3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^87/Lucas(87) 3770000000000000 a004 Fibonacci(14)*Lucas(86)/(1/2+sqrt(5)/2)^86 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^85/Lucas(85) 3770000000000000 a004 Fibonacci(14)*Lucas(84)/(1/2+sqrt(5)/2)^84 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^83/Lucas(83) 3770000000000000 a004 Fibonacci(14)*Lucas(82)/(1/2+sqrt(5)/2)^82 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(81) 3770000000000000 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^80 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(79) 3770000000000000 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^78 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(77) 3770000000000000 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^76 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(75) 3770000000000000 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^74 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(73) 3770000000000000 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^72 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(71) 3770000000000000 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^70 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(69) 3770000000000000 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^68 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(67) 3770000000000000 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^66 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(65) 3770000000000000 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^64 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(63) 3770000000000000 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^62 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(61) 3770000000000000 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^60 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(59) 3770000000000000 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^58 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(57) 3770000000000000 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^56 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(55) 3770000000000000 a001 377/312119004989*3461452808002^(11/12) 3770000000000000 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^54 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(53) 3770000000000000 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^52 3770000000000000 a001 377/45537549124*817138163596^(17/19) 3770000000000000 a001 377/45537549124*14662949395604^(17/21) 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(51) 3770000000000000 a001 377/45537549124*192900153618^(17/18) 3770000000000000 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^50 3770000000000000 a001 13/599786069*14662949395604^(7/9) 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(49) 3770000000000000 a001 13/599786069*505019158607^(7/8) 3770000000000000 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^48 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(47) 3770000000000000 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^46 3770000000000000 a001 377/2537720636*45537549124^(15/17) 3770000000000000 a001 377/2537720636*312119004989^(9/11) 3770000000000000 a001 377/2537720636*14662949395604^(5/7) 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(45) 3770000000000000 a001 377/2537720636*192900153618^(5/6) 3770000000000000 a001 377/2537720636*28143753123^(9/10) 3770000000000000 a001 377/2537720636*10749957122^(15/16) 3770000000000000 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^44 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(43) 3770000000000000 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^42 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^41/Lucas(41) 3770000000000000 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^40 3770000000000000 a001 377/141422324*2537720636^(13/15) 3770000000000000 a001 377/141422324*45537549124^(13/17) 3770000000000000 a001 377/141422324*14662949395604^(13/21) 3770000000000000 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^39/Lucas(39) 3770000000000000 a001 377/141422324*192900153618^(13/18) 3770000000000000 a001 377/141422324*73681302247^(3/4) 3770000000000000 a001 377/141422324*10749957122^(13/16) 3770000000000000 a001 377/141422324*599074578^(13/14) 3770000000000000 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^38 3770000000000001 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^37/Lucas(37) 3770000000000003 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^36 3770000000000008 a001 13/711491*2537720636^(7/9) 3770000000000008 a001 13/711491*17393796001^(5/7) 3770000000000008 a001 13/711491*312119004989^(7/11) 3770000000000008 a001 13/711491*14662949395604^(5/9) 3770000000000008 a001 13/711491*(1/2+1/2*5^(1/2))^35 3770000000000008 a001 13/711491*505019158607^(5/8) 3770000000000008 a001 13/711491*28143753123^(7/10) 3770000000000008 a001 13/711491*599074578^(5/6) 3770000000000008 a001 13/711491*228826127^(7/8) 3770000000000023 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^34 3770000000000060 a001 377/7881196*141422324^(11/13) 3770000000000060 a001 377/7881196*2537720636^(11/15) 3770000000000060 a001 377/7881196*45537549124^(11/17) 3770000000000060 a001 377/7881196*312119004989^(3/5) 3770000000000060 a001 377/7881196*14662949395604^(11/21) 3770000000000060 a001 377/7881196*(1/2+1/2*5^(1/2))^33 3770000000000060 a001 377/7881196*192900153618^(11/18) 3770000000000060 a001 377/7881196*10749957122^(11/16) 3770000000000060 a001 377/7881196*1568397607^(3/4) 3770000000000060 a001 377/7881196*599074578^(11/14) 3770000000000063 a001 377/7881196*33385282^(11/12) 3770000000000158 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^32 3770000000000416 a001 377/3010349*(1/2+1/2*5^(1/2))^31 3770000000000416 a001 377/3010349*9062201101803^(1/2) 3770000000001089 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^30 3770000000002851 a001 377/1149851*(1/2+1/2*5^(1/2))^29 3770000000002851 a001 377/1149851*1322157322203^(1/2) 3770000000006375 a004 Fibonacci(30)/Lucas(14)/(1/2+sqrt(5)/2)^2 3770000000007306 a004 Fibonacci(32)/Lucas(14)/(1/2+sqrt(5)/2)^4 3770000000007441 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2)^6 3770000000007461 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^8 3770000000007464 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^10 3770000000007464 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^12 3770000000007465 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^14 3770000000007465 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^16 3770000000007465 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^18 3770000000007465 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^20 3770000000007465 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^22 3770000000007465 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^24 3770000000007465 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^26 3770000000007465 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^28 3770000000007465 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^30 3770000000007465 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^32 3770000000007465 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^34 3770000000007465 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^36 3770000000007465 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^38 3770000000007465 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^40 3770000000007465 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^42 3770000000007465 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^44 3770000000007465 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^46 3770000000007465 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^48 3770000000007465 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^50 3770000000007465 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^52 3770000000007465 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^54 3770000000007465 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^56 3770000000007465 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^58 3770000000007465 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^60 3770000000007465 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^62 3770000000007465 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^64 3770000000007465 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^66 3770000000007465 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^68 3770000000007465 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^70 3770000000007465 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^72 3770000000007465 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^71 3770000000007465 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^69 3770000000007465 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^67 3770000000007465 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^65 3770000000007465 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^63 3770000000007465 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^61 3770000000007465 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^59 3770000000007465 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^57 3770000000007465 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^55 3770000000007465 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^53 3770000000007465 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^51 3770000000007465 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^49 3770000000007465 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^47 3770000000007465 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^45 3770000000007465 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^43 3770000000007465 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^41 3770000000007465 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^39 3770000000007465 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^37 3770000000007465 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^35 3770000000007465 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^33 3770000000007465 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^31 3770000000007465 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^29 3770000000007465 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^27 3770000000007465 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^25 3770000000007465 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^23 3770000000007465 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^21 3770000000007465 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^19 3770000000007465 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^17 3770000000007465 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^15 3770000000007465 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^13 3770000000007465 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^11 3770000000007466 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^9 3770000000007473 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^7 3770000000007525 a004 Fibonacci(33)/Lucas(14)/(1/2+sqrt(5)/2)^5 3770000000007881 a004 Fibonacci(31)/Lucas(14)/(1/2+sqrt(5)/2)^3 3770000000010316 a004 Fibonacci(29)/Lucas(14)/(1/2+sqrt(5)/2) 3770000000019494 a001 377/439204*7881196^(9/11) 3770000000019543 a001 377/439204*141422324^(9/13) 3770000000019543 a001 377/439204*2537720636^(3/5) 3770000000019543 a001 377/439204*45537549124^(9/17) 3770000000019543 a001 377/439204*817138163596^(9/19) 3770000000019543 a001 377/439204*14662949395604^(3/7) 3770000000019543 a001 377/439204*(1/2+1/2*5^(1/2))^27 3770000000019543 a001 377/439204*192900153618^(1/2) 3770000000019543 a001 377/439204*10749957122^(9/16) 3770000000019543 a001 377/439204*599074578^(9/14) 3770000000019546 a001 377/439204*33385282^(3/4) 3770000000020524 a001 377/439204*1860498^(9/10) 3770000000021662 a001 75025/843*64079^(3/23) 3770000000027008 a001 98209/843+98209/843*5^(1/2) 3770000000041621 a001 196418/843*103682^(1/24) 3770000000051166 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^26 3770000000093807 a001 15456/281*39603^(2/11) 3770000000133948 a001 377/167761*20633239^(5/7) 3770000000133955 a001 377/167761*2537720636^(5/9) 3770000000133955 a001 377/167761*312119004989^(5/11) 3770000000133955 a001 377/167761*(1/2+1/2*5^(1/2))^25 3770000000133955 a001 377/167761*3461452808002^(5/12) 3770000000133955 a001 377/167761*28143753123^(1/2) 3770000000133955 a001 377/167761*228826127^(5/8) 3770000000134862 a001 377/167761*1860498^(5/6) 3770000000136269 a001 196418/843*39603^(1/22) 3770000000139248 a001 75025/843*439204^(1/9) 3770000000141414 a001 75025/843*7881196^(1/11) 3770000000141420 a001 75025/843*141422324^(1/13) 3770000000141420 a001 75025/843*2537720636^(1/15) 3770000000141420 a001 75025/843*45537549124^(1/17) 3770000000141420 a001 75025/843*14662949395604^(1/21) 3770000000141420 a001 75025/843*(1/2+1/2*5^(1/2))^3 3770000000141420 a001 75025/843*10749957122^(1/16) 3770000000141420 a001 75025/843*599074578^(1/14) 3770000000141420 a001 75025/843*33385282^(1/12) 3770000000141529 a001 75025/843*1860498^(1/10) 3770000000174819 a001 121393/843*39603^(1/11) 3770000000185257 a001 75025/843*103682^(1/8) 3770000000350699 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^24 3770000000469201 a001 75025/843*39603^(3/22) 3770000000726011 a001 28657/843*64079^(5/23) 3770000000850778 a001 196418/843*15127^(1/20) 3770000000898816 a001 28657/843*167761^(1/5) 3770000000918142 a001 377/64079*(1/2+1/2*5^(1/2))^23 3770000000918142 a001 377/64079*4106118243^(1/2) 3770000000925605 a001 28657/843*20633239^(1/7) 3770000000925607 a001 28657/843*2537720636^(1/9) 3770000000925607 a001 28657/843*312119004989^(1/11) 3770000000925607 a001 28657/843*(1/2+1/2*5^(1/2))^5 3770000000925607 a001 28657/843*28143753123^(1/10) 3770000000925607 a001 28657/843*228826127^(1/8) 3770000000925788 a001 28657/843*1860498^(1/6) 3770000000998669 a001 28657/843*103682^(5/24) 3770000001254228 a001 377/64079*103682^(23/24) 3770000001471908 a001 28657/843*39603^(5/22) 3770000001603837 a001 121393/843*15127^(1/10) 3770000001977329 s004 Continued Fraction of A198407 3770000002403727 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^22 3770000002546355 a001 17711/843*15127^(3/10) 3770000002612728 a001 75025/843*15127^(3/20) 3770000002951844 a001 15456/281*15127^(1/5) 3770000004202824 a001 10946/843*24476^(1/3) 3770000005044454 a001 28657/843*15127^(1/4) 3770000005454735 a001 13/844*64079^(21/23) 3770000006021070 a001 10946/843*64079^(7/23) 3770000006277838 a001 13/844*439204^(7/9) 3770000006293000 a001 13/844*7881196^(7/11) 3770000006293034 a001 13/844*20633239^(3/5) 3770000006293039 a001 13/844*141422324^(7/13) 3770000006293039 a001 13/844*2537720636^(7/15) 3770000006293039 a001 13/844*17393796001^(3/7) 3770000006293039 a001 13/844*45537549124^(7/17) 3770000006293039 a001 13/844*14662949395604^(1/3) 3770000006293039 a001 13/844*(1/2+1/2*5^(1/2))^21 3770000006293039 a001 13/844*192900153618^(7/18) 3770000006293039 a001 13/844*10749957122^(7/16) 3770000006293039 a001 13/844*599074578^(1/2) 3770000006293041 a001 13/844*33385282^(7/12) 3770000006293801 a001 13/844*1860498^(7/10) 3770000006298638 a001 13/844*710647^(3/4) 3770000006300502 a001 10946/843*20633239^(1/5) 3770000006300504 a001 10946/843*17393796001^(1/7) 3770000006300504 a001 10946/843*14662949395604^(1/9) 3770000006300504 a001 10946/843*(1/2+1/2*5^(1/2))^7 3770000006300504 a001 10946/843*599074578^(1/6) 3770000006300565 a001 196418/843*5778^(1/18) 3770000006302370 a001 10946/843*710647^(1/4) 3770000006323117 a001 317811/9349*521^(5/13) 3770000006402791 a001 10946/843*103682^(7/24) 3770000006599901 a001 13/844*103682^(7/8) 3770000007065326 a001 10946/843*39603^(7/22) 3770000008587506 a001 13/844*39603^(21/22) 3770000012066891 a001 10946/843*15127^(7/20) 3770000012503411 a001 121393/843*5778^(1/9) 3770000015779696 r005 Im(z^2+c),c=-55/56+18/59*I,n=8 3770000016475391 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^20 3770000018962088 a001 75025/843*5778^(1/6) 3770000022709114 a001 4181/843*9349^(9/19) 3770000024750990 a001 15456/281*5778^(2/9) 3770000026920094 m001 (FeigenbaumB+Kolakoski)/(Pi+GAMMA(19/24)) 3770000028099782 m005 (1/3*Zeta(3)-1/12)/(5/8*exp(1)-6/7) 3770000032293388 a001 28657/843*5778^(5/18) 3770000033720523 a001 2255/281*5778^(4/9) 3770000035245074 a001 17711/843*5778^(1/3) 3770000037439432 a001 377/9349*24476^(19/21) 3770000040443582 a001 4181/843*24476^(3/7) 3770000042050638 m001 (Robbin+ZetaP(3))/(ArtinRank2-PlouffeB) 3770000042374669 a001 377/9349*64079^(19/23) 3770000042781326 a001 4181/843*64079^(9/23) 3770000043133135 a001 377/9349*817138163596^(1/3) 3770000043133135 a001 377/9349*(1/2+1/2*5^(1/2))^19 3770000043133135 a001 377/9349*87403803^(1/2) 3770000043134085 a001 4181/843*439204^(1/3) 3770000043140583 a001 4181/843*7881196^(3/11) 3770000043140599 a001 4181/843*141422324^(3/13) 3770000043140599 a001 4181/843*2537720636^(1/5) 3770000043140599 a001 4181/843*45537549124^(3/17) 3770000043140599 a001 4181/843*817138163596^(3/19) 3770000043140599 a001 4181/843*14662949395604^(1/7) 3770000043140599 a001 4181/843*(1/2+1/2*5^(1/2))^9 3770000043140599 a001 4181/843*192900153618^(1/6) 3770000043140599 a001 4181/843*10749957122^(3/16) 3770000043140599 a001 4181/843*599074578^(3/14) 3770000043140600 a001 4181/843*33385282^(1/4) 3770000043140926 a001 4181/843*1860498^(3/10) 3770000043272111 a001 4181/843*103682^(3/8) 3770000043410771 a001 377/9349*103682^(19/24) 3770000044123942 a001 4181/843*39603^(9/22) 3770000045209081 a001 377/9349*39603^(19/22) 3770000048401547 a001 196418/843*2207^(1/16) 3770000050215397 a001 10946/843*5778^(7/18) 3770000050554525 a001 4181/843*15127^(9/20) 3770000054109845 m001 (KhinchinLevy+Salem)/(ln(3)-Bloch) 3770000056430651 a007 Real Root Of -276*x^4-980*x^3+342*x^2+287*x-536 3770000056531187 m005 (1/3*exp(1)-2/5)/(3/5*2^(1/2)-5/7) 3770000058784757 a001 377/9349*15127^(19/20) 3770000064003898 l006 ln(6429/6676) 3770000073288977 s001 sum(exp(-2*Pi/5)^n*A192978[n],n=1..infinity) 3770000073288977 s002 sum(A192978[n]/(exp(2/5*pi*n)),n=1..infinity) 3770000095470167 r009 Re(z^3+c),c=-33/82+10/59*I,n=11 3770000096313661 r005 Re(z^2+c),c=-39/82+10/27*I,n=27 3770000096705377 a001 121393/843*2207^(1/8) 3770000099602606 a001 4181/843*5778^(1/2) 3770000104350589 a001 1597/843*3571^(11/17) 3770000112924012 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^18 3770000137327301 m004 -120*Pi-5*Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3770000137468072 m004 -120*Pi-5*Sech[Sqrt[5]*Pi] 3770000137538458 m004 -10/E^(Sqrt[5]*Pi)-120*Pi 3770000137608844 m004 -120*Pi-5*Csch[Sqrt[5]*Pi] 3770000137749616 m004 -120*Pi-5*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3770000145144538 r005 Im(z^2+c),c=-27/82+26/45*I,n=60 3770000145265038 a001 75025/843*2207^(3/16) 3770000146222510 r002 3th iterates of z^2 + 3770000146352718 a001 3571/39088169*89^(6/19) 3770000152678432 a007 Real Root Of 49*x^4-157*x^3-243*x^2-520*x+238 3770000184612384 r002 4th iterates of z^2 + 3770000184727179 m004 -125*Pi+3*Sqrt[5]*Pi-(25*Sin[Sqrt[5]*Pi])/Pi 3770000187904874 a001 39603/4181*4181^(28/39) 3770000193154925 a001 15456/281*2207^(1/4) 3770000227879344 m005 (1/2*Pi-8/11)/(1/2*Pi+2/3) 3770000232658417 m005 (1/2*exp(1)-11/12)/(67/99+2/9*5^(1/2)) 3770000242798307 a001 28657/843*2207^(5/16) 3770000244977948 s004 Continued Fraction of A336584 3770000257046118 a001 377/3571*9349^(17/19) 3770000257519902 a001 121393/2207*521^(4/13) 3770000258785204 a001 121393/3571*521^(5/13) 3770000270185016 a001 610/843*1364^(13/15) 3770000270674550 a001 1597/843*9349^(11/19) 3770000287850979 a001 17711/843*2207^(3/8) 3770000290544560 a001 377/3571*24476^(17/21) 3770000292350013 a001 1597/843*24476^(11/21) 3770000292960763 m003 1/2+Sqrt[5]/4-16*Sinh[1/2+Sqrt[5]/2] 3770000294960299 a001 377/3571*64079^(17/23) 3770000295207256 a001 1597/843*64079^(11/23) 3770000295638925 a001 377/3571*45537549124^(1/3) 3770000295638925 a001 377/3571*(1/2+1/2*5^(1/2))^17 3770000295638937 a001 377/3571*12752043^(1/2) 3770000295646347 a001 1597/843*7881196^(1/3) 3770000295646367 a001 1597/843*312119004989^(1/5) 3770000295646367 a001 1597/843*(1/2+1/2*5^(1/2))^11 3770000295646367 a001 1597/843*1568397607^(1/4) 3770000295807104 a001 1597/843*103682^(11/24) 3770000295887337 a001 377/3571*103682^(17/24) 3770000296848231 a001 1597/843*39603^(1/2) 3770000297496351 a001 377/3571*39603^(17/22) 3770000304707833 a001 1597/843*15127^(11/20) 3770000307037098 m001 1/Rabbit/FransenRobinson*exp(Zeta(7))^2 3770000309643009 a001 377/3571*15127^(17/20) 3770000314360568 r005 Re(z^2+c),c=23/74+33/58*I,n=39 3770000315337206 r002 11th iterates of z^2 + 3770000320286389 m001 (Backhouse+Cahen)/(LambertW(1)-Psi(2,1/3)) 3770000321771634 r005 Re(z^2+c),c=-59/90+7/27*I,n=24 3770000332650436 r002 54th iterates of z^2 + 3770000335265266 a001 6119/646*4181^(28/39) 3770000344922289 a001 10946/843*2207^(7/16) 3770000345447434 r001 58i'th iterates of 2*x^2-1 of 3770000348711775 m005 (21/20+1/4*5^(1/2))/(3^(1/2)-6) 3770000356413539 m001 Pi*2^(1/2)/GAMMA(3/4)+FeigenbaumD*ZetaQ(2) 3770000357043158 m001 OneNinth/exp(FeigenbaumDelta)*GAMMA(11/24)^2 3770000364655491 a001 1597/843*5778^(11/18) 3770000369268884 m001 Paris*Bloch^2*exp(cos(1)) 3770000370528399 a001 2255/281*2207^(1/2) 3770000370828854 a001 2584/843*2207^(5/8) 3770000371965693 a001 167761/8*5702887^(7/9) 3770000372204012 a001 4870847/8*75025^(7/9) 3770000374279203 a003 sin(Pi*5/38)/cos(Pi*48/103) 3770000378957108 a001 196418/843*843^(1/14) 3770000383261352 r002 32th iterates of z^2 + 3770000394673148 s002 sum(A060414[n]/(exp(2*pi*n)-1),n=1..infinity) 3770000398858515 a001 9349/102334155*89^(6/19) 3770000399807467 m001 BesselK(1,1)/cos(1/12*Pi)/(1+3^(1/2))^(1/2) 3770000399807467 m001 BesselK(1,1)/cos(Pi/12)/sqrt(1+sqrt(3)) 3770000402289390 a001 377/3571*5778^(17/18) 3770000423888153 r005 Re(z^2+c),c=-16/25+7/25*I,n=29 3770000434296368 r005 Im(z^2+c),c=-23/32+1/40*I,n=9 3770000435698614 a001 1/10946*89^(6/19) 3770000437745126 m001 1/exp(1)^2/exp(OneNinth)^2*sin(Pi/5)^2 3770000441073513 a001 64079/701408733*89^(6/19) 3770000441857700 a001 167761/1836311903*89^(6/19) 3770000441972111 a001 109801/1201881744*89^(6/19) 3770000441988803 a001 1149851/12586269025*89^(6/19) 3770000441991239 a001 3010349/32951280099*89^(6/19) 3770000441991594 a001 1970299/21566892818*89^(6/19) 3770000441991646 a001 711491/7787980473*89^(6/19) 3770000441991653 a001 54018521/591286729879*89^(6/19) 3770000441991655 a001 35355581/387002188980*89^(6/19) 3770000441991655 a001 370248451/4052739537881*89^(6/19) 3770000441991655 a001 969323029/10610209857723*89^(6/19) 3770000441991655 a001 299537289/3278735159921*89^(6/19) 3770000441991655 a001 228826127/2504730781961*89^(6/19) 3770000441991655 a001 87403803/956722026041*89^(6/19) 3770000441991658 a001 16692641/182717648081*89^(6/19) 3770000441991678 a001 12752043/139583862445*89^(6/19) 3770000441991814 a001 4870847/53316291173*89^(6/19) 3770000441992744 a001 930249/10182505537*89^(6/19) 3770000441999120 a001 710647/7778742049*89^(6/19) 3770000442042821 a001 271443/2971215073*89^(6/19) 3770000442342354 a001 51841/567451585*89^(6/19) 3770000444395382 a001 39603/433494437*89^(6/19) 3770000448588851 m001 (ln(gamma)+gamma(3))/(BesselI(0,1)-exp(1)) 3770000457243694 m001 1/Zeta(1,2)^2/exp(Magata) 3770000458467048 a001 15127/165580141*89^(6/19) 3770000462655190 a007 Real Root Of 865*x^4+79*x^3+980*x^2-49*x-171 3770000463860006 p003 LerchPhi(1/10,3,47/73) 3770000472532118 m001 (RenyiParking+ZetaQ(3))/(ln(2)/ln(10)+Niven) 3770000478511476 a001 4181/843*2207^(9/16) 3770000482644803 b008 Cosh[2+E^Erf[1]] 3770000485023689 a001 2889/4*433494437^(7/9) 3770000497811143 r002 13th iterates of z^2 + 3770000506016605 r005 Im(z^2+c),c=1/78+13/28*I,n=35 3770000510218827 m005 (1/2*Catalan+4/9)/(6/7*3^(1/2)+10/11) 3770000525972949 m001 (Chi(1)+Totient)^Niven 3770000544774678 m001 1/ln(GAMMA(1/4))^2*MinimumGamma/GAMMA(7/12)^2 3770000554887648 m001 ln(Ei(1))^2/Porter/exp(1)^2 3770000554915680 a001 2889/31622993*89^(6/19) 3770000579770380 m002 -E^(-Pi)+Pi-6*Log[Pi] 3770000588360570 m001 FeigenbaumMu^ln(2)+GAMMA(2/3) 3770000591559243 l006 ln(221/9587) 3770000591775704 a001 105937/6*7^(23/59) 3770000600040392 r009 Im(z^3+c),c=-29/126+2/5*I,n=14 3770000608221350 m001 (gamma(3)-ZetaP(4))/(ln(3)+ln(2^(1/2)+1)) 3770000609907219 a007 Real Root Of 214*x^4+803*x^3-17*x^2+109*x+450 3770000613004506 r009 Im(z^3+c),c=-43/122+23/61*I,n=4 3770000626315392 r009 Re(z^3+c),c=-1/60+40/49*I,n=16 3770000628008915 r005 Im(z^2+c),c=17/66+13/47*I,n=42 3770000633477132 m001 Gompertz/(Champernowne^QuadraticClass) 3770000636086198 m001 1/Robbin/LandauRamanujan^2*exp(GAMMA(1/3)) 3770000637047369 m005 (1/2*5^(1/2)-1/9)/(3/4*gamma-7/10) 3770000644096520 p001 sum(1/(391*n+277)/(10^n),n=0..infinity) 3770000679604721 r005 Re(z^2+c),c=1/15+31/50*I,n=19 3770000702333313 l006 ln(5440/7931) 3770000710130020 m001 (2*Pi/GAMMA(5/6)+Lehmer)/(Zeta(1,-1)+gamma(3)) 3770000723306579 r009 Im(z^3+c),c=-21/106+19/25*I,n=42 3770000727230422 r009 Re(z^3+c),c=-1/58+26/31*I,n=64 3770000732152559 r009 Re(z^3+c),c=-13/29+5/22*I,n=41 3770000734806494 m004 -6+(30*Sqrt[5])/Pi-25*Pi*Sin[Sqrt[5]*Pi] 3770000749413045 h001 (5/7*exp(1)+7/8)/(1/11*exp(1)+1/2) 3770000752079495 m001 (Catalan-Psi(1,1/3))/(-Riemann3rdZero+Robbin) 3770000754461616 r005 Re(z^2+c),c=-7/13+8/53*I,n=11 3770000757816535 a001 121393/843*843^(1/7) 3770000766900997 m001 Pi^(1/2)/ln(2+3^(1/2))/FeigenbaumMu 3770000773992695 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^16 3770000786411033 r009 Im(z^3+c),c=-9/86+29/38*I,n=32 3770000795869643 r009 Re(z^3+c),c=-1/58+26/31*I,n=62 3770000827249261 m005 (1/2*gamma-2/9)/(9/14+1/2*5^(1/2)) 3770000827766370 a001 1597/843*2207^(11/16) 3770000829124061 m006 (2/3*Pi^2+1/4)/(1/6*Pi^2+1/6) 3770000829124061 m008 (2/3*Pi^2+1/4)/(1/6*Pi^2+1/6) 3770000829124061 m009 (2*Pi^2+3/4)/(1/2*Pi^2+1/2) 3770000850499408 a007 Real Root Of -887*x^4+873*x^3-862*x^2+957*x+548 3770000850518770 m001 