3654300005844057 a001 4/514229*514229^(2/17) 3654300005846093 a001 4/1346269*1836311903^(2/17) 3654300005846437 a001 2/1762289*6557470319842^(2/17) 3654300009079480 a007 Real Root Of -96*x^4+776*x^3+592*x^2+721*x+224 3654300010336767 r009 Re(z^3+c),c=-13/28+17/63*I,n=30 3654300016027899 r005 Re(z^2+c),c=-37/82+7/18*I,n=32 3654300024163929 r009 Im(z^3+c),c=-43/118+21/58*I,n=3 3654300025862873 s001 sum(exp(-Pi)^(n-1)*A254995[n],n=1..infinity) 3654300033590486 a007 Real Root Of -147*x^4-580*x^3-191*x^2-260*x-489 3654300036947992 a001 9349/75025*317811^(4/15) 3654300037077002 a001 9349/514229*433494437^(4/15) 3654300037079707 a001 9349/3524578*591286729879^(4/15) 3654300038126400 m001 (ln(2)+Zeta(1/2))/(Riemann2ndZero-Trott2nd) 3654300040636607 r005 Im(z^2+c),c=9/86+22/57*I,n=37 3654300041753507 r004 Im(z^2+c),c=-3/20+8/15*I,z(0)=I,n=32 3654300049449355 l006 ln(4799/6916) 3654300051439004 r001 48i'th iterates of 2*x^2-1 of 3654300066247101 r009 Im(z^3+c),c=-11/106+20/49*I,n=18 3654300072768378 a001 12238/98209*317811^(4/15) 3654300072788849 a001 24476/1346269*433494437^(4/15) 3654300072789243 a001 24476/9227465*591286729879^(4/15) 3654300074459317 a001 1/76*47^(13/49) 3654300075709105 a007 Real Root Of 290*x^4+930*x^3-326*x^2+471*x-257 3654300077994502 a001 64079/514229*317811^(4/15) 3654300077999137 a001 64079/3524578*433494437^(4/15) 3654300077999194 a001 64079/24157817*591286729879^(4/15) 3654300078756983 a001 167761/1346269*317811^(4/15) 3654300078759308 a001 167761/9227465*433494437^(4/15) 3654300078759316 a001 167761/63245986*591286729879^(4/15) 3654300078868228 a001 219602/1762289*317811^(4/15) 3654300078870215 a001 439204/24157817*433494437^(4/15) 3654300078870216 a001 439204/165580141*591286729879^(4/15) 3654300078884458 a001 1149851/9227465*317811^(4/15) 3654300078886396 a001 1149851/63245986*433494437^(4/15) 3654300078886396 a001 1149851/433494437*591286729879^(4/15) 3654300078886826 a001 3010349/24157817*317811^(4/15) 3654300078887172 a001 3940598/31622993*317811^(4/15) 3654300078887222 a001 20633239/165580141*317811^(4/15) 3654300078887229 a001 54018521/433494437*317811^(4/15) 3654300078887230 a001 70711162/567451585*317811^(4/15) 3654300078887231 a001 370248451/2971215073*317811^(4/15) 3654300078887231 a001 969323029/7778742049*317811^(4/15) 3654300078887231 a001 1268860318/10182505537*317811^(4/15) 3654300078887231 a001 6643838879/53316291173*317811^(4/15) 3654300078887231 a001 17393796001/139583862445*317811^(4/15) 3654300078887231 a001 22768774562/182717648081*317811^(4/15) 3654300078887231 a001 119218851371/956722026041*317811^(4/15) 3654300078887231 a001 312119004989/2504730781961*317811^(4/15) 3654300078887231 a001 408569081798/3278735159921*317811^(4/15) 3654300078887231 a001 505019158607/4052739537881*317811^(4/15) 3654300078887231 a001 10716675201/86000486440*317811^(4/15) 3654300078887231 a001 73681302247/591286729879*317811^(4/15) 3654300078887231 a001 9381251041/75283811239*317811^(4/15) 3654300078887231 a001 5374978561/43133785636*317811^(4/15) 3654300078887231 a001 1368706081/10983760033*317811^(4/15) 3654300078887231 a001 1568397607/12586269025*317811^(4/15) 3654300078887231 a001 33281921/267084832*317811^(4/15) 3654300078887231 a001 228826127/1836311903*317811^(4/15) 3654300078887231 a001 29134601/233802911*317811^(4/15) 3654300078887234 a001 16692641/133957148*317811^(4/15) 3654300078887253 a001 4250681/34111385*317811^(4/15) 3654300078887385 a001 4870847/39088169*317811^(4/15) 3654300078888290 a001 103361/829464*317811^(4/15) 3654300078888757 a001 3010349/165580141*433494437^(4/15) 3654300078888757 a001 3010349/1134903170*591286729879^(4/15) 3654300078889101 a001 7881196/433494437*433494437^(4/15) 3654300078889101 a001 7881196/2971215073*591286729879^(4/15) 3654300078889152 a001 20633239/7778742049*591286729879^(4/15) 3654300078889152 a001 20633239/1134903170*433494437^(4/15) 3654300078889159 a001 54018521/20365011074*591286729879^(4/15) 3654300078889159 a001 54018521/2971215073*433494437^(4/15) 3654300078889160 a001 141422324/53316291173*591286729879^(4/15) 3654300078889160 a001 141422324/7778742049*433494437^(4/15) 3654300078889160 a001 370248451/139583862445*591286729879^(4/15) 3654300078889160 a001 370248451/20365011074*433494437^(4/15) 3654300078889160 a001 969323029/365435296162*591286729879^(4/15) 3654300078889160 a001 969323029/53316291173*433494437^(4/15) 3654300078889160 a001 2537720636/956722026041*591286729879^(4/15) 3654300078889160 a001 6643838879/2504730781961*591286729879^(4/15) 3654300078889160 a001 17393796001/6557470319842*591286729879^(4/15) 3654300078889160 a001 9381251041/3536736619241*591286729879^(4/15) 3654300078889160 a001 10749957122/4052739537881*591286729879^(4/15) 3654300078889160 a001 1368706081/516002918640*591286729879^(4/15) 3654300078889160 a001 2537720636/139583862445*433494437^(4/15) 3654300078889160 a001 6643838879/365435296162*433494437^(4/15) 3654300078889160 a001 17393796001/956722026041*433494437^(4/15) 3654300078889160 a001 45537549124/2504730781961*433494437^(4/15) 3654300078889160 a001 119218851371/6557470319842*433494437^(4/15) 3654300078889160 a001 64300051206/3536736619241*433494437^(4/15) 3654300078889160 a001 73681302247/4052739537881*433494437^(4/15) 3654300078889160 a001 228811001/12585437040*433494437^(4/15) 3654300078889160 a001 10749957122/591286729879*433494437^(4/15) 3654300078889160 a001 1368706081/75283811239*433494437^(4/15) 3654300078889160 a001 1568397607/591286729879*591286729879^(4/15) 3654300078889160 a001 1568397607/86267571272*433494437^(4/15) 3654300078889160 a001 710646/267913919*591286729879^(4/15) 3654300078889160 a001 199691526/10983760033*433494437^(4/15) 3654300078889160 a001 228826127/86267571272*591286729879^(4/15) 3654300078889160 a001 228826127/12586269025*433494437^(4/15) 3654300078889161 a001 29134601/10983760033*591286729879^(4/15) 3654300078889161 a001 29134601/1602508992*433494437^(4/15) 3654300078889164 a001 33385282/12586269025*591286729879^(4/15) 3654300078889164 a001 33385282/1836311903*433494437^(4/15) 3654300078889183 a001 4250681/1602508992*591286729879^(4/15) 3654300078889183 a001 4250681/233802911*433494437^(4/15) 3654300078889314 a001 4870847/1836311903*591286729879^(4/15) 3654300078889314 a001 4870847/267914296*433494437^(4/15) 3654300078890216 a001 620166/233802911*591286729879^(4/15) 3654300078890216 a001 15126/831985*433494437^(4/15) 3654300078894489 a001 710647/5702887*317811^(4/15) 3654300078896396 a001 710647/267914296*591286729879^(4/15) 3654300078896397 a001 710647/39088169*433494437^(4/15) 3654300078936981 a001 90481/726103*317811^(4/15) 3654300078938756 a001 90481/34111385*591286729879^(4/15) 3654300078938760 a001 90481/4976784*433494437^(4/15) 3654300079228223 a001 51841/416020*317811^(4/15) 3654300079229097 a001 103682/39088169*591286729879^(4/15) 3654300079229119 a001 103682/5702887*433494437^(4/15) 3654300081219121 a001 13201/4976784*591286729879^(4/15) 3654300081219272 a001 13201/726103*433494437^(4/15) 3654300081224424 a001 13201/105937*317811^(4/15) 3654300094858950 a001 15127/5702887*591286729879^(4/15) 3654300094859984 a001 15127/832040*433494437^(4/15) 3654300094906594 a001 15127/121393*317811^(4/15) 3654300099230725 r008 a(0)=0,K{-n^6,-28-76*n^3+99*n^2+32*n} 3654300116974076 a007 Real Root Of -155*x^4-626*x^3-113*x^2+380*x-10 3654300117531758 m001 (GAMMA(11/12)-Stephens)/(Totient-Trott2nd) 3654300125343221 m001 (MasserGramainDelta+ZetaP(4))/(Pi+Psi(2,1/3)) 3654300126103760 m001 1/Ei(1)/exp(TreeGrowth2nd)*Zeta(5)^2 3654300134740180 r009 Im(z^3+c),c=-11/106+20/49*I,n=21 3654300139135095 r009 Im(z^3+c),c=-35/82+15/61*I,n=2 3654300142621445 r009 Im(z^3+c),c=-11/106+20/49*I,n=23 3654300144852273 r009 Im(z^3+c),c=-11/106+20/49*I,n=25 3654300145133154 r009 Im(z^3+c),c=-11/106+20/49*I,n=28 3654300145142279 r009 Im(z^3+c),c=-11/106+20/49*I,n=30 3654300145146747 r009 Im(z^3+c),c=-11/106+20/49*I,n=32 3654300145147551 r009 Im(z^3+c),c=-11/106+20/49*I,n=34 3654300145147584 r009 Im(z^3+c),c=-11/106+20/49*I,n=37 3654300145147585 r009 Im(z^3+c),c=-11/106+20/49*I,n=35 3654300145147592 r009 Im(z^3+c),c=-11/106+20/49*I,n=39 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=41 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=44 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=46 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=48 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=50 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=51 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=53 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=55 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=57 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=60 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=62 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=64 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=63 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=58 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=61 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=59 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=56 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=54 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=52 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=49 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=47 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=45 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=43 3654300145147594 r009 Im(z^3+c),c=-11/106+20/49*I,n=42 3654300145147595 r009 Im(z^3+c),c=-11/106+20/49*I,n=40 3654300145147599 r009 Im(z^3+c),c=-11/106+20/49*I,n=38 3654300145147609 r009 Im(z^3+c),c=-11/106+20/49*I,n=36 3654300145147843 r009 Im(z^3+c),c=-11/106+20/49*I,n=33 3654300145149902 r009 Im(z^3+c),c=-11/106+20/49*I,n=31 3654300145152747 r009 Im(z^3+c),c=-11/106+20/49*I,n=27 3654300145157788 r009 Im(z^3+c),c=-11/106+20/49*I,n=29 3654300145207818 r009 Im(z^3+c),c=-11/106+20/49*I,n=26 3654300145486543 r009 Im(z^3+c),c=-11/106+20/49*I,n=19 3654300146104643 r009 Im(z^3+c),c=-11/106+20/49*I,n=24 3654300150795465 r009 Im(z^3+c),c=-11/106+20/49*I,n=22 3654300157063753 m001 (Khinchin+Landau)/(OneNinth+StronglyCareFree) 3654300157209964 a007 Real Root Of 746*x^4-834*x^3-887*x^2-36*x+159 3654300157994415 m001 (GAMMA(11/12)-Lehmer)/(Porter-Riemann1stZero) 3654300158621466 r009 Im(z^3+c),c=-11/106+20/49*I,n=20 3654300165791293 m001 (cos(1/5*Pi)+exp(1/Pi))/(MertensB1-Thue) 3654300178659015 m001 (Artin+KhinchinLevy)/(Pi+GAMMA(5/6)) 3654300188347730 a001 1926/726103*591286729879^(4/15) 3654300188354812 a001 1926/105937*433494437^(4/15) 3654300188685583 a001 321/2576*317811^(4/15) 3654300190960499 r005 Im(z^2+c),c=-5/29+38/59*I,n=8 3654300192078185 s001 sum(exp(-3*Pi/5)^n*A143307[n],n=1..infinity) 3654300203313595 r005 Re(z^2+c),c=-63/118+3/58*I,n=8 3654300212471368 r009 Re(z^3+c),c=-5/31+47/54*I,n=6 3654300235382254 r005 Im(z^2+c),c=-3/13+35/58*I,n=53 3654300236912860 p003 LerchPhi(1/256,1,365/133) 3654300266711134 p004 log(35897/929) 3654300280843531 r005 Re(z^2+c),c=-13/28+10/31*I,n=36 3654300283606842 l006 ln(6175/8899) 3654300284469793 r009 Re(z^3+c),c=-31/78+9/49*I,n=12 3654300306676817 m001 Psi(2,1/3)/BesselI(0,2)/Robbin 3654300307814452 r005 Re(z^2+c),c=-1/8+27/35*I,n=3 3654300308295214 m001 (Zeta(3)-exp(-1/2*Pi))/(Pi-BesselK(0,1)) 3654300312576455 r005 Re(z^2+c),c=1/9+22/53*I,n=19 3654300334563518 b008 ArcCosh[19+EulerGamma^2] 3654300348381301 m002 -6+Pi^3+Sinh[Pi]-Sinh[Pi]/Pi^6 3654300352787481 m001 (-FeigenbaumC+Thue)/(BesselJ(0,1)+Ei(1)) 3654300361846648 a007 Real Root Of -151*x^4-217*x^3-747*x^2+274*x+11 3654300368303892 a007 Real Root Of 186*x^4+419*x^3-943*x^2+118*x+302 3654300373460684 r005 Re(z^2+c),c=-17/38+14/61*I,n=4 3654300400705421 m005 (1/3*Catalan+1/9)/(5/7*gamma+8/11) 3654300408070545 m005 (1/2*3^(1/2)-1/11)/(2/7*Zeta(3)-5/9) 3654300425159390 r005 Re(z^2+c),c=-31/70+16/39*I,n=57 3654300440696224 m001 ln(GolombDickman)*FeigenbaumDelta/BesselK(1,1) 3654300448539435 r005 Re(z^2+c),c=-5/7+31/127*I,n=30 3654300459709565 a007 Real Root Of -145*x^4-463*x^3-3*x^2-881*x+84 3654300482382368 m002 5/3+Pi^5+5*Sinh[Pi] 3654300483729373 m005 (1/2*2^(1/2)-1)/(17/24+1/24*5^(1/2)) 3654300491327331 r009 Im(z^3+c),c=-11/106+20/49*I,n=17 3654300501318085 m001 FeigenbaumKappa^2/ln(ErdosBorwein)^2/sqrt(5) 3654300504783954 a007 Real Root Of 236*x^4+832*x^3-33*x^2+522*x+864 3654300513047157 m002 -5+2/(5*Log[Pi])+Tanh[Pi] 3654300514418440 r002 21th iterates of z^2 + 3654300560588772 m002 -2+Pi-5/(6*ProductLog[Pi]) 3654300563892348 r005 Im(z^2+c),c=-51/118+23/47*I,n=16 3654300594036742 a007 Real Root Of 298*x^4-414*x^3-428*x^2-736*x+341 3654300594793963 r009 Im(z^3+c),c=-3/22+26/63*I,n=2 3654300597924539 m008 (3/4*Pi^2-3/4)/(3/5*Pi^3-2/5) 3654300599426017 m002 -5+2/Log[Pi]-Pi^3*ProductLog[Pi] 3654300601443228 a001 1364*55^(32/39) 3654300602029709 m004 -5/(3*Pi)+5*Sqrt[5]*Pi+Log[Sqrt[5]*Pi] 3654300615037954 r005 Re(z^2+c),c=-27/62+10/23*I,n=49 3654300615642928 a007 Real Root Of -490*x^4+920*x^3+396*x^2+840*x-396 3654300630755088 r009 Im(z^3+c),c=-5/52+9/22*I,n=9 3654300642853212 m005 (1/2*gamma-2)/(4*Zeta(3)-1/8) 3654300644573257 r005 Im(z^2+c),c=-7/34+17/30*I,n=43 3654300644855002 r009 Im(z^3+c),c=-13/42+15/34*I,n=3 3654300656642311 a007 Real Root Of -658*x^4+626*x^3+461*x^2+256*x-10 3654300656958489 m006 (3*ln(Pi)+1/3)/(1/5*exp(2*Pi)-4) 3654300673866643 m009 (1/3*Psi(1,2/3)-1/3)/(1/6*Psi(1,1/3)+1/5) 3654300685804878 m002 -4+(Pi^3*ProductLog[Pi])/5+Tanh[Pi] 3654300696489232 a007 Real Root Of 153*x^4+654*x^3+561*x^2+521*x-957 3654300696537334 m005 (1/2*Catalan+2)/(3/10*exp(1)-1/7) 3654300706445022 a003 sin(Pi*2/35)/cos(Pi*27/80) 3654300717700700 m005 (-23/4+1/4*5^(1/2))/(-59/132+3/22*5^(1/2)) 3654300721998671 r005 Im(z^2+c),c=-3/4+2/155*I,n=64 3654300765021014 r009 Im(z^3+c),c=-23/110+25/33*I,n=21 3654300766278463 r005 Re(z^2+c),c=-41/86+8/31*I,n=48 3654300771844205 r005 Re(z^2+c),c=-8/15+27/62*I,n=34 3654300774147624 k002 Champernowne real with 114*n^2-324*n+246 3654300775350290 a001 76/987*2584^(40/51) 3654300775629071 m005 (1/2*Pi+7/11)/(8/9*gamma+1/11) 3654300776889258 r005 Im(z^2+c),c=-9/50+11/20*I,n=49 3654300779315310 m001 Ei(1,1)^(polylog(4,1/2)*GlaisherKinkelin) 3654300782433857 r005 Re(z^2+c),c=-35/74+12/43*I,n=57 3654300783076306 r005 Im(z^2+c),c=5/126+3/7*I,n=49 3654300796915829 a003 cos(Pi*7/99)-sin(Pi*10/23) 3654300799306875 a001 1364/514229*55^(36/55) 3654300806785210 p004 log(24763/17183) 3654300812217151 a007 Real Root Of -186*x^4-683*x^3-11*x^2+69*x+238 3654300824151981 r005 Re(z^2+c),c=10/27+13/40*I,n=61 3654300829129359 a001 2207/832040*591286729879^(4/15) 3654300829177899 a001 2207/121393*433494437^(4/15) 3654300831456332 a001 2207/17711*317811^(4/15) 3654300835956589 a001 3/2207*322^(31/32) 3654300840263965 a001 76/13*28657^(5/28) 3654300842278760 l006 ln(242/9351) 3654300860978749 h005 exp(cos(Pi*20/51)+sin(Pi*12/29)) 3654300862574208 a003 cos(Pi*5/32)/cos(Pi*49/116) 3654300870996043 a007 Real Root Of -490*x^4+972*x^3-827*x^2+168*x+228 3654300908100453 m005 (1/2*gamma-10/11)/(4/11*Pi+5/9) 3654300922262664 m001 (Psi(1,1/3)+Psi(2,1/3))/(-cos(1)+Pi^(1/2)) 3654300934221680 m004 Pi/Sqrt[5]+5*Sqrt[5]*Pi+(5*Pi)/E^(Sqrt[5]*Pi) 3654300941589950 m005 (1/2*gamma+1/4)/(3/8*exp(1)+5/11) 3654300961638706 r002 55th iterates of z^2 + 3654300967157751 m001 MertensB2/Cahen/BesselJ(1,1) 3654300977666299 m001 GAMMA(7/12)^(Si(Pi)*exp(1/2)) 3654300983660666 a001 341/3732588*8^(2/3) 3654300983661718 a004 Lucas(3)/Fibonacci(15)/(1/2+sqrt(5)/2)^6 3654301002044747 m004 -125*Pi-Sqrt[5]*Pi+10*Pi*Cot[Sqrt[5]*Pi] 3654301012175258 m005 (3*gamma+1/5)/(1/3*2^(1/2)-1) 3654301015980020 s002 sum(A107443[n]/(pi^n+1),n=1..infinity) 3654301017349165 r005 Re(z^2+c),c=-19/40+10/37*I,n=30 3654301020140280 m001 ZetaR(2)*(cos(1/5*Pi)+(1+3^(1/2))^(1/2)) 3654301036203146 m001 (Zeta(5)+ln(Pi))/(Zeta(1,2)+PolyaRandomWalk3D) 3654301042379350 r005 Im(z^2+c),c=19/122+15/43*I,n=33 3654301043636008 a007 Real Root Of 14*x^4+508*x^3-146*x^2-505*x+731 3654301050017572 r005 Re(z^2+c),c=-5/7+56/125*I,n=8 3654301058609634 r005 Re(z^2+c),c=-13/17+1/42*I,n=56 3654301061211918 a001 76*(1/2*5^(1/2)+1/2)^2*47^(3/19) 3654301064580089 m001 FeigenbaumD^2/exp(Cahen)*cos(Pi/12) 3654301067585178 r005 Re(z^2+c),c=-19/40+13/44*I,n=21 3654301073391360 r005 Im(z^2+c),c=-1/60+23/44*I,n=10 3654301076647298 a007 Real Root Of 171*x^4+605*x^3-85*x^2-241*x-716 3654301080252156 m001 (ln(5)-ln(2^(1/2)+1))/(Lehmer-Sierpinski) 3654301080620170 r005 Re(z^2+c),c=-4/9+21/61*I,n=2 3654301087437045 m001 (Catalan-gamma(3))/(-Riemann3rdZero+ZetaQ(4)) 3654301090046966 a007 Real Root Of 79*x^4-488*x^3-137*x^2-674*x+287 3654301096339662 m008 (3/5*Pi^5+1/3)/(1/6*Pi^5-2/3) 3654301100265070 l006 ln(1376/1983) 3654301110484901 r005 Re(z^2+c),c=-45/94+7/32*I,n=15 3654301113331241 k007 concat of cont frac of 3654301114350768 a007 Real Root Of 761*x^4+80*x^3-725*x^2-742*x-184 3654301122864963 m002 -Pi+(7*Pi^5)/6+Sinh[Pi] 3654301127472446 a007 Real Root Of -225*x^4-687*x^3+309*x^2-526*x+550 3654301138681414 r005 Im(z^2+c),c=43/126+13/60*I,n=24 3654301140441196 r005 Im(z^2+c),c=-13/14+35/127*I,n=5 3654301145672084 m001 (Niven+RenyiParking)/(HardyLittlewoodC3-Mills) 3654301157301092 a001 2584/843*3^(4/25) 3654301160674834 r002 17th iterates of z^2 + 3654301165173651 m001 FeigenbaumDelta/(Totient^Chi(1)) 3654301167247907 a001 76/233*34^(37/54) 3654301221017867 m005 (1/2*5^(1/2)+2/5)/(4/5+3/2*5^(1/2)) 3654301234807068 m004 -5-(30*Sqrt[5])/Pi+125*Pi-Tan[Sqrt[5]*Pi] 3654301239460846 a005 (1/cos(8/237*Pi))^1865 3654301242091902 r005 Im(z^2+c),c=9/86+22/57*I,n=40 3654301265785451 r005 Im(z^2+c),c=-37/70+11/19*I,n=9 3654301266332407 a003 -2*cos(1/7*Pi)-2*cos(1/24*Pi)+cos(11/24*Pi) 3654301285486746 m001 (Ei(1,1)-Psi(1,1/3))/(-CareFree+Magata) 3654301287431197 a007 Real Root Of 241*x^4+733*x^3-432*x^2+477*x+305 3654301301996247 p001 sum((-1)^n/(553*n+270)/(24^n),n=0..infinity) 3654301316628139 a003 cos(Pi*7/110)*cos(Pi*14/37) 3654301317178392 r002 39th iterates of z^2 + 3654301326013345 r009 Im(z^3+c),c=-43/118+22/61*I,n=3 3654301344138246 m001 1/GAMMA(5/6)/LandauRamanujan/exp(gamma)^2 3654301344434889 m001 Sierpinski^2*ln(Riemann3rdZero)^2/Ei(1) 3654301357372970 r005 Re(z^2+c),c=-41/90+22/61*I,n=62 3654301361563095 a007 Real Root Of -134*x^4-381*x^3+140*x^2-692*x+905 3654301369601906 m001 cos(1/5*Pi)^Weierstrass*ZetaR(2)^Weierstrass 3654301389466197 r005 Im(z^2+c),c=-19/18+1/238*I,n=3 3654301397909504 a007 Real Root Of 25*x^4+938*x^3+889*x^2-107*x+831 3654301403113026 r009 Im(z^3+c),c=-47/102+3/40*I,n=5 3654301405815398 a003 cos(Pi*27/119)-cos(Pi*16/43) 3654301418163562 a001 1364/1597*233^(4/15) 3654301448839858 s002 sum(A168278[n]/(n*2^n-1),n=1..infinity) 3654301449722305 m005 (47/44+1/4*5^(1/2))/(1/12*Zeta(3)-6/11) 3654301457561572 r005 Re(z^2+c),c=-61/74+15/53*I,n=6 3654301463195123 m001 (Riemann1stZero+ZetaQ(2))/(Magata+PlouffeB) 3654301463893012 r005 Im(z^2+c),c=21/106+31/50*I,n=3 3654301473506747 a005 (1/sin(51/185*Pi))^64 3654301482190965 r005 Re(z^2+c),c=7/27+28/53*I,n=14 3654301488793512 h001 (1/6*exp(1)+5/11)/(1/4*exp(2)+7/11) 3654301497679437 m005 (1/2*Pi+1/10)/(2*5^(1/2)+1/10) 3654301499605367 q001 463/1267 3654301513948713 r005 Im(z^2+c),c=23/118+20/63*I,n=28 3654301531401394 r009 Re(z^3+c),c=-67/118+17/21*I,n=2 3654301538089946 a003 sin(Pi*11/81)*sin(Pi*41/119) 3654301541235602 l006 ln(153/5912) 3654301556640376 l006 ln(3869/4013) 3654301561825192 r005 Im(z^2+c),c=5/126+3/7*I,n=46 3654301573758629 a007 Real Root Of -276*x^4+937*x^3+564*x^2+339*x-240 3654301583447241 r005 Im(z^2+c),c=17/106+31/61*I,n=15 3654301584599533 r005 Im(z^2+c),c=5/126+3/7*I,n=52 3654301588111081 p004 log(14897/10337) 3654301599032518 r005 Re(z^2+c),c=-125/122+5/8*I,n=2 3654301602504251 m005 (1/2*Catalan+4/11)/(79/60+5/12*5^(1/2)) 3654301609212466 s001 sum(exp(-Pi)^(n-1)*A222300[n],n=1..infinity) 3654301613944829 a007 Real Root Of -366*x^4-437*x^3-431*x^2+693*x+296 3654301614478893 r005 Im(z^2+c),c=5/126+3/7*I,n=48 3654301620808445 m001 (gamma(2)+Sarnak)/(cos(1/5*Pi)+ln(Pi)) 3654301628054846 r005 Im(z^2+c),c=-9/14+83/136*I,n=5 3654301631146844 r005 Re(z^2+c),c=-35/74+12/43*I,n=59 3654301659692789 r005 Re(z^2+c),c=-31/50+11/34*I,n=14 3654301677815290 m001 Riemann3rdZero^(Paris/ZetaQ(2)) 3654301697530864 r005 Re(z^2+c),c=-121/90+5/16*I,n=2 3654301703631413 r009 Im(z^3+c),c=-11/31+1/3*I,n=9 3654301709712551 p001 sum((-1)^n/(401*n+118)/n/(5^n),n=1..infinity) 3654301716342564 h001 (11/12*exp(2)+1/5)/(3/8*exp(1)+8/9) 3654301721732570 a007 Real Root Of 239*x^4-634*x^3+853*x^2-547*x-349 3654301722164686 r005 Im(z^2+c),c=-9/110+27/62*I,n=4 3654301730333084 r009 Im(z^3+c),c=-37/82+13/47*I,n=26 3654301738988714 m001 1/exp(FeigenbaumC)*Niven/RenyiParking 3654301773633542 r005 Im(z^2+c),c=9/98+15/38*I,n=37 3654301775229491 p001 sum(1/(565*n+274)/(256^n),n=0..infinity) 3654301777148224 k002 Champernowne real with 229/2*n^2-651/2*n+247 3654301791339241 m001 (BesselJ(1,1)+LandauRamanujan)/(exp(1)+gamma) 3654301792300325 r005 Re(z^2+c),c=-27/56+11/49*I,n=44 3654301794378867 a001 3/121393*6765^(24/29) 3654301810496904 m001 (-Riemann2ndZero+Sarnak)/(1-GAMMA(11/12)) 3654301824441559 r009 Im(z^3+c),c=-41/94+11/23*I,n=6 3654301829002970 a007 Real Root Of 4*x^4+138*x^3-323*x^2-896*x-202 3654301840439090 a001 843/4181*233^(6/55) 3654301875498488 a007 Real Root Of 489*x^4-254*x^3+72*x^2-860*x-345 3654301880991275 a007 Real Root Of -715*x^4+256*x^3-747*x^2+914*x+459 3654301890995096 a007 Real Root Of 278*x^4+951*x^3-211*x^2+92*x-13 3654301895547586 r005 Im(z^2+c),c=-13/19+13/45*I,n=14 3654301896791496 r005 Im(z^2+c),c=31/110+13/31*I,n=17 3654301909005652 s002 sum(A182995[n]/(10^n+1),n=1..infinity) 3654301912451274 l006 ln(6209/8948) 3654301915488088 m001 gamma(2)/GAMMA(23/24)/Sierpinski 3654301919173617 r005 Re(z^2+c),c=23/66+11/31*I,n=35 3654301923361615 m001 (ln(gamma)+Conway)/(Gompertz+Porter) 3654301924524393 s002 sum(A174796[n]/((2^n-1)/n),n=1..infinity) 3654301933904715 m001 1/GAMMA(1/3)*Catalan/exp(sqrt(5)) 3654301958742223 a007 Real Root Of 284*x^4+812*x^3-759*x^2+2*x-877 3654301962022540 m001 FeigenbaumC^Grothendieck+TravellingSalesman 3654301966394421 a007 Real Root Of 141*x^4+636*x^3+372*x^2+16*x+983 3654301969239527 m009 (8/3*Catalan+1/3*Pi^2-6)/(3/4*Psi(1,1/3)-1/4) 3654301978041761 r005 Im(z^2+c),c=-23/66+3/53*I,n=22 3654301991609455 r009 Im(z^3+c),c=-5/86+39/49*I,n=32 3654302035485184 p002 log(11^(3/2)+3^(7/10)) 3654302044119716 m001 (Weierstrass+ZetaP(3))/(ln(5)-KomornikLoreti) 3654302057426336 r005 Im(z^2+c),c=-33/86+25/51*I,n=11 3654302068138244 a007 Real Root Of -151*x^4-435*x^3+569*x^2+406*x-415 3654302070184746 r005 Im(z^2+c),c=5/126+3/7*I,n=56 3654302095312001 m001 Pi*(GAMMA(11/12)+OneNinth) 3654302095312001 m001 Pi*(OneNinth+GAMMA(11/12)) 3654302127705792 r005 Re(z^2+c),c=9/74+3/7*I,n=50 3654302142288434 r005 Re(z^2+c),c=-47/62+1/45*I,n=30 3654302143688220 l006 ln(4833/6965) 3654302144516181 m005 (1/2*Pi-2/3)/(10/11*gamma-1/2) 3654302154129234 a007 Real Root Of 200*x^4+600*x^3-500*x^2-318*x-871 3654302159909808 r005 Im(z^2+c),c=5/126+3/7*I,n=55 3654302169984744 r005 Im(z^2+c),c=5/126+3/7*I,n=59 3654302176420657 r005 Re(z^2+c),c=-49/114+12/25*I,n=40 3654302184209376 a007 Real Root Of x^4+367*x^3+574*x^2+130*x+183 3654302190042181 m001 (BesselJ(0,1)-GaussAGM)/(Salem+Sarnak) 3654302193146092 r005 Im(z^2+c),c=1/52+26/59*I,n=16 3654302194725935 r005 Im(z^2+c),c=-33/82+25/46*I,n=45 3654302197574050 a001 987/54018521*4^(1/2) 3654302197749472 r005 Im(z^2+c),c=5/126+3/7*I,n=53 3654302238059247 r005 Im(z^2+c),c=5/126+3/7*I,n=63 3654302243009959 m009 (8/3*Catalan+1/3*Pi^2+3/4)/(2*Pi^2-2) 3654302246237388 m001 (-ErdosBorwein+Robbin)/(Shi(1)+GAMMA(7/12)) 3654302247108588 r005 Im(z^2+c),c=5/126+3/7*I,n=62 3654302250593889 r002 25th iterates of z^2 + 3654302253003960 a001 123/75025*89^(5/28) 3654302258246899 r005 Im(z^2+c),c=5/126+3/7*I,n=60 3654302265342825 h001 (1/5*exp(2)+7/12)/(2/3*exp(2)+5/7) 3654302277468678 a001 843/233*233^(14/33) 3654302280772303 r005 Im(z^2+c),c=5/126+3/7*I,n=64 3654302303006901 m005 (1/2*3^(1/2)-2/5)/(5/7*Zeta(3)+5/12) 3654302317294790 r005 Im(z^2+c),c=5/126+3/7*I,n=61 3654302320716849 l006 ln(217/8385) 3654302328755857 r005 Im(z^2+c),c=5/126+3/7*I,n=58 3654302339550382 r005 Im(z^2+c),c=-37/48+1/61*I,n=32 3654302340371106 s002 sum(A211328[n]/(n^2*2^n+1),n=1..infinity) 3654302370895469 m001 GAMMA(11/24)^Lehmer*GAMMA(11/24)^exp(1/Pi) 3654302387966166 r005 Im(z^2+c),c=5/126+3/7*I,n=57 3654302388251786 g007 Psi(2,1/11)+Psi(2,1/8)-Psi(2,10/11)-Psi(2,2/5) 3654302395715466 m005 (1/2*3^(1/2)-9/10)/(3/10*Catalan-2/11) 3654302398095946 r009 Im(z^3+c),c=-20/31+14/61*I,n=9 3654302399337623 r002 54th iterates of z^2 + 3654302400520772 r005 Re(z^2+c),c=-39/82+4/15*I,n=30 3654302409335075 h001 (4/5*exp(1)+1/7)/(3/4*exp(2)+4/5) 3654302451102522 r005 Re(z^2+c),c=-33/74+2/5*I,n=49 3654302451442393 p004 log(26893/18661) 3654302476896191 a001 3571/1346269*55^(36/55) 3654302488236661 m001 (Catalan+GAMMA(13/24))/(Champernowne+Stephens) 3654302489359501 r009 Im(z^3+c),c=-3/50+17/21*I,n=8 3654302489529470 a008 Real Root of x^4-2*x^3-15*x^2+7*x+94 3654302495446628 m005 (1/2*2^(1/2)-3/4)/(1/5*Pi+6/11) 3654302497839823 a007 Real Root Of -312*x^4+866*x^3+232*x^2+493*x+197 3654302503799261 r005 Im(z^2+c),c=-13/122+22/43*I,n=53 3654302510511929 s002 sum(A056996[n]/(pi^n),n=1..infinity) 3654302510950234 a001 3/377*2178309^(26/45) 3654302513822618 m007 (-4/5*gamma+4)/(-3*gamma-9*ln(2)-3/2*Pi+3) 3654302514534169 h001 (-exp(3)+10)/(-5*exp(4)-3) 3654302516464590 m002 5+6*Pi+Log[Pi]+Sinh[Pi] 3654302520110939 p001 sum((-1)^n/(520*n+327)/n/(32^n),n=1..infinity) 3654302523178911 r002 9th iterates of z^2 + 3654302524934424 a007 Real Root Of 181*x^4+762*x^3+219*x^2-731*x-688 3654302525231426 m001 (arctan(1/2)-exp(1))/(-Kac+ZetaQ(3)) 3654302528613925 r005 Re(z^2+c),c=-47/106+11/27*I,n=55 3654302559005011 l006 ln(3457/4982) 3654302584351720 m001 (Pi-gamma(1))/(GaussKuzminWirsing+Stephens) 3654302584577957 a007 Real Root Of 162*x^4+588*x^3+46*x^2+54*x-612 3654302595040485 a007 Real Root Of 14*x^4+508*x^3-130*x^2+40*x-730 3654302601617859 b008 7+24*ArcSec[3] 3654302609227386 m005 (1/3*Pi-2/7)/(9/11*3^(1/2)+2/3) 3654302610751077 s002 sum(A076477[n]/(n^2*10^n-1),n=1..infinity) 3654302613821877 r005 Im(z^2+c),c=27/94+13/31*I,n=17 3654302615349179 a007 Real Root Of 78*x^4-756*x^3+161*x^2-810*x+310 3654302620682321 r005 Re(z^2+c),c=-55/118+16/51*I,n=44 3654302633885240 a007 Real Root Of 273*x^4+750*x^3-802*x^2+292*x-307 3654302642844005 m005 (1/2*Zeta(3)+2/11)/(5/9*5^(1/2)+9/10) 3654302645659987 m005 (1/2*gamma+9/11)/(3/7*Zeta(3)-6/11) 3654302661247703 a001 3571/39088169*8^(2/3) 3654302661247725 a004 Lucas(3)/Fibonacci(17)/(1/2+sqrt(5)/2)^4 3654302662616060 r005 Im(z^2+c),c=-109/90+8/33*I,n=29 3654302666315388 r009 Im(z^3+c),c=-39/74+13/42*I,n=38 3654302668365241 r005 Im(z^2+c),c=5/126+3/7*I,n=54 3654302674393894 r009 Re(z^3+c),c=-16/29+11/54*I,n=40 3654302674654106 r005 Re(z^2+c),c=-37/86+17/37*I,n=55 3654302694608996 r009 Im(z^3+c),c=-41/90+15/46*I,n=8 3654302718073758 h001 (3/8*exp(2)+9/11)/(3/10*exp(1)+1/6) 3654302733770263 m005 (1/2*Pi-1/4)/(4/5*3^(1/2)-5) 3654302756895511 a007 Real Root Of 139*x^4+349*x^3-564*x^2-49*x-404 3654302759534467 r009 Re(z^3+c),c=-1/48+19/23*I,n=19 3654302771133081 m001 FeigenbaumD+ArtinRank2^StolarskyHarborth 3654302778416950 m001 GAMMA(7/12)^2/KhintchineLevy/exp(Zeta(1/2))^2 3654302780148824 k002 Champernowne real with 115*n^2-327*n+248 3654302786406891 r002 56th iterates of z^2 + 3654302789945218 v002 sum(1/(5^n+(28*n^2-58*n+73)),n=1..infinity) 3654302794685908 r005 Im(z^2+c),c=5/126+3/7*I,n=51 3654302810171308 a007 Real Root Of 76*x^4+21*x^3-756*x^2+820*x+564 3654302817032051 r009 Re(z^3+c),c=-9/31+29/42*I,n=32 3654302821594247 a007 Real Root Of 22*x^4+786*x^3-656*x^2-28*x-788 3654302827801054 r009 Re(z^3+c),c=-1/94+49/62*I,n=62 3654302838355279 a001 646/35355581*4^(1/2) 3654302848561084 r005 Re(z^2+c),c=-5/114+29/42*I,n=40 3654302858865805 r005 Im(z^2+c),c=-39/31+1/49*I,n=61 3654302867322399 r005 Re(z^2+c),c=-8/17+19/51*I,n=19 3654302872811417 m001 (ln(1+sqrt(2))+5)/ln(5) 3654302872921308 a001 1926/726103*55^(36/55) 3654302895819831 r009 Im(z^3+c),c=-11/106+20/49*I,n=15 3654302897864840 r005 Im(z^2+c),c=-7/48+25/47*I,n=53 3654302906004354 a001 9349/102334155*8^(2/3) 3654302906004354 a004 Lucas(3)/Fibonacci(19)/(1/2+sqrt(5)/2)^2 3654302921451017 l006 ln(5538/7981) 3654302928592193 r009 Re(z^3+c),c=-17/50+22/35*I,n=3 3654302931844001 a001 6765/370248451*4^(1/2) 3654302941713868 a001 20/5473 3654302941713868 q001 1/27365 3654302942368798 m001 Riemann1stZero^(Shi(1)*GAMMA(17/24)) 3654302945483821 a001 17711/969323029*4^(1/2) 3654302946923815 a001 4/28657*(1/2+1/2*5^(1/2))^2 3654302946923815 a001 64079/701408733*8^(2/3) 3654302947473844 a001 11592/634430159*4^(1/2) 3654302947683937 a001 4/75025*(1/2+1/2*5^(1/2))^4 3654302947683937 a001 167761/1836311903*8^(2/3) 3654302947764185 a001 121393/6643838879*4^(1/2) 3654302947794837 a001 2/98209*(1/2+1/2*5^(1/2))^6 3654302947794837 a004 Lucas(3)*(1/2+sqrt(5)/2)^6/Fibonacci(27) 3654302947794837 a001 109801/1201881744*8^(2/3) 3654302947806545 a001 10959/599786069*4^(1/2) 3654302947811017 a001 4/514229*(1/2+1/2*5^(1/2))^8 3654302947811017 a001 1149851/12586269025*8^(2/3) 3654302947812725 a001 208010/11384387281*4^(1/2) 3654302947813378 a001 4/1346269*(1/2+1/2*5^(1/2))^10 3654302947813378 a001 3010349/32951280099*8^(2/3) 3654302947813627 a001 2178309/119218851371*4^(1/2) 3654302947813722 a001 2/1762289*(1/2+1/2*5^(1/2))^12 3654302947813722 a001 1970299/21566892818*8^(2/3) 3654302947813758 a001 5702887/312119004989*4^(1/2) 3654302947813772 a001 4/9227465*(1/2+1/2*5^(1/2))^14 3654302947813772 a001 711491/7787980473*8^(2/3) 3654302947813778 a001 3732588/204284540899*4^(1/2) 3654302947813780 a001 4/24157817*(1/2+1/2*5^(1/2))^16 3654302947813780 a001 54018521/591286729879*8^(2/3) 3654302947813780 a001 39088169/2139295485799*4^(1/2) 3654302947813781 a001 2/31622993*(1/2+1/2*5^(1/2))^18 3654302947813781 a001 35355581/387002188980*8^(2/3) 3654302947813781 a001 102334155/5600748293801*4^(1/2) 3654302947813781 a001 4/165580141*(1/2+1/2*5^(1/2))^20 3654302947813781 a001 370248451/4052739537881*8^(2/3) 3654302947813781 a001 10946/599074579*4^(1/2) 3654302947813781 a001 4/433494437*(1/2+1/2*5^(1/2))^22 3654302947813781 a001 969323029/10610209857723*8^(2/3) 3654302947813781 a001 2/567451585*(1/2+1/2*5^(1/2))^24 3654302947813781 a001 4/2971215073*(1/2+1/2*5^(1/2))^26 3654302947813781 a001 4/7778742049*(1/2+1/2*5^(1/2))^28 3654302947813781 a001 2/10182505537*(1/2+1/2*5^(1/2))^30 3654302947813781 a001 4/53316291173*(1/2+1/2*5^(1/2))^32 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^34/Fibonacci(55) 3654302947813781 a001 2/182717648081*(1/2+1/2*5^(1/2))^36 3654302947813781 a001 4/956722026041*(1/2+1/2*5^(1/2))^38 3654302947813781 a001 4/2504730781961*(1/2+1/2*5^(1/2))^40 3654302947813781 a001 2/3278735159921*(1/2+1/2*5^(1/2))^42 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^44/Fibonacci(65) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^46/Fibonacci(67) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^48/Fibonacci(69) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^50/Fibonacci(71) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^52/Fibonacci(73) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^54/Fibonacci(75) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^56/Fibonacci(77) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^58/Fibonacci(79) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^60/Fibonacci(81) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^62/Fibonacci(83) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^64/Fibonacci(85) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^66/Fibonacci(87) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^68/Fibonacci(89) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^70/Fibonacci(91) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^72/Fibonacci(93) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^74/Fibonacci(95) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^76/Fibonacci(97) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^78/Fibonacci(99) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^79/Fibonacci(100) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^77/Fibonacci(98) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^75/Fibonacci(96) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^73/Fibonacci(94) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^71/Fibonacci(92) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^69/Fibonacci(90) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^67/Fibonacci(88) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^65/Fibonacci(86) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^63/Fibonacci(84) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^61/Fibonacci(82) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^59/Fibonacci(80) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^57/Fibonacci(78) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^55/Fibonacci(76) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^53/Fibonacci(74) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^51/Fibonacci(72) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^49/Fibonacci(70) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^47/Fibonacci(68) 3654302947813781 a004 Lucas(3)*(1/2+sqrt(5)/2)^45/Fibonacci(66) 3654302947813781 a001 4/10610209857723*(1/2+1/2*5^(1/2))^43 3654302947813781 a001 4/4052739537881*(1/2+1/2*5^(1/2))^41 3654302947813781 a001 1/387002188980*(1/2+1/2*5^(1/2))^39 3654302947813781 a001 4/591286729879*(1/2+1/2*5^(1/2))^37 3654302947813781 a001 4/225851433717*(1/2+1/2*5^(1/2))^35 3654302947813781 a001 1/21566892818*(1/2+1/2*5^(1/2))^33 3654302947813781 a001 4/32951280099*(1/2+1/2*5^(1/2))^31 3654302947813781 a001 4/12586269025*(1/2+1/2*5^(1/2))^29 3654302947813781 a001 1/1201881744*(1/2+1/2*5^(1/2))^27 3654302947813781 a001 4/1836311903*(1/2+1/2*5^(1/2))^25 3654302947813781 a001 4/701408733*(1/2+1/2*5^(1/2))^23 3654302947813781 a001 433494437/23725150497407*4^(1/2) 3654302947813781 a001 299537289/3278735159921*8^(2/3) 3654302947813781 a001 1/66978574*(1/2+1/2*5^(1/2))^21 3654302947813781 a001 165580141/9062201101803*4^(1/2) 3654302947813781 a001 228826127/2504730781961*8^(2/3) 3654302947813781 a001 4/102334155*(1/2+1/2*5^(1/2))^19 3654302947813781 a001 31622993/1730726404001*4^(1/2) 3654302947813781 a001 87403803/956722026041*8^(2/3) 3654302947813781 a001 4/39088169*(1/2+1/2*5^(1/2))^17 3654302947813782 a001 24157817/1322157322203*4^(1/2) 3654302947813784 a001 16692641/182717648081*8^(2/3) 3654302947813784 a001 1/3732588*(1/2+1/2*5^(1/2))^15 3654302947813789 a001 9227465/505019158607*4^(1/2) 3654302947813803 a001 12752043/139583862445*8^(2/3) 3654302947813803 a001 4/5702887*(1/2+1/2*5^(1/2))^13 3654302947813840 a001 1762289/96450076809*4^(1/2) 3654302947813935 a001 4870847/53316291173*8^(2/3) 3654302947813935 a001 4/2178309*(1/2+1/2*5^(1/2))^11 3654302947814184 a001 1346269/73681302247*4^(1/2) 3654302947814837 a001 930249/10182505537*8^(2/3) 3654302947814837 a001 1/208010*(1/2+1/2*5^(1/2))^9 3654302947816545 a001 514229/28143753123*4^(1/2) 3654302947821017 a001 710647/7778742049*8^(2/3) 3654302947821017 a001 4/317811*(1/2+1/2*5^(1/2))^7 3654302947832725 a001 98209/5374978561*4^(1/2) 3654302947863377 a001 271443/2971215073*8^(2/3) 3654302947863377 a001 4/121393*(1/2+1/2*5^(1/2))^5 3654302947943625 a001 75025/4106118243*4^(1/2) 3654302948153717 a001 51841/567451585*8^(2/3) 3654302948153717 a001 1/11592*(1/2+1/2*5^(1/2))^3 3654302948703746 a001 28657/1568397607*4^(1/2) 3654302950143740 a001 39603/433494437*8^(2/3) 3654302950143740 a001 2/17711+2/17711*5^(1/2) 3654302953913694 a001 5473/299537289*4^(1/2) 3654302957007017 m001 Zeta(7)*Khintchine^2*ln(sqrt(1+sqrt(3))) 3654302963783561 a001 15127/165580141*8^(2/3) 3654302963783561 a004 Lucas(3)/Fibonacci(20)/(1/2+sqrt(5)/2) 3654302970690759 a007 Real Root Of -195*x^4-844*x^3-190*x^2+875*x-678 3654302982379956 l006 ln(2736/2737) 3654302989623208 a001 4181/228826127*4^(1/2) 3654303002617247 r005 Im(z^2+c),c=-13/42+13/22*I,n=37 3654303019510986 a001 3571/13*21^(3/32) 3654303036094209 r005 Re(z^2+c),c=-61/82+10/43*I,n=14 3654303041458153 v002 sum(1/(5^n*(6*n^2+43*n+12)),n=1..infinity) 3654303056902569 m001 1/exp(Magata)^2/LaplaceLimit^2*MinimumGamma 3654303057272282 a001 2889/31622993*8^(2/3) 3654303057272286 a004 Lucas(3)/Fibonacci(18)/(1/2+sqrt(5)/2)^3 3654303058066158 a008 Real Root of x^4-5*x^2-126*x-572 3654303066770936 m001 1/GAMMA(17/24)/exp(GAMMA(1/4))/LambertW(1) 3654303067678140 m001 1/BesselK(0,1)/(2^(1/3))^2*ln(GAMMA(1/12)) 3654303070253629 m001 1/2*Psi(2,1/3)*2^(1/2)*Zeta(1,2) 3654303086873770 m005 (1/2*Zeta(3)-6/7)/(5/12*Zeta(3)+1/5) 3654303090066550 a007 Real Root Of -980*x^4+833*x^3-547*x^2+867*x+448 3654303113958535 r005 Re(z^2+c),c=-19/70+12/23*I,n=10 3654303114923571 r005 Im(z^2+c),c=-31/106+37/64*I,n=29 3654303128961414 m001 MinimumGamma*Khintchine^2*ln(cos(Pi/12)) 3654303140384310 r005 Im(z^2+c),c=5/126+3/7*I,n=50 3654303149842914 a008 Real Root of x^4-x^3+x^2+42*x-87 3654303157060448 r005 Im(z^2+c),c=-1/23+25/51*I,n=12 3654303157649382 a007 Real Root Of 235*x^4+753*x^3-437*x^2-33*x+554 3654303157884455 r005 Re(z^2+c),c=-4/9+23/57*I,n=53 3654303160524871 r009 Im(z^3+c),c=-31/58+29/63*I,n=6 3654303166079150 m005 (1/2*Zeta(3)+3)/(1/12*Catalan+10/11) 3654303173820105 a007 Real Root Of -278*x^4-941*x^3+251*x^2+58*x+515 3654303179339337 r005 Re(z^2+c),c=43/98+33/64*I,n=2 3654303183488330 r005 Re(z^2+c),c=7/50+19/31*I,n=38 3654303185769959 r005 Im(z^2+c),c=1/14+18/47*I,n=6 3654303203274430 m001 1/exp(Ei(1))^2*Paris*GAMMA(13/24) 3654303204689643 r005 Re(z^2+c),c=-51/38+15/49*I,n=2 3654303220646135 m005 (1/2*Zeta(3)-5/6)/(1/6*2^(1/2)+2/5) 3654303234379858 a001 1597/87403803*4^(1/2) 3654303253595872 m001 FeigenbaumC^2/ln(ArtinRank2)^2*sqrt(2) 3654303257837336 m001 1/gamma^2*exp(KhintchineLevy)^2/log(1+sqrt(2)) 3654303271697781 r005 Re(z^2+c),c=-13/28+16/49*I,n=31 3654303283504963 r005 Im(z^2+c),c=-5/8+13/191*I,n=52 3654303283770987 a007 Real Root Of -195*x^4-894*x^3-615*x^2+211*x+131 3654303286428010 r005 Im(z^2+c),c=1/52+15/34*I,n=31 3654303295644362 a007 Real Root Of -931*x^4+296*x^3-873*x^2-248*x+57 3654303300462107 a007 Real Root Of -79*x^4-27*x^3+704*x^2-691*x+844 3654303300985351 m005 (1/2*exp(1)-2/3)/(6*Pi+1/10) 3654303315863224 a007 Real Root Of 146*x^4+571*x^3+274*x^2-843*x+241 3654303334986539 r002 33th iterates of z^2 + 3654303335666378 p001 sum(1/(515*n+318)/(3^n),n=0..infinity) 3654303340507459 a001 3571/4181*233^(4/15) 3654303367513270 r005 Re(z^2+c),c=-95/102+10/59*I,n=56 3654303375862009 a001 1149851/21*55^(9/19) 3654303376642832 r005 Im(z^2+c),c=-7/6+12/253*I,n=29 3654303384391168 r005 Re(z^2+c),c=43/122+7/50*I,n=33 3654303401396172 r002 22th iterates of z^2 + 3654303406505725 r005 Im(z^2+c),c=37/118+9/46*I,n=33 3654303428450278 r005 Re(z^2+c),c=-21/34+7/37*I,n=4 3654303434238589 a007 Real Root Of -85*x^4-101*x^3+694*x^2-123*x+512 3654303455578386 r004 Im(z^2+c),c=1/14+7/18*I,z(0)=I,n=12 3654303475517380 r005 Im(z^2+c),c=37/106+9/47*I,n=39 3654303478141533 s002 sum(A065869[n]/(n^3*pi^n-1),n=1..infinity) 3654303481988730 r005 Im(z^2+c),c=-5/118+20/47*I,n=5 3654303483696422 m001 exp(1/Pi)*(Khinchin-Trott2nd) 3654303497826343 m001 sin(1)/(HardHexagonsEntropy^FeigenbaumAlpha) 3654303506411595 m001 (3^(1/2)+GaussAGM)^exp(1/Pi) 3654303513550012 r005 Im(z^2+c),c=-1/42+39/61*I,n=13 3654303513703408 a001 2207/832040*55^(36/55) 3654303515566910 a007 Real Root Of -57*x^4+446*x^3-650*x^2+740*x+380 3654303523553746 l006 ln(2081/2999) 3654303523553746 p004 log(2999/2081) 3654303524218098 m005 (1/3*3^(1/2)-3/4)/(1/3*Catalan-7/9) 3654303538601936 r005 Im(z^2+c),c=-7/6+6/127*I,n=50 3654303542418425 m001 exp(ArtinRank2)*DuboisRaymond^2/(3^(1/3))^2 3654303555320852 m001 (ln(2)-Zeta(1,-1))/(BesselK(1,1)+MadelungNaCl) 3654303583462177 l005 ln(tanh(595/97*Pi)) 3654303598783325 m001 (Otter-Porter)/(BesselK(1,1)-DuboisRaymond) 3654303617528867 r005 Re(z^2+c),c=-10/21+5/19*I,n=30 3654303620973675 a001 9349/10946*233^(4/15) 3654303647564374 r005 Im(z^2+c),c=-17/86+37/64*I,n=40 3654303649551490 r005 Im(z^2+c),c=1/18+23/55*I,n=23 3654303655265769 s002 sum(A244770[n]/(n*pi^n+1),n=1..infinity) 3654303657829760 r005 Im(z^2+c),c=-23/66+3/53*I,n=25 3654303661893145 a001 24476/28657*233^(4/15) 3654303664631097 r009 Im(z^3+c),c=-13/102+23/55*I,n=2 3654303667863216 a001 64079/75025*233^(4/15) 3654303668734237 a001 167761/196418*233^(4/15) 3654303668861317 a001 439204/514229*233^(4/15) 3654303668879858 a001 1149851/1346269*233^(4/15) 3654303668882563 a001 3010349/3524578*233^(4/15) 3654303668882958 a001 7881196/9227465*233^(4/15) 3654303668883015 a001 20633239/24157817*233^(4/15) 3654303668883024 a001 54018521/63245986*233^(4/15) 3654303668883025 a001 141422324/165580141*233^(4/15) 3654303668883025 a001 370248451/433494437*233^(4/15) 3654303668883025 a001 969323029/1134903170*233^(4/15) 3654303668883025 a001 2537720636/2971215073*233^(4/15) 3654303668883025 a001 6643838879/7778742049*233^(4/15) 3654303668883025 a001 17393796001/20365011074*233^(4/15) 3654303668883025 a001 45537549124/53316291173*233^(4/15) 3654303668883025 a001 119218851371/139583862445*233^(4/15) 3654303668883025 a001 312119004989/365435296162*233^(4/15) 3654303668883025 a001 817138163596/956722026041*233^(4/15) 3654303668883025 a001 2139295485799/2504730781961*233^(4/15) 3654303668883025 a001 505019158607/591286729879*233^(4/15) 3654303668883025 a001 64300051206/75283811239*233^(4/15) 3654303668883025 a001 73681302247/86267571272*233^(4/15) 3654303668883025 a001 9381251041/10983760033*233^(4/15) 3654303668883025 a001 10749957122/12586269025*233^(4/15) 3654303668883025 a001 1368706081/1602508992*233^(4/15) 3654303668883025 a001 1568397607/1836311903*233^(4/15) 3654303668883025 a001 199691526/233802911*233^(4/15) 3654303668883025 a001 228826127/267914296*233^(4/15) 3654303668883026 a001 29134601/34111385*233^(4/15) 3654303668883029 a001 33385282/39088169*233^(4/15) 3654303668883051 a001 4250681/4976784*233^(4/15) 3654303668883202 a001 4870847/5702887*233^(4/15) 3654303668884235 a001 620166/726103*233^(4/15) 3654303668891317 a001 710647/832040*233^(4/15) 3654303668939857 a001 90481/105937*233^(4/15) 3654303669272558 a001 103682/121393*233^(4/15) 3654303671552922 a001 13201/15456*233^(4/15) 3654303671897951 r009 Im(z^3+c),c=-4/7+19/52*I,n=9 3654303687182769 a001 15127/17711*233^(4/15) 3654303697579552 r002 20th iterates of z^2 + 3654303698053512 a001 2207/24157817*8^(2/3) 3654303698053667 a004 Lucas(3)/Fibonacci(16)/(1/2+sqrt(5)/2)^5 3654303699943888 p001 sum(1/(392*n+377)/(2^n),n=0..infinity) 3654303704143040 m001 (FransenRobinson-Kolakoski)^Si(Pi) 3654303704580871 r005 Im(z^2+c),c=7/40+16/47*I,n=13 3654303712861158 m001 1/ln((3^(1/3)))/LaplaceLimit^2*sin(Pi/5) 3654303719412699 r002 6th iterates of z^2 + 3654303742706220 m005 (1/2*3^(1/2)+1/4)/(3/11*3^(1/2)-7/9) 3654303745978164 r002 51th iterates of z^2 + 3654303746533646 m001 (FeigenbaumDelta-Totient)/(GAMMA(17/24)-Artin) 3654303747467071 r005 Im(z^2+c),c=-27/56+32/63*I,n=58 3654303757173089 m001 (GAMMA(1/3)+FeigenbaumDelta)^exp(sqrt(2)) 3654303759559742 m001 GaussAGM(1,1/sqrt(2))^BesselK(0,1)-LambertW(1) 3654303760673149 r005 Re(z^2+c),c=-13/29+7/18*I,n=50 3654303777537227 a001 3571/233*233^(32/55) 3654303783149424 k002 Champernowne real with 231/2*n^2-657/2*n+249 3654303784643295 a007 Real Root Of 266*x^4+913*x^3-259*x^2+53*x+771 3654303788105386 m005 (1/2*5^(1/2)-2/3)/(5/7*Catalan-7/9) 3654303790625995 a007 Real Root Of -178*x^4-662*x^3+3*x^2+223*x+212 3654303794311333 a001 1926/2255*233^(4/15) 3654303814612669 a003 sin(Pi*1/69)*sin(Pi*27/91) 3654303856201943 a001 10946/47*199^(4/47) 3654303861978301 r005 Im(z^2+c),c=-25/46+19/43*I,n=27 3654303865968877 m001 (5^(1/2)+ln(gamma)*PrimesInBinary)/ln(gamma) 3654303866742522 a007 Real Root Of -436*x^4-701*x^3-112*x^2+826*x-30 3654303874146403 m001 FeigenbaumDelta-arctan(1/3)-ln(2) 3654303883110734 r005 Im(z^2+c),c=5/102+21/37*I,n=17 3654303885234720 a001 7/832040*987^(37/42) 3654303885658419 a007 Real Root Of -484*x^4-513*x^3+95*x^2+799*x-271 3654303886049957 m005 (1/2*exp(1)-1/4)/(1/3*gamma+1/9) 3654303898317489 r005 Re(z^2+c),c=7/27+2/45*I,n=31 3654303899691898 r005 Im(z^2+c),c=-7/10+12/239*I,n=49 3654303909070764 m001 exp(sqrt(1+sqrt(3)))^2*Ei(1)/sqrt(2) 3654303924442789 r005 Im(z^2+c),c=-9/46+37/59*I,n=35 3654303932840739 m001 (-Zeta(1,-1)+Thue)/(2^(1/2)-3^(1/3)) 3654303933604408 r009 Im(z^3+c),c=-7/10+15/32*I,n=3 3654303945101715 a001 199*196418^(29/36) 3654303947344567 m001 (gamma(1)+GAMMA(7/12))/(FransenRobinson+Salem) 3654303963310588 a001 233/1149851*7^(10/33) 3654303981940667 r005 Re(z^2+c),c=-41/86+8/31*I,n=43 3654303996688025 r005 Im(z^2+c),c=9/122+24/59*I,n=32 3654304003468072 l006 ln(6948/10013) 3654304015181218 r005 Im(z^2+c),c=11/42+13/51*I,n=44 3654304019664543 r009 Re(z^3+c),c=-33/62+16/53*I,n=64 3654304031315384 r005 Re(z^2+c),c=-31/122+8/13*I,n=49 3654304040097859 m004 4+Sqrt[5]*Pi+(25*Pi*Log[Sqrt[5]*Pi])/6 3654304073310502 r002 8th iterates of z^2 + 3654304077338517 m001 ln(Sierpinski)*MadelungNaCl^2*(2^(1/3)) 3654304124568629 r005 Re(z^2+c),c=-47/118+24/47*I,n=37 3654304133357662 a007 Real Root Of 138*x^4+274*x^3-932*x^2-296*x+126 3654304145368620 r009 Im(z^3+c),c=-33/64+9/19*I,n=15 3654304155524262 m001 (Otter+Sierpinski)/(Zeta(3)-exp(1)) 3654304171570007 r005 Im(z^2+c),c=-47/90+38/61*I,n=16 3654304183688942 r005 Im(z^2+c),c=7/46+17/27*I,n=13 3654304184161744 l006 ln(64/2473) 3654304185096971 q001 1074/2939 3654304193116687 a007 Real Root Of 313*x^4+862*x^3-922*x^2+416*x+81 3654304193187006 m001 1/cos(Pi/5)*GlaisherKinkelin/ln(cosh(1)) 3654304195316535 a007 Real Root Of -501*x^4+809*x^3+385*x^2+936*x-424 3654304208666691 l006 ln(4867/7014) 3654304211260118 m002 36+(4*Pi)/E^Pi 3654304219139828 a001 29/2178309*377^(8/47) 3654304220784096 m005 (1/2*3^(1/2)+1/3)/(-37/99+2/11*5^(1/2)) 3654304227308350 m001 1/sin(Pi/12)*GAMMA(1/6)/exp(sqrt(Pi)) 3654304245305656 m001 GAMMA(1/4)*GolombDickman*ln(sinh(1)) 3654304246751417 s002 sum(A100563[n]/(pi^n-1),n=1..infinity) 3654304253329442 a001 85145289102576/233 3654304264871427 m001 (Pi+Mills)/(ReciprocalLucas-Riemann1stZero) 3654304276462780 l006 ln(9162/9503) 3654304277107355 q001 1/2736499 3654304279687898 r005 Re(z^2+c),c=-67/122+5/48*I,n=6 3654304290665884 p004 log(25057/17387) 3654304309284729 r005 Im(z^2+c),c=-3/16+21/38*I,n=63 3654304311503048 m001 (Shi(1)-sin(1/12*Pi))/(Pi^(1/2)+ThueMorse) 3654304317222089 m005 (1/2*gamma-1/7)/(4/11*exp(1)+3) 3654304342904028 m001 (-Kolakoski+ZetaP(3))/(LambertW(1)+GAMMA(5/6)) 3654304347882686 m001 gamma(3)*(FeigenbaumAlpha-Sarnak) 3654304392082845 r005 Im(z^2+c),c=-23/66+3/53*I,n=27 3654304392925550 r005 Im(z^2+c),c=43/110+9/28*I,n=30 3654304401809190 r005 Im(z^2+c),c=-41/98+22/43*I,n=19 3654304417486748 m001 (FellerTornier+GaussAGM)/(MinimumGamma+Niven) 3654304422165065 r005 Im(z^2+c),c=-31/26+3/59*I,n=19 3654304431614563 r001 63i'th iterates of 2*x^2-1 of 3654304450376258 m005 (7/12+1/4*5^(1/2))/(2/9*exp(1)-11/12) 3654304490908358 a007 Real Root Of -411*x^4+466*x^3+693*x^2+583*x-321 3654304510933457 r005 Im(z^2+c),c=-17/14+22/211*I,n=36 3654304528581454 a001 2207/2584*233^(4/15) 3654304530736294 a007 Real Root Of 911*x^4-817*x^3-208*x^2-166*x-89 3654304536022443 a007 Real Root Of -943*x^4+179*x^3+374*x^2+482*x-218 3654304537183421 a003 cos(Pi*8/21)/sin(Pi*35/71) 3654304542550213 m001 Weierstrass/sin(1/5*Pi)*ZetaP(2) 3654304543230271 r009 Re(z^3+c),c=-1/15+33/50*I,n=33 3654304551099422 r002 2th iterates of z^2 + 3654304553256013 r002 8th iterates of z^2 + 3654304554567455 m001 Pi*MinimumGamma+Zeta(1,2) 3654304560950465 r002 5th iterates of z^2 + 3654304569400137 r005 Re(z^2+c),c=7/36+18/37*I,n=17 3654304590808625 a007 Real Root Of 286*x^4-854*x^3-452*x^2-594*x+314 3654304605941208 m001 (Chi(1)-exp(Pi))/(-Cahen+CareFree) 3654304615136938 m001 (Tetranacci-Thue)/(MadelungNaCl+Salem) 3654304616006221 a007 Real Root Of 598*x^4-68*x^3-133*x^2-174*x+74 3654304624849405 m005 (1/2*5^(1/2)+1/10)/(3/7*5^(1/2)-5/8) 3654304628434099 m009 (2*Pi^2-2/3)/(24*Catalan+3*Pi^2+3/5) 3654304639599154 b008 3+(3*2^(1/8))/5 3654304645241819 m005 (1/3*2^(1/2)-1/10)/(5/11*Catalan+3/5) 3654304647746013 b008 JacobiCD[Sqrt[3],2]/5 3654304647902306 a001 956722026041/123*123^(4/5) 3654304684170839 a007 Real Root Of 765*x^4-713*x^3+75*x^2-380*x+150 3654304700810531 m001 1/ln(Trott)*KhintchineLevy/GAMMA(1/3)^2 3654304704901591 a007 Real Root Of -197*x^4+504*x^3-988*x^2+279*x+262 3654304720411110 l006 ln(2786/4015) 3654304722668969 r005 Im(z^2+c),c=-23/66+3/53*I,n=23 3654304728300995 a008 Real Root of x^2-x-133174 3654304733943203 m001 Khinchin^Gompertz+Si(Pi) 3654304754537353 r005 Im(z^2+c),c=-31/46+16/45*I,n=55 3654304754949545 m005 (1/2*exp(1)+7/12)/(2/11*5^(1/2)+1/8) 3654304763310260 m006 (4/5*Pi^2-1/6)/(3/5*Pi-4) 3654304763310260 m008 (4/5*Pi^2-1/6)/(3/5*Pi-4) 3654304764127752 r005 Re(z^2+c),c=23/70+33/52*I,n=6 3654304767265605 m001 (Bloch-FeigenbaumC)/(LandauRamanujan+Otter) 3654304783599260 r009 Re(z^3+c),c=-49/102+17/59*I,n=34 3654304786150024 k002 Champernowne real with 116*n^2-330*n+250 3654304790061774 m002 (-3*Pi^5)/E^Pi+Pi*Tanh[Pi] 3654304793798674 a003 cos(Pi*19/64)-sin(Pi*30/73) 3654304810840069 a007 Real Root Of -178*x^4+630*x^3-251*x^2+985*x-354 3654304819550991 r005 Im(z^2+c),c=-35/94+30/49*I,n=64 3654304825773976 r005 Im(z^2+c),c=13/38+7/27*I,n=23 3654304830979131 m001 (2*Pi/GAMMA(5/6)-Pi^(1/2))/(Kac+ThueMorse) 3654304834920130 a007 Real Root Of 762*x^4-6*x^3+609*x^2+318*x+21 3654304843627697 a007 Real Root Of 413*x^4-463*x^3+934*x^2-581*x-367 3654304846430498 r002 18th iterates of z^2 + 3654304846938775 r005 Re(z^2+c),c=-17/16+23/35*I,n=2 3654304851273729 a001 1/29*(1/2*5^(1/2)+1/2)^22*1364^(3/22) 3654304854294390 m001 (GAMMA(11/12)+Champernowne)/FellerTornier 3654304866199297 r005 Re(z^2+c),c=-27/56+5/22*I,n=27 3654304882857392 r005 Im(z^2+c),c=5/24+18/59*I,n=13 3654304911966896 a001 305/16692641*4^(1/2) 3654304926949367 r005 Im(z^2+c),c=-23/66+3/53*I,n=29 3654304949778408 a001 1/29*(1/2*5^(1/2)+1/2)^14*3571^(13/22) 3654304955606256 k001 Champernowne real with 65*n+300 3654304963074855 a003 cos(Pi*37/91)+cos(Pi*49/103) 3654304963929432 m001 GAMMA(17/24)/ln(Kolakoski)/GAMMA(7/12) 3654304977080921 a007 Real Root Of 531*x^4+61*x^3-888*x^2-785*x+393 3654304980631880 r005 Re(z^2+c),c=-11/114+49/60*I,n=60 3654304982017771 m005 (1/15+1/6*5^(1/2))/(1/11*Pi+11/12) 3654305010041958 a007 Real Root Of -273*x^4+528*x^3+916*x^2+738*x+178 3654305051725736 m001 (BesselJ(0,1)-Zeta(1/2))/(FeigenbaumD+Magata) 3654305066064066 p004 log(31153/21617) 3654305082603510 m001 (ln(2)+FeigenbaumMu)/(HardyLittlewoodC4+Thue) 3654305085676813 r009 Im(z^3+c),c=-53/102+13/61*I,n=53 3654305087755525 m001 (FeigenbaumMu+GaussAGM)/(LambertW(1)-Pi^(1/2)) 3654305105810004 a001 1/29*(1/2*5^(1/2)+1/2)^18*9349^(7/22) 3654305111336401 r009 Re(z^3+c),c=-1/18+20/41*I,n=21 3654305113290364 a001 1/29*(1/2*5^(1/2)+1/2)^4*24476^(21/22) 3654305117202567 l006 ln(6277/9046) 3654305119072559 a001 1/29*(1/2*5^(1/2)+1/2)^23*64079^(1/22) 3654305119390281 a001 1/709804*(1/2*5^(1/2)+1/2)^25*24476^(21/22) 3654305121910734 m001 (exp(-1/2*Pi)+Champernowne*Thue)/Thue 3654305125136764 r005 Re(z^2+c),c=-4/7+14/39*I,n=16 3654305128559303 a007 Real Root Of 265*x^4+739*x^3-907*x^2-440*x-690 3654305137431435 m001 GAMMA(1/6)^2/ln(Salem)^2/LambertW(1)^2 3654305174540953 r005 Im(z^2+c),c=-23/66+3/53*I,n=31 3654305177780716 m001 1/Rabbit*ErdosBorwein*ln(sinh(1)) 3654305181706315 m001 gamma/(StolarskyHarborth+ZetaP(4)) 3654305206118390 r005 Re(z^2+c),c=-13/27+7/30*I,n=23 3654305210996641 m001 (-gamma(3)+exp(-1/2*Pi))/(Psi(2,1/3)-Zeta(3)) 3654305219721078 a003 sin(Pi*1/92)-sin(Pi*14/107) 3654305221111981 a001 1/377*591286729879^(4/15) 3654305221444682 a001 281/15456*433494437^(4/15) 3654305231718579 m005 (27/28+1/4*5^(1/2))/(3/7*5^(1/2)-1) 3654305236344665 a001 1/103559*(1/2*5^(1/2)+1/2)^31*3571^(13/22) 3654305237072606 a001 281/2255*317811^(4/15) 3654305241360287 r002 2th iterates of z^2 + 3654305243630746 h001 (-8*exp(5)+9)/(-8*exp(6)+3) 3654305246426518 r005 Re(z^2+c),c=-53/118+17/38*I,n=27 3654305267115915 r005 Im(z^2+c),c=-3/28+23/45*I,n=28 3654305267933886 m001 (GAMMA(5/24)-OneNinth)/GAMMA(19/24) 3654305269186043 a007 Real Root Of -599*x^4+334*x^3+400*x^2+539*x-256 3654305270018798 l004 Pi/cosh(278/31*Pi) 3654305270018798 l004 Pi/sinh(278/31*Pi) 3654305270811359 r005 Im(z^2+c),c=-23/66+3/53*I,n=33 3654305273359028 r005 Im(z^2+c),c=-11/10+10/203*I,n=3 3654305284610423 r005 Im(z^2+c),c=5/126+3/7*I,n=47 3654305287912204 m005 (1/2*3^(1/2)+10/11)/(4/11*Pi-6) 3654305289199572 a001 182717648081/161*521^(12/13) 3654305300320673 a007 Real Root Of -660*x^4+421*x^3+746*x^2+185*x-176 3654305304517008 r005 Im(z^2+c),c=-23/66+3/53*I,n=35 3654305315129753 m001 Kolakoski/(Paris^((1+3^(1/2))^(1/2))) 3654305315416223 r005 Im(z^2+c),c=-23/66+3/53*I,n=37 3654305318698408 r005 Im(z^2+c),c=-23/66+3/53*I,n=39 3654305319616338 r005 Im(z^2+c),c=-23/66+3/53*I,n=41 3654305319851045 r005 Im(z^2+c),c=-23/66+3/53*I,n=43 3654305319903655 r005 Im(z^2+c),c=-23/66+3/53*I,n=45 3654305319910453 r005 Im(z^2+c),c=-23/66+3/53*I,n=48 3654305319910886 r005 Im(z^2+c),c=-23/66+3/53*I,n=50 3654305319911417 r005 Im(z^2+c),c=-23/66+3/53*I,n=52 3654305319911690 r005 Im(z^2+c),c=-23/66+3/53*I,n=54 3654305319911802 r005 Im(z^2+c),c=-23/66+3/53*I,n=56 3654305319911842 r005 Im(z^2+c),c=-23/66+3/53*I,n=58 3654305319911856 r005 Im(z^2+c),c=-23/66+3/53*I,n=60 3654305319911860 r005 Im(z^2+c),c=-23/66+3/53*I,n=62 3654305319911861 r005 Im(z^2+c),c=-23/66+3/53*I,n=64 3654305319911863 r005 Im(z^2+c),c=-23/66+3/53*I,n=63 3654305319911865 r005 Im(z^2+c),c=-23/66+3/53*I,n=61 3654305319911872 r005 Im(z^2+c),c=-23/66+3/53*I,n=59 3654305319911896 r005 Im(z^2+c),c=-23/66+3/53*I,n=57 3654305319911964 r005 Im(z^2+c),c=-23/66+3/53*I,n=55 3654305319912143 r005 Im(z^2+c),c=-23/66+3/53*I,n=53 3654305319912540 r005 Im(z^2+c),c=-23/66+3/53*I,n=51 3654305319912724 r005 Im(z^2+c),c=-23/66+3/53*I,n=47 3654305319913144 r005 Im(z^2+c),c=-23/66+3/53*I,n=49 3654305319913369 r005 Im(z^2+c),c=-23/66+3/53*I,n=46 3654305319936326 r005 Im(z^2+c),c=-23/66+3/53*I,n=44 3654305320049808 r005 Im(z^2+c),c=-23/66+3/53*I,n=42 3654305320520002 r005 Im(z^2+c),c=-23/66+3/53*I,n=40 3654305322272927 r005 Im(z^2+c),c=-23/66+3/53*I,n=38 3654305326587656 m001 GAMMA(11/12)^2/(2^(1/3))*ln(GAMMA(3/4))^2 3654305328307027 r005 Im(z^2+c),c=-23/66+3/53*I,n=36 3654305331023611 a007 Real Root Of 192*x^4-882*x^3-605*x^2-735*x+389 3654305336571400 r005 Re(z^2+c),c=-37/86+21/46*I,n=58 3654305340437853 r005 Im(z^2+c),c=-19/42+17/32*I,n=18 3654305347649684 r005 Im(z^2+c),c=-23/66+3/53*I,n=34 3654305355353874 a001 6/7*1597^(29/57) 3654305357948711 r009 Re(z^3+c),c=-37/94+9/50*I,n=6 3654305360494866 r002 15th iterates of z^2 + 3654305363358203 g007 Psi(2,1/7)-14*Zeta(3)-Psi(2,2/11)-Psi(2,7/9) 3654305363696025 r005 Im(z^2+c),c=-19/21+10/43*I,n=16 3654305366585296 r005 Im(z^2+c),c=1/28+25/58*I,n=37 3654305370203657 r005 Im(z^2+c),c=-1/4+35/61*I,n=49 3654305393502577 m001 (Mills-MinimumGamma)/(Trott2nd-ZetaP(2)) 3654305405241897 r005 Im(z^2+c),c=-23/66+3/53*I,n=32 3654305406680627 m001 (ln(gamma)+arctan(1/3))/(GAMMA(17/24)-Robbin) 3654305420732772 r005 Im(z^2+c),c=2/7+8/35*I,n=49 3654305428624368 p001 sum(1/(510*n+287)/(8^n),n=0..infinity) 3654305432226038 r005 Im(z^2+c),c=-25/98+26/47*I,n=29 3654305433862825 l006 ln(3491/5031) 3654305435496902 a007 Real Root Of -246*x^4-943*x^3-85*x^2+263*x-53 3654305455017272 m001 1/ln(BesselJ(0,1))/TwinPrimes^2/GAMMA(1/24) 3654305479469537 m005 (1/2*gamma-1)/(5/6*5^(1/2)+1/12) 3654305480925753 s002 sum(A065813[n]/((exp(n)+1)*n),n=1..infinity) 3654305511253069 r005 Im(z^2+c),c=31/110+9/35*I,n=12 3654305523073071 r005 Re(z^2+c),c=-13/34+36/61*I,n=43 3654305532625834 m001 (BesselJ(1,1)+CareFree)/(Pi+gamma(2)) 3654305538990642 r005 Im(z^2+c),c=-5/86+17/35*I,n=43 3654305541605451 r005 Re(z^2+c),c=-57/122+1/5*I,n=10 3654305543703399 m001 1/Niven/FeigenbaumB^2/ln(Paris) 3654305552876889 a007 Real Root Of -276*x^4-976*x^3+125*x^2-104*x-459 3654305559922507 m001 (-ReciprocalLucas+Trott)/(Psi(2,1/3)+Niven) 3654305562089717 r005 Im(z^2+c),c=-23/66+3/53*I,n=30 3654305584081826 m005 (1/3*exp(1)-1/7)/(6/11*Pi+3/8) 3654305609225114 m001 Bloch/(ln(2^(1/2)+1)+HardyLittlewoodC5) 3654305614660336 a003 cos(Pi*23/112)*cos(Pi*50/103) 3654305617224933 r005 Re(z^2+c),c=-5/102+36/43*I,n=44 3654305619568279 a007 Real Root Of -905*x^4+157*x^3+129*x^2+491*x+186 3654305631479903 m005 (1/3*Zeta(3)-1/5)/(11/12*exp(1)+3) 3654305636587934 a001 1/225749145909*233^(17/21) 3654305642766719 a001 6765/2207*3^(4/25) 3654305645515524 a001 64079/233*7778742049^(6/19) 3654305646402392 a001 1149851/233*832040^(6/19) 3654305653922066 m001 (-BesselI(0,1)+GAMMA(5/6))/(Catalan-cos(1)) 3654305659654337 m005 (-1/20+1/5*5^(1/2))/(3/4*Catalan+2/5) 3654305662577298 a007 Real Root Of 390*x^4+70*x^3-93*x^2-744*x-263 3654305667906942 a007 Real Root Of 692*x^4+814*x^3-444*x^2-886*x+331 3654305677039467 r005 Re(z^2+c),c=19/52+16/53*I,n=53 3654305682065172 m001 (ln(3)+GolombDickman)/(MasserGramain-ZetaP(3)) 3654305693504505 m001 (Backhouse-Thue)/(sin(1/12*Pi)+exp(1/Pi)) 3654305703380213 g007 Psi(2,4/7)-Psi(13/10)-Psi(2,4/9)-Psi(2,6/7) 3654305710483253 a007 Real Root Of 276*x^4+943*x^3-134*x^2+115*x-991 3654305732502419 r005 Im(z^2+c),c=-5/86+17/35*I,n=46 3654305749973011 r009 Re(z^3+c),c=-21/52+9/47*I,n=23 3654305751568676 m001 BesselJ(1,1)-ln(2)*OneNinth 3654305751909485 r002 12th iterates of z^2 + 3654305778564714 r009 Im(z^3+c),c=-13/30+16/61*I,n=7 3654305786672344 p004 log(29251/757) 3654305789150624 k002 Champernowne real with 233/2*n^2-663/2*n+251 3654305794280523 r005 Im(z^2+c),c=4/19+13/43*I,n=13 3654305794320611 m001 (gamma+ln(Pi))/(-Conway+FeigenbaumB) 3654305803911368 r005 Re(z^2+c),c=-107/90+11/53*I,n=10 3654305812276399 r005 Re(z^2+c),c=5/14+13/41*I,n=12 3654305819011590 a007 Real Root Of 113*x^4+373*x^3+7*x^2+780*x+808 3654305849485793 m001 (Psi(1,1/3)-arctan(1/3))/(-Khinchin+Trott) 3654305867256094 m001 GAMMA(11/12)^PlouffeB/FransenRobinson 3654305881658384 m001 (exp(Pi)+3^(1/2))/(-Kac+Mills) 3654305886411098 r005 Im(z^2+c),c=-9/8+11/245*I,n=22 3654305888790846 m001 (ln(2)-sin(1))/(-PlouffeB+QuadraticClass) 3654305889399779 r005 Im(z^2+c),c=-17/32+35/57*I,n=7 3654305893106471 b008 Cos[EllipticE[-1+Sqrt[Pi]]] 3654305903543033 r005 Re(z^2+c),c=5/14+13/36*I,n=12 3654305907570251 l006 ln(4196/6047) 3654305908426596 m001 Magata*PisotVijayaraghavan-Thue 3654305910930996 r002 14th iterates of z^2 + 3654305913581290 r005 Re(z^2+c),c=-9/20+5/13*I,n=44 3654305914887148 h001 (-5*exp(-3)-9)/(-6*exp(1)-9) 3654305919522390 r005 Im(z^2+c),c=17/114+17/48*I,n=20 3654305931530591 m001 (exp(Pi)+Conway)/(TwinPrimes+ZetaQ(3)) 3654305934667421 l006 ln(231/8926) 3654305937011575 r005 Im(z^2+c),c=-23/66+3/53*I,n=28 3654305937840071 r005 Re(z^2+c),c=-17/18+16/121*I,n=36 3654305986988326 p001 sum(1/(105*n+2)/n/(256^n),n=0..infinity) 3654305992454525 r005 Im(z^2+c),c=-17/40+34/59*I,n=31 3654305994501158 p001 sum(1/(604*n+275)/(64^n),n=0..infinity) 3654305999420572 m006 (1/5*exp(Pi)+3/5)/(1/6*Pi-2/3) 3654306010870256 a007 Real Root Of -548*x^4-356*x^3+469*x^2+743*x-307 3654306013186057 r005 Re(z^2+c),c=-35/74+12/43*I,n=54 3654306017952633 r009 Re(z^3+c),c=-9/17+23/61*I,n=30 3654306050895133 r009 Im(z^3+c),c=-51/94+12/35*I,n=48 3654306053518795 a007 Real Root Of -11*x^4-385*x^3+621*x^2+52*x+925 3654306056653487 m001 Niven*exp(LandauRamanujan)/Zeta(9) 3654306065463320 r001 55i'th iterates of 2*x^2-1 of 3654306089913245 m003 143/4+Sqrt[5]/64+ProductLog[1/2+Sqrt[5]/2] 3654306100317492 b008 13*Sqrt[6*ArcCosh[2]] 3654306132149809 r005 Im(z^2+c),c=-153/122+13/46*I,n=5 3654306135771941 m001 (Chi(1)+Landau)/(-Rabbit+RenyiParking) 3654306137783512 a007 Real Root Of -259*x^4+853*x^3+809*x^2+845*x+247 3654306149978524 a007 Real Root Of 842*x^4-908*x^3+513*x^2-827*x+263 3654306164042293 r005 Im(z^2+c),c=27/110+15/43*I,n=9 3654306175416205 a007 Real Root Of 195*x^4+725*x^3-37*x^2-293*x+29 3654306192944303 r002 41th iterates of z^2 + 3654306197160943 r005 Im(z^2+c),c=10/29+20/63*I,n=36 3654306205467326 r009 Re(z^3+c),c=-37/78+9/32*I,n=35 3654306220095693 q001 611/1672 3654306220095693 r002 2th iterates of z^2 + 3654306220095693 r002 2th iterates of z^2 + 3654306237445747 a001 3/521*322^(23/32) 3654306244993747 l006 ln(4901/7063) 3654306264558876 l006 ln(5293/5490) 3654306265317572 a001 7/5*956722026041^(13/21) 3654306283569192 m001 (BesselK(0,1)-Chi(1))/(cos(1/12*Pi)+ZetaP(3)) 3654306285820611 r005 Im(z^2+c),c=-17/98+6/11*I,n=60 3654306286443454 m001 (FeigenbaumKappa+Kac)/(LandauRamanujan-Mills) 3654306289838753 r005 Re(z^2+c),c=-6/13+17/50*I,n=29 3654306297188236 a001 17711/5778*3^(4/25) 3654306302869087 r009 Im(z^3+c),c=-5/46+11/27*I,n=8 3654306324779655 a001 591286729879/322*521^(11/13) 3654306334673643 r005 Re(z^2+c),c=-43/98+34/61*I,n=57 3654306350526692 b008 1+8*Sqrt[2]*Pi 3654306362964160 a007 Real Root Of -692*x^4+68*x^3+984*x^2+497*x-304 3654306367694102 r005 Re(z^2+c),c=15/106+5/11*I,n=51 3654306370205171 m001 (3^(1/2)*CareFree+GAMMA(2/3))/CareFree 3654306370293230 m005 (1/2*Catalan+3/4)/(1/5*5^(1/2)-7/9) 3654306377853449 r009 Re(z^3+c),c=-18/31+19/40*I,n=59 3654306378898639 r008 a(0)=4,K{-n^6,-55+62*n^3+82*n^2-86*n} 3654306379853264 a007 Real Root Of 548*x^4+165*x^3+990*x^2-802*x-427 3654306390733451 r005 Im(z^2+c),c=19/74+15/56*I,n=16 3654306392667068 a001 6624/2161*3^(4/25) 3654306406597242 a001 121393/39603*3^(4/25) 3654306408629627 a001 317811/103682*3^(4/25) 3654306408926148 a001 832040/271443*3^(4/25) 3654306408969410 a001 311187/101521*3^(4/25) 3654306408996147 a001 1346269/439204*3^(4/25) 3654306409109408 a001 514229/167761*3^(4/25) 3654306409885710 a001 196418/64079*3^(4/25) 3654306415206563 a001 75025/24476*3^(4/25) 3654306425207087 r005 Re(z^2+c),c=1/11+7/32*I,n=13 3654306427752319 r005 Im(z^2+c),c=-6/25+31/56*I,n=23 3654306448075927 m001 (arctan(1/3)-ln(2+3^(1/2)))/(MertensB1+Trott) 3654306451676233 a001 28657/9349*3^(4/25) 3654306458636131 m005 (1/2*2^(1/2)-1/4)/(1/6*Pi+8/11) 3654306477483388 a007 Real Root Of -552*x^4+745*x^3-789*x^2+709*x+27 3654306485112724 m005 (-2/3+1/4*5^(1/2))/(1/6*Pi-9/11) 3654306493978116 r009 Re(z^3+c),c=-35/78+13/45*I,n=9 3654306497549750 l006 ln(5606/8079) 3654306501893731 m001 1/Robbin^2*FeigenbaumAlpha*ln(Ei(1)) 3654306506323668 m001 1/(3^(1/3))^2/ln(CareFree)^2*cos(Pi/12)^2 3654306510432338 r009 Im(z^3+c),c=-17/66+3/8*I,n=10 3654306522307214 m001 exp(Riemann2ndZero)*RenyiParking*GAMMA(1/4) 3654306523045217 a003 cos(Pi*5/101)-sin(Pi*51/115) 3654306525569163 r005 Im(z^2+c),c=5/126+3/7*I,n=44 3654306533273093 m001 1/BesselJ(1,1)^2*ln((3^(1/3)))^2/Ei(1) 3654306542005707 r005 Im(z^2+c),c=-5/48+19/37*I,n=27 3654306543071124 r005 Re(z^2+c),c=41/106+4/29*I,n=19 3654306547679024 r002 3th iterates of z^2 + 3654306548377534 a007 Real Root Of -235*x^4-649*x^3+859*x^2+99*x-873 3654306569613788 r002 51th iterates of z^2 + 3654306570049629 r005 Re(z^2+c),c=-10/27+14/25*I,n=39 3654306573238029 r005 Re(z^2+c),c=-33/50+13/45*I,n=49 3654306588576662 r005 Re(z^2+c),c=-83/102+51/61*I,n=3 3654306602276532 r009 Im(z^3+c),c=-23/110+28/37*I,n=16 3654306605519084 l006 ln(167/6453) 3654306607095238 r005 Re(z^2+c),c=-53/122+17/37*I,n=45 3654306628310888 a008 Real Root of x^2-x-133905 3654306629284329 r005 Im(z^2+c),c=-23/66+3/53*I,n=26 3654306637354340 m001 (BesselI(0,2)+QuadraticClass)/(3^(1/3)-gamma) 3654306637636092 p001 sum((-1)^n/(394*n+267)/(16^n),n=0..infinity) 3654306644604326 a007 Real Root Of 559*x^4+690*x^3+933*x^2-315*x-216 3654306646433142 m001 (Zeta(1,2)-Kolakoski)/(PlouffeB-ZetaQ(4)) 3654306646608163 r008 a(0)=4,K{-n^6,-43+73*n^3+55*n^2-82*n} 3654306655284922 m001 (Porter-ThueMorse)/(LandauRamanujan-PlouffeB) 3654306661387759 a007 Real Root Of -691*x^4+772*x^3+437*x^2+923*x-421 3654306669396002 m001 Zeta(1,2)/(Magata-sin(1)) 3654306670567391 r009 Im(z^3+c),c=-10/19+5/14*I,n=57 3654306673670926 m001 ln(gamma)^(GAMMA(17/24)/LandauRamanujan) 3654306673670926 m001 log(gamma)^(GAMMA(17/24)/LandauRamanujan) 3654306674744709 r005 Re(z^2+c),c=-31/94+11/20*I,n=31 3654306688625658 b008 1/3+36*(7+Pi) 3654306693679831 l006 ln(6311/9095) 3654306696388630 g003 Im(GAMMA(55/12+I*(-251/60))) 3654306701643091 a001 10946/3571*3^(4/25) 3654306710784360 a007 Real Root Of 607*x^4-65*x^3+474*x^2-292*x-184 3654306718041561 r005 Im(z^2+c),c=-29/94+25/44*I,n=47 3654306722209013 r005 Re(z^2+c),c=-31/70+21/52*I,n=24 3654306722560116 m001 (arctan(1/2)+Zeta(1,2))/(Pi^(1/2)-PlouffeB) 3654306751580030 s002 sum(A109897[n]/((2^n+1)/n),n=1..infinity) 3654306751663320 r005 Re(z^2+c),c=-37/82+14/37*I,n=58 3654306752198937 r002 54th iterates of z^2 + 3654306765330829 m005 (1/3*Zeta(3)-1/7)/(31/12+2*5^(1/2)) 3654306768788193 r009 Re(z^3+c),c=-23/54+5/24*I,n=9 3654306770166749 r005 Im(z^2+c),c=-1/66+9/19*I,n=9 3654306789625474 s002 sum(A019056[n]/((exp(n)+1)*n),n=1..infinity) 3654306792151224 k002 Champernowne real with 117*n^2-333*n+252 3654306807165716 m001 (2*Pi/GAMMA(5/6)+Landau)/(ln(5)-3^(1/3)) 3654306810818676 r005 Re(z^2+c),c=39/110+5/32*I,n=37 3654306811105834 r005 Im(z^2+c),c=-131/102+13/25*I,n=3 3654306816040137 m001 1/TreeGrowth2nd/Kolakoski^2/ln(GAMMA(1/3)) 3654306817673684 r005 Im(z^2+c),c=1/50+26/59*I,n=37 3654306821366973 a007 Real Root Of -443*x^4+440*x^3-487*x^2+382*x+234 3654306832877513 r002 17th iterates of z^2 + 3654306834170114 m005 (1/2*gamma-3)/(7/8*Catalan-8/11) 3654306859712051 r005 Im(z^2+c),c=8/29+35/39*I,n=3 3654306880759470 a007 Real Root Of 126*x^4-903*x^3-92*x^2-651*x+292 3654306895599883 m001 Rabbit^2/FeigenbaumB^2*ln(sqrt(1+sqrt(3))) 3654306896344771 m001 (-ln(Pi)+arctan(1/3))/(2^(1/2)+Chi(1)) 3654306906559569 r005 Im(z^2+c),c=9/122+24/59*I,n=36 3654306906675169 m001 (Chi(1)-exp(1/exp(1)))/(ErdosBorwein+ZetaQ(2)) 3654306907584006 a007 Real Root Of 121*x^4+420*x^3+4*x^2+187*x-452 3654306917169542 m001 1/BesselJ(0,1)*ln(Robbin)^2*GAMMA(13/24) 3654306924871780 r005 Im(z^2+c),c=-4/23+28/47*I,n=35 3654306931168385 r009 Re(z^3+c),c=-25/114+39/41*I,n=2 3654306947897256 q001 1/2736497 3654306958468131 r002 5th iterates of z^2 + 3654306961902754 a003 sin(Pi*9/49)*sin(Pi*25/107) 3654306964424522 m001 Ei(1)^2*exp(MadelungNaCl)*sqrt(Pi) 3654306967145877 r009 Re(z^3+c),c=-33/70+5/17*I,n=10 3654306970200963 m001 (1+BesselI(0,1))/(-Zeta(3)+LandauRamanujan2nd) 3654306986597771 m001 1/ln(Paris)^2/CareFree*sinh(1)^2 3654307000591772 r005 Im(z^2+c),c=-23/66+3/53*I,n=24 3654307008330817 l006 ln(5463/5483) 3654307008730666 m001 (ln(Pi)+exp(1/exp(1)))/(Kolakoski-Sarnak) 3654307014391836 m001 (arctan(1/3)+FeigenbaumD)/(Paris+Sarnak) 3654307028459081 a007 Real Root Of -974*x^4-267*x^3-654*x^2+384*x+232 3654307035934606 m005 (1/3*exp(1)-1/8)/(9/10*5^(1/2)+1/8) 3654307041970153 a001 41*(1/2*5^(1/2)+1/2)^32*3^(11/20) 3654307094868100 a007 Real Root Of 487*x^4-881*x^3+926*x^2-499*x+93 3654307096385801 a007 Real Root Of -161*x^4+939*x^3+851*x^2+885*x-480 3654307101886927 h003 exp(Pi*(19^(4/7)-14^(1/10))) 3654307101886927 h008 exp(Pi*(19^(4/7)-14^(1/10))) 3654307102355853 m002 -E^Pi-Sinh[Pi]+3*Sinh[Pi]^2 3654307108841172 m001 (Zeta(1/2)+Sierpinski)/(5^(1/2)+sin(1)) 3654307110870134 a007 Real Root Of -655*x^4-897*x^3-621*x^2+649*x+288 3654307112073329 m005 (1/2*5^(1/2)+6/7)/(5/12*gamma+3/10) 3654307112698196 m001 (GAMMA(11/12)+GolombDickman)/(1-cos(1)) 3654307116099898 a007 Real Root Of -598*x^4+481*x^3-994*x^2+627*x+396 3654307122499974 h001 (9/11*exp(1)+7/12)/(11/12*exp(2)+10/11) 3654307181126481 m005 (3/4*exp(1)-4)/(3/5*gamma-2/5) 3654307193324847 m001 (TwinPrimes-ZetaQ(4))/(Kac+Salem) 3654307197633063 a007 Real Root Of -499*x^4+253*x^3+206*x^2+936*x-373 3654307207736682 m009 (1/2*Psi(1,3/4)-3/4)/(2/5*Psi(1,2/3)+1/5) 3654307225266821 m006 (1/3*Pi-2/5)/(1/5*ln(Pi)-2) 3654307259353820 m009 (1/4*Psi(1,2/3)-2/3)/(1/4*Pi^2+1/4) 3654307264109162 r002 5th iterates of z^2 + 3654307271789951 r005 Re(z^2+c),c=-83/82+11/64*I,n=44 3654307277501204 s001 sum(1/10^(n-1)*A244831[n],n=1..infinity) 3654307279966980 a008 Real Root of x^4-x^3-2*x^2-7*x-226 3654307281209073 a007 Real Root Of -300*x^4-140*x^3-485*x^2+500*x+246 3654307307645387 r005 Re(z^2+c),c=1/94+13/55*I,n=19 3654307312526696 r005 Im(z^2+c),c=5/106+25/59*I,n=26 3654307318758770 m001 (Paris+Tribonacci)/(GAMMA(19/24)-Cahen) 3654307320397613 r005 Re(z^2+c),c=-31/66+11/39*I,n=22 3654307321433414 a007 Real Root Of -185*x^4-892*x^3-580*x^2+558*x-754 3654307346846100 m001 1/Niven^2*ln(Magata)^2/sqrt(2) 3654307352194650 r005 Im(z^2+c),c=-13/114+17/33*I,n=35 3654307360360031 a001 956722026041/322*521^(10/13) 3654307376018843 h001 (6/11*exp(2)+7/9)/(1/12*exp(2)+7/10) 3654307379006420 a007 Real Root Of -184*x^4-754*x^3-219*x^2+414*x+455 3654307390091546 a007 Real Root Of 228*x^4+674*x^3-494*x^2+150*x-623 3654307393711918 r009 Re(z^3+c),c=-33/74+16/63*I,n=14 3654307404062337 r002 41th iterates of z^2 + 3654307413259062 r002 43th iterates of z^2 + 3654307419220276 a007 Real Root Of 86*x^4+325*x^3+66*x^2+73*x-91 3654307427161685 r009 Re(z^3+c),c=-39/106+6/43*I,n=11 3654307482099906 r002 13th iterates of z^2 + 3654307490525645 m001 ln((2^(1/3)))/FeigenbaumDelta/GAMMA(2/3) 3654307520325645 a007 Real Root Of 26*x^4-97*x^3+798*x^2-994*x-475 3654307542157997 a007 Real Root Of 190*x^4-754*x^3-669*x^2-441*x-112 3654307569023993 h001 (1/11*exp(1)+1/3)/(1/11*exp(2)+11/12) 3654307569638927 m005 (5/6*2^(1/2)-1)/(3/5*Pi+3) 3654307586717577 r002 62th iterates of z^2 + 3654307595537593 r002 5th iterates of z^2 + 3654307601032071 a007 Real Root Of 222*x^4+87*x^3-696*x^2-652*x+323 3654307623475951 h001 (7/12*exp(2)+5/8)/(1/3*exp(1)+4/9) 3654307625817198 r005 Im(z^2+c),c=21/82+16/61*I,n=15 3654307641919019 r005 Im(z^2+c),c=-41/48+15/61*I,n=23 3654307668367954 m001 (FeigenbaumKappa+Rabbit)/BesselI(1,1) 3654307672300228 r005 Re(z^2+c),c=9/46+29/55*I,n=32 3654307702934053 r009 Im(z^3+c),c=-11/32+14/41*I,n=23 3654307703641861 a001 6557470319842/521*199^(7/11) 3654307703648255 a007 Real Root Of 155*x^4+637*x^3+243*x^2-213*x-579 3654307706572601 m001 1/Zeta(1,2)^2*(3^(1/3))^2/ln(sqrt(5))^2 3654307717455780 r005 Im(z^2+c),c=-13/54+23/41*I,n=13 3654307718677158 m006 (1/3*Pi^2+1)/(1/5*Pi^2-4/5) 3654307718677158 m008 (1/3*Pi^2+1)/(1/5*Pi^2-4/5) 3654307718677158 m009 (1/12*Pi^2+1/4)/(1/2*Pi^2-2) 3654307761065384 r009 Re(z^3+c),c=-17/30+33/52*I,n=51 3654307763809014 m005 (1/3*3^(1/2)+1/11)/(13/12+1/3*5^(1/2)) 3654307785353291 m001 1/sqrt(3)^2*Ei(1)^2/ln(sqrt(Pi))^2 3654307785608411 r005 Im(z^2+c),c=-7/106+17/35*I,n=20 3654307795151824 k002 Champernowne real with 235/2*n^2-669/2*n+253 3654307806183469 b008 1+24*(-17+Sqrt[3]) 3654307812070630 m005 (1/2*exp(1)-8/11)/(5/6*Pi-8/9) 3654307815417444 q001 137/3749 3654307816090654 a007 Real Root Of 43*x^4-836*x^3+276*x^2-454*x-17 3654307817446899 r005 Im(z^2+c),c=-49/102+26/43*I,n=29 3654307832465731 r005 Im(z^2+c),c=-3/26+17/33*I,n=31 3654307834010377 r005 Re(z^2+c),c=-43/90+23/63*I,n=19 3654307840201274 r005 Im(z^2+c),c=-23/106+31/56*I,n=32 3654307853791090 m001 (DuboisRaymond-Kolakoski)/(Porter+ZetaP(3)) 3654307859518345 m005 (1/2*Pi+4/9)/(7/8*Catalan-1/4) 3654307880071204 a001 3/1597*2^(24/25) 3654307905689257 a001 1/377*55^(36/55) 3654307909083868 a005 (1/cos(57/172*Pi))^39 3654307924217866 r009 Im(z^3+c),c=-31/122+13/31*I,n=3 3654307942723226 m002 4+Pi^3*Cosh[Pi]+2*Coth[Pi] 3654307945916489 h001 (4/5*exp(2)+1/4)/(3/8*exp(1)+2/3) 3654307946429519 m002 -5+6/Pi^2-Pi^3-Log[Pi] 3654307949726314 r005 Im(z^2+c),c=-39/82+1/53*I,n=4 3654307973237288 r002 59th iterates of z^2 + 3654307975307742 r009 Im(z^3+c),c=-11/52+23/63*I,n=2 3654307977671961 a007 Real Root Of -269*x^4+839*x^3-388*x^2+97*x+133 3654307977720657 r005 Im(z^2+c),c=-35/122+3/56*I,n=11 3654307980144905 r009 Re(z^3+c),c=-25/82+41/61*I,n=41 3654307980963931 m001 (Stephens-Thue)/(ln(5)-GaussAGM) 3654308001536236 r005 Im(z^2+c),c=1/28+25/58*I,n=40 3654308008034000 h001 (-9*exp(3)+3)/(-exp(-2)+5) 3654308020029369 r005 Im(z^2+c),c=5/62+20/31*I,n=6 3654308051895918 a007 Real Root Of -982*x^4+138*x^3+434*x^2+711*x-307 3654308054340162 m001 (Si(Pi)-exp(1))/(Khinchin+Riemann2ndZero) 3654308060515897 r005 Re(z^2+c),c=-13/18+7/83*I,n=10 3654308063481524 b008 35+Cosh[1] 3654308090033394 a001 843/9227465*8^(2/3) 3654308090040639 a004 Lucas(3)/Fibonacci(14)/(1/2+sqrt(5)/2)^7 3654308101422290 m005 (1/2*2^(1/2)+5)/(-23/9+4/9*5^(1/2)) 3654308110048847 l006 ln(103/3980) 3654308112544802 m001 GaussAGM-ln(Pi)*HardyLittlewoodC5 3654308115251090 r005 Re(z^2+c),c=-17/18+31/236*I,n=20 3654308119661923 m001 1/Niven/ln(KhintchineHarmonic)^2*GAMMA(5/24)^2 3654308124899689 r005 Im(z^2+c),c=-9/74+27/52*I,n=43 3654308145852583 r005 Im(z^2+c),c=17/56+5/49*I,n=7 3654308174640312 b008 (77*ArcCsch[7])/3 3654308174739617 a005 (1/cos(4/69*Pi))^630 3654308178782144 a001 1/15109*(1/2*5^(1/2)+1/2)^27*521^(17/22) 3654308209968043 s002 sum(A051895[n]/(2^n+1),n=1..infinity) 3654308210684808 m005 (1/3*Catalan-2/3)/(1/8*gamma+11/12) 3654308213575939 a003 cos(Pi*5/89)*cos(Pi*36/95) 3654308215348493 r005 Im(z^2+c),c=-1/50+13/28*I,n=35 3654308216244942 a003 cos(Pi*11/58)/cos(Pi*47/110) 3654308224070399 m001 Zeta(3)/(CareFree+Sierpinski) 3654308240348910 m001 (sin(1/12*Pi)-Stephens)/(Thue+ZetaQ(3)) 3654308240927707 r005 Re(z^2+c),c=-29/28+1/20*I,n=12 3654308246424289 a007 Real Root Of -238*x^4+934*x^3-179*x^2+507*x+259 3654308249121578 m001 1/Porter*FeigenbaumB/exp(TreeGrowth2nd) 3654308253261585 l006 ln(705/1016) 3654308273854876 a007 Real Root Of 58*x^4-72*x^3-372*x^2-369*x+187 3654308314165150 r005 Re(z^2+c),c=-14/31+19/54*I,n=23 3654308359722800 m009 (1/4*Pi^2+1/5)/(2*Catalan+1/4*Pi^2+3) 3654308380199730 m001 (exp(Pi)-ln(2)/ln(10))/(-Paris+Sarnak) 3654308383794264 b008 ArcCosh[58/3] 3654308387992212 r005 Im(z^2+c),c=5/126+3/7*I,n=43 3654308393838360 r005 Im(z^2+c),c=-13/90+26/49*I,n=43 3654308395725357 m005 (21/4+1/4*5^(1/2))/(11/12*Catalan+3/4) 3654308395940701 a001 774004377960/161*521^(9/13) 3654308401191657 p004 log(33347/863) 3654308403784204 r005 Im(z^2+c),c=-19/34+43/96*I,n=44 3654308414942323 a001 4181/1364*3^(4/25) 3654308416288984 r005 Re(z^2+c),c=-5/13+10/21*I,n=22 3654308441899947 m002 -(E^Pi/Pi^4)+Pi^3+Sinh[Pi]/2 3654308442091311 r005 Im(z^2+c),c=-5/98+28/51*I,n=12 3654308489051477 r005 Im(z^2+c),c=-21/110+31/56*I,n=35 3654308494787188 s002 sum(A228244[n]/((pi^n+1)/n),n=1..infinity) 3654308525515094 a007 Real Root Of -252*x^4-810*x^3+673*x^2+940*x-141 3654308544150582 m005 (1/3*3^(1/2)-1/5)/(5/12*exp(1)-1/10) 3654308559746316 r009 Re(z^3+c),c=-13/28+15/56*I,n=23 3654308571862168 m001 GAMMA(7/12)*(DuboisRaymond-Sierpinski) 3654308577658444 p001 sum(1/(444*n+277)/(32^n),n=0..infinity) 3654308602359568 r005 Re(z^2+c),c=1/48+13/50*I,n=14 3654308607704412 m001 ln(gamma)*Gompertz+ln(2) 3654308612971599 r005 Re(z^2+c),c=-25/52+4/25*I,n=5 3654308657627367 m001 (Pi-Zeta(1,2))/(GAMMA(7/12)-ThueMorse) 3654308661114296 r009 Im(z^3+c),c=-23/52+8/29*I,n=11 3654308661406405 r005 Re(z^2+c),c=-13/32+20/41*I,n=30 3654308664501520 r005 Re(z^2+c),c=-39/86+17/46*I,n=43 3654308678403757 r009 Re(z^3+c),c=-17/64+25/34*I,n=59 3654308697241520 m001 FeigenbaumDelta^(Bloch*Grothendieck) 3654308725527994 r002 8i'th iterates of 2*x/(1-x^2) of 3654308743398256 r005 Im(z^2+c),c=-9/16+6/91*I,n=59 3654308755775918 a007 Real Root Of 245*x^4-132*x^3-203*x^2-659*x+270 3654308758002077 r009 Im(z^3+c),c=-43/118+17/47*I,n=3 3654308767451475 r005 Im(z^2+c),c=-1/52+19/32*I,n=22 3654308769414473 p004 log(27481/19069) 3654308792738203 m001 Tribonacci*exp(FeigenbaumC)/Pi 3654308794374669 r005 Re(z^2+c),c=-13/27+14/55*I,n=12 3654308796027538 r005 Im(z^2+c),c=-67/90+8/63*I,n=17 3654308798152424 k002 Champernowne real with 118*n^2-336*n+254 3654308806319490 r005 Re(z^2+c),c=-19/74+14/23*I,n=55 3654308807456218 m001 (Cahen-Otter)/(sin(1/12*Pi)+Artin) 3654308818618209 l003 exp(Pi*33/80) 3654308821125737 m001 Tribonacci^FeigenbaumC+BesselK(1,1) 3654308821832631 m005 (1/2*gamma+3)/(75/22+5/2*5^(1/2)) 3654308825999535 a007 Real Root Of 312*x^4+958*x^3-531*x^2+302*x-694 3654308832328707 m001 Pi+ln(2)/ln(10)*ln(2^(1/2)+1)/polylog(4,1/2) 3654308838036140 r009 Re(z^3+c),c=-6/17+3/26*I,n=9 3654308848164334 a007 Real Root Of -118*x^4+488*x^3+380*x^2+557*x-276 3654308856978413 m005 (1/2*3^(1/2)-1/8)/(3/5*Pi+1/7) 3654308858992361 p004 log(23417/16249) 3654308873149624 m005 (1/2*3^(1/2)+10/11)/(5/8*gamma+1/8) 3654308883844135 r009 Re(z^3+c),c=-3/7+13/58*I,n=25 3654308887926394 m006 (1/4*exp(Pi)+4)/(5*exp(2*Pi)+1/4) 3654308890722844 r005 Re(z^2+c),c=-15/14+49/241*I,n=8 3654308915278075 r005 Im(z^2+c),c=-29/62+26/49*I,n=38 3654308915828792 r005 Re(z^2+c),c=7/122+21/64*I,n=10 3654308922534260 r005 Re(z^2+c),c=-29/60+8/37*I,n=35 3654308923141632 a007 Real Root Of 229*x^4+987*x^3+802*x^2+972*x+170 3654308958718475 r005 Im(z^2+c),c=17/58+12/55*I,n=14 3654308966603180 m001 GAMMA(17/24)^2*FeigenbaumC^2/exp(exp(1)) 3654308974047528 r002 3th iterates of z^2 + 3654308976325438 l006 ln(6717/6967) 3654308979792608 s002 sum(A066158[n]/(n^3*exp(n)+1),n=1..infinity) 3654308980268923 m001 (BesselI(0,1)-Cahen)/(-HeathBrownMoroz+Niven) 3654308986226258 r005 Re(z^2+c),c=-9/14+79/244*I,n=54 3654308990361474 r004 Im(z^2+c),c=-59/46+1/16*I,z(0)=-1,n=7 3654308996005945 m006 (5*exp(Pi)+2)/(3/5*exp(2*Pi)+4/5) 3654309003735151 a007 Real Root Of 181*x^4+763*x^3+641*x^2+783*x-742 3654309006068603 a007 Real Root Of 841*x^4-409*x^3+631*x^2-232*x-204 3654309009500734 r009 Im(z^3+c),c=-23/44+9/41*I,n=50 3654309021169439 a007 Real Root Of -15*x^4-57*x^3+136*x^2+883*x+302 3654309063413758 m001 (Psi(1,1/3)+Bloch)/(KhinchinLevy+Niven) 3654309064073619 a007 Real Root Of 544*x^4-760*x^3-525*x^2-940*x+441 3654309070187955 r009 Re(z^3+c),c=-11/21+8/25*I,n=19 3654309071746566 m005 (1/2*gamma+5/7)/(5/6*Zeta(3)-8/11) 3654309078037764 r002 5th iterates of z^2 + 3654309094287618 r005 Im(z^2+c),c=-23/31+1/6*I,n=11 3654309097710256 m005 (1/3*Zeta(3)-3/4)/(3/5*3^(1/2)-1/12) 3654309099662975 q001 759/2077 3654309109474006 r005 Re(z^2+c),c=-49/110+15/38*I,n=38 3654309113381104 r009 Re(z^3+c),c=-23/98+59/63*I,n=8 3654309120518895 r005 Im(z^2+c),c=-1/26+18/37*I,n=16 3654309135584164 l006 ln(245/9467) 3654309140470744 m005 (1/2*5^(1/2)-2)/(3/11*exp(1)-1/2) 3654309144719640 m002 Pi^5*Log[Pi]+(Pi^5*Cosh[Pi])/ProductLog[Pi] 3654309193084866 m001 (Ei(1)-Psi(2,1/3))/(MinimumGamma+Paris) 3654309219215584 b008 1/3+ArcSinh[(1+E)^2] 3654309222736236 m005 (5/6*Pi-2)/(4*gamma-4) 3654309234326234 m001 1/exp(cosh(1))^2*GAMMA(1/12)^2/sqrt(1+sqrt(3)) 3654309248245036 m005 (1/2*Pi-4/7)/(5/6*exp(1)-5) 3654309252687608 r005 Im(z^2+c),c=1/16+21/41*I,n=10 3654309274467604 r002 22th iterates of z^2 + 3654309281515446 r002 7th iterates of z^2 + 3654309296996952 r005 Re(z^2+c),c=-89/126+10/41*I,n=56 3654309316290974 m001 1/exp(1)/GAMMA(1/12)/exp(sqrt(5))^2 3654309334924260 r002 26th iterates of z^2 + 3654309336266775 b008 8+3*Cot[Pi/30] 3654309341724348 m001 (2^(1/2)+Khinchin)/(MasserGramain+PlouffeB) 3654309343849998 a001 11/377*34^(3/47) 3654309348098694 a007 Real Root Of 896*x^4-521*x^3+788*x^2-53*x-166 3654309354737686 r005 Im(z^2+c),c=-6/29+12/19*I,n=48 3654309372308701 r005 Im(z^2+c),c=-29/25+3/64*I,n=41 3654309373700413 r002 8th iterates of z^2 + 3654309374559400 m002 Pi^5*Log[Pi]+Pi^4/(6*ProductLog[Pi]) 3654309383826295 a001 2207/610*233^(14/33) 3654309392524571 r005 Im(z^2+c),c=1/20+19/45*I,n=24 3654309406193120 a007 Real Root Of 232*x^4+760*x^3-120*x^2+827*x+340 3654309431521665 a001 2504730781961/322*521^(8/13) 3654309454725869 m001 exp(log(2+sqrt(3)))^2/TwinPrimes*sqrt(3) 3654309460365509 a007 Real Root Of 202*x^4-912*x^3+201*x^2-687*x-326 3654309481423829 m001 cos(1/5*Pi)/(GAMMA(13/24)^ErdosBorwein) 3654309489732202 a007 Real Root Of -73*x^4+494*x^3-965*x^2+895*x-221 3654309491669015 a007 Real Root Of -197*x^4-855*x^3-314*x^2+481*x-642 3654309498783882 a007 Real Root Of 75*x^4-808*x^3-463*x^2-449*x+264 3654309500151133 r005 Im(z^2+c),c=9/56+40/63*I,n=4 3654309509978302 r005 Re(z^2+c),c=-35/46+1/31*I,n=32 3654309514263960 m001 1/ln(LaplaceLimit)/Khintchine^2*Trott 3654309515261559 r005 Im(z^2+c),c=-21/106+24/35*I,n=38 3654309547499676 r004 Im(z^2+c),c=-2/11-11/20*I,z(0)=I,n=63 3654309547654053 r009 Re(z^3+c),c=-2/31+41/59*I,n=32 3654309549440568 a007 Real Root Of 267*x^4+951*x^3-101*x^2+30*x+253 3654309561034082 h001 (4/9*exp(2)+11/12)/(2/9*exp(1)+6/11) 3654309561344752 a001 281/329*233^(4/15) 3654309568465013 m001 MasserGramain^GAMMA(7/12)/OrthogonalArrays 3654309574985499 a007 Real Root Of -353*x^4-982*x^3+928*x^2-725*x-13 3654309580250902 r005 Re(z^2+c),c=-25/56+19/48*I,n=48 3654309581012855 r002 50th iterates of z^2 + 3654309588847672 a007 Real Root Of 244*x^4+624*x^3-950*x^2-81*x-671 3654309595606173 r005 Re(z^2+c),c=11/46+32/55*I,n=33 3654309628365934 r005 Re(z^2+c),c=13/44+3/47*I,n=31 3654309660734477 r002 44i'th iterates of 2*x/(1-x^2) of 3654309665341168 r005 Im(z^2+c),c=5/19+31/52*I,n=8 3654309676843838 m001 LandauRamanujan/cos(1/5*Pi)/Sierpinski 3654309682233973 a001 6765/47*521^(7/47) 3654309682321717 r002 3th iterates of z^2 + 3654309683926325 b008 51/E^(1/3) 3654309686033054 r005 Im(z^2+c),c=-12/31+28/51*I,n=45 3654309710217976 m005 (5/6*Catalan+1/5)/(5*gamma-1/4) 3654309725882036 a007 Real Root Of 318*x^4+990*x^3-717*x^2-310*x+45 3654309728539852 r005 Re(z^2+c),c=-29/60+13/60*I,n=36 3654309728661262 r009 Re(z^3+c),c=-35/66+20/43*I,n=53 3654309738152018 a007 Real Root Of -391*x^4-510*x^3-822*x^2+233*x+177 3654309757619558 m001 GAMMA(19/24)^2*exp(Sierpinski)*sqrt(2)^2 3654309762310144 a007 Real Root Of 169*x^4-292*x^3-128*x^2-374*x+165 3654309781962734 b008 PolyGamma[2,15]/13 3654309785534546 r005 Im(z^2+c),c=3/26+5/13*I,n=11 3654309796217993 l006 ln(6379/9193) 3654309801153024 k002 Champernowne real with 237/2*n^2-675/2*n+255 3654309808373213 a003 -3/2-cos(1/7*Pi)-cos(5/12*Pi)-cos(1/30*Pi) 3654309810064554 r005 Re(z^2+c),c=-5/8+3/187*I,n=8 3654309812801181 r005 Re(z^2+c),c=1/94+13/55*I,n=22 3654309836429354 r004 Re(z^2+c),c=-15/26-3/13*I,z(0)=-1,n=17 3654309844039305 m001 (Salem-Sarnak)/(FeigenbaumC-Lehmer) 3654309845839330 r005 Re(z^2+c),c=25/98+1/25*I,n=18 3654309848234821 r005 Re(z^2+c),c=9/122+19/53*I,n=21 3654309853638723 a007 Real Root Of 925*x^4+410*x^3-97*x^2-661*x+218 3654309858266954 r005 Re(z^2+c),c=1/94+13/55*I,n=23 3654309865442495 m005 (23/10+5/2*5^(1/2))/(1/2*exp(1)+4/5) 3654309870145861 a001 514229/2*3^(8/25) 3654309879457714 l006 ln(142/5487) 3654309928160263 r005 Re(z^2+c),c=1/94+13/55*I,n=26 3654309930499724 a007 Real Root Of -294*x^4-867*x^3+640*x^2-657*x-828 3654309931101826 a003 cos(Pi*2/83)-cos(Pi*2/55) 3654309936112723 r005 Re(z^2+c),c=1/94+13/55*I,n=27 3654309936550862 r005 Re(z^2+c),c=1/94+13/55*I,n=30 3654309936791218 r005 Re(z^2+c),c=1/94+13/55*I,n=29 3654309936881462 r005 Re(z^2+c),c=1/94+13/55*I,n=33 3654309936896578 r005 Re(z^2+c),c=1/94+13/55*I,n=34 3654309936903740 r005 Re(z^2+c),c=1/94+13/55*I,n=37 3654309936904999 r005 Re(z^2+c),c=1/94+13/55*I,n=41 3654309936905001 r005 Re(z^2+c),c=1/94+13/55*I,n=40 3654309936905040 r005 Re(z^2+c),c=1/94+13/55*I,n=44 3654309936905043 r005 Re(z^2+c),c=1/94+13/55*I,n=45 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=48 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=51 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=52 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=55 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=56 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=59 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=58 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=62 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=63 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=64 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=61 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=60 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=57 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=54 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=53 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=47 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=49 3654309936905044 r005 Re(z^2+c),c=1/94+13/55*I,n=50 3654309936905045 r005 Re(z^2+c),c=1/94+13/55*I,n=46 3654309936905051 r005 Re(z^2+c),c=1/94+13/55*I,n=43 3654309936905059 r005 Re(z^2+c),c=1/94+13/55*I,n=42 3654309936905071 r005 Re(z^2+c),c=1/94+13/55*I,n=38 3654309936905300 r005 Re(z^2+c),c=1/94+13/55*I,n=39 3654309936905864 r005 Re(z^2+c),c=1/94+13/55*I,n=36 3654309936910984 r005 Re(z^2+c),c=1/94+13/55*I,n=35 3654309936964786 r005 Re(z^2+c),c=1/94+13/55*I,n=32 3654309936979514 r005 Re(z^2+c),c=1/94+13/55*I,n=31 3654309938764646 r005 Re(z^2+c),c=1/94+13/55*I,n=28 3654309945008153 a007 Real Root Of -225*x^4+254*x^3+196*x^2+855*x-347 3654309946566498 m005 (1/2*Catalan+7/9)/(5/12*Catalan+3) 3654309947288572 r005 Re(z^2+c),c=1/94+13/55*I,n=25 3654309954615471 r009 Im(z^3+c),c=-59/98+23/48*I,n=20 3654309964253152 r005 Im(z^2+c),c=-11/106+25/49*I,n=58 3654309973147161 r005 Re(z^2+c),c=1/94+13/55*I,n=24 3654309979525589 b008 EulerGamma*(3+ArcCosh[14]) 3654309987931806 l006 ln(5674/8177) 3654309992491680 h001 (-6*exp(3/2)-1)/(-exp(-1)+8) 3654310008078210 a003 cos(Pi*15/61)*cos(Pi*29/88) 3654310011422392 a007 Real Root Of -219*x^4-494*x^3+929*x^2-526*x+619 3654310015030679 r005 Im(z^2+c),c=7/74+11/28*I,n=29 3654310038287164 b008 29*ProductLog[Sqrt[2]*Pi] 3654310051756029 r005 Re(z^2+c),c=-51/98+30/59*I,n=45 3654310060565603 m001 (GaussAGM-Thue)/(GAMMA(3/4)-Ei(1)) 3654310070543098 m001 Landau-Zeta(5)+Thue 3654310081622801 m005 (1/3*5^(1/2)+1/9)/(3/4*5^(1/2)+2/3) 3654310081894440 r005 Re(z^2+c),c=33/118+1/17*I,n=61 3654310088647255 a005 (1/cos(3/49*Pi))^1183 3654310092514125 m005 (1/2*Zeta(3)-2/3)/(3/5*5^(1/2)+5/11) 3654310092734131 r005 Re(z^2+c),c=-17/22+16/115*I,n=12 3654310104438202 m001 cos(1)*FeigenbaumB*StolarskyHarborth 3654310112787631 m001 (ThueMorse+TwinPrimes)/(Bloch-Magata) 3654310126968021 m001 FeigenbaumAlpha/(KomornikLoreti^exp(Pi)) 3654310131554398 r009 Re(z^3+c),c=-8/15+9/40*I,n=60 3654310133855650 m004 -5+25*Pi+25*Sqrt[5]*Pi+25*Pi*Csc[Sqrt[5]*Pi] 3654310135819671 a001 3/139583862445*39088169^(20/21) 3654310152153323 r009 Im(z^3+c),c=-23/86+19/51*I,n=9 3654310171859335 r005 Re(z^2+c),c=-3/4+1/123*I,n=24 3654310184550606 m001 (2^(1/2)-Ei(1))/(-FeigenbaumC+ReciprocalLucas) 3654310192912526 a007 Real Root Of -450*x^4+404*x^3+296*x^2+689*x-303 3654310201550144 a007 Real Root Of 768*x^4-134*x^3+732*x^2-717*x-380 3654310203504696 r005 Re(z^2+c),c=1/94+13/55*I,n=20 3654310213761241 s002 sum(A271372[n]/(exp(pi*n)+1),n=1..infinity) 3654310234046192 l006 ln(4969/7161) 3654310236071309 m001 LambertW(1)^2/exp(Bloch)^2*cos(1)^2 3654310260798048 r005 Im(z^2+c),c=-1/7+27/49*I,n=17 3654310270383086 a001 13/103682*3^(37/38) 3654310280179851 m001 (gamma(1)-LandauRamanujan2nd)/(ln(2)+ln(3)) 3654310282995256 m001 GaussAGM/(Sierpinski-ln(2)/ln(10)) 3654310285701240 r005 Im(z^2+c),c=1/54+33/52*I,n=9 3654310286774218 b008 2+(2+Pi)*ArcCot[3] 3654310292084461 m001 (Si(Pi)+CopelandErdos)/(-MadelungNaCl+Salem) 3654310308885142 a007 Real Root Of -846*x^4-318*x^3+239*x^2+447*x+131 3654310315828152 r008 a(0)=5,K{-n^6,-32+22*n^3+42*n^2-31*n} 3654310321528442 m001 (1-GAMMA(2/3))/(-exp(1/exp(1))+PlouffeB) 3654310326675836 r009 Re(z^3+c),c=-6/17+5/29*I,n=2 3654310339416126 r008 a(0)=1,K{-n^6,34+30*n^3+n^2-63*n} 3654310358319471 r005 Im(z^2+c),c=-1/54+19/41*I,n=41 3654310362702716 a007 Real Root Of 272*x^4-972*x^3+321*x^2-310*x+113 3654310370002605 a007 Real Root Of -224*x^4-628*x^3+570*x^2-209*x+924 3654310381177264 r005 Re(z^2+c),c=27/56+13/22*I,n=2 3654310386207748 m001 (Porter+Sierpinski)/(exp(1)-ln(5)) 3654310408740273 a001 3/9227465*1597^(20/21) 3654310420633637 a001 5778/1597*233^(14/33) 3654310420726403 a001 3/199*64079^(2/25) 3654310422232990 r005 Re(z^2+c),c=1/94+13/55*I,n=21 3654310445973239 a008 Real Root of (-4+9*x+6*x^2-5*x^4-3*x^8) 3654310453946756 a007 Real Root Of -794*x^4+161*x^3-976*x^2+311*x+266 3654310454041754 r002 48th iterates of z^2 + 3654310455446103 m005 (1/2*3^(1/2)+6)/(4/11*Zeta(3)-5/8) 3654310463071247 r009 Im(z^3+c),c=-43/118+13/36*I,n=3 3654310467102922 a001 4052739537881/322*521^(7/13) 3654310470346837 r005 Im(z^2+c),c=-1/11+25/51*I,n=14 3654310476335887 m006 (5/6*Pi^2-2/5)/(4*exp(2*Pi)-3/4) 3654310503231938 m001 (Tribonacci-ZetaP(4))/(ln(2+3^(1/2))-GaussAGM) 3654310511644534 r005 Im(z^2+c),c=-3/44+28/57*I,n=47 3654310521481673 m001 (CareFree+ZetaQ(4))/(Zeta(1/2)-Bloch) 3654310527277876 r005 Re(z^2+c),c=1/94+13/55*I,n=18 3654310527369159 a007 Real Root Of 203*x^4+868*x^3+448*x^2-24*x+87 3654310529869041 a007 Real Root Of 309*x^4+969*x^3-842*x^2-763*x+639 3654310534563526 m007 (-4*gamma-8*ln(2)-1/2)/(-5*gamma+3/5) 3654310551609469 p001 sum((-1)^n/(343*n+256)/(6^n),n=0..infinity) 3654310552943278 m005 (1/2*Pi+2/9)/(1/9*Pi-3/10) 3654310559875181 r005 Re(z^2+c),c=-73/114+10/39*I,n=20 3654310561544547 l006 ln(4264/6145) 3654310571618593 m001 HardyLittlewoodC4*(BesselK(0,1)-ln(5)) 3654310571901869 a001 15127/4181*233^(14/33) 3654310577769789 m002 -5-Pi^3-ProductLog[Pi]/2 3654310593971609 a001 39603/10946*233^(14/33) 3654310599181567 a001 64079/17711*233^(14/33) 3654310601010291 r005 Im(z^2+c),c=-9/32+29/51*I,n=45 3654310607611458 a001 24476/6765*233^(14/33) 3654310614518664 m001 (ln(gamma)+ln(5))/(Zeta(1,2)-ReciprocalLucas) 3654310619053741 m001 (-Khinchin+Mills)/(exp(1)+GAMMA(11/12)) 3654310620794112 m001 ZetaR(2)/(TravellingSalesman^FeigenbaumD) 3654310628455716 g006 Psi(1,3/11)+Psi(1,2/5)+Psi(1,1/4)-Psi(1,3/4) 3654310632033963 r005 Im(z^2+c),c=-11/106+25/49*I,n=57 3654310632555986 m005 (1/2*Zeta(3)-2)/(1/7*Zeta(3)-4) 3654310634137912 r005 Re(z^2+c),c=-53/118+12/31*I,n=36 3654310640860534 a007 Real Root Of 104*x^4+69*x^3-928*x^2+496*x-974 3654310641943810 m001 1/cos(Pi/12)^2/exp(Khintchine)*sqrt(5)^2 3654310655551531 m002 -3+(2*Cosh[Pi])/3-ProductLog[Pi] 3654310663642630 a003 sin(Pi*1/85)*sin(Pi*43/95) 3654310665381187 r009 Im(z^3+c),c=-11/106+20/49*I,n=13 3654310665390788 a001 9349/2584*233^(14/33) 3654310675337461 r005 Re(z^2+c),c=-33/26+3/74*I,n=22 3654310694858665 m001 (Stephens-Totient)/(GAMMA(11/12)+MertensB2) 3654310718872519 a001 233/199*7^(31/53) 3654310724316269 m005 (1/2*Catalan+3/11)/(8/9*exp(1)-5/12) 3654310739423349 l006 ln(8141/8444) 3654310767365285 r005 Im(z^2+c),c=-113/110+16/61*I,n=18 3654310770338082 m001 exp(-1/2*Pi)^GlaisherKinkelin*Trott2nd 3654310773463379 m001 (RenyiParking+ZetaP(4))/(2^(1/2)+sin(1)) 3654310782305254 a007 Real Root Of 31*x^4-251*x^3+437*x^2+96*x+534 3654310797750708 r002 5th iterates of z^2 + 3654310804153625 k002 Champernowne real with 119*n^2-339*n+256 3654310819922506 m003 -3-2*Log[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/3 3654310822437401 a008 Real Root of x^3-x^2+117*x-463 3654310830098143 a003 sin(Pi*13/89)*sin(Pi*21/68) 3654310830857853 r002 18th iterates of z^2 + 3654310835190712 m005 (1/3*5^(1/2)-1/3)/(5/8*exp(1)-4/7) 3654310836876206 m001 (MertensB1-GaussKuzminWirsing)^(Pi^(1/2)) 3654310839353619 a001 15127/610*28657^(18/37) 3654310843599157 r005 Im(z^2+c),c=7/40+17/46*I,n=8 3654310870859631 r005 Im(z^2+c),c=3/46+26/63*I,n=22 3654310875210442 m001 (Thue+ZetaQ(2))/(gamma(1)+FellerTornier) 3654310886357495 l006 ln(181/6994) 3654310887719096 s002 sum(A245236[n]/((2^n+1)/n),n=1..infinity) 3654310895950630 m001 1/GAMMA(1/4)^2/ln(FeigenbaumB)*log(1+sqrt(2)) 3654310896180059 m006 (4*Pi^2-1/4)/(1/5*exp(2*Pi)+1/4) 3654310896892864 r005 Re(z^2+c),c=9/34+2/41*I,n=31 3654310918148181 r005 Im(z^2+c),c=1/82+23/58*I,n=5 3654310919552953 r002 16th iterates of z^2 + 3654310934911747 r005 Re(z^2+c),c=5/12+15/44*I,n=54 3654310937639885 m001 (Thue+ZetaQ(2))/(Si(Pi)+MasserGramain) 3654310945635548 r005 Im(z^2+c),c=-5/48+15/31*I,n=10 3654310949410333 a007 Real Root Of 961*x^4-866*x^3+57*x^2+208*x+9 3654310951620049 a007 Real Root Of 244*x^4+595*x^3-985*x^2+527*x+603 3654310952525001 a007 Real Root Of 773*x^4-629*x^3-619*x^2-948*x+446 3654310953230801 a001 9/305*196418^(1/57) 3654310977214026 r005 Re(z^2+c),c=-67/122+15/38*I,n=17 3654310992604458 m005 (1/2*Zeta(3)+1/8)/(1/3*2^(1/2)-3/11) 3654311003511845 r009 Re(z^3+c),c=-11/19+26/55*I,n=14 3654311017454461 m001 Weierstrass^QuadraticClass*CareFree 3654311017807481 r002 53th iterates of z^2 + 3654311018790757 l006 ln(3559/5129) 3654311028240140 r005 Im(z^2+c),c=9/98+15/38*I,n=38 3654311032011948 r005 Re(z^2+c),c=-49/102+13/54*I,n=20 3654311035837761 m001 Si(Pi)^(2^(1/2))*GAMMA(7/12) 3654311035837761 m001 Si(Pi)^sqrt(2)*GAMMA(7/12) 3654311039484286 q001 907/2482 3654311057281925 m001 KhintchineLevy*exp(LaplaceLimit)*(2^(1/3))^2 3654311061416290 a001 3571/987*233^(14/33) 3654311068130249 r005 Im(z^2+c),c=15/98+20/57*I,n=34 3654311069011899 r008 a(0)=4,K{-n^6,-6+42*n+4*n^2-12*n^3} 3654311080067127 r002 50th iterates of z^2 + 3654311102613913 a001 64079/377*377^(4/31) 3654311103861848 p003 LerchPhi(1/2,1,66/205) 3654311104869777 m001 Riemann3rdZero^MertensB2/BesselJ(0,1) 3654311106331636 r005 Re(z^2+c),c=-12/25+16/45*I,n=19 3654311112620233 r005 Re(z^2+c),c=-49/118+25/48*I,n=38 3654311121131171 k007 concat of cont frac of 3654311124023774 m001 PrimesInBinary^2/exp(MertensB1)/BesselK(1,1)^2 3654311142121321 k009 concat of cont frac of 3654311154635979 a001 11/34*34^(11/16) 3654311173684803 m001 arctan(1/2)/Zeta(1,-1)/ZetaP(4) 3654311178817405 m005 (1/2*2^(1/2)-4/5)/(1/2*Catalan-3) 3654311182990395 r009 Im(z^3+c),c=-51/94+5/13*I,n=15 3654311188272007 a001 7*(1/2*5^(1/2)+1/2)^32*4^(1/20) 3654311189025204 r005 Re(z^2+c),c=6/19+20/39*I,n=15 3654311197909201 m001 (-GAMMA(13/24)+LandauRamanujan2nd)/(1+Ei(1)) 3654311200052239 r005 Re(z^2+c),c=-57/62+11/43*I,n=10 3654311214321131 k006 concat of cont frac of 3654311220019606 r002 17th iterates of z^2 + 3654311222111222 k008 concat of cont frac of 3654311231607862 m001 (Zeta(3)+BesselI(0,2))/(GAMMA(7/12)-Stephens) 3654311243663594 m005 (1/2*Zeta(3)-3/10)/(4/9*Catalan+5/12) 3654311254934937 m001 exp(cos(Pi/12))*arctan(1/2)*sqrt(3)^2 3654311261301753 m005 (1/3*5^(1/2)-1/11)/(8/11*Zeta(3)+11/12) 3654311265946004 a001 2/24157817*34^(8/19) 3654311271053244 a007 Real Root Of -516*x^4+49*x^3-848*x^2+244*x+214 3654311271537627 r009 Im(z^3+c),c=-31/70+15/53*I,n=21 3654311284319626 r005 Im(z^2+c),c=-1/13+34/55*I,n=37 3654311290033652 a001 199/89*4807526976^(7/13) 3654311315816167 m001 1/csc(1/12*Pi)*GAMMA(11/12)/RenyiParking 3654311315816167 m001 Pi/RenyiParking/GAMMA(1/12) 3654311315816167 m001 sin(1/12*Pi)*GAMMA(11/12)/RenyiParking 3654311315816167 m001 sin(Pi/12)/RenyiParking*GAMMA(11/12) 3654311322813487 l006 ln(6413/9242) 3654311330075777 r005 Re(z^2+c),c=21/118+20/57*I,n=15 3654311348921047 m005 (1/2*5^(1/2)+1/7)/(3/5*Catalan-4) 3654311349529693 m001 BesselI(0,1)-FeigenbaumKappa^ln(5) 3654311364005897 m001 Pi*(Psi(1,1/3)+cos(1/12*Pi)*BesselI(1,2)) 3654311424996282 m001 (exp(1/2)-ln(5)*exp(-Pi))/exp(-Pi) 3654311424996282 m001 exp(Pi)*exp(1/2)-ln(5) 3654311463111443 k006 concat of cont frac of 3654311464378571 r002 26th iterates of z^2 + 3654311469846864 m001 exp(GAMMA(1/4))^2/MertensB1^2*sqrt(Pi) 3654311471901213 a007 Real Root Of -720*x^4+85*x^3-706*x^2+795*x+30 3654311474359743 a007 Real Root Of -425*x^4-352*x^3-855*x^2+387*x+246 3654311483225695 m001 (BesselK(1,1)+ErdosBorwein)/(3^(1/3)-Chi(1)) 3654311500192806 m001 (Thue+ZetaQ(2))/(Pi-Cahen) 3654311501478264 r005 Re(z^2+c),c=-15/34+16/57*I,n=8 3654311502604140 r009 Im(z^3+c),c=-9/31+15/41*I,n=4 3654311502684472 a001 3278735159921/161*521^(6/13) 3654311503678252 r002 54th iterates of z^2 + 3654311526135859 h001 (4/11*exp(2)+1/10)/(10/11*exp(2)+10/11) 3654311528715024 m001 (Tribonacci-ZetaP(3))/(ln(2+3^(1/2))-Pi^(1/2)) 3654311530346605 r005 Im(z^2+c),c=-19/44+14/27*I,n=29 3654311536264997 l006 ln(220/8501) 3654311540689815 m001 ln(FeigenbaumB)^2*MertensB1^2*(2^(1/3))^2 3654311552065416 r002 3th iterates of z^2 + 3654311562724184 r009 Im(z^3+c),c=-4/9+11/39*I,n=34 3654311563608355 r005 Im(z^2+c),c=-21/58+29/60*I,n=4 3654311564400802 a007 Real Root Of -344*x^4-854*x^3-442*x^2+338*x+147 3654311567543022 r005 Im(z^2+c),c=7/29+16/51*I,n=10 3654311570683688 r005 Re(z^2+c),c=9/29+27/61*I,n=34 3654311572904172 r008 a(0)=1,K{-n^6,-14+25*n-47*n^2+38*n^3} 3654311585616039 p003 LerchPhi(1/12,1,680/233) 3654311594685739 m001 (Pi-gamma)/(AlladiGrinstead-OneNinth) 3654311612243054 m005 (1/2*Catalan-5/7)/(2/3*Zeta(3)-1/10) 3654311618598184 r005 Im(z^2+c),c=-1/12+15/22*I,n=63 3654311620936654 m001 ln(gamma)*cos(1)^LaplaceLimit 3654311627388525 m001 exp(-Pi)/(KhinchinHarmonic^(ln(2)/ln(10))) 3654311635306016 r005 Re(z^2+c),c=-31/70+16/39*I,n=64 3654311644077647 a001 144/15127*11^(23/41) 3654311652350080 m001 (Conway-CopelandErdos)/(Pi-Ei(1,1)) 3654311657418206 a007 Real Root Of -272*x^4-916*x^3+169*x^2-306*x+430 3654311673963975 r005 Im(z^2+c),c=-125/126+7/25*I,n=52 3654311696466031 m001 1/ln(GAMMA(17/24))^2*MertensB1*Zeta(1,2)^2 3654311698635043 m005 (1/2*exp(1)+4/5)/(1/8+5/24*5^(1/2)) 3654311700134764 m005 (1/3*2^(1/2)-1/10)/(1/4*3^(1/2)+7/12) 3654311701936423 l006 ln(2854/4113) 3654311709464853 a001 10946/47*39603^(2/47) 3654311710457563 r002 64th iterates of z^2 + 3654311715605878 m001 (ln(2)/ln(10)+BesselI(0,1))/(MertensB3+Otter) 3654311728604076 r005 Re(z^2+c),c=-25/52+23/64*I,n=14 3654311730887222 r005 Re(z^2+c),c=-31/70+25/61*I,n=63 3654311733651168 a007 Real Root Of -434*x^4+481*x^3-31*x^2+885*x-335 3654311762463328 r005 Re(z^2+c),c=1/21+4/39*I,n=4 3654311783900541 a001 18/233*34^(26/59) 3654311786544982 m002 -(Pi/E^Pi)+Pi^2/2-Log[Pi] 3654311807154225 k002 Champernowne real with 239/2*n^2-681/2*n+257 3654311826499384 m001 (Landau+TravellingSalesman)/(Pi+ln(2)/ln(10)) 3654311846880350 a007 Real Root Of -256*x^4-321*x^3+566*x^2+664*x-298 3654311864201862 r005 Re(z^2+c),c=11/106+21/52*I,n=30 3654311866815081 r005 Im(z^2+c),c=-61/70+1/39*I,n=19 3654311869317006 r005 Re(z^2+c),c=-47/118+20/39*I,n=37 3654311871959663 a001 24476/55*55^(31/59) 3654311872888571 r009 Im(z^3+c),c=-31/58+11/47*I,n=57 3654311877236298 r005 Im(z^2+c),c=1/102+21/47*I,n=31 3654311928546986 m005 (1/2*3^(1/2)-8/11)/(11/12*2^(1/2)-11/12) 3654311929943990 r005 Re(z^2+c),c=-25/56+23/56*I,n=30 3654311963236999 m009 (8*Catalan+Pi^2+1/4)/(2/5*Psi(1,2/3)-6) 3654311968030807 m001 (-FeigenbaumKappa+Trott2nd)/(exp(1)+Catalan) 3654311977554922 l006 ln(9565/9921) 3654311990447209 l006 ln(259/10008) 3654312000690895 r005 Im(z^2+c),c=-21/29+1/28*I,n=14 3654312021958569 a003 sin(Pi*23/101)-sin(Pi*28/115) 3654312047437476 r005 Re(z^2+c),c=11/40+15/34*I,n=21 3654312052563538 s002 sum(A059260[n]/(pi^n),n=1..infinity) 3654312077338498 r005 Im(z^2+c),c=-7/122+13/28*I,n=11 3654312101358445 r005 Im(z^2+c),c=4/15+11/42*I,n=10 3654312106488710 m001 (CareFree+Robbin)/(gamma(1)-ln(2)/ln(10)) 3654312124728134 m001 (Magata+Sierpinski)/(5^(1/2)-Gompertz) 3654312132248740 a007 Real Root Of -195*x^4-729*x^3-334*x^2-771*x+842 3654312151978959 a007 Real Root Of 229*x^4-264*x^3-210*x^2-898*x+365 3654312162219497 a007 Real Root Of -320*x^4-897*x^3+903*x^2-508*x-623 3654312169836895 p004 log(21523/557) 3654312170970476 r005 Re(z^2+c),c=-9/20+18/47*I,n=64 3654312172906643 m001 Zeta(5)/(OneNinth^BesselI(1,1)) 3654312185048278 a007 Real Root Of 921*x^4+337*x^3+809*x^2-145*x-161 3654312187693717 m002 -4-Log[Pi]+Pi*Cosh[Pi]*Log[Pi] 3654312187907897 l006 ln(5003/7210) 3654312188154743 m001 (ZetaP(2)+ZetaQ(2))/(Conway+StolarskyHarborth) 3654312196478022 r005 Im(z^2+c),c=-53/82+5/46*I,n=6 3654312209624763 a007 Real Root Of 947*x^4+45*x^3+730*x^2-763*x-391 3654312218374135 a008 Real Root of x^5-x^4-9*x^3-4*x^2+5*x+1 3654312219179591 a003 cos(Pi*8/95)*sin(Pi*11/89) 3654312229622088 m006 (2/3*Pi^2+1/5)/(ln(Pi)-3) 3654312239137212 k007 concat of cont frac of 3654312251225422 m005 (1/2*5^(1/2)+5/8)/(4/9*3^(1/2)+4) 3654312279999148 a001 199*(1/2*5^(1/2)+1/2)^3*47^(8/21) 3654312286255518 r005 Re(z^2+c),c=-19/42+22/59*I,n=47 3654312304876815 r009 Re(z^3+c),c=-35/106+2/3*I,n=33 3654312326776023 r005 Im(z^2+c),c=3/32+24/61*I,n=33 3654312347385189 r009 Re(z^3+c),c=-57/118+12/41*I,n=60 3654312347404063 a007 Real Root Of -103*x^4-262*x^3+400*x^2-313*x-903 3654312380047402 h001 (9/10*exp(1)+9/10)/(1/12*exp(2)+3/10) 3654312381683206 r009 Re(z^3+c),c=-15/34+6/11*I,n=29 3654312388491197 m005 (1/2*Zeta(3)+3/4)/(3*Zeta(3)+1/11) 3654312424065372 r005 Im(z^2+c),c=-79/66+3/61*I,n=56 3654312435053688 q001 1055/2887 3654312443892167 r005 Re(z^2+c),c=-41/90+22/61*I,n=63 3654312454707934 r009 Re(z^3+c),c=-1/18+20/41*I,n=23 3654312476416848 r005 Im(z^2+c),c=5/36+21/58*I,n=17 3654312498721790 r002 59th iterates of z^2 + 3654312503304294 a001 39603/1597*28657^(18/37) 3654312505040756 r005 Im(z^2+c),c=39/122+1/14*I,n=26 3654312511085883 m001 1/GAMMA(13/24)/exp(BesselJ(1,1))^2*Zeta(3)^2 3654312515927875 r005 Im(z^2+c),c=-7/12+43/89*I,n=5 3654312517801427 b008 2/3+3*Sech[1/11] 3654312538266316 a001 1515744265389/46*521^(5/13) 3654312548233508 r009 Im(z^3+c),c=-3/52+45/56*I,n=20 3654312552632196 r005 Im(z^2+c),c=31/126+16/59*I,n=22 3654312566743861 r009 Re(z^3+c),c=-12/31+19/33*I,n=6 3654312567522543 p001 sum(1/(457*n+288)/(8^n),n=0..infinity) 3654312567802481 m001 (ln(5)+Bloch)/(MasserGramain-ZetaP(4)) 3654312573939534 a001 377/322*3461452808002^(11/12) 3654312599133843 m001 Pi*Ei(1)^2*exp(sinh(1)) 3654312610079787 a007 Real Root Of 315*x^4+876*x^3-787*x^2+814*x+59 3654312616658941 p004 log(32717/31543) 3654312619189954 m001 GolombDickman*(1-PrimesInBinary) 3654312621349073 m007 (-1/3*gamma-ln(2)-1/6*Pi-2)/(-3/4*gamma-1/2) 3654312635898443 r005 Re(z^2+c),c=4/19+23/57*I,n=22 3654312640097124 a007 Real Root Of 241*x^4+716*x^3-824*x^2-790*x+80 3654312643366922 r005 Im(z^2+c),c=-45/94+1/16*I,n=24 3654312644647179 m001 GAMMA(11/12)^2*FeigenbaumAlpha*ln(Pi)^2 3654312650652795 m001 FeigenbaumKappa*TravellingSalesman+Khinchin 3654312666173355 a007 Real Root Of -279*x^4+307*x^3-497*x^2+426*x+242 3654312669634030 a007 Real Root Of 170*x^4+518*x^3+218*x^2-792*x+232 3654312672349000 m001 (exp(1)-exp(1/Pi))/(-FibonacciFactorial+Thue) 3654312675693174 r005 Re(z^2+c),c=7/114+20/57*I,n=8 3654312679175539 a008 Real Root of x^4-x^3-146*x+404 3654312700216803 m001 (-GaussAGM+Rabbit)/(exp(1)+ArtinRank2) 3654312700280811 m001 (Pi^(1/2)+FeigenbaumB)/(Sarnak-Trott) 3654312709178698 m001 (RenyiParking+ZetaP(4))/(ln(5)+MasserGramain) 3654312712916037 m001 exp(1/exp(1))/FeigenbaumB/Weierstrass 3654312723351763 s002 sum(A099619[n]/((exp(n)-1)/n),n=1..infinity) 3654312735648157 r002 22th iterates of z^2 + 3654312750221717 m002 -5+Pi*Csch[Pi]+ProductLog[Pi] 3654312755178553 a007 Real Root Of -308*x^4-824*x^3+923*x^2-614*x+145 3654312762500526 a007 Real Root Of -184*x^4-669*x^3-31*x^2-250*x-334 3654312766450785 r005 Re(z^2+c),c=-41/102+31/59*I,n=55 3654312777118550 r002 22th iterates of z^2 + 3654312789338452 r005 Im(z^2+c),c=21/118+13/37*I,n=8 3654312801645238 m005 (1/3*5^(1/2)-1/5)/(271/264+5/24*5^(1/2)) 3654312807017853 r005 Re(z^2+c),c=15/52+33/64*I,n=23 3654312810154825 k002 Champernowne real with 120*n^2-342*n+258 3654312827388978 r005 Im(z^2+c),c=-19/98+23/42*I,n=33 3654312829300336 r002 26th iterates of z^2 + 3654312833306923 l006 ln(2149/3097) 3654312838736016 m001 (MertensB3+Porter)/(3^(1/2)-cos(1/12*Pi)) 3654312863498407 r005 Im(z^2+c),c=9/98+15/38*I,n=29 3654312877462600 r005 Im(z^2+c),c=3/106+24/55*I,n=20 3654312888246444 s001 sum(exp(-Pi/3)^n*A249657[n],n=1..infinity) 3654312897575350 m001 (sin(1/5*Pi)-GAMMA(23/24))/(Mills-OneNinth) 3654312908263418 m001 Pi/(1-Catalan)-sin(1) 3654312919535909 r005 Re(z^2+c),c=-37/52+14/53*I,n=15 3654312931440370 p001 sum(1/(563*n+274)/(256^n),n=0..infinity) 3654312932135586 m001 (MasserGramain-Thue)/(Pi+FeigenbaumD) 3654312934315881 a001 29/8*701408733^(19/21) 3654312952819952 a007 Real Root Of -88*x^4-407*x^3-471*x^2-601*x-75 3654312980746158 r009 Im(z^3+c),c=-7/106+7/17*I,n=10 3654312984470587 m001 ZetaQ(3)/ln(2^(1/2)+1)/exp(1) 3654313011982393 r009 Im(z^3+c),c=-3/52+39/49*I,n=32 3654313021044869 a001 521/5*1836311903^(1/17) 3654313029451586 m001 ln(Salem)^2/Bloch/GAMMA(7/12) 3654313060760839 a007 Real Root Of -229*x^4-861*x^3-181*x^2-246*x+339 3654313067679448 m001 (2^(1/3)+gamma(1))/(-MertensB2+Rabbit) 3654313071529767 r005 Im(z^2+c),c=1/15+19/46*I,n=18 3654313084540216 s002 sum(A004947[n]/((exp(n)-1)/n),n=1..infinity) 3654313084540216 s002 sum(A004967[n]/((exp(n)-1)/n),n=1..infinity) 3654313085560864 r005 Im(z^2+c),c=15/98+20/57*I,n=26 3654313088996818 m001 (FeigenbaumMu+ZetaQ(3))/(ln(Pi)+Zeta(1,-1)) 3654313090234645 m008 (3/4*Pi^3+3/4)/(3/4*Pi^2-5/6) 3654313098829006 m001 ln(OneNinth)*LaplaceLimit^2/GAMMA(1/3) 3654313100891997 a007 Real Root Of 100*x^4-242*x^3-423*x^2-119*x+110 3654313104546054 a007 Real Root Of 254*x^4+690*x^3-830*x^2-58*x-752 3654313117176290 m001 Bloch^cos(1/12*Pi)/PisotVijayaraghavan 3654313122372316 a005 (1/sin(97/223*Pi))^1048 3654313126480162 a007 Real Root Of -390*x^4+606*x^3-234*x^2+682*x+317 3654313130019000 m001 (CopelandErdos+TwinPrimes)/(exp(Pi)+exp(1/Pi)) 3654313154931578 a001 123/13*75025^(26/49) 3654313158931045 r009 Im(z^3+c),c=-15/32+7/23*I,n=5 3654313169897141 r005 Re(z^2+c),c=-51/110+19/59*I,n=32 3654313182590565 r005 Re(z^2+c),c=-29/66+11/26*I,n=59 3654313188829154 s002 sum(A121244[n]/((exp(n)+1)/n),n=1..infinity) 3654313198107568 m005 (1/2*exp(1)-1)/(7/11*Zeta(3)-2/3) 3654313208291049 a007 Real Root Of x^4+44*x^3+285*x^2+466*x+333 3654313219083206 m005 (1/3*gamma-1/3)/(10/11*2^(1/2)-9/10) 3654313219101706 a007 Real Root Of 156*x^4+506*x^3-237*x^2+148*x+579 3654313232385876 r005 Re(z^2+c),c=-13/27+13/45*I,n=16 3654313236612618 r005 Im(z^2+c),c=-61/52+1/21*I,n=47 3654313237819178 m001 (Pi*FellerTornier-Zeta(1,-1))/FellerTornier 3654313252778845 m001 (StronglyCareFree+ZetaP(4))/(ln(5)+Sarnak) 3654313257171442 r009 Re(z^3+c),c=-3/46+31/44*I,n=40 3654313267403956 m001 (Ei(1,1)*Weierstrass+ArtinRank2)/Ei(1,1) 3654313280055950 r002 10th iterates of z^2 + 3654313323181037 r009 Im(z^3+c),c=-2/9+22/57*I,n=8 3654313323759355 m001 Ei(1)*MadelungNaCl^Salem 3654313324681469 m001 (Catalan+Sarnak)/(TreeGrowth2nd+ZetaQ(3)) 3654313326449351 m001 (MasserGramain-ZetaP(4))/(cos(1/12*Pi)+Lehmer) 3654313330459312 r005 Re(z^2+c),c=-45/98+25/53*I,n=40 3654313352370297 r005 Re(z^2+c),c=-23/44+19/41*I,n=7 3654313376938353 a007 Real Root Of 263*x^4+788*x^3-672*x^2+88*x+849 3654313377298256 a003 cos(Pi*9/88)-cos(Pi*35/116) 3654313377538425 s002 sum(A078252[n]/(10^n+1),n=1..infinity) 3654313379610983 r005 Im(z^2+c),c=-37/62+1/26*I,n=11 3654313380034797 s002 sum(A254321[n]/(n^3*exp(n)-1),n=1..infinity) 3654313395642543 l006 ln(5742/8275) 3654313403036952 a007 Real Root Of -629*x^4+978*x^3-553*x^2+775*x+416 3654313408761632 r005 Re(z^2+c),c=19/64+2/29*I,n=38 3654313410898602 a007 Real Root Of 113*x^4+581*x^3+880*x^2+746*x-824 3654313413010138 m008 (1/5*Pi^4-3/5)/(1/6*Pi^5+2/3) 3654313422287722 r005 Re(z^2+c),c=-25/58+23/62*I,n=16 3654313447762783 m005 (1/3*Zeta(3)-1/9)/(-53/84+2/7*5^(1/2)) 3654313450759422 m001 (Backhouse+Trott)/(BesselJ(1,1)-sin(1)) 3654313467786416 s001 sum(exp(-Pi/2)^n*A023633[n],n=1..infinity) 3654313485768611 r005 Im(z^2+c),c=-25/52+18/29*I,n=10 3654313485995310 r005 Re(z^2+c),c=-39/62+4/15*I,n=20 3654313487241798 q001 1203/3292 3654313489993824 m001 (Grothendieck-Mills)^FeigenbaumKappa 3654313491921714 r005 Im(z^2+c),c=5/82+22/53*I,n=39 3654313499296576 m001 BesselI(0,2)-Zeta(1/2)*GAMMA(1/24) 3654313502265380 a007 Real Root Of 757*x^4-53*x^3+339*x^2-612*x-285 3654313505233454 r005 Im(z^2+c),c=29/86+9/28*I,n=16 3654313519092726 p001 sum((-1)^n/(284*n+27)/(6^n),n=0..infinity) 3654313520416161 m001 (Backhouse+Gompertz)/(GAMMA(5/6)-LambertW(1)) 3654313527443322 r009 Im(z^3+c),c=-17/66+21/50*I,n=3 3654313531683131 a001 24476/987*28657^(18/37) 3654313534973071 r005 Im(z^2+c),c=9/98+15/38*I,n=41 3654313536994615 a007 Real Root Of 236*x^4-674*x^3+23*x^2-867*x-357 3654313550586156 m005 (1/2*2^(1/2)+1/9)/(6/7*exp(1)-1/11) 3654313559443095 h001 (8/11*exp(1)+8/9)/(1/8*exp(1)+4/9) 3654313587998709 r009 Re(z^3+c),c=-47/102+17/32*I,n=44 3654313588434009 a007 Real Root Of 304*x^4+829*x^3-779*x^2+910*x-29 3654313589513168 m001 FeigenbaumMu+FellerTornier*MertensB1 3654313594987910 a007 Real Root Of 289*x^4-894*x^3+689*x^2+440*x+20 3654313600284567 m001 (cos(1)+BesselJ(0,1))/(-Zeta(1,-1)+Magata) 3654313611035168 r005 Im(z^2+c),c=13/58+9/25*I,n=9 3654313613651307 a005 (1/sin(89/197*Pi))^912 3654313647916722 r005 Im(z^2+c),c=-79/86+1/29*I,n=4 3654313657420497 r005 Im(z^2+c),c=-3/14+33/62*I,n=13 3654313663339558 r005 Im(z^2+c),c=-2/3+57/241*I,n=28 3654313670430715 r005 Im(z^2+c),c=-13/66+19/33*I,n=29 3654313670715410 g006 Psi(1,11/12)+Psi(1,6/7)-Psi(1,7/8)-Psi(1,4/5) 3654313688671597 a007 Real Root Of 40*x^4-691*x^3+675*x^2-896*x-452 3654313690070141 v002 sum(1/(2^n+(25*n^2-22*n-2)),n=1..infinity) 3654313697488333 m005 (1/2*exp(1)+7/11)/(-73/198+9/22*5^(1/2)) 3654313697767446 r002 3th iterates of z^2 + 3654313701996246 s002 sum(A051928[n]/(n^3*10^n+1),n=1..infinity) 3654313709065687 a007 Real Root Of 304*x^4+888*x^3-705*x^2+612*x+773 3654313712232788 r005 Re(z^2+c),c=13/30+20/61*I,n=12 3654313713688222 m004 2+5*Cos[Sqrt[5]*Pi]+125*Pi*Tan[Sqrt[5]*Pi] 3654313729876783 m001 (-OneNinth+ZetaP(4))/(2^(1/2)-LambertW(1)) 3654313731979642 l006 ln(3593/5178) 3654313735533117 r005 Im(z^2+c),c=-12/31+19/37*I,n=19 3654313744513755 a001 3/55*17711^(7/36) 3654313745273955 m005 (3/28+1/4*5^(1/2))/(7/8*exp(1)-5/9) 3654313751204837 r005 Im(z^2+c),c=-7/19+46/47*I,n=3 3654313753124674 r009 Re(z^3+c),c=-11/30+35/51*I,n=36 3654313757788093 m005 (2*Pi+3/4)/(4/5*exp(1)-1/4) 3654313759425606 m007 (-2*gamma-6*ln(2)+Pi+3/4)/(-3*gamma-6*ln(2)+2) 3654313760079684 m001 Pi*ln(2)/ln(10)/(2^(1/2)+GAMMA(19/24)) 3654313760226967 m005 (1/3*Zeta(3)+2/5)/(9/10*Pi-7/11) 3654313766289077 m005 (1/2*Pi-4/5)/(1/11*Zeta(3)+2) 3654313775819199 a001 1364/377*233^(14/33) 3654313788124021 m001 1/GAMMA(1/12)/Bloch/exp(cos(Pi/5))^2 3654313803829910 m001 (MertensB3+TwinPrimes)/(gamma(3)+Landau) 3654313808313690 r002 4th iterates of z^2 + 3654313813347196 a003 cos(Pi*28/95)-sin(Pi*48/115) 3654313818724100 r002 15th iterates of z^2 + 3654313824679133 h001 (-exp(3/2)+6)/(-3*exp(1)+4) 3654313826164450 a007 Real Root Of 191*x^4+421*x^3-805*x^2+679*x-285 3654313831499320 h001 (3/10*exp(2)+1/4)/(9/10*exp(2)+1/10) 3654313844198591 r009 Im(z^3+c),c=-15/29+7/29*I,n=35 3654313850252246 m001 MadelungNaCl/Kolakoski/BesselK(1,1) 3654313856224561 b008 Sinh[5+ArcTan[Pi]^2] 3654313861155814 r009 Re(z^3+c),c=-11/56+53/57*I,n=22 3654313864670998 m001 (BesselI(1,2)-exp(1))/(Conway+Grothendieck) 3654313869444940 a007 Real Root Of -645*x^4+686*x^3+136*x^2+203*x+101 3654313876089461 a007 Real Root Of -92*x^4+823*x^3+285*x^2+335*x-199 3654313886119477 r005 Re(z^2+c),c=7/118+34/63*I,n=8 3654313910914637 h001 (1/12*exp(2)+2/5)/(9/11*exp(1)+5/9) 3654313913114066 r009 Im(z^3+c),c=-5/11+14/51*I,n=33 3654313914222524 m002 -(E^Pi/Pi^3)+2*Pi+Pi^3 3654313914535053 r005 Im(z^2+c),c=-5/86+49/59*I,n=44 3654313926905312 m005 (17/30+1/6*5^(1/2))/(8/11*Pi+2/7) 3654313959033889 a003 cos(Pi*34/95)-cos(Pi*34/71) 3654313985756077 r005 Re(z^2+c),c=-8/17+12/41*I,n=35 3654313988500721 a007 Real Root Of -253*x^4-885*x^3+328*x^2+418*x-923 3654314001191172 r005 Im(z^2+c),c=-13/10+7/198*I,n=61 3654314002102368 b008 -4+Sech[Coth[1]^2] 3654314009274646 v002 sum(1/(3^n+(21+43*n)),n=1..infinity) 3654314014455969 r009 Im(z^3+c),c=-9/23+13/41*I,n=14 3654314014995628 m005 (1/2*Catalan-7/9)/(5*3^(1/2)+1/11) 3654314019161980 r005 Im(z^2+c),c=-21/122+29/54*I,n=27 3654314021083458 m001 OneNinth/GaussKuzminWirsing^2/exp(sqrt(3))^2 3654314031387560 a007 Real Root Of -303*x^4-905*x^3+503*x^2-888*x-92 3654314032021777 m001 (Psi(2,1/3)+Si(Pi))/(-GAMMA(3/4)+FeigenbaumD) 3654314032225845 r009 Im(z^3+c),c=-61/126+1/4*I,n=62 3654314038184341 r005 Im(z^2+c),c=-29/98+19/31*I,n=21 3654314054120484 h001 (-3*exp(1/2)+3)/(-3*exp(3)+7) 3654314065917918 r005 Re(z^2+c),c=2/7+1/16*I,n=51 3654314068128087 a007 Real Root Of 515*x^4-774*x^3-411*x^2-598*x+302 3654314079800250 m001 (Zeta(1,-1)+Artin)/(Landau+Trott2nd) 3654314090398633 r005 Im(z^2+c),c=5/42+23/63*I,n=10 3654314091036441 m005 (1/2*Zeta(3)-1/11)/(2/9*exp(1)-2) 3654314097977465 m001 (Mills-Tribonacci)/(Zeta(1/2)+gamma(3)) 3654314099621060 m001 (BesselI(0,2)+Khinchin)/(Zeta(5)+arctan(1/3)) 3654314115391901 l006 ln(5037/7259) 3654314128530649 r005 Re(z^2+c),c=-43/58+4/47*I,n=12 3654314135080197 r005 Im(z^2+c),c=-25/58+33/59*I,n=63 3654314153198881 m005 (2/3*2^(1/2)-5/6)/(3/5*Catalan-1/4) 3654314153637961 r009 Im(z^3+c),c=-5/11+14/51*I,n=40 3654314154080423 r005 Im(z^2+c),c=-6/7+23/97*I,n=12 3654314154861524 m006 (2/3*exp(Pi)+1/5)/(1/2*ln(Pi)-1) 3654314196507037 r005 Re(z^2+c),c=-15/34+7/17*I,n=43 3654314208739255 a007 Real Root Of 144*x^4+450*x^3-138*x^2+562*x+177 3654314213016806 m001 1/Paris^2/GlaisherKinkelin/ln(GAMMA(5/24))^2 3654314220884966 m005 (1/3*Catalan+1/7)/(3/4*gamma-5/9) 3654314231492493 a007 Real Root Of -194*x^4-612*x^3+355*x^2-203*x-752 3654314239943942 a007 Real Root Of 172*x^4-874*x^3+875*x^2-647*x-399 3654314250217138 m001 1/ln((2^(1/3)))/Sierpinski^2/sqrt(Pi) 3654314265556282 r005 Re(z^2+c),c=-17/26+19/79*I,n=22 3654314270980451 a003 sin(Pi*5/73)/cos(Pi*22/73) 3654314274482013 m001 (Catalan+GAMMA(3/4))/(Pi+exp(1)) 3654314274771555 m001 (Ei(1,1)+GAMMA(17/24))/(Magata+Rabbit) 3654314283295676 r005 Im(z^2+c),c=13/110+23/61*I,n=19 3654314297645062 r005 Re(z^2+c),c=11/62+22/63*I,n=25 3654314304667968 r005 Im(z^2+c),c=-49/114+3/37*I,n=6 3654314308899107 q001 1351/3697 3654314327951723 l006 ln(6481/9340) 3654314331837578 m001 GAMMA(2/3)^ln(gamma)+FransenRobinson 3654314338745013 r005 Im(z^2+c),c=-17/90+29/52*I,n=43 3654314338898323 a007 Real Root Of -951*x^4+127*x^3+627*x^2+271*x-172 3654314349349126 r009 Im(z^3+c),c=-57/110+12/59*I,n=57 3654314372202065 m001 (Pi+Shi(1))/(Zeta(3)-ln(2+3^(1/2))) 3654314380183072 r005 Re(z^2+c),c=-41/74+1/55*I,n=8 3654314381158330 r005 Im(z^2+c),c=-31/118+19/32*I,n=63 3654314389012153 r005 Im(z^2+c),c=-13/118+33/64*I,n=30 3654314393996516 m005 (1/3*5^(1/2)+1/5)/(7/11*exp(1)+6/7) 3654314400243123 a001 199/610*2584^(42/47) 3654314407789617 a007 Real Root Of -249*x^4-907*x^3-220*x^2-762*x+296 3654314409034090 m001 OneNinth^(TwinPrimes/MinimumGamma) 3654314409883313 a008 Real Root of (2+6*x+3*x^2+2*x^3-4*x^4+6*x^5) 3654314416988148 m001 (ln(2)+MertensB1)/(Sierpinski+Trott2nd) 3654314428436732 r002 4th iterates of z^2 + 3654314435386350 m003 73/2+Sqrt[5]/8+5*Cot[1/2+Sqrt[5]/2] 3654314437066570 r005 Re(z^2+c),c=-31/52+23/59*I,n=16 3654314447497699 r005 Im(z^2+c),c=-5/86+17/35*I,n=45 3654314454187918 g006 Psi(1,2/11)+Psi(1,6/7)+1/2*Pi^2-Psi(1,7/8) 3654314454214173 r005 Re(z^2+c),c=-14/29+7/34*I,n=15 3654314457470709 a007 Real Root Of 923*x^4-137*x^3+995*x^2-851*x-467 3654314465028440 m001 1/exp(TwinPrimes)^2*Si(Pi)*exp(1)^2 3654314465919870 r005 Im(z^2+c),c=15/62+11/40*I,n=27 3654314467477442 m001 (exp(sqrt(2))*GAMMA(7/24)-sqrt(2))/GAMMA(7/24) 3654314486512103 a007 Real Root Of -131*x^4-165*x^3-740*x^2+246*x+183 3654314487119027 r005 Im(z^2+c),c=-15/23+1/14*I,n=43 3654314492082647 a001 3010349/233*8^(1/2) 3654314513759265 r005 Im(z^2+c),c=5/82+22/53*I,n=33 3654314518325028 m001 (LandauRamanujan+ZetaP(2))/(Cahen+Khinchin) 3654314529753127 r009 Im(z^3+c),c=-67/114+19/60*I,n=24 3654314552496849 l006 ln(39/1507) 3654314566855794 h001 (-4*exp(7)-7)/(-3*exp(6)+8) 3654314570469762 r005 Re(z^2+c),c=-13/28+14/59*I,n=10 3654314578152956 r005 Im(z^2+c),c=-2/15+31/59*I,n=61 3654314599194984 m001 (GAMMA(19/24)+KhinchinLevy*PlouffeB)/PlouffeB 3654314617164372 r005 Re(z^2+c),c=-7/29+38/61*I,n=11 3654314617773257 m001 (sin(1/12*Pi)+HeathBrownMoroz)^RenyiParking 3654314620145956 m001 1/BesselJ(0,1)^2*(2^(1/3))^2/exp(Zeta(9))^2 3654314628350433 m001 exp(1)^(MadelungNaCl/exp(-Pi)) 3654314628350433 m001 exp(1)^(exp(Pi)*MadelungNaCl) 3654314649340761 a007 Real Root Of -378*x^4-497*x^3-248*x^2+625*x+244 3654314654714703 r005 Im(z^2+c),c=5/82+22/53*I,n=35 3654314655781511 m001 1/ln(GAMMA(11/12))*FeigenbaumKappa^2*Zeta(5)^2 3654314662422174 a007 Real Root Of -85*x^4-431*x^3-441*x^2+117*x+442 3654314663144989 a007 Real Root Of -771*x^4-251*x^3-627*x^2+834*x+390 3654314668661119 m001 1/3*(Khinchin+Sierpinski)*3^(2/3) 3654314671125571 h001 (5/8*exp(1)+11/12)/(1/12*exp(2)+1/10) 3654314679646602 r005 Im(z^2+c),c=-23/30+1/64*I,n=27 3654314681904305 r005 Re(z^2+c),c=-9/20+18/47*I,n=59 3654314687120542 m001 (cos(1)+ln(2))/(-AlladiGrinstead+Bloch) 3654314703171906 a007 Real Root Of -626*x^4-784*x^3+183*x^2+903*x-305 3654314709591277 r005 Im(z^2+c),c=7/118+28/55*I,n=10 3654314740107157 m006 (4/5*exp(Pi)+5)/(3*ln(Pi)+3) 3654314753315333 r009 Im(z^3+c),c=-19/102+46/57*I,n=2 3654314771867221 a007 Real Root Of -139*x^4-693*x^3-643*x^2-144*x-970 3654314778123689 m001 (-Zeta(1/2)+(1+3^(1/2))^(1/2))/(1-Si(Pi)) 3654314781406636 h001 (11/12*exp(1)+1/10)/(10/11*exp(2)+3/8) 3654314798166770 r002 17i'th iterates of 2*x/(1-x^2) of 3654314814242378 r009 Im(z^3+c),c=-31/58+37/45*I,n=3 3654314818358622 a003 cos(Pi*2/65)-cos(Pi*3/73) 3654314818459854 r005 Re(z^2+c),c=-53/118+17/44*I,n=42 3654314821007611 m001 (gamma(1)+GAMMA(11/12))/(Conway-MertensB2) 3654314822687774 p004 log(28069/19477) 3654314825563534 a007 Real Root Of 285*x^4+911*x^3-561*x^2-144*x+598 3654314827398886 r005 Im(z^2+c),c=3/13+7/24*I,n=15 3654314829688396 a007 Real Root Of 389*x^4+123*x^3+247*x^2-906*x-365 3654314836018216 r005 Im(z^2+c),c=7/86+23/57*I,n=14 3654314836599296 m001 ln(2^(1/2)+1)*Mills+FeigenbaumAlpha 3654314838928442 r005 Im(z^2+c),c=-37/78+4/63*I,n=16 3654314848594241 r009 Im(z^3+c),c=-41/86+10/39*I,n=48 3654314854116361 r009 Re(z^3+c),c=-53/126+3/14*I,n=16 3654314862720587 r005 Re(z^2+c),c=-7/15+14/45*I,n=56 3654314873857788 r002 13th iterates of z^2 + 3654314917068726 m005 (1/2*3^(1/2)-7/12)/(5/12*Zeta(3)+3/11) 3654314920517154 a007 Real Root Of -642*x^4+886*x^3-203*x^2+280*x-107 3654314935170165 m001 ErdosBorwein-cos(1/12*Pi)*GAMMA(17/24) 3654314939334669 m001 (sqrt(3)+(2^(1/3))*BesselI(0,2))/(2^(1/3)) 3654314939334669 m001 1/2*(2^(1/3)*BesselI(0,2)+3^(1/2))*2^(2/3) 3654314959547142 h001 (-4*exp(3)-7)/(-11*exp(1)+6) 3654314960290386 q001 1/2736491 3654314974523520 r009 Re(z^3+c),c=-11/30+35/51*I,n=46 3654314975626286 k005 Champernowne real with floor(sqrt(3)*(38*n+173)) 3654314975636296 k001 Champernowne real with 66*n+299 3654314993326941 r009 Re(z^3+c),c=-15/32+11/40*I,n=38 3654314997500847 m001 Artin/Pi^(1/2)*3^(1/2) 3654314997500847 m001 sqrt(3)*Artin/sqrt(Pi) 3654315013371515 m001 Lehmer/ln(HardHexagonsEntropy)^2/Zeta(1/2) 3654315022589557 r009 Re(z^3+c),c=-11/30+35/51*I,n=61 3654315024345458 r009 Re(z^3+c),c=-11/30+35/51*I,n=56 3654315025187253 r005 Re(z^2+c),c=-7/15+26/57*I,n=32 3654315029057832 r009 Re(z^3+c),c=-11/30+35/51*I,n=51 3654315043933756 m001 (MertensB1+Salem)/(GAMMA(2/3)-MadelungNaCl) 3654315046575221 r009 Im(z^3+c),c=-27/74+8/25*I,n=6 3654315049333661 a007 Real Root Of 81*x^4+212*x^3-392*x^2-166*x+529 3654315064732505 r005 Re(z^2+c),c=-3/5+5/51*I,n=6 3654315069408628 l006 ln(1444/2081) 3654315076539944 m001 (FeigenbaumB+ZetaQ(3))/(Champernowne-exp(Pi)) 3654315078463361 a001 29/987*196418^(41/53) 3654315103149765 r009 Im(z^3+c),c=-11/32+14/41*I,n=24 3654315108050266 m004 -5/E^(Sqrt[5]*Pi)+(2*Sqrt[5])/Pi+5*Sqrt[5]*Pi 3654315108435267 r005 Re(z^2+c),c=-14/29+8/55*I,n=12 3654315139613974 r005 Im(z^2+c),c=7/64+17/41*I,n=8 3654315147964264 m001 (Lehmer+Paris)/(ln(2)/ln(10)+BesselI(1,2)) 3654315148586168 r005 Re(z^2+c),c=-31/70+11/27*I,n=41 3654315152058426 a007 Real Root Of 254*x^4+937*x^3+263*x^2+933*x+327 3654315153171943 k007 concat of cont frac of 3654315156611458 r002 52th iterates of z^2 + 3654315191098979 m008 (3*Pi^4+5/6)/(5/6*Pi^6+4/5) 3654315191247680 a007 Real Root Of 247*x^4+917*x^3-76*x^2-498*x-103 3654315194067727 m001 (gamma(3)+GAMMA(19/24))/arctan(1/3) 3654315226972303 m002 Pi^6/8+Pi^5*Sinh[Pi] 3654315234554668 r009 Im(z^3+c),c=-1/86+13/31*I,n=4 3654315240930588 r005 Im(z^2+c),c=37/110+4/21*I,n=27 3654315247755340 s002 sum(A235216[n]/(2^n+1),n=1..infinity) 3654315256507376 h001 (7/10*exp(1)+3/7)/(5/6*exp(2)+2/9) 3654315258357241 r005 Im(z^2+c),c=-23/114+25/36*I,n=26 3654315282589589 r005 Re(z^2+c),c=-8/17+5/18*I,n=22 3654315284984875 r005 Im(z^2+c),c=-163/110+8/35*I,n=3 3654315293964809 r009 Im(z^3+c),c=-7/22+29/64*I,n=3 3654315294338055 r005 Re(z^2+c),c=-3/19+31/48*I,n=42 3654315294354692 r009 Re(z^3+c),c=-11/30+35/51*I,n=41 3654315307486374 a007 Real Root Of -68*x^4-205*x^3-20*x^2-684*x-110 3654315341703714 m004 Sqrt[5]/Pi+3*Sin[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 3654315360110557 r002 5th iterates of z^2 + 3654315366918246 m001 (MinimumGamma-ThueMorse)/(ln(3)+Pi^(1/2)) 3654315369977686 r002 13th iterates of z^2 + 3654315375448905 r005 Re(z^2+c),c=4/19+20/51*I,n=26 3654315379017668 m001 Zeta(5)*BesselI(0,2)^GAMMA(7/12) 3654315384646698 r009 Re(z^3+c),c=-51/110+11/41*I,n=32 3654315387699141 r002 11th iterates of z^2 + 3654315405202921 m001 (PlouffeB+Sarnak)/(Catalan-sin(1/5*Pi)) 3654315417773460 r005 Re(z^2+c),c=-45/98+13/38*I,n=27 3654315431481372 h001 (-7*exp(2/3)-3)/(-9*exp(-3)+5) 3654315434347100 m001 (-gamma(2)+Salem)/(cos(1/5*Pi)-sin(1)) 3654315454926133 r009 Re(z^3+c),c=-3/29+37/59*I,n=8 3654315467324208 r005 Im(z^2+c),c=15/62+11/40*I,n=34 3654315474955462 m001 GaussAGM(1,1/sqrt(2))/(exp(Pi)+exp(-Pi)) 3654315483235827 b008 BarnesG[15/49] 3654315486367003 r009 Re(z^3+c),c=-10/21+2/17*I,n=5 3654315493273958 a007 Real Root Of 762*x^4-552*x^3+214*x^2-246*x-159 3654315499291239 a007 Real Root Of -259*x^4-983*x^3-64*x^2-9*x-961 3654315506082358 r009 Im(z^3+c),c=-9/56+41/49*I,n=54 3654315520643783 a001 9349/610*233^(32/55) 3654315539740904 m002 -(Pi*Cosh[Pi])-Tanh[Pi]+Tanh[Pi]/Log[Pi] 3654315558814122 m005 (1/2*3^(1/2)+4/11)/(-127/198+3/22*5^(1/2)) 3654315560631605 a007 Real Root Of 61*x^4-346*x^3-244*x^2-902*x+378 3654315562271611 m001 (2^(1/3))^FeigenbaumMu/GolombDickman 3654315577562377 m002 -4-5/(6*Log[Pi])+ProductLog[Pi] 3654315618196817 r009 Im(z^3+c),c=-1/19+41/51*I,n=40 3654315647252498 r005 Re(z^2+c),c=-31/66+7/23*I,n=26 3654315648287357 r009 Im(z^3+c),c=-11/62+21/53*I,n=13 3654315662681104 r009 Re(z^3+c),c=-1/18+20/41*I,n=25 3654315669038017 a007 Real Root Of 956*x^4-889*x^3-162*x^2-619*x-265 3654315718209677 r005 Im(z^2+c),c=27/106+29/60*I,n=61 3654315719545359 a007 Real Root Of -129*x^4-485*x^3-132*x^2-158*x+522 3654315719696692 r005 Im(z^2+c),c=23/70+19/50*I,n=46 3654315722459361 a003 cos(Pi*26/95)*cos(Pi*23/74) 3654315768385545 p001 sum(1/(307*n+299)/(6^n),n=0..infinity) 3654315791628109 r005 Re(z^2+c),c=5/122+49/61*I,n=8 3654315795941811 m001 (Pi/exp(Pi)+1)*arctan(1/3) 3654315800667366 h001 (1/9*exp(1)+9/10)/(10/11*exp(1)+9/11) 3654315803485516 a007 Real Root Of -145*x^4-563*x^3+50*x^2+743*x+431 3654315806996019 l006 ln(6515/9389) 3654315811060636 m001 (Ei(1)+BesselJ(1,1))/(Cahen-GlaisherKinkelin) 3654315819469588 a007 Real Root Of 225*x^4+560*x^3-744*x^2+706*x-281 3654315825397156 h001 (-2*exp(4)-9)/(-8*exp(6)-7) 3654315834151318 m001 KomornikLoreti*(Sierpinski-cos(1)) 3654315838667269 r009 Re(z^3+c),c=-11/26+14/55*I,n=6 3654315882962919 a001 139583862445/322*1364^(14/15) 3654315887215068 b008 41*InverseEllipticNomeQ[E^(-2)] 3654315889110454 m001 exp(Zeta(1/2))^2/MertensB1^2*arctan(1/2) 3654315898663961 r009 Im(z^3+c),c=-3/98+37/54*I,n=2 3654315904889111 a007 Real Root Of -202*x^4-934*x^3-558*x^2+796*x+804 3654315919168643 r005 Im(z^2+c),c=-25/106+4/7*I,n=63 3654315942587371 r005 Re(z^2+c),c=-47/98+9/37*I,n=27 3654315944744404 r002 54th iterates of z^2 + 3654315945588098 r009 Re(z^3+c),c=-23/52+11/48*I,n=9 3654315959109357 m001 1/exp(Porter)^2*LaplaceLimit*Zeta(5) 3654315991747364 a003 cos(Pi*46/109)+cos(Pi*47/102) 3654316003210795 r009 Im(z^3+c),c=-17/122+13/32*I,n=5 3654316003386371 a007 Real Root Of 500*x^4-412*x^3-90*x^2-492*x+203 3654316004532104 r005 Re(z^2+c),c=-6/31+17/27*I,n=60 3654316005634053 r009 Re(z^3+c),c=-13/25+19/61*I,n=48 3654316013906961 a001 32264490531/46*1364^(13/15) 3654316015245787 a001 370248451/233*2504730781961^(4/21) 3654316015245787 a001 2537720636/233*102334155^(4/21) 3654316017028782 l006 ln(5071/7308) 3654316020882827 m001 (Champernowne+Khinchin)/(sin(1)+gamma(1)) 3654316023209516 a001 17393796001/233*4181^(4/21) 3654316026181031 r009 Im(z^3+c),c=-9/56+41/49*I,n=64 3654316030065618 r002 9th iterates of z^2 + 3654316031840563 r005 Im(z^2+c),c=-27/52+25/37*I,n=27 3654316045847435 m005 (1/2*3^(1/2)+2/5)/(1/4*2^(1/2)-7/10) 3654316056341992 a007 Real Root Of -141*x^4-212*x^3+878*x^2-772*x+253 3654316061783634 a008 Real Root of (1+x-3*x^2+4*x^3-4*x^4-5*x^5) 3654316068849683 m001 GAMMA(5/6)/Porter*Weierstrass 3654316072915121 h001 (5/8*exp(2)+6/7)/(3/7*exp(1)+1/3) 3654316090133203 r005 Re(z^2+c),c=-31/70+9/22*I,n=45 3654316092258054 a001 10610209857723/521*199^(6/11) 3654316093606406 a007 Real Root Of -4*x^4+166*x^3+591*x^2-281*x-105 3654316100208988 m001 ln(GAMMA(2/3))*RenyiParking^2/arctan(1/2) 3654316101799350 a007 Real Root Of 161*x^4+480*x^3-295*x^2+585*x+790 3654316108292836 a007 Real Root Of -99*x^4-326*x^3+421*x^2+908*x-558 3654316138397568 r005 Re(z^2+c),c=-25/22+3/11*I,n=62 3654316144851008 a001 182717648081/161*1364^(4/5) 3654316161505744 a007 Real Root Of -922*x^4-260*x^3+277*x^2+942*x+311 3654316174134018 r005 Im(z^2+c),c=-1+71/231*I,n=3 3654316178989253 m001 (Si(Pi)-exp(1))/(Ei(1)+PlouffeB) 3654316184244122 r005 Im(z^2+c),c=-13/19+26/59*I,n=14 3654316190138483 r005 Re(z^2+c),c=-41/78+11/36*I,n=14 3654316194341234 a001 1/15129*(1/2*5^(1/2)+1/2)^27*123^(10/19) 3654316199727410 r005 Im(z^2+c),c=-4/9+19/43*I,n=6 3654316207351478 a007 Real Root Of -115*x^4+861*x^3-726*x^2+851*x+452 3654316215697059 r005 Re(z^2+c),c=-11/24+21/59*I,n=26 3654316225929418 r005 Re(z^2+c),c=-41/86+8/31*I,n=50 3654316237635513 r005 Im(z^2+c),c=-2/3+8/61*I,n=18 3654316261333876 r005 Im(z^2+c),c=-41/86+11/29*I,n=3 3654316272175991 m001 1/GAMMA(5/12)/exp(Ei(1))/GAMMA(5/24)^2 3654316272634389 m001 (ln(5)-exp(1/exp(1)))/(BesselJ(1,1)+Trott) 3654316275795060 a001 591286729879/322*1364^(11/15) 3654316281055987 m005 (1/2*3^(1/2)-5/6)/(3/10*3^(1/2)+3/8) 3654316285981422 m001 (-MertensB2+Weierstrass)/(5^(1/2)-CareFree) 3654316299279357 s002 sum(A060169[n]/((exp(n)+1)/n),n=1..infinity) 3654316322398877 m001 (Pi+ln(5))/(LaplaceLimit-ReciprocalLucas) 3654316323712761 a007 Real Root Of 433*x^4-248*x^3-356*x^2-44*x+68 3654316328985968 r005 Im(z^2+c),c=37/118+7/50*I,n=13 3654316331010098 r002 12th iterates of z^2 + 3654316344235860 h001 (-7*exp(-2)+1)/(-5*exp(3/2)+8) 3654316344794761 r005 Re(z^2+c),c=-33/74+11/24*I,n=28 3654316353939230 m001 FeigenbaumDelta/(Zeta(1/2)+MertensB3) 3654316358536880 m001 (Riemann3rdZero+ThueMorse)/(arctan(1/3)+Artin) 3654316360845780 a007 Real Root Of 161*x^4+363*x^3-482*x^2+986*x-957 3654316372074302 m001 (Catalan-Si(Pi))/(BesselK(1,1)+Riemann3rdZero) 3654316378609096 a007 Real Root Of 658*x^4+409*x^3+695*x^2-636*x-317 3654316394300194 l006 ln(3627/5227) 3654316406739116 a001 956722026041/322*1364^(2/3) 3654316410319507 a001 233/12752043*4^(1/2) 3654316420333207 m001 (Chi(1)-exp(1))/(-Robbin+Salem) 3654316435239825 m001 (Niven-Otter)/(GAMMA(13/24)+Grothendieck) 3654316438673910 m005 (1/3*2^(1/2)-2/11)/(1/9*3^(1/2)+3/5) 3654316443989021 m005 (1/3*5^(1/2)-1/8)/(2/7*Pi+4/5) 3654316453904379 m004 (-3125*Sqrt[5]*Pi)/6+3*Csc[Sqrt[5]*Pi] 3654316455399697 m005 (1/2*2^(1/2)+7/11)/(-39/10+1/10*5^(1/2)) 3654316457755282 m001 FeigenbaumAlpha^ln(5)-Sarnak 3654316460414431 m001 Zeta(1/2)*Cahen^Pi 3654316466491871 a007 Real Root Of 32*x^4+14*x^3-307*x^2+215*x-138 3654316473102838 p004 log(26701/691) 3654316476066232 r002 16th iterates of z^2 + 3654316495938693 r009 Im(z^3+c),c=-11/32+14/41*I,n=27 3654316507772424 r005 Im(z^2+c),c=-1/58+25/48*I,n=10 3654316519745947 m006 (1/4*exp(Pi)-5/6)/(1/6*Pi^2-3) 3654316535863000 r005 Re(z^2+c),c=-29/66+11/26*I,n=50 3654316537683177 a001 774004377960/161*1364^(3/5) 3654316540518691 r009 Re(z^3+c),c=-23/60+7/43*I,n=15 3654316549660718 r005 Im(z^2+c),c=-13/70+16/29*I,n=12 3654316554584814 m001 DuboisRaymond*MasserGramainDelta+Trott 3654316559604012 m001 (5^(1/2))^ErdosBorwein+Trott 3654316564336002 m003 63/2+E^(1/2+Sqrt[5]/2) 3654316566828055 m001 (1+ln(2)/ln(10))/(gamma(2)+FeigenbaumMu) 3654316573983454 a008 Real Root of (-3-6*x+4*x^2-6*x^3+3*x^5) 3654316575696638 r005 Re(z^2+c),c=5/118+16/25*I,n=2 3654316580173131 r009 Im(z^3+c),c=-7/44+51/61*I,n=14 3654316594819295 r005 Im(z^2+c),c=-7/6+4/85*I,n=23 3654316600978303 r005 Im(z^2+c),c=-9/23+46/57*I,n=5 3654316614789939 s002 sum(A244132[n]/(n^2*pi^n-1),n=1..infinity) 3654316620550029 m001 1/FeigenbaumB/exp(Khintchine)^2/GAMMA(7/12) 3654316626915922 a007 Real Root Of -273*x^4-913*x^3+212*x^2-313*x+155 3654316629516418 m001 Sierpinski*Riemann3rdZero*exp(sqrt(3)) 3654316642392528 a007 Real Root Of 214*x^4+606*x^3-517*x^2+197*x-966 3654316658948901 a007 Real Root Of 139*x^4+575*x^3+376*x^2-915*x-359 3654316668627243 a001 2504730781961/322*1364^(8/15) 3654316696139080 a001 24476/55*701408733^(5/9) 3654316702211059 a001 3010349/55*121393^(5/9) 3654316702288617 a001 271443/55*9227465^(5/9) 3654316708550317 s002 sum(A023670[n]/(n*2^n+1),n=1..infinity) 3654316717486370 p004 log(23687/613) 3654316723407814 m001 (Mills+PlouffeB)/(2^(1/3)-MadelungNaCl) 3654316723584749 l006 ln(5810/8373) 3654316730306905 m001 gamma(1)*MinimumGamma+Bloch 3654316731051388 a001 11/46368*46368^(35/39) 3654316737964314 a001 75025/843*47^(55/57) 3654316747187211 a007 Real Root Of -331*x^4-39*x^3+769*x^2+367*x-229 3654316750931992 r005 Im(z^2+c),c=1/30+16/37*I,n=29 3654316758344060 m005 (1/2*gamma-3/4)/(8/11*5^(1/2)-4/11) 3654316767472372 r009 Re(z^3+c),c=-1/18+20/41*I,n=27 3654316770519903 b008 -51+Sqrt[209] 3654316776189019 m009 (1/5*Psi(1,1/3)-3/4)/(1/3*Psi(1,3/4)-1/2) 3654316793117231 r005 Re(z^2+c),c=-4/9+9/22*I,n=39 3654316794734426 r009 Re(z^3+c),c=-55/114+18/43*I,n=17 3654316797429210 m001 (Zeta(1/2)+Conway)/(Niven+Sierpinski) 3654316799571313 a001 4052739537881/322*1364^(7/15) 3654316806347504 a001 322*1597^(34/53) 3654316812908707 m001 (sin(1)-BesselJ(1,1))^(Pi*2^(1/2)/GAMMA(3/4)) 3654316812908707 m001 (sin(1)-BesselJ(1,1))^GAMMA(1/4) 3654316813343636 m001 ln(Robbin)^2/MadelungNaCl^2*cos(Pi/5)^2 3654316823540251 a007 Real Root Of -196*x^4-606*x^3+459*x^2+13*x-702 3654316830292054 m001 (GlaisherKinkelin+Weierstrass)/(2^(1/2)-Ei(1)) 3654316836104647 r005 Im(z^2+c),c=9/28+5/59*I,n=5 3654316837513363 r009 Re(z^3+c),c=-29/60+17/58*I,n=55 3654316842905133 m001 Catalan^polylog(4,1/2)/MertensB1 3654316851455998 m005 (1/2*3^(1/2)-11/12)/(2/9*5^(1/2)+8/9) 3654316861442992 a001 33385282/55*1597^(5/9) 3654316873004873 p004 log(11519/7993) 3654316879076241 a007 Real Root Of -831*x^4+925*x^3-891*x^2+791*x+468 3654316894153659 m001 (FeigenbaumD-Tribonacci)/(Pi-FeigenbaumB) 3654316895215693 r009 Im(z^3+c),c=-11/32+14/41*I,n=26 3654316896348738 m001 (ln(gamma)-sin(1))/(Conway+FeigenbaumAlpha) 3654316913547735 b008 -16/3+ProductLog[9] 3654316916777250 m008 (5/6*Pi^3+2)/(5/6*Pi+5) 3654316927355372 r005 Re(z^2+c),c=-35/74+12/43*I,n=52 3654316928719591 m001 (sin(1/12*Pi)-(1+3^(1/2))^(1/2))/(Otter+Thue) 3654316930052003 a007 Real Root Of 508*x^4-35*x^3+757*x^2-991*x-474 3654316930515388 a001 3278735159921/161*1364^(2/5) 3654316934217079 a001 1/3*29^(32/45) 3654316942992538 m001 (Zeta(1/2)+Backhouse)/(FeigenbaumC-TwinPrimes) 3654316949488264 m001 1/2-GAMMA(1/24)^ln(Pi) 3654316961158209 m005 (1/2*3^(1/2)+7/8)/(1/6*2^(1/2)-5) 3654316978237150 h001 (3/4*exp(1)+7/9)/(2/9*exp(1)+1/6) 3654316978316943 r005 Im(z^2+c),c=31/106+9/41*I,n=28 3654316988748924 r005 Re(z^2+c),c=-65/118+8/19*I,n=36 3654316994687151 h001 (-6*exp(2)-9)/(-4*exp(1/2)-8) 3654317003433488 a007 Real Root Of 350*x^4+950*x^3-998*x^2+942*x+714 3654317003784542 r005 Re(z^2+c),c=-69/94+13/61*I,n=11 3654317017114808 a008 Real Root of (2+5*x-x^2+2*x^3+4*x^4+2*x^5) 3654317020992916 a007 Real Root Of -13*x^4+167*x^3+905*x^2+470*x+100 3654317021435098 a007 Real Root Of 251*x^4+887*x^3-71*x^2+303*x+580 3654317027937088 m001 cos(Pi/12)*Bloch^2/exp(sqrt(Pi)) 3654317028619423 r005 Im(z^2+c),c=1/20+16/37*I,n=11 3654317047570814 m005 (1/3*Zeta(3)-2/5)/(8/11*5^(1/2)+1/4) 3654317049319692 a007 Real Root Of 256*x^4+313*x^3-473*x^2-993*x-289 3654317051635200 a007 Real Root Of -187*x^4+406*x^3+627*x^2+897*x-428 3654317061459468 a001 1515744265389/46*1364^(1/3) 3654317069571601 r005 Im(z^2+c),c=-5/122+10/21*I,n=46 3654317074449674 m005 (1/2*exp(1)-9/10)/(26/99+4/9*5^(1/2)) 3654317087690560 a007 Real Root Of -81*x^4-112*x^3+733*x^2+80*x-517 3654317088988081 h001 (1/9*exp(1)+3/8)/(3/8*exp(1)+5/6) 3654317096126276 r009 Re(z^3+c),c=-1/18+20/41*I,n=29 3654317096810933 m001 1/exp(Khintchine)*CareFree/GAMMA(1/4)^2 3654317126427296 r005 Re(z^2+c),c=-5/14+17/38*I,n=9 3654317139518549 a007 Real Root Of -411*x^4-992*x^3-663*x^2+910*x+380 3654317142265949 r005 Im(z^2+c),c=-5/4+17/152*I,n=47 3654317142888442 m004 (-475*Pi)/4+5*ProductLog[Sqrt[5]*Pi] 3654317144630586 a001 167761/610*7778742049^(6/19) 3654317144759694 a001 3010349/610*832040^(6/19) 3654317146891083 r005 Im(z^2+c),c=-9/86+26/51*I,n=32 3654317149763301 p001 sum((-1)^n/(524*n+249)/(3^n),n=0..infinity) 3654317172754635 m002 -6-Pi^3+5*ProductLog[Pi]*Sech[Pi] 3654317177830887 r002 47th iterates of z^2 + 3654317179880580 m006 (2/3*Pi^2-1/6)/(3/Pi+4/5) 3654317182408923 r009 Re(z^3+c),c=-1/18+20/41*I,n=31 3654317191750536 a007 Real Root Of 832*x^4+923*x^3+611*x^2-746*x-324 3654317202114161 r009 Re(z^3+c),c=-1/18+20/41*I,n=33 3654317205757726 r009 Re(z^3+c),c=-1/18+20/41*I,n=35 3654317205792471 r009 Re(z^3+c),c=-1/18+20/41*I,n=38 3654317205821476 r009 Re(z^3+c),c=-1/18+20/41*I,n=36 3654317205880193 r009 Re(z^3+c),c=-1/18+20/41*I,n=40 3654317205927944 r009 Re(z^3+c),c=-1/18+20/41*I,n=42 3654317205946036 r009 Re(z^3+c),c=-1/18+20/41*I,n=44 3654317205951783 r009 Re(z^3+c),c=-1/18+20/41*I,n=46 3654317205953386 r009 Re(z^3+c),c=-1/18+20/41*I,n=48 3654317205953779 r009 Re(z^3+c),c=-1/18+20/41*I,n=50 3654317205953861 r009 Re(z^3+c),c=-1/18+20/41*I,n=52 3654317205953870 r009 Re(z^3+c),c=-1/18+20/41*I,n=55 3654317205953871 r009 Re(z^3+c),c=-1/18+20/41*I,n=57 3654317205953871 r009 Re(z^3+c),c=-1/18+20/41*I,n=59 3654317205953872 r009 Re(z^3+c),c=-1/18+20/41*I,n=61 3654317205953872 r009 Re(z^3+c),c=-1/18+20/41*I,n=63 3654317205953872 r009 Re(z^3+c),c=-1/18+20/41*I,n=64 3654317205953872 r009 Re(z^3+c),c=-1/18+20/41*I,n=62 3654317205953872 r009 Re(z^3+c),c=-1/18+20/41*I,n=60 3654317205953872 r009 Re(z^3+c),c=-1/18+20/41*I,n=58 3654317205953873 r009 Re(z^3+c),c=-1/18+20/41*I,n=54 3654317205953873 r009 Re(z^3+c),c=-1/18+20/41*I,n=56 3654317205953873 r009 Re(z^3+c),c=-1/18+20/41*I,n=53 3654317205953907 r009 Re(z^3+c),c=-1/18+20/41*I,n=51 3654317205954091 r009 Re(z^3+c),c=-1/18+20/41*I,n=49 3654317205954899 r009 Re(z^3+c),c=-1/18+20/41*I,n=47 3654317205957981 r009 Re(z^3+c),c=-1/18+20/41*I,n=45 3654317205968361 r009 Re(z^3+c),c=-1/18+20/41*I,n=43 3654317205998581 r009 Re(z^3+c),c=-1/18+20/41*I,n=41 3654317206068119 r009 Re(z^3+c),c=-1/18+20/41*I,n=39 3654317206145117 r009 Re(z^3+c),c=-1/18+20/41*I,n=37 3654317207168071 r009 Re(z^3+c),c=-1/18+20/41*I,n=34 3654317215946570 r009 Re(z^3+c),c=-1/18+20/41*I,n=32 3654317216342852 m001 (ErdosBorwein+Kolakoski)/(MasserGramain+Trott) 3654317228178780 l006 ln(248/9583) 3654317231737126 m001 (Grothendieck-LaplaceLimit)/(OneNinth+Otter) 3654317233946117 a001 24476/1597*233^(32/55) 3654317247960612 r005 Re(z^2+c),c=-3/7+16/35*I,n=64 3654317249771642 m005 (1/2*gamma-10/11)/(4/5*5^(1/2)-1/11) 3654317250969211 m001 1/TreeGrowth2nd^2/Salem^2/exp(Trott)^2 3654317258008409 r009 Re(z^3+c),c=-1/18+20/41*I,n=30 3654317259479302 a007 Real Root Of 232*x^4+724*x^3-288*x^2+496*x-383 3654317270682792 l006 ln(2183/3146) 3654317271534982 r005 Re(z^2+c),c=-35/86+16/31*I,n=61 3654317279266043 m001 (Conway+FeigenbaumC)/(Gompertz+MertensB1) 3654317286658233 r009 Im(z^3+c),c=-5/52+13/16*I,n=10 3654317288178161 r005 Im(z^2+c),c=27/106+14/53*I,n=21 3654317312380145 m001 (Mills+PlouffeB)/(arctan(1/3)-AlladiGrinstead) 3654317316657185 m001 (-Zeta(1,-1)+Tetranacci)/(2^(1/2)-sin(1)) 3654317329472208 m001 (-Backhouse+HeathBrownMoroz)/(1-BesselK(1,1)) 3654317335066557 r005 Re(z^2+c),c=-3/8+32/59*I,n=59 3654317342827012 a007 Real Root Of -196*x^4-550*x^3+683*x^2+350*x+271 3654317349349998 p003 LerchPhi(1/100,5,444/229) 3654317371169690 a001 7/41*3571^(4/43) 3654317378449123 m001 GAMMA(23/24)-ln(3)^Cahen 3654317378638096 m001 (-KhinchinLevy+Paris)/(exp(1)+sin(1/12*Pi)) 3654317390022969 a007 Real Root Of -385*x^4+282*x^3+946*x^2+938*x-476 3654317392796256 m009 (1/10*Pi^2+5)/(6*Psi(1,2/3)-2) 3654317410898441 m001 Zeta(7)/exp(FeigenbaumDelta)/sin(Pi/12) 3654317429066508 r009 Re(z^3+c),c=-1/18+20/41*I,n=28 3654317429272786 a001 583594493454864/1597 3654317443346223 r009 Re(z^3+c),c=-21/52+9/47*I,n=24 3654317446469597 a001 53316291173/322*3571^(16/17) 3654317449098419 a003 cos(Pi*11/70)-cos(Pi*39/119) 3654317450734148 r005 Im(z^2+c),c=23/102+14/41*I,n=9 3654317451681261 r005 Re(z^2+c),c=-25/52+11/47*I,n=32 3654317452481572 a001 2207/55*53316291173^(5/9) 3654317456518919 p004 log(17659/457) 3654317457028468 r005 Re(z^2+c),c=-29/74+34/57*I,n=14 3654317458636708 m001 (gamma+GAMMA(3/4))/(-exp(1/Pi)+QuadraticClass) 3654317460954838 r009 Im(z^3+c),c=-11/32+14/41*I,n=30 3654317463326493 a001 43133785636/161*3571^(15/17) 3654317470669983 m002 -6+Pi^(-6)+E^Pi/Pi^2 3654317472711295 s002 sum(A251424[n]/(pi^n+1),n=1..infinity) 3654317480183388 a001 139583862445/322*3571^(14/17) 3654317483913690 a001 64079/4181*233^(32/55) 3654317497040284 a001 32264490531/46*3571^(13/17) 3654317499832754 m001 (ln(5)+1/2)/(Pi^(1/2)+4) 3654317502857080 m001 KomornikLoreti*Tribonacci^GAMMA(19/24) 3654317508634687 m001 ln(2)/ln(10)/BesselJ(0,1)/OneNinth 3654317509792169 r005 Re(z^2+c),c=-35/82+19/40*I,n=41 3654317509939229 a007 Real Root Of 35*x^4-696*x^3-169*x^2-709*x+315 3654317513780052 r009 Im(z^3+c),c=-15/29+8/55*I,n=44 3654317513897180 a001 182717648081/161*3571^(12/17) 3654317519274524 m001 (2^(1/3))^2/Si(Pi)^2/ln(GAMMA(7/24))^2 3654317530754076 a001 591286729879/322*3571^(11/17) 3654317533784104 m001 BesselJ(0,1)*exp(MadelungNaCl)/Zeta(3) 3654317536551838 r005 Im(z^2+c),c=5/36+10/27*I,n=12 3654317547610972 a001 956722026041/322*3571^(10/17) 3654317552495319 r005 Re(z^2+c),c=-4/7+28/47*I,n=5 3654317557151174 m001 cos(Pi/5)/exp(Bloch)/sinh(1)^2 3654317564467868 a001 774004377960/161*3571^(9/17) 3654317567652858 m001 LambertW(1)-Zeta(5)*DuboisRaymond 3654317569028699 r005 Re(z^2+c),c=-7/6+56/237*I,n=4 3654317570131379 a007 Real Root Of -272*x^4+764*x^3+191*x^2+967*x+370 3654317573742760 b008 1/4+Pi+ArcCot[1+E] 3654317575840717 m001 MertensB2-exp(1/Pi)^Shi(1) 3654317580069032 a003 cos(Pi*13/87)-sin(Pi*25/66) 3654317581324765 a001 2504730781961/322*3571^(8/17) 3654317589093427 r005 Im(z^2+c),c=-77/78+20/59*I,n=7 3654317590446717 r005 Re(z^2+c),c=-21/44+12/49*I,n=19 3654317598181661 a001 4052739537881/322*3571^(7/17) 3654317604996603 m001 ZetaQ(4)^(BesselK(0,1)*FibonacciFactorial) 3654317606720993 a001 1292/161*817138163596^(17/19) 3654317606720993 a001 1292/161*14662949395604^(17/21) 3654317606720993 a001 1292/161*192900153618^(17/18) 3654317610037165 r009 Re(z^3+c),c=-7/94+34/49*I,n=25 3654317611046963 a007 Real Root Of 917*x^4-894*x^3+990*x^2+660*x+49 3654317615038557 a001 3278735159921/161*3571^(6/17) 3654317623708643 a007 Real Root Of -274*x^4-797*x^3+724*x^2+135*x+794 3654317626354757 r002 10th iterates of z^2 + 3654317628169238 a007 Real Root Of 667*x^4-268*x^3+382*x^2-717*x-338 3654317631406250 a007 Real Root Of 21*x^4+770*x^3+110*x^2+539*x-645 3654317631895454 a001 1515744265389/46*3571^(5/17) 3654317635194320 p001 sum((-1)^n/(588*n+271)/(32^n),n=0..infinity) 3654317638402163 a001 39603/2584*233^(32/55) 3654317674030404 a001 1527870219512112/4181 3654317676570846 a001 10182505537/161*9349^(18/19) 3654317677802414 b008 E^ArcSinh[2]*Sech[Pi] 3654317678771351 a001 32951280099/322*9349^(17/19) 3654317680971856 a001 53316291173/322*9349^(16/19) 3654317683172361 a001 43133785636/161*9349^(15/19) 3654317685372866 a001 139583862445/322*9349^(14/19) 3654317687573371 a001 32264490531/46*9349^(13/19) 3654317688885084 r002 17th iterates of z^2 + 3654317689773877 a001 182717648081/161*9349^(12/19) 3654317690689856 m005 (1/2*5^(1/2)-2/3)/(8/9*Zeta(3)+1/6) 3654317691189098 m001 (Totient+ZetaP(2))/(BesselI(1,1)-GAMMA(11/12)) 3654317691974382 a001 591286729879/322*9349^(11/19) 3654317694174887 a001 956722026041/322*9349^(10/19) 3654317696375392 a001 774004377960/161*9349^(9/19) 3654317698575897 a001 2504730781961/322*9349^(8/19) 3654317700210093 a001 6765/322*14662949395604^(7/9) 3654317700210093 a001 6765/322*505019158607^(7/8) 3654317700776402 a001 4052739537881/322*9349^(7/19) 3654317702976907 a001 3278735159921/161*9349^(6/19) 3654317705177412 a001 1515744265389/46*9349^(5/19) 3654317709212688 m002 Pi^2/2+Pi^3*Cosh[Pi]+ProductLog[Pi] 3654317710370473 a001 7778742049/322*24476^(20/21) 3654317710660946 a001 12586269025/322*24476^(19/21) 3654317710951419 a001 10182505537/161*24476^(6/7) 3654317711023094 h001 (3/10*exp(2)+1/4)/(6/7*exp(2)+5/12) 3654317711241892 a001 32951280099/322*24476^(17/21) 3654317711532366 a001 53316291173/322*24476^(16/21) 3654317711822839 a001 43133785636/161*24476^(5/7) 3654317712113312 a001 139583862445/322*24476^(2/3) 3654317712403785 a001 32264490531/46*24476^(13/21) 3654317712694259 a001 182717648081/161*24476^(4/7) 3654317712984732 a001 591286729879/322*24476^(11/21) 3654317713275205 a001 956722026041/322*24476^(10/21) 3654317713565678 a001 774004377960/161*24476^(3/7) 3654317713856152 a001 2504730781961/322*24476^(8/21) 3654317714146625 a001 4052739537881/322*24476^(1/3) 3654317714437098 a001 3278735159921/161*24476^(2/7) 3654317714727571 a001 1515744265389/46*24476^(5/21) 3654317715328663 a001 2971215073/322*64079^(22/23) 3654317715367357 a001 14930208*64079^(21/23) 3654317715406051 a001 7778742049/322*64079^(20/23) 3654317715444746 a001 12586269025/322*64079^(19/23) 3654317715483440 a001 10182505537/161*64079^(18/23) 3654317715522134 a001 32951280099/322*64079^(17/23) 3654317715560829 a001 53316291173/322*64079^(16/23) 3654317715599523 a001 43133785636/161*64079^(15/23) 3654317715638217 a001 139583862445/322*64079^(14/23) 3654317715676911 a001 32264490531/46*64079^(13/23) 3654317715715606 a001 182717648081/161*64079^(12/23) 3654317715754300 a001 591286729879/322*64079^(11/23) 3654317715792994 a001 956722026041/322*64079^(10/23) 3654317715831689 a001 774004377960/161*64079^(9/23) 3654317715840000 a001 144*45537549124^(15/17) 3654317715840000 a001 144*312119004989^(9/11) 3654317715840000 a001 144*14662949395604^(5/7) 3654317715840000 a001 144*192900153618^(5/6) 3654317715840000 a001 144*28143753123^(9/10) 3654317715840000 a001 144*10749957122^(15/16) 3654317715870383 a001 2504730781961/322*64079^(8/23) 3654317715909077 a001 4052739537881/322*64079^(7/23) 3654317715947772 a001 3278735159921/161*64079^(6/23) 3654317715986466 a001 1515744265389/46*64079^(5/23) 3654317716076062 a001 7778742049/322*167761^(4/5) 3654317716102031 a001 43133785636/161*167761^(3/5) 3654317716128000 a001 956722026041/322*167761^(2/5) 3654317716153968 a001 1515744265389/46*167761^(1/5) 3654317716163098 a001 567451585/161*439204^(8/9) 3654317716165203 a001 14930208*439204^(7/9) 3654317716167308 a001 10182505537/161*439204^(2/3) 3654317716169413 a001 43133785636/161*439204^(5/9) 3654317716171518 a001 182717648081/161*439204^(4/9) 3654317716173623 a001 774004377960/161*439204^(1/3) 3654317716175728 a001 3278735159921/161*439204^(2/9) 3654317716178882 a001 416020/161*2537720636^(13/15) 3654317716178882 a001 416020/161*45537549124^(13/17) 3654317716178882 a001 416020/161*14662949395604^(13/21) 3654317716178882 a001 416020/161*192900153618^(13/18) 3654317716178882 a001 416020/161*73681302247^(3/4) 3654317716178882 a001 416020/161*10749957122^(13/16) 3654317716178882 a001 416020/161*599074578^(13/14) 3654317716179884 a001 31622993/161*7881196^(10/11) 3654317716179889 a001 133957148/161*7881196^(9/11) 3654317716179895 a001 567451585/161*7881196^(8/11) 3654317716179898 a001 2971215073/322*7881196^(2/3) 3654317716179900 a001 14930208*7881196^(7/11) 3654317716179905 a001 10182505537/161*7881196^(6/11) 3654317716179911 a001 43133785636/161*7881196^(5/11) 3654317716179915 a001 5702887/322*2537720636^(7/9) 3654317716179915 a001 5702887/322*17393796001^(5/7) 3654317716179915 a001 5702887/322*312119004989^(7/11) 3654317716179915 a001 5702887/322*14662949395604^(5/9) 3654317716179915 a001 5702887/322*505019158607^(5/8) 3654317716179915 a001 5702887/322*28143753123^(7/10) 3654317716179915 a001 5702887/322*599074578^(5/6) 3654317716179915 a001 5702887/322*228826127^(7/8) 3654317716179916 a001 182717648081/161*7881196^(4/11) 3654317716179918 a001 591286729879/322*7881196^(1/3) 3654317716179921 a001 774004377960/161*7881196^(3/11) 3654317716179927 a001 3278735159921/161*7881196^(2/11) 3654317716179930 a001 31622993/161*20633239^(6/7) 3654317716179931 a001 165580141/322*20633239^(4/5) 3654317716179931 a001 701408733/322*20633239^(5/7) 3654317716179932 a001 14930208*20633239^(3/5) 3654317716179932 a001 7778742049/322*20633239^(4/7) 3654317716179934 a001 43133785636/161*20633239^(3/7) 3654317716179934 a001 139583862445/322*20633239^(2/5) 3654317716179934 a001 7465176/161*141422324^(11/13) 3654317716179934 a001 7465176/161*2537720636^(11/15) 3654317716179934 a001 7465176/161*45537549124^(11/17) 3654317716179934 a001 7465176/161*312119004989^(3/5) 3654317716179934 a001 7465176/161*14662949395604^(11/21) 3654317716179934 a001 7465176/161*192900153618^(11/18) 3654317716179934 a001 7465176/161*10749957122^(11/16) 3654317716179934 a001 7465176/161*1568397607^(3/4) 3654317716179934 a001 7465176/161*599074578^(11/14) 3654317716179935 a001 956722026041/322*20633239^(2/7) 3654317716179936 a001 4052739537881/322*20633239^(1/5) 3654317716179936 a001 1515744265389/46*20633239^(1/7) 3654317716179937 a001 39088169/322*9062201101803^(1/2) 3654317716179937 a001 7465176/161*33385282^(11/12) 3654317716179937 a001 133957148/161*141422324^(9/13) 3654317716179937 a001 433494437/322*141422324^(2/3) 3654317716179937 a001 567451585/161*141422324^(8/13) 3654317716179937 a001 14930208*141422324^(7/13) 3654317716179937 a001 10182505537/161*141422324^(6/13) 3654317716179937 a001 43133785636/161*141422324^(5/13) 3654317716179937 a001 14619165/46*1322157322203^(1/2) 3654317716179937 a001 32264490531/46*141422324^(1/3) 3654317716179937 a001 182717648081/161*141422324^(4/13) 3654317716179937 a001 774004377960/161*141422324^(3/13) 3654317716179937 a001 3278735159921/161*141422324^(2/13) 3654317716179937 a001 133957148/161*2537720636^(3/5) 3654317716179937 a001 133957148/161*45537549124^(9/17) 3654317716179937 a001 133957148/161*14662949395604^(3/7) 3654317716179937 a001 133957148/161*192900153618^(1/2) 3654317716179937 a001 133957148/161*10749957122^(9/16) 3654317716179937 a001 133957148/161*599074578^(9/14) 3654317716179937 a001 701408733/322*2537720636^(5/9) 3654317716179937 a001 701408733/322*312119004989^(5/11) 3654317716179937 a001 701408733/322*3461452808002^(5/12) 3654317716179937 a001 701408733/322*28143753123^(1/2) 3654317716179937 a001 14930208*2537720636^(7/15) 3654317716179937 a001 7778742049/322*2537720636^(4/9) 3654317716179937 a001 10182505537/161*2537720636^(2/5) 3654317716179937 a001 43133785636/161*2537720636^(1/3) 3654317716179937 a001 182717648081/161*2537720636^(4/15) 3654317716179937 a001 956722026041/322*2537720636^(2/9) 3654317716179937 a001 774004377960/161*2537720636^(1/5) 3654317716179937 a001 1836311903/322*4106118243^(1/2) 3654317716179937 a001 3278735159921/161*2537720636^(2/15) 3654317716179937 a001 1515744265389/46*2537720636^(1/9) 3654317716179937 a001 14930208*17393796001^(3/7) 3654317716179937 a001 14930208*45537549124^(7/17) 3654317716179937 a001 14930208*14662949395604^(1/3) 3654317716179937 a001 14930208*192900153618^(7/18) 3654317716179937 a001 14930208*10749957122^(7/16) 3654317716179937 a001 12586269025/322*817138163596^(1/3) 3654317716179937 a001 139583862445/322*17393796001^(2/7) 3654317716179937 a001 4052739537881/322*17393796001^(1/7) 3654317716179937 a001 32951280099/322*45537549124^(1/3) 3654317716179937 a001 43133785636/161*45537549124^(5/17) 3654317716179937 a001 182717648081/161*45537549124^(4/17) 3654317716179937 a001 774004377960/161*45537549124^(3/17) 3654317716179937 a001 3278735159921/161*45537549124^(2/17) 3654317716179937 a001 43133785636/161*312119004989^(3/11) 3654317716179937 a001 43133785636/161*14662949395604^(5/21) 3654317716179937 a001 43133785636/161*192900153618^(5/18) 3654317716179937 a001 1515744265389/46*312119004989^(1/11) 3654317716179937 a001 182717648081/161*817138163596^(4/19) 3654317716179937 a001 182717648081/161*14662949395604^(4/21) 3654317716179937 a001 774004377960/161*192900153618^(1/6) 3654317716179937 a001 182717648081/161*192900153618^(2/9) 3654317716179937 a001 139583862445/322*14662949395604^(2/9) 3654317716179937 a001 139583862445/322*505019158607^(1/4) 3654317716179937 a001 2504730781961/322*73681302247^(2/13) 3654317716179937 a001 182717648081/161*73681302247^(3/13) 3654317716179937 a001 53316291173/322*23725150497407^(1/4) 3654317716179937 a001 1515744265389/46*28143753123^(1/10) 3654317716179937 a001 53316291173/322*73681302247^(4/13) 3654317716179937 a001 956722026041/322*28143753123^(1/5) 3654317716179937 a001 10182505537/161*45537549124^(6/17) 3654317716179937 a001 43133785636/161*28143753123^(3/10) 3654317716179937 a001 10182505537/161*14662949395604^(2/7) 3654317716179937 a001 10182505537/161*192900153618^(1/3) 3654317716179937 a001 3278735159921/161*10749957122^(1/8) 3654317716179937 a001 2504730781961/322*10749957122^(1/6) 3654317716179937 a001 774004377960/161*10749957122^(3/16) 3654317716179937 a001 956722026041/322*10749957122^(5/24) 3654317716179937 a001 182717648081/161*10749957122^(1/4) 3654317716179937 a001 139583862445/322*10749957122^(7/24) 3654317716179937 a001 43133785636/161*10749957122^(5/16) 3654317716179937 a001 53316291173/322*10749957122^(1/3) 3654317716179937 a001 7778742049/322*23725150497407^(5/16) 3654317716179937 a001 7778742049/322*505019158607^(5/14) 3654317716179937 a001 7778742049/322*73681302247^(5/13) 3654317716179937 a001 10182505537/161*10749957122^(3/8) 3654317716179937 a001 7778742049/322*28143753123^(2/5) 3654317716179937 a001 7778742049/322*10749957122^(5/12) 3654317716179937 a001 3278735159921/161*4106118243^(3/23) 3654317716179937 a001 2504730781961/322*4106118243^(4/23) 3654317716179937 a001 956722026041/322*4106118243^(5/23) 3654317716179937 a001 182717648081/161*4106118243^(6/23) 3654317716179937 a001 139583862445/322*4106118243^(7/23) 3654317716179937 a001 53316291173/322*4106118243^(8/23) 3654317716179937 a001 2971215073/322*312119004989^(2/5) 3654317716179937 a001 10182505537/161*4106118243^(9/23) 3654317716179937 a001 2971215073/322*10749957122^(11/24) 3654317716179937 a001 7778742049/322*4106118243^(10/23) 3654317716179937 a001 2971215073/322*4106118243^(11/23) 3654317716179937 a001 3278735159921/161*1568397607^(3/22) 3654317716179937 a001 567451585/161*2537720636^(8/15) 3654317716179937 a001 2504730781961/322*1568397607^(2/11) 3654317716179937 a001 956722026041/322*1568397607^(5/22) 3654317716179937 a001 591286729879/322*1568397607^(1/4) 3654317716179937 a001 182717648081/161*1568397607^(3/11) 3654317716179937 a001 139583862445/322*1568397607^(7/22) 3654317716179937 a001 53316291173/322*1568397607^(4/11) 3654317716179937 a001 567451585/161*45537549124^(8/17) 3654317716179937 a001 567451585/161*14662949395604^(8/21) 3654317716179937 a001 567451585/161*192900153618^(4/9) 3654317716179937 a001 567451585/161*73681302247^(6/13) 3654317716179937 a001 567451585/161*10749957122^(1/2) 3654317716179937 a001 10182505537/161*1568397607^(9/22) 3654317716179937 a001 567451585/161*4106118243^(12/23) 3654317716179937 a001 7778742049/322*1568397607^(5/11) 3654317716179937 a001 2971215073/322*1568397607^(1/2) 3654317716179937 a001 567451585/161*1568397607^(6/11) 3654317716179937 a001 3278735159921/161*599074578^(1/7) 3654317716179937 a001 4052739537881/322*599074578^(1/6) 3654317716179937 a001 2504730781961/322*599074578^(4/21) 3654317716179937 a001 774004377960/161*599074578^(3/14) 3654317716179937 a001 956722026041/322*599074578^(5/21) 3654317716179937 a001 182717648081/161*599074578^(2/7) 3654317716179937 a001 139583862445/322*599074578^(1/3) 3654317716179937 a001 43133785636/161*599074578^(5/14) 3654317716179937 a001 53316291173/322*599074578^(8/21) 3654317716179937 a001 433494437/322*73681302247^(1/2) 3654317716179937 a001 433494437/322*10749957122^(13/24) 3654317716179937 a001 433494437/322*4106118243^(13/23) 3654317716179937 a001 10182505537/161*599074578^(3/7) 3654317716179937 a001 433494437/322*1568397607^(13/22) 3654317716179937 a001 7778742049/322*599074578^(10/21) 3654317716179937 a001 14930208*599074578^(1/2) 3654317716179937 a001 2971215073/322*599074578^(11/21) 3654317716179937 a001 567451585/161*599074578^(4/7) 3654317716179937 a001 1515744265389/46*228826127^(1/8) 3654317716179937 a001 433494437/322*599074578^(13/21) 3654317716179937 a001 3278735159921/161*228826127^(3/20) 3654317716179937 a001 2504730781961/322*228826127^(1/5) 3654317716179937 a001 956722026041/322*228826127^(1/4) 3654317716179937 a001 182717648081/161*228826127^(3/10) 3654317716179937 a001 139583862445/322*228826127^(7/20) 3654317716179937 a001 43133785636/161*228826127^(3/8) 3654317716179937 a001 165580141/322*17393796001^(4/7) 3654317716179937 a001 165580141/322*14662949395604^(4/9) 3654317716179937 a001 165580141/322*505019158607^(1/2) 3654317716179937 a001 165580141/322*73681302247^(7/13) 3654317716179937 a001 165580141/322*10749957122^(7/12) 3654317716179937 a001 165580141/322*4106118243^(14/23) 3654317716179937 a001 165580141/322*1568397607^(7/11) 3654317716179937 a001 53316291173/322*228826127^(2/5) 3654317716179937 a001 10182505537/161*228826127^(9/20) 3654317716179937 a001 165580141/322*599074578^(2/3) 3654317716179937 a001 7778742049/322*228826127^(1/2) 3654317716179937 a001 2971215073/322*228826127^(11/20) 3654317716179937 a001 701408733/322*228826127^(5/8) 3654317716179937 a001 31622993/161*141422324^(10/13) 3654317716179937 a001 567451585/161*228826127^(3/5) 3654317716179937 a001 433494437/322*228826127^(13/20) 3654317716179937 a001 165580141/322*228826127^(7/10) 3654317716179937 a001 3278735159921/161*87403803^(3/19) 3654317716179937 a001 2504730781961/322*87403803^(4/19) 3654317716179938 a001 956722026041/322*87403803^(5/19) 3654317716179938 a001 182717648081/161*87403803^(6/19) 3654317716179938 a001 139583862445/322*87403803^(7/19) 3654317716179938 a001 31622993/161*2537720636^(2/3) 3654317716179938 a001 31622993/161*45537549124^(10/17) 3654317716179938 a001 31622993/161*312119004989^(6/11) 3654317716179938 a001 31622993/161*14662949395604^(10/21) 3654317716179938 a001 31622993/161*192900153618^(5/9) 3654317716179938 a001 31622993/161*28143753123^(3/5) 3654317716179938 a001 31622993/161*10749957122^(5/8) 3654317716179938 a001 31622993/161*4106118243^(15/23) 3654317716179938 a001 31622993/161*1568397607^(15/22) 3654317716179938 a001 31622993/161*599074578^(5/7) 3654317716179938 a001 53316291173/322*87403803^(8/19) 3654317716179938 a001 10182505537/161*87403803^(9/19) 3654317716179938 a001 31622993/161*228826127^(3/4) 3654317716179938 a001 12586269025/322*87403803^(1/2) 3654317716179938 a001 7778742049/322*87403803^(10/19) 3654317716179938 a001 2971215073/322*87403803^(11/19) 3654317716179938 a001 567451585/161*87403803^(12/19) 3654317716179938 a001 433494437/322*87403803^(13/19) 3654317716179938 a001 165580141/322*87403803^(14/19) 3654317716179938 a001 3278735159921/161*33385282^(1/6) 3654317716179938 a001 31622993/161*87403803^(15/19) 3654317716179938 a001 2504730781961/322*33385282^(2/9) 3654317716179938 a001 774004377960/161*33385282^(1/4) 3654317716179938 a001 956722026041/322*33385282^(5/18) 3654317716179938 a001 182717648081/161*33385282^(1/3) 3654317716179939 a001 24157817/322*23725150497407^(1/2) 3654317716179939 a001 24157817/322*73681302247^(8/13) 3654317716179939 a001 24157817/322*10749957122^(2/3) 3654317716179939 a001 24157817/322*4106118243^(16/23) 3654317716179939 a001 24157817/322*1568397607^(8/11) 3654317716179939 a001 24157817/322*599074578^(16/21) 3654317716179939 a001 139583862445/322*33385282^(7/18) 3654317716179939 a001 24157817/322*228826127^(4/5) 3654317716179939 a001 43133785636/161*33385282^(5/12) 3654317716179939 a001 53316291173/322*33385282^(4/9) 3654317716179939 a001 10182505537/161*33385282^(1/2) 3654317716179939 a001 24157817/322*87403803^(16/19) 3654317716179939 a001 7778742049/322*33385282^(5/9) 3654317716179939 a001 14930208*33385282^(7/12) 3654317716179939 a001 2971215073/322*33385282^(11/18) 3654317716179940 a001 567451585/161*33385282^(2/3) 3654317716179940 a001 433494437/322*33385282^(13/18) 3654317716179940 a001 133957148/161*33385282^(3/4) 3654317716179940 a001 165580141/322*33385282^(7/9) 3654317716179940 a001 31622993/161*33385282^(5/6) 3654317716179941 a001 3278735159921/161*12752043^(3/17) 3654317716179942 a001 24157817/322*33385282^(8/9) 3654317716179943 a001 2504730781961/322*12752043^(4/17) 3654317716179944 a001 956722026041/322*12752043^(5/17) 3654317716179945 a001 182717648081/161*12752043^(6/17) 3654317716179946 a001 9227465/322*45537549124^(2/3) 3654317716179946 a001 9227465/322*10749957122^(17/24) 3654317716179946 a001 9227465/322*4106118243^(17/23) 3654317716179946 a001 9227465/322*1568397607^(17/22) 3654317716179946 a001 9227465/322*599074578^(17/21) 3654317716179946 a001 9227465/322*228826127^(17/20) 3654317716179946 a001 9227465/322*87403803^(17/19) 3654317716179947 a001 139583862445/322*12752043^(7/17) 3654317716179948 a001 53316291173/322*12752043^(8/17) 3654317716179949 a001 32951280099/322*12752043^(1/2) 3654317716179949 a001 9227465/322*33385282^(17/18) 3654317716179949 a001 10182505537/161*12752043^(9/17) 3654317716179951 a001 7778742049/322*12752043^(10/17) 3654317716179952 a001 2971215073/322*12752043^(11/17) 3654317716179953 a001 567451585/161*12752043^(12/17) 3654317716179955 a001 433494437/322*12752043^(13/17) 3654317716179956 a001 165580141/322*12752043^(14/17) 3654317716179957 a001 31622993/161*12752043^(15/17) 3654317716179960 a001 24157817/322*12752043^(16/17) 3654317716179966 a001 3278735159921/161*4870847^(3/16) 3654317716179976 a001 2504730781961/322*4870847^(1/4) 3654317716179986 a001 956722026041/322*4870847^(5/16) 3654317716179995 a001 182717648081/161*4870847^(3/8) 3654317716179996 a001 1762289/161*141422324^(12/13) 3654317716179996 a001 1762289/161*2537720636^(4/5) 3654317716179996 a001 1762289/161*45537549124^(12/17) 3654317716179996 a001 1762289/161*14662949395604^(4/7) 3654317716179996 a001 1762289/161*505019158607^(9/14) 3654317716179996 a001 1762289/161*192900153618^(2/3) 3654317716179996 a001 1762289/161*73681302247^(9/13) 3654317716179996 a001 1762289/161*10749957122^(3/4) 3654317716179996 a001 1762289/161*4106118243^(18/23) 3654317716179996 a001 1762289/161*1568397607^(9/11) 3654317716179996 a001 1762289/161*599074578^(6/7) 3654317716179996 a001 1762289/161*228826127^(9/10) 3654317716179997 a001 1762289/161*87403803^(18/19) 3654317716180005 a001 139583862445/322*4870847^(7/16) 3654317716180014 a001 53316291173/322*4870847^(1/2) 3654317716180024 a001 10182505537/161*4870847^(9/16) 3654317716180034 a001 7778742049/322*4870847^(5/8) 3654317716180043 a001 2971215073/322*4870847^(11/16) 3654317716180053 a001 567451585/161*4870847^(3/4) 3654317716180063 a001 433494437/322*4870847^(13/16) 3654317716180072 a001 165580141/322*4870847^(7/8) 3654317716180082 a001 31622993/161*4870847^(15/16) 3654317716180113 a001 1515744265389/46*1860498^(1/6) 3654317716180149 a001 3278735159921/161*1860498^(1/5) 3654317716180219 a001 2504730781961/322*1860498^(4/15) 3654317716180254 a001 774004377960/161*1860498^(3/10) 3654317716180289 a001 956722026041/322*1860498^(1/3) 3654317716180341 a001 1346269/322*817138163596^(2/3) 3654317716180341 a001 1346269/322*10749957122^(19/24) 3654317716180341 a001 1346269/322*4106118243^(19/23) 3654317716180341 a001 1346269/322*1568397607^(19/22) 3654317716180341 a001 1346269/322*599074578^(19/21) 3654317716180341 a001 1346269/322*228826127^(19/20) 3654317716180360 a001 182717648081/161*1860498^(2/5) 3654317716180430 a001 139583862445/322*1860498^(7/15) 3654317716180465 a001 43133785636/161*1860498^(1/2) 3654317716180500 a001 53316291173/322*1860498^(8/15) 3654317716180571 a001 10182505537/161*1860498^(3/5) 3654317716180641 a001 7778742049/322*1860498^(2/3) 3654317716180676 a001 14930208*1860498^(7/10) 3654317716180712 a001 2971215073/322*1860498^(11/15) 3654317716180782 a001 567451585/161*1860498^(4/5) 3654317716180817 a001 701408733/322*1860498^(5/6) 3654317716180852 a001 433494437/322*1860498^(13/15) 3654317716180888 a001 133957148/161*1860498^(9/10) 3654317716180923 a001 165580141/322*1860498^(14/15) 3654317716181488 a001 3278735159921/161*710647^(3/14) 3654317716181746 a001 4052739537881/322*710647^(1/4) 3654317716182005 a001 2504730781961/322*710647^(2/7) 3654317716182522 a001 956722026041/322*710647^(5/14) 3654317716182701 a001 514229/322*2537720636^(8/9) 3654317716182701 a001 514229/322*312119004989^(8/11) 3654317716182701 a001 514229/322*23725150497407^(5/8) 3654317716182701 a001 514229/322*73681302247^(10/13) 3654317716182701 a001 514229/322*28143753123^(4/5) 3654317716182701 a001 514229/322*10749957122^(5/6) 3654317716182701 a001 514229/322*4106118243^(20/23) 3654317716182701 a001 514229/322*1568397607^(10/11) 3654317716182701 a001 514229/322*599074578^(20/21) 3654317716183039 a001 182717648081/161*710647^(3/7) 3654317716183555 a001 139583862445/322*710647^(1/2) 3654317716184072 a001 53316291173/322*710647^(4/7) 3654317716184589 a001 10182505537/161*710647^(9/14) 3654317716185106 a001 7778742049/322*710647^(5/7) 3654317716185364 a001 14930208*710647^(3/4) 3654317716185623 a001 2971215073/322*710647^(11/14) 3654317716186140 a001 567451585/161*710647^(6/7) 3654317716186657 a001 433494437/322*710647^(13/14) 3654317716191383 a001 3278735159921/161*271443^(3/13) 3654317716195198 a001 2504730781961/322*271443^(4/13) 3654317716198881 a001 98209/161*2537720636^(14/15) 3654317716198881 a001 98209/161*17393796001^(6/7) 3654317716198881 a001 98209/161*45537549124^(14/17) 3654317716198881 a001 98209/161*817138163596^(14/19) 3654317716198881 a001 98209/161*14662949395604^(2/3) 3654317716198881 a001 98209/161*505019158607^(3/4) 3654317716198881 a001 98209/161*192900153618^(7/9) 3654317716198881 a001 98209/161*10749957122^(7/8) 3654317716198881 a001 98209/161*4106118243^(21/23) 3654317716198881 a001 98209/161*1568397607^(21/22) 3654317716199013 a001 956722026041/322*271443^(5/13) 3654317716202828 a001 182717648081/161*271443^(6/13) 3654317716204736 a001 32264490531/46*271443^(1/2) 3654317716206643 a001 139583862445/322*271443^(7/13) 3654317716210458 a001 53316291173/322*271443^(8/13) 3654317716214273 a001 10182505537/161*271443^(9/13) 3654317716218088 a001 7778742049/322*271443^(10/13) 3654317716221903 a001 2971215073/322*271443^(11/13) 3654317716225719 a001 567451585/161*271443^(12/13) 3654317716250758 a001 1515744265389/46*103682^(5/24) 3654317716264922 a001 3278735159921/161*103682^(1/4) 3654317716279086 a001 4052739537881/322*103682^(7/24) 3654317716293250 a001 2504730781961/322*103682^(1/3) 3654317716307414 a001 774004377960/161*103682^(3/8) 3654317716309782 a001 75025/322*312119004989^(4/5) 3654317716309782 a001 75025/322*23725150497407^(11/16) 3654317716309782 a001 75025/322*73681302247^(11/13) 3654317716309782 a001 75025/322*10749957122^(11/12) 3654317716309782 a001 75025/322*4106118243^(22/23) 3654317716321578 a001 956722026041/322*103682^(5/12) 3654317716335742 a001 591286729879/322*103682^(11/24) 3654317716349906 a001 182717648081/161*103682^(1/2) 3654317716364070 a001 32264490531/46*103682^(13/24) 3654317716378234 a001 139583862445/322*103682^(7/12) 3654317716392399 a001 43133785636/161*103682^(5/8) 3654317716406563 a001 53316291173/322*103682^(2/3) 3654317716420727 a001 32951280099/322*103682^(17/24) 3654317716434891 a001 10182505537/161*103682^(3/4) 3654317716449055 a001 12586269025/322*103682^(19/24) 3654317716463219 a001 7778742049/322*103682^(5/6) 3654317716477383 a001 14930208*103682^(7/8) 3654317716491547 a001 2971215073/322*103682^(11/12) 3654317716505711 a001 1836311903/322*103682^(23/24) 3654317716709476 a001 1515744265389/46*39603^(5/22) 3654317716815383 a001 3278735159921/161*39603^(3/11) 3654317716921291 a001 4052739537881/322*39603^(7/22) 3654317717027199 a001 2504730781961/322*39603^(4/11) 3654317717069906 a001 28657/322*10749957122^(23/24) 3654317717133107 a001 774004377960/161*39603^(9/22) 3654317717239014 a001 956722026041/322*39603^(5/11) 3654317717344922 a001 591286729879/322*39603^(1/2) 3654317717450830 a001 182717648081/161*39603^(6/11) 3654317717556737 a001 32264490531/46*39603^(13/22) 3654317717662645 a001 139583862445/322*39603^(7/11) 3654317717768553 a001 43133785636/161*39603^(15/22) 3654317717874460 a001 53316291173/322*39603^(8/11) 3654317717980368 a001 32951280099/322*39603^(17/22) 3654317718086276 a001 10182505537/161*39603^(9/11) 3654317718192183 a001 12586269025/322*39603^(19/22) 3654317718298091 a001 7778742049/322*39603^(10/11) 3654317718403999 a001 14930208*39603^(21/22) 3654317720172399 a001 1515744265389/46*15127^(1/4) 3654317720970891 a001 3278735159921/161*15127^(3/10) 3654317721769383 a001 4052739537881/322*15127^(7/20) 3654317722279875 a001 5473/161*45537549124^(16/17) 3654317722279875 a001 5473/161*14662949395604^(16/21) 3654317722279875 a001 5473/161*192900153618^(8/9) 3654317722279875 a001 5473/161*73681302247^(12/13) 3654317722567875 a001 2504730781961/322*15127^(2/5) 3654317723366368 a001 774004377960/161*15127^(9/20) 3654317724164860 a001 956722026041/322*15127^(1/2) 3654317724963352 a001 591286729879/322*15127^(11/20) 3654317725761844 a001 182717648081/161*15127^(3/5) 3654317726560336 a001 32264490531/46*15127^(13/20) 3654317727358829 a001 139583862445/322*15127^(7/10) 3654317727467917 l006 ln(209/8076) 3654317728157321 a001 43133785636/161*15127^(3/4) 3654317728651089 r009 Re(z^3+c),c=-41/110+5/34*I,n=12 3654317728955813 a001 53316291173/322*15127^(4/5) 3654317729544243 r005 Re(z^2+c),c=-21/46+15/43*I,n=30 3654317729754305 a001 32951280099/322*15127^(17/20) 3654317730552798 a001 10182505537/161*15127^(9/10) 3654317731351290 a001 12586269025/322*15127^(19/20) 3654317732485873 m001 (Porter+Tribonacci)/(exp(1/Pi)-BesselI(0,2)) 3654317744105276 m005 (2/3*2^(1/2)+1/6)/(5^(1/2)+4/5) 3654317746585199 a001 1515744265389/46*5778^(5/18) 3654317752628397 r009 Im(z^3+c),c=-11/32+14/41*I,n=33 3654317752666252 a001 3278735159921/161*5778^(1/3) 3654317757989534 a001 4181/322*312119004989^(10/11) 3654317757989534 a001 4181/322*3461452808002^(5/6) 3654317758747304 a001 4052739537881/322*5778^(7/18) 3654317762385287 m005 (1/2*5^(1/2)+1/11)/(Pi+1/6) 3654317764828357 a001 2504730781961/322*5778^(4/9) 3654317770909409 a001 774004377960/161*5778^(1/2) 3654317776990461 a001 956722026041/322*5778^(5/9) 3654317777762226 r005 Re(z^2+c),c=-59/122+7/31*I,n=20 3654317783071514 a001 591286729879/322*5778^(11/18) 3654317788781795 a005 (1/cos(19/207*Pi))^413 3654317789152566 a001 182717648081/161*5778^(2/3) 3654317795233619 a001 32264490531/46*5778^(13/18) 3654317801314671 a001 139583862445/322*5778^(7/9) 3654317807395724 a001 43133785636/161*5778^(5/6) 3654317813476776 a001 53316291173/322*5778^(8/9) 3654317815466066 r009 Im(z^3+c),c=-11/32+14/41*I,n=36 3654317819502388 r009 Im(z^3+c),c=-11/32+14/41*I,n=37 3654317819557829 a001 32951280099/322*5778^(17/18) 3654317822190475 r009 Im(z^3+c),c=-11/32+14/41*I,n=34 3654317823358658 r009 Im(z^3+c),c=-11/32+14/41*I,n=40 3654317824908335 r009 Im(z^3+c),c=-11/32+14/41*I,n=43 3654317825104976 r009 Im(z^3+c),c=-11/32+14/41*I,n=39 3654317825301343 r009 Im(z^3+c),c=-11/32+14/41*I,n=46 3654317825362475 r009 Im(z^3+c),c=-11/32+14/41*I,n=47 3654317825372057 r009 Im(z^3+c),c=-11/32+14/41*I,n=50 3654317825374406 r009 Im(z^3+c),c=-11/32+14/41*I,n=49 3654317825379393 r009 Im(z^3+c),c=-11/32+14/41*I,n=53 3654317825381657 r009 Im(z^3+c),c=-11/32+14/41*I,n=56 3654317825382152 r009 Im(z^3+c),c=-11/32+14/41*I,n=59 3654317825382188 r009 Im(z^3+c),c=-11/32+14/41*I,n=60 3654317825382217 r009 Im(z^3+c),c=-11/32+14/41*I,n=63 3654317825382218 r009 Im(z^3+c),c=-11/32+14/41*I,n=57 3654317825382230 r009 Im(z^3+c),c=-11/32+14/41*I,n=62 3654317825382240 r009 Im(z^3+c),c=-11/32+14/41*I,n=64 3654317825382279 r009 Im(z^3+c),c=-11/32+14/41*I,n=61 3654317825382446 r009 Im(z^3+c),c=-11/32+14/41*I,n=58 3654317825382920 r009 Im(z^3+c),c=-11/32+14/41*I,n=55 3654317825383063 r009 Im(z^3+c),c=-11/32+14/41*I,n=54 3654317825383106 r009 Im(z^3+c),c=-11/32+14/41*I,n=52 3654317825389149 r009 Im(z^3+c),c=-11/32+14/41*I,n=51 3654317825419291 r009 Im(z^3+c),c=-11/32+14/41*I,n=48 3654317825444046 r009 Im(z^3+c),c=-11/32+14/41*I,n=44 3654317825527784 r009 Im(z^3+c),c=-11/32+14/41*I,n=45 3654317825741306 r009 Im(z^3+c),c=-11/32+14/41*I,n=42 3654317826297429 r009 Im(z^3+c),c=-11/32+14/41*I,n=41 3654317827485253 m001 (-GAMMA(7/12)+Porter)/(5^(1/2)+ln(gamma)) 3654317831318566 r009 Im(z^3+c),c=-11/32+14/41*I,n=38 3654317852838079 r009 Im(z^3+c),c=-11/32+14/41*I,n=35 3654317863960278 r005 Im(z^2+c),c=-79/102+16/57*I,n=6 3654317866199734 r005 Re(z^2+c),c=-19/26+23/56*I,n=2 3654317867903415 m001 (Artin-FibonacciFactorial)/(Kac-Thue) 3654317872370919 r005 Im(z^2+c),c=5/17+5/23*I,n=20 3654317887972261 a001 9349/377*28657^(18/37) 3654317893334985 l006 ln(5105/7357) 3654317896325446 m006 (1/6*Pi^2+4)/(ln(Pi)+2/5) 3654317901522317 a007 Real Root Of -60*x^4+578*x^3+403*x^2+178*x-146 3654317909579467 r005 Im(z^2+c),c=15/98+20/57*I,n=37 3654317911855475 m001 (Otter+RenyiParking)/(BesselI(1,2)-gamma) 3654317914025956 p003 LerchPhi(1/64,1,227/82) 3654317915763797 r009 Im(z^3+c),c=-11/32+14/41*I,n=32 3654317926387205 r009 Im(z^3+c),c=-11/32+14/41*I,n=31 3654317927276536 r009 Re(z^3+c),c=-19/44+13/57*I,n=16 3654317950630785 a001 1515744265389/46*2207^(5/16) 3654317952858024 r009 Im(z^3+c),c=-11/32+14/41*I,n=29 3654317972530697 a007 Real Root Of -79*x^4-92*x^3+507*x^2-674*x+365 3654317973819625 m002 -Pi^4/2-Log[Pi]+4*Sinh[Pi] 3654317987783561 r005 Im(z^2+c),c=15/122+22/59*I,n=21 3654317989096964 r005 Re(z^2+c),c=-35/74+12/43*I,n=50 3654317997520956 a001 3278735159921/161*2207^(3/8) 3654318002747173 a001 1597/322*23725150497407^(13/16) 3654318002747173 a001 1597/322*505019158607^(13/14) 3654318002839440 s001 sum(exp(-Pi/3)^(n-1)*A011862[n],n=1..infinity) 3654318008219860 r005 Im(z^2+c),c=9/34+17/52*I,n=10 3654318009527257 r005 Im(z^2+c),c=9/94+28/47*I,n=35 3654318015583067 m008 (2*Pi^4+5/6)/(1/4*Pi-1/4) 3654318017678284 r005 Re(z^2+c),c=2/17+31/53*I,n=61 3654318031169296 m005 (1/2*3^(1/2)-3/8)/(4/9*Catalan-3/11) 3654318041385637 r009 Re(z^3+c),c=-1/18+20/41*I,n=26 3654318044411128 a001 4052739537881/322*2207^(7/16) 3654318060168277 m001 BesselI(0,2)+GAMMA(13/24)^Cahen 3654318060319658 m005 (1/3*Catalan-1/4)/(2/7*5^(1/2)+7/8) 3654318066537087 a001 726103*11^(31/46) 3654318088646443 a008 Real Root of x^4-10*x^2-44*x+116 3654318091301300 a001 2504730781961/322*2207^(1/2) 3654318124760133 m001 exp(gamma)/(Zeta(5)+log(gamma)) 3654318125363061 r005 Im(z^2+c),c=-43/34+20/111*I,n=13 3654318137036862 r005 Re(z^2+c),c=-19/42+13/36*I,n=25 3654318138191473 a001 774004377960/161*2207^(9/16) 3654318139880341 a007 Real Root Of -265*x^4-728*x^3+902*x^2+17*x-252 3654318140085983 r002 3th iterates of z^2 + 3654318145447297 a005 (1/cos(8/203*Pi))^768 3654318158967122 b008 32+ArcCosh[47] 3654318164890155 a007 Real Root Of -87*x^4+290*x^3-860*x^2+201*x+204 3654318165467682 h001 (-7*exp(8)-4)/(-8*exp(2)+2) 3654318170239549 r005 Re(z^2+c),c=-7/15+19/41*I,n=32 3654318173295479 r005 Im(z^2+c),c=25/98+11/42*I,n=28 3654318177364473 a007 Real Root Of -x^4-368*x^3-941*x^2-913*x+811 3654318178623220 m001 (Pi^(1/2)+Porter)/(Trott2nd+Thue) 3654318180562201 a007 Real Root Of -207*x^4-571*x^3+560*x^2-320*x+402 3654318185081647 a001 956722026041/322*2207^(5/8) 3654318200634048 a007 Real Root Of 71*x^4+437*x^3+802*x^2+634*x+271 3654318202869793 m001 (Trott+ZetaP(4))/(GAMMA(11/12)-Riemann3rdZero) 3654318226347795 m001 ln(3)*GAMMA(5/12)+ln(2+sqrt(3)) 3654318227729458 r005 Im(z^2+c),c=-15/86+15/28*I,n=22 3654318231971821 a001 591286729879/322*2207^(11/16) 3654318242116912 m008 (5*Pi^6-3/5)/(2/5*Pi^3+3/4) 3654318242665364 h001 (-5*exp(3/2)-9)/(-4*exp(1/2)-2) 3654318259962541 m001 1/GAMMA(1/12)/Bloch^2*exp(sqrt(5)) 3654318260804259 r005 Im(z^2+c),c=9/98+15/38*I,n=45 3654318264668106 a007 Real Root Of -781*x^4-15*x^3-916*x^2+420*x+289 3654318278861996 a001 182717648081/161*2207^(3/4) 3654318286392440 m001 1/GAMMA(3/4)^2/ln(PisotVijayaraghavan)*cosh(1) 3654318292825979 a001 2161/141*233^(32/55) 3654318292942242 m001 (GAMMA(19/24)+GAMMA(23/24))/BesselK(1,1) 3654318296545258 r005 Re(z^2+c),c=-43/90+7/48*I,n=8 3654318302991431 r005 Im(z^2+c),c=-5/24+11/25*I,n=4 3654318321591081 r005 Im(z^2+c),c=-21/118+29/53*I,n=53 3654318323815039 r005 Re(z^2+c),c=-55/114+12/53*I,n=25 3654318325752171 a001 32264490531/46*2207^(13/16) 3654318328878222 m001 FeigenbaumB^GaussKuzminWirsing/sin(1/12*Pi) 3654318329682364 m001 (ln(3)+Ei(1))/(Zeta(1/2)+BesselI(0,2)) 3654318356571787 a007 Real Root Of -156*x^4-457*x^3+475*x^2+390*x+600 3654318358156874 a007 Real Root Of -985*x^4-160*x^3-253*x^2+305*x+155 3654318358512829 l006 ln(2922/4211) 3654318372642347 a001 139583862445/322*2207^(7/8) 3654318393373554 m006 (5/Pi+2/5)/(2*Pi-5/6) 3654318394882663 a007 Real Root Of -686*x^4+56*x^3-986*x^2+354*x+276 3654318397661137 m001 (BesselK(0,1)-FransenRobinson)/(Kac+Trott2nd) 3654318401629577 m002 -4-Pi^5+Pi^5/ProductLog[Pi]-Sinh[Pi] 3654318406951373 m001 1/ln(Trott)^2*FibonacciFactorial/GAMMA(13/24) 3654318409911858 a007 Real Root Of 869*x^4-810*x^3-352*x^2-840*x+378 3654318412673443 a007 Real Root Of -105*x^4-465*x^3-181*x^2+228*x-717 3654318419532524 a001 43133785636/161*2207^(15/16) 3654318429908968 h002 exp(19^(12/11)+7^(3/10)) 3654318429908968 h007 exp(19^(12/11)+7^(3/10)) 3654318443596498 m001 (ln(3)*ln(5)+exp(sqrt(2)))/ln(5) 3654318453215855 r009 Im(z^3+c),c=-39/122+26/57*I,n=3 3654318455842211 l006 ln(170/6569) 3654318466082917 a001 120227077534128/329 3654318479844720 r005 Im(z^2+c),c=-1+7/191*I,n=8 3654318500289897 b008 4-23*ArcCosh[3] 3654318500650754 r009 Im(z^3+c),c=-43/90+4/57*I,n=32 3654318509854765 m001 exp(-Pi)/(ln(2)/ln(10)+QuadraticClass) 3654318543007313 m001 (GlaisherKinkelin-Stephens)/(ln(3)+GaussAGM) 3654318570691221 a001 123/75025*13^(5/16) 3654318572989753 r009 Re(z^3+c),c=-7/15+22/53*I,n=11 3654318579369248 m001 GAMMA(13/24)/exp(GAMMA(1/4))^2*Pi 3654318600315687 m005 (1/2*exp(1)-7/9)/(4/11*5^(1/2)+7/9) 3654318619198353 r005 Im(z^2+c),c=-17/78+32/57*I,n=44 3654318620287204 r009 Re(z^3+c),c=-37/70+7/45*I,n=49 3654318620951297 v003 sum((n^3-3*n^2+9*n+1)*n!