633239^(3/14) 3645226708743608 a001 2971215073/439204*20633239^(1/10) 3645226708743608 a001 1201881744/109801*20633239^(1/14) 3645226708743608 a001 39088169/439204*2537720636^(5/18) 3645226708743608 a001 39088169/439204*312119004989^(5/22) 3645226708743608 a001 39088169/439204*3461452808002^(5/24) 3645226708743608 a001 39088169/439204*28143753123^(1/4) 3645226708743608 a001 196418/87403803*4106118243^(3/4) 3645226708743609 a001 39088169/439204*228826127^(5/16) 3645226708743609 a001 102334155/439204*17393796001^(3/14) 3645226708743609 a001 102334155/439204*14662949395604^(1/6) 3645226708743609 a001 102334155/439204*599074578^(1/4) 3645226708743609 a001 701408733/439204*141422324^(1/6) 3645226708743609 a001 98209/299537289*17393796001^(11/14) 3645226708743609 a001 66978574/109801*45537549124^(1/6) 3645226708743609 a001 98209/299537289*14662949395604^(11/18) 3645226708743609 a001 98209/299537289*505019158607^(11/16) 3645226708743609 a001 98209/299537289*1568397607^(7/8) 3645226708743609 a001 196418/1568397607*2537720636^(9/10) 3645226708743609 a001 196418/1568397607*14662949395604^(9/14) 3645226708743609 a001 196418/1568397607*192900153618^(3/4) 3645226708743609 a001 701408733/439204*73681302247^(1/8) 3645226708743609 a001 98209/299537289*599074578^(11/12) 3645226708743609 a001 196418/4106118243*2537720636^(17/18) 3645226708743609 a001 1836311903/439204*2537720636^(1/10) 3645226708743609 a001 196418/4106118243*45537549124^(5/6) 3645226708743609 a001 196418/4106118243*312119004989^(17/22) 3645226708743609 a001 196418/4106118243*3461452808002^(17/24) 3645226708743609 a001 1836311903/439204*14662949395604^(1/14) 3645226708743609 a001 1836311903/439204*192900153618^(1/12) 3645226708743609 a001 196418/4106118243*28143753123^(17/20) 3645226708743609 a001 1201881744/109801*2537720636^(1/18) 3645226708743609 a001 1201881744/109801*312119004989^(1/22) 3645226708743609 a001 1201881744/109801*28143753123^(1/20) 3645226708743609 a001 196418/28143753123*9062201101803^(3/4) 3645226708743609 a001 196418/505019158607*312119004989^(21/22) 3645226708743609 a001 196418/505019158607*14662949395604^(5/6) 3645226708743609 a001 196418/505019158607*505019158607^(15/16) 3645226708743609 a001 196418/5600748293801*3461452808002^(23/24) 3645226708743609 a001 196418/119218851371*312119004989^(9/10) 3645226708743609 a001 196418/119218851371*14662949395604^(11/14) 3645226708743609 a001 196418/119218851371*192900153618^(11/12) 3645226708743609 a001 196418/17393796001*17393796001^(13/14) 3645226708743609 a001 98209/22768774562*312119004989^(19/22) 3645226708743609 a001 98209/22768774562*817138163596^(5/6) 3645226708743609 a001 98209/22768774562*3461452808002^(19/24) 3645226708743609 a001 98209/22768774562*28143753123^(19/20) 3645226708743609 a001 196418/17393796001*14662949395604^(13/18) 3645226708743609 a001 196418/17393796001*505019158607^(13/16) 3645226708743609 a001 196418/17393796001*73681302247^(7/8) 3645226708743609 a001 2971215073/439204*17393796001^(1/14) 3645226708743609 a001 196418/6643838879*1322157322203^(3/4) 3645226708743609 a001 2971215073/439204*14662949395604^(1/18) 3645226708743609 a001 2971215073/439204*505019158607^(1/16) 3645226708743609 a001 567451585/219602*312119004989^(1/10) 3645226708743609 a001 567451585/219602*1568397607^(1/8) 3645226708743609 a001 2971215073/439204*599074578^(1/12) 3645226708743609 a001 433494437/439204*2537720636^(1/6) 3645226708743609 a001 433494437/439204*312119004989^(3/22) 3645226708743609 a001 433494437/439204*28143753123^(3/20) 3645226708743609 a001 1201881744/109801*228826127^(1/16) 3645226708743609 a001 433494437/439204*228826127^(3/16) 3645226708743609 a001 196418/370248451*2537720636^(5/6) 3645226708743609 a001 196418/370248451*312119004989^(15/22) 3645226708743609 a001 196418/370248451*3461452808002^(5/8) 3645226708743609 a001 165580141/439204*817138163596^(1/6) 3645226708743609 a001 196418/370248451*28143753123^(3/4) 3645226708743609 a001 196418/370248451*228826127^(15/16) 3645226708743609 a001 7778742049/439204*33385282^(1/24) 3645226708743609 a001 165580141/439204*87403803^(1/4) 3645226708743609 a001 31622993/219602*4106118243^(1/4) 3645226708743609 a001 1836311903/439204*33385282^(1/8) 3645226708743610 a001 433494437/439204*33385282^(5/24) 3645226708743610 a001 196418/20633239*20633239^(9/10) 3645226708743610 a001 102334155/439204*33385282^(7/24) 3645226708743610 a001 24157817/439204*2537720636^(3/10) 3645226708743610 a001 24157817/439204*14662949395604^(3/14) 3645226708743610 a001 24157817/439204*192900153618^(1/4) 3645226708743611 a001 24157817/439204*33385282^(3/8) 3645226708743612 a001 196418/87403803*33385282^(23/24) 3645226708743615 a001 66978574/109801*12752043^(1/4) 3645226708743618 a001 196418/20633239*2537720636^(7/10) 3645226708743618 a001 196418/20633239*17393796001^(9/14) 3645226708743618 a001 196418/20633239*14662949395604^(1/2) 3645226708743618 a001 196418/20633239*505019158607^(9/16) 3645226708743618 a001 196418/20633239*192900153618^(7/12) 3645226708743618 a001 9227465/439204*9062201101803^(1/4) 3645226708743618 a001 196418/20633239*599074578^(3/4) 3645226708743620 a001 196418/20633239*33385282^(7/8) 3645226708743662 a001 7778742049/439204*1860498^(1/20) 3645226708743663 a001 1762289/219602*20633239^(1/2) 3645226708743668 a001 1762289/219602*2537720636^(7/18) 3645226708743668 a001 1762289/219602*17393796001^(5/14) 3645226708743668 a001 98209/3940598*2139295485799^(1/2) 3645226708743668 a001 1762289/219602*312119004989^(7/22) 3645226708743668 a001 1762289/219602*14662949395604^(5/18) 3645226708743668 a001 1762289/219602*505019158607^(5/16) 3645226708743668 a001 1762289/219602*28143753123^(7/20) 3645226708743668 a001 1762289/219602*599074578^(5/12) 3645226708743668 a001 1762289/219602*228826127^(7/16) 3645226708743697 a001 1201881744/109801*1860498^(1/12) 3645226708743767 a001 1836311903/439204*1860498^(3/20) 3645226708743872 a001 433494437/439204*1860498^(1/4) 3645226708743962 a001 196418/3010349*7881196^(5/6) 3645226708743977 a001 1346269/439204*7881196^(13/22) 3645226708743977 a001 102334155/439204*1860498^(7/20) 3645226708744004 a001 196418/3010349*20633239^(11/14) 3645226708744011 a001 1346269/439204*141422324^(1/2) 3645226708744011 a001 196418/3010349*2537720636^(11/18) 3645226708744011 a001 196418/3010349*312119004989^(1/2) 3645226708744011 a001 196418/3010349*3461452808002^(11/24) 3645226708744011 a001 1346269/439204*73681302247^(3/8) 3645226708744011 a001 196418/3010349*28143753123^(11/20) 3645226708744011 a001 196418/3010349*1568397607^(5/8) 3645226708744011 a001 196418/3010349*228826127^(11/16) 3645226708744013 a001 1346269/439204*33385282^(13/24) 3645226708744047 a001 39088169/439204*1860498^(5/12) 3645226708744084 a001 24157817/439204*1860498^(9/20) 3645226708744166 a001 5702887/439204*1860498^(11/20) 3645226708744282 a001 1762289/219602*1860498^(7/12) 3645226708744456 a001 196418/4870847*1860498^(19/20) 3645226708744511 a001 2971215073/439204*710647^(1/8) 3645226708744696 a001 1346269/439204*1860498^(13/20) 3645226708744852 a001 10983760033/620166*103682^(1/16) 3645226708744977 a001 196418/3010349*1860498^(11/12) 3645226708745752 a001 86267571272/4870847*103682^(1/16) 3645226708745883 a001 75283811239/4250681*103682^(1/16) 3645226708745902 a001 591286729879/33385282*103682^(1/16) 3645226708745905 a001 516002918640/29134601*103682^(1/16) 3645226708745905 a001 4052739537881/228826127*103682^(1/16) 3645226708745905 a001 3536736619241/199691526*103682^(1/16) 3645226708745905 a001 6557470319842/370248451*103682^(1/16) 3645226708745905 a001 2504730781961/141422324*103682^(1/16) 3645226708745907 a001 956722026041/54018521*103682^(1/16) 3645226708745914 a001 365435296162/20633239*103682^(1/16) 3645226708745964 a001 139583862445/7881196*103682^(1/16) 3645226708746308 a001 53316291173/3010349*103682^(1/16) 3645226708746316 a001 102334155/439204*710647^(3/8) 3645226708746321 a001 196418/1149851*7881196^(17/22) 3645226708746366 a001 514229/439204*969323029^(1/2) 3645226708746366 a001 196418/1149851*45537549124^(1/2) 3645226708746368 a001 196418/1149851*33385282^(17/24) 3645226708746383 a001 196418/1149851*12752043^(3/4) 3645226708747261 a001 196418/1149851*1860498^(17/20) 3645226708748179 a001 1762289/219602*710647^(5/8) 3645226708748662 a001 20365011074/1149851*103682^(1/16) 3645226708754445 a001 311187/101521*271443^(3/4) 3645226708755977 a001 701408733/439204*271443^(1/4) 3645226708760741 a001 5702887/1860498*271443^(3/4) 3645226708761660 a001 14930352/4870847*271443^(3/4) 3645226708761794 a001 39088169/12752043*271443^(3/4) 3645226708761813 a001 14619165/4769326*271443^(3/4) 3645226708761816 a001 267914296/87403803*271443^(3/4) 3645226708761817 a001 701408733/228826127*271443^(3/4) 3645226708761817 a001 1836311903/599074578*271443^(3/4) 3645226708761817 a001 686789568/224056801*271443^(3/4) 3645226708761817 a001 12586269025/4106118243*271443^(3/4) 3645226708761817 a001 32951280099/10749957122*271443^(3/4) 3645226708761817 a001 86267571272/28143753123*271443^(3/4) 3645226708761817 a001 32264490531/10525900321*271443^(3/4) 3645226708761817 a001 591286729879/192900153618*271443^(3/4) 3645226708761817 a001 1548008755920/505019158607*271443^(3/4) 3645226708761817 a001 1515744265389/494493258286*271443^(3/4) 3645226708761817 a001 2504730781961/817138163596*271443^(3/4) 3645226708761817 a001 956722026041/312119004989*271443^(3/4) 3645226708761817 a001 365435296162/119218851371*271443^(3/4) 3645226708761817 a001 139583862445/45537549124*271443^(3/4) 3645226708761817 a001 53316291173/17393796001*271443^(3/4) 3645226708761817 a001 20365011074/6643838879*271443^(3/4) 3645226708761817 a001 7778742049/2537720636*271443^(3/4) 3645226708761817 a001 2971215073/969323029*271443^(3/4) 3645226708761817 a001 1134903170/370248451*271443^(3/4) 3645226708761817 a001 433494437/141422324*271443^(3/4) 3645226708761818 a001 165580141/54018521*271443^(3/4) 3645226708761825 a001 63245986/20633239*271443^(3/4) 3645226708761877 a001 24157817/7881196*271443^(3/4) 3645226708762227 a001 9227465/3010349*271443^(3/4) 3645226708762506 a001 98209/219602*6643838879^(1/2) 3645226708763971 a001 1346269/167761*167761^(7/10) 3645226708764632 a001 3524578/1149851*271443^(3/4) 3645226708764802 a001 7778742049/439204*103682^(1/16) 3645226708781074 a001 2971215073/710647*103682^(3/16) 3645226708781116 a001 1346269/439204*271443^(3/4) 3645226708781205 a001 267914296/271443*103682^(5/16) 3645226708787239 a001 7778742049/1860498*103682^(3/16) 3645226708788138 a001 20365011074/4870847*103682^(3/16) 3645226708788269 a001 53316291173/12752043*103682^(3/16) 3645226708788289 a001 139583862445/33385282*103682^(3/16) 3645226708788291 a001 365435296162/87403803*103682^(3/16) 3645226708788292 a001 956722026041/228826127*103682^(3/16) 3645226708788292 a001 2504730781961/599074578*103682^(3/16) 3645226708788292 a001 6557470319842/1568397607*103682^(3/16) 3645226708788292 a001 10610209857723/2537720636*103682^(3/16) 3645226708788292 a001 4052739537881/969323029*103682^(3/16) 3645226708788292 a001 1548008755920/370248451*103682^(3/16) 3645226708788292 a001 591286729879/141422324*103682^(3/16) 3645226708788293 a001 225851433717/54018521*103682^(3/16) 3645226708788300 a001 86267571272/20633239*103682^(3/16) 3645226708788350 a001 32951280099/7881196*103682^(3/16) 3645226708788694 a001 12586269025/3010349*103682^(3/16) 3645226708789013 a001 121393/167761*439204^(5/6) 3645226708789470 a001 14930352/167761*167761^(1/2) 3645226708791049 a001 4807526976/1149851*103682^(3/16) 3645226708804721 a001 121393/167761*7881196^(15/22) 3645226708804755 a001 75025/271443*20633239^(7/10) 3645226708804755 a001 121393/167761*20633239^(9/14) 3645226708804761 a001 121393/167761*2537720636^(1/2) 3645226708804761 a001 75025/271443*17393796001^(1/2) 3645226708804761 a001 75025/271443*14662949395604^(7/18) 3645226708804761 a001 75025/271443*505019158607^(7/16) 3645226708804761 a001 121393/167761*312119004989^(9/22) 3645226708804761 a001 121393/167761*14662949395604^(5/14) 3645226708804761 a001 121393/167761*192900153618^(5/12) 3645226708804761 a001 121393/167761*28143753123^(9/20) 3645226708804761 a001 75025/271443*599074578^(7/12) 3645226708804761 a001 121393/167761*228826127^(9/16) 3645226708804763 a001 121393/167761*33385282^(5/8) 3645226708805551 a001 121393/167761*1860498^(3/4) 3645226708807189 a001 1836311903/439204*103682^(3/16) 3645226708811077 a001 75025/271443*710647^(7/8) 3645226708815377 a001 165580141/167761*167761^(3/10) 3645226708823460 a001 701408733/710647*103682^(5/16) 3645226708823592 a001 63245986/271443*103682^(7/16) 3645226708829625 a001 1836311903/1860498*103682^(5/16) 3645226708830525 a001 4807526976/4870847*103682^(5/16) 3645226708830656 a001 12586269025/12752043*103682^(5/16) 3645226708830675 a001 32951280099/33385282*103682^(5/16) 3645226708830678 a001 86267571272/87403803*103682^(5/16) 3645226708830678 a001 225851433717/228826127*103682^(5/16) 3645226708830678 a001 591286729879/599074578*103682^(5/16) 3645226708830678 a001 1548008755920/1568397607*103682^(5/16) 3645226708830678 a001 4052739537881/4106118243*103682^(5/16) 3645226708830678 a001 4807525989/4870846*103682^(5/16) 3645226708830678 a001 6557470319842/6643838879*103682^(5/16) 3645226708830678 a001 2504730781961/2537720636*103682^(5/16) 3645226708830678 a001 956722026041/969323029*103682^(5/16) 3645226708830678 a001 365435296162/370248451*103682^(5/16) 3645226708830678 a001 139583862445/141422324*103682^(5/16) 3645226708830680 a001 53316291173/54018521*103682^(5/16) 3645226708830687 a001 20365011074/20633239*103682^(5/16) 3645226708830737 a001 7778742049/7881196*103682^(5/16) 3645226708831081 a001 2971215073/3010349*103682^(5/16) 3645226708833040 a001 75025/103682*103682^(15/16) 3645226708833435 a001 1134903170/1149851*103682^(5/16) 3645226708841282 a001 1836311903/167761*167761^(1/10) 3645226708842532 a001 2178309/167761*439204^(11/18) 3645226708843343 a001 514229/167761*439204^(13/18) 3645226708844794 a001 9227465/167761*439204^(1/2) 3645226708846884 a001 39088169/167761*439204^(7/18) 3645226708847016 a001 317811/167761*370248451^(1/2) 3645226708847016 a001 75025/710647*119218851371^(1/2) 3645226708848985 a001 165580141/167761*439204^(5/18) 3645226708849575 a001 433494437/439204*103682^(5/16) 3645226708851084 a001 701408733/167761*439204^(1/6) 3645226708852833 a001 5702887/167761*1149851^(1/2) 3645226708853130 a001 75025/1860498*7881196^(19/22) 3645226708853180 a001 75640/15251*54018521^(1/2) 3645226708853181 a001 75025/1860498*817138163596^(1/2) 3645226708853181 a001 75025/1860498*87403803^(3/4) 3645226708853183 a001 75025/1860498*33385282^(19/24) 3645226708853184 a001 2971215073/167761*439204^(1/18) 3645226708854051 a001 2178309/167761*7881196^(1/2) 3645226708854080 a001 75025/4870847*5600748293801^(1/2) 3645226708854080 a001 2178309/167761*312119004989^(3/10) 3645226708854080 a001 2178309/167761*1568397607^(3/8) 3645226708854082 a001 2178309/167761*33385282^(11/24) 3645226708854091 a001 3524578/167761*3010349^(1/2) 3645226708854181 a001 75025/1860498*1860498^(19/20) 3645226708854203 a001 75025/12752043*20633239^(13/14) 3645226708854211 a001 75025/12752043*141422324^(5/6) 3645226708854211 a001 75025/12752043*2537720636^(13/18) 3645226708854211 a001 75025/12752043*312119004989^(13/22) 3645226708854211 a001 75025/12752043*3461452808002^(13/24) 3645226708854211 a001 75025/12752043*73681302247^(5/8) 3645226708854211 a001 75025/12752043*28143753123^(13/20) 3645226708854211 a001 5702887/167761*1322157322203^(1/4) 3645226708854211 a001 75025/12752043*228826127^(13/16) 3645226708854215 a001 39088169/167761*7881196^(7/22) 3645226708854218 a001 9227465/167761*7881196^(9/22) 3645226708854220 a001 165580141/167761*7881196^(5/22) 3645226708854224 a001 433494437/167761*7881196^(1/6) 3645226708854226 a001 701408733/167761*7881196^(3/22) 3645226708854227 a001 14930352/167761*20633239^(5/14) 3645226708854230 a001 14930352/167761*2537720636^(5/18) 3645226708854230 a001 14930352/167761*312119004989^(5/22) 3645226708854230 a001 14930352/167761*3461452808002^(5/24) 3645226708854230 a001 14930352/167761*28143753123^(1/4) 3645226708854230 a001 75025/33385282*4106118243^(3/4) 3645226708854230 a001 14930352/167761*228826127^(5/16) 3645226708854231 a001 39088169/167761*20633239^(3/10) 3645226708854231 a001 2971215073/167761*7881196^(1/22) 3645226708854232 a001 165580141/167761*20633239^(3/14) 3645226708854233 a001 1134903170/167761*20633239^(1/10) 3645226708854233 a001 1836311903/167761*20633239^(1/14) 3645226708854233 a001 39088169/167761*17393796001^(3/14) 3645226708854233 a001 39088169/167761*14662949395604^(1/6) 3645226708854233 a001 39088169/167761*599074578^(1/4) 3645226708854234 a001 75025/33385282*33385282^(23/24) 3645226708854234 a001 75025/228826127*17393796001^(11/14) 3645226708854234 a001 75025/228826127*14662949395604^(11/18) 3645226708854234 a001 75025/228826127*505019158607^(11/16) 3645226708854234 a001 9303105/15251*45537549124^(1/6) 3645226708854234 a001 75025/228826127*1568397607^(7/8) 3645226708854234 a001 75025/228826127*599074578^(11/12) 3645226708854234 a001 267914296/167761*141422324^(1/6) 3645226708854234 a001 75025/599074578*2537720636^(9/10) 3645226708854234 a001 75025/599074578*14662949395604^(9/14) 3645226708854234 a001 75025/599074578*192900153618^(3/4) 3645226708854234 a001 267914296/167761*73681302247^(1/8) 3645226708854234 a001 75025/1568397607*2537720636^(17/18) 3645226708854234 a001 701408733/167761*2537720636^(1/10) 3645226708854234 a001 75025/1568397607*45537549124^(5/6) 3645226708854234 a001 75025/1568397607*312119004989^(17/22) 3645226708854234 a001 75025/1568397607*3461452808002^(17/24) 3645226708854234 a001 75025/1568397607*28143753123^(17/20) 3645226708854234 a001 701408733/167761*14662949395604^(1/14) 3645226708854234 a001 701408733/167761*192900153618^(1/12) 3645226708854234 a001 1836311903/167761*2537720636^(1/18) 3645226708854234 a001 1836311903/167761*312119004989^(1/22) 3645226708854234 a001 1836311903/167761*28143753123^(1/20) 3645226708854234 a001 75025/10749957122*9062201101803^(3/4) 3645226708854234 a001 75025/192900153618*312119004989^(21/22) 3645226708854234 a001 75025/192900153618*14662949395604^(5/6) 3645226708854234 a001 75025/192900153618*505019158607^(15/16) 3645226708854234 a001 75025/3461452808002*14662949395604^(13/14) 3645226708854234 a001 75025/5600748293801*14662949395604^(17/18) 3645226708854234 a001 75025/2139295485799*3461452808002^(23/24) 3645226708854234 a001 75025/45537549124*312119004989^(9/10) 3645226708854234 a001 75025/45537549124*14662949395604^(11/14) 3645226708854234 a001 75025/45537549124*192900153618^(11/12) 3645226708854234 a001 75025/17393796001*312119004989^(19/22) 3645226708854234 a001 75025/17393796001*3461452808002^(19/24) 3645226708854234 a001 75025/17393796001*28143753123^(19/20) 3645226708854234 a001 75025/6643838879*17393796001^(13/14) 3645226708854234 a001 75025/6643838879*14662949395604^(13/18) 3645226708854234 a001 75025/6643838879*505019158607^(13/16) 3645226708854234 a001 75025/6643838879*73681302247^(7/8) 3645226708854234 a001 75025/2537720636*1322157322203^(3/4) 3645226708854234 a001 1134903170/167761*17393796001^(1/14) 3645226708854234 a001 1134903170/167761*14662949395604^(1/18) 3645226708854234 a001 1134903170/167761*505019158607^(1/16) 3645226708854234 a001 1134903170/167761*599074578^(1/12) 3645226708854234 a001 433494437/167761*312119004989^(1/10) 3645226708854234 a001 433494437/167761*1568397607^(1/8) 3645226708854234 a001 1836311903/167761*228826127^(1/16) 3645226708854234 a001 165580141/167761*2537720636^(1/6) 3645226708854234 a001 165580141/167761*312119004989^(3/22) 3645226708854234 a001 165580141/167761*28143753123^(3/20) 3645226708854234 a001 165580141/167761*228826127^(3/16) 3645226708854234 a001 2971215073/167761*33385282^(1/24) 3645226708854234 a001 75025/141422324*2537720636^(5/6) 3645226708854234 a001 75025/141422324*312119004989^(15/22) 3645226708854234 a001 75025/141422324*3461452808002^(5/8) 3645226708854234 a001 75025/141422324*28143753123^(3/4) 3645226708854234 a001 63245986/167761*817138163596^(1/6) 3645226708854234 a001 75025/141422324*228826127^(15/16) 3645226708854234 a001 63245986/167761*87403803^(1/4) 3645226708854234 a001 701408733/167761*33385282^(1/8) 3645226708854234 a001 39088169/167761*33385282^(7/24) 3645226708854234 a001 165580141/167761*33385282^(5/24) 3645226708854235 a001 24157817/167761*4106118243^(1/4) 3645226708854236 a001 75025/7881196*7881196^(21/22) 3645226708854239 a001 9303105/15251*12752043^(1/4) 3645226708854242 a001 9227465/167761*2537720636^(3/10) 3645226708854242 a001 9227465/167761*14662949395604^(3/14) 3645226708854242 a001 9227465/167761*192900153618^(1/4) 3645226708854243 a001 9227465/167761*33385282^(3/8) 3645226708854285 a001 75025/7881196*20633239^(9/10) 3645226708854286 a001 2971215073/167761*1860498^(1/20) 3645226708854292 a001 75025/7881196*2537720636^(7/10) 3645226708854292 a001 75025/7881196*17393796001^(9/14) 3645226708854292 a001 75025/7881196*14662949395604^(1/2) 3645226708854292 a001 75025/7881196*505019158607^(9/16) 3645226708854292 a001 75025/7881196*192900153618^(7/12) 3645226708854292 a001 3524578/167761*9062201101803^(1/4) 3645226708854292 a001 75025/7881196*599074578^(3/4) 3645226708854295 a001 75025/7881196*33385282^(7/8) 3645226708854321 a001 1836311903/167761*1860498^(1/12) 3645226708854392 a001 701408733/167761*1860498^(3/20) 3645226708854497 a001 165580141/167761*1860498^(1/4) 3645226708854602 a001 39088169/167761*1860498^(7/20) 3645226708854632 a001 1346269/167761*20633239^(1/2) 3645226708854636 a001 1346269/167761*2537720636^(7/18) 3645226708854636 a001 75025/3010349*2139295485799^(1/2) 3645226708854636 a001 1346269/167761*17393796001^(5/14) 3645226708854636 a001 1346269/167761*312119004989^(7/22) 3645226708854636 a001 1346269/167761*14662949395604^(5/18) 3645226708854636 a001 1346269/167761*28143753123^(7/20) 3645226708854636 a001 1346269/167761*599074578^(5/12) 3645226708854636 a001 1346269/167761*228826127^(7/16) 3645226708854659 a001 2178309/167761*1860498^(11/20) 3645226708854669 a001 14930352/167761*1860498^(5/12) 3645226708854716 a001 9227465/167761*1860498^(9/20) 3645226708855136 a001 1134903170/167761*710647^(1/8) 3645226708855250 a001 1346269/167761*1860498^(7/12) 3645226708855284 a001 75025/439204*439204^(17/18) 3645226708856940 a001 39088169/167761*710647^(3/8) 3645226708856942 a001 75025/1149851*7881196^(5/6) 3645226708856956 a001 514229/167761*7881196^(13/22) 3645226708856984 a001 75025/1149851*20633239^(11/14) 3645226708856991 a001 514229/167761*141422324^(1/2) 3645226708856991 a001 75025/1149851*2537720636^(11/18) 3645226708856991 a001 75025/1149851*312119004989^(1/2) 3645226708856991 a001 75025/1149851*3461452808002^(11/24) 3645226708856991 a001 75025/1149851*28143753123^(11/20) 3645226708856991 a001 514229/167761*73681302247^(3/8) 3645226708856991 a001 75025/1149851*1568397607^(5/8) 3645226708856991 a001 75025/1149851*228826127^(11/16) 3645226708856993 a001 514229/167761*33385282^(13/24) 3645226708857675 a001 514229/167761*1860498^(13/20) 3645226708857956 a001 75025/1149851*1860498^(11/12) 3645226708859147 a001 1346269/167761*710647^(5/8) 3645226708865847 a001 165580141/710647*103682^(7/16) 3645226708865975 a001 4976784/90481*103682^(9/16) 3645226708866602 a001 267914296/167761*271443^(1/4) 3645226708872012 a001 433494437/1860498*103682^(7/16) 3645226708872911 a001 1134903170/4870847*103682^(7/16) 3645226708873042 a001 2971215073/12752043*103682^(7/16) 3645226708873062 a001 7778742049/33385282*103682^(7/16) 3645226708873064 a001 20365011074/87403803*103682^(7/16) 3645226708873065 a001 53316291173/228826127*103682^(7/16) 3645226708873065 a001 139583862445/599074578*103682^(7/16) 3645226708873065 a001 365435296162/1568397607*103682^(7/16) 3645226708873065 a001 956722026041/4106118243*103682^(7/16) 3645226708873065 a001 2504730781961/10749957122*103682^(7/16) 3645226708873065 a001 6557470319842/28143753123*103682^(7/16) 3645226708873065 a001 10610209857723/45537549124*103682^(7/16) 3645226708873065 a001 4052739537881/17393796001*103682^(7/16) 3645226708873065 a001 1548008755920/6643838879*103682^(7/16) 3645226708873065 a001 591286729879/2537720636*103682^(7/16) 3645226708873065 a001 225851433717/969323029*103682^(7/16) 3645226708873065 a001 86267571272/370248451*103682^(7/16) 3645226708873065 a001 63246219/271444*103682^(7/16) 3645226708873066 a001 12586269025/54018521*103682^(7/16) 3645226708873073 a001 4807526976/20633239*103682^(7/16) 3645226708873085 a001 75025/439204*7881196^(17/22) 3645226708873124 a001 1836311903/7881196*103682^(7/16) 3645226708873131 a001 196418/167761*969323029^(1/2) 3645226708873131 a001 75025/439204*45537549124^(1/2) 3645226708873133 a001 75025/439204*33385282^(17/24) 3645226708873147 a001 75025/439204*12752043^(3/4) 3645226708873467 a001 701408733/3010349*103682^(7/16) 3645226708874026 a001 75025/439204*1860498^(17/20) 3645226708875427 a001 2971215073/167761*103682^(1/16) 3645226708875822 a001 267914296/1149851*103682^(7/16) 3645226708891962 a001 102334155/439204*103682^(7/16) 3645226708894095 a001 514229/167761*271443^(3/4) 3645226708908233 a001 39088169/710647*103682^(9/16) 3645226708908424 a001 3524578/271443*103682^(11/16) 3645226708914398 a001 831985/15126*103682^(9/16) 3645226708915298 a001 267914296/4870847*103682^(9/16) 3645226708915429 a001 233802911/4250681*103682^(9/16) 3645226708915448 a001 1836311903/33385282*103682^(9/16) 3645226708915451 a001 1602508992/29134601*103682^(9/16) 3645226708915451 a001 12586269025/228826127*103682^(9/16) 3645226708915451 a001 10983760033/199691526*103682^(9/16) 3645226708915451 a001 86267571272/1568397607*103682^(9/16) 3645226708915451 a001 75283811239/1368706081*103682^(9/16) 3645226708915451 a001 591286729879/10749957122*103682^(9/16) 3645226708915451 a001 12585437040/228811001*103682^(9/16) 3645226708915451 a001 4052739537881/73681302247*103682^(9/16) 3645226708915451 a001 3536736619241/64300051206*103682^(9/16) 3645226708915451 a001 6557470319842/119218851371*103682^(9/16) 3645226708915451 a001 2504730781961/45537549124*103682^(9/16) 3645226708915451 a001 956722026041/17393796001*103682^(9/16) 3645226708915451 a001 365435296162/6643838879*103682^(9/16) 3645226708915451 a001 139583862445/2537720636*103682^(9/16) 3645226708915451 a001 53316291173/969323029*103682^(9/16) 3645226708915451 a001 20365011074/370248451*103682^(9/16) 3645226708915452 a001 7778742049/141422324*103682^(9/16) 3645226708915453 a001 2971215073/54018521*103682^(9/16) 3645226708915460 a001 1134903170/20633239*103682^(9/16) 3645226708915510 a001 433494437/7881196*103682^(9/16) 3645226708915854 a001 165580141/3010349*103682^(9/16) 3645226708917813 a001 701408733/167761*103682^(3/16) 3645226708918209 a001 63245986/1149851*103682^(9/16) 3645226708934350 a001 24157817/439204*103682^(9/16) 3645226708949698 a001 832040/271443*103682^(13/16) 3645226708950628 a001 9227465/710647*103682^(11/16) 3645226708956786 a001 24157817/1860498*103682^(11/16) 3645226708957684 a001 63245986/4870847*103682^(11/16) 3645226708957816 a001 165580141/12752043*103682^(11/16) 3645226708957835 a001 433494437/33385282*103682^(11/16) 3645226708957837 a001 1134903170/87403803*103682^(11/16) 3645226708957838 a001 2971215073/228826127*103682^(11/16) 3645226708957838 a001 7778742049/599074578*103682^(11/16) 3645226708957838 a001 20365011074/1568397607*103682^(11/16) 3645226708957838 a001 53316291173/4106118243*103682^(11/16) 3645226708957838 a001 139583862445/10749957122*103682^(11/16) 3645226708957838 a001 365435296162/28143753123*103682^(11/16) 3645226708957838 a001 956722026041/73681302247*103682^(11/16) 3645226708957838 a001 2504730781961/192900153618*103682^(11/16) 3645226708957838 a001 10610209857723/817138163596*103682^(11/16) 3645226708957838 a001 4052739537881/312119004989*103682^(11/16) 3645226708957838 a001 1548008755920/119218851371*103682^(11/16) 3645226708957838 a001 591286729879/45537549124*103682^(11/16) 3645226708957838 a001 7787980473/599786069*103682^(11/16) 3645226708957838 a001 86267571272/6643838879*103682^(11/16) 3645226708957838 a001 32951280099/2537720636*103682^(11/16) 3645226708957838 a001 12586269025/969323029*103682^(11/16) 3645226708957838 a001 4807526976/370248451*103682^(11/16) 3645226708957838 a001 1836311903/141422324*103682^(11/16) 3645226708957839 a001 701408733/54018521*103682^(11/16) 3645226708957846 a001 9238424/711491*103682^(11/16) 3645226708957897 a001 102334155/7881196*103682^(11/16) 3645226708958240 a001 39088169/3010349*103682^(11/16) 3645226708960200 a001 165580141/167761*103682^(5/16) 3645226708960592 a001 14930352/1149851*103682^(11/16) 3645226708966663 a001 133957148/51841*39603^(1/4) 3645226708976712 a001 5702887/439204*103682^(11/16) 3645226708983755 a001 75025/167761*6643838879^(1/2) 3645226708992853 a001 311187/101521*103682^(13/16) 3645226708999149 a001 5702887/1860498*103682^(13/16) 3645226709000068 a001 14930352/4870847*103682^(13/16) 3645226709000202 a001 39088169/12752043*103682^(13/16) 3645226709000221 a001 14619165/4769326*103682^(13/16) 3645226709000224 a001 267914296/87403803*103682^(13/16) 3645226709000224 a001 701408733/228826127*103682^(13/16) 3645226709000224 a001 1836311903/599074578*103682^(13/16) 3645226709000224 a001 686789568/224056801*103682^(13/16) 3645226709000224 a001 12586269025/4106118243*103682^(13/16) 3645226709000224 a001 32951280099/10749957122*103682^(13/16) 3645226709000224 a001 86267571272/28143753123*103682^(13/16) 3645226709000224 a001 32264490531/10525900321*103682^(13/16) 3645226709000224 a001 591286729879/192900153618*103682^(13/16) 3645226709000224 a001 1548008755920/505019158607*103682^(13/16) 3645226709000224 a001 1515744265389/494493258286*103682^(13/16) 3645226709000224 a001 2504730781961/817138163596*103682^(13/16) 3645226709000224 a001 956722026041/312119004989*103682^(13/16) 3645226709000224 a001 365435296162/119218851371*103682^(13/16) 3645226709000224 a001 139583862445/45537549124*103682^(13/16) 3645226709000224 a001 53316291173/17393796001*103682^(13/16) 3645226709000224 a001 20365011074/6643838879*103682^(13/16) 3645226709000224 a001 7778742049/2537720636*103682^(13/16) 3645226709000224 a001 2971215073/969323029*103682^(13/16) 3645226709000224 a001 1134903170/370248451*103682^(13/16) 3645226709000225 a001 433494437/141422324*103682^(13/16) 3645226709000226 a001 165580141/54018521*103682^(13/16) 3645226709000233 a001 63245986/20633239*103682^(13/16) 3645226709000284 a001 24157817/7881196*103682^(13/16) 3645226709000635 a001 9227465/3010349*103682^(13/16) 3645226709002586 a001 39088169/167761*103682^(7/16) 3645226709003040 a001 3524578/1149851*103682^(13/16) 3645226709012035 a001 196418/271443*103682^(15/16) 3645226709019524 a001 1346269/439204*103682^(13/16) 3645226709038150 a001 514229/710647*103682^(15/16) 3645226709041960 a001 1346269/1860498*103682^(15/16) 3645226709042516 a001 3524578/4870847*103682^(15/16) 3645226709042597 a001 9227465/12752043*103682^(15/16) 3645226709042609 a001 24157817/33385282*103682^(15/16) 3645226709042611 a001 63245986/87403803*103682^(15/16) 3645226709042611 a001 165580141/228826127*103682^(15/16) 3645226709042611 a001 433494437/599074578*103682^(15/16) 3645226709042611 a001 1134903170/1568397607*103682^(15/16) 3645226709042611 a001 2971215073/4106118243*103682^(15/16) 3645226709042611 a001 7778742049/10749957122*103682^(15/16) 3645226709042611 a001 20365011074/28143753123*103682^(15/16) 3645226709042611 a001 53316291173/73681302247*103682^(15/16) 3645226709042611 a001 139583862445/192900153618*103682^(15/16) 3645226709042611 a001 10610209857723/14662949395604*103682^(15/16) 3645226709042611 a001 591286729879/817138163596*103682^(15/16) 3645226709042611 a001 225851433717/312119004989*103682^(15/16) 3645226709042611 a001 86267571272/119218851371*103682^(15/16) 3645226709042611 a001 32951280099/45537549124*103682^(15/16) 3645226709042611 a001 12586269025/17393796001*103682^(15/16) 3645226709042611 a001 4807526976/6643838879*103682^(15/16) 3645226709042611 a001 1836311903/2537720636*103682^(15/16) 3645226709042611 a001 701408733/969323029*103682^(15/16) 3645226709042611 a001 267914296/370248451*103682^(15/16) 3645226709042611 a001 102334155/141422324*103682^(15/16) 3645226709042612 a001 39088169/54018521*103682^(15/16) 3645226709042616 a001 14930352/20633239*103682^(15/16) 3645226709042647 a001 5702887/7881196*103682^(15/16) 3645226709042860 a001 2178309/3010349*103682^(15/16) 3645226709044315 a001 832040/1149851*103682^(15/16) 3645226709044982 a001 9227465/167761*103682^(9/16) 3645226709054290 a001 317811/439204*103682^(15/16) 3645226709087206 a001 2178309/167761*103682^(11/16) 3645226709122660 a001 121393/167761*103682^(15/16) 3645226709132503 a001 514229/167761*103682^(13/16) 3645226709156805 a001 46368/64079*167761^(9/10) 3645226709168598 a001 9227465/64079*64079^(1/2) 3645226709177841 a001 1134903170/64079*24476^(1/14) 3645226709256282 a001 233802911/90481*39603^(1/4) 3645226709257627 a001 46368/64079*439204^(5/6) 3645226709273335 a001 46368/64079*7881196^(15/22) 3645226709273369 a001 28657/103682*20633239^(7/10) 3645226709273369 a001 46368/64079*20633239^(9/14) 3645226709273375 a001 46368/64079*2537720636^(1/2) 3645226709273375 a001 28657/103682*17393796001^(1/2) 3645226709273375 a001 28657/103682*14662949395604^(7/18) 3645226709273375 a001 28657/103682*505019158607^(7/16) 3645226709273375 a001 46368/64079*312119004989^(9/22) 3645226709273375 a001 46368/64079*14662949395604^(5/14) 3645226709273375 a001 46368/64079*192900153618^(5/12) 3645226709273375 a001 46368/64079*28143753123^(9/20) 3645226709273375 a001 28657/103682*599074578^(7/12) 3645226709273375 a001 46368/64079*228826127^(9/16) 3645226709273377 a001 46368/64079*33385282^(5/8) 3645226709274165 a001 46368/64079*1860498^(3/4) 3645226709279690 a001 28657/103682*710647^(7/8) 3645226709288860 a001 75025/24476*24476^(13/14) 3645226709298537 a001 1836311903/710647*39603^(1/4) 3645226709304702 a001 267084832/103361*39603^(1/4) 3645226709305602 a001 12586269025/4870847*39603^(1/4) 3645226709305733 a001 10983760033/4250681*39603^(1/4) 3645226709305752 a001 43133785636/16692641*39603^(1/4) 3645226709305755 a001 75283811239/29134601*39603^(1/4) 3645226709305755 a001 591286729879/228826127*39603^(1/4) 3645226709305755 a001 86000486440/33281921*39603^(1/4) 3645226709305755 a001 4052739537881/1568397607*39603^(1/4) 3645226709305755 a001 3536736619241/1368706081*39603^(1/4) 3645226709305755 a001 3278735159921/1268860318*39603^(1/4) 3645226709305755 a001 2504730781961/969323029*39603^(1/4) 3645226709305755 a001 956722026041/370248451*39603^(1/4) 3645226709305755 a001 182717648081/70711162*39603^(1/4) 3645226709305756 a001 139583862445/54018521*39603^(1/4) 3645226709305764 a001 53316291173/20633239*39603^(1/4) 3645226709305814 a001 10182505537/3940598*39603^(1/4) 3645226709306157 a001 7778742049/3010349*39603^(1/4) 3645226709308512 a001 2971215073/1149851*39603^(1/4) 3645226709324652 a001 567451585/219602*39603^(1/4) 3645226709399616 a001 121393/24476*24476^(37/42) 3645226709435277 a001 433494437/167761*39603^(1/4) 3645226709483135 a001 46368/9349*9349^(37/38) 3645226709524559 a001 514229/64079*167761^(7/10) 3645226709547684 a001 5702887/64079*167761^(1/2) 3645226709562994 a001 121393/64079*370248451^(1/2) 3645226709562994 a001 28657/271443*119218851371^(1/2) 3645226709573611 a001 63245986/64079*167761^(3/10) 3645226709591274 a001 46368/64079*103682^(15/16) 3645226709599515 a001 701408733/64079*167761^(1/10) 3645226709599866 a001 832040/64079*439204^(11/18) 3645226709603077 a001 3524578/64079*439204^(1/2) 3645226709605115 a001 14930352/64079*439204^(7/18) 3645226709605198 a001 28657/710647*7881196^(19/22) 3645226709605248 a001 317811/64079*54018521^(1/2) 3645226709605249 a001 28657/710647*817138163596^(1/2) 3645226709605249 a001 28657/710647*87403803^(3/4) 3645226709605252 a001 28657/710647*33385282^(19/24) 3645226709606249 a001 28657/710647*1860498^(19/20) 3645226709607218 a001 63245986/64079*439204^(5/18) 3645226709609317 a001 267914296/64079*439204^(1/6) 3645226709610935 a001 2178309/64079*1149851^(1/2) 3645226709611384 a001 832040/64079*7881196^(1/2) 3645226709611414 a001 28657/1860498*5600748293801^(1/2) 3645226709611414 a001 832040/64079*312119004989^(3/10) 3645226709611414 a001 832040/64079*1568397607^(3/8) 3645226709611415 a001 832040/64079*33385282^(11/24) 3645226709611417 a001 1134903170/64079*439204^(1/18) 3645226709611993 a001 832040/64079*1860498^(11/20) 3645226709612305 a001 28657/4870847*20633239^(13/14) 3645226709612313 a001 28657/4870847*141422324^(5/6) 3645226709612313 a001 28657/4870847*2537720636^(13/18) 3645226709612313 a001 28657/4870847*312119004989^(13/22) 3645226709612313 a001 28657/4870847*3461452808002^(13/24) 3645226709612313 a001 28657/4870847*73681302247^(5/8) 3645226709612313 a001 28657/4870847*28143753123^(13/20) 3645226709612313 a001 2178309/64079*1322157322203^(1/4) 3645226709612313 a001 28657/4870847*228826127^(13/16) 3645226709612441 a001 5702887/64079*20633239^(5/14) 3645226709612445 a001 5702887/64079*2537720636^(5/18) 3645226709612445 a001 28657/12752043*4106118243^(3/4) 3645226709612445 a001 5702887/64079*312119004989^(5/22) 3645226709612445 a001 5702887/64079*3461452808002^(5/24) 3645226709612445 a001 5702887/64079*28143753123^(1/4) 3645226709612445 a001 5702887/64079*228826127^(5/16) 3645226709612445 a001 14930352/64079*7881196^(7/22) 3645226709612448 a001 28657/12752043*33385282^(23/24) 3645226709612454 a001 63245986/64079*7881196^(5/22) 3645226709612457 a001 165580141/64079*7881196^(1/6) 3645226709612459 a001 267914296/64079*7881196^(3/22) 3645226709612461 a001 14930352/64079*20633239^(3/10) 3645226709612464 a001 14930352/64079*17393796001^(3/14) 3645226709612464 a001 14930352/64079*14662949395604^(1/6) 3645226709612464 a001 14930352/64079*599074578^(1/4) 3645226709612464 a001 1134903170/64079*7881196^(1/22) 3645226709612465 a001 14930352/64079*33385282^(7/24) 3645226709612465 a001 63245986/64079*20633239^(3/14) 3645226709612466 a001 433494437/64079*20633239^(1/10) 3645226709612466 a001 701408733/64079*20633239^(1/14) 3645226709612466 a001 28657/87403803*17393796001^(11/14) 3645226709612466 a001 28657/87403803*14662949395604^(11/18) 3645226709612466 a001 28657/87403803*505019158607^(11/16) 3645226709612466 a001 39088169/64079*45537549124^(1/6) 3645226709612466 a001 28657/87403803*1568397607^(7/8) 3645226709612466 a001 28657/87403803*599074578^(11/12) 3645226709612467 a001 102334155/64079*141422324^(1/6) 3645226709612467 a001 28657/228826127*2537720636^(9/10) 3645226709612467 a001 28657/228826127*14662949395604^(9/14) 3645226709612467 a001 28657/228826127*192900153618^(3/4) 3645226709612467 a001 102334155/64079*73681302247^(1/8) 3645226709612467 a001 28657/599074578*2537720636^(17/18) 3645226709612467 a001 28657/599074578*45537549124^(5/6) 3645226709612467 a001 28657/599074578*312119004989^(17/22) 3645226709612467 a001 28657/599074578*3461452808002^(17/24) 3645226709612467 a001 28657/599074578*28143753123^(17/20) 3645226709612467 a001 267914296/64079*2537720636^(1/10) 3645226709612467 a001 267914296/64079*14662949395604^(1/14) 3645226709612467 a001 701408733/64079*2537720636^(1/18) 3645226709612467 a001 701408733/64079*312119004989^(1/22) 3645226709612467 a001 701408733/64079*28143753123^(1/20) 3645226709612467 a001 28657/4106118243*9062201101803^(3/4) 3645226709612467 a001 28657/73681302247*312119004989^(21/22) 3645226709612467 a001 28657/73681302247*14662949395604^(5/6) 3645226709612467 a001 28657/73681302247*505019158607^(15/16) 3645226709612467 a001 28657/1322157322203*14662949395604^(13/14) 3645226709612467 a001 28657/2139295485799*14662949395604^(17/18) 3645226709612467 a001 28657/817138163596*3461452808002^(23/24) 3645226709612467 a001 28657/17393796001*312119004989^(9/10) 3645226709612467 a001 28657/17393796001*14662949395604^(11/14) 3645226709612467 a001 28657/17393796001*192900153618^(11/12) 3645226709612467 a001 28657/6643838879*312119004989^(19/22) 3645226709612467 a001 28657/6643838879*817138163596^(5/6) 3645226709612467 a001 28657/6643838879*3461452808002^(19/24) 3645226709612467 a001 28657/6643838879*28143753123^(19/20) 3645226709612467 a001 28657/2537720636*17393796001^(13/14) 3645226709612467 a001 28657/2537720636*14662949395604^(13/18) 3645226709612467 a001 28657/2537720636*505019158607^(13/16) 3645226709612467 a001 28657/2537720636*73681302247^(7/8) 3645226709612467 a001 701408733/64079*228826127^(1/16) 3645226709612467 a001 28657/969323029*1322157322203^(3/4) 3645226709612467 a001 433494437/64079*17393796001^(1/14) 3645226709612467 a001 433494437/64079*14662949395604^(1/18) 3645226709612467 a001 433494437/64079*505019158607^(1/16) 3645226709612467 a001 433494437/64079*599074578^(1/12) 3645226709612467 a001 165580141/64079*312119004989^(1/10) 3645226709612467 a001 165580141/64079*1568397607^(1/8) 3645226709612467 a001 1134903170/64079*33385282^(1/24) 3645226709612467 a001 63245986/64079*2537720636^(1/6) 3645226709612467 a001 63245986/64079*312119004989^(3/22) 3645226709612467 a001 63245986/64079*28143753123^(3/20) 3645226709612467 a001 63245986/64079*228826127^(3/16) 3645226709612467 a001 267914296/64079*33385282^(1/8) 3645226709612468 a001 63245986/64079*33385282^(5/24) 3645226709612468 a001 28657/54018521*2537720636^(5/6) 3645226709612468 a001 28657/54018521*312119004989^(15/22) 3645226709612468 a001 28657/54018521*3461452808002^(5/8) 3645226709612468 a001 28657/54018521*28143753123^(3/4) 3645226709612468 a001 24157817/64079*817138163596^(1/6) 3645226709612468 a001 28657/54018521*228826127^(15/16) 3645226709612468 a001 24157817/64079*87403803^(1/4) 3645226709612472 a001 39088169/64079*12752043^(1/4) 3645226709612475 a001 9227465/64079*4106118243^(1/4) 3645226709612502 a001 3524578/64079*7881196^(9/22) 3645226709612520 a001 1134903170/64079*1860498^(1/20) 3645226709612526 a001 3524578/64079*2537720636^(3/10) 3645226709612526 a001 3524578/64079*14662949395604^(3/14) 3645226709612526 a001 3524578/64079*192900153618^(1/4) 3645226709612527 a001 3524578/64079*33385282^(3/8) 3645226709612555 a001 701408733/64079*1860498^(1/12) 3645226709612625 a001 267914296/64079*1860498^(3/20) 3645226709612668 a001 1346269/64079*3010349^(1/2) 3645226709612730 a001 63245986/64079*1860498^(1/4) 3645226709612813 a001 28657/3010349*7881196^(21/22) 3645226709612832 a001 14930352/64079*1860498^(7/20) 3645226709612861 a001 28657/3010349*20633239^(9/10) 3645226709612869 a001 28657/3010349*2537720636^(7/10) 3645226709612869 a001 28657/3010349*17393796001^(9/14) 3645226709612869 a001 28657/3010349*14662949395604^(1/2) 3645226709612869 a001 28657/3010349*505019158607^(9/16) 3645226709612869 a001 28657/3010349*192900153618^(7/12) 3645226709612869 a001 1346269/64079*9062201101803^(1/4) 3645226709612869 a001 28657/3010349*599074578^(3/4) 3645226709612872 a001 28657/3010349*33385282^(7/8) 3645226709612883 a001 5702887/64079*1860498^(5/12) 3645226709613000 a001 3524578/64079*1860498^(9/20) 3645226709613369 a001 433494437/64079*710647^(1/8) 3645226709615170 a001 14930352/64079*710647^(3/8) 3645226709615220 a001 514229/64079*20633239^(1/2) 3645226709615224 a001 514229/64079*2537720636^(7/18) 3645226709615224 a001 28657/1149851*2139295485799^(1/2) 3645226709615224 a001 514229/64079*17393796001^(5/14) 3645226709615224 a001 514229/64079*312119004989^(7/22) 3645226709615224 a001 514229/64079*14662949395604^(5/18) 3645226709615224 a001 514229/64079*505019158607^(5/16) 3645226709615224 a001 514229/64079*28143753123^(7/20) 3645226709615224 a001 514229/64079*599074578^(5/12) 3645226709615224 a001 514229/64079*228826127^(7/16) 3645226709615838 a001 514229/64079*1860498^(7/12) 3645226709617716 a001 196418/64079*439204^(13/18) 3645226709619735 a001 514229/64079*710647^(5/8) 3645226709624835 a001 102334155/64079*271443^(1/4) 3645226709631315 a001 28657/439204*7881196^(5/6) 3645226709631329 a001 196418/64079*7881196^(13/22) 3645226709631357 a001 28657/439204*20633239^(11/14) 3645226709631364 a001 196418/64079*141422324^(1/2) 3645226709631364 a001 28657/439204*2537720636^(11/18) 3645226709631364 a001 28657/439204*312119004989^(1/2) 3645226709631364 a001 28657/439204*3461452808002^(11/24) 3645226709631364 a001 28657/439204*28143753123^(11/20) 3645226709631364 a001 196418/64079*73681302247^(3/8) 3645226709631364 a001 28657/439204*1568397607^(5/8) 3645226709631364 a001 28657/439204*228826127^(11/16) 3645226709631366 a001 196418/64079*33385282^(13/24) 3645226709632048 a001 196418/64079*1860498^(13/20) 3645226709632329 a001 28657/439204*1860498^(11/12) 3645226709633660 a001 1134903170/64079*103682^(1/16) 3645226709668469 a001 196418/64079*271443^(3/4) 3645226709676047 a001 267914296/64079*103682^(3/16) 3645226709718433 a001 63245986/64079*103682^(5/16) 3645226709724141 a001 28657/167761*439204^(17/18) 3645226709741943 a001 28657/167761*7881196^(17/22) 3645226709741989 a001 75025/64079*969323029^(1/2) 3645226709741989 a001 28657/167761*45537549124^(1/2) 3645226709741991 a001 28657/167761*33385282^(17/24) 3645226709742005 a001 28657/167761*12752043^(3/4) 3645226709742884 a001 28657/167761*1860498^(17/20) 3645226709757736 a001 98209/12238*24476^(5/6) 3645226709760817 a001 14930352/64079*103682^(7/16) 3645226709803265 a001 3524578/64079*103682^(9/16) 3645226709844540 a001 832040/64079*103682^(11/16) 3645226709906876 a001 196418/64079*103682^(13/16) 3645226710021372 a001 10959/844*24476^(11/14) 3645226710022951 a001 46347/2206*39603^(31/44) 3645226710129151 a001 1346269/103682*39603^(3/4) 3645226710193510 a001 165580141/64079*39603^(1/4) 3645226710233340 a001 416020/51841*39603^(35/44) 3645226710321097 a001 514229/24476*24476^(31/42) 3645226710342795 a001 514229/103682*39603^(37/44) 3645226710376884 a001 567451585/51841*15127^(1/8) 3645226710418427 a001 3524578/271443*39603^(3/4) 3645226710438464 a001 317811/103682*39603^(39/44) 3645226710460632 a001 9227465/710647*39603^(3/4) 3645226710466790 a001 24157817/1860498*39603^(3/4) 3645226710467688 a001 63245986/4870847*39603^(3/4) 3645226710467819 a001 165580141/12752043*39603^(3/4) 3645226710467838 a001 433494437/33385282*39603^(3/4) 3645226710467841 a001 1134903170/87403803*39603^(3/4) 3645226710467841 a001 2971215073/228826127*39603^(3/4) 3645226710467841 a001 7778742049/599074578*39603^(3/4) 3645226710467841 a001 20365011074/1568397607*39603^(3/4) 3645226710467841 a001 53316291173/4106118243*39603^(3/4) 3645226710467841 a001 139583862445/10749957122*39603^(3/4) 3645226710467841 a001 365435296162/28143753123*39603^(3/4) 3645226710467841 a001 956722026041/73681302247*39603^(3/4) 3645226710467841 a001 2504730781961/192900153618*39603^(3/4) 3645226710467841 a001 10610209857723/817138163596*39603^(3/4) 3645226710467841 a001 4052739537881/312119004989*39603^(3/4) 3645226710467841 a001 1548008755920/119218851371*39603^(3/4) 3645226710467841 a001 591286729879/45537549124*39603^(3/4) 3645226710467841 a001 7787980473/599786069*39603^(3/4) 3645226710467841 a001 86267571272/6643838879*39603^(3/4) 3645226710467841 a001 32951280099/2537720636*39603^(3/4) 3645226710467841 a001 12586269025/969323029*39603^(3/4) 3645226710467841 a001 4807526976/370248451*39603^(3/4) 3645226710467842 a001 1836311903/141422324*39603^(3/4) 3645226710467843 a001 701408733/54018521*39603^(3/4) 3645226710467850 a001 9238424/711491*39603^(3/4) 3645226710467900 a001 102334155/7881196*39603^(3/4) 3645226710468243 a001 39088169/3010349*39603^(3/4) 3645226710470595 a001 14930352/1149851*39603^(3/4) 3645226710486716 a001 5702887/439204*39603^(3/4) 3645226710500222 a001 28657/64079*6643838879^(1/2) 3645226710523859 a001 726103/90481*39603^(35/44) 3645226710570223 a001 98209/51841*39603^(41/44) 3645226710597209 a001 2178309/167761*39603^(3/4) 3645226710607038 a001 208010/6119*24476^(29/42) 3645226710607497 a001 121393/103682*39603^(43/44) 3645226710630059 a001 1346269/271443*39603^(37/44) 3645226710666504 a001 2971215073/271443*15127^(1/8) 3645226710697873 a001 2178309/439204*39603^(37/44) 3645226710703410 a001 1346269/167761*39603^(35/44) 3645226710708758 a001 7778742049/710647*15127^(1/8) 3645226710714923 a001 10182505537/930249*15127^(1/8) 3645226710715823 a001 53316291173/4870847*15127^(1/8) 3645226710715954 a001 139583862445/12752043*15127^(1/8) 3645226710715973 a001 182717648081/16692641*15127^(1/8) 3645226710715976 a001 956722026041/87403803*15127^(1/8) 3645226710715976 a001 2504730781961/228826127*15127^(1/8) 3645226710715976 a001 3278735159921/299537289*15127^(1/8) 3645226710715976 a001 10610209857723/969323029*15127^(1/8) 3645226710715977 a001 4052739537881/370248451*15127^(1/8) 3645226710715977 a001 387002188980/35355581*15127^(1/8) 3645226710715978 a001 591286729879/54018521*15127^(1/8) 3645226710715985 a001 7787980473/711491*15127^(1/8) 3645226710716035 a001 21566892818/1970299*15127^(1/8) 3645226710716379 a001 32951280099/3010349*15127^(1/8) 3645226710718734 a001 12586269025/1149851*15127^(1/8) 3645226710734248 a001 832040/271443*39603^(39/44) 3645226710734873 a001 1201881744/109801*15127^(1/8) 3645226710777402 a001 311187/101521*39603^(39/44) 3645226710804073 a001 1346269/439204*39603^(39/44) 3645226710807598 a001 75640/15251*39603^(37/44) 3645226710843702 a001 514229/271443*39603^(41/44) 3645226710845498 a001 1836311903/167761*15127^(1/8) 3645226710883603 a001 1346269/710647*39603^(41/44) 3645226710893022 a001 2178309/1149851*39603^(41/44) 3645226710898244 a001 1346269/24476*24476^(9/14) 3645226710908262 a001 208010/109801*39603^(41/44) 3645226710917053 a001 514229/167761*39603^(39/44) 3645226710939372 a001 105937/90481*39603^(43/44) 3645226710987791 a001 832040/710647*39603^(43/44) 3645226710994856 a001 726103/620166*39603^(43/44) 3645226710999222 a001 1346269/1149851*39603^(43/44) 3645226711012722 a001 317811/167761*39603^(41/44) 3645226711017716 a001 514229/439204*39603^(43/44) 3645226711144154 a001 2178309/64079*39603^(29/44) 3645226711144481 a001 196418/167761*39603^(43/44) 3645226711187439 a001 2178309/24476*24476^(25/42) 3645226711250354 a001 1346269/64079*39603^(31/44) 3645226711354543 a001 832040/64079*39603^(3/4) 3645226711463998 a001 514229/64079*39603^(35/44) 3645226711559667 a001 317811/64079*39603^(37/44) 3645226711603731 a001 701408733/64079*15127^(1/8) 3645226711691426 a001 196418/64079*39603^(39/44) 3645226711728700 a001 121393/64079*39603^(41/44) 3645226711767071 a001 5702887/24476*24476^(1/2) 3645226712013339 a001 75025/64079*39603^(43/44) 3645226712146780 a001 75025/9349*9349^(35/38) 3645226712368733 a001 17711/24476*167761^(9/10) 3645226712374332 a001 39088169/39603*15127^(3/8) 3645226712469555 a001 17711/24476*439204^(5/6) 3645226712485262 a001 17711/24476*7881196^(15/22) 3645226712485296 a001 10946/39603*20633239^(7/10) 3645226712485297 a001 17711/24476*20633239^(9/14) 3645226712485302 a001 10946/39603*17393796001^(1/2) 3645226712485302 a001 10946/39603*14662949395604^(7/18) 3645226712485302 a001 10946/39603*505019158607^(7/16) 3645226712485302 a001 10946/39603*599074578^(7/12) 3645226712485302 a001 17711/24476*2537720636^(1/2) 3645226712485302 a001 17711/24476*312119004989^(9/22) 3645226712485302 a001 17711/24476*14662949395604^(5/14) 3645226712485302 a001 17711/24476*192900153618^(5/12) 3645226712485302 a001 17711/24476*28143753123^(9/20) 3645226712485302 a001 17711/24476*228826127^(9/16) 3645226712485304 a001 17711/24476*33385282^(5/8) 3645226712486092 a001 17711/24476*1860498^(3/4) 3645226712491618 a001 10946/39603*710647^(7/8) 3645226712636346 a001 24157817/24476*24476^(5/14) 3645226712803201 a001 17711/24476*103682^(15/16) 3645226713505597 a001 102334155/24476*24476^(3/14) 3645226713795348 a001 165580141/24476*24476^(1/6) 3645226714162816 a001 121393/9349*9349^(33/38) 3645226714359413 a001 102334155/103682*15127^(3/8) 3645226714365656 a001 1762289/12238*64079^(1/2) 3645226714374849 a001 433494437/24476*24476^(1/14) 3645226714470383 a001 11592/6119*370248451^(1/2) 3645226714470383 a001 5473/51841*119218851371^(1/2) 3645226714649033 a001 267914296/271443*15127^(3/8) 3645226714691287 a001 701408733/710647*15127^(3/8) 3645226714697452 a001 1836311903/1860498*15127^(3/8) 3645226714698352 a001 4807526976/4870847*15127^(3/8) 3645226714698483 a001 12586269025/12752043*15127^(3/8) 3645226714698502 a001 32951280099/33385282*15127^(3/8) 3645226714698505 a001 86267571272/87403803*15127^(3/8) 3645226714698505 a001 225851433717/228826127*15127^(3/8) 3645226714698505 a001 591286729879/599074578*15127^(3/8) 3645226714698505 a001 1548008755920/1568397607*15127^(3/8) 3645226714698505 a001 4052739537881/4106118243*15127^(3/8) 3645226714698505 a001 4807525989/4870846*15127^(3/8) 3645226714698505 a001 6557470319842/6643838879*15127^(3/8) 3645226714698505 a001 2504730781961/2537720636*15127^(3/8) 3645226714698505 a001 956722026041/969323029*15127^(3/8) 3645226714698505 a001 365435296162/370248451*15127^(3/8) 3645226714698506 a001 139583862445/141422324*15127^(3/8) 3645226714698507 a001 53316291173/54018521*15127^(3/8) 3645226714698514 a001 20365011074/20633239*15127^(3/8) 3645226714698564 a001 7778742049/7881196*15127^(3/8) 3645226714698908 a001 2971215073/3010349*15127^(3/8) 3645226714701262 a001 1134903170/1149851*15127^(3/8) 3645226714717402 a001 433494437/439204*15127^(3/8) 3645226714737707 a001 98209/12238*167761^(7/10) 3645226714744560 a001 2178309/24476*167761^(1/2) 3645226714759951 a001 10946/271443*7881196^(19/22) 3645226714760001 a001 121393/24476*54018521^(1/2) 3645226714760002 a001 10946/271443*817138163596^(1/2) 3645226714760002 a001 10946/271443*87403803^(3/4) 3645226714760005 a001 10946/271443*33385282^(19/24) 3645226714761002 a001 10946/271443*1860498^(19/20) 3645226714770620 a001 24157817/24476*167761^(3/10) 3645226714790709 a001 10959/844*439204^(11/18) 3645226714796523 a001 10946*167761^(1/10) 3645226714800429 a001 1346269/24476*439204^(1/2) 3645226714802104 a001 5702887/24476*439204^(7/18) 3645226714802227 a001 10959/844*7881196^(1/2) 3645226714802257 a001 10946/710647*5600748293801^(1/2) 3645226714802257 a001 10959/844*312119004989^(3/10) 3645226714802257 a001 10959/844*1568397607^(3/8) 3645226714802258 a001 10959/844*33385282^(11/24) 3645226714802836 a001 10959/844*1860498^(11/20) 3645226714804227 a001 24157817/24476*439204^(5/18) 3645226714806325 a001 102334155/24476*439204^(1/6) 3645226714807043 a001 208010/6119*1149851^(1/2) 3645226714808414 a001 5473/930249*20633239^(13/14) 3645226714808422 a001 5473/930249*141422324^(5/6) 3645226714808422 a001 5473/930249*2537720636^(13/18) 3645226714808422 a001 5473/930249*312119004989^(13/22) 3645226714808422 a001 5473/930249*3461452808002^(13/24) 3645226714808422 a001 5473/930249*73681302247^(5/8) 3645226714808422 a001 5473/930249*28143753123^(13/20) 3645226714808422 a001 208010/6119*1322157322203^(1/4) 3645226714808422 a001 5473/930249*228826127^(13/16) 3645226714808425 a001 433494437/24476*439204^(1/18) 3645226714809318 a001 2178309/24476*20633239^(5/14) 3645226714809321 a001 10946/4870847*4106118243^(3/4) 3645226714809321 a001 2178309/24476*2537720636^(5/18) 3645226714809321 a001 2178309/24476*312119004989^(5/22) 3645226714809321 a001 2178309/24476*3461452808002^(5/24) 3645226714809321 a001 2178309/24476*28143753123^(1/4) 3645226714809321 a001 2178309/24476*228826127^(5/16) 3645226714809324 a001 10946/4870847*33385282^(23/24) 3645226714809434 a001 5702887/24476*7881196^(7/22) 3645226714809450 a001 5702887/24476*20633239^(3/10) 3645226714809452 a001 5702887/24476*17393796001^(3/14) 3645226714809452 a001 5702887/24476*14662949395604^(1/6) 3645226714809452 a001 5702887/24476*599074578^(1/4) 3645226714809453 a001 5702887/24476*33385282^(7/24) 3645226714809463 a001 24157817/24476*7881196^(5/22) 3645226714809465 a001 31622993/12238*7881196^(1/6) 3645226714809467 a001 102334155/24476*7881196^(3/22) 3645226714809472 a001 5473/16692641*17393796001^(11/14) 3645226714809472 a001 5473/16692641*14662949395604^(11/18) 3645226714809472 a001 5473/16692641*505019158607^(11/16) 3645226714809472 a001 5473/16692641*1568397607^(7/8) 3645226714809472 a001 5473/16692641*599074578^(11/12) 3645226714809472 a001 3732588/6119*45537549124^(1/6) 3645226714809472 a001 433494437/24476*7881196^(1/22) 3645226714809474 a001 165580141/24476*20633239^(1/10) 3645226714809474 a001 10946*20633239^(1/14) 3645226714809474 a001 24157817/24476*20633239^(3/14) 3645226714809474 a001 39088169/24476*141422324^(1/6) 3645226714809474 a001 10946/87403803*2537720636^(9/10) 3645226714809474 a001 10946/87403803*14662949395604^(9/14) 3645226714809474 a001 10946/87403803*192900153618^(3/4) 3645226714809474 a001 39088169/24476*73681302247^(1/8) 3645226714809475 a001 10946/228826127*2537720636^(17/18) 3645226714809475 a001 10946/228826127*45537549124^(5/6) 3645226714809475 a001 10946/228826127*312119004989^(17/22) 3645226714809475 a001 10946/228826127*3461452808002^(17/24) 3645226714809475 a001 10946/228826127*28143753123^(17/20) 3645226714809475 a001 102334155/24476*2537720636^(1/10) 3645226714809475 a001 102334155/24476*14662949395604^(1/14) 3645226714809475 a001 102334155/24476*192900153618^(1/12) 3645226714809475 a001 10946/1568397607*9062201101803^(3/4) 3645226714809475 a001 10946*2537720636^(1/18) 3645226714809475 a001 10946/28143753123*312119004989^(21/22) 3645226714809475 a001 10946/28143753123*14662949395604^(5/6) 3645226714809475 a001 10946/28143753123*505019158607^(15/16) 3645226714809475 a001 10946/505019158607*14662949395604^(13/14) 3645226714809475 a001 10946*312119004989^(1/22) 3645226714809475 a001 5473/408569081798*14662949395604^(17/18) 3645226714809475 a001 10946/312119004989*3461452808002^(23/24) 3645226714809475 a001 10946*28143753123^(1/20) 3645226714809475 a001 10946/6643838879*312119004989^(9/10) 3645226714809475 a001 10946/6643838879*14662949395604^(11/14) 3645226714809475 a001 10946/6643838879*192900153618^(11/12) 3645226714809475 a001 5473/1268860318*312119004989^(19/22) 3645226714809475 a001 5473/1268860318*3461452808002^(19/24) 3645226714809475 a001 5473/1268860318*28143753123^(19/20) 3645226714809475 a001 10946/969323029*17393796001^(13/14) 3645226714809475 a001 10946/969323029*14662949395604^(13/18) 3645226714809475 a001 10946/969323029*505019158607^(13/16) 3645226714809475 a001 10946/969323029*73681302247^(7/8) 3645226714809475 a001 10946*228826127^(1/16) 3645226714809475 a001 10946/370248451*1322157322203^(3/4) 3645226714809475 a001 165580141/24476*17393796001^(1/14) 3645226714809475 a001 165580141/24476*14662949395604^(1/18) 3645226714809475 a001 165580141/24476*505019158607^(1/16) 3645226714809475 a001 165580141/24476*599074578^(1/12) 3645226714809475 a001 433494437/24476*33385282^(1/24) 3645226714809475 a001 31622993/12238*312119004989^(1/10) 3645226714809475 a001 31622993/12238*1568397607^(1/8) 3645226714809475 a001 102334155/24476*33385282^(1/8) 3645226714809476 a001 24157817/24476*2537720636^(1/6) 3645226714809476 a001 24157817/24476*312119004989^(3/22) 3645226714809476 a001 24157817/24476*28143753123^(3/20) 3645226714809476 a001 24157817/24476*228826127^(3/16) 3645226714809477 a001 24157817/24476*33385282^(5/24) 3645226714809477 a001 3732588/6119*12752043^(1/4) 3645226714809483 a001 10946/20633239*2537720636^(5/6) 3645226714809483 a001 10946/20633239*312119004989^(15/22) 3645226714809483 a001 10946/20633239*3461452808002^(5/8) 3645226714809483 a001 10946/20633239*28143753123^(3/4) 3645226714809483 a001 9227465/24476*817138163596^(1/6) 3645226714809483 a001 10946/20633239*228826127^(15/16) 3645226714809483 a001 9227465/24476*87403803^(1/4) 3645226714809527 a001 433494437/24476*1860498^(1/20) 3645226714809534 a001 1762289/12238*4106118243^(1/4) 3645226714809563 a001 10946*1860498^(1/12) 3645226714809633 a001 102334155/24476*1860498^(3/20) 3645226714809739 a001 24157817/24476*1860498^(1/4) 3645226714809760 a001 2178309/24476*1860498^(5/12) 3645226714809821 a001 5702887/24476*1860498^(7/20) 3645226714809853 a001 1346269/24476*7881196^(9/22) 3645226714809877 a001 1346269/24476*2537720636^(3/10) 3645226714809877 a001 1346269/24476*14662949395604^(3/14) 3645226714809877 a001 1346269/24476*192900153618^(1/4) 3645226714809878 a001 1346269/24476*33385282^(3/8) 3645226714810351 a001 1346269/24476*1860498^(9/20) 3645226714810377 a001 165580141/24476*710647^(1/8) 3645226714812031 a001 514229/24476*3010349^(1/2) 3645226714812159 a001 5702887/24476*710647^(3/8) 3645226714812176 a001 10946/1149851*7881196^(21/22) 3645226714812224 a001 10946/1149851*20633239^(9/10) 3645226714812232 a001 10946/1149851*2537720636^(7/10) 3645226714812232 a001 10946/1149851*17393796001^(9/14) 3645226714812232 a001 10946/1149851*14662949395604^(1/2) 3645226714812232 a001 10946/1149851*505019158607^(9/16) 3645226714812232 a001 10946/1149851*192900153618^(7/12) 3645226714812232 a001 10946/1149851*599074578^(3/4) 3645226714812232 a001 514229/24476*9062201101803^(1/4) 3645226714812235 a001 10946/1149851*33385282^(7/8) 3645226714821843 a001 39088169/24476*271443^(1/4) 3645226714828027 a001 165580141/167761*15127^(3/8) 3645226714828367 a001 98209/12238*20633239^(1/2) 3645226714828372 a001 5473/219602*2139295485799^(1/2) 3645226714828372 a001 98209/12238*2537720636^(7/18) 3645226714828372 a001 98209/12238*17393796001^(5/14) 3645226714828372 a001 98209/12238*312119004989^(7/22) 3645226714828372 a001 98209/12238*14662949395604^(5/18) 3645226714828372 a001 98209/12238*28143753123^(7/20) 3645226714828372 a001 98209/12238*599074578^(5/12) 3645226714828372 a001 98209/12238*228826127^(7/16) 3645226714828986 a001 98209/12238*1860498^(7/12) 3645226714830668 a001 433494437/24476*103682^(1/16) 3645226714832883 a001 98209/12238*710647^(5/8) 3645226714873055 a001 102334155/24476*103682^(3/16) 3645226714915442 a001 24157817/24476*103682^(5/16) 3645226714925349 a001 75025/24476*439204^(13/18) 3645226714938948 a001 10946/167761*7881196^(5/6) 3645226714938962 a001 75025/24476*7881196^(13/22) 3645226714938990 a001 10946/167761*20633239^(11/14) 3645226714938996 a001 75025/24476*141422324^(1/2) 3645226714938997 a001 10946/167761*2537720636^(11/18) 3645226714938997 a001 10946/167761*312119004989^(1/2) 3645226714938997 a001 10946/167761*3461452808002^(11/24) 3645226714938997 a001 10946/167761*28143753123^(11/20) 3645226714938997 a001 10946/167761*1568397607^(5/8) 3645226714938997 a001 75025/24476*73681302247^(3/8) 3645226714938997 a001 10946/167761*228826127^(11/16) 3645226714938998 a001 75025/24476*33385282^(13/24) 3645226714939681 a001 75025/24476*1860498^(13/20) 3645226714939962 a001 10946/167761*1860498^(11/12) 3645226714957805 a001 5702887/24476*103682^(7/16) 3645226714976101 a001 75025/24476*271443^(3/4) 3645226715000616 a001 1346269/24476*103682^(9/16) 3645226715035383 a001 10959/844*103682^(11/16) 3645226715214509 a001 75025/24476*103682^(13/16) 3645226715390518 a001 31622993/12238*39603^(1/4) 3645226715499426 a001 17711*5778^(1/12) 3645226715586261 a001 63245986/64079*15127^(3/8) 3645226715679383 a001 10946/64079*439204^(17/18) 3645226715697184 a001 10946/64079*7881196^(17/22) 3645226715697230 a001 10946/64079*45537549124^(1/2) 3645226715697230 a001 28657/24476*969323029^(1/2) 3645226715697232 a001 10946/64079*33385282^(17/24) 3645226715697247 a001 10946/64079*12752043^(3/4) 3645226715698125 a001 10946/64079*1860498^(17/20) 3645226716129874 a001 2178309/24476*39603^(25/44) 3645226716236074 a001 1346269/24476*39603^(27/44) 3645226716340263 a001 208010/6119*39603^(29/44) 3645226716356920 a001 3524578/39603*15127^(5/8) 3645226716426217 a001 196418/9349*9349^(31/38) 3645226716449717 a001 514229/24476*39603^(31/44) 3645226716545386 a001 10959/844*39603^(3/4) 3645226716636089 a001 11592/6119*39603^(41/44) 3645226716677145 a001 98209/12238*39603^(35/44) 3645226716714420 a001 121393/24476*39603^(37/44) 3645226716793100 a001 46368/3571*3571^(33/34) 3645226716800739 a001 10946*15127^(1/8) 3645226716999059 a001 75025/24476*39603^(39/44) 3645226717153214 a001 726103/13201*15127^(27/40) 3645226717484506 a001 1836311903/103682*5778^(1/12) 3645226717774126 a001 1602508992/90481*5778^(1/12) 3645226717816380 a001 12586269025/710647*5778^(1/12) 3645226717822545 a001 10983760033/620166*5778^(1/12) 3645226717823445 a001 86267571272/4870847*5778^(1/12) 3645226717823576 a001 75283811239/4250681*5778^(1/12) 3645226717823595 a001 591286729879/33385282*5778^(1/12) 3645226717823598 a001 516002918640/29134601*5778^(1/12) 3645226717823598 a001 4052739537881/228826127*5778^(1/12) 3645226717823598 a001 3536736619241/199691526*5778^(1/12) 3645226717823598 a001 6557470319842/370248451*5778^(1/12) 3645226717823599 a001 2504730781961/141422324*5778^(1/12) 3645226717823600 a001 956722026041/54018521*5778^(1/12) 3645226717823607 a001 365435296162/20633239*5778^(1/12) 3645226717823657 a001 139583862445/7881196*5778^(1/12) 3645226717824001 a001 53316291173/3010349*5778^(1/12) 3645226717826355 a001 20365011074/1149851*5778^(1/12) 3645226717842495 a001 7778742049/439204*5778^(1/12) 3645226717950276 a001 1346269/39603*15127^(29/40) 3645226717953120 a001 2971215073/167761*5778^(1/12) 3645226717968580 a001 28657/24476*39603^(43/44) 3645226718341951 a001 9227465/103682*15127^(5/8) 3645226718595133 a001 317811/9349*9349^(29/38) 3645226718631563 a001 24157817/271443*15127^(5/8) 3645226718673817 a001 63245986/710647*15127^(5/8) 3645226718679981 a001 165580141/1860498*15127^(5/8) 3645226718680881 a001 433494437/4870847*15127^(5/8) 3645226718681012 a001 1134903170/12752043*15127^(5/8) 3645226718681031 a001 2971215073/33385282*15127^(5/8) 3645226718681034 a001 7778742049/87403803*15127^(5/8) 3645226718681034 a001 20365011074/228826127*15127^(5/8) 3645226718681034 a001 53316291173/599074578*15127^(5/8) 3645226718681034 a001 139583862445/1568397607*15127^(5/8) 3645226718681034 a001 365435296162/4106118243*15127^(5/8) 3645226718681034 a001 956722026041/10749957122*15127^(5/8) 3645226718681034 a001 2504730781961/28143753123*15127^(5/8) 3645226718681034 a001 6557470319842/73681302247*15127^(5/8) 3645226718681034 a001 10610209857723/119218851371*15127^(5/8) 3645226718681034 a001 4052739537881/45537549124*15127^(5/8) 3645226718681034 a001 1548008755920/17393796001*15127^(5/8) 3645226718681034 a001 591286729879/6643838879*15127^(5/8) 3645226718681034 a001 225851433717/2537720636*15127^(5/8) 3645226718681034 a001 86267571272/969323029*15127^(5/8) 3645226718681034 a001 32951280099/370248451*15127^(5/8) 3645226718681035 a001 12586269025/141422324*15127^(5/8) 3645226718681036 a001 4807526976/54018521*15127^(5/8) 3645226718681043 a001 1836311903/20633239*15127^(5/8) 3645226718681093 a001 3524667/39604*15127^(5/8) 3645226718681437 a001 267914296/3010349*15127^(5/8) 3645226718683791 a001 102334155/1149851*15127^(5/8) 3645226718699931 a001 39088169/439204*15127^(5/8) 3645226718711353 a001 1134903170/64079*5778^(1/12) 3645226718745326 a001 832040/39603*15127^(31/40) 3645226718810553 a001 14930352/167761*15127^(5/8) 3645226719545642 a001 514229/39603*15127^(33/40) 3645226719568767 a001 5702887/64079*15127^(5/8) 3645226720091256 a001 63245986/15127*5778^(1/4) 3645226720332173 a001 105937/13201*15127^(7/8) 3645226720731306 a001 46347/2206*15127^(31/40) 3645226720783270 a001 24157817/24476*15127^(3/8) 3645226720800138 a001 514229/9349*9349^(27/38) 3645226720894238 a001 5473/12238*6643838879^(1/2) 3645226721154794 a001 196418/39603*15127^(37/40) 3645226721161647 a001 2178309/64079*15127^(29/40) 3645226721528368 a001 1346269/103682*15127^(33/40) 3645226721882929 a001 121393/39603*15127^(39/40) 3645226721958709 a001 1346269/64079*15127^(31/40) 3645226721996426 a001 2178309/167761*15127^(33/40) 3645226722323418 a001 416020/51841*15127^(7/8) 3645226722558959 m001 (BesselK(1,1)+GAMMA(1/24))/TwinPrimes 3645226722613937 a001 726103/90481*15127^(7/8) 3645226722656323 a001 5702887/710647*15127^(7/8) 3645226722662507 a001 829464/103361*15127^(7/8) 3645226722663409 a001 39088169/4870847*15127^(7/8) 3645226722663541 a001 34111385/4250681*15127^(7/8) 3645226722663560 a001 133957148/16692641*15127^(7/8) 3645226722663563 a001 233802911/29134601*15127^(7/8) 3645226722663563 a001 1836311903/228826127*15127^(7/8) 3645226722663563 a001 267084832/33281921*15127^(7/8) 3645226722663563 a001 12586269025/1568397607*15127^(7/8) 3645226722663563 a001 10983760033/1368706081*15127^(7/8) 3645226722663563 a001 43133785636/5374978561*15127^(7/8) 3645226722663563 a001 75283811239/9381251041*15127^(7/8) 3645226722663563 a001 591286729879/73681302247*15127^(7/8) 3645226722663563 a001 86000486440/10716675201*15127^(7/8) 3645226722663563 a001 4052739537881/505019158607*15127^(7/8) 3645226722663563 a001 3536736619241/440719107401*15127^(7/8) 3645226722663563 a001 3278735159921/408569081798*15127^(7/8) 3645226722663563 a001 2504730781961/312119004989*15127^(7/8) 3645226722663563 a001 956722026041/119218851371*15127^(7/8) 3645226722663563 a001 182717648081/22768774562*15127^(7/8) 3645226722663563 a001 139583862445/17393796001*15127^(7/8) 3645226722663563 a001 53316291173/6643838879*15127^(7/8) 3645226722663563 a001 10182505537/1268860318*15127^(7/8) 3645226722663563 a001 7778742049/969323029*15127^(7/8) 3645226722663563 a001 2971215073/370248451*15127^(7/8) 3645226722663564 a001 567451585/70711162*15127^(7/8) 3645226722663565 a001 433494437/54018521*15127^(7/8) 3645226722663572 a001 165580141/20633239*15127^(7/8) 3645226722663622 a001 31622993/3940598*15127^(7/8) 3645226722663967 a001 24157817/3010349*15127^(7/8) 3645226722666329 a001 9227465/1149851*15127^(7/8) 3645226722682519 a001 1762289/219602*15127^(7/8) 3645226722753759 a001 832040/64079*15127^(33/40) 3645226722793487 a001 1346269/167761*15127^(7/8) 3645226722991359 a001 832040/9349*9349^(25/38) 3645226723123734 a001 514229/103682*15127^(37/40) 3645226723410999 a001 1346269/271443*15127^(37/40) 3645226723478812 a001 2178309/439204*15127^(37/40) 3645226723554075 a001 514229/64079*15127^(7/8) 3645226723588538 a001 75640/15251*15127^(37/40) 3645226723908361 a001 433494437/24476*5778^(1/12) 3645226723910265 a001 317811/103682*15127^(39/40) 3645226724206049 a001 832040/271443*15127^(39/40) 3645226724249203 a001 311187/101521*15127^(39/40) 3645226724275874 a001 1346269/439204*15127^(39/40) 3645226724340606 a001 317811/64079*15127^(37/40) 3645226724388854 a001 514229/167761*15127^(39/40) 3645226724765644 a001 2178309/24476*15127^(5/8) 3645226725163227 a001 196418/64079*15127^(39/40) 3645226725187845 a001 1346269/9349*9349^(23/38) 3645226725562705 a001 1346269/24476*15127^(27/40) 3645226726357756 a001 208010/6119*15127^(29/40) 3645226727158072 a001 514229/24476*15127^(31/40) 3645226727382320 a001 2178309/9349*9349^(21/38) 3645226727944602 a001 10959/844*15127^(33/40) 3645226728767223 a001 98209/12238*15127^(7/8) 3645226729495359 a001 121393/24476*15127^(37/40) 3645226729577563 a001 3524578/9349*9349^(1/2) 3645226730470859 a001 75025/24476*15127^(39/40) 3645226733697199 a001 165580141/39603*5778^(1/4) 3645226734076676 a001 75025/3571*3571^(31/34) 3645226734383612 a001 6765/9349*167761^(9/10) 3645226734484434 a001 6765/9349*439204^(5/6) 3645226734500141 a001 6765/9349*7881196^(15/22) 3645226734500175 a001 4181/15127*20633239^(7/10) 3645226734500176 a001 6765/9349*20633239^(9/14) 3645226734500181 a001 4181/15127*17393796001^(1/2) 3645226734500181 a001 4181/15127*14662949395604^(7/18) 3645226734500181 a001 4181/15127*505019158607^(7/16) 3645226734500181 a001 4181/15127*599074578^(7/12) 3645226734500181 a001 6765/9349*2537720636^(1/2) 3645226734500181 a001 6765/9349*312119004989^(9/22) 3645226734500181 a001 6765/9349*14662949395604^(5/14) 3645226734500181 a001 6765/9349*192900153618^(5/12) 3645226734500181 a001 6765/9349*28143753123^(9/20) 3645226734500181 a001 6765/9349*228826127^(9/16) 3645226734500183 a001 6765/9349*33385282^(5/8) 3645226734500971 a001 6765/9349*1860498^(3/4) 3645226734506496 a001 4181/15127*710647^(7/8) 3645226734818080 a001 6765/9349*103682^(15/16) 3645226735682279 a001 433494437/103682*5778^(1/4) 3645226735971898 a001 1134903170/271443*5778^(1/4) 3645226736014153 a001 2971215073/710647*5778^(1/4) 3645226736020318 a001 7778742049/1860498*5778^(1/4) 3645226736021218 a001 20365011074/4870847*5778^(1/4) 3645226736021349 a001 53316291173/12752043*5778^(1/4) 3645226736021368 a001 139583862445/33385282*5778^(1/4) 3645226736021371 a001 365435296162/87403803*5778^(1/4) 3645226736021371 a001 956722026041/228826127*5778^(1/4) 3645226736021371 a001 2504730781961/599074578*5778^(1/4) 3645226736021371 a001 6557470319842/1568397607*5778^(1/4) 3645226736021371 a001 10610209857723/2537720636*5778^(1/4) 3645226736021371 a001 4052739537881/969323029*5778^(1/4) 3645226736021371 a001 1548008755920/370248451*5778^(1/4) 3645226736021371 a001 591286729879/141422324*5778^(1/4) 3645226736021373 a001 225851433717/54018521*5778^(1/4) 3645226736021380 a001 86267571272/20633239*5778^(1/4) 3645226736021430 a001 32951280099/7881196*5778^(1/4) 3645226736021774 a001 12586269025/3010349*5778^(1/4) 3645226736024128 a001 4807526976/1149851*5778^(1/4) 3645226736040268 a001 1836311903/439204*5778^(1/4) 3645226736150893 a001 701408733/167761*5778^(1/4) 3645226736222940 s002 sum(A017344[n]/((pi^n+1)/n),n=1..infinity) 3645226736909126 a001 267914296/64079*5778^(1/4) 3645226738204323 m001 1/ln(GAMMA(1/6))^2/Magata/sqrt(1+sqrt(3))^2 3645226738289025 a001 14930352/15127*5778^(5/12) 3645226740421468 r002 4th iterates of z^2 + 3645226742106134 a001 102334155/24476*5778^(1/4) 3645226742166237 a001 17711/9349*24476^(41/42) 3645226743398421 r005 Im(z^2+c),c=-18/31+25/59*I,n=31 3645226744730819 a001 46368/9349*24476^(37/42) 3645226745489183 a001 75025/9349*24476^(5/6) 3645226745599939 a001 121393/9349*24476^(11/14) 3645226745667915 a001 28657/9349*24476^(13/14) 3645226745958060 a001 196418/9349*24476^(31/42) 3645226746221695 a001 317811/9349*24476^(29/42) 3645226746521421 a001 514229/9349*24476^(9/14) 3645226746807361 a001 832040/9349*24476^(25/42) 3645226747098567 a001 1346269/9349*24476^(23/42) 3645226747387762 a001 2178309/9349*24476^(1/2) 3645226748106124 a001 4181/39603*119218851371^(1/2) 3645226748106125 a001 17711/9349*370248451^(1/2) 3645226748257176 a001 9227465/9349*24476^(5/14) 3645226749126419 a001 4181*24476^(3/14) 3645226749416170 a001 63245986/9349*24476^(1/6) 3645226749986822 a001 1346269/9349*64079^(1/2) 3645226749995671 a001 165580141/9349*24476^(1/14) 3645226750091154 a001 4181/103682*7881196^(19/22) 3645226750091204 a001 46368/9349*54018521^(1/2) 3645226750091204 a001 4181/103682*817138163596^(1/2) 3645226750091205 a001 4181/103682*87403803^(3/4) 3645226750091207 a001 4181/103682*33385282^(19/24) 3645226750092205 a001 4181/103682*1860498^(19/20) 3645226750271831 a001 17711/9349*39603^(41/44) 3645226750364483 a001 832040/9349*167761^(1/2) 3645226750369276 a001 121393/9349*439204^(11/18) 3645226750380795 a001 121393/9349*7881196^(1/2) 3645226750380824 a001 4181/271443*5600748293801^(1/2) 3645226750380824 a001 121393/9349*312119004989^(3/10) 3645226750380824 a001 121393/9349*1568397607^(3/8) 3645226750380826 a001 121393/9349*33385282^(11/24) 3645226750381403 a001 121393/9349*1860498^(11/20) 3645226750391449 a001 9227465/9349*167761^(3/10) 3645226750417345 a001 102334155/9349*167761^(1/10) 3645226750421701 a001 317811/9349*1149851^(1/2) 3645226750422795 a001 2178309/9349*439204^(7/18) 3645226750423071 a001 4181/710647*20633239^(13/14) 3645226750423079 a001 4181/710647*141422324^(5/6) 3645226750423079 a001 4181/710647*2537720636^(13/18) 3645226750423079 a001 4181/710647*312119004989^(13/22) 3645226750423079 a001 4181/710647*3461452808002^(13/24) 3645226750423079 a001 4181/710647*73681302247^(5/8) 3645226750423079 a001 4181/710647*28143753123^(13/20) 3645226750423079 a001 4181/710647*228826127^(13/16) 3645226750423079 a001 317811/9349*1322157322203^(1/4) 3645226750423606 a001 514229/9349*439204^(1/2) 3645226750425057 a001 9227465/9349*439204^(5/18) 3645226750427147 a001 4181*439204^(1/6) 3645226750429241 a001 832040/9349*20633239^(5/14) 3645226750429244 a001 4181/1860498*4106118243^(3/4) 3645226750429244 a001 832040/9349*2537720636^(5/18) 3645226750429244 a001 832040/9349*312119004989^(5/22) 3645226750429244 a001 832040/9349*3461452808002^(5/24) 3645226750429244 a001 832040/9349*28143753123^(1/4) 3645226750429244 a001 832040/9349*228826127^(5/16) 3645226750429247 a001 4181/1860498*33385282^(23/24) 3645226750429247 a001 165580141/9349*439204^(1/18) 3645226750429683 a001 832040/9349*1860498^(5/12) 3645226750430125 a001 2178309/9349*7881196^(7/22) 3645226750430141 a001 2178309/9349*20633239^(3/10) 3645226750430144 a001 2178309/9349*17393796001^(3/14) 3645226750430144 a001 2178309/9349*14662949395604^(1/6) 3645226750430144 a001 2178309/9349*599074578^(1/4) 3645226750430144 a001 2178309/9349*33385282^(7/24) 3645226750430274 a001 4181/12752043*17393796001^(11/14) 3645226750430274 a001 4181/12752043*14662949395604^(11/18) 3645226750430274 a001 4181/12752043*505019158607^(11/16) 3645226750430274 a001 4181/12752043*1568397607^(7/8) 3645226750430274 a001 4181/12752043*599074578^(11/12) 3645226750430275 a001 5702887/9349*45537549124^(1/6) 3645226750430280 a001 5702887/9349*12752043^(1/4) 3645226750430289 a001 24157817/9349*7881196^(1/6) 3645226750430289 a001 4181*7881196^(3/22) 3645226750430292 a001 9227465/9349*7881196^(5/22) 3645226750430293 a001 4181/33385282*2537720636^(9/10) 3645226750430293 a001 4181/33385282*14662949395604^(9/14) 3645226750430293 a001 4181/33385282*192900153618^(3/4) 3645226750430294 a001 14930352/9349*141422324^(1/6) 3645226750430294 a001 14930352/9349*73681302247^(1/8) 3645226750430295 a001 165580141/9349*7881196^(1/22) 3645226750430296 a001 4181/87403803*2537720636^(17/18) 3645226750430296 a001 4181/87403803*45537549124^(5/6) 3645226750430296 a001 4181/87403803*312119004989^(17/22) 3645226750430296 a001 4181/87403803*3461452808002^(17/24) 3645226750430296 a001 4181/87403803*28143753123^(17/20) 3645226750430296 a001 102334155/9349*20633239^(1/14) 3645226750430297 a001 63245986/9349*20633239^(1/10) 3645226750430297 a001 4181/599074578*9062201101803^(3/4) 3645226750430297 a001 4181*2537720636^(1/10) 3645226750430297 a001 4181/10749957122*312119004989^(21/22) 3645226750430297 a001 4181/10749957122*14662949395604^(5/6) 3645226750430297 a001 4181/10749957122*505019158607^(15/16) 3645226750430297 a001 4181/192900153618*14662949395604^(13/14) 3645226750430297 a001 4181*14662949395604^(1/14) 3645226750430297 a001 4181*192900153618^(1/12) 3645226750430297 a001 4181/312119004989*14662949395604^(17/18) 3645226750430297 a001 4181/119218851371*3461452808002^(23/24) 3645226750430297 a001 4181/2537720636*312119004989^(9/10) 3645226750430297 a001 4181/2537720636*14662949395604^(11/14) 3645226750430297 a001 4181/2537720636*192900153618^(11/12) 3645226750430297 a001 4181/969323029*312119004989^(19/22) 3645226750430297 a001 4181/969323029*817138163596^(5/6) 3645226750430297 a001 4181/969323029*3461452808002^(19/24) 3645226750430297 a001 4181/969323029*28143753123^(19/20) 3645226750430297 a001 4181/370248451*17393796001^(13/14) 3645226750430297 a001 4181/370248451*14662949395604^(13/18) 3645226750430297 a001 4181/370248451*505019158607^(13/16) 3645226750430297 a001 4181/370248451*73681302247^(7/8) 3645226750430297 a001 4181/141422324*1322157322203^(3/4) 3645226750430297 a001 102334155/9349*2537720636^(1/18) 3645226750430297 a001 102334155/9349*312119004989^(1/22) 3645226750430297 a001 102334155/9349*28143753123^(1/20) 3645226750430297 a001 4181*33385282^(1/8) 3645226750430297 a001 102334155/9349*228826127^(1/16) 3645226750430297 a001 165580141/9349*33385282^(1/24) 3645226750430297 a001 63245986/9349*17393796001^(1/14) 3645226750430297 a001 63245986/9349*14662949395604^(1/18) 3645226750430297 a001 63245986/9349*505019158607^(1/16) 3645226750430297 a001 63245986/9349*599074578^(1/12) 3645226750430298 a001 24157817/9349*312119004989^(1/10) 3645226750430298 a001 24157817/9349*1568397607^(1/8) 3645226750430304 a001 9227465/9349*20633239^(3/14) 3645226750430306 a001 9227465/9349*2537720636^(1/6) 3645226750430306 a001 9227465/9349*312119004989^(3/22) 3645226750430306 a001 9227465/9349*28143753123^(3/20) 3645226750430306 a001 9227465/9349*228826127^(3/16) 3645226750430306 a001 9227465/9349*33385282^(5/24) 3645226750430350 a001 165580141/9349*1860498^(1/20) 3645226750430355 a001 4181/7881196*2537720636^(5/6) 3645226750430355 a001 4181/7881196*312119004989^(15/22) 3645226750430355 a001 4181/7881196*3461452808002^(5/8) 3645226750430355 a001 4181/7881196*28143753123^(3/4) 3645226750430355 a001 4181/7881196*228826127^(15/16) 3645226750430356 a001 3524578/9349*817138163596^(1/6) 3645226750430356 a001 3524578/9349*87403803^(1/4) 3645226750430385 a001 102334155/9349*1860498^(1/12) 3645226750430455 a001 4181*1860498^(3/20) 3645226750430512 a001 2178309/9349*1860498^(7/20) 3645226750430569 a001 9227465/9349*1860498^(1/4) 3645226750430699 a001 1346269/9349*4106118243^(1/4) 3645226750431200 a001 63245986/9349*710647^(1/8) 3645226750432850 a001 2178309/9349*710647^(3/8) 3645226750433030 a001 514229/9349*7881196^(9/22) 3645226750433054 a001 514229/9349*2537720636^(3/10) 3645226750433054 a001 514229/9349*14662949395604^(3/14) 3645226750433054 a001 514229/9349*192900153618^(1/4) 3645226750433055 a001 514229/9349*33385282^(3/8) 3645226750433528 a001 514229/9349*1860498^(9/20) 3645226750442662 a001 14930352/9349*271443^(1/4) 3645226750448993 a001 196418/9349*3010349^(1/2) 3645226750449138 a001 4181/439204*7881196^(21/22) 3645226750449186 a001 4181/439204*20633239^(9/10) 3645226750449194 a001 4181/439204*2537720636^(7/10) 3645226750449194 a001 4181/439204*17393796001^(9/14) 3645226750449194 a001 4181/439204*14662949395604^(1/2) 3645226750449194 a001 4181/439204*505019158607^(9/16) 3645226750449194 a001 4181/439204*192900153618^(7/12) 3645226750449194 a001 4181/439204*599074578^(3/4) 3645226750449194 a001 196418/9349*9062201101803^(1/4) 3645226750449197 a001 4181/439204*33385282^(7/8) 3645226750451490 a001 165580141/9349*103682^(1/16) 3645226750469154 a001 75025/9349*167761^(7/10) 3645226750493876 a001 4181*103682^(3/16) 3645226750536272 a001 9227465/9349*103682^(5/16) 3645226750559815 a001 75025/9349*20633239^(1/2) 3645226750559818 a001 4181/167761*2139295485799^(1/2) 3645226750559819 a001 75025/9349*2537720636^(7/18) 3645226750559819 a001 75025/9349*17393796001^(5/14) 3645226750559819 a001 75025/9349*312119004989^(7/22) 3645226750559819 a001 75025/9349*14662949395604^(5/18) 3645226750559819 a001 75025/9349*505019158607^(5/16) 3645226750559819 a001 75025/9349*28143753123^(7/20) 3645226750559819 a001 75025/9349*599074578^(5/12) 3645226750559819 a001 75025/9349*228826127^(7/16) 3645226750560433 a001 75025/9349*1860498^(7/12) 3645226750564330 a001 75025/9349*710647^(5/8) 3645226750578496 a001 2178309/9349*103682^(7/16) 3645226750613950 a001 121393/9349*103682^(11/16) 3645226750623794 a001 514229/9349*103682^(9/16) 3645226750712642 a001 121393/3571*3571^(29/34) 3645226751011342 a001 24157817/9349*39603^(1/4) 3645226751304404 a001 28657/9349*439204^(13/18) 3645226751318003 a001 4181/64079*7881196^(5/6) 3645226751318017 a001 28657/9349*7881196^(13/22) 3645226751318045 a001 4181/64079*20633239^(11/14) 3645226751318052 a001 4181/64079*2537720636^(11/18) 3645226751318052 a001 4181/64079*312119004989^(1/2) 3645226751318052 a001 4181/64079*3461452808002^(11/24) 3645226751318052 a001 4181/64079*28143753123^(11/20) 3645226751318052 a001 4181/64079*1568397607^(5/8) 3645226751318052 a001 4181/64079*228826127^(11/16) 3645226751318052 a001 28657/9349*141422324^(1/2) 3645226751318052 a001 28657/9349*73681302247^(3/8) 3645226751318054 a001 28657/9349*33385282^(13/24) 3645226751318737 a001 28657/9349*1860498^(13/20) 3645226751319017 a001 4181/64079*1860498^(11/12) 3645226751355157 a001 28657/9349*271443^(3/4) 3645226751539408 a001 2178309/9349*39603^(21/44) 3645226751593565 a001 28657/9349*103682^(13/16) 3645226751645608 a001 1346269/9349*39603^(23/44) 3645226751749797 a001 832040/9349*39603^(25/44) 3645226751859251 a001 514229/9349*39603^(27/44) 3645226751894971 a001 39088169/39603*5778^(5/12) 3645226751954920 a001 317811/9349*39603^(29/44) 3645226752045623 a001 46368/9349*39603^(37/44) 3645226752086679 a001 196418/9349*39603^(31/44) 3645226752123954 a001 121393/9349*39603^(3/4) 3645226752408593 a001 75025/9349*39603^(35/44) 3645226752421562 a001 102334155/9349*15127^(1/8) 3645226753378114 a001 28657/9349*39603^(39/44) 3645226753880052 a001 102334155/103682*5778^(5/12) 3645226754169671 a001 267914296/271443*5778^(5/12) 3645226754211926 a001 701408733/710647*5778^(5/12) 3645226754218091 a001 1836311903/1860498*5778^(5/12) 3645226754218991 a001 4807526976/4870847*5778^(5/12) 3645226754219122 a001 12586269025/12752043*5778^(5/12) 3645226754219141 a001 32951280099/33385282*5778^(5/12) 3645226754219144 a001 86267571272/87403803*5778^(5/12) 3645226754219144 a001 225851433717/228826127*5778^(5/12) 3645226754219144 a001 591286729879/599074578*5778^(5/12) 3645226754219144 a001 1548008755920/1568397607*5778^(5/12) 3645226754219144 a001 4052739537881/4106118243*5778^(5/12) 3645226754219144 a001 4807525989/4870846*5778^(5/12) 3645226754219144 a001 6557470319842/6643838879*5778^(5/12) 3645226754219144 a001 2504730781961/2537720636*5778^(5/12) 3645226754219144 a001 956722026041/969323029*5778^(5/12) 3645226754219144 a001 365435296162/370248451*5778^(5/12) 3645226754219144 a001 139583862445/141422324*5778^(5/12) 3645226754219145 a001 53316291173/54018521*5778^(5/12) 3645226754219153 a001 20365011074/20633239*5778^(5/12) 3645226754219203 a001 7778742049/7881196*5778^(5/12) 3645226754219546 a001 2971215073/3010349*5778^(5/12) 3645226754221901 a001 1134903170/1149851*5778^(5/12) 3645226754238041 a001 433494437/439204*5778^(5/12) 3645226754348666 a001 165580141/167761*5778^(5/12) 3645226755106899 a001 63245986/64079*5778^(5/12) 3645226755836198 a007 Real Root Of -857*x^4-58*x^3+828*x^2+354*x-14 3645226756404099 a001 9227465/9349*15127^(3/8) 3645226756486860 a001 3524578/15127*5778^(7/12) 3645226756497212 a001 4181/24476*439204^(17/18) 3645226756515014 a001 4181/24476*7881196^(17/22) 3645226756515060 a001 4181/24476*45537549124^(1/2) 3645226756515060 a001 10946/9349*969323029^(1/2) 3645226756515062 a001 4181/24476*33385282^(17/24) 3645226756515076 a001 4181/24476*12752043^(3/4) 3645226756515955 a001 4181/24476*1860498^(17/20) 3645226758786411 a001 10946/9349*39603^(43/44) 3645226758793454 a001 2178309/9349*15127^(21/40) 3645226759529184 a001 165580141/9349*5778^(1/12) 3645226759590516 a001 1346269/9349*15127^(23/40) 3645226760303908 a001 24157817/24476*5778^(5/12) 3645226760385567 a001 832040/9349*15127^(5/8) 3645226761185883 a001 514229/9349*15127^(27/40) 3645226761972413 a001 317811/9349*15127^(29/40) 3645226762552572 a001 311187/2161*5778^(23/36) 3645226762795034 a001 196418/9349*15127^(31/40) 3645226763523170 a001 121393/9349*15127^(33/40) 3645226764424562 l006 ln(6689/9631) 3645226764424562 p004 log(9631/6689) 3645226764498670 a001 75025/9349*15127^(7/8) 3645226764826562 a001 46368/9349*15127^(37/40) 3645226766601980 m002 2/Pi^4+Pi+Pi^3*ProductLog[Pi] 3645226766849915 a001 28657/9349*15127^(39/40) 3645226767595974 a001 196418/3571*3571^(27/34) 3645226768619052 a001 1346269/15127*5778^(25/36) 3645226770092753 a001 9227465/39603*5778^(7/12) 3645226772077826 a001 24157817/103682*5778^(7/12) 3645226772367445 a001 63245986/271443*5778^(7/12) 3645226772409699 a001 165580141/710647*5778^(7/12) 3645226772415864 a001 433494437/1860498*5778^(7/12) 3645226772416764 a001 1134903170/4870847*5778^(7/12) 3645226772416895 a001 2971215073/12752043*5778^(7/12) 3645226772416914 a001 7778742049/33385282*5778^(7/12) 3645226772416917 a001 20365011074/87403803*5778^(7/12) 3645226772416917 a001 53316291173/228826127*5778^(7/12) 3645226772416917 a001 139583862445/599074578*5778^(7/12) 3645226772416917 a001 365435296162/1568397607*5778^(7/12) 3645226772416917 a001 956722026041/4106118243*5778^(7/12) 3645226772416917 a001 2504730781961/10749957122*5778^(7/12) 3645226772416917 a001 6557470319842/28143753123*5778^(7/12) 3645226772416917 a001 10610209857723/45537549124*5778^(7/12) 3645226772416917 a001 4052739537881/17393796001*5778^(7/12) 3645226772416917 a001 1548008755920/6643838879*5778^(7/12) 3645226772416917 a001 591286729879/2537720636*5778^(7/12) 3645226772416917 a001 225851433717/969323029*5778^(7/12) 3645226772416917 a001 86267571272/370248451*5778^(7/12) 3645226772416917 a001 63246219/271444*5778^(7/12) 3645226772416919 a001 12586269025/54018521*5778^(7/12) 3645226772416926 a001 4807526976/20633239*5778^(7/12) 3645226772416976 a001 1836311903/7881196*5778^(7/12) 3645226772417319 a001 701408733/3010349*5778^(7/12) 3645226772419674 a001 267914296/1149851*5778^(7/12) 3645226772435814 a001 102334155/439204*5778^(7/12) 3645226772546438 a001 39088169/167761*5778^(7/12) 3645226773304669 a001 14930352/64079*5778^(7/12) 3645226773694795 a001 11592/341*1364^(29/30) 3645226774539105 r005 Im(z^2+c),c=23/114+9/29*I,n=28 3645226774683521 a001 832040/15127*5778^(3/4) 3645226777726956 a001 4181*5778^(1/4) 3645226778501658 a001 5702887/24476*5778^(7/12) 3645226780753256 a001 514229/15127*5778^(29/36) 3645226782509516 a001 28143753123/1597*233^(2/15) 3645226784384820 a001 317811/3571*3571^(25/34) 3645226784741223 a001 123/5*55^(37/55) 3645226786809205 a001 317811/15127*5778^(31/36) 3645226788290364 a001 726103/13201*5778^(3/4) 3645226790275576 a001 5702887/103682*5778^(3/4) 3645226790565214 a001 4976784/90481*5778^(3/4) 3645226790607472 a001 39088169/710647*5778^(3/4) 3645226790613637 a001 831985/15126*5778^(3/4) 3645226790614537 a001 267914296/4870847*5778^(3/4) 3645226790614668 a001 233802911/4250681*5778^(3/4) 3645226790614687 a001 1836311903/33385282*5778^(3/4) 3645226790614690 a001 1602508992/29134601*5778^(3/4) 3645226790614690 a001 12586269025/228826127*5778^(3/4) 3645226790614690 a001 10983760033/199691526*5778^(3/4) 3645226790614690 a001 86267571272/1568397607*5778^(3/4) 3645226790614690 a001 75283811239/1368706081*5778^(3/4) 3645226790614690 a001 591286729879/10749957122*5778^(3/4) 3645226790614690 a001 12585437040/228811001*5778^(3/4) 3645226790614690 a001 4052739537881/73681302247*5778^(3/4) 3645226790614690 a001 3536736619241/64300051206*5778^(3/4) 3645226790614690 a001 6557470319842/119218851371*5778^(3/4) 3645226790614690 a001 2504730781961/45537549124*5778^(3/4) 3645226790614690 a001 956722026041/17393796001*5778^(3/4) 3645226790614690 a001 365435296162/6643838879*5778^(3/4) 3645226790614690 a001 139583862445/2537720636*5778^(3/4) 3645226790614690 a001 53316291173/969323029*5778^(3/4) 3645226790614690 a001 20365011074/370248451*5778^(3/4) 3645226790614691 a001 7778742049/141422324*5778^(3/4) 