Cahen+OrthogonalArrays^ReciprocalFibonacci 3770000853537548 s001 sum(exp(-2*Pi)^n*A236767[n],n=1..infinity) 3770000858396616 r005 Re(z^2+c),c=-85/82+11/41*I,n=14 3770000859056705 a007 Real Root Of -71*x^4-124*x^3+363*x^2-422*x+948 3770000859758815 a001 305/9*11^(2/45) 3770000871423442 m001 1/Zeta(1,2)*LaplaceLimit^2*ln(sqrt(5)) 3770000880889364 b008 (7*ExpIntegralEi[EulerGamma])/13 3770000881098815 r005 Re(z^2+c),c=-9/20+14/33*I,n=24 3770000881114670 a007 Real Root Of -296*x^4-864*x^3-744*x^2+36*x+79 3770000883866439 r009 Re(z^3+c),c=-25/56+11/47*I,n=11 3770000886473053 a007 Real Root Of -281*x^4-801*x^3+942*x^2+107*x+859 3770000886965138 r001 55i'th iterates of 2*x^2-1 of 3770000913677791 m001 (exp(1)+Cahen)/(-Mills+PrimesInBinary) 3770000915466954 r005 Im(z^2+c),c=-29/60+27/55*I,n=28 3770000918632311 a001 105937/1926*521^(4/13) 3770000922089202 a001 28657/1364*521^(6/13) 3770000926500017 r005 Re(z^2+c),c=-43/82+1/30*I,n=14 3770000927625389 r009 Re(z^3+c),c=-1/58+26/31*I,n=60 3770000929101456 r002 20th iterates of z^2 + 3770000937301958 r005 Re(z^2+c),c=-9/122+57/64*I,n=14 3770000945750608 v002 sum(1/(3^n+(16*n^2-8*n+47)),n=1..infinity) 3770000959494039 a001 9349/987*4181^(28/39) 3770000962754322 m001 GaussKuzminWirsing/(DuboisRaymond-1) 3770000972450109 a001 3/89*377^(1/53) 3770000998895838 m005 (1/2*exp(1)-6/7)/(7/8*5^(1/2)-5/8) 3770001003041817 r005 Im(z^2+c),c=6/29+5/13*I,n=9 3770001011303930 a001 10946/3*521^(43/58) 3770001011649028 h001 (7/10*exp(2)+3/10)/(1/3*exp(1)+6/11) 3770001015087331 a001 832040/15127*521^(4/13) 3770001029159930 a001 726103/13201*521^(4/13) 3770001031213094 a001 5702887/103682*521^(4/13) 3770001031512647 a001 4976784/90481*521^(4/13) 3770001031556351 a001 39088169/710647*521^(4/13) 3770001031562727 a001 831985/15126*521^(4/13) 3770001031563658 a001 267914296/4870847*521^(4/13) 3770001031563793 a001 233802911/4250681*521^(4/13) 3770001031563813 a001 1836311903/33385282*521^(4/13) 3770001031563816 a001 1602508992/29134601*521^(4/13) 3770001031563816 a001 12586269025/228826127*521^(4/13) 3770001031563816 a001 10983760033/199691526*521^(4/13) 3770001031563816 a001 86267571272/1568397607*521^(4/13) 3770001031563816 a001 75283811239/1368706081*521^(4/13) 3770001031563816 a001 591286729879/10749957122*521^(4/13) 3770001031563816 a001 12585437040/228811001*521^(4/13) 3770001031563816 a001 4052739537881/73681302247*521^(4/13) 3770001031563816 a001 3536736619241/64300051206*521^(4/13) 3770001031563816 a001 6557470319842/119218851371*521^(4/13) 3770001031563816 a001 2504730781961/45537549124*521^(4/13) 3770001031563816 a001 956722026041/17393796001*521^(4/13) 3770001031563816 a001 365435296162/6643838879*521^(4/13) 3770001031563816 a001 139583862445/2537720636*521^(4/13) 3770001031563816 a001 53316291173/969323029*521^(4/13) 3770001031563816 a001 20365011074/370248451*521^(4/13) 3770001031563817 a001 7778742049/141422324*521^(4/13) 3770001031563818 a001 2971215073/54018521*521^(4/13) 3770001031563825 a001 1134903170/20633239*521^(4/13) 3770001031563877 a001 433494437/7881196*521^(4/13) 3770001031564232 a001 165580141/3010349*521^(4/13) 3770001031566668 a001 63245986/1149851*521^(4/13) 3770001031583362 a001 24157817/439204*521^(4/13) 3770001031697780 a001 9227465/167761*521^(4/13) 3770001032482019 a001 3524578/64079*521^(4/13) 3770001035105819 l006 ln(3789/5524) 3770001037857274 a001 1346269/24476*521^(4/13) 3770001050192516 h001 (3/10*exp(1)+1/5)/(6/7*exp(1)+4/11) 3770001051327576 r005 Re(z^2+c),c=-9/16+21/73*I,n=16 3770001051820756 a007 Real Root Of 383*x^4-470*x^3+388*x^2-787*x+259 3770001061185193 a007 Real Root Of -238*x^4+103*x^3+386*x^2+455*x+127 3770001067433598 a007 Real Root Of 831*x^4-199*x^3+273*x^2-437*x-231 3770001074699815 a001 514229/9349*521^(4/13) 3770001083902211 a001 47*(1/2*5^(1/2)+1/2)^16*843^(8/15) 3770001093338662 r008 a(0)=0,K{-n^6,-45+34*n-55*n^2+40*n^3} 3770001114824864 a007 Real Root Of -219*x^4-639*x^3+794*x^2+470*x+487 3770001130908568 m001 (CopelandErdos+TwinPrimes)/(Catalan-Zeta(1/2)) 3770001131160754 m005 (1/2*Zeta(3)+5/12)/(10/11*5^(1/2)+2/3) 3770001135818157 r005 Re(z^2+c),c=6/17+7/54*I,n=63 3770001136931832 a001 75025/843*843^(3/14) 3770001139737986 m001 (cos(1)+AlladiGrinstead)/(GolombDickman+Otter) 3770001141310439 a007 Real Root Of -87*x^4-86*x^3+766*x^2-407*x+545 3770001167673460 r005 Re(z^2+c),c=6/25+1/52*I,n=13 3770001171207261 a007 Real Root Of 40*x^4+60*x^3-633*x^2-998*x+369 3770001171700249 r009 Re(z^3+c),c=-1/58+26/31*I,n=58 3770001191849679 m001 exp((3^(1/3)))/Kolakoski*sin(1)^2 3770001201546876 l006 ln(171/7418) 3770001204611132 m005 (1/3*Pi+1/11)/(6*gamma-4/9) 3770001215569713 r002 41th iterates of z^2 + 3770001215984440 a001 2207/24157817*89^(6/19) 3770001224110032 r005 Re(z^2+c),c=-19/86+34/53*I,n=10 3770001228448755 r005 Im(z^2+c),c=13/56+19/63*I,n=58 3770001230005704 m001 (Catalan-Chi(1))/(Zeta(5)+MertensB2) 3770001252650767 p001 sum((-1)^n/(503*n+318)/n/(32^n),n=1..infinity) 3770001254372930 r005 Im(z^2+c),c=13/56+19/63*I,n=52 3770001256026642 a007 Real Root Of -56*x^4+243*x^3+12*x^2+765*x-302 3770001264471309 a007 Real Root Of -372*x^4+333*x^3-312*x^2+274*x+173 3770001271073349 r009 Re(z^3+c),c=-3/44+27/38*I,n=26 3770001282694036 m001 exp(-1/2*Pi)+Artin*ZetaP(2) 3770001284141783 a007 Real Root Of -409*x^4+706*x^3+996*x^2+936*x-524 3770001297361196 m001 ln(Riemann2ndZero)*Backhouse/Salem 3770001300983623 m005 (-1/4+1/4*5^(1/2))/(6/11*5^(1/2)-2/5) 3770001325957065 a001 196418/2207*521^(3/13) 3770001327222367 a001 196418/3571*521^(4/13) 3770001334379640 r005 Im(z^2+c),c=5/13+23/59*I,n=13 3770001340535611 l006 ln(5927/8641) 3770001340535611 p004 log(8641/5927) 3770001341386512 r005 Re(z^2+c),c=-57/110+3/56*I,n=36 3770001345325538 m008 (4*Pi-1/2)/(Pi^3+1) 3770001377217145 m001 1/Rabbit^3*exp(Riemann2ndZero) 3770001387440412 r005 Re(z^2+c),c=-103/98+13/43*I,n=10 3770001391950755 a003 sin(Pi*1/11)/cos(Pi*10/21) 3770001394980701 a007 Real Root Of 293*x^4-712*x^3-990*x^2-780*x+467 3770001396285215 r009 Im(z^3+c),c=-7/44+39/47*I,n=4 3770001399484286 r005 Im(z^2+c),c=-1/98+11/23*I,n=55 3770001408519207 r002 27th iterates of z^2 + 3770001409717575 m001 (Psi(1,1/3)-sin(1/12*Pi)*Mills)/sin(1/12*Pi) 3770001413810873 r009 Re(z^3+c),c=-33/64+13/36*I,n=54 3770001419778052 r005 Im(z^2+c),c=13/94+19/50*I,n=19 3770001431492566 r005 Im(z^2+c),c=13/56+19/63*I,n=54 3770001433886828 r005 Re(z^2+c),c=-83/126+24/55*I,n=28 3770001449013896 r005 Re(z^2+c),c=-65/122+1/45*I,n=12 3770001449046773 m001 (gamma(2)+ThueMorse)/(Psi(1,1/3)+sin(1/5*Pi)) 3770001473677484 r005 Im(z^2+c),c=-17/118+37/63*I,n=26 3770001482085248 r005 Im(z^2+c),c=-33/94+37/61*I,n=19 3770001483985835 r005 Im(z^2+c),c=23/110+10/31*I,n=43 3770001492824454 r005 Re(z^2+c),c=-45/86+2/49*I,n=14 3770001506744948 r005 Im(z^2+c),c=3/26+25/63*I,n=27 3770001515377392 a001 15456/281*843^(2/7) 3770001521252182 r005 Im(z^2+c),c=7/90+11/26*I,n=21 3770001541759668 a007 Real Root Of 123*x^4+282*x^3+35*x^2-763*x-280 3770001555697242 r009 Im(z^3+c),c=-35/74+12/43*I,n=46 3770001557350394 r002 7th iterates of z^2 + 3770001572699405 r009 Re(z^3+c),c=-53/118+13/57*I,n=26 3770001579813338 m001 cos(1)^ln(gamma)*Zeta(1,-1)^ln(gamma) 3770001595692393 a007 Real Root Of -196*x^4-729*x^3-118*x^2-484*x+384 3770001609538529 r009 Re(z^3+c),c=-1/58+26/31*I,n=56 3770001615752254 a001 8/3*3571^(23/38) 3770001630556838 m005 (5*gamma-1/2)/(3/4*gamma+1/5) 3770001630556838 m007 (-5*gamma+1/2)/(-3/4*gamma-1/5) 3770001631151749 a003 sin(Pi*2/13)*sin(Pi*25/83) 3770001651459546 r009 Re(z^3+c),c=-21/46+14/59*I,n=24 3770001655033134 a001 (5+5^(1/2))^(459/46) 3770001660304257 r005 Re(z^2+c),c=37/106+7/58*I,n=64 3770001672606500 r005 Im(z^2+c),c=13/56+19/63*I,n=57 3770001673485297 a007 Real Root Of 260*x^4+977*x^3+159*x^2+642*x-11 3770001685038119 a001 365435296162/47*505019158607^(21/23) 3770001688006936 m001 ln(Pi)*ZetaP(3)+FeigenbaumMu 3770001691838773 a007 Real Root Of -784*x^4-436*x^3-531*x^2+902*x+408 3770001694285704 l006 ln(9188/9541) 3770001695620670 s002 sum(A037723[n]/(exp(2*pi*n)-1),n=1..infinity) 3770001707828119 s002 sum(A037618[n]/(exp(2*pi*n)-1),n=1..infinity) 3770001718001389 a007 Real Root Of 24*x^4+911*x^3+253*x^2+710*x-629 3770001718823479 r002 14th iterates of z^2 + 3770001729740617 m001 GAMMA(3/4)+Backhouse*MadelungNaCl 3770001729740617 m001 GAMMA(3/4)+MadelungNaCl*Backhouse 3770001738247404 m001 (GAMMA(2/3)-GAMMA(7/12))/(Bloch-ZetaQ(3)) 3770001756163927 m001 1/ln(FeigenbaumD)/Lehmer^2/BesselJ(0,1) 3770001765482276 a001 377/1364*3571^(15/17) 3770001770313291 m005 (5*exp(1)+3/5)/(1/6*2^(1/2)-4) 3770001794280930 a001 8/3*64079^(17/38) 3770001800269717 a001 610/843*3571^(13/17) 3770001812955114 r009 Re(z^3+c),c=-11/26+11/56*I,n=32 3770001825428762 m005 (1/3*exp(1)+1/2)/(5/7*gamma-3/8) 3770001832025519 r005 Im(z^2+c),c=-19/14+11/159*I,n=40 3770001838450496 a007 Real Root Of -517*x^4+871*x^3-825*x^2+877*x+505 3770001839540061 r005 Im(z^2+c),c=17/58+14/59*I,n=47 3770001865793246 a001 987/2207*1364^(14/15) 3770001865810716 m001 (exp(1/exp(1))+TwinPrimes)/(cos(1)-ln(3)) 3770001867469520 a007 Real Root Of 638*x^4-861*x^3-420*x^2-467*x+269 3770001878946498 m006 (4/5*exp(Pi)+5/6)/(2/3*ln(Pi)-1/4) 3770001881823465 l006 ln(2138/3117) 3770001885558457 a001 75025/521*199^(2/11) 3770001889271519 a007 Real Root Of -172*x^4+688*x^3-616*x^2+117*x+172 3770001891487599 m001 (-exp(1/exp(1))+Lehmer)/(cos(1)-exp(Pi)) 3770001895576485 a001 28657/843*843^(5/14) 3770001899074612 a001 199/365435296162*20365011074^(21/22) 3770001899077337 a001 199/14930352*514229^(21/22) 3770001905526964 m005 (1/2*2^(1/2)+6)/(7/8*Zeta(3)+8/11) 3770001913057291 m001 (3^(1/2)-Zeta(3))/(-GolombDickman+Kac) 3770001943881611 a007 Real Root Of -136*x^4-422*x^3+136*x^2-904*x-480 3770001946230431 m005 (1/3*Pi-4/5)/(1/4*gamma-4/5) 3770001984095980 m005 (1/3*exp(1)+3/5)/(2/5*Pi-6/7) 3770001986468667 a007 Real Root Of 157*x^4-779*x^3-484*x^2-320*x+228 3770001987009268 a001 514229/5778*521^(3/13) 3770001989187001 a001 11592/341*521^(5/13) 3770001992287780 a001 377/1364*9349^(15/19) 3770001995683386 h001 (9/11*exp(1)+8/11)/(1/11*exp(2)+1/9) 3770001996181063 r005 Re(z^2+c),c=-59/114+1/21*I,n=17 3770001996834488 a001 610/843*9349^(13/19) 3770001998476198 r009 Re(z^3+c),c=-27/70+3/17*I,n=3 3770002005327289 r005 Im(z^2+c),c=17/114+22/59*I,n=17 3770002021845242 a001 377/1364*24476^(5/7) 3770002022450956 a001 610/843*24476^(13/21) 3770002025741484 a001 377/1364*64079^(15/23) 3770002025827699 a001 610/843*64079^(13/23) 3770002026259900 a001 377/1364*167761^(3/5) 3770002026329415 a001 377/1364*439204^(5/9) 3770002026340246 a001 377/1364*7881196^(5/11) 3770002026340269 a001 377/1364*20633239^(3/7) 3770002026340273 a001 377/1364*141422324^(5/13) 3770002026340273 a001 377/1364*2537720636^(1/3) 3770002026340273 a001 377/1364*45537549124^(5/17) 3770002026340273 a001 377/1364*312119004989^(3/11) 3770002026340273 a001 377/1364*14662949395604^(5/21) 3770002026340273 a001 377/1364*(1/2+1/2*5^(1/2))^15 3770002026340273 a001 377/1364*192900153618^(5/18) 3770002026340273 a001 377/1364*28143753123^(3/10) 3770002026340273 a001 377/1364*10749957122^(5/16) 3770002026340273 a001 377/1364*599074578^(5/14) 3770002026340273 a001 377/1364*228826127^(3/8) 3770002026340275 a001 377/1364*33385282^(5/12) 3770002026340818 a001 377/1364*1860498^(1/2) 3770002026346649 a001 610/843*141422324^(1/3) 3770002026346649 a001 610/843*(1/2+1/2*5^(1/2))^13 3770002026346649 a001 610/843*73681302247^(1/4) 3770002026372232 a001 610/843*271443^(1/2) 3770002026536611 a001 610/843*103682^(13/24) 3770002026559460 a001 377/1364*103682^(5/8) 3770002027767034 a001 610/843*39603^(13/22) 3770002027979179 a001 377/1364*39603^(15/22) 3770002031597760 r005 Re(z^2+c),c=-39/82+15/41*I,n=52 3770002035504903 r005 Im(z^2+c),c=-1/98+11/23*I,n=62 3770002037055659 a001 610/843*15127^(13/20) 3770002038696823 a001 377/1364*15127^(3/4) 3770002047497900 b008 9*(Pi+ArcCot[EulerGamma]) 3770002066072683 r005 Im(z^2+c),c=5/122+21/47*I,n=41 3770002069525896 m001 BesselK(1,1)/exp(Cahen)/Catalan^2 3770002069973906 r005 Re(z^2+c),c=17/126+13/24*I,n=15 3770002073923151 a008 Real Root of x^4-x^3-17*x^2+61*x+216 3770002078188580 r005 Im(z^2+c),c=-1/54+22/45*I,n=19 3770002081686982 m009 (16/5*Catalan+2/5*Pi^2-1/6)/(3/2*Pi^2+3) 3770002083455504 a001 1346269/15127*521^(3/13) 3770002087022714 a005 (1/sin(62/145*Pi))^1374 3770002089908602 r005 Im(z^2+c),c=13/56+19/63*I,n=62 3770002094165867 r005 Im(z^2+c),c=13/56+19/63*I,n=63 3770002097526821 a001 3524578/39603*521^(3/13) 3770002098332327 m001 (FeigenbaumKappa-Catalan)^KhinchinLevy 3770002099579798 a001 9227465/103682*521^(3/13) 3770002099879324 a001 24157817/271443*521^(3/13) 3770002099923024 a001 63245986/710647*521^(3/13) 3770002099929400 a001 165580141/1860498*521^(3/13) 3770002099930330 a001 433494437/4870847*521^(3/13) 3770002099930466 a001 1134903170/12752043*521^(3/13) 3770002099930485 a001 2971215073/33385282*521^(3/13) 3770002099930488 a001 7778742049/87403803*521^(3/13) 3770002099930489 a001 20365011074/228826127*521^(3/13) 3770002099930489 a001 53316291173/599074578*521^(3/13) 3770002099930489 a001 139583862445/1568397607*521^(3/13) 3770002099930489 a001 365435296162/4106118243*521^(3/13) 3770002099930489 a001 956722026041/10749957122*521^(3/13) 3770002099930489 a001 2504730781961/28143753123*521^(3/13) 3770002099930489 a001 6557470319842/73681302247*521^(3/13) 3770002099930489 a001 10610209857723/119218851371*521^(3/13) 3770002099930489 a001 4052739537881/45537549124*521^(3/13) 3770002099930489 a001 1548008755920/17393796001*521^(3/13) 3770002099930489 a001 591286729879/6643838879*521^(3/13) 3770002099930489 a001 225851433717/2537720636*521^(3/13) 3770002099930489 a001 86267571272/969323029*521^(3/13) 3770002099930489 a001 32951280099/370248451*521^(3/13) 3770002099930489 a001 12586269025/141422324*521^(3/13) 3770002099930490 a001 4807526976/54018521*521^(3/13) 3770002099930498 a001 1836311903/20633239*521^(3/13) 3770002099930549 a001 3524667/39604*521^(3/13) 3770002099930905 a001 267914296/3010349*521^(3/13) 3770002099933340 a001 102334155/1149851*521^(3/13) 3770002099950032 a001 39088169/439204*521^(3/13) 3770002100064441 a001 14930352/167761*521^(3/13) 3770002100848608 a001 5702887/64079*521^(3/13) 3770002101185984 b008 FresnelC[Log[14]^(-1)] 3770002106223373 a001 2178309/24476*521^(3/13) 3770002107902924 a001 610/843*5778^(13/18) 3770002108532035 b008 2+Zeta[-1+Pi,Catalan] 3770002120443667 a001 377/1364*5778^(5/6) 3770002142833888 r005 Re(z^2+c),c=-55/106+4/49*I,n=17 3770002143062559 a001 832040/9349*521^(3/13) 3770002146881975 r002 5th iterates of z^2 + 3770002173609228 r009 Re(z^3+c),c=-19/52+2/17*I,n=17 3770002175579687 m001 (-GAMMA(7/12)+Landau)/(sin(1)+Pi^(1/2)) 3770002182150071 r002 47th iterates of z^2 + 3770002195085430 r005 Im(z^2+c),c=29/118+15/52*I,n=48 3770002212476646 a001 38/17*377^(51/59) 3770002216331597 r009 Re(z^3+c),c=-51/98+13/48*I,n=27 3770002220663999 r005 Re(z^2+c),c=-15/29+4/43*I,n=11 3770002245346039 r002 13th iterates of z^2 + 3770002246451134 r004 Im(z^2+c),c=-1/22-7/17*I,z(0)=I,n=3 3770002250472604 r009 Im(z^3+c),c=-13/38+23/64*I,n=24 3770002259251212 a007 Real Root Of 36*x^4+105*x^3+19*x^2+543*x+131 3770002259702429 a003 sin(Pi*13/107)/sin(Pi*32/71) 3770002262668182 r002 2th iterates of z^2 + 3770002271184904 a001 17711/843*843^(3/7) 3770002276256737 r005 Im(z^2+c),c=-11/70+8/15*I,n=19 3770002278261369 r005 Re(z^2+c),c=1/94+33/53*I,n=35 3770002286642721 p001 sum((-1)^n/(433*n+248)/(5^n),n=0..infinity) 3770002292587879 m001 (exp(Pi)+ln(Pi))/(-arctan(1/3)+cos(1/12*Pi)) 3770002314206635 m002 1/(4*Pi)-Sinh[Pi]/3 3770002315655558 l006 ln(121/5249) 3770002316494816 r002 38th iterates of z^2 + 3770002339407711 a007 Real Root Of 160*x^4+546*x^3-289*x^2-354*x-292 3770002346714488 l006 ln(6901/10061) 3770002351125394 r002 23th iterates of z^2 + 3770002363344691 m001 (1-2^(1/2))/(-Catalan+GAMMA(23/24)) 3770002370642364 r002 43th iterates of z^2 + 3770002370962911 r009 Re(z^3+c),c=-1/58+26/31*I,n=54 3770002371326556 r005 Im(z^2+c),c=13/56+19/63*I,n=59 3770002374227129 r005 Im(z^2+c),c=-3/14+22/39*I,n=9 3770002384611488 a007 Real Root Of 857*x^4-184*x^3-314*x^2-912*x+381 3770002392938575 m001 (exp(Pi)-ln(2))/(GAMMA(17/24)+FeigenbaumDelta) 3770002394296811 a001 317811/2207*521^(2/13) 3770002395562114 a001 317811/3571*521^(3/13) 3770002399297449 r005 Re(z^2+c),c=23/126+13/31*I,n=40 3770002400849122 m001 (Bloch-Trott)/(3^(1/3)-Ei(1,1)) 3770002405339096 m005 (1/2*3^(1/2)-1/4)/(11/12*gamma-6/11) 3770002413007724 r005 Im(z^2+c),c=-15/122+20/37*I,n=46 3770002415650135 r009 Im(z^3+c),c=-15/94+20/47*I,n=3 3770002428419434 r009 Re(z^3+c),c=-33/62+5/16*I,n=59 3770002437753848 a003 sin(Pi*6/59)/sin(Pi*21/67) 3770002447814699 r009 Re(z^3+c),c=-11/26+11/56*I,n=33 3770002462916082 a007 Real Root Of 159*x^4+569*x^3-56*x^2+106*x-435 3770002463731577 r005 Im(z^2+c),c=13/56+19/63*I,n=64 3770002471576462 a007 Real Root Of 675*x^4-349*x^3+978*x^2+794*x+128 3770002481445199 m005 (1/2*5^(1/2)+11/12)/(1/7*Pi+1/11) 3770002489158599 s002 sum(A007508[n]/(exp(2*pi*n)-1),n=1..infinity) 3770002502784258 b008 3+Sqrt[122]*Pi 3770002504696918 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^17 3770002505059266 m009 (3/4*Psi(1,3/4)+5)/(5*Psi(1,2/3)+3) 3770002524593675 m001 (cos(1/12*Pi)+BesselJ(1,1))/(Pi+sin(1/5*Pi)) 3770002532104260 p003 LerchPhi(1/32,3,674/225) 3770002543227642 a007 Real Root Of -173*x^4-880*x^3-705*x^2+424*x-587 3770002544619266 a001 64079/21*144^(2/47) 3770002545858382 m001 (Gompertz+Mills)/(3^(1/3)+Zeta(1,2)) 3770002555393257 l006 ln(4763/6944) 3770002557382471 r005 Im(z^2+c),c=-31/34+27/100*I,n=5 3770002564540848 a007 Real Root Of -158*x^4+615*x^3+64*x^2+663*x+277 3770002573555294 r002 11th iterates of z^2 + 3770002578050419 m001 (Khinchin-KomornikLoreti)/(Landau+Tribonacci) 3770002579867555 m005 (1/2*2^(1/2)-5)/(3/11*Catalan+8/9) 3770002583628731 m001 (Kolakoski+Lehmer)/(Otter+Sarnak) 3770002588493193 m005 (1/3*2^(1/2)-2/5)/(-59/99+2/11*5^(1/2)) 3770002594788517 m001 gamma^Artin+Otter 3770002607303433 a005 (1/sin(97/229*Pi))^916 3770002608575699 m001 Conway+FeigenbaumC+HardyLittlewoodC3 3770002613364262 r002 53th iterates of z^2 + 3770002618708417 m001 (-Landau+Totient)/(Shi(1)+GAMMA(11/12)) 3770002626260509 a007 Real Root Of 728*x^4-881*x^3+645*x^2-582*x-373 3770002627846637 m001 (ln(2^(1/2)+1)-gamma(2))/(GAMMA(13/24)+Sarnak) 3770002640661016 h001 (-7*exp(1/3)-7)/(-9*exp(-3)-4) 3770002655216040 a001 610/843*2207^(13/16) 3770002657706845 m005 (1/2*gamma-1/11)/(5/7*Pi+3) 3770002658812004 a001 10946/843*843^(1/2) 3770002679246251 a001 123/34*17711^(19/40) 3770002681309947 a007 Real Root Of 247*x^4+602*x^3-982*x^2+905*x-270 3770002687449573 s004 Continued Fraction of A222350 3770002687449573 s004 Continued fraction of A222350 3770002694418356 r005 Im(z^2+c),c=13/56+19/63*I,n=61 3770002695301521 a007 Real Root Of -214*x^4-789*x^3+200*x^2+705*x+768 3770002697995365 m001 Mills*(ln(3)+KomornikLoreti) 3770002700749273 m005 (1/3*exp(1)-3/7)/(4*Pi+1/10) 3770002704270141 r005 Im(z^2+c),c=-17/118+33/56*I,n=26 3770002712232167 q001 139/3687 3770002729032769 m001 1/Riemann2ndZero^2*exp(Niven)^3 3770002751958811 a001 377/1364*2207^(15/16) 3770002755817896 r002 14th iterates of z^2 + 3770002758151445 r005 Im(z^2+c),c=13/42+13/60*I,n=63 3770002761234961 a007 Real Root Of -937*x^4+247*x^3-658*x^2-92*x+91 3770002788429123 m005 (1/3*Zeta(3)-1/11)/(5/12*3^(1/2)+1/10) 3770002792499302 m004 12000*Pi+Tan[Sqrt[5]*Pi] 3770002797041214 a001 2584/2207*1364^(4/5) 3770002814111020 r005 Im(z^2+c),c=-1/90+27/56*I,n=19 3770002824723054 m001 (Magata-ZetaQ(3))/(exp(1/exp(1))-Landau) 3770002830679039 r005 Re(z^2+c),c=-57/106+11/34*I,n=16 3770002832123871 r009 Im(z^3+c),c=-11/74+23/55*I,n=10 3770002836246139 m001 (Lehmer+ZetaP(4))/(Chi(1)-Zeta(1,2)) 3770002844522893 m001 1/ln(FeigenbaumB)*ArtinRank2/Zeta(7) 3770002849389740 a001 199/63245986*6557470319842^(17/24) 3770002851793469 a001 1/89*63245986^(17/24) 3770002858861121 m001 1/MinimumGamma*exp(CopelandErdos)^2/Niven^2 3770002872434516 r009 Re(z^3+c),c=-7/114+21/38*I,n=33 3770002873280357 p004 log(33023/22651) 3770002905840313 r005 Im(z^2+c),c=7/110+22/51*I,n=23 3770002928312474 s002 sum(A198050[n]/((2^n+1)/n),n=1..infinity) 3770002929396536 m001 1/TwinPrimes*exp(Lehmer)^2/GAMMA(1/4)^2 3770002929656134 m001 (Zeta(1/2)+polylog(4,1/2))/(Robbin+Tribonacci) 3770002943714847 r005 Im(z^2+c),c=17/50+22/59*I,n=34 3770002964468950 h002 exp(11^(1/3)*(20+6^(1/2))^(1/2)) 3770002966396699 m005 (-15/4+1/4*5^(1/2))/(8/9*gamma+1/3) 3770002971477172 r005 Re(z^2+c),c=-23/22+11/111*I,n=2 3770002975855944 m001 QuadraticClass/(Conway+MertensB2) 3770002979312656 r005 Im(z^2+c),c=-5/26+26/51*I,n=10 3770002989902726 p003 LerchPhi(1/1024,1,13/49) 3770002993927969 m005 (1/3*3^(1/2)+1/7)/(7/12*3^(1/2)+9/10) 3770002996553645 r002 24th iterates of z^2 + 3770003002879384 r005 Re(z^2+c),c=-23/90+21/38*I,n=7 3770003014973922 a001 2255/281*843^(4/7) 3770003028732171 a007 Real Root Of 46*x^4-268*x^3+523*x^2-x-90 3770003030112056 a001 196418/843*322^(1/12) 3770003032868487 b008 1/5-7*ProductLog[1] 3770003034085064 m001 gamma^2/GAMMA(3/4)^2/exp(sqrt(Pi)) 3770003036060147 m001 (Pi*2^(1/2)/GAMMA(3/4))^exp(1/exp(1))/Niven 3770003040037060 r005 Re(z^2+c),c=-33/32+6/53*I,n=8 3770003044206426 m001 (Psi(2,1/3)+2^(1/2))/(ln(2+3^(1/2))+OneNinth) 3770003054315585 a007 Real Root Of -618*x^4+695*x^3-867*x^2-350*x+41 3770003055372271 a001 416020/2889*521^(2/13) 3770003058038600 a001 75025/1364*521^(4/13) 3770003064151925 a007 Real Root Of -26*x^4-973*x^3+297*x^2+966*x+133 3770003070515016 a001 1597/2207*1364^(13/15) 3770003077697009 r005 Im(z^2+c),c=1/11+12/29*I,n=32 3770003078312107 r009 Re(z^3+c),c=-13/27+21/46*I,n=23 3770003079411930 a007 Real Root Of -152*x^4-369*x^3+808*x^2-113*x-977 3770003085667496 m004 -6-125*Pi+16*Sec[Sqrt[5]*Pi] 3770003088187905 a001 4181/2207*1364^(11/15) 3770003096066951 r005 Re(z^2+c),c=-39/82+19/53*I,n=28 3770003098839236 r005 Im(z^2+c),c=13/56+19/63*I,n=60 3770003101790443 r005 Re(z^2+c),c=-18/29+22/57*I,n=19 3770003103999781 l006 ln(2625/3827) 3770003110297203 a007 Real Root Of -377*x^4-535*x^3+698*x^2+788*x-360 3770003118565868 r009 Im(z^3+c),c=-1/4+20/51*I,n=7 3770003123538028 m001 (Trott2nd+ZetaQ(4))/(LaplaceLimit+OneNinth) 3770003130502581 r009 Im(z^3+c),c=-35/118+14/43*I,n=2 3770003145556693 a007 Real Root Of -422*x^4-177*x^3+860*x^2+799*x+3 3770003151821900 a001 311187/2161*521^(2/13) 3770003152547685 m001 (2^(1/3)-Tribonacci)^KomornikLoreti 3770003156461551 m005 (2*exp(1)-1/3)/(3/4*Catalan+2/3) 3770003159277101 m001 KhinchinLevy^GAMMA(5/6)/arctan(1/3) 3770003162184109 r002 20th iterates of z^2 + 3770003163668757 a001 6765/2207*1364^(2/3) 3770003165766176 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^19 3770003165893711 a001 5702887/39603*521^(2/13) 3770003167946761 a001 7465176/51841*521^(2/13) 3770003168246297 a001 39088169/271443*521^(2/13) 3770003168289999 a001 14619165/101521*521^(2/13) 3770003168296375 a001 133957148/930249*521^(2/13) 3770003168297305 a001 701408733/4870847*521^(2/13) 3770003168297441 a001 1836311903/12752043*521^(2/13) 3770003168297460 a001 14930208/103681*521^(2/13) 3770003168297463 a001 12586269025/87403803*521^(2/13) 3770003168297464 a001 32951280099/228826127*521^(2/13) 3770003168297464 a001 43133785636/299537289*521^(2/13) 3770003168297464 a001 32264490531/224056801*521^(2/13) 3770003168297464 a001 591286729879/4106118243*521^(2/13) 3770003168297464 a001 774004377960/5374978561*521^(2/13) 3770003168297464 a001 4052739537881/28143753123*521^(2/13) 3770003168297464 a001 1515744265389/10525900321*521^(2/13) 3770003168297464 a001 3278735159921/22768774562*521^(2/13) 3770003168297464 a001 2504730781961/17393796001*521^(2/13) 3770003168297464 a001 956722026041/6643838879*521^(2/13) 3770003168297464 a001 182717648081/1268860318*521^(2/13) 3770003168297464 a001 139583862445/969323029*521^(2/13) 3770003168297464 a001 53316291173/370248451*521^(2/13) 3770003168297464 a001 10182505537/70711162*521^(2/13) 3770003168297465 a001 7778742049/54018521*521^(2/13) 3770003168297473 a001 2971215073/20633239*521^(2/13) 3770003168297525 a001 567451585/3940598*521^(2/13) 3770003168297880 a001 433494437/3010349*521^(2/13) 3770003168300315 a001 165580141/1149851*521^(2/13) 3770003168317008 a001 31622993/219602*521^(2/13) 3770003168431420 a001 24157817/167761*521^(2/13) 3770003169215616 a001 9227465/64079*521^(2/13) 3770003174590569 a001 1762289/12238*521^(2/13) 3770003180593829 r002 17th iterates of z^2 + 3770003187931499 a001 1292/2889*1364^(14/15) 3770003193052358 s002 sum(A042703[n]/(n^3*2^n-1),n=1..infinity) 3770003198891388 m001 (Psi(2,1/3)*ZetaQ(2)-Zeta(1,2))/ZetaQ(2) 3770003202202766 a007 Real Root Of -325*x^4+610*x^3-867*x^2+699*x+426 3770003211431051 a001 1346269/9349*521^(2/13) 3770003226090619 r002 2th iterates of z^2 + 3770003228915146 r005 Re(z^2+c),c=17/62+2/41*I,n=62 3770003230356838 m001 (5^(1/2)+ReciprocalFibonacci)/ZetaR(2) 3770003235088513 a003 cos(Pi*10/51)-cos(Pi*27/76) 3770003244136425 m005 (1/2*5^(1/2)+1/5)/(5/9*gamma-2/7) 3770003249507484 r005 Im(z^2+c),c=-51/94+35/58*I,n=54 3770003251140190 a007 Real Root Of 87*x^4+64*x^3-889*x^2+352*x-183 3770003261730170 b008 Cosh[2/9]/E 3770003262214881 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^21 3770003263134140 a003 sin(Pi*5/68)-sin(Pi*23/111) 3770003276286557 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^23 3770003278339587 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^25 3770003278639120 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^27 3770003278682821 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^29 3770003278689197 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^31 3770003278690127 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^33 3770003278690263 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^35 3770003278690283 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^37 3770003278690286 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^39 3770003278690286 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^41 3770003278690286 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^43 3770003278690286 