/n^n,n=1..infinity) 3654318623084996 a007 Real Root Of -922*x^4+208*x^3-85*x^2+791*x+327 3654318625207496 h001 (3/11*exp(2)+5/7)/(2/9*exp(1)+1/7) 3654318643413886 m001 FeigenbaumB^2/ln(MertensB1)/Riemann1stZero 3654318646335931 r009 Re(z^3+c),c=-12/25+13/45*I,n=61 3654318650097440 r005 Re(z^2+c),c=-9/7+1/55*I,n=18 3654318669426554 r005 Re(z^2+c),c=-41/90+13/36*I,n=48 3654318672779046 m001 1/Zeta(1/2)/LambertW(1)^2*exp(cos(1)) 3654318673823685 a005 (1/cos(8/185*Pi))^140 3654318675000507 m005 (1/2*5^(1/2)-1)/(2/5*5^(1/2)-4/7) 3654318675581732 m005 (1/2*Zeta(3)+1)/(-17/99+3/11*5^(1/2)) 3654318686036674 s002 sum(A031648[n]/((exp(n)+1)*n),n=1..infinity) 3654318695707320 r009 Im(z^3+c),c=-11/32+14/41*I,n=28 3654318697975307 r002 61th iterates of z^2 + 3654318699302038 r009 Re(z^3+c),c=-21/40+15/46*I,n=63 3654318711012927 m009 (24*Catalan+3*Pi^2+4/5)/(1/8*Pi^2+1/5) 3654318715966540 m001 (exp(1)+Backhouse)/(MertensB2+OneNinth) 3654318719250001 l006 ln(6583/9487) 3654318722381149 p004 log(31253/31139) 3654318729320673 r009 Re(z^3+c),c=-33/74+11/45*I,n=7 3654318731691301 m001 (PlouffeB+ReciprocalLucas)/(2^(1/3)-Lehmer) 3654318742655160 m007 (-1/4*gamma-1/2*ln(2)-3)/(-1/2*gamma-2/3) 3654318755191510 r005 Im(z^2+c),c=25/82+9/44*I,n=41 3654318769578392 r005 Im(z^2+c),c=-5/74+27/55*I,n=41 3654318800630700 r005 Re(z^2+c),c=-47/74+5/46*I,n=6 3654318808086235 a007 Real Root Of 358*x^4-586*x^3-777*x^2-958*x-34 3654318822334913 a001 439204/1597*7778742049^(6/19) 3654318822353465 a001 7881196/1597*832040^(6/19) 3654318826955909 r005 Im(z^2+c),c=-23/58+1/17*I,n=21 3654318829800993 m005 (1/3*exp(1)-1/2)/(33/80+5/16*5^(1/2)) 3654318830331329 a003 sin(Pi*10/71)-sin(Pi*2/13) 3654318838363155 r009 Re(z^3+c),c=-10/23+13/56*I,n=34 3654318845948566 r005 Re(z^2+c),c=-37/78+9/64*I,n=5 3654318847181229 m001 (gamma*Champernowne+Riemann2ndZero)/gamma 3654318848716450 m001 (ZetaP(2)-ZetaQ(4))/(Artin+Thue) 3654318860584015 r005 Re(z^2+c),c=-41/86+8/31*I,n=44 3654318868774541 m008 (3/4*Pi^4+2)/(2*Pi^2+4/5) 3654318874278478 m005 (1/2*5^(1/2)+5/11)/(6/7*Zeta(3)-3/5) 3654318885095446 r005 Re(z^2+c),c=-31/98+20/49*I,n=4 3654318905052359 a001 2/233*1836311903^(14/17) 3654318910111206 r009 Re(z^3+c),c=-5/12+12/25*I,n=4 3654318911793160 m001 (gamma(1)+GAMMA(13/24))/(MertensB3+Otter) 3654318916456232 r005 Re(z^2+c),c=-13/14+32/181*I,n=44 3654318921818703 r005 Im(z^2+c),c=-24/23+17/64*I,n=4 3654318945898398 m006 (ln(Pi)-1/6)/(5*exp(2*Pi)-1) 3654318977343485 m001 (GAMMA(23/24)+ZetaP(3))/(exp(1)+LambertW(1)) 3654318999462066 a007 Real Root Of -823*x^4+353*x^3+580*x^2+661*x+196 3654319001778017 a007 Real Root Of 442*x^4+664*x^3+954*x^2-575*x-313 3654319005427563 m001 (GAMMA(23/24)+Conway)/(FeigenbaumDelta+Niven) 3654319005578940 m003 7/4+(17*Sqrt[5])/64+Cosh[1/2+Sqrt[5]/2]/2 3654319007169690 l006 ln(3661/5276) 3654319011890001 m001 Artin-ln(5)*FeigenbaumAlpha 3654319019660694 a007 Real Root Of 751*x^4-220*x^3-977*x^2-307*x+240 3654319021726394 h003 exp(Pi*(12^(6/5)+15^(10/9))) 3654319021726394 h008 exp(Pi*(12^(6/5)+15^(10/9))) 3654319036364610 s002 sum(A016261[n]/(n^3*exp(n)+1),n=1..infinity) 3654319045066754 a001 18/377*8^(46/47) 3654319053198171 m001 (1-2^(1/2))/(GAMMA(23/24)+OneNinth) 3654319055945872 l006 ln(1424/1477) 3654319058141252 m005 (1/2*3^(1/2)-5/8)/(37/90+1/9*5^(1/2)) 3654319060342220 r009 Im(z^3+c),c=-23/78+25/58*I,n=3 3654319067108804 a001 1149851/4181*7778742049^(6/19) 3654319067111226 a001 20633239/4181*832040^(6/19) 3654319069147669 s002 sum(A016261[n]/(n^3*exp(n)-1),n=1..infinity) 3654319069619212 s001 sum(exp(-Pi)^n*A125519[n],n=1..infinity) 3654319069619212 s002 sum(A125519[n]/(exp(pi*n)),n=1..infinity) 3654319071211389 a007 Real Root Of 143*x^4+271*x^3-883*x^2+200*x+246 3654319081478887 m001 exp(Cahen)/Artin^2*Khintchine 3654319083781263 a007 Real Root Of 849*x^4-182*x^3-289*x^2-822*x-3 3654319084478296 m001 (Backhouse+Otter)/(BesselI(1,1)-Pi^(1/2)) 3654319085257206 r005 Re(z^2+c),c=-49/106+8/25*I,n=25 3654319089678214 r005 Re(z^2+c),c=-35/94+23/56*I,n=9 3654319102820836 a001 3010349/10946*7778742049^(6/19) 3654319102820905 a001 54018521/10946*832040^(6/19) 3654319108030877 a001 141422324/28657*832040^(6/19) 3654319108031151 a001 7881196/28657*7778742049^(6/19) 3654319108791001 a001 370248451/75025*832040^(6/19) 3654319108791326 a001 20633239/75025*7778742049^(6/19) 3654319108901902 a001 969323029/196418*832040^(6/19) 3654319108902234 a001 54018521/196418*7778742049^(6/19) 3654319108918082 a001 2537720636/514229*832040^(6/19) 3654319108918415 a001 141422324/514229*7778742049^(6/19) 3654319108920443 a001 6643838879/1346269*832040^(6/19) 3654319108920776 a001 370248451/1346269*7778742049^(6/19) 3654319108920787 a001 17393796001/3524578*832040^(6/19) 3654319108920838 a001 45537549124/9227465*832040^(6/19) 3654319108920845 a001 119218851371/24157817*832040^(6/19) 3654319108920846 a001 312119004989/63245986*832040^(6/19) 3654319108920846 a001 817138163596/165580141*832040^(6/19) 3654319108920846 a001 2139295485799/433494437*832040^(6/19) 3654319108920846 a001 5600748293801/1134903170*832040^(6/19) 3654319108920846 a001 14662949395604/2971215073*832040^(6/19) 3654319108920846 a001 23725150497407/4807526976*832040^(6/19) 3654319108920846 a001 9062201101803/1836311903*832040^(6/19) 3654319108920846 a001 3461452808002/701408733*832040^(6/19) 3654319108920846 a001 1322157322203/267914296*832040^(6/19) 3654319108920846 a001 505019158607/102334155*832040^(6/19) 3654319108920847 a001 192900153618/39088169*832040^(6/19) 3654319108920849 a001 73681302247/14930352*832040^(6/19) 3654319108920869 a001 28143753123/5702887*832040^(6/19) 3654319108921000 a001 4870846/987*832040^(6/19) 3654319108921121 a001 969323029/3524578*7778742049^(6/19) 3654319108921171 a001 2537720636/9227465*7778742049^(6/19) 3654319108921178 a001 6643838879/24157817*7778742049^(6/19) 3654319108921179 a001 17393796001/63245986*7778742049^(6/19) 3654319108921180 a001 45537549124/165580141*7778742049^(6/19) 3654319108921180 a001 119218851371/433494437*7778742049^(6/19) 3654319108921180 a001 312119004989/1134903170*7778742049^(6/19) 3654319108921180 a001 817138163596/2971215073*7778742049^(6/19) 3654319108921180 a001 2139295485799/7778742049*7778742049^(6/19) 3654319108921180 a001 5600748293801/20365011074*7778742049^(6/19) 3654319108921180 a001 14662949395604/53316291173*7778742049^(6/19) 3654319108921180 a001 23725150497407/86267571272*7778742049^(6/19) 3654319108921180 a001 3020733700601/10983760033*7778742049^(6/19) 3654319108921180 a001 3461452808002/12586269025*7778742049^(6/19) 3654319108921180 a001 440719107401/1602508992*7778742049^(6/19) 3654319108921180 a001 505019158607/1836311903*7778742049^(6/19) 3654319108921180 a001 64300051206/233802911*7778742049^(6/19) 3654319108921180 a001 73681302247/267914296*7778742049^(6/19) 3654319108921180 a001 228811001/831985*7778742049^(6/19) 3654319108921180 a001 10749957122/39088169*7778742049^(6/19) 3654319108921183 a001 1368706081/4976784*7778742049^(6/19) 3654319108921202 a001 1568397607/5702887*7778742049^(6/19) 3654319108921334 a001 199691526/726103*7778742049^(6/19) 3654319108921902 a001 4106118243/832040*832040^(6/19) 3654319108922235 a001 228826127/832040*7778742049^(6/19) 3654319108928082 a001 1568397607/317811*832040^(6/19) 3654319108928416 a001 29134601/105937*7778742049^(6/19) 3654319108970442 a001 599074578/121393*832040^(6/19) 3654319108970779 a001 33385282/121393*7778742049^(6/19) 3654319109260784 a001 228826127/46368*832040^(6/19) 3654319109261140 a001 4250681/15456*7778742049^(6/19) 3654319111250816 a001 87403803/17711*832040^(6/19) 3654319111251303 a001 4870847/17711*7778742049^(6/19) 3654319124890700 a001 33385282/6765*832040^(6/19) 3654319124892086 a001 15126/55*7778742049^(6/19) 3654319139852578 m001 exp(KhintchineHarmonic)/Backhouse/OneNinth 3654319144490153 a007 Real Root Of -60*x^4-68*x^3+700*x^2+427*x-406 3654319151509450 r005 Im(z^2+c),c=9/86+22/57*I,n=36 3654319171445706 r005 Re(z^2+c),c=-28/23+19/49*I,n=5 3654319180535335 m001 (GAMMA(23/24)-Artin)/(Grothendieck+ZetaQ(4)) 3654319198904708 a005 (1/cos(14/179*Pi))^118 3654319206213600 r002 37th iterates of z^2 + 3654319207744101 r009 Im(z^3+c),c=-37/110+9/26*I,n=10 3654319218379858 a001 12752043/2584*832040^(6/19) 3654319218387405 a001 710647/2584*7778742049^(6/19) 3654319220536422 r005 Re(z^2+c),c=-39/86+14/39*I,n=28 3654319230477032 r005 Im(z^2+c),c=-23/66+3/53*I,n=21 3654319235869673 b008 22+3*Pi*Cosh[1] 3654319243484267 r005 Im(z^2+c),c=8/27+15/34*I,n=5 3654319270309814 r005 Re(z^2+c),c=-23/18+5/98*I,n=38 3654319270445556 r005 Re(z^2+c),c=-5/9-1/69*I,n=8 3654319281797480 m001 (sin(1/5*Pi)-3^(1/3))/(Conway+MertensB2) 3654319291356512 r005 Im(z^2+c),c=-1/114+17/37*I,n=17 3654319310006854 r004 Im(z^2+c),c=1/42-10/17*I,z(0)=I,n=23 3654319314706620 m001 (BesselJ(0,1)+(1+3^(1/2))^(1/2))/Robbin 3654319326173235 m005 (1/5*Pi-1/6)/(5/6*Catalan+1/2) 3654319344033134 m006 (1/3*exp(2*Pi)-3/5)/(5*Pi^2-2/3) 3654319347562649 m005 (1/2*Zeta(3)+5/9)/(3/7*exp(1)+2) 3654319351544633 r002 4th iterates of z^2 + 3654319354850271 a007 Real Root Of 244*x^4+632*x^3-903*x^2+184*x+60 3654319375298471 m005 (1/2*Catalan+3/11)/(7/12*2^(1/2)-5/8) 3654319386887844 r005 Im(z^2+c),c=-9/44+14/25*I,n=56 3654319398794268 a001 329*2^(5/33) 3654319409285450 r009 Re(z^3+c),c=-9/32+25/36*I,n=3 3654319413475766 a007 Real Root Of -515*x^4+11*x^3+419*x^2+437*x-207 3654319426747871 a007 Real Root Of -98*x^4+320*x^3-950*x^2-329*x+24 3654319435329356 a007 Real Root Of 153*x^4-444*x^3-952*x^2-974*x+502 3654319437936790 l006 ln(4400/6341) 3654319445599629 a007 Real Root Of -128*x^4-458*x^3-13*x^2+71*x+909 3654319466042396 a007 Real Root Of -201*x^4-723*x^3+326*x^2+783*x-930 3654319508489497 r005 Im(z^2+c),c=-8/23+21/43*I,n=9 3654319522870445 r002 6th iterates of z^2 + 3654319548912103 r005 Re(z^2+c),c=-31/42+8/43*I,n=13 3654319552693537 a001 1515744265389/46*843^(5/14) 3654319575084215 a007 Real Root Of -780*x^4+58*x^3-873*x^2+530*x+327 3654319583390701 r005 Im(z^2+c),c=15/122+16/43*I,n=18 3654319607159310 r005 Im(z^2+c),c=9/98+15/38*I,n=42 3654319610676673 a007 Real Root Of 44*x^4+47*x^3-640*x^2-623*x+717 3654319612920518 a001 843/2*233^(21/53) 3654319617903917 l006 ln(131/5062) 3654319663505265 r005 Re(z^2+c),c=-31/70+12/29*I,n=39 3654319672222743 h001 (-9*exp(4)+4)/(-9*exp(5)+2) 3654319680002111 a001 36/341*14662949395604^(20/21) 3654319680340993 a001 305/161*14662949395604^(6/7) 3654319693283570 a007 Real Root Of -482*x^4-32*x^3-802*x^2+837*x+420 3654319694913244 r005 Im(z^2+c),c=-5/34+33/62*I,n=49 3654319694932965 m001 OneNinth*ErdosBorwein^2*ln(Zeta(5))^2 3654319705216363 a007 Real Root Of -381*x^4+358*x^3-724*x^2-123*x+76 3654319731180093 m001 (-exp(sqrt(2))+1)/(-Si(Pi)+1) 3654319744813283 l006 ln(5139/7406) 3654319750209459 m001 (LambertW(1)-ln(3))/(-exp(1/exp(1))+gamma(2)) 3654319758754410 r005 Im(z^2+c),c=9/98+15/38*I,n=49 3654319779571170 m002 -Pi^(-4)+Pi*Cosh[Pi]*Coth[Pi] 3654319780400682 m001 FeigenbaumD^2*ln(FeigenbaumC)*Catalan^2 3654319791124075 a007 Real Root Of 24*x^4+873*x^3-173*x^2-933*x-63 3654319796142075 r005 Im(z^2+c),c=-39/118+27/50*I,n=20 3654319803804924 r002 22th iterates of z^2 + 3654319819536441 h001 (-7*exp(3)+11)/(-9*exp(1)-11) 3654319823827111 r005 Im(z^2+c),c=9/98+15/38*I,n=48 3654319824975404 r009 Im(z^3+c),c=-23/50+10/37*I,n=40 3654319826596940 r005 Im(z^2+c),c=-1/25+19/40*I,n=27 3654319834763361 a007 Real Root Of 277*x^4-295*x^3-762*x^2-792*x-207 3654319859164204 a001 4870847/987*832040^(6/19) 3654319859213980 a001 90481/329*7778742049^(6/19) 3654319861802346 a008 Real Root of (-3+6*x+7*x^2-7*x^4-8*x^8) 3654319874530981 m005 (3/4*Pi-1/3)/(1/4*2^(1/2)+1/5) 3654319880791150 m001 GAMMA(13/24)*ArtinRank2*exp(sqrt(3))^2 3654319889158092 a007 Real Root Of -456*x^4+204*x^3-422*x^2+650*x-183 3654319906511907 m001 Salem/ln(HardHexagonsEntropy)/cos(Pi/12) 3654319907182956 a007 Real Root Of 9*x^4+322*x^3-264*x^2-442*x+222 3654319919689008 r002 2th iterates of z^2 + 3654319919996367 a001 3278735159921/161*843^(3/7) 3654319920995785 m001 (PlouffeB+Sarnak)/(Gompertz+Khinchin) 3654319929090695 m001 (Pi-1)/(LaplaceLimit-ZetaP(4)) 3654319931109951 r009 Im(z^3+c),c=-49/94+26/57*I,n=10 3654319933625665 a005 (1/sin(91/233*Pi))^556 3654319940426199 r005 Im(z^2+c),c=-11/106+28/55*I,n=25 3654319946913007 m001 (Kolakoski+Paris)/(Pi-ArtinRank2) 3654319964735871 r009 Re(z^3+c),c=-1/18+20/41*I,n=24 3654319968073880 m001 BesselJ(0,1)+ErdosBorwein+GlaisherKinkelin 3654319969428197 r005 Im(z^2+c),c=9/98+15/38*I,n=44 3654319972920719 r005 Re(z^2+c),c=27/74+9/47*I,n=41 3654319974526882 l006 ln(5878/8471) 3654319980260335 m001 1/GAMMA(1/6)^2/exp(ArtinRank2)/GAMMA(5/24) 3654319988080429 r005 Im(z^2+c),c=1/62+33/53*I,n=33 3654319997272071 a007 Real Root Of -38*x^4+47*x^3-973*x^2+356*x+263 3654319999160377 r005 Im(z^2+c),c=-7/27+41/63*I,n=20 3654320002450226 r005 Re(z^2+c),c=-41/78+9/52*I,n=9 3654320008441235 m001 (BesselJ(0,1)-Magata)/(MasserGramain+ZetaP(4)) 3654320011390371 r009 Im(z^3+c),c=-41/78+19/56*I,n=40 3654320023205212 p004 log(34949/24251) 3654320035534785 m001 1/GAMMA(2/3)^2/exp(GAMMA(1/24))*Zeta(5) 3654320036874205 r005 Im(z^2+c),c=9/98+15/38*I,n=52 3654320043869018 m008 (1/2*Pi^3+5/6)/(1/2*Pi^4-4) 3654320044819211 a007 Real Root Of -417*x^4+168*x^3-559*x^2+95*x+125 3654320056138712 r009 Re(z^3+c),c=-4/15+41/57*I,n=17 3654320061327436 a007 Real Root Of -133*x^4-319*x^3+424*x^2-944*x-961 3654320074822028 m001 (Gompertz-StolarskyHarborth)/(Pi-3^(1/2)) 3654320077464170 a007 Real Root Of 829*x^4-379*x^3+419*x^2-641*x+182 3654320102266053 m001 (Zeta(1,2)+Cahen)/(Sarnak+StolarskyHarborth) 3654320111911221 a007 Real Root Of 306*x^4+139*x^3-337*x^2-942*x+377 3654320129880345 h001 (7/11*exp(2)+1/12)/(2/5*exp(1)+2/9) 3654320131192948 a007 Real Root Of 473*x^4-475*x^3-790*x^2-169*x+182 3654320148341358 r005 Im(z^2+c),c=9/98+15/38*I,n=53 3654320152930715 l006 ln(6617/9536) 3654320158112300 a001 1597/521*3^(4/25) 3654320162121932 r005 Im(z^2+c),c=9/98+15/38*I,n=56 3654320168409321 r005 Re(z^2+c),c=-41/86+13/51*I,n=20 3654320172089702 r005 Im(z^2+c),c=13/110+5/9*I,n=21 3654320179416177 m001 (-ln(2^(1/2)+1)+ZetaP(4))/(Shi(1)+ln(Pi)) 3654320189607643 m001 (Psi(1,1/3)+FeigenbaumMu)/Artin 3654320192235070 r005 Im(z^2+c),c=1/60+35/64*I,n=7 3654320206726970 p001 sum(1/(383*n+96)/n/(6^n),n=1..infinity) 3654320210247912 r005 Im(z^2+c),c=9/98+15/38*I,n=60 3654320214966058 a007 Real Root Of 205*x^4+587*x^3-788*x^2-666*x+177 3654320224972723 r005 Im(z^2+c),c=9/98+15/38*I,n=63 3654320225033231 r005 Im(z^2+c),c=9/98+15/38*I,n=59 3654320225034848 r005 Im(z^2+c),c=9/98+15/38*I,n=64 3654320226703560 r005 Im(z^2+c),c=9/98+15/38*I,n=57 3654320228595396 s002 sum(A185031[n]/(n*exp(n)-1),n=1..infinity) 3654320231811677 a001 2537720636/233*4807526976^(6/23) 3654320231845549 a001 45537549124/233*75025^(6/23) 3654320234925373 r005 Im(z^2+c),c=9/98+15/38*I,n=61 3654320238960331 r005 Im(z^2+c),c=9/98+15/38*I,n=62 3654320240465656 r005 Re(z^2+c),c=-3/8+31/50*I,n=9 3654320249229378 r002 27th iterates of z^2 + 3654320254520247 r005 Im(z^2+c),c=9/98+15/38*I,n=55 3654320266295553 r005 Im(z^2+c),c=9/98+15/38*I,n=58 3654320266966089 s001 sum(exp(-2*Pi/3)^n*A085308[n],n=1..infinity) 3654320272212650 m001 1/Rabbit*ln(PisotVijayaraghavan)/Trott 3654320276878800 r005 Re(z^2+c),c=-43/90+17/64*I,n=21 3654320281842959 a003 cos(Pi*4/95)-cos(Pi*5/52) 3654320286112771 r005 Re(z^2+c),c=-25/56+27/62*I,n=32 3654320287299235 a001 4052739537881/322*843^(1/2) 3654320294832544 a003 cos(Pi*3/107)*cos(Pi*35/92) 3654320316281716 r005 Re(z^2+c),c=-7/16+19/53*I,n=16 3654320317675891 m002 -Pi^5+Pi^5/Log[Pi]+2*ProductLog[Pi] 3654320322340989 m001 (-KomornikLoreti+Stephens)/(exp(1)+Gompertz) 3654320324857636 r005 Im(z^2+c),c=11/42+13/51*I,n=48 3654320330489919 m002 1+E^Pi+(2*Pi^3)/5 3654320343190495 r005 Re(z^2+c),c=-9/7+2/117*I,n=30 3654320346571685 r005 Im(z^2+c),c=9/98+15/38*I,n=54 3654320350849945 r005 Im(z^2+c),c=-11/106+25/49*I,n=61 3654320355587431 a003 cos(Pi*30/89)-cos(Pi*29/63) 3654320366542247 r005 Re(z^2+c),c=-51/94+3/28*I,n=6 3654320388482942 a007 Real Root Of 782*x^4-268*x^3+862*x^2-785*x-429 3654320393093690 r005 Im(z^2+c),c=1/102+21/47*I,n=44 3654320404210133 r002 2th iterates of z^2 + 3654320405583532 r005 Re(z^2+c),c=-2/5+21/64*I,n=6 3654320411468542 r005 Re(z^2+c),c=-15/31+10/47*I,n=40 3654320436635061 r005 Im(z^2+c),c=9/98+15/38*I,n=51 3654320438742982 m001 (-Cahen+Sarnak)/(3^(1/2)+arctan(1/2)) 3654320443965580 a007 Real Root Of -267*x^4+776*x^3-283*x^2+18*x+87 3654320453392184 p001 sum((-1)^n/(521*n+270)/(25^n),n=0..infinity) 3654320456134705 r005 Re(z^2+c),c=-37/86+12/25*I,n=40 3654320456927474 m001 Kolakoski^Si(Pi)/KomornikLoreti 3654320461335577 a007 Real Root Of 689*x^4-195*x^3+891*x^2-17*x-147 3654320461977088 m001 (Ei(1,1)+Porter)/(Salem-TravellingSalesman) 3654320471211943 r009 Re(z^3+c),c=-11/30+35/51*I,n=31 3654320492810881 m001 (OneNinth+StolarskyHarborth)/(Shi(1)-cos(1)) 3654320502329172 a007 Real Root Of -976*x^4-254*x^3+359*x^2+681*x-267 3654320503779648 l006 ln(223/8617) 3654320508383500 a007 Real Root Of -871*x^4+688*x^3+966*x^2+331*x-268 3654320524227175 r005 Im(z^2+c),c=9/98+15/38*I,n=50 3654320526154534 a007 Real Root Of -153*x^4-336*x^3+705*x^2-199*x+746 3654320531199161 m001 (Pi^(1/2)-GAMMA(17/24))/(Mills+Trott2nd) 3654320534486838 r005 Im(z^2+c),c=3/32+24/61*I,n=37 3654320544049988 a008 Real Root of x^4-x^3+16*x-188 3654320546128462 r005 Im(z^2+c),c=-4/27+30/49*I,n=32 3654320576811371 m001 (FeigenbaumKappa+Sarnak)/(Pi^(1/2)-Psi(2,1/3)) 3654320577733531 m001 ln(Catalan)^2*PrimesInBinary^2/GAMMA(1/4) 3654320578479546 m005 (1/2*5^(1/2)-1/5)/(2/3*exp(1)+7/10) 3654320583550856 r005 Re(z^2+c),c=-4/9+21/52*I,n=60 3654320611443998 m001 (exp(Pi)+Cahen)/(FeigenbaumDelta+Tribonacci) 3654320651002069 r005 Im(z^2+c),c=-5/21+24/29*I,n=12 3654320654602139 a001 2504730781961/322*843^(4/7) 3654320673049771 m005 (2/5*Pi+1/5)/(5^(1/2)+7/4) 3654320685764644 r005 Im(z^2+c),c=9/98+15/38*I,n=46 3654320695326081 r005 Im(z^2+c),c=-27/22+47/121*I,n=5 3654320711832901 m001 (2^(1/2)+BesselJ(1,1))/(-FeigenbaumB+Totient) 3654320717383131 m001 FeigenbaumDelta^(ln(3)/Mills) 3654320734571496 a007 Real Root Of 804*x^4-640*x^3+9*x^2-711*x+26 3654320739313612 r009 Im(z^3+c),c=-1/8+15/37*I,n=12 3654320744897799 p003 LerchPhi(1/32,1,507/181) 3654320771169459 r005 Im(z^2+c),c=-3/25+14/27*I,n=38 3654320784616156 r002 44th iterates of z^2 + 3654320795455332 b008 2+2^(1/3)*Coth[1] 3654320823450766 r009 Re(z^3+c),c=-19/66+29/42*I,n=27 3654320824096356 r005 Im(z^2+c),c=-3/50+18/37*I,n=33 3654320824854722 a007 Real Root Of 21*x^4+788*x^3+728*x^2-880*x+587 3654320825043335 a007 Real Root Of 257*x^4+744*x^3-674*x^2+416*x+997 3654320831361430 a007 Real Root Of 841*x^4-301*x^3-143*x^2-532*x-205 3654320841373767 a007 Real Root Of -18*x^4-672*x^3-509*x^2+367*x-913 3654320851825812 a007 Real Root Of -960*x^4-314*x^3-779*x^2+452*x+271 3654320851834735 r005 Re(z^2+c),c=-14/31+13/33*I,n=24 3654320857582386 r009 Re(z^3+c),c=-67/126+13/58*I,n=47 3654320876628750 m001 (exp(1)+arctan(1/2))/(-Gompertz+Porter) 3654320885702452 r009 Re(z^3+c),c=-47/106+10/43*I,n=9 3654320885811179 m001 (2^(1/2)-Zeta(5))/(FellerTornier+Rabbit) 3654320896895309 b008 -38+ArithmeticGeometricMean[1,2] 3654320897215814 m001 1/GAMMA(13/24)^2*Magata/ln(cos(Pi/12)) 3654320906244861 r002 6th iterates of z^2 + 3654320914167276 m005 (11/12+1/6*5^(1/2))/(9/10*gamma-1/6) 3654320934381161 r005 Re(z^2+c),c=-37/78+16/59*I,n=38 3654320948949303 r005 Re(z^2+c),c=5/46+17/46*I,n=7 3654320974844636 s001 sum(exp(-Pi/4)^n*A225809[n],n=1..infinity) 3654320975377668 r002 24th iterates of z^2 + 3654320978505496 m001 (Ei(1,1)+arctan(1/3))/(Zeta(1,2)-Landau) 3654320987654320 q001 148/405 3654320987654320 r002 2th iterates of z^2 + 3654320987654320 r002 2th iterates of z^2 + 3654320987654320 r002 2th iterates of z^2 + 3654320987654320 r005 Im(z^2+c),c=-43/90+37/45*I,n=2 3654320987654320 s001 sum(1/10^(n-1)*A022989[n],n=1..infinity) 3654320987654320 s001 sum(1/10^(n-1)*A023475[n],n=1..infinity) 3654320987654320 s001 sum(1/10^n*A022989[n],n=1..infinity) 3654320987654320 s001 sum(1/10^n*A023475[n],n=1..infinity) 3654320992631953 a007 Real Root Of -522*x^4-6*x^3-385*x^2+717*x-201 3654320999027293 m001 (GaussAGM-Porter)/(BesselK(1,1)+GAMMA(5/6)) 3654320999622972 r005 Re(z^2+c),c=-12/23+7/38*I,n=7 3654321021905081 a001 774004377960/161*843^(9/14) 3654321024747319 r005 Im(z^2+c),c=-45/86+27/61*I,n=6 3654321031448675 r005 Re(z^2+c),c=-11/24+15/43*I,n=51 3654321033897875 a003 cos(Pi*50/117)+cos(Pi*41/90) 3654321046550169 m002 ProductLog[Pi]/(5*Pi^2)-Sinh[Pi]/Pi 3654321061718952 s002 sum(A087305[n]/(n*10^n+1),n=1..infinity) 3654321071313147 a007 Real Root Of -211*x^4+601*x^3-642*x^2+857*x+432 3654321073003173 m005 (1/3*Zeta(3)+1/8)/(-61/120+7/24*5^(1/2)) 3654321073980265 m001 (-Sierpinski+Trott)/(2^(1/2)-Rabbit) 3654321077727841 a007 Real Root Of -34*x^4+638*x^3+597*x^2+366*x-244 3654321078765876 s003 concatenated sequence A338052 3654321086013013 r005 Im(z^2+c),c=19/122+15/43*I,n=34 3654321090228456 r009 Im(z^3+c),c=-14/27+4/17*I,n=34 3654321090585760 m007 (-3*gamma+2)/(-4*gamma-12*ln(2)+2*Pi-3) 3654321100836460 r005 Re(z^2+c),c=-9/14+11/98*I,n=6 3654321109182805 m001 (sin(1/5*Pi)+Paris)/(sin(1)+Zeta(5)) 3654321110468372 m001 ln(Paris)*MinimumGamma^2/GAMMA(2/3) 3654321113736799 s002 sum(A116210[n]/(n^3*exp(n)+1),n=1..infinity) 3654321117114592 h001 (1/9*exp(2)+4/11)/(11/12*exp(1)+3/4) 3654321129848975 a001 196418/2207*47^(55/57) 3654321137992144 m002 -Pi^3-Cosh[Pi]+ProductLog[Pi]+5*Tanh[Pi] 3654321140281443 r005 Im(z^2+c),c=11/42+13/51*I,n=42 3654321145614586 m001 (Zeta(5)-ln(3))/(ln(Pi)+Landau) 3654321152622052 a007 Real Root Of -274*x^4+608*x^3-995*x^2+672*x+413 3654321175405418 m001 1/Robbin/exp(Rabbit)^2 3654321179479310 m001 (Riemann1stZero+Salem)/(GAMMA(5/6)-Rabbit) 3654321179802386 r005 Re(z^2+c),c=-87/122+10/43*I,n=56 3654321179857509 r005 Re(z^2+c),c=-7/15+14/45*I,n=61 3654321182038588 s002 sum(A185551[n]/(n*exp(pi*n)+1),n=1..infinity) 3654321182432923 s002 sum(A185551[n]/(n*exp(pi*n)-1),n=1..infinity) 3654321189736293 m001 (ln(5)-Pi^(1/2))/(Champernowne+FellerTornier) 3654321195353941 a007 Real Root Of 249*x^4+921*x^3-154*x^2-923*x-776 3654321220508231 r005 Im(z^2+c),c=9/98+15/38*I,n=47 3654321225283210 a001 76*(1/2*5^(1/2)+1/2)^11*4^(7/11) 3654321237353793 m001 Kolakoski*exp(ErdosBorwein)/Trott 3654321239851991 m002 36*Pi^2+Cosh[Pi]/Log[Pi] 3654321250163389 s001 sum(exp(-Pi/3)^n*A038946[n],n=1..infinity) 3654321259223680 a007 Real Root Of 352*x^4+727*x^3-145*x^2-844*x+31 3654321275504486 r005 Im(z^2+c),c=-7/40+9/17*I,n=19 3654321277246391 r009 Im(z^3+c),c=-5/18+7/19*I,n=18 3654321284362067 m001 (Bloch-gamma(3))^MertensB3 3654321294916828 m001 (Zeta(3)+arctan(1/3))/(CareFree-LaplaceLimit) 3654321310330152 r009 Re(z^3+c),c=-1/15+31/52*I,n=12 3654321314567886 r009 Re(z^3+c),c=-29/60+12/41*I,n=46 3654321323652321 m005 (-1/66+1/6*5^(1/2))/(3/4*gamma+6/11) 3654321339183532 a007 Real Root Of 355*x^4-185*x^3-31*x^2-597*x+225 3654321345223544 m009 (1/10*Pi^2+2/3)/(3/5*Psi(1,3/4)+3) 3654321348312673 m002 -6+E^Pi/Pi^2+Tanh[Pi]/Pi^6 3654321361808176 r005 Re(z^2+c),c=-9/10+2/11*I,n=8 3654321375428268 m001 Zeta(1/2)^(ReciprocalLucas*Riemann1stZero) 3654321382655779 m001 Riemann1stZero*LandauRamanujan^2*exp(Ei(1))^2 3654321383321691 a003 cos(Pi*22/75)-sin(Pi*27/64) 3654321389208059 a001 956722026041/322*843^(5/7) 3654321391572354 h001 (7/12*exp(2)+11/12)/(4/9*exp(1)+2/9) 3654321407710699 r009 Im(z^3+c),c=-47/106+10/37*I,n=10 3654321427683278 r005 Im(z^2+c),c=-15/122+13/25*I,n=26 3654321427862863 m005 (1/2*2^(1/2)+4/5)/(7/9*Catalan-3/10) 3654321430370332 m001 (Riemann1stZero+TreeGrowth2nd)/(Mills-Niven) 3654321434114447 r005 Re(z^2+c),c=-7/15+14/45*I,n=59 3654321435560077 r005 Im(z^2+c),c=-7/60+31/49*I,n=63 3654321438714200 a007 Real Root Of 707*x^4+341*x^3+57*x^2-573*x-21 3654321445776550 r005 Im(z^2+c),c=-19/34+5/76*I,n=51 3654321446076984 a007 Real Root Of -24*x^4-887*x^3-363*x^2+26*x-485 3654321477277771 m001 (exp(1)+5^(1/2))/(-gamma+Riemann1stZero) 3654321500550326 m001 (-FeigenbaumD+Niven)/(5^(1/2)+BesselJ(1,1)) 3654321509629785 r005 Re(z^2+c),c=3/98+16/25*I,n=15 3654321519669234 a003 sin(Pi*1/105)+sin(Pi*11/101) 3654321523679104 r005 Re(z^2+c),c=-11/24+15/43*I,n=54 3654321526927749 a007 Real Root Of 883*x^4-140*x^3-576*x^2-696*x-200 3654321551964422 p003 LerchPhi(1/256,3,305/218) 3654321552862029 r005 Im(z^2+c),c=-1/9+15/31*I,n=10 3654321571953237 l006 ln(739/1065) 3654321579109786 a007 Real Root Of -27*x^4-33*x^3+67*x^2-501*x+479 3654321588377959 r005 Re(z^2+c),c=-25/58+21/47*I,n=51 3654321591844317 r005 Im(z^2+c),c=-29/26+5/113*I,n=15 3654321592062924 a007 Real Root Of -58*x^4-87*x^3+298*x^2-425*x+565 3654321599832019 a007 Real Root Of -155*x^4+445*x^3+42*x^2+682*x-25 3654321613372582 p001 sum(1/(391*n+286)/(10^n),n=0..infinity) 3654321624827987 a007 Real Root Of -475*x^4+733*x^3-111*x^2+268*x+157 3654321627513955 a007 Real Root Of -251*x^4-993*x^3-392*x^2-450*x-107 3654321628605982 r002 6th iterates of z^2 + 3654321648412703 m001 (Pi^(1/2))^Shi(1)+MasserGramainDelta 3654321653935193 a007 Real Root Of 163*x^4-782*x^3-747*x^2-281*x-44 3654321662451186 r005 Im(z^2+c),c=23/86+15/56*I,n=10 3654321663879060 m001 1/Riemann1stZero/MinimumGamma*ln(GAMMA(5/12)) 3654321671886567 r009 Re(z^3+c),c=-9/122+34/45*I,n=27 3654321687954108 r005 Im(z^2+c),c=29/118+15/43*I,n=9 3654321707156932 a007 Real Root Of -198*x^4-645*x^3+127*x^2-684*x-362 3654321708223334 r005 Re(z^2+c),c=-14/31+17/45*I,n=46 3654321709842778 m005 (1/2*2^(1/2)-3/4)/(5/6*gamma-4/11) 3654321712277355 m001 GlaisherKinkelin+GolombDickman+MadelungNaCl 3654321716115504 r005 Im(z^2+c),c=-29/82+32/61*I,n=11 3654321716903350 r005 Re(z^2+c),c=-8/17+17/59*I,n=29 3654321718443286 m001 (BesselK(1,1)+CopelandErdos)/(Ei(1,1)-exp(Pi)) 3654321719313439 a001 17/2889*199^(39/50) 3654321724725952 m005 (1/2*Pi-1/9)/(6/11*gamma-5/7) 3654321725202691 s002 sum(A200182[n]/(n^2*2^n-1),n=1..infinity) 3654321737641274 a007 Real Root Of -243*x^4-862*x^3+23*x^2-270*x-25 3654321754373223 m005 (1/2*Catalan+4/11)/(6/7*Pi-4/9) 3654321756511074 a001 591286729879/322*843^(11/14) 3654321764873787 m005 (1/4*Catalan-4)/(2*Catalan-4/5) 3654321765188300 l006 ln(92/3555) 3654321770617194 a001 514229/5778*47^(55/57) 3654321775095716 m001 (1+ln(gamma))/(-GolombDickman+RenyiParking) 3654321781518493 r002 27i'th iterates of 2*x/(1-x^2) of 3654321806211284 m001 (3^(1/3)-GAMMA(13/24))/(ArtinRank2-Cahen) 3654321817916532 a007 Real Root Of 289*x^4+870*x^3-496*x^2+700*x+100 3654321819898442 m001 BesselK(0,1)^BesselJ(1,1)*BesselK(0,1)^Sarnak 3654321820740548 r005 Im(z^2+c),c=37/122+15/37*I,n=36 3654321840149238 r005 Re(z^2+c),c=-35/78+19/49*I,n=48 3654321846914357 m005 (1/3*Pi+1/8)/(7/8*2^(1/2)-11/12) 3654321864104036 a001 1346269/15127*47^(55/57) 3654321873573648 m001 1/GAMMA(3/4)^2/ln(GAMMA(19/24))*Zeta(1,2)^2 3654321884467667 r005 Im(z^2+c),c=9/122+24/59*I,n=37 3654321886173287 a001 2178309/24476*47^(55/57) 3654321891713906 m005 (1/2*Pi+4/7)/(1/11*exp(1)-5/6) 3654321899208574 a007 Real Root Of -99*x^4+993*x^3-718*x^2+194*x+217 3654321910122231 k008 concat of cont frac of 3654321921882085 a001 832040/9349*47^(55/57) 3654321935539772 m001 1/RenyiParking^2*exp(ArtinRank2)*Zeta(7)^2 3654321941342432 r005 Re(z^2+c),c=-11/56+26/43*I,n=22 3654321953362946 m001 2^(1/3)+LambertW(1)-MinimumGamma 3654321968950688 m001 Pi*2^(1/2)/GAMMA(3/4)+HeathBrownMoroz+Trott2nd 3654321985079517 r005 Re(z^2+c),c=-41/86+8/31*I,n=55 3654321993857425 v003 sum((4*n^3-18*n^2+36*n)/(n!+1),n=1..infinity) 3654321995464852 r005 Re(z^2+c),c=-18/25+17/42*I,n=2 3654321996343417 a007 Real Root Of -177*x^4-367*x^3+867*x^2-593*x-90 3654322001890241 r009 Im(z^3+c),c=-7/30+13/34*I,n=10 3654322023381614 r005 Im(z^2+c),c=-15/13+2/43*I,n=35 3654322027353092 a007 Real Root Of 545*x^4-740*x^3+469*x^2-401*x-255 3654322037036565 m001 GAMMA(1/6)^2/ln(RenyiParking)^2/Zeta(9) 3654322044685309 m001 (OneNinth+Weierstrass)/(ln(Pi)-GAMMA(5/6)) 3654322078090868 m005 (1/3*5^(1/2)+3/7)/(7/10*3^(1/2)+2) 3654322085731368 r005 Im(z^2+c),c=31/110+7/30*I,n=35 3654322104255919 a008 Real Root of x^4-x^3+2*x^2-95*x-601 3654322110476100 r002 28th iterates of z^2 + 3654322123814126 a001 182717648081/161*843^(6/7) 3654322136906833 r002 14th iterates of z^2 + 3654322139704586 r005 Im(z^2+c),c=17/54+16/45*I,n=9 3654322142948631 a007 Real Root Of -619*x^4+860*x^3+688*x^2+889*x+286 3654322147294257 a007 Real Root Of 919*x^4+551*x^3+828*x^2-922*x-437 3654322150199996 m001 ln(CareFree)^2*Conway/Robbin^2 3654322150675107 r005 Im(z^2+c),c=8/27+8/37*I,n=37 3654322153519715 m001 1/GAMMA(5/24)^2/ln(GAMMA(3/4))^2*cos(1)^2 3654322162464395 r005 Im(z^2+c),c=-5/24+2/41*I,n=5 3654322166633845 a001 317811/3571*47^(55/57) 3654322200699186 a001 29*(1/2*5^(1/2)+1/2)^15*18^(10/13) 3654322205024696 r009 Re(z^3+c),c=-37/102+37/55*I,n=51 3654322206616297 m001 CareFree^2/Artin^2/ln(GAMMA(1/3))^2 3654322214420381 a007 Real Root Of -218*x^4-950*x^3-629*x^2-472*x-809 3654322235988139 r009 Im(z^3+c),c=-13/29+13/49*I,n=11 3654322238983683 m008 (4/5*Pi^3-4/5)/(2/3*Pi^4+3/4) 3654322256151445 m001 (-Zeta(3)+sin(1/5*Pi))/(2^(1/3)+BesselK(0,1)) 3654322270756111 m005 (1/2*gamma+7/9)/(9/10*Zeta(3)-4) 3654322281394827 a007 Real Root Of 871*x^4+238*x^3-248*x^2-584*x-21 3654322293811774 a007 Real Root Of -996*x^4+74*x^3-713*x^2+989*x+478 3654322316680629 r005 Im(z^2+c),c=-1/54+19/41*I,n=38 3654322319559557 m001 (Cahen+ZetaQ(4))/(1+BesselJ(0,1)) 3654322331328764 m001 (BesselJ(0,1)+BesselI(1,2))/(-Mills+Robbin) 3654322331962259 m006 (1/5/Pi-5/6)/(3/4*Pi-1/4) 3654322335492326 r005 Im(z^2+c),c=-13/11+13/57*I,n=8 3654322336459788 a003 cos(Pi*32/83)/sin(Pi*19/46) 3654322338336025 r009 Re(z^3+c),c=-9/17+19/58*I,n=43 3654322369568776 m001 (ln(2)-cos(1/12*Pi))/(gamma(3)-ZetaP(4)) 3654322376914213 l003 BesselK(3,60/101) 3654322398072242 s001 sum(exp(-Pi)^n*A271372[n],n=1..infinity) 3654322398072242 s002 sum(A271372[n]/(exp(pi*n)),n=1..infinity) 3654322400143808 m001 (Backhouse+GAMMA(13/24))/GaussAGM(1,1/sqrt(2)) 3654322420167792 m001 (sin(1/5*Pi)-gamma(2))/(StronglyCareFree+Thue) 3654322426843245 r002 48th iterates of z^2 + 3654322445451627 p004 log(30983/21499) 3654322446197105 a001 1364/5*144^(1/17) 3654322457842022 r005 Im(z^2+c),c=1/25+7/11*I,n=10 3654322466207530 r005 Re(z^2+c),c=-39/86+16/45*I,n=21 3654322467144955 h001 (5/8*exp(2)+6/11)/(2/7*exp(1)+7/11) 3654322469866346 a007 Real Root Of 688*x^4-908*x^3+800*x^2-631*x-394 3654322491117215 a001 32264490531/46*843^(13/14) 3654322492600868 r005 Re(z^2+c),c=-4/9+2/5*I,n=36 3654322493405596 r009 Re(z^3+c),c=-21/40+14/51*I,n=32 3654322498807632 a001 1/39603*18^(49/53) 3654322499929796 r005 Im(z^2+c),c=-19/106+19/34*I,n=32 3654322500237644 b008 -4+SphericalBesselJ[1,3] 3654322517079849 a007 Real Root Of 5*x^4-185*x^3-780*x^2-936*x-247 3654322517726818 s002 sum(A258024[n]/((2^n+1)/n),n=1..infinity) 3654322551626634 r002 3th iterates of z^2 + 3654322562358276 r005 Re(z^2+c),c=-16/15+37/56*I,n=2 3654322563442340 r009 Im(z^3+c),c=-11/32+14/41*I,n=25 3654322563630865 m001 BesselI(0,2)*(Chi(1)+BesselJ(0,1)) 3654322566943750 m005 (1/4*gamma+1)/(4/5*2^(1/2)+2) 3654322578818193 a007 Real Root Of -5*x^4-207*x^3-903*x^2-548*x+792 3654322585448630 a007 Real Root Of 304*x^4+912*x^3-778*x^2+36*x+814 3654322589667708 h001 (-5*exp(1/2)+2)/(-exp(3)+3) 3654322597372506 r005 Im(z^2+c),c=-17/86+31/54*I,n=40 3654322602309139 a007 Real Root Of -506*x^4+805*x^3-233*x^2+982*x-358 3654322615175448 m001 (Ei(1)+Zeta(1,-1)*FeigenbaumMu)/FeigenbaumMu 3654322628302396 a005 (1/cos(9/86*Pi))^400 3654322628593784 m001 1/GAMMA(19/24)^2/GAMMA(11/12)*ln(sin(Pi/5)) 3654322646730028 p001 sum(1/(461*n+16)/n/(6^n),n=1..infinity) 3654322683211861 r005 Re(z^2+c),c=-1+9/43*I,n=12 3654322687193409 a007 Real Root Of -21*x^4-782*x^3-522*x^2+401*x-366 3654322689419584 r005 Re(z^2+c),c=1/94+13/55*I,n=17 3654322702224491 m008 (1/6*Pi^4-5/6)/(1/4*Pi-5) 3654322716862559 a007 Real Root Of -142*x^4-321*x^3+440*x^2-884*x+552 3654322723623405 r009 Re(z^3+c),c=-2/29+40/57*I,n=47 3654322743807924 r005 Re(z^2+c),c=-25/56+25/56*I,n=35 3654322762806221 r005 Re(z^2+c),c=39/118+8/63*I,n=18 3654322770015046 m002 -4/5+5*Coth[Pi]*Csch[Pi] 3654322775708517 a001 19/11592*10946^(5/58) 3654322777073559 r009 Re(z^3+c),c=-11/126+33/47*I,n=23 3654322778319718 a001 5778/377*233^(32/55) 3654322782476565 m005 (1/2*Pi-5/6)/(5/9*Pi+3/11) 3654322789639896 m001 (Pi+Magata)/(Totient+ZetaP(2)) 3654322796315927 r005 Im(z^2+c),c=-71/64+2/49*I,n=5 3654322812383599 a001 726103/281*2^(1/2) 3654322813938198 r002 2th iterates of z^2 + 3654322814428001 m001 1/ln(Zeta(5))^2*(3^(1/3))*gamma^2 3654322817473730 m005 (1/2*Pi+7/8)/(3/7*gamma-11/12) 3654322821469881 m001 (CareFree*FransenRobinson+Gompertz)/CareFree 3654322831079999 m005 (1/2*Pi-2/9)/(-17/63+2/7*5^(1/2)) 3654322832658449 a007 Real Root Of -156*x^4+590*x^3-207*x^2+773*x-28 3654322835801691 a001 1/305*13^(47/50) 3654322836835006 m003 6/5+Sqrt[5]/4+(5*ProductLog[1/2+Sqrt[5]/2])/2 3654322838535083 r005 Im(z^2+c),c=-5/86+24/49*I,n=10 3654322858087639 a001 137767971749904/377 3654322880923726 r005 Im(z^2+c),c=-29/78+3/52*I,n=21 3654322888792921 r005 Im(z^2+c),c=-12/31+31/57*I,n=35 3654322901476498 m001 Pi/(BesselK(0,1)^ZetaP(3)) 3654322909808104 r005 Im(z^2+c),c=31/126+10/37*I,n=23 3654322911131317 k006 concat of cont frac of 3654322928777651 m005 (1/2*exp(1)+7/12)/(2/7*Zeta(3)-7/8) 3654322952081909 l006 ln(237/9158) 3654322961487104 r009 Re(z^3+c),c=-13/25+19/61*I,n=49 3654322971606303 r005 Re(z^2+c),c=-17/36+8/25*I,n=9 3654322976541225 l006 ln(6685/9634) 3654322988225074 a007 Real Root Of 423*x^4+888*x^3+945*x^2+23*x-82 3654322997086059 m006 (3*ln(Pi)-1/6)/(1/6*exp(2*Pi)+1/6) 3654322998534950 m001 BesselJ(1,1)+MadelungNaCl*Tribonacci 3654323023610554 h001 (3/5*exp(1)+7/8)/(5/6*exp(2)+7/10) 3654323025959692 a007 Real Root Of -53*x^4+77*x^3+739*x^2-985*x-259 3654323029424023 m001 (Porter+Thue)/(gamma(2)+MasserGramain) 3654323034212971 r005 Re(z^2+c),c=-33/64+8/19*I,n=29 3654323039178860 r005 Im(z^2+c),c=-15/52+25/47*I,n=15 3654323052595949 a007 Real Root Of -147*x^4-287*x^3+637*x^2-875*x+505 3654323082668236 p001 sum(1/(104*n+3)/n/(256^n),n=0..infinity) 3654323083609693 a007 Real Root Of -220*x^4-823*x^3+21*x^2+214*x-428 3654323100412898 a001 377/76*18^(38/55) 3654323102135350 r005 Im(z^2+c),c=-1/94+22/41*I,n=13 3654323102372095 h001 (-6*exp(5)+3)/(-6*exp(6)-8) 3654323121659410 a007 Real Root Of -245*x^4-834*x^3+49*x^2-577*x+229 3654323123880232 s002 sum(A276704[n]/(n!^3),n=1..infinity) 3654323126627613 r005 Re(z^2+c),c=-41/86+8/31*I,n=53 3654323133562390 m001 (Salem-ThueMorse)/(GAMMA(11/12)+MertensB2) 3654323145092986 a001 1/646*28657^(28/37) 3654323151110758 l006 ln(5946/8569) 3654323157371765 r009 Re(z^3+c),c=-1/18+14/29*I,n=10 3654323159739002 m005 (23/66+1/6*5^(1/2))/(5/11*Pi+6/11) 3654323162354284 r009 Re(z^3+c),c=-19/40+15/53*I,n=36 3654323172605743 r005 Re(z^2+c),c=-10/27+29/55*I,n=38 3654323177513871 a007 Real Root Of 441*x^4-887*x^3+562*x^2+162*x-67 3654323180720494 m001 GAMMA(19/24)^2/exp(GAMMA(1/4))/Zeta(9)^2 3654323193903649 r002 12th iterates of z^2 + 3654323202546567 h001 (-7*exp(3)-5)/(-exp(6)+5) 3654323236912877 m001 BesselJ(0,1)/(GolombDickman-exp(1)) 3654323236912877 m001 BesselJ(0,1)/(exp(1)-GolombDickman) 3654323250503156 m005 (1/2*Catalan-2/7)/(1/5*3^(1/2)+1/8) 3654323269345605 a001 21/167761*521^(49/54) 3654323290643551 r009 Im(z^3+c),c=-21/40+10/43*I,n=61 3654323297450239 a007 Real Root Of 425*x^4+305*x^3-161*x^2-347*x-98 3654323299523263 h001 (5/9*exp(2)+5/6)/(2/11*exp(1)+6/7) 3654323307433086 r002 40th iterates of z^2 + 3654323332379684 h001 (1/5*exp(2)+9/11)/(8/11*exp(2)+10/11) 3654323337243183 p001 sum(1/(332*n+279)/(24^n),n=0..infinity) 3654323341130816 a001 322/5702887*591286729879^(2/13) 3654323341130947 a001 46/311187*1134903170^(2/13) 3654323341131825 a001 161/416020*2178309^(2/13) 3654323341603534 m001 1/ln(BesselK(1,1))*FeigenbaumDelta^2/sinh(1) 3654323346673018 r009 Im(z^3+c),c=-21/64+31/43*I,n=10 3654323347570285 a001 322/317811*4181^(2/13) 3654323366737375 r005 Im(z^2+c),c=9/98+15/38*I,n=40 3654323373398700 b008 Sinh[5*ArcCoth[14]] 3654323375231615 l006 ln(5207/7504) 3654323388630699 b008 (1+3*Csch[2])/5 3654323389515699 m001 FeigenbaumB*(KhinchinHarmonic-Mills) 3654323390112003 a007 Real Root Of 181*x^4+575*x^3-68*x^2+634*x-993 3654323393030997 m005 (9/4+1/4*5^(1/2))/(1/10*Zeta(3)-8/9) 3654323394247944 m006 (3/5*ln(Pi)+5)/(3/4*Pi-4/5) 3654323401961846 a007 Real Root Of -442*x^4-15*x^3-822*x^2+854*x+429 3654323409104729 a007 Real Root Of -261*x^4-625*x^3+981*x^2-642*x+598 3654323411078340 b008 Pi*(1/12+Sinh[Pi]) 3654323411078340 m002 Pi/12+Pi*Sinh[Pi] 3654323433436614 m001 Pi*exp(1/Pi)^Weierstrass 3654323457491362 r009 Im(z^3+c),c=-39/94+13/43*I,n=27 3654323463021167 a007 Real Root Of 690*x^4-267*x^3+994*x^2-60*x-180 3654323466674438 m008 (3/5*Pi^2-1/3)/(5*Pi^5-5/6) 3654323469786528 r005 Im(z^2+c),c=17/54+14/53*I,n=12 3654323485628818 m001 (2^(1/2)+GAMMA(3/4))/(-HeathBrownMoroz+Sarnak) 3654323504968459 a007 Real Root Of 416*x^4-478*x^3+550*x^2-399*x-250 3654323525538685 a008 Real Root of x^4-2*x^3-152*x^2+153*x+2313 3654323525626512 m005 (1/2*5^(1/2)-5/9)/(2^(1/2)+1/8) 3654323530009921 a003 cos(Pi*18/59)-sin(Pi*44/113) 3654323541651091 a001 1/5*6557470319842^(3/17) 3654323553958705 m001 1/GAMMA(11/12)/ln(KhintchineLevy)^2*GAMMA(5/6) 3654323563174571 a007 Real Root Of -374*x^4+500*x^3-237*x^2+714*x-247 3654323568588451 m001 (3^(1/2)-Catalan)/(-Khinchin+ZetaP(2)) 3654323574493220 a007 Real Root Of -104*x^4-294*x^3+110*x^2-598*x+545 3654323576073636 r002 13th iterates of z^2 + 3654323584672292 m001 1/5*Psi(1,1/3)*5^(1/2)*AlladiGrinstead 3654323585011292 r009 Im(z^3+c),c=-31/70+17/60*I,n=27 3654323606651106 m002 -(Pi*Cosh[Pi]*Coth[Pi])+Tanh[Pi]/Pi^4 3654323617163171 r009 Im(z^3+c),c=-17/94+17/43*I,n=9 3654323632444266 r005 Re(z^2+c),c=-53/94+19/61*I,n=14 3654323638585188 h001 (1/7*exp(1)+5/9)/(8/9*exp(1)+1/6) 3654323656831709 m001 (Tribonacci+Thue)/(Zeta(3)-arctan(1/2)) 3654323673490921 l006 ln(4468/6439) 3654323673866596 m001 exp(MinimumGamma)^2/LaplaceLimit^2/OneNinth^2 3654323691841933 a007 Real Root Of -194*x^4+91*x^3-336*x^2+786*x+340 3654323699128309 m001 GAMMA(5/6)/BesselI(0,1)*HardyLittlewoodC5 3654323705144710 l006 ln(145/5603) 3654323717285195 a007 Real Root Of 142*x^4+472*x^3-247*x^2-266*x+37 3654323717812066 m002 -2+Pi^4+Pi^5*Cosh[Pi]+Sinh[Pi] 3654323718117119 p003 LerchPhi(1/10,1,503/170) 3654323719288088 m001 (-Otter+Rabbit)/(Backhouse-sin(1)) 3654323724114556 h001 (6/7*exp(1)+1/6)/(9/10*exp(2)+2/11) 3654323747282230 r002 5i'th iterates of 2*x/(1-x^2) of 3654323766760985 a007 Real Root Of 987*x^4-38*x^3-386*x^2-567*x+243 3654323767279796 r005 Re(z^2+c),c=-4/9+25/61*I,n=34 3654323770726978 a007 Real Root Of -59*x^4-81*x^3+718*x^2+609*x-794 3654323779447898 m001 (HeathBrownMoroz-Niven)/(ThueMorse+ZetaQ(2)) 3654323781073353 r002 15th iterates of z^2 + 3654323786530004 m001 (FeigenbaumD-polylog(4,1/2))/Lehmer 3654323801482032 m001 Riemann1stZero*Khintchine^2/exp(GAMMA(23/24)) 3654323811899114 a007 Real Root Of -58*x^4+459*x^3+139*x^2+679*x+253 3654323812048573 m001 (Kac-ZetaQ(4))/(Champernowne-FeigenbaumC) 3654323812334970 r005 Re(z^2+c),c=-141/110+1/34*I,n=18 3654323813851576 m005 (1/2*2^(1/2)+4/5)/(2/9*Pi-2/7) 3654323828770402 m001 cos(1)^Trott/exp(1) 3654323835101876 a007 Real Root Of 878*x^4+920*x^3-513*x^2-988*x+369 3654323844188249 a001 121393/1364*47^(55/57) 3654323854597878 a007 Real Root Of 928*x^4-731*x^3+274*x^2-307*x-201 3654323864483308 r005 Re(z^2+c),c=43/126+34/63*I,n=12 3654323867097972 r005 Im(z^2+c),c=2/9+31/57*I,n=11 3654323879170795 r005 Re(z^2+c),c=-41/86+8/31*I,n=57 3654323883604123 m001 (Psi(1,1/3)+3^(1/3))/(Bloch+Khinchin) 3654323883655971 r005 Im(z^2+c),c=5/82+22/53*I,n=43 3654323902074433 r009 Re(z^3+c),c=-11/21+19/59*I,n=62 3654323913549888 a007 Real Root Of -665*x^4+184*x^3-981*x^2+493*x+332 3654323914981746 r005 Im(z^2+c),c=8/25+8/39*I,n=20 3654323921368588 m001 ln(2+sqrt(3))^cos(Pi/5)+BesselJZeros(0,1) 3654323927065731 a007 Real Root Of 477*x^4+329*x^3-219*x^2-581*x+217 3654323927279443 r009 Im(z^3+c),c=-47/106+11/39*I,n=15 3654323939696272 r005 Im(z^2+c),c=5/82+22/53*I,n=40 3654323948247940 r005 Im(z^2+c),c=9/98+15/38*I,n=43 3654323952043331 r005 Im(z^2+c),c=-7/8+29/102*I,n=3 3654323995662768 a001 233/47*1364^(28/47) 3654323997052141 m001 ((1+3^(1/2))^(1/2)+Rabbit)/(Trott+ZetaQ(2)) 3654323998980662 r005 Re(z^2+c),c=17/86+14/25*I,n=11 3654324011320741 r005 Im(z^2+c),c=-29/48+15/46*I,n=5 3654324018519868 r005 Im(z^2+c),c=9/122+24/59*I,n=30 3654324021012465 m005 (1/2*exp(1)+6)/(7/9*3^(1/2)+2/3) 3654324022395643 r005 Re(z^2+c),c=-33/98+31/54*I,n=44 3654324023415344 r005 Re(z^2+c),c=-3/4+18/121*I,n=8 3654324023811672 m005 (1/4*2^(1/2)+5/6)/(3*Catalan+1/2) 3654324045108320 m001 GAMMA(23/24)/GAMMA(1/6)/exp(cos(Pi/5))^2 3654324051195498 m002 5+Pi^3+(Pi^3*Csch[Pi])/5 3654324052340794 m001 (FeigenbaumMu-exp(1))/(-Niven+Riemann3rdZero) 3654324053995022 m005 (5/6*Catalan+1/5)/(5^(1/2)+2/5) 3654324056115859 a005 (1/cos(31/164*Pi))^105 3654324056166752 a001 47/89*2178309^(9/31) 3654324056523262 a007 Real Root Of -479*x^4+505*x^3+41*x^2+414*x+179 3654324079327176 m002 3+6/Pi^2+ProductLog[Pi]/E^Pi 3654324080407780 a007 Real Root Of 165*x^4+711*x^3+532*x^2+364*x-502 3654324089966157 l006 ln(3729/5374) 3654324101043546 m001 (Zeta(3)+ln(5))/(OneNinth+Robbin) 3654324124657506 m001 gamma(2)^BesselK(0,1)+GaussKuzminWirsing 3654324140832727 m001 1/OneNinth/DuboisRaymond/exp(GAMMA(17/24))^2 3654324141123497 p001 sum(1/(561*n+274)/(256^n),n=0..infinity) 3654324152235018 r005 Re(z^2+c),c=-11/24+11/46*I,n=3 3654324175517520 r005 Im(z^2+c),c=-43/62+1/16*I,n=56 3654324177725531 p004 log(13711/13219) 3654324178939855 r005 Im(z^2+c),c=3/32+24/61*I,n=38 3654324183291701 g002 Psi(3/10)+Psi(2/9)-Psi(9/11)-Psi(2/7) 3654324187986306 r005 Re(z^2+c),c=-113/114+7/31*I,n=62 3654324193265006 m001 1/exp(GAMMA(3/4))*GAMMA(11/24)^2/sqrt(3)^2 3654324195960055 r002 9th iterates of z^2 + 3654324203414712 r005 Im(z^2+c),c=-101/90+5/18*I,n=64 3654324221221803 p004 log(20431/14177) 3654324227724873 m001 1/exp(Si(Pi))/GaussKuzminWirsing/sqrt(2) 3654324229040085 m005 (1/3*gamma-1/4)/(7/10*3^(1/2)+4/11) 3654324240982891 a008 Real Root of x^4-x^3-3*x^2-16*x-31 3654324248288112 m005 (1/24+1/6*5^(1/2))/(1/4*Zeta(3)+5/6) 3654324251171501 a001 1860498/377*832040^(6/19) 3654324251510718 a001 103682/377*7778742049^(6/19) 3654324254524019 s001 sum(exp(-2*Pi/3)^n*A007389[n],n=1..infinity) 3654324254657669 s001 sum(exp(-2*Pi/3)^n*A007388[n],n=1..infinity) 3654324273153567 a007 Real Root Of 314*x^4+558*x^3+153*x^2-280*x+10 3654324281102722 a008 Real Root of (2+5*x-3*x^2-4*x^3-5*x^5) 3654324289008474 r009 Im(z^3+c),c=-47/106+10/41*I,n=7 3654324289935354 a007 Real Root Of 635*x^4-589*x^3+852*x^2-846*x-463 3654324294727590 m001 GAMMA(5/6)^Thue/GaussKuzminWirsing 3654324308721849 m001 (Zeta(1/2)-OneNinth)/(TreeGrowth2nd-Trott) 3654324312910092 r005 Re(z^2+c),c=-5/12+15/29*I,n=61 3654324325555143 p001 sum((-1)^n/(182*n+41)/n/(12^n),n=0..infinity) 3654324350603973 r005 Im(z^2+c),c=1/11+17/43*I,n=32 3654324357559692 m001 (Catalan-Psi(1,1/3))/((1+3^(1/2))^(1/2)+Thue) 3654324366913811 l006 ln(6719/9683) 3654324372919289 m005 (1/2*3^(1/2)-11/12)/(9/11*Catalan+7/11) 3654324377838689 m001 (DuboisRaymond+ZetaQ(4))/(Chi(1)-ln(2)/ln(10)) 3654324383788544 b008 Sqrt[2]*Log[53/4] 3654324405829433 m001 1/GAMMA(17/24)^2*Kolakoski^2*exp(GAMMA(5/6))^2 3654324434447825 m001 Niven^Gompertz+BesselI(0,2) 3654324441488618 r005 Re(z^2+c),c=-59/114+29/63*I,n=46 3654324455564813 m001 1/TreeGrowth2nd/Paris^2/ln(Ei(1)) 3654324459220212 a001 233/11*18^(10/53) 3654324477027662 r009 Im(z^3+c),c=-23/60+9/28*I,n=15 3654324477726805 r005 Im(z^2+c),c=21/64+7/41*I,n=6 3654324484171546 r005 Im(z^2+c),c=7/20+13/43*I,n=37 3654324527332338 m001 (3^(1/2)-GAMMA(3/4))/(MertensB3+ZetaQ(2)) 3654324532764492 m001 (Psi(2,1/3)+Conway)/(Lehmer+Riemann1stZero) 3654324541697698 a001 4*(1/2*5^(1/2)+1/2)^27*3^(2/3) 3654324569547579 m001 ZetaP(4)^(BesselI(0,2)*KhinchinHarmonic) 3654324570305220 m001 1/exp(Magata)^2/CareFree^2*GAMMA(17/24)^2 3654324575533227 a001 1/13201*11^(21/32) 3654324575617624 r005 Im(z^2+c),c=21/110+17/53*I,n=30 3654324584970193 m001 (3^(1/3)-sin(1))/(AlladiGrinstead+GaussAGM) 3654324587503435 r005 Re(z^2+c),c=-18/31+37/58*I,n=16 3654324606537316 l006 ln(198/7651) 3654324607442749 b008 (1/2+Sqrt[34])*EulerGamma 3654324613619290 r009 Im(z^3+c),c=-3/40+47/58*I,n=12 3654324618198399 p004 log(35537/24659) 3654324633211138 r009 Re(z^3+c),c=-71/126+28/59*I,n=14 3654324636051977 r005 Im(z^2+c),c=15/98+20/57*I,n=38 3654324655400381 a007 Real Root Of -166*x^4-558*x^3+390*x^2+551*x-822 3654324658979819 a001 17711/322*18^(19/29) 3654324659205730 m004 36+(Sqrt[5]*ProductLog[Sqrt[5]*Pi])/(2*Pi) 3654324662862268 m001 Pi^(2^(1/3))-Stephens 3654324670510802 s001 sum(exp(-2*Pi/3)^n*A007387[n],n=1..infinity) 3654324686882805 r009 Im(z^3+c),c=-53/122+8/33*I,n=2 3654324695678229 m001 (BesselI(0,2)-Stephens)/(Weierstrass-ZetaQ(3)) 3654324704009205 m006 (2/3*ln(Pi)+2/5)/(3/5*exp(2*Pi)-3) 3654324712311058 l006 ln(2990/4309) 3654324723846629 r005 Im(z^2+c),c=5/126+3/7*I,n=40 3654324751433756 m001 (-Robbin+Sarnak)/(Rabbit-cos(1)) 3654324765030654 m005 (1/2*5^(1/2)-3/11)/(1/10*Zeta(3)+1/9) 3654324781261206 m001 (gamma+Ei(1,1))/(-Otter+StronglyCareFree) 3654324782885382 r009 Im(z^3+c),c=-11/32+14/41*I,n=21 3654324786134576 m005 (1/2*Catalan+1/3)/(-7/22+1/22*5^(1/2)) 3654324786188760 r009 Im(z^3+c),c=-45/86+6/61*I,n=25 3654324789275576 h001 (-3*exp(2)-4)/(-5*exp(-1)+9) 3654324793232268 m001 1/GAMMA(1/4)^2*ln(RenyiParking)*GAMMA(17/24)^2 3654324800198261 m005 (1/3*2^(1/2)+1/4)/(1/7*Catalan-1/9) 3654324801622620 m001 CareFree*HardyLittlewoodC5+ZetaP(4) 3654324804369589 a001 45537549124*144^(15/17) 3654324806171833 r005 Re(z^2+c),c=-29/60+16/61*I,n=12 3654324815196927 r005 Im(z^2+c),c=-9/29+23/40*I,n=58 3654324843091816 m001 (ln(2)-Pi^(1/2))/(RenyiParking-ZetaP(2)) 3654324850516365 m001 (ln(gamma)-ln(Pi))/(GAMMA(13/24)-Salem) 3654324877122208 r005 Im(z^2+c),c=1/102+21/47*I,n=41 3654324890932574 r005 Re(z^2+c),c=13/46+2/33*I,n=59 3654324921956295 r005 Re(z^2+c),c=-11/10+171/248*I,n=2 3654324934344760 h001 (4/5*exp(1)+3/7)/(8/9*exp(2)+5/9) 3654324941185184 m005 (1/2*exp(1)+2)/(6/7*Zeta(3)-1/9) 3654324955680393 m001 1/RenyiParking/ln(MinimumGamma)*Zeta(5) 3654324975110428 m005 (1/4*2^(1/2)-1/3)/(2*Pi-3/4) 3654324980756155 a007 Real Root Of -445*x^4+438*x^3+128*x^2+689*x+264 3654324986108423 r002 45th iterates of z^2 + 3654324991460274 r005 Im(z^2+c),c=-12/29+21/38*I,n=58 3654324995666337 k001 Champernowne real with 67*n+298 3654325001684498 m001 BesselK(0,1)/(Zeta(1/2)^Artin) 3654325023380065 r009 Re(z^3+c),c=-1/18+20/41*I,n=22 3654325044667070 m008 (5/6*Pi^5-1/6)/(1/5*Pi^2+5) 3654325059256028 m001 (sin(1/5*Pi)+Ei(1))/(ZetaP(4)-ZetaQ(3)) 3654325067291230 m001 1/ln(Rabbit)/Lehmer^2*TreeGrowth2nd 3654325072964854 r005 Re(z^2+c),c=-85/86+3/14*I,n=32 3654325073643202 r009 Re(z^3+c),c=-35/86+5/23*I,n=6 3654325074516773 a001 21/24476*7^(35/47) 3654325079364989 r005 Im(z^2+c),c=31/94+7/41*I,n=16 3654325103026858 m009 (3*Psi(1,2/3)+1/6)/(3*Pi^2-4) 3654325103674226 a007 Real Root Of -993*x^4+220*x^3+333*x^2+115*x+26 3654325110185658 a005 (1/sin(70/177*Pi))^1072 3654325117700921 a007 Real Root Of 976*x^4-640*x^3-796*x^2-993*x+483 3654325127261758 l006 ln(251/9699) 3654325151816664 r005 Re(z^2+c),c=-11/21+10/53*I,n=4 3654325155112817 l006 ln(5241/7553) 3654325163208058 a001 233/47*24476^(20/47) 3654325171669637 r005 Re(z^2+c),c=-23/32+9/52*I,n=23 3654325172939259 a001 233/47*15127^(21/47) 3654325176165317 a007 Real Root Of 150*x^4-588*x^3+396*x^2-366*x-218 3654325177226672 r005 Im(z^2+c),c=4/21+9/28*I,n=19 3654325199168211 m005 (1/2*exp(1)+4/11)/(10/11*2^(1/2)-6) 3654325199765332 r005 Im(z^2+c),c=-6/29+31/57*I,n=16 3654325201830716 r009 Re(z^3+c),c=-25/52+35/59*I,n=27 3654325203920231 r001 16i'th iterates of 2*x^2-1 of 3654325206969665 m001 FeigenbaumB+ReciprocalLucas+Thue 3654325215876142 h001 (1/3*exp(2)+1/12)/(8/9*exp(2)+2/5) 3654325215891860 r005 Im(z^2+c),c=-21/34+40/93*I,n=53 3654325221068521 r005 Re(z^2+c),c=-35/78+13/34*I,n=30 3654325232374031 r005 Im(z^2+c),c=-11/106+25/49*I,n=60 3654325275518975 r005 Im(z^2+c),c=-25/98+4/7*I,n=51 3654325301191636 r005 Im(z^2+c),c=-14/17+1/50*I,n=47 3654325302072230 a007 Real Root Of 306*x^4+954*x^3-883*x^2-930*x+379 3654325322420165 m001 (1-Shi(1))/(Zeta(1,-1)+ZetaQ(3)) 3654325324171509 r005 Im(z^2+c),c=11/42+13/51*I,n=49 3654325328481677 m001 (BesselI(0,1)-ln(2))/(-Magata+Tribonacci) 3654325341122572 r005 Im(z^2+c),c=1/102+21/47*I,n=43 3654325346044627 r002 4th iterates of z^2 + 3654325349038715 r005 Im(z^2+c),c=7/24+11/47*I,n=17 3654325361204629 m001 (exp(-1/2*Pi)+Cahen)/(GolombDickman+Niven) 3654325366101261 m005 (1/2*exp(1)+4/9)/(1/8*exp(1)-5/6) 3654325395181573 a003 cos(Pi*37/98)*sin(Pi*38/89) 3654325405650863 m005 (1/3*5^(1/2)+1/4)/(3/11*3^(1/2)-1/5) 3654325423725972 r005 Im(z^2+c),c=9/122+24/59*I,n=40 3654325429848227 r005 Re(z^2+c),c=-51/118+16/35*I,n=50 3654325430325824 m001 (LaplaceLimit+Totient)/(GAMMA(19/24)-Kac) 3654325440083771 a007 Real Root Of 168*x^4+659*x^3-39*x^2-508*x+864 3654325445837250 a007 Real Root Of 170*x^4+574*x^3-415*x^2-822*x+233 3654325452276371 r005 Im(z^2+c),c=3/98+36/59*I,n=56 3654325476226356 r005 Re(z^2+c),c=-29/62+7/24*I,n=18 3654325480474287 m005 (13/12+1/4*5^(1/2))/(9/11*Catalan-3/10) 3654325518453819 m005 (1/2*3^(1/2)+3/5)/(4/7*Zeta(3)-2/7) 3654325526974768 r009 Im(z^3+c),c=-47/90+17/39*I,n=59 3654325527218566 r005 Re(z^2+c),c=-13/27+11/49*I,n=21 3654325534305933 r009 Re(z^3+c),c=-39/82+17/60*I,n=43 3654325535363531 a001 199/21*4807526976^(9/19) 3654325554766921 m004 1+5*Sqrt[5]*Pi+75*Pi*Sech[Sqrt[5]*Pi] 3654325570317567 s002 sum(A027701[n]/(n^3*10^n-1),n=1..infinity) 3654325579763581 r005 Im(z^2+c),c=-2/11+28/51*I,n=48 3654325587935432 m004 1+5*Sqrt[5]*Pi+(150*Pi)/E^(Sqrt[5]*Pi) 3654325588016375 a007 Real Root Of 174*x^4+712*x^3+442*x^2-850*x-338 3654325593166542 r005 Im(z^2+c),c=-2/11+21/38*I,n=35 3654325621103994 m004 1+5*Sqrt[5]*Pi+75*Pi*Csch[Sqrt[5]*Pi] 3654325628926176 a007 Real Root Of -727*x^4+745*x^3-760*x^2+712*x+411 3654325633829191 m001 FeigenbaumD*MadelungNaCl-MertensB2 3654325643697389 r005 Re(z^2+c),c=-47/102+17/45*I,n=24 3654325645343418 m001 (Zeta(1,-1)+DuboisRaymond)/(ln(3)-Ei(1)) 3654325682060796 a007 Real Root Of -415*x^4-460*x^3-535*x^2+943*x+401 3654325693997515 m001 (sin(1/5*Pi)-gamma(1))/(BesselI(0,2)-Bloch) 3654325698839260 m005 (1/3*2^(1/2)+1/8)/(3^(1/2)-1/10) 3654325706792728 r005 Im(z^2+c),c=1/102+21/47*I,n=47 3654325732713787 m001 (sin(1/5*Pi)+BesselI(1,1))/(Bloch+FeigenbaumD) 3654325736797599 r005 Im(z^2+c),c=-9/52+35/64*I,n=43 3654325743285712 l006 ln(2251/3244) 3654325759635093 m001 2^(1/2)-ReciprocalFibonacci^PlouffeB 3654325783329895 m005 (1/2*3^(1/2)+4/9)/(5*gamma+7/10) 3654325802314073 r005 Re(z^2+c),c=-25/52+8/31*I,n=11 3654325810864914 r005 Re(z^2+c),c=-47/110+19/40*I,n=45 3654325812216034 m005 (1/2*gamma+2/11)/(2/5*exp(1)+1/5) 3654325836624743 r009 Re(z^3+c),c=-45/122+31/47*I,n=41 3654325847670889 h001 (2/3*exp(2)+5/7)/(2/11*exp(2)+1/5) 3654325861629202 m001 (Magata+ZetaP(3))/(GAMMA(2/3)-Artin) 3654325870999645 a007 Real Root Of 52*x^4+76*x^3-256*x^2-554*x+232 3654325894499186 m009 (1/2*Pi^2-1)/(4*Psi(1,3/4)+3/5) 3654325903460396 a001 7/514229*89^(11/50) 3654325906293780 m001 (gamma-ln(5))/(arctan(1/3)+FeigenbaumAlpha) 3654325912707065 a007 Real Root Of -500*x^4+239*x^3+279*x^2+706*x-298 3654325918057459 m001 1/GAMMA(17/24)*Kolakoski/exp(sqrt(2))^2 3654325929752066 r005 Re(z^2+c),c=-7/16+19/55*I,n=2 3654325944586533 r005 Re(z^2+c),c=-19/40+1/24*I,n=7 3654325948535316 m003 55/12+Sqrt[5]/32-Sin[1/2+Sqrt[5]/2] 3654325961806062 r005 Re(z^2+c),c=-53/114+26/61*I,n=7 3654325965553533 b008 25+2^Pi+E 3654325965732110 p003 LerchPhi(1/8,4,40/31) 3654325975898694 m005 (1/2*Catalan+1/2)/(7/8*exp(1)-5) 3654325979842760 a005 (1/cos(12/181*Pi))^797 3654325987235430 m005 (1/2*Zeta(3)-1/9)/(4/7*Pi-5/11) 3654325987888171 m001 (ln(2)+arctan(1/3))/(exp(1/exp(1))+MertensB3) 3654325990465766 a001 3940598/305*8^(1/2) 3654325995622150 r005 Re(z^2+c),c=-41/86+8/31*I,n=62 3654325999189334 r005 Im(z^2+c),c=-27/74+19/34*I,n=51 3654326003194897 r002 7th iterates of z^2 + 3654326009027942 r005 Re(z^2+c),c=-41/86+8/31*I,n=59 3654326009395173 m001 (5^(1/2)+BesselJ(0,1))/(Ei(1,1)+BesselK(1,1)) 3654326013373438 r009 Re(z^3+c),c=-1/102+23/34*I,n=2 3654326013933970 r005 Im(z^2+c),c=11/56+15/49*I,n=8 3654326018003588 p004 log(17891/463) 3654326023367927 r005 Re(z^2+c),c=-31/78+20/41*I,n=32 3654326027713024 m001 (2^(1/2))^(ln(2^(1/2)+1)/CopelandErdos) 3654326028698570 r009 Im(z^3+c),c=-21/46+3/11*I,n=27 3654326044456706 m005 (1/2*3^(1/2)-1/4)/(2/7*exp(1)+10/11) 3654326045002109 r004 Im(z^2+c),c=1/18-11/18*I,z(0)=I,n=46 3654326047232489 r002 21th iterates of z^2 + 3654326052497749 r005 Im(z^2+c),c=33/118+21/53*I,n=13 3654326056737622 r005 Im(z^2+c),c=-19/110+27/50*I,n=33 3654326089474729 r005 Re(z^2+c),c=-41/86+8/31*I,n=64 3654326096031873 r002 27th iterates of z^2 + 3654326108260061 a007 Real Root Of 322*x^4+982*x^3-469*x^2+784*x-373 3654326112584870 r005 Re(z^2+c),c=-9/19+5/18*I,n=30 3654326114700260 m001 Conway^2/ErdosBorwein^2/ln(GAMMA(7/12))^2 3654326118486306 r009 Re(z^3+c),c=-45/98+5/19*I,n=34 3654326122261446 r005 Im(z^2+c),c=-17/110+15/28*I,n=48 3654326131248013 r005 Im(z^2+c),c=-31/86+18/31*I,n=64 3654326138920515 m001 (TwinPrimes+ZetaQ(4))/(ln(Pi)-Otter) 3654326141305369 m001 (Pi-Zeta(1/2))/(polylog(4,1/2)-Cahen) 3654326142228179 a007 Real Root Of 810*x^4-378*x^3-527*x^2-144*x+127 3654326158137639 r005 Im(z^2+c),c=-51/106+13/24*I,n=49 3654326158264872 a007 Real Root Of -113*x^4+190*x^3-371*x^2+767*x-238 3654326166710274 r005 Re(z^2+c),c=-10/13+4/19*I,n=6 3654326171424758 m001 (-Landau+Mills)/(ln(2)/ln(10)+KomornikLoreti) 3654326209680683 m001 ln((2^(1/3)))^2*TwinPrimes*Zeta(5) 3654326210193005 m001 1/Zeta(3)^2/ln(GAMMA(11/12))^2*cosh(1) 3654326213611488 m001 Pi+1-cos(1/5*Pi)+arctan(1/3) 3654326214151742 r005 Re(z^2+c),c=-37/66+14/45*I,n=14 3654326222384400 r005 Re(z^2+c),c=1/48+13/50*I,n=13 3654326225315768 a001 1/2529*(1/2*5^(1/2)+1/2)^23*3^(1/3) 3654326226328016 m005 (1/2*Pi-1)/(3/4*Catalan+7/8) 3654326231682412 r005 Re(z^2+c),c=3/106+24/59*I,n=4 3654326237120791 m001 (FeigenbaumMu+ZetaP(2))/(ln(3)+gamma(3)) 3654326239135212 s002 sum(A089007[n]/(exp(pi*n)+1),n=1..infinity) 3654326240820692 r005 Im(z^2+c),c=43/122+17/44*I,n=60 3654326252938608 r002 58th iterates of z^2 + 3654326255858705 l006 ln(6014/8667) 3654326258556248 a007 Real Root Of 300*x^4-13*x^3+194*x^2-549*x+170 3654326271051582 r009 Im(z^3+c),c=-9/23+19/60*I,n=25 3654326288736979 a001 29/832040*7778742049^(14/23) 3654326306433168 a007 Real Root Of -154*x^4-3*x^3-438*x^2+911*x+394 3654326337057124 a007 Real Root Of -322*x^4+86*x^3-840*x^2+38*x+136 3654326347080402 a008 Real Root of x^5-21*x^3-10*x^2+88*x+82 3654326359474761 a007 Real Root Of 71*x^4+427*x^3+919*x^2-826*x-405 3654326370130725 r005 Im(z^2+c),c=-13/118+19/37*I,n=53 3654326373062550 r005 Re(z^2+c),c=-7/10+29/196*I,n=6 3654326391483881 r005 Im(z^2+c),c=-7/66+27/55*I,n=8 3654326403033842 r005 Re(z^2+c),c=-35/74+12/43*I,n=47 3654326415032823 a007 Real Root Of -302*x^4+760*x^3-936*x^2+871*x-225 3654326416132229 m005 (1/2*Catalan+2/5)/(2/3*5^(1/2)+6/7) 3654326425884319 m005 (5*2^(1/2)-3/5)/(5*Pi+2) 3654326426086303 m002 -6+Pi^3-Log[Pi]/Pi^4+Sinh[Pi] 3654326430675652 h001 (2/11*exp(1)+2/5)/(5/6*exp(1)+2/11) 3654326432085635 m001 (2^(1/2)+Cahen)/(-Paris+Robbin) 3654326435696417 m001 FibonacciFactorial/GAMMA(3/4)/Trott2nd 3654326436633460 g005 GAMMA(11/12)*GAMMA(4/9)*GAMMA(3/7)/GAMMA(7/9) 3654326446697420 r005 Re(z^2+c),c=-7/15+14/45*I,n=63 3654326465362318 p001 sum(1/(603*n+275)/(64^n),n=0..infinity) 3654326469464569 p001 sum(1/(377*n+284)/(12^n),n=0..infinity) 3654326473391759 r009 Im(z^3+c),c=-1/38+18/43*I,n=4 3654326473766308 r005 Re(z^2+c),c=19/62+3/47*I,n=29 3654326482625964 m001 (Zeta(1,-1)*CareFree+Artin)/CareFree 3654326489361027 a007 Real Root Of 664*x^4-942*x^3+432*x^2-784*x-402 3654326512742171 m001 BesselI(1,1)/(GAMMA(17/24)+MertensB1) 3654326523069680 a007 Real Root Of -531*x^4+879*x^3-393*x^2+794*x+395 3654326530554408 a001 7/196418*6765^(21/40) 3654326536594782 m001 GAMMA(3/4)*(FeigenbaumKappa-Shi(1)) 3654326538235107 m002 4*Log[Pi]+ProductLog[Pi]+Pi^3*Tanh[Pi] 3654326544685643 a007 Real Root Of 366*x^4+370*x^3-998*x^2-830*x+412 3654326551099280 r005 Im(z^2+c),c=1/7+37/63*I,n=10 3654326551751629 m001 (ln(2)+BesselI(1,2))/(ThueMorse-Weierstrass) 3654326560586428 r005 Re(z^2+c),c=-37/82+11/29*I,n=44 3654326562476233 l006 ln(3763/5423) 3654326567335011 r005 Re(z^2+c),c=-11/29+14/27*I,n=35 3654326574420342 r005 Im(z^2+c),c=1/64+11/26*I,n=8 3654326587467183 r009 Im(z^3+c),c=-3/106+12/29*I,n=10 3654326587984277 a001 377/18*64079^(29/43) 3654326588844719 m001 (Si(Pi)*GAMMA(13/24)+Otter)/GAMMA(13/24) 3654326590410733 a007 Real Root Of -132*x^4-301*x^3+519*x^2-688*x-594 3654326599413041 m001 Backhouse+HeathBrownMoroz-MasserGramainDelta 3654326619393149 m005 (1/2*3^(1/2)-2/5)/(7/11*exp(1)-5/11) 3654326623265027 l006 ln(8947/9280) 3654326623498373 a007 Real Root Of -157*x^4-533*x^3+37*x^2-635*x-827 3654326632400471 r005 Re(z^2+c),c=-41/86+8/31*I,n=60 3654326694729135 m001 MertensB1/(Sarnak^MertensB2) 3654326710627663 m001 (exp(Pi)+BesselK(1,1))/(Weierstrass+ZetaP(3)) 3654326711623468 r005 Re(z^2+c),c=-17/18+27/130*I,n=28 3654326732614744 m001 (-Champernowne+KhinchinLevy)/(Si(Pi)+Shi(1)) 3654326759570537 r005 Im(z^2+c),c=-11/16+31/114*I,n=51 3654326775859064 r009 Re(z^3+c),c=-67/110+17/54*I,n=12 3654326781599183 m004 100/Pi+(10*Csc[Sqrt[5]*Pi])/Pi 3654326783064989 a007 Real Root Of -89*x^4-12*x^3-953*x^2+864*x+444 3654326790372258 r009 Im(z^3+c),c=-45/118+20/63*I,n=9 3654326805914153 r005 Re(z^2+c),c=1/17+53/56*I,n=3 3654326836256410 m005 (1/3*Catalan-2/11)/(2/5*Zeta(3)-1/7) 3654326851755259 r005 Re(z^2+c),c=-9/19+1/47*I,n=7 3654326877549157 r005 Re(z^2+c),c=-23/48+19/45*I,n=20 3654326885612362 m001 (ln(5)-gamma(2))/(FeigenbaumD+MadelungNaCl) 3654326886987092 a007 Real Root Of -220*x^4-933*x^3-338*x^2+738*x+913 3654326894269510 m001 (-Lehmer+ZetaP(4))/(gamma+GaussAGM) 3654326896011065 m001 FellerTornier/(Zeta(1,2)+GAMMA(23/24)) 3654326902586782 h001 (9/11*exp(2)+1/4)/(1/2*exp(1)+4/11) 3654326908596693 m001 1/Catalan*Trott/exp(sinh(1)) 3654326912049268 l006 ln(5275/7602) 3654326924851422 r005 Re(z^2+c),c=-1/50+40/43*I,n=7 3654326943050122 r009 Im(z^3+c),c=-5/122+17/21*I,n=22 3654326952236070 a007 Real Root Of 910*x^4+7*x^3+794*x^2-501*x-305 3654326954907867 m001 (Robbin+Totient)/(BesselJ(1,1)+OneNinth) 3654326956340966 m001 (Magata+QuadraticClass)/(gamma+Gompertz) 3654326962881887 m005 (7/3+1/3*5^(1/2))/(3*Pi-1) 3654326962904393 s002 sum(A054477[n]/(10^n-1),n=1..infinity) 3654326979302027 r005 Im(z^2+c),c=1/40+10/13*I,n=9 3654326991523737 m001 (cos(1)-ln(2))/(exp(1/Pi)+FransenRobinson) 3654327036262610 a003 cos(Pi*11/40)-cos(Pi*49/120) 3654327038950412 a001 29/987*121393^(14/23) 3654327041734796 p003 LerchPhi(1/1024,2,91/55) 3654327050084997 r005 Im(z^2+c),c=-15/94+7/13*I,n=57 3654327051027038 m001 1/Riemann1stZero^2/exp(GAMMA(13/24))^3 3654327052721446 r005 Im(z^2+c),c=-21/34+29/69*I,n=39 3654327059748853 a007 Real Root Of -264*x^4+599*x^3+103*x^2+960*x+371 3654327070929682 r005 Im(z^2+c),c=-7/6+4/107*I,n=5 3654327072607276 l006 ln(53/2048) 3654327077397481 r005 Im(z^2+c),c=-2/17+15/29*I,n=38 3654327103001874 m001 (LambertW(1)-Robbin)/(Tetranacci+TwinPrimes) 3654327105867345 l006 ln(6787/9781) 3654327108665229 m009 (2*Psi(1,2/3)-1/6)/(3/4*Psi(1,2/3)-2/3) 3654327109280103 r002 5th iterates of z^2 + 3654327118188180 m005 (1/3*Zeta(3)-1/7)/(2/9*Catalan-10/11) 3654327131231111 k006 concat of cont frac of 3654327131999608 a007 Real Root Of 112*x^4+200*x^3-750*x^2-19*x-267 3654327147048678 r002 56th iterates of z^2 + 3654327159958210 m001 (-HardHexagonsEntropy+Niven)/(Chi(1)-gamma(2)) 3654327161211653 m001 Riemann2ndZero/(ThueMorse^GolombDickman) 3654327163581790 q001 1461/3998 3654327168474098 m001 (arctan(1/3)-GAMMA(11/12))/(CareFree+Conway) 3654327170302563 r005 Re(z^2+c),c=-41/86+8/31*I,n=61 3654327177265259 m001 exp(TwinPrimes)/MinimumGamma/BesselK(1,1)^2 3654327180858839 r009 Re(z^3+c),c=-43/82+9/31*I,n=39 3654327198757208 r005 Im(z^2+c),c=-11/106+25/49*I,n=64 3654327204386593 a001 5702887/2207*2^(1/2) 3654327208934440 g005 GAMMA(4/9)*GAMMA(4/7)/GAMMA(7/10)/GAMMA(1/7) 3654327209015875 r009 Im(z^3+c),c=-17/40+1/60*I,n=22 3654327215264297 r002 28th iterates of z^2 + 3654327228451087 m005 (1/2*3^(1/2)+3/7)/(3*2^(1/2)-7/10) 3654327230636285 r005 Re(z^2+c),c=-49/82+15/38*I,n=30 3654327245795871 r005 Im(z^2+c),c=5/64+21/52*I,n=27 3654327246840368 a007 Real Root Of 581*x^4-825*x^3-367*x^2+101*x+42 3654327249764002 m001 BesselJ(1,1)/exp(Magata)^2/GAMMA(1/12)^2 3654327250242508 r005 Im(z^2+c),c=-13/106+33/64*I,n=11 3654327254415730 r005 Im(z^2+c),c=3/58+8/19*I,n=22 3654327261803638 m001 (Chi(1)-gamma(1))/(-FeigenbaumAlpha+Trott) 3654327262741294 r005 Re(z^2+c),c=-17/40+28/59*I,n=50 3654327265568681 a001 199/75025*3^(7/24) 3654327270340751 r005 Re(z^2+c),c=-35/82+20/43*I,n=61 3654327271378540 m001 (Sierpinski+ZetaQ(3))/(2^(1/2)-CareFree) 3654327298398558 a007 Real Root Of -625*x^4+756*x^3+239*x^2+997*x-422 3654327298782560 r005 Im(z^2+c),c=43/126+3/22*I,n=57 3654327305809402 m005 (1/2*exp(1)+9/11)/(3*5^(1/2)-3/4) 3654327307702484 r009 Im(z^3+c),c=-33/86+8/25*I,n=13 3654327310450320 m005 (1/2*Catalan+1)/(4/7*3^(1/2)+3) 3654327313032998 a007 Real Root Of -638*x^4+892*x^3-29*x^2+173*x+122 3654327314926021 s001 sum(exp(-2*Pi/3)^n*A131306[n],n=1..infinity) 3654327322222817 a007 Real Root Of -140*x^4-606*x^3-267*x^2+304*x+70 3654327322916007 m005 (1/2*3^(1/2)-1/12)/(9/11*Pi-3/7) 3654327348919421 m001 (cos(1)+gamma(2))/(-GAMMA(7/12)+ZetaP(4)) 3654327349745119 r005 Im(z^2+c),c=-29/48+4/49*I,n=8 3654327361127173 r009 Im(z^3+c),c=-13/98+19/47*I,n=9 3654327363979637 r005 Re(z^2+c),c=-3/16+31/58*I,n=5 3654327377440337 m001 (cos(1/5*Pi)-2*Pi/GAMMA(5/6))/(Kac-Tetranacci) 3654327377531146 r005 Re(z^2+c),c=-41/86+8/31*I,n=63 3654327405718178 a007 Real Root Of 116*x^4+537*x^3+681*x^2-868*x-384 3654327426405798 a003 cos(Pi*29/108)-cos(Pi*25/62) 3654327428452977 m001 (-Magata+Niven)/(Chi(1)-Conway) 3654327431677257 r005 Re(z^2+c),c=-41/86+8/31*I,n=52 3654327434247324 m002 1+Cosh[Pi]*ProductLog[Pi]+2*Sinh[Pi] 3654327438976461 a001 514229/18*199^(2/43) 3654327440301401 r009 Im(z^3+c),c=-13/74+36/43*I,n=16 3654327442790950 m001 (Zeta(1,2)-DuboisRaymond)/(Khinchin+ThueMorse) 3654327448348424 m006 (2/5/Pi-3/4)/(5/6*ln(Pi)+3/4) 3654327458971424 r005 Re(z^2+c),c=-47/98+14/59*I,n=26 3654327459114045 m001 1/ln(Zeta(5))^2/GAMMA(1/3)/log(1+sqrt(2))^2 3654327464259493 r005 Re(z^2+c),c=-45/98+19/55*I,n=50 3654327485447730 r005 Im(z^2+c),c=-7/6+1/21*I,n=20 3654327510371524 m001 (GAMMA(11/12)-Pi^(1/2))/(Khinchin-Sarnak) 3654327511144900 m005 (4/5*Catalan-1/4)/(2*gamma+1/6) 3654327513633354 a001 6643838879/610*102334155^(4/21) 3654327513633354 a001 969323029/610*2504730781961^(4/21) 3654327515249533 p002 log(11^(3/2)+13^(3/10)) 3654327521597108 a001 22768774562/305*4181^(4/21) 3654327534193820 m005 (1/2*3^(1/2)+9/10)/(10/11*Catalan+4) 3654327538658080 b008 Cosh[5+ArcTan[Pi]^2] 3654327542271593 r005 Re(z^2+c),c=-29/62+2/7*I,n=20 3654327560269980 r002 9th iterates of z^2 + 3654327565033634 m001 HardyLittlewoodC5^exp(Pi)*ReciprocalFibonacci 3654327566066472 r005 Im(z^2+c),c=-7/52+15/26*I,n=21 3654327597260955 r005 Re(z^2+c),c=7/32+22/45*I,n=22 3654327606861754 r005 Im(z^2+c),c=-19/26+17/96*I,n=39 3654327607681684 m001 Zeta(3)^(Psi(1,1/3)*ArtinRank2) 3654327611408692 r005 Im(z^2+c),c=11/90+20/41*I,n=3 3654327623234388 r005 Re(z^2+c),c=-7/10+36/103*I,n=38 3654327632120030 m001 (OneNinth+Rabbit)/(sin(1)+HardHexagonsEntropy) 3654327637725170 a007 Real Root Of 320*x^4+125*x^3+136*x^2-539*x+167 3654327641470383 a001 29/3*2178309^(13/18) 3654327668063303 a001 20633239/1597*8^(1/2) 3654327692708006 m001 (Robbin+Tetranacci)/(Ei(1)-KhinchinLevy) 3654327707961526 r005 Im(z^2+c),c=-13/44+31/64*I,n=6 3654327713729261 a003 cos(Pi*19/73)-cos(Pi*25/63) 3654327719506772 b008 31+3*Sqrt[2+Sqrt[2]] 3654327734866421 m005 (1/3*2^(1/2)-3/5)/(6/7*gamma-1/7) 3654327736870674 h001 (1/6*exp(2)+8/9)/(8/11*exp(2)+3/7) 3654327752464070 r005 Re(z^2+c),c=-73/74+7/53*I,n=28 3654327773148970 a007 Real Root Of 118*x^4+292*x^3-566*x^2-440*x-843 3654327777597240 m005 (1/2*gamma-2/9)/(5/7*exp(1)-1/8) 3654327782051415 l006 ln(1512/2179) 3654327783895273 r002 4th iterates of z^2 + 3654327831458697 h001 (5/7*exp(2)+6/11)/(3/7*exp(1)+3/7) 3654327832282041 a001 7/233*365435296162^(11/14) 3654327845172077 a001 1292*4^(3/4) 3654327851443144 r005 Im(z^2+c),c=1/27+25/58*I,n=21 3654327855945273 m005 (1/2*Catalan+8/11)/(11/12*Pi+4/11) 3654327856676915 m001 (GAMMA(2/3)+GAMMA(5/6))/(ZetaP(4)-ZetaQ(3)) 3654327858202177 m001 1/GAMMA(1/6)^2*exp(FeigenbaumKappa)*cos(1)^2 3654327859727247 q001 1313/3593 3654327868945743 m001 (ZetaP(4)+ZetaQ(2))/(AlladiGrinstead-ZetaP(2)) 3654327869814884 r005 Im(z^2+c),c=-41/94+2/33*I,n=24 3654327891104405 a007 Real Root Of 121*x^4+392*x^3-479*x^2-827*x+926 3654327912821614 a001 54018521/4181*8^(1/2) 3654327938661438 a001 39088169/15127*2^(1/2) 3654327939582792 a007 Real Root Of 312*x^4+993*x^3-353*x^2+515*x-585 3654327948531373 a001 70711162/5473*8^(1/2) 3654327952301352 a001 34111385/13201*2^(1/2) 3654327953741356 a001 370248451/28657*8^(1/2) 3654327954291389 a001 133957148/51841*2^(1/2) 3654327954428439 m005 (1/2*3^(1/2)-5/12)/(1/2*3^(1/2)+4/11) 3654327954501483 a001 969323029/75025*8^(1/2) 3654327954581731 a001 233802911/90481*2^(1/2) 3654327954612384 a001 1268860318/98209*8^(1/2) 3654327954624092 a001 1836311903/710647*2^(1/2) 3654327954628564 a001 6643838879/514229*8^(1/2) 3654327954630272 a001 267084832/103361*2^(1/2) 3654327954630925 a001 17393796001/1346269*8^(1/2) 3654327954631174 a001 12586269025/4870847*2^(1/2) 3654327954631269 a001 22768774562/1762289*8^(1/2) 3654327954631305 a001 10983760033/4250681*2^(1/2) 3654327954631319 a001 119218851371/9227465*8^(1/2) 3654327954631325 a001 43133785636/16692641*2^(1/2) 3654327954631327 a001 312119004989/24157817*8^(1/2) 3654327954631327 a001 75283811239/29134601*2^(1/2) 3654327954631328 a001 408569081798/31622993*8^(1/2) 3654327954631328 a001 591286729879/228826127*2^(1/2) 3654327954631328 a001 2139295485799/165580141*8^(1/2) 3654327954631328 a001 86000486440/33281921*2^(1/2) 3654327954631328 a001 5600748293801/433494437*8^(1/2) 3654327954631328 a001 4052739537881/1568397607*2^(1/2) 3654327954631328 a001 7331474697802/567451585*8^(1/2) 3654327954631328 a001 3536736619241/1368706081*2^(1/2) 3654327954631328 a001 23725150497407/1836311903*8^(1/2) 3654327954631328 a001 3278735159921/1268860318*2^(1/2) 3654327954631328 a001 3020733700601/233802911*8^(1/2) 3654327954631328 a001 2504730781961/969323029*2^(1/2) 3654327954631328 a001 1730726404001/133957148*8^(1/2) 3654327954631328 a001 956722026041/370248451*2^(1/2) 3654327954631328 a001 440719107401/34111385*8^(1/2) 3654327954631328 a001 182717648081/70711162*2^(1/2) 3654327954631328 a001 505019158607/39088169*8^(1/2) 3654327954631329 a001 139583862445/54018521*2^(1/2) 3654327954631331 a001 33385281/2584*8^(1/2) 3654327954631336 a001 53316291173/20633239*2^(1/2) 3654327954631350 a001 73681302247/5702887*8^(1/2) 3654327954631387 a001 10182505537/3940598*2^(1/2) 3654327954631482 a001 9381251041/726103*8^(1/2) 3654327954631731 a001 7778742049/3010349*2^(1/2) 3654327954632384 a001 5374978561/416020*8^(1/2) 3654327954634092 a001 2971215073/1149851*2^(1/2) 3654327954638564 a001 1368706081/105937*8^(1/2) 3654327954650272 a001 567451585/219602*2^(1/2) 3654327954680924 a001 1568397607/121393*8^(1/2) 3654327954761173 a001 433494437/167761*2^(1/2) 3654327954971267 a001 33281921/2576*8^(1/2) 3654327955055506 r005 Re(z^2+c),c=-57/118+7/32*I,n=31 3654327955521299 a001 165580141/64079*2^(1/2) 3654327956961303 a001 228826127/17711*8^(1/2) 3654327960731283 a001 31622993/12238*2^(1/2) 3654327970601218 a001 29134601/2255*8^(1/2) 3654327979109959 m001 (3^(1/3)-exp(Pi))/(-Conway+Rabbit) 3654327982857572 m002 1+Log[Pi]/E^Pi+Pi^3*Log[Pi] 3654327984893290 r002 47th iterates of z^2 + 3654327987755875 b008 -4+Sqrt[6]*Sin[3] 3654327995604736 a003 sin(Pi*19/105)*sin(Pi*19/80) 3654327996441043 a001 24157817/9349*2^(1/2) 3654328015776803 a007 Real Root Of 881*x^4-175*x^3-796*x^2-988*x-279 3654328022138202 r005 Re(z^2+c),c=-9/20+23/47*I,n=45 3654328023075769 r002 17th iterates of z^2 + 3654328025407739 r009 Im(z^3+c),c=-39/94+13/43*I,n=30 3654328036777662 a003 cos(Pi*29/100)-sin(Pi*49/113) 3654328055644505 r002 4th iterates of z^2 + 3654328055653966 l006 ln(7523/7803) 3654328062235832 a003 -1/2-2*cos(1/9*Pi)-cos(2/5*Pi)-cos(1/12*Pi) 3654328064090585 a001 16692641/1292*8^(1/2) 3654328067069613 p004 log(18973/491) 3654328071922553 p001 sum((-1)^n/(521*n+326)/n/(32^n),n=1..infinity) 3654328089883461 r002 7th iterates of z^2 + 3654328090743134 r009 Re(z^3+c),c=-37/106+19/26*I,n=16 3654328096061879 r005 Im(z^2+c),c=-17/118+26/49*I,n=46 3654328102642790 a007 Real Root Of 280*x^4-442*x^3-728*x^2-820*x-229 3654328117064670 m001 (KhinchinLevy+Kolakoski)/(Pi+BesselI(0,2)) 3654328125505366 r005 Re(z^2+c),c=-11/18+21/106*I,n=11 3654328128314675 a007 Real Root Of 986*x^4-451*x^3+487*x^2-157*x-162 3654328139617233 m001 (sin(1)-ln(2+3^(1/2)))^GAMMA(2/3) 3654328139617233 m001 (sin(1)-ln(2+sqrt(3)))^GAMMA(2/3) 3654328144655303 m005 (1/2*gamma-2/9)/(6/7*5^(1/2)-1/10) 3654328147810765 m001 GAMMA(3/4)*Conway-ReciprocalLucas 3654328149633747 m001 (FeigenbaumC-Rabbit)/(Ei(1)+GAMMA(19/24)) 3654328155408662 r005 Re(z^2+c),c=-7/20+27/49*I,n=44 3654328159805533 r009 Im(z^3+c),c=-61/126+1/4*I,n=64 3654328177962571 a007 Real Root Of -820*x^4+263*x^3+311*x^2+953*x-388 3654328184490806 r009 Im(z^3+c),c=-19/82+18/47*I,n=14 3654328196677460 r009 Re(z^3+c),c=-17/36+13/46*I,n=18 3654328207501400 a007 Real Root Of -540*x^4-27*x^3+233*x^2+514*x-208 3654328226263815 r005 Im(z^2+c),c=23/126+21/53*I,n=8 3654328227775391 m002 E^Pi+Pi^5*Sinh[Pi]+Pi^4*Tanh[Pi] 3654328230670709 m001 BesselI(1,1)/GAMMA(19/24)/HeathBrownMoroz 3654328232662272 a001 47/5*987^(32/37) 3654328235549227 m001 Sierpinski^GAMMA(3/4)+ZetaP(2) 3654328241199398 a001 9227465/3571*2^(1/2) 3654328241902863 r009 Im(z^3+c),c=-35/106+17/49*I,n=9 3654328273481077 r005 Im(z^2+c),c=-59/50+9/52*I,n=4 3654328298847338 m005 (1/2*gamma+2)/(7/10*gamma+2/9) 3654328303421621 r005 Re(z^2+c),c=-21/44+13/51*I,n=42 3654328308344087 r005 Im(z^2+c),c=-1/50+18/35*I,n=10 3654328308814403 r005 Im(z^2+c),c=5/82+22/53*I,n=46 3654328330721971 a007 Real Root Of 256*x^4+305*x^3+357*x^2-207*x-113 3654328334731673 r005 Re(z^2+c),c=-41/86+8/31*I,n=58 3654328341169697 m001 Stephens^Robbin/(StolarskyHarborth^Robbin) 3654328342422482 m005 (1/2*Catalan-5/8)/(9/11*Pi+2) 3654328370278609 r009 Im(z^3+c),c=-23/54+18/61*I,n=34 3654328375251074 h001 (5/11*exp(2)+2/3)/(1/12*exp(1)+7/8) 3654328379943027 m001 exp(-Pi)-ln(1+sqrt(2))*arctan(1/2) 3654328380219369 a003 sin(Pi*6/73)/cos(Pi*17/67) 3654328383919440 m001 (HardyLittlewoodC3+Kac)/(2^(1/3)-GAMMA(3/4)) 3654328389606751 m005 (1/2*Catalan+1)/(-41/99+4/11*5^(1/2)) 3654328395243484 r009 Im(z^3+c),c=-21/74+40/57*I,n=43 3654328414425659 a001 6/329*3^(31/49) 3654328416601286 h001 (5/8*exp(2)+2/7)/(1/6*exp(1)+8/9) 3654328426767361 m005 (1/2*3^(1/2)+5/8)/(3/11*exp(1)-1/3) 3654328433043639 r005 Im(z^2+c),c=-2/13+22/41*I,n=44 3654328439666029 a001 1/4*10946^(2/49) 3654328441512717 p001 sum((-1)^n/(374*n+269)/(24^n),n=0..infinity) 3654328445776037 m001 (ln(2)/ln(10))^FeigenbaumC/GaussKuzminWirsing 3654328448090746 a001 233/47*843^(30/47) 3654328454864929 l006 ln(6821/9830) 3654328455276084 a005 (1/cos(6/65*Pi))^1596 3654328458637159 m001 (Conway+ErdosBorwein)/(GAMMA(11/12)-Si(Pi)) 3654328472985358 m001 exp(1)*(ln(2+3^(1/2))+Trott2nd) 3654328474836155 m004 -3+(25*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi])/3 3654328481934501 m001 (2^(1/3)-sin(1/5*Pi))/Tribonacci 3654328485333791 r008 a(0)=4,K{-n^6,-70+98*n^3-33*n^2+8*n} 3654328487653289 r009 Re(z^3+c),c=-21/46+13/50*I,n=21 3654328505743421 a007 Real Root Of -232*x^4-917*x^3-363*x^2-235*x+612 3654328505873340 a007 Real Root Of 86*x^4+455*x^3+652*x^2+352*x-553 3654328513641930 r005 Re(z^2+c),c=-55/118+17/47*I,n=15 3654328537752630 r005 Re(z^2+c),c=-59/122+10/47*I,n=28 3654328538567600 m004 30+(25*Cos[Sqrt[5]*Pi])/Pi+Sin[Sqrt[5]*Pi] 3654328549120165 a007 Real Root Of 308*x^4+952*x^3-454*x^2+591*x-246 3654328569116690 r005 Im(z^2+c),c=-27/98+30/59*I,n=12 3654328572125232 r009 Im(z^3+c),c=-45/98+13/48*I,n=35 3654328632311981 m001 1/GAMMA(1/4)*FeigenbaumD^2*ln(Zeta(3)) 3654328634243136 m001 ln(Trott)^2/TreeGrowth2nd^2*sin(Pi/5)^2 3654328635646170 m001 1/Zeta(1,2)^2*KhintchineHarmonic*ln(Zeta(3)) 3654328636384134 h003 exp(Pi*(10^(7/5)-18^(3/7))) 3654328636384134 h008 exp(Pi*(10^(7/5)-18^(3/7))) 3654328646481803 l006 ln(5309/7651) 3654328651804425 m001 (ln(2)-sin(1)*Backhouse)/Backhouse 3654328653469809 r005 Im(z^2+c),c=5/13+4/31*I,n=39 3654328653633776 r005 Im(z^2+c),c=-7/44+7/13*I,n=61 3654328654408829 a007 Real Root Of 918*x^4-453*x^3-865*x^2-823*x+422 3654328654557437 r009 Re(z^3+c),c=-39/118+1/29*I,n=2 3654328656877395 r005 Re(z^2+c),c=-13/42+17/40*I,n=4 3654328666694191 a007 Real Root Of -655*x^4+394*x^3-617*x^2+894*x+440 3654328669947851 p003 LerchPhi(1/5,5,265/136) 3654328676425846 m001 (-FeigenbaumB+ZetaQ(2))/(exp(1)-sin(1/5*Pi)) 3654328688511921 m001 (KomornikLoreti+Robbin)/(ln(5)-BesselI(0,2)) 3654328697824961 r005 Re(z^2+c),c=-17/62+33/58*I,n=18 3654328699185870 r005 Im(z^2+c),c=5/82+22/53*I,n=47 3654328699769733 m001 (5^(1/2)+Backhouse)/(-ErdosBorwein+Gompertz) 3654328704876370 a001 4250681/329*8^(1/2) 3654328707952506 m001 (exp(1)+FeigenbaumDelta)/(Trott2nd+ZetaP(3)) 3654328732747804 q001 1165/3188 3654328738251413 r009 Im(z^3+c),c=-73/126+8/23*I,n=5 3654328746224826 r009 Im(z^3+c),c=-3/98+19/47*I,n=3 3654328758284260 r005 Im(z^2+c),c=-9/14+53/140*I,n=8 3654328764114514 m001 RenyiParking-GAMMA(11/24)^Zeta(1/2) 3654328776703859 r005 Re(z^2+c),c=-27/56+11/49*I,n=39 3654328777960489 m005 (1/2*Pi-5)/(1/9*exp(1)+7/11) 3654328787596388 r005 Re(z^2+c),c=-49/102+9/41*I,n=19 3654328793499582 p001 sum(1/(443*n+294)/(6^n),n=0..infinity) 3654328800018300 m001 GAMMA(5/24)^2/ln(GAMMA(1/6))/GAMMA(7/24) 3654328801777009 m001 BesselK(1,1)/cos(1/12*Pi)/Niven 3654328803309827 r005 Im(z^2+c),c=1/58+23/52*I,n=28 3654328804681309 a001 591286729879/123*123^(9/10) 3654328831421245 h001 (1/7*exp(2)+7/9)/(2/3*exp(2)+1/11) 3654328838023441 a007 Real Root Of 166*x^4+411*x^3-603*x^2+536*x+465 3654328842394126 a007 Real Root Of -143*x^4-166*x^3+430*x^2+696*x-26 3654328847520618 r002 11th iterates of z^2 + 3654328869325930 a007 Real Root Of -466*x^4-223*x^3+185*x^2+964*x+325 3654328877456231 m001 Zeta(1,-1)^(ln(Pi)*ErdosBorwein) 3654328902845313 p001 sum((-1)^n/(480*n+349)/n/(3^n),n=1..infinity) 3654328912097402 a001 47/17711*1597^(16/45) 3654328913982137 a003 cos(Pi*12/109)*sin(Pi*8/63) 3654328923497981 m001 Tribonacci^2*exp(FeigenbaumDelta)/Pi^2 3654328924176216 a007 Real Root Of 244*x^4-358*x^3-233*x^2-325*x+163 3654328932842690 a007 Real Root Of 15*x^4+525*x^3-830*x^2+609*x+951 3654328958787064 a007 Real Root Of 280*x^4+717*x^3-815*x^2+947*x-599 3654328965600024 m001 MinimumGamma*Bloch*exp(Riemann3rdZero)^2 3654328967741060 a007 Real Root Of 256*x^4+998*x^3+95*x^2-515*x-101 3654328981593508 r009 Re(z^3+c),c=-13/27+16/57*I,n=23 3654328982635545 m001 (GolombDickman-Kolakoski)/(Zeta(1,2)+Bloch) 3654328983265379 m001 (5^(1/2)+Ei(1))/(-FeigenbaumB+ReciprocalLucas) 3654328990705840 l006 ln(3797/5472) 3654329000922939 r005 Im(z^2+c),c=7/82+2/5*I,n=18 3654329003295498 m006 (2*Pi+1/4)/(2/3/Pi-2) 3654329004860314 r008 a(0)=0,K{-n^6,19+10*n^3+26*n^2-57*n} 3654329028353482 b008 ArcCosh[2+5^Sqrt[Pi]] 3654329038876681 a007 Real Root Of -230*x^4-997*x^3-451*x^2+533*x+333 3654329055595790 r005 Re(z^2+c),c=-27/110+43/59*I,n=46 3654329064931650 r005 Re(z^2+c),c=-22/31+3/44*I,n=10 3654329091024457 r005 Im(z^2+c),c=-1/74+23/38*I,n=29 3654329093205085 m005 (1/3*Zeta(3)+1/7)/(Catalan+4/7) 3654329093818796 r005 Im(z^2+c),c=-25/74+33/58*I,n=46 3654329138112418 r005 Im(z^2+c),c=5/82+22/53*I,n=50 3654329140070661 m001 (StronglyCareFree+ZetaQ(3))/(2^(1/3)-Magata) 3654329147720034 m001 (Rabbit-Tribonacci)/(Conway+KomornikLoreti) 3654329172975300 r009 Im(z^3+c),c=-31/60+9/59*I,n=64 3654329181532374 r005 Im(z^2+c),c=-7/122+19/42*I,n=8 3654329182973770 r005 Im(z^2+c),c=37/122+11/58*I,n=16 3654329184273811 m001 (-RenyiParking+Trott)/(2^(1/2)+BesselK(1,1)) 3654329191133004 m001 (Otter+Totient)/(cos(1)+HardyLittlewoodC3) 3654329191231540 a001 17393796001/1597*102334155^(4/21) 3654329191231540 a001 2537720636/1597*2504730781961^(4/21) 3654329196242213 r005 Im(z^2+c),c=-33/70+25/46*I,n=10 3654329197941364 m001 Khintchine/CareFree^2/ln(GAMMA(5/24)) 3654329198584513 m001 (Ei(1)-BesselI(0,2))/(GAMMA(5/6)-ZetaP(4)) 3654329199195298 a001 119218851371/1597*4181^(4/21) 3654329199534439 r005 Im(z^2+c),c=-101/114+5/22*I,n=29 3654329200528563 r002 3th iterates of z^2 + 3654329206770099 a007 Real Root Of -24*x^4+186*x^3+653*x^2+690*x-348 3654329213843451 r002 13th iterates of z^2 + 3654329215099649 r005 Im(z^2+c),c=-123/110+2/45*I,n=21 3654329215125378 r005 Re(z^2+c),c=-12/25+6/17*I,n=19 3654329226237896 b008 Log[71/2+Pi] 3654329233141447 l006 ln(226/8733) 3654329246381105 a007 Real Root Of 137*x^4+201*x^3-916*x^2+812*x+577 3654329252640357 m001 1/GAMMA(1/12)/MertensB1^2*exp(GAMMA(11/12)) 3654329274908411 a007 Real Root Of -861*x^4+809*x^3+311*x^2+918*x-34 3654329276240846 m001 (3^(1/3))^2/Riemann2ndZero^2/ln(GAMMA(1/4)) 3654329288820171 a007 Real Root Of 190*x^4+810*x^3+530*x^2+493*x+369 3654329291180249 l006 ln(6082/8765) 3654329309327449 m001 (Psi(1,1/3)-gamma)/(sin(1/12*Pi)+ZetaQ(4)) 3654329310065440 r005 Re(z^2+c),c=-20/31+16/63*I,n=20 3654329313690172 r009 Im(z^3+c),c=-47/114+27/53*I,n=6 3654329318475613 r002 32th iterates of z^2 + 3654329330620609 m001 GAMMA(11/24)*exp(LaplaceLimit)/GAMMA(23/24) 3654329338771294 m001 1/ln(Niven)/GlaisherKinkelin*Riemann3rdZero 3654329372393438 a005 (1/cos(74/215*Pi))^78 3654329374182914 m001 BesselK(1,1)^Conway-ln(2^(1/2)+1) 3654329382432619 r005 Re(z^2+c),c=23/86+20/33*I,n=5 3654329391667707 m001 (Ei(1)+FeigenbaumB)/(HardyLittlewoodC3-Rabbit) 3654329404646447 r005 Im(z^2+c),c=-2/3+5/169*I,n=17 3654329408882688 m005 (1/2*Zeta(3)+3/8)/(3/4*gamma-7/10) 3654329420709617 a007 Real Root Of -578*x^4-209*x^3+322*x^2+535*x-218 3654329424735953 a001 2/28657*1836311903^(16/17) 3654329425625924 a001 1/31622993*6557470319842^(16/17) 3654329435989945 a001 45537549124/4181*102334155^(4/21) 3654329435989945 a001 6643838879/4181*2504730781961^(4/21) 3654329439628782 r005 Re(z^2+c),c=-25/52+11/47*I,n=34 3654329442546049 a007 Real Root Of 189*x^4+717*x^3+300*x^2+494*x-916 3654329443953704 a001 312119004989/4181*4181^(4/21) 3654329449307467 a003 sin(Pi*5/43)/sin(Pi*16/37) 3654329450564970 r002 10th iterates of z^2 + 3654329471699718 a001 119218851371/10946*102334155^(4/21) 3654329471699718 a001 17393796001/10946*2504730781961^(4/21) 3654329476909704 a001 312119004989/28657*102334155^(4/21) 3654329476909704 a001 45537549124/28657*2504730781961^(4/21) 3654329477669831 a001 817138163596/75025*102334155^(4/21) 3654329477669831 a001 119218851371/75025*2504730781961^(4/21) 3654329477780732 a001 2139295485799/196418*102334155^(4/21) 3654329477780732 a001 312119004989/196418*2504730781961^(4/21) 3654329477796912 a001 5600748293801/514229*102334155^(4/21) 3654329477796912 a001 817138163596/514229*2504730781961^(4/21) 3654329477799273 a001 14662949395604/1346269*102334155^(4/21) 3654329477799273 a001 2139295485799/1346269*2504730781961^(4/21) 3654329477799617 a001 5600748293801/3524578*2504730781961^(4/21) 3654329477799667 a001 14662949395604/9227465*2504730781961^(4/21) 3654329477799679 a001 23725150497407/14930352*2504730781961^(4/21) 3654329477799698 a001 9062201101803/5702887*2504730781961^(4/21) 3654329477799830 a001 23725150497407/2178309*102334155^(4/21) 3654329477799830 a001 494493258286/311187*2504730781961^(4/21) 3654329477800732 a001 9062201101803/832040*102334155^(4/21) 3654329477800732 a001 1322157322203/832040*2504730781961^(4/21) 3654329477806912 a001 3461452808002/317811*102334155^(4/21) 3654329477806912 a001 505019158607/317811*2504730781961^(4/21) 3654329477849272 a001 1322157322203/121393*102334155^(4/21) 3654329477849272 a001 192900153618/121393*2504730781961^(4/21) 3654329478139615 a001 505019158607/46368*102334155^(4/21) 3654329478139615 a001 10525900321/6624*2504730781961^(4/21) 3654329478227000 b008 32+Log[94] 3654329479663477 a001 408569081798/5473*4181^(4/21) 3654329480129652 a001 192900153618/17711*102334155^(4/21) 3654329480129652 a001 28143753123/17711*2504730781961^(4/21) 3654329484050700 m008 (3/4*Pi^4+2/5)/(2/3*Pi^5-3) 3654329484873462 a001 2139295485799/28657*4181^(4/21) 3654329485633589 a001 5600748293801/75025*4181^(4/21) 3654329485744490 a001 7331474697802/98209*4181^(4/21) 3654329485770670 a001 23725150497407/317811*4181^(4/21) 3654329485813030 a001 9062201101803/121393*4181^(4/21) 3654329486103373 a001 10749853441/144*4181^(4/21) 3654329488093410 a001 1322157322203/17711*4181^(4/21) 3654329493769572 a001 73681302247/6765*102334155^(4/21) 3654329493769572 a001 10749957122/6765*2504730781961^(4/21) 3654329500318451 m001 (-Zeta(3)+FeigenbaumAlpha)/(exp(1)+sin(1)) 3654329501733330 a001 505019158607/6765*4181^(4/21) 3654329503316333 h001 (5/7*exp(1)+3/5)/(11/12*exp(2)+2/11) 3654329505937385 m005 (5/4+1/4*5^(1/2))/(6*Catalan-6/11) 3654329522694218 h001 (1/4*exp(1)+3/10)/(7/10*exp(1)+7/9) 3654329526752782 r009 Im(z^3+c),c=-33/70+6/23*I,n=32 3654329528916924 r009 Re(z^3+c),c=-37/102+37/55*I,n=56 3654329534405662 r005 Im(z^2+c),c=-25/74+9/16*I,n=3 3654329537293526 r009 Im(z^3+c),c=-4/19+5/6*I,n=2 3654329540360944 r009 Re(z^3+c),c=-21/64+1/16*I,n=8 3654329541839176 a007 Real Root Of -625*x^4+865*x^3+677*x^2+141*x-173 3654329542381250 m001 GAMMA(19/24)^2*ln(Khintchine)^2*exp(1) 3654329543799601 a007 Real Root Of -811*x^4-130*x^3-830*x^2+74*x+146 3654329560538182 v002 sum(1/(3^n+(10*n^2+17*n+30)),n=1..infinity) 3654329562320141 m001 (-arctan(1/3)+OneNinth)/(BesselI(0,1)-Si(Pi)) 3654329572712359 a001 29/2178309*832040^(2/27) 3654329585720697 r005 Re(z^2+c),c=-35/74+12/43*I,n=41 3654329587258975 a001 28143753123/2584*102334155^(4/21) 3654329587258975 a001 4106118243/2584*2504730781961^(4/21) 3654329595222734 a001 96450076809/1292*4181^(4/21) 3654329603292924 r005 Re(z^2+c),c=-21/46+3/8*I,n=29 3654329606434936 h001 (1/4*exp(1)+3/5)/(5/11*exp(2)+1/7) 3654329612439525 a003 cos(Pi*29/119)-sin(Pi*29/106) 3654329614864987 r005 Im(z^2+c),c=3/32+24/61*I,n=41 3654329633046208 m001 1/ArtinRank2/exp(Backhouse)^2/Zeta(1/2)^2 3654329644421207 a007 Real Root Of -99*x^4+775*x^3-41*x^2+740*x-301 3654329648347574 m001 (GAMMA(2/3)-exp(1))/(-Zeta(1,-1)+exp(-1/2*Pi)) 3654329653383297 r005 Im(z^2+c),c=-59/102+22/45*I,n=60 3654329654399304 a005 (1/sin(71/158*Pi))^102 3654329661698129 h001 (-exp(1/3)-7)/(-2*exp(1/2)+1) 3654329662200975 m001 (-AlladiGrinstead+ZetaQ(4))/(Zeta(5)-exp(Pi)) 3654329662274520 a007 Real Root Of -170*x^4+741*x^3-940*x^2-604*x-56 3654329670532339 m001 FeigenbaumKappa^(2*Pi/GAMMA(5/6)/Mills) 3654329674952342 r002 13th iterates of z^2 + 3654329676101150 r009 Im(z^3+c),c=-12/25+8/51*I,n=9 3654329682737366 r005 Re(z^2+c),c=-19/40+10/37*I,n=28 3654329697291420 r005 Im(z^2+c),c=5/82+22/53*I,n=54 3654329703494176 r005 Im(z^2+c),c=-97/86+16/53*I,n=12 3654329709857804 r005 Im(z^2+c),c=-13/106+13/25*I,n=60 3654329740244175 r005 Re(z^2+c),c=-29/60+13/60*I,n=34 3654329751161260 a003 cos(Pi*13/101)-cos(Pi*31/99) 3654329767697894 a007 Real Root Of -150*x^4-603*x^3-231*x^2-237*x-458 3654329767723225 r005 Im(z^2+c),c=5/82+22/53*I,n=53 3654329767783191 r009 Re(z^3+c),c=-51/110+15/56*I,n=28 3654329781927102 r005 Re(z^2+c),c=31/122+23/51*I,n=64 3654329788613829 r005 Im(z^2+c),c=37/94+11/51*I,n=42 3654329790480592 l006 ln(2285/3293) 3654329793490156 a003 -1+2*cos(1/8*Pi)+cos(7/15*Pi)-cos(1/21*Pi) 3654329797704617 r005 Im(z^2+c),c=-17/26+1/90*I,n=10 3654329803905534 r005 Im(z^2+c),c=5/82+22/53*I,n=57 3654329820351122 b008 1/2+97*Cosh[2] 3654329827330129 a007 Real Root Of -628*x^4-783*x^3-965*x^2+991*x+464 3654329844375527 m001 (ArtinRank2+ZetaP(2))/(2^(1/2)+3^(1/2)) 3654329847969369 m001 Mills/(GlaisherKinkelin-GAMMA(13/24)) 3654329849063969 m005 (1/2*Pi+3/4)/(2/7*gamma-4/5) 3654329850673013 m005 (1/2*exp(1)-6/7)/(5/11*gamma-1/8) 3654329859863456 q001 1017/2783 3654329861837962 a007 Real Root Of 892*x^4+612*x^3+985*x^2-740*x-388 3654329862799364 r005 Im(z^2+c),c=5/82+22/53*I,n=61 3654329865031970 r005 Im(z^2+c),c=33/94+5/24*I,n=26 3654329870876573 p003 LerchPhi(1/6,5,166/215) 3654329872099078 m005 (1/6*gamma+5/6)/(1/5*exp(1)+2) 3654329873231281 r005 Im(z^2+c),c=5/82+22/53*I,n=58 3654329873322811 r005 Re(z^2+c),c=-31/56+9/29*I,n=14 3654329881571883 r005 Im(z^2+c),c=5/82+22/53*I,n=64 3654329883095096 h001 (9/11*exp(2)+6/7)/(2/11*exp(2)+6/11) 3654329885910757 r005 Im(z^2+c),c=5/82+22/53*I,n=60 3654329892722754 r009 Im(z^3+c),c=-1/54+13/16*I,n=16 3654329895038264 l006 ln(173/6685) 3654329895801237 a007 Real Root Of -520*x^4+855*x^3+855*x^2+915*x-481 3654329900770887 r005 Im(z^2+c),c=5/82+22/53*I,n=62 3654329903222555 r005 Im(z^2+c),c=5/82+22/53*I,n=63 3654329907698363 b008 Log[ArcCot[Zeta[3]]] 3654329911211917 r005 Im(z^2+c),c=5/82+22/53*I,n=51 3654329918799001 a001 1762289/682*2^(1/2) 3654329940782733 r005 Im(z^2+c),c=-13/98+31/59*I,n=41 3654329941059927 b008 JacobiND[1,-9] 3654329943254352 r005 Im(z^2+c),c=5/82+22/53*I,n=59 3654329943311021 r002 7th iterates of z^2 + 3654329964709196 r005 Im(z^2+c),c=5/82+22/53*I,n=56 3654329969219487 p001 sum(1/(461*n+403)/n/(32^n),n=1..infinity) 3654330010442121 r002 15th iterates of z^2 + 3654330011069396 r005 Im(z^2+c),c=5/82+22/53*I,n=55 3654330022424946 r005 Re(z^2+c),c=-13/28+9/37*I,n=10 3654330038546325 m001 (Chi(1)+ln(Pi))/(-Gompertz+ZetaQ(2)) 3654330050319645 r005 Im(z^2+c),c=15/98+20/57*I,n=41 3654330065270366 m001 BesselI(1,2)^MadelungNaCl+OrthogonalArrays 3654330065839318 r009 Re(z^3+c),c=-21/64+18/25*I,n=11 3654330094038284 a003 sin(Pi*19/87)-sin(Pi*50/103) 3654330105646276 a007 Real Root Of -123*x^4-409*x^3+353*x^2+910*x+587 3654330108403858 m005 (1/2*Zeta(3)-10/11)/(8/11*3^(1/2)-5/12) 3654330114000006 a001 1292/9*1364^(33/43) 3654330114547312 m005 (1/2*Zeta(3)-6/11)/(-11/60+3/20*5^(1/2)) 3654330116027075 r005 Re(z^2+c),c=-5/8+4/249*I,n=8 3654330129001469 m001 (-gamma(3)+HeathBrownMoroz)/(Catalan+ln(3)) 3654330129215088 a007 Real Root Of -81*x^4-113*x^3+640*x^2-200*x-347 3654330146384515 a007 Real Root Of -4*x^4+298*x^3+142*x^2+568*x-241 3654330156913782 l006 ln(6099/6326) 3654330157052561 r005 Re(z^2+c),c=-25/54+21/64*I,n=44 3654330162843130 m001 GAMMA(13/24)^(FeigenbaumDelta/Grothendieck) 3654330163017401 r005 Im(z^2+c),c=-19/110+31/57*I,n=45 3654330165414856 a001 105937/6*521^(5/43) 3654330167831373 r002 14th iterates of z^2 + 3654330178571788 m001 1/GAMMA(1/4)*ln(Salem)/GAMMA(3/4) 3654330180052375 r002 37th iterates of z^2 + 3654330222877106 m001 ReciprocalFibonacci+Zeta(1/2)^Weierstrass 3654330223431249 r005 Im(z^2+c),c=5/82+22/53*I,n=49 3654330228045009 a001 10749957122/987*102334155^(4/21) 3654330228045009 a001 224056801/141*2504730781961^(4/21) 3654330232566543 a001 2/5*4181^(13/49) 3654330234229306 m001 arctan(1/3)+RenyiParking+Sierpinski 3654330236008768 a001 10525900321/141*4181^(4/21) 3654330238432590 a007 Real Root Of 339*x^4-136*x^3-668*x^2-619*x+316 3654330265758601 r005 Im(z^2+c),c=-7/60+31/60*I,n=40 3654330266052603 m001 Otter+BesselK(0,1)^PrimesInBinary 3654330267054106 m001 (Artin+FransenRobinson)/(QuadraticClass-Trott) 3654330273761566 r005 Im(z^2+c),c=1/102+21/47*I,n=50 3654330276571081 r005 Im(z^2+c),c=5/82+22/53*I,n=42 3654330280901602 r005 Im(z^2+c),c=11/56+16/51*I,n=16 3654330282400607 a007 Real Root Of 565*x^4-14*x^3+585*x^2-876*x-409 3654330292303400 m001 (Rabbit+ZetaQ(3))/(Conway+LaplaceLimit) 3654330294473242 m001 5^(1/2)-BesselK(0,1)+Tribonacci 3654330299888540 b008 Csch[3*EulerGamma] 3654330300870733 r005 Im(z^2+c),c=5/82+22/53*I,n=52 3654330302410491 a007 Real Root Of -42*x^4+175*x^3+563*x^2+520*x-273 3654330305721511 h003 exp(Pi*(2^(1/12)+3^(2/5))) 3654330305721511 h008 exp(Pi*(2^(1/12)+3^(2/5))) 3654330309250367 r002 25th iterates of z^2 + 3654330328066764 s002 sum(A133020[n]/(n^2*exp(n)+1),n=1..infinity) 3654330332764018 s002 sum(A016872[n]/(pi^n),n=1..infinity) 3654330336617505 r005 Im(z^2+c),c=-7/25+26/45*I,n=59 3654330355549660 m001 Pi+exp(Pi)+Psi(1,1/3)-Zeta(1,-1) 3654330358840038 l006 ln(5343/7700) 3654330394428395 s002 sum(A133075[n]/(n^2*exp(n)+1),n=1..infinity) 3654330396923733 r005 Re(z^2+c),c=-5/4+18/245*I,n=38 3654330399042616 a007 Real Root Of 203*x^4+871*x^3+460*x^2-241*x-720 3654330402330693 a008 Real Root of (7+16*x-9*x^2-x^3) 3654330402865404 m001 exp(1)^Shi(1)+StronglyCareFree 3654330428587446 s002 sum(A011044[n]/((10^n-1)/n),n=1..infinity) 3654330438494592 r005 Re(z^2+c),c=-7/15+14/45*I,n=64 3654330454154998 a003 sin(Pi*3/107)*sin(Pi*3/22) 3654330458199167 h005 exp(cos(Pi*11/60)+cos(Pi*15/43)) 3654330471535241 r005 Im(z^2+c),c=-1/70+18/37*I,n=13 3654330479547515 r005 Im(z^2+c),c=-17/58+2/37*I,n=10 3654330485877462 r005 Im(z^2+c),c=-11/28+33/61*I,n=17 3654330519194583 m001 ln(cos(1))*Catalan/cosh(1) 3654330523193197 r005 Im(z^2+c),c=15/98+20/57*I,n=42 3654330526310700 m002 -1+5*Coth[Pi]-Log[Pi]/Pi 3654330531007718 m001 (Niven+Paris)/(GAMMA(5/6)-HardyLittlewoodC3) 3654330539090791 m001 cos(Pi/5)*LandauRamanujan/exp(sqrt(2))^2 3654330544774991 r009 Im(z^3+c),c=-21/44+12/47*I,n=32 3654330560574644 r009 Re(z^3+c),c=-1/18+20/41*I,n=18 3654330569651610 a007 Real Root Of 160*x^4+363*x^3-535*x^2+980*x-93 3654330569655014 r005 Re(z^2+c),c=-21/82+37/63*I,n=21 3654330574461271 p001 sum(1/(491*n+89)/n/(5^n),n=1..infinity) 3654330583754739 a007 Real Root Of 258*x^4-600*x^3+100*x^2-831*x+315 3654330599191131 r005 Re(z^2+c),c=-41/86+8/31*I,n=56 3654330605804927 m005 (41/36+1/4*5^(1/2))/(1/4*2^(1/2)-9/11) 3654330609270295 m005 (1/3*2^(1/2)-3/4)/(5/11*gamma+1/2) 3654330617322733 a001 1/6621*(1/2*5^(1/2)+1/2)^25*3^(1/3) 3654330618553024 r005 Im(z^2+c),c=-9/16+5/76*I,n=31 3654330623770756 r005 Re(z^2+c),c=-41/86+8/31*I,n=51 3654330638059700 r005 Im(z^2+c),c=-9/22+7/13*I,n=21 3654330640511587 m008 (4*Pi^5-2/3)/(2/5*Pi^2-3/5) 3654330653680084 r009 Im(z^3+c),c=-4/15+13/35*I,n=7 3654330677310179 m005 (1/2*2^(1/2)-1/8)/(7/8*5^(1/2)-4/11) 3654330702264260 m001 Niven*Magata*ln(GAMMA(17/24))^2 3654330703987087 m001 ln(3)^Champernowne-MasserGramain 3654330750222187 m001 (Shi(1)+gamma)/(Khinchin+KomornikLoreti) 3654330754382775 r005 Re(z^2+c),c=-27/52+5/11*I,n=20 3654330779227301 r005 Im(z^2+c),c=-5/66+13/28*I,n=8 3654330783529793 l006 ln(3058/4407) 3654330783705590 m001 (Psi(1,1/3)+BesselI(0,1))/(-arctan(1/3)+Trott) 3654330796439384 m001 (exp(-1/2*Pi)+Kac)/(Niven+Stephens) 3654330805028865 a001 2207/3*34^(5/11) 3654330805396377 r005 Im(z^2+c),c=-61/98+21/55*I,n=21 3654330815802267 r005 Re(z^2+c),c=37/94+31/55*I,n=10 3654330827016619 r009 Im(z^3+c),c=-5/34+53/64*I,n=50 3654330841258845 r005 Re(z^2+c),c=-47/34+3/82*I,n=16 3654330847341377 a005 (1/cos(1/73*Pi))^1399 3654330848097956 m001 (-Lehmer+Sierpinski)/(Psi(2,1/3)+BesselK(1,1)) 3654330859209054 r009 Re(z^3+c),c=-53/126+19/42*I,n=4 3654330874990434 p003 LerchPhi(1/3,5,133/68) 3654330875973180 r009 Re(z^3+c),c=-45/94+13/43*I,n=12 3654330880399287 r005 Re(z^2+c),c=-49/110+11/27*I,n=34 3654330888507544 m001 (FeigenbaumB-sin(1))/(-Paris+Riemann3rdZero) 3654330894554914 m001 (StronglyCareFree-ReciprocalFibonacci)*2^(1/2) 3654330902622939 a007 Real Root Of -294*x^4-967*x^3+114*x^2-933*x+308 3654330904167667 m001 Salem^2*FeigenbaumDelta^2*ln(GAMMA(5/6)) 3654330929410037 m001 (TwinPrimes+ZetaP(4))/(BesselK(0,1)-Ei(1,1)) 3654330930412076 m001 (1-GAMMA(2/3))/gamma(2) 3654330938690857 r005 Im(z^2+c),c=-43/58+29/57*I,n=4 3654330944496045 a007 Real Root Of 965*x^4-708*x^3-372*x^2-799*x+359 3654330945993814 m005 (1/2*Pi-8/9)/(1/2*3^(1/2)+1) 3654330958030689 r002 29th iterates of z^2 + 3654330964741960 r005 Im(z^2+c),c=21/64+9/64*I,n=27 3654330966733605 a001 4/9*76^(18/37) 3654330968465759 r009 Im(z^3+c),c=-25/78+19/54*I,n=18 3654330970555547 m001 1/Zeta(7)/(3^(1/3))/ln(cosh(1))^2 3654330986696664 a005 (1/sin(65/187*Pi))^339 3654330987674322 r009 Re(z^3+c),c=-59/126+17/62*I,n=39 3654331033054277 a007 Real Root Of 241*x^4+870*x^3-335*x^2-883*x+725 3654331049210634 m001 (GolombDickman-Kac)/(Magata+TreeGrowth2nd) 3654331052599234 m001 Sarnak^Lehmer/(StolarskyHarborth^Lehmer) 3654331071262276 a007 Real Root Of -802*x^4-935*x^3-400*x^2+911*x+355 3654331088590271 r005 Im(z^2+c),c=5/82+22/53*I,n=48 3654331103471893 h001 (-12*exp(1)-9)/(-exp(2)-4) 3654331105569897 b008 E+Cos[1]/EulerGamma 3654331105569897 m001 (exp(1)*gamma+cos(1))/gamma 3654331112912472 l006 ln(6889/9928) 3654331116495754 m009 (5/12*Pi^2+1/6)/(5*Psi(1,3/4)-1) 3654331121503466 s002 sum(A042060[n]/(64^n),n=1..infinity) 3654331125612466 r002 23th iterates of z^2 + 3654331128672668 r005 Re(z^2+c),c=-53/122+15/34*I,n=60 3654331138168572 m002 6+3/Pi^5+Pi^3*Cosh[Pi] 3654331141609414 l006 ln(120/4637) 3654331149089349 r005 Im(z^2+c),c=-1/114+15/28*I,n=13 3654331164714730 r009 Re(z^3+c),c=-53/102+15/44*I,n=60 3654331167475323 m001 Ei(1,1)^Bloch*RenyiParking 3654331178740093 a001 233/322*14662949395604^(8/9) 3654331181708754 a003 cos(Pi*1/63)-cos(Pi*20/71) 3654331203215372 h001 (-2*exp(6)+5)/(-2*exp(7)-1) 3654331218307104 m005 (1/3*exp(1)-1/5)/(7/8*3^(1/2)+5/12) 3654331235584172 r005 Im(z^2+c),c=31/106+13/59*I,n=39 3654331239120515 m001 (GAMMA(1/24)-MadelungNaCl)^BesselK(0,1) 3654331239213727 m001 (GaussKuzminWirsing+Kac)/(ln(3)+exp(1/exp(1))) 3654331239866256 b008 3*ArcCoth[33/4] 3654331243385470 m001 gamma(3)*(gamma+Zeta(3)) 3654331255005807 m001 (Landau+ZetaQ(2))/(2^(1/3)+Artin) 3654331258108796 a001 1/17334*(1/2*5^(1/2)+1/2)^27*3^(1/3) 3654331261761609 r005 Re(z^2+c),c=-29/60+9/41*I,n=25 3654331264968417 a007 Real Root Of -167*x^4-403*x^3+739*x^2-109*x-152 3654331265710119 m001 (FeigenbaumMu+MertensB2)/(LambertW(1)-ln(2)) 3654331283963454 r009 Re(z^3+c),c=-39/82+2/7*I,n=29 3654331287276922 r009 Re(z^3+c),c=-3/46+29/45*I,n=38 3654331304383617 r009 Im(z^3+c),c=-29/56+1/5*I,n=27 3654331309981496 r005 Im(z^2+c),c=5/82+22/53*I,n=44 3654331314871594 r005 Im(z^2+c),c=-9/86+24/47*I,n=53 3654331322115489 a007 Real Root Of 19*x^4-329*x^3+185*x^2-955*x+340 3654331327088659 p001 sum(1/(448*n+285)/(10^n),n=0..infinity) 3654331339903216 m001 Si(Pi)*(1/3+GAMMA(13/24)) 3654331341012623 r005 Re(z^2+c),c=-17/36+15/53*I,n=41 3654331343607499 m001 (Porter+ZetaQ(2))/(GAMMA(2/3)+FransenRobinson) 3654331346642423 r005 Im(z^2+c),c=-5/4+1/47*I,n=55 3654331350639081 m001 (Paris-Tribonacci)/(3^(1/3)-cos(1/12*Pi)) 3654331351598241 a001 1/45381*(1/2*5^(1/2)+1/2)^29*3^(1/3) 3654331365238168 a001 1/118809*(1/2*5^(1/2)+1/2)^31*3^(1/3) 3654331367568146 a001 1/3*(1/2*5^(1/2)+1/2)^9*3^(1/3) 3654331368458118 a001 1/192237*(1/2*5^(1/2)+1/2)^32*3^(1/3) 3654331370789053 m002 -5-2/Pi^6+Pi^6/E^Pi 3654331370899915 q001 869/2378 3654331370899915 r002 2th iterates of z^2 + 3654331373668106 a001 1/73428*(1/2*5^(1/2)+1/2)^30*3^(1/3) 3654331373888616 r009 Re(z^3+c),c=-6/17+35/53*I,n=61 3654331375833956 l006 ln(3831/5521) 3654331380130069 m001 1/Zeta(3)/exp(ArtinRank2)^2*sqrt(Pi) 3654331407316188 m001 1/KhintchineLevy/exp(Bloch)^2*GAMMA(11/12)^2 3654331408382112 r005 Re(z^2+c),c=-41/86+8/31*I,n=54 3654331409230023 r002 4th iterates of z^2 + 3654331409377899 a001 1/28047*(1/2*5^(1/2)+1/2)^28*3^(1/3) 3654331426692276 r005 Re(z^2+c),c=-49/52+6/43*I,n=24 3654331430487772 m005 (2*Catalan-1/6)/(1/4*gamma-3/5) 3654331434827382 a007 Real Root Of -739*x^4-455*x^3+991*x^2+803*x+28 3654331453549339 a007 Real Root Of 271*x^4+989*x^3+197*x^2+997*x+948 3654331455271012 r005 Re(z^2+c),c=-65/122+17/39*I,n=31 3654331459905725 m001 (2^(1/2)+5^(1/2))/(-FeigenbaumB+FeigenbaumC) 3654331462109350 r005 Re(z^2+c),c=-8/17+7/24*I,n=49 3654331475696824 a005 (1/cos(15/218*Pi))^1424 3654331482989253 a007 Real Root Of -685*x^4-13*x^3-845*x^2+776*x+408 3654331536222025 m001 Zeta(1/2)^2*GaussKuzminWirsing^2/exp(sin(1))^2 3654331537618168 r005 Im(z^2+c),c=-3/40+32/61*I,n=15 3654331539899364 m001 FellerTornier+Khinchin+MasserGramain 3654331546778160 s002 sum(A272650[n]/(n^3*pi^n+1),n=1..infinity) 3654331547067204 r005 Im(z^2+c),c=-39/98+31/58*I,n=22 3654331553704592 r009 Re(z^3+c),c=-43/114+2/13*I,n=15 3654331555342122 a007 Real Root Of -922*x^4-72*x^3-42*x^2+814*x+316 3654331556555387 a007 Real Root Of 293*x^4+824*x^3-810*x^2+474*x+509 3654331559426393 r005 Re(z^2+c),c=31/94+24/47*I,n=29 3654331572297581 a007 Real Root Of -51*x^4+853*x^3-354*x^2+765*x-273 3654331578885011 m001 (Zeta(5)+GAMMA(17/24))/(MasserGramain-Trott) 3654331579256413 m001 Sierpinski*(gamma(3)+Riemann1stZero) 3654331579308760 r005 Im(z^2+c),c=9/56+32/63*I,n=15 3654331590298963 r005 Re(z^2+c),c=-12/25+11/46*I,n=32 3654331593842558 a007 Real Root Of 22*x^4+795*x^3-346*x^2-685*x+113 3654331595599327 r005 Re(z^2+c),c=19/66+23/57*I,n=26 3654331597845038 r005 Im(z^2+c),c=-115/86+2/19*I,n=10 3654331601891416 a001 17711/18*3571^(19/43) 3654331604189523 a001 267914296/7*123^(18/19) 3654331607623737 p003 LerchPhi(1/256,6,502/197) 3654331610277813 r005 Im(z^2+c),c=-9/110+34/59*I,n=18 3654331610642966 a001 7/377*17711^(27/50) 3654331611375168 r005 Im(z^2+c),c=-4/3+47/246*I,n=4 3654331620421429 r002 54th iterates of z^2 + 3654331620829324 p001 sum((-1)^n/(427*n+272)/(64^n),n=0..infinity) 3654331622748066 r005 Im(z^2+c),c=-39/110+23/44*I,n=11 3654331625890227 a001 843/5*514229^(1/17) 3654331627637559 m005 (1/2*exp(1)+7/11)/(-35/6+1/6*5^(1/2)) 3654331630668986 g002 Psi(10/11)-Psi(5/11)-Psi(7/10)-Psi(4/5) 3654331646996569 a007 Real Root Of -124*x^4+689*x^3-264*x^2+722*x-260 3654331648876605 r009 Im(z^3+c),c=-19/40+8/31*I,n=41 3654331654136475 a001 1/10713*(1/2*5^(1/2)+1/2)^26*3^(1/3) 3654331675004048 m001 FeigenbaumC^2*exp(DuboisRaymond)^2/GAMMA(2/3) 3654331675484837 r005 Im(z^2+c),c=-19/34+55/123*I,n=29 3654331678076422 r005 Im(z^2+c),c=2/27+25/61*I,n=14 3654331682243782 r005 Im(z^2+c),c=9/98+15/38*I,n=39 3654331688181948 r005 Im(z^2+c),c=1/102+21/47*I,n=51 3654331691817814 r005 Im(z^2+c),c=1/102+21/47*I,n=54 3654331698707035 a001 322/1597*233^(6/55) 3654331711530031 a007 Real Root Of 142*x^4+498*x^3-7*x^2+228*x-94 3654331711985198 a001 17711/18*9349^(17/43) 3654331712910700 r009 Im(z^3+c),c=-27/110+55/63*I,n=2 3654331717795489 r002 12th iterates of z^2 + 3654331725765487 a001 123/5702887*6557470319842^(4/23) 3654331725766520 a001 123/832040*102334155^(4/23) 3654331726325855 r005 Re(z^2+c),c=-83/98+6/17*I,n=4 3654331730212511 a001 6643838879/610*4807526976^(6/23) 3654331730246384 a001 119218851371/610*75025^(6/23) 3654331730901564 a001 514229/18*39603^(1/43) 3654331736934091 a001 28657/18*15127^(14/43) 3654331737837117 r005 Re(z^2+c),c=23/56+6/43*I,n=5 3654331738080710 l006 ln(7375/7402) 3654331746136958 a001 98209/9*5778^(6/43) 3654331747124899 m002 -5/Pi^4+Pi^3+6/ProductLog[Pi] 3654331756442357 r009 Re(z^3+c),c=-1/19+25/57*I,n=17 3654331769245346 l006 ln(4604/6635) 3654331775653030 a001 123/121393*1597^(4/23) 3654331778708981 m001 ln(Ei(1))*Rabbit^2/log(1+sqrt(2)) 3654331787922985 m005 (1/2*exp(1)+3/4)/(-23/88+3/8*5^(1/2)) 3654331795052122 r005 Re(z^2+c),c=-23/20+6/25*I,n=6 3654331809002019 m005 (1/2*5^(1/2)+9/10)/(7/12*2^(1/2)-3/11) 3654331820728322 a007 Real Root Of 615*x^4-927*x^3+980*x^2-413*x-338 3654331822637376 a007 Real Root Of 67*x^4+107*x^3-659*x^2-753*x-678 3654331831372834 r005 Re(z^2+c),c=-43/98+23/54*I,n=57 3654331838033516 m001 FeigenbaumMu^(Lehmer/LandauRamanujan2nd) 3654331842650935 r009 Im(z^3+c),c=-17/122+25/62*I,n=15 3654331844073906 p004 log(11863/307) 3654331871194575 m001 (Chi(1)+FeigenbaumB)/(-FeigenbaumDelta+Paris) 3654331874408829 r009 Re(z^3+c),c=-15/32+11/40*I,n=45 3654331875122549 a007 Real Root Of -154*x^4+579*x^3-678*x^2+305*x+233 3654331889747610 m001 FeigenbaumD+Zeta(1,2)^StolarskyHarborth 3654331892069664 r009 Im(z^3+c),c=-23/24+4/41*I,n=2 3654331892912929 a001 817138163596*144^(13/17) 3654331893595063 r009 Re(z^3+c),c=-37/102+37/55*I,n=61 3654331904087190 a007 Real Root Of -273*x^4+501*x^3-812*x^2-65*x+114 3654331909543652 a007 Real Root Of -234*x^4-700*x^3+843*x^2+790*x-801 3654331940377348 a001 161*21^(7/26) 3654331952022677 a007 Real Root Of 133*x^4+574*x^3+395*x^2+455*x+681 3654331969867479 r002 21th iterates of z^2 + 3654331975538303 a001 1/105937*1346269^(19/45) 3654331992225457 m001 1/3*3^(1/2)*gamma(2)^Paris 3654331992438435 r009 Re(z^3+c),c=-2/31+31/49*I,n=39 3654331996968639 a007 Real Root Of -939*x^4+447*x^3-584*x^2+606*x+338 3654332000703861 m001 Ei(1,1)+arctan(1/2)^FeigenbaumAlpha 3654332002905963 r005 Im(z^2+c),c=11/46+16/51*I,n=10 3654332006813428 m005 (gamma-1)/(14/15+1/10*5^(1/2)) 3654332012450844 a003 sin(Pi*2/23)/sin(Pi*23/87) 3654332027182754 r002 27th iterates of z^2 + 3654332036553387 a007 Real Root Of 593*x^4-437*x^3+877*x^2-446*x-312 3654332049542720 l006 ln(5377/7749) 3654332051685119 m001 GAMMA(19/24)*(Backhouse-ln(Pi)) 3654332067485206 m001 (MertensB1+Niven)/(Psi(2,1/3)+Conway) 3654332100484883 a001 29/233*3^(50/51) 3654332127357986 m005 (1/2*Catalan-5/11)/(9/11*5^(1/2)-8/9) 3654332130678160 a008 Real Root of x^2-x-133176 3654332132872411 r009 Im(z^3+c),c=-19/46+17/56*I,n=22 3654332140345540 r009 Re(z^3+c),c=-1/16+38/63*I,n=19 3654332147233819 m008 (3*Pi^4+1/4)/(5/6*Pi^6-4/5) 3654332151616036 a003 cos(Pi*6/85)*sin(Pi*11/90) 3654332165917355 r005 Im(z^2+c),c=-1/54+13/27*I,n=9 3654332166083300 a001 7/2*121393^(19/32) 3654332166192143 r005 Im(z^2+c),c=1/102+21/47*I,n=57 3654332166338440 p003 LerchPhi(1/8,2,348/205) 3654332166942016 r002 5th iterates of z^2 + 3654332173803056 m001 (5^(1/2)+BesselK(0,1))/(-Zeta(3)+Weierstrass) 3654332175554230 m005 (1/2*Catalan-5/7)/(-5/12+1/2*5^(1/2)) 3654332188958461 m001 (Bloch-Si(Pi))/(-MinimumGamma+Tribonacci) 3654332197274075 r005 Im(z^2+c),c=-27/40+3/35*I,n=12 3654332202604417 r002 9th iterates of z^2 + 3654332223208788 a007 Real Root Of -309*x^4+103*x^3+673*x^2+694*x-343 3654332228118522 a001 21*47^(23/31) 3654332259378344 l006 ln(6150/8863) 3654332267334620 m001 (gamma(3)+ArtinRank2)/(5^(1/2)-arctan(1/3)) 3654332268055724 r005 Re(z^2+c),c=-7/102+37/58*I,n=55 3654332285312319 r005 Im(z^2+c),c=-1/6+20/37*I,n=42 3654332289328852 m001 (Pi-Zeta(3))/(sin(1/12*Pi)-2*Pi/GAMMA(5/6)) 3654332290668560 m001 (MertensB1+ZetaP(4))/(GAMMA(2/3)-BesselI(0,2)) 3654332294852998 l006 ln(187/7226) 3654332295905959 b008 23*Sqrt[3*Sin[1]] 3654332303964438 m001 1/exp(gamma)^2*GAMMA(19/24)^2*sin(1) 3654332305401301 r009 Im(z^3+c),c=-49/94+5/27*I,n=40 3654332318272468 m001 1/FeigenbaumB^2/ln(Khintchine)*Riemann3rdZero 3654332344558261 m001 (2^(1/2)-gamma)/(BesselI(0,2)+Trott) 3654332349848507 a007 Real Root Of 693*x^4-937*x^3-408*x^2-324*x-122 3654332351737482 r002 17th iterates of z^2 + 3654332358526314 r009 Re(z^3+c),c=-41/118+15/23*I,n=58 3654332360516222 r005 Re(z^2+c),c=-1/54+33/56*I,n=2 3654332367597950 a001 1/98209*6557470319842^(14/17) 3654332374214504 m005 (1/2*2^(1/2)-9/10)/(1/8*gamma-3/5) 3654332375293109 r005 Im(z^2+c),c=1/102+21/47*I,n=53 3654332376829555 m001 (LaplaceLimit-Lehmer)/(GAMMA(3/4)+ln(2)) 3654332380789140 a001 521/144*233^(14/33) 3654332401738652 a001 1515744265389/46*322^(5/12) 3654332407293589 m005 (1/2*gamma-5/6)/(1/8*5^(1/2)-3/7) 3654332416115705 m005 (1/2*2^(1/2)-7/10)/(6/11*3^(1/2)+1) 3654332422354817 l006 ln(6923/9977) 3654332439709288 m005 (1/3*2^(1/2)+1/9)/(8/9*Zeta(3)-10/11) 3654332441941019 a007 Real Root Of -192*x^4+527*x^3-149*x^2-22*x+41 3654332443302190 a007 Real Root Of 267*x^4+681*x^3-932*x^2+397*x-485 3654332449609392 m001 Khinchin^FeigenbaumMu/(Khinchin^gamma(1)) 3654332470744189 r009 Im(z^3+c),c=-43/114+19/27*I,n=10 3654332470977668 a007 Real Root Of 252*x^4+770*x^3-803*x^2-747*x+630 3654332477466274 m002 Pi^2+Pi^4/3-Cosh[Pi]/2 3654332486198182 a008 Real Root of x^4-2*x^3-72*x^2+73*x+614 3654332489943329 r005 Re(z^2+c),c=-31/74+33/62*I,n=52 3654332493550392 r005 Im(z^2+c),c=1/102+21/47*I,n=60 3654332511644495 m001 Pi-gamma(1)+TreeGrowth2nd 3654332526287886 a001 2207/89*3^(6/17) 3654332536142822 r005 Im(z^2+c),c=1/102+21/47*I,n=61 3654332546484938 r005 Im(z^2+c),c=6/17+13/38*I,n=34 3654332557231344 r005 Im(z^2+c),c=1/102+21/47*I,n=64 3654332562262675 s001 sum(exp(-3*Pi/5)^n*A248842[n],n=1..infinity) 3654332562422380 m004 -125*Pi+(9375*Sec[Sqrt[5]*Pi])/Pi 3654332568228292 m001 (Artin+ZetaQ(4))/(sin(1/5*Pi)+BesselJ(1,1)) 3654332569352782 r005 Im(z^2+c),c=-11/106+25/49*I,n=63 3654332586102239 r009 Im(z^3+c),c=-21/46+5/17*I,n=12 3654332601157215 r005 Re(z^2+c),c=47/126+14/39*I,n=16 3654332624328923 a005 (1/cos(22/141*Pi))^139 3654332625589863 r005 Im(z^2+c),c=1/102+21/47*I,n=63 3654332640639947 r005 Im(z^2+c),c=8/25+3/17*I,n=30 3654332657916690 r005 Im(z^2+c),c=1/102+21/47*I,n=58 3654332660184001 m001 LambertW(1)^2*ln(GAMMA(1/12))/arctan(1/2)^2 3654332685185185 r005 Im(z^2+c),c=-5/8+47/150*I,n=3 3654332699996540 a003 sin(Pi*1/86)/sin(Pi*45/92) 3654332701656890 a007 Real Root Of -879*x^4-267*x^3+881*x^2+739*x-359 3654332705115336 r005 Im(z^2+c),c=15/98+20/57*I,n=46 3654332708039190 m005 (1/2*3^(1/2)+7/10)/(4/9*2^(1/2)-1/5) 3654332742242523 r005 Im(z^2+c),c=1/102+21/47*I,n=62 3654332743537704 r005 Im(z^2+c),c=-37/50+12/55*I,n=16 3654332750317084 b008 (-1/3+E^7)/3 3654332779053150 m001 (LandauRamanujan+MertensB1)/(Porter+Totient) 3654332781716158 a007 Real Root Of -965*x^4-262*x^3-808*x^2+831*x+416 3654332783660377 r002 4th iterates of z^2 + 3654332797100443 r005 Re(z^2+c),c=5/52+11/28*I,n=37 3654332799427602 m001 (Zeta(5)+ArtinRank2)/(FeigenbaumMu+Salem) 3654332812233729 a007 Real Root Of -832*x^4+164*x^3+772*x^2+601*x-23 3654332819299973 m001 (Psi(2,1/3)+2^(1/2))/(Shi(1)+ThueMorse) 3654332823809547 a007 Real Root Of 232*x^4+912*x^3-41*x^2-925*x+300 3654332824478105 r005 Im(z^2+c),c=5/82+22/53*I,n=45 3654332826108975 r005 Im(z^2+c),c=-19/106+13/20*I,n=59 3654332828966483 r005 Im(z^2+c),c=-9/16+6/91*I,n=61 3654332832645416 m001 (Magata-Mills)/(gamma(2)-BesselI(1,1)) 3654332839692024 l006 ln(254/9815) 3654332867261868 r005 Re(z^2+c),c=-15/23+12/55*I,n=9 3654332873867915 s002 sum(A159373[n]/(exp(pi*n)+1),n=1..infinity) 3654332874300051 p003 LerchPhi(1/125,6,112/139) 3654332879105268 r005 Im(z^2+c),c=1/102+21/47*I,n=59 3654332883600145 r005 Re(z^2+c),c=-19/42+21/58*I,n=28 3654332886207813 a007 Real Root Of -304*x^4-938*x^3+551*x^2-164*x+481 3654332887713482 b008 -1/3*Pi+Erfi[Catalan] 3654332920251850 r005 Im(z^2+c),c=1/102+21/47*I,n=56 3654332933082773 r009 Im(z^3+c),c=-13/98+19/47*I,n=11 3654332934581638 m005 (1/3*Catalan-1/4)/(3/7*5^(1/2)+5/9) 3654332935875388 a001 843/233*377^(23/59) 3654332943877253 m001 KomornikLoreti/Totient*Trott2nd 3654332946530678 r009 Re(z^3+c),c=-11/114+42/53*I,n=32 3654332961277702 r005 Re(z^2+c),c=7/46+27/46*I,n=53 3654332969598857 r009 Re(z^3+c),c=-1/19+25/57*I,n=19 3654332985237218 r002 14th iterates of z^2 + 3654332994238821 r005 Im(z^2+c),c=15/98+20/57*I,n=45 3654332995350719 m003 9/2+Sqrt[5]/256-Tanh[1/2+Sqrt[5]/2]^2 3654332997659172 r005 Im(z^2+c),c=29/118+19/45*I,n=9 3654333054002150 r005 Re(z^2+c),c=-41/86+7/27*I,n=32 3654333054686013 r009 Im(z^3+c),c=-17/122+25/62*I,n=17 3654333055571578 a007 Real Root Of -902*x^4+971*x^3+545*x^2+425*x+146 3654333065926433 a008 Real Root of x^4-2*x^3+2*x^2+56*x-98 3654333077014463 m001 GAMMA(5/12)-cos(Pi/5)*GAMMA(7/24) 3654333079903174 r005 Im(z^2+c),c=7/62+8/21*I,n=19 3654333096893529 a001 4870847/377*8^(1/2) 3654333107259960 r005 Im(z^2+c),c=5/17+7/32*I,n=37 3654333107429862 m001 Pi*Psi(2,1/3)/exp(-1/2*Pi)/BesselI(0,2) 3654333114762322 r005 Im(z^2+c),c=-31/36+9/41*I,n=19 3654333115333161 r005 Re(z^2+c),c=-71/118+17/58*I,n=11 3654333120491448 m001 (MinimumGamma-OneNinth)/(ln(2)-FellerTornier) 3654333125737689 r005 Im(z^2+c),c=-5/48+3/5*I,n=27 3654333137131699 r009 Im(z^3+c),c=-1/102+32/47*I,n=2 3654333137262845 m001 Rabbit^2*FeigenbaumDelta^2*exp(Zeta(3)) 3654333148118297 r005 Re(z^2+c),c=-5/4+12/185*I,n=32 3654333150050947 a007 Real Root Of -909*x^4+281*x^3-970*x^2+453*x+325 3654333155677946 b008 ExpIntegralEi[7+E^(-1/4)] 3654333175265954 a001 17711/4*123^(25/57) 3654333187306832 r005 Im(z^2+c),c=1/102+21/47*I,n=55 3654333192088598 r009 Re(z^3+c),c=-29/64+12/47*I,n=29 3654333201268171 m001 BesselK(0,1)-Weierstrass^FellerTornier 3654333204942374 r005 Re(z^2+c),c=-33/82+13/30*I,n=12 3654333207596847 r009 Im(z^3+c),c=-17/122+25/62*I,n=14 3654333210061359 r005 Im(z^2+c),c=-43/114+32/57*I,n=61 3654333228223501 r005 Re(z^2+c),c=-25/82+28/47*I,n=62 3654333229490118 a007 Real Root Of 137*x^4+510*x^3+15*x^2+131*x+735 3654333232677015 r009 Re(z^3+c),c=-35/94+7/51*I,n=5 3654333245588470 a007 Real Root Of 173*x^4-422*x^3-577*x^2-699*x+350 3654333254068248 m001 Cahen/Pi/csc(1/24*Pi)*GAMMA(23/24)*MertensB3 3654333255022226 a007 Real Root Of -202*x^4-153*x^3-222*x^2+526*x+218 3654333270798575 p004 log(27397/709) 3654333282749714 m001 Paris*ln(DuboisRaymond)/Riemann2ndZero^2 3654333315071196 a001 3571/34*89^(5/18) 3654333331737595 a001 1/4092*(1/2*5^(1/2)+1/2)^24*3^(1/3) 3654333333979750 r002 7th iterates of z^2 + 3654333345440776 a001 1/305*6557470319842^(12/17) 3654333362039454 r005 Im(z^2+c),c=-17/14+5/116*I,n=44 3654333370560455 r009 Re(z^3+c),c=-21/46+7/27*I,n=28 3654333374229058 r005 Re(z^2+c),c=-37/90+29/63*I,n=27 3654333392623270 m006 (5/6*ln(Pi)+1)/(exp(2*Pi)-4/5) 3654333401164550 b008 ArcSinh[4^Sqrt[2]*E] 3654333407812633 a001 17393796001/1597*4807526976^(6/23) 3654333407846506 a001 312119004989/1597*75025^(6/23) 3654333408362586 r009 Im(z^3+c),c=-15/26+31/50*I,n=54 3654333408928617 r005 Re(z^2+c),c=-12/25+21/59*I,n=19 3654333411564102 r009 Re(z^3+c),c=-17/44+1/6*I,n=9 3654333443062461 r005 Im(z^2+c),c=15/98+20/57*I,n=50 3654333449883514 a001 47/832040*514229^(13/41) 3654333458139802 h001 (-7*exp(3)+2)/(-6*exp(-1)+6) 3654333459148575 m004 (-3125*Sqrt[5]*Pi)/6+6*Cos[Sqrt[5]*Pi] 3654333484608441 a007 Real Root Of -315*x^4-883*x^3+965*x^2-265*x-771 3654333493565524 r005 Re(z^2+c),c=-7/15+14/45*I,n=58 3654333502280790 q001 721/1973 3654333504045111 r009 Re(z^3+c),c=-7/15+3/11*I,n=33 3654333525987587 m004 2+100/Pi+2*Sec[Sqrt[5]*Pi] 3654333527231647 r005 Im(z^2+c),c=43/126+10/63*I,n=48 3654333529417098 r005 Im(z^2+c),c=13/122+5/13*I,n=29 3654333536185835 m001 Trott^2/MadelungNaCl/ln(Zeta(3)) 3654333538256490 l006 ln(4675/4849) 3654333543955111 r009 Im(z^3+c),c=-7/25+19/51*I,n=6 3654333549302263 m005 (1/2*3^(1/2)-8/9)/(4/9*gamma+6) 3654333552290097 r005 Re(z^2+c),c=-2/5+23/50*I,n=22 3654333561031302 m001 Zeta(3)/(Si(Pi)^GAMMA(11/24)) 3654333564152159 r009 Im(z^3+c),c=-17/30+21/40*I,n=6 3654333573824579 a007 Real Root Of 216*x^4+564*x^3-885*x^2-440*x-786 3654333586587392 a007 Real Root Of 419*x^4-937*x^3+310*x^2-586*x+211 3654333605152306 m001 Porter*Khintchine*ln(Riemann2ndZero)^2 3654333610019515 m005 (1/3*gamma-3/7)/(4/9*Pi-3/4) 3654333629988305 a007 Real Root Of 26*x^4-488*x^3-45*x^2-103*x+67 3654333644075059 r005 Im(z^2+c),c=15/98+20/57*I,n=49 3654333652571321 a001 45537549124/4181*4807526976^(6/23) 3654333652605194 a001 817138163596/4181*75025^(6/23) 3654333653903408 m005 (1/4*gamma-1)/(Pi-4/5) 3654333661869153 m001 (Psi(2,1/3)+3^(1/2))/(BesselK(1,1)+Thue) 3654333672582542 r005 Re(z^2+c),c=-55/122+19/50*I,n=48 3654333676921341 r005 Im(z^2+c),c=15/98+20/57*I,n=54 3654333682152320 r005 Im(z^2+c),c=-13/25+2/31*I,n=24 3654333688281135 a001 119218851371/10946*4807526976^(6/23) 3654333688315008 a001 2139295485799/10946*75025^(6/23) 3654333693491127 a001 312119004989/28657*4807526976^(6/23) 3654333693525000 a001 5600748293801/28657*75025^(6/23) 3654333694251254 a001 817138163596/75025*4807526976^(6/23) 3654333694285127 a001 14662949395604/75025*75025^(6/23) 3654333694362156 a001 2139295485799/196418*4807526976^(6/23) 3654333694378336 a001 5600748293801/514229*4807526976^(6/23) 3654333694380696 a001 14662949395604/1346269*4807526976^(6/23) 3654333694381254 a001 23725150497407/2178309*4807526976^(6/23) 3654333694382155 a001 9062201101803/832040*4807526976^(6/23) 3654333694388336 a001 3461452808002/317811*4807526976^(6/23) 3654333694430696 a001 1322157322203/121393*4807526976^(6/23) 3654333694464569 a001 23725150497407/121393*75025^(6/23) 3654333694721039 a001 505019158607/46368*4807526976^(6/23) 3654333694754912 a001 3020733700601/15456*75025^(6/23) 3654333696711079 a001 192900153618/17711*4807526976^(6/23) 3654333696744952 a001 3461452808002/17711*75025^(6/23) 3654333698627468 r005 Re(z^2+c),c=19/62+23/47*I,n=9 3654333701424821 m001 1/exp(Porter)/FeigenbaumDelta^2*sin(Pi/5)^2 3654333704236813 r005 Re(z^2+c),c=-13/29+23/59*I,n=58 3654333710351014 a001 73681302247/6765*4807526976^(6/23) 3654333710384887 a001 440719107401/2255*75025^(6/23) 3654333714877026 r005 Im(z^2+c),c=-73/126+1/15*I,n=45 3654333718998073 l006 ln(773/1114) 3654333719343354 m001 3^(1/2)/(HardHexagonsEntropy^FeigenbaumDelta) 3654333729793969 m004 2+(150*Sqrt[5])/Pi-Cosh[Sqrt[5]*Pi]/5 3654333737592543 r005 Re(z^2+c),c=21/74+8/17*I,n=16 3654333747202502 r005 Im(z^2+c),c=15/98+20/57*I,n=58 3654333754390363 r005 Im(z^2+c),c=3/16+13/40*I,n=18 3654333757290346 r005 Im(z^2+c),c=3/32+24/61*I,n=45 3654333765769270 r005 Im(z^2+c),c=15/98+20/57*I,n=53 3654333767328317 r005 Im(z^2+c),c=15/98+20/57*I,n=62 3654333767606537 m001 gamma(3)*(Zeta(1/2)+GlaisherKinkelin) 3654333769391829 r005 Im(z^2+c),c=15/98+20/57*I,n=59 3654333771349334 r002 5th iterates of z^2 + 3654333771653347 r005 Im(z^2+c),c=15/98+20/57*I,n=55 3654333771960801 r005 Im(z^2+c),c=15/98+20/57*I,n=63 3654333778389431 r005 Im(z^2+c),c=15/98+20/57*I,n=64 3654333778638722 r005 Im(z^2+c),c=15/98+20/57*I,n=61 3654333780244288 m001 (TwinPrimes-ZetaP(2))/(Gompertz-Trott2nd) 3654333780441125 r005 Im(z^2+c),c=15/98+20/57*I,n=57 3654333788967236 r005 Im(z^2+c),c=15/98+20/57*I,n=60 3654333792400494 r005 Re(z^2+c),c=-5/98+17/26*I,n=12 3654333803840526 a001 28143753123/2584*4807526976^(6/23) 3654333803874398 a001 505019158607/2584*75025^(6/23) 3654333816618008 r009 Im(z^3+c),c=-17/122+25/62*I,n=19 3654333818220930 r005 Im(z^2+c),c=15/98+20/57*I,n=51 3654333826800732 r005 Im(z^2+c),c=15/98+20/57*I,n=56 3654333828049758 r005 Re(z^2+c),c=-19/27+3/50*I,n=10 3654333838995197 a007 Real Root Of -976*x^4+845*x^3+725*x^2+499*x-303 3654333845199019 r009 Re(z^3+c),c=-29/82+7/60*I,n=9 3654333846784245 m001 FeigenbaumAlpha*(GAMMA(3/4)-Khinchin) 3654333847304221 r005 Im(z^2+c),c=21/122+15/47*I,n=6 3654333863082819 m001 (2^(1/3)+3^(1/3))/(LaplaceLimit+ZetaP(4)) 3654333866180120 b008 3/(2*E^4)+Sinh[2] 3654333869529078 r005 Re(z^2+c),c=-7/15+14/45*I,n=57 3654333882789312 a001 76/28657*34^(1/11) 3654333882863256 r009 Im(z^3+c),c=-5/18+7/19*I,n=21 3654333884650702 r009 Im(z^3+c),c=-17/122+25/62*I,n=22 3654333893682469 r009 Im(z^3+c),c=-17/122+25/62*I,n=24 3654333895317213 r009 Im(z^3+c),c=-17/122+25/62*I,n=20 3654333895519342 r009 Im(z^3+c),c=-17/122+25/62*I,n=27 3654333895591182 r009 Im(z^3+c),c=-17/122+25/62*I,n=29 3654333895622878 r009 Im(z^3+c),c=-17/122+25/62*I,n=31 3654333895624827 r009 Im(z^3+c),c=-17/122+25/62*I,n=34 3654333895624909 r009 Im(z^3+c),c=-17/122+25/62*I,n=32 3654333895625233 r009 Im(z^3+c),c=-17/122+25/62*I,n=36 3654333895625299 r009 Im(z^3+c),c=-17/122+25/62*I,n=39 3654333895625303 r009 Im(z^3+c),c=-17/122+25/62*I,n=41 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=43 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=44 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=46 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=48 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=51 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=53 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=56 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=55 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=58 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=60 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=63 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=61 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=64 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=62 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=59 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=57 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=54 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=52 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=50 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=49 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=47 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=45 3654333895625304 r009 Im(z^3+c),c=-17/122+25/62*I,n=42 3654333895625307 r009 Im(z^3+c),c=-17/122+25/62*I,n=40 3654333895625308 r009 Im(z^3+c),c=-17/122+25/62*I,n=38 3654333895625317 r009 Im(z^3+c),c=-17/122+25/62*I,n=37 3654333895625520 r009 Im(z^3+c),c=-17/122+25/62*I,n=35 3654333895626047 r009 Im(z^3+c),c=-17/122+25/62*I,n=33 3654333895637122 r009 Im(z^3+c),c=-17/122+25/62*I,n=30 3654333895657304 r009 Im(z^3+c),c=-17/122+25/62*I,n=26 3654333895697885 r009 Im(z^3+c),c=-17/122+25/62*I,n=28 3654333896068597 r009 Im(z^3+c),c=-17/122+25/62*I,n=25 3654333900995201 r009 Im(z^3+c),c=-17/122+25/62*I,n=23 3654333907801068 m001 (ln(3)-3^(1/3))/(StolarskyHarborth+Thue) 3654333910512930 r009 Im(z^3+c),c=-17/122+25/62*I,n=21 3654333940199145 m001 1/GAMMA(1/6)*exp(GlaisherKinkelin)/sqrt(Pi) 3654333949032693 m009 (1/4*Pi^2-5)/(2/3*Psi(1,1/3)+1/5) 3654333951048709 r002 8th iterates of z^2 + 3654333951103236 a007 Real Root Of -190*x^4-828*x^3-758*x^2-868*x+427 3654333955790315 a008 Real Root of x^2-x-133907 3654333955801112 r005 Im(z^2+c),c=15/98+20/57*I,n=52 3654333971480354 m001 KhinchinLevy^2/ReciprocalLucas^2 3654333986683009 m001 AlladiGrinstead^ZetaQ(2)-GAMMA(2/3) 3654333987825771 a008 Real Root of x^4-2*x^3-33*x^2-61*x-18 3654333988596507 m005 (-15/4+1/4*5^(1/2))/(1/10*3^(1/2)+7/10) 3654333992311844 r001 27i'th iterates of 2*x^2-1 of 3654333995559548 a007 Real Root Of -375*x^4+430*x^3-753*x^2+834*x+433 3654333999268858 a007 Real Root Of 292*x^4+77*x^3-230*x^2-797*x+313 3654333999418657 r005 Re(z^2+c),c=-9/14+54/209*I,n=22 3654334018672935 r002 62th iterates of z^2 + 3654334031401054 r005 Re(z^2+c),c=-53/52+6/41*I,n=28 3654334045551470 m001 (cos(1/12*Pi)+exp(1/exp(1)))/(gamma(3)-Robbin) 3654334051960697 p001 sum((-1)^n/(446*n+381)/n/(3^n),n=1..infinity) 3654334052764011 m001 sin(1/12*Pi)/(GolombDickman-MertensB3) 3654334059830682 r005 Re(z^2+c),c=-11/38+25/51*I,n=4 3654334060241472 r005 Im(z^2+c),c=1/102+21/47*I,n=48 3654334075422910 r005 Re(z^2+c),c=-11/20+15/56*I,n=5 3654334083663065 m001 (Cahen-ZetaP(2))^2 3654334101744210 r009 Re(z^3+c),c=-1/19+25/57*I,n=21 3654334107583728 r005 Im(z^2+c),c=15/98+20/57*I,n=47 3654334115651716 r005 Im(z^2+c),c=3/32+24/61*I,n=42 3654334118320052 a001 1/10959*10946^(33/37) 3654334123482583 a001 28657/18*843^(20/43) 3654334125383754 r005 Im(z^2+c),c=29/102+1/59*I,n=12 3654334125527773 a007 Real Root Of -113*x^4+382*x^3-481*x^2+668*x+329 3654334130161789 s002 sum(A018433[n]/(n^2*exp(n)+1),n=1..infinity) 3654334170244271 r005 Im(z^2+c),c=23/110+11/36*I,n=23 3654334170655262 a003 sin(Pi*13/97)-sin(Pi*31/110) 3654334185074933 r005 Im(z^2+c),c=3/16+13/51*I,n=3 3654334198651853 r005 Re(z^2+c),c=3/25+23/33*I,n=4 3654334206752006 m005 (1/2*Zeta(3)+3)/(2/9*gamma+6/7) 3654334208410972 r005 Im(z^2+c),c=-7/34+14/25*I,n=52 3654334212815226 r009 Im(z^3+c),c=-17/122+25/62*I,n=18 3654334216964428 r005 Im(z^2+c),c=9/122+24/59*I,n=44 3654334225587072 a007 Real Root Of 196*x^4+609*x^3-406*x^2-139*x-320 3654334228947738 r009 Re(z^3+c),c=-1/18+20/41*I,n=20 3654334229272952 a007 Real Root Of -933*x^4-63*x^3-553*x^2-179*x+22 3654334246112321 a007 Real Root Of 782*x^4+226*x^3+192*x^2-548*x+2 3654334248048387 r005 Re(z^2+c),c=-7/60+9/14*I,n=41 3654334248063731 m005 (-13/30+2/5*5^(1/2))/(4/5*gamma+4/5) 3654334253538425 a007 Real Root Of 135*x^4+408*x^3-176*x^2+616*x+437 3654334265803201 v002 sum(1/(3^n+(11*n^2-n+54)),n=1..infinity) 3654334273683850 r005 Im(z^2+c),c=-1/118+25/41*I,n=26 3654334281178920 m001 (Zeta(5)-ln(5))/(Zeta(1,-1)+ZetaQ(3)) 3654334283993808 r005 Re(z^2+c),c=-3/40+25/42*I,n=5 3654334291912768 m001 (ln(5)+HardHexagonsEntropy)/(Paris+Sarnak) 3654334315626819 m005 (1/2*3^(1/2)+4)/(5/7*gamma-6/11) 3654334319807557 r009 Im(z^3+c),c=-53/118+17/59*I,n=9 3654334320708053 s002 sum(A201809[n]/(10^n+1),n=1..infinity) 3654334323552564 a005 (1/sin(92/201*Pi))^1187 3654334333629176 r005 Re(z^2+c),c=-5/23+9/14*I,n=30 3654334340664403 a007 Real Root Of -149*x^4+174*x^3+226*x^2+703*x-26 3654334356708540 a001 85145990511309/233 3654334360360571 l006 ln(67/2589) 3654334366101363 r005 Im(z^2+c),c=-1/6+13/24*I,n=51 3654334374210571 r005 Im(z^2+c),c=15/98+20/57*I,n=48 3654334375468912 a001 305/9*2207^(39/43) 3654334375987770 l003 Fresnelf(72/115) 3654334389901981 m001 1/GAMMA(1/3)^2*ln(GAMMA(1/12))^2*GAMMA(5/24) 3654334400406525 r005 Im(z^2+c),c=-65/126+27/55*I,n=15 3654334404626987 r002 8th iterates of z^2 + 3654334415700995 r005 Im(z^2+c),c=1/102+21/47*I,n=52 3654334423783124 a001 17*11^(15/47) 3654334444627298 a001 10749957122/987*4807526976^(6/23) 3654334444661171 a001 64300051206/329*75025^(6/23) 3654334459129662 a007 Real Root Of -262*x^4+556*x^3+839*x^2+598*x-23 3654334461890149 a007 Real Root Of -620*x^4+430*x^3-415*x^2+628*x-184 3654334464011314 m008 (3*Pi^4+1/5)/(3/4*Pi^2+3/5) 3654334466390355 r002 7th iterates of z^2 + 3654334469429960 m001 (GAMMA(7/12)-Psi(2,1/3))/(Artin+Salem) 3654334471452353 r009 Re(z^3+c),c=-1/19+25/57*I,n=23 3654334477456885 g005 GAMMA(11/12)*GAMMA(5/8)*GAMMA(3/4)/GAMMA(2/11) 3654334483945263 a007 Real Root Of 234*x^4-242*x^3-422*x^2-966*x+417 3654334495817430 r005 Re(z^2+c),c=-17/36+15/53*I,n=45 3654334503946637 a007 Real Root Of -733*x^4+221*x^3+397*x^2+898*x+299 3654334504192508 r005 Re(z^2+c),c=23/98+29/55*I,n=3 3654334506738754 r005 Re(z^2+c),c=-55/118+16/51*I,n=48 3654334521716831 r009 Re(z^3+c),c=-1/19+25/57*I,n=16 3654334525115692 m009 (2*Pi^2+3/5)/(8/3*Catalan+1/3*Pi^2-1/6) 3654334540069084 m001 (GaussAGM+Khinchin)/(sin(1/12*Pi)+CareFree) 3654334546722856 r005 Im(z^2+c),c=-49/64+20/49*I,n=4 3654334563167814 r009 Re(z^3+c),c=-1/19+25/57*I,n=25 3654334568381460 r009 Im(z^3+c),c=-55/114+23/48*I,n=9 3654334576102264 m001 1/(3^(1/3))/exp(Rabbit)/cos(Pi/12)^2 3654334578825632 m001 (2^(1/3)-arctan(1/3)*MertensB1)/arctan(1/3) 3654334580796358 r005 Re(z^2+c),c=-17/14+15/98*I,n=8 3654334582417378 r009 Re(z^3+c),c=-1/19+25/57*I,n=27 3654334582468073 s002 sum(A271372[n]/(exp(pi*n)-1),n=1..infinity) 3654334585900897 r009 Re(z^3+c),c=-1/19+25/57*I,n=29 3654334586426739 r009 Re(z^3+c),c=-1/19+25/57*I,n=31 3654334586475797 r009 Re(z^3+c),c=-1/19+25/57*I,n=34 3654334586478254 r009 Re(z^3+c),c=-1/19+25/57*I,n=36 3654334586479673 r009 Re(z^3+c),c=-1/19+25/57*I,n=38 3654334586480099 r009 Re(z^3+c),c=-1/19+25/57*I,n=40 3654334586480200 r009 Re(z^3+c),c=-1/19+25/57*I,n=42 3654334586480221 r009 Re(z^3+c),c=-1/19+25/57*I,n=44 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=46 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=48 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=51 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=53 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=55 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=57 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=59 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=61 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=63 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=64 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=62 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=60 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=58 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=56 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=54 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=49 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=52 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=50 3654334586480225 r009 Re(z^3+c),c=-1/19+25/57*I,n=47 3654334586480227 r009 Re(z^3+c),c=-1/19+25/57*I,n=45 3654334586480235 r009 Re(z^3+c),c=-1/19+25/57*I,n=43 3654334586480282 r009 Re(z^3+c),c=-1/19+25/57*I,n=41 3654334586480494 r009 Re(z^3+c),c=-1/19+25/57*I,n=39 3654334586481304 r009 Re(z^3+c),c=-1/19+25/57*I,n=37 3654334586483339 r009 Re(z^3+c),c=-1/19+25/57*I,n=33 3654334586483482 r009 Re(z^3+c),c=-1/19+25/57*I,n=35 3654334586488802 r009 Re(z^3+c),c=-1/19+25/57*I,n=32 3654334586672776 r009 Re(z^3+c),c=-1/19+25/57*I,n=30 3654334588063955 r009 Re(z^3+c),c=-1/19+25/57*I,n=28 3654334591643200 m001 (3^(1/2)-Psi(1,1/3))/(KhinchinHarmonic+Landau) 3654334596411653 r009 Re(z^3+c),c=-1/19+25/57*I,n=26 3654334608130901 h001 (6/11*exp(2)+7/10)/(1/10*exp(2)+5/9) 3654334609901245 r005 Im(z^2+c),c=-1/19+14/29*I,n=38 3654334620063866 a001 4106118243/377*102334155^(4/21) 3654334620063866 a001 599074578/377*2504730781961^(4/21) 3654334626627263 r002 3th iterates of z^2 + 3654334628027636 a001 28143753123/377*4181^(4/21) 3654334639215158 r009 Re(z^3+c),c=-1/19+25/57*I,n=24 3654334639449890 r005 Re(z^2+c),c=15/52+13/31*I,n=30 3654334654369231 a007 Real Root Of -788*x^4+854*x^3-978*x^2-893*x-140 3654334669694532 r005 Re(z^2+c),c=-21/50+29/59*I,n=64 3654334672006202 a003 sin(Pi*2/117)+sin(Pi*11/109) 3654334673706130 m001 ln(TreeGrowth2nd)^2*Lehmer^2*cosh(1) 3654334680293765 m001 Khintchine*FeigenbaumDelta^2*exp(FeigenbaumC) 3654334682985483 r005 Im(z^2+c),c=9/74+20/53*I,n=11 3654334683991838 a001 1/76*(1/2*5^(1/2)+1/2)^25*4^(4/11) 3654334686214828 r005 Im(z^2+c),c=-103/126+15/53*I,n=3 3654334688558532 m001 (3^(1/3)-Bloch)/(CareFree-ReciprocalFibonacci) 3654334692141813 r005 Re(z^2+c),c=-13/30+19/42*I,n=43 3654334698658585 r009 Re(z^3+c),c=-2/21+41/58*I,n=27 3654334715298085 m001 LandauRamanujan^HardyLittlewoodC5-Thue 3654334743266651 m008 (1/5*Pi^3+5)/(Pi^5+1/2) 3654334782167070 r009 Im(z^3+c),c=-47/86+11/24*I,n=42 3654334785139643 a001 20633239/233*89^(6/19) 3654334810757986 m001 Paris*((1+3^(1/2))^(1/2)-GlaisherKinkelin) 3654334811967249 a007 Real Root Of 574*x^4-506*x^3+323*x^2-478*x+146 3654334823661354 r009 Im(z^3+c),c=-19/98+17/43*I,n=5 3654334824493385 m001 (KhinchinLevy-Paris)/(BesselI(0,2)+ArtinRank2) 3654334827891521 r009 Re(z^3+c),c=-1/19+25/57*I,n=22 3654334835345380 r005 Re(z^2+c),c=-63/82+7/55*I,n=20 3654334837124855 r005 Im(z^2+c),c=-13/60+34/55*I,n=42 3654334858721872 r009 Re(z^3+c),c=-21/44+17/53*I,n=13 3654334872876628 m008 (1/3*Pi-3/5)/(4*Pi^5-1/3) 3654334877600142 r005 Im(z^2+c),c=-15/106+37/60*I,n=27 3654334907144807 g007 Psi(2,7/10)+Psi(2,5/7)-2*Psi(2,4/5) 3654334907186697 p001 sum((-1)^n/(341*n+27)/(5^n),n=0..infinity) 3654334933634566 q001 1294/3541 3654334940779024 r005 Re(z^2+c),c=11/114+17/47*I,n=7 3654334942534265 r005 Im(z^2+c),c=-25/118+19/31*I,n=45 3654334951077806 r005 Re(z^2+c),c=-17/14+33/214*I,n=38 3654334953994265 m001 1/ln(GAMMA(5/6))^2/OneNinth/sqrt(3) 3654334958740576 a007 Real Root Of -315*x^4-988*x^3+716*x^2+288*x-549 3654334977841338 r009 Re(z^3+c),c=-9/26+31/42*I,n=4 3654334978958401 r009 Re(z^3+c),c=-31/70+8/33*I,n=33 3654334981673974 a007 Real Root Of 161*x^4+364*x^3-768*x^2+326*x+499 3654334983745546 m003 -1/2+(5*Sqrt[5])/128-Cos[1/2+Sqrt[5]/2] 3654334996687129 s002 sum(A166531[n]/(n^2*exp(n)+1),n=1..infinity) 3654334999347832 a003 cos(Pi*18/83)*cos(Pi*32/93) 3654335002106888 b008 -7+Cot[Pi/21] 3654335003028985 l006 ln(6991/10075) 3654335005686357 k005 Champernowne real with floor(sqrt(3)*(39*n+172)) 3654335010099226 r005 Re(z^2+c),c=-109/86+47/56*I,n=2 3654335013588050 m001 (Magata-RenyiParking)/(ln(3)-GAMMA(23/24)) 3654335015120569 r002 15th iterates of z^2 + 3654335015696377 k001 Champernowne real with 68*n+297 3654335017894456 m001 exp(-1/2*Pi)/Zeta(5)*MasserGramainDelta 3654335030558481 m005 (1/3*exp(1)-1/5)/(2*gamma+7/9) 3654335040844055 a005 (1/cos(3/85*Pi))^958 3654335057437501 m001 (FeigenbaumB+Khinchin*Thue)/Thue 3654335072139368 a007 Real Root Of 144*x^4-409*x^3+497*x^2-346*x+12 3654335105212114 p004 log(27997/19427) 3654335107014444 m005 (1/2*5^(1/2)-2/9)/(4/3+1/2*5^(1/2)) 3654335112114357 r005 Im(z^2+c),c=-41/66+5/14*I,n=19 3654335114046567 a007 Real Root Of -561*x^4+69*x^3-298*x^2+514*x+241 3654335114289922 a008 Real Root of x^4-2*x^3+x^2-20*x-21 3654335115187056 m005 (1/2*2^(1/2)+1/8)/(7/12*Pi+4/9) 3654335117103033 a007 Real Root Of 859*x^4+799*x^3+826*x^2+352*x+42 3654335118694259 r005 Re(z^2+c),c=-25/26+1/19*I,n=10 3654335122180402 r009 Re(z^3+c),c=-65/122+3/16*I,n=5 3654335131946226 r005 Im(z^2+c),c=-25/52+1/16*I,n=25 3654335144292593 p003 LerchPhi(1/1024,3,235/168) 3654335162655203 l006 ln(6218/8961) 3654335172038246 h001 (-exp(1)+9)/(-8*exp(1/2)-4) 3654335187272768 a005 (1/cos(9/28*Pi))^13 3654335192303336 r005 Re(z^2+c),c=37/98+14/53*I,n=14 3654335193191576 r005 Im(z^2+c),c=3/32+24/61*I,n=49 3654335194485624 r005 Re(z^2+c),c=-11/38+37/61*I,n=49 3654335203081239 r009 Re(z^3+c),c=-27/50+17/56*I,n=50 3654335207189310 a008 Real Root of x^4-2*x^3-36*x^2-15*x+150 3654335235875970 a001 3/101521*3571^(47/54) 3654335249450476 r005 Re(z^2+c),c=-47/118+16/31*I,n=58 3654335254733583 r005 Re(z^2+c),c=-55/118+26/59*I,n=13 3654335271637445 r005 Re(z^2+c),c=-37/78+14/51*I,n=25 3654335276403953 a007 Real Root Of 194*x^4+389*x^3-974*x^2+809*x+350 3654335281403851 a007 Real Root Of 24*x^4+858*x^3-715*x^2-695*x+239 3654335288396923 r009 Im(z^3+c),c=-17/82+39/47*I,n=2 3654335324208709 a001 322/121393*591286729879^(4/15) 3654335326489093 a001 322/17711*433494437^(4/15) 3654335326663719 m001 (3^(1/2)-ln(2+3^(1/2)))/(Landau+Lehmer) 3654335328181789 a008 Real Root of x^4-x^3-9*x^2+x-13 3654335336958130 r009 Re(z^3+c),c=-21/44+2/7*I,n=44 3654335338857476 a001 3278735159921/161*322^(1/2) 3654335342358648 a001 46368/521*47^(55/57) 3654335350944427 m005 (1/2*Zeta(3)+1)/(3/8*Zeta(3)-8/9) 3654335353311574 s002 sum(A149913[n]/((pi^n+1)/n),n=1..infinity) 3654335356588973 m005 (1/3*2^(1/2)-2/9)/(7/8*2^(1/2)-5/9) 3654335359551645 a007 Real Root Of -468*x^4+93*x^3+756*x^2+473*x-270 3654335366815607 r009 Re(z^3+c),c=-57/98+18/37*I,n=2 3654335367604123 l006 ln(5445/7847) 3654335379975576 r005 Im(z^2+c),c=-25/38+8/21*I,n=41 3654335382373833 m002 6+Pi^3*Cosh[Pi]+Tanh[Pi]/Pi^4 3654335392254500 a001 956722026041/843*521^(12/13) 3654335396785532 a007 Real Root Of 401*x^4+267*x^3-542*x^2-953*x-270 3654335398055495 p001 sum(1/(433*n+149)/n/(5^n),n=1..infinity) 3654335404664278 p001 sum(1/(559*n+274)/(256^n),n=0..infinity) 3654335414820621 p003 LerchPhi(1/512,3,87/134) 3654335424044977 r005 Im(z^2+c),c=19/122+17/58*I,n=3 3654335433616658 a001 161/1292*317811^(4/15) 3654335446076157 r005 Im(z^2+c),c=1/102+21/47*I,n=46 3654335451350455 r005 Im(z^2+c),c=9/56+9/25*I,n=9 3654335458668748 a007 Real Root Of -90*x^4+955*x^3-761*x^2-161*x+91 3654335462938984 r005 Im(z^2+c),c=-83/122+1/33*I,n=25 3654335463617683 a001 7/13201*9349^(25/54) 3654335485814962 a001 21/64079*64079^(23/54) 3654335492159658 r005 Im(z^2+c),c=-3/29+22/43*I,n=30 3654335492630778 r005 Im(z^2+c),c=3/32+24/61*I,n=48 3654335492887379 a007 Real Root Of -795*x^4+512*x^3-34*x^2+812*x-303 3654335507107216 m001 1/exp(GAMMA(19/24))*KhintchineLevy/Zeta(9)^2 3654335507194301 r009 Re(z^3+c),c=-1/19+25/57*I,n=20 3654335510971826 r005 Im(z^2+c),c=15/98+20/57*I,n=43 3654335512153546 a007 Real Root Of -155*x^4-27*x^3-694*x^2+993*x+457 3654335515473269 r005 Re(z^2+c),c=-3/13+31/59*I,n=5 3654335520613029 m002 -3-Pi^4/3-ProductLog[Pi] 3654335523940419 m001 Zeta(3)*MasserGramainDelta^Si(Pi) 3654335525198930 m001 (sin(1)-MasserGramainDelta)/Khinchin 3654335532264462 m001 exp(1/2)-log(gamma)+Backhouse 3654335535376436 m001 (ln(2)+exp(1/exp(1)))/(Robbin-ZetaP(4)) 3654335542497453 r005 Im(z^2+c),c=3/20+36/61*I,n=55 3654335544549605 r009 Im(z^3+c),c=-17/122+25/62*I,n=16 3654335554964011 r005 Im(z^2+c),c=9/122+24/59*I,n=43 3654335560283065 r009 Im(z^3+c),c=-23/44+17/46*I,n=39 3654335560354350 r005 Im(z^2+c),c=17/78+11/37*I,n=27 3654335569076189 m001 (-polylog(4,1/2)+Conway)/(LambertW(1)-exp(1)) 3654335571444384 r005 Im(z^2+c),c=3/32+24/61*I,n=52 3654335580195914 p001 sum(1/(307*n+279)/(25^n),n=0..infinity) 3654335592411519 r005 Im(z^2+c),c=1/11+32/43*I,n=6 3654335601341352 m001 1/GAMMA(5/12)*Kolakoski^2/exp(GAMMA(5/24)) 3654335601766234 r005 Im(z^2+c),c=-19/34+38/85*I,n=29 3654335606224394 m009 (3/5*Psi(1,3/4)+4)/(5*Psi(1,2/3)-1/5) 3654335606302607 r005 Im(z^2+c),c=3/32+24/61*I,n=53 3654335607734945 a008 Real Root of x^4-19*x^2-22*x-5 3654335635070355 m001 (-Thue+TwinPrimes)/(Catalan+Zeta(1/2)) 3654335640372178 l006 ln(4672/6733) 3654335644462264 m001 (3^(1/2)-GAMMA(3/4))/(LaplaceLimit+Sarnak) 3654335645894053 a007 Real Root Of 713*x^4+316*x^3+198*x^2-732*x-27 3654335654459470 m005 (1/2*exp(1)-1/3)/(7/9*Pi+4/11) 3654335654983591 r005 Im(z^2+c),c=15/98+20/57*I,n=44 3654335656600142 m001 FeigenbaumMu^GAMMA(23/24)/Psi(1,1/3) 3654335660339787 r005 Im(z^2+c),c=3/32+24/61*I,n=56 3654335687804341 m001 GAMMA(1/4)^2/BesselJ(0,1)*exp(GAMMA(7/12))^2 3654335693082066 r005 Im(z^2+c),c=-25/48+25/61*I,n=8 3654335699870419 m005 (25/36+1/4*5^(1/2))/(8/11*3^(1/2)-11/12) 3654335701024613 r005 Im(z^2+c),c=3/32+24/61*I,n=60 3654335704391331 r005 Im(z^2+c),c=3/32+24/61*I,n=57 3654335714473174 m001 (Rabbit+Riemann2ndZero)/(gamma(3)+Lehmer) 3654335714599681 r005 Im(z^2+c),c=31/126+15/43*I,n=9 3654335715049776 m002 -E^Pi-Pi+Pi^3-ProductLog[Pi]*Tanh[Pi] 3654335715151776 r005 Im(z^2+c),c=3/32+24/61*I,n=64 3654335718132783 r005 Im(z^2+c),c=3/32+24/61*I,n=63 3654335721542731 r005 Im(z^2+c),c=3/32+24/61*I,n=61 3654335723104476 m001 (Zeta(3)-Khinchin)/(PrimesInBinary-ZetaQ(3)) 3654335723624160 r005 Im(z^2+c),c=3/32+24/61*I,n=59 3654335726501217 r005 Im(z^2+c),c=27/122+17/48*I,n=9 3654335728105450 r009 Im(z^3+c),c=-5/18+7/19*I,n=24 3654335730529405 m001 (exp(-1/2*Pi)-GolombDickman)/(Gompertz+Landau) 3654335730602155 r005 Im(z^2+c),c=3/32+24/61*I,n=62 3654335745428844 r002 15th iterates of z^2 + 3654335745801046 a007 Real Root Of -918*x^4-39*x^3-113*x^2-7*x+27 3654335755202821 r005 Im(z^2+c),c=3/32+24/61*I,n=58 3654335765081827 m002 6+Pi^(-4)+Pi^3*Cosh[Pi] 3654335766932071 r005 Im(z^2+c),c=3/32+24/61*I,n=55 3654335771561249 r005 Re(z^2+c),c=-5/82+13/20*I,n=39 3654335771599104 r005 Re(z^2+c),c=-53/118+23/60*I,n=40 3654335803448737 m001 (ln(2)/ln(10)*Zeta(3)-Bloch)/ln(2)*ln(10) 3654335817642120 p001 sum(1/(439*n+278)/(25^n),n=0..infinity) 3654335818246250 r005 Im(z^2+c),c=3/32+24/61*I,n=54 3654335823428847 r005 Re(z^2+c),c=-7/15+14/45*I,n=62 3654335827455566 m005 (2/5*2^(1/2)+3/5)/(5/6*gamma-4/5) 3654335838972890 m001 Riemann3rdZero*ln(Magata)/Catalan^2 3654335844282329 r005 Im(z^2+c),c=3/50+19/46*I,n=16 3654335846589136 r005 Im(z^2+c),c=3/32+24/61*I,n=46 3654335857231547 m001 (GAMMA(7/12)-Shi(1))/(ArtinRank2+Lehmer) 3654335867386396 a003 sin(Pi*15/73)*sin(Pi*16/77) 3654335884580932 r002 20i'th iterates of 2*x/(1-x^2) of 3654335891287619 r002 4th iterates of z^2 + 3654335898264844 m001 (Ei(1)-gamma(2))/(FeigenbaumDelta+Landau) 3654335906894796 r005 Im(z^2+c),c=-2/13+15/28*I,n=46 3654335922356079 r005 Re(z^2+c),c=-47/98+17/58*I,n=16 3654335924135561 r005 Im(z^2+c),c=3/32+24/61*I,n=50 3654335926318156 a007 Real Root Of -846*x^4+180*x^3-862*x^2+717*x+401 3654335937160231 a001 28657/11*39603^(46/51) 3654335945848385 a007 Real Root Of -193*x^4-638*x^3+79*x^2-406*x+745 3654335950059838 r005 Im(z^2+c),c=15/58+17/48*I,n=4 3654335953573150 r002 42th iterates of z^2 + 3654335957101761 r005 Im(z^2+c),c=13/32+3/26*I,n=7 3654335957113841 r009 Re(z^3+c),c=-27/122+37/39*I,n=2 3654335973428314 m001 (exp(1)+BesselI(1,2))/(-Tribonacci+TwinPrimes) 3654335973797126 r005 Im(z^2+c),c=3/32+24/61*I,n=51 3654335986402443 m001 (polylog(4,1/2)+Lehmer)/(MertensB3+Niven) 3654335989131361 r005 Re(z^2+c),c=-71/126+15/44*I,n=16 3654335994118815 h001 (-6*exp(2/3)+9)/(-exp(1/2)+9) 3654335996429304 r009 Im(z^3+c),c=-5/18+7/19*I,n=27 3654336002991370 r005 Re(z^2+c),c=-47/98+7/29*I,n=30 3654336007875885 a007 Real Root Of -574*x^4-336*x^3+120*x^2+642*x-224 3654336020511673 r005 Im(z^2+c),c=-38/31+5/62*I,n=29 3654336021296008 l006 ln(3899/5619) 3654336025253041 r005 Im(z^2+c),c=1/102+21/47*I,n=49 3654336034397558 m001 (arctan(1/3)-BesselI(0,2))/(Cahen-OneNinth) 3654336035188675 r009 Im(z^3+c),c=-5/18+7/19*I,n=30 3654336040749795 r009 Im(z^3+c),c=-5/18+7/19*I,n=33 3654336041542171 r009 Im(z^3+c),c=-5/18+7/19*I,n=36 3654336041654258 r009 Im(z^3+c),c=-5/18+7/19*I,n=39 3654336041669992 r009 Im(z^3+c),c=-5/18+7/19*I,n=42 3654336041672182 r009 Im(z^3+c),c=-5/18+7/19*I,n=45 3654336041672464 r009 Im(z^3+c),c=-5/18+7/19*I,n=44 3654336041672485 r009 Im(z^3+c),c=-5/18+7/19*I,n=48 3654336041672513 r009 Im(z^3+c),c=-5/18+7/19*I,n=47 3654336041672523 r009 Im(z^3+c),c=-5/18+7/19*I,n=41 3654336041672526 r009 Im(z^3+c),c=-5/18+7/19*I,n=51 3654336041672528 r009 Im(z^3+c),c=-5/18+7/19*I,n=50 3654336041672531 r009 Im(z^3+c),c=-5/18+7/19*I,n=54 3654336041672531 r009 Im(z^3+c),c=-5/18+7/19*I,n=53 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=56 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=57 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=59 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=60 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=62 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=63 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=64 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=61 3654336041672532 r009 Im(z^3+c),c=-5/18+7/19*I,n=58 3654336041672533 r009 Im(z^3+c),c=-5/18+7/19*I,n=55 3654336041672537 r009 Im(z^3+c),c=-5/18+7/19*I,n=52 3654336041672564 r009 Im(z^3+c),c=-5/18+7/19*I,n=49 3654336041672744 r009 Im(z^3+c),c=-5/18+7/19*I,n=46 3654336041673933 r009 Im(z^3+c),c=-5/18+7/19*I,n=43 3654336041675640 r009 Im(z^3+c),c=-5/18+7/19*I,n=38 3654336041681733 r009 Im(z^3+c),c=-5/18+7/19*I,n=40 3654336041715534 r009 Im(z^3+c),c=-5/18+7/19*I,n=35 3654336041732401 r009 Im(z^3+c),c=-5/18+7/19*I,n=37 3654336042058151 r009 Im(z^3+c),c=-5/18+7/19*I,n=34 3654336042114812 r009 Im(z^3+c),c=-5/18+7/19*I,n=32 3654336043809474 r005 Im(z^2+c),c=3/32+24/61*I,n=44 3654336044127664 r009 Im(z^3+c),c=-5/18+7/19*I,n=31 3654336045700266 r009 Im(z^3+c),c=-5/18+7/19*I,n=29 3654336049821066 m001 (GaussAGM+Gompertz)/(Si(Pi)+Zeta(1/2)) 3654336056192586 a007 Real Root Of 878*x^4+36*x^3+934*x^2-510*x-325 3654336057093656 r009 Im(z^3+c),c=-5/18+7/19*I,n=28 3654336065987381 m001 (Psi(1,1/3)-ln(gamma))/(ln(5)+Conway) 3654336066179679 m004 36+(5*Sqrt[5]*Tan[Sqrt[5]*Pi])/(6*Pi) 3654336071074402 m001 (2*Pi/GAMMA(5/6)+Gompertz)/(sin(1/5*Pi)+ln(3)) 3654336075959351 r009 Im(z^3+c),c=-5/18+7/19*I,n=26 3654336102136944 r005 Im(z^2+c),c=9/122+24/59*I,n=47 3654336103145535 m001 (BesselI(1,2)-Artin)/(FeigenbaumDelta-Totient) 3654336110008633 p003 LerchPhi(1/16,1,640/223) 3654336121554151 r005 Im(z^2+c),c=17/56+13/63*I,n=41 3654336132833165 h001 (7/8*exp(2)+9/10)/(7/11*exp(1)+2/7) 3654336136977411 r009 Im(z^3+c),c=-5/18+7/19*I,n=25 3654336138785220 r005 Im(z^2+c),c=-5/74+27/55*I,n=38 3654336140175309 l006 ln(7926/8221) 3654336154126278 a007 Real Root Of 543*x^4-305*x^3+602*x^2-427*x-261 3654336156161590 m001 Zeta(1,2)^2/GAMMA(5/12)^2/ln(sin(Pi/5)) 3654336156868340 l006 ln(215/8308) 3654336158827811 r005 Im(z^2+c),c=5/126+3/7*I,n=37 3654336178451966 m001 (Psi(2,1/3)+ln(3))/(Conway+ZetaP(3)) 3654336229417516 r005 Im(z^2+c),c=5/16+11/58*I,n=29 3654336229487672 a003 cos(Pi*11/73)/cos(Pi*35/83) 3654336239784883 a001 9349/13*1346269^(26/43) 3654336245431678 a003 cos(Pi*2/115)*sin(Pi*13/109) 3654336245577568 m008 (1/2*Pi^4-4)/(4*Pi^5-3/4) 3654336264164410 m005 (5/6*exp(1)-5)/(-11/60+5/12*5^(1/2)) 3654336272527306 r009 Im(z^3+c),c=-25/56+17/61*I,n=15 3654336284950034 b008 -1/12+Log[42] 3654336290871769 a007 Real Root Of 730*x^4-884*x^3+811*x^2-806*x-459 3654336317528324 m001 BesselI(1,2)^(Magata/Champernowne) 3654336320641814 m001 (ln(Pi)-GaussKuzminWirsing)/(Gompertz+Niven) 3654336321138633 r009 Im(z^3+c),c=-5/18+7/19*I,n=23 3654336331822431 r009 Re(z^3+c),c=-12/25+13/45*I,n=62 3654336339463879 m001 FeigenbaumB^(Chi(1)/Trott2nd) 3654336363478531 l002 Ei(3,17/96) 3654336363478531 l003 Ei(3,17/96) 3654336363995879 r005 Im(z^2+c),c=-21/34+40/93*I,n=46 3654336371936550 p004 log(14629/10151) 3654336376761166 m001 (RenyiParking+Tetranacci)/(1-3^(1/2)) 3654336385124370 r009 Im(z^3+c),c=-19/36+13/57*I,n=56 3654336386606692 r009 Re(z^3+c),c=-37/94+5/6*I,n=2 3654336388418254 a007 Real Root Of -119*x^4-436*x^3+188*x^2+628*x-271 3654336405306852 h001 (3/4*exp(1)+2/9)/(5/7*exp(2)+10/11) 3654336427843114 a001 516002918640/281*521^(11/13) 3654336434869195 a007 Real Root Of -43*x^4-55*x^3+133*x^2-685*x+705 3654336439315454 v002 sum(1/(5^n+(37/2*n^2+9/2*n+14)),n=1..infinity) 3654336449173098 g007 Psi(2,2/11)+Psi(2,5/8)+Psi(2,2/5)-Psi(2,3/5) 3654336460598763 r002 36th iterates of z^2 + 3654336472553801 r005 Im(z^2+c),c=-97/82+19/59*I,n=5 3654336475530332 m001 FibonacciFactorial^ln(Pi)/(Otter^ln(Pi)) 3654336483916980 a007 Real Root Of 305*x^4-131*x^3-975*x^2-722*x+395 3654336500326056 a007 Real Root Of 227*x^4+583*x^3-891*x^2-65*x-370 3654336509499572 r002 46i'th iterates of 2*x/(1-x^2) of 3654336510054416 m001 (1+FeigenbaumMu)/(-Niven+Otter) 3654336517353921 r002 4th iterates of z^2 + 3654336523779184 a007 Real Root Of 245*x^4+663*x^3-600*x^2+771*x-507 3654336525975202 m006 (1/5*exp(Pi)-4)/(3/4*exp(Pi)-1/6) 3654336530432636 r005 Im(z^2+c),c=-3/16+19/34*I,n=32 3654336530769458 m001 Cahen/(GAMMA(17/24)+PlouffeB) 3654336538339272 a008 Real Root of x^4-2*x^3-39*x^2-64*x+11 3654336566592670 a001 6/7*121393^(15/29) 3654336581713504 h001 (-6*exp(1)+8)/(-4*exp(4)-9) 3654336590198708 a001 969323029/55*317811^(8/19) 3654336590201747 a001 1875749/5*2971215073^(8/19) 3654336590610163 l006 ln(3126/4505) 3654336593059398 m005 (1/3*Zeta(3)+1/8)/(3/8*5^(1/2)+3/5) 3654336606386790 m001 (GAMMA(3/4)*Trott2nd-MertensB2)/Trott2nd 3654336617947415 s002 sum(A116210[n]/(n^3*exp(n)-1),n=1..infinity) 3654336618958667 r009 Im(z^3+c),c=-5/18+7/19*I,n=22 3654336619592534 a003 cos(Pi*1/78)-sin(Pi*26/119) 3654336620456215 a007 Real Root Of -898*x^4+417*x^3-978*x^2-134*x+118 3654336647150136 r005 Re(z^2+c),c=-7/34+20/33*I,n=13 3654336665543522 a007 Real Root Of -210*x^4-689*x^3+178*x^2-369*x+101 3654336672092181 m001 exp(GolombDickman)/FransenRobinson^2*cosh(1) 3654336673273604 m003 5/2+Sqrt[5]/2+Sqrt[5]/(128*Log[1/2+Sqrt[5]/2]) 3654336698644332 m001 polylog(4,1/2)^BesselI(0,1)*sin(1) 3654336708712750 m005 (1/2*3^(1/2)-1/8)/(7/10*exp(1)+1/8) 3654336712281673 m001 ln(2+3^(1/2))*(3^(1/3)+MertensB3) 3654336723318985 m005 (1/2*Pi+8/11)/(1/2*gamma+6) 3654336725665207 h001 (5/11*exp(1)+9/11)/(1/8*exp(1)+2/9) 3654336729793279 s002 sum(A218952[n]/(n^3*2^n+1),n=1..infinity) 3654336733021370 m001 1/BesselJ(0,1)*Lehmer/ln(cos(Pi/5)) 3654336733932627 r009 Im(z^3+c),c=-11/32+14/41*I,n=22 3654336734693877 q001 573/1568 3654336744515323 r005 Re(z^2+c),c=-23/52+21/55*I,n=23 3654336746340781 r009 Im(z^3+c),c=-5/17+19/52*I,n=4 3654336757879869 r005 Im(z^2+c),c=-99/118+1/42*I,n=11 3654336758667058 r005 Re(z^2+c),c=-47/106+20/47*I,n=37 3654336761130260 r005 Im(z^2+c),c=3/32+24/61*I,n=47 3654336779583898 r009 Re(z^3+c),c=-25/42+6/23*I,n=11 3654336782553876 r005 Im(z^2+c),c=9/86+22/57*I,n=33 3654336788181710 r005 Im(z^2+c),c=-19/98+22/37*I,n=31 3654336789415734 r009 Im(z^3+c),c=-19/98+7/17*I,n=3 3654336811955326 r005 Im(z^2+c),c=-5/4+71/205*I,n=15 3654336812901628 r005 Im(z^2+c),c=-29/25+3/64*I,n=55 3654336814702449 a007 Real Root Of -810*x^4+871*x^3+644*x^2+320*x-231 3654336819448938 r005 Re(z^2+c),c=-17/46+16/25*I,n=17 3654336846474602 r002 4th iterates of z^2 + 3654336848499448 r009 Im(z^3+c),c=-25/58+7/24*I,n=24 3654336851850260 a007 Real Root Of -888*x^4-184*x^3+433*x^2+892*x+275 3654336858960686 r005 Im(z^2+c),c=9/122+24/59*I,n=48 3654336861492470 r005 Re(z^2+c),c=25/78+4/59*I,n=59 3654336873901644 r005 Im(z^2+c),c=9/122+24/59*I,n=51 3654336874402548 m005 (1/2*Pi-3/5)/(7/8*5^(1/2)+7/10) 3654336890404754 r005 Re(z^2+c),c=-7/15+17/55*I,n=32 3654336893759765 r005 Im(z^2+c),c=-63/86+9/47*I,n=26 3654336896872564 m001 (2^(1/2)-ln(2^(1/2)+1))/(FeigenbaumB+Kac) 3654336900004941 h001 (-9*exp(3/2)+4)/(-8*exp(-1)-7) 3654336939668310 m001 RenyiParking/GaussKuzminWirsing*ZetaR(2) 3654336949236673 m001 (exp(1/Pi)-gamma(3))/(PrimesInBinary-ZetaP(2)) 3654336949414276 m005 (1/2*Pi-1/9)/(4/5*Catalan-1/3) 3654336955982289 m001 (gamma(1)+Riemann2ndZero)/(Zeta(3)-ln(Pi)) 3654336960069984 a007 Real Root Of -872*x^4-861*x^3+673*x^2+907*x-34 3654336964099625 a007 Real Root Of -200*x^4-664*x^3+364*x^2+426*x-41 3654336970151201 l006 ln(148/5719) 3654336971422979 r005 Im(z^2+c),c=-17/98+23/42*I,n=38 3654336977137443 a001 55/4*521^(5/32) 3654336982224527 a003 cos(Pi*35/93)*sin(Pi*49/118) 3654336985813739 b008 1/3+ArcCot[28+Pi] 3654336989920141 r005 Im(z^2+c),c=27/110+13/48*I,n=23 3654336995749017 l006 ln(5479/7896) 3654336999816693 m001 (Shi(1)+sin(1/12*Pi))/(MertensB1+Paris) 3654337007226401 r009 Im(z^3+c),c=-27/64+19/64*I,n=17 3654337016152779 a007 Real Root Of 259*x^4+953*x^3-56*x^2-540*x-907 3654337018775679 r005 Im(z^2+c),c=11/42+13/51*I,n=54 3654337034271524 a005 (1/sin(58/129*Pi))^103 3654337037996075 s002 sum(A214546[n]/(n^3*2^n+1),n=1..infinity) 3654337076073658 r009 Re(z^3+c),c=-1/19+25/57*I,n=18 3654337084902492 r005 Im(z^2+c),c=-5/8+75/248*I,n=5 3654337084943844 a001 34/9349*11^(51/53) 3654337103069055 m001 (-StronglyCareFree+Tribonacci)/(2^(1/2)-Niven) 3654337108765526 h001 (2/3*exp(2)+5/9)/(1/7*exp(2)+4/9) 3654337110234813 m005 (1/2*Pi-10/11)/(3/4*Pi-6/11) 3654337114202543 a007 Real Root Of 877*x^4-240*x^3+602*x^2-901*x-437 3654337125081000 r005 Im(z^2+c),c=-5/38+32/61*I,n=56 3654337132510220 m001 (sin(1)+ln(2))/(-GaussAGM+PrimesInBinary) 3654337140101794 r009 Im(z^3+c),c=-12/23+11/39*I,n=17 3654337140411788 r009 Im(z^3+c),c=-11/90+20/49*I,n=5 3654337150215243 m001 (AlladiGrinstead+Mills)/(1-BesselK(0,1)) 3654337168349319 a007 Real Root Of 258*x^4-125*x^3+314*x^2-595*x+177 3654337175509232 a007 Real Root Of 335*x^4+963*x^3-705*x^2+688*x-818 3654337182498620 r005 Im(z^2+c),c=1/44+18/41*I,n=37 3654337202274553 r005 Im(z^2+c),c=9/122+24/59*I,n=55 3654337202541004 g004 Re(GAMMA(19/60+I*223/60)) 3654337203309714 a001 47/956722026041*14930352^(6/23) 3654337203560765 m005 (1/2*5^(1/2)+2)/(5/12*3^(1/2)-7/11) 3654337207049063 m001 (Chi(1)+ZetaQ(2))/(exp(Pi)+2^(1/3)) 3654337213155788 r002 5th iterates of z^2 + 3654337221835605 r009 Re(z^3+c),c=-14/29+17/52*I,n=13 3654337223440220 r005 Im(z^2+c),c=9/122+24/59*I,n=54 3654337228478991 p004 log(11593/11177) 3654337255225063 s001 sum(1/10^(n-1)*A037645[n]/n!,n=1..infinity) 3654337258968461 r005 Im(z^2+c),c=9/122+24/59*I,n=58 3654337265247331 m001 1/GAMMA(11/24)*FeigenbaumDelta^2*exp(sinh(1)) 3654337279282392 r002 14th iterates of z^2 + 3654337286206780 a007 Real Root Of 79*x^4+329*x^3+810*x^2-721*x-357 3654337287931965 a007 Real Root Of 906*x^4+406*x^3+253*x^2-484*x-207 3654337288904625 p001 sum(1/(203*n+79)/n/(10^n),n=1..infinity) 3654337289280420 r009 Re(z^3+c),c=-57/94+35/64*I,n=32 3654337290187172 r005 Im(z^2+c),c=9/122+24/59*I,n=62 3654337293752718 r005 Im(z^2+c),c=9/122+24/59*I,n=59 3654337305778475 r005 Im(z^2+c),c=9/122+24/59*I,n=61 