3645226790614692 a001 2971215073/54018521*5778^(3/4) 3645226790614699 a001 1134903170/20633239*5778^(3/4) 3645226790614749 a001 433494437/7881196*5778^(3/4) 3645226790615093 a001 165580141/3010349*5778^(3/4) 3645226790617448 a001 63245986/1149851*5778^(3/4) 3645226790633375 a001 2178309/24476*5778^(25/36) 3645226790633589 a001 24157817/439204*5778^(3/4) 3645226790744221 a001 9227465/167761*5778^(3/4) 3645226791502504 a001 3524578/64079*5778^(3/4) 3645226792135882 a001 4181/9349*6643838879^(1/2) 3645226792178320 a007 Real Root Of -510*x^4-802*x^3-872*x^2+790*x+374 3645226792901244 a001 196418/15127*5778^(11/12) 3645226794356844 a001 1346269/39603*5778^(29/36) 3645226795924738 a001 9227465/9349*5778^(5/12) 3645226796699856 a001 1346269/24476*5778^(3/4) 3645226797568216 a001 2178309/64079*5778^(29/36) 3645226798379941 k005 Champernowne real with floor(Catalan*(172*n+226)) 3645226798651529 a001 63245986/3571*1364^(1/10) 3645226798898799 a001 121393/15127*5778^(35/36) 3645226800421313 a001 832040/39603*5778^(31/36) 3645226801209757 a001 514229/3571*3571^(23/34) 3645226802407293 a001 46347/2206*5778^(31/36) 3645226802764325 a001 208010/6119*5778^(29/36) 3645226803634696 a001 1346269/64079*5778^(31/36) 3645226803888865 m001 (ln(3)+exp(1/exp(1)))/(FeigenbaumMu+Magata) 3645226806491048 a001 514229/39603*5778^(11/12) 3645226807930527 m001 1/GAMMA(17/24)/Sierpinski^2/exp(sqrt(3))^2 3645226808389961 k001 Champernowne real with 158*n+206 3645226808397197 a001 11/29*(1/2*5^(1/2)+1/2)^13*29^(2/11) 3645226808473774 a001 1346269/103682*5778^(11/12) 3645226808763049 a001 3524578/271443*5778^(11/12) 3645226808805254 a001 9227465/710647*5778^(11/12) 3645226808811412 a001 24157817/1860498*5778^(11/12) 3645226808812310 a001 63245986/4870847*5778^(11/12) 3645226808812441 a001 165580141/12752043*5778^(11/12) 3645226808812460 a001 433494437/33385282*5778^(11/12) 3645226808812463 a001 1134903170/87403803*5778^(11/12) 3645226808812464 a001 2971215073/228826127*5778^(11/12) 3645226808812464 a001 7778742049/599074578*5778^(11/12) 3645226808812464 a001 20365011074/1568397607*5778^(11/12) 3645226808812464 a001 53316291173/4106118243*5778^(11/12) 3645226808812464 a001 139583862445/10749957122*5778^(11/12) 3645226808812464 a001 365435296162/28143753123*5778^(11/12) 3645226808812464 a001 956722026041/73681302247*5778^(11/12) 3645226808812464 a001 2504730781961/192900153618*5778^(11/12) 3645226808812464 a001 10610209857723/817138163596*5778^(11/12) 3645226808812464 a001 4052739537881/312119004989*5778^(11/12) 3645226808812464 a001 1548008755920/119218851371*5778^(11/12) 3645226808812464 a001 591286729879/45537549124*5778^(11/12) 3645226808812464 a001 7787980473/599786069*5778^(11/12) 3645226808812464 a001 86267571272/6643838879*5778^(11/12) 3645226808812464 a001 32951280099/2537720636*5778^(11/12) 3645226808812464 a001 12586269025/969323029*5778^(11/12) 3645226808812464 a001 4807526976/370248451*5778^(11/12) 3645226808812464 a001 1836311903/141422324*5778^(11/12) 3645226808812465 a001 701408733/54018521*5778^(11/12) 3645226808812472 a001 9238424/711491*5778^(11/12) 3645226808812522 a001 102334155/7881196*5778^(11/12) 3645226808812865 a001 39088169/3010349*5778^(11/12) 3645226808815217 a001 14930352/1149851*5778^(11/12) 3645226808831338 a001 5702887/439204*5778^(11/12) 3645226808834059 a001 514229/24476*5778^(31/36) 3645226808941832 a001 2178309/167761*5778^(11/12) 3645226809699165 a001 832040/64079*5778^(11/12) 3645226812546997 a001 105937/13201*5778^(35/36) 3645226814122350 a001 2178309/9349*5778^(7/12) 3645226814538243 a001 416020/51841*5778^(35/36) 3645226814828762 a001 726103/90481*5778^(35/36) 3645226814890009 a001 10959/844*5778^(11/12) 3645226814949359 r005 Im(z^2+c),c=-21/110+15/28*I,n=24 3645226815008312 a001 1346269/167761*5778^(35/36) 3645226815768900 a001 514229/64079*5778^(35/36) 3645226818020909 a001 832040/3571*3571^(21/34) 3645226818399971 k005 Champernowne real with floor(log(3)*(144*n+188)) 3645226818493562 r002 16i'th iterates of 2*x/(1-x^2) of 3645226820188830 a001 1346269/9349*5778^(23/36) 3645226820982048 a001 98209/12238*5778^(35/36) 3645226823896789 a007 Real Root Of 138*x^4-783*x^3+815*x^2-806*x+221 3645226823956199 l006 ln(199/7620) 3645226826253299 a001 832040/9349*5778^(25/36) 3645226832323034 a001 514229/9349*5778^(3/4) 3645226834837326 a001 1346269/3571*3571^(19/34) 3645226835814538 r005 Re(z^2+c),c=-25/82+4/7*I,n=23 3645226838378983 a001 317811/9349*5778^(29/36) 3645226844471022 a001 196418/9349*5778^(31/36) 3645226849185952 m001 Paris^(GAMMA(2/3)*arctan(1/3)) 3645226850468577 a001 121393/9349*5778^(11/12) 3645226851651732 a001 2178309/3571*3571^(1/2) 3645226854677827 a001 55/4870847*47^(37/41) 3645226856713496 a001 75025/9349*5778^(35/36) 3645226856728654 a008 Real Root of x^4-x^3-25*x^2+9*x+140 3645226860546768 a007 Real Root Of -612*x^4+942*x^3-976*x^2+787*x+473 3645226885275848 a001 2584/3571*167761^(9/10) 3645226885376670 a001 2584/3571*439204^(5/6) 3645226885392378 a001 2584/3571*7881196^(15/22) 3645226885392393 a001 1597/5778*20633239^(7/10) 3645226885392399 a001 1597/5778*17393796001^(1/2) 3645226885392399 a001 1597/5778*14662949395604^(7/18) 3645226885392399 a001 1597/5778*505019158607^(7/16) 3645226885392399 a001 1597/5778*599074578^(7/12) 3645226885392412 a001 2584/3571*20633239^(9/14) 3645226885392418 a001 2584/3571*2537720636^(1/2) 3645226885392418 a001 2584/3571*312119004989^(9/22) 3645226885392418 a001 2584/3571*14662949395604^(5/14) 3645226885392418 a001 2584/3571*192900153618^(5/12) 3645226885392418 a001 2584/3571*28143753123^(9/20) 3645226885392418 a001 2584/3571*228826127^(9/16) 3645226885392420 a001 2584/3571*33385282^(5/8) 3645226885393207 a001 2584/3571*1860498^(3/4) 3645226885398714 a001 1597/5778*710647^(7/8) 3645226885710317 a001 2584/3571*103682^(15/16) 3645226889413590 m001 cos(1/5*Pi)/(BesselJ(0,1)-Landau) 3645226898454505 r009 Re(z^3+c),c=-39/98+7/36*I,n=6 3645226904781764 a001 75025/1364*1364^(9/10) 3645226937138183 r005 Re(z^2+c),c=17/56+27/46*I,n=16 3645226940368795 r005 Im(z^2+c),c=-7/10+1/146*I,n=4 3645226945721715 a005 (1/sin(61/131*Pi))^1011 3645226945903364 a007 Real Root Of 223*x^3-497*x^2-977*x-636 3645226951646819 a001 17711/3571*9349^(37/38) 3645226957053778 a001 28657/3571*9349^(35/38) 3645226958021962 a001 46368/3571*9349^(33/38) 3645226959466230 a007 Real Root Of -697*x^4-619*x^3-468*x^2+860*x+358 3645226960685606 a001 75025/3571*9349^(31/38) 3645226962261509 r005 Im(z^2+c),c=-23/40+23/58*I,n=8 3645226962701643 a001 121393/3571*9349^(29/38) 3645226964035138 r005 Im(z^2+c),c=-2/15+11/21*I,n=57 3645226964934250 r005 Im(z^2+c),c=19/66+13/58*I,n=32 3645226964965044 a001 196418/3571*9349^(27/38) 3645226965989474 m001 (Zeta(1,-1)-gamma)/(ArtinRank2+Totient) 3645226967133960 a001 317811/3571*9349^(25/38) 3645226969338966 a001 514229/3571*9349^(23/38) 3645226971530186 a001 832040/3571*9349^(21/38) 3645226972709059 a001 6765/3571*24476^(41/42) 3645226972800767 p003 LerchPhi(1/2,5,297/151) 3645226973726673 a001 1346269/3571*9349^(1/2) 3645226975921148 a001 2178309/3571*9349^(17/38) 3645226978648925 a001 1597/15127*119218851371^(1/2) 3645226978648947 a001 6765/3571*370248451^(1/2) 3645226980814654 a001 6765/3571*39603^(41/44) 3645226986894505 a001 17711/3571*24476^(37/42) 3645226989459087 a001 46368/3571*24476^(11/14) 3645226990217451 a001 75025/3571*24476^(31/42) 3645226990328207 a001 121393/3571*24476^(29/42) 3645226990396183 a001 28657/3571*24476^(5/6) 3645226990686328 a001 196418/3571*24476^(9/14) 3645226990949964 a001 317811/3571*24476^(25/42) 3645226991249689 a001 514229/3571*24476^(23/42) 3645226991535630 a001 832040/3571*24476^(1/2) 3645226991826836 a001 1346269/3571*24476^(19/42) 3645226992116030 a001 2178309/3571*24476^(17/42) 3645226992254819 a001 1597/39603*7881196^(19/22) 3645226992254869 a001 1597/39603*817138163596^(1/2) 3645226992254870 a001 1597/39603*87403803^(3/4) 3645226992254872 a001 1597/39603*33385282^(19/24) 3645226992254891 a001 17711/3571*54018521^(1/2) 3645226992255870 a001 1597/39603*1860498^(19/20) 3645226992405993 a001 3524578/3571*24476^(5/14) 3645226993275183 a001 14930352/3571*24476^(3/14) 3645226993564939 a001 24157817/3571*24476^(1/6) 3645226994137944 a001 514229/3571*64079^(1/2) 3645226994144439 a001 63245986/3571*24476^(1/14) 3645226994209310 a001 17711/3571*39603^(37/44) 3645226994228424 a001 46368/3571*439204^(11/18) 3645226994239943 a001 46368/3571*7881196^(1/2) 3645226994239950 a001 1597/103682*5600748293801^(1/2) 3645226994239972 a001 46368/3571*312119004989^(3/10) 3645226994239972 a001 46368/3571*1568397607^(3/8) 3645226994239974 a001 46368/3571*33385282^(11/24) 3645226994240551 a001 46368/3571*1860498^(11/20) 3645226994473098 a001 46368/3571*103682^(11/16) 3645226994507086 a001 317811/3571*167761^(1/2) 3645226994528213 a001 121393/3571*1149851^(1/2) 3645226994529561 a001 1597/271443*20633239^(13/14) 3645226994529569 a001 1597/271443*141422324^(5/6) 3645226994529569 a001 1597/271443*2537720636^(13/18) 3645226994529569 a001 1597/271443*312119004989^(13/22) 3645226994529569 a001 1597/271443*3461452808002^(13/24) 3645226994529569 a001 1597/271443*73681302247^(5/8) 3645226994529569 a001 1597/271443*28143753123^(13/20) 3645226994529569 a001 1597/271443*228826127^(13/16) 3645226994529592 a001 121393/3571*1322157322203^(1/4) 3645226994540267 a001 3524578/3571*167761^(3/10) 3645226994566112 a001 39088169/3571*167761^(1/10) 3645226994570663 a001 832040/3571*439204^(7/18) 3645226994571824 a001 1597/710647*4106118243^(3/4) 3645226994571827 a001 1597/710647*33385282^(23/24) 3645226994571843 a001 317811/3571*20633239^(5/14) 3645226994571846 a001 317811/3571*2537720636^(5/18) 3645226994571846 a001 317811/3571*312119004989^(5/22) 3645226994571846 a001 317811/3571*28143753123^(1/4) 3645226994571847 a001 317811/3571*228826127^(5/16) 3645226994572285 a001 317811/3571*1860498^(5/12) 3645226994573874 a001 3524578/3571*439204^(5/18) 3645226994575912 a001 14930352/3571*439204^(1/6) 3645226994577993 a001 832040/3571*7881196^(7/22) 3645226994578009 a001 832040/3571*20633239^(3/10) 3645226994578011 a001 832040/3571*17393796001^(3/14) 3645226994578011 a001 832040/3571*14662949395604^(1/6) 3645226994578011 a001 832040/3571*599074578^(1/4) 3645226994578012 a001 832040/3571*33385282^(7/24) 3645226994578015 a001 63245986/3571*439204^(1/18) 3645226994578380 a001 832040/3571*1860498^(7/20) 3645226994578888 a001 1597/4870847*17393796001^(11/14) 3645226994578888 a001 1597/4870847*14662949395604^(11/18) 3645226994578888 a001 1597/4870847*505019158607^(11/16) 3645226994578888 a001 1597/4870847*1568397607^(7/8) 3645226994578888 a001 1597/4870847*599074578^(11/12) 3645226994578911 a001 2178309/3571*45537549124^(1/6) 3645226994578916 a001 2178309/3571*12752043^(1/4) 3645226994579020 a001 1597/12752043*2537720636^(9/10) 3645226994579020 a001 1597/12752043*14662949395604^(9/14) 3645226994579020 a001 1597/12752043*192900153618^(3/4) 3645226994579039 a001 1597/33385282*2537720636^(17/18) 3645226994579039 a001 1597/33385282*45537549124^(5/6) 3645226994579039 a001 1597/33385282*312119004989^(17/22) 3645226994579039 a001 1597/33385282*3461452808002^(17/24) 3645226994579039 a001 1597/33385282*28143753123^(17/20) 3645226994579042 a001 1597/228826127*9062201101803^(3/4) 3645226994579042 a001 1597*141422324^(1/6) 3645226994579042 a001 1597/4106118243*312119004989^(21/22) 3645226994579042 a001 1597/4106118243*14662949395604^(5/6) 3645226994579042 a001 1597/4106118243*505019158607^(15/16) 3645226994579042 a001 1597/73681302247*14662949395604^(13/14) 3645226994579042 a001 1597*73681302247^(1/8) 3645226994579042 a001 1597/119218851371*14662949395604^(17/18) 3645226994579042 a001 1597/45537549124*3461452808002^(23/24) 3645226994579042 a001 1597/969323029*312119004989^(9/10) 3645226994579042 a001 1597/969323029*14662949395604^(11/14) 3645226994579042 a001 1597/969323029*192900153618^(11/12) 3645226994579042 a001 1597/370248451*312119004989^(19/22) 3645226994579042 a001 1597/370248451*3461452808002^(19/24) 3645226994579042 a001 1597/370248451*28143753123^(19/20) 3645226994579042 a001 1597/141422324*17393796001^(13/14) 3645226994579042 a001 1597/141422324*14662949395604^(13/18) 3645226994579042 a001 1597/141422324*505019158607^(13/16) 3645226994579042 a001 1597/141422324*73681302247^(7/8) 3645226994579043 a001 1597/54018521*1322157322203^(3/4) 3645226994579053 a001 14930352/3571*7881196^(3/22) 3645226994579061 a001 14930352/3571*2537720636^(1/10) 3645226994579061 a001 14930352/3571*14662949395604^(1/14) 3645226994579061 a001 14930352/3571*192900153618^(1/12) 3645226994579062 a001 14930352/3571*33385282^(1/8) 3645226994579062 a001 63245986/3571*7881196^(1/22) 3645226994579063 a001 9227465/3571*7881196^(1/6) 3645226994579063 a001 39088169/3571*20633239^(1/14) 3645226994579064 a001 39088169/3571*2537720636^(1/18) 3645226994579064 a001 39088169/3571*312119004989^(1/22) 3645226994579064 a001 39088169/3571*28143753123^(1/20) 3645226994579064 a001 39088169/3571*228826127^(1/16) 3645226994579065 a001 63245986/3571*33385282^(1/24) 3645226994579065 a001 24157817/3571*20633239^(1/10) 3645226994579066 a001 24157817/3571*17393796001^(1/14) 3645226994579066 a001 24157817/3571*14662949395604^(1/18) 3645226994579066 a001 24157817/3571*505019158607^(1/16) 3645226994579066 a001 24157817/3571*599074578^(1/12) 3645226994579073 a001 9227465/3571*312119004989^(1/10) 3645226994579073 a001 9227465/3571*1568397607^(1/8) 3645226994579110 a001 3524578/3571*7881196^(5/22) 3645226994579117 a001 63245986/3571*1860498^(1/20) 3645226994579121 a001 3524578/3571*20633239^(3/14) 3645226994579123 a001 3524578/3571*2537720636^(1/6) 3645226994579123 a001 3524578/3571*312119004989^(3/22) 3645226994579123 a001 3524578/3571*28143753123^(3/20) 3645226994579123 a001 3524578/3571*228826127^(3/16) 3645226994579124 a001 3524578/3571*33385282^(5/24) 3645226994579152 a001 39088169/3571*1860498^(1/12) 3645226994579219 a001 14930352/3571*1860498^(3/20) 3645226994579386 a001 3524578/3571*1860498^(1/4) 3645226994579444 a001 1597/3010349*2537720636^(5/6) 3645226994579444 a001 1597/3010349*312119004989^(15/22) 3645226994579444 a001 1597/3010349*3461452808002^(5/8) 3645226994579444 a001 1597/3010349*28143753123^(3/4) 3645226994579444 a001 1597/3010349*228826127^(15/16) 3645226994579467 a001 1346269/3571*817138163596^(1/6) 3645226994579467 a001 1346269/3571*87403803^(1/4) 3645226994579968 a001 24157817/3571*710647^(1/8) 3645226994580718 a001 832040/3571*710647^(3/8) 3645226994581822 a001 514229/3571*4106118243^(1/4) 3645226994588513 a001 196418/3571*439204^(1/2) 3645226994591410 a001 1597*271443^(1/4) 3645226994597937 a001 196418/3571*7881196^(9/22) 3645226994597961 a001 196418/3571*2537720636^(3/10) 3645226994597961 a001 196418/3571*14662949395604^(3/14) 3645226994597961 a001 196418/3571*192900153618^(1/4) 3645226994597963 a001 196418/3571*33385282^(3/8) 3645226994598435 a001 196418/3571*1860498^(9/20) 3645226994600258 a001 63245986/3571*103682^(1/16) 3645226994642641 a001 14930352/3571*103682^(3/16) 3645226994685089 a001 3524578/3571*103682^(5/16) 3645226994708385 a001 75025/3571*3010349^(1/2) 3645226994708508 a001 1597/167761*7881196^(21/22) 3645226994708556 a001 1597/167761*20633239^(9/10) 3645226994708564 a001 1597/167761*2537720636^(7/10) 3645226994708564 a001 1597/167761*17393796001^(9/14) 3645226994708564 a001 1597/167761*14662949395604^(1/2) 3645226994708564 a001 1597/167761*505019158607^(9/16) 3645226994708564 a001 1597/167761*192900153618^(7/12) 3645226994708564 a001 1597/167761*599074578^(3/4) 3645226994708567 a001 1597/167761*33385282^(7/8) 3645226994708586 a001 75025/3571*9062201101803^(1/4) 3645226994726364 a001 832040/3571*103682^(7/16) 3645226994788701 a001 196418/3571*103682^(9/16) 3645226995013690 a001 10946/3571*24476^(13/14) 3645226995160116 a001 9227465/3571*39603^(1/4) 3645226995376154 a001 28657/3571*167761^(7/10) 3645226995466797 a001 1597/64079*2139295485799^(1/2) 3645226995466815 a001 28657/3571*20633239^(1/2) 3645226995466819 a001 28657/3571*2537720636^(7/18) 3645226995466819 a001 28657/3571*17393796001^(5/14) 3645226995466819 a001 28657/3571*312119004989^(7/22) 3645226995466819 a001 28657/3571*14662949395604^(5/18) 3645226995466819 a001 28657/3571*505019158607^(5/16) 3645226995466819 a001 28657/3571*28143753123^(7/20) 3645226995466819 a001 28657/3571*599074578^(5/12) 3645226995466820 a001 28657/3571*228826127^(7/16) 3645226995467434 a001 28657/3571*1860498^(7/12) 3645226995471331 a001 28657/3571*710647^(5/8) 3645226995476887 a001 2178309/3571*39603^(17/44) 3645226995583087 a001 1346269/3571*39603^(19/44) 3645226995687276 a001 832040/3571*39603^(21/44) 3645226995796730 a001 514229/3571*39603^(23/44) 3645226995892399 a001 317811/3571*39603^(25/44) 3645226995983102 a001 46368/3571*39603^(3/4) 3645226996024158 a001 196418/3571*39603^(27/44) 3645226996061433 a001 121393/3571*39603^(29/44) 3645226996346072 a001 75025/3571*39603^(31/44) 3645226996570329 a001 39088169/3571*15127^(1/8) 3645226997315593 a001 28657/3571*39603^(35/44) 3645227000552917 a001 3524578/3571*15127^(3/8) 3645227000650180 a001 10946/3571*439204^(13/18) 3645227000663756 a001 1597/24476*7881196^(5/6) 3645227000663793 a001 10946/3571*7881196^(13/22) 3645227000663799 a001 1597/24476*20633239^(11/14) 3645227000663805 a001 1597/24476*2537720636^(11/18) 3645227000663805 a001 1597/24476*312119004989^(1/2) 3645227000663805 a001 1597/24476*3461452808002^(11/24) 3645227000663805 a001 1597/24476*28143753123^(11/20) 3645227000663805 a001 1597/24476*1568397607^(5/8) 3645227000663805 a001 1597/24476*228826127^(11/16) 3645227000663828 a001 10946/3571*141422324^(1/2) 3645227000663828 a001 10946/3571*73681302247^(3/8) 3645227000663830 a001 10946/3571*33385282^(13/24) 3645227000664512 a001 10946/3571*1860498^(13/20) 3645227000664771 a001 1597/24476*1860498^(11/12) 3645227000700932 a001 10946/3571*271443^(3/4) 3645227000939340 a001 10946/3571*103682^(13/16) 3645227001349211 a001 2178309/3571*15127^(17/40) 3645227002146272 a001 1346269/3571*15127^(19/40) 3645227002723890 a001 10946/3571*39603^(39/44) 3645227002941323 a001 832040/3571*15127^(21/40) 3645227003677952 a001 63245986/3571*5778^(1/12) 3645227003741639 a001 514229/3571*15127^(23/40) 3645227004528170 a001 317811/3571*15127^(5/8) 3645227005350790 a001 196418/3571*15127^(27/40) 3645227006078926 a001 121393/3571*15127^(29/40) 3645227006990250 a001 17711/3571*15127^(37/40) 3645227007054427 a001 75025/3571*15127^(31/40) 3645227007382319 a001 46368/3571*15127^(33/40) 3645227009405672 a001 28657/3571*15127^(7/8) 3645227010653740 m001 (Kolakoski-Niven)/(Riemann3rdZero-Trott2nd) 3645227016195692 a001 10946/3571*15127^(39/40) 3645227016796263 r002 56th iterates of z^2 + 3645227021875723 a001 14930352/3571*5778^(1/4) 3645227026658264 a001 73681302247/4181*233^(2/15) 3645227029165451 l006 ln(3922/5647) 3645227035221129 a001 121393/1364*1364^(5/6) 3645227036266783 a001 1597/9349*439204^(17/18) 3645227036284585 a001 1597/9349*7881196^(17/22) 3645227036284631 a001 1597/9349*45537549124^(1/2) 3645227036284633 a001 1597/9349*33385282^(17/24) 3645227036284647 a001 1597/9349*12752043^(3/4) 3645227036284652 a001 4181/3571*969323029^(1/2) 3645227036285526 a001 1597/9349*1860498^(17/20) 3645227038477947 r009 Re(z^3+c),c=-35/94+32/51*I,n=63 3645227038556003 a001 4181/3571*39603^(43/44) 3645227040073559 a001 3524578/3571*5778^(5/12) 3645227043886351 a001 726103/1926*2207^(19/32) 3645227044248208 r005 Im(z^2+c),c=25/78+4/61*I,n=9 3645227046139271 a001 2178309/3571*5778^(17/36) 3645227048552987 a007 Real Root Of -185*x^4+695*x^3-325*x^2+691*x+332 3645227052205752 a001 1346269/3571*5778^(19/36) 3645227058270222 a001 832040/3571*5778^(7/12) 3645227062279089 a001 96450076809/5473*233^(2/15) 3645227064339957 a001 514229/3571*5778^(23/36) 3645227067476097 a001 505019158607/28657*233^(2/15) 3645227068234330 a001 1322157322203/75025*233^(2/15) 3645227068344955 a001 1730726404001/98209*233^(2/15) 3645227068361095 a001 9062201101803/514229*233^(2/15) 3645227068363450 a001 23725150497407/1346269*233^(2/15) 3645227068364905 a001 3665737348901/208010*233^(2/15) 3645227068371070 a001 5600748293801/317811*233^(2/15) 3645227068413325 a001 2139295485799/121393*233^(2/15) 3645227068702944 a001 204284540899/11592*233^(2/15) 3645227070395906 a001 317811/3571*5778^(25/36) 3645227070688025 a001 1568437211/89*233^(2/15) 3645227076487946 a001 196418/3571*5778^(3/4) 3645227078909281 r005 Re(z^2+c),c=15/44+19/45*I,n=5 3645227082485501 a001 121393/3571*5778^(29/36) 3645227084293970 a001 119218851371/6765*233^(2/15) 3645227088730421 a001 75025/3571*5778^(31/36) 3645227088909804 r002 26th iterates of z^2 + 3645227090660428 a001 1346269/5778*2207^(21/32) 3645227094327732 a001 46368/3571*5778^(11/12) 3645227098140353 m001 GAMMA(3/4)*exp(MertensB1)^2/LambertW(1) 3645227098755632 m001 (StronglyCareFree-ln(2+3^(1/2)))/ZetaR(2) 3645227101620504 a001 28657/3571*5778^(35/36) 3645227105823412 h001 (-4*exp(-2)+1)/(-4*exp(1/3)-7) 3645227106709962 r005 Re(z^2+c),c=19/50+8/39*I,n=49 3645227116715375 r005 Im(z^2+c),c=-7/60+17/33*I,n=43 3645227122087403 r005 Re(z^2+c),c=-12/25+13/57*I,n=53 3645227132269728 r009 Im(z^3+c),c=-9/58+51/61*I,n=24 3645227134304189 p004 log(24251/16843) 3645227137432495 a001 416020/2889*2207^(23/32) 3645227155493532 p003 LerchPhi(1/1024,4,35/86) 3645227159867469 l006 ln(1266/1313) 3645227165907863 a001 98209/682*1364^(23/30) 3645227177550504 a001 11384387281/646*233^(2/15) 3645227184209828 a001 514229/5778*2207^(25/32) 3645227194139230 m001 (gamma(3)-BesselK(1,1))/(GAMMA(19/24)+Bloch) 3645227208166584 a007 Real Root Of -701*x^4+579*x^3+340*x^2+379*x-199 3645227212126115 r009 Re(z^3+c),c=-29/56+8/23*I,n=47 3645227219962119 r005 Im(z^2+c),c=23/78+7/22*I,n=6 3645227220494497 r005 Im(z^2+c),c=31/126+19/33*I,n=12 3645227224889252 a001 46368/521*521^(25/26) 3645227230689928 a001 311187/2161*2207^(23/32) 3645227230973377 a001 105937/1926*2207^(27/32) 3645227234383485 r005 Im(z^2+c),c=-5/27+16/29*I,n=46 3645227240849923 m009 (32/5*Catalan+4/5*Pi^2-2)/(2/5*Psi(1,2/3)+2) 3645227241552113 a001 2178309/9349*2207^(21/32) 3645227242709527 a001 14930352/2207*843^(1/4) 3645227258182588 p001 sum(1/(542*n+531)/n/(256^n),n=1..infinity) 3645227260940830 m001 (Zeta(1/2)-Khinchin)/(sin(1/5*Pi)-ln(gamma)) 3645227266779553 m001 1/2*ln(2)/Pi*3^(1/2)*GAMMA(2/3)/Rabbit 3645227277464008 a001 1346269/15127*2207^(25/32) 3645227277773016 a001 98209/2889*2207^(29/32) 3645227280433417 a001 1597/3571*6643838879^(1/2) 3645227283891293 m001 1/Robbin/ln(Si(Pi))^2*Catalan 3645227288326193 a001 1346269/9349*2207^(23/32) 3645227296042836 b008 Log[-3+E^2/2] 3645227296500117 a001 317811/1364*1364^(7/10) 3645227299478334 a001 2178309/24476*2207^(25/32) 3645227304628753 a007 Real Root Of -139*x^4-336*x^3+529*x^2-608*x-978 3645227307588783 r005 Re(z^2+c),c=-79/122+13/37*I,n=5 3645227308787297 r009 Im(z^3+c),c=-27/62+7/22*I,n=8 3645227308855691 r005 Im(z^2+c),c=11/118+13/21*I,n=21 3645227310046015 r009 Re(z^3+c),c=-47/110+13/58*I,n=26 3645227320808928 m001 Otter/(Landau-GAMMA(2/3)) 3645227324236077 a001 832040/15127*2207^(27/32) 3645227324478171 a001 121393/5778*2207^(31/32) 3645227330859310 b008 -1+Sqrt[3]*ProductLog[Sqrt[3]] 3645227331852339 m008 (1/6*Pi-1)/(2/5*Pi^3+2/3) 3645227335098263 a001 832040/9349*2207^(25/32) 3645227337842922 a001 726103/13201*2207^(27/32) 3645227346252415 a001 1346269/24476*2207^(27/32) 3645227347257343 r005 Re(z^2+c),c=-65/118+19/44*I,n=3 3645227360431209 r002 10th iterates of z^2 + 3645227370249937 m001 LandauRamanujan*Backhouse*exp(KhintchineLevy) 3645227371013413 a001 514229/15127*2207^(29/32) 3645227377964298 l006 ln(5077/7310) 3645227381875598 a001 514229/9349*2207^(27/32) 3645227382437040 a007 Real Root Of 22*x^4+782*x^3-722*x^2+217*x+969 3645227384617004 a001 1346269/39603*2207^(29/32) 3645227384765177 r005 Re(z^2+c),c=-12/25+13/57*I,n=48 3645227387828376 a001 2178309/64079*2207^(29/32) 3645227392153860 a001 2178309/3571*2207^(17/32) 3645227393024485 a001 208010/6119*2207^(29/32) 3645227402450795 r005 Re(z^2+c),c=-41/86+1/4*I,n=27 3645227412447487 l006 ln(223/8539) 3645227412447487 p004 log(8539/223) 3645227417776964 a001 317811/15127*2207^(31/32) 3645227419973396 p001 sum((-1)^n/(427*n+94)/n/(5^n),n=1..infinity) 3645227423322845 m005 (1/2*gamma+4/7)/(2/3*Zeta(3)-7/9) 3645227423769107 m001 FransenRobinson+MertensB1+Stephens 3645227425248044 a001 63245986/2207*322^(1/24) 3645227427128466 a001 514229/1364*1364^(19/30) 3645227428639149 a001 317811/9349*2207^(29/32) 3645227431389074 a001 832040/39603*2207^(31/32) 3645227431900790 s002 sum(A245619[n]/(n^2*exp(n)+1),n=1..infinity) 3645227433375055 a001 46347/2206*2207^(31/32) 3645227434602458 a001 1346269/64079*2207^(31/32) 3645227438927942 a001 1346269/3571*2207^(19/32) 3645227439801822 a001 514229/24476*2207^(31/32) 3645227444113840 a001 89/11*521^(14/23) 3645227452170311 a005 (1/cos(15/148*Pi))^1052 3645227455663992 a007 Real Root Of -834*x^4+91*x^3+982*x^2+529*x-313 3645227468793141 a001 3020733700601*1548008755920^(10/11) 3645227471350517 r005 Im(z^2+c),c=-7/27+29/50*I,n=60 3645227475438791 a001 196418/9349*2207^(31/32) 3645227485700014 a001 832040/3571*2207^(21/32) 3645227497315349 r005 Re(z^2+c),c=-12/25+13/57*I,n=51 3645227512284071 m001 1/ln(Riemann1stZero)/Bloch^2*arctan(1/2)^2 3645227517308946 r009 Im(z^3+c),c=-10/29+18/53*I,n=27 3645227526358692 r005 Re(z^2+c),c=37/98+5/23*I,n=61 3645227532477351 a001 514229/3571*2207^(23/32) 3645227534078188 r009 Im(z^3+c),c=-23/64+37/62*I,n=3 3645227545297889 r005 Im(z^2+c),c=-119/118+16/51*I,n=13 3645227548500963 r009 Im(z^3+c),c=-59/122+21/37*I,n=42 3645227557743034 a001 610*1364^(17/30) 3645227561788285 m001 (5^(1/2)+Catalan)/(ThueMorse+ZetaP(2)) 3645227568758736 a007 Real Root Of -260*x^4-964*x^3+164*x^2+863*x+180 3645227579240904 a001 317811/3571*2207^(25/32) 3645227582111018 k002 Champernowne real with 173/2*n^2-501/2*n+200 3645227586177136 a001 9227465/521*199^(3/22) 3645227593241714 m006 (2/3/Pi-5)/(3/5*exp(Pi)-3/4) 3645227597474735 l006 ln(6232/8973) 3645227604226670 r009 Re(z^3+c),c=-43/126+5/53*I,n=6 3645227618306478 r005 Im(z^2+c),c=5/58+25/63*I,n=21 3645227619727419 r005 Im(z^2+c),c=-19/122+31/58*I,n=45 3645227626040548 a001 196418/3571*2207^(27/32) 3645227647554199 a007 Real Root Of 546*x^4-996*x^3-246*x^2-493*x+251 3645227656084215 r009 Im(z^3+c),c=-51/98+5/28*I,n=14 3645227670394218 r005 Im(z^2+c),c=-21/86+30/47*I,n=6 3645227672745707 a001 121393/3571*2207^(29/32) 3645227675031046 r005 Im(z^2+c),c=13/118+8/21*I,n=20 3645227679305594 p004 log(19609/13619) 3645227686796692 p003 LerchPhi(1/100,4,387/169) 3645227688362872 a001 1346269/1364*1364^(1/2) 3645227692617933 m001 GAMMA(7/12)*(exp(Pi)+CareFree) 3645227696170410 a001 5702887/322*123^(3/20) 3645227719698232 a001 75025/3571*2207^(31/32) 3645227724178120 r005 Im(z^2+c),c=13/42+11/58*I,n=18 3645227733086568 m001 (GAMMA(23/24)-Otter)/(PlouffeB+ZetaQ(2)) 3645227742551653 a007 Real Root Of 230*x^4+584*x^3-977*x^2+78*x+944 3645227744249483 b008 -37+Sqrt[3/10] 3645227745700026 r009 Im(z^3+c),c=-67/126+10/31*I,n=60 3645227749284745 a007 Real Root Of -531*x^4+183*x^3+255*x^2+811*x-329 3645227759179363 m001 (-GAMMA(23/24)+Lehmer)/(BesselK(0,1)-ln(5)) 3645227760444932 r005 Im(z^2+c),c=1/30+25/58*I,n=38 3645227777355441 r005 Re(z^2+c),c=-19/40+7/31*I,n=15 3645227797915320 a007 Real Root Of 526*x^4+589*x^3+314*x^2-380*x-161 3645227816740431 a001 17393796001/987*233^(2/15) 3645227818980704 a001 2178309/1364*1364^(13/30) 3645227830769158 a007 Real Root Of 84*x^4+469*x^3+578*x^2-284*x-830 3645227841927663 r005 Im(z^2+c),c=-8/23+27/50*I,n=11 3645227849397424 m001 (-CopelandErdos+Landau)/(ln(2)/ln(10)-ln(Pi)) 3645227862800670 r001 22i'th iterates of 2*x^2-1 of 3645227866780057 a007 Real Root Of -263*x^4-872*x^3+445*x^2+522*x+189 3645227879171965 a008 Real Root of x^4-x^3-13*x^2+19*x+17 3645227881899318 a001 39088169/5778*843^(1/4) 3645227886575843 l006 ln(247/9458) 3645227897673011 r009 Re(z^3+c),c=-12/25+16/55*I,n=51 3645227908088568 m001 (Sierpinski+ThueMorse)/(Paris+Sarnak) 3645227918755280 a001 987/1364*64079^(45/46) 3645227919507167 a001 987/1364*167761^(9/10) 3645227919607989 a001 987/1364*439204^(5/6) 3645227919622831 a001 610/2207*20633239^(7/10) 3645227919622837 a001 610/2207*17393796001^(1/2) 3645227919622837 a001 610/2207*14662949395604^(7/18) 3645227919622837 a001 610/2207*505019158607^(7/16) 3645227919622837 a001 610/2207*599074578^(7/12) 3645227919623697 a001 987/1364*7881196^(15/22) 3645227919623731 a001 987/1364*20633239^(9/14) 3645227919623737 a001 987/1364*2537720636^(1/2) 3645227919623737 a001 987/1364*312119004989^(9/22) 3645227919623737 a001 987/1364*14662949395604^(5/14) 3645227919623737 a001 987/1364*192900153618^(5/12) 3645227919623737 a001 987/1364*28143753123^(9/20) 3645227919623737 a001 987/1364*228826127^(9/16) 3645227919623739 a001 987/1364*33385282^(5/8) 3645227919624526 a001 987/1364*1860498^(3/4) 3645227919629153 a001 610/2207*710647^(7/8) 3645227919941636 a001 987/1364*103682^(15/16) 3645227941818222 r005 Im(z^2+c),c=-79/66+19/58*I,n=50 3645227951361507 a001 1597/521*2^(1/4) 3645227966405166 r005 Re(z^2+c),c=-7/16+24/53*I,n=40 3645227969965337 r005 Im(z^2+c),c=-7/6+1/158*I,n=7 3645227975155870 a001 6765*843^(1/4) 3645227976137027 r005 Im(z^2+c),c=-15/46+14/27*I,n=12 3645227977112730 p004 log(29587/20549) 3645227982981214 r005 Im(z^2+c),c=-59/122+1/16*I,n=45 3645227988761818 a001 267914296/39603*843^(1/4) 3645227989894794 r002 9th iterates of z^2 + 3645227990746899 a001 701408733/103682*843^(1/4) 3645227991036519 a001 1836311903/271443*843^(1/4) 3645227991078774 a001 686789568/101521*843^(1/4) 3645227991084939 a001 12586269025/1860498*843^(1/4) 3645227991085838 a001 32951280099/4870847*843^(1/4) 3645227991085969 a001 86267571272/12752043*843^(1/4) 3645227991085988 a001 32264490531/4769326*843^(1/4) 3645227991085991 a001 591286729879/87403803*843^(1/4) 3645227991085992 a001 1548008755920/228826127*843^(1/4) 3645227991085992 a001 4052739537881/599074578*843^(1/4) 3645227991085992 a001 1515744265389/224056801*843^(1/4) 3645227991085992 a001 6557470319842/969323029*843^(1/4) 3645227991085992 a001 2504730781961/370248451*843^(1/4) 3645227991085992 a001 956722026041/141422324*843^(1/4) 3645227991085993 a001 365435296162/54018521*843^(1/4) 3645227991086000 a001 139583862445/20633239*843^(1/4) 3645227991086050 a001 53316291173/7881196*843^(1/4) 3645227991086394 a001 20365011074/3010349*843^(1/4) 3645227991088749 a001 7778742049/1149851*843^(1/4) 3645227991104889 a001 2971215073/439204*843^(1/4) 3645227991215513 a001 1134903170/167761*843^(1/4) 3645227991973747 a001 433494437/64079*843^(1/4) 3645227997170757 a001 165580141/24476*843^(1/4) 3645228001042375 m005 (1/2*Pi+4)/(9/11*3^(1/2)+1/9) 3645228006486972 m007 (-3/4*gamma-3)/(-5*gamma-10*ln(2)+2/5) 3645228014896317 a007 Real Root Of -601*x^4+621*x^3-269*x^2+638*x+309 3645228015681529 b008 -58*E^(1+Pi)+Pi 3645228025923893 a007 Real Root Of -x^4+312*x^3-220*x^2+666*x-24 3645228032791592 a001 63245986/9349*843^(1/4) 3645228047011422 m001 (Porter+RenyiParking)/(BesselJ(0,1)-CareFree) 3645228047220925 m005 (4/5*Catalan-2)/(1/6*Pi-4) 3645228064032205 r005 Re(z^2+c),c=-43/90+11/45*I,n=20 3645228064437864 a001 165580141/5778*322^(1/24) 3645228080217624 a001 5702887/1364*1364^(3/10) 3645228080702510 a007 Real Root Of 232*x^4+814*x^3-417*x^2-908*x+696 3645228082749642 m001 (Pi+ln(2+3^(1/2)))/(CareFree-Tetranacci) 3645228085846374 m001 ZetaR(2)^(2/3*Pi*3^(1/2)/GAMMA(2/3)*ln(3)) 3645228106533451 a007 Real Root Of -593*x^4-409*x^3+341*x^2+940*x+288 3645228111050925 r005 Re(z^2+c),c=-57/118+8/39*I,n=23 3645228118882954 a007 Real Root Of 177*x^4+875*x^3+641*x^2-634*x+302 3645228128989119 r005 Re(z^2+c),c=-10/23+16/33*I,n=48 3645228149701099 a007 Real Root Of -444*x^4+737*x^3-816*x^2+450*x+316 3645228157694421 a001 433494437/15127*322^(1/24) 3645228168296036 m001 sqrt(1+sqrt(3))^2/ln(ErdosBorwein)^2*sqrt(3)^2 3645228171300370 a001 1134903170/39603*322^(1/24) 3645228173285451 a001 2971215073/103682*322^(1/24) 3645228173384797 p003 LerchPhi(1/256,1,575/209) 3645228173575070 a001 7778742049/271443*322^(1/24) 3645228173617325 a001 20365011074/710647*322^(1/24) 3645228173623490 a001 53316291173/1860498*322^(1/24) 3645228173624389 a001 139583862445/4870847*322^(1/24) 3645228173624521 a001 365435296162/12752043*322^(1/24) 3645228173624540 a001 956722026041/33385282*322^(1/24) 3645228173624543 a001 2504730781961/87403803*322^(1/24) 3645228173624543 a001 6557470319842/228826127*322^(1/24) 3645228173624543 a001 10610209857723/370248451*322^(1/24) 3645228173624543 a001 4052739537881/141422324*322^(1/24) 3645228173624544 a001 1548008755920/54018521*322^(1/24) 3645228173624552 a001 591286729879/20633239*322^(1/24) 3645228173624602 a001 225851433717/7881196*322^(1/24) 3645228173624945 a001 86267571272/3010349*322^(1/24) 3645228173627300 a001 32951280099/1149851*322^(1/24) 3645228173643440 a001 12586269025/439204*322^(1/24) 3645228173754065 a001 4807526976/167761*322^(1/24) 3645228174271839 r005 Re(z^2+c),c=29/90+3/40*I,n=64 3645228174512298 a001 28657*322^(1/24) 3645228175768539 m005 (1/2*5^(1/2)+7/10)/(1/7*5^(1/2)-9/11) 3645228179709308 a001 701408733/24476*322^(1/24) 3645228202557090 r005 Im(z^2+c),c=11/78+19/53*I,n=27 3645228205673941 a003 cos(Pi*1/45)/cos(Pi*7/17) 3645228208955126 a007 Real Root Of -174*x^4-430*x^3+822*x^2+233*x-179 3645228215330145 a001 267914296/9349*322^(1/24) 3645228219182824 m001 (-MertensB1+ZetaQ(2))/(Psi(2,1/3)-Si(Pi)) 3645228223882737 a001 329/41*199^(31/43) 3645228242537809 m005 (3/4*Pi+5)/(9/10+1/2*5^(1/2)) 3645228258365350 a001 75025/521*521^(23/26) 3645228265387949 m001 (1+GAMMA(11/12))/(-StronglyCareFree+Totient) 3645228276940446 a001 24157817/3571*843^(1/4) 3645228297525788 r005 Re(z^2+c),c=-37/82+20/37*I,n=63 3645228298195293 a007 Real Root Of 520*x^4-389*x^3-44*x^2-574*x+21 3645228308060081 r005 Im(z^2+c),c=43/122+17/37*I,n=5 3645228309699913 m002 4/Log[Pi]+(4*Sinh[Pi])/Pi^5 3645228312429752 m001 (MertensB3+Mills)/(Catalan-GAMMA(13/24)) 3645228312599677 a007 Real Root Of -99*x^4-313*x^3-90*x^2-781*x+668 3645228325685743 m001 (Kolakoski+Salem)/(Psi(2,1/3)+Shi(1)) 3645228333171414 a007 Real Root Of -441*x^4+768*x^3-177*x^2-262*x-27 3645228335500714 r009 Im(z^3+c),c=-9/26+20/59*I,n=19 3645228341454451 a001 3732588/341*1364^(1/6) 3645228347889189 r009 Im(z^3+c),c=-25/102+17/45*I,n=17 3645228353925219 r005 Re(z^2+c),c=-31/70+20/49*I,n=42 3645228366342089 a007 Real Root Of -292*x^4-941*x^3+253*x^2-624*x+341 3645228368394361 r005 Im(z^2+c),c=5/94+18/43*I,n=38 3645228368944544 r005 Re(z^2+c),c=6/19+4/47*I,n=40 3645228369086156 a001 1/726103*8^(22/47) 3645228388229318 a001 17711/1364*3571^(33/34) 3645228390396640 h001 (-2*exp(3)+2)/(-4*exp(-1)-9) 3645228393561891 m005 (-23/4+1/4*5^(1/2))/(9/11*exp(1)-4/5) 3645228400446668 r005 Im(z^2+c),c=3/64+19/45*I,n=23 3645228404766845 r009 Re(z^3+c),c=-51/122+13/28*I,n=4 3645228406876523 a007 Real Root Of 66*x^4+391*x^3+672*x^2+308*x-521 3645228408256216 a001 28657/1364*3571^(31/34) 3645228413207771 m005 (5*2^(1/2)-1/5)/(exp(1)-5/6) 3645228416840508 a007 Real Root Of -714*x^4+510*x^3+186*x^2+868*x+329 3645228423844337 a001 11592/341*3571^(29/34) 3645228426480484 r005 Im(z^2+c),c=-65/126+15/26*I,n=54 3645228430075134 m001 (ln(2+3^(1/2))+ThueMorse*ZetaP(2))/ThueMorse 3645228441127921 a001 75025/1364*3571^(27/34) 3645228443050800 r005 Re(z^2+c),c=-55/118+14/33*I,n=27 3645228457763895 a001 121393/1364*3571^(25/34) 3645228459479010 a001 102334155/3571*322^(1/24) 3645228463942120 m001 (FeigenbaumC+Salem)/(gamma(1)+gamma(2)) 3645228468801684 m001 (Pi+BesselJ(1,1))/(Champernowne+Thue) 3645228471387995 a001 41*121393^(23/60) 3645228471750357 r005 Re(z^2+c),c=-25/56+16/41*I,n=62 3645228472072867 a001 24157817/1364*1364^(1/10) 3645228473323887 m001 1/GAMMA(3/4)*GAMMA(23/24)/exp(exp(1))^2 3645228474647235 a001 98209/682*3571^(23/34) 3645228480315443 r005 Re(z^2+c),c=-43/94+19/55*I,n=47 3645228491436089 a001 317811/1364*3571^(21/34) 3645228501033714 r009 Im(z^3+c),c=-23/56+17/56*I,n=34 3645228507370696 r005 Re(z^2+c),c=-115/114+3/17*I,n=22 3645228508261034 a001 514229/1364*3571^(19/34) 3645228512140519 a007 Real Root Of 298*x^4-580*x^3-393*x^2-669*x-225 3645228525072193 a001 610*3571^(1/2) 3645228541888618 a001 1346269/1364*3571^(15/34) 3645228547873256 m001 1/Catalan/exp(OneNinth)/GAMMA(13/24)^2 3645228550039468 a001 35355581/2*4807526976^(15/23) 3645228550123939 a001 96450076809/4*75025^(15/23) 3645228552873903 a001 646/341*24476^(41/42) 3645228554404092 m001 (Khinchin+Otter)^RenyiParking 3645228558703032 a001 2178309/1364*3571^(13/34) 3645228558812744 a001 305/2889*119218851371^(1/2) 3645228558813794 a001 646/341*370248451^(1/2) 3645228560979501 a001 646/341*39603^(41/44) 3645228562370337 l006 ln(1155/1663) 3645228565441277 r009 Re(z^3+c),c=-19/52+7/51*I,n=19 3645228579689124 r009 Re(z^3+c),c=-19/52+7/51*I,n=23 3645228585111618 k002 Champernowne real with 87*n^2-252*n+201 3645228587962962 r005 Im(z^2+c),c=11/30+13/16*I,n=3 3645228611462275 a001 615/124*9349^(37/38) 3645228625422559 m001 (Pi-Psi(1,1/3)*Ei(1))*BesselI(0,2) 3645228629458290 a001 17711/1364*9349^(33/38) 3645228632613713 r009 Im(z^3+c),c=-10/29+18/53*I,n=26 3645228634865251 a001 28657/1364*9349^(31/38) 3645228635672198 a001 5473/682*9349^(35/38) 3645228635833435 a001 11592/341*9349^(29/38) 3645228638497081 a001 75025/1364*9349^(27/38) 3645228640513118 a001 121393/1364*9349^(25/38) 3645228642776520 a001 98209/682*9349^(23/38) 3645228644945437 a001 317811/1364*9349^(21/38) 3645228646709977 a001 615/124*24476^(37/42) 3645228647150444 a001 514229/1364*9349^(1/2) 3645228649341666 a001 610*9349^(17/38) 3645228651538153 a001 1346269/1364*9349^(15/38) 3645228652069263 a001 610/15127*7881196^(19/22) 3645228652069313 a001 610/15127*817138163596^(1/2) 3645228652069314 a001 610/15127*87403803^(3/4) 3645228652069316 a001 610/15127*33385282^(19/24) 3645228652070314 a001 610/15127*1860498^(19/20) 3645228652070366 a001 615/124*54018521^(1/2) 3645228653732629 a001 2178309/1364*9349^(13/38) 3645228654024785 a001 615/124*39603^(37/44) 3645228660895429 a001 17711/1364*24476^(11/14) 3645228663460012 a001 11592/341*24476^(29/42) 3645228664218377 a001 75025/1364*24476^(9/14) 3645228664329133 a001 121393/1364*24476^(25/42) 3645228664397109 a001 28657/1364*24476^(31/42) 3645228664687254 a001 98209/682*24476^(23/42) 3645228664950890 a001 317811/1364*24476^(1/2) 3645228665250616 a001 514229/1364*24476^(19/42) 3645228665536556 a001 610*24476^(17/42) 3645228665664769 a001 17711/1364*439204^(11/18) 3645228665675264 a001 610/39603*5600748293801^(1/2) 3645228665676288 a001 17711/1364*7881196^(1/2) 3645228665676317 a001 17711/1364*312119004989^(3/10) 3645228665676317 a001 17711/1364*1568397607^(3/8) 3645228665676319 a001 17711/1364*33385282^(11/24) 3645228665676896 a001 17711/1364*1860498^(11/20) 3645228665827762 a001 1346269/1364*24476^(5/14) 3645228665909443 a001 17711/1364*103682^(11/16) 3645228666116957 a001 2178309/1364*24476^(13/42) 3645228666696590 a001 5702887/1364*24476^(3/14) 3645228666805731 a001 615/124*15127^(37/40) 3645228666986372 a001 9227465/1364*24476^(1/6) 3645228667419447 a001 17711/1364*39603^(3/4) 3645228667565866 a001 24157817/1364*24476^(1/14) 3645228667575510 a001 98209/682*64079^(1/2) 3645228667660020 a001 11592/341*1149851^(1/2) 3645228667660337 a001 305/51841*20633239^(13/14) 3645228667660345 a001 305/51841*141422324^(5/6) 3645228667660345 a001 305/51841*2537720636^(13/18) 3645228667660345 a001 305/51841*312119004989^(13/22) 3645228667660345 a001 305/51841*3461452808002^(13/24) 3645228667660345 a001 305/51841*73681302247^(5/8) 3645228667660345 a001 305/51841*28143753123^(13/20) 3645228667660345 a001 305/51841*228826127^(13/16) 3645228667661398 a001 11592/341*1322157322203^(1/4) 3645228667886257 a001 121393/1364*167761^(1/2) 3645228667949965 a001 610/271443*4106118243^(3/4) 3645228667949968 a001 610/271443*33385282^(23/24) 3645228667951015 a001 121393/1364*20633239^(5/14) 3645228667951018 a001 121393/1364*2537720636^(5/18) 3645228667951018 a001 121393/1364*312119004989^(5/22) 3645228667951018 a001 121393/1364*3461452808002^(5/24) 3645228667951018 a001 121393/1364*28143753123^(1/4) 3645228667951018 a001 121393/1364*228826127^(5/16) 3645228667951457 a001 121393/1364*1860498^(5/12) 3645228667962037 a001 1346269/1364*167761^(3/10) 3645228667985924 a001 317811/1364*439204^(7/18) 3645228667987535 a001 3732588/341*167761^(1/10) 3645228667993254 a001 317811/1364*7881196^(7/22) 3645228667993270 a001 317811/1364*20633239^(3/10) 3645228667993273 a001 317811/1364*17393796001^(3/14) 3645228667993273 a001 317811/1364*14662949395604^(1/6) 3645228667993273 a001 317811/1364*599074578^(1/4) 3645228667993274 a001 317811/1364*33385282^(7/24) 3645228667993641 a001 317811/1364*1860498^(7/20) 3645228667995644 a001 1346269/1364*439204^(5/18) 3645228667995980 a001 317811/1364*710647^(3/8) 3645228667997319 a001 5702887/1364*439204^(1/6) 3645228667998385 a001 305/930249*17393796001^(11/14) 3645228667998385 a001 305/930249*14662949395604^(11/18) 3645228667998385 a001 305/930249*505019158607^(11/16) 3645228667998385 a001 305/930249*1568397607^(7/8) 3645228667998385 a001 305/930249*599074578^(11/12) 3645228667999284 a001 610/4870847*2537720636^(9/10) 3645228667999284 a001 610/4870847*14662949395604^(9/14) 3645228667999284 a001 610/4870847*192900153618^(3/4) 3645228667999415 a001 610/12752043*2537720636^(17/18) 3645228667999415 a001 610/12752043*45537549124^(5/6) 3645228667999415 a001 610/12752043*312119004989^(17/22) 3645228667999415 a001 610/12752043*3461452808002^(17/24) 3645228667999415 a001 610/12752043*28143753123^(17/20) 3645228667999437 a001 610/87403803*9062201101803^(3/4) 3645228667999438 a001 610/1568397607*312119004989^(21/22) 3645228667999438 a001 610/1568397607*14662949395604^(5/6) 3645228667999438 a001 610/1568397607*505019158607^(15/16) 3645228667999438 a001 610/28143753123*14662949395604^(13/14) 3645228667999438 a001 610*45537549124^(1/6) 3645228667999438 a001 305/22768774562*14662949395604^(17/18) 3645228667999438 a001 610/17393796001*3461452808002^(23/24) 3645228667999438 a001 610/370248451*312119004989^(9/10) 3645228667999438 a001 610/370248451*14662949395604^(11/14) 3645228667999438 a001 610/370248451*192900153618^(11/12) 3645228667999438 a001 305/70711162*312119004989^(19/22) 3645228667999438 a001 305/70711162*817138163596^(5/6) 3645228667999438 a001 305/70711162*3461452808002^(19/24) 3645228667999438 a001 305/70711162*28143753123^(19/20) 3645228667999439 a001 610/54018521*17393796001^(13/14) 3645228667999439 a001 610/54018521*14662949395604^(13/18) 3645228667999439 a001 610/54018521*505019158607^(13/16) 3645228667999439 a001 610/54018521*73681302247^(7/8) 3645228667999442 a001 24157817/1364*439204^(1/18) 3645228667999443 a001 610*12752043^(1/4) 3645228667999446 a001 610/20633239*1322157322203^(3/4) 3645228668000337 a001 2178309/1364*141422324^(1/6) 3645228668000337 a001 2178309/1364*73681302247^(1/8) 3645228668000460 a001 5702887/1364*7881196^(3/22) 3645228668000468 a001 5702887/1364*2537720636^(1/10) 3645228668000468 a001 5702887/1364*14662949395604^(1/14) 3645228668000468 a001 5702887/1364*192900153618^(1/12) 3645228668000469 a001 5702887/1364*33385282^(1/8) 3645228668000487 a001 3732588/341*20633239^(1/14) 3645228668000488 a001 3732588/341*2537720636^(1/18) 3645228668000488 a001 3732588/341*312119004989^(1/22) 3645228668000488 a001 3732588/341*28143753123^(1/20) 3645228668000488 a001 3732588/341*228826127^(1/16) 3645228668000489 a001 24157817/1364*7881196^(1/22) 3645228668000492 a001 24157817/1364*33385282^(1/24) 3645228668000499 a001 9227465/1364*20633239^(1/10) 3645228668000499 a001 9227465/1364*17393796001^(1/14) 3645228668000499 a001 9227465/1364*14662949395604^(1/18) 3645228668000499 a001 9227465/1364*505019158607^(1/16) 3645228668000499 a001 9227465/1364*599074578^(1/12) 3645228668000540 a001 1762289/682*7881196^(1/6) 3645228668000545 a001 24157817/1364*1860498^(1/20) 3645228668000550 a001 1762289/682*312119004989^(1/10) 3645228668000550 a001 1762289/682*1568397607^(1/8) 3645228668000575 a001 3732588/341*1860498^(1/12) 3645228668000626 a001 5702887/1364*1860498^(3/20) 3645228668000880 a001 1346269/1364*7881196^(5/22) 3645228668000891 a001 1346269/1364*20633239^(3/14) 3645228668000893 a001 1346269/1364*2537720636^(1/6) 3645228668000893 a001 1346269/1364*312119004989^(3/22) 3645228668000893 a001 1346269/1364*28143753123^(3/20) 3645228668000893 a001 1346269/1364*228826127^(3/16) 3645228668000894 a001 1346269/1364*33385282^(5/24) 3645228668001156 a001 1346269/1364*1860498^(1/4) 3645228668001402 a001 9227465/1364*710647^(1/8) 3645228668002195 a001 610/1149851*2537720636^(5/6) 3645228668002195 a001 610/1149851*312119004989^(15/22) 3645228668002195 a001 610/1149851*3461452808002^(5/8) 3645228668002195 a001 610/1149851*28143753123^(3/4) 3645228668002195 a001 610/1149851*228826127^(15/16) 3645228668003248 a001 514229/1364*817138163596^(1/6) 3645228668003248 a001 514229/1364*87403803^(1/4) 3645228668012705 a001 2178309/1364*271443^(1/4) 3645228668019388 a001 98209/682*4106118243^(1/4) 3645228668021685 a001 24157817/1364*103682^(1/16) 3645228668039748 r009 Im(z^3+c),c=-10/29+18/53*I,n=30 3645228668064048 a001 5702887/1364*103682^(3/16) 3645228668106859 a001 1346269/1364*103682^(5/16) 3645228668120564 a001 75025/1364*439204^(1/2) 3645228668129989 a001 75025/1364*7881196^(9/22) 3645228668130013 a001 75025/1364*2537720636^(3/10) 3645228668130013 a001 75025/1364*14662949395604^(3/14) 3645228668130013 a001 75025/1364*192900153618^(1/4) 3645228668130014 a001 75025/1364*33385282^(3/8) 3645228668130487 a001 75025/1364*1860498^(9/20) 3645228668141626 a001 317811/1364*103682^(7/16) 3645228668320752 a001 75025/1364*103682^(9/16) 3645228668581593 a001 1762289/682*39603^(1/4) 3645228668687025 a001 2178309/1364*39603^(13/44) 3645228668793225 a001 1346269/1364*39603^(15/44) 3645228668887137 a001 610/64079*7881196^(21/22) 3645228668887185 a001 610/64079*20633239^(9/10) 3645228668887193 a001 610/64079*2537720636^(7/10) 3645228668887193 a001 610/64079*17393796001^(9/14) 3645228668887193 a001 610/64079*14662949395604^(1/2) 3645228668887193 a001 610/64079*505019158607^(9/16) 3645228668887193 a001 610/64079*192900153618^(7/12) 3645228668887193 a001 610/64079*599074578^(3/4) 3645228668887196 a001 610/64079*33385282^(7/8) 3645228668888045 a001 28657/1364*3010349^(1/2) 3645228668888246 a001 28657/1364*9062201101803^(1/4) 3645228668897414 a001 610*39603^(17/44) 3645228669006868 a001 514229/1364*39603^(19/44) 3645228669014619 a001 5473/682*24476^(5/6) 3645228669102538 a001 317811/1364*39603^(21/44) 3645228669193240 a001 11592/341*39603^(29/44) 3645228669234297 a001 98209/682*39603^(23/44) 3645228669271571 a001 121393/1364*39603^(25/44) 3645228669556210 a001 75025/1364*39603^(27/44) 3645228669963038 r005 Re(z^2+c),c=-15/22+1/111*I,n=10 3645228669991753 a001 3732588/341*15127^(1/8) 3645228670525732 a001 28657/1364*39603^(31/44) 3645228673177628 a001 2178309/1364*15127^(13/40) 3645228673974690 a001 1346269/1364*15127^(3/8) 3645228673994592 a001 5473/682*167761^(7/10) 3645228674084204 a001 305/12238*2139295485799^(1/2) 3645228674085253 a001 5473/682*20633239^(1/2) 3645228674085257 a001 5473/682*2537720636^(7/18) 3645228674085257 a001 5473/682*17393796001^(5/14) 3645228674085257 a001 5473/682*312119004989^(7/22) 3645228674085257 a001 5473/682*14662949395604^(5/18) 3645228674085257 a001 5473/682*505019158607^(5/16) 3645228674085257 a001 5473/682*28143753123^(7/20) 3645228674085257 a001 5473/682*599074578^(5/12) 3645228674085257 a001 5473/682*228826127^(7/16) 3645228674085871 a001 5473/682*1860498^(7/12) 3645228674089768 a001 5473/682*710647^(5/8) 3645228674769741 a001 610*15127^(17/40) 3645228675570057 a001 514229/1364*15127^(19/40) 3645228675934032 a001 5473/682*39603^(35/44) 3645228676356588 a001 317811/1364*15127^(21/40) 3645228676591128 l004 cosh(235/112*Pi) 3645228677099383 a001 24157817/1364*5778^(1/12) 3645228677179209 a001 98209/682*15127^(23/40) 3645228677907346 a001 121393/1364*15127^(5/8) 3645228678818670 a001 17711/1364*15127^(33/40) 3645228678882847 a001 75025/1364*15127^(27/40) 3645228679210739 a001 11592/341*15127^(29/40) 3645228680077433 a003 -2*cos(5/21*Pi)-cos(1/18*Pi)-2*cos(8/27*Pi) 3645228681234093 a001 28657/1364*15127^(31/40) 3645228688024116 a001 5473/682*15127^(7/8) 3645228691415198 a007 Real Root Of -11*x^4-428*x^3-974*x^2+421*x+574 3645228695297142 a001 5702887/1364*5778^(1/4) 3645228695837318 a007 Real Root Of -780*x^4+721*x^3-172*x^2+303*x+182 3645228704055958 a001 4181/1364*24476^(13/14) 3645228707428866 a001 2178309/1364*5778^(13/36) 3645228708265376 a001 987*843^(15/28) 3645228708468898 m005 (-1/28+1/4*5^(1/2))/(5/11*exp(1)+1/5) 3645228709692450 a001 4181/1364*439204^(13/18) 3645228709704996 a001 610/9349*7881196^(5/6) 3645228709705039 a001 610/9349*20633239^(11/14) 3645228709705045 a001 610/9349*2537720636^(11/18) 3645228709705045 a001 610/9349*312119004989^(1/2) 3645228709705045 a001 610/9349*3461452808002^(11/24) 3645228709705045 a001 610/9349*28143753123^(11/20) 3645228709705045 a001 610/9349*1568397607^(5/8) 3645228709705045 a001 610/9349*228826127^(11/16) 3645228709706011 a001 610/9349*1860498^(11/12) 3645228709706063 a001 4181/1364*7881196^(13/22) 3645228709706098 a001 4181/1364*141422324^(1/2) 3645228709706098 a001 4181/1364*73681302247^(3/8) 3645228709706100 a001 4181/1364*33385282^(13/24) 3645228709706782 a001 4181/1364*1860498^(13/20) 3645228709743203 a001 4181/1364*271443^(3/4) 3645228709981611 a001 4181/1364*103682^(13/16) 3645228711026185 m001 1/ln(Zeta(5))^2*CareFree^2*cos(Pi/12) 3645228711766161 a001 4181/1364*39603^(39/44) 3645228713495350 a001 1346269/1364*5778^(5/12) 3645228716191452 r005 Re(z^2+c),c=-7/16+14/33*I,n=57 3645228719559822 a001 610*5778^(17/36) 3645228720266596 r005 Im(z^2+c),c=19/58+10/59*I,n=51 3645228720315456 m001 (Chi(1)+ln(5))/(HardyLittlewoodC5+MertensB1) 3645228721824407 r005 Im(z^2+c),c=-23/66+17/26*I,n=8 3645228725237969 a001 4181/1364*15127^(39/40) 3645228725629560 a001 514229/1364*5778^(19/36) 3645228729505995 m001 (Si(Pi)+3^(1/3))/(arctan(1/2)+BesselJ(1,1)) 3645228731685512 a001 317811/1364*5778^(7/12) 3645228737777555 a001 98209/682*5778^(23/36) 3645228743775113 a001 121393/1364*5778^(25/36) 3645228745694032 m001 Zeta(3)-KomornikLoreti^exp(1) 3645228750020035 a001 75025/1364*5778^(3/4) 3645228754563296 m001 (BesselK(1,1)-polylog(4,1/2))^Totient 3645228755617349 a001 11592/341*5778^(29/36) 3645228762910124 a001 28657/1364*5778^(31/36) 3645228762947376 a007 Real Root Of 257*x^4+718*x^3-656*x^2+247*x-982 3645228765764122 a001 17711/1364*5778^(11/12) 3645228774188444 r002 6th iterates of z^2 + 3645228780238990 a001 5473/682*5778^(35/36) 3645228787074798 m005 (1/2*Pi+3/11)/(9/11*Catalan-4/5) 3645228811848479 r005 Im(z^2+c),c=-167/126+1/40*I,n=14 3645228820997733 r005 Im(z^2+c),c=3/23+7/19*I,n=16 3645228823149374 m005 (31/28+1/4*5^(1/2))/(1/2*Pi+3) 3645228827835014 a001 (1+2^(1/2))^(102/25) 3645228838869142 r002 51th iterates of z^2 + 3645228843078993 r005 Re(z^2+c),c=-12/25+13/57*I,n=40 3645228851420196 m005 (1/3*5^(1/2)+2/9)/(-37/72+1/9*5^(1/2)) 3645228854220580 r005 Im(z^2+c),c=-7/86+18/29*I,n=27 3645228859208973 r005 Im(z^2+c),c=-23/110+35/64*I,n=9 3645228863469035 r009 Re(z^3+c),c=-19/52+7/51*I,n=24 3645228864398687 a007 Real Root Of 899*x^4-693*x^3-480*x^2-385*x-126 3645228866886889 m002 Pi*Cosh[Pi]+(4*Csch[Pi])/Pi^2 3645228869246899 r004 Im(z^2+c),c=4/9+2/17*I,z(0)=exp(5/8*I*Pi),n=5 3645228880806535 r009 Re(z^3+c),c=-29/70+6/29*I,n=18 3645228885259412 r005 Re(z^2+c),c=-51/122+16/63*I,n=4 3645228891805961 h001 (1/9*exp(1)+3/5)/(7/12*exp(1)+8/9) 3645228903778849 a001 9227465/843*322^(5/24) 3645228912849747 r002 57th iterates of z^2 + 3645228937541593 m001 exp(TreeGrowth2nd)/FeigenbaumD/(2^(1/3))^2 3645228945297007 g007 Psi(2,5/12)-Psi(2,1/12)-Psi(2,2/9)-Psi(2,2/5) 3645228953025116 a001 1597/1364*64079^(43/46) 3645228953836097 a001 610/3571*439204^(17/18) 3645228953853899 a001 610/3571*7881196^(17/22) 3645228953853944 a001 610/3571*45537549124^(1/2) 3645228953853946 a001 610/3571*33385282^(17/24) 3645228953853961 a001 610/3571*12752043^(3/4) 3645228953854839 a001 610/3571*1860498^(17/20) 3645228953854975 a001 1597/1364*969323029^(1/2) 3645228955820219 m001 (Champernowne+Trott)/(exp(1)+cos(1/12*Pi)) 3645228956126326 a001 1597/1364*39603^(43/44) 3645228957674982 r002 10th iterates of z^2 + 3645228972028375 a001 2178309/1364*2207^(13/32) 3645228972200937 r009 Im(z^3+c),c=-10/29+18/53*I,n=33 3645228972839654 a003 cos(Pi*25/107)-cos(Pi*29/77) 3645228978440987 m006 (1/5*exp(Pi)-1/6)/(1/5*Pi^2-3/4) 3645228984237658 m005 (1/3*3^(1/2)+1/12)/(9/10*5^(1/2)-1/5) 3645229009111085 a007 Real Root Of -15*x^4+145*x^3+768*x^2+380*x+852 3645229011821294 m001 GAMMA(2/3)^exp(1)/(ReciprocalLucas^exp(1)) 3645229015539159 m001 BesselK(0,1)/(FeigenbaumB+FellerTornier) 3645229018802477 a001 1346269/1364*2207^(15/32) 3645229020633463 r009 Im(z^3+c),c=-10/29+18/53*I,n=34 3645229024788200 r005 Re(z^2+c),c=-13/30+7/16*I,n=64 3645229027537853 r009 Im(z^3+c),c=-10/29+18/53*I,n=37 3645229029520650 r009 Im(z^3+c),c=-10/29+18/53*I,n=36 3645229032821231 r002 17i'th iterates of 2*x/(1-x^2) of 3645229033278304 r009 Im(z^3+c),c=-10/29+18/53*I,n=40 3645229035049973 r009 Im(z^3+c),c=-10/29+18/53*I,n=43 3645229035428661 r009 Im(z^3+c),c=-10/29+18/53*I,n=46 3645229035445824 r009 Im(z^3+c),c=-10/29+18/53*I,n=47 3645229035454539 r009 Im(z^3+c),c=-10/29+18/53*I,n=44 3645229035471657 r009 Im(z^3+c),c=-10/29+18/53*I,n=50 3645229035481482 r009 Im(z^3+c),c=-10/29+18/53*I,n=53 3645229035483862 r009 Im(z^3+c),c=-10/29+18/53*I,n=56 3645229035484136 r009 Im(z^3+c),c=-10/29+18/53*I,n=57 3645229035484232 r009 Im(z^3+c),c=-10/29+18/53*I,n=60 3645229035484240 r009 Im(z^3+c),c=-10/29+18/53*I,n=49 3645229035484272 r009 Im(z^3+c),c=-10/29+18/53*I,n=59 3645229035484284 r009 Im(z^3+c),c=-10/29+18/53*I,n=63 3645229035484304 r009 Im(z^3+c),c=-10/29+18/53*I,n=64 3645229035484311 r009 Im(z^3+c),c=-10/29+18/53*I,n=62 3645229035484339 r009 Im(z^3+c),c=-10/29+18/53*I,n=61 3645229035484490 r009 Im(z^3+c),c=-10/29+18/53*I,n=54 3645229035484524 r009 Im(z^3+c),c=-10/29+18/53*I,n=58 3645229035485241 r009 Im(z^3+c),c=-10/29+18/53*I,n=55 3645229035486870 r009 Im(z^3+c),c=-10/29+18/53*I,n=52 3645229035489316 r009 Im(z^3+c),c=-10/29+18/53*I,n=51 3645229035519513 r009 Im(z^3+c),c=-10/29+18/53*I,n=48 3645229035652317 r009 Im(z^3+c),c=-10/29+18/53*I,n=45 3645229036043737 r009 Im(z^3+c),c=-10/29+18/53*I,n=42 3645229036077478 r009 Im(z^3+c),c=-10/29+18/53*I,n=41 3645229036256850 r009 Im(z^3+c),c=-10/29+18/53*I,n=39 3645229039868851 r005 Re(z^2+c),c=-12/25+13/63*I,n=17 3645229040767874 r009 Im(z^3+c),c=-10/29+18/53*I,n=38 3645229041954112 r005 Re(z^2+c),c=-41/102+13/48*I,n=4 3645229041991417 r005 Im(z^2+c),c=-3/86+26/55*I,n=22 3645229056766325 m001 gamma(1)^Sierpinski/Pi 3645229059343522 a003 cos(Pi*25/89)-sin(Pi*36/73) 3645229064116854 r009 Im(z^3+c),c=-10/29+18/53*I,n=35 3645229064911807 h005 exp(cos(Pi*1/48)/cos(Pi*9/41)) 3645229065574569 a001 610*2207^(17/32) 3645229073094586 a007 Real Root Of 24*x^4+882*x^3+279*x^2+693*x+616 3645229074655024 a001 1346269/2207*843^(17/28) 3645229083564861 m003 1/8+Sqrt[5]/2+6*Sinh[1/2+Sqrt[5]/2]^2 3645229089836202 r009 Im(z^3+c),c=-10/29+18/53*I,n=31 3645229090514930 a003 cos(Pi*7/100)*cos(Pi*45/119) 3645229093558958 a001 2/5*433494437^(1/9) 3645229095715329 a007 Real Root Of -268*x^4-892*x^3+458*x^2+492*x-179 3645229104245242 m001 (Conway+Trott)/(Zeta(3)-sin(1)) 3645229112351927 a001 514229/1364*2207^(19/32) 3645229121965679 m005 (1/2*Catalan+5/12)/(1/4*Pi-6/11) 3645229127941650 p001 sum((-1)^n/(193*n+26)/n/(125^n),n=1..infinity) 3645229133508838 m001 GAMMA(2/3)^TravellingSalesman/Magata 3645229141261619 m005 (1/3*5^(1/2)+1/7)/(1/8*Pi-7/11) 3645229146220656 r009 Im(z^3+c),c=-10/29+18/53*I,n=32 3645229154662848 r005 Re(z^2+c),c=-79/126+9/28*I,n=34 3645229159115500 a001 317811/1364*2207^(21/32) 3645229160417541 r009 Im(z^3+c),c=-41/86+14/55*I,n=36 3645229167977940 r005 Im(z^2+c),c=-2/21+32/63*I,n=24 3645229199457766 r009 Im(z^3+c),c=-47/90+12/53*I,n=32 3645229202537696 m001 Ei(1)^2/GolombDickman^2/exp(arctan(1/2))^2 3645229204362335 r005 Im(z^2+c),c=5/94+18/43*I,n=44 3645229204530806 r009 Re(z^3+c),c=-19/52+7/51*I,n=29 3645229205915164 a001 98209/682*2207^(23/32) 3645229211726751 r009 Re(z^3+c),c=-19/52+7/51*I,n=30 3645229214509135 r009 Re(z^3+c),c=-19/52+7/51*I,n=25 3645229216515414 r009 Im(z^3+c),c=-47/90+5/22*I,n=61 3645229218565931 r005 Re(z^2+c),c=-7/102+22/25*I,n=11 3645229219403344 r009 Re(z^3+c),c=-19/52+7/51*I,n=35 3645229219584086 r009 Re(z^3+c),c=-19/52+7/51*I,n=36 3645229219731087 r009 Re(z^3+c),c=-19/52+7/51*I,n=34 3645229219756353 r009 Re(z^3+c),c=-19/52+7/51*I,n=41 3645229219760856 r009 Re(z^3+c),c=-19/52+7/51*I,n=42 3645229219763322 r009 Re(z^3+c),c=-19/52+7/51*I,n=40 3645229219764710 r009 Re(z^3+c),c=-19/52+7/51*I,n=47 3645229219764821 r009 Re(z^3+c),c=-19/52+7/51*I,n=48 3645229219764856 r009 Re(z^3+c),c=-19/52+7/51*I,n=46 3645229219764907 r009 Re(z^3+c),c=-19/52+7/51*I,n=53 3645229219764910 r009 Re(z^3+c),c=-19/52+7/51*I,n=54 3645229219764910 r009 Re(z^3+c),c=-19/52+7/51*I,n=52 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=59 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=58 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=60 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=64 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=63 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=61 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=62 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=55 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=57 3645229219764912 r009 Re(z^3+c),c=-19/52+7/51*I,n=56 3645229219764921 r009 Re(z^3+c),c=-19/52+7/51*I,n=49 3645229219764925 r009 Re(z^3+c),c=-19/52+7/51*I,n=51 3645229219764943 r009 Re(z^3+c),c=-19/52+7/51*I,n=50 3645229219765215 r009 Re(z^3+c),c=-19/52+7/51*I,n=43 3645229219765518 r009 Re(z^3+c),c=-19/52+7/51*I,n=45 3645229219766227 r009 Re(z^3+c),c=-19/52+7/51*I,n=44 3645229219772710 r009 Re(z^3+c),c=-19/52+7/51*I,n=37 3645229219792003 r009 Re(z^3+c),c=-19/52+7/51*I,n=39 3645229219811006 r009 Re(z^3+c),c=-19/52+7/51*I,n=28 3645229219820558 r009 Re(z^3+c),c=-19/52+7/51*I,n=38 3645229219872579 r009 Re(z^3+c),c=-19/52+7/51*I,n=31 3645229220092124 r009 Re(z^3+c),c=-10/31+3/64*I,n=9 3645229220970970 r009 Re(z^3+c),c=-19/52+7/51*I,n=33 3645229222112657 r009 Re(z^3+c),c=-19/52+7/51*I,n=32 3645229242510111 r009 Im(z^3+c),c=-23/56+17/56*I,n=29 3645229252620344 a001 121393/1364*2207^(25/32) 3645229273299538 r009 Re(z^3+c),c=-19/52+7/51*I,n=27 3645229286837234 r009 Re(z^3+c),c=-19/52+7/51*I,n=22 3645229287716172 r009 Im(z^3+c),c=-10/29+18/53*I,n=29 3645229291194132 a001 233*521^(21/26) 3645229295199401 p004 log(23629/16411) 3645229299572889 a001 75025/1364*2207^(27/32) 3645229309435951 q001 1383/3794 3645229311634457 r005 Im(z^2+c),c=5/94+18/43*I,n=40 3645229318547364 r009 Re(z^3+c),c=-19/52+7/51*I,n=26 3645229340705357 r005 Re(z^2+c),c=-2/5+29/56*I,n=33 3645229345061052 r005 Im(z^2+c),c=-3/70+9/19*I,n=18 3645229345877825 a001 11592/341*2207^(29/32) 3645229351591729 a007 Real Root Of 140*x^4-992*x^3-487*x^2-365*x+14 3645229356538620 s002 sum(A169770[n]/(10^n+1),n=1..infinity) 3645229361364886 a007 Real Root Of -130*x^4-353*x^3+408*x^2-390*x-988 3645229379013699 a003 cos(Pi*34/91)*sin(Pi*38/97) 3645229381816305 r005 Re(z^2+c),c=-49/110+19/48*I,n=30 3645229393782198 a007 Real Root Of -951*x^4+57*x^3+508*x^2+904*x-383 3645229393878225 a001 28657/1364*2207^(31/32) 3645229415104003 r009 Im(z^3+c),c=-15/29+12/17*I,n=3 3645229430527070 m001 ((1+3^(1/2))^(1/2))^ZetaR(2)/Otter 3645229430878513 a001 5600748293801/8*591286729879^(3/13) 3645229430878513 a001 23725150497407/8*1134903170^(3/13) 3645229436515318 a007 Real Root Of 270*x^4+815*x^3-653*x^2-336*x-744 3645229439421072 m001 (FeigenbaumMu*ZetaQ(3)-MertensB3)/FeigenbaumMu 3645229441042697 a001 832040/2207*843^(19/28) 3645229451076202 m001 CopelandErdos^2*ln(ErdosBorwein)*Salem^2 3645229460477881 m001 Champernowne^Thue/(Trott2nd^Thue) 3645229471719479 g007 Psi(2,4/9)+Psi(2,1/6)-Psi(2,8/11)-Psi(2,2/7) 3645229483998176 a007 Real Root Of 662*x^4-758*x^3+23*x^2-712*x-311 3645229491341266 l006 ln(6473/9320) 3645229497036899 r005 Im(z^2+c),c=-3/98+25/52*I,n=7 3645229513212817 r002 63th iterates of z^2 + 3645229516829610 m001 (KhinchinLevy+Sierpinski)/MertensB2 3645229541895828 r005 Im(z^2+c),c=-11/74+14/25*I,n=20 3645229572021602 a001 123/2504730781961*144^(13/15) 3645229575140379 m001 FeigenbaumD*(2^(1/3)+Paris) 3645229577716096 m001 (Si(Pi)+Bloch)/(-MasserGramain+ZetaQ(3)) 3645229579545505 m001 exp(Niven)^2*LaplaceLimit/GAMMA(1/24)^2 3645229588112218 k002 Champernowne real with 175/2*n^2-507/2*n+202 3645229618983861 m007 (-2*gamma+1/5)/(-2/3*gamma-2*ln(2)-1/3*Pi+1/5) 3645229629024979 m001 (GAMMA(3/4)-Backhouse)/(Trott2nd-TwinPrimes) 3645229635359309 r002 28th iterates of z^2 + 3645229640034193 a007 Real Root Of 646*x^4-952*x^3-674*x^2-419*x+277 3645229662739093 m001 1/GAMMA(7/24)*ln(GAMMA(3/4))^2*exp(1) 3645229669052230 m001 (Robbin+ZetaQ(3))/Tribonacci 3645229671626809 m005 (1/2*3^(1/2)-1/4)/(7/10*2^(1/2)+7/10) 3645229682249161 a007 Real Root Of -125*x^4-307*x^3+413*x^2-382*x+320 3645229693101583 l006 ln(5318/7657) 3645229717462643 r005 Im(z^2+c),c=41/122+10/37*I,n=22 3645229743444255 m001 Catalan*exp(FeigenbaumDelta)/GAMMA(1/3) 3645229769505783 r005 Im(z^2+c),c=-7/32+13/23*I,n=60 3645229779940665 r009 Im(z^3+c),c=-10/29+18/53*I,n=28 3645229798669474 r009 Re(z^3+c),c=-25/106+23/24*I,n=32 3645229807435673 a001 514229/2207*843^(3/4) 3645229807689837 m005 (43/44+1/4*5^(1/2))/(2/9*Catalan-5/8) 3645229823774636 a003 cos(Pi*19/64)-cos(Pi*43/101) 3645229830183830 m005 (1/2*Zeta(3)+3/4)/(5/11*3^(1/2)-5/12) 3645229834469531 m003 -6+(3*Sqrt[5])/8+2*ProductLog[1/2+Sqrt[5]/2] 3645229834959360 r002 11th iterates of z^2 + 3645229835016172 m001 ln(sqrt(2))^2/LandauRamanujan^2*sqrt(Pi) 3645229837091925 a007 Real Root Of -77*x^4-167*x^3+169*x^2-787*x+392 3645229837342139 m001 (Stephens+ZetaP(2))/(CopelandErdos+Sierpinski) 3645229852327551 a001 55/3010349*29^(8/39) 3645229856369941 r005 Im(z^2+c),c=5/46+33/61*I,n=11 3645229865273181 r009 Im(z^3+c),c=-81/82+4/43*I,n=2 3645229893487798 a007 Real Root Of -82*x^4+348*x^3+431*x^2+363*x-205 3645229910261151 s002 sum(A235010[n]/(n^2*pi^n-1),n=1..infinity) 3645229913126489 p004 log(25639/17807) 3645229935898115 s002 sum(A156069[n]/(n^3*10^n-1),n=1..infinity) 3645229938830815 r005 Re(z^2+c),c=-27/62+26/61*I,n=38 3645229941812146 p004 log(17729/463) 3645229950362468 a001 9227465/1364*843^(1/4) 3645229955299452 a007 Real Root Of -116*x^4-176*x^3+786*x^2-312*x+375 3645229965352155 m001 (2^(1/3)-exp(Pi))/(-BesselK(1,1)+ZetaQ(4)) 3645229978878728 a007 Real Root Of 111*x^4-733*x^3-188*x^2-583*x-225 3645229984326023 h001 (2/9*exp(2)+8/9)/(8/9*exp(2)+3/8) 3645230006816330 l006 ln(4163/5994) 3645230010164527 r005 Re(z^2+c),c=-31/74+17/35*I,n=59 3645230025577437 a007 Real Root Of -465*x^4+572*x^3-536*x^2+562*x+312 3645230030802229 m001 (-Kolakoski+PlouffeB)/(Shi(1)-ln(Pi)) 3645230033802504 m001 Kolakoski-exp(1/Pi)^arctan(1/2) 3645230037910679 r005 Re(z^2+c),c=25/78+3/37*I,n=34 3645230039444459 h001 (1/12*exp(1)+1/7)/(1/7*exp(1)+5/8) 3645230046774340 a007 Real Root Of 302*x^4+976*x^3-264*x^2+832*x+493 3645230065152857 r005 Re(z^2+c),c=-57/122+11/37*I,n=29 3645230066290449 a007 Real Root Of 825*x^4-938*x^3-809*x^2-561*x-157 3645230079190331 r002 48th iterates of z^2 + 3645230079359914 a007 Real Root Of -781*x^4+313*x^3+87*x^2+590*x-228 3645230080233771 a001 726103/1926*843^(19/28) 3645230089504069 s002 sum(A228621[n]/(n^2*pi^n+1),n=1..infinity) 3645230090057964 a007 Real Root Of 493*x^4-15*x^3+540*x^2-817*x-379 3645230101366247 r002 58th iterates of z^2 + 3645230101689613 r005 Im(z^2+c),c=-9/14+82/251*I,n=12 3645230102884230 a001 3/4*6643838879^(11/19) 3645230108885902 a001 2178309/3571*843^(17/28) 3645230112770496 q001 1196/3281 3645230115410876 a007 Real Root Of -799*x^4+744*x^3+421*x^2+966*x-430 3645230117902348 r005 Re(z^2+c),c=-11/23+11/46*I,n=40 3645230132901109 a001 39088169/1364*322^(1/24) 3645230154115058 a001 2/17*832040^(22/29) 3645230155253670 a008 Real Root of x^3-x^2+178*x-684 3645230165242030 h001 (10/11*exp(2)+7/12)/(7/10*exp(1)+1/10) 3645230171640858 p001 sum(1/(313*n+42)/n/(8^n),n=1..infinity) 3645230172649141 a001 1/3*18^(24/29) 3645230173814901 a001 317811/2207*843^(23/28) 3645230179065243 g007 Psi(2,2/11)+Psi(2,4/5)+Psi(2,2/5)-Psi(2,7/10) 3645230187998984 r005 Re(z^2+c),c=-11/24+13/38*I,n=34 3645230193696512 p001 sum(1/(541*n+532)/n/(256^n),n=1..infinity) 3645230197957547 r005 Re(z^2+c),c=-37/110+25/44*I,n=50 3645230199923106 r005 Re(z^2+c),c=-131/102+1/40*I,n=2 3645230206447394 m005 (1/3*3^(1/2)-3/5)/(43/8+3/8*5^(1/2)) 3645230211469067 a007 Real Root Of 308*x^4+936*x^3-420*x^2+849*x-369 3645230219170060 m005 (1/2*exp(1)+4/7)/(3*3^(1/2)+1/10) 3645230230880766 m009 (16*Catalan+2*Pi^2-3)/(2/3*Psi(1,3/4)-5/6) 3645230233680062 r002 39th iterates of z^2 + 3645230284642642 a007 Real Root Of 975*x^4-702*x^3+20*x^2-346*x-180 3645230289091663 m001 1/GAMMA(11/12)^2*LandauRamanujan/ln(cosh(1))^2 3645230294639084 r009 Im(z^3+c),c=-13/28+23/44*I,n=35 3645230300825780 r009 Re(z^3+c),c=-19/31+27/56*I,n=57 3645230305244606 r005 Im(z^2+c),c=19/86+14/47*I,n=14 3645230324270572 a001 196418/521*521^(19/26) 3645230332369012 a007 Real Root Of -174*x^4-273*x^3+321*x^2+929*x-365 3645230338394465 r009 Im(z^3+c),c=-10/29+18/53*I,n=21 3645230342922964 r005 Im(z^2+c),c=23/66+3/19*I,n=27 3645230348582620 a007 Real Root Of -193*x^4+416*x^3+381*x^2+405*x-215 3645230355048870 a001 39088169/2207*322^(1/8) 3645230369869648 m005 (1/3*exp(1)+1/9)/(7/10*gamma-1/8) 3645230373715845 a007 Real Root Of -197*x^4-613*x^3+327*x^2-414*x-763 3645230375245617 a007 Real Root Of 590*x^4+362*x^3+414*x^2-837*x-353 3645230383768406 r005 Re(z^2+c),c=-11/30+31/57*I,n=31 3645230385173431 m001 (Artin-Catalan)/(MertensB2+ZetaP(2)) 3645230387089208 r002 41th iterates of z^2 + 3645230396214622 a007 Real Root Of -106*x^4+33*x^3-299*x^2+902*x+372 3645230407034185 r005 Im(z^2+c),c=41/122+3/19*I,n=58 3645230407276981 a001 2537720636/377*317811^(2/15) 3645230407277943 a001 370248451/377*591286729879^(2/15) 3645230407277943 a001 969323029/377*433494437^(2/15) 3645230420324832 r005 Im(z^2+c),c=2/21+23/60*I,n=10 3645230432559486 m005 (29/10+5/2*5^(1/2))/(3/4*gamma-1/5) 3645230446623556 a001 1346269/5778*843^(3/4) 3645230457911461 m005 (1/3*Pi-3/4)/(5/8*gamma+5/11) 3645230475275691 a001 1346269/3571*843^(19/28) 3645230483314406 a003 sin(Pi*5/42)-sin(Pi*25/96) 3645230494760502 b008 ArcSinh[6-8*Pi] 3645230522475313 m005 (1/2*3^(1/2)+3/4)/(6/11*Zeta(3)-7/10) 3645230533311665 m005 (1/24+1/6*5^(1/2))/(7/10*5^(1/2)-3/7) 3645230539879830 a001 3524578/15127*843^(3/4) 3645230540230255 a001 196418/2207*843^(25/28) 3645230553485738 a001 9227465/39603*843^(3/4) 3645230555470813 a001 24157817/103682*843^(3/4) 3645230555760432 a001 63245986/271443*843^(3/4) 3645230555802686 a001 165580141/710647*843^(3/4) 3645230555808851 a001 433494437/1860498*843^(3/4) 3645230555809751 a001 1134903170/4870847*843^(3/4) 3645230555809882 a001 2971215073/12752043*843^(3/4) 3645230555809901 a001 7778742049/33385282*843^(3/4) 3645230555809904 a001 20365011074/87403803*843^(3/4) 3645230555809904 a001 53316291173/228826127*843^(3/4) 3645230555809904 a001 139583862445/599074578*843^(3/4) 3645230555809904 a001 365435296162/1568397607*843^(3/4) 3645230555809904 a001 956722026041/4106118243*843^(3/4) 3645230555809904 a001 2504730781961/10749957122*843^(3/4) 3645230555809904 a001 6557470319842/28143753123*843^(3/4) 3645230555809904 a001 10610209857723/45537549124*843^(3/4) 3645230555809904 a001 4052739537881/17393796001*843^(3/4) 3645230555809904 a001 1548008755920/6643838879*843^(3/4) 3645230555809904 a001 591286729879/2537720636*843^(3/4) 3645230555809904 a001 225851433717/969323029*843^(3/4) 3645230555809904 a001 86267571272/370248451*843^(3/4) 3645230555809904 a001 63246219/271444*843^(3/4) 3645230555809906 a001 12586269025/54018521*843^(3/4) 3645230555809913 a001 4807526976/20633239*843^(3/4) 3645230555809963 a001 1836311903/7881196*843^(3/4) 3645230555810307 a001 701408733/3010349*843^(3/4) 3645230555812661 a001 267914296/1149851*843^(3/4) 3645230555828801 a001 102334155/439204*843^(3/4) 3645230555939426 a001 39088169/167761*843^(3/4) 3645230556035993 m001 (Pi+2^(1/3))*(Chi(1)+gamma(2)) 3645230556697657 a001 14930352/64079*843^(3/4) 3645230561448962 l006 ln(3008/4331) 3645230561894651 a001 5702887/24476*843^(3/4) 3645230572382087 r005 Re(z^2+c),c=-37/78+16/61*I,n=40 3645230579174655 a007 Real Root Of -421*x^4+937*x^3-352*x^2+208*x-67 3645230591112818 k002 Champernowne real with 88*n^2-255*n+203 3645230597515380 a001 2178309/9349*843^(3/4) 3645230615224613 m001 Lehmer/(Zeta(1/2)+Zeta(1,-1)) 3645230627276270 a001 305/682*6643838879^(1/2) 3645230639496699 a007 Real Root Of 311*x^4+964*x^3-641*x^2-343*x-951 3645230644753872 r005 Im(z^2+c),c=-97/118+13/55*I,n=5 3645230653049832 h001 (4/7*exp(1)+3/11)/(2/3*exp(2)+1/12) 3645230657172349 m001 ((1+3^(1/2))^(1/2)-GaussAGM)/(exp(Pi)-ln(2)) 3645230657876218 a003 sin(Pi*1/85)*sin(Pi*47/105) 3645230658109577 a007 Real Root Of -242*x^4-718*x^3+359*x^2-712*x+585 3645230673183488 r005 Im(z^2+c),c=-38/27+5/34*I,n=10 3645230675145426 m001 Catalan/TwinPrimes*exp(cos(Pi/12)) 3645230682658522 r005 Im(z^2+c),c=-15/98+23/43*I,n=41 3645230685501151 r002 8th iterates of z^2 + 3645230686305411 r008 a(0)=0,K{-n^6,-2-48*n+18*n^2+7*n^3} 3645230687436401 a007 Real Root Of 27*x^4+960*x^3-879*x^2+133*x+73 3645230694149176 a007 Real Root Of 243*x^4-541*x^3-572*x^2-911*x+430 3645230729053780 r009 Im(z^3+c),c=-13/28+13/49*I,n=38 3645230732653072 a007 Real Root Of 280*x^4-857*x^3+259*x^2-250*x-172 3645230757270589 r005 Re(z^2+c),c=-81/106+4/59*I,n=26 3645230776487452 m005 (1/2*Zeta(3)+6/11)/(5^(1/2)+10/11) 3645230778572241 r002 44th iterates of z^2 + 3645230783995295 a007 Real Root Of -260*x^4+885*x^3-364*x^2+198*x+168 3645230799323142 m008 (1/2*Pi^6-3/4)/(4*Pi+3/5) 3645230809476767 r005 Re(z^2+c),c=-13/110+25/49*I,n=2 3645230813011368 a001 416020/2889*843^(23/28) 3645230813140461 m001 GAMMA(1/12)^2*ln(Rabbit)^2*GAMMA(1/24) 3645230822561364 r009 Im(z^3+c),c=-7/16+11/23*I,n=6 3645230825236714 h003 exp(Pi*(19^(6/5)-12^(2/3))) 3645230825236714 h008 exp(Pi*(19^(6/5)-12^(2/3))) 3645230841164539 m001 (-FeigenbaumC+Sarnak)/(BesselI(0,1)+Pi^(1/2)) 3645230841663505 a001 832040/3571*843^(3/4) 3645230852541458 m001 (Zeta(1/2)-exp(1))/(-GAMMA(19/24)+Trott2nd) 3645230872598494 m001 1/GAMMA(1/6)*ln(ErdosBorwein)/GAMMA(7/12)^2 3645230888265323 r005 Im(z^2+c),c=5/38+19/52*I,n=26 3645230892268413 a001 46368/199*199^(21/22) 3645230894168267 m001 (GaussAGM+Totient)/(GAMMA(19/24)-gamma) 3645230906268894 a001 311187/2161*843^(23/28) 3645230906551161 a001 121393/2207*843^(27/28) 3645230924203767 m001 Pi+2^(1/3)*(Zeta(1,-1)+BesselI(1,1)) 3645230925982128 m001 Otter*QuadraticClass/TravellingSalesman 3645230929979855 r002 56th iterates of z^2 + 3645230932036483 m001 LandauRamanujan2nd^Landau/(ZetaQ(2)^Landau) 3645230939269418 a003 sin(Pi*3/64)/sin(Pi*12/91) 3645230950305256 a007 Real Root Of -694*x^4+100*x^3-77*x^2+908*x-33 3645230960547101 m001 1/ln(GAMMA(19/24))/Robbin/sin(Pi/12) 3645230963905218 a001 1346269/9349*843^(23/28) 3645230964458198 r005 Re(z^2+c),c=-29/122+48/49*I,n=4 3645230970083564 r005 Re(z^2+c),c=37/114+26/45*I,n=55 3645230977674470 m001 GAMMA(1/24)/FeigenbaumKappa/exp(GAMMA(7/24))^2 3645230994239204 a001 34111385/1926*322^(1/8) 3645231006097235 h001 (1/2*exp(2)+4/7)/(4/11*exp(1)+2/11) 3645231010883374 r005 Im(z^2+c),c=-5/94+14/29*I,n=25 3645231018492160 a007 Real Root Of 375*x^4+196*x^3+15*x^2-274*x-99 3645231019746356 a007 Real Root Of -606*x^4+651*x^3+890*x^2+510*x-325 3645231021785076 m001 Pi/Shi(1)*FibonacciFactorial 3645231036346911 r005 Re(z^2+c),c=-45/98+14/29*I,n=45 3645231036440841 l006 ln(4861/6999) 3645231045163578 r005 Im(z^2+c),c=33/86+13/36*I,n=16 3645231047932840 r005 Re(z^2+c),c=-27/58+13/50*I,n=15 3645231049530067 a001 2178309/1364*843^(13/28) 3645231066943818 r005 Im(z^2+c),c=13/36+13/38*I,n=21 3645231086624414 r005 Im(z^2+c),c=9/32+10/43*I,n=19 3645231087495836 a001 267914296/15127*322^(1/8) 3645231093419813 m001 (Psi(2,1/3)-Stephens)^arctan(1/3) 3645231100977099 r005 Re(z^2+c),c=-4/7+58/119*I,n=14 3645231101101796 a001 17711*322^(1/8) 3645231103086879 a001 1836311903/103682*322^(1/8) 3645231103376498 a001 1602508992/90481*322^(1/8) 3645231103418753 a001 12586269025/710647*322^(1/8) 3645231103424918 a001 10983760033/620166*322^(1/8) 3645231103425818 a001 86267571272/4870847*322^(1/8) 3645231103425949 a001 75283811239/4250681*322^(1/8) 3645231103425968 a001 591286729879/33385282*322^(1/8) 3645231103425971 a001 516002918640/29134601*322^(1/8) 3645231103425971 a001 4052739537881/228826127*322^(1/8) 3645231103425971 a001 3536736619241/199691526*322^(1/8) 3645231103425971 a001 6557470319842/370248451*322^(1/8) 3645231103425971 a001 2504730781961/141422324*322^(1/8) 3645231103425972 a001 956722026041/54018521*322^(1/8) 3645231103425980 a001 365435296162/20633239*322^(1/8) 3645231103426030 a001 139583862445/7881196*322^(1/8) 3645231103426373 a001 53316291173/3010349*322^(1/8) 3645231103428728 a001 20365011074/1149851*322^(1/8) 3645231103444868 a001 7778742049/439204*322^(1/8) 3645231103555493 a001 2971215073/167761*322^(1/8) 3645231104313727 a001 1134903170/64079*322^(1/8) 3645231109510741 a001 433494437/24476*322^(1/8) 3645231113381113 k009 concat of cont frac of 3645231113463799 r005 Im(z^2+c),c=-59/122+1/16*I,n=47 3645231114470425 r002 10th iterates of z^2 + 3645231119630937 m001 Pi+(1/3)^GolombDickman 3645231125395860 r005 Re(z^2+c),c=-23/34+5/29*I,n=13 3645231127947911 m001 Zeta(5)*RenyiParking^2/exp(arctan(1/2)) 3645231135590793 m001 cos(1/12*Pi)-GAMMA(13/24)^gamma 3645231135590793 m001 cos(Pi/12)-GAMMA(13/24)^gamma 3645231140324369 r002 57i'th iterates of 2*x/(1-x^2) of 3645231143009379 m001 FeigenbaumMu*Grothendieck/KhinchinHarmonic 3645231145131607 a001 165580141/9349*322^(1/8) 3645231153581798 a007 Real Root Of -2*x^4-729*x^3+19*x^2+784*x+388 3645231163655680 a007 Real Root Of 447*x^4+634*x^3+468*x^2-608*x-261 3645231164503019 r009 Im(z^3+c),c=-33/64+9/49*I,n=7 3645231171211111 k006 concat of cont frac of 3645231174096960 r005 Re(z^2+c),c=1/102+11/47*I,n=9 3645231179404481 a001 514229/5778*843^(25/28) 3645231196267664 a007 Real Root Of -443*x^4+866*x^3+783*x^2+529*x-331 3645231208056622 a001 514229/3571*843^(23/28) 3645231213872832 q001 1009/2768 3645231238896083 r005 Re(z^2+c),c=-23/48+7/30*I,n=37 3645231249246251 l006 ln(6714/9667) 3645231250003968 a008 Real Root of (1+3*x-2*x^3+2*x^4+6*x^5) 3645231257629895 r005 Re(z^2+c),c=-15/31+5/26*I,n=21 3645231267387198 a001 11/34*13^(2/43) 3645231268951759 r005 Im(z^2+c),c=29/122+5/18*I,n=50 3645231270657227 r005 Re(z^2+c),c=-33/70+29/62*I,n=17 3645231272658763 a001 1346269/15127*843^(25/28) 3645231273187718 m002 ProductLog[Pi]/(2*Pi)+Pi*Sinh[Pi] 3645231281911667 a007 Real Root Of 189*x^4-591*x^3-183*x^2-706*x-265 3645231291859117 m001 (2^(1/2)*Mills-Ei(1))/Mills 3645231294673113 a001 2178309/24476*843^(25/28) 3645231308279477 m005 (3*gamma+3)/(4/5*2^(1/2)+1/6) 3645231321075950 r002 18th iterates of z^2 + 3645231321889394 a008 Real Root of x^4-29*x^2-88*x-112 3645231323694966 m001 (Ei(1,1)+polylog(4,1/2))/(FeigenbaumD-Robbin) 3645231330293081 a001 832040/9349*843^(25/28) 3645231335459669 a007 Real Root Of -32*x^4+77*x^3+505*x^2-574*x+577 3645231338649985 r002 13th iterates of z^2 + 3645231338971206 a007 Real Root Of -245*x^4-882*x^3+229*x^2+865*x+647 3645231357252819 a001 317811/521*521^(17/26) 3645231366210272 p001 sum((-1)^n/(611*n+274)/(256^n),n=0..infinity) 3645231370704491 a007 Real Root Of 150*x^4-650*x^3+517*x^2-807*x-397 3645231371301289 r005 Re(z^2+c),c=-21/44+13/53*I,n=37 3645231385314072 m001 (5^(1/2)-GAMMA(7/12))/(LandauRamanujan+Salem) 3645231389280668 a001 63245986/3571*322^(1/8) 3645231393893525 m001 Riemann1stZero^MinimumGamma/ln(2+3^(1/2)) 3645231399536209 r002 14th iterates of z^2 + 3645231400437092 r005 Re(z^2+c),c=-41/94+3/7*I,n=55 3645231414555259 r009 Re(z^3+c),c=-39/82+9/34*I,n=16 3645231415919950 a001 1346269/1364*843^(15/28) 3645231422156388 r009 Im(z^3+c),c=-5/9+19/58*I,n=53 3645231439211431 r005 Re(z^2+c),c=-45/94+13/55*I,n=41 3645231444910056 m002 (3*Coth[Pi])/Pi+Pi^3*Log[Pi] 3645231455767848 a001 75025/3*322^(44/51) 3645231466510629 r005 Im(z^2+c),c=7/27+10/39*I,n=33 3645231476184608 r005 Im(z^2+c),c=9/40+15/49*I,n=6 3645231476447748 m002 -4-Pi^2+Pi^2*Log[Pi]-ProductLog[Pi] 3645231489862966 m005 (-1/6+1/4*5^(1/2))/(1/9*Pi+8/11) 3645231493220673 m001 Si(Pi)*ZetaP(2)-Zeta(3) 3645231497468770 r005 Re(z^2+c),c=-25/56+16/41*I,n=47 3645231515002717 a007 Real Root Of -64*x^4-150*x^3+362*x^2+80*x-484 3645231522999660 m001 1/ln(Pi)^2/ArtinRank2*gamma^2 3645231544469639 r005 Re(z^2+c),c=-1/50+37/63*I,n=2 3645231545783847 a001 105937/1926*843^(27/28) 3645231565944180 b008 -36+Tan[9] 3645231566434896 a001 1/66978574*3^(13/16) 3645231568184587 m001 ln(sin(1))^2/Bloch/sqrt(3) 3645231574435990 a001 317811/3571*843^(25/28) 3645231579540590 s001 sum(1/10^(n-1)*A041376[n],n=1..infinity) 3645231579540590 s001 sum(1/10^n*A041376[n],n=1..infinity) 3645231589170335 r005 Re(z^2+c),c=-2/15+39/64*I,n=14 3645231589457487 r009 Re(z^3+c),c=-19/52+7/51*I,n=21 3645231594113418 k002 Champernowne real with 177/2*n^2-513/2*n+204 3645231597933084 m001 GolombDickman/(GAMMA(13/24)-gamma(1)) 3645231614390671 r005 Im(z^2+c),c=-59/114+20/41*I,n=16 3645231618127302 m005 (3/4*exp(1)+3)/(4/5*gamma-3/5) 3645231622889989 m001 (PrimesInBinary+Riemann3rdZero)/ArtinRank2 3645231624589852 r005 Re(z^2+c),c=-53/114+14/45*I,n=39 3645231639046657 a001 832040/15127*843^(27/28) 3645231643573206 m001 (Paris+Sierpinski)/(cos(1/5*Pi)+gamma(1)) 3645231652653518 a001 726103/13201*843^(27/28) 3645231658832921 r005 Im(z^2+c),c=-25/102+29/50*I,n=20 3645231659085147 a007 Real Root Of -267*x^4-763*x^3+685*x^2-293*x+15 3645231661063021 a001 1346269/24476*843^(27/28) 3645231665314532 a007 Real Root Of -679*x^4+423*x^3-661*x^2+984*x+479 3645231681004034 m005 (1/2*gamma-3/7)/(11/12*Catalan+3) 3645231684079538 h001 (5/6*exp(2)+5/7)/(5/9*exp(1)+3/8) 3645231688900611 m003 4-E^(1/2+Sqrt[5]/2)*Csch[1/2+Sqrt[5]/2]^3 3645231696686247 a001 514229/9349*843^(27/28) 3645231698705021 r005 Re(z^2+c),c=-17/26+29/85*I,n=11 3645231698754601 m005 (1/2*exp(1)-6)/(9/10*3^(1/2)-2/7) 3645231701563899 r005 Im(z^2+c),c=-16/31+19/43*I,n=6 3645231715312443 r005 Im(z^2+c),c=-41/60+11/37*I,n=41 3645231724636832 r004 Re(z^2+c),c=-2/3-3/22*I,z(0)=-1,n=12 3645231782307859 a001 610*843^(17/28) 3645231788684002 m001 Kolakoski^2/GlaisherKinkelin^2*ln(Sierpinski) 3645231799065750 a007 Real Root Of -174*x^4-572*x^3+470*x^2+713*x-630 3645231802993022 s001 sum(exp(-Pi/3)^n*A128758[n],n=1..infinity) 3645231803572957 a001 843/2*233^(9/11) 3645231807501545 l006 ln(1853/2668) 3645231821341508 m001 (MertensB1+Porter)/(gamma(1)-FeigenbaumDelta) 3645231823041798 m001 1/exp(gamma)/MadelungNaCl/log(1+sqrt(2)) 3645231833580833 a001 5702887/843*322^(7/24) 3645231836741746 r005 Re(z^2+c),c=-9/94+9/11*I,n=60 3645231837799720 r005 Im(z^2+c),c=33/106+11/56*I,n=38 3645231869406542 m001 (-ErdosBorwein+GaussAGM)/(Catalan+Zeta(3)) 3645231889762035 r009 Re(z^3+c),c=-21/58+44/63*I,n=51 3645231895758913 m001 1/ln(GAMMA(1/4))^2*Rabbit/GAMMA(19/24) 3645231903210583 r005 Re(z^2+c),c=10/27+19/58*I,n=46 3645231904752759 a007 Real Root Of -133*x^4+274*x^3+658*x^2+213*x-176 3645231918033618 m001 (exp(1)+Si(Pi))/(-exp(-1/2*Pi)+MinimumGamma) 3645231919845683 a007 Real Root Of 231*x^4+925*x^3+506*x^2+979*x+863 3645231938637689 a007 Real Root Of 95*x^4+158*x^3-785*x^2-388*x-104 3645231940851485 a001 196418/3571*843^(27/28) 3645231956422389 m001 GAMMA(3/4)^2*Salem^2/ln(GAMMA(5/12))^2 3645231962807290 r009 Im(z^3+c),c=-23/56+17/56*I,n=37 3645231968988368 s002 sum(A106534[n]/(n*pi^n+1),n=1..infinity) 3645231974872074 m001 GAMMA(1/4)^2/exp(Catalan)^2*sqrt(3) 3645231982176938 a007 Real Root Of -284*x^4-970*x^3+270*x^2+371*x+925 3645231987468397 r005 Re(z^2+c),c=-57/118+5/14*I,n=14 3645231991938077 m005 (1/2*exp(1)-7/10)/(4*Zeta(3)-3) 3645231993368706 g007 Psi(2,1/12)+Psi(2,7/11)+Psi(2,2/9)-Psi(2,7/9) 3645231994064396 m005 (1/3*Zeta(3)+3/5)/(3/8*3^(1/2)-3/8) 3645231994898485 m001 ln(CareFree)^2*CopelandErdos*(2^(1/3)) 3645232005025104 h001 (2/7*exp(1)+1/6)/(5/8*exp(1)+8/9) 3645232012945814 m005 (1/3*Pi+1/9)/(3*Zeta(3)-3/7) 3645232047077991 a005 (1/sin(58/151*Pi))^970 3645232049301341 m002 -4/ProductLog[Pi]+Sech[Pi]/ProductLog[Pi] 3645232050193936 r005 Im(z^2+c),c=-2/3+17/252*I,n=46 3645232077844931 r009 Re(z^3+c),c=-17/30+13/37*I,n=28 3645232081707843 p004 log(19681/13669) 3645232091027862 a007 Real Root Of 818*x^4-192*x^3-97*x^2-165*x-71 3645232097598504 r009 Re(z^3+c),c=-13/32+32/53*I,n=4 3645232105675826 r009 Re(z^3+c),c=-47/86+9/35*I,n=3 3645232105916642 m001 Bloch/(FeigenbaumD^MertensB1) 3645232111722211 k006 concat of cont frac of 3645232115332953 a007 Real Root Of 938*x^4-874*x^3-456*x^2-512*x+273 3645232119486586 a001 930249/4*3^(9/22) 3645232120536478 r005 Im(z^2+c),c=-21/106+21/37*I,n=40 3645232127711420 a007 Real Root Of -174*x^4-752*x^3-419*x^2-135*x-627 3645232141643247 a007 Real Root Of 851*x^4-993*x^3+282*x^2+158*x-43 3645232147661158 r005 Re(z^2+c),c=-31/66+13/44*I,n=23 3645232148701070 a001 514229/1364*843^(19/28) 3645232149518077 r005 Re(z^2+c),c=9/40+19/47*I,n=36 3645232154103543 b008 3*Sqrt[3]*Cot[3] 3645232156533648 r002 24th iterates of z^2 + 3645232162008031 m001 (1+ln(2^(1/2)+1))/(-Salem+TwinPrimes) 3645232170538782 m005 (-27/40+1/8*5^(1/2))/(3/5*Pi-4/5) 3645232171761347 r005 Im(z^2+c),c=29/122+5/18*I,n=51 3645232180296223 m009 (Psi(1,2/3)-1/2)/(4/5*Psi(1,3/4)+5) 3645232197819401 a001 6643838879/377*233^(2/15) 3645232204790078 a007 Real Root Of 603*x^4+146*x^3+264*x^2-492*x-218 3645232222412332 k007 concat of cont frac of 3645232242134393 m001 exp(RenyiParking)/Rabbit^2/GAMMA(1/12) 3645232249356738 r005 Re(z^2+c),c=-11/26+7/15*I,n=57 3645232256144999 r005 Re(z^2+c),c=-19/40+15/58*I,n=40 3645232258752301 m001 1/Catalan/exp(BesselJ(0,1))*GAMMA(1/3)^2 3645232259918541 m001 LandauRamanujan2nd*(gamma(3)+GolombDickman) 3645232266640107 m001 (exp(1/Pi)+LandauRamanujan)/(Stephens+Trott) 3645232272027300 r005 Im(z^2+c),c=-23/122+31/56*I,n=46 3645232292007741 l006 ln(24/919) 3645232294112070 m001 (-Kolakoski+OneNinth)/(2^(1/3)+GolombDickman) 3645232308940503 a007 Real Root Of -200*x^4-500*x^3+890*x^2+181*x-72 3645232319797096 a001 514229/3*3571^(19/29) 3645232350611473 a007 Real Root Of -608*x^4-300*x^3-688*x^2+322*x+205 3645232352380396 r005 Re(z^2+c),c=-9/8+50/179*I,n=4 3645232358378926 a001 1364/17711*4181^(11/59) 3645232371551820 r005 Re(z^2+c),c=25/118+17/36*I,n=31 3645232375540555 r005 Re(z^2+c),c=-9/19+21/58*I,n=19 3645232378486619 a005 (1/cos(5/109*Pi))^1450 3645232384429930 a001 72/161*11^(7/8) 3645232388864501 m001 (Porter-ZetaP(4))/(GAMMA(5/6)+Khinchin) 3645232390271449 a001 514229/521*521^(15/26) 3645232392839071 r009 Im(z^3+c),c=-27/110+12/35*I,n=2 3645232400258693 r005 Im(z^2+c),c=23/94+13/48*I,n=28 3645232406530764 l006 ln(6257/9009) 3645232409302525 r005 Re(z^2+c),c=-35/74+16/59*I,n=32 3645232432355114 r005 Re(z^2+c),c=-55/114+11/52*I,n=36 3645232442179963 g002 Psi(3/5)-Psi(7/11)-Psi(7/9)-Psi(3/8) 3645232443577920 m001 (Psi(1,1/3)+Ei(1))/(CareFree+Sierpinski) 3645232444968329 a001 377/1860498*3^(31/58) 3645232454584487 r005 Re(z^2+c),c=-9/20+22/49*I,n=22 3645232457730802 m005 (1/2*Pi-5)/(7/12*5^(1/2)-4/11) 3645232468063130 r005 Im(z^2+c),c=5/18+13/55*I,n=41 3645232475710973 m001 (Pi+Chi(1))/(RenyiParking-Tribonacci) 3645232479899672 r005 Re(z^2+c),c=-17/38+19/49*I,n=46 3645232482633128 a001 514229/3*9349^(17/29) 3645232492146757 r002 6th iterates of z^2 + 3645232496058056 m006 (5/Pi+5/6)/(3/4*Pi^2-3/4) 3645232497376613 r005 Re(z^2+c),c=-10/21+14/57*I,n=24 3645232504139982 a001 832040/3*24476^(14/29) 3645232508353597 a001 105937*39603^(16/29) 3645232515080533 a001 317811/1364*843^(3/4) 3645232518290000 a001 121393/3*15127^(41/58) 3645232530786050 m005 (1/2*exp(1)+6/11)/(4*Zeta(3)+5/12) 3645232539293759 m005 (1/2*Zeta(3)-1/9)/(5/7*Pi-9/10) 3645232540457154 m001 Zeta(3)^2*ln(Bloch)^2/sqrt(5) 3645232572951709 r005 Im(z^2+c),c=3/20+19/54*I,n=29 3645232578516311 m001 (GAMMA(5/6)+Landau)/(MertensB2-Stephens) 3645232579750653 r005 Im(z^2+c),c=-27/56+1/16*I,n=24 3645232591510342 r005 Re(z^2+c),c=-15/34+23/57*I,n=38 3645232596441739 r002 12i'th iterates of 2*x/(1-x^2) of 3645232597114018 k002 Champernowne real with 89*n^2-258*n+205 3645232604631043 a001 15456*5778^(26/29) 3645232611374829 m005 (1/5*exp(1)+5)/(5*Pi-1/2) 3645232647390309 p001 sum(1/(463*n+299)/(5^n),n=0..infinity) 3645232652023327 r004 Im(z^2+c),c=-1/34+7/15*I,z(0)=I,n=25 3645232654625525 r005 Im(z^2+c),c=31/102+13/57*I,n=18 3645232658574610 l006 ln(4404/6341) 3645232662531521 r005 Re(z^2+c),c=-51/106+13/59*I,n=33 3645232670892045 g002 -gamma-2*ln(2)-Psi(3/11)-Psi(8/9)-Psi(4/5) 3645232687866098 b008 ArcCsc[2+Sqrt[Sech[1]]] 3645232688999974 m001 1/Si(Pi)^2*exp(ArtinRank2)^2*GAMMA(1/6)^2 3645232696326506 r005 Re(z^2+c),c=-61/106+11/48*I,n=7 3645232707602327 m001 (MinimumGamma-Rabbit)/(BesselI(1,2)+Bloch) 3645232708434817 a008 Real Root of x^4-2*x^3+5*x^2+68*x-92 3645232737438485 r005 Im(z^2+c),c=25/122+23/60*I,n=5 3645232739007353 h001 (-3*exp(2/3)-5)/(-8*exp(1)-8) 3645232741293008 r005 Re(z^2+c),c=21/86+1/33*I,n=25 3645232749006278 m001 1/GAMMA(1/6)^2*exp(Si(Pi))*sqrt(Pi) 3645232764755811 r005 Im(z^2+c),c=-29/30+20/77*I,n=12 3645232766198596 r005 Im(z^2+c),c=-9/44+31/55*I,n=43 3645232778799116 b008 3*(1/2+E)^(1/6) 3645232783967149 r005 Im(z^2+c),c=-59/122+1/16*I,n=49 3645232810524677 a001 3*47^(24/37) 3645232815964523 q001 822/2255 3645232815964523 r002 2th iterates of z^2 + 3645232833790639 r005 Im(z^2+c),c=-28/27+11/39*I,n=36 3645232867983652 m001 (BesselK(1,1)+ZetaP(4))/(Si(Pi)-gamma(2)) 3645232871978019 m001 (-Zeta(1,-1)+ThueMorse)/(1-sin(1)) 3645232881496123 a001 98209/682*843^(23/28) 3645232885323467 l006 ln(6955/10014) 3645232894718405 m001 Zeta(7)*GAMMA(5/12)/exp(sqrt(Pi)) 3645232931311906 m001 1/ln(GAMMA(5/12))^2*FeigenbaumC/log(1+sqrt(2)) 3645232962820290 r009 Re(z^3+c),c=-39/62+40/61*I,n=3 3645232981000999 h001 (-3*exp(-3)-2)/(-3*exp(-1)+7) 3645232981495389 m001 1/exp(1)*LambertW(1)/ln(sqrt(Pi)) 3645232985474515 m002 Pi^5*Sinh[Pi]+Pi^4*Log[Pi]*Tanh[Pi] 3645232987490731 a007 Real Root Of -197*x^4+220*x^3+829*x^2+342*x-242 3645233024724872 r005 Im(z^2+c),c=7/22+5/27*I,n=56 3645233032459578 m001 (Psi(2,1/3)-Riemann1stZero)/(Salem+Sarnak) 3645233056969838 p003 LerchPhi(1/25,1,523/185) 3645233061061680 r002 11th iterates of z^2 + 3645233062704113 a001 24157817/1364*322^(1/8) 3645233064900265 g006 Psi(1,7/10)+Psi(1,1/5)+Psi(1,1/3)-Psi(1,5/7) 3645233066457958 m005 (1/6+1/4*5^(1/2))/(11/12*Zeta(3)+8/9) 3645233074805966 a001 105937*2207^(22/29) 3645233083731527 r005 Im(z^2+c),c=-7/8+22/91*I,n=7 3645233094659593 r005 Im(z^2+c),c=1/5+13/41*I,n=14 3645233097368740 r005 Re(z^2+c),c=-53/64+12/59*I,n=40 3645233106677839 m001 (Lehmer+Salem)/(ln(2)-exp(-1/2*Pi)) 3645233121234805 b008 4-11/Pi^3 3645233126509734 m001 exp(PrimesInBinary)/Paris/BesselK(0,1) 3645233132855561 p001 sum(1/(540*n+533)/n/(256^n),n=1..infinity) 3645233138301490 m005 (1/2*3^(1/2)-4/9)/(1/7*3^(1/2)+10/11) 3645233142420051 r005 Im(z^2+c),c=21/64+7/45*I,n=32 3645233144786112 r005 Re(z^2+c),c=17/48+2/19*I,n=41 3645233147060529 r005 Im(z^2+c),c=4/15+15/62*I,n=15 3645233147561513 r005 Re(z^2+c),c=-5/82+41/64*I,n=15 3645233148626947 r005 Im(z^2+c),c=-7/18+1/19*I,n=7 3645233158378565 r005 Im(z^2+c),c=-77/118+4/57*I,n=61 3645233162652134 r005 Im(z^2+c),c=6/19+7/38*I,n=29 3645233163278120 r005 Im(z^2+c),c=-147/118+3/35*I,n=16 3645233166541290 r005 Im(z^2+c),c=-63/122+31/64*I,n=62 3645233168388255 r009 Re(z^3+c),c=-31/86+17/24*I,n=36 3645233192782374 m001 (GAMMA(2/3)-cos(1))/(GAMMA(13/24)+Lehmer) 3645233196694243 r005 Re(z^2+c),c=21/118+31/58*I,n=45 3645233198509908 r005 Re(z^2+c),c=-2/3+68/253*I,n=42 3645233202419556 a007 Real Root Of -110*x^4+873*x^3+431*x^2+846*x-406 3645233208079563 a007 Real Root Of -289*x^4-968*x^3+481*x^2+371*x-899 3645233217456060 a001 7/832040*2584^(17/22) 3645233231567885 r005 Im(z^2+c),c=-29/50+25/56*I,n=6 3645233234886598 a007 Real Root Of 343*x^4-699*x^3-486*x^2-597*x+310 3645233240726367 a007 Real Root Of 126*x^4+566*x^3+317*x^2-465*x-739 3645233244173730 r002 55th iterates of z^2 + 3645233246700276 m001 Trott2nd*(Catalan+PrimesInBinary) 3645233247817264 a001 121393/1364*843^(25/28) 3645233266009329 r009 Im(z^3+c),c=-37/82+21/58*I,n=7 3645233275909307 a007 Real Root Of 201*x^4+817*x^3+518*x^2+929*x+587 3645233276778559 l006 ln(2551/3673) 3645233276778559 p004 log(3673/2551) 3645233284852053 a001 24157817/2207*322^(5/24) 3645233295760952 a007 Real Root Of -42*x^4-11*x^3-821*x^2+820*x+3 3645233301826653 a001 7/2971215073*102334155^(17/22) 3645233301826653 a001 1/1515744265389*4052739537881^(17/22) 3645233305302683 m001 GAMMA(1/12)^2/exp((2^(1/3)))^2/cos(1)^2 3645233309581023 r005 Re(z^2+c),c=35/102+5/46*I,n=45 3645233311490290 r005 Im(z^2+c),c=-1/27+5/11*I,n=11 3645233314178601 m001 1/RenyiParking^2*ln(MinimumGamma)^2*sqrt(2) 3645233323713648 h001 (-5*exp(3)-2)/(-5*exp(4)-8) 3645233328780418 a007 Real Root Of -306*x^4+339*x^3-577*x^2+59*x+120 3645233332726875 r005 Im(z^2+c),c=1/11+3/5*I,n=20 3645233338656789 r002 61th iterates of z^2 + 3645233339100448 r005 Re(z^2+c),c=7/50+19/42*I,n=55 3645233344202286 m001 (HardyLittlewoodC3+Trott)/(GAMMA(5/6)+Cahen) 3645233347667516 a001 47/5*196418^(40/59) 3645233348922093 a003 sin(Pi*4/51)/cos(Pi*4/15) 3645233354662376 h001 (5/8*exp(2)+1/7)/(1/3*exp(1)+2/5) 3645233356843199 r009 Re(z^3+c),c=-17/36+19/49*I,n=2 3645233364171588 r009 Re(z^3+c),c=-19/52+7/51*I,n=20 3645233365550807 r009 Im(z^3+c),c=-5/28+46/63*I,n=20 3645233376612366 m009 (2*Psi(1,3/4)-2/5)/(5/6*Psi(1,3/4)-5/6) 3645233383053044 m002 Pi^4+ProductLog[Pi]/Pi^4-Cosh[Pi]*Sinh[Pi] 3645233383888652 s002 sum(A040237[n]/(n^3*pi^n+1),n=1..infinity) 3645233384234551 g005 GAMMA(5/7)*GAMMA(3/7)*GAMMA(3/5)/GAMMA(8/9) 3645233387088174 r005 Re(z^2+c),c=-51/74+1/30*I,n=10 3645233393733562 r005 Re(z^2+c),c=3/11+23/54*I,n=33 3645233395015017 a001 2/17*591286729879^(7/11) 3645233395823065 r005 Im(z^2+c),c=9/52+21/55*I,n=8 3645233408288626 r009 Im(z^3+c),c=-25/102+17/45*I,n=15 3645233411811312 r009 Im(z^3+c),c=-11/19+33/52*I,n=15 3645233423276586 a001 832040/521*521^(1/2) 3645233441883116 m001 (cos(Pi/5)+2/3)/(-BesselJZeros(0,1)+2) 3645233463308758 p004 log(35573/929) 3645233470101518 r005 Im(z^2+c),c=-33/106+3/46*I,n=4 3645233479938075 r005 Im(z^2+c),c=-3/62+23/48*I,n=28 3645233485483348 m001 (ReciprocalFibonacci-Zeta(3)*ln(2))/ln(2) 3645233488039629 r005 Im(z^2+c),c=-9/70+11/21*I,n=17 3645233492122832 a007 Real Root Of -977*x^4+457*x^3+176*x^2+513*x+203 3645233513865517 a007 Real Root Of -813*x^4-647*x^3-871*x^2+382*x+238 3645233524172854 r005 Im(z^2+c),c=29/122+5/18*I,n=55 3645233529614189 m001 1/CareFree*Conway/ln(BesselK(1,1)) 3645233551606398 m001 Zeta(1/2)^2*exp(ArtinRank2)/sinh(1) 3645233567217151 s002 sum(A219563[n]/(n!