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^45 3770003278690286 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^47 3770003278690286 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^49 3770003278690286 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^51 3770003278690286 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^53 3770003278690286 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^55 3770003278690286 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^57 3770003278690286 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^59 3770003278690286 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^61 3770003278690286 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^63 3770003278690286 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^65 3770003278690286 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^67 3770003278690286 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^69 3770003278690286 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^71 3770003278690286 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^73 3770003278690286 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^75 3770003278690286 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^77 3770003278690286 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^79 3770003278690286 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^81 3770003278690286 a004 Fibonacci(82)*Lucas(15)/(1/2+sqrt(5)/2)^83 3770003278690286 a004 Fibonacci(84)*Lucas(15)/(1/2+sqrt(5)/2)^85 3770003278690286 a004 Fibonacci(86)*Lucas(15)/(1/2+sqrt(5)/2)^87 3770003278690286 a004 Fibonacci(88)*Lucas(15)/(1/2+sqrt(5)/2)^89 3770003278690286 a004 Fibonacci(90)*Lucas(15)/(1/2+sqrt(5)/2)^91 3770003278690286 a004 Fibonacci(92)*Lucas(15)/(1/2+sqrt(5)/2)^93 3770003278690286 a004 Fibonacci(94)*Lucas(15)/(1/2+sqrt(5)/2)^95 3770003278690286 a004 Fibonacci(96)*Lucas(15)/(1/2+sqrt(5)/2)^97 3770003278690286 a004 Fibonacci(98)*Lucas(15)/(1/2+sqrt(5)/2)^99 3770003278690286 a004 Fibonacci(99)*Lucas(15)/(1/2+sqrt(5)/2)^100 3770003278690286 a004 Fibonacci(97)*Lucas(15)/(1/2+sqrt(5)/2)^98 3770003278690286 a004 Fibonacci(95)*Lucas(15)/(1/2+sqrt(5)/2)^96 3770003278690286 a004 Fibonacci(93)*Lucas(15)/(1/2+sqrt(5)/2)^94 3770003278690286 a004 Fibonacci(91)*Lucas(15)/(1/2+sqrt(5)/2)^92 3770003278690286 a004 Fibonacci(89)*Lucas(15)/(1/2+sqrt(5)/2)^90 3770003278690286 a004 Fibonacci(87)*Lucas(15)/(1/2+sqrt(5)/2)^88 3770003278690286 a004 Fibonacci(85)*Lucas(15)/(1/2+sqrt(5)/2)^86 3770003278690286 a004 Fibonacci(83)*Lucas(15)/(1/2+sqrt(5)/2)^84 3770003278690286 a004 Fibonacci(81)*Lucas(15)/(1/2+sqrt(5)/2)^82 3770003278690286 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^80 3770003278690286 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^78 3770003278690286 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^76 3770003278690286 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^74 3770003278690286 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^72 3770003278690286 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^70 3770003278690286 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^68 3770003278690286 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^66 3770003278690286 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^64 3770003278690286 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^62 3770003278690286 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^60 3770003278690286 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^58 3770003278690286 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^56 3770003278690286 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^54 3770003278690286 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^52 3770003278690286 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^50 3770003278690286 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^48 3770003278690286 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^46 3770003278690286 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^44 3770003278690286 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^42 3770003278690287 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^40 3770003278690288 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^38 3770003278690295 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^36 3770003278690347 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^34 3770003278690702 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^32 3770003278691375 a001 1/305*(1/2+1/2*5^(1/2))^29 3770003278693138 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^30 3770003278709830 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^28 3770003278824242 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^26 3770003279608429 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^24 3770003284983331 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^22 3770003293961425 r005 Im(z^2+c),c=-1/31+28/57*I,n=45 3770003307907558 l006 ln(192/8329) 3770003311522479 m001 (Lehmer+Magata)/(MasserGramain+PrimesInBinary) 3770003312523561 r002 28th iterates of z^2 + 3770003321526639 a001 10946/2207*1364^(3/5) 3770003321823458 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^20 3770003324812682 r009 Im(z^3+c),c=-15/38+12/37*I,n=9 3770003356685390 m001 1/MinimumGamma/Cahen/exp(Zeta(5)) 3770003362792740 r009 Im(z^3+c),c=-41/78+10/33*I,n=39 3770003370619419 r005 Im(z^2+c),c=41/118+19/52*I,n=44 3770003380828909 a001 6765/15127*1364^(14/15) 3770003382627039 r005 Im(z^2+c),c=-17/48+27/47*I,n=36 3770003397279825 m006 (3/5*exp(2*Pi)-1/3)/(1/3*exp(Pi)+4/5) 3770003408972263 a001 17711/39603*1364^(14/15) 3770003413078323 a001 23184/51841*1364^(14/15) 3770003413677389 a001 121393/271443*1364^(14/15) 3770003413764791 a001 317811/710647*1364^(14/15) 3770003413777543 a001 416020/930249*1364^(14/15) 3770003413779404 a001 2178309/4870847*1364^(14/15) 3770003413779675 a001 5702887/12752043*1364^(14/15) 3770003413779715 a001 7465176/16692641*1364^(14/15) 3770003413779721 a001 39088169/87403803*1364^(14/15) 3770003413779721 a001 102334155/228826127*1364^(14/15) 3770003413779722 a001 133957148/299537289*1364^(14/15) 3770003413779722 a001 701408733/1568397607*1364^(14/15) 3770003413779722 a001 1836311903/4106118243*1364^(14/15) 3770003413779722 a001 2403763488/5374978561*1364^(14/15) 3770003413779722 a001 12586269025/28143753123*1364^(14/15) 3770003413779722 a001 32951280099/73681302247*1364^(14/15) 3770003413779722 a001 43133785636/96450076809*1364^(14/15) 3770003413779722 a001 225851433717/505019158607*1364^(14/15) 3770003413779722 a001 591286729879/1322157322203*1364^(14/15) 3770003413779722 a001 10610209857723/23725150497407*1364^(14/15) 3770003413779722 a001 182717648081/408569081798*1364^(14/15) 3770003413779722 a001 139583862445/312119004989*1364^(14/15) 3770003413779722 a001 53316291173/119218851371*1364^(14/15) 3770003413779722 a001 10182505537/22768774562*1364^(14/15) 3770003413779722 a001 7778742049/17393796001*1364^(14/15) 3770003413779722 a001 2971215073/6643838879*1364^(14/15) 3770003413779722 a001 567451585/1268860318*1364^(14/15) 3770003413779722 a001 433494437/969323029*1364^(14/15) 3770003413779722 a001 165580141/370248451*1364^(14/15) 3770003413779722 a001 31622993/70711162*1364^(14/15) 3770003413779724 a001 24157817/54018521*1364^(14/15) 3770003413779739 a001 9227465/20633239*1364^(14/15) 3770003413779843 a001 1762289/3940598*1364^(14/15) 3770003413780554 a001 1346269/3010349*1364^(14/15) 3770003413785424 a001 514229/1149851*1364^(14/15) 3770003413818809 a001 98209/219602*1364^(14/15) 3770003414047632 a001 75025/167761*1364^(14/15) 3770003415616007 a001 28657/64079*1364^(14/15) 3770003419987882 m005 (1/2*3^(1/2)-4/11)/(7/12*Pi-1/2) 3770003423951123 r005 Re(z^2+c),c=-57/110+3/55*I,n=35 3770003424245018 h001 (4/7*exp(2)+3/4)/(5/11*exp(1)+1/12) 3770003426365812 a001 5473/12238*1364^(14/15) 3770003427172398 a007 Real Root Of -364*x^4-399*x^3-475*x^2+195*x+127 3770003434358481 m001 (Shi(1)+Ei(1))/(HardyLittlewoodC4+PlouffeB) 3770003443308196 m008 (5*Pi^6+2/5)/(1/4*Pi^3+5) 3770003447919301 a001 17711/2207*1364^(8/15) 3770003448542827 r002 3th iterates of z^2 + 3770003453512904 a001 4181/843*843^(9/14) 3770003462674186 a001 514229/2207*521^(1/13) 3770003463939490 a001 514229/3571*521^(2/13) 3770003467716726 r005 Im(z^2+c),c=13/56+19/63*I,n=47 3770003476390846 a007 Real Root Of -321*x^4+915*x^3-869*x^2+576*x+23 3770003479078220 a001 4181/5778*1364^(13/15) 3770003482726835 r005 Im(z^2+c),c=-5/74+20/39*I,n=31 3770003484541781 s002 sum(A086431[n]/((2^n+1)/n),n=1..infinity) 3770003497234146 a007 Real Root Of 199*x^4-586*x^3+244*x^2-13*x-75 3770003500046070 a001 4181/9349*1364^(14/15) 3770003513577494 a001 987/2207*3571^(14/17) 3770003513803289 r005 Re(z^2+c),c=-57/110+2/37*I,n=43 3770003520380293 p001 sum((-1)^n/(422*n+379)/n/(3^n),n=1..infinity) 3770003531749881 r002 46th iterates of z^2 + 3770003538686800 a001 10946/15127*1364^(13/15) 3770003547383575 a001 28657/39603*1364^(13/15) 3770003548652417 a001 75025/103682*1364^(13/15) 3770003548837539 a001 196418/271443*1364^(13/15) 3770003548864548 a001 514229/710647*1364^(13/15) 3770003548868488 a001 1346269/1860498*1364^(13/15) 3770003548869063 a001 3524578/4870847*1364^(13/15) 3770003548869147 a001 9227465/12752043*1364^(13/15) 3770003548869159 a001 24157817/33385282*1364^(13/15) 3770003548869161 a001 63245986/87403803*1364^(13/15) 3770003548869161 a001 165580141/228826127*1364^(13/15) 3770003548869162 a001 433494437/599074578*1364^(13/15) 3770003548869162 a001 1134903170/1568397607*1364^(13/15) 3770003548869162 a001 2971215073/4106118243*1364^(13/15) 3770003548869162 a001 7778742049/10749957122*1364^(13/15) 3770003548869162 a001 20365011074/28143753123*1364^(13/15) 3770003548869162 a001 53316291173/73681302247*1364^(13/15) 3770003548869162 a001 139583862445/192900153618*1364^(13/15) 3770003548869162 a001 10610209857723/14662949395604*1364^(13/15) 3770003548869162 a001 591286729879/817138163596*1364^(13/15) 3770003548869162 a001 225851433717/312119004989*1364^(13/15) 3770003548869162 a001 86267571272/119218851371*1364^(13/15) 3770003548869162 a001 32951280099/45537549124*1364^(13/15) 3770003548869162 a001 12586269025/17393796001*1364^(13/15) 3770003548869162 a001 4807526976/6643838879*1364^(13/15) 3770003548869162 a001 1836311903/2537720636*1364^(13/15) 3770003548869162 a001 701408733/969323029*1364^(13/15) 3770003548869162 a001 267914296/370248451*1364^(13/15) 3770003548869162 a001 102334155/141422324*1364^(13/15) 3770003548869162 a001 39088169/54018521*1364^(13/15) 3770003548869167 a001 14930352/20633239*1364^(13/15) 3770003548869199 a001 5702887/7881196*1364^(13/15) 3770003548869419 a001 2178309/3010349*1364^(13/15) 3770003548870924 a001 832040/1149851*1364^(13/15) 3770003548881240 a001 317811/439204*1364^(13/15) 3770003548951950 a001 121393/167761*1364^(13/15) 3770003549436605 a001 46368/64079*1364^(13/15) 3770003552758478 a001 17711/24476*1364^(13/15) 3770003554559080 a001 2255/1926*1364^(4/5) 3770003559466531 l006 ln(5737/8364) 3770003562817855 m001 HardyLittlewoodC5^FeigenbaumMu/ln(3) 3770003574329446 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^18 3770003575526930 a001 6765/9349*1364^(13/15) 3770003579418555 m005 (1/2*5^(1/2)-5/7)/(8/9*5^(1/2)-11/12) 3770003586330614 a001 28657/2207*1364^(7/15) 3770003589975698 m001 (Catalan+ArtinRank2)/(FeigenbaumMu+Rabbit) 3770003607166352 r002 20th iterates of z^2 + 3770003613770310 m001 (gamma(3)-FellerTornier)/(Thue-ZetaQ(3)) 3770003618296437 p004 log(29629/20323) 3770003634092295 r009 Im(z^3+c),c=-59/122+10/37*I,n=55 3770003636107530 m001 (-2^(1/3)+2)/(-Zeta(5)+3) 3770003636677755 m001 1/KhintchineLevy*exp(Khintchine)^2*(3^(1/3))^2 3770003639475700 m001 GAMMA(1/4)^(3^(1/3))/(exp(1/exp(1))^(3^(1/3))) 3770003644007009 m001 (sin(1)+BesselI(0,1))/(-MertensB2+PlouffeB) 3770003653540864 r009 Re(z^3+c),c=-1/58+26/31*I,n=52 3770003661064447 a007 Real Root Of 585*x^4-833*x^3+712*x^2-176*x-224 3770003665079469 a001 17711/15127*1364^(4/5) 3770003673189753 r005 Re(z^2+c),c=-37/110+34/59*I,n=55 3770003676386047 a001 2584/843*843^(5/7) 3770003677413310 p003 LerchPhi(1/100,2,390/239) 3770003681204177 a001 15456/13201*1364^(4/5) 3770003683556741 a001 121393/103682*1364^(4/5) 3770003683899975 a001 105937/90481*1364^(4/5) 3770003683950052 a001 832040/710647*1364^(4/5) 3770003683957358 a001 726103/620166*1364^(4/5) 3770003683958424 a001 5702887/4870847*1364^(4/5) 3770003683958580 a001 4976784/4250681*1364^(4/5) 3770003683958603 a001 39088169/33385282*1364^(4/5) 3770003683958606 a001 34111385/29134601*1364^(4/5) 3770003683958606 a001 267914296/228826127*1364^(4/5) 3770003683958606 a001 233802911/199691526*1364^(4/5) 3770003683958606 a001 1836311903/1568397607*1364^(4/5) 3770003683958606 a001 1602508992/1368706081*1364^(4/5) 3770003683958606 a001 12586269025/10749957122*1364^(4/5) 3770003683958606 a001 10983760033/9381251041*1364^(4/5) 3770003683958606 a001 86267571272/73681302247*1364^(4/5) 3770003683958606 a001 75283811239/64300051206*1364^(4/5) 3770003683958606 a001 2504730781961/2139295485799*1364^(4/5) 3770003683958606 a001 365435296162/312119004989*1364^(4/5) 3770003683958606 a001 139583862445/119218851371*1364^(4/5) 3770003683958606 a001 53316291173/45537549124*1364^(4/5) 3770003683958606 a001 20365011074/17393796001*1364^(4/5) 3770003683958606 a001 7778742049/6643838879*1364^(4/5) 3770003683958606 a001 2971215073/2537720636*1364^(4/5) 3770003683958606 a001 1134903170/969323029*1364^(4/5) 3770003683958606 a001 433494437/370248451*1364^(4/5) 3770003683958607 a001 165580141/141422324*1364^(4/5) 3770003683958608 a001 63245986/54018521*1364^(4/5) 3770003683958617 a001 24157817/20633239*1364^(4/5) 3770003683958676 a001 9227465/7881196*1364^(4/5) 3770003683959083 a001 3524578/3010349*1364^(4/5) 3770003683961874 a001 1346269/1149851*1364^(4/5) 3770003683981002 a001 514229/439204*1364^(4/5) 3770003684112105 a001 196418/167761*1364^(4/5) 3770003685010705 a001 75025/64079*1364^(4/5) 3770003691169795 a001 28657/24476*1364^(4/5) 3770003694497483 a007 Real Root Of -271*x^4-803*x^3+690*x^2-604*x-367 3770003694879219 r005 Re(z^2+c),c=17/62+2/41*I,n=55 3770003700432316 m001 ln(gamma)/MertensB2*Rabbit 3770003702824511 r005 Im(z^2+c),c=-1/52+15/31*I,n=32 3770003703619582 a001 1322157322203/377*144^(16/17) 3770003704384541 r005 Im(z^2+c),c=-14/31+29/56*I,n=36 3770003708442559 r002 24th iterates of z^2 + 3770003709605972 m001 1/RenyiParking*exp(CareFree)/GAMMA(1/3)^2 3770003712416978 a001 5473/2889*1364^(11/15) 3770003715619647 r005 Im(z^2+c),c=-11/70+5/9*I,n=39 3770003717042165 a007 Real Root Of -946*x^4-701*x^3+168*x^2+977*x+326 3770003720151218 a001 46368/2207*1364^(2/5) 3770003721622627 q001 1013/2687 3770003725262729 a001 987/2207*9349^(14/19) 3770003728993172 a001 76/55*13^(9/23) 3770003731584238 a001 2584/3571*1364^(13/15) 3770003733384829 a001 10946/9349*1364^(4/5) 3770003736686774 m001 (Ei(1,1)+Zeta(1,2))/(BesselI(1,1)+Totient) 3770003752849706 a001 987/2207*24476^(2/3) 3770003756112013 m001 (-exp(sqrt(2))+5)/(-Khinchin+1/3) 3770003756486201 a001 987/2207*64079^(14/23) 3770003757045067 a001 987/2207*20633239^(2/5) 3770003757045070 a001 987/2207*17393796001^(2/7) 3770003757045070 a001 987/2207*14662949395604^(2/9) 3770003757045070 a001 987/2207*(1/2+1/2*5^(1/2))^14 3770003757045070 a001 987/2207*505019158607^(1/4) 3770003757045070 a001 987/2207*10749957122^(7/24) 3770003757045070 a001 987/2207*4106118243^(7/23) 3770003757045070 a001 987/2207*1568397607^(7/22) 3770003757045070 a001 987/2207*599074578^(1/3) 3770003757045070 a001 987/2207*228826127^(7/20) 3770003757045070 a001 987/2207*87403803^(7/19) 3770003757045072 a001 987/2207*33385282^(7/18) 3770003757045080 a001 987/2207*12752043^(7/17) 3770003757045140 a001 987/2207*4870847^(7/16) 3770003757045579 a001 987/2207*1860498^(7/15) 3770003757048803 a001 987/2207*710647^(1/2) 3770003757072621 a001 987/2207*271443^(7/13) 3770003757249645 a001 987/2207*103682^(7/12) 3770003758574716 a001 987/2207*39603^(7/11) 3770003760177132 r005 Im(z^2+c),c=-1/98+11/23*I,n=63 3770003768577856 a001 987/2207*15127^(7/10) 3770003773177542 a001 329/281*843^(6/7) 3770003794159606 r005 Re(z^2+c),c=-53/90+13/35*I,n=37 3770003803490791 a001 28657/15127*1364^(11/15) 3770003814836155 s001 sum(exp(-4*Pi)^n*A251199[n],n=1..infinity) 3770003816778282 a001 75025/39603*1364^(11/15) 3770003818716900 a001 98209/51841*1364^(11/15) 3770003818999741 a001 514229/271443*1364^(11/15) 3770003819041007 a001 1346269/710647*1364^(11/15) 3770003819047028 a001 1762289/930249*1364^(11/15) 3770003819047906 a001 9227465/4870847*1364^(11/15) 3770003819048034 a001 24157817/12752043*1364^(11/15) 3770003819048053 a001 31622993/16692641*1364^(11/15) 3770003819048056 a001 165580141/87403803*1364^(11/15) 3770003819048056 a001 433494437/228826127*1364^(11/15) 3770003819048056 a001 567451585/299537289*1364^(11/15) 3770003819048056 a001 2971215073/1568397607*1364^(11/15) 3770003819048056 a001 7778742049/4106118243*1364^(11/15) 3770003819048056 a001 10182505537/5374978561*1364^(11/15) 3770003819048056 a001 53316291173/28143753123*1364^(11/15) 3770003819048056 a001 139583862445/73681302247*1364^(11/15) 3770003819048056 a001 182717648081/96450076809*1364^(11/15) 3770003819048056 a001 956722026041/505019158607*1364^(11/15) 3770003819048056 a001 10610209857723/5600748293801*1364^(11/15) 3770003819048056 a001 591286729879/312119004989*1364^(11/15) 3770003819048056 a001 225851433717/119218851371*1364^(11/15) 3770003819048056 a001 21566892818/11384387281*1364^(11/15) 3770003819048056 a001 32951280099/17393796001*1364^(11/15) 3770003819048056 a001 12586269025/6643838879*1364^(11/15) 3770003819048056 a001 1201881744/634430159*1364^(11/15) 3770003819048056 a001 1836311903/969323029*1364^(11/15) 3770003819048056 a001 701408733/370248451*1364^(11/15) 3770003819048056 a001 66978574/35355581*1364^(11/15) 3770003819048057 a001 102334155/54018521*1364^(11/15) 3770003819048064 a001 39088169/20633239*1364^(11/15) 3770003819048113 a001 3732588/1970299*1364^(11/15) 3770003819048449 a001 5702887/3010349*1364^(11/15) 3770003819050749 a001 2178309/1149851*1364^(11/15) 3770003819066511 a001 208010/109801*1364^(11/15) 3770003819174546 a001 317811/167761*1364^(11/15) 3770003819915033 a001 121393/64079*1364^(11/15) 3770003824990403 a001 11592/6119*1364^(11/15) 3770003838809653 a001 17711/5778*1364^(2/3) 3770003839743114 r002 42th iterates of z^2 + 3770003842706019 r005 Im(z^2+c),c=13/56+19/63*I,n=56 3770003843586347 m005 (2/3+1/6*5^(1/2))/(10/11*exp(1)+2/7) 3770003844874945 a001 987/2207*5778^(7/9) 3770003851638749 m001 (Zeta(3)-TreeGrowth2nd)/(Trott2nd+ZetaP(3)) 3770003855725324 a001 75025/2207*1364^(1/3) 3770003859777505 a001 17711/9349*1364^(11/15) 3770003863805776 r005 Im(z^2+c),c=-77/102+3/41*I,n=35 3770003869969040 a001 974169/2584 3770003881482717 r005 Im(z^2+c),c=9/118+25/59*I,n=34 3770003893595035 r009 Re(z^3+c),c=-21/44+7/27*I,n=28 3770003893599316 r005 Im(z^2+c),c=-9/14+75/166*I,n=29 3770003899254534 m001 ln(GAMMA(1/12))/MertensB1^2*GAMMA(11/12) 3770003914039560 a007 Real Root Of -102*x^4-184*x^3+983*x^2+927*x+269 3770003922759410 m001 FeigenbaumC+HardHexagonsEntropy+Landau 3770003936163584 b008 37+Csch[2*EulerGamma] 3770003937311403 a001 6624/2161*1364^(2/3) 3770003943656816 l006 ln(3112/4537) 3770003947634363 r005 Re(z^2+c),c=-25/56+25/57*I,n=36 3770003951682615 a001 121393/39603*1364^(2/3) 3770003953779346 a001 317811/103682*1364^(2/3) 3770003954085255 a001 832040/271443*1364^(2/3) 3770003954129887 a001 311187/101521*1364^(2/3) 3770003954136398 a001 5702887/1860498*1364^(2/3) 3770003954137348 a001 14930352/4870847*1364^(2/3) 3770003954137487 a001 39088169/12752043*1364^(2/3) 3770003954137507 a001 14619165/4769326*1364^(2/3) 3770003954137510 a001 267914296/87403803*1364^(2/3) 3770003954137511 a001 701408733/228826127*1364^(2/3) 3770003954137511 a001 1836311903/599074578*1364^(2/3) 3770003954137511 a001 686789568/224056801*1364^(2/3) 3770003954137511 a001 12586269025/4106118243*1364^(2/3) 3770003954137511 a001 32951280099/10749957122*1364^(2/3) 3770003954137511 a001 86267571272/28143753123*1364^(2/3) 3770003954137511 a001 32264490531/10525900321*1364^(2/3) 3770003954137511 a001 591286729879/192900153618*1364^(2/3) 3770003954137511 a001 1548008755920/505019158607*1364^(2/3) 3770003954137511 a001 1515744265389/494493258286*1364^(2/3) 3770003954137511 a001 2504730781961/817138163596*1364^(2/3) 3770003954137511 a001 956722026041/312119004989*1364^(2/3) 3770003954137511 a001 365435296162/119218851371*1364^(2/3) 3770003954137511 a001 139583862445/45537549124*1364^(2/3) 3770003954137511 a001 53316291173/17393796001*1364^(2/3) 3770003954137511 a001 20365011074/6643838879*1364^(2/3) 3770003954137511 a001 7778742049/2537720636*1364^(2/3) 3770003954137511 a001 2971215073/969323029*1364^(2/3) 3770003954137511 a001 1134903170/370248451*1364^(2/3) 3770003954137511 a001 433494437/141422324*1364^(2/3) 3770003954137512 a001 165580141/54018521*1364^(2/3) 3770003954137520 a001 63245986/20633239*1364^(2/3) 3770003954137573 a001 24157817/7881196*1364^(2/3) 3770003954137935 a001 9227465/3010349*1364^(2/3) 3770003954140423 a001 3524578/1149851*1364^(2/3) 3770003954157470 a001 1346269/439204*1364^(2/3) 3770003954274317 a001 514229/167761*1364^(2/3) 3770003955075197 a001 196418/64079*1364^(2/3) 3770003960564512 a001 75025/24476*1364^(2/3) 3770003968893287 s002 sum(A041174[n]/((3*n+1)!),n=1..infinity) 3770003969226945 r009 Im(z^3+c),c=-23/44+13/55*I,n=40 3770003977220982 a001 28657/5778*1364^(3/5) 3770003980173749 a001 3278735159921/9*23725150497407^(14/17) 3770003980173749 a001 2504730781961/18*9062201101803^(15/17) 3770003980173749 a001 3278735159921/9*505019158607^(16/17) 3770003981265380 r009 Im(z^3+c),c=-4/19+21/52*I,n=7 3770003990629658 a001 121393/2207*1364^(4/15) 3770003991478793 a001 3571/89*610^(17/24) 3770003993256426 r009 Re(z^3+c),c=-5/19+43/61*I,n=57 3770003998188834 a001 28657/9349*1364^(2/3) 3770004005058109 a001 1597/3571*1364^(14/15) 3770004005994609 r002 13th iterates of z^2 + 3770004011848374 m009 (3*Pi^2+1/6)/(6*Catalan+3/4*Pi^2-5) 3770004022731001 a001 4181/3571*1364^(4/5) 3770004027304438 a007 Real Root Of -874*x^4-92*x^3-501*x^2+971*x+450 3770004048044366 r005 Im(z^2+c),c=-21/38+31/60*I,n=10 3770004048989078 r005 Im(z^2+c),c=-7/52+31/55*I,n=27 3770004070285249 r004 Re(z^2+c),c=3/22+15/23*I,z(0)=I,n=6 3770004072885516 a001 75025/15127*1364^(3/5) 3770004083913183 r005 Im(z^2+c),c=-37/60+8/21*I,n=23 3770004086842784 a001 196418/39603*1364^(3/5) 3770004088879122 a001 514229/103682*1364^(3/5) 3770004089176220 a001 1346269/271443*1364^(3/5) 3770004089219566 a001 3524578/710647*1364^(3/5) 3770004089225890 a001 9227465/1860498*1364^(3/5) 3770004089226812 a001 24157817/4870847*1364^(3/5) 3770004089226947 a001 63245986/12752043*1364^(3/5) 3770004089226967 a001 165580141/33385282*1364^(3/5) 3770004089226970 a001 433494437/87403803*1364^(3/5) 3770004089226970 a001 1134903170/228826127*1364^(3/5) 3770004089226970 a001 2971215073/599074578*1364^(3/5) 3770004089226970 a001 7778742049/1568397607*1364^(3/5) 3770004089226970 a001 20365011074/4106118243*1364^(3/5) 3770004089226970 a001 53316291173/10749957122*1364^(3/5) 3770004089226970 a001 139583862445/28143753123*1364^(3/5) 3770004089226970 a001 365435296162/73681302247*1364^(3/5) 3770004089226970 a001 956722026041/192900153618*1364^(3/5) 3770004089226970 a001 2504730781961/505019158607*1364^(3/5) 3770004089226970 a001 10610209857723/2139295485799*1364^(3/5) 3770004089226970 a001 140728068720/28374454999*1364^(3/5) 3770004089226970 a001 591286729879/119218851371*1364^(3/5) 3770004089226970 a001 225851433717/45537549124*1364^(3/5) 3770004089226970 a001 86267571272/17393796001*1364^(3/5) 3770004089226970 a001 32951280099/6643838879*1364^(3/5) 3770004089226970 a001 1144206275/230701876*1364^(3/5) 3770004089226970 a001 4807526976/969323029*1364^(3/5) 3770004089226970 a001 1836311903/370248451*1364^(3/5) 3770004089226970 a001 701408733/141422324*1364^(3/5) 3770004089226971 a001 267914296/54018521*1364^(3/5) 3770004089226979 a001 9303105/1875749*1364^(3/5) 3770004089227030 a001 39088169/7881196*1364^(3/5) 3770004089227383 a001 14930352/3010349*1364^(3/5) 3770004089229798 a001 5702887/1149851*1364^(3/5) 3770004089246355 a001 2178309/439204*1364^(3/5) 3770004089359836 a001 75640/15251*1364^(3/5) 3770004090137648 a001 317811/64079*1364^(3/5) 3770004095468850 a001 121393/24476*1364^(3/5) 3770004095893981 m001 1/Sierpinski^2*CareFree^2*ln(BesselK(1,1)) 3770004098211872 a001 6765/3571*1364^(11/15) 3770004111041599 a001 2576/321*1364^(8/15) 3770004123741022 a001 1346269/5778*521^(1/13) 3770004125789829 a001 196418/2207*1364^(1/5) 3770004126220725 a001 121393/1364*521^(3/13) 3770004132009452 a001 46368/9349*1364^(3/5) 3770004139865687 a001 329/1926*3571^(16/17) 3770004158373825 m001 (Shi(1)+2*Pi/GAMMA(5/6))/(GAMMA(17/24)+Bloch) 3770004158532442 r005 Re(z^2+c),c=-23/86+34/59*I,n=16 3770004169084613 r005 Re(z^2+c),c=-51/98+5/24*I,n=4 3770004180589064 m001 (1+MinimumGamma)/(-Robbin+ZetaQ(3)) 3770004194935697 r005 Re(z^2+c),c=-21/46+25/51*I,n=58 3770004195850917 m005 (1/2*exp(1)+3/10)/(1/7*Pi-8/9) 3770004207789858 a001 121393/15127*1364^(8/15) 3770004208853955 m005 (1/2*exp(1)+8/11)/(4/9*Zeta(3)+5) 3770004209428017 a001 2584/2207*3571^(12/17) 3770004212613997 r002 7th iterates of z^2 + 3770004215997528 a007 Real Root Of 322*x^4-382*x^3-809*x^2-817*x-220 3770004220189393 a001 3524578/15127*521^(1/13) 3770004220248433 m001 (cos(1)+3^(1/3))/(-cos(1/12*Pi)+BesselJ(1,1)) 3770004220705666 b008 36+ArcSinh[Sqrt[7]] 3770004221905239 a001 105937/13201*1364^(8/15) 3770004223964646 a001 416020/51841*1364^(8/15) 3770004224265109 a001 726103/90481*1364^(8/15) 3770004224308946 a001 5702887/710647*1364^(8/15) 3770004224315342 a001 829464/103361*1364^(8/15) 3770004224316275 a001 39088169/4870847*1364^(8/15) 3770004224316411 a001 34111385/4250681*1364^(8/15) 3770004224316431 a001 133957148/16692641*1364^(8/15) 3770004224316434 a001 233802911/29134601*1364^(8/15) 3770004224316434 a001 1836311903/228826127*1364^(8/15) 3770004224316434 a001 267084832/33281921*1364^(8/15) 3770004224316434 a001 