3654337309089086 r005 Im(z^2+c),c=9/122+24/59*I,n=63 3654337313339832 r005 Im(z^2+c),c=9/122+24/59*I,n=64 3654337329451060 m001 ln(cos(Pi/12))^2/GAMMA(5/24)^2*sin(Pi/5) 3654337333885856 r005 Im(z^2+c),c=9/122+24/59*I,n=60 3654337334570339 a001 1/322*(1/2*5^(1/2)+1/2)^20*76^(9/19) 3654337339080057 r005 Re(z^2+c),c=-19/40+3/13*I,n=15 3654337346732703 r005 Im(z^2+c),c=9/122+24/59*I,n=57 3654337363608503 a007 Real Root Of -861*x^4+296*x^3-435*x^2+668*x+332 3654337363702222 r005 Im(z^2+c),c=9/122+24/59*I,n=52 3654337363911689 r005 Re(z^2+c),c=31/102+2/29*I,n=39 3654337369635648 r005 Re(z^2+c),c=53/118+9/26*I,n=8 3654337371930791 m002 (5*E^Pi)/Pi-Log[Pi]/4 3654337374018740 r005 Im(z^2+c),c=9/122+24/59*I,n=56 3654337378151402 r005 Im(z^2+c),c=9/122+24/59*I,n=50 3654337389934786 m001 (3^(1/3)-GAMMA(5/6))/(HeathBrownMoroz-Thue) 3654337392138453 a001 8/199*18^(42/55) 3654337397152917 r002 25th iterates of z^2 + 3654337405297248 r005 Re(z^2+c),c=-7/16+23/60*I,n=21 3654337410539734 m001 (-Sarnak+Trott)/(Si(Pi)+Paris) 3654337412010860 a007 Real Root Of 7*x^4-128*x^3-158*x^2-585*x+241 3654337412563385 h001 (4/7*exp(1)+2/9)/(4/7*exp(2)+7/11) 3654337417442696 v003 sum((13+1/2*n^2+11/2*n)/n^(n-1),n=1..infinity) 3654337430203169 m001 (ThueMorse+2)/TwinPrimes 3654337430783460 a003 cos(Pi*23/100)*cos(Pi*24/71) 3654337449005108 r002 15th iterates of z^2 + 3654337451079787 r002 17th iterates of z^2 + 3654337462436310 a007 Real Root Of -808*x^4-665*x^3+326*x^2+789*x-285 3654337463432021 a001 2504730781961/843*521^(10/13) 3654337466003920 r005 Re(z^2+c),c=17/40+19/62*I,n=3 3654337473022110 r009 Im(z^3+c),c=-23/56+19/32*I,n=60 3654337477639729 m001 (Kac-cos(1))/(-PlouffeB+ZetaP(2)) 3654337483617562 a007 Real Root Of 176*x^4+876*x^3+615*x^2-695*x+610 3654337491567253 r009 Im(z^3+c),c=-19/58+15/43*I,n=16 3654337509477453 r005 Im(z^2+c),c=-111/98+1/22*I,n=16 3654337512325417 r005 Re(z^2+c),c=-8/17+19/61*I,n=17 3654337516756889 a007 Real Root Of -452*x^4+592*x^3+342*x^2+379*x-205 3654337526840983 r005 Re(z^2+c),c=-43/98+25/59*I,n=58 3654337527248053 r009 Im(z^3+c),c=-25/62+19/32*I,n=30 3654337528676754 r005 Im(z^2+c),c=9/122+24/59*I,n=53 3654337531325172 a007 Real Root Of -46*x^4+802*x^3+789*x^2+986*x-504 3654337533982761 l006 ln(2353/3391) 3654337538310601 a007 Real Root Of -592*x^4+585*x^3+122*x^2+500*x-217 3654337546305067 r005 Im(z^2+c),c=-1/58+42/59*I,n=14 3654337561507463 r005 Re(z^2+c),c=-13/30+26/57*I,n=43 3654337563742619 m001 (5^(1/2)+GAMMA(3/4))/(-BesselI(1,2)+Cahen) 3654337575828766 h002 exp(11^(7/4)-2^(12/5)) 3654337575828766 h007 exp(11^(7/4)-2^(12/5)) 3654337585287874 m005 (1/3*3^(1/2)-1/10)/(1/10*Catalan-2/9) 3654337594950446 m005 (5/6+1/4*5^(1/2))/(5/6*gamma-1/10) 3654337601256812 m009 (3/5*Psi(1,3/4)-1/4)/(1/6*Psi(1,2/3)-4) 3654337602047050 l004 sinh(212/101*Pi) 3654337610285028 m001 (BesselK(1,1)-ln(gamma)*ZetaQ(4))/ZetaQ(4) 3654337620243518 r005 Re(z^2+c),c=-9/14+7/173*I,n=8 3654337633315484 m009 (5/6*Psi(1,2/3)-6)/(4*Catalan+1/2*Pi^2+5/6) 3654337648952252 r009 Re(z^3+c),c=-41/102+13/64*I,n=6 3654337649137964 a007 Real Root Of -153*x^4+155*x^3-272*x^2+770*x+328 3654337680104587 r005 Im(z^2+c),c=1/19+19/29*I,n=14 3654337685064781 r009 Im(z^3+c),c=-3/28+13/32*I,n=3 3654337701547453 m001 arctan(1/2)*(MasserGramainDelta-MertensB2) 3654337703471793 b008 9*(1+Pi+Pi^Pi) 3654337705282576 m001 (BesselK(1,1)-FellerTornier)/LandauRamanujan 3654337711048502 r005 Im(z^2+c),c=39/110+5/34*I,n=38 3654337712380242 m001 KhintchineLevy/ln(ErdosBorwein)*Zeta(1/2) 3654337726033242 m001 (3^(1/2)+Pi^(1/2))/(ArtinRank2+MertensB1) 3654337733713110 l006 ln(229/8849) 3654337733713110 p004 log(8849/229) 3654337746444627 m001 1/Niven^2*Cahen^2/exp(FeigenbaumC)^2 3654337750509990 m002 ProductLog[Pi]/3+Sinh[Pi]/(5*Pi^5) 3654337755881360 a001 18/1346269*377^(10/59) 3654337789009479 r005 Im(z^2+c),c=-1/50+13/28*I,n=45 3654337800395811 r005 Im(z^2+c),c=-99/118+3/16*I,n=24 3654337806659047 a007 Real Root Of 884*x^4-684*x^3+687*x^2-720*x-404 3654337826099581 h001 (7/10*exp(1)+3/10)/(5/7*exp(2)+3/4) 3654337845294933 a001 341/2*514229^(20/49) 3654337870578248 r005 Im(z^2+c),c=9/122+24/59*I,n=41 3654337890531177 a003 cos(Pi*8/35)-sin(Pi*31/107) 3654337925026398 m001 (-Tribonacci+ZetaP(2))/(2^(1/2)-MertensB2) 3654337943670789 m001 1/ln(Catalan)*Si(Pi)*sqrt(3) 3654337953170367 a007 Real Root Of 486*x^4-840*x^3-588*x^2-733*x-239 3654337961254798 r005 Im(z^2+c),c=-13/70+16/29*I,n=63 3654337962759770 a001 7/610*55^(19/22) 3654337963458623 r009 Im(z^3+c),c=-39/64+26/59*I,n=15 3654337975101290 a007 Real Root Of -488*x^4+865*x^3+476*x^2+716*x+249 3654338003117748 l006 ln(6286/9059) 3654338003498677 r005 Im(z^2+c),c=-31/27+13/47*I,n=14 3654338004996276 a007 Real Root Of -112*x^4+272*x^3+120*x^2+470*x+171 3654338006977266 m005 (1/2*Pi-1/9)/(3/11*Zeta(3)-8/11) 3654338008808099 a001 322/121393*55^(36/55) 3654338012422737 r005 Im(z^2+c),c=-5/34+23/43*I,n=35 3654338012803736 r002 3th iterates of z^2 + 3654338013191130 r005 Re(z^2+c),c=-47/122+6/11*I,n=49 3654338017809262 m001 ln(cos(Pi/5))/GAMMA(5/24)^2/sqrt(3)^2 3654338032938649 r002 7th iterates of z^2 + 3654338051341281 r005 Im(z^2+c),c=-1/50+13/28*I,n=46 3654338060655541 r005 Re(z^2+c),c=-49/114+4/9*I,n=41 3654338065022532 r005 Im(z^2+c),c=9/122+24/59*I,n=49 3654338065254239 r005 Re(z^2+c),c=-29/56+10/47*I,n=11 3654338067368644 a007 Real Root Of 548*x^4-698*x^3-866*x^2-490*x+319 3654338073416568 s002 sum(A235216[n]/(2^n-1),n=1..infinity) 3654338079909195 m001 (Totient-ZetaP(2))/(Riemann3rdZero-Sarnak) 3654338127532658 a008 Real Root of x^4-x^3-10*x^2+33*x+27 3654338128190792 a007 Real Root Of 999*x^4-200*x^3-792*x^2-819*x+397 3654338130512351 a007 Real Root Of 604*x^4-181*x^3-93*x^2-150*x-62 3654338134161658 r005 Im(z^2+c),c=-13/18+9/50*I,n=11 3654338135639025 m005 (1/2*gamma+5)/(1+1/5*5^(1/2)) 3654338149349116 a007 Real Root Of -831*x^4-976*x^3+597*x^2+656*x-257 3654338151372130 a007 Real Root Of 872*x^4-272*x^3-473*x^2-315*x+176 3654338151753872 m001 (Bloch*MinimumGamma+MertensB2)/Bloch 3654338154715888 m005 (1/2*Catalan-1/2)/(3/10*Catalan+7/8) 3654338165296471 r005 Im(z^2+c),c=-5/106+25/52*I,n=25 3654338170536833 m001 (2^(1/3)+MertensB1)/(PrimesInBinary+ZetaQ(4)) 3654338179677809 a007 Real Root Of -111*x^4+876*x^3-780*x^2-142*x+97 3654338179770965 r005 Re(z^2+c),c=-23/52+7/17*I,n=51 3654338180198431 a007 Real Root Of -125*x^4-353*x^3+214*x^2-459*x+530 3654338187297101 a007 Real Root Of -744*x^4+933*x^3+408*x^2+39*x-101 3654338193111345 a001 161/1762289*8^(2/3) 3654338193451344 a004 Lucas(3)/Fibonacci(12)/(1/2+sqrt(5)/2)^9 3654338193451344 m005 (1/3*5^(1/2)-3/4)/(3/10*5^(1/2)+3/5) 3654338203142561 h001 (-8*exp(4)+4)/(-8*exp(5)+3) 3654338206426565 a007 Real Root Of 356*x^4-656*x^3+92*x^2-904*x-381 3654338215748098 a007 Real Root Of x^4+366*x^3+207*x^2+36*x-99 3654338245841065 h001 (2/7*exp(2)+1/12)/(5/7*exp(2)+8/11) 3654338246642785 r009 Im(z^3+c),c=-7/31+5/13*I,n=14 3654338249289366 m001 (ln(2+3^(1/2))+DuboisRaymond)/(Shi(1)-ln(3)) 3654338250735143 r009 Im(z^3+c),c=-5/18+7/19*I,n=20 3654338261523950 m001 (Psi(2,1/3)+Si(Pi))/(Backhouse+ZetaQ(4)) 3654338275978662 a001 4052739537881/322*322^(7/12) 3654338283787615 l006 ln(3933/5668) 3654338290962335 h001 (5/9*exp(1)+6/11)/(3/4*exp(2)+1/12) 3654338306769096 r005 Im(z^2+c),c=-1/30+29/61*I,n=12 3654338309378350 a007 Real Root Of 108*x^4+406*x^3-102*x^2-694*x-621 3654338309825093 r002 5th iterates of z^2 + 3654338342374040 r004 Im(z^2+c),c=1/8+13/23*I,z(0)=I,n=14 3654338352610467 r005 Im(z^2+c),c=-19/78+27/47*I,n=63 3654338362175689 m001 sin(1)/HeathBrownMoroz/MadelungNaCl 3654338362597884 a003 sin(Pi*1/105)/sin(Pi*3/115) 3654338370905601 m001 (-GaussAGM+Stephens)/(GAMMA(17/24)-gamma) 3654338388352630 a001 29/610*2584^(21/38) 3654338392629361 r005 Im(z^2+c),c=1/36+24/55*I,n=24 3654338393105753 r005 Re(z^2+c),c=-59/82+11/46*I,n=30 3654338399654526 m001 (Psi(2,1/3)-Si(Pi))/(Backhouse+Riemann1stZero) 3654338404035610 a007 Real Root Of -385*x^4-579*x^3-419*x^2+647*x+271 3654338422352398 a007 Real Root Of 171*x^4+420*x^3-995*x^2-875*x+91 3654338444411067 a007 Real Root Of 286*x^4+972*x^3-250*x^2-63*x-461 3654338446148760 a007 Real Root Of 573*x^4+729*x^3+35*x^2-987*x-340 3654338449328659 b008 (-12+E^(-1))*Pi 3654338468308034 r005 Im(z^2+c),c=-67/118+23/56*I,n=17 3654338471705213 a003 sin(Pi*17/109)*sin(Pi*15/53) 3654338491423105 a001 2/6643838879*3^(3/17) 3654338499021222 a001 4052739537881/843*521^(9/13) 3654338515205210 m002 -4/Pi^2+Tanh[Pi]/25 3654338578643280 m008 (5/6*Pi^5+2)/(2*Pi+3/4) 3654338586630481 r005 Im(z^2+c),c=-9/52+6/11*I,n=61 3654338590105458 m008 (3/5*Pi^6+2/3)/(5*Pi^3+3) 3654338603508424 a007 Real Root Of -511*x^4+715*x^3-659*x^2+197*x+204 3654338603811327 l006 ln(5513/7945) 3654338620233831 r005 Im(z^2+c),c=9/122+24/59*I,n=46 3654338622596339 r005 Im(z^2+c),c=31/98+10/53*I,n=31 3654338624631414 a007 Real Root Of -663*x^4-744*x^3+728*x^2+963*x-401 3654338631905723 r005 Im(z^2+c),c=-5/8+45/223*I,n=8 3654338632227693 m001 sin(1/12*Pi)*Thue-sin(1/5*Pi) 3654338634144497 r009 Re(z^3+c),c=-39/122+2/63*I,n=10 3654338638763801 m005 (1/2*Pi-2/7)/(Pi+3/8) 3654338641911835 r005 Re(z^2+c),c=-11/10+43/169*I,n=14 3654338648968159 a007 Real Root Of -150*x^4-784*x^3-769*x^2+413*x+269 3654338649404484 r009 Im(z^3+c),c=-47/86+2/9*I,n=13 3654338649895696 m001 (Paris+RenyiParking)/(Pi^(1/2)+Landau) 3654338656183334 r005 Re(z^2+c),c=-55/114+2/9*I,n=33 3654338664218511 m001 (ln(gamma)+Sierpinski)/(Psi(2,1/3)-gamma) 3654338668139134 r005 Im(z^2+c),c=5/98+8/19*I,n=23 3654338685574086 r009 Re(z^3+c),c=-25/56+13/53*I,n=17 3654338688425009 a001 3/514229*8^(15/17) 3654338695973027 m006 (2/3*exp(2*Pi)-2/5)/(3*Pi+1/3) 3654338698652103 m001 GAMMA(7/12)/Riemann2ndZero*ln(sqrt(1+sqrt(3))) 3654338701857536 r005 Im(z^2+c),c=21/86+17/62*I,n=21 3654338708783177 r005 Re(z^2+c),c=-41/90+14/39*I,n=32 3654338715215948 m001 LandauRamanujan2nd+Riemann2ndZero^Salem 3654338743599030 m001 (gamma+gamma(1))/(Conway+ZetaP(4)) 3654338743813580 a008 Real Root of x^4-x^3+6*x^2+60*x-88 3654338748732360 a001 85146092845464/233 3654338754911498 m002 25/Pi^4+ProductLog[Pi]/Pi^2 3654338757176788 r002 7th iterates of z^2 + 3654338764564295 p004 log(33889/877) 3654338772355686 r009 Re(z^3+c),c=-43/114+2/13*I,n=17 3654338776704172 a007 Real Root Of 813*x^4+11*x^3-176*x^2-650*x+246 3654338784272402 r005 Im(z^2+c),c=-7/44+7/13*I,n=43 3654338788459015 m001 GAMMA(23/24)^Catalan*FeigenbaumMu 3654338816055085 a007 Real Root Of -43*x^4-210*x^3-489*x^2+757*x-27 3654338819231869 m005 (1/2*2^(1/2)+2)/(1/11*3^(1/2)+7/12) 3654338820752253 a007 Real Root Of -233*x^4+902*x^3-861*x^2+16*x+169 3654338820882766 r005 Re(z^2+c),c=-2/29+37/54*I,n=52 3654338836651224 a001 4106118243/377*4807526976^(6/23) 3654338836685096 a001 73681302247/377*75025^(6/23) 3654338859689749 r005 Im(z^2+c),c=-5/106+29/61*I,n=7 3654338862709293 m005 (1/2*gamma-3/10)/(-41/11+3/11*5^(1/2)) 3654338883290407 r005 Im(z^2+c),c=-3/17+32/59*I,n=25 3654338888863766 r005 Im(z^2+c),c=11/42+13/51*I,n=53 3654338891092957 a001 646*76^(41/44) 3654338962151150 r005 Im(z^2+c),c=9/122+24/59*I,n=45 3654338975861186 a007 Real Root Of 873*x^4-31*x^3+183*x^2-773*x-324 3654338981470018 a001 14662949395604*144^(11/17) 3654338989913042 m001 (ln(3)+3^(1/3))/(FeigenbaumKappa-TwinPrimes) 3654339000635272 m001 (MertensB2-Paris)/(exp(1/Pi)+KhinchinLevy) 3654339015446736 r005 Re(z^2+c),c=-29/78+7/17*I,n=9 3654339029283554 p004 log(17053/11833) 3654339055038566 r005 Re(z^2+c),c=-37/82+19/51*I,n=33 3654339069897175 m001 (1+3^(1/2))^(1/2)+GAMMA(19/24)*Niven 3654339069937751 q001 998/2731 3654339076176176 a007 Real Root Of 167*x^4+677*x^3+180*x^2+13*x+900 3654339079660038 a007 Real Root Of -411*x^4-888*x^3-946*x^2+426*x+246 3654339085374025 m001 (sin(1)+ArtinRank2)/(-Weierstrass+ZetaQ(2)) 3654339094209048 r005 Im(z^2+c),c=-10/29+27/53*I,n=14 3654339097509000 a007 Real Root Of -173*x^4-530*x^3+171*x^2-738*x+7 3654339107816293 a001 98209/9*322^(9/43) 3654339115036821 m001 cos(1/5*Pi)^Ei(1)-MertensB2 3654339125255447 m001 1/ln(Robbin)/Si(Pi)^2/GAMMA(11/24) 3654339128861760 l006 ln(81/3130) 3654339133191731 a007 Real Root Of 323*x^4+969*x^3-480*x^2+830*x-871 3654339157643353 a007 Real Root Of -357*x^4-69*x^3-401*x^2+554*x+259 3654339162119901 a007 Real Root Of 604*x^4-820*x^3-521*x^2-909*x+431 3654339171305915 m001 (Zeta(5)-Ei(1))/(Pi^(1/2)+Stephens) 3654339171404310 a007 Real Root Of 352*x^4+536*x^3+984*x^2-264*x-208 3654339171818270 m005 (1/2*3^(1/2)-5/12)/(57/110+7/22*5^(1/2)) 3654339183102451 r005 Im(z^2+c),c=19/82+16/55*I,n=15 3654339209981667 r009 Im(z^3+c),c=-9/19+7/27*I,n=34 3654339210399160 r005 Re(z^2+c),c=-13/122+23/37*I,n=14 3654339217825713 r005 Im(z^2+c),c=11/86+14/37*I,n=12 3654339236577013 r009 Im(z^3+c),c=-77/122+17/56*I,n=17 3654339245583133 m005 (1/2*exp(1)+8/9)/(3/7*Zeta(3)+1/10) 3654339251102194 a007 Real Root Of 21*x^4+768*x^3+16*x^2-221*x-711 3654339263547474 r005 Im(z^2+c),c=3/32+24/61*I,n=43 3654339263697402 a003 sin(Pi*13/96)*sin(Pi*9/26) 3654339268421668 a007 Real Root Of 231*x^4+794*x^3-94*x^2+364*x+138 3654339274228887 h001 (7/11*exp(1)+3/11)/(7/11*exp(2)+7/9) 3654339283230427 s002 sum(A011803[n]/(n^2*pi^n+1),n=1..infinity) 3654339289863120 r005 Im(z^2+c),c=15/98+20/57*I,n=40 3654339296320304 a007 Real Root Of -956*x^4+15*x^3+258*x^2+779*x+268 3654339298099872 m001 (BesselK(1,1)+4)/(Lehmer+2/3) 3654339301781180 m001 TwinPrimes^2*RenyiParking^2*exp(GAMMA(2/3))^2 3654339311192789 r005 Re(z^2+c),c=-7/15+14/45*I,n=60 3654339319303396 g006 Psi(1,6/11)+Psi(1,2/11)+Psi(1,5/7)-Psi(1,7/8) 3654339324585319 r005 Im(z^2+c),c=31/118+16/63*I,n=35 3654339328011177 r005 Re(z^2+c),c=-17/38+9/23*I,n=43 3654339330163762 r005 Im(z^2+c),c=-1/32+8/17*I,n=31 3654339346386782 m001 (3^(1/2)-exp(1))/(-Rabbit+TreeGrowth2nd) 3654339355506896 r005 Im(z^2+c),c=-1/52+26/53*I,n=13 3654339366259766 m005 (1/2*gamma+2/5)/(9/11*2^(1/2)+8/11) 3654339370742805 m001 (OneNinth+ZetaP(2))/(Pi-ln(5)) 3654339396028193 m001 (-3^(1/3)+FeigenbaumC)/(Psi(1,1/3)-ln(gamma)) 3654339400427271 l006 ln(1580/2277) 3654339414652078 r009 Re(z^3+c),c=-25/66+32/51*I,n=9 3654339423918281 r005 Re(z^2+c),c=-14/29+13/59*I,n=39 3654339425650379 r002 21th iterates of z^2 + 3654339427576147 a007 Real Root Of 234*x^4+702*x^3-795*x^2-884*x-86 3654339434153879 m005 (1/3*Catalan+1/8)/(1/6*3^(1/2)+8/9) 3654339435043508 a005 (1/cos(21/236*Pi))^1254 3654339436192039 p001 sum((-1)^n/(373*n+64)/n/(6^n),n=1..infinity) 3654339448952352 r009 Im(z^3+c),c=-5/18+7/19*I,n=19 3654339449260948 r002 21th iterates of z^2 + 3654339450106377 m001 (Zeta(3)+OneNinth)/(3^(1/2)+Si(Pi)) 3654339457222686 a007 Real Root Of 22*x^4+96*x^3+231*x^2+543*x-339 3654339458204541 r005 Im(z^2+c),c=1/29+19/44*I,n=34 3654339475103635 r005 Im(z^2+c),c=-15/82+8/15*I,n=18 3654339480460677 a007 Real Root Of -747*x^4+222*x^3-739*x^2+846*x+432 3654339483009656 a001 85146109954125/233 3654339484174371 a003 sin(Pi*12/101)/sin(Pi*23/48) 3654339484748413 m005 (11/20+1/4*5^(1/2))/(8/11*Pi+3/4) 3654339496649613 a001 85146110271936/233 3654339498639656 a001 85146110318304/233 3654339498972360 a001 85146110326056/233 3654339498978540 a001 85146110326200/233 3654339498979442 a001 85146110326221/233 3654339498979570 a001 85146110326224/233 3654339498979613 a001 85146110326225/233 3654339498979656 a001 85146110326226/233 3654339498982360 a001 85146110326289/233 3654339498998540 a001 85146110326666/233 3654339499109442 a001 85146110329250/233 3654339499869570 a001 85146110346961/233 3654339502191483 a001 1/21*8^(49/50) 3654339503561281 r005 Im(z^2+c),c=-73/110+20/57*I,n=37 3654339505079570 a001 85146110468354/233 3654339523450800 h001 (2/7*exp(2)+5/11)/(7/8*exp(2)+5/9) 3654339534610716 a001 6557470319842/843*521^(8/13) 3654339540789442 a001 85146111300394/233 3654339541251452 m001 Niven/(Mills+ReciprocalFibonacci) 3654339545254840 a003 cos(Pi*13/61)*cos(Pi*28/81) 3654339558860076 p004 log(28711/743) 3654339572740522 a007 Real Root Of 389*x^4+801*x^3-146*x^2-598*x+192 3654339577774870 m005 (1/2*exp(1)-8/11)/(5/6*3^(1/2)+2/7) 3654339580705001 r005 Im(z^2+c),c=-7/106+24/49*I,n=33 3654339584208461 r005 Re(z^2+c),c=-27/52+11/53*I,n=11 3654339588139534 r009 Re(z^3+c),c=-1/18+20/41*I,n=17 3654339588233840 m005 (1/3*2^(1/2)-1/4)/(6/7*gamma+1/9) 3654339617657089 m001 (GAMMA(2/3)-ln(3))/(StronglyCareFree-ZetaP(4)) 3654339620049966 r002 60th iterates of z^2 + 3654339622547091 m001 (GAMMA(11/12)-Conway)/(sin(1/12*Pi)+Zeta(1,2)) 3654339626524147 r009 Im(z^3+c),c=-35/82+5/17*I,n=21 3654339640362444 m001 Sierpinski/Magata^2/ln(Tribonacci) 3654339648038235 m005 (1/2*gamma-1/5)/(11/12*5^(1/2)+3/8) 3654339650145217 a007 Real Root Of 601*x^4+948*x^3+819*x^2-805*x-368 3654339650807641 m001 exp(Pi)^HeathBrownMoroz/(exp(Pi)^arctan(1/3)) 3654339653417108 r002 54th iterates of z^2 + 3654339656000489 a007 Real Root Of 245*x^4+896*x^3-185*x^2-943*x-942 3654339657314841 a007 Real Root Of -130*x^4+258*x^3+238*x^2+829*x-345 3654339658644376 a007 Real Root Of -234*x^4-560*x^3+913*x^2-664*x-217 3654339659049625 h001 (1/11*exp(1)+7/10)/(11/12*exp(1)+1/10) 3654339662425368 a007 Real Root Of 241*x^4+955*x^3+490*x^2+693*x-385 3654339675307613 r005 Re(z^2+c),c=-3/4+23/88*I,n=4 3654339682491744 r009 Re(z^3+c),c=-25/94+47/64*I,n=10 3654339687505268 b008 1/3+E^(1/4)/40 3654339694439581 h001 (1/4*exp(2)+6/11)/(4/5*exp(2)+7/11) 3654339707234057 r005 Re(z^2+c),c=-13/30+4/9*I,n=62 3654339710578237 r005 Im(z^2+c),c=19/56+8/51*I,n=48 3654339719164527 a005 (1/cos(7/67*Pi))^905 3654339723298154 m001 (ln(2+3^(1/2))+MertensB2)/(ln(5)-cos(1/12*Pi)) 3654339727931130 m001 ln(GAMMA(7/12))^2/ArtinRank2^2*Pi^2 3654339729672438 m001 ln(2)*Magata/MasserGramain 3654339730600106 a003 sin(Pi*7/69)/cos(Pi*16/93) 3654339738741191 m001 ln(Si(Pi)/GAMMA(17/24)) 3654339743259142 r005 Re(z^2+c),c=-13/27+8/35*I,n=35 3654339749197345 r005 Im(z^2+c),c=41/122+8/49*I,n=56 3654339765302517 a007 Real Root Of 106*x^4+203*x^3-453*x^2+855*x+177 3654339784272483 a001 2504730781961/2207*521^(12/13) 3654339785548540 a001 85146117003281/233 3654339808462120 a007 Real Root Of -466*x^4-42*x^3-526*x^2-78*x+48 3654339825628142 m008 (3/5*Pi^3+2/5)/(1/6*Pi^5+1) 3654339827628879 b008 -5/4+Pi+ArcCosh[3] 3654339831581005 m001 (ln(Pi)+HardHexagonsEntropy)/(3^(1/2)-Zeta(5)) 3654339832295124 m004 Cos[Sqrt[5]*Pi]+(13*Sinh[Sqrt[5]*Pi])/2 3654339881784073 l006 ln(3251/3372) 3654339887096902 a007 Real Root Of 186*x^4+461*x^3-483*x^2+946*x-766 3654339895281833 m001 GAMMA(3/4)*(Landau-sin(1)) 3654339904726151 h001 (4/5*exp(1)+3/11)/(6/7*exp(2)+4/11) 3654339905911488 s002 sum(A121244[n]/((exp(n)-1)/n),n=1..infinity) 3654339908204323 a007 Real Root Of 32*x^4-841*x^3+987*x^2-880*x-495 3654339925838258 a001 33385282/13*4807526976^(16/19) 3654339925840582 a001 73681302247/13*514229^(16/19) 3654339937848300 r005 Im(z^2+c),c=11/36+10/49*I,n=54 3654339948090239 m002 Sinh[Pi]^2+Pi^5*Sinh[Pi]*Tanh[Pi] 3654339958130912 m001 (exp(sqrt(2))-ln(2+sqrt(3)))/BesselJ(0,1) 3654339970270868 m002 -(E^Pi/Pi^6)+Pi^3*Log[Pi]+ProductLog[Pi] 3654339970729031 m001 (-FeigenbaumKappa+Thue)/(ln(2)/ln(10)+Shi(1)) 3654339984262926 a003 cos(Pi*2/59)-sin(Pi*21/97) 3654339994377897 m001 (Ei(1,1)+ZetaQ(2))/RenyiParking 3654340008776930 r005 Re(z^2+c),c=-19/42+22/59*I,n=37 3654340010272213 q001 1423/3894 3654340016639336 p004 log(10271/7127) 3654340023805125 m001 GlaisherKinkelin^OneNinth-Robbin 3654340041674135 r002 15th iterates of z^2 + 3654340042292625 a001 2207/610*377^(23/59) 3654340057222913 h001 (-11*exp(3)+10)/(-7*exp(2)-6) 3654340066087347 r002 16th iterates of z^2 + 3654340080014763 r002 4th iterates of z^2 + 3654340082560179 r005 Re(z^2+c),c=-21/38+23/58*I,n=17 3654340090758818 a007 Real Root Of -460*x^4-131*x^3-73*x^2+751*x+286 3654340091407558 m001 (GaussAGM-Magata)/(TravellingSalesman-Trott) 3654340109064932 a007 Real Root Of -264*x^4-807*x^3+827*x^2+773*x-521 3654340111129920 r005 Im(z^2+c),c=-1/36+29/62*I,n=24 3654340118389738 m001 (2*Pi/GAMMA(5/6))^FeigenbaumD/Trott2nd 3654340128468768 r005 Im(z^2+c),c=-47/102+1/16*I,n=16 3654340143199418 p003 LerchPhi(1/25,5,104/85) 3654340161151871 r009 Re(z^3+c),c=-13/62+59/62*I,n=56 3654340168339654 m001 (HeathBrownMoroz+Paris)/(ln(Pi)+BesselI(1,2)) 3654340177346333 r005 Re(z^2+c),c=-17/46+29/53*I,n=22 3654340192160342 l006 ln(5547/7994) 3654340201085821 r005 Re(z^2+c),c=-19/40+4/15*I,n=26 3654340201908067 r005 Im(z^2+c),c=-23/34+9/121*I,n=22 3654340217794754 a007 Real Root Of 703*x^4-56*x^3-82*x^2-930*x+341 3654340220981811 r009 Re(z^3+c),c=-43/110+4/23*I,n=13 3654340221605009 r005 Im(z^2+c),c=1/17+23/58*I,n=6 3654340237456987 r005 Im(z^2+c),c=37/122+10/47*I,n=24 3654340266707420 m001 1/KhintchineHarmonic/Conway*ln(Zeta(7)) 3654340277411929 a007 Real Root Of 193*x^4+474*x^3-567*x^2+931*x-313 3654340277777777 r005 Re(z^2+c),c=-2/5+17/48*I,n=2 3654340281223910 m001 1/GAMMA(5/6)^2/ln(Sierpinski)^2/cosh(1)^2 3654340285763349 a007 Real Root Of -558*x^4-620*x^3+517*x^2+868*x+31 3654340300431050 r005 Im(z^2+c),c=-1/24+21/43*I,n=16 3654340300737947 m002 -6+Pi^2-(5*Tanh[Pi])/E^Pi 3654340307005163 m001 1/Khintchine^2*Conway/ln(GAMMA(13/24)) 3654340331589449 a007 Real Root Of -717*x^4-312*x^3-737*x^2+769*x+377 3654340333757269 r002 33th iterates of z^2 + 3654340341294189 p001 sum(1/(103*n+4)/n/(256^n),n=0..infinity) 3654340356289579 m001 (cos(1/5*Pi)*Otter+BesselI(1,1))/cos(1/5*Pi) 3654340371999614 m001 1/Tribonacci^2/exp(Lehmer)*sqrt(5) 3654340372008138 l006 ln(257/9931) 3654340372008138 p004 log(9931/257) 3654340379112298 r002 3th iterates of z^2 + 3654340383543531 a003 sin(Pi*7/95)/cos(Pi*23/81) 3654340384174581 m001 1/Bloch^2*Champernowne^2*ln((2^(1/3)))^2 3654340384474085 m005 (1/2*gamma-1)/(3/10*3^(1/2)-5/7) 3654340386664745 a008 Real Root of (-3-6*x+5*x^2-x^3+4*x^4-3*x^5) 3654340388530318 r005 Re(z^2+c),c=-29/56+9/49*I,n=11 3654340394959632 m001 ArtinRank2^(ln(5)/Stephens) 3654340395353036 h001 (2/7*exp(2)+5/12)/(10/11*exp(2)+1/5) 3654340411764396 m001 (5^(1/2)-ArtinRank2)/BesselK(0,1) 3654340412999116 r005 Im(z^2+c),c=13/46+13/56*I,n=43 3654340419818288 r005 Im(z^2+c),c=-7/11+3/43*I,n=36 3654340420660084 m001 (Catalan-exp(1))/(Pi*2^(1/2)/GAMMA(3/4)+Mills) 3654340424851417 r005 Im(z^2+c),c=3/32+24/61*I,n=40 3654340425060153 a001 3278735159921/2889*521^(12/13) 3654340426069967 m001 (ln(Pi)-Grothendieck)/(MertensB2+Rabbit) 3654340433094381 a007 Real Root Of -249*x^4-701*x^3+898*x^2+561*x+254 3654340449821994 g002 Psi(10/11)-Psi(9/11)-Psi(6/11)-Psi(5/9) 3654340454631556 r005 Re(z^2+c),c=-49/118+13/27*I,n=39 3654340458343013 a003 cos(Pi*5/63)*sin(Pi*8/65) 3654340466993108 r005 Im(z^2+c),c=9/58+13/38*I,n=11 3654340474819068 r005 Im(z^2+c),c=-21/34+35/89*I,n=60 3654340485486752 m001 1/PrimesInBinary/Magata^2*exp(Sierpinski)^2 3654340498095447 r005 Im(z^2+c),c=-9/14+67/96*I,n=4 3654340503686471 m005 (4*2^(1/2)-1/4)/(1/4*exp(1)+4/5) 3654340507496411 l006 ln(3967/5717) 3654340507496411 p004 log(5717/3967) 3654340515156632 v002 sum(1/(5^n+(9*n^2-23*n+66)),n=1..infinity) 3654340528963157 m005 (11/20+1/4*5^(1/2))/(1/10*3^(1/2)-1/7) 3654340543655082 r009 Re(z^3+c),c=-6/13+13/49*I,n=28 3654340544195540 a001 11/46368*75025^(17/26) 3654340551253982 r005 Re(z^2+c),c=-7/16+23/58*I,n=19 3654340562559641 r005 Im(z^2+c),c=-11/50+21/32*I,n=17 3654340564523271 r005 Im(z^2+c),c=-3/62+25/52*I,n=28 3654340570200504 a001 3536736619241/281*521^(7/13) 3654340570478342 r005 Im(z^2+c),c=5/82+22/53*I,n=41 3654340576329635 a001 10610209857723/9349*521^(12/13) 3654340586798595 r002 17th iterates of z^2 + 3654340589922051 r009 Im(z^3+c),c=-43/64+8/51*I,n=2 3654340599335517 a007 Real Root Of -630*x^4+131*x^3-969*x^2+944*x+492 3654340629154880 m001 (Si(Pi)-exp(1))/(-Conway+Riemann3rdZero) 3654340638957017 v002 sum(1/(5^n*(9*n^2+6*n+48)),n=1..infinity) 3654340645748018 a001 3571*233^(45/53) 3654340657636330 m001 1/Salem/ln(MertensB1)/log(2+sqrt(3))^2 3654340658925973 b008 1/7+5*Sqrt[53] 3654340665385417 m001 MertensB3*Salem-Zeta(3) 3654340680328629 a001 121393/123*7^(37/55) 3654340692375272 r002 5th iterates of z^2 + 3654340693421990 r004 Im(z^2+c),c=1/34+10/23*I,z(0)=I,n=33 3654340697323615 m005 (1/2*5^(1/2)+1/5)/(51/16+3/16*5^(1/2)) 3654340702148350 a005 (1/sin(107/233*Pi))^1837 3654340705145304 a003 sin(Pi*1/11)/cos(Pi*20/91) 3654340707735008 a007 Real Root Of 369*x^4+221*x^3+145*x^2-670*x-260 3654340708176758 h001 (4/11*exp(2)+11/12)/(1/10*exp(1)+5/7) 3654340715295875 a001 47/53316291173*233^(6/23) 3654340718274894 r005 Re(z^2+c),c=-13/27+8/35*I,n=30 3654340729268238 m001 1/cos(1)*LaplaceLimit*ln(sin(1))^2 3654340734363258 m001 (2/3-BesselI(1,1))^BesselJ(1,1) 3654340746104531 r009 Im(z^3+c),c=-63/106+34/57*I,n=3 3654340776216747 r009 Im(z^3+c),c=-5/28+19/48*I,n=9 3654340778587240 p001 sum(1/(445*n+283)/(12^n),n=0..infinity) 3654340782782706 l006 ln(6354/9157) 3654340789968244 r009 Re(z^3+c),c=-41/114+32/45*I,n=51 3654340793644413 b008 32+ArcSinh[47] 3654340794017627 r005 Re(z^2+c),c=-53/114+19/44*I,n=25 3654340797748427 m001 1/ln(Sierpinski)*FransenRobinson/cos(Pi/5) 3654340801591567 m003 73/2+Sqrt[5]/8+5*Cos[1/2+Sqrt[5]/2] 3654340811959421 r005 Im(z^2+c),c=-2/13+33/59*I,n=5 3654340813199252 r009 Re(z^3+c),c=-17/106+50/59*I,n=18 3654340818728706 b008 -4+Sin[6/17] 3654340819224771 r005 Re(z^2+c),c=-11/16+26/67*I,n=2 3654340819862341 a001 4052739537881/2207*521^(11/13) 3654340821088825 a001 4052739537881/3571*521^(12/13) 3654340828380952 r005 Im(z^2+c),c=29/126+8/23*I,n=9 3654340830616773 m001 (-ArtinRank2+Porter)/(gamma+GAMMA(7/12)) 3654340840071858 m005 (1/2*3^(1/2)+1/11)/(1/9*Catalan-4/11) 3654340875486225 a003 cos(Pi*53/117)/cos(Pi*19/39) 3654340900885500 m008 (5/6*Pi^5+5/6)/(1/5*Pi^3+4/5) 3654340911215559 r005 Im(z^2+c),c=-7/74+31/56*I,n=18 3654340918745627 r005 Im(z^2+c),c=-11/12+28/121*I,n=6 3654340920805128 m001 (Psi(1,1/3)+cos(1/5*Pi))/(ln(Pi)+Tribonacci) 3654340935365490 s002 sum(A063784[n]/(exp(n)-1),n=1..infinity) 3654340935365490 s002 sum(A066101[n]/(exp(n)-1),n=1..infinity) 3654340940649039 a007 Real Root Of -209*x^4+285*x^3+842*x^2+614*x-347 3654340944137486 l006 ln(176/6801) 3654340944370879 m001 exp(log(2+sqrt(3)))*Tribonacci^2/sin(Pi/5)^2 3654340948380469 a007 Real Root Of -166*x^4+697*x^3-952*x^2-211*x+87 3654340954269088 m001 exp(Kolakoski)/ErdosBorwein^2/GAMMA(1/24) 3654340976501318 m001 (Zeta(1,2)-Salem)/(ln(2+3^(1/2))-exp(1/Pi)) 3654340978832991 r005 Re(z^2+c),c=-4/9+11/25*I,n=35 3654340981930601 m001 (FellerTornier-Salem)/(Zeta(3)-GAMMA(3/4)) 3654341008178257 m001 (ErdosBorwein-Trott)/(Pi+GAMMA(3/4)) 3654341008535426 m001 (Shi(1)+GAMMA(2/3))/(-GaussAGM+ZetaP(3)) 3654341013376487 m005 (1/2*Pi+4/11)/(1/6*gamma-1/11) 3654341016239370 m001 (exp(Pi)+arctan(1/2))/(-Kolakoski+Thue) 3654341023039550 a007 Real Root Of 110*x^4+224*x^3-580*x^2+486*x+836 3654341028009751 a007 Real Root Of 216*x^4+655*x^3-397*x^2+419*x+277 3654341041914366 r005 Im(z^2+c),c=-1/36+15/32*I,n=42 3654341060419091 h001 (5/7*exp(1)+5/9)/(6/7*exp(2)+1/2) 3654341072648014 m005 (19/44+1/4*5^(1/2))/(1/2*gamma-3) 3654341079108665 a001 5778/1597*377^(23/59) 3654341081339408 p004 log(26357/18289) 3654341087019082 m002 -E^Pi+Pi^2-Cosh[Pi]/6+Sinh[Pi] 3654341090642972 r009 Im(z^3+c),c=-17/118+34/41*I,n=28 3654341100173843 a001 34/969323029*47^(14/23) 3654341111905399 r005 Im(z^2+c),c=1/98+21/47*I,n=27 3654341120736858 p003 LerchPhi(1/125,1,523/190) 3654341124350472 r009 Im(z^3+c),c=-3/20+44/53*I,n=14 3654341129998910 r005 Im(z^2+c),c=-9/29+9/16*I,n=39 3654341157282749 r005 Im(z^2+c),c=-11/26+13/23*I,n=26 3654341169513229 m001 (1+LambertW(1))/(ln(2^(1/2)+1)+Magata) 3654341179017053 r005 Re(z^2+c),c=-91/90+7/40*I,n=36 3654341180287943 r009 Im(z^3+c),c=-7/29+30/43*I,n=14 3654341188490870 r005 Im(z^2+c),c=9/122+24/59*I,n=39 3654341190438169 a003 sin(Pi*2/111)*sin(Pi*19/85) 3654341192615441 a007 Real Root Of 654*x^4-348*x^3+68*x^2-860*x-352 3654341200839432 a001 6119/36*377^(4/31) 3654341206127866 a007 Real Root Of 682*x^4-702*x^3-262*x^2-973*x-367 3654341211178279 r005 Im(z^2+c),c=-5/19+13/23*I,n=40 3654341213102208 a001 2504730781961/322*322^(2/3) 3654341230378166 a001 15127/4181*377^(23/59) 3654341240286139 l006 ln(2387/3440) 3654341252448091 a001 39603/10946*377^(23/59) 3654341252465580 a003 cos(Pi*29/81)-cos(Pi*57/119) 3654341257658093 a001 64079/17711*377^(23/59) 3654341260641443 a007 Real Root Of -145*x^4-733*x^3-848*x^2-223*x+597 3654341262114263 r005 Im(z^2+c),c=17/78+19/46*I,n=8 3654341264907016 m001 (Catalan-HeathBrownMoroz)/FeigenbaumAlpha 3654341266088055 a001 24476/6765*377^(23/59) 3654341296929390 a007 Real Root Of -341*x^4+987*x^3+294*x^2+768*x-362 3654341298520446 r002 48th iterates of z^2 + 3654341307750438 m001 (Artin-ThueMorse)/(gamma(3)-GAMMA(11/12)) 3654341314424116 k006 concat of cont frac of 3654341314709131 m005 (1/2*Zeta(3)+1/5)/(2^(1/2)+7/9) 3654341320419217 m005 (1/3*exp(1)+1/5)/(7/9*Pi+7/12) 3654341323867870 a001 9349/2584*377^(23/59) 3654341335120625 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)*Rabbit+Porter 3654341337846390 m001 (cos(1)+GAMMA(17/24))/(-Totient+Tribonacci) 3654341343720622 m001 (MadelungNaCl-Mills)/(BesselI(1,1)-Pi^(1/2)) 3654341358142120 r005 Im(z^2+c),c=-9/62+23/43*I,n=32 3654341370229827 s001 sum(exp(-Pi/2)^(n-1)*A154530[n],n=1..infinity) 3654341384624675 m001 1/GAMMA(13/24)/TwinPrimes/exp(arctan(1/2))^2 3654341405367466 r009 Im(z^3+c),c=-55/106+8/35*I,n=53 3654341405781452 r005 Re(z^2+c),c=-13/29+19/54*I,n=8 3654341409495009 r005 Im(z^2+c),c=-3/34+30/49*I,n=27 3654341410223430 a001 4/233*2584^(5/52) 3654341417279202 a001 1346269/521*2^(1/2) 3654341426727818 r005 Re(z^2+c),c=-65/126+5/23*I,n=11 3654341426991622 r005 Re(z^2+c),c=-17/26+6/115*I,n=8 3654341445436807 m001 (-MadelungNaCl+TwinPrimes)/(Chi(1)-cos(1)) 3654341458899714 v002 sum(1/(2^n+(20*n^2+n+40)),n=1..infinity) 3654341460650193 a001 3536736619241/1926*521^(11/13) 3654341463152360 a001 85146156091450/233 3654341465142481 r009 Im(z^3+c),c=-43/82+2/9*I,n=41 3654341467811201 r005 Im(z^2+c),c=-9/98+32/51*I,n=36 3654341471987811 r005 Re(z^2+c),c=-18/19+14/29*I,n=4 3654341473490266 r009 Im(z^3+c),c=-17/42+17/55*I,n=5 3654341480289000 r005 Im(z^2+c),c=-49/34+3/74*I,n=9 3654341482081955 m006 (1/5*Pi+1/3)/(2/3*ln(Pi)-1/2) 3654341495177007 r005 Re(z^2+c),c=-39/82+9/31*I,n=21 3654341512751134 a008 Real Root of x^4-x^3-39*x^2+28*x+396 3654341526310951 m001 exp(Pi)^ln(Pi)+StolarskyHarborth 3654341532111982 a007 Real Root Of -329*x^4+931*x^3-550*x^2+797*x+416 3654341538333254 r009 Re(z^3+c),c=-45/118+25/41*I,n=11 3654341545197767 r005 Im(z^2+c),c=-35/86+7/13*I,n=42 3654341546378181 r005 Im(z^2+c),c=15/98+20/57*I,n=39 3654341558200671 r005 Im(z^2+c),c=-43/42+18/49*I,n=16 3654341571310651 k007 concat of cont frac of 3654341571420447 r005 Im(z^2+c),c=-3/52+27/56*I,n=20 3654341572615224 m005 (1/2*Catalan-9/11)/(5/9*2^(1/2)+1/5) 3654341576170665 a001 9349/5*4181^(31/49) 3654341579519582 m005 (1/2*5^(1/2)+10/11)/(1/12*Zeta(3)+5/11) 3654341594041769 r005 Im(z^2+c),c=-3/70+21/44*I,n=41 3654341596388257 m001 BesselK(1,1)^(Sierpinski/Conway) 3654341605949575 m001 (LandauRamanujan+ZetaQ(3))/(CareFree-Catalan) 3654341615753120 r005 Im(z^2+c),c=-3/44+28/57*I,n=50 3654341622315867 a007 Real Root Of -623*x^4+843*x^3-995*x^2-170*x+123 3654341625609978 a003 cos(Pi*31/81)/sin(Pi*33/74) 3654341644808073 a007 Real Root Of -618*x^4+435*x^3+304*x^2+800*x+284 3654341647811736 a007 Real Root Of 68*x^4+43*x^3-666*x^2+262*x-177 3654341648745329 r005 Im(z^2+c),c=13/66+17/53*I,n=14 3654341666144555 a001 2/13*610^(29/34) 3654341670866717 r005 Im(z^2+c),c=11/42+13/51*I,n=59 3654341674790096 m003 -1/2+Sqrt[5]/32+40*Tanh[1/2+Sqrt[5]/2] 3654341686429439 r009 Im(z^3+c),c=-57/118+14/55*I,n=22 3654341697602266 a001 161*55^(9/44) 3654341719896694 a001 3571/987*377^(23/59) 3654341737619381 m006 (3/5*exp(Pi)+1/4)/(4*Pi^2-4/5) 3654341744845035 m001 (2^(1/2)+Bloch)/(-Salem+TwinPrimes) 3654341745525139 r002 3th iterates of z^2 + 3654341752803845 a007 Real Root Of -70*x^4+971*x^3-277*x^2+967*x+439 3654341761156354 l006 ln(5581/8043) 3654341761157594 a001 377/39603*11^(23/41) 3654341761702769 a007 Real Root Of 254*x^4+838*x^3-397*x^2-299*x-193 3654341771888386 r005 Im(z^2+c),c=13/62+31/60*I,n=16 3654341773808828 m005 (1/2*2^(1/2)-6)/(1/10*exp(1)-5/12) 3654341787075342 m005 (1/2*Zeta(3)-1/4)/(4/11*Pi-2/11) 3654341790477573 m001 FellerTornier-sin(1/5*Pi)*gamma(1) 3654341793764050 m001 (OneNinth-Si(Pi))/(-Paris+Stephens) 3654341796390915 r009 Re(z^3+c),c=-19/40+4/13*I,n=12 3654341803731611 a005 (1/cos(16/225*Pi))^326 3654341811846440 r009 Re(z^3+c),c=-43/122+43/58*I,n=14 3654341812853939 m001 (2^(1/3))*exp(Bloch)^2*GAMMA(5/6) 3654341814110575 r005 Im(z^2+c),c=-73/106+14/53*I,n=20 3654341823225415 r005 Re(z^2+c),c=-7/15+14/45*I,n=51 3654341832614108 a001 7/13*28657^(49/57) 3654341833116538 p004 log(31957/827) 3654341840308296 r009 Re(z^3+c),c=-47/98+1/3*I,n=16 3654341855452493 a001 6557470319842/2207*521^(10/13) 3654341856678977 a001 6557470319842/3571*521^(11/13) 3654341875727875 a007 Real Root Of -391*x^4+815*x^3+497*x^2+57*x-120 3654341881378855 p004 log(15383/14831) 3654341900633772 m001 (-Cahen+Gompertz)/(1-GAMMA(5/6)) 3654341914496884 a001 13/4*18^(36/43) 3654341916713805 m001 (HeathBrownMoroz+Lehmer)/(arctan(1/3)+Conway) 3654341929960034 r002 22th iterates of z^2 + 3654341951816621 m007 (-1/3*gamma-2/3*ln(2)-3/5)/(-3/4*gamma-3) 3654341961490952 a001 47/267914296*377^(9/10) 3654341971505159 m001 (-QuadraticClass+Totient)/(FeigenbaumC-gamma) 3654341996269334 r009 Re(z^3+c),c=-37/102+37/55*I,n=46 3654342019854380 m001 Pi/(Psi(1,1/3)-sin(1)*exp(gamma)) 3654342033000685 m001 (Ei(1,1)-gamma)/(-GAMMA(19/24)+DuboisRaymond) 3654342037941565 r005 Re(z^2+c),c=-51/110+14/43*I,n=43 3654342054247765 m005 (1/2*2^(1/2)-2/11)/(7/8*2^(1/2)+1/5) 3654342104477108 r005 Im(z^2+c),c=-21/106+33/59*I,n=51 3654342130682304 a001 3*13^(1/13) 3654342143677432 r005 Re(z^2+c),c=-17/44+23/43*I,n=64 3654342146941427 m001 FeigenbaumAlpha^polylog(4,1/2)/TreeGrowth2nd 3654342150422836 l006 ln(3194/4603) 3654342151902747 m001 (LambertW(1)-ln(Pi))/(-Conway+MinimumGamma) 3654342157127541 a007 Real Root Of -933*x^4-342*x^3+443*x^2+701*x-282 3654342161175241 m001 (FeigenbaumD+MertensB2)/(Artin+Cahen) 3654342164658769 a007 Real Root Of -773*x^4-437*x^3-232*x^2+412*x+174 3654342165714478 r005 Re(z^2+c),c=17/110+25/53*I,n=36 3654342176369702 m001 ln(Zeta(7))^2/Kolakoski/cosh(1)^2 3654342179984567 r005 Im(z^2+c),c=-3/29+33/37*I,n=45 3654342181805252 r009 Re(z^3+c),c=-61/126+7/24*I,n=31 3654342192011019 r002 24th iterates of z^2 + 3654342199680256 r005 Im(z^2+c),c=-3/98+23/55*I,n=5 3654342199997454 r005 Re(z^2+c),c=-25/56+15/31*I,n=43 3654342209689594 r009 Im(z^3+c),c=-11/54+26/63*I,n=3 3654342209792297 r005 Re(z^2+c),c=-27/46+23/56*I,n=49 3654342218400687 q001 425/1163 3654342244987510 b008 InverseJacobiNS[E,-Sqrt[2]] 3654342248665303 a007 Real Root Of 806*x^4+683*x^3-177*x^2-735*x-226 3654342250091395 m006 (2/Pi-1/4)/(2/3*Pi^2+4) 3654342258500070 m001 (MertensB2+Niven)/(HardyLittlewoodC4-Shi(1)) 3654342269084547 h001 (1/5*exp(1)+1/12)/(4/11*exp(1)+8/11) 3654342294288827 a003 cos(Pi*19/62)-sin(Pi*39/101) 3654342302191677 m001 (ln(2)-gamma(2))/(GAMMA(5/6)+Kolakoski) 3654342305645541 r002 44th iterates of z^2 + 3654342313518220 a007 Real Root Of 165*x^4+380*x^3-741*x^2+204*x-240 3654342325564760 r005 Im(z^2+c),c=1/102+21/47*I,n=45 3654342331844687 r009 Re(z^3+c),c=-21/52+9/47*I,n=28 3654342349684565 s002 sum(A058160[n]/(n*exp(n)+1),n=1..infinity) 3654342353359937 r005 Re(z^2+c),c=33/118+1/17*I,n=55 3654342355810211 m001 GAMMA(5/6)+Magata-QuadraticClass 3654342364449515 h001 (3/8*exp(1)+2/5)/(4/9*exp(2)+3/5) 3654342367410260 r002 5th iterates of z^2 + 3654342371329567 r009 Re(z^3+c),c=-10/23+13/56*I,n=38 3654342376133348 a005 (1/sin(59/131*Pi))^1050 3654342403782181 a007 Real Root Of -15*x^4-525*x^3+822*x^2-902*x-872 3654342416049526 r005 Re(z^2+c),c=-31/74+22/45*I,n=30 3654342426912479 r009 Re(z^3+c),c=-53/122+13/55*I,n=11 3654342434679377 a003 sin(Pi*21/65)-sin(Pi*35/101) 3654342441637145 r005 Re(z^2+c),c=-41/98+22/49*I,n=22 3654342445620677 r005 Im(z^2+c),c=19/118+10/29*I,n=26 3654342450870707 a007 Real Root Of 108*x^4+450*x^3+279*x^2+328*x+173 3654342451519217 m001 Totient/HardyLittlewoodC3/gamma 3654342458884528 a007 Real Root Of -278*x^4-767*x^3+709*x^2-507*x+826 3654342477296601 h001 (1/9*exp(1)+4/7)/(3/11*exp(2)+3/8) 3654342486524415 h001 (9/11*exp(2)+6/7)/(1/7*exp(2)+5/6) 3654342491896293 l006 ln(95/3671) 3654342498694153 a001 1134903780*521^(12/13) 3654342505728256 a007 Real Root Of 375*x^4+101*x^3+661*x^2-944*x-435 3654342509084991 r009 Im(z^3+c),c=-39/74+13/36*I,n=57 3654342511640543 r005 Im(z^2+c),c=-9/52+34/63*I,n=25 3654342522617471 r005 Im(z^2+c),c=-1/50+13/28*I,n=49 3654342550488367 m004 -6/5+(25*Pi)/2-ProductLog[Sqrt[5]*Pi] 3654342554958350 m001 (arctan(1/3)+ZetaP(2))/(Catalan+Zeta(3)) 3654342555323895 a008 Real Root of x^4-x^3-38*x^2+6*x+356 3654342556616329 m001 (5^(1/2)-BesselJ(1,1))/(-FeigenbaumC+Totient) 3654342561508967 r005 Im(z^2+c),c=3/46+23/39*I,n=34 3654342561629963 b008 ArcCos[(9+Pi)/13] 3654342566224143 m001 MasserGramainDelta^Conway+Porter 3654342567321569 r005 Re(z^2+c),c=-71/52+13/57*I,n=4 3654342569670745 r005 Re(z^2+c),c=11/58+17/27*I,n=4 3654342583439351 r009 Re(z^3+c),c=-7/102+45/64*I,n=61 3654342590188659 m001 (Mills-Robbin)/(ZetaP(3)+ZetaQ(4)) 3654342592917055 m001 (ErdosBorwein+MasserGramain)/(2^(1/3)-Cahen) 3654342593690399 r005 Re(z^2+c),c=-57/98+22/59*I,n=9 3654342607368509 r005 Re(z^2+c),c=-55/106+9/43*I,n=11 3654342610086508 r005 Im(z^2+c),c=-9/10+6/209*I,n=9 3654342633667363 m009 (4/5*Psi(1,2/3)-2/5)/(1/5*Psi(1,2/3)+5) 3654342634367162 m005 (1/2*Pi-3/11)/(1/6*Zeta(3)-5/9) 3654342643291151 r009 Im(z^3+c),c=-67/126+15/47*I,n=53 3654342644195703 r005 Re(z^2+c),c=-41/90+20/59*I,n=20 3654342646174856 m001 MasserGramain^exp(1)/(MasserGramain^ThueMorse) 3654342648863380 a007 Real Root Of 994*x^4+115*x^3+523*x^2-479*x-257 3654342650437743 r005 Re(z^2+c),c=-29/70+30/59*I,n=62 3654342665237925 m001 (1+BesselJ(0,1))/(-MasserGramainDelta+Totient) 3654342676387475 h001 (-3*exp(2)-5)/(-4*exp(3)+6) 3654342677054472 a001 377/843*14662949395604^(19/21) 3654342677719615 a007 Real Root Of 393*x^4+506*x^3-236*x^2-512*x+19 3654342685330547 a003 cos(Pi*26/113)/cos(Pi*33/76) 3654342691380841 m005 (1/2*3^(1/2)-1/3)/(10/11*Catalan+5/8) 3654342693411124 l006 ln(4001/5766) 3654342700473671 m005 (-17/28+1/4*5^(1/2))/(5/12*5^(1/2)-4/5) 3654342723275122 m004 (13*E^(Sqrt[5]*Pi))/4+Cos[Sqrt[5]*Pi] 3654342725654261 r005 Im(z^2+c),c=9/98+15/38*I,n=36 3654342730216824 r005 Im(z^2+c),c=-19/40+31/60*I,n=61 3654342730308556 r005 Im(z^2+c),c=-9/14+39/122*I,n=14 3654342731478271 r005 Im(z^2+c),c=9/29+12/61*I,n=34 3654342734888868 r005 Im(z^2+c),c=11/42+13/51*I,n=55 3654342736808368 r009 Im(z^3+c),c=-1/5+49/53*I,n=12 3654342737465954 r009 Re(z^3+c),c=-4/17+29/41*I,n=34 3654342749373000 m001 (Ei(1)+cos(1/12*Pi))/(Artin-ZetaP(2)) 3654342764015579 r005 Im(z^2+c),c=13/50+23/52*I,n=21 3654342773074689 r009 Re(z^3+c),c=-12/19+37/58*I,n=8 3654342796386578 p003 LerchPhi(1/8,4,160/221) 3654342802911713 m005 (1/2*Pi-3/5)/(2/7*Zeta(3)-3) 3654342811840040 r009 Re(z^3+c),c=-12/25+16/61*I,n=16 3654342814212111 k006 concat of cont frac of 3654342828284129 r009 Im(z^3+c),c=-11/28+6/19*I,n=19 3654342834507064 a003 cos(Pi*1/3)/cos(Pi*47/103) 3654342836980105 r005 Re(z^2+c),c=-67/122+1/36*I,n=8 3654342838849566 r005 Im(z^2+c),c=11/42+13/51*I,n=60 3654342847504397 h001 (-exp(7)+4)/(-exp(8)-9) 3654342850373392 a007 Real Root Of 100*x^4+294*x^3-314*x^2-338*x-528 3654342851987112 a007 Real Root Of -384*x^4+499*x^3+831*x^2+847*x-438 3654342852748225 a007 Real Root Of -244*x^4-744*x^3+392*x^2-373*x+608 3654342871852732 m001 gamma(1)^FeigenbaumDelta/MertensB3 3654342888779029 m008 (3/5*Pi^4+1/5)/(1/6*Pi^6+1/4) 3654342891042938 a001 4807525989*521^(9/13) 3654342892269423 a001 10610209857723/3571*521^(10/13) 3654342910178414 v002 sum(1/(5^n*(28+35*n)),n=1..infinity) 3654342918528487 r005 Re(z^2+c),c=-19/26+5/111*I,n=14 3654342923935246 r009 Im(z^3+c),c=-9/34+22/59*I,n=18 3654342950605791 a007 Real Root Of 57*x^4-110*x^3-944*x^2+961*x+585 3654342952402054 a007 Real Root Of 83*x^4+85*x^3-757*x^2-103*x-921 3654342965904865 m001 Zeta(7)^2/GaussKuzminWirsing^2/ln(sqrt(3))^2 3654342965995248 m001 (3^(1/3)-FeigenbaumD)/(Otter+TreeGrowth2nd) 3654342987099492 r009 Re(z^3+c),c=-49/110+15/61*I,n=27 3654342995567334 r005 Re(z^2+c),c=31/118+1/16*I,n=7 3654342997558503 p001 sum((-1)^n/(317*n+241)/(3^n),n=0..infinity) 3654342999875984 r009 Im(z^3+c),c=-63/122+17/43*I,n=21 3654343000880366 r005 Im(z^2+c),c=-7/31+41/49*I,n=6 3654343020957804 m005 (1/2*2^(1/2)-7/11)/(1/9*gamma-2) 3654343039176251 a007 Real Root Of 876*x^4-872*x^3-867*x^2-943*x-287 3654343043309765 r009 Im(z^3+c),c=-1/62+48/59*I,n=64 3654343043568282 a007 Real Root Of -843*x^4+4*x^3-600*x^2+612*x+319 3654343051665822 m001 (-3^(1/3)+FeigenbaumB)/(5^(1/2)-LambertW(1)) 3654343054123377 l006 ln(4808/6929) 3654343054428479 r005 Im(z^2+c),c=1/31-7/16*I,n=6 3654343064162349 m001 (Mills+Robbin)/(Psi(2,1/3)+BesselI(0,1)) 3654343072592294 h001 (3/7*exp(1)+4/9)/(4/7*exp(2)+2/11) 3654343074835009 m001 1/exp(FeigenbaumC)*Champernowne^2/Sierpinski^2 3654343085912569 a007 Real Root Of 639*x^4+111*x^3-426*x^2-614*x+23 3654343088371567 m005 (1/2*Catalan+1/5)/(5/8*2^(1/2)+11/12) 3654343108918875 r005 Im(z^2+c),c=-11/60+26/47*I,n=28 3654343117448682 a007 Real Root Of -256*x^4-748*x^3+582*x^2-493*x-423 3654343130424622 a003 cos(Pi*17/69)*cos(Pi*27/82) 3654343133074708 r005 Im(z^2+c),c=-23/18+35/92*I,n=4 3654343134801884 m001 (Landau-Paris)/(BesselI(1,2)-Artin) 3654343136261355 r005 Im(z^2+c),c=19/122+15/43*I,n=38 3654343145721248 a007 Real Root Of -452*x^4+224*x^3+854*x^2+148*x-171 3654343150775436 a007 Real Root Of -803*x^4-47*x^3-462*x^2+830*x-225 3654343163785946 r005 Im(z^2+c),c=-23/18+38/173*I,n=7 3654343173353996 a007 Real Root Of -514*x^4+865*x^3+165*x^2+415*x+181 3654343175489069 m001 (1-ln(2+3^(1/2)))/(-MertensB1+ZetaP(3)) 3654343186734717 m001 (Chi(1)-Zeta(5))/(-GAMMA(2/3)+AlladiGrinstead) 3654343211179862 m009 (3/5*Psi(1,2/3)+6)/(1/6*Pi^2+1/2) 3654343212968395 r005 Im(z^2+c),c=11/42+13/51*I,n=64 3654343215688572 a001 161/17*514229^(5/18) 3654343220280051 a007 Real Root Of 167*x^4+359*x^3-912*x^2+291*x+980 3654343220737652 r005 Im(z^2+c),c=11/42+13/51*I,n=58 3654343230061946 a007 Real Root Of 165*x^4+628*x^3-95*x^2-841*x-583 3654343240617203 m005 (1/2*3^(1/2)+1/10)/(5/8*3^(1/2)-9/11) 3654343244552422 m005 (1/3*Zeta(3)+1/8)/(-17/56+1/14*5^(1/2)) 3654343247323989 r005 Re(z^2+c),c=-15/38+12/29*I,n=7 3654343265032323 r009 Im(z^3+c),c=-41/86+9/35*I,n=33 3654343267087631 a003 cos(Pi*27/71)*sin(Pi*51/109) 3654343267445609 a007 Real Root Of -367*x^4+690*x^3-170*x^2+724*x-269 3654343269063906 r002 28th iterates of z^2 + 3654343272203796 a003 sin(Pi*43/107)-sin(Pi*44/97) 3654343276466212 m005 (1/2*Zeta(3)-1/10)/(3/10*Pi+3/7) 3654343288841220 r005 Im(z^2+c),c=19/122+15/43*I,n=37 3654343308996230 a007 Real Root Of 130*x^4+469*x^3-242*x^2-993*x-693 3654343310951230 a001 55/4870847*76^(16/59) 3654343311150925 l006 ln(5615/8092) 3654343317536009 m009 (3/4*Psi(1,1/3)-1)/(6*Psi(1,2/3)-2/5) 3654343321190369 r009 Im(z^3+c),c=-16/31+7/22*I,n=11 3654343323137595 m005 (1/2*3^(1/2)-4)/(4/11*Pi-2) 3654343326819034 m002 6+Pi^3*Cosh[Pi]+ProductLog[Pi]/Pi^4 3654343343651925 m001 Sierpinski^2*Rabbit*ln(Catalan)^2 3654343348596931 r005 Im(z^2+c),c=-61/94+29/64*I,n=8 3654343350943494 h001 (-6*exp(8)+2)/(-9*exp(4)+2) 3654343363504833 m005 (1/2*5^(1/2)+1/6)/(7/8*3^(1/2)+2) 3654343367015445 m001 (Mills+TwinPrimes)/ZetaQ(2) 3654343397824743 r005 Re(z^2+c),c=17/46+10/31*I,n=56 3654343398721473 m005 (1/3*gamma+3/8)/(1/4*5^(1/2)-5/7) 3654343403259937 m009 (2/5*Pi^2+3/4)/(4*Psi(1,2/3)+3/5) 3654343413497896 m001 (-Zeta(1/2)+Lehmer)/(Psi(2,1/3)-Shi(1)) 3654343422181685 r005 Re(z^2+c),c=-35/82+25/53*I,n=50 3654343442354367 l006 ln(8329/8639) 3654343454377027 r002 17th iterates of z^2 + 3654343477946248 r009 Im(z^3+c),c=-51/110+11/43*I,n=15 3654343488466788 a007 Real Root Of 94*x^4+160*x^3-754*x^2-348*x-158 3654343488555585 m006 (3/5*Pi^2+3/5)/(5/6*Pi-5/6) 3654343488555585 m008 (3/5*Pi^2+3/5)/(5/6*Pi-5/6) 3654343494686765 h001 (8/11*exp(1)+5/7)/(9/10*exp(2)+5/7) 3654343503581386 l006 ln(6422/9255) 3654343513964039 m001 (PisotVijayaraghavan-Thue)^ln(2+3^(1/2)) 3654343534284781 a001 2504730781961/1364*521^(11/13) 3654343555068625 a007 Real Root Of 380*x^4-656*x^3+956*x^2-100*x-203 3654343562763257 a001 521/317811*233^(5/34) 3654343579617819 r005 Re(z^2+c),c=-4/19+22/37*I,n=13 3654343589623396 m001 1/ln(RenyiParking)^2/ArtinRank2/arctan(1/2) 3654343602317656 m005 (1/2*5^(1/2)+5/6)/(7/11*gamma+1/6) 3654343624441947 m001 (-CopelandErdos+GaussAGM)/(cos(1)+ln(3)) 3654343635742106 m001 Paris^2/exp(Champernowne)^2/(3^(1/3))^2 3654343641709489 m001 (5^(1/2)+gamma)/(ln(2)+ZetaP(4)) 3654343658282726 r009 Re(z^3+c),c=-21/46+8/15*I,n=42 3654343676461014 m001 (exp(1/exp(1))-Kac)/(Otter-TravellingSalesman) 3654343676853778 r005 Im(z^2+c),c=9/122+24/59*I,n=42 3654343681668474 m001 GaussKuzminWirsing*(Landau+TwinPrimes) 3654343701214451 r005 Re(z^2+c),c=-15/14+119/179*I,n=2 3654343716328662 r005 Im(z^2+c),c=-19/98+37/62*I,n=31 3654343728379350 m001 (QuadraticClass+Stephens)/(Mills-Niven) 3654343733516503 m003 3+Sqrt[5]/32-(4*E^(1/2+Sqrt[5]/2))/3 3654343734836064 h001 (9/10*exp(2)+3/8)/(4/9*exp(1)+5/7) 3654343735020243 a007 Real Root Of 163*x^4+664*x^3+269*x^2-38*x-396 3654343744883221 m001 (GAMMA(13/24)+MertensB1)/(Ei(1)-exp(1/Pi)) 3654343779659466 m001 Paris*exp(Kolakoski)^2/GAMMA(1/12)^2 3654343780170431 g006 Psi(1,7/9)+Psi(1,1/5)+Psi(1,1/3)-Psi(1,9/11) 3654343789809392 a005 (1/cos(31/135*Pi))^109 3654343799187466 a007 Real Root Of 168*x^4+568*x^3-42*x^2+308*x-555 3654343824013544 r005 Re(z^2+c),c=-61/114+25/61*I,n=14 3654343827215691 l006 ln(204/7883) 3654343838952147 r005 Im(z^2+c),c=-3/26+16/31*I,n=43 3654343840443441 r005 Re(z^2+c),c=-10/17+23/56*I,n=52 3654343848237611 a007 Real Root Of -161*x^4-422*x^3+469*x^2-362*x+532 3654343851370960 m001 GAMMA(5/6)/(BesselI(0,1)+MasserGramainDelta) 3654343887660611 r005 Im(z^2+c),c=-17/30+8/121*I,n=49 3654343894083329 r005 Im(z^2+c),c=-13/86+32/55*I,n=18 3654343909214145 r005 Im(z^2+c),c=-1/50+13/28*I,n=43 3654343919290447 m001 ln(Rabbit)^2/LandauRamanujan^2/GAMMA(1/24)^2 3654343920963527 r005 Im(z^2+c),c=11/42+13/51*I,n=63 3654343948141464 r005 Re(z^2+c),c=-21/38+1/47*I,n=8 3654343949605263 r005 Re(z^2+c),c=-32/25+1/19*I,n=10 3654343953740827 m009 (1/4*Psi(1,3/4)+1/3)/(4/5*Psi(1,2/3)+1/5) 3654343961243041 m001 BesselI(0,2)^HeathBrownMoroz/Trott2nd 3654343972942722 h001 (-8*exp(-1)-8)/(-5*exp(2)+7) 3654343973165075 a007 Real Root Of 719*x^4-784*x^3+107*x^2-878*x+332 3654343986445773 r005 Im(z^2+c),c=-9/86+35/61*I,n=21 3654343987953192 a007 Real Root Of 163*x^4+326*x^3-967*x^2+214*x+536 3654343998926630 r005 Re(z^2+c),c=39/118+4/45*I,n=58 3654343999465521 m001 (FeigenbaumDelta-Otter)/(Pi^(1/2)-Conway) 3654343999498414 m001 1/2*(TravellingSalesman-sinh(1))*2^(2/3) 3654343999784634 r005 Im(z^2+c),c=31/94+8/53*I,n=33 3654344004766295 r009 Im(z^3+c),c=-19/106+19/48*I,n=12 3654344027428740 r005 Re(z^2+c),c=-47/98+9/25*I,n=19 3654344036345682 m001 1/Porter*ArtinRank2*ln(arctan(1/2)) 3654344051729519 r002 22th iterates of z^2 + 3654344052009520 r005 Im(z^2+c),c=-35/48+11/45*I,n=46 3654344056465072 a001 322/377*233^(4/15) 3654344065568266 r005 Im(z^2+c),c=23/82+11/26*I,n=22 3654344079188522 a007 Real Root Of 336*x^4+943*x^3-843*x^2+611*x-411 3654344087252730 a007 Real Root Of 178*x^4+374*x^3-984*x^2+114*x+65 3654344096575349 h001 (1/6*exp(2)+3/4)/(7/10*exp(2)+1/4) 3654344115698355 a003 sin(Pi*11/108)/cos(Pi*17/100) 3654344124784081 a007 Real Root Of -227*x^4-598*x^3+957*x^2+556*x+551 3654344128332475 r009 Re(z^3+c),c=-10/23+13/56*I,n=33 3654344142238112 g003 abs(GAMMA(-191/60+I*(-283/60))) 3654344147829897 r005 Im(z^2+c),c=-157/126+1/62*I,n=14 3654344148224762 a007 Real Root Of -321*x^4-984*x^3+720*x^2+68*x-141 3654344150228115 a001 774004377960/161*322^(3/4) 3654344150307981 a007 Real Root Of 7*x^4+231*x^3-906*x^2-570 3654344153804851 m005 (1/2*5^(1/2)+7/8)/(8/11*3^(1/2)-5/7) 3654344162021569 m001 (Pi^(1/2)+Cahen)/(LaplaceLimit-ZetaQ(4)) 3654344162280916 m001 (-ln(Pi)+RenyiParking)/(BesselJ(0,1)-Si(Pi)) 3654344163449265 m001 (FibonacciFactorial-exp(1/exp(1)))/Gompertz 3654344166216704 m001 exp(1/2)*BesselI(0,2)^cos(Pi/12) 3654344171589666 m005 (1/3*Zeta(3)+2/7)/(4/5*Zeta(3)+11/12) 3654344185165209 a007 Real Root Of -219*x^4+532*x^3-597*x^2+75*x+137 3654344190160280 r005 Re(z^2+c),c=-5/9+17/40*I,n=50 3654344194804474 r005 Im(z^2+c),c=-9/106+20/33*I,n=24 3654344196433236 m001 (BesselI(0,1)-cos(1))/(MasserGramain+Totient) 3654344202326156 r005 Re(z^2+c),c=-7/90+23/34*I,n=46 3654344202418475 a007 Real Root Of -371*x^4-460*x^3+493*x^2+648*x+23 3654344205082404 m001 (gamma(3)+GAMMA(5/6))/(Catalan-GAMMA(3/4)) 3654344212933370 r005 Re(z^2+c),c=-35/66+16/35*I,n=53 3654344223803217 r002 3th iterates of z^2 + 3654344225806179 m005 (1/3*exp(1)-1/3)/(101/180+9/20*5^(1/2)) 3654344230637163 r005 Re(z^2+c),c=-33/62+27/64*I,n=31 3654344231208585 a007 Real Root Of 309*x^4+878*x^3-896*x^2-3*x-304 3654344240662608 a007 Real Root Of -49*x^4+579*x^3-743*x^2+664*x+371 3654344240787501 r005 Re(z^2+c),c=-13/28+23/63*I,n=22 3654344240977856 m006 (2/5*Pi^2+3)/(4/5*exp(Pi)+1/2) 3654344241101437 r005 Im(z^2+c),c=5/126+17/39*I,n=14 3654344241310040 s001 sum(exp(-Pi/2)^n*A162917[n],n=1..infinity) 3654344243429878 s002 sum(A219699[n]/(exp(n)),n=1..infinity) 3654344272255776 m001 (1-exp(-1/2*Pi))/(-AlladiGrinstead+Lehmer) 3654344283439027 m001 1/sin(Pi/12)^2*Salem^2/exp(sqrt(3)) 3654344289714831 m002 Pi+Pi^4/E^Pi+Pi^3*Sinh[Pi] 3654344293655069 a007 Real Root Of -416*x^4+952*x^3+634*x^2+388*x+111 3654344321973158 m001 (MasserGramain+ReciprocalLucas)/(Bloch-Landau) 3654344326171985 m001 (-LaplaceLimit+Stephens)/(1+exp(1/Pi)) 3654344333559157 m001 1/Catalan*ln(Niven)^2*sinh(1) 3654344336732279 r009 Re(z^3+c),c=-13/28+23/45*I,n=25 3654344343316901 a005 (1/cos(34/157*Pi))^60 3654344344424984 g006 Psi(1,2/5)+Psi(1,3/4)-Psi(1,9/11)-Psi(1,4/7) 3654344370183381 a005 (1/cos(43/181*Pi))^34 3654344377825806 r005 Re(z^2+c),c=-41/90+22/61*I,n=64 3654344380445218 m001 (FeigenbaumMu+PlouffeB)/(arctan(1/2)+Cahen) 3654344404813245 m001 Stephens^Ei(1,1)*ThueMorse 3654344407965981 r005 Im(z^2+c),c=-5/42+23/44*I,n=27 3654344409272583 m001 (FellerTornier-Lehmer)/(RenyiParking-ZetaQ(3)) 3654344413413379 m008 (1/6*Pi^2+1/2)/(3/5*Pi^4+1/4) 3654344415391276 r005 Re(z^2+c),c=-41/102+13/25*I,n=56 3654344427961642 r009 Im(z^3+c),c=-49/110+9/32*I,n=30 3654344434322376 a001 1364/377*377^(23/59) 3654344443995398 m001 (3^(1/2)+Bloch)^GAMMA(13/24) 3654344462574366 m005 (1/2*Pi-4/9)/(7/8*Pi+1/3) 3654344465831887 a001 123/89*5^(29/48) 3654344488883116 m001 (-GAMMA(3/4)+ZetaQ(2))/(Si(Pi)+GAMMA(2/3)) 3654344490466380 m001 (1-ln(gamma))/(-Ei(1,1)+Cahen) 3654344505200288 m001 PisotVijayaraghavan*FeigenbaumB/ln(sqrt(3))^2 3654344515091226 r005 Im(z^2+c),c=11/42+13/51*I,n=61 3654344516605225 p001 sum((-1)^n/(425*n+258)/(6^n),n=0..infinity) 3654344521908977 a007 Real Root Of -287*x^4-758*x^3+813*x^2-743*x+619 3654344535717196 a001 521/17711*1597^(1/34) 3654344562811956 a007 Real Root Of -278*x^4-923*x^3+584*x^2+767*x-462 3654344564873471 a001 1/98209*317811^(13/46) 3654344569875702 a001 4052739537881/1364*521^(10/13) 3654344584925807 r009 Im(z^3+c),c=-7/23+19/53*I,n=17 3654344585791506 a007 Real Root Of -438*x^4+727*x^3+306*x^2+918*x-404 3654344611313521 m001 Riemann3rdZero/(GaussAGM-sin(1)) 3654344612142217 r002 64th iterates of z^2 + 3654344618871733 m005 (1/2*Zeta(3)+1/10)/(9/10*Pi-10/11) 3654344621065750 m005 (1/2*Zeta(3)+3)/(13/2+3/2*5^(1/2)) 3654344638191181 r005 Re(z^2+c),c=-11/20+1/38*I,n=8 3654344649740874 m001 gamma(3)^Zeta(5)*5^(1/2) 3654344660467358 g007 Psi(2,1/12)+2*Psi(2,3/11)-Psi(2,8/9) 3654344720030146 r009 Im(z^3+c),c=-17/70+39/55*I,n=35 3654344721067575 a001 1/7*(1/2*5^(1/2)+1/2)^4*4^(19/20) 3654344721396309 r005 Im(z^2+c),c=5/126+3/7*I,n=36 3654344722394822 r005 Im(z^2+c),c=-11/40+16/29*I,n=17 3654344728304838 a001 55/1860498*3^(11/57) 3654344756029058 g007 Psi(2,1/6)-Psi(2,5/11)-Psi(2,4/11)-Psi(2,8/9) 3654344778471093 r005 Im(z^2+c),c=3/74+17/36*I,n=10 3654344788415748 a007 Real Root Of -399*x^4+882*x^3-788*x^2+289*x+261 3654344790041973 m005 (1/2*5^(1/2)+5)/(29/24+5/24*5^(1/2)) 3654344791810220 b008 1/4+Erf[1/3]/Pi 3654344798357118 r005 Im(z^2+c),c=11/42+13/51*I,n=62 3654344800587354 m001 exp(cos(1))/GAMMA(1/3)^2/cos(Pi/5)^2 3654344824127172 a005 (1/cos(12/143*Pi))^1936 3654344830228189 a001 1/1563*(1/2*5^(1/2)+1/2)^22*3^(1/3) 3654344842487156 l006 ln(807/1163) 3654344852681732 a007 Real Root Of -843*x^4+140*x^3-587*x^2+667*x+344 3654344859771644 m001 exp(Pi)*FibonacciFactorial/log(1+sqrt(2))^2 3654344866734617 m001 (1-Si(Pi))/(ln(Pi)+KhinchinLevy) 3654344879677392 r005 Re(z^2+c),c=-41/86+8/31*I,n=49 3654344887995292 a007 Real Root Of -678*x^4+488*x^3-336*x^2+630*x+311 3654344891650090 r005 Im(z^2+c),c=-29/102+31/54*I,n=53 3654344892683828 r002 11th iterates of z^2 + 3654344918316758 r005 Re(z^2+c),c=-11/14+42/233*I,n=10 3654344932614626 r009 Re(z^3+c),c=-19/42+15/59*I,n=28 3654344942701855 a007 Real Root Of -429*x^4+953*x^3-52*x^2+651*x+299 3654344946798591 g007 Psi(2,4/11)+Psi(2,5/9)-Psi(2,1/12)-Psi(2,1/5) 3654344948961648 r005 Re(z^2+c),c=-65/86+1/55*I,n=28 3654344959443129 r005 Im(z^2+c),c=-1/28+9/19*I,n=23 3654344959911619 a007 Real Root Of 289*x^4+937*x^3-571*x^2-666*x-621 3654344963240158 m001 (-MadelungNaCl+TreeGrowth2nd)/(Ei(1,1)-gamma) 3654344965346558 r005 Im(z^2+c),c=-43/66+4/13*I,n=24 3654344985308560 a001 521/21*514229^(9/44) 3654344985741712 r005 Im(z^2+c),c=1/29+19/44*I,n=35 3654344991024722 l006 ln(109/4212) 3654345006485084 q001 1127/3084 3654345006498529 a007 Real Root Of -294*x^4-836*x^3+921*x^2+11*x-626 3654345008556470 h001 (1/5*exp(1)+5/9)/(4/5*exp(1)+5/6) 3654345029339418 m005 (1/2*Pi-7/8)/(12/11+4/11*5^(1/2)) 3654345035726417 k001 Champernowne real with 69*n+296 3654345045736427 k005 Champernowne real with floor(sqrt(3)*(40*n+171)) 3654345045898158 a005 (1/cos(7/193*Pi))^1261 3654345046826388 m001 (GAMMA(5/6)-Psi(2,1/3))/(Conway+CopelandErdos) 3654345049682371 r009 Im(z^3+c),c=-45/122+18/55*I,n=3 3654345059847138 a007 Real Root Of 601*x^4-917*x^3-336*x^2-729*x-277 3654345062057169 m004 25*Pi+3*Log[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi]/2 3654345066623145 r005 Im(z^2+c),c=9/20+17/44*I,n=12 3654345071075048 r009 Re(z^3+c),c=-16/29+37/59*I,n=33 3654345091046970 s002 sum(A143166[n]/(n^3*2^n-1),n=1..infinity) 3654345096344022 a008 Real Root of x^4-x^3-29*x^2-3*x+5 3654345112143832 a001 1/38*2^(9/19) 3654345115894215 a007 Real Root Of -357*x^4-946*x^3-711*x^2+473*x+228 3654345126465239 r005 Im(z^2+c),c=-29/106+37/58*I,n=52 3654345141476254 r005 Im(z^2+c),c=-6/25+35/62*I,n=43 3654345142857725 m001 (-Artin+CareFree)/(cos(1)-exp(1/exp(1))) 3654345145841526 r005 Re(z^2+c),c=-23/48+9/37*I,n=35 3654345155767099 h001 (-5*exp(1)-4)/(-9*exp(4)+10) 3654345175454925 m001 (exp(1/Pi)-Zeta(1,2))/(Trott2nd-TwinPrimes) 3654345198742392 m009 (5*Psi(1,2/3)+3)/(1/10*Pi^2-6) 3654345203471529 r005 Re(z^2+c),c=-11/28+8/15*I,n=58 3654345218588638 r005 Re(z^2+c),c=-15/29+1/45*I,n=10 3654345226256946 r005 Im(z^2+c),c=-1/78+23/50*I,n=31 3654345230243595 r005 Im(z^2+c),c=-79/126+19/54*I,n=21 3654345245029813 r002 4th iterates of z^2 + 3654345253619282 r009 Re(z^3+c),c=-47/110+33/56*I,n=7 3654345261263464 r009 Im(z^3+c),c=-49/110+9/32*I,n=21 3654345271371803 m001 Catalan+cos(1/12*Pi)+Pi^(1/2) 3654345271371803 m001 Catalan+cos(Pi/12)+sqrt(Pi) 3654345285357484 m005 (1/3*5^(1/2)-1/2)/(3/11*2^(1/2)+2/7) 3654345296158007 r009 Re(z^3+c),c=-21/52+9/47*I,n=29 3654345301091826 m001 (5^(1/2)+GaussKuzminWirsing)/(Gompertz+Paris) 3654345310305841 m002 -Pi^3-Cosh[Pi]/2+3*Sech[Pi] 3654345316014999 b008 Pi+5*Erfc[2*EulerGamma] 3654345324421890 a007 Real Root Of -192*x^4-19*x^3+443*x^2+764*x-334 3654345339001207 r005 Im(z^2+c),c=-5/32+17/26*I,n=39 3654345339048440 s002 sum(A228939[n]/(n^2*exp(n)+1),n=1..infinity) 3654345358171675 m009 (1/5*Psi(1,2/3)-5)/(4*Psi(1,2/3)-1/4) 3654345361455200 m002 3+Pi^3*Cosh[Pi]+3*Coth[Pi] 3654345372474015 b008 ArcSinh[19+ArcCot[Pi]] 3654345385538854 r005 Im(z^2+c),c=-13/98+19/36*I,n=8 3654345395873100 m001 (FeigenbaumC+Magata)/(Rabbit+Sarnak) 3654345396759696 a001 5/76*18^(35/59) 3654345399702433 a001 47/8*1134903170^(9/17) 3654345414221532 a001 710647/8*55^(6/17) 3654345417034844 a007 Real Root Of -679*x^4+271*x^3-698*x^2+606*x+340 3654345422595310 r005 Im(z^2+c),c=-13/60+23/40*I,n=51 3654345426056252 a007 Real Root Of -17*x^4-149*x^3-987*x^2+545*x+324 3654345432438186 m001 (-KhinchinLevy+Landau)/(LambertW(1)+ln(gamma)) 3654345434950940 m005 (21/4+1/4*5^(1/2))/(7/11*5^(1/2)+1/6) 3654345435988531 b008 1+Pi^2/(1+E) 3654345437869654 r005 Re(z^2+c),c=-57/110+7/39*I,n=7 3654345452410828 r002 40th iterates of z^2 + 3654345463295340 a001 39603/13*55^(31/50) 3654345467509798 m001 (-GAMMA(7/12)+Porter)/(Si(Pi)+Zeta(1,-1)) 3654345473748054 r009 Re(z^3+c),c=-15/82+32/37*I,n=28 3654345475147772 r005 Im(z^2+c),c=-85/82+2/51*I,n=12 3654345493805835 a007 Real Root Of -301*x^4-972*x^3+299*x^2-739*x-449 3654345500648003 m001 Ei(1,1)^FeigenbaumAlpha/(Ei(1,1)^Tribonacci) 3654345501536260 r005 Im(z^2+c),c=37/106+4/27*I,n=45 3654345509153636 r009 Re(z^3+c),c=-51/106+9/31*I,n=59 3654345514055866 m001 GAMMA(1/4)*exp(MinimumGamma)*GAMMA(7/12)^2 3654345529535697 m005 (1/2*gamma+3/5)/(3*gamma+7/10) 3654345535893240 m001 (-Lehmer+Tribonacci)/(exp(1)+ln(2)) 3654345543002848 m009 (8/5*Catalan+1/5*Pi^2+4)/(2*Psi(1,1/3)+1/6) 3654345548077319 r005 Im(z^2+c),c=9/122+23/44*I,n=10 3654345565145828 r005 Re(z^2+c),c=-41/90+22/61*I,n=57 3654345568316809 m001 (Backhouse-BesselI(0,1))/(-Cahen+Champernowne) 3654345571035953 r005 Re(z^2+c),c=43/114+8/41*I,n=32 3654345590537705 a007 Real Root Of 480*x^4+455*x^3-439*x^2-482*x+204 3654345599717505 r009 Im(z^3+c),c=-12/29+10/33*I,n=30 3654345602350020 a007 Real Root Of 588*x^4-672*x^3+720*x^2+543*x+59 3654345605466917 a001 3278735159921/682*521^(9/13) 3654345612018808 m001 Zeta(1/2)/ArtinRank2*KhinchinHarmonic 3654345614255120 m004 Cos[Sqrt[5]*Pi]+(13*Cosh[Sqrt[5]*Pi])/2 3654345615233359 r009 Re(z^3+c),c=-15/46+3/53*I,n=8 3654345621828499 m005 (1/2*gamma-10/11)/(8/11*gamma-1/4) 3654345623505788 a007 Real Root Of -576*x^4+920*x^3-303*x^2+618*x-220 3654345664124061 m008 (1/6*Pi^5-1/2)/(5/6*Pi-4) 3654345668685745 m001 1/exp(GAMMA(5/24))/Trott*LambertW(1)^2 3654345675536519 b008 (3+E)*EulerGamma*ArcTan[2] 3654345690531627 r005 Im(z^2+c),c=3/32+24/61*I,n=39 3654345697795801 m001 (Psi(1,1/3)+Backhouse)/(Khinchin+PlouffeB) 3654345707938516 m001 arctan(1/2)^BesselI(1,2)+ReciprocalFibonacci 3654345709432503 m001 Magata^ErdosBorwein*Magata^ln(gamma) 3654345721876559 l006 ln(5078/5267) 3654345742423042 a007 Real Root Of 605*x^4+754*x^3+551*x^2-34*x-60 3654345746408951 r005 Im(z^2+c),c=-1/18+31/64*I,n=38 3654345754191108 h001 (-9*exp(2)+3)/(-9*exp(3)+7) 3654345758266745 a003 sin(Pi*9/80)/sin(Pi*40/101) 3654345760534585 r002 5th iterates of z^2 + 3654345762716042 m001 (-GAMMA(1/24)+3)/(-BesselJ(1,1)+1) 3654345775774303 r005 Im(z^2+c),c=17/54+11/59*I,n=29 3654345776424273 r005 Im(z^2+c),c=-5/24+32/57*I,n=64 3654345784058875 a007 Real Root Of 189*x^4-719*x^3+319*x^2-558*x+20 3654345786339199 a001 123/233*514229^(39/58) 3654345798453658 m001 (Kolakoski+ZetaQ(4))/(GAMMA(2/3)-exp(Pi)) 3654345809386333 m005 (7/6+1/4*5^(1/2))/(2*exp(1)-5/7) 3654345822380163 m001 Pi*exp(Pi)*cos(1/5*Pi)/ln(5) 3654345827201212 m006 (1/5*Pi^2+5)/(5/6*exp(Pi)-1/5) 3654345828502349 r005 Im(z^2+c),c=-121/102+1/21*I,n=21 3654345831789582 a008 Real Root of x^2-x-133177 3654345845603273 m001 GAMMA(2/3)/BesselK(1,1)/ln(cos(1)) 3654345848799632 a007 Real Root Of 176*x^4+588*x^3-166*x^2+57*x-267 3654345855153819 a001 222915097164383/610 3654345883868962 r005 Re(z^2+c),c=-39/98+21/40*I,n=63 3654345899604300 m001 HardyLittlewoodC3-Totient^gamma(3) 3654345939640501 m001 1/exp(GAMMA(1/6))*Trott*log(1+sqrt(2)) 3654345944936664 m001 (Sierpinski-ThueMorse)/(ln(2)-Paris) 3654345952653485 m001 (Paris-PrimesInBinary)/(Totient-Weierstrass) 3654345955576736 m001 Pi/Psi(2,1/3)/ln(5)/gamma(2) 3654345957642871 r005 Im(z^2+c),c=-59/94+4/49*I,n=24 3654345973296053 r009 Im(z^3+c),c=-73/118+8/27*I,n=5 3654345979405219 a007 Real Root Of -243*x^4-729*x^3+800*x^2+779*x-77 3654345986105116 a001 365435296162/843*1364^(14/15) 3654345986468720 m005 (1/2*Zeta(3)+4/7)/(-17/42+1/6*5^(1/2)) 3654345990019642 m001 sin(1)/(GAMMA(13/24)+LaplaceLimit) 3654346000423213 m008 (3*Pi^6-2/5)/(5/6*Pi^2-1/3) 3654346014372923 l006 ln(232/8965) 3654346020727507 a007 Real Root Of -541*x^4+500*x^3-979*x^2+374*x+15 3654346021033761 m001 exp(BesselJ(1,1))^2*MinimumGamma*Zeta(5) 3654346024992115 v003 sum((24+15/2*n^2-43/2*n)*n!/n^n,n=1..infinity) 3654346067823195 r005 Im(z^2+c),c=7/24+13/59*I,n=26 3654346075331660 a003 cos(Pi*1/55)-cos(Pi*3/34) 3654346117050237 a001 591286729879/843*1364^(13/15) 3654346117953490 m001 1/GAMMA(1/3)^2*Riemann1stZero/exp(Zeta(1/2))^2 3654346129225378 a001 76/123*(1/2*5^(1/2)+1/2)^17*123^(7/12) 3654346134837679 m005 (1/2*gamma-2/9)/(7/11*2^(1/2)+11/12) 3654346143387846 a007 Real Root Of -252*x^4+681*x^3+829*x^2+308*x-252 3654346155180360 a001 21/2206*11^(23/41) 3654346158637824 m001 CopelandErdos*Riemann1stZero+FellerTornier 3654346161542620 r005 Im(z^2+c),c=-17/86+34/61*I,n=52 3654346165775833 m001 1/GAMMA(1/6)*BesselK(1,1)^2/exp(gamma) 3654346167364153 l006 ln(6490/9353) 3654346196285777 r005 Re(z^2+c),c=-14/31+11/29*I,n=36 3654346210897849 m001 Magata*Kolakoski^2/exp(sqrt(Pi)) 3654346219620923 s002 sum(A029444[n]/((2^n+1)/n),n=1..infinity) 3654346231118380 a007 Real Root Of 827*x^4-978*x^3+772*x^2-896*x-493 3654346240584711 s001 sum(exp(-3*Pi/4)^n*A065545[n],n=1..infinity) 3654346247995362 a001 956722026041/843*1364^(4/5) 3654346278559177 r002 9th iterates of z^2 + 3654346282669287 m005 (1/3*3^(1/2)-1/8)/(23/24+1/8*5^(1/2)) 3654346283586278 a001 54018521/610*89^(6/19) 3654346283796947 m001 gamma(2)*Grothendieck+ZetaQ(2) 3654346285148763 l006 ln(9287/9321) 3654346303628521 p004 log(33923/23539) 3654346305211009 r005 Im(z^2+c),c=-51/62+6/31*I,n=23 3654346307831233 m001 1/GAMMA(5/24)*Tribonacci/ln(Pi) 3654346307831233 m001 Tribonacci/Pi/csc(5/24*Pi)*GAMMA(19/24)/ln(Pi) 3654346355499936 l006 ln(5683/8190) 3654346360814880 r005 Im(z^2+c),c=-75/62+3/59*I,n=64 3654346366635087 r005 Re(z^2+c),c=-55/122+22/61*I,n=8 3654346367241426 m001 (sin(1/5*Pi)-GAMMA(3/4))/(ln(3)+MasserGramain) 3654346371593568 v002 sum(1/(2^n+(32*n^2-56*n+88)),n=1..infinity) 3654346378480922 r009 Re(z^3+c),c=-35/86+9/46*I,n=19 3654346378940493 a001 516002918640/281*1364^(11/15) 3654346385890385 a007 Real Root Of 499*x^4+698*x^3-776*x^2-893*x+387 3654346392428119 a001 317811/76*18^(3/4) 3654346397656547 m001 (5^(1/2))^(Cahen*FeigenbaumAlpha) 3654346397656547 m001 sqrt(5)^(FeigenbaumAlpha*Cahen) 3654346408539594 m001 (DuboisRaymond-ThueMorse)/Gompertz 3654346411316196 r005 Im(z^2+c),c=33/106+11/56*I,n=62 3654346413618635 m009 (5/12*Pi^2-4/5)/(3/4*Psi(1,3/4)-1) 3654346424357657 m001 (Niven-Thue)/(GAMMA(5/6)+KhinchinLevy) 3654346434203001 r005 Im(z^2+c),c=-9/98+14/23*I,n=27 3654346445621814 m005 (1/2*Zeta(3)+5/7)/(1/3*Zeta(3)-4) 3654346449101010 a001 7/5*1836311903^(6/23) 3654346452478875 p003 LerchPhi(1/100,2,300/181) 3654346453025215 m001 cos(1)/BesselJ(1,1)/ReciprocalFibonacci 3654346458206370 a001 23184*29^(5/37) 3654346464248393 r005 Im(z^2+c),c=-29/98+31/54*I,n=37 3654346471136001 p004 log(15217/10559) 3654346474321108 r005 Re(z^2+c),c=-13/22+52/127*I,n=63 3654346476136625 m001 (Conway-StronglyCareFree)/(ln(5)+Zeta(1,-1)) 3654346482348375 r009 Re(z^3+c),c=-27/44+34/63*I,n=5 3654346483962708 a007 Real Root Of -547*x^4+579*x^3-258*x^2+985*x-344 3654346494556115 m005 (1/2*exp(1)-10/11)/(11/12*5^(1/2)-9/11) 3654346507448714 r005 Im(z^2+c),c=-95/94+16/59*I,n=32 3654346509849541 m001 GAMMA(5/6)^GAMMA(11/24)/(gamma^GAMMA(11/24)) 3654346509885628 a001 2504730781961/843*1364^(2/3) 3654346533623028 r002 21th iterates of z^2 + 3654346547460354 a008 Real Root of x^4-32*x^2+249 3654346556369496 r009 Im(z^3+c),c=-21/52+24/35*I,n=3 3654346586094706 r005 Im(z^2+c),c=11/42+13/51*I,n=57 3654346589238261 a001 47/20365011074*46368^(9/10) 3654346589544187 a001 47/1548008755920*5702887^(9/10) 3654346591342294 r005 Im(z^2+c),c=-7/26+2/37*I,n=6 3654346605910355 l006 ln(4876/7027) 3654346616881337 r005 Re(z^2+c),c=-23/52+25/61*I,n=48 3654346617062398 m001 (Backhouse-Sarnak)/(Tetranacci+ZetaP(4)) 3654346618427474 r002 16th iterates of z^2 + 3654346620711406 r009 Im(z^3+c),c=-3/110+12/29*I,n=9 3654346637268752 r005 Im(z^2+c),c=-29/110+20/27*I,n=8 3654346640830767 a001 4052739537881/843*1364^(3/5) 3654346641058425 a001 10610209857723/1364*521^(8/13) 3654346648752565 r005 Im(z^2+c),c=-15/106+33/62*I,n=27 3654346681087569 a007 Real Root Of 524*x^4-535*x^3-254*x^2-866*x-318 3654346684282990 r005 Im(z^2+c),c=-85/66+1/56*I,n=12 3654346694429984 q001 702/1921 3654346694429984 r005 Im(z^2+c),c=-35/34+39/113*I,n=2 3654346697526843 m003 -35/2+Sqrt[5]/4096-Tan[1/2+Sqrt[5]/2] 3654346706492466 r005 Re(z^2+c),c=-14/29+10/49*I,n=19 3654346710084361 m001 (2^(1/3)+gamma)/(-LandauRamanujan+MertensB1) 3654346711165339 b008 E-2*ExpIntegralEi[4] 3654346722451834 p001 sum(1/(557*n+274)/(256^n),n=0..infinity) 3654346729385817 r009 Re(z^3+c),c=-37/102+44/63*I,n=26 3654346733473208 m005 (1/2*5^(1/2)+3/4)/(1/8*gamma-7/12) 3654346735368242 m001 gamma/(Backhouse+Champernowne) 3654346748196560 r009 Re(z^3+c),c=-1/20+11/28*I,n=11 3654346750015758 r005 Im(z^2+c),c=11/78+9/25*I,n=25 3654346764850461 a007 Real Root Of -978*x^4+804*x^3-551*x^2+968*x+484 3654346771775912 a001 6557470319842/843*1364^(8/15) 3654346776068066 m005 (1/2*Zeta(3)-9/11)/(2/11*exp(1)+1/10) 3654346777738513 a007 Real Root Of -681*x^4+262*x^3-395*x^2+633*x+309 3654346780377627 m001 cos(Pi/12)^2*exp(BesselK(1,1))^2*sinh(1) 3654346786831345 r009 Im(z^3+c),c=-8/15+36/59*I,n=30 3654346792441825 r009 Re(z^3+c),c=-5/14+4/27*I,n=3 3654346796259642 a001 2584/271443*11^(23/41) 3654346797033453 m001 ln(KhintchineLevy)^2/Khintchine*FeigenbaumC^2 3654346799292738 r005 Re(z^2+c),c=-37/70+5/26*I,n=7 3654346800271265 r009 Re(z^3+c),c=-17/40+9/41*I,n=27 3654346802621535 m006 (1/4*exp(Pi)+5)/(5/6*Pi+1/3) 3654346803487246 a007 Real Root Of 238*x^4+825*x^3+28*x^2+946*x+900 3654346806907122 m008 (1/4*Pi^6-3/5)/(2/3*Pi^4+2/3) 3654346812838717 m001 (-Otter+Porter)/(exp(1)+FeigenbaumKappa) 3654346835250746 a007 Real Root Of 268*x^4+946*x^3-254*x^2-238*x+894 3654346860332817 r005 Re(z^2+c),c=-57/118+12/55*I,n=35 3654346871110827 m005 (1/2*Pi+1/3)/(3/11*gamma+4/11) 3654346873022444 r005 Re(z^2+c),c=-9/19+11/40*I,n=33 3654346873519889 a007 Real Root Of -319*x^4+911*x^3+338*x^2+178*x-7 3654346876701474 v002 sum(1/(2^n+(1/2*n^3+5/2*n^2-n)),n=1..infinity) 3654346879455328 a007 Real Root Of -228*x^4-655*x^3+794*x^2+566*x+161 3654346889791849 a001 6765/710647*11^(23/41) 3654346901814373 r005 Re(z^2+c),c=-12/25+17/37*I,n=37 3654346902721061 a001 3536736619241/281*1364^(7/15) 3654346903438014 a001 17711/1860498*11^(23/41) 3654346905428962 a001 46368/4870847*11^(23/41) 3654346906659436 a001 28657/3010349*11^(23/41) 3654346911871808 a001 10946/1149851*11^(23/41) 3654346917477693 r005 Im(z^2+c),c=-21/86+32/57*I,n=6 3654346921241591 l006 ln(123/4753) 3654346925569116 r002 3th iterates of z^2 + 3654346931551042 a007 Real Root Of -413*x^4+913*x^3-935*x^2+879*x+498 3654346947597931 a001 4181/439204*11^(23/41) 3654346955647974 l006 ln(4069/5864) 3654346968205708 b008 1/5+Haversine[(4*Pi)/15] 3654346968294111 m001 (gamma(1)-GAMMA(11/12))/(Bloch-Weierstrass) 3654346975194047 r005 Re(z^2+c),c=29/74+23/61*I,n=13 3654346975828611 r002 3th iterates of z^2 + 3654346983003190 p001 sum(1/(602*n+275)/(64^n),n=0..infinity) 3654347036810974 r005 Re(z^2+c),c=-49/102+7/29*I,n=25 3654347069088291 a001 329/281*3461452808002^(11/12) 3654347082312020 m001 1/GAMMA(23/24)/ln(GAMMA(1/12))^2*sqrt(5) 3654347085524019 h001 (1/7*exp(1)+2/7)/(4/9*exp(1)+7/11) 3654347087356382 a001 956722026041/322*322^(5/6) 3654347117403012 m004 6+Sqrt[5]*Pi-(15625*Cos[Sqrt[5]*Pi])/Pi 3654347138006296 m008 (1/3*Pi^3+4)/(4*Pi^2-1/4) 3654347138357645 a001 1/492*(1/2*5^(1/2)+1/2)^4*4^(16/23) 3654347145738924 a007 Real Root Of -368*x^4+13*x^3-176*x^2+217*x+110 3654347157260555 r009 Re(z^3+c),c=-21/52+9/47*I,n=33 3654347178428590 r005 Re(z^2+c),c=-19/46+27/58*I,n=32 3654347192468428 a001 1597/167761*11^(23/41) 3654347201775749 a007 Real Root Of 163*x^4+704*x^3+376*x^2-110*x-136 3654347211055701 m005 (1/2*Zeta(3)-5/6)/(3/11*2^(1/2)+1/4) 3654347211493680 r005 Im(z^2+c),c=1/50+26/59*I,n=41 3654347222014033 a007 Real Root Of -265*x^4-914*x^3+10*x^2-514*x+643 3654347223537327 r005 Im(z^2+c),c=-9/16+6/91*I,n=63 3654347242071937 r005 Im(z^2+c),c=1/29+19/44*I,n=25 3654347242815002 r005 Re(z^2+c),c=-15/22+2/115*I,n=10 3654347248910021 m007 (-gamma-2*ln(2)-1/4)/(-3*gamma-6*ln(2)-1/6) 3654347254194358 a007 Real Root Of 264*x^4-835*x^3-125*x^2-485*x-206 3654347255738317 m001 1/GAMMA(19/24)/exp(TreeGrowth2nd)/GAMMA(3/4)^2 3654347262861481 r009 Re(z^3+c),c=-37/78+13/46*I,n=22 3654347265093543 a001 199/5*377^(16/21) 3654347265625105 r005 Im(z^2+c),c=19/82+12/43*I,n=12 3654347270672876 r005 Im(z^2+c),c=-1/5+21/34*I,n=32 3654347274728197 r005 Im(z^2+c),c=-43/90+1/12*I,n=8 3654347274988593 r005 Im(z^2+c),c=11/42+13/51*I,n=50 3654347275781018 m001 (-Pi^(1/2)+Kolakoski)/(5^(1/2)+BesselJ(1,1)) 3654347277763932 m001 (cos(1)+sin(1/12*Pi))/(-Artin+Lehmer) 3654347283326941 m001 (BesselI(1,2)-Cahen)/(Pi+ln(gamma)) 3654347284469769 r002 33th iterates of z^2 + 3654347285887937 m004 E^(Sqrt[5]*Pi)/4+25*Pi+3*Log[Sqrt[5]*Pi] 3654347295960711 a007 Real Root Of 992*x^4-30*x^3-293*x^2-996*x-344 3654347298636529 a007 Real Root Of -895*x^4+952*x^3+387*x^2+659*x-323 3654347317691085 m001 (sqrt(2)+BesselJZeros(0,1))^Khinchin 3654347347469647 a007 Real Root Of 299*x^4-711*x^3-374*x^2-333*x+201 3654347362808844 r005 Im(z^2+c),c=11/42+13/51*I,n=56 3654347380824135 a007 Real Root Of -209*x^4-545*x^3+762*x^2+31*x+613 3654347385050488 m001 (Ei(1,1)+FeigenbaumAlpha)/(Catalan-sin(1)) 3654347390034565 r009 Re(z^3+c),c=-10/23+13/56*I,n=39 3654347412360240 m001 (BesselI(0,2)+polylog(4,1/2))^(2^(1/3)) 3654347416925009 m001 HeathBrownMoroz*(GAMMA(23/24)+MadelungNaCl) 3654347445174120 m005 (1/2*Pi+2)/(1/2*3^(1/2)+1/9) 3654347448653360 m008 (1/4*Pi^3-3)/(2/5*Pi^3+3/5) 3654347453952859 a007 Real Root Of -99*x^4-238*x^3+318*x^2-544*x-194 3654347455356055 q001 3/82094 3654347457567314 m001 (GAMMA(2/3)+2*Pi/GAMMA(5/6))/(MertensB2+Thue) 3654347460021179 m001 exp(log(1+sqrt(2)))/cos(Pi/12)^2/sin(1)^2 3654347462555698 m001 (Zeta(3)+Zeta(5))/(Ei(1)-GlaisherKinkelin) 3654347471758369 s002 sum(A051623[n]/((exp(n)-1)/n),n=1..infinity) 3654347478431713 l006 ln(3262/4701) 3654347482949443 r002 29th iterates of z^2 + 3654347486276326 r005 Re(z^2+c),c=-37/82+23/64*I,n=21 3654347489887627 r005 Re(z^2+c),c=15/46+35/61*I,n=55 3654347498825793 r009 Re(z^3+c),c=-5/23+32/41*I,n=6 3654347507404440 m001 (-PlouffeB+Weierstrass)/(Shi(1)+Kolakoski) 3654347521885151 m001 Salem*exp(CareFree)^2/log(2+sqrt(3)) 3654347531545035 r005 Im(z^2+c),c=-41/58+2/41*I,n=53 3654347532760425 a001 583599300981840/1597 3654347534352890 r005 Im(z^2+c),c=-1/50+13/28*I,n=52 3654347542643449 a007 Real Root Of 184*x^4+458*x^3-667*x^2+325*x-368 3654347549624673 a001 139583862445/843*3571^(16/17) 3654347549758224 r005 Re(z^2+c),c=-79/82+1/27*I,n=6 3654347566481708 a001 267913919*3571^(15/17) 3654347575653308 p004 log(24847/643) 3654347583338743 a001 365435296162/843*3571^(14/17) 3654347588061297 m001 (Weierstrass+ZetaP(4))/(MertensB1-ThueMorse) 3654347600195777 a001 591286729879/843*3571^(13/17) 3654347604777400 m001 exp(PrimesInBinary)/Paris*cosh(1)^2 3654347617052812 a001 956722026041/843*3571^(12/17) 3654347619453500 a008 Real Root of x^2-x-133908 3654347620068439 m001 Paris^2*ArtinRank2^2/exp(sin(Pi/12)) 3654347630535056 r009 Re(z^3+c),c=-21/52+9/47*I,n=34 3654347633909847 a001 516002918640/281*3571^(11/17) 3654347639396244 r009 Im(z^3+c),c=-35/86+13/22*I,n=57 3654347650510262 r005 Re(z^2+c),c=-29/114+19/31*I,n=47 3654347650766882 a001 2504730781961/843*3571^(10/17) 3654347652297512 h001 (-exp(-3)-8)/(-7*exp(1)-3) 3654347656328886 m001 (Zeta(1,-1)+GaussAGM)/FeigenbaumC 3654347657657855 m008 (1/6*Pi-3/4)/(1/5*Pi^5+3/4) 3654347666589671 m005 (1/2*3^(1/2)-3/10)/(7/12*gamma-2/11) 3654347667623917 a001 4052739537881/843*3571^(9/17) 3654347674330423 m001 (-GolombDickman+2/3)/(-sin(1)+2) 3654347679415333 m001 (FeigenbaumD-TwinPrimes)^Tribonacci 3654347684480952 a001 6557470319842/843*3571^(8/17) 3654347692678653 a003 sin(Pi*1/87)/cos(Pi*5/101) 3654347694711519 r009 Re(z^3+c),c=-21/52+9/47*I,n=32 3654347695068091 r005 Im(z^2+c),c=9/98+15/38*I,n=35 3654347701337987 a001 3536736619241/281*3571^(7/17) 3654347705992280 a007 Real Root Of 192*x^4+590*x^3-323*x^2+178*x-484 3654347708093920 r009 Im(z^3+c),c=-17/122+25/62*I,n=13 3654347708988164 m005 (1/2*exp(1)+3/5)/(2/7*5^(1/2)-6) 3654347710239369 a007 Real Root Of 734*x^4+596*x^3+230*x^2-967*x+35 3654347718227211 m008 (3/5*Pi^2-1/2)/(1/2*Pi^3-2/3) 3654347723492715 r005 Re(z^2+c),c=29/106+2/37*I,n=26 3654347727632270 r009 Re(z^3+c),c=-21/52+9/47*I,n=38 3654347730446786 l006 ln(260/10047) 3654347746704009 a001 3571/144*28657^(18/37) 3654347754958230 r009 Re(z^3+c),c=-21/52+9/47*I,n=37 3654347761375887 m001 Pi/exp(Pi)*(ln(2+3^(1/2))+exp(1/Pi)) 3654347765904136 m001 1/GAMMA(5/12)*ln(GAMMA(17/24))^2/cos(Pi/5) 3654347769354411 m001 1/exp(Trott)^2/FeigenbaumD*Zeta(9) 3654347769563390 m006 (1/4/Pi-3/4)/(4/5*exp(Pi)-1/6) 3654347774020203 a003 sin(Pi*13/111)/sin(Pi*51/115) 3654347777520059 a001 1527882805781137/4181 3654347779727818 a001 53316291173/843*9349^(18/19) 3654347781928341 a001 86267571272/843*9349^(17/19) 3654347784128864 a001 139583862445/843*9349^(16/19) 3654347786329388 a001 267913919*9349^(15/19) 3654347788529911 a001 365435296162/843*9349^(14/19) 3654347788799692 r009 Re(z^3+c),c=-21/52+9/47*I,n=42 3654347789335187 r009 Re(z^3+c),c=-21/52+9/47*I,n=43 3654347790683685 r009 Re(z^3+c),c=-21/52+9/47*I,n=39 3654347790730434 a001 591286729879/843*9349^(13/19) 3654347792930957 a001 956722026041/843*9349^(12/19) 3654347795037813 r009 Re(z^3+c),c=-21/52+9/47*I,n=47 3654347795131480 a001 516002918640/281*9349^(11/19) 3654347795458920 r009 Re(z^3+c),c=-21/52+9/47*I,n=48 3654347795928509 r009 Re(z^3+c),c=-21/52+9/47*I,n=52 3654347796008575 r009 Re(z^3+c),c=-21/52+9/47*I,n=53 3654347796039654 r009 Re(z^3+c),c=-21/52+9/47*I,n=57 3654347796048560 r009 Re(z^3+c),c=-21/52+9/47*I,n=56 3654347796051237 r009 Re(z^3+c),c=-21/52+9/47*I,n=58 3654347796052243 r009 Re(z^3+c),c=-21/52+9/47*I,n=62 3654347796052511 r009 Re(z^3+c),c=-21/52+9/47*I,n=61 3654347796053700 r009 Re(z^3+c),c=-21/52+9/47*I,n=63 3654347796054282 r009 Re(z^3+c),c=-21/52+9/47*I,n=64 3654347796056290 r009 Re(z^3+c),c=-21/52+9/47*I,n=60 3654347796058629 r009 Re(z^3+c),c=-21/52+9/47*I,n=59 3654347796064849 r009 Re(z^3+c),c=-21/52+9/47*I,n=51 3654347796083963 r009 Re(z^3+c),c=-21/52+9/47*I,n=55 3654347796090232 r009 Re(z^3+c),c=-21/52+9/47*I,n=54 3654347796276183 r009 Re(z^3+c),c=-21/52+9/47*I,n=49 3654347796368834 r009 Re(z^3+c),c=-21/52+9/47*I,n=50 3654347796703772 r009 Re(z^3+c),c=-21/52+9/47*I,n=46 3654347796841818 r009 Re(z^3+c),c=-21/52+9/47*I,n=44 3654347797332004 a001 2504730781961/843*9349^(10/19) 3654347799054725 r009 Re(z^3+c),c=-21/52+9/47*I,n=45 3654347799532527 a001 4052739537881/843*9349^(9/19) 3654347801733050 a001 6557470319842/843*9349^(8/19) 3654347803367259 a001 2255/281*14662949395604^(17/21) 3654347803367259 a001 2255/281*192900153618^(17/18) 3654347803933573 a001 3536736619241/281*9349^(7/19) 3654347806743163 r009 Re(z^3+c),c=-21/52+9/47*I,n=41 3654347813230011 a001 307696085873967/842 3654347813527723 a001 20365011074/843*24476^(20/21) 3654347813818199 a001 10983760033/281*24476^(19/21) 3654347814108674 a001 53316291173/843*24476^(6/7) 3654347814399150 a001 86267571272/843*24476^(17/21) 3654347814689626 a001 139583862445/843*24476^(16/21) 3654347814980101 a001 267913919*24476^(5/7) 3654347815270577 a001 365435296162/843*24476^(2/3) 3654347815561052 a001 591286729879/843*24476^(13/21) 3654347815851528 a001 956722026041/843*24476^(4/7) 3654347816142004 a001 516002918640/281*24476^(11/21) 3654347816432479 a001 2504730781961/843*24476^(10/21) 3654347816722955 a001 4052739537881/843*24476^(3/7) 3654347817007247 a001 17711/843*14662949395604^(7/9) 3654347817007247 a001 17711/843*505019158607^(7/8) 3654347817013431 a001 6557470319842/843*24476^(8/21) 3654347817195020 a001 192900153618/233*34^(8/19) 3654347817303906 a001 3536736619241/281*24476^(1/3) 3654347818485954 a001 7778742049/843*64079^(22/23) 3654347818524649 a001 12586269025/843*64079^(21/23) 3654347818563343 a001 20365011074/843*64079^(20/23) 3654347818602038 a001 10983760033/281*64079^(19/23) 3654347818640732 a001 53316291173/843*64079^(18/23) 3654347818679427 a001 86267571272/843*64079^(17/23) 3654347818718122 a001 139583862445/843*64079^(16/23) 3654347818756816 a001 267913919*64079^(15/23) 3654347818795511 a001 365435296162/843*64079^(14/23) 3654347818834205 a001 591286729879/843*64079^(13/23) 3654347818872900 a001 956722026041/843*64079^(12/23) 3654347818911595 a001 516002918640/281*64079^(11/23) 3654347818950289 a001 2504730781961/843*64079^(10/23) 3654347818988984 a001 4052739537881/843*64079^(9/23) 3654347819027679 a001 6557470319842/843*64079^(8/23) 3654347819066373 a001 3536736619241/281*64079^(7/23) 3654347819233359 a001 20365011074/843*167761^(4/5) 3654347819259328 a001 267913919*167761^(3/5) 3654347819285297 a001 2504730781961/843*167761^(2/5) 3654347819287639 a001 121393/843*45537549124^(15/17) 3654347819287639 a001 121393/843*312119004989^(9/11) 3654347819287639 a001 121393/843*14662949395604^(5/7) 3654347819287639 a001 121393/843*192900153618^(5/6) 3654347819287639 a001 121393/843*28143753123^(9/10) 3654347819287639 a001 121393/843*10749957122^(15/16) 3654347819320396 a001 2971215073/843*439204^(8/9) 3654347819322501 a001 12586269025/843*439204^(7/9) 3654347819324606 a001 53316291173/843*439204^(2/3) 3654347819326711 a001 267913919*439204^(5/9) 3654347819328816 a001 956722026041/843*439204^(4/9) 3654347819330921 a001 4052739537881/843*439204^(1/3) 3654347819337082 a001 726103/281*2537720636^(13/15) 3654347819337082 a001 726103/281*45537549124^(13/17) 3654347819337082 a001 726103/281*14662949395604^(13/21) 3654347819337082 a001 726103/281*192900153618^(13/18) 3654347819337082 a001 726103/281*73681302247^(3/4) 3654347819337082 a001 726103/281*10749957122^(13/16) 3654347819337082 a001 726103/281*599074578^(13/14) 3654347819337182 a001 165580141/843*7881196^(10/11) 3654347819337187 a001 233802911/281*7881196^(9/11) 3654347819337193 a001 2971215073/843*7881196^(8/11) 3654347819337196 a001 7778742049/843*7881196^(2/3) 3654347819337198 a001 12586269025/843*7881196^(7/11) 3654347819337203 a001 53316291173/843*7881196^(6/11) 3654347819337209 a001 267913919*7881196^(5/11) 3654347819337214 a001 956722026041/843*7881196^(4/11) 3654347819337216 a001 516002918640/281*7881196^(1/3) 3654347819337220 a001 4052739537881/843*7881196^(3/11) 3654347819337228 a001 165580141/843*20633239^(6/7) 3654347819337229 a001 433494437/843*20633239^(4/5) 3654347819337229 a001 1836311903/843*20633239^(5/7) 3654347819337230 a001 12586269025/843*20633239^(3/5) 3654347819337231 a001 20365011074/843*20633239^(4/7) 3654347819337232 a001 267913919*20633239^(3/7) 3654347819337232 a001 365435296162/843*20633239^(2/5) 3654347819337232 a001 4976784/281*2537720636^(7/9) 3654347819337232 a001 4976784/281*17393796001^(5/7) 3654347819337232 a001 4976784/281*312119004989^(7/11) 3654347819337232 a001 4976784/281*14662949395604^(5/9) 3654347819337232 a001 4976784/281*505019158607^(5/8) 3654347819337232 a001 4976784/281*28143753123^(7/10) 3654347819337232 a001 4976784/281*599074578^(5/6) 3654347819337232 a001 4976784/281*228826127^(7/8) 3654347819337233 a001 2504730781961/843*20633239^(2/7) 3654347819337234 a001 3536736619241/281*20633239^(1/5) 3654347819337235 a001 39088169/843*141422324^(11/13) 3654347819337235 a001 39088169/843*2537720636^(11/15) 3654347819337235 a001 39088169/843*45537549124^(11/17) 3654347819337235 a001 39088169/843*312119004989^(3/5) 3654347819337235 a001 39088169/843*817138163596^(11/19) 3654347819337235 a001 39088169/843*14662949395604^(11/21) 3654347819337235 a001 39088169/843*192900153618^(11/18) 3654347819337235 a001 39088169/843*10749957122^(11/16) 3654347819337235 a001 39088169/843*1568397607^(3/4) 3654347819337235 a001 39088169/843*599074578^(11/14) 3654347819337235 a001 233802911/281*141422324^(9/13) 3654347819337235 a001 1134903170/843*141422324^(2/3) 3654347819337235 a001 165580141/843*141422324^(10/13) 3654347819337235 a001 2971215073/843*141422324^(8/13) 3654347819337235 a001 12586269025/843*141422324^(7/13) 3654347819337235 a001 53316291173/843*141422324^(6/13) 3654347819337235 a001 267913919*141422324^(5/13) 3654347819337235 a001 34111385/281*9062201101803^(1/2) 3654347819337236 a001 591286729879/843*141422324^(1/3) 3654347819337236 a001 956722026041/843*141422324^(4/13) 3654347819337236 a001 4052739537881/843*141422324^(3/13) 3654347819337236 a001 267914296/843*1322157322203^(1/2) 3654347819337236 a001 233802911/281*2537720636^(3/5) 3654347819337236 a001 233802911/281*45537549124^(9/17) 3654347819337236 a001 233802911/281*817138163596^(9/19) 3654347819337236 a001 233802911/281*14662949395604^(3/7) 3654347819337236 a001 233802911/281*192900153618^(1/2) 3654347819337236 a001 233802911/281*10749957122^(9/16) 3654347819337236 a001 1836311903/843*2537720636^(5/9) 3654347819337236 a001 12586269025/843*2537720636^(7/15) 3654347819337236 a001 20365011074/843*2537720636^(4/9) 3654347819337236 a001 53316291173/843*2537720636^(2/5) 3654347819337236 a001 2971215073/843*2537720636^(8/15) 3654347819337236 a001 1836311903/843*312119004989^(5/11) 3654347819337236 a001 1836311903/843*3461452808002^(5/12) 3654347819337236 a001 1836311903/843*28143753123^(1/2) 3654347819337236 a001 267913919*2537720636^(1/3) 3654347819337236 a001 956722026041/843*2537720636^(4/15) 3654347819337236 a001 2504730781961/843*2537720636^(2/9) 3654347819337236 a001 4052739537881/843*2537720636^(1/5) 3654347819337236 a001 12586269025/843*17393796001^(3/7) 3654347819337236 a001 12586269025/843*45537549124^(7/17) 3654347819337236 a001 12586269025/843*14662949395604^(1/3) 3654347819337236 a001 12586269025/843*192900153618^(7/18) 3654347819337236 a001 365435296162/843*17393796001^(2/7) 3654347819337236 a001 3536736619241/281*17393796001^(1/7) 3654347819337236 a001 10983760033/281*817138163596^(1/3) 3654347819337236 a001 267913919*45537549124^(5/17) 3654347819337236 a001 956722026041/843*45537549124^(4/17) 3654347819337236 a001 53316291173/843*45537549124^(6/17) 3654347819337236 a001 4052739537881/843*45537549124^(3/17) 3654347819337236 a001 267913919*312119004989^(3/11) 3654347819337236 a001 267913919*14662949395604^(5/21) 3654347819337236 a001 2504730781961/843*312119004989^(2/11) 3654347819337236 a001 3536736619241/281*14662949395604^(1/9) 3654347819337236 a001 267913919*192900153618^(5/18) 3654347819337236 a001 956722026041/843*192900153618^(2/9) 3654347819337236 a001 139583862445/843*23725150497407^(1/4) 3654347819337236 a001 6557470319842/843*73681302247^(2/13) 3654347819337236 a001 591286729879/843*73681302247^(1/4) 3654347819337236 a001 139583862445/843*73681302247^(4/13) 3654347819337236 a001 53316291173/843*14662949395604^(2/7) 3654347819337236 a001 53316291173/843*192900153618^(1/3) 3654347819337236 a001 2504730781961/843*28143753123^(1/5) 3654347819337236 a001 267913919*28143753123^(3/10) 3654347819337236 a001 20365011074/843*23725150497407^(5/16) 3654347819337236 a001 20365011074/843*505019158607^(5/14) 3654347819337236 a001 20365011074/843*73681302247^(5/13) 3654347819337236 a001 20365011074/843*28143753123^(2/5) 3654347819337236 a001 6557470319842/843*10749957122^(1/6) 3654347819337236 a001 4052739537881/843*10749957122^(3/16) 3654347819337236 a001 2504730781961/843*10749957122^(5/24) 3654347819337236 a001 956722026041/843*10749957122^(1/4) 3654347819337236 a001 12586269025/843*10749957122^(7/16) 3654347819337236 a001 365435296162/843*10749957122^(7/24) 3654347819337236 a001 267913919*10749957122^(5/16) 3654347819337236 a001 139583862445/843*10749957122^(1/3) 3654347819337236 a001 7778742049/843*312119004989^(2/5) 3654347819337236 a001 53316291173/843*10749957122^(3/8) 3654347819337236 a001 20365011074/843*10749957122^(5/12) 3654347819337236 a001 7778742049/843*10749957122^(11/24) 3654347819337236 a001 6557470319842/843*4106118243^(4/23) 3654347819337236 a001 2504730781961/843*4106118243^(5/23) 3654347819337236 a001 956722026041/843*4106118243^(6/23) 3654347819337236 a001 365435296162/843*4106118243^(7/23) 3654347819337236 a001 139583862445/843*4106118243^(8/23) 3654347819337236 a001 1602508992/281*4106118243^(1/2) 3654347819337236 a001 2971215073/843*45537549124^(8/17) 3654347819337236 a001 2971215073/843*14662949395604^(8/21) 3654347819337236 a001 2971215073/843*192900153618^(4/9) 3654347819337236 a001 2971215073/843*73681302247^(6/13) 3654347819337236 a001 53316291173/843*4106118243^(9/23) 3654347819337236 a001 20365011074/843*4106118243^(10/23) 3654347819337236 a001 2971215073/843*10749957122^(1/2) 3654347819337236 a001 7778742049/843*4106118243^(11/23) 3654347819337236 a001 2971215073/843*4106118243^(12/23) 3654347819337236 a001 6557470319842/843*1568397607^(2/11) 3654347819337236 a001 2504730781961/843*1568397607^(5/22) 3654347819337236 a001 516002918640/281*1568397607^(1/4) 3654347819337236 a001 956722026041/843*1568397607^(3/11) 3654347819337236 a001 365435296162/843*1568397607^(7/22) 3654347819337236 a001 139583862445/843*1568397607^(4/11) 3654347819337236 a001 1134903170/843*73681302247^(1/2) 3654347819337236 a001 1134903170/843*10749957122^(13/24) 3654347819337236 a001 53316291173/843*1568397607^(9/22) 3654347819337236 a001 20365011074/843*1568397607^(5/11) 3654347819337236 a001 1134903170/843*4106118243^(13/23) 3654347819337236 a001 7778742049/843*1568397607^(1/2) 3654347819337236 a001 2971215073/843*1568397607^(6/11) 3654347819337236 a001 1134903170/843*1568397607^(13/22) 3654347819337236 a001 3536736619241/281*599074578^(1/6) 3654347819337236 a001 6557470319842/843*599074578^(4/21) 3654347819337236 a001 4052739537881/843*599074578^(3/14) 3654347819337236 a001 2504730781961/843*599074578^(5/21) 3654347819337236 a001 956722026041/843*599074578^(2/7) 3654347819337236 a001 365435296162/843*599074578^(1/3) 3654347819337236 a001 267913919*599074578^(5/14) 3654347819337236 a001 139583862445/843*599074578^(8/21) 3654347819337236 a001 433494437/843*17393796001^(4/7) 3654347819337236 a001 433494437/843*14662949395604^(4/9) 3654347819337236 a001 433494437/843*505019158607^(1/2) 3654347819337236 a001 433494437/843*73681302247^(7/13) 3654347819337236 a001 433494437/843*10749957122^(7/12) 3654347819337236 a001 433494437/843*4106118243^(14/23) 3654347819337236 a001 53316291173/843*599074578^(3/7) 3654347819337236 a001 433494437/843*1568397607^(7/11) 3654347819337236 a001 20365011074/843*599074578^(10/21) 3654347819337236 a001 233802911/281*599074578^(9/14) 3654347819337236 a001 12586269025/843*599074578^(1/2) 3654347819337236 a001 7778742049/843*599074578^(11/21) 3654347819337236 a001 2971215073/843*599074578^(4/7) 3654347819337236 a001 1134903170/843*599074578^(13/21) 3654347819337236 a001 433494437/843*599074578^(2/3) 3654347819337236 a001 6557470319842/843*228826127^(1/5) 3654347819337236 a001 2504730781961/843*228826127^(1/4) 3654347819337236 a001 956722026041/843*228826127^(3/10) 3654347819337236 a001 365435296162/843*228826127^(7/20) 3654347819337236 a001 267913919*228826127^(3/8) 3654347819337236 a001 165580141/843*2537720636^(2/3) 3654347819337236 a001 165580141/843*45537549124^(10/17) 3654347819337236 a001 165580141/843*312119004989^(6/11) 3654347819337236 a001 165580141/843*14662949395604^(10/21) 3654347819337236 a001 165580141/843*192900153618^(5/9) 3654347819337236 a001 165580141/843*28143753123^(3/5) 3654347819337236 a001 165580141/843*10749957122^(5/8) 3654347819337236 a001 165580141/843*4106118243^(15/23) 3654347819337236 a001 165580141/843*1568397607^(15/22) 3654347819337236 a001 139583862445/843*228826127^(2/5) 3654347819337236 a001 53316291173/843*228826127^(9/20) 3654347819337236 a001 165580141/843*599074578^(5/7) 3654347819337236 a001 20365011074/843*228826127^(1/2) 3654347819337236 a001 7778742049/843*228826127^(11/20) 3654347819337236 a001 2971215073/843*228826127^(3/5) 3654347819337236 a001 1836311903/843*228826127^(5/8) 3654347819337236 a001 1134903170/843*228826127^(13/20) 3654347819337236 a001 433494437/843*228826127^(7/10) 3654347819337236 a001 165580141/843*228826127^(3/4) 3654347819337236 a001 6557470319842/843*87403803^(4/19) 3654347819337236 a001 2504730781961/843*87403803^(5/19) 3654347819337236 a001 956722026041/843*87403803^(6/19) 3654347819337236 a001 365435296162/843*87403803^(7/19) 3654347819337236 a001 63245986/843*23725150497407^(1/2) 3654347819337236 a001 63245986/843*505019158607^(4/7) 3654347819337236 a001 63245986/843*73681302247^(8/13) 3654347819337236 a001 63245986/843*10749957122^(2/3) 3654347819337236 a001 63245986/843*4106118243^(16/23) 3654347819337236 a001 63245986/843*1568397607^(8/11) 3654347819337236 a001 63245986/843*599074578^(16/21) 3654347819337236 a001 139583862445/843*87403803^(8/19) 3654347819337236 a001 53316291173/843*87403803^(9/19) 3654347819337236 a001 63245986/843*228826127^(4/5) 3654347819337236 a001 10983760033/281*87403803^(1/2) 3654347819337236 a001 20365011074/843*87403803^(10/19) 3654347819337236 a001 7778742049/843*87403803^(11/19) 3654347819337236 a001 2971215073/843*87403803^(12/19) 3654347819337236 a001 1134903170/843*87403803^(13/19) 3654347819337236 a001 433494437/843*87403803^(14/19) 3654347819337236 a001 165580141/843*87403803^(15/19) 3654347819337236 a001 63245986/843*87403803^(16/19) 3654347819337236 a001 6557470319842/843*33385282^(2/9) 3654347819337236 a001 4052739537881/843*33385282^(1/4) 3654347819337236 a001 2504730781961/843*33385282^(5/18) 3654347819337237 a001 956722026041/843*33385282^(1/3) 3654347819337237 a001 24157817/843*45537549124^(2/3) 3654347819337237 a001 24157817/843*10749957122^(17/24) 3654347819337237 a001 24157817/843*4106118243^(17/23) 3654347819337237 a001 24157817/843*1568397607^(17/22) 3654347819337237 a001 24157817/843*599074578^(17/21) 3654347819337237 a001 365435296162/843*33385282^(7/18) 3654347819337237 a001 24157817/843*228826127^(17/20) 3654347819337237 a001 267913919*33385282^(5/12) 3654347819337237 a001 139583862445/843*33385282^(4/9) 3654347819337237 a001 53316291173/843*33385282^(1/2) 3654347819337237 a001 24157817/843*87403803^(17/19) 3654347819337237 a001 20365011074/843*33385282^(5/9) 3654347819337237 a001 12586269025/843*33385282^(7/12) 3654347819337238 a001 7778742049/843*33385282^(11/18) 3654347819337238 a001 2971215073/843*33385282^(2/3) 3654347819337238 a001 1134903170/843*33385282^(13/18) 3654347819337238 a001 233802911/281*33385282^(3/4) 3654347819337238 a001 39088169/843*33385282^(11/12) 3654347819337238 a001 433494437/843*33385282^(7/9) 3654347819337238 a001 165580141/843*33385282^(5/6) 3654347819337239 a001 63245986/843*33385282^(8/9) 3654347819337240 a001 24157817/843*33385282^(17/18) 3654347819337241 a001 6557470319842/843*12752043^(4/17) 3654347819337242 a001 2504730781961/843*12752043^(5/17) 3654347819337243 a001 956722026041/843*12752043^(6/17) 3654347819337244 a001 9227465/843*141422324^(12/13) 3654347819337244 a001 9227465/843*2537720636^(4/5) 3654347819337244 a001 9227465/843*45537549124^(12/17) 3654347819337244 a001 9227465/843*14662949395604^(4/7) 3654347819337244 a001 9227465/843*505019158607^(9/14) 3654347819337244 a001 9227465/843*192900153618^(2/3) 3654347819337244 a001 9227465/843*73681302247^(9/13) 3654347819337244 a001 9227465/843*10749957122^(3/4) 3654347819337244 a001 9227465/843*4106118243^(18/23) 3654347819337244 a001 9227465/843*1568397607^(9/11) 3654347819337244 a001 9227465/843*599074578^(6/7) 3654347819337244 a001 9227465/843*228826127^(9/10) 3654347819337245 a001 9227465/843*87403803^(18/19) 3654347819337245 a001 365435296162/843*12752043^(7/17) 3654347819337246 a001 139583862445/843*12752043^(8/17) 3654347819337247 a001 86267571272/843*12752043^(1/2) 3654347819337247 a001 53316291173/843*12752043^(9/17) 3654347819337249 a001 20365011074/843*12752043^(10/17) 3654347819337250 a001 7778742049/843*12752043^(11/17) 3654347819337251 a001 2971215073/843*12752043^(12/17) 3654347819337253 a001 1134903170/843*12752043^(13/17) 3654347819337254 a001 433494437/843*12752043^(14/17) 3654347819337255 a001 165580141/843*12752043^(15/17) 3654347819337257 a001 63245986/843*12752043^(16/17) 3654347819337274 a001 6557470319842/843*4870847^(1/4) 3654347819337284 a001 2504730781961/843*4870847^(5/16) 3654347819337293 a001 956722026041/843*4870847^(3/8) 3654347819337294 a001 3524578/843*817138163596^(2/3) 3654347819337294 a001 3524578/843*10749957122^(19/24) 3654347819337294 a001 3524578/843*4106118243^(19/23) 3654347819337294 a001 3524578/843*1568397607^(19/22) 3654347819337294 a001 3524578/843*599074578^(19/21) 3654347819337294 a001 3524578/843*228826127^(19/20) 3654347819337303 a001 365435296162/843*4870847^(7/16) 3654347819337313 a001 139583862445/843*4870847^(1/2) 3654347819337322 a001 53316291173/843*4870847^(9/16) 3654347819337332 a001 20365011074/843*4870847^(5/8) 3654347819337341 a001 7778742049/843*4870847^(11/16) 3654347819337351 a001 2971215073/843*4870847^(3/4) 3654347819337361 a001 1134903170/843*4870847^(13/16) 3654347819337370 a001 433494437/843*4870847^(7/8) 3654347819337380 a001 165580141/843*4870847^(15/16) 3654347819337517 a001 6557470319842/843*1860498^(4/15) 3654347819337552 a001 4052739537881/843*1860498^(3/10) 3654347819337587 a001 2504730781961/843*1860498^(1/3) 3654347819337639 a001 1346269/843*2537720636^(8/9) 3654347819337639 a001 1346269/843*312119004989^(8/11) 3654347819337639 a001 1346269/843*23725150497407^(5/8) 3654347819337639 a001 1346269/843*73681302247^(10/13) 3654347819337639 a001 1346269/843*28143753123^(4/5) 3654347819337639 a001 1346269/843*10749957122^(5/6) 3654347819337639 a001 1346269/843*4106118243^(20/23) 3654347819337639 a001 1346269/843*1568397607^(10/11) 3654347819337639 a001 1346269/843*599074578^(20/21) 3654347819337658 a001 956722026041/843*1860498^(2/5) 3654347819337728 a001 365435296162/843*1860498^(7/15) 3654347819337763 a001 267913919*1860498^(1/2) 3654347819337799 a001 139583862445/843*1860498^(8/15) 3654347819337869 a001 53316291173/843*1860498^(3/5) 3654347819337939 a001 20365011074/843*1860498^(2/3) 3654347819337975 a001 12586269025/843*1860498^(7/10) 3654347819338010 a001 7778742049/843*1860498^(11/15) 3654347819338080 a001 2971215073/843*1860498^(4/5) 3654347819338115 a001 1836311903/843*1860498^(5/6) 3654347819338151 a001 1134903170/843*1860498^(13/15) 3654347819338186 a001 233802911/281*1860498^(9/10) 3654347819338221 a001 433494437/843*1860498^(14/15) 3654347819339045 a001 3536736619241/281*710647^(1/4) 3654347819339303 a001 6557470319842/843*710647^(2/7) 3654347819339820 a001 2504730781961/843*710647^(5/14) 3654347819339999 a001 514229/843*2537720636^(14/15) 3654347819339999 a001 514229/843*17393796001^(6/7) 3654347819339999 a001 514229/843*45537549124^(14/17) 3654347819339999 a001 514229/843*817138163596^(14/19) 3654347819339999 a001 514229/843*14662949395604^(2/3) 3654347819339999 a001 514229/843*505019158607^(3/4) 3654347819339999 a001 514229/843*192900153618^(7/9) 3654347819339999 a001 514229/843*10749957122^(7/8) 3654347819339999 a001 514229/843*4106118243^(21/23) 3654347819339999 a001 514229/843*1568397607^(21/22) 3654347819340337 a001 956722026041/843*710647^(3/7) 3654347819340854 a001 365435296162/843*710647^(1/2) 3654347819341370 a001 139583862445/843*710647^(4/7) 3654347819341887 a001 53316291173/843*710647^(9/14) 3654347819342404 a001 20365011074/843*710647^(5/7) 3654347819342663 a001 12586269025/843*710647^(3/4) 3654347819342921 a001 7778742049/843*710647^(11/14) 3654347819343438 a001 2971215073/843*710647^(6/7) 3654347819343955 a001 1134903170/843*710647^(13/14) 3654347819352496 a001 6557470319842/843*271443^(4/13) 3654347819356180 a001 196418/843*312119004989^(4/5) 3654347819356180 a001 196418/843*23725150497407^(11/16) 3654347819356180 a001 196418/843*73681302247^(11/13) 3654347819356180 a001 196418/843*10749957122^(11/12) 3654347819356180 a001 196418/843*4106118243^(22/23) 3654347819356311 a001 2504730781961/843*271443^(5/13) 3654347819360126 a001 956722026041/843*271443^(6/13) 3654347819362034 a001 591286729879/843*271443^(1/2) 3654347819363941 a001 365435296162/843*271443^(7/13) 3654347819367757 a001 139583862445/843*271443^(8/13) 3654347819371572 a001 53316291173/843*271443^(9/13) 3654347819375387 a001 20365011074/843*271443^(10/13) 3654347819379202 a001 7778742049/843*271443^(11/13) 3654347819383017 a001 2971215073/843*271443^(12/13) 3654347819436385 a001 3536736619241/281*103682^(7/24) 3654347819450549 a001 6557470319842/843*103682^(1/3) 3654347819464713 a001 4052739537881/843*103682^(3/8) 3654347819467081 a001 75025/843*10749957122^(23/24) 3654347819478878 a001 2504730781961/843*103682^(5/12) 3654347819493042 a001 516002918640/281*103682^(11/24) 3654347819507206 a001 956722026041/843*103682^(1/2) 3654347819521370 a001 591286729879/843*103682^(13/24) 3654347819535534 a001 365435296162/843*103682^(7/12) 3654347819549698 a001 267913919*103682^(5/8) 3654347819563863 a001 139583862445/843*103682^(2/3) 3654347819578027 a001 86267571272/843*103682^(17/24) 3654347819592191 a001 53316291173/843*103682^(3/4) 3654347819606355 a001 10983760033/281*103682^(19/24) 3654347819620519 a001 20365011074/843*103682^(5/6) 3654347819634684 a001 12586269025/843*103682^(7/8) 3654347819648848 a001 7778742049/843*103682^(11/12) 3654347819663012 a001 1602508992/281*103682^(23/24) 3654347820078595 a001 3536736619241/281*39603^(7/22) 3654347820184504 a001 6557470319842/843*39603^(4/11) 3654347820227212 a001 28657/843*45537549124^(16/17) 3654347820227212 a001 28657/843*14662949395604^(16/21) 3654347820227212 a001 28657/843*192900153618^(8/9) 3654347820227212 a001 28657/843*73681302247^(12/13) 3654347820290413 a001 4052739537881/843*39603^(9/22) 3654347820396321 a001 2504730781961/843*39603^(5/11) 3654347820502230 a001 516002918640/281*39603^(1/2) 3654347820608138 a001 956722026041/843*39603^(6/11) 3654347820714047 a001 591286729879/843*39603^(13/22) 3654347820819955 a001 365435296162/843*39603^(7/11) 3654347820925864 a001 267913919*39603^(15/22) 3654347821031772 a001 139583862445/843*39603^(8/11) 3654347821137681 a001 86267571272/843*39603^(17/22) 3654347821243589 a001 53316291173/843*39603^(9/11) 3654347821349498 a001 10983760033/281*39603^(19/22) 3654347821455407 a001 20365011074/843*39603^(10/11) 3654347821561315 a001 12586269025/843*39603^(21/22) 3654347822276632 r009 Re(z^3+c),c=-21/52+9/47*I,n=40 3654347824926727 a001 3536736619241/281*15127^(7/20) 3654347825437224 a001 10946/843*312119004989^(10/11) 3654347825437224 a001 10946/843*3461452808002^(5/6) 3654347825725226 a001 6557470319842/843*15127^(2/5) 3654347826523725 a001 4052739537881/843*15127^(9/20) 3654347827322224 a001 2504730781961/843*15127^(1/2) 3654347828120723 a001 516002918640/281*15127^(11/20) 3654347828919221 a001 956722026041/843*15127^(3/5) 3654347829717720 a001 591286729879/843*15127^(13/20) 3654347830516219 a001 365435296162/843*15127^(7/10) 3654347831314718 a001 267913919*15127^(3/4) 3654347832113217 a001 139583862445/843*15127^(4/5) 3654347832911715 a001 86267571272/843*15127^(17/20) 3654347833710214 a001 53316291173/843*15127^(9/10) 3654347834508713 a001 10983760033/281*15127^(19/20) 3654347835299976 a001 2472166310580434/6765 3654347850516187 l006 ln(5717/8239) 3654347853678037 a007 Real Root Of -826*x^4+343*x^3-757*x^2+699*x+388 3654347858343975 a007 Real Root Of 259*x^4-519*x^3-613*x^2-870*x-31 3654347861147176 a001 4181/843*23725150497407^(13/16) 3654347861147176 a001 4181/843*505019158607^(13/14) 3654347861904953 a001 3536736619241/281*5778^(7/18) 3654347865082868 m005 (1/2*Catalan-3/8)/(1/2*Pi+7/10) 3654347867986056 a001 6557470319842/843*5778^(4/9) 3654347870118806 r005 Im(z^2+c),c=31/102+13/63*I,n=49 3654347874067158 a001 4052739537881/843*5778^(1/2) 3654347880148261 a001 2504730781961/843*5778^(5/9) 3654347886229363 a001 516002918640/281*5778^(11/18) 3654347889922372 m001 (ln(Pi)-exp(-1/2*Pi))/(Kac+Riemann3rdZero) 3654347890247611 r005 Re(z^2+c),c=-33/50+13/37*I,n=11 3654347892310466 a001 956722026041/843*5778^(2/3) 3654347896443785 a007 Real Root Of 201*x^4+921*x^3+735*x^2+205*x+34 3654347898391568 a001 591286729879/843*5778^(13/18) 3654347904472671 a001 365435296162/843*5778^(7/9) 3654347910553773 a001 267913919*5778^(5/6) 3654347910911865 h001 (-7*exp(5)+8)/(-7*exp(6)+3) 3654347916634876 a001 139583862445/843*5778^(8/9) 3654347918517827 m005 (1/2*3^(1/2)-1/5)/(3*gamma+1/11) 3654347922715979 a001 86267571272/843*5778^(17/18) 3654347925706248 r009 Re(z^3+c),c=-11/106+17/25*I,n=12 3654347928789849 a001 944283504799297/2584 3654347930898778 r009 Re(z^3+c),c=-21/52+9/47*I,n=36 3654347932657297 r005 Re(z^2+c),c=-19/40+7/25*I,n=23 3654347934955013 a007 Real Root Of -178*x^4-831*x^3-728*x^2-133*x+426 3654347945688787 m001 (Sarnak+Thue)/(GAMMA(2/3)-KomornikLoreti) 3654347948458570 r005 Im(z^2+c),c=13/36+13/60*I,n=48 3654347950835841 m001 (Ei(1,1)+HardyLittlewoodC5)/(gamma+ln(Pi)) 3654347951458150 r005 Re(z^2+c),c=3/14+7/18*I,n=29 3654347956244460 a003 cos(Pi*16/63)*cos(Pi*25/77) 3654347961193082 a001 141422324/1597*89^(6/19) 3654347962580733 r005 Im(z^2+c),c=-13/74+28/51*I,n=40 3654347968208780 r009 Re(z^3+c),c=-41/110+16/23*I,n=11 3654348003497020 r009 Re(z^3+c),c=-21/52+9/47*I,n=35 3654348015127023 g005 GAMMA(2/7)/GAMMA(7/9)/GAMMA(6/7)/GAMMA(1/7) 3654348019662824 r005 Re(z^2+c),c=17/98+7/19*I,n=10 3654348022633706 m004 -6+15*Pi-5*Tan[Sqrt[5]*Pi] 3654348028059270 a007 Real Root Of 357*x^4-36*x^3-716*x^2-249*x+182 3654348041602444 m001 (GolombDickman+Totient)/(Psi(2,1/3)+exp(1/Pi)) 3654348042294190 r005 Im(z^2+c),c=1/28+25/58*I,n=36 3654348055466985 h001 (-6*exp(2)+8)/(-5*exp(3)+1) 3654348056349655 a007 Real Root Of 91*x^4+270*x^3-44*x^2+727*x+192 3654348058829233 m001 (GaussAGM+ZetaQ(4))/(Backhouse+FeigenbaumB) 3654348078358508 r005 Re(z^2+c),c=-13/30+3/13*I,n=6 3654348089072721 r005 Im(z^2+c),c=-7/6+11/237*I,n=17 3654348090573234 r005 Im(z^2+c),c=-9/62+9/17*I,n=34 3654348096336316 r005 Im(z^2+c),c=-31/122+33/62*I,n=6 3654348104670601 m005 (1/2*3^(1/2)-1/10)/(1/6*gamma+2) 3654348105899619 a001 377/3571*14662949395604^(20/21) 3654348105906832 a001 1597/843*14662949395604^(6/7) 3654348107479597 a007 Real Root Of 294*x^4+828*x^3-882*x^2+237*x+621 3654348113761049 r009 Im(z^3+c),c=-39/106+23/60*I,n=3 3654348114203309 m001 Robbin^2/Bloch^2/exp(sin(1))^2 3654348116473995 a003 sin(Pi*19/105)-sin(Pi*37/103) 3654348117717363 r005 Re(z^2+c),c=-17/40+27/53*I,n=59 3654348119913502 r005 Im(z^2+c),c=-47/48+13/47*I,n=6 3654348127537684 m001 Psi(1,1/3)*Bloch/Conway 3654348127962231 r002 20th iterates of z^2 + 3654348128807564 a007 Real Root Of 933*x^4-761*x^3+714*x^2-941*x-493 3654348139141546 a003 cos(Pi*4/109)/cos(Pi*40/97) 3654348147571130 a001 3536736619241/281*2207^(7/16) 3654348149818686 m001 (1+polylog(4,1/2))/(Khinchin+Porter) 3654348161810898 r005 Re(z^2+c),c=-59/98+17/58*I,n=16 3654348174208595 r009 Im(z^3+c),c=-1/62+48/59*I,n=62 3654348180014775 a001 6643838879/8*2504730781961^(7/9) 3654348180014775 a001 96450076809/4*32951280099^(7/9) 3654348180014775 a001 5600748293801/8*433494437^(7/9) 3654348190634100 r005 Im(z^2+c),c=-19/16+3/62*I,n=57 3654348194461688 a001 6557470319842/843*2207^(1/2) 3654348201253217 r009 Re(z^3+c),c=-1/46+41/46*I,n=4 3654348205952744 a001 370248451/4181*89^(6/19) 3654348217557842 r009 Im(z^3+c),c=-9/34+22/59*I,n=17 3654348224400091 m001 DuboisRaymond^Mills-StolarskyHarborth 3654348224723830 r004 Re(z^2+c),c=-25/46-1/23*I,z(0)=-1,n=6 3654348234474509 a001 199691526*3524578^(22/23) 3654348241352248 a001 4052739537881/843*2207^(9/16) 3654348241662701 a001 969323029/10946*89^(6/19) 3654348246872713 a001 2537720636/28657*89^(6/19) 3654348247632844 a001 6643838879/75025*89^(6/19) 3654348247743745 a001 17393796001/196418*89^(6/19) 3654348247759926 a001 45537549124/514229*89^(6/19) 3654348247762286 a001 119218851371/1346269*89^(6/19) 3654348247762631 a001 312119004989/3524578*89^(6/19) 3654348247762681 a001 817138163596/9227465*89^(6/19) 3654348247762688 a001 2139295485799/24157817*89^(6/19) 3654348247762689 a001 5600748293801/63245986*89^(6/19) 3654348247762690 a001 14662949395604/165580141*89^(6/19) 3654348247762690 a001 23725150497407/267914296*89^(6/19) 3654348247762690 a001 3020733700601/34111385*89^(6/19) 3654348247762690 a001 3461452808002/39088169*89^(6/19) 3654348247762693 a001 440719107401/4976784*89^(6/19) 3654348247762712 a001 505019158607/5702887*89^(6/19) 3654348247762844 a001 64300051206/726103*89^(6/19) 3654348247763745 a001 73681302247/832040*89^(6/19) 3654348247769926 a001 9381251041/105937*89^(6/19) 3654348247812286 a001 10749957122/121393*89^(6/19) 3654348248102630 a001 1368706081/15456*89^(6/19) 3654348250092678 a001 1568397607/17711*89^(6/19) 3654348250444431 a001 15127/3*225851433717^(22/23) 3654348260051495 m001 GAMMA(3/4)^2*FeigenbaumKappa^2/ln(GAMMA(5/12)) 3654348263732668 a001 199691526/2255*89^(6/19) 3654348278976373 a007 Real Root Of -23*x^4-864*x^3-835*x^2+873*x+162 3654348288242808 a001 2504730781961/843*2207^(5/8) 3654348293004505 m002 Pi^5+4*Sinh[Pi]+Log[Pi]*Sinh[Pi] 3654348335133368 a001 516002918640/281*2207^(11/16) 3654348337376057 a007 Real Root Of -674*x^4-576*x^3+396*x^2+862*x-32 3654348344911096 l006 ln(2455/3538) 3654348353304240 m005 (7/30+2/5*5^(1/2))/(5*gamma+1/5) 3654348357222552 a001 228826127/2584*89^(6/19) 3654348357980678 m001 FeigenbaumC+FibonacciFactorial+Gompertz 3654348360626722 r009 Im(z^3+c),c=-3/34+25/61*I,n=10 3654348362697032 m001 (2^(1/2)-exp(Pi))/(LambertW(1)+Trott2nd) 3654348382023929 a001 956722026041/843*2207^(3/4) 3654348382052877 h001 (1/4*exp(1)+10/11)/(4/7*exp(2)+1/8) 3654348393799988 m005 (1/3*Zeta(3)-2/3)/(1/8*gamma-4/5) 3654348405921142 m005 (1/2*exp(1)+8/11)/(-49/110+5/11*5^(1/2)) 3654348407737238 m001 (2*Pi/GAMMA(5/6)+GaussAGM)/(Zeta(3)-ln(gamma)) 3654348417705431 a003 cos(Pi*18/71)-cos(Pi*47/120) 3654348420502746 r005 Im(z^2+c),c=8/27+4/29*I,n=4 3654348424970289 r005 Im(z^2+c),c=-59/52+1/22*I,n=21 3654348425839493 m005 (1/3*5^(1/2)+2/7)/(5/6*2^(1/2)-4) 3654348428914491 a001 591286729879/843*2207^(13/16) 3654348456958921 l006 ln(137/5294) 3654348461969380 r005 Re(z^2+c),c=-16/29+13/61*I,n=7 3654348463954840 p004 log(34217/23743) 3654348470610604 r005 Im(z^2+c),c=-4/3+4/91*I,n=33 3654348471498551 l006 ln(6905/7162) 3654348473207005 r005 Im(z^2+c),c=15/98+20/57*I,n=36 3654348475805053 a001 365435296162/843*2207^(7/8) 3654348484656951 a007 Real Root Of -375*x^4+670*x^3+516*x^2+501*x-278 3654348522695616 a001 267913919*2207^(15/16) 3654348525962761 r005 Im(z^2+c),c=-1/15+27/55*I,n=31 3654348546049590 r009 Im(z^3+c),c=-61/126+46/59*I,n=3 3654348550929992 r005 Im(z^2+c),c=11/60+17/52*I,n=25 3654348567296058 a008 Real Root of (-4+4*x-5*x^3-6*x^4+2*x^5) 3654348569579098 a001 360684203817457/987 3654348577758820 m001 (ln(5)-3^(1/3))/(BesselI(1,1)-OneNinth) 3654348583176321 m001 (LambertW(1)-MertensB3)/(-Robbin+ZetaP(2)) 3654348594691764 s001 sum(exp(-3*Pi/5)^n*A206201[n],n=1..infinity) 3654348602529935 m005 (1/3*exp(1)-1/8)/(7/8*2^(1/2)+9/10) 3654348612323994 m005 (1/2*Zeta(3)+5/9)/(1/12*Zeta(3)-5/12) 3654348634005467 m005 (1/2*3^(1/2)-9/11)/(3/7*Catalan+11/12) 3654348637551325 q001 979/2679 3654348637551325 r002 2th iterates of z^2 + 3654348645386320 m001 Si(Pi)*CareFree/FeigenbaumMu 3654348645423907 a007 Real Root Of 69*x^4-339*x^3+831*x^2-39*x-143 3654348647480822 m001 (exp(-1/2*Pi)+FellerTornier)/(Lehmer+Thue) 3654348658002693 r009 Im(z^3+c),c=-25/56+16/57*I,n=23 3654348662266383 m005 (1/3*5^(1/2)-1/7)/(3^(1/2)-1/12) 3654348662417825 r005 Re(z^2+c),c=37/106+6/49*I,n=32 3654348663650849 p002 log(19/(20-2^(3/4))) 3654348665183264 a001 13/710647*47^(7/9) 3654348667020992 m001 (BesselI(0,1)-ln(2))/(Zeta(1/2)+Conway) 3654348671554192 a007 Real Root Of 144*x^4-378*x^3+154*x^2+70*x-16 3654348680650889 r009 Im(z^3+c),c=-23/54+18/61*I,n=35 3654348688833108 g003 Re(GAMMA(-113/30+I*(-253/60))) 3654348698933676 r005 Re(z^2+c),c=-19/78+32/55*I,n=8 3654348702361664 m005 (1/2*2^(1/2)-1/4)/(5/12*Zeta(3)+3/4) 3654348705013281 m001 GAMMA(19/24)/Porter/exp(cosh(1))^2 3654348721810501 m001 BesselJ(1,1)^GAMMA(7/12)*Salem^GAMMA(7/12) 3654348722711055 a001 29/6557470319842*4181^(9/17) 3654348724117479 r005 Im(z^2+c),c=5/82+22/53*I,n=38 3654348728090033 p004 log(31891/22129) 3654348731302726 p001 sum((-1)^n/(271*n+263)/(12^n),n=0..infinity) 3654348745205537 a007 Real Root Of 221*x^4+845*x^3+228*x^2+69*x-968 3654348746352056 r005 Im(z^2+c),c=-13/23+31/48*I,n=10 3654348749701674 r005 Re(z^2+c),c=-29/66+21/41*I,n=58 3654348760044678 m001 1/Riemann3rdZero/Si(Pi)/ln(arctan(1/2))^2 3654348761990065 r009 Re(z^3+c),c=-10/23+13/56*I,n=42 3654348775119980 a007 Real Root Of 330*x^4-627*x^3-777*x^2-964*x-285 3654348775904625 l006 ln(6558/9451) 3654348787681308 r009 Im(z^3+c),c=-55/102+23/64*I,n=36 3654348791061224 r009 Re(z^3+c),c=-10/23+13/56*I,n=35 3654348793090574 a001 2/317811*21^(26/45) 3654348793859574 r009 Im(z^3+c),c=-31/110+23/54*I,n=3 3654348806550052 b008 (-1/3+Sqrt[3])^(-3) 3654348817349319 a005 (1/cos(35/223*Pi))^337 3654348835567218 m001 gamma(3)/Magata/ZetaQ(4) 3654348838275986 a003 cos(Pi*15/97)*cos(Pi*37/76) 3654348847038497 m001 (arctan(1/3)-cos(1/12*Pi))/(gamma(2)+Pi^(1/2)) 3654348856673804 a007 Real Root Of 129*x^4+446*x^3-42*x^2+335*x+545 3654348857585034 a007 Real Root Of -821*x^4-419*x^3-481*x^2+672*x+304 3654348859726141 a001 199*(1/2*5^(1/2)+1/2)^23*3^(23/24) 3654348870835779 a001 610/64079*11^(23/41) 3654348927925190 r005 Re(z^2+c),c=-21/29+13/61*I,n=41 3654348948745412 a007 Real Root Of -266*x^4-784*x^3+442*x^2-909*x-47 3654348956429626 r005 Im(z^2+c),c=17/50+4/31*I,n=26 3654348960262246 h001 (4/7*exp(1)+7/9)/(9/11*exp(2)+1/3) 3654348963527976 m002 -24/Pi+4*Tanh[Pi] 3654348984270683 g004 Im(GAMMA(-31/60+I*47/60)) 3654348985362723 r005 Im(z^2+c),c=7/60+11/29*I,n=16 3654348998011876 a001 29134601/329*89^(6/19) 3654349003878495 r005 Re(z^2+c),c=-13/44+35/58*I,n=57 3654349010547777 r009 Re(z^3+c),c=-10/23+13/56*I,n=43 3654349014629607 r002 10th iterates of z^2 + 3654349027444100 a007 Real Root Of 783*x^4-857*x^3+479*x^2+65*x-96 3654349033786438 l006 ln(4103/5913) 3654349036881114 a003 cos(Pi*4/97)-sin(Pi*14/65) 3654349044967721 m001 1/Zeta(7)^2/GolombDickman*exp(sin(1)) 3654349046570180 r005 Re(z^2+c),c=-51/98+7/58*I,n=6 3654349051438391 m001 (Cahen+FeigenbaumB)/(PrimesInBinary-Trott) 3654349052378537 r005 Im(z^2+c),c=3/32+24/61*I,n=31 3654349057926725 r005 Im(z^2+c),c=-9/38+11/18*I,n=33 3654349072638947 r005 Im(z^2+c),c=31/86+6/29*I,n=24 3654349088207246 m001 1/exp(Trott)*ArtinRank2^2/log(2+sqrt(3)) 3654349093264180 a007 Real Root Of -99*x^4+37*x^3+57*x^2+983*x-36 3654349109438681 r005 Re(z^2+c),c=-5/11+22/63*I,n=20 3654349125345978 r009 Re(z^3+c),c=-1/19+25/57*I,n=15 3654349142298107 r005 Im(z^2+c),c=-59/110+16/35*I,n=37 3654349144937158 r005 Re(z^2+c),c=-57/44+5/38*I,n=2 3654349167470677 m001 (arctan(1/3)-FeigenbaumC)/(Magata+Sarnak) 3654349176303583 r005 Im(z^2+c),c=1/50+26/59*I,n=38 3654349177044709 m001 Backhouse/(arctan(1/3)+ZetaP(4)) 3654349195997909 a007 Real Root Of -173*x^4-467*x^3+345*x^2-689*x+937 3654349219336519 r009 Re(z^3+c),c=-21/52+9/47*I,n=30 3654349219639618 r008 a(0)=4,K{-n^6,-55+62*n^3+83*n^2-87*n} 3654349223693247 a001 521*1597^(34/59) 3654349232345518 r005 Im(z^2+c),c=-33/31+8/29*I,n=12 3654349234481869 m001 1/GAMMA(5/12)/exp(GAMMA(1/4))*cos(1)^2 3654349235351330 m001 (Gompertz+Robbin)/(Pi+ln(2)/ln(10)) 3654349236647037 m001 (GAMMA(13/24)-FeigenbaumB)/(Khinchin-PlouffeB) 3654349237844870 r002 3th iterates of z^2 + 3654349242883066 a007 Real Root Of -843*x^4+786*x^3+995*x^2+270*x-1 3654349243050580 a007 Real Root Of -469*x^4+459*x^3-126*x^2+885*x+371 3654349267655614 r005 Im(z^2+c),c=-3/86+17/36*I,n=27 3654349272764463 a001 3010349/5*55^(9/20) 3654349276805112 m008 (2/3*Pi^3+5/6)/(3/5*Pi^4+2/5) 3654349278782405 r009 Re(z^3+c),c=-21/52+9/47*I,n=31 3654349282763234 m001 1/Trott/exp(Khintchine)^2/GAMMA(19/24) 3654349283282139 r005 Re(z^2+c),c=-37/78+1/30*I,n=7 3654349287803357 m001 RenyiParking/Khintchine^2*exp((2^(1/3))) 3654349307576187 r005 Im(z^2+c),c=43/122+9/56*I,n=63 3654349309596460 r002 4th iterates of z^2 + 3654349319644240 r005 Re(z^2+c),c=-7/17+17/40*I,n=19 3654349327821198 r005 Im(z^2+c),c=-7/50+32/59*I,n=8 3654349327855101 l006 ln(5751/8288) 3654349363523420 a005 (1/sin(92/219*Pi))^836 3654349377217656 r002 33th iterates of z^2 + 3654349382756612 r005 Im(z^2+c),c=-53/82+23/61*I,n=8 3654349391816522 m001 1/Catalan^2/exp(Porter)^2/log(2+sqrt(3))^2 3654349392959062 a001 1/1292*21^(26/51) 3654349403946855 m003 36+Sqrt[5]/16+Sinh[1/2+Sqrt[5]/2]/6 3654349411007262 r002 37i'th iterates of 2*x/(1-x^2) of 3654349433418007 r009 Re(z^3+c),c=-37/70+12/43*I,n=28 3654349434858070 a003 sin(Pi*5/104)+sin(Pi*2/29) 3654349452814882 r009 Im(z^3+c),c=-9/34+22/59*I,n=20 3654349452820935 r009 Im(z^3+c),c=-9/34+22/59*I,n=21 3654349454315276 r005 Im(z^2+c),c=13/36+15/49*I,n=51 3654349457654866 b008 Sech[2]^Sqrt[EulerGamma] 3654349462234755 m002 -Pi^4-Pi^5+(Pi^2*Sinh[Pi])/3 3654349484008403 r008 a(0)=4,K{-n^6,-43+73*n^3+56*n^2-83*n} 3654349484427907 m001 Pi*2^(1/2)/GAMMA(3/4)/(Rabbit-cos(1/5*Pi)) 3654349509718705 m004 25*Pi+Cosh[Sqrt[5]*Pi]/2+3*Log[Sqrt[5]*Pi] 3654349511117520 a007 Real Root Of 242*x^4+701*x^3-863*x^2-900*x-712 3654349515858469 a003 sin(Pi*5/103)+sin(Pi*5/73) 3654349528667411 a007 Real Root Of 92*x^4+206*x^3-311*x^2+481*x-443 3654349548747916 m004 4*Csc[Sqrt[5]*Pi]+5*Pi*Log[Sqrt[5]*Pi] 3654349550520138 m001 (FransenRobinson+QuadraticClass)/Psi(1,1/3) 3654349551450358 r005 Re(z^2+c),c=-8/17+7/24*I,n=51 3654349574862714 m001 FeigenbaumAlpha+FeigenbaumKappa^arctan(1/2) 3654349581768869 r009 Re(z^3+c),c=-21/52+9/47*I,n=27 3654349589625553 r005 Re(z^2+c),c=-31/52+11/28*I,n=30 3654349590115591 r005 Im(z^2+c),c=-1/40+22/47*I,n=23 3654349620412904 r002 8th iterates of z^2 + 3654349630258876 r009 Im(z^3+c),c=-9/19+15/56*I,n=16 3654349633320768 m001 (-ln(Pi)+ErdosBorwein)/(Si(Pi)-sin(1/5*Pi)) 3654349645265882 b008 ArcSec[-12]^(-2) 3654349662476619 a001 1149851/89*514229^(21/22) 3654349674620916 a007 Real Root Of -86*x^4+997*x^3-55*x^2+866*x+374 3654349688867559 a007 Real Root Of 976*x^4-6*x^3-542*x^2-935*x-287 3654349697686618 m001 1/FeigenbaumD^2*Kolakoski/ln(gamma)^2 3654349706937202 r005 Im(z^2+c),c=-87/74+1/21*I,n=40 3654349707905732 l006 ln(151/5835) 3654349714113312 a001 144/11*4870847^(1/15) 3654349715632305 r005 Re(z^2+c),c=-9/14+57/161*I,n=27 3654349720871577 r009 Re(z^3+c),c=-3/38+37/55*I,n=16 3654349723596159 q001 1256/3437 3654349724023870 r008 a(0)=4,K{-n^6,-99+95*n^3-38*n^2+45*n} 3654349725500353 m005 (1/2*exp(1)-3)/(2/9*Zeta(3)-2/9) 3654349727799027 m005 (1/2*Catalan-9/10)/(8/11*5^(1/2)-5/12) 3654349728902350 a007 Real Root Of -50*x^4+55*x^3-647*x^2+821*x+390 3654349733075510 r009 Im(z^3+c),c=-23/54+18/61*I,n=38 3654349745323101 r002 46th iterates of z^2 + 3654349749425383 r009 Im(z^3+c),c=-5/31+22/27*I,n=13 3654349750330974 m001 (-MadelungNaCl+Stephens)/(Si(Pi)+GAMMA(2/3)) 3654349754017619 a007 Real Root Of 17*x^4+647*x^3+924*x^2-635*x+5 3654349758715963 r005 Im(z^2+c),c=-1/48+20/39*I,n=10 3654349763123490 m001 (BesselI(0,1)-Kac)/(Salem+Stephens) 3654349766316008 b008 -1/3+2*Zeta[Sqrt[3]] 3654349777279255 a007 Real Root Of -31*x^4+860*x^3-926*x^2+960*x+517 3654349783514472 a001 610/843*14662949395604^(8/9) 3654349808670898 a001 199/1597*4181^(4/31) 3654349814146537 a001 144/11*2207^(2/15) 3654349833233620 r005 Im(z^2+c),c=11/42+13/51*I,n=52 3654349843372984 m005 (1/3*gamma-1/12)/(2/11*Pi-3/11) 3654349859454208 r002 16th iterates of z^2 + 3654349876918951 r005 Im(z^2+c),c=-15/98+23/43*I,n=45 3654349887585369 r005 Im(z^2+c),c=5/54+20/37*I,n=10 3654349904428374 p003 LerchPhi(1/64,2,375/226) 3654349916257340 r005 Re(z^2+c),c=-9/7+4/123*I,n=6 3654349917104684 a007 Real Root Of -274*x^4-958*x^3+259*x^2+428*x+218 3654349917768901 r002 9th iterates of z^2 + 3654349918567765 r005 Re(z^2+c),c=-17/54+7/17*I,n=4 3654349924406396 m001 (ln(2)+Riemann2ndZero)^BesselK(0,1) 3654349926133343 r009 Re(z^3+c),c=-10/23+13/56*I,n=47 3654349946059683 h001 (4/5*exp(2)+1/9)/(1/10*exp(2)+10/11) 3654349950045379 r005 Im(z^2+c),c=-11/86+23/44*I,n=50 3654349950260857 h001 (1/2*exp(1)+5/7)/(8/11*exp(2)+3/10) 3654349956741931 r005 Re(z^2+c),c=-47/110+17/40*I,n=26 3654349962456673 m001 2^(1/3)-LandauRamanujan^PrimesInBinary 3654349964418958 a007 Real Root Of -154*x^4-599*x^3-324*x^2-727*x-98 3654349975548455 m005 (1/2*5^(1/2)-10/11)/(3/4*3^(1/2)-8/11) 3654349977525035 m001 ArtinRank2^(Si(Pi)/LaplaceLimit) 3654349984091689 r005 Im(z^2+c),c=-17/26+4/95*I,n=22 3654349993590126 m001 (BesselK(0,1)-ln(2))/(-gamma(1)+ZetaQ(4)) 3654349998774344 r002 31th iterates of z^2 + 3654350006732799 m005 (1/2*Catalan-5/9)/(6/7*exp(1)-5) 3654350014415237 r009 Re(z^3+c),c=-27/82+4/61*I,n=12 3654350024487011 a001 591286729879/322*322^(11/12) 3654350028087212 a007 Real Root Of -305*x^4+302*x^3-684*x^2+884*x-241 3654350040708221 h001 (6/11*exp(2)+5/11)/(1/11*exp(2)+5/9) 3654350043672529 m001 (Bloch+ZetaQ(4))/(Zeta(5)+sin(1/12*Pi)) 3654350051418965 m001 Lehmer-cos(Pi/12)*GAMMA(5/24) 3654350056297605 s002 sum(A145589[n]/(pi^n),n=1..infinity) 3654350056400175 m001 GAMMA(23/24)*DuboisRaymond*FeigenbaumC 3654350057713595 r005 Im(z^2+c),c=-9/122+10/17*I,n=18 3654350059627043 m001 (GAMMA(11/12)+MertensB1)/(Chi(1)-sin(1)) 3654350059993245 l006 ln(1648/2375) 3654350063055508 m001 (KhinchinLevy+ZetaQ(2))/(Zeta(5)-ArtinRank2) 3654350070511397 l006 ln(8732/9057) 3654350074815092 r009 Im(z^3+c),c=-9/34+22/59*I,n=23 3654350092902090 r005 Re(z^2+c),c=-41/40+5/41*I,n=14 3654350125447617 a003 cos(Pi*41/119)/cos(Pi*28/61) 3654350128513919 a001 7/4181*377^(5/38) 3654350132015413 r005 Im(z^2+c),c=-8/29+29/50*I,n=62 3654350137304329 m001 BesselI(0,1)^HardyLittlewoodC4-Rabbit 3654350172200625 r009 Im(z^3+c),c=-9/34+22/59*I,n=24 3654350180529313 r009 Re(z^3+c),c=-10/23+13/56*I,n=46 3654350191066459 m001 arctan(1/3)^(FibonacciFactorial*Sarnak) 3654350193661894 m001 1/exp(MertensB1)^2/FeigenbaumAlpha*cosh(1) 3654350198204290 m001 ln(GAMMA(17/24))^2*FeigenbaumC^2/gamma 3654350204360294 r005 Im(z^2+c),c=11/38+13/58*I,n=50 3654350217093898 r009 Im(z^3+c),c=-9/34+22/59*I,n=26 3654350242928158 r009 Im(z^3+c),c=-9/34+22/59*I,n=27 3654350243394870 r009 Im(z^3+c),c=-9/34+22/59*I,n=29 3654350246724578 r002 9th iterates of z^2 + 3654350247191459 a001 222915365078679/610 3654350247754536 r009 Im(z^3+c),c=-9/34+22/59*I,n=32 3654350248427219 r009 Im(z^3+c),c=-9/34+22/59*I,n=35 3654350248456608 r009 Im(z^3+c),c=-9/34+22/59*I,n=30 3654350248525465 r009 Im(z^3+c),c=-9/34+22/59*I,n=38 3654350248539152 r009 Im(z^3+c),c=-9/34+22/59*I,n=41 3654350248540976 r009 Im(z^3+c),c=-9/34+22/59*I,n=44 3654350248541208 r009 Im(z^3+c),c=-9/34+22/59*I,n=47 3654350248541235 r009 Im(z^3+c),c=-9/34+22/59*I,n=46 3654350248541236 r009 Im(z^3+c),c=-9/34+22/59*I,n=50 3654350248541237 r009 Im(z^3+c),c=-9/34+22/59*I,n=49 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=52 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=53 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=55 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=56 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=58 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=61 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=59 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=64 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=62 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=63 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=60 3654350248541239 r009 Im(z^3+c),c=-9/34+22/59*I,n=57 3654350248541240 r009 Im(z^3+c),c=-9/34+22/59*I,n=54 3654350248541242 r009 Im(z^3+c),c=-9/34+22/59*I,n=51 3654350248541258 r009 Im(z^3+c),c=-9/34+22/59*I,n=48 3654350248541330 r009 Im(z^3+c),c=-9/34+22/59*I,n=43 3654350248541367 r009 Im(z^3+c),c=-9/34+22/59*I,n=45 3654350248542040 r009 Im(z^3+c),c=-9/34+22/59*I,n=42 3654350248542751 r009 Im(z^3+c),c=-9/34+22/59*I,n=40 3654350248545853 r009 Im(z^3+c),c=-9/34+22/59*I,n=39 3654350248558119 r009 Im(z^3+c),c=-9/34+22/59*I,n=37 3654350248564234 r009 Im(z^3+c),c=-9/34+22/59*I,n=36 3654350248622050 r009 Im(z^3+c),c=-9/34+22/59*I,n=33 3654350248702457 r009 Im(z^3+c),c=-9/34+22/59*I,n=34 3654350249948459 r009 Im(z^3+c),c=-9/34+22/59*I,n=31 3654350260069953 r009 Im(z^3+c),c=-9/34+22/59*I,n=28 3654350261466586 r009 Re(z^3+c),c=-10/23+13/56*I,n=51 3654350271721106 m005 (1/2*Zeta(3)-1/12)/(2/7*5^(1/2)+7/9) 3654350272363788 m001 Zeta(1/2)*exp(GAMMA(1/6))^2/sqrt(1+sqrt(3))^2 3654350284824819 m004 2250/(Pi*Log[Sqrt[5]*Pi])-Log[Sqrt[5]*Pi] 3654350286299935 r005 Im(z^2+c),c=1/102+21/47*I,n=36 3654350292032682 m001 Khinchin/(Rabbit-exp(1/exp(1))) 3654350299009238 m001 (exp(1/Pi)+Zeta(1,2))/(FeigenbaumAlpha-Mills) 3654350301667379 r005 Im(z^2+c),c=5/82+22/53*I,n=37 3654350316545074 m001 (3^(1/2))^(Riemann3rdZero/TreeGrowth2nd) 3654350318687929 h001 (1/7*exp(2)+5/9)/(1/2*exp(2)+5/7) 3654350320261228 a007 Real Root Of -178*x^4-553*x^3+469*x^2+193*x-801 3654350323020968 h001 (4/7*exp(1)+1/2)/(7/11*exp(2)+11/12) 3654350326400383 r005 Im(z^2+c),c=-7/40+35/54*I,n=18 3654350338292356 r009 Im(z^3+c),c=-9/34+22/59*I,n=25 3654350342716029 m001 ln(arctan(1/2))^2*GAMMA(23/24)^2*sin(Pi/5) 3654350349810922 m001 (-Landau+RenyiParking)/(Kolakoski-Psi(2,1/3)) 3654350359189223 r009 Re(z^3+c),c=-10/23+13/56*I,n=52 3654350359984767 r009 Re(z^3+c),c=-10/23+13/56*I,n=55 3654350364426001 a001 13/2*5600748293801^(1/17) 3654350371097317 r009 Re(z^3+c),c=-10/23+13/56*I,n=56 3654350373849206 r002 17th iterates of z^2 + 3654350375995114 m005 (1/2*Pi+2/11)/(4/9*Pi-11/12) 3654350378135830 a001 956722026041/2207*1364^(14/15) 3654350380805105 m005 (5/36+1/4*5^(1/2))/(8/11*Pi-3/8) 3654350382105094 r009 Re(z^3+c),c=-10/23+13/56*I,n=60 3654350383923677 r009 Re(z^3+c),c=-10/23+13/56*I,n=59 3654350384623295 h001 (-5*exp(1/3)+4)/(-3*exp(-3)-8) 3654350386708152 r009 Re(z^3+c),c=-10/23+13/56*I,n=64 3654350388455387 r009 Re(z^3+c),c=-10/23+13/56*I,n=63 3654350390126659 r009 Re(z^3+c),c=-10/23+13/56*I,n=61 3654350390477713 a001 3536736619241/281*843^(1/2) 3654350392320182 r009 Re(z^3+c),c=-10/23+13/56*I,n=62 3654350398626716 r005 Im(z^2+c),c=-4/31+21/40*I,n=23 3654350399283906 b008 LogBarnesG[7*Sqrt[10]] 3654350399766068 r009 Re(z^3+c),c=-10/23+13/56*I,n=58 3654350400182810 p004 log(17837/12377) 3654350400970513 r009 Re(z^3+c),c=-10/23+13/56*I,n=57 3654350407359296 r009 Re(z^3+c),c=-10/23+13/56*I,n=50 3654350413706401 r009 Re(z^3+c),c=-10/23+13/56*I,n=54 3654350419994388 a007 Real Root Of 267*x^4+810*x^3-707*x^2-632*x-955 3654350425346223 r002 7th iterates of z^2 + 3654350426212981 r009 Re(z^3+c),c=-10/23+13/56*I,n=48 3654350435251297 m005 (1/2*gamma-6/11)/(8/11*2^(1/2)+6) 3654350444968143 r005 Re(z^2+c),c=-93/98+9/38*I,n=50 3654350450761137 r009 Re(z^3+c),c=-10/23+13/56*I,n=53 3654350461497848 a001 1/516002918640*21^(5/24) 3654350467704381 m005 (-1/3+1/6*5^(1/2))/(41/198+7/18*5^(1/2)) 3654350474342472 m003 71/2+Sqrt[5]/4+Sinh[1/2+Sqrt[5]/2]/5 3654350484785987 h001 (7/8*exp(2)+5/7)/(5/9*exp(1)+5/11) 3654350504208954 a007 Real Root Of -691*x^4+834*x^3+854*x^2+851*x+30 3654350507579454 r005 Re(z^2+c),c=-17/18+16/121*I,n=34 3654350509081109 a001 1548008755920/2207*1364^(13/15) 3654350523622495 m005 (1/3*Pi+1/12)/(1/8*Pi-1/12) 3654350523622495 m006 (1/5/Pi+4/5)/(2/Pi-3) 3654350523622495 m008 (2*Pi+1/2)/(3/4*Pi-1/2) 3654350534541314 a007 Real Root Of -296*x^4-32*x^3+356*x^2+975*x-397 3654350545182740 m001 GAMMA(5/6)/TwinPrimes/exp(cosh(1)) 3654350550102893 m007 (-1/2*gamma-ln(2)+5)/(-3/4*gamma-2/3) 3654350553735016 a007 Real Root Of 136*x^4+259*x^3-773*x^2+615*x+956 3654350558461403 r002 3th iterates of z^2 + 3654350566429584 r005 Im(z^2+c),c=-37/90+9/17*I,n=21 3654350567714864 r002 9i'th iterates of 2*x/(1-x^2) of 3654350575983243 r005 Im(z^2+c),c=11/42+13/51*I,n=47 3654350582218565 p003 LerchPhi(1/10,4,43/188) 3654350583639084 a001 969323029/89*63245986^(17/24) 3654350583688680 a001 271443/89*6557470319842^(17/24) 3654350599723161 m005 (13/12+1/4*5^(1/2))/(2/11*exp(1)+4) 3654350600965202 r005 Re(z^2+c),c=-31/66+12/41*I,n=29 3654350604502566 m005 (1/2*gamma-5)/(5/12*2^(1/2)+7/10) 3654350623026225 m002 6+Pi^3*Cosh[Pi]+Log[Pi]/Pi^4 3654350635366372 r005 Im(z^2+c),c=-41/52+19/52*I,n=4 3654350636869089 r009 Re(z^3+c),c=-10/23+13/56*I,n=49 3654350640026392 a001 2504730781961/2207*1364^(4/5) 3654350662194093 m001 (HeathBrownMoroz+Kac)/(LandauRamanujan-Lehmer) 3654350666520806 a003 sin(Pi*24/95)/cos(Pi*7/16) 3654350676904205 r009 Im(z^3+c),c=-7/54+11/27*I,n=5 3654350679255232 r005 Im(z^2+c),c=-1/50+13/28*I,n=55 3654350711948753 r005 Re(z^2+c),c=-77/106+3/37*I,n=37 3654350718487307 m001 TreeGrowth2nd/FeigenbaumD*ln(OneNinth) 3654350729083543 m005 (1/2*Catalan-9/10)/(5/9*gamma+8/9) 3654350736614816 a007 Real Root Of -530*x^4-60*x^3-475*x^2+831*x+31 3654350740786299 r009 Im(z^3+c),c=-15/32+11/42*I,n=27 3654350746569470 l006 ln(165/6376) 3654350753082066 r009 Re(z^3+c),c=-12/23+3/40*I,n=49 3654350757783643 a001 6557470319842/843*843^(4/7) 3654350766850187 a007 Real Root Of 983*x^4-378*x^3-562*x^2-698*x-216 3654350770971679 a001 4052739537881/2207*1364^(11/15) 3654350771272230 m001 1/exp(cosh(1))*Pi^2/gamma 3654350771766792 r005 Im(z^2+c),c=-79/82+2/59*I,n=6 3654350773982531 a007 Real Root Of 259*x^4+907*x^3-388*x^2-952*x-224 3654350774100432 a007 Real Root Of -124*x^4-329*x^3+693*x^2+783*x-335 3654350776863177 a007 Real Root Of 400*x^4-418*x^3-450*x^2-464*x-137 3654350787828364 l006 ln(5785/8337) 3654350801719037 m001 ln(GAMMA(1/3))*TwinPrimes^2/sinh(1) 3654350804956209 a007 Real Root Of 200*x^4-229*x^3+299*x^2-31*x-66 3654350826995798 a007 Real Root Of 232*x^4+449*x^3+435*x^2-582*x-253 3654350827590657 r005 Re(z^2+c),c=-33/94+23/62*I,n=2 3654350829821567 a005 (1/sin(59/189*Pi))^94 3654350837937428 s002 sum(A019895[n]/(n^2*2^n+1),n=1..infinity) 3654350844526367 r009 Re(z^3+c),c=-19/98+34/37*I,n=30 3654350855506550 a007 Real Root Of -994*x^4+11*x^3-729*x^2+365*x+249 3654350861732427 r005 Im(z^2+c),c=-29/25+3/64*I,n=60 3654350886552786 m005 (1/2*gamma-7/9)/(6/11*Pi-3/8) 3654350887981114 a001 111457702083424/305 3654350893046470 r005 Im(z^2+c),c=17/52+17/63*I,n=17 3654350901916972 a001 6557470319842/2207*1364^(2/3) 3654350902465885 r005 Re(z^2+c),c=-13/58+27/46*I,n=19 3654350916079862 r009 Im(z^3+c),c=-9/34+22/59*I,n=22 3654350923586556 m001 1/(3^(1/3))/Trott^2/ln(sinh(1)) 3654350941564947 h001 (-5*exp(1/3)-9)/(-7*exp(2)+8) 3654350945684032 a007 Real Root Of 249*x^4+515*x^3+269*x^2-377*x-153 3654350946198090 a007 Real Root Of -27*x^4-963*x^3+846*x^2-701*x-32 3654350951100241 m001 (Zeta(1,2)+PlouffeB)/(ln(3)-Zeta(1,-1)) 3654350951700537 r005 Re(z^2+c),c=-25/56+21/52*I,n=30 3654350957488362 a001 1364/89*987^(23/50) 3654350975576255 m001 (Shi(1)+FibonacciFactorial)/(-Paris+Sarnak) 3654350981471065 a001 44583081973947/122 3654350995111065 a001 44583082140355/122 3654350997101114 a001 111457705411584/305 3654350997391459 a001 222915410840879/610 3654350997433819 a001 222915410843463/610 3654350997440901 a001 44583082168779/122 3654350997441032 a001 222915410843903/610 3654350997441049 a001 111457705421952/305 3654350997441065 a001 44583082168781/122 3654350997441114 a001 111457705421954/305 3654350997441459 a001 222915410843929/610 3654350997443819 a001 222915410844073/610 3654350997570901 a001 44583082170365/122 3654350998331032 a001 222915410898193/610 3654351000816658 m001 Tribonacci*Khintchine/ln(sin(Pi/12)) 3654351003541049 a001 111457705608002/305 3654351013645104 m005 (1/2*Zeta(3)-5/7)/(4/7*Catalan-5/6) 3654351018925358 a001 2504730781961/5778*1364^(14/15) 3654351028067349 r009 Re(z^3+c),c=-10/23+13/56*I,n=44 3654351032862269 a001 4807525989*1364^(3/5) 3654351039251032 a001 222915413394313/610 3654351049803586 r009 Im(z^3+c),c=-29/102+11/30*I,n=4 3654351060714880 p003 LerchPhi(1/5,3,288/203) 3654351063017697 r009 Im(z^3+c),c=-15/31+11/43*I,n=25 3654351063115715 r009 Im(z^3+c),c=-11/52+23/59*I,n=5 3654351063537036 m006 (5*ln(Pi)+4/5)/(1/4*exp(Pi)-4) 3654351067565576 s001 sum(exp(-Pi/4)^n*A052082[n],n=1..infinity) 3654351072849237 m001 (Backhouse+KhinchinLevy)/(GAMMA(5/6)-Si(Pi)) 3654351077766052 l006 ln(4137/5962) 3654351087074176 m005 (1/3*3^(1/2)-1/11)/(5/9*2^(1/2)+6/11) 3654351089030563 m001 (arctan(1/2)-Pi^(1/2))/(Kac+Otter) 3654351107372620 a003 sin(Pi*3/110)-sin(Pi*7/47) 3654351112415309 a001 6557470319842/15127*1364^(14/15) 3654351121577676 r009 Re(z^3+c),c=-14/29+17/57*I,n=28 3654351125089610 a001 4052739537881/843*843^(9/14) 3654351134485294 a001 10610209857723/24476*1364^(14/15) 3654351136748106 m001 FeigenbaumAlpha*FibonacciFactorial^Si(Pi) 3654351139177116 a007 Real Root Of -162*x^4-828*x^3-711*x^2+680*x+463 3654351142933404 m001 (Si(Pi)+GAMMA(7/12))/(-PrimesInBinary+Totient) 3654351145657549 r005 Im(z^2+c),c=-9/106+18/37*I,n=14 3654351149870660 a001 4052739537881/5778*1364^(13/15) 3654351170195279 a001 4052739537881/9349*1364^(14/15) 3654351181903643 a007 Real Root Of 637*x^4+89*x^3+928*x^2+424*x+24 3654351188358181 m003 73/2+Sqrt[5]/16-Log[1/2+Sqrt[5]/2]/5 3654351209783801 r009 Re(z^3+c),c=-10/23+13/56*I,n=45 3654351229846026 r005 Im(z^2+c),c=-5/28+24/47*I,n=13 3654351231804711 m005 (1/2*Catalan+5/12)/(-2/15+1/6*5^(1/2)) 3654351243360614 a001 1515744265389/2161*1364^(13/15) 3654351248429006 m001 1/GAMMA(5/6)^2/ln(GAMMA(2/3))^2/GAMMA(7/12)^2 3654351250351885 m001 (exp(Pi)+ZetaQ(3))^ThueMorse 3654351275159273 a007 Real Root Of -7*x^4-x^3-725*x^2+564*x+303 3654351280815966 a001 3278735159921/2889*1364^(4/5) 3654351282658426 a007 Real Root Of -153*x^4+611*x^3-715*x^2+944*x+473 3654351284010901 a001 44583085664933/122 3654351284391661 l004 cosh(212/101*Pi) 3654351301140586 a001 6557470319842/9349*1364^(13/15) 3654351307705601 m001 Artin/Ei(1)*Si(Pi) 3654351307705601 m001 Si(Pi)/Ei(1)*Artin 3654351309544521 m001 Trott/exp(Kolakoski)^2*GAMMA(17/24)^2 3654351313072181 a007 Real Root Of 457*x^4-517*x^3-497*x^2-955*x-316 3654351318395628 m001 (exp(1/Pi)+HardyLittlewoodC4)/(1+Zeta(1/2)) 3654351330738604 p003 LerchPhi(1/1024,4,115/159) 3654351330903613 l006 ln(6626/9549) 3654351331398402 a007 Real Root Of 23*x^4+866*x^3+944*x^2+425*x-721 3654351332894388 r005 Re(z^2+c),c=-31/82+31/56*I,n=31 3654351347227869 r009 Im(z^3+c),c=-4/9+11/39*I,n=33 3654351355438721 m001 Zeta(3)/(exp(-1/2*Pi)+GAMMA(7/24)) 3654351355846338 a007 Real Root Of 269*x^4+828*x^3-312*x^2+921*x-33 3654351355855346 a007 Real Root Of -170*x^4+628*x^3+730*x^2+651*x-363 3654351361765001 r005 Im(z^2+c),c=13/50+9/20*I,n=12 3654351363241589 r005 Re(z^2+c),c=-9/16+33/106*I,n=14 3654351367189259 a001 233/7*29^(37/52) 3654351375666211 r005 Im(z^2+c),c=19/122+15/43*I,n=42 3654351382589002 m005 (1/2*Zeta(3)+1)/(4/11*5^(1/2)-3/8) 3654351385903806 m001 (sin(1)+CopelandErdos)/(-QuadraticClass+Salem) 3654351387980060 m005 (1/2*Catalan-5/7)/(9/10*2^(1/2)-4/7) 3654351395722327 r005 Im(z^2+c),c=1/14+25/62*I,n=13 3654351406653557 m001 FeigenbaumMu*(BesselK(0,1)-exp(1/exp(1))) 3654351411761276 a001 3536736619241/1926*1364^(11/15) 3654351412429273 a001 233/47*322^(35/47) 3654351414955179 a001 1548008755920/3571*1364^(14/15) 3654351432085897 a001 10610209857723/9349*1364^(4/5) 3654351435117165 r005 Re(z^2+c),c=-5/11+23/63*I,n=53 3654351447717512 m001 Grothendieck*(Riemann2ndZero-polylog(4,1/2)) 3654351461120308 a001 987/2207*14662949395604^(19/21) 3654351467941333 h001 (11/12*exp(2)+6/7)/(8/11*exp(1)+1/9) 3654351472135580 m001 1/2*Pi*2^(1/2)*(Shi(1)+sin(1/5*Pi)) 3654351481448818 s001 sum(exp(-3*Pi/5)^n*A286538[n],n=1..infinity) 3654351492395614 a001 2504730781961/843*843^(5/7) 3654351509904642 a005 (1/sin(59/133*Pi))^666 3654351524191908 r009 Re(z^3+c),c=-21/110+49/64*I,n=32 3654351536991573 r005 Im(z^2+c),c=1/56+19/43*I,n=26 3654351543023826 m001 Backhouse^MadelungNaCl*Ei(1) 3654351543023826 m001 Ei(1)*Backhouse^MadelungNaCl 3654351545900494 a001 2504730781961/3571*1364^(13/15) 3654351548164206 m005 (-19/5+1/5*5^(1/2))/(3*Pi-1/4) 3654351557839431 r005 Re(z^2+c),c=19/48+13/55*I,n=24 3654351562166399 a008 Real Root of x^4-x^3-16*x^2+16*x+45 3654351567363662 h001 (2/7*exp(1)+1/10)/(5/8*exp(1)+7/10) 3654351578394453 m001 ln(gamma)+LandauRamanujan2nd*QuadraticClass 3654351578772851 a003 sin(Pi*17/87)*sin(Pi*7/32) 3654351582199445 m001 (Pi+ln(2^(1/2)+1))/(Bloch-LandauRamanujan2nd) 3654351602529560 m002 Log[Pi]^2/5+Pi*Sinh[Pi] 3654351611467762 m001 1/Catalan^2/FeigenbaumC/exp(gamma) 3654351622759829 l006 ln(179/6917) 3654351622759829 p004 log(6917/179) 3654351633711420 a007 Real Root Of 118*x^4+225*x^3-589*x^2+828*x+828 3654351633962162 m001 1/GAMMA(1/12)*PisotVijayaraghavan*exp(gamma)^2 3654351640325243 m005 (1/2*Zeta(3)+7/11)/(5*gamma+1/2) 3654351642582863 a001 29/10610209857723*39088169^(7/17) 3654351642746642 r005 Re(z^2+c),c=-7/16+3/7*I,n=63 3654351645094625 a001 29/365435296162*10946^(7/17) 3654351648040874 r005 Re(z^2+c),c=-17/122+43/63*I,n=48 3654351673711328 a005 (1/cos(53/239*Pi))^83 3654351674519232 r005 Re(z^2+c),c=-19/52+39/61*I,n=33 3654351676845814 a001 4052739537881/3571*1364^(4/5) 3654351683938523 a007 Real Root Of 646*x^4+122*x^3-87*x^2-577*x+205 3654351694045869 m002 -(E^Pi/Pi^6)+Pi+ProductLog[Pi]/2 3654351698932632 r009 Re(z^3+c),c=-21/122+53/61*I,n=32 3654351703348142 r009 Im(z^3+c),c=-7/20+13/21*I,n=8 3654351708588400 a007 Real Root Of -682*x^4-145*x^3-224*x^2+35 3654351718232456 m001 HardHexagonsEntropy+LandauRamanujan*Otter 3654351736573800 r002 5th iterates of z^2 + 3654351741041842 a007 Real Root Of -186*x^4-829*x^3-678*x^2-273*x+771 3654351751646905 l006 ln(2489/3587) 3654351760055570 a007 Real Root Of -430*x^4-555*x^3+228*x^2+733*x+218 3654351775213462 a001 1/89*377^(27/46) 3654351796679256 r005 Im(z^2+c),c=-9/62+17/32*I,n=45 3654351798053101 r005 Re(z^2+c),c=-7/15+14/45*I,n=50 3654351807791139 a001 6557470319842/3571*1364^(11/15) 3654351819657248 m005 (4/5*Catalan+4)/(4/5*gamma+5/6) 3654351821767693 r002 50th iterates of z^2 + 3654351828931438 r005 Re(z^2+c),c=-23/54+22/45*I,n=56 3654351839191929 r005 Re(z^2+c),c=33/106+6/29*I,n=2 3654351840153042 r002 35i'th iterates of 2*x/(1-x^2) of 3654351844525081 m005 (1/2*exp(1)-7/12)/(5/7*gamma-1/5) 3654351847307409 r005 Re(z^2+c),c=-57/86+15/53*I,n=13 3654351859701655 a001 516002918640/281*843^(11/14) 3654351860859067 m001 (FeigenbaumDelta+TwinPrimes)/(2^(1/3)-exp(1)) 3654351864282373 m001 ln(2)*FeigenbaumMu^Mills 3654351880901040 r005 Im(z^2+c),c=8/23+4/23*I,n=47 3654351882597675 a007 Real Root Of 444*x^4-65*x^3+828*x^2-945*x-467 3654351883656165 r005 Im(z^2+c),c=-17/94+3/5*I,n=35 3654351887122740 m005 (-7/30+1/6*5^(1/2))/(4/11*5^(1/2)+3) 3654351903023211 r009 Re(z^3+c),c=-43/82+15/32*I,n=50 3654351904007123 m001 (Cahen-Otter)/(Trott2nd-TwinPrimes) 3654351905132540 m001 cos(1)*gamma(3)/GaussKuzminWirsing 3654351907036219 r002 6th iterates of z^2 + 3654351908308592 r009 Im(z^3+c),c=-5/74+23/51*I,n=2 3654351921925010 s002 sum(A280615[n]/(n^3*2^n+1),n=1..infinity) 3654351924800081 a001 583600002390573/1597 3654351938736469 a001 10610209857723/3571*1364^(2/3) 3654351941657267 a001 365435296162/2207*3571^(16/17) 3654351942048213 m001 (-ln(5)+Sarnak)/(exp(Pi)+ln(3)) 3654351953662081 a007 Real Root Of -652*x^4+756*x^3+631*x^2+513*x-297 3654351958514322 a001 591286729879/2207*3571^(15/17) 3654351974932236 a001 3461452808002/89*610^(17/24) 3654351975371377 a001 956722026041/2207*3571^(14/17) 3654351987202350 m005 (1/2*Catalan-2)/(6/11*5^(1/2)+3) 3654351992228432 a001 1548008755920/2207*3571^(13/17) 3654351993034656 r005 Im(z^2+c),c=-1/50+13/28*I,n=59 3654351996150403 r002 27th iterates of z^2 + 3654352009085487 a001 2504730781961/2207*3571^(12/17) 3654352012748900 a007 Real Root Of -330*x^4-795*x^3+14*x^2+856*x-270 3654352019730444 r002 29th iterates of z^2 + 3654352025942542 a001 4052739537881/2207*3571^(11/17) 3654352032846964 m001 BesselK(1,1)*(OneNinth-TravellingSalesman) 3654352039642453 m001 (GAMMA(17/24)-Cahen)/(Conway+ZetaP(2)) 3654352042799597 a001 6557470319842/2207*3571^(10/17) 3654352044919206 r005 Im(z^2+c),c=-17/110+27/52*I,n=19 3654352059656653 a001 4807525989*3571^(9/17) 3654352066791852 m001 3^(1/3)*Stephens*TreeGrowth2nd 3654352076715041 m001 (3^(1/3)+Zeta(1/2))/(exp(1)+5^(1/2)) 3654352093541453 m001 Artin^(BesselI(1,2)*Cahen) 3654352098914139 r005 Im(z^2+c),c=-1/50+13/28*I,n=56 3654352101910176 a001 2584/2207*3461452808002^(11/12) 3654352105064460 a007 Real Root Of -934*x^4-163*x^3-703*x^2+981*x-240 3654352105524808 r005 Im(z^2+c),c=-3/20+23/40*I,n=18 3654352106299725 r009 Re(z^3+c),c=-19/36+9/53*I,n=33 3654352120384569 b008 -38+Coth[Sin[1]] 3654352120469769 a007 Real Root Of 20*x^4+738*x^3+277*x^2+584*x-640 3654352158510650 r005 Im(z^2+c),c=-1/50+13/28*I,n=58 3654352169560009 a001 1527884642093040/4181 3654352171760688 a001 139583862445/2207*9349^(18/19) 3654352173961214 a001 225851433717/2207*9349^(17/19) 3654352176161740 a001 365435296162/2207*9349^(16/19) 3654352178362266 a001 591286729879/2207*9349^(15/19) 3654352178388885 m001 Magata^2*FeigenbaumAlpha^2*ln(sqrt(1+sqrt(3))) 3654352178408172 m005 (1/3*exp(1)+1/9)/(3/8*gamma-3) 3654352180423848 a007 Real Root Of 917*x^4-405*x^3+557*x^2-732*x-378 3654352180562792 a001 956722026041/2207*9349^(14/19) 3654352182763318 a001 1548008755920/2207*9349^(13/19) 3654352183175710 m002 -5/Pi^3+5/Log[Pi]^2 3654352184963843 a001 2504730781961/2207*9349^(12/19) 3654352187164369 a001 4052739537881/2207*9349^(11/19) 3654352188443461 a007 Real Root Of -192*x^4-512*x^3+954*x^2+823*x-478 3654352189364895 a001 6557470319842/2207*9349^(10/19) 3654352191565421 a001 4807525989*9349^(9/19) 3654352191764218 m005 (1/2*5^(1/2)-1/11)/(5/6*exp(1)+6/11) 3654352196960010 m008 (4*Pi^6-3/5)/(2/5*Pi^2-5) 3654352205270004 a001 4000053923888547/10946 3654352205560634 a001 53316291173/2207*24476^(20/21) 3654352205851110 a001 86267571272/2207*24476^(19/21) 3654352206141586 a001 139583862445/2207*24476^(6/7) 3654352206432062 a001 225851433717/2207*24476^(17/21) 3654352206722538 a001 365435296162/2207*24476^(16/21) 3654352207013014 a001 591286729879/2207*24476^(5/7) 3654352207303490 a001 956722026041/2207*24476^(2/3) 3654352207593966 a001 1548008755920/2207*24476^(13/21) 3654352207884442 a001 2504730781961/2207*24476^(4/7) 3654352208174918 a001 4052739537881/2207*24476^(11/21) 3654352208465394 a001 6557470319842/2207*24476^(10/21) 3654352208755870 a001 4807525989*24476^(3/7) 3654352209040163 a001 17711/2207*817138163596^(17/19) 3654352209040163 a001 17711/2207*14662949395604^(17/21) 3654352209040163 a001 17711/2207*192900153618^(17/18) 3654352210480022 a001 10472277129572601/28657 3654352210518871 a001 20365011074/2207*64079^(22/23) 3654352210557566 a001 32951280099/2207*64079^(21/23) 3654352210596260 a001 53316291173/2207*64079^(20/23) 3654352210634955 a001 86267571272/2207*64079^(19/23) 3654352210673650 a001 139583862445/2207*64079^(18/23) 3654352210712344 a001 225851433717/2207*64079^(17/23) 3654352210751039 a001 365435296162/2207*64079^(16/23) 3654352210789734 a001 591286729879/2207*64079^(15/23) 3654352210828428 a001 956722026041/2207*64079^(14/23) 3654352210867123 a001 1548008755920/2207*64079^(13/23) 3654352210905818 a001 2504730781961/2207*64079^(12/23) 3654352210944512 a001 4052739537881/2207*64079^(11/23) 3654352210983207 a001 6557470319842/2207*64079^(10/23) 3654352211021902 a001 4807525989*64079^(9/23) 3654352211030212 a001 46368/2207*14662949395604^(7/9) 3654352211030212 a001 46368/2207*505019158607^(7/8) 3654352211266277 a001 53316291173/2207*167761^(4/5) 3654352211292246 a001 591286729879/2207*167761^(3/5) 3654352211318215 a001 6557470319842/2207*167761^(2/5) 3654352211353314 a001 7778742049/2207*439204^(8/9) 3654352211355419 a001 32951280099/2207*439204^(7/9) 3654352211357524 a001 139583862445/2207*439204^(2/3) 3654352211359629 a001 591286729879/2207*439204^(5/9) 3654352211361734 a001 2504730781961/2207*439204^(4/9) 3654352211362917 a001 317811/2207*45537549124^(15/17) 3654352211362917 a001 317811/2207*312119004989^(9/11) 3654352211362917 a001 317811/2207*14662949395604^(5/7) 3654352211362917 a001 317811/2207*192900153618^(5/6) 3654352211362917 a001 317811/2207*28143753123^(9/10) 3654352211362917 a001 317811/2207*10749957122^(15/16) 3654352211363839 a001 4807525989*439204^(1/3) 3654352211370100 a001 433494437/2207*7881196^(10/11) 3654352211370105 a001 1836311903/2207*7881196^(9/11) 3654352211370111 a001 7778742049/2207*7881196^(8/11) 3654352211370114 a001 20365011074/2207*7881196^(2/3) 3654352211370116 a001 32951280099/2207*7881196^(7/11) 3654352211370121 a001 139583862445/2207*7881196^(6/11) 3654352211370127 a001 591286729879/2207*7881196^(5/11) 3654352211370131 a001 5702887/2207*2537720636^(13/15) 3654352211370131 a001 5702887/2207*45537549124^(13/17) 3654352211370131 a001 5702887/2207*14662949395604^(13/21) 3654352211370131 a001 5702887/2207*192900153618^(13/18) 3654352211370131 a001 5702887/2207*73681302247^(3/4) 3654352211370131 a001 5702887/2207*10749957122^(13/16) 3654352211370131 a001 5702887/2207*599074578^(13/14) 3654352211370132 a001 2504730781961/2207*7881196^(4/11) 3654352211370134 a001 4052739537881/2207*7881196^(1/3) 3654352211370138 a001 4807525989*7881196^(3/11) 3654352211370146 a001 433494437/2207*20633239^(6/7) 3654352211370147 a001 1134903170/2207*20633239^(4/5) 3654352211370147 a001 4807526976/2207*20633239^(5/7) 3654352211370148 a001 32951280099/2207*20633239^(3/5) 3654352211370149 a001 53316291173/2207*20633239^(4/7) 3654352211370150 a001 591286729879/2207*20633239^(3/7) 3654352211370150 a001 956722026041/2207*20633239^(2/5) 3654352211370151 a001 6557470319842/2207*20633239^(2/7) 3654352211370153 a001 39088169/2207*2537720636^(7/9) 3654352211370153 a001 39088169/2207*17393796001^(5/7) 3654352211370153 a001 39088169/2207*312119004989^(7/11) 3654352211370153 a001 39088169/2207*14662949395604^(5/9) 3654352211370153 a001 39088169/2207*505019158607^(5/8) 3654352211370153 a001 39088169/2207*28143753123^(7/10) 3654352211370153 a001 39088169/2207*599074578^(5/6) 3654352211370153 a001 39088169/2207*228826127^(7/8) 3654352211370153 a001 102334155/2207*141422324^(11/13) 3654352211370153 a001 433494437/2207*141422324^(10/13) 3654352211370153 a001 1836311903/2207*141422324^(9/13) 3654352211370153 a001 2971215073/2207*141422324^(2/3) 3654352211370153 a001 7778742049/2207*141422324^(8/13) 3654352211370153 a001 32951280099/2207*141422324^(7/13) 3654352211370153 a001 139583862445/2207*141422324^(6/13) 3654352211370153 a001 591286729879/2207*141422324^(5/13) 3654352211370153 a001 102334155/2207*2537720636^(11/15) 3654352211370153 a001 102334155/2207*45537549124^(11/17) 3654352211370153 a001 102334155/2207*312119004989^(3/5) 3654352211370153 a001 102334155/2207*817138163596^(11/19) 3654352211370153 a001 102334155/2207*14662949395604^(11/21) 3654352211370153 a001 102334155/2207*192900153618^(11/18) 3654352211370153 a001 102334155/2207*10749957122^(11/16) 3654352211370153 a001 102334155/2207*1568397607^(3/4) 3654352211370153 a001 102334155/2207*599074578^(11/14) 3654352211370153 a001 1548008755920/2207*141422324^(1/3) 3654352211370153 a001 2504730781961/2207*141422324^(4/13) 3654352211370154 a001 4807525989*141422324^(3/13) 3654352211370154 a001 267914296/2207*9062201101803^(1/2) 3654352211370154 a001 701408733/2207*1322157322203^(1/2) 3654352211370154 a001 1836311903/2207*2537720636^(3/5) 3654352211370154 a001 4807526976/2207*2537720636^(5/9) 3654352211370154 a001 7778742049/2207*2537720636^(8/15) 3654352211370154 a001 32951280099/2207*2537720636^(7/15) 3654352211370154 a001 53316291173/2207*2537720636^(4/9) 3654352211370154 a001 139583862445/2207*2537720636^(2/5) 3654352211370154 a001 1836311903/2207*45537549124^(9/17) 3654352211370154 a001 1836311903/2207*817138163596^(9/19) 3654352211370154 a001 1836311903/2207*14662949395604^(3/7) 3654352211370154 a001 1836311903/2207*192900153618^(1/2) 3654352211370154 a001 1836311903/2207*10749957122^(9/16) 3654352211370154 a001 591286729879/2207*2537720636^(1/3) 3654352211370154 a001 2504730781961/2207*2537720636^(4/15) 3654352211370154 a001 6557470319842/2207*2537720636^(2/9) 3654352211370154 a001 4807525989*2537720636^(1/5) 3654352211370154 a001 4807526976/2207*312119004989^(5/11) 3654352211370154 a001 4807526976/2207*3461452808002^(5/12) 3654352211370154 a001 4807526976/2207*28143753123^(1/2) 3654352211370154 a001 32951280099/2207*17393796001^(3/7) 3654352211370154 a001 956722026041/2207*17393796001^(2/7) 3654352211370154 a001 32951280099/2207*45537549124^(7/17) 3654352211370154 a001 32951280099/2207*14662949395604^(1/3) 3654352211370154 a001 32951280099/2207*192900153618^(7/18) 3654352211370154 a001 225851433717/2207*45537549124^(1/3) 3654352211370154 a001 139583862445/2207*45537549124^(6/17) 3654352211370154 a001 591286729879/2207*45537549124^(5/17) 3654352211370154 a001 2504730781961/2207*45537549124^(4/17) 3654352211370154 a001 4807525989*45537549124^(3/17) 3654352211370154 a001 86267571272/2207*817138163596^(1/3) 3654352211370154 a001 591286729879/2207*312119004989^(3/11) 3654352211370154 a001 2504730781961/2207*817138163596^(4/19) 3654352211370154 a001 2504730781961/2207*14662949395604^(4/21) 3654352211370154 a001 4807525989*192900153618^(1/6) 3654352211370154 a001 2504730781961/2207*192900153618^(2/9) 3654352211370154 a001 591286729879/2207*192900153618^(5/18) 3654352211370154 a001 139583862445/2207*14662949395604^(2/7) 3654352211370154 a001 139583862445/2207*192900153618^(1/3) 3654352211370154 a001 2504730781961/2207*73681302247^(3/13) 3654352211370154 a001 1548008755920/2207*73681302247^(1/4) 3654352211370154 a001 365435296162/2207*73681302247^(4/13) 3654352211370154 a001 53316291173/2207*23725150497407^(5/16) 3654352211370154 a001 53316291173/2207*505019158607^(5/14) 3654352211370154 a001 53316291173/2207*73681302247^(5/13) 3654352211370154 a001 6557470319842/2207*28143753123^(1/5) 3654352211370154 a001 591286729879/2207*28143753123^(3/10) 3654352211370154 a001 20365011074/2207*312119004989^(2/5) 3654352211370154 a001 53316291173/2207*28143753123^(2/5) 3654352211370154 a001 4807525989*10749957122^(3/16) 3654352211370154 a001 6557470319842/2207*10749957122^(5/24) 3654352211370154 a001 2504730781961/2207*10749957122^(1/4) 3654352211370154 a001 956722026041/2207*10749957122^(7/24) 3654352211370154 a001 591286729879/2207*10749957122^(5/16) 3654352211370154 a001 365435296162/2207*10749957122^(1/3) 3654352211370154 a001 7778742049/2207*45537549124^(8/17) 3654352211370154 a001 139583862445/2207*10749957122^(3/8) 3654352211370154 a001 7778742049/2207*14662949395604^(8/21) 3654352211370154 a001 7778742049/2207*192900153618^(4/9) 3654352211370154 a001 7778742049/2207*73681302247^(6/13) 3654352211370154 a001 32951280099/2207*10749957122^(7/16) 3654352211370154 a001 53316291173/2207*10749957122^(5/12) 3654352211370154 a001 20365011074/2207*10749957122^(11/24) 3654352211370154 a001 7778742049/2207*10749957122^(1/2) 3654352211370154 a001 6557470319842/2207*4106118243^(5/23) 3654352211370154 a001 2504730781961/2207*4106118243^(6/23) 3654352211370154 a001 956722026041/2207*4106118243^(7/23) 3654352211370154 a001 365435296162/2207*4106118243^(8/23) 3654352211370154 a001 2971215073/2207*73681302247^(1/2) 3654352211370154 a001 139583862445/2207*4106118243^(9/23) 3654352211370154 a001 53316291173/2207*4106118243^(10/23) 3654352211370154 a001 2971215073/2207*10749957122^(13/24) 3654352211370154 a001 12586269025/2207*4106118243^(1/2) 3654352211370154 a001 20365011074/2207*4106118243^(11/23) 3654352211370154 a001 7778742049/2207*4106118243^(12/23) 3654352211370154 a001 2971215073/2207*4106118243^(13/23) 3654352211370154 a001 6557470319842/2207*1568397607^(5/22) 3654352211370154 a001 4052739537881/2207*1568397607^(1/4) 3654352211370154 a001 2504730781961/2207*1568397607^(3/11) 3654352211370154 a001 956722026041/2207*1568397607^(7/22) 3654352211370154 a001 365435296162/2207*1568397607^(4/11) 3654352211370154 a001 1134903170/2207*17393796001^(4/7) 3654352211370154 a001 1134903170/2207*14662949395604^(4/9) 3654352211370154 a001 1134903170/2207*505019158607^(1/2) 3654352211370154 a001 1134903170/2207*73681302247^(7/13) 3654352211370154 a001 1134903170/2207*10749957122^(7/12) 3654352211370154 a001 139583862445/2207*1568397607^(9/22) 3654352211370154 a001 53316291173/2207*1568397607^(5/11) 3654352211370154 a001 1134903170/2207*4106118243^(14/23) 3654352211370154 a001 20365011074/2207*1568397607^(1/2) 3654352211370154 a001 7778742049/2207*1568397607^(6/11) 3654352211370154 a001 2971215073/2207*1568397607^(13/22) 3654352211370154 a001 1134903170/2207*1568397607^(7/11) 3654352211370154 a001 4807525989*599074578^(3/14) 3654352211370154 a001 6557470319842/2207*599074578^(5/21) 3654352211370154 a001 2504730781961/2207*599074578^(2/7) 3654352211370154 a001 956722026041/2207*599074578^(1/3) 3654352211370154 a001 433494437/2207*2537720636^(2/3) 3654352211370154 a001 591286729879/2207*599074578^(5/14) 3654352211370154 a001 365435296162/2207*599074578^(8/21) 3654352211370154 a001 433494437/2207*45537549124^(10/17) 3654352211370154 a001 433494437/2207*312119004989^(6/11) 3654352211370154 a001 433494437/2207*14662949395604^(10/21) 3654352211370154 a001 433494437/2207*192900153618^(5/9) 3654352211370154 a001 433494437/2207*28143753123^(3/5) 3654352211370154 a001 433494437/2207*10749957122^(5/8) 3654352211370154 a001 433494437/2207*4106118243^(15/23) 3654352211370154 a001 139583862445/2207*599074578^(3/7) 3654352211370154 a001 53316291173/2207*599074578^(10/21) 3654352211370154 a001 433494437/2207*1568397607^(15/22) 3654352211370154 a001 32951280099/2207*599074578^(1/2) 3654352211370154 a001 20365011074/2207*599074578^(11/21) 3654352211370154 a001 7778742049/2207*599074578^(4/7) 3654352211370154 a001 1836311903/2207*599074578^(9/14) 3654352211370154 a001 2971215073/2207*599074578^(13/21) 3654352211370154 a001 1134903170/2207*599074578^(2/3) 3654352211370154 a001 433494437/2207*599074578^(5/7) 3654352211370154 a001 6557470319842/2207*228826127^(1/4) 3654352211370154 a001 2504730781961/2207*228826127^(3/10) 3654352211370154 a001 956722026041/2207*228826127^(7/20) 3654352211370154 a001 591286729879/2207*228826127^(3/8) 3654352211370154 a001 165580141/2207*23725150497407^(1/2) 3654352211370154 a001 165580141/2207*505019158607^(4/7) 3654352211370154 a001 165580141/2207*73681302247^(8/13) 3654352211370154 a001 165580141/2207*10749957122^(2/3) 3654352211370154 a001 165580141/2207*4106118243^(16/23) 3654352211370154 a001 165580141/2207*1568397607^(8/11) 3654352211370154 a001 365435296162/2207*228826127^(2/5) 3654352211370154 a001 139583862445/2207*228826127^(9/20) 3654352211370154 a001 165580141/2207*599074578^(16/21) 3654352211370154 a001 53316291173/2207*228826127^(1/2) 3654352211370154 a001 20365011074/2207*228826127^(11/20) 3654352211370154 a001 7778742049/2207*228826127^(3/5) 3654352211370154 a001 4807526976/2207*228826127^(5/8) 3654352211370154 a001 2971215073/2207*228826127^(13/20) 3654352211370154 a001 1134903170/2207*228826127^(7/10) 3654352211370154 a001 433494437/2207*228826127^(3/4) 3654352211370154 a001 165580141/2207*228826127^(4/5) 3654352211370154 a001 6557470319842/2207*87403803^(5/19) 3654352211370154 a001 2504730781961/2207*87403803^(6/19) 3654352211370154 a001 956722026041/2207*87403803^(7/19) 3654352211370154 a001 63245986/2207*45537549124^(2/3) 3654352211370154 a001 63245986/2207*10749957122^(17/24) 3654352211370154 a001 63245986/2207*4106118243^(17/23) 3654352211370154 a001 63245986/2207*1568397607^(17/22) 3654352211370154 a001 63245986/2207*599074578^(17/21) 3654352211370154 a001 365435296162/2207*87403803^(8/19) 3654352211370154 a001 139583862445/2207*87403803^(9/19) 3654352211370154 a001 86267571272/2207*87403803^(1/2) 3654352211370154 a001 63245986/2207*228826127^(17/20) 3654352211370154 a001 53316291173/2207*87403803^(10/19) 3654352211370154 a001 20365011074/2207*87403803^(11/19) 3654352211370154 a001 7778742049/2207*87403803^(12/19) 3654352211370154 a001 2971215073/2207*87403803^(13/19) 3654352211370154 a001 1134903170/2207*87403803^(14/19) 3654352211370154 a001 433494437/2207*87403803^(15/19) 3654352211370154 a001 165580141/2207*87403803^(16/19) 3654352211370154 a001 63245986/2207*87403803^(17/19) 3654352211370154 a001 4807525989*33385282^(1/4) 3654352211370154 a001 6557470319842/2207*33385282^(5/18) 3654352211370155 a001 24157817/2207*141422324^(12/13) 3654352211370155 a001 2504730781961/2207*33385282^(1/3) 3654352211370155 a001 24157817/2207*2537720636^(4/5) 3654352211370155 a001 24157817/2207*45537549124^(12/17) 3654352211370155 a001 24157817/2207*14662949395604^(4/7) 3654352211370155 a001 24157817/2207*505019158607^(9/14) 3654352211370155 a001 24157817/2207*192900153618^(2/3) 3654352211370155 a001 24157817/2207*73681302247^(9/13) 3654352211370155 a001 24157817/2207*10749957122^(3/4) 3654352211370155 a001 24157817/2207*4106118243^(18/23) 3654352211370155 a001 24157817/2207*1568397607^(9/11) 3654352211370155 a001 24157817/2207*599074578^(6/7) 3654352211370155 a001 956722026041/2207*33385282^(7/18) 3654352211370155 a001 24157817/2207*228826127^(9/10) 3654352211370155 a001 591286729879/2207*33385282^(5/12) 3654352211370155 a001 365435296162/2207*33385282^(4/9) 3654352211370155 a001 139583862445/2207*33385282^(1/2) 3654352211370155 a001 24157817/2207*87403803^(18/19) 3654352211370155 a001 53316291173/2207*33385282^(5/9) 3654352211370155 a001 32951280099/2207*33385282^(7/12) 3654352211370156 a001 20365011074/2207*33385282^(11/18) 3654352211370156 a001 7778742049/2207*33385282^(2/3) 3654352211370156 a001 2971215073/2207*33385282^(13/18) 3654352211370156 a001 1836311903/2207*33385282^(3/4) 3654352211370156 a001 1134903170/2207*33385282^(7/9) 3654352211370156 a001 433494437/2207*33385282^(5/6) 3654352211370156 a001 102334155/2207*33385282^(11/12) 3654352211370156 a001 165580141/2207*33385282^(8/9) 3654352211370157 a001 63245986/2207*33385282^(17/18) 3654352211370160 a001 6557470319842/2207*12752043^(5/17) 3654352211370161 a001 2504730781961/2207*12752043^(6/17) 3654352211370162 a001 9227465/2207*817138163596^(2/3) 3654352211370162 a001 9227465/2207*10749957122^(19/24) 3654352211370162 a001 9227465/2207*4106118243^(19/23) 3654352211370162 a001 9227465/2207*1568397607^(19/22) 3654352211370162 a001 9227465/2207*599074578^(19/21) 3654352211370162 a001 9227465/2207*228826127^(19/20) 3654352211370163 a001 956722026041/2207*12752043^(7/17) 3654352211370164 a001 365435296162/2207*12752043^(8/17) 3654352211370165 a001 225851433717/2207*12752043^(1/2) 3654352211370165 a001 139583862445/2207*12752043^(9/17) 3654352211370167 a001 53316291173/2207*12752043^(10/17) 3654352211370168 a001 20365011074/2207*12752043^(11/17) 3654352211370169 a001 7778742049/2207*12752043^(12/17) 3654352211370171 a001 2971215073/2207*12752043^(13/17) 3654352211370172 a001 1134903170/2207*12752043^(14/17) 3654352211370173 a001 433494437/2207*12752043^(15/17) 3654352211370175 a001 165580141/2207*12752043^(16/17) 3654352211370202 a001 6557470319842/2207*4870847^(5/16) 3654352211370211 a001 2504730781961/2207*4870847^(3/8) 3654352211370212 a001 3524578/2207*2537720636^(8/9) 3654352211370212 a001 3524578/2207*312119004989^(8/11) 3654352211370212 a001 3524578/2207*23725150497407^(5/8) 3654352211370212 a001 3524578/2207*73681302247^(10/13) 3654352211370212 a001 3524578/2207*28143753123^(4/5) 3654352211370212 a001 3524578/2207*10749957122^(5/6) 3654352211370212 a001 3524578/2207*4106118243^(20/23) 3654352211370212 a001 3524578/2207*1568397607^(10/11) 3654352211370212 a001 3524578/2207*599074578^(20/21) 3654352211370221 a001 956722026041/2207*4870847^(7/16) 3654352211370231 a001 365435296162/2207*4870847^(1/2) 3654352211370240 a001 139583862445/2207*4870847^(9/16) 3654352211370250 a001 53316291173/2207*4870847^(5/8) 3654352211370259 a001 20365011074/2207*4870847^(11/16) 3654352211370269 a001 7778742049/2207*4870847^(3/4) 3654352211370279 a001 2971215073/2207*4870847^(13/16) 3654352211370288 a001 1134903170/2207*4870847^(7/8) 3654352211370298 a001 433494437/2207*4870847^(15/16) 3654352211370470 a001 4807525989*1860498^(3/10) 3654352211370505 a001 6557470319842/2207*1860498^(1/3) 3654352211370557 a001 1346269/2207*2537720636^(14/15) 3654352211370557 a001 1346269/2207*17393796001^(6/7) 3654352211370557 a001 1346269/2207*45537549124^(14/17) 3654352211370557 a001 1346269/2207*14662949395604^(2/3) 3654352211370557 a001 1346269/2207*505019158607^(3/4) 3654352211370557 a001 1346269/2207*192900153618^(7/9) 3654352211370557 a001 1346269/2207*10749957122^(7/8) 3654352211370557 a001 1346269/2207*4106118243^(21/23) 3654352211370557 a001 1346269/2207*1568397607^(21/22) 3654352211370576 a001 2504730781961/2207*1860498^(2/5) 3654352211370646 a001 956722026041/2207*1860498^(7/15) 3654352211370681 a001 591286729879/2207*1860498^(1/2) 3654352211370717 a001 365435296162/2207*1860498^(8/15) 3654352211370787 a001 139583862445/2207*1860498^(3/5) 3654352211370857 a001 53316291173/2207*1860498^(2/3) 3654352211370893 a001 32951280099/2207*1860498^(7/10) 3654352211370928 a001 20365011074/2207*1860498^(11/15) 3654352211370998 a001 7778742049/2207*1860498^(4/5) 3654352211371033 a001 4807526976/2207*1860498^(5/6) 3654352211371069 a001 2971215073/2207*1860498^(13/15) 3654352211371104 a001 1836311903/2207*1860498^(9/10) 3654352211371139 a001 1134903170/2207*1860498^(14/15) 3654352211372738 a001 6557470319842/2207*710647^(5/14) 3654352211372917 a001 514229/2207*312119004989^(4/5) 3654352211372917 a001 514229/2207*23725150497407^(11/16) 3654352211372917 a001 514229/2207*73681302247^(11/13) 3654352211372917 a001 514229/2207*10749957122^(11/12) 3654352211372917 a001 514229/2207*4106118243^(22/23) 3654352211373255 a001 2504730781961/2207*710647^(3/7) 3654352211373772 a001 956722026041/2207*710647^(1/2) 3654352211374288 a001 365435296162/2207*710647^(4/7) 3654352211374805 a001 139583862445/2207*710647^(9/14) 3654352211375322 a001 53316291173/2207*710647^(5/7) 3654352211375581 a001 32951280099/2207*710647^(3/4) 3654352211375839 a001 20365011074/2207*710647^(11/14) 3654352211376356 a001 7778742049/2207*710647^(6/7) 3654352211376873 a001 2971215073/2207*710647^(13/14) 3654352211389098 a001 196418/2207*10749957122^(23/24) 3654352211389229 a001 6557470319842/2207*271443^(5/13) 3654352211393044 a001 2504730781961/2207*271443^(6/13) 3654352211394952 a001 1548008755920/2207*271443^(1/2) 3654352211396859 a001 956722026041/2207*271443^(7/13) 3654352211400675 a001 365435296162/2207*271443^(8/13) 3654352211404490 a001 139583862445/2207*271443^(9/13) 3654352211408305 a001 53316291173/2207*271443^(10/13) 3654352211412120 a001 20365011074/2207*271443^(11/13) 3654352211415935 a001 7778742049/2207*271443^(12/13) 3654352211497631 a001 4807525989*103682^(3/8) 3654352211499999 a001 75025/2207*45537549124^(16/17) 3654352211499999 a001 75025/2207*14662949395604^(16/21) 3654352211499999 a001 75025/2207*192900153618^(8/9) 3654352211499999 a001 75025/2207*73681302247^(12/13) 3654352211511796 a001 6557470319842/2207*103682^(5/12) 3654352211525960 a001 4052739537881/2207*103682^(11/24) 3654352211540124 a001 2504730781961/2207*103682^(1/2) 3654352211554288 a001 1548008755920/2207*103682^(13/24) 3654352211568453 a001 956722026041/2207*103682^(7/12) 3654352211582617 a001 591286729879/2207*103682^(5/8) 3654352211596781 a001 365435296162/2207*103682^(2/3) 3654352211610945 a001 225851433717/2207*103682^(17/24) 3654352211625109 a001 139583862445/2207*103682^(3/4) 3654352211639274 a001 86267571272/2207*103682^(19/24) 3654352211653438 a001 53316291173/2207*103682^(5/6) 3654352211667602 a001 32951280099/2207*103682^(7/8) 3654352211681766 a001 20365011074/2207*103682^(11/12) 3654352211695930 a001 12586269025/2207*103682^(23/24) 3654352212260131 a001 28657/2207*312119004989^(10/11) 3654352212260131 a001 28657/2207*3461452808002^(5/6) 3654352212323332 a001 4807525989*39603^(9/22) 3654352212429240 a001 6557470319842/2207*39603^(5/11) 3654352212535149 a001 4052739537881/2207*39603^(1/2) 3654352212641058 a001 2504730781961/2207*39603^(6/11) 3654352212746966 a001 1548008755920/2207*39603^(13/22) 3654352212852875 a001 956722026041/2207*39603^(7/11) 3654352212958784 a001 591286729879/2207*39603^(15/22) 3654352213064692 a001 365435296162/2207*39603^(8/11) 3654352213170601 a001 225851433717/2207*39603^(17/22) 3654352213276510 a001 139583862445/2207*39603^(9/11) 3654352213382418 a001 86267571272/2207*39603^(19/22) 3654352213488327 a001 53316291173/2207*39603^(10/11) 3654352213594236 a001 32951280099/2207*39603^(21/22) 3654352213699990 a001 6472223205684054/17711 3654352217470149 a001 10946/2207*23725150497407^(13/16) 3654352217470149 a001 10946/2207*505019158607^(13/14) 3654352218556652 a001 4807525989*15127^(9/20) 3654352219355151 a001 6557470319842/2207*15127^(1/2) 3654352220153651 a001 4052739537881/2207*15127^(11/20) 3654352220952151 a001 