^3),n=1..infinity) 3645233570121044 r005 Re(z^2+c),c=-41/86+15/58*I,n=23 3645233572985410 p001 sum((-1)^n/(544*n+539)/n/(25^n),n=1..infinity) 3645233588923520 m006 (1/5*ln(Pi)-2)/(3/4*ln(Pi)+4) 3645233600114618 k002 Champernowne real with 179/2*n^2-519/2*n+206 3645233603161144 m006 (2/5*Pi-1/5)/(1/3*Pi^2-3) 3645233603161144 m008 (2/5*Pi-1/5)/(1/3*Pi^2-3) 3645233604064154 r005 Im(z^2+c),c=15/86+22/61*I,n=8 3645233605934068 m001 1/3*BesselK(1,1)-BesselI(1,1) 3645233614385807 a001 75025/1364*843^(27/28) 3645233621038785 r002 4th iterates of z^2 + 3645233622779862 a007 Real Root Of -231*x^4+767*x^3+665*x^2+841*x-428 3645233627631885 a001 24157817/843*123^(1/20) 3645233638892662 r005 Im(z^2+c),c=-59/122+1/16*I,n=51 3645233647825141 m001 (2^(1/3)-Shi(1))/(-BesselK(1,1)+Gompertz) 3645233658035767 a007 Real Root Of -358*x^4+339*x^3-443*x^2+547*x+281 3645233662057150 r005 Im(z^2+c),c=7/22+7/36*I,n=25 3645233669235223 a007 Real Root Of -952*x^4+x^3-963*x^2+615*x+369 3645233697394583 r009 Im(z^3+c),c=-10/29+18/53*I,n=25 3645233699037901 m009 (1/10*Pi^2-5/6)/(1/2*Psi(1,1/3)-5/6) 3645233704610498 r002 10th iterates of z^2 + 3645233722272129 a007 Real Root Of -746*x^4+178*x^3-61*x^2+409*x+15 3645233746187187 l006 ln(5800/8351) 3645233756334701 m001 (sin(1)+GAMMA(19/24))/(FeigenbaumDelta+Thue) 3645233756981380 r005 Im(z^2+c),c=29/122+5/18*I,n=56 3645233769726156 m001 FeigenbaumKappa*GolombDickman/exp(Zeta(1/2)) 3645233798368019 r009 Re(z^3+c),c=-33/74+15/56*I,n=10 3645233806590536 m001 Chi(1)*(Artin-cos(1/5*Pi)) 3645233859125801 r009 Im(z^3+c),c=-43/98+30/59*I,n=9 3645233861455426 a007 Real Root Of -451*x^4-16*x^3-628*x^2+514*x+278 3645233867087803 r005 Re(z^2+c),c=-13/50+28/47*I,n=30 3645233871203544 r005 Im(z^2+c),c=29/110+37/62*I,n=9 3645233882895819 r002 53th iterates of z^2 + 3645233896586267 r002 28th iterates of z^2 + 3645233898232060 m001 GAMMA(19/24)^(2^(1/3))-Thue 3645233910455781 r009 Im(z^3+c),c=-14/27+2/17*I,n=3 3645233924042900 a001 31622993/2889*322^(5/24) 3645233924497122 m005 (1/2*5^(1/2)-6/7)/(3/4*3^(1/2)-7/12) 3645233925444083 q001 1457/3997 3645233929218267 a007 Real Root Of -381*x^4+97*x^3-845*x^2+843*x+431 3645233932375047 m001 (GAMMA(3/4)+ArtinRank2)/(FeigenbaumMu+Niven) 3645233936663416 a007 Real Root Of -35*x^4+314*x^3-695*x^2+518*x+297 3645233940919706 m001 ln(BesselK(0,1))/KhintchineLevy*sqrt(5)^2 3645233947906396 r009 Im(z^3+c),c=-27/74+20/59*I,n=3 3645233989702087 m005 (1/2*Catalan-7/8)/(10/11*Pi-4) 3645234017299606 a001 165580141/15127*322^(5/24) 3645234029817730 a001 3571/46368*4181^(11/59) 3645234030905577 a001 433494437/39603*322^(5/24) 3645234031275872 r005 Im(z^2+c),c=3/64+13/32*I,n=9 3645234032890661 a001 567451585/51841*322^(5/24) 3645234033180281 a001 2971215073/271443*322^(5/24) 3645234033222536 a001 7778742049/710647*322^(5/24) 3645234033228701 a001 10182505537/930249*322^(5/24) 3645234033229600 a001 53316291173/4870847*322^(5/24) 3645234033229732 a001 139583862445/12752043*322^(5/24) 3645234033229751 a001 182717648081/16692641*322^(5/24) 3645234033229754 a001 956722026041/87403803*322^(5/24) 3645234033229754 a001 2504730781961/228826127*322^(5/24) 3645234033229754 a001 3278735159921/299537289*322^(5/24) 3645234033229754 a001 10610209857723/969323029*322^(5/24) 3645234033229754 a001 4052739537881/370248451*322^(5/24) 3645234033229754 a001 387002188980/35355581*322^(5/24) 3645234033229755 a001 591286729879/54018521*322^(5/24) 3645234033229763 a001 7787980473/711491*322^(5/24) 3645234033229813 a001 21566892818/1970299*322^(5/24) 3645234033230156 a001 32951280099/3010349*322^(5/24) 3645234033232511 a001 12586269025/1149851*322^(5/24) 3645234033248651 a001 1201881744/109801*322^(5/24) 3645234033359276 a001 1836311903/167761*322^(5/24) 3645234034117511 a001 701408733/64079*322^(5/24) 3645234039314529 a001 10946*322^(5/24) 3645234041229450 r005 Re(z^2+c),c=-3/7+23/50*I,n=53 3645234046559864 a007 Real Root Of -191*x^4-721*x^3-202*x^2-491*x-305 3645234053978893 r005 Im(z^2+c),c=3/74+26/61*I,n=23 3645234058219315 r005 Im(z^2+c),c=-59/122+1/16*I,n=53 3645234058488714 b008 (Pi*ExpIntegralEi[-1/4])/9 3645234073627516 m001 (FeigenbaumMu-Landau)/(gamma(3)-FeigenbaumB) 3645234074935423 a001 102334155/9349*322^(5/24) 3645234078845045 a007 Real Root Of 109*x^4-641*x^3-574*x^2-747*x-229 3645234109539511 r005 Im(z^2+c),c=-13/44+29/60*I,n=6 3645234114750240 l006 ln(3249/4678) 3645234116145944 m001 1/exp(FeigenbaumB)*MertensB1^2*GAMMA(3/4) 3645234119843141 r005 Im(z^2+c),c=29/122+5/18*I,n=60 3645234120590671 h001 (3/10*exp(2)+5/8)/(1/4*exp(1)+1/10) 3645234142156673 m002 -Pi^3-(Pi^3*Sinh[Pi])/ProductLog[Pi] 3645234144553128 s002 sum(A140670[n]/(n*exp(n)+1),n=1..infinity) 3645234148362081 r009 Im(z^3+c),c=-4/9+11/40*I,n=14 3645234151621365 a007 Real Root Of 471*x^4+723*x^3-21*x^2-967*x-323 3645234154822486 a007 Real Root Of 625*x^4+765*x^3+676*x^2-936*x-405 3645234169363324 m001 BesselI(1,2)+GAMMA(13/24)+PrimesInBinary 3645234179825495 r005 Im(z^2+c),c=29/122+5/18*I,n=61 3645234183600545 a001 5473/161*29^(31/44) 3645234184934750 r005 Re(z^2+c),c=-25/38+11/50*I,n=9 3645234221757414 a007 Real Root Of -245*x^4-783*x^3+207*x^2-506*x+737 3645234242812107 a007 Real Root Of -133*x^4-128*x^3+985*x^2-965*x+677 3645234247152670 r009 Im(z^3+c),c=-23/56+17/56*I,n=41 3645234254423746 r005 Im(z^2+c),c=-59/122+1/16*I,n=55 3645234255630520 r005 Re(z^2+c),c=-6/13+17/53*I,n=27 3645234260058650 r002 10th iterates of z^2 + 3645234260237395 m001 (arctan(1/3)+Mills)/(Thue-ThueMorse) 3645234273677365 a001 9349/121393*4181^(11/59) 3645234280433149 m001 (Mills+PlouffeB)/(Ei(1,1)+FeigenbaumDelta) 3645234285064963 r005 Im(z^2+c),c=1/14+24/59*I,n=27 3645234290471521 m001 FeigenbaumD/(LambertW(1)^cos(1)) 3645234292390137 m001 ErdosBorwein^Si(Pi)/TwinPrimes 3645234309256006 a001 844/10959*4181^(11/59) 3645234312407277 r009 Im(z^3+c),c=-1/12+27/34*I,n=56 3645234317654984 a001 39603/514229*4181^(11/59) 3645234318619515 m009 (1/3*Psi(1,2/3)+3/4)/(24*Catalan+3*Pi^2-3) 3645234319084681 a001 39088169/3571*322^(5/24) 3645234327770397 r005 Im(z^2+c),c=-3/52+25/53*I,n=14 3645234331244816 a001 15127/196418*4181^(11/59) 3645234341090260 r005 Im(z^2+c),c=-59/122+1/16*I,n=57 3645234347907961 a007 Real Root Of 162*x^4-259*x^3+914*x^2-368*x-271 3645234357678221 r005 Im(z^2+c),c=29/122+5/18*I,n=64 3645234367630148 r005 Re(z^2+c),c=-13/28+9/25*I,n=15 3645234376449215 r005 Im(z^2+c),c=-59/122+1/16*I,n=59 3645234379960915 r004 Re(z^2+c),c=-3/7+2/21*I,z(0)=exp(7/8*I*Pi),n=8 3645234385614008 r005 Im(z^2+c),c=-59/122+1/16*I,n=64 3645234386158403 r005 Im(z^2+c),c=29/122+5/18*I,n=62 3645234386873026 r005 Im(z^2+c),c=-59/122+1/16*I,n=62 3645234389113900 r005 Im(z^2+c),c=-59/122+1/16*I,n=61 3645234392500939 r005 Im(z^2+c),c=-59/122+1/16*I,n=63 3645234393815005 r005 Im(z^2+c),c=-59/122+1/16*I,n=60 3645234395364110 a007 Real Root Of 947*x^4-654*x^3-319*x^2-21*x+65 3645234415441471 r005 Im(z^2+c),c=-59/122+1/16*I,n=58 3645234419487837 m002 -4-3/Pi^6+ProductLog[Pi]/3 3645234421000885 m002 -(E^Pi*Tanh[Pi])+(Pi^4*Tanh[Pi])/5 3645234422126956 r005 Im(z^2+c),c=29/122+5/18*I,n=59 3645234424390908 a001 5778/75025*4181^(11/59) 3645234447827923 m001 BesselI(0,2)*((1+3^(1/2))^(1/2)-ZetaQ(2)) 3645234449082546 r005 Im(z^2+c),c=29/122+5/18*I,n=63 3645234456287282 a001 1346269/521*521^(11/26) 3645234466580995 r009 Im(z^3+c),c=-9/52+19/48*I,n=15 3645234471469837 r005 Im(z^2+c),c=-59/122+1/16*I,n=56 3645234472653706 m005 (1/2*Pi-5/6)/(2/5*2^(1/2)-6/11) 3645234475288255 m002 Pi*Cosh[Pi]+Sinh[Pi]/(Pi^5*ProductLog[Pi]) 3645234493861119 r005 Im(z^2+c),c=1/11+13/33*I,n=33 3645234509048053 m002 Pi^3*Log[Pi]-Sinh[Pi]/Pi^5+Tanh[Pi] 3645234512949725 m001 (ln(gamma)+Ei(1))/(cos(1)-gamma) 3645234523271660 m001 Tribonacci*exp(KhintchineLevy)/sqrt(1+sqrt(3)) 3645234528358807 m005 (1/3*2^(1/2)-2/5)/(9/10*3^(1/2)+2/5) 3645234535246818 r005 Im(z^2+c),c=29/122+5/18*I,n=57 3645234536439262 m001 exp(-Pi)-GAMMA(5/24)^ln(1+sqrt(2)) 3645234556982055 r009 Im(z^3+c),c=-23/56+17/56*I,n=38 3645234574926739 a003 cos(Pi*12/107)/cos(Pi*30/61) 3645234587502020 r005 Re(z^2+c),c=-29/50+8/23*I,n=21 3645234588616260 r005 Im(z^2+c),c=17/62+11/60*I,n=5 3645234589845515 a007 Real Root Of 672*x^4-212*x^3-385*x^2-642*x-205 3645234602942832 r005 Im(z^2+c),c=-59/122+1/16*I,n=54 3645234603115218 k002 Champernowne real with 90*n^2-261*n+207 3645234608117472 a007 Real Root Of -59*x^4-155*x^3-353*x^2+923*x-281 3645234620134283 m005 (1/2*Pi-7/11)/(1/5*exp(1)-4/5) 3645234630072634 s002 sum(A102975[n]/(n^2*pi^n+1),n=1..infinity) 3645234631186384 a007 Real Root Of 94*x^4+113*x^3-680*x^2+561*x-43 3645234632029594 m001 (Gompertz+Trott)/(Zeta(3)+arctan(1/2)) 3645234641714766 a007 Real Root Of 291*x^4+967*x^3-164*x^2+385*x-959 3645234656342743 l006 ln(3947/5683) 3645234656342743 p004 log(5683/3947) 3645234659045312 r005 Im(z^2+c),c=29/122+5/18*I,n=54 3645234663154522 h005 exp(cos(Pi*2/45)+sin(Pi*5/51)) 3645234667415258 m001 (MertensB2+Otter)/(gamma+polylog(4,1/2)) 3645234699775224 r009 Re(z^3+c),c=-15/38+11/61*I,n=14 3645234699895563 r005 Im(z^2+c),c=9/32+13/45*I,n=10 3645234702189256 r005 Re(z^2+c),c=-43/98+23/54*I,n=40 3645234703315246 b008 Pi+(2*ArcCosh[3])/7 3645234703315246 b008 Pi+(4*ArcCsch[1])/7 3645234703315246 b008 Pi+(4*InverseGudermannian[Pi/4])/7 3645234707683152 r005 Im(z^2+c),c=7/30+11/39*I,n=26 3645234708592939 m001 1/BesselJ(0,1)*ln(CareFree)^2/BesselJ(1,1) 3645234732027403 r009 Im(z^3+c),c=-1/66+13/28*I,n=2 3645234734514546 m005 (1/2*exp(1)+1/3)/(1/6*2^(1/2)-7/10) 3645234741327643 r005 Im(z^2+c),c=-17/90+27/49*I,n=62 3645234744523751 m006 (1/4*exp(2*Pi)+1/3)/(1/Pi-4) 3645234753852635 r005 Im(z^2+c),c=-7/12+11/26*I,n=48 3645234755482694 a007 Real Root Of 374*x^4-591*x^3+980*x^2-723*x-429 3645234763385283 a001 3524578/843*322^(3/8) 3645234768730867 r005 Im(z^2+c),c=29/122+5/18*I,n=58 3645234770127208 m001 (Kac+MertensB2)/(ln(2+3^(1/2))-Pi^(1/2)) 3645234791229106 r005 Re(z^2+c),c=5/29+17/59*I,n=3 3645234828191967 m001 1/KhintchineLevy^2/ln(CareFree)^2/(2^(1/3))^2 3645234833446694 r009 Im(z^3+c),c=-23/56+17/56*I,n=44 3645234841479276 r002 17th iterates of z^2 + 3645234841592530 m001 Bloch^2*ln(DuboisRaymond) 3645234845989781 r009 Re(z^3+c),c=-31/64+8/27*I,n=62 3645234864503547 r009 Im(z^3+c),c=-23/56+17/56*I,n=45 3645234891609891 r005 Im(z^2+c),c=-59/122+1/16*I,n=52 3645234896226892 r009 Im(z^3+c),c=-23/56+17/56*I,n=40 3645234902448224 m001 (2^(1/2)-Cahen)/(Champernowne+Riemann2ndZero) 3645234918655287 a007 Real Root Of 61*x^4+237*x^3+95*x^2-102*x-925 3645234919684208 a007 Real Root Of -442*x^4+303*x^3-328*x^2+30*x+77 3645234922283492 r009 Re(z^3+c),c=-19/52+7/51*I,n=16 3645234927246168 r002 38th iterates of z^2 + 3645234928733889 r005 Im(z^2+c),c=-1/32+35/58*I,n=13 3645234933751297 r009 Im(z^3+c),c=-23/56+17/56*I,n=48 3645234948255836 m001 1/exp(1)*GAMMA(1/24)^2*exp(sin(Pi/5)) 3645234952158761 a007 Real Root Of -584*x^4+820*x^3-327*x^2+893*x+419 3645234952965548 m001 (Sarnak+Sierpinski)/(cos(1/5*Pi)+Paris) 3645234977675332 r009 Im(z^3+c),c=-23/56+17/56*I,n=52 3645234982924608 m006 (2/3/Pi-5/6)/(5/6*ln(Pi)+3/4) 3645234983120869 r009 Im(z^3+c),c=-23/56+17/56*I,n=49 3645234989140968 r009 Im(z^3+c),c=-23/56+17/56*I,n=55 3645234989649845 r009 Im(z^3+c),c=-23/56+17/56*I,n=56 3645234990600810 r009 Im(z^3+c),c=-23/56+17/56*I,n=51 3645234991033419 r009 Im(z^3+c),c=-23/56+17/56*I,n=59 3645234991877779 r009 Im(z^3+c),c=-23/56+17/56*I,n=63 3645234991972461 r009 Im(z^3+c),c=-23/56+17/56*I,n=60 3645234992134937 r009 Im(z^3+c),c=-23/56+17/56*I,n=62 3645234992226693 r009 Im(z^3+c),c=-23/56+17/56*I,n=64 3645234992745804 r009 Im(z^3+c),c=-23/56+17/56*I,n=61 3645234992996547 r009 Im(z^3+c),c=-23/56+17/56*I,n=58 3645234994127478 r009 Im(z^3+c),c=-23/56+17/56*I,n=57 3645234995774814 r009 Im(z^3+c),c=-23/56+17/56*I,n=53 3645234997493214 m001 Catalan^GAMMA(7/12)/((Pi^(1/2))^GAMMA(7/12)) 3645234997493214 m001 Catalan^GAMMA(7/12)/(sqrt(Pi)^GAMMA(7/12)) 3645234998517944 r009 Im(z^3+c),c=-23/56+17/56*I,n=54 3645235000853768 m001 (Pi^(1/2)-RenyiParking)/(Zeta(3)+ln(5)) 3645235007507755 a001 377/521*64079^(45/46) 3645235008259643 a001 377/521*167761^(9/10) 3645235008333952 a001 233/843*20633239^(7/10) 3645235008333958 a001 233/843*17393796001^(1/2) 3645235008333958 a001 233/843*14662949395604^(7/18) 3645235008333958 a001 233/843*505019158607^(7/16) 3645235008333958 a001 233/843*599074578^(7/12) 3645235008340274 a001 233/843*710647^(7/8) 3645235008360465 a001 377/521*439204^(5/6) 3645235008376173 a001 377/521*7881196^(15/22) 3645235008376207 a001 377/521*20633239^(9/14) 3645235008376213 a001 377/521*2537720636^(1/2) 3645235008376213 a001 377/521*312119004989^(9/22) 3645235008376213 a001 377/521*14662949395604^(5/14) 3645235008376213 a001 377/521*192900153618^(5/12) 3645235008376213 a001 377/521*28143753123^(9/20) 3645235008376213 a001 377/521*228826127^(9/16) 3645235008376215 a001 377/521*33385282^(5/8) 3645235008377003 a001 377/521*1860498^(3/4) 3645235008694113 a001 377/521*103682^(15/16) 3645235013993416 l006 ln(9697/10057) 3645235016538619 r005 Re(z^2+c),c=-29/50+11/42*I,n=11 3645235022456022 r009 Im(z^3+c),c=-23/56+17/56*I,n=50 3645235029219519 a007 Real Root Of -217*x^4-624*x^3+789*x^2+780*x+449 3645235030701782 r005 Re(z^2+c),c=-3/5+45/106*I,n=45 3645235034251942 r009 Im(z^3+c),c=-23/56+17/56*I,n=47 3645235035165986 l006 ln(4645/6688) 3645235042731459 a001 416020/161*18^(5/42) 3645235062823721 a001 2207/28657*4181^(11/59) 3645235064436619 m001 (gamma-ZetaR(2))/Salem 3645235078831402 m008 (5/6*Pi^4+2/3)/(3/4*Pi^5-5) 3645235085682042 m001 ErdosBorwein/(Pi+BesselI(0,1)) 3645235092212563 m001 (gamma(3)-Trott)/(cos(1/12*Pi)+exp(1/exp(1))) 3645235094567572 r009 Re(z^3+c),c=-49/110+14/59*I,n=12 3645235094803830 r009 Im(z^3+c),c=-23/56+17/56*I,n=46 3645235107159365 r005 Im(z^2+c),c=29/122+5/18*I,n=52 3645235115658613 a007 Real Root Of 68*x^4+179*x^3-511*x^2-736*x+771 3645235120224928 r009 Im(z^3+c),c=-19/98+13/33*I,n=5 3645235127342876 r005 Im(z^2+c),c=5/94+18/43*I,n=41 3645235150647395 m008 (3*Pi^5+3/5)/(5/6*Pi^5-3) 3645235171061395 m001 (exp(1/Pi)-BesselJ(1,1))/(Niven+Thue) 3645235180851721 a007 Real Root Of 156*x^4+377*x^3-523*x^2+446*x-708 3645235185827016 r009 Im(z^3+c),c=-23/56+17/56*I,n=42 3645235204146878 a007 Real Root Of 627*x^4-429*x^3-498*x^2-722*x+27 3645235221535626 r005 Im(z^2+c),c=-19/29+7/23*I,n=3 3645235222339872 r005 Re(z^2+c),c=27/82+6/59*I,n=30 3645235228030557 m001 (Artin-GolombDickman)/(Kolakoski-OneNinth) 3645235228922827 s002 sum(A258403[n]/(2^n+1),n=1..infinity) 3645235232049641 m005 (2/5*2^(1/2)+4/5)/(5*Catalan-5/6) 3645235246139734 m002 -Pi^4-Pi^5/Log[Pi]+ProductLog[Pi]/5 3645235253003846 a007 Real Root Of 16*x^4+562*x^3-757*x^2+622*x-131 3645235253945893 m005 (1/2*Catalan-3/5)/(9/10*gamma-10/11) 3645235275325791 m005 (1/3*Catalan-1/3)/(1/9*Catalan+2/3) 3645235292097005 r005 Im(z^2+c),c=23/122+9/28*I,n=26 3645235306967337 r002 6th iterates of z^2 + 3645235315011633 l006 ln(5343/7693) 3645235317708756 r009 Im(z^3+c),c=-23/56+17/56*I,n=43 3645235323234844 a007 Real Root Of 27*x^4+958*x^3-934*x^2+806*x+752 3645235328115794 s002 sum(A281838[n]/(n^3*10^n+1),n=1..infinity) 3645235328812785 m001 ZetaP(3)^(AlladiGrinstead*TravellingSalesman) 3645235329620903 m001 (-AlladiGrinstead+Cahen)/(BesselK(1,1)-Shi(1)) 3645235330312235 r002 7th iterates of z^2 + 3645235353712007 a007 Real Root Of 12*x^4+435*x^3-95*x^2-254*x-642 3645235354789570 r009 Im(z^3+c),c=-55/122+8/29*I,n=42 3645235361653272 q001 127/3484 3645235379917157 a001 843/377*55^(5/41) 3645235391271622 h001 (10/11*exp(2)+2/7)/(5/8*exp(1)+2/9) 3645235394740973 m001 (Zeta(1,2)-Pi^(1/2))/(Gompertz-Totient) 3645235403082173 a001 47/55*591286729879^(11/23) 3645235415203448 r002 8th iterates of z^2 + 3645235417863573 a007 Real Root Of 180*x^4+393*x^3-835*x^2+441*x-43 3645235438580287 m001 (-Trott+Trott2nd)/(exp(1)+MasserGramainDelta) 3645235449021827 m001 (Pi+3^(1/2))/(Catalan+BesselK(0,1)) 3645235459314539 m001 FeigenbaumDelta^Sarnak-Khinchin 3645235466291809 m001 (cos(1/12*Pi)-Artin)/(Niven-StolarskyHarborth) 3645235467303712 r005 Re(z^2+c),c=-10/23+16/39*I,n=24 3645235472069550 a007 Real Root Of -701*x^4-655*x^3+165*x^2+821*x+258 3645235489296260 a001 2178309/521*521^(9/26) 3645235489534714 m005 (19/42+1/6*5^(1/2))/(5/6*5^(1/2)+2/5) 3645235493653352 r005 Im(z^2+c),c=-59/122+1/16*I,n=50 3645235496706324 m001 BesselK(1,1)/exp(HardHexagonsEntropy)^2*Pi^2 3645235502537120 m001 FeigenbaumAlpha/(exp(-Pi)+Cahen) 3645235510125570 r005 Re(z^2+c),c=-11/18+18/53*I,n=18 3645235520550755 s002 sum(A166507[n]/(16^n),n=1..infinity) 3645235522338743 m001 KhintchineHarmonic*exp(Conway)*LambertW(1) 3645235529371140 r005 Im(z^2+c),c=29/122+5/18*I,n=49 3645235530188424 l006 ln(6041/8698) 3645235531695271 m001 (ln(2)-3^(1/3))/(Bloch-Riemann2ndZero) 3645235538897944 a007 Real Root Of -437*x^4+566*x^3-37*x^2+552*x-216 3645235539315667 g005 GAMMA(3/11)/GAMMA(9/10)/GAMMA(2/9)/GAMMA(3/7) 3645235542583185 m001 (cos(1)+cos(1/12*Pi))/(Otter+Salem) 3645235548680435 m001 1/sinh(1)/cos(Pi/5)*ln(sqrt(2)) 3645235554450557 r005 Im(z^2+c),c=10/27+4/47*I,n=4 3645235561912322 m002 (Pi^2*Csch[Pi])/5+Pi*Sinh[Pi] 3645235562515317 r005 Im(z^2+c),c=-5/82+39/64*I,n=22 3645235568838507 r009 Re(z^3+c),c=-33/74+8/29*I,n=9 3645235572141304 r005 Re(z^2+c),c=7/24+1/15*I,n=47 3645235577688634 r009 Re(z^3+c),c=-55/114+29/62*I,n=38 3645235589765913 m001 (2^(1/3)+GAMMA(23/24))/(HeathBrownMoroz+Kac) 3645235605335361 r005 Im(z^2+c),c=-7/27+29/53*I,n=20 3645235606115818 k002 Champernowne real with 181/2*n^2-525/2*n+208 3645235618370530 a001 89/11*271443^(7/23) 3645235627399763 r005 Re(z^2+c),c=-9/25+34/59*I,n=54 3645235630715776 r002 30th iterates of z^2 + 3645235632385886 r005 Im(z^2+c),c=-5/122+19/40*I,n=26 3645235632693020 m005 (1/2*2^(1/2)+2/3)/(11/12*Pi+8/9) 3645235641697768 h002 exp(11^(12/5)-12^(6/5)) 3645235641697768 h007 exp(11^(12/5)-12^(6/5)) 3645235649954197 a001 123/1597*2584^(27/55) 3645235654578990 a007 Real Root Of -245*x^4-686*x^3+474*x^2-899*x+455 3645235683785554 r005 Re(z^2+c),c=11/86+6/17*I,n=5 3645235687174643 a003 cos(Pi*17/73)-cos(Pi*44/117) 3645235687323227 m001 ThueMorse/(LandauRamanujan2nd-ln(gamma)) 3645235700790824 l006 ln(6739/9703) 3645235710315751 a007 Real Root Of -887*x^4+939*x^3+285*x^2+758*x-344 3645235741956019 m001 (exp(1/Pi)+gamma(2))/(MertensB2-TwinPrimes) 3645235757603382 m001 LambertW(1)/Khintchine*ln(sin(1)) 3645235758952092 r005 Re(z^2+c),c=9/25+7/44*I,n=57 3645235775735246 a007 Real Root Of -710*x^4+135*x^3-138*x^2+970*x+391 3645235776858232 r005 Re(z^2+c),c=13/64+19/50*I,n=61 3645235788087771 r005 Im(z^2+c),c=1/126+25/56*I,n=37 3645235802643878 r009 Im(z^3+c),c=-25/48+6/35*I,n=56 3645235814780488 m005 (-17/44+1/4*5^(1/2))/(4/11*Catalan-2/7) 3645235834893431 r005 Im(z^2+c),c=29/82+11/57*I,n=45 3645235837705912 r005 Im(z^2+c),c=-1/20+25/51*I,n=16 3645235857039676 g001 GAMMA(1/6,80/109) 3645235871962820 m001 (exp(1)+gamma(3))/(-Backhouse+Rabbit) 3645235884650072 a007 Real Root Of -395*x^4+751*x^3+641*x^2+580*x-326 3645235885545317 a007 Real Root Of -262*x^4+353*x^3+519*x^2+841*x-388 3645235905422368 r009 Im(z^3+c),c=-35/82+17/58*I,n=27 3645235906949535 m001 (cos(1)+ln(2))/(FransenRobinson+Stephens) 3645235912849582 m005 (1/2*Catalan-1)/(8/9*gamma-2) 3645235924346997 m008 (4*Pi^5-2/3)/(3/4*Pi+1) 3645235935784433 r005 Im(z^2+c),c=-9/44+29/52*I,n=53 3645235942962665 h001 (7/8*exp(2)+6/11)/(2/3*exp(1)+1/9) 3645235950216534 m001 (-ln(2^(1/2)+1)+Niven)/(cos(1)-exp(Pi)) 3645235951620273 a008 Real Root of x^4-7*x^2-21*x-7 3645235953949527 a001 14930352/521*199^(1/22) 3645235958071619 r005 Re(z^2+c),c=-23/25+10/51*I,n=64 3645235973257162 r005 Im(z^2+c),c=29/122+5/18*I,n=53 3645235983448473 r005 Re(z^2+c),c=-47/98+3/13*I,n=45 3645235983971385 r005 Im(z^2+c),c=-9/7+25/58*I,n=7 3645235984061212 m001 1/Porter^2*exp(Si(Pi))^2*GAMMA(11/24) 3645235992509467 a001 3732588/341*322^(5/24) 3645236011538050 m001 (Artin+HardyLittlewoodC3)/(2^(1/2)+GAMMA(2/3)) 3645236014271214 m001 (Psi(2,1/3)+gamma)/(GaussAGM+Robbin) 3645236025967862 r005 Im(z^2+c),c=17/66+8/31*I,n=46 3645236032698152 a001 1/76*(1/2*5^(1/2)+1/2)^5*3^(5/6) 3645236049528771 m001 FransenRobinson+Rabbit^polylog(4,1/2) 3645236050393522 r005 Im(z^2+c),c=-9/40+35/61*I,n=56 3645236054968329 m001 ln(5)*Gompertz+Khinchin 3645236060804945 r005 Re(z^2+c),c=15/44+7/13*I,n=12 3645236075666534 p001 sum(1/(539*n+534)/n/(256^n),n=1..infinity) 3645236082839846 r005 Re(z^2+c),c=-17/30+29/76*I,n=26 3645236084997522 m005 (31/28+1/4*5^(1/2))/(8/9*2^(1/2)-4/5) 3645236099571329 r005 Im(z^2+c),c=1/50+27/61*I,n=17 3645236127125204 r005 Im(z^2+c),c=13/86+20/57*I,n=27 3645236129989852 m001 BesselJ(1,1)/(2^(1/3))^2*ln(Zeta(5))^2 3645236140885609 a008 Real Root of x^3-x^2-1990*x+25432 3645236146300447 r005 Im(z^2+c),c=-7/10+17/225*I,n=40 3645236148780296 r005 Im(z^2+c),c=-7/74+29/62*I,n=5 3645236153471930 r005 Im(z^2+c),c=-14/31*I,n=14 3645236154971964 r005 Im(z^2+c),c=-11/18+43/113*I,n=33 3645236166181503 r005 Re(z^2+c),c=37/122+33/58*I,n=44 3645236173603304 r004 Im(z^2+c),c=-7/46+8/15*I,z(0)=I,n=64 3645236193369883 l006 ln(8431/8744) 3645236202139533 m001 (BesselK(1,1)+CopelandErdos)/(Lehmer+Niven) 3645236202440306 m005 (1/3*Catalan-1/8)/(1/3*Catalan-4/5) 3645236204608398 m005 (1/2*3^(1/2)-1/11)/(2/9*3^(1/2)-4/11) 3645236214657585 a001 14930352/2207*322^(7/24) 3645236221510381 a001 832040/3*843^(21/29) 3645236254792036 r005 Re(z^2+c),c=-31/66+13/46*I,n=18 3645236258131742 a007 Real Root Of -805*x^4+403*x^3+285*x^2+518*x-232 3645236282100762 m001 (exp(Pi)+ln(gamma))/(-Kolakoski+ZetaP(3)) 3645236293721270 a008 Real Root of x^2-x-133242 3645236294261132 r009 Im(z^3+c),c=-25/102+17/45*I,n=20 3645236305032563 p003 LerchPhi(1/125,6,155/131) 3645236305197098 a007 Real Root Of -320*x^4-987*x^3+999*x^2+986*x-987 3645236306372635 a001 521/196418*1346269^(15/43) 3645236335084339 a007 Real Root Of -305*x^4-819*x^3+833*x^2-816*x+139 3645236351333530 m001 (TravellingSalesman+Trott)/(Chi(1)-Zeta(5)) 3645236366999403 m003 15/8+Sqrt[5]/4+Sinh[1/2+Sqrt[5]/2]/2 3645236375346676 r005 Re(z^2+c),c=-10/21+9/34*I,n=21 3645236378765015 a003 cos(Pi*4/93)/cos(Pi*40/97) 3645236390656166 a008 Real Root of (15+4*x+16*x^2-5*x^3) 3645236398650446 m001 1/GAMMA(5/24)^2/ln(GAMMA(19/24))*GAMMA(5/6) 3645236412357495 a003 cos(Pi*13/45)/cos(Pi*46/93) 3645236420914357 r005 Im(z^2+c),c=17/58+12/55*I,n=39 3645236454001228 a003 sin(Pi*2/33)-sin(Pi*17/91) 3645236466894098 a007 Real Root Of 447*x^4+449*x^3+689*x^2-854*x-389 3645236472575318 s002 sum(A123346[n]/(n*pi^n+1),n=1..infinity) 3645236477250535 m005 (1/2*exp(1)-3/10)/(-13/63+2/9*5^(1/2)) 3645236492105009 a007 Real Root Of 303*x^4-986*x^3+908*x^2-361*x+12 3645236493090854 m001 (1+3^(1/2))^(1/2)*Riemann2ndZero+Niven 3645236506966905 r005 Re(z^2+c),c=1/23+33/61*I,n=7 3645236511485541 m001 (Psi(1,1/3)+5^(1/2))/(ArtinRank2+Khinchin) 3645236520310174 r005 Im(z^2+c),c=13/118+14/33*I,n=3 3645236526003765 l006 ln(257/9841) 3645236527143972 m001 Gompertz*BesselJ(0,1)^Tribonacci 3645236541566161 r005 Re(z^2+c),c=3/10+4/57*I,n=50 3645236543429399 r005 Re(z^2+c),c=-43/62+9/41*I,n=43 3645236553428847 a003 sin(Pi*1/19)/cos(Pi*20/57) 3645236556885208 r009 Im(z^3+c),c=-23/56+17/56*I,n=39 3645236557988956 r002 44th iterates of z^2 + 3645236558542760 r005 Re(z^2+c),c=-23/54+15/32*I,n=50 3645236563800461 m001 (exp(1/Pi)-Gompertz)/(Zeta(5)+ln(3)) 3645236566645660 m005 (1/2*5^(1/2)-1/9)/(1/36+1/9*5^(1/2)) 3645236579313532 a007 Real Root Of -6*x^4-210*x^3+294*x^2-881*x-685 3645236596126922 r002 8th iterates of z^2 + 3645236609116419 k002 Champernowne real with 91*n^2-264*n+209 3645236620159103 r005 Re(z^2+c),c=-23/42+1/46*I,n=8 3645236630991958 m001 1/GAMMA(19/24)^2*FeigenbaumAlpha*ln(Zeta(9)) 3645236637821498 m001 exp(FeigenbaumB)*ErdosBorwein*Pi^2 3645236638812726 m005 (1/3*gamma-1/10)/(4/7*gamma-7/12) 3645236642116212 m005 (2*gamma+5/6)/(1/6*exp(1)+5) 3645236652015578 m001 DuboisRaymond^BesselK(1,1)-ZetaQ(3) 3645236652686152 m001 Gompertz^(Conway/ZetaQ(2)) 3645236653391945 m001 1/exp(Sierpinski)/Riemann1stZero^2*cos(Pi/12) 3645236659969452 r005 Re(z^2+c),c=-11/31+19/32*I,n=17 3645236679012876 h001 (2/9*exp(1)+5/11)/(3/11*exp(2)+8/9) 3645236682681833 a007 Real Root Of 967*x^4+660*x^3+570*x^2-379*x-199 3645236687976809 m001 1/BesselK(1,1)*exp(GolombDickman)*sinh(1) 3645236688648861 m001 (-Ei(1)+Kolakoski)/(ln(2)/ln(10)+exp(1)) 3645236694921698 r005 Im(z^2+c),c=-59/122+1/16*I,n=48 3645236704590433 m001 (Zeta(1/2)+GAMMA(7/12))/(Rabbit-Sierpinski) 3645236725472165 a005 (1/sin(47/102*Pi))^170 3645236741423733 g001 GAMMA(5/7,87/100) 3645236749175796 r009 Im(z^3+c),c=-37/78+9/35*I,n=38 3645236749619656 r005 Im(z^2+c),c=9/110+2/5*I,n=31 3645236757662948 m004 24*ProductLog[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]/5 3645236758076155 a007 Real Root Of -834*x^4-511*x^3-734*x^2+454*x+253 3645236758158615 m001 TwinPrimes*exp(FransenRobinson)*gamma^2 3645236761006237 m001 (Backhouse-Niven)/(ln(2)+gamma(2)) 3645236766115187 a001 11/610*317811^(27/28) 3645236818399981 k005 Champernowne real with floor(Catalan*(173*n+225)) 3645236818409981 k005 Champernowne real with floor(sqrt(2)*(112*n+146)) 3645236826053761 a001 987/4870847*3^(31/58) 3645236828411000 k001 Champernowne real with 159*n+205 3645236838421002 k005 Champernowne real with floor(Catalan*(174*n+224)) 3645236841762589 m001 (BesselI(1,2)-Shi(1))/(Champernowne+Totient) 3645236853848949 a001 39088169/5778*322^(7/24) 3645236880144604 r005 Im(z^2+c),c=-11/74+13/24*I,n=26 3645236885062834 m001 (-DuboisRaymond+FeigenbaumD)/(2^(1/3)-gamma) 3645236888268746 a005 (1/sin(76/181*Pi))^1551 3645236893664891 m001 Psi(1,1/3)*Landau-Tribonacci 3645236893849756 m001 (ThueMorse-ZetaQ(3))/(gamma(1)-MertensB2) 3645236904142825 r009 Re(z^3+c),c=-1/31+32/43*I,n=16 3645236916034640 m001 1/ln(MertensB1)^2*FransenRobinson^2/Zeta(3) 3645236929004803 m001 (LambertW(1)-Zeta(3))/(-Zeta(1,-1)+ZetaQ(3)) 3645236932973102 a007 Real Root Of -598*x^4+366*x^3-861*x^2-65*x+119 3645236935082114 r005 Im(z^2+c),c=5/23+6/19*I,n=10 3645236942837649 a008 Real Root of x^2-x-132513 3645236947105731 a001 6765*322^(7/24) 3645236949580892 m001 (ln(gamma)+FeigenbaumB)/StronglyCareFree 3645236950340580 r005 Im(z^2+c),c=-2/15+17/33*I,n=22 3645236951128988 r005 Im(z^2+c),c=13/56+15/53*I,n=33 3645236960711713 a001 267914296/39603*322^(7/24) 3645236962122509 l006 ln(233/8922) 3645236962696799 a001 701408733/103682*322^(7/24) 3645236962986419 a001 1836311903/271443*322^(7/24) 3645236963028674 a001 686789568/101521*322^(7/24) 3645236963034839 a001 12586269025/1860498*322^(7/24) 3645236963035738 a001 32951280099/4870847*322^(7/24) 3645236963035869 a001 86267571272/12752043*322^(7/24) 3645236963035889 a001 32264490531/4769326*322^(7/24) 3645236963035891 a001 591286729879/87403803*322^(7/24) 3645236963035892 a001 1548008755920/228826127*322^(7/24) 3645236963035892 a001 4052739537881/599074578*322^(7/24) 3645236963035892 a001 1515744265389/224056801*322^(7/24) 3645236963035892 a001 6557470319842/969323029*322^(7/24) 3645236963035892 a001 2504730781961/370248451*322^(7/24) 3645236963035892 a001 956722026041/141422324*322^(7/24) 3645236963035893 a001 365435296162/54018521*322^(7/24) 3645236963035900 a001 139583862445/20633239*322^(7/24) 3645236963035951 a001 53316291173/7881196*322^(7/24) 3645236963036294 a001 20365011074/3010349*322^(7/24) 3645236963038649 a001 7778742049/1149851*322^(7/24) 3645236963054789 a001 2971215073/439204*322^(7/24) 3645236963165414 a001 1134903170/167761*322^(7/24) 3645236963923649 a001 433494437/64079*322^(7/24) 3645236969120672 a001 165580141/24476*322^(7/24) 3645236992951622 m001 MinimumGamma+ReciprocalFibonacci-Salem 3645236995426275 r005 Re(z^2+c),c=13/64+19/50*I,n=60 3645236997880925 a007 Real Root Of -256*x^4-679*x^3+710*x^2-788*x+5 3645236999884160 a007 Real Root Of -698*x^4-179*x^3-253*x^2+718*x+299 3645237004741595 a001 63245986/9349*322^(7/24) 3645237009996736 r002 35th iterates of z^2 + 3645237033367025 r005 Re(z^2+c),c=-17/46+19/34*I,n=39 3645237039668336 a007 Real Root Of 444*x^4-298*x^3-960*x^2-540*x+331 3645237046071093 a007 Real Root Of -300*x^4+781*x^3-901*x^2+785*x+449 3645237052830245 r005 Re(z^2+c),c=-61/62+11/51*I,n=32 3645237058216606 r009 Im(z^3+c),c=-5/94+49/61*I,n=36 3645237063015065 r009 Re(z^3+c),c=-11/23+9/31*I,n=32 3645237064073393 a007 Real Root Of -31*x^4+471*x^3-735*x^2+654*x-163 3645237067915378 r005 Im(z^2+c),c=-17/14+1/161*I,n=39 3645237086622654 h001 (3/10*exp(1)+7/12)/(1/2*exp(2)+1/7) 3645237102166565 a007 Real Root Of -556*x^4+412*x^3-741*x^2+452*x+293 3645237106479769 r009 Im(z^3+c),c=-23/56+17/56*I,n=36 3645237122565164 r002 4th iterates of z^2 + 3645237124021699 s002 sum(A224718[n]/(n^2*exp(n)+1),n=1..infinity) 3645237130730846 r002 3th iterates of z^2 + 3645237136747558 r005 Re(z^2+c),c=-7/15+15/49*I,n=23 3645237145436851 a007 Real Root Of -667*x^4-699*x^3-885*x^2+443*x+257 3645237151313216 k006 concat of cont frac of 3645237177308036 l006 ln(698/1005) 3645237187414820 p001 sum((-1)^n/(261*n+254)/(6^n),n=0..infinity) 3645237188706467 r002 16th iterates of z^2 + 3645237199724513 m001 (GAMMA(11/12)-cos(1))/Riemann1stZero 3645237202001106 r005 Im(z^2+c),c=1/10+19/49*I,n=38 3645237214056486 b008 (3+13*Sqrt[3])/7 3645237214056486 m005 (1/2*3^(1/2)+4/7)/(1/12*3^(1/2)+1/4) 3645237220403445 m005 (-1/20+1/4*5^(1/2))/(6/11*2^(1/2)+5/8) 3645237220860225 r005 Im(z^2+c),c=-11/78+29/55*I,n=43 3645237221776895 a001 1322157322203/610*2^(3/4) 3645237230247804 b008 -6+Sqrt[2*(1+Sqrt[Pi])] 3645237235011406 r005 Im(z^2+c),c=-29/44+5/11*I,n=15 3645237239287092 a007 Real Root Of 993*x^4+124*x^3+773*x^2-548*x-314 3645237248891050 a001 24157817/3571*322^(7/24) 3645237252978375 r005 Re(z^2+c),c=-4/3+1/141*I,n=44 3645237258240108 a007 Real Root Of 296*x^4+897*x^3-503*x^2+436*x-542 3645237268228661 a001 18/121393*1597^(5/41) 3645237269932115 r005 Re(z^2+c),c=-55/114+4/19*I,n=30 3645237274829196 r005 Re(z^2+c),c=-29/62+10/33*I,n=28 3645237276059183 a007 Real Root Of 858*x^4+314*x^3-838*x^2-930*x+420 3645237283796434 r005 Re(z^2+c),c=-8/31+36/61*I,n=8 3645237293840457 q001 1083/2971 3645237300294866 r005 Im(z^2+c),c=29/122+5/18*I,n=47 3645237301911886 a007 Real Root Of -338*x^4-994*x^3+581*x^2-862*x+670 3645237319177844 r002 30th iterates of z^2 + 3645237325987781 m001 BesselI(1,1)/(ReciprocalLucas-ThueMorse) 3645237342218271 r005 Re(z^2+c),c=-12/25+12/53*I,n=28 3645237347663124 r009 Im(z^3+c),c=-25/102+17/45*I,n=23 3645237350592050 a001 18*(1/2*5^(1/2)+1/2)^5*18^(5/24) 3645237351251349 a007 Real Root Of 144*x^4+169*x^3+71*x^2-338*x-127 3645237368495943 a007 Real Root Of -187*x^4-749*x^3-322*x^2-99*x+656 3645237369830706 r009 Re(z^3+c),c=-10/23+9/38*I,n=14 3645237392953728 a007 Real Root Of -183*x^4-508*x^3+354*x^2-867*x-159 3645237396304399 r005 Im(z^2+c),c=-7/62+22/45*I,n=5 3645237396667357 a007 Real Root Of -206*x^4-617*x^3+703*x^2+607*x-642 3645237399585465 r005 Re(z^2+c),c=29/114+2/49*I,n=32 3645237405567372 m001 Khinchin*Sierpinski^arctan(1/3) 3645237446733769 r005 Im(z^2+c),c=-5/8+45/127*I,n=19 3645237448716420 h001 (9/11*exp(2)+6/11)/(4/9*exp(1)+3/5) 3645237466330224 r009 Im(z^3+c),c=-25/102+17/45*I,n=26 3645237471869491 r009 Im(z^3+c),c=-25/102+17/45*I,n=25 3645237475238234 m001 GAMMA(3/4)/(exp(1)+Cahen) 3645237475745489 r009 Im(z^3+c),c=-25/102+17/45*I,n=28 3645237476150230 a007 Real Root Of -863*x^4+556*x^3-764*x^2+865*x+459 3645237477366253 r009 Im(z^3+c),c=-25/102+17/45*I,n=29 3645237477643125 r009 Im(z^3+c),c=-25/102+17/45*I,n=31 3645237477874908 m005 (1/3*3^(1/2)-1/11)/(73/110+3/10*5^(1/2)) 3645237478010738 r009 Im(z^3+c),c=-25/102+17/45*I,n=34 3645237478065052 r009 Im(z^3+c),c=-25/102+17/45*I,n=37 3645237478071792 r009 Im(z^3+c),c=-25/102+17/45*I,n=40 3645237478072486 r009 Im(z^3+c),c=-25/102+17/45*I,n=42 3645237478072500 r009 Im(z^3+c),c=-25/102+17/45*I,n=43 3645237478072543 r009 Im(z^3+c),c=-25/102+17/45*I,n=45 3645237478072558 r009 Im(z^3+c),c=-25/102+17/45*I,n=48 3645237478072559 r009 Im(z^3+c),c=-25/102+17/45*I,n=46 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=51 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=54 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=57 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=56 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=59 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=60 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=62 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=63 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=64 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=61 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=58 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=55 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=53 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=52 3645237478072561 r009 Im(z^3+c),c=-25/102+17/45*I,n=49 3645237478072562 r009 Im(z^3+c),c=-25/102+17/45*I,n=50 3645237478072567 r009 Im(z^3+c),c=-25/102+17/45*I,n=47 3645237478072617 r009 Im(z^3+c),c=-25/102+17/45*I,n=44 3645237478072675 r009 Im(z^3+c),c=-25/102+17/45*I,n=39 3645237478072998 r009 Im(z^3+c),c=-25/102+17/45*I,n=41 3645237478075420 r009 Im(z^3+c),c=-25/102+17/45*I,n=38 3645237478079405 r009 Im(z^3+c),c=-25/102+17/45*I,n=36 3645237478086320 r009 Im(z^3+c),c=-25/102+17/45*I,n=35 3645237478087525 r009 Im(z^3+c),c=-25/102+17/45*I,n=32 3645237478168806 r009 Im(z^3+c),c=-25/102+17/45*I,n=33 3645237479069871 r009 Im(z^3+c),c=-25/102+17/45*I,n=30 3645237485740612 h001 (-3*exp(1)+3)/(-exp(5)+7) 3645237486688464 r009 Im(z^3+c),c=-25/102+17/45*I,n=27 3645237498402235 l006 ln(209/8003) 3645237511345434 s001 sum(exp(-Pi/3)^(n-1)*A163147[n],n=1..infinity) 3645237511609472 r005 Im(z^2+c),c=5/114+23/51*I,n=10 3645237512397963 s002 sum(A037068[n]/(n^3*exp(n)+1),n=1..infinity) 3645237535724858 r009 Re(z^3+c),c=-39/98+11/59*I,n=8 3645237536178832 m001 (1-Stephens)^Salem 3645237540455165 r009 Im(z^3+c),c=-13/66+25/64*I,n=16 3645237541253906 r009 Im(z^3+c),c=-25/102+17/45*I,n=24 3645237541765902 r009 Im(z^3+c),c=-25/102+17/45*I,n=22 3645237553930971 m001 Backhouse^Zeta(1/2)/(Backhouse^GAMMA(3/4)) 3645237564286919 r005 Im(z^2+c),c=-43/48+2/7*I,n=7 3645237578287066 a003 cos(Pi*1/117)-sin(Pi*23/105) 3645237580314686 p001 sum((-1)^n/(431*n+268)/(16^n),n=0..infinity) 3645237589441691 m001 Grothendieck/(Pi+MadelungNaCl) 3645237612117019 k002 Champernowne real with 183/2*n^2-531/2*n+210 3645237614336946 a007 Real Root Of -300*x^4+912*x^3-942*x^2+813*x+471 3645237618462394 r005 Im(z^2+c),c=39/110+11/58*I,n=25 3645237624338385 r005 Im(z^2+c),c=-29/52+4/61*I,n=58 3645237632013222 m005 (1/2*Zeta(3)-1/12)/(4/7*Pi-3/8) 3645237639343930 a003 sin(Pi*4/87)+sin(Pi*8/113) 3645237645083992 m001 (1-Landau)/(Salem+ZetaP(4)) 3645237649465593 r009 Im(z^3+c),c=-17/62+17/47*I,n=5 3645237653489868 a003 cos(Pi*11/108)-cos(Pi*25/83) 3645237658448100 r005 Im(z^2+c),c=35/106+4/23*I,n=26 3645237660301971 r009 Im(z^3+c),c=-23/64+1/3*I,n=11 3645237670750682 a007 Real Root Of 775*x^4-13*x^3-958*x^2-751*x+388 3645237678855770 b008 ArcCsch[ArcCsc[16+Pi]] 3645237679533094 b008 ArcSech[ArcCot[16+Pi]] 3645237682552904 r005 Im(z^2+c),c=9/86+5/13*I,n=20 3645237685566809 r002 6th iterates of z^2 + 3645237686810451 a007 Real Root Of 618*x^4-773*x^3-857*x^2-874*x+459 3645237692252247 a007 Real Root Of -276*x^4-889*x^3+704*x^2+997*x-49 3645237693191796 a001 726103/281*322^(11/24) 3645237694830784 a007 Real Root Of 41*x^4-772*x^3-414*x^2-905*x-313 3645237701617695 r009 Re(z^3+c),c=-11/26+7/32*I,n=24 3645237714633673 m001 GAMMA(7/24)^2/ln(Riemann1stZero)*Zeta(7)^2 3645237726456296 g007 Psi(2,1/12)+2*Psi(2,3/11)-Psi(2,5/9) 3645237730443226 m005 (1/3*Catalan+2/11)/(7/11*Zeta(3)+4/7) 3645237733247880 r009 Im(z^3+c),c=-19/42+25/53*I,n=6 3645237743361717 a003 cos(Pi*29/102)*cos(Pi*13/27) 3645237762651369 r009 Re(z^3+c),c=-29/60+18/61*I,n=55 3645237766470500 v002 sum(1/(2^n*(28*n^2-67*n+57)),n=1..infinity) 3645237766938487 m001 (HeathBrownMoroz-ZetaP(4))/(ln(2)+exp(1/Pi)) 3645237769130867 m001 (2^(1/3)+LambertW(1))/(3^(1/3)+FeigenbaumMu) 3645237769597310 r005 Im(z^2+c),c=-61/86+6/25*I,n=63 3645237770481983 r005 Re(z^2+c),c=-7/15+16/53*I,n=32 3645237789519702 l006 ln(7165/7431) 3645237853006462 r009 Im(z^3+c),c=-25/102+17/45*I,n=21 3645237884071555 m001 (5^(1/2)-Zeta(1,-1))/(-polylog(4,1/2)+Salem) 3645237889308769 a007 Real Root Of 296*x^4+956*x^3-257*x^2+622*x-275 3645237916853952 a007 Real Root Of 447*x^4-168*x^3+461*x^2-87*x-109 3645237918778962 r005 Im(z^2+c),c=-15/19+5/19*I,n=6 3645237922574416 r002 49th iterates of z^2 + 3645237922995253 r005 Im(z^2+c),c=27/94+13/59*I,n=21 3645237929242772 m001 (KomornikLoreti+Niven)/(Champernowne+GaussAGM) 3645237934015756 m001 CareFree^(2*polylog(4,1/2)*Pi/GAMMA(5/6)) 3645237935784251 a001 7/377*3^(35/57) 3645237946695307 r005 Im(z^2+c),c=-15/14+8/33*I,n=30 3645237949937528 m001 ReciprocalLucas^HardyLittlewoodC3/BesselK(0,1) 3645237953526783 m005 (19/20+1/4*5^(1/2))/(1/11*3^(1/2)-4/7) 3645237960020803 r005 Im(z^2+c),c=-9/14+56/165*I,n=27 3645237960446372 m001 (ln(5)-cos(1/12*Pi))/(GAMMA(11/12)+Rabbit) 3645237979180200 m001 (2^(1/3)-BesselK(0,1))/(3^(1/3)+Thue) 3645237979292819 m001 GAMMA(17/24)-exp(1/Pi)^ArtinRank2 3645237981260780 m001 1/Robbin/ln(Niven)/log(1+sqrt(2))^2 3645237981466426 a001 7331474697802/305*2504730781961^(2/21) 3645237984282082 m001 (exp(1/Pi)-KomornikLoreti)^Zeta(1/2) 3645237985726880 m001 exp(LandauRamanujan)/MertensB1^2*Magata^2 3645237988782572 a007 Real Root Of -63*x^4+758*x^3+614*x^2+913*x-450 3645238008710774 a001 63245986/2207*123^(1/20) 3645238011145348 r005 Im(z^2+c),c=-11/70+22/35*I,n=62 3645238023376940 a007 Real Root Of -574*x^4-493*x^3-484*x^2+794*x+340 3645238027720695 m001 1/Zeta(5)^2*Niven^2/exp(Zeta(9))^2 3645238046876493 r005 Re(z^2+c),c=-41/106+26/53*I,n=20 3645238089028984 m001 BesselK(0,1)+Ei(1)^FeigenbaumC 3645238091311378 r005 Im(z^2+c),c=-4/7+72/121*I,n=12 3645238096477792 r009 Re(z^3+c),c=-1/22+9/29*I,n=10 3645238118350860 r005 Im(z^2+c),c=15/82+25/48*I,n=7 3645238133258878 a001 832040/47*29^(53/59) 3645238144122680 m005 (51/44+1/4*5^(1/2))/(3/5*gamma+1/8) 3645238173824399 l006 ln(185/7084) 3645238179145335 a007 Real Root Of 216*x^4+133*x^3-35*x^2-212*x-70 3645238217701564 m001 (Riemann1stZero+TravellingSalesman)/(1-Lehmer) 3645238221116035 m001 (GAMMA(2/3)-Gompertz)/exp(-1/2*Pi) 3645238234231674 a007 Real Root Of -494*x^4+41*x^3+183*x^2+473*x-190 3645238241546193 a001 17711/521*1364^(29/30) 3645238254237466 a007 Real Root Of 208*x^4+775*x^3+275*x^2+629*x-548 3645238254594824 m001 1/Rabbit^2/exp(MertensB1)^2*GAMMA(1/6)^2 3645238257605922 a007 Real Root Of 157*x^4+718*x^3+369*x^2-561*x+109 3645238270583793 r005 Re(z^2+c),c=-23/31+5/31*I,n=26 3645238271845258 m001 1/(2^(1/3))^2*ln(Tribonacci)*GAMMA(7/24)^2 3645238277678225 a003 cos(Pi*37/120)-cos(Pi*37/85) 3645238282719003 a001 1/47*(1/2*5^(1/2)+1/2)^8*4^(14/15) 3645238289967758 r008 a(0)=0,K{-n^6,25+57*n-38*n^2-17*n^3} 3645238297698266 a007 Real Root Of 154*x^4+466*x^3-146*x^2+563*x-627 3645238309044897 m001 cos(1/12*Pi)*(exp(1)+GAMMA(11/12)) 3645238309044897 m001 cos(Pi/12)*(exp(1)+GAMMA(11/12)) 3645238313691943 r005 Re(z^2+c),c=-39/74+6/13*I,n=20 3645238322811234 a001 2/987*3^(31/58) 3645238361397145 a007 Real Root Of 281*x^4+779*x^3-570*x^2+910*x-991 3645238365945320 r005 Re(z^2+c),c=37/118+16/37*I,n=22 3645238369322680 r005 Im(z^2+c),c=-21/106+27/46*I,n=29 3645238375376896 a001 28657/521*1364^(9/10) 3645238384625190 m001 (GAMMA(19/24)+MertensB3)/(Trott2nd+TwinPrimes) 3645238401700372 r009 Im(z^3+c),c=-9/34+42/59*I,n=56 3645238416876073 m001 ReciprocalLucas^GAMMA(7/12)+sin(1) 3645238446982243 a007 Real Root Of 131*x^4-935*x^3+954*x^2+311*x-61 3645238462546296 a007 Real Root Of -278*x^4-794*x^3+893*x^2+372*x+116 3645238485601197 m001 Niven^2*FibonacciFactorial*exp(Trott)^2 3645238485686086 r005 Re(z^2+c),c=-13/27+12/55*I,n=45 3645238490705347 a007 Real Root Of 286*x^4+951*x^3-625*x^2-964*x+357 3645238502283675 r005 Im(z^2+c),c=-7/58+26/29*I,n=30 3645238504768816 a001 46368/521*1364^(5/6) 3645238505883826 r005 Im(z^2+c),c=-5/82+17/35*I,n=50 3645238511174471 r005 Re(z^2+c),c=-3/8+16/29*I,n=64 3645238517614791 a001 89/11*843^(13/23) 3645238517676971 r002 46th iterates of z^2 + 3645238524024524 m001 (-Totient+Tribonacci)/(CareFree-sin(1)) 3645238544317504 r005 Re(z^2+c),c=-55/118+15/49*I,n=38 3645238548643124 r005 Im(z^2+c),c=6/25+8/29*I,n=26 3645238567044959 a001 610/47*3^(47/50) 3645238599272879 m001 MadelungNaCl/FeigenbaumB/Stephens 3645238600140556 m001 ln(Riemann1stZero)^2*sqrt(3)^3 3645238600256838 m001 (FeigenbaumC+Mills)/(Thue+ZetaQ(4)) 3645238601035914 m001 1/GAMMA(19/24)/BesselK(0,1)*ln(GAMMA(7/12))^2 3645238609162524 s002 sum(A265093[n]/(n^2*exp(n)+1),n=1..infinity) 3645238609692336 r009 Im(z^3+c),c=-35/114+17/48*I,n=8 3645238612199168 a007 Real Root Of -296*x^4+497*x^3+591*x^2+394*x-241 3645238615117619 k002 Champernowne real with 92*n^2-267*n+211 3645238621905081 v003 sum((3*n^3-19/2*n^2+57/2*n)/n^n,n=1..infinity) 3645238631484770 m001 (Otter-Rabbit)/(Sarnak-Totient) 3645238634687570 r005 Im(z^2+c),c=27/110+10/37*I,n=41 3645238635856206 a001 75025/521*1364^(23/30) 3645238647902450 a001 165580141/5778*123^(1/20) 3645238648005301 r005 Im(z^2+c),c=37/110+21/61*I,n=44 3645238655159985 r005 Im(z^2+c),c=-23/122+34/61*I,n=40 3645238657443021 r005 Im(z^2+c),c=-31/78+25/48*I,n=24 3645238691510584 m001 (Psi(1,1/3)+2^(1/2))/(-FeigenbaumMu+ThueMorse) 3645238698502925 r009 Im(z^3+c),c=-11/20+17/50*I,n=50 3645238702717816 l006 ln(6523/9392) 3645238703331937 m001 2^(1/2)+ErdosBorwein+GolombDickman 3645238705942498 r005 Im(z^2+c),c=7/30+5/18*I,n=9 3645238711193456 a007 Real Root Of 217*x^4+642*x^3-577*x^2-73*x+183 3645238714343666 m001 (-Magata+Riemann1stZero)/(2^(1/2)+GAMMA(7/12)) 3645238724214440 r005 Im(z^2+c),c=29/122+5/18*I,n=44 3645238728754366 b008 8/3+2^(-1/32) 3645238741159277 a001 433494437/15127*123^(1/20) 3645238743580846 r005 Re(z^2+c),c=-31/70+29/57*I,n=56 3645238754765265 a001 1134903170/39603*123^(1/20) 3645238756750352 a001 2971215073/103682*123^(1/20) 3645238757039973 a001 7778742049/271443*123^(1/20) 3645238757082228 a001 20365011074/710647*123^(1/20) 3645238757088393 a001 53316291173/1860498*123^(1/20) 3645238757089292 a001 139583862445/4870847*123^(1/20) 3645238757089423 a001 365435296162/12752043*123^(1/20) 3645238757089442 a001 956722026041/33385282*123^(1/20) 3645238757089445 a001 2504730781961/87403803*123^(1/20) 3645238757089446 a001 6557470319842/228826127*123^(1/20) 3645238757089446 a001 10610209857723/370248451*123^(1/20) 3645238757089446 a001 4052739537881/141422324*123^(1/20) 3645238757089447 a001 1548008755920/54018521*123^(1/20) 3645238757089454 a001 591286729879/20633239*123^(1/20) 3645238757089504 a001 225851433717/7881196*123^(1/20) 3645238757089848 a001 86267571272/3010349*123^(1/20) 3645238757092203 a001 32951280099/1149851*123^(1/20) 3645238757108343 a001 12586269025/439204*123^(1/20) 3645238757218968 a001 4807526976/167761*123^(1/20) 3645238757977203 a001 28657*123^(1/20) 3645238763174229 a001 701408733/24476*123^(1/20) 3645238766295991 a001 233*1364^(7/10) 3645238776629500 m001 HardyLittlewoodC5*(Psi(1,1/3)-Zeta(3)) 3645238798795169 a001 267914296/9349*123^(1/20) 3645238799739207 m005 (1/2*5^(1/2)-7/11)/(5/6*2^(1/2)+1/7) 3645238800420317 a007 Real Root Of 971*x^4-478*x^3-350*x^2-851*x-304 3645238811095007 r009 Im(z^3+c),c=-9/31+37/55*I,n=17 3645238811254597 r009 Im(z^3+c),c=-9/52+19/48*I,n=18 3645238825127403 r009 Re(z^3+c),c=-61/118+15/43*I,n=45 3645238829681576 r005 Re(z^2+c),c=-27/56+10/47*I,n=30 3645238847081963 b008 33*Zeta[1+E] 3645238850744730 r005 Re(z^2+c),c=-47/106+19/51*I,n=23 3645238853216170 r002 21th iterates of z^2 + 3645238857231068 m001 GAMMA(1/6)^2/ln((2^(1/3)))*exp(1) 3645238862651253 s001 sum(1/10^(n-1)*A230757[n],n=1..infinity) 3645238866313691 r009 Im(z^3+c),c=-25/102+17/45*I,n=19 3645238885217220 r009 Im(z^3+c),c=-25/102+17/45*I,n=18 3645238885505102 l006 ln(5825/8387) 3645238887833077 a007 Real Root Of -257*x^4-770*x^3+326*x^2-804*x+818 3645238888586821 m001 exp(1)^2*ln(Niven)^2*sqrt(3) 3645238895201986 a001 3461452808002/1597*2^(3/4) 3645238896983146 a001 196418/521*1364^(19/30) 3645238922317191 a001 9227465/1364*322^(7/24) 3645238935760443 a007 Real Root Of -303*x^4-861*x^3+948*x^2+186*x-124 3645238940161375 m001 (PlouffeB+PolyaRandomWalk3D)/(Zeta(3)+Zeta(5)) 3645238940982122 a007 Real Root Of -117*x^4-419*x^3-118*x^2-705*x-639 3645238942172983 m001 (GAMMA(7/12)+Lehmer)/LandauRamanujan2nd 3645238943328486 a005 (1/cos(18/235*Pi))^123 3645238977698199 a007 Real Root Of -240*x^4+141*x^3-344*x^2+456*x+223 3645238977785413 m005 (1/3*2^(1/2)-3/7)/(7/12*2^(1/2)-2) 3645238980054932 m001 (Stephens-ZetaQ(3))/(FeigenbaumB+Sarnak) 3645238991384534 r002 47th iterates of z^2 + 3645238993925993 r005 Im(z^2+c),c=-59/122+1/16*I,n=46 3645238999520325 a007 Real Root Of 247*x^4+904*x^3-58*x^2-405*x-530 3645239007885953 m001 (-MertensB3+OrthogonalArrays)/(2^(1/2)+Landau) 3645239014161457 a007 Real Root Of -289*x^4-774*x^3+921*x^2-488*x-480 3645239022136246 p001 sum(1/(538*n+535)/n/(256^n),n=1..infinity) 3645239027575820 a001 317811/521*1364^(17/30) 3645239029538213 m001 (exp(1)+1/2)/(-ln(gamma)+1/3) 3645239033377599 r002 47th iterates of z^2 + 3645239040875436 m001 MertensB2/(BesselI(0,2)^BesselI(0,1)) 3645239042944743 a001 102334155/3571*123^(1/20) 3645239050613981 l006 ln(161/6165) 3645239070921490 a005 (1/cos(31/226*Pi))^734 3645239073421175 a007 Real Root Of 162*x^4+382*x^3-998*x^2-700*x+609 3645239074652589 r002 15th iterates of z^2 + 3645239083717782 r005 Re(z^2+c),c=-27/56+5/19*I,n=12 3645239088661659 r005 Im(z^2+c),c=7/60+19/33*I,n=39 3645239094799491 m001 ln(GAMMA(23/24))^2/Catalan^2/GAMMA(5/12) 3645239105995778 r002 2th iterates of z^2 + 3645239114790698 m005 (1/2*exp(1)-1/9)/(2/9*3^(1/2)-8/11) 3645239117839508 r005 Re(z^2+c),c=6/19+7/31*I,n=2 3645239118062432 l006 ln(5127/7382) 3645239119350044 r005 Re(z^2+c),c=-12/25+13/57*I,n=46 3645239122319509 a007 Real Root Of 169*x^4+541*x^3-534*x^2-948*x+5 3645239129052836 r009 Re(z^3+c),c=-57/122+17/63*I,n=19 3645239129571354 m001 1/Tribonacci*Salem*ln(GAMMA(5/12))^2 3645239134224091 r005 Re(z^2+c),c=-25/102+27/43*I,n=52 3645239137125256 r005 Re(z^2+c),c=-19/34+41/107*I,n=26 3645239138350394 r005 Re(z^2+c),c=-13/27+11/51*I,n=26 3645239139351545 a001 9062201101803/4181*2^(3/4) 3645239140369610 r005 Re(z^2+c),c=-5/11+3/8*I,n=29 3645239144465488 a001 9227465/2207*322^(3/8) 3645239156652026 m003 5/3+3/(2*ProductLog[1/2+Sqrt[5]/2]) 3645239158204589 a001 514229/521*1364^(1/2) 3645239158660043 r009 Im(z^3+c),c=-17/54+6/17*I,n=19 3645239167685868 r005 Re(z^2+c),c=5/21+1/46*I,n=28 3645239174972488 a001 23725150497407/10946*2^(3/4) 3645239180463759 g005 GAMMA(3/11)*GAMMA(2/9)*GAMMA(1/9)*GAMMA(2/7) 3645239181057271 a001 433494437/2*2^(3/4) 3645239186020880 r005 Re(z^2+c),c=-21/44+13/53*I,n=44 3645239196987442 a001 14662949395604/6765*2^(3/4) 3645239212652905 r005 Im(z^2+c),c=-5/94+13/27*I,n=34 3645239222340175 m001 ln(Zeta(7))^2*GAMMA(11/24)^2/sin(1)^2 3645239232376636 a007 Real Root Of 896*x^4+529*x^3+691*x^2-85*x-113 3645239234462093 a007 Real Root Of 751*x^4+254*x^3+492*x^2-342*x-191 3645239256154233 g006 Psi(1,11/12)+Psi(1,2/9)+Psi(1,3/8)+1/2*Pi^2 3645239260517021 a001 75025/199*199^(19/22) 3645239264464577 m005 (1/2*Pi+1/3)/(1/10*5^(1/2)+5) 3645239288819577 a001 832040/521*1364^(13/30) 3645239290244287 a001 5600748293801/2584*2^(3/4) 3645239291058825 a007 Real Root Of 646*x^4-375*x^3+859*x^2+290*x-38 3645239347823643 a005 (1/cos(4/93*Pi))^1650 3645239355734921 r005 Re(z^2+c),c=-17/36+17/62*I,n=34 3645239356185587 p001 sum((-1)^n/(463*n+27)/(3^n),n=0..infinity) 3645239361467813 a003 sin(Pi*9/85)-sin(Pi*17/70) 3645239362991891 m001 (Backhouse+CopelandErdos)/(Trott-Weierstrass) 3645239383523918 a001 987/521*24476^(41/42) 3645239385199809 a007 Real Root Of -299*x^4-951*x^3+582*x^2+298*x+82 3645239388672564 a001 987/521*64079^(41/46) 3645239389414507 a001 233/2207*119218851371^(1/2) 3645239389463826 a001 987/521*370248451^(1/2) 3645239390615568 r005 Re(z^2+c),c=-15/32+11/38*I,n=10 3645239391629540 a001 987/521*39603^(41/44) 3645239394413741 r009 Im(z^3+c),c=-9/52+19/48*I,n=20 3645239415052977 b008 ArcCsch[2-E^(2/3)] 3645239415073029 r005 Re(z^2+c),c=-23/66+6/11*I,n=9 3645239419439836 a001 1346269/521*1364^(11/30) 3645239423920734 l006 ln(4429/6377) 3645239437687624 a007 Real Root Of -529*x^4+136*x^3+509*x^2+899*x+276 3645239438707309 a001 843/10946*4181^(11/59) 3645239448278075 a007 Real Root Of x^4-358*x^3+348*x^2-318*x+87 3645239450829060 b008 5+38*LogGamma[Pi] 3645239452169441 r009 Im(z^3+c),c=-9/52+19/48*I,n=23 3645239456764757 r009 Im(z^3+c),c=-9/52+19/48*I,n=21 3645239457162367 m005 (1/2*exp(1)-9/10)/(91/90+1/9*5^(1/2)) 3645239463181713 r009 Im(z^3+c),c=-9/52+19/48*I,n=25 3645239463752852 r009 Im(z^3+c),c=-9/52+19/48*I,n=26 3645239463842208 r009 Im(z^3+c),c=-9/52+19/48*I,n=28 3645239464043869 r009 Im(z^3+c),c=-9/52+19/48*I,n=30 3645239464044414 r009 Im(z^3+c),c=-9/52+19/48*I,n=31 3645239464048930 r009 Im(z^3+c),c=-9/52+19/48*I,n=33 3645239464052363 r009 Im(z^3+c),c=-9/52+19/48*I,n=36 3645239464052492 r009 Im(z^3+c),c=-9/52+19/48*I,n=38 3645239464052520 r009 Im(z^3+c),c=-9/52+19/48*I,n=35 3645239464052548 r009 Im(z^3+c),c=-9/52+19/48*I,n=41 3645239464052551 r009 Im(z^3+c),c=-9/52+19/48*I,n=43 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=46 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=48 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=51 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=53 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=56 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=58 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=61 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=59 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=63 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=64 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=62 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=60 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=54 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=57 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=55 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=52 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=50 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=49 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=47 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=45 3645239464052552 r009 Im(z^3+c),c=-9/52+19/48*I,n=44 3645239464052554 r009 Im(z^3+c),c=-9/52+19/48*I,n=40 3645239464052555 r009 Im(z^3+c),c=-9/52+19/48*I,n=42 3645239464052567 r009 Im(z^3+c),c=-9/52+19/48*I,n=39 3645239464052692 r009 Im(z^3+c),c=-9/52+19/48*I,n=37 3645239464053621 r009 Im(z^3+c),c=-9/52+19/48*I,n=34 3645239464060000 r009 Im(z^3+c),c=-9/52+19/48*I,n=32 3645239464124291 r009 Im(z^3+c),c=-9/52+19/48*I,n=29 3645239464436258 r009 Im(z^3+c),c=-9/52+19/48*I,n=27 3645239465833240 m001 Khintchine^2*exp(DuboisRaymond)^2/cos(1)^2 3645239468646014 r009 Im(z^3+c),c=-9/52+19/48*I,n=24 3645239482259087 m001 1/GAMMA(11/24)^2*ln(GAMMA(1/3))*sinh(1)^2 3645239483006667 r009 Im(z^3+c),c=-9/52+19/48*I,n=22 3645239484575228 r005 Im(z^2+c),c=-7/66+26/51*I,n=51 3645239485013947 r005 Re(z^2+c),c=-17/30+47/116*I,n=31 3645239499794252 m009 (2/5*Psi(1,2/3)+2)/(4*Catalan+1/2*Pi^2+1/4) 3645239505305631 m001 (arctan(1/2)-Ei(1,1))/(gamma(2)+ZetaP(4)) 3645239513017342 a007 Real Root Of 151*x^4+756*x^3+611*x^2-529*x-90 3645239529157604 a007 Real Root Of -147*x^4+710*x^3-986*x^2+406*x+316 3645239533713466 a001 610/3010349*3^(31/58) 3645239537087292 r005 Im(z^2+c),c=13/34+7/18*I,n=6 3645239542735436 m001 exp(Zeta(1/2))^2/MinimumGamma^2*Zeta(3)^2 3645239550058088 a001 2178309/521*1364^(3/10) 3645239554371461 r002 57th iterates of z^2 + 3645239570539793 a007 Real Root Of 87*x^4+388*x^3+279*x^2-70*x-530 3645239579155665 r002 61th iterates of z^2 + 3645239588357350 a003 sin(Pi*23/83)-sin(Pi*21/71) 3645239590941090 r005 Re(z^2+c),c=-29/60+11/54*I,n=26 3645239594564932 m005 (1/2*3^(1/2)+5/9)/(1/12*Zeta(3)-4) 3645239616522125 r009 Im(z^3+c),c=-9/52+19/48*I,n=16 3645239618118219 k002 Champernowne real with 185/2*n^2-537/2*n+212 3645239620616318 m006 (2/3*exp(2*Pi)-5)/(4*exp(Pi)+4) 3645239633329204 m001 sin(1/12*Pi)/(cos(1/12*Pi)-Zeta(5)) 3645239633329204 m001 sin(Pi/12)/(cos(Pi/12)-Zeta(5)) 3645239636554222 r005 Re(z^2+c),c=-13/18+27/80*I,n=10 3645239649019008 s002 sum(A214362[n]/(n*2^n-1),n=1..infinity) 3645239662720190 a001 2/6765*28657^(1/49) 3645239673927801 r004 Re(z^2+c),c=2/7+1/16*I,z(0)=exp(5/8*I*Pi),n=34 3645239686805349 m001 (Paris+Porter)/(Artin-FeigenbaumDelta) 3645239695542764 m001 Pi^(1/2)-ln(2)-TravellingSalesman 3645239701810037 r009 Re(z^3+c),c=-7/15+17/62*I,n=43 3645239704763437 r005 Im(z^2+c),c=8/23+5/21*I,n=29 3645239723328302 m001 exp(Pi)^GAMMA(3/4)*StronglyCareFree 3645239728190389 r002 27th iterates of z^2 + 3645239730650310 m005 (1/3*Zeta(3)-2/9)/(6*Catalan-3/5) 3645239747390122 r009 Im(z^3+c),c=-9/52+19/48*I,n=19 3645239753765235 r002 8th iterates of z^2 + 3645239759146238 r005 Re(z^2+c),c=-35/82+31/64*I,n=35 3645239777765322 m001 ln(GAMMA(19/24))/RenyiParking/sin(Pi/5) 3645239778504199 m005 (1/2*Catalan-5/6)/(2/3*3^(1/2)-1/8) 3645239783595365 b008 ArcTan[Log[Pi]/3] 3645239783657356 a001 24157817/5778*322^(3/8) 3645239793591145 m001 (Zeta(3)*sin(1/5*Pi)-ln(Pi))/Zeta(3) 3645239793591145 m001 (Zeta(3)*sin(Pi/5)-ln(Pi))/Zeta(3) 3645239800660862 r009 Im(z^3+c),c=-15/44+14/41*I,n=23 3645239811295849 a001 5702887/521*1364^(1/6) 3645239814558722 m005 (1/2*Zeta(3)+1/4)/(2/5*Zeta(3)-5/7) 3645239820264834 r005 Re(z^2+c),c=1/23+5/59*I,n=6 3645239825992187 a001 610/11*123^(9/23) 3645239833470778 m001 (FeigenbaumC-Shi(1))/(MinimumGamma+Robbin) 3645239840548118 a005 (1/sin(83/205*Pi))^1146 3645239841556305 a007 Real Root Of 802*x^4-965*x^3+261*x^2-879*x-416 3645239844219703 l006 ln(3731/5372) 3645239844464890 a001 6765/521*3571^(33/34) 3645239850588047 r005 Re(z^2+c),c=31/94+27/47*I,n=23 3645239861929075 a007 Real Root Of -24*x^4+459*x^3+205*x^2-55*x-29 3645239876914211 a001 63245986/15127*322^(3/8) 3645239880258825 a007 Real Root Of -440*x^4+497*x^3+114*x^2+489*x-18 3645239883294870 a001 10946/521*3571^(31/34) 3645239888096973 s002 sum(A198268[n]/((exp(n)+1)*n),n=1..infinity) 3645239890520203 a001 165580141/39603*322^(3/8) 3645239891700926 a001 17711/521*3571^(29/34) 3645239892322567 m001 Sierpinski^Magata/ArtinRank2 3645239892505291 a001 433494437/103682*322^(3/8) 3645239892794911 a001 1134903170/271443*322^(3/8) 3645239892837166 a001 2971215073/710647*322^(3/8) 3645239892843331 a001 7778742049/1860498*322^(3/8) 3645239892844231 a001 20365011074/4870847*322^(3/8) 3645239892844362 a001 53316291173/12752043*322^(3/8) 3645239892844381 a001 139583862445/33385282*322^(3/8) 3645239892844384 a001 365435296162/87403803*322^(3/8) 3645239892844384 a001 956722026041/228826127*322^(3/8) 3645239892844384 a001 2504730781961/599074578*322^(3/8) 3645239892844384 a001 6557470319842/1568397607*322^(3/8) 3645239892844384 a001 10610209857723/2537720636*322^(3/8) 3645239892844384 a001 4052739537881/969323029*322^(3/8) 3645239892844384 a001 1548008755920/370248451*322^(3/8) 3645239892844385 a001 591286729879/141422324*322^(3/8) 3645239892844386 a001 225851433717/54018521*322^(3/8) 3645239892844393 a001 86267571272/20633239*322^(3/8) 3645239892844443 a001 32951280099/7881196*322^(3/8) 3645239892844787 a001 12586269025/3010349*322^(3/8) 3645239892847141 a001 4807526976/1149851*322^(3/8) 3645239892863281 a001 1836311903/439204*322^(3/8) 3645239892973907 a001 701408733/167761*322^(3/8) 3645239893732143 a001 267914296/64079*322^(3/8) 3645239896406456 r002 46th iterates of z^2 + 3645239898929169 a001 102334155/24476*322^(3/8) 3645239909486259 m001 Champernowne-LaplaceLimit+ZetaP(3) 3645239911727887 a001 28657/521*3571^(27/34) 3645239922640513 r002 5th iterates of z^2 + 3645239923227225 r005 Im(z^2+c),c=-7/13+39/59*I,n=14 3645239927316058 a001 46368/521*3571^(25/34) 3645239929154226 m001 (2*Pi/GAMMA(5/6)+Otter)/(PlouffeB-ZetaP(2)) 3645239929436338 a001 2139295485799/987*2^(3/4) 3645239933722923 r005 Re(z^2+c),c=1/5+25/53*I,n=28 3645239934550120 a001 4181*322^(3/8) 3645239941914702 a001 9227465/521*1364^(1/10) 3645239943040227 r002 2th iterates of z^2 + 3645239944013661 m002 4+Pi^3+ProductLog[Pi]+Sinh[Pi]/Pi^3 3645239944599696 a001 75025/521*3571^(23/34) 3645239959825119 r005 Im(z^2+c),c=1/13+25/62*I,n=21 3645239961235723 a001 233*3571^(21/34) 3645239968448584 a007 Real Root Of -312*x^4+547*x^3-346*x^2+705*x-232 3645239978119115 a001 196418/521*3571^(19/34) 3645239982323077 m001 (exp(1)+Catalan)/(BesselK(0,1)+Stephens) 3645239987990267 m005 (1/3*Catalan+2/9)/(1+1/5*5^(1/2)) 3645239988047677 a001 2584/521*9349^(37/38) 3645239988111146 r009 Re(z^3+c),c=-47/106+13/53*I,n=23 3645239991754266 a007 Real Root Of 543*x^4-663*x^3+143*x^2-945*x+348 3645239994908023 a001 317811/521*3571^(1/2) 3645239998433432 r002 31th iterates of z^2 + 3645240011733021 a001 514229/521*3571^(15/34) 3645240015974720 m002 -6/E^Pi-Sinh[Pi]/Pi^3+Tanh[Pi] 3645240023295489 a001 2584/521*24476^(37/42) 3645240025775422 h001 (-8*exp(3/2)-6)/(-exp(3/2)-7) 3645240028544233 a001 832040/521*3571^(13/34) 3645240028606374 a001 233/5778*7881196^(19/22) 3645240028606425 a001 233/5778*817138163596^(1/2) 3645240028606425 a001 233/5778*87403803^(3/4) 3645240028606428 a001 233/5778*33385282^(19/24) 3645240028607425 a001 233/5778*1860498^(19/20) 3645240028655894 a001 2584/521*54018521^(1/2) 3645240030610320 a001 2584/521*39603^(37/44) 3645240031503026 a001 2889/17*317811^(25/59) 3645240032546786 q001 448/1229 3645240043391306 a001 2584/521*15127^(37/40) 3645240045360711 a001 1346269/521*3571^(11/34) 3645240050848934 a001 521/4181*55^(15/56) 3645240060042966 r009 Im(z^3+c),c=-11/23+16/63*I,n=38 3645240062175178 a001 2178309/521*3571^(9/34) 3645240068275049 a007 Real Root Of 753*x^4-642*x^3+467*x^2-317*x-222 3645240070777349 l006 ln(5899/6118) 3645240076684933 p004 log(34589/24023) 3645240085694620 a001 6765/521*9349^(33/38) 3645240103690691 a001 17711/521*9349^(29/38) 3645240106353967 r005 Re(z^2+c),c=-105/82+2/63*I,n=34 3645240109097669 a001 28657/521*9349^(27/38) 3645240109904618 a001 10946/521*9349^(31/38) 3645240110065856 a001 46368/521*9349^(25/38) 3645240112729511 a001 75025/521*9349^(23/38) 3645240114745554 a001 233*9349^(21/38) 3645240116978315 r005 Re(z^2+c),c=35/94+16/45*I,n=14 3645240117008963 a001 196418/521*9349^(1/2) 3645240117131858 a001 6765/521*24476^(11/14) 3645240119177887 a001 317811/521*9349^(17/38) 3645240119427283 l006 ln(6764/9739) 3645240119745283 s002 sum(A047355[n]/((exp(n)+1)*n),n=1..infinity) 3645240121382901 a001 514229/521*9349^(15/38) 3645240121674838 a007 Real Root Of 862*x^4+462*x^3-674*x^2-760*x+329 3645240121863288 a001 233/15127*5600748293801^(1/2) 3645240121901213 a001 6765/521*439204^(11/18) 3645240121912731 a001 6765/521*7881196^(1/2) 3645240121912761 a001 6765/521*312119004989^(3/10) 3645240121912761 a001 6765/521*1568397607^(3/8) 3645240121912762 a001 6765/521*33385282^(11/24) 3645240121913340 a001 6765/521*1860498^(11/20) 3645240122145888 a001 6765/521*103682^(11/16) 3645240123574130 a001 832040/521*9349^(13/38) 3645240123655897 a001 6765/521*39603^(3/4) 3645240125770624 a001 1346269/521*9349^(11/38) 3645240127965107 a001 2178309/521*9349^(9/38) 3645240131317355 a001 17711/521*24476^(29/42) 3645240133881946 a001 46368/521*24476^(25/42) 3645240134640313 a001 75025/521*24476^(23/42) 3645240134751070 a001 233*24476^(1/2) 3645240134819046 a001 28657/521*24476^(9/14) 3645240135055155 a001 6765/521*15127^(33/40) 3645240135109191 a001 196418/521*24476^(19/42) 3645240135372828 a001 317811/521*24476^(17/42) 3645240135469273 a001 233/39603*20633239^(13/14) 3645240135469281 a001 233/39603*141422324^(5/6) 3645240135469281 a001 233/39603*2537720636^(13/18) 3645240135469281 a001 233/39603*312119004989^(13/22) 3645240135469281 a001 233/39603*3461452808002^(13/24) 3645240135469281 a001 233/39603*73681302247^(5/8) 3645240135469281 a001 233/39603*28143753123^(13/20) 3645240135469281 a001 233/39603*228826127^(13/16) 3645240135517376 a001 17711/521*1149851^(1/2) 3645240135518754 a001 17711/521*1322157322203^(1/4) 3645240135672555 a001 514229/521*24476^(5/14) 3645240135958496 a001 832040/521*24476^(13/42) 3645240136249703 a001 1346269/521*24476^(11/42) 3645240136538899 a001 2178309/521*24476^(3/14) 3645240136828863 a001 3524578/521*24476^(1/6) 3645240137050601 a001 17711/521*39603^(29/44) 3645240137408316 a001 9227465/521*24476^(1/14) 3645240137439081 a001 46368/521*167761^(1/2) 3645240137454369 a001 233/103682*4106118243^(3/4) 3645240137454372 a001 233/103682*33385282^(23/24) 3645240137503839 a001 46368/521*20633239^(5/14) 3645240137503842 a001 46368/521*2537720636^(5/18) 3645240137503842 a001 46368/521*312119004989^(5/22) 3645240137503842 a001 46368/521*3461452808002^(5/24) 3645240137503842 a001 46368/521*28143753123^(1/4) 3645240137503842 a001 46368/521*228826127^(5/16) 3645240137504281 a001 46368/521*1860498^(5/12) 3645240137528578 a001 75025/521*64079^(1/2) 3645240137786113 a001 233*439204^(7/18) 3645240137786244 a001 233/710647*17393796001^(11/14) 3645240137786244 a001 233/710647*14662949395604^(11/18) 3645240137786244 a001 233/710647*505019158607^(11/16) 3645240137786244 a001 233/710647*1568397607^(7/8) 3645240137786244 a001 233/710647*599074578^(11/12) 3645240137792409 a001 233/1860498*2537720636^(9/10) 3645240137792409 a001 233/1860498*14662949395604^(9/14) 3645240137792409 a001 233/1860498*192900153618^(3/4) 3645240137793309 a001 233/4870847*2537720636^(17/18) 3645240137793309 a001 233/4870847*45537549124^(5/6) 3645240137793309 a001 233/4870847*312119004989^(17/22) 3645240137793309 a001 233/4870847*3461452808002^(17/24) 3645240137793309 a001 233/4870847*28143753123^(17/20) 3645240137793444 a001 233*7881196^(7/22) 3645240137793459 a001 233/33385282*9062201101803^(3/4) 3645240137793460 a001 233*20633239^(3/10) 3645240137793462 a001 233/599074578*312119004989^(21/22) 3645240137793462 a001 233/599074578*14662949395604^(5/6) 3645240137793462 a001 233/599074578*505019158607^(15/16) 3645240137793462 a001 233/10749957122*14662949395604^(13/14) 3645240137793462 a001 233*17393796001^(3/14) 3645240137793462 a001 233*14662949395604^(1/6) 3645240137793462 a001 233/17393796001*14662949395604^(17/18) 3645240137793462 a001 233/6643838879*3461452808002^(23/24) 3645240137793462 a001 233*599074578^(1/4) 3645240137793462 a001 233/141422324*312119004989^(9/10) 3645240137793462 a001 233/141422324*14662949395604^(11/14) 3645240137793462 a001 233/141422324*192900153618^(11/12) 3645240137793463 a001 233*33385282^(7/24) 3645240137793464 a001 233/54018521*312119004989^(19/22) 3645240137793464 a001 233/54018521*817138163596^(5/6) 3645240137793464 a001 233/54018521*3461452808002^(19/24) 3645240137793464 a001 233/54018521*28143753123^(19/20) 3645240137793471 a001 233/20633239*17393796001^(13/14) 3645240137793471 a001 233/20633239*14662949395604^(13/18) 3645240137793471 a001 233/20633239*505019158607^(13/16) 3645240137793471 a001 233/20633239*73681302247^(7/8) 3645240137793521 a001 233/7881196*1322157322203^(3/4) 3645240137793831 a001 233*1860498^(7/20) 3645240137796169 a001 233*710647^(3/8) 3645240137806836 a001 514229/521*167761^(3/10) 3645240137812359 a001 233/439204*2537720636^(5/6) 3645240137812359 a001 233/439204*312119004989^(15/22) 3645240137812359 a001 233/439204*3461452808002^(5/8) 3645240137812359 a001 233/439204*28143753123^(3/4) 3645240137812359 a001 233/439204*228826127^(15/16) 3645240137829961 a001 5702887/521*167761^(1/10) 3645240137835717 a001 317811/521*45537549124^(1/6) 3645240137835723 a001 317811/521*12752043^(1/4) 3645240137839632 a001 2178309/521*439204^(1/6) 3645240137840443 a001 514229/521*439204^(5/18) 3645240137841882 a001 832040/521*141422324^(1/6) 3645240137841882 a001 832040/521*73681302247^(1/8) 3645240137841894 a001 9227465/521*439204^(1/18) 3645240137842774 a001 2178309/521*7881196^(3/22) 3645240137842782 a001 2178309/521*2537720636^(1/10) 3645240137842782 a001 2178309/521*14662949395604^(1/14) 3645240137842782 a001 2178309/521*33385282^(1/8) 3645240137842912 a001 5702887/521*20633239^(1/14) 3645240137842913 a001 5702887/521*2537720636^(1/18) 3645240137842913 a001 5702887/521*312119004989^(1/22) 3645240137842913 a001 5702887/521*28143753123^(1/20) 3645240137842913 a001 5702887/521*228826127^(1/16) 3645240137842940 a001 2178309/521*1860498^(3/20) 3645240137842941 a001 9227465/521*7881196^(1/22) 3645240137842944 a001 9227465/521*33385282^(1/24) 3645240137842993 a001 3524578/521*20633239^(1/10) 3645240137842994 a001 3524578/521*17393796001^(1/14) 3645240137842994 a001 3524578/521*14662949395604^(1/18) 3645240137842994 a001 3524578/521*599074578^(1/12) 3645240137842997 a001 9227465/521*1860498^(1/20) 3645240137843001 a001 5702887/521*1860498^(1/12) 3645240137843328 a001 1346269/521*7881196^(1/6) 3645240137843338 a001 1346269/521*312119004989^(1/10) 3645240137843338 a001 1346269/521*1568397607^(1/8) 3645240137843896 a001 3524578/521*710647^(1/8) 3645240137845679 a001 514229/521*7881196^(5/22) 3645240137845691 a001 514229/521*20633239^(3/14) 3645240137845692 a001 514229/521*2537720636^(1/6) 3645240137845692 a001 514229/521*312119004989^(3/22) 3645240137845692 a001 514229/521*28143753123^(3/20) 3645240137845692 a001 514229/521*228826127^(3/16) 3645240137845693 a001 514229/521*33385282^(5/24) 3645240137845956 a001 514229/521*1860498^(1/4) 3645240137854250 a001 832040/521*271443^(1/4) 3645240137861832 a001 196418/521*817138163596^(1/6) 3645240137861832 a001 196418/521*87403803^(1/4) 3645240137864137 a001 9227465/521*103682^(1/16) 3645240137906362 a001 2178309/521*103682^(3/16) 3645240137941816 a001 233*103682^(7/16) 3645240137951659 a001 514229/521*103682^(5/16) 3645240137972457 a001 75025/521*4106118243^(1/4) 3645240138318182 a001 2178309/521*39603^(9/44) 3645240138424383 a001 1346269/521*39603^(1/4) 3645240138528572 a001 832040/521*39603^(13/44) 3645240138638027 a001 514229/521*39603^(15/44) 3645240138721245 a001 28657/521*439204^(1/2) 3645240138730670 a001 28657/521*7881196^(9/22) 3645240138730694 a001 28657/521*2537720636^(3/10) 3645240138730694 a001 28657/521*14662949395604^(3/14) 3645240138730694 a001 28657/521*192900153618^(1/4) 3645240138730695 a001 28657/521*33385282^(3/8) 3645240138731167 a001 28657/521*1860498^(9/20) 3645240138733696 a001 317811/521*39603^(17/44) 3645240138824399 a001 46368/521*39603^(25/44) 3645240138865456 a001 196418/521*39603^(19/44) 3645240138902731 a001 233*39603^(21/44) 3645240138921434 a001 28657/521*103682^(9/16) 3645240139187370 a001 75025/521*39603^(23/44) 3645240139436570 a001 10946/521*24476^(31/42) 3645240139834185 a001 5702887/521*15127^(1/8) 3645240140156896 a001 28657/521*39603^(27/44) 3645240140686009 m001 (3^(1/3))/sqrt(5)*BesselI(1,1) 3645240140686009 m001 1/5*5^(1/2)*3^(1/3)*BesselI(1,1) 3645240141135493 a001 4181/521*9349^(35/38) 3645240141427071 a001 2178309/521*15127^(9/40) 3645240142224136 a001 1346269/521*15127^(11/40) 3645240143019189 a001 832040/521*15127^(13/40) 3645240143819508 a001 514229/521*15127^(3/8) 3645240143878191 a001 233/24476*7881196^(21/22) 3645240143878240 a001 233/24476*20633239^(9/10) 3645240143878247 a001 233/24476*2537720636^(7/10) 3645240143878247 a001 233/24476*17393796001^(9/14) 3645240143878247 a001 233/24476*14662949395604^(1/2) 3645240143878247 a001 233/24476*505019158607^(9/16) 3645240143878247 a001 233/24476*192900153618^(7/12) 3645240143878247 a001 233/24476*599074578^(3/4) 3645240143878250 a001 233/24476*33385282^(7/8) 3645240143927519 a001 10946/521*3010349^(1/2) 3645240143927721 a001 10946/521*9062201101803^(1/4) 3645240144606041 a001 317811/521*15127^(17/40) 3645240145428665 a001 196418/521*15127^(19/40) 3645240145565212 a001 10946/521*39603^(31/44) 3645240146156804 a001 233*15127^(21/40) 3645240146941864 a001 9227465/521*5778^(1/12) 3645240147068131 a001 17711/521*15127^(29/40) 3645240147132308 a001 75025/521*15127^(23/40) 3645240147460201 a001 46368/521*15127^(5/8) 3645240149483561 a001 28657/521*15127^(27/40) 3645240155607734 r005 Im(z^2+c),c=-7/106+18/37*I,n=10 3645240156273606 a001 10946/521*15127^(31/40) 3645240165139541 a001 2178309/521*5778^(1/4) 3645240171206044 a001 1346269/521*5778^(11/36) 3645240174478019 a001 4181/521*24476^(5/6) 3645240177270535 a001 832040/521*5778^(13/36) 3645240178699767 a001 14930352/3571*322^(3/8) 3645240179458008 a001 4181/521*167761^(7/10) 3645240179499201 a001 233/9349*2139295485799^(1/2) 3645240179548669 a001 4181/521*20633239^(1/2) 3645240179548674 a001 4181/521*2537720636^(7/18) 3645240179548674 a001 4181/521*17393796001^(5/14) 3645240179548674 a001 4181/521*312119004989^(7/22) 3645240179548674 a001 4181/521*14662949395604^(5/18) 3645240179548674 a001 4181/521*505019158607^(5/16) 3645240179548674 a001 4181/521*28143753123^(7/20) 3645240179548674 a001 4181/521*599074578^(5/12) 3645240179548674 a001 4181/521*228826127^(7/16) 3645240179549288 a001 4181/521*1860498^(7/12) 3645240179553185 a001 4181/521*710647^(5/8) 3645240180148685 r005 Im(z^2+c),c=-3/38+19/40*I,n=11 3645240181397454 a001 4181/521*39603^(35/44) 3645240183340292 a001 514229/521*5778^(5/12) 3645240189396264 a001 317811/521*5778^(17/36) 3645240191251076 m003 361/10+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/32 3645240193487577 a001 4181/521*15127^(7/8) 3645240195488326 a001 196418/521*5778^(19/36) 3645240201485902 a001 233*5778^(7/12) 3645240207507738 r005 Im(z^2+c),c=-11/60+28/51*I,n=55 3645240207730844 a001 75025/521*5778^(23/36) 3645240211627122 r002 27th iterates of z^2 + 3645240213328175 a001 46368/521*5778^(25/36) 3645240220620974 a001 28657/521*5778^(3/4) 3645240222000881 a001 6765/521*5778^(11/12) 3645240223474981 a001 17711/521*5778^(29/36) 3645240234598694 l006 ln(137/5246) 3645240237949894 a001 10946/521*5778^(31/36) 3645240237996477 m005 (1/2*gamma+4)/(3^(1/2)-5/9) 3645240252485233 m001 ln(2)^(MadelungNaCl/gamma(3)) 3645240266480838 m005 (1/3*2^(1/2)+1/7)/(71/70+3/10*5^(1/2)) 3645240275215238 m001 KomornikLoreti^BesselI(0,1)*ZetaP(3) 3645240278100402 r009 Re(z^3+c),c=-17/42+37/62*I,n=12 3645240284498082 r009 Im(z^3+c),c=-29/94+27/62*I,n=3 3645240285702742 a001 4181/521*5778^(35/36) 3645240286021214 r005 Re(z^2+c),c=41/110+6/41*I,n=56 3645240288674303 r009 Re(z^3+c),c=-5/27+25/29*I,n=36 3645240289209478 m001 ((1+3^(1/2))^(1/2)+Robbin)/(ln(3)-arctan(1/2)) 3645240307174179 r005 Re(z^2+c),c=-15/98+34/47*I,n=9 3645240310916236 r005 Re(z^2+c),c=-17/18-55/247*I,n=26 3645240322551871 r002 13th iterates of z^2 + 3645240323288487 r009 Re(z^3+c),c=-41/86+19/42*I,n=17 3645240324445122 r009 Im(z^3+c),c=-1/27+25/62*I,n=3 3645240327120383 r005 Re(z^2+c),c=-7/16+12/29*I,n=33 3645240331098248 r005 Re(z^2+c),c=-19/34+17/39*I,n=45 3645240343631284 r009 Im(z^3+c),c=-23/56+17/56*I,n=35 3645240348324391 a001 2178309/521*2207^(9/32) 3645240349204878 r009 Im(z^3+c),c=-9/52+19/48*I,n=17 3645240366154803 m005 (1/2*3^(1/2)-2/7)/(8/9*Catalan+7/9) 3645240372499552 h001 (-2*exp(-1)+1)/(-5*exp(-3)-7) 3645240373548668 m001 GAMMA(23/24)-HardyLittlewoodC5^arctan(1/2) 3645240382217961 m005 (1/2*Pi-5/9)/(6/7*Catalan+2) 3645240389920967 a007 Real Root Of -791*x^4+589*x^3-188*x^2+487*x+245 3645240395098639 a001 1346269/521*2207^(11/32) 3645240411557005 r005 Re(z^2+c),c=-47/106+11/27*I,n=34 3645240418048160 a001 1597/521*24476^(13/14) 3645240419683414 a007 Real Root Of -271*x^4+744*x^3+435*x^2+694*x+236 3645240421410155 a007 Real Root Of 236*x^4+896*x^3+379*x^2+728*x-652 3645240421855787 r005 Re(z^2+c),c=-39/94+25/59*I,n=16 3645240422945654 a001 1597/521*64079^(39/46) 3645240423648819 a001 233/3571*7881196^(5/6) 3645240423648861 a001 233/3571*20633239^(11/14) 3645240423648868 a001 233/3571*2537720636^(11/18) 3645240423648868 a001 233/3571*312119004989^(1/2) 3645240423648868 a001 233/3571*3461452808002^(11/24) 3645240423648868 a001 233/3571*28143753123^(11/20) 3645240423648868 a001 233/3571*1568397607^(5/8) 3645240423648868 a001 233/3571*228826127^(11/16) 3645240423649833 a001 233/3571*1860498^(11/12) 3645240423684671 a001 1597/521*439204^(13/18) 3645240423698284 a001 1597/521*7881196^(13/22) 3645240423698318 a001 1597/521*141422324^(1/2) 3645240423698318 a001 1597/521*73681302247^(3/8) 3645240423698320 a001 1597/521*33385282^(13/24) 3645240423699003 a001 1597/521*1860498^(13/20) 3645240423735423 a001 1597/521*271443^(3/4) 3645240423973832 a001 1597/521*103682^(13/16) 3645240425585057 r005 Im(z^2+c),c=7/58+34/59*I,n=53 3645240425758388 a001 1597/521*39603^(39/44) 3645240427210196 r005 Re(z^2+c),c=-23/56+23/52*I,n=17 3645240429147591 r005 Im(z^2+c),c=-17/29+1/15*I,n=48 3645240438050553 s002 sum(A163857[n]/(n^2*exp(n)+1),n=1..infinity) 3645240439230240 a001 1597/521*15127^(39/40) 3645240440982821 s002 sum(A156877[n]/(n^2*exp(n)+1),n=1..infinity) 3645240441870877 a001 832040/521*2207^(13/32) 3645240457969798 l006 ln(3033/4367) 3645240462129022 m001 (-Ei(1)+ArtinRank2)/(exp(1)+LambertW(1)) 3645240469484623 r005 Im(z^2+c),c=-13/102+25/48*I,n=53 3645240470626967 r005 Im(z^2+c),c=-5/48+29/57*I,n=53 3645240473807597 a003 sin(Pi*48/113)-sin(Pi*46/107) 3645240481406880 r005 Im(z^2+c),c=-1/28+25/53*I,n=39 3645240482324633 r002 29th iterates of z^2 + 3645240487956644 m005 (-7/4+1/4*5^(1/2))/(4/5*Catalan-4) 3645240488648381 a001 514229/521*2207^(15/32) 3645240498994599 r005 Re(z^2+c),c=-15/32+12/41*I,n=56 3645240501965766 m001 Psi(2,1/3)^sin(1/12*Pi)*Khinchin^sin(1/12*Pi) 3645240508975450 r005 Re(z^2+c),c=-9/122+35/52*I,n=10 3645240512048523 r005 Im(z^2+c),c=29/122+5/18*I,n=48 3645240517339964 a007 Real Root Of -378*x^4+957*x^3-606*x^2+709*x+392 3645240527230823 a007 Real Root Of 295*x^4-520*x^3+76*x^2-262*x-136 3645240535412100 a001 317811/521*2207^(17/32) 3645240537870204 m001 (Rabbit+ZetaP(3))/(sin(1/12*Pi)-Khinchin) 3645240545512464 a007 Real Root Of 156*x^4+430*x^3-337*x^2+411*x-740 3645240558067577 r005 Re(z^2+c),c=-8/19+28/59*I,n=59 3645240582211910 a001 196418/521*2207^(19/32) 3645240592147429 r005 Re(z^2+c),c=-8/19+14/29*I,n=63 3645240598580660 m001 (ln(2)+Backhouse)/(Cahen-ZetaQ(2)) 3645240600561326 a007 Real Root Of 218*x^4+173*x^3-274*x^2-853*x-270 3645240601777449 m001 MertensB1^Mills/PlouffeB 3645240617693350 m001 (BesselI(1,2)-GAMMA(1/12))/exp(1) 3645240621118819 k002 Champernowne real with 93*n^2-270*n+213 3645240623001431 a001 1346269/843*322^(13/24) 3645240628917235 a001 233*2207^(21/32) 3645240644462295 m002 1+Pi^3+Pi^5+Pi^5*Csch[Pi] 3645240657673857 r005 Im(z^2+c),c=11/32+8/57*I,n=32 3645240658951011 r009 Im(z^3+c),c=-23/62+16/49*I,n=23 3645240669094219 r009 Im(z^3+c),c=-8/13+9/52*I,n=2 3645240674035447 m001 (OneNinth-Riemann1stZero)/(Ei(1,1)-Zeta(1,-1)) 3645240674410371 v002 sum(1/(5^n+(12*n^2-30*n+69)),n=1..infinity) 3645240675869927 a001 75025/521*2207^(23/32) 3645240689126433 a001 23725150497407/987*2504730781961^(2/21) 3645240691658686 m001 (1+3^(1/2))^(1/2)-Lehmer+Sierpinski 3645240703993911 m003 13/6+Sqrt[5]/64+3*Log[1/2+Sqrt[5]/2] 3645240708544149 h001 (3/4*exp(2)+7/10)/(2/5*exp(1)+5/8) 3645240716371700 a001 39088169/1364*123^(1/20) 3645240718005504 r005 Im(z^2+c),c=-37/122+25/43*I,n=37 3645240720769812 a001 710647/55*34^(5/17) 3645240722175008 a001 46368/521*2207^(25/32) 3645240726066007 m001 1/2*(2^(1/3)*ln(2)-MertensB3)*2^(2/3) 3645240726625996 r005 Re(z^2+c),c=-31/70+21/52*I,n=57 3645240734907352 a007 Real Root Of -235*x^4-720*x^3+633*x^2+290*x-736 3645240740920860 r005 Im(z^2+c),c=9/62+3/7*I,n=8 3645240743114205 r009 Im(z^3+c),c=-1/46+26/63*I,n=12 3645240744391870 m001 HardyLittlewoodC4^(Shi(1)*AlladiGrinstead) 3645240746636016 b008 -6+(1+Sqrt[2/7])^2 3645240753572836 r005 Re(z^2+c),c=-15/34+23/51*I,n=28 3645240768888822 m001 (Pi+cos(1/12*Pi))/(CareFree-FeigenbaumC) 3645240769117240 m001 (BesselI(0,1)-KhinchinLevy)/(Niven+PlouffeB) 3645240769691353 r005 Re(z^2+c),c=-131/102+3/52*I,n=6 3645240770175557 a001 28657/521*2207^(27/32) 3645240772003649 r005 Re(z^2+c),c=-59/86+14/57*I,n=33 3645240792235261 r002 7th iterates of z^2 + 3645240799577237 m001 PrimesInBinary/cos(1)*Weierstrass 3645240801976170 r009 Im(z^3+c),c=-43/114+10/31*I,n=12 3645240810838423 m001 (Psi(2,1/3)+Catalan)/(-GolombDickman+PlouffeB) 3645240813737315 a001 17711/521*2207^(29/32) 3645240822107044 m005 (1/2*3^(1/2)+7/12)/(2/9*2^(1/2)+1/12) 3645240824802499 a001 322/3*14930352^(12/19) 3645240827222648 r005 Re(z^2+c),c=9/34+3/61*I,n=24 3645240829802280 a008 Real Root of x^5-x^4-x^3-3*x^2-12*x-4 3645240835939470 m005 (1/2*Pi-5/9)/(5/6*2^(1/2)-9/10) 3645240837126145 a007 Real Root Of 436*x^4+481*x^3-165*x^2-900*x+319 3645240846725121 m001 arctan(1/3)*(MasserGramainDelta-Otter) 3645240862472539 p003 LerchPhi(1/10,1,617/208) 3645240864880655 r005 Re(z^2+c),c=-29/48+7/13*I,n=8 3645240868919981 a001 10946/521*2207^(31/32) 3645240871631666 r005 Re(z^2+c),c=-13/27+12/55*I,n=43 3645240884553532 l006 ln(5368/7729) 3645240890715910 m009 (1/3*Psi(1,2/3)+5/6)/(5*Psi(1,1/3)+2/5) 3645240902482544 a005 (1/cos(11/146*Pi))^1430 3645240904401447 m001 (RenyiParking+Thue)/(Pi+BesselI(0,1)) 3645240905974791 a007 Real Root Of 108*x^4-167*x^3+753*x^2+162*x-51 3645240935754304 m005 (1/2*3^(1/2)-7/8)/(-4/11+3/11*5^(1/2)) 3645240952791022 r009 Im(z^3+c),c=-19/82+21/55*I,n=9 3645240954891976 m001 Ei(1)*ln(GaussKuzminWirsing)^2*GAMMA(2/3) 3645240987922869 m004 3/E^(Sqrt[5]*Pi)+(125*Tan[Sqrt[5]*Pi])/Pi 3645240994650546 v002 sum(1/(5^n+(27*n^2-50*n+65)),n=1..infinity) 3645240997084106 l006 ln(250/9573) 3645241013166451 r005 Re(z^2+c),c=-29/44+15/38*I,n=12 3645241023218688 m005 (1/3*3^(1/2)+1/4)/(25/12+1/12*5^(1/2)) 3645241029402479 m001 (-Niven+Riemann1stZero)/(5^(1/2)+GAMMA(19/24)) 3645241037344681 a003 sin(Pi*19/116)*sin(Pi*30/113) 3645241050919564 m006 (3/5*exp(2*Pi)+1)/(1/6*exp(2*Pi)-5/6) 3645241054809538 m005 (4/5*exp(1)-5/6)/(1/4*exp(1)+3) 3645241056936391 m001 (Porter+ZetaQ(2))/(BesselJ(0,1)+Magata) 3645241059919920 r005 Im(z^2+c),c=-7/48+19/35*I,n=23 3645241074177021 b008 -1/3+LogGamma[1/54] 3645241076452813 a007 Real Root Of -94*x^4-193*x^3+294*x^2-989*x-263 3645241082383274 r005 Re(z^2+c),c=-49/102+13/57*I,n=27 3645241085489491 a007 Real Root Of -364*x^4-410*x^3-108*x^2+911*x+333 3645241098454763 a007 Real Root Of 249*x^4+855*x^3-67*x^2+638*x+665 3645241106576771 r002 39i'th iterates of 2*x/(1-x^2) of 3645241107328839 r005 Re(z^2+c),c=-11/23+13/58*I,n=19 3645241119108861 r005 Re(z^2+c),c=-11/36+19/36*I,n=15 3645241131406385 m005 (3*exp(1)+1/6)/(1/5*2^(1/2)+2) 3645241141726255 s002 sum(A067100[n]/(n^2*exp(n)+1),n=1..infinity) 3645241150852285 m002 -6*Cosh[Pi]+(Pi^6*Cosh[Pi])/3 3645241150929377 r005 Re(z^2+c),c=-25/56+16/41*I,n=60 3645241153468862 m001 1/2*2^(1/2)*BesselJ(0,1)/ZetaR(2) 3645241156775125 r005 Im(z^2+c),c=29/78+38/63*I,n=10 3645241167492675 p004 log(23473/613) 3645241173967249 m005 (1/3*5^(1/2)+3/4)/(7/11*3^(1/2)+3) 3645241175216482 r009 Re(z^3+c),c=-15/34+8/33*I,n=23 3645241181714323 k007 concat of cont frac of 3645241185290520 a007 Real Root Of -300*x^4+253*x^3-502*x^2+633*x+315 3645241187000022 r005 Re(z^2+c),c=5/24+22/51*I,n=14 3645241187330424 r005 Im(z^2+c),c=-13/62+43/64*I,n=12 3645241189346859 r008 a(0)=4,K{-n^6,-4+7*n^3+2*n^2-n} 3645241215341004 m005 (1/2*gamma+1/2)/(5/6*5^(1/2)+3/10) 3645241222479614 r002 16th iterates of z^2 + 3645241224325385 a007 Real Root Of 529*x^4-528*x^3+405*x^2-201*x-162 3645241230989197 m005 (-19/4+1/4*5^(1/2))/(1/3*Zeta(3)-2/7) 3645241232549066 r005 Re(z^2+c),c=-27/58+7/41*I,n=8 3645241243407425 a007 Real Root Of 97*x^4+162*x^3-781*x^2-198*x+376 3645241257493602 r002 41th iterates of z^2 + 3645241258987775 h001 (1/2*exp(1)+7/8)/(9/11*exp(2)+1/12) 3645241276148486 m001 (OrthogonalArrays-Robbin)/(ln(3)-Zeta(1,2)) 3645241278170716 m001 (GAMMA(1/6)+4)/(GolombDickman+2) 3645241288185159 r002 5th iterates of z^2 + 3645241291383771 p001 sum((-1)^n/(613*n+274)/(256^n),n=0..infinity) 3645241319494550 s002 sum(A193186[n]/(n*pi^n-1),n=1..infinity) 3645241321509468 r002 18th iterates of z^2 + 3645241344893308 a007 Real Root Of -978*x^4+531*x^3-982*x^2+797*x+464 3645241349982640 m001 (GAMMA(5/6)+ZetaP(4))/(Pi-Zeta(1,-1)) 3645241372445554 m006 (1/6*Pi+2/3)/(5/6/Pi+3) 3645241382820690 m001 (Zeta(5)*ln(Pi)-cos(1/5*Pi))/Zeta(5) 3645241382820690 m001 (Zeta(5)*ln(Pi)-cos(Pi/5))/Zeta(5) 3645241389515757 a007 Real Root Of 95*x^4+140*x^3-654*x^2+267*x-329 3645241420208998 a001 3524578/521*843^(1/4) 3645241428876273 r005 Re(z^2+c),c=-6/13+9/34*I,n=13 3645241432492875 r005 Re(z^2+c),c=-1+19/94*I,n=38 3645241433516337 r005 Im(z^2+c),c=-65/126+15/26*I,n=64 3645241433562415 a007 Real Root Of -992*x^4+658*x^3-396*x^2-417*x-50 3645241438655632 l006 ln(2335/3362) 3645241440363957 m002 Pi^2+E^Pi*Log[Pi]+Csch[Pi]*ProductLog[Pi] 3645241445131817 m001 GAMMA(5/24)*ln(GAMMA(23/24))^2*GAMMA(5/6)^2 3645241446100172 r005 Re(z^2+c),c=-13/14+33/197*I,n=18 3645241475323516 r002 54th iterates of z^2 + 3645241491376539 r005 Re(z^2+c),c=-28/25+13/35*I,n=6 3645241493960206 m005 (1/2*2^(1/2)+1/9)/(7/11*gamma-1/7) 3645241503450237 m001 HardyLittlewoodC5^ln(3)-Trott 3645241519285590 m001 exp(Lehmer)*GlaisherKinkelin^2*GAMMA(3/4) 3645241545583307 r004 Re(z^2+c),c=-29/38-1/11*I,z(0)=-1,n=17 3645241545628614 s002 sum(A115477[n]/(n*2^n-1),n=1..infinity) 3645241557591452 r005 Im(z^2+c),c=31/122+14/55*I,n=13 3645241567472159 a007 Real Root Of 716*x^4-965*x^3+6*x^2-888*x+357 3645241579508080 m005 (1/2*3^(1/2)-1/9)/(4/9*Catalan-1/5) 3645241583378483 a007 Real Root Of -184*x^4-281*x^3+95*x^2+598*x+195 3645241596739865 a003 sin(Pi*15/71)/cos(Pi*33/74) 3645241601718803 h001 (3/10*exp(2)+5/7)/(2/9*exp(1)+1/5) 3645241602748160 a001 14930352/521*322^(1/24) 3645241615282924 m001 (cos(1/5*Pi)-gamma(2))/(Otter-Rabbit) 3645241617315062 r005 Re(z^2+c),c=41/122+6/55*I,n=44 3645241624119419 k002 Champernowne real with 187/2*n^2-543/2*n+214 3645241637038940 a003 cos(Pi*5/28)*cos(Pi*43/120) 3645241642275402 r005 Re(z^2+c),c=-57/118+13/63*I,n=14 3645241644203669 r005 Im(z^2+c),c=-61/86+1/35*I,n=49 3645241651293519 m001 Si(Pi)^FeigenbaumKappa+Totient 3645241653521711 m001 GAMMA(23/24)^2*Niven^2/exp(GAMMA(5/12)) 3645241660881485 a001 1/15124*(1/2*5^(1/2)+1/2)^21*76^(3/16) 3645241671770822 m001 (-Backhouse+Trott)/(ArtinRank2-ln(2)/ln(10)) 3645241673903271 m001 (Psi(1,1/3)+Chi(1))/(-ln(Pi)+exp(1/exp(1))) 3645241686051807 a007 Real Root Of -331*x^4-923*x^3+717*x^2-907*x+902 3645241688545765 r005 Re(z^2+c),c=-41/98+33/64*I,n=61 3645241688564253 r005 Im(z^2+c),c=-5/22+19/33*I,n=23 3645241699730905 m005 (1/2*2^(1/2)-6/11)/(7/9*Pi-2) 3645241725560615 a007 Real Root Of 93*x^4-93*x^3+409*x^2-775*x-343 3645241753356155 r009 Im(z^3+c),c=-19/40+10/39*I,n=52 3645241756295742 r005 Re(z^2+c),c=-29/50+23/31*I,n=3 3645241767579205 m005 (1/3*exp(1)+2/11)/(2/3*Catalan-10/11) 3645241786599155 a001 2178309/521*843^(9/28) 3645241787121346 r005 Re(z^2+c),c=-65/126+33/59*I,n=25 3645241804069607 r009 Re(z^3+c),c=-43/110+10/57*I,n=13 3645241813563825 a007 Real Root Of 396*x^4-543*x^3+216*x^2-620*x-288 3645241849729186 m001 1/Riemann2ndZero/Si(Pi)/exp(GAMMA(5/12))^2 3645241852127227 a001 5702887/1364*322^(3/8) 3645241856517170 r009 Im(z^3+c),c=-29/78+15/46*I,n=20 3645241861265906 m001 (CareFree-Mills)/(Zeta(3)-Zeta(5)) 3645241881194550 r009 Re(z^3+c),c=-47/114+11/54*I,n=14 3645241883245305 r002 18th iterates of z^2 + 3645241894073310 a007 Real Root Of -748*x^4+626*x^3+95*x^2+709*x-26 3645241897106971 m001 (Otter-RenyiParking)/(BesselI(1,1)-Kac) 3645241905630642 a007 Real Root Of 712*x^4-185*x^3-161*x^2-765*x-279 3645241906283272 r005 Re(z^2+c),c=-9/122+41/60*I,n=22 3645241910261771 l006 ln(6307/9081) 3645241912051684 r005 Im(z^2+c),c=-4/29+10/19*I,n=39 3645241921512544 l006 ln(113/4327) 3645241921512544 p004 log(4327/113) 3645241927150926 a007 Real Root Of 924*x^4-532*x^3-399*x^2-746*x-261 3645241950225592 m008 (3/5*Pi-5/6)/(3*Pi^6+3/4) 3645241972271530 p001 sum(1/(537*n+536)/n/(256^n),n=1..infinity) 3645241974521581 a003 sin(Pi*12/85)*sin(Pi*21/65) 3645242016108916 r005 Re(z^2+c),c=-29/60+10/59*I,n=14 3645242017764309 m001 Riemann3rdZero*ln(KhintchineLevy)/GAMMA(19/24) 3645242018163826 m001 (3^(1/2)-GAMMA(2/3))/(GolombDickman+ThueMorse) 3645242021570337 r009 Im(z^3+c),c=-4/17+17/41*I,n=3 3645242027065402 a003 sin(Pi*18/89)*sin(Pi*4/19) 3645242027990443 r002 30th iterates of z^2 + 3645242029869214 a007 Real Root Of -236*x^4-941*x^3-310*x^2+26*x+304 3645242034362365 h001 (-4*exp(6)-2)/(-3*exp(5)+2) 3645242037069355 a001 521/17711*2178309^(45/56) 3645242048770481 r002 18th iterates of z^2 + 3645242064662076 a007 Real Root Of 36*x^4-47*x^3-609*x^2-92*x-876 3645242069723652 m005 (1/3*exp(1)+1)/(1/4*Catalan+5) 3645242074275703 a001 5702887/2207*322^(11/24) 3645242076374515 a001 1/319*(1/2*5^(1/2)+1/2)^18*11^(7/24) 3645242086468114 m001 sin(Pi/5)/GAMMA(1/3)/BesselK(1,1) 3645242091600019 r009 Re(z^3+c),c=-1/19+26/59*I,n=12 3645242096295018 a001 610/521*64079^(43/46) 3645242097058612 a001 233/1364*439204^(17/18) 3645242097076414 a001 233/1364*7881196^(17/22) 3645242097076459 a001 233/1364*45537549124^(1/2) 3645242097076461 a001 233/1364*33385282^(17/24) 3645242097076476 a001 233/1364*12752043^(3/4) 3645242097077354 a001 233/1364*1860498^(17/20) 3645242097124879 a001 610/521*969323029^(1/2) 3645242099396239 a001 610/521*39603^(43/44) 3645242111121095 r005 Im(z^2+c),c=21/74+14/61*I,n=52 3645242121841491 r005 Im(z^2+c),c=-13/62+22/39*I,n=54 3645242125055208 r009 Im(z^3+c),c=-41/86+5/23*I,n=12 3645242125847691 p001 sum(1/(446*n+369)/(2^n),n=0..infinity) 3645242126267373 r005 Im(z^2+c),c=7/74+9/23*I,n=24 3645242132569068 m001 (Lehmer+Stephens)/(gamma(3)-FellerTornier) 3645242136580008 m001 Artin/(Zeta(5)^CareFree) 3645242150119877 r005 Im(z^2+c),c=15/58+11/43*I,n=20 3645242152990118 a001 1346269/521*843^(11/28) 3645242174388818 r009 Im(z^3+c),c=-5/19+16/43*I,n=18 3645242181197977 a001 514229/3*7^(19/49) 3645242184358644 r005 Im(z^2+c),c=-7/58+19/37*I,n=25 3645242186270089 r001 39i'th iterates of 2*x^2-1 of 3645242187502529 l006 ln(3972/5719) 3645242201205759 v002 sum(1/(5^n+(19*n^2-9*n+29)),n=1..infinity) 3645242219880296 r005 Im(z^2+c),c=5/17+5/42*I,n=6 3645242219928715 m005 (1/2*5^(1/2)-7/11)/(2/3*3^(1/2)+1/6) 3645242221334646 a001 4/13*377^(1/35) 3645242255296161 r005 Re(z^2+c),c=-53/110+5/24*I,n=21 3645242256156871 p004 log(36671/25469) 3645242267967931 a007 Real Root Of 760*x^4-577*x^3-67*x^2-808*x-327 3645242269913552 a007 Real Root Of -60*x^4+599*x^3+670*x^2+941*x-460 3645242272318506 m001 1/OneNinth^2*ln(Tribonacci)^2/Zeta(1,2)^2 3645242285611432 b008 35+2^(7/13) 3645242306989300 r005 Im(z^2+c),c=-15/122+14/27*I,n=63 3645242309814359 a008 Real Root of x^4-x^3-2*x^2-52*x+88 3645242334749091 m001 (3^(1/2)+Catalan)/(-Zeta(3)+PlouffeB) 3645242336489707 m001 (BesselK(0,1)-arctan(1/3))/(MertensB1+Trott) 3645242342391483 a008 Real Root of x^4-x^3-24*x^2+57*x-17 3645242350881633 r005 Re(z^2+c),c=9/58+7/18*I,n=7 3645242356901405 r009 Re(z^3+c),c=-79/126+15/28*I,n=3 3645242357560669 m001 ZetaR(2)/(GAMMA(19/24)^exp(Pi)) 3645242365493559 m001 Ei(1)*ArtinRank2/ln(Zeta(5)) 3645242373896482 b008 2*Sqrt[Pi]+Tan[1/10] 3645242378155860 a008 Real Root of x^4-2*x^3-18*x^2+19*x+35 3645242380799439 a007 Real Root Of 37*x^4-30*x^3-368*x^2+803*x-169 3645242399176863 r002 13th iterates of z^2 + 3645242401471535 r009 Re(z^3+c),c=-47/106+12/49*I,n=37 3645242415160738 p001 sum(1/(609*n+275)/(128^n),n=0..infinity) 3645242423354869 s002 sum(A160538[n]/(n*exp(pi*n)-1),n=1..infinity) 3645242425897578 r005 Im(z^2+c),c=-91/122+13/36*I,n=6 3645242435212150 m001 (KhinchinLevy+Salem)/(GAMMA(3/4)-gamma) 3645242441584025 r005 Im(z^2+c),c=13/44+13/58*I,n=11 3645242443540401 a007 Real Root Of 168*x^4+734*x^3+403*x^2-189*x-154 3645242445603268 r009 Re(z^3+c),c=-13/29+33/62*I,n=13 3645242446074982 m001 (HardyLittlewoodC5+Khinchin)^ln(Pi) 3645242460353987 r009 Re(z^3+c),c=-21/62+4/45*I,n=7 3645242467782584 m005 (3/4*Catalan-5)/(1/5*Catalan+1) 3645242472332869 m001 2^(1/3)+ln(5)+StronglyCareFree 3645242482942353 h001 (1/4*exp(2)+5/6)/(10/11*exp(2)+7/11) 3645242485162345 h001 (1/5*exp(2)+5/11)/(2/3*exp(2)+3/8) 3645242487416501 a007 Real Root Of -754*x^4+39*x^3+308*x^2+611*x+197 3645242487759766 r002 25th iterates of z^2 + 3645242493760496 m001 (FeigenbaumDelta+Niven)/(ln(2)+GAMMA(11/12)) 3645242496413270 m001 (MinimumGamma-Sierpinski)/(Ei(1)+KhinchinLevy) 3645242497293146 m001 (Catalan-Si(Pi))/(-sin(1/12*Pi)+gamma(3)) 3645242499243911 l006 ln(5609/8076) 3645242512918859 r002 35th iterates of z^2 + 3645242513874437 a007 Real Root Of 438*x^4+308*x^3-431*x^2-942*x+378 3645242517300601 r002 7th iterates of z^2 + 3645242519379106 a001 832040/521*843^(13/28) 3645242525035071 a007 Real Root Of 298*x^4+994*x^3-193*x^2+777*x+927 3645242539919205 m002 5+Pi^3*Cosh[Pi]+Tanh[Pi]/Pi^2 3645242541971859 m001 (-ZetaQ(2)+ZetaQ(4))/(3^(1/2)-ln(2)/ln(10)) 3645242547269428 m001 (BesselK(0,1)-Zeta(1/2))/(-Salem+TwinPrimes) 3645242555678226 a007 Real Root Of -319*x^4-872*x^3+802*x^2-966*x-91 3645242558670443 r005 Re(z^2+c),c=-17/14+33/215*I,n=28 3645242560861918 m005 (9/4+1/4*5^(1/2))/(4*3^(1/2)+7/9) 3645242562522250 r002 12th iterates of z^2 + 3645242570036287 m001 (Zeta(5)-MertensB1)/(Porter+TwinPrimes) 3645242577462173 m001 (Magata-Niven)/(PlouffeB-ZetaQ(3)) 3645242582492907 g004 Im(GAMMA(-32/15+I*2/3)) 3645242591031819 m009 (5/6*Psi(1,2/3)+1/2)/(2*Psi(1,3/4)-5) 3645242596093257 q001 1157/3174 3645242614014606 m001 ReciprocalFibonacci^Pi/(Trott2nd^Pi) 3645242614354528 a003 sin(Pi*3/25)*sin(Pi*46/101) 3645242627120019 k002 Champernowne real with 94*n^2-273*n+215 3645242645566278 r005 Re(z^2+c),c=-16/25+9/35*I,n=20 3645242646428437 m002 -5+Pi^6/E^Pi-Csch[Pi]*ProductLog[Pi] 3645242668243046 a005 (1/cos(37/161*Pi))^181 3645242674552444 m001 1/2/(BesselJ(1,1)-gamma) 3645242685042263 r005 Im(z^2+c),c=-33/56+22/63*I,n=5 3645242700288261 r005 Im(z^2+c),c=-13/110+33/64*I,n=37 3645242701157216 a002 12^(1/5)+12^(10/7) 3645242713468111 a001 2584*322^(11/24) 3645242714297784 