12586269025/1568397607*1364^(8/15) 3770004224316434 a001 10983760033/1368706081*1364^(8/15) 3770004224316434 a001 43133785636/5374978561*1364^(8/15) 3770004224316434 a001 75283811239/9381251041*1364^(8/15) 3770004224316434 a001 591286729879/73681302247*1364^(8/15) 3770004224316434 a001 86000486440/10716675201*1364^(8/15) 3770004224316434 a001 4052739537881/505019158607*1364^(8/15) 3770004224316434 a001 3536736619241/440719107401*1364^(8/15) 3770004224316434 a001 3278735159921/408569081798*1364^(8/15) 3770004224316434 a001 2504730781961/312119004989*1364^(8/15) 3770004224316434 a001 956722026041/119218851371*1364^(8/15) 3770004224316434 a001 182717648081/22768774562*1364^(8/15) 3770004224316434 a001 139583862445/17393796001*1364^(8/15) 3770004224316434 a001 53316291173/6643838879*1364^(8/15) 3770004224316434 a001 10182505537/1268860318*1364^(8/15) 3770004224316434 a001 7778742049/969323029*1364^(8/15) 3770004224316434 a001 2971215073/370248451*1364^(8/15) 3770004224316434 a001 567451585/70711162*1364^(8/15) 3770004224316436 a001 433494437/54018521*1364^(8/15) 3770004224316443 a001 165580141/20633239*1364^(8/15) 3770004224316495 a001 31622993/3940598*1364^(8/15) 3770004224316852 a001 24157817/3010349*1364^(8/15) 3770004224319294 a001 9227465/1149851*1364^(8/15) 3770004224336039 a001 1762289/219602*1364^(8/15) 3770004224450806 a001 1346269/167761*1364^(8/15) 3770004225237429 a001 514229/64079*1364^(8/15) 3770004226491104 a007 Real Root Of 536*x^4-862*x^3+894*x^2-960*x-546 3770004230629025 a001 98209/12238*1364^(8/15) 3770004234261021 a001 9227465/39603*521^(1/13) 3770004235399279 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^19 3770004236314043 a001 24157817/103682*521^(1/13) 3770004236613575 a001 63245986/271443*521^(1/13) 3770004236657277 a001 165580141/710647*521^(1/13) 3770004236663652 a001 433494437/1860498*521^(1/13) 3770004236664583 a001 1134903170/4870847*521^(1/13) 3770004236664718 a001 2971215073/12752043*521^(1/13) 3770004236664738 a001 7778742049/33385282*521^(1/13) 3770004236664741 a001 20365011074/87403803*521^(1/13) 3770004236664742 a001 53316291173/228826127*521^(1/13) 3770004236664742 a001 139583862445/599074578*521^(1/13) 3770004236664742 a001 365435296162/1568397607*521^(1/13) 3770004236664742 a001 956722026041/4106118243*521^(1/13) 3770004236664742 a001 2504730781961/10749957122*521^(1/13) 3770004236664742 a001 6557470319842/28143753123*521^(1/13) 3770004236664742 a001 10610209857723/45537549124*521^(1/13) 3770004236664742 a001 4052739537881/17393796001*521^(1/13) 3770004236664742 a001 1548008755920/6643838879*521^(1/13) 3770004236664742 a001 591286729879/2537720636*521^(1/13) 3770004236664742 a001 225851433717/969323029*521^(1/13) 3770004236664742 a001 86267571272/370248451*521^(1/13) 3770004236664742 a001 63246219/271444*521^(1/13) 3770004236664743 a001 12586269025/54018521*521^(1/13) 3770004236664750 a001 4807526976/20633239*521^(1/13) 3770004236664802 a001 1836311903/7881196*521^(1/13) 3770004236665158 a001 701408733/3010349*521^(1/13) 3770004236667593 a001 267914296/1149851*521^(1/13) 3770004236684285 a001 102334155/439204*521^(1/13) 3770004236798696 a001 39088169/167761*521^(1/13) 3770004237582881 a001 14930352/64079*521^(1/13) 3770004242453938 r009 Im(z^3+c),c=-43/106+15/47*I,n=5 3770004242957765 a001 5702887/24476*521^(1/13) 3770004246615719 a001 75025/5778*1364^(7/15) 3770004250437144 r005 Re(z^2+c),c=-2/3+67/190*I,n=47 3770004256069793 a001 10946/3571*1364^(2/3) 3770004260852286 a001 317811/2207*1364^(2/15) 3770004262542369 m001 (-Robbin+ZetaP(3))/(2^(1/2)-GAMMA(17/24)) 3770004267583573 a001 75025/9349*1364^(8/15) 3770004271203042 m001 (Bloch+ZetaP(4))/(Ei(1)-BesselJ(1,1)) 3770004272087689 l006 ln(6711/9784) 3770004274362121 r005 Im(z^2+c),c=5/22+15/49*I,n=35 3770004279797766 a001 2178309/9349*521^(1/13) 3770004292282337 m001 GAMMA(1/24)^2/exp(FeigenbaumD)*Zeta(9) 3770004292562256 r009 Re(z^3+c),c=-9/20+13/62*I,n=8 3770004301285853 a001 305/161*322^(11/12) 3770004316379735 r005 Re(z^2+c),c=-14/27+1/23*I,n=41 3770004318909570 r009 Re(z^3+c),c=-31/54+26/57*I,n=63 3770004333438696 m001 (Pi+1)/exp(gamma)+exp(1/exp(1)) 3770004335839410 m004 -120*Pi-(5*Pi*Sech[Sqrt[5]*Pi])/3 3770004335986826 m004 -120*Pi-(5*Pi*Csch[Sqrt[5]*Pi])/3 3770004340657837 a001 6765/2207*3571^(10/17) 3770004342950037 a001 196418/15127*1364^(7/15) 3770004347299101 m001 ln(TwinPrimes)*Paris^2*cos(Pi/12)^2 3770004354384311 r005 Re(z^2+c),c=-55/106+1/38*I,n=29 3770004354449648 m001 CopelandErdos*FibonacciFactorial/ZetaP(4) 3770004357005025 a001 514229/39603*1364^(7/15) 3770004359055620 a001 1346269/103682*1364^(7/15) 3770004359354798 a001 3524578/271443*1364^(7/15) 3770004359398447 a001 9227465/710647*1364^(7/15) 3770004359404815 a001 24157817/1860498*1364^(7/15) 3770004359405745 a001 63245986/4870847*1364^(7/15) 3770004359405880 a001 165580141/12752043*1364^(7/15) 3770004359405900 a001 433494437/33385282*1364^(7/15) 3770004359405903 a001 1134903170/87403803*1364^(7/15) 3770004359405903 a001 2971215073/228826127*1364^(7/15) 3770004359405903 a001 7778742049/599074578*1364^(7/15) 3770004359405903 a001 20365011074/1568397607*1364^(7/15) 3770004359405903 a001 53316291173/4106118243*1364^(7/15) 3770004359405903 a001 139583862445/10749957122*1364^(7/15) 3770004359405903 a001 365435296162/28143753123*1364^(7/15) 3770004359405903 a001 956722026041/73681302247*1364^(7/15) 3770004359405903 a001 2504730781961/192900153618*1364^(7/15) 3770004359405903 a001 10610209857723/817138163596*1364^(7/15) 3770004359405903 a001 4052739537881/312119004989*1364^(7/15) 3770004359405903 a001 1548008755920/119218851371*1364^(7/15) 3770004359405903 a001 591286729879/45537549124*1364^(7/15) 3770004359405903 a001 7787980473/599786069*1364^(7/15) 3770004359405903 a001 86267571272/6643838879*1364^(7/15) 3770004359405903 a001 32951280099/2537720636*1364^(7/15) 3770004359405903 a001 12586269025/969323029*1364^(7/15) 3770004359405903 a001 4807526976/370248451*1364^(7/15) 3770004359405903 a001 1836311903/141422324*1364^(7/15) 3770004359405905 a001 701408733/54018521*1364^(7/15) 3770004359405912 a001 9238424/711491*1364^(7/15) 3770004359405964 a001 102334155/7881196*1364^(7/15) 3770004359406319 a001 39088169/3010349*1364^(7/15) 3770004359408751 a001 14930352/1149851*1364^(7/15) 3770004359416625 m001 cos(Pi/12)^2*FeigenbaumAlpha*ln(sinh(1)) 3770004359425424 a001 5702887/439204*1364^(7/15) 3770004359539700 a001 2178309/167761*1364^(7/15) 3770004360322957 a001 832040/64079*1364^(7/15) 3770004365615271 m009 (5/6*Psi(1,2/3)-1/6)/(2/3*Psi(1,1/3)-2/5) 3770004365691485 a001 10959/844*1364^(7/15) 3770004367673580 m005 (1/2*Zeta(3)+5)/(4/9*2^(1/2)+6/7) 3770004372671199 m001 1/ln(Zeta(3))/GAMMA(1/6)^2*arctan(1/2)^2 3770004375192880 r009 Re(z^3+c),c=-51/110+14/57*I,n=46 3770004380816839 a001 10946/2207*3571^(9/17) 3770004381520067 a001 121393/5778*1364^(2/5) 3770004381791710 a001 329/1926*9349^(16/19) 3770004382462487 a001 17711/3571*1364^(3/5) 3770004382875887 a001 4181/2207*3571^(11/17) 3770004389510607 a001 17711/2207*3571^(8/17) 3770004390872536 a001 2584/2207*9349^(12/19) 3770004395952072 a001 514229/2207*1364^(1/15) 3770004398227855 m001 1/FeigenbaumC/exp(Si(Pi))*TreeGrowth2nd 3770004402487922 a001 121393/9349*1364^(7/15) 3770004405855151 a007 Real Root Of 173*x^4+568*x^3-269*x^2+261*x+295 3770004405921653 r005 Im(z^2+c),c=1/28+27/50*I,n=6 3770004410223024 a001 28657/2207*3571^(7/17) 3770004413319690 a001 329/1926*24476^(16/21) 3770004414518521 a001 2584/2207*24476^(4/7) 3770004414649547 m001 3^(1/2)+Conway^Khinchin 3770004417475684 a001 329/1926*64079^(16/23) 3770004417635517 a001 2584/2207*64079^(12/23) 3770004418105862 a001 2584/2207*439204^(4/9) 3770004418114393 a001 329/1926*(1/2+1/2*5^(1/2))^16 3770004418114393 a001 329/1926*23725150497407^(1/4) 3770004418114393 a001 329/1926*73681302247^(4/13) 3770004418114393 a001 329/1926*10749957122^(1/3) 3770004418114393 a001 329/1926*4106118243^(8/23) 3770004418114393 a001 329/1926*1568397607^(4/11) 3770004418114393 a001 329/1926*599074578^(8/21) 3770004418114393 a001 329/1926*228826127^(2/5) 3770004418114393 a001 329/1926*87403803^(8/19) 3770004418114394 a001 329/1926*33385282^(4/9) 3770004418114403 a001 329/1926*12752043^(8/17) 3770004418114472 a001 329/1926*4870847^(1/2) 3770004418114526 a001 2584/2207*7881196^(4/11) 3770004418114548 a001 2584/2207*141422324^(4/13) 3770004418114548 a001 2584/2207*2537720636^(4/15) 3770004418114548 a001 2584/2207*45537549124^(4/17) 3770004418114548 a001 2584/2207*817138163596^(4/19) 3770004418114548 a001 2584/2207*14662949395604^(4/21) 3770004418114548 a001 2584/2207*(1/2+1/2*5^(1/2))^12 3770004418114548 a001 2584/2207*192900153618^(2/9) 3770004418114548 a001 2584/2207*73681302247^(3/13) 3770004418114548 a001 2584/2207*10749957122^(1/4) 3770004418114548 a001 2584/2207*4106118243^(6/23) 3770004418114548 a001 2584/2207*1568397607^(3/11) 3770004418114548 a001 2584/2207*599074578^(2/7) 3770004418114548 a001 2584/2207*228826127^(3/10) 3770004418114548 a001 2584/2207*87403803^(6/19) 3770004418114549 a001 2584/2207*33385282^(1/3) 3770004418114556 a001 2584/2207*12752043^(6/17) 3770004418114608 a001 2584/2207*4870847^(3/8) 3770004418114973 a001 329/1926*1860498^(8/15) 3770004418114984 a001 2584/2207*1860498^(2/5) 3770004418117747 a001 2584/2207*710647^(3/7) 3770004418118658 a001 329/1926*710647^(4/7) 3770004418138163 a001 2584/2207*271443^(6/13) 3770004418145880 a001 329/1926*271443^(8/13) 3770004418289898 a001 2584/2207*103682^(1/2) 3770004418348192 a001 329/1926*103682^(2/3) 3770004419425674 a001 2584/2207*39603^(6/11) 3770004419862560 a001 329/1926*39603^(8/11) 3770004426344727 a001 46368/2207*3571^(6/17) 3770004427999794 a001 2584/2207*15127^(3/5) 3770004431294721 a001 329/1926*15127^(4/5) 3770004433105686 m001 (Catalan+Kac)/(Khinchin+OrthogonalArrays) 3770004433591927 r005 Re(z^2+c),c=1/7+16/35*I,n=37 3770004434289345 a001 987/2207*2207^(7/8) 3770004434589800 a001 850136/2255 3770004441056636 m004 -15+125*Pi-125*Pi*Csch[Sqrt[5]*Pi] 3770004444219926 a001 75025/2207*3571^(5/17) 3770004448010541 m001 (polylog(4,1/2)+1/3)/(-OneNinth+1/3) 3770004452112815 m004 -15+125*Pi-125*Pi*Sech[Sqrt[5]*Pi] 3770004461425349 a001 121393/2207*3571^(4/17) 3770004463879882 a001 1597/843*843^(11/14) 3770004467614971 r002 10th iterates of z^2 + 3770004473700108 a001 141/2161*9349^(18/19) 3770004478012501 a001 317811/15127*1364^(2/5) 3770004478886605 a001 196418/2207*3571^(3/17) 3770004482055233 b008 38+ProductLog[-2/9] 3770004487905351 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^21 3770004491861608 a001 6765/2207*9349^(10/19) 3770004492090558 a001 832040/39603*1364^(2/5) 3770004493397311 a001 2584/2207*5778^(2/3) 3770004494144519 a001 46347/2206*1364^(2/5) 3770004494444188 a001 5702887/271443*1364^(2/5) 3770004494487909 a001 14930352/710647*1364^(2/5) 3770004494494288 a001 39088169/1860498*1364^(2/5) 3770004494495218 a001 102334155/4870847*1364^(2/5) 3770004494495354 a001 267914296/12752043*1364^(2/5) 3770004494495374 a001 701408733/33385282*1364^(2/5) 3770004494495377 a001 1836311903/87403803*1364^(2/5) 3770004494495377 a001 102287808/4868641*1364^(2/5) 3770004494495377 a001 12586269025/599074578*1364^(2/5) 3770004494495377 a001 32951280099/1568397607*1364^(2/5) 3770004494495377 a001 86267571272/4106118243*1364^(2/5) 3770004494495377 a001 225851433717/10749957122*1364^(2/5) 3770004494495377 a001 591286729879/28143753123*1364^(2/5) 3770004494495377 a001 1548008755920/73681302247*1364^(2/5) 3770004494495377 a001 4052739537881/192900153618*1364^(2/5) 3770004494495377 a001 225749145909/10745088481*1364^(2/5) 3770004494495377 a001 6557470319842/312119004989*1364^(2/5) 3770004494495377 a001 2504730781961/119218851371*1364^(2/5) 3770004494495377 a001 956722026041/45537549124*1364^(2/5) 3770004494495377 a001 365435296162/17393796001*1364^(2/5) 3770004494495377 a001 139583862445/6643838879*1364^(2/5) 3770004494495377 a001 53316291173/2537720636*1364^(2/5) 3770004494495377 a001 20365011074/969323029*1364^(2/5) 3770004494495377 a001 7778742049/370248451*1364^(2/5) 3770004494495377 a001 2971215073/141422324*1364^(2/5) 3770004494495378 a001 1134903170/54018521*1364^(2/5) 3770004494495386 a001 433494437/20633239*1364^(2/5) 3770004494495438 a001 165580141/7881196*1364^(2/5) 3770004494495793 a001 63245986/3010349*1364^(2/5) 3770004494498230 a001 24157817/1149851*1364^(2/5) 3770004494514930 a001 9227465/439204*1364^(2/5) 3770004494629393 a001 3524578/167761*1364^(2/5) 3770004495413936 a001 1346269/64079*1364^(2/5) 3770004496250141 a001 317811/2207*3571^(2/17) 3770004500791276 a001 514229/24476*1364^(2/5) 3770004500867873 m001 GAMMA(7/12)/(ZetaP(3)^polylog(4,1/2)) 3770004502337858 m001 3^(1/2)*FeigenbaumAlpha-BesselI(1,1) 3770004502337858 m001 BesselI(1,1)-sqrt(3)*FeigenbaumAlpha 3770004504314396 r005 Re(z^2+c),c=-49/110+26/59*I,n=36 3770004509169086 a001 141/2161*24476^(6/7) 3770004510473624 a001 17711/2207*9349^(8/19) 3770004511566596 a001 6765/2207*24476^(10/21) 3770004513651002 a001 514229/2207*3571^(1/17) 3770004513844579 a001 141/2161*64079^(18/23) 3770004514164092 a001 6765/2207*64079^(10/23) 3770004514509703 a001 6765/2207*167761^(2/5) 3770004514550097 a001 141/2161*439204^(2/3) 3770004514563093 a001 141/2161*7881196^(6/11) 3770004514563126 a001 141/2161*141422324^(6/13) 3770004514563126 a001 141/2161*2537720636^(2/5) 3770004514563126 a001 141/2161*45537549124^(6/17) 3770004514563126 a001 141/2161*14662949395604^(2/7) 3770004514563126 a001 141/2161*(1/2+1/2*5^(1/2))^18 3770004514563126 a001 141/2161*192900153618^(1/3) 3770004514563126 a001 141/2161*10749957122^(3/8) 3770004514563126 a001 141/2161*4106118243^(9/23) 3770004514563126 a001 141/2161*1568397607^(9/22) 3770004514563126 a001 141/2161*599074578^(3/7) 3770004514563126 a001 141/2161*228826127^(9/20) 3770004514563126 a001 141/2161*87403803^(9/19) 3770004514563128 a001 141/2161*33385282^(1/2) 3770004514563139 a001 141/2161*12752043^(9/17) 3770004514563216 a001 141/2161*4870847^(9/16) 3770004514563283 a001 6765/2207*20633239^(2/7) 3770004514563285 a001 6765/2207*2537720636^(2/9) 3770004514563285 a001 6765/2207*312119004989^(2/11) 3770004514563285 a001 6765/2207*(1/2+1/2*5^(1/2))^10 3770004514563285 a001 6765/2207*28143753123^(1/5) 3770004514563285 a001 6765/2207*10749957122^(5/24) 3770004514563285 a001 6765/2207*4106118243^(5/23) 3770004514563285 a001 6765/2207*1568397607^(5/22) 3770004514563285 a001 6765/2207*599074578^(5/21) 3770004514563285 a001 6765/2207*228826127^(1/4) 3770004514563285 a001 6765/2207*87403803^(5/19) 3770004514563286 a001 6765/2207*33385282^(5/18) 3770004514563292 a001 6765/2207*12752043^(5/17) 3770004514563335 a001 6765/2207*4870847^(5/16) 3770004514563648 a001 6765/2207*1860498^(1/3) 3770004514563780 a001 141/2161*1860498^(3/5) 3770004514565951 a001 6765/2207*710647^(5/14) 3770004514567925 a001 141/2161*710647^(9/14) 3770004514582964 a001 6765/2207*271443^(5/13) 3770004514598549 a001 141/2161*271443^(9/13) 3770004514709410 a001 6765/2207*103682^(5/12) 3770004514826151 a001 141/2161*103682^(3/4) 3770004515655890 a001 6765/2207*39603^(5/11) 3770004516065665 a001 28657/2207*9349^(7/19) 3770004516529814 a001 141/2161*39603^(9/11) 3770004516680252 a001 98209/2889*1364^(1/3) 3770004516900234 a001 10946/2207*9349^(9/19) 3770004516966856 a001 6677055/17711 3770004517066990 a001 46368/2207*9349^(6/19) 3770004518491410 a001 329/1926*5778^(8/9) 3770004519821813 a001 75025/2207*9349^(5/19) 3770004520873835 a001 28657/3571*1364^(8/15) 3770004521906859 a001 121393/2207*9349^(4/19) 3770004522641429 a001 329/13201*24476^(20/21) 3770004522800991 a001 6765/2207*15127^(1/2) 3770004524247737 a001 196418/2207*9349^(3/19) 3770004524745490 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^23 3770004526237615 a001 17711/2207*24476^(8/21) 3770004526490896 a001 317811/2207*9349^(2/19) 3770004527836422 a001 329/13201*64079^(20/23) 3770004528315612 a001 17711/2207*64079^(8/23) 3770004528527643 a001 329/13201*167761^(4/5) 3770004528634802 a001 329/13201*20633239^(4/7) 3770004528634807 a001 329/13201*2537720636^(4/9) 3770004528634807 a001 329/13201*(1/2+1/2*5^(1/2))^20 3770004528634807 a001 329/13201*23725150497407^(5/16) 3770004528634807 a001 329/13201*505019158607^(5/14) 3770004528634807 a001 329/13201*73681302247^(5/13) 3770004528634807 a001 329/13201*28143753123^(2/5) 3770004528634807 a001 329/13201*10749957122^(5/12) 3770004528634807 a001 329/13201*4106118243^(10/23) 3770004528634807 a001 329/13201*1568397607^(5/11) 3770004528634807 a001 329/13201*599074578^(10/21) 3770004528634807 a001 329/13201*228826127^(1/2) 3770004528634808 a001 329/13201*87403803^(10/19) 3770004528634809 a001 329/13201*33385282^(5/9) 3770004528634821 a001 329/13201*12752043^(10/17) 3770004528634907 a001 329/13201*4870847^(5/8) 3770004528634966 a001 17711/2207*(1/2+1/2*5^(1/2))^8 3770004528634966 a001 17711/2207*23725150497407^(1/8) 3770004528634966 a001 17711/2207*505019158607^(1/7) 3770004528634966 a001 17711/2207*73681302247^(2/13) 3770004528634966 a001 17711/2207*10749957122^(1/6) 3770004528634966 a001 17711/2207*4106118243^(4/23) 3770004528634966 a001 17711/2207*1568397607^(2/11) 3770004528634966 a001 17711/2207*599074578^(4/21) 3770004528634966 a001 17711/2207*228826127^(1/5) 3770004528634966 a001 17711/2207*87403803^(4/19) 3770004528634967 a001 17711/2207*33385282^(2/9) 3770004528634972 a001 17711/2207*12752043^(4/17) 3770004528635006 a001 17711/2207*4870847^(1/4) 3770004528635257 a001 17711/2207*1860498^(4/15) 3770004528635533 a001 329/13201*1860498^(2/3) 3770004528637099 a001 17711/2207*710647^(2/7) 3770004528640139 a001 329/13201*710647^(5/7) 3770004528650710 a001 17711/2207*271443^(4/13) 3770004528674166 a001 329/13201*271443^(10/13) 3770004528751866 a001 17711/2207*103682^(1/3) 3770004528771380 a001 514229/2207*9349^(1/19) 3770004528889983 a001 46368/2207*24476^(2/7) 3770004528927057 a001 329/13201*103682^(5/6) 3770004528985507 a001 832417/2208 3770004529390996 a001 141/2161*15127^(9/10) 3770004529509050 a001 17711/2207*39603^(4/11) 3770004529674307 a001 75025/2207*24476^(5/21) 3770004529788854 a001 121393/2207*24476^(4/21) 3770004529809614 a001 21/2206*64079^(22/23) 3770004529859157 a001 28657/2207*24476^(1/3) 3770004530120394 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^25 3770004530159233 a001 196418/2207*24476^(1/7) 3770004530431893 a001 317811/2207*24476^(2/21) 3770004530448481 a001 46368/2207*64079^(6/23) 3770004530683654 a001 46368/2207*439204^(2/9) 3770004530687797 a001 21/2206*7881196^(2/3) 3770004530687838 a001 21/2206*312119004989^(2/5) 3770004530687838 a001 21/2206*(1/2+1/2*5^(1/2))^22 3770004530687838 a001 21/2206*10749957122^(11/24) 3770004530687838 a001 21/2206*4106118243^(11/23) 3770004530687838 a001 21/2206*1568397607^(1/2) 3770004530687838 a001 21/2206*599074578^(11/21) 3770004530687838 a001 21/2206*228826127^(11/20) 3770004530687838 a001 21/2206*87403803^(11/19) 3770004530687840 a001 21/2206*33385282^(11/18) 3770004530687853 a001 21/2206*12752043^(11/17) 3770004530687947 a001 21/2206*4870847^(11/16) 3770004530687986 a001 46368/2207*7881196^(2/11) 3770004530687997 a001 46368/2207*141422324^(2/13) 3770004530687997 a001 46368/2207*2537720636^(2/15) 3770004530687997 a001 46368/2207*45537549124^(2/17) 3770004530687997 a001 46368/2207*14662949395604^(2/21) 3770004530687997 a001 46368/2207*(1/2+1/2*5^(1/2))^6 3770004530687997 a001 46368/2207*10749957122^(1/8) 3770004530687997 a001 46368/2207*4106118243^(3/23) 3770004530687997 a001 46368/2207*1568397607^(3/22) 3770004530687997 a001 46368/2207*599074578^(1/7) 3770004530687997 a001 46368/2207*228826127^(3/20) 3770004530687997 a001 46368/2207*87403803^(3/19) 3770004530687997 a001 46368/2207*33385282^(1/6) 3770004530688001 a001 46368/2207*12752043^(3/17) 3770004530688027 a001 46368/2207*4870847^(3/16) 3770004530688215 a001 46368/2207*1860498^(1/5) 3770004530688637 a001 21/2206*1860498^(11/15) 3770004530689596 a001 46368/2207*710647^(3/14) 3770004530693703 a001 21/2206*710647^(11/14) 3770004530699804 a001 46368/2207*271443^(3/13) 3770004530731132 a001 21/2206*271443^(11/13) 3770004530739004 a001 45765216/121393 3770004530741879 a001 514229/2207*24476^(1/21) 3770004530775672 a001 46368/2207*103682^(1/4) 3770004530820016 a001 329/13201*39603^(10/11) 3770004530827853 a001 121393/2207*64079^(4/23) 3770004530904582 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^27 3770004530938482 a001 196418/2207*64079^(3/23) 3770004530951393 a001 317811/2207*64079^(2/23) 3770004530969999 a001 329/90481*439204^(8/9) 3770004530973055 a001 75025/2207*64079^(5/23) 3770004530987327 a001 329/90481*7881196^(8/11) 3770004530987371 a001 329/90481*141422324^(8/13) 3770004530987371 a001 329/90481*2537720636^(8/15) 3770004530987371 a001 329/90481*45537549124^(8/17) 3770004530987371 a001 329/90481*14662949395604^(8/21) 3770004530987371 a001 329/90481*(1/2+1/2*5^(1/2))^24 3770004530987371 a001 329/90481*192900153618^(4/9) 3770004530987371 a001 329/90481*73681302247^(6/13) 3770004530987371 a001 329/90481*10749957122^(1/2) 3770004530987371 a001 329/90481*4106118243^(12/23) 3770004530987371 a001 329/90481*1568397607^(6/11) 3770004530987371 a001 329/90481*599074578^(4/7) 3770004530987371 a001 329/90481*228826127^(3/5) 3770004530987371 a001 329/90481*87403803^(12/19) 3770004530987373 a001 329/90481*33385282^(2/3) 3770004530987387 a001 329/90481*12752043^(12/17) 3770004530987490 a001 329/90481*4870847^(3/4) 3770004530987530 a001 121393/2207*(1/2+1/2*5^(1/2))^4 3770004530987530 a001 121393/2207*23725150497407^(1/16) 3770004530987530 a001 121393/2207*73681302247^(1/13) 3770004530987530 a001 121393/2207*10749957122^(1/12) 3770004530987530 a001 121393/2207*4106118243^(2/23) 3770004530987530 a001 121393/2207*1568397607^(1/11) 3770004530987530 a001 121393/2207*599074578^(2/21) 3770004530987530 a001 121393/2207*228826127^(1/10) 3770004530987530 a001 121393/2207*87403803^(2/19) 3770004530987530 a001 121393/2207*33385282^(1/9) 3770004530987533 a001 121393/2207*12752043^(2/17) 3770004530987550 a001 121393/2207*4870847^(1/8) 3770004530987675 a001 121393/2207*1860498^(2/15) 3770004530988242 a001 329/90481*1860498^(4/5) 3770004530988596 a001 121393/2207*710647^(1/7) 3770004530993770 a001 329/90481*710647^(6/7) 3770004530994836 a001 39938297/105937 3770004530995402 a001 121393/2207*271443^(2/13) 3770004531001628 a001 514229/2207*64079^(1/23) 3770004531009312 a001 21/2206*103682^(11/12) 3770004531018994 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^29 3770004531031072 a001 141/101521*141422324^(2/3) 3770004531031072 a001 141/101521*(1/2+1/2*5^(1/2))^26 3770004531031072 a001 141/101521*73681302247^(1/2) 3770004531031072 a001 141/101521*10749957122^(13/24) 3770004531031072 a001 141/101521*4106118243^(13/23) 3770004531031072 a001 141/101521*1568397607^(13/22) 3770004531031072 a001 141/101521*599074578^(13/21) 3770004531031072 a001 141/101521*228826127^(13/20) 3770004531031073 a001 141/101521*87403803^(13/19) 3770004531031075 a001 141/101521*33385282^(13/18) 3770004531031090 a001 141/101521*12752043^(13/17) 3770004531031201 a001 141/101521*4870847^(13/16) 3770004531031231 a001 317811/2207*(1/2+1/2*5^(1/2))^2 3770004531031231 a001 317811/2207*10749957122^(1/24) 3770004531031231 a001 317811/2207*4106118243^(1/23) 3770004531031231 a001 317811/2207*1568397607^(1/22) 3770004531031231 a001 317811/2207*599074578^(1/21) 3770004531031231 a001 317811/2207*228826127^(1/20) 3770004531031231 a001 317811/2207*87403803^(1/19) 3770004531031231 a001 317811/2207*33385282^(1/18) 3770004531031233 a001 317811/2207*12752043^(1/17) 3770004531031241 a001 317811/2207*4870847^(1/16) 3770004531031304 a001 317811/2207*1860498^(1/15) 3770004531031764 a001 317811/2207*710647^(1/14) 3770004531032016 a001 141/101521*1860498^(13/15) 3770004531032161 a001 313679457/832040 3770004531034601 a001 329/90481*271443^(12/13) 3770004531035167 a001 317811/2207*271443^(1/13) 3770004531035686 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^31 3770004531037441 a001 329/620166*20633239^(4/5) 3770004531037448 a001 329/620166*17393796001^(4/7) 3770004531037448 a001 329/620166*14662949395604^(4/9) 3770004531037448 a001 329/620166*(1/2+1/2*5^(1/2))^28 3770004531037448 a001 329/620166*505019158607^(1/2) 3770004531037448 a001 329/620166*73681302247^(7/13) 3770004531037448 a001 329/620166*10749957122^(7/12) 3770004531037448 a001 329/620166*4106118243^(14/23) 3770004531037448 a001 329/620166*1568397607^(7/11) 3770004531037448 a001 329/620166*599074578^(2/3) 3770004531037448 a001 329/620166*228826127^(7/10) 3770004531037449 a001 329/620166*87403803^(14/19) 3770004531037451 a001 329/620166*33385282^(7/9) 3770004531037467 a001 329/620166*12752043^(14/17) 3770004531037587 a001 329/620166*4870847^(7/8) 3770004531037607 a001 832040/2207 3770004531038004 a001 141/101521*710647^(13/14) 3770004531038121 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^33 3770004531038323 a001 987/4870847*7881196^(10/11) 3770004531038371 a001 987/4870847*20633239^(6/7) 3770004531038378 a001 987/4870847*141422324^(10/13) 3770004531038378 a001 987/4870847*2537720636^(2/3) 3770004531038378 a001 987/4870847*45537549124^(10/17) 3770004531038378 a001 987/4870847*312119004989^(6/11) 3770004531038378 a001 987/4870847*14662949395604^(10/21) 3770004531038378 a001 987/4870847*(1/2+1/2*5^(1/2))^30 3770004531038378 a001 987/4870847*192900153618^(5/9) 3770004531038378 a001 987/4870847*28143753123^(3/5) 3770004531038378 a001 987/4870847*10749957122^(5/8) 3770004531038378 a001 987/4870847*4106118243^(15/23) 3770004531038378 a001 987/4870847*1568397607^(15/22) 3770004531038378 a001 987/4870847*599074578^(5/7) 3770004531038378 a001 987/4870847*228826127^(3/4) 3770004531038379 a001 987/4870847*87403803^(15/19) 3770004531038381 a001 987/4870847*33385282^(5/6) 3770004531038399 a001 987/4870847*12752043^(15/17) 3770004531038402 a001 2149990983/5702887 3770004531038465 a001 329/620166*1860498^(14/15) 3770004531038477 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^35 3770004531038514 a001 329/4250681*(1/2+1/2*5^(1/2))^32 3770004531038514 a001 329/4250681*23725150497407^(1/2) 3770004531038514 a001 329/4250681*73681302247^(8/13) 3770004531038514 a001 329/4250681*10749957122^(2/3) 3770004531038514 