2504730781961/2207*15127^(3/5) 3654352221750651 a001 1548008755920/2207*15127^(13/20) 3654352222549150 a001 956722026041/2207*15127^(7/10) 3654352222916670 r005 Im(z^2+c),c=-1/50+13/28*I,n=62 3654352223347650 a001 591286729879/2207*15127^(3/4) 3654352224146150 a001 365435296162/2207*15127^(4/5) 3654352224944650 a001 225851433717/2207*15127^(17/20) 3654352225743149 a001 139583862445/2207*15127^(9/10) 3654352226541649 a001 86267571272/2207*15127^(19/20) 3654352227007733 a001 956722026041/843*843^(6/7) 3654352227339995 a001 824056427265169/2255 3654352230740380 l006 ln(5819/8386) 3654352234683390 r005 Im(z^2+c),c=2/27+24/59*I,n=19 3654352236905991 m006 (1/6/Pi-1/5)/(3/4*exp(2*Pi)+1/2) 3654352243080076 a008 Real Root of (-3+3*x-5*x^2+2*x^3+x^4) 3654352248343111 m004 -2+(350*Pi)/3+Tan[Sqrt[5]*Pi] 3654352250706806 r009 Im(z^3+c),c=-43/118+11/18*I,n=3 3654352253179991 a001 987/9349*14662949395604^(20/21) 3654352253180144 a001 4181/2207*14662949395604^(6/7) 3654352254383941 m001 1/Sierpinski/GlaisherKinkelin*ln(GAMMA(5/6)) 3654352255848203 m005 (1/2*3^(1/2)+4/5)/(1/4*5^(1/2)+4) 3654352256069590 r005 Re(z^2+c),c=-41/86+8/31*I,n=45 3654352266100142 a001 4807525989*5778^(1/2) 3654352272181252 a001 6557470319842/2207*5778^(5/9) 3654352278262362 a001 4052739537881/2207*5778^(11/18) 3654352284343471 a001 2504730781961/2207*5778^(2/3) 3654352286654508 r005 Re(z^2+c),c=-53/102+8/41*I,n=11 3654352288942936 r005 Im(z^2+c),c=11/90+22/39*I,n=32 3654352290424581 a001 1548008755920/2207*5778^(13/18) 3654352296505691 a001 956722026041/2207*5778^(7/9) 3654352299824601 m001 (-MinimumGamma+Sarnak)/(gamma+3^(1/3)) 3654352302586801 a001 591286729879/2207*5778^(5/6) 3654352302700067 a007 Real Root Of -733*x^4+499*x^3-881*x^2+413*x+306 3654352308667911 a001 365435296162/2207*5778^(8/9) 3654352311818210 m001 exp(GAMMA(1/4))^2/Sierpinski^2*sqrt(3) 3654352312329147 r005 Re(z^2+c),c=-6/13+10/31*I,n=25 3654352314749021 a001 225851433717/2207*5778^(17/18) 3654352320829980 a001 944284639702467/2584 3654352334818740 m001 (Ei(1,1)-cos(1/12*Pi))/(BesselI(1,2)+ZetaP(2)) 3654352343348228 r005 Im(z^2+c),c=-1/50+13/28*I,n=48 3654352343951699 r005 Im(z^2+c),c=-105/82+1/20*I,n=63 3654352344078449 m004 20/Pi-Sin[Sqrt[5]*Pi]+125*Pi*Tan[Sqrt[5]*Pi] 3654352345576664 a001 7/620166*4^(50/59) 3654352358123284 m001 (Cahen*CopelandErdos-FeigenbaumAlpha)/Cahen 3654352367641539 m001 (OneNinth+ThueMorse)/(Ei(1)-Bloch) 3654352371833880 l006 ln(193/7458) 3654352403754259 a007 Real Root Of 41*x^4-24*x^3-700*x^2-437*x-732 3654352403826661 a008 Real Root of (5+10*x-13*x^2-8*x^3) 3654352408697645 m001 1/ln(cos(Pi/12))/RenyiParking^2*sin(1)^2 3654352426104333 a007 Real Root Of -308*x^4-896*x^3+984*x^2+643*x+411 3654352457028624 p004 log(22783/15809) 3654352471252368 a007 Real Root Of -55*x^4+22*x^3+944*x^2+329*x-522 3654352475531641 r005 Re(z^2+c),c=17/110+8/17*I,n=64 3654352483501367 s002 sum(A187882[n]/((exp(n)+1)*n),n=1..infinity) 3654352485039245 m001 (exp(Pi)+1)/(-sin(1/5*Pi)+gamma(1)) 3654352493554137 r005 Re(z^2+c),c=-19/18+40/137*I,n=6 3654352496097898 p004 log(32381/22469) 3654352497940095 a001 1597/2207*14662949395604^(8/9) 3654352514459258 r009 Re(z^3+c),c=-19/31+27/53*I,n=29 3654352525776828 a007 Real Root Of 447*x^4-582*x^3-73*x^2-562*x-232 3654352538242292 r009 Re(z^3+c),c=-10/23+13/56*I,n=41 3654352546690654 r005 Re(z^2+c),c=17/56+2/43*I,n=35 3654352565590031 a001 583600104724728/1597 3654352567470779 h001 (11/12*exp(2)+3/10)/(5/11*exp(1)+7/10) 3654352569186083 h001 (2/11*exp(1)+3/11)/(4/7*exp(1)+6/11) 3654352570323259 r005 Im(z^2+c),c=21/94+11/37*I,n=15 3654352571866894 m004 15/Pi+Tan[Sqrt[5]*Pi]+125*Pi*Tan[Sqrt[5]*Pi] 3654352574164744 r009 Im(z^3+c),c=-37/98+12/37*I,n=19 3654352582447069 a001 956722026041/5778*3571^(16/17) 3654352584389526 r005 Im(z^2+c),c=-20/29+7/26*I,n=31 3654352588837560 l006 ln(3330/4799) 3654352589614998 p003 LerchPhi(1/512,1,285/104) 3654352593755814 r009 Im(z^3+c),c=-9/62+20/49*I,n=3 3654352593780953 m002 (-19*Pi^6)/5-ProductLog[Pi] 3654352594313848 a001 591286729879/843*843^(13/14) 3654352599304127 a001 86000486440/321*3571^(15/17) 3654352601071231 a007 Real Root Of -325*x^4-971*x^3-986*x^2+622*x+24 3654352616161185 a001 2504730781961/5778*3571^(14/17) 3654352625242641 p004 log(31379/30253) 3654352626094330 r009 Re(z^3+c),c=-53/122+51/62*I,n=2 3654352633018243 a001 4052739537881/5778*3571^(13/17) 3654352633385673 a001 4807525989*2207^(9/16) 3654352634341929 r005 Re(z^2+c),c=-31/54+31/50*I,n=6 3654352649875301 a001 3278735159921/2889*3571^(12/17) 3654352659080025 a001 583600119655080/1597 3654352663784335 a007 Real Root Of 270*x^4+919*x^3-335*x^2-402*x-298 3654352666732359 a001 3536736619241/1926*3571^(11/17) 3654352672720031 a001 583600121833389/1597 3654352674710081 a001 583600122151200/1597 3654352675000425 a001 583600122197568/1597 3654352675042786 a001 583600122204333/1597 3654352675048966 a001 583600122205320/1597 3654352675049868 a001 583600122205464/1597 3654352675050018 a001 583600122205488/1597 3654352675050025 a001 583600122205489/1597 3654352675050031 a001 583600122205490/1597 3654352675050081 a001 583600122205498/1597 3654352675050425 a001 583600122205553/1597 3654352675052786 a001 583600122205930/1597 3654352675068966 a001 583600122208514/1597 3654352675179868 a001 583600122226225/1597 3654352675937060 a001 2504730781961/15127*3571^(16/17) 3654352677869694 r005 Im(z^2+c),c=-1/50+13/28*I,n=61 3654352680276289 a001 6557470319842/2207*2207^(5/8) 3654352681150018 a001 583600123179658/1597 3654352689577067 a001 6557470319842/39603*3571^(16/17) 3654352689704522 r005 Re(z^2+c),c=-23/30+9/95*I,n=22 3654352690323734 a007 Real Root Of 735*x^4-395*x^3+311*x^2-996*x+36 3654352691638862 r005 Im(z^2+c),c=11/40+5/26*I,n=5 3654352692794118 a001 4052739537881/15127*3571^(15/17) 3654352692797035 a001 10610209857723/64079*3571^(16/17) 3654352693526742 h001 (-7*exp(3/2)+8)/(-exp(1/3)-5) 3654352698007054 a001 4052739537881/24476*3571^(16/17) 3654352706434125 a001 3536736619241/13201*3571^(15/17) 3654352709651177 a001 6557470319842/15127*3571^(14/17) 3654352714864112 a001 3278735159921/12238*3571^(15/17) 3654352716032351 r009 Im(z^3+c),c=-12/29+10/33*I,n=27 3654352716860018 a001 583600128882545/1597 3654352717218481 r005 Re(z^2+c),c=-55/114+11/50*I,n=24 3654352717830935 m001 MinimumGamma/(Lehmer+Magata) 3654352722510584 m001 1/Catalan^2*MadelungNaCl/ln(GAMMA(5/12))^2 3654352726508235 a001 1515744265389/2161*3571^(13/17) 3654352727166906 a001 4052739537881/2207*2207^(11/16) 3654352731721171 a001 10610209857723/24476*3571^(14/17) 3654352733441797 r005 Re(z^2+c),c=-3/4+2/245*I,n=24 3654352733717055 a001 1548008755920/9349*3571^(16/17) 3654352736534198 m005 (1/3*Pi+1/7)/(4/9*gamma+3) 3654352742700006 a001 1292/2889*14662949395604^(19/21) 3654352750574113 a001 2504730781961/9349*3571^(15/17) 3654352753624538 m002 3+4/Pi^2+Tanh[Pi]/4 3654352759895027 r005 Re(z^2+c),c=-11/23+13/50*I,n=23 3654352765983658 r002 18th iterates of z^2 + 3654352767431172 a001 4052739537881/9349*3571^(14/17) 3654352774057524 a001 2504730781961/2207*2207^(3/4) 3654352776182292 r005 Im(z^2+c),c=-1/50+13/28*I,n=64 3654352778787561 r005 Im(z^2+c),c=-5/86+24/53*I,n=8 3654352780499362 m005 (2/3*Catalan-2)/(-11/24+3/8*5^(1/2)) 3654352784288230 a001 6557470319842/9349*3571^(13/17) 3654352801145289 a001 10610209857723/9349*3571^(12/17) 3654352804342952 a001 228826127*34^(11/14) 3654352805010145 m001 (Catalan+2)/(-Zeta(3)+2) 3654352805010145 m005 (1/3*Catalan+2/3)/(1/3*Zeta(3)-2/3) 3654352807211349 a001 199/196418*10946^(4/29) 3654352810350002 a001 1527884910007336/4181 3654352812550531 a001 182717648081/2889*9349^(18/19) 3654352814141033 r005 Re(z^2+c),c=-17/36+17/60*I,n=33 3654352814751057 a001 591286729879/5778*9349^(17/19) 3654352816951583 a001 956722026041/5778*9349^(16/19) 3654352819152110 a001 86000486440/321*9349^(15/19) 3654352820948142 a001 1548008755920/2207*2207^(13/16) 3654352821352636 a001 2504730781961/5778*9349^(14/19) 3654352823553162 a001 4052739537881/5778*9349^(13/19) 3654352825753688 a001 3278735159921/2889*9349^(12/19) 3654352826302566 r005 Im(z^2+c),c=-1/50+13/28*I,n=63 3654352827954214 a001 3536736619241/1926*9349^(11/19) 3654352828131271 a007 Real Root Of -752*x^4+196*x^3-737*x^2+891*x+447 3654352832945570 h005 exp(cos(Pi*18/47)+sin(Pi*22/57)) 3654352835278745 r005 Re(z^2+c),c=11/38+2/31*I,n=55 3654352836190005 a001 2255/1926*3461452808002^(11/12) 3654352846060003 a001 2000027312648640/5473 3654352846350482 a001 139583862445/5778*24476^(20/21) 3654352846640958 a001 75283811239/1926*24476^(19/21) 3654352846931434 a001 182717648081/2889*24476^(6/7) 3654352847221911 a001 591286729879/5778*24476^(17/21) 3654352847512387 a001 956722026041/5778*24476^(16/21) 3654352847802863 a001 86000486440/321*24476^(5/7) 3654352848093339 a001 2504730781961/5778*24476^(2/3) 3654352848383815 a001 4052739537881/5778*24476^(13/21) 3654352848674291 a001 3278735159921/2889*24476^(4/7) 3654352848964767 a001 3536736619241/1926*24476^(11/21) 3654352851270022 a001 10472278965884504/28657 3654352851308720 a001 53316291173/5778*64079^(22/23) 3654352851347415 a001 43133785636/2889*64079^(21/23) 3654352851386109 a001 139583862445/5778*64079^(20/23) 3654352851424804 a001 75283811239/1926*64079^(19/23) 3654352851463499 a001 182717648081/2889*64079^(18/23) 3654352851502194 a001 591286729879/5778*64079^(17/23) 3654352851540888 a001 956722026041/5778*64079^(16/23) 3654352851579583 a001 86000486440/321*64079^(15/23) 3654352851618278 a001 2504730781961/5778*64079^(14/23) 3654352851656972 a001 4052739537881/5778*64079^(13/23) 3654352851695667 a001 3278735159921/2889*64079^(12/23) 3654352851734362 a001 3536736619241/1926*64079^(11/23) 3654352851820062 a001 2576/321*817138163596^(17/19) 3654352851820062 a001 2576/321*14662949395604^(17/21) 3654352851820062 a001 2576/321*192900153618^(17/18) 3654352852030154 a001 27416782272356232/75025 3654352852056126 a001 139583862445/5778*167761^(4/5) 3654352852082095 a001 86000486440/321*167761^(3/5) 3654352852110406 a001 121393/5778*14662949395604^(7/9) 3654352852110406 a001 121393/5778*505019158607^(7/8) 3654352852143164 a001 10182505537/2889*439204^(8/9) 3654352852145269 a001 43133785636/2889*439204^(7/9) 3654352852147373 a001 182717648081/2889*439204^(2/3) 3654352852149478 a001 86000486440/321*439204^(5/9) 3654352852151583 a001 3278735159921/2889*439204^(4/9) 3654352852158947 a001 416020/2889*45537549124^(15/17) 3654352852158947 a001 416020/2889*312119004989^(9/11) 3654352852158947 a001 416020/2889*14662949395604^(5/7) 3654352852158947 a001 416020/2889*192900153618^(5/6) 3654352852158947 a001 416020/2889*28143753123^(9/10) 3654352852158947 a001 416020/2889*10749957122^(15/16) 3654352852159949 a001 567451585/2889*7881196^(10/11) 3654352852159955 a001 267084832/321*7881196^(9/11) 3654352852159960 a001 10182505537/2889*7881196^(8/11) 3654352852159964 a001 53316291173/5778*7881196^(2/3) 3654352852159966 a001 43133785636/2889*7881196^(7/11) 3654352852159971 a001 182717648081/2889*7881196^(6/11) 3654352852159976 a001 86000486440/321*7881196^(5/11) 3654352852159982 a001 3278735159921/2889*7881196^(4/11) 3654352852159983 a001 3536736619241/1926*7881196^(1/3) 3654352852159996 a001 567451585/2889*20633239^(6/7) 3654352852159996 a001 2971215073/5778*20633239^(4/5) 3654352852159997 a001 12586269025/5778*20633239^(5/7) 3654352852159998 a001 43133785636/2889*20633239^(3/5) 3654352852159998 a001 139583862445/5778*20633239^(4/7) 3654352852159999 a001 86000486440/321*20633239^(3/7) 3654352852160000 a001 2504730781961/5778*20633239^(2/5) 3654352852160000 a001 2584*2537720636^(13/15) 3654352852160000 a001 2584*45537549124^(13/17) 3654352852160000 a001 2584*14662949395604^(13/21) 3654352852160000 a001 2584*192900153618^(13/18) 3654352852160000 a001 2584*73681302247^(3/4) 3654352852160000 a001 2584*10749957122^(13/16) 3654352852160000 a001 2584*599074578^(13/14) 3654352852160003 a001 133957148/2889*141422324^(11/13) 3654352852160003 a001 567451585/2889*141422324^(10/13) 3654352852160003 a001 267084832/321*141422324^(9/13) 3654352852160003 a001 7778742049/5778*141422324^(2/3) 3654352852160003 a001 10182505537/2889*141422324^(8/13) 3654352852160003 a001 43133785636/2889*141422324^(7/13) 3654352852160003 a001 182717648081/2889*141422324^(6/13) 3654352852160003 a001 86000486440/321*141422324^(5/13) 3654352852160003 a001 34111385/1926*2537720636^(7/9) 3654352852160003 a001 34111385/1926*17393796001^(5/7) 3654352852160003 a001 34111385/1926*312119004989^(7/11) 3654352852160003 a001 34111385/1926*14662949395604^(5/9) 3654352852160003 a001 34111385/1926*505019158607^(5/8) 3654352852160003 a001 34111385/1926*28143753123^(7/10) 3654352852160003 a001 34111385/1926*599074578^(5/6) 3654352852160003 a001 4052739537881/5778*141422324^(1/3) 3654352852160003 a001 3278735159921/2889*141422324^(4/13) 3654352852160003 a001 133957148/2889*2537720636^(11/15) 3654352852160003 a001 133957148/2889*45537549124^(11/17) 3654352852160003 a001 133957148/2889*312119004989^(3/5) 3654352852160003 a001 133957148/2889*817138163596^(11/19) 3654352852160003 a001 133957148/2889*14662949395604^(11/21) 3654352852160003 a001 133957148/2889*192900153618^(11/18) 3654352852160003 a001 133957148/2889*10749957122^(11/16) 3654352852160003 a001 133957148/2889*1568397607^(3/4) 3654352852160003 a001 34111385/1926*228826127^(7/8) 3654352852160003 a001 133957148/2889*599074578^(11/14) 3654352852160003 a001 233802911/1926*9062201101803^(1/2) 3654352852160003 a001 267084832/321*2537720636^(3/5) 3654352852160003 a001 12586269025/5778*2537720636^(5/9) 3654352852160003 a001 10182505537/2889*2537720636^(8/15) 3654352852160003 a001 43133785636/2889*2537720636^(7/15) 3654352852160003 a001 139583862445/5778*2537720636^(4/9) 3654352852160003 a001 182717648081/2889*2537720636^(2/5) 3654352852160003 a001 1836311903/5778*1322157322203^(1/2) 3654352852160003 a001 86000486440/321*2537720636^(1/3) 3654352852160003 a001 3278735159921/2889*2537720636^(4/15) 3654352852160003 a001 267084832/321*45537549124^(9/17) 3654352852160003 a001 267084832/321*817138163596^(9/19) 3654352852160003 a001 267084832/321*14662949395604^(3/7) 3654352852160003 a001 267084832/321*192900153618^(1/2) 3654352852160003 a001 267084832/321*10749957122^(9/16) 3654352852160003 a001 43133785636/2889*17393796001^(3/7) 3654352852160003 a001 12586269025/5778*312119004989^(5/11) 3654352852160003 a001 12586269025/5778*3461452808002^(5/12) 3654352852160003 a001 2504730781961/5778*17393796001^(2/7) 3654352852160003 a001 12586269025/5778*28143753123^(1/2) 3654352852160003 a001 43133785636/2889*45537549124^(7/17) 3654352852160003 a001 182717648081/2889*45537549124^(6/17) 3654352852160003 a001 591286729879/5778*45537549124^(1/3) 3654352852160003 a001 86000486440/321*45537549124^(5/17) 3654352852160003 a001 3278735159921/2889*45537549124^(4/17) 3654352852160003 a001 43133785636/2889*14662949395604^(1/3) 3654352852160003 a001 43133785636/2889*192900153618^(7/18) 3654352852160003 a001 75283811239/1926*817138163596^(1/3) 3654352852160003 a001 2504730781961/5778*14662949395604^(2/9) 3654352852160003 a001 182717648081/2889*14662949395604^(2/7) 3654352852160003 a001 3278735159921/2889*192900153618^(2/9) 3654352852160003 a001 139583862445/5778*23725150497407^(5/16) 3654352852160003 a001 182717648081/2889*192900153618^(1/3) 3654352852160003 a001 139583862445/5778*505019158607^(5/14) 3654352852160003 a001 3278735159921/2889*73681302247^(3/13) 3654352852160003 a001 4052739537881/5778*73681302247^(1/4) 3654352852160003 a001 956722026041/5778*73681302247^(4/13) 3654352852160003 a001 53316291173/5778*312119004989^(2/5) 3654352852160003 a001 139583862445/5778*73681302247^(5/13) 3654352852160003 a001 10182505537/2889*45537549124^(8/17) 3654352852160003 a001 86000486440/321*28143753123^(3/10) 3654352852160003 a001 10182505537/2889*14662949395604^(8/21) 3654352852160003 a001 10182505537/2889*192900153618^(4/9) 3654352852160003 a001 139583862445/5778*28143753123^(2/5) 3654352852160003 a001 10182505537/2889*73681302247^(6/13) 3654352852160003 a001 3278735159921/2889*10749957122^(1/4) 3654352852160003 a001 2504730781961/5778*10749957122^(7/24) 3654352852160003 a001 86000486440/321*10749957122^(5/16) 3654352852160003 a001 956722026041/5778*10749957122^(1/3) 3654352852160003 a001 182717648081/2889*10749957122^(3/8) 3654352852160003 a001 7778742049/5778*73681302247^(1/2) 3654352852160003 a001 139583862445/5778*10749957122^(5/12) 3654352852160003 a001 43133785636/2889*10749957122^(7/16) 3654352852160003 a001 53316291173/5778*10749957122^(11/24) 3654352852160003 a001 10182505537/2889*10749957122^(1/2) 3654352852160003 a001 7778742049/5778*10749957122^(13/24) 3654352852160003 a001 3278735159921/2889*4106118243^(6/23) 3654352852160003 a001 2504730781961/5778*4106118243^(7/23) 3654352852160003 a001 956722026041/5778*4106118243^(8/23) 3654352852160003 a001 2971215073/5778*17393796001^(4/7) 3654352852160003 a001 2971215073/5778*14662949395604^(4/9) 3654352852160003 a001 2971215073/5778*505019158607^(1/2) 3654352852160003 a001 2971215073/5778*73681302247^(7/13) 3654352852160003 a001 182717648081/2889*4106118243^(9/23) 3654352852160003 a001 139583862445/5778*4106118243^(10/23) 3654352852160003 a001 2971215073/5778*10749957122^(7/12) 3654352852160003 a001 53316291173/5778*4106118243^(11/23) 3654352852160003 a001 10983760033/1926*4106118243^(1/2) 3654352852160003 a001 10182505537/2889*4106118243^(12/23) 3654352852160003 a001 7778742049/5778*4106118243^(13/23) 3654352852160003 a001 567451585/2889*2537720636^(2/3) 3654352852160003 a001 2971215073/5778*4106118243^(14/23) 3654352852160003 a001 3536736619241/1926*1568397607^(1/4) 3654352852160003 a001 3278735159921/2889*1568397607^(3/11) 3654352852160003 a001 2504730781961/5778*1568397607^(7/22) 3654352852160003 a001 956722026041/5778*1568397607^(4/11) 3654352852160003 a001 567451585/2889*45537549124^(10/17) 3654352852160003 a001 567451585/2889*312119004989^(6/11) 3654352852160003 a001 567451585/2889*14662949395604^(10/21) 3654352852160003 a001 567451585/2889*192900153618^(5/9) 3654352852160003 a001 567451585/2889*28143753123^(3/5) 3654352852160003 a001 567451585/2889*10749957122^(5/8) 3654352852160003 a001 182717648081/2889*1568397607^(9/22) 3654352852160003 a001 139583862445/5778*1568397607^(5/11) 3654352852160003 a001 567451585/2889*4106118243^(15/23) 3654352852160003 a001 53316291173/5778*1568397607^(1/2) 3654352852160003 a001 10182505537/2889*1568397607^(6/11) 3654352852160003 a001 7778742049/5778*1568397607^(13/22) 3654352852160003 a001 2971215073/5778*1568397607^(7/11) 3654352852160003 a001 567451585/2889*1568397607^(15/22) 3654352852160003 a001 3278735159921/2889*599074578^(2/7) 3654352852160003 a001 2504730781961/5778*599074578^(1/3) 3654352852160003 a001 86000486440/321*599074578^(5/14) 3654352852160003 a001 956722026041/5778*599074578^(8/21) 3654352852160003 a001 433494437/5778*23725150497407^(1/2) 3654352852160003 a001 433494437/5778*505019158607^(4/7) 3654352852160003 a001 433494437/5778*73681302247^(8/13) 3654352852160003 a001 433494437/5778*10749957122^(2/3) 3654352852160003 a001 433494437/5778*4106118243^(16/23) 3654352852160003 a001 182717648081/2889*599074578^(3/7) 3654352852160003 a001 139583862445/5778*599074578^(10/21) 3654352852160003 a001 433494437/5778*1568397607^(8/11) 3654352852160003 a001 43133785636/2889*599074578^(1/2) 3654352852160003 a001 53316291173/5778*599074578^(11/21) 3654352852160003 a001 10182505537/2889*599074578^(4/7) 3654352852160003 a001 7778742049/5778*599074578^(13/21) 3654352852160003 a001 267084832/321*599074578^(9/14) 3654352852160003 a001 2971215073/5778*599074578^(2/3) 3654352852160003 a001 567451585/2889*599074578^(5/7) 3654352852160003 a001 433494437/5778*599074578^(16/21) 3654352852160003 a001 31622993/2889*141422324^(12/13) 3654352852160003 a001 3278735159921/2889*228826127^(3/10) 3654352852160003 a001 2504730781961/5778*228826127^(7/20) 3654352852160003 a001 86000486440/321*228826127^(3/8) 3654352852160003 a001 165580141/5778*45537549124^(2/3) 3654352852160003 a001 165580141/5778*10749957122^(17/24) 3654352852160003 a001 165580141/5778*4106118243^(17/23) 3654352852160003 a001 165580141/5778*1568397607^(17/22) 3654352852160003 a001 956722026041/5778*228826127^(2/5) 3654352852160003 a001 182717648081/2889*228826127^(9/20) 3654352852160003 a001 139583862445/5778*228826127^(1/2) 3654352852160003 a001 165580141/5778*599074578^(17/21) 3654352852160003 a001 53316291173/5778*228826127^(11/20) 3654352852160003 a001 10182505537/2889*228826127^(3/5) 3654352852160003 a001 12586269025/5778*228826127^(5/8) 3654352852160003 a001 7778742049/5778*228826127^(13/20) 3654352852160003 a001 2971215073/5778*228826127^(7/10) 3654352852160003 a001 567451585/2889*228826127^(3/4) 3654352852160003 a001 433494437/5778*228826127^(4/5) 3654352852160003 a001 165580141/5778*228826127^(17/20) 3654352852160003 a001 3278735159921/2889*87403803^(6/19) 3654352852160003 a001 2504730781961/5778*87403803^(7/19) 3654352852160003 a001 31622993/2889*2537720636^(4/5) 3654352852160003 a001 31622993/2889*45537549124^(12/17) 3654352852160003 a001 31622993/2889*14662949395604^(4/7) 3654352852160003 a001 31622993/2889*505019158607^(9/14) 3654352852160003 a001 31622993/2889*192900153618^(2/3) 3654352852160003 a001 31622993/2889*73681302247^(9/13) 3654352852160003 a001 31622993/2889*10749957122^(3/4) 3654352852160003 a001 31622993/2889*4106118243^(18/23) 3654352852160003 a001 31622993/2889*1568397607^(9/11) 3654352852160003 a001 31622993/2889*599074578^(6/7) 3654352852160003 a001 956722026041/5778*87403803^(8/19) 3654352852160003 a001 182717648081/2889*87403803^(9/19) 3654352852160003 a001 75283811239/1926*87403803^(1/2) 3654352852160003 a001 31622993/2889*228826127^(9/10) 3654352852160003 a001 139583862445/5778*87403803^(10/19) 3654352852160003 a001 53316291173/5778*87403803^(11/19) 3654352852160003 a001 10182505537/2889*87403803^(12/19) 3654352852160003 a001 7778742049/5778*87403803^(13/19) 3654352852160003 a001 2971215073/5778*87403803^(14/19) 3654352852160003 a001 567451585/2889*87403803^(15/19) 3654352852160003 a001 433494437/5778*87403803^(16/19) 3654352852160003 a001 165580141/5778*87403803^(17/19) 3654352852160004 a001 31622993/2889*87403803^(18/19) 3654352852160004 a001 3278735159921/2889*33385282^(1/3) 3654352852160004 a001 24157817/5778*817138163596^(2/3) 3654352852160004 a001 24157817/5778*10749957122^(19/24) 3654352852160004 a001 24157817/5778*4106118243^(19/23) 3654352852160004 a001 24157817/5778*1568397607^(19/22) 3654352852160004 a001 24157817/5778*599074578^(19/21) 3654352852160004 a001 2504730781961/5778*33385282^(7/18) 3654352852160004 a001 24157817/5778*228826127^(19/20) 3654352852160004 a001 86000486440/321*33385282^(5/12) 3654352852160004 a001 956722026041/5778*33385282^(4/9) 3654352852160005 a001 182717648081/2889*33385282^(1/2) 3654352852160005 a001 139583862445/5778*33385282^(5/9) 3654352852160005 a001 43133785636/2889*33385282^(7/12) 3654352852160005 a001 53316291173/5778*33385282^(11/18) 3654352852160005 a001 10182505537/2889*33385282^(2/3) 3654352852160005 a001 7778742049/5778*33385282^(13/18) 3654352852160005 a001 267084832/321*33385282^(3/4) 3654352852160006 a001 2971215073/5778*33385282^(7/9) 3654352852160006 a001 567451585/2889*33385282^(5/6) 3654352852160006 a001 433494437/5778*33385282^(8/9) 3654352852160006 a001 133957148/2889*33385282^(11/12) 3654352852160006 a001 165580141/5778*33385282^(17/18) 3654352852160011 a001 3278735159921/2889*12752043^(6/17) 3654352852160012 a001 9227465/5778*2537720636^(8/9) 3654352852160012 a001 9227465/5778*312119004989^(8/11) 3654352852160012 a001 9227465/5778*23725150497407^(5/8) 3654352852160012 a001 9227465/5778*73681302247^(10/13) 3654352852160012 a001 9227465/5778*28143753123^(4/5) 3654352852160012 a001 9227465/5778*10749957122^(5/6) 3654352852160012 a001 9227465/5778*4106118243^(20/23) 3654352852160012 a001 9227465/5778*1568397607^(10/11) 3654352852160012 a001 9227465/5778*599074578^(20/21) 3654352852160012 a001 2504730781961/5778*12752043^(7/17) 3654352852160014 a001 956722026041/5778*12752043^(8/17) 3654352852160014 a001 591286729879/5778*12752043^(1/2) 3654352852160015 a001 182717648081/2889*12752043^(9/17) 3654352852160016 a001 139583862445/5778*12752043^(10/17) 3654352852160018 a001 53316291173/5778*12752043^(11/17) 3654352852160019 a001 10182505537/2889*12752043^(12/17) 3654352852160020 a001 7778742049/5778*12752043^(13/17) 3654352852160021 a001 2971215073/5778*12752043^(14/17) 3654352852160023 a001 567451585/2889*12752043^(15/17) 3654352852160024 a001 433494437/5778*12752043^(16/17) 3654352852160061 a001 3278735159921/2889*4870847^(3/8) 3654352852160062 a001 1762289/2889*2537720636^(14/15) 3654352852160062 a001 1762289/2889*17393796001^(6/7) 3654352852160062 a001 1762289/2889*45537549124^(14/17) 3654352852160062 a001 1762289/2889*817138163596^(14/19) 3654352852160062 a001 1762289/2889*14662949395604^(2/3) 3654352852160062 a001 1762289/2889*505019158607^(3/4) 3654352852160062 a001 1762289/2889*192900153618^(7/9) 3654352852160062 a001 1762289/2889*10749957122^(7/8) 3654352852160062 a001 1762289/2889*4106118243^(21/23) 3654352852160062 a001 1762289/2889*1568397607^(21/22) 3654352852160070 a001 2504730781961/5778*4870847^(7/16) 3654352852160080 a001 956722026041/5778*4870847^(1/2) 3654352852160090 a001 182717648081/2889*4870847^(9/16) 3654352852160099 a001 139583862445/5778*4870847^(5/8) 3654352852160109 a001 53316291173/5778*4870847^(11/16) 3654352852160118 a001 10182505537/2889*4870847^(3/4) 3654352852160128 a001 7778742049/5778*4870847^(13/16) 3654352852160138 a001 2971215073/5778*4870847^(7/8) 3654352852160147 a001 567451585/2889*4870847^(15/16) 3654352852160406 a001 1346269/5778*312119004989^(4/5) 3654352852160406 a001 1346269/5778*23725150497407^(11/16) 3654352852160406 a001 1346269/5778*73681302247^(11/13) 3654352852160406 a001 1346269/5778*10749957122^(11/12) 3654352852160406 a001 1346269/5778*4106118243^(22/23) 3654352852160425 a001 3278735159921/2889*1860498^(2/5) 3654352852160496 a001 2504730781961/5778*1860498^(7/15) 3654352852160531 a001 86000486440/321*1860498^(1/2) 3654352852160566 a001 956722026041/5778*1860498^(8/15) 3654352852160636 a001 182717648081/2889*1860498^(3/5) 3654352852160707 a001 139583862445/5778*1860498^(2/3) 3654352852160742 a001 43133785636/2889*1860498^(7/10) 3654352852160777 a001 53316291173/5778*1860498^(11/15) 3654352852160848 a001 10182505537/2889*1860498^(4/5) 3654352852160883 a001 12586269025/5778*1860498^(5/6) 3654352852160918 a001 7778742049/5778*1860498^(13/15) 3654352852160953 a001 267084832/321*1860498^(9/10) 3654352852160988 a001 2971215073/5778*1860498^(14/15) 3654352852162767 a001 514229/5778*10749957122^(23/24) 3654352852163104 a001 3278735159921/2889*710647^(3/7) 3654352852163621 a001 2504730781961/5778*710647^(1/2) 3654352852164138 a001 956722026041/5778*710647^(4/7) 3654352852164655 a001 182717648081/2889*710647^(9/14) 3654352852165172 a001 139583862445/5778*710647^(5/7) 3654352852165430 a001 43133785636/2889*710647^(3/4) 3654352852165688 a001 53316291173/5778*710647^(11/14) 3654352852166205 a001 10182505537/2889*710647^(6/7) 3654352852166722 a001 7778742049/5778*710647^(13/14) 3654352852178947 a001 98209/2889*45537549124^(16/17) 3654352852178947 a001 98209/2889*14662949395604^(16/21) 3654352852178947 a001 98209/2889*192900153618^(8/9) 3654352852178947 a001 98209/2889*73681302247^(12/13) 3654352852182894 a001 3278735159921/2889*271443^(6/13) 3654352852184801 a001 4052739537881/5778*271443^(1/2) 3654352852186709 a001 2504730781961/5778*271443^(7/13) 3654352852190524 a001 956722026041/5778*271443^(8/13) 3654352852194339 a001 182717648081/2889*271443^(9/13) 3654352852198154 a001 139583862445/5778*271443^(10/13) 3654352852201969 a001 53316291173/5778*271443^(11/13) 3654352852205785 a001 10182505537/2889*271443^(12/13) 3654352852289849 a001 75025/5778*312119004989^(10/11) 3654352852289849 a001 75025/5778*3461452808002^(5/6) 3654352852315809 a001 3536736619241/1926*103682^(11/24) 3654352852329974 a001 3278735159921/2889*103682^(1/2) 3654352852344138 a001 4052739537881/5778*103682^(13/24) 3654352852358302 a001 2504730781961/5778*103682^(7/12) 3654352852372466 a001 86000486440/321*103682^(5/8) 3654352852386630 a001 956722026041/5778*103682^(2/3) 3654352852400795 a001 591286729879/5778*103682^(17/24) 3654352852414959 a001 182717648081/2889*103682^(3/4) 3654352852429123 a001 75283811239/1926*103682^(19/24) 3654352852443287 a001 139583862445/5778*103682^(5/6) 3654352852457451 a001 43133785636/2889*103682^(7/8) 3654352852471616 a001 53316291173/5778*103682^(11/12) 3654352852485780 a001 10983760033/1926*103682^(23/24) 3654352852499941 a001 1059031456654483/2898 3654352853049980 a001 28657/5778*23725150497407^(13/16) 3654352853049980 a001 28657/5778*505019158607^(13/14) 3654352853324999 a001 3536736619241/1926*39603^(1/2) 3654352853430907 a001 3278735159921/2889*39603^(6/11) 3654352853536816 a001 4052739537881/5778*39603^(13/22) 3654352853642725 a001 2504730781961/5778*39603^(7/11) 3654352853748633 a001 86000486440/321*39603^(15/22) 3654352853854542 a001 956722026041/5778*39603^(8/11) 3654352853960451 a001 591286729879/5778*39603^(17/22) 3654352854066360 a001 182717648081/2889*39603^(9/11) 3654352854172268 a001 75283811239/1926*39603^(19/22) 3654352854278177 a001 139583862445/5778*39603^(10/11) 3654352854384086 a001 43133785636/2889*39603^(21/22) 3654352854489991 a001 6472224340587224/17711 3654352858259996 a001 646/6119*14662949395604^(20/21) 3654352858259999 a001 5473/2889*14662949395604^(6/7) 3654352860943502 a001 3536736619241/1926*15127^(11/20) 3654352860974051 m001 (-RenyiParking+ZetaQ(2))/(Otter-Shi(1)) 3654352861742002 a001 3278735159921/2889*15127^(3/5) 3654352862540502 a001 4052739537881/5778*15127^(13/20) 3654352863339002 a001 2504730781961/5778*15127^(7/10) 3654352864137502 a001 86000486440/321*15127^(3/4) 3654352864936002 a001 956722026041/5778*15127^(4/5) 3654352865734501 a001 591286729879/5778*15127^(17/20) 3654352866533001 a001 182717648081/2889*15127^(9/10) 3654352867331501 a001 75283811239/1926*15127^(19/20) 3654352867670506 r005 Re(z^2+c),c=-49/114+23/51*I,n=54 3654352867838760 a001 956722026041/2207*2207^(7/8) 3654352867865251 r009 Re(z^3+c),c=-41/74+15/32*I,n=38 3654352868129998 a001 2472169715289944/6765 3654352868166549 r005 Im(z^2+c),c=-33/28+13/38*I,n=4 3654352873081878 a007 Real Root Of 761*x^4+502*x^3+796*x^2-601*x-315 3654352881602493 s002 sum(A282627[n]/((10^n-1)/n),n=1..infinity) 3654352888212846 r005 Im(z^2+c),c=11/36+10/49*I,n=58 3654352893970001 a001 4181/5778*14662949395604^(8/9) 3654352903840002 a001 1527884949095505/4181 3654352905412296 a007 Real Root Of 431*x^4-249*x^3+412*x^2-534*x-270 3654352906040528 a001 956722026041/15127*9349^(18/19) 3654352908241054 a001 1548008755920/15127*9349^(17/19) 3654352910441580 a001 2504730781961/15127*9349^(16/19) 3654352912642107 a001 4052739537881/15127*9349^(15/19) 3654352914729380 a001 591286729879/2207*2207^(15/16) 3654352914842633 a001 6557470319842/15127*9349^(14/19) 3654352916189320 a001 1/123*(1/2*5^(1/2)+1/2)^13*199^(16/19) 3654352917043159 a001 1515744265389/2161*9349^(13/19) 3654352917480009 a001 1527884954798392/4181 3654352919052223 a001 3536736619241/1926*5778^(11/18) 3654352919470059 a001 1527884955630432/4181 3654352919680535 a001 2504730781961/39603*9349^(18/19) 3654352919760404 a001 1527884955751825/4181 3654352919802764 a001 1527884955769536/4181 3654352919808945 a001 1527884955772120/4181 3654352919809846 a001 1527884955772497/4181 3654352919809978 a001 1527884955772552/4181 3654352919809997 a001 1527884955772560/4181 3654352919810002 a001 1527884955772562/4181 3654352919810009 a001 1527884955772565/4181 3654352919810059 a001 1527884955772586/4181 3654352919810404 a001 1527884955772730/4181 3654352919812764 a001 1527884955773717/4181 3654352919828945 a001 1527884955780482/4181 3654352919939846 a001 1527884955826850/4181 3654352920699978 a001 1527884956144661/4181 3654352921670585 a001 3278735159921/51841*9349^(18/19) 3654352921881061 a001 4052739537881/39603*9349^(17/19) 3654352922140372 a001 10610209857723/167761*9349^(18/19) 3654352922572936 m001 (GAMMA(5/24)+sqrt(Pi)*GAMMA(19/24))/sqrt(Pi) 3654352922900504 a001 4052739537881/64079*9349^(18/19) 3654352923871111 a001 225749145909/2206*9349^(17/19) 3654352924047192 r005 Re(z^2+c),c=-10/23+17/38*I,n=27 3654352924081587 a001 6557470319842/39603*9349^(16/19) 3654352924352364 m001 ln(Niven)/FeigenbaumDelta^2/sin(Pi/12)^2 3654352925101030 a001 6557470319842/64079*9349^(17/19) 3654352925133334 a001 3278735159921/2889*5778^(2/3) 3654352925909997 a001 1527884958322970/4181 3654352926282114 a001 3536736619241/13201*9349^(15/19) 3654352927301556 a001 10610209857723/64079*9349^(16/19) 3654352928110523 a001 387002188980/6119*9349^(18/19) 3654352929680002 a001 6765/15127*14662949395604^(19/21) 3654352930311049 a001 2504730781961/24476*9349^(17/19) 3654352931214445 a001 4052739537881/5778*5778^(13/18) 3654352932511575 a001 4052739537881/24476*9349^(16/19) 3654352934712102 a001 3278735159921/12238*9349^(15/19) 3654352936912628 a001 10610209857723/24476*9349^(14/19) 3654352936928126 r009 Im(z^3+c),c=-27/52+9/52*I,n=43 3654352937295556 a001 2504730781961/5778*5778^(7/9) 3654352939550004 a001 4000054727631435/10946 3654352939840480 a001 365435296162/15127*24476^(20/21) 3654352940130956 a001 591286729879/15127*24476^(19/21) 3654352940421432 a001 956722026041/15127*24476^(6/7) 3654352940711908 a001 1548008755920/15127*24476^(17/21) 3654352941002384 a001 2504730781961/15127*24476^(16/21) 3654352941292860 a001 4052739537881/15127*24476^(5/7) 3654352941583336 a001 6557470319842/15127*24476^(2/3) 3654352941873812 a001 1515744265389/2161*24476^(13/21) 3654352943320009 a001 17711/15127*3461452808002^(11/12) 3654352943376667 a001 86000486440/321*5778^(5/6) 3654352944760023 a001 10472279233798800/28657 3654352944798718 a001 139583862445/15127*64079^(22/23) 3654352944837413 a001 32264490531/2161*64079^(21/23) 3654352944876107 a001 365435296162/15127*64079^(20/23) 3654352944914802 a001 591286729879/15127*64079^(19/23) 3654352944953497 a001 956722026041/15127*64079^(18/23) 3654352944992191 a001 1548008755920/15127*64079^(17/23) 3654352945030886 a001 2504730781961/15127*64079^(16/23) 3654352945069581 a001 4052739537881/15127*64079^(15/23) 3654352945108275 a001 6557470319842/15127*64079^(14/23) 3654352945146970 a001 1515744265389/2161*64079^(13/23) 3654352945520155 a001 5483356594752993/15005 3654352945546124 a001 365435296162/15127*167761^(4/5) 3654352945572093 a001 4052739537881/15127*167761^(3/5) 3654352945600404 a001 121393/15127*817138163596^(17/19) 3654352945600404 a001 121393/15127*14662949395604^(17/21) 3654352945600404 a001 121393/15127*192900153618^(17/18) 3654352945631056 a001 71778069687496095/196418 3654352945633161 a001 53316291173/15127*439204^(8/9) 3654352945635266 a001 32264490531/2161*439204^(7/9) 3654352945637371 a001 956722026041/15127*439204^(2/3) 3654352945639476 a001 4052739537881/15127*439204^(5/9) 3654352945642765 a001 317811/15127*14662949395604^(7/9) 3654352945642765 a001 317811/15127*505019158607^(7/8) 3654352945649847 a001 311187/2161*45537549124^(15/17) 3654352945649847 a001 311187/2161*312119004989^(9/11) 3654352945649847 a001 311187/2161*14662949395604^(5/7) 3654352945649847 a001 311187/2161*192900153618^(5/6) 3654352945649847 a001 311187/2161*28143753123^(9/10) 3654352945649847 a001 311187/2161*10749957122^(15/16) 3654352945649947 a001 2971215073/15127*7881196^(10/11) 3654352945649953 a001 12586269025/15127*7881196^(9/11) 3654352945649958 a001 53316291173/15127*7881196^(8/11) 3654352945649962 a001 139583862445/15127*7881196^(2/3) 3654352945649963 a001 32264490531/2161*7881196^(7/11) 3654352945649969 a001 956722026041/15127*7881196^(6/11) 3654352945649974 a001 4052739537881/15127*7881196^(5/11) 3654352945649993 a001 2971215073/15127*20633239^(6/7) 3654352945649994 a001 7778742049/15127*20633239^(4/5) 3654352945649995 a001 32951280099/15127*20633239^(5/7) 3654352945649996 a001 32264490531/2161*20633239^(3/5) 3654352945649996 a001 365435296162/15127*20633239^(4/7) 3654352945649997 a001 4052739537881/15127*20633239^(3/7) 3654352945649997 a001 6557470319842/15127*20633239^(2/5) 3654352945650000 a001 39088169/15127*2537720636^(13/15) 3654352945650000 a001 39088169/15127*45537549124^(13/17) 3654352945650000 a001 39088169/15127*14662949395604^(13/21) 3654352945650000 a001 39088169/15127*192900153618^(13/18) 3654352945650000 a001 39088169/15127*73681302247^(3/4) 3654352945650000 a001 39088169/15127*10749957122^(13/16) 3654352945650000 a001 39088169/15127*599074578^(13/14) 3654352945650001 a001 701408733/15127*141422324^(11/13) 3654352945650001 a001 165580141/15127*141422324^(12/13) 3654352945650001 a001 2971215073/15127*141422324^(10/13) 3654352945650001 a001 12586269025/15127*141422324^(9/13) 3654352945650001 a001 20365011074/15127*141422324^(2/3) 3654352945650001 a001 53316291173/15127*141422324^(8/13) 3654352945650001 a001 32264490531/2161*141422324^(7/13) 3654352945650001 a001 956722026041/15127*141422324^(6/13) 3654352945650001 a001 4052739537881/15127*141422324^(5/13) 3654352945650001 a001 1515744265389/2161*141422324^(1/3) 3654352945650001 a001 267914296/15127*2537720636^(7/9) 3654352945650001 a001 267914296/15127*17393796001^(5/7) 3654352945650001 a001 267914296/15127*312119004989^(7/11) 3654352945650001 a001 267914296/15127*14662949395604^(5/9) 3654352945650001 a001 267914296/15127*505019158607^(5/8) 3654352945650001 a001 267914296/15127*28143753123^(7/10) 3654352945650001 a001 701408733/15127*2537720636^(11/15) 3654352945650001 a001 267914296/15127*599074578^(5/6) 3654352945650001 a001 701408733/15127*45537549124^(11/17) 3654352945650001 a001 701408733/15127*312119004989^(3/5) 3654352945650001 a001 701408733/15127*817138163596^(11/19) 3654352945650001 a001 701408733/15127*14662949395604^(11/21) 3654352945650001 a001 701408733/15127*192900153618^(11/18) 3654352945650001 a001 701408733/15127*10749957122^(11/16) 3654352945650001 a001 701408733/15127*1568397607^(3/4) 3654352945650001 a001 12586269025/15127*2537720636^(3/5) 3654352945650001 a001 32951280099/15127*2537720636^(5/9) 3654352945650001 a001 53316291173/15127*2537720636^(8/15) 3654352945650001 a001 2971215073/15127*2537720636^(2/3) 3654352945650001 a001 32264490531/2161*2537720636^(7/15) 3654352945650001 a001 365435296162/15127*2537720636^(4/9) 3654352945650001 a001 956722026041/15127*2537720636^(2/5) 3654352945650001 a001 1836311903/15127*9062201101803^(1/2) 3654352945650001 a001 4052739537881/15127*2537720636^(1/3) 3654352945650001 a001 686789568/2161*1322157322203^(1/2) 3654352945650001 a001 12586269025/15127*45537549124^(9/17) 3654352945650001 a001 32264490531/2161*17393796001^(3/7) 3654352945650001 a001 12586269025/15127*817138163596^(9/19) 3654352945650001 a001 12586269025/15127*14662949395604^(3/7) 3654352945650001 a001 12586269025/15127*192900153618^(1/2) 3654352945650001 a001 6557470319842/15127*17393796001^(2/7) 3654352945650001 a001 32264490531/2161*45537549124^(7/17) 3654352945650001 a001 32951280099/15127*312119004989^(5/11) 3654352945650001 a001 32951280099/15127*3461452808002^(5/12) 3654352945650001 a001 956722026041/15127*45537549124^(6/17) 3654352945650001 a001 1548008755920/15127*45537549124^(1/3) 3654352945650001 a001 53316291173/15127*45537549124^(8/17) 3654352945650001 a001 4052739537881/15127*45537549124^(5/17) 3654352945650001 a001 32264490531/2161*14662949395604^(1/3) 3654352945650001 a001 4052739537881/15127*312119004989^(3/11) 3654352945650001 a001 2504730781961/15127*23725150497407^(1/4) 3654352945650001 a001 365435296162/15127*23725150497407^(5/16) 3654352945650001 a001 365435296162/15127*505019158607^(5/14) 3654352945650001 a001 139583862445/15127*312119004989^(2/5) 3654352945650001 a001 32264490531/2161*192900153618^(7/18) 3654352945650001 a001 1515744265389/2161*73681302247^(1/4) 3654352945650001 a001 2504730781961/15127*73681302247^(4/13) 3654352945650001 a001 53316291173/15127*14662949395604^(8/21) 3654352945650001 a001 365435296162/15127*73681302247^(5/13) 3654352945650001 a001 53316291173/15127*192900153618^(4/9) 3654352945650001 a001 53316291173/15127*73681302247^(6/13) 3654352945650001 a001 4052739537881/15127*28143753123^(3/10) 3654352945650001 a001 32951280099/15127*28143753123^(1/2) 3654352945650001 a001 365435296162/15127*28143753123^(2/5) 3654352945650001 a001 20365011074/15127*73681302247^(1/2) 3654352945650001 a001 7778742049/15127*17393796001^(4/7) 3654352945650001 a001 6557470319842/15127*10749957122^(7/24) 3654352945650001 a001 4052739537881/15127*10749957122^(5/16) 3654352945650001 a001 2504730781961/15127*10749957122^(1/3) 3654352945650001 a001 956722026041/15127*10749957122^(3/8) 3654352945650001 a001 7778742049/15127*14662949395604^(4/9) 3654352945650001 a001 7778742049/15127*73681302247^(7/13) 3654352945650001 a001 12586269025/15127*10749957122^(9/16) 3654352945650001 a001 365435296162/15127*10749957122^(5/12) 3654352945650001 a001 32264490531/2161*10749957122^(7/16) 3654352945650001 a001 139583862445/15127*10749957122^(11/24) 3654352945650001 a001 53316291173/15127*10749957122^(1/2) 3654352945650001 a001 20365011074/15127*10749957122^(13/24) 3654352945650001 a001 7778742049/15127*10749957122^(7/12) 3654352945650001 a001 6557470319842/15127*4106118243^(7/23) 3654352945650001 a001 2504730781961/15127*4106118243^(8/23) 3654352945650001 a001 2971215073/15127*45537549124^(10/17) 3654352945650001 a001 2971215073/15127*312119004989^(6/11) 3654352945650001 a001 2971215073/15127*14662949395604^(10/21) 3654352945650001 a001 2971215073/15127*192900153618^(5/9) 3654352945650001 a001 956722026041/15127*4106118243^(9/23) 3654352945650001 a001 2971215073/15127*28143753123^(3/5) 3654352945650001 a001 365435296162/15127*4106118243^(10/23) 3654352945650001 a001 2971215073/15127*10749957122^(5/8) 3654352945650001 a001 139583862445/15127*4106118243^(11/23) 3654352945650001 a001 86267571272/15127*4106118243^(1/2) 3654352945650001 a001 53316291173/15127*4106118243^(12/23) 3654352945650001 a001 20365011074/15127*4106118243^(13/23) 3654352945650001 a001 7778742049/15127*4106118243^(14/23) 3654352945650001 a001 2971215073/15127*4106118243^(15/23) 3654352945650001 a001 6557470319842/15127*1568397607^(7/22) 3654352945650001 a001 2504730781961/15127*1568397607^(4/11) 3654352945650001 a001 1134903170/15127*23725150497407^(1/2) 3654352945650001 a001 1134903170/15127*73681302247^(8/13) 3654352945650001 a001 1134903170/15127*10749957122^(2/3) 3654352945650001 a001 956722026041/15127*1568397607^(9/22) 3654352945650001 a001 365435296162/15127*1568397607^(5/11) 3654352945650001 a001 1134903170/15127*4106118243^(16/23) 3654352945650001 a001 139583862445/15127*1568397607^(1/2) 3654352945650001 a001 53316291173/15127*1568397607^(6/11) 3654352945650001 a001 20365011074/15127*1568397607^(13/22) 3654352945650001 a001 7778742049/15127*1568397607^(7/11) 3654352945650001 a001 2971215073/15127*1568397607^(15/22) 3654352945650001 a001 1134903170/15127*1568397607^(8/11) 3654352945650001 a001 6557470319842/15127*599074578^(1/3) 3654352945650001 a001 4052739537881/15127*599074578^(5/14) 3654352945650001 a001 2504730781961/15127*599074578^(8/21) 3654352945650001 a001 433494437/15127*45537549124^(2/3) 3654352945650001 a001 433494437/15127*10749957122^(17/24) 3654352945650001 a001 433494437/15127*4106118243^(17/23) 3654352945650001 a001 956722026041/15127*599074578^(3/7) 3654352945650001 a001 365435296162/15127*599074578^(10/21) 3654352945650001 a001 433494437/15127*1568397607^(17/22) 3654352945650001 a001 32264490531/2161*599074578^(1/2) 3654352945650001 a001 139583862445/15127*599074578^(11/21) 3654352945650001 a001 53316291173/15127*599074578^(4/7) 3654352945650001 a001 20365011074/15127*599074578^(13/21) 3654352945650001 a001 701408733/15127*599074578^(11/14) 3654352945650001 a001 12586269025/15127*599074578^(9/14) 3654352945650001 a001 7778742049/15127*599074578^(2/3) 3654352945650001 a001 2971215073/15127*599074578^(5/7) 3654352945650001 a001 1134903170/15127*599074578^(16/21) 3654352945650001 a001 433494437/15127*599074578^(17/21) 3654352945650001 a001 6557470319842/15127*228826127^(7/20) 3654352945650001 a001 4052739537881/15127*228826127^(3/8) 3654352945650001 a001 165580141/15127*2537720636^(4/5) 3654352945650001 a001 165580141/15127*45537549124^(12/17) 3654352945650001 a001 165580141/15127*14662949395604^(4/7) 3654352945650001 a001 165580141/15127*505019158607^(9/14) 3654352945650001 a001 165580141/15127*192900153618^(2/3) 3654352945650001 a001 165580141/15127*73681302247^(9/13) 3654352945650001 a001 165580141/15127*10749957122^(3/4) 3654352945650001 a001 165580141/15127*4106118243^(18/23) 3654352945650001 a001 165580141/15127*1568397607^(9/11) 3654352945650001 a001 2504730781961/15127*228826127^(2/5) 3654352945650001 a001 956722026041/15127*228826127^(9/20) 3654352945650001 a001 365435296162/15127*228826127^(1/2) 3654352945650001 a001 165580141/15127*599074578^(6/7) 3654352945650001 a001 139583862445/15127*228826127^(11/20) 3654352945650001 a001 53316291173/15127*228826127^(3/5) 3654352945650001 a001 32951280099/15127*228826127^(5/8) 3654352945650001 a001 20365011074/15127*228826127^(13/20) 3654352945650001 a001 7778742049/15127*228826127^(7/10) 3654352945650001 a001 267914296/15127*228826127^(7/8) 3654352945650001 a001 2971215073/15127*228826127^(3/4) 3654352945650001 a001 1134903170/15127*228826127^(4/5) 3654352945650001 a001 433494437/15127*228826127^(17/20) 3654352945650001 a001 165580141/15127*228826127^(9/10) 3654352945650001 a001 6557470319842/15127*87403803^(7/19) 3654352945650001 a001 63245986/15127*817138163596^(2/3) 3654352945650001 a001 63245986/15127*10749957122^(19/24) 3654352945650001 a001 63245986/15127*4106118243^(19/23) 3654352945650001 a001 63245986/15127*1568397607^(19/22) 3654352945650001 a001 63245986/15127*599074578^(19/21) 3654352945650001 a001 2504730781961/15127*87403803^(8/19) 3654352945650001 a001 956722026041/15127*87403803^(9/19) 3654352945650001 a001 591286729879/15127*87403803^(1/2) 3654352945650001 a001 63245986/15127*228826127^(19/20) 3654352945650001 a001 365435296162/15127*87403803^(10/19) 3654352945650001 a001 139583862445/15127*87403803^(11/19) 3654352945650001 a001 53316291173/15127*87403803^(12/19) 3654352945650001 a001 20365011074/15127*87403803^(13/19) 3654352945650001 a001 7778742049/15127*87403803^(14/19) 3654352945650001 a001 2971215073/15127*87403803^(15/19) 3654352945650001 a001 1134903170/15127*87403803^(16/19) 3654352945650001 a001 433494437/15127*87403803^(17/19) 3654352945650001 a001 165580141/15127*87403803^(18/19) 3654352945650002 a001 24157817/15127*2537720636^(8/9) 3654352945650002 a001 24157817/15127*312119004989^(8/11) 3654352945650002 a001 24157817/15127*23725150497407^(5/8) 3654352945650002 a001 24157817/15127*73681302247^(10/13) 3654352945650002 a001 24157817/15127*28143753123^(4/5) 3654352945650002 a001 24157817/15127*10749957122^(5/6) 3654352945650002 a001 24157817/15127*4106118243^(20/23) 3654352945650002 a001 24157817/15127*1568397607^(10/11) 3654352945650002 a001 24157817/15127*599074578^(20/21) 3654352945650002 a001 6557470319842/15127*33385282^(7/18) 3654352945650002 a001 4052739537881/15127*33385282^(5/12) 3654352945650002 a001 2504730781961/15127*33385282^(4/9) 3654352945650002 a001 956722026041/15127*33385282^(1/2) 3654352945650003 a001 365435296162/15127*33385282^(5/9) 3654352945650003 a001 32264490531/2161*33385282^(7/12) 3654352945650003 a001 139583862445/15127*33385282^(11/18) 3654352945650003 a001 53316291173/15127*33385282^(2/3) 3654352945650003 a001 20365011074/15127*33385282^(13/18) 3654352945650003 a001 12586269025/15127*33385282^(3/4) 3654352945650003 a001 7778742049/15127*33385282^(7/9) 3654352945650004 a001 2971215073/15127*33385282^(5/6) 3654352945650004 a001 1134903170/15127*33385282^(8/9) 3654352945650004 a001 701408733/15127*33385282^(11/12) 3654352945650004 a001 433494437/15127*33385282^(17/18) 3654352945650009 a001 9227465/15127*2537720636^(14/15) 3654352945650009 a001 9227465/15127*17393796001^(6/7) 3654352945650009 a001 9227465/15127*45537549124^(14/17) 3654352945650009 a001 9227465/15127*817138163596^(14/19) 3654352945650009 a001 9227465/15127*14662949395604^(2/3) 3654352945650009 a001 9227465/15127*505019158607^(3/4) 3654352945650009 a001 9227465/15127*192900153618^(7/9) 3654352945650009 a001 9227465/15127*10749957122^(7/8) 3654352945650009 a001 9227465/15127*4106118243^(21/23) 3654352945650009 a001 9227465/15127*1568397607^(21/22) 3654352945650010 a001 6557470319842/15127*12752043^(7/17) 3654352945650011 a001 2504730781961/15127*12752043^(8/17) 3654352945650012 a001 1548008755920/15127*12752043^(1/2) 3654352945650013 a001 956722026041/15127*12752043^(9/17) 3654352945650014 a001 365435296162/15127*12752043^(10/17) 3654352945650015 a001 139583862445/15127*12752043^(11/17) 3654352945650017 a001 53316291173/15127*12752043^(12/17) 3654352945650018 a001 20365011074/15127*12752043^(13/17) 3654352945650019 a001 7778742049/15127*12752043^(14/17) 3654352945650021 a001 2971215073/15127*12752043^(15/17) 3654352945650022 a001 1134903170/15127*12752043^(16/17) 3654352945650060 a001 3524578/15127*312119004989^(4/5) 3654352945650060 a001 3524578/15127*23725150497407^(11/16) 3654352945650060 a001 3524578/15127*73681302247^(11/13) 3654352945650060 a001 3524578/15127*10749957122^(11/12) 3654352945650060 a001 3524578/15127*4106118243^(22/23) 3654352945650068 a001 6557470319842/15127*4870847^(7/16) 3654352945650078 a001 2504730781961/15127*4870847^(1/2) 3654352945650087 a001 956722026041/15127*4870847^(9/16) 3654352945650097 a001 365435296162/15127*4870847^(5/8) 3654352945650107 a001 139583862445/15127*4870847^(11/16) 3654352945650116 a001 53316291173/15127*4870847^(3/4) 3654352945650126 a001 20365011074/15127*4870847^(13/16) 3654352945650136 a001 7778742049/15127*4870847^(7/8) 3654352945650145 a001 2971215073/15127*4870847^(15/16) 3654352945650404 a001 1346269/15127*10749957122^(23/24) 3654352945650493 a001 6557470319842/15127*1860498^(7/15) 3654352945650529 a001 4052739537881/15127*1860498^(1/2) 3654352945650564 a001 2504730781961/15127*1860498^(8/15) 3654352945650634 a001 956722026041/15127*1860498^(3/5) 3654352945650705 a001 365435296162/15127*1860498^(2/3) 3654352945650740 a001 32264490531/2161*1860498^(7/10) 3654352945650775 a001 139583862445/15127*1860498^(11/15) 3654352945650845 a001 53316291173/15127*1860498^(4/5) 3654352945650881 a001 32951280099/15127*1860498^(5/6) 3654352945650916 a001 20365011074/15127*1860498^(13/15) 3654352945650951 a001 12586269025/15127*1860498^(9/10) 3654352945650986 a001 7778742049/15127*1860498^(14/15) 3654352945652765 a001 514229/15127*45537549124^(16/17) 3654352945652765 a001 514229/15127*14662949395604^(16/21) 3654352945652765 a001 514229/15127*192900153618^(8/9) 3654352945652765 a001 514229/15127*73681302247^(12/13) 3654352945653619 a001 6557470319842/15127*710647^(1/2) 3654352945654136 a001 2504730781961/15127*710647^(4/7) 3654352945654653 a001 956722026041/15127*710647^(9/14) 3654352945655169 a001 365435296162/15127*710647^(5/7) 3654352945655428 a001 32264490531/2161*710647^(3/4) 3654352945655686 a001 139583862445/15127*710647^(11/14) 3654352945656203 a001 53316291173/15127*710647^(6/7) 3654352945656720 a001 20365011074/15127*710647^(13/14) 3654352945668945 a001 196418/15127*312119004989^(10/11) 3654352945668945 a001 196418/15127*3461452808002^(5/6) 3654352945674799 a001 1515744265389/2161*271443^(1/2) 3654352945676707 a001 6557470319842/15127*271443^(7/13) 3654352945680522 a001 2504730781961/15127*271443^(8/13) 3654352945684337 a001 956722026041/15127*271443^(9/13) 3654352945688152 a001 365435296162/15127*271443^(10/13) 3654352945691967 a001 139583862445/15127*271443^(11/13) 3654352945695782 a001 53316291173/15127*271443^(12/13) 3654352945699597 a001 44361286713731130/121393 3654352945779847 a001 75025/15127*23725150497407^(13/16) 3654352945779847 a001 75025/15127*505019158607^(13/14) 3654352945834136 a001 1515744265389/2161*103682^(13/24) 3654352945848300 a001 6557470319842/15127*103682^(7/12) 3654352945862464 a001 4052739537881/15127*103682^(5/8) 3654352945876628 a001 2504730781961/15127*103682^(2/3) 3654352945890792 a001 1548008755920/15127*103682^(17/24) 3654352945904957 a001 956722026041/15127*103682^(3/4) 3654352945919121 a001 591286729879/15127*103682^(19/24) 3654352945933285 a001 365435296162/15127*103682^(5/6) 3654352945947449 a001 32264490531/2161*103682^(7/8) 3654352945961614 a001 139583862445/15127*103682^(11/12) 3654352945975778 a001 86267571272/15127*103682^(23/24) 3654352945989942 a001 5648167913322055/15456 3654352946539978 a001 6765/64079*14662949395604^(20/21) 3654352946539978 a001 28657/15127*14662949395604^(6/7) 3654352947026814 a001 1515744265389/2161*39603^(13/22) 3654352947132723 a001 6557470319842/15127*39603^(7/11) 3654352947238631 a001 4052739537881/15127*39603^(15/22) 3654352947344540 a001 2504730781961/15127*39603^(8/11) 3654352947450449 a001 1548008755920/15127*39603^(17/22) 3654352947556357 a001 956722026041/15127*39603^(9/11) 3654352947662266 a001 591286729879/15127*39603^(19/22) 3654352947768175 a001 365435296162/15127*39603^(10/11) 3654352947874084 a001 32264490531/2161*39603^(21/22) 3654352947979992 a001 6472224506167365/17711 3654352949457778 a001 956722026041/5778*5778^(8/9) 3654352951749998 a001 10946/15127*14662949395604^(8/9) 3654352953190011 a001 307696518658599/842 3654352953480487 a001 956722026041/39603*24476^(20/21) 3654352953770963 a001 516002918640/13201*24476^(19/21) 3654352954061439 a001 2504730781961/39603*24476^(6/7) 3654352954351916 a001 4052739537881/39603*24476^(17/21) 3654352954642392 a001 6557470319842/39603*24476^(16/21) 3654352954932868 a001 3536736619241/13201*24476^(5/7) 3654352955180062 a001 2000027372370048/5473 3654352955470406 a001 4000054745057907/10946 3654352955470538 a001 2504730781961/103682*24476^(20/21) 3654352955512767 a001 307696518854175/842 3654352955518947 a001 2000027372555520/5473 3654352955519849 a001 4000054745112027/10946 3654352955519980 a001 4000054745112171/10946 3654352955520002 a001 4000054745112195/10946 3654352955520003 a001 2000027372556098/5473 3654352955520004 a001 4000054745112197/10946 3654352955520011 a001 307696518854785/842 3654352955520062 a001 2000027372556130/5473 3654352955520406 a001 4000054745112637/10946 3654352955522767 a001 307696518855017/842 3654352955538888 a001 591286729879/5778*5778^(17/18) 3654352955538947 a001 2000027372566466/5473 3654352955649849 a001 4000054745254325/10946 3654352955760882 a001 6557470319842/271443*24476^(20/21) 3654352955761014 a001 4052739537881/103682*24476^(19/21) 3654352955829423 a001 10610209857723/439204*24476^(20/21) 3654352955940325 a001 4052739537881/167761*24476^(20/21) 3654352956030500 a001 1515744265389/2161*15127^(13/20) 3654352956051358 a001 3536736619241/90481*24476^(19/21) 3654352956051490 a001 3278735159921/51841*24476^(6/7) 3654352956230801 a001 6557470319842/167761*24476^(19/21) 3654352956341966 a001 225749145909/2206*24476^(17/21) 3654352956409980 a001 4000054746086365/10946 3654352956490873 a007 Real Root Of -461*x^4+12*x^3-742*x^2+917*x+443 3654352956521277 a001 10610209857723/167761*24476^(6/7) 3654352956700456 a001 1548008755920/64079*24476^(20/21) 3654352956829000 a001 6557470319842/15127*15127^(7/10) 3654352956960017 a001 17711/39603*14662949395604^(19/21) 3654352956990932 a001 2504730781961/64079*24476^(19/21) 3654352957281408 a001 4052739537881/64079*24476^(6/7) 3654352957571884 a001 6557470319842/64079*24476^(17/21) 3654352957627500 a001 4052739537881/15127*15127^(3/4) 3654352957862360 a001 10610209857723/64079*24476^(16/21) 3654352958400031 a001 10472279272886969/28657 3654352958426000 a001 2504730781961/15127*15127^(4/5) 3654352958438725 a001 365435296162/39603*64079^(22/23) 3654352958477420 a001 591286729879/39603*64079^(21/23) 3654352958516115 a001 956722026041/39603*64079^(20/23) 3654352958554809 a001 516002918640/13201*64079^(19/23) 3654352958593504 a001 2504730781961/39603*64079^(18/23) 3654352958632199 a001 4052739537881/39603*64079^(17/23) 3654352958670893 a001 6557470319842/39603*64079^(16/23) 3654352958709588 a001 3536736619241/13201*64079^(15/23) 3654352958950067 a001 15456/13201*3461452808002^(11/12) 3654352959160162 a001 5483356615219824/15005 3654352959186131 a001 956722026041/39603*167761^(4/5) 3654352959212101 a001 3536736619241/13201*167761^(3/5) 3654352959224500 a001 1548008755920/15127*15127^(17/20) 3654352959271064 a001 71778069955410391/196418 3654352959273169 a001 139583862445/39603*439204^(8/9) 3654352959275274 a001 591286729879/39603*439204^(7/9) 3654352959277379 a001 2504730781961/39603*439204^(2/3) 3654352959279483 a001 3536736619241/13201*439204^(5/9) 3654352959282772 a001 105937/13201*817138163596^(17/19) 3654352959282772 a001 105937/13201*14662949395604^(17/21) 3654352959282772 a001 105937/13201*192900153618^(17/18) 3654352959287244 a001 187917426790132053/514229 3654352959288952 a001 832040/39603*14662949395604^(7/9) 3654352959288952 a001 832040/39603*505019158607^(7/8) 3654352959289955 a001 7778742049/39603*7881196^(10/11) 3654352959289960 a001 10983760033/13201*7881196^(9/11) 3654352959289965 a001 139583862445/39603*7881196^(8/11) 3654352959289969 a001 365435296162/39603*7881196^(2/3) 3654352959289971 a001 591286729879/39603*7881196^(7/11) 3654352959289976 a001 2504730781961/39603*7881196^(6/11) 3654352959289981 a001 3536736619241/13201*7881196^(5/11) 3654352959289986 a001 5702887/39603*45537549124^(15/17) 3654352959289986 a001 5702887/39603*312119004989^(9/11) 3654352959289986 a001 5702887/39603*14662949395604^(5/7) 3654352959289986 a001 5702887/39603*192900153618^(5/6) 3654352959289986 a001 5702887/39603*28143753123^(9/10) 3654352959289986 a001 5702887/39603*10749957122^(15/16) 3654352959290001 a001 7778742049/39603*20633239^(6/7) 3654352959290001 a001 20365011074/39603*20633239^(4/5) 3654352959290002 a001 86267571272/39603*20633239^(5/7) 3654352959290003 a001 591286729879/39603*20633239^(3/5) 3654352959290003 a001 956722026041/39603*20633239^(4/7) 3654352959290004 a001 3536736619241/13201*20633239^(3/7) 3654352959290008 a001 433494437/39603*141422324^(12/13) 3654352959290008 a001 1836311903/39603*141422324^(11/13) 3654352959290008 a001 7778742049/39603*141422324^(10/13) 3654352959290008 a001 10983760033/13201*141422324^(9/13) 3654352959290008 a001 53316291173/39603*141422324^(2/3) 3654352959290008 a001 139583862445/39603*141422324^(8/13) 3654352959290008 a001 591286729879/39603*141422324^(7/13) 3654352959290008 a001 2504730781961/39603*141422324^(6/13) 3654352959290008 a001 34111385/13201*2537720636^(13/15) 3654352959290008 a001 3536736619241/13201*141422324^(5/13) 3654352959290008 a001 34111385/13201*45537549124^(13/17) 3654352959290008 a001 34111385/13201*14662949395604^(13/21) 3654352959290008 a001 34111385/13201*192900153618^(13/18) 3654352959290008 a001 34111385/13201*73681302247^(3/4) 3654352959290008 a001 34111385/13201*10749957122^(13/16) 3654352959290008 a001 34111385/13201*599074578^(13/14) 3654352959290008 a001 17711*2537720636^(7/9) 3654352959290008 a001 17711*17393796001^(5/7) 3654352959290008 a001 17711*312119004989^(7/11) 3654352959290008 a001 17711*14662949395604^(5/9) 3654352959290008 a001 17711*505019158607^(5/8) 3654352959290008 a001 17711*28143753123^(7/10) 3654352959290008 a001 1836311903/39603*2537720636^(11/15) 3654352959290008 a001 7778742049/39603*2537720636^(2/3) 3654352959290008 a001 10983760033/13201*2537720636^(3/5) 3654352959290008 a001 86267571272/39603*2537720636^(5/9) 3654352959290008 a001 139583862445/39603*2537720636^(8/15) 3654352959290008 a001 591286729879/39603*2537720636^(7/15) 3654352959290008 a001 956722026041/39603*2537720636^(4/9) 3654352959290008 a001 2504730781961/39603*2537720636^(2/5) 3654352959290008 a001 1836311903/39603*45537549124^(11/17) 3654352959290008 a001 1836311903/39603*312119004989^(3/5) 3654352959290008 a001 1836311903/39603*14662949395604^(11/21) 3654352959290008 a001 1836311903/39603*192900153618^(11/18) 3654352959290008 a001 1836311903/39603*10749957122^(11/16) 3654352959290008 a001 3536736619241/13201*2537720636^(1/3) 3654352959290008 a001 1602508992/13201*9062201101803^(1/2) 3654352959290008 a001 591286729879/39603*17393796001^(3/7) 3654352959290008 a001 20365011074/39603*17393796001^(4/7) 3654352959290008 a001 12586269025/39603*1322157322203^(1/2) 3654352959290008 a001 10983760033/13201*45537549124^(9/17) 3654352959290008 a001 139583862445/39603*45537549124^(8/17) 3654352959290008 a001 591286729879/39603*45537549124^(7/17) 3654352959290008 a001 10983760033/13201*817138163596^(9/19) 3654352959290008 a001 10983760033/13201*14662949395604^(3/7) 3654352959290008 a001 10983760033/13201*192900153618^(1/2) 3654352959290008 a001 2504730781961/39603*45537549124^(6/17) 3654352959290008 a001 4052739537881/39603*45537549124^(1/3) 3654352959290008 a001 3536736619241/13201*45537549124^(5/17) 3654352959290008 a001 86267571272/39603*312119004989^(5/11) 3654352959290008 a001 86267571272/39603*3461452808002^(5/12) 3654352959290008 a001 3536736619241/13201*312119004989^(3/11) 3654352959290008 a001 591286729879/39603*14662949395604^(1/3) 3654352959290008 a001 2504730781961/39603*14662949395604^(2/7) 3654352959290008 a001 956722026041/39603*23725150497407^(5/16) 3654352959290008 a001 2504730781961/39603*192900153618^(1/3) 3654352959290008 a001 591286729879/39603*192900153618^(7/18) 3654352959290008 a001 139583862445/39603*14662949395604^(8/21) 3654352959290008 a001 139583862445/39603*192900153618^(4/9) 3654352959290008 a001 6557470319842/39603*73681302247^(4/13) 3654352959290008 a001 956722026041/39603*73681302247^(5/13) 3654352959290008 a001 139583862445/39603*73681302247^(6/13) 3654352959290008 a001 53316291173/39603*73681302247^(1/2) 3654352959290008 a001 3536736619241/13201*28143753123^(3/10) 3654352959290008 a001 20365011074/39603*14662949395604^(4/9) 3654352959290008 a001 956722026041/39603*28143753123^(2/5) 3654352959290008 a001 20365011074/39603*73681302247^(7/13) 3654352959290008 a001 86267571272/39603*28143753123^(1/2) 3654352959290008 a001 3536736619241/13201*10749957122^(5/16) 3654352959290008 a001 6557470319842/39603*10749957122^(1/3) 3654352959290008 a001 7778742049/39603*45537549124^(10/17) 3654352959290008 a001 2504730781961/39603*10749957122^(3/8) 3654352959290008 a001 7778742049/39603*312119004989^(6/11) 3654352959290008 a001 7778742049/39603*14662949395604^(10/21) 3654352959290008 a001 7778742049/39603*192900153618^(5/9) 3654352959290008 a001 956722026041/39603*10749957122^(5/12) 3654352959290008 a001 591286729879/39603*10749957122^(7/16) 3654352959290008 a001 365435296162/39603*10749957122^(11/24) 3654352959290008 a001 7778742049/39603*28143753123^(3/5) 3654352959290008 a001 139583862445/39603*10749957122^(1/2) 3654352959290008 a001 10983760033/13201*10749957122^(9/16) 3654352959290008 a001 53316291173/39603*10749957122^(13/24) 3654352959290008 a001 20365011074/39603*10749957122^(7/12) 3654352959290008 a001 7778742049/39603*10749957122^(5/8) 3654352959290008 a001 6557470319842/39603*4106118243^(8/23) 3654352959290008 a001 2971215073/39603*23725150497407^(1/2) 3654352959290008 a001 2971215073/39603*505019158607^(4/7) 3654352959290008 a001 2971215073/39603*73681302247^(8/13) 3654352959290008 a001 2504730781961/39603*4106118243^(9/23) 3654352959290008 a001 956722026041/39603*4106118243^(10/23) 3654352959290008 a001 365435296162/39603*4106118243^(11/23) 3654352959290008 a001 2971215073/39603*10749957122^(2/3) 3654352959290008 a001 75283811239/13201*4106118243^(1/2) 3654352959290008 a001 139583862445/39603*4106118243^(12/23) 3654352959290008 a001 53316291173/39603*4106118243^(13/23) 3654352959290008 a001 20365011074/39603*4106118243^(14/23) 3654352959290008 a001 7778742049/39603*4106118243^(15/23) 3654352959290008 a001 2971215073/39603*4106118243^(16/23) 3654352959290008 a001 6557470319842/39603*1568397607^(4/11) 3654352959290008 a001 1134903170/39603*45537549124^(2/3) 3654352959290008 a001 1134903170/39603*10749957122^(17/24) 3654352959290008 a001 2504730781961/39603*1568397607^(9/22) 3654352959290008 a001 956722026041/39603*1568397607^(5/11) 3654352959290008 a001 1134903170/39603*4106118243^(17/23) 3654352959290008 a001 365435296162/39603*1568397607^(1/2) 3654352959290008 a001 139583862445/39603*1568397607^(6/11) 3654352959290008 a001 53316291173/39603*1568397607^(13/22) 3654352959290008 a001 1836311903/39603*1568397607^(3/4) 3654352959290008 a001 20365011074/39603*1568397607^(7/11) 3654352959290008 a001 7778742049/39603*1568397607^(15/22) 3654352959290008 a001 2971215073/39603*1568397607^(8/11) 3654352959290008 a001 1134903170/39603*1568397607^(17/22) 3654352959290008 a001 433494437/39603*2537720636^(4/5) 3654352959290008 a001 3536736619241/13201*599074578^(5/14) 3654352959290008 a001 6557470319842/39603*599074578^(8/21) 3654352959290008 a001 433494437/39603*45537549124^(12/17) 3654352959290008 a001 433494437/39603*14662949395604^(4/7) 3654352959290008 a001 433494437/39603*505019158607^(9/14) 3654352959290008 a001 433494437/39603*192900153618^(2/3) 3654352959290008 a001 433494437/39603*73681302247^(9/13) 3654352959290008 a001 433494437/39603*10749957122^(3/4) 3654352959290008 a001 433494437/39603*4106118243^(18/23) 3654352959290008 a001 2504730781961/39603*599074578^(3/7) 3654352959290008 a001 956722026041/39603*599074578^(10/21) 3654352959290008 a001 591286729879/39603*599074578^(1/2) 3654352959290008 a001 433494437/39603*1568397607^(9/11) 3654352959290008 a001 365435296162/39603*599074578^(11/21) 3654352959290008 a001 139583862445/39603*599074578^(4/7) 3654352959290008 a001 53316291173/39603*599074578^(13/21) 3654352959290008 a001 10983760033/13201*599074578^(9/14) 3654352959290008 a001 20365011074/39603*599074578^(2/3) 3654352959290008 a001 17711*599074578^(5/6) 3654352959290008 a001 7778742049/39603*599074578^(5/7) 3654352959290008 a001 1836311903/39603*599074578^(11/14) 3654352959290008 a001 2971215073/39603*599074578^(16/21) 3654352959290008 a001 1134903170/39603*599074578^(17/21) 3654352959290008 a001 433494437/39603*599074578^(6/7) 3654352959290008 a001 3536736619241/13201*228826127^(3/8) 3654352959290008 a001 165580141/39603*817138163596^(2/3) 3654352959290008 a001 165580141/39603*10749957122^(19/24) 3654352959290008 a001 165580141/39603*4106118243^(19/23) 3654352959290008 a001 6557470319842/39603*228826127^(2/5) 3654352959290008 a001 165580141/39603*1568397607^(19/22) 3654352959290008 a001 2504730781961/39603*228826127^(9/20) 3654352959290008 a001 956722026041/39603*228826127^(1/2) 3654352959290008 a001 165580141/39603*599074578^(19/21) 3654352959290008 a001 365435296162/39603*228826127^(11/20) 3654352959290008 a001 139583862445/39603*228826127^(3/5) 3654352959290008 a001 86267571272/39603*228826127^(5/8) 3654352959290008 a001 53316291173/39603*228826127^(13/20) 3654352959290008 a001 20365011074/39603*228826127^(7/10) 3654352959290008 a001 7778742049/39603*228826127^(3/4) 3654352959290008 a001 2971215073/39603*228826127^(4/5) 3654352959290008 a001 17711*228826127^(7/8) 3654352959290008 a001 1134903170/39603*228826127^(17/20) 3654352959290008 a001 433494437/39603*228826127^(9/10) 3654352959290008 a001 165580141/39603*228826127^(19/20) 3654352959290008 a001 63245986/39603*2537720636^(8/9) 3654352959290008 a001 63245986/39603*312119004989^(8/11) 3654352959290008 a001 63245986/39603*23725150497407^(5/8) 3654352959290008 a001 63245986/39603*73681302247^(10/13) 3654352959290008 a001 63245986/39603*28143753123^(4/5) 3654352959290008 a001 63245986/39603*10749957122^(5/6) 3654352959290008 a001 63245986/39603*4106118243^(20/23) 3654352959290008 a001 63245986/39603*1568397607^(10/11) 3654352959290008 a001 63245986/39603*599074578^(20/21) 3654352959290008 a001 6557470319842/39603*87403803^(8/19) 3654352959290008 a001 2504730781961/39603*87403803^(9/19) 3654352959290008 a001 516002918640/13201*87403803^(1/2) 3654352959290008 a001 956722026041/39603*87403803^(10/19) 3654352959290008 a001 365435296162/39603*87403803^(11/19) 3654352959290008 a001 139583862445/39603*87403803^(12/19) 3654352959290008 a001 53316291173/39603*87403803^(13/19) 3654352959290008 a001 20365011074/39603*87403803^(14/19) 3654352959290008 a001 7778742049/39603*87403803^(15/19) 3654352959290008 a001 2971215073/39603*87403803^(16/19) 3654352959290009 a001 1134903170/39603*87403803^(17/19) 3654352959290009 a001 433494437/39603*87403803^(18/19) 3654352959290009 a001 24157817/39603*2537720636^(14/15) 3654352959290009 a001 24157817/39603*17393796001^(6/7) 3654352959290009 a001 24157817/39603*45537549124^(14/17) 3654352959290009 a001 24157817/39603*14662949395604^(2/3) 3654352959290009 a001 24157817/39603*505019158607^(3/4) 3654352959290009 a001 24157817/39603*192900153618^(7/9) 3654352959290009 a001 24157817/39603*10749957122^(7/8) 3654352959290009 a001 24157817/39603*4106118243^(21/23) 3654352959290009 a001 24157817/39603*1568397607^(21/22) 3654352959290009 a001 3536736619241/13201*33385282^(5/12) 3654352959290010 a001 6557470319842/39603*33385282^(4/9) 3654352959290010 a001 2504730781961/39603*33385282^(1/2) 3654352959290010 a001 956722026041/39603*33385282^(5/9) 3654352959290010 a001 591286729879/39603*33385282^(7/12) 3654352959290010 a001 365435296162/39603*33385282^(11/18) 3654352959290010 a001 139583862445/39603*33385282^(2/3) 3654352959290010 a001 53316291173/39603*33385282^(13/18) 3654352959290011 a001 10983760033/13201*33385282^(3/4) 3654352959290011 a001 20365011074/39603*33385282^(7/9) 3654352959290011 a001 7778742049/39603*33385282^(5/6) 3654352959290011 a001 2971215073/39603*33385282^(8/9) 3654352959290011 a001 1836311903/39603*33385282^(11/12) 3654352959290011 a001 1134903170/39603*33385282^(17/18) 3654352959290017 a001 9227465/39603*312119004989^(4/5) 3654352959290017 a001 9227465/39603*23725150497407^(11/16) 3654352959290017 a001 9227465/39603*73681302247^(11/13) 3654352959290017 a001 9227465/39603*10749957122^(11/12) 3654352959290017 a001 9227465/39603*4106118243^(22/23) 3654352959290019 a001 6557470319842/39603*12752043^(8/17) 3654352959290019 a001 4052739537881/39603*12752043^(1/2) 3654352959290020 a001 2504730781961/39603*12752043^(9/17) 3654352959290021 a001 956722026041/39603*12752043^(10/17) 3654352959290023 a001 365435296162/39603*12752043^(11/17) 3654352959290024 a001 139583862445/39603*12752043^(12/17) 3654352959290025 a001 53316291173/39603*12752043^(13/17) 3654352959290027 a001 20365011074/39603*12752043^(14/17) 3654352959290028 a001 7778742049/39603*12752043^(15/17) 3654352959290029 a001 2971215073/39603*12752043^(16/17) 3654352959290067 a001 3524578/39603*10749957122^(23/24) 3654352959290085 a001 6557470319842/39603*4870847^(1/2) 3654352959290095 a001 2504730781961/39603*4870847^(9/16) 3654352959290104 a001 956722026041/39603*4870847^(5/8) 3654352959290114 a001 365435296162/39603*4870847^(11/16) 3654352959290124 a001 139583862445/39603*4870847^(3/4) 3654352959290133 a001 53316291173/39603*4870847^(13/16) 3654352959290143 a001 20365011074/39603*4870847^(7/8) 3654352959290152 a001 7778742049/39603*4870847^(15/16) 3654352959290411 a001 1346269/39603*45537549124^(16/17) 3654352959290411 a001 1346269/39603*14662949395604^(16/21) 3654352959290411 a001 1346269/39603*192900153618^(8/9) 3654352959290411 a001 1346269/39603*73681302247^(12/13) 3654352959290536 a001 3536736619241/13201*1860498^(1/2) 3654352959290571 a001 6557470319842/39603*1860498^(8/15) 3654352959290642 a001 2504730781961/39603*1860498^(3/5) 3654352959290712 a001 956722026041/39603*1860498^(2/3) 3654352959290747 a001 591286729879/39603*1860498^(7/10) 3654352959290782 a001 365435296162/39603*1860498^(11/15) 3654352959290853 a001 139583862445/39603*1860498^(4/5) 3654352959290888 a001 86267571272/39603*1860498^(5/6) 3654352959290923 a001 53316291173/39603*1860498^(13/15) 3654352959290958 a001 10983760033/13201*1860498^(9/10) 3654352959290993 a001 20365011074/39603*1860498^(14/15) 3654352959292772 a001 514229/39603*312119004989^(10/11) 3654352959292772 a001 514229/39603*3461452808002^(5/6) 3654352959294143 a001 6557470319842/39603*710647^(4/7) 3654352959294660 a001 2504730781961/39603*710647^(9/14) 3654352959295177 a001 956722026041/39603*710647^(5/7) 3654352959295435 a001 591286729879/39603*710647^(3/4) 3654352959295694 a001 365435296162/39603*710647^(11/14) 3654352959296210 a001 139583862445/39603*710647^(6/7) 3654352959296727 a001 53316291173/39603*710647^(13/14) 3654352959297244 a001 8933796679593974/24447 3654352959308952 a001 196418/39603*23725150497407^(13/16) 3654352959308952 a001 196418/39603*505019158607^(13/14) 3654352959320529 a001 6557470319842/39603*271443^(8/13) 3654352959324344 a001 2504730781961/39603*271443^(9/13) 3654352959328159 a001 956722026041/39603*271443^(10/13) 3654352959331975 a001 365435296162/39603*271443^(11/13) 3654352959335790 a001 139583862445/39603*271443^(12/13) 3654352959339605 a001 44361286879311271/121393 3654352959419854 a001 17711/167761*14662949395604^(20/21) 3654352959419854 a001 75025/39603*14662949395604^(6/7) 3654352959502471 a001 3536736619241/13201*103682^(5/8) 3654352959516636 a001 6557470319842/39603*103682^(2/3) 3654352959530800 a001 4052739537881/39603*103682^(17/24) 3654352959544964 a001 2504730781961/39603*103682^(3/4) 3654352959559128 a001 516002918640/13201*103682^(19/24) 3654352959573292 a001 956722026041/39603*103682^(5/6) 3654352959587457 a001 591286729879/39603*103682^(7/8) 3654352959601621 a001 365435296162/39603*103682^(11/12) 3654352959615785 a001 75283811239/13201*103682^(23/24) 3654352959629949 a001 16944503803212151/46368 3654352959940490 m001 1/Rabbit^2/Magata^2/exp(cosh(1)) 3654352960023000 a001 956722026041/15127*15127^(9/10) 3654352960179986 a001 28657/39603*14662949395604^(8/9) 3654352960390081 a001 10472279278589856/28657 3654352960428775 a001 956722026041/103682*64079^(22/23) 3654352960467470 a001 774004377960/51841*64079^(21/23) 3654352960506165 a001 2504730781961/103682*64079^(20/23) 3654352960544860 a001 4052739537881/103682*64079^(19/23) 3654352960583554 a001 3278735159921/51841*64079^(18/23) 3654352960622249 a001 225749145909/2206*64079^(17/23) 3654352960680425 a001 10472279279421896/28657 3654352960719120 a001 2504730781961/271443*64079^(22/23) 3654352960722786 a001 10472279279543289/28657 3654352960728966 a001 10472279279561000/28657 3654352960729868 a001 10472279279563584/28657 3654352960730019 a001 10472279279564016/28657 3654352960730021 a001 10472279279564024/28657 3654352960730022 a001 10472279279564025/28657 3654352960730022 a001 10472279279564026/28657 3654352960730023 a001 10472279279564029/28657 3654352960730031 a001 10472279279564050/28657 3654352960730081 a001 10472279279564194/28657 3654352960730425 a001 10472279279565181/28657 3654352960732786 a001 10472279279571946/28657 3654352960748966 a001 10472279279618314/28657 3654352960757815 a001 4052739537881/271443*64079^(21/23) 3654352960761481 a001 6557470319842/710647*64079^(22/23) 3654352960771481 a001 10610209857723/1149851*64079^(22/23) 3654352960787661 a001 4052739537881/439204*64079^(22/23) 3654352960796509 a001 6557470319842/271443*64079^(20/23) 3654352960800175 a001 1515744265389/101521*64079^(21/23) 3654352960821500 a001 591286729879/15127*15127^(19/20) 3654352960826356 a001 3278735159921/219602*64079^(21/23) 3654352960835204 a001 3536736619241/90481*64079^(19/23) 3654352960859868 a001 10472279279936125/28657 3654352960865050 a001 10610209857723/439204*64079^(20/23) 3654352960878639 a001 3536736619241/13201*39603^(15/22) 3654352960898563 a001 140728068720/15251*64079^(22/23) 3654352960937257 a001 2504730781961/167761*64079^(21/23) 3654352960940117 a001 23184/51841*14662949395604^(19/21) 3654352960975952 a001 4052739537881/167761*64079^(20/23) 3654352960984547 a001 6557470319842/39603*39603^(8/11) 3654352961014647 a001 6557470319842/167761*64079^(19/23) 3654352961053341 a001 10610209857723/167761*64079^(18/23) 3654352961090456 a001 4052739537881/39603*39603^(17/22) 3654352961150212 a001 27416783091029472/75025 3654352961176182 a001 2504730781961/103682*167761^(4/5) 3654352961196365 a001 2504730781961/39603*39603^(9/11) 3654352961230462 a001 121393/103682*3461452808002^(11/12) 3654352961261114 a001 35889034997249280/98209 3654352961263219 a001 182717648081/51841*439204^(8/9) 3654352961265324 a001 774004377960/51841*439204^(7/9) 3654352961267429 a001 3278735159921/51841*439204^(2/3) 3654352961277294 a001 187917426892466208/514229 3654352961279003 a001 416020/51841*14662949395604^(17/21) 3654352961279003 a001 416020/51841*192900153618^(17/18) 3654352961279655 a001 491974210682900064/1346269 3654352961279904 a001 46347/2206*14662949395604^(7/9) 3654352961279904 a001 46347/2206*505019158607^(7/8) 3654352961280005 a001 10182505537/51841*7881196^(10/11) 3654352961280010 a001 43133785636/51841*7881196^(9/11) 3654352961280016 a001 182717648081/51841*7881196^(8/11) 3654352961280019 a001 956722026041/103682*7881196^(2/3) 3654352961280021 a001 774004377960/51841*7881196^(7/11) 3654352961280026 a001 3278735159921/51841*7881196^(6/11) 3654352961280051 a001 10182505537/51841*20633239^(6/7) 3654352961280051 a001 53316291173/103682*20633239^(4/5) 3654352961280052 a001 225851433717/103682*20633239^(5/7) 3654352961280053 a001 774004377960/51841*20633239^(3/5) 3654352961280053 a001 2504730781961/103682*20633239^(4/7) 3654352961280055 a001 7465176/51841*45537549124^(15/17) 3654352961280055 a001 7465176/51841*312119004989^(9/11) 3654352961280055 a001 7465176/51841*14662949395604^(5/7) 3654352961280055 a001 7465176/51841*192900153618^(5/6) 3654352961280055 a001 7465176/51841*28143753123^(9/10) 3654352961280055 a001 7465176/51841*10749957122^(15/16) 3654352961280058 a001 567451585/51841*141422324^(12/13) 3654352961280058 a001 46368*141422324^(11/13) 3654352961280058 a001 10182505537/51841*141422324^(10/13) 3654352961280058 a001 43133785636/51841*141422324^(9/13) 3654352961280058 a001 139583862445/103682*141422324^(2/3) 3654352961280058 a001 182717648081/51841*141422324^(8/13) 3654352961280058 a001 774004377960/51841*141422324^(7/13) 3654352961280058 a001 3278735159921/51841*141422324^(6/13) 3654352961280058 a001 133957148/51841*2537720636^(13/15) 3654352961280058 a001 133957148/51841*45537549124^(13/17) 3654352961280058 a001 133957148/51841*14662949395604^(13/21) 3654352961280058 a001 133957148/51841*192900153618^(13/18) 3654352961280058 a001 133957148/51841*73681302247^(3/4) 3654352961280058 a001 133957148/51841*10749957122^(13/16) 3654352961280058 a001 133957148/51841*599074578^(13/14) 3654352961280058 a001 1836311903/103682*2537720636^(7/9) 3654352961280058 a001 46368*2537720636^(11/15) 3654352961280058 a001 10182505537/51841*2537720636^(2/3) 3654352961280058 a001 43133785636/51841*2537720636^(3/5) 3654352961280058 a001 225851433717/103682*2537720636^(5/9) 3654352961280058 a001 182717648081/51841*2537720636^(8/15) 3654352961280058 a001 774004377960/51841*2537720636^(7/15) 3654352961280058 a001 2504730781961/103682*2537720636^(4/9) 3654352961280058 a001 3278735159921/51841*2537720636^(2/5) 3654352961280058 a001 1836311903/103682*17393796001^(5/7) 3654352961280058 a001 1836311903/103682*312119004989^(7/11) 3654352961280058 a001 1836311903/103682*14662949395604^(5/9) 3654352961280058 a001 1836311903/103682*505019158607^(5/8) 3654352961280058 a001 1836311903/103682*28143753123^(7/10) 3654352961280058 a001 46368*45537549124^(11/17) 3654352961280058 a001 46368*312119004989^(3/5) 3654352961280058 a001 46368*14662949395604^(11/21) 3654352961280058 a001 46368*192900153618^(11/18) 3654352961280058 a001 46368*10749957122^(11/16) 3654352961280058 a001 53316291173/103682*17393796001^(4/7) 3654352961280058 a001 774004377960/51841*17393796001^(3/7) 3654352961280058 a001 12586269025/103682*9062201101803^(1/2) 3654352961280058 a001 43133785636/51841*45537549124^(9/17) 3654352961280058 a001 182717648081/51841*45537549124^(8/17) 3654352961280058 a001 774004377960/51841*45537549124^(7/17) 3654352961280058 a001 32951280099/103682*1322157322203^(1/2) 3654352961280058 a001 3278735159921/51841*45537549124^(6/17) 3654352961280058 a001 225749145909/2206*45537549124^(1/3) 3654352961280058 a001 43133785636/51841*817138163596^(9/19) 3654352961280058 a001 43133785636/51841*14662949395604^(3/7) 3654352961280058 a001 43133785636/51841*192900153618^(1/2) 3654352961280058 a001 225851433717/103682*312119004989^(5/11) 3654352961280058 a001 2504730781961/103682*23725150497407^(5/16) 3654352961280058 a001 2504730781961/103682*505019158607^(5/14) 3654352961280058 a001 182717648081/51841*14662949395604^(8/21) 3654352961280058 a001 3278735159921/51841*192900153618^(1/3) 3654352961280058 a001 182717648081/51841*192900153618^(4/9) 3654352961280058 a001 53316291173/103682*14662949395604^(4/9) 3654352961280058 a001 2504730781961/103682*73681302247^(5/13) 3654352961280058 a001 182717648081/51841*73681302247^(6/13) 3654352961280058 a001 139583862445/103682*73681302247^(1/2) 3654352961280058 a001 53316291173/103682*73681302247^(7/13) 3654352961280058 a001 10182505537/51841*45537549124^(10/17) 3654352961280058 a001 10182505537/51841*312119004989^(6/11) 3654352961280058 a001 10182505537/51841*14662949395604^(10/21) 3654352961280058 a001 10182505537/51841*192900153618^(5/9) 3654352961280058 a001 2504730781961/103682*28143753123^(2/5) 3654352961280058 a001 225851433717/103682*28143753123^(1/2) 3654352961280058 a001 10182505537/51841*28143753123^(3/5) 3654352961280058 a001 3278735159921/51841*10749957122^(3/8) 3654352961280058 a001 7778742049/103682*23725150497407^(1/2) 3654352961280058 a001 7778742049/103682*73681302247^(8/13) 3654352961280058 a001 2504730781961/103682*10749957122^(5/12) 3654352961280058 a001 774004377960/51841*10749957122^(7/16) 3654352961280058 a001 956722026041/103682*10749957122^(11/24) 3654352961280058 a001 182717648081/51841*10749957122^(1/2) 3654352961280058 a001 139583862445/103682*10749957122^(13/24) 3654352961280058 a001 43133785636/51841*10749957122^(9/16) 3654352961280058 a001 53316291173/103682*10749957122^(7/12) 3654352961280058 a001 10182505537/51841*10749957122^(5/8) 3654352961280058 a001 7778742049/103682*10749957122^(2/3) 3654352961280058 a001 2971215073/103682*45537549124^(2/3) 3654352961280058 a001 3278735159921/51841*4106118243^(9/23) 3654352961280058 a001 2504730781961/103682*4106118243^(10/23) 3654352961280058 a001 956722026041/103682*4106118243^(11/23) 3654352961280058 a001 2971215073/103682*10749957122^(17/24) 3654352961280058 a001 591286729879/103682*4106118243^(1/2) 3654352961280058 a001 182717648081/51841*4106118243^(12/23) 3654352961280058 a001 567451585/51841*2537720636^(4/5) 3654352961280058 a001 139583862445/103682*4106118243^(13/23) 3654352961280058 a001 53316291173/103682*4106118243^(14/23) 3654352961280058 a001 10182505537/51841*4106118243^(15/23) 3654352961280058 a001 7778742049/103682*4106118243^(16/23) 3654352961280058 a001 2971215073/103682*4106118243^(17/23) 3654352961280058 a001 567451585/51841*45537549124^(12/17) 3654352961280058 a001 567451585/51841*14662949395604^(4/7) 3654352961280058 a001 567451585/51841*505019158607^(9/14) 3654352961280058 a001 567451585/51841*192900153618^(2/3) 3654352961280058 a001 567451585/51841*73681302247^(9/13) 3654352961280058 a001 567451585/51841*10749957122^(3/4) 3654352961280058 a001 3278735159921/51841*1568397607^(9/22) 3654352961280058 a001 2504730781961/103682*1568397607^(5/11) 3654352961280058 a001 567451585/51841*4106118243^(18/23) 3654352961280058 a001 956722026041/103682*1568397607^(1/2) 3654352961280058 a001 182717648081/51841*1568397607^(6/11) 3654352961280058 a001 139583862445/103682*1568397607^(13/22) 3654352961280058 a001 53316291173/103682*1568397607^(7/11) 3654352961280058 a001 10182505537/51841*1568397607^(15/22) 3654352961280058 a001 46368*1568397607^(3/4) 3654352961280058 a001 7778742049/103682*1568397607^(8/11) 3654352961280058 a001 2971215073/103682*1568397607^(17/22) 3654352961280058 a001 567451585/51841*1568397607^(9/11) 3654352961280058 a001 433494437/103682*817138163596^(2/3) 3654352961280058 a001 433494437/103682*10749957122^(19/24) 3654352961280058 a001 433494437/103682*4106118243^(19/23) 3654352961280058 a001 3278735159921/51841*599074578^(3/7) 3654352961280058 a001 2504730781961/103682*599074578^(10/21) 3654352961280058 a001 774004377960/51841*599074578^(1/2) 3654352961280058 a001 433494437/103682*1568397607^(19/22) 3654352961280058 a001 956722026041/103682*599074578^(11/21) 3654352961280058 a001 182717648081/51841*599074578^(4/7) 3654352961280058 a001 139583862445/103682*599074578^(13/21) 3654352961280058 a001 43133785636/51841*599074578^(9/14) 3654352961280058 a001 53316291173/103682*599074578^(2/3) 3654352961280058 a001 10182505537/51841*599074578^(5/7) 3654352961280058 a001 7778742049/103682*599074578^(16/21) 3654352961280058 a001 46368*599074578^(11/14) 3654352961280058 a001 1836311903/103682*599074578^(5/6) 3654352961280058 a001 2971215073/103682*599074578^(17/21) 3654352961280058 a001 567451585/51841*599074578^(6/7) 3654352961280058 a001 433494437/103682*599074578^(19/21) 3654352961280058 a001 165580141/103682*2537720636^(8/9) 3654352961280058 a001 165580141/103682*312119004989^(8/11) 3654352961280058 a001 165580141/103682*23725150497407^(5/8) 3654352961280058 a001 165580141/103682*73681302247^(10/13) 3654352961280058 a001 165580141/103682*28143753123^(4/5) 3654352961280058 a001 165580141/103682*10749957122^(5/6) 3654352961280058 a001 165580141/103682*4106118243^(20/23) 3654352961280058 a001 165580141/103682*1568397607^(10/11) 3654352961280058 a001 3278735159921/51841*228826127^(9/20) 3654352961280058 a001 2504730781961/103682*228826127^(1/2) 3654352961280058 a001 165580141/103682*599074578^(20/21) 3654352961280058 a001 956722026041/103682*228826127^(11/20) 3654352961280058 a001 182717648081/51841*228826127^(3/5) 3654352961280058 a001 225851433717/103682*228826127^(5/8) 3654352961280058 a001 139583862445/103682*228826127^(13/20) 3654352961280058 a001 53316291173/103682*228826127^(7/10) 3654352961280058 a001 10182505537/51841*228826127^(3/4) 3654352961280058 a001 7778742049/103682*228826127^(4/5) 3654352961280058 a001 2971215073/103682*228826127^(17/20) 3654352961280058 a001 1836311903/103682*228826127^(7/8) 3654352961280058 a001 567451585/51841*228826127^(9/10) 3654352961280058 a001 433494437/103682*228826127^(19/20) 3654352961280059 a001 31622993/51841*2537720636^(14/15) 3654352961280059 a001 31622993/51841*17393796001^(6/7) 3654352961280059 a001 31622993/51841*45537549124^(14/17) 3654352961280059 a001 31622993/51841*817138163596^(14/19) 3654352961280059 a001 31622993/51841*14662949395604^(2/3) 3654352961280059 a001 31622993/51841*505019158607^(3/4) 3654352961280059 a001 31622993/51841*192900153618^(7/9) 3654352961280059 a001 31622993/51841*10749957122^(7/8) 3654352961280059 a001 31622993/51841*4106118243^(21/23) 3654352961280059 a001 31622993/51841*1568397607^(21/22) 3654352961280059 a001 3278735159921/51841*87403803^(9/19) 3654352961280059 a001 4052739537881/103682*87403803^(1/2) 3654352961280059 a001 2504730781961/103682*87403803^(10/19) 3654352961280059 a001 956722026041/103682*87403803^(11/19) 3654352961280059 a001 182717648081/51841*87403803^(12/19) 3654352961280059 a001 139583862445/103682*87403803^(13/19) 3654352961280059 a001 53316291173/103682*87403803^(14/19) 3654352961280059 a001 10182505537/51841*87403803^(15/19) 3654352961280059 a001 7778742049/103682*87403803^(16/19) 3654352961280059 a001 2971215073/103682*87403803^(17/19) 3654352961280059 a001 567451585/51841*87403803^(18/19) 3654352961280060 a001 24157817/103682*312119004989^(4/5) 3654352961280060 a001 24157817/103682*23725150497407^(11/16) 3654352961280060 a001 24157817/103682*73681302247^(11/13) 3654352961280060 a001 24157817/103682*10749957122^(11/12) 3654352961280060 a001 24157817/103682*4106118243^(22/23) 3654352961280060 a001 3278735159921/51841*33385282^(1/2) 3654352961280060 a001 2504730781961/103682*33385282^(5/9) 3654352961280060 a001 774004377960/51841*33385282^(7/12) 3654352961280060 a001 956722026041/103682*33385282^(11/18) 3654352961280061 a001 182717648081/51841*33385282^(2/3) 3654352961280061 a001 139583862445/103682*33385282^(13/18) 3654352961280061 a001 43133785636/51841*33385282^(3/4) 3654352961280061 a001 53316291173/103682*33385282^(7/9) 3654352961280061 a001 10182505537/51841*33385282^(5/6) 3654352961280061 a001 7778742049/103682*33385282^(8/9) 3654352961280061 a001 46368*33385282^(11/12) 3654352961280061 a001 2971215073/103682*33385282^(17/18) 3654352961280067 a001 9227465/103682*10749957122^(23/24) 3654352961280070 a001 225749145909/2206*12752043^(1/2) 3654352961280070 a001 3278735159921/51841*12752043^(9/17) 3654352961280072 a001 2504730781961/103682*12752043^(10/17) 3654352961280073 a001 956722026041/103682*12752043^(11/17) 3654352961280074 a001 182717648081/51841*12752043^(12/17) 3654352961280076 a001 139583862445/103682*12752043^(13/17) 3654352961280077 a001 53316291173/103682*12752043^(14/17) 3654352961280078 a001 10182505537/51841*12752043^(15/17) 3654352961280079 a001 7778742049/103682*12752043^(16/17) 3654352961280117 a001 1762289/51841*45537549124^(16/17) 3654352961280117 a001 1762289/51841*14662949395604^(16/21) 3654352961280117 a001 1762289/51841*192900153618^(8/9) 3654352961280117 a001 1762289/51841*73681302247^(12/13) 3654352961280145 a001 3278735159921/51841*4870847^(9/16) 3654352961280155 a001 2504730781961/103682*4870847^(5/8) 3654352961280164 a001 956722026041/103682*4870847^(11/16) 3654352961280174 a001 182717648081/51841*4870847^(3/4) 3654352961280183 a001 139583862445/103682*4870847^(13/16) 3654352961280193 a001 53316291173/103682*4870847^(7/8) 3654352961280203 a001 10182505537/51841*4870847^(15/16) 3654352961280462 a001 1346269/103682*312119004989^(10/11) 3654352961280462 a001 1346269/103682*3461452808002^(5/6) 3654352961280692 a001 3278735159921/51841*1860498^(3/5) 3654352961280762 a001 2504730781961/103682*1860498^(2/3) 3654352961280797 a001 774004377960/51841*1860498^(7/10) 3654352961280833 a001 956722026041/103682*1860498^(11/15) 3654352961280903 a001 182717648081/51841*1860498^(4/5) 3654352961280938 a001 225851433717/103682*1860498^(5/6) 3654352961280973 a001 139583862445/103682*1860498^(13/15) 3654352961281008 a001 43133785636/51841*1860498^(9/10) 3654352961281044 a001 53316291173/103682*1860498^(14/15) 3654352961281114 a001 38007097973804232/104005 3654352961282822 a001 514229/103682*23725150497407^(13/16) 3654352961282822 a001 514229/103682*505019158607^(13/14) 3654352961284710 a001 3278735159921/51841*710647^(9/14) 3654352961285227 a001 2504730781961/103682*710647^(5/7) 3654352961285485 a001 774004377960/51841*710647^(3/4) 3654352961285744 a001 956722026041/103682*710647^(11/14) 3654352961286261 a001 182717648081/51841*710647^(6/7) 3654352961286778 a001 139583862445/103682*710647^(13/14) 3654352961287294 a001 38713118965989216/105937 3654352961299003 a001 11592/109801*14662949395604^(20/21) 3654352961299003 a001 98209/51841*14662949395604^(6/7) 3654352961302273 a001 516002918640/13201*39603^(19/22) 3654352961314395 a001 3278735159921/51841*271443^(9/13) 3654352961318210 a001 2504730781961/103682*271443^(10/13) 3654352961322025 a001 956722026041/103682*271443^(11/13) 3654352961325840 a001 182717648081/51841*271443^(12/13) 3654352961329655 a001 44361286903469088/121393 3654352961408182 a001 956722026041/39603*39603^(10/11) 3654352961409904 a001 75025/103682*14662949395604^(8/9) 3654352961440557 a001 27416783093207781/75025 3654352961466526 a001 6557470319842/271443*167761^(4/5) 3654352961482917 a001 27416783093525592/75025 3654352961489098 a001 5483356618714392/15005 3654352961490131 a001 27416783093579712/75025 3654352961490150 a001 27416783093579856/75025 3654352961490153 a001 27416783093579877/75025 3654352961490153 a001 5483356618715976/15005 3654352961490154 a001 27416783093579881/75025 3654352961490154 a001 27416783093579882/75025 3654352961490155 a001 5483356618715978/15005 3654352961490162 a001 5483356618715989/15005 3654352961490212 a001 27416783093580322/75025 3654352961490557 a001 27416783093582906/75025 3654352961492917 a001 27416783093600617/75025 3654352961509098 a001 5483356618744402/15005 3654352961514091 a001 591286729879/39603*39603^(21/22) 3654352961520806 a001 121393/271443*14662949395604^(19/21) 3654352961520850 a001 225749145909/2206*103682^(17/24) 3654352961535014 a001 3278735159921/51841*103682^(3/4) 3654352961535067 a001 10610209857723/439204*167761^(4/5) 3654352961549178 a001 4052739537881/103682*103682^(19/24) 3654352961551458 a001 71778070000201447/196418 3654352961553563 a001 956722026041/271443*439204^(8/9) 3654352961555668 a001 4052739537881/271443*439204^(7/9) 3654352961563167 a001 105937/90481*3461452808002^(11/12) 3654352961563343 a001 2504730781961/103682*103682^(5/6) 3654352961567639 a001 187917426907396560/514229 3654352961570249 a001 726103/90481*817138163596^(17/19) 3654352961570249 a001 726103/90481*14662949395604^(17/21) 3654352961570249 a001 726103/90481*192900153618^(17/18) 3654352961570344 a001 1288005205258568139/3524578 3654352961570349 a001 53316291173/271443*7881196^(10/11) 3654352961570355 a001 75283811239/90481*7881196^(9/11) 3654352961570360 a001 956722026041/271443*7881196^(8/11) 3654352961570364 a001 2504730781961/271443*7881196^(2/3) 3654352961570365 a001 4052739537881/271443*7881196^(7/11) 3654352961570380 a001 5702887/271443*14662949395604^(7/9) 3654352961570380 a001 5702887/271443*505019158607^(7/8) 3654352961570395 a001 53316291173/271443*20633239^(6/7) 3654352961570396 a001 139583862445/271443*20633239^(4/5) 3654352961570397 a001 591286729879/271443*20633239^(5/7) 3654352961570398 a001 4052739537881/271443*20633239^(3/5) 3654352961570398 a001 6557470319842/271443*20633239^(4/7) 3654352961570402 a001 39088169/271443*45537549124^(15/17) 3654352961570402 a001 39088169/271443*312119004989^(9/11) 3654352961570402 a001 39088169/271443*14662949395604^(5/7) 3654352961570402 a001 39088169/271443*192900153618^(5/6) 3654352961570402 a001 39088169/271443*28143753123^(9/10) 3654352961570402 a001 39088169/271443*10749957122^(15/16) 3654352961570403 a001 2971215073/271443*141422324^(12/13) 3654352961570403 a001 12586269025/271443*141422324^(11/13) 3654352961570403 a001 53316291173/271443*141422324^(10/13) 3654352961570403 a001 75283811239/90481*141422324^(9/13) 3654352961570403 a001 365435296162/271443*141422324^(2/3) 3654352961570403 a001 956722026041/271443*141422324^(8/13) 3654352961570403 a001 4052739537881/271443*141422324^(7/13) 3654352961570403 a001 233802911/90481*2537720636^(13/15) 3654352961570403 a001 233802911/90481*45537549124^(13/17) 3654352961570403 a001 233802911/90481*14662949395604^(13/21) 3654352961570403 a001 233802911/90481*192900153618^(13/18) 3654352961570403 a001 233802911/90481*73681302247^(3/4) 3654352961570403 a001 233802911/90481*10749957122^(13/16) 3654352961570403 a001 1602508992/90481*2537720636^(7/9) 3654352961570403 a001 12586269025/271443*2537720636^(11/15) 3654352961570403 a001 53316291173/271443*2537720636^(2/3) 3654352961570403 a001 2971215073/271443*2537720636^(4/5) 3654352961570403 a001 75283811239/90481*2537720636^(3/5) 3654352961570403 a001 591286729879/271443*2537720636^(5/9) 3654352961570403 a001 956722026041/271443*2537720636^(8/15) 3654352961570403 a001 4052739537881/271443*2537720636^(7/15) 3654352961570403 a001 6557470319842/271443*2537720636^(4/9) 3654352961570403 a001 1602508992/90481*17393796001^(5/7) 3654352961570403 a001 1602508992/90481*312119004989^(7/11) 3654352961570403 a001 1602508992/90481*14662949395604^(5/9) 3654352961570403 a001 1602508992/90481*505019158607^(5/8) 3654352961570403 a001 1602508992/90481*28143753123^(7/10) 3654352961570403 a001 139583862445/271443*17393796001^(4/7) 3654352961570403 a001 12586269025/271443*45537549124^(11/17) 3654352961570403 a001 4052739537881/271443*17393796001^(3/7) 3654352961570403 a001 12586269025/271443*312119004989^(3/5) 3654352961570403 a001 12586269025/271443*817138163596^(11/19) 3654352961570403 a001 12586269025/271443*14662949395604^(11/21) 3654352961570403 a001 12586269025/271443*192900153618^(11/18) 3654352961570403 a001 75283811239/90481*45537549124^(9/17) 3654352961570403 a001 956722026041/271443*45537549124^(8/17) 3654352961570403 a001 53316291173/271443*45537549124^(10/17) 3654352961570403 a001 4052739537881/271443*45537549124^(7/17) 3654352961570403 a001 121393*9062201101803^(1/2) 3654352961570403 a001 86267571272/271443*1322157322203^(1/2) 3654352961570403 a001 591286729879/271443*312119004989^(5/11) 3654352961570403 a001 2504730781961/271443*312119004989^(2/5) 3654352961570403 a001 3536736619241/90481*817138163596^(1/3) 3654352961570403 a001 6557470319842/271443*505019158607^(5/14) 3654352961570403 a001 75283811239/90481*192900153618^(1/2) 3654352961570403 a001 139583862445/271443*14662949395604^(4/9) 3654352961570403 a001 956722026041/271443*192900153618^(4/9) 3654352961570403 a001 53316291173/271443*312119004989^(6/11) 3654352961570403 a001 53316291173/271443*14662949395604^(10/21) 3654352961570403 a001 6557470319842/271443*73681302247^(5/13) 3654352961570403 a001 956722026041/271443*73681302247^(6/13) 3654352961570403 a001 53316291173/271443*192900153618^(5/9) 3654352961570403 a001 365435296162/271443*73681302247^(1/2) 3654352961570403 a001 139583862445/271443*73681302247^(7/13) 3654352961570403 a001 20365011074/271443*23725150497407^(1/2) 3654352961570403 a001 6557470319842/271443*28143753123^(2/5) 3654352961570403 a001 20365011074/271443*73681302247^(8/13) 3654352961570403 a001 591286729879/271443*28143753123^(1/2) 3654352961570403 a001 53316291173/271443*28143753123^(3/5) 3654352961570403 a001 7778742049/271443*45537549124^(2/3) 3654352961570403 a001 6557470319842/271443*10749957122^(5/12) 3654352961570403 a001 4052739537881/271443*10749957122^(7/16) 3654352961570403 a001 2504730781961/271443*10749957122^(11/24) 3654352961570403 a001 956722026041/271443*10749957122^(1/2) 3654352961570403 a001 12586269025/271443*10749957122^(11/16) 3654352961570403 a001 365435296162/271443*10749957122^(13/24) 3654352961570403 a001 75283811239/90481*10749957122^(9/16) 3654352961570403 a001 139583862445/271443*10749957122^(7/12) 3654352961570403 a001 53316291173/271443*10749957122^(5/8) 3654352961570403 a001 20365011074/271443*10749957122^(2/3) 3654352961570403 a001 7778742049/271443*10749957122^(17/24) 3654352961570403 a001 2971215073/271443*45537549124^(12/17) 3654352961570403 a001 2971215073/271443*14662949395604^(4/7) 3654352961570403 a001 2971215073/271443*505019158607^(9/14) 3654352961570403 a001 2971215073/271443*192900153618^(2/3) 3654352961570403 a001 2971215073/271443*73681302247^(9/13) 3654352961570403 a001 6557470319842/271443*4106118243^(10/23) 3654352961570403 a001 2504730781961/271443*4106118243^(11/23) 3654352961570403 a001 2971215073/271443*10749957122^(3/4) 3654352961570403 a001 516002918640/90481*4106118243^(1/2) 3654352961570403 a001 956722026041/271443*4106118243^(12/23) 3654352961570403 a001 365435296162/271443*4106118243^(13/23) 3654352961570403 a001 139583862445/271443*4106118243^(14/23) 3654352961570403 a001 53316291173/271443*4106118243^(15/23) 3654352961570403 a001 20365011074/271443*4106118243^(16/23) 3654352961570403 a001 7778742049/271443*4106118243^(17/23) 3654352961570403 a001 2971215073/271443*4106118243^(18/23) 3654352961570403 a001 1134903170/271443*817138163596^(2/3) 3654352961570403 a001 1134903170/271443*10749957122^(19/24) 3654352961570403 a001 6557470319842/271443*1568397607^(5/11) 3654352961570403 a001 2504730781961/271443*1568397607^(1/2) 3654352961570403 a001 1134903170/271443*4106118243^(19/23) 3654352961570403 a001 956722026041/271443*1568397607^(6/11) 3654352961570403 a001 365435296162/271443*1568397607^(13/22) 3654352961570403 a001 139583862445/271443*1568397607^(7/11) 3654352961570403 a001 53316291173/271443*1568397607^(15/22) 3654352961570403 a001 20365011074/271443*1568397607^(8/11) 3654352961570403 a001 12586269025/271443*1568397607^(3/4) 3654352961570403 a001 7778742049/271443*1568397607^(17/22) 3654352961570403 a001 2971215073/271443*1568397607^(9/11) 3654352961570403 a001 1134903170/271443*1568397607^(19/22) 3654352961570403 a001 433494437/271443*2537720636^(8/9) 3654352961570403 a001 433494437/271443*312119004989^(8/11) 3654352961570403 a001 433494437/271443*23725150497407^(5/8) 3654352961570403 a001 433494437/271443*73681302247^(10/13) 3654352961570403 a001 433494437/271443*28143753123^(4/5) 3654352961570403 a001 433494437/271443*10749957122^(5/6) 3654352961570403 a001 433494437/271443*4106118243^(20/23) 3654352961570403 a001 6557470319842/271443*599074578^(10/21) 3654352961570403 a001 4052739537881/271443*599074578^(1/2) 3654352961570403 a001 433494437/271443*1568397607^(10/11) 3654352961570403 a001 2504730781961/271443*599074578^(11/21) 3654352961570403 a001 956722026041/271443*599074578^(4/7) 3654352961570403 a001 365435296162/271443*599074578^(13/21) 3654352961570403 a001 75283811239/90481*599074578^(9/14) 3654352961570403 a001 139583862445/271443*599074578^(2/3) 3654352961570403 a001 53316291173/271443*599074578^(5/7) 3654352961570403 a001 20365011074/271443*599074578^(16/21) 3654352961570403 a001 233802911/90481*599074578^(13/14) 3654352961570403 a001 12586269025/271443*599074578^(11/14) 3654352961570403 a001 7778742049/271443*599074578^(17/21) 3654352961570403 a001 1602508992/90481*599074578^(5/6) 3654352961570403 a001 2971215073/271443*599074578^(6/7) 3654352961570403 a001 1134903170/271443*599074578^(19/21) 3654352961570403 a001 433494437/271443*599074578^(20/21) 3654352961570403 a001 165580141/271443*2537720636^(14/15) 3654352961570403 a001 165580141/271443*17393796001^(6/7) 3654352961570403 a001 165580141/271443*45537549124^(14/17) 3654352961570403 a001 165580141/271443*14662949395604^(2/3) 3654352961570403 a001 165580141/271443*505019158607^(3/4) 3654352961570403 a001 165580141/271443*192900153618^(7/9) 3654352961570403 a001 165580141/271443*10749957122^(7/8) 3654352961570403 a001 165580141/271443*4106118243^(21/23) 3654352961570403 a001 165580141/271443*1568397607^(21/22) 3654352961570403 a001 6557470319842/271443*228826127^(1/2) 3654352961570403 a001 2504730781961/271443*228826127^(11/20) 3654352961570403 a001 956722026041/271443*228826127^(3/5) 3654352961570403 a001 591286729879/271443*228826127^(5/8) 3654352961570403 a001 365435296162/271443*228826127^(13/20) 3654352961570403 a001 139583862445/271443*228826127^(7/10) 3654352961570403 a001 53316291173/271443*228826127^(3/4) 3654352961570403 a001 20365011074/271443*228826127^(4/5) 3654352961570403 a001 7778742049/271443*228826127^(17/20) 3654352961570403 a001 1602508992/90481*228826127^(7/8) 3654352961570403 a001 2971215073/271443*228826127^(9/10) 3654352961570403 a001 1134903170/271443*228826127^(19/20) 3654352961570403 a001 63245986/271443*312119004989^(4/5) 3654352961570403 a001 63245986/271443*23725150497407^(11/16) 3654352961570403 a001 63245986/271443*73681302247^(11/13) 3654352961570403 a001 63245986/271443*10749957122^(11/12) 3654352961570403 a001 63245986/271443*4106118243^(22/23) 3654352961570403 a001 3536736619241/90481*87403803^(1/2) 3654352961570403 a001 6557470319842/271443*87403803^(10/19) 3654352961570403 a001 2504730781961/271443*87403803^(11/19) 3654352961570403 a001 956722026041/271443*87403803^(12/19) 3654352961570403 a001 365435296162/271443*87403803^(13/19) 3654352961570403 a001 139583862445/271443*87403803^(14/19) 3654352961570403 a001 53316291173/271443*87403803^(15/19) 3654352961570403 a001 20365011074/271443*87403803^(16/19) 3654352961570403 a001 7778742049/271443*87403803^(17/19) 3654352961570403 a001 2971215073/271443*87403803^(18/19) 3654352961570404 a001 24157817/271443*10749957122^(23/24) 3654352961570405 a001 6557470319842/271443*33385282^(5/9) 3654352961570405 a001 4052739537881/271443*33385282^(7/12) 3654352961570405 a001 2504730781961/271443*33385282^(11/18) 3654352961570405 a001 956722026041/271443*33385282^(2/3) 3654352961570405 a001 365435296162/271443*33385282^(13/18) 3654352961570405 a001 75283811239/90481*33385282^(3/4) 3654352961570405 a001 139583862445/271443*33385282^(7/9) 3654352961570405 a001 53316291173/271443*33385282^(5/6) 3654352961570406 a001 20365011074/271443*33385282^(8/9) 3654352961570406 a001 12586269025/271443*33385282^(11/12) 3654352961570406 a001 7778742049/271443*33385282^(17/18) 3654352961570411 a001 9227465/271443*45537549124^(16/17) 3654352961570411 a001 9227465/271443*14662949395604^(16/21) 3654352961570411 a001 9227465/271443*192900153618^(8/9) 3654352961570411 a001 9227465/271443*73681302247^(12/13) 3654352961570416 a001 6557470319842/271443*12752043^(10/17) 3654352961570417 a001 2504730781961/271443*12752043^(11/17) 3654352961570419 a001 956722026041/271443*12752043^(12/17) 3654352961570420 a001 365435296162/271443*12752043^(13/17) 3654352961570421 a001 139583862445/271443*12752043^(14/17) 3654352961570423 a001 53316291173/271443*12752043^(15/17) 3654352961570424 a001 20365011074/271443*12752043^(16/17) 3654352961570462 a001 3524578/271443*312119004989^(10/11) 3654352961570462 a001 3524578/271443*3461452808002^(5/6) 3654352961570499 a001 6557470319842/271443*4870847^(5/8) 3654352961570509 a001 2504730781961/271443*4870847^(11/16) 3654352961570518 a001 956722026041/271443*4870847^(3/4) 3654352961570528 a001 365435296162/271443*4870847^(13/16) 3654352961570538 a001 139583862445/271443*4870847^(7/8) 3654352961570547 a001 53316291173/271443*4870847^(15/16) 3654352961570557 a001 796030994536579906/2178309 3654352961570806 a001 1346269/271443*23725150497407^(13/16) 3654352961570806 a001 1346269/271443*505019158607^(13/14) 3654352961571107 a001 6557470319842/271443*1860498^(2/3) 3654352961571142 a001 4052739537881/271443*1860498^(7/10) 3654352961571177 a001 2504730781961/271443*1860498^(11/15) 3654352961571247 a001 956722026041/271443*1860498^(4/5) 3654352961571283 a001 591286729879/271443*1860498^(5/6) 3654352961571318 a001 365435296162/271443*1860498^(13/15) 3654352961571353 a001 75283811239/90481*1860498^(9/10) 3654352961571388 a001 139583862445/271443*1860498^(14/15) 3654352961571458 a001 304056783814591673/832040 3654352961573167 a001 121393/1149851*14662949395604^(20/21) 3654352961573167 a001 514229/271443*14662949395604^(6/7) 3654352961575571 a001 6557470319842/271443*710647^(5/7) 3654352961575830 a001 4052739537881/271443*710647^(3/4) 3654352961576088 a001 2504730781961/271443*710647^(11/14) 3654352961576605 a001 956722026041/271443*710647^(6/7) 3654352961577122 a001 365435296162/271443*710647^(13/14) 3654352961577507 a001 774004377960/51841*103682^(7/8) 3654352961577639 a001 116139356907195113/317811 3654352961589347 a001 196418/271443*14662949395604^(8/9) 3654352961591671 a001 956722026041/103682*103682^(11/12) 3654352961593819 a001 71778070001033487/196418 3654352961595924 a001 2504730781961/710647*439204^(8/9) 3654352961598029 a001 1515744265389/101521*439204^(7/9) 3654352961600901 a001 71778070001172591/196418 3654352961601033 a001 71778070001175175/196418 3654352961601052 a001 2111119705916928/5777 3654352961601055 a001 71778070001175607/196418 3654352961601055 a001 71778070001175615/196418 3654352961601055 a001 35889035000587808/98209 3654352961601055 a001 71778070001175617/196418 3654352961601055 a001 2111119705916930/5777 3654352961601056 a001 71778070001175641/196418 3654352961601064 a001 71778070001175785/196418 3654352961601114 a001 35889035000588386/98209 3654352961601458 a001 71778070001183537/196418 3654352961602104 a001 3278735159921/930249*439204^(8/9) 3654352961603563 a001 10610209857723/3010349*439204^(8/9) 3654352961603819 a001 71778070001229905/196418 3654352961605527 a001 317811/710647*14662949395604^(19/21) 3654352961605835 a001 591286729879/103682*103682^(23/24) 3654352961605924 a001 4052739537881/1149851*439204^(8/9) 3654352961608554 a001 6557470319842/271443*271443^(10/13) 3654352961611708 a001 832040/710647*3461452808002^(11/12) 3654352961612360 a001 491974210727691120/1346269 3654352961612369 a001 2504730781961/271443*271443^(11/13) 3654352961612705 a001 1288005205273498491/3524578 3654352961612710 a001 139583862445/710647*7881196^(10/11) 3654352961612715 a001 591286729879/710647*7881196^(9/11) 3654352961612721 a001 2504730781961/710647*7881196^(8/11) 3654352961612724 a001 6557470319842/710647*7881196^(2/3) 3654352961612726 a001 1515744265389/101521*7881196^(7/11) 3654352961612741 a001 5702887/710647*817138163596^(17/19) 3654352961612741 a001 5702887/710647*14662949395604^(17/21) 3654352961612741 a001 5702887/710647*192900153618^(17/18) 3654352961612755 a001 259387800391754181/709805 3654352961612756 a001 139583862445/710647*20633239^(6/7) 3654352961612757 a001 365435296162/710647*20633239^(4/5) 3654352961612757 a001 1548008755920/710647*20633239^(5/7) 3654352961612758 a001 1515744265389/101521*20633239^(3/5) 3654352961612760 a001 14930352/710647*14662949395604^(7/9) 3654352961612760 a001 14930352/710647*505019158607^(7/8) 3654352961612763 a001 7778742049/710647*141422324^(12/13) 3654352961612763 a001 32951280099/710647*141422324^(11/13) 3654352961612763 a001 139583862445/710647*141422324^(10/13) 3654352961612763 a001 591286729879/710647*141422324^(9/13) 3654352961612763 a001 956722026041/710647*141422324^(2/3) 3654352961612763 a001 2504730781961/710647*141422324^(8/13) 3654352961612763 a001 1515744265389/101521*141422324^(7/13) 3654352961612763 a001 14619165/101521*45537549124^(15/17) 3654352961612763 a001 14619165/101521*312119004989^(9/11) 3654352961612763 a001 14619165/101521*14662949395604^(5/7) 3654352961612763 a001 14619165/101521*192900153618^(5/6) 3654352961612763 a001 14619165/101521*28143753123^(9/10) 3654352961612763 a001 14619165/101521*10749957122^(15/16) 3654352961612763 a001 1836311903/710647*2537720636^(13/15) 3654352961612763 a001 12586269025/710647*2537720636^(7/9) 3654352961612763 a001 7778742049/710647*2537720636^(4/5) 3654352961612763 a001 32951280099/710647*2537720636^(11/15) 3654352961612763 a001 139583862445/710647*2537720636^(2/3) 3654352961612763 a001 591286729879/710647*2537720636^(3/5) 3654352961612763 a001 1548008755920/710647*2537720636^(5/9) 3654352961612763 a001 2504730781961/710647*2537720636^(8/15) 3654352961612763 a001 1515744265389/101521*2537720636^(7/15) 3654352961612763 a001 1836311903/710647*45537549124^(13/17) 3654352961612763 a001 1836311903/710647*14662949395604^(13/21) 3654352961612763 a001 1836311903/710647*192900153618^(13/18) 3654352961612763 a001 1836311903/710647*73681302247^(3/4) 3654352961612763 a001 1836311903/710647*10749957122^(13/16) 3654352961612763 a001 12586269025/710647*17393796001^(5/7) 3654352961612763 a001 365435296162/710647*17393796001^(4/7) 3654352961612763 a001 1515744265389/101521*17393796001^(3/7) 3654352961612763 a001 12586269025/710647*312119004989^(7/11) 3654352961612763 a001 12586269025/710647*14662949395604^(5/9) 3654352961612763 a001 12586269025/710647*505019158607^(5/8) 3654352961612763 a001 32951280099/710647*45537549124^(11/17) 3654352961612763 a001 12586269025/710647*28143753123^(7/10) 3654352961612763 a001 139583862445/710647*45537549124^(10/17) 3654352961612763 a001 591286729879/710647*45537549124^(9/17) 3654352961612763 a001 2504730781961/710647*45537549124^(8/17) 3654352961612763 a001 1515744265389/101521*45537549124^(7/17) 3654352961612763 a001 32951280099/710647*312119004989^(3/5) 3654352961612763 a001 32951280099/710647*817138163596^(11/19) 3654352961612763 a001 32951280099/710647*14662949395604^(11/21) 3654352961612763 a001 32951280099/710647*192900153618^(11/18) 3654352961612763 a001 86267571272/710647*9062201101803^(1/2) 3654352961612763 a001 1548008755920/710647*312119004989^(5/11) 3654352961612763 a001 317811*1322157322203^(1/2) 3654352961612763 a001 1548008755920/710647*3461452808002^(5/12) 3654352961612763 a001 139583862445/710647*312119004989^(6/11) 3654352961612763 a001 139583862445/710647*14662949395604^(10/21) 3654352961612763 a001 1515744265389/101521*192900153618^(7/18) 3654352961612763 a001 2504730781961/710647*192900153618^(4/9) 3654352961612763 a001 591286729879/710647*192900153618^(1/2) 3654352961612763 a001 139583862445/710647*192900153618^(5/9) 3654352961612763 a001 53316291173/710647*23725150497407^(1/2) 3654352961612763 a001 53316291173/710647*505019158607^(4/7) 3654352961612763 a001 2504730781961/710647*73681302247^(6/13) 3654352961612763 a001 956722026041/710647*73681302247^(1/2) 3654352961612763 a001 365435296162/710647*73681302247^(7/13) 3654352961612763 a001 20365011074/710647*45537549124^(2/3) 3654352961612763 a001 53316291173/710647*73681302247^(8/13) 3654352961612763 a001 1548008755920/710647*28143753123^(1/2) 3654352961612763 a001 139583862445/710647*28143753123^(3/5) 3654352961612763 a001 7778742049/710647*45537549124^(12/17) 3654352961612763 a001 7778742049/710647*14662949395604^(4/7) 3654352961612763 a001 7778742049/710647*505019158607^(9/14) 3654352961612763 a001 7778742049/710647*192900153618^(2/3) 3654352961612763 a001 7778742049/710647*73681302247^(9/13) 3654352961612763 a001 1515744265389/101521*10749957122^(7/16) 3654352961612763 a001 6557470319842/710647*10749957122^(11/24) 3654352961612763 a001 2504730781961/710647*10749957122^(1/2) 3654352961612763 a001 956722026041/710647*10749957122^(13/24) 3654352961612763 a001 591286729879/710647*10749957122^(9/16) 3654352961612763 a001 365435296162/710647*10749957122^(7/12) 3654352961612763 a001 139583862445/710647*10749957122^(5/8) 3654352961612763 a001 32951280099/710647*10749957122^(11/16) 3654352961612763 a001 53316291173/710647*10749957122^(2/3) 3654352961612763 a001 20365011074/710647*10749957122^(17/24) 3654352961612763 a001 7778742049/710647*10749957122^(3/4) 3654352961612763 a001 1134903170/710647*2537720636^(8/9) 3654352961612763 a001 2971215073/710647*817138163596^(2/3) 3654352961612763 a001 6557470319842/710647*4106118243^(11/23) 3654352961612763 a001 2971215073/710647*10749957122^(19/24) 3654352961612763 a001 4052739537881/710647*4106118243^(1/2) 3654352961612763 a001 2504730781961/710647*4106118243^(12/23) 3654352961612763 a001 956722026041/710647*4106118243^(13/23) 3654352961612763 a001 365435296162/710647*4106118243^(14/23) 3654352961612763 a001 139583862445/710647*4106118243^(15/23) 3654352961612763 a001 53316291173/710647*4106118243^(16/23) 3654352961612763 a001 20365011074/710647*4106118243^(17/23) 3654352961612763 a001 7778742049/710647*4106118243^(18/23) 3654352961612763 a001 2971215073/710647*4106118243^(19/23) 3654352961612763 a001 1134903170/710647*312119004989^(8/11) 3654352961612763 a001 1134903170/710647*23725150497407^(5/8) 3654352961612763 a001 1134903170/710647*73681302247^(10/13) 3654352961612763 a001 1134903170/710647*28143753123^(4/5) 3654352961612763 a001 1134903170/710647*10749957122^(5/6) 3654352961612763 a001 6557470319842/710647*1568397607^(1/2) 3654352961612763 a001 1134903170/710647*4106118243^(20/23) 3654352961612763 a001 2504730781961/710647*1568397607^(6/11) 3654352961612763 a001 956722026041/710647*1568397607^(13/22) 3654352961612763 a001 365435296162/710647*1568397607^(7/11) 3654352961612763 a001 139583862445/710647*1568397607^(15/22) 3654352961612763 a001 53316291173/710647*1568397607^(8/11) 3654352961612763 a001 32951280099/710647*1568397607^(3/4) 3654352961612763 a001 20365011074/710647*1568397607^(17/22) 3654352961612763 a001 7778742049/710647*1568397607^(9/11) 3654352961612763 a001 2971215073/710647*1568397607^(19/22) 3654352961612763 a001 1134903170/710647*1568397607^(10/11) 3654352961612763 a001 433494437/710647*2537720636^(14/15) 3654352961612763 a001 433494437/710647*17393796001^(6/7) 3654352961612763 a001 433494437/710647*45537549124^(14/17) 3654352961612763 a001 433494437/710647*817138163596^(14/19) 3654352961612763 a001 433494437/710647*14662949395604^(2/3) 3654352961612763 a001 433494437/710647*505019158607^(3/4) 3654352961612763 a001 433494437/710647*192900153618^(7/9) 3654352961612763 a001 433494437/710647*10749957122^(7/8) 3654352961612763 a001 433494437/710647*4106118243^(21/23) 3654352961612763 a001 1515744265389/101521*599074578^(1/2) 3654352961612763 a001 433494437/710647*1568397607^(21/22) 3654352961612763 a001 6557470319842/710647*599074578^(11/21) 3654352961612763 a001 2504730781961/710647*599074578^(4/7) 3654352961612763 a001 956722026041/710647*599074578^(13/21) 3654352961612763 a001 591286729879/710647*599074578^(9/14) 3654352961612763 a001 365435296162/710647*599074578^(2/3) 3654352961612763 a001 139583862445/710647*599074578^(5/7) 3654352961612763 a001 53316291173/710647*599074578^(16/21) 3654352961612763 a001 32951280099/710647*599074578^(11/14) 3654352961612763 a001 20365011074/710647*599074578^(17/21) 3654352961612763 a001 12586269025/710647*599074578^(5/6) 3654352961612763 a001 7778742049/710647*599074578^(6/7) 3654352961612763 a001 1836311903/710647*599074578^(13/14) 3654352961612763 a001 2971215073/710647*599074578^(19/21) 3654352961612763 a001 1134903170/710647*599074578^(20/21) 3654352961612763 a001 165580141/710647*312119004989^(4/5) 3654352961612763 a001 165580141/710647*23725150497407^(11/16) 3654352961612763 a001 165580141/710647*73681302247^(11/13) 3654352961612763 a001 165580141/710647*10749957122^(11/12) 3654352961612763 a001 165580141/710647*4106118243^(22/23) 3654352961612763 a001 6557470319842/710647*228826127^(11/20) 3654352961612763 a001 2504730781961/710647*228826127^(3/5) 3654352961612763 a001 1548008755920/710647*228826127^(5/8) 3654352961612763 a001 956722026041/710647*228826127^(13/20) 3654352961612763 a001 365435296162/710647*228826127^(7/10) 3654352961612763 a001 139583862445/710647*228826127^(3/4) 3654352961612763 a001 53316291173/710647*228826127^(4/5) 3654352961612763 a001 20365011074/710647*228826127^(17/20) 3654352961612763 a001 12586269025/710647*228826127^(7/8) 3654352961612763 a001 7778742049/710647*228826127^(9/10) 3654352961612763 a001 2971215073/710647*228826127^(19/20) 3654352961612764 a001 63245986/710647*10749957122^(23/24) 3654352961612764 a001 6557470319842/710647*87403803^(11/19) 3654352961612764 a001 2504730781961/710647*87403803^(12/19) 3654352961612764 a001 956722026041/710647*87403803^(13/19) 3654352961612764 a001 365435296162/710647*87403803^(14/19) 3654352961612764 a001 139583862445/710647*87403803^(15/19) 3654352961612764 a001 53316291173/710647*87403803^(16/19) 3654352961612764 a001 20365011074/710647*87403803^(17/19) 3654352961612764 a001 7778742049/710647*87403803^(18/19) 3654352961612765 a001 24157817/710647*45537549124^(16/17) 3654352961612765 a001 24157817/710647*14662949395604^(16/21) 3654352961612765 a001 24157817/710647*192900153618^(8/9) 3654352961612765 a001 24157817/710647*73681302247^(12/13) 3654352961612765 a001 1515744265389/101521*33385282^(7/12) 3654352961612765 a001 6557470319842/710647*33385282^(11/18) 3654352961612766 a001 2504730781961/710647*33385282^(2/3) 3654352961612766 a001 956722026041/710647*33385282^(13/18) 3654352961612766 a001 591286729879/710647*33385282^(3/4) 3654352961612766 a001 365435296162/710647*33385282^(7/9) 3654352961612766 a001 139583862445/710647*33385282^(5/6) 3654352961612766 a001 53316291173/710647*33385282^(8/9) 3654352961612766 a001 32951280099/710647*33385282^(11/12) 3654352961612767 a001 20365011074/710647*33385282^(17/18) 3654352961612772 a001 9227465/710647*312119004989^(10/11) 3654352961612772 a001 9227465/710647*3461452808002^(5/6) 3654352961612778 a001 6557470319842/710647*12752043^(11/17) 3654352961612779 a001 2504730781961/710647*12752043^(12/17) 3654352961612781 a001 956722026041/710647*12752043^(13/17) 3654352961612782 a001 365435296162/710647*12752043^(14/17) 3654352961612783 a001 139583862445/710647*12752043^(15/17) 3654352961612785 a001 53316291173/710647*12752043^(16/17) 3654352961612786 a001 2084036199819305862/5702887 3654352961612822 a001 3524578/710647*23725150497407^(13/16) 3654352961612822 a001 3524578/710647*505019158607^(13/14) 3654352961612869 a001 6557470319842/710647*4870847^(11/16) 3654352961612879 a001 2504730781961/710647*4870847^(3/4) 3654352961612889 a001 956722026041/710647*4870847^(13/16) 3654352961612898 a001 365435296162/710647*4870847^(7/8) 3654352961612908 a001 139583862445/710647*4870847^(15/16) 3654352961612917 a001 265343664848602457/726103 3654352961613167 a001 317811/3010349*14662949395604^(20/21) 3654352961613167 a001 1346269/710647*14662949395604^(6/7) 3654352961613502 a001 1515744265389/101521*1860498^(7/10) 3654352961613538 a001 6557470319842/710647*1860498^(11/15) 3654352961613608 a001 2504730781961/710647*1860498^(4/5) 3654352961613643 a001 1548008755920/710647*1860498^(5/6) 3654352961613678 a001 956722026041/710647*1860498^(13/15) 3654352961613714 a001 591286729879/710647*1860498^(9/10) 3654352961613749 a001 365435296162/710647*1860498^(14/15) 3654352961613819 a001 304056783818116251/832040 3654352961615527 a001 514229/710647*14662949395604^(8/9) 3654352961616180 a001 187917426909892680/514229 3654352961616184 a001 956722026041/271443*271443^(12/13) 3654352961617082 a001 187917426909939048/514229 3654352961617213 a001 187917426909945813/514229 3654352961617232 a001 187917426909946800/514229 3654352961617235 a001 187917426909946944/514229 3654352961617235 a001 187917426909946965/514229 3654352961617236 a001 187917426909946968/514229 3654352961617236 a001 187917426909946969/514229 3654352961617236 a001 187917426909946970/514229 3654352961617236 a001 187917426909946978/514229 3654352961617237 a001 187917426909947033/514229 3654352961617244 a001 187917426909947410/514229 3654352961617294 a001 187917426909949994/514229 3654352961617639 a001 187917426909967705/514229 3654352961617888 a001 416020/930249*14662949395604^(19/21) 3654352961618190 a001 1515744265389/101521*710647^(3/4) 3654352961618449 a001 6557470319842/710647*710647^(11/14) 3654352961618541 a001 491974210728523160/1346269 3654352961618790 a001 726103/620166*3461452808002^(11/12) 3654352961618885 a001 644002602637838400/1762289 3654352961618890 a001 182717648081/930249*7881196^(10/11) 3654352961618896 a001 832040*7881196^(9/11) 3654352961618901 a001 3278735159921/930249*7881196^(8/11) 3654352961618935 a001 674408281019701448/1845493 3654352961618936 a001 182717648081/930249*20633239^(6/7) 3654352961618937 a001 956722026041/1860498*20633239^(4/5) 3654352961618938 a001 4052739537881/1860498*20633239^(5/7) 3654352961618940 a001 829464/103361*817138163596^(17/19) 3654352961618940 a001 829464/103361*14662949395604^(17/21) 3654352961618940 a001 829464/103361*192900153618^(17/18) 3654352961618943 a001 8828119010019844920/24157817 3654352961618943 a001 39088169/1860498*14662949395604^(7/9) 3654352961618943 a001 39088169/1860498*505019158607^(7/8) 3654352961618944 a001 10182505537/930249*141422324^(12/13) 3654352961618944 a001 43133785636/930249*141422324^(11/13) 3654352961618944 a001 182717648081/930249*141422324^(10/13) 3654352961618944 a001 832040*141422324^(9/13) 3654352961618944 a001 2504730781961/1860498*141422324^(2/3) 3654352961618944 a001 3278735159921/930249*141422324^(8/13) 3654352961618944 a001 133957148/930249*45537549124^(15/17) 3654352961618944 a001 133957148/930249*312119004989^(9/11) 3654352961618944 a001 133957148/930249*14662949395604^(5/7) 3654352961618944 a001 133957148/930249*192900153618^(5/6) 3654352961618944 a001 133957148/930249*28143753123^(9/10) 3654352961618944 a001 133957148/930249*10749957122^(15/16) 3654352961618944 a001 267084832/103361*2537720636^(13/15) 3654352961618944 a001 10182505537/930249*2537720636^(4/5) 3654352961618944 a001 10983760033/620166*2537720636^(7/9) 3654352961618944 a001 2971215073/1860498*2537720636^(8/9) 3654352961618944 a001 43133785636/930249*2537720636^(11/15) 3654352961618944 a001 182717648081/930249*2537720636^(2/3) 3654352961618944 a001 832040*2537720636^(3/5) 3654352961618944 a001 4052739537881/1860498*2537720636^(5/9) 3654352961618944 a001 3278735159921/930249*2537720636^(8/15) 3654352961618944 a001 267084832/103361*45537549124^(13/17) 3654352961618944 a001 267084832/103361*14662949395604^(13/21) 3654352961618944 a001 267084832/103361*192900153618^(13/18) 3654352961618944 a001 267084832/103361*73681302247^(3/4) 3654352961618944 a001 10983760033/620166*17393796001^(5/7) 3654352961618944 a001 956722026041/1860498*17393796001^(4/7) 3654352961618944 a001 267084832/103361*10749957122^(13/16) 3654352961618944 a001 43133785636/930249*45537549124^(11/17) 3654352961618944 a001 182717648081/930249*45537549124^(10/17) 3654352961618944 a001 832040*45537549124^(9/17) 3654352961618944 a001 53316291173/1860498*45537549124^(2/3) 3654352961618944 a001 3278735159921/930249*45537549124^(8/17) 3654352961618944 a001 10983760033/620166*312119004989^(7/11) 3654352961618944 a001 10983760033/620166*14662949395604^(5/9) 3654352961618944 a001 10983760033/620166*505019158607^(5/8) 3654352961618944 a001 43133785636/930249*312119004989^(3/5) 3654352961618944 a001 43133785636/930249*817138163596^(11/19) 3654352961618944 a001 43133785636/930249*14662949395604^(11/21) 3654352961618944 a001 4052739537881/1860498*312119004989^(5/11) 3654352961618944 a001 182717648081/930249*312119004989^(6/11) 3654352961618944 a001 591286729879/1860498*1322157322203^(1/2) 3654352961618944 a001 3278735159921/930249*14662949395604^(8/21) 3654352961618944 a001 182717648081/930249*14662949395604^(10/21) 3654352961618944 a001 139583862445/1860498*23725150497407^(1/2) 3654352961618944 a001 3278735159921/930249*192900153618^(4/9) 3654352961618944 a001 139583862445/1860498*505019158607^(4/7) 3654352961618944 a001 182717648081/930249*192900153618^(5/9) 3654352961618944 a001 3278735159921/930249*73681302247^(6/13) 3654352961618944 a001 2504730781961/1860498*73681302247^(1/2) 3654352961618944 a001 956722026041/1860498*73681302247^(7/13) 3654352961618944 a001 139583862445/1860498*73681302247^(8/13) 3654352961618944 a001 10182505537/930249*45537549124^(12/17) 3654352961618944 a001 10182505537/930249*14662949395604^(4/7) 3654352961618944 a001 10182505537/930249*505019158607^(9/14) 3654352961618944 a001 10182505537/930249*192900153618^(2/3) 3654352961618944 a001 10182505537/930249*73681302247^(9/13) 3654352961618944 a001 4052739537881/1860498*28143753123^(1/2) 3654352961618944 a001 10983760033/620166*28143753123^(7/10) 3654352961618944 a001 182717648081/930249*28143753123^(3/5) 3654352961618944 a001 7778742049/1860498*817138163596^(2/3) 3654352961618944 a001 3278735159921/930249*10749957122^(1/2) 3654352961618944 a001 2504730781961/1860498*10749957122^(13/24) 3654352961618944 a001 832040*10749957122^(9/16) 3654352961618944 a001 956722026041/1860498*10749957122^(7/12) 3654352961618944 a001 182717648081/930249*10749957122^(5/8) 3654352961618944 a001 139583862445/1860498*10749957122^(2/3) 3654352961618944 a001 43133785636/930249*10749957122^(11/16) 3654352961618944 a001 53316291173/1860498*10749957122^(17/24) 3654352961618944 a001 10182505537/930249*10749957122^(3/4) 3654352961618944 a001 7778742049/1860498*10749957122^(19/24) 3654352961618944 a001 567451585/930249*2537720636^(14/15) 3654352961618944 a001 2971215073/1860498*312119004989^(8/11) 3654352961618944 a001 2971215073/1860498*23725150497407^(5/8) 3654352961618944 a001 2971215073/1860498*73681302247^(10/13) 3654352961618944 a001 2971215073/1860498*28143753123^(4/5) 3654352961618944 a001 3536736619241/620166*4106118243^(1/2) 3654352961618944 a001 2971215073/1860498*10749957122^(5/6) 3654352961618944 a001 3278735159921/930249*4106118243^(12/23) 3654352961618944 a001 2504730781961/1860498*4106118243^(13/23) 3654352961618944 a001 956722026041/1860498*4106118243^(14/23) 3654352961618944 a001 182717648081/930249*4106118243^(15/23) 3654352961618944 a001 139583862445/1860498*4106118243^(16/23) 3654352961618944 a001 53316291173/1860498*4106118243^(17/23) 3654352961618944 a001 10182505537/930249*4106118243^(18/23) 3654352961618944 a001 7778742049/1860498*4106118243^(19/23) 3654352961618944 a001 2971215073/1860498*4106118243^(20/23) 3654352961618944 a001 567451585/930249*17393796001^(6/7) 3654352961618944 a001 567451585/930249*45537549124^(14/17) 3654352961618944 a001 567451585/930249*817138163596^(14/19) 3654352961618944 a001 567451585/930249*14662949395604^(2/3) 3654352961618944 a001 567451585/930249*505019158607^(3/4) 3654352961618944 a001 567451585/930249*192900153618^(7/9) 3654352961618944 a001 567451585/930249*10749957122^(7/8) 3654352961618944 a001 567451585/930249*4106118243^(21/23) 3654352961618944 a001 3278735159921/930249*1568397607^(6/11) 3654352961618944 a001 2504730781961/1860498*1568397607^(13/22) 3654352961618944 a001 956722026041/1860498*1568397607^(7/11) 3654352961618944 a001 182717648081/930249*1568397607^(15/22) 3654352961618944 a001 139583862445/1860498*1568397607^(8/11) 3654352961618944 a001 43133785636/930249*1568397607^(3/4) 3654352961618944 a001 53316291173/1860498*1568397607^(17/22) 3654352961618944 a001 10182505537/930249*1568397607^(9/11) 3654352961618944 a001 7778742049/1860498*1568397607^(19/22) 3654352961618944 a001 2971215073/1860498*1568397607^(10/11) 3654352961618944 a001 567451585/930249*1568397607^(21/22) 3654352961618944 a001 433494437/1860498*312119004989^(4/5) 3654352961618944 a001 433494437/1860498*23725150497407^(11/16) 3654352961618944 a001 433494437/1860498*73681302247^(11/13) 3654352961618944 a001 433494437/1860498*10749957122^(11/12) 3654352961618944 a001 433494437/1860498*4106118243^(22/23) 3654352961618944 a001 3278735159921/930249*599074578^(4/7) 3654352961618944 a001 2504730781961/1860498*599074578^(13/21) 3654352961618944 a001 832040*599074578^(9/14) 3654352961618944 a001 956722026041/1860498*599074578^(2/3) 3654352961618944 a001 182717648081/930249*599074578^(5/7) 3654352961618944 a001 139583862445/1860498*599074578^(16/21) 3654352961618944 a001 43133785636/930249*599074578^(11/14) 3654352961618944 a001 53316291173/1860498*599074578^(17/21) 3654352961618944 a001 10983760033/620166*599074578^(5/6) 3654352961618944 a001 10182505537/930249*599074578^(6/7) 3654352961618944 a001 7778742049/1860498*599074578^(19/21) 3654352961618944 a001 267084832/103361*599074578^(13/14) 3654352961618944 a001 2971215073/1860498*599074578^(20/21) 3654352961618944 a001 165580141/1860498*10749957122^(23/24) 3654352961618944 a001 3278735159921/930249*228826127^(3/5) 3654352961618944 a001 4052739537881/1860498*228826127^(5/8) 3654352961618944 a001 2504730781961/1860498*228826127^(13/20) 3654352961618944 a001 956722026041/1860498*228826127^(7/10) 3654352961618944 a001 182717648081/930249*228826127^(3/4) 3654352961618944 a001 139583862445/1860498*228826127^(4/5) 3654352961618944 a001 53316291173/1860498*228826127^(17/20) 3654352961618944 a001 10983760033/620166*228826127^(7/8) 3654352961618944 a001 10182505537/930249*228826127^(9/10) 3654352961618944 a001 7778742049/1860498*228826127^(19/20) 3654352961618944 a001 31622993/930249*45537549124^(16/17) 3654352961618944 a001 31622993/930249*14662949395604^(16/21) 3654352961618944 a001 31622993/930249*192900153618^(8/9) 3654352961618944 a001 31622993/930249*73681302247^(12/13) 3654352961618944 a001 3278735159921/930249*87403803^(12/19) 3654352961618944 a001 2504730781961/1860498*87403803^(13/19) 3654352961618944 a001 956722026041/1860498*87403803^(14/19) 3654352961618944 a001 182717648081/930249*87403803^(15/19) 3654352961618944 a001 139583862445/1860498*87403803^(16/19) 3654352961618944 a001 53316291173/1860498*87403803^(17/19) 3654352961618944 a001 10182505537/930249*87403803^(18/19) 3654352961618945 a001 24157817/1860498*312119004989^(10/11) 3654352961618945 a001 24157817/1860498*3461452808002^(5/6) 3654352961618946 a001 3278735159921/930249*33385282^(2/3) 3654352961618946 a001 2504730781961/1860498*33385282^(13/18) 3654352961618946 a001 832040*33385282^(3/4) 3654352961618946 a001 956722026041/1860498*33385282^(7/9) 3654352961618947 a001 182717648081/930249*33385282^(5/6) 3654352961618947 a001 139583862445/1860498*33385282^(8/9) 3654352961618947 a001 43133785636/930249*33385282^(11/12) 3654352961618947 a001 53316291173/1860498*33385282^(17/18) 3654352961618947 a001 20059108841622565/54891 3654352961618952 a001 9227465/1860498*23725150497407^(13/16) 3654352961618952 a001 9227465/1860498*505019158607^(13/14) 3654352961618960 a001 3278735159921/930249*12752043^(12/17) 3654352961618961 a001 2504730781961/1860498*12752043^(13/17) 3654352961618962 a001 956722026041/1860498*12752043^(14/17) 3654352961618964 a001 182717648081/930249*12752043^(15/17) 3654352961618965 a001 139583862445/1860498*12752043^(16/17) 3654352961618966 a001 2504730781961/710647*710647^(6/7) 3654352961618966 a001 2084036199822830440/5702887 3654352961619003 a001 208010/1970299*14662949395604^(20/21) 3654352961619003 a001 1762289/930249*14662949395604^(6/7) 3654352961619059 a001 3278735159921/930249*4870847^(3/4) 3654352961619069 a001 2504730781961/1860498*4870847^(13/16) 3654352961619079 a001 956722026041/1860498*4870847^(7/8) 3654352961619088 a001 182717648081/930249*4870847^(15/16) 3654352961619098 a001 796030994547153640/2178309 3654352961619347 a001 1346269/1860498*14662949395604^(8/9) 3654352961619442 a001 491974210728644553/1346269 3654352961619483 a001 956722026041/710647*710647^(13/14) 3654352961619574 a001 491974210728662264/1346269 3654352961619593 a001 491974210728664848/1346269 3654352961619596 a001 491974210728665225/1346269 3654352961619596 a001 491974210728665280/1346269 3654352961619596 a001 491974210728665288/1346269 3654352961619596 a001 491974210728665289/1346269 3654352961619596 a001 491974210728665290/1346269 3654352961619596 a001 491974210728665293/1346269 3654352961619596 a001 491974210728665314/1346269 3654352961619598 a001 491974210728665458/1346269 3654352961619605 a001 491974210728666445/1346269 3654352961619655 a001 491974210728673210/1346269 3654352961619691 a001 2178309/4870847*14662949395604^(19/21) 3654352961619787 a001 1288005205275994611/3524578 3654352961619788 a001 3278735159921/930249*1860498^(4/5) 3654352961619792 a001 956722026041/4870847*7881196^(10/11) 3654352961619797 a001 4052739537881/4870847*7881196^(9/11) 3654352961619823 a001 5702887/4870847*3461452808002^(11/12) 3654352961619824 a001 4052739537881/1860498*1860498^(5/6) 3654352961619837 a001 674408281019867856/1845493 3654352961619838 a001 956722026041/4870847*20633239^(6/7) 3654352961619839 a001 2504730781961/4870847*20633239^(4/5) 3654352961619839 a001 2178309*20633239^(5/7) 3654352961619844 a001 8828119010022023229/24157817 3654352961619845 a001 39088169/4870847*817138163596^(17/19) 3654352961619845 a001 39088169/4870847*14662949395604^(17/21) 3654352961619845 a001 39088169/4870847*192900153618^(17/18) 3654352961619845 a001 23112315624966730407/63245986 3654352961619845 a001 53316291173/4870847*141422324^(12/13) 3654352961619845 a001 225851433717/4870847*141422324^(11/13) 3654352961619845 a001 956722026041/4870847*141422324^(10/13) 3654352961619845 a001 4052739537881/4870847*141422324^(9/13) 3654352961619845 a001 6557470319842/4870847*141422324^(2/3) 3654352961619845 a001 102334155/4870847*14662949395604^(7/9) 3654352961619845 a001 102334155/4870847*505019158607^(7/8) 3654352961619845 a001 701408733/4870847*45537549124^(15/17) 3654352961619845 a001 701408733/4870847*312119004989^(9/11) 3654352961619845 a001 701408733/4870847*14662949395604^(5/7) 3654352961619845 a001 701408733/4870847*192900153618^(5/6) 3654352961619845 a001 701408733/4870847*28143753123^(9/10) 3654352961619845 a001 701408733/4870847*10749957122^(15/16) 3654352961619845 a001 12586269025/4870847*2537720636^(13/15) 3654352961619845 a001 7778742049/4870847*2537720636^(8/9) 3654352961619845 a001 53316291173/4870847*2537720636^(4/5) 3654352961619845 a001 2971215073/4870847*2537720636^(14/15) 3654352961619845 a001 86267571272/4870847*2537720636^(7/9) 3654352961619845 a001 225851433717/4870847*2537720636^(11/15) 3654352961619845 a001 956722026041/4870847*2537720636^(2/3) 3654352961619845 a001 4052739537881/4870847*2537720636^(3/5) 3654352961619845 a001 2178309*2537720636^(5/9) 3654352961619845 a001 86267571272/4870847*17393796001^(5/7) 3654352961619845 a001 2504730781961/4870847*17393796001^(4/7) 3654352961619845 a001 12586269025/4870847*45537549124^(13/17) 3654352961619845 a001 12586269025/4870847*14662949395604^(13/21) 3654352961619845 a001 12586269025/4870847*192900153618^(13/18) 3654352961619845 a001 12586269025/4870847*73681302247^(3/4) 3654352961619845 a001 225851433717/4870847*45537549124^(11/17) 3654352961619845 a001 139583862445/4870847*45537549124^(2/3) 3654352961619845 a001 956722026041/4870847*45537549124^(10/17) 3654352961619845 a001 53316291173/4870847*45537549124^(12/17) 3654352961619845 a001 4052739537881/4870847*45537549124^(9/17) 3654352961619845 a001 86267571272/4870847*312119004989^(7/11) 3654352961619845 a001 86267571272/4870847*14662949395604^(5/9) 3654352961619845 a001 86267571272/4870847*505019158607^(5/8) 3654352961619845 a001 225851433717/4870847*312119004989^(3/5) 3654352961619845 a001 2178309*312119004989^(5/11) 3654352961619845 a001 225851433717/4870847*14662949395604^(11/21) 3654352961619845 a001 591286729879/4870847*9062201101803^(1/2) 3654352961619845 a001 2178309*3461452808002^(5/12) 3654352961619845 a001 1548008755920/4870847*1322157322203^(1/2) 3654352961619845 a001 365435296162/4870847*505019158607^(4/7) 3654352961619845 a001 225851433717/4870847*192900153618^(11/18) 3654352961619845 a001 4052739537881/4870847*192900153618^(1/2) 3654352961619845 a001 53316291173/4870847*14662949395604^(4/7) 3654352961619845 a001 53316291173/4870847*505019158607^(9/14) 3654352961619845 a001 53316291173/4870847*192900153618^(2/3) 3654352961619845 a001 6557470319842/4870847*73681302247^(1/2) 3654352961619845 a001 2504730781961/4870847*73681302247^(7/13) 3654352961619845 a001 365435296162/4870847*73681302247^(8/13) 3654352961619845 a001 53316291173/4870847*73681302247^(9/13) 3654352961619845 a001 20365011074/4870847*817138163596^(2/3) 3654352961619845 a001 2178309*28143753123^(1/2) 3654352961619845 a001 956722026041/4870847*28143753123^(3/5) 3654352961619845 a001 86267571272/4870847*28143753123^(7/10) 3654352961619845 a001 7778742049/4870847*312119004989^(8/11) 3654352961619845 a001 7778742049/4870847*23725150497407^(5/8) 3654352961619845 a001 7778742049/4870847*73681302247^(10/13) 3654352961619845 a001 7778742049/4870847*28143753123^(4/5) 3654352961619845 a001 6557470319842/4870847*10749957122^(13/24) 3654352961619845 a001 4052739537881/4870847*10749957122^(9/16) 3654352961619845 a001 2504730781961/4870847*10749957122^(7/12) 3654352961619845 a001 956722026041/4870847*10749957122^(5/8) 3654352961619845 a001 12586269025/4870847*10749957122^(13/16) 3654352961619845 a001 225851433717/4870847*10749957122^(11/16) 3654352961619845 a001 139583862445/4870847*10749957122^(17/24) 3654352961619845 a001 53316291173/4870847*10749957122^(3/4) 3654352961619845 a001 20365011074/4870847*10749957122^(19/24) 3654352961619845 a001 7778742049/4870847*10749957122^(5/6) 3654352961619845 a001 2971215073/4870847*17393796001^(6/7) 3654352961619845 a001 2971215073/4870847*45537549124^(14/17) 3654352961619845 a001 2971215073/4870847*817138163596^(14/19) 3654352961619845 a001 2971215073/4870847*14662949395604^(2/3) 3654352961619845 a001 2971215073/4870847*505019158607^(3/4) 3654352961619845 a001 2971215073/4870847*192900153618^(7/9) 3654352961619845 a001 2971215073/4870847*10749957122^(7/8) 3654352961619845 a001 6557470319842/4870847*4106118243^(13/23) 3654352961619845 a001 2504730781961/4870847*4106118243^(14/23) 3654352961619845 a001 956722026041/4870847*4106118243^(15/23) 3654352961619845 a001 365435296162/4870847*4106118243^(16/23) 3654352961619845 a001 139583862445/4870847*4106118243^(17/23) 3654352961619845 a001 53316291173/4870847*4106118243^(18/23) 3654352961619845 a001 20365011074/4870847*4106118243^(19/23) 3654352961619845 a001 7778742049/4870847*4106118243^(20/23) 3654352961619845 a001 2971215073/4870847*4106118243^(21/23) 3654352961619845 a001 1134903170/4870847*312119004989^(4/5) 3654352961619845 a001 1134903170/4870847*23725150497407^(11/16) 3654352961619845 a001 1134903170/4870847*73681302247^(11/13) 3654352961619845 a001 1134903170/4870847*10749957122^(11/12) 3654352961619845 a001 1134903170/4870847*4106118243^(22/23) 3654352961619845 a001 6557470319842/4870847*1568397607^(13/22) 3654352961619845 a001 2504730781961/4870847*1568397607^(7/11) 3654352961619845 a001 956722026041/4870847*1568397607^(15/22) 3654352961619845 a001 365435296162/4870847*1568397607^(8/11) 3654352961619845 a001 225851433717/4870847*1568397607^(3/4) 3654352961619845 a001 139583862445/4870847*1568397607^(17/22) 3654352961619845 a001 53316291173/4870847*1568397607^(9/11) 3654352961619845 a001 20365011074/4870847*1568397607^(19/22) 3654352961619845 a001 7778742049/4870847*1568397607^(10/11) 3654352961619845 a001 2971215073/4870847*1568397607^(21/22) 3654352961619845 a001 433494437/4870847*10749957122^(23/24) 3654352961619845 a001 6557470319842/4870847*599074578^(13/21) 3654352961619845 a001 4052739537881/4870847*599074578^(9/14) 3654352961619845 a001 2504730781961/4870847*599074578^(2/3) 3654352961619845 a001 956722026041/4870847*599074578^(5/7) 3654352961619845 a001 365435296162/4870847*599074578^(16/21) 3654352961619845 a001 225851433717/4870847*599074578^(11/14) 3654352961619845 a001 139583862445/4870847*599074578^(17/21) 3654352961619845 a001 86267571272/4870847*599074578^(5/6) 3654352961619845 a001 53316291173/4870847*599074578^(6/7) 3654352961619845 a001 20365011074/4870847*599074578^(19/21) 3654352961619845 a001 12586269025/4870847*599074578^(13/14) 3654352961619845 a001 7778742049/4870847*599074578^(20/21) 3654352961619845 a001 165580141/4870847*45537549124^(16/17) 3654352961619845 a001 165580141/4870847*14662949395604^(16/21) 3654352961619845 a001 165580141/4870847*192900153618^(8/9) 3654352961619845 a001 165580141/4870847*73681302247^(12/13) 3654352961619846 a001 2178309*228826127^(5/8) 3654352961619846 a001 6557470319842/4870847*228826127^(13/20) 3654352961619846 a001 2504730781961/4870847*228826127^(7/10) 3654352961619846 a001 956722026041/4870847*228826127^(3/4) 3654352961619846 a001 365435296162/4870847*228826127^(4/5) 3654352961619846 a001 139583862445/4870847*228826127^(17/20) 3654352961619846 a001 86267571272/4870847*228826127^(7/8) 3654352961619846 a001 53316291173/4870847*228826127^(9/10) 3654352961619846 a001 20365011074/4870847*228826127^(19/20) 3654352961619846 a001 63245986/4870847*312119004989^(10/11) 3654352961619846 a001 63245986/4870847*3461452808002^(5/6) 3654352961619846 a001 6557470319842/4870847*87403803^(13/19) 3654352961619846 a001 2504730781961/4870847*87403803^(14/19) 3654352961619846 a001 956722026041/4870847*87403803^(15/19) 3654352961619846 a001 365435296162/4870847*87403803^(16/19) 3654352961619846 a001 139583862445/4870847*87403803^(17/19) 3654352961619846 a001 53316291173/4870847*87403803^(18/19) 3654352961619846 a001 14284196614944707178/39088169 3654352961619847 a001 24157817/4870847*23725150497407^(13/16) 3654352961619847 a001 24157817/4870847*505019158607^(13/14) 3654352961619848 a001 6557470319842/4870847*33385282^(13/18) 3654352961619848 a001 4052739537881/4870847*33385282^(3/4) 3654352961619848 a001 2504730781961/4870847*33385282^(7/9) 3654352961619848 a001 956722026041/4870847*33385282^(5/6) 3654352961619848 a001 365435296162/4870847*33385282^(8/9) 3654352961619848 a001 225851433717/4870847*33385282^(11/12) 3654352961619849 a001 139583862445/4870847*33385282^(17/18) 3654352961619849 a001 1818692534974227983/4976784 3654352961619854 a001 2178309/20633239*14662949395604^(20/21) 3654352961619854 a001 9227465/4870847*14662949395604^(6/7) 3654352961619859 a001 2504730781961/1860498*1860498^(13/15) 3654352961619863 a001 6557470319842/4870847*12752043^(13/17) 3654352961619864 a001 2504730781961/4870847*12752043^(14/17) 3654352961619865 a001 956722026041/4870847*12752043^(15/17) 3654352961619867 a001 365435296162/4870847*12752043^(16/17) 3654352961619868 a001 2084036199823344669/5702887 3654352961619894 a001 832040*1860498^(9/10) 3654352961619904 a001 3524578/4870847*14662949395604^(8/9) 3654352961619918 a001 1288005205276040979/3524578 3654352961619924 a001 2504730781961/12752043*7881196^(10/11) 3654352961619929 a001 3536736619241/4250681*7881196^(9/11) 3654352961619929 a001 956722026041/1860498*1860498^(14/15) 3654352961619937 a001 644002602638023872/1762289 3654352961619940 a001 1288005205276048731/3524578 3654352961619941 a001 1288005205276048875/3524578 3654352961619941 a001 644002602638024448/1762289 3654352961619941 a001 14471968598607291/39602 3654352961619941 a001 644002602638024450/1762289 3654352961619941 a001 1288005205276048901/3524578 3654352961619941 a001 1288005205276048909/3524578 3654352961619941 a001 644002602638024482/1762289 3654352961619942 a001 1288005205276049341/3524578 3654352961619943 a001 3278735159921/16692641*7881196^(10/11) 3654352961619947 a001 10610209857723/54018521*7881196^(10/11) 3654352961619949 a001 14471968598607325/39602 3654352961619955 a001 5702887/12752043*14662949395604^(19/21) 3654352961619955 a001 4052739537881/20633239*7881196^(10/11) 3654352961619968 a001 3372041405099460673/9227465 3654352961619970 a001 2504730781961/12752043*20633239^(6/7) 3654352961619970 a001 6557470319842/12752043*20633239^(4/5) 3654352961619971 a001 6557470319842/4870847*4870847^(13/16) 3654352961619974 a001 4976784/4250681*3461452808002^(11/12) 3654352961619976 a001 8828119010022341040/24157817 3654352961619977 a001 23112315624967562447/63245986 3654352961619977 a001 139583862445/12752043*141422324^(12/13) 3654352961619977 a001 591286729879/12752043*141422324^(11/13) 3654352961619977 a001 2504730781961/12752043*141422324^(10/13) 3654352961619977 a001 3536736619241/4250681*141422324^(9/13) 3654352961619977 a001 34111385/4250681*817138163596^(17/19) 3654352961619977 a001 34111385/4250681*14662949395604^(17/21) 3654352961619977 a001 34111385/4250681*192900153618^(17/18) 3654352961619977 a001 60508827864880346301/165580141 3654352961619977 a001 267914296/12752043*14662949395604^(7/9) 3654352961619977 a001 267914296/12752043*505019158607^(7/8) 3654352961619977 a001 7778742049/12752043*2537720636^(14/15) 3654352961619977 a001 20365011074/12752043*2537720636^(8/9) 3654352961619977 a001 10983760033/4250681*2537720636^(13/15) 3654352961619977 a001 139583862445/12752043*2537720636^(4/5) 3654352961619977 a001 75283811239/4250681*2537720636^(7/9) 3654352961619977 a001 591286729879/12752043*2537720636^(11/15) 3654352961619977 a001 2504730781961/12752043*2537720636^(2/3) 3654352961619977 a001 3536736619241/4250681*2537720636^(3/5) 3654352961619977 a001 1836311903/12752043*45537549124^(15/17) 3654352961619977 a001 1836311903/12752043*312119004989^(9/11) 3654352961619977 a001 1836311903/12752043*14662949395604^(5/7) 3654352961619977 a001 1836311903/12752043*192900153618^(5/6) 3654352961619977 a001 1836311903/12752043*28143753123^(9/10) 3654352961619977 a001 1836311903/12752043*10749957122^(15/16) 3654352961619977 a001 75283811239/4250681*17393796001^(5/7) 3654352961619977 a001 6557470319842/12752043*17393796001^(4/7) 3654352961619977 a001 10983760033/4250681*45537549124^(13/17) 3654352961619977 a001 139583862445/12752043*45537549124^(12/17) 3654352961619977 a001 365435296162/12752043*45537549124^(2/3) 3654352961619977 a001 591286729879/12752043*45537549124^(11/17) 3654352961619977 a001 2504730781961/12752043*45537549124^(10/17) 3654352961619977 a001 3536736619241/4250681*45537549124^(9/17) 3654352961619977 a001 10983760033/4250681*14662949395604^(13/21) 3654352961619977 a001 10983760033/4250681*192900153618^(13/18) 3654352961619977 a001 10983760033/4250681*73681302247^(3/4) 3654352961619977 a001 75283811239/4250681*312119004989^(7/11) 3654352961619977 a001 2504730781961/12752043*312119004989^(6/11) 3654352961619977 a001 516002918640/4250681*9062201101803^(1/2) 3654352961619977 a001 3536736619241/4250681*14662949395604^(3/7) 3654352961619977 a001 2504730781961/12752043*14662949395604^(10/21) 3654352961619977 a001 956722026041/12752043*505019158607^(4/7) 3654352961619977 a001 139583862445/12752043*14662949395604^(4/7) 3654352961619977 a001 139583862445/12752043*505019158607^(9/14) 3654352961619977 a001 139583862445/12752043*192900153618^(2/3) 3654352961619977 a001 53316291173/12752043*817138163596^(2/3) 3654352961619977 a001 6557470319842/12752043*73681302247^(7/13) 3654352961619977 a001 956722026041/12752043*73681302247^(8/13) 3654352961619977 a001 139583862445/12752043*73681302247^(9/13) 3654352961619977 a001 7778742049/12752043*17393796001^(6/7) 3654352961619977 a001 20365011074/12752043*312119004989^(8/11) 3654352961619977 a001 20365011074/12752043*23725150497407^(5/8) 3654352961619977 a001 20365011074/12752043*73681302247^(10/13) 3654352961619977 a001 2504730781961/12752043*28143753123^(3/5) 3654352961619977 a001 75283811239/4250681*28143753123^(7/10) 3654352961619977 a001 20365011074/12752043*28143753123^(4/5) 3654352961619977 a001 7778742049/12752043*45537549124^(14/17) 3654352961619977 a001 7778742049/12752043*817138163596^(14/19) 3654352961619977 a001 7778742049/12752043*14662949395604^(2/3) 3654352961619977 a001 7778742049/12752043*505019158607^(3/4) 3654352961619977 a001 7778742049/12752043*192900153618^(7/9) 3654352961619977 a001 3536736619241/4250681*10749957122^(9/16) 3654352961619977 a001 6557470319842/12752043*10749957122^(7/12) 3654352961619977 a001 2504730781961/12752043*10749957122^(5/8) 3654352961619977 a001 956722026041/12752043*10749957122^(2/3) 3654352961619977 a001 591286729879/12752043*10749957122^(11/16) 3654352961619977 a001 365435296162/12752043*10749957122^(17/24) 3654352961619977 a001 139583862445/12752043*10749957122^(3/4) 3654352961619977 a001 10983760033/4250681*10749957122^(13/16) 3654352961619977 a001 53316291173/12752043*10749957122^(19/24) 3654352961619977 a001 20365011074/12752043*10749957122^(5/6) 3654352961619977 a001 7778742049/12752043*10749957122^(7/8) 3654352961619977 a001 2971215073/12752043*312119004989^(4/5) 3654352961619977 a001 2971215073/12752043*23725150497407^(11/16) 3654352961619977 a001 2971215073/12752043*73681302247^(11/13) 3654352961619977 a001 2971215073/12752043*10749957122^(11/12) 3654352961619977 a001 6557470319842/12752043*4106118243^(14/23) 3654352961619977 a001 2504730781961/12752043*4106118243^(15/23) 3654352961619977 a001 956722026041/12752043*4106118243^(16/23) 3654352961619977 a001 365435296162/12752043*4106118243^(17/23) 3654352961619977 a001 139583862445/12752043*4106118243^(18/23) 3654352961619977 a001 53316291173/12752043*4106118243^(19/23) 3654352961619977 a001 20365011074/12752043*4106118243^(20/23) 3654352961619977 a001 7778742049/12752043*4106118243^(21/23) 3654352961619977 a001 2971215073/12752043*4106118243^(22/23) 3654352961619977 a001 1134903170/12752043*10749957122^(23/24) 3654352961619977 a001 6557470319842/12752043*1568397607^(7/11) 3654352961619977 a001 2504730781961/12752043*1568397607^(15/22) 3654352961619977 a001 956722026041/12752043*1568397607^(8/11) 3654352961619977 a001 591286729879/12752043*1568397607^(3/4) 3654352961619977 a001 365435296162/12752043*1568397607^(17/22) 3654352961619977 a001 139583862445/12752043*1568397607^(9/11) 3654352961619977 a001 53316291173/12752043*1568397607^(19/22) 3654352961619977 a001 20365011074/12752043*1568397607^(10/11) 3654352961619977 a001 7778742049/12752043*1568397607^(21/22) 3654352961619977 a001 433494437/12752043*45537549124^(16/17) 3654352961619977 a001 433494437/12752043*14662949395604^(16/21) 3654352961619977 a001 433494437/12752043*192900153618^(8/9) 3654352961619977 a001 433494437/12752043*73681302247^(12/13) 3654352961619977 a001 3536736619241/4250681*599074578^(9/14) 3654352961619977 a001 6557470319842/12752043*599074578^(2/3) 3654352961619977 a001 2504730781961/12752043*599074578^(5/7) 3654352961619977 a001 956722026041/12752043*599074578^(16/21) 3654352961619977 a001 591286729879/12752043*599074578^(11/14) 3654352961619977 a001 365435296162/12752043*599074578^(17/21) 3654352961619977 a001 75283811239/4250681*599074578^(5/6) 3654352961619977 a001 139583862445/12752043*599074578^(6/7) 3654352961619977 a001 53316291173/12752043*599074578^(19/21) 3654352961619977 a001 10983760033/4250681*599074578^(13/14) 3654352961619977 a001 20365011074/12752043*599074578^(20/21) 3654352961619977 a001 165580141/12752043*312119004989^(10/11) 3654352961619977 a001 165580141/12752043*3461452808002^(5/6) 3654352961619977 a001 6557470319842/12752043*228826127^(7/10) 3654352961619977 a001 2504730781961/12752043*228826127^(3/4) 3654352961619977 a001 956722026041/12752043*228826127^(4/5) 3654352961619977 a001 365435296162/12752043*228826127^(17/20) 3654352961619977 a001 75283811239/4250681*228826127^(7/8) 3654352961619977 a001 139583862445/12752043*228826127^(9/10) 3654352961619977 a001 53316291173/12752043*228826127^(19/20) 3654352961619977 a001 37396512239912783854/102334155 3654352961619977 a001 63245986/12752043*23725150497407^(13/16) 3654352961619977 a001 63245986/12752043*505019158607^(13/14) 3654352961619977 a001 6557470319842/12752043*87403803^(14/19) 3654352961619977 a001 2504730781961/12752043*87403803^(15/19) 3654352961619977 a001 956722026041/12752043*87403803^(16/19) 3654352961619977 a001 365435296162/12752043*87403803^(17/19) 3654352961619977 a001 139583862445/12752043*87403803^(18/19) 3654352961619978 a001 14284196614945221407/39088169 3654352961619978 a001 5702887/54018521*14662949395604^(20/21) 3654352961619978 a001 24157817/12752043*14662949395604^(6/7) 3654352961619979 a001 3536736619241/4250681*33385282^(3/4) 3654352961619980 a001 6557470319842/12752043*33385282^(7/9) 3654352961619980 a001 2504730781961/12752043*33385282^(5/6) 3654352961619980 a001 956722026041/12752043*33385282^(8/9) 3654352961619980 a001 591286729879/12752043*33385282^(11/12) 3654352961619980 a001 365435296162/12752043*33385282^(17/18) 3654352961619980 a001 2504730781961/4870847*4870847^(7/8) 3654352961619980 a001 5456077604922880367/14930352 3654352961619986 a001 9227465/12752043*14662949395604^(8/9) 3654352961619988 a001 259387800392267568/709805 3654352961619989 a001 3278735159921/16692641*20633239^(6/7) 3654352961619990 a001 956722026041/4870847*4870847^(15/16) 3654352961619990 a001 3372041405099480968/9227465 3654352961619991 a001 674408281019896269/1845493 3654352961619991 a001 51877560078453560/141961 3654352961619991 a001 3372041405099481408/9227465 3654352961619991 a001 3372041405099481409/9227465 3654352961619991 a001 674408281019896282/1845493 3654352961619991 a001 259387800392267801/709805 3654352961619991 a001 3372041405099481434/9227465 3654352961619991 a001 3372041405099481578/9227465 3654352961619992 a001 674408281019896513/1845493 3654352961619993 a001 7465176/16692641*14662949395604^(19/21) 3654352961619993 a001 10610209857723/54018521*20633239^(6/7) 3654352961619995 a001 8828119010022387408/24157817 3654352961619996 a001 6557470319842/12752043*12752043^(14/17) 3654352961619996 a001 39088169/33385282*3461452808002^(11/12) 3654352961619996 a001 11556157812483841920/31622993 3654352961619996 a001 182717648081/16692641*141422324^(12/13) 3654352961619996 a001 774004377960/16692641*141422324^(11/13) 3654352961619996 a001 3278735159921/16692641*141422324^(10/13) 3654352961619996 a001 60508827864880664112/165580141 3654352961619996 a001 133957148/16692641*817138163596^(17/19) 3654352961619996 a001 133957148/16692641*14662949395604^(17/21) 3654352961619996 a001 133957148/16692641*192900153618^(17/18) 3654352961619996 a001 158414167969674308496/433494437 3654352961619996 a001 701408733/33385282*14662949395604^(7/9) 3654352961619996 a001 701408733/33385282*505019158607^(7/8) 3654352961619996 a001 10182505537/16692641*2537720636^(14/15) 3654352961619996 a001 53316291173/33385282*2537720636^(8/9) 3654352961619996 a001 43133785636/16692641*2537720636^(13/15) 3654352961619996 a001 182717648081/16692641*2537720636^(4/5) 3654352961619996 a001 591286729879/33385282*2537720636^(7/9) 3654352961619996 a001 774004377960/16692641*2537720636^(11/15) 3654352961619996 a001 3278735159921/16692641*2537720636^(2/3) 3654352961619996 a001 14930208/103681*45537549124^(15/17) 3654352961619996 a001 14930208/103681*312119004989^(9/11) 3654352961619996 a001 14930208/103681*14662949395604^(5/7) 3654352961619996 a001 14930208/103681*192900153618^(5/6) 3654352961619996 a001 14930208/103681*28143753123^(9/10) 3654352961619996 a001 591286729879/33385282*17393796001^(5/7) 3654352961619996 a001 10182505537/16692641*17393796001^(6/7) 3654352961619996 a001 14930208/103681*10749957122^(15/16) 3654352961619996 a001 43133785636/16692641*45537549124^(13/17) 3654352961619996 a001 182717648081/16692641*45537549124^(12/17) 3654352961619996 a001 956722026041/33385282*45537549124^(2/3) 3654352961619996 a001 774004377960/16692641*45537549124^(11/17) 3654352961619996 a001 3278735159921/16692641*45537549124^(10/17) 3654352961619996 a001 43133785636/16692641*14662949395604^(13/21) 3654352961619996 a001 43133785636/16692641*192900153618^(13/18) 3654352961619996 a001 3278735159921/16692641*312119004989^(6/11) 3654352961619996 a001 3278735159921/16692641*14662949395604^(10/21) 3654352961619996 a001 1515744265389/4769326*1322157322203^(1/2) 3654352961619996 a001 182717648081/16692641*14662949395604^(4/7) 3654352961619996 a001 182717648081/16692641*505019158607^(9/14) 3654352961619996 a001 139583862445/33385282*817138163596^(2/3) 3654352961619996 a001 3278735159921/16692641*192900153618^(5/9) 3654352961619996 a001 182717648081/16692641*192900153618^(2/3) 3654352961619996 a001 53316291173/33385282*312119004989^(8/11) 3654352961619996 a001 53316291173/33385282*23725150497407^(5/8) 3654352961619996 a001 10182505537/16692641*45537549124^(14/17) 3654352961619996 a001 43133785636/16692641*73681302247^(3/4) 3654352961619996 a001 2504730781961/33385282*73681302247^(8/13) 3654352961619996 a001 182717648081/16692641*73681302247^(9/13) 3654352961619996 a001 53316291173/33385282*73681302247^(10/13) 3654352961619996 a001 10182505537/16692641*14662949395604^(2/3) 3654352961619996 a001 10182505537/16692641*505019158607^(3/4) 3654352961619996 a001 10182505537/16692641*192900153618^(7/9) 3654352961619996 a001 3278735159921/16692641*28143753123^(3/5) 3654352961619996 a001 591286729879/33385282*28143753123^(7/10) 3654352961619996 a001 53316291173/33385282*28143753123^(4/5) 3654352961619996 a001 7778742049/33385282*312119004989^(4/5) 3654352961619996 a001 7778742049/33385282*23725150497407^(11/16) 3654352961619996 a001 7778742049/33385282*73681302247^(11/13) 3654352961619996 a001 3278735159921/16692641*10749957122^(5/8) 3654352961619996 a001 2504730781961/33385282*10749957122^(2/3) 3654352961619996 a001 774004377960/16692641*10749957122^(11/16) 3654352961619996 a001 956722026041/33385282*10749957122^(17/24) 3654352961619996 a001 182717648081/16692641*10749957122^(3/4) 3654352961619996 a001 139583862445/33385282*10749957122^(19/24) 3654352961619996 a001 43133785636/16692641*10749957122^(13/16) 3654352961619996 a001 53316291173/33385282*10749957122^(5/6) 3654352961619996 a001 10182505537/16692641*10749957122^(7/8) 3654352961619996 a001 7778742049/33385282*10749957122^(11/12) 3654352961619996 a001 2971215073/33385282*10749957122^(23/24) 3654352961619996 a001 3278735159921/16692641*4106118243^(15/23) 3654352961619996 a001 2504730781961/33385282*4106118243^(16/23) 3654352961619996 a001 956722026041/33385282*4106118243^(17/23) 3654352961619996 a001 182717648081/16692641*4106118243^(18/23) 3654352961619996 a001 139583862445/33385282*4106118243^(19/23) 3654352961619996 a001 53316291173/33385282*4106118243^(20/23) 3654352961619996 a001 10182505537/16692641*4106118243^(21/23) 3654352961619996 a001 7778742049/33385282*4106118243^(22/23) 3654352961619996 a001 567451585/16692641*45537549124^(16/17) 3654352961619996 a001 567451585/16692641*14662949395604^(16/21) 3654352961619996 a001 567451585/16692641*192900153618^(8/9) 3654352961619996 a001 567451585/16692641*73681302247^(12/13) 3654352961619996 a001 3278735159921/16692641*1568397607^(15/22) 3654352961619996 a001 2504730781961/33385282*1568397607^(8/11) 3654352961619996 a001 774004377960/16692641*1568397607^(3/4) 3654352961619996 a001 956722026041/33385282*1568397607^(17/22) 3654352961619996 a001 182717648081/16692641*1568397607^(9/11) 3654352961619996 a001 139583862445/33385282*1568397607^(19/22) 3654352961619996 a001 53316291173/33385282*1568397607^(10/11) 3654352961619996 a001 10182505537/16692641*1568397607^(21/22) 3654352961619996 a001 433494437/33385282*312119004989^(10/11) 3654352961619996 a001 433494437/33385282*3461452808002^(5/6) 3654352961619996 a001 3278735159921/16692641*599074578^(5/7) 3654352961619996 a001 2504730781961/33385282*599074578^(16/21) 3654352961619996 a001 774004377960/16692641*599074578^(11/14) 3654352961619996 a001 956722026041/33385282*599074578^(17/21) 3654352961619996 a001 591286729879/33385282*599074578^(5/6) 3654352961619996 a001 182717648081/16692641*599074578^(6/7) 3654352961619996 a001 139583862445/33385282*599074578^(19/21) 3654352961619996 a001 43133785636/16692641*599074578^(13/14) 3654352961619996 a001 53316291173/33385282*599074578^(20/21) 3654352961619996 a001 2236098577215276/6119 3654352961619996 a001 165580141/33385282*23725150497407^(13/16) 3654352961619996 a001 165580141/33385282*505019158607^(13/14) 3654352961619996 a001 3278735159921/16692641*228826127^(3/4) 3654352961619996 a001 2504730781961/33385282*228826127^(4/5) 3654352961619996 a001 956722026041/33385282*228826127^(17/20) 