a007 Real Root Of -553*x^4-469*x^3-547*x^2+917*x+394 3645242720641377 m005 (-29/44+1/4*5^(1/2))/(5/9*Pi+1) 3645242722884727 r005 Im(z^2+c),c=-1/5+21/38*I,n=36 3645242761576438 r005 Im(z^2+c),c=-1/14+25/51*I,n=26 3645242763041623 a003 cos(Pi*26/89)-sin(Pi*31/73) 3645242763625679 a005 (1/sin(79/199*Pi))^413 3645242780143561 r002 24i'th iterates of 2*x/(1-x^2) of 3645242780207387 a007 Real Root Of -895*x^4+998*x^3-362*x^2+441*x+273 3645242781818659 a003 cos(Pi*2/59)-sin(Pi*18/83) 3645242786213367 a007 Real Root Of 576*x^4-505*x^3+431*x^2-623*x-319 3645242788435493 m001 (2*Pi/GAMMA(5/6)+Niven)/(Shi(1)-Zeta(1,2)) 3645242806725045 a001 39088169/15127*322^(11/24) 3645242820331049 a001 34111385/13201*322^(11/24) 3645242822316138 a001 133957148/51841*322^(11/24) 3645242822605759 a001 233802911/90481*322^(11/24) 3645242822648014 a001 1836311903/710647*322^(11/24) 3645242822654179 a001 267084832/103361*322^(11/24) 3645242822655078 a001 12586269025/4870847*322^(11/24) 3645242822655209 a001 10983760033/4250681*322^(11/24) 3645242822655228 a001 43133785636/16692641*322^(11/24) 3645242822655231 a001 75283811239/29134601*322^(11/24) 3645242822655232 a001 591286729879/228826127*322^(11/24) 3645242822655232 a001 86000486440/33281921*322^(11/24) 3645242822655232 a001 4052739537881/1568397607*322^(11/24) 3645242822655232 a001 3536736619241/1368706081*322^(11/24) 3645242822655232 a001 3278735159921/1268860318*322^(11/24) 3645242822655232 a001 2504730781961/969323029*322^(11/24) 3645242822655232 a001 956722026041/370248451*322^(11/24) 3645242822655232 a001 182717648081/70711162*322^(11/24) 3645242822655233 a001 139583862445/54018521*322^(11/24) 3645242822655240 a001 53316291173/20633239*322^(11/24) 3645242822655290 a001 10182505537/3940598*322^(11/24) 3645242822655634 a001 7778742049/3010349*322^(11/24) 3645242822657989 a001 2971215073/1149851*322^(11/24) 3645242822674129 a001 567451585/219602*322^(11/24) 3645242822784754 a001 433494437/167761*322^(11/24) 3645242823542991 a001 165580141/64079*322^(11/24) 3645242828740022 a001 31622993/12238*322^(11/24) 3645242831745975 m005 (1/2*5^(1/2)+9/11)/(1/8*Catalan+5/12) 3645242832872946 m001 ZetaP(2)^(GAMMA(7/12)/Zeta(3)) 3645242852862276 m005 (1/2*gamma+10/11)/(10/11*2^(1/2)+2) 3645242857703955 a007 Real Root Of -307*x^4-980*x^3+404*x^2-474*x-359 3645242858927941 m001 (exp(1)+Si(Pi))/(-BesselI(0,2)+GAMMA(23/24)) 3645242862265703 r005 Im(z^2+c),c=31/86+7/51*I,n=21 3645242864361002 a001 24157817/9349*322^(11/24) 3645242870119527 m001 (Porter+Trott)/(ln(3)+Otter) 3645242870190272 r009 Im(z^3+c),c=-19/40+10/39*I,n=47 3645242876316003 m001 (Si(Pi)+ln(3))/(-GAMMA(17/24)+PlouffeB) 3645242885773396 a001 514229/521*843^(15/28) 3645242886242882 a007 Real Root Of 39*x^4+151*x^3+352*x^2+949*x-790 3645242895079458 r009 Im(z^3+c),c=-7/24+21/58*I,n=17 3645242909472898 r009 Im(z^3+c),c=-13/66+25/64*I,n=18 3645242941155169 m005 (1/2*gamma+5)/(3/8*Pi+3/11) 3645242954850897 h001 (9/10*exp(1)+1/12)/(11/12*exp(2)+1/6) 3645242971488582 r009 Im(z^3+c),c=-13/66+25/64*I,n=19 3645242980121229 m001 (Thue-ThueMorse)/(Ei(1,1)-exp(1/exp(1))) 3645242996527934 a001 1/841*(1/2*5^(1/2)+1/2)^13*29^(10/19) 3645243027052388 m001 Porter^2/exp(GaussKuzminWirsing)/TwinPrimes^2 3645243027964114 a001 29/76*(1/2*5^(1/2)+1/2)^28*76^(3/5) 3645243043660515 m001 GAMMA(7/24)-log(gamma)*GAMMA(23/24) 3645243045385427 r009 Re(z^3+c),c=-1/22+9/29*I,n=13 3645243049542107 b008 2*Sqrt[Pi]+ArcCoth[10] 3645243050288219 m005 (1/2*exp(1)-4/9)/(2/3*5^(1/2)-4) 3645243052863823 a007 Real Root Of 952*x^4-534*x^3+484*x^2-596*x+162 3645243065605961 l006 ln(202/7735) 3645243072839945 s002 sum(A119083[n]/(n^2*10^n+1),n=1..infinity) 3645243080255392 m001 (BesselJ(0,1)-Ei(1,1))/(-exp(-1/2*Pi)+Niven) 3645243084278869 r009 Re(z^3+c),c=-1/22+9/29*I,n=15 3645243087140699 a007 Real Root Of 319*x^4+887*x^3-830*x^2+652*x+45 3645243087583171 r005 Im(z^2+c),c=-17/86+29/55*I,n=15 3645243090998317 r005 Im(z^2+c),c=15/62+52/59*I,n=3 3645243091317231 r009 Re(z^3+c),c=-1/22+9/29*I,n=17 3645243091944097 r009 Re(z^3+c),c=-1/22+9/29*I,n=19 3645243091985452 r009 Re(z^3+c),c=-1/22+9/29*I,n=21 3645243091987522 r009 Re(z^3+c),c=-1/22+9/29*I,n=23 3645243091987582 r009 Re(z^3+c),c=-1/22+9/29*I,n=26 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=28 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=30 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=32 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=34 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=36 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=37 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=39 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=41 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=43 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=45 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=47 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=49 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=50 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=52 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=54 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=56 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=58 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=60 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=63 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=64 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=62 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=61 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=59 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=57 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=55 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=53 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=51 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=48 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=46 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=44 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=42 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=40 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=38 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=35 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=33 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=31 3645243091987583 r009 Re(z^3+c),c=-1/22+9/29*I,n=29 3645243091987584 r009 Re(z^3+c),c=-1/22+9/29*I,n=27 3645243091987585 r009 Re(z^3+c),c=-1/22+9/29*I,n=25 3645243091987588 r009 Re(z^3+c),c=-1/22+9/29*I,n=24 3645243091987987 r009 Re(z^3+c),c=-1/22+9/29*I,n=22 3645243091997610 r009 Re(z^3+c),c=-1/22+9/29*I,n=20 3645243092163900 r009 Re(z^3+c),c=-1/22+9/29*I,n=18 3645243092718529 a007 Real Root Of -738*x^4+245*x^3-731*x^2+886*x+445 3645243093342823 r009 Im(z^3+c),c=-11/21+13/58*I,n=61 3645243094363655 r009 Re(z^3+c),c=-1/22+9/29*I,n=16 3645243106479625 r009 Re(z^3+c),c=-1/22+9/29*I,n=12 3645243108510856 a001 9227465/3571*322^(11/24) 3645243108944736 m001 1/Ei(1)/exp(MinimumGamma)^2*GAMMA(17/24) 3645243113834892 r009 Re(z^3+c),c=-1/22+9/29*I,n=14 3645243113851344 m002 -1/4+(Log[Pi]*ProductLog[Pi])/2 3645243122658761 r009 Im(z^3+c),c=-13/66+25/64*I,n=21 3645243134610595 s002 sum(A222425[n]/(pi^n+1),n=1..infinity) 3645243141161279 r002 10th iterates of z^2 + 3645243148205565 a001 24476/89*89^(19/33) 3645243165321539 m005 (1/3*3^(1/2)-2/9)/(8/11*Zeta(3)+1/10) 3645243186467272 r009 Im(z^3+c),c=-11/98+23/57*I,n=4 3645243187573146 r005 Re(z^2+c),c=-19/16+11/62*I,n=14 3645243190169479 a007 Real Root Of -148*x^4-670*x^3-282*x^2+789*x+302 3645243193749589 r009 Re(z^3+c),c=-59/94+43/53*I,n=2 3645243202322084 r009 Im(z^3+c),c=-13/38+15/44*I,n=16 3645243209443871 r005 Im(z^2+c),c=-59/122+1/16*I,n=44 3645243210982393 m001 (ln(gamma)+KhinchinLevy)/MadelungNaCl 3645243222085692 r009 Im(z^3+c),c=-13/66+25/64*I,n=24 3645243227076159 r002 3th iterates of z^2 + 3645243230967963 r009 Im(z^3+c),c=-13/66+25/64*I,n=26 3645243232057356 r009 Im(z^3+c),c=-13/66+25/64*I,n=29 3645243232097260 r009 Im(z^3+c),c=-13/66+25/64*I,n=27 3645243232278715 r009 Im(z^3+c),c=-13/66+25/64*I,n=32 3645243232291123 r009 Im(z^3+c),c=-13/66+25/64*I,n=34 3645243232294429 r009 Im(z^3+c),c=-13/66+25/64*I,n=37 3645243232294869 r009 Im(z^3+c),c=-13/66+25/64*I,n=39 3645243232294876 r009 Im(z^3+c),c=-13/66+25/64*I,n=40 3645243232294888 r009 Im(z^3+c),c=-13/66+25/64*I,n=42 3645243232294896 r009 Im(z^3+c),c=-13/66+25/64*I,n=45 3645243232294896 r009 Im(z^3+c),c=-13/66+25/64*I,n=47 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=50 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=48 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=53 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=55 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=58 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=60 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=61 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=63 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=64 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=62 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=59 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=56 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=52 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=57 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=54 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=51 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=49 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=46 3645243232294897 r009 Im(z^3+c),c=-13/66+25/64*I,n=44 3645243232294899 r009 Im(z^3+c),c=-13/66+25/64*I,n=43 3645243232294917 r009 Im(z^3+c),c=-13/66+25/64*I,n=41 3645243232295085 r009 Im(z^3+c),c=-13/66+25/64*I,n=38 3645243232295187 r009 Im(z^3+c),c=-13/66+25/64*I,n=35 3645243232295499 r009 Im(z^3+c),c=-13/66+25/64*I,n=36 3645243232296088 r009 Im(z^3+c),c=-13/66+25/64*I,n=31 3645243232305562 r009 Im(z^3+c),c=-13/66+25/64*I,n=33 3645243232367597 r009 Im(z^3+c),c=-13/66+25/64*I,n=30 3645243232708914 r009 Im(z^3+c),c=-13/66+25/64*I,n=28 3645243237462041 r009 Im(z^3+c),c=-13/66+25/64*I,n=25 3645243240432150 r009 Im(z^3+c),c=-13/66+25/64*I,n=23 3645243252153938 a001 317811/521*843^(17/28) 3645243252570828 r005 Im(z^2+c),c=-141/122+2/43*I,n=46 3645243254604531 r009 Im(z^3+c),c=-13/66+25/64*I,n=22 3645243255649962 l006 ln(1637/2357) 3645243255649962 p004 log(2357/1637) 3645243267583727 a007 Real Root Of 592*x^4-274*x^3-38*x^2-673*x-264 3645243281334746 m001 (arctan(1/3)-FeigenbaumC)/(ThueMorse+ZetaQ(4)) 3645243285201418 h001 (11/12*exp(1)+9/11)/(3/11*exp(1)+1/6) 3645243301046646 r009 Im(z^3+c),c=-55/122+5/18*I,n=20 3645243303682340 r009 Im(z^3+c),c=-43/102+8/27*I,n=21 3645243320871585 r005 Re(z^2+c),c=-10/31+29/50*I,n=20 3645243322476571 m001 Zeta(5)*(GAMMA(5/24)-ln(1+sqrt(2))) 3645243333796328 b008 11*Erfi[2/7] 3645243339181180 r005 Re(z^2+c),c=-29/28+3/56*I,n=6 3645243364354911 a007 Real Root Of -825*x^4+723*x^3+907*x^2+439*x-301 3645243364919421 m005 (1/2*5^(1/2)-1/12)/(5/8*Pi+7/8) 3645243373285542 r005 Im(z^2+c),c=19/60+3/16*I,n=61 3645243375838369 a007 Real Root Of -217*x^4-706*x^3+265*x^2-260*x-351 3645243400530316 r005 Im(z^2+c),c=19/62+10/53*I,n=9 3645243422174342 a007 Real Root Of -318*x^4-921*x^3+870*x^2-229*x-858 3645243425772436 r009 Re(z^3+c),c=-15/29+11/32*I,n=22 3645243437810012 r005 Re(z^2+c),c=3/28+15/31*I,n=4 3645243438859452 m001 arctan(1/2)/GAMMA(7/12)*ln(cos(Pi/12))^2 3645243442156478 m001 (Si(Pi)-cos(1/5*Pi))/(Ei(1)+cos(1/12*Pi)) 3645243443740259 r002 6th iterates of z^2 + 3645243447562524 a007 Real Root Of -752*x^4-50*x^3+795*x^2+852*x+30 3645243457232254 m001 (Zeta(5)+GAMMA(2/3))/(gamma(2)-MasserGramain) 3645243460023050 a007 Real Root Of 326*x^4-281*x^3+537*x^2-415*x-242 3645243475772739 m001 (Si(Pi)+gamma)/(Bloch+DuboisRaymond) 3645243476093195 b008 29*Sqrt[158] 3645243476547521 r009 Im(z^3+c),c=-13/66+25/64*I,n=20 3645243480720300 a007 Real Root Of 258*x^4-204*x^3+978*x^2-276*x-245 3645243485285059 r005 Im(z^2+c),c=13/122+22/57*I,n=15 3645243488650196 m005 (1/2*exp(1)+5/7)/(2/33+5/22*5^(1/2)) 3645243513452669 m005 (1/3*3^(1/2)-1/7)/(5/7*Zeta(3)+1/3) 3645243530623293 a007 Real Root Of -26*x^4-964*x^3-607*x^2-537*x+534 3645243549205606 a002 3^(12/7)-6^(3/5) 3645243552811410 a001 832040/843*322^(5/8) 3645243556261895 m001 FeigenbaumAlpha+(2^(1/3))^Stephens 3645243567593724 r009 Im(z^3+c),c=-41/86+10/39*I,n=29 3645243573996271 m005 (7/24+1/6*5^(1/2))/(7/9*5^(1/2)+1/12) 3645243585189647 m002 -16/Pi+Pi^6/E^Pi 3645243591862954 m008 (5/6*Pi^5-4/5)/(1/5*Pi^2+5) 3645243594479515 r009 Im(z^3+c),c=-13/31+12/41*I,n=7 3645243598774449 l006 ln(4633/4805) 3645243601369853 m001 GAMMA(5/24)^(2^(1/3))/sqrt(Pi) 3645243603518681 m001 GAMMA(2/3)/(PlouffeB^MertensB3) 3645243608826360 r005 Im(z^2+c),c=5/66+24/59*I,n=15 3645243614663125 m005 (1/2*Pi+3/10)/(6*Catalan-4/11) 3645243618570607 a001 196418/521*843^(19/28) 3645243625522758 r005 Im(z^2+c),c=-5/8+55/163*I,n=12 3645243630120619 k002 Champernowne real with 189/2*n^2-549/2*n+216 3645243635987520 m001 1/Sierpinski^2/ln(LaplaceLimit)*Zeta(9) 3645243646389030 m001 (GAMMA(17/24)+Tetranacci)/(GAMMA(2/3)-3^(1/3)) 3645243646650461 r005 Re(z^2+c),c=11/36+28/55*I,n=19 3645243668284914 a007 Real Root Of -310*x^4+137*x^3+512*x^2+496*x-250 3645243693241156 m001 ln(GAMMA(17/24))*Si(Pi)/GAMMA(5/6)^2 3645243697201954 m001 (Pi^(1/2)-Backhouse)/(Bloch-Totient) 3645243697511046 r005 Im(z^2+c),c=1/8+10/27*I,n=24 3645243700011406 m001 Zeta(1,-1)*(BesselI(0,1)-Zeta(1,2)) 3645243702465237 r005 Im(z^2+c),c=-8/17+1/17*I,n=13 3645243713000368 r009 Re(z^3+c),c=-1/22+9/29*I,n=11 3645243724445637 r009 Im(z^3+c),c=-11/86+37/46*I,n=46 3645243732761831 a007 Real Root Of 881*x^4+91*x^3+987*x^2-995*x-505 3645243737361637 m001 (Chi(1)+Pi^(1/2))/(Champernowne+Lehmer) 3645243740615192 r005 Re(z^2+c),c=-31/114+31/50*I,n=29 3645243743673427 a007 Real Root Of 11*x^4+391*x^3-347*x^2+623*x+547 3645243747520009 m001 (2^(1/3)-Psi(1,1/3))/(FeigenbaumC+Lehmer) 3645243754815212 r005 Re(z^2+c),c=-8/7+31/114*I,n=22 3645243785053386 m001 exp(1/2)-ln(2+sqrt(3))*GAMMA(7/12) 3645243797967065 m001 (ln(3)-Artin)/(ArtinRank2-Khinchin) 3645243823026135 r009 Re(z^3+c),c=-65/114+17/36*I,n=50 3645243831397176 m001 (Landau+LaplaceLimit)/(Magata-Paris) 3645243836715537 r005 Re(z^2+c),c=-9/14+69/196*I,n=30 3645243840937915 m004 -125*Pi+5*Sqrt[5]*Pi-(20*Cot[Sqrt[5]*Pi])/Pi 3645243875412401 m001 Mills*(Zeta(1,-1)+Otter) 3645243897949670 a007 Real Root Of 881*x^4-214*x^3-961*x^2-454*x+288 3645243898136868 a003 sin(Pi*11/65)-sin(Pi*32/95) 3645243903311334 b008 81*Sinh[9/2] 3645243910108085 m001 ln(3)*FeigenbaumD+ArtinRank2 3645243910735652 m001 BesselI(1,2)*Otter^BesselJ(0,1) 3645243915082964 a001 1/24472*(1/2*5^(1/2)+1/2)^12*76^(4/17) 3645243924036513 a007 Real Root Of 324*x^4-504*x^3-292*x^2-572*x+266 3645243935503994 a007 Real Root Of 241*x^4+725*x^3-872*x^2-934*x+747 3645243948582616 m005 (1/2*2^(1/2)+5/9)/(4*Catalan-1/5) 3645243951623236 r005 Re(z^2+c),c=-11/23+11/45*I,n=25 3645243964886775 m001 (exp(-1/2*Pi)+Bloch)/(FeigenbaumMu-Niven) 3645243968678197 a007 Real Root Of 294*x^4+862*x^3-725*x^2+184*x+147 3645243970165310 r009 Re(z^3+c),c=-29/60+11/56*I,n=5 3645243977992504 a003 cos(Pi*17/107)-cos(Pi*22/67) 3645243980894615 l006 ln(5850/8423) 3645243981822855 m001 (FeigenbaumMu+MertensB1*Paris)/Paris 3645243984892827 a001 233*843^(3/4) 3645243988337359 r002 21i'th iterates of 2*x/(1-x^2) of 3645243990009900 r002 3th iterates of z^2 + 3645244002897814 a001 11/225851433717*233^(19/24) 3645244018491081 a007 Real Root Of -272*x^4-775*x^3+590*x^2-972*x-896 3645244026942419 m001 Zeta(1/2)^2/FeigenbaumC/exp(sqrt(3))^2 3645244038743077 r005 Im(z^2+c),c=1/21+19/45*I,n=28 3645244039570657 m001 BesselI(1,1)/(Artin^Ei(1)) 3645244051925604 r005 Re(z^2+c),c=-21/46+16/45*I,n=26 3645244060408824 m001 (FellerTornier+Rabbit)/(GAMMA(7/12)+Conway) 3645244067874830 r009 Re(z^3+c),c=-12/31+9/53*I,n=17 3645244068722539 p003 LerchPhi(1/12,2,315/187) 3645244071597744 r009 Im(z^3+c),c=-1/3+21/61*I,n=6 3645244078196245 m001 (Zeta(1,2)+Grothendieck)/(2^(1/3)+Shi(1)) 3645244088980259 m001 (GAMMA(3/4)-Ei(1,1))/(FeigenbaumD+ZetaP(4)) 3645244091597472 a001 11*377^(45/46) 3645244136844218 a001 3/13*34^(18/23) 3645244139175811 r002 56th iterates of z^2 + 3645244147095433 r005 Im(z^2+c),c=-15/31+34/57*I,n=57 3645244150720828 m001 (Chi(1)-Gompertz)/(HardyLittlewoodC3+Trott2nd) 3645244173564645 r005 Im(z^2+c),c=-57/58+5/19*I,n=40 3645244187500396 m001 (ErdosBorwein-ln(2)/ln(10))/(Magata+ZetaP(3)) 3645244191576516 a007 Real Root Of 234*x^4-947*x^3+669*x^2-730*x-405 3645244193996237 r009 Re(z^3+c),c=-19/52+11/15*I,n=50 3645244197481620 m001 (Salem+Trott2nd)/(3^(1/3)-Pi^(1/2)) 3645244199141935 r002 3th iterates of z^2 + 3645244203182463 a007 Real Root Of -59*x^4+555*x^3-963*x^2-786*x-804 3645244207183433 m001 (Psi(2,1/3)-exp(-1/2*Pi))/(-GAMMA(7/12)+Trott) 3645244215938303 q001 709/1945 3645244226632970 r002 8th iterates of z^2 + 3645244245899443 a001 23725150497407/2*2178309^(1/13) 3645244245899455 a001 9062201101803/2*591286729879^(1/13) 3645244245899455 a001 7331474697802*1134903170^(1/13) 3645244248949999 m001 gamma(1)^Thue/(CopelandErdos^Thue) 3645244262695098 l006 ln(4213/6066) 3645244265720100 s002 sum(A119083[n]/(n^2*10^n-1),n=1..infinity) 3645244266713866 m001 exp(GAMMA(1/4))^2/Magata^2/gamma^2 3645244310529866 a001 817138163596/377*2^(3/4) 3645244319427012 r005 Im(z^2+c),c=5/38+29/50*I,n=36 3645244324792115 m005 (1/2*2^(1/2)-3/10)/(8/11*3^(1/2)-1/7) 3645244350003888 m001 (Zeta(3)+Zeta(1/2))/(Kolakoski-Sarnak) 3645244351462450 a001 75025/521*843^(23/28) 3645244354912295 m005 (-1/20+1/4*5^(1/2))/(7/12*2^(1/2)+4/7) 3645244360186656 m005 (47/44+1/4*5^(1/2))/(5/11*Zeta(3)-1/10) 3645244366676780 m005 (1/2*2^(1/2)+5/6)/(5/12*2^(1/2)-1/6) 3645244376441543 m001 (2^(1/3))*exp(Robbin)/sin(Pi/12)^2 3645244377828996 a007 Real Root Of 741*x^4-170*x^3-515*x^2-879*x+384 3645244383672431 r005 Re(z^2+c),c=-14/29+5/18*I,n=16 3645244385485689 m001 exp(CareFree)^2/Artin*gamma^2 3645244413187829 r005 Im(z^2+c),c=23/66+18/47*I,n=57 3645244429840990 r005 Re(z^2+c),c=-6/23+19/31*I,n=46 3645244459044549 m001 GAMMA(1/12)^2/exp(BesselK(0,1))/cosh(1)^2 3645244459223919 m001 BesselK(1,1)-Kolakoski^ZetaR(2) 3645244470524951 r005 Re(z^2+c),c=-31/50+12/61*I,n=11 3645244479267726 r005 Im(z^2+c),c=5/14+6/23*I,n=18 3645244492621935 r005 Re(z^2+c),c=-15/32+12/41*I,n=58 3645244498880881 r004 Im(z^2+c),c=-10/9-1/22*I,z(0)=-1,n=7 3645244505519194 l006 ln(6789/9775) 3645244509768311 m001 (Zeta(5)-GAMMA(19/24))/(Artin+HeathBrownMoroz) 3645244518217066 l006 ln(89/3408) 3645244532560393 a001 9227465/521*322^(1/8) 3645244537254096 a007 Real Root Of -260*x^4+603*x^3+174*x^2+363*x+143 3645244538153729 r009 Re(z^3+c),c=-5/74+13/19*I,n=46 3645244543987490 a007 Real Root Of 605*x^4-986*x^3+769*x^2-525*x-352 3645244558015941 h001 (9/11*exp(2)+3/4)/(2/9*exp(2)+2/9) 3645244565325307 m001 (GAMMA(2/3)-cos(1))/(-Khinchin+Riemann3rdZero) 3645244568855869 m004 -5-125*Pi+5*Sqrt[5]*Pi-Log[Sqrt[5]*Pi] 3645244570375850 r005 Re(z^2+c),c=-45/94+13/55*I,n=43 3645244579486653 s002 sum(A286429[n]/(exp(2*pi*n)+1),n=1..infinity) 3645244579486818 s002 sum(A286429[n]/(exp(2*pi*n)-1),n=1..infinity) 3645244580483101 r005 Im(z^2+c),c=-1/20+26/53*I,n=10 3645244583083719 m005 (1/18+1/6*5^(1/2))/(7/10*Zeta(3)+1/3) 3645244590364002 r005 Re(z^2+c),c=-29/62+12/41*I,n=27 3645244594214928 r005 Re(z^2+c),c=-13/27+12/55*I,n=47 3645244594941469 a007 Real Root Of 666*x^4-787*x^3+557*x^2-121*x-168 3645244604107857 m001 (3^(1/2)-gamma(3))/(FeigenbaumDelta+ZetaP(4)) 3645244604424816 m009 (1/2*Pi^2-1/5)/(3/8*Pi^2-5) 3645244604932852 a003 cos(Pi*1/119)*sin(Pi*12/101) 3645244619674104 r005 Im(z^2+c),c=19/102+24/43*I,n=8 3645244622948092 r005 Im(z^2+c),c=-11/52+19/36*I,n=18 3645244628295659 m001 1/Niven^2*exp(MertensB1)/GAMMA(3/4) 3645244633121219 k002 Champernowne real with 95*n^2-276*n+217 3645244634772055 r005 Im(z^2+c),c=-27/122+27/47*I,n=51 3645244641004258 r002 4th iterates of z^2 + 3645244644483626 a007 Real Root Of 280*x^4+918*x^3-246*x^2+676*x+760 3645244654282081 m001 1/TwinPrimes*FransenRobinson^2/ln(sqrt(Pi))^2 3645244669358458 a003 sin(Pi*18/113)-sin(Pi*8/25) 3645244671862390 m001 (BesselI(1,2)-Sierpinski)/(ln(2)-cos(1/12*Pi)) 3645244677625565 r009 Re(z^3+c),c=-53/110+17/58*I,n=64 3645244684586909 m001 (ZetaP(4)/gamma)^(1/2) 3645244690604026 s001 sum(exp(-2*Pi/3)^n*A109943[n],n=1..infinity) 3645244690674053 r002 2th iterates of z^2 + 3645244696734076 r005 Im(z^2+c),c=-11/8+1/96*I,n=16 3645244717384498 a001 46368/521*843^(25/28) 3645244717640304 m001 (BesselI(0,1)+Bloch)/(-KhinchinLevy+Rabbit) 3645244722963535 m001 GAMMA(17/24)-sin(1/12*Pi)-Robbin 3645244742789311 m001 Riemann3rdZero*(Riemann1stZero+TreeGrowth2nd) 3645244744919625 p004 log(24611/17093) 3645244755100613 a007 Real Root Of -359*x^4+489*x^3+638*x^2+680*x-350 3645244778186855 q001 1/27433 3645244781939730 a001 1762289/682*322^(11/24) 3645244788160702 m001 GAMMA(1/12)/FeigenbaumB/ln(cos(1))^2 3645244794812985 p003 LerchPhi(1/16,4,223/173) 3645244796283894 m005 (1/2*Catalan-11/12)/(3/5*5^(1/2)-1/12) 3645244800068100 m001 (Chi(1)+BesselJ(1,1))/(Magata+Paris) 3645244835558338 m004 -4-125*Pi+5*Sqrt[5]*Pi-4*Cos[Sqrt[5]*Pi] 3645244883293825 m001 (-Artin+ZetaQ(2))/(ln(2)/ln(10)+gamma) 3645244883560109 r005 Re(z^2+c),c=-21/44+12/41*I,n=16 3645244886079145 m005 (1/2*exp(1)+1/11)/(9/10*2^(1/2)-7/8) 3645244896277461 r005 Im(z^2+c),c=-9/16+5/76*I,n=45 3645244902653465 l006 ln(2576/3709) 3645244908029084 h001 (1/11*exp(1)+6/11)/(7/11*exp(1)+4/9) 3645244925161195 m005 (1/2*2^(1/2)+8/11)/(7/9*Zeta(3)+3) 3645244926772135 r009 Re(z^3+c),c=-57/106+3/20*I,n=9 3645244930854080 m008 (5/6*Pi^3+1/3)/(2/3*Pi^2+3/5) 3645244940844816 r002 14th iterates of z^2 + 3645244943836435 m001 (Trott2nd+Thue)/(Lehmer+Tribonacci) 3645244944077374 m001 (Pi*Psi(1,1/3)+gamma)*GAMMA(5/6) 3645244951365903 r005 Im(z^2+c),c=11/60+19/58*I,n=10 3645244966839580 r005 Re(z^2+c),c=-3/4+19/100*I,n=6 3645244976440342 m001 (FeigenbaumAlpha-cos(1))/(-OneNinth+ZetaQ(2)) 3645244979006156 r005 Re(z^2+c),c=-43/66+21/62*I,n=11 3645244980945454 r009 Im(z^3+c),c=-7/18+19/60*I,n=24 3645244981516437 m009 (3*Psi(1,2/3)+6)/(4*Psi(1,3/4)-6) 3645244984888771 m005 (1/3*Pi-1/6)/(7/8*Pi-1/3) 3645244989782234 r005 Re(z^2+c),c=-23/36+8/43*I,n=13 3645244995520547 m001 (2^(1/3)+Niven)/(Paris+TravellingSalesman) 3645245004088384 a001 3524578/2207*322^(13/24) 3645245005626119 m001 ZetaQ(2)^Paris*ZetaQ(2)^MertensB2 3645245006232354 m005 (1/2*Catalan+1/9)/(109/140+7/20*5^(1/2)) 3645245008078766 p004 log(22937/599) 3645245025595341 m001 (Landau+TreeGrowth2nd)/(Shi(1)+GAMMA(13/24)) 3645245029050386 m002 -Pi^3+(E^Pi*Pi*Tanh[Pi])/ProductLog[Pi] 3645245031226684 m001 FellerTornier-GlaisherKinkelin-Khinchin 3645245038352149 r009 Re(z^3+c),c=-43/94+16/61*I,n=23 3645245046847264 m001 FransenRobinson+BesselJ(0,1)^LaplaceLimit 3645245049317486 r005 Im(z^2+c),c=-31/98+8/17*I,n=6 3645245050751360 r005 Im(z^2+c),c=-19/26+3/119*I,n=46 3645245052094662 m001 (5^(1/2)+Porter)/(Stephens+TreeGrowth2nd) 3645245058121815 m002 Pi*Cosh[Pi]+(3*Log[Pi])/Pi^4 3645245059898096 r005 Re(z^2+c),c=-29/102+22/43*I,n=4 3645245070220874 a001 23725150497407/377*102334155^(2/21) 3645245070220874 a001 9062201101803/377*2504730781961^(2/21) 3645245085002053 a001 28657/521*843^(27/28) 3645245095967775 r005 Re(z^2+c),c=-12/25+10/43*I,n=25 3645245113381383 r009 Im(z^3+c),c=-53/102+11/52*I,n=60 3645245119737688 r002 32th iterates of z^2 + 3645245120529984 r005 Re(z^2+c),c=-59/98+17/58*I,n=18 3645245121894818 r005 Im(z^2+c),c=9/62+16/45*I,n=25 3645245129958743 r009 Im(z^3+c),c=-5/11+9/17*I,n=26 3645245141110466 r005 Im(z^2+c),c=1/6+20/59*I,n=32 3645245161661577 a007 Real Root Of -148*x^4-773*x^3-719*x^2+450*x-116 3645245163032950 m001 1/exp(BesselK(1,1))*Rabbit*Zeta(1,2) 3645245182014709 m001 1/sin(Pi/12)*Zeta(7)*exp(sqrt(5)) 3645245208339380 r005 Im(z^2+c),c=-93/106+7/30*I,n=50 3645245220815384 r009 Re(z^3+c),c=-1/78+49/64*I,n=50 3645245221386755 a007 Real Root Of 119*x^4+150*x^3-148*x^2-935*x-316 3645245221862080 r005 Im(z^2+c),c=-29/122+25/42*I,n=16 3645245222832534 r005 Im(z^2+c),c=-5/6+1/47*I,n=29 3645245227372521 r005 Im(z^2+c),c=-51/70+9/55*I,n=32 3645245227709835 r005 Im(z^2+c),c=-29/24+7/62*I,n=3 3645245229488097 a007 Real Root Of -833*x^4-534*x^3-925*x^2+788*x+399 3645245237745785 a007 Real Root Of 678*x^4-634*x^3+106*x^2-264*x-153 3645245256572018 r009 Re(z^3+c),c=-51/110+13/48*I,n=30 3645245276431690 m005 (1/2*gamma+2)/(3/11*Zeta(3)+3/10) 3645245280883193 a007 Real Root Of 220*x^4+694*x^3-325*x^2+523*x+996 3645245289390092 r009 Re(z^3+c),c=-8/15+11/36*I,n=46 3645245303849242 m001 (Catalan-ln(2)/ln(10))/(-BesselI(0,2)+Lehmer) 3645245312098400 r005 Im(z^2+c),c=29/126+15/53*I,n=18 3645245322597706 a003 -1-1/2*3^(1/2)-2*cos(7/27*Pi)-cos(11/30*Pi) 3645245332175423 r002 2th iterates of z^2 + 3645245332880749 a001 4/7*(1/2*5^(1/2)+1/2)^16*7^(6/11) 3645245345118355 r005 Im(z^2+c),c=1/14+31/50*I,n=23 3645245345297441 l006 ln(6091/8770) 3645245350122207 r009 Im(z^3+c),c=-23/56+17/56*I,n=31 3645245380857064 m001 1/Sierpinski/HardHexagonsEntropy*ln(Zeta(5))^2 3645245400801525 m001 GAMMA(1/3)-GolombDickman+BesselI(1,2) 3645245401290168 m001 (Sarnak-Trott)/(exp(-1/2*Pi)+MadelungNaCl) 3645245407958155 r005 Im(z^2+c),c=-143/122+5/17*I,n=32 3645245409220770 a007 Real Root Of 792*x^4-102*x^3-380*x^2-926*x+379 3645245409306564 r005 Re(z^2+c),c=-33/118+13/24*I,n=4 3645245421687026 m001 (Pi+BesselI(0,2))^BesselJ(0,1) 3645245423388620 a007 Real Root Of -324*x^4-962*x^3+528*x^2-979*x+26 3645245424444764 m001 sin(1)/(HardyLittlewoodC5-exp(1)) 3645245427404278 m001 (MadelungNaCl-Sarnak)/(Champernowne+Khinchin) 3645245431749135 r005 Re(z^2+c),c=-15/32+12/41*I,n=54 3645245448155242 m001 Lehmer/(Catalan+Rabbit) 3645245452809835 m001 1/GAMMA(11/24)*ln(Riemann1stZero)^2*Zeta(9)^2 3645245459665757 m001 (ln(5)-Grothendieck)/(PlouffeB-ZetaQ(4)) 3645245462806506 r009 Im(z^3+c),c=-49/118+13/43*I,n=7 3645245468496702 m001 exp(-1/2*Pi)^Zeta(5)/ZetaQ(2) 3645245480732244 m001 GAMMA(3/4)^(3^(1/3))-Niven 3645245495087358 r009 Im(z^3+c),c=-13/66+25/64*I,n=17 3645245512743714 s001 sum(exp(-Pi/4)^(n-1)*A253563[n],n=1..infinity) 3645245517699151 m005 (1/3*exp(1)-1/12)/(8/9*2^(1/2)+1) 3645245528835587 a007 Real Root Of -940*x^4+242*x^3+450*x^2+229*x+52 3645245541165557 m001 Trott/Salem^2/exp(BesselJ(0,1)) 3645245542361123 r009 Im(z^3+c),c=-13/29+5/18*I,n=37 3645245546316266 m009 (5/6*Psi(1,1/3)+4/5)/(5/2*Pi^2+3/5) 3645245562719501 r005 Im(z^2+c),c=31/94+9/59*I,n=32 3645245574316592 r005 Re(z^2+c),c=-27/34+27/128*I,n=8 3645245586154765 r005 Re(z^2+c),c=-9/14+65/248*I,n=22 3645245611369500 r005 Re(z^2+c),c=33/106+3/41*I,n=49 3645245621773174 m002 -5*Csch[Pi]^2+Tanh[Pi]/Pi^6 3645245621997440 r005 Re(z^2+c),c=-8/17+4/23*I,n=10 3645245635128847 m001 (GAMMA(5/6)+MasserGramain)/(Robbin-ZetaP(3)) 3645245636121819 k002 Champernowne real with 191/2*n^2-555/2*n+218 3645245643281237 a001 9227465/5778*322^(13/24) 3645245649614986 b008 13*ModularLambda[1+I/21] 3645245651205911 r005 Im(z^2+c),c=-23/90+26/45*I,n=45 3645245655354395 m006 (1/4/Pi+1/4)/(1/2*Pi-2/3) 3645245656006016 a007 Real Root Of -132*x^4-644*x^3-765*x^2-580*x+164 3645245661377300 s001 sum(exp(-Pi)^(n-1)*A123058[n],n=1..infinity) 3645245669693127 l006 ln(3515/5061) 3645245674433273 r002 9th iterates of z^2 + 3645245675694973 m001 1/exp(Pi)^2/PisotVijayaraghavan^2/cos(1)^2 3645245676066509 r005 Re(z^2+c),c=-13/30+22/51*I,n=39 3645245678245084 r005 Re(z^2+c),c=-11/24+17/50*I,n=37 3645245687915718 m001 (exp(1)+5^(1/2))/(GlaisherKinkelin+ZetaP(4)) 3645245707581334 r005 Im(z^2+c),c=29/122+5/18*I,n=42 3645245713080686 m001 1/Cahen^2*ErdosBorwein^2/ln(KhintchineLevy) 3645245725735802 l006 ln(243/9305) 3645245726835537 m001 (Gompertz+Rabbit)/(BesselI(0,2)+Conway) 3645245731429537 a007 Real Root Of -154*x^4-688*x^3-633*x^2-492*x+484 3645245731830908 a007 Real Root Of -22*x^4-792*x^3+367*x^2+169*x+646 3645245736538236 a001 24157817/15127*322^(13/24) 3645245745455456 m005 (1/2*3^(1/2)-1/4)/(2/7*gamma-2/11) 3645245749046812 a001 18/5702887*2178309^(22/23) 3645245749046936 a001 6/75283811239*139583862445^(22/23) 3645245750144249 a001 63245986/39603*322^(13/24) 3645245752129340 a001 165580141/103682*322^(13/24) 3645245752418961 a001 433494437/271443*322^(13/24) 3645245752461216 a001 1134903170/710647*322^(13/24) 3645245752467381 a001 2971215073/1860498*322^(13/24) 3645245752468280 a001 7778742049/4870847*322^(13/24) 3645245752468411 a001 20365011074/12752043*322^(13/24) 3645245752468431 a001 53316291173/33385282*322^(13/24) 3645245752468433 a001 139583862445/87403803*322^(13/24) 3645245752468434 a001 365435296162/228826127*322^(13/24) 3645245752468434 a001 956722026041/599074578*322^(13/24) 3645245752468434 a001 2504730781961/1568397607*322^(13/24) 3645245752468434 a001 6557470319842/4106118243*322^(13/24) 3645245752468434 a001 10610209857723/6643838879*322^(13/24) 3645245752468434 a001 4052739537881/2537720636*322^(13/24) 3645245752468434 a001 1548008755920/969323029*322^(13/24) 3645245752468434 a001 591286729879/370248451*322^(13/24) 3645245752468434 a001 225851433717/141422324*322^(13/24) 3645245752468435 a001 86267571272/54018521*322^(13/24) 3645245752468442 a001 32951280099/20633239*322^(13/24) 3645245752468492 a001 12586269025/7881196*322^(13/24) 3645245752468836 a001 4807526976/3010349*322^(13/24) 3645245752471191 a001 1836311903/1149851*322^(13/24) 3645245752487331 a001 701408733/439204*322^(13/24) 3645245752597956 a001 267914296/167761*322^(13/24) 3645245752895635 m001 Zeta(1/2)+gamma(3)+MasserGramainDelta 3645245753356193 a001 102334155/64079*322^(13/24) 3645245754382572 m001 ln(FeigenbaumKappa)/FeigenbaumD^2/OneNinth^2 3645245757280696 m005 (1/3*Zeta(3)-1/5)/(2*Pi-7/9) 3645245758553228 a001 39088169/24476*322^(13/24) 3645245761430549 r009 Re(z^3+c),c=-1/42+45/62*I,n=11 3645245764114275 a007 Real Root Of 106*x^4-510*x^3-412*x^2-783*x+363 3645245777654970 m001 BesselK(0,1)^(2^(1/3))*Trott 3645245780478311 m001 (ArtinRank2-Cahen)/(3^(1/3)-BesselI(1,2)) 3645245781519527 m001 (BesselI(1,2)-Catalan)/(-GaussAGM+Khinchin) 3645245794174234 a001 14930352/9349*322^(13/24) 3645245802142328 m001 (arctan(1/3)+GaussAGM)/(Niven+Porter) 3645245807232115 r005 Re(z^2+c),c=-53/110+8/37*I,n=31 3645245840186331 v002 sum(1/(3^n+(31*n^2-70*n+100)),n=1..infinity) 3645245850516213 r009 Im(z^3+c),c=-25/102+8/21*I,n=6 3645245886587771 r009 Re(z^3+c),c=-25/56+9/58*I,n=5 3645245887901982 r005 Im(z^2+c),c=3/94+10/23*I,n=17 3645245897568687 r009 Im(z^3+c),c=-3/46+26/63*I,n=4 3645245901060496 r005 Im(z^2+c),c=17/82+11/36*I,n=28 3645245915569931 r009 Re(z^3+c),c=-25/102+51/56*I,n=12 3645245927141882 m001 (ZetaP(3)+ZetaQ(2))/(HeathBrownMoroz+Kac) 3645245959858263 m005 (1/2*2^(1/2)+10/11)/(1/4*Zeta(3)+1/7) 3645245973615174 r005 Re(z^2+c),c=-65/118+22/57*I,n=21 3645245975929304 r009 Im(z^3+c),c=-55/114+1/4*I,n=50 3645245978932282 m001 (LandauRamanujan2nd+Sarnak)/(Pi+BesselJ(1,1)) 3645245982905556 m001 (Robbin+ZetaP(3))/(Bloch+MasserGramainDelta) 3645245986478639 a007 Real Root Of 479*x^4-305*x^3+276*x^2-813*x+266 3645245987944878 r009 Im(z^3+c),c=-31/70+15/53*I,n=20 3645246003268330 m001 (arctan(1/2)-cos(1))/(-FeigenbaumMu+Porter) 3645246029796058 m001 (-BesselI(1,1)+5)/(GAMMA(1/12)+2/3) 3645246034810553 r005 Re(z^2+c),c=-35/78+17/43*I,n=29 3645246038324257 a001 1597*322^(13/24) 3645246062341189 s002 sum(A197776[n]/(n^2*exp(n)-1),n=1..infinity) 3645246070889258 a007 Real Root Of -15*x^4+843*x^3-877*x^2+824*x+458 3645246104526823 h005 exp(cos(Pi*5/43)+cos(Pi*18/47)) 3645246113315499 l006 ln(4454/6413) 3645246115253789 m001 (FeigenbaumD+Sarnak)/(Chi(1)-Pi^(1/2)) 3645246139550974 r005 Re(z^2+c),c=17/82+25/46*I,n=11 3645246144346068 r005 Re(z^2+c),c=-47/102+12/43*I,n=11 3645246148064637 q001 97/2661 3645246161031293 m005 (4/5*exp(1)-4/5)/(1/4*Catalan-4) 3645246178215887 m001 (ln(Pi)+arctan(1/2)*Salem)/arctan(1/2) 3645246183672600 r009 Im(z^3+c),c=-5/19+16/43*I,n=17 3645246187626625 h001 (-exp(2/3)+7)/(-7*exp(3)+2) 3645246197638067 r002 30th iterates of z^2 + 3645246199241226 m008 (2/3*Pi^6-3/4)/(3/4*Pi-3/5) 3645246200231231 l006 ln(8000/8297) 3645246201274477 a007 Real Root Of 540*x^4-224*x^3-188*x^2-792*x+315 3645246203000718 s001 sum(exp(-Pi/2)^n*A182656[n],n=1..infinity) 3645246211205544 p003 LerchPhi(1/125,2,355/214) 3645246214645937 h001 (-6*exp(2)-1)/(-2*exp(1)-7) 3645246219484733 r005 Re(z^2+c),c=13/36+1/15*I,n=7 3645246222346774 m006 (4/5/Pi+2)/(1/4*exp(Pi)+2/5) 3645246226350659 r002 3th iterates of z^2 + 3645246238085837 r005 Im(z^2+c),c=-17/82+25/42*I,n=43 3645246243086312 m001 (-GAMMA(23/24)+2/3)/(-BesselJ(0,1)+2/3) 3645246247544039 a007 Real Root Of 762*x^4+157*x^3+703*x^2-932*x-439 3645246251247613 r009 Im(z^3+c),c=-29/82+34/55*I,n=13 3645246266416215 m001 BesselI(1,1)^Conway*ZetaP(4) 3645246285052438 r002 7th iterates of z^2 + 3645246285343016 a007 Real Root Of 799*x^4-777*x^3-612*x^2-988*x+465 3645246286427554 r002 20th iterates of z^2 + 3645246296198134 r002 8th iterates of z^2 + 3645246298140304 a001 14930208*3^(13/16) 3645246304320505 r005 Im(z^2+c),c=-3/26+18/35*I,n=37 3645246308195337 s002 sum(A034826[n]/(2^n-1),n=1..infinity) 3645246317095703 m002 5+Pi^(-2)+Pi^3*Cosh[Pi] 3645246331260882 r008 a(0)=0,K{-n^6,-40-39*n^3+58*n^2+46*n} 3645246350506541 r009 Im(z^3+c),c=-13/66+25/64*I,n=14 3645246350892420 r005 Im(z^2+c),c=-7/50+19/36*I,n=41 3645246354146618 a003 cos(Pi*5/74)/sin(Pi*7/81) 3645246389053276 r005 Re(z^2+c),c=-95/66+4/15*I,n=4 3645246402455604 l006 ln(5393/7765) 3645246408469044 r005 Im(z^2+c),c=-5/4+90/187*I,n=3 3645246421265798 r005 Re(z^2+c),c=-7/16+25/61*I,n=23 3645246423586874 l006 ln(154/5897) 3645246423610917 r005 Im(z^2+c),c=-6/31+27/49*I,n=39 3645246425631006 a007 Real Root Of 879*x^4-568*x^3-341*x^2-928*x-336 3645246431282072 a007 Real Root Of 617*x^4-918*x^3+776*x^2+635*x+73 3645246432720939 r009 Im(z^3+c),c=-39/86+4/23*I,n=3 3645246436353536 r005 Im(z^2+c),c=-5/8+7/103*I,n=54 3645246438922146 b008 1/16+ArcCosh[18] 3645246454602237 r005 Im(z^2+c),c=13/64+17/55*I,n=34 3645246461707232 a007 Real Root Of 978*x^4-387*x^3+215*x^2-922*x+309 3645246482629009 a001 514229/843*322^(17/24) 3645246494324059 r009 Re(z^3+c),c=-37/102+33/52*I,n=47 3645246518193986 m001 Porter^2*FibonacciFactorial^2*ln(GAMMA(7/24)) 3645246518333815 m001 ln(Paris)*DuboisRaymond*cos(Pi/5) 3645246523974144 r005 Im(z^2+c),c=1/9+17/44*I,n=12 3645246539962912 r005 Re(z^2+c),c=-35/74+10/37*I,n=48 3645246541295335 b008 -6*E^(1/17)+E 3645246551242978 r005 Re(z^2+c),c=-33/74+25/64*I,n=45 3645246571675583 m001 ln(Trott)^2*ArtinRank2^2/sqrt(1+sqrt(3))^2 3645246575256733 a007 Real Root Of -521*x^4+634*x^3+902*x^2+918*x-476 3645246576334809 r002 8th iterates of z^2 + 3645246578538301 m001 Otter/(ZetaR(2)^ln(2+3^(1/2))) 3645246580772782 m005 (1/2*Pi-7/10)/(4/5*5^(1/2)+3/5) 3645246598272097 a007 Real Root Of 211*x^4+248*x^3+33*x^2-606*x-217 3645246601487185 r005 Im(z^2+c),c=-9/40+17/30*I,n=63 3645246605839999 l006 ln(6332/9117) 3645246608862544 m001 (Shi(1)-gamma)/(-cos(1/12*Pi)+Riemann1stZero) 3645246616802701 r005 Re(z^2+c),c=-1/62+3/19*I,n=8 3645246627165115 s002 sum(A175155[n]/((2^n-1)/n),n=1..infinity) 3645246629308206 m004 -5+ProductLog[Sqrt[5]*Pi]-36*Tan[Sqrt[5]*Pi] 3645246639122420 k002 Champernowne real with 96*n^2-279*n+219 3645246660512903 h001 (4/5*exp(1)+1/7)/(5/6*exp(2)+1/5) 3645246690861348 a007 Real Root Of -184*x^4-630*x^3+339*x^2+812*x+428 3645246725690400 r005 Re(z^2+c),c=-39/110+11/21*I,n=23 3645246734941920 r005 Re(z^2+c),c=-9/19+11/36*I,n=10 3645246738333822 a007 Real Root Of 517*x^4+49*x^3+174*x^2-394*x+109 3645246761976700 a003 sin(Pi*2/15)-sin(Pi*30/107) 3645246762471998 r005 Re(z^2+c),c=13/90+19/41*I,n=28 3645246767441906 m001 Rabbit*KhintchineLevy/ln((2^(1/3))) 3645246780486901 s002 sum(A009818[n]/(n*10^n+1),n=1..infinity) 3645246780487110 s002 sum(A009818[n]/(n*10^n-1),n=1..infinity) 3645246785115187 r005 Re(z^2+c),c=-33/82+17/32*I,n=64 3645246789003524 r005 Re(z^2+c),c=5/48+19/47*I,n=35 3645246794576647 r002 15th iterates of z^2 + 3645246797551770 s002 sum(A176655[n]/(16^n-1),n=1..infinity) 3645246797556251 s002 sum(A123321[n]/(16^n-1),n=1..infinity) 3645246798229150 m001 cos(1/12*Pi)/LaplaceLimit*Riemann3rdZero 3645246799617766 r005 Re(z^2+c),c=-19/34+55/81*I,n=9 3645246809711766 m001 (HardyLittlewoodC3+Lehmer)/(Otter+ThueMorse) 3645246819916164 m001 (5^(1/2)-Conway)/(-Gompertz+PolyaRandomWalk3D) 3645246820176215 a007 Real Root Of -243*x^4-711*x^3+889*x^2+797*x-441 3645246822153298 r002 12th iterates of z^2 + 3645246825067206 a007 Real Root Of 631*x^4-32*x^3+215*x^2-999*x+326 3645246831415027 a007 Real Root Of 159*x^4+266*x^3-969*x^2+539*x-349 3645246833568818 m005 (3*2^(1/2)-1/5)/(11/2+5/2*5^(1/2)) 3645246838421001 k005 Champernowne real with floor(log(3)*(145*n+187)) 3645246848441004 k005 Champernowne real with floor(sqrt(2)*(113*n+145)) 3645246848441004 k001 Champernowne real with 160*n+204 3645246848451005 k005 Champernowne real with floor(Pi*(51*n+65)) 3645246858451005 k005 Champernowne real with floor(Catalan*(175*n+223)) 3645246858451005 k005 Champernowne real with floor(exp(1)*(59*n+75)) 3645246866135222 a007 Real Root Of -180*x^4-726*x^3-144*x^2+163*x-876 3645246871362800 a007 Real Root Of -969*x^4+684*x^3-270*x^2+584*x+299 3645246874955239 a001 1/10959*196418^(5/44) 3645246887004424 r005 Im(z^2+c),c=1/60+15/34*I,n=36 3645246908541721 a007 Real Root Of -683*x^4+722*x^3-113*x^2+971*x+416 3645246920910919 m001 (-ln(gamma)+LandauRamanujan)/(Chi(1)-sin(1)) 3645246924401503 m001 exp(Pi)^ln(Pi)+gamma(2) 3645246928860954 r009 Re(z^3+c),c=-31/110+20/27*I,n=19 3645246929837184 g001 GAMMA(3/5,83/100) 3645246944753980 m006 (1/5*Pi^2+3/5)/(1/3/Pi+3/5) 3645246954838364 r005 Im(z^2+c),c=-2/19+29/57*I,n=28 3645246956203747 m001 (-ZetaP(2)+ZetaQ(2))/(Psi(1,1/3)+GaussAGM) 3645246960017982 m001 (Trott-Weierstrass)/(ln(gamma)-Sarnak) 3645246962608152 r002 31th iterates of z^2 + 3645246976771829 a007 Real Root Of -290*x^4+488*x^3-674*x^2+867*x-245 3645246995070972 s002 sum(A092278[n]/(n^2*exp(n)+1),n=1..infinity) 3645247000119677 r005 Re(z^2+c),c=47/118+7/20*I,n=31 3645247008611897 r005 Im(z^2+c),c=9/86+5/13*I,n=27 3645247015517640 m001 ln(Pi)^2/ArtinRank2^2/exp(1)^2 3645247018471023 a001 3/75025*46368^(21/50) 3645247030609597 m001 (Mills+Riemann2ndZero)/(exp(1)+Magata) 3645247043273618 r005 Re(z^2+c),c=-59/122+11/54*I,n=31 3645247052756492 m005 (1/2*3^(1/2)-8/9)/(9/5+2*5^(1/2)) 3645247070243095 m005 (1/3*gamma+1/11)/(gamma+1/5) 3645247070650186 a003 cos(Pi*22/85)*cos(Pi*19/59) 3645247091723058 r005 Re(z^2+c),c=27/94+3/47*I,n=55 3645247095818248 r005 Re(z^2+c),c=-45/94+10/61*I,n=12 3645247101961471 r005 Im(z^2+c),c=-21/106+24/37*I,n=62 3645247103188330 p004 log(15877/11027) 3645247108524465 h001 (9/10*exp(2)+1/9)/(7/11*exp(1)+1/8) 3645247117163746 a007 Real Root Of 688*x^4+469*x^3+667*x^2-853*x-389 3645247124101789 m001 1/RenyiParking/KhintchineLevy^2/ln(sinh(1))^2 3645247133714842 b008 InverseJacobiDS[E^(-1),17] 3645247133714842 b008 InverseJacobiSD[E,17] 3645247141208536 r002 3th iterates of z^2 + 3645247148119571 m002 Pi^4/3+Pi^6/3+Cosh[Pi] 3645247150712340 b008 ArcSech[ArcCsch[Pi]/6] 3645247159289122 b008 37*Tanh[Sqrt[6]] 3645247168390954 r005 Re(z^2+c),c=-55/122+26/55*I,n=40 3645247189481199 r005 Im(z^2+c),c=15/52+13/58*I,n=41 3645247191677347 m001 (Paris+Salem)/(FeigenbaumKappa-Niven) 3645247193527616 r005 Re(z^2+c),c=-25/28+14/27*I,n=2 3645247194589497 r005 Im(z^2+c),c=1/10+19/49*I,n=35 3645247197914207 l006 ln(219/8386) 3645247200487442 m005 (1/3*gamma+2/5)/(6/11*Zeta(3)-9/11) 3645247201378514 m007 (-4/5*gamma-8/5*ln(2)-1/3)/(-1/4*gamma+2/3) 3645247210155670 m001 (exp(1/Pi)-Landau)/(Niven+Stephens) 3645247212753968 m005 (-1/66+1/6*5^(1/2))/(1/9*gamma+11/12) 3645247213759695 a007 Real Root Of -310*x^4-163*x^3-69*x^2+605*x-198 3645247221233273 m006 (Pi^2+3/4)/(4/5*Pi+2/5) 3645247221233273 m008 (Pi^2+3/4)/(4/5*Pi+2/5) 3645247228811776 a007 Real Root Of 919*x^4+945*x^3-817*x^2-698*x+301 3645247257091939 m005 (1/2*exp(1)+6/7)/(6/7*gamma-5/9) 3645247260882440 q001 1231/3377 3645247266003068 m001 (ln(2^(1/2)+1)-Ei(1))/(Otter-ZetaP(3)) 3645247270396289 a003 sin(Pi*1/99)/sin(Pi*40/119) 3645247271266956 m005 (2*gamma-3/4)/(2/3*2^(1/2)+1/6) 3645247271862972 r002 7th iterates of z^2 + 3645247281322937 r005 Im(z^2+c),c=7/78+21/53*I,n=12 3645247285534052 r009 Re(z^3+c),c=-11/28+10/61*I,n=4 3645247285825425 g005 GAMMA(3/11)/GAMMA(7/9)/GAMMA(1/7)/GAMMA(4/5) 3645247296289587 m001 1/exp(TwinPrimes)^2*FeigenbaumB*GAMMA(13/24) 3645247306370736 m001 (Pi+DuboisRaymond)/(FeigenbaumB-MadelungNaCl) 3645247316689860 a007 Real Root Of -8*x^4-286*x^3+228*x^2+861*x+631 3645247320311825 r005 Im(z^2+c),c=-5/122+27/61*I,n=8 3645247322089088 a007 Real Root Of -305*x^4+426*x^3+673*x^2+868*x+253 3645247332820554 r009 Im(z^3+c),c=-9/26+20/59*I,n=18 3645247342620946 h001 (-exp(2)-7)/(-7*exp(-2)-3) 3645247350967636 m001 (Tribonacci-ZetaP(2))/(ln(Pi)-LandauRamanujan) 3645247352250052 r009 Im(z^3+c),c=-15/44+14/41*I,n=24 3645247361000799 r005 Re(z^2+c),c=-121/122+15/52*I,n=10 3645247367616153 a007 Real Root Of -279*x^4-952*x^3+361*x^2+608*x+569 3645247374979430 p004 log(26693/18539) 3645247387270896 r005 Re(z^2+c),c=-53/114+24/59*I,n=20 3645247404595690 a003 sin(Pi*10/91)/cos(Pi*4/33) 3645247405856851 r005 Re(z^2+c),c=-89/118+1/55*I,n=26 3645247435105139 r009 Im(z^3+c),c=-47/118+11/38*I,n=6 3645247435305614 s002 sum(A025419[n]/(n^2*2^n-1),n=1..infinity) 3645247436995308 m001 (Zeta(3)+Zeta(1,-1))/(sin(1/12*Pi)+Sierpinski) 3645247447356129 r005 Re(z^2+c),c=-63/118+17/38*I,n=53 3645247457177945 r005 Re(z^2+c),c=-37/86+16/37*I,n=34 3645247459714698 m001 (-Riemann1stZero+Thue)/(Chi(1)-Zeta(3)) 3645247462374939 a001 5702887/521*322^(5/24) 3645247468271555 m005 (1/2*gamma-2/7)/(3/11*gamma+7/11) 3645247477011947 m001 (KomornikLoreti-Trott)/(ln(2)-2*Pi/GAMMA(5/6)) 3645247497158791 r005 Re(z^2+c),c=10/29+2/17*I,n=58 3645247497665993 b008 2+Pi*FresnelC[Pi] 3645247500889622 h001 (3/4*exp(1)+7/12)/(8/9*exp(2)+5/8) 3645247506862692 r009 Im(z^3+c),c=-43/118+13/34*I,n=3 3645247542195992 m001 1/Bloch^2/FibonacciFactorial*ln(GAMMA(1/24))^2 3645247545186978 m001 (sin(1/5*Pi)-Ei(1))/(ThueMorse-ZetaQ(2)) 3645247555510059 h001 (1/12*exp(2)+3/10)/(2/3*exp(1)+7/10) 3645247584249852 b008 1/5-7*(3+Sqrt[5]) 3645247607710372 r002 36th iterates of z^2 + 3645247607960780 m001 polylog(4,1/2)/(Landau-ReciprocalLucas) 3645247617853021 r005 Im(z^2+c),c=-1/24+19/40*I,n=40 3645247619755012 m001 (Landau+Niven)/(BesselK(1,1)+2*Pi/GAMMA(5/6)) 3645247619979563 r005 Re(z^2+c),c=-15/32+9/31*I,n=24 3645247621794764 m001 ln(Zeta(3))^2*CareFree/cos(Pi/5)^2 3645247627786104 m002 Pi*Cosh[Pi]+Cosh[Pi]/(Pi^5*ProductLog[Pi]) 3645247628137227 a001 121393/199*199^(17/22) 3645247632999188 m001 (1-ln(Pi))/(-3^(1/3)+Tribonacci) 3645247642123020 k002 Champernowne real with 193/2*n^2-561/2*n+220 3645247650993973 s001 sum(exp(-Pi/2)^(n-1)*A235311[n],n=1..infinity) 3645247651622790 r005 Re(z^2+c),c=21/110+15/41*I,n=37 3645247670838448 r005 Im(z^2+c),c=-9/22+35/64*I,n=40 3645247677007889 r005 Im(z^2+c),c=-157/126+3/52*I,n=52 3645247685061634 r002 55i'th iterates of 2*x/(1-x^2) of 3645247711754295 a001 2178309/1364*322^(13/24) 3645247724924601 m001 (Kac+Totient)/(Psi(2,1/3)+Zeta(3)) 3645247747574531 r005 Re(z^2+c),c=-17/38+17/41*I,n=32 3645247751544632 m008 (2/5*Pi^3-3/4)/(1/3*Pi^6-4/5) 3645247753327149 r005 Im(z^2+c),c=15/122+13/35*I,n=22 3645247760304318 r009 Im(z^3+c),c=-5/19+16/43*I,n=20 3645247761914415 a005 (1/sin(78/187*Pi))^172 3645247763615181 r005 Re(z^2+c),c=-19/44+11/24*I,n=43 3645247765687369 v002 sum(1/(3^n+(27/2*n^2-1/2*n+46)),n=1..infinity) 3645247766912272 m005 (1/2*2^(1/2)-5/7)/(2/3*Pi-1/8) 3645247773848448 a007 Real Root Of 861*x^4-583*x^3+299*x^2-625*x-311 3645247773946464 l006 ln(939/1352) 3645247776255254 a001 1364/514229*1346269^(15/43) 3645247799883844 m001 (Kac+KomornikLoreti)/(Cahen-gamma) 3645247803530808 m001 FeigenbaumB^2/ln(FibonacciFactorial)*Zeta(5)^2 3645247810286792 m001 OrthogonalArrays^exp(1)/(Artin^exp(1)) 3645247817081392 s002 sum(A257481[n]/(n^3*2^n-1),n=1..infinity) 3645247818737026 r005 Im(z^2+c),c=1/10+19/49*I,n=42 3645247819844262 a007 Real Root Of 742*x^4-919*x^3+606*x^2+464*x+31 3645247831803088 r009 Im(z^3+c),c=-15/44+14/41*I,n=26 3645247835672642 m001 cos(1)/AlladiGrinstead/FeigenbaumC 3645247836799091 h001 (4/9*exp(1)+1/4)/(3/7*exp(2)+5/6) 3645247841744660 p001 sum((-1)^n/(194*n+25)/n/(125^n),n=1..infinity) 3645247846021118 a007 Real Root Of 283*x^4-312*x^3-824*x^2-688*x-24 3645247847187930 m005 (1/2*gamma-11/12)/(7/11*5^(1/2)+3/10) 3645247854798133 a007 Real Root Of -242*x^4-561*x^3+984*x^2-430*x+913 3645247873064502 s002 sum(A183335[n]/((exp(n)+1)*n),n=1..infinity) 3645247873365608 r005 Im(z^2+c),c=-69/58+3/62*I,n=61 3645247875883273 m001 (-Conway+HeathBrownMoroz)/(3^(1/2)-exp(1/Pi)) 3645247878764437 r009 Im(z^3+c),c=-5/19+16/43*I,n=21 3645247886370977 r005 Re(z^2+c),c=-29/60+9/43*I,n=22 3645247898168707 r005 Re(z^2+c),c=-3/74+29/39*I,n=7 3645247902437616 r005 Im(z^2+c),c=-2/15+11/21*I,n=60 3645247904167806 a007 Real Root Of -237*x^4-890*x^3+28*x^2+710*x+953 3645247904545929 m005 (1/2*Zeta(3)-7/9)/(3/4*Zeta(3)-5/12) 3645247908853825 r009 Im(z^3+c),c=-15/44+14/41*I,n=27 3645247910389440 m001 (FeigenbaumMu-Kolakoski)/(LaplaceLimit+Paris) 3645247910635628 m001 (-Artin+Salem)/(Catalan+GAMMA(17/24)) 3645247912481071 a007 Real Root Of 567*x^4+115*x^3+152*x^2-570*x+172 3645247916544403 m001 BesselK(1,1)^2*exp(TreeGrowth2nd)/cosh(1) 3645247920714452 m001 FeigenbaumD^(FeigenbaumB/HardyLittlewoodC3) 3645247921829885 m001 Pi*2^(1/2)/GAMMA(3/4)+HeathBrownMoroz^Lehmer 3645247933903128 a001 987*322^(5/8) 3645247981299272 a007 Real Root Of 795*x^4-768*x^3+380*x^2-917*x-436 3645247981917053 r002 11th iterates of z^2 + 3645247984363547 q001 1492/4093 3645248001740533 p001 sum(1/(381*n+329)/(3^n),n=0..infinity) 3645248005057165 m001 GAMMA(13/24)/ln(GAMMA(11/24))^2/Zeta(5) 3645248043655054 m001 GAMMA(1/3)-cos(Pi/12)+GAMMA(11/24) 3645248044817716 p003 LerchPhi(1/2,2,87/160) 3645248055792882 r005 Im(z^2+c),c=1/70+27/61*I,n=40 3645248065659081 s001 sum(exp(-Pi/3)^(n-1)*A277867[n],n=1..infinity) 3645248084287963 r005 Im(z^2+c),c=-13/36+35/61*I,n=64 3645248089919683 r005 Im(z^2+c),c=-7/54+14/27*I,n=28 3645248090400112 r005 Re(z^2+c),c=1/3+24/61*I,n=6 3645248097803719 a001 19/2*39088169^(1/13) 3645248099168280 m001 Magata^2*Khintchine^2/exp(exp(1))^2 3645248099816113 r005 Re(z^2+c),c=-29/62+14/47*I,n=44 3645248113127873 r009 Im(z^3+c),c=-17/46+18/55*I,n=23 3645248120053378 a007 Real Root Of 369*x^4-985*x^3+774*x^2-19*x-164 3645248121115129 m001 (exp(1/Pi)*exp(sqrt(2))-Cahen)/exp(1/Pi) 3645248125531522 r005 Re(z^2+c),c=-7/34+32/49*I,n=28 3645248127860507 p004 log(30091/20899) 3645248129833812 m005 (5/36+1/4*5^(1/2))/(3*Catalan-5/6) 3645248134542544 a007 Real Root Of 237*x^4+948*x^3+243*x^2-475*x-888 3645248143907584 m001 GAMMA(1/24)^2*FeigenbaumB*exp(Zeta(5))^2 3645248145376872 r005 Re(z^2+c),c=-14/29+9/43*I,n=34 3645248151069323 r005 Im(z^2+c),c=-2/11+23/42*I,n=62 3645248159179521 a001 3/196418*55^(19/24) 3645248165725730 m005 (2*gamma+1/5)/(4/5*gamma-5/6) 3645248165725730 m007 (-2*gamma-1/5)/(-4/5*gamma+5/6) 3645248181485927 a007 Real Root Of -947*x^4-674*x^3-434*x^2+596*x+259 3645248183107367 r009 Im(z^3+c),c=-1/82+53/54*I,n=2 3645248204743304 m005 (1/3*Pi-1/5)/(7/10*Pi+1/8) 3645248223869315 m005 (1/3*exp(1)-3/5)/(10/11*Catalan-11/12) 3645248268865177 r009 Im(z^3+c),c=-23/58+32/51*I,n=35 3645248272381590 a007 Real Root Of -414*x^4-689*x^3-315*x^2+977*x+36 3645248272442260 m001 (-3^(1/3)+HardyLittlewoodC3)/(1-exp(Pi)) 3645248285692713 a007 Real Root Of 50*x^4-650*x^3+969*x^2-689*x+153 3645248302067332 a008 Real Root of x^4-18*x^2-18*x-3 3645248313673965 r005 Im(z^2+c),c=29/102+13/56*I,n=23 3645248320465235 m002 -Pi^4+Pi^5*ProductLog[Pi]+Sinh[Pi]^2 3645248321546013 r009 Re(z^3+c),c=-7/94+32/45*I,n=22 3645248336108889 b008 13+SphericalBesselY[2,1/5] 3645248376663477 r009 Im(z^3+c),c=-39/98+19/61*I,n=19 3645248381061909 r009 Im(z^3+c),c=-5/19+16/43*I,n=23 3645248382939288 r005 Re(z^2+c),c=-11/23+11/46*I,n=37 3645248385946712 r005 Re(z^2+c),c=-12/23+19/51*I,n=10 3645248403480737 r005 Re(z^2+c),c=-15/32+12/41*I,n=53 3645248411120241 k008 concat of cont frac of 3645248412373900 m001 (Pi^(1/2)+Cahen)/LaplaceLimit 3645248416806565 m005 (1/2*Zeta(3)-3/5)/(1/9*2^(1/2)+1/8) 3645248445051708 a003 cos(Pi*5/86)*sin(Pi*11/91) 3645248447097845 a003 sin(Pi*13/80)*sin(Pi*26/97) 3645248447400252 r005 Im(z^2+c),c=-9/52+29/46*I,n=49 3645248449790093 a007 Real Root Of -27*x^4-960*x^3+897*x^2+539*x+743 3645248452544880 m001 1/3*(Pi-ln(2)/ln(10))/cos(1)*3^(2/3) 3645248456368986 m001 arctan(1/2)+(1+3^(1/2))^(1/2)+GAMMA(7/12) 3645248456368986 m001 arctan(1/2)+sqrt(1+sqrt(3))+GAMMA(7/12) 3645248457476420 r005 Re(z^2+c),c=-51/110+11/41*I,n=15 3645248464428172 r005 Re(z^2+c),c=-25/58+19/45*I,n=31 3645248467811122 a007 Real Root Of -975*x^4+294*x^3-729*x^2+556*x+331 3645248474416377 a007 Real Root Of -496*x^4+663*x^3-632*x^2+394*x-83 3645248480611711 r005 Re(z^2+c),c=-53/110+11/51*I,n=37 3645248483070455 r009 Im(z^3+c),c=-5/19+16/43*I,n=24 3645248483687842 r005 Re(z^2+c),c=-11/23+13/27*I,n=47 3645248490246132 r002 22th iterates of z^2 + 3645248499489891 p003 LerchPhi(1/100,4,233/181) 3645248506140462 a003 sin(Pi*8/51)*sin(Pi*7/25) 3645248514649972 r009 Im(z^3+c),c=-5/19+16/43*I,n=26 3645248526469524 m001 (Psi(2,1/3)-Si(Pi))/(-BesselJ(1,1)+Gompertz) 3645248530760755 m005 (1/2*3^(1/2)+6/7)/(3/10*Zeta(3)-5/6) 3645248538401745 r009 Im(z^3+c),c=-5/19+16/43*I,n=29 3645248539098913 r009 Im(z^3+c),c=-5/19+16/43*I,n=27 3645248542212597 r009 Im(z^3+c),c=-5/19+16/43*I,n=32 3645248542782875 r009 Im(z^3+c),c=-5/19+16/43*I,n=35 3645248542863661 r009 Im(z^3+c),c=-5/19+16/43*I,n=38 3645248542874565 r009 Im(z^3+c),c=-5/19+16/43*I,n=41 3645248542875969 r009 Im(z^3+c),c=-5/19+16/43*I,n=44 3645248542876141 r009 Im(z^3+c),c=-5/19+16/43*I,n=47 3645248542876155 r009 Im(z^3+c),c=-5/19+16/43*I,n=46 3645248542876160 r009 Im(z^3+c),c=-5/19+16/43*I,n=49 3645248542876160 r009 Im(z^3+c),c=-5/19+16/43*I,n=50 3645248542876162 r009 Im(z^3+c),c=-5/19+16/43*I,n=52 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=53 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=55 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=58 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=56 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=61 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=64 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=59 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=62 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=63 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=60 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=57 3645248542876163 r009 Im(z^3+c),c=-5/19+16/43*I,n=54 3645248542876165 r009 Im(z^3+c),c=-5/19+16/43*I,n=51 3645248542876177 r009 Im(z^3+c),c=-5/19+16/43*I,n=48 3645248542876199 r009 Im(z^3+c),c=-5/19+16/43*I,n=43 3645248542876265 r009 Im(z^3+c),c=-5/19+16/43*I,n=45 3645248542876827 r009 Im(z^3+c),c=-5/19+16/43*I,n=42 3645248542877125 r009 Im(z^3+c),c=-5/19+16/43*I,n=40 3645248542880175 r009 Im(z^3+c),c=-5/19+16/43*I,n=39 3645248542888247 r009 Im(z^3+c),c=-5/19+16/43*I,n=37 3645248542897542 r009 Im(z^3+c),c=-5/19+16/43*I,n=36 3645248542954679 r009 Im(z^3+c),c=-5/19+16/43*I,n=30 3645248542963655 r009 Im(z^3+c),c=-5/19+16/43*I,n=33 3645248542999129 r009 Im(z^3+c),c=-5/19+16/43*I,n=34 3645248543998400 r009 Im(z^3+c),c=-5/19+16/43*I,n=31 3645248545086010 m001 (Totient+TwinPrimes)/(2^(1/2)-ReciprocalLucas) 3645248549384410 r005 Im(z^2+c),c=-3/82+17/36*I,n=28 3645248552403958 r009 Im(z^3+c),c=-5/19+16/43*I,n=28 3645248570463922 r009 Im(z^3+c),c=-15/44+14/41*I,n=30 3645248572989854 a001 34/11*4106118243^(12/19) 3645248573096675 a001 5702887/5778*322^(5/8) 3645248573240030 m001 (5^(1/2)-Ei(1))/(QuadraticClass+ZetaQ(2)) 3645248578821872 r009 Re(z^3+c),c=-23/48+11/38*I,n=16 3645248583977728 r005 Im(z^2+c),c=1/34+7/18*I,n=5 3645248592408763 a007 Real Root Of -111*x^4-314*x^3+280*x^2-361*x-647 3645248593172262 r005 Re(z^2+c),c=-17/54+25/43*I,n=40 3645248596049728 m002 -6+E^Pi/Log[Pi]+Pi^5*Log[Pi] 3645248603534019 m001 1/gamma*LandauRamanujan*ln(log(2+sqrt(3))) 3645248608252117 a007 Real Root Of 18*x^4+644*x^3-461*x^2-666*x+31 3645248618574247 r005 Re(z^2+c),c=-10/21+5/26*I,n=12 3645248619359098 r009 Im(z^3+c),c=-5/19+16/43*I,n=25 3645248632767623 m001 ln(GolombDickman)*Bloch*GAMMA(13/24) 3645248642105692 r005 Im(z^2+c),c=-4/3+1/37*I,n=30 3645248645123620 k002 Champernowne real with 97*n^2-282*n+221 3645248647361989 a001 1/18*(1/2*5^(1/2)+1/2)^25*123^(16/21) 3645248648414514 r005 Re(z^2+c),c=-11/23+1/13*I,n=7 3645248656039668 r005 Im(z^2+c),c=39/110+11/62*I,n=39 3645248657056477 r005 Im(z^2+c),c=-19/110+31/63*I,n=10 3645248658716269 r002 11th iterates of z^2 + 3645248666353776 a001 14930352/15127*322^(5/8) 3645248674991056 m001 BesselI(0,1)*KhinchinHarmonic*ZetaQ(4) 3645248678234970 r002 7th iterates of z^2 + 3645248679959804 a001 39088169/39603*322^(5/8) 3645248681944896 a001 102334155/103682*322^(5/8) 3645248682234517 a001 267914296/271443*322^(5/8) 3645248682276773 a001 701408733/710647*322^(5/8) 3645248682282938 a001 1836311903/1860498*322^(5/8) 3645248682283837 a001 4807526976/4870847*322^(5/8) 3645248682283968 a001 12586269025/12752043*322^(5/8) 3645248682283987 a001 32951280099/33385282*322^(5/8) 3645248682283990 a001 86267571272/87403803*322^(5/8) 3645248682283991 a001 225851433717/228826127*322^(5/8) 3645248682283991 a001 591286729879/599074578*322^(5/8) 3645248682283991 a001 1548008755920/1568397607*322^(5/8) 3645248682283991 a001 4052739537881/4106118243*322^(5/8) 3645248682283991 a001 4807525989/4870846*322^(5/8) 3645248682283991 a001 6557470319842/6643838879*322^(5/8) 3645248682283991 a001 2504730781961/2537720636*322^(5/8) 3645248682283991 a001 956722026041/969323029*322^(5/8) 3645248682283991 a001 365435296162/370248451*322^(5/8) 3645248682283991 a001 139583862445/141422324*322^(5/8) 3645248682283992 a001 53316291173/54018521*322^(5/8) 3645248682283999 a001 20365011074/20633239*322^(5/8) 3645248682284049 a001 7778742049/7881196*322^(5/8) 3645248682284393 a001 2971215073/3010349*322^(5/8) 3645248682286748 a001 1134903170/1149851*322^(5/8) 3645248682302888 a001 433494437/439204*322^(5/8) 3645248682413513 a001 165580141/167761*322^(5/8) 3645248683171751 a001 63245986/64079*322^(5/8) 3645248687181015 m001 HardyLittlewoodC3-ln(2)*3^(1/3) 3645248688368791 a001 24157817/24476*322^(5/8) 3645248698040044 r009 Re(z^3+c),c=-67/126+21/58*I,n=34 3645248702020597 r005 Re(z^2+c),c=39/94+11/27*I,n=3 3645248708851998 r005 Im(z^2+c),c=7/20+11/61*I,n=19 3645248720216409 r005 Re(z^2+c),c=-15/32+12/41*I,n=63 3645248721049674 r005 Im(z^2+c),c=-27/44+21/37*I,n=7 3645248723501637 a007 Real Root Of -529*x^4+944*x^3-463*x^2+667*x-218 3645248723989836 a001 9227465/9349*322^(5/8) 3645248729658678 r005 Im(z^2+c),c=7/106+23/56*I,n=22 3645248738990590 p003 LerchPhi(1/3,4,269/115) 3645248754558402 r005 Re(z^2+c),c=-9/19+1/25*I,n=7 3645248755955954 a007 Real Root Of 88*x^4-914*x^3-455*x^2-202*x-59 3645248758166782 m001 CareFree-Si(Pi)*gamma 3645248764534062 q001 1/2743297 3645248767827006 a007 Real Root Of 857*x^4-921*x^3+854*x^2-570*x-381 3645248770663274 a007 Real Root Of 480*x^4+942*x^3+978*x^2-816*x-31 3645248786238084 r009 Im(z^3+c),c=-15/44+14/41*I,n=33 3645248800870971 r009 Im(z^3+c),c=-1/21+23/56*I,n=5 3645248805236753 r002 20th iterates of z^2 + 3645248809134413 r005 Im(z^2+c),c=-37/64+3/32*I,n=14 3645248811064660 r002 54th iterates of z^2 + 3645248835355398 r009 Im(z^3+c),c=-15/44+14/41*I,n=36 3645248841215824 r009 Im(z^3+c),c=-15/44+14/41*I,n=37 3645248842033214 r005 Re(z^2+c),c=-57/122+13/43*I,n=24 3645248843052851 r009 Im(z^3+c),c=-15/44+14/41*I,n=40 3645248843650916 r009 Im(z^3+c),c=-15/44+14/41*I,n=39 3645248844014045 r009 Im(z^3+c),c=-15/44+14/41*I,n=43 3645248844281996 r009 Im(z^3+c),c=-15/44+14/41*I,n=46 3645248844336810 r009 Im(z^3+c),c=-15/44+14/41*I,n=49 3645248844339949 r009 Im(z^3+c),c=-15/44+14/41*I,n=50 3645248844341016 r009 Im(z^3+c),c=-15/44+14/41*I,n=47 3645248844343393 r009 Im(z^3+c),c=-15/44+14/41*I,n=53 3645248844344692 r009 Im(z^3+c),c=-15/44+14/41*I,n=56 3645248844344865 r009 Im(z^3+c),c=-15/44+14/41*I,n=52 3645248844345011 r009 Im(z^3+c),c=-15/44+14/41*I,n=59 3645248844345063 r009 Im(z^3+c),c=-15/44+14/41*I,n=60 3645248844345069 r009 Im(z^3+c),c=-15/44+14/41*I,n=63 3645248844345070 r009 Im(z^3+c),c=-15/44+14/41*I,n=62 3645248844345082 r009 Im(z^3+c),c=-15/44+14/41*I,n=64 3645248844345105 r009 Im(z^3+c),c=-15/44+14/41*I,n=61 3645248844345130 r009 Im(z^3+c),c=-15/44+14/41*I,n=57 3645248844345191 r009 Im(z^3+c),c=-15/44+14/41*I,n=58 3645248844345366 r009 Im(z^3+c),c=-15/44+14/41*I,n=55 3645248844345833 r009 Im(z^3+c),c=-15/44+14/41*I,n=54 3645248844350078 r009 Im(z^3+c),c=-15/44+14/41*I,n=51 3645248844369037 r009 Im(z^3+c),c=-15/44+14/41*I,n=48 3645248844427580 r009 Im(z^3+c),c=-15/44+14/41*I,n=44 3645248844428770 r009 Im(z^3+c),c=-15/44+14/41*I,n=45 3645248844490824 r009 Im(z^3+c),c=-15/44+14/41*I,n=42 3645248845113975 r009 Im(z^3+c),c=-15/44+14/41*I,n=41 3645248847848782 r009 Im(z^3+c),c=-15/44+14/41*I,n=34 3645248848792573 r009 Im(z^3+c),c=-15/44+14/41*I,n=38 3645248859424789 l006 ln(6814/9811) 3645248862109471 a003 cos(Pi*22/115)/cos(Pi*50/117) 3645248863482112 r009 Im(z^3+c),c=-15/44+14/41*I,n=35 3645248865473178 r005 Im(z^2+c),c=-79/94+1/45*I,n=26 3645248867002934 a007 Real Root Of -180*x^4+483*x^3-591*x^2+865*x-257 3645248867904573 r005 Im(z^2+c),c=-11/25+15/29*I,n=14 3645248876788514 r009 Im(z^3+c),c=-15/44+14/41*I,n=29 3645248885988521 m001 Thue/(polylog(4,1/2)+Tribonacci) 3645248893743980 r005 Im(z^2+c),c=-1/27+29/60*I,n=16 3645248894845331 b008 (7*ArcTan[117])/3 3645248900961666 r009 Im(z^3+c),c=-15/44+14/41*I,n=32 3645248902391689 r009 Re(z^3+c),c=-1/126+19/33*I,n=8 3645248904916811 a007 Real Root Of -163*x^4+978*x^3-420*x^2+650*x+343 3645248911898544 m001 (3^(1/3)+Grothendieck)/(Rabbit+ZetaP(3)) 3645248915286519 h001 (7/11*exp(1)+7/12)/(1/5*exp(1)+1/11) 3645248943785525 r009 Im(z^3+c),c=-15/44+14/41*I,n=31 3645248947577645 a007 Real Root Of 264*x^4+927*x^3+81*x^2+574*x-696 3645248960298828 r005 Im(z^2+c),c=-7/102+24/49*I,n=24 3645248962794821 m008 (2/3*Pi^2+1/2)/(2*Pi^4-3/5) 3645248968140125 a001 3524578/3571*322^(5/8) 3645248974632166 m006 (4/Pi-1/5)/(3*Pi^2-1/6) 3645248981771267 m001 (sin(1)+ln(5))/(Zeta(1/2)+Porter) 3645248988234171 r005 Im(z^2+c),c=-43/64+17/47*I,n=59 3645248990337507 m001 (sin(1)+BesselI(0,1))/(-Ei(1)+ln(2+3^(1/2))) 3645248990896810 h001 (-7*exp(3/2)-7)/(-7*exp(-2)+2) 3645248993658697 r005 Re(z^2+c),c=-35/74+7/22*I,n=9 3645249001633142 m001 (Psi(1,1/3)+1)/(GAMMA(13/24)+OrthogonalArrays) 3645249005210087 r005 Im(z^2+c),c=-13/25+29/50*I,n=44 3645249010716717 r002 17th iterates of z^2 + 3645249019281602 b008 (-1/5+E)/5+Pi 3645249032471954 l006 ln(65/2489) 3645249032916548 l006 ln(5875/8459) 3645249044211546 m001 (-Landau+Riemann2ndZero)/(Psi(2,1/3)-Shi(1)) 3645249049239244 r005 Im(z^2+c),c=17/66+8/31*I,n=45 3645249073900322 r005 Im(z^2+c),c=5/28+19/48*I,n=8 3645249075375994 a007 Real Root Of 265*x^4+927*x^3-16*x^2+606*x+533 3645249077859930 a007 Real Root Of 265*x^4-714*x^3-339*x^2-55*x+95 3645249083332542 m001 GAMMA(13/24)/(Magata^FibonacciFactorial) 3645249085074335 r005 Re(z^2+c),c=-14/29+9/43*I,n=33 3645249085983179 r009 Im(z^3+c),c=-13/28+13/49*I,n=43 3645249102171280 m005 (1/3*exp(1)-2/7)/(11/12*Zeta(3)+3/5) 3645249108695235 r002 7th iterates of z^2 + 3645249108874375 m001 (Kolakoski+ZetaQ(2))/(BesselK(1,1)-GaussAGM) 3645249116454767 m005 (1/3*5^(1/2)-2/7)/(3/4*exp(1)-7/9) 3645249127584247 r009 Im(z^3+c),c=-5/19+16/43*I,n=22 3645249141662169 r005 Im(z^2+c),c=13/60+11/37*I,n=23 3645249158788655 r005 Re(z^2+c),c=-4/3+67/237*I,n=2 3645249162808114 r005 Re(z^2+c),c=-27/58+17/55*I,n=38 3645249163127652 a007 Real Root Of 166*x^4+382*x^3-681*x^2+361*x-442 3645249165641143 a007 Real Root Of -149*x^4-221*x^3+882*x^2-846*x+800 3645249169101456 a007 Real Root Of 212*x^4-834*x^3+695*x^2-375*x+81 3645249177610283 r005 Im(z^2+c),c=-2/9+9/16*I,n=46 3645249187053881 a007 Real Root Of 454*x^4+746*x^3-283*x^2-819*x+292 3645249187642402 m001 (2^(1/3)-Chi(1))/(-MertensB3+ZetaP(3)) 3645249202029788 m001 (Lehmer+ZetaP(3))/(BesselI(0,1)-GAMMA(11/12)) 3645249203539739 a007 Real Root Of -951*x^4+477*x^3+212*x^2+786*x-321 3645249222136555 r005 Im(z^2+c),c=1/10+19/49*I,n=41 3645249227989888 a007 Real Root Of -416*x^4+634*x^3+272*x^2+657*x-299 3645249233377659 p001 sum((-1)^n/(599*n+273)/(64^n),n=0..infinity) 3645249238326721 r005 Re(z^2+c),c=-15/32+12/41*I,n=46 3645249238934837 a003 sin(Pi*8/65)*sin(Pi*38/91) 3645249240235510 r005 Re(z^2+c),c=-31/82+13/24*I,n=49 3645249255320856 r002 7th iterates of z^2 + 3645249259656337 r005 Re(z^2+c),c=-13/31+19/42*I,n=34 3645249259680247 m001 (BesselI(1,1)-QuadraticClass)/(Thue+ZetaQ(3)) 3645249261627328 a007 Real Root Of -201*x^4-834*x^3-522*x^2-453*x+378 3645249264221017 r005 Im(z^2+c),c=-5/8+17/247*I,n=45 3645249264377431 a007 Real Root Of 162*x^4+551*x^3+40*x^2+828*x+572 3645249267075819 r005 Im(z^2+c),c=-45/122+22/39*I,n=32 3645249272416714 l006 ln(4936/7107) 3645249292428882 a001 322/89*4181^(26/47) 3645249305805592 r009 Im(z^3+c),c=-61/118+11/50*I,n=57 3645249308374974 a007 Real Root Of -439*x^4+345*x^3+91*x^2+811*x+308 3645249310528683 r005 Re(z^2+c),c=-11/23+15/64*I,n=24 3645249324808242 m001 (ln(2+3^(1/2))+Robbin)/(Psi(2,1/3)+sin(1)) 3645249331683950 p004 log(34183/23741) 3645249341365399 m001 1/exp(GAMMA(11/24))/GAMMA(1/12)/sin(Pi/5)^2 3645249343158503 a007 Real Root Of 249*x^4-842*x^3+408*x^2-169*x-161 3645249352233970 a003 sin(Pi*11/94)/sin(Pi*46/103) 3645249354757872 r005 Re(z^2+c),c=-11/20+1/64*I,n=8 3645249360403607 m005 (1/3*exp(1)-1/12)/(7/9*exp(1)+1/7) 3645249383089400 a007 Real Root Of 917*x^4-159*x^3-12*x^2-905*x+323 3645249384336594 r005 Im(z^2+c),c=-20/27+19/37*I,n=4 3645249394412053 a001 1/72*(1/2*5^(1/2)+1/2)^16*4^(1/8) 3645249412435178 a001 377*322^(19/24) 3645249421264182 r005 Re(z^2+c),c=-17/18+11/83*I,n=36 3645249428005246 a001 34/521*11^(33/46) 3645249429342342 r005 Im(z^2+c),c=-7/110+2/49*I,n=3 3645249434971485 r005 Im(z^2+c),c=19/94+14/45*I,n=13 3645249445216348 h001 (-8*exp(1)+5)/(-3*exp(-2)+5) 3645249449688576 a001 3571/1346269*1346269^(15/43) 3645249453939044 a007 Real Root Of -234*x^4-913*x^3-331*x^2-492*x-302 3645249457014044 r005 Re(z^2+c),c=-23/40+2/21*I,n=6 3645249463648491 m001 KhintchineLevy^2*DuboisRaymond/exp(Zeta(7))^2 3645249470167957 r009 Im(z^3+c),c=-37/98+37/58*I,n=29 3645249479835793 r005 Re(z^2+c),c=-21/46+22/63*I,n=40 3645249525646194 a007 Real Root Of 866*x^4-721*x^3+800*x^2-646*x-392 3645249530393141 m005 (1/2*2^(1/2)-1/4)/(2/5*exp(1)+1/6) 3645249539519839 m001 (BesselK(0,1)-Landau)/(-Magata+ZetaQ(2)) 3645249541574710 m001 (5^(1/2)-ln(2))/(FeigenbaumMu+LaplaceLimit) 3645249546736261 g005 1/2/Pi^(1/2)*GAMMA(1/11)*GAMMA(7/8)*GAMMA(5/6) 3645249552153850 r009 Im(z^3+c),c=-10/29+18/53*I,n=22 3645249554969424 m005 (1/2*exp(1)-7/12)/(2/9*gamma+2) 3645249561496022 m001 (2^(1/2)+Landau)/(Magata+ReciprocalLucas) 3645249564677720 m001 1/GAMMA(2/3)/GAMMA(19/24)/ln(sin(1)) 3645249570344289 a007 Real Root Of -256*x^4-989*x^3-431*x^2-912*x-301 3645249572928850 s001 sum(exp(-Pi/2)^n*A066477[n],n=1..infinity) 3645249573488819 r005 Re(z^2+c),c=-14/29+9/43*I,n=40 3645249581402319 r009 Im(z^3+c),c=-15/44+14/41*I,n=28 3645249582295785 m005 (1/2*exp(1)+2/3)/(1/2*Zeta(3)-6/11) 3645249589894051 a007 Real Root Of -840*x^4-235*x^3-955*x^2-289*x+25 3645249590284749 a001 15127*21^(13/45) 3645249592885725 a001 521/34*5^(7/13) 3645249597055796 m005 (1/2*3^(1/2)+1/9)/(7/10*exp(1)+7/9) 3645249604268813 b008 3*KleinInvariantJ[(3*I)*(4+Sqrt[2])] 3645249622566986 m001 (cos(1/5*Pi)-GAMMA(3/4))/(MertensB2+OneNinth) 3645249624446594 l006 ln(3997/5755) 3645249634726257 r005 Im(z^2+c),c=-111/94+5/21*I,n=17 3645249635075518 s002 sum(A196329[n]/((exp(n)+1)*n),n=1..infinity) 3645249639650912 h001 (5/7*exp(1)+1/5)/(3/4*exp(2)+1/3) 3645249646972558 m001 1/Khintchine*ln(Backhouse)^2/(3^(1/3)) 3645249648124220 k002 Champernowne real with 195/2*n^2-567/2*n+222 3645249651854438 r009 Re(z^3+c),c=-12/29+9/38*I,n=6 3645249654879992 p003 LerchPhi(1/5,2,230/133) 3645249660610309 m001 (BesselI(1,1)-Ei(1)*LaplaceLimit)/Ei(1) 3645249660972339 r005 Re(z^2+c),c=-9/20+20/53*I,n=44 3645249676388174 r005 Re(z^2+c),c=-33/70+15/41*I,n=19 3645249676672198 a003 sin(Pi*10/81)*sin(Pi*41/99) 3645249704483743 m001 (Otter+Riemann3rdZero)/(ln(2)+Zeta(1/2)) 3645249731237163 r005 Re(z^2+c),c=-31/48+11/27*I,n=26 3645249735654654 r009 Im(z^3+c),c=-13/74+17/43*I,n=10 3645249744546191 r005 Im(z^2+c),c=-13/60+9/16*I,n=58 3645249747447725 m005 (5/6*Catalan+4/5)/(1/2*gamma+4) 3645249747717129 r005 Re(z^2+c),c=-33/74+23/54*I,n=32 3645249754527408 m001 (ln(gamma)+ln(5))/(FellerTornier+Sierpinski) 3645249760191492 a007 Real Root Of -585*x^4+79*x^3-284*x^2+884*x-278 3645249771996760 a008 Real Root of x^4-2*x^3-4*x^2+2*x-213 3645249779841833 l006 ln(3367/3492) 3645249784247587 b008 11/Pi+ArcCoth[7] 3645249812707888 m001 1/exp((2^(1/3)))*GlaisherKinkelin*Zeta(9) 3645249814187160 r009 Re(z^3+c),c=-29/56+17/58*I,n=30 3645249816715377 m001 (ln(2)-ln(3))/(Zeta(1,2)-ZetaP(3)) 3645249832933256 r005 Re(z^2+c),c=-5/22+23/38*I,n=33 3645249833902148 m001 (Pi-GAMMA(2/3))/(2*Pi/GAMMA(5/6)-LaplaceLimit) 3645249838291207 m001 1/OneNinth*FeigenbaumDelta^2*exp(sin(Pi/5)) 3645249844732595 a001 1926/726103*1346269^(15/43) 3645249850258510 r005 Re(z^2+c),c=-49/110+25/56*I,n=23 3645249851826102 r005 Re(z^2+c),c=-37/82+26/55*I,n=40 3645249858247809 h001 (5/8*exp(2)+9/11)/(3/11*exp(1)+3/4) 3645249862365404 a007 Real Root Of 481*x^4-713*x^3-101*x^2-808*x+334 3645249863574209 a008 Real Root of x^4-2*x^3-2*x^2-21*x+8 3645249881839384 r005 Re(z^2+c),c=-15/32+12/41*I,n=60 3645249889851049 m001 (LaplaceLimit+ZetaP(3))/(exp(Pi)+Zeta(1,-1)) 3645249891050764 m001 1/RenyiParking*exp(KhintchineLevy)/Zeta(3) 3645249896874656 m005 (1/3*Zeta(3)-1/11)/(3/11*Catalan+3/5) 3645249899325906 a001 199/144*701408733^(1/21) 3645249911383710 p004 log(34877/24223) 3645249912135226 m005 (1/2*gamma+6)/(-83/154+7/22*5^(1/2)) 3645249913342350 m001 (1+3^(1/2))^(1/2)*GAMMA(19/24)+Niven 3645249913797767 m001 sin(1/5*Pi)/(KomornikLoreti-ZetaP(3)) 3645249914323621 r005 Im(z^2+c),c=21/64+1/16*I,n=64 3645249927418839 r005 Im(z^2+c),c=17/86+16/51*I,n=29 3645249931691026 h001 (-11*exp(3)-6)/(-3*exp(3)-2) 3645249931792844 s002 sum(A196653[n]/((exp(n)+1)*n),n=1..infinity) 3645249939770302 m005 (1/2*Zeta(3)-1/4)/(1/6*2^(1/2)+8/11) 3645249976300357 m001 PisotVijayaraghavan/ln(Khintchine)*exp(1) 3645249987453168 r005 Re(z^2+c),c=-15/26+22/107*I,n=9 3645250001093903 m005 (1/2*gamma-1/2)/(3/10*5^(1/2)-1/11) 3645250012615594 a008 Real Root of x^4-x^3-12*x^2+21*x+11 3645250023927377 m001 1/OneNinth/exp(Bloch)^2*Zeta(7) 3645250024671022 m001 (Bloch+PrimesInBinary)/(Shi(1)+exp(1/Pi)) 3645250027317750 a007 Real Root Of 959*x^4+853*x^3+352*x^2-837*x+30 3645250034907589 v002 sum(1/(5^n+(13/2*n^2+77/2*n-7)),n=1..infinity) 3645250038154301 r005 Re(z^2+c),c=-17/30+9/25*I,n=9 3645250042591179 m001 GAMMA(19/24)+Khinchin^Catalan 3645250042591179 m001 Khinchin^Catalan+GAMMA(19/24) 3645250045743390 r005 Re(z^2+c),c=-15/32+12/41*I,n=61 3645250066253284 a007 Real Root Of 235*x^4-299*x^3+819*x^2-915*x-461 3645250072970313 r005 Re(z^2+c),c=-14/31+22/59*I,n=32 3645250075273384 m001 (Lehmer+Rabbit)/(BesselJ(0,1)+FransenRobinson) 3645250090331117 r005 Re(z^2+c),c=-17/30+39/106*I,n=19 3645250095324905 r005 Re(z^2+c),c=-53/122+26/59*I,n=42 3645250096952700 m001 (Psi(1,1/3)+ln(gamma))/(Ei(1)+Sarnak) 3645250099948915 m001 GAMMA(5/12)^2*exp((2^(1/3)))^2/cosh(1) 3645250099973400 r009 Im(z^3+c),c=-1/46+26/63*I,n=14 3645250100268787 m001 1/Riemann1stZero^2*exp(ArtinRank2)*GAMMA(1/4) 3645250110777894 m001 GAMMA(7/12)^MadelungNaCl/Stephens 3645250130207557 a001 5/2207*76^(34/53) 3645250142793063 a001 2207/144*8^(5/12) 3645250156552480 a001 7/610*6765^(32/35) 3645250160435486 m001 (Catalan-exp(1))/(Zeta(1/2)+cos(1/12*Pi)) 3645250160702162 r005 Im(z^2+c),c=-13/90+9/17*I,n=64 3645250187025857 a007 Real Root Of 406*x^4-495*x^3+69*x^2-770*x+28 3645250192667462 l006 ln(3058/4403) 3645250196961910 m001 (CareFree-exp(Pi))/(FeigenbaumMu+Sierpinski) 3645250197024057 r005 Re(z^2+c),c=33/94+16/47*I,n=46 3645250201558720 r005 Re(z^2+c),c=-57/122+17/50*I,n=2 3645250204772186 r005 Im(z^2+c),c=-13/70+29/52*I,n=34 3645250209909055 a007 Real Root Of 194*x^4+682*x^3-233*x^2-709*x-708 3645250250187433 a007 Real Root Of 129*x^4+437*x^3+23*x^2+410*x-421 3645250260234730 r005 Re(z^2+c),c=-4/3+138/199*I,n=2 3645250262821309 a001 1/76*(1/2*5^(1/2)+1/2)^23*29^(10/23) 3645250263965501 r005 Re(z^2+c),c=-15/34+29/60*I,n=40 3645250274458250 m005 (1/3*gamma+1/8)/(4/5*Zeta(3)-1/11) 3645250274761799 m002 Pi^3+Log[Pi]+Sinh[Pi]^2/Pi^3 3645250308008565 b008 Pi+(3*Sinh[1])/7 3645250312870140 r005 Im(z^2+c),c=1/10+19/49*I,n=37 3645250320001387 r005 Re(z^2+c),c=-69/98+7/43*I,n=36 3645250322343546 m005 (1/2*gamma-5)/(5*exp(1)-2/3) 3645250328469178 a001 8/3*2^(23/51) 3645250346198377 r005 Im(z^2+c),c=1/10+19/49*I,n=45 3645250346358719 m001 1/ln(Magata)^2/CareFree^2*exp(1) 3645250360104152 a003 cos(Pi*10/77)-sin(Pi*14/75) 3645250361693163 s002 sum(A258043[n]/((exp(n)-1)/n),n=1..infinity) 3645250369574612 m005 (1/2*5^(1/2)+2/7)/(11/12*Catalan-5/11) 3645250377958155 m001 MertensB3/MinimumGamma/Riemann3rdZero 3645250384229694 m001 (CareFree-Niven)/(Zeta(1/2)-GAMMA(17/24)) 3645250390658993 r002 55th iterates of z^2 + 3645250391646753 m001 (gamma-LandauRamanujan)^BesselK(1,1) 3645250392047009 a001 1/55*317811^(53/55) 3645250392191951 a001 3524578/521*322^(7/24) 3645250412493548 r005 Re(z^2+c),c=-49/102+20/59*I,n=2 3645250419555775 a001 322/377*10946^(28/43) 3645250428133694 m005 (1/2*Zeta(3)+4/9)/(3/11*exp(1)-5/11) 3645250436508273 r005 Re(z^2+c),c=-5/27+35/57*I,n=25 3645250439774178 r002 3th iterates of z^2 + 3645250441002493 m001 (MinimumGamma+Otter)/(Chi(1)+Artin) 3645250443224316 r005 Im(z^2+c),c=29/122+5/18*I,n=39 3645250447425655 m001 1/Trott/Riemann1stZero^2/ln(GAMMA(7/24))^2 3645250466827365 r009 Im(z^3+c),c=-5/22+18/47*I,n=11 3645250483927246 a001 2207/832040*1346269^(15/43) 3645250503030714 m001 Ei(1)^2*FeigenbaumD^2*exp(GAMMA(1/4))^2 3645250510198700 m005 (1/2*5^(1/2)-9/10)/(2/9*Pi-1/10) 3645250512100577 m005 (1/2*Pi-7/12)/(5/6*Pi+1/11) 3645250516862222 a007 Real Root Of -19*x^4-700*x^3-296*x^2-964*x-374 3645250530579783 m008 (2/3*Pi^5+1/6)/(1/5*Pi^3-3/5) 3645250544934875 h001 (5/8*exp(2)+1/2)/(2/9*exp(1)+4/5) 3645250556771677 r005 Im(z^2+c),c=35/106+9/50*I,n=34 3645250557067827 m001 Porter^ZetaP(3)/(Porter^FransenRobinson) 3645250577246378 r005 Im(z^2+c),c=-59/122+1/16*I,n=42 3645250583985725 a007 Real Root Of -335*x^4+5*x^3+32*x^2+516*x+190 3645250617677959 r009 Re(z^3+c),c=-7/22+1/64*I,n=4 3645250626905031 m001 (BesselK(0,1)-Gompertz)/(-Rabbit+Robbin) 3645250631373023 l006 ln(5177/7454) 3645250635789964 m001 (Champernowne+Robbin)/(Ei(1)+sin(1/12*Pi)) 3645250641571982 a001 1346269/1364*322^(5/8) 3645250641826586 r005 Re(z^2+c),c=35/114+2/41*I,n=44 3645250651124820 k002 Champernowne real with 98*n^2-285*n+223 3645250658947729 a007 Real Root Of 51*x^4-773*x^3+983*x^2-247*x-259 3645250668291411 r005 Im(z^2+c),c=1/10+19/49*I,n=46 3645250678181380 a008 Real Root of x^2-x-132514 3645250682212295 m001 2*Pi/GAMMA(5/6)-Gompertz-PisotVijayaraghavan 3645250690717390 r009 Im(z^3+c),c=-13/66+25/64*I,n=15 3645250705700990 r002 21th iterates of z^2 + 3645250706448756 a001 1597/47*199^(13/29) 3645250716531708 r005 Im(z^2+c),c=-49/44+13/36*I,n=3 3645250734876345 l006 ln(236/9037) 3645250738930272 p004 log(17959/12473) 3645250760101708 b008 ExpIntegralEi[ArcSech[1/65]] 3645250778984357 r005 Im(z^2+c),c=9/29+11/56*I,n=57 3645250793926167 m001 (ArtinRank2+Otter)/(3^(1/3)-BesselJ(1,1)) 3645250814606972 m001 Thue^arctan(1/3)-sin(1/5*Pi) 3645250820427874 m001 1/Riemann2ndZero*CareFree^2/ln(sqrt(5))^2 3645250830462968 r005 Im(z^2+c),c=-7/102+24/49*I,n=39 3645250832375838 r005 Im(z^2+c),c=3/118+27/62*I,n=18 3645250842752329 r005 Re(z^2+c),c=-29/30+8/123*I,n=2 3645250856169883 m001 exp(Pi)+BesselI(0,2)^Pi 3645250863720994 a001 1346269/2207*322^(17/24) 3645250868405320 r002 45th iterates of z^2 + 3645250880029334 r005 Im(z^2+c),c=-2/17+32/63*I,n=11 3645250883937131 a003 sin(Pi*20/53)/cos(Pi*23/55) 3645250896717836 r005 Re(z^2+c),c=-15/38+12/43*I,n=4 3645250930306381 a007 Real Root Of 974*x^4-568*x^3+493*x^2-367*x-244 3645250946008904 m001 (2^(1/2)+Zeta(5))/(-MertensB3+TwinPrimes) 3645250975411200 r005 Re(z^2+c),c=-27/58+17/59*I,n=20 3645250981660093 r002 6th iterates of z^2 + 3645250985580023 r005 Re(z^2+c),c=-57/118+11/31*I,n=17 3645250986934667 a007 Real Root Of 119*x^4+202*x^3-731*x^2+669*x+925 3645251000234124 a007 Real Root Of 220*x^4+619*x^3-867*x^2-576*x+559 3645251003544034 a001 233/1149851*3^(31/58) 3645251027934377 r005 Re(z^2+c),c=-19/44+4/9*I,n=48 3645251038319434 m001 cos(1/12*Pi)/exp(1)*GAMMA(23/24) 3645251038319434 m001 cos(Pi/12)/exp(1)*GAMMA(23/24) 3645251041972504 r005 Im(z^2+c),c=1/10+19/49*I,n=49 3645251062062905 a007 Real Root Of 744*x^4-600*x^3+269*x^2-822*x-3 3645251063834306 p004 log(23131/22303) 3645251067839407 a007 Real Root Of 902*x^4+453*x^3+265*x^2-699*x-284 3645251105247183 m001 (Champernowne-Trott2nd)/(ln(5)+GAMMA(23/24)) 3645251109449354 r009 Re(z^3+c),c=-8/19+11/51*I,n=14 3645251113409996 a007 Real Root Of 227*x^4+692*x^3-490*x^2+161*x+536 3645251117982536 a007 Real Root Of -568*x^4+486*x^3-171*x^2+183*x+123 3645251121169421 k006 concat of cont frac of 3645251122003504 a007 Real Root Of 15*x^4-204*x^3+768*x^2-997*x+662 3645251122320631 a001 521/514229*6765^(13/32) 3645251123674533 m006 (Pi^2+4)/(1/4*ln(Pi)-2/3) 3645251142566512 r009 Im(z^3+c),c=-1/46+26/63*I,n=16 3645251154904834 r005 Re(z^2+c),c=-13/27+12/55*I,n=49 3645251161267315 r005 Re(z^2+c),c=-5/8+45/223*I,n=13 3645251167327557 m002 -6+Pi-Log[Pi]+ProductLog[Pi]/3 3645251170005035 r009 Re(z^3+c),c=-37/102+27/40*I,n=46 3645251171921775 p001 sum((-1)^n/(615*n+274)/(256^n),n=0..infinity) 3645251179913795 m001 (arctan(1/3)-FibonacciFactorial)/(Mills+Salem) 3645251192332792 r002 3th iterates of z^2 + 3645251195759364 a007 Real Root Of 294*x^4-857*x^3+612*x^2-587*x-342 3645251203063650 r009 Im(z^3+c),c=-7/16+23/45*I,n=9 3645251228125913 r009 Im(z^3+c),c=-1/46+26/63*I,n=19 3645251229988929 r009 Im(z^3+c),c=-1/46+26/63*I,n=21 3645251231085975 r009 Im(z^3+c),c=-1/46+26/63*I,n=23 3645251231383447 r009 Im(z^3+c),c=-1/46+26/63*I,n=25 3645251231449053 r009 Im(z^3+c),c=-1/46+26/63*I,n=27 3645251231462109 r009 Im(z^3+c),c=-1/46+26/63*I,n=29 3645251231464545 r009 Im(z^3+c),c=-1/46+26/63*I,n=31 3645251231464979 r009 Im(z^3+c),c=-1/46+26/63*I,n=33 3645251231465053 r009 Im(z^3+c),c=-1/46+26/63*I,n=35 3645251231465065 r009 Im(z^3+c),c=-1/46+26/63*I,n=37 3645251231465067 r009 Im(z^3+c),c=-1/46+26/63*I,n=39 3645251231465067 r009 Im(z^3+c),c=-1/46+26/63*I,n=41 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=43 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=45 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=47 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=49 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=51 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=53 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=56 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=58 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=60 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=62 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=64 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=63 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=61 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=59 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=55 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=57 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=54 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=52 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=50 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=48 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=46 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=44 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=42 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=40 3645251231465068 r009 Im(z^3+c),c=-1/46+26/63*I,n=38 3645251231465073 r009 Im(z^3+c),c=-1/46+26/63*I,n=36 3645251231465104 r009 Im(z^3+c),c=-1/46+26/63*I,n=34 3645251231465284 r009 Im(z^3+c),c=-1/46+26/63*I,n=32 3645251231466317 r009 Im(z^3+c),c=-1/46+26/63*I,n=30 3645251231471994 r009 Im(z^3+c),c=-1/46+26/63*I,n=28 3645251231501549 r009 Im(z^3+c),c=-1/46+26/63*I,n=26 3645251231643603 r009 Im(z^3+c),c=-1/46+26/63*I,n=24 3645251232237251 r009 Im(z^3+c),c=-1/46+26/63*I,n=22 3645251232300960 r009 Im(z^3+c),c=-1/46+26/63*I,n=18 3645251233989123 r009 Im(z^3+c),c=-1/46+26/63*I,n=20 3645251235358798 a001 21/521*76^(30/59) 3645251245850761 r009 Re(z^3+c),c=-37/102+27/40*I,n=36 3645251248230721 r009 Im(z^3+c),c=-1/46+26/63*I,n=17 3645251252775221 r005 Re(z^2+c),c=-35/74+10/37*I,n=42 3645251253335976 s001 sum(1/10^(n-1)*A234412[n]/n^n,n=1..infinity) 3645251264483705 l006 ln(2119/3051) 3645251279058302 m001 1/TwinPrimes*Riemann2ndZero*ln(Pi) 3645251279058302 m001 ln(Pi)*Riemann2ndZero/TwinPrimes 3645251280131749 m001 1/BesselJ(1,1)^2/ln(Porter)^2*Zeta(5) 3645251313849756 m001 Robbin*Riemann1stZero/ln(GAMMA(19/24))^2 3645251317561700 m005 (1/2*5^(1/2)+2/7)/(1/12*5^(1/2)-4/7) 3645251324610694 r005 Im(z^2+c),c=1/10+19/49*I,n=53 3645251326755221 r005 Im(z^2+c),c=-9/40+18/25*I,n=38 3645251331095993 r005 Im(z^2+c),c=1/10+19/49*I,n=50 3645251333144853 a007 Real Root Of 185*x^4-469*x^3-321*x^2-905*x+392 3645251333372142 m001 1/Riemann1stZero*MinimumGamma*exp((2^(1/3))) 3645251338266256 r005 Im(z^2+c),c=-4/13+31/59*I,n=17 3645251340268166 m001 (Zeta(1,-1)+BesselK(1,1))/(KhinchinLevy+Trott) 3645251341951669 m001 exp(GAMMA(23/24))^2*LaplaceLimit^2/Zeta(1,2) 3645251360635141 m001 FeigenbaumKappa/(ZetaP(3)^LambertW(1)) 3645251367789086 r005 Im(z^2+c),c=-1/28+25/53*I,n=42 3645251381988365 l006 ln(171/6548) 3645251383719157 a003 cos(Pi*19/66)-sin(Pi*26/59) 3645251394952493 m001 (Gompertz-MertensB1)/(Zeta(5)-GAMMA(5/6)) 3645251395693402 r002 60th iterates of z^2 + 3645251396648044 q001 261/716 3645251396648044 r005 Im(z^2+c),c=-7/8+87/179*I,n=2 3645251398781235 a001 317811/2*76^(34/47) 3645251416295357 m001 KhintchineHarmonic*Conway/exp(FeigenbaumC) 3645251419747104 r005 Im(z^2+c),c=1/10+19/49*I,n=57 3645251427414371 a007 Real Root Of -913*x^4+323*x^3+811*x^2+919*x+259 3645251427535834 a007 Real Root Of 192*x^4-219*x^3-185*x^2-327*x+151 3645251440235984 r005 Im(z^2+c),c=11/48+9/25*I,n=9 3645251447784648 r005 Im(z^2+c),c=1/10+19/49*I,n=61 3645251449464279 r005 Im(z^2+c),c=1/10+19/49*I,n=56 3645251449870097 r005 Im(z^2+c),c=1/10+19/49*I,n=60 3645251453752654 r005 Im(z^2+c),c=1/10+19/49*I,n=64 3645251453989275 r005 Im(z^2+c),c=1/10+19/49*I,n=54 3645251461236844 r005 Im(z^2+c),c=1/10+19/49*I,n=63 3645251461921749 r005 Im(z^2+c),c=1/10+19/49*I,n=62 3645251463751006 a007 Real Root Of 250*x^4+811*x^3-617*x^2-917*x-3 3645251465712570 r005 Im(z^2+c),c=1/10+19/49*I,n=58 3645251469238953 r005 Im(z^2+c),c=-7/10+12/235*I,n=49 3645251475769911 r005 Im(z^2+c),c=1/10+19/49*I,n=59 3645251492343975 m001 (sin(1)+ln(Pi))/(polylog(4,1/2)+Trott2nd) 3645251492848262 r005 Im(z^2+c),c=-23/34+13/49*I,n=5 3645251493993475 r005 Im(z^2+c),c=1/10+19/49*I,n=52 3645251497362300 r005 Re(z^2+c),c=-35/74+10/43*I,n=15 3645251502914580 a001 1762289/2889*322^(17/24) 3645251514557997 r009 Re(z^3+c),c=-35/86+16/27*I,n=4 3645251528216803 r005 Im(z^2+c),c=1/10+19/49*I,n=55 3645251530665531 m001 1/ln(Sierpinski)/MadelungNaCl/sqrt(1+sqrt(3)) 3645251544434828 r009 Im(z^3+c),c=-5/17+13/36*I,n=14 3645251556348259 a001 682/5473*55^(15/56) 3645251566305689 r009 Im(z^3+c),c=-8/15+9/44*I,n=56 3645251569932478 r009 Im(z^3+c),c=-1/46+26/63*I,n=15 3645251596171686 a001 9227465/15127*322^(17/24) 3645251601593314 r005 Re(z^2+c),c=37/118+1/11*I,n=23 3645251609777715 a001 24157817/39603*322^(17/24) 3645251611762808 a001 31622993/51841*322^(17/24) 3645251612052429 a001 165580141/271443*322^(17/24) 3645251612094684 a001 433494437/710647*322^(17/24) 3645251612100849 a001 567451585/930249*322^(17/24) 3645251612101749 a001 2971215073/4870847*322^(17/24) 3645251612101880 a001 7778742049/12752043*322^(17/24) 3645251612101899 a001 10182505537/16692641*322^(17/24) 3645251612101902 a001 53316291173/87403803*322^(17/24) 3645251612101902 a001 139583862445/228826127*322^(17/24) 3645251612101902 a001 182717648081/299537289*322^(17/24) 3645251612101902 a001 956722026041/1568397607*322^(17/24) 3645251612101902 a001 2504730781961/4106118243*322^(17/24) 3645251612101902 a001 3278735159921/5374978561*322^(17/24) 3645251612101902 a001 10610209857723/17393796001*322^(17/24) 3645251612101902 a001 4052739537881/6643838879*322^(17/24) 3645251612101902 a001 1134903780/1860499*322^(17/24) 3645251612101902 a001 591286729879/969323029*322^(17/24) 3645251612101902 a001 225851433717/370248451*322^(17/24) 3645251612101903 a001 21566892818/35355581*322^(17/24) 3645251612101904 a001 32951280099/54018521*322^(17/24) 3645251612101911 a001 1144206275/1875749*322^(17/24) 3645251612101961 a001 1201881744/1970299*322^(17/24) 3645251612102305 a001 1836311903/3010349*322^(17/24) 3645251612104659 a001 701408733/1149851*322^(17/24) 3645251612120799 a001 66978574/109801*322^(17/24) 3645251612231425 a001 9303105/15251*322^(17/24) 3645251612989663 a001 39088169/64079*322^(17/24) 3645251614147225 r005 Im(z^2+c),c=19/54+7/55*I,n=48 3645251618186704 a001 3732588/6119*322^(17/24) 3645251635168515 m001 (Salem+ZetaP(3))/(BesselI(1,1)-DuboisRaymond) 3645251636199622 r008 a(0)=0,K{-n^6,32-59*n^3+71*n^2-47*n} 3645251640194774 p003 LerchPhi(1/4,7,70/117) 3645251653807750 a001 5702887/9349*322^(17/24) 3645251654125420 k002 Champernowne real with 197/2*n^2-573/2*n+224 3645251655247853 r009 Im(z^3+c),c=-23/56+17/56*I,n=32 3645251658821106 m009 (8/3*Catalan+1/3*Pi^2+3/4)/(6*Psi(1,2/3)-3/5) 3645251663388300 m001 (BesselJ(1,1)+ZetaQ(2))/(Ei(1)-cos(1)) 3645251685169320 m009 (Psi(1,1/3)+4/5)/(3/8*Pi^2-4) 3645251695254001 r005 Im(z^2+c),c=1/10+19/49*I,n=51 3645251705754646 p003 LerchPhi(1/6,4,296/229) 3645251717565009 r008 a(0)=4,K{-n^6,-36+32*n^3+60*n^2-53*n} 3645251735150432 a003 cos(Pi*1/47)*cos(Pi*8/21) 3645251749273542 a007 Real Root Of -233*x^4-114*x^3-234*x^2+865*x+345 3645251754459441 r005 Re(z^2+c),c=-43/98+21/50*I,n=44 3645251775261382 a007 Real Root Of -186*x^4-503*x^3+634*x^2-223*x-760 3645251783427409 r005 Re(z^2+c),c=9/29+4/53*I,n=59 3645251785556926 m001 (2^(1/2)-LambertW(1))/(3^(1/3)+QuadraticClass) 3645251790714458 r005 Im(z^2+c),c=1/10+19/49*I,n=48 3645251791648973 a007 Real Root Of 144*x^4+421*x^3-397*x^2+132*x+723 3645251792752202 p001 sum(1/(485*n+381)/n/(32^n),n=1..infinity) 3645251792946308 a001 1762289/161*123^(1/4) 3645251809472553 m001 1/GAMMA(3/4)*(2^(1/3))/exp(Zeta(5)) 3645251812005917 r005 Im(z^2+c),c=-1/24+19/40*I,n=36 3645251824519526 a007 Real Root Of 847*x^4+870*x^3+922*x^2-379*x-15 3645251826430447 m005 (1/2*exp(1)+1/2)/(1/12*Zeta(3)+5) 3645251827829854 r005 Re(z^2+c),c=-47/98+3/13*I,n=47 3645251830071362 m001 (ln(2)/ln(10)+ArtinRank2)/(Khinchin+ZetaQ(2)) 3645251833958499 r002 15th iterates of z^2 + 3645251838027552 a003 sin(Pi*8/73)/cos(Pi*9/73) 3645251859992034 m001 (Zeta(5)-sin(1/5*Pi))/(OneNinth-Totient) 3645251867975171 m001 (ErdosBorwein-gamma)/(OneNinth+ZetaP(3)) 3645251869376728 g001 GAMMA(6/7,41/44) 3645251869432727 l006 ln(5418/7801) 3645251870135603 r005 Im(z^2+c),c=-57/118+1/16*I,n=26 3645251873550706 m001 (cos(1/5*Pi)-sin(1))/(PlouffeB+PrimesInBinary) 3645251877200735 r005 Re(z^2+c),c=47/114+13/22*I,n=5 3645251881643591 a007 Real Root Of -24*x^4-902*x^3-973*x^2+585*x-341 3645251895223021 r009 Re(z^3+c),c=-7/106+31/47*I,n=59 3645251895275861 m001 (Riemann1stZero-ThueMorse)/(Bloch-PlouffeB) 3645251896257862 r005 Re(z^2+c),c=11/102+13/56*I,n=4 3645251897958054 a001 2178309/3571*322^(17/24) 3645251903269284 r009 Re(z^3+c),c=-43/70+35/51*I,n=4 3645251903946994 m001 (1-DuboisRaymond)/(-Landau+LandauRamanujan) 3645251933318131 p004 log(10607/277) 3645251953295712 m001 (Trott+ZetaP(4))/(5^(1/2)-Zeta(1,-1)) 3645251960796827 m005 (1/2*2^(1/2)-6/11)/(4/9*gamma-7/10) 3645251987552852 m005 (3/8+1/4*5^(1/2))/(9/11*Zeta(3)-8/11) 3645251987955993 a001 199/5*6765^(21/41) 3645252013248922 a003 sin(Pi*14/111)*sin(Pi*24/61) 3645252016251595 a007 Real Root Of -931*x^4+141*x^3-142*x^2-154*x-14 3645252016474989 r005 Im(z^2+c),c=-45/94+25/58*I,n=8 3645252024979519 r009 Re(z^3+c),c=-13/30+12/55*I,n=9 3645252031197389 m002 -(Pi*Cosh[Pi]*Coth[Pi])+Tanh[Pi]/Pi^2 3645252053855026 a001 123/514229*2^(31/51) 3645252071076799 m001 Salem^2*ln(PisotVijayaraghavan)^2*gamma^2 3645252077285562 r008 a(0)=0,K{-n^6,-31+21*n^3+23*n^2-40*n} 3645252079181584 m001 (Niven+OneNinth)/(Zeta(1,-1)+LaplaceLimit) 3645252084270590 p003 LerchPhi(1/512,4,35/86) 3645252091107344 m001 Pi^(1/2)-Zeta(1/2)*GlaisherKinkelin 3645252092504798 m001 (Cahen+Kac)/(Zeta(3)+BesselI(0,2)) 3645252142148661 m005 (1/2*3^(1/2)-4/5)/(89/80+5/16*5^(1/2)) 3645252148503385 a007 Real Root Of -224*x^4-543*x^3+787*x^2-736*x+109 3645252152370013 r005 Im(z^2+c),c=1/10+19/49*I,n=47 3645252167300938 a007 Real Root Of -235*x^4+33*x^3+669*x^2+737*x-355 3645252186252052 a001 14930352/521*123^(1/20) 3645252197164370 a007 Real Root Of 45*x^4+19*x^3-707*x^2-515*x+492 3645252207353193 r009 Re(z^3+c),c=-39/110+11/61*I,n=2 3645252214344430 a007 Real Root Of -868*x^4-819*x^3-500*x^2+200*x+115 3645252242871259 a001 1/225749145909*1346269^(5/16) 3645252245744377 m001 (GAMMA(2/3)-CareFree)/(MertensB2+RenyiParking) 3645252249355578 a007 Real Root Of -653*x^4+515*x^3-253*x^2+713*x+330 3645252249444969 a007 Real Root Of 422*x^4-885*x^3-907*x^2-889*x+480 3645252258001054 l006 ln(3299/4750) 3645252267628932 m005 (1/2*3^(1/2)-1/6)/(239/198+7/22*5^(1/2)) 3645252272522857 r009 Im(z^3+c),c=-51/98+22/47*I,n=33 3645252289524835 r005 Re(z^2+c),c=-11/24+20/57*I,n=29 3645252290796035 r009 Re(z^3+c),c=-37/102+27/40*I,n=51 3645252324466432 a003 cos(Pi*6/89)*cos(Pi*14/37) 3645252330494408 r005 Im(z^2+c),c=-13/106+14/27*I,n=45 3645252342279791 a001 196418/843*322^(7/8) 3645252344102185 a007 Real Root Of -914*x^4+720*x^3+11*x^2-7*x+47 3645252349525567 r002 34th iterates of z^2 + 3645252360879990 r005 Re(z^2+c),c=-23/26+27/68*I,n=4 3645252372899599 r002 13th iterates of z^2 + 3645252390630410 m001 1/5*(MertensB3-polylog(4,1/2))*5^(1/2) 3645252411039479 r002 50th iterates of z^2 + 3645252442128815 r002 20th iterates of z^2 + 3645252443978419 m005 (1/2*Catalan-3)/(2/3*gamma-5/11) 3645252444395835 a007 Real Root Of -754*x^4+710*x^3-751*x^2+465*x+317 3645252473812063 m001 (2^(1/3)+exp(1))/(-5^(1/2)+ln(Pi)) 3645252474963872 r004 Re(z^2+c),c=7/20-4/19*I,z(0)=exp(5/8*I*Pi),n=2 3645252479009808 p001 sum(1/(608*n+275)/(128^n),n=0..infinity) 3645252490711004 r009 Im(z^3+c),c=-1/10+37/46*I,n=22 3645252503689465 a007 Real Root Of -105*x^4-136*x^3+813*x^2-248*x+245 3645252505562749 a007 Real Root Of -597*x^4+990*x^3+14*x^2+514*x+244 3645252509437551 m005 (1/3*Zeta(3)+1/9)/(8/11*5^(1/2)-2/9) 3645252519039753 r005 Re(z^2+c),c=-14/31+16/45*I,n=21 3645252522300940 r005 Im(z^2+c),c=1/11+13/33*I,n=37 3645252533228099 s001 sum(exp(-Pi)^n*A054983[n],n=1..infinity) 3645252533228099 s002 sum(A054983[n]/(exp(pi*n)),n=1..infinity) 3645252535682115 a001 1/141*46368^(11/30) 3645252555293028 m001 1/GAMMA(19/24)^2*Kolakoski^2*exp(Zeta(5))^2 3645252561782999 r005 Im(z^2+c),c=11/102+13/34*I,n=26 3645252566176640 m002 -Cosh[Pi]/5+(Pi^6*Log[Pi])/3 3645252577556215 m001 (Pi^(1/2)+ErdosBorwein)/(MertensB2-OneNinth) 3645252580399227 r002 5th iterates of z^2 + 3645252595737549 a007 Real Root Of 226*x^4+759*x^3+21*x^2+913*x-91 3645252599109505 m001 LambertW(1)*Grothendieck-MasserGramain 3645252599448122 m001 ln(KhintchineLevy)^2*FeigenbaumB/Sierpinski^2 3645252615152622 a007 Real Root Of 490*x^4-515*x^3-487*x^2-812*x+377 3645252621970925 m001 ln(Trott)*HardHexagonsEntropy/sqrt(3) 3645252629601803 r009 Re(z^3+c),c=-7/110+29/40*I,n=2 3645252639626158 m001 exp((2^(1/3)))/MertensB1^2/sqrt(2) 3645252639654265 m001 (Kac+Stephens)/(Si(Pi)+exp(1/exp(1))) 3645252640012161 r002 3th iterates of z^2 + 3645252645770332 r005 Re(z^2+c),c=-47/98+11/48*I,n=28 3645252647917194 r009 Im(z^3+c),c=-15/44+14/41*I,n=25 3645252651659960 m001 GAMMA(13/24)^2/ln(Sierpinski)/log(1+sqrt(2))^2 3645252657126020 k002 Champernowne real with 99*n^2-288*n+225 3645252664607021 a007 Real Root Of 86*x^4+44*x^3-787*x^2+950*x+867 3645252701129566 a007 Real Root Of 466*x^4-556*x^3-109*x^2-710*x+292 3645252708092075 r005 Re(z^2+c),c=-15/32+12/41*I,n=62 3645252713290572 a001 39603/34*34^(11/34) 3645252728030773 l006 ln(4479/6449) 3645252731105033 s002 sum(A103554[n]/(n^2*10^n+1),n=1..infinity) 3645252734748833 h001 (2/9*exp(2)+7/8)/(6/7*exp(2)+4/7) 3645252735868715 r005 Im(z^2+c),c=-31/46+2/27*I,n=61 3645252737810936 m001 (Pi^(1/2)*Mills-Tribonacci)/Mills 3645252739731802 r002 23th iterates of z^2 + 3645252756484838 m001 FransenRobinson^arctan(1/3)*MertensB1 3645252769022673 a007 Real Root Of 209*x^4+519*x^3-854*x^2+80*x-124 3645252770415934 m002 -3/E^Pi+Pi^4+E^Pi*Sinh[Pi] 3645252777452412 r005 Re(z^2+c),c=-59/122+1/31*I,n=9 3645252797139486 a001 1/13*5^(29/30) 3645252797720500 r005 Re(z^2+c),c=-19/44+23/52*I,n=64 3645252800188215 m001 1/RenyiParking*Khintchine/ln(GAMMA(1/3)) 3645252802600045 r009 Im(z^3+c),c=-49/94+11/48*I,n=57 3645252807701699 r009 Im(z^3+c),c=-5/19+16/43*I,n=19 3645252814718285 r005 Re(z^2+c),c=-15/32+12/41*I,n=64 3645252822726830 l006 ln(106/4059) 3645252823949630 r005 Im(z^2+c),c=-1/78+20/37*I,n=10 3645252844296286 r005 Re(z^2+c),c=-41/31+5/64*I,n=40 3645252846159179 r005 Re(z^2+c),c=-73/110+17/60*I,n=13 3645252847901432 m005 (1/2*exp(1)+2/3)/(-17/70+5/14*5^(1/2)) 3645252852888001 m001 ErdosBorwein*FeigenbaumC^GAMMA(2/3) 3645252855148661 a001 47/956722026041*610^(5/16) 3645252860271316 r002 8th iterates of z^2 + 3645252865943646 r005 Re(z^2+c),c=-29/60+13/63*I,n=29 3645252874694023 a007 Real Root Of -558*x^4+324*x^3+8*x^2+70*x+50 3645252879550637 r002 5th iterates of z^2 + 3645252881648156 m001 GAMMA(1/3)/ln(Salem)/GAMMA(5/12)^2 3645252887308584 r009 Im(z^3+c),c=-41/86+8/39*I,n=7 3645252919858866 m001 1/(2^(1/3))^2*Salem/ln(GAMMA(3/4)) 3645252933670337 r005 Im(z^2+c),c=-41/66+3/44*I,n=61 3645252938389129 a007 Real Root Of -706*x^4+813*x^3+343*x^2+572*x-281 3645252944931664 a007 Real Root Of -239*x^4-808*x^3+98*x^2-243*x+874 3645252958074213 m001 (Otter+PlouffeB)/(GAMMA(5/6)-MertensB2) 3645252964809359 r009 Re(z^3+c),c=-1/102+7/9*I,n=59 3645252966231870 m001 (sin(1)+Zeta(5))/(PolyaRandomWalk3D+ZetaP(3)) 3645252968721631 r009 Re(z^3+c),c=-37/102+27/40*I,n=61 3645252969824748 r005 Im(z^2+c),c=-1/4+31/55*I,n=24 3645252980409013 r005 Im(z^2+c),c=3/52+23/58*I,n=6 3645252982446787 m001 Ei(1)/ln(BesselJ(0,1))^2*GAMMA(19/24)^2 3645252994031373 h001 (1/7*exp(2)+8/11)/(5/8*exp(2)+3/11) 3645252999883231 b008 -1/14+CosIntegral[(2*Pi)/5] 3645253002041726 l006 ln(5659/8148) 3645253013037304 r005 Im(z^2+c),c=-5/26+34/49*I,n=11 3645253019033517 r005 Re(z^2+c),c=-2/11+29/49*I,n=11 3645253021141646 l006 ln(8835/9163) 3645253021487750 r005 Re(z^2+c),c=-19/40+12/37*I,n=19 3645253022733947 m001 (Sarnak+ZetaP(4))/(sin(1)+GAMMA(2/3)) 3645253032636611 m003 -11/2+(17*Sqrt[5])/64+E^(1/2+Sqrt[5]/2)/4 3645253055715390 r005 Im(z^2+c),c=-9/14+71/203*I,n=10 3645253060246629 g007 Psi(2,4/7)+14*Zeta(3)-Psi(2,4/9)-Psi(2,2/3) 3645253067659299 m001 (Backhouse-Bloch)/(FellerTornier-Lehmer) 3645253080143602 r002 8th iterates of z^2 + 3645253086086086 h001 (5/12*exp(1)+3/10)/(5/11*exp(2)+4/7) 3645253099999622 r002 45i'th iterates of 2*x/(1-x^2) of 3645253103025524 r005 Im(z^2+c),c=-41/70+1/15*I,n=35 3645253103766933 r005 Im(z^2+c),c=-73/110+1/20*I,n=20 3645253115932410 r005 Re(z^2+c),c=-33/70+17/61*I,n=51 3645253117575267 r005 Im(z^2+c),c=1/10+19/49*I,n=43 3645253121800695 r002 18th iterates of z^2 + 3645253142221805 r005 Re(z^2+c),c=-19/42+15/52*I,n=13 3645253142824146 r005 Re(z^2+c),c=-59/122+13/64*I,n=42 3645253145475709 m001 Pi*(ln(2)/ln(10)+BesselK(1,1))*GAMMA(17/24) 3645253162047177 a007 Real Root Of -562*x^4-368*x^3-182*x^2+910*x+348 3645253181497060 l006 ln(6839/9847) 3645253193847162 r005 Im(z^2+c),c=1/10+19/49*I,n=44 3645253202277295 r005 Im(z^2+c),c=-25/54+28/53*I,n=24 3645253224669366 m005 (1/2*Zeta(3)+2/7)/(7/12*Pi+3/5) 3645253227901850 h001 (5/9*exp(2)+9/10)/(2/5*exp(1)+2/7) 3645253234978007 a001 3571/28657*55^(15/56) 3645253235124091 r005 Im(z^2+c),c=1/70+27/61*I,n=41 3645253241888924 a007 Real Root Of -956*x^4+963*x^3+23*x^2+904*x+390 3645253267948571 a003 sin(Pi*19/115)-sin(Pi*32/97) 3645253270279481 p004 log(32939/22877) 3645253290806512 a007 Real Root Of 166*x^4-499*x^3+335*x^2-739*x-341 3645253309457635 a007 Real Root Of 229*x^4+830*x^3+132*x^2+683*x+505 3645253315238129 r005 Im(z^2+c),c=-17/19+9/38*I,n=17 3645253319275636 m001 (MertensB3-ZetaP(4))/(Pi+GaussKuzminWirsing) 3645253322011025 a001 2178309/521*322^(3/8) 3645253329099465 b008 3*ProductLog[3]^4 3645253332004516 r005 Im(z^2+c),c=-1/17+16/33*I,n=31 3645253355437675 a007 Real Root Of -138*x^4-242*x^3+656*x^2-861*x+789 3645253369579993 m001 (LambertW(1)-sin(1/5*Pi))/(gamma(2)+Stephens) 3645253369931801 r005 Im(z^2+c),c=4/19+13/43*I,n=22 3645253386248639 r009 Re(z^3+c),c=-37/102+27/40*I,n=56 3645253450246986 a007 Real Root Of -49*x^4+111*x^3+685*x^2+934*x-436 3645253450275162 r005 Im(z^2+c),c=-17/30+39/92*I,n=29 3645253479886787 a001 9349/75025*55^(15/56) 3645253480502651 r005 Re(z^2+c),c=-73/102+15/43*I,n=14 3645253483520534 r005 Re(z^2+c),c=-12/25+13/57*I,n=44 3645253504968770 a001 341/11592*2178309^(45/56) 3645253515618496 a001 12238/98209*55^(15/56) 3645253520831682 a001 64079/514229*55^(15/56) 3645253524053609 a001 13201/105937*55^(15/56) 3645253531860124 a007 Real Root Of 13*x^4+470*x^3-161*x^2-721*x-429 3645253537701907 a001 15127/121393*55^(15/56) 3645253544583631 r009 Re(z^3+c),c=-33/70+17/59*I,n=21 3645253546711587 a001 39603/89*987^(36/37) 3645253552574205 r008 a(0)=6,K{-n^6,-n^3-7*n^2+3*n} 3645253553374952 a001 29/610*8^(48/49) 3645253557597916 r002 9th iterates of z^2 + 3645253560183301 m001 FellerTornier/(arctan(1/3)^OneNinth) 3645253566961159 a001 233/521*6643838879^(1/2) 3645253569885785 m002 -6*ProductLog[Pi]-Pi^3*Sinh[Pi] 3645253571390013 a001 610*322^(17/24) 3645253583046851 m004 Pi/E^(Sqrt[5]*Pi)+(125*Tan[Sqrt[5]*Pi])/Pi 3645253584606754 r005 Re(z^2+c),c=-17/74+11/13*I,n=7 3645253591747450 r005 Im(z^2+c),c=-71/126+23/39*I,n=15 3645253606514520 r005 Re(z^2+c),c=-13/27+12/55*I,n=54 3645253615343037 r005 Im(z^2+c),c=29/86+2/19*I,n=47 3645253615551719 r005 Im(z^2+c),c=41/126+7/43*I,n=32 3645253631248737 a001 321/2576*55^(15/56) 3645253632296053 h001 (1/12*exp(2)+1/9)/(2/3*exp(1)+2/11) 3645253636695229 a007 Real Root Of 933*x^4-497*x^3-335*x^2-423*x-15 3645253638439716 m001 exp(1)+ln(5)*Stephens 3645253648978502 a007 Real Root Of -247*x^4-736*x^3+726*x^2+595*x+484 3645253660126620 k002 Champernowne real with 199/2*n^2-579/2*n+226 3645253669614095 a007 Real Root Of -70*x^4+470*x^3-542*x^2-812*x-244 3645253670272018 m001 (GAMMA(5/6)+GaussAGM)/(2^(1/3)+Psi(2,1/3)) 3645253675739732 m001 Catalan/(BesselJ(0,1)+MadelungNaCl) 3645253692507475 m003 -1+Sqrt[5]/16+(5*E^(-1/2-Sqrt[5]/2))/2 3645253710266908 r005 Re(z^2+c),c=-51/122+15/31*I,n=11 3645253730190658 r005 Im(z^2+c),c=-5/11+3/49*I,n=23 3645253734170481 r009 Im(z^3+c),c=-17/58+17/47*I,n=10 3645253734914846 r009 Im(z^3+c),c=-55/126+15/53*I,n=11 3645253748422801 m001 QuadraticClass/BesselJ(1,1)/ln(gamma) 3645253758401062 r009 Im(z^3+c),c=-13/118+25/34*I,n=2 3645253762029735 m001 (gamma(2)+Thue)/(2^(1/2)+Catalan) 3645253765653097 m001 GAMMA(1/4)/ln(Tribonacci)^2*GAMMA(11/24)^2 3645253783418078 r002 7th iterates of z^2 + 3645253785226952 m001 (Psi(2,1/3)-sin(1/12*Pi))/(Thue+TwinPrimes) 3645253793539203 a001 832040/2207*322^(19/24) 3645253794265724 a007 Real Root Of 62*x^4-32*x^3-946*x^2-25*x-18 3645253796505407 l006 ln(253/9688) 3645253805041826 m005 (1/2*gamma+1/12)/(3/8*5^(1/2)+2/11) 3645253814211023 r005 Re(z^2+c),c=-2/3+15/121*I,n=6 3645253817965665 a007 Real Root Of -244*x^4-647*x^3+667*x^2-577*x+777 3645253820721844 m001 (-2*Pi/GAMMA(5/6)+Kac)/(Chi(1)+polylog(4,1/2)) 3645253828507515 a001 7/4*(1/2*5^(1/2)+1/2)^20*4^(3/13) 3645253833815889 m001 RenyiParking*exp(Si(Pi))*BesselJ(0,1) 3645253848693524 m001 (Salem-ln(2^(1/2)+1))/cos(1/5*Pi) 3645253866332628 b008 31+5*2^(1/8) 3645253871761413 a007 Real Root Of -350*x^4-708*x^3-627*x^2+592*x+271 3645253886564706 r005 Im(z^2+c),c=1/10+19/49*I,n=39 3645253900678285 m001 GAMMA(5/6)^ThueMorse*ZetaP(4)^ThueMorse 3645253934285264 r005 Im(z^2+c),c=13/66+11/35*I,n=26 3645253935821726 m004 -2+5*Sec[Sqrt[5]*Pi]+125*Pi*Tan[Sqrt[5]*Pi] 3645253940392591 m005 (1/2*3^(1/2)-3/5)/(2/7*5^(1/2)+1/11) 3645253958855699 m002 -E^Pi-Pi^4+Pi^4/Log[Pi]-Tanh[Pi] 3645253965914508 m006 (3/5*exp(2*Pi)-2/3)/(1/4/Pi+4/5) 3645253966606310 a001 55/2207*18^(5/38) 3645253969822474 m001 cos(Pi/5)^2/ln(Riemann3rdZero)^2*gamma 3645253998716182 a007 Real Root Of -295*x^4-909*x^3+582*x^2+34*x+448 3645254015057528 a007 Real Root Of 955*x^4-779*x^3+962*x^2-136*x-232 3645254031230049 r009 Im(z^3+c),c=-11/21+3/13*I,n=57 3645254042122215 l006 ln(1180/1699) 3645254053826383 r005 Re(z^2+c),c=-13/27+12/55*I,n=56 3645254064782695 r005 Im(z^2+c),c=7/25+16/37*I,n=8 3645254068485103 r005 Re(z^2+c),c=-83/114+5/24*I,n=56 3645254086656572 a007 Real Root Of 873*x^4-617*x^3-278*x^2-822*x-308 3645254099882748 r005 Im(z^2+c),c=-3/58+25/52*I,n=32 3645254104099137 m001 (Zeta(5)-polylog(4,1/2))/(FeigenbaumB+Lehmer) 3645254104823911 r005 Re(z^2+c),c=-13/27+12/55*I,n=52 3645254108103844 a007 Real Root Of 51*x^4-616*x^3+464*x^2+34*x-80 3645254109021741 r005 Re(z^2+c),c=-47/70+9/43*I,n=4 3645254111410611 a007 Real Root Of 36*x^4-20*x^3-448*x^2+301*x-275 3645254120890793 r005 Re(z^2+c),c=-5/19+17/28*I,n=18 3645254123497368 p004 log(36263/947) 3645254138639414 m001 Chi(1)*LandauRamanujan2nd*RenyiParking 3645254139723035 r002 11th iterates of z^2 + 3645254150558883 m001 (1+sin(1/12*Pi))/(BesselI(0,2)+GAMMA(19/24)) 3645254166251842 m005 (1/2*5^(1/2)+6/11)/(1/5*exp(1)-1) 3645254181443911 m001 1/3*(3^(1/2)*ZetaP(4)-LandauRamanujan)*3^(1/2) 3645254200609628 m001 ln(Porter)/PisotVijayaraghavan*(2^(1/3)) 3645254201430272 r009 Re(z^3+c),c=-3/44+38/55*I,n=54 3645254237692399 a007 Real Root Of 131*x^4+395*x^3-247*x^2+216*x+72 3645254239564984 m001 MinimumGamma^(GAMMA(23/24)/ln(2)*ln(10)) 3645254239974237 r009 Im(z^3+c),c=-25/102+17/45*I,n=16 3645254240164493 s002 sum(A234380[n]/(64^n-1),n=1..infinity) 3645254250369725 m001 (-GAMMA(3/4)+1)/(-GAMMA(17/24)+2/3) 3645254256521716 m001 (cos(1/5*Pi)-Ei(1,1))/(ErdosBorwein+Trott) 3645254266446905 r009 Re(z^3+c),c=-1/52+46/47*I,n=6 3645254272428248 a001 2207/17711*55^(15/56) 3645254272765929 a007 Real Root Of 630*x^4+365*x^3-773*x^2-815*x+371 3645254274091692 a007 Real Root Of 765*x^4-242*x^3+129*x^2-379*x-14 3645254280613865 r005 Re(z^2+c),c=-23/52+25/61*I,n=39 3645254289662927 m001 (Magata-MertensB1)/(Zeta(1,-1)-ArtinRank2) 3645254298110885 r005 Im(z^2+c),c=-1/94+28/61*I,n=20 3645254319262454 r005 Re(z^2+c),c=-12/25+13/57*I,n=39 3645254327162620 r005 Im(z^2+c),c=-13/94+10/19*I,n=48 3645254333257483 r005 Re(z^2+c),c=-7/10+173/205*I,n=3 3645254338234708 r009 Im(z^3+c),c=-27/64+8/27*I,n=25 3645254341994972 r009 Re(z^3+c),c=-47/98+9/31*I,n=58 3645254342660561 b008 23*10^(1/5) 3645254342660561 b008 23/10^(4/5) 3645254347910235 r005 Im(z^2+c),c=33/106+7/36*I,n=34 3645254349618009 a005 (1/cos(10/147*Pi))^1457 3645254362677295 m001 Si(Pi)^2/exp(FransenRobinson)^2*cos(1)^2 3645254364796655 h001 (4/7*exp(2)+5/6)/(3/10*exp(1)+4/7) 3645254370345819 r005 Re(z^2+c),c=-1/118+9/49*I,n=12 3645254372177755 r005 Re(z^2+c),c=-15/32+12/41*I,n=59 3645254372882166 r005 Im(z^2+c),c=17/74+23/61*I,n=9 3645254387146653 m001 (ZetaP(2)-ZetaQ(4))/(Stephens+TwinPrimes) 3645254399402798 m005 (1/3*gamma+1/7)/(1/9*3^(1/2)+8/11) 3645254407134970 a007 Real Root Of 2*x^4+728*x^3-383*x^2+27*x+140 3645254407911680 m001 1/Riemann2ndZero/Niven*exp(GAMMA(17/24))^2 3645254413101015 a007 Real Root Of -975*x^4+760*x^3-572*x^2+779*x+414 3645254417414614 a007 Real Root Of -707*x^4+473*x^3+960*x^2+930*x-477 3645254419986150 r005 Re(z^2+c),c=-29/28+2/41*I,n=18 3645254430034033 a007 Real Root Of 833*x^4-324*x^3+29*x^2-633*x-265 3645254432734547 a001 726103/1926*322^(19/24) 3645254435311415 a007 Real Root Of -747*x^4+78*x^3+971*x^2+985*x+247 3645254437184592 g007 Psi(2,5/11)+Psi(2,3/7)-Psi(2,7/11)-Psi(2,6/7) 3645254442766189 p004 log(31847/30707) 3645254466281704 m003 17/10+Sqrt[5]/(2*ProductLog[1/2+Sqrt[5]/2]^2) 3645254466472060 a007 Real Root Of 268*x^4-901*x^3-963*x^2-859*x+480 3645254471385311 m005 (1/3*Pi+1/9)/(6*gamma-2/7) 3645254476710385 a007 Real Root Of -23*x^4-825*x^3+492*x^2+120*x+89 3645254484332367 m001 (Bloch+FeigenbaumC)/(FeigenbaumKappa-Sarnak) 3645254492942879 r005 Im(z^2+c),c=-45/98+3/49*I,n=19 3645254498685290 l006 ln(147/5629) 3645254512260516 m001 (1+HeathBrownMoroz)/(-Magata+TwinPrimes) 3645254522990044 s001 sum(1/10^(n-1)*A008894[n]/n!