a001 329/4250681*4106118243^(16/23) 3770004531038514 a001 329/4250681*1568397607^(8/11) 3770004531038514 a001 329/4250681*599074578^(16/21) 3770004531038514 a001 329/4250681*228826127^(4/5) 3770004531038515 a001 329/4250681*87403803^(16/19) 3770004531038517 a001 329/4250681*33385282^(8/9) 3770004531038518 a001 1876249823/4976784 3770004531038527 a001 987/4870847*4870847^(15/16) 3770004531038528 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^37 3770004531038534 a001 141/4769326*45537549124^(2/3) 3770004531038534 a001 141/4769326*(1/2+1/2*5^(1/2))^34 3770004531038534 a001 141/4769326*10749957122^(17/24) 3770004531038534 a001 141/4769326*4106118243^(17/23) 3770004531038534 a001 141/4769326*1568397607^(17/22) 3770004531038534 a001 141/4769326*599074578^(17/21) 3770004531038534 a001 141/4769326*228826127^(17/20) 3770004531038534 a001 141/4769326*87403803^(17/19) 3770004531038534 a001 14736257424/39088169 3770004531038536 a001 329/4250681*12752043^(16/17) 3770004531038536 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^39 3770004531038537 a001 329/29134601*141422324^(12/13) 3770004531038537 a001 329/29134601*2537720636^(4/5) 3770004531038537 a001 329/29134601*45537549124^(12/17) 3770004531038537 a001 329/29134601*14662949395604^(4/7) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^36/Lucas(38) 3770004531038537 a001 329/29134601*505019158607^(9/14) 3770004531038537 a001 329/29134601*192900153618^(2/3) 3770004531038537 a001 329/29134601*73681302247^(9/13) 3770004531038537 a001 329/29134601*10749957122^(3/4) 3770004531038537 a001 329/29134601*4106118243^(18/23) 3770004531038537 a001 329/29134601*1568397607^(9/11) 3770004531038537 a001 329/29134601*599074578^(6/7) 3770004531038537 a001 329/29134601*228826127^(9/10) 3770004531038537 a001 1837143943/4873055 3770004531038537 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^41 3770004531038537 a001 141/4769326*33385282^(17/18) 3770004531038537 a001 21/4868641*817138163596^(2/3) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^38/Lucas(40) 3770004531038537 a001 21/4868641*10749957122^(19/24) 3770004531038537 a001 21/4868641*4106118243^(19/23) 3770004531038537 a001 21/4868641*1568397607^(19/22) 3770004531038537 a001 21/4868641*599074578^(19/21) 3770004531038537 a001 101003810985/267914296 3770004531038537 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^43 3770004531038537 a001 329/29134601*87403803^(18/19) 3770004531038537 a001 329/199691526*2537720636^(8/9) 3770004531038537 a001 329/199691526*312119004989^(8/11) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(42) 3770004531038537 a001 329/199691526*23725150497407^(5/8) 3770004531038537 a001 329/199691526*73681302247^(10/13) 3770004531038537 a001 329/199691526*28143753123^(4/5) 3770004531038537 a001 329/199691526*10749957122^(5/6) 3770004531038537 a001 329/199691526*4106118243^(20/23) 3770004531038537 a001 329/199691526*1568397607^(10/11) 3770004531038537 a001 88143803384/233802911 3770004531038537 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^45 3770004531038537 a001 21/4868641*228826127^(19/20) 3770004531038537 a001 141/224056801*2537720636^(14/15) 3770004531038537 a001 141/224056801*17393796001^(6/7) 3770004531038537 a001 141/224056801*45537549124^(14/17) 3770004531038537 a001 141/224056801*817138163596^(14/19) 3770004531038537 a001 141/224056801*14662949395604^(2/3) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(44) 3770004531038537 a001 141/224056801*505019158607^(3/4) 3770004531038537 a001 141/224056801*192900153618^(7/9) 3770004531038537 a001 141/224056801*10749957122^(7/8) 3770004531038537 a001 141/224056801*4106118243^(21/23) 3770004531038537 a001 692290419471/1836311903 3770004531038537 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^47 3770004531038537 a001 329/199691526*599074578^(20/21) 3770004531038537 a001 329/1368706081*312119004989^(4/5) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(46) 3770004531038537 a001 329/1368706081*23725150497407^(11/16) 3770004531038537 a001 329/1368706081*73681302247^(11/13) 3770004531038537 a001 329/1368706081*10749957122^(11/12) 3770004531038537 a001 1836311903/4870848 3770004531038537 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^49 3770004531038537 a001 141/224056801*1568397607^(21/22) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(48) 3770004531038537 a001 4745029125312/12586269025 3770004531038537 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^51 3770004531038537 a001 329/1368706081*4106118243^(22/23) 3770004531038537 a001 329/9381251041*45537549124^(16/17) 3770004531038537 a001 329/9381251041*14662949395604^(16/21) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(50) 3770004531038537 a001 329/9381251041*192900153618^(8/9) 3770004531038537 a001 329/9381251041*73681302247^(12/13) 3770004531038537 a001 4140882509225/10983760033 3770004531038537 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^53 3770004531038537 a001 987/10749957122*10749957122^(23/24) 3770004531038537 a001 141/10525900321*312119004989^(10/11) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(52) 3770004531038537 a001 141/10525900321*3461452808002^(5/6) 3770004531038537 a001 32522913457713/86267571272 3770004531038537 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^55 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(54) 3770004531038537 a001 329/64300051206*23725150497407^(13/16) 3770004531038537 a001 329/64300051206*505019158607^(13/14) 3770004531038537 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^57 3770004531038537 a001 21/10745088481*14662949395604^(6/7) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(56) 3770004531038537 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^59 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(58) 3770004531038537 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^61 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(60) 3770004531038537 a001 1527884642093040/4052739537881 3770004531038537 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^63 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(62) 3770004531038537 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^65 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(64) 3770004531038537 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^67 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(66) 3770004531038537 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^69 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(68) 3770004531038537 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^71 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(70) 3770004531038537 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^73 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(72) 3770004531038537 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^75 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(74) 3770004531038537 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^77 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(76) 3770004531038537 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^79 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(78) 3770004531038537 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^81 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(80) 3770004531038537 a004 Fibonacci(16)*Lucas(81)/(1/2+sqrt(5)/2)^83 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^80/Lucas(82) 3770004531038537 a004 Fibonacci(16)*Lucas(83)/(1/2+sqrt(5)/2)^85 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^82/Lucas(84) 3770004531038537 a004 Fibonacci(16)*Lucas(85)/(1/2+sqrt(5)/2)^87 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^84/Lucas(86) 3770004531038537 a004 Fibonacci(16)*Lucas(87)/(1/2+sqrt(5)/2)^89 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^86/Lucas(88) 3770004531038537 a004 Fibonacci(16)*Lucas(89)/(1/2+sqrt(5)/2)^91 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^88/Lucas(90) 3770004531038537 a004 Fibonacci(16)*Lucas(91)/(1/2+sqrt(5)/2)^93 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^90/Lucas(92) 3770004531038537 a004 Fibonacci(16)*Lucas(93)/(1/2+sqrt(5)/2)^95 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^92/Lucas(94) 3770004531038537 a004 Fibonacci(16)*Lucas(95)/(1/2+sqrt(5)/2)^97 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^94/Lucas(96) 3770004531038537 a004 Fibonacci(16)*Lucas(97)/(1/2+sqrt(5)/2)^99 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^96/Lucas(98) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^97/Lucas(99) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^98/Lucas(100) 3770004531038537 a004 Fibonacci(16)*Lucas(98)/(1/2+sqrt(5)/2)^100 3770004531038537 a004 Fibonacci(8)*Lucas(8)/(1/2+sqrt(5)/2)^2 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^95/Lucas(97) 3770004531038537 a004 Fibonacci(16)*Lucas(96)/(1/2+sqrt(5)/2)^98 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^93/Lucas(95) 3770004531038537 a004 Fibonacci(16)*Lucas(94)/(1/2+sqrt(5)/2)^96 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^91/Lucas(93) 3770004531038537 a004 Fibonacci(16)*Lucas(92)/(1/2+sqrt(5)/2)^94 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^89/Lucas(91) 3770004531038537 a004 Fibonacci(16)*Lucas(90)/(1/2+sqrt(5)/2)^92 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^87/Lucas(89) 3770004531038537 a004 Fibonacci(16)*Lucas(88)/(1/2+sqrt(5)/2)^90 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^85/Lucas(87) 3770004531038537 a004 Fibonacci(16)*Lucas(86)/(1/2+sqrt(5)/2)^88 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^83/Lucas(85) 3770004531038537 a004 Fibonacci(16)*Lucas(84)/(1/2+sqrt(5)/2)^86 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^81/Lucas(83) 3770004531038537 a004 Fibonacci(16)*Lucas(82)/(1/2+sqrt(5)/2)^84 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(81) 3770004531038537 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^82 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(79) 3770004531038537 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^80 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(77) 3770004531038537 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^78 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(75) 3770004531038537 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^76 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(73) 3770004531038537 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^74 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(71) 3770004531038537 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^72 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(69) 3770004531038537 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^70 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(67) 3770004531038537 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^68 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(65) 3770004531038537 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^66 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(63) 3770004531038537 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^64 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(61) 3770004531038537 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^62 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(59) 3770004531038537 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^60 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(57) 3770004531038537 a001 987/817138163596*3461452808002^(11/12) 3770004531038537 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^58 3770004531038537 a001 137769272233215/365435296162 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(55) 3770004531038537 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^56 3770004531038537 a001 52623179387751/139583862445 3770004531038537 a001 987/119218851371*817138163596^(17/19) 3770004531038537 a001 987/119218851371*14662949395604^(17/21) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(53) 3770004531038537 a001 987/119218851371*192900153618^(17/18) 3770004531038537 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^54 3770004531038537 a001 20100265930038/53316291173 3770004531038537 a001 987/45537549124*14662949395604^(7/9) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(51) 3770004531038537 a001 987/45537549124*505019158607^(7/8) 3770004531038537 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^52 3770004531038537 a001 7677618402363/20365011074 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(49) 3770004531038537 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^50 3770004531038537 a001 2932589277051/7778742049 3770004531038537 a001 987/6643838879*45537549124^(15/17) 3770004531038537 a001 987/6643838879*312119004989^(9/11) 3770004531038537 a001 987/6643838879*14662949395604^(5/7) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(47) 3770004531038537 a001 987/6643838879*192900153618^(5/6) 3770004531038537 a001 987/6643838879*28143753123^(9/10) 3770004531038537 a001 987/6643838879*10749957122^(15/16) 3770004531038537 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^48 3770004531038537 a001 1120149428790/2971215073 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(45) 3770004531038537 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^46 3770004531038537 a001 427859009319/1134903170 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(43) 3770004531038537 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^44 3770004531038537 a001 163427599167/433494437 3770004531038537 a001 987/370248451*2537720636^(13/15) 3770004531038537 a001 987/370248451*45537549124^(13/17) 3770004531038537 a001 987/370248451*14662949395604^(13/21) 3770004531038537 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(41) 3770004531038537 a001 987/370248451*192900153618^(13/18) 3770004531038537 a001 987/370248451*73681302247^(3/4) 3770004531038537 a001 987/370248451*10749957122^(13/16) 3770004531038537 a001 987/370248451*599074578^(13/14) 3770004531038537 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^42 3770004531038538 a001 62423788182/165580141 3770004531038538 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(39) 3770004531038538 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^40 3770004531038538 a001 23843765379/63245986 3770004531038539 a001 987/54018521*2537720636^(7/9) 3770004531038539 a001 987/54018521*17393796001^(5/7) 3770004531038539 a001 987/54018521*312119004989^(7/11) 3770004531038539 a001 987/54018521*14662949395604^(5/9) 3770004531038539 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^35/Lucas(37) 3770004531038539 a001 987/54018521*505019158607^(5/8) 3770004531038539 a001 987/54018521*28143753123^(7/10) 3770004531038539 a001 987/54018521*599074578^(5/6) 3770004531038539 a001 987/54018521*228826127^(7/8) 3770004531038541 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^38 3770004531038545 a001 9107507955/24157817 3770004531038546 a001 987/20633239*141422324^(11/13) 3770004531038546 a001 987/20633239*2537720636^(11/15) 3770004531038546 a001 987/20633239*45537549124^(11/17) 3770004531038546 a001 987/20633239*312119004989^(3/5) 3770004531038546 a001 987/20633239*817138163596^(11/19) 3770004531038546 a001 987/20633239*14662949395604^(11/21) 3770004531038546 a001 987/20633239*(1/2+1/2*5^(1/2))^33 3770004531038546 a001 987/20633239*192900153618^(11/18) 3770004531038546 a001 987/20633239*10749957122^(11/16) 3770004531038546 a001 987/20633239*1568397607^(3/4) 3770004531038546 a001 987/20633239*599074578^(11/14) 3770004531038549 a001 987/20633239*33385282^(11/12) 3770004531038561 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^36 3770004531038589 a001 3478758486/9227465 3770004531038598 a001 987/7881196*(1/2+1/2*5^(1/2))^31 3770004531038598 a001 987/7881196*9062201101803^(1/2) 3770004531038673 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^4 3770004531038693 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^6 3770004531038696 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^8 3770004531038696 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^10 3770004531038696 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^12 3770004531038696 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^14 3770004531038696 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^16 3770004531038696 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^18 3770004531038696 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^20 3770004531038696 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^22 3770004531038696 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^24 3770004531038696 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^26 3770004531038696 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^28 3770004531038696 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^30 3770004531038696 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^32 3770004531038696 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^34 3770004531038696 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^36 3770004531038696 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^38 3770004531038696 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^40 3770004531038696 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^42 3770004531038696 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^44 3770004531038696 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^46 3770004531038696 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^48 3770004531038696 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^50 3770004531038696 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^52 3770004531038696 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^54 3770004531038696 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^56 3770004531038696 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^58 3770004531038696 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^60 3770004531038696 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^62 3770004531038696 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^64 3770004531038696 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^66 3770004531038696 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^70 3770004531038696 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^68 3770004531038696 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^69 3770004531038696 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^67 3770004531038696 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^65 3770004531038696 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^63 3770004531038696 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^61 3770004531038696 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^59 3770004531038696 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^57 3770004531038696 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^55 3770004531038696 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^53 3770004531038696 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^51 3770004531038696 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^49 3770004531038696 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^47 3770004531038696 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^45 3770004531038696 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^43 3770004531038696 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^41 3770004531038696 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^39 3770004531038696 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^37 3770004531038696 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^35 3770004531038696 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^33 3770004531038696 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^31 3770004531038696 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^29 3770004531038696 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^27 3770004531038696 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^25 3770004531038696 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^23 3770004531038696 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^21 3770004531038696 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^19 3770004531038696 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^17 3770004531038696 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^15 3770004531038696 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^13 3770004531038696 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^11 3770004531038696 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^9 3770004531038698 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^7 3770004531038705 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^5 3770004531038757 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2)^3 3770004531038893 a001 1328767503/3524578 3770004531038953 a001 987/3010349*(1/2+1/2*5^(1/2))^29 3770004531038953 a001 987/3010349*1322157322203^(1/2) 3770004531039112 a004 Fibonacci(31)/Lucas(16)/(1/2+sqrt(5)/2) 3770004531039626 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^32 3770004531040973 a001 507544023/1346269 3770004531041339 a001 987/1149851*7881196^(9/11) 3770004531041389 a001 987/1149851*141422324^(9/13) 3770004531041389 a001 987/1149851*2537720636^(3/5) 3770004531041389 a001 987/1149851*45537549124^(9/17) 3770004531041389 a001 987/1149851*817138163596^(9/19) 3770004531041389 a001 987/1149851*14662949395604^(3/7) 3770004531041389 a001 987/1149851*(1/2+1/2*5^(1/2))^27 3770004531041389 a001 987/1149851*192900153618^(1/2) 3770004531041389 a001 987/1149851*10749957122^(9/16) 3770004531041389 a001 987/1149851*599074578^(9/14) 3770004531041391 a001 987/1149851*33385282^(3/4) 3770004531041548 a001 514229/4414+514229/4414*5^(1/2) 3770004531042369 a001 987/1149851*1860498^(9/10) 3770004531045980 a001 121393/2207*103682^(1/6) 3770004531046002 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^30 3770004531055230 a001 193864566/514229 3770004531056069 a001 196418/2207*439204^(1/9) 3770004531056160 a001 514229/2207*103682^(1/24) 3770004531058075 a001 987/439204*20633239^(5/7) 3770004531058081 a001 987/439204*2537720636^(5/9) 3770004531058081 a001 987/439204*312119004989^(5/11) 3770004531058081 a001 987/439204*(1/2+1/2*5^(1/2))^25 3770004531058081 a001 987/439204*3461452808002^(5/12) 3770004531058081 a001 987/439204*28143753123^(1/2) 3770004531058081 a001 987/439204*228826127^(5/8) 3770004531058235 a001 196418/2207*7881196^(1/11) 3770004531058240 a001 196418/2207*141422324^(1/13) 3770004531058240 a001 196418/2207*2537720636^(1/15) 3770004531058240 a001 196418/2207*45537549124^(1/17) 3770004531058240 a001 196418/2207*14662949395604^(1/21) 3770004531058240 a001 196418/2207*(1/2+1/2*5^(1/2))^3 3770004531058240 a001 196418/2207*192900153618^(1/18) 3770004531058240 a001 196418/2207*10749957122^(1/16) 3770004531058240 a001 196418/2207*599074578^(1/14) 3770004531058240 a001 196418/2207*33385282^(1/12) 3770004531058349 a001 196418/2207*1860498^(1/10) 3770004531058989 a001 987/439204*1860498^(5/6) 3770004531060456 a001 317811/2207*103682^(1/12) 3770004531089704 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^28 3770004531102078 a001 196418/2207*103682^(1/8) 3770004531118376 a001 987/64079*64079^(21/23) 3770004531145860 a001 75025/2207*167761^(1/5) 3770004531150808 a001 514229/2207*39603^(1/22) 3770004531152949 a001 74049675/196418 3770004531172493 a001 987/167761*(1/2+1/2*5^(1/2))^23 3770004531172493 a001 987/167761*4106118243^(1/2) 3770004531172650 a001 75025/2207*20633239^(1/7) 3770004531172652 a001 75025/2207*2537720636^(1/9) 3770004531172652 a001 75025/2207*312119004989^(1/11) 3770004531172652 a001 75025/2207*(1/2+1/2*5^(1/2))^5 3770004531172652 a001 75025/2207*28143753123^(1/10) 3770004531172652 a001 75025/2207*228826127^(1/8) 3770004531172833 a001 75025/2207*1860498^(1/6) 3770004531245714 a001 75025/2207*103682^(5/24) 3770004531249752 a001 317811/2207*39603^(1/11) 3770004531343560 a001 46368/2207*39603^(3/11) 3770004531386021 a001 196418/2207*39603^(3/22) 3770004531389237 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^26 3770004531424572 a001 121393/2207*39603^(2/11) 3770004531508580 a001 987/167761*103682^(23/24) 3770004531637875 a001 987/24476*24476^(19/21) 3770004531677405 a001 28657/2207*64079^(7/23) 3770004531718954 a001 75025/2207*39603^(5/22) 3770004531822725 a001 28284459/75025 3770004531865318 a001 514229/2207*15127^(1/20) 3770004531941480 a001 987/64079*439204^(7/9) 3770004531956642 a001 987/64079*7881196^(7/11) 3770004531956675 a001 987/64079*20633239^(3/5) 3770004531956680 a001 987/64079*141422324^(7/13) 3770004531956681 a001 987/64079*2537720636^(7/15) 3770004531956681 a001 987/64079*17393796001^(3/7) 3770004531956681 a001 987/64079*45537549124^(7/17) 3770004531956681 a001 987/64079*14662949395604^(1/3) 3770004531956681 a001 987/64079*(1/2+1/2*5^(1/2))^21 3770004531956681 a001 987/64079*192900153618^(7/18) 3770004531956681 a001 987/64079*10749957122^(7/16) 3770004531956681 a001 987/64079*599074578^(1/2) 3770004531956683 a001 987/64079*33385282^(7/12) 3770004531956838 a001 28657/2207*20633239^(1/5) 3770004531956839 a001 28657/2207*17393796001^(1/7) 3770004531956839 a001 28657/2207*14662949395604^(1/9) 3770004531956839 a001 28657/2207*(1/2+1/2*5^(1/2))^7 3770004531956839 a001 28657/2207*599074578^(1/6) 3770004531957443 a001 987/64079*1860498^(7/10) 3770004531958706 a001 28657/2207*710647^(1/4) 3770004531962279 a001 987/64079*710647^(3/4) 3770004532059127 a001 28657/2207*103682^(7/24) 3770004532263543 a001 987/64079*103682^(7/8) 3770004532302911 a001 832040/3571*521^(1/13) 3770004532678772 a001 317811/2207*15127^(1/10) 3770004532721663 a001 28657/2207*39603^(7/22) 3770004533442267 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^24 3770004533529552 a001 196418/2207*15127^(3/20) 3770004534251150 a001 987/64079*39603^(21/22) 3770004534282612 a001 121393/2207*15127^(1/5) 3770004534634723 a001 10946/2207*24476^(3/7) 3770004535225131 a001 17711/2207*15127^(2/5) 3770004535291504 a001 75025/2207*15127^(1/4) 3770004535578873 a001 