3654352961619996 a001 591286729879/33385282*228826127^(7/8) 3654352961619996 a001 182717648081/16692641*228826127^(9/10) 3654352961619996 a001 139583862445/33385282*228826127^(19/20) 3654352961619996 a001 12465504079970993424/34111385 3654352961619996 a001 3732588/35355581*14662949395604^(20/21) 3654352961619996 a001 31622993/16692641*14662949395604^(6/7) 3654352961619997 a001 3278735159921/16692641*87403803^(15/19) 3654352961619997 a001 2504730781961/33385282*87403803^(16/19) 3654352961619997 a001 956722026041/33385282*87403803^(17/19) 3654352961619997 a001 182717648081/16692641*87403803^(18/19) 3654352961619997 a001 14284196614945296432/39088169 3654352961619997 a001 2504730781961/12752043*12752043^(15/17) 3654352961619997 a001 24157817/33385282*14662949395604^(8/9) 3654352961619998 a001 8828119010022394173/24157817 3654352961619998 a001 8828119010022395160/24157817 3654352961619998 a001 956722026041/12752043*12752043^(16/17) 3654352961619998 a001 8828119010022395304/24157817 3654352961619998 a001 8828119010022395325/24157817 3654352961619998 a001 8828119010022395328/24157817 3654352961619998 a001 8828119010022395329/24157817 3654352961619998 a001 8828119010022395330/24157817 3654352961619998 a001 8828119010022395338/24157817 3654352961619998 a001 8828119010022395393/24157817 3654352961619998 a001 8828119010022395770/24157817 3654352961619999 a001 39088169/87403803*14662949395604^(19/21) 3654352961619999 a001 23112315624967701551/63245986 3654352961619999 a001 956722026041/87403803*141422324^(12/13) 3654352961619999 a001 4052739537881/87403803*141422324^(11/13) 3654352961619999 a001 34111385/29134601*3461452808002^(11/12) 3654352961619999 a001 3278735159921/16692641*33385282^(5/6) 3654352961619999 a001 60508827864880710480/165580141 3654352961619999 a001 158414167969674429889/433494437 3654352961619999 a001 233802911/29134601*14662949395604^(17/21) 3654352961619999 a001 233802911/29134601*192900153618^(17/18) 3654352961619999 a001 414733676044142579187/1134903170 3654352961619999 a001 53316291173/87403803*2537720636^(14/15) 3654352961619999 a001 139583862445/87403803*2537720636^(8/9) 3654352961619999 a001 75283811239/29134601*2537720636^(13/15) 3654352961619999 a001 956722026041/87403803*2537720636^(4/5) 3654352961619999 a001 516002918640/29134601*2537720636^(7/9) 3654352961619999 a001 4052739537881/87403803*2537720636^(11/15) 3654352961619999 a001 1836311903/87403803*14662949395604^(7/9) 3654352961619999 a001 1836311903/87403803*505019158607^(7/8) 3654352961619999 a001 53316291173/87403803*17393796001^(6/7) 3654352961619999 a001 516002918640/29134601*17393796001^(5/7) 3654352961619999 a001 12586269025/87403803*45537549124^(15/17) 3654352961619999 a001 12586269025/87403803*312119004989^(9/11) 3654352961619999 a001 12586269025/87403803*14662949395604^(5/7) 3654352961619999 a001 12586269025/87403803*192900153618^(5/6) 3654352961619999 a001 75283811239/29134601*45537549124^(13/17) 3654352961619999 a001 956722026041/87403803*45537549124^(12/17) 3654352961619999 a001 53316291173/87403803*45537549124^(14/17) 3654352961619999 a001 2504730781961/87403803*45537549124^(2/3) 3654352961619999 a001 4052739537881/87403803*45537549124^(11/17) 3654352961619999 a001 12586269025/87403803*28143753123^(9/10) 3654352961619999 a001 4052739537881/87403803*312119004989^(3/5) 3654352961619999 a001 3536736619241/29134601*9062201101803^(1/2) 3654352961619999 a001 365435296162/87403803*817138163596^(2/3) 3654352961619999 a001 516002918640/29134601*505019158607^(5/8) 3654352961619999 a001 139583862445/87403803*312119004989^(8/11) 3654352961619999 a001 139583862445/87403803*23725150497407^(5/8) 3654352961619999 a001 4052739537881/87403803*192900153618^(11/18) 3654352961619999 a001 53316291173/87403803*817138163596^(14/19) 3654352961619999 a001 53316291173/87403803*14662949395604^(2/3) 3654352961619999 a001 53316291173/87403803*505019158607^(3/4) 3654352961619999 a001 53316291173/87403803*192900153618^(7/9) 3654352961619999 a001 6557470319842/87403803*73681302247^(8/13) 3654352961619999 a001 956722026041/87403803*73681302247^(9/13) 3654352961619999 a001 75283811239/29134601*73681302247^(3/4) 3654352961619999 a001 139583862445/87403803*73681302247^(10/13) 3654352961619999 a001 20365011074/87403803*312119004989^(4/5) 3654352961619999 a001 20365011074/87403803*23725150497407^(11/16) 3654352961619999 a001 20365011074/87403803*73681302247^(11/13) 3654352961619999 a001 516002918640/29134601*28143753123^(7/10) 3654352961619999 a001 139583862445/87403803*28143753123^(4/5) 3654352961619999 a001 6557470319842/87403803*10749957122^(2/3) 3654352961619999 a001 4052739537881/87403803*10749957122^(11/16) 3654352961619999 a001 2504730781961/87403803*10749957122^(17/24) 3654352961619999 a001 956722026041/87403803*10749957122^(3/4) 3654352961619999 a001 12586269025/87403803*10749957122^(15/16) 3654352961619999 a001 75283811239/29134601*10749957122^(13/16) 3654352961619999 a001 139583862445/87403803*10749957122^(5/6) 3654352961619999 a001 53316291173/87403803*10749957122^(7/8) 3654352961619999 a001 20365011074/87403803*10749957122^(11/12) 3654352961619999 a001 7778742049/87403803*10749957122^(23/24) 3654352961619999 a001 2971215073/87403803*45537549124^(16/17) 3654352961619999 a001 2971215073/87403803*14662949395604^(16/21) 3654352961619999 a001 2971215073/87403803*192900153618^(8/9) 3654352961619999 a001 2971215073/87403803*73681302247^(12/13) 3654352961619999 a001 6557470319842/87403803*4106118243^(16/23) 3654352961619999 a001 2504730781961/87403803*4106118243^(17/23) 3654352961619999 a001 956722026041/87403803*4106118243^(18/23) 3654352961619999 a001 365435296162/87403803*4106118243^(19/23) 3654352961619999 a001 139583862445/87403803*4106118243^(20/23) 3654352961619999 a001 53316291173/87403803*4106118243^(21/23) 3654352961619999 a001 20365011074/87403803*4106118243^(22/23) 3654352961619999 a001 1134903170/87403803*312119004989^(10/11) 3654352961619999 a001 1134903170/87403803*3461452808002^(5/6) 3654352961619999 a001 6557470319842/87403803*1568397607^(8/11) 3654352961619999 a001 4052739537881/87403803*1568397607^(3/4) 3654352961619999 a001 2504730781961/87403803*1568397607^(17/22) 3654352961619999 a001 956722026041/87403803*1568397607^(9/11) 3654352961619999 a001 365435296162/87403803*1568397607^(19/22) 3654352961619999 a001 139583862445/87403803*1568397607^(10/11) 3654352961619999 a001 53316291173/87403803*1568397607^(21/22) 3654352961619999 a001 256319508074468149298/701408733 3654352961619999 a001 433494437/87403803*23725150497407^(13/16) 3654352961619999 a001 433494437/87403803*505019158607^(13/14) 3654352961619999 a001 6557470319842/87403803*599074578^(16/21) 3654352961619999 a001 4052739537881/87403803*599074578^(11/14) 3654352961619999 a001 2504730781961/87403803*599074578^(17/21) 3654352961619999 a001 516002918640/29134601*599074578^(5/6) 3654352961619999 a001 956722026041/87403803*599074578^(6/7) 3654352961619999 a001 365435296162/87403803*599074578^(19/21) 3654352961619999 a001 75283811239/29134601*599074578^(13/14) 3654352961619999 a001 139583862445/87403803*599074578^(20/21) 3654352961619999 a001 97905340104793719409/267914296 3654352961619999 a001 39088169/370248451*14662949395604^(20/21) 3654352961619999 a001 165580141/87403803*14662949395604^(6/7) 3654352961619999 a001 6557470319842/87403803*228826127^(4/5) 3654352961619999 a001 2504730781961/87403803*228826127^(17/20) 3654352961619999 a001 516002918640/29134601*228826127^(7/8) 3654352961619999 a001 956722026041/87403803*228826127^(9/10) 3654352961619999 a001 365435296162/87403803*228826127^(19/20) 3654352961619999 a001 37396512239913008929/102334155 3654352961619999 a001 2504730781961/33385282*33385282^(8/9) 3654352961619999 a001 63245986/87403803*14662949395604^(8/9) 3654352961619999 a001 774004377960/16692641*33385282^(11/12) 3654352961619999 a001 23112315624967704135/63245986 3654352961619999 a001 2504730781961/228826127*141422324^(12/13) 3654352961619999 a001 225749145909/4868641*141422324^(11/13) 3654352961619999 a001 11556157812483852256/31622993 3654352961619999 a001 99194487660805599/271442 3654352961619999 a001 23112315624967704575/63245986 3654352961619999 a001 11556157812483852288/31622993 3654352961619999 a001 23112315624967704577/63245986 3654352961619999 a001 956722026041/33385282*33385282^(17/18) 3654352961619999 a001 11556157812483852290/31622993 3654352961619999 a001 3278735159921/299537289*141422324^(12/13) 3654352961619999 a001 23112315624967704601/63245986 3654352961619999 a001 10610209857723/969323029*141422324^(12/13) 3654352961619999 a001 23112315624967704745/63245986 3654352961619999 a001 4052739537881/370248451*141422324^(12/13) 3654352961619999 a001 102334155/228826127*14662949395604^(19/21) 3654352961619999 a001 60508827864880717245/165580141 3654352961619999 a001 267914296/228826127*3461452808002^(11/12) 3654352961619999 a001 6557470319842/87403803*87403803^(16/19) 3654352961619999 a001 158414167969674447600/433494437 3654352961619999 a001 82946735208828525111/226980634 3654352961619999 a001 139583862445/228826127*2537720636^(14/15) 3654352961619999 a001 365435296162/228826127*2537720636^(8/9) 3654352961619999 a001 591286729879/228826127*2537720636^(13/15) 3654352961619999 a001 2504730781961/228826127*2537720636^(4/5) 3654352961619999 a001 4052739537881/228826127*2537720636^(7/9) 3654352961619999 a001 225749145909/4868641*2537720636^(11/15) 3654352961619999 a001 1836311903/228826127*817138163596^(17/19) 3654352961619999 a001 1836311903/228826127*14662949395604^(17/21) 3654352961619999 a001 1836311903/228826127*192900153618^(17/18) 3654352961619999 a001 1085786860162753429065/2971215073 3654352961619999 a001 102287808/4868641*14662949395604^(7/9) 3654352961619999 a001 102287808/4868641*505019158607^(7/8) 3654352961619999 a001 139583862445/228826127*17393796001^(6/7) 3654352961619999 a001 4052739537881/228826127*17393796001^(5/7) 3654352961619999 a001 32951280099/228826127*45537549124^(15/17) 3654352961619999 a001 139583862445/228826127*45537549124^(14/17) 3654352961619999 a001 591286729879/228826127*45537549124^(13/17) 3654352961619999 a001 2504730781961/228826127*45537549124^(12/17) 3654352961619999 a001 6557470319842/228826127*45537549124^(2/3) 3654352961619999 a001 225749145909/4868641*45537549124^(11/17) 3654352961619999 a001 32951280099/228826127*312119004989^(9/11) 3654352961619999 a001 32951280099/228826127*14662949395604^(5/7) 3654352961619999 a001 32951280099/228826127*192900153618^(5/6) 3654352961619999 a001 225749145909/4868641*312119004989^(3/5) 3654352961619999 a001 365435296162/228826127*312119004989^(8/11) 3654352961619999 a001 225749145909/4868641*817138163596^(11/19) 3654352961619999 a001 225749145909/4868641*14662949395604^(11/21) 3654352961619999 a001 2504730781961/228826127*14662949395604^(4/7) 3654352961619999 a001 2504730781961/228826127*505019158607^(9/14) 3654352961619999 a001 139583862445/228826127*817138163596^(14/19) 3654352961619999 a001 139583862445/228826127*14662949395604^(2/3) 3654352961619999 a001 139583862445/228826127*505019158607^(3/4) 3654352961619999 a001 225749145909/4868641*192900153618^(11/18) 3654352961619999 a001 2504730781961/228826127*192900153618^(2/3) 3654352961619999 a001 139583862445/228826127*192900153618^(7/9) 3654352961619999 a001 53316291173/228826127*312119004989^(4/5) 3654352961619999 a001 53316291173/228826127*23725150497407^(11/16) 3654352961619999 a001 2504730781961/228826127*73681302247^(9/13) 3654352961619999 a001 591286729879/228826127*73681302247^(3/4) 3654352961619999 a001 365435296162/228826127*73681302247^(10/13) 3654352961619999 a001 53316291173/228826127*73681302247^(11/13) 3654352961619999 a001 4052739537881/228826127*28143753123^(7/10) 3654352961619999 a001 32951280099/228826127*28143753123^(9/10) 3654352961619999 a001 365435296162/228826127*28143753123^(4/5) 3654352961619999 a001 7778742049/228826127*45537549124^(16/17) 3654352961619999 a001 7778742049/228826127*14662949395604^(16/21) 3654352961619999 a001 7778742049/228826127*192900153618^(8/9) 3654352961619999 a001 7778742049/228826127*73681302247^(12/13) 3654352961619999 a001 225749145909/4868641*10749957122^(11/16) 3654352961619999 a001 6557470319842/228826127*10749957122^(17/24) 3654352961619999 a001 2504730781961/228826127*10749957122^(3/4) 3654352961619999 a001 956722026041/228826127*10749957122^(19/24) 3654352961619999 a001 591286729879/228826127*10749957122^(13/16) 3654352961619999 a001 365435296162/228826127*10749957122^(5/6) 3654352961619999 a001 139583862445/228826127*10749957122^(7/8) 3654352961619999 a001 32951280099/228826127*10749957122^(15/16) 3654352961619999 a001 53316291173/228826127*10749957122^(11/12) 3654352961619999 a001 20365011074/228826127*10749957122^(23/24) 3654352961619999 a001 2971215073/228826127*312119004989^(10/11) 3654352961619999 a001 2971215073/228826127*3461452808002^(5/6) 3654352961619999 a001 6557470319842/228826127*4106118243^(17/23) 3654352961619999 a001 2504730781961/228826127*4106118243^(18/23) 3654352961619999 a001 956722026041/228826127*4106118243^(19/23) 3654352961619999 a001 365435296162/228826127*4106118243^(20/23) 3654352961619999 a001 139583862445/228826127*4106118243^(21/23) 3654352961619999 a001 53316291173/228826127*4106118243^(22/23) 3654352961619999 a001 671053184118610803510/1836311903 3654352961619999 a001 1134903170/228826127*23725150497407^(13/16) 3654352961619999 a001 1134903170/228826127*505019158607^(13/14) 3654352961619999 a001 225749145909/4868641*1568397607^(3/4) 3654352961619999 a001 6557470319842/228826127*1568397607^(17/22) 3654352961619999 a001 2504730781961/228826127*1568397607^(9/11) 3654352961619999 a001 956722026041/228826127*1568397607^(19/22) 3654352961619999 a001 365435296162/228826127*1568397607^(10/11) 3654352961619999 a001 139583862445/228826127*1568397607^(21/22) 3654352961619999 a001 85439836024822725985/233802911 3654352961619999 a001 102334155/969323029*14662949395604^(20/21) 3654352961619999 a001 433494437/228826127*14662949395604^(6/7) 3654352961619999 a001 225749145909/4868641*599074578^(11/14) 3654352961619999 a001 6557470319842/228826127*599074578^(17/21) 3654352961619999 a001 4052739537881/228826127*599074578^(5/6) 3654352961619999 a001 2504730781961/228826127*599074578^(6/7) 3654352961619999 a001 956722026041/228826127*599074578^(19/21) 3654352961619999 a001 591286729879/228826127*599074578^(13/14) 3654352961619999 a001 365435296162/228826127*599074578^(20/21) 3654352961619999 a001 97905340104793730355/267914296 3654352961619999 a001 2504730781961/87403803*87403803^(17/19) 3654352961619999 a001 165580141/228826127*14662949395604^(8/9) 3654352961619999 a001 60508827864880718232/165580141 3654352961619999 a001 60508827864880718376/165580141 3654352961619999 a001 60508827864880718397/165580141 3654352961619999 a001 60508827864880718400/165580141 3654352961619999 a001 60508827864880718401/165580141 3654352961619999 a001 60508827864880718402/165580141 3654352961619999 a001 60508827864880718410/165580141 3654352961619999 a001 956722026041/87403803*87403803^(18/19) 3654352961619999 a001 60508827864880718465/165580141 3654352961619999 a001 133957148/299537289*14662949395604^(19/21) 3654352961619999 a001 158414167969674450184/433494437 3654352961619999 a001 233802911/199691526*3461452808002^(11/12) 3654352961619999 a001 679891272203512512/1860497 3654352961619999 a001 182717648081/299537289*2537720636^(14/15) 3654352961619999 a001 956722026041/599074578*2537720636^(8/9) 3654352961619999 a001 86000486440/33281921*2537720636^(13/15) 3654352961619999 a001 3278735159921/299537289*2537720636^(4/5) 3654352961619999 a001 3536736619241/199691526*2537720636^(7/9) 3654352961619999 a001 6557470319842/228826127*228826127^(17/20) 3654352961619999 a001 1085786860162753446776/2971215073 3654352961619999 a001 267084832/33281921*817138163596^(17/19) 3654352961619999 a001 267084832/33281921*14662949395604^(17/21) 3654352961619999 a001 267084832/33281921*192900153618^(17/18) 3654352961619999 a001 218663608034162900616/598364773 3654352961619999 a001 182717648081/299537289*17393796001^(6/7) 3654352961619999 a001 3536736619241/199691526*17393796001^(5/7) 3654352961619999 a001 12586269025/599074578*14662949395604^(7/9) 3654352961619999 a001 12586269025/599074578*505019158607^(7/8) 3654352961619999 a001 43133785636/299537289*45537549124^(15/17) 3654352961619999 a001 182717648081/299537289*45537549124^(14/17) 3654352961619999 a001 86000486440/33281921*45537549124^(13/17) 3654352961619999 a001 3278735159921/299537289*45537549124^(12/17) 3654352961619999 a001 43133785636/299537289*312119004989^(9/11) 3654352961619999 a001 43133785636/299537289*14662949395604^(5/7) 3654352961619999 a001 3536736619241/199691526*312119004989^(7/11) 3654352961619999 a001 3278735159921/299537289*14662949395604^(4/7) 3654352961619999 a001 182717648081/299537289*817138163596^(14/19) 3654352961619999 a001 182717648081/299537289*14662949395604^(2/3) 3654352961619999 a001 139583862445/599074578*312119004989^(4/5) 3654352961619999 a001 182717648081/299537289*505019158607^(3/4) 3654352961619999 a001 139583862445/599074578*23725150497407^(11/16) 3654352961619999 a001 3278735159921/299537289*192900153618^(2/3) 3654352961619999 a001 86000486440/33281921*192900153618^(13/18) 3654352961619999 a001 182717648081/299537289*192900153618^(7/9) 3654352961619999 a001 10182505537/299537289*45537549124^(16/17) 3654352961619999 a001 3278735159921/299537289*73681302247^(9/13) 3654352961619999 a001 86000486440/33281921*73681302247^(3/4) 3654352961619999 a001 956722026041/599074578*73681302247^(10/13) 3654352961619999 a001 139583862445/599074578*73681302247^(11/13) 3654352961619999 a001 10182505537/299537289*14662949395604^(16/21) 3654352961619999 a001 10182505537/299537289*192900153618^(8/9) 3654352961619999 a001 10182505537/299537289*73681302247^(12/13) 3654352961619999 a001 3536736619241/199691526*28143753123^(7/10) 3654352961619999 a001 956722026041/599074578*28143753123^(4/5) 3654352961619999 a001 43133785636/299537289*28143753123^(9/10) 3654352961619999 a001 7778742049/599074578*312119004989^(10/11) 3654352961619999 a001 7778742049/599074578*3461452808002^(5/6) 3654352961619999 a001 3278735159921/299537289*10749957122^(3/4) 3654352961619999 a001 2504730781961/599074578*10749957122^(19/24) 3654352961619999 a001 86000486440/33281921*10749957122^(13/16) 3654352961619999 a001 956722026041/599074578*10749957122^(5/6) 3654352961619999 a001 182717648081/299537289*10749957122^(7/8) 3654352961619999 a001 139583862445/599074578*10749957122^(11/12) 3654352961619999 a001 43133785636/299537289*10749957122^(15/16) 3654352961619999 a001 53316291173/599074578*10749957122^(23/24) 3654352961619999 a001 109802502767585266327/300470436 3654352961619999 a001 2971215073/599074578*23725150497407^(13/16) 3654352961619999 a001 2971215073/599074578*505019158607^(13/14) 3654352961619999 a001 3278735159921/299537289*4106118243^(18/23) 3654352961619999 a001 2504730781961/599074578*4106118243^(19/23) 3654352961619999 a001 956722026041/599074578*4106118243^(20/23) 3654352961619999 a001 182717648081/299537289*4106118243^(21/23) 3654352961619999 a001 139583862445/599074578*4106118243^(22/23) 3654352961619999 a001 671053184118610814456/1836311903 3654352961619999 a001 66978574/634430159*14662949395604^(20/21) 3654352961619999 a001 567451585/299537289*14662949395604^(6/7) 3654352961619999 a001 3278735159921/299537289*1568397607^(9/11) 3654352961619999 a001 2504730781961/599074578*1568397607^(19/22) 3654352961619999 a001 956722026041/599074578*1568397607^(10/11) 3654352961619999 a001 182717648081/299537289*1568397607^(21/22) 3654352961619999 a001 4052739537881/228826127*228826127^(7/8) 3654352961619999 a001 256319508074468182136/701408733 3654352961619999 a001 2504730781961/228826127*228826127^(9/10) 3654352961619999 a001 433494437/599074578*14662949395604^(8/9) 3654352961619999 a001 158414167969674450561/433494437 3654352961619999 a001 158414167969674450616/433494437 3654352961619999 a001 158414167969674450624/433494437 3654352961619999 a001 158414167969674450625/433494437 3654352961619999 a001 158414167969674450626/433494437 3654352961619999 a001 158414167969674450629/433494437 3654352961619999 a001 956722026041/228826127*228826127^(19/20) 3654352961619999 a001 158414167969674450650/433494437 3654352961619999 a001 701408733/1568397607*14662949395604^(19/21) 3654352961619999 a001 414733676044142633307/1134903170 3654352961619999 a001 956722026041/1568397607*2537720636^(14/15) 3654352961619999 a001 2504730781961/1568397607*2537720636^(8/9) 3654352961619999 a001 4052739537881/1568397607*2537720636^(13/15) 3654352961619999 a001 1836311903/1568397607*3461452808002^(11/12) 3654352961619999 a001 3536736619241/199691526*599074578^(5/6) 3654352961619999 a001 1085786860162753449360/2971215073 3654352961619999 a001 2842626904444117714773/7778742049 3654352961619999 a001 956722026041/1568397607*17393796001^(6/7) 3654352961619999 a001 12586269025/1568397607*817138163596^(17/19) 3654352961619999 a001 12586269025/1568397607*14662949395604^(17/21) 3654352961619999 a001 12586269025/1568397607*192900153618^(17/18) 3654352961619999 a001 7442093853169599694959/20365011074 3654352961619999 a001 32264490531/224056801*45537549124^(15/17) 3654352961619999 a001 956722026041/1568397607*45537549124^(14/17) 3654352961619999 a001 53316291173/1568397607*45537549124^(16/17) 3654352961619999 a001 4052739537881/1568397607*45537549124^(13/17) 3654352961619999 a001 32951280099/1568397607*14662949395604^(7/9) 3654352961619999 a001 32951280099/1568397607*505019158607^(7/8) 3654352961619999 a001 2504730781961/1568397607*312119004989^(8/11) 3654352961619999 a001 2504730781961/1568397607*23725150497407^(5/8) 3654352961619999 a001 956722026041/1568397607*14662949395604^(2/3) 3654352961619999 a001 365435296162/1568397607*23725150497407^(11/16) 3654352961619999 a001 32264490531/224056801*192900153618^(5/6) 3654352961619999 a001 53316291173/1568397607*14662949395604^(16/21) 3654352961619999 a001 53316291173/1568397607*192900153618^(8/9) 3654352961619999 a001 2504730781961/1568397607*73681302247^(10/13) 3654352961619999 a001 365435296162/1568397607*73681302247^(11/13) 3654352961619999 a001 53316291173/1568397607*73681302247^(12/13) 3654352961619999 a001 20365011074/1568397607*312119004989^(10/11) 3654352961619999 a001 20365011074/1568397607*3461452808002^(5/6) 3654352961619999 a001 2504730781961/1568397607*28143753123^(4/5) 3654352961619999 a001 32264490531/224056801*28143753123^(9/10) 3654352961619999 a001 4599466948725481980186/12586269025 3654352961619999 a001 7778742049/1568397607*23725150497407^(13/16) 3654352961619999 a001 7778742049/1568397607*505019158607^(13/14) 3654352961619999 a001 6557470319842/1568397607*10749957122^(19/24) 3654352961619999 a001 4052739537881/1568397607*10749957122^(13/16) 3654352961619999 a001 2504730781961/1568397607*10749957122^(5/6) 3654352961619999 a001 956722026041/1568397607*10749957122^(7/8) 3654352961619999 a001 365435296162/1568397607*10749957122^(11/12) 3654352961619999 a001 32264490531/224056801*10749957122^(15/16) 3654352961619999 a001 139583862445/1568397607*10749957122^(23/24) 3654352961619999 a001 3278735159921/299537289*599074578^(6/7) 3654352961619999 a001 585613348093788088471/1602508992 3654352961619999 a001 2971215073/1568397607*14662949395604^(6/7) 3654352961619999 a001 6557470319842/1568397607*4106118243^(19/23) 3654352961619999 a001 2504730781961/1568397607*4106118243^(20/23) 3654352961619999 a001 956722026041/1568397607*4106118243^(21/23) 3654352961619999 a001 365435296162/1568397607*4106118243^(22/23) 3654352961619999 a001 671053184118610816053/1836311903 3654352961619999 a001 2504730781961/599074578*599074578^(19/21) 3654352961619999 a001 1134903170/1568397607*14662949395604^(8/9) 3654352961619999 a001 414733676044142633451/1134903170 3654352961619999 a001 2504730781961/4106118243*2537720636^(14/15) 3654352961619999 a001 86000486440/33281921*599074578^(13/14) 3654352961619999 a001 6557470319842/4106118243*2537720636^(8/9) 3654352961619999 a001 3536736619241/1368706081*2537720636^(13/15) 3654352961619999 a001 12198049295415959808/33379505 3654352961619999 a001 82946735208828526695/226980634 3654352961619999 a001 207366838022071316738/567451585 3654352961619999 a001 3278735159921/5374978561*2537720636^(14/15) 3654352961619999 a001 414733676044142633477/1134903170 3654352961619999 a001 10610209857723/17393796001*2537720636^(14/15) 3654352961619999 a001 956722026041/599074578*599074578^(20/21) 3654352961619999 a001 82946735208828526697/226980634 3654352961619999 a001 4052739537881/6643838879*2537720636^(14/15) 3654352961619999 a001 1836311903/4106118243*14662949395604^(19/21) 3654352961619999 a001 10610209857723/6643838879*2537720636^(8/9) 3654352961619999 a001 1085786860162753449737/2971215073 3654352961619999 a001 1602508992/1368706081*3461452808002^(11/12) 3654352961619999 a001 2842626904444117715760/7778742049 3654352961619999 a001 2504730781961/4106118243*17393796001^(6/7) 3654352961619999 a001 7442093853169599697543/20365011074 3654352961619999 a001 139583862445/4106118243*45537549124^(16/17) 3654352961619999 a001 591286729879/4106118243*45537549124^(15/17) 3654352961619999 a001 2504730781961/4106118243*45537549124^(14/17) 3654352961619999 a001 3536736619241/1368706081*45537549124^(13/17) 3654352961619999 a001 10983760033/1368706081*817138163596^(17/19) 3654352961619999 a001 10983760033/1368706081*14662949395604^(17/21) 3654352961619999 a001 10983760033/1368706081*192900153618^(17/18) 3654352961619999 a001 19483654655064681376869/53316291173 3654352961619999 a001 86267571272/4106118243*14662949395604^(7/9) 3654352961619999 a001 86267571272/4106118243*505019158607^(7/8) 3654352961619999 a001 591286729879/4106118243*312119004989^(9/11) 3654352961619999 a001 956722026041/4106118243*312119004989^(4/5) 3654352961619999 a001 2504730781961/4106118243*817138163596^(14/19) 3654352961619999 a001 591286729879/4106118243*14662949395604^(5/7) 3654352961619999 a001 6557470319842/4106118243*23725150497407^(5/8) 3654352961619999 a001 2504730781961/4106118243*14662949395604^(2/3) 3654352961619999 a001 2504730781961/4106118243*505019158607^(3/4) 3654352961619999 a001 139583862445/4106118243*14662949395604^(16/21) 3654352961619999 a001 2504730781961/4106118243*192900153618^(7/9) 3654352961619999 a001 139583862445/4106118243*192900153618^(8/9) 3654352961619999 a001 53316291173/4106118243*312119004989^(10/11) 3654352961619999 a001 53316291173/4106118243*3461452808002^(5/6) 3654352961619999 a001 3536736619241/1368706081*73681302247^(3/4) 3654352961619999 a001 6557470319842/4106118243*73681302247^(10/13) 3654352961619999 a001 956722026041/4106118243*73681302247^(11/13) 3654352961619999 a001 139583862445/4106118243*73681302247^(12/13) 3654352961619999 a001 12041560801895081679326/32951280099 3654352961619999 a001 20365011074/4106118243*23725150497407^(13/16) 3654352961619999 a001 20365011074/4106118243*505019158607^(13/14) 3654352961619999 a001 6557470319842/4106118243*28143753123^(4/5) 3654352961619999 a001 591286729879/4106118243*28143753123^(9/10) 3654352961619999 a001 4599466948725481981783/12586269025 3654352961619999 a001 1836311903/17393796001*14662949395604^(20/21) 3654352961619999 a001 7778742049/4106118243*14662949395604^(6/7) 3654352961619999 a001 6557470319842/1568397607*1568397607^(19/22) 3654352961619999 a001 3536736619241/1368706081*10749957122^(13/16) 3654352961619999 a001 6557470319842/4106118243*10749957122^(5/6) 3654352961619999 a001 2504730781961/4106118243*10749957122^(7/8) 3654352961619999 a001 956722026041/4106118243*10749957122^(11/12) 3654352961619999 a001 591286729879/4106118243*10749957122^(15/16) 3654352961619999 a001 365435296162/4106118243*10749957122^(23/24) 3654352961619999 a001 1756840044281364266023/4807526976 3654352961619999 a001 2504730781961/1568397607*1568397607^(10/11) 3654352961619999 a001 2971215073/4106118243*14662949395604^(8/9) 3654352961619999 a001 1085786860162753449792/2971215073 3654352961619999 a001 1085786860162753449800/2971215073 3654352961619999 a001 1085786860162753449801/2971215073 3654352961619999 a001 1085786860162753449802/2971215073 3654352961619999 a001 1085786860162753449805/2971215073 3654352961619999 a001 956722026041/1568397607*1568397607^(21/22) 3654352961619999 a001 2403763488/5374978561*14662949395604^(19/21) 3654352961619999 a001 2842626904444117715904/7778742049 3654352961619999 a001 3278735159921/5374978561*17393796001^(6/7) 3654352961619999 a001 12586269025/10749957122*3461452808002^(11/12) 3654352961619999 a001 3721046926584799848960/10182505537 3654352961619999 a001 182717648081/5374978561*45537549124^(16/17) 3654352961619999 a001 774004377960/5374978561*45537549124^(15/17) 3654352961619999 a001 3278735159921/5374978561*45537549124^(14/17) 3654352961619999 a001 19483654655064681377856/53316291173 3654352961619999 a001 43133785636/5374978561*817138163596^(17/19) 3654352961619999 a001 43133785636/5374978561*14662949395604^(17/21) 3654352961619999 a001 51008870112024444435648/139583862445 3654352961619999 a001 2504730781961/10749957122*312119004989^(4/5) 3654352961619999 a001 225851433717/10749957122*14662949395604^(7/9) 3654352961619999 a001 43133785636/5374978561*192900153618^(17/18) 3654352961619999 a001 3278735159921/5374978561*817138163596^(14/19) 3654352961619999 a001 139583862445/10749957122*312119004989^(10/11) 3654352961619999 a001 3278735159921/5374978561*505019158607^(3/4) 3654352961619999 a001 139583862445/10749957122*3461452808002^(5/6) 3654352961619999 a001 774004377960/5374978561*192900153618^(5/6) 3654352961619999 a001 182717648081/5374978561*192900153618^(8/9) 3654352961619999 a001 231803054830586493072/634320377 3654352961619999 a001 53316291173/10749957122*23725150497407^(13/16) 3654352961619999 a001 53316291173/10749957122*505019158607^(13/14) 3654352961619999 a001 2504730781961/10749957122*73681302247^(11/13) 3654352961619999 a001 182717648081/5374978561*73681302247^(12/13) 3654352961619999 a001 4013853600631693893312/10983760033 3654352961619999 a001 10182505537/5374978561*14662949395604^(6/7) 3654352961619999 a001 6557470319842/4106118243*4106118243^(20/23) 3654352961619999 a001 774004377960/5374978561*28143753123^(9/10) 3654352961619999 a001 4599466948725481982016/12586269025 3654352961619999 a001 7778742049/10749957122*14662949395604^(8/9) 3654352961619999 a001 2504730781961/4106118243*4106118243^(21/23) 3654352961619999 a001 218663608034162901225/598364773 3654352961619999 a001 2842626904444117715928/7778742049 3654352961619999 a001 2842626904444117715929/7778742049 3654352961619999 a001 2842626904444117715930/7778742049 3654352961619999 a001 956722026041/4106118243*4106118243^(22/23) 3654352961619999 a001 12586269025/28143753123*14662949395604^(19/21) 3654352961619999 a001 7442093853169599697975/20365011074 3654352961619999 a001 956722026041/28143753123*45537549124^(16/17) 3654352961619999 a001 4052739537881/28143753123*45537549124^(15/17) 3654352961619999 a001 10983760033/9381251041*3461452808002^(11/12) 3654352961619999 a001 19483654655064681378000/53316291173 3654352961619999 a001 10201774022404888887205/27916772489 3654352961619999 a001 4052739537881/28143753123*312119004989^(9/11) 3654352961619999 a001 6557470319842/28143753123*312119004989^(4/5) 3654352961619999 a001 75283811239/9381251041*14662949395604^(17/21) 3654352961619999 a001 133542955681008651930075/365435296162 3654352961619999 a001 591286729879/28143753123*505019158607^(7/8) 3654352961619999 a001 6348775812998785191850/17373187209 3654352961619999 a001 139583862445/28143753123*505019158607^(13/14) 3654352961619999 a001 75283811239/9381251041*192900153618^(17/18) 3654352961619999 a001 4052739537881/28143753123*192900153618^(5/6) 3654352961619999 a001 31525215456959763058025/86267571272 3654352961619999 a001 53316291173/28143753123*14662949395604^(6/7) 3654352961619999 a001 6557470319842/28143753123*73681302247^(11/13) 3654352961619999 a001 956722026041/28143753123*73681302247^(12/13) 3654352961619999 a001 3278735159921/5374978561*10749957122^(7/8) 3654352961619999 a001 12041560801895081680025/32951280099 3654352961619999 a001 20365011074/28143753123*14662949395604^(8/9) 3654352961619999 a001 2504730781961/10749957122*10749957122^(11/12) 3654352961619999 a001 7442093853169599697983/20365011074 3654352961619999 a001 2504730781961/73681302247*45537549124^(16/17) 3654352961619999 a001 1515744265389/10525900321*45537549124^(15/17) 3654352961619999 a001 774004377960/5374978561*10749957122^(15/16) 3654352961619999 a001 3721046926584799848992/10182505537 3654352961619999 a001 3278735159921/96450076809*45537549124^(16/17) 3654352961619999 a001 7442093853169599697985/20365011074 3654352961619999 a001 4052739537881/119218851371*45537549124^(16/17) 3654352961619999 a001 32951280099/73681302247*14662949395604^(19/21) 3654352961619999 a001 956722026041/10749957122*10749957122^(23/24) 3654352961619999 a001 19483654655064681378021/53316291173 3654352961619999 a001 86267571272/73681302247*3461452808002^(11/12) 3654352961619999 a001 10201774022404888887216/27916772489 3654352961619999 a001 1515744265389/10525900321*312119004989^(9/11) 3654352961619999 a001 591286729879/73681302247*817138163596^(17/19) 3654352961619999 a001 133542955681008651930219/365435296162 3654352961619999 a001 1548008755920/73681302247*505019158607^(7/8) 3654352961619999 a001 139583862445/73681302247*14662949395604^(6/7) 3654352961619999 a001 1515744265389/10525900321*192900153618^(5/6) 3654352961619999 a001 591286729879/73681302247*192900153618^(17/18) 3654352961619999 a001 31525215456959763058059/86267571272 3654352961619999 a001 4052739537881/28143753123*28143753123^(9/10) 3654352961619999 a001 53316291173/73681302247*14662949395604^(8/9) 3654352961619999 a001 19483654655064681378024/53316291173 3654352961619999 a001 43133785636/96450076809*14662949395604^(19/21) 3654352961619999 a001 19483654655064681378025/53316291173 3654352961619999 a001 51008870112024444436088/139583862445 3654352961619999 a001 66771477840504325965120/182717648081 3654352961619999 a001 182717648081/96450076809*14662949395604^(6/7) 3654352961619999 a001 139583862445/192900153618*14662949395604^(8/9) 3654352961619999 a001 2504730781961/73681302247*73681302247^(12/13) 3654352961619999 a001 133542955681008651930243/365435296162 3654352961619999 a001 1481014073292990252912714/4052739537881 3654352961620000 a001 225851433717/312119004989*14662949395604^(8/9) 3654352961620000 a001 113139407636198874155809/309601751184 3654352961620000 a001 387002188980/11384387281*45537549124^(16/17) 3654352961620000 a001 31525215456959763058065/86267571272 3654352961620000 a001 10610209857723/312119004989*192900153618^(8/9) 3654352961620000 a001 86267571272/119218851371*14662949395604^(8/9) 3654352961620000 a001 3278735159921/22768774562*45537549124^(15/17) 3654352961620000 a001 133542955681008651930253/365435296162 3654352961620000 a001 2504730781961/119218851371*505019158607^(7/8) 3654352961620000 a001 27511361856328069164720/75283811239 3654352961620000 a001 4052739537881/119218851371*192900153618^(8/9) 3654352961620000 a001 956722026041/119218851371*192900153618^(17/18) 3654352961620000 a001 31525215456959763058067/86267571272 3654352961620000 a001 3278735159921/96450076809*73681302247^(12/13) 3654352961620000 a001 12041560801895081680040/32951280099 3654352961620000 a001 4052739537881/119218851371*73681302247^(12/13) 3654352961620000 a001 4013853600631693893347/10983760033 3654352961620000 a001 32951280099/45537549124*14662949395604^(8/9) 3654352961620000 a001 19483654655064681378034/53316291173 3654352961620000 a001 10182505537/96450076809*14662949395604^(20/21) 3654352961620000 a001 21566892818/11384387281*14662949395604^(6/7) 3654352961620000 a001 51008870112024444436114/139583862445 3654352961620000 a001 10610209857723/17393796001*17393796001^(6/7) 3654352961620000 a001 10610209857723/45537549124*312119004989^(4/5) 3654352961620000 a001 591286729879/45537549124*3461452808002^(5/6) 3654352961620000 a001 225851433717/45537549124*505019158607^(13/14) 3654352961620000 a001 956722026041/45537549124*505019158607^(7/8) 3654352961620000 a001 3278735159921/22768774562*192900153618^(5/6) 3654352961620000 a001 387002188980/11384387281*192900153618^(8/9) 3654352961620000 a001 182717648081/22768774562*192900153618^(17/18) 3654352961620000 a001 53316291173/45537549124*3461452808002^(11/12) 3654352961620000 a001 10610209857723/45537549124*73681302247^(11/13) 3654352961620000 a001 387002188980/11384387281*73681302247^(12/13) 3654352961620000 a001 12041560801895081680046/32951280099 3654352961620000 a001 1515744265389/10525900321*28143753123^(9/10) 3654352961620000 a001 10182505537/22768774562*14662949395604^(19/21) 3654352961620000 a001 919893389745096396411/2517253805 3654352961620000 a001 4599466948725481982056/12586269025 3654352961620000 a001 3278735159921/22768774562*28143753123^(9/10) 3654352961620000 a001 4599466948725481982058/12586269025 3654352961620000 a001 12586269025/17393796001*14662949395604^(8/9) 3654352961620000 a001 7442093853169599698009/20365011074 3654352961620000 a001 591286729879/17393796001*45537549124^(16/17) 3654352961620000 a001 2504730781961/17393796001*45537549124^(15/17) 3654352961620000 a001 10610209857723/17393796001*45537549124^(14/17) 3654352961620000 a001 32951280099/17393796001*14662949395604^(6/7) 3654352961620000 a001 19483654655064681378089/53316291173 3654352961620000 a001 86267571272/17393796001*23725150497407^(13/16) 3654352961620000 a001 86267571272/17393796001*505019158607^(13/14) 3654352961620000 a001 51008870112024444436258/139583862445 3654352961620000 a001 2504730781961/17393796001*312119004989^(9/11) 3654352961620000 a001 2504730781961/17393796001*14662949395604^(5/7) 3654352961620000 a001 10610209857723/17393796001*505019158607^(3/4) 3654352961620000 a001 365435296162/17393796001*505019158607^(7/8) 3654352961620000 a001 10610209857723/17393796001*192900153618^(7/9) 3654352961620000 a001 2504730781961/17393796001*192900153618^(5/6) 3654352961620000 a001 31525215456959763058169/86267571272 3654352961620000 a001 139583862445/17393796001*192900153618^(17/18) 3654352961620000 a001 4052739537881/17393796001*73681302247^(11/13) 3654352961620000 a001 591286729879/17393796001*73681302247^(12/13) 3654352961620000 a001 4013853600631693893360/10983760033 3654352961620000 a001 20365011074/17393796001*3461452808002^(11/12) 3654352961620000 a001 2504730781961/17393796001*28143753123^(9/10) 3654352961620000 a001 4599466948725481982071/12586269025 3654352961620000 a001 7778742049/17393796001*14662949395604^(19/21) 3654352961620000 a001 6557470319842/28143753123*10749957122^(11/12) 3654352961620000 a001 4052739537881/28143753123*10749957122^(15/16) 3654352961620000 a001 2504730781961/28143753123*10749957122^(23/24) 3654352961620000 a001 1756840044281364266125/4807526976 3654352961620000 a001 1515744265389/10525900321*10749957122^(15/16) 3654352961620000 a001 6557470319842/73681302247*10749957122^(23/24) 3654352961620000 a001 10610209857723/45537549124*10749957122^(11/12) 3654352961620000 a001 585613348093788088709/1602508992 3654352961620000 a001 3278735159921/22768774562*10749957122^(15/16) 3654352961620000 a001 4052739537881/45537549124*10749957122^(23/24) 3654352961620000 a001 109802502767585266633/300470436 3654352961620000 a001 1134903780/1860499*2537720636^(14/15) 3654352961620000 a001 10610209857723/17393796001*10749957122^(7/8) 3654352961620000 a001 4052739537881/17393796001*10749957122^(11/12) 3654352961620000 a001 2504730781961/17393796001*10749957122^(15/16) 3654352961620000 a001 1548008755920/17393796001*10749957122^(23/24) 3654352961620000 a001 83659049727684012673/228929856 3654352961620000 a001 4807526976/6643838879*14662949395604^(8/9) 3654352961620000 a001 4052739537881/2537720636*2537720636^(8/9) 3654352961620000 a001 2842626904444117715993/7778742049 3654352961620000 a001 4052739537881/6643838879*17393796001^(6/7) 3654352961620000 a001 3278735159921/1268860318*2537720636^(13/15) 3654352961620000 a001 2971215073/28143753123*14662949395604^(20/21) 3654352961620000 a001 12586269025/6643838879*14662949395604^(6/7) 3654352961620000 a001 7442093853169599698153/20365011074 3654352961620000 a001 225851433717/6643838879*45537549124^(16/17) 3654352961620000 a001 956722026041/6643838879*45537549124^(15/17) 3654352961620000 a001 4052739537881/6643838879*45537549124^(14/17) 3654352961620000 a001 32951280099/6643838879*23725150497407^(13/16) 3654352961620000 a001 32951280099/6643838879*505019158607^(13/14) 3654352961620000 a001 19483654655064681378466/53316291173 3654352961620000 a001 86267571272/6643838879*312119004989^(10/11) 3654352961620000 a001 86267571272/6643838879*3461452808002^(5/6) 3654352961620000 a001 1548008755920/6643838879*312119004989^(4/5) 3654352961620000 a001 956722026041/6643838879*312119004989^(9/11) 3654352961620000 a001 10610209857723/6643838879*312119004989^(8/11) 3654352961620000 a001 4052739537881/6643838879*14662949395604^(2/3) 3654352961620000 a001 10610209857723/6643838879*23725150497407^(5/8) 3654352961620000 a001 139583862445/6643838879*14662949395604^(7/9) 3654352961620000 a001 139583862445/6643838879*505019158607^(7/8) 3654352961620000 a001 4052739537881/6643838879*192900153618^(7/9) 3654352961620000 a001 956722026041/6643838879*192900153618^(5/6) 3654352961620000 a001 31525215456959763058779/86267571272 3654352961620000 a001 53316291173/6643838879*14662949395604^(17/21) 3654352961620000 a001 53316291173/6643838879*192900153618^(17/18) 3654352961620000 a001 10610209857723/6643838879*73681302247^(10/13) 3654352961620000 a001 1548008755920/6643838879*73681302247^(11/13) 3654352961620000 a001 225851433717/6643838879*73681302247^(12/13) 3654352961620000 a001 12041560801895081680313/32951280099 3654352961620000 a001 10610209857723/6643838879*28143753123^(4/5) 3654352961620000 a001 956722026041/6643838879*28143753123^(9/10) 3654352961620000 a001 83626671795008763312/228841255 3654352961620000 a001 7778742049/6643838879*3461452808002^(11/12) 3654352961620000 a001 10610209857723/6643838879*10749957122^(5/6) 3654352961620000 a001 4052739537881/6643838879*10749957122^(7/8) 3654352961620000 a001 1548008755920/6643838879*10749957122^(11/12) 3654352961620000 a001 956722026041/6643838879*10749957122^(15/16) 3654352961620000 a001 591286729879/6643838879*10749957122^(23/24) 3654352961620000 a001 1756840044281364266167/4807526976 3654352961620000 a001 2971215073/6643838879*14662949395604^(19/21) 3654352961620000 a001 3278735159921/5374978561*4106118243^(21/23) 3654352961620000 a001 2504730781961/10749957122*4106118243^(22/23) 3654352961620000 a001 671053184118610816320/1836311903 3654352961620000 a001 6557470319842/28143753123*4106118243^(22/23) 3654352961620000 a001 10610209857723/45537549124*4106118243^(22/23) 3654352961620000 a001 10610209857723/17393796001*4106118243^(21/23) 3654352961620000 a001 671053184118610816325/1836311903 3654352961620000 a001 671053184118610816326/1836311903 3654352961620000 a001 4052739537881/17393796001*4106118243^(22/23) 3654352961620000 a001 671053184118610816328/1836311903 3654352961620000 a001 10610209857723/6643838879*4106118243^(20/23) 3654352961620000 a001 4052739537881/6643838879*4106118243^(21/23) 3654352961620000 a001 1548008755920/6643838879*4106118243^(22/23) 3654352961620000 a001 671053184118610816341/1836311903 3654352961620000 a001 1836311903/2537720636*14662949395604^(8/9) 3654352961620000 a001 1085786860162753449970/2971215073 3654352961620000 a001 567451585/5374978561*14662949395604^(20/21) 3654352961620000 a001 1201881744/634430159*14662949395604^(6/7) 3654352961620000 a001 2842626904444117716370/7778742049 3654352961620000 a001 1134903780/1860499*17393796001^(6/7) 3654352961620000 a001 1144206275/230701876*23725150497407^(13/16) 3654352961620000 a001 1144206275/230701876*505019158607^(13/14) 3654352961620000 a001 3721046926584799849570/10182505537 3654352961620000 a001 1135099622/33391061*45537549124^(16/17) 3654352961620000 a001 182717648081/1268860318*45537549124^(15/17) 3654352961620000 a001 1134903780/1860499*45537549124^(14/17) 3654352961620000 a001 3278735159921/1268860318*45537549124^(13/17) 3654352961620000 a001 32951280099/2537720636*312119004989^(10/11) 3654352961620000 a001 32951280099/2537720636*3461452808002^(5/6) 3654352961620000 a001 1135099622/33391061*14662949395604^(16/21) 3654352961620000 a001 591286729879/2537720636*312119004989^(4/5) 3654352961620000 a001 182717648081/1268860318*312119004989^(9/11) 3654352961620000 a001 1135099622/33391061*192900153618^(8/9) 3654352961620000 a001 10610209857723/2537720636*817138163596^(2/3) 3654352961620000 a001 1134903780/1860499*14662949395604^(2/3) 3654352961620000 a001 1134903780/1860499*505019158607^(3/4) 3654352961620000 a001 3278735159921/1268860318*192900153618^(13/18) 3654352961620000 a001 1134903780/1860499*192900153618^(7/9) 3654352961620000 a001 182717648081/1268860318*192900153618^(5/6) 3654352961620000 a001 53316291173/2537720636*14662949395604^(7/9) 3654352961620000 a001 53316291173/2537720636*505019158607^(7/8) 3654352961620000 a001 3278735159921/1268860318*73681302247^(3/4) 3654352961620000 a001 1135099622/33391061*73681302247^(12/13) 3654352961620000 a001 591286729879/2537720636*73681302247^(11/13) 3654352961620000 a001 4013853600631693893970/10983760033 3654352961620000 a001 10182505537/1268860318*817138163596^(17/19) 3654352961620000 a001 10182505537/1268860318*14662949395604^(17/21) 3654352961620000 a001 10182505537/1268860318*192900153618^(17/18) 3654352961620000 a001 4052739537881/2537720636*28143753123^(4/5) 3654352961620000 a001 182717648081/1268860318*28143753123^(9/10) 3654352961620000 a001 919893389745096396554/2517253805 3654352961620000 a001 10610209857723/2537720636*10749957122^(19/24) 3654352961620000 a001 3278735159921/1268860318*10749957122^(13/16) 3654352961620000 a001 4052739537881/2537720636*10749957122^(5/6) 3654352961620000 a001 1134903780/1860499*10749957122^(7/8) 3654352961620000 a001 591286729879/2537720636*10749957122^(11/12) 3654352961620000 a001 182717648081/1268860318*10749957122^(15/16) 3654352961620000 a001 225851433717/2537720636*10749957122^(23/24) 3654352961620000 a001 6100139042643625925/16692802 3654352961620000 a001 2971215073/2537720636*3461452808002^(11/12) 3654352961620000 a001 10610209857723/2537720636*4106118243^(19/23) 3654352961620000 a001 4052739537881/2537720636*4106118243^(20/23) 3654352961620000 a001 1134903780/1860499*4106118243^(21/23) 3654352961620000 a001 591286729879/2537720636*4106118243^(22/23) 3654352961620000 a001 671053184118610816430/1836311903 3654352961620000 a001 6557470319842/4106118243*1568397607^(10/11) 3654352961620000 a001 567451585/1268860318*14662949395604^(19/21) 3654352961620000 a001 2504730781961/4106118243*1568397607^(21/22) 3654352961620000 a001 2879994472746833515/7880997 3654352961620000 a001 3278735159921/5374978561*1568397607^(21/22) 3654352961620000 a001 10610209857723/17393796001*1568397607^(21/22) 3654352961620000 a001 10610209857723/6643838879*1568397607^(10/11) 3654352961620000 a001 85439836024822727616/233802911 3654352961620000 a001 256319508074468182850/701408733 3654352961620000 a001 85439836024822727617/233802911 3654352961620000 a001 4052739537881/6643838879*1568397607^(21/22) 3654352961620000 a001 256319508074468182856/701408733 3654352961620000 a001 10610209857723/2537720636*1568397607^(19/22) 3654352961620000 a001 4052739537881/2537720636*1568397607^(10/11) 3654352961620000 a001 1134903780/1860499*1568397607^(21/22) 3654352961620000 a001 85439836024822727630/233802911 3654352961620000 a001 701408733/969323029*14662949395604^(8/9) 3654352961620000 a001 414733676044142633917/1134903170 3654352961620000 a001 591286729879/969323029*2537720636^(14/15) 3654352961620000 a001 1548008755920/969323029*2537720636^(8/9) 3654352961620000 a001 2504730781961/969323029*2537720636^(13/15) 3654352961620000 a001 10610209857723/969323029*2537720636^(4/5) 3654352961620000 a001 433494437/4106118243*14662949395604^(20/21) 3654352961620000 a001 1836311903/969323029*14662949395604^(6/7) 3654352961620000 a001 1085786860162753450957/2971215073 3654352961620000 a001 4807526976/969323029*23725150497407^(13/16) 3654352961620000 a001 4807526976/969323029*505019158607^(13/14) 3654352961620000 a001 218663608034162901458/598364773 3654352961620000 a001 591286729879/969323029*17393796001^(6/7) 3654352961620000 a001 12586269025/969323029*312119004989^(10/11) 3654352961620000 a001 12586269025/969323029*3461452808002^(5/6) 3654352961620000 a001 32951280099/969323029*45537549124^(16/17) 3654352961620000 a001 139583862445/969323029*45537549124^(15/17) 3654352961620000 a001 591286729879/969323029*45537549124^(14/17) 3654352961620000 a001 2504730781961/969323029*45537549124^(13/17) 3654352961620000 a001 10610209857723/969323029*45537549124^(12/17) 3654352961620000 a001 32951280099/969323029*14662949395604^(16/21) 3654352961620000 a001 32951280099/969323029*192900153618^(8/9) 3654352961620000 a001 32951280099/969323029*73681302247^(12/13) 3654352961620000 a001 225851433717/969323029*312119004989^(4/5) 3654352961620000 a001 1548008755920/969323029*312119004989^(8/11) 3654352961620000 a001 225851433717/969323029*23725150497407^(11/16) 3654352961620000 a001 10610209857723/969323029*14662949395604^(4/7) 3654352961620000 a001 10610209857723/969323029*505019158607^(9/14) 3654352961620000 a001 139583862445/969323029*14662949395604^(5/7) 3654352961620000 a001 10610209857723/969323029*192900153618^(2/3) 3654352961620000 a001 2504730781961/969323029*192900153618^(13/18) 3654352961620000 a001 591286729879/969323029*192900153618^(7/9) 3654352961620000 a001 139583862445/969323029*192900153618^(5/6) 3654352961620000 a001 10610209857723/969323029*73681302247^(9/13) 3654352961620000 a001 2504730781961/969323029*73681302247^(3/4) 3654352961620000 a001 1548008755920/969323029*73681302247^(10/13) 3654352961620000 a001 225851433717/969323029*73681302247^(11/13) 3654352961620000 a001 20365011074/969323029*14662949395604^(7/9) 3654352961620000 a001 20365011074/969323029*505019158607^(7/8) 3654352961620000 a001 1548008755920/969323029*28143753123^(4/5) 3654352961620000 a001 139583862445/969323029*28143753123^(9/10) 3654352961620000 a001 4599466948725481986951/12586269025 3654352961620000 a001 7778742049/969323029*14662949395604^(17/21) 3654352961620000 a001 7778742049/969323029*192900153618^(17/18) 3654352961620000 a001 10610209857723/969323029*10749957122^(3/4) 3654352961620000 a001 4052739537881/969323029*10749957122^(19/24) 3654352961620000 a001 2504730781961/969323029*10749957122^(13/16) 3654352961620000 a001 1548008755920/969323029*10749957122^(5/6) 3654352961620000 a001 591286729879/969323029*10749957122^(7/8) 3654352961620000 a001 225851433717/969323029*10749957122^(11/12) 3654352961620000 a001 139583862445/969323029*10749957122^(15/16) 3654352961620000 a001 86267571272/969323029*10749957122^(23/24) 3654352961620000 a001 1756840044281364267997/4807526976 3654352961620000 a001 10610209857723/969323029*4106118243^(18/23) 3654352961620000 a001 4052739537881/969323029*4106118243^(19/23) 3654352961620000 a001 1548008755920/969323029*4106118243^(20/23) 3654352961620000 a001 591286729879/969323029*4106118243^(21/23) 3654352961620000 a001 225851433717/969323029*4106118243^(22/23) 3654352961620000 a001 671053184118610817040/1836311903 3654352961620000 a001 1134903170/969323029*3461452808002^(11/12) 3654352961620000 a001 10610209857723/969323029*1568397607^(9/11) 3654352961620000 a001 4052739537881/969323029*1568397607^(19/22) 3654352961620000 a001 1548008755920/969323029*1568397607^(10/11) 3654352961620000 a001 591286729879/969323029*1568397607^(21/22) 3654352961620000 a001 256319508074468183123/701408733 3654352961620000 a001 6557470319842/1568397607*599074578^(19/21) 3654352961620000 a001 433494437/969323029*14662949395604^(19/21) 3654352961620000 a001 4052739537881/1568397607*599074578^(13/14) 3654352961620000 a001 2504730781961/1568397607*599074578^(20/21) 3654352961620000 a001 97905340104793732185/267914296 3654352961620000 a001 3536736619241/1368706081*599074578^(13/14) 3654352961620000 a001 6557470319842/4106118243*599074578^(20/21) 3654352961620000 a001 10610209857723/2537720636*599074578^(19/21) 3654352961620000 a001 10610209857723/6643838879*599074578^(20/21) 3654352961620000 a001 97905340104793732219/267914296 3654352961620000 a001 3278735159921/1268860318*599074578^(13/14) 3654352961620000 a001 12238167513099216528/33489287 3654352961620000 a001 7531180008061056325/20608792 3654352961620000 a001 97905340104793732227/267914296 3654352961620000 a001 4052739537881/2537720636*599074578^(20/21) 3654352961620000 a001 12238167513099216530/33489287 3654352961620000 a001 10610209857723/969323029*599074578^(6/7) 3654352961620000 a001 4052739537881/969323029*599074578^(19/21) 3654352961620000 a001 2504730781961/969323029*599074578^(13/14) 3654352961620000 a001 1548008755920/969323029*599074578^(20/21) 3654352961620000 a001 387002188980/35355581*141422324^(12/13) 3654352961620000 a001 259695862346932977/710648 3654352961620000 a001 267914296/370248451*14662949395604^(8/9) 3654352961620000 a001 158414167969674451781/433494437 3654352961620000 a001 165580141/1568397607*14662949395604^(20/21) 3654352961620000 a001 701408733/370248451*14662949395604^(6/7) 3654352961620000 a001 414733676044142636501/1134903170 3654352961620000 a001 225851433717/370248451*2537720636^(14/15) 3654352961620000 a001 591286729879/370248451*2537720636^(8/9) 3654352961620000 a001 956722026041/370248451*2537720636^(13/15) 3654352961620000 a001 4052739537881/370248451*2537720636^(4/5) 3654352961620000 a001 6557470319842/370248451*2537720636^(7/9) 3654352961620000 a001 1836311903/370248451*23725150497407^(13/16) 3654352961620000 a001 1836311903/370248451*505019158607^(13/14) 3654352961620000 a001 1085786860162753457722/2971215073 3654352961620000 a001 4807526976/370248451*312119004989^(10/11) 3654352961620000 a001 4807526976/370248451*3461452808002^(5/6) 3654352961620000 a001 225851433717/370248451*17393796001^(6/7) 3654352961620000 a001 6557470319842/370248451*17393796001^(5/7) 3654352961620000 a001 12586269025/370248451*45537549124^(16/17) 3654352961620000 a001 12586269025/370248451*14662949395604^(16/21) 3654352961620000 a001 12586269025/370248451*192900153618^(8/9) 3654352961620000 a001 12586269025/370248451*73681302247^(12/13) 3654352961620000 a001 225851433717/370248451*45537549124^(14/17) 3654352961620000 a001 956722026041/370248451*45537549124^(13/17) 3654352961620000 a001 53316291173/370248451*45537549124^(15/17) 3654352961620000 a001 4052739537881/370248451*45537549124^(12/17) 3654352961620000 a001 10610209857723/370248451*45537549124^(2/3) 3654352961620000 a001 86267571272/370248451*312119004989^(4/5) 3654352961620000 a001 86267571272/370248451*23725150497407^(11/16) 3654352961620000 a001 591286729879/370248451*312119004989^(8/11) 3654352961620000 a001 6557470319842/370248451*312119004989^(7/11) 3654352961620000 a001 225851433717/370248451*14662949395604^(2/3) 3654352961620000 a001 1548008755920/370248451*817138163596^(2/3) 3654352961620000 a001 225851433717/370248451*505019158607^(3/4) 3654352961620000 a001 6557470319842/370248451*505019158607^(5/8) 3654352961620000 a001 225851433717/370248451*192900153618^(7/9) 3654352961620000 a001 53316291173/370248451*312119004989^(9/11) 3654352961620000 a001 53316291173/370248451*14662949395604^(5/7) 3654352961620000 a001 53316291173/370248451*192900153618^(5/6) 3654352961620000 a001 4052739537881/370248451*73681302247^(9/13) 3654352961620000 a001 591286729879/370248451*73681302247^(10/13) 3654352961620000 a001 6557470319842/370248451*28143753123^(7/10) 3654352961620000 a001 591286729879/370248451*28143753123^(4/5) 3654352961620000 a001 53316291173/370248451*28143753123^(9/10) 3654352961620000 a001 7778742049/370248451*14662949395604^(7/9) 3654352961620000 a001 7778742049/370248451*505019158607^(7/8) 3654352961620000 a001 10610209857723/370248451*10749957122^(17/24) 3654352961620000 a001 4052739537881/370248451*10749957122^(3/4) 3654352961620000 a001 1548008755920/370248451*10749957122^(19/24) 3654352961620000 a001 956722026041/370248451*10749957122^(13/16) 3654352961620000 a001 591286729879/370248451*10749957122^(5/6) 3654352961620000 a001 225851433717/370248451*10749957122^(7/8) 3654352961620000 a001 86267571272/370248451*10749957122^(11/12) 3654352961620000 a001 32951280099/370248451*10749957122^(23/24) 3654352961620000 a001 53316291173/370248451*10749957122^(15/16) 3654352961620000 a001 1779979781440085389/4870848 3654352961620000 a001 2971215073/370248451*817138163596^(17/19) 3654352961620000 a001 2971215073/370248451*14662949395604^(17/21) 3654352961620000 a001 2971215073/370248451*192900153618^(17/18) 3654352961620000 a001 10610209857723/370248451*4106118243^(17/23) 3654352961620000 a001 4052739537881/370248451*4106118243^(18/23) 3654352961620000 a001 1548008755920/370248451*4106118243^(19/23) 3654352961620000 a001 591286729879/370248451*4106118243^(20/23) 3654352961620000 a001 225851433717/370248451*4106118243^(21/23) 3654352961620000 a001 86267571272/370248451*4106118243^(22/23) 3654352961620000 a001 671053184118610821221/1836311903 3654352961620000 a001 10610209857723/370248451*1568397607^(17/22) 3654352961620000 a001 4052739537881/370248451*1568397607^(9/11) 3654352961620000 a001 1548008755920/370248451*1568397607^(19/22) 3654352961620000 a001 591286729879/370248451*1568397607^(10/11) 3654352961620000 a001 225851433717/370248451*1568397607^(21/22) 3654352961620000 a001 3278735159921/70711162*141422324^(11/13) 3654352961620000 a001 85439836024822728240/233802911 3654352961620000 a001 433494437/370248451*3461452808002^(11/12) 3654352961620000 a001 10610209857723/370248451*599074578^(17/21) 3654352961620000 a001 6557470319842/370248451*599074578^(5/6) 3654352961620000 a001 4052739537881/370248451*599074578^(6/7) 3654352961620000 a001 1548008755920/370248451*599074578^(19/21) 3654352961620000 a001 956722026041/370248451*599074578^(13/14) 3654352961620000 a001 591286729879/370248451*599074578^(20/21) 3654352961620000 a001 97905340104793732939/267914296 3654352961620000 a001 3536736619241/199691526*228826127^(7/8) 3654352961620000 a001 3278735159921/299537289*228826127^(9/10) 3654352961620000 a001 165580141/370248451*14662949395604^(19/21) 3654352961620000 a001 2504730781961/599074578*228826127^(19/20) 3654352961620000 a001 7479302447982602744/20466831 3654352961620000 a001 6557470319842/1568397607*228826127^(19/20) 3654352961620000 a001 10610209857723/969323029*228826127^(9/10) 3654352961620000 a001 10610209857723/2537720636*228826127^(19/20) 3654352961620000 a001 12465504079971004603/34111385 3654352961620000 a001 37396512239913013822/102334155 3654352961620000 a001 1780786297138714944/4873055 3654352961620000 a001 679936586180236615/1860621 3654352961620000 a001 4052739537881/969323029*228826127^(19/20) 3654352961620000 a001 2493100815994200922/6822277 3654352961620000 a001 37396512239913013864/102334155 3654352961620000 a001 10610209857723/370248451*228826127^(17/20) 3654352961620000 a001 6557470319842/370248451*228826127^(7/8) 3654352961620000 a001 4052739537881/370248451*228826127^(9/10) 3654352961620000 a001 1548008755920/370248451*228826127^(19/20) 3654352961620000 a001 1780786297138714957/4873055 3654352961620000 a001 102334155/141422324*14662949395604^(8/9) 3654352961620000 a001 60508827864880721426/165580141 3654352961620000 a001 31622993/299537289*14662949395604^(20/21) 3654352961620000 a001 158414167969674458546/433494437 3654352961620000 a001 701408733/141422324*23725150497407^(13/16) 3654352961620000 a001 701408733/141422324*505019158607^(13/14) 3654352961620000 a001 12198049295415960418/33379505 3654352961620000 a001 21566892818/35355581*2537720636^(14/15) 3654352961620000 a001 225851433717/141422324*2537720636^(8/9) 3654352961620000 a001 182717648081/70711162*2537720636^(13/15) 3654352961620000 a001 387002188980/35355581*2537720636^(4/5) 3654352961620000 a001 2504730781961/141422324*2537720636^(7/9) 3654352961620000 a001 3278735159921/70711162*2537720636^(11/15) 3654352961620000 a001 1836311903/141422324*312119004989^(10/11) 3654352961620000 a001 1836311903/141422324*3461452808002^(5/6) 3654352961620000 a001 1201881744/35355581*45537549124^(16/17) 3654352961620000 a001 1201881744/35355581*14662949395604^(16/21) 3654352961620000 a001 1201881744/35355581*192900153618^(8/9) 3654352961620000 a001 1201881744/35355581*73681302247^(12/13) 3654352961620000 a001 21566892818/35355581*17393796001^(6/7) 3654352961620000 a001 2504730781961/141422324*17393796001^(5/7) 3654352961620000 a001 21566892818/35355581*45537549124^(14/17) 3654352961620000 a001 182717648081/70711162*45537549124^(13/17) 3654352961620000 a001 387002188980/35355581*45537549124^(12/17) 3654352961620000 a001 4052739537881/141422324*45537549124^(2/3) 3654352961620000 a001 3278735159921/70711162*45537549124^(11/17) 3654352961620000 a001 63246219/271444*312119004989^(4/5) 3654352961620000 a001 63246219/271444*23725150497407^(11/16) 3654352961620000 a001 21566892818/35355581*14662949395604^(2/3) 3654352961620000 a001 21566892818/35355581*505019158607^(3/4) 3654352961620000 a001 225851433717/141422324*312119004989^(8/11) 3654352961620000 a001 2504730781961/141422324*312119004989^(7/11) 3654352961620000 a001 21566892818/35355581*192900153618^(7/9) 3654352961620000 a001 225851433717/141422324*23725150497407^(5/8) 3654352961620000 a001 10610209857723/141422324*23725150497407^(1/2) 3654352961620000 a001 182717648081/70711162*14662949395604^(13/21) 3654352961620000 a001 387002188980/35355581*192900153618^(2/3) 3654352961620000 a001 182717648081/70711162*192900153618^(13/18) 3654352961620000 a001 10182505537/70711162*45537549124^(15/17) 3654352961620000 a001 10610209857723/141422324*73681302247^(8/13) 3654352961620000 a001 387002188980/35355581*73681302247^(9/13) 3654352961620000 a001 225851433717/141422324*73681302247^(10/13) 3654352961620000 a001 182717648081/70711162*73681302247^(3/4) 3654352961620000 a001 10182505537/70711162*312119004989^(9/11) 3654352961620000 a001 10182505537/70711162*14662949395604^(5/7) 3654352961620000 a001 10182505537/70711162*192900153618^(5/6) 3654352961620000 a001 2504730781961/141422324*28143753123^(7/10) 3654352961620000 a001 225851433717/141422324*28143753123^(4/5) 3654352961620000 a001 10182505537/70711162*28143753123^(9/10) 3654352961620000 a001 10610209857723/141422324*10749957122^(2/3) 3654352961620000 a001 3278735159921/70711162*10749957122^(11/16) 3654352961620000 a001 4052739537881/141422324*10749957122^(17/24) 3654352961620000 a001 387002188980/35355581*10749957122^(3/4) 3654352961620000 a001 591286729879/141422324*10749957122^(19/24) 3654352961620000 a001 12586269025/141422324*10749957122^(23/24) 3654352961620000 a001 182717648081/70711162*10749957122^(13/16) 3654352961620000 a001 225851433717/141422324*10749957122^(5/6) 3654352961620000 a001 21566892818/35355581*10749957122^(7/8) 3654352961620000 a001 63246219/271444*10749957122^(11/12) 3654352961620000 a001 10182505537/70711162*10749957122^(15/16) 3654352961620000 a001 2971215073/141422324*14662949395604^(7/9) 3654352961620000 a001 2971215073/141422324*505019158607^(7/8) 3654352961620000 a001 10610209857723/141422324*4106118243^(16/23) 3654352961620000 a001 4052739537881/141422324*4106118243^(17/23) 3654352961620000 a001 387002188980/35355581*4106118243^(18/23) 3654352961620000 a001 591286729879/141422324*4106118243^(19/23) 3654352961620000 a001 225851433717/141422324*4106118243^(20/23) 3654352961620000 a001 21566892818/35355581*4106118243^(21/23) 3654352961620000 a001 63246219/271444*4106118243^(22/23) 3654352961620000 a001 671053184118610849878/1836311903 3654352961620000 a001 567451585/70711162*817138163596^(17/19) 3654352961620000 a001 567451585/70711162*14662949395604^(17/21) 3654352961620000 a001 567451585/70711162*192900153618^(17/18) 3654352961620000 a001 10610209857723/141422324*1568397607^(8/11) 3654352961620000 a001 3278735159921/70711162*1568397607^(3/4) 3654352961620000 a001 4052739537881/141422324*1568397607^(17/22) 3654352961620000 a001 387002188980/35355581*1568397607^(9/11) 3654352961620000 a001 591286729879/141422324*1568397607^(19/22) 3654352961620000 a001 225851433717/141422324*1568397607^(10/11) 3654352961620000 a001 21566892818/35355581*1568397607^(21/22) 3654352961620000 a001 256319508074468195666/701408733 3654352961620000 a001 10610209857723/141422324*599074578^(16/21) 3654352961620000 a001 3278735159921/70711162*599074578^(11/14) 3654352961620000 a001 4052739537881/141422324*599074578^(17/21) 3654352961620000 a001 2504730781961/141422324*599074578^(5/6) 3654352961620000 a001 387002188980/35355581*599074578^(6/7) 3654352961620000 a001 591286729879/141422324*599074578^(19/21) 3654352961620000 a001 182717648081/70711162*599074578^(13/14) 3654352961620000 a001 225851433717/141422324*599074578^(20/21) 3654352961620000 a001 12238167513099217140/33489287 3654352961620000 a001 165580141/141422324*3461452808002^(11/12) 3654352961620000 a001 10610209857723/141422324*228826127^(4/5) 3654352961620000 a001 4052739537881/141422324*228826127^(17/20) 3654352961620000 a001 2504730781961/141422324*228826127^(7/8) 3654352961620000 a001 387002188980/35355581*228826127^(9/10) 3654352961620000 a001 591286729879/141422324*228826127^(19/20) 3654352961620000 a001 37396512239913015694/102334155 3654352961620000 a001 6557470319842/228826127*87403803^(17/19) 3654352961620000 a001 31622993/70711162*14662949395604^(19/21) 3654352961620000 a001 2504730781961/228826127*87403803^(18/19) 3654352961620000 a001 14284196614945308975/39088169 3654352961620000 a001 3278735159921/299537289*87403803^(18/19) 3654352961620000 a001 10610209857723/370248451*87403803^(17/19) 3654352961620000 a001 10610209857723/969323029*87403803^(18/19) 3654352961620000 a001 14284196614945309208/39088169 3654352961620000 a001 14284196614945309242/39088169 3654352961620000 a001 14284196614945309247/39088169 3654352961620000 a001 14284196614945309248/39088169 3654352961620000 a001 14284196614945309250/39088169 3654352961620000 a001 4052739537881/370248451*87403803^(18/19) 3654352961620000 a001 14284196614945309263/39088169 3654352961620000 a001 14284196614945309352/39088169 3654352961620000 a001 10610209857723/141422324*87403803^(16/19) 3654352961620000 a001 4052739537881/141422324*87403803^(17/19) 3654352961620000 a001 387002188980/35355581*87403803^(18/19) 3654352961620000 a001 14284196614945309962/39088169 3654352961620000 a001 39088169/54018521*14662949395604^(8/9) 3654352961620001 a001 23112315624967712497/63245986 3654352961620001 a001 591286729879/54018521*141422324^(12/13) 3654352961620001 a001 2504730781961/54018521*141422324^(11/13) 3654352961620001 a001 10610209857723/54018521*141422324^(10/13) 3654352961620001 a001 102334155/54018521*14662949395604^(6/7) 3654352961620001 a001 60508827864880739137/165580141 3654352961620001 a001 4052739537881/20633239*20633239^(6/7) 3654352961620001 a001 267914296/54018521*23725150497407^(13/16) 3654352961620001 a001 267914296/54018521*505019158607^(13/14) 3654352961620001 a001 158414167969674504914/433494437 3654352961620001 a001 701408733/54018521*312119004989^(10/11) 3654352961620001 a001 701408733/54018521*3461452808002^(5/6) 3654352961620001 a001 32951280099/54018521*2537720636^(14/15) 3654352961620001 a001 86267571272/54018521*2537720636^(8/9) 3654352961620001 a001 139583862445/54018521*2537720636^(13/15) 3654352961620001 a001 591286729879/54018521*2537720636^(4/5) 3654352961620001 a001 956722026041/54018521*2537720636^(7/9) 3654352961620001 a001 2504730781961/54018521*2537720636^(11/15) 3654352961620001 a001 10610209857723/54018521*2537720636^(2/3) 3654352961620001 a001 1836311903/54018521*45537549124^(16/17) 3654352961620001 a001 1836311903/54018521*14662949395604^(16/21) 3654352961620001 a001 1836311903/54018521*192900153618^(8/9) 3654352961620001 a001 1836311903/54018521*73681302247^(12/13) 3654352961620001 a001 32951280099/54018521*17393796001^(6/7) 3654352961620001 a001 956722026041/54018521*17393796001^(5/7) 3654352961620001 a001 12586269025/54018521*312119004989^(4/5) 3654352961620001 a001 12586269025/54018521*23725150497407^(11/16) 3654352961620001 a001 12586269025/54018521*73681302247^(11/13) 3654352961620001 a001 32951280099/54018521*45537549124^(14/17) 3654352961620001 a001 139583862445/54018521*45537549124^(13/17) 3654352961620001 a001 591286729879/54018521*45537549124^(12/17) 3654352961620001 a001 1548008755920/54018521*45537549124^(2/3) 3654352961620001 a001 2504730781961/54018521*45537549124^(11/17) 3654352961620001 a001 10610209857723/54018521*45537549124^(10/17) 3654352961620001 a001 32951280099/54018521*14662949395604^(2/3) 3654352961620001 a001 32951280099/54018521*505019158607^(3/4) 3654352961620001 a001 32951280099/54018521*192900153618^(7/9) 3654352961620001 a001 86267571272/54018521*312119004989^(8/11) 3654352961620001 a001 86267571272/54018521*23725150497407^(5/8) 3654352961620001 a001 2504730781961/54018521*312119004989^(3/5) 3654352961620001 a001 10610209857723/54018521*312119004989^(6/11) 3654352961620001 a001 2504730781961/54018521*817138163596^(11/19) 3654352961620001 a001 10610209857723/54018521*14662949395604^(10/21) 3654352961620001 a001 2504730781961/54018521*14662949395604^(11/21) 3654352961620001 a001 956722026041/54018521*505019158607^(5/8) 3654352961620001 a001 139583862445/54018521*14662949395604^(13/21) 3654352961620001 a001 10610209857723/54018521*192900153618^(5/9) 3654352961620001 a001 2504730781961/54018521*192900153618^(11/18) 3654352961620001 a001 139583862445/54018521*192900153618^(13/18) 3654352961620001 a001 4052739537881/54018521*73681302247^(8/13) 3654352961620001 a001 591286729879/54018521*73681302247^(9/13) 3654352961620001 a001 139583862445/54018521*73681302247^(3/4) 3654352961620001 a001 10610209857723/54018521*28143753123^(3/5) 3654352961620001 a001 956722026041/54018521*28143753123^(7/10) 3654352961620001 a001 86267571272/54018521*28143753123^(4/5) 3654352961620001 a001 7778742049/54018521*45537549124^(15/17) 3654352961620001 a001 7778742049/54018521*312119004989^(9/11) 3654352961620001 a001 7778742049/54018521*14662949395604^(5/7) 3654352961620001 a001 7778742049/54018521*192900153618^(5/6) 3654352961620001 a001 7778742049/54018521*28143753123^(9/10) 3654352961620001 a001 10610209857723/54018521*10749957122^(5/8) 3654352961620001 a001 4052739537881/54018521*10749957122^(2/3) 3654352961620001 a001 2504730781961/54018521*10749957122^(11/16) 3654352961620001 a001 1548008755920/54018521*10749957122^(17/24) 3654352961620001 a001 591286729879/54018521*10749957122^(3/4) 3654352961620001 a001 12586269025/54018521*10749957122^(11/12) 3654352961620001 a001 225851433717/54018521*10749957122^(19/24) 3654352961620001 a001 139583862445/54018521*10749957122^(13/16) 3654352961620001 a001 86267571272/54018521*10749957122^(5/6) 3654352961620001 a001 32951280099/54018521*10749957122^(7/8) 3654352961620001 a001 7778742049/54018521*10749957122^(15/16) 3654352961620001 a001 10610209857723/54018521*4106118243^(15/23) 3654352961620001 a001 4052739537881/54018521*4106118243^(16/23) 3654352961620001 a001 1548008755920/54018521*4106118243^(17/23) 3654352961620001 a001 591286729879/54018521*4106118243^(18/23) 3654352961620001 a001 225851433717/54018521*4106118243^(19/23) 3654352961620001 a001 86267571272/54018521*4106118243^(20/23) 3654352961620001 a001 32951280099/54018521*4106118243^(21/23) 3654352961620001 a001 12586269025/54018521*4106118243^(22/23) 3654352961620001 a001 1134903170/54018521*14662949395604^(7/9) 3654352961620001 a001 1134903170/54018521*505019158607^(7/8) 3654352961620001 a001 10610209857723/54018521*1568397607^(15/22) 3654352961620001 a001 4052739537881/54018521*1568397607^(8/11) 3654352961620001 a001 2504730781961/54018521*1568397607^(3/4) 3654352961620001 a001 1548008755920/54018521*1568397607^(17/22) 3654352961620001 a001 591286729879/54018521*1568397607^(9/11) 3654352961620001 a001 225851433717/54018521*1568397607^(19/22) 3654352961620001 a001 86267571272/54018521*1568397607^(10/11) 3654352961620001 a001 32951280099/54018521*1568397607^(21/22) 3654352961620001 a001 85439836024822756897/233802911 3654352961620001 a001 433494437/54018521*817138163596^(17/19) 3654352961620001 a001 433494437/54018521*14662949395604^(17/21) 3654352961620001 a001 433494437/54018521*192900153618^(17/18) 3654352961620001 a001 10610209857723/54018521*599074578^(5/7) 3654352961620001 a001 4052739537881/54018521*599074578^(16/21) 3654352961620001 a001 2504730781961/54018521*599074578^(11/14) 3654352961620001 a001 1548008755920/54018521*599074578^(17/21) 3654352961620001 a001 956722026041/54018521*599074578^(5/6) 3654352961620001 a001 591286729879/54018521*599074578^(6/7) 3654352961620001 a001 225851433717/54018521*599074578^(19/21) 3654352961620001 a001 139583862445/54018521*599074578^(13/14) 3654352961620001 a001 86267571272/54018521*599074578^(20/21) 3654352961620001 a001 97905340104793765777/267914296 3654352961620001 a001 10610209857723/54018521*228826127^(3/4) 3654352961620001 a001 4052739537881/54018521*228826127^(4/5) 3654352961620001 a001 1548008755920/54018521*228826127^(17/20) 3654352961620001 a001 956722026041/54018521*228826127^(7/8) 3654352961620001 a001 591286729879/54018521*228826127^(9/10) 3654352961620001 a001 225851433717/54018521*228826127^(19/20) 3654352961620001 a001 5527939725042576/15127 3654352961620001 a001 63245986/54018521*3461452808002^(11/12) 3654352961620001 a001 10610209857723/54018521*87403803^(15/19) 3654352961620001 a001 4052739537881/54018521*87403803^(16/19) 3654352961620001 a001 1548008755920/54018521*87403803^(17/19) 3654352961620001 a001 591286729879/54018521*87403803^(18/19) 3654352961620001 a001 10610209857723/20633239*20633239^(4/5) 3654352961620001 a001 14284196614945314143/39088169 3654352961620002 a001 6557470319842/87403803*33385282^(8/9) 3654352961620002 a001 24157817/54018521*14662949395604^(19/21) 3654352961620002 a001 4052739537881/87403803*33385282^(11/12) 3654352961620002 a001 2504730781961/87403803*33385282^(17/18) 3654352961620002 a001 5456077604922913205/14930352 3654352961620002 a001 225749145909/4868641*33385282^(11/12) 3654352961620003 a001 6557470319842/228826127*33385282^(17/18) 3654352961620003 a001 10610209857723/141422324*33385282^(8/9) 3654352961620003 a001 10610209857723/370248451*33385282^(17/18) 3654352961620003 a001 3278735159921/70711162*33385282^(11/12) 3654352961620003 a001 1818692534974304605/4976784 3654352961620003 a001 341004850307682119/933147 3654352961620003 a001 1818692534974304639/4976784 3654352961620003 a001 5456077604922913919/14930352 3654352961620003 a001 2228789871292040/6099 3654352961620003 a001 4052739537881/141422324*33385282^(17/18) 3654352961620003 a001 5456077604922913925/14930352 3654352961620003 a001 1818692534974304653/4976784 3654352961620003 a001 1055742570612019/2889 3654352961620003 a001 10610209857723/54018521*33385282^(5/6) 3654352961620004 a001 4052739537881/54018521*33385282^(8/9) 3654352961620004 a001 2504730781961/54018521*33385282^(11/12) 3654352961620004 a001 1548008755920/54018521*33385282^(17/18) 3654352961620004 a001 1818692534974305263/4976784 3654352961620005 a001 14930352/20633239*14662949395604^(8/9) 3654352961620005 a001 387002188980/1970299*7881196^(10/11) 3654352961620007 a001 8828119010022416065/24157817 3654352961620008 a001 9227465/87403803*14662949395604^(20/21) 3654352961620008 a001 39088169/20633239*14662949395604^(6/7) 3654352961620008 a001 23112315624967758865/63245986 3654352961620008 a001 7787980473/711491*141422324^(12/13) 3654352961620008 a001 956722026041/20633239*141422324^(11/13) 3654352961620008 a001 4052739537881/20633239*141422324^(10/13) 3654352961620008 a001 9303105/1875749*23725150497407^(13/16) 3654352961620008 a001 9303105/1875749*505019158607^(13/14) 3654352961620008 a001 60508827864880860530/165580141 3654352961620008 a001 9238424/711491*312119004989^(10/11) 3654352961620008 a001 9238424/711491*3461452808002^(5/6) 3654352961620008 a001 701408733/20633239*45537549124^(16/17) 3654352961620008 a001 701408733/20633239*14662949395604^(16/21) 3654352961620008 a001 701408733/20633239*192900153618^(8/9) 3654352961620008 a001 701408733/20633239*73681302247^(12/13) 3654352961620008 a001 1144206275/1875749*2537720636^(14/15) 3654352961620008 a001 32951280099/20633239*2537720636^(8/9) 3654352961620008 a001 53316291173/20633239*2537720636^(13/15) 3654352961620008 a001 7787980473/711491*2537720636^(4/5) 3654352961620008 a001 365435296162/20633239*2537720636^(7/9) 3654352961620008 a001 956722026041/20633239*2537720636^(11/15) 3654352961620008 a001 4052739537881/20633239*2537720636^(2/3) 3654352961620008 a001 1836311903/20633239*10749957122^(23/24) 3654352961620008 a001 4807526976/20633239*312119004989^(4/5) 3654352961620008 a001 4807526976/20633239*23725150497407^(11/16) 3654352961620008 a001 4807526976/20633239*73681302247^(11/13) 3654352961620008 a001 1144206275/1875749*17393796001^(6/7) 3654352961620008 a001 365435296162/20633239*17393796001^(5/7) 3654352961620008 a001 10610209857723/20633239*17393796001^(4/7) 3654352961620008 a001 1144206275/1875749*45537549124^(14/17) 3654352961620008 a001 1144206275/1875749*14662949395604^(2/3) 3654352961620008 a001 1144206275/1875749*505019158607^(3/4) 3654352961620008 a001 1144206275/1875749*192900153618^(7/9) 3654352961620008 a001 4807526976/20633239*10749957122^(11/12) 3654352961620008 a001 7787980473/711491*45537549124^(12/17) 3654352961620008 a001 591286729879/20633239*45537549124^(2/3) 3654352961620008 a001 956722026041/20633239*45537549124^(11/17) 3654352961620008 a001 53316291173/20633239*45537549124^(13/17) 3654352961620008 a001 4052739537881/20633239*45537549124^(10/17) 3654352961620008 a001 32951280099/20633239*312119004989^(8/11) 3654352961620008 a001 32951280099/20633239*23725150497407^(5/8) 3654352961620008 a001 32951280099/20633239*73681302247^(10/13) 3654352961620008 a001 86267571272/20633239*817138163596^(2/3) 3654352961620008 a001 4052739537881/20633239*312119004989^(6/11) 3654352961620008 a001 365435296162/20633239*312119004989^(7/11) 3654352961620008 a001 4052739537881/20633239*14662949395604^(10/21) 3654352961620008 a001 10610209857723/20633239*14662949395604^(4/9) 3654352961620008 a001 10610209857723/20633239*505019158607^(1/2) 3654352961620008 a001 365435296162/20633239*505019158607^(5/8) 3654352961620008 a001 7787980473/711491*192900153618^(2/3) 3654352961620008 a001 4052739537881/20633239*192900153618^(5/9) 3654352961620008 a001 956722026041/20633239*192900153618^(11/18) 3654352961620008 a001 53316291173/20633239*14662949395604^(13/21) 3654352961620008 a001 53316291173/20633239*192900153618^(13/18) 3654352961620008 a001 10610209857723/20633239*73681302247^(7/13) 3654352961620008 a001 140728068720/1875749*73681302247^(8/13) 3654352961620008 a001 7787980473/711491*73681302247^(9/13) 3654352961620008 a001 53316291173/20633239*73681302247^(3/4) 3654352961620008 a001 4052739537881/20633239*28143753123^(3/5) 3654352961620008 a001 32951280099/20633239*28143753123^(4/5) 3654352961620008 a001 365435296162/20633239*28143753123^(7/10) 3654352961620008 a001 10610209857723/20633239*10749957122^(7/12) 3654352961620008 a001 4052739537881/20633239*10749957122^(5/8) 3654352961620008 a001 140728068720/1875749*10749957122^(2/3) 3654352961620008 a001 956722026041/20633239*10749957122^(11/16) 3654352961620008 a001 591286729879/20633239*10749957122^(17/24) 3654352961620008 a001 1144206275/1875749*10749957122^(7/8) 3654352961620008 a001 7787980473/711491*10749957122^(3/4) 3654352961620008 a001 86267571272/20633239*10749957122^(19/24) 3654352961620008 a001 32951280099/20633239*10749957122^(5/6) 3654352961620008 a001 53316291173/20633239*10749957122^(13/16) 3654352961620008 a001 2971215073/20633239*45537549124^(15/17) 3654352961620008 a001 2971215073/20633239*312119004989^(9/11) 3654352961620008 a001 2971215073/20633239*14662949395604^(5/7) 3654352961620008 a001 2971215073/20633239*192900153618^(5/6) 3654352961620008 a001 2971215073/20633239*28143753123^(9/10) 3654352961620008 a001 2971215073/20633239*10749957122^(15/16) 3654352961620008 a001 10610209857723/20633239*4106118243^(14/23) 3654352961620008 a001 4052739537881/20633239*4106118243^(15/23) 3654352961620008 a001 140728068720/1875749*4106118243^(16/23) 3654352961620008 a001 591286729879/20633239*4106118243^(17/23) 3654352961620008 a001 7787980473/711491*4106118243^(18/23) 3654352961620008 a001 4807526976/20633239*4106118243^(22/23) 3654352961620008 a001 86267571272/20633239*4106118243^(19/23) 3654352961620008 a001 32951280099/20633239*4106118243^(20/23) 3654352961620008 a001 1144206275/1875749*4106118243^(21/23) 3654352961620008 a001 10610209857723/20633239*1568397607^(7/11) 3654352961620008 a001 4052739537881/20633239*1568397607^(15/22) 3654352961620008 a001 140728068720/1875749*1568397607^(8/11) 3654352961620008 a001 956722026041/20633239*1568397607^(3/4) 3654352961620008 a001 591286729879/20633239*1568397607^(17/22) 3654352961620008 a001 7787980473/711491*1568397607^(9/11) 3654352961620008 a001 86267571272/20633239*1568397607^(19/22) 3654352961620008 a001 32951280099/20633239*1568397607^(10/11) 3654352961620008 a001 1144206275/1875749*1568397607^(21/22) 3654352961620008 a001 433494437/20633239*14662949395604^(7/9) 3654352961620008 a001 433494437/20633239*505019158607^(7/8) 3654352961620008 a001 10610209857723/20633239*599074578^(2/3) 3654352961620008 a001 4052739537881/20633239*599074578^(5/7) 3654352961620008 a001 140728068720/1875749*599074578^(16/21) 3654352961620008 a001 956722026041/20633239*599074578^(11/14) 3654352961620008 a001 591286729879/20633239*599074578^(17/21) 3654352961620008 a001 365435296162/20633239*599074578^(5/6) 3654352961620008 a001 7787980473/711491*599074578^(6/7) 3654352961620008 a001 86267571272/20633239*599074578^(19/21) 3654352961620008 a001 53316291173/20633239*599074578^(13/14) 3654352961620008 a001 32951280099/20633239*599074578^(20/21) 3654352961620008 a001 7531180008061074015/20608792 3654352961620008 a001 165580141/20633239*817138163596^(17/19) 3654352961620008 a001 165580141/20633239*14662949395604^(17/21) 3654352961620008 a001 165580141/20633239*192900153618^(17/18) 3654352961620008 a001 10610209857723/20633239*228826127^(7/10) 3654352961620008 a001 4052739537881/20633239*228826127^(3/4) 3654352961620008 a001 140728068720/1875749*228826127^(4/5) 3654352961620008 a001 591286729879/20633239*228826127^(17/20) 3654352961620008 a001 365435296162/20633239*228826127^(7/8) 3654352961620008 a001 7787980473/711491*228826127^(9/10) 3654352961620008 a001 86267571272/20633239*228826127^(19/20) 3654352961620008 a001 7479302447982620333/20466831 3654352961620008 a001 10610209857723/20633239*87403803^(14/19) 3654352961620008 a001 4052739537881/20633239*87403803^(15/19) 3654352961620008 a001 140728068720/1875749*87403803^(16/19) 3654352961620009 a001 591286729879/20633239*87403803^(17/19) 3654352961620009 a001 7787980473/711491*87403803^(18/19) 3654352961620009 a001 14284196614945342800/39088169 3654352961620009 a001 24157817/20633239*3461452808002^(11/12) 3654352961620010 a001 3278735159921/3940598*7881196^(9/11) 3654352961620011 a001 10610209857723/20633239*33385282^(7/9) 3654352961620011 a001 4052739537881/20633239*33385282^(5/6) 3654352961620011 a001 140728068720/1875749*33385282^(8/9) 3654352961620011 a001 956722026041/20633239*33385282^(11/12) 3654352961620011 a001 591286729879/20633239*33385282^(17/18) 3654352961620011 a001 5456077604922926735/14930352 3654352961620016 a001 3278735159921/16692641*12752043^(15/17) 3654352961620017 a001 9227465/20633239*14662949395604^(19/21) 3654352961620017 a001 2504730781961/33385282*12752043^(16/17) 3654352961620019 a001 2084036199823430640/5702887 3654352961620020 a001 6557470319842/87403803*12752043^(16/17) 3654352961620021 a001 10610209857723/54018521*12752043^(15/17) 3654352961620021 a001 10610209857723/141422324*12752043^(16/17) 3654352961620021 a001 2084036199823432237/5702887 3654352961620022 a001 1304969442594510/3571 3654352961620022 a001 4052739537881/54018521*12752043^(16/17) 3654352961620022 a001 2084036199823432504/5702887 3654352961620022 a001 2084036199823432509/5702887 3654352961620022 a001 2084036199823432510/5702887 3654352961620022 a001 2084036199823432512/5702887 3654352961620022 a001 2084036199823432525/5702887 3654352961620022 a001 2084036199823432614/5702887 3654352961620023 a001 2084036199823433224/5702887 3654352961620027 a001 10610209857723/20633239*12752043^(14/17) 3654352961620028 a001 4052739537881/20633239*12752043^(15/17) 3654352961620029 a001 140728068720/1875749*12752043^(16/17) 3654352961620031 a001 2084036199823437405/5702887 3654352961620036 a001 5702887/7881196*14662949395604^(8/9) 3654352961620050 a001 3372041405099535698/9227465 3654352961620051 a001 387002188980/1970299*20633239^(6/7) 3654352961620051 a001 4052739537881/7881196*20633239^(4/5) 3654352961620055 a001 1762289/16692641*14662949395604^(20/21) 3654352961620055 a001 3732588/1970299*14662949395604^(6/7) 3654352961620057 a001 8828119010022537458/24157817 3654352961620058 a001 39088169/7881196*23725150497407^(13/16) 3654352961620058 a001 39088169/7881196*505019158607^(13/14) 3654352961620058 a001 11556157812484038338/31622993 3654352961620058 a001 21566892818/1970299*141422324^(12/13) 3654352961620058 a001 182717648081/3940598*141422324^(11/13) 3654352961620058 a001 387002188980/1970299*141422324^(10/13) 3654352961620058 a001 3278735159921/3940598*141422324^(9/13) 3654352961620058 a001 10610209857723/7881196*141422324^(2/3) 3654352961620058 a001 102334155/7881196*312119004989^(10/11) 3654352961620058 a001 102334155/7881196*3461452808002^(5/6) 3654352961620058 a001 66978574/1970299*45537549124^(16/17) 3654352961620058 a001 66978574/1970299*14662949395604^(16/21) 3654352961620058 a001 66978574/1970299*192900153618^(8/9) 3654352961620058 a001 66978574/1970299*73681302247^(12/13) 3654352961620058 a001 3524667/39604*10749957122^(23/24) 3654352961620058 a001 1201881744/1970299*2537720636^(14/15) 3654352961620058 a001 12586269025/7881196*2537720636^(8/9) 3654352961620058 a001 10182505537/3940598*2537720636^(13/15) 3654352961620058 a001 21566892818/1970299*2537720636^(4/5) 3654352961620058 a001 139583862445/7881196*2537720636^(7/9) 3654352961620058 a001 182717648081/3940598*2537720636^(11/15) 3654352961620058 a001 387002188980/1970299*2537720636^(2/3) 3654352961620058 a001 3278735159921/3940598*2537720636^(3/5) 3654352961620058 a001 1836311903/7881196*312119004989^(4/5) 3654352961620058 a001 1836311903/7881196*23725150497407^(11/16) 3654352961620058 a001 1836311903/7881196*73681302247^(11/13) 3654352961620058 a001 1836311903/7881196*10749957122^(11/12) 3654352961620058 a001 1201881744/1970299*17393796001^(6/7) 3654352961620058 a001 1201881744/1970299*45537549124^(14/17) 3654352961620058 a001 1201881744/1970299*817138163596^(14/19) 3654352961620058 a001 1201881744/1970299*14662949395604^(2/3) 3654352961620058 a001 1201881744/1970299*505019158607^(3/4) 3654352961620058 a001 1201881744/1970299*192900153618^(7/9) 3654352961620058 a001 1836311903/7881196*4106118243^(22/23) 3654352961620058 a001 139583862445/7881196*17393796001^(5/7) 3654352961620058 a001 4052739537881/7881196*17393796001^(4/7) 3654352961620058 a001 12586269025/7881196*312119004989^(8/11) 3654352961620058 a001 12586269025/7881196*23725150497407^(5/8) 3654352961620058 a001 12586269025/7881196*73681302247^(10/13) 3654352961620058 a001 1201881744/1970299*10749957122^(7/8) 3654352961620058 a001 21566892818/1970299*45537549124^(12/17) 3654352961620058 a001 225851433717/7881196*45537549124^(2/3) 3654352961620058 a001 182717648081/3940598*45537549124^(11/17) 3654352961620058 a001 387002188980/1970299*45537549124^(10/17) 3654352961620058 a001 3278735159921/3940598*45537549124^(9/17) 3654352961620058 a001 12586269025/7881196*28143753123^(4/5) 3654352961620058 a001 32951280099/7881196*817138163596^(2/3) 3654352961620058 a001 21566892818/1970299*14662949395604^(4/7) 3654352961620058 a001 21566892818/1970299*505019158607^(9/14) 3654352961620058 a001 21566892818/1970299*192900153618^(2/3) 3654352961620058 a001 387002188980/1970299*312119004989^(6/11) 3654352961620058 a001 182717648081/3940598*312119004989^(3/5) 3654352961620058 a001 3278735159921/3940598*817138163596^(9/19) 3654352961620058 a001 139583862445/7881196*312119004989^(7/11) 3654352961620058 a001 139583862445/7881196*14662949395604^(5/9) 3654352961620058 a001 139583862445/7881196*505019158607^(5/8) 3654352961620058 a001 3278735159921/3940598*192900153618^(1/2) 3654352961620058 a001 182717648081/3940598*192900153618^(11/18) 3654352961620058 a001 10610209857723/7881196*73681302247^(1/2) 3654352961620058 a001 21566892818/1970299*73681302247^(9/13) 3654352961620058 a001 10182505537/3940598*45537549124^(13/17) 3654352961620058 a001 10182505537/3940598*14662949395604^(13/21) 3654352961620058 a001 10182505537/3940598*192900153618^(13/18) 3654352961620058 a001 10182505537/3940598*73681302247^(3/4) 3654352961620058 a001 387002188980/1970299*28143753123^(3/5) 3654352961620058 a001 139583862445/7881196*28143753123^(7/10) 3654352961620058 a001 10610209857723/7881196*10749957122^(13/24) 3654352961620058 a001 3278735159921/3940598*10749957122^(9/16) 3654352961620058 a001 4052739537881/7881196*10749957122^(7/12) 3654352961620058 a001 387002188980/1970299*10749957122^(5/8) 3654352961620058 a001 591286729879/7881196*10749957122^(2/3) 3654352961620058 a001 12586269025/7881196*10749957122^(5/6) 3654352961620058 a001 182717648081/3940598*10749957122^(11/16) 3654352961620058 a001 225851433717/7881196*10749957122^(17/24) 3654352961620058 a001 21566892818/1970299*10749957122^(3/4) 3654352961620058 a001 32951280099/7881196*10749957122^(19/24) 3654352961620058 a001 10182505537/3940598*10749957122^(13/16) 3654352961620058 a001 10610209857723/7881196*4106118243^(13/23) 3654352961620058 a001 4052739537881/7881196*4106118243^(14/23) 3654352961620058 a001 387002188980/1970299*4106118243^(15/23) 3654352961620058 a001 591286729879/7881196*4106118243^(16/23) 3654352961620058 a001 225851433717/7881196*4106118243^(17/23) 3654352961620058 a001 1201881744/1970299*4106118243^(21/23) 3654352961620058 a001 21566892818/1970299*4106118243^(18/23) 3654352961620058 a001 32951280099/7881196*4106118243^(19/23) 3654352961620058 a001 12586269025/7881196*4106118243^(20/23) 3654352961620058 a001 567451585/3940598*45537549124^(15/17) 3654352961620058 a001 567451585/3940598*312119004989^(9/11) 3654352961620058 a001 567451585/3940598*14662949395604^(5/7) 3654352961620058 a001 567451585/3940598*192900153618^(5/6) 3654352961620058 a001 567451585/3940598*28143753123^(9/10) 3654352961620058 a001 567451585/3940598*10749957122^(15/16) 3654352961620058 a001 10610209857723/7881196*1568397607^(13/22) 3654352961620058 a001 4052739537881/7881196*1568397607^(7/11) 3654352961620058 a001 387002188980/1970299*1568397607^(15/22) 3654352961620058 a001 591286729879/7881196*1568397607^(8/11) 3654352961620058 a001 182717648081/3940598*1568397607^(3/4) 3654352961620058 a001 225851433717/7881196*1568397607^(17/22) 3654352961620058 a001 21566892818/1970299*1568397607^(9/11) 3654352961620058 a001 32951280099/7881196*1568397607^(19/22) 3654352961620058 a001 12586269025/7881196*1568397607^(10/11) 3654352961620058 a001 1201881744/1970299*1568397607^(21/22) 3654352961620058 a001 10610209857723/7881196*599074578^(13/21) 3654352961620058 a001 3278735159921/3940598*599074578^(9/14) 3654352961620058 a001 4052739537881/7881196*599074578^(2/3) 3654352961620058 a001 387002188980/1970299*599074578^(5/7) 3654352961620058 a001 591286729879/7881196*599074578^(16/21) 3654352961620058 a001 182717648081/3940598*599074578^(11/14) 3654352961620058 a001 225851433717/7881196*599074578^(17/21) 3654352961620058 a001 139583862445/7881196*599074578^(5/6) 3654352961620058 a001 21566892818/1970299*599074578^(6/7) 3654352961620058 a001 32951280099/7881196*599074578^(19/21) 3654352961620058 a001 10182505537/3940598*599074578^(13/14) 3654352961620058 a001 12586269025/7881196*599074578^(20/21) 3654352961620058 a001 165580141/7881196*14662949395604^(7/9) 3654352961620058 a001 165580141/7881196*505019158607^(7/8) 3654352961620058 a001 10610209857723/7881196*228826127^(13/20) 3654352961620058 a001 4052739537881/7881196*228826127^(7/10) 3654352961620058 a001 387002188980/1970299*228826127^(3/4) 3654352961620058 a001 591286729879/7881196*228826127^(4/5) 3654352961620058 a001 225851433717/7881196*228826127^(17/20) 3654352961620058 a001 139583862445/7881196*228826127^(7/8) 3654352961620058 a001 21566892818/1970299*228826127^(9/10) 3654352961620058 a001 32951280099/7881196*228826127^(19/20) 3654352961620058 a001 1780786297138743614/4873055 3654352961620059 a001 31622993/3940598*817138163596^(17/19) 3654352961620059 a001 31622993/3940598*14662949395604^(17/21) 3654352961620059 a001 31622993/3940598*192900153618^(17/18) 3654352961620059 a001 10610209857723/7881196*87403803^(13/19) 3654352961620059 a001 4052739537881/7881196*87403803^(14/19) 3654352961620059 a001 387002188980/1970299*87403803^(15/19) 3654352961620059 a001 591286729879/7881196*87403803^(16/19) 3654352961620059 a001 225851433717/7881196*87403803^(17/19) 3654352961620059 a001 21566892818/1970299*87403803^(18/19) 3654352961620059 a001 14284196614945539218/39088169 3654352961620061 a001 10610209857723/7881196*33385282^(13/18) 3654352961620061 a001 3278735159921/3940598*33385282^(3/4) 3654352961620061 a001 4052739537881/7881196*33385282^(7/9) 3654352961620061 a001 387002188980/1970299*33385282^(5/6) 3654352961620061 a001 591286729879/7881196*33385282^(8/9) 3654352961620061 a001 182717648081/3940598*33385282^(11/12) 3654352961620061 a001 225851433717/7881196*33385282^(17/18) 3654352961620062 a001 37889427811965290/103683 3654352961620067 a001 9227465/7881196*3461452808002^(11/12) 3654352961620076 a001 10610209857723/7881196*12752043^(13/17) 3654352961620077 a001 4052739537881/7881196*12752043^(14/17) 3654352961620078 a001 387002188980/1970299*12752043^(15/17) 3654352961620079 a001 591286729879/7881196*12752043^(16/17) 3654352961620081 a001 2084036199823466062/5702887 3654352961620112 a001 6557470319842/12752043*4870847^(7/8) 3654352961620117 a001 1762289/3940598*14662949395604^(19/21) 3654352961620121 a001 2504730781961/12752043*4870847^(15/16) 3654352961620131 a001 796030994547378715/2178309 3654352961620141 a001 3278735159921/16692641*4870847^(15/16) 3654352961620143 a001 10610209857723/20633239*4870847^(7/8) 3654352961620145 a001 10610209857723/54018521*4870847^(15/16) 3654352961620150 a001 265343664849127632/726103 3654352961620152 a001 4052739537881/20633239*4870847^(15/16) 3654352961620153 a001 796030994547383506/2178309 3654352961620153 a001 37906237835589695/103729 3654352961620154 a001 796030994547383608/2178309 3654352961620154 a001 265343664849127870/726103 3654352961620154 a001 796030994547383611/2178309 3654352961620154 a001 806515698629568/2207 3654352961620154 a001 796030994547383650/2178309 3654352961620155 a001 265343664849127961/726103 3654352961620162 a001 796030994547385480/2178309 3654352961620183 a001 10610209857723/7881196*4870847^(13/16) 3654352961620193 a001 4052739537881/7881196*4870847^(7/8) 3654352961620203 a001 387002188980/1970299*4870847^(15/16) 3654352961620212 a001 37906237835590306/103729 3654352961620249 a001 2178309/3010349*14662949395604^(8/9) 3654352961620344 a001 1288005205276191029/3524578 3654352961620349 a001 591286729879/3010349*7881196^(10/11) 3654352961620355 a001 2504730781961/3010349*7881196^(9/11) 3654352961620360 a001 10610209857723/3010349*7881196^(8/11) 3654352961620380 a001 1346269/12752043*14662949395604^(20/21) 3654352961620380 a001 5702887/3010349*14662949395604^(6/7) 3654352961620394 a001 3372041405099853509/9227465 3654352961620395 a001 591286729879/3010349*20633239^(6/7) 3654352961620396 a001 1548008755920/3010349*20633239^(4/5) 3654352961620397 a001 6557470319842/3010349*20633239^(5/7) 3654352961620399 a001 14930352/3010349*23725150497407^(13/16) 3654352961620399 a001 14930352/3010349*505019158607^(13/14) 3654352961620401 a001 8828119010023369498/24157817 3654352961620402 a001 39088169/3010349*312119004989^(10/11) 3654352961620402 a001 39088169/3010349*3461452808002^(5/6) 3654352961620403 a001 32951280099/3010349*141422324^(12/13) 3654352961620403 a001 139583862445/3010349*141422324^(11/13) 3654352961620403 a001 591286729879/3010349*141422324^(10/13) 3654352961620403 a001 2504730781961/3010349*141422324^(9/13) 3654352961620403 a001 1346269*141422324^(2/3) 3654352961620403 a001 10610209857723/3010349*141422324^(8/13) 3654352961620403 a001 102334155/3010349*45537549124^(16/17) 3654352961620403 a001 102334155/3010349*14662949395604^(16/21) 3654352961620403 a001 102334155/3010349*192900153618^(8/9) 3654352961620403 a001 102334155/3010349*73681302247^(12/13) 3654352961620403 a001 267914296/3010349*10749957122^(23/24) 3654352961620403 a001 701408733/3010349*312119004989^(4/5) 3654352961620403 a001 701408733/3010349*23725150497407^(11/16) 3654352961620403 a001 701408733/3010349*73681302247^(11/13) 3654352961620403 a001 701408733/3010349*10749957122^(11/12) 3654352961620403 a001 701408733/3010349*4106118243^(22/23) 3654352961620403 a001 1836311903/3010349*2537720636^(14/15) 3654352961620403 a001 4807526976/3010349*2537720636^(8/9) 3654352961620403 a001 7778742049/3010349*2537720636^(13/15) 3654352961620403 a001 32951280099/3010349*2537720636^(4/5) 3654352961620403 a001 53316291173/3010349*2537720636^(7/9) 3654352961620403 a001 139583862445/3010349*2537720636^(11/15) 3654352961620403 a001 591286729879/3010349*2537720636^(2/3) 3654352961620403 a001 2504730781961/3010349*2537720636^(3/5) 3654352961620403 a001 6557470319842/3010349*2537720636^(5/9) 3654352961620403 a001 10610209857723/3010349*2537720636^(8/15) 3654352961620403 a001 1836311903/3010349*17393796001^(6/7) 3654352961620403 a001 1836311903/3010349*45537549124^(14/17) 3654352961620403 a001 1836311903/3010349*14662949395604^(2/3) 3654352961620403 a001 1836311903/3010349*505019158607^(3/4) 3654352961620403 a001 1836311903/3010349*192900153618^(7/9) 3654352961620403 a001 1836311903/3010349*10749957122^(7/8) 3654352961620403 a001 4807526976/3010349*312119004989^(8/11) 3654352961620403 a001 4807526976/3010349*23725150497407^(5/8) 3654352961620403 a001 4807526976/3010349*73681302247^(10/13) 3654352961620403 a001 4807526976/3010349*28143753123^(4/5) 3654352961620403 a001 1836311903/3010349*4106118243^(21/23) 3654352961620403 a001 53316291173/3010349*17393796001^(5/7) 3654352961620403 a001 1548008755920/3010349*17393796001^(4/7) 3654352961620403 a001 4807526976/3010349*10749957122^(5/6) 3654352961620403 a001 12586269025/3010349*817138163596^(2/3) 3654352961620403 a001 32951280099/3010349*45537549124^(12/17) 3654352961620403 a001 86267571272/3010349*45537549124^(2/3) 3654352961620403 a001 139583862445/3010349*45537549124^(11/17) 3654352961620403 a001 591286729879/3010349*45537549124^(10/17) 3654352961620403 a001 2504730781961/3010349*45537549124^(9/17) 3654352961620403 a001 10610209857723/3010349*45537549124^(8/17) 3654352961620403 a001 32951280099/3010349*14662949395604^(4/7) 3654352961620403 a001 32951280099/3010349*505019158607^(9/14) 3654352961620403 a001 32951280099/3010349*192900153618^(2/3) 3654352961620403 a001 32951280099/3010349*73681302247^(9/13) 3654352961620403 a001 591286729879/3010349*312119004989^(6/11) 3654352961620403 a001 6557470319842/3010349*312119004989^(5/11) 3654352961620403 a001 591286729879/3010349*14662949395604^(10/21) 3654352961620403 a001 1548008755920/3010349*14662949395604^(4/9) 3654352961620403 a001 10610209857723/3010349*14662949395604^(8/21) 3654352961620403 a001 139583862445/3010349*312119004989^(3/5) 3654352961620403 a001 139583862445/3010349*14662949395604^(11/21) 3654352961620403 a001 10610209857723/3010349*192900153618^(4/9) 3654352961620403 a001 2504730781961/3010349*192900153618^(1/2) 3654352961620403 a001 139583862445/3010349*192900153618^(11/18) 3654352961620403 a001 53316291173/3010349*312119004989^(7/11) 3654352961620403 a001 53316291173/3010349*14662949395604^(5/9) 3654352961620403 a001 53316291173/3010349*505019158607^(5/8) 3654352961620403 a001 10610209857723/3010349*73681302247^(6/13) 3654352961620403 a001 1346269*73681302247^(1/2) 3654352961620403 a001 1548008755920/3010349*73681302247^(7/13) 3654352961620403 a001 225851433717/3010349*73681302247^(8/13) 3654352961620403 a001 6557470319842/3010349*28143753123^(1/2) 3654352961620403 a001 591286729879/3010349*28143753123^(3/5) 3654352961620403 a001 53316291173/3010349*28143753123^(7/10) 3654352961620403 a001 7778742049/3010349*45537549124^(13/17) 3654352961620403 a001 7778742049/3010349*14662949395604^(13/21) 3654352961620403 a001 7778742049/3010349*192900153618^(13/18) 3654352961620403 a001 7778742049/3010349*73681302247^(3/4) 3654352961620403 a001 10610209857723/3010349*10749957122^(1/2) 3654352961620403 a001 1346269*10749957122^(13/24) 3654352961620403 a001 2504730781961/3010349*10749957122^(9/16) 3654352961620403 a001 1548008755920/3010349*10749957122^(7/12) 3654352961620403 a001 591286729879/3010349*10749957122^(5/8) 3654352961620403 a001 12586269025/3010349*10749957122^(19/24) 3654352961620403 a001 225851433717/3010349*10749957122^(2/3) 3654352961620403 a001 139583862445/3010349*10749957122^(11/16) 3654352961620403 a001 86267571272/3010349*10749957122^(17/24) 3654352961620403 a001 32951280099/3010349*10749957122^(3/4) 3654352961620403 a001 7778742049/3010349*10749957122^(13/16) 3654352961620403 a001 10610209857723/3010349*4106118243^(12/23) 3654352961620403 a001 1346269*4106118243^(13/23) 3654352961620403 a001 1548008755920/3010349*4106118243^(14/23) 3654352961620403 a001 591286729879/3010349*4106118243^(15/23) 3654352961620403 a001 225851433717/3010349*4106118243^(16/23) 3654352961620403 a001 4807526976/3010349*4106118243^(20/23) 3654352961620403 a001 86267571272/3010349*4106118243^(17/23) 3654352961620403 a001 32951280099/3010349*4106118243^(18/23) 3654352961620403 a001 12586269025/3010349*4106118243^(19/23) 3654352961620403 a001 10610209857723/3010349*1568397607^(6/11) 3654352961620403 a001 1346269*1568397607^(13/22) 3654352961620403 a001 1548008755920/3010349*1568397607^(7/11) 3654352961620403 a001 591286729879/3010349*1568397607^(15/22) 3654352961620403 a001 225851433717/3010349*1568397607^(8/11) 3654352961620403 a001 139583862445/3010349*1568397607^(3/4) 3654352961620403 a001 86267571272/3010349*1568397607^(17/22) 3654352961620403 a001 1836311903/3010349*1568397607^(21/22) 3654352961620403 a001 32951280099/3010349*1568397607^(9/11) 3654352961620403 a001 12586269025/3010349*1568397607^(19/22) 3654352961620403 a001 4807526976/3010349*1568397607^(10/11) 3654352961620403 a001 433494437/3010349*45537549124^(15/17) 3654352961620403 a001 433494437/3010349*312119004989^(9/11) 3654352961620403 a001 433494437/3010349*14662949395604^(5/7) 3654352961620403 a001 433494437/3010349*192900153618^(5/6) 3654352961620403 a001 433494437/3010349*28143753123^(9/10) 3654352961620403 a001 433494437/3010349*10749957122^(15/16) 3654352961620403 a001 10610209857723/3010349*599074578^(4/7) 3654352961620403 a001 1346269*599074578^(13/21) 3654352961620403 a001 2504730781961/3010349*599074578^(9/14) 3654352961620403 a001 1548008755920/3010349*599074578^(2/3) 3654352961620403 a001 591286729879/3010349*599074578^(5/7) 3654352961620403 a001 225851433717/3010349*599074578^(16/21) 3654352961620403 a001 139583862445/3010349*599074578^(11/14) 3654352961620403 a001 86267571272/3010349*599074578^(17/21) 3654352961620403 a001 53316291173/3010349*599074578^(5/6) 3654352961620403 a001 32951280099/3010349*599074578^(6/7) 3654352961620403 a001 12586269025/3010349*599074578^(19/21) 3654352961620403 a001 7778742049/3010349*599074578^(13/14) 3654352961620403 a001 4807526976/3010349*599074578^(20/21) 3654352961620403 a001 10610209857723/3010349*228826127^(3/5) 3654352961620403 a001 6557470319842/3010349*228826127^(5/8) 3654352961620403 a001 1346269*228826127^(13/20) 3654352961620403 a001 1548008755920/3010349*228826127^(7/10) 3654352961620403 a001 591286729879/3010349*228826127^(3/4) 3654352961620403 a001 225851433717/3010349*228826127^(4/5) 3654352961620403 a001 86267571272/3010349*228826127^(17/20) 3654352961620403 a001 53316291173/3010349*228826127^(7/8) 3654352961620403 a001 32951280099/3010349*228826127^(9/10) 3654352961620403 a001 12586269025/3010349*228826127^(19/20) 3654352961620403 a001 63245986/3010349*14662949395604^(7/9) 3654352961620403 a001 63245986/3010349*505019158607^(7/8) 3654352961620403 a001 10610209857723/3010349*87403803^(12/19) 3654352961620403 a001 1346269*87403803^(13/19) 3654352961620403 a001 1548008755920/3010349*87403803^(14/19) 3654352961620403 a001 591286729879/3010349*87403803^(15/19) 3654352961620403 a001 225851433717/3010349*87403803^(16/19) 3654352961620403 a001 86267571272/3010349*87403803^(17/19) 3654352961620403 a001 32951280099/3010349*87403803^(18/19) 3654352961620403 a001 14284196614946885487/39088169 3654352961620404 a001 24157817/3010349*817138163596^(17/19) 3654352961620404 a001 24157817/3010349*14662949395604^(17/21) 3654352961620404 a001 24157817/3010349*192900153618^(17/18) 3654352961620405 a001 10610209857723/3010349*33385282^(2/3) 3654352961620405 a001 1346269*33385282^(13/18) 3654352961620405 a001 2504730781961/3010349*33385282^(3/4) 3654352961620405 a001 1548008755920/3010349*33385282^(7/9) 3654352961620405 a001 591286729879/3010349*33385282^(5/6) 3654352961620406 a001 225851433717/3010349*33385282^(8/9) 3654352961620406 a001 139583862445/3010349*33385282^(11/12) 3654352961620406 a001 86267571272/3010349*33385282^(17/18) 3654352961620406 a001 5456077604923515989/14930352 3654352961620419 a001 10610209857723/3010349*12752043^(12/17) 3654352961620420 a001 1346269*12752043^(13/17) 3654352961620421 a001 1548008755920/3010349*12752043^(14/17) 3654352961620423 a001 591286729879/3010349*12752043^(15/17) 3654352961620424 a001 225851433717/3010349*12752043^(16/17) 3654352961620425 a001 2084036199823662480/5702887 3654352961620462 a001 3524578/3010349*3461452808002^(11/12) 3654352961620518 a001 10610209857723/3010349*4870847^(3/4) 3654352961620528 a001 1346269*4870847^(13/16) 3654352961620538 a001 1548008755920/3010349*4870847^(7/8) 3654352961620547 a001 591286729879/3010349*4870847^(15/16) 3654352961620557 a001 796030994547471451/2178309 3654352961620725 a001 2178309*1860498^(5/6) 3654352961620760 a001 6557470319842/4870847*1860498^(13/15) 3654352961620796 a001 4052739537881/4870847*1860498^(9/10) 3654352961620806 a001 1346269/3010349*14662949395604^(19/21) 3654352961620831 a001 2504730781961/4870847*1860498^(14/15) 3654352961620901 a001 60811356763741101/166408 3654352961620927 a001 3536736619241/4250681*1860498^(9/10) 3654352961620962 a001 6557470319842/12752043*1860498^(14/15) 3654352961620973 a001 10610209857723/7881196*1860498^(13/15) 3654352961620993 a001 10610209857723/20633239*1860498^(14/15) 3654352961621008 a001 3278735159921/3940598*1860498^(9/10) 3654352961621033 a001 304056783818716451/832040 3654352961621044 a001 4052739537881/7881196*1860498^(14/15) 3654352961621052 a001 38007097977339756/104005 3654352961621055 a001 304056783818718281/832040 3654352961621055 a001 5528305160340333/15128 3654352961621055 a001 124613435991278/341 3654352961621055 a001 304056783818718321/832040 3654352961621055 a001 304056783818718323/832040 3654352961621055 a001 38007097977339792/104005 3654352961621056 a001 5528305160340335/15128 3654352961621064 a001 60811356763743807/166408 3654352961621114 a001 38007097977340402/104005 3654352961621247 a001 10610209857723/3010349*1860498^(4/5) 3654352961621283 a001 6557470319842/3010349*1860498^(5/6) 3654352961621318 a001 1346269*1860498^(13/15) 3654352961621353 a001 2504730781961/3010349*1860498^(9/10) 3654352961621388 a001 1548008755920/3010349*1860498^(14/15) 3654352961621458 a001 304056783818751873/832040 3654352961621708 a001 832040/1149851*14662949395604^(8/9) 3654352961622104 a001 387002188980/109801*439204^(8/9) 3654352961622360 a001 491974210729037389/1346269 3654352961622609 a001 514229/4870847*14662949395604^(20/21) 3654352961622609 a001 2178309/1149851*14662949395604^(6/7) 3654352961622705 a001 1288005205277023069/3524578 3654352961622710 a001 225851433717/1149851*7881196^(10/11) 3654352961622715 a001 956722026041/1149851*7881196^(9/11) 3654352961622721 a001 4052739537881/1149851*7881196^(8/11) 3654352961622724 a001 10610209857723/1149851*7881196^(2/3) 3654352961622741 a001 5702887/1149851*23725150497407^(13/16) 3654352961622741 a001 5702887/1149851*505019158607^(13/14) 3654352961622755 a001 259387800392463986/709805 3654352961622756 a001 225851433717/1149851*20633239^(6/7) 3654352961622757 a001 514229*20633239^(4/5) 3654352961622757 a001 2504730781961/1149851*20633239^(5/7) 3654352961622760 a001 14930352/1149851*312119004989^(10/11) 3654352961622760 a001 14930352/1149851*3461452808002^(5/6) 3654352961622763 a001 39088169/1149851*45537549124^(16/17) 3654352961622763 a001 39088169/1149851*14662949395604^(16/21) 3654352961622763 a001 39088169/1149851*192900153618^(8/9) 3654352961622763 a001 39088169/1149851*73681302247^(12/13) 3654352961622763 a001 12586269025/1149851*141422324^(12/13) 3654352961622763 a001 53316291173/1149851*141422324^(11/13) 3654352961622763 a001 225851433717/1149851*141422324^(10/13) 3654352961622763 a001 956722026041/1149851*141422324^(9/13) 3654352961622763 a001 1548008755920/1149851*141422324^(2/3) 3654352961622763 a001 4052739537881/1149851*141422324^(8/13) 3654352961622763 a001 102334155/1149851*10749957122^(23/24) 3654352961622763 a001 267914296/1149851*312119004989^(4/5) 3654352961622763 a001 267914296/1149851*23725150497407^(11/16) 3654352961622763 a001 267914296/1149851*73681302247^(11/13) 3654352961622763 a001 267914296/1149851*10749957122^(11/12) 3654352961622763 a001 267914296/1149851*4106118243^(22/23) 3654352961622763 a001 701408733/1149851*2537720636^(14/15) 3654352961622763 a001 701408733/1149851*17393796001^(6/7) 3654352961622763 a001 701408733/1149851*45537549124^(14/17) 3654352961622763 a001 701408733/1149851*817138163596^(14/19) 3654352961622763 a001 701408733/1149851*14662949395604^(2/3) 3654352961622763 a001 701408733/1149851*505019158607^(3/4) 3654352961622763 a001 701408733/1149851*192900153618^(7/9) 3654352961622763 a001 701408733/1149851*10749957122^(7/8) 3654352961622763 a001 701408733/1149851*4106118243^(21/23) 3654352961622763 a001 1836311903/1149851*2537720636^(8/9) 3654352961622763 a001 12586269025/1149851*2537720636^(4/5) 3654352961622763 a001 20365011074/1149851*2537720636^(7/9) 3654352961622763 a001 53316291173/1149851*2537720636^(11/15) 3654352961622763 a001 2971215073/1149851*2537720636^(13/15) 3654352961622763 a001 225851433717/1149851*2537720636^(2/3) 3654352961622763 a001 956722026041/1149851*2537720636^(3/5) 3654352961622763 a001 2504730781961/1149851*2537720636^(5/9) 3654352961622763 a001 4052739537881/1149851*2537720636^(8/15) 3654352961622763 a001 1836311903/1149851*312119004989^(8/11) 3654352961622763 a001 1836311903/1149851*23725150497407^(5/8) 3654352961622763 a001 1836311903/1149851*73681302247^(10/13) 3654352961622763 a001 1836311903/1149851*28143753123^(4/5) 3654352961622763 a001 1836311903/1149851*10749957122^(5/6) 3654352961622763 a001 701408733/1149851*1568397607^(21/22) 3654352961622763 a001 4807526976/1149851*817138163596^(2/3) 3654352961622763 a001 1836311903/1149851*4106118243^(20/23) 3654352961622763 a001 514229*17393796001^(4/7) 3654352961622763 a001 20365011074/1149851*17393796001^(5/7) 3654352961622763 a001 4807526976/1149851*10749957122^(19/24) 3654352961622763 a001 12586269025/1149851*45537549124^(12/17) 3654352961622763 a001 12586269025/1149851*14662949395604^(4/7) 3654352961622763 a001 12586269025/1149851*505019158607^(9/14) 3654352961622763 a001 12586269025/1149851*192900153618^(2/3) 3654352961622763 a001 12586269025/1149851*73681302247^(9/13) 3654352961622763 a001 32951280099/1149851*45537549124^(2/3) 3654352961622763 a001 225851433717/1149851*45537549124^(10/17) 3654352961622763 a001 956722026041/1149851*45537549124^(9/17) 3654352961622763 a001 53316291173/1149851*45537549124^(11/17) 3654352961622763 a001 4052739537881/1149851*45537549124^(8/17) 3654352961622763 a001 86267571272/1149851*23725150497407^(1/2) 3654352961622763 a001 86267571272/1149851*505019158607^(4/7) 3654352961622763 a001 225851433717/1149851*312119004989^(6/11) 3654352961622763 a001 2504730781961/1149851*312119004989^(5/11) 3654352961622763 a001 10610209857723/1149851*312119004989^(2/5) 3654352961622763 a001 225851433717/1149851*14662949395604^(10/21) 3654352961622763 a001 514229*14662949395604^(4/9) 3654352961622763 a001 365435296162/1149851*1322157322203^(1/2) 3654352961622763 a001 139583862445/1149851*9062201101803^(1/2) 3654352961622763 a001 225851433717/1149851*192900153618^(5/9) 3654352961622763 a001 4052739537881/1149851*192900153618^(4/9) 3654352961622763 a001 53316291173/1149851*312119004989^(3/5) 3654352961622763 a001 53316291173/1149851*817138163596^(11/19) 3654352961622763 a001 53316291173/1149851*14662949395604^(11/21) 3654352961622763 a001 4052739537881/1149851*73681302247^(6/13) 3654352961622763 a001 53316291173/1149851*192900153618^(11/18) 3654352961622763 a001 1548008755920/1149851*73681302247^(1/2) 3654352961622763 a001 514229*73681302247^(7/13) 3654352961622763 a001 20365011074/1149851*312119004989^(7/11) 3654352961622763 a001 20365011074/1149851*14662949395604^(5/9) 3654352961622763 a001 20365011074/1149851*505019158607^(5/8) 3654352961622763 a001 2504730781961/1149851*28143753123^(1/2) 3654352961622763 a001 225851433717/1149851*28143753123^(3/5) 3654352961622763 a001 20365011074/1149851*28143753123^(7/10) 3654352961622763 a001 10610209857723/1149851*10749957122^(11/24) 3654352961622763 a001 4052739537881/1149851*10749957122^(1/2) 3654352961622763 a001 1548008755920/1149851*10749957122^(13/24) 3654352961622763 a001 956722026041/1149851*10749957122^(9/16) 3654352961622763 a001 514229*10749957122^(7/12) 3654352961622763 a001 12586269025/1149851*10749957122^(3/4) 3654352961622763 a001 225851433717/1149851*10749957122^(5/8) 3654352961622763 a001 86267571272/1149851*10749957122^(2/3) 3654352961622763 a001 32951280099/1149851*10749957122^(17/24) 3654352961622763 a001 53316291173/1149851*10749957122^(11/16) 3654352961622763 a001 2971215073/1149851*45537549124^(13/17) 3654352961622763 a001 2971215073/1149851*14662949395604^(13/21) 3654352961622763 a001 2971215073/1149851*192900153618^(13/18) 3654352961622763 a001 2971215073/1149851*73681302247^(3/4) 3654352961622763 a001 10610209857723/1149851*4106118243^(11/23) 3654352961622763 a001 6557470319842/1149851*4106118243^(1/2) 3654352961622763 a001 2971215073/1149851*10749957122^(13/16) 3654352961622763 a001 4052739537881/1149851*4106118243^(12/23) 3654352961622763 a001 1548008755920/1149851*4106118243^(13/23) 3654352961622763 a001 514229*4106118243^(14/23) 3654352961622763 a001 225851433717/1149851*4106118243^(15/23) 3654352961622763 a001 4807526976/1149851*4106118243^(19/23) 3654352961622763 a001 86267571272/1149851*4106118243^(16/23) 3654352961622763 a001 32951280099/1149851*4106118243^(17/23) 3654352961622763 a001 12586269025/1149851*4106118243^(18/23) 3654352961622763 a001 10610209857723/1149851*1568397607^(1/2) 3654352961622763 a001 4052739537881/1149851*1568397607^(6/11) 3654352961622763 a001 1548008755920/1149851*1568397607^(13/22) 3654352961622763 a001 514229*1568397607^(7/11) 3654352961622763 a001 225851433717/1149851*1568397607^(15/22) 3654352961622763 a001 86267571272/1149851*1568397607^(8/11) 3654352961622763 a001 53316291173/1149851*1568397607^(3/4) 3654352961622763 a001 1836311903/1149851*1568397607^(10/11) 3654352961622763 a001 32951280099/1149851*1568397607^(17/22) 3654352961622763 a001 12586269025/1149851*1568397607^(9/11) 3654352961622763 a001 4807526976/1149851*1568397607^(19/22) 3654352961622763 a001 10610209857723/1149851*599074578^(11/21) 3654352961622763 a001 4052739537881/1149851*599074578^(4/7) 3654352961622763 a001 1548008755920/1149851*599074578^(13/21) 3654352961622763 a001 956722026041/1149851*599074578^(9/14) 3654352961622763 a001 514229*599074578^(2/3) 3654352961622763 a001 225851433717/1149851*599074578^(5/7) 3654352961622763 a001 86267571272/1149851*599074578^(16/21) 3654352961622763 a001 53316291173/1149851*599074578^(11/14) 3654352961622763 a001 32951280099/1149851*599074578^(17/21) 3654352961622763 a001 20365011074/1149851*599074578^(5/6) 3654352961622763 a001 12586269025/1149851*599074578^(6/7) 3654352961622763 a001 4807526976/1149851*599074578^(19/21) 3654352961622763 a001 1836311903/1149851*599074578^(20/21) 3654352961622763 a001 2971215073/1149851*599074578^(13/14) 3654352961622763 a001 165580141/1149851*45537549124^(15/17) 3654352961622763 a001 165580141/1149851*312119004989^(9/11) 3654352961622763 a001 165580141/1149851*14662949395604^(5/7) 3654352961622763 a001 165580141/1149851*192900153618^(5/6) 3654352961622763 a001 165580141/1149851*28143753123^(9/10) 3654352961622763 a001 165580141/1149851*10749957122^(15/16) 3654352961622763 a001 10610209857723/1149851*228826127^(11/20) 3654352961622763 a001 4052739537881/1149851*228826127^(3/5) 3654352961622763 a001 2504730781961/1149851*228826127^(5/8) 3654352961622763 a001 1548008755920/1149851*228826127^(13/20) 3654352961622763 a001 514229*228826127^(7/10) 3654352961622763 a001 225851433717/1149851*228826127^(3/4) 3654352961622763 a001 86267571272/1149851*228826127^(4/5) 3654352961622763 a001 32951280099/1149851*228826127^(17/20) 3654352961622763 a001 20365011074/1149851*228826127^(7/8) 3654352961622763 a001 12586269025/1149851*228826127^(9/10) 3654352961622763 a001 4807526976/1149851*228826127^(19/20) 3654352961622764 a001 10610209857723/1149851*87403803^(11/19) 3654352961622764 a001 4052739537881/1149851*87403803^(12/19) 3654352961622764 a001 1548008755920/1149851*87403803^(13/19) 3654352961622764 a001 514229*87403803^(14/19) 3654352961622764 a001 225851433717/1149851*87403803^(15/19) 3654352961622764 a001 86267571272/1149851*87403803^(16/19) 3654352961622764 a001 32951280099/1149851*87403803^(17/19) 3654352961622764 a001 12586269025/1149851*87403803^(18/19) 3654352961622765 a001 24157817/1149851*14662949395604^(7/9) 3654352961622765 a001 24157817/1149851*505019158607^(7/8) 3654352961622765 a001 10610209857723/1149851*33385282^(11/18) 3654352961622766 a001 4052739537881/1149851*33385282^(2/3) 3654352961622766 a001 1548008755920/1149851*33385282^(13/18) 3654352961622766 a001 956722026041/1149851*33385282^(3/4) 3654352961622766 a001 514229*33385282^(7/9) 3654352961622766 a001 225851433717/1149851*33385282^(5/6) 3654352961622766 a001 86267571272/1149851*33385282^(8/9) 3654352961622766 a001 53316291173/1149851*33385282^(11/12) 3654352961622767 a001 32951280099/1149851*33385282^(17/18) 3654352961622767 a001 1818692534975680189/4976784 3654352961622772 a001 9227465/1149851*817138163596^(17/19) 3654352961622772 a001 9227465/1149851*14662949395604^(17/21) 3654352961622772 a001 9227465/1149851*192900153618^(17/18) 3654352961622778 a001 10610209857723/1149851*12752043^(11/17) 3654352961622779 a001 4052739537881/1149851*12752043^(12/17) 3654352961622781 a001 1548008755920/1149851*12752043^(13/17) 3654352961622782 a001 514229*12752043^(14/17) 3654352961622783 a001 225851433717/1149851*12752043^(15/17) 3654352961622785 a001 86267571272/1149851*12752043^(16/17) 3654352961622786 a001 2084036199825008749/5702887 3654352961622869 a001 10610209857723/1149851*4870847^(11/16) 3654352961622879 a001 4052739537881/1149851*4870847^(3/4) 3654352961622889 a001 1548008755920/1149851*4870847^(13/16) 3654352961622898 a001 514229*4870847^(7/8) 3654352961622908 a001 225851433717/1149851*4870847^(15/16) 3654352961622917 a001 265343664849328560/726103 3654352961623167 a001 1346269/1149851*3461452808002^(11/12) 3654352961623538 a001 10610209857723/1149851*1860498^(11/15) 3654352961623608 a001 4052739537881/1149851*1860498^(4/5) 3654352961623643 a001 2504730781961/1149851*1860498^(5/6) 3654352961623678 a001 1548008755920/1149851*1860498^(13/15) 3654352961623714 a001 956722026041/1149851*1860498^(9/10) 3654352961623749 a001 514229*1860498^(14/15) 3654352961623819 a001 304056783818948291/832040 3654352961624209 a001 3278735159921/219602*439204^(7/9) 3654352961625146 a001 3278735159921/930249*710647^(6/7) 3654352961625527 a001 514229/1149851*14662949395604^(19/21) 3654352961625663 a001 2504730781961/1860498*710647^(13/14) 3654352961626180 a001 116139356908737800/317811 3654352961626565 a001 6557470319842/4870847*710647^(13/14) 3654352961626605 a001 10610209857723/3010349*710647^(6/7) 3654352961626778 a001 10610209857723/7881196*710647^(13/14) 3654352961627082 a001 38713118969588819/105937 3654352961627122 a001 1346269*710647^(13/14) 3654352961627213 a001 116139356908770638/317811 3654352961627232 a001 2977932228430032/8149 3654352961627235 a001 116139356908771337/317811 3654352961627235 a001 38713118969590450/105937 3654352961627236 a001 308061954665176/843 3654352961627236 a001 38713118969590451/105937 3654352961627236 a001 116139356908771358/317811 3654352961627237 a001 38713118969590464/105937 3654352961627244 a001 8933796685290125/24447 3654352961627294 a001 38713118969591074/105937 3654352961627639 a001 116139356908784168/317811 3654352961628449 a001 10610209857723/1149851*710647^(11/14) 3654352961628966 a001 4052739537881/1149851*710647^(6/7) 3654352961629483 a001 1548008755920/1149851*710647^(13/14) 3654352961631708 a001 317811/439204*14662949395604^(8/9) 3654352961636180 a001 187917426910921138/514229 3654352961637888 a001 98209/930249*14662949395604^(20/21) 3654352961637888 a001 208010/109801*14662949395604^(6/7) 3654352961638541 a001 491974210731215698/1346269 3654352961638790 a001 2178309/439204*23725150497407^(13/16) 3654352961638790 a001 2178309/439204*505019158607^(13/14) 3654352961638885 a001 644002602641362978/1762289 3654352961638890 a001 196418*7881196^(10/11) 3654352961638896 a001 182717648081/219602*7881196^(9/11) 3654352961638901 a001 387002188980/109801*7881196^(8/11) 3654352961638905 a001 4052739537881/439204*7881196^(2/3) 3654352961638906 a001 3278735159921/219602*7881196^(7/11) 3654352961638921 a001 5702887/439204*312119004989^(10/11) 3654352961638921 a001 5702887/439204*3461452808002^(5/6) 3654352961638936 a001 196418*20633239^(6/7) 3654352961638937 a001 225851433717/439204*20633239^(4/5) 3654352961638938 a001 956722026041/439204*20633239^(5/7) 3654352961638939 a001 3278735159921/219602*20633239^(3/5) 3654352961638939 a001 10610209857723/439204*20633239^(4/7) 3654352961638940 a001 196452/5779*45537549124^(16/17) 3654352961638940 a001 196452/5779*14662949395604^(16/21) 3654352961638940 a001 196452/5779*192900153618^(8/9) 3654352961638940 a001 196452/5779*73681302247^(12/13) 3654352961638943 a001 39088169/439204*10749957122^(23/24) 3654352961638944 a001 1201881744/109801*141422324^(12/13) 3654352961638944 a001 10182505537/219602*141422324^(11/13) 3654352961638944 a001 196418*141422324^(10/13) 3654352961638944 a001 182717648081/219602*141422324^(9/13) 3654352961638944 a001 591286729879/439204*141422324^(2/3) 3654352961638944 a001 387002188980/109801*141422324^(8/13) 3654352961638944 a001 3278735159921/219602*141422324^(7/13) 3654352961638944 a001 102334155/439204*312119004989^(4/5) 3654352961638944 a001 102334155/439204*23725150497407^(11/16) 3654352961638944 a001 102334155/439204*73681302247^(11/13) 3654352961638944 a001 102334155/439204*10749957122^(11/12) 3654352961638944 a001 102334155/439204*4106118243^(22/23) 3654352961638944 a001 66978574/109801*2537720636^(14/15) 3654352961638944 a001 66978574/109801*17393796001^(6/7) 3654352961638944 a001 66978574/109801*45537549124^(14/17) 3654352961638944 a001 66978574/109801*817138163596^(14/19) 3654352961638944 a001 66978574/109801*14662949395604^(2/3) 3654352961638944 a001 66978574/109801*505019158607^(3/4) 3654352961638944 a001 66978574/109801*192900153618^(7/9) 3654352961638944 a001 66978574/109801*10749957122^(7/8) 3654352961638944 a001 66978574/109801*4106118243^(21/23) 3654352961638944 a001 66978574/109801*1568397607^(21/22) 3654352961638944 a001 701408733/439204*2537720636^(8/9) 3654352961638944 a001 701408733/439204*312119004989^(8/11) 3654352961638944 a001 701408733/439204*23725150497407^(5/8) 3654352961638944 a001 701408733/439204*73681302247^(10/13) 3654352961638944 a001 701408733/439204*28143753123^(4/5) 3654352961638944 a001 701408733/439204*10749957122^(5/6) 3654352961638944 a001 701408733/439204*4106118243^(20/23) 3654352961638944 a001 1201881744/109801*2537720636^(4/5) 3654352961638944 a001 7778742049/439204*2537720636^(7/9) 3654352961638944 a001 10182505537/219602*2537720636^(11/15) 3654352961638944 a001 196418*2537720636^(2/3) 3654352961638944 a001 182717648081/219602*2537720636^(3/5) 3654352961638944 a001 956722026041/439204*2537720636^(5/9) 3654352961638944 a001 387002188980/109801*2537720636^(8/15) 3654352961638944 a001 3278735159921/219602*2537720636^(7/15) 3654352961638944 a001 10610209857723/439204*2537720636^(4/9) 3654352961638944 a001 1836311903/439204*817138163596^(2/3) 3654352961638944 a001 1836311903/439204*10749957122^(19/24) 3654352961638944 a001 701408733/439204*1568397607^(10/11) 3654352961638944 a001 1836311903/439204*4106118243^(19/23) 3654352961638944 a001 1201881744/109801*45537549124^(12/17) 3654352961638944 a001 1201881744/109801*14662949395604^(4/7) 3654352961638944 a001 1201881744/109801*505019158607^(9/14) 3654352961638944 a001 1201881744/109801*192900153618^(2/3) 3654352961638944 a001 1201881744/109801*73681302247^(9/13) 3654352961638944 a001 1201881744/109801*10749957122^(3/4) 3654352961638944 a001 225851433717/439204*17393796001^(4/7) 3654352961638944 a001 12586269025/439204*45537549124^(2/3) 3654352961638944 a001 3278735159921/219602*17393796001^(3/7) 3654352961638944 a001 196418*45537549124^(10/17) 3654352961638944 a001 182717648081/219602*45537549124^(9/17) 3654352961638944 a001 387002188980/109801*45537549124^(8/17) 3654352961638944 a001 3278735159921/219602*45537549124^(7/17) 3654352961638944 a001 32951280099/439204*23725150497407^(1/2) 3654352961638944 a001 32951280099/439204*505019158607^(4/7) 3654352961638944 a001 32951280099/439204*73681302247^(8/13) 3654352961638944 a001 196418*312119004989^(6/11) 3654352961638944 a001 196418*14662949395604^(10/21) 3654352961638944 a001 196418*192900153618^(5/9) 3654352961638944 a001 956722026041/439204*312119004989^(5/11) 3654352961638944 a001 10610209857723/439204*23725150497407^(5/16) 3654352961638944 a001 182717648081/219602*817138163596^(9/19) 3654352961638944 a001 10610209857723/439204*505019158607^(5/14) 3654352961638944 a001 182717648081/219602*14662949395604^(3/7) 3654352961638944 a001 3278735159921/219602*192900153618^(7/18) 3654352961638944 a001 139583862445/439204*1322157322203^(1/2) 3654352961638944 a001 53316291173/439204*9062201101803^(1/2) 3654352961638944 a001 10610209857723/439204*73681302247^(5/13) 3654352961638944 a001 387002188980/109801*73681302247^(6/13) 3654352961638944 a001 591286729879/439204*73681302247^(1/2) 3654352961638944 a001 225851433717/439204*73681302247^(7/13) 3654352961638944 a001 10182505537/219602*45537549124^(11/17) 3654352961638944 a001 10182505537/219602*312119004989^(3/5) 3654352961638944 a001 10182505537/219602*817138163596^(11/19) 3654352961638944 a001 10182505537/219602*14662949395604^(11/21) 3654352961638944 a001 10182505537/219602*192900153618^(11/18) 3654352961638944 a001 10610209857723/439204*28143753123^(2/5) 3654352961638944 a001 956722026041/439204*28143753123^(1/2) 3654352961638944 a001 196418*28143753123^(3/5) 3654352961638944 a001 7778742049/439204*17393796001^(5/7) 3654352961638944 a001 7778742049/439204*312119004989^(7/11) 3654352961638944 a001 7778742049/439204*14662949395604^(5/9) 3654352961638944 a001 7778742049/439204*505019158607^(5/8) 3654352961638944 a001 10610209857723/439204*10749957122^(5/12) 3654352961638944 a001 3278735159921/219602*10749957122^(7/16) 3654352961638944 a001 4052739537881/439204*10749957122^(11/24) 3654352961638944 a001 7778742049/439204*28143753123^(7/10) 3654352961638944 a001 387002188980/109801*10749957122^(1/2) 3654352961638944 a001 591286729879/439204*10749957122^(13/24) 3654352961638944 a001 12586269025/439204*10749957122^(17/24) 3654352961638944 a001 182717648081/219602*10749957122^(9/16) 3654352961638944 a001 225851433717/439204*10749957122^(7/12) 3654352961638944 a001 196418*10749957122^(5/8) 3654352961638944 a001 32951280099/439204*10749957122^(2/3) 3654352961638944 a001 10182505537/219602*10749957122^(11/16) 3654352961638944 a001 567451585/219602*2537720636^(13/15) 3654352961638944 a001 10610209857723/439204*4106118243^(10/23) 3654352961638944 a001 4052739537881/439204*4106118243^(11/23) 3654352961638944 a001 2504730781961/439204*4106118243^(1/2) 3654352961638944 a001 387002188980/109801*4106118243^(12/23) 3654352961638944 a001 591286729879/439204*4106118243^(13/23) 3654352961638944 a001 225851433717/439204*4106118243^(14/23) 3654352961638944 a001 1201881744/109801*4106118243^(18/23) 3654352961638944 a001 196418*4106118243^(15/23) 3654352961638944 a001 32951280099/439204*4106118243^(16/23) 3654352961638944 a001 12586269025/439204*4106118243^(17/23) 3654352961638944 a001 567451585/219602*45537549124^(13/17) 3654352961638944 a001 567451585/219602*14662949395604^(13/21) 3654352961638944 a001 567451585/219602*192900153618^(13/18) 3654352961638944 a001 567451585/219602*73681302247^(3/4) 3654352961638944 a001 567451585/219602*10749957122^(13/16) 3654352961638944 a001 10610209857723/439204*1568397607^(5/11) 3654352961638944 a001 4052739537881/439204*1568397607^(1/2) 3654352961638944 a001 387002188980/109801*1568397607^(6/11) 3654352961638944 a001 591286729879/439204*1568397607^(13/22) 3654352961638944 a001 225851433717/439204*1568397607^(7/11) 3654352961638944 a001 196418*1568397607^(15/22) 3654352961638944 a001 1836311903/439204*1568397607^(19/22) 3654352961638944 a001 32951280099/439204*1568397607^(8/11) 3654352961638944 a001 10182505537/219602*1568397607^(3/4) 3654352961638944 a001 12586269025/439204*1568397607^(17/22) 3654352961638944 a001 1201881744/109801*1568397607^(9/11) 3654352961638944 a001 10610209857723/439204*599074578^(10/21) 3654352961638944 a001 3278735159921/219602*599074578^(1/2) 3654352961638944 a001 4052739537881/439204*599074578^(11/21) 3654352961638944 a001 387002188980/109801*599074578^(4/7) 3654352961638944 a001 591286729879/439204*599074578^(13/21) 3654352961638944 a001 182717648081/219602*599074578^(9/14) 3654352961638944 a001 225851433717/439204*599074578^(2/3) 3654352961638944 a001 196418*599074578^(5/7) 3654352961638944 a001 32951280099/439204*599074578^(16/21) 3654352961638944 a001 10182505537/219602*599074578^(11/14) 3654352961638944 a001 701408733/439204*599074578^(20/21) 3654352961638944 a001 12586269025/439204*599074578^(17/21) 3654352961638944 a001 7778742049/439204*599074578^(5/6) 3654352961638944 a001 1201881744/109801*599074578^(6/7) 3654352961638944 a001 1836311903/439204*599074578^(19/21) 3654352961638944 a001 567451585/219602*599074578^(13/14) 3654352961638944 a001 10610209857723/439204*228826127^(1/2) 3654352961638944 a001 4052739537881/439204*228826127^(11/20) 3654352961638944 a001 387002188980/109801*228826127^(3/5) 3654352961638944 a001 956722026041/439204*228826127^(5/8) 3654352961638944 a001 591286729879/439204*228826127^(13/20) 3654352961638944 a001 225851433717/439204*228826127^(7/10) 3654352961638944 a001 196418*228826127^(3/4) 3654352961638944 a001 32951280099/439204*228826127^(4/5) 3654352961638944 a001 12586269025/439204*228826127^(17/20) 3654352961638944 a001 7778742049/439204*228826127^(7/8) 3654352961638944 a001 1201881744/109801*228826127^(9/10) 3654352961638944 a001 1836311903/439204*228826127^(19/20) 3654352961638944 a001 31622993/219602*45537549124^(15/17) 3654352961638944 a001 31622993/219602*312119004989^(9/11) 3654352961638944 a001 31622993/219602*14662949395604^(5/7) 3654352961638944 a001 31622993/219602*192900153618^(5/6) 3654352961638944 a001 31622993/219602*28143753123^(9/10) 3654352961638944 a001 31622993/219602*10749957122^(15/16) 3654352961638944 a001 10610209857723/439204*87403803^(10/19) 3654352961638944 a001 4052739537881/439204*87403803^(11/19) 3654352961638944 a001 387002188980/109801*87403803^(12/19) 3654352961638944 a001 591286729879/439204*87403803^(13/19) 3654352961638944 a001 225851433717/439204*87403803^(14/19) 3654352961638944 a001 196418*87403803^(15/19) 3654352961638944 a001 32951280099/439204*87403803^(16/19) 3654352961638944 a001 12586269025/439204*87403803^(17/19) 3654352961638944 a001 1201881744/109801*87403803^(18/19) 3654352961638946 a001 10610209857723/439204*33385282^(5/9) 3654352961638946 a001 3278735159921/219602*33385282^(7/12) 3654352961638946 a001 4052739537881/439204*33385282^(11/18) 3654352961638946 a001 387002188980/109801*33385282^(2/3) 3654352961638946 a001 591286729879/439204*33385282^(13/18) 3654352961638946 a001 182717648081/219602*33385282^(3/4) 3654352961638946 a001 225851433717/439204*33385282^(7/9) 3654352961638947 a001 196418*33385282^(5/6) 3654352961638947 a001 32951280099/439204*33385282^(8/9) 3654352961638947 a001 10182505537/219602*33385282^(11/12) 3654352961638947 a001 12586269025/439204*33385282^(17/18) 3654352961638952 a001 9227465/439204*14662949395604^(7/9) 3654352961638952 a001 9227465/439204*505019158607^(7/8) 3654352961638957 a001 10610209857723/439204*12752043^(10/17) 3654352961638958 a001 4052739537881/439204*12752043^(11/17) 3654352961638960 a001 387002188980/109801*12752043^(12/17) 3654352961638961 a001 591286729879/439204*12752043^(13/17) 3654352961638962 a001 225851433717/439204*12752043^(14/17) 3654352961638964 a001 196418*12752043^(15/17) 3654352961638965 a001 32951280099/439204*12752043^(16/17) 3654352961638966 a001 2084036199834236214/5702887 3654352961639003 a001 1762289/219602*817138163596^(17/19) 3654352961639003 a001 1762289/219602*14662949395604^(17/21) 3654352961639003 a001 1762289/219602*192900153618^(17/18) 3654352961639040 a001 10610209857723/439204*4870847^(5/8) 3654352961639050 a001 4052739537881/439204*4870847^(11/16) 3654352961639059 a001 387002188980/109801*4870847^(3/4) 3654352961639069 a001 591286729879/439204*4870847^(13/16) 3654352961639079 a001 225851433717/439204*4870847^(7/8) 3654352961639088 a001 196418*4870847^(15/16) 3654352961639098 a001 796030994551510258/2178309 3654352961639648 a001 10610209857723/439204*1860498^(2/3) 3654352961639683 a001 3278735159921/219602*1860498^(7/10) 3654352961639718 a001 4052739537881/439204*1860498^(11/15) 3654352961639788 a001 387002188980/109801*1860498^(4/5) 3654352961639824 a001 956722026041/439204*1860498^(5/6) 3654352961639859 a001 591286729879/439204*1860498^(13/15) 3654352961639894 a001 182717648081/219602*1860498^(9/10) 3654352961639929 a001 225851433717/439204*1860498^(14/15) 3654352961641708 a001 514229/439204*3461452808002^(11/12) 3654352961644112 a001 10610209857723/439204*710647^(5/7) 3654352961644371 a001 3278735159921/219602*710647^(3/4) 3654352961644629 a001 4052739537881/439204*710647^(11/14) 3654352961645146 a001 387002188980/109801*710647^(6/7) 3654352961645663 a001 591286729879/439204*710647^(13/14) 3654352961645969 a001 4052739537881/167761*167761^(4/5) 3654352961646180 a001 116139356909373422/317811 3654352961654730 a001 6557470319842/710647*271443^(11/13) 3654352961657888 a001 98209/219602*14662949395604^(19/21) 3654352961658545 a001 2504730781961/710647*271443^(12/13) 3654352961658694 a001 591286729879/64079*64079^(22/23) 3654352961662360 a001 44361286907507895/121393 3654352961664725 a001 3278735159921/930249*271443^(12/13) 3654352961664730 a001 10610209857723/1149851*271443^(11/13) 3654352961666184 a001 10610209857723/3010349*271443^(12/13) 3654352961668541 a001 44361286907582920/121393 3654352961668545 a001 4052739537881/1149851*271443^(12/13) 3654352961669442 a001 44361286907593866/121393 3654352961669574 a001 44361286907595463/121393 3654352961669593 a001 44361286907595696/121393 3654352961669596 a001 44361286907595730/121393 3654352961669596 a001 44361286907595735/121393 3654352961669596 a001 44361286907595736/121393 3654352961669596 a001 190391789302986/521 3654352961669597 a001 44361286907595751/121393 3654352961669605 a001 44361286907595840/121393 3654352961669655 a001 44361286907596450/121393 3654352961672360 a001 44361286907629288/121393 3654352961677095 a001 10610209857723/439204*271443^(10/13) 3654352961680910 a001 4052739537881/439204*271443^(11/13) 3654352961684725 a001 387002188980/109801*271443^(12/13) 3654352961688541 a001 44361286907825706/121393 3654352961697389 a001 956722026041/64079*64079^(21/23) 3654352961700249 a001 121393/167761*14662949395604^(8/9) 3654352961730901 a001 71778070003726025/196418 3654352961733006 a001 591286729879/167761*439204^(8/9) 3654352961735111 a001 2504730781961/167761*439204^(7/9) 3654352961736084 a001 1548008755920/64079*64079^(20/23) 3654352961737216 a001 10610209857723/167761*439204^(2/3) 3654352961742609 a001 75025/710647*14662949395604^(20/21) 3654352961742609 a001 317811/167761*14662949395604^(6/7) 3654352961747082 a001 187917426916624025/514229 3654352961748790 a001 75640/15251*23725150497407^(13/16) 3654352961748790 a001 75640/15251*505019158607^(13/14) 3654352961749442 a001 491974210746146050/1346269 3654352961749691 a001 2178309/167761*312119004989^(10/11) 3654352961749691 a001 2178309/167761*3461452808002^(5/6) 3654352961749792 a001 32951280099/167761*7881196^(10/11) 3654352961749797 a001 139583862445/167761*7881196^(9/11) 3654352961749803 a001 591286729879/167761*7881196^(8/11) 3654352961749806 a001 140728068720/15251*7881196^(2/3) 3654352961749808 a001 2504730781961/167761*7881196^(7/11) 3654352961749813 a001 10610209857723/167761*7881196^(6/11) 3654352961749823 a001 5702887/167761*45537549124^(16/17) 3654352961749823 a001 5702887/167761*14662949395604^(16/21) 3654352961749823 a001 5702887/167761*192900153618^(8/9) 3654352961749823 a001 5702887/167761*73681302247^(12/13) 3654352961749838 a001 32951280099/167761*20633239^(6/7) 3654352961749839 a001 86267571272/167761*20633239^(4/5) 3654352961749839 a001 365435296162/167761*20633239^(5/7) 3654352961749840 a001 2504730781961/167761*20633239^(3/5) 3654352961749841 a001 4052739537881/167761*20633239^(4/7) 3654352961749842 a001 14930352/167761*10749957122^(23/24) 3654352961749845 a001 39088169/167761*312119004989^(4/5) 3654352961749845 a001 39088169/167761*23725150497407^(11/16) 3654352961749845 a001 39088169/167761*73681302247^(11/13) 3654352961749845 a001 39088169/167761*10749957122^(11/12) 3654352961749845 a001 39088169/167761*4106118243^(22/23) 3654352961749845 a001 1836311903/167761*141422324^(12/13) 3654352961749845 a001 7778742049/167761*141422324^(11/13) 3654352961749845 a001 32951280099/167761*141422324^(10/13) 3654352961749845 a001 139583862445/167761*141422324^(9/13) 3654352961749845 a001 225851433717/167761*141422324^(2/3) 3654352961749845 a001 591286729879/167761*141422324^(8/13) 3654352961749845 a001 2504730781961/167761*141422324^(7/13) 3654352961749845 a001 10610209857723/167761*141422324^(6/13) 3654352961749845 a001 9303105/15251*2537720636^(14/15) 3654352961749845 a001 9303105/15251*17393796001^(6/7) 3654352961749845 a001 9303105/15251*45537549124^(14/17) 3654352961749845 a001 9303105/15251*817138163596^(14/19) 3654352961749845 a001 9303105/15251*14662949395604^(2/3) 3654352961749845 a001 9303105/15251*505019158607^(3/4) 3654352961749845 a001 9303105/15251*192900153618^(7/9) 3654352961749845 a001 9303105/15251*10749957122^(7/8) 3654352961749845 a001 9303105/15251*4106118243^(21/23) 3654352961749845 a001 9303105/15251*1568397607^(21/22) 3654352961749845 a001 267914296/167761*2537720636^(8/9) 3654352961749845 a001 267914296/167761*312119004989^(8/11) 3654352961749845 a001 267914296/167761*23725150497407^(5/8) 3654352961749845 a001 267914296/167761*73681302247^(10/13) 3654352961749845 a001 267914296/167761*28143753123^(4/5) 3654352961749845 a001 267914296/167761*10749957122^(5/6) 3654352961749845 a001 267914296/167761*4106118243^(20/23) 3654352961749845 a001 267914296/167761*1568397607^(10/11) 3654352961749845 a001 701408733/167761*817138163596^(2/3) 3654352961749845 a001 701408733/167761*10749957122^(19/24) 3654352961749845 a001 701408733/167761*4106118243^(19/23) 3654352961749845 a001 1836311903/167761*2537720636^(4/5) 3654352961749845 a001 267914296/167761*599074578^(20/21) 3654352961749845 a001 7778742049/167761*2537720636^(11/15) 3654352961749845 a001 32951280099/167761*2537720636^(2/3) 3654352961749845 a001 2971215073/167761*2537720636^(7/9) 3654352961749845 a001 139583862445/167761*2537720636^(3/5) 3654352961749845 a001 365435296162/167761*2537720636^(5/9) 3654352961749845 a001 591286729879/167761*2537720636^(8/15) 3654352961749845 a001 2504730781961/167761*2537720636^(7/15) 3654352961749845 a001 4052739537881/167761*2537720636^(4/9) 3654352961749845 a001 10610209857723/167761*2537720636^(2/5) 3654352961749845 a001 1836311903/167761*45537549124^(12/17) 3654352961749845 a001 1836311903/167761*14662949395604^(4/7) 3654352961749845 a001 1836311903/167761*505019158607^(9/14) 3654352961749845 a001 1836311903/167761*192900153618^(2/3) 3654352961749845 a001 1836311903/167761*73681302247^(9/13) 3654352961749845 a001 701408733/167761*1568397607^(19/22) 3654352961749845 a001 1836311903/167761*10749957122^(3/4) 3654352961749845 a001 1836311903/167761*4106118243^(18/23) 3654352961749845 a001 4807526976/167761*45537549124^(2/3) 3654352961749845 a001 4807526976/167761*10749957122^(17/24) 3654352961749845 a001 86267571272/167761*17393796001^(4/7) 3654352961749845 a001 2504730781961/167761*17393796001^(3/7) 3654352961749845 a001 75025*23725150497407^(1/2) 3654352961749845 a001 75025*505019158607^(4/7) 3654352961749845 a001 75025*73681302247^(8/13) 3654352961749845 a001 32951280099/167761*45537549124^(10/17) 3654352961749845 a001 139583862445/167761*45537549124^(9/17) 3654352961749845 a001 591286729879/167761*45537549124^(8/17) 3654352961749845 a001 2504730781961/167761*45537549124^(7/17) 3654352961749845 a001 32951280099/167761*312119004989^(6/11) 3654352961749845 a001 32951280099/167761*14662949395604^(10/21) 3654352961749845 a001 10610209857723/167761*45537549124^(6/17) 3654352961749845 a001 86267571272/167761*14662949395604^(4/9) 3654352961749845 a001 140728068720/15251*312119004989^(2/5) 3654352961749845 a001 365435296162/167761*312119004989^(5/11) 3654352961749845 a001 10610209857723/167761*14662949395604^(2/7) 3654352961749845 a001 4052739537881/167761*505019158607^(5/14) 3654352961749845 a001 10610209857723/167761*192900153618^(1/3) 3654352961749845 a001 139583862445/167761*817138163596^(9/19) 3654352961749845 a001 139583862445/167761*14662949395604^(3/7) 3654352961749845 a001 591286729879/167761*192900153618^(4/9) 3654352961749845 a001 139583862445/167761*192900153618^(1/2) 3654352961749845 a001 53316291173/167761*1322157322203^(1/2) 3654352961749845 a001 4052739537881/167761*73681302247^(5/13) 3654352961749845 a001 591286729879/167761*73681302247^(6/13) 3654352961749845 a001 225851433717/167761*73681302247^(1/2) 3654352961749845 a001 20365011074/167761*9062201101803^(1/2) 3654352961749845 a001 4052739537881/167761*28143753123^(2/5) 3654352961749845 a001 32951280099/167761*28143753123^(3/5) 3654352961749845 a001 365435296162/167761*28143753123^(1/2) 3654352961749845 a001 7778742049/167761*45537549124^(11/17) 3654352961749845 a001 10610209857723/167761*10749957122^(3/8) 3654352961749845 a001 7778742049/167761*312119004989^(3/5) 3654352961749845 a001 7778742049/167761*14662949395604^(11/21) 3654352961749845 a001 7778742049/167761*192900153618^(11/18) 3654352961749845 a001 4052739537881/167761*10749957122^(5/12) 3654352961749845 a001 2504730781961/167761*10749957122^(7/16) 3654352961749845 a001 140728068720/15251*10749957122^(11/24) 3654352961749845 a001 591286729879/167761*10749957122^(1/2) 3654352961749845 a001 75025*10749957122^(2/3) 3654352961749845 a001 225851433717/167761*10749957122^(13/24) 3654352961749845 a001 139583862445/167761*10749957122^(9/16) 3654352961749845 a001 86267571272/167761*10749957122^(7/12) 3654352961749845 a001 32951280099/167761*10749957122^(5/8) 3654352961749845 a001 7778742049/167761*10749957122^(11/16) 3654352961749845 a001 2971215073/167761*17393796001^(5/7) 3654352961749845 a001 2971215073/167761*312119004989^(7/11) 3654352961749845 a001 2971215073/167761*14662949395604^(5/9) 3654352961749845 a001 2971215073/167761*505019158607^(5/8) 3654352961749845 a001 10610209857723/167761*4106118243^(9/23) 3654352961749845 a001 2971215073/167761*28143753123^(7/10) 3654352961749845 a001 4052739537881/167761*4106118243^(10/23) 3654352961749845 a001 140728068720/15251*4106118243^(11/23) 3654352961749845 a001 956722026041/167761*4106118243^(1/2) 3654352961749845 a001 591286729879/167761*4106118243^(12/23) 3654352961749845 a001 225851433717/167761*4106118243^(13/23) 3654352961749845 a001 4807526976/167761*4106118243^(17/23) 3654352961749845 a001 86267571272/167761*4106118243^(14/23) 3654352961749845 a001 32951280099/167761*4106118243^(15/23) 3654352961749845 a001 75025*4106118243^(16/23) 3654352961749845 a001 10610209857723/167761*1568397607^(9/22) 3654352961749845 a001 4052739537881/167761*1568397607^(5/11) 3654352961749845 a001 140728068720/15251*1568397607^(1/2) 3654352961749845 a001 591286729879/167761*1568397607^(6/11) 3654352961749845 a001 225851433717/167761*1568397607^(13/22) 3654352961749845 a001 86267571272/167761*1568397607^(7/11) 3654352961749845 a001 1836311903/167761*1568397607^(9/11) 3654352961749845 a001 32951280099/167761*1568397607^(15/22) 3654352961749845 a001 75025*1568397607^(8/11) 3654352961749845 a001 4807526976/167761*1568397607^(17/22) 3654352961749845 a001 7778742049/167761*1568397607^(3/4) 3654352961749845 a001 433494437/167761*2537720636^(13/15) 3654352961749845 a001 433494437/167761*45537549124^(13/17) 3654352961749845 a001 433494437/167761*14662949395604^(13/21) 3654352961749845 a001 433494437/167761*192900153618^(13/18) 3654352961749845 a001 433494437/167761*73681302247^(3/4) 3654352961749845 a001 433494437/167761*10749957122^(13/16) 3654352961749845 a001 10610209857723/167761*599074578^(3/7) 3654352961749845 a001 4052739537881/167761*599074578^(10/21) 3654352961749845 a001 2504730781961/167761*599074578^(1/2) 3654352961749845 a001 140728068720/15251*599074578^(11/21) 3654352961749845 a001 591286729879/167761*599074578^(4/7) 3654352961749845 a001 225851433717/167761*599074578^(13/21) 3654352961749845 a001 139583862445/167761*599074578^(9/14) 3654352961749845 a001 86267571272/167761*599074578^(2/3) 3654352961749845 a001 32951280099/167761*599074578^(5/7) 3654352961749845 a001 701408733/167761*599074578^(19/21) 3654352961749845 a001 75025*599074578^(16/21) 3654352961749845 a001 7778742049/167761*599074578^(11/14) 3654352961749845 a001 4807526976/167761*599074578^(17/21) 3654352961749845 a001 1836311903/167761*599074578^(6/7) 3654352961749845 a001 2971215073/167761*599074578^(5/6) 3654352961749845 a001 433494437/167761*599074578^(13/14) 3654352961749846 a001 10610209857723/167761*228826127^(9/20) 3654352961749846 a001 4052739537881/167761*228826127^(1/2) 3654352961749846 a001 140728068720/15251*228826127^(11/20) 3654352961749846 a001 591286729879/167761*228826127^(3/5) 3654352961749846 a001 365435296162/167761*228826127^(5/8) 3654352961749846 a001 225851433717/167761*228826127^(13/20) 3654352961749846 a001 86267571272/167761*228826127^(7/10) 3654352961749846 a001 32951280099/167761*228826127^(3/4) 3654352961749846 a001 75025*228826127^(4/5) 3654352961749846 a001 4807526976/167761*228826127^(17/20) 3654352961749846 a001 2971215073/167761*228826127^(7/8) 3654352961749846 a001 1836311903/167761*228826127^(9/10) 3654352961749846 a001 701408733/167761*228826127^(19/20) 3654352961749846 a001 10610209857723/167761*87403803^(9/19) 3654352961749846 a001 6557470319842/167761*87403803^(1/2) 3654352961749846 a001 4052739537881/167761*87403803^(10/19) 3654352961749846 a001 140728068720/15251*87403803^(11/19) 3654352961749846 a001 591286729879/167761*87403803^(12/19) 3654352961749846 a001 225851433717/167761*87403803^(13/19) 3654352961749846 a001 86267571272/167761*87403803^(14/19) 3654352961749846 a001 32951280099/167761*87403803^(15/19) 3654352961749846 a001 75025*87403803^(16/19) 3654352961749846 a001 4807526976/167761*87403803^(17/19) 3654352961749846 a001 1836311903/167761*87403803^(18/19) 3654352961749847 a001 24157817/167761*45537549124^(15/17) 3654352961749847 a001 24157817/167761*312119004989^(9/11) 3654352961749847 a001 24157817/167761*14662949395604^(5/7) 3654352961749847 a001 24157817/167761*192900153618^(5/6) 3654352961749847 a001 24157817/167761*28143753123^(9/10) 3654352961749847 a001 24157817/167761*10749957122^(15/16) 3654352961749847 a001 10610209857723/167761*33385282^(1/2) 3654352961749847 a001 4052739537881/167761*33385282^(5/9) 3654352961749847 a001 2504730781961/167761*33385282^(7/12) 3654352961749847 a001 140728068720/15251*33385282^(11/18) 3654352961749848 a001 591286729879/167761*33385282^(2/3) 3654352961749848 a001 225851433717/167761*33385282^(13/18) 3654352961749848 a001 139583862445/167761*33385282^(3/4) 3654352961749848 a001 86267571272/167761*33385282^(7/9) 3654352961749848 a001 32951280099/167761*33385282^(5/6) 3654352961749848 a001 75025*33385282^(8/9) 3654352961749848 a001 7778742049/167761*33385282^(11/12) 3654352961749849 a001 4807526976/167761*33385282^(17/18) 3654352961749857 a001 10610209857723/167761*12752043^(9/17) 3654352961749859 a001 4052739537881/167761*12752043^(10/17) 3654352961749860 a001 140728068720/15251*12752043^(11/17) 3654352961749861 a001 591286729879/167761*12752043^(12/17) 3654352961749863 a001 225851433717/167761*12752043^(13/17) 3654352961749864 a001 86267571272/167761*12752043^(14/17) 3654352961749865 a001 32951280099/167761*12752043^(15/17) 3654352961749867 a001 75025*12752043^(16/17) 3654352961749904 a001 3524578/167761*14662949395604^(7/9) 3654352961749904 a001 3524578/167761*505019158607^(7/8) 3654352961749932 a001 10610209857723/167761*4870847^(9/16) 3654352961749942 a001 4052739537881/167761*4870847^(5/8) 3654352961749951 a001 140728068720/15251*4870847^(11/16) 3654352961749961 a001 591286729879/167761*4870847^(3/4) 3654352961749971 a001 225851433717/167761*4870847^(13/16) 3654352961749980 a001 86267571272/167761*4870847^(7/8) 3654352961749990 a001 32951280099/167761*4870847^(15/16) 3654352961750249 a001 1346269/167761*14662949395604^(17/21) 3654352961750249 a001 1346269/167761*192900153618^(17/18) 3654352961750479 a001 10610209857723/167761*1860498^(3/5) 3654352961750549 a001 4052739537881/167761*1860498^(2/3) 3654352961750584 a001 2504730781961/167761*1860498^(7/10) 3654352961750620 a001 140728068720/15251*1860498^(11/15) 3654352961750690 a001 591286729879/167761*1860498^(4/5) 3654352961750725 a001 365435296162/167761*1860498^(5/6) 3654352961750760 a001 225851433717/167761*1860498^(13/15) 3654352961750796 a001 139583862445/167761*1860498^(9/10) 3654352961750831 a001 86267571272/167761*1860498^(14/15) 3654352961750901 a001 60811356765904405/166408 3654352961754497 a001 10610209857723/167761*710647^(9/14) 3654352961755014 a001 4052739537881/167761*710647^(5/7) 3654352961755273 a001 2504730781961/167761*710647^(3/4) 3654352961755531 a001 140728068720/15251*710647^(11/14) 3654352961756048 a001 591286729879/167761*710647^(6/7) 3654352961756565 a001 225851433717/167761*710647^(13/14) 3654352961757082 a001 38713118970966000/105937 3654352961768790 a001 196418/167761*3461452808002^(11/12) 3654352961774778 a001 2504730781961/64079*64079^(19/23) 3654352961784182 a001 10610209857723/167761*271443^(9/13) 3654352961787997 a001 4052739537881/167761*271443^(10/13) 3654352961791812 a001 140728068720/15251*271443^(11/13) 3654352961795627 a001 591286729879/167761*271443^(12/13) 3654352961799442 a001 44361286909171975/121393 3654352961813473 a001 4052739537881/64079*64079^(18/23) 3654352961839523 a001 3536736619241/90481*103682^(19/24) 3654352961852168 a001 6557470319842/64079*64079^(17/23) 3654352961853687 a001 6557470319842/271443*103682^(5/6) 3654352961867851 a001 4052739537881/271443*103682^(7/8) 3654352961879691 a001 75025/167761*14662949395604^(19/21) 3654352961882015 a001 2504730781961/271443*103682^(11/12) 3654352961890862 a001 10610209857723/64079*64079^(16/23) 3654352961896180 a001 516002918640/90481*103682^(23/24) 3654352961910212 a001 1515744265389/101521*103682^(7/8) 3654352961910344 a001 16944503813785885/46368 3654352961910476 a001 591286729879/24476*24476^(20/21) 3654352961922228 a001 10610209857723/439204*103682^(5/6) 3654352961924376 a001 6557470319842/710647*103682^(11/12) 3654352961934376 a001 10610209857723/1149851*103682^(11/12) 3654352961936392 a001 3278735159921/219602*103682^(7/8) 3654352961938540 a001 4052739537881/710647*103682^(23/24) 3654352961944721 a001 3536736619241/620166*103682^(23/24) 3654352961948540 a001 6557470319842/1149851*103682^(23/24) 3654352961950557 a001 4052739537881/439204*103682^(11/12) 3654352961952705 a001 5648167937994101/15456 3654352961958885 a001 1059031488375685/2898 3654352961959787 a001 806881134000721/2208 3654352961959918 a001 16944503814015751/46368 3654352961959937 a001 58835082687555/161 3654352961959940 a001 16944503814015853/46368 3654352961959941 a001 806881134000755/2208 3654352961959941 a001 1059031488375991/2898 3654352961959942 a001 5648167938005287/15456 3654352961959949 a001 16944503814015895/46368 3654352961960344 a001 16944503814017725/46368 3654352961962705 a001 5648167938009557/15456 3654352961964721 a001 2504730781961/439204*103682^(23/24) 3654352961978885 a001 1059031488381481/2898 3654352962004801 a001 10610209857723/167761*103682^(3/4) 3654352962018966 a001 6557470319842/167761*103682^(19/24) 3654352962033130 a001 4052739537881/167761*103682^(5/6) 3654352962047294 a001 2504730781961/167761*103682^(7/8) 3654352962061458 a001 140728068720/15251*103682^(11/12) 3654352962075622 a001 956722026041/167761*103682^(23/24) 3654352962089787 a001 806881134029425/2208 3654352962170036 a001 46368/64079*14662949395604^(8/9) 3654352962200952 a001 956722026041/24476*24476^(19/21) 3654352962380131 a001 27416783100256937/75025 3654352962406100 a001 1548008755920/64079*167761^(4/5) 3654352962460380 a001 28657/271443*14662949395604^(20/21) 3654352962460380 a001 121393/64079*14662949395604^(6/7) 3654352962491033 a001 71778070018656377/196418 3654352962491428 a001 387002188980/6119*24476^(6/7) 3654352962493138 a001 225851433717/64079*439204^(8/9) 3654352962495243 a001 956722026041/64079*439204^(7/9) 3654352962497348 a001 4052739537881/64079*439204^(2/3) 3654352962502741 a001 317811/64079*23725150497407^(13/16) 3654352962502741 a001 317811/64079*505019158607^(13/14) 3654352962507213 a001 187917426955712194/514229 3654352962508921 a001 832040/64079*312119004989^(10/11) 3654352962508921 a001 832040/64079*3461452808002^(5/6) 3654352962509823 a001 2178309/64079*45537549124^(16/17) 3654352962509823 a001 2178309/64079*14662949395604^(16/21) 3654352962509823 a001 2178309/64079*192900153618^(8/9) 3654352962509823 a001 2178309/64079*73681302247^(12/13) 3654352962509924 a001 12586269025/64079*7881196^(10/11) 3654352962509929 a001 53316291173/64079*7881196^(9/11) 3654352962509934 a001 225851433717/64079*7881196^(8/11) 3654352962509938 a001 591286729879/64079*7881196^(2/3) 3654352962509940 a001 956722026041/64079*7881196^(7/11) 3654352962509945 a001 4052739537881/64079*7881196^(6/11) 3654352962509955 a001 5702887/64079*10749957122^(23/24) 3654352962509970 a001 12586269025/64079*20633239^(6/7) 3654352962509970 a001 32951280099/64079*20633239^(4/5) 3654352962509971 a001 139583862445/64079*20633239^(5/7) 3654352962509972 a001 956722026041/64079*20633239^(3/5) 3654352962509972 a001 1548008755920/64079*20633239^(4/7) 3654352962509974 a001 14930352/64079*312119004989^(4/5) 3654352962509974 a001 14930352/64079*23725150497407^(11/16) 3654352962509974 a001 14930352/64079*73681302247^(11/13) 3654352962509974 a001 14930352/64079*10749957122^(11/12) 3654352962509974 a001 14930352/64079*4106118243^(22/23) 3654352962509977 a001 39088169/64079*2537720636^(14/15) 3654352962509977 a001 39088169/64079*17393796001^(6/7) 3654352962509977 a001 39088169/64079*45537549124^(14/17) 3654352962509977 a001 39088169/64079*14662949395604^(2/3) 3654352962509977 a001 39088169/64079*505019158607^(3/4) 3654352962509977 a001 39088169/64079*192900153618^(7/9) 3654352962509977 a001 39088169/64079*10749957122^(7/8) 3654352962509977 a001 39088169/64079*4106118243^(21/23) 3654352962509977 a001 39088169/64079*1568397607^(21/22) 3654352962509977 a001 701408733/64079*141422324^(12/13) 3654352962509977 a001 2971215073/64079*141422324^(11/13) 3654352962509977 a001 12586269025/64079*141422324^(10/13) 3654352962509977 a001 53316291173/64079*141422324^(9/13) 3654352962509977 a001 86267571272/64079*141422324^(2/3) 3654352962509977 a001 225851433717/64079*141422324^(8/13) 3654352962509977 a001 956722026041/64079*141422324^(7/13) 3654352962509977 a001 4052739537881/64079*141422324^(6/13) 3654352962509977 a001 102334155/64079*2537720636^(8/9) 3654352962509977 a001 102334155/64079*312119004989^(8/11) 3654352962509977 a001 102334155/64079*23725150497407^(5/8) 3654352962509977 a001 102334155/64079*73681302247^(10/13) 3654352962509977 a001 102334155/64079*28143753123^(4/5) 3654352962509977 a001 102334155/64079*10749957122^(5/6) 3654352962509977 a001 102334155/64079*4106118243^(20/23) 3654352962509977 a001 102334155/64079*1568397607^(10/11) 3654352962509977 a001 102334155/64079*599074578^(20/21) 3654352962509977 a001 267914296/64079*817138163596^(2/3) 3654352962509977 a001 267914296/64079*10749957122^(19/24) 3654352962509977 a001 267914296/64079*4106118243^(19/23) 3654352962509977 a001 267914296/64079*1568397607^(19/22) 3654352962509977 a001 701408733/64079*2537720636^(4/5) 3654352962509977 a001 701408733/64079*45537549124^(12/17) 3654352962509977 a001 701408733/64079*14662949395604^(4/7) 3654352962509977 a001 701408733/64079*505019158607^(9/14) 3654352962509977 a001 701408733/64079*192900153618^(2/3) 3654352962509977 a001 701408733/64079*73681302247^(9/13) 3654352962509977 a001 701408733/64079*10749957122^(3/4) 3654352962509977 a001 701408733/64079*4106118243^(18/23) 3654352962509977 a001 267914296/64079*599074578^(19/21) 3654352962509977 a001 12586269025/64079*2537720636^(2/3) 3654352962509977 a001 53316291173/64079*2537720636^(3/5) 3654352962509977 a001 2971215073/64079*2537720636^(11/15) 3654352962509977 a001 139583862445/64079*2537720636^(5/9) 3654352962509977 a001 225851433717/64079*2537720636^(8/15) 3654352962509977 a001 701408733/64079*1568397607^(9/11) 3654352962509977 a001 956722026041/64079*2537720636^(7/15) 3654352962509977 a001 1548008755920/64079*2537720636^(4/9) 3654352962509977 a001 4052739537881/64079*2537720636^(2/5) 3654352962509977 a001 28657*45537549124^(2/3) 3654352962509977 a001 28657*10749957122^(17/24) 3654352962509977 a001 28657*4106118243^(17/23) 3654352962509977 a001 4807526976/64079*23725150497407^(1/2) 3654352962509977 a001 4807526976/64079*73681302247^(8/13) 3654352962509977 a001 4807526976/64079*10749957122^(2/3) 3654352962509977 a001 32951280099/64079*17393796001^(4/7) 3654352962509977 a001 12586269025/64079*45537549124^(10/17) 3654352962509977 a001 956722026041/64079*17393796001^(3/7) 3654352962509977 a001 12586269025/64079*312119004989^(6/11) 3654352962509977 a001 12586269025/64079*14662949395604^(10/21) 3654352962509977 a001 12586269025/64079*192900153618^(5/9) 3654352962509977 a001 12586269025/64079*28143753123^(3/5) 3654352962509977 a001 225851433717/64079*45537549124^(8/17) 3654352962509977 a001 956722026041/64079*45537549124^(7/17) 3654352962509977 a001 53316291173/64079*45537549124^(9/17) 3654352962509977 a001 32951280099/64079*14662949395604^(4/9) 3654352962509977 a001 4052739537881/64079*45537549124^(6/17) 3654352962509977 a001 6557470319842/64079*45537549124^(1/3) 3654352962509977 a001 32951280099/64079*73681302247^(7/13) 3654352962509977 a001 591286729879/64079*312119004989^(2/5) 3654352962509977 a001 225851433717/64079*14662949395604^(8/21) 3654352962509977 a001 2504730781961/64079*817138163596^(1/3) 3654352962509977 a001 1548008755920/64079*23725150497407^(5/16) 3654352962509977 a001 10610209857723/64079*23725150497407^(1/4) 3654352962509977 a001 225851433717/64079*192900153618^(4/9) 3654352962509977 a001 139583862445/64079*3461452808002^(5/12) 3654352962509977 a001 956722026041/64079*192900153618^(7/18) 3654352962509977 a001 10610209857723/64079*73681302247^(4/13) 3654352962509977 a001 86267571272/64079*73681302247^(1/2) 3654352962509977 a001 53316291173/64079*817138163596^(9/19) 3654352962509977 a001 1548008755920/64079*73681302247^(5/13) 3654352962509977 a001 225851433717/64079*73681302247^(6/13) 3654352962509977 a001 53316291173/64079*192900153618^(1/2) 3654352962509977 a001 20365011074/64079*1322157322203^(1/2) 3654352962509977 a001 1548008755920/64079*28143753123^(2/5) 3654352962509977 a001 139583862445/64079*28143753123^(1/2) 3654352962509977 a001 10610209857723/64079*10749957122^(1/3) 