^2,n=1..infinity) 3645254525991909 a001 5702887/15127*322^(19/24) 3645254535442440 a001 124/5*987^(23/59) 3645254538364227 r005 Re(z^2+c),c=-2/3+37/211*I,n=17 3645254539597975 a001 4976784/13201*322^(19/24) 3645254541583074 a001 39088169/103682*322^(19/24) 3645254541872696 a001 34111385/90481*322^(19/24) 3645254541914951 a001 267914296/710647*322^(19/24) 3645254541921116 a001 233802911/620166*322^(19/24) 3645254541922015 a001 1836311903/4870847*322^(19/24) 3645254541922146 a001 1602508992/4250681*322^(19/24) 3645254541922166 a001 12586269025/33385282*322^(19/24) 3645254541922168 a001 10983760033/29134601*322^(19/24) 3645254541922169 a001 86267571272/228826127*322^(19/24) 3645254541922169 a001 267913919/710646*322^(19/24) 3645254541922169 a001 591286729879/1568397607*322^(19/24) 3645254541922169 a001 516002918640/1368706081*322^(19/24) 3645254541922169 a001 4052739537881/10749957122*322^(19/24) 3645254541922169 a001 3536736619241/9381251041*322^(19/24) 3645254541922169 a001 6557470319842/17393796001*322^(19/24) 3645254541922169 a001 2504730781961/6643838879*322^(19/24) 3645254541922169 a001 956722026041/2537720636*322^(19/24) 3645254541922169 a001 365435296162/969323029*322^(19/24) 3645254541922169 a001 139583862445/370248451*322^(19/24) 3645254541922169 a001 53316291173/141422324*322^(19/24) 3645254541922170 a001 20365011074/54018521*322^(19/24) 3645254541922177 a001 7778742049/20633239*322^(19/24) 3645254541922228 a001 2971215073/7881196*322^(19/24) 3645254541922571 a001 1134903170/3010349*322^(19/24) 3645254541924926 a001 433494437/1149851*322^(19/24) 3645254541941066 a001 165580141/439204*322^(19/24) 3645254542051692 a001 63245986/167761*322^(19/24) 3645254542809932 a001 24157817/64079*322^(19/24) 3645254545520840 r005 Re(z^2+c),c=-47/98+3/13*I,n=52 3645254548006987 a001 9227465/24476*322^(19/24) 3645254550863705 m001 FeigenbaumC/BesselK(1,1)/GaussAGM 3645254551322868 a007 Real Root Of 210*x^4+751*x^3-12*x^2+293*x+525 3645254556570611 r005 Im(z^2+c),c=-7/25+27/47*I,n=53 3645254561910169 m005 (1/2*5^(1/2)+3/7)/(Zeta(3)-7/9) 3645254570544212 r005 Re(z^2+c),c=-53/118+19/50*I,n=56 3645254581340966 m001 (Psi(2,1/3)+exp(1))/(Robbin+StronglyCareFree) 3645254583628131 a001 3524578/9349*322^(19/24) 3645254589809218 r008 a(0)=4,K{-n^6,-54+12*n-6*n^2+51*n^3} 3645254590103483 a007 Real Root Of -283*x^4-933*x^3+429*x^2+84*x-618 3645254595366040 m005 (-47/10+3/10*5^(1/2))/(1/3*Catalan+4/5) 3645254602918324 s001 sum(exp(-Pi/2)^n*A105262[n],n=1..infinity) 3645254622778210 a007 Real Root Of 784*x^4-516*x^3+374*x^2-218*x-168 3645254628419539 a007 Real Root Of 301*x^4+873*x^3-907*x^2-374*x-172 3645254632916873 r005 Re(z^2+c),c=-14/31+10/27*I,n=44 3645254633307726 m001 (ln(3)-BesselJ(1,1))/(Otter-Riemann2ndZero) 3645254648889340 r005 Re(z^2+c),c=-13/27+12/55*I,n=58 3645254663127220 k002 Champernowne real with 100*n^2-291*n+227 3645254668466436 m006 (3*ln(Pi)+4)/(5/6*ln(Pi)-3/4) 3645254668622136 m001 (GAMMA(13/24)+ZetaP(3))/(GAMMA(2/3)-Si(Pi)) 3645254678072073 r005 Im(z^2+c),c=-25/31+8/39*I,n=7 3645254695679245 r005 Re(z^2+c),c=-29/46+29/62*I,n=15 3645254698219222 r005 Re(z^2+c),c=-13/106+37/58*I,n=35 3645254700286316 r008 a(0)=4,K{-n^6,-56+52*n^3-10*n^2+17*n} 3645254705769013 m001 (MertensB2-Niven)/(BesselJ(1,1)-BesselI(0,2)) 3645254716826827 a001 121393/11*47^(9/29) 3645254743454163 r005 Im(z^2+c),c=-13/60+32/57*I,n=52 3645254747760116 r005 Re(z^2+c),c=-47/98+3/13*I,n=50 3645254750274084 r005 Re(z^2+c),c=-11/24+19/46*I,n=27 3645254755226016 r009 Im(z^3+c),c=-1/46+26/63*I,n=13 3645254766104015 r002 47th iterates of z^2 + 3645254771446911 m006 (5/Pi-1)/(2*ln(Pi)-2/3) 3645254778855396 r005 Re(z^2+c),c=-37/78+16/61*I,n=36 3645254781481258 m001 (Kac-PrimesInBinary)/(ln(2^(1/2)+1)+Zeta(1/2)) 3645254782196144 m001 (exp(1/Pi)+GAMMA(11/12))/(Champernowne+Landau) 3645254790543323 a007 Real Root Of -20*x^4+94*x^3+421*x^2-484*x+726 3645254795001787 r005 Re(z^2+c),c=4/11+21/41*I,n=3 3645254805998278 a007 Real Root Of 144*x^4+445*x^3-215*x^2+245*x-121 3645254806876074 r002 22th iterates of z^2 + 3645254810857377 m001 exp(cos(Pi/12))^2*Catalan/log(2+sqrt(3))^2 3645254811687179 r009 Im(z^3+c),c=-23/62+5/8*I,n=3 3645254812164304 r005 Im(z^2+c),c=1/7+27/41*I,n=12 3645254820388136 h001 (1/3*exp(1)+7/12)/(5/11*exp(2)+8/11) 3645254823561411 m001 cos(1/5*Pi)*Ei(1,1)*gamma(3) 3645254827779106 a001 1346269/3571*322^(19/24) 3645254828711976 m001 ln(ArtinRank2)^2*Conway^2*sqrt(1+sqrt(3)) 3645254846633922 r005 Re(z^2+c),c=-14/29+4/19*I,n=29 3645254861660552 m001 (Bloch-Conway)/(gamma(3)+BesselI(0,2)) 3645254865032560 a001 1/377*1346269^(15/43) 3645254868653696 a007 Real Root Of 283*x^4+989*x^3-114*x^2+406*x+931 3645254881754495 a003 cos(Pi*9/115)*sin(Pi*13/106) 3645254896747600 r009 Re(z^3+c),c=-53/110+17/58*I,n=62 3645254898023606 m005 (1/2*3^(1/2)+5/11)/(2/7*3^(1/2)-6/7) 3645254898950940 m005 (1/2*Pi+2/5)/(1/6*gamma+4/9) 3645254904438729 a003 cos(Pi*9/44)*cos(Pi*36/103) 3645254911510581 a003 cos(Pi*1/27)-cos(Pi*19/67) 3645254927159088 a007 Real Root Of 907*x^4-890*x^3-679*x^2-663*x+359 3645254946850944 r009 Re(z^3+c),c=-10/21+2/7*I,n=38 3645254949735382 m001 (Chi(1)+Zeta(3))/(-GAMMA(2/3)+Kolakoski) 3645254963268165 m001 GAMMA(17/24)-ErdosBorwein^GAMMA(11/12) 3645254966815827 r005 Re(z^2+c),c=-13/27+12/55*I,n=63 3645254971255660 a007 Real Root Of -144*x^4-564*x^3-314*x^2-687*x-225 3645254980499937 a007 Real Root Of -327*x^4-947*x^3+587*x^2-848*x+976 3645255000567892 l006 ln(6141/8842) 3645255003629986 a001 76/987*610^(8/33) 3645255004811553 a007 Real Root Of 307*x^4+805*x^3-917*x^2+764*x-244 3645255006408642 a001 123/10946*233^(30/47) 3645255017018782 l006 ln(5468/5671) 3645255021491191 a007 Real Root Of -247*x^4-823*x^3+14*x^2-857*x+438 3645255025108083 a007 Real Root Of 251*x^4+569*x^3+774*x^2-725*x-344 3645255037227482 r005 Im(z^2+c),c=-11/98+22/43*I,n=28 3645255039972216 r005 Re(z^2+c),c=-13/27+12/55*I,n=61 3645255047128613 m005 (1/6*Catalan+5)/(23/40+3/8*5^(1/2)) 3645255047188874 r005 Re(z^2+c),c=-13/27+12/55*I,n=60 3645255059270794 r009 Im(z^3+c),c=-25/46+15/41*I,n=50 3645255060241002 r002 22th iterates of z^2 + 3645255071748217 m001 MertensB3*(GAMMA(5/6)+ErdosBorwein) 3645255081613690 a005 (1/cos(1/44*Pi))^507 3645255088554057 q001 1379/3783 3645255117925252 r005 Re(z^2+c),c=-35/74+10/37*I,n=53 3645255129316892 r005 Re(z^2+c),c=-13/27+12/55*I,n=51 3645255135192095 r005 Im(z^2+c),c=-67/78+8/33*I,n=5 3645255136582036 a007 Real Root Of 158*x^4+486*x^3+301*x^2-644*x-254 3645255167659533 r009 Re(z^3+c),c=-47/90+3/17*I,n=28 3645255168562473 m001 FeigenbaumD*Paris^2/ln(BesselJ(0,1))^2 3645255177585111 m003 -39/10+Sqrt[5]/32+Tanh[1/2+Sqrt[5]/2]/5 3645255177696940 h001 (7/8*exp(1)+1/7)/(6/7*exp(2)+7/12) 3645255178112745 a001 3571/121393*2178309^(45/56) 3645255183182817 a005 (1/cos(8/99*Pi))^1312 3645255186303044 m005 (1/3*3^(1/2)+2/9)/(7/9*Pi-1/4) 3645255186822876 m005 (1/3*3^(1/2)+1/8)/(49/44+4/11*5^(1/2)) 3645255206578552 m003 3/4+Sqrt[5]/2+(Sqrt[5]*E^(1+Sqrt[5]))/32 3645255209043251 r005 Re(z^2+c),c=-13/27+12/55*I,n=62 3645255209135141 a007 Real Root Of -21*x^4+30*x^3+514*x^2+471*x+48 3645255210126297 r008 a(0)=0,K{-n^6,-6-2*n-43*n^2+54*n^3} 3645255217499050 r005 Im(z^2+c),c=-115/126+17/63*I,n=4 3645255219375876 r005 Re(z^2+c),c=-13/27+12/55*I,n=64 3645255228539235 l006 ln(4961/7143) 3645255237669768 r008 a(0)=4,K{-n^6,-16-10*n^3+26*n^2+4*n} 3645255256316364 a007 Real Root Of 292*x^4+976*x^3-282*x^2-35*x-663 3645255264841564 m005 (1/2*2^(1/2)-3/11)/(5/7*exp(1)-3/4) 3645255272032274 a001 121393/843*322^(23/24) 3645255286329879 s002 sum(A196343[n]/((exp(n)+1)*n),n=1..infinity) 3645255286330051 s002 sum(A196322[n]/((exp(n)+1)*n),n=1..infinity) 3645255291345356 r005 Im(z^2+c),c=43/126+5/39*I,n=57 3645255292962813 r009 Im(z^3+c),c=-7/13+17/54*I,n=35 3645255295794466 r005 Re(z^2+c),c=-49/94+8/47*I,n=9 3645255296290625 r002 18th iterates of z^2 + 3645255305579610 r005 Im(z^2+c),c=1/36+24/55*I,n=11 3645255313564173 r005 Re(z^2+c),c=-13/27+12/55*I,n=59 3645255316332976 m001 GAMMA(13/24)/(GAMMA(23/24)-Stephens) 3645255317285259 m001 Salem/(exp(1/exp(1))+Grothendieck) 3645255318343189 a007 Real Root Of 65*x^4+103*x^3-604*x^2-589*x-609 3645255318860061 a007 Real Root Of -570*x^4+967*x^3-572*x^2+612*x+356 3645255335057603 r005 Re(z^2+c),c=-29/28+16/61*I,n=10 3645255344479120 r002 27th iterates of z^2 + 3645255344921010 a007 Real Root Of 157*x^4-825*x^3+244*x^2-467*x+175 3645255347041323 r005 Im(z^2+c),c=-71/118+8/25*I,n=3 3645255350754256 r005 Im(z^2+c),c=-27/40+13/45*I,n=55 3645255363102831 r009 Im(z^3+c),c=-25/46+15/41*I,n=57 3645255364106800 a007 Real Root Of 517*x^4+86*x^3+209*x^2-94*x-67 3645255383230409 r002 17th iterates of z^2 + 3645255395056514 m001 (Conway-StronglyCareFree)/(exp(1/Pi)-gamma(1)) 3645255400068241 m001 (LambertW(1)+ErdosBorwein)/Gompertz 3645255401117722 r005 Re(z^2+c),c=-47/114+1/2*I,n=34 3645255407146955 r005 Re(z^2+c),c=9/46+20/43*I,n=17 3645255412663006 r005 Im(z^2+c),c=-9/62+26/49*I,n=41 3645255415810748 a007 Real Root Of -949*x^4-303*x^3-274*x^2+882*x+360 3645255422221161 a001 9349/317811*2178309^(45/56) 3645255425075889 r002 6th iterates of z^2 + 3645255433680157 r005 Im(z^2+c),c=-1/9+19/37*I,n=33 3645255439990341 r009 Im(z^3+c),c=-12/29+10/33*I,n=15 3645255443639353 l006 ln(188/7199) 3645255453922315 m004 -4+(5*Sqrt[5]*Pi)/4+125*Pi*Tan[Sqrt[5]*Pi] 3645255457836099 a001 6119/208010*2178309^(45/56) 3645255459808922 r005 Re(z^2+c),c=-7/15+14/45*I,n=16 3645255460097168 a001 6/7*6765^(18/19) 3645255466243646 a001 39603/1346269*2178309^(45/56) 3645255466883412 m001 (ln(2)*GAMMA(7/12)+Porter)/ln(2) 3645255479847341 a001 15127/514229*2178309^(45/56) 3645255486652332 a005 (1/sin(68/183*Pi))^98 3645255486654551 m005 (1/2*gamma+4/9)/(11/12*Zeta(3)+10/11) 3645255515243541 r005 Re(z^2+c),c=-11/25+2/7*I,n=8 3645255518161471 m005 (1/2*Pi+5/9)/(3*5^(1/2)-7/8) 3645255535775880 r005 Re(z^2+c),c=-1/28+2/41*I,n=6 3645255537361274 p001 sum(1/(439*n+276)/(64^n),n=0..infinity) 3645255543392597 m001 FeigenbaumD*(BesselK(0,1)-Zeta(1,2)) 3645255546205846 m005 (1/2*3^(1/2)+4/5)/(9/11*Pi+2) 3645255562656370 r005 Re(z^2+c),c=-13/28+17/54*I,n=45 3645255569469983 a007 Real Root Of 899*x^4-423*x^3+717*x^2-204*x-206 3645255573088459 a001 2889/98209*2178309^(45/56) 3645255576664071 r005 Im(z^2+c),c=-65/126+15/26*I,n=59 3645255580039542 m001 Tribonacci*ln(Lehmer)^2/sinh(1)^2 3645255582295358 r009 Re(z^3+c),c=-27/74+35/54*I,n=14 3645255582460756 m005 (1/3*2^(1/2)-1/9)/(5/6*5^(1/2)-7/8) 3645255598804238 l006 ln(3781/5444) 3645255625076997 a001 11/3*233^(27/32) 3645255632090639 r002 7th iterates of z^2 + 3645255649502098 m001 (ln(3)+HardyLittlewoodC3)/PlouffeB 3645255661113858 s001 sum(exp(-Pi/3)^(n-1)*A054964[n],n=1..infinity) 3645255666127820 k002 Champernowne real with 201/2*n^2-585/2*n+228 3645255671290248 a007 Real Root Of -693*x^4-809*x^3+171*x^2+685*x-221 3645255671517226 m005 (1/2*exp(1)+5/9)/(1/8*Zeta(3)+3/8) 3645255677817891 m001 (1+Ei(1,1))/(GAMMA(13/24)+Niven) 3645255680782044 m001 1/Porter^2/ln(LaplaceLimit)/GAMMA(1/6)^2 3645255682769622 a005 (1/cos(9/149*Pi))^707 3645255688687109 m005 (-23/4+1/4*5^(1/2))/(3/4*3^(1/2)+1/8) 3645255704973497 r005 Im(z^2+c),c=-5/42+31/60*I,n=45 3645255705765862 r005 Im(z^2+c),c=1/11+13/33*I,n=29 3645255721844276 r005 Re(z^2+c),c=29/122+14/27*I,n=45 3645255747928625 r005 Im(z^2+c),c=-53/90+7/20*I,n=5 3645255753635028 r002 20th iterates of z^2 + 3645255758676872 h003 exp(Pi*(6^(1/4)-9^(2/3)*4^(3/4))) 3645255779546600 p004 log(14633/10163) 3645255780095218 m001 cos(Pi/5)^exp(-Pi)/exp(1) 3645255781584946 m005 (1/2*gamma-7/9)/(1/6*exp(1)+8/9) 3645255790665291 a001 3/46*15127^(26/29) 3645255797060721 p001 sum(1/(496*n+285)/(10^n),n=0..infinity) 3645255821211546 m001 (GAMMA(19/24)-Catalan)*2^(1/2) 3645255821211546 m001 sqrt(2)*(Catalan-GAMMA(19/24)) 3645255829635722 r005 Re(z^2+c),c=-13/27+12/55*I,n=57 3645255854367577 s002 sum(A213425[n]/(exp(n)-1),n=1..infinity) 3645255859623452 m005 (1/3*5^(1/2)-3/5)/(9/10*5^(1/2)-6) 3645255867870145 r005 Re(z^2+c),c=-69/110+12/35*I,n=50 3645255885765796 r009 Im(z^3+c),c=-25/46+15/41*I,n=64 3645255886626961 l006 ln(6382/9189) 3645255887651009 p003 LerchPhi(1/64,4,197/86) 3645255913429257 m001 (-CareFree+MertensB2)/(Psi(1,1/3)-Zeta(5)) 3645255920560861 m001 GAMMA(11/24)/Riemann3rdZero/ln(cos(Pi/5)) 3645255927075306 r005 Re(z^2+c),c=-35/74+10/37*I,n=51 3645255928878541 m006 (1/3*ln(Pi)-3)/(1/Pi+2/5) 3645255950440169 q001 1118/3067 3645255954467265 r005 Im(z^2+c),c=-1/60+23/35*I,n=33 3645255964142709 r005 Im(z^2+c),c=-17/110+24/41*I,n=26 3645255976500283 r005 Im(z^2+c),c=-13/90+27/43*I,n=56 3645255980926800 r005 Re(z^2+c),c=-23/30+16/127*I,n=12 3645255994174469 r002 23th iterates of z^2 + 3645255995835912 m001 cos(1)*ln(2^(1/2)+1)/Mills 3645255996024008 a001 196418/199*199^(15/22) 3645256004952921 a007 Real Root Of -946*x^4+727*x^3+467*x^2+591*x-296 3645256008008204 a003 cos(Pi*41/116)-cos(Pi*28/59) 3645256015639754 m001 (BesselI(1,2)+Gompertz)^((1+3^(1/2))^(1/2)) 3645256021391720 r009 Im(z^3+c),c=-17/46+18/55*I,n=20 3645256029069643 r009 Im(z^3+c),c=-19/44+7/24*I,n=16 3645256050225115 l006 ln(229/8769) 3645256072996633 r005 Re(z^2+c),c=-41/90+1/29*I,n=5 3645256091160609 p003 LerchPhi(1/1024,6,55/147) 3645256092125927 m001 (PlouffeB+Salem)/(2*Pi/GAMMA(5/6)-MertensB2) 3645256111906847 r002 19th iterates of z^2 + 3645256116630272 r004 Re(z^2+c),c=-65/46-8/13*I,z(0)=-1,n=4 3645256120386710 a007 Real Root Of -759*x^4+197*x^3+892*x^2+577*x-325 3645256129916187 r005 Re(z^2+c),c=5/56+38/61*I,n=10 3645256136691424 m001 1/ln(LambertW(1))^2/GAMMA(1/3)^2*sin(1) 3645256148047773 r009 Re(z^3+c),c=-43/90+15/52*I,n=37 3645256158330928 m001 (MasserGramain+MertensB3)^Ei(1) 3645256167272211 r005 Im(z^2+c),c=-17/82+21/40*I,n=12 3645256206560941 m005 (1/2*2^(1/2)-7/9)/(3/4*exp(1)-1/10) 3645256212172590 a001 2207/75025*2178309^(45/56) 3645256214409675 a007 Real Root Of 474*x^4+258*x^3+475*x^2-727*x-324 3645256226377552 r005 Re(z^2+c),c=-27/58+16/43*I,n=19 3645256236551077 r005 Re(z^2+c),c=-47/98+3/13*I,n=54 3645256241009371 h001 (5/6*exp(2)+2/5)/(5/8*exp(1)+1/10) 3645256246532995 r005 Im(z^2+c),c=-1/70+17/37*I,n=42 3645256251833221 a001 1346269/521*322^(11/24) 3645256254895719 r005 Re(z^2+c),c=-11/24+7/13*I,n=26 3645256273399433 m001 BesselJ(1,1)/ErdosBorwein/exp(Zeta(7))^2 3645256298012868 a008 Real Root of x^4-x^3+62*x+1 3645256298343993 a007 Real Root Of 282*x^4-604*x^3+736*x^2-779*x-416 3645256300586143 a001 199/610*5^(2/29) 3645256305026683 l006 ln(2601/3745) 3645256305155301 m001 (Conway-Si(Pi))/(Kolakoski+Rabbit) 3645256305642203 a007 Real Root Of -190*x^4-634*x^3+488*x^2+727*x-996 3645256313521350 a007 Real Root Of 649*x^4-133*x^3-982*x^2-863*x-202 3645256319272276 r009 Re(z^3+c),c=-61/118+21/64*I,n=59 3645256319820496 m002 (E^Pi*Log[Pi])/10+Tanh[Pi] 3645256329251240 a001 4/2178309*34^(7/36) 3645256330789038 h001 (-3*exp(2/3)-6)/(-5*exp(-3)-3) 3645256333691249 m001 Gompertz-LandauRamanujan^ZetaR(2) 3645256337710414 a007 Real Root Of -530*x^4+981*x^3+747*x^2+959*x-487 3645256341372989 a007 Real Root Of 434*x^4-529*x^3-308*x^2-822*x-292 3645256343591995 a003 sin(Pi*4/107)/cos(Pi*19/48) 3645256347113333 r005 Im(z^2+c),c=1/30+25/58*I,n=41 3645256352312226 r009 Re(z^3+c),c=-29/50+5/11*I,n=48 3645256358671669 r005 Re(z^2+c),c=-12/25+9/40*I,n=26 3645256362330785 m001 CopelandErdos/(Bloch+ZetaP(3)) 3645256368590848 m001 FransenRobinson*(arctan(1/2)+GaussAGM) 3645256395559384 r009 Im(z^3+c),c=-9/52+19/48*I,n=14 3645256400553581 m001 1/3*GAMMA(3/4)^BesselJ(1,1) 3645256400557902 m001 (Gompertz+Tetranacci)/(BesselJ(0,1)+gamma(1)) 3645256404577755 r009 Re(z^3+c),c=-23/52+21/40*I,n=10 3645256408731864 a001 123/13*46368^(57/58) 3645256420339233 r005 Re(z^2+c),c=-13/27+12/55*I,n=55 3645256429566985 m001 ln(Lehmer)^2/ArtinRank2/OneNinth 3645256453777779 r005 Re(z^2+c),c=-5/16+29/49*I,n=51 3645256454367235 m005 (1/2*Catalan-1/9)/(4*5^(1/2)+4/7) 3645256457933702 r005 Re(z^2+c),c=-61/114+9/22*I,n=14 3645256461219494 r005 Im(z^2+c),c=37/90+16/51*I,n=6 3645256467610339 m001 (Rabbit+ThueMorse)/(Si(Pi)+FibonacciFactorial) 3645256468436116 m001 GAMMA(13/24)*FeigenbaumD^2/exp(sinh(1)) 3645256495986126 m001 GAMMA(1/24)^GAMMA(1/3)/(ln(3)^GAMMA(1/3)) 3645256497076888 r005 Im(z^2+c),c=-4/3+23/238*I,n=8 3645256497932247 r005 Im(z^2+c),c=-9/14+36/89*I,n=54 3645256501215665 a001 514229/1364*322^(19/24) 3645256503891876 m001 (Magata+Otter)/(gamma(3)-MadelungNaCl) 3645256515884081 m001 GAMMA(7/12)^2/Magata/ln(cosh(1))^2 3645256523703481 r005 Re(z^2+c),c=-13/27+12/55*I,n=53 3645256524518478 m001 (Pi-Khinchin)/(MertensB3-StolarskyHarborth) 3645256530242402 a001 7/317811*121393^(39/47) 3645256535367025 a007 Real Root Of 86*x^4+157*x^3-622*x^2-65*x+448 3645256539526872 m001 (Psi(2,1/3)+Chi(1))/(Zeta(5)+ZetaP(2)) 3645256540347830 m001 HardyLittlewoodC4+OneNinth^GAMMA(17/24) 3645256555417917 m005 (1/2*gamma+7/9)/(1/7*gamma-3/8) 3645256573813703 r005 Re(z^2+c),c=43/122+22/57*I,n=49 3645256574755116 r005 Im(z^2+c),c=-13/102+25/48*I,n=57 3645256584667778 a001 144/47*5778^(16/29) 3645256588653048 m001 (2^(1/2)-cos(1))/(-Zeta(5)+Riemann3rdZero) 3645256597291643 a003 cos(Pi*16/81)*cos(Pi*25/71) 3645256630564173 m001 (AlladiGrinstead-ThueMorse)/(ln(3)+gamma(2)) 3645256632032507 r009 Im(z^3+c),c=-9/31+13/36*I,n=8 3645256642339698 m001 FellerTornier/BesselK(0,1)/Riemann2ndZero 3645256666524109 m001 (Bloch+FransenRobinson)/(Psi(1,1/3)-ln(3)) 3645256667274853 m001 1/ln(ArtinRank2)/FransenRobinson^2/cos(Pi/12) 3645256669128421 k002 Champernowne real with 101*n^2-294*n+229 3645256674102191 a007 Real Root Of 294*x^4+967*x^3-535*x^2-343*x+787 3645256676538619 r008 a(0)=4,K{-n^6,-10-42*n-2*n^2+57*n^3} 3645256683507632 r005 Re(z^2+c),c=-13/27+12/55*I,n=50 3645256708201515 l006 ln(6623/9536) 3645256718591259 r005 Re(z^2+c),c=-41/60+5/63*I,n=8 3645256722839237 a007 Real Root Of 232*x^4+642*x^3-875*x^2-242*x+878 3645256723365033 a001 514229/2207*322^(7/8) 3645256724508080 a007 Real Root Of -157*x^4+423*x^3-451*x^2+851*x-268 3645256739198586 r001 60i'th iterates of 2*x^2-1 of 3645256748540364 r005 Im(z^2+c),c=-5/6+5/181*I,n=5 3645256761526945 a007 Real Root Of 983*x^4+693*x^3-674*x^2-920*x+374 3645256771695024 m001 exp((2^(1/3)))/FeigenbaumAlpha*sin(Pi/12) 3645256772252165 r009 Im(z^3+c),c=-1/15+13/16*I,n=10 3645256777537675 m005 (1/2*Zeta(3)+10/11)/(2/9*2^(1/2)+1/10) 3645256780427808 m005 (1/2*Pi-2/9)/(6/11*Zeta(3)-2/7) 3645256783588761 p004 log(11909/311) 3645256789665504 r005 Im(z^2+c),c=-5/82+17/35*I,n=53 3645256805966969 a001 29/832040*3^(2/49) 3645256812659954 m001 1/Salem^2*Riemann3rdZero^2/exp(OneNinth)^2 3645256819701592 m001 (2^(1/2)-5^(1/2))/(HardHexagonsEntropy+Thue) 3645256830579152 b008 Pi-LogGamma[E^3] 3645256848590491 p003 LerchPhi(1/12,4,81/199) 3645256849970140 a001 3/233*165580141^(13/24) 3645256852124415 m001 Psi(2,1/3)^FellerTornier-HeathBrownMoroz 3645256852150890 r005 Im(z^2+c),c=-31/114+37/44*I,n=21 3645256853049727 m001 (ln(Pi)-ArtinRank2)/(Conway-ZetaP(4)) 3645256858451006 k005 Champernowne real with floor(log(3)*(146*n+186)) 3645256862195227 h001 (7/11*exp(1)+2/5)/(2/3*exp(2)+11/12) 3645256868471008 k001 Champernowne real with 161*n+203 3645256868481009 k005 Champernowne real with floor(Catalan*(176*n+222)) 3645256877077407 m001 (5^(1/2)+ln(Pi))/(-BesselK(1,1)+Lehmer) 3645256881997680 m006 (3/4*Pi-1/3)/(3/Pi-2/5) 3645256899626965 m001 exp((3^(1/3)))/FeigenbaumAlpha/arctan(1/2) 3645256912574989 r001 41i'th iterates of 2*x^2-1 of 3645256932912456 m005 (1/3*Catalan-1/11)/(-7/10+1/20*5^(1/2)) 3645256936375393 r005 Re(z^2+c),c=-10/21+11/49*I,n=17 3645256941542588 p003 LerchPhi(1/16,1,164/57) 3645256948876917 r005 Re(z^2+c),c=-79/86+12/43*I,n=32 3645256957311607 m001 (-Magata+Stephens)/(cos(1)-ln(2+3^(1/2))) 3645256967141241 r005 Im(z^2+c),c=-1/90+27/59*I,n=39 3645256968482875 r009 Re(z^3+c),c=-1/24+13/57*I,n=4 3645256968931924 l006 ln(4022/5791) 3645256972864470 r005 Re(z^2+c),c=-29/60+8/39*I,n=42 3645256973262259 a007 Real Root Of 86*x^4-350*x^3-133*x^2-124*x-46 3645256979730134 s002 sum(A197457[n]/((exp(n)+1)*n),n=1..infinity) 3645256981376635 m004 -6+Log[Sqrt[5]*Pi]+(3*Sin[Sqrt[5]*Pi])/5 3645256988939623 a001 144/47*2207^(18/29) 3645256991222412 m005 (-1/44+1/4*5^(1/2))/(2/11*Pi+9/10) 3645256996984852 m002 4+E^Pi/16+Pi^3 3645257011341861 m005 (1/2*3^(1/2)+3/4)/(4*Zeta(3)-3/8) 3645257015925143 m001 (BesselI(1,2)+PlouffeB)^Grothendieck 3645257024282346 s002 sum(A047038[n]/(exp(n)),n=1..infinity) 3645257024904768 m008 (3*Pi^2+1/5)/(5/6*Pi^4+3/5) 3645257030072583 m001 (MertensB3+OneNinth)/(Pi+AlladiGrinstead) 3645257040289564 m004 -25*Pi+50*Sqrt[5]*Pi+6*Sinh[Sqrt[5]*Pi] 3645257061833773 r002 50th iterates of z^2 + 3645257109918899 r005 Re(z^2+c),c=-31/70+7/38*I,n=3 3645257129380465 m005 (1/2*exp(1)+5/11)/(2^(1/2)-11/12) 3645257133682401 r002 8th iterates of z^2 + 3645257139755114 r005 Re(z^2+c),c=-19/40+27/56*I,n=42 3645257140743511 s002 sum(A197307[n]/((exp(n)+1)*n),n=1..infinity) 3645257164672590 m001 (LambertW(1)+Zeta(5))/(exp(1/exp(1))+Otter) 3645257165605382 a007 Real Root Of -111*x^4+977*x^3+772*x^2+878*x-468 3645257186105716 r005 Re(z^2+c),c=-33/82+5/16*I,n=6 3645257192572288 a008 Real Root of x^2-132879 3645257192743595 m005 (-11/36+1/4*5^(1/2))/(1/7*gamma-7/9) 3645257201860367 m001 (5^(1/2)-Psi(2,1/3))/(GAMMA(2/3)+Ei(1,1)) 3645257202106022 a003 sin(Pi*9/113)/cos(Pi*16/61) 3645257215196203 m005 (1/2*3^(1/2)-1/9)/(8/9*5^(1/2)+1/12) 3645257222681667 a007 Real Root Of 72*x^4+78*x^3-234*x^2-768*x+306 3645257223597762 m001 sin(1)^Champernowne/Khinchin 3645257236276087 m001 (Zeta(5)+Robbin)/(3^(1/2)-BesselI(0,1)) 3645257286186645 l006 ln(5443/7837) 3645257313225747 g001 GAMMA(9/10,102/107) 3645257326169735 m005 (3/5*gamma-5)/(4*Pi+1/5) 3645257327698849 r002 33th iterates of z^2 + 3645257337303275 q001 857/2351 3645257337486181 r005 Im(z^2+c),c=1/22+17/38*I,n=10 3645257346217632 r005 Im(z^2+c),c=-5/52+23/49*I,n=5 3645257346728667 l006 ln(7569/7850) 3645257362557636 a001 1346269/5778*322^(7/8) 3645257375049404 a005 (1/cos(37/238*Pi))^103 3645257379306340 r005 Re(z^2+c),c=4/19+21/52*I,n=22 3645257391376007 a007 Real Root Of 289*x^4+194*x^3-464*x^2-540*x+244 3645257397372507 m005 (1/2*Catalan-1/10)/(3^(1/2)-3/4) 3645257403984599 r005 Im(z^2+c),c=23/70+16/43*I,n=61 3645257408435082 a003 sin(Pi*9/92)/cos(Pi*13/69) 3645257421054910 a008 Real Root of x^4-6*x^2-23*x-13 3645257437650794 r005 Im(z^2+c),c=-1/66+19/35*I,n=13 3645257441050600 m001 Weierstrass/Kolakoski/GAMMA(13/24) 3645257443851432 m001 (ln(5)-KhinchinLevy)/(RenyiParking+ThueMorse) 3645257449468633 r002 27th iterates of z^2 + 3645257455814599 a001 3524578/15127*322^(7/8) 3645257457936512 r009 Im(z^3+c),c=-13/86+22/27*I,n=12 3645257467839316 m001 (cos(1)-exp(1/Pi))/(-gamma(2)+BesselI(0,2)) 3645257469359410 a007 Real Root Of -283*x^4-904*x^3+400*x^2-161*x+279 3645257469420607 a001 9227465/39603*322^(7/8) 3645257470677038 m001 sin(1/12*Pi)^(exp(1/Pi)*Grothendieck) 3645257471405696 a001 24157817/103682*322^(7/8) 3645257471695317 a001 63245986/271443*322^(7/8) 3645257471737572 a001 165580141/710647*322^(7/8) 3645257471743737 a001 433494437/1860498*322^(7/8) 3645257471744637 a001 1134903170/4870847*322^(7/8) 3645257471744768 a001 2971215073/12752043*322^(7/8) 3645257471744787 a001 7778742049/33385282*322^(7/8) 3645257471744790 a001 20365011074/87403803*322^(7/8) 3645257471744790 a001 53316291173/228826127*322^(7/8) 3645257471744790 a001 139583862445/599074578*322^(7/8) 3645257471744790 a001 365435296162/1568397607*322^(7/8) 3645257471744790 a001 956722026041/4106118243*322^(7/8) 3645257471744790 a001 2504730781961/10749957122*322^(7/8) 3645257471744790 a001 6557470319842/28143753123*322^(7/8) 3645257471744790 a001 10610209857723/45537549124*322^(7/8) 3645257471744790 a001 4052739537881/17393796001*322^(7/8) 3645257471744790 a001 1548008755920/6643838879*322^(7/8) 3645257471744790 a001 591286729879/2537720636*322^(7/8) 3645257471744790 a001 225851433717/969323029*322^(7/8) 3645257471744790 a001 86267571272/370248451*322^(7/8) 3645257471744790 a001 63246219/271444*322^(7/8) 3645257471744791 a001 12586269025/54018521*322^(7/8) 3645257471744799 a001 4807526976/20633239*322^(7/8) 3645257471744849 a001 1836311903/7881196*322^(7/8) 3645257471745192 a001 701408733/3010349*322^(7/8) 3645257471747547 a001 267914296/1149851*322^(7/8) 3645257471763687 a001 102334155/439204*322^(7/8) 3645257471874313 a001 39088169/167761*322^(7/8) 3645257472083856 l006 ln(6864/9883) 3645257472632549 a001 14930352/64079*322^(7/8) 3645257477829582 a001 5702887/24476*322^(7/8) 3645257506078080 r009 Im(z^3+c),c=-47/98+14/55*I,n=12 3645257513450574 a001 2178309/9349*322^(7/8) 3645257513835192 m009 (6*Psi(1,3/4)-3)/(3*Pi^2+4) 3645257516954751 a007 Real Root Of 209*x^4+878*x^3+667*x^2+853*x-128 3645257521929523 a007 Real Root Of 177*x^4+457*x^3-361*x^2+985*x-729 3645257527803434 m008 (1/5*Pi^2+5/6)/(4/5*Pi^6+1) 3645257533897598 r005 Re(z^2+c),c=-67/60+6/23*I,n=16 3645257534873039 m001 (Psi(2,1/3)-gamma)^arctan(1/3) 3645257541747280 p003 LerchPhi(1/512,6,55/147) 3645257545259269 r005 Im(z^2+c),c=-1/70+17/37*I,n=43 3645257548949155 m005 (1/2*5^(1/2)-1)/(1/9*2^(1/2)+1/6) 3645257551410140 a007 Real Root Of 220*x^4-794*x^3-692*x^2-838*x+432 3645257551833992 r005 Im(z^2+c),c=10/29+7/59*I,n=50 3645257561083309 a005 (1/cos(11/177*Pi))^1748 3645257568100681 a003 cos(Pi*1/12)/sin(Pi*7/82) 3645257568273240 r005 Re(z^2+c),c=-10/19+4/35*I,n=6 3645257573555992 r009 Re(z^3+c),c=-1/18+24/49*I,n=14 3645257585801453 r005 Im(z^2+c),c=5/18+13/55*I,n=30 3645257604909376 a001 233/2*7^(17/29) 3645257607106121 r005 Im(z^2+c),c=17/66+8/31*I,n=39 3645257613934423 r005 Im(z^2+c),c=29/122+5/18*I,n=43 3645257620094982 g005 GAMMA(7/11)*GAMMA(3/4)/GAMMA(3/11)/GAMMA(5/8) 3645257625059492 m005 (27/28+1/4*5^(1/2))/(1/10*5^(1/2)-2/11) 3645257630889899 r009 Im(z^3+c),c=-3/98+13/16*I,n=16 3645257640499755 m001 (Ei(1)+CopelandErdos)/(FeigenbaumDelta+Salem) 3645257644630856 r005 Re(z^2+c),c=-25/58+13/33*I,n=21 3645257645654409 m001 (Stephens+Weierstrass)/(gamma(1)+Otter) 3645257654183749 a007 Real Root Of 749*x^4+308*x^3+86*x^2-299*x-11 3645257672129021 k002 Champernowne real with 203/2*n^2-591/2*n+230 3645257676102293 r004 Re(z^2+c),c=2/7+1/19*I,z(0)=exp(3/8*I*Pi),n=17 3645257681001351 r009 Re(z^3+c),c=-13/27+26/55*I,n=38 3645257690945513 a007 Real Root Of 208*x^3+574*x^2-398*x+997 3645257699564281 r005 Im(z^2+c),c=-5/31+19/37*I,n=16 3645257703196463 s001 sum(exp(-2*Pi/5)^n*A113919[n],n=1..infinity) 3645257703196463 s002 sum(A113919[n]/(exp(2/5*pi*n)),n=1..infinity) 3645257722982475 r005 Re(z^2+c),c=-47/122+19/37*I,n=38 3645257724446908 a001 4976784/281*123^(3/20) 3645257727842435 r009 Im(z^3+c),c=-15/44+14/41*I,n=21 3645257730441406 a001 2/233*21^(19/40) 3645257732858957 r005 Re(z^2+c),c=-12/25+13/57*I,n=42 3645257748901234 r004 Im(z^2+c),c=-7/38+11/20*I,z(0)=I,n=57 3645257756038437 r009 Re(z^3+c),c=-11/23+15/52*I,n=39 3645257757600502 a001 832040/3571*322^(7/8) 3645257770534408 r005 Im(z^2+c),c=37/98+4/19*I,n=8 3645257784730016 m001 (Cahen+1/3)/(2-3^(1/2)) 3645257790828051 a007 Real Root Of 720*x^4-465*x^3-695*x^2-636*x+334 3645257794339539 a007 Real Root Of 811*x^4-160*x^3+386*x^2-968*x+295 3645257809446284 h001 (3/4*exp(2)+7/9)/(3/8*exp(1)+5/7) 3645257816079687 r009 Im(z^3+c),c=-1/12+49/61*I,n=14 3645257818650850 m001 (BesselI(1,2)+Riemann2ndZero)/(ln(2)+gamma(1)) 3645257821823889 a001 3524578/3*123^(4/17) 3645257825671818 m005 (1/2*Catalan-4/5)/(-1/18+4/9*5^(1/2)) 3645257855345678 m001 RenyiParking^BesselI(0,2)/Riemann1stZero 3645257858067701 a003 -1-cos(1/10*Pi)-2*cos(7/30*Pi)-cos(13/30*Pi) 3645257866670284 r005 Re(z^2+c),c=-47/98+3/13*I,n=56 3645257872664796 r005 Im(z^2+c),c=-17/74+38/63*I,n=23 3645257872705290 r009 Im(z^3+c),c=-16/31+1/5*I,n=25 3645257879536137 m005 (1/3*Zeta(3)-1/8)/(7/11*5^(1/2)-2/3) 3645257903930713 m005 (-3/4+1/4*5^(1/2))/(1/4*3^(1/2)+1/11) 3645257913889532 p003 LerchPhi(1/256,1,586/213) 3645257919344550 a007 Real Root Of 51*x^4+135*x^3-404*x^2-805*x-32 3645257948845469 m001 ln((3^(1/3)))/Porter*Zeta(1/2) 3645257951682881 r005 Re(z^2+c),c=-43/62+19/53*I,n=18 3645257951803892 p003 LerchPhi(1/6,2,163/95) 3645257968914428 r002 60th iterates of z^2 + 3645257971555528 r005 Im(z^2+c),c=1/70+27/61*I,n=44 3645257975295647 r002 30th iterates of z^2 + 3645258001712235 a003 cos(Pi*14/61)*cos(Pi*21/62) 3645258005762762 m001 (Backhouse-Psi(2,1/3))^MinimumGamma 3645258016992680 r005 Im(z^2+c),c=-9/14+41/97*I,n=56 3645258017352600 r005 Re(z^2+c),c=-4/9+26/53*I,n=48 3645258019488090 a007 Real Root Of 260*x^4+706*x^3-971*x^2-426*x-361 3645258020003145 r005 Re(z^2+c),c=-47/74+3/8*I,n=28 3645258022132252 m005 (1/2*Pi-8/9)/(6*Pi-1/7) 3645258023075339 r002 46th iterates of z^2 + 3645258036002986 r009 Im(z^3+c),c=-5/19+16/43*I,n=14 3645258042665313 m001 Paris/(KhinchinLevy-Catalan) 3645258058916544 r009 Im(z^3+c),c=-17/74+13/34*I,n=9 3645258061536630 r005 Im(z^2+c),c=17/98+17/50*I,n=13 3645258070991135 a003 cos(Pi*6/91)*sin(Pi*13/107) 3645258072526434 m005 (1/2*gamma-3/4)/(1/9*Pi+11/12) 3645258077534788 m001 (-Kac+PlouffeB)/(gamma+Zeta(1,-1)) 3645258083572415 m005 (1/3*Catalan+1/4)/(4/7*Catalan+1) 3645258094912910 r005 Re(z^2+c),c=-35/82+29/57*I,n=11 3645258101617556 h001 (9/10*exp(1)+1/7)/(1/5*exp(1)+1/6) 3645258103514715 a007 Real Root Of 461*x^4-881*x^3+540*x^2-281*x-225 3645258110262646 a001 123/17711*832040^(17/37) 3645258111243097 r009 Re(z^3+c),c=-37/122+41/62*I,n=3 3645258112042537 r009 Re(z^3+c),c=-31/82+41/63*I,n=9 3645258115011635 r005 Re(z^2+c),c=41/98+22/61*I,n=10 3645258115795293 m005 (25/4+1/4*5^(1/2))/(11/12*5^(1/2)-2/11) 3645258119960629 r005 Re(z^2+c),c=-47/98+3/13*I,n=61 3645258121814703 a007 Real Root Of 266*x^4+655*x^3-967*x^2+482*x-634 3645258122881416 a001 47/8*377^(4/13) 3645258123956816 a007 Real Root Of -865*x^4+148*x^3-406*x^2+276*x+177 3645258132607230 r005 Re(z^2+c),c=-47/98+3/13*I,n=59 3645258133207160 a007 Real Root Of 129*x^4+381*x^3-432*x^2-598*x-762 3645258147431343 r005 Re(z^2+c),c=-41/94+23/53*I,n=45 3645258154859818 r005 Re(z^2+c),c=-23/50+15/31*I,n=33 3645258163873099 a007 Real Root Of 661*x^4-720*x^3+846*x^2-247*x-249 3645258168100544 a007 Real Root Of -120*x^4-454*x^3-303*x^2-903*x-68 3645258172673306 r005 Im(z^2+c),c=-4/23+31/57*I,n=62 3645258173175710 m001 BesselI(0,2)/(Riemann2ndZero^BesselK(1,1)) 3645258179651371 r005 Re(z^2+c),c=-11/24+16/47*I,n=35 3645258179945072 r005 Im(z^2+c),c=-19/16+3/64*I,n=28 3645258184144711 l006 ln(1421/2046) 3645258197299499 m005 (4*gamma-2/5)/(2*exp(1)-1/5) 3645258202225454 m005 (1/2*Zeta(3)+5/11)/(1/3*Zeta(3)-1/9) 3645258202804173 m001 1/3+cos(Pi/5)+FeigenbaumAlpha 3645258203567484 m001 (Catalan-Zeta(5))/(ln(gamma)+ln(2^(1/2)+1)) 3645258205425139 r005 Re(z^2+c),c=-49/114+9/20*I,n=57 3645258205610735 r009 Re(z^3+c),c=-27/74+15/22*I,n=31 3645258222656283 m001 FeigenbaumD*FeigenbaumC*exp(Zeta(9))^2 3645258229017743 a007 Real Root Of -704*x^4+308*x^3+488*x^2+545*x-266 3645258230564496 r005 Im(z^2+c),c=-2/15+11/21*I,n=63 3645258240333873 r009 Im(z^3+c),c=-9/22+16/51*I,n=7 3645258241569824 a003 cos(Pi*8/27)/cos(Pi*47/105) 3645258242012255 a001 47/233*17711^(23/30) 3645258253603312 r005 Re(z^2+c),c=-9/20+26/55*I,n=40 3645258277506856 r005 Im(z^2+c),c=1/36+23/37*I,n=53 3645258286653464 a007 Real Root Of 100*x^4-488*x^3+200*x^2+181*x+14 3645258295620022 h001 (8/9*exp(2)+8/9)/(7/10*exp(1)+1/7) 3645258297103960 r005 Re(z^2+c),c=-47/98+3/13*I,n=63 3645258299340664 a007 Real Root Of -888*x^4+538*x^3+732*x^2+396*x-252 3645258352442105 r005 Re(z^2+c),c=-53/122+23/53*I,n=64 3645258364015249 r005 Re(z^2+c),c=-55/122+19/51*I,n=47 3645258394534672 r005 Re(z^2+c),c=-5/11+18/43*I,n=25 3645258404415454 q001 1453/3986 3645258405817200 m005 (1/3*2^(1/2)+1/9)/(4/5*Zeta(3)+7/11) 3645258419361911 r002 2th iterates of z^2 + 3645258421748172 m001 1/GAMMA(19/24)^2/ln(GAMMA(1/24))^2*sqrt(5)^2 3645258422463214 r002 9th iterates of z^2 + 3645258423388859 r009 Re(z^3+c),c=-37/86+13/58*I,n=13 3645258426023767 b008 1/4+E*ArcTan[3] 3645258434483495 a007 Real Root Of 191*x^4+669*x^3+3*x^2+396*x+84 3645258464228252 h001 (7/10*exp(1)+5/8)/(9/11*exp(2)+8/9) 3645258467355324 a007 Real Root Of -265*x^4-613*x^3-831*x^2+51*x+104 3645258467771562 a007 Real Root Of -309*x^4-959*x^3+704*x^2+533*x+696 3645258490122023 a007 Real Root Of 107*x^4+136*x^3-841*x^2+569*x+944 3645258491653431 a007 Real Root Of 471*x^4-407*x^3+90*x^2-727*x-305 3645258497927992 r009 Im(z^3+c),c=-41/98+14/47*I,n=17 3645258501556967 a007 Real Root Of -83*x^4-116*x^3+626*x^2-39*x+576 3645258503195112 r005 Im(z^2+c),c=13/82+17/46*I,n=5 3645258513602708 r005 Re(z^2+c),c=-13/28+11/35*I,n=41 3645258522024179 p003 LerchPhi(1/64,1,358/129) 3645258526857259 r005 Re(z^2+c),c=-31/86+7/13*I,n=41 3645258532106001 a003 cos(Pi*9/28)-cos(Pi*25/56) 3645258553374390 r005 Im(z^2+c),c=1/13+25/62*I,n=28 3645258560030724 r005 Re(z^2+c),c=-19/30+13/67*I,n=11 3645258571253708 a007 Real Root Of 363*x^4+340*x^3-49*x^2-948*x-329 3645258572149431 r005 Im(z^2+c),c=9/26+14/61*I,n=19 3645258614999408 a007 Real Root Of -102*x^4+622*x^3+843*x^2+737*x-409 3645258619856036 r002 58th iterates of z^2 + 3645258620720195 r005 Re(z^2+c),c=-1+59/205*I,n=54 3645258620804096 r005 Re(z^2+c),c=3/10+4/51*I,n=23 3645258630846227 r005 Im(z^2+c),c=1/60+15/34*I,n=35 3645258634682525 m001 OneNinth^ZetaP(3)*ZetaQ(2) 3645258644512559 r005 Re(z^2+c),c=-151/118+6/59*I,n=10 3645258645412358 a007 Real Root Of -513*x^4+333*x^3-144*x^2+353*x+173 3645258646195840 a007 Real Root Of -331*x^4-952*x^3+752*x^2-615*x+97 3645258652202960 r005 Re(z^2+c),c=-47/98+3/13*I,n=57 3645258658199251 m001 (2^(1/3)-Shi(1))/(-BesselI(1,2)+MertensB2) 3645258664086829 l006 ln(9670/10029) 3645258665463737 s002 sum(A289534[n]/((pi^n-1)/n),n=1..infinity) 3645258667138012 a001 281/2255*55^(15/56) 3645258671832020 r005 Re(z^2+c),c=-47/98+3/13*I,n=64 3645258673180167 m001 HardyLittlewoodC3*(Stephens-gamma(3)) 3645258674695846 r009 Im(z^3+c),c=-5/29+19/48*I,n=9 3645258675129621 k002 Champernowne real with 102*n^2-297*n+231 3645258686848422 a003 -cos(4/15*Pi)-cos(1/27*Pi)-2*cos(1/24*Pi) 3645258695256635 a007 Real Root Of -182*x^4-926*x^3-774*x^2+507*x-585 3645258696389848 m005 (1/2*Catalan-2)/(4/9*3^(1/2)-5) 3645258699356143 m001 (1+GAMMA(2/3))/(-CopelandErdos+QuadraticClass) 3645258705533143 a003 sin(Pi*9/106)/cos(Pi*25/103) 3645258707230789 m001 3^(1/2)*sin(1)*Riemann3rdZero 3645258712485234 m001 (exp(Pi)*gamma(1)+sin(1))/exp(Pi) 3645258712965549 a001 4/317811*377^(43/45) 3645258716510398 r005 Im(z^2+c),c=-9/14+66/191*I,n=46 3645258731129098 r009 Im(z^3+c),c=-5/58+9/22*I,n=7 3645258735963551 r005 Re(z^2+c),c=35/118+2/29*I,n=49 3645258751966673 r005 Re(z^2+c),c=-14/31+26/55*I,n=40 3645258752837619 r005 Re(z^2+c),c=-47/98+3/13*I,n=58 3645258753813010 r009 Im(z^3+c),c=-10/27+17/27*I,n=47 3645258754569284 g005 GAMMA(4/7)/GAMMA(10/11)/GAMMA(5/11)/GAMMA(3/7) 3645258755087178 a007 Real Root Of 16*x^4+47*x^3+194*x^2+839*x-68 3645258757524942 m001 (2^(1/2)-LaplaceLimit)/(Paris+ReciprocalLucas) 3645258772574991 r009 Im(z^3+c),c=-13/44+22/61*I,n=15 3645258779710145 m001 exp(MinimumGamma)/GolombDickman/Ei(1) 3645258781889699 r005 Im(z^2+c),c=1/10+19/49*I,n=40 3645258803655566 a007 Real Root Of 203*x^4+736*x^3+85*x^2+407*x+161 3645258806501886 r002 35th iterates of z^2 + 3645258817018866 r009 Re(z^3+c),c=-14/31+12/47*I,n=40 3645258827320433 r005 Re(z^2+c),c=35/118+3/41*I,n=17 3645258831638045 l006 ln(41/1570) 3645258848586010 m001 1/GAMMA(2/3)^2/GAMMA(1/12)*ln(arctan(1/2)) 3645258851789052 r005 Im(z^2+c),c=-53/78+8/29*I,n=11 3645258860046875 r005 Re(z^2+c),c=-47/98+3/13*I,n=62 3645258877087614 r005 Im(z^2+c),c=-15/62+35/59*I,n=64 3645258887774452 a008 Real Root of x^4-x^3-39*x^2+11*x+350 3645258907575426 r005 Im(z^2+c),c=11/32+8/63*I,n=59 3645258911749628 m001 1-BesselI(1,1)^Kolakoski 3645258923237463 m001 GAMMA(7/24)^2*MadelungNaCl^2/exp(Zeta(5))^2 3645258929329086 r005 Im(z^2+c),c=-11/62+6/11*I,n=59 3645258942142836 a007 Real Root Of -728*x^4-575*x^3-863*x^2+363*x+232 3645258959020878 m001 1/ln(Rabbit)^2*Porter*cos(1)^2 3645258961220772 m005 (-1/3+1/2*5^(1/2))/(1/6*Catalan+2) 3645258966324912 r005 Re(z^2+c),c=-85/118+1/20*I,n=12 3645258971278176 m001 (1-CopelandErdos)/(-Otter+Thue) 3645258971890499 b008 1/6+26*E^(1/3) 3645258976307757 r005 Re(z^2+c),c=-47/98+3/13*I,n=60 3645258977082383 m005 (1/3*5^(1/2)-1/12)/(7/11*Zeta(3)-7/12) 3645258981039020 m001 ln(MinimumGamma)/ErdosBorwein*cosh(1) 3645259009053628 l006 ln(5925/8531) 3645259010950183 a007 Real Root Of -25*x^4-893*x^3+651*x^2-596*x+359 3645259012374574 p001 sum(1/(369*n+217)/n/(5^n),n=1..infinity) 3645259013896973 r005 Im(z^2+c),c=-23/98+34/61*I,n=23 3645259018096738 a007 Real Root Of -782*x^4+845*x^3+148*x^2+851*x-357 3645259028752006 a008 Real Root of x^4-x^3+26*x^2+86*x-257 3645259032386940 a001 11/514229*28657^(29/40) 3645259037120178 r005 Re(z^2+c),c=-33/74+9/23*I,n=30 3645259044465097 m001 1/sin(Pi/12)^2/ln((2^(1/3)))/sqrt(Pi) 3645259045831722 a003 sin(Pi*11/117)/cos(Pi*22/107) 3645259049250027 r005 Re(z^2+c),c=-23/50+14/43*I,n=23 3645259056964729 m001 (Stephens-Tetranacci)/(Otter-Sierpinski) 3645259090935515 m001 (-GAMMA(7/12)+Sarnak)/(GAMMA(11/12)-exp(Pi)) 3645259109230595 r001 55i'th iterates of 2*x^2-1 of 3645259118481310 p003 LerchPhi(1/2,4,141/194) 3645259126586520 m002 -4/Pi^3+Pi^4+E^Pi*Sinh[Pi] 3645259144583919 r005 Im(z^2+c),c=-9/86+1/23*I,n=5 3645259147996805 m001 (Zeta(3)+Zeta(1,2))/(TravellingSalesman+Trott) 3645259158773244 a007 Real Root Of -233*x^4-774*x^3+330*x^2+213*x+41 3645259163268346 r002 51th iterates of z^2 + 3645259169391525 r005 Re(z^2+c),c=-14/31+10/27*I,n=48 3645259181655762 a001 832040/521*322^(13/24) 3645259182703448 a007 Real Root Of 142*x^4+304*x^3-627*x^2+462*x-332 3645259192666792 a001 2584/11*7^(7/31) 3645259194633178 m001 (exp(1)+cos(1))/(-Mills+ThueMorse) 3645259214765259 a007 Real Root Of -142*x^4-306*x^3+531*x^2-691*x+676 3645259229691455 a007 Real Root Of -65*x^4+506*x^3+258*x^2+706*x-315 3645259257569542 m005 (1/2*3^(1/2)-1/12)/(7/9*3^(1/2)+4/5) 3645259269310179 l006 ln(4504/6485) 3645259270204382 a003 cos(Pi*36/95)*sin(Pi*40/91) 3645259280144046 r005 Re(z^2+c),c=-19/36+27/59*I,n=44 3645259282272099 m001 (ln(Pi)+2*Pi/GAMMA(5/6))/(Artin+Porter) 3645259294121244 m005 (1/2*5^(1/2)+3)/(11/12*2^(1/2)-1/6) 3645259296969222 s002 sum(A178562[n]/((2^n-1)/n),n=1..infinity) 3645259302841158 a003 cos(Pi*23/102)-cos(Pi*33/89) 3645259304742747 r009 Re(z^3+c),c=-15/32+11/42*I,n=16 3645259330269227 r005 Re(z^2+c),c=-35/74+9/32*I,n=23 3645259338962616 m005 (1/2*exp(1)-2/9)/(4/7*Zeta(3)-3/8) 3645259348351472 m005 (1/2*gamma-9/11)/(6/11*2^(1/2)-11/12) 3645259355410536 m005 (1/3*gamma-1/5)/(3/4*Pi-3/11) 3645259360108317 r005 Re(z^2+c),c=-15/29+17/41*I,n=22 3645259383322873 m001 ln(Niven)/ErdosBorwein^2/LambertW(1) 3645259388464559 g005 GAMMA(5/11)*GAMMA(1/7)/GAMMA(2/9)/GAMMA(1/9) 3645259394835906 q001 1/2743289 3645259406880909 r005 Im(z^2+c),c=3/62+11/23*I,n=4 3645259431029886 a001 317811/1364*322^(7/8) 3645259433192246 r009 Re(z^3+c),c=-55/122+16/63*I,n=17 3645259458456495 r009 Re(z^3+c),c=-23/114+25/26*I,n=8 3645259460246984 m005 (1/3*Pi+2/3)/(4/7*gamma-4/5) 3645259466439775 m001 (BesselK(1,1)+Trott)/(2^(1/3)+BesselK(0,1)) 3645259476692139 a007 Real Root Of 168*x^4+385*x^3-946*x^2-292*x+491 3645259480889288 r005 Re(z^2+c),c=-35/74+17/63*I,n=33 3645259490096213 r005 Re(z^2+c),c=-53/122+29/61*I,n=40 3645259491174817 a001 2889/17*233^(7/50) 3645259494482448 a008 Real Root of x^4-2*x^3-9*x^2-180*x-810 3645259499451422 r005 Im(z^2+c),c=-55/74+23/38*I,n=4 3645259501203630 r009 Re(z^3+c),c=-31/64+17/49*I,n=15 3645259509490943 r005 Re(z^2+c),c=-21/50+15/34*I,n=29 3645259512293519 a007 Real Root Of -739*x^4-965*x^3+720*x^2+848*x-345 3645259522646047 r005 Im(z^2+c),c=-67/50+9/22*I,n=4 3645259527992762 m005 (1/2*3^(1/2)+7/10)/(9/11*Pi-3) 3645259531029368 m001 1/Niven^2*exp(ArtinRank2)/Ei(1) 3645259533990132 a007 Real Root Of 23*x^4+852*x^3+476*x^2-703*x+155 3645259536541684 r009 Re(z^3+c),c=-37/102+5/39*I,n=6 3645259552731476 a005 (1/cos(79/214*Pi))^24 3645259568490530 r009 Im(z^3+c),c=-11/102+13/32*I,n=8 3645259576373096 a003 cos(Pi*23/80)-sin(Pi*23/52) 3645259580198802 m001 (Ei(1,1)*GolombDickman+LaplaceLimit)/Ei(1,1) 3645259584439576 r005 Im(z^2+c),c=-7/31+21/37*I,n=40 3645259594777350 a003 -3/2-cos(7/24*Pi)-cos(5/24*Pi)-cos(7/30*Pi) 3645259598522659 m006 (1/2*exp(Pi)+1/5)/(1/5*ln(Pi)+3) 3645259617818369 m001 Robbin*(GAMMA(23/24)-Weierstrass) 3645259623323360 m001 1/ln(BesselK(1,1))/LandauRamanujan*sqrt(2) 3645259633896628 r005 Re(z^2+c),c=-21/44+15/62*I,n=26 3645259640865165 b008 9*BesselJ[2,EulerGamma] 3645259643172269 a007 Real Root Of 852*x^4-213*x^3-527*x^2-888*x+389 3645259653179433 a001 317811/2207*322^(23/24) 3645259654575677 m001 Conway^HardyLittlewoodC4*ReciprocalFibonacci 3645259655851420 r005 Re(z^2+c),c=-55/118+11/36*I,n=41 3645259657692679 m001 Zeta(9)*GAMMA(5/24)^2/ln(sin(Pi/5)) 3645259661116244 m001 GAMMA(7/24)^2*FeigenbaumC^2*ln(Pi) 3645259678130221 k002 Champernowne real with 205/2*n^2-597/2*n+232 3645259685251495 r005 Re(z^2+c),c=-12/31+31/58*I,n=53 3645259692938680 a001 8/11*9349^(41/44) 3645259706414127 m001 (GAMMA(2/3)+Kac)/(Psi(2,1/3)+cos(1/5*Pi)) 3645259708886486 m004 -3*E^(Sqrt[5]*Pi)+25*Pi-50*Sqrt[5]*Pi 3645259714418307 r009 Im(z^3+c),c=-7/114+45/56*I,n=6 3645259717383782 r005 Im(z^2+c),c=11/102+13/34*I,n=30 3645259738804378 m001 Rabbit/(Landau+OrthogonalArrays) 3645259741543257 r005 Re(z^2+c),c=-13/29+23/60*I,n=61 3645259762124279 a003 sin(Pi*4/39)/cos(Pi*16/97) 3645259766380457 m001 (2^(1/2)-2^(1/3))/(FeigenbaumMu+LaplaceLimit) 3645259769478848 l006 ln(3083/4439) 3645259772883393 r005 Re(z^2+c),c=-16/31+6/37*I,n=9 3645259778060592 p004 log(25771/673) 3645259784665025 m005 (1/2*Zeta(3)+4/9)/(7/40+1/20*5^(1/2)) 3645259785025702 r004 Re(z^2+c),c=7/24-9/23*I,z(0)=exp(3/8*I*Pi),n=2 3645259791208350 a001 123/10946*6765^(11/12) 3645259797144466 a007 Real Root Of -765*x^4+610*x^3+801*x^2+487*x-300 3645259800928937 m001 Magata^Cahen+exp(1/exp(1)) 3645259803204368 a007 Real Root Of 351*x^4+959*x^3-920*x^2+897*x-29 3645259811895907 a001 123/433494437*701408733^(11/12) 3645259811895907 a001 123/86267571272*225851433717^(11/12) 3645259811895920 a001 41/726103*2178309^(11/12) 3645259821465833 r005 Re(z^2+c),c=-47/102+11/36*I,n=20 3645259823741147 r005 Im(z^2+c),c=33/98+5/41*I,n=7 3645259828782380 m005 (1/2*2^(1/2)-7/11)/(7/8*Zeta(3)+8/9) 3645259837923331 r005 Re(z^2+c),c=-15/32+12/41*I,n=57 3645259857024155 a007 Real Root Of -235*x^4-594*x^3+936*x^2+127*x+747 3645259859954298 a001 6/75283811239*144^(10/13) 3645259864705240 m005 (1/2*Catalan+1/9)/(5/12*exp(1)+3/7) 3645259869325181 r009 Im(z^3+c),c=-27/58+13/48*I,n=17 3645259871835931 h001 (3/10*exp(2)+1/3)/(11/12*exp(2)+2/9) 3645259874925649 a001 199/4807526976*17711^(13/14) 3645259877083826 a001 199/2504730781961*14930352^(13/14) 3645259886007255 m005 (1/3*Pi+1/10)/(67/22+1/22*5^(1/2)) 3645259886049674 r002 34th iterates of z^2 + 3645259890863570 r009 Im(z^3+c),c=-15/28+2/9*I,n=54 3645259901693897 m001 (Pi-exp(Pi))/(Psi(2,1/3)+sin(1/12*Pi)) 3645259907412454 r009 Re(z^3+c),c=-21/58+44/63*I,n=46 3645259914396435 r005 Re(z^2+c),c=-47/98+3/13*I,n=48 3645259917460707 a007 Real Root Of -696*x^4+907*x^3-821*x^2-662*x-76 3645259933834807 r005 Re(z^2+c),c=-47/98+3/13*I,n=55 3645259938837920 q001 596/1635 3645259938871287 r009 Re(z^3+c),c=-5/11+8/31*I,n=24 3645259940723445 a007 Real Root Of -945*x^4+345*x^3+612*x^2+427*x-237 3645259940791484 m001 ln(Robbin)/KhintchineHarmonic^2*GAMMA(13/24)^2 3645259940810567 a007 Real Root Of 149*x^4+164*x^3+417*x^2-801*x+226 3645259943663564 r009 Re(z^3+c),c=-37/78+20/33*I,n=3 3645259959828925 m001 (-MadelungNaCl+2)/(-GAMMA(23/24)+1/3) 3645259966989272 r005 Im(z^2+c),c=29/78+2/19*I,n=12 3645259970542084 m001 (GAMMA(19/24)-gamma)/(MinimumGamma+ZetaP(3)) 3645260006066923 a007 Real Root Of 87*x^4+314*x^3+64*x^2+199*x-277 3645260007795427 m001 (KhinchinHarmonic+Magata)/Riemann1stZero 3645260013039036 m001 (MinimumGamma+ZetaQ(4))/(BesselJ(1,1)-sin(1)) 3645260019909486 r002 7th iterates of z^2 + 3645260020523543 a007 Real Root Of -240*x^4+334*x^3+311*x^2+825*x-354 3645260022872186 r009 Im(z^3+c),c=-9/86+24/59*I,n=10 3645260024069345 b008 ArcCot[76/29] 3645260024069345 l003 arctan(29/76) 3645260056985301 m001 CareFree^2/exp(Si(Pi))/MinimumGamma^2 3645260059769969 a001 7/10946*89^(19/49) 3645260068670617 r005 Im(z^2+c),c=15/44+5/34*I,n=63 3645260071230509 m009 (Pi^2+5/6)/(Psi(1,2/3)-6) 3645260100137767 r009 Re(z^3+c),c=-7/25+16/23*I,n=3 3645260128126214 a007 Real Root Of 179*x^4+717*x^3+465*x^2+683*x-565 3645260146586027 a001 48/41*9349^(27/43) 3645260149012478 a001 521/34*233^(25/43) 3645260162284466 m005 (3/5*Pi+3/5)/(-1/4+5/12*5^(1/2)) 3645260165530030 a007 Real Root Of -235*x^4-890*x^3-213*x^2-580*x-900 3645260170834357 r005 Im(z^2+c),c=8/23+9/53*I,n=48 3645260174269379 r005 Re(z^2+c),c=-87/122+9/44*I,n=64 3645260190557729 r009 Im(z^3+c),c=-14/27+11/52*I,n=62 3645260205293336 m001 Porter^2*GlaisherKinkelin^2/ln(GAMMA(1/3))^2 3645260205334110 r005 Im(z^2+c),c=-23/54+23/45*I,n=14 3645260222651448 m001 (Sarnak-ZetaQ(4))/(Artin+ErdosBorwein) 3645260222867107 r005 Re(z^2+c),c=-59/114+32/47*I,n=10 3645260224776983 m001 (OneNinth+TreeGrowth2nd)/(cos(1/5*Pi)+ln(2)) 3645260232374931 r005 Im(z^2+c),c=5/94+18/43*I,n=37 3645260244243775 l006 ln(4745/6832) 3645260252963923 h001 (5/7*exp(1)+1/3)/(5/6*exp(2)+1/12) 3645260257980434 r005 Re(z^2+c),c=-35/74+10/37*I,n=55 3645260266165147 r009 Re(z^3+c),c=-27/74+15/22*I,n=46 3645260279571333 r005 Im(z^2+c),c=-75/62+1/20*I,n=49 3645260286516785 a007 Real Root Of 70*x^4+26*x^3-806*x^2+154*x+171 3645260292381069 a001 416020/2889*322^(23/24) 3645260299056855 m005 (1/2*5^(1/2)+4)/(7/12*Pi-3/7) 3645260318649322 r005 Im(z^2+c),c=-11/14+31/244*I,n=44 3645260321093267 r009 Re(z^3+c),c=-27/74+15/22*I,n=36 3645260325543328 a001 1/75640*17711^(27/47) 3645260332349165 r009 Re(z^3+c),c=-27/74+15/22*I,n=56 3645260335341407 m009 (3*Psi(1,3/4)-5/6)/(6*Psi(1,2/3)+1/4) 3645260338974108 r009 Re(z^3+c),c=-27/74+15/22*I,n=61 3645260343946525 m001 (Zeta(1/2)+LaplaceLimit)/(2^(1/3)-exp(Pi)) 3645260360469945 m001 (Totient-ZetaP(3))/(Artin-FeigenbaumMu) 3645260360597488 r009 Re(z^3+c),c=-27/74+15/22*I,n=51 3645260362408253 m001 (exp(Pi)+Zeta(3))/(Zeta(1,-1)+Paris) 3645260363984342 m005 (1/2*5^(1/2)-5/7)/(5/8*gamma-1/4) 3645260374238915 m001 exp(GAMMA(1/6))*Khintchine^2*GAMMA(5/24)^2 3645260385639350 a001 311187/2161*322^(23/24) 3645260391019463 r005 Re(z^2+c),c=-15/32+12/41*I,n=55 3645260399245550 a001 5702887/39603*322^(23/24) 3645260400922403 m005 (1/2*5^(1/2)-3/7)/(5/11*5^(1/2)+7/8) 3645260401230668 a001 7465176/51841*322^(23/24) 3645260401520292 a001 39088169/271443*322^(23/24) 3645260401562548 a001 14619165/101521*322^(23/24) 3645260401568713 a001 133957148/930249*322^(23/24) 3645260401569613 a001 701408733/4870847*322^(23/24) 3645260401569744 a001 1836311903/12752043*322^(23/24) 3645260401569763 a001 14930208/103681*322^(23/24) 3645260401569766 a001 12586269025/87403803*322^(23/24) 3645260401569766 a001 32951280099/228826127*322^(23/24) 3645260401569766 a001 43133785636/299537289*322^(23/24) 3645260401569766 a001 32264490531/224056801*322^(23/24) 3645260401569766 a001 591286729879/4106118243*322^(23/24) 3645260401569766 a001 774004377960/5374978561*322^(23/24) 3645260401569766 a001 4052739537881/28143753123*322^(23/24) 3645260401569766 a001 1515744265389/10525900321*322^(23/24) 3645260401569766 a001 3278735159921/22768774562*322^(23/24) 3645260401569766 a001 2504730781961/17393796001*322^(23/24) 3645260401569766 a001 956722026041/6643838879*322^(23/24) 3645260401569766 a001 182717648081/1268860318*322^(23/24) 3645260401569766 a001 139583862445/969323029*322^(23/24) 3645260401569766 a001 53316291173/370248451*322^(23/24) 3645260401569766 a001 10182505537/70711162*322^(23/24) 3645260401569768 a001 7778742049/54018521*322^(23/24) 3645260401569775 a001 2971215073/20633239*322^(23/24) 3645260401569825 a001 567451585/3940598*322^(23/24) 3645260401570169 a001 433494437/3010349*322^(23/24) 3645260401572523 a001 165580141/1149851*322^(23/24) 3645260401588664 a001 31622993/219602*322^(23/24) 3645260401699290 a001 24157817/167761*322^(23/24) 3645260402457538 a001 9227465/64079*322^(23/24) 3645260404125788 a007 Real Root Of -619*x^4-474*x^3+997*x^2+868*x-415 3645260407654644 a001 1762289/12238*322^(23/24) 3645260415948781 r002 49th iterates of z^2 + 3645260423949152 a001 123/377*2^(4/25) 3645260432765249 m001 Ei(1)^2*exp(KhintchineLevy)*GAMMA(1/6)^2 3645260435907671 a001 969323029/144*317811^(2/15) 3645260435908633 a001 35355581/36*591286729879^(2/15) 3645260435908633 a001 370248451/144*433494437^(2/15) 3645260439073777 a007 Real Root Of 479*x^4+100*x^3+552*x^2-825*x+3 3645260443240272 r005 Re(z^2+c),c=-13/17+3/40*I,n=26 3645260443240410 p003 LerchPhi(1/256,6,55/147) 3645260443276139 a001 1346269/9349*322^(23/24) 3645260456618422 r009 Im(z^3+c),c=-19/64+22/61*I,n=9 3645260459145239 a001 3571/233*55^(8/37) 3645260472697063 l006 ln(6407/9225) 3645260475122414 a007 Real Root Of -11*x^4-392*x^3+304*x^2-832*x+626 3645260490015112 m005 (1/2*gamma-3/4)/(6/11*3^(1/2)-9/11) 3645260494125941 r009 Re(z^3+c),c=-27/74+15/22*I,n=41 3645260507830951 r005 Im(z^2+c),c=-15/86+51/64*I,n=36 3645260516339452 r005 Im(z^2+c),c=23/122+9/28*I,n=31 3645260540840874 m001 FeigenbaumAlpha^Shi(1)/Sarnak 3645260545840063 m001 FeigenbaumAlpha+GAMMA(5/6)^ln(3) 3645260545840063 m001 GAMMA(5/6)^ln(3)+FeigenbaumAlpha 3645260552470976 r005 Re(z^2+c),c=-47/98+3/13*I,n=49 3645260555835876 m001 (Otter+ZetaQ(4))/(Lehmer-OrthogonalArrays) 3645260582218853 a007 Real Root Of -198*x^4-502*x^3+672*x^2-577*x-388 3645260583196685 s001 sum(exp(-Pi/2)^n*A078394[n],n=1..infinity) 3645260592520383 a001 843/28657*2178309^(45/56) 3645260592602252 r005 Re(z^2+c),c=-31/21+3/22*I,n=4 3645260601607706 a001 4181/199*29^(9/55) 3645260609979961 m005 (1/2*Zeta(3)-3/11)/(1/12*5^(1/2)+5/7) 3645260611825561 r009 Re(z^3+c),c=-17/36+5/19*I,n=11 3645260618187677 a007 Real Root Of -105*x^4+883*x^3+206*x^2+696*x-322 3645260620376750 h001 (-8*exp(1/3)-1)/(-7*exp(3/2)-2) 3645260625876243 r005 Re(z^2+c),c=-151/118+2/61*I,n=58 3645260626398528 r009 Re(z^3+c),c=-31/86+49/58*I,n=2 3645260630363858 a007 Real Root Of -382*x^4+784*x^3-898*x^2+255*x+257 3645260632320700 r005 Re(z^2+c),c=-25/58+23/56*I,n=26 3645260642432835 r005 Re(z^2+c),c=-23/118+23/34*I,n=6 3645260649361829 r005 Im(z^2+c),c=-7/58+15/29*I,n=46 3645260657138051 r009 Im(z^3+c),c=-25/46+15/41*I,n=43 3645260663650247 a007 Real Root Of 754*x^4-181*x^3+335*x^2+158*x-9 3645260665456696 r005 Im(z^2+c),c=-3/62+21/44*I,n=21 3645260668952174 m001 (-MertensB2+Porter)/(1-ln(2^(1/2)+1)) 3645260677922019 a001 1364/21*832040^(13/44) 3645260681130821 k002 Champernowne real with 103*n^2-300*n+233 3645260684048354 a005 (1/cos(10/133*Pi))^1763 3645260687429518 a001 514229/3571*322^(23/24) 3645260692219007 a007 Real Root Of 36*x^4-113*x^3-636*x^2+770*x-572 3645260695843945 r002 30th iterates of z^2 + 3645260706046190 a007 Real Root Of 307*x^4+934*x^3-701*x^2-177*x-296 3645260719626900 r009 Im(z^3+c),c=-9/17+16/55*I,n=39 3645260721717749 r005 Re(z^2+c),c=-7/15+19/53*I,n=14 3645260730792042 m001 (gamma(1)-exp(-1/2*Pi))/(Grothendieck-Niven) 3645260754542298 a007 Real Root Of 922*x^4+358*x^3+997*x^2-959*x-481 3645260762288305 r005 Im(z^2+c),c=-17/110+31/58*I,n=62 3645260775846487 r005 Im(z^2+c),c=-5/78+19/39*I,n=33 3645260778030127 r005 Im(z^2+c),c=-1/44+26/63*I,n=5 3645260788940769 r005 Re(z^2+c),c=-35/74+8/49*I,n=10 3645260800095082 r002 15th iterates of z^2 + 3645260832005701 s002 sum(A143603[n]/((exp(n)+1)*n),n=1..infinity) 3645260836702169 p004 log(36493/953) 3645260858573329 r009 Im(z^3+c),c=-13/126+31/39*I,n=44 3645260859668549 m005 (15/28+1/4*5^(1/2))/(1/11*3^(1/2)+1/7) 3645260862572421 m005 (1/3*Catalan+3/4)/(2/11*gamma-3) 3645260864269580 r005 Re(z^2+c),c=-33/70+17/61*I,n=53 3645260872295866 r005 Re(z^2+c),c=-43/94+13/38*I,n=32 3645260872944903 r005 Re(z^2+c),c=-17/40+6/13*I,n=59 3645260907549910 a007 Real Root Of 77*x^4-112*x^3-264*x^2-843*x-279 3645260923067894 m001 (PrimesInBinary+ThueMorse)/(Ei(1)+Artin) 3645260923401645 a007 Real Root Of 35*x^4+145*x^3+341*x^2+782*x-837 3645260929069597 s001 sum(exp(-3*Pi/4)^n*A019489[n],n=1..infinity) 3645260936110372 a007 Real Root Of -220*x^4-503*x^3+940*x^2-425*x+441 3645260950328381 m001 (FeigenbaumD+MertensB3)/(Robbin+TreeGrowth2nd) 3645260955555516 r005 Re(z^2+c),c=-17/38+28/55*I,n=63 3645260955956207 r005 Im(z^2+c),c=-5/118+29/61*I,n=43 3645260975127159 m001 (-Mills+ZetaQ(3))/(exp(1)+sin(1)) 3645260978181992 r009 Im(z^3+c),c=-59/126+6/23*I,n=27 3645261008124682 p001 sum((-1)^n/(617*n+274)/(256^n),n=0..infinity) 3645261011037914 r005 Im(z^2+c),c=-109/86+19/46*I,n=13 3645261012877308 m001 GAMMA(1/4)*exp(Magata)*gamma^2 3645261015382109 a001 29/832040*1597^(29/46) 3645261048923494 r005 Re(z^2+c),c=-13/27+12/55*I,n=42 3645261054506378 r005 Re(z^2+c),c=-8/13+31/57*I,n=8 3645261055702613 m005 (3/44+1/4*5^(1/2))/(2/3*2^(1/2)+7/9) 3645261059149314 r005 Im(z^2+c),c=13/40+4/19*I,n=18 3645261063656081 r002 10th iterates of z^2 + 3645261072431612 a007 Real Root Of 709*x^4-704*x^3-920*x^2-497*x+325 3645261082302110 m005 (1/2*5^(1/2)+5/8)/(1/9*3^(1/2)+2/7) 3645261084516295 r005 Re(z^2+c),c=-33/70+17/61*I,n=49 3645261120193366 a007 Real Root Of -161*x^4-501*x^3+244*x^2-361*x-398 3645261121130685 r005 Re(z^2+c),c=-45/94+13/55*I,n=38 3645261124929798 l006 ln(1662/2393) 3645261125621815 r009 Im(z^3+c),c=-10/21+12/47*I,n=44 3645261126264052 a007 Real Root Of 490*x^4-729*x^3-131*x^2+114*x+15 3645261132802428 a007 Real Root Of 768*x^4-598*x^3-317*x^2+45*x+16 3645261137864427 h001 (-8*exp(5)+9)/(-8*exp(6)-5) 3645261142014095 r005 Im(z^2+c),c=13/40+3/17*I,n=39 3645261143112347 m001 OrthogonalArrays*(BesselJ(0,1)+FeigenbaumC) 3645261144789231 a007 Real Root Of 365*x^4+154*x^3+23*x^2-362*x-134 3645261148097420 m001 (Ei(1)+Landau)/(TwinPrimes+ZetaQ(3)) 3645261148514471 m006 (3/Pi-2/3)/(1/6*ln(Pi)+3/5) 3645261150155426 r005 Im(z^2+c),c=1/15+25/61*I,n=24 3645261166642178 r005 Im(z^2+c),c=-5/22+19/33*I,n=53 3645261168121113 k009 concat of cont frac of 3645261179335402 r009 Re(z^3+c),c=-19/44+24/59*I,n=4 3645261179692616 r005 Im(z^2+c),c=-3/106+37/64*I,n=19 3645261182510399 a008 Real Root of (6+16*x-6*x^2-13*x^3) 3645261204720399 a007 Real Root Of 293*x^4+407*x^3-63*x^2-989*x+344 3645261206471386 m001 1/exp(Zeta(9))^2/Riemann1stZero^2*cos(1) 3645261229599448 r005 Im(z^2+c),c=3/22+17/47*I,n=22 3645261249888562 r005 Im(z^2+c),c=-1/14+41/57*I,n=63 3645261252215052 s002 sum(A222609[n]/(n^2*10^n+1),n=1..infinity) 3645261253052016 r009 Im(z^3+c),c=-21/62+31/59*I,n=3 3645261253470380 l006 ln(263/10071) 3645261255133305 m001 (GolombDickman-gamma(1)*ZetaP(3))/ZetaP(3) 3645261272263393 r005 Re(z^2+c),c=-41/94+22/49*I,n=33 3645261285395326 m001 Catalan^BesselJ(1,1)+FeigenbaumD 3645261298240142 a007 Real Root Of 51*x^4-402*x^3+973*x^2-684*x-399 3645261302440190 r009 Im(z^3+c),c=-11/21+20/63*I,n=34 3645261314856260 r009 Re(z^3+c),c=-33/94+4/29*I,n=3 3645261334563871 m001 (GaussAGM(1,1/sqrt(2))+2)/(-exp(gamma)+1) 3645261347896385 r009 Re(z^3+c),c=-37/102+27/40*I,n=41 3645261363587710 r005 Im(z^2+c),c=13/106+19/50*I,n=12 3645261364872303 m001 FeigenbaumD*ErdosBorwein^MasserGramain 3645261376135636 r005 Im(z^2+c),c=5/98+21/50*I,n=29 3645261378788698 r005 Re(z^2+c),c=-53/118+19/50*I,n=53 3645261379800115 m001 (Gompertz-Riemann1stZero)/(ln(2)-arctan(1/3)) 3645261387425427 r005 Im(z^2+c),c=-67/126+2/31*I,n=49 3645261402528352 r005 Re(z^2+c),c=-1/66+31/48*I,n=53 3645261408661177 r002 5th iterates of z^2 + 3645261408881292 r005 Re(z^2+c),c=-18/29+25/62*I,n=51 3645261409916350 m001 TreeGrowth2nd^(1/3*Pi^(1/2)*3^(2/3)) 3645261425776713 r005 Im(z^2+c),c=-55/74+7/59*I,n=19 3645261436039521 m001 (Pi+ln(2))/(FibonacciFactorial-ZetaP(3)) 3645261442562680 m001 (FellerTornier-Porter)/(Pi-gamma(3)) 3645261460551518 a007 Real Root Of 895*x^4-312*x^3-140*x^2-364*x-145 3645261468083532 r005 Im(z^2+c),c=-29/82+5/9*I,n=35 3645261478345013 m005 (-5/42+1/6*5^(1/2))/(11/12*gamma+1/6) 3645261504383024 m001 cos(Pi/5)*exp(Si(Pi))/sqrt(2) 3645261513231541 a001 4/233*144^(5/33) 3645261520034289 m004 -4+125*Pi-(15*Pi)/Log[Sqrt[5]*Pi] 3645261523568494 r005 Im(z^2+c),c=-6/31+23/41*I,n=25 3645261545131403 b008 71/E^(2/3) 3645261551008379 a001 3/75025*377^(19/51) 3645261578534172 m001 1/GAMMA(5/6)^2*exp(GAMMA(1/24))/gamma^2 3645261580940749 r009 Im(z^3+c),c=-1/126+19/46*I,n=8 3645261584105158 r009 Re(z^3+c),c=-13/27+12/41*I,n=62 3645261599017316 m005 (1/2*Catalan-1/9)/(3*Pi+1/11) 3645261599180206 m005 (1/2*2^(1/2)-9/10)/(-46/99+4/9*5^(1/2)) 3645261601043066 a007 Real Root Of 959*x^4-478*x^3+173*x^2-938*x-405 3645261605261354 m001 ln(Zeta(3))^2/PrimesInBinary^2/cos(1) 3645261606870348 r009 Re(z^3+c),c=-31/54+10/39*I,n=20 3645261618451509 p001 sum(1/(307*n+286)/(12^n),n=0..infinity) 3645261630084675 r005 Re(z^2+c),c=-59/90+2/39*I,n=8 3645261634941225 r005 Re(z^2+c),c=-41/32+2/59*I,n=14 3645261650682412 r005 Im(z^2+c),c=-29/48+4/59*I,n=34 3645261661667023 r009 Im(z^3+c),c=-47/110+11/41*I,n=6 3645261668841104 r009 Im(z^3+c),c=-11/46+13/34*I,n=6 3645261684131421 k002 Champernowne real with 207/2*n^2-603/2*n+234 3645261690051500 m001 1/exp(1)^2/Riemann1stZero^2*exp(sin(1))^2 3645261693711485 r005 Re(z^2+c),c=-57/122+19/63*I,n=30 3645261700745079 l006 ln(222/8501) 3645261709511783 m001 BesselJ(1,1)/BesselI(1,2)*HeathBrownMoroz 3645261720833376 m001 sinh(1)^2/exp(FeigenbaumDelta)^2*sqrt(3)^2 3645261731527978 l006 ln(6889/9919) 3645261750865162 r005 Re(z^2+c),c=-47/98+3/13*I,n=53 3645261760497286 a001 11592/19*76^(17/18) 3645261786737506 m008 (1/4*Pi^4-2/5)/(1/2*Pi+5) 3645261791106890 m001 BesselI(1,1)/gamma(3)*PisotVijayaraghavan 3645261799440839 m005 (1/2*2^(1/2)-7/9)/(9/11*Catalan-5/9) 3645261840309642 r009 Im(z^3+c),c=-25/46+15/41*I,n=29 3645261846891807 m005 (1/2*exp(1)+1/4)/(7/12*exp(1)-6) 3645261847041820 a007 Real Root Of -208*x^4+164*x^3+619*x^2+229*x-170 3645261867392472 r005 Re(z^2+c),c=5/26+14/25*I,n=33 3645261870348451 r005 Im(z^2+c),c=-9/14+12/173*I,n=61 3645261876026239 m001 Zeta(5)-exp(1/exp(1))+exp(-Pi) 3645261891406427 r002 17th iterates of z^2 + 3645261892688086 m005 (1/3*gamma+1/9)/(2/7*2^(1/2)+3/7) 3645261895049453 m005 (1/3*Zeta(3)-3/4)/(1/11*Catalan+7/8) 3645261900601935 m001 (MinimumGamma-OrthogonalArrays)/(Sarnak+Thue) 3645261924404607 l006 ln(5227/7526) 3645261934331259 r005 Im(z^2+c),c=1/30+25/58*I,n=42 3645261941799357 s002 sum(A246342[n]/(n^3*exp(n)+1),n=1..infinity) 3645261944715234 a007 Real Root Of 219*x^4+570*x^3-864*x^2-384*x-978 3645261961591536 r005 Im(z^2+c),c=1/11+13/33*I,n=38 3645261962069060 m001 1/TwinPrimes/ln(FeigenbaumD)/BesselK(0,1) 3645261970410387 r009 Im(z^3+c),c=-11/36+5/14*I,n=10 3645261975433064 m005 (4/5*Catalan+1/5)/(4*gamma+1/4) 3645261981355804 r005 Im(z^2+c),c=-13/10+9/254*I,n=13 3645262006599883 a007 Real Root Of -347*x^4+536*x^3-925*x^2-310*x+42 3645262024400914 h001 (-10*exp(2)-9)/(-4*exp(4)-9) 3645262040733120 a001 1/76*(1/2*5^(1/2)+1/2)^6*521^(7/16) 3645262040934646 m001 (gamma(1)+Kac)/(PolyaRandomWalk3D+Salem) 3645262044720930 r005 Im(z^2+c),c=-35/29+9/64*I,n=63 3645262058565035 a007 Real Root Of -206*x^4-852*x^3-350*x^2-178*x-894 3645262059729740 p001 sum(1/(141*n+79)/n/(125^n),n=0..infinity) 3645262060703542 r005 Re(z^2+c),c=-21/46+29/63*I,n=35 3645262072664429 r005 Im(z^2+c),c=7/22+8/43*I,n=38 3645262075710335 m005 (1/2*gamma-5/9)/(1/8*2^(1/2)-10/11) 3645262087358832 r005 Re(z^2+c),c=-13/27+12/55*I,n=48 3645262095486047 r002 47th iterates of z^2 + 3645262105554762 a001 39088169/2207*123^(3/20) 3645262107132895 r005 Re(z^2+c),c=-17/18+81/145*I,n=2 3645262111255914 a003 cos(Pi*21/82)*cos(Pi*34/105) 3645262111485922 a001 514229/521*322^(5/8) 3645262126263195 m009 (5*Psi(1,3/4)+1)/(3/10*Pi^2+4/5) 3645262131993936 m005 (1/3*gamma+1/12)/(1/6*Catalan-10/11) 3645262142438001 r005 Re(z^2+c),c=-17/44+26/53*I,n=20 3645262163127170 a001 1/76*(1/2*5^(1/2)+1/2)^11*199^(1/16) 3645262168375847 r005 Im(z^2+c),c=1/14+23/41*I,n=14 3645262174901353 r002 9th iterates of z^2 + 3645262175368150 a003 sin(Pi*17/109)-sin(Pi*28/89) 3645262179756603 m001 (ln(2)+Zeta(1,2))/(Robbin+ZetaQ(3)) 3645262192835757 r002 5th iterates of z^2 + 3645262209346665 a001 832040/3*322^(49/58) 3645262216152725 m001 Lehmer^(Backhouse*PisotVijayaraghavan) 3645262216474981 m001 GAMMA(1/12)^sqrt(Pi)/(ThueMorse^sqrt(Pi)) 3645262225204345 a008 Real Root of (-3-6*x+5*x^2-3*x^3+2*x^4+5*x^5) 3645262226464842 a001 634430159/36*233^(2/15) 3645262226528837 m001 exp(GAMMA(23/24))/(3^(1/3))^2*exp(1) 3645262233974434 p003 LerchPhi(1/25,1,670/237) 3645262251026830 m006 (4/5*exp(2*Pi)+2/3)/(5*exp(Pi)+2) 3645262257143114 a007 Real Root Of -279*x^4-919*x^3+413*x^2+469*x+970 3645262262287953 m001 (Zeta(1,2)+Gompertz)/(MertensB2-Paris) 3645262262826099 a007 Real Root Of -242*x^4-628*x^3+839*x^2-135*x+670 3645262271635081 m001 (Psi(1,1/3)-cos(1))/(Zeta(3)+Riemann3rdZero) 3645262297119068 l006 ln(3565/5133) 3645262306471738 r005 Im(z^2+c),c=3/118+17/39*I,n=30 3645262306912500 r002 2th iterates of z^2 + 3645262307430156 a007 Real Root Of -185*x^4-578*x^3+240*x^2-372*x+123 3645262308061680 r005 Im(z^2+c),c=-5/78+19/39*I,n=29 3645262312888372 m005 (2/5*Catalan+5/6)/(3/4*gamma-2/5) 3645262313268239 r002 5th iterates of z^2 + 3645262326781289 r005 Re(z^2+c),c=-7/22+13/23*I,n=31 3645262333594361 q001 931/2554 3645262340794816 p003 LerchPhi(1/2,6,142/55) 3645262350652158 l006 ln(181/6931) 3645262356121660 m001 FeigenbaumD+FeigenbaumKappa*Rabbit 3645262360882552 a001 98209/682*322^(23/24) 3645262364031975 a007 Real Root Of 284*x^4+835*x^3-952*x^2-552*x+938 3645262364279630 m001 (GaussKuzminWirsing-ZetaQ(3))/cos(1/5*Pi) 3645262377483407 m004 -25*Pi+50*Sqrt[5]*Pi+6*Cosh[Sqrt[5]*Pi] 3645262384554802 b008 (3*Sech[Sqrt[Pi]])/E 3645262393355210 m001 Pi^(1/2)-Zeta(1/2)+ThueMorse 3645262393355210 m001 Zeta(1/2)-sqrt(Pi)-ThueMorse 3645262400559915 m001 (ln(Pi)+Zeta(1,2))/(LandauRamanujan-MertensB3) 3645262427062498 s002 sum(A196974[n]/((exp(n)+1)*n),n=1..infinity) 3645262442574666 a003 cos(Pi*27/94)-sin(Pi*51/115) 3645262447274049 r002 28th iterates of z^2 + 3645262447439043 a007 Real Root Of -798*x^4-329*x^3-477*x^2+111*x+102 3645262457314887 a007 Real Root Of -227*x^4-909*x^3-159*x^2+507*x+12 3645262457802419 a001 76/6765*8^(30/53) 3645262466809067 a007 Real Root Of 3*x^4-787*x^3+608*x^2-653*x-357 3645262471660233 m008 (3/4*Pi^3+3)/(3/4*Pi^6-4/5) 3645262486042087 v002 sum(1/(5^n+(25*n^2-55*n+75)),n=1..infinity) 3645262490855078 r009 Im(z^3+c),c=-39/94+32/57*I,n=11 3645262505665571 m005 (1/2*Zeta(3)+3)/(2/11*Pi+5/12) 3645262517419952 m005 (1/2*Pi-2/5)/(7/8*exp(1)+5/6) 3645262519363501 r009 Im(z^3+c),c=-10/29+18/53*I,n=16 3645262544952989 r005 Im(z^2+c),c=25/74+5/41*I,n=7 3645262551039871 a003 sin(Pi*7/45)-sin(Pi*27/86) 3645262558859092 r005 Re(z^2+c),c=-12/25+7/20*I,n=17 3645262565702557 p001 sum(1/(607*n+275)/(128^n),n=0..infinity) 3645262583913127 r002 3th iterates of z^2 + 3645262586964340 m001 (exp(Pi)+Ei(1,1))/(-Conway+LaplaceLimit) 3645262589370757 r005 Im(z^2+c),c=-41/60+15/49*I,n=12 3645262592236084 a001 1364/1346269*6765^(13/32) 3645262596163937 r005 Im(z^2+c),c=-23/94+37/48*I,n=11 3645262613085923 m001 (CareFree+TwinPrimes)/(Pi+BesselK(1,1)) 3645262619285033 r005 Im(z^2+c),c=13/106+17/46*I,n=9 3645262626681505 m005 (1/2*Pi-10/11)/(7/10*5^(1/2)+1/4) 3645262650816782 r005 Re(z^2+c),c=1/3+19/36*I,n=13 3645262653254393 p001 sum(1/(422*n+279)/(24^n),n=0..infinity) 3645262653406270 l006 ln(5468/7873) 3645262656646847 r009 Im(z^3+c),c=-17/54+6/17*I,n=22 3645262673660583 b008 Sech[LogIntegral[5/2]] 3645262687132021 k002 Champernowne real with 104*n^2-303*n+235 3645262695868185 a007 Real Root Of 908*x^4-823*x^3-353*x^2-930*x-348 3645262705018622 m005 (1/3*gamma+1/9)/(Catalan-1/12) 3645262707737499 a007 Real Root Of -258*x^4-708*x^3+698*x^2-415*x+473 3645262711589723 r005 Im(z^2+c),c=-13/24+27/62*I,n=20 3645262712179750 r005 Im(z^2+c),c=-7/40+6/11*I,n=31 3645262712528492 m001 (-sin(1/12*Pi)+KhinchinLevy)/(Si(Pi)+ln(2)) 3645262713078778 r005 Im(z^2+c),c=-59/122+1/16*I,n=40 3645262722003296 a007 Real Root Of -177*x^4-686*x^3+64*x^2+772*x-12 3645262726727528 r005 Im(z^2+c),c=43/126+10/61*I,n=48 3645262734550854 r002 2th iterates of z^2 + 3645262742705111 a007 Real Root Of 763*x^4-308*x^3+751*x^2-695*x+155 3645262744750664 a001 34111385/1926*123^(3/20) 3645262763400463 r009 Re(z^3+c),c=-27/64+13/59*I,n=3 3645262790781371 a007 Real Root Of 916*x^4-151*x^3+585*x^2-976*x-457 3645262796327009 a007 Real Root Of -443*x^4+619*x^3+496*x^2+933*x+312 3645262806101592 m001 (Si(Pi)-gamma)/(-Artin+Sarnak) 3645262806198298 m001 (Otter+ReciprocalLucas)/(cos(1)+cos(1/5*Pi)) 3645262827009862 r005 Re(z^2+c),c=-47/98+3/13*I,n=51 3645262831792246 m001 (ln(5)+cos(1/12*Pi))/(gamma(3)+CareFree) 3645262838008108 a001 267914296/15127*123^(3/20) 3645262839841712 a007 Real Root Of 342*x^4+982*x^3-798*x^2+866*x+940 3645262845247101 r004 Im(z^2+c),c=-19/16-1/21*I,z(0)=-1,n=27 3645262851614186 a001 17711*123^(3/20) 3645262853599286 a001 1836311903/103682*123^(3/20) 3645262853888908 a001 1602508992/90481*123^(3/20) 3645262853931163 a001 12586269025/710647*123^(3/20) 3645262853937328 a001 10983760033/620166*123^(3/20) 3645262853938228 a001 86267571272/4870847*123^(3/20) 3645262853938359 a001 75283811239/4250681*123^(3/20) 3645262853938378 a001 591286729879/33385282*123^(3/20) 3645262853938381 a001 516002918640/29134601*123^(3/20) 3645262853938381 a001 4052739537881/228826127*123^(3/20) 3645262853938381 a001 3536736619241/199691526*123^(3/20) 3645262853938381 a001 6557470319842/370248451*123^(3/20) 3645262853938382 a001 2504730781961/141422324*123^(3/20) 3645262853938383 a001 956722026041/54018521*123^(3/20) 3645262853938390 a001 365435296162/20633239*123^(3/20) 3645262853938440 a001 139583862445/7881196*123^(3/20) 3645262853938784 a001 53316291173/3010349*123^(3/20) 3645262853941138 a001 20365011074/1149851*123^(3/20) 3645262853957279 a001 7778742049/439204*123^(3/20) 3645262854067904 a001 2971215073/167761*123^(3/20) 3645262854826145 a001 1134903170/64079*123^(3/20) 3645262855670734 r009 Re(z^3+c),c=-39/64+1/2*I,n=32 3645262860023205 a001 433494437/24476*123^(3/20) 3645262864644925 r005 Re(z^2+c),c=-29/28+2/41*I,n=24 3645262870828509 r009 Re(z^3+c),c=-9/16+1/6*I,n=44 3645262875184387 m005 (1/2*Catalan+4)/(7/11*5^(1/2)-1/5) 3645262878071274 a001 18/1597*317811^(26/57) 3645262895644380 a001 165580141/9349*123^(3/20) 3645262896695950 p001 sum((-1)^n/(545*n+538)/n/(25^n),n=1..infinity) 3645262898965468 a007 Real Root Of -181*x^4-558*x^3+486*x^2+157*x-955 3645262905149463 m001 (Porter-Trott)/(HardyLittlewoodC3-MertensB2) 3645262911398120 h001 (1/9*exp(1)+3/4)/(8/11*exp(1)+10/11) 3645262919635636 r005 Re(z^2+c),c=-53/70+1/30*I,n=26 3645262919818746 r005 Re(z^2+c),c=-4/3+1/93*I,n=20 3645262930617524 r005 Im(z^2+c),c=27/110+10/37*I,n=42 3645262943869910 r009 Im(z^3+c),c=-35/102+16/47*I,n=23 3645262950652441 r002 36th iterates of z^2 + 3645262960689194 m001 Riemann2ndZero^2/exp(MadelungNaCl)^2*exp(1) 3645262960904253 m001 FransenRobinson^ArtinRank2+BesselI(1,2) 3645262963822428 r005 Re(z^2+c),c=-19/66+31/54*I,n=29 3645262967024820 r005 Re(z^2+c),c=-1/28+2/41*I,n=9 3645262973144939 r002 34th iterates of z^2 + 3645262976287726 r005 Re(z^2+c),c=-29/28+2/41*I,n=30 3645262976905298 r002 40th iterates of z^2 + 3645262977158676 r005 Re(z^2+c),c=-29/28+2/41*I,n=28 3645262977337767 r002 42th iterates of z^2 + 3645262977565869 r005 Re(z^2+c),c=-29/28+2/41*I,n=34 3645262977566259 r005 Re(z^2+c),c=-1/28+2/41*I,n=11 3645262977585946 r002 46th iterates of z^2 + 3645262977591094 r005 Re(z^2+c),c=-29/28+2/41*I,n=36 3645262977592363 r005 Re(z^2+c),c=-1/28+2/41*I,n=12 3645262977602036 r002 48th iterates of z^2 + 3645262977602848 r005 Re(z^2+c),c=-29/28+2/41*I,n=40 3645262977603437 r002 52th iterates of z^2 + 3645262977603613 r005 Re(z^2+c),c=-1/28+2/41*I,n=14 3645262977603698 r005 Re(z^2+c),c=-29/28+2/41*I,n=42 3645262977603758 r005 Re(z^2+c),c=-29/28+2/41*I,n=46 3645262977603769 r005 Re(z^2+c),c=-1/28+2/41*I,n=15 3645262977603770 r002 58th iterates of z^2 + 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=17 3645262977603775 r005 Re(z^2+c),c=-29/28+2/41*I,n=52 3645262977603775 r002 64th iterates of z^2 + 3645262977603775 r005 Re(z^2+c),c=-29/28+2/41*I,n=58 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=20 3645262977603775 r005 Re(z^2+c),c=-29/28+2/41*I,n=64 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=23 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=25 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=26 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=28 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=29 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=31 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=34 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=37 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=39 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=40 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=42 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=43 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=45 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=46 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=47 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=48 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=49 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=50 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=51 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=52 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=53 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=54 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=55 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=56 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=57 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=58 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=59 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=60 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=61 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=62 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=63 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=64 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=44 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=41 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=38 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=36 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=35 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=33 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=32 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=30 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=27 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=24 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=22 3645262977603775 r005 Re(z^2+c),c=-29/28+2/41*I,n=62 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=21 3645262977603775 r005 Re(z^2+c),c=-29/28+2/41*I,n=60 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=19 3645262977603775 r005 Re(z^2+c),c=-29/28+2/41*I,n=56 3645262977603775 r005 Re(z^2+c),c=-1/28+2/41*I,n=18 3645262977603775 r005 Re(z^2+c),c=-29/28+2/41*I,n=54 3645262977603775 r002 62th iterates of z^2 + 3645262977603776 r005 Re(z^2+c),c=-29/28+2/41*I,n=48 3645262977603776 r002 60th iterates of z^2 + 3645262977603776 r005 Re(z^2+c),c=-29/28+2/41*I,n=50 3645262977603778 r005 Re(z^2+c),c=-1/28+2/41*I,n=16 3645262977603782 r002 54th iterates of z^2 + 3645262977603793 r002 56th iterates of z^2 + 3645262977603851 r005 Re(z^2+c),c=-29/28+2/41*I,n=44 3645262977605315 r002 50th iterates of z^2 + 3645262977605949 r005 Re(z^2+c),c=-1/28+2/41*I,n=13 3645262977609615 r005 Re(z^2+c),c=-29/28+2/41*I,n=38 3645262977720625 r002 44th iterates of z^2 + 3645262977758371 a007 Real Root Of 320*x^4+963*x^3-865*x^2-497*x-174 3645262977913712 r009 Im(z^3+c),c=-23/62+16/49*I,n=20 3645262978005819 r005 Re(z^2+c),c=-29/28+2/41*I,n=32 3645262978846605 r005 Re(z^2+c),c=-1/28+2/41*I,n=10 3645262985564912 r002 38th iterates of z^2 + 3645262987685036 m001 (Psi(2,1/3)-ln(2))/(GAMMA(11/12)+PlouffeB) 3645262999666409 r005 Re(z^2+c),c=-1/28+2/41*I,n=8 3645263002282333 r005 Re(z^2+c),c=-29/28+2/41*I,n=26 3645263040569776 a007 Real Root Of -872*x^4+433*x^3-790*x^2+940*x+484 3645263065938793 m001 (2^(1/2)+1)/(arctan(1/3)+PolyaRandomWalk3D) 3645263065948084 a007 Real Root Of 281*x^4-425*x^3+593*x^2-940*x-447 3645263066427929 r005 Re(z^2+c),c=-55/122+14/37*I,n=32 3645263082139542 a007 Real Root Of -728*x^4+712*x^3-546*x^2-392*x-23 3645263082468852 g002 Psi(5/11)+Psi(4/9)-Psi(9/10)-Psi(1/7) 3645263091903124 r005 Re(z^2+c),c=-5/21+31/51*I,n=7 3645263100018611 r005 Im(z^2+c),c=-7/106+29/61*I,n=14 3645263107482444 r005 Re(z^2+c),c=-29/28+2/41*I,n=22 3645263121260313 a005 (1/sin(74/157*Pi))^1453 3645263122807823 a007 Real Root Of -336*x^4-975*x^3+673*x^2-898*x-116 3645263125283614 r005 Im(z^2+c),c=3/25+22/61*I,n=3 3645263134717192 m001 BesselK(0,1)/(Trott^(2*Pi/GAMMA(5/6))) 3645263137243631 r009 Im(z^3+c),c=-3/46+16/39*I,n=5 3645263139795569 a001 63245986/3571*123^(3/20) 3645263141273201 a001 377/123*29^(25/34) 3645263143690263 h001 (-7*exp(1/2)-6)/(-6*exp(-2)-4) 3645263144090526 r005 Im(z^2+c),c=-3/13+22/39*I,n=41 3645263159722469 m009 (1/5*Pi^2+5/6)/(3/8*Pi^2+4) 3645263174336734 m001 ThueMorse-sqrt(1+sqrt(3))-BesselJZeros(0,1) 3645263175718488 a007 Real Root Of -162*x^4-449*x^3+329*x^2-880*x-724 3645263196657025 r009 Im(z^3+c),c=-13/38+15/44*I,n=23 3645263201609443 a007 Real Root Of -499*x^4+330*x^3+488*x^2+771*x+241 3645263205498364 r005 Im(z^2+c),c=1/30+25/58*I,n=45 3645263215373556 a007 Real Root Of -404*x^4+127*x^3-553*x^2+825*x-3 3645263245104844 a001 12238*13^(20/47) 3645263259656882 m001 (FeigenbaumKappa+GlaisherKinkelin)/Sarnak 3645263266579964 m001 (MasserGramain-ThueMorse)/(gamma(3)-Cahen) 3645263268929330 m001 GAMMA(2/3)*Riemann3rdZero+Sierpinski 3645263278795906 a001 15127/55*3^(10/39) 3645263291330717 r005 Im(z^2+c),c=9/29+10/51*I,n=47 3645263306227917 m001 (ln(2)+Zeta(1/2))/(GAMMA(7/12)+Stephens) 3645263306930054 m001 GAMMA(23/24)^Zeta(5)/(Riemann3rdZero^Zeta(5)) 3645263320859664 l006 ln(1903/2740) 3645263327903934 a007 Real Root Of -42*x^4+89*x^3+615*x^2-756*x+799 3645263341790863 r009 Im(z^3+c),c=-9/32+15/41*I,n=7 3645263361566171 m005 (1/2*exp(1)+7/12)/(2/9*Zeta(3)-4/5) 3645263366155427 a001 20633239*102334155^(19/21) 3645263379942835 m002 Pi^5*Log[Pi]+Log[Pi]*Sinh[Pi]+Tanh[Pi] 3645263381218233 l006 ln(140/5361) 3645263388381978 r005 Im(z^2+c),c=-1/7+17/31*I,n=17 3645263389883295 r002 4th iterates of z^2 + 3645263395176010 h001 (2/3*exp(1)+3/7)/(7/9*exp(2)+2/5) 3645263403889439 a001 192900153618*4181^(19/21) 3645263405042582 r005 Re(z^2+c),c=-19/40+3/56*I,n=7 3645263409961945 l006 ln(2101/2179) 3645263415372720 r009 Im(z^3+c),c=-15/44+14/41*I,n=22 3645263434065670 h001 (-7*exp(3/2)-2)/(-3*exp(1)-1) 3645263435267035 a001 76/3*(1/2*5^(1/2)+1/2)^10*3^(1/7) 3645263448213646 a003 cos(Pi*41/109)*sin(Pi*23/56) 3645263460246200 r002 32th iterates of z^2 + 3645263460377482 m008 (5/6*Pi+1/4)/(4/5*Pi^4+3/4) 3645263460984739 q001 1266/3473 3645263483751617 r005 Im(z^2+c),c=-37/62+1/30*I,n=3 3645263490055599 m001 (gamma(2)+GaussAGM)/(OrthogonalArrays+Thue) 3645263505346174 r009 Re(z^3+c),c=-47/106+8/33*I,n=9 3645263507726500 a001 2889*10946^(1/40) 3645263511461507 r002 7th iterates of z^2 + 3645263519336337 a007 Real Root Of -154*x^4-638*x^3-397*x^2-489*x-219 3645263519575016 r005 Re(z^2+c),c=-1/28+2/41*I,n=7 3645263522944652 m005 (1/2*Pi-9/10)/(4/5*3^(1/2)+5/11) 3645263539941815 r005 Re(z^2+c),c=-53/110+2/21*I,n=7 3645263563980399 s002 sum(A247848[n]/(n^2*10^n+1),n=1..infinity) 3645263570266375 r005 Re(z^2+c),c=-49/110+13/33*I,n=52 3645263588839582 h001 (3/8*exp(1)+2/11)/(7/8*exp(1)+11/12) 3645263597379380 r005 Re(z^2+c),c=-35/74+10/37*I,n=60 3645263610867919 m001 (Cahen+FeigenbaumDelta)/(Rabbit+RenyiParking) 3645263631225065 r005 Im(z^2+c),c=-3/28+29/57*I,n=25 3645263639212600 a007 Real Root Of -251*x^4-294*x^3+442*x^2+915*x+265 3645263640854175 m001 3^(1/2)*GAMMA(2/3)/Cahen 3645263640854175 m001 sqrt(3)*GAMMA(2/3)/Cahen 3645263656603410 r005 Re(z^2+c),c=-9/20+14/27*I,n=35 3645263658668299 r005 Im(z^2+c),c=-3/11+35/61*I,n=51 3645263660544354 m001 1/Rabbit^2*Si(Pi)^2*exp(Pi)^2 3645263662507476 r009 Im(z^3+c),c=-23/110+19/52*I,n=2 3645263689105213 a008 Real Root of x^2-x-133244 3645263690132621 k002 Champernowne real with 209/2*n^2-609/2*n+236 3645263694016031 r005 Re(z^2+c),c=-7/82+5/8*I,n=11 3645263695482111 r005 Im(z^2+c),c=17/66+8/31*I,n=41 3645263700584366 b008 11*Pi+ExpIntegralEi[1] 3645263708444475 a007 Real Root Of 92*x^4-100*x^3+65*x^2-163*x+54 3645263715125420 a007 Real Root Of 765*x^4+439*x^3+771*x^2-651*x-332 3645263734304320 r005 Im(z^2+c),c=-33/62+2/31*I,n=31 3645263738154555 s002 sum(A284279[n]/(n!