987/9349*9349^(17/19) 3770004535630620 a001 46368/2207*15127^(3/10) 3770004536413441 a001 10803702/28657 3770004536573118 a001 987/24476*64079^(19/23) 3770004536972470 a001 10946/2207*64079^(9/23) 3770004537315111 a001 514229/2207*5778^(1/18) 3770004537325229 a001 10946/2207*439204^(1/3) 3770004537331584 a001 987/24476*817138163596^(1/3) 3770004537331584 a001 987/24476*(1/2+1/2*5^(1/2))^19 3770004537331585 a001 987/24476*87403803^(1/2) 3770004537331727 a001 10946/2207*7881196^(3/11) 3770004537331743 a001 10946/2207*141422324^(3/13) 3770004537331743 a001 10946/2207*2537720636^(1/5) 3770004537331743 a001 10946/2207*45537549124^(3/17) 3770004537331743 a001 10946/2207*817138163596^(3/19) 3770004537331743 a001 10946/2207*14662949395604^(1/7) 3770004537331743 a001 10946/2207*(1/2+1/2*5^(1/2))^9 3770004537331743 a001 10946/2207*192900153618^(1/6) 3770004537331743 a001 10946/2207*10749957122^(3/16) 3770004537331743 a001 10946/2207*599074578^(3/14) 3770004537331744 a001 10946/2207*33385282^(1/4) 3770004537332070 a001 10946/2207*1860498^(3/10) 3770004537463256 a001 10946/2207*103682^(3/8) 3770004537609222 a001 987/24476*103682^(19/24) 3770004537648108 a001 196418/9349*1364^(2/5) 3770004537723233 a001 28657/2207*15127^(7/20) 3770004538315087 a001 10946/2207*39603^(9/22) 3770004539407533 a001 987/24476*39603^(19/22) 3770004539515075 r005 Im(z^2+c),c=13/56+19/63*I,n=55 3770004543578359 a001 317811/2207*5778^(1/9) 3770004544745678 a001 10946/2207*15127^(9/20) 3770004547513949 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^22 3770004549200038 a001 4181/2207*9349^(11/19) 3770004549878931 a001 196418/2207*5778^(1/6) 3770004552983225 a001 987/24476*15127^(19/20) 3770004556076810 l006 ln(3599/5247) 3770004556081785 a001 121393/2207*5778^(2/9) 3770004560601131 m007 (-2/5*gamma-4/5*ln(2)-2/5)/(-1/4*gamma-3) 3770004561250043 a007 Real Root Of -870*x^4-583*x^3-696*x^2+246*x+178 3770004561404121 a007 Real Root Of 16*x^4-143*x^3-734*x^2+121*x-6 3770004562540470 a001 75025/2207*5778^(5/18) 3770004565819628 a001 987/3571*3571^(15/17) 3770004567878677 a001 4126647/10946 3770004568329379 a001 46368/2207*5778^(1/3) 3770004569077353 a001 987/9349*24476^(17/21) 3770004570875525 a001 4181/2207*24476^(11/21) 3770004573493097 a001 987/9349*64079^(17/23) 3770004573732771 a001 4181/2207*64079^(11/23) 3770004574171724 a001 987/9349*45537549124^(1/3) 3770004574171724 a001 987/9349*(1/2+1/2*5^(1/2))^17 3770004574171736 a001 987/9349*12752043^(1/2) 3770004574171862 a001 4181/2207*7881196^(1/3) 3770004574171883 a001 4181/2207*312119004989^(1/5) 3770004574171883 a001 4181/2207*(1/2+1/2*5^(1/2))^11 3770004574171883 a001 4181/2207*1568397607^(1/4) 3770004574332620 a001 4181/2207*103682^(11/24) 3770004574420136 a001 987/9349*103682^(17/24) 3770004575373748 a001 4181/2207*39603^(1/2) 3770004575871786 a001 28657/2207*5778^(7/18) 3770004576029152 a001 987/9349*39603^(17/22) 3770004577298922 a001 6765/2207*5778^(5/9) 3770004578823476 a001 17711/2207*5778^(4/9) 3770004579416145 a001 514229/2207*2207^(1/16) 3770004583233359 a001 4181/2207*15127^(11/20) 3770004585598154 r002 18th iterates of z^2 + 3770004588175824 a001 987/9349*15127^(17/20) 3770004593793817 a001 10946/2207*5778^(1/2) 3770004600600855 a001 1597/2207*3571^(13/17) 3770004601379713 h001 (-5*exp(2)+7)/(-8*exp(-1)-5) 3770004613112296 a001 514229/15127*1364^(1/3) 3770004618976484 m001 Sarnak^ln(2+3^(1/2))*gamma 3770004627181542 a001 1346269/39603*1364^(1/3) 3770004627780426 a001 317811/2207*2207^(1/8) 3770004629234217 a001 1762289/51841*1364^(1/3) 3770004629533698 a001 9227465/271443*1364^(1/3) 3770004629577392 a001 24157817/710647*1364^(1/3) 3770004629583767 a001 31622993/930249*1364^(1/3) 3770004629584697 a001 165580141/4870847*1364^(1/3) 3770004629584833 a001 433494437/12752043*1364^(1/3) 3770004629584853 a001 567451585/16692641*1364^(1/3) 3770004629584855 a001 2971215073/87403803*1364^(1/3) 3770004629584856 a001 7778742049/228826127*1364^(1/3) 3770004629584856 a001 10182505537/299537289*1364^(1/3) 3770004629584856 a001 53316291173/1568397607*1364^(1/3) 3770004629584856 a001 139583862445/4106118243*1364^(1/3) 3770004629584856 a001 182717648081/5374978561*1364^(1/3) 3770004629584856 a001 956722026041/28143753123*1364^(1/3) 3770004629584856 a001 2504730781961/73681302247*1364^(1/3) 3770004629584856 a001 3278735159921/96450076809*1364^(1/3) 3770004629584856 a001 10610209857723/312119004989*1364^(1/3) 3770004629584856 a001 4052739537881/119218851371*1364^(1/3) 3770004629584856 a001 387002188980/11384387281*1364^(1/3) 3770004629584856 a001 591286729879/17393796001*1364^(1/3) 3770004629584856 a001 225851433717/6643838879*1364^(1/3) 3770004629584856 a001 1135099622/33391061*1364^(1/3) 3770004629584856 a001 32951280099/969323029*1364^(1/3) 3770004629584856 a001 12586269025/370248451*1364^(1/3) 3770004629584856 a001 1201881744/35355581*1364^(1/3) 3770004629584857 a001 1836311903/54018521*1364^(1/3) 3770004629584865 a001 701408733/20633239*1364^(1/3) 3770004629584917 a001 66978574/1970299*1364^(1/3) 3770004629585272 a001 102334155/3010349*1364^(1/3) 3770004629587707 a001 39088169/1149851*1364^(1/3) 3770004629604396 a001 196452/5779*1364^(1/3) 3770004629718788 a001 5702887/167761*1364^(1/3) 3770004630502840 a001 2178309/64079*1364^(1/3) 3770004635876814 a001 208010/6119*1364^(1/3) 3770004638657759 r002 32th iterates of z^2 + 3770004643181085 a001 4181/2207*5778^(11/18) 3770004643962686 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^20 3770004651742723 a001 105937/1926*1364^(4/15) 3770004654694472 a001 46368/3571*1364^(7/15) 3770004672710579 a001 317811/9349*1364^(1/3) 3770004676182033 a001 196418/2207*2207^(3/16) 3770004680822310 a001 987/9349*5778^(17/18) 3770004683364732 a007 Real Root Of 130*x^4-825*x^3+291*x^2-904*x-429 3770004696007757 m001 (MadelungNaCl+3)/(Lehmer+2/3) 3770004724485921 a001 121393/2207*2207^(1/4) 3770004734607065 a001 9349/34*121393^(29/47) 3770004735860141 r002 49th iterates of z^2 + 3770004748197838 a001 832040/15127*1364^(4/15) 3770004754253444 s002 sum(A220855[n]/(n!^2),n=1..infinity) 3770004762015236 r002 12th iterates of z^2 + 3770004762270450 a001 726103/13201*1364^(4/15) 3770004764323617 a001 5702887/103682*1364^(4/15) 3770004764623170 a001 4976784/90481*1364^(4/15) 3770004764666874 a001 39088169/710647*1364^(4/15) 3770004764673250 a001 831985/15126*1364^(4/15) 3770004764674181 a001 267914296/4870847*1364^(4/15) 3770004764674316 a001 233802911/4250681*1364^(4/15) 3770004764674336 a001 1836311903/33385282*1364^(4/15) 3770004764674339 a001 1602508992/29134601*1364^(4/15) 3770004764674339 a001 12586269025/228826127*1364^(4/15) 3770004764674339 a001 10983760033/199691526*1364^(4/15) 3770004764674339 a001 86267571272/1568397607*1364^(4/15) 3770004764674339 a001 75283811239/1368706081*1364^(4/15) 3770004764674339 a001 591286729879/10749957122*1364^(4/15) 3770004764674339 a001 12585437040/228811001*1364^(4/15) 3770004764674339 a001 4052739537881/73681302247*1364^(4/15) 3770004764674339 a001 3536736619241/64300051206*1364^(4/15) 3770004764674339 a001 6557470319842/119218851371*1364^(4/15) 3770004764674339 a001 2504730781961/45537549124*1364^(4/15) 3770004764674339 a001 956722026041/17393796001*1364^(4/15) 3770004764674339 a001 365435296162/6643838879*1364^(4/15) 3770004764674339 a001 139583862445/2537720636*1364^(4/15) 3770004764674339 a001 53316291173/969323029*1364^(4/15) 3770004764674340 a001 20365011074/370248451*1364^(4/15) 3770004764674340 a001 7778742049/141422324*1364^(4/15) 3770004764674341 a001 2971215073/54018521*1364^(4/15) 3770004764674348 a001 1134903170/20633239*1364^(4/15) 3770004764674400 a001 433494437/7881196*1364^(4/15) 3770004764674756 a001 165580141/3010349*1364^(4/15) 3770004764677191 a001 63245986/1149851*1364^(4/15) 3770004764693885 a001 24157817/439204*1364^(4/15) 3770004764808304 a001 9227465/167761*1364^(4/15) 3770004765592543 a001 3524578/64079*1364^(4/15) 3770004770967803 a001 1346269/24476*1364^(4/15) 3770004772310400 a007 Real Root Of -182*x^4-684*x^3+193*x^2+594*x-389 3770004773045643 a001 75025/2207*2207^(5/16) 3770004775071331 m001 1/ln(GAMMA(1/12))^2/Tribonacci^2/GAMMA(1/4)^2 3770004778910708 r005 Im(z^2+c),c=-27/122+17/32*I,n=12 3770004783544606 a001 1576239/4181 3770004786842523 a001 514229/5778*1364^(1/5) 3770004790256807 a007 Real Root Of 195*x^4+546*x^3-932*x^2-573*x+951 3770004790268611 a001 75025/3571*1364^(2/5) 3770004792625300 a001 987/3571*9349^(15/19) 3770004794535678 r005 Re(z^2+c),c=-15/26+45/97*I,n=27 3770004797165772 a001 1597/2207*9349^(13/19) 3770004801217502 a001 987/1364*1364^(13/15) 3770004807810381 a001 514229/9349*1364^(4/15) 3770004810082732 a007 Real Root Of 823*x^4+888*x^3+687*x^2-969*x-432 3770004817089614 a007 Real Root Of 312*x^4+312*x^3+748*x^2-926*x-445 3770004820935588 a001 46368/2207*2207^(3/8) 3770004822182785 a001 987/3571*24476^(5/7) 3770004822782258 a001 1597/2207*24476^(13/21) 3770004823573657 m001 1/GAMMA(11/24)/exp((3^(1/3)))*GAMMA(7/24) 3770004826079029 a001 987/3571*64079^(15/23) 3770004826159004 a001 1597/2207*64079^(13/23) 3770004826597445 a001 987/3571*167761^(3/5) 3770004826666961 a001 987/3571*439204^(5/9) 3770004826677791 a001 987/3571*7881196^(5/11) 3770004826677815 a001 987/3571*20633239^(3/7) 3770004826677819 a001 987/3571*141422324^(5/13) 3770004826677819 a001 987/3571*2537720636^(1/3) 3770004826677819 a001 987/3571*45537549124^(5/17) 3770004826677819 a001 987/3571*312119004989^(3/11) 3770004826677819 a001 987/3571*14662949395604^(5/21) 3770004826677819 a001 987/3571*(1/2+1/2*5^(1/2))^15 3770004826677819 a001 987/3571*192900153618^(5/18) 3770004826677819 a001 987/3571*28143753123^(3/10) 3770004826677819 a001 987/3571*10749957122^(5/16) 3770004826677819 a001 987/3571*599074578^(5/14) 3770004826677819 a001 987/3571*228826127^(3/8) 3770004826677820 a001 987/3571*33385282^(5/12) 3770004826677954 a001 1597/2207*141422324^(1/3) 3770004826677954 a001 1597/2207*(1/2+1/2*5^(1/2))^13 3770004826677954 a001 1597/2207*73681302247^(1/4) 3770004826678363 a001 987/3571*1860498^(1/2) 3770004826703537 a001 1597/2207*271443^(1/2) 3770004826867917 a001 1597/2207*103682^(13/24) 3770004826897006 a001 987/3571*103682^(5/8) 3770004828098340 a001 1597/2207*39603^(13/22) 3770004828316726 a001 987/3571*39603^(15/22) 3770004835716325 a001 1292/2889*3571^(14/17) 3770004837386972 a001 1597/2207*15127^(13/20) 3770004839034378 a001 987/3571*15127^(3/4) 3770004839544425 m005 (1/2*Zeta(3)-4/5)/(4/7*5^(1/2)+4) 3770004840380091 a007 Real Root Of 997*x^4+983*x^3-601*x^2-696*x+275 3770004863772766 a007 Real Root Of -805*x^4+550*x^3+963*x^2+960*x-512 3770004870579031 a001 28657/2207*2207^(7/16) 3770004883288831 a001 1346269/15127*1364^(1/5) 3770004888800567 m001 (2*Pi/GAMMA(5/6))^HardyLittlewoodC3+Kolakoski 3770004896468841 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^21 3770004897360158 a001 3524578/39603*1364^(1/5) 3770004897383975 a001 2584/15127*3571^(16/17) 3770004897603426 m001 (Landau-Niven)/(BesselI(1,2)-GlaisherKinkelin) 3770004899413137 a001 9227465/103682*1364^(1/5) 3770004899712663 a001 24157817/271443*1364^(1/5) 3770004899756363 a001 63245986/710647*1364^(1/5) 3770004899762739 a001 165580141/1860498*1364^(1/5) 3770004899763669 a001 433494437/4870847*1364^(1/5) 3770004899763805 a001 1134903170/12752043*1364^(1/5) 3770004899763825 a001 2971215073/33385282*1364^(1/5) 3770004899763827 a001 7778742049/87403803*1364^(1/5) 3770004899763828 a001 20365011074/228826127*1364^(1/5) 3770004899763828 a001 53316291173/599074578*1364^(1/5) 3770004899763828 a001 139583862445/1568397607*1364^(1/5) 3770004899763828 a001 365435296162/4106118243*1364^(1/5) 3770004899763828 a001 956722026041/10749957122*1364^(1/5) 3770004899763828 a001 2504730781961/28143753123*1364^(1/5) 3770004899763828 a001 6557470319842/73681302247*1364^(1/5) 3770004899763828 a001 10610209857723/119218851371*1364^(1/5) 3770004899763828 a001 4052739537881/45537549124*1364^(1/5) 3770004899763828 a001 1548008755920/17393796001*1364^(1/5) 3770004899763828 a001 591286729879/6643838879*1364^(1/5) 3770004899763828 a001 225851433717/2537720636*1364^(1/5) 3770004899763828 a001 86267571272/969323029*1364^(1/5) 3770004899763828 a001 32951280099/370248451*1364^(1/5) 3770004899763828 a001 12586269025/141422324*1364^(1/5) 3770004899763829 a001 4807526976/54018521*1364^(1/5) 3770004899763837 a001 1836311903/20633239*1364^(1/5) 3770004899763889 a001 3524667/39604*1364^(1/5) 3770004899764244 a001 267914296/3010349*1364^(1/5) 3770004899766679 a001 102334155/1149851*1364^(1/5) 3770004899783371 a001 39088169/439204*1364^(1/5) 3770004899792575 r009 Re(z^3+c),c=-11/26+11/56*I,n=29 3770004899897780 a001 14930352/167761*1364^(1/5) 3770004900681948 a001 5702887/64079*1364^(1/5) 3770004904330623 m004 -125*Pi+15*Cot[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 3770004906056717 a001 2178309/24476*1364^(1/5) 3770004908234290 a001 1597/2207*5778^(13/18) 3770004908927421 r005 Re(z^2+c),c=47/126+12/35*I,n=31 3770004909972102 a001 514229/2207*843^(1/14) 3770004912972349 r002 39th iterates of z^2 + 3770004913884105 r005 Im(z^2+c),c=3/38+3/7*I,n=14 3770004915631759 a001 17711/2207*2207^(1/2) 3770004920781283 a001 987/3571*5778^(5/6) 3770004921928072 a001 416020/2889*1364^(2/15) 3770004925172978 a001 121393/3571*1364^(1/3) 3770004935418944 a008 Real Root of x^3-x^2+19*x-111 3770004941705997 p001 sum(1/(522*n+275)/(10^n),n=0..infinity) 3770004942895930 a001 832040/9349*1364^(1/5) 3770004960854243 a007 Real Root Of -957*x^4+448*x^3-381*x^2+943*x+453 3770004966946167 a001 2255/1926*3571^(12/17) 3770004972703139 a001 10946/2207*2207^(9/16) 3770004974383127 a001 2584/9349*3571^(15/17) 3770004974592818 m001 ln(Riemann3rdZero)/RenyiParking^2*cos(Pi/5)^2 3770004991916068 m006 (1/4*exp(2*Pi)+2/5)/(2/3*exp(2*Pi)-5/6) 3770004992917590 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^23 3770004994210523 m001 2/3+ln(2+sqrt(3))^exp(sqrt(2)) 3770004998309281 a001 6765/2207*2207^(5/8) 3770004998609735 a001 2584/2207*2207^(3/4) 3770004998926304 l006 ln(71/3080) 3770005004152805 r009 Re(z^3+c),c=-11/31+29/45*I,n=54 3770005006989273 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^25 3770005007105175 a001 5473/2889*3571^(11/17) 3770005007904407 a001 2255/13201*3571^(16/17) 3770005009042304 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^27 3770005009164224 a001 4181/5778*3571^(13/17) 3770005009341837 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^29 3770005009385538 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^31 3770005009391914 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^33 3770005009392845 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^35 3770005009392980 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^37 3770005009393000 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^39 3770005009393003 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^41 3770005009393003 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^43 3770005009393003 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^45 3770005009393003 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^47 3770005009393003 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^49 3770005009393003 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^51 3770005009393003 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^53 3770005009393003 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^55 3770005009393003 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^57 3770005009393003 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^59 3770005009393003 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^61 3770005009393003 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^63 3770005009393003 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^65 3770005009393003 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^67 3770005009393003 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^69 3770005009393003 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^71 3770005009393003 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^73 3770005009393003 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^75 3770005009393003 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^77 3770005009393003 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^79 3770005009393003 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^81 3770005009393003 a004 Fibonacci(80)*Lucas(17)/(1/2+sqrt(5)/2)^83 3770005009393003 a004 Fibonacci(82)*Lucas(17)/(1/2+sqrt(5)/2)^85 3770005009393003 a004 Fibonacci(84)*Lucas(17)/(1/2+sqrt(5)/2)^87 3770005009393003 a004 Fibonacci(86)*Lucas(17)/(1/2+sqrt(5)/2)^89 3770005009393003 a004 Fibonacci(88)*Lucas(17)/(1/2+sqrt(5)/2)^91 3770005009393003 a004 Fibonacci(90)*Lucas(17)/(1/2+sqrt(5)/2)^93 3770005009393003 a004 Fibonacci(92)*Lucas(17)/(1/2+sqrt(5)/2)^95 3770005009393003 a004 Fibonacci(94)*Lucas(17)/(1/2+sqrt(5)/2)^97 3770005009393003 a004 Fibonacci(96)*Lucas(17)/(1/2+sqrt(5)/2)^99 3770005009393003 a004 Fibonacci(97)*Lucas(17)/(1/2+sqrt(5)/2)^100 3770005009393003 a004 Fibonacci(95)*Lucas(17)/(1/2+sqrt(5)/2)^98 3770005009393003 a004 Fibonacci(93)*Lucas(17)/(1/2+sqrt(5)/2)^96 3770005009393003 a004 Fibonacci(91)*Lucas(17)/(1/2+sqrt(5)/2)^94 3770005009393003 a004 Fibonacci(89)*Lucas(17)/(1/2+sqrt(5)/2)^92 3770005009393003 a004 Fibonacci(87)*Lucas(17)/(1/2+sqrt(5)/2)^90 3770005009393003 a004 Fibonacci(85)*Lucas(17)/(1/2+sqrt(5)/2)^88 3770005009393003 a004 Fibonacci(83)*Lucas(17)/(1/2+sqrt(5)/2)^86 3770005009393003 a004 Fibonacci(81)*Lucas(17)/(1/2+sqrt(5)/2)^84 3770005009393003 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^82 3770005009393003 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^80 3770005009393003 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^78 3770005009393003 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^76 3770005009393003 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^74 3770005009393003 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^72 3770005009393003 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^70 3770005009393003 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^68 3770005009393003 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^66 3770005009393003 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^64 3770005009393003 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^62 3770005009393003 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^60 3770005009393003 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^58 3770005009393003 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^56 3770005009393003 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^54 3770005009393003 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^52 3770005009393003 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^50 3770005009393003 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^48 3770005009393003 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^46 3770005009393004 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^44 3770005009393004 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^42 3770005009393005 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^40 3770005009393012 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^38 3770005009393027 a001 2/1597*(1/2+1/2*5^(1/2))^31 3770005009393064 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^36 3770005009393419 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^34 3770005009395855 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^32 3770005009412547 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^30 3770005009526959 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^28 3770005010311147 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^26 3770005010723119 r005 Im(z^2+c),c=-1/22+15/29*I,n=10 3770005015686051 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^24 3770005015798945 a001 17711/5778*3571^(10/17) 3770005018377749 a001 311187/2161*1364^(2/15) 3770005022511200 l006 ln(4086/5957) 3770005024029121 a001 17711/103682*3571^(16/17) 3770005026381685 a001 15456/90481*3571^(16/17) 3770005026724920 a001 121393/710647*3571^(16/17) 3770005026774997 a001 105937/620166*3571^(16/17) 3770005026782303 a001 832040/4870847*3571^(16/17) 3770005026783369 a001 726103/4250681*3571^(16/17) 3770005026783524 a001 5702887/33385282*3571^(16/17) 3770005026783547 a001 4976784/29134601*3571^(16/17) 3770005026783550 a001 39088169/228826127*3571^(16/17) 3770005026783551 a001 34111385/199691526*3571^(16/17) 3770005026783551 a001 267914296/1568397607*3571^(16/17) 3770005026783551 a001 233802911/1368706081*3571^(16/17) 3770005026783551 a001 1836311903/10749957122*3571^(16/17) 3770005026783551 a001 1602508992/9381251041*3571^(16/17) 3770005026783551 a001 12586269025/73681302247*3571^(16/17) 3770005026783551 a001 10983760033/64300051206*3571^(16/17) 3770005026783551 a001 86267571272/505019158607*3571^(16/17) 3770005026783551 a001 75283811239/440719107401*3571^(16/17) 3770005026783551 a001 2504730781961/14662949395604*3571^(16/17) 3770005026783551 a001 139583862445/817138163596*3571^(16/17) 3770005026783551 a001 53316291173/312119004989*3571^(16/17) 3770005026783551 a001 20365011074/119218851371*3571^(16/17) 3770005026783551 a001 7778742049/45537549124*3571^(16/17) 3770005026783551 a001 2971215073/17393796001*3571^(16/17) 3770005026783551 a001 1134903170/6643838879*3571^(16/17) 3770005026783551 a001 433494437/2537720636*3571^(16/17) 3770005026783551 a001 165580141/969323029*3571^(16/17) 3770005026783551 a001 63245986/370248451*3571^(16/17) 3770005026783552 a001 24157817/141422324*3571^(16/17) 3770005026783561 a001 9227465/54018521*3571^(16/17) 3770005026783621 a001 3524578/20633239*3571^(16/17) 3770005026784028 a001 1346269/7881196*3571^(16/17) 3770005026786818 a001 514229/3010349*3571^(16/17) 3770005026805946 a001 196418/1149851*3571^(16/17) 3770005026937050 a001 75025/439204*3571^(16/17) 3770005027835650 a001 28657/167761*3571^(16/17) 3770005028613819 a001 6765/15127*3571^(14/17) 3770005032449568 a001 5702887/39603*1364^(2/15) 3770005033991733 a001 6765/24476*3571^(15/17) 3770005033994742 a001 10946/64079*3571^(16/17) 3770005034105735 a007 Real Root Of 68*x^4+107*x^3-408*x^2+751*x+627 3770005034502618 a001 7465176/51841*1364^(2/15) 3770005034802154 a001 39088169/271443*1364^(2/15) 3770005034845856 a001 14619165/101521*1364^(2/15) 3770005034852232 a001 133957148/930249*1364^(2/15) 3770005034853162 a001 701408733/4870847*1364^(2/15) 3770005034853298 a001 1836311903/12752043*1364^(2/15) 3770005034853318 a001 14930208/103681*1364^(2/15) 3770005034853321 a001 12586269025/87403803*1364^(2/15) 3770005034853321 a001 32951280099/228826127*1364^(2/15) 3770005034853321 a001 43133785636/299537289*1364^(2/15) 3770005034853321 a001 32264490531/224056801*1364^(2/15) 3770005034853321 a001 591286729879/4106118243*1364^(2/15) 3770005034853321 a001 774004377960/5374978561*1364^(2/15) 3770005034853321 a001 4052739537881/28143753123*1364^(2/15) 3770005034853321 a001 1515744265389/10525900321*1364^(2/15) 3770005034853321 a001 3278735159921/22768774562*1364^(2/15) 3770005034853321 a001 2504730781961/17393796001*1364^(2/15) 3770005034853321 a001 956722026041/6643838879*1364^(2/15) 3770005034853321 a001 182717648081/1268860318*1364^(2/15) 3770005034853321 a001 139583862445/969323029*1364^(2/15) 3770005034853321 a001 53316291173/370248451*1364^(2/15) 3770005034853321 a001 10182505537/70711162*1364^(2/15) 3770005034853322 a001 7778742049/54018521*1364^(2/15) 3770005034853330 a001 2971215073/20633239*1364^(2/15) 3770005034853382 a001 567451585/3940598*1364^(2/15) 3770005034853737 a001 433494437/3010349*1364^(2/15) 3770005034856173 a001 165580141/1149851*1364^(2/15) 3770005034872865 a001 31622993/219602*1364^(2/15) 3770005034987278 a001 24157817/167761*1364^(2/15) 3770005035771473 a001 9227465/64079*1364^(2/15) 3770005036511366 a001 28657/5778*3571^(9/17) 3770005041146430 a001 1762289/12238*1364^(2/15) 3770005042688511 a001 17711/64079*3571^(15/17) 3770005043581709 r005 Re(z^2+c),c=-15/29+3/37*I,n=12 3770005043957354 a001 46368/167761*3571^(15/17) 3770005044142476 a001 121393/439204*3571^(15/17) 3770005044169485 a001 317811/1149851*3571^(15/17) 3770005044173425 a001 832040/3010349*3571^(15/17) 3770005044174000 a001 2178309/7881196*3571^(15/17) 3770005044174084 a001 5702887/20633239*3571^(15/17) 3770005044174097 a001 14930352/54018521*3571^(15/17) 3770005044174098 a001 39088169/141422324*3571^(15/17) 3770005044174099 a001 102334155/370248451*3571^(15/17) 3770005044174099 a001 267914296/969323029*3571^(15/17) 3770005044174099 a001 701408733/2537720636*3571^(15/17) 3770005044174099 a001 1836311903/6643838879*3571^(15/17) 3770005044174099 a001 4807526976/17393796001*3571^(15/17) 3770005044174099 a001 12586269025/45537549124*3571^(15/17) 3770005044174099 a001 32951280099/119218851371*3571^(15/17) 3770005044174099 a001 86267571272/312119004989*3571^(15/17) 3770005044174099 a001 225851433717/817138163596*3571^(15/17) 3770005044174099 a001 1548008755920/5600748293801*3571^(15/17) 3770005044174099 a001 139583862445/505019158607*3571^(15/17) 3770005044174099 a001 53316291173/192900153618*3571^(15/17) 3770005044174099 a001 20365011074/73681302247*3571^(15/17) 3770005044174099 a001 7778742049/28143753123*3571^(15/17) 3770005044174099 a001 2971215073/10749957122*3571^(15/17) 3770005044174099 a001 1134903170/4106118243*3571^(15/17) 3770005044174099 a001 433494437/1568397607*3571^(15/17) 3770005044174099 a001 165580141/599074578*3571^(15/17) 3770005044174099 a001 63245986/228826127*3571^(15/17) 3770005044174099 a001 24157817/87403803*3571^(15/17) 3770005044174104 a001 9227465/33385282*3571^(15/17) 3770005044174136 a001 3524578/12752043*3571^(15/17) 3770005044174356 a001 1346269/4870847*3571^(15/17) 3770005044175861 a001 514229/1860498*3571^(15/17) 3770005044186177 a001 196418/710647*3571^(15/17) 3770005044256888 a001 75025/271443*3571^(15/17) 3770005044741542 a001 28657/103682*3571^(15/17) 3770005047401634 a001 1292/2889*9349^(14/19) 3770005048063416 a001 10946/39603*3571^(15/17) 3770005052526195 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^22 3770005052633071 a001 2576/321*3571^(8/17) 3770005052672673 r005 