3654352962509977 a001 4052739537881/64079*10749957122^(3/8) 3654352962509977 a001 7778742049/64079*9062201101803^(1/2) 3654352962509977 a001 1548008755920/64079*10749957122^(5/12) 3654352962509977 a001 956722026041/64079*10749957122^(7/16) 3654352962509977 a001 591286729879/64079*10749957122^(11/24) 3654352962509977 a001 12586269025/64079*10749957122^(5/8) 3654352962509977 a001 225851433717/64079*10749957122^(1/2) 3654352962509977 a001 86267571272/64079*10749957122^(13/24) 3654352962509977 a001 32951280099/64079*10749957122^(7/12) 3654352962509977 a001 53316291173/64079*10749957122^(9/16) 3654352962509977 a001 10610209857723/64079*4106118243^(8/23) 3654352962509977 a001 2971215073/64079*45537549124^(11/17) 3654352962509977 a001 2971215073/64079*312119004989^(3/5) 3654352962509977 a001 2971215073/64079*14662949395604^(11/21) 3654352962509977 a001 2971215073/64079*192900153618^(11/18) 3654352962509977 a001 4052739537881/64079*4106118243^(9/23) 3654352962509977 a001 1548008755920/64079*4106118243^(10/23) 3654352962509977 a001 591286729879/64079*4106118243^(11/23) 3654352962509977 a001 2971215073/64079*10749957122^(11/16) 3654352962509977 a001 365435296162/64079*4106118243^(1/2) 3654352962509977 a001 225851433717/64079*4106118243^(12/23) 3654352962509977 a001 4807526976/64079*4106118243^(16/23) 3654352962509977 a001 86267571272/64079*4106118243^(13/23) 3654352962509977 a001 1134903170/64079*2537720636^(7/9) 3654352962509977 a001 32951280099/64079*4106118243^(14/23) 3654352962509977 a001 12586269025/64079*4106118243^(15/23) 3654352962509977 a001 10610209857723/64079*1568397607^(4/11) 3654352962509977 a001 1134903170/64079*17393796001^(5/7) 3654352962509977 a001 1134903170/64079*312119004989^(7/11) 3654352962509977 a001 1134903170/64079*14662949395604^(5/9) 3654352962509977 a001 1134903170/64079*505019158607^(5/8) 3654352962509977 a001 1134903170/64079*28143753123^(7/10) 3654352962509977 a001 4052739537881/64079*1568397607^(9/22) 3654352962509977 a001 1548008755920/64079*1568397607^(5/11) 3654352962509977 a001 591286729879/64079*1568397607^(1/2) 3654352962509977 a001 225851433717/64079*1568397607^(6/11) 3654352962509977 a001 86267571272/64079*1568397607^(13/22) 3654352962509977 a001 28657*1568397607^(17/22) 3654352962509977 a001 32951280099/64079*1568397607^(7/11) 3654352962509977 a001 12586269025/64079*1568397607^(15/22) 3654352962509977 a001 4807526976/64079*1568397607^(8/11) 3654352962509977 a001 2971215073/64079*1568397607^(3/4) 3654352962509977 a001 10610209857723/64079*599074578^(8/21) 3654352962509977 a001 4052739537881/64079*599074578^(3/7) 3654352962509977 a001 1548008755920/64079*599074578^(10/21) 3654352962509977 a001 956722026041/64079*599074578^(1/2) 3654352962509977 a001 591286729879/64079*599074578^(11/21) 3654352962509977 a001 225851433717/64079*599074578^(4/7) 3654352962509977 a001 86267571272/64079*599074578^(13/21) 3654352962509977 a001 53316291173/64079*599074578^(9/14) 3654352962509977 a001 32951280099/64079*599074578^(2/3) 3654352962509977 a001 701408733/64079*599074578^(6/7) 3654352962509977 a001 12586269025/64079*599074578^(5/7) 3654352962509977 a001 4807526976/64079*599074578^(16/21) 3654352962509977 a001 28657*599074578^(17/21) 3654352962509977 a001 2971215073/64079*599074578^(11/14) 3654352962509977 a001 1134903170/64079*599074578^(5/6) 3654352962509977 a001 165580141/64079*2537720636^(13/15) 3654352962509977 a001 165580141/64079*45537549124^(13/17) 3654352962509977 a001 165580141/64079*14662949395604^(13/21) 3654352962509977 a001 165580141/64079*192900153618^(13/18) 3654352962509977 a001 165580141/64079*73681302247^(3/4) 3654352962509977 a001 165580141/64079*10749957122^(13/16) 3654352962509977 a001 10610209857723/64079*228826127^(2/5) 3654352962509977 a001 4052739537881/64079*228826127^(9/20) 3654352962509977 a001 1548008755920/64079*228826127^(1/2) 3654352962509977 a001 165580141/64079*599074578^(13/14) 3654352962509977 a001 591286729879/64079*228826127^(11/20) 3654352962509977 a001 225851433717/64079*228826127^(3/5) 3654352962509977 a001 139583862445/64079*228826127^(5/8) 3654352962509977 a001 86267571272/64079*228826127^(13/20) 3654352962509977 a001 32951280099/64079*228826127^(7/10) 3654352962509977 a001 12586269025/64079*228826127^(3/4) 3654352962509977 a001 4807526976/64079*228826127^(4/5) 3654352962509977 a001 267914296/64079*228826127^(19/20) 3654352962509977 a001 28657*228826127^(17/20) 3654352962509977 a001 701408733/64079*228826127^(9/10) 3654352962509977 a001 1134903170/64079*228826127^(7/8) 3654352962509977 a001 10610209857723/64079*87403803^(8/19) 3654352962509977 a001 4052739537881/64079*87403803^(9/19) 3654352962509977 a001 2504730781961/64079*87403803^(1/2) 3654352962509977 a001 1548008755920/64079*87403803^(10/19) 3654352962509977 a001 591286729879/64079*87403803^(11/19) 3654352962509977 a001 225851433717/64079*87403803^(12/19) 3654352962509977 a001 86267571272/64079*87403803^(13/19) 3654352962509977 a001 32951280099/64079*87403803^(14/19) 3654352962509977 a001 12586269025/64079*87403803^(15/19) 3654352962509977 a001 4807526976/64079*87403803^(16/19) 3654352962509977 a001 28657*87403803^(17/19) 3654352962509977 a001 701408733/64079*87403803^(18/19) 3654352962509978 a001 10610209857723/64079*33385282^(4/9) 3654352962509979 a001 4052739537881/64079*33385282^(1/2) 3654352962509979 a001 1548008755920/64079*33385282^(5/9) 3654352962509979 a001 956722026041/64079*33385282^(7/12) 3654352962509979 a001 591286729879/64079*33385282^(11/18) 3654352962509979 a001 225851433717/64079*33385282^(2/3) 3654352962509979 a001 86267571272/64079*33385282^(13/18) 3654352962509979 a001 53316291173/64079*33385282^(3/4) 3654352962509980 a001 32951280099/64079*33385282^(7/9) 3654352962509980 a001 12586269025/64079*33385282^(5/6) 3654352962509980 a001 4807526976/64079*33385282^(8/9) 3654352962509980 a001 2971215073/64079*33385282^(11/12) 3654352962509980 a001 28657*33385282^(17/18) 3654352962509986 a001 9227465/64079*45537549124^(15/17) 3654352962509986 a001 9227465/64079*312119004989^(9/11) 3654352962509986 a001 9227465/64079*14662949395604^(5/7) 3654352962509986 a001 9227465/64079*192900153618^(5/6) 3654352962509986 a001 9227465/64079*28143753123^(9/10) 3654352962509986 a001 9227465/64079*10749957122^(15/16) 3654352962509988 a001 10610209857723/64079*12752043^(8/17) 3654352962509988 a001 6557470319842/64079*12752043^(1/2) 3654352962509989 a001 4052739537881/64079*12752043^(9/17) 3654352962509990 a001 1548008755920/64079*12752043^(10/17) 3654352962509992 a001 591286729879/64079*12752043^(11/17) 3654352962509993 a001 225851433717/64079*12752043^(12/17) 3654352962509994 a001 86267571272/64079*12752043^(13/17) 3654352962509996 a001 32951280099/64079*12752043^(14/17) 3654352962509997 a001 12586269025/64079*12752043^(15/17) 3654352962509998 a001 4807526976/64079*12752043^(16/17) 3654352962510054 a001 10610209857723/64079*4870847^(1/2) 3654352962510064 a001 4052739537881/64079*4870847^(9/16) 3654352962510073 a001 1548008755920/64079*4870847^(5/8) 3654352962510083 a001 591286729879/64079*4870847^(11/16) 3654352962510093 a001 225851433717/64079*4870847^(3/4) 3654352962510102 a001 86267571272/64079*4870847^(13/16) 3654352962510112 a001 32951280099/64079*4870847^(7/8) 3654352962510121 a001 12586269025/64079*4870847^(15/16) 3654352962510380 a001 1346269/64079*14662949395604^(7/9) 3654352962510380 a001 1346269/64079*505019158607^(7/8) 3654352962510540 a001 10610209857723/64079*1860498^(8/15) 3654352962510610 a001 4052739537881/64079*1860498^(3/5) 3654352962510681 a001 1548008755920/64079*1860498^(2/3) 3654352962510716 a001 956722026041/64079*1860498^(7/10) 3654352962510751 a001 591286729879/64079*1860498^(11/15) 3654352962510822 a001 225851433717/64079*1860498^(4/5) 3654352962510857 a001 139583862445/64079*1860498^(5/6) 3654352962510892 a001 86267571272/64079*1860498^(13/15) 3654352962510927 a001 53316291173/64079*1860498^(9/10) 3654352962510962 a001 32951280099/64079*1860498^(14/15) 3654352962511033 a001 304056783892768011/832040 3654352962512741 a001 514229/64079*817138163596^(17/19) 3654352962512741 a001 514229/64079*14662949395604^(17/21) 3654352962512741 a001 514229/64079*192900153618^(17/18) 3654352962514112 a001 10610209857723/64079*710647^(4/7) 3654352962514629 a001 4052739537881/64079*710647^(9/14) 3654352962515146 a001 1548008755920/64079*710647^(5/7) 3654352962515404 a001 956722026041/64079*710647^(3/4) 3654352962515663 a001 591286729879/64079*710647^(11/14) 3654352962516179 a001 225851433717/64079*710647^(6/7) 3654352962516696 a001 86267571272/64079*710647^(13/14) 3654352962517213 a001 116139356937055817/317811 3654352962540498 a001 10610209857723/64079*271443^(8/13) 3654352962544313 a001 4052739537881/64079*271443^(9/13) 3654352962548128 a001 1548008755920/64079*271443^(10/13) 3654352962551944 a001 591286729879/64079*271443^(11/13) 3654352962555759 a001 225851433717/64079*271443^(12/13) 3654352962559574 a001 44361286918399440/121393 3654352962639823 a001 75025/64079*3461452808002^(11/12) 3654352962736604 a001 10610209857723/64079*103682^(2/3) 3654352962750769 a001 6557470319842/64079*103682^(17/24) 3654352962764933 a001 4052739537881/64079*103682^(3/4) 3654352962779097 a001 2504730781961/64079*103682^(19/24) 3654352962781904 a001 2504730781961/24476*24476^(17/21) 3654352962793261 a001 1548008755920/64079*103682^(5/6) 3654352962807426 a001 956722026041/64079*103682^(7/8) 3654352962821590 a001 591286729879/64079*103682^(11/12) 3654352962835754 a001 365435296162/64079*103682^(23/24) 3654352962849918 a001 16944503818142503/46368 3654352963072380 a001 4052739537881/24476*24476^(16/21) 3654352963080506 a001 225749145909/2206*39603^(17/22) 3654352963186415 a001 3278735159921/51841*39603^(9/11) 3654352963292324 a001 4052739537881/103682*39603^(19/22) 3654352963362856 a001 3278735159921/12238*24476^(5/7) 3654352963398232 a001 2504730781961/103682*39603^(10/11) 3654352963399955 a001 28657/64079*14662949395604^(19/21) 3654352963504141 a001 774004377960/51841*39603^(21/22) 3654352963582668 a001 3536736619241/90481*39603^(19/22) 3654352963610050 a001 72721623975840/199 3654352963653332 a001 10610209857723/24476*24476^(2/3) 3654352963656202 a001 10610209857723/167761*39603^(9/11) 3654352963688577 a001 6557470319842/271443*39603^(10/11) 3654352963757118 a001 10610209857723/439204*39603^(10/11) 3654352963762111 a001 6557470319842/167761*39603^(19/22) 3654352963794485 a001 4052739537881/271443*39603^(21/22) 3654352963820526 a001 591286729879/9349*9349^(18/19) 3654352963836846 a001 1515744265389/101521*39603^(21/22) 3654352963863026 a001 3278735159921/219602*39603^(21/22) 3654352963868019 a001 4052739537881/167761*39603^(10/11) 3654352963900394 a001 6472224534363989/17711 3654352963942755 a001 6472224534439014/17711 3654352963948935 a001 6472224534449960/17711 3654352963949837 a001 6472224534451557/17711 3654352963949968 a001 6472224534451790/17711 3654352963949988 a001 6472224534451824/17711 3654352963949990 a001 6472224534451829/17711 3654352963949991 a001 6472224534451830/17711 3654352963949992 a001 6472224534451832/17711 3654352963950050 a001 72721623982606/199 3654352963950394 a001 6472224534452544/17711 3654352963952755 a001 6472224534456725/17711 3654352963968935 a001 6472224534485382/17711 3654352963973928 a001 2504730781961/167761*39603^(21/22) 3654352964079837 a001 6472224534681800/17711 3654352964204516 a001 10610209857723/64079*39603^(8/11) 3654352964310425 a001 6557470319842/64079*39603^(17/22) 3654352964416334 a001 4052739537881/64079*39603^(9/11) 3654352964522242 a001 2504730781961/64079*39603^(19/22) 3654352964628151 a001 1548008755920/64079*39603^(10/11) 3654352964734060 a001 956722026041/64079*39603^(21/22) 3654352964839968 a001 6472224536028069/17711 3654352965390005 a001 17711/24476*14662949395604^(8/9) 3654352966021052 a001 956722026041/9349*9349^(17/19) 3654352966830019 a001 10472279297044786/28657 3654352966868713 a001 7787980473/844*64079^(22/23) 3654352966907408 a001 182717648081/12238*64079^(21/23) 3654352966946103 a001 591286729879/24476*64079^(20/23) 3654352966984797 a001 956722026041/24476*64079^(19/23) 3654352967023492 a001 387002188980/6119*64079^(18/23) 3654352967062187 a001 2504730781961/24476*64079^(17/23) 3654352967100881 a001 4052739537881/24476*64079^(16/23) 3654352967139576 a001 3278735159921/12238*64079^(15/23) 3654352967178271 a001 10610209857723/24476*64079^(14/23) 3654352967380055 a001 5473/51841*14662949395604^(20/21) 3654352967380055 a001 11592/6119*14662949395604^(6/7) 3654352967590150 a001 27416783139345106/75025 3654352967616119 a001 591286729879/24476*167761^(4/5) 3654352967642089 a001 3278735159921/12238*167761^(3/5) 3654352967670399 a001 121393/24476*23725150497407^(13/16) 3654352967670399 a001 121393/24476*505019158607^(13/14) 3654352967701052 a001 2111119709440898/5777 3654352967703157 a001 21566892818/6119*439204^(8/9) 3654352967705262 a001 182717648081/12238*439204^(7/9) 3654352967707367 a001 387002188980/6119*439204^(2/3) 3654352967709472 a001 3278735159921/12238*439204^(5/9) 3654352967712760 a001 10959/844*312119004989^(10/11) 3654352967712760 a001 10959/844*3461452808002^(5/6) 3654352967718941 a001 208010/6119*45537549124^(16/17) 3654352967718941 a001 208010/6119*14662949395604^(16/21) 3654352967718941 a001 208010/6119*192900153618^(8/9) 3654352967718941 a001 208010/6119*73681302247^(12/13) 3654352967719842 a001 2178309/24476*10749957122^(23/24) 3654352967719943 a001 1201881744/6119*7881196^(10/11) 3654352967719948 a001 10182505537/12238*7881196^(9/11) 3654352967719953 a001 21566892818/6119*7881196^(8/11) 3654352967719957 a001 7787980473/844*7881196^(2/3) 3654352967719959 a001 182717648081/12238*7881196^(7/11) 3654352967719964 a001 387002188980/6119*7881196^(6/11) 3654352967719969 a001 3278735159921/12238*7881196^(5/11) 3654352967719974 a001 5702887/24476*312119004989^(4/5) 3654352967719974 a001 5702887/24476*23725150497407^(11/16) 3654352967719974 a001 5702887/24476*73681302247^(11/13) 3654352967719974 a001 5702887/24476*10749957122^(11/12) 3654352967719974 a001 5702887/24476*4106118243^(22/23) 3654352967719989 a001 1201881744/6119*20633239^(6/7) 3654352967719989 a001 12586269025/24476*20633239^(4/5) 3654352967719990 a001 53316291173/24476*20633239^(5/7) 3654352967719991 a001 182717648081/12238*20633239^(3/5) 3654352967719991 a001 591286729879/24476*20633239^(4/7) 3654352967719993 a001 3278735159921/12238*20633239^(3/7) 3654352967719993 a001 10610209857723/24476*20633239^(2/5) 3654352967719993 a001 3732588/6119*2537720636^(14/15) 3654352967719993 a001 3732588/6119*17393796001^(6/7) 3654352967719993 a001 3732588/6119*45537549124^(14/17) 3654352967719993 a001 3732588/6119*14662949395604^(2/3) 3654352967719993 a001 3732588/6119*505019158607^(3/4) 3654352967719993 a001 3732588/6119*192900153618^(7/9) 3654352967719993 a001 3732588/6119*10749957122^(7/8) 3654352967719993 a001 3732588/6119*4106118243^(21/23) 3654352967719993 a001 3732588/6119*1568397607^(21/22) 3654352967719996 a001 39088169/24476*2537720636^(8/9) 3654352967719996 a001 39088169/24476*312119004989^(8/11) 3654352967719996 a001 39088169/24476*23725150497407^(5/8) 3654352967719996 a001 39088169/24476*73681302247^(10/13) 3654352967719996 a001 39088169/24476*28143753123^(4/5) 3654352967719996 a001 39088169/24476*10749957122^(5/6) 3654352967719996 a001 39088169/24476*4106118243^(20/23) 3654352967719996 a001 39088169/24476*1568397607^(10/11) 3654352967719996 a001 39088169/24476*599074578^(20/21) 3654352967719996 a001 10946*141422324^(12/13) 3654352967719996 a001 567451585/12238*141422324^(11/13) 3654352967719996 a001 1201881744/6119*141422324^(10/13) 3654352967719996 a001 10182505537/12238*141422324^(9/13) 3654352967719996 a001 32951280099/24476*141422324^(2/3) 3654352967719996 a001 21566892818/6119*141422324^(8/13) 3654352967719996 a001 182717648081/12238*141422324^(7/13) 3654352967719996 a001 387002188980/6119*141422324^(6/13) 3654352967719996 a001 3278735159921/12238*141422324^(5/13) 3654352967719996 a001 102334155/24476*817138163596^(2/3) 3654352967719996 a001 102334155/24476*10749957122^(19/24) 3654352967719996 a001 102334155/24476*4106118243^(19/23) 3654352967719996 a001 102334155/24476*1568397607^(19/22) 3654352967719996 a001 102334155/24476*599074578^(19/21) 3654352967719996 a001 10946*2537720636^(4/5) 3654352967719996 a001 10946*45537549124^(12/17) 3654352967719996 a001 10946*14662949395604^(4/7) 3654352967719996 a001 10946*505019158607^(9/14) 3654352967719996 a001 10946*192900153618^(2/3) 3654352967719996 a001 10946*73681302247^(9/13) 3654352967719996 a001 10946*10749957122^(3/4) 3654352967719996 a001 10946*4106118243^(18/23) 3654352967719996 a001 10946*1568397607^(9/11) 3654352967719996 a001 102334155/24476*228826127^(19/20) 3654352967719996 a001 701408733/24476*45537549124^(2/3) 3654352967719996 a001 701408733/24476*10749957122^(17/24) 3654352967719996 a001 10946*599074578^(6/7) 3654352967719996 a001 701408733/24476*4106118243^(17/23) 3654352967719996 a001 1201881744/6119*2537720636^(2/3) 3654352967719996 a001 10182505537/12238*2537720636^(3/5) 3654352967719996 a001 701408733/24476*1568397607^(17/22) 3654352967719996 a001 53316291173/24476*2537720636^(5/9) 3654352967719996 a001 21566892818/6119*2537720636^(8/15) 3654352967719996 a001 182717648081/12238*2537720636^(7/15) 3654352967719996 a001 591286729879/24476*2537720636^(4/9) 3654352967719996 a001 387002188980/6119*2537720636^(2/5) 3654352967719996 a001 1836311903/24476*23725150497407^(1/2) 3654352967719996 a001 1836311903/24476*505019158607^(4/7) 3654352967719996 a001 1836311903/24476*73681302247^(8/13) 3654352967719996 a001 1836311903/24476*10749957122^(2/3) 3654352967719996 a001 3278735159921/12238*2537720636^(1/3) 3654352967719996 a001 1836311903/24476*4106118243^(16/23) 3654352967719996 a001 1201881744/6119*45537549124^(10/17) 3654352967719996 a001 1201881744/6119*312119004989^(6/11) 3654352967719996 a001 1201881744/6119*14662949395604^(10/21) 3654352967719996 a001 1201881744/6119*192900153618^(5/9) 3654352967719996 a001 1201881744/6119*28143753123^(3/5) 3654352967719996 a001 1201881744/6119*10749957122^(5/8) 3654352967719996 a001 12586269025/24476*17393796001^(4/7) 3654352967719996 a001 182717648081/12238*17393796001^(3/7) 3654352967719996 a001 12586269025/24476*14662949395604^(4/9) 3654352967719996 a001 12586269025/24476*505019158607^(1/2) 3654352967719996 a001 12586269025/24476*73681302247^(7/13) 3654352967719996 a001 10610209857723/24476*17393796001^(2/7) 3654352967719996 a001 21566892818/6119*45537549124^(8/17) 3654352967719996 a001 182717648081/12238*45537549124^(7/17) 3654352967719996 a001 387002188980/6119*45537549124^(6/17) 3654352967719996 a001 2504730781961/24476*45537549124^(1/3) 3654352967719996 a001 3278735159921/12238*45537549124^(5/17) 3654352967719996 a001 32951280099/24476*73681302247^(1/2) 3654352967719996 a001 21566892818/6119*14662949395604^(8/21) 3654352967719996 a001 21566892818/6119*192900153618^(4/9) 3654352967719996 a001 7787980473/844*312119004989^(2/5) 3654352967719996 a001 3278735159921/12238*312119004989^(3/11) 3654352967719996 a001 10610209857723/24476*14662949395604^(2/9) 3654352967719996 a001 3278735159921/12238*14662949395604^(5/21) 3654352967719996 a001 182717648081/12238*14662949395604^(1/3) 3654352967719996 a001 3278735159921/12238*192900153618^(5/18) 3654352967719996 a001 387002188980/6119*192900153618^(1/3) 3654352967719996 a001 182717648081/12238*192900153618^(7/18) 3654352967719996 a001 4052739537881/24476*73681302247^(4/13) 3654352967719996 a001 21566892818/6119*73681302247^(6/13) 3654352967719996 a001 53316291173/24476*312119004989^(5/11) 3654352967719996 a001 53316291173/24476*3461452808002^(5/12) 3654352967719996 a001 10182505537/12238*45537549124^(9/17) 3654352967719996 a001 3278735159921/12238*28143753123^(3/10) 3654352967719996 a001 10182505537/12238*817138163596^(9/19) 3654352967719996 a001 10182505537/12238*14662949395604^(3/7) 3654352967719996 a001 10182505537/12238*192900153618^(1/2) 3654352967719996 a001 591286729879/24476*28143753123^(2/5) 3654352967719996 a001 53316291173/24476*28143753123^(1/2) 3654352967719996 a001 10610209857723/24476*10749957122^(7/24) 3654352967719996 a001 3278735159921/12238*10749957122^(5/16) 3654352967719996 a001 4052739537881/24476*10749957122^(1/3) 3654352967719996 a001 387002188980/6119*10749957122^(3/8) 3654352967719996 a001 7778742049/24476*1322157322203^(1/2) 3654352967719996 a001 591286729879/24476*10749957122^(5/12) 3654352967719996 a001 12586269025/24476*10749957122^(7/12) 3654352967719996 a001 182717648081/12238*10749957122^(7/16) 3654352967719996 a001 7787980473/844*10749957122^(11/24) 3654352967719996 a001 21566892818/6119*10749957122^(1/2) 3654352967719996 a001 32951280099/24476*10749957122^(13/24) 3654352967719996 a001 10182505537/12238*10749957122^(9/16) 3654352967719996 a001 10610209857723/24476*4106118243^(7/23) 3654352967719996 a001 4052739537881/24476*4106118243^(8/23) 3654352967719996 a001 2971215073/24476*9062201101803^(1/2) 3654352967719996 a001 387002188980/6119*4106118243^(9/23) 3654352967719996 a001 591286729879/24476*4106118243^(10/23) 3654352967719996 a001 7787980473/844*4106118243^(11/23) 3654352967719996 a001 139583862445/24476*4106118243^(1/2) 3654352967719996 a001 1201881744/6119*4106118243^(15/23) 3654352967719996 a001 21566892818/6119*4106118243^(12/23) 3654352967719996 a001 32951280099/24476*4106118243^(13/23) 3654352967719996 a001 12586269025/24476*4106118243^(14/23) 3654352967719996 a001 567451585/12238*2537720636^(11/15) 3654352967719996 a001 10610209857723/24476*1568397607^(7/22) 3654352967719996 a001 4052739537881/24476*1568397607^(4/11) 3654352967719996 a001 567451585/12238*45537549124^(11/17) 3654352967719996 a001 567451585/12238*312119004989^(3/5) 3654352967719996 a001 567451585/12238*817138163596^(11/19) 3654352967719996 a001 567451585/12238*14662949395604^(11/21) 3654352967719996 a001 567451585/12238*192900153618^(11/18) 3654352967719996 a001 567451585/12238*10749957122^(11/16) 3654352967719996 a001 387002188980/6119*1568397607^(9/22) 3654352967719996 a001 591286729879/24476*1568397607^(5/11) 3654352967719996 a001 7787980473/844*1568397607^(1/2) 3654352967719996 a001 21566892818/6119*1568397607^(6/11) 3654352967719996 a001 1836311903/24476*1568397607^(8/11) 3654352967719996 a001 32951280099/24476*1568397607^(13/22) 3654352967719996 a001 12586269025/24476*1568397607^(7/11) 3654352967719996 a001 1201881744/6119*1568397607^(15/22) 3654352967719996 a001 567451585/12238*1568397607^(3/4) 3654352967719996 a001 10610209857723/24476*599074578^(1/3) 3654352967719996 a001 433494437/24476*2537720636^(7/9) 3654352967719996 a001 3278735159921/12238*599074578^(5/14) 3654352967719996 a001 4052739537881/24476*599074578^(8/21) 3654352967719996 a001 433494437/24476*17393796001^(5/7) 3654352967719996 a001 433494437/24476*312119004989^(7/11) 3654352967719996 a001 433494437/24476*14662949395604^(5/9) 3654352967719996 a001 433494437/24476*505019158607^(5/8) 3654352967719996 a001 433494437/24476*28143753123^(7/10) 3654352967719996 a001 387002188980/6119*599074578^(3/7) 3654352967719996 a001 591286729879/24476*599074578^(10/21) 3654352967719996 a001 182717648081/12238*599074578^(1/2) 3654352967719996 a001 7787980473/844*599074578^(11/21) 3654352967719996 a001 21566892818/6119*599074578^(4/7) 3654352967719996 a001 32951280099/24476*599074578^(13/21) 3654352967719996 a001 10182505537/12238*599074578^(9/14) 3654352967719996 a001 701408733/24476*599074578^(17/21) 3654352967719996 a001 12586269025/24476*599074578^(2/3) 3654352967719996 a001 1201881744/6119*599074578^(5/7) 3654352967719996 a001 1836311903/24476*599074578^(16/21) 3654352967719996 a001 567451585/12238*599074578^(11/14) 3654352967719996 a001 433494437/24476*599074578^(5/6) 3654352967719996 a001 10610209857723/24476*228826127^(7/20) 3654352967719996 a001 3278735159921/12238*228826127^(3/8) 3654352967719996 a001 4052739537881/24476*228826127^(2/5) 3654352967719996 a001 387002188980/6119*228826127^(9/20) 3654352967719996 a001 591286729879/24476*228826127^(1/2) 3654352967719996 a001 7787980473/844*228826127^(11/20) 3654352967719996 a001 21566892818/6119*228826127^(3/5) 3654352967719996 a001 53316291173/24476*228826127^(5/8) 3654352967719996 a001 32951280099/24476*228826127^(13/20) 3654352967719996 a001 12586269025/24476*228826127^(7/10) 3654352967719996 a001 1201881744/6119*228826127^(3/4) 3654352967719996 a001 10946*228826127^(9/10) 3654352967719996 a001 1836311903/24476*228826127^(4/5) 3654352967719996 a001 701408733/24476*228826127^(17/20) 3654352967719996 a001 433494437/24476*228826127^(7/8) 3654352967719996 a001 10610209857723/24476*87403803^(7/19) 3654352967719996 a001 31622993/12238*2537720636^(13/15) 3654352967719996 a001 31622993/12238*45537549124^(13/17) 3654352967719996 a001 31622993/12238*14662949395604^(13/21) 3654352967719996 a001 31622993/12238*192900153618^(13/18) 3654352967719996 a001 31622993/12238*73681302247^(3/4) 3654352967719996 a001 31622993/12238*10749957122^(13/16) 3654352967719996 a001 31622993/12238*599074578^(13/14) 3654352967719996 a001 4052739537881/24476*87403803^(8/19) 3654352967719996 a001 387002188980/6119*87403803^(9/19) 3654352967719996 a001 956722026041/24476*87403803^(1/2) 3654352967719996 a001 591286729879/24476*87403803^(10/19) 3654352967719997 a001 7787980473/844*87403803^(11/19) 3654352967719997 a001 21566892818/6119*87403803^(12/19) 3654352967719997 a001 32951280099/24476*87403803^(13/19) 3654352967719997 a001 12586269025/24476*87403803^(14/19) 3654352967719997 a001 1201881744/6119*87403803^(15/19) 3654352967719997 a001 1836311903/24476*87403803^(16/19) 3654352967719997 a001 701408733/24476*87403803^(17/19) 3654352967719997 a001 10946*87403803^(18/19) 3654352967719998 a001 10610209857723/24476*33385282^(7/18) 3654352967719998 a001 3278735159921/12238*33385282^(5/12) 3654352967719998 a001 4052739537881/24476*33385282^(4/9) 3654352967719998 a001 387002188980/6119*33385282^(1/2) 3654352967719998 a001 591286729879/24476*33385282^(5/9) 3654352967719998 a001 182717648081/12238*33385282^(7/12) 3654352967719998 a001 7787980473/844*33385282^(11/18) 3654352967719998 a001 21566892818/6119*33385282^(2/3) 3654352967719999 a001 32951280099/24476*33385282^(13/18) 3654352967719999 a001 10182505537/12238*33385282^(3/4) 3654352967719999 a001 12586269025/24476*33385282^(7/9) 3654352967719999 a001 1201881744/6119*33385282^(5/6) 3654352967719999 a001 1836311903/24476*33385282^(8/9) 3654352967719999 a001 567451585/12238*33385282^(11/12) 3654352967719999 a001 701408733/24476*33385282^(17/18) 3654352967720005 a001 10610209857723/24476*12752043^(7/17) 3654352967720007 a001 4052739537881/24476*12752043^(8/17) 3654352967720007 a001 2504730781961/24476*12752043^(1/2) 3654352967720008 a001 387002188980/6119*12752043^(9/17) 3654352967720009 a001 591286729879/24476*12752043^(10/17) 3654352967720011 a001 7787980473/844*12752043^(11/17) 3654352967720012 a001 21566892818/6119*12752043^(12/17) 3654352967720013 a001 32951280099/24476*12752043^(13/17) 3654352967720015 a001 12586269025/24476*12752043^(14/17) 3654352967720016 a001 1201881744/6119*12752043^(15/17) 3654352967720017 a001 1836311903/24476*12752043^(16/17) 3654352967720055 a001 1762289/12238*45537549124^(15/17) 3654352967720055 a001 1762289/12238*312119004989^(9/11) 3654352967720055 a001 1762289/12238*14662949395604^(5/7) 3654352967720055 a001 1762289/12238*192900153618^(5/6) 3654352967720055 a001 1762289/12238*28143753123^(9/10) 3654352967720055 a001 1762289/12238*10749957122^(15/16) 3654352967720064 a001 10610209857723/24476*4870847^(7/16) 3654352967720073 a001 4052739537881/24476*4870847^(1/2) 3654352967720083 a001 387002188980/6119*4870847^(9/16) 3654352967720092 a001 591286729879/24476*4870847^(5/8) 3654352967720102 a001 7787980473/844*4870847^(11/16) 3654352967720112 a001 21566892818/6119*4870847^(3/4) 3654352967720121 a001 32951280099/24476*4870847^(13/16) 3654352967720131 a001 12586269025/24476*4870847^(7/8) 3654352967720141 a001 1201881744/6119*4870847^(15/16) 3654352967720489 a001 10610209857723/24476*1860498^(7/15) 3654352967720524 a001 3278735159921/12238*1860498^(1/2) 3654352967720559 a001 4052739537881/24476*1860498^(8/15) 3654352967720630 a001 387002188980/6119*1860498^(3/5) 3654352967720700 a001 591286729879/24476*1860498^(2/3) 3654352967720735 a001 182717648081/12238*1860498^(7/10) 3654352967720770 a001 7787980473/844*1860498^(11/15) 3654352967720841 a001 21566892818/6119*1860498^(4/5) 3654352967720876 a001 53316291173/24476*1860498^(5/6) 3654352967720911 a001 32951280099/24476*1860498^(13/15) 3654352967720946 a001 10182505537/12238*1860498^(9/10) 3654352967720982 a001 12586269025/24476*1860498^(14/15) 3654352967722760 a001 514229/24476*14662949395604^(7/9) 3654352967722760 a001 514229/24476*505019158607^(7/8) 3654352967723614 a001 10610209857723/24476*710647^(1/2) 3654352967724131 a001 4052739537881/24476*710647^(4/7) 3654352967724648 a001 387002188980/6119*710647^(9/14) 3654352967725165 a001 591286729879/24476*710647^(5/7) 3654352967725423 a001 182717648081/12238*710647^(3/4) 3654352967725682 a001 7787980473/844*710647^(11/14) 3654352967726199 a001 21566892818/6119*710647^(6/7) 3654352967726715 a001 32951280099/24476*710647^(13/14) 3654352967727232 a001 2977932233400922/8149 3654352967738941 a001 98209/12238*817138163596^(17/19) 3654352967738941 a001 98209/12238*14662949395604^(17/21) 3654352967738941 a001 98209/12238*192900153618^(17/18) 3654352967746702 a001 10610209857723/24476*271443^(7/13) 3654352967750517 a001 4052739537881/24476*271443^(8/13) 3654352967754332 a001 387002188980/6119*271443^(9/13) 3654352967758148 a001 591286729879/24476*271443^(10/13) 3654352967761963 a001 7787980473/844*271443^(11/13) 3654352967765778 a001 21566892818/6119*271443^(12/13) 3654352967769593 a001 44361286981645426/121393 3654352967918295 a001 10610209857723/24476*103682^(7/12) 3654352967932459 a001 3278735159921/12238*103682^(5/8) 3654352967946624 a001 4052739537881/24476*103682^(2/3) 3654352967948700 a007 Real Root Of -902*x^4-355*x^3-992*x^2+273*x+231 3654352967960788 a001 2504730781961/24476*103682^(17/24) 3654352967974952 a001 387002188980/6119*103682^(3/4) 3654352967989116 a001 956722026041/24476*103682^(19/24) 3654352968003281 a001 591286729879/24476*103682^(5/6) 3654352968017445 a001 182717648081/12238*103682^(7/8) 3654352968031609 a001 7787980473/844*103682^(11/12) 3654352968045773 a001 139583862445/24476*103682^(23/24) 3654352968059937 a001 58835082785765/161 3654352968221578 a001 1548008755920/9349*9349^(16/19) 3654352968609974 a001 28657/24476*3461452808002^(11/12) 3654352969202718 a001 10610209857723/24476*39603^(7/11) 3654352969308627 a001 3278735159921/12238*39603^(15/22) 3654352969414535 a001 4052739537881/24476*39603^(8/11) 3654352969520444 a001 2504730781961/24476*39603^(17/22) 3654352969626353 a001 387002188980/6119*39603^(9/11) 3654352969732262 a001 956722026041/24476*39603^(19/22) 3654352969838170 a001 591286729879/24476*39603^(10/11) 3654352969944079 a001 182717648081/12238*39603^(21/22) 3654352970049988 a001 6472224545255534/17711 3654352970422105 a001 2504730781961/9349*9349^(15/19) 3654352971267507 a001 3536736619241/13201*15127^(3/4) 3654352972066007 a001 6557470319842/39603*15127^(4/5) 3654352972622631 a001 4052739537881/9349*9349^(14/19) 3654352972864507 a001 4052739537881/39603*15127^(17/20) 3654352973663007 a001 2504730781961/39603*15127^(9/10) 3654352973819993 a001 5473/12238*14662949395604^(19/21) 3654352974461507 a001 516002918640/13201*15127^(19/20) 3654352974823157 a001 6557470319842/9349*9349^(13/19) 3654352974854557 a001 225749145909/2206*15127^(17/20) 3654352975260007 a001 494433957552679/1353 3654352975285976 a001 10610209857723/64079*15127^(4/5) 3654352975653057 a001 3278735159921/51841*15127^(9/10) 3654352976084476 a001 6557470319842/64079*15127^(17/20) 3654352976122844 a001 10610209857723/167761*15127^(9/10) 3654352976451557 a001 4052739537881/103682*15127^(19/20) 3654352976741902 a001 3536736619241/90481*15127^(19/20) 3654352976882976 a001 4052739537881/64079*15127^(9/10) 3654352976921344 a001 6557470319842/167761*15127^(19/20) 3654352977023684 a001 10610209857723/9349*9349^(12/19) 3654352977250057 a001 824056596369888/2255 3654352977540402 a001 2472169789306082/6765 3654352977582762 a001 824056596444913/2255 3654352977588943 a001 44948541624344/123 3654352977589844 a001 164811319289302/451 3654352977589976 a001 2472169789339619/6765 3654352977589995 a001 824056596446544/2255 3654352977589998 a001 2472169789339634/6765 3654352977590007 a001 494433957867928/1353 3654352977590057 a001 824056596446558/2255 3654352977590402 a001 2472169789339907/6765 3654352977592762 a001 824056596447168/2255 3654352977608943 a001 44948541624590/123 3654352977681476 a001 2504730781961/64079*15127^(19/20) 3654352977719844 a001 164811319295165/451 3654352978477059 a001 591286729879/3571*3571^(16/17) 3654352978479976 a001 2472169789941704/6765 3654352978898995 a001 10610209857723/24476*15127^(7/10) 3654352979697495 a001 3278735159921/12238*15127^(3/4) 3654352980495995 a001 4052739537881/24476*15127^(4/5) 3654352981294495 a001 2504730781961/24476*15127^(17/20) 3654352982092995 a001 387002188980/6119*15127^(9/10) 3654352982891495 a001 956722026041/24476*15127^(19/20) 3654352983689995 a001 824056597822094/2255 3654352987460001 a001 6765/9349*14662949395604^(8/9) 3654352995334119 a001 956722026041/3571*3571^(15/17) 3654352997330002 a001 4000054790877421/10946 3654352997620479 a001 225851433717/9349*24476^(20/21) 3654352997910955 a001 365435296162/9349*24476^(19/21) 3654352998201431 a001 591286729879/9349*24476^(6/7) 3654352998491907 a001 956722026041/9349*24476^(17/21) 3654352998782383 a001 1548008755920/9349*24476^(16/21) 3654352999072859 a001 2504730781961/9349*24476^(5/7) 3654352999363335 a001 4052739537881/9349*24476^(2/3) 3654352999653811 a001 6557470319842/9349*24476^(13/21) 3654352999944287 a001 10610209857723/9349*24476^(4/7) 3654353001100008 a001 4181/39603*14662949395604^(20/21) 3654353001100008 a001 17711/9349*14662949395604^(6/7) 3654353002540021 a001 10472279399378941/28657 3654353002578717 a001 86267571272/9349*64079^(22/23) 3654353002617411 a001 139583862445/9349*64079^(21/23) 3654353002656106 a001 225851433717/9349*64079^(20/23) 3654353002694801 a001 365435296162/9349*64079^(19/23) 3654353002733495 a001 591286729879/9349*64079^(18/23) 3654353002772190 a001 956722026041/9349*64079^(17/23) 3654353002810885 a001 1548008755920/9349*64079^(16/23) 3654353002849579 a001 2504730781961/9349*64079^(15/23) 3654353002888274 a001 4052739537881/9349*64079^(14/23) 3654353002926969 a001 6557470319842/9349*64079^(13/23) 3654353002965663 a001 10610209857723/9349*64079^(12/23) 3654353003090058 a001 46368/9349*23725150497407^(13/16) 3654353003090058 a001 46368/9349*505019158607^(13/14) 3654353003226934 r005 Im(z^2+c),c=7/24+7/34*I,n=11 3654353003300153 a001 27416783407259402/75025 3654353003326123 a001 225851433717/9349*167761^(4/5) 3654353003352092 a001 2504730781961/9349*167761^(3/5) 3654353003380403 a001 121393/9349*312119004989^(10/11) 3654353003380403 a001 121393/9349*3461452808002^(5/6) 3654353003413160 a001 32951280099/9349*439204^(8/9) 3654353003415265 a001 139583862445/9349*439204^(7/9) 3654353003417370 a001 591286729879/9349*439204^(2/3) 3654353003419475 a001 2504730781961/9349*439204^(5/9) 3654353003421580 a001 10610209857723/9349*439204^(4/9) 3654353003422763 a001 317811/9349*45537549124^(16/17) 3654353003422763 a001 317811/9349*14662949395604^(16/21) 3654353003422763 a001 317811/9349*192900153618^(8/9) 3654353003422763 a001 317811/9349*73681302247^(12/13) 3654353003428944 a001 832040/9349*10749957122^(23/24) 3654353003429845 a001 2178309/9349*312119004989^(4/5) 3654353003429845 a001 2178309/9349*23725150497407^(11/16) 3654353003429845 a001 2178309/9349*73681302247^(11/13) 3654353003429845 a001 2178309/9349*10749957122^(11/12) 3654353003429845 a001 2178309/9349*4106118243^(22/23) 3654353003429946 a001 1836311903/9349*7881196^(10/11) 3654353003429951 a001 7778742049/9349*7881196^(9/11) 3654353003429957 a001 32951280099/9349*7881196^(8/11) 3654353003429960 a001 86267571272/9349*7881196^(2/3) 3654353003429962 a001 139583862445/9349*7881196^(7/11) 3654353003429967 a001 591286729879/9349*7881196^(6/11) 3654353003429973 a001 2504730781961/9349*7881196^(5/11) 3654353003429977 a001 5702887/9349*2537720636^(14/15) 3654353003429977 a001 5702887/9349*17393796001^(6/7) 3654353003429977 a001 5702887/9349*45537549124^(14/17) 3654353003429977 a001 5702887/9349*817138163596^(14/19) 3654353003429977 a001 5702887/9349*14662949395604^(2/3) 3654353003429977 a001 5702887/9349*505019158607^(3/4) 3654353003429977 a001 5702887/9349*192900153618^(7/9) 3654353003429977 a001 5702887/9349*10749957122^(7/8) 3654353003429977 a001 5702887/9349*4106118243^(21/23) 3654353003429977 a001 5702887/9349*1568397607^(21/22) 3654353003429978 a001 10610209857723/9349*7881196^(4/11) 3654353003429992 a001 1836311903/9349*20633239^(6/7) 3654353003429993 a001 4807526976/9349*20633239^(4/5) 3654353003429993 a001 20365011074/9349*20633239^(5/7) 3654353003429994 a001 139583862445/9349*20633239^(3/5) 3654353003429995 a001 225851433717/9349*20633239^(4/7) 3654353003429996 a001 2504730781961/9349*20633239^(3/7) 3654353003429996 a001 4052739537881/9349*20633239^(2/5) 3654353003429996 a001 14930352/9349*2537720636^(8/9) 3654353003429996 a001 14930352/9349*312119004989^(8/11) 3654353003429996 a001 14930352/9349*23725150497407^(5/8) 3654353003429996 a001 14930352/9349*73681302247^(10/13) 3654353003429996 a001 14930352/9349*28143753123^(4/5) 3654353003429996 a001 14930352/9349*10749957122^(5/6) 3654353003429996 a001 14930352/9349*4106118243^(20/23) 3654353003429996 a001 14930352/9349*1568397607^(10/11) 3654353003429996 a001 14930352/9349*599074578^(20/21) 3654353003429999 a001 4181*817138163596^(2/3) 3654353003429999 a001 4181*10749957122^(19/24) 3654353003429999 a001 4181*4106118243^(19/23) 3654353003429999 a001 4181*1568397607^(19/22) 3654353003429999 a001 4181*599074578^(19/21) 3654353003429999 a001 4181*228826127^(19/20) 3654353003429999 a001 102334155/9349*141422324^(12/13) 3654353003429999 a001 433494437/9349*141422324^(11/13) 3654353003429999 a001 1836311903/9349*141422324^(10/13) 3654353003429999 a001 7778742049/9349*141422324^(9/13) 3654353003429999 a001 12586269025/9349*141422324^(2/3) 3654353003429999 a001 32951280099/9349*141422324^(8/13) 3654353003429999 a001 139583862445/9349*141422324^(7/13) 3654353003429999 a001 591286729879/9349*141422324^(6/13) 3654353003429999 a001 2504730781961/9349*141422324^(5/13) 3654353003429999 a001 102334155/9349*2537720636^(4/5) 3654353003429999 a001 102334155/9349*45537549124^(12/17) 3654353003429999 a001 102334155/9349*14662949395604^(4/7) 3654353003429999 a001 102334155/9349*505019158607^(9/14) 3654353003429999 a001 102334155/9349*192900153618^(2/3) 3654353003429999 a001 102334155/9349*73681302247^(9/13) 3654353003429999 a001 102334155/9349*10749957122^(3/4) 3654353003429999 a001 102334155/9349*4106118243^(18/23) 3654353003429999 a001 102334155/9349*1568397607^(9/11) 3654353003429999 a001 102334155/9349*599074578^(6/7) 3654353003429999 a001 6557470319842/9349*141422324^(1/3) 3654353003429999 a001 10610209857723/9349*141422324^(4/13) 3654353003429999 a001 267914296/9349*45537549124^(2/3) 3654353003429999 a001 267914296/9349*10749957122^(17/24) 3654353003429999 a001 267914296/9349*4106118243^(17/23) 3654353003429999 a001 267914296/9349*1568397607^(17/22) 3654353003429999 a001 102334155/9349*228826127^(9/10) 3654353003429999 a001 267914296/9349*599074578^(17/21) 3654353003429999 a001 701408733/9349*23725150497407^(1/2) 3654353003429999 a001 701408733/9349*505019158607^(4/7) 3654353003429999 a001 701408733/9349*73681302247^(8/13) 3654353003429999 a001 701408733/9349*10749957122^(2/3) 3654353003429999 a001 701408733/9349*4106118243^(16/23) 3654353003429999 a001 1836311903/9349*2537720636^(2/3) 3654353003429999 a001 701408733/9349*1568397607^(8/11) 3654353003429999 a001 7778742049/9349*2537720636^(3/5) 3654353003429999 a001 20365011074/9349*2537720636^(5/9) 3654353003429999 a001 32951280099/9349*2537720636^(8/15) 3654353003429999 a001 139583862445/9349*2537720636^(7/15) 3654353003429999 a001 225851433717/9349*2537720636^(4/9) 3654353003429999 a001 591286729879/9349*2537720636^(2/5) 3654353003429999 a001 1836311903/9349*45537549124^(10/17) 3654353003429999 a001 1836311903/9349*312119004989^(6/11) 3654353003429999 a001 1836311903/9349*14662949395604^(10/21) 3654353003429999 a001 1836311903/9349*192900153618^(5/9) 3654353003429999 a001 1836311903/9349*28143753123^(3/5) 3654353003429999 a001 1836311903/9349*10749957122^(5/8) 3654353003429999 a001 2504730781961/9349*2537720636^(1/3) 3654353003429999 a001 10610209857723/9349*2537720636^(4/15) 3654353003429999 a001 1836311903/9349*4106118243^(15/23) 3654353003429999 a001 4807526976/9349*17393796001^(4/7) 3654353003429999 a001 4807526976/9349*14662949395604^(4/9) 3654353003429999 a001 4807526976/9349*505019158607^(1/2) 3654353003429999 a001 4807526976/9349*73681302247^(7/13) 3654353003429999 a001 4807526976/9349*10749957122^(7/12) 3654353003429999 a001 139583862445/9349*17393796001^(3/7) 3654353003429999 a001 12586269025/9349*73681302247^(1/2) 3654353003429999 a001 4052739537881/9349*17393796001^(2/7) 3654353003429999 a001 32951280099/9349*45537549124^(8/17) 3654353003429999 a001 139583862445/9349*45537549124^(7/17) 3654353003429999 a001 32951280099/9349*14662949395604^(8/21) 3654353003429999 a001 32951280099/9349*192900153618^(4/9) 3654353003429999 a001 956722026041/9349*45537549124^(1/3) 3654353003429999 a001 2504730781961/9349*45537549124^(5/17) 3654353003429999 a001 10610209857723/9349*45537549124^(4/17) 3654353003429999 a001 32951280099/9349*73681302247^(6/13) 3654353003429999 a001 86267571272/9349*312119004989^(2/5) 3654353003429999 a001 225851433717/9349*23725150497407^(5/16) 3654353003429999 a001 2504730781961/9349*312119004989^(3/11) 3654353003429999 a001 10610209857723/9349*817138163596^(4/19) 3654353003429999 a001 1548008755920/9349*23725150497407^(1/4) 3654353003429999 a001 10610209857723/9349*14662949395604^(4/21) 3654353003430000 a001 10610209857723/9349*192900153618^(2/9) 3654353003430000 a001 139583862445/9349*14662949395604^(1/3) 3654353003430000 a001 139583862445/9349*192900153618^(7/18) 3654353003430000 a001 10610209857723/9349*73681302247^(3/13) 3654353003430000 a001 1548008755920/9349*73681302247^(4/13) 3654353003430000 a001 225851433717/9349*73681302247^(5/13) 3654353003430000 a001 2504730781961/9349*28143753123^(3/10) 3654353003430000 a001 20365011074/9349*312119004989^(5/11) 3654353003430000 a001 20365011074/9349*3461452808002^(5/12) 3654353003430000 a001 225851433717/9349*28143753123^(2/5) 3654353003430000 a001 20365011074/9349*28143753123^(1/2) 3654353003430000 a001 10610209857723/9349*10749957122^(1/4) 3654353003430000 a001 4052739537881/9349*10749957122^(7/24) 3654353003430000 a001 2504730781961/9349*10749957122^(5/16) 3654353003430000 a001 1548008755920/9349*10749957122^(1/3) 3654353003430000 a001 7778742049/9349*45537549124^(9/17) 3654353003430000 a001 591286729879/9349*10749957122^(3/8) 3654353003430000 a001 7778742049/9349*817138163596^(9/19) 3654353003430000 a001 7778742049/9349*14662949395604^(3/7) 3654353003430000 a001 7778742049/9349*192900153618^(1/2) 3654353003430000 a001 12586269025/9349*10749957122^(13/24) 3654353003430000 a001 225851433717/9349*10749957122^(5/12) 3654353003430000 a001 139583862445/9349*10749957122^(7/16) 3654353003430000 a001 86267571272/9349*10749957122^(11/24) 3654353003430000 a001 32951280099/9349*10749957122^(1/2) 3654353003430000 a001 7778742049/9349*10749957122^(9/16) 3654353003430000 a001 10610209857723/9349*4106118243^(6/23) 3654353003430000 a001 4052739537881/9349*4106118243^(7/23) 3654353003430000 a001 1548008755920/9349*4106118243^(8/23) 3654353003430000 a001 2971215073/9349*1322157322203^(1/2) 3654353003430000 a001 591286729879/9349*4106118243^(9/23) 3654353003430000 a001 225851433717/9349*4106118243^(10/23) 3654353003430000 a001 4807526976/9349*4106118243^(14/23) 3654353003430000 a001 86267571272/9349*4106118243^(11/23) 3654353003430000 a001 53316291173/9349*4106118243^(1/2) 3654353003430000 a001 32951280099/9349*4106118243^(12/23) 3654353003430000 a001 12586269025/9349*4106118243^(13/23) 3654353003430000 a001 10610209857723/9349*1568397607^(3/11) 3654353003430000 a001 4052739537881/9349*1568397607^(7/22) 3654353003430000 a001 1548008755920/9349*1568397607^(4/11) 3654353003430000 a001 1134903170/9349*9062201101803^(1/2) 3654353003430000 a001 591286729879/9349*1568397607^(9/22) 3654353003430000 a001 225851433717/9349*1568397607^(5/11) 3654353003430000 a001 86267571272/9349*1568397607^(1/2) 3654353003430000 a001 1836311903/9349*1568397607^(15/22) 3654353003430000 a001 32951280099/9349*1568397607^(6/11) 3654353003430000 a001 12586269025/9349*1568397607^(13/22) 3654353003430000 a001 4807526976/9349*1568397607^(7/11) 3654353003430000 a001 10610209857723/9349*599074578^(2/7) 3654353003430000 a001 4052739537881/9349*599074578^(1/3) 3654353003430000 a001 433494437/9349*2537720636^(11/15) 3654353003430000 a001 2504730781961/9349*599074578^(5/14) 3654353003430000 a001 1548008755920/9349*599074578^(8/21) 3654353003430000 a001 433494437/9349*45537549124^(11/17) 3654353003430000 a001 433494437/9349*312119004989^(3/5) 3654353003430000 a001 433494437/9349*817138163596^(11/19) 3654353003430000 a001 433494437/9349*14662949395604^(11/21) 3654353003430000 a001 433494437/9349*192900153618^(11/18) 3654353003430000 a001 433494437/9349*10749957122^(11/16) 3654353003430000 a001 591286729879/9349*599074578^(3/7) 3654353003430000 a001 225851433717/9349*599074578^(10/21) 3654353003430000 a001 433494437/9349*1568397607^(3/4) 3654353003430000 a001 139583862445/9349*599074578^(1/2) 3654353003430000 a001 86267571272/9349*599074578^(11/21) 3654353003430000 a001 32951280099/9349*599074578^(4/7) 3654353003430000 a001 701408733/9349*599074578^(16/21) 3654353003430000 a001 12586269025/9349*599074578^(13/21) 3654353003430000 a001 7778742049/9349*599074578^(9/14) 3654353003430000 a001 4807526976/9349*599074578^(2/3) 3654353003430000 a001 1836311903/9349*599074578^(5/7) 3654353003430000 a001 433494437/9349*599074578^(11/14) 3654353003430000 a001 10610209857723/9349*228826127^(3/10) 3654353003430000 a001 4052739537881/9349*228826127^(7/20) 3654353003430000 a001 2504730781961/9349*228826127^(3/8) 3654353003430000 a001 165580141/9349*2537720636^(7/9) 3654353003430000 a001 165580141/9349*17393796001^(5/7) 3654353003430000 a001 165580141/9349*312119004989^(7/11) 3654353003430000 a001 165580141/9349*14662949395604^(5/9) 3654353003430000 a001 165580141/9349*505019158607^(5/8) 3654353003430000 a001 165580141/9349*28143753123^(7/10) 3654353003430000 a001 1548008755920/9349*228826127^(2/5) 3654353003430000 a001 591286729879/9349*228826127^(9/20) 3654353003430000 a001 225851433717/9349*228826127^(1/2) 3654353003430000 a001 165580141/9349*599074578^(5/6) 3654353003430000 a001 86267571272/9349*228826127^(11/20) 3654353003430000 a001 32951280099/9349*228826127^(3/5) 3654353003430000 a001 20365011074/9349*228826127^(5/8) 3654353003430000 a001 12586269025/9349*228826127^(13/20) 3654353003430000 a001 4807526976/9349*228826127^(7/10) 3654353003430000 a001 267914296/9349*228826127^(17/20) 3654353003430000 a001 1836311903/9349*228826127^(3/4) 3654353003430000 a001 701408733/9349*228826127^(4/5) 3654353003430000 a001 165580141/9349*228826127^(7/8) 3654353003430000 a001 10610209857723/9349*87403803^(6/19) 3654353003430000 a001 4052739537881/9349*87403803^(7/19) 3654353003430000 a001 1548008755920/9349*87403803^(8/19) 3654353003430000 a001 591286729879/9349*87403803^(9/19) 3654353003430000 a001 365435296162/9349*87403803^(1/2) 3654353003430000 a001 225851433717/9349*87403803^(10/19) 3654353003430000 a001 86267571272/9349*87403803^(11/19) 3654353003430000 a001 32951280099/9349*87403803^(12/19) 3654353003430000 a001 12586269025/9349*87403803^(13/19) 3654353003430000 a001 4807526976/9349*87403803^(14/19) 3654353003430000 a001 1836311903/9349*87403803^(15/19) 3654353003430000 a001 102334155/9349*87403803^(18/19) 3654353003430000 a001 701408733/9349*87403803^(16/19) 3654353003430000 a001 267914296/9349*87403803^(17/19) 3654353003430001 a001 10610209857723/9349*33385282^(1/3) 3654353003430001 a001 24157817/9349*2537720636^(13/15) 3654353003430001 a001 24157817/9349*45537549124^(13/17) 3654353003430001 a001 24157817/9349*14662949395604^(13/21) 3654353003430001 a001 24157817/9349*192900153618^(13/18) 3654353003430001 a001 24157817/9349*73681302247^(3/4) 3654353003430001 a001 24157817/9349*10749957122^(13/16) 3654353003430001 a001 24157817/9349*599074578^(13/14) 3654353003430001 a001 4052739537881/9349*33385282^(7/18) 3654353003430001 a001 2504730781961/9349*33385282^(5/12) 3654353003430001 a001 1548008755920/9349*33385282^(4/9) 3654353003430001 a001 591286729879/9349*33385282^(1/2) 3654353003430001 a001 225851433717/9349*33385282^(5/9) 3654353003430001 a001 139583862445/9349*33385282^(7/12) 3654353003430002 a001 86267571272/9349*33385282^(11/18) 3654353003430002 a001 32951280099/9349*33385282^(2/3) 3654353003430002 a001 12586269025/9349*33385282^(13/18) 3654353003430002 a001 7778742049/9349*33385282^(3/4) 3654353003430002 a001 4807526976/9349*33385282^(7/9) 3654353003430002 a001 1836311903/9349*33385282^(5/6) 3654353003430002 a001 701408733/9349*33385282^(8/9) 3654353003430003 a001 433494437/9349*33385282^(11/12) 3654353003430003 a001 267914296/9349*33385282^(17/18) 3654353003430007 a001 10610209857723/9349*12752043^(6/17) 3654353003430009 a001 4052739537881/9349*12752043^(7/17) 3654353003430010 a001 1548008755920/9349*12752043^(8/17) 3654353003430011 a001 956722026041/9349*12752043^(1/2) 3654353003430011 a001 591286729879/9349*12752043^(9/17) 3654353003430013 a001 225851433717/9349*12752043^(10/17) 3654353003430014 a001 86267571272/9349*12752043^(11/17) 3654353003430015 a001 32951280099/9349*12752043^(12/17) 3654353003430017 a001 12586269025/9349*12752043^(13/17) 3654353003430018 a001 4807526976/9349*12752043^(14/17) 3654353003430019 a001 1836311903/9349*12752043^(15/17) 3654353003430021 a001 701408733/9349*12752043^(16/17) 3654353003430057 a001 10610209857723/9349*4870847^(3/8) 3654353003430067 a001 4052739537881/9349*4870847^(7/16) 3654353003430077 a001 1548008755920/9349*4870847^(1/2) 3654353003430086 a001 591286729879/9349*4870847^(9/16) 3654353003430096 a001 225851433717/9349*4870847^(5/8) 3654353003430105 a001 86267571272/9349*4870847^(11/16) 3654353003430115 a001 32951280099/9349*4870847^(3/4) 3654353003430125 a001 12586269025/9349*4870847^(13/16) 3654353003430134 a001 4807526976/9349*4870847^(7/8) 3654353003430144 a001 1836311903/9349*4870847^(15/16) 3654353003430403 a001 1346269/9349*45537549124^(15/17) 3654353003430403 a001 1346269/9349*312119004989^(9/11) 3654353003430403 a001 1346269/9349*14662949395604^(5/7) 3654353003430403 a001 1346269/9349*192900153618^(5/6) 3654353003430403 a001 1346269/9349*28143753123^(9/10) 3654353003430403 a001 1346269/9349*10749957122^(15/16) 3654353003430422 a001 10610209857723/9349*1860498^(2/5) 3654353003430492 a001 4052739537881/9349*1860498^(7/15) 3654353003430527 a001 2504730781961/9349*1860498^(1/2) 3654353003430563 a001 1548008755920/9349*1860498^(8/15) 3654353003430633 a001 591286729879/9349*1860498^(3/5) 3654353003430703 a001 225851433717/9349*1860498^(2/3) 3654353003430739 a001 139583862445/9349*1860498^(7/10) 3654353003430774 a001 86267571272/9349*1860498^(11/15) 3654353003430844 a001 32951280099/9349*1860498^(4/5) 3654353003430879 a001 20365011074/9349*1860498^(5/6) 3654353003430914 a001 12586269025/9349*1860498^(13/15) 3654353003430950 a001 7778742049/9349*1860498^(9/10) 3654353003430985 a001 4807526976/9349*1860498^(14/15) 3654353003433101 a001 10610209857723/9349*710647^(3/7) 3654353003433618 a001 4052739537881/9349*710647^(1/2) 3654353003434134 a001 1548008755920/9349*710647^(4/7) 3654353003434651 a001 591286729879/9349*710647^(9/14) 3654353003435168 a001 225851433717/9349*710647^(5/7) 3654353003435427 a001 139583862445/9349*710647^(3/4) 3654353003435685 a001 86267571272/9349*710647^(11/14) 3654353003436202 a001 32951280099/9349*710647^(6/7) 3654353003436719 a001 12586269025/9349*710647^(13/14) 3654353003448944 a001 196418/9349*14662949395604^(7/9) 3654353003448944 a001 196418/9349*505019158607^(7/8) 3654353003452890 a001 10610209857723/9349*271443^(6/13) 3654353003454798 a001 6557470319842/9349*271443^(1/2) 3654353003456705 a001 4052739537881/9349*271443^(7/13) 3654353003460521 a001 1548008755920/9349*271443^(8/13) 3654353003464336 a001 591286729879/9349*271443^(9/13) 3654353003468151 a001 225851433717/9349*271443^(10/13) 3654353003471966 a001 86267571272/9349*271443^(11/13) 3654353003475781 a001 32951280099/9349*271443^(12/13) 3654353003479596 a001 44361287415139863/121393 3654353003559845 a001 75025/9349*817138163596^(17/19) 3654353003559845 a001 75025/9349*14662949395604^(17/21) 3654353003559845 a001 75025/9349*192900153618^(17/18) 3654353003599970 a001 10610209857723/9349*103682^(1/2) 3654353003614134 a001 6557470319842/9349*103682^(13/24) 3654353003628299 a001 4052739537881/9349*103682^(7/12) 3654353003642463 a001 2504730781961/9349*103682^(5/8) 3654353003656627 a001 1548008755920/9349*103682^(2/3) 3654353003670791 a001 956722026041/9349*103682^(17/24) 3654353003684955 a001 591286729879/9349*103682^(3/4) 3654353003699120 a001 365435296162/9349*103682^(19/24) 3654353003713284 a001 225851433717/9349*103682^(5/6) 3654353003727448 a001 139583862445/9349*103682^(7/8) 3654353003741612 a001 86267571272/9349*103682^(11/12) 3654353003755776 a001 53316291173/9349*103682^(23/24) 3654353003769940 a001 16944504007880461/46368 3654353004284782 m005 (1/2*5^(1/2)-1)/(6/7*exp(1)+9/10) 3654353004700904 a001 10610209857723/9349*39603^(6/11) 3654353004806813 a001 6557470319842/9349*39603^(13/22) 3654353004912721 a001 4052739537881/9349*39603^(7/11) 3654353005018630 a001 2504730781961/9349*39603^(15/22) 3654353005124539 a001 1548008755920/9349*39603^(8/11) 3654353005230447 a001 956722026041/9349*39603^(17/22) 3654353005336356 a001 591286729879/9349*39603^(9/11) 3654353005442265 a001 365435296162/9349*39603^(19/22) 3654353005548174 a001 225851433717/9349*39603^(10/11) 3654353005654082 a001 139583862445/9349*39603^(21/22) 3654353005759990 a001 6472224608501520/17711 3654353009529996 a001 10946/9349*3461452808002^(11/12) 3654353012191178 a001 1548008755920/3571*3571^(14/17) 3654353012454944 a001 11/233*1346269^(49/51) 3654353013011999 a001 10610209857723/9349*15127^(3/5) 3654353013810499 a001 6557470319842/9349*15127^(13/20) 3654353014608999 a001 4052739537881/9349*15127^(7/10) 3654353015407499 a001 2504730781961/9349*15127^(3/4) 3654353016205999 a001 1548008755920/9349*15127^(4/5) 3654353017004499 a001 956722026041/9349*15127^(17/20) 3654353017802999 a001 591286729879/9349*15127^(9/10) 3654353018601498 a001 365435296162/9349*15127^(19/20) 3654353019399998 a001 2472169817624099/6765 3654353019583452 l006 ln(207/7999) 3654353023624573 r005 Im(z^2+c),c=-2/15+21/41*I,n=19 3654353024704444 a001 1515744265389/2161*5778^(13/18) 3654353029048238 a001 2504730781961/3571*3571^(13/17) 3654353030785556 a001 6557470319842/15127*5778^(7/9) 3654353032047181 a007 Real Root Of 226*x^4+683*x^3-637*x^2-154*x+971 3654353036866667 a001 4052739537881/15127*5778^(5/6) 3654353042947778 a001 2504730781961/15127*5778^(8/9) 3654353045240000 a001 4181/9349*14662949395604^(19/21) 3654353045905298 a001 4052739537881/3571*3571^(12/17) 3654353049028889 a001 1548008755920/15127*5778^(17/18) 3654353049035667 m001 ZetaP(2)^ln(2)*polylog(4,1/2)^ln(2) 3654353050506674 a001 3536736619241/13201*5778^(5/6) 3654353052855552 a001 10610209857723/24476*5778^(7/9) 3654353055110003 a001 944284829440425/2584 3654353056587785 a001 6557470319842/39603*5778^(8/9) 3654353058936663 a001 3278735159921/12238*5778^(5/6) 3654353059807755 a001 10610209857723/64079*5778^(8/9) 3654353061508469 a007 Real Root Of -740*x^4-313*x^3+885*x^2+715*x-351 3654353062668897 a001 4052739537881/39603*5778^(17/18) 3654353062762358 a001 6557470319842/3571*3571^(11/17) 3654353064658947 a001 225749145909/2206*5778^(17/18) 3654353065017774 a001 4052739537881/24476*5778^(8/9) 3654353065888866 a001 6557470319842/64079*5778^(17/18) 3654353068750011 a001 944284832965003/2584 3654353070740061 a001 118035604184904/323 3654353071030406 a001 944284833554257/2584 3654353071072767 a001 944284833565203/2584 3654353071079849 a001 944284833567033/2584 3654353071079980 a001 944284833567067/2584 3654353071080003 a001 944284833567073/2584 3654353071080011 a001 944284833567075/2584 3654353071080061 a001 118035604195886/323 3654353071080406 a001 944284833567177/2584 3654353071082767 a001 944284833567787/2584 3654353071098885 a001 2504730781961/24476*5778^(17/18) 3654353071209849 a001 944284833600625/2584 3654353071969980 a001 944284833797043/2584 3654353076403333 a001 10610209857723/9349*5778^(2/3) 3654353079604427 m005 (1/2*gamma+5/11)/(3*Catalan-5/7) 3654353079619418 a001 10610209857723/3571*3571^(10/17) 3654353080458297 a007 Real Root Of -177*x^4-623*x^3+225*x^2+332*x-629 3654353082484444 a001 6557470319842/9349*5778^(13/18) 3654353082527136 r005 Im(z^2+c),c=23/102+9/31*I,n=23 3654353088422167 l006 ln(4171/6011) 3654353088565556 a001 4052739537881/9349*5778^(7/9) 3654353088989194 m005 (-23/36+1/4*5^(1/2))/(7/12*exp(1)+3/5) 3654353092565370 a001 591286729879/1364*1364^(14/15) 3654353092991991 m001 ln(GAMMA(7/12))^2/GAMMA(19/24)*cosh(1)^2 3654353094646667 a001 2504730781961/9349*5778^(5/6) 3654353096679095 m006 (3*exp(Pi)-1/3)/(2*Pi^2-5/6) 3654353100727778 a001 1548008755920/9349*5778^(8/9) 3654353104777097 r009 Im(z^3+c),c=-5/18+7/19*I,n=17 3654353106579515 m001 (Totient+Tribonacci)/(Trott+Thue) 3654353106808889 a001 956722026041/9349*5778^(17/18) 3654353108627090 r002 4th iterates of z^2 + 3654353112773886 r009 Re(z^3+c),c=-43/118+23/34*I,n=26 3654353112890003 a001 944284844370777/2584 3654353116395624 r009 Im(z^3+c),c=-39/58+28/57*I,n=9 3654353116994780 r002 14th iterates of z^2 + 3654353117976864 r005 Im(z^2+c),c=19/122+15/43*I,n=41 3654353124091616 r005 Re(z^2+c),c=-29/66+8/19*I,n=51 3654353127773491 m005 (1/3*Catalan-3/7)/(1/6*5^(1/2)+3) 3654353138730014 a001 2584/3571*14662949395604^(8/9) 3654353159546743 r005 Im(z^2+c),c=-5/122+10/21*I,n=31 3654353161731780 r002 13th iterates of z^2 + 3654353179692903 r009 Re(z^3+c),c=-43/106+28/45*I,n=28 3654353190113949 r005 Im(z^2+c),c=-19/66+27/47*I,n=50 3654353206379997 a001 1527885075587477/4181 3654353208580546 a001 225851433717/3571*9349^(18/19) 3654353210781072 a001 365435296162/3571*9349^(17/19) 3654353212981598 a001 591286729879/3571*9349^(16/19) 3654353215182125 a001 956722026041/3571*9349^(15/19) 3654353217382651 a001 1548008755920/3571*9349^(14/19) 3654353218222835 r005 Re(z^2+c),c=-43/46+14/61*I,n=26 3654353219583178 a001 2504730781961/3571*9349^(13/19) 3654353220982447 r009 Re(z^3+c),c=-3/7+13/58*I,n=30 3654353221783704 a001 4052739537881/3571*9349^(12/19) 3654353223510746 a001 956722026041/1364*1364^(13/15) 3654353223984231 a001 6557470319842/3571*9349^(11/19) 3654353226184757 a001 10610209857723/3571*9349^(10/19) 3654353227714768 p001 sum((-1)^n/(337*n+180)/n/(5^n),n=1..infinity) 3654353229982554 m005 (1/2*3^(1/2)-1/4)/(2/9*2^(1/2)-2) 3654353230796725 m002 6+Pi^3*Cosh[Pi]+Sinh[Pi]/Pi^6 3654353232219999 a001 1597/15127*14662949395604^(20/21) 3654353232220022 a001 6765/3571*14662949395604^(6/7) 3654353242090002 a001 4000055058791717/10946 3654353242380501 a001 86267571272/3571*24476^(20/21) 3654353242670977 a001 139583862445/3571*24476^(19/21) 3654353242961453 a001 225851433717/3571*24476^(6/7) 3654353243251929 a001 365435296162/3571*24476^(17/21) 3654353243542405 a001 591286729879/3571*24476^(16/21) 3654353243832881 a001 956722026041/3571*24476^(5/7) 3654353244123357 a001 1548008755920/3571*24476^(2/3) 3654353244413833 a001 2504730781961/3571*24476^(13/21) 3654353244704309 a001 4052739537881/3571*24476^(4/7) 3654353244994785 a001 6557470319842/3571*24476^(11/21) 3654353245285261 a001 10610209857723/3571*24476^(10/21) 3654353245860030 a001 17711/3571*23725150497407^(13/16) 3654353245860030 a001 17711/3571*505019158607^(13/14) 3654353247300022 a001 10472280100787674/28657 3654353247338739 a001 32951280099/3571*64079^(22/23) 3654353247377434 a001 53316291173/3571*64079^(21/23) 3654353247416128 a001 86267571272/3571*64079^(20/23) 3654353247454823 a001 139583862445/3571*64079^(19/23) 3654353247493518 a001 225851433717/3571*64079^(18/23) 3654353247525616 m004 -4/5+5*Pi-(25*Pi)/ProductLog[Sqrt[5]*Pi] 3654353247532212 a001 365435296162/3571*64079^(17/23) 3654353247570907 a001 591286729879/3571*64079^(16/23) 3654353247609602 a001 956722026041/3571*64079^(15/23) 3654353247648296 a001 1548008755920/3571*64079^(14/23) 3654353247686991 a001 2504730781961/3571*64079^(13/23) 3654353247725686 a001 4052739537881/3571*64079^(12/23) 3654353247764380 a001 6557470319842/3571*64079^(11/23) 3654353247803075 a001 10610209857723/3571*64079^(10/23) 3654353247850081 a001 46368/3571*312119004989^(10/11) 3654353247850081 a001 46368/3571*3461452808002^(5/6) 3654353248086145 a001 86267571272/3571*167761^(4/5) 3654353248112114 a001 956722026041/3571*167761^(3/5) 3654353248138084 a001 10610209857723/3571*167761^(2/5) 3654353248140425 a001 121393/3571*45537549124^(16/17) 3654353248140425 a001 121393/3571*14662949395604^(16/21) 3654353248140425 a001 121393/3571*192900153618^(8/9) 3654353248140425 a001 121393/3571*73681302247^(12/13) 3654353248173183 a001 12586269025/3571*439204^(8/9) 3654353248175287 a001 53316291173/3571*439204^(7/9) 3654353248177392 a001 225851433717/3571*439204^(2/3) 3654353248179497 a001 956722026041/3571*439204^(5/9) 3654353248181602 a001 4052739537881/3571*439204^(4/9) 3654353248182786 a001 317811/3571*10749957122^(23/24) 3654353248188966 a001 832040/3571*312119004989^(4/5) 3654353248188966 a001 832040/3571*23725150497407^(11/16) 3654353248188966 a001 832040/3571*73681302247^(11/13) 3654353248188966 a001 832040/3571*10749957122^(11/12) 3654353248188966 a001 832040/3571*4106118243^(22/23) 3654353248189868 a001 2178309/3571*2537720636^(14/15) 3654353248189868 a001 2178309/3571*17393796001^(6/7) 3654353248189868 a001 2178309/3571*45537549124^(14/17) 3654353248189868 a001 2178309/3571*817138163596^(14/19) 3654353248189868 a001 2178309/3571*14662949395604^(2/3) 3654353248189868 a001 2178309/3571*505019158607^(3/4) 3654353248189868 a001 2178309/3571*192900153618^(7/9) 3654353248189868 a001 2178309/3571*10749957122^(7/8) 3654353248189868 a001 2178309/3571*4106118243^(21/23) 3654353248189868 a001 2178309/3571*1568397607^(21/22) 3654353248189968 a001 701408733/3571*7881196^(10/11) 3654353248189974 a001 2971215073/3571*7881196^(9/11) 3654353248189979 a001 12586269025/3571*7881196^(8/11) 3654353248189983 a001 32951280099/3571*7881196^(2/3) 3654353248189984 a001 53316291173/3571*7881196^(7/11) 3654353248189990 a001 225851433717/3571*7881196^(6/11) 3654353248189995 a001 956722026041/3571*7881196^(5/11) 3654353248189999 a001 1597*2537720636^(8/9) 3654353248189999 a001 1597*312119004989^(8/11) 3654353248189999 a001 1597*23725150497407^(5/8) 3654353248189999 a001 1597*73681302247^(10/13) 3654353248189999 a001 1597*28143753123^(4/5) 3654353248189999 a001 1597*10749957122^(5/6) 3654353248189999 a001 1597*4106118243^(20/23) 3654353248189999 a001 1597*1568397607^(10/11) 3654353248189999 a001 1597*599074578^(20/21) 3654353248190001 a001 4052739537881/3571*7881196^(4/11) 3654353248190002 a001 6557470319842/3571*7881196^(1/3) 3654353248190015 a001 701408733/3571*20633239^(6/7) 3654353248190015 a001 1836311903/3571*20633239^(4/5) 3654353248190016 a001 7778742049/3571*20633239^(5/7) 3654353248190017 a001 53316291173/3571*20633239^(3/5) 3654353248190017 a001 86267571272/3571*20633239^(4/7) 3654353248190018 a001 956722026041/3571*20633239^(3/7) 3654353248190018 a001 1548008755920/3571*20633239^(2/5) 3654353248190019 a001 14930352/3571*817138163596^(2/3) 3654353248190019 a001 14930352/3571*10749957122^(19/24) 3654353248190019 a001 14930352/3571*4106118243^(19/23) 3654353248190019 a001 14930352/3571*1568397607^(19/22) 3654353248190019 a001 14930352/3571*599074578^(19/21) 3654353248190019 a001 14930352/3571*228826127^(19/20) 3654353248190019 a001 10610209857723/3571*20633239^(2/7) 3654353248190021 a001 39088169/3571*141422324^(12/13) 3654353248190021 a001 39088169/3571*2537720636^(4/5) 3654353248190021 a001 39088169/3571*45537549124^(12/17) 3654353248190021 a001 39088169/3571*14662949395604^(4/7) 3654353248190021 a001 39088169/3571*505019158607^(9/14) 3654353248190021 a001 39088169/3571*192900153618^(2/3) 3654353248190021 a001 39088169/3571*73681302247^(9/13) 3654353248190021 a001 39088169/3571*10749957122^(3/4) 3654353248190021 a001 39088169/3571*4106118243^(18/23) 3654353248190021 a001 39088169/3571*1568397607^(9/11) 3654353248190021 a001 39088169/3571*599074578^(6/7) 3654353248190021 a001 39088169/3571*228826127^(9/10) 3654353248190022 a001 701408733/3571*141422324^(10/13) 3654353248190022 a001 165580141/3571*141422324^(11/13) 3654353248190022 a001 2971215073/3571*141422324^(9/13) 3654353248190022 a001 4807526976/3571*141422324^(2/3) 3654353248190022 a001 12586269025/3571*141422324^(8/13) 3654353248190022 a001 53316291173/3571*141422324^(7/13) 3654353248190022 a001 225851433717/3571*141422324^(6/13) 3654353248190022 a001 956722026041/3571*141422324^(5/13) 3654353248190022 a001 102334155/3571*45537549124^(2/3) 3654353248190022 a001 102334155/3571*10749957122^(17/24) 3654353248190022 a001 102334155/3571*4106118243^(17/23) 3654353248190022 a001 102334155/3571*1568397607^(17/22) 3654353248190022 a001 102334155/3571*599074578^(17/21) 3654353248190022 a001 2504730781961/3571*141422324^(1/3) 3654353248190022 a001 4052739537881/3571*141422324^(4/13) 3654353248190022 a001 39088169/3571*87403803^(18/19) 3654353248190022 a001 102334155/3571*228826127^(17/20) 3654353248190022 a001 267914296/3571*23725150497407^(1/2) 3654353248190022 a001 267914296/3571*505019158607^(4/7) 3654353248190022 a001 267914296/3571*73681302247^(8/13) 3654353248190022 a001 267914296/3571*10749957122^(2/3) 3654353248190022 a001 267914296/3571*4106118243^(16/23) 3654353248190022 a001 267914296/3571*1568397607^(8/11) 3654353248190022 a001 267914296/3571*599074578^(16/21) 3654353248190022 a001 701408733/3571*2537720636^(2/3) 3654353248190022 a001 701408733/3571*45537549124^(10/17) 3654353248190022 a001 701408733/3571*312119004989^(6/11) 3654353248190022 a001 701408733/3571*14662949395604^(10/21) 3654353248190022 a001 701408733/3571*192900153618^(5/9) 3654353248190022 a001 701408733/3571*28143753123^(3/5) 3654353248190022 a001 701408733/3571*10749957122^(5/8) 3654353248190022 a001 701408733/3571*4106118243^(15/23) 3654353248190022 a001 701408733/3571*1568397607^(15/22) 3654353248190022 a001 12586269025/3571*2537720636^(8/15) 3654353248190022 a001 7778742049/3571*2537720636^(5/9) 3654353248190022 a001 53316291173/3571*2537720636^(7/15) 3654353248190022 a001 2971215073/3571*2537720636^(3/5) 3654353248190022 a001 86267571272/3571*2537720636^(4/9) 3654353248190022 a001 225851433717/3571*2537720636^(2/5) 3654353248190022 a001 1836311903/3571*17393796001^(4/7) 3654353248190022 a001 1836311903/3571*14662949395604^(4/9) 3654353248190022 a001 1836311903/3571*73681302247^(7/13) 3654353248190022 a001 1836311903/3571*10749957122^(7/12) 3654353248190022 a001 956722026041/3571*2537720636^(1/3) 3654353248190022 a001 4052739537881/3571*2537720636^(4/15) 3654353248190022 a001 10610209857723/3571*2537720636^(2/9) 3654353248190022 a001 1836311903/3571*4106118243^(14/23) 3654353248190022 a001 4807526976/3571*73681302247^(1/2) 3654353248190022 a001 4807526976/3571*10749957122^(13/24) 3654353248190022 a001 12586269025/3571*45537549124^(8/17) 3654353248190022 a001 53316291173/3571*17393796001^(3/7) 3654353248190022 a001 12586269025/3571*14662949395604^(8/21) 3654353248190022 a001 12586269025/3571*192900153618^(4/9) 3654353248190022 a001 12586269025/3571*73681302247^(6/13) 3654353248190022 a001 1548008755920/3571*17393796001^(2/7) 3654353248190022 a001 32951280099/3571*312119004989^(2/5) 3654353248190022 a001 225851433717/3571*45537549124^(6/17) 3654353248190022 a001 365435296162/3571*45537549124^(1/3) 3654353248190022 a001 956722026041/3571*45537549124^(5/17) 3654353248190022 a001 53316291173/3571*45537549124^(7/17) 3654353248190022 a001 4052739537881/3571*45537549124^(4/17) 3654353248190022 a001 86267571272/3571*23725150497407^(5/16) 3654353248190022 a001 86267571272/3571*505019158607^(5/14) 3654353248190022 a001 956722026041/3571*312119004989^(3/11) 3654353248190022 a001 10610209857723/3571*312119004989^(2/11) 3654353248190022 a001 1548008755920/3571*14662949395604^(2/9) 3654353248190022 a001 1548008755920/3571*505019158607^(1/4) 3654353248190022 a001 225851433717/3571*192900153618^(1/3) 3654353248190022 a001 139583862445/3571*817138163596^(1/3) 3654353248190022 a001 4052739537881/3571*73681302247^(3/13) 3654353248190022 a001 2504730781961/3571*73681302247^(1/4) 3654353248190022 a001 591286729879/3571*73681302247^(4/13) 3654353248190022 a001 53316291173/3571*14662949395604^(1/3) 3654353248190022 a001 53316291173/3571*192900153618^(7/18) 3654353248190022 a001 10610209857723/3571*28143753123^(1/5) 3654353248190022 a001 956722026041/3571*28143753123^(3/10) 3654353248190022 a001 86267571272/3571*28143753123^(2/5) 3654353248190022 a001 10610209857723/3571*10749957122^(5/24) 3654353248190022 a001 4052739537881/3571*10749957122^(1/4) 3654353248190022 a001 1548008755920/3571*10749957122^(7/24) 3654353248190022 a001 956722026041/3571*10749957122^(5/16) 3654353248190022 a001 591286729879/3571*10749957122^(1/3) 3654353248190022 a001 12586269025/3571*10749957122^(1/2) 3654353248190022 a001 225851433717/3571*10749957122^(3/8) 3654353248190022 a001 7778742049/3571*312119004989^(5/11) 3654353248190022 a001 7778742049/3571*3461452808002^(5/12) 3654353248190022 a001 86267571272/3571*10749957122^(5/12) 3654353248190022 a001 32951280099/3571*10749957122^(11/24) 3654353248190022 a001 53316291173/3571*10749957122^(7/16) 3654353248190022 a001 7778742049/3571*28143753123^(1/2) 3654353248190022 a001 10610209857723/3571*4106118243^(5/23) 3654353248190022 a001 4052739537881/3571*4106118243^(6/23) 3654353248190022 a001 1548008755920/3571*4106118243^(7/23) 3654353248190022 a001 591286729879/3571*4106118243^(8/23) 3654353248190022 a001 2971215073/3571*45537549124^(9/17) 3654353248190022 a001 2971215073/3571*14662949395604^(3/7) 3654353248190022 a001 2971215073/3571*192900153618^(1/2) 3654353248190022 a001 225851433717/3571*4106118243^(9/23) 3654353248190022 a001 4807526976/3571*4106118243^(13/23) 3654353248190022 a001 86267571272/3571*4106118243^(10/23) 3654353248190022 a001 2971215073/3571*10749957122^(9/16) 3654353248190022 a001 32951280099/3571*4106118243^(11/23) 3654353248190022 a001 12586269025/3571*4106118243^(12/23) 3654353248190022 a001 20365011074/3571*4106118243^(1/2) 3654353248190022 a001 10610209857723/3571*1568397607^(5/22) 3654353248190022 a001 6557470319842/3571*1568397607^(1/4) 3654353248190022 a001 4052739537881/3571*1568397607^(3/11) 3654353248190022 a001 1548008755920/3571*1568397607^(7/22) 3654353248190022 a001 591286729879/3571*1568397607^(4/11) 3654353248190022 a001 1134903170/3571*1322157322203^(1/2) 3654353248190022 a001 225851433717/3571*1568397607^(9/22) 3654353248190022 a001 86267571272/3571*1568397607^(5/11) 3654353248190022 a001 1836311903/3571*1568397607^(7/11) 3654353248190022 a001 32951280099/3571*1568397607^(1/2) 3654353248190022 a001 12586269025/3571*1568397607^(6/11) 3654353248190022 a001 4807526976/3571*1568397607^(13/22) 3654353248190022 a001 10610209857723/3571*599074578^(5/21) 3654353248190022 a001 4052739537881/3571*599074578^(2/7) 3654353248190022 a001 1548008755920/3571*599074578^(1/3) 3654353248190022 a001 956722026041/3571*599074578^(5/14) 3654353248190022 a001 591286729879/3571*599074578^(8/21) 3654353248190022 a001 433494437/3571*9062201101803^(1/2) 3654353248190022 a001 225851433717/3571*599074578^(3/7) 3654353248190022 a001 86267571272/3571*599074578^(10/21) 3654353248190022 a001 53316291173/3571*599074578^(1/2) 3654353248190022 a001 32951280099/3571*599074578^(11/21) 3654353248190022 a001 701408733/3571*599074578^(5/7) 3654353248190022 a001 12586269025/3571*599074578^(4/7) 3654353248190022 a001 4807526976/3571*599074578^(13/21) 3654353248190022 a001 1836311903/3571*599074578^(2/3) 3654353248190022 a001 2971215073/3571*599074578^(9/14) 3654353248190022 a001 10610209857723/3571*228826127^(1/4) 3654353248190022 a001 4052739537881/3571*228826127^(3/10) 3654353248190022 a001 1548008755920/3571*228826127^(7/20) 3654353248190022 a001 956722026041/3571*228826127^(3/8) 3654353248190022 a001 165580141/3571*2537720636^(11/15) 3654353248190022 a001 165580141/3571*45537549124^(11/17) 3654353248190022 a001 165580141/3571*312119004989^(3/5) 3654353248190022 a001 165580141/3571*817138163596^(11/19) 3654353248190022 a001 165580141/3571*14662949395604^(11/21) 3654353248190022 a001 165580141/3571*192900153618^(11/18) 3654353248190022 a001 165580141/3571*10749957122^(11/16) 3654353248190022 a001 165580141/3571*1568397607^(3/4) 3654353248190022 a001 591286729879/3571*228826127^(2/5) 3654353248190022 a001 225851433717/3571*228826127^(9/20) 3654353248190022 a001 165580141/3571*599074578^(11/14) 3654353248190022 a001 86267571272/3571*228826127^(1/2) 3654353248190022 a001 32951280099/3571*228826127^(11/20) 3654353248190022 a001 12586269025/3571*228826127^(3/5) 3654353248190022 a001 7778742049/3571*228826127^(5/8) 3654353248190022 a001 4807526976/3571*228826127^(13/20) 3654353248190022 a001 267914296/3571*228826127^(4/5) 3654353248190022 a001 1836311903/3571*228826127^(7/10) 3654353248190022 a001 701408733/3571*228826127^(3/4) 3654353248190022 a001 10610209857723/3571*87403803^(5/19) 3654353248190022 a001 4052739537881/3571*87403803^(6/19) 3654353248190022 a001 1548008755920/3571*87403803^(7/19) 3654353248190022 a001 63245986/3571*2537720636^(7/9) 3654353248190022 a001 63245986/3571*17393796001^(5/7) 3654353248190022 a001 63245986/3571*312119004989^(7/11) 3654353248190022 a001 63245986/3571*14662949395604^(5/9) 3654353248190022 a001 63245986/3571*505019158607^(5/8) 3654353248190022 a001 63245986/3571*28143753123^(7/10) 3654353248190022 a001 63245986/3571*599074578^(5/6) 3654353248190022 a001 591286729879/3571*87403803^(8/19) 3654353248190022 a001 225851433717/3571*87403803^(9/19) 3654353248190022 a001 139583862445/3571*87403803^(1/2) 3654353248190022 a001 63245986/3571*228826127^(7/8) 3654353248190022 a001 86267571272/3571*87403803^(10/19) 3654353248190022 a001 32951280099/3571*87403803^(11/19) 3654353248190022 a001 12586269025/3571*87403803^(12/19) 3654353248190022 a001 4807526976/3571*87403803^(13/19) 3654353248190022 a001 1836311903/3571*87403803^(14/19) 3654353248190022 a001 102334155/3571*87403803^(17/19) 3654353248190022 a001 701408733/3571*87403803^(15/19) 3654353248190022 a001 267914296/3571*87403803^(16/19) 3654353248190023 a001 10610209857723/3571*33385282^(5/18) 3654353248190023 a001 4052739537881/3571*33385282^(1/3) 3654353248190023 a001 1548008755920/3571*33385282^(7/18) 3654353248190023 a001 956722026041/3571*33385282^(5/12) 3654353248190023 a001 591286729879/3571*33385282^(4/9) 3654353248190024 a001 225851433717/3571*33385282^(1/2) 3654353248190024 a001 86267571272/3571*33385282^(5/9) 3654353248190024 a001 53316291173/3571*33385282^(7/12) 3654353248190024 a001 32951280099/3571*33385282^(11/18) 3654353248190024 a001 12586269025/3571*33385282^(2/3) 3654353248190024 a001 4807526976/3571*33385282^(13/18) 3654353248190024 a001 2971215073/3571*33385282^(3/4) 3654353248190024 a001 1836311903/3571*33385282^(7/9) 3654353248190025 a001 701408733/3571*33385282^(5/6) 3654353248190025 a001 267914296/3571*33385282^(8/9) 3654353248190025 a001 102334155/3571*33385282^(17/18) 3654353248190025 a001 165580141/3571*33385282^(11/12) 3654353248190029 a001 10610209857723/3571*12752043^(5/17) 3654353248190030 a001 4052739537881/3571*12752043^(6/17) 3654353248190030 a001 9227465/3571*2537720636^(13/15) 3654353248190030 a001 9227465/3571*45537549124^(13/17) 3654353248190030 a001 9227465/3571*14662949395604^(13/21) 3654353248190030 a001 9227465/3571*192900153618^(13/18) 3654353248190030 a001 9227465/3571*73681302247^(3/4) 3654353248190030 a001 9227465/3571*10749957122^(13/16) 3654353248190030 a001 9227465/3571*599074578^(13/14) 3654353248190031 a001 1548008755920/3571*12752043^(7/17) 3654353248190032 a001 591286729879/3571*12752043^(8/17) 3654353248190033 a001 365435296162/3571*12752043^(1/2) 3654353248190034 a001 225851433717/3571*12752043^(9/17) 3654353248190035 a001 86267571272/3571*12752043^(10/17) 3654353248190036 a001 32951280099/3571*12752043^(11/17) 3654353248190038 a001 12586269025/3571*12752043^(12/17) 3654353248190039 a001 4807526976/3571*12752043^(13/17) 3654353248190040 a001 1836311903/3571*12752043^(14/17) 3654353248190042 a001 701408733/3571*12752043^(15/17) 3654353248190043 a001 267914296/3571*12752043^(16/17) 3654353248190070 a001 10610209857723/3571*4870847^(5/16) 3654353248190080 a001 4052739537881/3571*4870847^(3/8) 3654353248190089 a001 1548008755920/3571*4870847^(7/16) 3654353248190099 a001 591286729879/3571*4870847^(1/2) 3654353248190109 a001 225851433717/3571*4870847^(9/16) 3654353248190118 a001 86267571272/3571*4870847^(5/8) 3654353248190128 a001 32951280099/3571*4870847^(11/16) 3654353248190137 a001 12586269025/3571*4870847^(3/4) 3654353248190147 a001 4807526976/3571*4870847^(13/16) 3654353248190157 a001 1836311903/3571*4870847^(7/8) 3654353248190166 a001 701408733/3571*4870847^(15/16) 3654353248190374 a001 10610209857723/3571*1860498^(1/3) 3654353248190444 a001 4052739537881/3571*1860498^(2/5) 3654353248190515 a001 1548008755920/3571*1860498^(7/15) 3654353248190550 a001 956722026041/3571*1860498^(1/2) 3654353248190585 a001 591286729879/3571*1860498^(8/15) 3654353248190655 a001 225851433717/3571*1860498^(3/5) 3654353248190726 a001 86267571272/3571*1860498^(2/3) 3654353248190761 a001 53316291173/3571*1860498^(7/10) 3654353248190796 a001 32951280099/3571*1860498^(11/15) 3654353248190866 a001 12586269025/3571*1860498^(4/5) 3654353248190902 a001 7778742049/3571*1860498^(5/6) 3654353248190937 a001 4807526976/3571*1860498^(13/15) 3654353248190972 a001 2971215073/3571*1860498^(9/10) 3654353248191007 a001 1836311903/3571*1860498^(14/15) 3654353248192606 a001 10610209857723/3571*710647^(5/14) 3654353248192786 a001 514229/3571*45537549124^(15/17) 3654353248192786 a001 514229/3571*312119004989^(9/11) 3654353248192786 a001 514229/3571*14662949395604^(5/7) 3654353248192786 a001 514229/3571*192900153618^(5/6) 3654353248192786 a001 514229/3571*28143753123^(9/10) 3654353248192786 a001 514229/3571*10749957122^(15/16) 3654353248193123 a001 4052739537881/3571*710647^(3/7) 3654353248193640 a001 1548008755920/3571*710647^(1/2) 3654353248194157 a001 591286729879/3571*710647^(4/7) 3654353248194674 a001 225851433717/3571*710647^(9/14) 3654353248195191 a001 86267571272/3571*710647^(5/7) 3654353248195449 a001 53316291173/3571*710647^(3/4) 3654353248195707 a001 32951280099/3571*710647^(11/14) 3654353248196224 a001 12586269025/3571*710647^(6/7) 3654353248196741 a001 4807526976/3571*710647^(13/14) 3654353248209098 a001 10610209857723/3571*271443^(5/13) 3654353248212913 a001 4052739537881/3571*271443^(6/13) 3654353248214820 a001 2504730781961/3571*271443^(1/2) 3654353248216728 a001 1548008755920/3571*271443^(7/13) 3654353248220543 a001 591286729879/3571*271443^(8/13) 3654353248224358 a001 225851433717/3571*271443^(9/13) 3654353248228173 a001 86267571272/3571*271443^(10/13) 3654353248231988 a001 32951280099/3571*271443^(11/13) 3654353248235804 a001 12586269025/3571*271443^(12/13) 3654353248319868 a001 75025/3571*14662949395604^(7/9) 3654353248319868 a001 75025/3571*505019158607^(7/8) 3654353248331664 a001 10610209857723/3571*103682^(5/12) 3654353248345828 a001 6557470319842/3571*103682^(11/24) 3654353248359992 a001 4052739537881/3571*103682^(1/2) 3654353248374157 a001 2504730781961/3571*103682^(13/24) 3654353248388321 a001 1548008755920/3571*103682^(7/12) 3654353248402485 a001 956722026041/3571*103682^(5/8) 3654353248416649 a001 591286729879/3571*103682^(2/3) 3654353248430814 a001 365435296162/3571*103682^(17/24) 3654353248444978 a001 225851433717/3571*103682^(3/4) 3654353248459142 a001 139583862445/3571*103682^(19/24) 3654353248473306 a001 86267571272/3571*103682^(5/6) 3654353248487470 a001 53316291173/3571*103682^(7/8) 3654353248501635 a001 32951280099/3571*103682^(11/12) 3654353248515799 a001 20365011074/3571*103682^(23/24) 3654353248529941 a001 806881197275411/2208 3654353249080000 a001 28657/3571*14662949395604^(17/21) 3654353249080000 a001 28657/3571*192900153618^(17/18) 3654353249249109 a001 10610209857723/3571*39603^(5/11) 3654353249355018 a001 6557470319842/3571*39603^(1/2) 3654353249460926 a001 4052739537881/3571*39603^(6/11) 3654353249566835 a001 2504730781961/3571*39603^(13/22) 3654353249672744 a001 1548008755920/3571*39603^(7/11) 3654353249778653 a001 956722026041/3571*39603^(15/22) 3654353249884561 a001 591286729879/3571*39603^(8/11) 3654353249990470 a001 365435296162/3571*39603^(17/22) 3654353250096379 a001 225851433717/3571*39603^(9/11) 3654353250202287 a001 139583862445/3571*39603^(19/22) 3654353250308196 a001 86267571272/3571*39603^(10/11) 3654353250414105 a001 53316291173/3571*39603^(21/22) 3654353250519991 a001 6472225041995957/17711 3654353256175022 a001 10610209857723/3571*15127^(1/2) 3654353256973522 a001 6557470319842/3571*15127^(11/20) 3654353257772022 a001 4052739537881/3571*15127^(3/5) 3654353258570522 a001 2504730781961/3571*15127^(13/20) 3654353259369022 a001 1548008755920/3571*15127^(7/10) 3654353260167522 a001 956722026041/3571*15127^(3/4) 3654353260966022 a001 591286729879/3571*15127^(4/5) 3654353261764522 a001 365435296162/3571*15127^(17/20) 3654353262563022 a001 225851433717/3571*15127^(9/10) 3654353263361522 a001 139583862445/3571*15127^(19/20) 3654353266097713 r005 Im(z^2+c),c=-1/50+13/28*I,n=60 3654353284357711 m002 2-Sinh[Pi]+(Pi^4*Sinh[Pi])/3 3654353290000025 a001 4181/3571*3461452808002^(11/12) 3654353304074060 m001 (GAMMA(19/24)-Bloch)/(CareFree-Sarnak) 3654353307630175 v002 sum(1/(5^n+(10*n^2+5*n+27)),n=1..infinity) 3654353309001137 a001 10610209857723/3571*5778^(5/9) 3654353315082249 a001 6557470319842/3571*5778^(11/18) 3654353321163360 a001 4052739537881/3571*5778^(2/3) 3654353327244472 a001 2504730781961/3571*5778^(13/18) 3654353333325584 a001 1548008755920/3571*5778^(7/9) 3654353339406695 a001 956722026041/3571*5778^(5/6) 3654353340352283 m001 LambertW(1)/(Ei(1,1)+MertensB3) 3654353345487807 a001 591286729879/3571*5778^(8/9) 3654353350707218 r005 Im(z^2+c),c=-23/122+34/63*I,n=27 3654353351568919 a001 365435296162/3571*5778^(17/18) 3654353354456126 a001 1134903780*1364^(4/5) 3654353357177955 m005 (1/3*3^(1/2)+1/7)/(13/10+3/10*5^(1/2)) 3654353357650011 a001 944284907616763/2584 3654353361915709 m001 (Porter+RenyiParking)/(gamma(2)-Gompertz) 3654353364720539 a007 Real Root Of -89*x^4-499*x^3-879*x^2-927*x-129 3654353365288321 m001 (Paris+ReciprocalLucas)/(Khinchin+Otter) 3654353367956846 a001 3536736619241/1926*2207^(11/16) 3654353384482113 m001 (Champernowne-Chi(1))/(Tetranacci+Trott2nd) 3654353390053296 a001 33385282/377*89^(6/19) 3654353390983427 r005 Re(z^2+c),c=-25/56+23/58*I,n=60 3654353392483857 r005 Im(z^2+c),c=39/118+3/46*I,n=47 3654353396350804 r005 Re(z^2+c),c=-37/90+19/44*I,n=12 3654353398108813 r009 Re(z^3+c),c=-15/28+17/41*I,n=12 3654353403346091 r002 15th iterates of z^2 + 3654353414847472 a001 3278735159921/2889*2207^(3/4) 3654353420348878 l006 ln(5012/7223) 3654353460115290 a007 Real Root Of -164*x^4-582*x^3+18*x^2-360*x-711 3654353460442715 r005 Im(z^2+c),c=25/74+14/53*I,n=22 3654353461738098 a001 4052739537881/5778*2207^(13/16) 3654353465126053 b008 7*DawsonF[9/8] 3654353466179260 r009 Im(z^3+c),c=-10/29+16/47*I,n=12 3654353478011223 m001 (3^(1/2)-Zeta(1,-1))/(-2*Pi/GAMMA(5/6)+Artin) 3654353485401511 a001 2504730781961/1364*1364^(11/15) 3654353486154029 a007 Real Root Of 249*x^4+115*x^3+705*x^2-468*x-264 3654353495128133 m007 (-3*gamma-3/5)/(-1/3*gamma-ln(2)+1/6*Pi+1) 3654353508628725 a001 2504730781961/5778*2207^(7/8) 3654353516083135 r005 Im(z^2+c),c=-1/50+13/28*I,n=53 3654353517340532 m006 (5*Pi+2/5)/(1/6*ln(Pi)+1/4) 3654353522641389 a001 2207/144*233^(32/55) 3654353533792354 r005 Im(z^2+c),c=-71/114+23/60*I,n=21 3654353534760044 a001 1597/3571*14662949395604^(19/21) 3654353549681018 s001 sum(exp(-Pi)^n*A159373[n],n=1..infinity) 3654353549681018 s002 sum(A159373[n]/(exp(pi*n)),n=1..infinity) 3654353552703416 m002 -2-Pi+Pi^2-ProductLog[Pi] 3654353555228111 a001 1515744265389/2161*2207^(13/16) 3654353555519352 a001 86000486440/321*2207^(15/16) 3654353562005277 q001 277/758 3654353566117491 a001 10610209857723/9349*2207^(3/4) 3654353568006248 a008 Real Root of x^2-133543 3654353569643166 m001 exp(RenyiParking)*MertensB1*Robbin 3654353569855897 m001 5^(1/2)/(StolarskyHarborth-ln(2)) 3654353573548516 m001 (exp(Pi)+sin(1/5*Pi))/(-Trott+TwinPrimes) 3654353574388235 r005 Re(z^2+c),c=-115/118+11/64*I,n=46 3654353585080669 r005 Re(z^2+c),c=-13/28+19/59*I,n=41 3654353585264862 l006 ln(221/8540) 3654353586766186 p001 sum((-1)^n/(522*n+325)/n/(32^n),n=1..infinity) 3654353586830720 r009 Re(z^3+c),c=-43/126+33/50*I,n=43 3654353602118740 a001 6557470319842/15127*2207^(7/8) 3654353602410131 a001 360684700557880/987 3654353613008120 a001 6557470319842/9349*2207^(13/16) 3654353616346901 a001 4052739537881/1364*1364^(2/3) 3654353621713227 r005 Re(z^2+c),c=-10/21+7/45*I,n=10 3654353624188739 a001 10610209857723/24476*2207^(7/8) 3654353625260552 a007 Real Root Of -559*x^4+608*x^3+522*x^2+984*x-449 3654353649009368 a001 4052739537881/15127*2207^(15/16) 3654353656888477 l006 ln(5853/8435) 3654353659898749 a001 4052739537881/9349*2207^(7/8) 3654353662649378 a001 3536736619241/13201*2207^(15/16) 3654353671079368 a001 3278735159921/12238*2207^(15/16) 3654353680291254 m002 6+Cosh[Pi]/Pi^6+Pi^3*Cosh[Pi] 3654353695900151 a001 120228236595115/329 3654353696399950 r009 Im(z^3+c),c=-25/114+17/44*I,n=14 3654353705633840 m002 -6/5-Pi*Cosh[Pi]+ProductLog[Pi] 3654353706190260 r005 Im(z^2+c),c=-15/86+11/18*I,n=5 3654353706789378 a001 2504730781961/9349*2207^(15/16) 3654353709540162 a001 360684711131614/987 3654353711820557 a001 360684711356689/987 3654353711862917 a001 120228237120290/329 3654353711869098 a001 360684711361480/987 3654353711870131 a001 360684711361582/987 3654353711870151 a001 120228237120528/329 3654353711870162 a001 360684711361585/987 3654353711870557 a001 360684711361624/987 3654353711872917 a001 120228237120619/329 3654353711889098 a001 360684711363454/987 3654353712760131 a001 360684711449425/987 3654353714225431 m005 (1/2*exp(1)+5/12)/(6*Catalan-7/11) 3654353717096291 a001 10610209857723/3571*2207^(5/8) 3654353717970151 a001 120228237321218/329 3654353721993593 m005 (1/2*5^(1/2)-5/6)/(7/8*Zeta(3)-3/11) 3654353724988345 r005 Re(z^2+c),c=-41/90+19/50*I,n=29 3654353731165956 m001 Ei(1)^FeigenbaumAlpha/FeigenbaumKappa 3654353733174546 a007 Real Root Of -686*x^4+512*x^3+606*x^2+633*x-325 3654353740029933 a007 Real Root Of 700*x^4-726*x^3-709*x^2-712*x+27 3654353744717679 r009 Re(z^3+c),c=-10/23+13/56*I,n=37 3654353747292295 a001 3278735159921/682*1364^(3/5) 3654353753680162 a001 360684715488232/987 3654353753772530 a007 Real Root Of 169*x^4+542*x^3-2*x^2+868*x-490 3654353758227947 p004 log(26161/677) 3654353758881258 a007 Real Root Of 118*x^4+246*x^3-483*x^2+632*x-279 3654353763967016 m008 (1/5*Pi^3-1)/(2/5*Pi+1/6) 3654353763986921 a001 6557470319842/3571*2207^(11/16) 3654353766831665 h001 (6/11*exp(1)+4/9)/(7/11*exp(2)+4/7) 3654353769698034 r002 13th iterates of z^2 + 3654353777365147 r005 Im(z^2+c),c=-7/46+31/58*I,n=27 3654353793253046 r002 26th iterates of z^2 + 3654353795649863 m001 (LambertW(1)+BesselI(0,1))/(ln(5)+Magata) 3654353800461416 a007 Real Root Of -262*x^4-826*x^3+174*x^2-961*x+579 3654353810877552 a001 4052739537881/3571*2207^(3/4) 3654353813848020 r009 Im(z^3+c),c=-41/118+31/49*I,n=18 3654353823003832 m001 FransenRobinson*(Chi(1)+arctan(1/2)) 3654353828992958 m001 1/(3^(1/3))/Kolakoski^2*exp(Zeta(3)) 3654353833992816 l006 ln(6694/9647) 3654353846502313 r009 Re(z^3+c),c=-7/15+17/55*I,n=6 3654353847615086 p003 LerchPhi(1/32,3,171/122) 3654353854989126 m002 -25+5/Pi^6-Sinh[Pi] 3654353856285517 r005 Re(z^2+c),c=-31/66+8/27*I,n=44 3654353857768183 a001 2504730781961/3571*2207^(13/16) 3654353861179165 h001 (-3*exp(1/2)-4)/(-9*exp(-3)-2) 3654353861228044 r002 2th iterates of z^2 + 3654353861228044 r005 Re(z^2+c),c=-7/8+42/83*I,n=2 3654353865082097 a007 Real Root Of 663*x^4+790*x^3+695*x^2-257*x-160 3654353871964306 r009 Im(z^3+c),c=-11/62+21/53*I,n=15 3654353874074344 m001 Khinchin+GaussAGM^ZetaP(3) 3654353878237694 a001 10610209857723/1364*1364^(8/15) 3654353889495217 r005 Re(z^2+c),c=-51/110+16/49*I,n=38 3654353889910498 r002 45th iterates of z^2 + 3654353904658815 a001 1548008755920/3571*2207^(7/8) 3654353912359513 r002 36th iterates of z^2 + 3654353912717855 m001 (Cahen-KhinchinHarmonic)/(Salem+Tribonacci) 3654353929765472 a007 Real Root Of -488*x^4+388*x^3-685*x^2+391*x+262 3654353951549448 a001 956722026041/3571*2207^(15/16) 3654353958597681 r009 Im(z^3+c),c=-13/27+3/7*I,n=3 3654353978254350 a007 Real Root Of -686*x^4-12*x^3-561*x^2-163*x+27 3654353997213592 a001 591286729879/521*521^(12/13) 3654353998631832 r005 Re(z^2+c),c=13/46+2/33*I,n=54 3654354017501890 r005 Re(z^2+c),c=-1/86+43/47*I,n=4 3654354026576010 r005 Re(z^2+c),c=-13/29+15/38*I,n=37 3654354078035464 m001 exp(1/exp(1))/(MertensB1-ln(2)/ln(10)) 3654354082612201 a007 Real Root Of -457*x^4+521*x^3-216*x^2+423*x+217 3654354083545669 l006 ln(235/9081) 3654354096878040 m001 (OneNinth+Trott)/(Zeta(1/2)-Grothendieck) 3654354104022349 r005 Re(z^2+c),c=-45/86+7/59*I,n=6 3654354107230989 r005 Im(z^2+c),c=-1/50+13/28*I,n=57 3654354109080347 m005 (-1/20+1/4*5^(1/2))/(4/9*3^(1/2)-10/11) 3654354113455772 r002 19th iterates of z^2 + 3654354114880918 r005 Im(z^2+c),c=3/74+29/61*I,n=10 3654354126729444 r009 Re(z^3+c),c=-10/23+13/56*I,n=40 3654354145625781 r005 Im(z^2+c),c=19/122+15/43*I,n=46 3654354175550652 a001 987/1364*14662949395604^(8/9) 3654354176306376 m001 (Otter-Tetranacci)/(GAMMA(13/24)+GAMMA(19/24)) 3654354176482507 s002 sum(A284826[n]/((exp(n)+1)/n),n=1..infinity) 3654354185533264 m001 (-3^(1/2)+polylog(4,1/2))/(exp(Pi)+Psi(1,1/3)) 3654354197015765 m001 1/exp(KhintchineLevy)^2*Lehmer*Robbin 3654354205743712 m005 (1/3*gamma+1/11)/(5/7*Zeta(3)-1/12) 3654354213850311 p001 sum(1/(188*n+169)/n/(8^n),n=1..infinity) 3654354217279618 m005 (1/3*3^(1/2)+1/4)/(1/6*Pi-3/4) 3654354222320602 r005 Im(z^2+c),c=1/44+18/41*I,n=38 3654354233666802 r009 Im(z^3+c),c=-3/52+63/64*I,n=6 3654354253805900 r005 Im(z^2+c),c=-149/122+7/61*I,n=27 3654354270275254 r005 Im(z^2+c),c=-7/25+34/57*I,n=61 3654354281013339 r004 Im(z^2+c),c=-3/26-8/15*I,z(0)=I,n=10 3654354282177128 r002 12th iterates of z^2 + 3654354287667961 m001 ln(Sierpinski)^2*LaplaceLimit^2/Trott 3654354290420073 b008 -4+(-2+E)*ArcCsch[2] 3654354292585275 m001 (GlaisherKinkelin-Niven)/(Ei(1,1)-Zeta(1,2)) 3654354341061206 a007 Real Root Of -993*x^4-696*x^3+108*x^2+883*x+292 3654354347305031 r005 Re(z^2+c),c=-19/40+15/56*I,n=40 3654354352002314 r005 Im(z^2+c),c=-19/98+37/63*I,n=40 3654354354721518 a001 710647/144*832040^(6/19) 3654354354765279 a007 Real Root Of -598*x^4+235*x^3-905*x^2+966*x+496 3654354357044608 a001 13201/48*7778742049^(6/19) 3654354418274772 m001 BesselK(1,1)-ln(gamma)+FeigenbaumAlpha 3654354418274772 m001 FeigenbaumAlpha-log(gamma)+BesselK(1,1) 3654354427736861 m005 (1/2*Pi-2/11)/(7/10*Pi-6) 3654354431700063 a007 Real Root Of -197*x^4-697*x^3+80*x^2-250*x-864 3654354449690944 r005 Re(z^2+c),c=-23/54+23/50*I,n=36 3654354457501206 m001 (Pi+Zeta(3))/(gamma(3)+KhinchinLevy) 3654354473862276 a007 Real Root Of 16*x^4+596*x^3+423*x^2+354*x-335 3654354476794439 m001 (arctan(1/2)+Zeta(1,-1))/(3^(1/2)-Catalan) 3654354525471576 m001 (Kolakoski-TreeGrowth2nd)/(Artin+Gompertz) 3654354525794691 l006 ln(249/9622) 3654354528137504 r005 Im(z^2+c),c=13/102+29/50*I,n=42 3654354532693652 m001 (Thue+ZetaP(3))/(ln(gamma)-BesselI(0,2)) 3654354541439593 a001 2/23725150497407*47^(8/21) 3654354542823920 r005 Im(z^2+c),c=29/122+16/63*I,n=8 3654354545987826 r005 Re(z^2+c),c=9/74+3/7*I,n=47 3654354555043421 p003 LerchPhi(1/12,3,211/150) 3654354570087947 m005 (1/3*Catalan-1/4)/(7/11*5^(1/2)+1/11) 3654354572299634 r002 25th iterates of z^2 + 3654354577591567 a007 Real Root Of -939*x^4+738*x^3+302*x^2+973*x+368 3654354584589590 a001 29/32951280099*317811^(5/17) 3654354584591719 a001 29/4052739537881*4052739537881^(5/17) 3654354584591719 a001 29/365435296162*1134903170^(5/17) 3654354588827375 m001 1/FeigenbaumKappa*exp(MadelungNaCl)/OneNinth^2 3654354589792222 r005 Im(z^2+c),c=33/106+14/57*I,n=5 3654354590910808 m001 Sierpinski/(Thue^BesselI(0,2)) 3654354616820541 m002 -4-Pi^(-2)+Pi+Tanh[Pi] 3654354624111957 b008 3*Zeta[1/3,1/12] 3654354639229868 a001 583600435885010/1597 3654354639258478 p004 log(27827/19309) 3654354653846306 a007 Real Root Of 26*x^4-85*x^3-468*x^2+454*x-876 3654354656087969 a001 225851433717/1364*3571^(16/17) 3654354657876328 p001 sum((-1)^n/(349*n+269)/(25^n),n=0..infinity) 3654354672945036 a001 182717648081/682*3571^(15/17) 3654354689802103 a001 591286729879/1364*3571^(14/17) 3654354706659171 a001 956722026041/1364*3571^(13/17) 3654354709635727 r005 Im(z^2+c),c=-1/90+28/61*I,n=31 3654354710422684 m006 (Pi^2-4)/(3/4*Pi-3/4) 3654354710422684 m008 (Pi^2-4)/(3/4*Pi-3/4) 3654354713554596 m001 (Khinchin+MinimumGamma)/(Bloch-ErdosBorwein) 3654354714452402 r005 Im(z^2+c),c=-4/29+19/36*I,n=63 3654354723516238 a001 1134903780*3571^(12/17) 3654354728043511 m001 (ln(gamma)-Pi^(1/2))/(MasserGramain-Trott) 3654354736964344 m005 (1/2*5^(1/2)-3/11)/(7/11*exp(1)+7/12) 3654354740373306 a001 2504730781961/1364*3571^(11/17) 3654354742936643 a001 123/55*2584^(1/16) 3654354751650628 r009 Re(z^3+c),c=-53/126+11/52*I,n=13 3654354751812135 r001 18i'th iterates of 2*x^2-1 of 3654354752837763 r005 Im(z^2+c),c=-5/74+27/55*I,n=44 3654354754972798 r005 Im(z^2+c),c=-1/78+16/35*I,n=14 3654354757230374 a001 4052739537881/1364*3571^(10/17) 3654354764184361 a001 15456/281*18^(19/29) 3654354765359912 r005 Im(z^2+c),c=-11/74+14/23*I,n=29 3654354774087441 a001 3278735159921/682*3571^(9/17) 3654354785245463 m005 (1/2*gamma+4/9)/(3/5*exp(1)+3/8) 3654354789276642 r009 Re(z^3+c),c=-41/114+9/59*I,n=3 3654354790944509 a001 10610209857723/1364*3571^(8/17) 3654354796123494 r009 Im(z^3+c),c=-33/118+11/30*I,n=8 3654354797665654 r005 Im(z^2+c),c=-5/32+17/31*I,n=29 3654354802439345 a001 199/377*20365011074^(21/22) 3654354803920125 a001 1/64079*11^(11/31) 3654354816339944 a001 305/2889*14662949395604^(20/21) 3654354816340997 a001 646/341*14662949395604^(6/7) 3654354821128908 r005 Im(z^2+c),c=-43/54+11/53*I,n=8 3654354826652982 r005 Im(z^2+c),c=-3/56+13/25*I,n=12 3654354830097656 m001 Pi/(1/2*ln(2)/ln(10)*2^(2/3)-ln(3)) 3654354831653225 r002 31th iterates of z^2 + 3654354832505910 r009 Im(z^3+c),c=-25/64+4/15*I,n=3 3654354883880463 r005 Im(z^2+c),c=25/94+25/53*I,n=17 3654354883989978 a001 1527885776996210/4181 3654354886191561 a001 21566892818/341*9349^(18/19) 3654354888392088 a001 139583862445/1364*9349^(17/19) 3654354890592616 a001 225851433717/1364*9349^(16/19) 3654354891717855 r005 Re(z^2+c),c=-49/106+17/41*I,n=27 3654354892793143 a001 182717648081/682*9349^(15/19) 3654354894993671 a001 591286729879/1364*9349^(14/19) 3654354897194198 a001 956722026041/1364*9349^(13/19) 3654354899394725 a001 1134903780*9349^(12/19) 3654354901595253 a001 2504730781961/1364*9349^(11/19) 3654354902361002 r009 Re(z^3+c),c=-21/52+9/47*I,n=20 3654354903795780 a001 4052739537881/1364*9349^(10/19) 3654354905996308 a001 3278735159921/682*9349^(9/19) 3654354908196835 a001 10610209857723/1364*9349^(8/19) 3654354908846266 m001 MertensB1/(LambertW(1)+ZetaR(2)) 3654354909831048 a001 615/124*23725150497407^(13/16) 3654354909831048 a001 615/124*505019158607^(13/14) 3654354919991531 a001 32951280099/1364*24476^(20/21) 3654354920282008 a001 53316291173/1364*24476^(19/21) 3654354920572484 a001 21566892818/341*24476^(6/7) 3654354920862960 a001 139583862445/1364*24476^(17/21) 3654354920960001 p004 log(10163/263) 3654354921153436 a001 225851433717/1364*24476^(16/21) 3654354921443912 a001 182717648081/682*24476^(5/7) 3654354921734389 a001 591286729879/1364*24476^(2/3) 3654354922024865 a001 956722026041/1364*24476^(13/21) 3654354922315341 a001 1134903780*24476^(4/7) 3654354922605817 a001 2504730781961/1364*24476^(11/21) 3654354922896293 a001 4052739537881/1364*24476^(10/21) 3654354923186770 a001 3278735159921/682*24476^(3/7) 3654354923471063 a001 17711/1364*312119004989^(10/11) 3654354923471063 a001 17711/1364*3461452808002^(5/6) 3654354923477246 a001 10610209857723/1364*24476^(8/21) 3654354924949772 a001 1144206275/124*64079^(22/23) 3654354924988467 a001 10182505537/682*64079^(21/23) 3654354925027161 a001 32951280099/1364*64079^(20/23) 3654354925065856 a001 53316291173/1364*64079^(19/23) 3654354925104551 a001 21566892818/341*64079^(18/23) 3654354925143245 a001 139583862445/1364*64079^(17/23) 3654354925181940 a001 225851433717/1364*64079^(16/23) 3654354925220635 a001 182717648081/682*64079^(15/23) 3654354925259329 a001 591286729879/1364*64079^(14/23) 3654354925298024 a001 956722026041/1364*64079^(13/23) 3654354925336719 a001 1134903780*64079^(12/23) 3654354925375414 a001 2504730781961/1364*64079^(11/23) 3654354925414108 a001 4052739537881/1364*64079^(10/23) 3654354925452803 a001 3278735159921/682*64079^(9/23) 3654354925461114 a001 11592/341*45537549124^(16/17) 3654354925461114 a001 11592/341*14662949395604^(16/21) 3654354925461114 a001 11592/341*192900153618^(8/9) 3654354925461114 a001 11592/341*73681302247^(12/13) 3654354925491498 a001 10610209857723/1364*64079^(8/23) 3654354925697178 a001 32951280099/1364*167761^(4/5) 3654354925723148 a001 182717648081/682*167761^(3/5) 3654354925749117 a001 4052739537881/1364*167761^(2/5) 3654354925751458 a001 121393/1364*10749957122^(23/24) 3654354925784216 a001 1201881744/341*439204^(8/9) 3654354925786321 a001 10182505537/682*439204^(7/9) 3654354925788426 a001 21566892818/341*439204^(2/3) 3654354925790531 a001 182717648081/682*439204^(5/9) 3654354925792636 a001 1134903780*439204^(4/9) 3654354925793819 a001 317811/1364*312119004989^(4/5) 3654354925793819 a001 317811/1364*23725150497407^(11/16) 3654354925793819 a001 317811/1364*73681302247^(11/13) 3654354925793819 a001 317811/1364*10749957122^(11/12) 3654354925793819 a001 317811/1364*4106118243^(22/23) 3654354925794740 a001 3278735159921/682*439204^(1/3) 3654354925799999 a001 610*2537720636^(14/15) 3654354925799999 a001 610*17393796001^(6/7) 3654354925799999 a001 610*45537549124^(14/17) 3654354925799999 a001 610*817138163596^(14/19) 3654354925799999 a001 610*14662949395604^(2/3) 3654354925799999 a001 610*505019158607^(3/4) 3654354925799999 a001 610*192900153618^(7/9) 3654354925799999 a001 610*10749957122^(7/8) 3654354925799999 a001 610*4106118243^(21/23) 3654354925799999 a001 610*1568397607^(21/22) 3654354925800901 a001 2178309/1364*2537720636^(8/9) 3654354925800901 a001 2178309/1364*312119004989^(8/11) 3654354925800901 a001 2178309/1364*23725150497407^(5/8) 3654354925800901 a001 2178309/1364*73681302247^(10/13) 3654354925800901 a001 2178309/1364*28143753123^(4/5) 3654354925800901 a001 2178309/1364*10749957122^(5/6) 3654354925800901 a001 2178309/1364*4106118243^(20/23) 3654354925800901 a001 2178309/1364*1568397607^(10/11) 3654354925800901 a001 2178309/1364*599074578^(20/21) 3654354925801002 a001 66978574/341*7881196^(10/11) 3654354925801007 a001 567451585/682*7881196^(9/11) 3654354925801012 a001 1201881744/341*7881196^(8/11) 3654354925801016 a001 1144206275/124*7881196^(2/3) 3654354925801018 a001 10182505537/682*7881196^(7/11) 3654354925801023 a001 21566892818/341*7881196^(6/11) 3654354925801028 a001 182717648081/682*7881196^(5/11) 3654354925801033 a001 5702887/1364*817138163596^(2/3) 3654354925801033 a001 5702887/1364*10749957122^(19/24) 3654354925801033 a001 5702887/1364*4106118243^(19/23) 3654354925801033 a001 5702887/1364*1568397607^(19/22) 3654354925801033 a001 5702887/1364*599074578^(19/21) 3654354925801033 a001 5702887/1364*228826127^(19/20) 3654354925801034 a001 1134903780*7881196^(4/11) 3654354925801036 a001 2504730781961/1364*7881196^(1/3) 3654354925801039 a001 3278735159921/682*7881196^(3/11) 3654354925801048 a001 66978574/341*20633239^(6/7) 3654354925801048 a001 701408733/1364*20633239^(4/5) 3654354925801049 a001 2971215073/1364*20633239^(5/7) 3654354925801050 a001 10182505537/682*20633239^(3/5) 3654354925801050 a001 32951280099/1364*20633239^(4/7) 3654354925801052 a001 182717648081/682*20633239^(3/7) 3654354925801052 a001 3732588/341*141422324^(12/13) 3654354925801052 a001 591286729879/1364*20633239^(2/5) 3654354925801052 a001 3732588/341*2537720636^(4/5) 3654354925801052 a001 3732588/341*45537549124^(12/17) 3654354925801052 a001 3732588/341*14662949395604^(4/7) 3654354925801052 a001 3732588/341*505019158607^(9/14) 3654354925801052 a001 3732588/341*192900153618^(2/3) 3654354925801052 a001 3732588/341*73681302247^(9/13) 3654354925801052 a001 3732588/341*10749957122^(3/4) 3654354925801052 a001 3732588/341*4106118243^(18/23) 3654354925801052 a001 3732588/341*1568397607^(9/11) 3654354925801052 a001 3732588/341*599074578^(6/7) 3654354925801052 a001 3732588/341*228826127^(9/10) 3654354925801052 a001 3732588/341*87403803^(18/19) 3654354925801053 a001 4052739537881/1364*20633239^(2/7) 3654354925801055 a001 39088169/1364*45537549124^(2/3) 3654354925801055 a001 39088169/1364*10749957122^(17/24) 3654354925801055 a001 39088169/1364*4106118243^(17/23) 3654354925801055 a001 39088169/1364*1568397607^(17/22) 3654354925801055 a001 39088169/1364*599074578^(17/21) 3654354925801055 a001 39088169/1364*228826127^(17/20) 3654354925801055 a001 66978574/341*141422324^(10/13) 3654354925801055 a001 567451585/682*141422324^(9/13) 3654354925801055 a001 1836311903/1364*141422324^(2/3) 3654354925801055 a001 1201881744/341*141422324^(8/13) 3654354925801055 a001 10182505537/682*141422324^(7/13) 3654354925801055 a001 21566892818/341*141422324^(6/13) 3654354925801055 a001 182717648081/682*141422324^(5/13) 3654354925801055 a001 9303105/124*23725150497407^(1/2) 3654354925801055 a001 9303105/124*505019158607^(4/7) 3654354925801055 a001 9303105/124*73681302247^(8/13) 3654354925801055 a001 9303105/124*10749957122^(2/3) 3654354925801055 a001 9303105/124*4106118243^(16/23) 3654354925801055 a001 9303105/124*1568397607^(8/11) 3654354925801055 a001 9303105/124*599074578^(16/21) 3654354925801055 a001 956722026041/1364*141422324^(1/3) 3654354925801055 a001 1134903780*141422324^(4/13) 3654354925801055 a001 39088169/1364*87403803^(17/19) 3654354925801055 a001 3278735159921/682*141422324^(3/13) 3654354925801055 a001 9303105/124*228826127^(4/5) 3654354925801055 a001 66978574/341*2537720636^(2/3) 3654354925801055 a001 66978574/341*45537549124^(10/17) 3654354925801055 a001 66978574/341*312119004989^(6/11) 3654354925801055 a001 66978574/341*14662949395604^(10/21) 3654354925801055 a001 66978574/341*192900153618^(5/9) 3654354925801055 a001 66978574/341*28143753123^(3/5) 3654354925801055 a001 66978574/341*10749957122^(5/8) 3654354925801055 a001 66978574/341*4106118243^(15/23) 3654354925801055 a001 66978574/341*1568397607^(15/22) 3654354925801055 a001 66978574/341*599074578^(5/7) 3654354925801055 a001 701408733/1364*17393796001^(4/7) 3654354925801055 a001 701408733/1364*14662949395604^(4/9) 3654354925801055 a001 701408733/1364*73681302247^(7/13) 3654354925801055 a001 701408733/1364*10749957122^(7/12) 3654354925801055 a001 701408733/1364*4106118243^(14/23) 3654354925801055 a001 701408733/1364*1568397607^(7/11) 3654354925801055 a001 1201881744/341*2537720636^(8/15) 3654354925801055 a001 10182505537/682*2537720636^(7/15) 3654354925801055 a001 32951280099/1364*2537720636^(4/9) 3654354925801055 a001 2971215073/1364*2537720636^(5/9) 3654354925801055 a001 21566892818/341*2537720636^(2/5) 3654354925801055 a001 1836311903/1364*73681302247^(1/2) 3654354925801055 a001 1836311903/1364*10749957122^(13/24) 3654354925801055 a001 182717648081/682*2537720636^(1/3) 3654354925801055 a001 1134903780*2537720636^(4/15) 3654354925801055 a001 4052739537881/1364*2537720636^(2/9) 3654354925801055 a001 3278735159921/682*2537720636^(1/5) 3654354925801055 a001 1836311903/1364*4106118243^(13/23) 3654354925801055 a001 1201881744/341*45537549124^(8/17) 3654354925801055 a001 1201881744/341*14662949395604^(8/21) 3654354925801055 a001 1201881744/341*192900153618^(4/9) 3654354925801055 a001 1201881744/341*73681302247^(6/13) 3654354925801055 a001 1201881744/341*10749957122^(1/2) 3654354925801055 a001 1144206275/124*312119004989^(2/5) 3654354925801055 a001 591286729879/1364*17393796001^(2/7) 3654354925801055 a001 10182505537/682*17393796001^(3/7) 3654354925801055 a001 21566892818/341*45537549124^(6/17) 3654354925801055 a001 32951280099/1364*23725150497407^(5/16) 3654354925801055 a001 32951280099/1364*505019158607^(5/14) 3654354925801055 a001 139583862445/1364*45537549124^(1/3) 3654354925801055 a001 182717648081/682*45537549124^(5/17) 3654354925801055 a001 1134903780*45537549124^(4/17) 3654354925801055 a001 3278735159921/682*45537549124^(3/17) 3654354925801055 a001 21566892818/341*14662949395604^(2/7) 3654354925801055 a001 21566892818/341*192900153618^(1/3) 3654354925801055 a001 182717648081/682*312119004989^(3/11) 3654354925801055 a001 10610209857723/1364*23725150497407^(1/8) 3654354925801055 a001 10610209857723/1364*505019158607^(1/7) 3654354925801055 a001 1134903780*192900153618^(2/9) 3654354925801055 a001 182717648081/682*192900153618^(5/18) 3654354925801055 a001 10610209857723/1364*73681302247^(2/13) 3654354925801055 a001 1134903780*73681302247^(3/13) 3654354925801055 a001 956722026041/1364*73681302247^(1/4) 3654354925801055 a001 225851433717/1364*73681302247^(4/13) 3654354925801055 a001 53316291173/1364*817138163596^(1/3) 3654354925801055 a001 4052739537881/1364*28143753123^(1/5) 3654354925801055 a001 10182505537/682*45537549124^(7/17) 3654354925801055 a001 32951280099/1364*28143753123^(2/5) 3654354925801055 a001 182717648081/682*28143753123^(3/10) 3654354925801055 a001 10182505537/682*14662949395604^(1/3) 3654354925801055 a001 10182505537/682*192900153618^(7/18) 3654354925801055 a001 10610209857723/1364*10749957122^(1/6) 3654354925801055 a001 3278735159921/682*10749957122^(3/16) 3654354925801055 a001 4052739537881/1364*10749957122^(5/24) 3654354925801055 a001 1134903780*10749957122^(1/4) 3654354925801055 a001 591286729879/1364*10749957122^(7/24) 3654354925801055 a001 1144206275/124*10749957122^(11/24) 3654354925801055 a001 182717648081/682*10749957122^(5/16) 3654354925801055 a001 225851433717/1364*10749957122^(1/3) 3654354925801055 a001 21566892818/341*10749957122^(3/8) 3654354925801055 a001 32951280099/1364*10749957122^(5/12) 3654354925801055 a001 10182505537/682*10749957122^(7/16) 3654354925801055 a001 10610209857723/1364*4106118243^(4/23) 3654354925801055 a001 4052739537881/1364*4106118243^(5/23) 3654354925801055 a001 1134903780*4106118243^(6/23) 3654354925801055 a001 591286729879/1364*4106118243^(7/23) 3654354925801055 a001 225851433717/1364*4106118243^(8/23) 3654354925801055 a001 1201881744/341*4106118243^(12/23) 3654354925801055 a001 2971215073/1364*312119004989^(5/11) 3654354925801055 a001 2971215073/1364*3461452808002^(5/12) 3654354925801055 a001 21566892818/341*4106118243^(9/23) 3654354925801055 a001 2971215073/1364*28143753123^(1/2) 3654354925801055 a001 32951280099/1364*4106118243^(10/23) 3654354925801055 a001 1144206275/124*4106118243^(11/23) 3654354925801055 a001 7778742049/1364*4106118243^(1/2) 3654354925801055 a001 567451585/682*2537720636^(3/5) 3654354925801055 a001 10610209857723/1364*1568397607^(2/11) 3654354925801055 a001 4052739537881/1364*1568397607^(5/22) 3654354925801055 a001 2504730781961/1364*1568397607^(1/4) 3654354925801055 a001 1134903780*1568397607^(3/11) 3654354925801055 a001 591286729879/1364*1568397607^(7/22) 3654354925801055 a001 225851433717/1364*1568397607^(4/11) 3654354925801055 a001 567451585/682*45537549124^(9/17) 3654354925801055 a001 567451585/682*817138163596^(9/19) 3654354925801055 a001 567451585/682*14662949395604^(3/7) 3654354925801055 a001 567451585/682*192900153618^(1/2) 3654354925801055 a001 567451585/682*10749957122^(9/16) 3654354925801055 a001 21566892818/341*1568397607^(9/22) 3654354925801055 a001 1836311903/1364*1568397607^(13/22) 3654354925801055 a001 32951280099/1364*1568397607^(5/11) 3654354925801055 a001 1144206275/124*1568397607^(1/2) 3654354925801055 a001 1201881744/341*1568397607^(6/11) 3654354925801055 a001 10610209857723/1364*599074578^(4/21) 3654354925801055 a001 3278735159921/682*599074578^(3/14) 3654354925801055 a001 4052739537881/1364*599074578^(5/21) 3654354925801055 a001 1134903780*599074578^(2/7) 3654354925801055 a001 591286729879/1364*599074578^(1/3) 3654354925801055 a001 182717648081/682*599074578^(5/14) 3654354925801055 a001 225851433717/1364*599074578^(8/21) 3654354925801055 a001 433494437/1364*1322157322203^(1/2) 3654354925801055 a001 21566892818/341*599074578^(3/7) 3654354925801055 a001 32951280099/1364*599074578^(10/21) 3654354925801055 a001 10182505537/682*599074578^(1/2) 3654354925801055 a001 701408733/1364*599074578^(2/3) 3654354925801055 a001 1144206275/124*599074578^(11/21) 3654354925801055 a001 1201881744/341*599074578^(4/7) 3654354925801055 a001 1836311903/1364*599074578^(13/21) 3654354925801055 a001 567451585/682*599074578^(9/14) 3654354925801055 a001 10610209857723/1364*228826127^(1/5) 3654354925801055 a001 4052739537881/1364*228826127^(1/4) 3654354925801055 a001 1134903780*228826127^(3/10) 3654354925801055 a001 591286729879/1364*228826127^(7/20) 3654354925801055 a001 182717648081/682*228826127^(3/8) 3654354925801055 a001 165580141/1364*9062201101803^(1/2) 3654354925801055 a001 225851433717/1364*228826127^(2/5) 3654354925801055 a001 31622993/682*141422324^(11/13) 3654354925801055 a001 21566892818/341*228826127^(9/20) 3654354925801055 a001 32951280099/1364*228826127^(1/2) 3654354925801055 a001 1144206275/124*228826127^(11/20) 3654354925801055 a001 1201881744/341*228826127^(3/5) 3654354925801055 a001 66978574/341*228826127^(3/4) 3654354925801055 a001 2971215073/1364*228826127^(5/8) 3654354925801055 a001 1836311903/1364*228826127^(13/20) 3654354925801055 a001 701408733/1364*228826127^(7/10) 3654354925801055 a001 10610209857723/1364*87403803^(4/19) 3654354925801055 a001 4052739537881/1364*87403803^(5/19) 3654354925801055 a001 1134903780*87403803^(6/19) 3654354925801055 a001 591286729879/1364*87403803^(7/19) 3654354925801055 a001 31622993/682*2537720636^(11/15) 3654354925801055 a001 31622993/682*45537549124^(11/17) 3654354925801055 a001 31622993/682*312119004989^(3/5) 3654354925801055 a001 31622993/682*14662949395604^(11/21) 3654354925801055 a001 31622993/682*192900153618^(11/18) 3654354925801055 a001 31622993/682*10749957122^(11/16) 3654354925801055 a001 31622993/682*1568397607^(3/4) 3654354925801055 a001 31622993/682*599074578^(11/14) 3654354925801055 a001 225851433717/1364*87403803^(8/19) 3654354925801055 a001 21566892818/341*87403803^(9/19) 3654354925801055 a001 53316291173/1364*87403803^(1/2) 3654354925801055 a001 32951280099/1364*87403803^(10/19) 3654354925801055 a001 1144206275/124*87403803^(11/19) 3654354925801056 a001 1201881744/341*87403803^(12/19) 3654354925801056 a001 1836311903/1364*87403803^(13/19) 3654354925801056 a001 9303105/124*87403803^(16/19) 3654354925801056 a001 701408733/1364*87403803^(14/19) 3654354925801056 a001 66978574/341*87403803^(15/19) 3654354925801056 a001 10610209857723/1364*33385282^(2/9) 3654354925801056 a001 3278735159921/682*33385282^(1/4) 3654354925801056 a001 4052739537881/1364*33385282^(5/18) 3654354925801056 a001 1134903780*33385282^(1/3) 3654354925801056 a001 24157817/1364*2537720636^(7/9) 3654354925801056 a001 24157817/1364*17393796001^(5/7) 3654354925801056 a001 24157817/1364*312119004989^(7/11) 3654354925801056 a001 24157817/1364*14662949395604^(5/9) 3654354925801056 a001 24157817/1364*505019158607^(5/8) 3654354925801056 a001 24157817/1364*28143753123^(7/10) 3654354925801056 a001 24157817/1364*599074578^(5/6) 3654354925801056 a001 591286729879/1364*33385282^(7/18) 3654354925801057 a001 24157817/1364*228826127^(7/8) 3654354925801057 a001 182717648081/682*33385282^(5/12) 3654354925801057 a001 225851433717/1364*33385282^(4/9) 3654354925801057 a001 21566892818/341*33385282^(1/2) 3654354925801057 a001 32951280099/1364*33385282^(5/9) 3654354925801057 a001 10182505537/682*33385282^(7/12) 3654354925801057 a001 1144206275/124*33385282^(11/18) 3654354925801057 a001 1201881744/341*33385282^(2/3) 3654354925801058 a001 1836311903/1364*33385282^(13/18) 3654354925801058 a001 567451585/682*33385282^(3/4) 3654354925801058 a001 701408733/1364*33385282^(7/9) 3654354925801058 a001 39088169/1364*33385282^(17/18) 3654354925801058 a001 66978574/341*33385282^(5/6) 3654354925801058 a001 9303105/124*33385282^(8/9) 3654354925801058 a001 31622993/682*33385282^(11/12) 3654354925801061 a001 10610209857723/1364*12752043^(4/17) 3654354925801062 a001 4052739537881/1364*12752043^(5/17) 3654354925801063 a001 1134903780*12752043^(6/17) 3654354925801064 a001 591286729879/1364*12752043^(7/17) 3654354925801066 a001 225851433717/1364*12752043^(8/17) 3654354925801066 a001 139583862445/1364*12752043^(1/2) 3654354925801067 a001 21566892818/341*12752043^(9/17) 3654354925801068 a001 32951280099/1364*12752043^(10/17) 3654354925801070 a001 1144206275/124*12752043^(11/17) 3654354925801071 a001 1201881744/341*12752043^(12/17) 3654354925801072 a001 1836311903/1364*12752043^(13/17) 3654354925801074 a001 701408733/1364*12752043^(14/17) 3654354925801075 a001 66978574/341*12752043^(15/17) 3654354925801076 a001 9303105/124*12752043^(16/17) 3654354925801094 a001 10610209857723/1364*4870847^(1/4) 3654354925801103 a001 4052739537881/1364*4870847^(5/16) 3654354925801113 a001 1134903780*4870847^(3/8) 3654354925801114 a001 1762289/682*2537720636^(13/15) 3654354925801114 a001 1762289/682*45537549124^(13/17) 3654354925801114 a001 1762289/682*14662949395604^(13/21) 3654354925801114 a001 1762289/682*192900153618^(13/18) 3654354925801114 a001 1762289/682*73681302247^(3/4) 3654354925801114 a001 1762289/682*10749957122^(13/16) 3654354925801114 a001 1762289/682*599074578^(13/14) 3654354925801123 a001 591286729879/1364*4870847^(7/16) 3654354925801132 a001 225851433717/1364*4870847^(1/2) 3654354925801142 a001 21566892818/341*4870847^(9/16) 3654354925801151 a001 32951280099/1364*4870847^(5/8) 3654354925801161 a001 1144206275/124*4870847^(11/16) 3654354925801171 a001 1201881744/341*4870847^(3/4) 3654354925801180 a001 1836311903/1364*4870847^(13/16) 3654354925801190 a001 701408733/1364*4870847^(7/8) 3654354925801200 a001 66978574/341*4870847^(15/16) 3654354925801337 a001 10610209857723/1364*1860498^(4/15) 3654354925801372 a001 3278735159921/682*1860498^(3/10) 3654354925801407 a001 4052739537881/1364*1860498^(1/3) 3654354925801478 a001 1134903780*1860498^(2/5) 3654354925801548 a001 591286729879/1364*1860498^(7/15) 3654354925801583 a001 182717648081/682*1860498^(1/2) 3654354925801618 a001 225851433717/1364*1860498^(8/15) 3654354925801689 a001 21566892818/341*1860498^(3/5) 3654354925801759 a001 32951280099/1364*1860498^(2/3) 3654354925801794 a001 10182505537/682*1860498^(7/10) 3654354925801829 a001 1144206275/124*1860498^(11/15) 3654354925801900 a001 1201881744/341*1860498^(4/5) 3654354925801935 a001 2971215073/1364*1860498^(5/6) 3654354925801970 a001 1836311903/1364*1860498^(13/15) 3654354925802005 a001 567451585/682*1860498^(9/10) 3654354925802041 a001 701408733/1364*1860498^(14/15) 3654354925803123 a001 10610209857723/1364*710647^(2/7) 3654354925803640 a001 4052739537881/1364*710647^(5/14) 3654354925804156 a001 1134903780*710647^(3/7) 3654354925804673 a001 591286729879/1364*710647^(1/2) 3654354925805190 a001 225851433717/1364*710647^(4/7) 3654354925805707 a001 21566892818/341*710647^(9/14) 3654354925806224 a001 32951280099/1364*710647^(5/7) 3654354925806482 a001 10182505537/682*710647^(3/4) 3654354925806741 a001 1144206275/124*710647^(11/14) 3654354925807258 a001 1201881744/341*710647^(6/7) 3654354925807774 a001 1836311903/1364*710647^(13/14) 3654354925816316 a001 10610209857723/1364*271443^(4/13) 3654354925820000 a001 98209/682*45537549124^(15/17) 3654354925820000 a001 98209/682*312119004989^(9/11) 3654354925820000 a001 98209/682*14662949395604^(5/7) 3654354925820000 a001 98209/682*192900153618^(5/6) 3654354925820000 a001 98209/682*28143753123^(9/10) 3654354925820000 a001 98209/682*10749957122^(15/16) 3654354925820131 a001 4052739537881/1364*271443^(5/13) 3654354925823946 a001 1134903780*271443^(6/13) 3654354925825854 a001 956722026041/1364*271443^(1/2) 3654354925827761 a001 591286729879/1364*271443^(7/13) 3654354925831576 a001 225851433717/1364*271443^(8/13) 3654354925835391 a001 21566892818/341*271443^(9/13) 3654354925839207 a001 32951280099/1364*271443^(10/13) 3654354925843022 a001 1144206275/124*271443^(11/13) 3654354925846837 a001 1201881744/341*271443^(12/13) 3654354925914369 a001 10610209857723/1364*103682^(1/3) 3654354925928533 a001 3278735159921/682*103682^(3/8) 3654354925942697 a001 4052739537881/1364*103682^(5/12) 3654354925956862 a001 2504730781961/1364*103682^(11/24) 3654354925971026 a001 1134903780*103682^(1/2) 3654354925985190 a001 956722026041/1364*103682^(13/24) 3654354925999354 a001 591286729879/1364*103682^(7/12) 3654354926013519 a001 182717648081/682*103682^(5/8) 3654354926027683 a001 225851433717/1364*103682^(2/3) 3654354926041847 a001 139583862445/1364*103682^(17/24) 3654354926056011 a001 21566892818/341*103682^(3/4) 3654354926070175 a001 53316291173/1364*103682^(19/24) 3654354926084340 a001 32951280099/1364*103682^(5/6) 3654354926098504 a001 10182505537/682*103682^(7/8) 3654354926112668 a001 1144206275/124*103682^(11/12) 3654354926126832 a001 7778742049/1364*103682^(23/24) 3654354926648325 a001 10610209857723/1364*39603^(4/11) 3654354926691033 a001 28657/1364*14662949395604^(7/9) 3654354926691033 a001 28657/1364*505019158607^(7/8) 3654354926754234 a001 3278735159921/682*39603^(9/22) 3654354926860143 a001 4052739537881/1364*39603^(5/11) 3654354926966052 a001 2504730781961/1364*39603^(1/2) 3654354927071960 a001 1134903780*39603^(6/11) 3654354927177869 a001 956722026041/1364*39603^(13/22) 3654354927283778 a001 591286729879/1364*39603^(7/11) 3654354927389687 a001 182717648081/682*39603^(15/22) 3654354927495595 a001 225851433717/1364*39603^(8/11) 3654354927601504 a001 139583862445/1364*39603^(17/22) 3654354927707413 a001 21566892818/341*39603^(9/11) 3654354927813322 a001 53316291173/1364*39603^(19/22) 3654354927919230 a001 32951280099/1364*39603^(10/11) 3654354928025139 a001 10182505537/682*39603^(21/22) 3654354928129992 a001 6472228013211030/17711 3654354929924467 r005 Im(z^2+c),c=-19/102+16/29*I,n=61 3654354931901055 a001 5473/682*817138163596^(17/19) 3654354931901055 a001 5473/682*14662949395604^(17/21) 3654354931901055 a001 5473/682*192900153618^(17/18) 3654354932189058 a001 10610209857723/1364*15127^(2/5) 3654354932412253 a007 Real Root Of 826*x^4-243*x^3+803*x^2-47*x-151 3654354932987559 a001 3278735159921/682*15127^(9/20) 3654354933786059 a001 4052739537881/1364*15127^(1/2) 3654354934584559 a001 2504730781961/1364*15127^(11/20) 3654354935383060 a001 1134903780*15127^(3/5) 3654354936181560 a001 956722026041/1364*15127^(13/20) 3654354936980060 a001 591286729879/1364*15127^(7/10) 3654354937778561 a001 182717648081/682*15127^(3/4) 3654354938577061 a001 225851433717/1364*15127^(4/5) 3654354939375561 a001 139583862445/1364*15127^(17/20) 3654354939600672 a007 Real Root Of -419*x^4+414*x^3+366*x^2+920*x+315 3654354940174062 a001 21566892818/341*15127^(9/10) 3654354940972562 a001 53316291173/1364*15127^(19/20) 3654354941770007 a001 494434223621482/1353 3654354946084329 h001 (-9*exp(4)+5)/(-6*exp(1)+3) 3654354953786976 m001 Ei(1,1)/(Thue^ReciprocalFibonacci) 3654354954664176 r005 Re(z^2+c),c=-35/74+12/43*I,n=33 3654354963333716 a007 Real Root Of -160*x^4-495*x^3+372*x^2+178*x+60 3654354973524322 a007 Real Root Of 915*x^4+746*x^3+734*x^2-189*x-147 3654354974449970 a001 10610209857723/1364*5778^(4/9) 3654354980531084 a001 3278735159921/682*5778^(1/2) 3654354986612199 a001 4052739537881/1364*5778^(5/9) 3654354992693313 a001 2504730781961/1364*5778^(11/18) 3654354995793516 r009 Im(z^3+c),c=-9/34+22/59*I,n=19 3654354998774427 a001 1134903780*5778^(2/3) 3654355002033941 m001 sin(1/12*Pi)^Gompertz*sin(1/12*Pi)^ZetaR(2) 3654355004855542 a001 956722026041/1364*5778^(13/18) 3654355007261804 b008 8/3+Cos[Pi/20] 3654355008511758 r005 Im(z^2+c),c=19/122+15/43*I,n=50 3654355010936656 a001 591286729879/1364*5778^(7/9) 3654355017017771 a001 182717648081/682*5778^(5/6) 3654355021011170 r005 Re(z^2+c),c=17/46+31/50*I,n=9 3654355023098885 a001 225851433717/1364*5778^(8/9) 3654355026395362 r005 Re(z^2+c),c=-33/50+17/62*I,n=33 3654355029179999 a001 139583862445/1364*5778^(17/18) 3654355030841294 m005 (5/6*gamma+1/3)/(2*2^(1/2)-3/5) 3654355032807479 a001 956722026041/521*521^(11/13) 3654355035260061 a001 118035667638900/323 3654355055756457 k001 Champernowne real with 70*n+295 3654355061279864 a001 1/610*233^(5/34) 3654355062777675 a007 Real Root Of -817*x^4-123*x^3-876*x^2+502*x+309 3654355066563117 l006 ln(841/1212) 3654355066949503 a007 Real Root Of 156*x^4+533*x^3+580*x+310 3654355087991222 a003 sin(Pi*13/73)-sin(Pi*29/82) 3654355095477529 m001 (KomornikLoreti-ZetaP(4))/(ln(gamma)+Gompertz) 3654355099681707 r005 Im(z^2+c),c=-23/34+41/112*I,n=53 3654355104284536 r005 Im(z^2+c),c=19/122+15/43*I,n=45 3654355129720227 g007 Psi(2,1/11)+Psi(2,1/8)+Psi(2,6/7)-Psi(2,3/8) 3654355146919306 r009 Re(z^3+c),c=-21/52+9/47*I,n=25 3654355161109030 m005 (1/2*Catalan-1/12)/(1/7*3^(1/2)+7/9) 3654355161368911 r005 Im(z^2+c),c=-8/31+21/32*I,n=58 3654355165887872 s001 sum(exp(-4*Pi/5)^n*A207771[n],n=1..infinity) 3654355185379651 m001 (BesselI(0,1)-Kac)/(Totient+ThueMorse) 3654355189650348 m001 Zeta(5)^(Pi*csc(11/24*Pi)/GAMMA(13/24))*Magata 3654355209930799 a007 Real Root Of 471*x^4-378*x^3+794*x^2-471*x-305 3654355212371209 a001 1597/1364*3461452808002^(11/12) 3654355223256268 s002 sum(A056838[n]/(exp(n)+1),n=1..infinity) 3654355223734651 m005 (4/5*exp(1)+1/6)/(4*2^(1/2)+3/4) 3654355234774386 r005 Re(z^2+c),c=-37/82+6/17*I,n=23 3654355239457080 a003 cos(Pi*1/77)-sin(Pi*26/63) 3654355250572285 r005 Im(z^2+c),c=-1/50+13/28*I,n=54 3654355260508512 r005 Im(z^2+c),c=19/122+15/43*I,n=54 3654355262697931 r005 Re(z^2+c),c=-27/58+17/54*I,n=34 3654355273076634 m001 ln(1+sqrt(2))^exp(-1/2*Pi)+Zeta(1,2) 3654355273076634 m001 ln(2^(1/2)+1)^exp(-1/2*Pi)+Zeta(1,2) 3654355289140966 m005 (1/3*gamma+1/5)/(1/9*2^(1/2)+11/12) 3654355290717878 r005 Re(z^2+c),c=19/62+1/18*I,n=23 3654355296333346 r005 Im(z^2+c),c=19/122+15/43*I,n=51 3654355299329289 m001 MadelungNaCl/FeigenbaumB^2/exp(cos(Pi/12))^2 3654355300926238 a001 10610209857723/1364*2207^(1/2) 3654355316318134 a007 Real Root Of -837*x^4-199*x^3-997*x^2+730*x+28 3654355319233539 r005 Im(z^2+c),c=19/122+15/43*I,n=55 3654355329640829 r005 Im(z^2+c),c=19/122+15/43*I,n=58 3654355336439656 m001 KhinchinHarmonic*Riemann2ndZero-ZetaR(2) 3654355338579676 r005 Im(z^2+c),c=19/122+15/43*I,n=59 3654355342006699 m002 Pi+(3*Pi^2*Csch[Pi])/5 3654355347343521 r005 Im(z^2+c),c=19/122+15/43*I,n=62 3654355347470984 r005 Im(z^2+c),c=19/122+15/43*I,n=63 3654355347816888 a001 3278735159921/682*2207^(9/16) 3654355354084776 m001 (DuboisRaymond-Kac)/(Zeta(1,2)+GAMMA(11/12)) 3654355354754485 r005 Im(z^2+c),c=19/122+15/43*I,n=64 3654355360904581 r005 Im(z^2+c),c=19/122+15/43*I,n=61 3654355361330336 r009 Im(z^3+c),c=-25/54+11/41*I,n=28 3654355363439600 r005 Im(z^2+c),c=19/122+15/43*I,n=60 3654355366384347 a007 Real Root Of 428*x^4+706*x^3+298*x^2-115*x-55 3654355367621656 a005 (1/cos(16/157*Pi))^69 3654355374486619 r005 Im(z^2+c),c=19/122+15/43*I,n=57 3654355375914295 r005 Im(z^2+c),c=19/122+15/43*I,n=47 3654355383954475 m002 -4+E^Pi/(6*Log[Pi])+Tanh[Pi] 3654355384342219 m001 1/exp(gamma)^2*Paris*sinh(1) 3654355386007426 a007 Real Root Of 191*x^4+503*x^3-652*x^2+213*x-30 3654355394707539 a001 4052739537881/1364*2207^(5/8) 3654355398753377 r005 Im(z^2+c),c=19/122+15/43*I,n=56 3654355398852901 r005 Im(z^2+c),c=19/122+15/43*I,n=53 3654355398868733 r005 Im(z^2+c),c=19/122+15/43*I,n=49 3654355404507895 m001 GAMMA(5/6)^2/OneNinth/exp(sinh(1)) 3654355410060299 m001 (3^(1/3)-Psi(1,1/3))/(LaplaceLimit+Niven) 3654355436926095 r005 Im(z^2+c),c=-4/23+31/57*I,n=28 3654355441598191 a001 2504730781961/1364*2207^(11/16) 3654355454632424 r009 Im(z^3+c),c=-5/18+7/19*I,n=16 3654355459258424 r005 Im(z^2+c),c=-11/114+18/31*I,n=21 3654355460715437 m001 Backhouse*exp(Pi)^GAMMA(23/24) 3654355460715437 m001 Backhouse/(exp(-Pi)^GAMMA(23/24)) 3654355460715437 m001 exp(Pi)^GAMMA(23/24)*Backhouse 3654355461196244 h001 (6/7*exp(2)+5/9)/(5/9*exp(1)+3/8) 3654355471680008 m001 FeigenbaumC*MertensB1/ln(Pi)^2 3654355488433515 m001 GaussKuzminWirsing^(ln(Pi)*exp(sqrt(2))) 3654355488488843 a001 1134903780*2207^(3/4) 3654355503108701 m003 61/4+Sqrt[5]/16-Tan[1/2+Sqrt[5]/2] 3654355503328130 a007 Real Root Of 184*x^4+4*x^3-289*x^2-339*x+159 3654355504441218 h001 (7/12*exp(1)+1/7)/(5/9*exp(2)+5/8) 3654355517126501 a001 4807525989*843^(9/14) 3654355531802702 r005 Im(z^2+c),c=19/122+15/43*I,n=52 3654355535379496 a001 956722026041/1364*2207^(13/16) 3654355535575708 r009 Im(z^3+c),c=-43/94+2/5*I,n=4 3654355565543439 a008 Real Root of x^4-x^3-6*x^2+26*x-52 3654355569356858 m001 (BesselI(0,1)-BesselI(0,2))/(Mills+Porter) 3654355579138548 a007 Real Root Of -734*x^4+570*x^3-893*x^2+618*x+386 3654355580783590 m001 Lehmer/(Totient^((1+3^(1/2))^(1/2))) 3654355582270150 a001 591286729879/1364*2207^(7/8) 3654355592900922 r005 Im(z^2+c),c=2/11+13/40*I,n=12 3654355606289929 m005 (1/2*gamma+5/12)/(6/7*exp(1)-2/5) 3654355624445307 m001 (-FibonacciFactorial+Weierstrass)/(1+Shi(1)) 3654355627084071 r005 Re(z^2+c),c=-27/58+19/60*I,n=52 3654355627881109 r005 Im(z^2+c),c=29/126+17/59*I,n=14 3654355629160804 a001 182717648081/682*2207^(15/16) 3654355632978253 r005 Re(z^2+c),c=-2/3+33/178*I,n=17 3654355636405516 m002 (2*Sinh[Pi])/Pi+Pi^3*Sinh[Pi] 3654355640534781 m001 ln(GAMMA(1/12))^2/Si(Pi)/log(1+sqrt(2)) 3654355645493588 r005 Re(z^2+c),c=11/98+24/53*I,n=9 3654355654424929 a007 Real Root Of -864*x^4+390*x^3-774*x^2+463*x+307 3654355661699874 r009 Im(z^3+c),c=-39/98+5/16*I,n=16 3654355676050557 a001 360684905226190/987 3654355682760180 m001 (Ei(1,1)-QuadraticClass)/(Tribonacci-Trott2nd) 3654355703082309 r005 Re(z^2+c),c=-7/17+5/14*I,n=9 3654355704141207 m005 (1/2*3^(1/2)+2/11)/(5/12*exp(1)-4) 3654355708916912 a003 sin(Pi*9/109)/cos(Pi*27/107) 3654355711691467 m001 (-exp(-1/2*Pi)+Stephens)/(LambertW(1)-gamma) 3654355718559284 r005 Im(z^2+c),c=-1/50+13/28*I,n=51 3654355726106014 m001 UniversalParabolic^(Conway/ln(2)*ln(10)) 3654355729380320 r009 Re(z^3+c),c=-19/44+15/64*I,n=7 3654355738568614 a007 Real Root Of 193*x^4+623*x^3-307*x^2-281*x-943 3654355756321246 m001 (Zeta(3)-arctan(1/2))/(exp(1/exp(1))+Stephens) 3654355758354523 m001 (5^(1/2))^FeigenbaumMu*GAMMA(3/4)^FeigenbaumMu 3654355761103856 m001 (-Zeta(3)+Artin)/(1+BesselI(0,1)) 3654355762737197 m001 HardHexagonsEntropy^FransenRobinson/ArtinRank2 3654355778289779 r005 Im(z^2+c),c=-7/106+41/63*I,n=33 3654355781353768 a007 Real Root Of 282*x^4+759*x^3-743*x^2+944*x+121 3654355789498059 r002 11th iterates of z^2 + 3654355790251293 a008 Real Root of x^4-x^3-15*x^2+18*x+5 3654355790459914 r005 Im(z^2+c),c=-19/78+23/37*I,n=51 3654355793907269 a001 29*10946^(13/25) 3654355800365677 r009 Im(z^3+c),c=-7/29+19/50*I,n=10 3654355810224321 m001 ln(Riemann1stZero)^2/CareFree^2*Sierpinski 3654355811573336 a007 Real Root Of -135*x^4-336*x^3+324*x^2-797*x+439 3654355812761366 b008 37+Zeta[-1/20] 3654355833612198 a007 Real Root Of 79*x^4-351*x^3-514*x^2-512*x-137 3654355851581752 r002 2th iterates of z^2 + 3654355860480896 r005 Im(z^2+c),c=19/82+11/47*I,n=4 3654355871891720 r005 Im(z^2+c),c=9/50+19/58*I,n=15 3654355882808008 a007 Real Root Of 842*x^4-159*x^3+997*x^2-854*x-468 3654355884432947 a001 6557470319842/2207*843^(5/7) 3654355890576253 a007 Real Root Of 23*x^4+839*x^3-76*x^2-784*x-450 3654355892810465 r005 Im(z^2+c),c=-19/31+3/44*I,n=49 3654355897529916 a001 24476*1836311903^(15/17) 3654355903632359 a001 33385282*514229^(15/17) 3654355906691885 r009 Im(z^3+c),c=-25/62+16/27*I,n=30 3654355928708784 m005 (1/2*exp(1)+4/5)/(1/10*Catalan-6) 3654355942247254 a007 Real Root Of 481*x^4-846*x^3+633*x^2-891*x-460 3654355957278147 m001 cos(Pi/5)^2/ln(GlaisherKinkelin)^2*sin(Pi/5)^2 3654355958203575 h001 (8/9*exp(2)+7/9)/(5/9*exp(1)+1/2) 3654355979999333 a001 144/11*322^(8/45) 3654355980121366 p004 log(35899/929) 3654355988421356 r005 Im(z^2+c),c=11/82+29/56*I,n=3 3654355989121551 m001 (Si(Pi)-Zeta(3))/(-GAMMA(2/3)+Salem) 3654356001741997 r005 Im(z^2+c),c=19/122+15/43*I,n=48 3654356032252993 a001 341/11592*1597^(1/34) 3654356047032987 r005 Im(z^2+c),c=13/50+9/35*I,n=26 3654356047812159 m005 (1/2*Catalan-3)/(1/6*Catalan-2/9) 3654356057940513 a003 sin(Pi*11/94)/sin(Pi*42/95) 3654356062817870 r002 5th iterates of z^2 + 3654356068401658 a001 1548008755920/521*521^(10/13) 3654356072322504 a001 6/105937*377^(11/35) 3654356074345990 r005 Im(z^2+c),c=-5/4+79/164*I,n=3 3654356083517629 r005 Re(z^2+c),c=-25/56+25/63*I,n=63 3654356092088319 r009 Re(z^3+c),c=-17/30+22/47*I,n=11 3654356093286753 s001 sum(exp(-Pi/4)^n*A111570[n],n=1..infinity) 3654356109254309 m001 1/Zeta(1,2)^2*Salem^2*exp(Zeta(1/2)) 3654356113852000 l006 ln(1827/1895) 3654356119258157 r005 Im(z^2+c),c=-73/126+1/15*I,n=37 3654356123501969 r005 Re(z^2+c),c=-21/16+1/108*I,n=16 3654356123752922 r009 Im(z^3+c),c=-7/90+23/56*I,n=8 3654356128663512 a007 Real Root Of 196*x^4-494*x^3+499*x^2-169*x-156 3654356137299068 a007 Real Root Of 621*x^4-298*x^3+341*x^2-999*x+323 3654356138818956 a003 sin(Pi*1/105)/sin(Pi*29/95) 3654356145748096 m005 (2^(1/2)-1/6)/(4*Catalan-1/4) 3654356146646540 a007 Real Root Of -109*x^4+350*x^3+427*x^2+265*x-169 3654356151769566 p004 log(10957/7603) 3654356156058281 s002 sum(A204491[n]/(n^3*2^n-1),n=1..infinity) 3654356175677089 r005 Re(z^2+c),c=-7/15+14/45*I,n=55 3654356178787088 a003 sin(Pi*2/97)+sin(Pi*7/72) 3654356189416587 r005 Im(z^2+c),c=19/122+15/43*I,n=43 3654356190556590 r005 Im(z^2+c),c=2/21+20/51*I,n=20 3654356194317516 h001 (4/9*exp(1)+1/12)/(4/9*exp(2)+1/4) 3654356202170880 m001 (Pi^(1/2))^Grothendieck*HeathBrownMoroz 3654356215062172 a001 8/123*199^(15/46) 3654356231916547 r005 Im(z^2+c),c=1/106+19/32*I,n=23 3654356232448853 r005 Re(z^2+c),c=15/64+25/52*I,n=14 3654356237850718 r009 Im(z^3+c),c=-5/122+31/45*I,n=2 3654356246390976 a007 Real Root Of -844*x^4-709*x^3-889*x^2+410*x+249 3654356251739429 a001 4052739537881/2207*843^(11/14) 3654356259301169 m001 (exp(1)+2^(1/2))/(gamma(3)+GAMMA(5/6)) 3654356260132960 m005 (1/2*5^(1/2)+5/11)/(3/8*2^(1/2)-1/10) 3654356286738298 l006 ln(6762/9745) 3654356305317515 a007 Real Root Of -965*x^4+970*x^3+700*x^2+521*x-314 3654356334900378 m005 (1/3*exp(1)+2/9)/(5/6*Catalan-5/11) 3654356346062336 r005 Im(z^2+c),c=25/126+6/19*I,n=18 3654356348365695 r005 Re(z^2+c),c=-10/21+10/61*I,n=6 3654356357718719 h001 (1/11*exp(2)+2/9)/(9/11*exp(1)+2/9) 3654356361080633 g007 -Psi(2,2/11)-Psi(13/10)-Psi(2,3/8)-Psi(2,4/5) 3654356362262969 a007 Real Root Of 400*x^4+477*x^3+942*x^2-395*x-254 3654356363085126 r009 Im(z^3+c),c=-1/62+48/59*I,n=60 3654356369648731 m001 (exp(Pi)+Rabbit)/(Stephens+ZetaP(4)) 3654356382183276 a007 Real Root Of -231*x^4+721*x^3+982*x^2+492*x-342 3654356394863620 h001 (5/7*exp(1)+3/8)/(5/6*exp(2)+2/11) 3654356413418207 a001 7/6765*514229^(34/35) 3654356417287333 m001 ErdosBorwein^(Shi(1)*Sierpinski) 3654356421062770 r005 Im(z^2+c),c=9/98+15/38*I,n=31 3654356421365927 b008 Erfi[ProductLog[3/7]] 3654356428312425 a007 Real Root Of 485*x^4-742*x^3+686*x^2-951*x-484 3654356433286494 m001 1/Robbin*ArtinRank2*ln(cos(Pi/12)) 3654356434059446 m005 (1/2*Pi-4/11)/(6/7*Zeta(3)-7/10) 3654356445249278 r005 Re(z^2+c),c=-1/66+43/47*I,n=4 3654356451647351 m001 (Si(Pi)+Ei(1,1))/(BesselI(1,1)+ZetaQ(4)) 3654356460048087 l006 ln(5921/8533) 3654356466413038 r002 13th iterates of z^2 + 3654356473513994 r005 Im(z^2+c),c=-11/70+35/57*I,n=11 3654356476977791 a007 Real Root Of 165*x^4+614*x^3+207*x^2+541*x-249 3654356477057544 r005 Re(z^2+c),c=-1/19+42/59*I,n=19 3654356483606847 s002 sum(A222124[n]/((exp(n)+1)/n),n=1..infinity) 3654356501540415 m001 (-BesselI(0,2)+Thue)/(cos(1/12*Pi)-gamma) 3654356518182514 r005 Im(z^2+c),c=7/122+28/45*I,n=40 3654356546401877 m001 Pi+ln(2)/ln(10)-GAMMA(2/3)/BesselJ(1,1) 3654356546739169 r005 Im(z^2+c),c=-19/98+34/57*I,n=31 3654356549543579 m001 GAMMA(1/12)/Paris^2/exp(GAMMA(19/24)) 3654356550257948 r005 Im(z^2+c),c=3/32+24/61*I,n=35 3654356561218782 m001 (BesselJ(0,1)+Ei(1,1))/(-MertensB1+Otter) 3654356574659421 h002 exp(10^(11/12)-3^(7/5)) 3654356574659421 h007 exp(10^(11/12)-3^(7/5)) 3654356576580391 m001 Zeta(1,-1)-FeigenbaumD^BesselI(0,1) 3654356585150129 a007 Real Root Of -211*x^4-449*x^3+957*x^2-783*x+76 3654356601096193 m004 -5-3*Sech[Sqrt[5]*Pi]+2*Sin[Sqrt[5]*Pi] 3654356605319339 m004 -5-6/E^(Sqrt[5]*Pi)+2*Sin[Sqrt[5]*Pi] 3654356609542492 m004 -5-3*Csch[Sqrt[5]*Pi]+2*Sin[Sqrt[5]*Pi] 3654356612321992 r002 11th iterates of z^2 + 3654356619045948 a001 2504730781961/2207*843^(6/7) 3654356631331439 m005 (1/2*5^(1/2)+1/7)/(2/7*Catalan+1/12) 3654356639118372 a007 Real Root Of 790*x^4+543*x^3-461*x^2-996*x-290 3654356648625353 a003 cos(Pi*1/62)-sin(Pi*37/79) 3654356659877286 a007 Real Root Of 872*x^4-117*x^3+910*x^2+689*x+109 3654356679327357 r005 Im(z^2+c),c=-31/26+4/83*I,n=39 3654356684745092 m001 (ln(gamma)+ln(2))^Niven 3654356685367223 m001 1/log(2+sqrt(3))^2/Ei(1)*ln(sqrt(2))^2 3654356690741151 l006 ln(5080/7321) 3654356696839508 a007 Real Root Of 183*x^4-432*x^3-329*x^2-631*x-211 3654356714877217 r005 Im(z^2+c),c=-11/94+31/60*I,n=37 3654356723005162 b008 5*Sinh[2+Pi]^2 3654356728633321 r005 Im(z^2+c),c=-13/60+1/20*I,n=12 3654356738890828 a001 3571/2178309*233^(5/34) 3654356751104094 m009 (1/3*Psi(1,3/4)-1/5)/(1/3*Psi(1,2/3)+3/4) 3654356752951165 a007 Real Root Of 705*x^4-100*x^3+680*x^2-511*x-295 3654356763437270 a001 11/13*317811^(37/56) 3654356765550621 r005 Re(z^2+c),c=-13/29+23/59*I,n=63 3654356767114986 r005 Im(z^2+c),c=-3/110+22/47*I,n=27 3654356787869697 r005 Re(z^2+c),c=-1/8+38/63*I,n=11 3654356802709395 m004 -6-125*Pi-Sqrt[5]*Pi+(25*Pi)/Log[Sqrt[5]*Pi] 3654356805145609 r005 Im(z^2+c),c=-25/38+17/56*I,n=22 3654356806563429 h001 (3/11*exp(2)+1/7)/(3/4*exp(2)+4/11) 3654356815792143 r008 a(0)=5,K{-n^6,-1+4*n^3} 3654356824180157 r005 Re(z^2+c),c=31/94+18/41*I,n=5 3654356846133113 r005 Re(z^2+c),c=9/28+3/41*I,n=26 3654356847327029 r005 Re(z^2+c),c=-51/74+11/58*I,n=30 3654356847598338 a008 Real Root of (1-6*x^2+5*x^3+4*x^4+4*x^5) 3654356855781435 r005 Re(z^2+c),c=-85/118+5/61*I,n=10 3654356856942079 a007 Real Root Of -225*x^4-709*x^3+263*x^2-681*x-475 3654356863603293 r005 Im(z^2+c),c=-149/122+1/17*I,n=52 3654356869864323 p004 log(32969/22877) 3654356889982111 a001 305/682*14662949395604^(19/21) 3654356892529987 a001 3536736619241/1926*843^(11/14) 3654356921253857 a001 10610209857723/3571*843^(5/7) 3654356923992979 m001 (HardHexagonsEntropy-Si(Pi))/(Trott+ZetaQ(4)) 3654356924260637 m001 1/exp(Magata)/GlaisherKinkelin*sqrt(2) 3654356936939710 m001 5^(1/2)+Zeta(1,-1)-Niven 3654356955314289 m005 (1/2*2^(1/2)+2/7)/(1/5*Pi-9/10) 3654356957780836 m001 1/GAMMA(5/6)/GAMMA(3/4)^2/ln(sinh(1)) 3654356986352505 a001 1548008755920/2207*843^(13/14) 3654356987916034 r005 Im(z^2+c),c=2/11+6/19*I,n=6 3654357012971298 l006 ln(4239/6109) 3654357036844486 r005 Re(z^2+c),c=-47/98+14/59*I,n=22 3654357062834198 r005 Re(z^2+c),c=-57/122+9/53*I,n=8 3654357066053096 m001 Gompertz^TwinPrimes/DuboisRaymond 3654357079336337 p003 LerchPhi(1/256,1,483/176) 3654357093905224 m001 (1-gamma)/(-Ei(1,1)+Zeta(1,2)) 3654357100365158 m005 (1/2*Pi-5/6)/(3/10*2^(1/2)-4/9) 3654357103996131 a001 2504730781961/521*521^(9/13) 3654357115023496 a003 cos(Pi*2/75)/sin(Pi*8/91) 3654357120740667 a001 17393796001*34^(4/19) 3654357127756275 b008 PolyGamma[0,36+Pi] 3654357129412950 a001 3*365435296162^(10/19) 3654357129437296 a007 Real Root Of -160*x^4-587*x^3+168*x^2+576*x-251 3654357139892426 r009 Im(z^3+c),c=-23/54+18/61*I,n=42 3654357142994824 a003 cos(Pi*8/21)/sin(Pi*34/69) 3654357152929176 m001 (Catalan+Zeta(1,-1))/gamma(3) 3654357169082043 m003 71/2+Sqrt[5]/64+E^(1/2+Sqrt[5]/2)/5 3654357176307419 r005 Im(z^2+c),c=21/82+11/46*I,n=8 3654357189370815 r005 Im(z^2+c),c=-3/8+17/32*I,n=17 3654357194097323 a007 Real Root Of 18*x^4-110*x^3-824*x^2-727*x-231 3654357202832531 a003 cos(Pi*2/19)/cos(Pi*5/12) 3654357206475607 m001 exp(Trott)^2/TreeGrowth2nd^2/Zeta(3)^2 3654357209631465 a007 Real Root Of -203*x^4-512*x^3+728*x^2-164*x+895 3654357216613049 m001 1/Niven^2/ln(Khintchine)^2*Zeta(5) 3654357217312611 r005 Re(z^2+c),c=33/118+6/55*I,n=4 3654357218799601 r009 Re(z^3+c),c=-17/31+29/62*I,n=44 3654357233242623 r005 Re(z^2+c),c=-5/21+34/53*I,n=24 3654357237842017 r005 Re(z^2+c),c=-43/78+19/48*I,n=17 3654357259575513 a007 Real Root Of -212*x^4-820*x^3-121*x^2-109*x-992 3654357259836571 a001 3278735159921/2889*843^(6/7) 3654357288560444 a001 6557470319842/3571*843^(11/14) 3654357289168713 r005 Re(z^2+c),c=-15/38+11/21*I,n=58 3654357292798566 m005 (1/2*Pi-1/4)/(3/11*2^(1/2)-4) 3654357306306698 b008 ArcCoth[3-Pi/22] 3654357341959405 r009 Im(z^3+c),c=-11/62+21/53*I,n=18 3654357353666180 a001 137769272233215/377 3654357394205707 a001 1/9238424*987^(3/17) 3654357398544283 r009 Im(z^3+c),c=-13/62+23/59*I,n=6 3654357405222821 a001 521/514229*6765^(8/55) 3654357411106750 a001 10610209857723/9349*843^(6/7) 3654357414952210 b008 4-Zeta[5]/3 3654357420889533 r009 Im(z^3+c),c=-61/126+1/4*I,n=60 3654357422491935 r005 Im(z^2+c),c=9/122+24/59*I,n=38 3654357426103630 r005 Im(z^2+c),c=11/42+13/51*I,n=51 3654357438724484 h001 (6/7*exp(2)+2/11)/(5/9*exp(1)+3/11) 3654357452566744 m005 (1/2*3^(1/2)+3/7)/(5/7*Catalan-3/10) 3654357453495201 r009 Im(z^3+c),c=-11/62+21/53*I,n=16 3654357457402748 m001 (Si(Pi)-gamma)/(-Catalan+LambertW(1)) 3654357459379615 q001 1237/3385 3654357462097646 h001 (3/7*exp(2)+3/4)/(4/11*exp(1)+1/12) 3654357486906356 m005 (5*2^(1/2)+2/5)/(23/20+2/5*5^(1/2)) 3654357488746986 a001 64079/2*13^(2/39) 3654357492140859 r005 Re(z^2+c),c=-8/17+7/24*I,n=47 3654357494704400 l006 ln(3398/4897) 3654357494949416 r005 Re(z^2+c),c=-57/122+16/51*I,n=28 3654357526602943 a001 29/4807526976*12586269025^(3/17) 3654357526602953 a001 29/1134903170*3524578^(3/17) 3654357532492475 r005 Re(z^2+c),c=33/118+1/17*I,n=62 3654357560992082 r005 Im(z^2+c),c=19/122+15/43*I,n=44 3654357561223394 a001 11/225851433717*13^(11/14) 3654357594016622 b008 (3*Sin[Pi/8])/Pi 3654357609291778 m005 (1/3*3^(1/2)+2/11)/(9/10*Pi-3/4) 3654357621091120 m009 (6*Catalan+3/4*Pi^2-3)/(Psi(1,3/4)+1/6) 3654357627143191 a001 4052739537881/5778*843^(13/14) 3654357627735679 m001 (Stephens-ZetaQ(3))/(polylog(4,1/2)+MertensB2) 3654357647269829 r005 Im(z^2+c),c=-3/44+22/45*I,n=23 3654357654203708 m005 (1/2*5^(1/2)+9/11)/(4/7*gamma+1/5) 3654357655867067 a001 4052739537881/3571*843^(6/7) 3654357656407925 s002 sum(A224483[n]/(exp(n)),n=1..infinity) 3654357658434842 m001 QuadraticClass-FeigenbaumMu-cos(1/12*Pi) 3654357666871965 a007 Real Root Of 66*x^4+384*x^3+526*x^2+142*x+464 3654357679267610 a001 521/13*987^(36/55) 3654357680594368 r009 Im(z^3+c),c=-31/94+8/23*I,n=18 3654357699469433 a007 Real Root Of -208*x^4-547*x^3+765*x^2+69*x+436 3654357703271761 a007 Real Root Of -323*x^4+936*x^3-126*x^2+459*x+236 3654357706898374 m005 (1/2*2^(1/2)-1/10)/(5/12*3^(1/2)-5/9) 3654357709574959 a001 3571/121393*1597^(1/34) 3654357720633311 a001 1515744265389/2161*843^(13/14) 3654357732741303 m001 ln(2+3^(1/2))*(ZetaP(2)-ZetaP(3)) 3654357736748176 r009 Re(z^3+c),c=-49/102+22/59*I,n=12 3654357740280633 m009 (1/4*Pi^2-2/5)/(3/5*Psi(1,1/3)-2/5) 3654357752987112 a007 Real Root Of 242*x^4-992*x^3+58*x^2+212*x+17 3654357759615493 m005 (1/2*Pi-5)/(1/10*Zeta(3)+9/11) 3654357760392526 r005 Re(z^2+c),c=-21/34+32/89*I,n=2 3654357762669518 m001 (GAMMA(3/4)+Rabbit)^ReciprocalLucas 3654357765207648 p001 sum(1/(102*n+5)/n/(256^n),n=0..infinity) 3654357775711424 a001 2207/1346269*233^(5/34) 3654357778413386 a001 6557470319842/9349*843^(13/14) 3654357779024346 h001 (-7*exp(1)-5)/(-7*exp(-1)-4) 3654357804547791 r005 Re(z^2+c),c=-61/118+25/56*I,n=39 3654357806145298 r005 Re(z^2+c),c=-7/11+15/41*I,n=34 3654357837620695 l006 ln(5955/8582) 3654357842312885 a007 Real Root Of 426*x^4-603*x^3+196*x^2-548*x+2 3654357846818956 r005 Re(z^2+c),c=-27/50+19/56*I,n=9 3654357849702187 m005 (1/2*Pi+3/8)/(1/11*3^(1/2)+3/8) 3654357852077798 m005 (1/2*5^(1/2)+2/3)/(9/110+2/11*5^(1/2)) 3654357864253177 a001 10610209857723/1364*843^(4/7) 3654357871410797 r005 Im(z^2+c),c=7/110+12/29*I,n=21 3654357871984175 r005 Re(z^2+c),c=-49/122+33/62*I,n=46 3654357915513429 m001 (5^(1/2)+cos(1))/(HardyLittlewoodC4+ZetaP(2)) 3654357917782567 m005 (1/2*5^(1/2)+6/11)/(8/11*gamma-7/8) 3654357921626534 a007 Real Root Of 186*x^4+509*x^3-453*x^2+372*x-922 3654357935294785 a003 cos(Pi*29/76)/sin(Pi*50/107) 3654357942174408 r005 Im(z^2+c),c=-23/106+22/39*I,n=58 3654357949361888 a007 Real Root Of 710*x^4-249*x^3-220*x^2-679*x+277 3654357954292936 a001 9349/317811*1597^(1/34) 3654357962945236 a007 Real Root Of -21*x^4-37*x^3+391*x^2+642*x-936 3654357968584874 a007 Real Root Of -59*x^4-295*x^3-147*x^2+802*x-258 3654357983228604 a007 Real Root Of 876*x^4-991*x^3-328*x^2-305*x+188 3654357989996808 a001 6119/208010*1597^(1/34) 3654357994457082 a001 137769296391032/377 3654357998425349 a001 39603/1346269*1597^(1/34) 3654358001851444 m001 Trott^(GAMMA(23/24)*Niven) 3654358009285263 m001 (-Conway+MertensB2)/(Zeta(5)-ln(2)/ln(10)) 3654358009743775 m001 (QuadraticClass-Totient)/(Ei(1,1)+MertensB2) 3654358012063014 a001 15127/514229*1597^(1/34) 3654358022531791 m001 1/Tribonacci*Paris/ln(GAMMA(5/6))^2 3654358023173728 a001 2504730781961/3571*843^(13/14) 3654358027087351 r005 Re(z^2+c),c=-19/78+29/47*I,n=38 3654358028580851 r009 Im(z^3+c),c=-13/25+7/36*I,n=58 3654358028982561 m001 (StolarskyHarborth-ZetaP(2))/(Zeta(3)-Conway) 3654358030857010 a007 Real Root Of 896*x^4+664*x^3+744*x^2-594*x-300 3654358034759807 r005 Im(z^2+c),c=-19/74+37/54*I,n=6 3654358035676097 r005 Re(z^2+c),c=-81/106+4/37*I,n=14 3654358045533494 r005 Re(z^2+c),c=-19/40+11/41*I,n=39 3654358087947214 a001 137769299915610/377 3654358094879046 p001 sum(1/(555*n+274)/(256^n),n=0..infinity) 3654358103577294 a001 137769300504864/377 3654358103867639 a001 137769300515810/377 3654358103916180 a001 137769300517640/377 3654358103917082 a001 137769300517674/377 3654358103917214 a001 137769300517679/377 3654358103917294 a001 137769300517682/377 3654358103917639 a001 137769300517695/377 3654358103936180 a001 137769300518394/377 3654358104047082 a001 137769300522575/377 3654358104807214 a001 137769300551232/377 3654358105536964 a001 2889/98209*1597^(1/34) 3654358109659859 a007 Real Root Of 589*x^4-989*x^3-151*x^2-978*x-396 3654358111779278 m001 (2^(1/3))-polylog(4,1/2)-GAMMA(5/24) 3654358112398118 r009 Im(z^3+c),c=-11/62+21/53*I,n=20 3654358126605740 r009 Im(z^3+c),c=-11/62+21/53*I,n=21 3654358139590898 a001 4052739537881/521*521^(8/13) 3654358140359390 a001 18/89*55^(13/18) 3654358141232743 r009 Im(z^3+c),c=-11/62+21/53*I,n=23 3654358145727294 a001 137769302093919/377 3654358148383577 m001 (ln(gamma)-GAMMA(13/24))/(CareFree-Conway) 3654358149489737 m001 1/Zeta(1,2)^2/ln(Kolakoski)*exp(1)^2 3654358155181586 r009 Im(z^3+c),c=-11/62+21/53*I,n=26 3654358155744386 r009 Im(z^3+c),c=-11/62+21/53*I,n=28 3654358155889004 r009 Im(z^3+c),c=-11/62+21/53*I,n=25 3654358155978264 r009 Im(z^3+c),c=-11/62+21/53*I,n=31 3654358155993489 r009 Im(z^3+c),c=-11/62+21/53*I,n=33 3654358155997141 r009 Im(z^3+c),c=-11/62+21/53*I,n=36 3654358155997496 r009 Im(z^3+c),c=-11/62+21/53*I,n=38 3654358155997547 r009 Im(z^3+c),c=-11/62+21/53*I,n=41 3654358155997555 r009 Im(z^3+c),c=-11/62+21/53*I,n=43 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=44 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=46 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=48 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=49 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=51 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=54 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=56 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=59 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=61 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=64 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=63 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=62 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=60 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=58 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=53 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=57 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=55 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=52 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=50 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=47 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=45 3654358155997556 r009 Im(z^3+c),c=-11/62+21/53*I,n=39 3654358155997559 r009 Im(z^3+c),c=-11/62+21/53*I,n=42 3654358155997567 r009 Im(z^3+c),c=-11/62+21/53*I,n=40 3654358155997761 r009 Im(z^3+c),c=-11/62+21/53*I,n=37 3654358155997985 r009 Im(z^3+c),c=-11/62+21/53*I,n=35 3654358155998117 r009 Im(z^3+c),c=-11/62+21/53*I,n=34 3654358156008479 r009 Im(z^3+c),c=-11/62+21/53*I,n=30 3654358156008901 r009 Im(z^3+c),c=-11/62+21/53*I,n=32 3654358156054943 r009 Im(z^3+c),c=-11/62+21/53*I,n=29 3654358156592902 r009 Im(z^3+c),c=-11/62+21/53*I,n=27 3654358160405363 r009 Im(z^3+c),c=-11/62+21/53*I,n=24 3654358163045322 a007 Real Root Of 176*x^4+806*x^3+810*x^2+554*x-846 3654358185476422 r009 Im(z^3+c),c=-11/62+21/53*I,n=22 3654358200450912 a007 Real Root Of 221*x^4-992*x^3+593*x^2+100*x-95 3654358207958884 r002 12th iterates of z^2 + 3654358217525010 a007 Real Root Of 227*x^4+657*x^3-686*x^2-90*x+412 3654358217855546 m001 (cos(1/12*Pi)+GAMMA(19/24))/(Gompertz-Trott) 3654358222920454 m001 (3^(1/3)+CareFree)/(GaussAGM-StronglyCareFree) 3654358231559859 a001 3278735159921/682*843^(9/14) 3654358240417399 a007 Real Root Of -743*x^4-177*x^3+386*x^2+644*x-265 3654358246254556 a007 Real Root Of 514*x^4-504*x^3-120*x^2-247*x-108 3654358256303038 a001 2/1597*514229^(43/55) 3654358260293824 m007 (-2*gamma-4*ln(2)+4/5)/(-1/4*gamma+1) 3654358265647449 m005 (1/2*Pi+7/8)/(2/5*3^(1/2)+6) 3654358267714627 r005 Re(z^2+c),c=-41/86+8/31*I,n=47 3654358277351090 r005 Im(z^2+c),c=-1/50+13/28*I,n=50 3654358293322503 l006 ln(2557/3685) 3654358295511358 a003 sin(Pi*1/41)*sin(Pi*16/101) 3654358301362816 r009 Im(z^3+c),c=-1/26+38/47*I,n=54 3654358303826882 r005 Re(z^2+c),c=7/50+19/42*I,n=44 3654358304540474 a001 13/521*7^(10/51) 3654358307344520 m001 Lehmer-GAMMA(7/12)-exp(1) 3654358307344520 m001 exp(1)-Lehmer+GAMMA(7/12) 3654358310012974 m001 (ErdosBorwein-ln(5))^(3^(1/2)) 3654358314770278 a007 Real Root Of -677*x^4+158*x^3-315*x^2+887*x-32 3654358318479995 b008 3+36*Cosh[3] 3654358330500162 m001 (exp(Pi)+exp(1))/(gamma(1)+gamma(3)) 3654358333873213 m001 ln(Robbin)/GaussKuzminWirsing^2/GAMMA(3/4) 3654358348603808 m005 (1/3*Catalan+1/4)/(3/10*3^(1/2)+1) 3654358360632869 m001 sin(1/5*Pi)^HardHexagonsEntropy/Conway 3654358381463999 r005 Re(z^2+c),c=-15/22+17/74*I,n=39 3654358383470636 r005 Im(z^2+c),c=-53/74+13/63*I,n=54 3654358387669603 r005 Im(z^2+c),c=-4/25+17/32*I,n=25 3654358390071785 r005 Re(z^2+c),c=-15/31+10/47*I,n=45 3654358390487639 a001 137769311321384/377 3654358406234481 m001 1/BesselK(1,1)*FeigenbaumC*ln(sqrt(2))^2 3654358417073669 a007 Real Root Of 314*x^4-357*x^3+279*x^2-905*x-391 3654358417393181 m001 ln(GAMMA(3/4))^2/GAMMA(17/24)^2*Zeta(1/2) 3654358424488842 r009 Re(z^3+c),c=-47/118+3/5*I,n=41 3654358437025970 m001 MadelungNaCl^2*ln(LaplaceLimit)^2/sqrt(2) 3654358452545630 r009 Im(z^3+c),c=-11/62+21/53*I,n=19 3654358455944888 m001 GAMMA(1/4)^2/KhintchineLevy/ln(GAMMA(2/3)) 3654358460362991 a007 Real Root Of 714*x^4-895*x^3-842*x^2-694*x+397 3654358465047886 h001 (1/5*exp(1)+2/5)/(10/11*exp(1)+1/9) 3654358478478036 r005 Re(z^2+c),c=-31/54+4/41*I,n=6 3654358502116416 r005 Im(z^2+c),c=-13/27+13/24*I,n=59 3654358513414604 r009 Im(z^3+c),c=-2/23+25/61*I,n=8 3654358526046336 r009 Re(z^3+c),c=-43/70+30/37*I,n=2 3654358533780932 m001 (cos(1)+ln(2))/(-sin(1/12*Pi)+Gompertz) 3654358547416699 r005 Im(z^2+c),c=-53/82+15/32*I,n=7 3654358548181312 r005 Re(z^2+c),c=-47/102+1/13*I,n=5 3654358548954316 a008 Real Root of x^5-x^4+7*x^2-8*x+2 3654358556239501 m001 (Bloch-CopelandErdos)/(Mills-TwinPrimes) 3654358566697904 s002 sum(A185493[n]/(n^2*2^n+1),n=1..infinity) 3654358579592640 r005 Re(z^2+c),c=-29/66+27/64*I,n=56 3654358583936048 q001 96/2627 3654358585337992 h001 (1/12*exp(2)+3/8)/(2/7*exp(2)+3/5) 3654358598866577 a001 4052739537881/1364*843^(5/7) 3654358610236220 r009 Re(z^3+c),c=-49/82+19/39*I,n=62 3654358615060517 m005 (1/3*5^(1/2)+1/8)/(5/9*Pi+7/11) 3654358627996507 p004 log(23371/16217) 3654358649478115 a003 cos(Pi*3/113)-cos(Pi*13/46) 3654358663349873 m001 sin(1/12*Pi)/GolombDickman*QuadraticClass 3654358664283103 m005 (1/3*Pi+1/4)/(3/8*gamma-4/7) 3654358667365284 a007 Real Root Of -171*x^4-585*x^3+281*x^2+600*x+387 3654358668351961 r009 Re(z^3+c),c=-37/70+18/37*I,n=24 3654358678060494 r005 Im(z^2+c),c=-1/66+17/38*I,n=4 3654358681543250 a007 Real Root Of 253*x^4-729*x^3+969*x^2-535*x-365 3654358685550790 a007 Real Root Of 918*x^4-294*x^3+601*x^2-416*x-263 3654358690643755 l006 ln(6830/9843) 3654358695068933 a007 Real Root Of 115*x^4-975*x^3-600*x^2-696*x+380 3654358696014209 a003 -3/2+cos(5/27*Pi)+cos(7/30*Pi)+cos(11/27*Pi) 3654358728258894 a007 Real Root Of 378*x^4+179*x^3-271*x^2-264*x+10 3654358736608432 r005 Re(z^2+c),c=11/46+29/61*I,n=50 3654358746216945 a001 2207/75025*1597^(1/34) 3654358749005963 r002 7th iterates of z^2 + 3654358762375538 r005 Re(z^2+c),c=3/10+3/43*I,n=49 3654358802956884 r005 Re(z^2+c),c=-39/82+17/56*I,n=19 3654358835841332 r009 Im(z^3+c),c=-1/26+38/47*I,n=56 3654358840610526 a001 123/89*610^(24/47) 3654358845641800 a001 3010349*1836311903^(13/17) 3654358845644317 a001 1568397607*514229^(13/17) 3654358846454315 r009 Re(z^3+c),c=-19/44+7/30*I,n=11 3654358860627427 a007 Real Root Of -14*x^4-492*x^3+723*x^2+244*x+408 3654358866766804 m001 (Zeta(3)+1)/(GAMMA(23/24)+5) 3654358879153833 m001 (-Backhouse+Thue)/(2^(1/2)+Ei(1,1)) 3654358889719966 m004 -250/(3*Pi)+125*Pi-Cos[Sqrt[5]*Pi] 3654358890381095 r005 Re(z^2+c),c=-23/18+12/181*I,n=10 3654358892616581 m008 (5/6*Pi^3-1/4)/(3/4*Pi^2-2/5) 3654358899319626 m008 (5*Pi^3+1/5)/(4*Pi^2+3) 3654358909207351 a007 Real Root Of 464*x^4-522*x^3+983*x^2+63*x-142 3654358919598890 m001 (MadelungNaCl-Salem)/(arctan(1/3)+Zeta(1,-1)) 3654358924164053 m009 (1/4*Psi(1,1/3)+5)/(2/5*Psi(1,2/3)+5/6) 3654358925258057 r009 Im(z^3+c),c=-41/74+17/52*I,n=5 3654358928404207 l006 ln(4273/6158) 3654358929755251 a003 cos(Pi*46/119)+cos(Pi*47/95) 3654358955102379 a001 5778*6557470319842^(13/17) 3654358964984268 a007 Real Root Of -234*x^4-835*x^3+189*x^2+237*x-676 3654358966173332 a001 2504730781961/1364*843^(11/14) 3654358973021237 m001 (GAMMA(2/3)+TwinPrimes*ZetaP(2))/ZetaP(2) 3654358978534895 m005 (41/36+1/4*5^(1/2))/(3/10*2^(1/2)-8/9) 3654358980262776 a001 1/36*233^(26/55) 3654358986143259 r009 Im(z^3+c),c=-11/114+40/49*I,n=8 3654358994450652 r005 Im(z^2+c),c=-1/36+15/32*I,n=33 3654359002060594 b008 E*(12+ArcSinh[2]) 3654359003886507 r005 Im(z^2+c),c=-55/82+1/23*I,n=28 3654359018342416 m009 (1/4*Psi(1,3/4)-3/4)/(1/4*Pi^2+2/3) 3654359021786518 m001 exp(Magata)/Lehmer*GAMMA(1/3)^2 3654359026964901 p001 sum((-1)^n/(589*n+271)/(32^n),n=0..infinity) 3654359032043640 m001 (CareFree-Paris)/(PolyaRandomWalk3D-ZetaP(3)) 3654359040794600 m005 (23/28+1/4*5^(1/2))/(4/7*5^(1/2)-9/10) 3654359067910138 r005 Re(z^2+c),c=-33/26+1/24*I,n=54 3654359070708031 m001 GaussKuzminWirsing-exp(1)*Backhouse 3654359070708031 m001 exp(1)*Backhouse-GaussKuzminWirsing 3654359079069481 b008 Zeta[9,Csch[Pi]] 3654359101043918 r005 Im(z^2+c),c=-23/34+4/61*I,n=56 3654359118205660 a007 Real Root Of 202*x^4+742*x^3+182*x^2+859*x+895 3654359118305541 r005 Re(z^2+c),c=-10/31+35/61*I,n=45 3654359137560748 r005 Im(z^2+c),c=1/102+21/47*I,n=42 3654359142966211 r002 6th iterates of z^2 + 3654359156213949 m001 (Catalan+ln(Pi))/(-StronglyCareFree+Totient) 3654359156515971 a001 121393/2207*18^(19/29) 3654359160991961 r009 Im(z^3+c),c=-23/54+18/61*I,n=41 3654359175185958 a001 6557470319842/521*521^(7/13) 3654359178793722 r005 Re(z^2+c),c=-59/106+23/57*I,n=21 3654359179231387 a007 Real Root Of -970*x^4+809*x^3-273*x^2+372*x+14 3654359181074326 r009 Im(z^3+c),c=-17/64+19/51*I,n=13 3654359183118625 r005 Im(z^2+c),c=41/126+2/13*I,n=25 3654359187014573 m001 (GAMMA(13/24)-sin(1))/(Pi^(1/2)+ThueMorse) 3654359199551952 l006 ln(5989/8631) 3654359201845967 m001 ln(Pi)+KhinchinHarmonic+LandauRamanujan 3654359206734636 s002 sum(A250378[n]/(n!