^2),n=1..infinity) 3645263738841391 r005 Im(z^2+c),c=1/11+13/33*I,n=41 3645263760870697 q001 7/19203 3645263797109175 m005 (1/2*3^(1/2)-3)/(5/2+3/2*5^(1/2)) 3645263807216297 r005 Im(z^2+c),c=-27/122+35/62*I,n=58 3645263816880347 r005 Im(z^2+c),c=-21/50+17/33*I,n=24 3645263832907013 m001 BesselK(0,1)/KomornikLoreti/MasserGramain 3645263844898282 r009 Re(z^3+c),c=-13/27+12/41*I,n=64 3645263848667280 m005 (1/2*5^(1/2)-3/8)/(4/5*Zeta(3)-3) 3645263852502507 m001 exp(Robbin)^2*CareFree*GAMMA(19/24)^2 3645263859405952 m001 (Lehmer-Totient)/(ln(3)-Conway) 3645263865083586 r005 Re(z^2+c),c=-35/74+49/60*I,n=3 3645263866242925 a001 29/11*(1/2*5^(1/2)+1/2)^27*11^(11/23) 3645263893512756 r009 Im(z^3+c),c=-3/38+9/22*I,n=6 3645263897255791 r002 5th iterates of z^2 + 3645263907309054 a007 Real Root Of 143*x^4+471*x^3-162*x^2-162*x-873 3645263908032896 a007 Real Root Of 52*x^4-611*x^3-210*x^2-163*x+116 3645263911334984 b008 3+ArcCsch[1+1/Sqrt[5]] 3645263920052040 m001 (KhinchinLevy+MertensB1)/(cos(1)+Zeta(1,2)) 3645263924226313 r005 Re(z^2+c),c=-29/60+11/56*I,n=21 3645263926007434 m001 (Thue+ZetaP(3))/(ln(5)+FibonacciFactorial) 3645263929019589 a007 Real Root Of -135*x^4-645*x^3-634*x^2-519*x-873 3645263929650872 a007 Real Root Of -577*x^4-689*x^3+351*x^2+866*x-32 3645263932892826 m005 (1/2*Pi-7/8)/(4/7*Catalan-5/7) 3645263934243685 l006 ln(5950/8567) 3645263961186137 m001 (arctan(1/2)-Salem)/(Tetranacci+Trott2nd) 3645263971088011 a003 cos(Pi*30/113)*cos(Pi*20/63) 3645263982442165 m001 (Zeta(5)+ln(Pi)*PrimesInBinary)/PrimesInBinary 3645263985835903 a007 Real Root Of -922*x^4+404*x^3+363*x^2+273*x-1 3645263987709898 h001 (1/11*exp(2)+1/8)/(7/12*exp(1)+3/5) 3645263991327443 a007 Real Root Of 10*x^4-226*x^3-854*x^2+508*x+487 3645263993286371 a007 Real Root Of 280*x^4+821*x^3-721*x^2-150*x-638 3645263999326340 a007 Real Root Of -599*x^4+226*x^3-145*x^2+828*x-30 3645264002737612 s002 sum(A027612[n]/(n*exp(n)-1),n=1..infinity) 3645264002798598 a001 1/843*7^(15/26) 3645264005008134 a001 89/3*3^(3/16) 3645264022004146 a007 Real Root Of 106*x^4+288*x^3-179*x^2+841*x+678 3645264032645521 r005 Im(z^2+c),c=17/62+11/59*I,n=5 3645264035107015 m001 ln(log(1+sqrt(2)))^2*Robbin*sin(Pi/5)^2 3645264053600226 m001 (GAMMA(17/24)+2/3)/(GAMMA(2/3)+4) 3645264059338014 r005 Re(z^2+c),c=-43/90+8/33*I,n=36 3645264065334395 r002 5th iterates of z^2 + 3645264067265232 m001 1/GAMMA(11/24)/exp(Niven)^2*Zeta(1/2)^2 3645264070521552 r005 Im(z^2+c),c=19/58+11/15*I,n=4 3645264076625341 m001 1/Zeta(1,2)/exp(MertensB1)^2/log(2+sqrt(3))^2 3645264083128582 m009 (3*Psi(1,3/4)+2)/(1/5*Pi^2+2/3) 3645264096061553 h001 (-2*exp(4)+6)/(-6*exp(1)-12) 3645264107002778 a007 Real Root Of 813*x^4-365*x^3-215*x^2-748*x-27 3645264114539313 a001 2207*2504730781961^(19/21) 3645264126227249 a007 Real Root Of 281*x^4-681*x^3-55*x^2-545*x+234 3645264126564904 s001 sum(exp(-2*Pi/5)^n*A267739[n],n=1..infinity) 3645264126564904 s002 sum(A267739[n]/(exp(2/5*pi*n)),n=1..infinity) 3645264133649215 r005 Im(z^2+c),c=-65/102+21/64*I,n=14 3645264135708396 m001 Riemann3rdZero^(LandauRamanujan*MinimumGamma) 3645264136313138 a007 Real Root Of 228*x^4+565*x^3-937*x^2+286*x+603 3645264154963828 r005 Re(z^2+c),c=-21/40+11/25*I,n=27 3645264161688068 l006 ln(239/9152) 3645264171862800 r005 Im(z^2+c),c=1/90+4/9*I,n=21 3645264173777570 r005 Im(z^2+c),c=-25/52+29/60*I,n=16 3645264189643427 s002 sum(A197561[n]/((exp(n)+1)*n),n=1..infinity) 3645264206733405 a001 28657/843*29^(31/44) 3645264207484226 a003 cos(Pi*15/89)/cos(Pi*39/92) 3645264207621248 r005 Im(z^2+c),c=-3/40+13/19*I,n=12 3645264211512970 r005 Re(z^2+c),c=-15/32+7/24*I,n=34 3645264216682569 r005 Re(z^2+c),c=-25/56+17/43*I,n=39 3645264220830850 m001 exp(Rabbit)^2/FeigenbaumC^2/Tribonacci^2 3645264222672086 l006 ln(4047/5827) 3645264233058167 r005 Re(z^2+c),c=-35/74+10/37*I,n=62 3645264246410498 m001 StolarskyHarborth/(PrimesInBinary^Niven) 3645264248766538 m001 (Ei(1,1)-Shi(1))/(cos(1/12*Pi)+MertensB3) 3645264248766538 m001 Chi(1)/(cos(1/12*Pi)+MertensB3) 3645264254382451 a007 Real Root Of 316*x^4+964*x^3-598*x^2+86*x-842 3645264269860649 m001 (Zeta(5)-ln(2))/((1+3^(1/2))^(1/2)-Rabbit) 3645264274623118 r005 Re(z^2+c),c=-29/28+2/41*I,n=20 3645264287622062 m005 (1/2*Pi+4/9)/(2/9*Zeta(3)+2/7) 3645264289511897 r005 Re(z^2+c),c=-8/17+15/53*I,n=43 3645264303715096 r009 Im(z^3+c),c=-61/118+14/45*I,n=5 3645264328554093 r005 Im(z^2+c),c=-29/74+25/44*I,n=63 3645264329921784 m001 (ln(5)+FeigenbaumD)/(Robbin-Tribonacci) 3645264341842178 m001 (Magata-TwinPrimes)/(GAMMA(3/4)-Bloch) 3645264357583346 r002 14th iterates of z^2 + 3645264363835512 a001 317811/199*199^(13/22) 3645264373916520 m001 (Ei(1,1)+BesselJ(1,1))/(1+cos(1/5*Pi)) 3645264376588155 r005 Im(z^2+c),c=11/34+11/62*I,n=64 3645264377295617 m001 cos(1)*(BesselI(1,2)-Catalan) 3645264392620029 a007 Real Root Of 932*x^4-287*x^3+894*x^2+69*x-124 3645264393269885 m001 (Kolakoski+Otter)/(arctan(1/2)+BesselI(1,1)) 3645264398337239 m001 ln(3)-GAMMA(5/6)^Pi 3645264410854195 a007 Real Root Of 791*x^4-874*x^3+439*x^2-920*x-450 3645264413473285 a008 Real Root of x^2-x-132515 3645264413659956 m001 (Kac-OneNinth)/(ln(3)+FellerTornier) 3645264415449418 r005 Re(z^2+c),c=-13/27+12/55*I,n=41 3645264415947904 r005 Im(z^2+c),c=27/110+10/37*I,n=35 3645264443455259 m001 DuboisRaymond^(GAMMA(5/6)/FeigenbaumC) 3645264467009248 r005 Re(z^2+c),c=-35/74+10/37*I,n=58 3645264481010088 m001 1/GAMMA(1/4)*(2^(1/3))*exp(sinh(1))^2 3645264499872689 l006 ln(6191/8914) 3645264502633008 r005 Re(z^2+c),c=-39/98+31/63*I,n=35 3645264531207796 r005 Re(z^2+c),c=-43/94+17/49*I,n=38 3645264535370890 r009 Im(z^3+c),c=-49/118+20/63*I,n=8 3645264537442820 m001 (-TwinPrimes+ZetaP(2))/(2^(1/3)-ln(2+3^(1/2))) 3645264544425090 a003 sin(Pi*9/107)-sin(Pi*17/79) 3645264554224949 a001 55/710647*123^(19/59) 3645264555296979 r002 5th iterates of z^2 + 3645264571259412 m005 (1/2*Catalan+1/11)/(2/11*exp(1)-2) 3645264588529121 r005 Im(z^2+c),c=-11/14+30/241*I,n=18 3645264590307182 m005 (1/2*2^(1/2)+7/8)/(-1/8+1/4*5^(1/2)) 3645264595428432 a007 Real Root Of -198*x^4-568*x^3+735*x^2+404*x-846 3645264626491383 r005 Im(z^2+c),c=-1/70+17/37*I,n=46 3645264637050399 a007 Real Root Of 294*x^4+987*x^3-484*x^2-563*x+276 3645264645103834 r005 Im(z^2+c),c=2/29+25/59*I,n=11 3645264659464202 h001 (8/11*exp(1)+4/7)/(5/6*exp(2)+5/6) 3645264659770035 m005 (1/3*5^(1/2)-2/3)/(5/11*3^(1/2)-4/7) 3645264672938599 m001 (FeigenbaumC-GaussAGM)/(Paris+ZetaP(3)) 3645264678244672 p001 sum(1/(554*n+287)/(8^n),n=0..infinity) 3645264681410062 m004 -125*Pi+(5*Sqrt[5]*Pi)/2+5*Pi*Sin[Sqrt[5]*Pi] 3645264693133221 k002 Champernowne real with 105*n^2-306*n+237 3645264693140481 a007 Real Root Of -273*x^4-821*x^3+798*x^2+657*x+227 3645264694874740 m001 (-LandauRamanujan+ZetaP(4))/(2^(1/2)+Bloch) 3645264697897035 g006 Psi(1,4/9)+Psi(1,6/7)+Psi(1,4/5)-Psi(1,5/12) 3645264698288979 a007 Real Root Of -229*x^4-848*x^3+22*x^2+278*x+80 3645264704132549 a007 Real Root Of -849*x^4+606*x^3+862*x^2+733*x+197 3645264705339116 m001 Khinchin*BesselI(1,1)+GAMMA(5/12) 3645264716459995 a007 Real Root Of -591*x^4+683*x^3-874*x^2+898*x+487 3645264721451821 r005 Im(z^2+c),c=-39/34+4/87*I,n=19 3645264731771050 m009 (3/4*Psi(1,1/3)-2/5)/(5/2*Pi^2-5) 3645264751828927 r005 Re(z^2+c),c=-5/8+25/243*I,n=6 3645264769398031 m001 1/ln((3^(1/3)))*Sierpinski/BesselJ(1,1)^2 3645264777617156 m005 (1/2*Zeta(3)-4/11)/(6*Zeta(3)-7/10) 3645264781355906 r005 Re(z^2+c),c=-5/11+17/50*I,n=23 3645264782640650 m001 (GAMMA(17/24)-Porter)/(Pi+Si(Pi)) 3645264790232311 a007 Real Root Of -667*x^4-975*x^3-865*x^2+572*x+288 3645264801880958 m001 (cos(1/12*Pi)+Magata)/(PolyaRandomWalk3D+Thue) 3645264813233589 a001 24157817/1364*123^(3/20) 3645264839327362 m005 (1/5*gamma-3)/(1/2*Catalan+1/3) 3645264845975930 a007 Real Root Of 173*x^4+643*x^3+298*x^2+872*x-182 3645264849402451 r005 Re(z^2+c),c=-15/32+12/41*I,n=52 3645264863008158 r005 Im(z^2+c),c=5/42+4/11*I,n=3 3645264864673322 m001 (2^(1/2)-Zeta(3))/(-GAMMA(3/4)+Cahen) 3645264898854704 p001 sum(1/(365*n+303)/(5^n),n=0..infinity) 3645264909203525 g002 Psi(5/12)+Psi(6/7)+Psi(3/5)-Psi(5/7) 3645264922901384 m001 (1-cos(1/12*Pi))/(-exp(1/Pi)+BesselJ(1,1)) 3645264929951716 a001 18*1346269^(1/20) 3645264942764993 r009 Re(z^3+c),c=-14/31+12/47*I,n=41 3645264951899882 p001 sum(1/(506*n+75)/n/(5^n),n=1..infinity) 3645264978516542 h001 (1/2*exp(2)+10/11)/(1/4*exp(1)+7/12) 3645264982235364 m001 1/ln(PrimesInBinary)/Niven^2*cos(Pi/12)^2 3645264983914029 m001 Riemann2ndZero/Magata*ln(arctan(1/2))^2 3645265005198869 r005 Im(z^2+c),c=-23/22+23/71*I,n=3 3645265012203915 m001 TreeGrowth2nd^2/exp(Riemann3rdZero)^2/Zeta(9) 3645265012655441 m001 (-PrimesInBinary+ZetaP(4))/(1+gamma(1)) 3645265020195755 a007 Real Root Of 233*x^4+606*x^3-884*x^2-33*x-161 3645265023114666 l006 ln(2144/3087) 3645265037726594 r005 Re(z^2+c),c=-35/74+10/37*I,n=57 3645265041304652 a001 317811/521*322^(17/24) 3645265047070082 m005 (1/2*Catalan+5/7)/(1/8*Pi-5/7) 3645265051420868 a007 Real Root Of -402*x^4-926*x^3-847*x^2+947*x+420 3645265056441095 a005 (1/cos(4/205*Pi))^688 3645265063297680 m001 (GAMMA(5/6)+ZetaQ(3))/(arctan(1/3)+gamma(2)) 3645265071069357 a001 726103/281*18^(5/42) 3645265074403383 a007 Real Root Of 73*x^4+207*x^3-232*x^2+11*x+260 3645265083034084 m001 FeigenbaumDelta-cos(1)*Ei(1) 3645265089051958 r005 Im(z^2+c),c=17/54+4/21*I,n=52 3645265091325151 r009 Im(z^3+c),c=-35/102+16/47*I,n=16 3645265093897461 r005 Re(z^2+c),c=-5/8+23/91*I,n=7 3645265094201869 m001 (exp(Pi)-gamma(2))/(-ArtinRank2+MertensB3) 3645265101957478 r002 23th iterates of z^2 + 3645265118233074 m001 (ErdosBorwein+Riemann3rdZero)/(Zeta(3)-Bloch) 3645265128890809 r005 Re(z^2+c),c=-35/74+10/37*I,n=64 3645265134895807 m001 (BesselI(0,2)-Landau)/(3^(1/3)-cos(1/12*Pi)) 3645265143341429 m009 (8/3*Catalan+1/3*Pi^2+5)/(3*Pi^2-1/6) 3645265154653169 r005 Im(z^2+c),c=1/70+27/61*I,n=47 3645265161594959 a007 Real Root Of -743*x^4+305*x^3-306*x^2+399*x+214 3645265163376496 r009 Im(z^3+c),c=-39/106+25/64*I,n=3 3645265169350456 m001 ZetaR(2)^Khinchin*ReciprocalLucas^Khinchin 3645265186511047 a007 Real Root Of 24*x^4+854*x^3-765*x^2-183*x-738 3645265186583224 a007 Real Root Of 66*x^4-34*x^3-995*x^2-124*x-531 3645265188238521 a007 Real Root Of -276*x^4-915*x^3+526*x^2+479*x-831 3645265194652453 a007 Real Root Of 673*x^4+119*x^3+908*x^2-50*x-145 3645265202006943 a007 Real Root Of -275*x^4-982*x^3+144*x^2+62*x-697 3645265218326365 m001 Pi/(1-2^(1/3)-BesselK(1,1)) 3645265221004439 r005 Re(z^2+c),c=-119/118+7/36*I,n=24 3645265223199978 m005 (1/2*5^(1/2)-3/10)/(9/10*Pi-7/12) 3645265223557453 a007 Real Root Of 562*x^4-608*x^3+548*x^2-806*x-406 3645265226353895 r005 Im(z^2+c),c=9/25+11/39*I,n=64 3645265231588279 r005 Im(z^2+c),c=23/62+1/4*I,n=39 3645265248904026 s002 sum(A188380[n]/((2*n)!),n=1..infinity) 3645265259487075 m001 1/exp(Magata)^2/MadelungNaCl^2/Paris 3645265261068152 r002 30th iterates of z^2 + 3645265265381744 l006 ln(99/3791) 3645265268828659 m001 (-ArtinRank2+HeathBrownMoroz)/(1-cos(1/5*Pi)) 3645265279593324 r005 Im(z^2+c),c=-103/86+1/21*I,n=35 3645265286390855 r009 Re(z^3+c),c=-47/98+9/31*I,n=61 3645265299915827 a001 1/987*6765^(13/32) 3645265299934154 m005 (1/2*Zeta(3)-6)/(3/7*2^(1/2)+7/8) 3645265304377929 m001 (HardyLittlewoodC3+Magata)^Psi(2,1/3) 3645265307563967 m001 (TravellingSalesman+ZetaP(2))/(Ei(1)+Mills) 3645265317836258 r005 Im(z^2+c),c=-2/13+17/32*I,n=31 3645265326562578 m001 (StronglyCareFree-ZetaP(4))/(exp(1/Pi)+Landau) 3645265327476016 r005 Im(z^2+c),c=-23/40+27/43*I,n=4 3645265328931003 s002 sum(A135733[n]/((10^n-1)/n),n=1..infinity) 3645265332283401 m001 ln(2)*(Si(Pi)+Magata) 3645265347660327 a001 2/1346269*34^(14/55) 3645265352072994 r005 Im(z^2+c),c=-3/46+21/43*I,n=21 3645265352998386 a007 Real Root Of 141*x^4+347*x^3-493*x^2+295*x-462 3645265375079692 s002 sum(A252428[n]/(n^2*exp(n)+1),n=1..infinity) 3645265397302678 m001 BesselI(0,1)*Weierstrass/ZetaQ(4) 3645265405217137 r005 Re(z^2+c),c=-4/3+1/142*I,n=40 3645265406341262 r005 Re(z^2+c),c=-53/122+10/23*I,n=62 3645265445886057 a007 Real Root Of -11*x^4+569*x^3-831*x^2+208*x+214 3645265446344706 r005 Re(z^2+c),c=41/118+4/59*I,n=64 3645265454848438 m001 1/TreeGrowth2nd/ln(Lehmer)*Catalan^2 3645265456740934 a007 Real Root Of 815*x^4-770*x^3+601*x^2-303*x-242 3645265460925299 r002 51th iterates of z^2 + 3645265462413546 m001 (Sarnak-Sierpinski)/(arctan(1/3)-FeigenbaumB) 3645265481238939 a007 Real Root Of -250*x^4-803*x^3+288*x^2-325*x+235 3645265483090097 m001 (GAMMA(3/4)-cos(1/12*Pi))/(gamma(3)+Rabbit) 3645265508562129 l006 ln(6673/9608) 3645265519887677 m005 (1/3*Catalan+1/11)/(3/4*Catalan+2/5) 3645265535422594 r005 Im(z^2+c),c=31/90+25/41*I,n=13 3645265543161109 h001 (-3*exp(1)+8)/(-8*exp(4)+12) 3645265556497147 r005 Im(z^2+c),c=-27/94+37/62*I,n=32 3645265561461484 m001 (Landau+Thue)/(exp(1)+GAMMA(5/6)) 3645265564699933 a007 Real Root Of -713*x^4-126*x^3-165*x^2+457*x+195 3645265575317603 a001 1/34111385*86267571272^(12/13) 3645265575324821 a001 1/105937*165580141^(12/13) 3645265580880200 r005 Re(z^2+c),c=43/126+3/25*I,n=42 3645265586338318 a007 Real Root Of -450*x^4+264*x^3+420*x^2+494*x+145 3645265599712747 m001 exp(1)+arctan(1/2)^Paris 3645265601843305 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-Zeta(1/2)*Robbin 3645265610437403 r009 Im(z^3+c),c=-35/74+5/19*I,n=16 3645265623679731 a007 Real Root Of -142*x^4+983*x^3-23*x^2+351*x-170 3645265633593111 a003 cos(Pi*23/108)-cos(Pi*21/58) 3645265640586283 r005 Re(z^2+c),c=-47/118+30/61*I,n=35 3645265648491759 m001 1/exp(arctan(1/2))^2/FeigenbaumAlpha^2*gamma 3645265650242745 m001 (gamma+sin(1/12*Pi))/(-BesselI(1,1)+Kolakoski) 3645265655934791 r005 Im(z^2+c),c=17/52+9/53*I,n=26 3645265678162001 m001 CopelandErdos*OrthogonalArrays^GAMMA(17/24) 3645265693119731 a003 cos(Pi*1/120)*sin(Pi*12/101) 3645265696027554 h001 (-2*exp(3)-3)/(-8*exp(5)+3) 3645265696133821 k002 Champernowne real with 211/2*n^2-615/2*n+238 3645265707093381 m009 (1/3*Psi(1,1/3)+1/4)/(4*Psi(1,3/4)-1/4) 3645265725421231 m005 (1/3*exp(1)-1/4)/(15/22+1/2*5^(1/2)) 3645265731031288 a003 cos(Pi*11/61)-cos(Pi*15/44) 3645265733444881 a007 Real Root Of -747*x^4+887*x^3-809*x^2+695*x+417 3645265733743831 m001 (exp(Pi)+BesselK(0,1))/(-ln(3)+ZetaP(2)) 3645265738014992 r005 Re(z^2+c),c=19/50+10/53*I,n=41 3645265738369884 l006 ln(4529/6521) 3645265738535138 m001 3^(1/3)*sin(1/12*Pi)-ZetaQ(3) 3645265761453403 r002 9th iterates of z^2 + 3645265778421993 a007 Real Root Of -38*x^4+9*x^3+689*x^2+601*x+181 3645265795553771 r005 Im(z^2+c),c=-23/118+35/64*I,n=33 3645265796721114 a007 Real Root Of -109*x^4-432*x^3+14*x^2+583*x+260 3645265804780159 r005 Im(z^2+c),c=-9/56+39/62*I,n=11 3645265808063400 m002 4+12*Pi^3-Sinh[Pi] 3645265828682120 r009 Im(z^3+c),c=-19/58+17/47*I,n=4 3645265834397796 a001 13/103682*3^(34/35) 3645265835640741 v002 sum(1/(5^n+(29*n^2-29*n+37)),n=1..infinity) 3645265851873690 m009 (2/3*Psi(1,3/4)+5/6)/(1/2*Pi^2+2) 3645265854239562 v003 sum((4*n^3-18*n^2+40*n-2)/n^n,n=1..infinity) 3645265872391661 r002 28th iterates of z^2 + 3645265872800876 m001 1/sin(Pi/5)^2*exp(gamma)/sqrt(2) 3645265879226006 r005 Im(z^2+c),c=-33/122+23/37*I,n=42 3645265881826929 r005 Re(z^2+c),c=-41/60+1/59*I,n=10 3645265882970837 m005 (1/3*5^(1/2)+1/12)/(8/9*5^(1/2)+2/7) 3645265887382601 r002 16th iterates of z^2 + 3645265913130890 r009 Im(z^3+c),c=-15/32+12/47*I,n=19 3645265925725358 m005 (1/2*2^(1/2)+4/11)/(-65/168+1/24*5^(1/2)) 3645265930054095 m005 (1/2*exp(1)-3/4)/(11/12*3^(1/2)+1/12) 3645265938923325 r005 Im(z^2+c),c=-5/82+17/35*I,n=56 3645265942877394 r009 Im(z^3+c),c=-11/34+22/63*I,n=15 3645265946300852 a007 Real Root Of -431*x^4+512*x^3+870*x^2+434*x-291 3645265958311654 r005 Re(z^2+c),c=-63/64+9/62*I,n=2 3645265960167268 l006 ln(6914/9955) 3645265962408321 b008 Pi+8*SphericalBesselY[1,3] 3645265982681397 r005 Im(z^2+c),c=-25/114+25/44*I,n=56 3645265989956978 a007 Real Root Of -846*x^4+160*x^3-631*x^2+856*x-221 3645265990394800 a001 18/377*46368^(7/37) 3645265993151230 r005 Im(z^2+c),c=21/64+7/51*I,n=27 3645265994680647 p001 sum((-1)^n/(443*n+259)/(6^n),n=0..infinity) 3645266003540849 a001 4/377*28657^(33/58) 3645266039929477 m005 (1/2*exp(1)-10/11)/(6/7*3^(1/2)-1/4) 3645266042432451 r005 Re(z^2+c),c=-11/98+29/45*I,n=41 3645266061578167 r002 23th iterates of z^2 + 3645266065417502 a007 Real Root Of 239*x^4+688*x^3-805*x^2-372*x+466 3645266079199089 m009 (1/5*Psi(1,2/3)+1/4)/(4/5*Psi(1,3/4)+1/3) 3645266080112213 a007 Real Root Of 289*x^4+822*x^3-931*x^2-193*x+455 3645266084304467 r009 Re(z^3+c),c=-41/90+17/62*I,n=13 3645266101000582 m008 (5/6*Pi^2-4/5)/(2/3*Pi^5-1/3) 3645266103006028 r005 Im(z^2+c),c=-3/118+32/57*I,n=13 3645266104779557 r005 Re(z^2+c),c=-1+34/163*I,n=64 3645266117279993 m001 (-ln(Pi)+2)/GAMMA(1/24) 3645266123498445 m001 (GlaisherKinkelin+Robbin)/(exp(1/Pi)-sin(1)) 3645266139987207 r009 Im(z^3+c),c=-17/54+6/17*I,n=23 3645266143891620 a001 1/23184*233^(35/43) 3645266153031331 a007 Real Root Of 261*x^4+980*x^3+92*x^2-87*x-155 3645266155971045 m001 (BesselI(1,1)+Riemann2ndZero)^BesselK(0,1) 3645266159582051 m001 (Ei(1)+CareFree)/(TravellingSalesman-ZetaQ(4)) 3645266160299632 m009 (2/3*Psi(1,2/3)-3/5)/(2/3*Psi(1,2/3)-6) 3645266162558787 h001 (-4*exp(6)-4)/(-8*exp(4)-7) 3645266165857069 a007 Real Root Of -603*x^4+645*x^3+737*x^2+122*x-163 3645266180799020 m001 cosh(1)/(exp(1)-Pi) 3645266197272611 m001 1/KhintchineLevy*ln(Khintchine)*Robbin^2 3645266199873783 r005 Re(z^2+c),c=-35/74+10/37*I,n=63 3645266236338359 a007 Real Root Of -176*x^4-834*x^3-922*x^2-994*x-693 3645266251969477 a005 (1/sin(102/223*Pi))^1682 3645266263143606 m002 Pi^2+Pi^3-(Cosh[Pi]*Log[Pi])/3 3645266276617814 m001 BesselI(0,1)^polylog(4,1/2)*FellerTornier 3645266278965936 r005 Re(z^2+c),c=-10/21+13/38*I,n=19 3645266282704544 m005 (1/2*Zeta(3)-5)/(63/80+3/16*5^(1/2)) 3645266294488150 r009 Im(z^3+c),c=-17/54+6/17*I,n=25 3645266295322558 a007 Real Root Of 107*x^4+299*x^3-202*x^2+663*x+691 3645266295782163 l006 ln(256/9803) 3645266297475696 m001 (HardyLittlewoodC4+MertensB2)/(Pi+cos(1)) 3645266297502596 a007 Real Root Of -343*x^4-948*x^3+834*x^2-967*x+37 3645266315134954 m005 (1/2*gamma+5/9)/(107/80+7/16*5^(1/2)) 3645266318140479 r002 12th iterates of z^2 + 3645266322484511 m001 (Zeta(3)-FellerTornier)/(Landau-Otter) 3645266323695426 a001 1/329*317811^(12/13) 3645266329614373 m001 Riemann2ndZero^2*Niven^2/exp((2^(1/3))) 3645266338739423 a007 Real Root Of -410*x^4+317*x^3-437*x^2+481*x+256 3645266346686475 a001 34/199*47^(31/39) 3645266381349792 l006 ln(2385/3434) 3645266396655864 a003 cos(Pi*22/101)/cos(Pi*19/44) 3645266397052468 r005 Re(z^2+c),c=-61/94+4/21*I,n=15 3645266403684546 a003 sin(Pi*10/89)/sin(Pi*29/73) 3645266432881307 m005 (1/2*3^(1/2)+3/11)/(-19/36+1/4*5^(1/2)) 3645266468394746 a007 Real Root Of -536*x^4-264*x^3-793*x^2+959*x+36 3645266476990177 r005 Im(z^2+c),c=25/82+17/40*I,n=62 3645266479417860 m001 (-HardyLittlewoodC4+Lehmer)/(1-Grothendieck) 3645266484675215 r005 Im(z^2+c),c=-33/122+19/33*I,n=56 3645266489375841 m003 5/2+Sqrt[5]/4096+3*Sech[1/2+Sqrt[5]/2] 3645266498277015 b008 1/2+2*E^(1/4)+EulerGamma 3645266498465065 m001 (ln(2^(1/2)+1)+Robbin)/(Pi-exp(1)) 3645266502227128 p004 log(34687/24091) 3645266526154646 p003 LerchPhi(1/125,6,55/147) 3645266533981266 a007 Real Root Of 209*x^4+765*x^3+54*x^2+351*x+714 3645266541418231 m005 (1/2*2^(1/2)-7/10)/(10/11*3^(1/2)+3/8) 3645266550684258 m001 1/cosh(1)^2*GAMMA(1/3)*exp(sin(Pi/5))^2 3645266566794641 m002 -5/Log[Pi]+7*Log[Pi] 3645266578891949 r009 Im(z^3+c),c=-17/54+6/17*I,n=26 3645266581385988 m001 (GAMMA(17/24)-Riemann3rdZero)/(Robbin-Trott) 3645266582205579 m005 (1/2*Pi+3/7)/(3/7*Zeta(3)-6) 3645266586353842 r005 Im(z^2+c),c=23/86+14/51*I,n=10 3645266592706435 r005 Im(z^2+c),c=15/98+20/57*I,n=17 3645266593115981 r009 Im(z^3+c),c=-1/34+19/46*I,n=6 3645266594124047 q001 335/919 3645266595859296 a005 (1/cos(9/212*Pi))^145 3645266608080023 a007 Real Root Of -73*x^4+529*x^3-135*x^2+372*x-142 3645266612175701 a003 cos(Pi*9/52)-cos(Pi*35/104) 3645266617549108 a003 cos(Pi*9/38)-cos(Pi*36/95) 3645266620676249 m001 gamma(3)*(Zeta(1,-1)-ln(5)) 3645266624506802 g007 Psi(2,3/8)-Psi(2,7/12)-Psi(13/10)-Psi(2,5/6) 3645266642970970 a007 Real Root Of -318*x^4-975*x^3+577*x^2-316*x+103 3645266646867111 m001 Niven+GAMMA(13/24)^Totient 3645266654041289 a007 Real Root Of 100*x^4+203*x^3-638*x^2-187*x-28 3645266654740007 a007 Real Root Of -271*x^4+660*x^3-964*x^2+820*x-198 3645266678784722 r005 Re(z^2+c),c=-21/46+15/31*I,n=45 3645266679075573 p004 log(14083/9781) 3645266692264691 b008 34+CoshIntegral[2] 3645266699134422 k002 Champernowne real with 106*n^2-309*n+239 3645266701291674 a007 Real Root Of -509*x^4-289*x^3+6*x^2+806*x+288 3645266713881902 a007 Real Root Of 872*x^4+783*x^3+878*x^2-968*x-447 3645266718167064 h001 (-8*exp(3/2)-5)/(-6*exp(-1)-9) 3645266718968336 r005 Im(z^2+c),c=-157/122+17/37*I,n=4 3645266742365308 m002 Pi^2/3+Log[Pi]/(3*ProductLog[Pi]) 3645266749050570 r005 Re(z^2+c),c=17/56+24/49*I,n=53 3645266753351763 r005 Im(z^2+c),c=1/30+25/58*I,n=48 3645266774128432 m001 BesselK(0,1)*(1/2)^exp(-1/2*Pi) 3645266777758845 r009 Im(z^3+c),c=-17/54+6/17*I,n=29 3645266785594204 r005 Re(z^2+c),c=-57/122+19/63*I,n=35 3645266791498561 r009 Im(z^3+c),c=-17/54+6/17*I,n=28 3645266798848900 r009 Im(z^3+c),c=-13/66+25/64*I,n=10 3645266831944835 r009 Im(z^3+c),c=-17/54+6/17*I,n=32 3645266844176356 r009 Im(z^3+c),c=-17/54+6/17*I,n=35 3645266845743469 r009 Im(z^3+c),c=-17/54+6/17*I,n=31 3645266846086262 r002 22th iterates of z^2 + 3645266846640437 r009 Im(z^3+c),c=-17/54+6/17*I,n=38 3645266847094804 r009 Im(z^3+c),c=-17/54+6/17*I,n=41 3645266847171923 r009 Im(z^3+c),c=-17/54+6/17*I,n=44 3645266847183336 r009 Im(z^3+c),c=-17/54+6/17*I,n=45 3645266847183857 r009 Im(z^3+c),c=-17/54+6/17*I,n=47 3645266847184786 r009 Im(z^3+c),c=-17/54+6/17*I,n=48 3645266847185440 r009 Im(z^3+c),c=-17/54+6/17*I,n=51 3645266847185486 r009 Im(z^3+c),c=-17/54+6/17*I,n=50 3645266847185618 r009 Im(z^3+c),c=-17/54+6/17*I,n=54 3645266847185659 r009 Im(z^3+c),c=-17/54+6/17*I,n=57 3645266847185664 r009 Im(z^3+c),c=-17/54+6/17*I,n=53 3645266847185667 r009 Im(z^3+c),c=-17/54+6/17*I,n=60 3645266847185668 r009 Im(z^3+c),c=-17/54+6/17*I,n=63 3645266847185668 r009 Im(z^3+c),c=-17/54+6/17*I,n=64 3645266847185669 r009 Im(z^3+c),c=-17/54+6/17*I,n=61 3645266847185669 r009 Im(z^3+c),c=-17/54+6/17*I,n=62 3645266847185670 r009 Im(z^3+c),c=-17/54+6/17*I,n=59 3645266847185672 r009 Im(z^3+c),c=-17/54+6/17*I,n=58 3645266847185673 r009 Im(z^3+c),c=-17/54+6/17*I,n=56 3645266847185693 r009 Im(z^3+c),c=-17/54+6/17*I,n=55 3645266847185833 r009 Im(z^3+c),c=-17/54+6/17*I,n=52 3645266847186656 r009 Im(z^3+c),c=-17/54+6/17*I,n=49 3645266847188250 r009 Im(z^3+c),c=-17/54+6/17*I,n=42 3645266847191122 r009 Im(z^3+c),c=-17/54+6/17*I,n=46 3645266847213292 r009 Im(z^3+c),c=-17/54+6/17*I,n=43 3645266847286404 r009 Im(z^3+c),c=-17/54+6/17*I,n=39 3645266847311535 r009 Im(z^3+c),c=-17/54+6/17*I,n=40 3645266847672286 r009 Im(z^3+c),c=-17/54+6/17*I,n=37 3645266848186325 r009 Im(z^3+c),c=-17/54+6/17*I,n=36 3645266848470109 r009 Im(z^3+c),c=-17/54+6/17*I,n=34 3645266853240423 a003 sin(Pi*20/107)*sin(Pi*8/35) 3645266853522924 a001 843*55^(19/52) 3645266854775302 r009 Im(z^3+c),c=-17/54+6/17*I,n=33 3645266876052450 s002 sum(A244803[n]/((exp(n)-1)/n),n=1..infinity) 3645266878481009 k005 Champernowne real with floor(sqrt(2)*(114*n+144)) 3645266878491010 k005 Champernowne real with floor(log(3)*(147*n+185)) 3645266888501012 k001 Champernowne real with 162*n+202 3645266888501013 k005 Champernowne real with floor(Catalan*(177*n+221)) 3645266889560087 m001 ReciprocalLucas*(exp(1/exp(1))+ThueMorse) 3645266897344214 r009 Im(z^3+c),c=-17/54+6/17*I,n=30 3645266904154103 r005 Im(z^2+c),c=15/64+28/45*I,n=7 3645266931654398 m001 (Bloch+MertensB1)/(LambertW(1)+exp(1/exp(1))) 3645266935070792 a007 Real Root Of -192*x^4-661*x^3+139*x^2+115*x+456 3645266945524557 l006 ln(157/6012) 3645266947807343 m001 1/log(1+sqrt(2))*ln(Catalan)/sqrt(1+sqrt(3))^2 3645266951836580 r008 a(0)=4,K{-n^6,1+n^3+6*n^2+n} 3645266957688455 r009 Im(z^3+c),c=-11/46+1/34*I,n=7 3645266962482465 l006 ln(5011/7215) 3645266963492493 m005 (1/2*Catalan-2/11)/(6*Zeta(3)+4/11) 3645266966871356 r009 Re(z^3+c),c=-43/82+23/64*I,n=34 3645266970680450 r009 Im(z^3+c),c=-6/25+11/29*I,n=12 3645266972662820 m001 (GAMMA(11/12)-Niven)/Grothendieck 3645266977217965 a007 Real Root Of -669*x^4+883*x^3-794*x^2+930*x+35 3645266985414021 m001 Riemann3rdZero*(QuadraticClass+Stephens) 3645266996018784 r005 Im(z^2+c),c=-7/110+19/39*I,n=47 3645266999574315 a007 Real Root Of 168*x^4+459*x^3-366*x^2+611*x-340 3645266999611448 r009 Im(z^3+c),c=-25/122+53/64*I,n=2 3645267015204634 a003 cos(Pi*8/95)-cos(Pi*11/91) 3645267074914789 a007 Real Root Of 172*x^4+491*x^3-495*x^2-173*x-640 3645267086010485 r005 Re(z^2+c),c=-7/16+16/39*I,n=23 3645267088584099 r005 Re(z^2+c),c=-35/74+10/37*I,n=61 3645267092598585 m001 Sierpinski/(Robbin^FeigenbaumB) 3645267095570015 h001 (11/12*exp(2)+1/12)/(3/5*exp(1)+1/4) 3645267098425675 s001 sum(exp(-Pi/2)^n*A035665[n],n=1..infinity) 3645267116869184 h001 (2/9*exp(1)+2/9)/(2/3*exp(1)+5/11) 3645267128516722 a003 cos(Pi*34/103)-sin(Pi*24/71) 3645267129691507 h001 (7/9*exp(1)+7/12)/(9/10*exp(2)+3/4) 3645267133742336 m001 (5^(1/2)+Si(Pi))/(-FeigenbaumC+Rabbit) 3645267133771395 h005 exp(cos(Pi*1/13)/sin(Pi*10/37)) 3645267135809757 a007 Real Root Of 504*x^4+298*x^3+947*x^2-926*x-35 3645267136065740 m001 1/Bloch^2/Backhouse/ln(RenyiParking)^2 3645267141353894 m001 (arctan(1/2)+2/3)/(-Cahen+1/3) 3645267144600600 m001 (Zeta(3)-Bloch)/(Magata-OrthogonalArrays) 3645267148110256 r009 Im(z^3+c),c=-17/54+6/17*I,n=27 3645267149254935 r005 Re(z^2+c),c=-35/74+10/37*I,n=59 3645267149739340 m009 (3*Psi(1,1/3)-2/3)/(3*Psi(1,3/4)+1/2) 3645267152933687 r005 Im(z^2+c),c=-2/11+16/29*I,n=40 3645267154177385 s002 sum(A248391[n]/(2^n+1),n=1..infinity) 3645267171223614 a007 Real Root Of 267*x^4+864*x^3-461*x^2-228*x+1 3645267189058583 r009 Re(z^3+c),c=-57/118+1/22*I,n=24 3645267196708990 r005 Re(z^2+c),c=-22/15+45/53*I,n=2 3645267205659407 r005 Re(z^2+c),c=9/82+23/40*I,n=22 3645267221008765 r005 Im(z^2+c),c=-37/58+1/53*I,n=22 3645267221619868 a007 Real Root Of -663*x^4+987*x^3-358*x^2+731*x-255 3645267234588950 a005 (1/sin(49/223*Pi))^110 3645267254102215 r002 42th iterates of z^2 + 3645267265950389 r002 5th iterates of z^2 + 3645267272778508 r005 Im(z^2+c),c=-1/66+17/37*I,n=24 3645267303742816 a001 1/76*(1/2*5^(1/2)+1/2)^7*1364^(5/16) 3645267307550768 m001 OrthogonalArrays/(Pi+Rabbit) 3645267313174147 m005 (5*exp(1)+2/5)/(1/5*2^(1/2)-2/3) 3645267318519055 m001 Cahen^(GAMMA(13/24)*HardHexagonsEntropy) 3645267357400580 m001 1/BesselJ(1,1)^3/ln(Riemann3rdZero) 3645267359893688 r009 Re(z^3+c),c=-63/122+11/57*I,n=13 3645267372219000 a001 3/610*2178309^(7/51) 3645267387370051 r005 Re(z^2+c),c=-1/118+9/49*I,n=15 3645267389652828 r005 Im(z^2+c),c=-41/118+27/49*I,n=33 3645267396701062 a007 Real Root Of -898*x^4-237*x^3+997*x^2+787*x-30 3645267416092200 a007 Real Root Of -804*x^4+890*x^3+740*x^2+644*x-362 3645267419525314 m001 (sin(1/5*Pi)+GAMMA(3/4))/(Artin+Champernowne) 3645267420909567 m006 (1/6/Pi+1/4)/(1/3*exp(Pi)+3/5) 3645267439091246 a007 Real Root Of 536*x^4+260*x^3+258*x^2-531*x+19 3645267475003649 m005 (1/2*Pi+2)/(1/4*exp(1)+3/10) 3645267479093524 r005 Re(z^2+c),c=-5/8+54/229*I,n=13 3645267490281913 l006 ln(2626/3781) 3645267493553110 r005 Re(z^2+c),c=-23/48+17/38*I,n=32 3645267496706345 r005 Im(z^2+c),c=23/118+19/60*I,n=19 3645267505939575 a001 199/1597*514229^(19/44) 3645267517889765 r009 Im(z^3+c),c=-1/11+20/49*I,n=8 3645267556456845 s002 sum(A279191[n]/(exp(n)),n=1..infinity) 3645267573161333 r005 Im(z^2+c),c=-1/12+31/64*I,n=14 3645267573752199 a007 Real Root Of -916*x^4+864*x^3+824*x^2+422*x-289 3645267578054878 m001 HeathBrownMoroz*(Pi*2^(1/2)/GAMMA(3/4)-Thue) 3645267583761222 r002 12th iterates of z^2 + 3645267585257425 m001 (Riemann1stZero+Trott)/(arctan(1/3)-Rabbit) 3645267600035754 a007 Real Root Of -20*x^4-747*x^3-674*x^2-742*x-734 3645267630453883 r005 Re(z^2+c),c=-29/60+6/29*I,n=27 3645267631627008 r005 Im(z^2+c),c=-11/17+10/29*I,n=19 3645267643248319 m005 (1/3*5^(1/2)-1/10)/(9/11*Pi-4/5) 3645267644520297 r009 Im(z^3+c),c=-16/31+11/58*I,n=9 3645267645349493 r002 54th iterates of z^2 + 3645267652755274 r009 Im(z^3+c),c=-17/54+6/17*I,n=20 3645267653134017 a007 Real Root Of 416*x^4-510*x^3-822*x^2-772*x+408 3645267700662296 r005 Im(z^2+c),c=15/44+5/31*I,n=48 3645267702135022 k002 Champernowne real with 213/2*n^2-621/2*n+240 3645267719170763 l006 ln(215/8233) 3645267719496126 a001 1/76*3571^(11/16) 3645267721928962 m001 MertensB1*Riemann2ndZero-Si(Pi) 3645267726271574 a007 Real Root Of -932*x^4-144*x^3+561*x^2+889*x+259 3645267738162192 m005 (1/2*3^(1/2)+1/9)/(1/7*5^(1/2)-3) 3645267746393821 r005 Re(z^2+c),c=-43/122+31/54*I,n=50 3645267753582116 a007 Real Root Of -457*x^4+853*x^3-259*x^2+936*x+425 3645267754066390 a007 Real Root Of -241*x^4-627*x^3+779*x^2-498*x+16 3645267779305706 r005 Im(z^2+c),c=-71/110+29/63*I,n=9 3645267784058678 r005 Im(z^2+c),c=-23/56+27/46*I,n=23 3645267787630222 r009 Re(z^3+c),c=-14/29+12/25*I,n=41 3645267791220524 a007 Real Root Of -92*x^4-125*x^3-330*x^2+243*x+128 3645267795499107 m001 (gamma+cos(1/12*Pi))/(-GlaisherKinkelin+Thue) 3645267797384983 l006 ln(9584/9619) 3645267797459285 m001 Catalan/OneNinth^2*exp(GAMMA(7/12)) 3645267797523533 r005 Im(z^2+c),c=3/11+15/62*I,n=42 3645267808096249 r005 Re(z^2+c),c=-25/114+13/21*I,n=30 3645267810811048 a007 Real Root Of 311*x^4-55*x^3-302*x^2-375*x+174 3645267819500361 m005 (1/2*2^(1/2)+5/8)/(1/5*exp(1)-10/11) 3645267820299320 m009 (2*Pi^2-3/5)/(2*Psi(1,3/4)+1/6) 3645267832560705 r005 Re(z^2+c),c=-41/90+11/31*I,n=41 3645267835114662 r002 13th iterates of z^2 + 3645267835751598 r005 Im(z^2+c),c=-13/94+10/19*I,n=63 3645267859142281 a001 2/4181*610^(25/37) 3645267864082573 m001 KhinchinHarmonic/ln(2^(1/2)+1)/Landau 3645267875355151 s002 sum(A181261[n]/(exp(n)+1),n=1..infinity) 3645267885779209 r009 Im(z^3+c),c=-49/102+18/53*I,n=8 3645267892563546 a001 1/76*(1/2*5^(1/2)+1/2)*9349^(9/16) 3645267899311461 r005 Im(z^2+c),c=13/82+17/59*I,n=3 3645267903176990 m005 (1/2*5^(1/2)-5/12)/(9/11*exp(1)-3/10) 3645267903768528 r002 6th iterates of z^2 + 3645267914785051 a007 Real Root Of 245*x^4+917*x^3+188*x^2+420*x+191 3645267916189658 a001 1/4870004*(1/2*5^(1/2)+1/2)^16*64079^(13/16) 3645267916403504 a001 1/1860176*(1/2*5^(1/2)+1/2)^13*24476^(15/16) 3645267917257933 a001 1/76*39603^(17/32) 3645267925893622 m001 (Pi^(1/2)-MertensB1)/(GAMMA(3/4)-GAMMA(13/24)) 3645267934269602 a001 1/710524*(1/2*5^(1/2)+1/2)^20*9349^(9/16) 3645267934865595 r005 Im(z^2+c),c=1/30+25/58*I,n=52 3645267938973522 r005 Re(z^2+c),c=-7/12+33/95*I,n=21 3645267947876224 m001 Tribonacci*(gamma(2)+exp(-1/2*Pi)) 3645267953288994 r009 Im(z^3+c),c=-29/90+1/41*I,n=3 3645267963619569 r005 Im(z^2+c),c=1/30+25/58*I,n=49 3645267971161828 a001 196418/521*322^(19/24) 3645267971767968 l006 ln(5493/7909) 3645267974858679 m001 (cos(1/12*Pi)-Porter)/exp(1/Pi) 3645267974934795 r009 Re(z^3+c),c=-11/90+36/49*I,n=21 3645267977855250 r005 Re(z^2+c),c=-35/74+10/37*I,n=56 3645267981313493 a007 Real Root Of -665*x^4-700*x^3+687*x^2+813*x-342 3645267990904287 r005 Re(z^2+c),c=-59/122+13/64*I,n=47 3645268005353695 a001 1/271396*(1/2*5^(1/2)+1/2)^17*3571^(11/16) 3645268021240948 m001 (Artin+Conway)/(Pi-Zeta(1/2)) 3645268024082800 m008 (3/5*Pi^3+3/5)/(1/2*Pi^2+1/3) 3645268026596095 m005 (1/2*5^(1/2)+1/5)/(3/10*Catalan-7/11) 3645268029997150 r009 Im(z^3+c),c=-31/60+7/33*I,n=53 3645268035442931 p003 LerchPhi(1/125,1,218/79) 3645268041547134 r002 21th iterates of z^2 + 3645268047873354 r009 Im(z^3+c),c=-23/38+10/31*I,n=34 3645268081047758 r009 Im(z^3+c),c=-35/114+9/25*I,n=6 3645268083728223 m001 (-Kolakoski+MertensB1)/(Chi(1)+GolombDickman) 3645268092134674 m001 1/exp(GAMMA(1/3))/BesselK(0,1)*sqrt(5) 3645268095505665 m001 (Conway-MertensB1*Totient)/MertensB1 3645268100934198 r005 Im(z^2+c),c=1/11+13/33*I,n=45 3645268107438902 r002 61th iterates of z^2 + 3645268120743074 r005 Im(z^2+c),c=-45/44+11/36*I,n=11 3645268140820878 m001 (-AlladiGrinstead+Rabbit)/(1+3^(1/2)) 3645268147090576 r005 Im(z^2+c),c=-10/19+11/27*I,n=8 3645268154895408 m001 (Sarnak-ZetaQ(3))/(GAMMA(5/6)+FeigenbaumB) 3645268159602842 r002 15th iterates of z^2 + 3645268165999257 r005 Re(z^2+c),c=-28/23+2/13*I,n=60 3645268166011736 r005 Im(z^2+c),c=-29/26+3/68*I,n=16 3645268169260961 s002 sum(A090635[n]/(pi^n-1),n=1..infinity) 3645268170698818 a007 Real Root Of 333*x^4-766*x^3-104*x^2-768*x+325 3645268187521258 a001 5/39603*123^(13/59) 3645268201337656 m001 (Zeta(5)+LaplaceLimit)/(ThueMorse+ZetaQ(2)) 3645268205601999 r009 Im(z^3+c),c=-8/29+7/19*I,n=9 3645268210589709 r002 13th iterates of z^2 + 3645268217008896 r005 Im(z^2+c),c=21/110+11/34*I,n=14 3645268223830353 r005 Im(z^2+c),c=-1/32+23/49*I,n=25 3645268228639235 a005 (1/cos(69/236*Pi))^81 3645268240557408 m005 (1/2*gamma-7/10)/(1/11*2^(1/2)+1) 3645268241182628 m001 1/(2^(1/3))*FransenRobinson^2/exp(cos(1)) 3645268247865903 a007 Real Root Of -28*x^4-996*x^3+889*x^2-386*x-153 3645268252920289 r002 18th iterates of z^2 + 3645268253913407 r002 49th iterates of z^2 + 3645268258160566 r005 Re(z^2+c),c=-19/44+19/43*I,n=59 3645268258750269 a007 Real Root Of -280*x^4-874*x^3+447*x^2-220*x+363 3645268289421790 m001 (5^(1/2)-exp(1/Pi))/((1+3^(1/2))^(1/2)+Rabbit) 3645268290501954 r005 Re(z^2+c),c=-13/23+5/16*I,n=14 3645268300101713 r009 Re(z^3+c),c=-12/25+16/55*I,n=47 3645268300280299 a007 Real Root Of -349*x^4+155*x^3-557*x^2+865*x+403 3645268303394900 r005 Im(z^2+c),c=13/64+17/55*I,n=35 3645268317444417 m001 (arctan(1/2)+Stephens)/(1+Si(Pi)) 3645268319245996 m001 (ln(5)-CareFree)/(Mills+Salem) 3645268324388308 m009 (1/4*Psi(1,3/4)-3/5)/(2/3*Psi(1,1/3)+3) 3645268333975434 a007 Real Root Of -945*x^4+608*x^3-484*x^2+785*x-28 3645268341095932 a007 Real Root Of -353*x^4+989*x^3-822*x^2+202*x+237 3645268349782890 m001 ln((3^(1/3)))/Niven^2/sin(Pi/5)^2 3645268359134138 r005 Im(z^2+c),c=9/32+23/62*I,n=4 3645268361351008 r005 Im(z^2+c),c=1/30+25/58*I,n=55 3645268364301048 h001 (-5*exp(1/2)+6)/(-3*exp(1)+2) 3645268377232229 l006 ln(9239/9582) 3645268379036838 r009 Re(z^3+c),c=-63/122+10/61*I,n=19 3645268382195914 m001 ln((2^(1/3)))^2*FibonacciFactorial*GAMMA(1/6) 3645268392017373 m001 (Weierstrass-ZetaP(2))/(MertensB3-Rabbit) 3645268407945973 r005 Im(z^2+c),c=1/70+27/61*I,n=51 3645268412780288 l006 ln(2867/4128) 3645268414232260 m001 GAMMA(17/24)/BesselJ(1,1)^2*ln(sqrt(3)) 3645268436869829 m001 1/ln(ArtinRank2)^2*Artin^2*Tribonacci^2 3645268446209227 a007 Real Root Of -907*x^4+793*x^3+438*x^2+666*x+239 3645268473159314 a007 Real Root Of -262*x^4+915*x^3-107*x^2+529*x+256 3645268507813464 r009 Im(z^3+c),c=-17/54+6/17*I,n=24 3645268512936380 r005 Im(z^2+c),c=-13/58+7/12*I,n=36 3645268513743561 m005 (1/3*Catalan+1/5)/(5/12*5^(1/2)+5/11) 3645268537639836 a007 Real Root Of 57*x^4-533*x^3+981*x^2+472*x+997 3645268539723889 m001 Zeta(5)*QuadraticClass+ln(gamma) 3645268545542429 r005 Im(z^2+c),c=1/30+25/58*I,n=51 3645268552182307 r005 Im(z^2+c),c=1/30+25/58*I,n=59 3645268553454644 m001 (arctan(1/2)+Ei(1,1))/(Tetranacci-ZetaQ(2)) 3645268554404046 m001 (gamma(2)+BesselI(1,1))/(Zeta(3)+arctan(1/3)) 3645268563885463 m009 (3/5*Psi(1,1/3)-3/5)/(3/2*Pi^2+1/6) 3645268566898026 r005 Im(z^2+c),c=-45/82+23/49*I,n=34 3645268582665263 r009 Re(z^3+c),c=-27/62+7/30*I,n=17 3645268583194997 r005 Im(z^2+c),c=1/30+25/58*I,n=56 3645268584512663 r005 Im(z^2+c),c=-7/6+16/61*I,n=14 3645268587090805 a001 75025/2207*29^(31/44) 3645268595481041 r002 5th iterates of z^2 + 3645268595639893 m001 (GaussAGM+Salem)/(Weierstrass+ZetaP(4)) 3645268600035149 b008 EulerGamma+Log[43/2] 3645268601405827 r005 Im(z^2+c),c=1/30+25/58*I,n=62 3645268603180046 a007 Real Root Of 164*x^4+431*x^3-792*x^2-557*x+413 3645268609502598 r005 Im(z^2+c),c=1/30+25/58*I,n=58 3645268630965935 r005 Im(z^2+c),c=33/98+3/28*I,n=39 3645268635327900 r005 Im(z^2+c),c=-43/60+10/47*I,n=50 3645268638657440 r005 Im(z^2+c),c=1/30+25/58*I,n=63 3645268655272746 r005 Re(z^2+c),c=-43/122+23/39*I,n=25 3645268660351292 r005 Re(z^2+c),c=-1/118+9/49*I,n=18 3645268663343710 r005 Re(z^2+c),c=-55/114+11/52*I,n=38 3645268666084584 r005 Im(z^2+c),c=1/30+25/58*I,n=64 3645268674032746 r005 Im(z^2+c),c=1/30+25/58*I,n=61 3645268689303969 r005 Re(z^2+c),c=-1/118+9/49*I,n=19 3645268693066101 r005 Im(z^2+c),c=1/30+25/58*I,n=60 3645268699435024 r005 Re(z^2+c),c=-1/118+9/49*I,n=22 3645268700266300 r005 Re(z^2+c),c=-1/118+9/49*I,n=25 3645268700281093 r005 Re(z^2+c),c=-1/118+9/49*I,n=26 3645268700288675 r005 Re(z^2+c),c=-1/118+9/49*I,n=29 3645268700289212 r005 Re(z^2+c),c=-1/118+9/49*I,n=32 3645268700289219 r005 Re(z^2+c),c=-1/118+9/49*I,n=33 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=36 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=39 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=40 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=43 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=44 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=46 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=47 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=50 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=51 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=54 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=53 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=57 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=58 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=61 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=60 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=64 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=63 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=62 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=59 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=56 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=55 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=52 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=49 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=48 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=45 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=42 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=41 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=37 3645268700289225 r005 Re(z^2+c),c=-1/118+9/49*I,n=38 3645268700289226 r005 Re(z^2+c),c=-1/118+9/49*I,n=35 3645268700289228 r005 Re(z^2+c),c=-1/118+9/49*I,n=34 3645268700289255 r005 Re(z^2+c),c=-1/118+9/49*I,n=30 3645268700289288 r005 Re(z^2+c),c=-1/118+9/49*I,n=31 3645268700289639 r005 Re(z^2+c),c=-1/118+9/49*I,n=28 3645268700293220 r005 Re(z^2+c),c=-1/118+9/49*I,n=27 3645268700364883 r005 Re(z^2+c),c=-1/118+9/49*I,n=23 3645268700382870 r005 Re(z^2+c),c=-1/118+9/49*I,n=24 3645268700688221 r005 Re(z^2+c),c=-1/118+9/49*I,n=21 3645268705135622 k002 Champernowne real with 107*n^2-312*n+241 3645268706785101 r005 Re(z^2+c),c=-1/118+9/49*I,n=20 3645268724936717 a007 Real Root Of 247*x^4+833*x^3-446*x^2-813*x-301 3645268731667842 m009 (4/5*Psi(1,2/3)-1/4)/(2/5*Psi(1,1/3)+2) 3645268742177664 m001 1/OneNinth/ln(Conway)^2/GAMMA(1/4) 3645268743844066 a007 Real Root Of 141*x^4+359*x^3-341*x^2+581*x-858 3645268770197106 a001 2/710647*1364^(11/31) 3645268773690020 m005 (1/2*Catalan-2/11)/(3/10*2^(1/2)+1/3) 3645268777151043 m001 (GAMMA(11/12)-FransenRobinson)/(Totient-Thue) 3645268801059546 m005 (1/3*Pi-1/6)/(7/8*3^(1/2)+9/10) 3645268809061506 a007 Real Root Of -841*x^4+316*x^3+952*x^2+557*x-330 3645268809695655 r005 Re(z^2+c),c=-49/106+9/28*I,n=9 3645268818216367 l006 ln(5975/8603) 3645268819381441 a007 Real Root Of -430*x^4+144*x^3+998*x^2+310*x-245 3645268821907381 r005 Im(z^2+c),c=1/30+25/58*I,n=57 3645268834412843 m001 Zeta(9)^2*ln(GAMMA(17/24))^2*gamma 3645268837454620 r005 Re(z^2+c),c=-1/118+9/49*I,n=17 3645268847737393 a001 15127/8*144^(7/53) 3645268856108332 a007 Real Root Of -636*x^4+331*x^3-962*x^2+916*x+489 3645268862989429 r005 Re(z^2+c),c=-1/118+9/49*I,n=16 3645268868040077 r009 Re(z^3+c),c=-3/70+32/57*I,n=5 3645268868220311 r005 Re(z^2+c),c=-29/60+8/39*I,n=47 3645268873118664 m001 (ln(2+3^(1/2))-Otter)/(Pi+GAMMA(2/3)) 3645268885810018 h001 (1/12*exp(2)+4/9)/(11/12*exp(1)+5/12) 3645268885821671 a007 Real Root Of -324*x^4+412*x^3-905*x^2-436*x-13 3645268888101168 m001 (sin(1/5*Pi)+BesselI(1,2))/(MertensB1-Thue) 3645268894275537 m001 MasserGramain^(Mills/BesselI(1,1)) 3645268900463596 r002 7th iterates of z^2 + 3645268903811025 a007 Real Root Of -275*x^4-986*x^3-148*x^2-839*x-295 3645268906151466 m001 1/GAMMA(23/24)*ArtinRank2^2*ln(arctan(1/2)) 3645268919710690 r005 Re(z^2+c),c=-45/94+13/55*I,n=39 3645268927319336 r005 Im(z^2+c),c=1/30+25/58*I,n=54 3645268934799253 r005 Re(z^2+c),c=-1/118+9/49*I,n=14 3645268954449119 r005 Im(z^2+c),c=1/30+25/58*I,n=53 3645268961283717 r005 Re(z^2+c),c=-59/122+13/64*I,n=49 3645268964934029 a001 (5+5^(1/2))^(756/37) 3645268969736968 r005 Im(z^2+c),c=1/70+27/61*I,n=48 3645268976696271 m001 1/cosh(1)*GAMMA(5/12)^2/ln(sqrt(5)) 3645269003438245 r005 Im(z^2+c),c=1/30+25/58*I,n=44 3645269006427656 m001 (Zeta(1,-1)-sin(1))/(GaussAGM+Tetranacci) 3645269009263497 r005 Im(z^2+c),c=1/70+27/61*I,n=50 3645269009660171 r009 Im(z^3+c),c=-5/94+45/56*I,n=62 3645269013618316 p004 log(21559/563) 3645269036237527 r005 Im(z^2+c),c=3/22+23/64*I,n=11 3645269044988929 r009 Im(z^3+c),c=-35/102+16/47*I,n=24 3645269050696646 r005 Im(z^2+c),c=1/70+27/61*I,n=54 3645269051605754 m001 BesselK(1,1)^2/Niven/exp(log(1+sqrt(2)))^2 3645269080361062 r005 Re(z^2+c),c=-13/27+12/55*I,n=46 3645269083132394 m001 2^(1/2)/exp(1/exp(1))/Khinchin 3645269083132394 m001 sqrt(2)/Khinchin/exp(1/exp(1)) 3645269096792417 r009 Re(z^3+c),c=-47/102+9/34*I,n=19 3645269101205420 m001 (CopelandErdos+Kac)/(KomornikLoreti+Stephens) 3645269134310846 r009 Re(z^3+c),c=-17/70+43/45*I,n=8 3645269136443868 m005 (1/3*2^(1/2)-2/9)/(26/11+2*5^(1/2)) 3645269148143176 r009 Re(z^3+c),c=-12/25+11/38*I,n=34 3645269152241555 r009 Im(z^3+c),c=-9/22+7/22*I,n=8 3645269162797456 a001 3/13*2^(31/47) 3645269163829449 m001 (Ei(1)-FeigenbaumB)/(FransenRobinson+OneNinth) 3645269176074549 r005 Im(z^2+c),c=-11/70+23/43*I,n=42 3645269178868268 r005 Im(z^2+c),c=-3/86+25/53*I,n=23 3645269192214176 l006 ln(3108/4475) 3645269198743485 m002 -5+Pi^5+(E^Pi*Pi)/Log[Pi] 3645269209615305 m005 (1/2*Catalan+2/7)/(6/7*3^(1/2)+5/9) 3645269210615943 r005 Re(z^2+c),c=-17/32+1/9*I,n=6 3645269226177216 a001 98209/2889*29^(31/44) 3645269252779046 r005 Re(z^2+c),c=-25/56+35/52*I,n=5 3645269254708880 m006 (1/3*Pi^2-1/6)/(1/6*exp(Pi)-3) 3645269254778350 m001 (Ei(1,1)+GAMMA(11/12))/(FeigenbaumKappa-Niven) 3645269259303561 r005 Re(z^2+c),c=-71/106+17/57*I,n=62 3645269263040414 a001 1/103664*(1/2*5^(1/2)+1/2)^22*1364^(5/16) 3645269284371963 r009 Im(z^3+c),c=-11/78+45/59*I,n=2 3645269305650975 s001 sum(exp(-3*Pi/4)^n*A111649[n],n=1..infinity) 3645269308678294 a001 2/4870847*3571^(17/31) 3645269309932484 m001 (2^(1/2))^(cos(1/12*Pi)/sin(1/12*Pi)) 3645269309932484 m001 2*sqrt(2)^sqrt(3) 3645269319418686 a001 514229/15127*29^(31/44) 3645269333022434 a001 1346269/39603*29^(31/44) 3645269336233843 a001 2178309/64079*29^(31/44) 3645269341430012 a001 208010/6119*29^(31/44) 3645269342986491 r005 Im(z^2+c),c=-1/70+17/37*I,n=40 3645269377045086 a001 317811/9349*29^(31/44) 3645269390457202 r005 Im(z^2+c),c=-17/78+35/62*I,n=50 3645269393026220 m005 (1/3*2^(1/2)-1/11)/(3/11*3^(1/2)+4/7) 3645269394791048 m008 (4/5*Pi^2+4/5)/(3/4*Pi^3+3/5) 3645269399329724 q001 1414/3879 3645269407178443 b008 LogIntegral[ArcCsch[6+Pi]] 3645269428554292 m001 (3^(1/3)-BesselI(1,2)*Salem)/Salem 3645269431430751 h001 (7/8*exp(2)+1/3)/(2/5*exp(1)+7/9) 3645269431459281 a001 322/4181*4181^(11/59) 3645269435481485 m005 (1/3*Catalan+1/11)/(7/8*3^(1/2)-3/7) 3645269444962170 r005 Im(z^2+c),c=1/11+13/33*I,n=49 3645269458400506 a001 1364/5*2^(23/55) 3645269458736098 r005 Im(z^2+c),c=1/11+13/33*I,n=48 3645269463164025 m001 (sin(1/5*Pi)-BesselI(0,2))/(Trott-Weierstrass) 3645269470390401 r005 Im(z^2+c),c=1/11+13/33*I,n=42 3645269479657402 a001 2/167761*5778^(4/31) 3645269484938673 r005 Re(z^2+c),c=-33/70+17/61*I,n=58 3645269485097211 a001 199691526*89^(11/17) 3645269486462198 a007 Real Root Of -257*x^4-965*x^3-330*x^2-838*x-34 3645269498642448 p003 LerchPhi(1/100,6,55/147) 3645269510347248 r005 Im(z^2+c),c=1/11+13/33*I,n=44 3645269538293909 l006 ln(6457/9297) 3645269553452606 m001 arctan(1/2)/(Zeta(1/2)^HardyLittlewoodC3) 3645269570642573 m001 ((1+3^(1/2))^(1/2)-Trott)/(1+ln(gamma)) 3645269575877415 r005 Im(z^2+c),c=-5/82+17/35*I,n=57 3645269585359821 r005 Im(z^2+c),c=1/70+27/61*I,n=57 3645269610379895 r005 Im(z^2+c),c=-3/28+24/47*I,n=39 3645269621154453 a001 121393/3571*29^(31/44) 3645269626863451 a007 Real Root Of 22*x^4+795*x^3-233*x^2+763*x+326 3645269626964696 m001 (BesselI(1,1)+Conway)/(GAMMA(2/3)-sin(1)) 3645269637934957 r005 Re(z^2+c),c=-53/110+11/42*I,n=12 3645269644281269 m001 1/BesselK(1,1)^2*exp(MertensB1)*Zeta(7)^2 3645269669842861 r005 Re(z^2+c),c=-13/27+23/50*I,n=37 3645269672257515 r005 Im(z^2+c),c=1/11+13/33*I,n=52 3645269673344417 m001 (GAMMA(5/6)-DuboisRaymond)/(Sarnak+Tribonacci) 3645269675773324 m001 Pi*(Psi(1,1/3)+ln(3))+GAMMA(17/24) 3645269681033682 a001 843/832040*6765^(13/32) 3645269683178505 m001 GAMMA(19/24)^2*exp(FeigenbaumD)^2/cos(Pi/5) 3645269691018295 g005 4*Pi^2/GAMMA(5/6)^2/GAMMA(7/10)/GAMMA(1/7) 3645269703730706 r005 Im(z^2+c),c=1/70+27/61*I,n=58 3645269704695816 a003 cos(Pi*36/97)*sin(Pi*35/93) 3645269706892480 m001 (BesselI(0,2)-KhinchinHarmonic)^ln(5) 3645269708136222 k002 Champernowne real with 215/2*n^2-627/2*n+242 3645269720950980 r005 Im(z^2+c),c=1/70+27/61*I,n=61 3645269727968123 r005 Re(z^2+c),c=-35/74+10/37*I,n=50 3645269729424537 a007 Real Root Of 253*x^4+863*x^3-385*x^2-666*x-182 3645269732115049 m001 BesselI(1,1)^GAMMA(17/24)/HeathBrownMoroz 3645269743029798 m001 (-gamma(3)+FeigenbaumD)/(Shi(1)-arctan(1/3)) 3645269780657044 r005 Im(z^2+c),c=1/70+27/61*I,n=64 3645269783149521 r005 Im(z^2+c),c=1/11+13/33*I,n=53 3645269785723465 r005 Re(z^2+c),c=-53/78+13/63*I,n=28 3645269788379315 r005 Im(z^2+c),c=1/11+13/33*I,n=56 3645269794109165 m005 (1/2*Zeta(3)+1/7)/(3/4*5^(1/2)+4/11) 3645269798010715 r005 Re(z^2+c),c=-39/94+19/37*I,n=61 3645269798776857 a007 Real Root Of -25*x^4-895*x^3+593*x^2-77*x-395 3645269802157796 m001 (GAMMA(2/3)-ln(2)/ln(10))/(MertensB1+Trott2nd) 3645269804539110 m005 (1/2*5^(1/2)-2/5)/(2^(1/2)+5/9) 3645269808335626 m002 5/4-E^Pi/Pi^3+Pi 3645269813348008 l006 ln(58/2221) 3645269816403910 r005 Im(z^2+c),c=1/70+27/61*I,n=60 3645269824277696 a007 Real Root Of -195*x^4-497*x^3+839*x^2+132*x-310 3645269828165061 r005 Im(z^2+c),c=-3/19+23/43*I,n=39 3645269829693450 r005 Re(z^2+c),c=-65/126+3/40*I,n=8 3645269831286805 r005 Im(z^2+c),c=1/11+13/33*I,n=60 3645269834145948 m007 (-4*gamma-8*ln(2)+1/6)/(-4*gamma+1/5) 3645269839299269 l006 ln(7138/7403) 3645269840498255 h001 (4/9*exp(1)+9/10)/(2/3*exp(2)+6/7) 3645269841514526 a007 Real Root Of -458*x^4+457*x^3-296*x^2+522*x-165 3645269842463008 r005 Im(z^2+c),c=1/11+13/33*I,n=59 3645269843421630 r005 Im(z^2+c),c=1/11+13/33*I,n=63 3645269844022000 r005 Im(z^2+c),c=1/11+13/33*I,n=64 3645269847595113 r005 Im(z^2+c),c=1/11+13/33*I,n=57 3645269852999053 r005 Im(z^2+c),c=1/11+13/33*I,n=61 3645269855508414 r005 Im(z^2+c),c=1/11+13/33*I,n=62 3645269858202370 m001 ErdosBorwein^Champernowne+Sierpinski 3645269859469117 l006 ln(3349/4822) 3645269865376324 r005 Im(z^2+c),c=1/11+13/33*I,n=55 3645269866785034 r005 Im(z^2+c),c=1/70+27/61*I,n=63 3645269868196958 a007 Real Root Of -683*x^4-465*x^3-368*x^2+849*x-226 3645269870660796 s001 sum(exp(-Pi/3)^n*A282257[n],n=1..infinity) 3645269879465982 r005 Im(z^2+c),c=1/11+13/33*I,n=58 3645269879681293 r005 Im(z^2+c),c=1/70+27/61*I,n=62 3645269887006827 r009 Re(z^3+c),c=-17/42+31/52*I,n=12 3645269893342928 a007 Real Root Of 971*x^4+539*x^3-828*x^2-563*x+272 3645269928797730 p003 LerchPhi(1/1024,6,571/224) 3645269929415855 r009 Re(z^3+c),c=-9/19+15/53*I,n=49 3645269952342770 r005 Im(z^2+c),c=1/11+13/33*I,n=54 3645269954508611 r005 Im(z^2+c),c=1/70+27/61*I,n=55 3645269956198455 r005 Im(z^2+c),c=1/30+25/58*I,n=50 3645269957741847 r005 Im(z^2+c),c=-5/82+17/35*I,n=60 3645269957771733 m001 MasserGramain/Khinchin/TwinPrimes 3645269958012814 m005 (1/2*Pi-1/12)/(4*Catalan+5/12) 3645269967551284 r009 Re(z^3+c),c=-47/106+12/49*I,n=34 3645269972450253 a001 843/8*89^(15/19) 3645269979961743 r009 Re(z^3+c),c=-47/106+12/49*I,n=38 3645269982588468 m001 (-Ei(1,1)+Paris)/(Si(Pi)-Zeta(1/2)) 3645270006239288 r005 Re(z^2+c),c=-15/22+13/50*I,n=48 3645270019985771 r005 Im(z^2+c),c=1/11+13/33*I,n=51 3645270020468847 r005 Im(z^2+c),c=1/70+27/61*I,n=59 3645270024317704 a003 cos(Pi*11/47)/cos(Pi*10/23) 3645270026580478 a001 1926/7*144^(3/53) 3645270035208521 m002 4*Cosh[Pi]*Coth[Pi]-Sinh[Pi]/Log[Pi] 3645270036175387 a007 Real Root Of -242*x^4-911*x^3-70*x^2-48*x-642 3645270045133400 r009 Im(z^3+c),c=-13/38+15/44*I,n=24 3645270046903282 r005 Im(z^2+c),c=-5/34+34/63*I,n=26 3645270051125767 a007 Real Root Of 158*x^4+319*x^3-994*x^2-51*x+576 3645270069104938 m001 (OneNinth-Psi(2,1/3))/(-Tetranacci+ThueMorse) 3645270070763411 m001 CareFree/Artin*exp(TwinPrimes) 3645270083274494 r002 11th iterates of z^2 + 3645270083410217 a007 Real Root Of 222*x^4+850*x^3+149*x^2+138*x+497 3645270087504053 r005 Re(z^2+c),c=-45/34+27/107*I,n=2 3645270092546181 a008 Real Root of x^3-5934*x-167872 3645270121798006 r005 Im(z^2+c),c=1/11+13/33*I,n=50 3645270127801211 r005 Im(z^2+c),c=-5/82+17/35*I,n=59 3645270130406104 m001 BesselK(1,1)^GAMMA(5/6)*BesselK(1,1)^Thue 3645270133504487 r005 Re(z^2+c),c=-7/16+30/47*I,n=8 3645270142408184 r005 Re(z^2+c),c=-19/48+4/7*I,n=40 3645270145263271 s002 sum(A144525[n]/((2^n+1)/n),n=1..infinity) 3645270147937327 m001 (CareFree+MinimumGamma)/(Catalan-arctan(1/3)) 3645270158334697 l006 ln(6939/9991) 3645270184182868 r005 Im(z^2+c),c=1/70+27/61*I,n=53 3645270195091364 m005 (33/10+5/2*5^(1/2))/(gamma-1/3) 3645270221740114 r005 Im(z^2+c),c=1/70+27/61*I,n=56 3645270232575067 a007 Real Root Of 184*x^4+538*x^3-471*x^2-182*x-834 3645270238879135 r009 Re(z^3+c),c=-1/74+38/47*I,n=58 3645270246158462 r005 Re(z^2+c),c=-23/52+13/32*I,n=59 3645270246617517 r005 Re(z^2+c),c=-9/16+47/128*I,n=19 3645270252679274 a005 (1/cos(46/181*Pi))^106 3645270270270270 q001 1079/2960 3645270270270270 r002 2th iterates of z^2 + 3645270277159545 m001 (Zeta(1,2)-Pi^(1/2))/(Porter-Sarnak) 3645270281141286 m005 (1/2*exp(1)+7/9)/(1/11*exp(1)-5/6) 3645270283014570 r009 Im(z^3+c),c=-7/19+20/61*I,n=15 3645270310919794 r005 Im(z^2+c),c=1/11+13/33*I,n=46 3645270315160702 a007 Real Root Of -89*x^4-81*x^3+954*x^2-21*x-962 3645270332905393 r001 2i'th iterates of 2*x^2-1 of 3645270343042949 r005 Re(z^2+c),c=-45/94+13/55*I,n=45 3645270349061538 h001 (1/10*exp(1)+5/6)/(4/5*exp(1)+6/7) 3645270349798788 a008 Real Root of x^4-x^3-11*x^2+23*x+5 3645270363153616 a001 123/55*5^(17/56) 3645270363232887 r009 Re(z^3+c),c=-35/74+11/39*I,n=46 3645270376236708 m001 exp(GAMMA(7/12))^2*Kolakoski/arctan(1/2) 3645270388289594 r005 Re(z^2+c),c=-33/70+17/61*I,n=60 3645270390210917 a007 Real Root Of 347*x^4-229*x^3-340*x^2-159*x-30 3645270391862946 r005 Re(z^2+c),c=-35/74+17/56*I,n=10 3645270418386764 r005 Im(z^2+c),c=-35/102+27/53*I,n=14 3645270421567092 r005 Im(z^2+c),c=1/30+25/58*I,n=46 3645270433528373 r005 Im(z^2+c),c=15/46+6/25*I,n=18 3645270437137147 l006 ln(3590/5169) 3645270445870887 a007 Real Root Of 321*x^4+366*x^3+801*x^2-394*x-238 3645270472862431 a007 Real Root Of 447*x^4-426*x^3-821*x^2-796*x+412 3645270483788425 r005 Re(z^2+c),c=-11/24+23/61*I,n=24 3645270492130571 a007 Real Root Of -129*x^4-299*x^3+379*x^2-946*x-190 3645270498866163 r002 37th iterates of z^2 + 3645270499706888 r005 Re(z^2+c),c=-23/18+11/219*I,n=38 3645270536728836 r009 Re(z^3+c),c=-14/29+14/53*I,n=16 3645270538741506 r005 Re(z^2+c),c=-29/60+8/39*I,n=49 3645270546487406 m001 Zeta(1,2)*(Rabbit-ln(3)) 3645270578999148 m001 polylog(4,1/2)*(MertensB1-cos(1/12*Pi)) 3645270596251262 m009 (3/2*Pi^2+1/3)/(1/3*Psi(1,3/4)-5) 3645270602048955 m001 (ln(2+3^(1/2))-ArtinRank2)/(Pi-3^(1/3)) 3645270617354190 r009 Im(z^3+c),c=-35/102+16/47*I,n=27 3645270617792675 a005 (1/sin(29/71*Pi))^1019 3645270618723621 r002 14th iterates of z^2 + 3645270632534679 r009 Re(z^3+c),c=-55/106+9/25*I,n=64 3645270636022748 r005 Re(z^2+c),c=-5/11+17/44*I,n=27 3645270636904207 m001 MadelungNaCl^(ArtinRank2/ln(2)*ln(10)) 3645270647106254 a007 Real Root Of 764*x^4-203*x^3-227*x^2-860*x+340 3645270647572211 a001 55/9349*29^(13/24) 3645270651207598 r005 Im(z^2+c),c=-11/10+29/122*I,n=33 3645270651544962 m006 (3/5*Pi+1/4)/(1/6*exp(Pi)+2) 3645270656181976 m001 (GAMMA(19/24)+ZetaQ(3))/(ln(5)-GAMMA(17/24)) 3645270656783064 r009 Re(z^3+c),c=-47/106+12/49*I,n=41 3645270661362619 r005 Im(z^2+c),c=21/74+14/61*I,n=45 3645270661659991 a007 Real Root Of -813*x^4-370*x^3-718*x^2+689*x+343 3645270671545558 m001 (ln(5)-gamma(2))/(Magata+MertensB2) 3645270676900610 m005 (1/2*2^(1/2)+7/11)/(6*gamma+2/9) 3645270678117961 m001 (Paris+Sierpinski)/(gamma(3)-HeathBrownMoroz) 3645270681291574 r005 Re(z^2+c),c=-35/74+10/37*I,n=49 3645270697563123 m001 (ln(2)+Zeta(1/2))/(Pi-Zeta(5)) 3645270703875577 p001 sum((-1)^n/(256*n+179)/n/(6^n),n=1..infinity) 3645270706010594 r005 Re(z^2+c),c=-21/44+13/53*I,n=38 3645270708258055 r005 Re(z^2+c),c=-33/70+17/61*I,n=55 3645270709284705 r005 Im(z^2+c),c=-5/82+17/35*I,n=63 3645270709428457 m001 1/exp(GAMMA(17/24))/Porter*GAMMA(5/24)^2 3645270711136822 k002 Champernowne real with 108*n^2-315*n+243 3645270712593876 r005 Im(z^2+c),c=1/11+13/33*I,n=47 3645270712855535 a007 Real Root Of -313*x^4-409*x^3-956*x^2-24*x+104 3645270728850689 m005 (1/2*3^(1/2)-3/5)/(4/11*5^(1/2)-1/12) 3645270735737057 r005 Re(z^2+c),c=-17/54+25/61*I,n=4 3645270765073626 r005 Re(z^2+c),c=-57/110+8/19*I,n=29 3645270781308183 m004 -5*Pi+Cos[Sqrt[5]*Pi]+(30*Log[Sqrt[5]*Pi])/Pi 3645270786725170 a007 Real Root Of 47*x^4-47*x^3-690*x^2+652*x+970 3645270819982716 r005 Re(z^2+c),c=-59/122+13/64*I,n=44 3645270825509043 a007 Real Root Of 798*x^4+460*x^3-348*x^2-656*x+249 3645270832222112 m001 ArtinRank2/(FeigenbaumC-GAMMA(13/24)) 3645270836662027 m001 (gamma(1)-GAMMA(19/24))/(GaussAGM+Sierpinski) 3645270838654545 r009 Im(z^3+c),c=-19/94+23/59*I,n=8 3645270839509725 m005 (1/2*Catalan-1/8)/(3*gamma-9/11) 3645270848728466 m005 (1/2*Pi-5/6)/(8/11*exp(1)-4) 3645270849909669 a007 Real Root Of -306*x^4-990*x^3+357*x^2-113*x+921 3645270867752314 s002 sum(A061504[n]/(n^2*exp(n)+1),n=1..infinity) 3645270871588875 r005 Re(z^2+c),c=-33/70+17/61*I,n=48 3645270873397076 s002 sum(A076261[n]/(n^2*10^n+1),n=1..infinity) 3645270875249354 a007 Real Root Of -159*x^4-559*x^3+372*x^2+994*x-322 3645270875750311 r005 Re(z^2+c),c=-11/27+26/53*I,n=45 3645270877058124 m001 exp(Robbin)*FransenRobinson*sin(Pi/12)^2 3645270885833698 m001 (ln(2^(1/2)+1)+Porter)^Psi(2,1/3) 3645270886517404 m002 -2+6/Pi^3-3*Sinh[Pi] 3645270900926872 a001 233*322^(7/8) 3645270901827722 r005 Im(z^2+c),c=-14/27+21/46*I,n=18 3645270904964096 m008 (1/6*Pi^2-4)/(2/3*Pi^4-1/3) 3645270908333142 r005 Im(z^2+c),c=1/70+27/61*I,n=52 3645270927542292 r005 Re(z^2+c),c=11/34+13/31*I,n=51 3645270927721889 r005 Im(z^2+c),c=-11/62+17/31*I,n=40 3645270930539444 m001 1/exp(Zeta(1/2))^2*GAMMA(11/24)*Zeta(7)^2 3645270942125434 l006 ln(3831/5516) 3645270963492783 a007 Real Root Of 996*x^4+732*x^3-458*x^2-921*x-257 3645270975412281 r009 Re(z^3+c),c=-43/82+13/53*I,n=17 3645270975523914 r005 Im(z^2+c),c=1/70+27/61*I,n=43 3645270977547779 a007 Real Root Of -851*x^4-679*x^3-430*x^2+814*x+336 3645270980078064 m005 (1/2*Pi+6/11)/(4/3+2*5^(1/2)) 3645270987410100 a007 Real Root Of -372*x^4-589*x^3-615*x^2+168*x+121 3645270991807016 r005 Im(z^2+c),c=-5/82+17/35*I,n=54 3645270993526156 a001 89/47*3^(31/52) 3645271000298948 r005 Re(z^2+c),c=-19/82+20/33*I,n=27 3645271002547726 r005 Im(z^2+c),c=-37/56+1/35*I,n=7 3645271012491360 m005 (47/44+1/4*5^(1/2))/(4*Catalan+4/5) 3645271016716447 m001 KhinchinHarmonic*(3^(1/3)+MasserGramain) 3645271018111675 m001 FeigenbaumB*FeigenbaumMu*FibonacciFactorial 3645271018355192 r005 Im(z^2+c),c=-55/102+31/52*I,n=54 3645271023860120 m005 (1/2*gamma+5/8)/(5/7*5^(1/2)+10/11) 3645271024468652 r005 Re(z^2+c),c=-59/122+13/64*I,n=51 3645271062372389 a007 Real Root Of -350*x^4+528*x^3+370*x^2+901*x-397 3645271063149405 r005 Im(z^2+c),c=1/30+25/58*I,n=47 3645271070896963 r002 27th iterates of z^2 + 3645271093633659 m005 (1/2*gamma+1/6)/(7/9*gamma+4/5) 3645271122001607 r009 Im(z^3+c),c=-13/38+15/44*I,n=27 3645271122231140 r005 Im(z^2+c),c=1/10+19/49*I,n=33 3645271123114112 k007 concat of cont frac of 3645271143877511 m009 (1/4*Psi(1,2/3)+3)/(20/3*Catalan+5/6*Pi^2-4) 3645271144978418 a001 843/89*13^(31/59) 3645271147732610 a001 1346269/18*7^(35/43) 3645271154557784 r009 Im(z^3+c),c=-31/74+19/50*I,n=4 3645271161194368 r009 Im(z^3+c),c=-35/102+16/47*I,n=26 3645271166419677 m005 (1/2*gamma-3/4)/(4*Pi+1/11) 3645271167638512 r005 Im(z^2+c),c=-7/6+11/40*I,n=36 3645271172341753 r009 Im(z^3+c),c=-29/54+16/49*I,n=27 3645271174433212 m001 (Pi*FransenRobinson+2^(1/2))/FransenRobinson 3645271185964376 r005 Re(z^2+c),c=-37/98+27/58*I,n=14 3645271200694015 m001 BesselK(0,1)^2/MinimumGamma/exp(Zeta(3)) 3645271213840026 a001 1/1201881744*89^(16/19) 3645271220065982 m005 (1/3*3^(1/2)+1/7)/(4/11*Pi+5/6) 3645271222615039 r005 Im(z^2+c),c=17/66+8/31*I,n=36 3645271228524232 r009 Re(z^3+c),c=-39/74+22/47*I,n=41 3645271230451005 h001 (7/10*exp(2)+7/11)/(5/9*exp(1)+1/12) 3645271230760084 h001 (2/5*exp(2)+10/11)/(1/12*exp(2)+4/9) 3645271232884575 m005 (1/2*5^(1/2)+4/5)/(2/7*Catalan+5) 3645271240644307 g007 2*Psi(2,5/11)-Psi(2,1/11)-Psi(2,1/8) 3645271248422268 r005 Re(z^2+c),c=-33/64+5/31*I,n=9 3645271251349861 r009 Re(z^3+c),c=-7/122+15/32*I,n=6 3645271268223532 r005 Re(z^2+c),c=-17/28+7/19*I,n=46 3645271271099261 a007 Real Root Of 830*x^4+895*x^3+939*x^2+291*x+10 3645271277752426 a007 Real Root Of 85*x^4-241*x^3-692*x^2-976*x-277 3645271280400567 r005 Im(z^2+c),c=17/114+23/64*I,n=12 3645271294305825 a001 11592/341*29^(31/44) 3645271298916355 r005 Re(z^2+c),c=-59/122+13/64*I,n=45 3645271304289567 r005 Im(z^2+c),c=-9/86+21/34*I,n=36 3645271307236641 r005 Im(z^2+c),c=-3/5+39/74*I,n=9 3645271307829930 r005 Re(z^2+c),c=-29/60+8/39*I,n=45 3645271309515805 m001 GAMMA(13/24)^2*FeigenbaumKappa 3645271316257325 m001 (Trott+ZetaP(4))/(Si(Pi)-ln(gamma)) 3645271321666011 r009 Im(z^3+c),c=-41/78+17/48*I,n=50 3645271338843651 r009 Re(z^3+c),c=-29/90+1/22*I,n=13 3645271345851509 a003 cos(Pi*10/83)*cos(Pi*42/113) 3645271345933735 r002 34th iterates of z^2 + 3645271358537596 m005 (1/3*3^(1/2)-2/11)/(8/9*3^(1/2)-5/11) 3645271359205275 m001 sin(1)*BesselJ(0,1)^2/ln(sin(Pi/12)) 3645271359794384 r009 Im(z^3+c),c=-13/38+15/44*I,n=26 3645271360021121 r005 Im(z^2+c),c=-11/54+19/34*I,n=63 3645271368703809 m001 (Niven+Trott2nd)/(LandauRamanujan2nd-Shi(1)) 3645271381185644 a005 (1/cos(32/95*Pi))^102 3645271382171606 m001 (Otter-ThueMorse)/(FeigenbaumMu+Magata) 3645271383935127 r009 Im(z^3+c),c=-9/19+9/49*I,n=8 3645271387338564 l006 ln(4072/5863) 3645271389129944 a007 Real Root Of 100*x^4+334*x^3-156*x^2-160*x+11 3645271395630318 m001 1/Zeta(1,2)^2/GAMMA(5/24)^2/ln(sinh(1)) 3645271396665535 a007 Real Root Of -301*x^4+511*x^3+796*x^2+581*x-337 3645271421395361 h001 (9/10*exp(1)+2/7)/(10/11*exp(2)+7/9) 3645271421997578 m001 Riemann1stZero/ln(CopelandErdos)/FeigenbaumD 3645271424679895 m005 (-3/8+1/4*5^(1/2))/(1/12*gamma+5) 3645271428131302 r002 14th iterates of z^2 + 3645271429603309 r009 Re(z^3+c),c=-3/62+18/49*I,n=7 3645271442901510 r009 Im(z^3+c),c=-3/17+22/57*I,n=2 3645271459170307 r005 Im(z^2+c),c=-7/34+23/41*I,n=57 3645271476513703 a001 1/72*4807526976^(20/23) 3645271489372104 m005 (1/2*exp(1)-3/8)/(2/5*Catalan-7/11) 3645271493598457 r005 Im(z^2+c),c=-31/82+21/34*I,n=55 3645271499690560 m001 1/exp(Trott)^2/MadelungNaCl^2/Zeta(1,2)^2 3645271503668077 a005 (1/sin(75/194*Pi))^375 3645271508854721 m001 FibonacciFactorial^Lehmer-LandauRamanujan 3645271516826490 a001 3/2*5^(16/29) 3645271541314331 r005 Re(z^2+c),c=-59/110+4/37*I,n=6 3645271546113059 r009 Im(z^3+c),c=-35/102+16/47*I,n=30 3645271555329619 a007 Real Root Of -320*x^4+940*x^3-503*x^2+768*x-253 3645271594957734 a007 Real Root Of 871*x^4-829*x^3-620*x^2-839*x+413 3645271600699459 r005 Im(z^2+c),c=19/70+11/47*I,n=15 3645271607764671 m005 (1/2*gamma-1/9)/(1/5*3^(1/2)-5/6) 3645271613161005 r005 Im(z^2+c),c=-29/52+4/61*I,n=56 3645271619165608 r005 Im(z^2+c),c=-7/8+61/215*I,n=3 3645271621068043 r005 Im(z^2+c),c=21/74+14/61*I,n=51 3645271621569811 l006 ln(249/9535) 3645271627160392 m001 HardyLittlewoodC5/Cahen/MadelungNaCl 3645271639934299 s002 sum(A236165[n]/(n^3*2^n+1),n=1..infinity) 3645271671557818 m005 (1/12+1/4*5^(1/2))/(2/9*Zeta(3)-1/11) 3645271671903510 r005 Im(z^2+c),c=-127/106+3/62*I,n=43 3645271686673890 r009 Re(z^3+c),c=-1/22+9/29*I,n=9 3645271688825526 m001 Champernowne/GAMMA(2/3)/Riemann3rdZero 3645271691452657 r005 Im(z^2+c),c=-1/82+11/24*I,n=30 3645271703250902 m001 (gamma+GAMMA(5/6))/(FeigenbaumDelta+Trott) 3645271703673570 a001 15127/5*55^(2/43) 3645271704863210 r005 Im(z^2+c),c=11/56+17/32*I,n=57 3645271706445419 m001 (GAMMA(13/24)+Khinchin)/KhinchinLevy 3645271708186085 m001 (Pi-exp(Pi)-LambertW(1))*Pi^(1/2) 3645271714137422 k002 Champernowne real with 217/2*n^2-633/2*n+244 3645271721254535 m001 1/Ei(1)/Trott^2*exp(GAMMA(5/24)) 3645271734574639 h001 (8/9*exp(2)+5/7)/(4/7*exp(1)+4/9) 3645271752708594 r005 Im(z^2+c),c=41/126+4/39*I,n=22 3645271753206611 a007 Real Root Of 668*x^4+92*x^3-571*x^2-525*x+251 3645271773506537 r002 58th iterates of z^2 + 3645271781992974 a001 2/1149851*843^(14/31) 3645271782796813 l006 ln(4313/6210) 3645271805430126 r005 Re(z^2+c),c=-35/74+10/37*I,n=34 3645271812111822 r005 Re(z^2+c),c=-23/40+29/47*I,n=11 3645271812705442 r009 Im(z^3+c),c=-35/102+16/47*I,n=33 3645271823281757 a005 (1/cos(13/201*Pi))^173 3645271838738219 a007 Real Root Of 940*x^4-819*x^3+819*x^2-809*x-460 3645271839654390 r005 Im(z^2+c),c=-5/82+17/35*I,n=62 3645271849049879 b008 3*CosIntegral[23/3] 3645271850120653 r009 Re(z^3+c),c=-29/90+1/22*I,n=12 3645271856692694 a007 Real Root Of -219*x^4-801*x^3-308*x^2-999*x+321 3645271857714888 m001 (GaussAGM-Robbin)/(GAMMA(19/24)+FeigenbaumMu) 3645271860952939 a007 Real Root Of 502*x^4+643*x^3+874*x^2-161*x-7 3645271867474877 r009 Im(z^3+c),c=-35/102+16/47*I,n=36 3645271869504474 r009 Im(z^3+c),c=-35/102+16/47*I,n=34 3645271869565228 r009 Im(z^3+c),c=-35/102+16/47*I,n=37 3645271872348736 r002 63th iterates of z^2 + 3645271873446937 r009 Im(z^3+c),c=-35/102+16/47*I,n=40 3645271874857816 r009 Im(z^3+c),c=-35/102+16/47*I,n=43 3645271875194764 r009 Im(z^3+c),c=-35/102+16/47*I,n=46 3645271875236596 r009 Im(z^3+c),c=-35/102+16/47*I,n=47 3645271875248773 r009 Im(z^3+c),c=-35/102+16/47*I,n=50 3645271875253188 r009 Im(z^3+c),c=-35/102+16/47*I,n=49 3645271875255598 r009 Im(z^3+c),c=-35/102+16/47*I,n=53 3645271875257529 r009 Im(z^3+c),c=-35/102+16/47*I,n=56 3645271875257921 r009 Im(z^3+c),c=-35/102+16/47*I,n=59 3645271875257927 r009 Im(z^3+c),c=-35/102+16/47*I,n=57 3645271875257933 r009 Im(z^3+c),c=-35/102+16/47*I,n=60 3645271875257962 r009 Im(z^3+c),c=-35/102+16/47*I,n=63 3645271875257975 r009 Im(z^3+c),c=-35/102+16/47*I,n=62 3645271875257980 r009 Im(z^3+c),c=-35/102+16/47*I,n=64 3645271875258011 r009 Im(z^3+c),c=-35/102+16/47*I,n=61 3645271875258153 r009 Im(z^3+c),c=-35/102+16/47*I,n=58 3645271875258518 r009 Im(z^3+c),c=-35/102+16/47*I,n=54 3645271875258607 r009 Im(z^3+c),c=-35/102+16/47*I,n=55 3645271875259112 r009 Im(z^3+c),c=-35/102+16/47*I,n=52 3645271875263359 r009 Im(z^3+c),c=-35/102+16/47*I,n=51 3645271875273701 r009 Im(z^3+c),c=-35/102+16/47*I,n=39 3645271875289041 r009 Im(z^3+c),c=-35/102+16/47*I,n=44 3645271875289088 r009 Im(z^3+c),c=-35/102+16/47*I,n=48 3645271875388495 r009 Im(z^3+c),c=-35/102+16/47*I,n=45 3645271875618337 r009 Im(z^3+c),c=-35/102+16/47*I,n=42 3645271875975478 r009 Im(z^3+c),c=-35/102+16/47*I,n=41 3645271876285431 a007 Real Root Of -929*x^4-286*x^3-669*x^2+723*x+355 3645271880310901 r009 Im(z^3+c),c=-35/102+16/47*I,n=38 3645271888735772 r005 Im(z^2+c),c=13/118+23/55*I,n=3 3645271891026464 r005 Re(z^2+c),c=-43/70+23/51*I,n=54 3645271899897214 r009 Im(z^3+c),c=-35/102+16/47*I,n=35 3645271902542707 m001 (CareFree-Sarnak)/(BesselK(1,1)-GAMMA(5/6)) 3645271923117949 r009 Im(z^3+c),c=-13/38+15/44*I,n=30 3645271925526702 q001 744/2041 3645271930059983 a003 sin(Pi*7/66)/sin(Pi*28/79) 3645271942734229 m001 (Ei(1)-sin(1/12*Pi))/(Cahen-DuboisRaymond) 3645271948001531 b008 3*Sec[(5*Pi)/26] 3645271954210009 r009 Im(z^3+c),c=-35/102+16/47*I,n=31 3645271960400805 a001 3020733700601/7*4052739537881^(13/15) 3645271961294624 r009 Im(z^3+c),c=-35/102+16/47*I,n=32 3645271972360843 r009 Re(z^3+c),c=-16/31+13/40*I,n=58 3645271973920230 a001 7/433494437*55^(7/9) 3645271974642663 m001 FeigenbaumD+Catalan^TreeGrowth2nd 3645271980248767 m001 1/ln(GAMMA(7/12))/GolombDickman*cos(Pi/12) 3645272012560292 r005 Re(z^2+c),c=-81/110+9/62*I,n=21 3645272013738617 m005 (1/2*2^(1/2)+1/8)/(2/9*gamma+1/10) 3645272022164197 r009 Im(z^3+c),c=-35/102+16/47*I,n=29 3645272024842056 a007 Real Root Of 216*x^4+927*x^3+600*x^2+587*x+930 3645272025342356 m001 (BesselI(0,2)-Psi(1,1/3))/(GAMMA(17/24)+Thue) 3645272041770857 a007 Real Root Of 619*x^4-354*x^3+552*x^2+377*x+36 3645272048015154 r005 Re(z^2+c),c=23/56+17/28*I,n=12 3645272059161902 s002 sum(A157433[n]/(n^2*pi^n+1),n=1..infinity) 3645272063299251 a007 Real Root Of -736*x^4-866*x^3-903*x^2+875*x+410 3645272069967163 m001 (ln(2)/ln(10)-sin(1))^GAMMA(13/24) 3645272071517597 m001 OneNinth*exp(Magata)^2/GAMMA(13/24)^2 3645272074957129 r009 Re(z^3+c),c=-35/106+20/27*I,n=20 3645272085193147 r002 3th iterates of z^2 + 3645272098495945 m001 (sin(1)*ln(gamma)+LaplaceLimit)/ln(gamma) 3645272098907645 r009 Im(z^3+c),c=-1/19+41/51*I,n=52 3645272120952332 r005 Re(z^2+c),c=-33/70+18/53*I,n=2 3645272126258873 m001 (Porter-Rabbit)/(3^(1/3)+HardyLittlewoodC3) 3645272127495566 a007 Real Root Of 184*x^4+884*x^3+677*x^2-492*x-459 3645272136399344 l006 ln(4554/6557) 3645272146061927 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)*GaussAGM^Zeta(5) 3645272164466593 a007 Real Root Of -188*x^4-665*x^3-198*x^2-832*x+582 3645272166176562 r009 Im(z^3+c),c=-13/38+15/44*I,n=33 3645272167042121 r005 Re(z^2+c),c=-33/70+17/61*I,n=56 3645272170662696 l006 ln(191/7314) 3645272173191088 a001 9349/610*55^(8/37) 3645272191270112 r002 2th iterates of z^2 + 3645272194529388 m001 ZetaP(3)*(FibonacciFactorial+Thue) 3645272199799020 h001 (3/10*exp(1)+2/7)/(3/8*exp(2)+1/4) 3645272202804760 r005 Re(z^2+c),c=-3/16+27/44*I,n=28 3645272205263092 a007 Real Root Of -190*x^4-614*x^3+72*x^2-517*x+966 3645272211325953 r009 Im(z^3+c),c=-11/122+42/53*I,n=62 3645272213810647 m005 (5*Pi+4/5)/(1/3*2^(1/2)-5) 3645272218591155 r009 Im(z^3+c),c=-13/38+15/44*I,n=36 3645272222300981 r009 Re(z^3+c),c=-43/90+3/46*I,n=49 3645272222642324 r009 Im(z^3+c),c=-13/38+15/44*I,n=37 3645272225517693 r009 Im(z^3+c),c=-13/38+15/44*I,n=40 3645272225996648 r009 Im(z^3+c),c=-13/38+15/44*I,n=34 3645272226714675 r009 Im(z^3+c),c=-13/38+15/44*I,n=43 3645272226733316 r009 Im(z^3+c),c=-13/38+15/44*I,n=39 3645272227020902 r009 Im(z^3+c),c=-13/38+15/44*I,n=46 3645272227072647 r009 Im(z^3+c),c=-13/38+15/44*I,n=47 3645272227078028 r009 Im(z^3+c),c=-13/38+15/44*I,n=50 3645272227078501 r009 Im(z^3+c),c=-13/38+15/44*I,n=49 3645272227083190 r009 Im(z^3+c),c=-13/38+15/44*I,n=53 3645272227084827 r009 Im(z^3+c),c=-13/38+15/44*I,n=56 3645272227085190 r009 Im(z^3+c),c=-13/38+15/44*I,n=59 3645272227085224 r009 Im(z^3+c),c=-13/38+15/44*I,n=60 3645272227085242 r009 Im(z^3+c),c=-13/38+15/44*I,n=63 3645272227085249 r009 Im(z^3+c),c=-13/38+15/44*I,n=62 3645272227085258 r009 Im(z^3+c),c=-13/38+15/44*I,n=64 3645272227085259 r009 Im(z^3+c),c=-13/38+15/44*I,n=57 3645272227085286 r009 Im(z^3+c),c=-13/38+15/44*I,n=61 3645272227085401 r009 Im(z^3+c),c=-13/38+15/44*I,n=58 3645272227085689 r009 Im(z^3+c),c=-13/38+15/44*I,n=52 3645272227085715 r009 Im(z^3+c),c=-13/38+15/44*I,n=55 3645272227085926 r009 Im(z^3+c),c=-13/38+15/44*I,n=54 3645272227090557 r009 Im(z^3+c),c=-13/38+15/44*I,n=51 3645272227113201 r009 Im(z^3+c),c=-13/38+15/44*I,n=48 3645272227143932 r009 Im(z^3+c),c=-13/38+15/44*I,n=44 3645272227193439 r009 Im(z^3+c),c=-13/38+15/44*I,n=45 3645272227339111 r009 Im(z^3+c),c=-13/38+15/44*I,n=42 3645272227840458 r009 Im(z^3+c),c=-13/38+15/44*I,n=41 3645272228466538 m005 (1/5*gamma-5)/(4*Pi+5/6) 3645272229240648 m001 Catalan^exp(gamma)/GAMMA(1/24) 3645272229299314 r005 Im(z^2+c),c=-1/82+32/51*I,n=41 3645272230058118 m009 (Pi^2+1/6)/(5/6*Psi(1,2/3)+1/5) 3645272231023018 r005 Re(z^2+c),c=-27/62+25/58*I,n=62 3645272231396079 r005 Im(z^2+c),c=-21/34+17/55*I,n=5 3645272231891429 r009 Im(z^3+c),c=-13/38+15/44*I,n=38 3645272233780115 r005 Im(z^2+c),c=19/56+11/51*I,n=25 3645272243637750 m005 (7/44+1/4*5^(1/2))/(4/7*exp(1)+5/12) 3645272243822141 r005 Re(z^2+c),c=-33/70+17/61*I,n=62 3645272249181168 r009 Im(z^3+c),c=-13/38+15/44*I,n=35 3645272270041545 r009 Re(z^3+c),c=-25/94+41/56*I,n=52 3645272277200528 r005 Im(z^2+c),c=1/60+11/25*I,n=18 3645272283874051 a007 Real Root Of -719*x^4-221*x^3+639*x^2+550*x-262 3645272287464352 r009 Im(z^3+c),c=-7/54+21/52*I,n=7 3645272293519514 a001 101521/3*6765^(19/24) 3645272295829696 r005 Re(z^2+c),c=-13/27+12/55*I,n=44 3645272297152725 r009 Im(z^3+c),c=-15/94+45/62*I,n=11 3645272298994794 r009 Im(z^3+c),c=-13/38+15/44*I,n=32 3645272299221934 r002 63th iterates of z^2 + 3645272317092662 r009 Im(z^3+c),c=-13/38+15/44*I,n=31 3645272317551457 r009 Im(z^3+c),c=-13/38+15/44*I,n=29 3645272324643522 r005 Im(z^2+c),c=-17/94+29/47*I,n=58 3645272330924987 r002 12th iterates of z^2 + 3645272347028838 r009 Im(z^3+c),c=-15/29+3/17*I,n=51 3645272357126550 a007 Real Root Of 450*x^4-332*x^3+453*x^2-57*x-105 3645272371833601 r005 Re(z^2+c),c=-61/118+3/13*I,n=5 3645272375216074 m008 (2/3*Pi+5/6)/(5/6*Pi^6+2) 3645272379370220 a007 Real Root Of -388*x^4+144*x^3+716*x^2+865*x+234 3645272380928087 r005 Im(z^2+c),c=1/11+13/33*I,n=40 3645272385960609 r005 Re(z^2+c),c=-25/54+11/34*I,n=33 3645272389922816 a001 28657/29*18^(14/31) 3645272391323816 a007 Real Root Of -320*x^4-924*x^3+626*x^2-698*x+883 3645272403472060 r005 Re(z^2+c),c=-37/118+29/54*I,n=12 3645272404148409 b008 -1/20+Pi*Zeta[Pi] 3645272405060435 a005 (1/sin(88/195*Pi))^110 3645272409664904 r002 25th iterates of z^2 + 3645272419927060 r005 Re(z^2+c),c=-27/106+19/31*I,n=47 3645272427305719 a007 Real Root Of -703*x^4+304*x^3-806*x^2-371*x-1 3645272429303304 m005 (16/15+2/5*5^(1/2))/(5*Catalan+4/5) 3645272432807969 m001 (ln(2)-ErdosBorwein)/(Landau+ReciprocalLucas) 3645272441669443 r009 Re(z^3+c),c=-1/58+36/43*I,n=14 3645272447854972 r005 Re(z^2+c),c=-47/98+3/13*I,n=46 3645272453706598 r008 a(0)=0,K{-n^6,39-46*n+28*n^2+7*n^3} 3645272454457252 l006 ln(4795/6904) 3645272459397955 b008 3+ArcSinh[24]/6 3645272462674450 m001 1/GAMMA(2/3)/OneNinth*ln(sin(Pi/5)) 3645272476951209 r005 Re(z^2+c),c=11/46+1/61*I,n=6 3645272494747680 a007 Real Root Of 134*x^4+608*x^3+686*x^2+706*x-752 3645272497555226 a001 18/377*2584^(49/58) 3645272504806833 m001 1/GAMMA(7/12)*ln(ErdosBorwein)*sinh(1) 3645272521061647 l006 ln(5037/5224) 3645272534117008 r005 Re(z^2+c),c=-4/7+16/67*I,n=11 3645272537007319 r009 Re(z^3+c),c=-43/122+37/56*I,n=61 3645272561186059 m001 PisotVijayaraghavan/MertensB1^2*ln(cosh(1))^2 3645272568498055 m005 (1/3*Catalan+3/7)/(4/5*Pi-1/2) 3645272588378684 m001 (Sierpinski-ZetaQ(4))/(Zeta(1,-1)-Landau) 3645272589219609 m001 (Landau-Pi*csc(1/12*Pi)/GAMMA(11/12))^cos(1) 3645272595712955 m001 1/Catalan*FeigenbaumC^2*ln(GAMMA(1/24))^2 3645272596683752 m001 KhinchinLevy/BesselI(1,1)/Stephens 3645272599996505 m008 (1/2*Pi^3-3/4)/(1/3*Pi+3) 3645272625592617 b008 7+Sqrt[Pi]*Sinh[6] 3645272627233936 a003 cos(Pi*29/76)/sin(Pi*10/21) 3645272630384763 a007 Real Root Of -115*x^4-560*x^3-459*x^2+111*x-316 3645272632320682 r005 Im(z^2+c),c=-47/118+13/27*I,n=11 3645272632563010 r009 Im(z^3+c),c=-35/102+16/47*I,n=28 3645272643140509 h001 (5/7*exp(2)+2/11)/(1/4*exp(1)+9/11) 3645272655878194 r005 Re(z^2+c),c=-59/122+13/64*I,n=53 3645272667624980 a007 Real Root Of 652*x^4+243*x^3-525*x^2-941*x-273 3645272669170547 m001 HeathBrownMoroz-sin(1)+PlouffeB 3645272670953017 r005 Re(z^2+c),c=2/21+9/23*I,n=37 3645272675213418 m005 (1/3*Zeta(3)-1/6)/(8/11*gamma+6) 3645272675316866 p001 sum(1/(606*n+275)/(128^n),n=0..infinity) 3645272683559322 m001 (Zeta(3)-MertensB1)/(OrthogonalArrays+Salem) 3645272685008204 r009 Im(z^3+c),c=-3/10+4/11*I,n=4 3645272689598395 m001 FeigenbaumB*ln(Artin)^2*GAMMA(5/12)^2 3645272717138022 k002 Champernowne real with 109*n^2-318*n+245 3645272720914270 a007 Real Root Of 104*x^4+197*x^3-683*x^2-218*x-540 3645272723029983 b008 55/(2*E^4)+Pi 3645272731702315 a001 514229/199*199^(1/2) 3645272742073549 l006 ln(5036/7251) 3645272742956979 p001 sum((-1)^n/(602*n+271)/(25^n),n=0..infinity) 3645272748117837 m001 (ZetaQ(2)-ZetaQ(3))/(Bloch+LandauRamanujan) 3645272762780316 r002 59th iterates of z^2 + 3645272765280717 m001 Landau/(Niven^RenyiParking) 3645272791596528 m001 (Psi(2,1/3)+cos(1))/(-exp(-1/2*Pi)+Niven) 3645272797384823 r005 Im(z^2+c),c=-1/70+17/37*I,n=49 3645272798089755 r005 Re(z^2+c),c=-2/3+63/167*I,n=7 3645272812931917 m005 (1/2*Zeta(3)-2/5)/(2/3*gamma+1/6) 3645272825688928 m005 (1/3*2^(1/2)-3/5)/(9/11*gamma-4) 3645272852596773 a007 Real Root Of 25*x^4+901*x^3-358*x^2+683*x+810 3645272864697615 r005 Re(z^2+c),c=-83/126+13/64*I,n=4 3645272869391577 m001 1/TwinPrimes^2*exp(GolombDickman)/sinh(1) 3645272869428392 r009 Im(z^3+c),c=-21/40+9/41*I,n=63 3645272872640211 m009 (3/2*Pi^2+5/6)/(1/3*Pi^2+1) 3645272874238779 m001 (Zeta(5)+Riemann1stZero)^PlouffeB 3645272884365172 m008 (3/4*Pi-1/4)/(3/5*Pi^4-2/3) 3645272889014803 a007 Real Root Of 191*x^4+751*x^3+260*x^2-19*x-872 3645272893315857 m009 (16*Catalan+2*Pi^2+3)/(48*Catalan+6*Pi^2-3/5) 3645272893338320 r005 Im(z^2+c),c=1/70+27/61*I,n=49 3645272895600809 r009 Re(z^3+c),c=-45/74+14/61*I,n=47 3645272897921936 m004 -6+5*Sqrt[5]*Pi+8*Tan[Sqrt[5]*Pi] 3645272913931364 r005 Re(z^2+c),c=-35/122+35/43*I,n=8 3645272923390769 m009 (1/6*Psi(1,3/4)-1/2)/(2/3*Psi(1,3/4)+2/5) 3645272929442032 m001 (sin(1)+Ei(1))/(Stephens+ZetaP(3)) 3645272947397515 a007 Real Root Of -827*x^4-145*x^3-784*x^2+681*x+360 3645272949468118 m005 (4/5*Catalan+1/3)/(4/5*exp(1)+3/4) 3645272957935137 a007 Real Root Of 351*x^4-419*x^3-115*x^2-68*x-36 3645272969443277 r005 Re(z^2+c),c=-29/60+8/39*I,n=51 3645272970829743 r005 Re(z^2+c),c=15/52+3/46*I,n=38 3645272979658131 r009 Im(z^3+c),c=-13/38+15/44*I,n=28 3645272980792532 a001 76/377*1346269^(8/39) 3645273003419030 l006 ln(5277/7598) 3645273008683337 m001 HardyLittlewoodC5*Porter/ZetaQ(4) 3645273019967179 r005 Re(z^2+c),c=49/110+16/31*I,n=3 3645273020032387 r005 Re(z^2+c),c=-59/122+13/64*I,n=58 3645273033624112 a007 Real Root Of 420*x^4-285*x^3+134*x^2-480*x-214 3645273037096529 r005 Im(z^2+c),c=-89/122+1/37*I,n=28 3645273041557363 a001 18/4181*12586269025^(7/18) 3645273045422988 r009 Re(z^3+c),c=-47/90+9/29*I,n=38 3645273048996771 a007 Real Root Of 180*x^4+614*x^3-147*x^2+95*x+258 3645273066873097 r005 Im(z^2+c),c=37/118+11/58*I,n=36 3645273070543477 r009 Im(z^3+c),c=-11/29+19/59*I,n=23 3645273073349285 a003 -1-cos(3/7*Pi)+cos(4/27*Pi)+cos(8/21*Pi) 3645273076615046 r005 Re(z^2+c),c=-59/122+13/64*I,n=56 3645273097859108 a007 Real Root Of 289*x^4+869*x^3-745*x^2-337*x-265 3645273105475681 a007 Real Root Of 183*x^4+613*x^3+28*x^2+739*x-298 3645273109545699 r005 Im(z^2+c),c=-6/29+35/62*I,n=48 3645273114492919 m002 Pi^4+Pi^5*Cosh[Pi]+Tanh[Pi]/2 3645273130617647 m001 1/cos(Pi/12)/BesselK(1,1)*ln(cos(Pi/5)) 3645273131239051 m005 (1/2*5^(1/2)-7/8)/(3/5*2^(1/2)-2/11) 3645273133268346 a007 Real Root Of 204*x^4+519*x^3-986*x^2-671*x-225 3645273139908469 m001 (Shi(1)+Zeta(3))/(GAMMA(7/12)+FeigenbaumDelta) 3645273140234333 r005 Re(z^2+c),c=-59/122+13/64*I,n=60 3645273144105433 r002 10th iterates of z^2 + 3645273182931556 m001 (ln(5)-Cahen)/(Rabbit-ReciprocalFibonacci) 3645273195166708 r005 Im(z^2+c),c=1/11+13/33*I,n=43 3645273198662850 l006 ln(133/5093) 3645273199076756 r009 Re(z^3+c),c=-63/118+9/35*I,n=33 3645273209051224 r002 19th iterates of z^2 + 3645273234592929 r005 Re(z^2+c),c=-33/70+17/61*I,n=63 3645273236806186 b008 5*E^Sqrt[2]*Sqrt[Pi] 3645273236806186 m001 1/2*exp(sqrt(2))*sqrt(Pi) 3645273236806186 m001 sqrt(5)^2*exp(sqrt(2))*sqrt(Pi) 3645273241935849 l006 ln(5518/7945) 3645273264523964 m002 -5-5/E^Pi+Pi/2 3645273272039731 m001 (exp(1/Pi)-MertensB1)/(ln(5)+exp(1/exp(1))) 3645273272194928 r005 Im(z^2+c),c=-9/50+33/61*I,n=33 3645273274221097 r005 Re(z^2+c),c=-59/122+13/64*I,n=62 3645273279768669 a007 Real Root Of -229*x^4-835*x^3-221*x^2-636*x+607 3645273284787720 r005 Re(z^2+c),c=-11/20+17/45*I,n=21 3645273310543049 m006 (3/4/Pi+1/4)/(1/4*exp(2*Pi)+1/5) 3645273311681075 a007 Real Root Of -650*x^4+939*x^3-696*x^2-602*x-70 3645273312544777 m001 1/GAMMA(19/24)*exp(Riemann3rdZero)*sin(Pi/5) 3645273318237329 r005 Im(z^2+c),c=2/17+19/40*I,n=3 3645273323790874 r005 Im(z^2+c),c=-29/46+4/59*I,n=46 3645273341888015 r005 Re(z^2+c),c=17/52+4/57*I,n=45 3645273354685361 r005 Re(z^2+c),c=25/78+5/64*I,n=57 3645273360351606 a007 Real Root Of 572*x^4+900*x^3+371*x^2-728*x+26 3645273360482404 r005 Re(z^2+c),c=-59/122+13/64*I,n=64 3645273363149787 a007 Real Root Of -458*x^4+649*x^3-337*x^2+781*x+369 3645273365481087 b008 -1/3+E*(1+ArcCot[2]) 3645273380160133 s002 sum(A199327[n]/(2^n+1),n=1..infinity) 3645273380548490 m005 (3/4*Pi-2/5)/(2/5*Catalan+5) 3645273386468253 h002 exp(12^(2/3)/(3^(1/4)-6^(1/4))^(1/2)) 3645273396773472 r005 Im(z^2+c),c=-45/34+1/25*I,n=61 3645273401732706 a007 Real Root Of -492*x^4+911*x^3+813*x^2+797*x-434 3645273415154029 m005 (1/2*Zeta(3)+1/4)/(2/11*Catalan-2/5) 3645273419381461 r005 Im(z^2+c),c=-15/14+63/230*I,n=4 3645273429085076 r005 Re(z^2+c),c=-59/122+13/64*I,n=63 3645273447440479 r005 Re(z^2+c),c=19/52+29/59*I,n=6 3645273460489978 l006 ln(5759/8292) 3645273465937256 r005 Re(z^2+c),c=-33/70+17/61*I,n=64 3645273466912705 m001 (Si(Pi)-ln(3))/(3^(1/3)+GolombDickman) 3645273470774519 s001 sum(exp(-Pi/4)^(n-1)*A010818[n],n=1..infinity) 3645273474107664 r005 Re(z^2+c),c=-35/74+10/37*I,n=54 3645273474549478 q001 1153/3163 3645273474580339 r005 Re(z^2+c),c=-5/13+31/47*I,n=31 3645273499771217 r005 Re(z^2+c),c=-59/122+13/64*I,n=55 3645273503448804 m001 DuboisRaymond*Porter+ReciprocalFibonacci 3645273503629073 r005 Re(z^2+c),c=-12/25+7/33*I,n=19 3645273509509870 m001 cos(Pi/5)^2*PrimesInBinary^2*exp(sinh(1)) 3645273531830799 h001 (-3*exp(5)-5)/(-6*exp(3)-3) 3645273542159329 r005 Re(z^2+c),c=-59/122+13/64*I,n=61 3645273553985385 g001 Psi(3/11,61/78) 3645273565080916 m005 (1/2*Zeta(3)-2/3)/(3/4*Pi-5/9) 3645273582371478 r005 Re(z^2+c),c=-59/122+13/64*I,n=54 3645273596682056 r009 Im(z^3+c),c=-37/86+20/63*I,n=8 3645273615215278 a007 Real Root Of 64*x^4-50*x^3+720*x^2-869*x-416 3645273620220629 a007 Real Root Of 983*x^4-210*x^3-278*x^2-462*x-159 3645273626476301 m005 (1/2*3^(1/2)-1/9)/(58/55+5/11*5^(1/2)) 3645273632185134 m001 GlaisherKinkelin-MertensB3+PrimesInBinary 3645273632792700 m001 (Shi(1)+3^(1/3))/(-HardHexagonsEntropy+Rabbit) 3645273649098446 r005 Im(z^2+c),c=-5/82+17/35*I,n=64 3645273652825049 r005 Re(z^2+c),c=-99/98+11/50*I,n=32 3645273661486921 l006 ln(6000/8639) 3645273665034657 a007 Real Root Of 205*x^4+542*x^3-480*x^2+814*x-598 3645273668175393 r005 Im(z^2+c),c=-3/29+32/63*I,n=35 3645273681846596 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)/(Lehmer-Salem) 3645273682417802 r005 Re(z^2+c),c=-59/122+13/64*I,n=59 3645273686521558 m002 -(E^Pi*Csch[Pi])+(Pi^2*Log[Pi])/2 3645273688550383 m004 -4+125*Pi-Sqrt[5]*Pi-5*Pi*Cot[Sqrt[5]*Pi] 3645273689922560 r009 Im(z^3+c),c=-29/62+16/61*I,n=35 3645273708251268 r005 Im(z^2+c),c=-7/44+24/41*I,n=29 3645273710722749 m001 1/ln(Zeta(7))*FeigenbaumKappa*sqrt(5) 3645273720138622 k002 Champernowne real with 219/2*n^2-639/2*n+246 3645273721798083 r005 Re(z^2+c),c=-7/16+23/52*I,n=40 3645273727467659 m001 (Zeta(1,-1)-Trott2nd)/(ZetaP(2)+ZetaP(4)) 3645273741507311 r009 Im(z^3+c),c=-1/7+24/59*I,n=3 3645273742086547 r005 Re(z^2+c),c=-59/122+13/64*I,n=57 3645273743380558 a007 Real Root Of -204*x^4-839*x^3-494*x^2-468*x+239 3645273746147098 b008 4-(3*LogGamma[Pi])/7 3645273748579044 a007 Real Root Of 62*x^4+127*x^3-653*x^2-935*x+473 3645273781050113 r005 Im(z^2+c),c=-7/46+8/15*I,n=59 3645273789628294 r005 Re(z^2+c),c=-10/23+26/63*I,n=31 3645273795132342 r005 Im(z^2+c),c=-41/106+1/17*I,n=12 3645273798550619 m001 (ln(Pi)-Ei(1,1))/(Artin+Riemann3rdZero) 3645273811566514 r005 Re(z^2+c),c=-45/94+9/38*I,n=34 3645273811612542 m001 Shi(1)+BesselJ(0,1)+MasserGramainDelta 3645273818105333 r009 Re(z^3+c),c=-14/27+13/40*I,n=58 3645273821481072 h001 (-3*exp(3/2)+5)/(-3*exp(2)-1) 3645273830941638 a001 75025/521*322^(23/24) 3645273834234782 r009 Im(z^3+c),c=-29/86+14/41*I,n=6 3645273836474733 m001 (Kolakoski-Mills)/(GAMMA(13/24)-CopelandErdos) 3645273840171913 r005 Im(z^2+c),c=-115/94+6/59*I,n=35 3645273846960622 l006 ln(6241/8986) 3645273858515395 r005 Re(z^2+c),c=-7/16+23/56*I,n=23 3645273866283252 r009 Re(z^3+c),c=-19/52+37/54*I,n=26 3645273882253507 a001 24476/1597*55^(8/37) 3645273891707592 b008 Pi+10*SphericalBesselY[1,2] 3645273894426414 m005 (1/2*gamma+1/2)/(3/4*gamma-5/11) 3645273899505891 m001 1/BesselK(0,1)^2*ln(MertensB1)^2*Ei(1)^2 3645273909837258 m001 (Landau+RenyiParking)/(1-GAMMA(2/3)) 3645273914794233 r005 Im(z^2+c),c=5/23+21/61*I,n=9 3645273917423432 a001 45537549124/55*1548008755920^(8/21) 3645273917423432 a001 2139295485799/55*63245986^(8/21) 3645273926597032 r002 13th iterates of z^2 + 3645273929661999 v002 sum(1/(5^n*(11/2*n^2+95/2*n+8)),n=1..infinity) 3645273930085533 p001 sum(1/(356*n+125)/n/(6^n),n=1..infinity) 3645273932188171 m001 ThueMorse^(MasserGramain/LambertW(1)) 3645273933882528 m001 (Mills+Sarnak)/(LambertW(1)-Psi(2,1/3)) 3645273937830500 r005 Re(z^2+c),c=-47/98+3/13*I,n=39 3645273943493050 a001 1/64068*(1/2*5^(1/2)+1/2)^14*76^(4/17) 3645273947992653 a007 Real Root Of 156*x^4+451*x^3-239*x^2+737*x+163 3645273954685388 r009 Im(z^3+c),c=-39/74+16/63*I,n=50 3645273966562008 a007 Real Root Of -417*x^4+639*x^3-879*x^2+787*x+442 3645273967286577 m005 (1/2*5^(1/2)-5/6)/(5/6*gamma+3/10) 3645273974960686 a007 Real Root Of -419*x^4+780*x^3+268*x^2+107*x-105 3645273999931947 r005 Im(z^2+c),c=-85/114+11/30*I,n=6 3645274009475114 m002 -5/E^Pi-Log[Pi]+Tanh[Pi] 3645274018642540 l006 ln(6482/9333) 3645274023791278 m001 1/FeigenbaumD/ln(Sierpinski)/OneNinth 3645274026620259 a001 11/9227465*86267571272^(5/22) 3645274026621286 a001 1/75640*2178309^(5/22) 3645274029276826 r009 Re(z^3+c),c=-12/25+13/45*I,n=31 3645274034734675 r009 Re(z^3+c),c=-29/90+1/22*I,n=14 3645274041616606 a003 sin(Pi*3/101)/cos(Pi*33/79) 3645274044733443 m002 Pi^4+Pi^5*Cosh[Pi]+Sinh[Pi]/E^Pi 3645274069891694 m001 (GAMMA(5/6)-GaussAGM)/(cos(1/5*Pi)-gamma(3)) 3645274074019697 r005 Im(z^2+c),c=-1/18+14/29*I,n=44 3645274075841362 b008 4-Sec[Pi/9]/3 3645274078455990 a007 Real Root Of -294*x^4+714*x^3-941*x^2+818*x+463 3645274078476902 a007 Real Root Of -304*x^4-976*x^3+658*x^2+449*x-705 3645274091345937 r009 Im(z^3+c),c=-27/70+7/22*I,n=12 3645274093211776 r009 Re(z^3+c),c=-21/50+11/53*I,n=8 3645274104051868 r005 Im(z^2+c),c=-17/18+39/139*I,n=11 3645274108868815 r005 Re(z^2+c),c=-27/58+8/27*I,n=22 3645274109995866 m001 1/GAMMA(23/24)^2/Magata^2/exp(cos(Pi/5)) 3645274117803114 m005 (1/2*5^(1/2)-1/11)/(1/6*5^(1/2)-1/11) 3645274120162727 a001 11/121393*34^(15/38) 3645274123703240 a007 Real Root Of -980*x^4+328*x^3+x^2+522*x-189 3645274128539210 a007 Real Root Of 322*x^4+597*x^3+967*x^2-419*x-258 3645274131602484 a001 64079/4181*55^(8/37) 3645274135570111 m001 Porter^2*exp(Kolakoski)*BesselJ(0,1) 3645274138177915 r005 Im(z^2+c),c=-25/94+23/41*I,n=37 3645274142642830 l006 ln(208/7965) 3645274152037369 r002 6th iterates of z^2 + 3645274157377202 r005 Re(z^2+c),c=-6/13+18/55*I,n=41 3645274167226267 m001 (PlouffeB-Tetranacci)/(Pi+sin(1)) 3645274178015860 l006 ln(6723/9680) 3645274181107031 r009 Re(z^3+c),c=-25/58+11/48*I,n=23 3645274181954954 r005 Im(z^2+c),c=5/46+21/55*I,n=27 3645274189401091 r005 Re(z^2+c),c=13/64+19/50*I,n=53 3645274190753224 m009 (1/4*Psi(1,3/4)+6)/(1/10*Pi^2+5/6) 3645274216057957 r005 Re(z^2+c),c=-8/19+34/59*I,n=45 3645274217298200 r009 Re(z^3+c),c=-3/122+50/59*I,n=11 3645274217581080 r009 Im(z^3+c),c=-1/60+35/43*I,n=30 3645274221083450 r005 Im(z^2+c),c=1/70+27/61*I,n=38 3645274222841752 m001 ln(3)^GAMMA(1/12)/cos(Pi/5) 3645274224081913 r005 Re(z^2+c),c=-55/122+22/59*I,n=52 3645274244527224 m001 (sqrt(5)+1/2)^GAMMA(17/24) 3645274244757999 r005 Im(z^2+c),c=1/70+27/61*I,n=45 3645274255444402 m001 (Zeta(1,-1)-ArtinRank2)/(MertensB2+MertensB3) 3645274285708644 a001 39603/2584*55^(8/37) 3645274286385908 m001 MadelungNaCl/(Stephens^MertensB3) 3645274291072907 r009 Im(z^3+c),c=-37/110+11/32*I,n=13 3645274294215264 r002 4th iterates of z^2 + 3645274310696076 m005 (1/2*gamma-2/5)/(4/11*Catalan-4/11) 3645274317779687 r002 4th iterates of z^2 + 3645274318379838 a007 Real Root Of 980*x^4-840*x^3-937*x^2-324*x+266 3645274326358456 l006 ln(6964/10027) 3645274326952213 m002 -16*E^Pi+5*Log[Pi] 3645274331643763 r005 Re(z^2+c),c=-13/14+41/232*I,n=48 3645274339275088 a001 312119004989/144*2^(3/4) 3645274347983349 m001 (ln(2)/ln(10)+gamma)/(MadelungNaCl+Robbin) 3645274350119273 r009 Im(z^3+c),c=-8/21+17/53*I,n=10 3645274382314930 m004 5+100/Pi-Cos[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 3645274406554951 r005 Im(z^2+c),c=5/64+30/59*I,n=4 3645274416390762 m001 (-Conway+MertensB2)/(Psi(1,1/3)-exp(1)) 3645274418153291 r005 Im(z^2+c),c=-113/126+9/31*I,n=7 3645274426361970 a008 Real Root of x^4-2*x^3+9*x^2+76*x-116 3645274445382457 m001 CopelandErdos^2/Champernowne^2 3645274450183925 h001 (5/11*exp(2)+2/3)/(1/11*exp(1)+6/7) 3645274454994049 a007 Real Root Of 170*x^4+543*x^3-438*x^2-744*x-607 3645274475079020 m001 (ln(5)+gamma(3))/(PrimesInBinary+Trott2nd) 3645274476546154 a007 Real Root Of 371*x^4-240*x^3-694*x^2-589*x+312 3645274489906904 r005 Im(z^2+c),c=-69/118+1/15*I,n=61 3645274494331194 r002 18th iterates of z^2 + 3645274495125010 m001 (gamma(2)+CareFree)/(3^(1/3)+arctan(1/2)) 3645274521238812 m005 (1/2*Zeta(3)+7/11)/(gamma-11/12) 3645274568449722 m001 1/Pi^2*GAMMA(1/24)*exp(Zeta(1,2))^2 3645274573406979 m001 1/GAMMA(1/6)/Tribonacci*exp(log(2+sqrt(3))) 3645274583865983 r005 Re(z^2+c),c=-59/122+17/52*I,n=10 3645274585175352 p003 LerchPhi(1/25,5,71/58) 3645274586279757 p004 log(10837/283) 3645274603079970 a007 Real Root Of 541*x^4+574*x^3-784*x^2-914*x+400 3645274605595988 r009 Re(z^3+c),c=-11/25+13/54*I,n=22 3645274614608450 s001 sum(exp(-Pi/2)^(n-1)*A053319[n],n=1..infinity) 3645274620785714 a007 Real Root Of 303*x^4+961*x^3-650*x^2-199*x+960 3645274622914066 m006 (4*ln(Pi)-2/3)/(4/Pi-1/5) 3645274623155299 m001 Robbin*(Paris+ZetaP(2)) 3645274641462760 m001 (ln(gamma)-ln(Pi))/(PlouffeB-Trott) 3645274651760155 b008 3*Sinh[4/33] 3645274655613839 a007 Real Root Of -102*x^4-318*x^3+71*x^2-526*x-254 3645274664947859 r005 Im(z^2+c),c=-43/64+3/38*I,n=47 3645274688971550 r005 Re(z^2+c),c=-20/21+24/49*I,n=4 3645274702476234 r005 Re(z^2+c),c=-29/60+8/39*I,n=53 3645274723139222 k002 Champernowne real with 110*n^2-321*n+247 3645274732235876 m001 1/Ei(1)/Riemann3rdZero^2/exp(Pi) 3645274744340800 r005 Im(z^2+c),c=7/29+17/62*I,n=33 3645274745423980 a007 Real Root Of 121*x^4+357*x^3-209*x^2+354*x-5 3645274753842383 r002 3th iterates of z^2 + 3645274761968281 r005 Re(z^2+c),c=-57/106+25/59*I,n=36 3645274763583579 m002 -1+4/Pi^4-Pi^3*Log[Pi] 3645274766590604 r005 Re(z^2+c),c=-10/21+13/38*I,n=17 3645274766986994 r005 Re(z^2+c),c=-45/98+21/61*I,n=31 3645274775744741 a001 1/9*(1/2*5^(1/2)+1/2)^21*3^(4/15) 3645274780407616 h001 (-5*exp(1)-10)/(-12*exp(4)+8) 3645274780753865 r005 Im(z^2+c),c=1/70+27/61*I,n=46 3645274781562309 r009 Im(z^3+c),c=-15/34+15/53*I,n=36 3645274787568250 m009 (5/6*Psi(1,2/3)-1/4)/(24/5*Catalan+3/5*Pi^2-4) 3645274791409133 m001 (Catalan-Robbin)/ArtinRank2 3645274804490688 r005 Im(z^2+c),c=-4/7+74/117*I,n=20 3645274810035666 r005 Re(z^2+c),c=-29/60+8/39*I,n=56 3645274817587783 r005 Re(z^2+c),c=-59/122+13/64*I,n=52 3645274823625759 r005 Re(z^2+c),c=-29/60+8/39*I,n=58 3645274825489331 a007 Real Root Of -559*x^4+404*x^3-218*x^2+767*x+338 3645274829174332 a007 Real Root Of -719*x^4+54*x^3+673*x^2+833*x-383 3645274829212521 m001 (-FeigenbaumDelta+Trott)/(Chi(1)+BesselJ(1,1)) 3645274834884591 m002 1+Pi/Log[Pi]-Csch[Pi]*Log[Pi] 3645274846999431 r005 Re(z^2+c),c=-29/60+8/39*I,n=44 3645274852781814 m001 1/exp(GAMMA(7/24))*KhintchineLevy^2/sqrt(Pi) 3645274867755785 m001 BesselJ(1,1)^Khinchin/(BesselJ(1,1)^Backhouse) 3645274872023105 r005 Re(z^2+c),c=-19/48+22/63*I,n=6 3645274881374034 r005 Re(z^2+c),c=-33/70+17/61*I,n=61 3645274896362802 r009 Re(z^3+c),c=-27/74+15/22*I,n=26 3645274910886546 r001 36i'th iterates of 2*x^2-1 of 3645274921967125 l006 ln(7973/8269) 3645274926092654 h001 (-9*exp(8)-3)/(-5*exp(5)+6) 3645274930304460 r005 Im(z^2+c),c=1/18+18/43*I,n=18 3645274930575959 m001 (-GaussKuzminWirsing+3)/(GAMMA(5/24)+3) 3645274938512955 a001 2161/141*55^(8/37) 3645274972693264 a007 Real Root Of -38*x^4+614*x^3+810*x^2+843*x-444 3645274973150528 r005 Re(z^2+c),c=-6/17+23/50*I,n=9 3645274978454809 m002 1/2+Pi^4+Pi^5*Cosh[Pi] 3645274981672805 m005 (1/2*Catalan-1/2)/(3/10*5^(1/2)-5/9) 3645274988910792 r005 Re(z^2+c),c=-29/60+8/39*I,n=60 3645275021414434 m001 1/DuboisRaymond^2/exp(ErdosBorwein)^2*Si(Pi)^2 3645275021483443 r005 Re(z^2+c),c=-9/19+11/41*I,n=28 3645275024241705 m001 exp(Ei(1))^2*FeigenbaumAlpha^2*GAMMA(1/4)^2 3645275035168634 m001 ln(GAMMA(19/24))*BesselJ(1,1)^2*sinh(1) 3645275037924945 r009 Re(z^3+c),c=-13/28+16/59*I,n=39 3645275044679367 m001 (-FeigenbaumAlpha+1/3)/(-BesselJZeros(0,1)+3) 3645275045556571 a007 Real Root Of 269*x^4-687*x^3+782*x^2-942*x+268 3645275063328631 r002 6th iterates of z^2 + 3645275075998269 b008 8+7*E+3*Pi 3645275080990238 m001 FeigenbaumC*FeigenbaumD^ArtinRank2 3645275091188461 a007 Real Root Of 109*x^4+92*x^3-859*x^2+940*x+51 3645275092806730 m001 (Conway+MinimumGamma)/(ArtinRank2-Backhouse) 3645275095469952 r005 Re(z^2+c),c=-17/38+12/31*I,n=36 3645275095725204 r004 Im(z^2+c),c=-1/8+12/23*I,z(0)=I,n=32 3645275098972354 a001 3020733700601/48*102334155^(2/21) 3645275098972354 a001 1730726404001/72*2504730781961^(2/21) 3645275102944367 a001 23725150497407/144*4181^(2/21) 3645275106000303 m001 (Kac-QuadraticClass)/(BesselK(1,1)-Conway) 3645275132844275 a007 Real Root Of -874*x^4-228*x^3+789*x^2+822*x-31 3645275141309556 r005 Re(z^2+c),c=-29/60+8/39*I,n=62 3645275161670150 a007 Real Root Of 144*x^4+359*x^3+307*x^2-365*x-159 3645275162897513 r005 Re(z^2+c),c=-7/17+16/33*I,n=40 3645275168528553 m001 (GAMMA(5/6)+KhinchinLevy)/HardyLittlewoodC3 3645275180314313 r009 Re(z^3+c),c=-29/106+34/47*I,n=33 3645275195308651 m005 (1/2*5^(1/2)-4/7)/(8/11*Catalan+5/6) 3645275215752439 r005 Im(z^2+c),c=13/118+8/21*I,n=23 3645275222797937 a007 Real Root Of 772*x^4+36*x^3+374*x^2-919*x+33 3645275229045235 r005 Re(z^2+c),c=-29/60+8/39*I,n=64 3645275232590390 a007 Real Root Of 298*x^4+600*x^3+350*x^2-533*x-217 3645275237895600 r009 Re(z^3+c),c=-15/106+12/17*I,n=10 3645275247883223 r005 Im(z^2+c),c=-5/82+17/35*I,n=61 3645275251003756 r005 Re(z^2+c),c=-29/60+8/39*I,n=54 3645275255338741 m001 1/ln(MinimumGamma)*Magata^2/Catalan^2 3645275255980453 r009 Im(z^3+c),c=-17/54+6/17*I,n=21 3645275259147854 m001 KhinchinLevy^(Grothendieck/CopelandErdos) 3645275265375459 r009 Re(z^3+c),c=-7/31+25/26*I,n=14 3645275266604055 r005 Re(z^2+c),c=-29/60+8/39*I,n=63 3645275274654558 r005 Re(z^2+c),c=-13/31+23/52*I,n=29 3645275278159156 m001 exp(1)*(BesselJ(1,1)-exp(gamma)) 3645275278606035 a003 sin(Pi*1/86)*sin(Pi*49/102) 3645275284488714 r005 Re(z^2+c),c=-1+12/197*I,n=14 3645275284961695 r002 60th iterates of z^2 + 3645275286786039 m001 1/cos(1)^2*BesselJ(1,1)^2*ln(gamma) 3645275287348361 m009 (5/2*Pi^2-6)/(5*Psi(1,1/3)+3/4) 3645275294983348 r009 Re(z^3+c),c=-37/106+29/45*I,n=16 3645275295410321 m001 (2*Pi/GAMMA(5/6)-Conway)/(ln(5)-BesselJ(1,1)) 3645275306021345 m001 exp(Pi)/polylog(4,1/2)/FibonacciFactorial 3645275306118400 r005 Im(z^2+c),c=-5/27+26/55*I,n=7 3645275332536126 s002 sum(A211290[n]/(pi^n),n=1..infinity) 3645275335983569 a001 144*47^(47/56) 3645275341612025 p004 log(28069/733) 3645275356052381 r009 Re(z^3+c),c=-61/102+16/61*I,n=51 3645275369686979 m001 Pi*2^(1/2)/GAMMA(3/4)/(MadelungNaCl^gamma(2)) 3645275374170617 r005 Im(z^2+c),c=-9/19+19/39*I,n=23 3645275376681621 m005 (1/2*gamma+8/9)/(4/9*3^(1/2)-4) 3645275378861822 r005 Im(z^2+c),c=-7/46+35/47*I,n=3 3645275382985909 m002 4/Log[Pi]+4/(E^Pi*Log[Pi]) 3645275388212571 r005 Re(z^2+c),c=-29/60+8/39*I,n=61 3645275403534292 a007 Real Root Of 920*x^4+861*x^3+581*x^2-799*x-343 3645275414842986 m001 1/(LambertW(1)-sin(1)) 3645275414842986 m001 1/(sin(1)-LambertW(1)) 3645275417965980 r005 Im(z^2+c),c=6/19+11/58*I,n=45 3645275429004495 r005 Im(z^2+c),c=29/122+13/47*I,n=17 3645275429658315 m001 1/exp(Paris)*LaplaceLimit^2*Catalan 3645275442361341 m001 MadelungNaCl/(LaplaceLimit^KomornikLoreti) 3645275449751907 r002 16th iterates of z^2 + 3645275460561032 m001 Pi+1/3*Psi(2,1/3)*3^(2/3)-exp(1/Pi) 3645275462957653 r009 Im(z^3+c),c=-13/44+22/61*I,n=16 3645275465393328 r005 Im(z^2+c),c=-15/122+14/27*I,n=47 3645275469981508 a001 1/39596*(1/2*5^(1/2)+1/2)^19*521^(7/16) 3645275483274279 m002 5+(3*Cosh[Pi])/Log[Pi]+ProductLog[Pi] 3645275502041191 a007 Real Root Of -452*x^4+36*x^3-445*x^2+977*x+425 3645275507436089 m001 (5^(1/2)-KhinchinLevy)/(-Otter+ZetaP(4)) 3645275509747142 r005 Re(z^2+c),c=-29/60+8/39*I,n=55 3645275522087330 r002 5th iterates of z^2 + 3645275529125514 a007 Real Root Of -212*x^4+82*x^3-441*x^2+54*x+86 3645275530962630 h001 (1/2*exp(1)+8/11)/(3/4*exp(2)+2/11) 3645275546271474 m002 -E^Pi+Pi^3+Cosh[Pi]/Pi^5-Sinh[Pi] 3645275559363214 r005 Re(z^2+c),c=-29/60+8/39*I,n=59 3645275571659442 r005 Im(z^2+c),c=27/98+7/44*I,n=4 3645275611407791 a007 Real Root Of 760*x^4-72*x^3+854*x^2-586*x-344 3645275617622700 r009 Re(z^3+c),c=-47/106+12/49*I,n=42 3645275622420090 m001 (cos(1)*exp(1/Pi)+FibonacciFactorial)/cos(1) 3645275629498071 a007 Real Root Of -276*x^4-916*x^3+213*x^2-260*x+586 3645275659187648 r005 Im(z^2+c),c=11/58+17/53*I,n=22 3645275672315073 a007 Real Root Of -194*x^4-820*x^3-451*x^2-363*x-795 3645275678197578 r005 Re(z^2+c),c=-29/60+8/39*I,n=57 3645275684082650 m005 (1/2*2^(1/2)+1/8)/(6/11*exp(1)+4/5) 3645275688345967 r005 Re(z^2+c),c=-57/122+7/23*I,n=23 3645275696604421 m002 -1+Pi^3+3*Pi^4*Log[Pi] 3645275726139822 k002 Champernowne real with 221/2*n^2-645/2*n+248 3645275727628212 m001 (sin(1/5*Pi)-GAMMA(23/24))/(Kac+Stephens) 3645275732068253 a001 6/105937*196418^(26/49) 3645275761319308 m001 Sarnak^Porter*Sarnak^((1+3^(1/2))^(1/2)) 3645275796506444 a007 Real Root Of 201*x^4+930*x^3+942*x^2+884*x+262 3645275811451368 r002 21th iterates of z^2 + 3645275811851341 a007 Real Root Of 207*x^4+700*x^3-256*x^2-467*x-944 3645275816631804 l006 ln(75/2872) 3645275852619883 m005 (5/4+1/4*5^(1/2))/(4/9*Pi-9/10) 3645275853667801 r009 Re(z^3+c),c=-19/34+5/29*I,n=28 3645275855944553 r009 Re(z^3+c),c=-9/19+15/53*I,n=52 3645275885075940 m001 1/GAMMA(7/12)*ln(Kolakoski)^2/GAMMA(7/24)^2 3645275889881205 a001 311187/46*123^(7/20) 3645275893931526 m001 (ln(2)+gamma(3))/(BesselJ(1,1)+Porter) 3645275900345030 m001 (-Cahen+Niven)/(2^(1/3)+(1+3^(1/2))^(1/2)) 3645275910509485 r005 Re(z^2+c),c=-59/110+27/59*I,n=48 3645275912176174 m002 Pi^4+Cosh[Pi]/E^Pi+Pi^5*Cosh[Pi] 3645275935869965 r005 Re(z^2+c),c=-12/23+13/34*I,n=17 3645275944632336 a001 10946/123*47^(27/28) 3645275950035388 r009 Re(z^3+c),c=-21/58+43/60*I,n=26 3645275952051825 m001 FeigenbaumMu^ln(2)/LaplaceLimit 3645275960151446 r005 Im(z^2+c),c=1/30+25/58*I,n=25 3645275961573126 r002 36th iterates of z^2 + 3645275965707012 m005 (1/2*Catalan-7/8)/(3/4*2^(1/2)+1/12) 3645275965764534 r005 Im(z^2+c),c=-145/118+3/23*I,n=52 3645275966830533 p003 LerchPhi(1/25,6,273/107) 3645275974411433 r005 Im(z^2+c),c=-5/27+35/57*I,n=55 3645275993738758 p004 log(33587/23327) 3645275998303752 r005 Re(z^2+c),c=-33/70+17/61*I,n=57 3645276001735788 r009 Re(z^3+c),c=-47/118+25/44*I,n=9 3645276011459300 r005 Re(z^2+c),c=-15/14+87/131*I,n=2 3645276027705788 r002 57th iterates of z^2 + 3645276030043121 a007 Real Root Of 766*x^4+503*x^3+268*x^2-969*x-378 3645276032076311 r005 Im(z^2+c),c=-13/70+11/20*I,n=63 3645276043321083 r009 Re(z^3+c),c=-53/110+17/58*I,n=60 3645276050307811 r002 54th iterates of z^2 + 3645276062685396 p003 LerchPhi(1/16,6,605/237) 3645276102827337 m001 GAMMA(5/12)^BesselK(1,1)*exp(Pi) 3645276102827337 m001 GAMMA(5/12)^BesselK(1,1)/exp(-Pi) 3645276103930291 m001 ln(GAMMA(19/24))^2/GAMMA(1/24)/sqrt(3)^2 3645276107153645 r005 Re(z^2+c),c=-9/7+6/113*I,n=2 3645276111711248 a007 Real Root Of -272*x^4-902*x^3+393*x^2+473*x+838 3645276124904130 m001 HardyLittlewoodC3^MertensB2-Robbin 3645276125280471 r005 Re(z^2+c),c=-13/29+23/60*I,n=63 3645276125574845 r005 Re(z^2+c),c=-1/46+38/59*I,n=24 3645276127956491 r005 Re(z^2+c),c=41/122+46/51*I,n=2 3645276129627152 r005 Im(z^2+c),c=-5/86+27/44*I,n=18 3645276133629263 p001 sum((-1)^n/(505*n+344)/n/(32^n),n=1..infinity) 3645276134718229 a001 199/28657*4181^(19/40) 3645276150250843 r009 Im(z^3+c),c=-31/66+6/23*I,n=40 3645276158658964 m001 (-Bloch+ZetaP(3))/((1+3^(1/2))^(1/2)-Chi(1)) 3645276161009151 r005 Im(z^2+c),c=-21/74+25/44*I,n=45 3645276175454695 p003 LerchPhi(1/10,4,373/162) 3645276176442460 a007 Real Root Of 432*x^4-283*x^3+610*x^2-885*x-425 3645276181632795 r009 Re(z^3+c),c=-29/90+1/22*I,n=15 3645276182826204 m005 (-3/8+1/4*5^(1/2))/(3/8*3^(1/2)-7/10) 3645276187665724 r005 Im(z^2+c),c=29/126+9/38*I,n=4 3645276195368710 r009 Im(z^3+c),c=-35/102+16/47*I,n=25 3645276205908015 r005 Im(z^2+c),c=-16/27+13/33*I,n=8 3645276208915637 h001 (7/11*exp(1)+2/3)/(5/6*exp(2)+5/12) 3645276216305626 m001 (ln(gamma)+ln(5))/(ln(2+3^(1/2))+BesselI(1,2)) 3645276216660803 a005 (1/sin(61/167*Pi))^14 3645276218725087 m002 ProductLog[Pi]/6+Tanh[Pi]/(5*ProductLog[Pi]) 3645276231449832 m005 (1/2*3^(1/2)-1/3)/(7/12*2^(1/2)+7/11) 3645276240496434 r009 Re(z^3+c),c=-27/50+15/56*I,n=19 3645276245960778 r005 Im(z^2+c),c=-15/122+14/27*I,n=44 3645276247599716 r002 27th iterates of z^2 + 3645276251935459 r009 Re(z^3+c),c=-21/44+18/61*I,n=16 3645276259654716 r005 Im(z^2+c),c=-1/44+13/28*I,n=37 3645276265065416 a007 Real Root Of -969*x^4+685*x^3+891*x^2+904*x-464 3645276270349428 a001 2/167761*322^(6/31) 3645276274708600 b008 1/6+ExpIntegralEi[Pi]/Pi 3645276283189773 a001 9227465/521*123^(3/20) 3645276284571190 r005 Im(z^2+c),c=13/50+1/4*I,n=13 3645276292335115 q001 409/1122 3645276292335115 r002 1i'th iterates of 2*x/(1-x^2) of 3645276294579379 b008 21*ArcCsch[4+Sqrt[3]] 3645276300504437 r002 62th iterates of z^2 + 3645276300677144 m001 FransenRobinson+LaplaceLimit+ZetaP(3) 3645276303204070 a003 sin(Pi*7/59)/sin(Pi*17/35) 3645276315195601 r009 Im(z^3+c),c=-13/38+15/44*I,n=25 3645276326570020 a001 12586269025/843*3^(13/16) 3645276372036206 a007 Real Root Of -258*x^4-586*x^3+4*x^2+577*x+21 3645276374928343 a007 Real Root Of 567*x^4+643*x^3+945*x^2-937*x-446 3645276380958087 p004 log(23627/617) 3645276388175900 a007 Real Root Of -354*x^4+171*x^3+269*x^2+862*x-352 3645276389299825 a007 Real Root Of 127*x^4-638*x^3+565*x^2-463*x-277 3645276399825572 m001 Riemann3rdZero*(BesselJ(1,1)+Riemann1stZero) 3645276403028278 a007 Real Root Of 238*x^4+824*x^3-290*x^2-353*x+456 3645276405244907 r005 Re(z^2+c),c=-13/27+12/55*I,n=32 3645276407907476 r009 Im(z^3+c),c=-15/118+5/12*I,n=2 3645276412416750 s002 sum(A195966[n]/((2^n+1)/n),n=1..infinity) 3645276413061804 r005 Im(z^2+c),c=-15/122+14/27*I,n=50 3645276418445507 r002 4th iterates of z^2 + 3645276421007620 m001 Bloch^Porter/(Bloch^Champernowne) 3645276430932414 a007 Real Root Of -213*x^4-715*x^3+228*x^2-4*x-68 3645276434029178 a001 11/610*377^(7/59) 3645276437392462 m001 (Paris+Stephens)/(HeathBrownMoroz-Si(Pi)) 3645276440044018 a007 Real Root Of 144*x^4+471*x^3-151*x^2+126*x-146 3645276442767689 r005 Im(z^2+c),c=-7/102+11/24*I,n=8 3645276442856525 r009 Re(z^3+c),c=-5/86+7/13*I,n=13 3645276456855287 m001 (-ReciprocalLucas+Salem)/(Shi(1)-sin(1)) 3645276458132296 a007 Real Root Of -178*x^4-811*x^3-545*x^2+426*x+941 3645276459073854 r008 a(0)=3,K{-n^6,6+5*n^3-n^2-8*n} 3645276461368032 s002 sum(A029615[n]/((2^n+1)/n),n=1..infinity) 3645276466026758 m005 (1/2*Zeta(3)+3/5)/(2/3*gamma-5/7) 3645276476631710 a007 Real Root Of 798*x^4-881*x^3+525*x^2-914*x+292 3645276495815397 m001 (Paris+PlouffeB)/(ln(gamma)-GAMMA(23/24)) 3645276497228216 m001 1/Paris^2*exp(Si(Pi))*GAMMA(1/6) 3645276503296431 r005 Re(z^2+c),c=-29/60+8/39*I,n=52 3645276507146410 v003 sum((n^3+3*n^2-13*n+28)/n^(n-1),n=1..infinity) 3645276518159648 r009 Re(z^3+c),c=-7/74+23/31*I,n=54 3645276520615093 a007 Real Root Of 225*x^4+712*x^3-449*x^2+73*x+992 3645276547610058 r005 Re(z^2+c),c=-33/70+17/61*I,n=59 3645276551302065 r002 50th iterates of z^2 + 3645276553975671 r005 Re(z^2+c),c=-37/82+16/43*I,n=44 3645276578414011 r009 Im(z^3+c),c=-61/118+11/50*I,n=50 3645276587213238 m001 MadelungNaCl^2/ArtinRank2/ln(sqrt(2))^2 3645276597044757 r002 26th iterates of z^2 + 3645276598310999 a001 133957148*14662949395604^(17/18) 3645276598310999 a001 701408733/2*3461452808002^(23/24) 3645276598310999 a001 956722026041/2*2537720636^(17/18) 3645276598310999 a001 2504730781961/2*2537720636^(9/10) 3645276598310999 a001 10610209857723/2*2537720636^(5/6) 3645276598310999 a001 225851433717/2*17393796001^(13/14) 3645276598310999 a001 3278735159921*17393796001^(11/14) 3645276598310999 a001 956722026041/2*45537549124^(5/6) 3645276598310999 a001 32951280099/2*312119004989^(9/10) 3645276598310999 a001 32951280099/2*14662949395604^(11/14) 3645276598310999 a001 32951280099/2*192900153618^(11/12) 3645276598310999 a001 43133785636*312119004989^(19/22) 3645276598310999 a001 43133785636*817138163596^(5/6) 3645276598310999 a001 43133785636*3461452808002^(19/24) 3645276598310999 a001 10610209857723/2*312119004989^(15/22) 3645276598310999 a001 225851433717/2*14662949395604^(13/18) 3645276598310999 a001 225851433717/2*505019158607^(13/16) 3645276598310999 a001 10610209857723/2*3461452808002^(5/8) 3645276598310999 a001 3278735159921*505019158607^(11/16) 3645276598310999 a001 139583862445/2*9062201101803^(3/4) 3645276598310999 a001 2504730781961/2*192900153618^(3/4) 3645276598310999 a001 225851433717/2*73681302247^(7/8) 3645276598310999 a001 10610209857723/2*28143753123^(3/4) 3645276598310999 a001 956722026041/2*28143753123^(17/20) 3645276598310999 a001 43133785636*28143753123^(19/20) 3645276598310999 a001 7778742049/2*312119004989^(21/22) 3645276598310999 a001 7778742049/2*14662949395604^(5/6) 3645276598310999 a001 7778742049/2*505019158607^(15/16) 3645276598310999 a001 3278735159921*1568397607^(7/8) 3645276598310999 a001 433494437/2*14662949395604^(13/14) 3645276598310999 a001 3278735159921*599074578^(11/12) 3645276598310999 a001 10610209857723/2*228826127^(15/16) 3645276606898134 m001 (GaussAGM-StronglyCareFree)/(ln(5)+gamma(3)) 3645276608349106 r009 Im(z^3+c),c=-51/118+11/38*I,n=24 3645276617320407 m001 ln(Zeta(5))^2/GAMMA(1/6)*cosh(1) 3645276624528942 a007 Real Root Of -422*x^4+231*x^3+773*x^2+306*x-218 3645276639425368 b008 3+Sqrt[2]*BesselY[0,E] 3645276646704064 r002 2th iterates of z^2 + 3645276650087946 r005 Re(z^2+c),c=-35/74+10/37*I,n=52 3645276651072763 r005 Im(z^2+c),c=-3/22+31/59*I,n=53 3645276663478644 m001 1/GAMMA(1/6)^2*ArtinRank2^2*exp(Zeta(1/2)) 3645276685440551 m002 -6+Pi^5/36+Log[Pi] 3645276702077126 m005 (1/2*gamma+2/7)/(6/7*3^(1/2)+1/11) 3645276706997220 m001 (Robbin+Trott2nd)/(BesselI(0,1)+GolombDickman) 3645276729140423 k002 Champernowne real with 111*n^2-324*n+249 3645276731478426 r002 28th iterates of z^2 + 3645276740510761 m001 (Thue+ThueMorse)/(Catalan-LambertW(1)) 3645276748751943 m001 (Psi(2,1/3)+ln(5))/(GAMMA(11/12)+ThueMorse) 3645276766638383 r005 Re(z^2+c),c=-59/122+13/64*I,n=50 3645276778641349 r005 Im(z^2+c),c=-53/52+13/40*I,n=15 3645276792167793 a007 Real Root Of 108*x^4+278*x^3-546*x^2-526*x-266 3645276804652013 r002 4th iterates of z^2 + 3645276806896938 r005 Re(z^2+c),c=-47/98+3/13*I,n=40 3645276817657752 a008 Real Root of x^4-x^3-37*x^2+69*x+112 3645276819937929 r005 Re(z^2+c),c=45/122+19/59*I,n=51 3645276820539306 r009 Im(z^3+c),c=-21/106+16/41*I,n=9 3645276822303486 h001 (1/2*exp(2)+11/12)/(3/7*exp(1)+1/10) 3645276860926756 r009 Im(z^3+c),c=-35/102+16/47*I,n=21 3645276886302072 m001 (-Bloch+ZetaQ(4))/(Catalan+Artin) 3645276891293106 r009 Im(z^3+c),c=-51/118+17/44*I,n=4 3645276896597621 a007 Real Root Of 8*x^4-888*x^3+940*x^2-746*x-440 3645276898521015 k005 Champernowne real with floor(log(3)*(148*n+184)) 3645276902962291 a007 Real Root Of -225*x^4-800*x^3+402*x^2+953*x-890 3645276908521015 k005 Champernowne real with floor(sqrt(2)*(115*n+143)) 3645276908531016 k001 Champernowne real with 163*n+201 3645276908531016 k005 Champernowne real with floor(Catalan*(178*n+220)) 3645276908531016 k005 Champernowne real with floor(exp(1)*(60*n+74)) 3645276918541017 k005 Champernowne real with floor(Pi*(52*n+64)) 3645276932199346 r005 Im(z^2+c),c=43/126+12/31*I,n=64 3645276944034287 a001 1/2*2178309^(37/40) 3645276949447977 m005 (-1/2+1/6*5^(1/2))/(6/7*Pi+4/5) 3645276957959967 a003 sin(Pi*1/43)-sin(Pi*16/111) 3645276989835196 a007 Real Root Of 909*x^4+756*x^3+921*x^2-209*x-178 3645277011201768 a007 Real Root Of 208*x^4+737*x^3+156*x^2+638*x-775 3645277017793795 r005 Re(z^2+c),c=-3/7+15/32*I,n=45 3645277023556046 m001 (Khinchin+Porter)/(BesselJ(0,1)+Artin) 3645277024668250 r005 Re(z^2+c),c=-4/7+11/27*I,n=38 3645277055064340 r005 Im(z^2+c),c=-11/50+30/53*I,n=50 3645277057776165 m001 GlaisherKinkelin+KhinchinLevy+Salem 3645277059599676 r005 Re(z^2+c),c=-17/28+17/47*I,n=32 3645277060490312 a007 Real Root Of 90*x^4+121*x^3-578*x^2+798*x+559 3645277061725056 r005 Im(z^2+c),c=19/82+13/46*I,n=9 3645277063177366 m005 (1/2*Pi+5/11)/(5/7*2^(1/2)-5/11) 3645277070754444 r005 Re(z^2+c),c=33/98+9/64*I,n=18 3645277108327900 a005 (1/cos(29/163*Pi))^231 3645277122852537 m005 (1/2*2^(1/2)-1/12)/(2/5*Pi+5/11) 3645277123125473 b008 -5+ArcTan[Sqrt[2]+Pi] 3645277147471179 a003 cos(Pi*7/83)*sin(Pi*9/73) 3645277154255597 m001 (gamma(3)+Artin)/(Psi(1,1/3)+Ei(1,1)) 3645277159640776 r005 Im(z^2+c),c=-17/22+5/47*I,n=50 3645277172926358 a008 Real Root of x^4-5*x^2-25*x-19 3645277173959793 m001 (BesselI(0,2)+Tribonacci)/(BesselJ(0,1)-Ei(1)) 3645277183278770 r005 Im(z^2+c),c=-1/56+6/13*I,n=39 3645277204230434 m001 (Ei(1,1)+gamma(2))/(GAMMA(17/24)-Rabbit) 3645277210103771 m005 (1/3*exp(1)+1/2)/(2/9*2^(1/2)-7/10) 3645277239552037 a001 2/64079*123^(1/31) 3645277240721580 r005 Re(z^2+c),c=-33/64+1/57*I,n=10 3645277252969832 m005 (1/2*Pi+6/11)/(5/7*Zeta(3)-11/12) 3645277255430004 l006 ln(242/9267) 3645277264355146 r005 Im(z^2+c),c=-1/94+11/24*I,n=23 3645277267100159 h001 (10/11*exp(2)+4/9)/(1/7*exp(2)+10/11) 3645277270142306 b008 E+13*Tanh[1/14] 3645277288514937 m002 (E^Pi*Pi^3)/2+Sinh[Pi]/2 3645277290713778 r005 Im(z^2+c),c=-79/110+11/54*I,n=54 3645277304028643 m002 -5+Pi^6/E^Pi-ProductLog[Pi]*Sech[Pi] 3645277309040056 m001 (-ln(2)+Niven)/(5^(1/2)+cos(1)) 3645277330635420 a001 29/8*34^(36/55) 3645277334425956 m009 (Psi(1,2/3)-1/6)/(2/5*Pi^2+4) 3645277337474456 r005 Re(z^2+c),c=-39/86+17/47*I,n=32 3645277352307340 r005 Im(z^2+c),c=5/94+18/43*I,n=33 3645277355728715 r009 Re(z^3+c),c=-29/90+1/22*I,n=16 3645277365415838 r009 Re(z^3+c),c=-49/86+17/53*I,n=4 3645277366637393 a007 Real Root Of 153*x^4+358*x^3-793*x^2-254*x-63 3645277381519053 g007 2*Psi(2,2/9)+Psi(2,5/7)-Psi(2,5/8) 3645277384216229 r005 Im(z^2+c),c=-13/82+22/41*I,n=52 3645277386720083 a008 Real Root of x^2-x-133245 3645277397890867 r005 Re(z^2+c),c=-39/94+26/53*I,n=62 3645277398993661 m005 (1/2*5^(1/2)-8/11)/(86/99+1/11*5^(1/2)) 3645277399398057 m001 Sierpinski^OrthogonalArrays-ZetaR(2) 3645277402334748 h001 (5/9*exp(2)+5/12)/(2/9*exp(1)+7/11) 3645277416622599 r005 Re(z^2+c),c=27/86+30/61*I,n=41 3645277420632048 a007 Real Root Of -905*x^4+566*x^3-205*x^2+902*x-313 3645277425924330 r005 Im(z^2+c),c=11/54+10/19*I,n=50 3645277431648546 m005 (-1/12+1/6*5^(1/2))/(4/11*exp(1)-10/11) 3645277432089511 a003 cos(Pi*9/88)-cos(Pi*22/73) 3645277433297650 m001 1/Paris*GaussAGM(1,1/sqrt(2))*ln(GAMMA(7/12)) 3645277446782557 m008 (2/5*Pi+3)/(1/6*Pi^3-4) 3645277449246238 r009 Im(z^3+c),c=-9/52+19/48*I,n=12 3645277484033788 h001 (4/5*exp(2)+1/12)/(1/5*exp(2)+1/6) 3645277485947724 r005 Im(z^2+c),c=9/38+15/56*I,n=7 3645277506467231 m001 exp(GAMMA(1/6))/Salem*GAMMA(13/24) 3645277519550861 r002 60th iterates of z^2 + 3645277531042121 r005 Re(z^2+c),c=-51/106+13/51*I,n=11 3645277538229098 h001 (7/12*exp(2)+5/12)/(1/11*exp(2)+5/8) 3645277539382878 r005 Re(z^2+c),c=-3/4+28/235*I,n=10 3645277577994196 m001 OneNinth^2/Si(Pi)/ln(GAMMA(1/6)) 3645277578485716 a003 sin(Pi*9/101)/cos(Pi*19/84) 3645277582089138 a001 38/17*377^(8/17) 3645277585091805 a001 726103*29^(23/48) 3645277586485290 a007 Real Root Of -380*x^4-815*x^3-907*x^2+275*x+188 3645277605894945 r005 Im(z^2+c),c=1/30+25/58*I,n=39 3645277624015285 a005 (1/cos(2/101*Pi))^668 3645277647610230 r005 Im(z^2+c),c=-9/16+26/67*I,n=10 3645277650764619 r009 Re(z^3+c),c=-7/54+31/54*I,n=2 3645277666637008 a007 Real Root Of 644*x^4-640*x^3-594*x^2-901*x+427 3645277671831993 m001 exp(RenyiParking)^2*Bloch*sqrt(3) 3645277677459995 r005 Re(z^2+c),c=21/64+3/41*I,n=48 3645277678244403 a001 7/514229*514229^(1/4) 3645277678246069 a001 7/1346269*24157817^(1/4) 3645277678246412 a001 7/3524578*1134903170^(1/4) 3645277678246462 a001 7/9227465*53316291173^(1/4) 3645277678246469 a001 7/24157817*2504730781961^(1/4) 3645277678246474 a001 7/14930352*365435296162^(1/4) 3645277678246493 a001 7/5702887*7778742049^(1/4) 3645277678246624 a001 1/311187*165580141^(1/4) 3645277678247538 a001 7/832040*3524578^(1/4) 3645277678286069 a001 7/317811*75025^(1/4) 3645277679748785 a001 7/196418*10946^(1/4) 3645277693545063 m001 1/Zeta(7)*ln(BesselK(1,1))/sinh(1)^2 3645277713621279 r005 Im(z^2+c),c=-5/82+17/35*I,n=51 3645277719103812 a001 1/75640*144^(10/49) 3645277732141023 k002 Champernowne real with 223/2*n^2-651/2*n+250 3645277744049962 r005 Im(z^2+c),c=-55/102+11/26*I,n=15 3645277747851450 r005 Im(z^2+c),c=-13/90+9/17*I,n=61 3645277749760524 a001 7/121393*1597^(1/4) 3645277757566931 p004 log(26539/25589) 3645277770338243 r005 Im(z^2+c),c=-1/70+17/37*I,n=52 3645277773388830 r002 18th iterates of z^2 + 3645277776223014 m001 KhintchineHarmonic*ln(MertensB1)^2*Magata^2 3645277776989401 r005 Re(z^2+c),c=-10/17+11/40*I,n=11 3645277781894001 a007 Real Root Of -947*x^4-218*x^3-973*x^2+306*x+247 3645277799795208 a007 Real Root Of 477*x^4-930*x^3+687*x^2-168*x-206 3645277800777527 a007 Real Root Of 286*x^4+856*x^3-758*x^2-383*x-360 3645277806109053 m001 HardyLittlewoodC5/(Sierpinski^Champernowne) 3645277806278509 m008 (1/4*Pi+2)/(4/5*Pi^6-5) 3645277821990483 r005 Im(z^2+c),c=-15/122+14/27*I,n=53 3645277831882641 m001 BesselI(0,2)*FeigenbaumD^PlouffeB 3645277841692345 r005 Im(z^2+c),c=-1/6+20/37*I,n=64 3645277848372875 m001 GaussAGM/(Pi^Sarnak) 3645277860898783 m001 ln(Zeta(3))^2*ArtinRank2*cosh(1) 3645277861169260 p003 LerchPhi(1/64,6,55/147) 3645277862547455 r005 Im(z^2+c),c=-1/28+25/53*I,n=45 3645277868327358 r009 Im(z^3+c),c=-11/23+13/61*I,n=12 3645277874616823 m005 (7/44+1/4*5^(1/2))/(3/8*2^(1/2)-1/3) 3645277881727071 r009 Re(z^3+c),c=-29/90+1/22*I,n=17 3645277900980848 m001 (PrimesInBinary+ZetaP(2))/(BesselI(0,2)+Paris) 3645277901596187 l006 ln(167/6395) 3645277906497331 r005 Re(z^2+c),c=-59/122+13/64*I,n=46 3645277916510846 r005 Im(z^2+c),c=27/110+10/37*I,n=46 3645277922557132 r009 Re(z^3+c),c=-3/118+49/64*I,n=10 3645277925921934 r005 Im(z^2+c),c=29/122+5/18*I,n=37 3645277965689005 r005 Re(z^2+c),c=-33/64+11/54*I,n=11 3645277978781568 m005 (1/2*Catalan+2/3)/(1/7*Catalan-1/10) 3645277990374564 m003 73/2+Cos[1/2+Sqrt[5]/2] 3645278000079416 r002 21th iterates of z^2 + 3645278004792298 r009 Re(z^3+c),c=-10/23+16/29*I,n=21 3645278027026428 r002 10th iterates of z^2 + 3645278028911745 a007 Real Root Of -39*x^4+434*x^3-896*x^2-454*x-575 3645278029230943 a001 119218851371*433494437^(13/15) 3645278029230943 a001 228826127*591286729879^(13/15) 3645278030874578 m001 (MadelungNaCl+PlouffeB)/(3^(1/3)-FeigenbaumB) 3645278031194584 a007 Real Root Of -143*x^4-585*x^3-212*x^2+170*x+350 3645278033782920 r005 Im(z^2+c),c=1/30+25/58*I,n=43 3645278033925551 m001 (ln(5)-BesselI(0,2))/(GAMMA(13/24)-Backhouse) 3645278052412220 m001 (-BesselI(0,2)+Backhouse)/(exp(Pi)+ln(gamma)) 3645278057403803 m001 FeigenbaumB*exp(Bloch)*sqrt(1+sqrt(3))^2 3645278064013913 m001 (5^(1/2)+CopelandErdos)/(-Robbin+Totient) 3645278070083120 m001 (Khinchin-OrthogonalArrays)/(Pi+Artin) 3645278074876102 a007 Real Root Of -177*x^4-875*x^3-962*x^2-393*x+220 3645278077095735 r009 Re(z^3+c),c=-57/106+11/40*I,n=60 3645278080734023 r009 Re(z^3+c),c=-29/90+1/22*I,n=18 3645278096425123 m001 (ln(2)-GaussKuzminWirsing)/(Tetranacci-Thue) 3645278103364768 m006 (3/4/Pi+2/5)/(3/4*exp(Pi)+1/6) 3645278109468723 m001 (5^(1/2))^gamma/((5^(1/2))^FeigenbaumC) 3645278116239840 a005 (1/cos(1/33*Pi))^285 3645278131703334 r005 Re(z^2+c),c=-27/38+13/56*I,n=4 3645278137879657 r009 Im(z^3+c),c=-5/19+16/43*I,n=16 3645278141402186 m001 TreeGrowth2nd*KhintchineLevy^2*exp(sqrt(Pi)) 3645278141908762 r009 Re(z^3+c),c=-29/90+1/22*I,n=19 3645278146312065 r009 Re(z^3+c),c=-29/90+1/22*I,n=28 3645278146314442 r009 Re(z^3+c),c=-29/90+1/22*I,n=29 3645278146317596 r009 Re(z^3+c),c=-29/90+1/22*I,n=30 3645278146319594 r009 Re(z^3+c),c=-29/90+1/22*I,n=31 3645278146319817 r009 Re(z^3+c),c=-29/90+1/22*I,n=27 3645278146320575 r009 Re(z^3+c),c=-29/90+1/22*I,n=32 3645278146320980 r009 Re(z^3+c),c=-29/90+1/22*I,n=33 3645278146321119 r009 Re(z^3+c),c=-29/90+1/22*I,n=34 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=44 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=43 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=45 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=46 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=47 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=48 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=49 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=50 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=59 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=60 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=61 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=62 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=58 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=63 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=64 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=57 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=56 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=55 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=54 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=53 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=52 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=51 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=42 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=41 3645278146321150 r009 Re(z^3+c),c=-29/90+1/22*I,n=40 3645278146321151 r009 Re(z^3+c),c=-29/90+1/22*I,n=39 3645278146321153 r009 Re(z^3+c),c=-29/90+1/22*I,n=38 3645278146321156 r009 Re(z^3+c),c=-29/90+1/22*I,n=35 3645278146321156 r009 Re(z^3+c),c=-29/90+1/22*I,n=37 3645278146321160 r009 Re(z^3+c),c=-29/90+1/22*I,n=36 3645278146367884 r009 Re(z^3+c),c=-29/90+1/22*I,n=26 3645278146535623 r009 Re(z^3+c),c=-29/90+1/22*I,n=25 3645278146999233 r009 Re(z^3+c),c=-29/90+1/22*I,n=24 3645278148078464 r009 Re(z^3+c),c=-29/90+1/22*I,n=23 3645278148713364 a008 Real Root of x^2-x-132516 3645278150167121 r009 Re(z^3+c),c=-29/90+1/22*I,n=22 3645278153154961 r009 Re(z^3+c),c=-29/90+1/22*I,n=21 3645278154272839 r009 Re(z^3+c),c=-29/90+1/22*I,n=20 3645278160689509 s002 sum(A138833[n]/(n*exp(n)+1),n=1..infinity) 3645278169354781 r002 5th iterates of z^2 + 3645278191225290 r005 Im(z^2+c),c=-5/82+17/35*I,n=58 3645278191809182 m001 GAMMA(1/4)/ln(FeigenbaumKappa)^2/Zeta(5)^2 3645278199907524 s002 sum(A034561[n]/(16^n),n=1..infinity) 3645278199907524 s002 sum(A034561[n]/(16^n-1),n=1..infinity) 3645278209110028 a001 123*196418^(49/58) 3645278220191383 r005 Re(z^2+c),c=-5/86+29/46*I,n=8 3645278224590504 h001 (-7*exp(-1)+2)/(-2*exp(2)-1) 3645278224711603 a007 Real Root Of 783*x^4+564*x^3+792*x^2-895*x-418 3645278227407934 r005 Im(z^2+c),c=3/32+11/28*I,n=19 3645278238869231 m009 (2/3*Psi(1,1/3)-3/4)/(1/5*Pi^2-1/3) 3645278241578214 r002 24th iterates of z^2 + 3645278242229541 r005 Im(z^2+c),c=19/106+17/52*I,n=15 3645278244359993 r005 Im(z^2+c),c=25/74+15/56*I,n=16 3645278244629319 m001 BesselK(0,1)+gamma(1)*StronglyCareFree 3645278246517835 r002 15th iterates of z^2 + 3645278267782334 s002 sum(A033585[n]/(n!^2),n=1..infinity) 3645278267782334 s002 sum(A082106[n]/(n!^2),n=1..infinity) 3645278274730177 r009 Re(z^3+c),c=-19/40+33/64*I,n=48 3645278278831069 p001 sum((-1)^n/(352*n+265)/(12^n),n=0..infinity) 3645278312871692 r005 Im(z^2+c),c=-1/15+36/59*I,n=31 3645278319794829 m003 3+3*Sech[1/2+Sqrt[5]/2]-Sin[1/2+Sqrt[5]/2]/2 3645278324620394 a001 1/167732*(1/2*5^(1/2)+1/2)^16*76^(4/17) 3645278331172276 r005 Re(z^2+c),c=-39/82+14/55*I,n=33 3645278337469077 m001 FeigenbaumAlpha^Catalan*GAMMA(13/24)^Catalan 3645278337469077 m001 GAMMA(13/24)^Catalan*FeigenbaumAlpha^Catalan 3645278345282053 r005 Im(z^2+c),c=1/10+19/49*I,n=36 3645278350547637 r005 Im(z^2+c),c=13/48+14/57*I,n=23 3645278379126674 a007 Real Root Of -107*x^4-264*x^3+318*x^2-553*x-136 3645278382604672 a007 Real Root Of 59*x^4-171*x^3-503*x^2-318*x+190 3645278402591901 m001 (-Paris+Trott2nd)/(2^(1/2)+cos(1)) 3645278404132445 h001 (2/5*exp(1)+11/12)/(2/3*exp(2)+4/7) 3645278418479690 r005 Im(z^2+c),c=33/122+11/45*I,n=38 3645278439022757 a007 Real Root Of 275*x^4+865*x^3-493*x^2-76*x-384 3645278464562041 l006 ln(241/347) 3645278464562041 p004 log(347/241) 3645278467848485 m003 -1-Cos[1/2+Sqrt[5]/2]+18/Log[1/2+Sqrt[5]/2] 3645278490905411 a005 (1/sin(94/209*Pi))^1208 3645278505349541 l006 ln(259/9918) 3645278538645122 r009 Re(z^3+c),c=-49/102+7/24*I,n=44 3645278553344907 r002 7th iterates of z^2 + 3645278563302780 h001 (-7*exp(-2)-7)/(-9*exp(-2)+1) 3645278572080565 r005 Re(z^2+c),c=-59/122+13/64*I,n=48 3645278578146256 a001 377/199*3^(28/47) 3645278591422629 r005 Re(z^2+c),c=10/27+19/58*I,n=51 3645278594477561 a007 Real Root Of -22*x^4-794*x^3+317*x^2+994*x+637 3645278610565863 m001 ln(Salem)^2*FeigenbaumB/BesselK(1,1) 3645278613990880 r005 Im(z^2+c),c=-19/14+1/206*I,n=53 3645278636338163 m001 (gamma+Zeta(5))/(-CareFree+TwinPrimes) 3645278643026380 a007 Real Root Of -628*x^4-682*x^3+412*x^2+525*x-202 3645278649342592 m005 (1/2*5^(1/2)-3)/(-17/110+3/10*5^(1/2)) 3645278649936923 r005 Im(z^2+c),c=11/74+29/53*I,n=3 3645278659704272 a007 Real Root Of -504*x^4+952*x^3+961*x^2+302*x-275 3645278663293126 m001 BesselI(1,1)/(Magata^(5^(1/2))) 3645278667930735 m001 Pi/(Psi(1,1/3)-Chi(1)/LambertW(1)) 3645278671749906 r005 Re(z^2+c),c=-29/60+8/39*I,n=50 3645278672365827 r005 Im(z^2+c),c=11/102+19/51*I,n=10 3645278675276387 r005 Im(z^2+c),c=-29/46+3/61*I,n=23 3645278679201255 r005 Re(z^2+c),c=1/28+22/63*I,n=4 3645278681539316 a001 76/1597*233^(39/49) 3645278683007462 r005 Im(z^2+c),c=-95/98+13/45*I,n=9 3645278695353515 r009 Re(z^3+c),c=-47/106+12/49*I,n=32 3645278713379845 m005 (1/2*exp(1)-2/3)/(-68/99+2/9*5^(1/2)) 3645278723953776 m001 1/GAMMA(5/6)/GAMMA(5/12)*exp(sqrt(5))^2 3645278724197365 r009 Re(z^3+c),c=-47/106+12/49*I,n=45 3645278735141623 k002 Champernowne real with 112*n^2-327*n+251 3645278741417561 r002 10th iterates of z^2 + 3645278741611942 h001 (-2*exp(7)+2)/(-8*exp(2)-1) 3645278744103728 r005 Re(z^2+c),c=-12/29+25/54*I,n=32 3645278747837486 m005 (1/3*gamma+2/9)/(7/8*2^(1/2)-1/10) 3645278750908916 p003 LerchPhi(1/16,2,213/127) 3645278758281360 r005 Im(z^2+c),c=3/74+29/63*I,n=10 3645278758618723 a007 Real Root Of 124*x^4+588*x^3+480*x^2-77*x-72 3645278758704919 r005 Im(z^2+c),c=3/70+29/59*I,n=10 3645278761469389 a003 sin(Pi*3/113)/sin(Pi*8/109) 3645278768862528 m001 (ln(Pi)-DuboisRaymond)/(MadelungNaCl+Thue) 3645278779096215 b008 1/2+Sqrt[5]*Erfi[3] 3645278780730781 m001 (Lehmer+Thue)/(Weierstrass-ZetaP(4)) 3645278786309806 m001 (Chi(1)-MertensB3)/(PlouffeB+QuadraticClass) 3645278789378978 r005 Im(z^2+c),c=-11/24+25/64*I,n=3 3645278789576912 q001 1301/3569 3645278805531604 m001 (BesselK(0,1)-ln(5))/(MertensB3+Tetranacci) 3645278808346915 m001 (-GAMMA(17/24)+GAMMA(19/24))/(Si(Pi)+Zeta(3)) 3645278812782171 m005 (1/2*Zeta(3)+5/9)/(exp(1)+5/11) 3645278817721378 a007 Real Root Of -416*x^4-730*x^3-482*x^2+982*x+394 3645278822978146 a007 Real Root Of 232*x^4+641*x^3-481*x^2+854*x-411 3645278830654969 r005 Re(z^2+c),c=-23/52+25/61*I,n=35 3645278841425992 a005 (1/cos(26/235*Pi))^133 3645278867385469 m001 GAMMA(1/24)^exp(sqrt(2))*sin(1) 3645278870288104 a007 Real Root Of 22*x^4+815*x^3+494*x^2+674*x-286 3645278870859170 a007 Real Root Of -538*x^4+743*x^3-678*x^2+778*x-220 3645278879204424 r005 Im(z^2+c),c=-11/31+31/35*I,n=3 3645278885900627 h001 (5/11*exp(2)+6/11)/(1/9*exp(2)+1/4) 3645278914721900 a007 Real Root Of 270*x^4+879*x^3-264*x^2+206*x-838 3645278923253244 a007 Real Root Of -827*x^4-772*x^3-16*x^2+951*x+326 3645278931622130 m001 (3^(1/3)+Kolakoski)^ErdosBorwein 3645278936743442 r009 Im(z^3+c),c=-55/126+16/27*I,n=19 3645278937548519 m005 (1/3*exp(1)-2/5)/(5/12*3^(1/2)+2/3) 3645278943389380 m001 (Totient-ZetaQ(3))/(cos(1/12*Pi)+Khinchin) 3645278949356612 a007 Real Root Of 171*x^4+524*x^3-265*x^2+139*x-784 3645278963819139 a001 1/439128*(1/2*5^(1/2)+1/2)^18*76^(4/17) 3645278966368210 r005 Im(z^2+c),c=-1/74+28/61*I,n=43 3645278969495322 a007 Real Root Of 501*x^4+661*x^3+920*x^2+88*x-67 3645278989113477 a007 Real Root Of -897*x^4+275*x^3+248*x^2+688*x+247 3645278989540725 r005 Im(z^2+c),c=-13/56+23/40*I,n=47 3645279017183024 m001 (5^(1/2)+GAMMA(17/24))/(CareFree+MertensB1) 3645279021128154 r009 Re(z^3+c),c=-47/106+12/49*I,n=46 3645279021246208 m006 (1/5*exp(Pi)-3)/(5/6*exp(2*Pi)+2/5) 3645279028174200 m001 ErdosBorwein*(GAMMA(11/12)-GlaisherKinkelin) 3645279040959119 l006 ln(2936/3045) 3645279052042109 m001 (cos(1)+Paris)/(-Tetranacci+ZetaP(3)) 3645279057076998 a001 1/1149652*(1/2*5^(1/2)+1/2)^20*76^(4/17) 3645279063153515 r005 Re(z^2+c),c=-55/118+11/36*I,n=39 3645279065050848 m004 -25/Pi+Sqrt[5]*Pi-2*Sec[Sqrt[5]*Pi] 3645279070683137 a001 1/3009828*(1/2*5^(1/2)+1/2)^22*76^(4/17) 3645279071664629 a007 Real Root Of 35*x^4-73*x^3-660*x^2+65*x-709 3645279073007343 a001 1/76*76^(4/17) 3645279073895111 a001 1/4870004*(1/2*5^(1/2)+1/2)^23*76^(4/17) 3645279079092193 a001 1/1860176*(1/2*5^(1/2)+1/2)^21*76^(4/17) 3645279079831037 r005 Im(z^2+c),c=-21/106+24/43*I,n=46 3645279085804662 r005 Re(z^2+c),c=-43/46+7/19*I,n=6 3645279087171427 r002 24th iterates of z^2 + 3645279093953982 a001 64079/34*32951280099^(5/23) 3645279094849568 a001 710647/34*514229^(5/23) 3645279095388118 r005 Re(z^2+c),c=-43/78+15/41*I,n=19 3645279114713527 a001 1/710524*(1/2*5^(1/2)+1/2)^19*76^(4/17) 3645279131962214 a007 Real Root Of -667*x^4+135*x^3+251*x^2+381*x-167 3645279134650823 r005 Re(z^2+c),c=-25/66+27/50*I,n=56 3645279135211876 r005 Re(z^2+c),c=-1/118+9/49*I,n=13 3645279148717468 r009 Im(z^3+c),c=-13/38+15/44*I,n=21 3645279149721422 a001 123*165580141^(10/11) 3645279158058385 r002 8th iterates of z^2 + 3645279167021911 r005 Im(z^2+c),c=-15/122+14/27*I,n=56 3645279168857772 m001 1/GAMMA(7/12)^2*Khintchine*exp(gamma)^2 3645279172256893 r009 Re(z^3+c),c=-1/66+35/51*I,n=14 3645279182716849 m001 (Chi(1)-Zeta(1/2))/(-GAMMA(19/24)+Landau) 3645279183326091 r005 Im(z^2+c),c=1/30+25/58*I,n=37 3645279188044666 a007 Real Root Of x^4+26*x^3-383*x^2-60*x+426 3645279188662005 r009 Im(z^3+c),c=-43/94+33/61*I,n=41 3645279197237120 m001 (exp(Pi)-ln(2))/(arctan(1/3)+Zeta(1,2)) 3645279201791629 b008 1+E-2*E^3 3645279203429081 l005 ln(sec(665/83)) 3645279206739352 r008 a(0)=4,K{-n^6,3-6*n^3+8*n^2-6*n} 3645279224130569 m001 GAMMA(23/24)/Lehmer/exp(GAMMA(7/24))^2 3645279236090365 a003 cos(Pi*3/40)-cos(Pi*33/113) 3645279247461369 m001 (1+2^(1/3))/(Landau+ZetaP(4)) 3645279248810650 r002 20th iterates of z^2 + 3645279255319148 r002 2th iterates of z^2 + 3645279255319148 r002 2th iterates of z^2 + 3645279257363763 m001 1/(2^(1/3))*FeigenbaumC*ln(GAMMA(17/24)) 3645279261355078 r005 Im(z^2+c),c=-7/122+29/60*I,n=30 3645279289081984 m001 GAMMA(5/6)^2*ln(RenyiParking)/Zeta(7)^2 3645279290211214 r005 Re(z^2+c),c=-85/78+12/47*I,n=53 3645279294105724 m001 (3^(1/3))^2*Salem^2*ln(GAMMA(7/24))^2 3645279297035843 b008 13*SphericalBesselJ[2,E] 3645279316132048 a008 Real Root of x^4-17*x^2-16*x-9 3645279318088973 a007 Real Root Of 149*x^4+393*x^3+789*x^2-937*x-430 3645279325744391 r009 Im(z^3+c),c=-1/23+47/58*I,n=10 3645279334387126 r005 Im(z^2+c),c=27/82+9/56*I,n=13 3645279350939736 a001 10749957122/21*1836311903^(11/21) 3645279351007581 a001 2139295485799/21*75025^(11/21) 3645279352484937 a007 Real Root Of -621*x^4+688*x^3+142*x^2+762*x-319 3645279358865802 a001 1/271396*(1/2*5^(1/2)+1/2)^17*76^(4/17) 3645279362826276 r009 Im(z^3+c),c=-15/34+15/53*I,n=39 3645279369321766 r005 Im(z^2+c),c=-1/70+17/37*I,n=53 3645279396777179 m001 1/exp((3^(1/3)))^2*CareFree^2*GAMMA(1/4)^2 3645279400381158 r005 Im(z^2+c),c=-1/70+17/37*I,n=56 3645279412906427 a001 5778/377*55^(8/37) 3645279419550431 m001 exp(1/exp(1))-ln(2)-GAMMA(5/24) 3645279437828393 r009 Im(z^3+c),c=-15/29+7/31*I,n=57 3645279443318477 a007 Real Root Of 113*x^4-898*x^3+304*x^2-893*x-33 3645279464525707 m001 ln(GAMMA(7/12))/FeigenbaumAlpha*arctan(1/2)^2 3645279487049618 m001 LandauRamanujan/(GolombDickman-PrimesInBinary) 3645279499178876 m001 (ln(2)/ln(10)+ln(2))/(3^(1/3)+GAMMA(17/24)) 3645279502097219 b008 Zeta[-13/6,5] 3645279506722684 r005 Im(z^2+c),c=9/56+11/32*I,n=22 3645279513531162 s002 sum(A191058[n]/((2^n-1)/n),n=1..infinity) 3645279513733094 m001 HardyLittlewoodC5-ln(2)-StolarskyHarborth 3645279514502676 r009 Im(z^3+c),c=-49/94+13/41*I,n=16 3645279520522704 a007 Real Root Of -677*x^4+69*x^3+956*x^2+852*x-429 3645279541137639 r009 Im(z^3+c),c=-25/46+15/41*I,n=36 3645279546704094 a007 Real Root Of 249*x^4+940*x^3+148*x^2+226*x+423 3645279551183438 a007 Real Root Of 28*x^4-157*x^3-269*x^2-774*x+325 3645279556438756 m005 (1/3*3^(1/2)-1/7)/(1/5*2^(1/2)+10/11) 3645279579958257 m001 1/Tribonacci*FeigenbaumKappa*ln(GAMMA(13/24)) 3645279583183355 m001 (GAMMA(17/24)+Gompertz)/(Salem-TwinPrimes) 3645279584327585 m001 (HardyLittlewoodC3+Trott)/(Zeta(1,2)-GaussAGM) 3645279601292197 l006 ln(92/3523) 3645279613863929 m001 ThueMorse-exp(1/Pi)*BesselI(1,1) 3645279639446926 r005 Re(z^2+c),c=-23/50+15/49*I,n=18 3645279645285837 m001 ln(2^(1/2)+1)/(FeigenbaumB-Riemann3rdZero) 3645279648491568 r005 Re(z^2+c),c=-4/29+49/54*I,n=13 3645279654622418 b008 1+Pi-FresnelS[3] 3645279683969650 r009 Im(z^3+c),c=-47/102+19/39*I,n=9 3645279696544900 m001 (TwinPrimes+ZetaP(3))/(BesselI(0,2)+Trott) 3645279710714171 m001 cosh(1)/Porter*ln(sqrt(2)) 3645279718125377 m001 1/Tribonacci/ln(LaplaceLimit)^2/log(1+sqrt(2)) 3645279718961786 r009 Im(z^3+c),c=-1/6+20/51*I,n=2 3645279726481000 r005 Im(z^2+c),c=-19/29+5/18*I,n=5 3645279738142223 k002 Champernowne real with 225/2*n^2-657/2*n+252 3645279738771697 r002 30th iterates of z^2 + 3645279741078218 r009 Im(z^3+c),c=-35/74+8/31*I,n=40 3645279744681747 r005 Im(z^2+c),c=-65/126+15/26*I,n=49 3645279750903412 a001 3/24157817*34^(23/24) 3645279774154837 r005 Im(z^2+c),c=-73/106+15/62*I,n=9 3645279774750549 r009 Im(z^3+c),c=-13/56+21/55*I,n=8 3645279777659005 r002 7th iterates of z^2 + 3645279782018659 m001 (MertensB1+Trott2nd)/(Catalan-Champernowne) 3645279783572572 r005 Im(z^2+c),c=13/46+5/21*I,n=18 3645279783997311 m001 Khinchin^HardyLittlewoodC3+Pi^(1/2) 3645279797394320 m001 (2^(1/3)*MinimumGamma+Psi(2,1/3))/MinimumGamma 3645279797554462 r009 Re(z^3+c),c=-45/94+13/45*I,n=42 3645279804756959 h001 (-4*exp(7)+2)/(-7*exp(1)+7) 3645279815969837 r009 Re(z^3+c),c=-53/102+36/59*I,n=36 3645279833354760 m001 (PolyaRandomWalk3D+ZetaQ(4))/(ln(gamma)+Cahen) 3645279847042596 r005 Im(z^2+c),c=-1/70+17/37*I,n=59 3645279851613201 r005 Im(z^2+c),c=-7/50+29/55*I,n=39 3645279869749472 a007 Real Root Of -785*x^4+559*x^3-228*x^2+858*x+384 3645279886277985 m001 (Magata-ZetaQ(4))^GAMMA(11/12) 3645279900015955 m001 (-Cahen+ErdosBorwein)/(gamma-sin(1)) 3645279914848554 a001 144/11*15127^(31/53) 3645279922301925 m005 (1/3*exp(1)-1/11)/(1/4*gamma-1/6) 3645279928986075 a001 521/233*28657^(1/21) 3645279934613812 q001 892/2447 3645279961102617 r005 Re(z^2+c),c=-13/14+36/205*I,n=40 3645279963610924 m002 -3/Pi^4+Sinh[Pi]/Pi 3645279965710430 r005 Im(z^2+c),c=-1/70+17/37*I,n=55 3645280010803369 r005 Re(z^2+c),c=11/58+31/42*I,n=5 3645280016450423 m001 (FeigenbaumD-Khinchin)/(gamma(1)-gamma(2)) 3645280024012393 h001 (-3*exp(1/3)-6)/(-5*exp(2)+9) 3645280046819261 r002 6th iterates of z^2 + 3645280048924808 r005 Im(z^2+c),c=-3/20+36/61*I,n=20 3645280069194758 a007 Real Root Of -164*x^4+492*x^3-329*x^2+536*x+20 3645280085004278 r005 Re(z^2+c),c=-33/70+17/61*I,n=54 3645280109498968 r005 Re(z^2+c),c=-35/74+8/17*I,n=37 3645280117438555 r005 Im(z^2+c),c=-61/90+21/61*I,n=36 3645280126441102 r005 Im(z^2+c),c=-7/6+41/141*I,n=29 3645280129457306 a001 322/55*377^(39/56) 3645280148907616 r005 Im(z^2+c),c=5/18+13/55*I,n=51 3645280152606861 r002 54th iterates of z^2 + 3645280153569394 r009 Im(z^3+c),c=-1/122+19/46*I,n=8 3645280173418181 a007 Real Root Of 243*x^4+682*x^3-960*x^2-830*x-141 3645280182042759 r005 Re(z^2+c),c=-17/30+13/32*I,n=40 3645280183411010 m001 (Grothendieck-Paris)/(BesselI(1,2)-GAMMA(5/6)) 3645280186710535 r009 Im(z^3+c),c=-9/52+19/48*I,n=11 3645280195540935 r005 Im(z^2+c),c=-1/70+17/37*I,n=62 3645280197703057 m005 (1/2*2^(1/2)-2/9)/(203/198+3/22*5^(1/2)) 3645280233850854 m001 arctan(1/3)^BesselI(0,2)-TreeGrowth2nd 3645280253660328 r005 Re(z^2+c),c=43/126+11/49*I,n=3 3645280257485496 r005 Im(z^2+c),c=-79/94+7/30*I,n=45 3645280267733511 m001 (gamma(2)+Kolakoski)/(ln(2)/ln(10)+Si(Pi)) 3645280271506664 r005 Im(z^2+c),c=-15/122+14/27*I,n=59 3645280283662723 m001 ln(2^(1/2)+1)/Zeta(1,-1)/MinimumGamma 3645280307557192 r005 Im(z^2+c),c=-11/74+25/47*I,n=47 3645280311114987 a007 Real Root Of 649*x^4+199*x^3+114*x^2-991*x+325 3645280316323370 m005 (1/3*gamma+2/5)/(3/10*5^(1/2)-5/6) 3645280316418126 r005 Re(z^2+c),c=-65/118+17/63*I,n=5 3645280321490068 a007 Real Root Of 619*x^4-200*x^3+621*x^2+357*x+27 3645280323008160 a007 Real Root Of 178*x^4+367*x^3-883*x^2+472*x-199 3645280325716683 a007 Real Root Of -433*x^4+685*x^3-902*x^2-54*x+141 3645280325824405 r009 Im(z^3+c),c=-43/106+14/59*I,n=3 3645280345585469 a007 Real Root Of 743*x^4-767*x^3+614*x^2-870*x-449 3645280352696640 m001 (Ei(1)+1/3)/(exp(sqrt(2))+2) 3645280376816923 r005 Im(z^2+c),c=-13/94+10/19*I,n=60 3645280378368652 a007 Real Root Of -441*x^4+420*x^3-843*x^2+444*x+302 3645280382909175 m001 1/GAMMA(11/24)/GAMMA(1/4)/exp(Zeta(1,2)) 3645280387385108 r009 Im(z^3+c),c=-7/102+13/29*I,n=2 3645280400811682 m005 (1/2*Catalan+1/3)/(1/2*Pi+3/5) 3645280405447297 m005 (1/3*exp(1)-2/11)/(36/35+3/7*5^(1/2)) 3645280406427429 r005 Im(z^2+c),c=-1/70+17/37*I,n=45 3645280406998220 m001 BesselJ(1,1)-ln(gamma)-GAMMA(2/3) 3645280406998220 m001 BesselJ(1,1)-log(gamma)-GAMMA(2/3) 3645280415278891 a007 Real Root Of 208*x^4+805*x^3-19*x^2-833*x-518 3645280417081775 m005 (5/6*2^(1/2)-2/3)/(1/2*Pi-1/6) 3645280424570955 m005 (1/2*Catalan+3/7)/(8/9*5^(1/2)+4/9) 3645280424817904 r005 Im(z^2+c),c=-1/70+17/37*I,n=63 3645280427161669 m006 (3/5*exp(Pi)-1/6)/(2/3*ln(Pi)+3) 3645280433848689 m001 Catalan^2*FibonacciFactorial^2/exp(sqrt(Pi))^2 3645280434111491 r009 Im(z^3+c),c=-27/52+11/50*I,n=15 3645280441694306 r005 Im(z^2+c),c=1/11+13/33*I,n=39 3645280466072980 r005 Im(z^2+c),c=-5/106+29/59*I,n=10 3645280500850531 m005 (1/3*3^(1/2)+1/12)/(7/10*3^(1/2)+3/5) 3645280506463216 m003 -19/6+Sqrt[5]/8-ProductLog[1/2+Sqrt[5]/2] 3645280524865576 r009 Re(z^3+c),c=-47/106+12/49*I,n=50 3645280528611732 a007 Real Root Of 292*x^4-678*x^3-350*x^2-369*x-126 3645280547845186 r009 Re(z^3+c),c=-19/52+37/54*I,n=36 3645280551758757 r005 Re(z^2+c),c=-21/52+7/13*I,n=37 3645280555373769 r005 Im(z^2+c),c=-11/12+2/65*I,n=5 3645280582743924 r005 Re(z^2+c),c=-9/14+38/145*I,n=22 3645280584323438 m001 (3^(1/2)-ln(2^(1/2)+1))/(-Kac+Thue) 3645280591777848 a007 Real Root Of 180*x^4+685*x^3-38*x^2-481*x+149 3645280610775181 r005 Im(z^2+c),c=-1/70+17/37*I,n=64 3645280612244897 r005 Re(z^2+c),c=-23/56+7/20*I,n=2 3645280620932091 a007 Real Root Of -265*x^4-793*x^3+882*x^2+645*x-989 3645280622604084 a007 Real Root Of -919*x^4+875*x^3-100*x^2+623*x+299 3645280624089010 a001 2139295485799/34*2971215073^(7/24) 3645280626615800 a007 Real Root Of -608*x^4-531*x^3-937*x^2+432*x+267 3645280637974874 m001 ln(Sierpinski)*KhintchineHarmonic^2*(2^(1/3)) 3645280640294076 r002 48th iterates of z^2 + 3645280640839040 r005 Im(z^2+c),c=-1/70+17/37*I,n=58 3645280644820717 r005 Im(z^2+c),c=-1/70+17/37*I,n=60 3645280651925408 m001 1/GAMMA(5/12)^2*GaussKuzminWirsing/ln(Zeta(3)) 3645280683308101 p004 log(30137/787) 3645280692242115 r005 Re(z^2+c),c=-17/14+25/163*I,n=38 3645280695640740 m005 (1/3*2^(1/2)+3/7)/(3/10*3^(1/2)-3/11) 3645280705057652 r005 Im(z^2+c),c=-1/70+17/37*I,n=61 3645280707000909 m001 BesselJ(1,1)*exp(LandauRamanujan)^2/GAMMA(1/6) 3645280707700228 a001 32951280099/2207*3^(13/16) 3645280710673895 a007 Real Root Of -69*x^4-363*x^3-663*x^2-752*x+669 3645280719786562 r005 Re(z^2+c),c=-27/52+19/44*I,n=19 3645280741142823 k002 Champernowne real with 113*n^2-330*n+253 3645280745061294 m005 (1/2*2^(1/2)+5/12)/(9/10*exp(1)+7/11) 3645280786175717 r005 Re(z^2+c),c=-57/82+8/59*I,n=19 3645280792743812 r009 Re(z^3+c),c=-55/114+5/17*I,n=43 3645280817347685 r005 Im(z^2+c),c=-10/27+16/29*I,n=43 3645280831058444 r009 Re(z^3+c),c=-47/106+12/49*I,n=49 3645280832204750 m001 (2^(1/3)+arctan(1/2))/(Pi^(1/2)+Otter) 3645280836375680 a007 Real Root Of -958*x^4+516*x^3+27*x^2+374*x-148 3645280836615205 m001 Zeta(1/2)*GAMMA(23/24)+MinimumGamma 3645280836945875 r005 Re(z^2+c),c=-23/52+18/41*I,n=35 3645280839896199 r009 Im(z^3+c),c=-43/94+10/37*I,n=26 3645280841511162 r005 Re(z^2+c),c=-79/98+12/47*I,n=6 3645280846485281 m001 (MertensB1+MertensB3)/(cos(1/12*Pi)+Magata) 3645280849777677 h001 (2/7*exp(1)+4/11)/(11/12*exp(1)+7/11) 3645280863036098 r002 53th iterates of z^2 + 3645280871282966 b008 71/2+Csch[Catalan] 3645280879446008 r002 14th iterates of z^2 + 3645280883122171 a007 Real Root Of -18*x^4-663*x^3-241*x^2+342*x+931 3645280889049763 l006 ln(7941/7970) 3645280891122328 a007 Real Root Of 712*x^4-57*x^3-301*x^2-235*x-61 3645280891671076 r009 Im(z^3+c),c=-7/27+20/53*I,n=6 3645280922879979 m009 (1/3*Psi(1,1/3)-5/6)/(32*Catalan+4*Pi^2+2/3) 3645280929421089 r009 Re(z^3+c),c=-19/52+37/54*I,n=46 3645280933888261 r005 Im(z^2+c),c=11/52+7/23*I,n=15 3645280947917264 m005 (1/2*Pi+2/3)/(-31/77+5/11*5^(1/2)) 3645280948652003 r005 Re(z^2+c),c=-15/34+25/61*I,n=63 3645280951051976 m001 (KomornikLoreti-Totient)/(GAMMA(3/4)+gamma(3)) 3645280951208903 r009 Re(z^3+c),c=-19/52+37/54*I,n=56 3645280952843149 r009 Re(z^3+c),c=-19/52+37/54*I,n=61 3645280957018540 r009 Im(z^3+c),c=-11/42+40/59*I,n=5 3645280958049051 r009 Re(z^3+c),c=-19/52+37/54*I,n=51 3645280965220845 r005 Re(z^2+c),c=-41/94+8/19*I,n=41 3645280978606675 m001 (Zeta(5)-FransenRobinson)/(Trott+Weierstrass) 3645280993177868 r002 15th iterates of z^2 + 3645281012222187 r005 Re(z^2+c),c=-29/60+8/39*I,n=48 3645281013475241 l006 ln(201/7697) 3645281018027571 q001 1375/3772 3645281018027571 r002 2th iterates of z^2 + 3645281032311267 a001 1/103664*(1/2*5^(1/2)+1/2)^15*76^(4/17) 3645281033775266 m002 -Pi+4*Pi^2+Log[Pi]/Pi^2 3645281035426439 a001 7/75025*233^(1/4) 3645281048104824 m005 (1/2*5^(1/2)-4/9)/(25/22+7/22*5^(1/2)) 3645281049230762 r009 Re(z^3+c),c=-19/52+37/54*I,n=41 3645281050717220 r002 17th iterates of z^2 + 3645281054012339 m001 1/GAMMA(13/24)^2*(2^(1/3))*exp(GAMMA(23/24))^2 3645281057422220 m001 gamma(3)/LaplaceLimit*Salem 3645281072939246 m001 (Lehmer+Mills)/(cos(1)+FeigenbaumDelta) 3645281073415506 m001 (-GAMMA(5/6)+Bloch)/(BesselJ(0,1)+Zeta(5)) 3645281088254703 b008 1+(12*Cosh[1])/7 3645281099574542 a001 832040/199*199^(9/22) 3645281099925690 r009 Re(z^3+c),c=-47/106+12/49*I,n=54 3645281102444466 r009 Re(z^3+c),c=-7/102+37/58*I,n=16 3645281108648151 a007 Real Root Of 226*x^4+12*x^3-132*x^2-749*x+286 3645281108714628 r005 Im(z^2+c),c=-59/122+1/16*I,n=38 3645281109404562 m005 (4/5*2^(1/2)-1/6)/(1/4*2^(1/2)-3) 3645281111408487 r005 Im(z^2+c),c=-15/122+14/27*I,n=62 3645281119386297 m005 (1/3*gamma-2/3)/(1/2*Zeta(3)+7/10) 3645281121555034 m001 Conway*(GAMMA(2/3)+3^(1/3)) 3645281128416469 r009 Re(z^3+c),c=-45/122+7/10*I,n=36 3645281131100823 m001 (LambertW(1)-sin(1/12*Pi))/(Artin+Bloch) 3645281168837483 m005 (17/66+1/6*5^(1/2))/(159/220+9/20*5^(1/2)) 3645281172636995 m005 (1/3*Catalan+1/6)/(8/11*gamma+7/8) 3645281174412796 r005 Re(z^2+c),c=-29/60+8/39*I,n=46 3645281183739850 r002 37th iterates of z^2 + 3645281183739850 r002 37th iterates of z^2 + 3645281232728671 a007 Real Root Of -570*x^4+97*x^3+720*x^2+674*x-336 3645281234418478 m006 (1/6*exp(Pi)+2)/(3*exp(2*Pi)+1/5) 3645281237360875 r005 Re(z^2+c),c=-6/13+18/55*I,n=46 3645281272831717 r005 Re(z^2+c),c=-45/94+11/38*I,n=16 3645281282095872 r005 Im(z^2+c),c=-1/70+17/37*I,n=57 3645281285072934 a007 Real Root Of -91*x^4-321*x^3+22*x^2+107*x+617 3645281300054395 r009 Re(z^3+c),c=-47/106+12/49*I,n=58 3645281313908254 r009 Re(z^3+c),c=-47/106+12/49*I,n=53 3645281326617517 r005 Im(z^2+c),c=9/58+9/25*I,n=9 3645281329287608 r005 Im(z^2+c),c=-1/70+17/37*I,n=50 3645281332432587 r005 Im(z^2+c),c=5/64+15/37*I,n=15 3645281335244811 a001 89/4106118243*2^(3/4) 3645281346899392 a001 43133785636/2889*3^(13/16) 3645281349414244 m005 (1/2*exp(1)+5/8)/(1/4*gamma+2/5) 3645281364638138 r009 Re(z^3+c),c=-47/106+12/49*I,n=62 3645281377585116 r009 Re(z^3+c),c=-47/106+12/49*I,n=59 3645281381546955 r009 Re(z^3+c),c=-47/106+12/49*I,n=63 3645281385831735 h001 (10/11*exp(2)+1/6)/(4/11*exp(1)+9/10) 3645281385867904 r005 Im(z^2+c),c=31/114+7/30*I,n=14 3645281398503626 a001 521/5*55^(5/16) 3645281399319329 r009 Re(z^3+c),c=-47/106+12/49*I,n=57 3645281403645377 r009 Re(z^3+c),c=-47/106+12/49*I,n=61 3645281403820727 m001 ZetaP(4)^MertensB1/(ZetaP(4)^BesselJ(0,1)) 3645281405035398 r009 Re(z^3+c),c=-47/106+12/49*I,n=64 3645281405582937 r009 Re(z^3+c),c=-47/106+12/49*I,n=55 3645281407267469 a007 Real Root Of -563*x^4+742*x^3+172*x^2+977*x-405 3645281414622942 a008 Real Root of x^4-2*x^3-213*x^2+214*x+3337 3645281429784588 r005 Im(z^2+c),c=7/22+11/61*I,n=31 3645281431233896 r002 15th iterates of z^2 + 3645281440157311 a001 32264490531/2161*3^(13/16) 3645281440767170 r009 Re(z^3+c),c=-47/106+12/49*I,n=60 3645281446620725 m005 (1/2*Zeta(3)-3/5)/(1/7*Pi-1/6) 3645281453763459 a001 591286729879/39603*3^(13/16) 3645281455748569 a001 774004377960/51841*3^(13/16) 3645281456038193 a001 4052739537881/271443*3^(13/16) 3645281456080448 a001 1515744265389/101521*3^(13/16) 3645281456106564 a001 3278735159921/219602*3^(13/16) 3645281456217190 a001 2504730781961/167761*3^(13/16) 3645281456975435 a001 956722026041/64079*3^(13/16) 3645281458712732 a007 Real Root Of -598*x^4-181*x^3-78*x^2+877*x-290 3645281461298650 r009 Im(z^3+c),c=-7/40+49/58*I,n=12 3645281462172521 a001 182717648081/12238*3^(13/16) 3645281472575852 m005 (1/2*Pi-5/8)/(4*gamma+2/7) 3645281472850431 r009 Im(z^3+c),c=-1/46+26/63*I,n=11 3645281493768770 r005 Im(z^2+c),c=-11/10+1/232*I,n=17 3645281497793878 a001 139583862445/9349*3^(13/16) 3645281507500636 r005 Re(z^2+c),c=-2/3+97/161*I,n=3 3645281512238371 r009 Re(z^3+c),c=-1/16+38/63*I,n=34 3645281527385957 m001 Chi(1)*LambertW(1)/Conway 3645281528616985 a007 Real Root Of 190*x^4+476*x^3-812*x^2-51*x+112 3645281536695174 r005 Im(z^2+c),c=-15/122+14/27*I,n=41 3645281555470415 r009 Re(z^3+c),c=-47/106+12/49*I,n=56 3645281555653166 m001 1/(3^(1/3))/ArtinRank2/exp(sqrt(1+sqrt(3)))^2 3645281568748164 r005 Re(z^2+c),c=-47/106+23/53*I,n=32 3645281569691898 a007 Real Root Of -222*x^4-302*x^3-260*x^2+567*x+21 3645281570306777 r005 Re(z^2+c),c=-49/110+29/49*I,n=8 3645281571069983 m001 (-TreeGrowth2nd+ZetaP(2))/(Si(Pi)+GAMMA(7/12)) 3645281584373020 m002 5/Pi^2+Pi^4+Pi^5*Cosh[Pi] 3645281594507412 r002 10th iterates of z^2 + 3645281607567149 r009 Re(z^3+c),c=-6/11+40/61*I,n=5 3645281616869174 m001 GAMMA(23/24)*MinimumGamma/exp(sqrt(2)) 3645281618831057 r009 Re(z^3+c),c=-47/106+12/49*I,n=51 3645281648570955 a007 Real Root Of 57*x^4-698*x^3+566*x^2-683*x-359 3645281650976917 a003 cos(Pi*12/37)-sin(Pi*23/66) 3645281657599179 a008 Real Root of (-4+9*x+5*x^2+3*x^4+6*x^8) 3645281668019652 m001 Kolakoski*Porter-Zeta(3) 3645281671101322 b008 2+(7*Sinh[1])/5 3645281703011536 a007 Real Root Of 903*x^4-684*x^3+304*x^2+122*x-45 3645281706627878 a007 Real Root Of -54*x^4-393*x^3-582*x^2+633*x+290 3645281707491887 r005 Re(z^2+c),c=-1/26+29/50*I,n=4 3645281709842851 r005 Im(z^2+c),c=27/106+6/23*I,n=30 3645281723488340 r005 Im(z^2+c),c=33/118+13/53*I,n=17 3645281736222435 a008 Real Root of x^3-x^2-180*x+621 3645281737727966 r005 Re(z^2+c),c=-13/28+17/54*I,n=47 3645281741946312 a001 53316291173/3571*3^(13/16) 3645281743913131 r002 5th iterates of z^2 + 3645281744143423 k002 Champernowne real with 227/2*n^2-663/2*n+254 3645281747752825 a007 Real Root Of 301*x^4-792*x^3-262*x^2-357*x+198 3645281748391751 m001 1/MadelungNaCl^2*exp(Kolakoski)^2/BesselJ(1,1) 3645281763973993 m001 (FeigenbaumKappa+Magata)/(ln(3)+exp(-1/2*Pi)) 3645281773827381 b008 11/17+ArcSinh[10] 3645281783881089 a003 sin(Pi*13/108)*sin(Pi*31/69) 3645281791129998 m001 OneNinth-MertensB2-exp(1) 3645281796869088 a007 Real Root Of -925*x^4+111*x^3-697*x^2+652*x+352 3645281802280687 a007 Real Root Of 711*x^4+142*x^3+781*x^2-712*x-369 3645281810673135 r005 Re(z^2+c),c=-29/22+8/103*I,n=36 3645281811438923 r005 Re(z^2+c),c=-13/29+20/61*I,n=9 3645281821421240 a001 9227465/843*123^(1/4) 3645281840466559 r005 Re(z^2+c),c=7/44+21/41*I,n=35 3645281845753346 m001 LaplaceLimit^(Pi*2^(1/2)/GAMMA(3/4))-MertensB1 3645281847382479 a003 sin(Pi*1/108)*sin(Pi*1/25) 3645281853095156 m001 (Cahen-MasserGramainDelta)/(Artin-ArtinRank2) 3645281859314970 m001 BesselJ(0,1)*ln(ArtinRank2)*GAMMA(1/12)^2 3645281876723004 a001 521/2*21^(13/15) 3645281885700176 m001 (arctan(1/2)-cos(1/12*Pi))/(GaussAGM+Landau) 3645281889130764 b008 20*Sqrt[Pi]+Coth[Pi] 3645281898186268 r009 Re(z^3+c),c=-47/106+12/49*I,n=52 3645281902651412 r005 Im(z^2+c),c=21/74+14/61*I,n=53 3645281906587822 r005 Re(z^2+c),c=-29/60+8/39*I,n=34 3645281909589035 m001 (Totient+ZetaP(4))/(Zeta(3)-BesselI(1,2)) 3645281926804944 m005 (1/2*exp(1)-1/3)/(3/10*2^(1/2)-1/7) 3645281935129895 m001 (Porter-Trott)/(sin(1/5*Pi)+Magata) 3645281938265586 m005 (31/44+1/4*5^(1/2))/(3/7*2^(1/2)-4/7) 3645281955672934 b008 ExpIntegralEi[5/346] 3645281960085999 r005 Re(z^2+c),c=-9/14+21/79*I,n=22 3645281961833181 k007 concat of cont frac of 3645281970070282 m001 (Pi+2*Pi/GAMMA(5/6))/(Cahen+KhinchinHarmonic) 3645281982132661 r005 Re(z^2+c),c=35/122+26/61*I,n=26 3645281993689147 m001 1/Salem*ln(FeigenbaumB)*GAMMA(7/12)^2 3645281998091126 a007 Real Root Of -72*x^4-372*x^3-394*x^2+134*x+418 3645282008724120 r005 Im(z^2+c),c=-1/74+28/61*I,n=42 3645282037612252 r005 Re(z^2+c),c=-15/26+40/103*I,n=35 3645282049119378 m001 Rabbit/exp(Lehmer)/OneNinth 3645282083415710 r005 Im(z^2+c),c=-3/58+27/55*I,n=16 3645282130306176 r005 Im(z^2+c),c=-17/28+25/46*I,n=5 3645282133820237 a005 (1/sin(97/201*Pi))^864 3645282134844484 r004 Re(z^2+c),c=-5/11+5/24*I,z(0)=-1,n=12 3645282135725587 r009 Im(z^3+c),c=-19/40+16/63*I,n=16 3645282139052206 r005 Im(z^2+c),c=-2/29+20/41*I,n=23 3645282145439433 r005 Re(z^2+c),c=-27/62+23/55*I,n=36 3645282151081544 s001 sum(exp(-Pi/4)^n*A043397[n],n=1..infinity) 3645282152873654 m005 (1/2*Zeta(3)+6/7)/(2/9*2^(1/2)-5/7) 3645282172413080 r009 Im(z^3+c),c=-1/40+26/63*I,n=8 3645282176901592 r005 Im(z^2+c),c=-19/26+17/98*I,n=28 3645282178005015 r005 Im(z^2+c),c=-7/118+16/33*I,n=37 3645282180340015 r005 Re(z^2+c),c=1/30+25/42*I,n=6 3645282187785757 m001 ln(GAMMA(11/12))/Salem^2*cos(Pi/12)^2 3645282192786169 m001 1/exp(Khintchine)^2*Bloch/BesselK(1,1) 3645282195160383 r005 Re(z^2+c),c=-59/90+15/49*I,n=45 3645282205408002 l006 ln(109/4174) 3645282211827163 m001 FeigenbaumDelta^BesselK(0,1)+3^(1/2) 3645282211827163 m001 FeigenbaumDelta^BesselK(0,1)+sqrt(3) 3645282214633611 h001 (1/2*exp(2)+3/11)/(1/7*exp(1)+7/10) 3645282215426208 r005 Im(z^2+c),c=-9/74+29/56*I,n=57 3645282223380668 m001 Salem^2*exp(Khintchine)/GAMMA(1/6) 3645282224406894 r002 52th iterates of z^2 + 3645282236750750 r005 Re(z^2+c),c=-3/44+29/46*I,n=13 3645282254361726 a007 Real Root Of -294*x^4-931*x^3+360*x^2-549*x+31 3645282259328857 r005 Re(z^2+c),c=-7/40+38/43*I,n=10 3645282265231924 r005 Im(z^2+c),c=-13/102+25/48*I,n=56 3645282285749465 m001 (exp(1/exp(1))-Cahen)/(QuadraticClass-Robbin) 3645282292455272 r005 Re(z^2+c),c=-51/106+13/58*I,n=25 3645282295173275 r002 9th iterates of z^2 + 3645282317960252 r002 5th iterates of z^2 + 3645282324341238 p003 LerchPhi(1/8,5,286/147) 3645282332581403 r005 Re(z^2+c),c=-22/29+23/54*I,n=2 3645282338389693 m001 (QuadraticClass+ZetaQ(3))/(1+3^(1/3)) 3645282341966440 m001 ((1+3^(1/2))^(1/2))^Salem+Tribonacci 3645282343010567 h001 (1/9*exp(2)+6/7)/(1/2*exp(2)+10/11) 3645282349867649 r005 Re(z^2+c),c=-29/94+22/39*I,n=29 3645282357597827 a007 Real Root Of 303*x^4+967*x^3-658*x^2-535*x+132 3645282381041603 a007 Real Root Of -841*x^4-546*x^3-792*x^2+909*x+425 3645282412611726 m003 -43/12+(3*Sqrt[5])/16-Log[1/2+Sqrt[5]/2] 3645282415652988 a007 Real Root Of -484*x^4-384*x^3-865*x^2+228*x+188 3645282418556489 m001 (2^(1/3)-Shi(1))/(-Conway+RenyiParking) 3645282425774999 m001 MadelungNaCl^GAMMA(3/4)*Tribonacci 3645282446613162 l006 ln(9643/10001) 3645282455231654 a003 cos(Pi*22/103)-cos(Pi*29/80) 3645282466456153 b008 5/28+ArcSinh[16] 3645282466583923 a007 Real Root Of -125*x^4-633*x^3-725*x^2-480*x-706 3645282484683661 r005 Im(z^2+c),c=-17/27+21/47*I,n=49 3645282495942708 r005 Im(z^2+c),c=-3/122+25/51*I,n=13 3645282499395435 m001 Trott*ln(MinimumGamma)/GAMMA(5/6) 3645282500831539 p001 sum(1/(573*n+278)/(25^n),n=0..infinity) 3645282508224939 a001 7/5702887*1548008755920^(16/17) 3645282512719245 a007 Real Root Of -78*x^4+898*x^3-957*x^2+768*x+452 3645282514305560 r005 Im(z^2+c),c=-7/9+14/125*I,n=48 3645282515659347 m005 (-3/20+1/4*5^(1/2))/(3/4*exp(1)-11/12) 3645282521327745 r009 Im(z^3+c),c=-9/17+17/61*I,n=25 3645282529190230 r009 Im(z^3+c),c=-15/44+14/41*I,n=19 3645282532642185 r002 17th iterates of z^2 + 3645282536725041 r005 Im(z^2+c),c=-20/17+9/22*I,n=3 3645282566588719 r005 Re(z^2+c),c=-49/102+7/31*I,n=36 3645282573264335 l006 ln(7014/10099) 3645282581887648 r002 31th iterates of z^2 + 3645282588682506 m005 (1/2*Zeta(3)+2/11)/(4/9*Catalan-3/7) 3645282589615167 r009 Im(z^3+c),c=-27/52+13/58*I,n=39 3645282596066786 r005 Im(z^2+c),c=27/110+10/37*I,n=47 3645282608320286 r005 Re(z^2+c),c=-29/28+2/41*I,n=16 3645282611815865 m005 (1/3*2^(1/2)-2/5)/(11/12*5^(1/2)-1/11) 3645282612065017 m001 (BesselJ(0,1)-ln(2))/(-DuboisRaymond+ZetaP(3)) 3645282612732891 s002 sum(A283997[n]/(exp(n)+1),n=1..infinity) 3645282613252319 r005 Im(z^2+c),c=-21/110+20/37*I,n=12 3645282614053213 r005 Im(z^2+c),c=-1/70+17/37*I,n=54 3645282617413230 a001 7/2584*433494437^(16/17) 3645282631315368 m001 (BesselJ(1,1)-CareFree)/(Sarnak+ZetaQ(4)) 3645282635849207 a005 (1/sin(94/231*Pi))^136 3645282643989910 m001 gamma+BesselI(1,1)+FeigenbaumAlpha 3645282643989910 m001 gamma+FeigenbaumAlpha+BesselI(1,1) 3645282644604112 r002 43th iterates of z^2 + 3645282645929921 r009 Re(z^3+c),c=-19/52+37/54*I,n=31 3645282648423684 r005 Re(z^2+c),c=-29/62+14/47*I,n=47 3645282648574156 b008 CosIntegral[5/341] 3645282648665768 r009 Re(z^3+c),c=-47/106+12/49*I,n=47 3645282656715259 r009 Re(z^3+c),c=-11/114+29/54*I,n=4 3645282661945158 r009 Im(z^3+c),c=-4/11+11/29*I,n=3 3645282669628649 r005 Im(z^2+c),c=-73/94+5/37*I,n=39 3645282683935220 m005 (1/2*Pi+4/11)/(6/11*Zeta(3)-1/8) 3645282687728697 r005 Re(z^2+c),c=11/27+14/41*I,n=6 3645282699678578 m001 (Psi(1,1/3)+5^(1/2))/(-GAMMA(5/6)+Porter) 3645282716599556 a007 Real Root Of -506*x^4-904*x^3-487*x^2+464*x+199 3645282716638928 m001 (Porter-TwinPrimes)/(Bloch-Khinchin) 3645282719462037 l006 ln(6773/9752) 3645282723191758 m001 MadelungNaCl^Salem/(LandauRamanujan2nd^Salem) 3645282726845472 a007 Real Root Of 273*x^4+862*x^3-264*x^2+834*x+98 3645282737085665 r005 Im(z^2+c),c=-17/31+3/46*I,n=37 3645282747144023 k002 Champernowne real with 114*n^2-333*n+255 3645282752562767 a001 2/89*987^(31/42) 3645282758343842 p001 sum((-1)^n/(463*n+367)/n/(3^n),n=1..infinity) 3645282762297284 a001 17711/521*29^(31/44) 3645282790985813 a007 Real Root Of 164*x^4-549*x^3+215*x^2+269*x+40 3645282800017694 b008 ArcCoth[2-17*Sqrt[3]] 3645282804154494 r009 Im(z^3+c),c=-9/34+13/35*I,n=10 3645282805485017 m001 (1+CareFree)/(-Champernowne+ZetaP(4)) 3645282811144299 m001 Rabbit*(GAMMA(19/24)-TwinPrimes) 3645282818272092 r002 24th iterates of z^2 + 3645282821167312 r005 Re(z^2+c),c=-19/24+8/43*I,n=14 3645282836609878 r002 17th iterates of z^2 + 3645282838695522 m001 OneNinth*exp(Riemann3rdZero)/arctan(1/2)^2 3645282841020033 r009 Re(z^3+c),c=-47/106+12/49*I,n=48 3645282848732535 r005 Re(z^2+c),c=-53/110+11/51*I,n=35 3645282852361446 a007 Real Root Of 855*x^4-936*x^3+724*x^2-300*x-266 3645282853031667 r005 Re(z^2+c),c=-29/60+8/39*I,n=43 3645282867484740 r005 Im(z^2+c),c=-5/8+59/102*I,n=5 3645282871051191 r005 Im(z^2+c),c=-5/9+4/59*I,n=22 3645282876447750 l006 ln(6532/9405) 3645282878339468 s002 sum(A132691[n]/(exp(n)+1),n=1..infinity) 3645282884250388 a007 Real Root Of -99*x^4-151*x^3+666*x^2-345*x+59 3645282893603169 r002 62th iterates of z^2 + 3645282897359403 s002 sum(A132691[n]/(exp(n)),n=1..infinity) 3645282902442570 m001 BesselI(1,2)^((3^(1/3))*GAMMA(11/24)) 3645282904678176 m001 (Pi^(1/2)-AlladiGrinstead)/(Trott2nd-ZetaQ(2)) 3645282916379337 s002 sum(A132691[n]/(exp(n)-1),n=1..infinity) 3645282930381035 r005 Re(z^2+c),c=-29/60+11/54*I,n=28 3645282942948627 m001 (Porter+Riemann3rdZero)/(Conway-gamma) 3645282945122809 a007 Real Root Of 832*x^4-400*x^3+17*x^2-542*x+200 3645282949856763 b008 3*(-1+Log[Khinchin]) 3645282953029305 p003 LerchPhi(1/10,2,71/42) 3645282963711401 m001 (-FeigenbaumD+TwinPrimes)/(Artin-Psi(2,1/3)) 3645282969980560 m001 Landau/(exp(-1/2*Pi)+GlaisherKinkelin) 3645282971679567 r005 Re(z^2+c),c=-45/94+9/37*I,n=23 3645282978402035 m001 (2/3)^GAMMA(7/24)/((2/3)^Lehmer) 3645282995490044 a007 Real Root Of -151*x^4-326*x^3-467*x^2-126*x+3 3645283015345969 r005 Re(z^2+c),c=-23/58+26/51*I,n=48 3645283017580448 a007 Real Root Of -97*x^4-259*x^3-381*x^2+434*x+198 3645283018867924 q001 483/1325 3645283021611603 a007 Real Root Of -217*x^4-701*x^3+511*x^2+416*x-913 3645283022121445 r005 Im(z^2+c),c=23/70+5/37*I,n=27 3645283028370832 a007 Real Root Of -732*x^4+623*x^3-731*x^2+548*x+340 3645283036945254 m001 Landau*(Trott+TwinPrimes) 3645283045461295 l006 ln(6291/9058) 3645283059584980 b008 33+Csch[2/7] 3645283070875561 a007 Real Root Of 259*x^4-949*x^3+331*x^2+487*x+83 3645283071284227 r005 Im(z^2+c),c=37/110+7/33*I,n=25 3645283084038496 r005 Im(z^2+c),c=-11/14+67/251*I,n=6 3645283092385649 r005 Im(z^2+c),c=35/122+7/31*I,n=37 3645283096599024 m001 (Porter+Rabbit)/(2^(1/3)-LaplaceLimit) 3645283115024145 m005 (1/2*5^(1/2)-6)/(5/12*2^(1/2)+3/4) 3645283123988444 r005 Im(z^2+c),c=-5/82+17/35*I,n=55 3645283128455199 m001 MertensB1/Robbin/Trott 3645283128612718 a007 Real Root Of 537*x^4+647*x^3+339*x^2-400*x-169 3645283129179432 r005 Re(z^2+c),c=-39/86+11/30*I,n=31 3645283136256180 m001 (Bloch-FeigenbaumKappa)/(Khinchin-MertensB1) 3645283150680444 r005 Im(z^2+c),c=-79/126+4/59*I,n=48 3645283178336132 r005 Re(z^2+c),c=-21/46+19/55*I,n=28 3645283192191174 a001 21/3010349*76^(21/55) 3645283192730033 m001 (QuadraticClass+Sarnak)/(Catalan-PlouffeB) 3645283203031107 a007 Real Root Of 981*x^4+370*x^3-213*x^2-606*x-192 3645283205621963 m001 (1-Si(Pi))/(-GAMMA(13/24)+Riemann3rdZero) 3645283206019718 h001 (-7*exp(3)-2)/(-7*exp(4)-9) 3645283209848844 r002 7th iterates of z^2 + 3645283216546877 r009 Re(z^3+c),c=-43/106+8/37*I,n=6 3645283219312431 r005 Re(z^2+c),c=-35/64+20/47*I,n=3 3645283224148991 s002 sum(A204861[n]/((exp(n)-1)/n),n=1..infinity) 3645283224889789 l006 ln(235/8999) 3645283225525384 r005 Im(z^2+c),c=-109/86+5/13*I,n=9 3645283227940048 l006 ln(6050/8711) 3645283238342971 m001 1/2*Cahen^ZetaQ(2)/Pi*3^(1/2)*GAMMA(2/3) 3645283244729352 r009 Im(z^3+c),c=-47/114+14/25*I,n=6 3645283252437563 l003 cosh(1+59/61) 3645283252437563 l004 cosh(120/61) 3645283256934292 r005 Im(z^2+c),c=-1/6+13/23*I,n=29 3645283259038446 m001 ZetaP(3)^HeathBrownMoroz*ZetaP(3)^gamma 3645283272033998 r005 Re(z^2+c),c=-59/122+13/64*I,n=43 3645283272324036 m001 (Catalan-GAMMA(2/3))/(-ln(2)+Ei(1)) 3645283275333089 m001 (Lehmer-OrthogonalArrays)/(Pi-Catalan) 3645283282301669 r005 Im(z^2+c),c=3/122+24/55*I,n=32 3645283290860791 r005 Im(z^2+c),c=-1/28+25/53*I,n=41 3645283292857492 r005 Re(z^2+c),c=19/52+21/41*I,n=3 3645283293068466 a007 Real Root Of 180*x^4+437*x^3-695*x^2+318*x-221 3645283309484245 m001 (Pi-Shi(1))/(Bloch-PrimesInBinary) 3645283353528964 m001 (Totient+Trott)/(ln(2)-FellerTornier) 3645283357938564 a007 Real Root Of -737*x^4+896*x^3+256*x^2+255*x+9 3645283359370995 a007 Real Root Of -844*x^4+737*x^3+587*x^2-79*x-70 3645283387152454 m001 RenyiParking^2/MinimumGamma/exp(sinh(1))^2 3645283415392871 a001 10182505537/682*3^(13/16) 3645283419118687 m001 (Pi+cos(1/5*Pi))/(Artin+Rabbit) 3645283425559916 l006 ln(5809/8364) 3645283430241846 a007 Real Root Of 223*x^4+707*x^3-453*x^2-378*x-488 3645283430843975 b008 E+73*Tanh[1/2] 3645283434995972 m001 (Magata-exp(Pi)*ZetaP(3))/ZetaP(3) 3645283468492398 r005 Re(z^2+c),c=-27/56+7/25*I,n=16 3645283468639117 g005 GAMMA(5/11)*GAMMA(1/9)*GAMMA(2/7)/GAMMA(5/8) 3645283469625148 r005 Re(z^2+c),c=-17/18+33/152*I,n=64 3645283477204000 r005 Im(z^2+c),c=-27/26+23/89*I,n=60 3645283483379024 m001 (ln(2)+5)/(-Ei(1)+1/3) 3645283499358939 r005 Re(z^2+c),c=12/29+12/35*I,n=50 3645283514590370 r009 Im(z^3+c),c=-13/29+5/18*I,n=38 3645283517707606 b008 5+Gamma[1/32] 3645283536142085 r005 Re(z^2+c),c=-53/110+7/32*I,n=25 3645283537735085 m001 (FeigenbaumC-ln(Pi))^FeigenbaumD 3645283560461734 r005 Im(z^2+c),c=-16/17+1/31*I,n=5 3645283565274312 m001 (Ei(1,1)-ArtinRank2)/(KomornikLoreti-PlouffeB) 3645283566550116 m001 cos(1)^2/GAMMA(5/12)^2*exp(sqrt(3)) 3645283573086032 p001 sum((-1)^n/(415*n+262)/(8^n),n=0..infinity) 3645283594624149 a001 89/322*20633239^(7/10) 3645283594624155 a001 89/322*17393796001^(1/2) 3645283594624155 a001 89/322*14662949395604^(7/18) 3645283594624155 a001 89/322*505019158607^(7/16) 3645283594624155 a001 89/322*599074578^(7/12) 3645283594630471 a001 89/322*710647^(7/8) 3645283595740797 a001 144/199*64079^(45/46) 3645283596492695 a001 144/199*167761^(9/10) 3645283596593519 a001 144/199*439204^(5/6) 3645283596609226 a001 144/199*7881196^(15/22) 3645283596609261 a001 144/199*20633239^(9/14) 3645283596609266 a001 144/199*2537720636^(1/2) 3645283596609267 a001 144/199*312119004989^(9/22) 3645283596609267 a001 144/199*14662949395604^(5/14) 3645283596609267 a001 144/199*192900153618^(5/12) 3645283596609267 a001 144/199*28143753123^(9/20) 3645283596609267 a001 144/199*228826127^(9/16) 3645283596609269 a001 144/199*33385282^(5/8) 3645283596610056 a001 144/199*1860498^(3/4) 3645283596927170 a001 144/199*103682^(15/16) 3645283598890366 r005 Re(z^2+c),c=-37/78+11/47*I,n=17 3645283607363302 r002 5th iterates of z^2 + 3645283610812891 m005 (1/3*Zeta(3)-2/3)/(1/55+7/22*5^(1/2)) 3645283617017469 a007 Real Root Of 214*x^4+693*x^3-195*x^2+340*x-388 3645283629850169 a001 1346269/521*18^(5/42) 3645283640286960 l006 ln(5568/8017) 3645283644953113 r005 Im(z^2+c),c=-9/14+100/239*I,n=21 3645283654455595 r002 29th iterates of z^2 + 3645283672793109 m005 (1/3*5^(1/2)+2/7)/(7/9*exp(1)+5/7) 3645283673042250 m002 Cosh[Pi]+Pi^5*Coth[Pi]^2*Log[Pi] 3645283688192426 a003 sin(Pi*8/99)/cos(Pi*8/31) 3645283696904879 p004 log(31721/22031) 3645283702595731 a001 5702887/199*76^(1/18) 3645283703429190 m001 1/FeigenbaumKappa/Salem^2*exp(GAMMA(1/6))^2 3645283732655911 a007 Real Root Of 271*x^4+737*x^3-879*x^2+60*x-253 3645283750144623 k002 Champernowne real with 229/2*n^2-669/2*n+256 3645283754914503 m001 (CareFree+TreeGrowth2nd)/(exp(1)+BesselK(0,1)) 3645283756249655 m005 (2/3+3/2*5^(1/2))/(11/12+1/12*5^(1/2)) 3645283765892770 m001 gamma(2)+polylog(4,1/2)^FeigenbaumDelta 3645283774858743 a001 1/304*(1/2*5^(1/2)+1/2)^8*4^(13/21) 3645283783647053 r009 Re(z^3+c),c=-19/29+48/59*I,n=2 3645283799416762 m001 (Zeta(1/2)+Landau)/(Otter-TreeGrowth2nd) 3645283809654199 a007 Real Root Of 255*x^4+633*x^3+280*x^2-864*x-326 3645283809813097 m001 (FeigenbaumKappa+Grothendieck)/(Thue+ZetaQ(4)) 3645283850183007 r002 29th iterates of z^2 + 3645283853175966 r009 Im(z^3+c),c=-63/122+4/17*I,n=43 3645283874443027 l006 ln(5327/7670) 3645283883029456 v002 sum(1/(3^n+(25*n^2-46*n+81)),n=1..infinity) 3645283889046903 r002 22th iterates of z^2 + 3645283918053462 a007 Real Root Of 233*x^4+648*x^3-920*x^2-663*x+55 3645283927677433 r009 Im(z^3+c),c=-33/70+3/49*I,n=41 3645283937443642 l006 ln(6707/6956) 3645283963683141 r005 Re(z^2+c),c=-21/52+14/27*I,n=42 3645283984538296 r005 Im(z^2+c),c=11/40+3/7*I,n=5 3645283992226001 s001 sum(exp(-4*Pi/5)^n*A218746[n],n=1..infinity) 3645284004671147 r009 Re(z^3+c),c=-7/20+43/60*I,n=25 3645284005413128 r005 Re(z^2+c),c=-12/25+13/57*I,n=31 3645284009493350 m009 (1/3*Psi(1,1/3)-3)/(48*Catalan+6*Pi^2-3) 3645284010500133 m005 (1/2*5^(1/2)+9/11)/(2*exp(1)-1/8) 3645284014629029 a007 Real Root Of -110*x^4+67*x^3-204*x^2+902*x-303 3645284028546669 m001 1/Salem*ln(GolombDickman)^2*GAMMA(11/24) 3645284031280597 r005 Re(z^2+c),c=37/102+17/58*I,n=49 3645284054376413 a003 cos(Pi*11/102)*sin(Pi*12/95) 3645284055331372 r005 Re(z^2+c),c=-45/94+13/55*I,n=50 3645284055576215 p003 LerchPhi(1/12,1,26/93) 3645284064092608 a007 Real Root Of -27*x^4-964*x^3+728*x^2-323*x+611 3645284070498152 h001 (6/11*exp(2)+3/8)/(2/11*exp(1)+5/7) 3645284076994298 m001 (Artin+Lehmer)/(TreeGrowth2nd-ZetaP(3)) 3645284086606835 r005 Re(z^2+c),c=-3/5+29/97*I,n=18 3645284091899997 r005 Re(z^2+c),c=-22/19+1/4*I,n=16 3645284101600256 m001 sin(1)*(GAMMA(23/24)-Lehmer) 3645284105389220 r005 Re(z^2+c),c=-49/122+16/37*I,n=12 3645284106821608 l006 ln(126/4825) 3645284111601006 m001 (Porter+Salem)/(arctan(1/2)+MertensB1) 3645284112533352 r009 Im(z^3+c),c=-33/94+13/46*I,n=2 3645284127492084 r009 Re(z^3+c),c=-19/36+17/53*I,n=36 3645284130790048 l006 ln(5086/7323) 3645284132738790 m001 (Ei(1)-Si(Pi))/(GAMMA(19/24)+Trott) 3645284133469741 m001 (CopelandErdos+Otter)/ZetaQ(3) 3645284138480558 m001 FeigenbaumDelta^Shi(1)*TravellingSalesman 3645284156725007 a007 Real Root Of 281*x^4+828*x^3-647*x^2+295*x+163 3645284162866579 m001 Si(Pi)^2*FransenRobinson^2*exp(Riemann2ndZero) 3645284177758576 b008 ProductLog[EulerGamma*Sin[2]] 3645284177805815 r002 62th iterates of z^2 + 3645284185580834 m001 (GAMMA(7/12)+GolombDickman)/(1-BesselI(1,2)) 3645284185978758 r005 Re(z^2+c),c=-29/66+23/55*I,n=44 3645284197445778 r004 Re(z^2+c),c=-1/10+9/14*I,z(0)=I,n=57 3645284203363818 r002 24th iterates of z^2 + 3645284216672937 m001 (Pi+LambertW(1))/(BesselI(1,1)+ZetaP(2)) 3645284219228695 s002 sum(A144525[n]/((2^n-1)/n),n=1..infinity) 3645284227852762 r005 Im(z^2+c),c=-21/46+15/32*I,n=11 3645284229684017 m001 (-Riemann2ndZero+ZetaP(2))/(Mills-Psi(2,1/3)) 3645284233733153 m001 GAMMA(1/4)^2/exp(CareFree)^2/log(1+sqrt(2)) 3645284234832730 r009 Re(z^3+c),c=-25/54+31/64*I,n=16 3645284245547109 a007 Real Root Of -60*x^4-217*x^3+121*x^2+607*x+688 3645284260230133 a001 4870847/55*14930352^(18/23) 3645284276601523 a007 Real Root Of 948*x^4+358*x^3+279*x^2-988*x+289 3645284296249771 r005 Im(z^2+c),c=-47/106+11/21*I,n=44 3645284297000005 m001 (3^(1/3)-gamma(2))/(Pi+sin(1)) 3645284308271516 a007 Real Root Of -24*x^4+141*x^3+992*x^2+383*x-718 3645284343403526 m001 (Robbin+Stephens)/(Khinchin+Rabbit) 3645284352840834 h001 (7/11*exp(1)+4/5)/(11/12*exp(2)+1/6) 3645284357492635 m005 (1/2*exp(1)-3/5)/(7/11*Pi+1/12) 3645284360564948 m005 (1/3*5^(1/2)+1/2)/(5/11*Catalan+3) 3645284362327035 m001 1/Zeta(9)*ln(Riemann3rdZero)/log(1+sqrt(2)) 3645284371303230 r005 Re(z^2+c),c=-27/40+11/54*I,n=17 3645284377718685 g001 GAMMA(5/8,88/105) 3645284378731962 a007 Real Root Of 338*x^4-154*x^3-368*x^2-682*x+299 3645284392142576 m001 (exp(-1/2*Pi)+Pi^(1/2))/Landau 3645284397134072 r005 Re(z^2+c),c=-55/122+13/60*I,n=3 3645284412639489 l006 ln(4845/6976) 3645284418644952 a007 Real Root Of -126*x^4-360*x^3+545*x^2+838*x+623 3645284431385557 a007 Real Root Of 169*x^4+551*x^3-342*x^2-354*x+103 3645284442203502 r005 Re(z^2+c),c=-23/48+11/47*I,n=32 3645284478590462 a007 Real Root Of -481*x^4+686*x^3-964*x^2+508*x+355 3645284479348791 m002 -2*E^Pi-4/Pi^4+Pi^2 3645284492895059 v002 sum(1/(3^n+(7*n^2+17*n+39)),n=1..infinity) 3645284507905011 r009 Im(z^3+c),c=-13/29+5/18*I,n=33 3645284509454129 p003 LerchPhi(1/16,1,37/133) 3645284510107329 m001 (5^(1/2)+Ei(1))/(MertensB2+Paris) 3645284518945810 r005 Im(z^2+c),c=17/64+14/53*I,n=10 3645284530638473 r005 Re(z^2+c),c=-7/16+19/42*I,n=40 3645284572525889 r005 Im(z^2+c),c=-25/38+22/49*I,n=29 3645284573715406 r005 Im(z^2+c),c=-1/70+17/37*I,n=51 3645284574099027 r005 Im(z^2+c),c=3/62+8/19*I,n=15 3645284590735354 m005 (-11/4+1/4*5^(1/2))/(2*Pi-3/11) 3645284616421570 r005 Im(z^2+c),c=-5/98+23/48*I,n=24 3645284616885702 r004 Im(z^2+c),c=-1/18+11/23*I,z(0)=I,n=21 3645284621694707 r005 Re(z^2+c),c=-21/44+13/53*I,n=42 3645284623197233 r005 Re(z^2+c),c=-15/31+12/61*I,n=15 3645284627184007 a008 Real Root of x^3-x^2+85*x-345 3645284631894810 r004 Re(z^2+c),c=-4/9+2/5*I,z(0)=exp(7/8*I*Pi),n=33 3645284659464861 a007 Real Root Of -465*x^4+477*x^3-405*x^2-47*x+68 3645284662491775 m005 (1/2*Zeta(3)-3/7)/(1/7*gamma-5/9) 3645284662711473 r005 Im(z^2+c),c=-31/118+35/61*I,n=54 3645284663071393 m005 (1/2*Catalan-3/5)/(1/8*gamma-1/9) 3645284665892992 a007 Real Root Of 46*x^4-20*x^3-859*x^2-453*x+672 3645284666743228 m001 (Zeta(3)+1/2)/FeigenbaumDelta 3645284671866203 a001 3/1597*987^(5/52) 3645284679548027 r002 5th iterates of z^2 + 3645284684230097 r005 Re(z^2+c),c=-6/25+41/54*I,n=29 3645284694265075 m001 2^(1/2)*(BesselJ(0,1)+Riemann3rdZero) 3645284696528473 b008 -1/18+Sqrt[3/17] 3645284697409489 r005 Im(z^2+c),c=19/118+17/49*I,n=12 3645284699238979 r005 Im(z^2+c),c=-6/5+5/93*I,n=26 3645284722355134 r005 Im(z^2+c),c=-23/98+31/54*I,n=51 3645284723977198 r005 Re(z^2+c),c=25/118+29/60*I,n=22 3645284723996182 l006 ln(4604/6629) 3645284740519668 g006 Psi(1,2/3)-Psi(1,8/9)-Psi(1,7/8)-Psi(1,5/7) 3645284753145223 k002 Champernowne real with 115*n^2-336*n+257 3645284757038050 a007 Real Root Of -650*x^4-323*x^3-893*x^2+465*x+284 3645284767472104 m005 (1/2*2^(1/2)-5/9)/(1/11*3^(1/2)+4) 3645284789113269 a003 sin(Pi*7/118)/cos(Pi*36/109) 3645284820153005 r005 Im(z^2+c),c=-21/34+40/103*I,n=8 3645284821941534 s002 sum(A050026[n]/(n*exp(n)+1),n=1..infinity) 3645284823354207 a005 (1/sin(101/231*Pi))^772 3645284823425677 m001 GAMMA(1/24)^2/FeigenbaumDelta*exp(GAMMA(5/6)) 3645284835731202 r005 Re(z^2+c),c=-14/29+9/43*I,n=42 3645284836372193 s002 sum(A006609[n]/(n^2*exp(n)-1),n=1..infinity) 3645284850747324 r005 Im(z^2+c),c=-13/94+10/19*I,n=64 3645284850883484 r005 Re(z^2+c),c=-27/56+23/49*I,n=42 3645284853305195 a007 Real Root Of -540*x^4+966*x^3-129*x^2+584*x-233 3645284866027430 a007 Real Root Of 545*x^4+574*x^3+197*x^2-513*x-195 3645284869064275 m001 FeigenbaumMu-gamma(1)*MertensB2 3645284877281854 p004 log(10301/269) 3645284886012363 r005 Im(z^2+c),c=-1/34+22/47*I,n=37 3645284893322736 g007 Psi(2,7/8)+Psi(2,5/6)+Psi(2,2/5)-Psi(2,9/10) 3645284893575103 a001 322/121393*1346269^(15/43) 3645284906174950 r005 Im(z^2+c),c=6/19+8/39*I,n=20 3645284911893667 r005 Re(z^2+c),c=-29/38+2/43*I,n=40 3645284917408772 a003 -1/2-2*cos(1/9*Pi)-cos(1/8*Pi)-cos(7/18*Pi) 3645284918086433 r009 Im(z^3+c),c=-39/106+21/64*I,n=15 3645284939263197 s002 sum(A234987[n]/(n^3*pi^n-1),n=1..infinity) 3645284942893737 m001 KhinchinLevy^Conway/(TreeGrowth2nd^Conway) 3645284970898774 a007 Real Root Of 208*x^4-847*x^3-688*x^2-707*x-211 3645284978926197 r005 Im(z^2+c),c=-63/118+27/46*I,n=59 3645284990471799 s002 sum(A008584[n]/((pi^n+1)/n),n=1..infinity) 3645284992650351 h001 (1/7*exp(2)+5/8)/(7/12*exp(2)+3/10) 3645284993495808 s001 sum(exp(-3*Pi/5)^n*A105116[n],n=1..infinity) 3645284999267585 p001 sum((-1)^n/(196*n+23)/n/(125^n),n=1..infinity) 3645285000749284 r005 Re(z^2+c),c=-15/28+31/37*I,n=3 3645285001439171 r005 Im(z^2+c),c=-1/36+19/41*I,n=15 3645285014522687 a007 Real Root Of -145*x^4-203*x^3+992*x^2-470*x+875 3645285020246612 a001 47/196418*1346269^(11/57) 3645285026609964 a007 Real Root Of -516*x^4-92*x^3+341*x^2+286*x-136 3645285035295688 r005 Im(z^2+c),c=5/98+21/50*I,n=35 3645285043864958 m005 (1/3*Catalan-1/9)/(4/5*Catalan-1/5) 3645285046426349 s001 sum(exp(-3*Pi/5)^n*A136819[n],n=1..infinity) 3645285046644006 r005 Im(z^2+c),c=-25/98+15/28*I,n=18 3645285047128115 s001 sum(exp(-3*Pi/5)^n*A136816[n],n=1..infinity) 3645285057482332 r009 Re(z^3+c),c=-1/18+21/40*I,n=9 3645285069749822 l006 ln(4363/6282) 3645285078948364 m005 (1/2*gamma-3)/(4/9*5^(1/2)-1/4) 3645285081844456 r002 63th iterates of z^2 + 3645285097946858 m001 (-Otter+RenyiParking)/(CopelandErdos-sin(1)) 3645285100515990 a008 Real Root of x^4-x^3-24*x^2+11*x+134 3645285103168660 r009 Re(z^3+c),c=-35/66+5/21*I,n=13 3645285105778314 r005 Re(z^2+c),c=-39/82+12/47*I,n=43 3645285112100808 r005 Im(z^2+c),c=-4/25+11/20*I,n=29 3645285157313273 r009 Re(z^3+c),c=-47/106+12/49*I,n=44 3645285162798316 m001 Zeta(3)-gamma^FellerTornier 3645285170982435 a007 Real Root Of -594*x^4+386*x^3-52*x^2+606*x+257 3645285172868302 r005 Re(z^2+c),c=-29/62+14/47*I,n=49 3645285174589160 r005 Re(z^2+c),c=-41/102+29/62*I,n=24 3645285202689878 m001 HardyLittlewoodC3^OneNinth-sin(1/5*Pi) 3645285217277531 a007 Real Root Of -107*x^3-582*x^2-793*x-340 3645285220204864 m001 (arctan(1/3)+Kac)/(1-2^(1/3)) 3645285221134913 r009 Re(z^3+c),c=-14/31+12/47*I,n=45 3645285221160344 a007 Real Root Of -216*x^4-710*x^3+484*x^2+772*x+131 3645285224426887 m001 (FellerTornier-HardyLittlewoodC4)^Totient 3645285225006411 r005 Re(z^2+c),c=-61/98+11/30*I,n=44 3645285227853054 h001 (7/11*exp(1)+7/12)/(9/11*exp(2)+3/10) 3645285229993201 h001 (2/3*exp(2)+11/12)/(1/5*exp(2)+1/8) 3645285271201969 m001 FeigenbaumKappa/Backhouse*exp(Zeta(1,2)) 3645285280484511 r005 Im(z^2+c),c=-15/62+29/57*I,n=9 3645285282915812 r009 Im(z^3+c),c=-10/21+15/59*I,n=28 3645285292745325 r005 Im(z^2+c),c=5/34+35/57*I,n=4 3645285299336579 r009 Re(z^3+c),c=-5/19+47/64*I,n=3 3645285300338941 r005 Im(z^2+c),c=37/126+25/58*I,n=18 3645285319195323 r005 Re(z^2+c),c=-37/82+23/62*I,n=47 3645285329961805 r009 Re(z^3+c),c=-17/42+34/57*I,n=12 3645285335717285 r005 Re(z^2+c),c=-17/40+21/46*I,n=36 3645285338092597 r009 Im(z^3+c),c=-7/18+19/60*I,n=23 3645285348483151 m001 (cos(1/12*Pi)+Rabbit)/(1-cos(1)) 3645285362643966 r005 Re(z^2+c),c=-55/114+11/52*I,n=34 3645285363153108 a007 Real Root Of 698*x^4-790*x^3-563*x^2-72*x+127 3645285366570782 p001 sum((-1)^n/(414*n+271)/(32^n),n=0..infinity) 3645285368050447 a008 Real Root of x^4-3*x^2-2*x-144 3645285381227982 m001 (Lehmer+MertensB3)/(1-Bloch) 3645285387308960 m001 (2^(1/2)+cos(1))/(-exp(-1/2*Pi)+MertensB1) 3645285392888975 m001 (1-Landau)/(-Niven+ZetaP(2)) 3645285396148182 m002 3/2+Coth[Pi]*Log[Pi]+Tanh[Pi] 3645285416768008 m001 FeigenbaumDelta-MadelungNaCl+Sarnak 3645285426018539 a001 9/1292*832040^(9/31) 3645285432834766 a007 Real Root Of 834*x^4+291*x^3+43*x^2-520*x-19 3645285439833176 m001 (Stephens+ZetaQ(4))/(ln(3)-FeigenbaumD) 3645285443271583 a001 1/6624*4052739537881^(14/17) 3645285450638078 r009 Re(z^3+c),c=-75/122+20/41*I,n=15 3645285455933640 l006 ln(4122/5935) 3645285460531295 a003 cos(Pi*16/71)-cos(Pi*43/116) 3645285462360547 m001 (Robbin+StronglyCareFree)/(exp(1)+GAMMA(3/4)) 3645285463048260 r002 20th iterates of z^2 + 3645285474939081 m005 (5*gamma-1/3)/(5/6*Catalan-5/6) 3645285478352128 r005 Re(z^2+c),c=-9/19+4/15*I,n=37 3645285480086515 r009 Re(z^3+c),c=-3/7+2/9*I,n=13 3645285492373928 r002 6th iterates of z^2 + 3645285492373928 r002 6th iterates of z^2 + 3645285496222662 m005 (1/2*gamma+5)/(5*exp(1)+11/12) 3645285502727993 a007 Real Root Of 352*x^4+286*x^3+176*x^2-613*x+180 3645285507745863 r005 Re(z^2+c),c=43/118+21/41*I,n=3 3645285522135373 m001 Totient*(QuadraticClass+Tribonacci) 3645285552708023 m005 (1/2*5^(1/2)-1/12)/(7/9*Catalan-3/7) 3645285553765101 m001 (Salem+ZetaP(4))/(3^(1/2)+Niven) 3645285556148432 l006 ln(143/5476) 3645285556744476 r009 Re(z^3+c),c=-17/42+17/28*I,n=59 3645285558917391 r005 Im(z^2+c),c=9/32+23/55*I,n=22 3645285561889050 r002 25th iterates of z^2 + 3645285567211919 r005 Re(z^2+c),c=-55/118+19/62*I,n=30 3645285570460053 m001 1/Niven*ln(MertensB1)^2*sin(Pi/5)^2 3645285571918627 m001 (arctan(1/3)+GAMMA(13/24))/ZetaQ(2) 3645285581494717 p003 LerchPhi(1/1024,6,239/202) 3645285597010649 a007 Real Root Of -248*x^4+907*x^3-534*x^2+205*x+194 3645285599013265 r005 Im(z^2+c),c=-15/29+3/47*I,n=27 3645285619749506 a007 Real Root Of 291*x^4-395*x^3+619*x^2-838*x-412 3645285620716116 a001 144/47*322^(24/29) 3645285625164783 r005 Im(z^2+c),c=-1/70+17/37*I,n=48 3645285638733741 r005 Re(z^2+c),c=-13/29+23/60*I,n=54 3645285659559790 m005 (9/20+1/4*5^(1/2))/(-52/99+1/9*5^(1/2)) 3645285661289722 m001 (ln(5)-Backhouse)/(HardyLittlewoodC5+Trott) 3645285664213109 q001 104/2853 3645285664618130 m001 (gamma(3)+OneNinth)/(Otter+ZetaQ(2)) 3645285669114847 a001 1/329*17711^(23/47) 3645285676436444 a001 18*514229^(11/19) 3645285689804156 m001 exp(Trott)^2*Lehmer*BesselK(1,1) 3645285696720689 a001 123/2584*832040^(33/40) 3645285696849084 m001 (Trott+ZetaP(4))/(Kolakoski-MertensB2) 3645285711356148 m005 (1/3*gamma-1/10)/(5/8*Pi+4/7) 3645285712859025 m001 1/ln(GAMMA(2/3))*Niven/cosh(1) 3645285714457731 m001 (Pi^(1/2)-Shi(1))/(KomornikLoreti+ZetaP(3)) 3645285716197614 m001 1/BesselK(1,1)^2/Riemann1stZero^2/ln(cos(1))^2 3645285717970298 b008 (1/4+E^(1+Pi))*EulerGamma 3645285724120489 s003 concatenated sequence A186870 3645285736841465 a007 Real Root Of -28*x^4+801*x^3+276*x^2+22*x-83 3645285754484959 m001 exp(1/Pi)^exp(1/2)/arctan(1/2) 3645285756145823 k002 Champernowne real with 231/2*n^2-675/2*n+258 3645285757349986 m001 (Kac+ThueMorse)/(2*Pi/GAMMA(5/6)-exp(1)) 3645285767944433 r005 Im(z^2+c),c=-7/44+31/58*I,n=33 3645285772527513 a007 Real Root Of -562*x^4+68*x^3+18*x^2+807*x+305 3645285783165307 a001 1/9348*(1/2*5^(1/2)+1/2)^8*123^(7/17) 3645285784344956 m005 (1/2*Pi-5/11)/(5/7*Pi+9/11) 3645285807937551 m001 1/GAMMA(1/24)^2/exp(MinimumGamma)^2/GAMMA(1/3) 3645285808033621 m005 (1/5*Pi+4)/(13/12+1/12*5^(1/2)) 3645285816525099 m002 -2-E^Pi/Pi+Pi+Pi^2 3645285833438988 r005 Im(z^2+c),c=-43/74+13/33*I,n=17 3645285854849510 r009 Re(z^3+c),c=-41/98+7/22*I,n=2 3645285857750554 r005 Im(z^2+c),c=27/94+17/39*I,n=5 3645285869856582 m005 (1/2*3^(1/2)+1/8)/(-5/8+7/24*5^(1/2)) 3645285871111586 m001 LambertW(1)^ln(gamma)+BesselI(0,2) 3645285871111586 m001 LambertW(1)^log(gamma)+BesselI(0,2) 3645285872539596 g002 Psi(8/11)+Psi(4/9)-Psi(5/11)-Psi(6/7) 3645285877227371 h001 (5/7*exp(1)+4/7)/(7/8*exp(2)+3/7) 3645285885072417 r005 Im(z^2+c),c=13/54+17/61*I,n=16 3645285886935151 r005 Re(z^2+c),c=-45/94+13/55*I,n=52 3645285887800926 a007 Real Root Of -837*x^4+374*x^3+480*x^2+477*x-241 3645285888364782 m001 (Ei(1,1)+FellerTornier)/(MertensB2+ZetaP(2)) 3645285890079461 l006 ln(3881/5588) 3645285893773161 r005 Re(z^2+c),c=-67/106+5/14*I,n=21 3645285895678666 p001 sum((-1)^n/(576*n+251)/(3^n),n=0..infinity) 3645285904009338 a007 Real Root Of -18*x^4-636*x^3+747*x^2+426*x-977 3645285904975560 a007 Real Root Of -759*x^4+847*x^3+484*x^2+584*x+203 3645285905328624 r005 Re(z^2+c),c=-15/22+35/127*I,n=40 3645285919582825 r005 Im(z^2+c),c=-7/44+22/41*I,n=57 3645285924492402 m001 ArtinRank2/(5^(1/2)-FellerTornier) 3645285938106471 r005 Im(z^2+c),c=-9/86+28/55*I,n=48 3645285947858557 r005 Re(z^2+c),c=-29/60+7/33*I,n=14 3645285955584115 m001 GAMMA(5/24)^GAMMA(1/6)*GAMMA(5/24)^GAMMA(7/24) 3645285964828235 a007 Real Root Of -332*x^4-901*x^3+944*x^2-606*x+226 3645285980004504 a007 Real Root Of 192*x^4+544*x^3-892*x^2-985*x+711 3645285995773199 r005 Re(z^2+c),c=-29/66+21/50*I,n=47 3645286004679453 r005 Im(z^2+c),c=-11/50+33/58*I,n=59 3645286004955977 p003 LerchPhi(1/25,6,79/98) 3645286005809575 m001 (MertensB2-Salem)/(Zeta(3)+FeigenbaumD) 3645286007056927 m001 Thue/FeigenbaumMu/TwinPrimes 3645286013724239 r005 Re(z^2+c),c=-41/94+3/7*I,n=62 3645286022786807 a008 Real Root of x^4+14*x^2-44*x-523 3645286028983435 r005 Re(z^2+c),c=-41/90+19/50*I,n=19 3645286042328992 r005 Im(z^2+c),c=-17/18+1/31*I,n=24 3645286055008083 a007 Real Root Of 171*x^4+497*x^3-486*x^2-169*x-278 3645286066137787 m001 Si(Pi)*exp(FibonacciFactorial)*gamma 3645286073149263 r005 Re(z^2+c),c=5/21+1/46*I,n=23 3645286077131537 m001 ln(KhintchineLevy)^2/Bloch*sin(Pi/5) 3645286094450429 m001 FeigenbaumKappa^2/exp(Niven)/Catalan 3645286097430720 m005 (1/3*Catalan+1/12)/(3/8*3^(1/2)+5/12) 3645286102249891 r005 Im(z^2+c),c=-17/18+1/31*I,n=23 3645286113947696 r009 Re(z^3+c),c=-35/78+15/28*I,n=12 3645286117288998 r009 Im(z^3+c),c=-21/52+10/17*I,n=27 3645286119865532 r005 Im(z^2+c),c=-17/18+1/31*I,n=26 3645286147298768 r005 Im(z^2+c),c=-17/18+1/31*I,n=25 3645286148375166 r005 Im(z^2+c),c=-17/18+1/31*I,n=21 3645286149787040 a001 5/124*29^(17/26) 3645286160516665 r005 Im(z^2+c),c=-17/18+1/31*I,n=22 3645286161031103 r002 55th iterates of z^2 + 3645286162130385 r005 Im(z^2+c),c=-17/18+1/31*I,n=28 3645286170366236 r005 Im(z^2+c),c=-17/18+1/31*I,n=27 3645286175794869 r005 Im(z^2+c),c=-17/18+1/31*I,n=30 3645286177340133 v002 sum(1/(3^n*(2*n^3-2*n^2+2*n+9)),n=1..infinity) 3645286177643774 r005 Im(z^2+c),c=-17/18+1/31*I,n=29 3645286178019676 r002 44th iterates of z^2 + 3645286178700330 r002 43th iterates of z^2 + 3645286178803250 r002 46th iterates of z^2 + 3645286179077138 r005 Im(z^2+c),c=-17/18+1/31*I,n=32 3645286179175355 r005 Im(z^2+c),c=1/18+1/31*I,n=11 3645286179176964 r002 45th iterates of z^2 + 3645286179355044 r005 Im(z^2+c),c=-17/18+1/31*I,n=31 3645286179364994 r002 48th iterates of z^2 + 3645286179486144 r002 47th iterates of z^2 + 3645286179507789 r005 Im(z^2+c),c=1/18+1/31*I,n=12 3645286179562917 r002 50th iterates of z^2 + 3645286179592085 r002 49th iterates of z^2 + 3645286179605371 r005 Im(z^2+c),c=1/18+1/31*I,n=13 3645286179613790 r002 52th iterates of z^2 + 3645286179618753 r002 51th iterates of z^2 + 3645286179621660 r005 Im(z^2+c),c=1/18+1/31*I,n=14 3645286179623331 r002 54th iterates of z^2 + 3645286179623598 r005 Im(z^2+c),c=1/18+1/31*I,n=15 3645286179623611 r002 53th iterates of z^2 + 3645286179623723 r005 Im(z^2+c),c=-17/18+1/31*I,n=48 3645286179623728 r005 Im(z^2+c),c=-17/18+1/31*I,n=47 3645286179623730 r005 Im(z^2+c),c=-17/18+1/31*I,n=50 3645286179623731 r005 Im(z^2+c),c=-17/18+1/31*I,n=46 3645286179623731 r005 Im(z^2+c),c=-17/18+1/31*I,n=45 3645286179623732 r005 Im(z^2+c),c=-17/18+1/31*I,n=49 3645286179623733 r005 Im(z^2+c),c=-17/18+1/31*I,n=52 3645286179623734 r005 Im(z^2+c),c=-17/18+1/31*I,n=51 3645286179623734 r005 Im(z^2+c),c=-17/18+1/31*I,n=54 3645286179623734 r005 Im(z^2+c),c=-17/18+1/31*I,n=53 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=56 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=55 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=22 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=23 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=24 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=25 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=26 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=33 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=34 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=35 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=36 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=37 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=44 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=45 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=46 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=47 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=48 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=49 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=50 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=51 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=52 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=53 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=54 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=55 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=56 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=57 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=58 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=59 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=60 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=61 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=62 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=63 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=64 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=43 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=42 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=41 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=38 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=40 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=39 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=32 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=31 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=30 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=29 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=27 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=28 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=63 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=21 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=64 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=61 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=57 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=62 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=58 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=59 3645286179623735 r005 Im(z^2+c),c=-17/18+1/31*I,n=60 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=20 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=19 3645286179623735 r005 Im(z^2+c),c=1/18+1/31*I,n=18 3645286179623736 r002 63th iterates of z^2 + 3645286179623737 r002 64th iterates of z^2 + 3645286179623739 r005 Im(z^2+c),c=1/18+1/31*I,n=17 3645286179623742 r005 Im(z^2+c),c=1/18+1/31*I,n=16 3645286179623744 r002 61th iterates of z^2 + 3645286179623752 r002 62th iterates of z^2 + 3645286179623774 r002 59th iterates of z^2 + 3645286179623809 r002 60th iterates of z^2 + 3645286179623810 r005 Im(z^2+c),c=-17/18+1/31*I,n=43 3645286179623865 r002 57th iterates of z^2 + 3645286179623888 r005 Im(z^2+c),c=-17/18+1/31*I,n=44 3645286179623973 r002 58th iterates of z^2 + 3645286179624008 r002 55th iterates of z^2 + 3645286179624212 r002 56th iterates of z^2 + 3645286179624299 r005 Im(z^2+c),c=-17/18+1/31*I,n=41 3645286179624827 r005 Im(z^2+c),c=-17/18+1/31*I,n=42 3645286179626397 r005 Im(z^2+c),c=-17/18+1/31*I,n=39 3645286179628769 r005 Im(z^2+c),c=-17/18+1/31*I,n=40 3645286179633109 r005 Im(z^2+c),c=-17/18+1/31*I,n=37 3645286179633631 r005 Im(z^2+c),c=-17/18+1/31*I,n=34 3645286179635057 r005 Im(z^2+c),c=-17/18+1/31*I,n=33 3645286179641077 r005 Im(z^2+c),c=-17/18+1/31*I,n=38 3645286179646509 r005 Im(z^2+c),c=-17/18+1/31*I,n=35 3645286179664226 r005 Im(z^2+c),c=-17/18+1/31*I,n=36 3645286180174503 r002 41th iterates of z^2 + 3645286180310874 r005 Im(z^2+c),c=1/18+1/31*I,n=10 3645286181252787 r002 42th iterates of z^2 + 3645286197315008 r002 39th iterates of z^2 + 3645286198234780 a007 Real Root Of 591*x^4-132*x^3-51*x^2-960*x-360 3645286202558044 a001 24157817/2207*123^(1/4) 3645286207390031 a007 Real Root Of -132*x^4-504*x^3-857*x^2+957*x+36 3645286212307433 r005 Im(z^2+c),c=1/18+1/31*I,n=9 3645286214880585 r002 40th iterates of z^2 + 3645286218381769 m005 (1/3*Pi+1/6)/(6/7*exp(1)+1) 3645286230417746 r005 Im(z^2+c),c=-5/82+17/35*I,n=43 3645286240462987 m006 (Pi+1)/(1/6/Pi-1/6) 3645286244827847 g001 abs(GAMMA(-17/20+I*61/30)) 3645286247620455 a008 Real Root of x^4-x^3-51*x^2+83*x+247 3645286254422254 s002 sum(A037795[n]/(n^3*10^n-1),n=1..infinity) 3645286256071578 a003 cos(Pi*40/107)*sin(Pi*46/117) 3645286280396448 m001 (FeigenbaumB-Paris)/(Pi-GAMMA(5/6)) 3645286281929000 r002 3th iterates of z^2 + 3645286290358164 r002 37th iterates of z^2 + 3645286312394444 r005 Im(z^2+c),c=-25/34+1/45*I,n=11 3645286312494681 a007 Real Root Of 24*x^4+859*x^3-591*x^2-442*x+551 3645286319277236 m001 (-arctan(1/3)+Thue)/(BesselK(0,1)-Ei(1)) 3645286328536720 m005 (1/2*5^(1/2)-1)/(1/7*Pi-1/8) 3645286335832403 r009 Re(z^3+c),c=-1/22+37/49*I,n=46 3645286362455809 a001 5/15127*18^(49/59) 3645286370779552 m001 LambertW(1)^2*exp(ArtinRank2)/sqrt(Pi) 3645286378475993 r005 Re(z^2+c),c=-49/110+13/33*I,n=57 3645286381713799 l006 ln(3640/5241) 3645286388092199 r005 Im(z^2+c),c=-5/74+24/49*I,n=31 3645286392257764 r002 38th iterates of z^2 + 3645286397206503 b008 6+93*ArcCsch[3] 3645286402308893 m001 (BesselI(1,2)+MertensB2)/(MertensB3-Totient) 3645286409400281 m001 TwinPrimes^Pi*ln(3)^Pi 3645286417716285 m006 (5*ln(Pi)+4)/(1/2*exp(2*Pi)-1) 3645286434838903 a001 1/9353*(1/2*5^(1/2)+1/2)^3*47^(13/24) 3645286441596313 r005 Im(z^2+c),c=19/58+2/31*I,n=54 3645286442677020 m005 (1/2*Catalan+7/8)/(-97/198+1/18*5^(1/2)) 3645286449910004 m001 1/FeigenbaumDelta/Backhouse/exp(ArtinRank2)^2 3645286469079829 m001 (Pi^(1/2)+Backhouse)/(MinimumGamma-Stephens) 3645286482598693 m001 (gamma(2)-gamma)/(GaussKuzminWirsing+Mills) 3645286495802429 m001 GolombDickman^(2^(1/2)/TwinPrimes) 3645286528322475 r009 Re(z^3+c),c=-31/64+8/27*I,n=63 3645286530244545 m001 (Landau-Robbin)/(ln(5)+GAMMA(13/24)) 3645286540546004 r009 Im(z^3+c),c=-6/25+11/29*I,n=14 3645286547939623 r005 Im(z^2+c),c=1/18+1/31*I,n=8 3645286552966092 a001 377/47*64079^(10/29) 3645286558429011 p003 LerchPhi(1/256,1,597/217) 3645286559589438 a001 377/47*15127^(23/58) 3645286572873816 r009 Re(z^3+c),c=-14/31+12/47*I,n=44 3645286574218296 m002 -6/Pi^2+Pi^5/E^(2*Pi) 3645286580145193 a007 Real Root Of 221*x^4-238*x^3+918*x^2-553*x-339 3645286593886886 r005 Im(z^2+c),c=11/82+27/52*I,n=3 3645286597249905 r009 Im(z^3+c),c=-13/31+13/45*I,n=10 3645286598913636 a007 Real Root Of 946*x^4+171*x^3-288*x^2-600*x+232 3645286605844636 m001 Pi*2^(1/2)/GAMMA(3/4)+CopelandErdos^exp(1) 3645286606442054 m001 (1+GAMMA(11/12))/(FeigenbaumD+Otter) 3645286619511190 m001 (PrimesInBinary+ZetaQ(2))/(KhinchinLevy+Paris) 3645286635651989 a007 Real Root Of 239*x^4-564*x^3+82*x^2-734*x-310 3645286639618703 a007 Real Root Of -261*x^4+923*x^3-38*x^2+554*x-237 3645286642090929 r005 Re(z^2+c),c=13/118+26/63*I,n=38 3645286646662797 m001 gamma(1)^DuboisRaymond*ZetaP(4)^DuboisRaymond 3645286652516915 a007 Real Root Of -71*x^4-397*x^3-548*x^2-61*x+366 3645286657028751 r002 35th iterates of z^2 + 3645286660919333 r005 Re(z^2+c),c=-37/102+24/53*I,n=12 3645286697491827 l006 ln(160/6127) 3645286701877399 m001 BesselK(1,1)^2*LaplaceLimit/ln(GAMMA(11/24)) 3645286710893005 m005 (1/3*2^(1/2)-1/11)/(5/12*2^(1/2)+5/11) 3645286750684326 r009 Re(z^3+c),c=-23/48+19/64*I,n=24 3645286752014411 r005 Im(z^2+c),c=-7/34+11/23*I,n=7 3645286758192294 r005 Re(z^2+c),c=10/27+19/58*I,n=61 3645286759146424 k002 Champernowne real with 116*n^2-339*n+259 3645286776991453 h001 (3/10*exp(2)+4/5)/(2/11*exp(1)+1/3) 3645286791714199 a001 3461452808002/5*102334155^(5/7) 3645286791714199 a001 2537720636/5*2504730781961^(5/7) 3645286791714199 a001 28143753123/5*86267571272^(5/7) 3645286791714199 a001 312119004989/5*2971215073^(5/7) 3645286794434211 a005 (1/cos(30/199*Pi))^406 3645286798714421 a005 (1/sin(66/145*Pi))^130 3645286819358263 r002 5th iterates of z^2 + 3645286824658722 r009 Re(z^3+c),c=-47/106+12/49*I,n=43 3645286829169091 r009 Re(z^3+c),c=-1/60+13/17*I,n=28 3645286831716264 r009 Im(z^3+c),c=-37/114+15/43*I,n=16 3645286833093589 m001 (FeigenbaumMu+Landau)/(gamma(1)-GAMMA(11/12)) 3645286841758170 a001 31622993/2889*123^(1/4) 3645286849366442 r005 Im(z^2+c),c=-9/8+1/224*I,n=34 3645286849655801 r005 Re(z^2+c),c=-37/78+13/55*I,n=13 3645286856632799 r005 Re(z^2+c),c=-27/28+1/38*I,n=4 3645286858850571 m001 (Ei(1,1)-FeigenbaumD)/(GAMMA(3/4)+ln(gamma)) 3645286858912794 a007 Real Root Of 328*x^4-680*x^3+927*x^2+104*x-124 3645286868045675 m005 (1/2*gamma+3/11)/(7/8*5^(1/2)-5/12) 3645286868530199 a007 Real Root Of -661*x^4+189*x^3+33*x^2+453*x-167 3645286874789184 a001 1597/47*521^(11/29) 3645286884070210 a007 Real Root Of -104*x^4+94*x^3-124*x^2+954*x-334 3645286894896325 a007 Real Root Of -496*x^4+661*x^3+534*x^2+570*x-302 3645286903159527 m001 KhinchinLevy-Tribonacci^Sierpinski 3645286911993896 r005 Im(z^2+c),c=2/29+19/46*I,n=8 3645286924450672 m004 (-5*Sqrt[5])/(2*Pi)+4*Sec[Sqrt[5]*Pi] 3645286928551019 k005 Champernowne real with floor(log(3)*(149*n+183)) 3645286928561020 k001 Champernowne real with 164*n+200 3645286928561020 k005 Champernowne real with floor(Catalan*(179*n+219)) 3645286928571021 k005 Champernowne real with floor(sqrt(2)*(116*n+142)) 3645286931029385 h001 (-6*exp(3)-1)/(-6*exp(2)+11) 3645286935016230 a001 165580141/15127*123^(1/4) 3645286941434313 r005 Im(z^2+c),c=1/70+23/52*I,n=25 3645286943065009 l006 ln(3399/4894) 3645286948622398 a001 433494437/39603*123^(1/4) 3645286950607512 a001 567451585/51841*123^(1/4) 3645286950897136 a001 2971215073/271443*123^(1/4) 3645286950939391 a001 7778742049/710647*123^(1/4) 3645286950945556 a001 10182505537/930249*123^(1/4) 3645286950946456 a001 53316291173/4870847*123^(1/4) 3645286950946587 a001 139583862445/12752043*123^(1/4) 3645286950946606 a001 182717648081/16692641*123^(1/4) 3645286950946609 a001 956722026041/87403803*123^(1/4) 3645286950946609 a001 2504730781961/228826127*123^(1/4) 3645286950946609 a001 3278735159921/299537289*123^(1/4) 3645286950946609 a001 10610209857723/969323029*123^(1/4) 3645286950946609 a001 4052739537881/370248451*123^(1/4) 3645286950946610 a001 387002188980/35355581*123^(1/4) 3645286950946611 a001 591286729879/54018521*123^(1/4) 3645286950946618 a001 7787980473/711491*123^(1/4) 3645286950946668 a001 21566892818/1970299*123^(1/4) 3645286950947012 a001 32951280099/3010349*123^(1/4) 3645286950949366 a001 12586269025/1149851*123^(1/4) 3645286950965507 a001 1201881744/109801*123^(1/4) 3645286951076133 a001 1836311903/167761*123^(1/4) 3645286951834379 a001 701408733/64079*123^(1/4) 3645286953724965 m001 (ln(2)+Ei(1))/(Gompertz-Mills) 3645286957031473 a001 10946*123^(1/4) 3645286957919351 a007 Real Root Of -172*x^4-368*x^3+967*x^2+292*x+760 3645286972594976 m001 (ln(Pi)+Zeta(1,-1))/(ReciprocalLucas+Sarnak) 3645286978267134 a003 cos(Pi*18/97)*cos(Pi*26/73) 3645286980196614 b008 9*DedekindEta[(5*I)*Sqrt[6]] 3645286992652884 a001 102334155/9349*123^(1/4) 3645287013997115 r005 Im(z^2+c),c=-11/20+17/39*I,n=27 3645287028408151 r009 Re(z^3+c),c=-10/21+3/10*I,n=16 3645287035681684 a007 Real Root Of -499*x^4+560*x^3+365*x^2+531*x+181 3645287054083681 r005 Re(z^2+c),c=-53/118+26/55*I,n=40 3645287058770037 r005 Re(z^2+c),c=5/114+33/53*I,n=62 3645287076872402 r002 36th iterates of z^2 + 3645287078835960 a007 Real Root Of -701*x^4+463*x^3+415*x^2+902*x-394 3645287085880970 m001 Rabbit/KhintchineLevy*ln(Tribonacci) 3645287097053121 a007 Real Root Of -771*x^4-721*x^3-819*x^2+539*x+284 3645287102431036 a007 Real Root Of 459*x^4+490*x^3+948*x^2-331*x-231 3645287111024976 r009 Im(z^3+c),c=-25/52+11/43*I,n=12 3645287119733637 m005 (1/2*3^(1/2)-1/11)/(1/2*Pi+5/9) 3645287128806778 r005 Re(z^2+c),c=37/122+3/38*I,n=22 3645287141060503 r005 Im(z^2+c),c=-17/18+1/31*I,n=19 3645287149374273 r009 Re(z^3+c),c=-4/29+41/54*I,n=64 3645287149998634 m001 GaussAGM*Khinchin+OrthogonalArrays 3645287187886003 m001 GAMMA(3/4)^2*Riemann2ndZero^2*ln(sqrt(3)) 3645287193291059 a007 Real Root Of 692*x^4-630*x^3+323*x^2-800*x+267 3645287221615401 r009 Re(z^3+c),c=-15/28+13/44*I,n=39 3645287236805685 a001 39088169/3571*123^(1/4) 3645287254152499 m001 (-Pi+2/3)/(-GAMMA(1/3)+2) 3645287254688971 l006 ln(6557/9441) 3645287277127674 r005 Im(z^2+c),c=-71/118+8/25*I,n=4 3645287285004632 m001 (Gompertz+Robbin)/(Cahen+FransenRobinson) 3645287286313500 r005 Re(z^2+c),c=-45/94+13/55*I,n=48 3645287298692689 a007 Real Root Of -16*x^4-559*x^3+894*x^2+358*x-457 3645287315466194 r005 Im(z^2+c),c=-1/74+28/61*I,n=46 3645287332397134 a007 Real Root Of -787*x^4-9*x^3+562*x^2+630*x-290 3645287332720508 m005 (1/2*5^(1/2)-6/11)/(6/11*Pi-1/7) 3645287333300134 r009 Im(z^3+c),c=-57/106+43/61*I,n=4 3645287379881646 a007 Real Root Of 661*x^4-315*x^3+58*x^2-848*x+305 3645287385339592 r005 Re(z^2+c),c=-39/82+12/47*I,n=46 3645287407723216 a007 Real Root Of -318*x^4-38*x^3+113*x^2+882*x+32 3645287410659103 r005 Re(z^2+c),c=27/98+1/27*I,n=14 3645287425926392 a003 sin(Pi*5/32)-sin(Pi*23/73) 3645287482435247 m001 (GolombDickman+PlouffeB)/(ln(3)-GAMMA(5/6)) 3645287484782964 r005 Re(z^2+c),c=-20/27+6/31*I,n=30 3645287502754718 a007 Real Root Of 842*x^4+24*x^3+541*x^2-724*x+176 3645287506380147 m001 FeigenbaumB*TreeGrowth2nd-ZetaQ(4) 3645287525031763 m005 (1/2*Zeta(3)+1/6)/(10/11*Pi-3/4) 3645287525165241 m001 BesselI(1,2)*(Ei(1)+Riemann2ndZero) 3645287539991821 r005 Re(z^2+c),c=-31/74+25/52*I,n=40 3645287557109243 a001 6/726103*55^(10/27) 3645287557214215 r005 Re(z^2+c),c=-43/78+10/37*I,n=5 3645287558478821 g007 Psi(2,1/12)+Psi(2,4/11)+Psi(2,2/9)-Psi(2,3/8) 3645287577412971 a001 28657/18*29^(53/57) 3645287578501322 m001 1/ln(Salem)^2*ArtinRank2*GAMMA(19/24)^2 3645287590094231 l006 ln(3158/4547) 3645287613400950 m001 GaussKuzminWirsing/Psi(2,1/3)*Robbin 3645287615651174 r005 Im(z^2+c),c=-1/74+28/61*I,n=40 3645287617038203 m001 gamma/(ln(2)/ln(10)+GlaisherKinkelin) 3645287619593167 l006 ln(177/6778) 3645287631600802 m009 (3*Psi(1,2/3)+2/5)/(3/4*Psi(1,2/3)+1/3) 3645287635564648 r009 Im(z^3+c),c=-19/36+17/63*I,n=41 3645287635939629 m002 -3+(Pi^2*Log[Pi])/2+Tanh[Pi] 3645287637076140 r005 Re(z^2+c),c=-8/19+10/21*I,n=55 3645287662760839 m005 (2*Pi+1/5)/(5/6*2^(1/2)+3/5) 3645287663334069 a007 Real Root Of -73*x^4-198*x^3+256*x^2+229*x+732 3645287680539382 r005 Im(z^2+c),c=9/74+21/58*I,n=10 3645287681546581 r002 63i'th iterates of 2*x/(1-x^2) of 3645287682483861 m005 (1/2*5^(1/2)+1/4)/(1/11*exp(1)-4) 3645287687282885 a007 Real Root Of 19*x^4-864*x^3+474*x^2-934*x+319 3645287697392173 m005 (1/2*3^(1/2)+7/12)/(2/7*Pi-1/2) 3645287701874390 a007 Real Root Of 90*x^4+196*x^3-667*x^2-520*x+570 3645287703591861 r009 Im(z^3+c),c=-12/31+24/59*I,n=3 3645287704836490 r002 9th iterates of z^2 + 3645287715931724 r002 33th iterates of z^2 + 3645287747522234 m001 (Chi(1)+sin(1))/(Zeta(5)+FeigenbaumMu) 3645287749715700 l006 ln(3771/3911) 3645287751369651 r005 Re(z^2+c),c=-5/42+23/37*I,n=17 3645287762147024 k002 Champernowne real with 233/2*n^2-681/2*n+260 3645287765220240 a007 Real Root Of -287*x^4-876*x^3+451*x^2-549*x+250 3645287781596642 m005 (1/3*gamma-1/5)/(3/11*5^(1/2)-9/11) 3645287793925287 s002 sum(A183962[n]/((exp(n)+1)/n),n=1..infinity) 3645287797657023 m001 1/exp(FeigenbaumC)*Champernowne^2/sin(Pi/12)^2 3645287799435368 r005 Re(z^2+c),c=-33/82+23/43*I,n=37 3645287799527931 a001 7/5*5^(22/37) 3645287805026844 a007 Real Root Of 222*x^4+859*x^3+381*x^2+961*x+850 3645287839262985 m001 MasserGramain*(GAMMA(17/24)-Psi(2,1/3)) 3645287846422358 a005 (1/cos(27/134*Pi))^145 3645287852020272 r002 26th iterates of z^2 + 3645287855443477 m001 1/(2^(1/3))^2/exp(OneNinth)^2*GAMMA(1/3)^2 3645287867468290 a007 Real Root Of 748*x^4+694*x^3+138*x^2-793*x-287 3645287913361982 m005 (3/4*2^(1/2)+1/4)/(-31/8+1/8*5^(1/2)) 3645287917749680 a007 Real Root Of 804*x^4-806*x^3+555*x^2-809*x+246 3645287918833685 a001 4/5*514229^(27/58) 3645287919572631 p001 sum(1/(487*n+363)/(2^n),n=0..infinity) 3645287937583610 r005 Im(z^2+c),c=-13/66+18/29*I,n=55 3645287952111057 l006 ln(6075/8747) 3645287958115183 q001 557/1528 3645287962688491 r009 Re(z^3+c),c=-59/126+16/59*I,n=20 3645287980025615 r005 Im(z^2+c),c=21/74+14/61*I,n=58 3645287982209630 m001 1/CareFree^2/GaussKuzminWirsing*ln(sqrt(3)) 3645287991508712 m001 1/ln(Porter)/PisotVijayaraghavan/cos(1) 3645288016146182 m001 exp(GAMMA(23/24))*MadelungNaCl^2/GAMMA(7/12)^2 3645288039151545 r005 Re(z^2+c),c=31/102+1/20*I,n=34 3645288062729659 m001 (Zeta(1,2)-HeathBrownMoroz)/(Rabbit-ZetaP(2)) 3645288070339580 r005 Re(z^2+c),c=-61/44+4/27*I,n=7 3645288074145419 m001 GAMMA(7/24)^2*exp(Sierpinski)/sin(Pi/5)^2 3645288078341182 a007 Real Root Of 557*x^4+680*x^3-852*x^2-830*x+373 3645288083672726 a007 Real Root Of -944*x^4-307*x^3-703*x^2+474*x+268 3645288087463269 m001 (GAMMA(3/4)+Paris)/(TreeGrowth2nd-ZetaP(4)) 3645288105333895 m005 (1/2*5^(1/2)-5/12)/(3/4*3^(1/2)+5/8) 3645288115454806 r005 Im(z^2+c),c=-1/25+17/36*I,n=21 3645288118571970 m003 1/2+(65*Sqrt[5])/1024+3*Csc[1/2+Sqrt[5]/2] 3645288130234222 r005 Im(z^2+c),c=-17/18+1/31*I,n=20 3645288133228855 r005 Im(z^2+c),c=-1/48+29/57*I,n=10 3645288133763441 m001 Magata/KhintchineHarmonic/exp(Pi)^2 3645288139444991 r005 Re(z^2+c),c=-49/106+12/37*I,n=43 3645288165495277 r005 Re(z^2+c),c=-19/48+19/40*I,n=27 3645288173091793 a007 Real Root Of -126*x^4+475*x^3-976*x^2+916*x-225 3645288177859173 r005 Im(z^2+c),c=-9/28+33/56*I,n=61 3645288178799848 m001 (BesselK(0,1)+FeigenbaumMu)/(Paris+Trott) 3645288183235228 r005 Im(z^2+c),c=-149/118+15/64*I,n=3 3645288191549755 a007 Real Root Of -220*x^4-975*x^3-462*x^2+517*x-358 3645288195210450 a007 Real Root Of -198*x^4-820*x^3-193*x^2+700*x+358 3645288210753000 r002 16th iterates of z^2 + 3645288213386005 m002 (-4*Pi^2)/ProductLog[Pi]+Tanh[Pi]/Pi 3645288214319180 m001 (Psi(1,1/3)-Zeta(1,2))/(-FeigenbaumMu+Landau) 3645288218788129 r005 Im(z^2+c),c=-19/18+61/230*I,n=22 3645288220006099 r005 Im(z^2+c),c=27/110+10/37*I,n=51 3645288222286197 a007 Real Root Of 12*x^4-134*x^3-516*x^2+403*x-284 3645288226996450 a007 Real Root Of 3*x^4-207*x^3-749*x^2-53*x-797 3645288230270049 m005 (1/2*Pi+1/9)/(1/2*gamma-3/4) 3645288231857855 r005 Im(z^2+c),c=-2/3+7/94*I,n=53 3645288247041564 m001 sin(1)/(DuboisRaymond-FeigenbaumAlpha) 3645288282852937 r009 Re(z^3+c),c=-12/31+32/53*I,n=9 3645288282954973 m001 exp(CareFree)/FeigenbaumDelta*sin(1) 3645288287451374 m001 BesselK(0,1)^(Zeta(1/2)*FeigenbaumDelta) 3645288300424857 m001 (-Trott2nd+Thue)/(3^(1/2)-ln(gamma)) 3645288301765863 m004 4+(5*Pi)/E^(Sqrt[5]*Pi)-Cos[Sqrt[5]*Pi]/2 3645288308073284 m003 1/2+Sqrt[5]/64-Csch[1/2+Sqrt[5]/2]^2 3645288323423139 m001 1/TwinPrimes/exp(FeigenbaumC)^2*Zeta(1,2) 3645288331844648 r002 4th iterates of z^2 + 3645288335946989 r005 Im(z^2+c),c=-53/90+1/30*I,n=5 3645288340292617 m004 -4+125*Pi-5*Pi*Csc[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi] 3645288340400942 a007 Real Root Of 345*x^4-71*x^3-122*x^2-698*x+268 3645288344037382 l006 ln(2917/4200) 3645288354492931 r005 Re(z^2+c),c=-15/32+12/41*I,n=39 3645288357489441 a007 Real Root Of 227*x^4+862*x^3+419*x^2+906*x-593 3645288357904106 m005 (1/2*gamma-5/7)/(4*Pi-8/9) 3645288365590221 a001 2/5*6765^(22/43) 3645288370970978 r005 Im(z^2+c),c=-7/8+45/199*I,n=6 3645288378598287 r005 Im(z^2+c),c=3/10+1/35*I,n=25 3645288379696424 b008 13*Tan[3/2]^3 3645288380088478 l006 ln(194/7429) 3645288380561445 r005 Re(z^2+c),c=-1/42+38/61*I,n=9 3645288384448851 m001 (-Riemann3rdZero+ThueMorse)/(3^(1/2)-Shi(1)) 3645288414881054 r005 Re(z^2+c),c=-43/94+5/14*I,n=29 3645288420444108 m003 (35*Sqrt[5])/64+Sinh[1/2+Sqrt[5]/2] 3645288432656496 a007 Real Root Of 196*x^4+228*x^3-552*x^2-988*x+419 3645288451202092 a008 Real Root of (-4+5*x-6*x^2-x^3-3*x^4+x^5) 3645288461144863 r005 Im(z^2+c),c=1/30+25/58*I,n=40 3645288477720475 a007 Real Root Of -220*x^4-989*x^3-854*x^2-459*x+615 3645288485026001 r009 Re(z^3+c),c=-13/29+16/63*I,n=18 3645288486973143 a001 32951280099/47*11^(11/16) 3645288491729568 r005 Im(z^2+c),c=-39/62+4/59*I,n=44 3645288501421472 a003 sin(Pi*13/118)/cos(Pi*13/109) 3645288528463028 m001 (-Kac+PrimesInBinary)/(1-BesselK(0,1)) 3645288535606679 a007 Real Root Of -27*x^4+103*x^3+687*x^2-353*x-659 3645288537686265 m001 (1+3^(1/2))^(1/2)*(Ei(1,1)-TreeGrowth2nd) 3645288538101119 r002 11th iterates of z^2 + 3645288538903622 m009 (4*Catalan+1/2*Pi^2-1/3)/(5/2*Pi^2-2) 3645288570847874 r009 Im(z^3+c),c=-13/38+15/44*I,n=22 3645288575173810 r002 11th iterates of z^2 + 3645288577604785 a005 (1/sin(41/163*Pi))^152 3645288589650072 m001 FeigenbaumAlpha/(ln(2)^GAMMA(23/24)) 3645288598193517 a008 Real Root of x^4-x^3-33*x^2-86*x-100 3645288603438959 r009 Im(z^3+c),c=-11/24+13/50*I,n=10 3645288605693024 h001 (3/11*exp(2)+2/5)/(4/5*exp(2)+5/7) 3645288608915325 m001 exp(GAMMA(5/12))*FeigenbaumDelta/Zeta(5)^2 3645288615766820 r002 57th iterates of z^2 + 3645288616861674 a001 21/76*9349^(1/33) 3645288620501194 r005 Re(z^2+c),c=-41/110+17/32*I,n=41 3645288627401812 r005 Im(z^2+c),c=-7/46+27/44*I,n=41 3645288640790162 a007 Real Root Of 177*x^4+654*x^3-240*x^2-937*x+199 3645288641087766 r005 Re(z^2+c),c=-51/110+11/43*I,n=10 3645288647961230 m005 (-5/8+1/4*5^(1/2))/(9/10*exp(1)-7/11) 3645288668570468 r002 10th iterates of z^2 + 3645288683061232 a007 Real Root Of 378*x^4+672*x^3-212*x^2-679*x+25 3645288688250666 a007 Real Root Of 438*x^4-589*x^3-101*x^2-379*x-161 3645288691646346 m001 1/Zeta(3)*exp(PrimesInBinary)/sin(Pi/5)^2 3645288695712682 a007 Real Root Of -398*x^4-134*x^3-818*x^2+820*x+3 3645288712887223 r005 Im(z^2+c),c=-1/70+17/37*I,n=47 3645288713378607 a007 Real Root Of 673*x^4+163*x^3-670*x^2-557*x-118 3645288715192433 r005 Im(z^2+c),c=5/26+10/31*I,n=14 3645288715248196 r005 Re(z^2+c),c=-19/26+1/121*I,n=16 3645288722787944 m005 (1/2*Pi-1/10)/(-133/180+3/20*5^(1/2)) 3645288727453512 m001 (Cahen+GaussAGM)/(ln(2)-ln(3)) 3645288743400284 r005 Im(z^2+c),c=1/126+25/56*I,n=40 3645288747811341 r005 Re(z^2+c),c=-45/94+13/55*I,n=54 3645288752956370 a003 sin(Pi*19/93)-sin(Pi*23/105) 3645288753159871 m001 (3^(1/2)+Zeta(3))/(Sarnak+StolarskyHarborth) 3645288760028083 m001 (2*Pi/GAMMA(5/6)-sin(1))/(MertensB1+MertensB2) 3645288765147624 k002 Champernowne real with 117*n^2-342*n+261 3645288769739569 l006 ln(5593/8053) 3645288774929091 r005 Re(z^2+c),c=-45/98+12/49*I,n=3 3645288782292371 m001 (BesselI(0,1)-Shi(1))/(-RenyiParking+ZetaP(3)) 3645288788927732 a001 161/1292*55^(15/56) 3645288798490615 a001 3/3010349*3571^(11/25) 3645288804602525 v002 sum(1/(5^n*(32*n^2-52*n+82)),n=1..infinity) 3645288825175476 m001 FeigenbaumMu+ZetaR(2)^FeigenbaumKappa 3645288825637777 m006 (exp(2*Pi)+5)/(2/3*exp(Pi)-3/5) 3645288830609147 r002 60th iterates of z^2 + 3645288834829417 h001 (2/11*exp(1)+1/4)/(5/7*exp(1)+1/10) 3645288834870692 m001 (FeigenbaumAlpha+Robbin)/(2^(1/2)-Psi(1,1/3)) 3645288836126657 r005 Im(z^2+c),c=-67/126+2/31*I,n=51 3645288838749731 m001 1/GAMMA(2/3)*Magata/exp(cos(Pi/12))^2 3645288840521143 b008 EllipticNomeQ[-2^(-1/3)] 3645288844754285 r005 Re(z^2+c),c=-19/30+15/46*I,n=36 3645288858189112 a003 sin(Pi*10/77)*sin(Pi*33/89) 3645288866835965 r005 Re(z^2+c),c=-17/98+20/31*I,n=25 3645288876847725 r005 Re(z^2+c),c=27/74+7/32*I,n=32 3645288884245914 r005 Im(z^2+c),c=-13/62+14/25*I,n=36 3645288885000323 m001 (Salem-Zeta(3))*2^(1/2) 3645288893653143 r005 Re(z^2+c),c=11/32+5/38*I,n=5 3645288910254765 a001 3732588/341*123^(1/4) 3645288912169780 r005 Im(z^2+c),c=23/70+8/47*I,n=53 3645288923786221 r002 6th iterates of z^2 + 3645288925058902 a001 3/3010349*39603^(17/50) 3645288925341551 r005 Im(z^2+c),c=27/110+10/37*I,n=52 3645288937335629 m001 (gamma(2)+MinimumGamma)/(Pi+sin(1)) 3645288937726133 m001 TreeGrowth2nd^(Totient/OneNinth) 3645288943985161 r005 Re(z^2+c),c=-5/12+11/24*I,n=16 3645288958620639 m008 (2/3*Pi+5)/(2*Pi^4-1/5) 3645288962283539 m001 Trott2nd/(Trott^(Pi*2^(1/2)/GAMMA(3/4))) 3645288963575075 a001 1/620166*5778^(9/25) 3645288968789834 r005 Im(z^2+c),c=6/29+37/47*I,n=3 3645288977817555 r005 Re(z^2+c),c=10/27+19/58*I,n=56 3645288986260015 r005 Im(z^2+c),c=1/18+1/31*I,n=7 3645288998605306 r002 34th iterates of z^2 + 3645289006008442 a001 5/14662949395604*47^(8/13) 3645289014584268 m001 (-Kolakoski+TwinPrimes)/(1+Khinchin) 3645289018039074 l006 ln(211/8080) 3645289026862419 m001 1/ln(FeigenbaumD)/Sierpinski/Zeta(5)^2 3645289033448206 r009 Re(z^3+c),c=-10/19+12/55*I,n=30 3645289044723435 a007 Real Root Of 139*x^4+557*x^3+71*x^2-284*x+458 3645289047084852 m001 (Pi-Ei(1))/(arctan(1/2)+Otter) 3645289051019784 m005 (1/3*Catalan+1/12)/(6/7*gamma+4/7) 3645289055397522 a007 Real Root Of 224*x^4+589*x^3-759*x^2+92*x-601 3645289061029711 r005 Re(z^2+c),c=-45/94+13/55*I,n=47 3645289063255438 r005 Im(z^2+c),c=-1/6+13/24*I,n=41 3645289066676402 a007 Real Root Of 26*x^4+945*x^3-112*x^2-382*x+476 3645289071423363 q001 3/82298 3645289072044826 r009 Im(z^3+c),c=-3/82+25/62*I,n=3 3645289100899708 a008 Real Root of x^4-x^3-10*x^2+25*x-1 3645289104173694 r001 50i'th iterates of 2*x^2-1 of 3645289107143213 m001 GAMMA(13/24)-Zeta(3)*GAMMA(5/24) 3645289131062987 a007 Real Root Of 467*x^4-874*x^3+350*x^2-510*x-283 3645289133809989 a001 3/710647*2207^(7/25) 3645289142973724 r005 Im(z^2+c),c=-53/70+7/34*I,n=7 3645289152193007 m005 (1/3*exp(1)+2/7)/(6/11*2^(1/2)-4/9) 3645289165914434 a003 cos(Pi*9/77)/cos(Pi*38/91) 3645289177884850 m001 (Conway+Kolakoski)/(LandauRamanujan-Totient) 3645289182489960 a001 76/75025*987^(35/41) 3645289193979973 m001 (Mills-TreeGrowth2nd)/(ThueMorse-ZetaP(3)) 3645289207455858 m001 (KhinchinLevy+ZetaP(2))/(Pi+GAMMA(2/3)) 3645289215029546 r005 Re(z^2+c),c=-14/29+9/43*I,n=47 3645289233780385 l006 ln(2676/3853) 3645289234118993 r005 Re(z^2+c),c=-9/10+35/128*I,n=8 3645289237837113 r009 Im(z^3+c),c=-47/106+8/29*I,n=14 3645289243820087 r005 Im(z^2+c),c=-2/15+31/52*I,n=24 3645289262579171 m001 (sin(1/5*Pi)+3^(1/3))/(LambertW(1)-Psi(2,1/3)) 3645289271126044 m008 (Pi^3+1/6)/(1/4*Pi^3+4/5) 3645289274049660 r009 Im(z^3+c),c=-11/25+11/39*I,n=18 3645289279434317 a007 Real Root Of 109*x^4+51*x^3-995*x^2+895*x-292 3645289290212641 r002 31th iterates of z^2 + 3645289295363279 r005 Im(z^2+c),c=1/38+49/52*I,n=5 3645289298220301 r005 Re(z^2+c),c=-25/54+19/60*I,n=16 3645289299957887 p004 log(16811/439) 3645289301281969 a007 Real Root Of 509*x^4+421*x^3+328*x^2-817*x-330 3645289307724405 a001 76/4181*1597^(5/53) 3645289307785028 m001 GaussKuzminWirsing/(TwinPrimes^TreeGrowth2nd) 3645289312524987 m001 (-PlouffeB+Riemann1stZero)/(Si(Pi)+Ei(1)) 3645289315115936 a001 3/832040*144^(27/58) 3645289322487897 r005 Re(z^2+c),c=-25/46+1/33*I,n=8 3645289324827005 m001 ln(Sierpinski)/Niven*cos(Pi/5)^2 3645289374896425 m001 1/2*(Psi(2,1/3)+FeigenbaumMu)*2^(1/2) 3645289389758792 a001 843/55*956722026041^(18/23) 3645289392815544 r009 Re(z^3+c),c=-5/11+10/37*I,n=13 3645289401679601 m001 exp(BesselJ(0,1))*ErdosBorwein*GAMMA(11/12) 3645289422315156 r005 Re(z^2+c),c=-14/29+9/43*I,n=45 3645289430186455 a007 Real Root Of 302*x^4+9*x^3+747*x^2-433*x-262 3645289437660780 m005 (1/2*exp(1)+5/11)/(5/8*5^(1/2)-9/10) 3645289446753812 r008 a(0)=0,K{-n^6,-2+34*n-2*n^2-2*n^3} 3645289467471242 a001 1346269/199*199^(7/22) 3645289475714495 r009 Re(z^3+c),c=-55/98+13/55*I,n=12 3645289494253238 m001 (Artin-BesselI(0,1))/(-GaussAGM+Thue) 3645289508454208 r005 Im(z^2+c),c=1/70+27/61*I,n=42 3645289512667122 h001 (9/11*exp(1)+2/7)/(1/10*exp(1)+5/12) 3645289513902663 m001 (ln(2)+Conway)/(Si(Pi)+Pi*2^(1/2)/GAMMA(3/4)) 3645289534320287 r005 Im(z^2+c),c=-7/10+7/97*I,n=22 3645289537703883 r005 Im(z^2+c),c=-1/34+29/62*I,n=27 3645289560856366 l006 ln(228/8731) 3645289569910493 m001 LambertW(1)^FeigenbaumB-TwinPrimes 3645289575846251 r009 Im(z^3+c),c=-10/29+18/53*I,n=19 3645289580171759 r005 Im(z^2+c),c=11/126+9/23*I,n=13 3645289586363250 m001 (GAMMA(3/4)-gamma)/(BesselK(1,1)+Salem) 3645289593217175 r005 Re(z^2+c),c=-53/102+5/42*I,n=6 3645289611310436 m001 (5^(1/2)+ArtinRank2)/(Landau+MertensB1) 3645289620094410 a007 Real Root Of 105*x^4-513*x^3-192*x^2-347*x+175 3645289644268858 r005 Re(z^2+c),c=-15/22+1/110*I,n=10 3645289647294309 r005 Im(z^2+c),c=-15/74+3/5*I,n=9 3645289654733446 a007 Real Root Of 170*x^4+872*x^3+724*x^2-751*x-137 3645289657569255 s002 sum(A290128[n]/(n^2*exp(n)+1),n=1..infinity) 3645289658346294 r005 Re(z^2+c),c=-17/18+31/234*I,n=22 3645289669161860 r005 Re(z^2+c),c=-61/56+21/59*I,n=4 3645289670111722 r009 Im(z^3+c),c=-2/5+9/29*I,n=18 3645289687865298 m001 Chi(1)-arctan(1/2)+gamma(2) 3645289701305587 r005 Im(z^2+c),c=1/11+13/33*I,n=36 3645289705841718 a007 Real Root Of 233*x^4+976*x^3+468*x^2+211*x+685 3645289708279673 a001 47/514229*7778742049^(20/23) 3645289712574794 r002 5th iterates of z^2 + 3645289725420981 s001 sum(exp(-Pi/3)^n*A088372[n],n=1..infinity) 3645289730629417 r009 Re(z^3+c),c=-29/90+1/22*I,n=11 3645289734272572 a003 cos(Pi*22/87)*cos(Pi*29/89) 3645289741583194 l006 ln(5111/7359) 3645289758447686 r009 Re(z^3+c),c=-35/64+13/40*I,n=4 3645289764906093 m001 ln(2)*Magata^GAMMA(2/3) 3645289768148224 k002 Champernowne real with 235/2*n^2-687/2*n+262 3645289778285887 a007 Real Root Of 19*x^4+709*x^3+585*x^2-480*x-697 3645289783906055 r009 Im(z^3+c),c=-35/102+16/47*I,n=22 3645289784787422 a007 Real Root Of 2*x^4+730*x^3+346*x^2+946*x-383 3645289785698177 r005 Im(z^2+c),c=21/74+14/61*I,n=57 3645289787669221 a007 Real Root Of -899*x^4+779*x^3-996*x^2+760*x+463 3645289792163034 p001 sum((-1)^n/(601*n+273)/(64^n),n=0..infinity) 3645289793822172 m001 Paris^2*CopelandErdos^2*ln(TreeGrowth2nd)^2 3645289799650332 r005 Re(z^2+c),c=-45/106+25/54*I,n=59 3645289802864039 m001 sin(1/5*Pi)+Pi^(1/2)+GAMMA(17/24) 3645289802864039 m001 sin(Pi/5)+sqrt(Pi)+GAMMA(17/24) 3645289817192902 r009 Re(z^3+c),c=-47/106+12/49*I,n=40 3645289848595482 m001 RenyiParking/Niven*ln(Zeta(7)) 3645289854689990 m001 1/Pi*ln(GAMMA(1/12))/Zeta(1/2)^2 3645289858354713 m005 (1/2*exp(1)-7/9)/(2/7*exp(1)+9/11) 3645289861917011 r005 Re(z^2+c),c=-29/70+30/61*I,n=25 3645289874089580 r005 Re(z^2+c),c=-47/122+17/41*I,n=7 3645289875150978 a007 Real Root Of -22*x^4-813*x^3-404*x^2-81*x-697 3645289896636958 h001 (8/9*exp(1)+1/7)/(1/9*exp(1)+2/5) 3645289925892322 a007 Real Root Of 971*x^4-863*x^3+915*x^2+701*x+75 3645289926178540 a007 Real Root Of -318*x^4-959*x^3+785*x^2+176*x-92 3645289931835893 m005 (1/2*gamma-1)/(2/3*Pi-1/7) 3645289939829209 r009 Re(z^3+c),c=-35/66+1/4*I,n=45 3645289944243010 r009 Im(z^3+c),c=-14/27+3/16*I,n=21 3645289966209173 r009 Re(z^3+c),c=-1/26+3/5*I,n=5 3645289966247315 q001 1188/3259 3645289967443776 r005 Re(z^2+c),c=-45/94+13/55*I,n=59 3645289968293001 a001 3/2584*89^(13/51) 3645289972878744 a007 Real Root Of 928*x^4-483*x^3-269*x^2-875*x-323 3645289976594790 b008 11*ProductLog[29*Pi] 3645289982222653 r005 Re(z^2+c),c=-47/98+3/13*I,n=44 3645289983781220 r005 Im(z^2+c),c=-7/29+34/55*I,n=6 3645289990992832 m001 MertensB2*ZetaQ(3)+Trott2nd 3645290024999918 m001 CareFree-Zeta(5)^Tribonacci 3645290028343676 l006 ln(245/9382) 3645290030300939 r005 Re(z^2+c),c=-8/13+25/63*I,n=33 3645290069442741 r005 Re(z^2+c),c=-87/70+15/64*I,n=8 3645290069805283 m001 (-Cahen+FeigenbaumC)/(exp(1)+cos(1)) 3645290091244104 a007 Real Root Of -942*x^4-251*x^3-605*x^2+453*x+250 3645290107586899 p004 log(21383/14851) 3645290121018019 r009 Im(z^3+c),c=-4/19+17/44*I,n=7 3645290140394777 a007 Real Root Of 537*x^4+574*x^3+79*x^2-958*x-35 3645290142852575 a003 sin(Pi*4/63)/cos(Pi*13/41) 3645290165761721 r009 Re(z^3+c),c=-13/62+42/43*I,n=64 3645290167690114 a001 5/15251*18^(5/6) 3645290174704117 m005 (1/2*Pi+5/9)/(3/7*5^(1/2)-3/8) 3645290206015766 r005 Re(z^2+c),c=-45/94+13/55*I,n=61 3645290207450446 r009 Im(z^3+c),c=-5/29+27/32*I,n=4 3645290212866779 r005 Re(z^2+c),c=-33/70+17/61*I,n=52 3645290217866787 r005 Re(z^2+c),c=27/74+21/41*I,n=3 3645290220014744 r002 7th iterates of z^2 + 3645290225857540 a007 Real Root Of 121*x^4+356*x^3-339*x^2-165*x-218 3645290229359794 a007 Real Root Of -58*x^4-243*x^3-382*x^2-872*x+368 3645290229860249 r005 Re(z^2+c),c=-45/94+13/55*I,n=57 3645290234441935 m001 FeigenbaumMu*Zeta(5)^Stephens 3645290235275952 r005 Re(z^2+c),c=-39/82+12/47*I,n=48 3645290238126638 r005 Re(z^2+c),c=-51/106+13/59*I,n=35 3645290242497201 r005 Re(z^2+c),c=3/19+19/36*I,n=45 3645290247244336 r009 Re(z^3+c),c=-33/64+17/62*I,n=24 3645290254371163 a007 Real Root Of 220*x^4+792*x^3+178*x^2+705*x-278 3645290258871662 r005 Im(z^2+c),c=13/74+9/23*I,n=8 3645290288725838 r005 Re(z^2+c),c=-37/29+1/28*I,n=30 3645290293347880 m001 (Riemann1stZero+Thue)/(FeigenbaumMu+Landau) 3645290299644896 l006 ln(2435/3506) 3645290304449395 h001 (-4*exp(-1)+8)/(-4*exp(2/3)+6) 3645290320463326 m005 (1/3*Catalan-1/10)/(-31/72+4/9*5^(1/2)) 3645290330256998 a001 3/103682*322^(1/25) 3645290334086097 a007 Real Root Of 129*x^4-291*x^3+378*x^2-868*x+278 3645290340727500 r005 Im(z^2+c),c=-3/4+19/232*I,n=36 3645290342468982 a007 Real Root Of 512*x^4-724*x^3-353*x^2-485*x-174 3645290366717424 m001 (Zeta(3)+OrthogonalArrays)/(Sarnak-ZetaQ(3)) 3645290384140763 r005 Re(z^2+c),c=-11/26+25/57*I,n=26 3645290393610982 r005 Im(z^2+c),c=-5/82+17/35*I,n=52 3645290396477593 m005 (1/2*gamma+5)/(2/11*Zeta(3)-4/11) 3645290409323795 a001 4/317811*514229^(25/32) 3645290410824088 v002 sum(1/(5^n+(28*n^2-82*n+105)),n=1..infinity) 3645290413095758 m001 (ArtinRank2+Magata)^Catalan 3645290429355399 m001 (Lehmer+Stephens)/(Zeta(1/2)-KhinchinHarmonic) 3645290435164515 l006 ln(262/10033) 3645290439311960 m001 ln(arctan(1/2))*FeigenbaumC^2*sqrt(2) 3645290441299002 r008 a(0)=0,K{-n^6,-26+22*n-44*n^2+51*n^3} 3645290443877276 r005 Re(z^2+c),c=-3/44+11/13*I,n=12 3645290447290399 m001 (Psi(1,1/3)-ZetaR(2))^FeigenbaumMu 3645290450159393 r009 Re(z^3+c),c=-3/22+49/60*I,n=8 3645290464922372 m001 (Zeta(3)-ln(3))/(GAMMA(11/12)+Grothendieck) 3645290476047756 r005 Re(z^2+c),c=-49/110+13/33*I,n=60 3645290481116118 r005 Re(z^2+c),c=-65/64+4/25*I,n=32 3645290483971381 m001 OneNinth^2/exp(FeigenbaumC)^2*GAMMA(3/4) 3645290484892630 m001 ArtinRank2*exp(GaussKuzminWirsing)^2/Lehmer^2 3645290485598947 m001 (Bloch+PlouffeB)/(1-2^(1/3)) 3645290492819846 m001 (-Kac+Sierpinski)/(Psi(2,1/3)+exp(1/Pi)) 3645290497485575 r005 Re(z^2+c),c=-6/13+19/58*I,n=47 3645290503892892 r005 Im(z^2+c),c=41/122+9/55*I,n=43 3645290520420310 r005 Re(z^2+c),c=-45/94+13/55*I,n=63 3645290527460679 a001 11/75025*377^(53/57) 3645290534513196 m001 (-BesselK(1,1)+ThueMorse)/(arctan(1/3)-sin(1)) 3645290539705832 m001 (ln(3)+Totient)/(TwinPrimes+ZetaQ(3)) 3645290551876668 a007 Real Root Of -30*x^4+892*x^3+419*x^2+213*x-176 3645290565711584 a001 3/710647*843^(8/25) 3645290567589639 r002 20th iterates of z^2 + 3645290570968589 m002 5/Pi+(Pi^4*ProductLog[Pi])/3 3645290572401772 m001 (-Zeta(3)+3)/(GAMMA(11/24)+3) 3645290576238622 r002 19th iterates of z^2 + 3645290577318309 m001 1/Salem^2/exp(MertensB1)^2/sinh(1) 3645290579312856 r005 Re(z^2+c),c=-37/86+15/34*I,n=44 3645290599020898 r009 Im(z^3+c),c=-11/36+13/30*I,n=3 3645290615870753 a001 161/5473*2178309^(45/56) 3645290619399407 p004 log(20717/541) 3645290624321869 b008 3^(2+4/Pi) 3645290625372094 a007 Real Root Of -262*x^4-644*x^3+937*x^2-852*x-489 3645290628253075 m001 1/exp(GAMMA(3/4))/Tribonacci^2/cosh(1)^2 3645290640944567 m001 ZetaQ(4)^(Pi*2^(1/2)/GAMMA(3/4)*TreeGrowth2nd) 3645290653067232 m001 Porter^2/exp(FransenRobinson)^2/arctan(1/2)^2 3645290653931183 r005 Im(z^2+c),c=-1/6+30/53*I,n=29 3645290660028005 a007 Real Root Of 141*x^4+468*x^3+71*x^2+843*x-98 3645290661805123 p004 log(34019/23627) 3645290673189457 m001 1/exp(Ei(1))*(2^(1/3))^2/cos(Pi/5)^2 3645290676619324 b008 1+(1+ExpIntegralEi[2])^2 3645290688136751 r005 Re(z^2+c),c=-45/94+13/55*I,n=56 3645290707276661 r009 Re(z^3+c),c=-11/28+8/45*I,n=15 3645290729231550 m001 (gamma(3)+BesselI(1,1))/(FeigenbaumB+Sarnak) 3645290740893550 r002 34th iterates of z^2 + 3645290758940331 a007 Real Root Of 841*x^4+530*x^3+137*x^2-896*x-334 3645290760842485 a007 Real Root Of 159*x^4+463*x^3-439*x^2-89*x-139 3645290761316125 h001 (-4*exp(2)-10)/(-6*exp(3)+12) 3645290771148824 k002 Champernowne real with 118*n^2-345*n+263 3645290772265271 r005 Re(z^2+c),c=-45/94+13/55*I,n=64 3645290795366914 m001 (3^(1/2)+Si(Pi))/(Landau+TreeGrowth2nd) 3645290798733933 m005 (1/2*Catalan-7/11)/(2/9*Zeta(3)+2/9) 3645290801990717 l006 ln(8377/8688) 3645290805012459 m001 (OneNinth-ZetaQ(2))/(Zeta(5)+BesselJ(1,1)) 3645290810487880 r009 Re(z^3+c),c=-61/102+16/61*I,n=55 3645290820865734 a001 18/165580141*832040^(14/15) 3645290820866717 a001 18/139583862445*1134903170^(14/15) 3645290828027503 r005 Re(z^2+c),c=-25/56+9/23*I,n=42 3645290842577286 m001 (Catalan+Zeta(1,-1))/(ErdosBorwein+ZetaP(2)) 3645290854574361 m005 (3/5*Pi-3)/(4*gamma+3/4) 3645290859269601 a007 Real Root Of 122*x^4+164*x^3-764*x^2+953*x+28 3645290863434309 r005 Im(z^2+c),c=27/110+10/37*I,n=56 3645290867258403 m001 1/exp(log(1+sqrt(2)))/GAMMA(5/24)^2/sin(Pi/5) 3645290873816068 r005 Re(z^2+c),c=19/122+25/53*I,n=38 3645290891681691 r005 Im(z^2+c),c=27/110+10/37*I,n=57 3645290895226615 r005 Re(z^2+c),c=-107/78+1/42*I,n=26 3645290908953339 m001 CopelandErdos^Khinchin/(cos(1/5*Pi)^Khinchin) 3645290915815385 l006 ln(4629/6665) 3645290919493982 m002 -4-Pi^4+Pi^5/4-Sinh[Pi] 3645290925214275 m001 (gamma+Cahen)/(-Gompertz+MertensB1) 3645290927304036 m001 (-GAMMA(19/24)+Lehmer)/(Ei(1)-ln(2)/ln(10)) 3645290937845229 m002 -4-Pi+Pi^3+Cosh[Pi]+Tanh[Pi] 3645290939466353 a007 Real Root Of 259*x^4+938*x^3-252*x^2-889*x-189 3645290953684883 b008 1/28+Pi*Cosh[Pi] 3645290971087982 m004 5+5*Pi+(30*Sqrt[5]*Cos[Sqrt[5]*Pi])/Pi 3645290979515764 m001 Zeta(1/2)^2/ln(Catalan)^2*log(2+sqrt(3)) 3645290999021054 r005 Im(z^2+c),c=-39/94+3/50*I,n=14 3645291002030241 r005 Re(z^2+c),c=-27/110+20/33*I,n=41 3645291019865348 m001 (Magata+StronglyCareFree)/(CareFree-Si(Pi)) 3645291027380639 a007 Real Root Of -505*x^4+665*x^3-535*x^2-349*x-15 3645291033186252 m001 1/Rabbit/Lehmer*exp(Zeta(1,2))^2 3645291035131079 r005 Im(z^2+c),c=-7/118+16/33*I,n=41 3645291039836200 r005 Re(z^2+c),c=-45/94+13/55*I,n=62 3645291050252350 m001 (2^(1/2)-ln(2)/ln(10))/(-Pi^(1/2)+Porter) 3645291055012609 m005 (1/3*2^(1/2)-3/5)/(1/9*Catalan-5/11) 3645291057018903 m001 (ln(3)-Landau)/(RenyiParking+StronglyCareFree) 3645291068414859 r005 Im(z^2+c),c=1/5+13/42*I,n=16 3645291082817077 m005 (1/2*3^(1/2)+3/4)/(2/7*exp(1)-1/3) 3645291084283553 a008 Real Root of x^2-x-133246 3645291091567528 m002 5+Pi^3+Pi^3/(3*E^Pi) 3645291095560302 a007 Real Root Of 196*x^4+408*x^3-163*x^2-734*x+266 3645291127887440 m005 (3*2^(1/2)+5/6)/(5*exp(1)+1/3) 3645291135715000 l006 ln(6823/9824) 3645291159544969 a007 Real Root Of -792*x^4-407*x^3+384*x^2+652*x-255 3645291178540412 r009 Re(z^3+c),c=-14/29+16/59*I,n=15 3645291186824052 m001 (Kac+KhinchinLevy)/(GAMMA(17/24)-Grothendieck) 3645291194624199 r002 22th iterates of z^2 + 3645291204030380 m005 (1/3*Pi+1/7)/(9/10*exp(1)+9/11) 3645291209683991 a007 Real Root Of -774*x^4+126*x^3-490*x^2+132*x+133 3645291217646426 m001 exp((3^(1/3)))*FeigenbaumB/cos(Pi/12) 3645291222642443 r009 Im(z^3+c),c=-59/114+5/24*I,n=38 3645291255230712 a001 55*521^(13/43) 3645291264795649 a001 11*(1/2*5^(1/2)+1/2)*7^(7/19) 3645291280684667 a007 Real Root Of 657*x^4+740*x^3+248*x^2-426*x-164 3645291284024795 r009 Re(z^3+c),c=-1/24+45/61*I,n=6 3645291284342925 a001 521/24157817*46368^(5/19) 3645291284432162 a001 521/2971215073*4052739537881^(5/19) 3645291284432162 a001 521/267914296*433494437^(5/19) 3645291288129844 r005 Im(z^2+c),c=-3/32+32/61*I,n=18 3645291334605023 a007 Real Root Of 21*x^4+760*x^3-206*x^2-205*x-694 3645291341877128 r005 Re(z^2+c),c=-13/54+13/18*I,n=47 3645291343055475 r005 Re(z^2+c),c=-33/70+17/61*I,n=33 3645291350181837 b008 7*Cosh[2+Sqrt[7]] 3645291354656471 r005 Re(z^2+c),c=-45/94+13/55*I,n=60 3645291359028155 r005 Im(z^2+c),c=-7/31+33/58*I,n=64 3645291374503222 m001 (Zeta(1,2)+ArtinRank2)/(TwinPrimes-ZetaQ(4)) 3645291381752922 m001 (2*Pi/GAMMA(5/6)-Cahen)/(OneNinth+Trott2nd) 3645291391639992 b008 ArcCsc[Pi*(-2+ArcTan[2])] 3645291392728481 h001 (2/3*exp(2)+3/4)/(1/10*exp(2)+9/11) 3645291397635729 r005 Im(z^2+c),c=9/58+21/38*I,n=40 3645291403434643 m001 (MasserGramainDelta-Tribonacci)/(ln(2)-ln(Pi)) 3645291407975923 m001 (Totient-TwinPrimes)/(ln(3)-GAMMA(17/24)) 3645291409162317 r005 Re(z^2+c),c=-45/94+13/55*I,n=58 3645291411370742 m001 (Grothendieck+ZetaQ(2))/(Pi+Ei(1)) 3645291454374958 m002 15/Pi^5+Pi*Log[Pi] 3645291454459380 a007 Real Root Of 186*x^4-760*x^3-756*x^2-930*x+473 3645291456529418 r005 Im(z^2+c),c=-45/82+3/46*I,n=49 3645291464686921 a003 cos(Pi*3/7)*cos(Pi*47/105) 3645291469646388 m001 (ln(gamma)-Champernowne)/(MadelungNaCl+Paris) 3645291485716133 r005 Im(z^2+c),c=27/110+10/37*I,n=62 3645291515610667 r009 Im(z^3+c),c=-7/23+5/14*I,n=14 3645291515628609 r002 5th iterates of z^2 + 3645291516560808 r009 Re(z^3+c),c=-1/86+36/47*I,n=62 3645291518884268 r002 9th iterates of z^2 + 3645291520230175 p004 log(24623/643) 3645291524320830 r005 Im(z^2+c),c=27/110+10/37*I,n=61 3645291529640182 a001 6765/322*29^(50/59) 3645291531124556 r005 Re(z^2+c),c=-45/94+13/55*I,n=55 3645291539178857 s001 sum(exp(-Pi/2)^(n-1)*A024872[n],n=1..infinity) 3645291564993995 a001 2584/47*9349^(6/29) 3645291565373540 r002 32th iterates of z^2 + 3645291566204462 m001 1/exp(FeigenbaumD)^2*Porter^2*GAMMA(1/4) 3645291573222997 r002 38th iterates of z^2 + 3645291587711839 s001 sum(exp(-3*Pi/4)^n*A154871[n],n=1..infinity) 3645291590260609 m001 (Pi+ln(3))/(GAMMA(11/12)+OneNinth) 3645291592109011 m001 KhinchinLevy-Kolakoski*MertensB2 3645291594405973 m001 Paris*ln(Backhouse)/Zeta(7)^2 3645291599669096 l006 ln(2194/3159) 3645291614819371 a007 Real Root Of -186*x^4-916*x^3-825*x^2+111*x-160 3645291616035921 h001 (-2*exp(2/3)+1)/(-8*exp(-1)-5) 3645291619994727 p001 sum((-1)^n/(566*n+269)/(16^n),n=0..infinity) 3645291633730840 m001 (Cahen-Kolakoski)/(GAMMA(3/4)-GAMMA(13/24)) 3645291636486053 r002 12th iterates of z^2 + 3645291637464610 a007 Real Root Of -79*x^4-444*x^3-449*x^2+521*x+308 3645291642291302 m001 Zeta(7)^2*exp(CareFree)*sqrt(Pi) 3645291647778944 m001 TreeGrowth2nd^Chi(1)/(Porter^Chi(1)) 3645291670987992 m001 Zeta(7)^2/exp(BesselK(1,1))*cos(Pi/5)^2 3645291675231693 a001 4181/47*3571^(5/29) 3645291677749984 r005 Re(z^2+c),c=-3/4+181/248*I,n=3 3645291677823575 a007 Real Root Of 817*x^4-297*x^3-938*x^2-750*x+398 3645291684483976 r005 Im(z^2+c),c=-23/106+32/57*I,n=49 3645291694544031 a001 10946/47*5778^(3/58) 3645291715364828 m001 (LambertW(1)+PrimesInBinary)/(Si(Pi)+sin(1)) 3645291720862822 a003 sin(Pi*1/75)*sin(Pi*39/116) 3645291727126645 a007 Real Root Of 769*x^4-870*x^3+81*x^2-476*x-240 3645291728424591 r005 Im(z^2+c),c=27/110+10/37*I,n=63 3645291738879260 q001 631/1731 3645291753986105 m008 (3/4*Pi^5+4)/(2/3*Pi^6-1/3) 3645291757203960 a001 6765/47*2207^(7/58) 3645291767972911 m001 (KhinchinHarmonic+Otter)/(Pi-Si(Pi)) 3645291768910121 r005 Im(z^2+c),c=-49/102+3/47*I,n=16 3645291770472338 r005 Re(z^2+c),c=-8/17+8/31*I,n=17 3645291774149424 k002 Champernowne real with 237/2*n^2-693/2*n+264 3645291784853289 r009 Im(z^3+c),c=-13/102+2/5*I,n=4 3645291785495085 a007 Real Root Of 398*x^4-912*x^3-911*x^2-688*x+409 3645291786765032 m008 (1/4*Pi^3+5/6)/(1/6*Pi^2-4) 3645291787623253 r005 Re(z^2+c),c=-2/5+23/50*I,n=6 3645291796506523 r005 Im(z^2+c),c=-19/27+5/64*I,n=41 3645291815036698 r005 Re(z^2+c),c=-15/32+12/41*I,n=50 3645291816683753 r005 Im(z^2+c),c=27/110+10/37*I,n=58 3645291833932595 m001 GAMMA(19/24)/(Ei(1)+PisotVijayaraghavan) 3645291840150340 r005 Im(z^2+c),c=13/58+17/54*I,n=9 3645291842410649 r005 Re(z^2+c),c=-85/64+1/25*I,n=48 3645291844562711 a007 Real Root Of -689*x^4+220*x^3-894*x^2-693*x-111 3645291851146095 a007 Real Root Of -120*x^4+377*x^3-524*x^2+192*x+160 3645291877042895 r005 Im(z^2+c),c=27/110+10/37*I,n=64 3645291878331859 m005 (2/3*exp(1)-3/4)/(4*Catalan-3/4) 3645291883901619 a008 Real Root of x^2-x-132517 3645291886112693 r009 Re(z^3+c),c=-43/114+43/62*I,n=46 3645291891412161 a007 Real Root Of -147*x^4-663*x^3-618*x^2-729*x-604 3645291893593406 h001 (-7*exp(8)-5)/(-3*exp(3)+3) 3645291901852265 r005 Im(z^2+c),c=-11/54+29/52*I,n=52 3645291906659827 m006 (4/Pi-1)/(4/5*Pi^2-2/5) 3645291912141311 k006 concat of cont frac of 3645291915732582 a003 sin(Pi*8/57)-sin(Pi*34/117) 3645291943217133 r005 Im(z^2+c),c=3/70+25/59*I,n=15 3645291963288490 r005 Im(z^2+c),c=27/110+10/37*I,n=60 3645291969191844 a001 1597/47*39603^(13/58) 3645291978356896 r002 58th iterates of z^2 + 3645291991750961 a007 Real Root Of 607*x^4-671*x^3-349*x^2-988*x-357 3645291994508228 m005 (1/2*Catalan+9/11)/(5/12*Zeta(3)+3) 3645291997970314 a007 Real Root Of 961*x^4-566*x^3-682*x^2-574*x-163 3645291999328091 a001 322/3*317811^(23/50) 3645292013999942 s002 sum(A248862[n]/((10^n+1)/n),n=1..infinity) 3645292022823815 m001 Pi-exp(Pi)*5^(1/2)*BesselJ(0,1) 3645292028848576 r005 Re(z^2+c),c=-23/18+95/112*I,n=2 3645292034477594 m002 -6+Cosh[Pi]*ProductLog[Pi]+Pi^3*Sinh[Pi] 3645292041139604 r005 Re(z^2+c),c=-37/60+21/58*I,n=55 3645292050652704 a008 Real Root of x^4-x^3-23*x^2+11*x+7 3645292053659655 a007 Real Root Of 898*x^4-931*x^3+377*x^2-148*x-165 3645292054252426 r005 Re(z^2+c),c=-33/70+17/61*I,n=50 3645292059957198 a007 Real Root Of 796*x^4+27*x^3+782*x^2-278*x-218 3645292068378027 r005 Im(z^2+c),c=-5/29+34/57*I,n=35 3645292078814310 m001 Rabbit^(FeigenbaumAlpha*Salem) 3645292085045894 m001 3^(1/3)+ErdosBorwein+Gompertz 3645292098889825 l006 ln(6341/9130) 3645292106644554 r005 Re(z^2+c),c=-11/20+20/53*I,n=21 3645292119635171 r009 Im(z^3+c),c=-7/31+23/60*I,n=14 3645292121212711 k007 concat of cont frac of 3645292121271727 r009 Re(z^3+c),c=-33/70+10/23*I,n=11 3645292127080867 r005 Im(z^2+c),c=11/56+17/54*I,n=31 3645292145817470 a007 Real Root Of 225*x^4-612*x^3+2*x^2-767*x+305 3645292147410219 a003 cos(Pi*16/99)-cos(Pi*32/97) 3645292155036127 r009 Im(z^3+c),c=-1/60+35/43*I,n=26 3645292162742986 h001 (7/11*exp(2)+1/12)/(3/11*exp(1)+4/7) 3645292170326834 r005 Re(z^2+c),c=-3/4+2/51*I,n=20 3645292175282112 r002 44th iterates of z^2 + 3645292182411178 m001 3^(1/2)*Totient+PisotVijayaraghavan 3645292187082916 r002 5th iterates of z^2 + 3645292191821647 a007 Real Root Of -466*x^4+821*x^3+267*x^2+133*x+61 3645292209160381 m009 (16/3*Catalan+2/3*Pi^2-1/3)/(3*Psi(1,1/3)+1/4) 3645292209311886 m009 (2/5*Psi(1,1/3)-3/5)/(4*Catalan+1/2*Pi^2+5/6) 3645292217665077 m001 (GAMMA(5/6)-CareFree)/(OneNinth+ZetaQ(3)) 3645292220057953 a001 144/47*521^(1/36) 3645292234766652 m001 GAMMA(23/24)^2*FeigenbaumDelta*exp(Zeta(9))^2 3645292234943129 r002 13th iterates of z^2 + 3645292254841114 r005 Re(z^2+c),c=-13/30+19/42*I,n=45 3645292273597257 p001 sum(1/(470*n+281)/(16^n),n=0..infinity) 3645292278149688 r005 Im(z^2+c),c=27/110+10/37*I,n=59 3645292278789278 h001 (1/11*exp(2)+1/6)/(7/12*exp(1)+5/7) 3645292283500166 r005 Im(z^2+c),c=-1/27+8/17*I,n=15 3645292316228871 r005 Im(z^2+c),c=-29/98+22/39*I,n=25 3645292316924123 a007 Real Root Of -854*x^4+202*x^3-997*x^2+833*x+461 3645292320775021 r002 15th iterates of z^2 + 3645292339180519 r009 Im(z^3+c),c=-3/14+17/44*I,n=12 3645292347241683 r005 Re(z^2+c),c=-55/106+11/36*I,n=14 3645292347793746 a007 Real Root Of -786*x^4+556*x^3-308*x^2+979*x-329 3645292363006111 l006 ln(4147/5971) 3645292374403298 a001 6765/47*843^(4/29) 3645292378793507 r002 10th iterates of z^2 + 3645292381577038 r005 Im(z^2+c),c=27/110+10/37*I,n=53 3645292384845046 r005 Im(z^2+c),c=27/110+10/37*I,n=55 3645292391631523 a007 Real Root Of -604*x^4+203*x^3+199*x^2+244*x+83 3645292404582271 h001 (-8*exp(-2)-5)/(-6*exp(2/3)-5) 3645292415948800 a007 Real Root Of -186*x^4-852*x^3-493*x^2+397*x-429 3645292420871761 r005 Im(z^2+c),c=-15/29+13/27*I,n=57 3645292435504785 b008 95*E^(1/5)*Pi 3645292441639374 a001 377/843*11^(7/8) 3645292446413106 m001 ln(5)*Rabbit+FeigenbaumAlpha 3645292451394810 r005 Re(z^2+c),c=-14/29+9/43*I,n=49 3645292464422125 r005 Im(z^2+c),c=25/114+14/41*I,n=9 3645292469392717 m001 (1-Psi(1,1/3))/(MadelungNaCl+RenyiParking) 3645292492583065 a001 10946/11*199^(13/53) 3645292502318478 a001 1/39596*(1/2*5^(1/2)+1/2)^13*76^(4/17) 3645292510505746 a007 Real Root Of 117*x^4+505*x^3+552*x^2+723*x-897 3645292513021700 a007 Real Root Of -217*x^4-728*x^3+425*x^2+963*x+916 3645292519010223 r009 Im(z^3+c),c=-23/44+4/23*I,n=12 3645292540467874 r009 Re(z^3+c),c=-43/106+8/13*I,n=20 3645292555974608 s002 sum(A250271[n]/(n^2*10^n-1),n=1..infinity) 3645292563267820 a007 Real Root Of 36*x^4-9*x^3-556*x^2-317*x-560 3645292568291555 m001 Lehmer^2/exp(ErdosBorwein)/GAMMA(11/24) 3645292571120047 m001 (Niven*Sarnak+OrthogonalArrays)/Sarnak 3645292578579566 a005 (1/cos(17/235*Pi))^580 3645292578884813 m002 Pi^4+Pi^5*Cosh[Pi]+6*Sech[Pi] 3645292584894115 r005 Im(z^2+c),c=1/6+20/59*I,n=27 3645292594998902 m007 (-5*gamma-15*ln(2)+5/2*Pi-4/5)/(-4*gamma+3/5) 3645292597165253 r005 Im(z^2+c),c=-10/9+3/58*I,n=3 3645292604197918 a007 Real Root Of -762*x^4-92*x^3-294*x^2+639*x+281 3645292607926835 a001 76/89*2584^(37/48) 3645292618453605 m001 (HardyLittlewoodC3+Trott*ZetaP(3))/ZetaP(3) 3645292619986209 r005 Im(z^2+c),c=-9/14+53/185*I,n=5 3645292621292985 r009 Im(z^3+c),c=-11/74+43/52*I,n=14 3645292624283980 r005 Re(z^2+c),c=-10/21+13/37*I,n=19 3645292636338994 m005 (1/3*Zeta(3)+1/11)/(1/2*Pi-2/9) 3645292637557147 l006 ln(6100/8783) 3645292638640919 r005 Re(z^2+c),c=-17/90+8/15*I,n=5 3645292649536360 a001 9/98209*610^(14/15) 3645292662019370 r005 Im(z^2+c),c=-29/50+31/49*I,n=4 3645292663466638 a007 Real Root Of 16*x^4-234*x^3+308*x^2-573*x+179 3645292670182620 m001 5^(1/2)*(gamma(2)+GAMMA(13/24)) 3645292682705272 r005 Im(z^2+c),c=-9/70+12/23*I,n=35 3645292689369540 a007 Real Root Of 316*x^4+780*x^3+774*x^2-802*x-363 3645292694562209 a007 Real Root Of 968*x^4-290*x^3+599*x^2-703*x-367 3645292697920542 a001 13/47*9349^(11/14) 3645292698002760 m001 (Zeta(1,-1)+Lehmer)^KhinchinLevy 3645292698313108 r005 Im(z^2+c),c=5/21+17/64*I,n=9 3645292708295880 a007 Real Root Of -121*x^4-414*x^3-62*x^2-548*x+138 3645292722905294 m001 Lehmer/(ln(2)/ln(10)+PisotVijayaraghavan) 3645292725318031 r005 Re(z^2+c),c=-81/118+5/34*I,n=17 3645292727544505 m001 (ln(5)+Magata)/(LambertW(1)+cos(1/5*Pi)) 3645292732266955 a001 13/47*39603^(19/28) 3645292777150024 k002 Champernowne real with 119*n^2-348*n+265 3645292782487174 m001 (Mills-Rabbit)/(BesselK(1,1)+MertensB2) 3645292793549419 r005 Re(z^2+c),c=-75/98+1/47*I,n=64 3645292819379538 a001 2/55*139583862445^(7/13) 3645292820818452 p001 sum((-1)^n/(211*n+56)/n/(10^n),n=1..infinity) 3645292821364404 m001 (-BesselI(1,1)+Landau)/(3^(1/3)-sin(1)) 3645292823772919 m001 Pi+ln(2)/ln(10)+2^(1/3)-Shi(1) 3645292824204262 s002 sum(A259118[n]/(n^3*exp(n)+1),n=1..infinity) 3645292828944753 a007 Real Root Of -331*x^4-916*x^3-710*x^2+914*x+389 3645292832457037 m001 exp(OneNinth)*MadelungNaCl^2/cos(Pi/12)^2 3645292837055720 m005 (1/2*exp(1)+9/10)/(3/4*Catalan-5/8) 3645292837739738 m005 (1/2*Zeta(3)-6/7)/(1/9*2^(1/2)+6/11) 3645292848441432 a007 Real Root Of 698*x^4-864*x^3+752*x^2+14*x-149 3645292858794572 a001 1/36*377^(23/53) 3645292863031851 a001 41/15456*144^(29/55) 3645292867015929 r005 Re(z^2+c),c=-65/122+7/15*I,n=61 3645292869475941 m001 (Ei(1)-ZetaQ(3))/polylog(4,1/2) 3645292871698827 m001 GAMMA(1/6)^2*GAMMA(1/24)^2/exp(cosh(1)) 3645292877789390 r005 Im(z^2+c),c=35/114+14/39*I,n=19 3645292904614908 m001 (-MinimumGamma+Totient)/(exp(1)+GolombDickman) 3645292911098873 g002 Psi(2/11)+Psi(7/10)-Psi(5/11)-Psi(5/7) 3645292963623466 p001 sum(1/(604*n+275)/(128^n),n=0..infinity) 3645292977322811 a008 Real Root of x^3-151*x-502 3645292977865048 r005 Re(z^2+c),c=-49/118+15/31*I,n=50 3645292988710915 m005 (3*2^(1/2)+2/5)/(1/6*Pi+3/4) 3645292990056532 r005 Re(z^2+c),c=-19/42+11/30*I,n=52 3645292993383115 a007 Real Root Of -447*x^4+511*x^3+167*x^2+554*x-241 3645293006069283 r009 Im(z^3+c),c=-10/27+19/58*I,n=10 3645293007985222 r005 Re(z^2+c),c=55/118+33/52*I,n=4 3645293018305990 m001 1/Tribonacci^2*FransenRobinson^2/ln(Ei(1)) 3645293019702763 m005 (15/44+1/4*5^(1/2))/(8/11*gamma-2/3) 3645293044570752 m005 (1/3*5^(1/2)+1/8)/(8/9*5^(1/2)+2/5) 3645293044764433 a007 Real Root Of -696*x^4+311*x^3-874*x^2+59*x+165 3645293048335319 r005 Re(z^2+c),c=17/46+13/58*I,n=25 3645293048691069 a007 Real Root Of -978*x^4+669*x^3-760*x^2-32*x+139 3645293066568752 r009 Re(z^3+c),c=-8/23+8/61*I,n=3 3645293079636504 m004 -4-125*Pi+3*Sqrt[5]*Pi*ProductLog[Sqrt[5]*Pi] 3645293088942561 r005 Re(z^2+c),c=-11/23+5/21*I,n=28 3645293090167547 r005 Im(z^2+c),c=-13/94+10/19*I,n=57 3645293113010962 r009 Im(z^3+c),c=-55/114+1/4*I,n=39 3645293116636396 h001 (1/4*exp(2)+1/9)/(7/10*exp(2)+1/5) 3645293124039983 r005 Im(z^2+c),c=-17/18+1/31*I,n=17 3645293127300117 m001 MertensB1-BesselJ(0,1)-Pi 3645293127577011 m001 (Gompertz+Otter)/(cos(1/5*Pi)-Zeta(1,-1)) 3645293127873464 m005 (1/3*2^(1/2)+1/7)/(2/11*3^(1/2)-2) 3645293140303516 p001 sum(1/(609*n+278)/(24^n),n=0..infinity) 3645293143218217 r005 Im(z^2+c),c=29/114+11/35*I,n=10 3645293152292898 r002 28th iterates of z^2 + 3645293157233403 m002 1+Pi^3+ProductLog[Pi]+Pi*ProductLog[Pi] 3645293167248047 a001 89/3*4106118243^(9/17) 3645293176159276 r002 54th iterates of z^2 + 3645293178848911 a007 Real Root Of -822*x^4+601*x^3-358*x^2+389*x+233 3645293216580330 a001 123/55*63245986^(7/17) 3645293220538765 l006 ln(1953/2812) 3645293220818040 r009 Im(z^3+c),c=-35/94+23/58*I,n=3 3645293226381521 r005 Re(z^2+c),c=19/70+39/64*I,n=12 3645293234138154 m005 (1/2*3^(1/2)-7/9)/(6/7*exp(1)+1/11) 3645293234809500 m005 (1/2*Pi-4/7)/(-65/18+7/18*5^(1/2)) 3645293241236885 a007 Real Root Of -8*x^4-266*x^3+957*x^2+828*x-313 3645293241241381 r005 Re(z^2+c),c=-39/86+21/58*I,n=45 3645293261404868 r002 42th iterates of z^2 + 3645293274714278 r005 Re(z^2+c),c=-17/18+46/203*I,n=36 3645293281811273 m005 (1/2*Zeta(3)-1/11)/(51/70+3/10*5^(1/2)) 3645293285766388 r005 Im(z^2+c),c=-137/118+13/60*I,n=20 3645293300933133 l006 ln(4606/4777) 3645293304473419 m001 Chi(1)/(ReciprocalLucas+Riemann2ndZero) 3645293309526034 r009 Re(z^3+c),c=-14/31+12/47*I,n=49 3645293315143246 q001 1336/3665 3645293316680789 m001 (2^(1/2)+(1+3^(1/2))^(1/2)*Rabbit)/Rabbit 3645293320482327 m005 (1/2*exp(1)+4/9)/(1/10*Pi-4/11) 3645293341949043 a007 Real Root Of 778*x^4-854*x^3+924*x^2-228*x-261 3645293343698209 h001 (7/11*exp(2)+8/11)/(1/3*exp(1)+7/12) 3645293362467827 r009 Re(z^3+c),c=-7/106+37/56*I,n=40 3645293370728567 m001 HardyLittlewoodC5^(2^(1/2))+StolarskyHarborth 3645293373673765 m001 (BesselI(0,1)-Chi(1))/(-Zeta(3)+Trott2nd) 3645293386341997 r005 Im(z^2+c),c=27/110+10/37*I,n=50 3645293398056491 r005 Im(z^2+c),c=29/122+5/18*I,n=34 3645293400504257 a007 Real Root Of 928*x^4+988*x^3+635*x^2-612*x-276 3645293400759481 a007 Real Root Of -155*x^4+350*x^3-957*x^2+464*x+316 3645293404902275 p004 log(27773/19289) 3645293441582138 m001 Artin/gamma(1)*Rabbit 3645293447875922 r005 Re(z^2+c),c=-57/118+6/29*I,n=32 3645293457939999 s002 sum(A217857[n]/(n*exp(n)-1),n=1..infinity) 3645293487118591 a007 Real Root Of 198*x^4+862*x^3+549*x^2+165*x+99 3645293507055208 a001 2207/5*89^(59/60) 3645293521481386 a007 Real Root Of -248*x^4-997*x^3-234*x^2+195*x-683 3645293523436453 m001 Riemann3rdZero*exp(FeigenbaumB)^2/GAMMA(1/4) 3645293524968653 r009 Re(z^3+c),c=-51/106+13/61*I,n=9 3645293528818295 m009 (4*Psi(1,3/4)+4/5)/(3*Psi(1,1/3)-1/5) 3645293530724599 r002 12th iterates of z^2 + 3645293548852201 r002 23th iterates of z^2 + 3645293552374797 r005 Im(z^2+c),c=-117/94+8/43*I,n=3 3645293552795074 r005 Re(z^2+c),c=-8/13+23/62*I,n=62 3645293554103084 a007 Real Root Of -142*x^4-438*x^3-128*x^2+515*x-147 3645293562630475 m001 1/(3^(1/3))^2/LaplaceLimit*ln(sqrt(1+sqrt(3))) 3645293591444523 m001 Ei(1)/GAMMA(3/4)*CopelandErdos 3645293602365681 g007 Psi(2,3/7)+Psi(2,1/6)-Psi(2,7/11)-Psi(2,2/7) 3645293625920479 m005 (1/2*Zeta(3)-5)/(5/9*gamma-1/5) 3645293627538082 r005 Re(z^2+c),c=7/58+16/59*I,n=20 3645293632484975 a003 sin(Pi*13/113)/sin(Pi*27/64) 3645293636168833 r005 Im(z^2+c),c=-15/62+29/49*I,n=64 3645293638670543 m001 (Porter+Sierpinski)/(ErdosBorwein-exp(1)) 3645293652087700 m001 Shi(1)-cos(1)^Gompertz 3645293658313722 r005 Im(z^2+c),c=19/86+20/51*I,n=5 3645293658750080 r005 Im(z^2+c),c=-11/30+24/41*I,n=40 3645293668577117 h001 (4/9*exp(1)+4/9)/(3/5*exp(2)+1/10) 3645293683073108 a005 (1/sin(89/235*Pi))^234 3645293700574440 a007 Real Root Of -918*x^4+202*x^3+897*x^2+563*x-318 3645293729719820 m001 (MertensB1+Thue)/(BesselI(0,2)+Kolakoski) 3645293733744995 a007 Real Root Of -301*x^4-852*x^3+933*x^2-28*x-621 3645293735581343 a001 6/329*10946^(19/59) 3645293746921674 r005 Im(z^2+c),c=27/110+10/37*I,n=54 3645293749603427 m001 (Psi(1,1/3)+cos(1))/(Backhouse+MinimumGamma) 3645293764957459 m001 ln((2^(1/3)))^2/Riemann3rdZero/BesselJ(0,1)^2 3645293770260649 b008 2+SinIntegral[(13*Pi)/4] 3645293775974363 m001 gamma(3)^GAMMA(11/12)*FeigenbaumAlpha 3645293777505401 r005 Im(z^2+c),c=-3/11+30/59*I,n=7 3645293780150624 k002 Champernowne real with 239/2*n^2-699/2*n+266 3645293792029529 r005 Re(z^2+c),c=-2/3+11/175*I,n=8 3645293793428428 m005 (1/2*Catalan-5/9)/(1/8*2^(1/2)-4/9) 3645293798358077 m005 (1/2*3^(1/2)+8/9)/(8/9*Catalan+4) 3645293809193417 r002 23th iterates of z^2 + 3645293813962540 m001 (gamma(3)-(1+3^(1/2))^(1/2))/(Ei(1)-3^(1/3)) 3645293814935685 r005 Im(z^2+c),c=5/118+16/37*I,n=14 3645293815998916 r009 Im(z^3+c),c=-21/44+11/43*I,n=26 3645293818961295 a007 Real Root Of -51*x^4+164*x^3+399*x^2+807*x+250 3645293827936775 m001 ZetaQ(4)*(Khinchin-PlouffeB) 3645293833273624 r009 Im(z^3+c),c=-27/50+13/40*I,n=22 3645293849464528 r005 Im(z^2+c),c=11/102+13/34*I,n=34 3645293851518777 a007 Real Root Of 159*x^4-794*x^3+555*x^2-922*x+298 3645293853537636 l006 ln(5618/8089) 3645293878059667 a007 Real Root Of 347*x^4+488*x^3-485*x^2-865*x+350 3645293892259820 a007 Real Root Of -913*x^4-340*x^3-116*x^2+842*x+322 3645293899834673 r005 Im(z^2+c),c=-21/34+34/79*I,n=56 3645293916838812 b008 7+CosIntegral[1/51] 3645293936061625 r005 Im(z^2+c),c=-15/94+29/54*I,n=61 3645293960618764 a007 Real Root Of 79*x^4+292*x^3+49*x^2-108*x-850 3645293968925494 m001 Trott2nd-ZetaR(2)^(3^(1/3)) 3645293969984619 m001 (-polylog(4,1/2)+FeigenbaumC)/(Chi(1)-sin(1)) 3645293974731313 r005 Im(z^2+c),c=27/110+10/37*I,n=40 3645293975175903 a007 Real Root Of 704*x^4-534*x^3-816*x^2-47*x+139 3645293997511484 r009 Im(z^3+c),c=-21/74+23/63*I,n=12 3645294000936557 m001 Si(Pi)*(FeigenbaumD-TravellingSalesman) 3645294034811350 r005 Im(z^2+c),c=-17/18+28/115*I,n=6 3645294051361143 r005 Re(z^2+c),c=-45/94+13/55*I,n=53 3645294089858843 m008 (2/5*Pi^4-4)/(3*Pi+1/6) 3645294106490559 m006 (2/5*exp(Pi)-2)/(2*Pi^2+1/6) 3645294106856275 r009 Re(z^3+c),c=-11/32+37/51*I,n=20 3645294113561648 a007 Real Root Of -239*x^4-657*x^3+596*x^2-803*x-470 3645294113892878 m005 (1/2*gamma-4/5)/(2/7*exp(1)-7/11) 3645294121179189 m009 (1/4*Psi(1,1/3)-4)/(2*Catalan+1/4*Pi^2-1/4) 3645294125175289 a007 Real Root Of -57*x^4+44*x^3+865*x^2-178*x+53 3645294134976365 a007 Real Root Of -728*x^4+760*x^3-568*x^2+957*x+474 3645294140844587 m005 (1/2*Catalan+2/11)/(1/4*Zeta(3)-1/8) 3645294141065506 m001 (ErdosBorwein-MinimumGamma)/(Pi+Chi(1)) 3645294145836288 a007 Real Root Of 199*x^4+764*x^3+273*x^2+644*x+589 3645294146711325 r005 Im(z^2+c),c=-73/122+5/12*I,n=4 3645294147678303 r005 Im(z^2+c),c=1/56+26/59*I,n=27 3645294154732912 r009 Im(z^3+c),c=-39/82+1/4*I,n=16 3645294159877366 a007 Real Root Of 87*x^4+241*x^3-53*x^2+877*x+213 3645294170844111 m001 (2^(1/2)+LandauRamanujan)/(-MertensB1+Thue) 3645294175912374 r005 Im(z^2+c),c=13/110+3/8*I,n=25 3645294188854836 r005 Re(z^2+c),c=-23/118+30/49*I,n=14 3645294190504676 a007 Real Root Of 309*x^4+219*x^3+425*x^2-962*x-402 3645294190849159 l006 ln(3665/5277) 3645294204420577 r005 Im(z^2+c),c=15/44+5/44*I,n=60 3645294220895728 m001 (ln(gamma)+3^(1/3))/(KomornikLoreti+Robbin) 3645294224043574 a007 Real Root Of x^4+29*x^3-261*x^2+404*x+533 3645294235597400 m009 (4/5*Psi(1,3/4)+1)/(3/4*Psi(1,1/3)+3/4) 3645294241911850 a007 Real Root Of -235*x^4+577*x^3+12*x^2+169*x-87 3645294251598801 r005 Re(z^2+c),c=1/102+11/47*I,n=14 3645294253396632 a007 Real Root Of -398*x^4+791*x^3+377*x^2-23*x-73 3645294257562957 m001 (Salem-ZetaQ(2))/(Champernowne+Otter) 3645294291405749 a007 Real Root Of -661*x^4+888*x^3+126*x^2+675*x+284 3645294295570187 m001 (FeigenbaumDelta+Robbin)/(Zeta(1/2)-gamma(3)) 3645294329309421 r005 Im(z^2+c),c=-77/62+19/47*I,n=8 3645294341479677 r004 Re(z^2+c),c=-11/24+1/3*I,z(0)=-1,n=41 3645294368241264 a007 Real Root Of -308*x^4-874*x^3+881*x^2+176*x+984 3645294395966492 r009 Re(z^3+c),c=-15/74+38/53*I,n=45 3645294401721129 a007 Real Root Of -63*x^4+905*x^3-185*x^2+421*x+223 3645294413581373 m001 sin(1)+ln(3)+Niven 3645294414908049 a007 Real Root Of -581*x^4+932*x^3-472*x^2+573*x+327 3645294422083761 a007 Real Root Of 545*x^4-546*x^3-522*x^2-603*x+306 3645294430242577 r005 Re(z^2+c),c=-43/94+11/32*I,n=37 3645294435617919 m009 (5/12*Pi^2+3)/(4/5*Psi(1,2/3)-1/2) 3645294441309804 r009 Re(z^3+c),c=-8/25+20/29*I,n=55 3645294443659145 a001 8/47*3571^(15/16) 3645294447393412 a001 2584/123*1364^(17/43) 3645294457136519 g006 Psi(1,2/7)-Psi(1,7/12)-Psi(1,7/8)-Psi(1,4/7) 3645294467078914 r009 Re(z^3+c),c=-37/86+13/57*I,n=24 3645294469594640 m001 MinimumGamma^2*FeigenbaumAlpha^2*exp(Zeta(9)) 3645294482617386 m001 (sin(1/12*Pi)-ArtinRank2)/(Landau+TwinPrimes) 3645294485462266 a007 Real Root Of -727*x^4+606*x^3-831*x^2+826*x-3 3645294507304194 r005 Re(z^2+c),c=23/106+15/28*I,n=7 3645294515037915 b008 BesselI[0,9]/3 3645294515679989 m002 Pi^4+Pi^5*Cosh[Pi]+6*Csch[Pi] 3645294530108568 r005 Im(z^2+c),c=21/74+14/61*I,n=42 3645294530580851 m006 (3*Pi+5/6)/(exp(Pi)+5) 3645294543279153 l006 ln(5377/7742) 3645294559096289 r005 Re(z^2+c),c=-51/106+2/9*I,n=23 3645294576095437 r005 Im(z^2+c),c=-39/50+14/37*I,n=4 3645294596579901 a007 Real Root Of 603*x^4-365*x^3+307*x^2+239*x+18 3645294614246368 m001 1/GAMMA(13/24)^2/ln(MinimumGamma)^2/sin(1)^2 3645294633118715 m001 HardyLittlewoodC5^arctan(1/2)*Psi(2,1/3) 3645294645850212 m005 (1/3*3^(1/2)+1/11)/(1/11*Zeta(3)-1/9) 3645294651677715 m001 AlladiGrinstead*FeigenbaumKappa-MinimumGamma 3645294663792972 m002 -ProductLog[Pi]-5*Sech[Pi]+Log[Pi]*Tanh[Pi] 3645294672636187 a001 39603/89*2178309^(16/53) 3645294680932844 m001 (-gamma(3)+GaussAGM)/(exp(Pi)-ln(2)/ln(10)) 3645294683622612 m005 (-11/15+1/10*5^(1/2))/(3*gamma-1/3) 3645294699690920 a008 Real Root of x^4-2*x^3-21*x^2-x+203 3645294700669139 r002 39th iterates of z^2 + 3645294711652580 a001 8/47*45537549124^(5/16) 3645294725956566 q001 141/3868 3645294729908918 m001 GAMMA(1/24)^2/ln(Khintchine)/GAMMA(7/12) 3645294732976319 m001 (Chi(1)-GAMMA(2/3))/(Riemann1stZero+Trott2nd) 3645294741367271 r009 Im(z^3+c),c=-31/74+13/43*I,n=12 3645294749887471 r005 Im(z^2+c),c=33/86+9/43*I,n=32 3645294755672857 m002 -7-Pi^2+Pi^5/E^Pi 3645294757533151 a001 9227465/322*47^(1/16) 3645294762676985 m001 (Zeta(3)-ln(3))/(cos(1/12*Pi)+Zeta(1,2)) 3645294768124679 b008 Csch[Erf[ArcCot[4]]] 3645294770097681 a001 28143753123/55*233^(18/23) 3645294774952567 a007 Real Root Of -109*x^4+493*x^3+555*x^2+330*x-216 3645294783151224 k002 Champernowne real with 120*n^2-351*n+267 3645294837240733 r005 Re(z^2+c),c=-3/14+27/46*I,n=13 3645294838828856 m005 (1/2*Catalan+3/7)/(3^(1/2)+7/10) 3645294839796928 r005 Im(z^2+c),c=-4/21+27/49*I,n=53 3645294841533748 m001 (ArtinRank2-Chi(1))/(-Trott2nd+ThueMorse) 3645294845910255 m001 (sin(1)+Artin)/(-CopelandErdos+FeigenbaumMu) 3645294850669392 a007 Real Root Of -594*x^4+311*x^3+459*x^2+890*x-390 3645294859756370 m005 (-11/20+1/4*5^(1/2))/(4/5*Zeta(3)-5/7) 3645294875389002 s002 sum(A003342[n]/(n*pi^n+1),n=1..infinity) 3645294885407581 a001 7778742049/521*3^(13/16) 3645294891014867 a005 (1/cos(15/224*Pi))^781 3645294891625645 m001 ln(Robbin)*FeigenbaumB^2*GAMMA(5/6)^2 3645294904090163 m008 (5/6*Pi^5+1/5)/(1/5*Pi^3+4/5) 3645294905657798 r009 Re(z^3+c),c=-47/106+12/49*I,n=36 3645294907080781 r005 Im(z^2+c),c=21/94+9/20*I,n=12 3645294907814808 a007 Real Root Of 619*x^4+273*x^3+687*x^2-310*x-202 3645294911867342 p004 log(15137/10513) 3645294913725414 a001 9/5473*2178309^(3/55) 3645294930654437 a007 Real Root Of 144*x^4+391*x^3-358*x^2+564*x+326 3645294950553342 r002 44th iterates of z^2 + 3645294953203976 m001 (-MertensB2+Tetranacci)/(exp(Pi)+GAMMA(2/3)) 3645294974549644 a007 Real Root Of 239*x^4+881*x^3+7*x^2-10*x+344 3645294992332241 r009 Re(z^3+c),c=-47/98+15/61*I,n=3 3645295012975913 r009 Re(z^3+c),c=-14/31+12/47*I,n=48 3645295020005547 b008 ArcCsc[3^Sqrt[ArcCsch[1]]] 3645295034401736 r002 8th iterates of z^2 + 3645295058881028 r005 Im(z^2+c),c=27/110+10/37*I,n=45 3645295061373679 m001 (ln(3)-Pi^(1/2))/(FeigenbaumD-GaussAGM) 3645295063987563 r005 Re(z^2+c),c=-31/70+20/49*I,n=39 3645295064537520 a007 Real Root Of -857*x^4+180*x^3-459*x^2+785*x+371 3645295071681417 a003 sin(Pi*8/75)/sin(Pi*29/81) 3645295071894510 a003 cos(Pi*5/91)-sin(Pi*13/61) 3645295077853748 p001 sum(1/(377*n+287)/(10^n),n=0..infinity) 3645295083853498 r005 Im(z^2+c),c=13/90+40/61*I,n=22 3645295091879464 r005 Im(z^2+c),c=-13/10+4/111*I,n=17 3645295100522540 a007 Real Root Of -323*x^4-997*x^3+967*x^2+979*x-541 3645295106608402 h001 (4/5*exp(1)+1/4)/(8/9*exp(2)+1/12) 3645295108309900 p004 log(36037/34747) 3645295110233879 m001 (-arctan(1/3)+Conway)/(Si(Pi)+sin(1)) 3645295117579822 a007 Real Root Of 508*x^4+843*x^3-76*x^2-875*x-277 3645295117602841 m001 (ln(3)+BesselI(1,2))/(Psi(1,1/3)-exp(1)) 3645295120302675 r005 Im(z^2+c),c=-1/23+25/53*I,n=17 3645295122286578 a001 2584/123*3571^(15/43) 3645295141921598 r005 Re(z^2+c),c=-7/44+53/59*I,n=10 3645295146658664 r005 Im(z^2+c),c=-23/30+14/113*I,n=17 3645295155886879 a007 Real Root Of -282*x^4-920*x^3+349*x^2+27*x+691 3645295166231127 a007 Real Root Of 527*x^4-738*x^3-4*x^2-26*x-54 3645295181530229 a007 Real Root Of 99*x^4+478*x^3+118*x^2-998*x+467 3645295189156391 r005 Re(z^2+c),c=1/24+23/39*I,n=6 3645295194831830 r009 Im(z^3+c),c=-29/110+13/35*I,n=8 3645295199990369 m008 (5*Pi^5-2/5)/(2/5*Pi^4+3) 3645295205228190 a001 55/5778*64079^(41/43) 3645295211103731 m001 GAMMA(1/6)^2/Porter*ln(sin(1)) 3645295218583633 r002 12th iterates of z^2 + 3645295231753685 m001 (exp(1)-ln(2))/(-2*Pi/GAMMA(5/6)+Trott) 3645295249011928 r009 Im(z^3+c),c=-21/40+5/28*I,n=50 3645295259651047 m005 (1/2*gamma-5/9)/(-8/99+4/11*5^(1/2)) 3645295265980368 r002 63th iterates of z^2 + 3645295270653944 r005 Re(z^2+c),c=-19/40+15/58*I,n=38 3645295273827764 r005 Im(z^2+c),c=27/110+10/37*I,n=48 3645295274809570 a007 Real Root Of 261*x^4+773*x^3-470*x^2+786*x+468 3645295297751030 l006 ln(1712/2465) 3645295309836402 m001 1/TwinPrimes*ArtinRank2^2*ln(GAMMA(13/24)) 3645295327454775 r002 37th iterates of z^2 + 3645295332822497 a001 28657/123*15127^(2/43) 3645295336429600 a001 10946/123*24476^(6/43) 3645295348909334 a007 Real Root Of 107*x^4+260*x^3-358*x^2+552*x+470 3645295355053556 a001 10946/123*5778^(7/43) 3645295359761023 a001 726103/41*47^(3/16) 3645295382000973 h001 (8/9*exp(1)+1/10)/(9/11*exp(2)+6/7) 3645295382925603 m001 (-Ei(1)+Ei(1,1))/(1-cos(1)) 3645295385652225 r005 Im(z^2+c),c=-13/94+10/19*I,n=51 3645295391274132 h001 (3/10*exp(1)+5/11)/(4/9*exp(2)+1/5) 3645295404880214 a001 7/10946*13^(19/28) 3645295417952596 r009 Re(z^3+c),c=-11/26+18/29*I,n=63 3645295425999643 r005 Im(z^2+c),c=31/82+10/59*I,n=19 3645295437175954 a001 161/72*55^(5/41) 3645295440773401 m005 (1/2*Zeta(3)+2/7)/(exp(1)-2/7) 3645295450897491 m001 Chi(1)/(Tribonacci-ln(5)) 3645295455211153 m001 (Zeta(1/2)+GAMMA(17/24))/(2^(1/2)-Ei(1)) 3645295456536806 b008 23*InverseErfc[1/40] 3645295489695295 m001 (ln(2)/ln(10)+Zeta(1,-1))/(Khinchin+MertensB2) 3645295490027374 r005 Im(z^2+c),c=-41/48+1/42*I,n=22 3645295519902850 h001 (3/11*exp(2)+5/11)/(9/10*exp(2)+1/8) 3645295521687562 r005 Re(z^2+c),c=-17/36+9/23*I,n=22 3645295528673305 m005 (1/3*Pi-3/5)/(-1/4+1/6*5^(1/2)) 3645295531159973 b008 Pi*ArcCoth[3+4*Sqrt[2]] 3645295536542884 a007 Real Root Of -178*x^4-687*x^3-392*x^2-985*x-229 3645295542606153 m001 1/3*exp(1/Pi)*3^(2/3)/MertensB1 3645295546562470 r005 Im(z^2+c),c=-31/58+3/46*I,n=24 3645295558953303 h001 (-7*exp(7)+7)/(-4*exp(4)+8) 3645295567710738 b008 7+ExpIntegralEi[1/52] 3645295576692260 m005 (4/5*2^(1/2)+2)/(3+5/2*5^(1/2)) 3645295584636257 r005 Re(z^2+c),c=-14/29+9/43*I,n=51 3645295586013377 a007 Real Root Of -269*x^4-713*x^3+955*x^2+97*x+625 3645295598519989 r009 Re(z^3+c),c=-49/102+37/63*I,n=60 3645295633507028 s002 sum(A131093[n]/(2^n+1),n=1..infinity) 3645295645537568 a001 3/439204*76^(45/49) 3645295650910206 m001 polylog(4,1/2)^GAMMA(19/24)/BesselI(0,1) 3645295659867594 m001 (Chi(1)*Bloch+PisotVijayaraghavan)/Bloch 3645295661036491 a007 Real Root Of 209*x^4+811*x^3-101*x^2-885*x+496 3645295695797245 a003 sin(Pi*7/46)*sin(Pi*23/79) 3645295715962412 r005 Im(z^2+c),c=-3/38+10/23*I,n=4 3645295717496474 a007 Real Root Of -250*x^4+98*x^3-214*x^2+857*x+350 3645295720706409 a001 28657/322*76^(14/43) 3645295741645182 a007 Real Root Of -195*x^4-785*x^3-78*x^2+555*x-533 3645295746223740 m001 MertensB3-exp(1)*FeigenbaumC 3645295750304350 r005 Re(z^2+c),c=-37/82+13/35*I,n=50 3645295782523546 r005 Im(z^2+c),c=-1/74+28/61*I,n=49 3645295786695175 a007 Real Root Of 934*x^4-16*x^3+120*x^2-844*x+276 3645295793851046 m001 (-GolombDickman+KomornikLoreti)/(exp(1)+Bloch) 3645295809419226 a007 Real Root Of -146*x^4+904*x^3+830*x^2+251*x-243 3645295824051056 m001 (MertensB2+Tetranacci)/(Artin-KhinchinLevy) 3645295842756670 r005 Re(z^2+c),c=-35/78+18/47*I,n=25 3645295863097569 r009 Re(z^3+c),c=-25/54+13/48*I,n=25 3645295871323850 m001 (Chi(1)-GAMMA(17/24))/FibonacciFactorial 3645295873866255 a007 Real Root Of -17*x^4-597*x^3+850*x^2+794*x-964 3645295889296726 r002 9th iterates of z^2 + 3645295899352194 r005 Re(z^2+c),c=-10/23+13/30*I,n=60 3645295911765713 l006 ln(6607/9513) 3645295913887450 r005 Re(z^2+c),c=9/74+3/11*I,n=15 3645295920350672 a007 Real Root Of -993*x^4-95*x^3+853*x^2+271*x-190 3645295927246965 a007 Real Root Of 23*x^4+824*x^3-537*x^2-432*x-574 3645295932700164 m004 -4/3+5/E^(Sqrt[5]*Pi)-5*Sqrt[5]*Pi 3645295943627264 r005 Im(z^2+c),c=-11/56+17/28*I,n=49 3645295945443003 m001 (Artin+QuadraticClass)/(Sierpinski+Thue) 3645295948322905 r005 Im(z^2+c),c=25/66+7/33*I,n=20 3645295949319182 r005 Re(z^2+c),c=-15/22+25/89*I,n=35 3645295950853862 r005 Re(z^2+c),c=7/62+15/58*I,n=11 3645295974382867 r005 Re(z^2+c),c=-19/42+18/49*I,n=43 3645295984306114 r005 Im(z^2+c),c=-5/46+23/45*I,n=40 3645295988808655 h001 (1/10*exp(1)+2/3)/(1/4*exp(2)+8/11) 3645295991291707 r005 Im(z^2+c),c=-101/122+5/24*I,n=18 3645295994841412 a007 Real Root Of 348*x^4-798*x^3-56*x^2-573*x+21 3645295996069761 q001 1484/4071 3645295996399286 m001 LambertW(1)^2/ln((2^(1/3)))^2/sqrt(1+sqrt(3)) 3645295997970520 m001 sin(Pi/12)^sqrt(Pi)/(sin(Pi/12)^GAMMA(23/24)) 3645296001105898 a007 Real Root Of -844*x^4+810*x^3+451*x^2+622*x-311 3645296005551097 r005 Re(z^2+c),c=-14/29+11/53*I,n=26 3645296006825194 r005 Re(z^2+c),c=-85/122+4/9*I,n=46 3645296010287379 a007 Real Root Of 492*x^4-525*x^3+415*x^2-810*x+29 3645296010913720 a007 Real Root Of -704*x^4+227*x^3+552*x^2+831*x+253 3645296039852982 a001 710647/2*21^(13/17) 3645296040617158 a005 (1/cos(27/211*Pi))^71 3645296043404043 r005 Re(z^2+c),c=-65/98+15/53*I,n=13 3645296044466117 r009 Im(z^3+c),c=-25/56+12/43*I,n=30 3645296047932556 r002 36th iterates of z^2 + 3645296047932556 r002 36th iterates of z^2 + 3645296065830621 m001 (1+ln(3))/(Champernowne+ZetaP(2)) 3645296077869148 r005 Re(z^2+c),c=-43/98+17/41*I,n=43 3645296094077843 r005 Im(z^2+c),c=1/11+13/33*I,n=35 3645296100594364 m001 (-FeigenbaumAlpha+Lehmer)/(Psi(2,1/3)+exp(1)) 3645296102158975 m005 (1/2*Pi-2/7)/(1/9*gamma-5/12) 3645296110888526 m001 (GAMMA(2/3)+ln(gamma))/(exp(1/Pi)+FeigenbaumB) 3645296111790902 s002 sum(A122484[n]/(n!^3),n=1..infinity) 3645296116611095 r005 Im(z^2+c),c=17/48+5/19*I,n=34 3645296116842182 m005 (1/2*Pi+4)/(3/7*Pi+2/11) 3645296119561841 m001 (Backhouse-Grothendieck)^Otter 3645296126514046 l006 ln(4895/7048) 3645296149978124 r005 Re(z^2+c),c=-23/52+27/56*I,n=43 3645296168151105 a007 Real Root Of 809*x^4-810*x^3+258*x^2-983*x+349 3645296178052016 m001 (FransenRobinson-RenyiParking)/BesselI(1,1) 3645296179780951 v003 sum((n^3-4*n^2+22*n-18)*n!/n^n,n=1..infinity) 3645296185938746 a007 Real Root Of -333*x^4+280*x^3+809*x^2+913*x-448 3645296189747500 m001 (Psi(1,1/3)+Zeta(5))/(MadelungNaCl+Mills) 3645296189878207 m001 exp(-1/2*Pi)/(GAMMA(17/24)-TravellingSalesman) 3645296203258547 r005 Re(z^2+c),c=-49/110+13/33*I,n=53 3645296205079158 m001 (ln(Pi)-Lehmer)/(Totient+ZetaP(3)) 3645296227822448 a001 2/514229*2178309^(14/45) 3645296235882906 p004 log(18679/12973) 3645296259380719 m001 (BesselJ(1,1)+Mills)/(Chi(1)-ln(2+3^(1/2))) 3645296260940058 m001 (3^(1/2)-Shi(1))/(GAMMA(3/4)+Kac) 3645296261044897 a007 Real Root Of -220*x^4-671*x^3+498*x^2+x-270 3645296261705420 m005 (1/2*Pi-4/5)/(1/8*Catalan+2) 3645296286527830 m001 (-Porter+Stephens)/(Si(Pi)+Lehmer) 3645296298152353 l006 ln(17/651) 3645296310725777 a007 Real Root Of -111*x^4-441*x^3+157*x^2+885*x-622 3645296340293731 r005 Im(z^2+c),c=1/64+35/58*I,n=29 3645296344465810 m001 (ln(3)-DuboisRaymond)/(Otter-PlouffeB) 3645296357293496 b008 68/135+Pi 3645296375620540 m001 Pi*2^(1/2)+gamma-exp(1/Pi) 3645296403462018 r002 52th iterates of z^2 + 3645296410903627 a001 10946/123*843^(9/43) 3645296412054154 h001 (7/8*exp(2)+1/6)/(3/8*exp(1)+4/5) 3645296424721927 a007 Real Root Of 20*x^4+745*x^3+565*x^2-589*x-95 3645296436341817 r009 Re(z^3+c),c=-14/31+12/47*I,n=53 3645296443211230 m001 (Catalan-GAMMA(3/4))/(Artin+Weierstrass) 3645296448740145 m001 Sarnak^PisotVijayaraghavan/KomornikLoreti 3645296461901724 r005 Re(z^2+c),c=-23/48+10/63*I,n=5 3645296465591106 m001 (MinimumGamma+Salem)/Sarnak 3645296487807914 m001 (QuadraticClass-Robbin)/(Zeta(5)-GAMMA(13/24)) 3645296516522329 m001 exp(Pi)^2*(2^(1/3))*cos(1) 3645296526671095 r005 Re(z^2+c),c=-39/56+9/31*I,n=7 3645296537487205 m008 (4/5*Pi-3/4)/(1/2*Pi^4-1/3) 3645296537743301 a007 Real Root Of 95*x^4+402*x^3+688*x^2-824*x-374 3645296558932072 r005 Im(z^2+c),c=9/28+9/50*I,n=49 3645296560470504 a001 75025/322*3^(11/27) 3645296572270312 l006 ln(3183/4583) 3645296572763686 m001 (sin(1/5*Pi)-arctan(1/2))/(Magata-ZetaQ(4)) 3645296631451355 b008 35+Sqrt[19]/3 3645296631687278 m001 Zeta(1,2)/ln(BesselK(1,1))^2*Zeta(9) 3645296637674158 a007 Real Root Of -238*x^4+377*x^3-153*x^2+840*x+349 3645296644540557 a007 Real Root Of -30*x^4+67*x^3+719*x^2+523*x+895 3645296655401421 a007 Real Root Of -32*x^4+417*x^3-227*x^2+996*x+414 3645296658314168 r002 3th iterates of z^2 + 3645296661564943 a005 (1/cos(32/237*Pi))^138 3645296687702624 r005 Re(z^2+c),c=-45/94+13/55*I,n=49 3645296695127531 r005 Im(z^2+c),c=-31/78+1/17*I,n=16 3645296711644059 m001 (gamma+Ei(1,1))/(MinimumGamma+Sarnak) 3645296713277895 a008 Real Root of x^4-x^3-24*x^2-36*x-10 3645296719970346 m005 (1/2*2^(1/2)-8/11)/(18/77+1/7*5^(1/2)) 3645296722753222 r005 Im(z^2+c),c=1/94+4/9*I,n=25 3645296730218517 r009 Re(z^3+c),c=-39/70+17/36*I,n=17 3645296735638489 r009 Re(z^3+c),c=-1/5+57/59*I,n=48 3645296737516410 r005 Im(z^2+c),c=1/38+27/62*I,n=27 3645296744438666 r005 Im(z^2+c),c=-5/29+9/14*I,n=8 3645296768666709 r005 Re(z^2+c),c=-14/29+9/43*I,n=56 3645296770055826 a005 (1/sin(86/189*Pi))^589 3645296774128398 a007 Real Root Of 85*x^4-241*x^3+683*x^2-889*x-428 3645296774963772 r005 Re(z^2+c),c=-45/94+13/55*I,n=51 3645296781366247 s002 sum(A242353[n]/(2^n+1),n=1..infinity) 3645296795348576 r005 Re(z^2+c),c=-7/10+43/171*I,n=52 3645296806204458 r005 Im(z^2+c),c=11/102+13/34*I,n=35 3645296810589136 r005 Im(z^2+c),c=5/94+18/43*I,n=34 3645296821673541 r005 Re(z^2+c),c=-23/18+5/118*I,n=62 3645296828517799 m001 Catalan^2/exp(HardHexagonsEntropy)^2*sin(1)^2 3645296837376144 m001 exp(cos(1))*GAMMA(3/4)^2*sqrt(2) 3645296863797615 m005 (1/2*exp(1)-8/9)/(7/10*Pi-10/11) 3645296865972020 a007 Real Root Of 26*x^4+957*x^3+326*x^2-370*x+65 3645296876812065 m008 (5/6*Pi+1/5)/(1/4*Pi^5+4/5) 3645296880883964 h001 (8/9*exp(2)+3/7)/(3/8*exp(1)+9/10) 3645296892252972 r005 Re(z^2+c),c=-29/38+1/27*I,n=50 3645296899736385 m001 Ei(1,1)*(DuboisRaymond+Porter) 3645296903228540 a001 141422324/5*21^(1/12) 3645296909681957 a007 Real Root Of 239*x^4+718*x^3-394*x^2+813*x+777 3645296931531636 r005 Im(z^2+c),c=-12/31+15/28*I,n=32 3645296934161016 r005 Im(z^2+c),c=-1/66+23/50*I,n=36 3645296948591023 k005 Champernowne real with floor(log(3)*(150*n+182)) 3645296948591024 k005 Champernowne real with floor(Catalan*(180*n+218)) 3645296948591024 k001 Champernowne real with 165*n+199 3645296953239425 r005 Re(z^2+c),c=-14/29+9/43*I,n=58 3645296972651399 p004 log(31387/21799) 3645296974594329 m005 (1/2*Catalan+7/10)/(2/9*3^(1/2)-5/12) 3645296974898557 m001 (2/3)^cos(Pi/12)/(Ei(1)^cos(Pi/12)) 3645296975958887 m001 gamma(1)/(GAMMA(2/3)+Cahen) 3645296982507762 m001 Trott^2*FeigenbaumD^2/exp(BesselK(0,1))^2 3645296997042214 m001 (KomornikLoreti-Shi(1))/(LaplaceLimit+Totient) 3645296998014554 r009 Re(z^3+c),c=-13/27+12/41*I,n=60 3645297004089693 r005 Re(z^2+c),c=-11/74+29/30*I,n=5 3645297010254885 r005 Re(z^2+c),c=-14/29+9/43*I,n=54 3645297011751448 m001 1/sin(Pi/12)^2*exp(GAMMA(1/4))^2*sqrt(3) 3645297023522482 m001 (Backhouse-Kolakoski)/(exp(1/Pi)+BesselJ(1,1)) 3645297024268437 m001 (exp(Pi)+gamma(3))/(-Sarnak+TwinPrimes) 3645297030563327 r005 Re(z^2+c),c=-27/70+17/32*I,n=41 3645297032353341 a007 Real Root Of -103*x^4-441*x^3+16*x^2+668*x-952 3645297041109336 l006 ln(4654/6701) 3645297042288782 h001 (8/11*exp(2)+3/8)/(5/12*exp(1)+4/9) 3645297045677658 r009 Re(z^3+c),c=-43/106+8/13*I,n=28 3645297046534186 a007 Real Root Of -864*x^4-171*x^3+685*x^2+882*x-389 3645297048622004 p003 LerchPhi(1/10,1,16/57) 3645297063347295 a007 Real Root Of 222*x^4+277*x^3+872*x^2-394*x-250 3645297078679735 m001 FeigenbaumAlpha+MertensB3^arctan(1/2) 3645297094052589 m005 (1/3*gamma-1/3)/(1/2*3^(1/2)+3) 3645297094433125 m003 7/12+(5*Sqrt[5])/64+6*Log[1/2+Sqrt[5]/2] 3645297099710444 r005 Re(z^2+c),c=-19/42+26/55*I,n=40 3645297106097495 m001 1/ln(ArtinRank2)^2*FeigenbaumDelta/Pi^2 3645297118157504 m005 (1/2*5^(1/2)+1/11)/(3/7*exp(1)-5/6) 3645297124957826 r009 Im(z^3+c),c=-13/24+30/53*I,n=3 3645297135852076 r005 Im(z^2+c),c=-15/122+14/27*I,n=38 3645297143168715 r009 Re(z^3+c),c=-12/25+16/55*I,n=52 3645297144180319 a007 Real Root Of -650*x^4+495*x^3-39*x^2+813*x+337 3645297145394770 a003 cos(Pi*27/71)*sin(Pi*53/115) 3645297145531118 q001 779/2137 3645297148321473 l006 ln(5441/5643) 3645297149175752 r005 Re(z^2+c),c=-1/26+41/55*I,n=49 3645297151381838 r005 Re(z^2+c),c=-33/70+17/61*I,n=47 3645297183893422 m001 (ln(5)-exp(1/Pi))/(GAMMA(5/6)-Pi^(1/2)) 3645297204122221 r005 Im(z^2+c),c=-37/122+32/53*I,n=44 3645297211950758 r005 Re(z^2+c),c=-14/29+9/43*I,n=60 3645297225619634 m005 (1/2*3^(1/2)-6)/(9/10*gamma+8/9) 3645297251057311 a001 5/64079*18^(8/15) 3645297270869182 m001 (-Zeta(3)+ln(2+3^(1/2)))/(5^(1/2)+Catalan) 3645297276575922 a001 5/124*39603^(37/43) 3645297282593701 m006 (5*ln(Pi)+3/5)/(5/6/Pi-2) 3645297284752530 l006 ln(6125/8819) 3645297295608635 r005 Re(z^2+c),c=6/19+3/56*I,n=33 3645297301239574 m001 (-Totient+Trott)/(Chi(1)+FransenRobinson) 3645297302718603 m001 (GAMMA(2/3)+2*Pi/GAMMA(5/6))/(Bloch-Robbin) 3645297327215206 m001 (MadelungNaCl-Otter)/(arctan(1/3)-gamma(2)) 3645297330279477 m001 Porter*(ArtinRank2+KomornikLoreti) 3645297333557910 a008 Real Root of x^5-2*x^4-13*x^3+15*x^2+40*x+12 3645297350351076 r005 Re(z^2+c),c=-93/74+25/59*I,n=7 3645297365496588 m001 (-Mills+Riemann2ndZero)/(Psi(2,1/3)+Zeta(5)) 3645297368932070 m005 (1/2*Catalan-8/9)/(3/5*3^(1/2)+1/7) 3645297391556689 a007 Real Root Of 340*x^4+404*x^3-137*x^2-514*x+180 3645297392367698 r005 Re(z^2+c),c=-14/29+9/43*I,n=62 3645297415938146 m001 1/exp(GAMMA(1/4))^2*Robbin^2*GAMMA(19/24) 3645297421038526 r005 Re(z^2+c),c=-14/29+9/43*I,n=53 3645297424441508 r005 Im(z^2+c),c=-5/82+17/35*I,n=48 3645297426618020 r002 16th iterates of z^2 + 3645297429132880 r005 Re(z^2+c),c=-14/29+9/43*I,n=63 3645297438246938 r005 Im(z^2+c),c=-1/90+27/59*I,n=32 3645297451769890 r005 Re(z^2+c),c=-57/122+8/15*I,n=51 3645297456868232 a007 Real Root Of -21*x^4+690*x^3-761*x^2+398*x+280 3645297457147095 r009 Re(z^3+c),c=-14/31+12/47*I,n=52 3645297465759476 a005 (1/cos(22/219*Pi))^1253 3645297466291285 r002 50th iterates of z^2 + 3645297472911487 r005 Re(z^2+c),c=-14/29+9/43*I,n=64 3645297478082638 a007 Real Root Of 313*x^4-902*x^3+620*x^2-34*x-144 3645297481857893 a007 Real Root Of 910*x^4-332*x^3+328*x^2-703*x-332 3645297484686649 a007 Real Root Of -250*x^4-919*x^3-228*x^2-488*x+879 3645297494145993 a001 34/12752043*11^(3/23) 3645297496570644 r005 Im(z^2+c),c=-9/8+1/18*I,n=3 3645297499652006 s002 sum(A133398[n]/(n^2*exp(n)+1),n=1..infinity) 3645297499652006 s002 sum(A138836[n]/(n^2*exp(n)+1),n=1..infinity) 3645297500117282 s002 sum(A175431[n]/(n^2*exp(n)+1),n=1..infinity) 3645297505208226 m001 (-Champernowne+ZetaQ(4))/(3^(1/2)+ln(5)) 3645297506183093 s002 sum(A059921[n]/(n^2*exp(n)+1),n=1..infinity) 3645297506206281 m004 2*Cot[Sqrt[5]*Pi]+(3*Log[Sqrt[5]*Pi])/4 3645297513458778 r009 Re(z^3+c),c=-43/106+8/13*I,n=36 3645297520600925 h001 (1/12*exp(1)+5/6)/(1/3*exp(2)+4/9) 3645297521285997 a007 Real Root Of 324*x^4+287*x^3+963*x^2-445*x-282 3645297536569811 r009 Re(z^3+c),c=-43/106+8/13*I,n=60 3645297536581600 r009 Re(z^3+c),c=-43/106+8/13*I,n=44 3645297536662616 r009 Re(z^3+c),c=-43/106+8/13*I,n=52 3645297541985196 r002 49th iterates of z^2 + 3645297547340545 r005 Re(z^2+c),c=-17/60+26/43*I,n=15 3645297548289328 m001 (GAMMA(5/6)+Otter)/(3^(1/3)-arctan(1/3)) 3645297557151888 r005 Im(z^2+c),c=-41/34+1/40*I,n=14 3645297557390611 r005 Re(z^2+c),c=-14/29+9/43*I,n=61 3645297560633314 b008 1/2+Pi*Coth[1+E] 3645297563941638 r005 Im(z^2+c),c=-11/29+33/59*I,n=61 3645297570022867 m001 (Shi(1)+GolombDickman)/(Khinchin+Tetranacci) 3645297585358842 r009 Re(z^3+c),c=-29/60+19/61*I,n=8 3645297608115867 r005 Im(z^2+c),c=-109/98+12/53*I,n=24 3645297614184652 r009 Re(z^3+c),c=-14/31+12/47*I,n=57 3645297616714316 r002 3th iterates of z^2 + 3645297616858023 m005 (1/2*gamma+10/11)/(1/11*Pi+3) 3645297626037394 r005 Re(z^2+c),c=13/64+19/50*I,n=57 3645297631140664 r009 Im(z^3+c),c=-17/54+6/17*I,n=17 3645297632153485 m001 (cos(1/5*Pi)+Bloch)/(PolyaRandomWalk3D+Trott) 3645297640262968 s002 sum(A038244[n]/(n^3*exp(n)+1),n=1..infinity) 3645297666522215 m001 (1-MertensB2)/(StronglyCareFree+ZetaP(3)) 3645297666886968 m006 (2/5*Pi^2+5/6)/(1/6*Pi^2-1/3) 3645297666886968 m008 (2/5*Pi^2+5/6)/(1/6*Pi^2-1/3) 3645297666886968 m009 (2/5*Pi^2+5/6)/(1/6*Pi^2-1/3) 3645297667257149 s002 sum(A019818[n]/(n^3*exp(n)+1),n=1..infinity) 3645297696108827 r005 Im(z^2+c),c=-13/20+43/64*I,n=5 3645297708211883 a001 610/123*2207^(24/43) 3645297710829431 m005 (1/3*3^(1/2)-2/11)/(5/6*Zeta(3)+1/12) 3645297716760852 a007 Real Root Of 41*x^4+265*x^3+631*x^2-906*x-402 3645297723230765 r005 Im(z^2+c),c=-1/62+6/13*I,n=23 3645297736586315 a007 Real Root Of 515*x^4-120*x^3+833*x^2-451*x-290 3645297743017684 r005 Re(z^2+c),c=-3/5+35/106*I,n=23 3645297746508820 r002 39th iterates of z^2 + 3645297757085409 a001 3571/3*46368^(5/48) 3645297758391021 a003 cos(Pi*3/88)-cos(Pi*9/97) 3645297774493551 r002 15th iterates of z^2 + 3645297785830688 r005 Re(z^2+c),c=-14/29+9/43*I,n=59 3645297807453608 m001 (3^(1/3)-ArtinRank2)/(Porter+Stephens) 3645297812788010 m001 exp(GAMMA(1/6))^2/GAMMA(1/4)*GAMMA(5/24)^2 3645297817992641 m005 (1/2*2^(1/2)+6/7)/(11/12*gamma-1/10) 3645297820973398 m005 (1/2*5^(1/2)+11/12)/(5*Zeta(3)-3/7) 3645297825074088 m001 GAMMA(1/12)^2/OneNinth^2*exp(sqrt(3))^2 3645297825393192 s001 sum(exp(-2*Pi/3)^n*A140171[n],n=1..infinity) 3645297835385141 a001 2178309/199*199^(5/22) 3645297843964491 a007 Real Root Of -668*x^4-210*x^3+813*x^2+639*x-319 3645297857310938 r005 Re(z^2+c),c=-15/14+58/193*I,n=6 3645297867765068 a007 Real Root Of -138*x^4+168*x^3-415*x^2+618*x+291 3645297871536489 r005 Im(z^2+c),c=-9/58+29/48*I,n=35 3645297878909468 a001 843/233*4181^(26/47) 3645297879498251 a007 Real Root Of 31*x^4-145*x^3-223*x^2-285*x+140 3645297885551855 r005 Re(z^2+c),c=-15/34+25/61*I,n=51 3645297888884365 r009 Im(z^3+c),c=-15/86+19/48*I,n=8 3645297889888843 r005 Re(z^2+c),c=-17/38+13/34*I,n=35 3645297891162606 r005 Re(z^2+c),c=-35/58+41/47*I,n=3 3645297897914673 a007 Real Root Of 141*x^4+727*x^3+666*x^2-236*x+608 3645297908298545 a007 Real Root Of -868*x^4-963*x^3+759*x^2+741*x-309 3645297908350622 m001 Pi/exp(Pi)*(sin(1/12*Pi)-gamma(2)) 3645297910020996 m005 (1/2*Zeta(3)-2/9)/(7/9*5^(1/2)-7/10) 3645297917114256 m001 1/Riemann3rdZero/ln(Bloch)/Zeta(1/2) 3645297923135516 r005 Re(z^2+c),c=-47/98+14/61*I,n=22 3645297923226259 m001 (-BesselK(0,1)+Bloch)/(5^(1/2)-sin(1)) 3645297927202569 r002 5th iterates of z^2 + 3645297950243815 m001 FeigenbaumDelta-ln(Pi)^ZetaP(3) 3645297968621755 r002 54th iterates of z^2 + 3645297994320373 m001 StolarskyHarborth*(GAMMA(23/24)-gamma) 3645298018700330 r002 37th iterates of z^2 + 3645298020410399 r005 Re(z^2+c),c=-8/17+13/46*I,n=34 3645298032892315 m005 (37/36+1/4*5^(1/2))/(2*3^(1/2)+8/9) 3645298037023750 r005 Im(z^2+c),c=-41/106+13/22*I,n=37 3645298037960363 r005 Re(z^2+c),c=-14/29+9/43*I,n=57 3645298047939031 r009 Re(z^3+c),c=-14/31+12/47*I,n=61 3645298054994223 m001 ln(Magata)^2*LaplaceLimit/sqrt(1+sqrt(3))^2 3645298055599142 l006 ln(1471/2118) 3645298058531263 m001 (GAMMA(17/24)+Gompertz)/(Chi(1)-arctan(1/3)) 3645298066766028 r005 Re(z^2+c),c=-14/29+9/43*I,n=55 3645298068728953 a007 Real Root Of 891*x^4-966*x^3+256*x^2-613*x-320 3645298078397770 m001 (GolombDickman+4)/(BesselK(1,1)+2/3) 3645298091375093 r005 Im(z^2+c),c=3/20+16/45*I,n=13 3645298111931505 r009 Im(z^3+c),c=-10/19+12/53*I,n=62 3645298115025663 r009 Re(z^3+c),c=-14/31+12/47*I,n=56 3645298125758939 r005 Re(z^2+c),c=-41/86+13/53*I,n=26 3645298126130254 a007 Real Root Of -533*x^4-889*x^3-627*x^2+374*x+186 3645298150758101 s002 sum(A224993[n]/(n^3*exp(n)+1),n=1..infinity) 3645298151084293 s002 sum(A224993[n]/(n^3*exp(n)-1),n=1..infinity) 3645298165910090 a007 Real Root Of -98*x^4-318*x^3+7*x^2-700*x-744 3645298176824393 r005 Im(z^2+c),c=-1/90+27/59*I,n=40 3645298177780933 b008 Tan[1/32+Pi^(-1)] 3645298179427564 m006 (1/3/Pi-2/5)/(4/5*Pi^2+1/6) 3645298196345945 r005 Re(z^2+c),c=-14/29+9/43*I,n=52 3645298197082280 a007 Real Root Of -433*x^4+161*x^3-676*x^2+814*x+402 3645298197578197 m005 (1/2*exp(1)+7/11)/(2/7*Catalan+2/7) 3645298206240220 m001 (Ei(1)-GAMMA(5/6))/(HardyLittlewoodC3+Porter) 3645298209079550 r005 Re(z^2+c),c=-1/10+34/35*I,n=3 3645298230349373 a001 55/103682*76^(42/43) 3645298255466952 a007 Real Root Of -216*x^4-702*x^3+424*x^2+208*x-740 3645298265662133 r005 Re(z^2+c),c=-33/70+15/56*I,n=20 3645298270702759 r009 Re(z^3+c),c=-14/31+12/47*I,n=60 3645298272507337 g001 GAMMA(4/11,83/108) 3645298286357068 r009 Re(z^3+c),c=-14/31+12/47*I,n=62 3645298297674150 r009 Re(z^3+c),c=-14/31+12/47*I,n=64 3645298328536115 r005 Im(z^2+c),c=-31/66+25/52*I,n=18 3645298333408801 m001 (HardyLittlewoodC5-Landau)/(Pi+polylog(4,1/2)) 3645298341699894 a008 Real Root of x^2-132882 3645298353961003 a007 Real Root Of -176*x^4-630*x^3+265*x^2+945*x+484 3645298355446585 r009 Re(z^3+c),c=-14/31+12/47*I,n=58 3645298379192319 r005 Im(z^2+c),c=-13/102+25/48*I,n=60 3645298379677125 m001 (GAMMA(17/24)+GAMMA(19/24))/(Cahen-Stephens) 3645298382295066 a007 Real Root Of -803*x^4+586*x^3-89*x^2+885*x+377 3645298385762775 m002 Pi*Cosh[Pi]+ProductLog[Pi]/30 3645298395959976 r005 Im(z^2+c),c=-9/34+19/33*I,n=59 3645298402694077 a001 76/3*2^(21/40) 3645298409109023 m001 (KhinchinLevy-MertensB2)/(Pi+GAMMA(23/24)) 3645298412812738 a003 cos(Pi*1/118)-sin(Pi*23/105) 3645298431391379 r009 Re(z^3+c),c=-14/31+12/47*I,n=63 3645298435737637 r005 Re(z^2+c),c=-35/82+5/11*I,n=54 3645298438994505 r005 Im(z^2+c),c=-15/74+33/59*I,n=57 3645298439908450 r005 Im(z^2+c),c=5/98+21/50*I,n=31 3645298446489878 m001 (BesselK(0,1)+Artin)/(Niven+PlouffeB) 3645298459715544 a001 13/4*4106118243^(11/15) 3645298482588509 p003 LerchPhi(1/32,1,278/99) 3645298483684731 m001 1/BesselK(1,1)^2*ln(Khintchine)^2/exp(1)^2 3645298487757445 a001 521/377*701408733^(1/21) 3645298501283498 m005 (1/3*Pi-1/3)/(1+3/7*5^(1/2)) 3645298513293375 m001 (2^(1/3))/ln(Rabbit)/Zeta(7) 3645298520050345 r005 Im(z^2+c),c=-9/7+3/95*I,n=41 3645298536897229 m001 (Magata+MertensB2)/(MinimumGamma-Totient) 3645298540204871 r005 Re(z^2+c),c=-35/74+15/62*I,n=17 3645298544502580 r002 38th iterates of z^2 + 3645298549519011 r009 Re(z^3+c),c=-1/64+16/21*I,n=46 3645298556001628 a001 682/17*1346269^(31/48) 3645298564939566 m001 (BesselJ(0,1)+Trott)/(Si(Pi)-exp(Pi)) 3645298569186793 r005 Re(z^2+c),c=-5/12+5/11*I,n=27 3645298576645361 m005 (1/2*Zeta(3)-5/12)/(3/10*Pi-6) 3645298577230407 m002 Pi/6+Pi^4+Pi^5*Cosh[Pi] 3645298582188572 p001 sum(1/(599*n+280)/(16^n),n=0..infinity) 3645298593870178 h001 (1/8*exp(1)+5/7)/(1/3*exp(2)+3/7) 3645298598733329 b008 1/4+3*(2+Cosh[3]) 3645298619180979 r005 Im(z^2+c),c=-9/94+37/58*I,n=48 3645298627423912 r005 Im(z^2+c),c=-11/70+29/54*I,n=41 3645298628908282 m001 gamma^FellerTornier+FransenRobinson 3645298629099260 a001 18/13*8^(27/58) 3645298634535458 r004 Re(z^2+c),c=-1+3/13*I,z(0)=exp(1/24*I*Pi),n=35 3645298651385719 m005 (1/2*Zeta(3)-1/12)/(5*Catalan-6) 3645298656876397 m005 (1/2*5^(1/2)-1/9)/(3/11*3^(1/2)-1/2) 3645298678876872 r009 Re(z^3+c),c=-16/31+17/54*I,n=34 3645298682008114 r008 a(0)=0,K{-n^6,-45+9*n-26*n^2+35*n^3} 3645298682625456 r009 Re(z^3+c),c=-14/31+12/47*I,n=54 3645298684196999 m002 -Pi^3-Cosh[Pi]+5*Log[Pi]*ProductLog[Pi] 3645298685484926 h001 (2/5*exp(1)+1/9)/(7/8*exp(1)+10/11) 3645298685932214 r005 Re(z^2+c),c=-25/58+25/54*I,n=45 3645298686462872 r008 a(0)=0,K{-n^6,51-20*n+32*n^2-36*n^3} 3645298690609791 a007 Real Root Of -245*x^4-889*x^3-111*x^2-382*x+281 3645298692557782 r009 Re(z^3+c),c=-14/31+12/47*I,n=59 3645298697351352 a007 Real Root Of 686*x^4+367*x^3-3*x^2-579*x-205 3645298698219536 m001 (GAMMA(17/24)-cos(1))/(Porter+Stephens) 3645298701826049 r009 Im(z^3+c),c=-29/50+5/61*I,n=3 3645298732700193 a007 Real Root Of -195*x^4-593*x^3+595*x^2+872*x+980 3645298733802276 m001 Zeta(1/2)^BesselI(1,2)+FeigenbaumD 3645298752942806 m001 (exp(1)+Chi(1))/(-ln(5)+Sierpinski) 3645298762686161 r005 Re(z^2+c),c=9/70+11/30*I,n=5 3645298763726317 r002 4th iterates of z^2 + 3645298775727168 h001 (3/5*exp(2)+7/9)/(1/4*exp(1)+3/4) 3645298776566638 a007 Real Root Of 711*x^4+440*x^3+275*x^2-242*x-116 3645298787601514 r005 Im(z^2+c),c=-1/28+25/53*I,n=48 3645298807372808 r005 Im(z^2+c),c=-41/70+21/52*I,n=15 3645298810763661 a007 Real Root Of -227*x^4-727*x^3+365*x^2-87*x-300 3645298812040371 m001 1/BesselJ(0,1)*ln(Si(Pi))*GAMMA(5/12)^2 3645298822120286 r005 Re(z^2+c),c=-7/16+25/59*I,n=62 3645298823277780 m005 (1/2*gamma-8/9)/(7/12*3^(1/2)+7/11) 3645298823342924 a007 Real Root Of 194*x^4+432*x^3-932*x^2+467*x+757 3645298824560936 r005 Im(z^2+c),c=-1/90+27/59*I,n=43 3645298829885999 a005 (1/cos(18/163*Pi))^171 3645298843495425 m001 Zeta(1/2)/(MasserGramain+ReciprocalFibonacci) 3645298855698075 a007 Real Root Of 923*x^4-84*x^3-926*x^2-914*x+444 3645298858922622 r005 Im(z^2+c),c=-5/82+17/35*I,n=49 3645298892287981 l006 ln(5643/8125) 3645298892301548 m001 (Mills+Trott)/(FeigenbaumC+Grothendieck) 3645298904191804 r005 Re(z^2+c),c=-11/10+55/228*I,n=26 3645298916376720 a007 Real Root Of 172*x^4-824*x^3+480*x^2-297*x-215 3645298921303079 m001 (HeathBrownMoroz+Kac)/(MadelungNaCl-Trott2nd) 3645298968739246 m001 (GAMMA(17/24)-Bloch)/(Magata-Salem) 3645298974434014 r005 Im(z^2+c),c=-15/22+35/93*I,n=11 3645298985461269 a007 Real Root Of 253*x^4+927*x^3-114*x^2-292*x+680 3645298988990667 a007 Real Root Of -200*x^4-910*x^3-759*x^2-479*x-425 3645298999001155 m001 (1-gamma)/(Pi*csc(1/12*Pi)/GAMMA(11/12)+Paris) 3645299006118146 m001 (gamma(1)+BesselI(1,1))/(Totient+Trott) 3645299030033145 r005 Im(z^2+c),c=27/110+10/37*I,n=49 3645299051726689 r005 Im(z^2+c),c=-49/106+10/19*I,n=39 3645299067794072 m001 BesselK(1,1)^2*exp(FeigenbaumD)^2/GAMMA(5/12) 3645299089901405 m008 (2/5*Pi^5+1/2)/(1/5*Pi-4) 3645299113024757 r005 Im(z^2+c),c=-65/82+19/53*I,n=4 3645299117152678 r005 Re(z^2+c),c=-15/34+16/39*I,n=64 3645299129306511 a007 Real Root Of -341*x^4-218*x^3+629*x^2+848*x+221 3645299130382998 h001 (1/7*exp(1)+7/11)/(4/5*exp(1)+7/11) 3645299143736230 m001 1/ln(BesselJ(1,1))*Lehmer^2/GAMMA(19/24) 3645299145299145 q001 853/2340 3645299148129963 m001 (ln(gamma)-Ei(1,1))/(PlouffeB-Sierpinski) 3645299152072990 r008 a(0)=0,K{-n^6,27+8*n^3+19*n^2-26*n} 3645299157320086 r009 Im(z^3+c),c=-39/74+3/11*I,n=32 3645299160113566 r005 Re(z^2+c),c=-15/32+12/41*I,n=48 3645299168064343 m001 (GAMMA(7/12)-GaussAGM*Porter)/GaussAGM 3645299175430018 r005 Re(z^2+c),c=55/122+16/47*I,n=11 3645299186223561 m005 (1/2*3^(1/2)-5/6)/(1/10*exp(1)+5/8) 3645299187294983 l006 ln(4172/6007) 3645299189719144 h001 (-6*exp(1/2)-5)/(-8*exp(3/2)-5) 3645299196420090 m004 -1+5/Pi+5*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi] 3645299208388992 r009 Im(z^3+c),c=-47/114+17/27*I,n=54 3645299208520603 m005 (1/2*3^(1/2)+3/11)/(7/8*Pi+3/8) 3645299209814480 a003 cos(Pi*16/103)*cos(Pi*35/96) 3645299211580162 r009 Re(z^3+c),c=-59/102+11/23*I,n=5 3645299219679537 a005 (1/sin(21/167*Pi))^11 3645299234167305 a007 Real Root Of 55*x^4+18*x^3-594*x^2+128*x-480 3645299234629354 h001 (2/7*exp(2)+5/12)/(9/11*exp(2)+8/9) 3645299240217410 a007 Real Root Of 882*x^4+444*x^3+332*x^2-710*x-297 3645299255655949 r005 Im(z^2+c),c=11/56+17/54*I,n=36 3645299258179524 a008 Real Root of x^4-x^3-13*x^2+81*x+243 3645299259020019 q001 1/2743259 3645299265281432 r009 Re(z^3+c),c=-41/102+4/21*I,n=18 3645299278072529 r005 Re(z^2+c),c=-14/29+9/43*I,n=43 3645299289136355 h001 (-10*exp(4)-11)/(-3*exp(4)+11) 3645299292717803 r009 Re(z^3+c),c=-29/122+43/61*I,n=32 3645299296619551 a007 Real Root Of 199*x^4+785*x^3+76*x^2-450*x+236 3645299319400081 a007 Real Root Of 221*x^4+829*x^3+295*x^2+792*x+100 3645299323735552 m001 (ln(2)-gamma(1))/(gamma(2)+Riemann2ndZero) 3645299331138430 a008 Real Root of x^4-27*x^2-84*x-124 3645299344276302 m009 (1/5*Psi(1,2/3)+2)/(4*Psi(1,3/4)-3) 3645299344433094 r009 Im(z^3+c),c=-33/64+19/44*I,n=42 3645299364772153 r005 Re(z^2+c),c=-43/66+3/64*I,n=8 3645299373364308 a007 Real Root Of -232*x^4+845*x^3+258*x^2+71*x-97 3645299377953910 m001 (LaplaceLimit-ZetaP(4))/(3^(1/3)-Zeta(1,-1)) 3645299394291085 r005 Re(z^2+c),c=27/118+11/21*I,n=23 3645299398331507 m001 (1+FellerTornier)/(-GolombDickman+MertensB1) 3645299399552480 r002 19th iterates of z^2 + 3645299402609485 r005 Im(z^2+c),c=-69/122+1/3*I,n=3 3645299409245660 r009 Re(z^3+c),c=-14/31+12/47*I,n=55 3645299410357179 r005 Im(z^2+c),c=-1/17+30/61*I,n=15 3645299419243173 r005 Re(z^2+c),c=-25/54+11/37*I,n=20 3645299424683268 r002 3th iterates of z^2 + 3645299429507186 l006 ln(6873/9896) 3645299435171072 m001 (BesselJ(1,1)-MertensB3)/(Pi-ln(2)) 3645299456758230 r005 Im(z^2+c),c=-57/74+1/55*I,n=26 3645299479362332 a005 (1/sin(102/239*Pi))^566 3645299481951172 m005 (1/2*Catalan+1/9)/(4/7*3^(1/2)+4/7) 3645299485736195 r009 Re(z^3+c),c=-43/90+17/59*I,n=52 3645299497027892 r009 Re(z^3+c),c=-31/90+23/27*I,n=2 3645299502998965 r002 4th iterates of z^2 + 3645299509477833 s002 sum(A276216[n]/(n^2*exp(n)+1),n=1..infinity) 3645299517473953 m004 5/3+5*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi]/2 3645299558854501 m001 (ln(2)-exp(-1/2*Pi))/(Gompertz-Tetranacci) 3645299565723378 s002 sum(A288708[n]/(n^2*exp(n)+1),n=1..infinity) 3645299567633959 s002 sum(A285670[n]/(n^2*exp(n)+1),n=1..infinity) 3645299576741769 a007 Real Root Of 140*x^4+572*x^3+389*x^2+526*x-265 3645299577530862 r005 Re(z^2+c),c=-7/15+10/33*I,n=43 3645299577964975 a001 141422324/89*21^(3/11) 3645299590705361 m004 -125*Pi+4*Sqrt[5]*Pi+(25*Pi)/E^(Sqrt[5]*Pi) 3645299598039534 r005 Im(z^2+c),c=-17/18+1/31*I,n=18 3645299598928576 a007 Real Root Of -179*x^4-478*x^3+794*x^2+590*x+53 3645299620597160 m005 (-23/4+1/4*5^(1/2))/(5/8*gamma-3/8) 3645299633312536 m005 (1/3*2^(1/2)-3/4)/(4/11*2^(1/2)+1/4) 3645299636196643 m001 ln(Pi)*BesselJ(1,1)*Sarnak 3645299665385137 a007 Real Root Of 34*x^4-438*x^3+941*x^2+607*x+496 3645299673426584 m009 (4/3*Catalan+1/6*Pi^2+2/3)/(3*Psi(1,2/3)+1/2) 3645299674735485 m001 (gamma+Lehmer)/(MadelungNaCl+MinimumGamma) 3645299679492474 m005 (5*2^(1/2)+3/4)/(2/3*exp(1)+1/3) 3645299685608838 r005 Re(z^2+c),c=1/7+11/24*I,n=35 3645299694874389 m005 (5/4+1/4*5^(1/2))/(-63/220+7/20*5^(1/2)) 3645299709662185 a001 322/317811*6765^(13/32) 3645299733342958 m001 ln(2)/ln(10)/LambertW(1)/Backhouse 3645299734509797 r005 Re(z^2+c),c=-11/30+34/55*I,n=57 3645299761727663 p004 log(33967/887) 3645299770746720 m001 exp(1)/(Sierpinski-Tribonacci) 3645299777899234 m005 (1/2*gamma-1/9)/(8/9*gamma-1) 3645299778172890 a005 (1/sin(37/147*Pi))^105 3645299781433773 m005 (1/3*gamma+1/9)/(1/20+7/20*5^(1/2)) 3645299782281091 a007 Real Root Of -447*x^4+801*x^3-658*x^2+669*x+378 3645299786136260 r005 Im(z^2+c),c=5/94+17/40*I,n=14 3645299787312388 a007 Real Root Of -981*x^4+733*x^3+317*x^2+127*x+57 3645299803631317 l006 ln(2701/3889) 3645299813553470 m001 (ln(Pi)+arctan(1/3))/(FeigenbaumD+Totient) 3645299817766674 a007 Real Root Of -942*x^4+214*x^3+967*x^2+376*x-15 3645299823036006 m004 6+5*Pi*Log[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi]/4 3645299829990915 m001 (-MertensB2+OneNinth)/(2^(1/2)+GAMMA(5/6)) 3645299839088355 r005 Im(z^2+c),c=-7/44+20/37*I,n=35 3645299860393181 m008 (3*Pi^4-2/5)/(5/6*Pi^6-3/5) 3645299864608088 h005 exp(cos(Pi*1/56)/sin(Pi*16/57)) 3645299869151599 v002 sum(1/(5^n+(21*n^2-42*n+66)),n=1..infinity) 3645299879934644 m001 exp(Pi)*gamma(3)*ZetaP(4) 3645299881707373 a001 3/34*2584^(23/30) 3645299883833532 m001 ThueMorse^BesselI(0,2)*Trott2nd^BesselI(0,2) 3645299890202494 m001 BesselJ(1,1)^MadelungNaCl+Magata 3645299893091596 r009 Im(z^3+c),c=-13/28+17/64*I,n=28 3645299894638619 r005 Re(z^2+c),c=-5/8+28/101*I,n=20 3645299897860169 m005 (1/2*5^(1/2)+4)/(8/11*5^(1/2)-2/9) 3645299900042642 m001 (Ei(1)-ln(2)/ln(10))/(cos(1/12*Pi)+Magata) 3645299901347055 m001 (exp(Pi)+Landau)/(Weierstrass+ZetaP(3)) 3645299911161692 r005 Re(z^2+c),c=-47/98+3/13*I,n=42 3645299939301968 m001 1/PrimesInBinary^2*ln(CareFree)/RenyiParking^2 3645299948401605 m001 GAMMA(1/6)/exp(TreeGrowth2nd)*Zeta(7)^2 3645299948448917 a005 (1/sin(80/173*Pi))^515 3645299954939899 m001 1/ln(Sierpinski)/RenyiParking*sin(Pi/12) 3645299956710536 h001 (7/10*exp(1)+5/11)/(4/5*exp(2)+5/9) 3645299963176933 r005 Im(z^2+c),c=-14/17+1/47*I,n=20 3645299965307838 r009 Re(z^3+c),c=-14/31+12/47*I,n=50 3645299966035985 a007 Real Root Of -266*x^4-852*x^3-413*x^2+674*x+264 3645299969222338 a007 Real Root Of -137*x^4-369*x^3+569*x^2+397*x+203 3645299971946410 l006 ln(6276/6509) 3645299977947506 r005 Im(z^2+c),c=-17/18+1/31*I,n=10 3645299982991355 h001 (3/11*exp(1)+2/11)/(8/11*exp(1)+5/9) 3645299984589735 a001 5/7*1364^(7/31) 3645299986976163 a001 1346269/322*123^(9/20) 3645299991563952 r009 Re(z^3+c),c=-5/12+9/37*I,n=6