Re(z^2+c),c=-15/29+4/51*I,n=29 3770005054648088 m002 -6+4*Pi^6-6*Cosh[Pi] 3770005056757185 a001 17711/39603*3571^(14/17) 3770005057019071 a001 1346269/5778*1364^(1/15) 3770005060333183 a001 196418/3571*1364^(4/15) 3770005060863247 a001 23184/51841*3571^(14/17) 3770005061462314 a001 121393/271443*3571^(14/17) 3770005061549716 a001 317811/710647*3571^(14/17) 3770005061562468 a001 416020/930249*3571^(14/17) 3770005061564328 a001 2178309/4870847*3571^(14/17) 3770005061564600 a001 5702887/12752043*3571^(14/17) 3770005061564640 a001 7465176/16692641*3571^(14/17) 3770005061564645 a001 39088169/87403803*3571^(14/17) 3770005061564646 a001 102334155/228826127*3571^(14/17) 3770005061564646 a001 133957148/299537289*3571^(14/17) 3770005061564646 a001 701408733/1568397607*3571^(14/17) 3770005061564646 a001 1836311903/4106118243*3571^(14/17) 3770005061564646 a001 2403763488/5374978561*3571^(14/17) 3770005061564646 a001 12586269025/28143753123*3571^(14/17) 3770005061564646 a001 32951280099/73681302247*3571^(14/17) 3770005061564646 a001 43133785636/96450076809*3571^(14/17) 3770005061564646 a001 225851433717/505019158607*3571^(14/17) 3770005061564646 a001 591286729879/1322157322203*3571^(14/17) 3770005061564646 a001 10610209857723/23725150497407*3571^(14/17) 3770005061564646 a001 182717648081/408569081798*3571^(14/17) 3770005061564646 a001 139583862445/312119004989*3571^(14/17) 3770005061564646 a001 53316291173/119218851371*3571^(14/17) 3770005061564646 a001 10182505537/22768774562*3571^(14/17) 3770005061564646 a001 7778742049/17393796001*3571^(14/17) 3770005061564646 a001 2971215073/6643838879*3571^(14/17) 3770005061564646 a001 567451585/1268860318*3571^(14/17) 3770005061564646 a001 433494437/969323029*3571^(14/17) 3770005061564646 a001 165580141/370248451*3571^(14/17) 3770005061564647 a001 31622993/70711162*3571^(14/17) 3770005061564649 a001 24157817/54018521*3571^(14/17) 3770005061564664 a001 9227465/20633239*3571^(14/17) 3770005061564768 a001 1762289/3940598*3571^(14/17) 3770005061565478 a001 1346269/3010349*3571^(14/17) 3770005061570349 a001 514229/1149851*3571^(14/17) 3770005061603734 a001 98209/219602*3571^(14/17) 3770005061832557 a001 75025/167761*3571^(14/17) 3770005063400933 a001 28657/64079*3571^(14/17) 3770005068772829 a001 10946/15127*3571^(13/17) 3770005069354275 a007 Real Root Of 26*x^4-404*x^3-576*x^2-443*x+270 3770005070508273 a001 75025/5778*3571^(7/17) 3770005070831877 a001 4181/15127*3571^(15/17) 3770005071524964 r005 Re(z^2+c),c=-59/122+6/23*I,n=15 3770005074150742 a001 5473/12238*3571^(14/17) 3770005074579111 r005 Re(z^2+c),c=-55/106+2/63*I,n=26 3770005074988621 a001 1292/2889*24476^(2/3) 3770005075931420 m005 (1/2*Pi+6/11)/(1/12*5^(1/2)+3/8) 3770005076209791 a001 4181/24476*3571^(16/17) 3770005077466598 a001 17711/15127*3571^(12/17) 3770005077469607 a001 28657/39603*3571^(13/17) 3770005077986930 a001 1346269/9349*1364^(2/15) 3770005078625116 a001 1292/2889*64079^(14/23) 3770005078738450 a001 75025/103682*3571^(13/17) 3770005078923571 a001 196418/271443*3571^(13/17) 3770005078950580 a001 514229/710647*3571^(13/17) 3770005078954521 a001 1346269/1860498*3571^(13/17) 3770005078955096 a001 3524578/4870847*3571^(13/17) 3770005078955180 a001 9227465/12752043*3571^(13/17) 3770005078955192 a001 24157817/33385282*3571^(13/17) 3770005078955194 a001 63245986/87403803*3571^(13/17) 3770005078955194 a001 165580141/228826127*3571^(13/17) 3770005078955194 a001 433494437/599074578*3571^(13/17) 3770005078955194 a001 1134903170/1568397607*3571^(13/17) 3770005078955194 a001 2971215073/4106118243*3571^(13/17) 3770005078955194 a001 7778742049/10749957122*3571^(13/17) 3770005078955194 a001 20365011074/28143753123*3571^(13/17) 3770005078955194 a001 53316291173/73681302247*3571^(13/17) 3770005078955194 a001 139583862445/192900153618*3571^(13/17) 3770005078955194 a001 365435296162/505019158607*3571^(13/17) 3770005078955194 a001 10610209857723/14662949395604*3571^(13/17) 3770005078955194 a001 225851433717/312119004989*3571^(13/17) 3770005078955194 a001 86267571272/119218851371*3571^(13/17) 3770005078955194 a001 32951280099/45537549124*3571^(13/17) 3770005078955194 a001 12586269025/17393796001*3571^(13/17) 3770005078955194 a001 4807526976/6643838879*3571^(13/17) 3770005078955194 a001 1836311903/2537720636*3571^(13/17) 3770005078955194 a001 701408733/969323029*3571^(13/17) 3770005078955194 a001 267914296/370248451*3571^(13/17) 3770005078955194 a001 102334155/141422324*3571^(13/17) 3770005078955195 a001 39088169/54018521*3571^(13/17) 3770005078955200 a001 14930352/20633239*3571^(13/17) 3770005078955232 a001 5702887/7881196*3571^(13/17) 3770005078955451 a001 2178309/3010349*3571^(13/17) 3770005078956956 a001 832040/1149851*3571^(13/17) 3770005078967273 a001 317811/439204*3571^(13/17) 3770005079037983 a001 121393/167761*3571^(13/17) 3770005079183983 a001 1292/2889*20633239^(2/5) 3770005079183986 a001 1292/2889*17393796001^(2/7) 3770005079183986 a001 1292/2889*14662949395604^(2/9) 3770005079183986 a001 1292/2889*(1/2+1/2*5^(1/2))^14 3770005079183986 a001 1292/2889*505019158607^(1/4) 3770005079183986 a001 1292/2889*10749957122^(7/24) 3770005079183986 a001 1292/2889*4106118243^(7/23) 3770005079183986 a001 1292/2889*1568397607^(7/22) 3770005079183986 a001 1292/2889*599074578^(1/3) 3770005079183986 a001 1292/2889*228826127^(7/20) 3770005079183986 a001 1292/2889*87403803^(7/19) 3770005079183988 a001 1292/2889*33385282^(7/18) 3770005079183996 a001 1292/2889*12752043^(7/17) 3770005079184056 a001 1292/2889*4870847^(7/16) 3770005079184495 a001 1292/2889*1860498^(7/15) 3770005079187719 a001 1292/2889*710647^(1/2) 3770005079211537 a001 1292/2889*271443^(7/13) 3770005079388561 a001 1292/2889*103682^(7/12) 3770005079522638 a001 46368/64079*3571^(13/17) 3770005080713633 a001 1292/2889*39603^(7/11) 3770005080783139 r005 Re(z^2+c),c=-41/86+21/58*I,n=50 3770005081587713 a001 6677056/17711 3770005082844512 a001 17711/24476*3571^(13/17) 3770005087713699 a001 121393/5778*3571^(6/17) 3770005090716776 a001 1292/2889*15127^(7/10) 3770005093591312 a001 15456/13201*3571^(12/17) 3770005095943876 a001 121393/103682*3571^(12/17) 3770005096287110 a001 105937/90481*3571^(12/17) 3770005096337188 a001 832040/710647*3571^(12/17) 3770005096344494 a001 726103/620166*3571^(12/17) 3770005096345560 a001 5702887/4870847*3571^(12/17) 3770005096345715 a001 4976784/4250681*3571^(12/17) 3770005096345738 a001 39088169/33385282*3571^(12/17) 3770005096345741 a001 34111385/29134601*3571^(12/17) 3770005096345742 a001 267914296/228826127*3571^(12/17) 3770005096345742 a001 233802911/199691526*3571^(12/17) 3770005096345742 a001 1836311903/1568397607*3571^(12/17) 3770005096345742 a001 1602508992/1368706081*3571^(12/17) 3770005096345742 a001 12586269025/10749957122*3571^(12/17) 3770005096345742 a001 10983760033/9381251041*3571^(12/17) 3770005096345742 a001 86267571272/73681302247*3571^(12/17) 3770005096345742 a001 75283811239/64300051206*3571^(12/17) 3770005096345742 a001 2504730781961/2139295485799*3571^(12/17) 3770005096345742 a001 365435296162/312119004989*3571^(12/17) 3770005096345742 a001 139583862445/119218851371*3571^(12/17) 3770005096345742 a001 53316291173/45537549124*3571^(12/17) 3770005096345742 a001 20365011074/17393796001*3571^(12/17) 3770005096345742 a001 7778742049/6643838879*3571^(12/17) 3770005096345742 a001 2971215073/2537720636*3571^(12/17) 3770005096345742 a001 1134903170/969323029*3571^(12/17) 3770005096345742 a001 433494437/370248451*3571^(12/17) 3770005096345742 a001 165580141/141422324*3571^(12/17) 3770005096345743 a001 63245986/54018521*3571^(12/17) 3770005096345752 a001 24157817/20633239*3571^(12/17) 3770005096345811 a001 9227465/7881196*3571^(12/17) 3770005096346219 a001 3524578/3010349*3571^(12/17) 3770005096349009 a001 1346269/1149851*3571^(12/17) 3770005096368137 a001 514229/439204*3571^(12/17) 3770005096499241 a001 196418/167761*3571^(12/17) 3770005097397841 a001 75025/64079*3571^(12/17) 3770005097871002 r009 Im(z^3+c),c=-7/46+19/45*I,n=5 3770005098179019 a001 28657/15127*3571^(11/17) 3770005103556933 a001 28657/24476*3571^(12/17) 3770005105174957 a001 98209/2889*3571^(5/17) 3770005105612973 a001 6765/9349*3571^(13/17) 3770005106292490 a001 4181/2207*2207^(11/16) 3770005111466515 a001 75025/39603*3571^(11/17) 3770005111596128 r005 Re(z^2+c),c=-37/78+23/61*I,n=41 3770005113405134 a001 98209/51841*3571^(11/17) 3770005113687975 a001 514229/271443*3571^(11/17) 3770005113729241 a001 1346269/710647*3571^(11/17) 3770005113735261 a001 1762289/930249*3571^(11/17) 3770005113736140 a001 9227465/4870847*3571^(11/17) 3770005113736268 a001 24157817/12752043*3571^(11/17) 3770005113736287 a001 31622993/16692641*3571^(11/17) 3770005113736289 a001 165580141/87403803*3571^(11/17) 3770005113736290 a001 433494437/228826127*3571^(11/17) 3770005113736290 a001 567451585/299537289*3571^(11/17) 3770005113736290 a001 2971215073/1568397607*3571^(11/17) 3770005113736290 a001 7778742049/4106118243*3571^(11/17) 3770005113736290 a001 10182505537/5374978561*3571^(11/17) 3770005113736290 a001 53316291173/28143753123*3571^(11/17) 3770005113736290 a001 139583862445/73681302247*3571^(11/17) 3770005113736290 a001 182717648081/96450076809*3571^(11/17) 3770005113736290 a001 956722026041/505019158607*3571^(11/17) 3770005113736290 a001 10610209857723/5600748293801*3571^(11/17) 3770005113736290 a001 591286729879/312119004989*3571^(11/17) 3770005113736290 a001 225851433717/119218851371*3571^(11/17) 3770005113736290 a001 21566892818/11384387281*3571^(11/17) 3770005113736290 a001 32951280099/17393796001*3571^(11/17) 3770005113736290 a001 12586269025/6643838879*3571^(11/17) 3770005113736290 a001 1201881744/634430159*3571^(11/17) 3770005113736290 a001 1836311903/969323029*3571^(11/17) 3770005113736290 a001 701408733/370248451*3571^(11/17) 3770005113736290 a001 66978574/35355581*3571^(11/17) 3770005113736291 a001 102334155/54018521*3571^(11/17) 3770005113736298 a001 39088169/20633239*3571^(11/17) 3770005113736347 a001 3732588/1970299*3571^(11/17) 3770005113736683 a001 5702887/3010349*3571^(11/17) 3770005113738982 a001 2178309/1149851*3571^(11/17) 3770005113754744 a001 208010/109801*3571^(11/17) 3770005113862780 a001 317811/167761*3571^(11/17) 3770005114300725 a001 6624/2161*3571^(10/17) 3770005114603267 a001 121393/64079*3571^(11/17) 3770005119678638 a001 11592/6119*3571^(11/17) 3770005122538497 a001 105937/1926*3571^(4/17) 3770005126499532 r009 Im(z^3+c),c=-7/74+20/47*I,n=10 3770005128671941 a001 121393/39603*3571^(10/17) 3770005130768673 a001 317811/103682*3571^(10/17) 3770005131074582 a001 832040/271443*3571^(10/17) 3770005131119214 a001 311187/101521*3571^(10/17) 3770005131125725 a001 5702887/1860498*3571^(10/17) 3770005131126676 a001 14930352/4870847*3571^(10/17) 3770005131126814 a001 39088169/12752043*3571^(10/17) 3770005131126834 a001 14619165/4769326*3571^(10/17) 3770005131126837 a001 267914296/87403803*3571^(10/17) 3770005131126838 a001 701408733/228826127*3571^(10/17) 3770005131126838 a001 1836311903/599074578*3571^(10/17) 3770005131126838 a001 686789568/224056801*3571^(10/17) 3770005131126838 a001 12586269025/4106118243*3571^(10/17) 3770005131126838 a001 32951280099/10749957122*3571^(10/17) 3770005131126838 a001 86267571272/28143753123*3571^(10/17) 3770005131126838 a001 32264490531/10525900321*3571^(10/17) 3770005131126838 a001 591286729879/192900153618*3571^(10/17) 3770005131126838 a001 1548008755920/505019158607*3571^(10/17) 3770005131126838 a001 1515744265389/494493258286*3571^(10/17) 3770005131126838 a001 2504730781961/817138163596*3571^(10/17) 3770005131126838 a001 956722026041/312119004989*3571^(10/17) 3770005131126838 a001 365435296162/119218851371*3571^(10/17) 3770005131126838 a001 139583862445/45537549124*3571^(10/17) 3770005131126838 a001 53316291173/17393796001*3571^(10/17) 3770005131126838 a001 20365011074/6643838879*3571^(10/17) 3770005131126838 a001 7778742049/2537720636*3571^(10/17) 3770005131126838 a001 2971215073/969323029*3571^(10/17) 3770005131126838 a001 1134903170/370248451*3571^(10/17) 3770005131126838 a001 433494437/141422324*3571^(10/17) 3770005131126839 a001 165580141/54018521*3571^(10/17) 3770005131126847 a001 63245986/20633239*3571^(10/17) 3770005131126900 a001 24157817/7881196*3571^(10/17) 3770005131127263 a001 9227465/3010349*3571^(10/17) 3770005131129750 a001 3524578/1149851*3571^(10/17) 3770005131146798 a001 1346269/439204*3571^(10/17) 3770005131263645 a001 514229/167761*3571^(10/17) 3770005132064525 a001 196418/64079*3571^(10/17) 3770005132175927 a001 75025/15127*3571^(9/17) 3770005132426518 m005 (1/3*Catalan-1/9)/(3/5*2^(1/2)-6) 3770005133479483 r005 Im(z^2+c),c=-19/14+1/220*I,n=38 3770005137162300 a007 Real Root Of -194*x^4-777*x^3+98*x^2+838*x-678 3770005137553841 a001 75025/24476*3571^(10/17) 3770005139310047 a001 2584/15127*9349^(16/19) 3770005139939361 a001 514229/5778*3571^(3/17) 3770005144940304 m001 1/exp(ArtinRank2)^2/Conway^2*Sierpinski 3770005145771983 a001 10946/9349*3571^(12/17) 3770005146133199 a001 196418/39603*3571^(9/17) 3770005147101263 r009 Re(z^3+c),c=-59/114+4/13*I,n=63 3770005147831032 a001 4181/9349*3571^(14/17) 3770005148169538 a001 514229/103682*3571^(9/17) 3770005148390723 a001 2255/1926*9349^(12/19) 3770005148466636 a001 1346269/271443*3571^(9/17) 3770005148509981 a001 3524578/710647*3571^(9/17) 3770005148516306 a001 9227465/1860498*3571^(9/17) 3770005148517228 a001 24157817/4870847*3571^(9/17) 3770005148517363 a001 63245986/12752043*3571^(9/17) 3770005148517383 a001 165580141/33385282*3571^(9/17) 3770005148517385 a001 433494437/87403803*3571^(9/17) 3770005148517386 a001 1134903170/228826127*3571^(9/17) 3770005148517386 a001 2971215073/599074578*3571^(9/17) 3770005148517386 a001 7778742049/1568397607*3571^(9/17) 3770005148517386 a001 20365011074/4106118243*3571^(9/17) 3770005148517386 a001 53316291173/10749957122*3571^(9/17) 3770005148517386 a001 139583862445/28143753123*3571^(9/17) 3770005148517386 a001 365435296162/73681302247*3571^(9/17) 3770005148517386 a001 956722026041/192900153618*3571^(9/17) 3770005148517386 a001 2504730781961/505019158607*3571^(9/17) 3770005148517386 a001 10610209857723/2139295485799*3571^(9/17) 3770005148517386 a001 140728068720/28374454999*3571^(9/17) 3770005148517386 a001 591286729879/119218851371*3571^(9/17) 3770005148517386 a001 225851433717/45537549124*3571^(9/17) 3770005148517386 a001 86267571272/17393796001*3571^(9/17) 3770005148517386 a001 32951280099/6643838879*3571^(9/17) 3770005148517386 a001 1144206275/230701876*3571^(9/17) 3770005148517386 a001 4807526976/969323029*3571^(9/17) 3770005148517386 a001 1836311903/370248451*3571^(9/17) 3770005148517386 a001 701408733/141422324*3571^(9/17) 3770005148517387 a001 267914296/54018521*3571^(9/17) 3770005148517395 a001 9303105/1875749*3571^(9/17) 3770005148517446 a001 39088169/7881196*3571^(9/17) 3770005148517799 a001 14930352/3010349*3571^(9/17) 3770005148520214 a001 5702887/1149851*3571^(9/17) 3770005148536771 a001 2178309/439204*3571^(9/17) 3770005148650252 a001 75640/15251*3571^(9/17) 3770005148841394 a001 2584/39603*9349^(18/19) 3770005148974957 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^23 3770005149381354 a001 121393/15127*3571^(8/17) 3770005149428064 a001 317811/64079*3571^(9/17) 3770005153467466 a001 3524578/15127*1364^(1/15) 3770005154465753 a001 17711/9349*3571^(11/17) 3770005154710240 r002 12th iterates of z^2 + 3770005154759268 a001 121393/24476*3571^(9/17) 3770005157325969 a001 416020/2889*3571^(2/17) 3770005157956047 m001 (Ei(1,1)-gamma(1))/(LandauRamanujan+Trott) 3770005159808341 a001 646/6119*9349^(17/19) 3770005159826413 a003 sin(Pi*1/42)*sin(Pi*17/101) 3770005162539543 m001 (GlaisherKinkelin+Sierpinski)/GAMMA(23/24) 3770005163496738 a001 105937/13201*3571^(8/17) 3770005165556145 a001 416020/51841*3571^(8/17) 3770005165856609 a001 726103/90481*3571^(8/17) 3770005165900446 a001 5702887/710647*3571^(8/17) 3770005165906842 a001 829464/103361*3571^(8/17) 3770005165907775 a001 39088169/4870847*3571^(8/17) 3770005165907911 a001 34111385/4250681*3571^(8/17) 3770005165907931 a001 133957148/16692641*3571^(8/17) 3770005165907934 a001 233802911/29134601*3571^(8/17) 3770005165907934 a001 1836311903/228826127*3571^(8/17) 3770005165907934 a001 267084832/33281921*3571^(8/17) 3770005165907934 a001 12586269025/1568397607*3571^(8/17) 3770005165907934 a001 10983760033/1368706081*3571^(8/17) 3770005165907934 a001 43133785636/5374978561*3571^(8/17) 3770005165907934 a001 75283811239/9381251041*3571^(8/17) 3770005165907934 a001 591286729879/73681302247*3571^(8/17) 3770005165907934 a001 86000486440/10716675201*3571^(8/17) 3770005165907934 a001 4052739537881/505019158607*3571^(8/17) 3770005165907934 a001 3278735159921/408569081798*3571^(8/17) 3770005165907934 a001 2504730781961/312119004989*3571^(8/17) 3770005165907934 a001 956722026041/119218851371*3571^(8/17) 3770005165907934 a001 182717648081/22768774562*3571^(8/17) 3770005165907934 a001 139583862445/17393796001*3571^(8/17) 3770005165907934 a001 53316291173/6643838879*3571^(8/17) 3770005165907934 a001 10182505537/1268860318*3571^(8/17) 3770005165907934 a001 7778742049/969323029*3571^(8/17) 3770005165907934 a001 2971215073/370248451*3571^(8/17) 3770005165907934 a001 567451585/70711162*3571^(8/17) 3770005165907935 a001 433494437/54018521*3571^(8/17) 3770005165907943 a001 165580141/20633239*3571^(8/17) 3770005165907995 a001 31622993/3940598*3571^(8/17) 3770005165908351 a001 24157817/3010349*3571^(8/17) 3770005165910794 a001 9227465/1149851*3571^(8/17) 3770005165927539 a001 1762289/219602*3571^(8/17) 3770005166042305 a001 1346269/167761*3571^(8/17) 3770005166828929 a001 514229/64079*3571^(8/17) 3770005166842612 a001 196418/15127*3571^(7/17) 3770005167002743 a001 17711/5778*9349^(10/19) 3770005167013892 a001 1292/2889*5778^(7/9) 3770005167539098 a001 9227465/39603*1364^(1/15) 3770005169592121 a001 24157817/103682*1364^(1/15) 3770005169891653 a001 63245986/271443*1364^(1/15) 3770005169935354 a001 165580141/710647*1364^(1/15) 3770005169941730 a001 433494437/1860498*1364^(1/15) 3770005169942660 a001 1134903170/4870847*1364^(1/15) 3770005169942796 a001 2971215073/12752043*1364^(1/15) 3770005169942816 a001 7778742049/33385282*1364^(1/15) 3770005169942819 a001 20365011074/87403803*1364^(1/15) 3770005169942819 a001 53316291173/228826127*1364^(1/15) 3770005169942819 a001 139583862445/599074578*1364^(1/15) 3770005169942819 a001 365435296162/1568397607*1364^(1/15) 3770005169942819 a001 956722026041/4106118243*1364^(1/15) 3770005169942819 a001 2504730781961/10749957122*1364^(1/15) 3770005169942819 a001 6557470319842/28143753123*1364^(1/15) 3770005169942819 a001 10610209857723/45537549124*1364^(1/15) 3770005169942819 a001 4052739537881/17393796001*1364^(1/15) 3770005169942819 a001 1548008755920/6643838879*1364^(1/15) 3770005169942819 a001 591286729879/2537720636*1364^(1/15) 3770005169942819 a001 225851433717/969323029*1364^(1/15) 3770005169942819 a001 86267571272/370248451*1364^(1/15) 3770005169942819 a001 63246219/271444*1364^(1/15) 3770005169942821 a001 12586269025/54018521*1364^(1/15) 3770005169942828 a001 4807526976/20633239*1364^(1/15) 3770005169942880 a001 1836311903/7881196*1364^(1/15) 3770005169943235 a001 701408733/3010349*1364^(1/15) 3770005169945671 a001 267914296/1149851*1364^(1/15) 3770005169962363 a001 102334155/439204*1364^(1/15) 3770005170076774 a001 39088169/167761*1364^(1/15) 3770005170838034 a001 2584/15127*24476^(16/21) 3770005170860959 a001 14930352/64079*1364^(1/15) 3770005172036713 a001 2255/1926*24476^(4/7) 3770005172220526 a001 98209/12238*3571^(8/17) 3770005172594785 a001 28657/5778*9349^(9/19) 3770005173429353 a001 5473/2889*9349^(11/19) 3770005173596110 a001 2576/321*9349^(8/19) 3770005174718022 a001 1346269/5778*3571^(1/17) 3770005174994028 a001 2584/15127*64079^(16/23) 3770005175153709 a001 2255/1926*64079^(12/23) 3770005175178175 a001 28657/9349*3571^(10/17) 3770005175624054 a001 2255/1926*439204^(4/9) 3770005175632718 a001 2255/1926*7881196^(4/11) 3770005175632737 a001 2584/15127*(1/2+1/2*5^(1/2))^16 3770005175632737 a001 2584/15127*23725150497407^(1/4) 3770005175632737 a001 2584/15127*73681302247^(4/13) 3770005175632737 a001 2584/15127*10749957122^(1/3) 3770005175632737 a001 2584/15127*4106118243^(8/23) 3770005175632737 a001 2584/15127*1568397607^(4/11) 3770005175632737 a001 2584/15127*599074578^(8/21) 3770005175632737 a001 2584/15127*228826127^(2/5) 3770005175632737 a001 2584/15127*87403803^(8/19) 3770005175632738 a001 2584/15127*33385282^(4/9) 3770005175632740 a001 2255/1926*141422324^(4/13) 3770005175632740 a001 2255/1926*2537720636^(4/15) 3770005175632740 a001 2255/1926*45537549124^(4/17) 3770005175632740 a001 2255/1926*817138163596^(4/19) 3770005175632740 a001 2255/1926*14662949395604^(4/21) 3770005175632740 a001 2255/1926*(1/2+1/2*5^(1/2))^12 3770005175632740 a001 2255/1926*192900153618^(2/9) 3770005175632740 a001 2255/1926*73681302247^(3/13) 3770005175632740 a001 2255/1926*10749957122^(1/4) 3770005175632740 a001 2255/1926*4106118243^(6/23) 3770005175632740 a001 2255/1926*1568397607^(3/11) 3770005175632740 a001 2255/1926*599074578^(2/7) 3770005175632740 a001 2255/1926*228826127^(3/10) 3770005175632740 a001 2255/1926*87403803^(6/19) 3770005175632741 a001 2255/1926*33385282^(1/3) 3770005175632748 a001 2584/15127*12752043^(8/17) 3770005175632748 a001 2255/1926*12752043^(6/17) 3770005175632800 a001 2255/1926*4870847^(3/8) 3770005175632816 a001 2584/15127*4870847^(1/2) 3770005175633176 a001 2255/1926*1860498^(2/5) 3770005175633318 a001 2584/15127*1860498^(8/15) 3770005175635939 a001 2255/1926*710647^(3/7) 3770005175637003 a001 2584/15127*710647^(4/7) 3770005175656355 a001 2255/1926*271443^(6/13) 3770005175664224 a001 2584/15127*271443^(8/13) 3770005175808090 a001 2255/1926*103682^(1/2) 3770005175866537 a001 2584/15127*103682^(2/3) 3770005175983436 a001 728365/1932 3770005176235844 a001 5702887/24476*1364^(1/15) 3770005176350933 a001 75025/5778*9349^(7/19) 3770005176943866 a001 2255/1926*39603^(6/11) 3770005177380905 a001 2584/15127*39603^(8/11) 3770005178435979 a001 121393/5778*9349^(6/19) 3770005180776857 a001 98209/2889*9349^(5/19) 3770005180897603 a001 514229/39603*3571^(7/17) 3770005182948199 a001 1346269/103682*3571^(7/17) 3770005183020017 a001 105937/1926*9349^(4/19) 3770005183247377 a001 3524578/271443*3571^(7/17) 3770005183291026 a001 9227465/710647*3571^(7/17) 3770005183297394 a001 24157817/1860498*3571^(7/17) 3770005183298324 a001 63245986/4870847*3571^(7/17) 3770005183298459 a001 165580141/12752043*3571^(7/17) 3770005183298479 a001 433494437/33385282*3571^(7/17) 3770005183298482 a001 1134903170/87403803*3571^(7/17) 3770005183298482 a001 2971215073/228826127*3571^(7/17) 3770005183298482 a001 7778742049/599074578*3571^(7/17) 3770005183298482 a001 20365011074/1568397607*3571^(7/17) 3770005183298482 a001 53316291173/4106118243*3571^(7/17) 3770005183298482 a001 139583862445/10749957122*3571^(7/17) 3770005183298482 a001 365435296162/28143753123*3571^(7/17) 3770005183298482 a001 956722026041/73681302247*3571^(7/17) 3770005183298482 a001 2504730781961/192900153618*3571^(7/17) 3770005183298482 a001 10610209857723/817138163596*3571^(7/17) 3770005183298482 a001 4052739537881/312119004989*3571^(7/17) 3770005183298482 a001 1548008755920/119218851371*3571^(7/17) 3770005183298482 a001 591286729879/45537549124*3571^(7/17) 3770005183298482 a001 7787980473/599786069*3571^(7/17) 3770005183298482 a001 86267571272/6643838879*3571^(7/17) 3770005183298482 a001 32951280099/2537720636*3571^(7/17) 3770005183298482 a001 12586269025/969323029*3571^(7/17) 3770005183298482 a001 4807526976/370248451*3571^(7/17) 3770005183298482 a001 1836311903/141422324*3571^(7/17) 3770005183298484 a001 701408733/54018521*3571^(7/17) 3770005183298491 a001 9238424/711491*3571^(7/17) 3770005183298543 a001 102334155/7881196*3571^(7/17) 3770005183298898 a001 39088169/3010349*3571^(7/17) 3770005183301330 a001 14930352/1149851*3571^(7/17) 3770005183318003 a001 5702887/439204*3571^(7/17) 3770005183432279 a001 2178309/167761*3571^(7/17) 3770005184206151 a001 317811/15127*3571^(6/17) 3770005184215536 a001 832040/64079*3571^(7/17) 3770005184310379 a001 2584/39603*24476^(6/7) 3770005185300501 a001 514229/5778*9349^(3/19) 3770005185517989 a001 2255/1926*15127^(3/5) 3770005185764072 a001 1292/51841*24476^(20/21) 3770005185815103 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^25 3770005186707734 a001 17711/5778*24476^(10/21) 3770005187332584 a001 2584/64079*24476^(19/21) 3770005187566729 a001 416020/2889*9349^(2/19) 3770005188813068 a001 2584/15127*15127^(4/5) 3770005188985873 a001 2584/39603*64079^(18/23) 3770005189305231 a001 17711/5778*64079^(10/23) 3770005189360103 a001 2576/321*24476^(8/21) 3770005189584065 a001 10959/844*3571^(7/17) 3770005189650842 a001 17711/5778*167761^(2/5) 3770005189691391 a001 2584/39603*439204^(2/3) 3770005189704387 a001 2584/39603*7881196^(6/11) 3770005189704420 a001 2584/39603*141422324^(6/13) 3770005189704420 a001 2584/39603*2537720636^(2/5) 3770005189704420 a001 2584/39603*45537549124^(6/17) 3770005189704420 a001 2584/39603*14662949395604^(2/7) 3770005189704420 a001 2584/39603*(1/2+1/2*5^(1/2))^18 3770005189704420 a001 2584/39603*192900153618^(1/3) 3770005189704420 a001 2584/39603*10749957122^(3/8) 3770005189704420 a001 2584/39603*4106118243^(9/23) 3770005189704420 a001 2584/39603*1568397607^(9/22) 3770005189704420 a001 2584/39603*599074578^(3/7) 3770005189704420 a001 2584/39603*228826127^(9/20) 3770005189704421 a001 2584/39603*87403803^(9/19) 3770005189704421 a001 17711/5778*20633239^(2/7) 3770005189704422 a001 2584/39603*33385282^(1/2) 3770005189704424 a001 17711/5778*2537720636^(2/9) 3770005189704424 a001 17711/5778*312119004989^(2/11) 3770005189704424 a001 17711/5778*(1/2+1/2*5^(1/2))^10 3770005189704424 a001 17711/5778*28143753123^(1/5) 3770005189704424 a001 17711/5778*10749957122^(5/24) 3770005189704424 a001 17711/5778*4106118243^(5/23) 3770005189704424 a001 17711/5778*1568397607^(5/22) 3770005189704424 a001 17711/5778*599074578^(5/21) 3770005189704424 a001 17711/5778*228826127^(1/4) 3770005189704424 a001 17711/5778*87403803^(5/19) 3770005189704425 a001 17711/5778*33385282^(5/18) 3770005189704431 a001 17711/5778*12752043^(5/17) 3770005189704433 a001 