^2),n=1..infinity) 3654359217404662 r002 8th iterates of z^2 + 3654359224884884 a001 199*46368^(53/58) 3654359237987557 m001 1/GAMMA(5/24)^2*BesselJ(1,1)^2/exp(Zeta(7)) 3654359242443609 m005 (1/2*3^(1/2)-1/9)/(2/11*Pi-7/9) 3654359242889587 p004 log(26393/683) 3654359250783207 r005 Re(z^2+c),c=-33/56+18/47*I,n=42 3654359256505037 r005 Im(z^2+c),c=-14/27+25/51*I,n=55 3654359257919943 p003 LerchPhi(1/32,1,521/186) 3654359262486421 r009 Im(z^3+c),c=-23/54+18/61*I,n=45 3654359265336250 r009 Im(z^3+c),c=-23/54+18/61*I,n=46 3654359265404211 m001 GAMMA(7/24)^2/Lehmer^2*ln(sin(Pi/12)) 3654359273716271 m001 (Riemann1stZero-Weierstrass)/(Pi+Gompertz) 3654359299830568 r009 Re(z^3+c),c=-19/106+19/23*I,n=9 3654359313444021 a007 Real Root Of -46*x^4+886*x^3-332*x^2+662*x-240 3654359315682653 a001 505019158607/610*34^(8/19) 3654359332010159 m005 (1/2*gamma+2)/(1/7*Zeta(3)+5/11) 3654359333480124 a001 1134903780*843^(6/7) 3654359335335596 m001 (exp(1/exp(1))-gamma(1))/(Khinchin+Porter) 3654359340389639 a007 Real Root Of 316*x^4-549*x^3-59*x^2-554*x-227 3654359360168549 a007 Real Root Of 279*x^4+904*x^3-447*x^2-224*x-489 3654359365370912 m001 (MertensB1+Stephens)/(GAMMA(2/3)-Zeta(1,2)) 3654359387259077 m001 (2^(1/3)-ln(2))/(exp(1/Pi)+Riemann1stZero) 3654359402870982 m009 (40*Catalan+5*Pi^2+1/5)/(3/5*Psi(1,3/4)+5/6) 3654359408437037 m001 BesselI(1,1)-Khinchin^gamma(1) 3654359412235755 a003 sin(Pi*11/106)-sin(Pi*19/79) 3654359438620687 a007 Real Root Of 157*x^4+435*x^3-708*x^2-887*x-557 3654359445516134 p004 log(13577/9421) 3654359450585002 m001 (-AlladiGrinstead+LandauRamanujan)/(1-5^(1/2)) 3654359450585002 m001 cos(1/5*Pi)*(AlladiGrinstead-LandauRamanujan) 3654359461178620 a005 (1/cos(7/113*Pi))^68 3654359461643728 r009 Im(z^3+c),c=-7/31+5/13*I,n=5 3654359468416090 a007 Real Root Of -224*x^4-939*x^3-660*x^2-622*x+664 3654359475202794 s002 sum(A260608[n]/(pi^n-1),n=1..infinity) 3654359483502147 s002 sum(A075721[n]/(n^3*pi^n-1),n=1..infinity) 3654359485250069 r002 11th iterates of z^2 + 3654359487943097 a007 Real Root Of 175*x^4+789*x^3+478*x^2-41*x+762 3654359502104047 m005 (1/2*exp(1)+8/9)/(-17/24+1/24*5^(1/2)) 3654359516833207 r009 Im(z^3+c),c=-11/62+21/53*I,n=17 3654359527691235 m005 (12/5+2*5^(1/2))/(1/3*Pi+5/6) 3654359532849565 a008 Real Root of x^2-x-133178 3654359537005322 b008 2*Sqrt[2]+Tanh[Sinh[1]] 3654359538306600 r005 Re(z^2+c),c=9/22+15/44*I,n=44 3654359544603222 r005 Im(z^2+c),c=-1/29+26/55*I,n=32 3654359544692696 b008 Pi^3+2*ArcCosh[8] 3654359555215501 r005 Re(z^2+c),c=-89/118+9/34*I,n=4 3654359556879780 m005 (1/3*Catalan-1/8)/(1/70+3/14*5^(1/2)) 3654359560125911 p004 log(18523/12853) 3654359561559217 r002 9th iterates of z^2 + 3654359568632376 r002 6th iterates of z^2 + 3654359573558541 a001 7/17711*20365011074^(17/22) 3654359591842575 r005 Re(z^2+c),c=-9/7+5/93*I,n=50 3654359592357060 g001 GAMMA(7/8,76/81) 3654359592683990 m005 (-9/28+1/4*5^(1/2))/(1/9*gamma-5/7) 3654359617325764 r009 Im(z^3+c),c=-23/54+18/61*I,n=49 3654359617587673 r005 Re(z^2+c),c=-29/74+21/40*I,n=28 3654359627016761 m001 (-ln(3)+Mills)/(3^(1/2)-Psi(2,1/3)) 3654359630498174 m001 (Kolakoski+Paris)/(ln(5)+GaussAGM) 3654359631470726 a007 Real Root Of -459*x^4+108*x^3+524*x^2+673*x-313 3654359641112786 a001 11/20365011074*7778742049^(19/24) 3654359641215735 a001 11/2178309*75025^(19/24) 3654359647614117 r005 Im(z^2+c),c=-13/40+15/32*I,n=4 3654359654272113 r002 47th iterates of z^2 + 3654359654376656 a007 Real Root Of 961*x^4+724*x^3-38*x^2-328*x+12 3654359662944071 a003 cos(Pi*9/32)-sin(Pi*42/85) 3654359668257674 m001 (Porter+ReciprocalLucas)/(2^(1/2)-PlouffeB) 3654359671338374 r009 Im(z^3+c),c=-49/102+11/36*I,n=12 3654359674169387 m001 (Zeta(3)+Artin*TreeGrowth2nd)/Artin 3654359686352675 r009 Im(z^3+c),c=-9/56+41/49*I,n=44 3654359693453066 r005 Re(z^2+c),c=-35/74+16/57*I,n=26 3654359700786953 a001 956722026041/1364*843^(13/14) 3654359707294507 r009 Im(z^3+c),c=-23/54+18/61*I,n=39 3654359708514547 m001 (-Zeta(1,-1)+GaussAGM)/(sin(1)+Ei(1)) 3654359716076841 a003 sin(Pi*22/71)/cos(Pi*50/117) 3654359717471291 a001 3/199*119218851371^(1/8) 3654359719095480 a007 Real Root Of 9*x^4+331*x^3+84*x^2+265*x+363 3654359729486964 g005 Pi^(1/2)/GAMMA(8/11)/GAMMA(2/7)/GAMMA(3/4) 3654359743815923 m001 Pi+(Psi(1,1/3)+Psi(2,1/3))*ln(2^(1/2)+1) 3654359744944485 r005 Re(z^2+c),c=9/22+15/44*I,n=54 3654359747233427 s002 sum(A171059[n]/((10^n-1)/n),n=1..infinity) 3654359747828297 b008 Sinh[(1/13+E)^(-1)] 3654359767506142 s002 sum(A036707[n]/((2^n+1)/n),n=1..infinity) 3654359775964894 r009 Im(z^3+c),c=-23/54+18/61*I,n=50 3654359779390342 r005 Im(z^2+c),c=-23/17+8/51*I,n=4 3654359790848640 r009 Im(z^3+c),c=-23/54+18/61*I,n=53 3654359792796163 p001 sum(1/(598*n+283)/(10^n),n=0..infinity) 3654359797349399 a001 105937/1926*18^(19/29) 3654359817910662 m001 (Artin-Gompertz)/(BesselI(1,1)-GAMMA(19/24)) 3654359829227353 a007 Real Root Of -346*x^4-92*x^3+272*x^2+913*x+299 3654359846433603 m001 LambertW(1)-TravellingSalesman^exp(-1/2*Pi) 3654359851968385 r009 Im(z^3+c),c=-23/54+18/61*I,n=57 3654359864343244 r009 Re(z^3+c),c=-59/126+29/60*I,n=19 3654359866158352 r005 Im(z^2+c),c=3/64+14/33*I,n=25 3654359869721665 r009 Im(z^3+c),c=-23/54+18/61*I,n=61 3654359869905152 r009 Im(z^3+c),c=-23/54+18/61*I,n=56 3654359870039070 r009 Im(z^3+c),c=-23/54+18/61*I,n=60 3654359871733324 r009 Im(z^3+c),c=-23/54+18/61*I,n=54 3654359872812263 r009 Im(z^3+c),c=-23/54+18/61*I,n=64 3654359874735086 l006 ln(1716/2473) 3654359877159344 r009 Im(z^3+c),c=-23/54+18/61*I,n=63 3654359878265957 r009 Im(z^3+c),c=-23/54+18/61*I,n=62 3654359880984265 r009 Im(z^3+c),c=-23/54+18/61*I,n=58 3654359883238477 b008 1/31+EulerGamma^2 3654359884290695 m005 (1/2*exp(1)-1)/(1/5*3^(1/2)+7/11) 3654359886129199 r009 Im(z^3+c),c=-23/54+18/61*I,n=59 3654359890845755 a001 832040/15127*18^(19/29) 3654359891141001 r005 Re(z^2+c),c=-69/94+4/61*I,n=45 3654359891437796 r005 Im(z^2+c),c=43/126+11/46*I,n=13 3654359894810727 r009 Im(z^3+c),c=-27/94+23/63*I,n=10 3654359904486690 a001 726103/13201*18^(19/29) 3654359904683391 r009 Im(z^3+c),c=-23/54+18/61*I,n=52 3654359909295237 r005 Im(z^2+c),c=25/74+2/13*I,n=48 3654359912917251 a001 1346269/24476*18^(19/29) 3654359919785237 r009 Im(z^3+c),c=-23/54+18/61*I,n=55 3654359947575653 a007 Real Root Of -287*x^4-830*x^3+513*x^2-888*x+582 3654359948629683 a001 514229/9349*18^(19/29) 3654359952649832 m001 (ln(gamma)+exp(1/exp(1)))/(exp(Pi)+GAMMA(2/3)) 3654359957511972 r002 33th iterates of z^2 + 3654359976723283 m001 1/Porter*LandauRamanujan*ln(Riemann1stZero)^2 3654359982582251 r009 Im(z^3+c),c=-21/40+5/63*I,n=30 3654359984396123 r004 Im(z^2+c),c=7/26+1/14*I,z(0)=exp(5/8*I*Pi),n=4 3654359988119525 r005 Im(z^2+c),c=3/10+10/59*I,n=3 3654360001765767 a007 Real Root Of -182*x^4-346*x^3+963*x^2-593*x+545 3654360005471359 a003 sin(Pi*11/118)/cos(Pi*25/119) 3654360025702233 r009 Im(z^3+c),c=-23/54+18/61*I,n=51 3654360032711475 m001 (arctan(1/2)-Zeta(1,-1))/(GAMMA(5/6)+Lehmer) 3654360039281081 a007 Real Root Of -228*x^4-777*x^3+462*x^2+676*x-957 3654360044781319 r005 Re(z^2+c),c=-15/31+10/47*I,n=47 3654360046222578 r005 Im(z^2+c),c=-19/14+3/202*I,n=20 3654360048995866 r005 Re(z^2+c),c=-23/50+15/44*I,n=39 3654360057349853 g007 Psi(2,11/12)+Psi(2,1/6)-Psi(2,3/8)-Psi(2,2/5) 3654360063101956 p004 log(30937/21467) 3654360070864753 r005 Im(z^2+c),c=1/50+26/59*I,n=44 3654360083761380 m004 -4/3+Sqrt[5]*Pi+125*Pi*Tan[Sqrt[5]*Pi] 3654360087817407 r005 Im(z^2+c),c=-4/29+19/36*I,n=51 3654360089727961 r005 Im(z^2+c),c=3/13+2/7*I,n=26 3654360110803324 r005 Re(z^2+c),c=-23/50+13/38*I,n=2 3654360118828790 r005 Im(z^2+c),c=-71/56+2/41*I,n=47 3654360123277190 r005 Im(z^2+c),c=19/86+18/61*I,n=24 3654360126533135 r005 Im(z^2+c),c=-7/6+27/137*I,n=56 3654360135037020 r009 Im(z^3+c),c=-23/54+18/61*I,n=48 3654360167318819 m009 (5/2*Pi^2-5/6)/(1/4*Psi(1,1/3)+4) 3654360175561097 a007 Real Root Of 193*x^4+696*x^3-250*x^2-584*x+751 3654360179431147 r005 Im(z^2+c),c=-17/82+33/59*I,n=36 3654360181624733 p003 LerchPhi(1/512,4,382/167) 3654360183752626 r005 Re(z^2+c),c=9/22+15/44*I,n=64 3654360186305846 a007 Real Root Of 87*x^4+283*x^3-203*x^2-109*x+608 3654360193406351 a001 196418/3571*18^(19/29) 3654360209193767 r005 Re(z^2+c),c=-77/106+9/34*I,n=15 3654360210568974 r005 Im(z^2+c),c=1/36+23/52*I,n=14 3654360210781312 a001 10610209857723/521*521^(6/13) 3654360210933886 r005 Re(z^2+c),c=-43/82+6/35*I,n=9 3654360213518477 r009 Im(z^3+c),c=-25/114+17/44*I,n=9 3654360218602264 h001 (9/11*exp(1)+5/7)/(2/9*exp(1)+1/5) 3654360223751324 b008 E+(13*Sech[1])/9 3654360236136253 p001 sum((-1)^n/(437*n+83)/n/(5^n),n=1..infinity) 3654360237369411 a007 Real Root Of 355*x^4-695*x^3-77*x^2-679*x+286 3654360238371171 m001 (TravellingSalesman-Gompertz)^Bloch 3654360245740622 r002 11th iterates of z^2 + 3654360245816185 r005 Im(z^2+c),c=-23/34+4/83*I,n=37 3654360269121373 a008 Real Root of x^4-2*x^3-2*x^2-52*x+136 3654360271335594 m001 ThueMorse/gamma(3)/ln(gamma) 3654360274099639 r002 13th iterates of z^2 + 3654360284459996 r005 Re(z^2+c),c=-14/31+7/15*I,n=28 3654360289238704 r009 Im(z^3+c),c=-23/54+18/61*I,n=47 3654360296647827 r005 Im(z^2+c),c=-7/44+9/11*I,n=9 3654360306409384 m008 (2/3*Pi^3-3/4)/(1/5*Pi^3-3/4) 3654360312529671 r005 Re(z^2+c),c=-17/36+19/49*I,n=22 3654360313707654 r005 Im(z^2+c),c=-33/74+17/35*I,n=16 3654360330794691 a001 1/532*(1/2*5^(1/2)+1/2)^10*7^(4/17) 3654360331086429 a007 Real Root Of -440*x^4+999*x^3+845*x^2+745*x-426 3654360346680748 m001 (Zeta(1,-1)+GAMMA(11/12))/(MinimumGamma-Niven) 3654360363159364 r009 Re(z^3+c),c=-1/122+38/55*I,n=32 3654360374536756 a001 233/24476*11^(23/41) 3654360382258920 r002 52i'th iterates of 2*x/(1-x^2) of 3654360403310664 r005 Re(z^2+c),c=-21/52+19/39*I,n=37 3654360415983822 m001 (Landau+Riemann2ndZero)/(1-HardyLittlewoodC5) 3654360443008773 h001 (1/2*exp(1)+8/9)/(8/11*exp(2)+7/9) 3654360457201205 m005 (1/2*exp(1)-1/7)/(10/11*exp(1)+6/7) 3654360458399454 r009 Re(z^3+c),c=-14/29+9/32*I,n=23 3654360468097381 m001 ln(2)/(Ei(1)+ZetaQ(4)) 3654360468412293 m001 1/exp(Paris)^2*Artin^2/Pi 3654360468596542 a001 29/14930352*46368^(1/17) 3654360468616534 a001 29/24157817*165580141^(1/17) 3654360468616536 a001 29/39088169*591286729879^(1/17) 3654360468832429 m001 1/ln(arctan(1/2))^2*GAMMA(7/12)/sin(1)^2 3654360472242513 r005 Re(z^2+c),c=-13/28+14/43*I,n=28 3654360474878507 r005 Re(z^2+c),c=-61/90+34/55*I,n=3 3654360478943801 r009 Re(z^3+c),c=-65/106+27/56*I,n=39 3654360479521189 a003 sin(Pi*15/113)/cos(Pi*46/99) 3654360486887783 r005 Im(z^2+c),c=31/122+19/43*I,n=17 3654360493878684 r009 Im(z^3+c),c=-10/23+14/25*I,n=56 3654360526206123 r005 Re(z^2+c),c=-13/18+16/115*I,n=40 3654360528220539 m001 (-Cahen+TravellingSalesman)/(2^(1/3)+ln(2)) 3654360528505855 r002 15th iterates of z^2 + 3654360531530457 a007 Real Root Of 178*x^4+460*x^3-751*x^2-441*x-878 3654360532437666 m001 FeigenbaumD*PisotVijayaraghavan^ln(3) 3654360540994720 r002 12th iterates of z^2 + 3654360542933210 r005 Im(z^2+c),c=-32/27+1/19*I,n=15 3654360543499163 m001 MinimumGamma*(ln(Pi)+FeigenbaumKappa) 3654360544161666 s001 sum(exp(-2*Pi/3)^n*A080894[n],n=1..infinity) 3654360546106747 l006 ln(6023/8680) 3654360550635361 r005 Re(z^2+c),c=-43/42+7/55*I,n=28 3654360554792671 r005 Re(z^2+c),c=-15/29+34/53*I,n=8 3654360568052140 r009 Im(z^3+c),c=-1/8+15/37*I,n=14 3654360572711701 r005 Re(z^2+c),c=-69/98+5/41*I,n=25 3654360582448926 m001 (OneNinth+StronglyCareFree)/(exp(Pi)+Zeta(5)) 3654360583466947 a007 Real Root Of -928*x^4+321*x^3-580*x^2+997*x-286 3654360600612016 m002 -Pi^2/3+Pi^4-Pi^4*Coth[Pi] 3654360620652755 q001 683/1869 3654360641774789 m001 FellerTornier/(cos(1/5*Pi)^sin(1/5*Pi)) 3654360643042104 m001 (-Chi(1)+sin(1))/(3^(1/2)-exp(1)) 3654360653003743 a003 sin(Pi*7/48)*sin(Pi*13/42) 3654360659808400 r009 Im(z^3+c),c=-23/54+18/61*I,n=43 3654360668729009 m001 (FeigenbaumMu-FransenRobinson)/(3^(1/3)+Cahen) 3654360702703321 m001 (ln(2+3^(1/2))+MinimumGamma)/(Paris+Robbin) 3654360703312874 r005 Re(z^2+c),c=-18/29+9/46*I,n=11 3654360711656091 r005 Im(z^2+c),c=19/122+15/43*I,n=39 3654360727432388 r005 Re(z^2+c),c=-33/74+25/63*I,n=45 3654360735627233 g007 Psi(2,7/11)+Psi(2,7/9)-Psi(2,7/12)-Psi(2,3/8) 3654360755881622 r004 Re(z^2+c),c=7/46+9/19*I,z(0)=I,n=30 3654360760147356 r009 Im(z^3+c),c=-25/52+11/45*I,n=19 3654360783759014 m005 (1/2*3^(1/2)-1)/(8/11*Catalan+3) 3654360792041591 h005 exp(cos(Pi*19/47)+sin(Pi*29/59)) 3654360795464109 a007 Real Root Of 13*x^4+488*x^3+493*x^2+722*x-829 3654360796279844 m001 (1-Zeta(3))/(gamma(1)+Kac) 3654360813595421 l006 ln(4307/6207) 3654360823780239 r005 Im(z^2+c),c=-1/86+17/37*I,n=39 3654360827275080 m004 -25*Pi+6*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi]/6 3654360838990442 a007 Real Root Of 563*x^4+520*x^3-307*x^2-696*x-25 3654360845990016 r009 Re(z^3+c),c=-37/102+37/55*I,n=41 3654360859775992 r005 Im(z^2+c),c=17/66+15/47*I,n=10 3654360866186452 m008 (4/5*Pi^3-4/5)/(3/4*Pi^2-5/6) 3654360879459557 m001 Riemann2ndZero/Si(Pi)*ln(Riemann3rdZero) 3654360883333705 m001 exp(GAMMA(5/24))/GlaisherKinkelin*gamma 3654360911767687 m005 (1/6*exp(1)+1/3)/(2/3*gamma-3/5) 3654360920397198 m001 DuboisRaymond*(FeigenbaumAlpha-GolombDickman) 3654360928762167 m001 GAMMA(3/4)^(Otter/arctan(1/2)) 3654360939480336 r009 Im(z^3+c),c=-23/62+16/47*I,n=7 3654360954046351 a007 Real Root Of -69*x^4-430*x^3-711*x^2-58*x+54 3654360954052678 r005 Im(z^2+c),c=7/90+8/19*I,n=11 3654360956577797 s002 sum(A180931[n]/(n*10^n-1),n=1..infinity) 3654360956934869 a001 47/514229*233^(15/59) 3654360989983646 r005 Im(z^2+c),c=6/19+5/27*I,n=29 3654360993295438 a001 1322157322203/1597*34^(8/19) 3654360994149492 a008 Real Root of x^4-25*x^2-39*x+13 3654360994307842 r005 Im(z^2+c),c=5/122+8/19*I,n=6 3654360994846099 m005 (1/2*exp(1)-4/5)/(7/10*Catalan+8/9) 3654360997517401 r005 Re(z^2+c),c=-53/118+22/57*I,n=52 3654360998896311 m001 BesselJ(1,1)^PisotVijayaraghavan*Trott 3654361002654015 r005 Re(z^2+c),c=-39/56+7/20*I,n=11 3654361047153589 l006 ln(6898/9941) 3654361054363931 m001 (-ln(3)+BesselJ(1,1))/(BesselJ(0,1)+Zeta(5)) 3654361061921999 m005 (1/3*2^(1/2)+1/6)/(4/5*exp(1)-3/7) 3654361064363726 r005 Im(z^2+c),c=-2/17+16/31*I,n=31 3654361081952014 r002 18th iterates of z^2 + 3654361082234123 a007 Real Root Of 21*x^4+790*x^3+813*x^2-470*x-740 3654361084723549 m001 1/Paris^2*ln(LandauRamanujan)*GAMMA(1/12)^2 3654361090480449 a001 119218851371/55*377^(10/21) 3654361091554450 r005 Im(z^2+c),c=25/114+19/60*I,n=10 3654361110360479 m001 1/CareFree^2/Conway/exp((3^(1/3))) 3654361117992105 r005 Re(z^2+c),c=-59/94+1/48*I,n=8 3654361124195589 r009 Re(z^3+c),c=-51/106+11/38*I,n=35 3654361125710085 s002 sum(A185493[n]/(n^2*2^n-1),n=1..infinity) 3654361138068499 r009 Im(z^3+c),c=-1/56+12/29*I,n=7 3654361144090467 r009 Im(z^3+c),c=-33/64+8/35*I,n=30 3654361146029258 r005 Re(z^2+c),c=-17/98+57/64*I,n=3 3654361152792854 h001 (5/9*exp(1)+7/11)/(8/11*exp(2)+1/2) 3654361155813957 r005 Im(z^2+c),c=-17/30+43/64*I,n=8 3654361157894396 m005 (1/2*Zeta(3)-2/11)/(7/9*3^(1/2)-1/5) 3654361170751604 r005 Im(z^2+c),c=-5/26+5/9*I,n=54 3654361179601500 r005 Re(z^2+c),c=-55/122+19/51*I,n=25 3654361184249811 m001 (3^(1/2)+FeigenbaumD)/(-MadelungNaCl+Otter) 3654361200696720 m005 (1/3*3^(1/2)+1/11)/(5/9*Pi+1/12) 3654361202188605 r009 Im(z^3+c),c=-23/54+18/61*I,n=44 3654361237361400 h001 (3/4*exp(2)+1/7)/(1/7*exp(2)+1/2) 3654361238055974 a001 3461452808002/4181*34^(8/19) 3654361246748826 r002 51th iterates of z^2 + 3654361246872746 r005 Re(z^2+c),c=-55/122+19/50*I,n=58 3654361246899927 a007 Real Root Of 903*x^4+53*x^3-225*x^2-913*x+345 3654361247366681 r002 63th iterates of z^2 + 3654361257061727 m001 (Si(Pi)+cos(1/5*Pi))/gamma(1) 3654361261266272 a003 sin(Pi*8/63)/cos(Pi*55/118) 3654361262385167 r005 Re(z^2+c),c=-36/29+3/31*I,n=16 3654361262760859 r005 Re(z^2+c),c=-65/98+37/62*I,n=3 3654361273766058 a001 9062201101803/10946*34^(8/19) 3654361278976089 a001 23725150497407/28657*34^(8/19) 3654361282050652 a001 377/521*14662949395604^(8/9) 3654361282196065 a001 14662949395604/17711*34^(8/19) 3654361283065666 a008 Real Root of x^2-x-133909 3654361289377942 r005 Re(z^2+c),c=-25/56+25/63*I,n=64 3654361290318423 a007 Real Root Of 943*x^4-503*x^3-939*x^2-889*x+458 3654361293604439 r005 Im(z^2+c),c=10/29+5/36*I,n=54 3654361295836103 a001 5600748293801/6765*34^(8/19) 3654361297210653 a001 9*365435296162^(1/19) 3654361298693986 a007 Real Root Of 856*x^4+230*x^3+619*x^2-926*x+33 3654361300583505 r009 Re(z^3+c),c=-55/106+19/56*I,n=62 3654361307782648 m001 (Thue-ZetaP(4))/(GaussAGM+Mills) 3654361310111867 m001 (arctan(1/3)+Lehmer)/(Riemann3rdZero+Trott) 3654361328215541 m002 -E^Pi/6+Pi^2+Pi^3*Cosh[Pi] 3654361339944688 m001 1/ln(Trott)/RenyiParking/cos(Pi/5) 3654361340277034 a001 17/51841*2^(5/32) 3654361350270298 m001 (Porter-gamma)/(-Riemann3rdZero+TwinPrimes) 3654361350340084 a001 591286729879/199*199^(10/11) 3654361356307126 a007 Real Root Of -270*x^4-982*x^3+346*x^2+948*x-928 3654361368679638 r005 Im(z^2+c),c=33/98+17/61*I,n=22 3654361375129303 m005 (1/2*gamma-7/11)/(4/9*3^(1/2)+2/11) 3654361389326320 a001 2139295485799/2584*34^(8/19) 3654361400630309 r005 Im(z^2+c),c=41/122+46/59*I,n=3 3654361402276754 r005 Im(z^2+c),c=3/32+24/61*I,n=36 3654361410118146 m005 (1/2*Catalan-6/7)/(1/5*Catalan+10/11) 3654361420084996 m001 1/exp(Zeta(5))/PrimesInBinary^2*sqrt(Pi) 3654361425328144 r005 Im(z^2+c),c=-13/106+13/25*I,n=63 3654361435395579 l006 ln(2591/3734) 3654361467355743 r005 Re(z^2+c),c=-22/29+1/63*I,n=32 3654361475158294 a007 Real Root Of 241*x^4+868*x^3-70*x^2-165*x-288 3654361488782345 m005 (1/2*2^(1/2)+3/7)/(6/7*exp(1)+7/9) 3654361491230757 m001 (ErdosBorwein-MasserGramain)/(Pi+exp(Pi)) 3654361507332852 r005 Im(z^2+c),c=-77/118+15/62*I,n=19 3654361525945723 r002 21th iterates of z^2 + 3654361527267223 r005 Im(z^2+c),c=-27/118+32/55*I,n=59 3654361540381275 b008 5*(4+7*Pi^2) 3654361542140847 r005 Im(z^2+c),c=-19/106+34/55*I,n=41 3654361544835848 a007 Real Root Of 220*x^4+868*x^3+213*x^2+11*x+321 3654361558425022 r005 Im(z^2+c),c=-29/56+11/19*I,n=44 3654361561147041 a001 8/2207*11^(53/55) 3654361563891346 r009 Im(z^3+c),c=-47/98+16/63*I,n=43 3654361566391532 r002 10th iterates of z^2 + 3654361583688460 a007 Real Root Of 460*x^4-220*x^3-314*x^2-297*x+153 3654361584399622 r005 Im(z^2+c),c=21/64+1/20*I,n=16 3654361591514261 r009 Re(z^3+c),c=-37/94+11/62*I,n=19 3654361591870084 r005 Im(z^2+c),c=25/126+17/54*I,n=23 3654361612832662 s002 sum(A043083[n]/(n*2^n+1),n=1..infinity) 3654361619284391 m001 (ThueMorse-TwinPrimes)/(Conway-Kac) 3654361623793806 r005 Re(z^2+c),c=-7/17+28/57*I,n=34 3654361637418633 m001 (CareFree+FeigenbaumD)/(MertensB2-OneNinth) 3654361646505291 l006 ln(9538/9893) 3654361651417009 r002 42th iterates of z^2 + 3654361652072033 r005 Re(z^2+c),c=-19/50+7/13*I,n=56 3654361659945748 a003 cos(1/10*Pi)+2*cos(2/21*Pi)+2*cos(10/27*Pi) 3654361663436789 a007 Real Root Of 720*x^4-61*x^3+982*x^2-832*x-451 3654361673752229 m001 (Chi(1)-ln(2)/ln(10))/(ln(2)+StronglyCareFree) 3654361682326163 r005 Re(z^2+c),c=-43/102+31/61*I,n=44 3654361693770801 m001 (Thue+ZetaQ(3))/(Grothendieck+Lehmer) 3654361695371282 r005 Im(z^2+c),c=-17/74+33/58*I,n=30 3654361702561129 s002 sum(A014435[n]/(n*pi^n+1),n=1..infinity) 3654361704364381 m001 (polylog(4,1/2)+Pi^(1/2))/(5^(1/2)-ln(5)) 3654361705690008 r005 Re(z^2+c),c=-15/31+10/47*I,n=42 3654361716069484 m001 GAMMA(2/3)^FransenRobinson*GAMMA(2/3)^Porter 3654361717583747 b008 CosIntegral[3/8+Pi] 3654361723194207 a003 sin(Pi*9/89)/sin(Pi*31/95) 3654361729161947 a001 322/5*6557470319842^(1/17) 3654361741510298 a007 Real Root Of 278*x^4+959*x^3-406*x^2-858*x-491 3654361757740506 m005 (1/2*gamma+1)/(3/7*gamma-3/5) 3654361762708316 r005 Im(z^2+c),c=-15/62+37/53*I,n=9 3654361771351126 m001 (-3^(1/3)+exp(1/exp(1)))/(Zeta(3)-cos(1)) 3654361777530148 a001 7/17711*121393^(42/43) 3654361784225572 r005 Re(z^2+c),c=17/50+3/40*I,n=44 3654361787656858 a001 370248451*1836311903^(11/17) 3654361787657914 a001 1860498*6557470319842^(11/17) 3654361787658647 a001 73681302247*514229^(11/17) 3654361809873212 r005 Im(z^2+c),c=-57/110+3/58*I,n=11 3654361811514639 r005 Im(z^2+c),c=-11/60+36/59*I,n=12 3654361815728861 a007 Real Root Of -143*x^4-227*x^3+818*x^2-762*x+716 3654361817942642 a008 Real Root of x^4-2*x^3+17*x^2+84*x-196 3654361820616802 a003 cos(Pi*11/91)-cos(Pi*13/42) 3654361833288723 a007 Real Root Of 25*x^4-585*x^3+436*x^2-585*x-301 3654361838730147 v002 sum(1/(5^n+(5*n^2+10*n+30)),n=1..infinity) 3654361842315518 m001 (Riemann1stZero-exp(1/2))^Psi(2,1/3) 3654361854685936 m001 exp(Pi)^(Pi^(1/2)*MasserGramain) 3654361863013966 m001 PrimesInBinary*(HardyLittlewoodC5-arctan(1/3)) 3654361866917214 r005 Re(z^2+c),c=-69/106+3/61*I,n=8 3654361871030324 r005 Im(z^2+c),c=-7/13+27/62*I,n=13 3654361871131475 a001 75025/1364*18^(19/29) 3654361877544025 l006 ln(6057/8729) 3654361889377342 m001 exp(BesselK(0,1))^2*Bloch^2/sqrt(2) 3654361897000681 m001 sqrt(1+sqrt(3))^2*GAMMA(7/12)^2*ln(sqrt(Pi)) 3654361905760094 r005 Re(z^2+c),c=-7/19+34/41*I,n=4 3654361908408540 m005 (1/2*5^(1/2)-7/10)/(73/99+2/11*5^(1/2)) 3654361940412191 a005 (1/cos(19/217*Pi))^154 3654361949231222 l006 ln(14/541) 3654361960271294 r009 Im(z^3+c),c=-41/86+8/31*I,n=29 3654361960440725 m005 (1/3*gamma+1/8)/(1/12*gamma-11/12) 3654361965679896 r005 Im(z^2+c),c=1/44+18/41*I,n=41 3654361968504420 r005 Re(z^2+c),c=-19/50+7/13*I,n=54 3654361972024615 r002 3th iterates of z^2 + 3654361974883348 m001 (-exp(1/Pi)+StronglyCareFree)/(cos(1)+ln(3)) 3654361981076016 r002 4th iterates of z^2 + 3654362012814778 m001 (2^(1/3)-BesselK(0,1))/(-Otter+TwinPrimes) 3654362013906211 m001 GAMMA(1/3)^2/ln((2^(1/3)))^2*exp(1) 3654362016764071 r002 23th iterates of z^2 + 3654362017369627 m001 ln(Pi)/(Ei(1,1)^BesselJ(0,1)) 3654362019515067 r009 Im(z^3+c),c=-31/58+11/52*I,n=33 3654362030117930 a001 817138163596/987*34^(8/19) 3654362059053233 r005 Im(z^2+c),c=-1/23+12/25*I,n=22 3654362065230394 a007 Real Root Of 250*x^4-345*x^3+729*x^2-852*x-430 3654362068775195 a007 Real Root Of -176*x^4-701*x^3-45*x^2+485*x-449 3654362071376262 m005 (1/2*Catalan-1/12)/(1/5*Catalan-2/7) 3654362084887328 h001 (-7*exp(4)+4)/(-7*exp(5)+4) 3654362114080523 a007 Real Root Of -260*x^4-988*x^3-252*x^2-592*x-646 3654362123718077 r005 Im(z^2+c),c=41/114+19/61*I,n=37 3654362167403174 m001 (ln(5)-arctan(1/2))/(GAMMA(7/12)+ErdosBorwein) 3654362167753947 a001 843/514229*233^(5/34) 3654362174063553 r005 Re(z^2+c),c=-21/34+27/65*I,n=28 3654362175254431 m004 -125*Pi+5*Sqrt[5]*Pi-12/ProductLog[Sqrt[5]*Pi] 3654362194519445 m001 GAMMA(1/6)^2/RenyiParking^2*exp(GAMMA(5/24))^2 3654362195222774 s002 sum(A213273[n]/(2^n+1),n=1..infinity) 3654362200357843 a007 Real Root Of 962*x^4+210*x^3+860*x^2-641*x-356 3654362202592758 m001 Pi^DuboisRaymond/(Pi^Zeta(1,2)) 3654362206963394 m001 (LambertW(1)-Shi(1))/(BesselJ(0,1)+Stephens) 3654362208071025 l006 ln(3466/4995) 3654362218378266 r005 Im(z^2+c),c=-125/94+1/5*I,n=4 3654362220238545 m001 (GAMMA(5/6)+MertensB2)/(2^(1/3)-Si(Pi)) 3654362242326244 a007 Real Root Of -949*x^4+938*x^3-877*x^2-202*x+106 3654362245998772 m005 (1/2*Catalan+5/9)/(1/3*3^(1/2)-3/10) 3654362259642517 a007 Real Root Of 148*x^4+279*x^3-936*x^2-121*x-721 3654362262768817 r005 Re(z^2+c),c=-17/38+16/41*I,n=40 3654362275828484 m001 KhintchineLevy/Kolakoski/ln(Ei(1))^2 3654362279120867 m001 (FeigenbaumKappa-Kac)/(Pi-ln(Pi)) 3654362284276034 r009 Re(z^3+c),c=-39/74+35/57*I,n=27 3654362298882742 m005 (2/3*Pi-5)/(4/5*gamma+1/3) 3654362303660861 a007 Real Root Of 9*x^4+320*x^3-309*x^2+593*x+346 3654362325072770 m001 1/ln(Porter)^2*Bloch/Zeta(1,2)^2 3654362325565112 r005 Re(z^2+c),c=-14/29+26/51*I,n=47 3654362343173531 r005 Re(z^2+c),c=-7/6+107/143*I,n=2 3654362349456366 r005 Re(z^2+c),c=-31/66+9/25*I,n=14 3654362361622546 a005 (1/cos(10/109*Pi))^1452 3654362373861623 a007 Real Root Of 132*x^4-686*x^3+963*x^2+595*x+53 3654362374253057 a001 28657/11*7^(4/23) 3654362374704568 r005 Re(z^2+c),c=-17/40+28/59*I,n=61 3654362381607317 m005 (-1/6+1/4*5^(1/2))/(1/8*3^(1/2)+6/7) 3654362390065430 r005 Im(z^2+c),c=19/122+15/43*I,n=40 3654362390780478 m001 1/cos(Pi/5)^2/GAMMA(2/3)*exp(sinh(1)) 3654362403712211 m008 (1/6*Pi^6-5)/(4*Pi^2+3) 3654362416107382 q001 1089/2980 3654362435125506 m001 (sin(1/5*Pi)-ln(gamma))/(Pi^(1/2)+Totient) 3654362443779068 m002 5+Cosh[Pi]/Log[Pi]+Pi^5*Log[Pi] 3654362444291610 m001 (Psi(2,1/3)-ln(2+3^(1/2)))/(GaussAGM+Rabbit) 3654362453078178 r005 Re(z^2+c),c=-17/36+15/49*I,n=16 3654362455132306 m001 (gamma(3)+Otter)/AlladiGrinstead 3654362455289178 m001 TwinPrimes^2*ln(MinimumGamma)/GAMMA(5/12)^2 3654362482335207 b008 3+ExpIntegralEi[4]/30 3654362484073207 r005 Im(z^2+c),c=1/56+19/43*I,n=29 3654362499694537 m005 (1/2*Zeta(3)+2/11)/(1/2*Pi+4/7) 3654362500779092 a007 Real Root Of -148*x^4-457*x^3+285*x^2-313*x-858 3654362502539181 m001 Thue-ln(2)/ln(10)*GAMMA(13/24) 3654362506640527 r005 Re(z^2+c),c=-115/114+11/60*I,n=42 3654362511332342 a001 55/199*3^(15/59) 3654362530396317 r005 Re(z^2+c),c=-7/15+19/39*I,n=50 3654362538111411 a007 Real Root Of -142*x^4-596*x^3-497*x^2-667*x+438 3654362545520557 r005 Im(z^2+c),c=-45/62+11/51*I,n=7 3654362576941676 r005 Im(z^2+c),c=-5/29+17/39*I,n=4 3654362577605390 r005 Re(z^2+c),c=-29/60+13/60*I,n=23 3654362581805454 r009 Re(z^3+c),c=-21/52+9/47*I,n=26 3654362591393225 m005 (1/2*Zeta(3)-7/11)/(6/7*Catalan+2/11) 3654362619134233 m001 (-BesselJ(1,1)+Champernowne)/(Si(Pi)-exp(1)) 3654362636596388 a007 Real Root Of -496*x^4+174*x^3-844*x^2+933*x+471 3654362643923707 r002 16th iterates of z^2 + 3654362650640905 r005 Im(z^2+c),c=17/64+11/64*I,n=4 3654362657835155 m005 (1/2*exp(1)+2/7)/(7/9*gamma-4/9) 3654362668797847 a007 Real Root Of -323*x^4-903*x^3+943*x^2-236*x+80 3654362669255534 l006 ln(4341/6256) 3654362672430431 m002 -1-Pi*Cosh[Pi]+Log[Pi]^(-1) 3654362673003255 r005 Im(z^2+c),c=-7/26+33/58*I,n=17 3654362683307982 m001 1/ArtinRank2^2*ln(GAMMA(5/6))^3 3654362683468861 m005 (1/3*Catalan-1/4)/(5/7*5^(1/2)-1/12) 3654362688996442 a007 Real Root Of -428*x^4+561*x^3+795*x^2+958*x-476 3654362698535474 r005 Im(z^2+c),c=11/50+11/49*I,n=3 3654362701047739 r005 Re(z^2+c),c=21/110+9/25*I,n=11 3654362716935361 r005 Im(z^2+c),c=-3/44+28/57*I,n=53 3654362722224946 m001 (ZetaQ(2)+ZetaQ(3))/(2^(1/3)+ZetaP(2)) 3654362731124309 m001 ArtinRank2*gamma^Salem 3654362732933783 m001 Zeta(1,2)*BesselK(1,1)*ln(sqrt(5))^2 3654362737179085 m001 GAMMA(2/3)-FeigenbaumMu^BesselI(0,1) 3654362741971986 a007 Real Root Of 599*x^4-121*x^3+448*x^2-527*x-269 3654362756645743 r005 Re(z^2+c),c=-23/34+16/93*I,n=13 3654362763332864 a007 Real Root Of 882*x^4+95*x^3-94*x^2-710*x-258 3654362768512559 m006 (4/5*ln(Pi)+1/4)/(1/6*exp(Pi)-2/3) 3654362774858383 r002 6th iterates of z^2 + 3654362786778402 r005 Re(z^2+c),c=-3/50+24/37*I,n=42 3654362788794040 r005 Re(z^2+c),c=-9/14+44/241*I,n=13 3654362788921370 a003 cos(Pi*6/73)*cos(Pi*29/77) 3654362790045410 r002 61th iterates of z^2 + 3654362791132621 a007 Real Root Of 870*x^4-197*x^3-839*x^2-982*x+465 3654362794433908 m001 (Khinchin+Salem)/(Psi(1,1/3)+Bloch) 3654362798613233 r002 57th iterates of z^2 + 3654362809896001 r005 Re(z^2+c),c=3/38+11/60*I,n=3 3654362825473451 m001 BesselI(0,1)^Thue*FeigenbaumMu^Thue 3654362836050235 m001 (Kolakoski+Robbin)/(Catalan-polylog(4,1/2)) 3654362836989071 m001 (-Porter+Salem)/(MertensB1-Shi(1)) 3654362850051138 r002 3th iterates of z^2 + 3654362855835712 a007 Real Root Of -101*x^4-149*x^3+655*x^2-513*x+119 3654362856286727 a007 Real Root Of -231*x^4+615*x^3-135*x^2-140*x+1 3654362860071955 a007 Real Root Of 127*x^4+282*x^3-768*x^2-393*x-67 3654362860742138 r009 Im(z^3+c),c=-12/25+13/64*I,n=7 3654362860772332 m005 (1/2*2^(1/2)-1/9)/(6/7*5^(1/2)-2/7) 3654362863453708 m001 (cos(1/12*Pi)-MertensB3)/(PlouffeB-Stephens) 3654362865637890 m009 (5*Psi(1,3/4)+1/5)/(1/4*Pi^2-6) 3654362882947595 m005 (1/3*5^(1/2)-1/9)/(5/11*exp(1)+1/2) 3654362884246476 m005 (1/5*gamma-5)/(4*Pi+4/5) 3654362918878925 m001 BesselI(0,2)+KomornikLoreti-ThueMorse 3654362924368556 r009 Im(z^3+c),c=-5/114+29/63*I,n=2 3654362939563010 r005 Im(z^2+c),c=-11/106+25/49*I,n=62 3654362957380303 l006 ln(7711/7998) 3654362968489493 r002 11th iterates of z^2 + 3654362975709800 l006 ln(5216/7517) 3654362976022877 r005 Im(z^2+c),c=-11/16+31/83*I,n=10 3654362991056076 h001 (7/10*exp(2)+2/5)/(1/12*exp(2)+10/11) 3654362996091023 r005 Im(z^2+c),c=-31/25+3/25*I,n=59 3654363003664807 m001 Zeta(1/2)^MertensB2*sin(1/12*Pi)^MertensB2 3654363007972013 s002 sum(A011803[n]/(n^2*pi^n-1),n=1..infinity) 3654363021285018 a007 Real Root Of -393*x^4+858*x^3-133*x^2+603*x+287 3654363033448444 r005 Im(z^2+c),c=-6/31+40/53*I,n=36 3654363034883606 a007 Real Root Of -309*x^4-920*x^3-907*x^2+247*x+172 3654363039448406 a001 521/144*377^(23/59) 3654363045930456 m001 (ln(5)+BesselJ(1,1))/(Kac-KhinchinLevy) 3654363056428297 r009 Im(z^3+c),c=-23/54+18/61*I,n=37 3654363063408202 r005 Re(z^2+c),c=-23/50+16/47*I,n=35 3654363063701496 m004 -6+(5*Sqrt[5]*Pi)/6+Log[Sqrt[5]*Pi]^2 3654363063748362 r005 Im(z^2+c),c=-61/52+1/21*I,n=60 3654363076165030 r005 Re(z^2+c),c=-109/106+5/64*I,n=4 3654363081421771 a007 Real Root Of 341*x^4-448*x^3+672*x^2-124*x-163 3654363106438600 a001 41/105937*514229^(7/41) 3654363109036097 r009 Im(z^3+c),c=-53/122+14/27*I,n=9 3654363128137373 r002 5th iterates of z^2 + 3654363128137373 r002 5th iterates of z^2 + 3654363137502862 a001 843/28657*1597^(1/34) 3654363159673205 r005 Re(z^2+c),c=-57/122+7/15*I,n=32 3654363160337438 a007 Real Root Of 240*x^4+605*x^3-976*x^2+230*x+598 3654363174578369 r005 Im(z^2+c),c=19/78+27/55*I,n=44 3654363175408996 a008 Real Root of x^4-2*x^3-22*x^2-32*x+330 3654363180470537 r005 Im(z^2+c),c=7/34+19/62*I,n=17 3654363181009626 m005 (1/2*Catalan+8/9)/(1/12*gamma-5/12) 3654363182808312 m006 (exp(2*Pi)+3/4)/(1/4*Pi^2-1) 3654363187259802 r005 Im(z^2+c),c=-7/46+31/58*I,n=45 3654363187673837 p001 sum((-1)^n/(554*n+27)/(3^n),n=0..infinity) 3654363187881882 r002 22th iterates of z^2 + 3654363194116946 l006 ln(6091/8778) 3654363197511452 m001 (PlouffeB-Sierpinski)/gamma 3654363200510081 a001 1/72*(1/2*5^(1/2)+1/2)^30*4^(1/4) 3654363200511136 a001 103361/8*8^(1/2) 3654363212176916 a001 5/73681302247*29^(1/2) 3654363236372525 q001 1495/4091 3654363240868572 r009 Im(z^3+c),c=-4/29+46/61*I,n=24 3654363254845692 m001 BesselI(1,1)-exp(sqrt(2))*GAMMA(23/24) 3654363258580439 s002 sum(A091936[n]/((10^n-1)/n),n=1..infinity) 3654363266247601 m001 ln(Otter*ZetaQ(3)) 3654363272169185 h005 exp(cos(Pi*1/60)/cos(Pi*15/31)) 3654363272416118 r009 Im(z^3+c),c=-5/14+10/29*I,n=7 3654363286156429 a007 Real Root Of 249*x^4+869*x^3+81*x^2+693*x-547 3654363307566834 m005 (1/2*5^(1/2)-2/7)/(2/5*5^(1/2)-2/3) 3654363310777557 m001 FransenRobinson^MertensB3-GaussKuzminWirsing 3654363320378430 a008 Real Root of x^4-x^3-5*x^2-30*x-270 3654363335519034 r005 Re(z^2+c),c=-21/44+11/42*I,n=11 3654363340466938 r002 13th iterates of z^2 + 3654363342077497 a007 Real Root Of -592*x^4+111*x^3+484*x^2+872*x+270 3654363350838565 m001 (3^(1/2)+ln(5))/(arctan(1/3)+Lehmer) 3654363355638179 r009 Im(z^3+c),c=-17/62+17/46*I,n=10 3654363357655800 l006 ln(6966/10039) 3654363369999175 a001 29/21*5^(26/43) 3654363375354727 m009 (5/6*Psi(1,3/4)-1/4)/(5/12*Pi^2+1) 3654363377747093 a001 2/28657*610^(41/42) 3654363388269980 p004 log(30097/29017) 3654363404215965 a007 Real Root Of 159*x^4+533*x^3+94*x^2+981*x-15 3654363410633553 a001 29/832040*5^(1/34) 3654363411434798 a007 Real Root Of 204*x^4+875*x^3+692*x^2+738*x-224 3654363413121134 s002 sum(A250371[n]/(n^3*10^n-1),n=1..infinity) 3654363419509074 m001 Zeta(9)*GolombDickman^2*exp(sqrt(5)) 3654363424706825 m001 (2^(1/3)-gamma)/(ErdosBorwein+MertensB1) 3654363434126020 r005 Re(z^2+c),c=-51/106+14/61*I,n=28 3654363435927452 a001 521/139583862445*377^(17/22) 3654363442080934 r005 Re(z^2+c),c=-7/10+37/192*I,n=34 3654363445186533 m001 (2^(1/2)+5^(1/2))/(-HardyLittlewoodC4+Mills) 3654363451681782 m008 (3*Pi^4+2/3)/(5/6*Pi^6+1/3) 3654363459118451 a007 Real Root Of -26*x^4+141*x^3+872*x^2+286*x+918 3654363473858429 r005 Re(z^2+c),c=35/106+3/29*I,n=36 3654363502673832 r005 Im(z^2+c),c=29/106+8/33*I,n=39 3654363537981617 m006 (3/5*Pi-1/2)/(1/3*Pi^2+1/2) 3654363537981617 m008 (3/5*Pi-1/2)/(1/3*Pi^2+1/2) 3654363539197904 a001 7881196/55*225851433717^(10/21) 3654363539197967 a001 969323029/55*9227465^(10/21) 3654363562480571 r009 Im(z^3+c),c=-19/42+8/29*I,n=23 3654363575947869 a007 Real Root Of -852*x^4+799*x^3-652*x^2+968*x+495 3654363581260732 m001 exp(TwinPrimes)^2/Paris^2*GAMMA(7/24)^2 3654363586213909 m001 GAMMA(5/6)-Pi*PlouffeB 3654363590572011 r002 10th iterates of z^2 + 3654363591360506 m005 (1/2*Pi-5/6)/(1/2*5^(1/2)+9/10) 3654363591432216 r005 Re(z^2+c),c=7/58+18/53*I,n=35 3654363595057030 m005 (1/2*Zeta(3)+4)/(6/11*Pi-5/11) 3654363599124641 m005 (1/2*Zeta(3)+5)/(10/11*Catalan+7/10) 3654363609653964 m001 (Zeta(3)-Zeta(1/2))/(exp(1/Pi)-MasserGramain) 3654363620543432 r005 Re(z^2+c),c=17/46+10/51*I,n=10 3654363623699860 m005 (1/2*5^(1/2)+9/11)/(4/11*3^(1/2)-1/10) 3654363647447544 h001 (5/11*exp(1)+4/9)/(4/7*exp(2)+3/8) 3654363668779389 m001 (2^(1/3)-Chi(1))/(-Lehmer+MadelungNaCl) 3654363669808290 m002 Pi+Pi^2/E^Pi+Sech[Pi] 3654363696141279 m005 (1/2*gamma+3/11)/(5^(1/2)-7/10) 3654363708682797 a007 Real Root Of 107*x^4-741*x^3+188*x^2-120*x+53 3654363723902609 m001 (FeigenbaumC+Magata)/(Catalan+polylog(4,1/2)) 3654363728854534 m001 (Chi(1)-sin(1/5*Pi))/(-Thue+ZetaP(3)) 3654363734959234 a007 Real Root Of 73*x^4-766*x^3+924*x^2-714*x-423 3654363739225653 h001 (4/7*exp(2)+1/12)/(2/5*exp(1)+1/11) 3654363752439350 r009 Im(z^3+c),c=-77/122+30/43*I,n=36 3654363761649054 m001 (-Thue+ZetaP(4))/(BesselI(0,1)-Magata) 3654363768410092 a001 7/28657*3^(11/30) 3654363768734589 m005 (2*exp(1)+5/6)/(2*2^(1/2)-3) 3654363769304490 r009 Re(z^3+c),c=-11/30+31/45*I,n=11 3654363773379416 m005 (17/4+1/4*5^(1/2))/(Catalan+2/5) 3654363779206429 v002 sum(1/(5^n*(37/2*n^2+7/2*n+39)),n=1..infinity) 3654363787124483 r005 Re(z^2+c),c=-13/40+7/18*I,n=4 3654363795357313 r005 Im(z^2+c),c=35/106+6/11*I,n=24 3654363796748916 r005 Re(z^2+c),c=-17/94+41/62*I,n=9 3654363797003270 m006 (2/3/Pi+1/2)/(2*Pi^2-1/4) 3654363801590230 a003 sin(Pi*8/97)/sin(Pi*23/93) 3654363801774467 m001 (-gamma(2)+Totient)/(1-Zeta(5)) 3654363802856214 r002 6th iterates of z^2 + 3654363814293994 m005 (1/2*3^(1/2)+2/11)/(-73/20+7/20*5^(1/2)) 3654363815805002 m002 6+4/Pi^5+Pi^3*Cosh[Pi] 3654363829487881 a007 Real Root Of -177*x^4-731*x^3-310*x^2-67*x-213 3654363844579475 m001 (Psi(2,1/3)+GAMMA(11/12))/(-Magata+Tetranacci) 3654363846318835 m001 Otter/(Cahen-Zeta(1,-1)) 3654363856866985 r005 Im(z^2+c),c=-85/122+4/9*I,n=43 3654363857585947 h001 (5/8*exp(1)+2/11)/(7/11*exp(2)+4/9) 3654363859384781 a001 76/233*2178309^(23/36) 3654363870099884 m003 -3/4-Cosh[1/2+Sqrt[5]/2]+6*Cot[1/2+Sqrt[5]/2] 3654363871558907 m004 -1+25/(2*Pi)+Sin[Sqrt[5]*Pi] 3654363880237475 r005 Re(z^2+c),c=-9/19+28/55*I,n=58 3654363892168176 a007 Real Root Of -155*x^4-170*x^3-774*x^2+296*x+206 3654363940850953 r009 Im(z^3+c),c=-6/25+11/29*I,n=7 3654363941939928 a007 Real Root Of -802*x^4+787*x^3+121*x^2+864*x-356 3654363945375644 r009 Re(z^3+c),c=-41/78+20/61*I,n=54 3654363958738339 a007 Real Root Of -165*x^4+542*x^3+70*x^2+181*x-99 3654363969509647 r005 Im(z^2+c),c=5/19+13/51*I,n=21 3654363971781234 r005 Re(z^2+c),c=-17/30+21/74*I,n=5 3654363973327851 a007 Real Root Of 6*x^4+218*x^3-22*x^2+889*x+287 3654363975297945 a007 Real Root Of -732*x^4+504*x^3+530*x^2+980*x+325 3654363985746447 r005 Re(z^2+c),c=-57/122+15/58*I,n=15 3654363986578528 m001 Gompertz*PrimesInBinary+Magata 3654363989147488 m005 (1/3*gamma+1/5)/(1/7*Pi+5/8) 3654364001767632 r005 Im(z^2+c),c=-4/25+3/64*I,n=10 3654364013928788 r005 Im(z^2+c),c=-151/110+5/58*I,n=64 3654364018302135 r005 Im(z^2+c),c=9/29+1/25*I,n=42 3654364052282956 r005 Im(z^2+c),c=-89/126+11/32*I,n=43 3654364058445865 h005 exp(cos(Pi*2/29)+cos(Pi*23/58)) 3654364058465356 m001 ln(gamma)*polylog(4,1/2)*GAMMA(17/24) 3654364058465356 m001 log(gamma)*polylog(4,1/2)*GAMMA(17/24) 3654364072441328 r005 Im(z^2+c),c=-7/11+7/64*I,n=18 3654364094857589 m001 (5^(1/2)-gamma(1)*GolombDickman)/GolombDickman 3654364101597970 r005 Im(z^2+c),c=39/118+3/19*I,n=39 3654364103559111 r005 Im(z^2+c),c=-1/78+13/23*I,n=10 3654364120958172 r005 Im(z^2+c),c=-29/48+23/55*I,n=60 3654364124894841 r005 Re(z^2+c),c=23/82+1/51*I,n=18 3654364126354385 m001 (Psi(1,1/3)+Psi(2,1/3))/(-OneNinth+Totient) 3654364126948052 r005 Im(z^2+c),c=-34/27+30/61*I,n=3 3654364130878171 m001 KomornikLoreti/(KhinchinLevy-ArtinRank2) 3654364153683745 m001 (gamma(3)+(1+3^(1/2))^(1/2))/(Ei(1)-3^(1/3)) 3654364164202666 a007 Real Root Of 391*x^4-101*x^3-820*x^2-891*x-228 3654364175252998 a007 Real Root Of 251*x^4+964*x^3-129*x^2-887*x+763 3654364180375642 a007 Real Root Of -111*x^4-197*x^3+699*x^2-107*x+456 3654364192391424 r009 Re(z^3+c),c=-17/40+9/41*I,n=30 3654364194414011 m002 Pi*Cosh[Pi]+Pi/(E^Pi*ProductLog[Pi]) 3654364198688635 r005 Re(z^2+c),c=-55/122+21/55*I,n=41 3654364204545123 r005 Re(z^2+c),c=-37/46+26/57*I,n=2 3654364214485677 m001 (sin(Pi/5)+2)/(-exp(1/Pi)+2/3) 3654364218075284 r009 Im(z^3+c),c=-9/34+22/59*I,n=14 3654364231667572 m001 Robbin/ln(PrimesInBinary)^2/GAMMA(7/12)^2 3654364234200410 m002 -4+Pi^2+Pi^3+Pi^5*ProductLog[Pi] 3654364234906906 m005 (-1/18+1/6*5^(1/2))/(11/12*2^(1/2)-3/7) 3654364253333467 h001 (6/11*exp(2)+1/4)/(1/12*exp(2)+5/9) 3654364257300990 m001 (Salem+Trott)/(MertensB2-Rabbit) 3654364264082761 r005 Im(z^2+c),c=13/66+19/61*I,n=6 3654364284566520 a007 Real Root Of -468*x^4+777*x^3+735*x^2+808*x-423 3654364302435438 m001 1/MadelungNaCl^2*exp(Champernowne)*Paris 3654364303654485 r002 6th iterates of z^2 + 3654364323188793 m006 (1/2*exp(2*Pi)+5)/(1/3*exp(Pi)-1/4) 3654364328262046 a007 Real Root Of 426*x^4-853*x^3+38*x^2-894*x-381 3654364356317439 a007 Real Root Of 309*x^4+924*x^3-888*x^2-409*x+350 3654364366340297 a007 Real Root Of 129*x^4+461*x^3-130*x^2-171*x+603 3654364386744147 m001 (FellerTornier-Robbin)/(gamma(2)-Zeta(1,2)) 3654364412006841 r005 Re(z^2+c),c=-17/14+39/251*I,n=18 3654364434355129 m001 (Landau-Sarnak)^sin(1/5*Pi) 3654364444121705 r002 8th iterates of z^2 + 3654364455752414 m005 (1/2*Zeta(3)+7/8)/(7/8*gamma-6/11) 3654364456950128 m005 (1/3*exp(1)-1/6)/(5/9*2^(1/2)-7/12) 3654364459606559 m005 (1/2*Zeta(3)-3/10)/(9/11*2^(1/2)-1/3) 3654364460123819 a001 222916232067553/610 3654364466009444 r005 Im(z^2+c),c=-29/25+3/64*I,n=59 3654364470852655 r005 Re(z^2+c),c=-7/12+24/89*I,n=11 3654364476296726 r005 Im(z^2+c),c=-25/98+6/11*I,n=23 3654364481372884 r005 Im(z^2+c),c=35/94+3/14*I,n=62 3654364483910563 r005 Im(z^2+c),c=17/46+9/56*I,n=13 3654364485723375 r005 Im(z^2+c),c=1/70+27/61*I,n=18 3654364496073051 l006 ln(875/1261) 3654364497437390 a007 Real Root Of 196*x^4+713*x^3+153*x^2+399*x-744 3654364504840850 m001 (3^(1/2)+5^(1/2))/(-MadelungNaCl+Robbin) 3654364505454185 r005 Re(z^2+c),c=-41/56+4/31*I,n=8 3654364505768024 m004 -28+125*Pi+Cos[Sqrt[5]*Pi] 3654364533224290 r005 Re(z^2+c),c=-29/62+15/49*I,n=38 3654364543068044 m003 2+(9*Sqrt[5])/16+2*E^(-1/2-Sqrt[5]/2) 3654364544658470 r009 Re(z^3+c),c=-9/19+9/32*I,n=36 3654364549225495 m001 BesselI(0,1)-StronglyCareFree^ThueMorse 3654364555256589 r005 Re(z^2+c),c=-7/15+14/45*I,n=44 3654364565491739 a007 Real Root Of 887*x^4-136*x^3+977*x^2-646*x-389 3654364591118143 a001 225851433717/521*1364^(14/15) 3654364610721547 m001 (ln(Pi)+gamma(3))/(Paris-ThueMorse) 3654364614327512 r005 Re(z^2+c),c=-13/29+13/64*I,n=3 3654364627767522 m001 (-Backhouse+TwinPrimes)/(cos(1)-exp(1)) 3654364644054861 m001 ln(FeigenbaumB)^2*Kolakoski^2*PrimesInBinary^2 3654364657052421 m006 (3*Pi+1/4)/(1/2*exp(2*Pi)-3) 3654364658261629 r005 Re(z^2+c),c=-51/118+25/56*I,n=64 3654364666626703 r005 Re(z^2+c),c=-39/82+9/34*I,n=41 3654364671807650 a001 76/28657*55^(2/25) 3654364681647393 r005 Im(z^2+c),c=-18/31+1/15*I,n=63 3654364695901127 m001 1/ln(arctan(1/2))*ArtinRank2^2/sqrt(3) 3654364695913273 a007 Real Root Of -32*x^4+96*x^3+691*x^2-437*x-433 3654364715396114 r005 Im(z^2+c),c=-3/44+28/57*I,n=46 3654364722063931 a001 365435296162/521*1364^(13/15) 3654364723693120 a001 1568397607/144*102334155^(4/21) 3654364723693120 a001 228826127/144*2504730781961^(4/21) 3654364729673881 a001 45537549124*1836311903^(9/17) 3654364729673881 a001 599074578*6557470319842^(9/17) 3654364729675345 a001 3461452808002*514229^(9/17) 3654364731656955 a001 5374978561/72*4181^(4/21) 3654364740975391 a001 8/321*199^(49/52) 3654364747887909 m009 (20/3*Catalan+5/6*Pi^2+5)/(1/3*Pi^2+2) 3654364757084230 m001 (Lehmer+Magata)/(2^(1/3)+Zeta(1,-1)) 3654364763372799 r005 Re(z^2+c),c=-1/32+39/61*I,n=9 3654364767973583 r009 Im(z^3+c),c=-5/27+21/55*I,n=2 3654364797205441 v002 sum(1/(5^n+(7*n^2-14*n+58)),n=1..infinity) 3654364802032387 m005 (1/2*exp(1)-1)/(4/5*Catalan+1/4) 3654364813041493 a007 Real Root Of -739*x^4-925*x^3+895*x^2+949*x-408 3654364814021725 r005 Re(z^2+c),c=-23/56+24/47*I,n=52 3654364828698398 m001 (sin(1)*GAMMA(3/4)-Sarnak)/sin(1) 3654364830702960 r005 Re(z^2+c),c=-23/48+6/35*I,n=12 3654364839044954 a007 Real Root Of -930*x^4+628*x^3-918*x^2+753*x+445 3654364849312592 r005 Re(z^2+c),c=-15/31+10/47*I,n=49 3654364853009723 a001 591286729879/521*1364^(4/5) 3654364854035370 r002 50th iterates of z^2 + 3654364857710424 a007 Real Root Of -437*x^4+506*x^3-153*x^2+245*x-86 3654364862482404 m005 (1/2*5^(1/2)+7/12)/(5/8*Zeta(3)-2/7) 3654364873346650 m003 31/10+Sqrt[5]/32+Sinh[1/2+Sqrt[5]/2]/5 3654364900680435 a001 18/1346269*987^(7/48) 3654364904239203 a003 sin(Pi*11/97)/sin(Pi*23/57) 3654364915016223 r009 Re(z^3+c),c=-37/78+17/41*I,n=7 3654364927474876 s001 sum(exp(-Pi/2)^n*A054448[n],n=1..infinity) 3654364948305529 m005 (1/3*Catalan+1/10)/(3/10*Pi+1/6) 3654364953464160 m001 (Zeta(3)+ArtinRank2)/(Pi+Psi(2,1/3)) 3654364964734316 m005 (1/2*Pi-1/4)/(5/11*Catalan-7/9) 3654364970816719 m001 (Bloch+LandauRamanujan2nd)/(Zeta(1,-1)-exp(1)) 3654364971796220 m005 (7/24+1/6*5^(1/2))/(6/7*3^(1/2)+1/3) 3654364983955520 a001 956722026041/521*1364^(11/15) 3654364985116053 m001 (BesselI(1,2)-Catalan)/(MadelungNaCl+Paris) 3654365007552461 r005 Im(z^2+c),c=1/50+26/59*I,n=40 3654365011065747 a007 Real Root Of 289*x^4+786*x^3-823*x^2+737*x+502 3654365015912636 r005 Re(z^2+c),c=-5/13+27/50*I,n=61 3654365033274163 m001 (cos(1)+ln(2))/(-FellerTornier+TwinPrimes) 3654365041492462 m005 (1/2*Catalan-5/12)/(2/11*exp(1)+7/11) 3654365042811670 r005 Im(z^2+c),c=11/48+11/38*I,n=14 3654365048273042 r002 6th iterates of z^2 + 3654365059657081 r005 Re(z^2+c),c=-35/29+7/43*I,n=48 3654365061645282 r005 Re(z^2+c),c=7/20+10/57*I,n=4 3654365068375355 h001 (-exp(4)-10)/(-9*exp(3)+4) 3654365075786497 k001 Champernowne real with 71*n+294 3654365075786497 k005 Champernowne real with floor(sqrt(3)*(41*n+170)) 3654365078005787 h001 (3/8*exp(1)+5/6)/(3/5*exp(2)+7/11) 3654365078584970 r005 Re(z^2+c),c=1/56+1/4*I,n=6 3654365082316681 l006 ln(5884/6103) 3654365104948969 m001 (Zeta(5)-Kac)/(Landau+LandauRamanujan2nd) 3654365105127718 r002 7i'th iterates of 2*x/(1-x^2) of 3654365106037708 r005 Re(z^2+c),c=-53/110+14/61*I,n=27 3654365110590420 a007 Real Root Of -65*x^4+122*x^3-957*x^2-205*x+60 3654365114901322 a001 1548008755920/521*1364^(2/3) 3654365117405117 m005 (1/2*2^(1/2)+10/11)/(1/3*3^(1/2)-5) 3654365118337191 r005 Re(z^2+c),c=-17/36+9/22*I,n=8 3654365119882427 m005 (2/5*2^(1/2)-2/3)/(5/6*Catalan+2) 3654365120689733 a001 11/4181*610^(16/39) 3654365124734006 r005 Im(z^2+c),c=-19/98+25/42*I,n=31 3654365128637341 m001 1/GAMMA(1/24)^2*ln(Bloch)/GAMMA(11/24)^2 3654365131923047 m001 1/(2^(1/3))/exp(Salem)/sin(Pi/12)^2 3654365132171900 a003 sin(Pi*9/74)-sin(Pi*23/87) 3654365133070136 r005 Im(z^2+c),c=21/62+7/44*I,n=63 3654365134259584 m005 (1/3*exp(1)-1/3)/(6*exp(1)-7/11) 3654365145713603 r009 Im(z^3+c),c=-8/17+13/51*I,n=10 3654365148958836 r005 Re(z^2+c),c=1/4+23/55*I,n=38 3654365149362712 a007 Real Root Of -269*x^4-685*x^3+979*x^2-338*x+235 3654365150154534 m002 Log[Pi]+E^Pi*Sinh[Pi]+Pi^4*Tanh[Pi] 3654365175290937 r002 20th iterates of z^2 + 3654365186100203 a001 3/75025*17711^(23/33) 3654365212281337 m001 (ZetaP(2)+ZetaP(4))/(OneNinth+Totient) 3654365214975401 m005 (1/2*gamma+3/5)/(-7/12+1/4*5^(1/2)) 3654365215157333 m001 (GAMMA(23/24)-Kolakoski)/(Landau-Salem) 3654365220788291 r009 Im(z^3+c),c=-63/122+13/60*I,n=35 3654365245847128 a001 2504730781961/521*1364^(3/5) 3654365252129259 r002 12th iterates of z^2 + 3654365252855212 m001 1/Trott*FransenRobinson^2*ln(sqrt(1+sqrt(3))) 3654365255664092 r009 Im(z^3+c),c=-23/54+18/61*I,n=40 3654365274078654 r005 Im(z^2+c),c=9/40+13/59*I,n=3 3654365277241845 r005 Re(z^2+c),c=-29/78+27/52*I,n=28 3654365278963378 r005 Im(z^2+c),c=-3/22+30/41*I,n=3 3654365314928571 m004 5*Pi+75*Pi*Csc[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 3654365316060654 r009 Im(z^3+c),c=-5/42+24/59*I,n=3 3654365316324074 m005 (1/2*exp(1)-3/7)/(11/12*Pi-1/3) 3654365332710253 s002 sum(A206721[n]/((2^n-1)/n),n=1..infinity) 3654365346995526 a003 cos(Pi*9/46)-cos(Pi*20/57) 3654365353035680 m005 (1/4*Catalan-2/5)/(1/4*exp(1)+4) 3654365356616175 a007 Real Root Of -970*x^4+878*x^3-142*x^2+825*x-30 3654365362868636 r005 Im(z^2+c),c=11/38+13/59*I,n=14 3654365365506529 m001 (GAMMA(23/24)-OrthogonalArrays)/MertensB2 3654365376792939 a001 4052739537881/521*1364^(8/15) 3654365383762747 r002 14th iterates of z^2 + 3654365389449818 r005 Re(z^2+c),c=-9/20+13/34*I,n=43 3654365403502418 a007 Real Root Of 446*x^4-570*x^3-508*x^2-594*x-185 3654365406583050 m001 (cos(1)*FeigenbaumAlpha-MertensB3)/cos(1) 3654365407872456 m001 (3^(1/3)-gamma(1))/(FeigenbaumMu+Stephens) 3654365409290448 h001 (1/3*exp(2)+5/6)/(1/9*exp(1)+3/5) 3654365411216542 r005 Im(z^2+c),c=3/122+35/61*I,n=7 3654365414418566 m001 (-BesselJ(1,1)+4)/(-GAMMA(23/24)+2) 3654365429576168 m005 (1/3*3^(1/2)-2/3)/(7/11*exp(1)+5/7) 3654365436543654 k006 concat of cont frac of 3654365436543654 k006 concat of cont frac of 3654365436543654 q001 406/1111 3654365436543654 r002 2th iterates of z^2 + 3654365436543654 r005 Im(z^2+c),c=-25/22+29/101*I,n=2 3654365438996144 a001 3940598*34^(12/19) 3654365443501857 p002 log(11^(3/2)+2^(10/9)) 3654365454093105 m004 -25/(2*Pi)-Sin[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3654365455009806 m001 (Landau+Salem)/(Bloch-HeathBrownMoroz) 3654365456784418 r005 Im(z^2+c),c=-31/50+4/59*I,n=44 3654365456883346 m005 (1/3*Pi+2/7)/(3/8*5^(1/2)-7/8) 3654365461417697 m001 (Artin*Mills-cos(1/12*Pi))/Mills 3654365462036559 m005 (1/2*5^(1/2)-7/9)/(4/5*3^(1/2)-5/11) 3654365468811509 a007 Real Root Of 699*x^4+88*x^3+568*x^2-643*x-319 3654365469358294 g007 Psi(2,3/10)+Psi(2,3/4)-Psi(2,5/9)-Psi(2,1/6) 3654365507738755 a001 6557470319842/521*1364^(7/15) 3654365510009906 r009 Re(z^3+c),c=-11/118+43/59*I,n=48 3654365510020509 r002 4th iterates of z^2 + 3654365518492936 a007 Real Root Of 740*x^4+123*x^3-686*x^2-226*x+155 3654365560288157 m001 ((3^(1/3))*TwinPrimes-Zeta(1/2))/TwinPrimes 3654365560288157 m001 (3^(1/3)*TwinPrimes-Zeta(1/2))/TwinPrimes 3654365572794864 r005 Im(z^2+c),c=15/98+20/57*I,n=35 3654365581800774 a007 Real Root Of -130*x^4-183*x^3+983*x^2-564*x-935 3654365584251132 r009 Im(z^3+c),c=-23/54+18/61*I,n=24 3654365588397978 r009 Im(z^3+c),c=-11/60+45/52*I,n=32 3654365589112733 m004 Cos[Sqrt[5]*Pi]^2+36*Tanh[Sqrt[5]*Pi] 3654365620983360 m001 Riemann3rdZero/(RenyiParking^Conway) 3654365625544502 m001 (Psi(2,1/3)-Zeta(3)*Zeta(1/2))/Zeta(1/2) 3654365630414483 r005 Re(z^2+c),c=13/90+26/43*I,n=23 3654365636819947 r005 Im(z^2+c),c=9/56+19/55*I,n=21 3654365638684575 a001 10610209857723/521*1364^(2/5) 3654365640449413 m001 (CareFree+MasserGramain)/(Bloch-sin(1)) 3654365656070617 m002 6*Pi^2+Pi^5+Tanh[Pi]/5 3654365662619556 m001 ln(GAMMA(3/4))*MinimumGamma^2*sin(1) 3654365664900355 p001 sum(1/(461*n+120)/n/(5^n),n=1..infinity) 3654365674057390 a001 233/2207*14662949395604^(20/21) 3654365674106833 a001 987/521*14662949395604^(6/7) 3654365674204319 m001 (ln(Pi)-ArtinRank2)/(Khinchin-MinimumGamma) 3654365680410755 h005 exp(cos(Pi*1/36)/cos(Pi*23/56)) 3654365681887105 s002 sum(A083690[n]/(exp(n)+1),n=1..infinity) 3654365693178821 a007 Real Root Of 574*x^4-645*x^3+831*x^2-812*x+207 3654365704373498 a007 Real Root Of -294*x^4-949*x^3+603*x^2+264*x-969 3654365736405499 m001 (Catalan-Grothendieck)/(-Mills+Riemann3rdZero) 3654365737395430 r005 Im(z^2+c),c=-4/29+19/36*I,n=60 3654365748519534 m001 (PlouffeB+Rabbit)/(ln(5)-GAMMA(17/24)) 3654365783654412 l006 ln(6159/8876) 3654365795354980 a007 Real Root Of 850*x^4-635*x^3+840*x^2-779*x-443 3654365796574296 r005 Re(z^2+c),c=-127/110+11/42*I,n=46 3654365803555562 a007 Real Root Of -62*x^4+491*x^3-793*x^2-493*x-513 3654365831474717 r005 Re(z^2+c),c=13/102+24/55*I,n=46 3654365864947871 m005 (1/3*2^(1/2)+3/5)/(5/11*gamma-5/9) 3654365874679955 a007 Real Root Of -221*x^4-716*x^3+208*x^2-277*x+681 3654365883688615 r005 Re(z^2+c),c=-53/114+13/42*I,n=22 3654365920842886 r005 Re(z^2+c),c=-45/98+9/26*I,n=34 3654365941360138 m001 Pi^2/Bloch/ln(sqrt(Pi)) 3654365947544180 m009 (4*Catalan+1/2*Pi^2-4/5)/(1/4*Pi^2-1/3) 3654365949132677 b008 E^(14/5)/45 3654365953698507 r009 Re(z^3+c),c=-1/50+23/25*I,n=12 3654365957629884 r002 49th iterates of z^2 + 3654365959502422 r005 Im(z^2+c),c=-117/122+5/18*I,n=15 3654365967615084 m005 (1/3*gamma+2/5)/(91/132+5/12*5^(1/2)) 3654365971603215 m001 (CopelandErdos-Khinchin)/(exp(1/Pi)-CareFree) 3654365975135283 r005 Im(z^2+c),c=-3/28+45/47*I,n=13 3654365977056577 a001 73681302247/233*6557470319842^(16/17) 3654365982029532 m001 (Conway*MinimumGamma-Si(Pi))/MinimumGamma 3654365996870462 l006 ln(5284/7615) 3654366008736430 a007 Real Root Of -273*x^4-842*x^3+656*x^2+119*x-730 3654366009727695 r002 19th iterates of z^2 + 3654366011722245 s002 sum(A271579[n]/(n^3*pi^n+1),n=1..infinity) 3654366021583523 a001 1926*75025^(39/58) 3654366040297941 a007 Real Root Of 980*x^4-829*x^3+744*x^2-697*x-412 3654366042911759 a007 Real Root Of 361*x^4+194*x^3-43*x^2-166*x-6 3654366044401740 m001 (-GAMMA(3/4)+Trott)/(exp(Pi)+Psi(1,1/3)) 3654366048130653 r005 Re(z^2+c),c=-35/62+14/39*I,n=9 3654366048703722 m002 -3/Pi^5+Pi*Cosh[Pi]*Coth[Pi] 3654366051943539 a007 Real Root Of 555*x^4-514*x^3-490*x^2-967*x+434 3654366052071312 a007 Real Root Of -535*x^4+43*x^3+870*x^2+579*x+20 3654366053363649 r005 Im(z^2+c),c=3/82+25/58*I,n=18 3654366062946903 r009 Im(z^3+c),c=-63/122+8/51*I,n=64 3654366073373313 m001 (3^(1/2)-exp(1/exp(1)))/(Artin+ThueMorse) 3654366076920041 m001 (FransenRobinson+Magata)/(Shi(1)+Cahen) 3654366080300216 r005 Im(z^2+c),c=-11/90+37/40*I,n=16 3654366080778028 m001 (GAMMA(3/4)-gamma)/(Pi^(1/2)+HeathBrownMoroz) 3654366109966098 r009 Im(z^3+c),c=-11/32+14/41*I,n=19 3654366119595154 g005 GAMMA(4/7)/GAMMA(10/11)/GAMMA(5/7)/GAMMA(2/7) 3654366120537993 h001 (9/10*exp(2)+7/9)/(5/12*exp(1)+9/10) 3654366127490569 r005 Re(z^2+c),c=-41/106+29/55*I,n=46 3654366129774049 r005 Im(z^2+c),c=11/48+21/55*I,n=9 3654366132073241 m001 (Totient-Thue)/(Bloch-KomornikLoreti) 3654366137738966 a001 583602272196913/1597 3654366148663193 h001 (8/9*exp(2)+3/11)/(5/11*exp(1)+7/11) 3654366154645661 a001 86267571272/521*3571^(16/17) 3654366157903393 a007 Real Root Of -431*x^4-304*x^3+25*x^2+877*x+310 3654366162793355 r005 Im(z^2+c),c=9/38+16/57*I,n=21 3654366171502781 a001 139583862445/521*3571^(15/17) 3654366188359902 a001 225851433717/521*3571^(14/17) 3654366194280463 a007 Real Root Of -524*x^4-68*x^3-320*x^2+537*x+245 3654366197939502 r005 Re(z^2+c),c=-6/23+31/51*I,n=44 3654366204578869 r002 2th iterates of z^2 + 3654366205217022 a001 365435296162/521*3571^(13/17) 3654366208267890 r005 Re(z^2+c),c=9/122+27/59*I,n=8 3654366222074143 a001 591286729879/521*3571^(12/17) 3654366232545225 m001 HardyLittlewoodC5*StronglyCareFree^ZetaP(2) 3654366238931264 a001 956722026041/521*3571^(11/17) 3654366242687732 r005 Im(z^2+c),c=-19/86+21/37*I,n=60 3654366247144713 a007 Real Root Of 307*x^4+818*x^3-940*x^2+546*x-282 3654366254071830 r005 Im(z^2+c),c=-24/31+10/49*I,n=7 3654366255788384 a001 1548008755920/521*3571^(10/17) 3654366256163491 a007 Real Root Of -102*x^4-347*x^3+322*x^2+594*x-873 3654366268755153 a007 Real Root Of -x^3-363*x^2+888*x-889 3654366272645505 a001 2504730781961/521*3571^(9/17) 3654366279598903 h001 (7/12*exp(2)+7/10)/(3/10*exp(1)+5/9) 3654366289502626 a001 4052739537881/521*3571^(8/17) 3654366294715238 l006 ln(4409/6354) 3654366306359747 a001 6557470319842/521*3571^(7/17) 3654366310179059 m001 (Shi(1)-Zeta(1,2))/(FeigenbaumAlpha+Otter) 3654366314522698 a007 Real Root Of 370*x^4+626*x^3+851*x^2-216*x-9 3654366314899193 a001 2584/521*23725150497407^(13/16) 3654366314899193 a001 2584/521*505019158607^(13/14) 3654366318687883 m001 1/GAMMA(1/24)*ln(GolombDickman)^2/sin(Pi/12) 3654366323216868 a001 10610209857723/521*3571^(6/17) 3654366325110482 m005 (1/2*Pi-2/9)/(3/5*exp(1)-2) 3654366326369678 a007 Real Root Of 258*x^4+501*x^3+222*x^2-842*x+249 3654366337195216 m001 (KhinchinLevy-Tribonacci)/(Pi-FeigenbaumKappa) 3654366359425575 a007 Real Root Of 883*x^4-750*x^3-760*x^2-716*x+384 3654366359967974 m001 (KhinchinLevy+Lehmer)/(Magata+MinimumGamma) 3654366361132446 m001 (-FeigenbaumB+Grothendieck)/(1-2^(1/3)) 3654366376785870 a007 Real Root Of -63*x^4+904*x^3-658*x^2+993*x-318 3654366378736406 a007 Real Root Of 458*x^4-237*x^3-571*x^2-42*x+95 3654366379831290 r002 29th iterates of z^2 + 3654366382499846 a001 1527890584523186/4181 3654366384749977 a001 63246219*9349^(18/19) 3654366386950512 a001 53316291173/521*9349^(17/19) 3654366389151046 a001 86267571272/521*9349^(16/19) 3654366390662572 m001 (Artin+OneNinth)/(Ei(1)-gamma) 3654366391351580 a001 139583862445/521*9349^(15/19) 3654366393552115 a001 225851433717/521*9349^(14/19) 3654366395752649 a001 365435296162/521*9349^(13/19) 3654366397953184 a001 591286729879/521*9349^(12/19) 3654366400153718 a001 956722026041/521*9349^(11/19) 3654366402354252 a001 1548008755920/521*9349^(10/19) 3654366404554787 a001 2504730781961/521*9349^(9/19) 3654366406755321 a001 4052739537881/521*9349^(8/19) 3654366407769379 m004 -6-5*Sqrt[5]*Pi+5*Tan[Sqrt[5]*Pi] 3654366408389539 a001 6765/521*312119004989^(10/11) 3654366408389539 a001 6765/521*3461452808002^(5/6) 3654366408955856 a001 6557470319842/521*9349^(7/19) 3654366411156390 a001 10610209857723/521*9349^(6/19) 3654366418550054 a001 12586269025/521*24476^(20/21) 3654366418840531 a001 20365011074/521*24476^(19/21) 3654366419131009 a001 63246219*24476^(6/7) 3654366419421486 a001 53316291173/521*24476^(17/21) 3654366419711963 a001 86267571272/521*24476^(16/21) 3654366420002440 a001 139583862445/521*24476^(5/7) 3654366420292917 a001 225851433717/521*24476^(2/3) 3654366420583394 a001 365435296162/521*24476^(13/21) 3654366420873871 a001 591286729879/521*24476^(4/7) 3654366421164348 a001 956722026041/521*24476^(11/21) 3654366421454825 a001 1548008755920/521*24476^(10/21) 3654366421745302 a001 2504730781961/521*24476^(3/7) 3654366422029596 a001 17711/521*45537549124^(16/17) 3654366422029596 a001 17711/521*14662949395604^(16/21) 3654366422029596 a001 17711/521*192900153618^(8/9) 3654366422029596 a001 17711/521*73681302247^(12/13) 3654366422035780 a001 4052739537881/521*24476^(8/21) 3654366422175009 a001 312119004989/377*34^(8/19) 3654366422326257 a001 6557470319842/521*24476^(1/3) 3654366422616734 a001 10610209857723/521*24476^(2/7) 3654366423212257 a007 Real Root Of -127*x^4+294*x^3-131*x^2+885*x-318 3654366423508310 a001 4807526976/521*64079^(22/23) 3654366423547005 a001 7778742049/521*64079^(21/23) 3654366423585700 a001 12586269025/521*64079^(20/23) 3654366423624395 a001 20365011074/521*64079^(19/23) 3654366423663090 a001 63246219*64079^(18/23) 3654366423701785 a001 53316291173/521*64079^(17/23) 3654366423740479 a001 86267571272/521*64079^(16/23) 3654366423779174 a001 139583862445/521*64079^(15/23) 3654366423817869 a001 225851433717/521*64079^(14/23) 3654366423856564 a001 365435296162/521*64079^(13/23) 3654366423895259 a001 591286729879/521*64079^(12/23) 3654366423933953 a001 956722026041/521*64079^(11/23) 3654366423972648 a001 1548008755920/521*64079^(10/23) 3654366424011343 a001 2504730781961/521*64079^(9/23) 3654366424019654 a001 46368/521*10749957122^(23/24) 3654366424050038 a001 4052739537881/521*64079^(8/23) 3654366424088733 a001 6557470319842/521*64079^(7/23) 3654366424127428 a001 10610209857723/521*64079^(6/23) 3654366424255719 a001 12586269025/521*167761^(4/5) 3654366424281689 a001 139583862445/521*167761^(3/5) 3654366424307658 a001 1548008755920/521*167761^(2/5) 3654366424309999 a001 233*312119004989^(4/5) 3654366424309999 a001 233*23725150497407^(11/16) 3654366424309999 a001 233*73681302247^(11/13) 3654366424309999 a001 233*10749957122^(11/12) 3654366424309999 a001 233*4106118243^(22/23) 3654366424342757 a001 1836311903/521*439204^(8/9) 3654366424344862 a001 7778742049/521*439204^(7/9) 3654366424346967 a001 63246219*439204^(2/3) 3654366424349072 a001 139583862445/521*439204^(5/9) 3654366424351177 a001 591286729879/521*439204^(4/9) 3654366424352360 a001 317811/521*2537720636^(14/15) 3654366424352360 a001 317811/521*17393796001^(6/7) 3654366424352360 a001 317811/521*45537549124^(14/17) 3654366424352360 a001 317811/521*817138163596^(14/19) 3654366424352360 a001 317811/521*14662949395604^(2/3) 3654366424352360 a001 317811/521*505019158607^(3/4) 3654366424352360 a001 317811/521*192900153618^(7/9) 3654366424352360 a001 317811/521*10749957122^(7/8) 3654366424352360 a001 317811/521*4106118243^(21/23) 3654366424352360 a001 317811/521*1568397607^(21/22) 3654366424353282 a001 2504730781961/521*439204^(1/3) 3654366424355387 a001 10610209857723/521*439204^(2/9) 3654366424358541 a001 832040/521*2537720636^(8/9) 3654366424358541 a001 832040/521*312119004989^(8/11) 3654366424358541 a001 832040/521*23725150497407^(5/8) 3654366424358541 a001 832040/521*73681302247^(10/13) 3654366424358541 a001 832040/521*28143753123^(4/5) 3654366424358541 a001 832040/521*10749957122^(5/6) 3654366424358541 a001 832040/521*4106118243^(20/23) 3654366424358541 a001 832040/521*1568397607^(10/11) 3654366424358541 a001 832040/521*599074578^(20/21) 3654366424359442 a001 2178309/521*817138163596^(2/3) 3654366424359442 a001 2178309/521*10749957122^(19/24) 3654366424359442 a001 2178309/521*4106118243^(19/23) 3654366424359442 a001 2178309/521*1568397607^(19/22) 3654366424359442 a001 2178309/521*599074578^(19/21) 3654366424359442 a001 2178309/521*228826127^(19/20) 3654366424359543 a001 102334155/521*7881196^(10/11) 3654366424359548 a001 433494437/521*7881196^(9/11) 3654366424359554 a001 1836311903/521*7881196^(8/11) 3654366424359557 a001 4807526976/521*7881196^(2/3) 3654366424359559 a001 7778742049/521*7881196^(7/11) 3654366424359564 a001 63246219*7881196^(6/11) 3654366424359570 a001 139583862445/521*7881196^(5/11) 3654366424359574 a001 5702887/521*141422324^(12/13) 3654366424359574 a001 5702887/521*2537720636^(4/5) 3654366424359574 a001 5702887/521*45537549124^(12/17) 3654366424359574 a001 5702887/521*14662949395604^(4/7) 3654366424359574 a001 5702887/521*505019158607^(9/14) 3654366424359574 a001 5702887/521*192900153618^(2/3) 3654366424359574 a001 5702887/521*73681302247^(9/13) 3654366424359574 a001 5702887/521*10749957122^(3/4) 3654366424359574 a001 5702887/521*4106118243^(18/23) 3654366424359574 a001 5702887/521*1568397607^(9/11) 3654366424359574 a001 5702887/521*599074578^(6/7) 3654366424359574 a001 5702887/521*228826127^(9/10) 3654366424359574 a001 5702887/521*87403803^(18/19) 3654366424359575 a001 591286729879/521*7881196^(4/11) 3654366424359577 a001 956722026041/521*7881196^(1/3) 3654366424359580 a001 2504730781961/521*7881196^(3/11) 3654366424359586 a001 10610209857723/521*7881196^(2/11) 3654366424359589 a001 102334155/521*20633239^(6/7) 3654366424359590 a001 267914296/521*20633239^(4/5) 3654366424359590 a001 1134903170/521*20633239^(5/7) 3654366424359591 a001 7778742049/521*20633239^(3/5) 3654366424359592 a001 12586269025/521*20633239^(4/7) 3654366424359593 a001 139583862445/521*20633239^(3/7) 3654366424359593 a001 225851433717/521*20633239^(2/5) 3654366424359593 a001 14930352/521*45537549124^(2/3) 3654366424359593 a001 14930352/521*10749957122^(17/24) 3654366424359593 a001 14930352/521*4106118243^(17/23) 3654366424359593 a001 14930352/521*1568397607^(17/22) 3654366424359593 a001 14930352/521*599074578^(17/21) 3654366424359593 a001 14930352/521*228826127^(17/20) 3654366424359594 a001 14930352/521*87403803^(17/19) 3654366424359594 a001 1548008755920/521*20633239^(2/7) 3654366424359595 a001 6557470319842/521*20633239^(1/5) 3654366424359596 a001 39088169/521*23725150497407^(1/2) 3654366424359596 a001 39088169/521*505019158607^(4/7) 3654366424359596 a001 39088169/521*73681302247^(8/13) 3654366424359596 a001 39088169/521*10749957122^(2/3) 3654366424359596 a001 39088169/521*4106118243^(16/23) 3654366424359596 a001 39088169/521*1568397607^(8/11) 3654366424359596 a001 39088169/521*599074578^(16/21) 3654366424359596 a001 39088169/521*228826127^(4/5) 3654366424359596 a001 102334155/521*141422324^(10/13) 3654366424359596 a001 14930352/521*33385282^(17/18) 3654366424359596 a001 701408733/521*141422324^(2/3) 3654366424359596 a001 433494437/521*141422324^(9/13) 3654366424359596 a001 1836311903/521*141422324^(8/13) 3654366424359596 a001 7778742049/521*141422324^(7/13) 3654366424359596 a001 63246219*141422324^(6/13) 3654366424359596 a001 39088169/521*87403803^(16/19) 3654366424359596 a001 139583862445/521*141422324^(5/13) 3654366424359596 a001 102334155/521*2537720636^(2/3) 3654366424359596 a001 102334155/521*45537549124^(10/17) 3654366424359596 a001 102334155/521*312119004989^(6/11) 3654366424359596 a001 102334155/521*14662949395604^(10/21) 3654366424359596 a001 102334155/521*192900153618^(5/9) 3654366424359596 a001 102334155/521*28143753123^(3/5) 3654366424359596 a001 102334155/521*10749957122^(5/8) 3654366424359596 a001 102334155/521*4106118243^(15/23) 3654366424359596 a001 102334155/521*1568397607^(15/22) 3654366424359596 a001 102334155/521*599074578^(5/7) 3654366424359596 a001 365435296162/521*141422324^(1/3) 3654366424359596 a001 591286729879/521*141422324^(4/13) 3654366424359596 a001 2504730781961/521*141422324^(3/13) 3654366424359596 a001 10610209857723/521*141422324^(2/13) 3654366424359596 a001 102334155/521*228826127^(3/4) 3654366424359596 a001 267914296/521*17393796001^(4/7) 3654366424359596 a001 267914296/521*14662949395604^(4/9) 3654366424359596 a001 267914296/521*505019158607^(1/2) 3654366424359596 a001 267914296/521*73681302247^(7/13) 3654366424359596 a001 267914296/521*10749957122^(7/12) 3654366424359596 a001 267914296/521*4106118243^(14/23) 3654366424359596 a001 267914296/521*1568397607^(7/11) 3654366424359596 a001 267914296/521*599074578^(2/3) 3654366424359596 a001 701408733/521*73681302247^(1/2) 3654366424359596 a001 701408733/521*10749957122^(13/24) 3654366424359596 a001 701408733/521*4106118243^(13/23) 3654366424359596 a001 701408733/521*1568397607^(13/22) 3654366424359596 a001 1836311903/521*2537720636^(8/15) 3654366424359596 a001 12586269025/521*2537720636^(4/9) 3654366424359596 a001 7778742049/521*2537720636^(7/15) 3654366424359596 a001 63246219*2537720636^(2/5) 3654366424359596 a001 1836311903/521*45537549124^(8/17) 3654366424359596 a001 1836311903/521*14662949395604^(8/21) 3654366424359596 a001 1836311903/521*192900153618^(4/9) 3654366424359596 a001 1836311903/521*73681302247^(6/13) 3654366424359596 a001 1836311903/521*10749957122^(1/2) 3654366424359596 a001 139583862445/521*2537720636^(1/3) 3654366424359596 a001 591286729879/521*2537720636^(4/15) 3654366424359596 a001 1548008755920/521*2537720636^(2/9) 3654366424359596 a001 2504730781961/521*2537720636^(1/5) 3654366424359596 a001 1836311903/521*4106118243^(12/23) 3654366424359596 a001 10610209857723/521*2537720636^(2/15) 3654366424359596 a001 4807526976/521*312119004989^(2/5) 3654366424359596 a001 4807526976/521*10749957122^(11/24) 3654366424359596 a001 12586269025/521*23725150497407^(5/16) 3654366424359596 a001 12586269025/521*505019158607^(5/14) 3654366424359596 a001 12586269025/521*73681302247^(5/13) 3654366424359596 a001 225851433717/521*17393796001^(2/7) 3654366424359596 a001 12586269025/521*28143753123^(2/5) 3654366424359596 a001 6557470319842/521*17393796001^(1/7) 3654366424359596 a001 63246219*45537549124^(6/17) 3654366424359596 a001 63246219*14662949395604^(2/7) 3654366424359596 a001 63246219*192900153618^(1/3) 3654366424359596 a001 139583862445/521*45537549124^(5/17) 3654366424359596 a001 591286729879/521*45537549124^(4/17) 3654366424359596 a001 53316291173/521*45537549124^(1/3) 3654366424359596 a001 2504730781961/521*45537549124^(3/17) 3654366424359596 a001 10610209857723/521*45537549124^(2/17) 3654366424359596 a001 86267571272/521*23725150497407^(1/4) 3654366424359596 a001 225851433717/521*14662949395604^(2/9) 3654366424359596 a001 1548008755920/521*312119004989^(2/11) 3654366424359596 a001 10610209857723/521*14662949395604^(2/21) 3654366424359596 a001 139583862445/521*312119004989^(3/11) 3654366424359596 a001 139583862445/521*14662949395604^(5/21) 3654366424359596 a001 139583862445/521*192900153618^(5/18) 3654366424359596 a001 4052739537881/521*73681302247^(2/13) 3654366424359596 a001 591286729879/521*73681302247^(3/13) 3654366424359596 a001 365435296162/521*73681302247^(1/4) 3654366424359596 a001 1548008755920/521*28143753123^(1/5) 3654366424359596 a001 139583862445/521*28143753123^(3/10) 3654366424359596 a001 20365011074/521*817138163596^(1/3) 3654366424359596 a001 10610209857723/521*10749957122^(1/8) 3654366424359596 a001 4052739537881/521*10749957122^(1/6) 3654366424359596 a001 2504730781961/521*10749957122^(3/16) 3654366424359596 a001 1548008755920/521*10749957122^(5/24) 3654366424359596 a001 7778742049/521*17393796001^(3/7) 3654366424359596 a001 591286729879/521*10749957122^(1/4) 3654366424359596 a001 12586269025/521*10749957122^(5/12) 3654366424359596 a001 225851433717/521*10749957122^(7/24) 3654366424359596 a001 139583862445/521*10749957122^(5/16) 3654366424359596 a001 86267571272/521*10749957122^(1/3) 3654366424359596 a001 63246219*10749957122^(3/8) 3654366424359596 a001 7778742049/521*45537549124^(7/17) 3654366424359596 a001 7778742049/521*14662949395604^(1/3) 3654366424359596 a001 7778742049/521*192900153618^(7/18) 3654366424359596 a001 7778742049/521*10749957122^(7/16) 3654366424359596 a001 10610209857723/521*4106118243^(3/23) 3654366424359596 a001 4052739537881/521*4106118243^(4/23) 3654366424359596 a001 1548008755920/521*4106118243^(5/23) 3654366424359596 a001 591286729879/521*4106118243^(6/23) 3654366424359596 a001 225851433717/521*4106118243^(7/23) 3654366424359596 a001 4807526976/521*4106118243^(11/23) 3654366424359596 a001 86267571272/521*4106118243^(8/23) 3654366424359596 a001 63246219*4106118243^(9/23) 3654366424359596 a001 12586269025/521*4106118243^(10/23) 3654366424359596 a001 2971215073/521*4106118243^(1/2) 3654366424359596 a001 10610209857723/521*1568397607^(3/22) 3654366424359596 a001 1134903170/521*2537720636^(5/9) 3654366424359596 a001 4052739537881/521*1568397607^(2/11) 3654366424359596 a001 1548008755920/521*1568397607^(5/22) 3654366424359596 a001 956722026041/521*1568397607^(1/4) 3654366424359596 a001 591286729879/521*1568397607^(3/11) 3654366424359596 a001 225851433717/521*1568397607^(7/22) 3654366424359596 a001 86267571272/521*1568397607^(4/11) 3654366424359596 a001 1134903170/521*312119004989^(5/11) 3654366424359596 a001 1134903170/521*3461452808002^(5/12) 3654366424359596 a001 1134903170/521*28143753123^(1/2) 3654366424359596 a001 1836311903/521*1568397607^(6/11) 3654366424359596 a001 63246219*1568397607^(9/22) 3654366424359596 a001 12586269025/521*1568397607^(5/11) 3654366424359596 a001 4807526976/521*1568397607^(1/2) 3654366424359596 a001 10610209857723/521*599074578^(1/7) 3654366424359596 a001 6557470319842/521*599074578^(1/6) 3654366424359596 a001 4052739537881/521*599074578^(4/21) 3654366424359596 a001 2504730781961/521*599074578^(3/14) 3654366424359596 a001 1548008755920/521*599074578^(5/21) 3654366424359596 a001 591286729879/521*599074578^(2/7) 3654366424359596 a001 225851433717/521*599074578^(1/3) 3654366424359596 a001 433494437/521*2537720636^(3/5) 3654366424359596 a001 139583862445/521*599074578^(5/14) 3654366424359596 a001 86267571272/521*599074578^(8/21) 3654366424359596 a001 433494437/521*45537549124^(9/17) 3654366424359596 a001 433494437/521*817138163596^(9/19) 3654366424359596 a001 433494437/521*14662949395604^(3/7) 3654366424359596 a001 433494437/521*192900153618^(1/2) 3654366424359596 a001 433494437/521*10749957122^(9/16) 3654366424359596 a001 63246219*599074578^(3/7) 3654366424359596 a001 701408733/521*599074578^(13/21) 3654366424359596 a001 12586269025/521*599074578^(10/21) 3654366424359596 a001 7778742049/521*599074578^(1/2) 3654366424359596 a001 4807526976/521*599074578^(11/21) 3654366424359596 a001 1836311903/521*599074578^(4/7) 3654366424359596 a001 433494437/521*599074578^(9/14) 3654366424359596 a001 10610209857723/521*228826127^(3/20) 3654366424359596 a001 4052739537881/521*228826127^(1/5) 3654366424359596 a001 1548008755920/521*228826127^(1/4) 3654366424359596 a001 591286729879/521*228826127^(3/10) 3654366424359596 a001 225851433717/521*228826127^(7/20) 3654366424359596 a001 139583862445/521*228826127^(3/8) 3654366424359596 a001 165580141/521*1322157322203^(1/2) 3654366424359596 a001 86267571272/521*228826127^(2/5) 3654366424359596 a001 63246219*228826127^(9/20) 3654366424359596 a001 12586269025/521*228826127^(1/2) 3654366424359596 a001 4807526976/521*228826127^(11/20) 3654366424359596 a001 267914296/521*228826127^(7/10) 3654366424359596 a001 1836311903/521*228826127^(3/5) 3654366424359596 a001 701408733/521*228826127^(13/20) 3654366424359596 a001 1134903170/521*228826127^(5/8) 3654366424359597 a001 10610209857723/521*87403803^(3/19) 3654366424359597 a001 4052739537881/521*87403803^(4/19) 3654366424359597 a001 1548008755920/521*87403803^(5/19) 3654366424359597 a001 591286729879/521*87403803^(6/19) 3654366424359597 a001 225851433717/521*87403803^(7/19) 3654366424359597 a001 63245986/521*9062201101803^(1/2) 3654366424359597 a001 86267571272/521*87403803^(8/19) 3654366424359597 a001 63246219*87403803^(9/19) 3654366424359597 a001 20365011074/521*87403803^(1/2) 3654366424359597 a001 12586269025/521*87403803^(10/19) 3654366424359597 a001 4807526976/521*87403803^(11/19) 3654366424359597 a001 1836311903/521*87403803^(12/19) 3654366424359597 a001 102334155/521*87403803^(15/19) 3654366424359597 a001 701408733/521*87403803^(13/19) 3654366424359597 a001 267914296/521*87403803^(14/19) 3654366424359597 a001 10610209857723/521*33385282^(1/6) 3654366424359597 a001 4052739537881/521*33385282^(2/9) 3654366424359597 a001 2504730781961/521*33385282^(1/4) 3654366424359597 a001 1548008755920/521*33385282^(5/18) 3654366424359598 a001 591286729879/521*33385282^(1/3) 3654366424359598 a001 24157817/521*141422324^(11/13) 3654366424359598 a001 24157817/521*2537720636^(11/15) 3654366424359598 a001 24157817/521*45537549124^(11/17) 3654366424359598 a001 24157817/521*312119004989^(3/5) 3654366424359598 a001 24157817/521*14662949395604^(11/21) 3654366424359598 a001 24157817/521*192900153618^(11/18) 3654366424359598 a001 24157817/521*10749957122^(11/16) 3654366424359598 a001 24157817/521*1568397607^(3/4) 3654366424359598 a001 24157817/521*599074578^(11/14) 3654366424359598 a001 225851433717/521*33385282^(7/18) 3654366424359598 a001 139583862445/521*33385282^(5/12) 3654366424359598 a001 86267571272/521*33385282^(4/9) 3654366424359598 a001 63246219*33385282^(1/2) 3654366424359598 a001 12586269025/521*33385282^(5/9) 3654366424359598 a001 7778742049/521*33385282^(7/12) 3654366424359598 a001 4807526976/521*33385282^(11/18) 3654366424359599 a001 1836311903/521*33385282^(2/3) 3654366424359599 a001 701408733/521*33385282^(13/18) 3654366424359599 a001 39088169/521*33385282^(8/9) 3654366424359599 a001 433494437/521*33385282^(3/4) 3654366424359599 a001 267914296/521*33385282^(7/9) 3654366424359599 a001 102334155/521*33385282^(5/6) 3654366424359600 a001 10610209857723/521*12752043^(3/17) 3654366424359601 a001 24157817/521*33385282^(11/12) 3654366424359602 a001 4052739537881/521*12752043^(4/17) 3654366424359603 a001 1548008755920/521*12752043^(5/17) 3654366424359604 a001 591286729879/521*12752043^(6/17) 3654366424359605 a001 9227465/521*2537720636^(7/9) 3654366424359605 a001 9227465/521*17393796001^(5/7) 3654366424359605 a001 9227465/521*312119004989^(7/11) 3654366424359605 a001 9227465/521*14662949395604^(5/9) 3654366424359605 a001 9227465/521*505019158607^(5/8) 3654366424359605 a001 9227465/521*28143753123^(7/10) 3654366424359605 a001 9227465/521*599074578^(5/6) 3654366424359605 a001 9227465/521*228826127^(7/8) 3654366424359606 a001 225851433717/521*12752043^(7/17) 3654366424359607 a001 86267571272/521*12752043^(8/17) 3654366424359608 a001 53316291173/521*12752043^(1/2) 3654366424359608 a001 63246219*12752043^(9/17) 3654366424359610 a001 12586269025/521*12752043^(10/17) 3654366424359611 a001 4807526976/521*12752043^(11/17) 3654366424359612 a001 1836311903/521*12752043^(12/17) 3654366424359614 a001 701408733/521*12752043^(13/17) 3654366424359615 a001 267914296/521*12752043^(14/17) 3654366424359616 a001 102334155/521*12752043^(15/17) 3654366424359617 a001 39088169/521*12752043^(16/17) 3654366424359625 a001 10610209857723/521*4870847^(3/16) 3654366424359635 a001 4052739537881/521*4870847^(1/4) 3654366424359645 a001 1548008755920/521*4870847^(5/16) 3654366424359654 a001 591286729879/521*4870847^(3/8) 3654366424359664 a001 225851433717/521*4870847^(7/16) 3654366424359673 a001 86267571272/521*4870847^(1/2) 3654366424359683 a001 63246219*4870847^(9/16) 3654366424359693 a001 12586269025/521*4870847^(5/8) 3654366424359702 a001 4807526976/521*4870847^(11/16) 3654366424359712 a001 1836311903/521*4870847^(3/4) 3654366424359722 a001 701408733/521*4870847^(13/16) 3654366424359731 a001 267914296/521*4870847^(7/8) 3654366424359741 a001 102334155/521*4870847^(15/16) 3654366424359808 a001 10610209857723/521*1860498^(1/5) 3654366424359878 a001 4052739537881/521*1860498^(4/15) 3654366424359913 a001 2504730781961/521*1860498^(3/10) 3654366424359948 a001 1548008755920/521*1860498^(1/3) 3654366424360000 a001 1346269/521*2537720636^(13/15) 3654366424360000 a001 1346269/521*45537549124^(13/17) 3654366424360000 a001 1346269/521*14662949395604^(13/21) 3654366424360000 a001 1346269/521*192900153618^(13/18) 3654366424360000 a001 1346269/521*73681302247^(3/4) 3654366424360000 a001 1346269/521*10749957122^(13/16) 3654366424360000 a001 1346269/521*599074578^(13/14) 3654366424360019 a001 591286729879/521*1860498^(2/5) 3654366424360089 a001 225851433717/521*1860498^(7/15) 3654366424360124 a001 139583862445/521*1860498^(1/2) 3654366424360159 a001 86267571272/521*1860498^(8/15) 3654366424360230 a001 63246219*1860498^(3/5) 3654366424360300 a001 12586269025/521*1860498^(2/3) 3654366424360335 a001 7778742049/521*1860498^(7/10) 3654366424360371 a001 4807526976/521*1860498^(11/15) 3654366424360441 a001 1836311903/521*1860498^(4/5) 3654366424360476 a001 1134903170/521*1860498^(5/6) 3654366424360511 a001 701408733/521*1860498^(13/15) 3654366424360547 a001 433494437/521*1860498^(9/10) 3654366424360582 a001 267914296/521*1860498^(14/15) 3654366424361147 a001 10610209857723/521*710647^(3/14) 3654366424361405 a001 6557470319842/521*710647^(1/4) 3654366424361664 a001 4052739537881/521*710647^(2/7) 3654366424362181 a001 1548008755920/521*710647^(5/14) 3654366424362698 a001 591286729879/521*710647^(3/7) 3654366424363214 a001 225851433717/521*710647^(1/2) 3654366424363731 a001 86267571272/521*710647^(4/7) 3654366424364248 a001 63246219*710647^(9/14) 3654366424364765 a001 12586269025/521*710647^(5/7) 3654366424365023 a001 7778742049/521*710647^(3/4) 3654366424365282 a001 4807526976/521*710647^(11/14) 3654366424365799 a001 1836311903/521*710647^(6/7) 3654366424366316 a001 701408733/521*710647^(13/14) 3654366424371042 a001 10610209857723/521*271443^(3/13) 3654366424374857 a001 4052739537881/521*271443^(4/13) 3654366424378672 a001 1548008755920/521*271443^(5/13) 3654366424382487 a001 591286729879/521*271443^(6/13) 3654366424384395 a001 365435296162/521*271443^(1/2) 3654366424386302 a001 225851433717/521*271443^(7/13) 3654366424390118 a001 86267571272/521*271443^(8/13) 3654366424393933 a001 63246219*271443^(9/13) 3654366424397748 a001 12586269025/521*271443^(10/13) 3654366424401563 a001 4807526976/521*271443^(11/13) 3654366424405378 a001 1836311903/521*271443^(12/13) 3654366424444582 a001 10610209857723/521*103682^(1/4) 3654366424458746 a001 6557470319842/521*103682^(7/24) 3654366424472911 a001 4052739537881/521*103682^(1/3) 3654366424487075 a001 2504730781961/521*103682^(3/8) 3654366424489443 a001 75025/521*45537549124^(15/17) 3654366424489443 a001 75025/521*312119004989^(9/11) 3654366424489443 a001 75025/521*14662949395604^(5/7) 3654366424489443 a001 75025/521*192900153618^(5/6) 3654366424489443 a001 75025/521*28143753123^(9/10) 3654366424489443 a001 75025/521*10749957122^(15/16) 3654366424501239 a001 1548008755920/521*103682^(5/12) 3654366424515403 a001 956722026041/521*103682^(11/24) 3654366424529568 a001 591286729879/521*103682^(1/2) 3654366424543732 a001 365435296162/521*103682^(13/24) 3654366424557896 a001 225851433717/521*103682^(7/12) 3654366424572060 a001 139583862445/521*103682^(5/8) 3654366424586225 a001 86267571272/521*103682^(2/3) 3654366424600389 a001 53316291173/521*103682^(17/24) 3654366424614553 a001 63246219*103682^(3/4) 3654366424628718 a001 20365011074/521*103682^(19/24) 3654366424642882 a001 12586269025/521*103682^(5/6) 3654366424657046 a001 7778742049/521*103682^(7/8) 3654366424671210 a001 4807526976/521*103682^(11/12) 3654366424685375 a001 2971215073/521*103682^(23/24) 3654366424995051 a001 10610209857723/521*39603^(3/11) 3654366425100960 a001 6557470319842/521*39603^(7/22) 3654366425206869 a001 4052739537881/521*39603^(4/11) 3654366425312778 a001 2504730781961/521*39603^(9/22) 3654366425418687 a001 1548008755920/521*39603^(5/11) 3654366425524596 a001 956722026041/521*39603^(1/2) 3654366425630506 a001 591286729879/521*39603^(6/11) 3654366425736415 a001 365435296162/521*39603^(13/22) 3654366425842324 a001 225851433717/521*39603^(7/11) 3654366425948233 a001 139583862445/521*39603^(15/22) 3654366426054142 a001 86267571272/521*39603^(8/11) 3654366426160051 a001 53316291173/521*39603^(17/22) 3654366426265960 a001 63246219*39603^(9/11) 3654366426371869 a001 20365011074/521*39603^(19/22) 3654366426477778 a001 12586269025/521*39603^(10/11) 3654366426583687 a001 7778742049/521*39603^(21/22) 3654366428459596 m001 (Zeta(3)-Cahen)/GAMMA(7/12) 3654366429150614 a001 10610209857723/521*15127^(3/10) 3654366429949117 a001 6557470319842/521*15127^(7/20) 3654366430459616 a001 10946/521*14662949395604^(7/9) 3654366430459616 a001 10946/521*505019158607^(7/8) 3654366430747619 a001 4052739537881/521*15127^(2/5) 3654366431546122 a001 2504730781961/521*15127^(9/20) 3654366432344625 a001 1548008755920/521*15127^(1/2) 3654366433143128 a001 956722026041/521*15127^(11/20) 3654366433941631 a001 591286729879/521*15127^(3/5) 3654366434740134 a001 365435296162/521*15127^(13/20) 3654366435538637 a001 225851433717/521*15127^(7/10) 3654366436337140 a001 139583862445/521*15127^(3/4) 3654366437033951 m001 (Bloch+MinimumGamma)/(gamma(1)+BesselK(1,1)) 3654366437135642 a001 86267571272/521*15127^(4/5) 3654366437934145 a001 53316291173/521*15127^(17/20) 3654366438732648 a001 63246219*15127^(9/10) 3654366439129649 a003 sin(Pi*4/101)+sin(Pi*9/116) 3654366439531151 a001 20365011074/521*15127^(19/20) 3654366440280057 a001 824059632283153/2255 3654366460846397 a001 10610209857723/521*5778^(1/3) 3654366465616010 p003 LerchPhi(1/125,2,280/169) 3654366466169750 a001 4181/521*817138163596^(17/19) 3654366466169750 a001 4181/521*14662949395604^(17/21) 3654366466169750 a001 4181/521*192900153618^(17/18) 3654366466927531 a001 6557470319842/521*5778^(7/18) 3654366467607589 m001 (Pi+DuboisRaymond)/(Thue+ZetaQ(2)) 3654366473008664 a001 4052739537881/521*5778^(4/9) 3654366479089798 a001 2504730781961/521*5778^(1/2) 3654366485170931 a001 1548008755920/521*5778^(5/9) 3654366491252065 a001 956722026041/521*5778^(11/18) 3654366497333198 a001 591286729879/521*5778^(2/3) 3654366503414332 a001 365435296162/521*5778^(13/18) 3654366509495465 a001 225851433717/521*5778^(7/9) 3654366514293396 a001 17*29^(5/22) 3654366515576599 a001 139583862445/521*5778^(5/6) 3654366521657732 a001 86267571272/521*5778^(8/9) 3654366527738866 a001 53316291173/521*5778^(17/18) 3654366533770406 a001 944288312326273/2584 3654366538256897 m001 GAMMA(7/12)*(exp(Pi)+LandauRamanujan) 3654366538431637 r005 Re(z^2+c),c=-111/110+7/38*I,n=32 3654366539562424 r002 22th iterates of z^2 + 3654366551858056 p003 LerchPhi(1/25,1,595/211) 3654366555362443 m001 1/ln(Niven)*Si(Pi)/GAMMA(7/24)^2 3654366567651116 r009 Im(z^3+c),c=-37/122+14/39*I,n=12 3654366573796341 a007 Real Root Of -207*x^4-729*x^3-11*x^2-160*x+902 3654366575431871 a007 Real Root Of 315*x^4+829*x^3-995*x^2+675*x+34 3654366579025763 r009 Re(z^3+c),c=-53/110+19/63*I,n=24 3654366589298953 a007 Real Root Of -99*x^4-243*x^3+303*x^2-427*x+190 3654366590600176 r005 Im(z^2+c),c=-19/98+31/56*I,n=50 3654366590862366 r005 Re(z^2+c),c=-8/17+7/24*I,n=46 3654366592864471 a001 123/13*10946^(11/28) 3654366595921178 r005 Im(z^2+c),c=1/3+4/45*I,n=22 3654366608187553 m005 (1/3*Catalan-1/8)/(2/11*5^(1/2)-9/10) 3654366617840308 a007 Real Root Of -944*x^4+848*x^3-374*x^2+161*x+167 3654366620316645 m001 (CopelandErdos+OneNinth)/(gamma(3)-Zeta(1,2)) 3654366625200548 r009 Im(z^3+c),c=-1/8+15/37*I,n=17 3654366630120112 r005 Re(z^2+c),c=-23/30+21/124*I,n=8 3654366639504791 r005 Im(z^2+c),c=-7/30+29/52*I,n=35 3654366646674104 m003 79/2+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/16 3654366647433062 r005 Im(z^2+c),c=-1/58+11/24*I,n=12 3654366657762339 a007 Real Root Of 646*x^4-910*x^3+673*x^2-411*x-296 3654366674054629 p003 LerchPhi(1/6,2,353/206) 3654366676549157 r009 Re(z^3+c),c=-10/23+13/56*I,n=36 3654366680218886 m001 (BesselI(1,2)+MertensB3)/(MinimumGamma-Robbin) 3654366699503983 m005 (2/3*2^(1/2)+4/5)/(2/5*gamma-5) 3654366705704365 a001 10610209857723/521*2207^(3/8) 3654366719999036 r002 13th iterates of z^2 + 3654366721784368 a007 Real Root Of 230*x^4+849*x^3-228*x^2-780*x+609 3654366734800793 p001 sum(1/(529*n+282)/(12^n),n=0..infinity) 3654366736759941 m001 (LambertW(1)+ln(2))/(ln(5)+Tribonacci) 3654366737723141 a007 Real Root Of 202*x^4-967*x^3-893*x^2-357*x-62 3654366737791630 a007 Real Root Of -38*x^4+753*x^3-436*x^2+800*x+388 3654366740049629 l006 ln(3534/5093) 3654366740813425 m001 (-cos(1/12*Pi)+MasserGramain)/(Shi(1)-ln(Pi)) 3654366752595162 a001 6557470319842/521*2207^(7/16) 3654366753909829 r005 Im(z^2+c),c=-6/19+17/29*I,n=53 3654366753928812 a007 Real Root Of -70*x^4-91*x^3+302*x^2-938*x+582 3654366757052772 m001 (ln(Pi)-gamma(1))/(HardyLittlewoodC5-ZetaP(4)) 3654366759583518 r005 Im(z^2+c),c=-19/98+31/52*I,n=31 3654366766822496 r005 Im(z^2+c),c=1/122+38/45*I,n=3 3654366784508486 a001 41/3536736619241*514229^(7/16) 3654366788095531 a007 Real Root Of -202*x^4-635*x^3+328*x^2-306*x-463 3654366792036480 r009 Im(z^3+c),c=-29/66+2/7*I,n=33 3654366794121865 a001 2/5473*233^(49/58) 3654366799485959 a001 4052739537881/521*2207^(1/2) 3654366831010781 r005 Im(z^2+c),c=15/98+20/57*I,n=32 3654366841736728 r005 Im(z^2+c),c=5/44+17/40*I,n=7 3654366846376757 a001 2504730781961/521*2207^(9/16) 3654366852500922 r002 38th iterates of z^2 + 3654366865085644 s001 sum(exp(-Pi/3)^n*A274961[n],n=1..infinity) 3654366876958153 a007 Real Root Of -423*x^4-33*x^3-226*x^2+391*x+179 3654366877946945 r009 Im(z^3+c),c=-1/8+15/37*I,n=19 3654366887534220 r005 Im(z^2+c),c=-31/70+25/48*I,n=34 3654366889054154 p001 sum((-1)^n/(337*n+242)/(3^n),n=0..infinity) 3654366893267556 a001 1548008755920/521*2207^(5/8) 3654366898328240 m001 (GAMMA(23/24)+CareFree)/(MertensB3-Thue) 3654366904905108 r005 Im(z^2+c),c=-5/7+15/79*I,n=11 3654366905829689 h001 (1/10*exp(2)+11/12)/(6/11*exp(2)+1/2) 3654366907687891 r009 Re(z^3+c),c=-17/40+9/41*I,n=31 3654366931730330 m002 -2+Pi^4+Cosh[Pi]+Pi^5*Cosh[Pi] 3654366940158355 a001 956722026041/521*2207^(11/16) 3654366942173194 m001 1/exp(OneNinth)*MinimumGamma/Ei(1)^2 3654366955961321 r005 Re(z^2+c),c=-27/58+19/60*I,n=49 3654366961544135 r005 Im(z^2+c),c=-19/102+27/49*I,n=56 3654366961934668 a007 Real Root Of -110*x^4+385*x^3-54*x^2+365*x-143 3654366979657605 a007 Real Root Of -929*x^4-923*x^3-395*x^2+656*x+264 3654366984401989 r009 Im(z^3+c),c=-1/8+15/37*I,n=21 3654366987049155 a001 591286729879/521*2207^(3/4) 3654366995564433 r009 Im(z^3+c),c=-1/8+15/37*I,n=24 3654366995571599 a007 Real Root Of -732*x^4+803*x^3+508*x^2+873*x-413 3654366996488196 r009 Im(z^3+c),c=-1/8+15/37*I,n=26 3654366996757442 r009 Im(z^3+c),c=-1/8+15/37*I,n=28 3654366996773952 r009 Im(z^3+c),c=-1/8+15/37*I,n=31 3654366996775330 r009 Im(z^3+c),c=-1/8+15/37*I,n=29 3654366996776867 r009 Im(z^3+c),c=-1/8+15/37*I,n=33 3654366996777512 r009 Im(z^3+c),c=-1/8+15/37*I,n=35 3654366996777514 r009 Im(z^3+c),c=-1/8+15/37*I,n=36 3654366996777523 r009 Im(z^3+c),c=-1/8+15/37*I,n=38 3654366996777531 r009 Im(z^3+c),c=-1/8+15/37*I,n=40 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=43 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=45 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=47 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=50 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=52 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=54 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=57 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=55 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=59 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=61 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=62 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=64 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=63 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=60 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=58 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=56 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=53 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=51 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=49 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=48 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=46 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=42 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=44 3654366996777533 r009 Im(z^3+c),c=-1/8+15/37*I,n=41 3654366996777537 r009 Im(z^3+c),c=-1/8+15/37*I,n=39 3654366996777550 r009 Im(z^3+c),c=-1/8+15/37*I,n=37 3654366996777720 r009 Im(z^3+c),c=-1/8+15/37*I,n=34 3654366996779275 r009 Im(z^3+c),c=-1/8+15/37*I,n=32 3654366996782817 r009 Im(z^3+c),c=-1/8+15/37*I,n=30 3654366996873565 r009 Im(z^3+c),c=-1/8+15/37*I,n=27 3654366997202374 a007 Real Root Of 173*x^4-231*x^3-471*x^2-911*x+404 3654366997452571 r009 Im(z^3+c),c=-1/8+15/37*I,n=25 3654366997989579 r009 Im(z^3+c),c=-1/8+15/37*I,n=22 3654366998098224 r009 Im(z^3+c),c=-1/8+15/37*I,n=23 3654366998162294 m001 (GAMMA(13/24)+ZetaP(2))/(Zeta(5)-ln(5)) 3654367033939955 a001 365435296162/521*2207^(13/16) 3654367041695235 r009 Im(z^3+c),c=-1/8+15/37*I,n=20 3654367057097788 l006 ln(6193/8925) 3654367065754844 m001 (polylog(4,1/2)+Cahen)/(3^(1/2)+exp(1/exp(1))) 3654367080830756 a001 225851433717/521*2207^(7/8) 3654367089225953 r005 Re(z^2+c),c=-9/14+87/236*I,n=50 3654367096940186 m001 (CareFree-Rabbit)/Porter 3654367097735323 a007 Real Root Of -162*x^4-495*x^3+53*x^2-919*x+668 3654367119169084 a003 sin(Pi*4/37)/cos(Pi*12/89) 3654367122676156 r005 Im(z^2+c),c=9/86+22/57*I,n=32 3654367127721558 a001 139583862445/521*2207^(15/16) 3654367134661440 b008 Log[3*Gudermannian[1/2]] 3654367156573203 m005 (1/2*Pi+7/10)/(5*2^(1/2)-6/7) 3654367162971037 r005 Im(z^2+c),c=7/74+11/28*I,n=32 3654367168965645 r005 Re(z^2+c),c=-13/10+29/198*I,n=6 3654367174562917 a001 120228680043120/329 3654367175650817 m004 -25+E^(Sqrt[5]*Pi)/3+5*Pi 3654367178924700 r005 Im(z^2+c),c=1/102+21/47*I,n=38 3654367178999811 r009 Im(z^3+c),c=-1/8+15/37*I,n=16 3654367201587082 r009 Re(z^3+c),c=-23/48+17/59*I,n=44 3654367204321881 r005 Im(z^2+c),c=-17/46+11/18*I,n=23 3654367206530259 a007 Real Root Of 775*x^4+576*x^3-26*x^2-574*x-192 3654367210595270 r005 Re(z^2+c),c=-67/64+13/61*I,n=2 3654367243662235 r009 Im(z^3+c),c=-1/8+15/37*I,n=18 3654367247084866 a007 Real Root Of -191*x^4+969*x^3+733*x^2-24*x-133 3654367257597113 a001 199/34*6765^(15/32) 3654367259896433 a003 -2^(1/2)-1/2*3^(1/2)-cos(3/8*Pi)-cos(1/24*Pi) 3654367260345587 h001 (7/10*exp(2)+10/11)/(5/11*exp(1)+3/7) 3654367265247357 m001 (Chi(1)+AlladiGrinstead)/(TreeGrowth2nd+Trott) 3654367270393623 b008 -5+Sec[(7*Pi)/30] 3654367311011685 m001 (Rabbit+Trott)/(FeigenbaumB-HardyLittlewoodC3) 3654367329068448 a007 Real Root Of 648*x^4-455*x^3-49*x^2-990*x-389 3654367371421921 r009 Im(z^3+c),c=-3/38+23/56*I,n=10 3654367380950323 r005 Re(z^2+c),c=-1/70+15/23*I,n=31 3654367399220558 b008 E*LogGamma[2*(2+Pi)] 3654367399901593 r009 Re(z^3+c),c=-55/118+16/59*I,n=31 3654367405191871 r009 Re(z^3+c),c=-7/15+25/47*I,n=23 3654367437889248 a001 1/843*(1/2*5^(1/2)+1/2)^22*76^(9/19) 3654367438313168 a007 Real Root Of 125*x^4+185*x^3-981*x^2+123*x+286 3654367464642996 m001 (BesselI(1,1)+Bloch)/(cos(1/12*Pi)+Zeta(1,2)) 3654367478477313 l006 ln(2659/3832) 3654367506539582 a007 Real Root Of -103*x^4-366*x^3-119*x^2-322*x+920 3654367511977756 a007 Real Root Of -215*x^4-249*x^3-649*x^2+612*x+302 3654367528683617 g001 GAMMA(7/10,69/80) 3654367544504261 r005 Re(z^2+c),c=-15/31+10/47*I,n=43 3654367547584369 p001 sum(1/(601*n+275)/(64^n),n=0..infinity) 3654367576499051 a007 Real Root Of 857*x^4+497*x^3-231*x^2-686*x+242 3654367586214043 m005 (1/2*Zeta(3)-1/10)/(3/10*exp(1)+5/9) 3654367588351339 a007 Real Root Of 308*x^4+957*x^3-447*x^2+414*x-743 3654367589734348 r005 Im(z^2+c),c=-17/78+30/53*I,n=64 3654367596552408 a007 Real Root Of -454*x^4+986*x^3-462*x^2+200*x+191 3654367607777130 m001 (FeigenbaumB+ZetaQ(2))/(Si(Pi)-ln(5)) 3654367610102196 r005 Im(z^2+c),c=11/94+15/38*I,n=7 3654367620553494 m001 (Mills-Stephens)/(cos(1/5*Pi)-FransenRobinson) 3654367630441762 m005 (1/2*Pi+1/4)/(2/7*gamma+1/3) 3654367639769461 a003 cos(Pi*28/67)+cos(Pi*33/71) 3654367647855343 r005 Im(z^2+c),c=3/32+24/61*I,n=29 3654367664245769 r005 Im(z^2+c),c=-77/122+2/29*I,n=57 3654367667762165 r009 Re(z^3+c),c=-35/78+1/4*I,n=11 3654367669315850 m004 1+5*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi]^2/2 3654367670624844 m009 (3*Psi(1,2/3)+1/3)/(1/6*Psi(1,2/3)-1/4) 3654367671693273 a001 5600748293801*1836311903^(7/17) 3654367671693273 a001 192900153618*6557470319842^(7/17) 3654367679025931 m001 (BesselI(1,2)+MasserGramainDelta)^GAMMA(11/12) 3654367683639273 r009 Re(z^3+c),c=-25/86+39/56*I,n=32 3654367690484386 r005 Im(z^2+c),c=1/18+18/43*I,n=29 3654367691640580 a007 Real Root Of 120*x^4+394*x^3-183*x^2-136*x-226 3654367696992749 a007 Real Root Of 162*x^4-949*x^3+980*x^2-502*x+96 3654367711592296 r005 Re(z^2+c),c=-33/64+13/35*I,n=3 3654367712456727 m001 (MertensB2+Otter)/(ln(5)-polylog(4,1/2)) 3654367723831288 r005 Im(z^2+c),c=-3/40+15/32*I,n=7 3654367755080595 s002 sum(A026287[n]/(n^3*pi^n+1),n=1..infinity) 3654367763367849 r002 5th iterates of z^2 + 3654367778253719 a007 Real Root Of -280*x^4-868*x^3+725*x^2+805*x+835 3654367782383361 r005 Im(z^2+c),c=-9/74+27/52*I,n=29 3654367787619475 r005 Re(z^2+c),c=-25/52+25/59*I,n=20 3654367794876536 m005 (1/2*3^(1/2)+4/9)/(Pi+4/9) 3654367805438029 r005 Re(z^2+c),c=-49/34+1/122*I,n=4 3654367813369753 r002 37th iterates of z^2 + 3654367813720994 a001 4*591286729879^(11/13) 3654367842704503 r005 Re(z^2+c),c=-9/23+37/64*I,n=14 3654367865954017 r009 Re(z^3+c),c=-14/31+16/63*I,n=19 3654367878459034 q001 1347/3686 3654367929434241 r005 Re(z^2+c),c=-15/31+10/47*I,n=33 3654367930062756 m008 (1/4*Pi^4+1/3)/(3/5*Pi^2+5/6) 3654367931442288 a007 Real Root Of -236*x^4-620*x^3+666*x^2-619*x+675 3654367974534960 a007 Real Root Of 973*x^4-353*x^3+993*x^2-804*x-461 3654367975934461 r005 Im(z^2+c),c=-9/86+15/31*I,n=10 3654367986444537 r005 Im(z^2+c),c=-19/78+29/57*I,n=9 3654368016668039 a003 sin(Pi*1/84)*sin(Pi*35/81) 3654368038907761 a003 -2^(1/2)-cos(1/9*Pi)-cos(2/5*Pi)-cos(1/24*Pi) 3654368044642596 m005 (1/2*Pi-6/11)/(8/9*5^(1/2)+9/11) 3654368050590307 r005 Im(z^2+c),c=1/82+22/49*I,n=17 3654368060847525 r005 Re(z^2+c),c=-41/90+22/61*I,n=56 3654368065828937 l006 ln(4443/6403) 3654368068877321 r005 Im(z^2+c),c=-17/114+8/15*I,n=57 3654368078104164 a005 (1/sin(63/209*Pi))^260 3654368083371180 r005 Re(z^2+c),c=-9/14+115/246*I,n=12 3654368087014145 m001 (Zeta(1,-1)+Trott)^(Pi^(1/2)) 3654368088997667 r005 Im(z^2+c),c=17/94+15/46*I,n=12 3654368097513183 m005 (1/2*Zeta(3)-2/7)/(1/8*5^(1/2)+7/12) 3654368107748758 r005 Re(z^2+c),c=-39/98+17/50*I,n=6 3654368108022504 r005 Re(z^2+c),c=35/102+2/17*I,n=41 3654368109860428 m001 (Totient+Trott2nd)/(BesselI(0,2)+MinimumGamma) 3654368161273104 r005 Im(z^2+c),c=7/40+20/53*I,n=8 3654368188366770 m001 ln(2^(1/2)+1)*Ei(1,1)^Zeta(1,2) 3654368199526023 m005 (1/2*Pi+1/9)/(5/8*5^(1/2)-6) 3654368201512795 p001 sum(1/(61*n+29)/(6^n),n=0..infinity) 3654368201983058 m001 (ln(3)-exp(-1/2*Pi))/(Pi^(1/2)-GAMMA(7/12)) 3654368206989203 m001 (Ei(1)-polylog(4,1/2))/(Paris-PlouffeB) 3654368219699122 a003 cos(Pi*6/85)-cos(Pi*23/79) 3654368221462355 r005 Re(z^2+c),c=-69/110+7/22*I,n=11 3654368234211094 a007 Real Root Of 287*x^4+940*x^3-515*x^2-513*x-307 3654368242062390 m001 Pi*(sin(1)+arctan(1/3)) 3654368252792967 r005 Re(z^2+c),c=-51/106+3/13*I,n=33 3654368252920807 r002 10th iterates of z^2 + 3654368260588789 m001 (GAMMA(23/24)+Rabbit)/Weierstrass 3654368262394004 m004 -125*Pi+(36*Sinh[Sqrt[5]*Pi])/5 3654368268544531 b008 E+(-1/3+Pi)/3 3654368275351932 r005 Re(z^2+c),c=-19/48+31/60*I,n=33 3654368285116443 r005 Im(z^2+c),c=-41/50+5/26*I,n=9 3654368295576397 r009 Im(z^3+c),c=-1/8+15/37*I,n=15 3654368308925111 r005 Re(z^2+c),c=-3/4+17/210*I,n=14 3654368311492100 r005 Re(z^2+c),c=11/34+27/52*I,n=35 3654368316634766 l006 ln(6227/8974) 3654368325336345 r004 Re(z^2+c),c=-5/11+8/23*I,z(0)=-1,n=15 3654368328511202 p003 LerchPhi(1/256,6,123/104) 3654368341183598 a007 Real Root Of 921*x^4+86*x^3+690*x^2+157*x-47 3654368342584661 r005 Im(z^2+c),c=1/44+36/61*I,n=20 3654368352495015 m001 Pi+(2^(1/3)-sin(1))*GAMMA(3/4) 3654368374803286 p004 log(33349/863) 3654368377142510 q001 1/2736451 3654368379305325 a001 3536736619241/281*322^(7/12) 3654368383175845 r005 Re(z^2+c),c=-11/23+14/57*I,n=26 3654368388546833 a001 610/521*3461452808002^(11/12) 3654368395502952 m001 (Zeta(1,-1)-FellerTornier)/(Kac+Rabbit) 3654368410706000 m001 (3^(1/3))^GAMMA(13/24)+FeigenbaumC 3654368428148534 a007 Real Root Of 69*x^4-553*x^3+983*x^2-839*x-32 3654368432563870 r005 Im(z^2+c),c=-13/118+27/53*I,n=20 3654368436463445 m001 Sierpinski*LandauRamanujan/ln(GAMMA(11/12)) 3654368441319886 p003 LerchPhi(1/16,5,257/210) 3654368459120594 m001 Champernowne-exp(-1/2*Pi)-FeigenbaumMu 3654368466011850 m001 1/GAMMA(2/3)^2/exp(Trott)^2/Zeta(1/2) 3654368488543235 a007 Real Root Of -464*x^4+473*x^3-441*x^2-392*x-53 3654368492530556 r005 Re(z^2+c),c=-1/94+28/47*I,n=2 3654368500462121 m001 (gamma(2)-Sierpinski)/(Zeta(5)-cos(1/12*Pi)) 3654368508224763 s002 sum(A114681[n]/(n*2^n-1),n=1..infinity) 3654368510998906 r002 24th iterates of z^2 + 3654368512934710 m001 (Pi^(1/2)-MadelungNaCl)/(ln(Pi)-arctan(1/2)) 3654368518022825 a005 (1/sin(78/173*Pi))^1841 3654368518359752 r005 Im(z^2+c),c=-7/16+11/27*I,n=3 3654368521820404 a001 10749957122/21*987^(13/21) 3654368544585025 a001 13201*5^(31/49) 3654368546838194 r002 3th iterates of z^2 + 3654368553952401 r005 Re(z^2+c),c=-37/64+30/53*I,n=36 3654368576255365 m001 (BesselI(0,2)-Shi(1))/(FeigenbaumD+Robbin) 3654368582816312 r005 Re(z^2+c),c=-63/122+1/37*I,n=10 3654368602734293 a003 sin(Pi*9/73)-sin(Pi*4/15) 3654368605576382 h001 (3/4*exp(2)+1/3)/(6/11*exp(1)+1/8) 3654368606640297 r005 Im(z^2+c),c=1/50+26/59*I,n=48 3654368613200828 a007 Real Root Of -52*x^4+76*x^3+791*x^2-653*x+33 3654368617221052 a007 Real Root Of -273*x^4-901*x^3+219*x^2-591*x-368 3654368620510738 r009 Im(z^3+c),c=-27/52+7/40*I,n=57 3654368628090694 a003 cos(Pi*23/111)-cos(Pi*19/53) 3654368628205401 a001 10610209857723/521*843^(3/7) 3654368629399940 r005 Re(z^2+c),c=-23/66+23/47*I,n=9 3654368637280128 a007 Real Root Of 370*x^4+149*x^3-254*x^2-881*x+342 3654368647357985 a007 Real Root Of 55*x^4-83*x^3-829*x^2+531*x-848 3654368708808714 r005 Im(z^2+c),c=1/50+26/59*I,n=47 3654368716051419 p003 LerchPhi(1/1024,4,414/181) 3654368722303524 r005 Im(z^2+c),c=-17/94+17/31*I,n=44 3654368738027256 r005 Im(z^2+c),c=13/54+16/51*I,n=10 3654368740437048 r009 Im(z^3+c),c=-11/31+13/40*I,n=5 3654368747627855 l005 ln(sec(319/70)) 3654368756153915 a007 Real Root Of 23*x^4-155*x^3-868*x^2-149*x-619 3654368776550258 r005 Im(z^2+c),c=-15/94+15/28*I,n=30 3654368780756998 a007 Real Root Of 784*x^4+481*x^3-337*x^2-907*x+339 3654368782499896 a008 Real Root of x^3+11*x-89 3654368798582849 r005 Im(z^2+c),c=7/54+7/19*I,n=15 3654368816405246 r005 Re(z^2+c),c=-15/31+10/47*I,n=51 3654368835955801 r002 28th iterates of z^2 + 3654368846356865 m001 FeigenbaumDelta-GAMMA(23/24)^gamma 3654368869477851 a007 Real Root Of -105*x^4-364*x^3-108*x^2-561*x+354 3654368878082573 a003 cos(Pi*17/60)-sin(Pi*43/92) 3654368900713948 m001 1/Salem*Si(Pi)*exp(BesselK(0,1))^2 3654368900877600 r005 Im(z^2+c),c=-5/122+10/21*I,n=43 3654368903791525 a001 1364/1346269*6765^(8/55) 3654368903806713 r009 Im(z^3+c),c=-16/31+9/44*I,n=49 3654368905676156 a007 Real Root Of 185*x^4+694*x^3+73*x^2+167*x+511 3654368910216811 m001 GaussKuzminWirsing+Paris^Zeta(3) 3654368914760972 a008 Real Root of x^4-12*x^2-20*x+55 3654368919076973 a001 23725150497407/233*6557470319842^(14/17) 3654368928436989 a007 Real Root Of -444*x^4+881*x^3+28*x^2+358*x+178 3654368932038834 q001 941/2575 3654368940315212 a001 1568397607/144*4807526976^(6/23) 3654368940349085 a001 9381251041/48*75025^(6/23) 3654368941259347 l006 ln(1784/2571) 3654368942995194 a007 Real Root Of -572*x^4+287*x^3-239*x^2-170*x-6 3654368965188888 m001 exp(Salem)*Riemann1stZero^2/BesselK(0,1)^2 3654368967836949 r005 Re(z^2+c),c=-7/15+14/45*I,n=53 3654368971388649 a007 Real Root Of 147*x^4+713*x^3+837*x^2+877*x+607 3654368986262927 a001 20633239/21*24157817^(13/21) 3654368988592937 a001 13201/7*591286729879^(13/21) 3654368989287082 r005 Im(z^2+c),c=13/74+15/56*I,n=3 3654368991161744 r009 Im(z^3+c),c=-7/52+12/29*I,n=2 3654368995513164 a001 6557470319842/521*843^(1/2) 3654369000637235 r009 Im(z^3+c),c=-1/62+48/59*I,n=58 3654369017206387 a007 Real Root Of -8*x^4-271*x^3+798*x^2+671*x+737 3654369019400128 r005 Im(z^2+c),c=15/56+17/63*I,n=10 3654369036877724 m005 (1/2*2^(1/2)+11/12)/(5/6*3^(1/2)+3) 3654369037449166 a007 Real Root Of -178*x^4-628*x^3-161*x^2-839*x+181 3654369045273861 m005 (1/2*2^(1/2)-5)/(11/12*5^(1/2)-7/8) 3654369054596675 m001 Khinchin^(Zeta(1,2)*GAMMA(1/24)) 3654369068148146 m001 (-GAMMA(1/12)+1/3)/(GAMMA(11/12)+2) 3654369075178525 a003 cos(Pi*7/73)/cos(Pi*42/101) 3654369075432067 a007 Real Root Of -953*x^4+296*x^3-962*x^2+605*x+381 3654369078435353 r002 12i'th iterates of 2*x/(1-x^2) of 3654369080573816 b008 15*InverseGudermannian[(4*Pi)/9] 3654369085533674 m001 (Zeta(3)+ln(gamma))/(KomornikLoreti-ZetaQ(4)) 3654369086029652 m005 (1/2*5^(1/2)-3/4)/(1/2*2^(1/2)+3/10) 3654369086893668 r009 Im(z^3+c),c=-43/66+2/37*I,n=3 3654369088874219 r005 Re(z^2+c),c=-8/17+7/24*I,n=39 3654369106925865 a007 Real Root Of 196*x^4+896*x^3+483*x^2-380*x+933 3654369121109855 l006 ln(4057/4208) 3654369128266930 h002 exp(14^(3/10)+17^(5/6)) 3654369128266930 h007 exp(14^(3/10)+17^(5/6)) 3654369131484433 a007 Real Root Of -437*x^4-301*x^3-808*x^2+955*x+450 3654369139772974 a003 cos(Pi*35/106)-sin(Pi*22/65) 3654369142111070 a001 9/5473*17711^(4/49) 3654369143229667 a007 Real Root Of -400*x^4-334*x^3-662*x^2+927*x+418 3654369176493920 r005 Re(z^2+c),c=29/74+16/45*I,n=51 3654369178809629 a007 Real Root Of 268*x^4+854*x^3-539*x^2-568*x-996 3654369184864902 r009 Re(z^3+c),c=-65/122+4/43*I,n=7 3654369191281186 m001 (1-CopelandErdos)/(-OneNinth+Riemann2ndZero) 3654369194294408 m001 (ln(5)-arctan(1/2))/(FeigenbaumD+ZetaP(2)) 3654369194726545 a007 Real Root Of -261*x^4-396*x^3+117*x^2+871*x+288 3654369197945482 l006 ln(255/9854) 3654369226640673 m001 (exp(1)+cos(1))/(-Mills+PrimesInBinary) 3654369229789682 r005 Im(z^2+c),c=-31/42+1/51*I,n=46 3654369244788943 p003 LerchPhi(1/256,6,217/125) 3654369247183473 r005 Im(z^2+c),c=-45/52+5/22*I,n=18 3654369248052760 m001 (Sarnak+Trott)/(ln(gamma)+Zeta(1/2)) 3654369248574330 r002 43th iterates of z^2 + 3654369254061013 m005 (1/5*gamma-3)/(5/12+1/6*5^(1/2)) 3654369262977128 m005 (1/2*Pi-7/12)/(2/7*5^(1/2)-10/11) 3654369270952073 a007 Real Root Of -716*x^4+878*x^3-958*x^2+930*x-242 3654369277995741 a007 Real Root Of 26*x^4+960*x^3+376*x^2+550*x-645 3654369300017781 a007 Real Root Of 216*x^4+811*x^3+249*x^2+511*x-401 3654369310014258 a001 1/322*(1/2*5^(1/2)+1/2)^26*47^(8/21) 3654369321567387 a007 Real Root Of 4*x^4-515*x^3-257*x^2-40*x+74 3654369325225286 a007 Real Root Of -68*x^4-5*x^3+662*x^2-690*x+521 3654369333074143 p004 log(29021/751) 3654369335749645 m001 (exp(1/Pi)+BesselJ(1,1))/(Zeta(5)-cos(1)) 3654369349746263 p001 sum(1/(341*n+332)/(3^n),n=0..infinity) 3654369351899299 r009 Im(z^3+c),c=-31/86+1/3*I,n=18 3654369362820964 a001 4052739537881/521*843^(4/7) 3654369366262575 a007 Real Root Of -171*x^4-428*x^3+815*x^2+579*x+841 3654369366805672 r005 Re(z^2+c),c=-41/90+22/61*I,n=61 3654369367025544 m001 TwinPrimes/exp(ErdosBorwein)/BesselK(1,1)^2 3654369384965598 a007 Real Root Of -315*x^4-958*x^3+722*x^2+330*x+989 3654369385583080 m001 (QuadraticClass+Salem)/(gamma(3)-BesselI(1,1)) 3654369392295049 m001 (gamma+Zeta(5))/(-BesselI(1,1)+Champernowne) 3654369392358300 a008 Real Root of x^3-x^2-2541*x+45391 3654369402250757 r005 Im(z^2+c),c=8/27+11/51*I,n=20 3654369404038881 a007 Real Root Of 376*x^4-901*x^3-584*x^2+91*x+82 3654369435971940 m001 Pi*(Psi(1,1/3)+ln(5)+gamma(1)) 3654369439805936 m005 (1/2*Zeta(3)-7/9)/(4/11*3^(1/2)-5/8) 3654369440147753 r005 Re(z^2+c),c=-5/8+34/143*I,n=13 3654369451557673 m003 31/6+Sqrt[5]/2+6*E^(1/2+Sqrt[5]/2) 3654369457915518 r002 9th iterates of z^2 + 3654369490934511 a007 Real Root Of 146*x^4+395*x^3-504*x^2+57*x+178 3654369496869119 r005 Re(z^2+c),c=-15/31+10/47*I,n=56 3654369497596892 r005 Re(z^2+c),c=1/7+11/19*I,n=24 3654369511594337 m001 ReciprocalFibonacci/(Chi(1)^Weierstrass) 3654369514140763 r005 Im(z^2+c),c=-25/102+11/20*I,n=23 3654369515830715 r009 Im(z^3+c),c=-19/56+11/32*I,n=13 3654369522342594 p001 sum(1/(553*n+274)/(256^n),n=0..infinity) 3654369522912107 r005 Re(z^2+c),c=-49/106+21/46*I,n=18 3654369531964399 a007 Real Root Of -714*x^4+992*x^3+978*x^2+448*x-330 3654369535775718 r005 Im(z^2+c),c=-1/50+13/28*I,n=47 3654369537071709 r002 6th iterates of z^2 + 3654369562491902 l006 ln(6261/9023) 3654369567456770 r005 Im(z^2+c),c=-29/98+2/37*I,n=13 3654369573409744 r005 Re(z^2+c),c=-49/110+2/5*I,n=53 3654369577890882 r005 Re(z^2+c),c=-15/31+10/47*I,n=54 3654369586511277 r002 9th iterates of z^2 + 3654369600054188 r005 Re(z^2+c),c=-11/14+95/214*I,n=2 3654369603692204 a007 Real Root Of -699*x^4-715*x^3-440*x^2+270*x+135 3654369604905745 r005 Im(z^2+c),c=1/50+26/59*I,n=51 3654369605579474 m005 (1/2*3^(1/2)-10/11)/(1/12*Pi+11/12) 3654369619031002 l006 ln(241/9313) 3654369622638363 m001 (Ei(1)+arctan(1/2))/(gamma(3)+Cahen) 3654369628150028 m001 (cos(1/5*Pi)-gamma)/(-Robbin+Trott2nd) 3654369629029835 m001 ReciprocalFibonacci*Salem^polylog(4,1/2) 3654369632334505 m001 (-ln(gamma)+5)/(-Si(Pi)+1/3) 3654369637147464 r005 Re(z^2+c),c=-97/82+3/10*I,n=22 3654369641982457 r009 Re(z^3+c),c=-37/90+25/46*I,n=4 3654369671607204 h001 (2/5*exp(2)+8/9)/(1/9*exp(1)+3/4) 3654369676730310 m001 (GAMMA(5/6)+Tetranacci)/(3^(1/2)-Psi(1,1/3)) 3654369712583822 q001 2/54729 3654369719023567 m001 Paris*FibonacciFactorial*ln(gamma)^2 3654369730128801 a001 2504730781961/521*843^(9/14) 3654369730142558 a003 sin(Pi*5/27)*sin(Pi*22/95) 3654369739079425 a001 956722026041/199*199^(9/11) 3654369752152345 m001 ThueMorse*BesselJ(0,1)^ZetaP(2) 3654369754502887 r005 Im(z^2+c),c=29/86+22/57*I,n=29 3654369756916393 m001 (ln(3)-BesselK(1,1))/(ArtinRank2+Robbin) 3654369763970161 a007 Real Root Of -150*x^4+453*x^3+809*x^2+951*x-475 3654369793594846 m001 1/GAMMA(1/12)^2/ln((3^(1/3)))^2/cosh(1) 3654369803912223 m001 OrthogonalArrays/LandauRamanujan2nd/TwinPrimes 3654369810041339 l006 ln(4477/6452) 3654369811477974 m001 1/ln(Paris)^2/FransenRobinson*GAMMA(1/24)^2 3654369827905823 a007 Real Root Of 806*x^4-834*x^3-432*x^2-746*x-270 3654369832677113 m001 Porter/exp(FeigenbaumAlpha)^2/GAMMA(13/24)^2 3654369849202683 r005 Re(z^2+c),c=-15/31+10/47*I,n=58 3654369853318207 a007 Real Root Of -125*x^4+811*x^3+615*x^2+37*x-133 3654369853777837 a007 Real Root Of -144*x^4-677*x^3-560*x^2+100*x+486 3654369855173561 m005 (7/6+1/4*5^(1/2))/(4/7*5^(1/2)-6) 3654369864988290 m001 GAMMA(5/12)^2*ln(BesselJ(1,1))/Zeta(7)^2 3654369865057621 a007 Real Root Of -984*x^4-809*x^3+203*x^2+541*x-20 3654369867465158 m001 1/ln(FeigenbaumC)/MadelungNaCl/sin(Pi/12) 3654369879011545 r009 Im(z^3+c),c=-29/64+17/62*I,n=19 3654369893538004 q001 1476/4039 3654369917860098 a001 1/2255*2584^(47/55) 3654369934155637 r009 Im(z^3+c),c=-9/74+29/39*I,n=2 3654369955219256 m001 sin(1)/exp(Zeta(5))^2*sin(Pi/5)^2 3654369962119851 r005 Im(z^2+c),c=-1/10+31/61*I,n=50 3654369963346256 m001 (2^(1/3)-arctan(1/3))/(Riemann3rdZero+Robbin) 3654369973882736 r005 Im(z^2+c),c=-31/56+4/61*I,n=53 3654369976593485 r005 Im(z^2+c),c=15/106+17/47*I,n=13 3654369978534713 r005 Re(z^2+c),c=-33/94+26/47*I,n=26 3654369992218438 m001 (Shi(1)+ln(5))/(-FeigenbaumKappa+Kac) 3654369993371483 r009 Im(z^3+c),c=-47/98+16/63*I,n=52 3654369993545329 a001 (5+5^(1/2))^(901/118) 3654370009644551 m001 (ln(5)+GAMMA(19/24))/(PrimesInBinary-Salem) 3654370019642678 m001 1/cos(Pi/12)^2*GAMMA(23/24)^2*exp(sin(Pi/5))^2 3654370063277934 m001 (2*Pi/GAMMA(5/6))^(1/PisotVijayaraghavan) 3654370070765564 r009 Im(z^3+c),c=-31/74+14/47*I,n=14 3654370083024428 p004 log(24547/17033) 3654370090802261 s001 sum(exp(-2*Pi/3)^n*A157665[n],n=1..infinity) 3654370092056376 l006 ln(227/8772) 3654370093941445 r005 Re(z^2+c),c=-63/110+15/43*I,n=21 3654370094338864 r002 12th iterates of z^2 + 3654370097436675 a001 1548008755920/521*843^(5/7) 3654370115350327 a001 4/21*28657^(21/41) 3654370119835131 a007 Real Root Of 299*x^4+900*x^3-743*x^2+79*x+809 3654370121717632 m001 (Rabbit+ZetaQ(3))/(FransenRobinson-sin(1)) 3654370159341320 m005 (1/3*5^(1/2)+1/10)/(4/5*Pi-1/5) 3654370179652721 r005 Re(z^2+c),c=-55/122+24/61*I,n=32 3654370194466139 a007 Real Root Of -18*x^4-654*x^3+147*x^2+312*x-113 3654370204625834 m003 6+5*Cos[1/2+Sqrt[5]/2]+2*Tan[1/2+Sqrt[5]/2] 3654370207852879 a007 Real Root Of -29*x^4+20*x^3+663*x^2+564*x-645 3654370211675538 r005 Re(z^2+c),c=-15/31+10/47*I,n=60 3654370214079179 m001 (Kolakoski+PrimesInBinary)/(FeigenbaumD+Kac) 3654370226863843 r005 Im(z^2+c),c=-1/26+29/61*I,n=25 3654370244795761 r005 Im(z^2+c),c=-127/122+10/31*I,n=3 3654370251827658 b008 (1/2+Sech[1])/Pi 3654370253579579 p001 sum(1/(443*n+277)/(32^n),n=0..infinity) 3654370261044433 m005 (9/8+1/4*5^(1/2))/(4*Zeta(3)-1/5) 3654370284685893 r005 Im(z^2+c),c=-35/26+2/81*I,n=32 3654370287649458 m001 (2^(1/3))/exp(LaplaceLimit)^2/Catalan 3654370294623200 r005 Im(z^2+c),c=9/58+22/63*I,n=27 3654370298485696 m005 (1/2*5^(1/2)+3/8)/(1/12*5^(1/2)+2/9) 3654370347985155 m005 (1/3*5^(1/2)-1/10)/(3/4*exp(1)-3/11) 3654370385573073 l006 ln(2693/3881) 3654370385573073 p004 log(3881/2693) 3654370385721088 r005 Re(z^2+c),c=-15/31+10/47*I,n=63 3654370401201759 a007 Real Root Of 124*x^4-985*x^3+411*x^2-561*x+20 3654370404454349 h001 (7/12*exp(1)+7/8)/(9/10*exp(2)+1/12) 3654370419360560 r005 Im(z^2+c),c=-3/70+21/44*I,n=31 3654370420899214 r005 Im(z^2+c),c=3/11+7/30*I,n=15 3654370428056512 r005 Re(z^2+c),c=-53/110+10/21*I,n=47 3654370430533333 r005 Re(z^2+c),c=-15/31+10/47*I,n=62 3654370435295044 m001 1/(3^(1/3))*exp(Riemann3rdZero)/sinh(1)^2 3654370436150608 a001 1/141*610^(37/38) 3654370440281782 a007 Real Root Of -494*x^4-614*x^3-993*x^2+858*x+425 3654370444525884 a007 Real Root Of 155*x^4-640*x^3-575*x^2-968*x+459 3654370447113051 r005 Re(z^2+c),c=-27/58+19/60*I,n=54 3654370459600498 p003 LerchPhi(1/16,4,295/229) 3654370459879924 r005 Im(z^2+c),c=1/60+19/43*I,n=22 3654370464744586 a001 956722026041/521*843^(11/14) 3654370465240881 m001 (Shi(1)+MertensB1)/(-PrimesInBinary+ZetaQ(2)) 3654370468420274 r009 Im(z^3+c),c=-11/62+21/53*I,n=11 3654370474196571 r009 Re(z^3+c),c=-11/50+50/57*I,n=20 3654370487738545 m001 Salem^2/FibonacciFactorial*exp(sin(Pi/5))^2 3654370489113464 r009 Im(z^3+c),c=-5/13+17/53*I,n=15 3654370491409342 r005 Im(z^2+c),c=1/114+17/38*I,n=32 3654370493618707 m001 (MertensB3+OneNinth)/(2^(1/2)-exp(1/Pi)) 3654370499192141 m001 GaussKuzminWirsing^Si(Pi)/ln(2)*ln(10) 3654370509735031 r005 Re(z^2+c),c=-15/31+10/47*I,n=64 3654370528932157 r005 Re(z^2+c),c=-15/31+10/47*I,n=61 3654370547605926 a007 Real Root Of 994*x^4+812*x^3-664*x^2-883*x+354 3654370576589490 m001 (2*Pi/GAMMA(5/6)+ErdosBorwein)/ReciprocalLucas 3654370586927121 m001 (FeigenbaumDelta-Landau)/(Pi^(1/2)-Cahen) 3654370592019640 a007 Real Root Of -235*x^4-664*x^3+561*x^2-568*x-62 3654370607449227 m005 (1/3*5^(1/2)-1/7)/(2/11*5^(1/2)-4/7) 3654370627263218 l006 ln(213/8231) 3654370637579596 r009 Re(z^3+c),c=-37/94+11/62*I,n=20 3654370652024795 r005 Im(z^2+c),c=-4/25+34/63*I,n=44 3654370662375488 r005 Re(z^2+c),c=-13/22+35/101*I,n=21 3654370667638380 r005 Re(z^2+c),c=-15/122+41/64*I,n=41 3654370676124146 a007 Real Root Of -907*x^4-827*x^3+39*x^2+874*x+290 3654370676418501 a005 (1/cos(28/223*Pi))^679 3654370676711279 a007 Real Root Of -806*x^4+849*x^3-500*x^2+688*x+374 3654370688310079 m001 (ln(gamma)+ln(3))/(Cahen+Thue) 3654370701449045 m001 (Zeta(1/2)-sin(1/12*Pi))/(gamma(1)+Landau) 3654370702162433 r002 48th iterates of z^2 + 3654370703170263 m001 Pi+(2^(1/3)+Zeta(1,2))*BesselI(1,2) 3654370721198737 a007 Real Root Of 364*x^4+19*x^3+216*x^2-984*x-394 3654370733076088 r005 Im(z^2+c),c=1/50+26/59*I,n=54 3654370736521106 r005 Re(z^2+c),c=-87/106+13/40*I,n=4 3654370738522225 a007 Real Root Of 24*x^4+901*x^3+882*x^2+263*x+609 3654370743761741 m005 (1/2*gamma+2/11)/(5/7*gamma+7/8) 3654370747046450 r005 Im(z^2+c),c=29/114+14/33*I,n=8 3654370768622416 r005 Re(z^2+c),c=-23/36+15/58*I,n=7 3654370780080735 r002 6th iterates of z^2 + 3654370785068921 m005 (1/3*Zeta(3)-3/7)/(8/9*gamma+1/4) 3654370789548600 a007 Real Root Of 246*x^4+709*x^3-954*x^2-926*x+85 3654370791507284 r005 Re(z^2+c),c=-15/31+10/47*I,n=52 3654370794890857 l006 ln(6295/9072) 3654370805856657 r005 Re(z^2+c),c=-1/50+8/55*I,n=4 3654370810543878 m001 CareFree^exp(1/exp(1))/ZetaQ(4) 3654370826104204 r005 Re(z^2+c),c=-15/31+10/47*I,n=59 3654370832052534 a001 591286729879/521*843^(6/7) 3654370852760126 m001 1/TwinPrimes*ln(Lehmer)^2*log(1+sqrt(2)) 3654370859831181 a003 sin(Pi*19/103)*sin(Pi*10/43) 3654370876255353 a001 1346269/18*199^(36/49) 3654370876368847 r005 Re(z^2+c),c=-15/31+10/47*I,n=53 3654370878109957 a007 Real Root Of 26*x^4-121*x^3-640*x^2+428*x-431 3654370886214601 r005 Im(z^2+c),c=-27/62+23/52*I,n=6 3654370892029538 a007 Real Root Of 209*x^4+536*x^3-839*x^2+139*x+597 3654370949710080 m001 FeigenbaumDelta-Porter+ZetaP(2) 3654370950923540 r005 Re(z^2+c),c=-17/46+13/21*I,n=57 3654370956857258 a007 Real Root Of -673*x^4+951*x^3-608*x^2+874*x+459 3654370978169999 r005 Re(z^2+c),c=-31/74+27/58*I,n=39 3654370991574207 a001 21/4870847*11^(41/46) 3654370994618269 m001 1/exp(Zeta(1/2))/FeigenbaumB^2*sin(Pi/5) 3654370998054398 r005 Im(z^2+c),c=-51/118+14/27*I,n=29 3654371002826734 r005 Im(z^2+c),c=-7/34+29/52*I,n=47 3654371007135029 r005 Re(z^2+c),c=-21/122+39/61*I,n=61 3654371032403973 m005 (1/2*Pi-8/11)/(Pi-5/6) 3654371039106746 r008 a(0)=4,K{-n^6,-24+83*n^3+36*n^2-92*n} 3654371043266471 r005 Im(z^2+c),c=1/29+19/44*I,n=38 3654371051156848 s001 sum(exp(-2*Pi/5)^n*A171355[n],n=1..infinity) 3654371051156848 s002 sum(A171355[n]/(exp(2/5*pi*n)),n=1..infinity) 3654371059023646 m003 -1/8+(9*Sqrt[5])/16+E^(1/2+Sqrt[5]/2)/2 3654371069268154 m005 (1/2*5^(1/2)-6/11)/(9/11*Zeta(3)+7/12) 3654371082100530 r005 Im(z^2+c),c=1/50+26/59*I,n=55 3654371082541287 r005 Im(z^2+c),c=1/50+26/59*I,n=58 3654371088658586 r005 Re(z^2+c),c=-23/52+4/13*I,n=11 3654371094526225 m001 (exp(1)+gamma(1))/(-FeigenbaumD+Magata) 3654371096009659 r005 Re(z^2+c),c=-61/82+19/43*I,n=5 3654371096951259 r002 10th iterates of z^2 + 3654371100913276 l006 ln(3602/5191) 3654371119383469 r002 7th iterates of z^2 + 3654371127982428 m004 36-Sin[Sqrt[5]*Pi]^2+Tanh[Sqrt[5]*Pi] 3654371128811675 r002 5th iterates of z^2 + 3654371142506252 a007 Real Root Of 25*x^4-274*x^3+533*x^2+407*x+308 3654371146646100 r005 Im(z^2+c),c=1/50+26/59*I,n=45 3654371147865548 r005 Im(z^2+c),c=-31/50+3/44*I,n=64 3654371169813398 m001 (Robbin+ZetaP(2))/(BesselI(0,1)+Grothendieck) 3654371172358806 a007 Real Root Of 873*x^4-875*x^3-436*x^2-508*x+271 3654371182594083 m001 (-MasserGramainDelta+Tribonacci)/(1+ln(gamma)) 3654371197232689 r005 Im(z^2+c),c=3/10+17/53*I,n=6 3654371199360519 a001 365435296162/521*843^(13/14) 3654371200191428 m004 36+Cos[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 3654371207900987 r005 Im(z^2+c),c=1/50+26/59*I,n=61 3654371212103375 a008 Real Root of x^4-x^3+x^2+68*x+8 3654371217400560 r005 Re(z^2+c),c=-15/31+10/47*I,n=57 3654371222946158 m001 (-Totient+Weierstrass)/(Chi(1)+GAMMA(7/12)) 3654371228812295 r005 Im(z^2+c),c=-7/10+27/209*I,n=56 3654371235724914 a007 Real Root Of 953*x^4+155*x^3-924*x^2-950*x+446 3654371237775197 l006 ln(199/7690) 3654371238682981 r005 Re(z^2+c),c=-14/29+13/58*I,n=25 3654371243838569 r002 54th iterates of z^2 + 3654371251668437 m005 (1/3*Catalan-1/3)/(2/7*exp(1)-7/10) 3654371252509376 a008 Real Root of (-3+5*x+8*x^2+6*x^4-8*x^8) 3654371255276516 r002 20th iterates of z^2 + 3654371266523298 r005 Im(z^2+c),c=1/50+26/59*I,n=57 3654371270405271 m005 (1/3*exp(1)-2/5)/(2/9*3^(1/2)+1) 3654371272050544 m001 (Chi(1)-gamma(3))/(LandauRamanujan2nd+Niven) 3654371285058072 m001 FeigenbaumMu^Robbin/HardyLittlewoodC3 3654371286235848 m004 36+Cos[Sqrt[5]*Pi]^2 3654371288352934 r005 Im(z^2+c),c=1/50+26/59*I,n=64 3654371290205258 r005 Re(z^2+c),c=15/44+4/33*I,n=25 3654371293251245 r005 Re(z^2+c),c=-8/17+7/24*I,n=56 3654371296432685 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)-ArtinRank2)^Ei(1) 3654371301748547 r005 Im(z^2+c),c=-5/26+16/29*I,n=39 3654371305452235 r005 Im(z^2+c),c=1/50+26/59*I,n=62 3654371313217704 r009 Re(z^3+c),c=-29/86+1/10*I,n=2 3654371316453067 a001 6557470319842/843*322^(2/3) 3654371320786678 a003 cos(Pi*33/115)-sin(Pi*25/56) 3654371321865097 r005 Re(z^2+c),c=-23/94+17/40*I,n=2 3654371347557839 r009 Re(z^3+c),c=-9/52+25/34*I,n=31 3654371351275915 a007 Real Root Of -59*x^4+403*x^3-42*x^2+249*x-104 3654371352793233 m001 1/exp(GAMMA(7/24))^2/Bloch^2/sin(Pi/12) 3654371365558506 a007 Real Root Of 578*x^4+599*x^3-492*x^2-919*x+362 3654371370539588 r005 Im(z^2+c),c=19/122+15/43*I,n=22 3654371372002301 r005 Im(z^2+c),c=1/50+26/59*I,n=63 3654371372280404 m004 36+Cos[Sqrt[5]*Pi]^2*Coth[Sqrt[5]*Pi] 3654371378269177 m005 (1/2*Catalan+3/8)/(3/8*Catalan-4/7) 3654371386123270 m001 exp(1)*exp(ArtinRank2)^2*gamma^2 3654371392996351 r005 Im(z^2+c),c=1/50+26/59*I,n=60 3654371393362251 r005 Re(z^2+c),c=-23/54+9/19*I,n=51 3654371395860456 m001 (BesselJ(1,1)+Conway)/(Si(Pi)-exp(1/Pi)) 3654371405647283 a007 Real Root Of 956*x^4-154*x^3+226*x^2-444*x-217 3654371418227073 g007 Psi(2,2/11)+Psi(2,4/9)-Psi(13/10)-Psi(2,7/9) 3654371420559772 r002 50th iterates of z^2 + 3654371425477984 r005 Re(z^2+c),c=-15/31+10/47*I,n=55 3654371429993970 r005 Im(z^2+c),c=1/50+26/59*I,n=59 3654371439721446 s002 sum(A247495[n]/(pi^n),n=1..infinity) 3654371444735652 a007 Real Root Of 73*x^4-7*x^3+725*x^2-702*x-355 3654371451229932 r005 Re(z^2+c),c=-5/8+112/207*I,n=3 3654371458120475 r005 Im(z^2+c),c=-19/98+28/47*I,n=31 3654371464710309 m004 (-18*E^(Sqrt[5]*Pi))/5+125*Pi 3654371466540344 r005 Re(z^2+c),c=-47/102+19/55*I,n=29 3654371482494301 m001 1/exp(GAMMA(3/4))*Tribonacci^2/exp(1) 3654371491892139 r005 Im(z^2+c),c=-33/122+17/30*I,n=21 3654371493465135 a007 Real Root Of 100*x^4+437*x^3+372*x^2+534*x+476 3654371505728684 a007 Real Root Of -670*x^4+425*x^3-482*x^2+725*x+362 3654371527960728 l006 ln(4511/6501) 3654371531246804 m005 (1/2*Pi+7/10)/(4*3^(1/2)-5/7) 3654371534176626 m001 BesselI(0,2)^BesselJ(0,1)*DuboisRaymond 3654371560835007 r005 Re(z^2+c),c=-13/10+93/107*I,n=2 3654371561859989 r005 Im(z^2+c),c=-19/94+31/56*I,n=38 3654371566626180 a001 137769808061807/377 3654371571265781 a007 Real Root Of 290*x^4+877*x^3-524*x^2+565*x+143 3654371580202557 r005 Im(z^2+c),c=7/22+9/47*I,n=15 3654371584688701 p001 sum(1/(439*n+369)/(2^n),n=0..infinity) 3654371584699453 q001 107/2928 3654371584699453 r002 2th iterates of z^2 + 3654371589761558 a007 Real Root Of 470*x^4+402*x^3-383*x^2-718*x-200 3654371614310882 g007 Psi(2,1/11)+Psi(2,1/8)-Psi(2,6/11)-Psi(2,5/11) 3654371618235383 a001 1/987*6765^(8/55) 3654371621112571 m001 CopelandErdos/BesselI(0,1)*ReciprocalLucas 3654371641777430 r005 Im(z^2+c),c=5/22+13/45*I,n=26 3654371647315996 a001 1597/76*11^(3/13) 3654371675144565 a007 Real Root Of -139*x^4-512*x^3-164*x^2-744*x-726 3654371694595519 r005 Re(z^2+c),c=-29/60+12/47*I,n=11 3654371695804723 m005 (1/2*5^(1/2)+4/7)/(2/5*exp(1)-5/8) 3654371696705960 r002 48th iterates of z^2 + 3654371712509668 a007 Real Root Of -183*x^4-491*x^3+716*x^2+173*x-255 3654371714325691 r005 Im(z^2+c),c=-81/98+1/49*I,n=39 3654371729823916 r005 Re(z^2+c),c=-13/32+28/53*I,n=60 3654371734662855 r005 Im(z^2+c),c=1/50+26/59*I,n=52 3654371737744562 r005 Im(z^2+c),c=1/50+26/59*I,n=56 3654371742016417 r002 35i'th iterates of 2*x/(1-x^2) of 3654371746801493 r005 Re(z^2+c),c=-43/106+20/39*I,n=60 3654371754640562 m001 (ln(2)+gamma(1))/(GAMMA(17/24)+ThueMorse) 3654371757724817 r005 Im(z^2+c),c=-14/17+1/50*I,n=50 3654371766155462 r005 Im(z^2+c),c=31/94+9/52*I,n=47 3654371772370027 r009 Re(z^3+c),c=-47/98+15/52*I,n=52 3654371779258319 r005 Im(z^2+c),c=15/46+7/40*I,n=52 3654371793433517 r005 Im(z^2+c),c=1/50+26/59*I,n=50 3654371797687994 r005 Im(z^2+c),c=-43/70+35/51*I,n=7 3654371801316221 r009 Re(z^3+c),c=-25/66+29/43*I,n=46 3654371803128909 a007 Real Root Of -453*x^4+988*x^3+453*x^2+759*x-378 3654371811766054 l006 ln(5420/7811) 3654371829945745 a001 1/2207*(1/2*5^(1/2)+1/2)^24*76^(9/19) 3654371834058951 m001 LaplaceLimit^2*Bloch*exp(LambertW(1)) 3654371842318535 m001 GAMMA(5/6)/(Trott2nd^ErdosBorwein) 3654371852664577 r004 Im(z^2+c),c=2/9+2/7*I,z(0)=exp(5/8*I*Pi),n=17 3654371898294236 m001 Zeta(1,2)/ln(GAMMA(5/24))*gamma 3654371911559844 m001 (Zeta(1,-1)+Cahen)/(FeigenbaumB+PlouffeB) 3654371914433572 a007 Real Root Of 973*x^4-648*x^3+917*x^2-111*x-212 3654371936340881 m001 (Kolakoski-Otter)^FeigenbaumDelta 3654371940688526 l006 ln(185/7149) 3654371966289894 a007 Real Root Of 919*x^4-891*x^3-271*x^2-934*x-365 3654371985942262 r005 Im(z^2+c),c=9/62+8/23*I,n=10 3654372002310800 r009 Im(z^3+c),c=-23/74+16/45*I,n=11 3654372004752558 a007 Real Root Of -774*x^4-936*x^3-808*x^2+186*x+144 3654372014048530 l006 ln(6329/9121) 3654372014195324 r009 Im(z^3+c),c=-55/86+3/11*I,n=5 3654372016673364 r002 36th iterates of z^2 + 3654372033336328 r005 Im(z^2+c),c=-9/16+6/91*I,n=64 3654372041636880 m005 (2/5*Pi+5/6)/(2/3*2^(1/2)-1) 3654372046293072 r005 Re(z^2+c),c=-1/70+5/8*I,n=31 3654372048981493 r005 Re(z^2+c),c=15/52+33/64*I,n=27 3654372051252105 b008 -37+BesselY[0,E] 3654372081922805 m001 (KhinchinLevy-sin(1/5*Pi))^ReciprocalLucas 3654372082527674 r002 23th iterates of z^2 + 3654372082656625 r005 Re(z^2+c),c=-23/58+25/54*I,n=22 3654372083553303 r005 Im(z^2+c),c=8/29+25/63*I,n=13 3654372083557151 m002 -4*Pi^4+Log[Pi]+E^Pi*Tanh[Pi] 3654372092102490 m006 (1/3*Pi^2-1/6)/(4/5/Pi+3/5) 3654372095277260 m005 (1/3*3^(1/2)+1/5)/(5/12*Pi+9/11) 3654372101027625 m001 ((1+3^(1/2))^(1/2)-2^(1/2))/(Kac+Trott2nd) 3654372103624326 r005 Im(z^2+c),c=-11/60+11/20*I,n=62 3654372110370544 m009 (1/8*Pi^2-6)/(5*Psi(1,3/4)+1/3) 3654372110942653 r005 Im(z^2+c),c=-19/122+22/41*I,n=57 3654372115391731 a007 Real Root Of 187*x^4-423*x^3-406*x^2-212*x+149 3654372118797186 m001 GAMMA(1/6)*MinimumGamma*ln(cos(Pi/5))^2 3654372119496871 r005 Im(z^2+c),c=1/50+26/59*I,n=53 3654372133906596 r005 Re(z^2+c),c=-67/126+17/39*I,n=41 3654372155181368 r009 Im(z^3+c),c=-17/38+15/52*I,n=9 3654372209053710 m005 (1/2*5^(1/2)-1/2)/(8/11*exp(1)-2/7) 3654372210853272 r005 Im(z^2+c),c=-9/70+32/61*I,n=23 3654372228960507 a001 12752043/5*4807526976^(17/23) 3654372229056458 a001 45537549124/5*75025^(17/23) 3654372236512247 g007 Psi(2,11/12)+Psi(2,2/5)-Psi(2,1/11)-Psi(2,1/8) 3654372239243202 m001 GAMMA(5/6)^2*ln(LandauRamanujan)/Zeta(1,2) 3654372242440331 p001 sum(1/(284*n+275)/(100^n),n=0..infinity) 3654372249306915 r005 Re(z^2+c),c=-15/34+13/42*I,n=11 3654372284647819 m001 (1-cos(1/12*Pi))/(-Artin+Mills) 3654372291640232 r005 Re(z^2+c),c=37/98+6/29*I,n=46 3654372295822990 r005 Re(z^2+c),c=-7/16+3/7*I,n=61 3654372296072906 m001 BesselI(1,1)^sin(1/5*Pi)*BesselI(1,1)^Salem 3654372329822137 m008 (2/3*Pi^2+1/6)/(3/5*Pi^5+1) 3654372336024879 a003 cos(Pi*9/40)*cos(Pi*16/47) 3654372348826331 r005 Im(z^2+c),c=-17/14+3/59*I,n=63 3654372362798169 r009 Im(z^3+c),c=-39/94+13/43*I,n=34 3654372368681025 m001 (Pi+exp(1))/(cos(1/5*Pi)+Kolakoski) 3654372377061595 r005 Im(z^2+c),c=23/74+18/41*I,n=39 3654372379592323 m001 exp(Lehmer)^2*LandauRamanujan*MinimumGamma 3654372386945765 m001 (Zeta(5)-FeigenbaumMu)/ln(2) 3654372387738560 m002 Pi^(-6)+4/(5*Pi^5) 3654372389737275 r002 23th iterates of z^2 + 3654372389814292 s002 sum(A251931[n]/(pi^n-1),n=1..infinity) 3654372408804576 a001 4/75025*121393^(13/36) 3654372416381202 r005 Re(z^2+c),c=5/52+23/47*I,n=4 3654372449015900 m002 5+Pi^5/3+Pi^5*Cosh[Pi] 3654372454078372 m005 (1/3*5^(1/2)+3/5)/(1/11*5^(1/2)-4/7) 3654372470739034 a001 1/5778*(1/2*5^(1/2)+1/2)^26*76^(9/19) 3654372474288467 m001 LandauRamanujan/ln(Bloch)*Ei(1)^2 3654372484197115 r005 Re(z^2+c),c=17/126+33/59*I,n=55 3654372508154431 m001 (Tribonacci+TwinPrimes)/(2^(1/3)-Stephens) 3654372512934099 m001 FeigenbaumAlpha*Khinchin/Tribonacci 3654372521222532 m001 FeigenbaumC/Landau*Trott 3654372521948783 m005 (1/2*Catalan+1/10)/(79/144+7/16*5^(1/2)) 3654372527043875 s002 sum(A032416[n]/(n*2^n+1),n=1..infinity) 3654372528090533 r005 Im(z^2+c),c=-5/6+36/169*I,n=23 3654372530330952 r005 Im(z^2+c),c=-45/62+16/55*I,n=3 3654372548719308 m007 (-4*gamma-8*ln(2)-2/3)/(-3*gamma-3/5) 3654372559771668 a007 Real Root Of 273*x^4+871*x^3-430*x^2-87*x-756 3654372564229534 a001 1/15127*(1/2*5^(1/2)+1/2)^28*76^(9/19) 3654372572329604 p004 log(16981/11783) 3654372576587224 a001 1/33*(1/2*5^(1/2)+1/2)^13*11^(7/20) 3654372577869615 a001 1/39603*(1/2*5^(1/2)+1/2)^30*76^(9/19) 3654372580108318 a001 9*17711^(35/57) 3654372580199618 a001 (1/2*5^(1/2)+1/2)^8*76^(9/19) 3654372581089601 a001 1/64079*(1/2*5^(1/2)+1/2)^31*76^(9/19) 3654372586284343 m005 (1/2*Catalan+1/11)/(7/8*5^(1/2)-5/11) 3654372586299648 a001 1/24476*(1/2*5^(1/2)+1/2)^29*76^(9/19) 3654372600033510 r002 15th iterates of z^2 + 3654372617312884 a007 Real Root Of -85*x^4-257*x^3+118*x^2-269*x+58 3654372622009843 a001 1/9349*(1/2*5^(1/2)+1/2)^27*76^(9/19) 3654372642159762 r009 Re(z^3+c),c=-57/118+8/29*I,n=19 3654372648851936 r002 30th iterates of z^2 + 3654372665374854 m001 (cos(1)-ln(2)*exp(1/2))/exp(1/2) 3654372674450328 a001 123/365435296162*233^(7/16) 3654372675131618 r002 17th iterates of z^2 + 3654372679907826 m001 (Pi-Zeta(1/2))/(arctan(1/3)-Zeta(1,2)) 3654372685773588 r005 Im(z^2+c),c=17/52+8/45*I,n=41 3654372688776376 a003 sin(Pi*1/74)*sin(Pi*35/106) 3654372695182011 a007 Real Root Of -332*x^4+716*x^3-910*x^2+289*x+268 3654372717960958 a007 Real Root Of 641*x^4+454*x^3-156*x^2-360*x-100 3654372719632619 a001 521/1836311903*317811^(13/23) 3654372719636709 a001 521/956722026041*20365011074^(13/23) 3654372722392584 r005 Im(z^2+c),c=-23/17+3/38*I,n=16 3654372732908026 m001 (ln(Pi)+2*Pi/GAMMA(5/6))/(Salem+TwinPrimes) 3654372734672723 m001 (Zeta(1/2)+MertensB2)/(3^(1/2)-LambertW(1)) 3654372758698154 l006 ln(171/6608) 3654372760788220 a003 sin(Pi*7/104)/cos(Pi*29/95) 3654372766653615 r005 Re(z^2+c),c=-39/86+8/17*I,n=40 3654372771566766 h001 (7/10*exp(2)+3/5)/(1/4*exp(1)+9/10) 3654372780278372 m009 (1/2*Psi(1,2/3)+2)/(4/5*Psi(1,3/4)-3) 3654372782116918 m005 (1/2*Pi+3/7)/(10/11*exp(1)+3) 3654372795167934 m001 GAMMA(17/24)-cos(Pi/5)-sin(1) 3654372795167934 m001 sin(1)+cos(1/5*Pi)-GAMMA(17/24) 3654372800509985 m005 (1/2*Pi+7/8)/(6/7*Pi+4) 3654372809527258 m001 (1+BesselK(0,1))/(Conway+Sierpinski) 3654372810279289 m001 1/Zeta(1,2)*FeigenbaumKappa*exp(arctan(1/2))^2 3654372813470928 a007 Real Root Of -943*x^4+777*x^3+253*x^2+583*x+234 3654372827195559 a007 Real Root Of 119*x^4+329*x^3-670*x^2-967*x+247 3654372828333071 a001 2207/13*34^(47/54) 3654372839774972 m003 6+4*Cos[1/2+Sqrt[5]/2]+2*Sec[1/2+Sqrt[5]/2] 3654372850552667 h001 (3/11*exp(2)+3/4)/(9/10*exp(2)+11/12) 3654372856518122 a007 Real Root Of 122*x^4+324*x^3-216*x^2+691*x-536 3654372862374131 r009 Re(z^3+c),c=-19/70+5/7*I,n=3 3654372866771179 a001 1/3571*(1/2*5^(1/2)+1/2)^25*76^(9/19) 3654372881832388 r005 Re(z^2+c),c=-23/18+7/193*I,n=54 3654372895683725 a007 Real Root Of 484*x^4-316*x^3-204*x^2+46*x+20 3654372899823660 m001 (Zeta(1/2)+1/3)/(-Catalan+4) 3654372901014119 l006 ln(6287/6521) 3654372901014119 p004 log(6521/6287) 3654372937112552 m001 GAMMA(1/12)/FeigenbaumKappa/exp(Zeta(1/2)) 3654372949548242 r005 Im(z^2+c),c=-77/90+15/62*I,n=43 3654372955639608 m005 (1/2*Zeta(3)+5)/(1/2*3^(1/2)+2/3) 3654372957637290 a007 Real Root Of 293*x^4+856*x^3-978*x^2-870*x-598 3654372963552435 m001 (GAMMA(3/4)-ln(Pi))/(Zeta(1/2)-RenyiParking) 3654372965066713 r005 Re(z^2+c),c=-7/15+14/45*I,n=30 3654372973526348 a001 1364/3*144^(13/31) 3654372975530553 a001 1149851/3*75025^(11/18) 3654372982987851 a007 Real Root Of -8*x^4-317*x^3-885*x^2+579*x+47 3654372983082805 a007 Real Root Of 325*x^4+993*x^3-922*x^2-887*x-429 3654372986596440 m001 (-Kac+KomornikLoreti)/(2^(1/2)-3^(1/2)) 3654372994330213 a001 5702887/123*18^(5/7) 3654373004713512 m001 (Kac-Thue)/(Ei(1)-FeigenbaumC) 3654373029987555 h001 (3/10*exp(2)+7/12)/(11/12*exp(2)+8/9) 3654373041208325 a003 cos(Pi*9/97)/cos(Pi*32/77) 3654373046184180 r005 Im(z^2+c),c=-6/5+5/92*I,n=26 3654373049326486 m001 MadelungNaCl^HardHexagonsEntropy/Gompertz 3654373060093425 r005 Im(z^2+c),c=-17/18-63/254*I,n=44 3654373074819954 p001 sum(1/(469*n+278)/(24^n),n=0..infinity) 3654373081306729 a002 7^(3/2)-19^(11/12) 3654373084914566 a001 1926*433494437^(11/18) 3654373091917374 r005 Re(z^2+c),c=-11/19+20/57*I,n=12 3654373093176048 m001 1/FeigenbaumD^2/ln(Porter)*Zeta(7) 3654373111918176 m002 1/5+6*Pi^2+Pi^5 3654373130663919 a007 Real Root Of 104*x^4+151*x^3-926*x^2-527*x-738 3654373141565735 h001 (2/5*exp(1)+7/10)/(5/8*exp(2)+3/11) 3654373151714275 p003 LerchPhi(1/32,4,251/195) 3654373154489460 b008 -6+(2+ArcTan[2])^2 3654373178993214 a001 3571/5*610^(14/55) 3654373186984038 r005 Re(z^2+c),c=-10/21+3/56*I,n=7 3654373207455802 m001 1/exp(sin(1))*(3^(1/3))*sin(Pi/5) 3654373214434149 s002 sum(A222376[n]/(n^2*10^n+1),n=1..infinity) 3654373215601704 m001 (LambertW(1)-cos(1))/(Sarnak+Trott) 3654373220177183 l006 ln(909/1310) 3654373233858110 a008 Real Root of x^2-x-133179 3654373252132978 h001 (-8*exp(-1)+4)/(-6*exp(1/2)+7) 3654373252734418 m001 (Niven-ThueMorse)/(FeigenbaumAlpha+MertensB2) 3654373262934390 r009 Im(z^3+c),c=-53/110+27/58*I,n=6 3654373301591380 r009 Im(z^3+c),c=-11/86+15/37*I,n=7 3654373304954384 a007 Real Root Of -251*x^4-689*x^3+549*x^2-945*x+354 3654373320658627 r005 Re(z^2+c),c=-9/20+16/39*I,n=13 3654373322348984 r005 Re(z^2+c),c=-5/78+20/31*I,n=47 3654373370472005 a001 28657/521*18^(19/29) 3654373385425032 r005 Re(z^2+c),c=-3/8+8/15*I,n=43 3654373389107412 a003 sin(Pi*15/106)*sin(Pi*32/99) 3654373404421971 m001 (MadelungNaCl+Rabbit)/(Chi(1)+Zeta(1,-1)) 3654373410691005 a007 Real Root Of 840*x^4+606*x^3+628*x^2-303*x-180 3654373412160797 a007 Real Root Of -950*x^4-947*x^3+788*x^2+766*x-322 3654373416510549 b008 25*Sqrt[2]+Csc[1] 3654373451330658 r005 Im(z^2+c),c=-13/98+31/54*I,n=21 3654373461078525 r005 Im(z^2+c),c=1/40+25/57*I,n=20 3654373465884471 a001 4/317811*1346269^(41/46) 3654373473107294 r005 Re(z^2+c),c=3/29+21/47*I,n=12 3654373493111431 a008 Real Root of x^4-2*x^3+2*x^2+x-299 3654373505225677 a007 Real Root Of -198*x^4-675*x^3+97*x^2-238*x+205 3654373518932864 a001 76/3*144^(29/54) 3654373537188325 h001 (-8*exp(2/3)-5)/(-exp(-1)+6) 3654373544533190 g005 GAMMA(7/8)/GAMMA(6/11)/GAMMA(5/8)/GAMMA(5/7) 3654373552128301 r009 Re(z^3+c),c=-15/56+8/11*I,n=52 3654373554847459 m004 -120/Pi+Cos[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 3654373562887921 r002 14th iterates of z^2 + 3654373573946840 a007 Real Root Of -255*x^4-795*x^3+253*x^2-707*x+717 3654373585106488 a007 Real Root Of 110*x^4+130*x^3-817*x^2+406*x-879 3654373585441277 r001 6i'th iterates of 2*x^2-1 of 3654373588328239 a001 2207/3*8^(37/48) 3654373592646856 m001 (-Sierpinski+Totient)/(1-cos(1/12*Pi)) 3654373617648381 m001 exp(-1/2*Pi)*GAMMA(7/12)*GAMMA(1/12) 3654373618781603 r005 Re(z^2+c),c=13/86+29/60*I,n=31 3654373623236719 r005 Im(z^2+c),c=-47/106+2/33*I,n=17 3654373636149762 r005 Re(z^2+c),c=-53/110+12/53*I,n=35 3654373640173833 h001 (5/11*exp(2)+11/12)/(3/11*exp(1)+3/7) 3654373645846341 s002 sum(A071744[n]/(n*2^n-1),n=1..infinity) 3654373646146746 r009 Re(z^3+c),c=-57/118+8/17*I,n=23 3654373650497269 r005 Im(z^2+c),c=21/118+13/41*I,n=6 3654373652367555 m001 (ln(5)+Zeta(1,2))/(GAMMA(5/6)+Rabbit) 3654373657862652 a001 39603/5*317811^(7/58) 3654373665902397 m001 GAMMA(7/24)/(polylog(4,1/2)^sin(Pi/12)) 3654373666565071 q001 1199/3281 3654373677720893 m004 2+3*Sqrt[5]*Pi+25*Sqrt[5]*Pi*Log[Sqrt[5]*Pi] 3654373680454499 a005 (1/cos(25/163*Pi))^506 3654373688320544 m001 HardyLittlewoodC3-Shi(1)^Trott 3654373702546906 r005 Im(z^2+c),c=-109/118+5/19*I,n=44 3654373708459077 r005 Re(z^2+c),c=-29/60+5/22*I,n=20 3654373719225139 r009 Re(z^3+c),c=-15/29+13/49*I,n=28 3654373722593989 l006 ln(157/6067) 3654373722593989 p004 log(6067/157) 3654373726420837 r009 Im(z^3+c),c=-47/114+10/33*I,n=14 3654373726607997 m001 (Shi(1)-Zeta(1,2))/(-2*Pi/GAMMA(5/6)+OneNinth) 3654373727511466 r005 Im(z^2+c),c=-27/46+21/32*I,n=5 3654373745543664 m005 (1/2*Pi+7/11)/(1/7*gamma-1/7) 3654373748992505 a005 (1/cos(2/25*Pi))^257 3654373755088828 r009 Re(z^3+c),c=-21/44+2/7*I,n=41 3654373759385449 r009 Re(z^3+c),c=-14/29+7/24*I,n=42 3654373778637025 p004 log(19699/13669) 3654373782505649 m005 (1/3*exp(1)-2/9)/(7/12*exp(1)+2/7) 3654373805068997 a007 Real Root Of 282*x^4-692*x^3+804*x^2-57*x-167 3654373814507725 r005 Re(z^2+c),c=-15/31+10/47*I,n=50 3654373814995604 m005 (1/2*gamma+2/11)/(5/11*3^(1/2)+1/2) 3654373832566348 r002 6th iterates of z^2 + 3654373836295290 a007 Real Root Of -21*x^4+290*x^3-635*x^2-430*x-356 3654373840394280 m001 BesselK(1,1)-polylog(4,1/2)+FeigenbaumMu 3654373860396304 r005 Im(z^2+c),c=1/44+23/54*I,n=9 3654373862908712 r002 17th iterates of z^2 + 3654373864872236 a007 Real Root Of 613*x^4-408*x^3-182*x^2-448*x+197 3654373873115439 r005 Im(z^2+c),c=-11/48+31/56*I,n=32 3654373877050433 a001 11*13^(22/47) 3654373885249052 a007 Real Root Of -287*x^4-968*x^3+449*x^2+623*x+224 3654373905015384 m001 (5^(1/2)+Grothendieck)/(-Salem+ZetaP(4)) 3654373905409441 r005 Re(z^2+c),c=-4/7+28/113*I,n=11 3654373924232615 r005 Im(z^2+c),c=1/50+26/59*I,n=49 3654373937623885 h005 exp(sin(Pi*10/47)+sin(Pi*13/55)) 3654373949416068 m001 Pi+ln(2)/ln(10)-ln(2+3^(1/2))+GAMMA(7/12) 3654373949962291 a007 Real Root Of 451*x^4+624*x^3+163*x^2-861*x-314 3654373958633083 a007 Real Root Of -159*x^4-413*x^3+412*x^2-628*x+404 3654373959496250 a007 Real Root Of 60*x^4-41*x^3-941*x^2-176*x-778 3654373965741901 r005 Im(z^2+c),c=-67/106+23/64*I,n=44 3654373973770886 a003 2^(1/2)+cos(2/5*Pi)-cos(1/10*Pi)-cos(11/30*Pi) 3654373991068040 m006 (1/6*exp(Pi)+4)/(2/5*exp(2*Pi)+4/5) 3654373992302635 m005 (1/2*5^(1/2)-10/11)/(4/9*exp(1)-7/11) 3654373996559046 h001 (6/7*exp(2)+4/5)/(7/11*exp(1)+2/9) 3654374000706385 a007 Real Root Of -822*x^4+661*x^3-648*x^2+858*x+447 3654374018594035 r009 Re(z^3+c),c=-4/9+11/45*I,n=37 3654374030924264 r009 Re(z^3+c),c=-1/106+21/40*I,n=4 3654374036760857 a007 Real Root Of 570*x^4+376*x^3+847*x^2-999*x-470 3654374040065628 a007 Real Root Of 497*x^4-395*x^3+735*x^2-593*x-343 3654374050403869 r005 Re(z^2+c),c=-19/46+26/53*I,n=52 3654374053105125 r005 Im(z^2+c),c=-5/4+1/47*I,n=16 3654374060013176 r009 Im(z^3+c),c=-15/62+19/50*I,n=13 3654374060296066 m001 ln(2+3^(1/2))+GAMMA(13/24)+ArtinRank2 3654374060639670 r005 Im(z^2+c),c=23/74+9/47*I,n=24 3654374060971444 a007 Real Root Of 237*x^4-797*x^3-284*x^2+58*x+16 3654374086711594 r005 Im(z^2+c),c=11/34+17/49*I,n=24 3654374086854284 r002 5th iterates of z^2 + 3654374106120800 h001 (2/7*exp(1)+1/12)/(4/7*exp(1)+4/5) 3654374110690862 a005 (1/cos(5/218*Pi))^1385 3654374119684425 m005 (1/2*2^(1/2)-1/8)/(4/9*Catalan-2) 3654374131491479 s002 sum(A118484[n]/(n*10^n-1),n=1..infinity) 3654374135671504 r005 Im(z^2+c),c=-1/78+33/58*I,n=9 3654374143482015 m001 (DuboisRaymond-GaussAGM)/(Zeta(3)-ln(gamma)) 3654374154453130 m001 cos(1/12*Pi)^ErdosBorwein/sin(1/12*Pi) 3654374155352689 m001 exp(LaplaceLimit)/Kolakoski/Sierpinski^2 3654374187875472 r005 Re(z^2+c),c=-51/110+21/62*I,n=26 3654374188757024 r002 37th iterates of z^2 + 3654374196341372 a007 Real Root Of -300*x^4+779*x^3+292*x^2+945*x-417 3654374197870223 m009 (4*Psi(1,2/3)-3/5)/(8/5*Catalan+1/5*Pi^2-1/4) 3654374205770835 r009 Re(z^3+c),c=-1/21+14/39*I,n=5 3654374206736806 m005 (1/3*Catalan+3/4)/(10/11*exp(1)+5/12) 3654374216098295 m001 BesselJ(0,1)^(1/3)/FeigenbaumAlpha 3654374217188875 m001 (2^(1/3)-Chi(1))/(LambertW(1)+sin(1/5*Pi)) 3654374233722760 a007 Real Root Of 711*x^4-716*x^3+537*x^2-924*x-457 3654374243328048 m009 (16/3*Catalan+2/3*Pi^2+3)/(4*Psi(1,1/3)-4/5) 3654374244005516 m005 (1/3*Zeta(3)-1/9)/(1/3*gamma+3/5) 3654374247747360 m001 (Zeta(5)+gamma(2))/(DuboisRaymond-PlouffeB) 3654374253603169 a001 4052739537881/843*322^(3/4) 3654374258648500 a007 Real Root Of -827*x^4+244*x^3-732*x^2+226*x+207 3654374261058292 r005 Re(z^2+c),c=-8/17+7/24*I,n=58 3654374261141399 r009 Im(z^3+c),c=-25/48+5/29*I,n=51 3654374262719015 m001 1/Magata/Kolakoski/exp(Trott) 3654374267721219 r005 Re(z^2+c),c=-45/94+14/57*I,n=28 3654374278396948 m005 (2*2^(1/2)-1/4)/(-8/5+2/5*5^(1/2)) 3654374293640908 h001 (7/12*exp(1)+7/8)/(6/7*exp(2)+2/5) 3654374297083093 m005 (1/2*gamma-9/11)/(3/5*exp(1)-2/11) 3654374298658257 r005 Im(z^2+c),c=-11/106+46/61*I,n=21 3654374314968778 r005 Im(z^2+c),c=-7/52+21/40*I,n=37 3654374324256840 m008 (1/5*Pi^2-1/6)/(1/2*Pi^4+3/4) 3654374328398841 m005 (1/3*Catalan+2/3)/(8/11*Pi+3/8) 3654374338449932 m005 (1/3*exp(1)-2/7)/(6*exp(1)+2/3) 3654374344352484 r005 Im(z^2+c),c=-27/23+1/21*I,n=21 3654374347750677 r005 Im(z^2+c),c=11/102+5/13*I,n=19 3654374359012696 m001 (-LandauRamanujan+ZetaP(4))/(1+ln(2^(1/2)+1)) 3654374376331019 a007 Real Root Of 280*x^4+691*x^3-919*x^2+823*x-933 3654374388708365 m001 (Artin+MertensB1)/(BesselI(1,1)+GAMMA(19/24)) 3654374400517441 r005 Im(z^2+c),c=-1/82+19/33*I,n=10 3654374410773024 r002 30i'th iterates of 2*x/(1-x^2) of 3654374413484567 l006 ln(6397/9219) 3654374428994742 m001 (Ei(1)-Artin)/(FeigenbaumMu+Lehmer) 3654374429391323 a001 18/24157817*8^(13/17) 3654374435859348 a007 Real Root Of -520*x^4-664*x^3+198*x^2+838*x-291 3654374442702664 m001 Khinchin+Thue^exp(-1/2*Pi) 3654374453732760 m001 (exp(1/exp(1))-Zeta(1,2))/(GAMMA(23/24)-Artin) 3654374476305869 a007 Real Root Of 33*x^4-989*x^3+450*x^2-636*x+220 3654374490648541 a007 Real Root Of 722*x^4-993*x^3+64*x^2-383*x+167 3654374493583684 r009 Im(z^3+c),c=-21/62+11/32*I,n=11 3654374499024143 m009 (2/3*Psi(1,3/4)+5)/(5*Psi(1,2/3)+3) 3654374512281898 r009 Im(z^3+c),c=-17/62+17/46*I,n=11 3654374520424768 a007 Real Root Of 297*x^4+920*x^3-646*x^2-360*x-758 3654374539423513 m001 sin(1/5*Pi)+sin(1/12*Pi)+FransenRobinson 3654374544391219 a001 1/1364*(1/2*5^(1/2)+1/2)^23*76^(9/19) 3654374546434017 r009 Re(z^3+c),c=-31/74+25/54*I,n=4 3654374566215148 a007 Real Root Of -213*x^4-752*x^3-175*x^2-907*x+310 3654374571270626 a007 Real Root Of 58*x^4-197*x^3+31*x^2-412*x+155 3654374576371309 m001 (Catalan+BesselI(0,2))/(-Lehmer+Porter) 3654374586306504 m001 1/FeigenbaumKappa^2*Robbin^2*exp(Zeta(1,2))^2 3654374588774290 r005 Im(z^2+c),c=-17/14+13/252*I,n=56 3654374588948219 m001 Pi*2^(1/2)/GAMMA(3/4)/(Porter-Weierstrass) 3654374599237355 r005 Im(z^2+c),c=-29/25+3/64*I,n=64 3654374603960122 m001 GAMMA(5/6)^CareFree-Sarnak 3654374607714823 a007 Real Root Of -11*x^4-397*x^3+191*x^2+339*x+412 3654374610417872 a007 Real Root Of -414*x^4+240*x^3+781*x^2+863*x-424 3654374611136960 l006 ln(5488/7909) 3654374613129933 m001 (Zeta(1/2)+Tribonacci)/Zeta(5) 3654374622596016 r009 Im(z^3+c),c=-31/86+1/3*I,n=21 3654374626286444 r009 Re(z^3+c),c=-16/29+37/59*I,n=45 3654374662529510 m001 ErdosBorwein^Ei(1)*ErdosBorwein^Chi(1) 3654374667026614 m004 -125*Pi+(36*Cosh[Sqrt[5]*Pi])/5 3654374668552251 r009 Re(z^3+c),c=-29/60+17/58*I,n=52 3654374672676917 r009 Re(z^3+c),c=-23/60+30/43*I,n=6 3654374701539089 l006 ln(8517/8834) 3654374720084689 r005 Im(z^2+c),c=7/20+3/49*I,n=5 3654374728274084 r005 Im(z^2+c),c=-15/122+13/25*I,n=46 3654374733832145 a007 Real Root Of -710*x^4+958*x^3-960*x^2-40*x+173 3654374735441629 m001 (Paris+TravellingSalesman)/(Si(Pi)+Artin) 3654374739416595 r005 Im(z^2+c),c=-37/54+4/61*I,n=12 3654374742947044 m001 1/Bloch^2*Conway*exp(FeigenbaumC) 3654374746921369 s002 sum(A159373[n]/(exp(pi*n)-1),n=1..infinity) 3654374756804773 r005 Re(z^2+c),c=-35/74+12/43*I,n=40 3654374759831476 a001 13/3*123^(47/51) 3654374760718626 r002 43th iterates of z^2 + 3654374774640500 h001 (3/4*exp(2)+1/2)/(4/7*exp(1)+1/10) 3654374780667419 m005 (1/3*3^(1/2)+1/12)/(4/7*3^(1/2)+9/11) 3654374819665904 r005 Re(z^2+c),c=-5/106+23/36*I,n=8 3654374823977893 m001 (gamma(2)-Kac)/(MadelungNaCl-ZetaQ(3)) 3654374836897163 r005 Re(z^2+c),c=-29/60+11/51*I,n=30 3654374868875116 r009 Im(z^3+c),c=-15/31+13/58*I,n=16 3654374870441175 r002 15th iterates of z^2 + 3654374875223454 l006 ln(143/5526) 3654374886517072 r005 Re(z^2+c),c=9/22+15/44*I,n=34 3654374887263261 l006 ln(4579/6599) 3654374892943323 m001 KhinchinLevy/Zeta(1,-1)/ReciprocalLucas 3654374924278069 m001 (HeathBrownMoroz+PlouffeB)/(ZetaP(4)+ZetaQ(2)) 3654374934472941 a007 Real Root Of 760*x^4+153*x^3-599*x^2-520*x+249 3654374934512771 a001 682/182717648081*377^(17/22) 3654374946626814 a008 Real Root of x^2-x-133910 3654374950420649 m001 exp(Pi)/((3^(1/3))-cos(Pi/5)) 3654374950420649 m001 exp(Pi)/(3^(1/3)-cos(1/5*Pi)) 3654374953843434 a007 Real Root Of 222*x^4+864*x^3+249*x^2+327*x+443 3654374961448386 a007 Real Root Of 181*x^4+427*x^3-990*x^2-328*x+581 3654374968402684 a007 Real Root Of 248*x^4+758*x^3-860*x^2-960*x+740 3654374974950227 a007 Real Root Of -50*x^4+808*x^3-582*x^2+933*x+459 3654374980517300 a003 cos(Pi*43/115)-cos(Pi*38/77) 3654374988775581 r005 Im(z^2+c),c=-37/64+17/40*I,n=41 3654375000991602 a007 Real Root Of 257*x^4-860*x^3+513*x^2+438*x+45 3654375022389974 m001 (Pi+cos(1))/(ln(5)-BesselK(1,1)) 3654375024653067 a001 505019158607/21*12586269025^(10/11) 3654375024653067 a001 1368706081/7*2504730781961^(10/11) 3654375024713206 m002 -Pi^4-Pi^5+Cosh[Pi]+Pi^5*Sech[Pi] 3654375032093285 r005 Im(z^2+c),c=11/34+7/39*I,n=52 3654375033262539 r009 Re(z^3+c),c=-8/19+3/14*I,n=22 3654375034754629 r005 Im(z^2+c),c=19/54+19/48*I,n=13 3654375042894838 a001 521*(1/2*5^(1/2)+1/2)^18*3^(3/17) 3654375065116927 r005 Im(z^2+c),c=-29/25+3/64*I,n=63 3654375075042550 a007 Real Root Of -495*x^4+839*x^3-562*x^2+400*x+271 3654375079215640 m001 exp(GAMMA(5/12))/MinimumGamma^2/Zeta(5)^2 3654375088296294 m001 (GlaisherKinkelin-OneNinth)/(3^(1/3)+Pi^(1/2)) 3654375092673582 r009 Im(z^3+c),c=-19/40+21/61*I,n=7 3654375095645094 m001 (exp(Pi)+Riemann3rdZero)/HeathBrownMoroz 3654375095816537 k001 Champernowne real with 72*n+293 3654375097402769 m005 (1/2*Zeta(3)-8/9)/(5/9*5^(1/2)-5/11) 3654375107693449 r005 Re(z^2+c),c=-73/114+19/60*I,n=45 3654375157148789 r005 Re(z^2+c),c=-10/19+4/23*I,n=9 3654375161552068 m001 (-Khinchin+Sarnak)/(Chi(1)-ln(2)/ln(10)) 3654375167593981 m001 (BesselI(0,1)+Conway*FeigenbaumD)/Conway 3654375170687300 r009 Im(z^3+c),c=-19/25+7/52*I,n=2 3654375176182959 a007 Real Root Of -943*x^4-772*x^3-898*x^2+406*x+16 3654375183781284 r005 Re(z^2+c),c=-121/94+4/61*I,n=2 3654375188028575 r005 Re(z^2+c),c=1/12+29/46*I,n=10 3654375201495185 a001 3571/13*1597^(20/57) 3654375203691068 r005 Re(z^2+c),c=-91/122+17/54*I,n=9 3654375204479385 a001 29/144*3^(32/59) 3654375214696332 r005 Im(z^2+c),c=-1/18+15/31*I,n=30 3654375237771761 a003 sin(Pi*13/98)*sin(Pi*19/53) 3654375249632827 r005 Im(z^2+c),c=-4/29+19/36*I,n=57 3654375253194454 r005 Im(z^2+c),c=-9/10+58/255*I,n=28 3654375254065841 m001 arctan(1/3)^BesselJ(1,1)*BesselK(1,1) 3654375259953923 m001 LandauRamanujan/BesselJZeros(0,1)*GAMMA(1/12) 3654375271712940 a007 Real Root Of -165*x^4-353*x^3+933*x^2+201*x+474 3654375287966224 r005 Im(z^2+c),c=-11/62+29/53*I,n=44 3654375300173639 l006 ln(3670/5289) 3654375313979467 r005 Re(z^2+c),c=-5/7+31/90*I,n=10 3654375321552441 k008 concat of cont frac of 3654375334377438 m001 MasserGramainDelta-gamma(2)-Porter 3654375343973582 q001 664/1817 3654375356795165 p001 sum(1/(101*n+6)/n/(256^n),n=0..infinity) 3654375365171438 a005 (1/cos(60/223*Pi))^20 3654375374376949 m001 (1+GAMMA(2/3))/(-gamma(3)+MasserGramain) 3654375387598969 m001 Ei(1)*Pi*csc(1/12*Pi)/GAMMA(11/12)/Gompertz 3654375388676920 v002 sum(1/(2^n+(57/2*n^2-69/2*n+7)),n=1..infinity) 3654375429260336 m001 (gamma(3)+Bloch)/(HardHexagonsEntropy-Paris) 3654375449063570 r005 Re(z^2+c),c=19/122+26/49*I,n=16 3654375457941104 a007 Real Root Of 704*x^4+115*x^3+130*x^2-437*x-184 3654375462694401 m001 1/Paris*ln(Lehmer)^2*log(2+sqrt(3)) 3654375470490326 r005 Im(z^2+c),c=11/42+13/51*I,n=45 3654375479475570 a007 Real Root Of 386*x^4-287*x^3+468*x^2-642*x-318 3654375480277330 b008 1/11+2*Pi*ProductLog[1] 3654375483850605 m005 (1/2*5^(1/2)-3/7)/(8/9*Zeta(3)+9/11) 3654375486736699 a007 Real Root Of 228*x^4+839*x^3-136*x^2-783*x-762 3654375490909478 m001 Zeta(1,2)^2*HardHexagonsEntropy*ln(sin(1))^2 3654375506245662 r005 Im(z^2+c),c=5/21+17/61*I,n=33 3654375506699007 r005 Im(z^2+c),c=-35/26+34/77*I,n=3 3654375512246282 a001 47*10946^(22/47) 3654375518244129 m001 Backhouse/Ei(1)*PlouffeB 3654375519157250 a007 Real Root Of 210*x^4+643*x^3-456*x^2-267*x-958 3654375529846978 a007 Real Root Of -220*x^4-527*x^3+957*x^2-176*x+93 3654375540791941 a001 29/28657*987^(41/48) 3654375545250811 m001 (Zeta(5)+Artin*QuadraticClass)/Artin 3654375548179352 r005 Im(z^2+c),c=-4/25+3/64*I,n=13 3654375560277440 r009 Im(z^3+c),c=-4/19+8/21*I,n=4 3654375581537730 a003 cos(Pi*25/82)-cos(Pi*45/104) 3654375594174036 l006 ln(6431/9268) 3654375597026623 r005 Re(z^2+c),c=9/25+5/47*I,n=25 3654375597306399 s001 sum(1/10^(n-1)*A197399[n]/n^n,n=1..infinity) 3654375597901817 m001 (Psi(2,1/3)-Rabbit)^Porter 3654375599185616 a007 Real Root Of 688*x^4-255*x^3+221*x^2-782*x-340 3654375605193963 r009 Im(z^3+c),c=-12/29+16/53*I,n=14 3654375619836120 a007 Real Root Of 194*x^4+482*x^3-968*x^2-528*x-78 3654375621081353 r002 46th iterates of z^2 + 3654375624498445 m001 Mills*CopelandErdos^QuadraticClass 3654375626952494 a003 cos(Pi*29/80)-cos(Pi*57/118) 3654375627861074 r005 Im(z^2+c),c=-3/44+28/57*I,n=56 3654375628236684 r005 Re(z^2+c),c=-2/3+33/113*I,n=62 3654375628817798 a007 Real Root Of -697*x^4-293*x^3-128*x^2+834*x+320 3654375631253272 r009 Re(z^3+c),c=-29/64+12/47*I,n=32 3654375631884828 r009 Im(z^3+c),c=-3/20+17/42*I,n=5 3654375644632633 m001 3^(1/3)/(Paris^HardHexagonsEntropy) 3654375654610678 a007 Real Root Of 374*x^4-396*x^3+112*x^2-531*x-235 3654375658060838 m001 1/OneNinth*TwinPrimes/exp(sin(Pi/12))^2 3654375663403770 a007 Real Root Of 544*x^4-369*x^3-553*x^2-835*x-259 3654375684725449 m001 (-CopelandErdos+Kac)/(Psi(1,1/3)+gamma) 3654375690169751 r005 Re(z^2+c),c=-8/17+7/24*I,n=53 3654375690237562 m001 (Lehmer-Thue)/(sin(1/5*Pi)-ln(2+3^(1/2))) 3654375698149981 r005 Im(z^2+c),c=11/82+27/64*I,n=8 3654375698397395 m001 1/Trott/GolombDickman^2/ln(sqrt(5))^2 3654375701815246 a005 (1/cos(13/187*Pi))^1299 3654375702648560 m001 (ThueMorse-BesselJZeros(0,1))^Zeta(1/2) 3654375713948306 a007 Real Root Of 211*x^4+491*x^3-839*x^2+938*x+964 3654375714077633 h005 exp(cos(Pi*17/43)+sin(Pi*23/54)) 3654375717292547 a007 Real Root Of 2*x^4-151*x^3-90*x^2-341*x-120 3654375730279000 m001 (Chi(1)+ln(5))/(-DuboisRaymond+MertensB1) 3654375731855685 a007 Real Root Of -228*x^4-750*x^3+178*x^2-694*x-853 3654375735386368 r005 Im(z^2+c),c=-11/21+26/59*I,n=15 3654375737155216 m001 (GAMMA(5/6)-GAMMA(19/24))/(Mills-ZetaP(4)) 3654375746868769 m001 (GAMMA(13/24)-Totient)/(Ei(1,1)+BesselK(1,1)) 3654375762612808 b008 31*SphericalBesselY[0,2/3] 3654375768146646 a001 13/167761*18^(22/41) 3654375773910042 m005 (1/5*Pi+2/3)/(1/5*exp(1)+3) 3654375775147003 a007 Real Root Of -11*x^4-380*x^3+781*x^2-812*x+81 3654375783690444 r002 8th iterates of z^2 + 3654375785763412 m006 (1/3*Pi-1/5)/(1/Pi+2) 3654375789175066 r002 18th iterates of z^2 + 3654375799658769 s001 sum(exp(-Pi/2)^(n-1)*A063201[n],n=1..infinity) 3654375833090710 r005 Im(z^2+c),c=-4/25+3/64*I,n=15 3654375863529828 r005 Im(z^2+c),c=9/82+13/34*I,n=22 3654375863659090 r002 23th iterates of z^2 + 3654375868106425 a007 Real Root Of 312*x^4+887*x^3-853*x^2+325*x+224 3654375873770508 s002 sum(A267651[n]/(n^3*exp(n)-1),n=1..infinity) 3654375884863551 m001 (Pi-Cahen)/(OneNinth+Stephens) 3654375885216898 r005 Im(z^2+c),c=-4/25+3/64*I,n=17 3654375890920907 r005 Im(z^2+c),c=-4/25+3/64*I,n=19 3654375891392772 r005 Im(z^2+c),c=-4/25+3/64*I,n=21 3654375891421688 r005 Im(z^2+c),c=-4/25+3/64*I,n=23 3654375891422414 r005 Im(z^2+c),c=-4/25+3/64*I,n=24 3654375891422420 r005 Im(z^2+c),c=-4/25+3/64*I,n=26 3654375891422464 r005 Im(z^2+c),c=-4/25+3/64*I,n=28 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=30 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=32 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=34 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=37 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=36 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=39 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=41 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=43 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=45 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=47 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=50 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=52 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=54 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=56 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=58 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=60 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=63 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=61 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=64 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=62 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=59 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=57 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=55 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=53 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=51 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=49 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=48 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=46 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=44 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=42 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=40 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=38 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=35 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=33 3654375891422471 r005 Im(z^2+c),c=-4/25+3/64*I,n=31 3654375891422474 r005 Im(z^2+c),c=-4/25+3/64*I,n=29 3654375891422492 r005 Im(z^2+c),c=-4/25+3/64*I,n=27 3654375891422570 r005 Im(z^2+c),c=-4/25+3/64*I,n=25 3654375891428336 r005 Im(z^2+c),c=-4/25+3/64*I,n=22 3654375891550635 r005 Im(z^2+c),c=-4/25+3/64*I,n=20 3654375893245353 r005 Im(z^2+c),c=-4/25+3/64*I,n=18 3654375911194217 r005 Im(z^2+c),c=-4/25+3/64*I,n=16 3654375939033938 m009 (5/12*Pi^2+4)/(5/6*Psi(1,2/3)-1/3) 3654375944008571 r005 Re(z^2+c),c=19/58+9/59*I,n=10 3654375945128815 r009 Im(z^3+c),c=-29/56+10/53*I,n=55 3654375957023219 m001 (GAMMA(13/24)+ZetaP(2))/(1-Shi(1)) 3654375968313071 m001 1/Zeta(5)^2*FransenRobinson^2/ln(Zeta(9)) 3654375984967742 l006 ln(2761/3979) 3654376010297806 a001 843/832040*6765^(8/55) 3654376016007931 r005 Im(z^2+c),c=9/122+24/59*I,n=34 3654376025143758 m001 3^(1/3)*Riemann3rdZero+Bloch 3654376030101982 r009 Im(z^3+c),c=-9/86+35/48*I,n=2 3654376034231618 h001 (-6*exp(2)+3)/(-9*exp(-1)-8) 3654376036382994 r009 Im(z^3+c),c=-47/86+17/37*I,n=30 3654376038771775 r005 Im(z^2+c),c=1/102+21/47*I,n=39 3654376046349995 r005 Im(z^2+c),c=-4/25+3/64*I,n=14 3654376056603361 r005 Re(z^2+c),c=-23/52+23/51*I,n=28 3654376062643457 m001 Rabbit^2*ln(LaplaceLimit)/LambertW(1) 3654376064613799 m001 GAMMA(11/12)^Sarnak*CopelandErdos^Sarnak 3654376070228504 h001 (5/11*exp(2)+5/6)/(1/11*exp(1)+9/10) 3654376084024082 a007 Real Root Of 209*x^4+495*x^3-911*x^2+22*x-870 3654376090288492 r005 Im(z^2+c),c=19/122+15/43*I,n=36 3654376103004822 r002 37th iterates of z^2 + 3654376109554846 m001 BesselI(1,1)^MertensB1/CopelandErdos 3654376116236964 r002 44i'th iterates of 2*x/(1-x^2) of 3654376134994786 m001 (FibonacciFactorial-Thue)/(GAMMA(3/4)-Ei(1,1)) 3654376140460088 m001 (5^(1/2)-gamma(1))/(-FeigenbaumKappa+Sarnak) 3654376166737874 r005 Re(z^2+c),c=-49/102+5/31*I,n=12 3654376178845442 m005 (1/2*gamma-6)/(6/7*Catalan+7/9) 3654376200129162 h001 (1/7*exp(1)+2/3)/(4/11*exp(2)+1/5) 3654376207061840 m001 gamma*(Rabbit-ZetaP(4)) 3654376221034120 r005 Re(z^2+c),c=-63/110+13/28*I,n=3 3654376227111071 k007 concat of cont frac of 3654376234193287 a003 sin(Pi*13/41)/cos(Pi*26/61) 3654376241988904 m005 (1/2*3^(1/2)+2/7)/(3/7*Zeta(3)-1/5) 3654376242825895 r005 Im(z^2+c),c=-23/34+45/122*I,n=24 3654376278034266 l006 ln(129/4985) 3654376278453782 v002 sum(1/(5^n+(29*n^2-30*n+38)),n=1..infinity) 3654376293984935 r005 Im(z^2+c),c=1/23+26/61*I,n=32 3654376315572194 a007 Real Root Of 630*x^4-235*x^3-136*x^2-891*x+344 3654376333939018 m001 (Otter-Trott2nd)/(Ei(1,1)+LandauRamanujan2nd) 3654376340887178 r005 Im(z^2+c),c=23/64+11/32*I,n=11 3654376350551939 r005 Im(z^2+c),c=-4/25+3/64*I,n=12 3654376358558827 a007 Real Root Of -832*x^4+808*x^3+626*x^2+347*x-235 3654376359627388 a001 726103/41*521^(15/31) 3654376366993524 r002 22th iterates of z^2 + 3654376393718444 r005 Im(z^2+c),c=-17/106+24/29*I,n=51 3654376402934452 r005 Im(z^2+c),c=-15/23+20/61*I,n=7 3654376410320852 r008 a(0)=5,K{-n^6,-32-19*n+24*n^2+28*n^3} 3654376418181650 m005 (5/6*gamma-3/4)/(-3/20+1/10*5^(1/2)) 3654376425126031 r009 Im(z^3+c),c=-39/94+13/43*I,n=33 3654376425200527 m001 KhintchineHarmonic/exp(Si(Pi))^2/Salem 3654376444541028 m001 (2^(1/2)+cos(1)*Zeta(5))/cos(1) 3654376444541028 m001 (sqrt(2)+cos(1)*Zeta(5))/cos(1) 3654376445461390 a001 167761/5*2504730781961^(17/21) 3654376445591237 a001 599074578/5*102334155^(17/21) 3654376447426470 m001 (Si(Pi)+MasserGramain)/(OneNinth+Stephens) 3654376448128668 m002 -5+Pi^2+Pi^3*Cosh[Pi]+Log[Pi] 3654376453765548 m001 (3^(1/2)-GAMMA(5/6))/(-Khinchin+MertensB2) 3654376458546495 m001 (ln(gamma)*Paris+PrimesInBinary)/Paris 3654376460601816 m001 Porter*ln(KhintchineHarmonic)/sqrt(5) 3654376479136945 m001 1/Si(Pi)*CopelandErdos^2*exp(Paris)^2 3654376479437645 a001 2139295485799/5*4181^(17/21) 3654376497790277 r009 Im(z^3+c),c=-11/62+21/53*I,n=14 3654376499098343 a007 Real Root Of -858*x^4-55*x^3-293*x^2+797*x+343 3654376508120861 a007 Real Root Of -664*x^4+196*x^3-910*x^2+542*x+341 3654376509857033 m001 (gamma(1)+FellerTornier)/(OneNinth+Stephens) 3654376512436663 m001 1/TwinPrimes/ln(FeigenbaumD)*cosh(1)^2 3654376529774635 l006 ln(4613/6648) 3654376531885571 m005 (1/2*5^(1/2)-9/10)/(5/6*Catalan-1/6) 3654376536647584 a003 cos(Pi*5/69)-cos(Pi*7/24) 3654376553365531 r005 Im(z^2+c),c=-17/66+4/7*I,n=51 3654376562328335 m001 Pi*2^(1/3)-sin(1/12*Pi)*GAMMA(19/24) 3654376563649237 r009 Re(z^3+c),c=-27/46+16/25*I,n=13 3654376572237853 m001 (Niven+ZetaQ(3))/(ln(2)-MasserGramain) 3654376580450708 m001 (Zeta(1,2)+ZetaQ(2))/(3^(1/3)-exp(1/exp(1))) 3654376592493462 m008 (1/2*Pi^3+2/3)/(3*Pi-5) 3654376611144008 m005 (1/2*2^(1/2)+1/4)/(4/5*exp(1)+4/9) 3654376612133760 a001 3571/956722026041*377^(17/22) 3654376614397646 a007 Real Root Of 260*x^4+878*x^3-147*x^2+511*x+310 3654376618607276 m001 1/GAMMA(23/24)^2/ln(Si(Pi))^2*Zeta(1/2) 3654376620275565 m001 GAMMA(2/3)^Landau/FellerTornier 3654376639106854 m001 (exp(1/Pi)+Otter)/(Salem+ZetaQ(3)) 3654376639845633 m005 (1/3*Catalan+1/10)/(1/2*exp(1)-1/4) 3654376644246265 r009 Re(z^3+c),c=-55/106+11/38*I,n=35 3654376654452206 a001 20633239/8*55^(2/23) 3654376655284364 r005 Im(z^2+c),c=-91/110+4/19*I,n=7 3654376663224583 b008 1/5+FresnelS[3]/3 3654376669689838 r005 Im(z^2+c),c=-1/38+29/62*I,n=28 3654376679694823 s002 sum(A069474[n]/(n^3*exp(n)-1),n=1..infinity) 3654376724354150 q001 1457/3987 3654376732648564 a007 Real Root Of -932*x^4+509*x^3-711*x^2+932*x+477 3654376757188481 m001 ln(GAMMA(3/4))/MadelungNaCl*Pi 3654376760831682 m001 exp(-1/2*Pi)/GAMMA(1/24)*ThueMorse 3654376762444670 l006 ln(6465/9317) 3654376786082025 a007 Real Root Of -185*x^4-856*x^3-723*x^2-180*x+216 3654376788331052 m005 (1/2*5^(1/2)+5/11)/(-37/60+1/12*5^(1/2)) 3654376795051973 m001 Pi*2^(1/2)/GAMMA(3/4)+(ln(2)/ln(10))^Otter 3654376796622247 p003 LerchPhi(1/16,4,144/199) 3654376804385172 a007 Real Root Of -136*x^4-292*x^3+467*x^2-947*x+307 3654376809154622 m005 (1/2*3^(1/2)+1/3)/(9/10*Pi+5/11) 3654376855375694 p004 log(33289/23099) 3654376856676138 a007 Real Root Of -283*x^4-932*x^3+284*x^2-404*x-282 3654376856895364 a001 9349/2504730781961*377^(17/22) 3654376863831304 m001 (Psi(2,1/3)+5^(1/2))/(-Chi(1)+ln(2)) 3654376864584425 m001 1/Paris/FeigenbaumB/exp(BesselK(1,1))^2 3654376872391858 r005 Im(z^2+c),c=-4/25+3/64*I,n=11 3654376875535605 r002 3th iterates of z^2 + 3654376880359473 m001 (Salem+TravellingSalesman)/polylog(4,1/2) 3654376892605600 a001 12238/3278735159921*377^(17/22) 3654376893879188 r005 Im(z^2+c),c=-17/114+8/15*I,n=49 3654376901035644 a001 13201/3536736619241*377^(17/22) 3654376914675740 a001 15127/4052739537881*377^(17/22) 3654376918801718 s001 sum(exp(-Pi/4)^n*A071431[n],n=1..infinity) 3654376920655339 r005 Im(z^2+c),c=-3/20+15/28*I,n=38 3654376929974557 m001 1/Ei(1)^2*ArtinRank2*ln(cosh(1))^2 3654376949382105 m001 Bloch-cos(1/5*Pi)^Chi(1) 3654376950296207 m001 ln(PrimesInBinary)^2/ArtinRank2^2/TwinPrimes^2 3654376972324301 r005 Re(z^2+c),c=-9/19+13/43*I,n=10 3654376974823466 r005 Im(z^2+c),c=25/98+7/26*I,n=16 3654376983367978 m004 Cos[Sqrt[5]*Pi]^2+36*Coth[Sqrt[5]*Pi] 3654376997369903 r005 Im(z^2+c),c=-115/98+1/21*I,n=50 3654376999898195 r005 Re(z^2+c),c=1/28+8/45*I,n=11 3654377008166354 a001 321/86000486440*377^(17/22) 3654377008947655 g005 Pi*csc(2/5*Pi)*GAMMA(7/10)*GAMMA(1/9) 3654377050512769 r009 Im(z^3+c),c=-43/126+17/50*I,n=6 3654377060306130 m001 BesselI(0,1)^GAMMA(1/12)/ThueMorse 3654377071911070 p004 log(19993/13873) 3654377078781515 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*(ln(Pi)+Ei(1,1)) 3654377078953951 a007 Real Root Of 219*x^4+864*x^3-3*x^2-731*x+477 3654377089121726 r002 7th iterates of z^2 + 3654377095655465 m001 (ln(Pi)+2/3)/(-exp(-Pi)+5) 3654377097259757 m001 Artin-Trott2nd^PisotVijayaraghavan 3654377100172475 l006 ln(244/9429) 3654377103170339 a001 9349/13*2584^(6/29) 3654377104907783 r005 Im(z^2+c),c=-55/54+6/23*I,n=4 3654377106494635 m005 (1/2*3^(1/2)+6)/(6/7*2^(1/2)+2/3) 3654377110088058 r005 Im(z^2+c),c=5/23+14/47*I,n=31 3654377112163677 m005 (1/2*gamma-6/11)/(9/11*3^(1/2)-5/7) 3654377117218430 a007 Real Root Of -778*x^4-43*x^3-357*x^2+890*x+33 3654377118356119 r009 Re(z^3+c),c=-1/74+50/63*I,n=51 3654377118810760 a007 Real Root Of -648*x^4+782*x^3-819*x^2-304*x+48 3654377123643407 r002 23th iterates of z^2 + 3654377124954966 m006 (1/4*exp(Pi)+4)/(5*exp(2*Pi)+1/5) 3654377125093566 r009 Im(z^3+c),c=-29/86+11/21*I,n=3 3654377131719993 q001 9/24628 3654377140229445 b008 (1+9*E^(1/6))*Pi 3654377157526517 a003 cos(Pi*8/85)/cos(Pi*59/120) 3654377173729217 a001 317811/4*11^(7/11) 3654377182632032 r005 Im(z^2+c),c=1/44+18/41*I,n=44 3654377188787337 m001 (BesselK(0,1)-HardyLittlewoodC3)/(Pi+exp(1)) 3654377188918093 m001 1/Zeta(5)*Zeta(3)/exp(gamma)^2 3654377190755631 a001 2504730781961/843*322^(5/6) 3654377206183078 r009 Im(z^3+c),c=-10/19+7/34*I,n=47 3654377208996532 a001 956722026041/76*11^(4/9) 3654377211472272 m001 FeigenbaumKappa/ln(Si(Pi))/BesselK(1,1) 3654377218603157 r002 3th iterates of z^2 + 3654377232099448 s002 sum(A215106[n]/(n*10^n-1),n=1..infinity) 3654377241880163 r005 Im(z^2+c),c=-5/94+9/20*I,n=8 3654377277911699 a001 3/433494437*365435296162^(1/16) 3654377277911699 a001 3/267914296*165580141^(1/16) 3654377277919814 a001 3/165580141*75025^(1/16) 3654377280701922 m005 (2*gamma-1/4)/(Pi-2/3) 3654377288588128 m005 (1/2*exp(1)-7/12)/(-3/28+1/7*5^(1/2)) 3654377302351078 r005 Re(z^2+c),c=-25/58+14/31*I,n=62 3654377314217064 r009 Im(z^3+c),c=-9/23+19/60*I,n=26 3654377314564916 r009 Re(z^3+c),c=-37/94+12/61*I,n=3 3654377323658649 m001 exp(Riemann3rdZero)/Lehmer^2/LambertW(1) 3654377328125494 r002 33th iterates of z^2 + 3654377330630006 a008 Real Root of x^4-x^3+4*x^2+117*x+147 3654377341148541 r005 Re(z^2+c),c=17/70+20/41*I,n=46 3654377341983994 l006 ln(1852/2669) 3654377390896576 a007 Real Root Of 73*x^4+66*x^3-620*x^2+306*x-400 3654377395592446 p004 log(13873/359) 3654377408910042 h001 (6/7*exp(2)+1/9)/(1/5*exp(2)+2/7) 3654377409773710 m005 (1/2*2^(1/2)-4/7)/(1/11*Catalan-5/11) 3654377429824767 r005 Im(z^2+c),c=-4/29+19/36*I,n=54 3654377434633381 b008 1/3+LogGamma[E]/14 3654377452216456 m001 (Pi+ln(Pi))/(FibonacciFactorial-ZetaQ(2)) 3654377453015133 r009 Im(z^3+c),c=-9/23+19/60*I,n=29 3654377453147852 r009 Im(z^3+c),c=-65/126+25/61*I,n=33 3654377453674093 r005 Im(z^2+c),c=-9/25+2/35*I,n=19 3654377454085878 r005 Re(z^2+c),c=-61/94+1/5*I,n=4 3654377462200796 m001 1/exp(GAMMA(11/24))^2*PrimesInBinary^2/Pi^2 3654377471956612 r005 Im(z^2+c),c=-19/36+2/31*I,n=43 3654377475601350 a001 96450076809/305*6557470319842^(16/17) 3654377476783478 s002 sum(A183087[n]/(n*exp(n)+1),n=1..infinity) 3654377480632036 a007 Real Root Of 76*x^4-419*x^3+542*x^2-503*x-278 3654377489007379 r005 Im(z^2+c),c=-11/106+46/61*I,n=27 3654377490353866 r005 Im(z^2+c),c=-1/7+26/49*I,n=47 3654377500945839 m001 (ln(Pi)+3^(1/3)*polylog(4,1/2))/polylog(4,1/2) 3654377523075176 r009 Re(z^3+c),c=-17/36+17/48*I,n=12 3654377549410183 r005 Re(z^2+c),c=-13/82+27/44*I,n=17 3654377559100290 m001 (exp(Pi)-ln(Pi))/BesselK(1,1) 3654377579099464 a007 Real Root Of -950*x^4-688*x^3-694*x^2+933*x+417 3654377580206566 r005 Im(z^2+c),c=-3/4+84/251*I,n=6 3654377582682513 a001 29/6765*1597^(43/47) 3654377584990976 r005 Re(z^2+c),c=-151/118+2/59*I,n=50 3654377588954604 m001 (ln(gamma)+gamma(2))^(3^(1/2)) 3654377599156161 r009 Re(z^3+c),c=-2/29+30/43*I,n=45 3654377600457521 r002 23th iterates of z^2 + 3654377616584714 a001 2/123*3571^(50/53) 3654377616919589 m001 1/BesselK(1,1)^2/Magata^2/ln(GAMMA(23/24))^2 3654377626335577 r005 Re(z^2+c),c=9/110+37/59*I,n=48 3654377641495944 a007 Real Root Of 946*x^4+429*x^3+158*x^2-788*x-305 3654377648960551 a001 2207/591286729879*377^(17/22) 3654377657996963 r005 Im(z^2+c),c=-23/62+3/52*I,n=16 3654377671727405 r005 Re(z^2+c),c=-35/78+19/49*I,n=55 3654377671989959 a001 11/514229*21^(55/59) 3654377686422294 a007 Real Root Of 377*x^4-594*x^3+602*x^2-900*x-445 3654377693646506 r002 49i'th iterates of 2*x/(1-x^2) of 3654377710438364 a007 Real Root Of -230*x^4-758*x^3+38*x^2-755*x+760 3654377721089617 m006 (4*Pi^2-1/3)/(2*exp(2*Pi)+1/5) 3654377740777638 m005 (17/20+1/4*5^(1/2))/(1/4*gamma-4) 3654377762645674 a003 sin(Pi*7/73)/sin(Pi*19/63) 3654377765843383 m001 Champernowne*(GAMMA(5/6)+FeigenbaumC) 3654377770688385 r009 Re(z^3+c),c=-51/94+15/46*I,n=4 3654377775172767 a007 Real Root Of 324*x^4-232*x^3-299*x^2-494*x+226 3654377782862743 m009 (1/10*Pi^2+5/6)/(5*Psi(1,1/3)-2/3) 3654377789270059 r005 Re(z^2+c),c=3/20+21/34*I,n=43 3654377791811938 m001 (Rabbit+Salem)/(Chi(1)-arctan(1/3)) 3654377792022514 m001 (Paris-Stephens)/(Cahen+LaplaceLimit) 3654377797259275 r005 Re(z^2+c),c=-9/74+40/63*I,n=29 3654377797501614 r005 Im(z^2+c),c=-22/29+1/10*I,n=23 3654377799254574 m005 (1/2*3^(1/2)-10/11)/(1/3*Zeta(3)+7/9) 3654377821541372 m005 (5/6*Pi+1/4)/(2/3*gamma+2/5) 3654377851916828 m004 (125*Pi)/2-Sinh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/3 3654377853661387 h001 (7/12*exp(2)+5/9)/(1/6*exp(2)+1/10) 3654377858658944 r005 Im(z^2+c),c=1/50+26/59*I,n=46 3654377872532874 r005 Im(z^2+c),c=-22/23+2/59*I,n=3 3654377880184331 q001 793/2170 3654377880184331 r002 2th iterates of z^2 + 3654377881177125 a001 199/1346269*21^(11/37) 3654377882946990 r005 Re(z^2+c),c=-55/106+7/37*I,n=11 3654377892200870 m001 ZetaQ(4)/(Landau^Conway) 3654377895200128 m009 (1/10*Pi^2+6)/(1/5*Psi(1,1/3)-2) 3654377896139789 r005 Im(z^2+c),c=-4/21+19/34*I,n=43 3654377901607081 m001 (1-ln(2)/ln(10))/(-Ei(1)+Riemann2ndZero) 3654377905586708 r005 Im(z^2+c),c=-69/94+9/43*I,n=54 3654377911154807 m005 (1/2*Catalan-9/11)/(7/12*exp(1)-3/5) 3654377912399156 h001 (-exp(4)+8)/(-6*exp(3)-7) 3654377918491381 l006 ln(6499/9366) 3654377920700029 r005 Re(z^2+c),c=-23/50+13/38*I,n=41 3654377933165199 r005 Re(z^2+c),c=-29/60+13/60*I,n=38 3654377945407024 a007 Real Root Of -174*x^4-536*x^3-423*x^2+869*x+351 3654377955447468 r002 53th iterates of z^2 + 3654377957316728 a007 Real Root Of 968*x^4-179*x^3+246*x^2-991*x-421 3654377958847736 s002 sum(A268264[n]/(16^n),n=1..infinity) 3654377971865661 m001 exp(1)*exp(Paris)^3 3654377974684262 a007 Real Root Of -182*x^4-521*x^3+337*x^2-776*x-304 3654377979250915 r005 Im(z^2+c),c=-17/30+8/121*I,n=34 3654377995316243 m001 1/exp(GAMMA(1/24))^2/Si(Pi)^2/gamma^2 3654377996498490 r005 Re(z^2+c),c=11/46+1/40*I,n=12 3654378000907387 r005 Im(z^2+c),c=21/64+9/43*I,n=18 3654378005946501 m001 (HeathBrownMoroz+Tribonacci)/(Pi+Ei(1)) 3654378022396270 l006 ln(115/4444) 3654378041095399 a007 Real Root Of -20*x^4-741*x^3-364*x^2+222*x+122 3654378041501503 m001 3^(1/2)+MadelungNaCl+ZetaP(3) 3654378053609978 r005 Im(z^2+c),c=-37/58+5/11*I,n=29 3654378069663202 m009 (3*Pi^2+1)/(2*Psi(1,3/4)-5) 3654378076048954 r005 Im(z^2+c),c=9/122+24/59*I,n=35 3654378082855411 a001 5473/161*76^(17/31) 3654378098051848 s002 sum(A269804[n]/((exp(n)-1)/n),n=1..infinity) 3654378112954660 r005 Im(z^2+c),c=-17/78+41/59*I,n=51 3654378114157037 a007 Real Root Of -599*x^4-298*x^3-510*x^2+771*x+346 3654378127838022 a001 1548008755920/199*199^(8/11) 3654378148250718 l006 ln(4647/6697) 3654378150551904 r005 Im(z^2+c),c=-17/110+31/51*I,n=38 3654378157774275 m001 (3^(1/3))^(FeigenbaumC/polylog(4,1/2)) 3654378165284240 m001 StolarskyHarborth^MertensB2-TreeGrowth2nd 3654378169053242 r005 Re(z^2+c),c=-17/40+16/47*I,n=11 3654378171284733 m001 sin(1/12*Pi)^FeigenbaumAlpha*OneNinth 3654378171284733 m001 sin(Pi/12)^FeigenbaumAlpha*OneNinth 3654378171543450 r005 Re(z^2+c),c=33/118+1/17*I,n=64 3654378181331805 r009 Im(z^3+c),c=-23/54+18/61*I,n=36 3654378183856233 m001 (cos(1)+gamma(1))/(-CareFree+FeigenbaumB) 3654378187872676 m001 (2^(1/3)+BesselI(0,1))/(-ln(2+3^(1/2))+Kac) 3654378187908250 m001 Paris*(Pi*csc(11/24*Pi)/GAMMA(13/24)+Pi^(1/2)) 3654378195043445 m004 4/3+Pi/Sqrt[5]+Tan[Sqrt[5]*Pi] 3654378201312874 m001 GAMMA(3/4)*GAMMA(7/12)+exp(gamma) 3654378205753847 a007 Real Root Of -149*x^4+271*x^3-946*x^2+637*x+375 3654378218050530 a001 521/1597*832040^(9/26) 3654378221264447 a007 Real Root Of -34*x^4+256*x^3-532*x^2+878*x+405 3654378235226856 r005 Re(z^2+c),c=-35/64+2/63*I,n=8 3654378243882424 a007 Real Root Of 240*x^4+969*x^3+183*x^2-586*x-98 3654378270377089 r002 10th iterates of z^2 + 3654378281794654 g007 Psi(2,3/10)-Psi(2,7/11)-Psi(2,3/7)-Psi(2,5/6) 3654378291484072 m001 Pi-ln(2)/ln(10)-cos(1)+GAMMA(2/3) 3654378302943298 m001 (MertensB1-Sarnak)/(BesselK(1,1)+LaplaceLimit) 3654378307762794 a003 cos(Pi*23/61)*sin(Pi*27/64) 3654378309449046 a001 76/514229*13^(6/17) 3654378333047605 r005 Re(z^2+c),c=-37/82+14/31*I,n=22 3654378336383902 r009 Im(z^3+c),c=-3/31+20/49*I,n=4 3654378340565069 m001 GAMMA(11/12)/GAMMA(3/4)/CopelandErdos 3654378345305995 r009 Im(z^3+c),c=-33/64+5/24*I,n=53 3654378346527078 r005 Re(z^2+c),c=-37/78+16/59*I,n=36 3654378355330151 r002 23th iterates of z^2 + 3654378366267591 r005 Re(z^2+c),c=-7/8+86/223*I,n=4 3654378391005150 a007 Real Root Of -268*x^4-894*x^3+99*x^2-543*x+860 3654378393174078 m001 ln((3^(1/3)))^2/GolombDickman/sin(Pi/5) 3654378398279069 m001 (HardyLittlewoodC3+ZetaP(2))/(Chi(1)-cos(1)) 3654378398695267 a007 Real Root Of 140*x^4+372*x^3-527*x^2-268*x-755 3654378407543241 a008 Real Root of x^3-1218*x-4292 3654378422962580 a001 10610209857723/1364*322^(2/3) 3654378424044191 h001 (8/9*exp(2)+3/4)/(7/11*exp(1)+3/11) 3654378429434913 m001 HardHexagonsEntropy*(Riemann3rdZero+Salem) 3654378448938470 a007 Real Root Of -121*x^4+157*x^3+880*x^2+643*x-358 3654378455853878 r005 Re(z^2+c),c=-8/17+7/24*I,n=54 3654378476322262 m005 (3/4*gamma-2)/(-17/24+1/8*5^(1/2)) 3654378476434475 r002 62th iterates of z^2 + 3654378478388894 m001 ZetaP(4)/(FeigenbaumC^GAMMA(3/4)) 3654378482851922 r005 Re(z^2+c),c=-15/31+10/47*I,n=48 3654378490221522 m001 (-LaplaceLimit+Porter)/(Catalan+GAMMA(17/24)) 3654378490850373 p003 LerchPhi(1/125,4,389/170) 3654378504600091 r009 Re(z^3+c),c=-13/29+4/7*I,n=5 3654378534230396 r002 12th iterates of z^2 + 3654378545671412 m005 (1/2*gamma-9/10)/(10/11*Catalan-1) 3654378559694095 a001 47/3524578*63245986^(5/16) 3654378559694154 a001 47/39088169*139583862445^(5/16) 3654378559979510 a001 47/317811*28657^(5/16) 3654378584719705 a007 Real Root Of 557*x^4+35*x^3-373*x^2-410*x+188 3654378586798284 r005 Im(z^2+c),c=-11/32+27/44*I,n=11 3654378596796910 m001 Catalan*ln(Kolakoski)*log(2+sqrt(3))^2 3654378610811875 m001 (Backhouse+FeigenbaumKappa)/(OneNinth+Robbin) 3654378612268409 r009 Re(z^3+c),c=-33/86+9/55*I,n=13 3654378622506289 m005 (15/44+1/4*5^(1/2))/(5/6*gamma-8/11) 3654378645667857 a001 4807525989*322^(3/4) 3654378649326724 m005 (1/2*gamma+5)/(1/3*Pi+2/5) 3654378660398401 s002 sum(A211828[n]/(exp(2/5*pi*n)),n=1..infinity) 3654378661746360 s002 sum(A279312[n]/((exp(n)+1)/n),n=1..infinity) 3654378664271996 m001 Conway^TreeGrowth2nd/HardyLittlewoodC4 3654378682492533 l006 ln(2795/4028) 3654378682921326 v002 sum(1/(5^n+(13/2*n^2+63/2*n+1)),n=1..infinity) 3654378690208398 a007 Real Root Of 137*x^4+592*x^3+381*x^2+139*x-122 3654378702222330 p004 log(12791/331) 3654378702254889 m001 1/Salem^2*Riemann3rdZero/ln(GAMMA(13/24)) 3654378702515354 a003 sin(Pi*3/77)/sin(Pi*9/83) 3654378703027351 r005 Re(z^2+c),c=-4/3+52/185*I,n=2 3654378705811999 a007 Real Root Of 325*x^4+928*x^3-626*x^2+970*x-768 3654378714104987 m001 GAMMA(23/24)^2/MinimumGamma^2*exp(Zeta(9))^2 3654378735605548 a007 Real Root Of 784*x^4-533*x^3-90*x^2-115*x-70 3654378750841526 r005 Im(z^2+c),c=-9/44+38/63*I,n=29 3654378762082316 m001 (ln(3)+BesselI(1,2))/(Zeta(5)-ln(2)/ln(10)) 3654378769011921 m001 FransenRobinson*(Conway-gamma(3)) 3654378779730288 a007 Real Root Of -664*x^4+994*x^3-129*x^2+688*x+329 3654378786946465 r005 Re(z^2+c),c=-29/60+7/32*I,n=22 3654378804796679 m001 (Bloch-Landau)/(cos(1/5*Pi)+ln(Pi)) 3654378812564614 b008 16-3*SinhIntegral[E] 3654378822697127 m001 (Lehmer-MadelungNaCl)/(Paris-PrimesInBinary) 3654378822815034 m005 (1/2*Pi-9/11)/(6/7*5^(1/2)+1/7) 3654378843196133 a007 Real Root Of -220*x^4-888*x^3-115*x^2+861*x+581 3654378855380526 m005 (1/2*Zeta(3)-9/11)/(1/10*gamma-6) 3654378864697807 m001 (1+gamma)/(-sin(1)+HardyLittlewoodC5) 3654378864744539 h001 (-2*exp(-1)-6)/(-3*exp(2/3)+4) 3654378867963043 m001 Artin-Ei(1,1)^Pi 3654378870800966 r005 Re(z^2+c),c=37/126+20/43*I,n=13 3654378881139895 a001 24476/13*17711^(4/59) 3654378881707269 a007 Real Root Of 228*x^4+900*x^3+281*x^2+65*x-255 3654378889068834 a008 Real Root of x^3-x^2-150*x-486 3654378896458191 m001 ln(Catalan)^2/KhintchineHarmonic^2*Zeta(3)^2 3654378902581632 a001 1/416020*28657^(2/49) 3654378904815921 b008 Sqrt[5]+5*Cos[5] 3654378916210858 m008 (3*Pi^5-3/4)/(5/6*Pi^5-4) 3654378936003095 b008 E-9*Haversine[2] 3654378952386010 r005 Im(z^2+c),c=-23/114+7/13*I,n=24 3654378981302916 r005 Re(z^2+c),c=-125/102+9/61*I,n=50 3654378990779737 a007 Real Root Of -259*x^4+447*x^3+518*x^2+601*x-306 3654379000486413 r002 5th iterates of z^2 + 3654379014441457 a007 Real Root Of -52*x^4-24*x^3+409*x^2-470*x+923 3654379015028317 m001 LandauRamanujan^(1/StolarskyHarborth) 3654379032668982 r009 Re(z^3+c),c=-63/122+7/34*I,n=8 3654379038931559 m002 -4+Pi^2+Pi^3-Tanh[Pi]/3 3654379041796560 m002 -3+Pi^3-3*Coth[Pi]+Sinh[Pi] 3654379048699004 r002 19th iterates of z^2 + 3654379062505024 l006 ln(6533/9415) 3654379064166571 l006 ln(216/8347) 3654379064721652 p001 sum((-1)^n/(523*n+324)/n/(32^n),n=1..infinity) 3654379078518141 a007 Real Root Of 245*x^4+659*x^3-702*x^2+711*x+440 3654379078787011 r002 4th iterates of z^2 + 3654379089360410 m002 -3*Pi^2-Cosh[Pi]+5/ProductLog[Pi] 3654379096353509 m005 (1/24+1/6*5^(1/2))/(2/11*5^(1/2)+8/11) 3654379101157954 a002 11^(2/3)-6^(1/7) 3654379101212321 r005 Im(z^2+c),c=-5/31+11/17*I,n=64 3654379123657701 m001 (3^(1/3))^ZetaQ(4)-HardyLittlewoodC3 3654379144662001 r005 Re(z^2+c),c=-15/26+7/27*I,n=11 3654379153222472 a001 505019158607/1597*6557470319842^(16/17) 3654379178958630 a007 Real Root Of -200*x^4-598*x^3+588*x^2+533*x+580 3654379191261467 m001 Sarnak^PlouffeB/Pi/csc(1/24*Pi)*GAMMA(23/24) 3654379215671397 r009 Im(z^3+c),c=-25/64+13/41*I,n=21 3654379235552581 m001 cos(1)^(exp(sqrt(2))/BesselJ(0,1)) 3654379238100273 r002 38th iterates of z^2 + 3654379244968496 a001 2/1149851*76^(6/35) 3654379247408119 r005 Im(z^2+c),c=-81/98+1/49*I,n=42 3654379295508720 r005 Re(z^2+c),c=-8/19+14/31*I,n=34 3654379328545219 m001 Pi^(1/2)*PisotVijayaraghavan+Mills 3654379331053714 r009 Re(z^3+c),c=-9/28+2/49*I,n=6 3654379346650256 l006 ln(3738/5387) 3654379350502195 m005 (-23/36+1/4*5^(1/2))/(10/11*2^(1/2)+9/10) 3654379359183859 r005 Im(z^2+c),c=-11/16+9/104*I,n=55 3654379362803573 m001 (GAMMA(23/24)-Totient)/Thue 3654379371021008 r004 Re(z^2+c),c=-5/7-4/19*I,z(0)=-1,n=3 3654379375046131 r005 Im(z^2+c),c=-25/62+12/25*I,n=11 3654379393380463 m005 (1/2*Pi-5)/(5/6*Catalan-6/7) 3654379397984224 a001 1322157322203/4181*6557470319842^(16/17) 3654379402676192 m001 ln((2^(1/3)))/CareFree*GAMMA(11/12)^2 3654379418557920 r005 Re(z^2+c),c=-31/70+16/39*I,n=40 3654379430283126 r009 Re(z^3+c),c=-5/19+47/64*I,n=10 3654379433062349 r005 Re(z^2+c),c=-35/34+11/92*I,n=8 3654379433694485 a001 1730726404001/5473*6557470319842^(16/17) 3654379437647203 a007 Real Root Of 827*x^4+837*x^3-226*x^2-937*x+317 3654379438904542 a001 9062201101803/28657*6557470319842^(16/17) 3654379439664679 a001 23725150497407/75025*6557470319842^(16/17) 3654379440134470 a001 3665737348901/11592*6557470319842^(16/17) 3654379442124534 a001 5600748293801/17711*6557470319842^(16/17) 3654379445170369 m005 (1/2*gamma+1/9)/(4/9*5^(1/2)+1/10) 3654379446575206 r005 Re(z^2+c),c=2/19+13/32*I,n=27 3654379455764640 a001 2139295485799/6765*6557470319842^(16/17) 3654379459691130 a007 Real Root Of -794*x^4+811*x^3+158*x^2+15*x-52 3654379482793831 h001 (6/11*exp(1)+6/11)/(1/7*exp(1)+1/6) 3654379501664785 m001 (Robbin+TwinPrimes)/(Pi+PlouffeB) 3654379502377132 a007 Real Root Of -794*x^4-678*x^3+95*x^2+880*x+32 3654379502905392 g007 Psi(2,7/11)-2*Psi(2,5/12)-Psi(13/10) 3654379513103927 m001 (2^(1/3))-BesselI(0,2)^GAMMA(11/24) 3654379533455376 r005 Re(z^2+c),c=-8/17+7/24*I,n=63 3654379536505595 a007 Real Root Of -201*x^4-462*x^3+820*x^2-615*x+102 3654379549255322 a001 204284540899/646*6557470319842^(16/17) 3654379551661356 r005 Im(z^2+c),c=-73/78+7/24*I,n=3 3654379553044755 r009 Re(z^3+c),c=-10/23+13/56*I,n=31 3654379556511676 r008 a(0)=4,K{-n^6,22-28*n+26*n^2-18*n^3} 3654379569799770 a001 2178309/11*3^(29/52) 3654379577956405 r005 Re(z^2+c),c=-23/18+7/173*I,n=30 3654379580849676 m005 (1/2*3^(1/2)-3/5)/(3*5^(1/2)+4/7) 3654379587236419 m001 (Salem-Totient)/(Pi+MertensB3) 3654379596340123 m005 (1/3*exp(1)-1/2)/(3/8*5^(1/2)+3/11) 3654379596489246 h001 (5/8*exp(2)+3/8)/(3/11*exp(1)+5/8) 3654379597777165 p003 LerchPhi(1/256,5,169/219) 3654379608557123 r009 Im(z^3+c),c=-1/25+6/13*I,n=2 3654379622515332 r005 Im(z^2+c),c=1/50+26/59*I,n=43 3654379628054273 m005 (1/2*Pi-4)/(1/3*gamma-6/7) 3654379629637109 m001 (ln(2)-gamma(2))/(Robbin-Sierpinski) 3654379641300498 b008 1/3+Cot[1]/20 3654379660686249 m001 PlouffeB/(Conway-gamma(3)) 3654379664266874 m001 FransenRobinson+GlaisherKinkelin*TwinPrimes 3654379667969687 a001 76/13*2584^(10/19) 3654379670964963 m001 1/ln(Zeta(3))*MertensB1^2/Zeta(7)^2 3654379671141992 r005 Re(z^2+c),c=-41/94+14/29*I,n=48 3654379673049821 m001 exp(Si(Pi))^2/ArtinRank2^2*Robbin^2 3654379677518694 r009 Im(z^3+c),c=-1/50+27/34*I,n=6 3654379684364306 r005 Re(z^2+c),c=-16/29+26/43*I,n=43 3654379686030910 r005 Im(z^2+c),c=-11/106+46/61*I,n=30 3654379690394441 a001 199/121393*377^(5/37) 3654379690771434 m001 (OneNinth+Thue)/(exp(1)+gamma(1)) 3654379693059779 r005 Re(z^2+c),c=-13/110+51/52*I,n=11 3654379703459442 p004 log(36209/937) 3654379706698374 q001 922/2523 3654379721607581 a007 Real Root Of -169*x^4-483*x^3+338*x^2-366*x+717 3654379724850956 m001 Pi-(1-Si(Pi))*BesselK(1,1) 3654379729854000 r005 Im(z^2+c),c=1/18+18/43*I,n=24 3654379731351569 r005 Im(z^2+c),c=-9/70+25/47*I,n=24 3654379743215249 l006 ln(4681/6746) 3654379747396504 r002 53th iterates of z^2 + 3654379752385489 r005 Im(z^2+c),c=-11/106+46/61*I,n=36 3654379762958391 r005 Re(z^2+c),c=-8/17+7/24*I,n=60 3654379768782419 a007 Real Root Of -87*x^4-20*x^3+14*x^2+466*x+169 3654379775450778 r005 Im(z^2+c),c=-11/106+46/61*I,n=39 3654379776527619 r005 Im(z^2+c),c=-11/106+46/61*I,n=45 3654379776768464 r005 Im(z^2+c),c=-11/106+46/61*I,n=48 3654379776784151 r005 Im(z^2+c),c=-11/106+46/61*I,n=54 3654379776786651 r005 Im(z^2+c),c=-11/106+46/61*I,n=57 3654379776786866 r005 Im(z^2+c),c=-11/106+46/61*I,n=63 3654379776787084 r005 Im(z^2+c),c=-11/106+46/61*I,n=60 3654379776803774 r005 Im(z^2+c),c=-11/106+46/61*I,n=51 3654379776812930 m001 (gamma(1)-Rabbit)/(Pi-1) 3654379777727473 l006 ln(2230/2313) 3654379778289056 r005 Im(z^2+c),c=-11/106+46/61*I,n=42 3654379795446467 r005 Im(z^2+c),c=-7/25+23/28*I,n=10 3654379809807212 m001 (MertensB3+Robbin)/(Psi(2,1/3)-ln(gamma)) 3654379810796137 r002 10th iterates of z^2 + 3654379818519589 a003 sin(Pi*5/68)/cos(Pi*33/116) 3654379823005024 h005 exp(cos(Pi*7/40)/sin(Pi*8/35)) 3654379836881930 a007 Real Root Of -238*x^4+874*x^3-510*x^2+489*x-149 3654379838128109 r009 Im(z^3+c),c=-53/126+17/58*I,n=7 3654379850058836 a007 Real Root Of -184*x^4-512*x^3+763*x^2+682*x+131 3654379850998450 r005 Re(z^2+c),c=-15/31+10/47*I,n=44 3654379864372833 r009 Im(z^3+c),c=-17/94+19/48*I,n=8 3654379879839164 m001 (Cahen+CopelandErdos)/(exp(Pi)+Catalan) 3654379887099193 a001 233/521*14662949395604^(19/21) 3654379895486999 r005 Re(z^2+c),c=33/118+1/17*I,n=63 3654379898866496 a007 Real Root Of 204*x^4+503*x^3-971*x^2-411*x-369 3654379898904365 m001 (-TwinPrimes+ZetaP(2))/(Pi^(1/2)-Psi(2,1/3)) 3654379901478875 m001 1/FransenRobinson/ln(Conway)^2*Khintchine^2 3654379910141211 r005 Im(z^2+c),c=-11/106+46/61*I,n=33 3654379926929389 m001 Porter*(DuboisRaymond-Khinchin) 3654379930013320 m009 (1/4*Psi(1,3/4)+2/5)/(4/5*Psi(1,3/4)+4/5) 3654379930941910 r009 Im(z^3+c),c=-3/106+12/29*I,n=12 3654379935900672 m008 (3*Pi^4+2/5)/(5/6*Pi^6-2/5) 3654379938698317 a001 3/196418*377^(5/34) 3654379938783707 r002 30th iterates of z^2 + 3654379943057266 r005 Im(z^2+c),c=-1/23+23/47*I,n=16 3654379943669566 r002 53th iterates of z^2 + 3654379974182933 a007 Real Root Of 114*x^4+727*x^3+987*x^2-482*x+206 3654379977625186 a007 Real Root Of -326*x^4-997*x^3+415*x^2-959*x+437 3654379978355823 a001 29/46368*377^(24/35) 3654379987537129 r005 Re(z^2+c),c=-35/82+25/56*I,n=22 3654379997483862 r005 Im(z^2+c),c=-1/86+17/37*I,n=32 3654380006792756 l006 ln(5624/8105) 3654380027919396 m001 Khinchin/KhinchinHarmonic/BesselK(0,1) 3654380029626160 m001 (Catalan+Riemann2ndZero)/(-Salem+Stephens) 3654380037091157 m001 (FeigenbaumC+Thue)/(cos(1/5*Pi)+gamma(1)) 3654380038171767 r005 Im(z^2+c),c=-13/50+35/62*I,n=40 3654380038951413 m001 exp(Zeta(9))^2/Robbin^2/arctan(1/2) 3654380039996912 r005 Re(z^2+c),c=-9/20+18/47*I,n=62 3654380041584586 a007 Real Root Of 403*x^4-331*x^3-730*x^2-858*x+420 3654380043482206 m001 (Thue-TwinPrimes)/(Zeta(1,-1)+Rabbit) 3654380048475106 a003 sin(Pi*6/97)/sin(Pi*14/79) 3654380060094424 r005 Im(z^2+c),c=-13/118+23/53*I,n=4 3654380103407613 m001 FeigenbaumAlpha/gamma/KhinchinLevy 3654380109486039 r005 Re(z^2+c),c=-4/9+11/27*I,n=44 3654380114795636 a007 Real Root Of -279*x^4-804*x^3+999*x^2+675*x-354 3654380115463499 a007 Real Root Of 277*x^4+757*x^3-781*x^2+765*x+768 3654380123585494 r005 Im(z^2+c),c=-11/86+23/44*I,n=54 3654380127910455 a001 516002918640/281*322^(11/12) 3654380131737144 r005 Re(z^2+c),c=-51/122+11/23*I,n=52 3654380134153711 r004 Im(z^2+c),c=2/7-5/18*I,z(0)=exp(7/12*I*Pi),n=8 3654380147238327 r009 Re(z^3+c),c=-19/50+2/11*I,n=3 3654380153078269 r009 Re(z^3+c),c=-49/114+9/38*I,n=10 3654380162032927 r009 Im(z^3+c),c=-29/114+31/44*I,n=47 3654380163791942 m005 (1/3*exp(1)+1/7)/(9/11*Pi+3/10) 3654380176774589 a007 Real Root Of 264*x^4+982*x^3+53*x^2-238*x-736 3654380186185337 m005 (1/2*Pi+4/9)/(-117/20+3/20*5^(1/2)) 3654380190050116 a001 312119004989/987*6557470319842^(16/17) 3654380190566976 m009 (2*Psi(1,2/3)-4)/(1/12*Pi^2+5) 3654380194672500 l006 ln(6567/9464) 3654380205334732 a003 sin(Pi*5/83)/cos(Pi*20/61) 3654380218822678 r002 3th iterates of z^2 + 3654380219261472 m001 PrimesInBinary/(HardyLittlewoodC4-3^(1/3)) 3654380231885732 m001 (DuboisRaymond+Salem)/(BesselI(0,1)-Conway) 3654380236108358 r005 Im(z^2+c),c=-21/118+27/49*I,n=34 3654380239224734 a003 sin(Pi*11/116)/cos(Pi*13/64) 3654380250339355 l006 ln(101/3903) 3654380254454212 r005 Re(z^2+c),c=-47/64+2/21*I,n=41 3654380262968101 r005 Im(z^2+c),c=15/98+20/57*I,n=28 3654380295222290 r005 Re(z^2+c),c=-11/10+29/107*I,n=2 3654380297538880 m005 (-17/44+1/4*5^(1/2))/(1/3*Catalan-7/9) 3654380315328612 m001 (Lehmer+Porter)/(BesselI(1,1)-GAMMA(5/6)) 3654380318436355 m008 (1/6*Pi+2)/(3/4*Pi^4-4) 3654380321024328 r009 Re(z^3+c),c=-2/31+7/11*I,n=24 3654380337401377 m001 (-GolombDickman+Sarnak)/(2^(1/2)+Conway) 3654380350722963 m001 (Thue+ZetaQ(3))/(Otter-exp(1)) 3654380352992362 r005 Im(z^2+c),c=-1/36+15/32*I,n=38 3654380354972317 m001 FeigenbaumAlpha/(BesselJ(0,1)^(2^(1/2))) 3654380354972317 m001 FeigenbaumAlpha/(BesselJ(0,1)^sqrt(2)) 3654380357339188 r009 Im(z^3+c),c=-39/94+13/43*I,n=37 3654380365438036 k006 concat of cont frac of 3654380373641554 m001 (FeigenbaumMu-Mills)/(Robbin-Sarnak) 3654380376449482 r005 Re(z^2+c),c=-17/42+25/46*I,n=59 3654380387545100 r005 Im(z^2+c),c=-5/36+28/53*I,n=62 3654380401006926 r005 Im(z^2+c),c=5/23+19/63*I,n=15 3654380403988760 m001 StolarskyHarborth/sin(1/12*Pi)/Thue 3654380406075984 r009 Im(z^3+c),c=-21/44+11/43*I,n=40 3654380441179184 a007 Real Root Of -109*x^4+49*x^3-753*x^2-547*x-95 3654380463898236 r005 Im(z^2+c),c=-57/98+21/44*I,n=5 3654380464610696 r005 Im(z^2+c),c=1/3+7/26*I,n=16 3654380467300323 m009 (5/6*Psi(1,1/3)+3/4)/(5/2*Pi^2+2/5) 3654380469350610 m005 (1/2*Zeta(3)+3/8)/(7/8*5^(1/2)+5/7) 3654380476637358 m005 (1/2*exp(1)-4/5)/(5/6*5^(1/2)-1/3) 3654380499330750 m006 (1/2*Pi+1/3)/(1/5*ln(Pi)-3/4) 3654380506928010 r005 Im(z^2+c),c=-29/25+3/64*I,n=61 3654380515389836 s002 sum(A083989[n]/(exp(n)),n=1..infinity) 3654380515749443 a001 1/64079*199^(28/47) 3654380566504003 m005 (1/2*exp(1)-7/12)/(7/11*5^(1/2)+7/10) 3654380582070789 a003 cos(Pi*5/48)-sin(Pi*16/81) 3654380586774002 m001 FellerTornier^ZetaQ(2)-Mills 3654380598919710 r009 Re(z^3+c),c=-55/126+5/21*I,n=7 3654380609417975 r009 Im(z^3+c),c=-7/86+37/52*I,n=2 3654380617048995 r001 21i'th iterates of 2*x^2-1 of 3654380642080386 m001 (-Zeta(1,2)+FeigenbaumMu)/(cos(1)+ln(2)) 3654380658306166 r005 Re(z^2+c),c=-43/98+18/41*I,n=28 3654380660363469 m005 (1/2*Catalan-5/6)/(1/2*5^(1/2)-1/11) 3654380671789620 r005 Im(z^2+c),c=5/66+15/37*I,n=27 3654380674155284 m001 1/ln(Paris)*Khintchine^2*GAMMA(19/24) 3654380677992525 r009 Re(z^3+c),c=-25/58+5/22*I,n=26 3654380703583396 r009 Re(z^3+c),c=-65/122+7/27*I,n=53 3654380712511705 s002 sum(A121015[n]/((exp(n)+1)/n),n=1..infinity) 3654380722622196 r005 Re(z^2+c),c=-2/5+23/53*I,n=12 3654380723749858 a001 18/121393*46368^(16/17) 3654380723942444 r005 Im(z^2+c),c=-129/106+7/64*I,n=36 3654380724020208 a001 18/591286729879*591286729879^(16/17) 3654380724020208 a001 9/133957148*165580141^(16/17) 3654380727885388 a007 Real Root Of 779*x^4-46*x^3+527*x^2-420*x-240 3654380729357311 m005 (1/3*Zeta(3)+1/10)/(5/11*2^(1/2)+8/11) 3654380739982699 m001 exp(1/exp(1))^Ei(1,1)/(exp(1/exp(1))^Otter) 3654380747526713 m001 (-Robbin+ZetaQ(2))/(Artin-cos(1)) 3654380766326357 r005 Re(z^2+c),c=-15/38+26/63*I,n=6 3654380767244013 m001 GAMMA(1/6)^2/ln(Catalan)/cos(Pi/12) 3654380796001998 r005 Re(z^2+c),c=29/82+7/46*I,n=38 3654380797136356 m001 1/GAMMA(1/4)*Catalan/ln(Zeta(7))^2 3654380803659718 m005 (1/2*3^(1/2)+4)/(7/8*5^(1/2)-5/8) 3654380833413036 r005 Re(z^2+c),c=-9/20+23/60*I,n=56 3654380858700669 r009 Im(z^3+c),c=-3/11+7/19*I,n=4 3654380860260682 a007 Real Root Of -477*x^4+531*x^3+462*x^2+860*x+287 3654380886769603 a001 4/233*317811^(7/29) 3654380889578780 r005 Re(z^2+c),c=-8/7+25/97*I,n=4 3654380894005775 m001 (BesselI(0,1)+ln(2))/(-Lehmer+MasserGramain) 3654380895805448 m001 (Ei(1)-gamma)/(-CopelandErdos+Gompertz) 3654380910939995 r005 Re(z^2+c),c=-19/30+3/14*I,n=9 3654380936707037 m001 Riemann3rdZero^GAMMA(5/6)-ln(2+3^(1/2)) 3654380939453606 m001 1/2-BesselI(1,2)+Backhouse 3654380940997109 r005 Re(z^2+c),c=-55/122+19/48*I,n=29 3654380941208563 m005 (-5/12+1/3*5^(1/2))/(4/5*Catalan+1/6) 3654380960585149 a007 Real Root Of -569*x^4-307*x^3+524*x^2+804*x+219 3654380970975198 g001 GAMMA(2/11,36/49) 3654380978141518 m001 (gamma+Ei(1))/(-GAMMA(5/6)+ZetaP(2)) 3654380993537862 r005 Im(z^2+c),c=-61/118+17/37*I,n=25 3654380994969897 m005 (1/3*Zeta(3)-1/8)/(1/2*5^(1/2)-4/11) 3654381005243011 p001 sum(1/(551*n+274)/(256^n),n=0..infinity) 3654381013418234 a001 11/10946*75025^(29/31) 3654381018021130 r005 Im(z^2+c),c=-37/38+8/31*I,n=8 3654381032865610 m001 BesselJ(0,1)*ln(Trott)*GAMMA(11/12) 3654381033626396 r002 60th iterates of z^2 + 3654381036755243 r009 Im(z^3+c),c=-25/78+16/45*I,n=7 3654381047187067 a007 Real Root Of 913*x^4-259*x^3+117*x^2-907*x+33 3654381051332453 r005 Im(z^2+c),c=-97/82+1/21*I,n=27 3654381053093309 r002 18th iterates of z^2 + 3654381062851849 m001 1/ln(cos(Pi/12))^2/GAMMA(1/4)^2/sqrt(3) 3654381084840055 q001 1051/2876 3654381092930106 r005 Im(z^2+c),c=-19/78+35/61*I,n=52 3654381094443530 m005 (1/2*Zeta(3)-8/9)/(11/12*3^(1/2)-4/5) 3654381099814730 r005 Re(z^2+c),c=43/122+8/31*I,n=7 3654381112525156 m001 GAMMA(1/3)*BesselK(0,1)*exp(sin(Pi/5))^2 3654381128393167 a007 Real Root Of -260*x^4-727*x^3+968*x^2+508*x-181 3654381145863700 a007 Real Root Of 708*x^4-225*x^3+35*x^2-853*x-340 3654381158876221 a007 Real Root Of 248*x^4+931*x^3+98*x^2-54*x-300 3654381170092506 r002 12th iterates of z^2 + 3654381174213248 h001 (1/10*exp(2)+2/9)/(7/10*exp(1)+8/11) 3654381178424116 r005 Re(z^2+c),c=-29/82+32/61*I,n=25 3654381210007378 r009 Im(z^3+c),c=-13/27+19/62*I,n=12 3654381214131060 a001 28657/29*4^(50/53) 3654381227350052 m001 StronglyCareFree^(OrthogonalArrays/OneNinth) 3654381233568141 m001 ln(FeigenbaumC)^2/Magata^2*OneNinth^2 3654381237581760 h001 (-4*exp(2/3)+4)/(-6*exp(1/3)-2) 3654381245772975 b008 ArcSinh[17+4*EulerGamma] 3654381259535026 r005 Im(z^2+c),c=-11/106+25/49*I,n=59 3654381278367213 r005 Re(z^2+c),c=-35/78+14/47*I,n=11 3654381296203506 m001 (3^(1/3))^2/TwinPrimes*exp(GAMMA(3/4))^2 3654381315176862 l006 ln(943/1359) 3654381316727176 r009 Re(z^3+c),c=-29/66+4/19*I,n=5 3654381360118394 a001 3278735159921/682*322^(3/4) 3654381362293538 r005 Im(z^2+c),c=19/122+15/43*I,n=35 3654381377418972 r005 Re(z^2+c),c=-7/15+6/23*I,n=15 3654381390885094 m001 1/5*Sarnak^GolombDickman*5^(1/2) 3654381391434094 r005 Im(z^2+c),c=25/102+16/59*I,n=23 3654381399110760 r005 Re(z^2+c),c=-75/98+1/52*I,n=62 3654381400039433 r005 Re(z^2+c),c=-8/17+7/24*I,n=61 3654381431162652 r005 Re(z^2+c),c=-35/82+11/32*I,n=9 3654381442729144 a007 Real Root Of -147*x^4-542*x^3-262*x^2-705*x+688 3654381449830076 a001 87403803/55*377^(11/12) 3654381454499771 m001 ln(FeigenbaumB)*Conway/cos(Pi/5)^2 3654381455664722 m005 (1/2*5^(1/2)+1/10)/(4/11*Catalan+3) 3654381475827283 b008 ArcCsch[91/34] 3654381482077846 r005 Re(z^2+c),c=-149/122+1/7*I,n=8 3654381490802415 a007 Real Root Of -174*x^4-647*x^3-58*x^2+110*x+633 3654381500997180 m001 (Ei(1,1)+FeigenbaumMu)/Zeta(5) 3654381520416236 a007 Real Root Of 64*x^4+167*x^3-589*x^2-987*x+995 3654381529889317 a001 1/599074578*4^(13/23) 3654381540471194 m008 (3/4*Pi^2-2/5)/(1/5*Pi^6-2/3) 3654381541148610 r005 Re(z^2+c),c=-13/58+31/54*I,n=13 3654381541702950 r005 Re(z^2+c),c=-3/29+6/7*I,n=12 3654381545552164 r002 50th iterates of z^2 + 3654381548285330 m001 (-CopelandErdos+Kolakoski)/(Shi(1)+Bloch) 3654381562530702 r005 Im(z^2+c),c=29/122+13/47*I,n=18 3654381563153374 r005 Im(z^2+c),c=-9/52+29/53*I,n=37 3654381566246560 r005 Im(z^2+c),c=-41/66+29/43*I,n=4 3654381571259379 r005 Im(z^2+c),c=3/26+8/23*I,n=6 3654381580204423 r002 46th iterates of z^2 + 3654381582823850 a001 6557470319842/2207*322^(5/6) 3654381583142337 m002 -4+(Sinh[Pi]*Tanh[Pi])/(Pi^3*ProductLog[Pi]) 3654381606113758 h001 (1/9*exp(1)+8/11)/(5/7*exp(1)+7/8) 3654381612491437 r009 Im(z^3+c),c=-17/60+23/33*I,n=55 3654381613070251 r005 Re(z^2+c),c=-43/106+13/25*I,n=56 3654381613174434 l006 ln(188/7265) 3654381629798757 m001 1/ln(Magata)^2*GolombDickman^2/Rabbit 3654381654637148 m001 (Pi+cos(1))/(Zeta(3)-DuboisRaymond) 3654381663154845 a001 29/2*1597^(7/16) 3654381673298821 r005 Re(z^2+c),c=-41/70+7/16*I,n=62 3654381675612970 r005 Im(z^2+c),c=-19/14+1/173*I,n=27 3654381680742269 r009 Re(z^3+c),c=-33/70+5/18*I,n=35 3654381683319769 a001 18*701408733^(19/23) 3654381694906816 a007 Real Root Of -198*x^4-460*x^3+900*x^2+2*x+851 3654381723964849 a001 29/2971215073*89^(5/17) 3654381737290867 r005 Re(z^2+c),c=-47/106+23/58*I,n=33 3654381737697447 a007 Real Root Of 195*x^4+453*x^3-10*x^2-788*x-268 3654381757828112 a007 Real Root Of -264*x^4-699*x^3+729*x^2-856*x+106 3654381763332237 r002 26th iterates of z^2 + 3654381764408353 r002 19th iterates of z^2 + 3654381774209321 a007 Real Root Of 382*x^4-487*x^3-356*x^2-431*x+222 3654381779408393 r005 Im(z^2+c),c=1/6+17/50*I,n=16 3654381786727409 m002 -6+Pi-(Pi^2*Csch[Pi])/ProductLog[Pi] 3654381789827378 r009 Im(z^3+c),c=-10/29+16/25*I,n=18 3654381803235301 r009 Im(z^3+c),c=-29/62+13/50*I,n=14 3654381810991371 r005 Im(z^2+c),c=-67/114+4/49*I,n=18 3654381814100982 a007 Real Root Of 303*x^4+903*x^3-973*x^2-623*x+748 3654381818349482 m001 Zeta(1,2)^2*MertensB1*exp(arctan(1/2)) 3654381831104846 a007 Real Root Of -230*x^4-742*x^3+188*x^2-805*x-645 3654381844235166 r005 Re(z^2+c),c=-23/56+13/28*I,n=29 3654381845035505 r005 Re(z^2+c),c=-12/25+8/33*I,n=20 3654381848512985 r009 Re(z^3+c),c=-19/42+14/55*I,n=31 3654381851566189 r005 Re(z^2+c),c=-17/36+10/37*I,n=22 3654381869104405 m001 ZetaR(2)/(BesselI(0,2)+Grothendieck) 3654381873524784 r005 Im(z^2+c),c=-3/25+14/27*I,n=46 3654381874501981 a007 Real Root Of -184*x^4+674*x^3+21*x^2+821*x+3 3654381881828552 m001 (FeigenbaumC-Tetranacci)/(ln(5)+GAMMA(23/24)) 3654381883006028 a007 Real Root Of -638*x^4+489*x^3-171*x^2+334*x-12 3654381894634732 b008 1/3+3*(5/2)^E 3654381896858901 m001 Niven^gamma(3)/Trott2nd 3654381899549724 a007 Real Root Of 558*x^4-959*x^3+47*x^2-900*x-33 3654381919365289 r005 Im(z^2+c),c=31/90+9/64*I,n=61 3654381920704311 m002 -2-E^Pi-ProductLog[Pi]*Sinh[Pi]+Tanh[Pi] 3654381925774823 r002 56th iterates of z^2 + 3654381948774396 a001 47/2584*21^(11/48) 3654381957686459 p003 LerchPhi(1/16,1,353/123) 3654381959173438 r009 Im(z^3+c),c=-13/36+1/3*I,n=14 3654381965015832 a003 -1+cos(1/10*Pi)+2*cos(4/15*Pi)-cos(1/8*Pi) 3654381971668161 m005 (1/3*Pi+3/7)/(4/5*Zeta(3)-5) 3654381976753861 a007 Real Root Of 108*x^4-495*x^3-888*x^2-504*x+325 3654381997432469 m006 (1/2*Pi^2+1/5)/(3/5*exp(Pi)+1/6) 3654382010736762 b008 3-5*Sqrt[E/6] 3654382013242593 r002 36th iterates of z^2 + 3654382020266647 m002 4-E^Pi/Pi^3+Pi^3*ProductLog[Pi] 3654382022863744 r004 Im(z^2+c),c=-6/13*I,z(0)=exp(1/8*I*Pi),n=22 3654382024300304 r005 Im(z^2+c),c=-37/60+11/28*I,n=41 3654382024827867 a007 Real Root Of 71*x^4+185*x^3-97*x^2+502*x-504 3654382031919323 m001 (OneNinth-Paris)/(Ei(1,1)-Khinchin) 3654382041029320 a001 1/267913919*377^(17/22) 3654382045827891 m001 1/Niven*ln(Magata)^2*PrimesInBinary 3654382048441376 m005 (1/2*Pi+3)/(3/8*Zeta(3)+4/5) 3654382050196483 a001 726103/41*1364^(13/31) 3654382057865890 r009 Re(z^3+c),c=-17/40+9/41*I,n=35 3654382058817443 r005 Re(z^2+c),c=-27/58+6/23*I,n=3 3654382062303544 r005 Re(z^2+c),c=23/66+8/63*I,n=49 3654382084318579 r005 Im(z^2+c),c=-3/22+29/55*I,n=39 3654382097954048 a007 Real Root Of 142*x^4-8*x^3-427*x^2-772*x+337 3654382103310527 a007 Real Root Of 258*x^4+756*x^3-662*x^2-9*x-310 3654382113778313 r005 Re(z^2+c),c=-13/28+5/21*I,n=10 3654382119871927 a001 76/13*8^(52/59) 3654382149323311 m001 1/Trott*MertensB1^2/ln(sin(1)) 3654382161659956 q001 118/3229 3654382162960182 r005 Im(z^2+c),c=37/110+7/51*I,n=42 3654382190199625 s002 sum(A009338[n]/(16^n-1),n=1..infinity) 3654382199305636 m001 (-FeigenbaumB+Salem)/(LambertW(1)+Artin) 3654382201167001 r002 4th iterates of z^2 + 3654382207280417 r009 Im(z^3+c),c=-7/15+9/34*I,n=35 3654382219553981 a001 12238/17*55^(15/37) 3654382237213533 m006 (2*exp(Pi)+1/4)/(4*Pi+1/6) 3654382239530931 a007 Real Root Of -22*x^4+261*x^3+960*x^2-950*x+369 3654382248232899 r002 2th iterates of z^2 + 3654382255862876 m001 (Catalan-Zeta(3))/(-Paris+QuadraticClass) 3654382266951073 r005 Im(z^2+c),c=-17/14+19/80*I,n=11 3654382287178253 r005 Im(z^2+c),c=-19/30+33/86*I,n=31 3654382294864508 r005 Re(z^2+c),c=-7/10+52/227*I,n=43 3654382327248254 r005 Im(z^2+c),c=-8/13+4/49*I,n=22 3654382331977423 r005 Re(z^2+c),c=-23/18+7/197*I,n=28 3654382333060292 r005 Im(z^2+c),c=27/82+29/51*I,n=24 3654382340952339 m001 TwinPrimes/ln(FeigenbaumDelta)^2*GAMMA(1/4)^2 3654382347276147 a007 Real Root Of 333*x^4+569*x^3+559*x^2-452*x-218 3654382349726815 r005 Im(z^2+c),c=-19/36+2/31*I,n=33 3654382353230170 m001 (Cahen-ZetaP(3))/GlaisherKinkelin 3654382356940405 m005 (1/2*gamma+1/11)/(3/8*5^(1/2)+1/5) 3654382358163734 m001 Riemann2ndZero/exp(LandauRamanujan)/GAMMA(1/3) 3654382373504269 a007 Real Root Of 305*x^4+968*x^3-573*x^2-352*x-788 3654382390775247 a001 11/5*1346269^(31/59) 3654382401988999 m001 (MadelungNaCl-Salem)/(Zeta(1,2)-Kac) 3654382417961785 r009 Im(z^3+c),c=-9/34+22/59*I,n=16 3654382424197407 l006 ln(6635/9562) 3654382426583118 r005 Re(z^2+c),c=7/44+30/47*I,n=24 3654382442811767 r005 Re(z^2+c),c=-15/31+10/47*I,n=46 3654382448902239 a007 Real Root Of -26*x^4-955*x^3-197*x^2-725*x-618 3654382454289683 r005 Im(z^2+c),c=-93/98+12/49*I,n=14 3654382503399126 r005 Im(z^2+c),c=6/23+16/63*I,n=15 3654382528908522 h001 (1/5*exp(2)+8/9)/(6/7*exp(2)+1/7) 3654382531543562 a007 Real Root Of 252*x^4+725*x^3-701*x^2-9*x-232 3654382532859417 p004 log(17351/449) 3654382534418035 m001 CareFree^GAMMA(7/12)*GolombDickman 3654382560267544 m001 exp(1/exp(1))*ErdosBorwein/HardyLittlewoodC3 3654382563154052 m001 Ei(1)^2/ln(FeigenbaumB)^2/cos(1)^2 3654382564460088 r009 Re(z^3+c),c=-27/82+4/61*I,n=13 3654382573355649 m005 (1/2*Zeta(3)+2/9)/(4/9*Catalan-2/11) 3654382578404898 m001 1/ln(Zeta(5))/Sierpinski/cos(1)^2 3654382598109956 m005 (1/2*gamma-6)/(4/11*Zeta(3)-2) 3654382607930069 l006 ln(5692/8203) 3654382619652052 a001 10610209857723/3571*322^(5/6) 3654382640002065 r009 Re(z^3+c),c=-23/94+33/46*I,n=33 3654382657320716 r005 Im(z^2+c),c=-57/58+15/56*I,n=28 3654382657829787 m001 cosh(1)^2/exp(GAMMA(1/3))*sqrt(5) 3654382662789359 r005 Im(z^2+c),c=-7/36+17/29*I,n=40 3654382697371833 a007 Real Root Of 142*x^4-903*x^3+161*x^2+107*x-29 3654382703612432 m005 (1/2*Catalan+11/12)/(5*Catalan-9/11) 3654382706381702 a007 Real Root Of 742*x^4-965*x^3-117*x^2-165*x-105 3654382710160914 r005 Re(z^2+c),c=-21/50+24/49*I,n=59 3654382723369400 a001 6765/7*199^(35/51) 3654382723756947 h001 (1/6*exp(2)+7/10)/(7/11*exp(2)+7/12) 3654382732912072 r005 Re(z^2+c),c=-31/66+11/37*I,n=17 3654382732968241 r005 Re(z^2+c),c=3/58+21/34*I,n=49 3654382737180783 b008 LogBarnesG[Tan[2*EulerGamma]] 3654382741750930 r009 Im(z^3+c),c=-39/94+13/43*I,n=38 3654382773939702 a001 89/439204*7^(10/33) 3654382779026378 a007 Real Root Of 333*x^4-12*x^3+763*x^2-191*x-8 3654382780187173 m002 2+Pi^3*Cosh[Pi]+4*Coth[Pi] 3654382812458341 a007 Real Root Of 760*x^4-794*x^3-427*x^2-938*x+425 3654382813305503 r005 Im(z^2+c),c=-17/74+27/46*I,n=59 3654382822490993 r005 Im(z^2+c),c=-73/114+17/49*I,n=19 3654382836425110 r005 Re(z^2+c),c=19/70+20/59*I,n=9 3654382852608822 a001 55*24476^(27/31) 3654382864629622 l006 ln(4749/6844) 3654382877085776 r005 Re(z^2+c),c=-21/46+11/30*I,n=27 3654382885216793 b008 -4+InverseErf[3/8] 3654382898297582 r002 17th iterates of z^2 + 3654382900294847 r005 Re(z^2+c),c=13/48+3/7*I,n=54 3654382903621503 m001 (GAMMA(7/12)-Si(Pi))/(-FeigenbaumMu+Khinchin) 3654382911457725 m001 Ei(1)/Backhouse*FransenRobinson 3654382919681353 m002 Pi^3*Cosh[Pi]+5*Coth[Pi]+Tanh[Pi] 3654382925999971 r002 22th iterates of z^2 + 3654382930390605 a001 514229/123*5778^(16/31) 3654382936158809 s002 sum(A272522[n]/(n!^3),n=1..infinity) 3654382952070092 r005 Im(z^2+c),c=-3/44+28/57*I,n=59 3654382970311403 r005 Re(z^2+c),c=23/78+2/37*I,n=9 3654382976544278 m001 GAMMA(23/24)^Otter/(Robbin^Otter) 3654382979895413 a001 123/1597*2584^(28/57) 3654382982183192 r005 Im(z^2+c),c=-9/16+6/91*I,n=62 3654382986122592 m001 (1+3^(1/2))^(1/2)+Robbin+Totient 3654382993928500 a007 Real Root Of -190*x^4-611*x^3+288*x^2-319*x-945 3654382994187050 b008 (3*Pi)/E^(13/4) 3654382996335746 a007 Real Root Of 175*x^4+440*x^3-954*x^2-656*x+606 3654382997492062 m001 (3^(1/3))^BesselJZeros(0,1)/TwinPrimes 3654383004652236 r005 Re(z^2+c),c=17/52+5/54*I,n=46 3654383006406323 r005 Im(z^2+c),c=-5/38+32/61*I,n=54 3654383007388415 r005 Im(z^2+c),c=-33/64+20/39*I,n=20 3654383026242322 q001 1309/3582 3654383028142445 a007 Real Root Of 121*x^4+255*x^3-589*x^2+402*x+200 3654383043996348 m001 FransenRobinson^Sarnak-KhinchinHarmonic 3654383053093758 b008 E+7*Sinh[2/15] 3654383075486526 m005 (1/2*2^(1/2)-8/9)/(1/7*3^(1/2)+1/4) 3654383076659876 r005 Re(z^2+c),c=-29/44+23/55*I,n=25 3654383076673767 a007 Real Root Of -25*x^4-897*x^3+608*x^2+63*x+263 3654383081138693 r005 Im(z^2+c),c=-123/106+1/24*I,n=14 3654383097010810 a007 Real Root Of 61*x^4+241*x^3+209*x^2+574*x+189 3654383104806983 r005 Re(z^2+c),c=15/82+31/52*I,n=32 3654383108475357 m001 (ln(2)+Riemann1stZero)/(Pi+Catalan) 3654383120128351 a007 Real Root Of -179*x^4-687*x^3+68*x^2+758*x+258 3654383126391229 r005 Re(z^2+c),c=-47/122+15/28*I,n=64 3654383133943291 a007 Real Root Of -942*x^4+599*x^3-215*x^2-262*x-21 3654383143063311 r009 Re(z^3+c),c=-15/31+11/37*I,n=32 3654383145882627 r005 Re(z^2+c),c=-8/17+7/24*I,n=62 3654383146067858 a007 Real Root Of -133*x^4+367*x^3+61*x^2+328*x+132 3654383148093294 m005 (1/3*Pi+2/7)/(4/7*3^(1/2)-5/8) 3654383149999288 g007 Psi(2,6/7)+Psi(2,5/6)+Psi(2,2/5)-Psi(2,8/9) 3654383157152064 r005 Re(z^2+c),c=23/70+23/58*I,n=29 3654383157357521 r009 Im(z^3+c),c=-39/94+13/43*I,n=41 3654383162719090 a001 1597/123*39603^(30/31) 3654383164299522 g007 -Psi(2,3/11)-Psi(13/10)-Psi(2,3/7)-Psi(2,1/5) 3654383173831578 a007 Real Root Of 318*x^4+991*x^3-693*x^2-472*x-820 3654383179413776 m001 sin(1)/(ReciprocalFibonacci-Shi(1)) 3654383181117875 a007 Real Root Of -679*x^4+835*x^3-473*x^2+847*x-275 3654383195313977 l006 ln(87/3362) 3654383198205810 m001 1/sin(1)*RenyiParking*exp(sqrt(2)) 3654383198205810 m001 RenyiParking/sin(1)*exp(sqrt(2)) 3654383199934883 r005 Im(z^2+c),c=1/52+22/51*I,n=12 3654383210472797 a008 Real Root of x^4-8*x^2-13*x-24 3654383212386215 r005 Re(z^2+c),c=-10/9+24/97*I,n=30 3654383226154570 r005 Im(z^2+c),c=5/78+17/41*I,n=15 3654383233217602 m007 (-1/5*gamma-4/5)/(-2*gamma-6*ln(2)+Pi-1/3) 3654383244124823 r002 19th iterates of z^2 + 3654383247432899 r005 Im(z^2+c),c=-4/29+19/36*I,n=64 3654383248532358 l006 ln(3806/5485) 3654383256512364 a007 Real Root Of 413*x^4-65*x^3-540*x^2-397*x+213 3654383259430964 r005 Re(z^2+c),c=-53/118+17/44*I,n=59 3654383289170493 r005 Im(z^2+c),c=1/52+15/34*I,n=34 3654383291868438 m001 (-TwinPrimes+ZetaQ(2))/(3^(1/2)+gamma(1)) 3654383308492769 r002 63th iterates of z^2 + 3654383309527238 a001 514229/123*2207^(18/31) 3654383309557181 m001 (-FeigenbaumB+MinimumGamma)/(gamma+ln(Pi)) 3654383314185000 m001 HardyLittlewoodC4*Khinchin^ZetaP(3) 3654383315646118 m002 E^Pi+Coth[Pi]+ProductLog[Pi]*Sinh[Pi] 3654383326067029 m001 (GAMMA(2/3)-Mills)/Mills 3654383326697120 a007 Real Root Of -363*x^4+373*x^3+529*x^2+840*x+261 3654383327207830 m001 ThueMorse^Robbin*ThueMorse^Weierstrass 3654383347094768 a007 Real Root Of 459*x^4+450*x^3-15*x^2-886*x-308 3654383352509611 r005 Im(z^2+c),c=1/44+18/41*I,n=48 3654383372313975 m001 (StolarskyHarborth+ZetaQ(2))/(Bloch-sin(1)) 3654383374332568 r002 58th iterates of z^2 + 3654383384255364 r005 Im(z^2+c),c=-1/102+21/47*I,n=11 3654383388904697 m001 (ZetaP(4)-ZetaQ(4))/(DuboisRaymond+Trott) 3654383391220082 m001 (Si(Pi)+Zeta(1,2))/(Riemann3rdZero+Trott) 3654383393597474 m005 (3/5*gamma-1/5)/(3/4*gamma-5/6) 3654383393597474 m007 (-3/5*gamma+1/5)/(-3/4*gamma+5/6) 3654383395594934 s002 sum(A222376[n]/(n^2*10^n-1),n=1..infinity) 3654383400073908 m001 1/Lehmer/GaussAGM(1,1/sqrt(2))*ln(FeigenbaumB) 3654383405835238 a001 55/47*4^(23/28) 3654383422877028 r005 Re(z^2+c),c=-29/62+15/41*I,n=15 3654383424998776 a001 1/9348*(1/2*5^(1/2)+1/2)^27*123^(19/21) 3654383432094723 r002 3th iterates of z^2 + 3654383442856104 m001 (Stephens+ZetaQ(2))/(GAMMA(23/24)+ArtinRank2) 3654383463497390 m008 (2/5*Pi^2-5)/(3*Pi^6-5) 3654383464782199 m001 (5^(1/2)*ErdosBorwein-Psi(2,1/3))/ErdosBorwein 3654383470558306 m001 (TravellingSalesman-Trott2nd)^Khinchin 3654383483153203 r005 Re(z^2+c),c=-57/122+3/8*I,n=19 3654383493837191 a001 4250681/48*89^(6/19) 3654383504854663 r005 Im(z^2+c),c=-5/32+29/54*I,n=61 3654383510192269 a007 Real Root Of -213*x^4-806*x^3-174*x^2-32*x+859 3654383514902602 r009 Im(z^3+c),c=-19/82+18/47*I,n=17 3654383521909780 l006 ln(6669/9611) 3654383532592749 m005 (1/2*Pi-1/11)/(2/7*Catalan-2/3) 3654383539712664 m001 (sin(1/5*Pi)+ln(Pi))/(CopelandErdos-Rabbit) 3654383540960846 r002 52i'th iterates of 2*x/(1-x^2) of 3654383559530425 m001 (Bloch-LaplaceLimit)/(OneNinth+PrimesInBinary) 3654383563892630 r005 Im(z^2+c),c=19/74+13/50*I,n=23 3654383569605023 s002 sum(A144062[n]/(n^2*pi^n+1),n=1..infinity) 3654383582104538 p004 log(29717/769) 3654383595451621 r002 8th iterates of z^2 + 3654383597578408 m001 1/MinimumGamma^2/ln(ArtinRank2)^2/Pi^2 3654383611557265 s002 sum(A183371[n]/((10^n-1)/n),n=1..infinity) 3654383623015070 a001 2/987*1346269^(17/32) 3654383630806239 a001 3/10946*17711^(1/34) 3654383641756426 a003 sin(Pi*10/103)-sin(Pi*16/69) 3654383653459699 m001 (Zeta(1,2)-Backhouse)/(MasserGramain+ZetaQ(3)) 3654383666052476 a001 6/34111385*12586269025^(14/17) 3654383666102122 a001 18/121393*3524578^(14/17) 3654383683041598 r005 Re(z^2+c),c=-8/17+7/24*I,n=64 3654383687276346 r005 Re(z^2+c),c=-53/110+12/53*I,n=33 3654383700275400 g004 Re(GAMMA(-77/30+I*37/12)) 3654383720006100 r009 Re(z^3+c),c=-5/58+25/48*I,n=4 3654383721839477 r005 Im(z^2+c),c=-11/8+25/246*I,n=10 3654383722968550 m001 TreeGrowth2nd/(Si(Pi)^(ln(2)/ln(10))) 3654383723440291 m001 (ArtinRank2-Salem)/(ln(Pi)-Zeta(1,-1)) 3654383724118464 a001 1/322*(1/2*5^(1/2)+1/2)^14*76^(14/23) 3654383725329596 a007 Real Root Of -938*x^4+929*x^3-479*x^2+435*x+285 3654383728875293 a007 Real Root Of -224*x^4-795*x^3+174*x^2+394*x+267 3654383735705209 q001 1438/3935 3654383741958680 p003 LerchPhi(1/12,3,93/143) 3654383747357086 m001 Zeta(9)/PrimesInBinary^2/ln(log(1+sqrt(2)))^2 3654383762670015 a001 4/13*4807526976^(3/14) 3654383772737507 a007 Real Root Of 529*x^4+13*x^3-469*x^2-242*x+141 3654383773566393 r009 Re(z^3+c),c=-61/118+11/31*I,n=11 3654383778895935 r005 Im(z^2+c),c=6/25+16/51*I,n=10 3654383792291515 r005 Im(z^2+c),c=3/70+26/61*I,n=23 3654383796486685 m001 (ThueMorse-ZetaP(2))/(ln(3)+gamma(2)) 3654383808723116 r005 Im(z^2+c),c=29/94+14/61*I,n=18 3654383823951294 m001 (BesselK(0,1)-exp(1/Pi))/(Conway+Mills) 3654383839244187 r005 Im(z^2+c),c=-1/54+19/41*I,n=37 3654383851082912 m001 BesselJ(0,1)^2*ln(ArtinRank2)/gamma 3654383851198247 m006 (2/3*exp(2*Pi)+3/4)/(1/5*ln(Pi)+3/4) 3654383861118638 m001 CareFree/(KhinchinHarmonic-Riemann2ndZero) 3654383865205550 a007 Real Root Of 16*x^4+580*x^3-186*x^2-511*x+279 3654383885330820 l006 ln(2863/4126) 3654383917404755 r005 Im(z^2+c),c=-63/52+1/25*I,n=21 3654383920152893 m001 (cos(1/5*Pi)+3^(1/3))/(gamma(2)+Kac) 3654383925719541 b008 -4+FresnelS[E/3] 3654383926235326 r005 Re(z^2+c),c=-23/36+11/32*I,n=5 3654383934353776 m001 (cos(1)-ln(2))/(FibonacciFactorial+Otter) 3654383964023766 r005 Re(z^2+c),c=-13/27+5/57*I,n=7 3654383982516829 m001 (Shi(1)-ln(Pi))/(MadelungNaCl+MasserGramain) 3654383984170967 b008 -1+Pi-Cosh[Pi]/2 3654383984170967 m002 -1+Pi-Cosh[Pi]/2 3654383991932789 a001 29/2*2584^(2/17) 3654383995692592 p004 log(31649/21961) 3654384002088644 m005 (5/6*exp(1)-2/5)/(7/4+3/2*5^(1/2)) 3654384008278442 m001 (Pi*2^(1/2)/GAMMA(3/4)+ln(3))^GaussAGM 3654384009524145 r005 Im(z^2+c),c=-26/21+13/57*I,n=6 3654384013552158 m001 (Landau+PolyaRandomWalk3D)/(cos(1/5*Pi)+ln(5)) 3654384029519372 a007 Real Root Of 944*x^4+117*x^3-307*x^2-591*x+22 3654384041105660 a007 Real Root Of -499*x^4+383*x^3+87*x^2+873*x+335 3654384047272027 a001 10610209857723/521*322^(1/2) 3654384049609043 r009 Im(z^3+c),c=-3/106+12/29*I,n=15 3654384055593863 a007 Real Root Of 393*x^4-161*x^3+569*x^2-939*x-434 3654384057948590 a001 2/21*39088169^(1/13) 3654384089624854 r005 Re(z^2+c),c=-49/102+11/52*I,n=17 3654384097216298 a007 Real Root Of -26*x^4-928*x^3+806*x^2-102*x+380 3654384110037106 a003 sin(Pi*19/111)*sin(Pi*22/87) 3654384112633956 r005 Im(z^2+c),c=39/122+20/57*I,n=24 3654384114590381 r009 Im(z^3+c),c=-39/94+13/43*I,n=45 3654384117245873 r002 20th iterates of z^2 + 3654384118058284 a005 (1/cos(34/223*Pi))^88 3654384125626381 r009 Im(z^3+c),c=-5/11+14/51*I,n=44 3654384128987099 m005 (1/2*gamma+5/12)/(4/5*Pi-7/12) 3654384133098054 m001 (-polylog(4,1/2)+Rabbit)/(3^(1/3)-Catalan) 3654384142240819 m001 (AlladiGrinstead-gamma)/(-CareFree+Totient) 3654384142562817 r009 Im(z^3+c),c=-27/62+7/18*I,n=4 3654384148320114 a005 (1/cos(3/203*Pi))^1202 3654384153657104 m001 1/exp(GAMMA(7/24))^2/GAMMA(1/6)*cos(Pi/12) 3654384155433892 r009 Im(z^3+c),c=-27/70+8/25*I,n=18 3654384158886190 r005 Im(z^2+c),c=1/44+18/41*I,n=45 3654384159368072 r005 Im(z^2+c),c=-23/122+14/25*I,n=40 3654384170574427 m001 (GAMMA(2/3)+cos(1/12*Pi))/(Sarnak-TwinPrimes) 3654384178027504 a007 Real Root Of -x^4-367*x^3-572*x^2-487*x+698 3654384183371900 r005 Im(z^2+c),c=-31/26+2/41*I,n=52 3654384183472087 a001 123/610*12586269025^(11/12) 3654384183926266 r009 Im(z^3+c),c=-3/106+12/29*I,n=17 3654384190527278 a007 Real Root Of -110*x^4+566*x^3-361*x^2+972*x+433 3654384192812096 r005 Re(z^2+c),c=-27/62+23/53*I,n=12 3654384193619106 r005 Im(z^2+c),c=-1/36+15/32*I,n=45 3654384194438206 a007 Real Root Of 394*x^4-757*x^3-456*x^2-608*x+313 3654384202427586 r005 Im(z^2+c),c=-13/22+35/86*I,n=11 3654384218247150 a001 341/1201881744*317811^(13/23) 3654384218251240 a001 1364/2504730781961*20365011074^(13/23) 3654384223886053 a007 Real Root Of 760*x^4+921*x^3-616*x^2-872*x-31 3654384224030635 a007 Real Root Of -425*x^4+917*x^3-552*x^2+528*x+319 3654384244831787 m002 -E^Pi+(6*Cosh[Pi])/Log[Pi]-ProductLog[Pi] 3654384245837671 m001 1/Riemann3rdZero^2*ln(LandauRamanujan)/Salem 3654384250513966 r009 Im(z^3+c),c=-3/106+12/29*I,n=19 3654384255910976 r009 Im(z^3+c),c=-5/122+21/26*I,n=62 3654384258473687 r009 Im(z^3+c),c=-39/94+13/43*I,n=44 3654384260255994 r005 Im(z^2+c),c=23/70+5/29*I,n=55 3654384267994679 r009 Im(z^3+c),c=-3/106+12/29*I,n=21 3654384271766756 r009 Im(z^3+c),c=-3/106+12/29*I,n=23 3654384272436040 m001 (Artin-ln(2))^QuadraticClass 3654384272499551 r009 Im(z^3+c),c=-3/106+12/29*I,n=25 3654384272632101 r009 Im(z^3+c),c=-3/106+12/29*I,n=27 3654384272654760 r009 Im(z^3+c),c=-3/106+12/29*I,n=29 3654384272658444 r009 Im(z^3+c),c=-3/106+12/29*I,n=31 3654384272659013 r009 Im(z^3+c),c=-3/106+12/29*I,n=33 3654384272659097 r009 Im(z^3+c),c=-3/106+12/29*I,n=35 3654384272659108 r009 Im(z^3+c),c=-3/106+12/29*I,n=37 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=39 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=41 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=44 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=46 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=48 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=50 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=52 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=54 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=56 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=58 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=60 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=62 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=64 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=63 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=61 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=59 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=57 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=55 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=53 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=51 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=49 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=47 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=42 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=45 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=43 3654384272659110 r009 Im(z^3+c),c=-3/106+12/29*I,n=40 3654384272659111 r009 Im(z^3+c),c=-3/106+12/29*I,n=38 3654384272659115 r009 Im(z^3+c),c=-3/106+12/29*I,n=36 3654384272659146 r009 Im(z^3+c),c=-3/106+12/29*I,n=34 3654384272659366 r009 Im(z^3+c),c=-3/106+12/29*I,n=32 3654384272660824 r009 Im(z^3+c),c=-3/106+12/29*I,n=30 3654384272670016 r009 Im(z^3+c),c=-3/106+12/29*I,n=28 3654384272725178 r009 Im(z^3+c),c=-3/106+12/29*I,n=26 3654384273039255 r009 Im(z^3+c),c=-3/106+12/29*I,n=24 3654384274719179 r009 Im(z^3+c),c=-3/106+12/29*I,n=22 3654384282015466 m001 1/BesselK(0,1)*LaplaceLimit*exp(Zeta(1/2)) 3654384282975207 r009 Im(z^3+c),c=-3/106+12/29*I,n=20 3654384292268478 a003 cos(Pi*15/53)-sin(Pi*39/83) 3654384292697148 a007 Real Root Of 594*x^4-347*x^3+747*x^2-396*x-272 3654384297276569 a001 4052739537881/1364*322^(5/6) 3654384311712310 r009 Im(z^3+c),c=-39/94+13/43*I,n=48 3654384318060765 m001 GAMMA(1/6)^BesselI(0,1)*(1/2)^BesselI(0,1) 3654384318060765 m001 Pi^BesselI(0,1)/(GAMMA(5/6)^BesselI(0,1)) 3654384318319996 r009 Im(z^3+c),c=-3/106+12/29*I,n=18 3654384320595003 m001 (-Ei(1)+Totient)/(BesselK(0,1)+ln(3)) 3654384320778975 m001 1/3*GAMMA(5/6)*3^(2/3)*FeigenbaumDelta 3654384320778975 m001 FeigenbaumDelta/(3^(1/3))*GAMMA(5/6) 3654384341571572 m001 Zeta(1,-1)/cos(1/5*Pi)*KomornikLoreti 3654384347972680 m001 (Kolakoski-OneNinth)/(Porter+ThueMorse) 3654384349677978 l005 265/54/(exp(265/54)-1) 3654384351081119 r009 Im(z^3+c),c=-39/94+13/43*I,n=49 3654384355048072 m001 3^(1/2)/(Magata+MertensB3) 3654384365580565 m001 ln(OneNinth)^2/MinimumGamma*Zeta(5)^2 3654384367081392 r009 Im(z^3+c),c=-39/94+13/43*I,n=52 3654384376448133 a007 Real Root Of -163*x^4-412*x^3+644*x^2-272*x-631 3654384379077977 m001 1/GAMMA(3/4)*exp(RenyiParking)^2*Zeta(9)^2 3654384379096594 a007 Real Root Of -796*x^4+721*x^3-921*x^2+277*x-1 3654384387538840 r009 Im(z^3+c),c=-39/94+13/43*I,n=56 3654384391875636 r009 Im(z^3+c),c=-39/94+13/43*I,n=55 3654384392053549 l006 ln(4783/6893) 3654384392302382 r009 Im(z^3+c),c=-39/94+13/43*I,n=59 3654384392871745 r009 Im(z^3+c),c=-39/94+13/43*I,n=60 3654384392957328 r009 Im(z^3+c),c=-39/94+13/43*I,n=53 3654384392994315 r002 17th iterates of z^2 + 3654384393371536 r009 Im(z^3+c),c=-39/94+13/43*I,n=63 3654384393886403 r009 Im(z^3+c),c=-39/94+13/43*I,n=64 3654384394294370 r009 Im(z^3+c),c=-39/94+13/43*I,n=62 3654384394976120 r009 Im(z^3+c),c=-39/94+13/43*I,n=61 3654384396196063 r009 Im(z^3+c),c=-39/94+13/43*I,n=57 3654384396728863 r009 Im(z^3+c),c=-39/94+13/43*I,n=58 3654384399531870 l006 ln(247/9545) 3654384401243514 a001 47/3*2971215073^(7/9) 3654384406085587 r009 Im(z^3+c),c=-39/94+13/43*I,n=51 3654384407562568 r009 Im(z^3+c),c=-39/94+13/43*I,n=54 3654384408919881 r009 Im(z^3+c),c=-3/106+12/29*I,n=14 3654384415064636 l006 ln(9323/9670) 3654384428831798 r009 Im(z^3+c),c=-3/106+12/29*I,n=16 3654384429479564 a007 Real Root Of -163*x^4+776*x^3-738*x^2-135*x+90 3654384431245500 r005 Im(z^2+c),c=-25/118+13/23*I,n=62 3654384432539034 r009 Re(z^3+c),c=-43/90+19/51*I,n=11 3654384434531076 r009 Im(z^3+c),c=-39/94+13/43*I,n=42 3654384439697649 s002 sum(A258771[n]/((pi^n-1)/n),n=1..infinity) 3654384443134840 r009 Im(z^3+c),c=-39/94+13/43*I,n=50 3654384446445436 a007 Real Root Of 359*x^4-666*x^3+712*x^2-914*x-468 3654384483452002 r005 Re(z^2+c),c=25/82+25/52*I,n=27 3654384488031941 b008 -1/4+ExpIntegralEi[E^(-4)] 3654384501735062 m001 (BesselI(1,2)-ArtinRank2)/(ln(2)+Zeta(1,2)) 3654384510807811 r009 Im(z^3+c),c=-39/94+13/43*I,n=47 3654384514380325 r009 Im(z^3+c),c=-39/94+13/43*I,n=46 3654384516562964 r009 Im(z^3+c),c=-33/70+7/30*I,n=11 3654384519982203 a001 4052739537881/2207*322^(11/12) 3654384532929574 r002 8th iterates of z^2 + 3654384544638770 r005 Im(z^2+c),c=-3/4+3/254*I,n=55 3654384558214230 a007 Real Root Of 854*x^4+932*x^3+238*x^2-866*x-318 3654384582129021 a001 119218851371/377*6557470319842^(16/17) 3654384588741617 m001 sqrt(5)^BesselJZeros(0,1)/Ei(1) 3654384591969546 a007 Real Root Of 295*x^4+922*x^3-731*x^2-339*x+908 3654384600332417 r005 Re(z^2+c),c=-29/62+11/56*I,n=10 3654384608486059 l006 ln(6703/9660) 3654384610821777 r009 Re(z^3+c),c=-61/126+11/23*I,n=32 3654384628403458 m005 (1/2*5^(1/2)+8/9)/(10/11*Catalan-7/9) 3654384632691920 a007 Real Root Of -405*x^4+296*x^3+944*x^2+697*x-388 3654384632951662 a007 Real Root Of 9*x^4+327*x^3-48*x^2+786*x+363 3654384641281284 m001 gamma^GAMMA(3/4)/HardHexagonsEntropy 3654384649433614 m001 Niven-exp(Pi)*(1+3^(1/2))^(1/2) 3654384651441002 r005 Im(z^2+c),c=23/102+7/22*I,n=9 3654384670292916 a007 Real Root Of -676*x^4+99*x^3+498*x^2+853*x-371 3654384673068747 m002 5/(4*Pi^2)+Pi*Cosh[Pi] 3654384675417688 m001 exp(BesselK(0,1))/Magata^2/Ei(1)^2 3654384695840820 r005 Re(z^2+c),c=-5/8+69/236*I,n=16 3654384699763897 r005 Re(z^2+c),c=-13/27+8/35*I,n=33 3654384726552009 r002 5th iterates of z^2 + 3654384736379697 r005 Re(z^2+c),c=-10/27+11/20*I,n=57 3654384779896429 r009 Im(z^3+c),c=-39/94+13/43*I,n=40 3654384780571412 r005 Im(z^2+c),c=-5/74+27/55*I,n=43 3654384807613480 m001 (Cahen*HardHexagonsEntropy-LaplaceLimit)/Cahen 3654384809062606 a001 17/2889*521^(33/50) 3654384838059721 r005 Im(z^2+c),c=-37/50+23/41*I,n=4 3654384856041370 r005 Re(z^2+c),c=-29/60+28/57*I,n=22 3654384859193817 m001 ln(Lehmer)^2/Kolakoski^2/KhintchineLevy 3654384868508680 r005 Im(z^2+c),c=1/50+26/59*I,n=42 3654384885005328 r009 Re(z^3+c),c=-35/74+19/49*I,n=2 3654384891906370 r005 Re(z^2+c),c=-35/74+7/18*I,n=22 3654384900380645 m001 (GAMMA(5/6)+Mills)^Backhouse 3654384901179096 a007 Real Root Of 50*x^4-53*x^3-673*x^2+778*x+327 3654384907377240 m004 -2+Sqrt[5]*Pi*Cos[Sqrt[5]*Pi]*Cot[Sqrt[5]*Pi] 3654384919872236 a007 Real Root Of 406*x^4-477*x^3+306*x^2-711*x+235 3654384933567904 r005 Re(z^2+c),c=-21/50+19/43*I,n=21 3654384946900869 m001 GAMMA(13/24)/ln((3^(1/3)))/GAMMA(3/4) 3654384952933563 r005 Im(z^2+c),c=1/44+18/41*I,n=51 3654384961711092 m001 1/Zeta(5)*GAMMA(5/12)*exp(gamma) 3654384961711092 m001 exp(gamma)/Zeta(5)*GAMMA(5/12) 3654384965869442 m001 HardyLittlewoodC3^ln(Pi)/(Trott2nd^ln(Pi)) 3654384971189591 r009 Re(z^3+c),c=-11/30+20/29*I,n=21 3654384979859950 r009 Im(z^3+c),c=-3/106+12/29*I,n=13 3654384998841321 a007 Real Root Of 449*x^4-978*x^3+353*x^2+235*x-17 3654385004197984 r009 Im(z^3+c),c=-39/94+13/43*I,n=43 3654385009050691 a007 Real Root Of -9*x^4-326*x^3+114*x^2+289*x-414 3654385030653564 r005 Re(z^2+c),c=-9/16+22/69*I,n=16 3654385032031877 m001 ZetaR(2)/(Artin^Catalan) 3654385032529805 p001 sum((-1)^n/(331*n+105)/n/(6^n),n=1..infinity) 3654385039449490 r005 Re(z^2+c),c=-43/94+6/17*I,n=50 3654385047799921 a007 Real Root Of -476*x^4+307*x^3-118*x^2+730*x+306 3654385054324741 l006 ln(160/6183) 3654385065635782 r009 Im(z^3+c),c=-2/7+19/52*I,n=11 3654385072635967 r005 Re(z^2+c),c=-49/110+23/43*I,n=58 3654385105836567 k005 Champernowne real with floor(sqrt(3)*(42*n+169)) 3654385115846577 k001 Champernowne real with 73*n+292 3654385132560741 m003 11/3+Sqrt[5]/64+Cos[1/2+Sqrt[5]/2] 3654385147650986 l006 ln(1920/2767) 3654385160777718 a001 3536736619241/1926*322^(11/12) 3654385176446173 m001 (Robbin+ZetaQ(2))/(3^(1/3)-Riemann2ndZero) 3654385179758886 m001 GAMMA(1/12)^2*exp(Lehmer)/cos(Pi/5)^2 3654385181100018 m001 BesselJ(1,1)^PlouffeB/Si(Pi) 3654385185742763 r005 Re(z^2+c),c=-55/114+6/29*I,n=15 3654385199290623 r005 Re(z^2+c),c=-39/94+21/43*I,n=55 3654385203389193 a007 Real Root Of -984*x^4-245*x^3+184*x^2+342*x+106 3654385206394326 m001 Landau^sin(1/5*Pi)+Otter 3654385213995573 r005 Re(z^2+c),c=33/106+3/59*I,n=53 3654385230019676 m001 (2^(1/3)+Cahen)/(-FeigenbaumKappa+GaussAGM) 3654385231580114 a007 Real Root Of 896*x^4-749*x^3+983*x^2-712*x-444 3654385235831408 a001 29/46368*89^(29/32) 3654385236777251 r005 Re(z^2+c),c=13/40+10/17*I,n=44 3654385238841716 r005 Im(z^2+c),c=8/23+19/64*I,n=37 3654385241339441 m005 (1/2*Zeta(3)-1/12)/(6*5^(1/2)+3/4) 3654385247355364 a007 Real Root Of -30*x^4+11*x^3+451*x^2-89*x-461 3654385258018381 m005 (1/2*Zeta(3)-8/9)/(1/2*exp(1)-4/7) 3654385258913398 m001 1/cos(1)^2/ln(Salem)*sqrt(3) 3654385266746777 m001 exp(Pi)*GAMMA(5/6)/TravellingSalesman 3654385279591497 a007 Real Root Of 264*x^4-344*x^3+855*x^2-986*x-496 3654385279611545 s002 sum(A069307[n]/((3*n)!),n=1..infinity) 3654385284893576 r005 Im(z^2+c),c=1/44+18/41*I,n=47 3654385286995801 r005 Re(z^2+c),c=-37/106+21/37*I,n=17 3654385288936350 r009 Re(z^3+c),c=-19/60+29/44*I,n=7 3654385290758919 a007 Real Root Of 427*x^4-413*x^3-494*x^2-868*x-279 3654385296113197 m006 (3/5*ln(Pi)-3/4)/(5/6*exp(Pi)-2) 3654385300496373 g007 Psi(2,5/11)-Psi(2,5/12)-Psi(2,7/10)-Psi(2,4/9) 3654385322453875 a005 (1/cos(5/134*Pi))^1860 3654385343059068 m001 (BesselK(0,1)-GAMMA(19/24))/(-Kac+Khinchin) 3654385344437224 m001 (Robbin-ZetaP(2))/(Zeta(1,-1)-2*Pi/GAMMA(5/6)) 3654385354766147 a007 Real Root Of -353*x^4+998*x^3+969*x^2+376*x+63 3654385366765107 r009 Im(z^3+c),c=-9/52+41/48*I,n=14 3654385388747976 m005 (1/3*3^(1/2)-1/5)/(7/12*Pi-4/5) 3654385417309625 m001 BesselJ(1,1)/(Totient^HardyLittlewoodC3) 3654385418272897 r002 12th iterates of z^2 + 3654385451610399 a007 Real Root Of 141*x^4+278*x^3+205*x^2-658*x+197 3654385461712386 r009 Im(z^3+c),c=-7/16+1/54*I,n=21 3654385464095259 r009 Re(z^3+c),c=-31/66+13/40*I,n=12 3654385478249787 m001 LaplaceLimit*(HardyLittlewoodC3-KhinchinLevy) 3654385486290565 m001 (2^(1/2)-5^(1/2))/(-cos(1)+BesselJ(0,1)) 3654385501996977 r005 Im(z^2+c),c=-1/50+13/28*I,n=40 3654385504133074 s002 sum(A223315[n]/((exp(n)+1)/n),n=1..infinity) 3654385534942127 r005 Re(z^2+c),c=-29/62+11/36*I,n=39 3654385543940339 r005 Re(z^2+c),c=-61/114+1/20*I,n=8 3654385556811238 a001 6557470319842/3571*322^(11/12) 3654385577035780 m001 1/BesselJ(0,1)/Trott*ln(GAMMA(2/3)) 3654385578010878 m001 (-ln(2+3^(1/2))+BesselI(1,1))/(1+Shi(1)) 3654385579319605 r005 Re(z^2+c),c=7/48+29/63*I,n=46 3654385581832840 r009 Im(z^3+c),c=-51/122+1/4*I,n=2 3654385582604224 r005 Re(z^2+c),c=19/52+16/53*I,n=27 3654385597932762 r005 Im(z^2+c),c=-29/25+3/64*I,n=62 3654385604534686 h001 (-7*exp(7)-8)/(-7*exp(1)-2) 3654385606126944 a007 Real Root Of -148*x^4-397*x^3+337*x^2-646*x+159 3654385607838914 m001 (-Kolakoski+MertensB2)/(Catalan-sin(1/12*Pi)) 3654385616671964 r005 Re(z^2+c),c=-25/94+18/35*I,n=7 3654385627376046 r005 Im(z^2+c),c=3/62+11/26*I,n=22 3654385632801207 m001 (-sin(1/12*Pi)+GAMMA(19/24))/(exp(Pi)+Ei(1)) 3654385644865050 r009 Re(z^3+c),c=-43/90+5/11*I,n=17 3654385669215022 m003 -1+4*E^(-1/2-Sqrt[5]/2)*Sinh[1/2+Sqrt[5]/2]^2 3654385684014560 r005 Im(z^2+c),c=-35/48+1/53*I,n=21 3654385684094850 l006 ln(6737/9709) 3654385685243000 r005 Im(z^2+c),c=-13/70+11/20*I,n=44 3654385692817333 a007 Real Root Of 221*x^4-17*x^3+989*x^2-690*x-389 3654385694998845 a003 sin(Pi*39/118)/cos(Pi*14/33) 3654385701873830 h001 (6/11*exp(2)+3/4)/(4/9*exp(1)+1/10) 3654385713980354 a007 Real Root Of 44*x^4+154*x^3-298*x^2-966*x+118 3654385720036764 m002 -5-E^Pi-Pi^4*Sech[Pi] 3654385731781655 a007 Real Root Of 103*x^4-661*x^3-772*x^2-368*x+268 3654385733367881 m001 1/exp(exp(1))/BesselK(1,1)/sqrt(3)^2 3654385743980509 r005 Im(z^2+c),c=1/6+1/47*I,n=10 3654385748460922 l006 ln(233/9004) 3654385797476905 r002 35th iterates of z^2 + 3654385835452921 a001 8/123*1364^(11/46) 3654385840242158 a007 Real Root Of 592*x^4-589*x^3-150*x^2-938*x+381 3654385843065751 r009 Im(z^3+c),c=-3/70+20/29*I,n=2 3654385847615942 a007 Real Root Of -837*x^4+731*x^3+504*x^2+777*x-372 3654385850725705 m002 -6+Cosh[Pi]-3*Coth[Pi]+ProductLog[Pi] 3654385852879938 a008 Real Root of x^4-2*x^3-57*x^2+16*x+622 3654385854571477 r005 Re(z^2+c),c=-31/26+91/118*I,n=2 3654385856427451 r005 Re(z^2+c),c=37/110+1/6*I,n=4 3654385860128996 m001 (OneNinth-ZetaQ(4))/(exp(1/exp(1))+Backhouse) 3654385866578859 a005 (1/cos(25/196*Pi))^211 3654385873017767 l006 ln(7093/7357) 3654385876094053 p003 LerchPhi(1/32,4,346/151) 3654385882056603 r005 Re(z^2+c),c=-11/23+21/41*I,n=58 3654385885741002 a007 Real Root Of -696*x^4-154*x^3-314*x^2+649*x+284 3654385892388460 a007 Real Root Of 209*x^4-727*x^3-407*x^2-547*x+286 3654385895599615 a007 Real Root Of -963*x^4-286*x^3-894*x^2+521*x+313 3654385895872400 a001 3571/12586269025*317811^(13/23) 3654385895876490 a001 3571/6557470319842*20365011074^(13/23) 3654385897915107 l006 ln(4817/6942) 3654385903116663 a007 Real Root Of -666*x^4+509*x^3-384*x^2+642*x+24 3654385917037060 a007 Real Root Of -776*x^4+976*x^3-634*x^2-430*x-11 3654385918964096 m001 (Si(Pi)+TravellingSalesman)^exp(1/Pi) 3654385923363801 a007 Real Root Of 64*x^4+80*x^3-562*x^2-152*x-560 3654385925719545 a007 Real Root Of 468*x^4+835*x^3+316*x^2-871*x+227 3654385932279065 p001 sum(1/(571*n+286)/(8^n),n=0..infinity) 3654385950354506 a001 7*(1/2*5^(1/2)+1/2)^31*18^(4/21) 3654385966136250 a008 Real Root of x^4-2*x^3+13*x^2+36*x-318 3654385994291695 s001 sum(exp(-Pi/2)^(n-1)*A010270[n],n=1..infinity) 3654386020243255 a001 123/2584*4181^(11/45) 3654386033523536 a007 Real Root Of 89*x^4+18*x^3-929*x^2+507*x-735 3654386041761072 m001 (Pi+3^(1/3))/(Lehmer+Robbin) 3654386043011491 a001 1/521*(1/2*5^(1/2)+1/2)^21*76^(9/19) 3654386049578417 s001 sum(exp(-Pi/3)^n*A048493[n],n=1..infinity) 3654386067787230 r005 Re(z^2+c),c=-7/15+7/23*I,n=27 3654386071594656 g002 Psi(3/11)+Psi(4/5)-Psi(5/9)-Psi(3/8) 3654386074388310 m001 1/Lehmer*ErdosBorwein/exp(Zeta(9))^2 3654386084034832 s002 sum(A252516[n]/(pi^n),n=1..infinity) 3654386090167632 r009 Im(z^3+c),c=-33/118+28/41*I,n=17 3654386095027870 h001 (-5*exp(5)+2)/(-5*exp(6)-8) 3654386110047332 a007 Real Root Of 372*x^4+259*x^3-586*x^2-665*x+302 3654386112772351 r005 Im(z^2+c),c=1/44+18/41*I,n=54 3654386119241272 a007 Real Root Of -8*x^4-292*x^3+36*x^2+855*x+293 3654386128700451 r005 Re(z^2+c),c=-19/32+7/38*I,n=4 3654386130298645 r005 Im(z^2+c),c=1/44+18/41*I,n=55 3654386133483446 r005 Im(z^2+c),c=-4/21+36/59*I,n=52 3654386140634626 a001 9349/32951280099*317811^(13/23) 3654386147718466 a001 123/121393*4052739537881^(11/12) 3654386150736362 a007 Real Root Of 828*x^4+84*x^3-847*x^2-418*x+247 3654386152436032 r005 Re(z^2+c),c=-8/17+7/24*I,n=59 3654386163574604 a001 439204/55*121393^(11/12) 3654386176237635 a007 Real Root Of 646*x^4-268*x^3-128*x^2-748*x+292 3654386176344953 a001 6119/21566892818*317811^(13/23) 3654386181555020 a001 64079/225851433717*317811^(13/23) 3654386182315158 a001 167761/591286729879*317811^(13/23) 3654386182426061 a001 109801/387002188980*317811^(13/23) 3654386182442241 a001 1149851/4052739537881*317811^(13/23) 3654386182444602 a001 3010349/10610209857723*317811^(13/23) 3654386182446061 a001 930249/3278735159921*317811^(13/23) 3654386182452242 a001 710647/2504730781961*317811^(13/23) 3654386182494603 a001 271443/956722026041*317811^(13/23) 3654386182784950 a001 51841/182717648081*317811^(13/23) 3654386183063690 r009 Re(z^3+c),c=-43/90+4/63*I,n=20 3654386184775018 a001 39603/139583862445*317811^(13/23) 3654386184779523 h001 (-exp(3)-8)/(-7*exp(7)-9) 3654386185531782 a007 Real Root Of -153*x^4+268*x^3-430*x^2-28*x+63 3654386193508987 a001 7/32951280099*2^(18/23) 3654386198415149 a001 15127/53316291173*317811^(13/23) 3654386201394065 m001 Riemann3rdZero/(Bloch-cos(1)) 3654386201579575 m009 (5/6*Psi(1,2/3)-1/5)/(8/5*Catalan+1/5*Pi^2+3) 3654386204720920 r002 29th iterates of z^2 + 3654386206922511 a001 199/10946*514229^(13/14) 3654386213019997 a001 199/2971215073*365435296162^(13/14) 3654386213020019 a001 199/5702887*433494437^(13/14) 3654386220709710 p003 LerchPhi(1/1024,1,649/237) 3654386226629462 m005 (1/2*2^(1/2)+7/9)/(6*gamma+3/5) 3654386228964823 m001 1/CopelandErdos*ln(ErdosBorwein)/GAMMA(1/24)^2 3654386234306894 m001 exp(BesselK(1,1))*Porter^2/Zeta(5)^2 3654386249972999 m001 OneNinth^2/exp(RenyiParking)/GAMMA(3/4)^2 3654386253668188 r005 Im(z^2+c),c=1/44+18/41*I,n=58 3654386269799400 a007 Real Root Of -823*x^4+352*x^3-826*x^2+867*x+459 3654386273257680 m004 (8*Sqrt[5])/Pi+125*Pi*Tan[Sqrt[5]*Pi] 3654386291906000 a001 2889/10182505537*317811^(13/23) 3654386291910090 a001 1926/3536736619241*20365011074^(13/23) 3654386304573900 m001 ln(2)/ln(10)+FeigenbaumAlpha*Totient 3654386307730743 m001 (Artin+Magata)/MertensB2 3654386324342593 r005 Re(z^2+c),c=-8/21+30/61*I,n=20 3654386332544233 a007 Real Root Of 295*x^4-513*x^3-563*x^2-728*x+361 3654386342392839 m001 1/GAMMA(23/24)/ln(GolombDickman)^2/Zeta(3) 3654386360815024 r005 Im(z^2+c),c=-37/38+21/64*I,n=5 3654386371687432 a001 1/319*(1/2*5^(1/2)+1/2)*11^(14/17) 3654386376071928 a007 Real Root Of -721*x^4+542*x^3+383*x^2+566*x+195 3654386378073522 p003 LerchPhi(1/3,6,167/141) 3654386395156054 l006 ln(2897/4175) 3654386395302007 m009 (24*Catalan+3*Pi^2+5)/(5*Psi(1,2/3)+1/6) 3654386403671507 r005 Im(z^2+c),c=1/44+18/41*I,n=61 3654386417092062 r005 Re(z^2+c),c=-19/50+15/28*I,n=14 3654386448157226 a007 Real Root Of 222*x^4+701*x^3-300*x^2+112*x-966 3654386448499257 r005 Im(z^2+c),c=1/44+18/41*I,n=62 3654386449902988 m001 (3^(1/2)+Shi(1))/(-cos(1)+Conway) 3654386451595468 r009 Im(z^3+c),c=-7/31+5/13*I,n=17 3654386462945175 a007 Real Root Of -301*x^4-923*x^3+384*x^2-884*x+278 3654386468307307 r009 Im(z^3+c),c=-23/60+29/50*I,n=8 3654386470922650 s002 sum(A032756[n]/((3*n)!),n=1..infinity) 3654386474611551 r005 Im(z^2+c),c=1/44+18/41*I,n=64 3654386496994883 a007 Real Root Of -448*x^4-934*x^3+197*x^2+953*x-321 3654386511655597 r005 Im(z^2+c),c=1/44+18/41*I,n=52 3654386516615877 a001 2504730781961/199*199^(7/11) 3654386522518254 m001 Riemann2ndZero*PrimesInBinary^2*exp(Trott) 3654386527043000 p001 sum(1/(191*n+30)/(2^n),n=0..infinity) 3654386531563170 a008 Real Root of x^4-x^3-5*x^2+51*x+26 3654386535353942 r005 Im(z^2+c),c=1/44+18/41*I,n=63 3654386536298089 r005 Im(z^2+c),c=1/44+18/41*I,n=59 3654386538551362 r005 Im(z^2+c),c=1/44+18/41*I,n=57 3654386541516678 a001 1364*(1/2*5^(1/2)+1/2)^16*3^(3/17) 3654386543872272 a001 7/34*233^(2/19) 3654386559311224 r002 2th iterates of z^2 + 3654386569262231 r009 Re(z^3+c),c=-16/31+9/55*I,n=20 3654386576179734 r009 Re(z^3+c),c=-3/7+13/58*I,n=31 3654386586206302 r005 Im(z^2+c),c=1/44+18/41*I,n=60 3654386586997396 a007 Real Root Of -616*x^4-675*x^3+307*x^2+537*x-20 3654386598497228 r005 Re(z^2+c),c=-29/54+19/37*I,n=13 3654386608087113 a001 18/39088169*4052739537881^(12/17) 3654386608136710 a001 18/121393*1134903170^(12/17) 3654386621866851 r009 Im(z^3+c),c=-1/8+15/37*I,n=13 3654386628293663 a008 Real Root of x^4-22*x^2-10*x+152 3654386640095018 r009 Im(z^3+c),c=-25/54+15/56*I,n=38 3654386640892492 r005 Re(z^2+c),c=-27/70+11/21*I,n=48 3654386671767734 m004 -4+(25*Pi)/2+Log[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 3654386686902069 a007 Real Root Of 243*x^4-851*x^3+762*x^2-863*x-463 3654386688637991 m001 exp(GolombDickman)/Bloch^2*TwinPrimes^2 3654386705443683 a003 sin(Pi*29/83)-sin(Pi*20/53) 3654386709110886 a005 (1/cos(1/22*Pi))^1252 3654386719938509 m001 (Ei(1,1)+ZetaP(2))/(ln(2)+ln(Pi)) 3654386722075247 a007 Real Root Of 3*x^4+131*x^3+771*x^2-365*x-139 3654386722878228 r009 Im(z^3+c),c=-39/94+13/43*I,n=39 3654386727402240 m001 (-Kac+RenyiParking)/(5^(1/2)+ln(3)) 3654386731754545 r005 Im(z^2+c),c=31/98+11/58*I,n=58 3654386747239899 m004 (125*Pi)/2-Cosh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/3 3654386748901371 l006 ln(6771/9758) 3654386752365251 p001 sum((-1)^n/(269*n+261)/(10^n),n=0..infinity) 3654386752676887 r005 Re(z^2+c),c=-17/26+35/122*I,n=40 3654386756492764 m001 GAMMA(7/12)^2/ln(OneNinth)^2*log(1+sqrt(2))^2 3654386758373334 h001 (-9*exp(3/2)+6)/(-exp(1/3)-8) 3654386794646356 p003 LerchPhi(1/64,1,645/233) 3654386809224943 m001 (ln(3)+PrimesInBinary)/(ThueMorse+ZetaQ(4)) 3654386814632422 a001 312119004989/5*7778742049^(13/19) 3654386830689521 r005 Im(z^2+c),c=1/44+18/41*I,n=56 3654386834709235 h001 (9/11*exp(1)+5/9)/(10/11*exp(2)+8/9) 3654386845257481 r009 Re(z^3+c),c=-17/40+9/41*I,n=39 3654386845535787 r005 Im(z^2+c),c=-3/44+28/57*I,n=62 3654386845649706 r005 Re(z^2+c),c=-41/118+16/29*I,n=25 3654386850196721 r005 Im(z^2+c),c=29/82+3/61*I,n=9 3654386858885074 m001 (Zeta(5)+BesselI(1,1))/(BesselJ(1,1)-ZetaQ(4)) 3654386868713706 r005 Re(z^2+c),c=-17/28+8/21*I,n=60 3654386872175225 r009 Re(z^3+c),c=-7/15+19/37*I,n=31 3654386875640223 r005 Re(z^2+c),c=-39/82+17/40*I,n=27 3654386881553415 r005 Im(z^2+c),c=-117/122+8/27*I,n=3 3654386908537419 m001 (3^(1/3)-Kolakoski)/(MertensB3+TreeGrowth2nd) 3654386913895829 a001 2207/55*39088169^(11/12) 3654386916744347 r005 Im(z^2+c),c=-7/102+28/57*I,n=33 3654386923532991 r005 Re(z^2+c),c=-53/102+8/39*I,n=11 3654386929545870 a007 Real Root Of -798*x^4-586*x^3-477*x^2+924*x+387 3654386930571658 r005 Im(z^2+c),c=3/19+22/61*I,n=9 3654386932701826 a001 2207/7778742049*317811^(13/23) 3654386932705916 a001 2207/4052739537881*20365011074^(13/23) 3654386934815216 a008 Real Root of x^2-x-133180 3654386935482416 r009 Re(z^3+c),c=-17/40+9/41*I,n=34 3654386941552899 r002 53th iterates of z^2 + 3654386949624407 m001 (MertensB1-Totient)/(Ei(1)+GAMMA(11/12)) 3654386951878717 m001 (3^(1/3)+Cahen)/(Grothendieck-Tribonacci) 3654386955761827 r002 10th iterates of z^2 + 3654386955825459 m005 (1/2*5^(1/2)+2/9)/(8/9*Pi+7/8) 3654386960777727 m001 exp(1/Pi)*GAMMA(5/24)^TwinPrimes 3654386960871248 a001 17/2*199^(27/38) 3654386969509218 m002 (18*E^Pi*Csch[Pi])/Pi^2 3654386984432361 a001 6557470319842/521*322^(7/12) 3654387000906107 a007 Real Root Of 109*x^4-18*x^3+987*x^2-53*x-154 3654387005576432 r009 Im(z^3+c),c=-12/29+10/33*I,n=34 3654387013434192 l006 ln(3874/5583) 3654387020952284 a001 196418/123*843^(25/31) 3654387027762400 m001 (Trott+ZetaQ(3))/(ln(2)+FeigenbaumDelta) 3654387030412336 r009 Re(z^3+c),c=-57/118+12/41*I,n=63 3654387031508133 r005 Re(z^2+c),c=-41/94+25/56*I,n=45 3654387035427736 a007 Real Root Of 274*x^4-101*x^3+962*x^2-749*x-412 3654387036102037 r002 44th iterates of z^2 + 3654387042555474 r005 Re(z^2+c),c=4/13+4/55*I,n=50 3654387047323533 m001 (Trott+ZetaP(4))/(1+HardHexagonsEntropy) 3654387077438054 a007 Real Root Of 118*x^4+188*x^3-711*x^2+739*x+326 3654387093439643 r005 Re(z^2+c),c=-43/94+6/17*I,n=46 3654387095069807 r005 Im(z^2+c),c=-15/22+8/103*I,n=41 3654387097618352 h001 (5/8*exp(2)+5/9)/(1/12*exp(2)+4/5) 3654387109100049 h001 (2/9*exp(2)+3/4)/(9/11*exp(2)+1/2) 3654387110435024 a007 Real Root Of -289*x^4+862*x^3-139*x^2+422*x+220 3654387127672223 s002 sum(A245341[n]/((2^n-1)/n),n=1..infinity) 3654387138710251 m001 (gamma+Zeta(5))/(BesselJ(1,1)+ZetaQ(4)) 3654387175826005 a007 Real Root Of 166*x^4+561*x^3-343*x^2-747*x-376 3654387181702971 r009 Re(z^3+c),c=-35/74+11/24*I,n=13 3654387197281771 m001 exp(1/Pi)^(2*Pi/GAMMA(5/6))/ln(5) 3654387197281771 m001 exp(1/Pi)^GAMMA(1/6)/ln(5) 3654387215503548 m001 CareFree/GolombDickman*exp(sinh(1)) 3654387234437104 a001 2504730781961/1364*322^(11/12) 3654387242148754 m001 (polylog(4,1/2)-GaussAGM)/(Thue+ZetaQ(3)) 3654387244638871 r005 Im(z^2+c),c=-73/110+6/13*I,n=57 3654387253298391 r009 Re(z^3+c),c=-17/40+9/41*I,n=36 3654387265283087 a007 Real Root Of 553*x^4-221*x^3+264*x^2-356*x-186 3654387269853605 l006 ln(73/2821) 3654387294753405 p001 sum((-1)^n/(463*n+365)/n/(3^n),n=1..infinity) 3654387295526216 r009 Re(z^3+c),c=-17/40+9/41*I,n=40 3654387298897939 m001 Psi(2,1/3)^cos(1/5*Pi)*Psi(2,1/3)^LaplaceLimit 3654387303567421 b008 1/3+Pi*ArcTan[Sqrt[Pi]] 3654387343334252 r009 Re(z^3+c),c=-13/40+3/56*I,n=7 3654387343699715 r005 Im(z^2+c),c=1/44+18/41*I,n=53 3654387362826921 a008 Real Root of (8+17*x-9*x^2+12*x^3) 3654387369176221 a001 3010349/55*8^(21/23) 3654387382667686 l006 ln(4851/6991) 3654387395180793 m001 (Kolakoski+StronglyCareFree)/(Trott-ZetaQ(2)) 3654387412064971 r005 Re(z^2+c),c=-57/82+10/51*I,n=11 3654387413505673 m001 Pi^2*ln(GAMMA(1/6))/arctan(1/2) 3654387416511393 r005 Im(z^2+c),c=41/122+4/43*I,n=33 3654387439190287 a007 Real Root Of 172*x^4+717*x^3+54*x^2-986*x-8 3654387447969849 m001 (Otter-TravellingSalesman)/(ln(2)-Mills) 3654387448223372 r005 Re(z^2+c),c=-7/10+10/183*I,n=10 3654387468117786 r005 Re(z^2+c),c=-101/118+31/63*I,n=2 3654387471464096 a005 (1/cos(9/182*Pi))^297 3654387480108344 a007 Real Root Of -582*x^4+217*x^3+507*x^2+802*x-361 3654387486452254 r005 Re(z^2+c),c=-15/29+14/61*I,n=5 3654387492440268 m001 exp(GAMMA(17/24))/FeigenbaumB*sin(1) 3654387492883169 r005 Im(z^2+c),c=1/44+18/41*I,n=50 3654387499612898 r009 Im(z^3+c),c=-25/114+17/44*I,n=16 3654387500463838 r005 Re(z^2+c),c=5/42+17/50*I,n=13 3654387529775425 m001 exp(1/Pi)+BesselI(0,2) 3654387542345530 r005 Im(z^2+c),c=27/94+12/53*I,n=33 3654387554765081 r009 Im(z^3+c),c=-6/11+3/13*I,n=55 3654387579145930 a005 (1/cos(14/113*Pi))^224 3654387585939044 m001 Zeta(1/2)*ln(Bloch)*gamma^2 3654387602486747 a007 Real Root Of -923*x^4-736*x^3-781*x^2+88*x+117 3654387603624786 a007 Real Root Of 206*x^4+645*x^3-484*x^2-395*x-241 3654387615039889 r005 Re(z^2+c),c=-35/74+12/43*I,n=45 3654387615930283 r005 Im(z^2+c),c=-24/19+11/34*I,n=4 3654387623975443 a007 Real Root Of 190*x^4+816*x^3+300*x^2-520*x+31 3654387624377766 a007 Real Root Of -117*x^4+957*x^3-931*x^2-471*x+1 3654387624617389 a007 Real Root Of 244*x^4+863*x^3+51*x^2+737*x+613 3654387628105316 l006 ln(5828/8399) 3654387639013477 r009 Im(z^3+c),c=-49/122+19/61*I,n=12 3654387650855845 r009 Im(z^3+c),c=-33/70+13/48*I,n=16 3654387654284260 b008 LogIntegral[7/64] 3654387656144565 r005 Re(z^2+c),c=-31/122+28/41*I,n=7 3654387659502708 r005 Re(z^2+c),c=13/44+3/35*I,n=14 3654387660742714 r005 Re(z^2+c),c=-7/10+25/197*I,n=21 3654387661513240 m005 (1/2*Zeta(3)+5/9)/(2/7*gamma+3) 3654387670201220 m001 MinimumGamma*(Riemann3rdZero-ZetaQ(3)) 3654387678685705 m001 (-Thue+ZetaQ(2))/(BesselI(0,1)-Zeta(1,2)) 3654387682226963 m005 (4/5*exp(1)-3/5)/(4*gamma+2) 3654387682577030 m001 sin(Pi/12)/cos(Pi/5)/exp(sqrt(5))^2 3654387712061853 m001 1/GAMMA(3/4)^2/FeigenbaumB/exp(cosh(1))^2 3654387721044909 r009 Re(z^3+c),c=-39/110+39/46*I,n=2 3654387721702560 r005 Im(z^2+c),c=-11/52+25/42*I,n=22 3654387745019746 m001 FeigenbaumB*ln(CopelandErdos)^2*Riemann2ndZero 3654387747238094 s002 sum(A251424[n]/(pi^n),n=1..infinity) 3654387749760544 r005 Re(z^2+c),c=-19/44+22/49*I,n=63 3654387752866047 r009 Re(z^3+c),c=-17/40+9/41*I,n=44 3654387753757740 a007 Real Root Of 970*x^4-913*x^3+952*x^2-156*x-246 3654387755139919 m001 (Lehmer-MasserGramain)/Porter 3654387765437890 m001 3^(1/2)/sin(1/12*Pi)/FeigenbaumC 3654387765598854 r002 15th iterates of z^2 + 3654387787962382 r005 Im(z^2+c),c=-23/118+5/9*I,n=22 3654387788253861 a007 Real Root Of -316*x^4-994*x^3+337*x^2-760*x+569 3654387790632200 r005 Im(z^2+c),c=-17/30+8/121*I,n=35 3654387791935245 r002 7th iterates of z^2 + 3654387796374356 a007 Real Root Of 657*x^4+373*x^3-122*x^2-886*x-301 3654387803067538 l006 ln(6805/9807) 3654387815292372 r005 Im(z^2+c),c=11/42+13/51*I,n=46 3654387818448252 r002 63th iterates of z^2 + 3654387821281662 a007 Real Root Of -90*x^4-241*x^3+164*x^2-812*x-868 3654387842268805 a007 Real Root Of -261*x^4-871*x^3+638*x^2+985*x-880 3654387853809699 m001 RenyiParking/(FeigenbaumD-exp(Pi)) 3654387857135437 m001 (-Riemann2ndZero+Robbin)/(Lehmer-Psi(2,1/3)) 3654387867176093 r009 Re(z^3+c),c=-17/40+9/41*I,n=43 3654387881373520 r005 Im(z^2+c),c=2/11+8/25*I,n=11 3654387894236550 p004 log(32237/22369) 3654387900725532 s001 sum(exp(-Pi/4)^(n-1)*A029555[n],n=1..infinity) 3654387912187366 r005 Im(z^2+c),c=27/106+16/61*I,n=28 3654387928904058 r009 Re(z^3+c),c=-17/40+9/41*I,n=48 3654387929812358 a007 Real Root Of 134*x^4+300*x^3-812*x^2-412*x+81 3654387938127857 r009 Im(z^3+c),c=-9/23+19/60*I,n=32 3654387949260126 m001 ZetaQ(3)^(ln(Pi)*MertensB2) 3654387958972811 r009 Re(z^3+c),c=-17/40+9/41*I,n=49 3654387961982653 r009 Re(z^3+c),c=-29/64+12/47*I,n=17 3654387970754626 r009 Re(z^3+c),c=-17/40+9/41*I,n=53 3654387972048048 r009 Re(z^3+c),c=-17/40+9/41*I,n=52 3654387974262010 r002 7th iterates of z^2 + 3654387976864537 r009 Im(z^3+c),c=-1/62+48/59*I,n=56 3654387976870303 r009 Re(z^3+c),c=-17/40+9/41*I,n=57 3654387978471166 r009 Re(z^3+c),c=-17/40+9/41*I,n=58 3654387978598327 r009 Re(z^3+c),c=-17/40+9/41*I,n=61 3654387978673188 r009 Re(z^3+c),c=-17/40+9/41*I,n=62 3654387979052908 r009 Re(z^3+c),c=-17/40+9/41*I,n=56 3654387979067492 r009 Re(z^3+c),c=-17/40+9/41*I,n=63 3654387979093790 r005 Im(z^2+c),c=-9/10+33/128*I,n=5 3654387979113206 r009 Re(z^3+c),c=-17/40+9/41*I,n=64 3654387979377514 r009 Re(z^3+c),c=-17/40+9/41*I,n=60 3654387979861023 a001 1/15456*13^(27/40) 3654387979865323 r009 Re(z^3+c),c=-17/40+9/41*I,n=59 3654387980602473 r009 Re(z^3+c),c=-17/40+9/41*I,n=54 3654387983281563 r009 Re(z^3+c),c=-17/40+9/41*I,n=55 3654387986207878 r009 Re(z^3+c),c=-17/40+9/41*I,n=45 3654387991346067 a007 Real Root Of -887*x^4+184*x^3+398*x^2+281*x-149 3654387992863412 r009 Re(z^3+c),c=-17/40+9/41*I,n=51 3654387993399067 m001 (2^(1/3)-BesselK(0,1))/UniversalParabolic 3654387998621663 r009 Re(z^3+c),c=-17/40+9/41*I,n=47 3654387999119181 r009 Re(z^3+c),c=-17/40+9/41*I,n=50 3654388000185066 a007 Real Root Of -217*x^4-698*x^3+250*x^2-348*x+26 3654388013622975 a007 Real Root Of -202*x^4-611*x^3+455*x^2-50*x-52 3654388018533050 m005 (-13/30+1/6*5^(1/2))/(8/11*Pi-5/8) 3654388026981363 a005 (1/cos(16/143*Pi))^276 3654388036874964 m001 (Totient+ZetaP(4))/(Catalan-Conway) 3654388046205274 m001 (GAMMA(3/4)-Landau)/(Tribonacci+Trott2nd) 3654388060406712 m004 2-E^(Sqrt[5]*Pi)/3+(25*Tan[Sqrt[5]*Pi])/Pi 3654388065476704 m001 (Trott+ZetaP(2))/(GAMMA(7/12)-MertensB1) 3654388090351777 r009 Re(z^3+c),c=-17/40+9/41*I,n=46 3654388100780080 r005 Im(z^2+c),c=-7/6+65/162*I,n=3 3654388132079432 m001 GAMMA(5/24)^2*exp(Khintchine)^2*Zeta(1,2)^2 3654388138170739 a007 Real Root Of -196*x^4+683*x^3-299*x^2+304*x-101 3654388157951064 r009 Re(z^3+c),c=-43/114+2/13*I,n=21 3654388171546925 a007 Real Root Of 108*x^4+123*x^3-671*x^2+962*x-782 3654388183776716 r009 Im(z^3+c),c=-12/29+10/33*I,n=33 3654388183821148 s002 sum(A172375[n]/(n*exp(n)+1),n=1..infinity) 3654388192773129 m001 (Si(Pi)+Catalan)/(-ln(gamma)+exp(-1/2*Pi)) 3654388201607436 m001 (gamma(1)-FeigenbaumDelta)/(Mills-ZetaQ(3)) 3654388203952451 m002 -E^Pi/6+Pi^6/E^Pi-Log[Pi] 3654388219142996 a001 3571*(1/2*5^(1/2)+1/2)^14*3^(3/17) 3654388221817326 r005 Im(z^2+c),c=-49/114+12/29*I,n=3 3654388228298102 r005 Re(z^2+c),c=-43/98+20/47*I,n=49 3654388234588885 a007 Real Root Of 270*x^4+918*x^3-356*x^2-254*x+474 3654388245075210 r005 Im(z^2+c),c=3/70+28/61*I,n=10 3654388245671534 m001 (-Salem+Sarnak)/(Catalan+FellerTornier) 3654388267025579 a001 322/3*4181^(11/26) 3654388273795530 m001 (Pi-ln(2)/ln(10)+Shi(1))*Zeta(1,2) 3654388274113183 m005 (4/15+1/6*5^(1/2))/(3/8*Pi+4/7) 3654388275309233 a007 Real Root Of 650*x^4-436*x^3-212*x^2-405*x+186 3654388317895799 p003 LerchPhi(1/10,3,41/136) 3654388325946623 r005 Im(z^2+c),c=-19/98+26/49*I,n=18 3654388327939666 s002 sum(A204876[n]/((10^n-1)/n),n=1..infinity) 3654388351052611 a007 Real Root Of 861*x^4-570*x^3-720*x^2-718*x+371 3654388371914481 r005 Im(z^2+c),c=-3/5+17/67*I,n=4 3654388376787935 r005 Im(z^2+c),c=1/44+18/41*I,n=40 3654388387680474 r009 Re(z^3+c),c=-17/40+9/41*I,n=41 3654388389534125 m001 exp(ArtinRank2)*CopelandErdos^2/MadelungNaCl^2 3654388396229441 r009 Re(z^3+c),c=-17/40+9/41*I,n=42 3654388421558264 r002 3th iterates of z^2 + 3654388425182317 r005 Im(z^2+c),c=1/44+18/41*I,n=49 3654388449280073 m001 (exp(Pi)+PlouffeB)/MasserGramain 3654388458291824 r005 Im(z^2+c),c=-2/23+27/43*I,n=33 3654388460094064 r005 Im(z^2+c),c=-17/36+10/63*I,n=4 3654388463905377 a001 9349*(1/2*5^(1/2)+1/2)^12*3^(3/17) 3654388464937704 m005 (1/2*5^(1/2)+7/12)/(2/7*Catalan-8/11) 3654388465596896 m001 (HardyLittlewoodC3+Paris)/(CareFree+Conway) 3654388466857006 a007 Real Root Of 314*x^4+614*x^3+995*x^2-825*x-410 3654388468988153 m001 exp(FeigenbaumB)^2*ErdosBorwein^2*GAMMA(1/3) 3654388492050659 m002 -5/E^Pi+Pi^4+E^Pi*Cosh[Pi] 3654388499615727 a001 24476*(1/2*5^(1/2)+1/2)^10*3^(3/17) 3654388501899253 m005 (1/3*exp(1)-1/10)/(3/11*2^(1/2)-4/11) 3654388504825797 a001 64079*(1/2*5^(1/2)+1/2)^8*3^(3/17) 3654388505715380 a001 3010349*3^(3/17) 3654388505715783 a001 (1/2*5^(1/2)+1/2)^31*3^(3/17) 3654388508045797 a001 39603*(1/2*5^(1/2)+1/2)^9*3^(3/17) 3654388521640771 r009 Im(z^3+c),c=-13/30+2/7*I,n=14 3654388521685937 a001 15127*(1/2*5^(1/2)+1/2)^11*3^(3/17) 3654388534615918 r005 Im(z^2+c),c=-3/82+9/19*I,n=37 3654388538581998 b008 -1/3+E*(1+4*Pi) 3654388543119796 r002 19th iterates of z^2 + 3654388573495230 a007 Real Root Of 343*x^4+996*x^3-727*x^2+834*x+192 3654388578074124 b008 Sqrt[Pi]*BesselK[0,21] 3654388584503065 m001 GAMMA(5/12)^2/OneNinth^2*exp(sqrt(5)) 3654388593207676 m004 30/Pi+75*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 3654388596627761 a007 Real Root Of 21*x^4-108*x^3-445*x^2+694*x-537 3654388598994357 a007 Real Root Of -82*x^4+608*x^3+728*x^2+921*x-462 3654388606117537 r005 Re(z^2+c),c=-65/98+21/47*I,n=32 3654388606617878 m001 (ln(5)-FeigenbaumKappa)/(Gompertz+Paris) 3654388610136944 a008 Real Root of x^2-x-133911 3654388612242844 r005 Re(z^2+c),c=-9/10+74/141*I,n=2 3654388615176847 a001 5778*(1/2*5^(1/2)+1/2)^13*3^(3/17) 3654388640568599 r005 Im(z^2+c),c=-101/94+9/32*I,n=17 3654388652547659 a007 Real Root Of -337*x^4+587*x^3+636*x^2+515*x+18 3654388661158497 r005 Re(z^2+c),c=1/98+22/29*I,n=40 3654388668102438 l006 ln(4863/5044) 3654388687554579 r005 Re(z^2+c),c=-55/114+2/9*I,n=35 3654388692798085 p001 sum(1/(37*n+29)/(8^n),n=0..infinity) 3654388696528052 m005 (1/2*2^(1/2)-3/4)/(8/9*2^(1/2)-1/12) 3654388710687445 m005 (1/2*gamma-4/5)/(51/70+3/10*5^(1/2)) 3654388713265618 m005 (1/2*3^(1/2)+4/5)/(3/5*3^(1/2)-7/12) 3654388738144991 r009 Re(z^3+c),c=-21/52+9/47*I,n=22 3654388759205418 r009 Im(z^3+c),c=-7/31+5/13*I,n=16 3654388759613476 a007 Real Root Of 7*x^4+250*x^3-195*x^2+651*x+796 3654388760893593 r005 Im(z^2+c),c=-131/106+7/15*I,n=3 3654388771867470 a007 Real Root Of -16*x^4-595*x^3-384*x^2-291*x-380 3654388777360233 p003 LerchPhi(1/12,2,51/97) 3654388783394133 m001 (arctan(1/2)+gamma(1))/(Catalan-cos(1/5*Pi)) 3654388805304291 m005 (1/3*Zeta(3)-3/7)/(1/5*3^(1/2)+5/12) 3654388810757954 a007 Real Root Of -882*x^4+872*x^3-343*x^2+342*x-106 3654388812373652 r005 Re(z^2+c),c=-29/66+20/39*I,n=58 3654388816929355 r005 Re(z^2+c),c=-15/32+27/58*I,n=17 3654388820927515 m001 Bloch^2/ln(DuboisRaymond)^2*TreeGrowth2nd 3654388846752049 l006 ln(977/1408) 3654388855291816 r002 42th iterates of z^2 + 3654388855502285 a001 47/34*17711^(29/36) 3654388858349371 r005 Re(z^2+c),c=17/50+5/48*I,n=26 3654388866219008 m001 (Paris+ZetaQ(2))/(BesselK(1,1)+FeigenbaumMu) 3654388881810530 a005 (1/sin(60/169*Pi))^676 3654388882259669 m005 (1/2*5^(1/2)-6/11)/(125/144+5/16*5^(1/2)) 3654388891778320 r005 Im(z^2+c),c=-1/106+41/52*I,n=18 3654388894158199 a003 cos(Pi*18/91)-cos(Pi*31/88) 3654388899405943 r009 Re(z^3+c),c=-17/40+9/41*I,n=38 3654388899866952 r005 Im(z^2+c),c=5/94+21/50*I,n=27 3654388902356511 g007 Psi(2,1/11)+Psi(2,1/8)+Psi(2,2/3)-Psi(2,4/11) 3654388903811505 m001 1/BesselK(1,1)^2/Riemann3rdZero/ln(gamma)^2 3654388911396488 m001 1/RenyiParking^2*exp(Bloch)*GAMMA(5/6)^2 3654388911856886 m005 (1/2*Pi-2)/(1/11*Pi+8/9) 3654388913038999 p001 sum(1/(313*n+274)/n/(5^n),n=1..infinity) 3654388916105700 a007 Real Root Of -521*x^4+76*x^3-634*x^2+436*x+257 3654388920404188 a007 Real Root Of -633*x^4-4*x^3-543*x^2+822*x+384 3654388928845771 r009 Im(z^3+c),c=-9/23+19/60*I,n=28 3654388941846730 g007 Psi(2,9/11)+Psi(2,5/8)+Psi(2,1/3)-Psi(2,1/6) 3654388949233066 r005 Re(z^2+c),c=-41/110+13/31*I,n=7 3654388963677378 m001 Catalan+Conway-Sierpinski 3654388968774388 r002 6th iterates of z^2 + 3654388972887932 m001 Rabbit^Shi(1)/(Tribonacci^Shi(1)) 3654388975552187 r005 Im(z^2+c),c=-21/110+5/9*I,n=49 3654388991233706 m001 (5^(1/2)+Shi(1))/(-OneNinth+Paris) 3654388992742618 r005 Im(z^2+c),c=4/21+10/31*I,n=18 3654388995865114 r005 Im(z^2+c),c=-4/17+26/49*I,n=18 3654388999043453 l006 ln(205/7922) 3654389001562961 m001 LambertW(1)*StronglyCareFree^(3^(1/2)) 3654389010270933 m001 (-HardyLittlewoodC3+ThueMorse)/(1-ln(5)) 3654389037458532 m001 (Chi(1)+Bloch)/(3^(1/2)+Si(Pi)) 3654389038876576 m001 ThueMorse*(Si(Pi)-cos(1/12*Pi)) 3654389038876576 m001 ThueMorse*(Si(Pi)-cos(Pi/12)) 3654389050269394 r005 Re(z^2+c),c=-2/3+29/169*I,n=17 3654389081442597 m002 -Log[Pi]-5/ProductLog[Pi]+2*ProductLog[Pi] 3654389087100687 m005 (1/3*Zeta(3)-1/12)/(19/112+5/16*5^(1/2)) 3654389106525266 r005 Re(z^2+c),c=-67/52+3/38*I,n=2 3654389109096140 a007 Real Root Of -112*x^4+46*x^3+810*x^2+776*x-392 3654389118803863 r002 32th iterates of z^2 + 3654389144110869 m001 Robbin^FeigenbaumAlpha-gamma(2) 3654389161717189 r009 Im(z^3+c),c=-17/31+10/51*I,n=2 3654389175983042 r009 Im(z^3+c),c=-19/82+18/47*I,n=19 3654389177279433 m004 -24+125*Pi-(5*Sqrt[5]*Tan[Sqrt[5]*Pi])/Pi 3654389177534578 r005 Im(z^2+c),c=39/86+2/19*I,n=3 3654389177926106 r009 Re(z^3+c),c=-27/82+4/61*I,n=20 3654389186703750 r009 Re(z^3+c),c=-27/82+4/61*I,n=21 3654389187582021 m001 GAMMA(3/4)*(FeigenbaumMu-sin(1/5*Pi)) 3654389195800784 m001 Riemann1stZero^HardyLittlewoodC5+ln(2) 3654389200168601 r009 Re(z^3+c),c=-27/82+4/61*I,n=22 3654389202250509 r005 Re(z^2+c),c=-77/118+3/59*I,n=8 3654389205018887 m005 (17/66+1/6*5^(1/2))/(7/12*3^(1/2)+5/7) 3654389208364245 r009 Re(z^3+c),c=-27/82+4/61*I,n=23 3654389211814326 r009 Re(z^3+c),c=-27/82+4/61*I,n=24 3654389212510925 r009 Re(z^3+c),c=-27/82+4/61*I,n=31 3654389212511866 r009 Re(z^3+c),c=-27/82+4/61*I,n=32 3654389212513298 r009 Re(z^3+c),c=-27/82+4/61*I,n=33 3654389212514168 r009 Re(z^3+c),c=-27/82+4/61*I,n=34 3654389212514533 r009 Re(z^3+c),c=-27/82+4/61*I,n=35 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=42 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=43 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=44 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=45 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=46 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=53 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=54 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=55 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=56 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=57 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=64 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=63 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=62 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=61 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=60 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=58 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=59 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=52 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=51 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=50 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=49 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=47 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=48 3654389212514607 r009 Re(z^3+c),c=-27/82+4/61*I,n=41 3654389212514609 r009 Re(z^3+c),c=-27/82+4/61*I,n=40 3654389212514615 r009 Re(z^3+c),c=-27/82+4/61*I,n=39 3654389212514628 r009 Re(z^3+c),c=-27/82+4/61*I,n=38 3654389212514636 r009 Re(z^3+c),c=-27/82+4/61*I,n=36 3654389212514643 r009 Re(z^3+c),c=-27/82+4/61*I,n=37 3654389212514845 r009 Re(z^3+c),c=-27/82+4/61*I,n=30 3654389212534966 r009 Re(z^3+c),c=-27/82+4/61*I,n=29 3654389212592051 r009 Re(z^3+c),c=-27/82+4/61*I,n=28 3654389212706477 r009 Re(z^3+c),c=-27/82+4/61*I,n=27 3654389212787992 r009 Re(z^3+c),c=-27/82+4/61*I,n=25 3654389212847398 r009 Re(z^3+c),c=-27/82+4/61*I,n=26 3654389215087158 r009 Re(z^3+c),c=-27/82+4/61*I,n=19 3654389215361260 r009 Re(z^3+c),c=-29/74+11/60*I,n=7 3654389216369740 a001 7/377*75025^(25/37) 3654389225378535 r009 Im(z^3+c),c=-39/94+13/43*I,n=36 3654389246235449 m005 (1/2*Zeta(3)+3)/(1/4*Pi+1/5) 3654389251279034 a007 Real Root Of -474*x^4+315*x^3-461*x^2-116*x+43 3654389255973080 a001 2207*(1/2*5^(1/2)+1/2)^15*3^(3/17) 3654389262987089 m005 (1/2*Zeta(3)+1/11)/(8/9*2^(1/2)+7/11) 3654389274535443 r005 Im(z^2+c),c=-7/30+50/59*I,n=3 3654389277571180 m006 (2*Pi-1/3)/(1/5*exp(Pi)-3) 3654389288398291 a008 Real Root of x^2-x-1372 3654389299617592 h001 (-9*exp(8)+3)/(-5*exp(5)+8) 3654389302826492 m005 (1/2*Catalan+3/11)/(7/11*2^(1/2)-7/10) 3654389314389812 r005 Re(z^2+c),c=-27/23+40/53*I,n=2 3654389315626678 m001 LambertW(1)^MadelungNaCl*LambertW(1)^Trott2nd 3654389322148991 r009 Im(z^3+c),c=-19/82+18/47*I,n=20 3654389333966176 m005 (1/2*5^(1/2)-4/11)/(5/11*Pi+7/11) 3654389334852877 a003 cos(Pi*7/120)*sin(Pi*4/33) 3654389334989674 a007 Real Root Of -12*x^4-464*x^3-925*x^2+196*x-707 3654389339485560 r005 Re(z^2+c),c=-31/34+22/107*I,n=22 3654389355883336 m001 (DuboisRaymond-FeigenbaumB)/KhinchinHarmonic 3654389357159904 m001 1/Salem^2*Magata/ln(BesselJ(1,1))^2 3654389361649746 m005 (1/3*3^(1/2)-1/5)/(1/3*Catalan+8/11) 3654389363274187 m001 (Zeta(1/2)+Rabbit)/gamma(3) 3654389368879872 m009 (1/8*Pi^2-4)/(1/6*Psi(1,3/4)+1/3) 3654389374288708 m005 (1/2*Pi+1/8)/(-44/9+1/9*5^(1/2)) 3654389376457802 a007 Real Root Of 435*x^4-132*x^3-780*x^2-847*x+32 3654389377841708 m009 (6*Catalan+3/4*Pi^2-1/3)/(4*Psi(1,1/3)-6) 3654389393426606 a007 Real Root Of -324*x^4+785*x^3+743*x^2+731*x+212 3654389401167261 r002 48i'th iterates of 2*x/(1-x^2) of 3654389401938856 b008 E^(3/16)+13*E 3654389405078008 r009 Re(z^3+c),c=-27/82+4/61*I,n=18 3654389408706480 a007 Real Root Of -981*x^4-680*x^3+456*x^2+284*x-114 3654389418481307 r005 Im(z^2+c),c=-1/62+33/61*I,n=13 3654389447455945 m005 (1/2*Catalan-1/10)/(4/9*Pi-5/12) 3654389455580419 r009 Im(z^3+c),c=-7/31+5/13*I,n=19 3654389470396533 m001 (Landau-Otter)/(Cahen-Conway) 3654389472196680 m005 (1/3*gamma-1/3)/(4/5*3^(1/2)-1) 3654389486022551 m005 (1/2*gamma+1/3)/(8/9*5^(1/2)-2/7) 3654389491856421 r009 Im(z^3+c),c=-21/64+14/29*I,n=3 3654389495977847 r005 Re(z^2+c),c=-15/34+12/35*I,n=13 3654389498345303 r005 Re(z^2+c),c=-8/19+24/49*I,n=30 3654389515743892 m001 1/OneNinth/exp(ArtinRank2)^2*(2^(1/3))^2 3654389518597289 m002 Pi^5+Pi^5/E^Pi+4*Sinh[Pi] 3654389520663428 r005 Re(z^2+c),c=-27/46+17/54*I,n=14 3654389536208674 m001 Cahen^2/ln(ErdosBorwein)^2/Rabbit^2 3654389549387458 m001 sin(1)*BesselI(0,2)^Grothendieck 3654389552454133 a001 18/17711*139583862445^(10/17) 3654389553861208 r005 Im(z^2+c),c=-17/78+13/25*I,n=12 3654389554623829 r005 Re(z^2+c),c=-25/26+20/83*I,n=14 3654389561214421 a007 Real Root Of 538*x^4+634*x^3-524*x^2-713*x+290 3654389561407038 m006 (5/6*exp(2*Pi)-1/6)/(2/3/Pi-1/5) 3654389572373864 m009 (3/5*Psi(1,1/3)-2/3)/(6*Psi(1,3/4)-1/2) 3654389579619753 r005 Re(z^2+c),c=25/106+1/59*I,n=25 3654389583032480 r009 Im(z^3+c),c=-19/82+18/47*I,n=22 3654389585763926 r005 Re(z^2+c),c=-2/3+68/113*I,n=3 3654389604335081 a007 Real Root Of -26*x^4-925*x^3+901*x^2-660*x-400 3654389609344715 m005 (1/2*2^(1/2)-1/7)/(4/7*Zeta(3)+6/7) 3654389609373704 r005 Im(z^2+c),c=-69/106+15/49*I,n=3 3654389624152394 m001 (Thue-ZetaQ(4))/(ln(5)-exp(1/Pi)) 3654389628102092 r009 Re(z^3+c),c=-25/62+4/21*I,n=13 3654389638516687 r005 Re(z^2+c),c=-101/106+5/51*I,n=10 3654389650936690 r005 Re(z^2+c),c=5/52+25/63*I,n=16 3654389659918782 r005 Im(z^2+c),c=-3/44+28/57*I,n=63 3654389685366619 m005 (1/2*3^(1/2)-5)/(2/7*3^(1/2)+7/11) 3654389695623362 r005 Im(z^2+c),c=7/32+6/17*I,n=9 3654389696355680 m001 Riemann2ndZero*exp(FeigenbaumB)/GAMMA(1/12)^2 3654389704881135 m001 MinimumGamma^2*exp(MertensB1)*log(2+sqrt(3)) 3654389709742603 r009 Im(z^3+c),c=-19/82+18/47*I,n=25 3654389715915988 a007 Real Root Of -173*x^4-69*x^3-442*x^2+797*x+350 3654389729280433 r009 Im(z^3+c),c=-19/82+18/47*I,n=28 3654389731448476 r009 Im(z^3+c),c=-19/82+18/47*I,n=31 3654389731476645 r009 Im(z^3+c),c=-19/82+18/47*I,n=30 3654389731570687 r009 Im(z^3+c),c=-19/82+18/47*I,n=33 3654389731611739 r009 Im(z^3+c),c=-19/82+18/47*I,n=36 3654389731616716 r009 Im(z^3+c),c=-19/82+18/47*I,n=34 3654389731618569 r009 Im(z^3+c),c=-19/82+18/47*I,n=39 3654389731619370 r009 Im(z^3+c),c=-19/82+18/47*I,n=42 3654389731619409 r009 Im(z^3+c),c=-19/82+18/47*I,n=41 3654389731619423 r009 Im(z^3+c),c=-19/82+18/47*I,n=44 3654389731619436 r009 Im(z^3+c),c=-19/82+18/47*I,n=47 3654389731619437 r009 Im(z^3+c),c=-19/82+18/47*I,n=45 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=50 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=53 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=55 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=52 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=56 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=58 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=61 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=64 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=63 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=62 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=59 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=60 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=57 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=54 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=51 3654389731619439 r009 Im(z^3+c),c=-19/82+18/47*I,n=49 3654389731619440 r009 Im(z^3+c),c=-19/82+18/47*I,n=48 3654389731619444 r009 Im(z^3+c),c=-19/82+18/47*I,n=46 3654389731619490 r009 Im(z^3+c),c=-19/82+18/47*I,n=43 3654389731619814 r009 Im(z^3+c),c=-19/82+18/47*I,n=40 3654389731620174 r009 Im(z^3+c),c=-19/82+18/47*I,n=38 3654389731621162 r009 Im(z^3+c),c=-19/82+18/47*I,n=37 3654389731632679 r009 Im(z^3+c),c=-19/82+18/47*I,n=35 3654389731760929 r009 Im(z^3+c),c=-19/82+18/47*I,n=32 3654389732723388 r009 Im(z^3+c),c=-19/82+18/47*I,n=29 3654389733184885 r009 Im(z^3+c),c=-19/82+18/47*I,n=27 3654389733215283 r009 Im(z^3+c),c=-19/82+18/47*I,n=23 3654389737341236 r009 Im(z^3+c),c=-19/82+18/47*I,n=26 3654389751819634 m001 (ln(2)-CareFree)/(Conway+KomornikLoreti) 3654389758857866 m005 (1/2*Pi-8/11)/(1/6*exp(1)-2/9) 3654389765736318 r009 Im(z^3+c),c=-19/82+18/47*I,n=24 3654389768311221 s002 sum(A210524[n]/(n^2*exp(n)+1),n=1..infinity) 3654389768749054 a007 Real Root Of 251*x^4+657*x^3-844*x^2+481*x+328 3654389790659247 p004 log(32531/22573) 3654389795319165 a007 Real Root Of -271*x^4-943*x^3-103*x^2-883*x+459 3654389832643849 r009 Im(z^3+c),c=-31/86+1/3*I,n=20 3654389835361584 m005 (1/2*exp(1)+7/10)/(5/12*Catalan+2/11) 3654389845266867 r008 a(0)=0,K{-n^6,-19+13*n+43*n^2-9*n^3} 3654389850479413 a003 cos(Pi*13/95)-cos(Pi*13/41) 3654389861552885 m009 (4/3*Catalan+1/6*Pi^2+2/3)/(4*Psi(1,3/4)-1/2) 3654389862314734 r005 Im(z^2+c),c=-1/50+13/28*I,n=44 3654389877846558 m008 (1/2*Pi^6+3)/(1/6*Pi+4/5) 3654389880110460 l006 ln(6873/9905) 3654389884685137 m005 (1/2*5^(1/2)+2/11)/(1/4*gamma-1/2) 3654389887242798 r005 Re(z^2+c),c=13/42+14/31*I,n=9 3654389889418497 m001 (Kac-Khinchin)/(BesselI(1,1)-GAMMA(5/6)) 3654389921595056 a001 4052739537881/521*322^(2/3) 3654389937769653 r009 Re(z^3+c),c=-43/114+2/13*I,n=22 3654389942226799 m001 (-Niven+ThueMorse)/(1-MasserGramain) 3654389943290575 r009 Re(z^3+c),c=-27/82+4/61*I,n=17 3654389944024290 m001 Robbin/(Riemann1stZero^ReciprocalLucas) 3654389951347654 r005 Im(z^2+c),c=11/122+19/48*I,n=25 3654389955336555 l006 ln(132/5101) 3654389961444820 a001 1364/4181*832040^(9/26) 3654389970263264 r009 Im(z^3+c),c=-23/54+18/61*I,n=33 3654389987675432 a007 Real Root Of 679*x^4+869*x^3+981*x^2-414*x-252 3654389989180515 a007 Real Root Of 205*x^4+528*x^3-524*x^2+955*x-305 3654390003756660 m001 (-arctan(1/3)+FellerTornier)/(exp(Pi)+Zeta(5)) 3654390046727042 a007 Real Root Of -46*x^4-11*x^3+702*x^2+579*x+408 3654390046758019 r005 Re(z^2+c),c=-51/122+32/61*I,n=57 3654390051343688 l006 ln(5896/8497) 3654390060466966 a008 Real Root of x^4-x^3-26*x^2-28*x+320 3654390060758053 m001 (Totient-ThueMorse)/(FeigenbaumB+Niven) 3654390071405508 r009 Re(z^3+c),c=-29/64+13/49*I,n=14 3654390073942690 r005 Im(z^2+c),c=8/27+11/51*I,n=40 3654390079709092 m009 (5/6*Psi(1,1/3)-2/3)/(8*Catalan+Pi^2+4) 3654390085621785 m005 (1/2*Zeta(3)-3/10)/(1/5*Zeta(3)+7/12) 3654390087798343 r005 Re(z^2+c),c=-8/17+7/24*I,n=55 3654390097917302 m001 (BesselI(1,2)+FeigenbaumMu)/(2^(1/2)-gamma(3)) 3654390099070711 a007 Real Root Of -300*x^4-961*x^3+266*x^2-771*x+234 3654390108242010 r009 Im(z^3+c),c=-39/94+13/43*I,n=31 3654390110936356 r004 Im(z^2+c),c=1/4-4/15*I,z(0)=exp(5/8*I*Pi),n=30 3654390120997369 r009 Im(z^3+c),c=-19/82+18/47*I,n=21 3654390133043644 r009 Im(z^3+c),c=-17/62+25/59*I,n=3 3654390135678178 m001 1/exp(Robbin)*RenyiParking/GAMMA(11/12) 3654390142910134 r009 Im(z^3+c),c=-9/23+19/60*I,n=33 3654390156699433 m002 Cosh[Pi]/Pi^2+(ProductLog[Pi]*Sinh[Pi])/5 3654390158430778 b008 21+3*E+E^2 3654390174494622 r009 Im(z^3+c),c=-7/15+14/51*I,n=16 3654390176965029 a007 Real Root Of -286*x^4-744*x^3+829*x^2-763*x+838 3654390177712074 m001 (Zeta(5)-cos(1/5*Pi))/(ln(3)-Weierstrass) 3654390194892726 r005 Im(z^2+c),c=-2/21+32/55*I,n=21 3654390202152539 m001 (1+3^(1/2))^(1/2)/sin(1/12*Pi)/MadelungNaCl 3654390202152539 m001 sqrt(1+sqrt(3))/sin(Pi/12)/MadelungNaCl 3654390202714900 m001 (Ei(1,1)-GaussAGM)/(Grothendieck-Paris) 3654390224183584 r005 Im(z^2+c),c=-7/26+25/46*I,n=18 3654390225399306 h001 (8/9*exp(2)+1/8)/(1/6*exp(2)+3/5) 3654390239308270 m002 1-E^Pi/Pi^2-Sinh[Pi]/5 3654390241492703 r009 Im(z^3+c),c=-7/31+5/13*I,n=22 3654390245974579 m001 (-Gompertz+Sierpinski)/(Psi(2,1/3)+CareFree) 3654390250919458 a007 Real Root Of 64*x^4-388*x^3+465*x^2+47*x-65 3654390251213048 r005 Re(z^2+c),c=-47/78+13/40*I,n=18 3654390255602923 s001 sum(exp(-Pi/2)^n*A021024[n],n=1..infinity) 3654390261874419 m001 (-Zeta(1/2)+polylog(4,1/2))/(1+Psi(2,1/3)) 3654390270080328 r009 Im(z^3+c),c=-9/106+16/39*I,n=9 3654390288504710 m004 -125*Pi+4*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi]^2 3654390290596777 l006 ln(4919/7089) 3654390291913578 r005 Re(z^2+c),c=-79/106+5/44*I,n=10 3654390295156707 m001 (Kolakoski-Landau)/(LandauRamanujan-ZetaP(4)) 3654390296956838 m001 1/BesselJ(0,1)/CareFree/ln(BesselK(1,1)) 3654390300867308 m002 -23/6+ProductLog[Pi]/6 3654390313332281 r005 Re(z^2+c),c=-43/82+19/59*I,n=12 3654390316427022 m001 (Tetranacci+ThueMorse)/(BesselI(0,1)-Kac) 3654390320347380 r009 Im(z^3+c),c=-7/31+5/13*I,n=20 3654390329287554 m001 1/exp(GAMMA(5/6))^2*OneNinth/GAMMA(7/24) 3654390377272786 r009 Im(z^3+c),c=-7/31+5/13*I,n=25 3654390384860749 r009 Re(z^3+c),c=-7/17+23/43*I,n=4 3654390392415163 r009 Im(z^3+c),c=-7/31+5/13*I,n=28 3654390392473355 r009 Im(z^3+c),c=-7/31+5/13*I,n=27 3654390393155643 r009 Im(z^3+c),c=-7/31+5/13*I,n=30 3654390393448683 r009 Im(z^3+c),c=-7/31+5/13*I,n=33 3654390393494031 r009 Im(z^3+c),c=-7/31+5/13*I,n=36 3654390393498501 r009 Im(z^3+c),c=-7/31+5/13*I,n=38 3654390393498706 r009 Im(z^3+c),c=-7/31+5/13*I,n=39 3654390393498867 r009 Im(z^3+c),c=-7/31+5/13*I,n=41 3654390393498973 r009 Im(z^3+c),c=-7/31+5/13*I,n=44 3654390393498988 r009 Im(z^3+c),c=-7/31+5/13*I,n=47 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=49 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=50 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=52 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=55 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=58 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=60 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=57 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=63 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=61 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=64 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=62 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=59 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=56 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=53 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=54 3654390393498989 r009 Im(z^3+c),c=-7/31+5/13*I,n=51 3654390393498990 r009 Im(z^3+c),c=-7/31+5/13*I,n=46 3654390393498990 r009 Im(z^3+c),c=-7/31+5/13*I,n=48 3654390393498995 r009 Im(z^3+c),c=-7/31+5/13*I,n=45 3654390393498999 r009 Im(z^3+c),c=-7/31+5/13*I,n=42 3654390393499011 r009 Im(z^3+c),c=-7/31+5/13*I,n=43 3654390393499283 r009 Im(z^3+c),c=-7/31+5/13*I,n=40 3654390393501553 r009 Im(z^3+c),c=-7/31+5/13*I,n=37 3654390393501598 r009 Im(z^3+c),c=-7/31+5/13*I,n=35 3654390393502471 r009 Im(z^3+c),c=-7/31+5/13*I,n=31 3654390393513171 r009 Im(z^3+c),c=-7/31+5/13*I,n=34 3654390393576435 r009 Im(z^3+c),c=-7/31+5/13*I,n=32 3654390394429689 r009 Im(z^3+c),c=-7/31+5/13*I,n=29 3654390400994782 r009 Im(z^3+c),c=-7/31+5/13*I,n=26 3654390405888522 r009 Im(z^3+c),c=-7/31+5/13*I,n=24 3654390415984673 m001 (1+ln(2+3^(1/2)))/(-gamma(2)+GolombDickman) 3654390429301262 r009 Im(z^3+c),c=-7/31+5/13*I,n=23 3654390433523213 h001 (2/7*exp(2)+7/12)/(11/12*exp(2)+3/5) 3654390438250589 m004 25+4*Csc[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3654390442723807 r009 Im(z^3+c),c=-41/110+17/52*I,n=19 3654390443578789 m001 (Shi(1)+gamma(1))/(Riemann3rdZero+Tetranacci) 3654390444647503 r005 Im(z^2+c),c=-23/102+29/51*I,n=60 3654390453024497 a007 Real Root Of 127*x^4+312*x^3-565*x^2+113*x+535 3654390461012092 r005 Im(z^2+c),c=-29/40+9/37*I,n=42 3654390461494882 r005 Re(z^2+c),c=-43/78+16/37*I,n=48 3654390491215701 a007 Real Root Of 209*x^4+689*x^3-93*x^2+796*x+502 3654390512289330 m001 Trott2nd^BesselI(0,1)/(Artin^BesselI(0,1)) 3654390519550443 m005 (1/2*Catalan+3/11)/(4/11*Pi+6/7) 3654390536006858 m001 (Zeta(3)-ln(2)/ln(10))/(ln(2)+Pi^(1/2)) 3654390547932951 a007 Real Root Of 967*x^4-671*x^3+894*x^2-746*x-442 3654390554090293 r009 Im(z^3+c),c=-9/23+19/60*I,n=36 3654390565596988 m005 (1/2*gamma-2/3)/(7/12*Zeta(3)+1/3) 3654390571472499 r009 Re(z^3+c),c=-23/38+19/43*I,n=15 3654390594954905 m001 GaussKuzminWirsing/Bloch^2/exp(log(2+sqrt(3))) 3654390603143141 b008 13-12/E^(1/4) 3654390623813316 a007 Real Root Of 192*x^4-323*x^3+507*x^2-512*x-274 3654390635054823 p003 LerchPhi(1/100,6,112/139) 3654390643182517 a007 Real Root Of 828*x^4+732*x^3+570*x^2-514*x-243 3654390645272578 a001 89/3*7^(3/28) 3654390646987259 r009 Im(z^3+c),c=-39/94+13/43*I,n=35 3654390648444613 l006 ln(3942/5681) 3654390649083701 m005 (1/2*5^(1/2)-11/12)/(5*Zeta(3)-1/2) 3654390657889578 r009 Im(z^3+c),c=-7/31+5/13*I,n=21 3654390667163118 r009 Re(z^3+c),c=-27/52+18/59*I,n=49 3654390671209643 h001 (1/12*exp(2)+8/9)/(4/9*exp(2)+5/6) 3654390671428160 r005 Im(z^2+c),c=19/126+21/64*I,n=6 3654390671814364 s002 sum(A271013[n]/(n^3*2^n-1),n=1..infinity) 3654390686410524 r009 Im(z^3+c),c=-23/50+10/37*I,n=41 3654390686959104 a003 sin(Pi*11/69)-sin(Pi*17/53) 3654390695318720 r005 Re(z^2+c),c=-51/70+13/62*I,n=11 3654390704925345 a003 cos(Pi*4/87)/cos(Pi*57/116) 3654390705759187 r009 Re(z^3+c),c=-17/40+9/41*I,n=37 3654390706172835 r009 Im(z^3+c),c=-43/114+12/37*I,n=16 3654390716658454 a007 Real Root Of 256*x^4-392*x^3-505*x^2-249*x+173 3654390718215041 m001 (BesselJ(1,1)+GlaisherKinkelin)/(Magata+Mills) 3654390733244583 a001 9349/5*196418^(10/41) 3654390735255819 r005 Im(z^2+c),c=-3/44+28/57*I,n=60 3654390738454898 m005 (1/2*3^(1/2)-1/11)/(3/7*Zeta(3)-8/11) 3654390746215927 m001 1/BesselK(1,1)/ln(Riemann1stZero)^2*cosh(1) 3654390747647858 m001 (-ErdosBorwein+Robbin)/(exp(Pi)+exp(1)) 3654390753668030 r009 Re(z^3+c),c=-37/70+5/8*I,n=11 3654390754058181 m001 (StronglyCareFree-polylog(4,1/2))*2^(1/2) 3654390776837050 m001 ((1+3^(1/2))^(1/2)+Artin)/(ZetaQ(2)+ZetaQ(4)) 3654390787046263 a001 1/4*(1/2*5^(1/2)+1/2)^8*7^(7/12) 3654390795442909 m001 1/exp(Rabbit)^2*Si(Pi)/GAMMA(3/4) 3654390809469319 a007 Real Root Of -411*x^4+688*x^3+416*x^2+965*x+338 3654390816103992 r009 Re(z^3+c),c=-59/126+13/40*I,n=8 3654390818621416 m001 GAMMA(3/4)*QuadraticClass-TravellingSalesman 3654390831347017 m001 (-Trott+ZetaP(2))/(1+exp(-1/2*Pi)) 3654390834155377 m001 1/GAMMA(5/6)*FibonacciFactorial^2*exp(Zeta(7)) 3654390858798111 r002 10th iterates of z^2 + 3654390873015116 r005 Re(z^2+c),c=-19/26+1/69*I,n=16 3654390891390144 a007 Real Root Of 380*x^4-581*x^3+357*x^2+347*x+44 3654390892066726 a007 Real Root Of -721*x^4+204*x^3-992*x^2+292*x+262 3654390892221061 m001 sin(1/12*Pi)^(FeigenbaumD/MasserGramain) 3654390903295265 l006 ln(6907/9954) 3654390907035758 r005 Re(z^2+c),c=-3/5+22/109*I,n=11 3654390909643088 a001 1/10983760033*832040^(14/23) 3654390911718390 r005 Im(z^2+c),c=-21/122+27/52*I,n=16 3654390926786392 a007 Real Root Of 216*x^4+781*x^3+244*x^2+955*x-176 3654390927372030 m001 exp(BesselK(0,1))*FeigenbaumD^2*gamma^2 3654390934844192 q001 129/353 3654390938349454 m001 (GAMMA(13/24)-Khinchin)/(Ei(1)+cos(1/12*Pi)) 3654390944698990 m001 (Cahen-FeigenbaumDelta)/(Robbin+TreeGrowth2nd) 3654390956777070 m001 (-PlouffeB+Thue)/(sin(1)+exp(-1/2*Pi)) 3654390962911913 r005 Re(z^2+c),c=25/66+6/25*I,n=42 3654390969824257 a001 1/15456*377^(17/25) 3654390979830662 m001 (ln(5)+Ei(1))/(ArtinRank2+MertensB1) 3654390981723422 l006 ln(191/7381) 3654390991117664 m001 (5^(1/2)-exp(Pi))/(-ErdosBorwein+MertensB2) 3654390995471510 m001 (ln(5)+GAMMA(19/24))^BesselI(0,1) 3654391020657278 r009 Re(z^3+c),c=-27/82+4/61*I,n=16 3654391022332061 a001 4/3*102334155^(13/14) 3654391048049502 r009 Im(z^3+c),c=-25/114+17/44*I,n=17 3654391067685784 r005 Re(z^2+c),c=-39/50+2/15*I,n=28 3654391093071862 a001 521*(1/2*5^(1/2)+1/2)*47^(8/21) 3654391097241847 m001 (-Catalan+Kolakoski)/(exp(Pi)+Psi(1,1/3)) 3654391097640746 b008 -4+ArcSinh[9]^(-1) 3654391106422027 a003 sin(Pi*1/92)/cos(Pi*13/112) 3654391115027015 r005 Im(z^2+c),c=-11/102+27/52*I,n=24 3654391115256710 m001 Thue/((Pi*csc(5/24*Pi)/GAMMA(19/24))^gamma) 3654391118062875 r009 Re(z^3+c),c=-37/110+5/53*I,n=2 3654391118758054 m001 (FeigenbaumC-MertensB1)/(Otter+Totient) 3654391118967684 r002 50th iterates of z^2 + 3654391121589624 a001 2/1568397607*3^(23/24) 3654391132198078 m001 (LambertW(1)-Lehmer)/ArtinRank2 3654391147529951 m001 (-Kolakoski+ZetaQ(4))/(exp(1/exp(1))-exp(Pi)) 3654391148036947 a007 Real Root Of -194*x^4-981*x^3-906*x^2+97*x-823 3654391157255005 r002 9th iterates of z^2 + 3654391169218898 r009 Re(z^3+c),c=-19/42+7/23*I,n=9 3654391184133783 r005 Im(z^2+c),c=1/18+18/43*I,n=32 3654391199619712 r004 Re(z^2+c),c=-25/46-4/19*I,z(0)=-1,n=10 3654391216773475 m005 (1/3*Pi+2/11)/(9/10*exp(1)+11/12) 3654391216836301 r005 Re(z^2+c),c=-35/82+26/59*I,n=31 3654391219457508 s002 sum(A216551[n]/(pi^n+1),n=1..infinity) 3654391222522067 r005 Re(z^2+c),c=-47/110+22/47*I,n=55 3654391229041258 r005 Re(z^2+c),c=-12/17+11/49*I,n=58 3654391231491046 r005 Re(z^2+c),c=-8/17+7/24*I,n=57 3654391232491024 m001 (Zeta(1,2)-Zeta(5))/cos(1) 3654391234012060 r009 Im(z^3+c),c=-9/23+19/60*I,n=39 3654391235400643 m001 2^(1/2)-Khinchin*Riemann1stZero 3654391242121991 l006 ln(2965/4273) 3654391249542794 r005 Im(z^2+c),c=-5/27+25/31*I,n=12 3654391249949229 r005 Re(z^2+c),c=-49/114+31/63*I,n=53 3654391250568427 a001 76/233*3^(3/29) 3654391250667732 m004 (-3125*Sqrt[5]*Pi)/6+4*Cot[Sqrt[5]*Pi] 3654391252726641 r002 61th iterates of z^2 + 3654391268503917 m006 (5/6*exp(2*Pi)+4/5)/(4*Pi-1/3) 3654391280714540 r005 Im(z^2+c),c=-11/9+19/105*I,n=22 3654391311033175 a007 Real Root Of 911*x^4-693*x^3-47*x^2-991*x+386 3654391312917676 l006 ln(7496/7775) 3654391312945164 r009 Im(z^3+c),c=-9/23+19/60*I,n=40 3654391321811020 s002 sum(A016276[n]/(exp(n)+1),n=1..infinity) 3654391322035260 a007 Real Root Of -83*x^4-401*x^3-284*x^2+383*x+425 3654391324781753 a001 843/2971215073*317811^(13/23) 3654391324785843 a001 281/516002918640*20365011074^(13/23) 3654391348308099 g002 Psi(1/9)-Psi(7/10)-2*Psi(4/9) 3654391360463864 r009 Im(z^3+c),c=-9/23+19/60*I,n=43 3654391374379255 r009 Im(z^3+c),c=-61/106+19/52*I,n=19 3654391385525285 m001 1/KhintchineLevy^2*Conway^2*exp(Niven)^2 3654391398638813 m001 (TwinPrimes+ZetaQ(2))/(cos(1/5*Pi)+ln(Pi)) 3654391403012438 m001 (sin(1)+Pi^(1/2))/(CareFree+Trott) 3654391403181989 r009 Im(z^3+c),c=-9/23+19/60*I,n=46 3654391404688156 r009 Im(z^3+c),c=-9/23+19/60*I,n=47 3654391408798193 r009 Im(z^3+c),c=-9/23+19/60*I,n=50 3654391411307939 r009 Im(z^3+c),c=-9/23+19/60*I,n=54 3654391411408091 r009 Im(z^3+c),c=-9/23+19/60*I,n=53 3654391411621629 r009 Im(z^3+c),c=-9/23+19/60*I,n=57 3654391411760005 r009 Im(z^3+c),c=-9/23+19/60*I,n=61 3654391411776735 r009 Im(z^3+c),c=-9/23+19/60*I,n=58 3654391411776964 r009 Im(z^3+c),c=-9/23+19/60*I,n=60 3654391411782257 r009 Im(z^3+c),c=-9/23+19/60*I,n=64 3654391411801732 r009 Im(z^3+c),c=-9/23+19/60*I,n=63 3654391411806634 r009 Im(z^3+c),c=-9/23+19/60*I,n=62 3654391411863600 r009 Im(z^3+c),c=-9/23+19/60*I,n=51 3654391411871404 r009 Im(z^3+c),c=-9/23+19/60*I,n=59 3654391411927007 r009 Im(z^3+c),c=-9/23+19/60*I,n=56 3654391412091878 r009 Im(z^3+c),c=-9/23+19/60*I,n=55 3654391413106737 r009 Im(z^3+c),c=-9/23+19/60*I,n=52 3654391413424972 r009 Im(z^3+c),c=-9/23+19/60*I,n=49 3654391417527858 r009 Im(z^3+c),c=-9/23+19/60*I,n=48 3654391418456862 r009 Im(z^3+c),c=-9/23+19/60*I,n=44 3654391419647559 m001 (Zeta(1,-1)+2*Pi/GAMMA(5/6))/(Porter+Trott) 3654391424374700 r005 Im(z^2+c),c=-1/4+10/13*I,n=26 3654391427613312 r009 Im(z^3+c),c=-9/23+19/60*I,n=42 3654391428410725 r005 Re(z^2+c),c=-3/4+23/234*I,n=12 3654391432889702 r009 Im(z^3+c),c=-9/23+19/60*I,n=45 3654391448030186 r005 Im(z^2+c),c=-43/122+13/24*I,n=25 3654391454462689 r009 Re(z^3+c),c=-39/82+26/59*I,n=10 3654391458560269 a007 Real Root Of 592*x^4-989*x^3+966*x^2-538*x-21 3654391460150226 r009 Re(z^3+c),c=-59/122+5/17*I,n=33 3654391468196411 a007 Real Root Of 130*x^4+113*x^3-29*x^2-684*x+246 3654391472946683 r009 Im(z^3+c),c=-9/23+19/60*I,n=35 3654391477224133 r005 Re(z^2+c),c=43/118+9/43*I,n=26 3654391477731497 a007 Real Root Of 229*x^4-316*x^3+935*x^2-248*x-235 3654391483257625 m005 (1/2*3^(1/2)-5/6)/(5*3^(1/2)+2/7) 3654391484688084 m001 Si(Pi)^ln(5)*FeigenbaumKappa 3654391487689627 m001 (Catalan-Si(Pi))/(-cos(1/12*Pi)+Rabbit) 3654391501124113 a007 Real Root Of 405*x^4-202*x^3+59*x^2-22*x-33 3654391517454510 r009 Im(z^3+c),c=-9/23+19/60*I,n=41 3654391519685154 a007 Real Root Of 280*x^4-891*x^3-375*x^2-844*x+397 3654391523655263 l006 ln(250/9661) 3654391526438172 r005 Re(z^2+c),c=-5/8+1/62*I,n=8 3654391529573574 m009 (1/3*Pi^2-1/4)/(24/5*Catalan+3/5*Pi^2-2) 3654391534526050 m001 BesselJ(0,1)^Zeta(1,2)/(MertensB1^Zeta(1,2)) 3654391542153278 a007 Real Root Of -628*x^4+21*x^3-449*x^2+98*x+108 3654391562470951 a007 Real Root Of -550*x^4+116*x^3+446*x^2+174*x-119 3654391563891036 r009 Im(z^3+c),c=-25/114+17/44*I,n=19 3654391571739903 m001 (Pi+BesselI(0,2))/(Backhouse+Trott2nd) 3654391574899099 m005 (1/2*Catalan+2/11)/(11/12*Catalan-6/7) 3654391580950900 m001 arctan(1/2)^Zeta(1/2)+LandauRamanujan2nd 3654391583484785 m001 Salem^2/exp(ErdosBorwein)*log(2+sqrt(3)) 3654391584982786 r005 Im(z^2+c),c=-11/106+46/61*I,n=24 3654391599834737 r005 Re(z^2+c),c=-35/82+2/35*I,n=3 3654391600940793 p003 LerchPhi(1/256,1,601/219) 3654391600986741 a007 Real Root Of 210*x^4+829*x^3+521*x^2+823*x-945 3654391606480056 m001 (-MertensB2+Rabbit)/(Backhouse-LambertW(1)) 3654391613186195 r002 16th iterates of z^2 + 3654391613759114 r009 Im(z^3+c),c=-9/23+19/60*I,n=37 3654391623288262 r005 Im(z^2+c),c=7/44+19/55*I,n=19 3654391635298590 r005 Im(z^2+c),c=-25/24+2/49*I,n=4 3654391645766037 m005 (1/3*exp(1)-2/9)/(9/11*2^(1/2)+5/7) 3654391653125409 r005 Re(z^2+c),c=-27/58+12/35*I,n=24 3654391659383196 r005 Im(z^2+c),c=-5/78+27/38*I,n=18 3654391663399299 m004 6-Tan[Sqrt[5]*Pi]/3+125*Pi*Tan[Sqrt[5]*Pi] 3654391674508784 a007 Real Root Of 216*x^4+997*x^3+835*x^2+237*x-151 3654391674783088 a001 3571/10946*832040^(9/26) 3654391676569923 r005 Im(z^2+c),c=-6/11+27/59*I,n=56 3654391681574021 s002 sum(A016276[n]/(exp(n)),n=1..infinity) 3654391714618679 l006 ln(4953/7138) 3654391730185124 a007 Real Root Of -174*x^4-648*x^3-12*x^2+298*x+657 3654391740135324 r009 Im(z^3+c),c=-9/23+19/60*I,n=38 3654391745679605 a007 Real Root Of -798*x^4+378*x^3+818*x^2+806*x-408 3654391747143916 h001 (4/5*exp(2)+5/6)/(4/11*exp(1)+6/7) 3654391748454121 m001 BesselJ(0,1)^2/ln((2^(1/3)))^2*gamma^2 3654391750426587 a001 18/377*317811^(12/17) 3654391762893596 r009 Im(z^3+c),c=-23/48+15/59*I,n=39 3654391767069527 m001 1/Champernowne^2*ln(KhintchineHarmonic) 3654391769312089 r009 Re(z^3+c),c=-27/82+4/61*I,n=14 3654391840927611 m006 (4*ln(Pi)+3)/(2*Pi^2+1) 3654391841320428 m001 exp(1/exp(1))+Otter*RenyiParking 3654391850338839 a001 7778742049/3*29^(11/14) 3654391863323955 r005 Re(z^2+c),c=-105/82+2/59*I,n=34 3654391870421702 r009 Im(z^3+c),c=-19/122+21/52*I,n=5 3654391886775823 m004 2+(125*Pi)/4+125*Pi*Sin[Sqrt[5]*Pi] 3654391901247059 r005 Re(z^2+c),c=1/24+31/52*I,n=21 3654391902889338 s002 sum(A099792[n]/(n^2*pi^n+1),n=1..infinity) 3654391905878536 m001 1/MinimumGamma*Kolakoski^2*ln(RenyiParking)^2 3654391906781786 r005 Re(z^2+c),c=-21/44+15/59*I,n=33 3654391916455970 l006 ln(6941/10003) 3654391922022133 a001 1/774004377960*514229^(21/22) 3654391922857265 r005 Im(z^2+c),c=2/11+19/58*I,n=20 3654391924755775 a001 9349/28657*832040^(9/26) 3654391937455808 r009 Re(z^3+c),c=-6/13+4/15*I,n=25 3654391938127110 a007 Real Root Of 200*x^4-20*x^3+440*x^2-84*x-94 3654391952476612 m001 1/exp(Zeta(5))^2/Tribonacci^2/Zeta(7)^2 3654391961226299 a001 24476/75025*832040^(9/26) 3654391969835822 a001 39603/121393*832040^(9/26) 3654391970082711 q001 3/82093 3654391983766322 a001 2161/6624*832040^(9/26) 3654391987954977 m002 -Pi^2-Log[Pi]+(Pi^6*Log[Pi])/E^Pi 3654391988811501 r009 Im(z^3+c),c=-9/50+17/43*I,n=7 3654392000319660 p003 LerchPhi(1/100,4,238/185) 3654392007852734 r005 Im(z^2+c),c=8/27+11/51*I,n=32 3654392011055636 a007 Real Root Of -22*x^4+404*x^3+377*x^2+838*x+276 3654392021327915 r005 Re(z^2+c),c=-19/42+19/51*I,n=42 3654392026599322 a007 Real Root Of -522*x^4+834*x^3+576*x^2+582*x-321 3654392057422549 m001 Pi*Psi(1,1/3)+Pi*2^(1/2)/GAMMA(3/4)+Zeta(3) 3654392062967888 s002 sum(A016276[n]/(exp(n)-1),n=1..infinity) 3654392079247393 a001 5778/17711*832040^(9/26) 3654392080870352 r005 Re(z^2+c),c=-13/14+25/63*I,n=6 3654392089286862 m001 (5^(1/2)-Shi(1))/(cos(1)+Khinchin) 3654392092161457 a003 cos(Pi*10/117)-sin(Pi*45/119) 3654392098799005 a007 Real Root Of -857*x^4-782*x^3+629*x^2+803*x-324 3654392102965953 p003 LerchPhi(1/16,5,431/222) 3654392110744961 m001 ln(Zeta(7))/ErdosBorwein^2/log(1+sqrt(2)) 3654392112044924 m008 (2/3*Pi^3+2)/(1/5*Pi^5+5/6) 3654392112190863 m001 (1-Backhouse)/(-PisotVijayaraghavan+ZetaP(4)) 3654392123749026 s002 sum(A098140[n]/(16^n-1),n=1..infinity) 3654392128836433 b008 1/3+ArcCsch[28+Pi] 3654392133603240 r009 Im(z^3+c),c=-5/17+18/49*I,n=6 3654392140068443 m001 1/KhintchineLevy/LandauRamanujan/exp(Magata) 3654392141791882 m005 (1/2*3^(1/2)+6)/(3/4*2^(1/2)+9/11) 3654392145084967 r005 Im(z^2+c),c=21/62+9/58*I,n=62 3654392147634470 m001 sin(Pi/5)^2*Zeta(7)*exp(sinh(1))^2 3654392148097744 p001 sum(1/(329*n+304)/(5^n),n=0..infinity) 3654392154519917 a001 196418/7*47^(2/3) 3654392159562020 m002 36+(5*ProductLog[Pi])/Pi^2 3654392173047969 a007 Real Root Of 277*x^4-277*x^3+890*x^2-935*x-479 3654392181263096 r005 Im(z^2+c),c=-7/32+32/57*I,n=26 3654392182022196 a007 Real Root Of 19*x^4-817*x^3+117*x^2-192*x-126 3654392198620581 p001 sum((-1)^n/(211*n+27)/(8^n),n=0..infinity) 3654392208521795 r009 Re(z^3+c),c=-45/82+5/11*I,n=9 3654392214713052 a007 Real Root Of -17*x^4-67*x^3-231*x^2-735*x+161 3654392220646329 a003 sin(Pi*12/107)/sin(Pi*35/89) 3654392226483578 r002 12th iterates of z^2 + 3654392233495884 a001 1/29*(1/2*5^(1/2)+1/2)^29*123^(6/13) 3654392237394963 a003 sin(Pi*23/117)*sin(Pi*5/23) 3654392241189470 m005 (1/2*gamma+2/9)/(1/8*exp(1)-1/5) 3654392241860141 r002 42th iterates of z^2 + 3654392260733881 m001 (2^(1/3)-BesselK(1,1))/(GolombDickman+Salem) 3654392261620107 m001 (1+BesselI(1,2))/(-Champernowne+FeigenbaumB) 3654392265741698 m001 Chi(1)+FransenRobinson+ZetaQ(3) 3654392268023078 r005 Re(z^2+c),c=23/60+30/53*I,n=15 3654392271261243 a001 161/98209*233^(5/34) 3654392291855764 r005 Re(z^2+c),c=-37/78+7/26*I,n=29 3654392323758099 r005 Im(z^2+c),c=1/22+17/40*I,n=31 3654392332005361 a007 Real Root Of -83*x^4-184*x^3+345*x^2-117*x+788 3654392343612713 r009 Re(z^3+c),c=-27/82+4/61*I,n=15 3654392358550593 a003 sin(Pi*11/93)/sin(Pi*45/97) 3654392379774461 h001 (6/7*exp(1)+2/11)/(11/12*exp(2)+1/10) 3654392381196024 a007 Real Root Of 81*x^4+145*x^3-481*x^2+356*x+355 3654392381425879 m001 (ln(2)/ln(10)+cos(1))/(Ei(1,1)+Trott) 3654392387777625 m001 (3^(1/3)-gamma)/(-Riemann3rdZero+Totient) 3654392392825018 r005 Re(z^2+c),c=-41/94+10/23*I,n=62 3654392393100863 r009 Im(z^3+c),c=-63/122+8/25*I,n=23 3654392414958762 m001 (sin(1/12*Pi)*FeigenbaumC+Bloch)/sin(1/12*Pi) 3654392419323205 l006 ln(1988/2865) 3654392424028447 a007 Real Root Of 716*x^4+418*x^3+271*x^2-647*x-265 3654392425060569 r005 Im(z^2+c),c=7/94+13/32*I,n=27 3654392455343999 a007 Real Root Of -139*x^4-243*x^3+866*x^2-426*x-191 3654392471067201 m005 (1/2*5^(1/2)+6)/(3/4*exp(1)-1/11) 3654392474372166 a003 cos(Pi*15/49)-cos(Pi*36/83) 3654392483543703 r005 Re(z^2+c),c=-41/86+8/31*I,n=42 3654392490555094 r009 Im(z^3+c),c=-11/58+24/61*I,n=9 3654392500570511 h005 exp(cos(Pi*1/56)+cos(Pi*21/52)) 3654392505349337 r009 Im(z^3+c),c=-25/114+17/44*I,n=22 3654392519042325 m001 FeigenbaumKappa^exp(1)/(sin(1)^exp(1)) 3654392526990611 a007 Real Root Of 128*x^4+183*x^3+323*x^2-782*x-29 3654392543984727 p001 sum(1/(549*n+274)/(256^n),n=0..infinity) 3654392568470244 r002 7th iterates of z^2 + 3654392578762002 m001 1/Khintchine^2*FeigenbaumAlpha/ln(Sierpinski) 3654392585517192 r005 Re(z^2+c),c=-17/36+15/53*I,n=43 3654392591471693 m001 (GAMMA(3/4)-ln(2+3^(1/2)))^BesselK(0,1) 3654392591471693 m001 (GAMMA(3/4)-ln(2+sqrt(3)))^BesselK(0,1) 3654392597136421 a003 sin(Pi*6/37)-sin(Pi*27/83) 3654392602442252 s002 sum(A002661[n]/((exp(n)-1)/n),n=1..infinity) 3654392609588427 a007 Real Root Of 666*x^4+532*x^3-70*x^2-896*x-304 3654392617262988 r009 Im(z^3+c),c=-25/114+17/44*I,n=25 3654392619318559 r009 Im(z^3+c),c=-25/114+17/44*I,n=24 3654392620586743 m005 (1/2*exp(1)-1/10)/(exp(1)+8/11) 3654392622726463 r009 Im(z^3+c),c=-25/114+17/44*I,n=27 3654392623109342 g005 GAMMA(4/11)*GAMMA(8/9)*GAMMA(7/9)*GAMMA(4/5) 3654392624758712 r009 Im(z^3+c),c=-25/114+17/44*I,n=30 3654392625063430 r009 Im(z^3+c),c=-25/114+17/44*I,n=33 3654392625087675 r009 Im(z^3+c),c=-25/114+17/44*I,n=35 3654392625091217 r009 Im(z^3+c),c=-25/114+17/44*I,n=36 3654392625091322 r009 Im(z^3+c),c=-25/114+17/44*I,n=38 3654392625092079 r009 Im(z^3+c),c=-25/114+17/44*I,n=41 3654392625092164 r009 Im(z^3+c),c=-25/114+17/44*I,n=43 3654392625092164 r009 Im(z^3+c),c=-25/114+17/44*I,n=44 3654392625092168 r009 Im(z^3+c),c=-25/114+17/44*I,n=46 3654392625092169 r009 Im(z^3+c),c=-25/114+17/44*I,n=49 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=52 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=54 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=57 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=55 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=60 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=62 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=63 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=64 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=61 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=59 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=58 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=56 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=51 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=53 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=50 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=47 3654392625092170 r009 Im(z^3+c),c=-25/114+17/44*I,n=48 3654392625092175 r009 Im(z^3+c),c=-25/114+17/44*I,n=45 3654392625092211 r009 Im(z^3+c),c=-25/114+17/44*I,n=42 3654392625092248 r009 Im(z^3+c),c=-25/114+17/44*I,n=40 3654392625092346 r009 Im(z^3+c),c=-25/114+17/44*I,n=39 3654392625093810 r009 Im(z^3+c),c=-25/114+17/44*I,n=37 3654392625099366 r009 Im(z^3+c),c=-25/114+17/44*I,n=32 3654392625109176 r009 Im(z^3+c),c=-25/114+17/44*I,n=34 3654392625172884 r009 Im(z^3+c),c=-25/114+17/44*I,n=28 3654392625197999 r009 Im(z^3+c),c=-25/114+17/44*I,n=31 3654392625577909 r009 Im(z^3+c),c=-25/114+17/44*I,n=29 3654392631484210 r009 Im(z^3+c),c=-25/114+17/44*I,n=26 3654392635822973 m001 Niven^2*GolombDickman/ln(OneNinth)^2 3654392636368812 r005 Re(z^2+c),c=-7/31+28/45*I,n=27 3654392638252546 m005 (1/2*exp(1)+2)/(1/5*2^(1/2)+7/11) 3654392648482909 r005 Re(z^2+c),c=-19/40+22/45*I,n=42 3654392648702822 r005 Re(z^2+c),c=-17/52+15/28*I,n=23 3654392663417636 m005 (1/3*Pi+3/7)/(2/7*2^(1/2)-4/9) 3654392667926184 a007 Real Root Of -262*x^4-861*x^3+674*x^2+958*x-793 3654392675978646 r009 Im(z^3+c),c=-25/114+17/44*I,n=23 3654392682341328 a007 Real Root Of -184*x^4-658*x^3+42*x^2-5*x+124 3654392688962649 r005 Im(z^2+c),c=-57/110+18/41*I,n=13 3654392703207843 m001 exp(Niven)^2*GolombDickman*GAMMA(5/24)^2 3654392710083242 r009 Im(z^3+c),c=-19/82+18/47*I,n=16 3654392724156355 m001 Psi(2,1/3)*BesselI(0,2)^UniversalParabolic 3654392727740444 r005 Re(z^2+c),c=-55/118+19/63*I,n=22 3654392733684389 a001 2207/6765*832040^(9/26) 3654392735607190 m001 (Conway+MadelungNaCl)/(TwinPrimes+ZetaP(3)) 3654392742875230 r009 Im(z^3+c),c=-25/114+17/44*I,n=21 3654392744412531 m001 (2^(1/3)+gamma(3))/(BesselI(0,2)+GAMMA(19/24)) 3654392744951975 r005 Im(z^2+c),c=-31/44+1/39*I,n=37 3654392744960766 m008 (1/5*Pi+5)/(1/6*Pi^4-5/6) 3654392745977178 m001 1/Magata*ln(GlaisherKinkelin)/Riemann1stZero^2 3654392749798821 m001 GAMMA(7/12)^2/GAMMA(5/12)*exp(Zeta(3)) 3654392751772248 r009 Im(z^3+c),c=-9/17+7/39*I,n=26 3654392754054323 r005 Im(z^2+c),c=-3/44+28/57*I,n=64 3654392757029221 r005 Im(z^2+c),c=1/44+18/41*I,n=46 3654392783650018 g006 Psi(1,8/11)+Psi(1,3/11)+Psi(1,2/9)-Psi(1,9/11) 3654392784228911 m001 1/ln(GAMMA(13/24))/MertensB1^2/cos(Pi/5) 3654392785176451 r002 27th iterates of z^2 + 3654392787332491 m001 1/Pi^2/exp(HardHexagonsEntropy)^2*sin(Pi/5) 3654392791482233 m001 1/ln(FeigenbaumB)*FeigenbaumAlpha*GAMMA(1/3) 3654392798438932 r005 Re(z^2+c),c=-11/16+19/65*I,n=47 3654392802843086 r002 12th iterates of z^2 + 3654392805061689 m005 (-23/36+1/4*5^(1/2))/(4/5*3^(1/2)+4/5) 3654392807297820 r005 Re(z^2+c),c=-12/25+5/21*I,n=35 3654392808746538 p004 log(12917/8963) 3654392815619914 r009 Im(z^3+c),c=-25/114+17/44*I,n=20 3654392816852590 a007 Real Root Of -302*x^4-361*x^3-761*x^2+133*x+138 3654392819037768 r005 Re(z^2+c),c=-63/94+10/51*I,n=17 3654392822025677 r005 Im(z^2+c),c=-1/18+29/60*I,n=24 3654392825940874 m001 Artin*Grothendieck-ln(2)/ln(10) 3654392829322042 b008 36+(5*Sqrt[2])/13 3654392843048356 m005 (1/2*Pi+3/5)/(6*Catalan+4/9) 3654392843192486 a001 1/3278735159921*6557470319842^(17/24) 3654392843192486 a001 2/1836311903*63245986^(17/24) 3654392853018728 r002 30th iterates of z^2 + 3654392858760112 a001 2504730781961/521*322^(3/4) 3654392860818665 r009 Im(z^3+c),c=-13/62+7/18*I,n=11 3654392866294300 m001 1/ln(FeigenbaumB)*Champernowne^2*TreeGrowth2nd 3654392874966314 r005 Re(z^2+c),c=-21/44+19/40*I,n=18 3654392878033806 s002 sum(A166266[n]/(n*exp(n)+1),n=1..infinity) 3654392878667692 m005 (1/2*Zeta(3)+6/7)/(2/5*2^(1/2)-1/6) 3654392898888965 m005 (1/2*5^(1/2)+5/6)/(1/8*exp(1)+5) 3654392913806764 a007 Real Root Of 10*x^4+366*x^3+14*x^2-257*x-724 3654392915272855 m001 (Conway-exp(Pi))/(FeigenbaumDelta+Mills) 3654392918483287 r005 Re(z^2+c),c=-30/29+19/30*I,n=2 3654392919739164 l006 ln(6975/10052) 3654392930253458 r009 Re(z^3+c),c=-13/31+7/33*I,n=23 3654392941507472 m001 1/exp(Si(Pi))^2/FeigenbaumDelta*FeigenbaumB^2 3654392945208099 r009 Im(z^3+c),c=-19/82+18/47*I,n=18 3654392950768632 m001 1/exp(Rabbit)*Niven*TwinPrimes^2 3654392950993563 m006 (3/4*exp(Pi)+4/5)/(5*Pi^2+1/3) 3654392964158648 m001 Khinchin+LaplaceLimit^ZetaP(4) 3654392979726428 r005 Im(z^2+c),c=5/28+32/59*I,n=8 3654392990059518 r005 Im(z^2+c),c=-3/44+28/57*I,n=49 3654392996532337 m001 1/ln(GAMMA(19/24))^2*FeigenbaumB^2/exp(1)^2 3654393018970442 m001 (-Artin+MertensB1)/(Si(Pi)+GAMMA(3/4)) 3654393036226998 r005 Im(z^2+c),c=-21/110+23/35*I,n=5 3654393036518902 a007 Real Root Of 164*x^4+781*x^3+400*x^2-707*x+941 3654393059107650 r005 Im(z^2+c),c=29/98+13/60*I,n=37 3654393079988357 r009 Re(z^3+c),c=-21/46+8/31*I,n=15 3654393103374852 h001 (2/11*exp(2)+3/5)/(5/8*exp(2)+7/10) 3654393108519976 m005 (1/2*3^(1/2)+3)/(3/4*gamma+5/8) 3654393112850222 a007 Real Root Of 250*x^4+796*x^3-250*x^2+829*x+629 3654393118151442 r005 Re(z^2+c),c=-17/50+8/15*I,n=18 3654393118489480 p001 sum(1/(100*n+7)/n/(256^n),n=0..infinity) 3654393119223200 l006 ln(4987/7187) 3654393119223200 p004 log(7187/4987) 3654393123223426 m001 (Pi+Psi(2,1/3))/(sin(1/5*Pi)+GaussAGM) 3654393143920641 r002 47th iterates of z^2 + 3654393143942237 m005 (1/2*3^(1/2)-2/7)/(4/9*3^(1/2)+9/11) 3654393144759559 m001 1/ln(KhintchineLevy)*Conway^2/exp(1) 3654393152163531 a007 Real Root Of 181*x^4-930*x^3-790*x^2-592*x+364 3654393175935724 s002 sum(A068503[n]/(n*exp(n)+1),n=1..infinity) 3654393181587360 a001 843/89*610^(13/14) 3654393187273413 a001 47/8*2178309^(15/53) 3654393192354023 m001 (3^(1/2)-sin(1/12*Pi))/(GolombDickman+Magata) 3654393215498862 r005 Re(z^2+c),c=6/17+11/64*I,n=22 3654393235824250 a001 161/5473*1597^(1/34) 3654393242098849 r009 Im(z^3+c),c=-12/29+10/33*I,n=37 3654393242230860 m003 25/4+Sqrt[5]/64+6*E^(1/2+Sqrt[5]/2) 3654393245245374 a007 Real Root Of -740*x^4+62*x^3+992*x^2+738*x-392 3654393255988668 r005 Re(z^2+c),c=-21/44+12/47*I,n=28 3654393261314097 g007 Psi(2,3/10)-Psi(2,7/8)-Psi(2,6/7)-Psi(2,1/6) 3654393278042767 l006 ln(59/2280) 3654393292128660 r009 Im(z^3+c),c=-7/31+5/13*I,n=18 3654393299296982 r009 Im(z^3+c),c=-9/23+19/60*I,n=34 3654393309550423 m001 Pi+ln(2)/ln(10)*(sin(1/12*Pi)+exp(1/exp(1))) 3654393329506598 h001 (1/8*exp(1)+7/11)/(10/11*exp(1)+1/5) 3654393334739947 m005 (1/2*5^(1/2)-3)/(5/9*5^(1/2)-8/11) 3654393338348854 m001 Niven/(StolarskyHarborth^GaussKuzminWirsing) 3654393340176307 r002 2th iterates of z^2 + 3654393350079639 a007 Real Root Of 397*x^4-25*x^3-865*x^2-997*x+474 3654393354308519 m001 1/GAMMA(3/4)^2/ln(BesselK(1,1))^2*sqrt(2) 3654393363012145 a007 Real Root Of -894*x^4+888*x^3-358*x^2+231*x-64 3654393366886837 p001 sum(1/(381*n+203)/n/(5^n),n=1..infinity) 3654393378688114 a007 Real Root Of 135*x^4+362*x^3-700*x^2-873*x-252 3654393390753443 a007 Real Root Of 26*x^4+954*x^3+135*x^2-193*x+928 3654393393365680 r005 Im(z^2+c),c=-91/74+29/63*I,n=3 3654393416712703 m001 Ei(1,1)^gamma(2)-FeigenbaumDelta 3654393440131388 m001 CopelandErdos/GAMMA(19/24)/ln(gamma) 3654393446225435 r005 Re(z^2+c),c=-35/48+2/23*I,n=41 3654393452223022 m001 1/Pi^2/exp(BesselK(1,1))^2*Zeta(3) 3654393457530848 r009 Re(z^3+c),c=-7/102+12/17*I,n=51 3654393505798799 m005 (1/5*2^(1/2)+1/2)/(4*gamma-1/6) 3654393507813428 m001 (FeigenbaumB-exp(1/Pi))/ZetaR(2) 3654393511187432 r005 Im(z^2+c),c=-39/58+19/63*I,n=54 3654393511390671 r005 Re(z^2+c),c=-16/29+4/9*I,n=38 3654393521851532 r005 Im(z^2+c),c=-7/50+36/49*I,n=18 3654393530556356 m002 5/ProductLog[Pi]+Tanh[Pi]+Pi^3*Tanh[Pi] 3654393535980807 m001 TwinPrimes^2/Magata^2*exp(GAMMA(1/12))^2 3654393546169140 a007 Real Root Of -546*x^4-405*x^3-633*x^2+223*x+156 3654393549366247 m005 (1/2*5^(1/2)+8/9)/(1/12+5/24*5^(1/2)) 3654393568547805 a001 21/1149851*199^(30/53) 3654393571615238 r005 Im(z^2+c),c=6/19+11/58*I,n=41 3654393583178221 l006 ln(2999/4322) 3654393585289191 m009 (5*Psi(1,3/4)+1/4)/(1/3*Psi(1,2/3)-2/3) 3654393589609641 a001 34/39603*3571^(37/50) 3654393610369916 a007 Real Root Of 17*x^4-264*x^3-x^2-777*x-297 3654393638584799 r005 Im(z^2+c),c=-7/94+37/60*I,n=37 3654393642683769 r005 Im(z^2+c),c=-73/54+1/18*I,n=23 3654393647428741 m001 ln(TreeGrowth2nd)*LaplaceLimit^2/Pi^2 3654393648055800 a001 843*(1/2*5^(1/2)+1/2)^17*3^(3/17) 3654393651545565 r005 Im(z^2+c),c=17/56+13/56*I,n=11 3654393654003265 a003 cos(Pi*23/80)-cos(Pi*41/98) 3654393657097283 r005 Im(z^2+c),c=-31/50+19/49*I,n=61 3654393659752102 m001 1/GAMMA(1/12)^2/exp(LaplaceLimit)*Zeta(1,2) 3654393661133984 r002 57th iterates of z^2 + 3654393679059732 a003 cos(Pi*17/91)/cos(Pi*35/82) 3654393683724665 h002 exp(11^(1/4)*(3^(1/3)+9^(2/3))) 3654393691403152 a007 Real Root Of -165*x^4-607*x^3-185*x^2-584*x+140 3654393694305496 m005 (1/3*Zeta(3)-3/4)/(3/8*Pi-2/9) 3654393702563205 a007 Real Root Of 172*x^4+802*x^3+722*x^2+74*x-907 3654393703392225 h001 (9/10*exp(1)+5/6)/(1/6*exp(1)+4/9) 3654393713012194 m001 MinimumGamma*exp(Bloch)^2*Paris^2 3654393714990870 r005 Re(z^2+c),c=-53/114+19/60*I,n=32 3654393721216011 a007 Real Root Of 225*x^4-500*x^3-224*x^2-437*x+210 3654393736532253 g005 GAMMA(1/11)/GAMMA(5/11)/GAMMA(7/8)/GAMMA(2/3) 3654393769849095 a001 34/167761*9349^(41/50) 3654393774096853 m001 MinimumGamma*(exp(1/exp(1))+GAMMA(11/12)) 3654393779621112 a007 Real Root Of -169*x^4+432*x^3+623*x^2+813*x+238 3654393787624259 a001 34/15127*64079^(23/50) 3654393790057986 a007 Real Root Of 997*x^4-625*x^3-509*x^2-911*x+34 3654393798024711 a001 17/930249*24476^(49/50) 3654393811610507 m001 (Psi(2,1/3)-Zeta(3))/(-GAMMA(13/24)+Paris) 3654393813519597 m005 (1/3*exp(1)-2/7)/(-2/3+2/9*5^(1/2)) 3654393825740666 m005 (1/3*5^(1/2)+2/7)/(9/10*exp(1)+3/8) 3654393827743559 m005 (1/3*Zeta(3)-3/5)/(21/10+3/2*5^(1/2)) 3654393838482409 r009 Re(z^3+c),c=-57/110+24/59*I,n=57 3654393843602418 r002 5th iterates of z^2 + 3654393850247905 h001 (-8*exp(4)+11)/(-6*exp(3)+4) 3654393857604638 a007 Real Root Of 121*x^4-939*x^3+498*x^2-888*x-439 3654393872486532 g001 Psi(5/11,16/59) 3654393882428052 r009 Re(z^3+c),c=-35/106+3/40*I,n=4 3654393910314571 h001 (7/9*exp(1)+2/11)/(8/11*exp(2)+10/11) 3654393932739146 m003 6+4*Cot[1/2+Sqrt[5]/2]+2*Sec[1/2+Sqrt[5]/2] 3654393946449223 a007 Real Root Of -551*x^4+752*x^3+254*x^2+874*x+332 3654393955082333 m003 2+(23*Sqrt[5])/32-Cos[1/2+Sqrt[5]/2] 3654393958166364 m001 (ln(3)-Kolakoski)/(StronglyCareFree-Thue) 3654393968734700 a001 4/28657*610^(28/55) 3654393983589898 r005 Re(z^2+c),c=-11/8+153/163*I,n=2 3654393990905768 a007 Real Root Of 886*x^4-770*x^3-400*x^2-648*x+312 3654393994131642 r005 Im(z^2+c),c=3/20+21/47*I,n=8 3654394024529696 m001 1/Ei(1)*FeigenbaumB/ln(cos(Pi/12))^2 3654394026105246 h001 (-6*exp(4)+4)/(-6*exp(5)+5) 3654394034216628 a007 Real Root Of -104*x^4-463*x^3-328*x^2-317*x-826 3654394042300729 m005 (7/20+1/4*5^(1/2))/(1/2*Pi+11/12) 3654394054508039 r009 Im(z^3+c),c=-4/11+21/64*I,n=9 3654394106801160 r005 Im(z^2+c),c=-3/44+28/57*I,n=57 3654394111988768 r002 31th iterates of z^2 + 3654394112692671 m006 (1/4*exp(Pi)+3/4)/(1/3*exp(2*Pi)+1/3) 3654394122402647 r005 Im(z^2+c),c=29/114+23/51*I,n=17 3654394135843341 m001 (ArtinRank2-Gompertz)/(Mills+MinimumGamma) 3654394141646443 r005 Im(z^2+c),c=8/29+5/21*I,n=19 3654394143798369 m001 (Zeta(1,2)-Kolakoski)/(Magata+MertensB3) 3654394151580732 a007 Real Root Of 372*x^4-820*x^3+829*x^2-404*x-305 3654394160171631 l006 ln(4010/5779) 3654394176663004 r008 a(0)=4,K{-n^6,-42+38*n+14*n^2-6*n^3} 3654394208783892 m001 1/Catalan^2/exp(MinimumGamma)*GAMMA(1/12)^2 3654394219474200 m005 (4/5*Pi+2/5)/(1/3*Pi-1/4) 3654394219474200 m006 (2/5/Pi+4/5)/(1/4/Pi-1/3) 3654394219474200 m008 (4/5*Pi+2/5)/(1/3*Pi-1/4) 3654394230764172 m001 (Conway-Khinchin)/(sin(1/5*Pi)-cos(1/12*Pi)) 3654394234498964 a001 2/514229*610^(17/24) 3654394237548129 a005 (1/cos(5/91*Pi))^1932 3654394250720809 a001 47/1346269*514229^(5/28) 3654394253602122 r009 Im(z^3+c),c=-39/94+13/43*I,n=29 3654394273215925 a007 Real Root Of -222*x^4-622*x^3+559*x^2-327*x+577 3654394273228000 m008 (5*Pi^6-1/2)/(2/5*Pi^3+3/4) 3654394283422865 g001 Re(GAMMA(43/15+I*181/60)) 3654394306201651 a007 Real Root Of 719*x^4+745*x^3+531*x^2-814*x+29 3654394315120928 r005 Re(z^2+c),c=-31/30+5/69*I,n=14 3654394335007543 h001 (2/3*exp(1)+11/12)/(10/11*exp(2)+3/4) 3654394338494478 r005 Im(z^2+c),c=-2/15+31/59*I,n=58 3654394341089340 r005 Re(z^2+c),c=-41/90+17/45*I,n=20 3654394353355301 r005 Re(z^2+c),c=-81/118+14/59*I,n=48 3654394354951828 a007 Real Root Of -159*x^4-353*x^3+661*x^2-538*x+336 3654394354975080 r005 Im(z^2+c),c=1/6+18/53*I,n=19 3654394361226288 a007 Real Root Of -245*x^4-827*x^3-40*x^2-973*x+313 3654394361689863 m001 ln(2)/ln(10)*(KhinchinLevy+Trott2nd) 3654394424047052 r005 Im(z^2+c),c=4/17+9/32*I,n=28 3654394425404368 r005 Re(z^2+c),c=-25/44+7/30*I,n=11 3654394432347454 p004 log(27487/19073) 3654394440320050 a001 76/987*89^(17/49) 3654394454213990 a007 Real Root Of -424*x^4+599*x^3+47*x^2+721*x+294 3654394473331333 p003 LerchPhi(1/64,5,223/115) 3654394493859553 m001 (-PolyaRandomWalk3D+Robbin)/(Backhouse-gamma) 3654394495255563 m001 (Cahen+Sierpinski)/(ln(2^(1/2)+1)+gamma(3)) 3654394504804802 l006 ln(5021/7236) 3654394516190771 a007 Real Root Of 163*x^4+480*x^3-538*x^2-686*x-967 3654394521248714 r005 Im(z^2+c),c=-19/70+32/59*I,n=23 3654394531066179 m002 E^Pi+Pi^5/E^Pi+ProductLog[Pi]/6 3654394554893505 r005 Im(z^2+c),c=-3/44+28/57*I,n=61 3654394567864010 r002 19th iterates of z^2 + 3654394570255763 a007 Real Root Of 635*x^4+353*x^3+357*x^2+76*x-14 3654394577889624 p003 LerchPhi(1/3,2,152/85) 3654394579207569 a001 341/2*5^(9/19) 3654394588200467 r005 Im(z^2+c),c=-23/122+22/41*I,n=24 3654394590473277 a007 Real Root Of 159*x^4+423*x^3-591*x^2+189*x+870 3654394607219328 r005 Re(z^2+c),c=-29/102+33/49*I,n=4 3654394612474310 a007 Real Root Of -119*x^4-598*x^3-518*x^2+103*x-667 3654394614707065 a008 Real Root of x^2-133546 3654394620280069 a003 cos(Pi*29/98)-sin(Pi*12/29) 3654394626793018 a008 Real Root of (2+3*x-6*x^2+2*x^3-x^4-2*x^5) 3654394632248777 a005 (1/cos(29/181*Pi))^288 3654394638295119 p001 sum((-1)^n/(429*n+272)/(64^n),n=0..infinity) 3654394645654603 a007 Real Root Of 229*x^4-928*x^3+820*x^2-66*x-183 3654394651916926 m001 (BesselJ(0,1)-Psi(1,1/3))/(-GAMMA(2/3)+ln(5)) 3654394672273294 s002 sum(A087623[n]/(n^2*pi^n-1),n=1..infinity) 3654394674629039 m001 3^(1/2)*(FellerTornier+KomornikLoreti) 3654394696539633 a001 199/89*28657^(31/43) 3654394698380758 m001 gamma(2)*Paris^BesselK(0,1) 3654394726308756 s001 sum(exp(-Pi)^(n-1)*A113067[n],n=1..infinity) 3654394733912723 l006 ln(6032/8693) 3654394738034888 r005 Re(z^2+c),c=-9/13+18/55*I,n=29 3654394760351472 m005 (1/2*5^(1/2)-5/12)/(5/7*2^(1/2)+10/11) 3654394768917345 r009 Re(z^3+c),c=-43/114+2/13*I,n=27 3654394771391836 m001 (gamma(2)+Zeta(1,2))/(Pi+ln(gamma)) 3654394785033967 m001 (Gompertz+ZetaQ(2))/(Si(Pi)+gamma(1)) 3654394797281941 r005 Re(z^2+c),c=-61/114+1/9*I,n=6 3654394804597755 b008 Pi^(-1)+Pi+(2+Pi)^(-1) 3654394813241507 m001 (2^(1/2)+Chi(1))/(2*Pi/GAMMA(5/6)+Gompertz) 3654394813951575 r009 Im(z^3+c),c=-25/114+17/44*I,n=18 3654394816192643 r004 Re(z^2+c),c=-13/18-1/12*I,z(0)=-1,n=34 3654394818254287 m005 (1/2*Pi-2)/(1/5*5^(1/2)+8/11) 3654394824041436 r005 Im(z^2+c),c=1/22+10/17*I,n=23 3654394829278544 a007 Real Root Of 168*x^4+701*x^3+343*x^2-89*x-657 3654394838883154 p004 log(10859/281) 3654394850368306 r005 Re(z^2+c),c=-13/30+24/53*I,n=43 3654394859268030 r009 Re(z^3+c),c=-11/62+45/64*I,n=6 3654394860724012 m001 (cos(1)+Zeta(1,-1))/GAMMA(23/24) 3654394864292788 r009 Im(z^3+c),c=-11/17+10/61*I,n=2 3654394873060496 r002 20th iterates of z^2 + 3654394881061552 m006 (3*exp(2*Pi)-3/5)/(1/3/Pi+1/3) 3654394886869258 r009 Re(z^3+c),c=-43/114+2/13*I,n=23 3654394890989912 a001 521/1597*2584^(42/47) 3654394894462713 m005 (1/2*Zeta(3)-5)/(5*5^(1/2)+6/7) 3654394897380352 a001 505019158607/13*1548008755920^(9/11) 3654394902439516 m005 (1/2*5^(1/2)-2/9)/(5/6*Pi-1/6) 3654394903595701 m001 (2^(1/3)-HeathBrownMoroz)/(Sierpinski+Thue) 3654394905412988 a001 4052739537881/199*199^(6/11) 3654394906818318 r009 Re(z^3+c),c=-25/52+16/55*I,n=33 3654394908414876 m001 exp(Pi)^2*MertensB1^2/Zeta(9) 3654394915080480 m005 (1/2*3^(1/2)-3/5)/(1/10*Catalan+7/11) 3654394917162126 m001 (BesselK(0,1)-GAMMA(19/24))/(Lehmer+Porter) 3654394917334238 m005 (1/2*3^(1/2)-5/9)/(3/5*Catalan+3/10) 3654394920684273 a007 Real Root Of -422*x^4+541*x^3+929*x^2+33*x-155 3654394921312505 r009 Re(z^3+c),c=-35/58+16/33*I,n=23 3654394927346959 m005 (5/6*gamma-1)/(1/2*Catalan-3/5) 3654394938343846 a001 377/15127*199^(49/52) 3654394944044046 a007 Real Root Of 922*x^4+807*x^3-522*x^2-720*x+277 3654394951459479 a007 Real Root Of -275*x^4+619*x^3+587*x^2+860*x+271 3654394957041824 r009 Re(z^3+c),c=-43/114+2/13*I,n=26 3654394959502552 r002 6th iterates of z^2 + 3654394976023947 r009 Re(z^3+c),c=-43/114+2/13*I,n=28 3654394993730786 h001 (3/8*exp(1)+2/11)/(4/11*exp(2)+3/5) 3654394998364079 r009 Re(z^3+c),c=-33/62+4/23*I,n=10 3654394999715962 r005 Re(z^2+c),c=-47/118+22/49*I,n=17 3654395016634792 m001 BesselJ(0,1)/Paris/exp(GAMMA(1/3))^2 3654395043999772 m001 (PlouffeB+Rabbit)/(Grothendieck+MinimumGamma) 3654395049045001 m001 HardyLittlewoodC3-Si(Pi)*cos(1) 3654395049700522 m001 MertensB2/(1+FeigenbaumC) 3654395050004755 m001 (FeigenbaumD+Stephens)/(ln(Pi)-GAMMA(11/12)) 3654395061080390 m001 (GaussAGM+Mills)/(BesselI(0,1)-Si(Pi)) 3654395064964329 a001 4/5*832040^(34/55) 3654395069822334 r009 Re(z^3+c),c=-43/114+2/13*I,n=32 3654395073366769 r009 Re(z^3+c),c=-43/114+2/13*I,n=33 3654395082626973 r009 Re(z^3+c),c=-43/114+2/13*I,n=38 3654395082898021 r009 Re(z^3+c),c=-43/114+2/13*I,n=34 3654395082981871 r009 Re(z^3+c),c=-43/114+2/13*I,n=37 3654395083028108 r009 Re(z^3+c),c=-43/114+2/13*I,n=39 3654395083206221 r009 Re(z^3+c),c=-43/114+2/13*I,n=43 3654395083213271 r009 Re(z^3+c),c=-43/114+2/13*I,n=44 3654395083231019 r009 Re(z^3+c),c=-43/114+2/13*I,n=49 3654395083231626 r009 Re(z^3+c),c=-43/114+2/13*I,n=45 3654395083231689 r009 Re(z^3+c),c=-43/114+2/13*I,n=48 3654395083231796 r009 Re(z^3+c),c=-43/114+2/13*I,n=50 3654395083232134 r009 Re(z^3+c),c=-43/114+2/13*I,n=54 3654395083232148 r009 Re(z^3+c),c=-43/114+2/13*I,n=55 3654395083232182 r009 Re(z^3+c),c=-43/114+2/13*I,n=60 3654395083232184 r009 Re(z^3+c),c=-43/114+2/13*I,n=59 3654395083232184 r009 Re(z^3+c),c=-43/114+2/13*I,n=56 3654395083232184 r009 Re(z^3+c),c=-43/114+2/13*I,n=61 3654395083232185 r009 Re(z^3+c),c=-43/114+2/13*I,n=64 3654395083232185 r009 Re(z^3+c),c=-43/114+2/13*I,n=62 3654395083232185 r009 Re(z^3+c),c=-43/114+2/13*I,n=63 3654395083232190 r009 Re(z^3+c),c=-43/114+2/13*I,n=58 3654395083232196 r009 Re(z^3+c),c=-43/114+2/13*I,n=57 3654395083232224 r009 Re(z^3+c),c=-43/114+2/13*I,n=53 3654395083232376 r009 Re(z^3+c),c=-43/114+2/13*I,n=51 3654395083232399 r009 Re(z^3+c),c=-43/114+2/13*I,n=52 3654395083235091 r009 Re(z^3+c),c=-43/114+2/13*I,n=47 3654395083237989 r009 Re(z^3+c),c=-43/114+2/13*I,n=46 3654395083253119 r009 Re(z^3+c),c=-43/114+2/13*I,n=42 3654395083330418 r009 Re(z^3+c),c=-43/114+2/13*I,n=40 3654395083343798 r009 Re(z^3+c),c=-43/114+2/13*I,n=41 3654395084752378 r009 Re(z^3+c),c=-43/114+2/13*I,n=36 3654395086154191 q001 1/2736431 3654395086239493 r009 Re(z^3+c),c=-43/114+2/13*I,n=35 3654395094345800 r009 Re(z^3+c),c=-43/114+2/13*I,n=31 3654395097466775 m001 1/Catalan^2*PisotVijayaraghavan^2/ln(sqrt(Pi)) 3654395109220394 r005 Re(z^2+c),c=-13/28+8/33*I,n=10 3654395118646308 r005 Re(z^2+c),c=-9/8+175/246*I,n=2 3654395128021652 r005 Re(z^2+c),c=-23/54+23/49*I,n=61 3654395133529897 r002 13th iterates of z^2 + 3654395133675465 r009 Re(z^3+c),c=-43/114+2/13*I,n=29 3654395134637576 r005 Re(z^2+c),c=41/122+17/41*I,n=18 3654395135876617 k001 Champernowne real with 74*n+291 3654395141320305 r009 Re(z^3+c),c=-43/114+2/13*I,n=30 3654395145886637 k005 Champernowne real with floor(sqrt(3)*(43*n+168)) 3654395153031726 r009 Re(z^3+c),c=-17/40+9/41*I,n=32 3654395166563288 m001 GAMMA(5/24)^2/BesselJ(0,1)/ln(Zeta(7))^2 3654395175292703 r005 Im(z^2+c),c=13/38+9/58*I,n=51 3654395189244210 m001 GAMMA(5/12)*exp(PrimesInBinary)/log(1+sqrt(2)) 3654395210723328 a007 Real Root Of 7*x^4-869*x^3+492*x^2-989*x+338 3654395213297228 a007 Real Root Of 27*x^4+991*x^3+150*x^2-297*x-671 3654395214444878 r005 Im(z^2+c),c=-7/11+21/46*I,n=6 3654395221200748 a001 89/4870847*4^(1/2) 3654395229028186 a001 2/4181*4181^(13/25) 3654395253700685 l006 ln(222/8579) 3654395254035252 m001 GAMMA(5/12)*ln(FeigenbaumD)^2/LambertW(1) 3654395257067053 r009 Im(z^3+c),c=-41/102+9/29*I,n=14 3654395261255779 r005 Im(z^2+c),c=1/44+18/41*I,n=42 3654395263960883 m001 cos(1)^2/exp(LandauRamanujan)^2*gamma 3654395265680439 a005 (1/cos(17/237*Pi))^1759 3654395304566770 r009 Im(z^3+c),c=-33/98+1/52*I,n=10 3654395312187133 m001 (gamma-sin(1/5*Pi))/(ln(Pi)+MadelungNaCl) 3654395313357303 m005 (1/3*Catalan-1/10)/(-5/11+5/11*5^(1/2)) 3654395314142634 r002 32th iterates of z^2 + 3654395317642004 m001 (GAMMA(2/3)-LambertW(1))/(-ln(2)+Zeta(1/2)) 3654395320284955 m005 (1/2*gamma+8/11)/(8/9*exp(1)+4/11) 3654395327237942 a003 cos(Pi*8/91)-cos(Pi*11/89) 3654395347672748 r005 Im(z^2+c),c=-7/40+34/61*I,n=32 3654395347721587 r002 24th iterates of z^2 + 3654395352470801 r005 Re(z^2+c),c=29/114+19/39*I,n=4 3654395353118879 r005 Im(z^2+c),c=-15/56+32/61*I,n=15 3654395355012859 r009 Im(z^3+c),c=-37/82+19/53*I,n=7 3654395355843449 a003 cos(Pi*4/117)-sin(Pi*46/113) 3654395359472882 m001 Ei(1)/exp(PrimesInBinary)*cos(1)^2 3654395376914856 r009 Re(z^3+c),c=-41/70+25/54*I,n=20 3654395383020185 r009 Im(z^3+c),c=-19/42+5/18*I,n=17 3654395391844161 m001 MinimumGamma-ln(2+3^(1/2))*FeigenbaumB 3654395410811514 r009 Re(z^3+c),c=-15/31+23/59*I,n=18 3654395412583428 m001 1/exp(LambertW(1))/ErdosBorwein/cos(Pi/12) 3654395412583428 m001 LambertW(1)/cos(1/12*Pi)/ErdosBorwein 3654395424383526 a007 Real Root Of 428*x^4-196*x^3-972*x^2-901*x+461 3654395429978389 r005 Im(z^2+c),c=4/27+17/46*I,n=5 3654395436449975 m001 (MertensB3+Sarnak)/(GAMMA(3/4)-LaplaceLimit) 3654395450764963 m001 1/GAMMA(7/24)*LaplaceLimit/exp(sqrt(Pi)) 3654395451858457 m003 -4+Sqrt[5]/8+E^(-1/2-Sqrt[5]/2)/3 3654395453348646 a007 Real Root Of 70*x^4+89*x^3-341*x^2+750*x-846 3654395462512167 m001 1/ln(GAMMA(3/4))^2/GAMMA(19/24)*sqrt(Pi) 3654395477041087 r005 Im(z^2+c),c=-11/14+2/123*I,n=34 3654395498343636 a001 1/54018521*18^(4/17) 3654395507250423 r005 Im(z^2+c),c=1/15+16/31*I,n=10 3654395509779087 r005 Re(z^2+c),c=-17/36+12/41*I,n=23 3654395511939113 m009 (1/5*Pi^2-1/3)/(1/6*Psi(1,2/3)-5) 3654395520987110 r005 Re(z^2+c),c=-7/13+6/13*I,n=56 3654395524569601 m001 PrimesInBinary/(Kolakoski^ln(gamma)) 3654395530749723 m001 LambertW(1)^GAMMA(3/4)/(LambertW(1)^ln(gamma)) 3654395549169087 m004 3+10*Pi+Cot[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3654395555364322 m001 (Si(Pi)+GAMMA(19/24))/(-Conway+PlouffeB) 3654395600206864 a007 Real Root Of -361*x^4+605*x^3+430*x^2+825*x-382 3654395604466911 h001 (3/4*exp(2)+1/11)/(3/11*exp(1)+4/5) 3654395614425964 p001 sum((-1)^n/(281*n+234)/n/(5^n),n=1..infinity) 3654395638075713 v002 sum(1/(5^n*(17*n^2-29*n+76)),n=1..infinity) 3654395642683447 m001 (-MertensB1+Sarnak)/(LambertW(1)+ArtinRank2) 3654395650064807 a007 Real Root Of 162*x^4+498*x^3-163*x^2+847*x+684 3654395667299382 r009 Im(z^3+c),c=-5/22+18/47*I,n=7 3654395674771028 m001 (Si(Pi)+GAMMA(5/6))^KhinchinLevy 3654395687132559 a007 Real Root Of -457*x^4+291*x^3-751*x^2+547*x-19 3654395693698436 m001 (Tetranacci+ZetaQ(4))/(GAMMA(3/4)-ArtinRank2) 3654395705153846 m001 (GAMMA(19/24)-Kac)/(Sarnak+StronglyCareFree) 3654395713267968 r005 Im(z^2+c),c=-105/86+8/55*I,n=20 3654395720674930 m005 (1/2*2^(1/2)-5/9)/(89/22+1/22*5^(1/2)) 3654395722972986 m001 Ei(1)^2/PisotVijayaraghavan/exp(Zeta(9))^2 3654395733896853 m001 (-GAMMA(11/12)+CareFree)/(sin(1)+Zeta(1,2)) 3654395736245537 m006 (2/5*exp(2*Pi)-1/6)/(1/6*exp(Pi)+2) 3654395755303870 p003 LerchPhi(1/32,1,535/191) 3654395762743605 m001 GAMMA(11/24)^2/GAMMA(1/24)*exp(exp(1))^2 3654395765391660 a005 (1/cos(12/233*Pi))^624 3654395787875576 a007 Real Root Of -256*x^4-810*x^3+615*x^2+755*x+672 3654395795927528 a001 1548008755920/521*322^(5/6) 3654395809082516 m001 GAMMA(7/24)^GAMMA(17/24)-Lehmer 3654395810901600 m006 (5/6*Pi^2-2/5)/(4*exp(2*Pi)-4/5) 3654395821617695 r005 Re(z^2+c),c=-3/4+1/122*I,n=24 3654395828195703 m005 (1/2*exp(1)+3/8)/(1/3*5^(1/2)+4) 3654395839309931 r002 4th iterates of z^2 + 3654395840261884 r009 Im(z^3+c),c=-43/110+13/41*I,n=18 3654395840375953 m005 (1/2*2^(1/2)-7/9)/(4*gamma-3/8) 3654395866570383 r009 Re(z^3+c),c=-27/58+20/39*I,n=48 3654395871747334 l006 ln(1011/1457) 3654395878319341 r009 Re(z^3+c),c=-43/114+2/13*I,n=25 3654395881350045 r005 Im(z^2+c),c=3/74+28/47*I,n=17 3654395894633467 m004 -5*Pi+(Sec[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi])/2 3654395897161592 r005 Im(z^2+c),c=-7/30+35/62*I,n=43 3654395902524340 r009 Im(z^3+c),c=-9/44+13/34*I,n=4 3654395907454641 m003 73/2+(Sqrt[5]*E^(-1-Sqrt[5]))/2 3654395944124801 r009 Re(z^3+c),c=-10/31+37/53*I,n=46 3654395955160507 m001 1/GAMMA(7/12)/Ei(1)^2*ln(Zeta(9)) 3654395958496073 r005 Im(z^2+c),c=-59/122+21/38*I,n=4 3654395961505709 m005 (1/3*Catalan-1/9)/(2/11*Zeta(3)-3/4) 3654395968815166 l006 ln(163/6299) 3654395968815166 p004 log(6299/163) 3654395998426439 r009 Re(z^3+c),c=-7/102+39/56*I,n=48 3654396004965917 r005 Re(z^2+c),c=23/70+29/56*I,n=47 3654396013733361 m001 (cos(Pi/12)+1/3)/(-exp(1/exp(1))+5) 3654396023877084 a001 98209/161*7^(23/25) 3654396029883070 r009 Im(z^3+c),c=-12/29+10/33*I,n=38 3654396032611277 r005 Im(z^2+c),c=-17/86+3/5*I,n=46 3654396034615382 m001 (Niven*ZetaP(2)+QuadraticClass)/ZetaP(2) 3654396036998188 m005 (1/2*exp(1)+6/11)/(1/9*5^(1/2)+3/11) 3654396044979864 r009 Re(z^3+c),c=-27/82+2/27*I,n=3 3654396052045493 a007 Real Root Of -281*x^4-960*x^3+221*x^2-122*x-133 3654396061442979 r009 Im(z^3+c),c=-12/29+10/33*I,n=41 3654396077329959 r005 Im(z^2+c),c=-2/31+25/51*I,n=28 3654396096013309 r009 Im(z^3+c),c=-1/30+19/41*I,n=2 3654396112193851 r002 10th iterates of z^2 + 3654396113365679 r005 Im(z^2+c),c=-3/14+33/58*I,n=54 3654396118788795 m001 gamma(3)^Mills/(gamma(3)^Trott2nd) 3654396120712131 m001 1/exp(Zeta(1,2))^2/GAMMA(3/4)^2*sin(1) 3654396121228990 a001 21/9349*2^(33/47) 3654396146696575 a007 Real Root Of 154*x^4+500*x^3-268*x^2-245*x-380 3654396147060788 r005 Re(z^2+c),c=-29/62+11/36*I,n=41 3654396154911911 a001 2576*11^(7/48) 3654396160357678 a007 Real Root Of 529*x^4-482*x^3+810*x^2-785*x-428 3654396164251430 m001 (1-LambertW(1))/(-Landau+Robbin) 3654396170962979 r005 Re(z^2+c),c=9/28+4/41*I,n=29 3654396180070929 a007 Real Root Of 902*x^4+762*x^3-852*x^2-929*x+400 3654396182680849 r005 Re(z^2+c),c=-23/48+5/23*I,n=15 3654396186084979 a007 Real Root Of 932*x^4-979*x^3+548*x^2-584*x-351 3654396190101060 a007 Real Root Of -988*x^4-775*x^3+890*x^2+880*x-385 3654396197739560 l006 ln(2633/2731) 3654396197739560 p004 log(2731/2633) 3654396205512850 a007 Real Root Of -41*x^4+467*x^3+118*x^2+857*x-351 3654396211260753 a007 Real Root Of -283*x^4-768*x^3+834*x^2-543*x-131 3654396213961593 r004 Im(z^2+c),c=1/3-1/15*I,z(0)=exp(5/8*I*Pi),n=59 3654396218861515 a007 Real Root Of 108*x^4+368*x^3+55*x^2+572*x+54 3654396241235419 r005 Re(z^2+c),c=-29/54+17/38*I,n=31 3654396242793461 a007 Real Root Of -271*x^4-829*x^3+769*x^2+727*x+261 3654396249155797 r009 Im(z^3+c),c=-9/23+19/60*I,n=30 3654396249884947 r005 Im(z^2+c),c=-5/74+27/55*I,n=47 3654396253422237 m001 (Zeta(5)+GAMMA(5/6))/Lehmer 3654396258800423 m001 (GaussKuzminWirsing+Paris*Stephens)/Paris 3654396265951706 m001 (Artin-BesselK(0,1))/(-FeigenbaumC+Landau) 3654396289723296 r009 Im(z^3+c),c=-5/38+11/27*I,n=3 3654396292073803 m001 (Riemann3rdZero-Totient)/(3^(1/3)-Kolakoski) 3654396305479969 r005 Re(z^2+c),c=-43/94+17/52*I,n=20 3654396312751940 r005 Im(z^2+c),c=-4/29+34/63*I,n=17 3654396325538865 r005 Im(z^2+c),c=1/50+26/59*I,n=28 3654396328364783 r009 Re(z^3+c),c=-3/7+13/58*I,n=34 3654396341111770 r009 Im(z^3+c),c=-9/23+19/60*I,n=31 3654396342658698 m005 (1/2*3^(1/2)+1/10)/(7/9*Pi+1/5) 3654396352329646 r005 Im(z^2+c),c=-7/60+18/35*I,n=20 3654396374831251 m001 (cos(1)+exp(-1/2*Pi))/(Cahen+OrthogonalArrays) 3654396400287634 a003 sin(Pi*11/82)*sin(Pi*32/91) 3654396402697366 r005 Re(z^2+c),c=-17/14+37/240*I,n=58 3654396413389428 p004 log(36523/25343) 3654396421615023 q001 1/273643 3654396445815464 m001 1/Lehmer^2/exp(Khintchine)^2/BesselK(1,1)^2 3654396462018730 r005 Re(z^2+c),c=-11/12+50/93*I,n=2 3654396491236860 h001 (7/8*exp(1)+1/4)/(7/8*exp(2)+8/11) 3654396493441433 m002 6+5/Pi^5+Pi^3*Cosh[Pi] 3654396514428839 r005 Re(z^2+c),c=-10/27+31/55*I,n=51 3654396521406995 r005 Re(z^2+c),c=-25/56+2/5*I,n=24 3654396522596943 m009 (2/5*Psi(1,3/4)-5/6)/(1/5*Psi(1,1/3)+3) 3654396526066242 a001 119218851371/144*34^(8/19) 3654396534223346 r005 Im(z^2+c),c=-17/22+32/113*I,n=6 3654396543646923 h001 (5/8*exp(2)+8/9)/(1/8*exp(2)+7/12) 3654396557639133 m001 ((1+3^(1/2))^(1/2)+Conway)/cos(1/5*Pi) 3654396558407734 r009 Im(z^3+c),c=-27/62+17/59*I,n=21 3654396559129558 r005 Re(z^2+c),c=9/50+15/26*I,n=58 3654396559474181 r005 Im(z^2+c),c=-85/118+7/27*I,n=11 3654396562511698 r004 Re(z^2+c),c=-5/7+1/13*I,z(0)=exp(1/8*I*Pi),n=8 3654396565333746 r009 Im(z^3+c),c=-33/98+12/23*I,n=3 3654396570831052 m003 6+5*Cot[1/2+Sqrt[5]/2]+2*Tan[1/2+Sqrt[5]/2] 3654396573112695 r005 Im(z^2+c),c=37/122+3/16*I,n=17 3654396575339250 a001 3/54018521*11^(11/14) 3654396582743864 m001 (sin(1/5*Pi)+ln(5))/(Zeta(1/2)+Thue) 3654396583168395 r009 Re(z^3+c),c=-1/66+49/60*I,n=22 3654396594501068 a001 29/144*2^(49/57) 3654396598885658 a007 Real Root Of 441*x^4-592*x^3-346*x^2-149*x-45 3654396638036864 a007 Real Root Of -839*x^4+749*x^3-777*x^2+821*x-29 3654396640539342 r005 Re(z^2+c),c=-18/29+25/63*I,n=9 3654396641365812 r009 Re(z^3+c),c=-43/114+2/13*I,n=24 3654396643531349 r009 Re(z^3+c),c=-3/7+13/58*I,n=35 3654396651808863 r005 Im(z^2+c),c=4/17+11/39*I,n=21 3654396652985497 m005 (1/2*exp(1)-2/11)/(7/9*2^(1/2)-7/9) 3654396656791181 m001 BesselK(0,1)^cos(1/12*Pi)/KhinchinLevy 3654396657685055 r005 Im(z^2+c),c=17/50+9/64*I,n=21 3654396669311408 r005 Im(z^2+c),c=27/98+11/46*I,n=26 3654396674691799 r005 Im(z^2+c),c=11/38+13/58*I,n=43 3654396685900206 a005 (1/cos(4/159*Pi))^1151 3654396710377869 r002 9th iterates of z^2 + 3654396715190921 r009 Re(z^3+c),c=-37/82+21/41*I,n=13 3654396737885379 m005 (1/2*Catalan+5/9)/(1/12*exp(1)-3) 3654396751042819 a003 sin(Pi*15/76)*sin(Pi*21/97) 3654396753319475 r009 Im(z^3+c),c=-33/86+11/39*I,n=3 3654396755683500 r005 Re(z^2+c),c=-15/31+10/47*I,n=41 3654396755866519 a007 Real Root Of 209*x^4+494*x^3-899*x^2+455*x+503 3654396756446117 a007 Real Root Of 128*x^4-936*x^3+870*x^2+586*x+50 3654396756455954 m001 (cos(1)+Zeta(3))/(FeigenbaumDelta+Paris) 3654396764852987 r005 Re(z^2+c),c=-27/58+19/60*I,n=59 3654396765883754 m001 (-gamma(1)+FibonacciFactorial)/(exp(1)+Chi(1)) 3654396780189698 r005 Re(z^2+c),c=-9/58+32/33*I,n=5 3654396783351615 m001 BesselJ(0,1)^ln(2)*TreeGrowth2nd 3654396784399512 r005 Im(z^2+c),c=-4/7+7/127*I,n=17 3654396800565557 b008 Pi+PolyLog[2,Pi/7] 3654396806188028 r005 Im(z^2+c),c=-1/86+17/37*I,n=27 3654396824392341 m005 (1/2*Zeta(3)-1/11)/(8/11*Pi-8/9) 3654396834121345 r005 Re(z^2+c),c=-41/70+25/57*I,n=21 3654396848953026 h001 (1/12*exp(1)+10/11)/(10/11*exp(1)+7/11) 3654396849280494 a003 sin(Pi*3/28)/sin(Pi*37/103) 3654396864592055 r005 Im(z^2+c),c=-13/50+24/41*I,n=56 3654396872180780 r005 Re(z^2+c),c=-43/98+13/59*I,n=6 3654396872204127 r002 24th iterates of z^2 + 3654396874618809 r005 Re(z^2+c),c=-101/74+2/51*I,n=58 3654396884732236 m003 4/3+Sqrt[5]/2+(5*Log[1/2+Sqrt[5]/2])/2 3654396897283032 r005 Im(z^2+c),c=-3/86+26/55*I,n=33 3654396905149899 s002 sum(A018529[n]/(n^3*exp(n)+1),n=1..infinity) 3654396912860455 m001 (1+3^(1/2))^(1/2)-BesselI(1,2)*AlladiGrinstead 3654396914447979 m001 (ErdosBorwein-Si(Pi))/(-OneNinth+ZetaP(3)) 3654396937884835 r009 Re(z^3+c),c=-10/21+16/61*I,n=16 3654396941466987 r009 Im(z^3+c),c=-12/29+10/33*I,n=45 3654396957469746 r002 42th iterates of z^2 + 3654396964676171 m005 (1/2*3^(1/2)+3/11)/(5/8*2^(1/2)-4) 3654396968116912 a007 Real Root Of 923*x^4+330*x^3-35*x^2-882*x-318 3654396982407653 r005 Re(z^2+c),c=-59/122+5/23*I,n=25 3654396991894441 r005 Im(z^2+c),c=-33/118+32/59*I,n=23 3654396994868098 a007 Real Root Of 5*x^4-783*x^3+495*x^2-984*x-464 3654396995083137 m001 (Stephens-Trott2nd)/(arctan(1/3)-Bloch) 3654396996572381 m001 1/GAMMA(1/4)/ln(Niven)/sqrt(2) 3654396996897759 l006 ln(6100/8791) 3654396998457094 r009 Im(z^3+c),c=-12/29+10/33*I,n=44 3654397014086424 r005 Im(z^2+c),c=-3/44+28/57*I,n=58 3654397016979224 r005 Im(z^2+c),c=13/114+11/29*I,n=25 3654397017974355 a007 Real Root Of -440*x^4-44*x^3+472*x^2+684*x-303 3654397020871824 r005 Re(z^2+c),c=17/94+37/63*I,n=29 3654397031426628 r005 Im(z^2+c),c=1/44+18/41*I,n=43 3654397041024875 r004 Re(z^2+c),c=-19/42+6/17*I,z(0)=-1,n=36 3654397042378317 m001 (-Landau+MadelungNaCl)/(exp(1)+gamma) 3654397048007819 r002 15th iterates of z^2 + 3654397055453529 h001 (4/5*exp(1)+9/10)/(3/11*exp(1)+1/10) 3654397056154740 a003 sin(Pi*14/71)-sin(Pi*47/119) 3654397056809005 r008 a(0)=4,K{-n^6,2-3*n^3+3*n^2+7*n} 3654397078786179 m001 (Paris+ZetaQ(3))/(Gompertz-Kac) 3654397080112834 g007 Psi(2,2/7)+Psi(2,3/5)-Psi(2,9/11)-Psi(2,1/4) 3654397082118725 a007 Real Root Of 320*x^4+175*x^3+913*x^2-964*x+34 3654397083495207 m001 2/3/(exp(gamma)+exp(-Pi)) 3654397087948163 r009 Im(z^3+c),c=-12/29+10/33*I,n=48 3654397091678699 a007 Real Root Of 204*x^4+968*x^3+679*x^2-431*x+216 3654397102552415 a007 Real Root Of 612*x^4+389*x^3+476*x^2-379*x-194 3654397106150913 a007 Real Root Of -538*x^4-450*x^3-182*x^2+982*x-303 3654397123448141 p003 LerchPhi(1/10,1,287/97) 3654397123628079 m001 Khinchin/(HardyLittlewoodC5-ln(Pi)) 3654397130164192 r005 Im(z^2+c),c=-3/94+27/56*I,n=16 3654397140487500 r009 Im(z^3+c),c=-12/29+10/33*I,n=49 3654397145082873 r009 Im(z^3+c),c=-12/29+10/33*I,n=52 3654397145561318 m001 (Magata-Niven)/(arctan(1/2)+gamma(3)) 3654397152076745 p001 sum(1/(334*n+291)/(8^n),n=0..infinity) 3654397160638641 r005 Re(z^2+c),c=8/21+9/47*I,n=4 3654397163710813 r009 Im(z^3+c),c=-12/29+10/33*I,n=56 3654397165603712 r009 Im(z^3+c),c=-12/29+10/33*I,n=55 3654397167110854 r009 Im(z^3+c),c=-12/29+10/33*I,n=59 3654397168078761 r009 Im(z^3+c),c=-12/29+10/33*I,n=60 3654397168260373 r009 Im(z^3+c),c=-12/29+10/33*I,n=63 3654397168783892 r009 Im(z^3+c),c=-12/29+10/33*I,n=64 3654397168921992 r009 Im(z^3+c),c=-12/29+10/33*I,n=62 3654397169718964 r009 Im(z^3+c),c=-12/29+10/33*I,n=61 3654397170708927 r009 Im(z^3+c),c=-12/29+10/33*I,n=53 3654397170786396 r009 Im(z^3+c),c=-12/29+10/33*I,n=58 3654397171309358 r009 Im(z^3+c),c=-12/29+10/33*I,n=57 3654397173810193 r005 Re(z^2+c),c=-9/14+10/247*I,n=8 3654397174032067 r009 Im(z^3+c),c=-12/29+10/33*I,n=51 3654397180159653 r009 Im(z^3+c),c=-12/29+10/33*I,n=54 3654397183104358 m005 (1/2*3^(1/2)-3/8)/(1/5*exp(1)+4/5) 3654397187317226 r005 Im(z^2+c),c=-11/74+16/29*I,n=23 3654397188175117 m001 (FellerTornier+Trott)/(ln(2)+Ei(1,1)) 3654397190440825 r009 Im(z^3+c),c=-27/64+16/53*I,n=11 3654397214375565 r009 Im(z^3+c),c=-12/29+10/33*I,n=50 3654397219262422 a001 843/2584*832040^(9/26) 3654397220424386 l006 ln(5089/7334) 3654397223890912 a001 123/89*987^(19/40) 3654397236844180 s002 sum(A093252[n]/(exp(n)+1),n=1..infinity) 3654397251805476 r005 Re(z^2+c),c=-45/94+14/57*I,n=33 3654397256988362 r009 Im(z^3+c),c=-12/29+10/33*I,n=47 3654397289048762 h001 (1/8*exp(1)+1/4)/(1/10*exp(2)+7/8) 3654397289608710 p003 LerchPhi(1/10,4,451/196) 3654397294345575 a001 1/29*29^(1/58) 3654397297186965 r009 Im(z^3+c),c=-12/29+10/33*I,n=46 3654397301129076 h001 (1/2*exp(2)+5/11)/(1/9*exp(1)+5/6) 3654397308594412 r009 Im(z^3+c),c=-12/29+10/33*I,n=42 3654397310633138 r005 Im(z^2+c),c=-23/16+5/53*I,n=4 3654397313522615 r005 Im(z^2+c),c=-37/56+3/25*I,n=10 3654397316600359 r009 Im(z^3+c),c=-12/29+10/33*I,n=40 3654397316681146 m001 1/ln(Zeta(5))*Lehmer*sqrt(5) 3654397324976770 r005 Re(z^2+c),c=-41/86+8/31*I,n=36 3654397326265300 m001 (-Mills+PrimesInBinary)/(exp(Pi)+2^(1/3)) 3654397343762501 r005 Im(z^2+c),c=-51/122+34/61*I,n=8 3654397344339493 m001 1/PrimesInBinary^2*FeigenbaumB*ln(GAMMA(5/12)) 3654397349732687 r002 20th iterates of z^2 + 3654397355009403 m001 OneNinth^Bloch-TravellingSalesman 3654397370764753 a007 Real Root Of 759*x^4-724*x^3+513*x^2-798*x-409 3654397371189964 r005 Re(z^2+c),c=-9/31+24/47*I,n=10 3654397380499905 m006 (2/5*Pi+4)/(3/5*exp(Pi)+1/2) 3654397386908364 m006 (5/6*Pi+3/4)/(4*exp(Pi)-2/5) 3654397388079235 m001 exp((2^(1/3)))^2/FeigenbaumKappa^2*cos(1) 3654397388204544 p001 sum(1/(469*n+298)/(5^n),n=0..infinity) 3654397396557286 a003 cos(Pi*22/71)-sin(Pi*14/37) 3654397411067693 r009 Re(z^3+c),c=-13/27+16/55*I,n=48 3654397412034537 a007 Real Root Of -730*x^4+303*x^3+500*x^2+788*x+249 3654397433640128 m001 (Artin+Otter)/(arctan(1/2)-exp(1/Pi)) 3654397439171530 m001 ln(Bloch)*Cahen/GAMMA(1/12)^2 3654397453687612 r005 Re(z^2+c),c=-11/50+37/62*I,n=10 3654397463695735 r005 Im(z^2+c),c=-85/114+2/23*I,n=29 3654397481188212 a007 Real Root Of 233*x^4+760*x^3-585*x^2-798*x+432 3654397495307828 l006 ln(104/4019) 3654397503463343 r005 Im(z^2+c),c=11/34+7/54*I,n=20 3654397503996163 m001 PrimesInBinary*Thue^FeigenbaumB 3654397515096141 a003 cos(Pi*6/37)-cos(Pi*12/65) 3654397517739488 h001 (-6*exp(4)+1)/(-3*exp(8)+6) 3654397524100961 r009 Re(z^3+c),c=-4/9+11/45*I,n=34 3654397524330309 m001 (Catalan+Artin)/(Grothendieck+MadelungNaCl) 3654397526066691 r009 Im(z^3+c),c=-63/122+5/22*I,n=17 3654397552826516 m002 -5+(E^Pi*Log[Pi])/Pi^4+ProductLog[Pi] 3654397553931012 r005 Re(z^2+c),c=-17/36+17/60*I,n=39 3654397554782499 l006 ln(4078/5877) 3654397558236833 r005 Re(z^2+c),c=-9/86+23/40*I,n=5 3654397583407201 r005 Re(z^2+c),c=-15/22+23/64*I,n=30 3654397586649280 r009 Re(z^3+c),c=-55/126+15/64*I,n=28 3654397588254075 m001 (Champernowne+MertensB3)/(exp(1)+BesselI(0,1)) 3654397604791407 m009 (1/5*Psi(1,2/3)+2/3)/(3/8*Pi^2-1/5) 3654397615087098 a007 Real Root Of 61*x^4-685*x^3-770*x^2-5*x+137 3654397615143923 r009 Re(z^3+c),c=-35/74+12/43*I,n=24 3654397627511373 r005 Re(z^2+c),c=-23/48+5/21*I,n=24 3654397640352950 m001 MinimumGamma*exp(CareFree)/cos(Pi/5) 3654397643656426 a001 1/76*(1/2*5^(1/2)+1/2)^25*199^(2/21) 3654397650500086 b008 5-((-1+Pi)*Pi)/5 3654397661531630 r005 Re(z^2+c),c=6/19+4/55*I,n=49 3654397662140165 a001 3010349/8*225851433717^(2/23) 3654397662140514 a001 1970299/2*3524578^(2/23) 3654397663547354 m001 (Lehmer+ZetaQ(4))/(Conway+FellerTornier) 3654397687174609 a007 Real Root Of -608*x^4-287*x^3+585*x^2+251*x-145 3654397688665040 r009 Im(z^3+c),c=-51/110+17/63*I,n=21 3654397692139867 r009 Im(z^3+c),c=-12/29+10/33*I,n=43 3654397700935757 r005 Re(z^2+c),c=-13/56+53/61*I,n=52 3654397704558547 r005 Re(z^2+c),c=7/50+19/39*I,n=23 3654397712975842 m001 (1-Conway)/(-FeigenbaumB+ZetaQ(4)) 3654397722501026 a003 cos(Pi*10/37)*cos(Pi*21/67) 3654397725333368 a005 (1/sin(105/233*Pi))^1252 3654397727320852 r005 Im(z^2+c),c=1/54+19/43*I,n=21 3654397727365078 m001 ln(FeigenbaumC)^2/Artin*GAMMA(11/24)^2 3654397729509666 a007 Real Root Of -356*x^4+432*x^3-778*x^2+623*x+359 3654397732653802 m001 (Kac+Mills)/(1-GAMMA(7/12)) 3654397738041237 a001 7/233*2^(13/46) 3654397741346765 m001 MadelungNaCl*Otter/Riemann1stZero 3654397746035993 a001 521/21*28657^(2/53) 3654397756794404 h001 (6/7*exp(2)+4/11)/(5/12*exp(1)+7/10) 3654397765948508 s002 sum(A008808[n]/(n^2*2^n+1),n=1..infinity) 3654397777437033 a007 Real Root Of -484*x^4+743*x^3-288*x^2+207*x+159 3654397783928587 r002 3th iterates of z^2 + 3654397787388050 a007 Real Root Of -6*x^4-228*x^3-337*x^2-657*x-309 3654397796281084 r005 Re(z^2+c),c=7/29+15/31*I,n=50 3654397799777619 r005 Re(z^2+c),c=-19/48+15/28*I,n=59 3654397815729264 r005 Im(z^2+c),c=19/58+4/23*I,n=46 3654397857864664 m005 (1/2*Catalan+6/11)/(3/11*2^(1/2)-1/9) 3654397863152883 m001 (-Si(Pi)+3)/Pi 3654397863689436 m005 (1/2*exp(1)+3/5)/(5/11*Zeta(3)-3/5) 3654397863943471 m001 Trott2nd^(Rabbit/FellerTornier) 3654397906563994 r005 Im(z^2+c),c=35/122+3/13*I,n=23 3654397910604642 h001 (4/7*exp(2)+3/4)/(1/3*exp(1)+5/11) 3654397941884451 h001 (5/9*exp(1)+5/8)/(2/3*exp(2)+11/12) 3654397944863844 m005 (5*gamma+1/3)/(3/5*exp(1)-3/4) 3654397945400721 r005 Im(z^2+c),c=-13/60+1/20*I,n=14 3654397948645204 r005 Im(z^2+c),c=-101/126+1/33*I,n=8 3654397967021886 a007 Real Root Of -337*x^4-907*x^3+966*x^2-548*x+935 3654397974398321 m001 (FeigenbaumDelta-Rabbit)/(BesselJ(1,1)+Cahen) 3654397976526407 m001 (GAMMA(5/6)-KomornikLoreti)/(Lehmer-ThueMorse) 3654397982454335 m005 (1/3*3^(1/2)+1/7)/(1/2*Pi+2/5) 3654397997457022 r005 Re(z^2+c),c=-8/11+13/60*I,n=21 3654398005148099 r005 Im(z^2+c),c=11/106+17/44*I,n=18 3654398007360955 m005 (1/2*gamma+8/9)/(1/5*5^(1/2)-1/8) 3654398010383201 m001 1/GAMMA(13/24)^2*ln(FeigenbaumB)^2*cos(1)^2 3654398010736126 a003 cos(Pi*21/73)-sin(Pi*39/88) 3654398023538158 r005 Re(z^2+c),c=-47/106+13/30*I,n=35 3654398031199808 r005 Im(z^2+c),c=23/126+19/58*I,n=25 3654398058960507 a003 sin(Pi*5/111)/sin(Pi*14/111) 3654398062879008 b008 3*(1/2+(1+E)*Pi) 3654398078025038 m001 1/RenyiParking/ln(FeigenbaumC)^2 3654398087921548 r005 Re(z^2+c),c=-15/31+11/49*I,n=20 3654398090178038 b008 1/3+E^(1/18)*Pi 3654398091065164 a007 Real Root Of -319*x^4-45*x^3-18*x^2+362*x-122 3654398097773323 a001 1/76*(1/2*5^(1/2)+1/2)^18*521^(13/21) 3654398109574922 l006 ln(3067/4420) 3654398131118317 r002 20th iterates of z^2 + 3654398139465259 a007 Real Root Of -164*x^4-498*x^3+447*x^2+403*x+448 3654398160127074 r005 Im(z^2+c),c=1/9+19/46*I,n=3 3654398164569303 m001 MadelungNaCl^Psi(1,1/3)*MadelungNaCl^PlouffeB 3654398165363712 s002 sum(A011907[n]/((pi^n-1)/n),n=1..infinity) 3654398186248320 m001 cos(1/12*Pi)^LambertW(1)/FeigenbaumD 3654398190575602 m001 (FeigenbaumD+Porter)/(arctan(1/2)-gamma) 3654398192788477 h001 (1/11*exp(1)+7/10)/(3/10*exp(2)+3/8) 3654398210347457 m004 -3+120*Pi-Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 3654398211119592 a007 Real Root Of 902*x^4-777*x^3+193*x^2-827*x-382 3654398215584315 m001 (exp(1)+2^(1/2))/(BesselK(0,1)+Rabbit) 3654398253506715 l005 118/67/(exp(118/67)-1) 3654398255689489 r005 Re(z^2+c),c=13/90+11/24*I,n=54 3654398259358612 m001 (Lehmer-Robbin)/(GAMMA(11/12)+GaussAGM) 3654398260623421 r005 Im(z^2+c),c=-37/106+16/29*I,n=33 3654398262007910 m001 1/OneNinth^2*ln(Magata)*sin(Pi/5)^2 3654398263153044 a003 sin(Pi*15/104)-sin(Pi*19/64) 3654398267235495 p004 log(37369/967) 3654398271781757 m001 ln(Sierpinski)^2/KhintchineLevy/(3^(1/3))^2 3654398272085233 r002 5th iterates of z^2 + 3654398276448054 h001 (7/11*exp(1)+1/6)/(5/8*exp(2)+4/7) 3654398287515247 m006 (2/5*Pi^2+1)/(5/6*ln(Pi)+2/5) 3654398288560940 a001 29/10946*377^(49/59) 3654398292939354 p001 sum((-1)^n/(524*n+263)/(8^n),n=0..infinity) 3654398310555949 p004 log(16223/11257) 3654398314869759 r009 Re(z^3+c),c=-9/19+27/59*I,n=13 3654398324675291 r005 Re(z^2+c),c=-41/110+1/2*I,n=25 3654398329417906 q001 14/3831 3654398329417906 q001 7/19155 3654398330081968 m001 FeigenbaumB^2/ln(ErdosBorwein)*Riemann3rdZero 3654398337447860 a005 (1/cos(17/106*Pi))^513 3654398355296429 s001 sum(exp(-Pi/2)^(n-1)*A088225[n],n=1..infinity) 3654398355794491 m001 (Shi(1)-FibonacciFactorial)^LambertW(1) 3654398358438601 s001 sum(exp(-Pi/2)^(n-1)*A216636[n],n=1..infinity) 3654398361142555 m001 1/sinh(1)*exp(LandauRamanujan)*sqrt(2)^2 3654398370138664 r005 Re(z^2+c),c=-43/98+11/26*I,n=53 3654398386713801 h001 (7/9*exp(2)+9/10)/(5/11*exp(1)+7/12) 3654398394877879 r005 Im(z^2+c),c=-43/29+1/28*I,n=7 3654398396029339 r005 Im(z^2+c),c=-29/25+3/64*I,n=57 3654398396295010 r005 Im(z^2+c),c=-11/94+14/27*I,n=33 3654398402067519 r005 Re(z^2+c),c=-47/106+20/49*I,n=51 3654398403904902 a001 233/11*3571^(1/15) 3654398424578069 m001 DuboisRaymond*(5^(1/2)-Riemann2ndZero) 3654398444522322 a007 Real Root Of -94*x^4-313*x^3+63*x^2-423*x-898 3654398447103815 g002 Psi(5/8)-Psi(8/11)-Psi(6/11)-Psi(5/11) 3654398450556308 r005 Re(z^2+c),c=-11/23+12/25*I,n=47 3654398458765398 m005 (1/3*2^(1/2)+1/5)/(5/9*3^(1/2)+7/8) 3654398478778150 l006 ln(253/9777) 3654398479425089 a008 Real Root of x^4-2*x^3+x^2+138*x+215 3654398486875981 m001 (Psi(2,1/3)+Chi(1))/(BesselI(0,1)+Ei(1,1)) 3654398494149075 r009 Re(z^3+c),c=-27/58+13/48*I,n=39 3654398494530660 m001 Bloch/Champernowne/exp(GAMMA(19/24))^2 3654398496983569 m001 (arctan(1/2)+Champernowne)/(Niven-Paris) 3654398523751337 m001 BesselJ(0,1)^2*ln(Robbin)^2/sqrt(1+sqrt(3))^2 3654398529573404 r005 Re(z^2+c),c=-25/54+17/48*I,n=22 3654398551199632 l006 ln(5123/7383) 3654398571463991 a007 Real Root Of 260*x^4+923*x^3+82*x^2+426*x-863 3654398589747300 r009 Im(z^3+c),c=-9/118+15/19*I,n=50 3654398592946010 m001 ZetaP(2)^(KomornikLoreti*Rabbit) 3654398604649969 r002 4th iterates of z^2 + 3654398615169677 m001 (RenyiParking+Sierpinski)/(ln(5)-ArtinRank2) 3654398619997544 a007 Real Root Of 608*x^4-830*x^3+328*x^2+337*x+28 3654398621729194 m001 2^(1/2)*Sierpinski-HeathBrownMoroz 3654398647789939 r009 Im(z^3+c),c=-3/29+43/54*I,n=20 3654398649623133 m001 (-BesselI(1,1)+Cahen)/(2^(1/3)+ln(2^(1/2)+1)) 3654398649982367 b008 ArcCoth[5/36+E] 3654398653118355 a007 Real Root Of 991*x^4+755*x^3-469*x^2-744*x+280 3654398653155478 m001 ZetaQ(3)/(Porter^BesselI(0,2)) 3654398657433475 r002 46th iterates of z^2 + 3654398660910684 m001 (ln(5)-HeathBrownMoroz)/BesselJ(1,1) 3654398673177401 a001 10525900321/3*2178309^(19/24) 3654398673177464 a001 7881196/21*225851433717^(19/24) 3654398678452006 h001 (-5*exp(1)+3)/(-2*exp(5)+7) 3654398682106828 a001 1346269/29*11^(37/43) 3654398682982844 m001 (exp(1)-Pi^(1/2))/sin(1/12*Pi) 3654398682982844 m001 (exp(1)-sqrt(Pi))/sin(Pi/12) 3654398705163605 m001 1/exp(Zeta(7))^2*Tribonacci/sin(Pi/12)^2 3654398705733422 a005 (1/cos(28/195*Pi))^340 3654398709491777 b008 9*Log[58] 3654398720509756 r002 22th iterates of z^2 + 3654398725667712 h002 exp(18^(9/10)-2^(12/5)) 3654398725667712 h007 exp(18^(9/10)-2^(12/5)) 3654398726855819 r005 Im(z^2+c),c=-169/122+1/63*I,n=35 3654398729063120 m005 (1/2*5^(1/2)-7/12)/(4/11*3^(1/2)+5/6) 3654398729301590 r002 39th iterates of z^2 + 3654398733097305 a001 956722026041/521*322^(11/12) 3654398733428406 m001 (gamma(1)+CareFree)/(Grothendieck-ZetaQ(2)) 3654398772097700 m001 (Rabbit+TwinPrimes)/(cos(1)+Zeta(1,-1)) 3654398782374892 m001 1/ln(MertensB1)^2*GolombDickman/GAMMA(7/24)^2 3654398801610829 m001 (-exp(1/2)+4)/Cahen 3654398806487077 s002 sum(A044329[n]/((exp(n)+1)*n),n=1..infinity) 3654398815766615 r005 Im(z^2+c),c=-67/110+5/49*I,n=16 3654398844714352 r005 Im(z^2+c),c=19/50+8/31*I,n=33 3654398873376325 h001 (3/4*exp(2)+8/11)/(3/10*exp(1)+9/10) 3654398873438020 m001 (Riemann3rdZero+Totient)/(2^(1/2)-ln(2)) 3654398888823942 m001 sin(1/12*Pi)^(Shi(1)*CareFree) 3654398889088354 r002 4th iterates of z^2 + 3654398902579571 m001 (sin(Pi/12)+1)/(exp(1/exp(1))+2) 3654398910533424 m004 -5*Pi+(E^(Sqrt[5]*Pi)*Sec[Sqrt[5]*Pi])/4 3654398933418439 a007 Real Root Of 239*x^4+849*x^3+58*x^2+780*x+885 3654398957150612 r005 Im(z^2+c),c=-13/122+22/43*I,n=50 3654398965675279 m005 (1/2*3^(1/2)-5/9)/(3/4*gamma+5/12) 3654398972994117 m001 (cos(1/5*Pi)-sin(1))/(PlouffeB+ThueMorse) 3654398973873316 r005 Re(z^2+c),c=-7/10+21/101*I,n=56 3654398986043873 r005 Re(z^2+c),c=-24/23+9/50*I,n=8 3654398989065905 r005 Im(z^2+c),c=-5/102+23/48*I,n=21 3654399004801414 a007 Real Root Of 583*x^4-266*x^3+557*x^2-433*x-256 3654399031156307 r005 Re(z^2+c),c=-37/86+25/62*I,n=19 3654399039240901 m001 FibonacciFactorial+FransenRobinson^Thue 3654399053141271 r005 Re(z^2+c),c=-17/26+33/67*I,n=10 3654399057958358 m001 1/exp(cos(1))/GAMMA(5/6)*sin(1)^2 3654399079930994 q001 1271/3478 3654399079930994 r002 2th iterates of z^2 + 3654399079930994 r002 2th iterates of z^2 + 3654399090898179 a007 Real Root Of 269*x^4-591*x^3-852*x^2-701*x+394 3654399091242515 m001 (BesselJ(1,1)+Paris)/(BesselK(0,1)-Ei(1)) 3654399098312156 r009 Im(z^3+c),c=-13/106+14/17*I,n=6 3654399103816904 a007 Real Root Of -139*x^4+574*x^3-339*x^2+786*x+363 3654399130381327 m006 (1/6*Pi^2-2/3)/(5*exp(2*Pi)-1/2) 3654399134921315 a007 Real Root Of -986*x^4-786*x^3-614*x^2+434*x-15 3654399139701686 m001 1/MertensB1/ArtinRank2/exp(GAMMA(2/3))^2 3654399153846075 r005 Im(z^2+c),c=-61/52+1/21*I,n=55 3654399154824900 m006 (2/3*exp(Pi)+1/4)/(4/5*exp(2*Pi)+3/5) 3654399157690953 m001 (2^(1/3)+Chi(1))/(-ArtinRank2+Champernowne) 3654399158306271 m005 (1/2*3^(1/2)+6)/(7/10*2^(1/2)+8/9) 3654399158936994 r005 Im(z^2+c),c=-4/5+2/99*I,n=15 3654399165226662 l006 ln(149/5758) 3654399166878854 m005 (3*Catalan-1/5)/(5/2+2*5^(1/2)) 3654399178987566 m001 exp(Sierpinski)/MadelungNaCl^2*sin(1) 3654399190016140 r009 Re(z^3+c),c=-15/28+13/59*I,n=44 3654399199413805 a007 Real Root Of 17*x^4+610*x^3-436*x^2-891*x+770 3654399205094096 m001 HardyLittlewoodC3*Riemann2ndZero^Zeta(1,2) 3654399209985095 l006 ln(2056/2963) 3654399212906623 m001 (3^(1/3)-Chi(1))/(-BesselI(0,2)+Kac) 3654399220934590 r005 Im(z^2+c),c=-23/66+3/53*I,n=19 3654399230929840 r005 Im(z^2+c),c=29/86+5/39*I,n=11 3654399234218503 a007 Real Root Of -180*x^4-407*x^3+735*x^2-507*x+571 3654399235416954 m005 (1/2*exp(1)+7/9)/(3/4*3^(1/2)-5/7) 3654399251066383 a008 Real Root of (3+4*x-17*x^2-15*x^3) 3654399252748440 r005 Im(z^2+c),c=27/110+3/11*I,n=20 3654399277805714 m001 gamma(2)^ln(Pi)/FeigenbaumKappa 3654399278553978 m001 1/RenyiParking*exp(FeigenbaumAlpha)*sqrt(5) 3654399290899332 r005 Im(z^2+c),c=-13/86+9/17*I,n=28 3654399318672336 r005 Re(z^2+c),c=-13/29+25/64*I,n=49 3654399319091430 a001 47/3*10946^(17/29) 3654399335655506 m001 (OrthogonalArrays+ZetaQ(2))/(Conway+Khinchin) 3654399337109013 r005 Re(z^2+c),c=31/90+23/59*I,n=52 3654399339592414 r009 Im(z^3+c),c=-12/29+10/33*I,n=39 3654399340049997 a007 Real Root Of -463*x^4-374*x^3-834*x^2-313*x-13 3654399344080657 a001 329/13201*199^(49/52) 3654399344259553 r005 Re(z^2+c),c=-23/48+6/25*I,n=26 3654399347656961 a007 Real Root Of -310*x^4-936*x^3+862*x^2+561*x+146 3654399352789931 a007 Real Root Of 240*x^4+999*x^3+742*x^2+961*x-446 3654399356421799 a007 Real Root Of 431*x^4-676*x^3-820*x^2-961*x+486 3654399360412315 a007 Real Root Of -274*x^4-186*x^3-536*x^2+943*x+412 3654399366610348 a001 1/47*29^(38/45) 3654399380328856 r005 Re(z^2+c),c=1/28+7/24*I,n=9 3654399381065488 a007 Real Root Of 10*x^4+374*x^3+288*x^2-913*x-220 3654399388158219 m002 -6+Pi^3-ProductLog[Pi]/Pi^4+Sinh[Pi] 3654399413361330 m001 (MertensB3-Otter)/(Magata+MertensB2) 3654399413596571 a001 1/843*(1/2*5^(1/2)+1/2)^28*47^(8/21) 3654399420524928 a007 Real Root Of 276*x^4+942*x^3-558*x^2-932*x+795 3654399424190935 a007 Real Root Of -317*x^4-990*x^3+556*x^2-126*x+335 3654399442948096 r002 21th iterates of z^2 + 3654399443975614 r009 Im(z^3+c),c=-12/29+10/33*I,n=29 3654399445418194 m004 -125*Pi+(15*Sqrt[5]*Pi)/4+Tan[Sqrt[5]*Pi] 3654399448699497 m001 1/ln(HardHexagonsEntropy)*Champernowne*Paris 3654399454958003 m001 (3^(1/2)-LambertW(1))/(-Ei(1,1)+Magata) 3654399458844341 h005 exp(cos(Pi*7/50)+cos(Pi*16/43)) 3654399475921588 a007 Real Root Of -146*x^4+883*x^3-598*x^2+346*x+252 3654399482115552 r005 Im(z^2+c),c=-37/86+17/36*I,n=11 3654399517196814 m005 (1/2*gamma-9/11)/(5*exp(1)+9/10) 3654399520669129 r005 Re(z^2+c),c=-157/122+3/49*I,n=2 3654399531499560 a007 Real Root Of 207*x^4+894*x^3+327*x^2-702*x-220 3654399535010478 r005 Im(z^2+c),c=-13/74+32/59*I,n=36 3654399570912650 b008 2^(-2/21)+E 3654399573809143 r005 Im(z^2+c),c=-3/44+28/57*I,n=55 3654399574493842 r009 Re(z^3+c),c=-53/114+10/37*I,n=37 3654399579174969 m001 StolarskyHarborth*(BesselJ(1,1)-gamma(2)) 3654399585595864 m001 Landau/(Totient^FeigenbaumKappa) 3654399588259620 r005 Re(z^2+c),c=-51/118+19/42*I,n=48 3654399626915399 r005 Re(z^2+c),c=-131/106+7/62*I,n=54 3654399643573178 r005 Re(z^2+c),c=-13/10+21/134*I,n=2 3654399654205220 a005 (1/cos(4/117*Pi))^1818 3654399663418043 r005 Im(z^2+c),c=-35/94+27/49*I,n=32 3654399668709223 m001 (sin(1/5*Pi)-FeigenbaumKappa)/(Magata-Mills) 3654399684429925 a007 Real Root Of 381*x^4-806*x^3-37*x^2-752*x-316 3654399687651913 r005 Im(z^2+c),c=-109/126+1/39*I,n=11 3654399692659331 r005 Re(z^2+c),c=19/50+37/62*I,n=15 3654399704852386 m001 1/BesselJ(1,1)^2/Riemann3rdZero^2*exp(Ei(1))^2 3654399705154668 r005 Im(z^2+c),c=9/52+9/17*I,n=26 3654399705156439 r009 Im(z^3+c),c=-1/19+26/63*I,n=11 3654399707490075 m001 (Niven-RenyiParking)/(MertensB3-Mills) 3654399714149454 r009 Re(z^3+c),c=-17/40+9/41*I,n=33 3654399716675631 r004 Im(z^2+c),c=-5/38+9/17*I,z(0)=I,n=29 3654399759690286 m001 (Chi(1)-gamma(1))/(Grothendieck+Rabbit) 3654399764049098 r005 Re(z^2+c),c=-19/78+23/35*I,n=7 3654399764358500 r009 Im(z^3+c),c=-27/52+13/40*I,n=26 3654399775403231 g004 Re(GAMMA(-49/60+I*1/6)) 3654399784269091 a007 Real Root Of -728*x^4-9*x^3+193*x^2+682*x+236 3654399784682362 r005 Re(z^2+c),c=-29/56+1/55*I,n=10 3654399793746871 r005 Re(z^2+c),c=-41/90+19/55*I,n=25 3654399797710425 m001 OneNinth/(5^(1/2)+Rabbit) 3654399819534775 a005 (1/sin(51/137*Pi))^266 3654399829572797 a001 29/21*9227465^(8/23) 3654399864427154 l006 ln(5157/7432) 3654399872868959 r005 Im(z^2+c),c=-13/60+1/20*I,n=17 3654399888423395 r005 Re(z^2+c),c=-8/17+7/24*I,n=52 3654399898399090 r002 3th iterates of z^2 + 3654399912942203 p001 sum((-1)^n/(607*n+267)/(12^n),n=0..infinity) 3654399913110098 r005 Im(z^2+c),c=-5/28+25/46*I,n=36 3654399923066226 r005 Im(z^2+c),c=-11/8+14/141*I,n=12 3654399930409486 p003 LerchPhi(1/100,6,446/175) 3654399930789219 r005 Im(z^2+c),c=1/14+35/52*I,n=7 3654399946980389 a007 Real Root Of -55*x^4+171*x^3+614*x^2+757*x-366 3654399951577000 m001 1/Lehmer/Bloch*exp(Trott)^2 3654399960950483 r009 Re(z^3+c),c=-11/30+35/51*I,n=21 3654399964340590 a007 Real Root Of -791*x^4-850*x^3-176*x^2+657*x-161 3654399967839873 r005 Im(z^2+c),c=-59/106+32/53*I,n=20 3654399975224292 m001 (1-BesselJ(1,1))/(-GAMMA(13/24)+OneNinth) 3654399986868998 a001 1292/51841*199^(49/52) 3654399988081458 h001 (-12*exp(4)+1)/(-11*exp(1)+12) 3654399993225613 m001 cos(1/12*Pi)^sin(1)+FeigenbaumD 3654399993933622 a007 Real Root Of -11*x^4+688*x^3-157*x^2+869*x+32