2584/39603*12752043^(9/17) 3770005189704473 a001 17711/5778*4870847^(5/16) 3770005189704510 a001 2584/39603*4870847^(9/16) 3770005189704787 a001 17711/5778*1860498^(1/3) 3770005189705074 a001 2584/39603*1860498^(3/5) 3770005189707090 a001 17711/5778*710647^(5/14) 3770005189709219 a001 2584/39603*710647^(9/14) 3770005189724103 a001 17711/5778*271443^(5/13) 3770005189739843 a001 2584/39603*271443^(9/13) 3770005189755587 a001 45765224/121393 3770005189838402 a001 1346269/5778*9349^(1/19) 3770005189850549 a001 17711/5778*103682^(5/12) 3770005189967445 a001 2584/39603*103682^(3/4) 3770005190144427 a001 75025/5778*24476^(1/3) 3770005190258974 a001 121393/5778*24476^(2/7) 3770005190329277 a001 28657/5778*24476^(3/7) 3770005190629353 a001 98209/2889*24476^(5/21) 3770005190797029 a001 17711/5778*39603^(5/11) 3770005190902013 a001 105937/1926*24476^(4/21) 3770005190959066 a001 1292/51841*64079^(20/23) 3770005191178760 a001 2584/271443*64079^(22/23) 3770005191190008 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^27 3770005191211999 a001 514229/5778*24476^(1/7) 3770005191299880 a001 46368/9349*3571^(9/17) 3770005191403801 a001 2584/167761*64079^(21/23) 3770005191438100 a001 2576/321*64079^(8/23) 3770005191507727 a001 416020/2889*24476^(2/21) 3770005191650287 a001 1292/51841*167761^(4/5) 3770005191671109 a001 2584/39603*39603^(9/11) 3770005191757446 a001 1292/51841*20633239^(4/7) 3770005191757451 a001 1292/51841*2537720636^(4/9) 3770005191757451 a001 1292/51841*(1/2+1/2*5^(1/2))^20 3770005191757451 a001 1292/51841*23725150497407^(5/16) 3770005191757451 a001 1292/51841*505019158607^(5/14) 3770005191757451 a001 1292/51841*73681302247^(5/13) 3770005191757451 a001 1292/51841*28143753123^(2/5) 3770005191757451 a001 1292/51841*10749957122^(5/12) 3770005191757451 a001 1292/51841*4106118243^(10/23) 3770005191757451 a001 1292/51841*1568397607^(5/11) 3770005191757451 a001 1292/51841*599074578^(10/21) 3770005191757451 a001 1292/51841*228826127^(1/2) 3770005191757452 a001 1292/51841*87403803^(10/19) 3770005191757453 a001 1292/51841*33385282^(5/9) 3770005191757455 a001 2576/321*(1/2+1/2*5^(1/2))^8 3770005191757455 a001 2576/321*23725150497407^(1/8) 3770005191757455 a001 2576/321*505019158607^(1/7) 3770005191757455 a001 2576/321*73681302247^(2/13) 3770005191757455 a001 2576/321*10749957122^(1/6) 3770005191757455 a001 2576/321*4106118243^(4/23) 3770005191757455 a001 2576/321*1568397607^(2/11) 3770005191757455 a001 2576/321*599074578^(4/21) 3770005191757455 a001 2576/321*228826127^(1/5) 3770005191757455 a001 2576/321*87403803^(4/19) 3770005191757455 a001 2576/321*33385282^(2/9) 3770005191757460 a001 2576/321*12752043^(4/17) 3770005191757465 a001 1292/51841*12752043^(10/17) 3770005191757494 a001 2576/321*4870847^(1/4) 3770005191757551 a001 1292/51841*4870847^(5/8) 3770005191757745 a001 2576/321*1860498^(4/15) 3770005191758177 a001 1292/51841*1860498^(2/3) 3770005191759588 a001 2576/321*710647^(2/7) 3770005191762784 a001 1292/51841*710647^(5/7) 3770005191764916 a001 39938304/105937 3770005191773198 a001 2576/321*271443^(4/13) 3770005191796810 a001 1292/51841*271443^(10/13) 3770005191808901 a001 1346269/5778*24476^(1/21) 3770005191817472 a001 121393/5778*64079^(6/23) 3770005191874355 a001 2576/321*103682^(1/3) 3770005191928102 a001 98209/2889*64079^(5/23) 3770005191941012 a001 105937/1926*64079^(4/23) 3770005191962675 a001 75025/5778*64079^(7/23) 3770005191974196 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^29 3770005191991248 a001 514229/5778*64079^(3/23) 3770005192027227 a001 416020/2889*64079^(2/23) 3770005192049701 a001 1292/51841*103682^(5/6) 3770005192052645 a001 121393/5778*439204^(2/9) 3770005192056944 a001 2584/271443*7881196^(2/3) 3770005192056977 a001 121393/5778*7881196^(2/11) 3770005192056984 a001 2584/271443*312119004989^(2/5) 3770005192056984 a001 2584/271443*(1/2+1/2*5^(1/2))^22 3770005192056984 a001 2584/271443*10749957122^(11/24) 3770005192056984 a001 2584/271443*4106118243^(11/23) 3770005192056984 a001 2584/271443*1568397607^(1/2) 3770005192056984 a001 2584/271443*599074578^(11/21) 3770005192056985 a001 2584/271443*228826127^(11/20) 3770005192056985 a001 2584/271443*87403803^(11/19) 3770005192056987 a001 2584/271443*33385282^(11/18) 3770005192056988 a001 121393/5778*141422324^(2/13) 3770005192056988 a001 121393/5778*2537720636^(2/15) 3770005192056988 a001 121393/5778*45537549124^(2/17) 3770005192056988 a001 121393/5778*14662949395604^(2/21) 3770005192056988 a001 121393/5778*(1/2+1/2*5^(1/2))^6 3770005192056988 a001 121393/5778*10749957122^(1/8) 3770005192056988 a001 121393/5778*4106118243^(3/23) 3770005192056988 a001 121393/5778*1568397607^(3/22) 3770005192056988 a001 121393/5778*599074578^(1/7) 3770005192056988 a001 121393/5778*228826127^(3/20) 3770005192056988 a001 121393/5778*87403803^(3/19) 3770005192056988 a001 121393/5778*33385282^(1/6) 3770005192056992 a001 121393/5778*12752043^(3/17) 3770005192056999 a001 2584/271443*12752043^(11/17) 3770005192057018 a001 121393/5778*4870847^(3/16) 3770005192057094 a001 2584/271443*4870847^(11/16) 3770005192057206 a001 121393/5778*1860498^(1/5) 3770005192057783 a001 2584/271443*1860498^(11/15) 3770005192058074 a001 39209939/104005 3770005192058588 a001 121393/5778*710647^(3/14) 3770005192062850 a001 2584/271443*710647^(11/14) 3770005192068651 a001 1346269/5778*64079^(1/23) 3770005192068795 a001 121393/5778*271443^(3/13) 3770005192083314 a001 2584/710647*439204^(8/9) 3770005192088607 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^31 3770005192100279 a001 2584/271443*271443^(11/13) 3770005192100642 a001 2584/710647*7881196^(8/11) 3770005192100686 a001 2584/710647*141422324^(8/13) 3770005192100686 a001 2584/710647*2537720636^(8/15) 3770005192100686 a001 2584/710647*45537549124^(8/17) 3770005192100686 a001 2584/710647*14662949395604^(8/21) 3770005192100686 a001 2584/710647*(1/2+1/2*5^(1/2))^24 3770005192100686 a001 2584/710647*192900153618^(4/9) 3770005192100686 a001 2584/710647*73681302247^(6/13) 3770005192100686 a001 2584/710647*10749957122^(1/2) 3770005192100686 a001 2584/710647*4106118243^(12/23) 3770005192100686 a001 2584/710647*1568397607^(6/11) 3770005192100686 a001 2584/710647*599074578^(4/7) 3770005192100686 a001 2584/710647*228826127^(3/5) 3770005192100686 a001 2584/710647*87403803^(12/19) 3770005192100688 a001 2584/710647*33385282^(2/3) 3770005192100689 a001 105937/1926*(1/2+1/2*5^(1/2))^4 3770005192100689 a001 105937/1926*23725150497407^(1/16) 3770005192100689 a001 105937/1926*73681302247^(1/13) 3770005192100689 a001 105937/1926*10749957122^(1/12) 3770005192100689 a001 105937/1926*4106118243^(2/23) 3770005192100689 a001 105937/1926*1568397607^(1/11) 3770005192100689 a001 105937/1926*599074578^(2/21) 3770005192100689 a001 105937/1926*228826127^(1/10) 3770005192100689 a001 105937/1926*87403803^(2/19) 3770005192100690 a001 105937/1926*33385282^(1/9) 3770005192100692 a001 105937/1926*12752043^(2/17) 3770005192100702 a001 2584/710647*12752043^(12/17) 3770005192100709 a001 105937/1926*4870847^(1/8) 3770005192100805 a001 2584/710647*4870847^(3/4) 3770005192100834 a001 105937/1926*1860498^(2/15) 3770005192100845 a001 273741208/726103 3770005192100907 a001 98209/2889*167761^(1/5) 3770005192101557 a001 2584/710647*1860498^(4/5) 3770005192101756 a001 105937/1926*710647^(1/7) 3770005192105299 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^33 3770005192107062 a001 1292/930249*141422324^(2/3) 3770005192107062 a001 1292/930249*(1/2+1/2*5^(1/2))^26 3770005192107062 a001 1292/930249*73681302247^(1/2) 3770005192107062 a001 1292/930249*10749957122^(13/24) 3770005192107062 a001 1292/930249*4106118243^(13/23) 3770005192107062 a001 1292/930249*1568397607^(13/22) 3770005192107062 a001 1292/930249*599074578^(13/21) 3770005192107062 a001 1292/930249*228826127^(13/20) 3770005192107062 a001 1292/930249*87403803^(13/19) 3770005192107064 a001 1292/930249*33385282^(13/18) 3770005192107065 a001 416020/2889*(1/2+1/2*5^(1/2))^2 3770005192107065 a001 416020/2889*10749957122^(1/24) 3770005192107065 a001 416020/2889*4106118243^(1/23) 3770005192107065 a001 416020/2889*1568397607^(1/22) 3770005192107065 a001 416020/2889*599074578^(1/21) 3770005192107065 a001 416020/2889*228826127^(1/20) 3770005192107065 a001 416020/2889*87403803^(1/19) 3770005192107065 a001 416020/2889*33385282^(1/18) 3770005192107066 a001 416020/2889*12752043^(1/17) 3770005192107075 a001 416020/2889*4870847^(1/16) 3770005192107079 a001 1292/930249*12752043^(13/17) 3770005192107084 a001 2584/710647*710647^(6/7) 3770005192107085 a001 2149991360/5702887 3770005192107138 a001 416020/2889*1860498^(1/15) 3770005192107191 a001 1292/930249*4870847^(13/16) 3770005192107598 a001 416020/2889*710647^(1/14) 3770005192107735 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^35 3770005192107985 a001 2584/4870847*20633239^(4/5) 3770005192107992 a001 2584/4870847*17393796001^(4/7) 3770005192107992 a001 2584/4870847*14662949395604^(4/9) 3770005192107992 a001 2584/4870847*(1/2+1/2*5^(1/2))^28 3770005192107992 a001 2584/4870847*505019158607^(1/2) 3770005192107992 a001 2584/4870847*73681302247^(7/13) 3770005192107992 a001 2584/4870847*10749957122^(7/12) 3770005192107992 a001 2584/4870847*4106118243^(14/23) 3770005192107992 a001 2584/4870847*1568397607^(7/11) 3770005192107992 a001 2584/4870847*599074578^(2/3) 3770005192107992 a001 2584/4870847*228826127^(7/10) 3770005192107992 a001 2584/4870847*87403803^(14/19) 3770005192107995 a001 2584/4870847*33385282^(7/9) 3770005192107995 a001 726103/1926 3770005192108006 a001 1292/930249*1860498^(13/15) 3770005192108011 a001 2584/4870847*12752043^(14/17) 3770005192108073 a001 2584/12752043*7881196^(10/11) 3770005192108090 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^37 3770005192108120 a001 2584/12752043*20633239^(6/7) 3770005192108128 a001 2584/12752043*141422324^(10/13) 3770005192108128 a001 2584/12752043*2537720636^(2/3) 3770005192108128 a001 2584/12752043*45537549124^(10/17) 3770005192108128 a001 2584/12752043*312119004989^(6/11) 3770005192108128 a001 2584/12752043*14662949395604^(10/21) 3770005192108128 a001 2584/12752043*(1/2+1/2*5^(1/2))^30 3770005192108128 a001 2584/12752043*192900153618^(5/9) 3770005192108128 a001 2584/12752043*28143753123^(3/5) 3770005192108128 a001 2584/12752043*10749957122^(5/8) 3770005192108128 a001 2584/12752043*4106118243^(15/23) 3770005192108128 a001 2584/12752043*1568397607^(15/22) 3770005192108128 a001 2584/12752043*599074578^(5/7) 3770005192108128 a001 2584/12752043*228826127^(3/4) 3770005192108128 a001 2584/12752043*87403803^(15/19) 3770005192108128 a001 14736260008/39088169 3770005192108131 a001 2584/12752043*33385282^(5/6) 3770005192108131 a001 2584/4870847*4870847^(7/8) 3770005192108131 a004 Fibonacci(34)/Lucas(18)/(1/2+sqrt(5)/2)^2 3770005192108142 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^39 3770005192108147 a001 1292/16692641*(1/2+1/2*5^(1/2))^32 3770005192108147 a001 1292/16692641*23725150497407^(1/2) 3770005192108147 a001 1292/16692641*505019158607^(4/7) 3770005192108147 a001 1292/16692641*73681302247^(8/13) 3770005192108147 a001 1292/16692641*10749957122^(2/3) 3770005192108147 a001 1292/16692641*4106118243^(16/23) 3770005192108147 a001 1292/16692641*1568397607^(8/11) 3770005192108147 a001 1292/16692641*599074578^(16/21) 3770005192108148 a001 1292/16692641*228826127^(4/5) 3770005192108148 a001 12860009856/34111385 3770005192108148 a001 1292/16692641*87403803^(16/19) 3770005192108148 a001 2584/12752043*12752043^(15/17) 3770005192108150 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^41 3770005192108150 a001 2584/87403803*45537549124^(2/3) 3770005192108150 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(38) 3770005192108150 a001 2584/87403803*10749957122^(17/24) 3770005192108150 a001 2584/87403803*4106118243^(17/23) 3770005192108150 a001 2584/87403803*1568397607^(17/22) 3770005192108150 a001 2584/87403803*599074578^(17/21) 3770005192108150 a001 12625478587/33489287 3770005192108150 a001 2584/87403803*228826127^(17/20) 3770005192108150 a001 1292/16692641*33385282^(8/9) 3770005192108151 a001 2584/228826127*141422324^(12/13) 3770005192108151 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^43 3770005192108151 a001 2584/228826127*2537720636^(4/5) 3770005192108151 a001 2584/228826127*45537549124^(12/17) 3770005192108151 a001 2584/228826127*14662949395604^(4/7) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(40) 3770005192108151 a001 2584/228826127*505019158607^(9/14) 3770005192108151 a001 2584/228826127*192900153618^(2/3) 3770005192108151 a001 2584/228826127*73681302247^(9/13) 3770005192108151 a001 2584/228826127*10749957122^(3/4) 3770005192108151 a001 2584/228826127*4106118243^(18/23) 3770005192108151 a001 2584/228826127*1568397607^(9/11) 3770005192108151 a001 88143818840/233802911 3770005192108151 a001 2584/228826127*599074578^(6/7) 3770005192108151 a001 2584/87403803*87403803^(17/19) 3770005192108151 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^45 3770005192108151 a001 1292/299537289*817138163596^(2/3) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(42) 3770005192108151 a001 1292/299537289*10749957122^(19/24) 3770005192108151 a001 1292/299537289*4106118243^(19/23) 3770005192108151 a001 692290540864/1836311903 3770005192108151 a001 1292/299537289*1568397607^(19/22) 3770005192108151 a001 2584/228826127*228826127^(9/10) 3770005192108151 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^47 3770005192108151 a001 2584/1568397607*2537720636^(8/9) 3770005192108151 a001 2584/1568397607*312119004989^(8/11) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(44) 3770005192108151 a001 2584/1568397607*23725150497407^(5/8) 3770005192108151 a001 2584/1568397607*73681302247^(10/13) 3770005192108151 a001 2584/1568397607*28143753123^(4/5) 3770005192108151 a001 2584/1568397607*10749957122^(5/6) 3770005192108151 a001 75518340253/200313624 3770005192108151 a001 2584/1568397607*4106118243^(20/23) 3770005192108151 a001 1292/299537289*599074578^(19/21) 3770005192108151 a001 2584/4106118243*2537720636^(14/15) 3770005192108151 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^49 3770005192108151 a001 2584/4106118243*17393796001^(6/7) 3770005192108151 a001 2584/4106118243*45537549124^(14/17) 3770005192108151 a001 2584/4106118243*817138163596^(14/19) 3770005192108151 a001 2584/4106118243*14662949395604^(2/3) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(46) 3770005192108151 a001 2584/4106118243*505019158607^(3/4) 3770005192108151 a001 2584/4106118243*192900153618^(7/9) 3770005192108151 a001 4745029957352/12586269025 3770005192108151 a001 2584/4106118243*10749957122^(7/8) 3770005192108151 a001 2584/1568397607*1568397607^(10/11) 3770005192108151 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^51 3770005192108151 a001 1292/5374978561*312119004989^(4/5) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(48) 3770005192108151 a001 1292/5374978561*23725150497407^(11/16) 3770005192108151 a001 1292/5374978561*73681302247^(11/13) 3770005192108151 a001 4140883235328/10983760033 3770005192108151 a001 2584/4106118243*4106118243^(21/23) 3770005192108151 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^53 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(50) 3770005192108151 a001 12586269025/33385283 3770005192108151 a001 1292/5374978561*10749957122^(11/12) 3770005192108151 a001 2584/73681302247*45537549124^(16/17) 3770005192108151 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^55 3770005192108151 a001 2584/73681302247*14662949395604^(16/21) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(52) 3770005192108151 a001 28382035925272/75283811239 3770005192108151 a001 2584/73681302247*192900153618^(8/9) 3770005192108151 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^57 3770005192108151 a001 1292/96450076809*312119004989^(10/11) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(54) 3770005192108151 a001 1292/96450076809*3461452808002^(5/6) 3770005192108151 a001 222915404166848/591286729879 3770005192108151 a001 2584/73681302247*73681302247^(12/13) 3770005192108151 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^59 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(56) 3770005192108151 a001 24316671030197/64500364830 3770005192108151 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^61 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(58) 3770005192108151 a001 2584/505019158607*505019158607^(13/14) 3770005192108151 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^63 3770005192108151 a001 1292/1730726404001*14662949395604^(8/9) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(60) 3770005192108151 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^65 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(62) 3770005192108151 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^67 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(64) 3770005192108151 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^69 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(66) 3770005192108151 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^71 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(68) 3770005192108151 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^73 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(70) 3770005192108151 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^75 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(72) 3770005192108151 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^77 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(74) 3770005192108151 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^79 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(76) 3770005192108151 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^81 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(78) 3770005192108151 a004 Fibonacci(18)*Lucas(79)/(1/2+sqrt(5)/2)^83 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(80) 3770005192108151 a004 Fibonacci(18)*Lucas(81)/(1/2+sqrt(5)/2)^85 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(82) 3770005192108151 a004 Fibonacci(18)*Lucas(83)/(1/2+sqrt(5)/2)^87 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^80/Lucas(84) 3770005192108151 a004 Fibonacci(18)*Lucas(85)/(1/2+sqrt(5)/2)^89 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^82/Lucas(86) 3770005192108151 a004 Fibonacci(18)*Lucas(87)/(1/2+sqrt(5)/2)^91 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^84/Lucas(88) 3770005192108151 a004 Fibonacci(18)*Lucas(89)/(1/2+sqrt(5)/2)^93 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^86/Lucas(90) 3770005192108151 a004 Fibonacci(18)*Lucas(91)/(1/2+sqrt(5)/2)^95 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^88/Lucas(92) 3770005192108151 a004 Fibonacci(18)*Lucas(93)/(1/2+sqrt(5)/2)^97 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^90/Lucas(94) 3770005192108151 a004 Fibonacci(18)*Lucas(95)/(1/2+sqrt(5)/2)^99 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^92/Lucas(96) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^94/Lucas(98) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^95/Lucas(99) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^96/Lucas(100) 3770005192108151 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^4 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^93/Lucas(97) 3770005192108151 a004 Fibonacci(18)*Lucas(96)/(1/2+sqrt(5)/2)^100 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^91/Lucas(95) 3770005192108151 a004 Fibonacci(18)*Lucas(94)/(1/2+sqrt(5)/2)^98 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^89/Lucas(93) 3770005192108151 a004 Fibonacci(18)*Lucas(92)/(1/2+sqrt(5)/2)^96 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(91) 3770005192108151 a004 Fibonacci(18)*Lucas(90)/(1/2+sqrt(5)/2)^94 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(89) 3770005192108151 a004 Fibonacci(18)*Lucas(88)/(1/2+sqrt(5)/2)^92 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(87) 3770005192108151 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^90 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(85) 3770005192108151 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^88 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(83) 3770005192108151 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^86 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(81) 3770005192108151 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^84 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(79) 3770005192108151 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^82 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(77) 3770005192108151 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^80 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(75) 3770005192108151 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^78 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(73) 3770005192108151 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^76 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(71) 3770005192108151 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^74 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(69) 3770005192108151 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^72 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(67) 3770005192108151 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^70 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(65) 3770005192108151 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^68 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(63) 3770005192108151 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^66 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(61) 3770005192108151 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^64 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(59) 3770005192108151 a001 2584/2139295485799*3461452808002^(11/12) 3770005192108151 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^62 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(57) 3770005192108151 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^60 3770005192108151 a001 2584/312119004989*817138163596^(17/19) 3770005192108151 a001 2584/312119004989*14662949395604^(17/21) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(55) 3770005192108151 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^58 3770005192108151 a001 2584/312119004989*192900153618^(17/18) 3770005192108151 a001 68884648195516/182717648081 3770005192108151 a001 2584/119218851371*14662949395604^(7/9) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(53) 3770005192108151 a001 2584/119218851371*505019158607^(7/8) 3770005192108151 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^56 3770005192108151 a001 52623188615216/139583862445 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(51) 3770005192108151 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^54 3770005192108151 a001 2584/17393796001*45537549124^(15/17) 3770005192108151 a001 20100269454616/53316291173 3770005192108151 a001 2584/17393796001*312119004989^(9/11) 3770005192108151 a001 2584/17393796001*14662949395604^(5/7) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(49) 3770005192108151 a001 2584/17393796001*192900153618^(5/6) 3770005192108151 a001 2584/17393796001*28143753123^(9/10) 3770005192108151 a001 2584/28143753123*10749957122^(23/24) 3770005192108151 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^52 3770005192108151 a001 2584/17393796001*10749957122^(15/16) 3770005192108151 a001 3838809874316/10182505537 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(47) 3770005192108151 a001 1292/5374978561*4106118243^(22/23) 3770005192108151 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^50 3770005192108151 a001 2932589791280/7778742049 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(45) 3770005192108151 a001 2584/4106118243*1568397607^(21/22) 3770005192108151 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^48 3770005192108151 a001 2584/969323029*2537720636^(13/15) 3770005192108151 a001 1120149625208/2971215073 3770005192108151 a001 2584/969323029*45537549124^(13/17) 3770005192108151 a001 2584/969323029*14662949395604^(13/21) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(43) 3770005192108151 a001 2584/969323029*192900153618^(13/18) 3770005192108151 a001 2584/969323029*73681302247^(3/4) 3770005192108151 a001 2584/969323029*10749957122^(13/16) 3770005192108151 a001 2584/1568397607*599074578^(20/21) 3770005192108151 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^46 3770005192108151 a001 2584/969323029*599074578^(13/14) 3770005192108151 a001 12584090716/33379505 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(41) 3770005192108151 a001 1292/299537289*228826127^(19/20) 3770005192108151 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^44 3770005192108151 a001 163427627824/433494437 3770005192108151 a001 646/35355581*2537720636^(7/9) 3770005192108151 a001 646/35355581*17393796001^(5/7) 3770005192108151 a001 646/35355581*312119004989^(7/11) 3770005192108151 a001 646/35355581*14662949395604^(5/9) 3770005192108151 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(39) 3770005192108151 a001 646/35355581*505019158607^(5/8) 3770005192108151 a001 646/35355581*28143753123^(7/10) 3770005192108151 a001 646/35355581*599074578^(5/6) 3770005192108151 a001 646/35355581*228826127^(7/8) 3770005192108151 a001 2584/228826127*87403803^(18/19) 3770005192108151 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^42 3770005192108152 a001 2584/54018521*141422324^(11/13) 3770005192108152 a001 62423799128/165580141 3770005192108152 a001 2584/54018521*2537720636^(11/15) 3770005192108152 a001 2584/54018521*45537549124^(11/17) 3770005192108152 a001 2584/54018521*312119004989^(3/5) 3770005192108152 a001 2584/54018521*817138163596^(11/19) 3770005192108152 a001 2584/54018521*14662949395604^(11/21) 3770005192108152 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^33/Lucas(37) 3770005192108152 a001 2584/54018521*192900153618^(11/18) 3770005192108152 a001 2584/54018521*10749957122^(11/16) 3770005192108152 a001 2584/54018521*1568397607^(3/4) 3770005192108152 a001 2584/54018521*599074578^(11/14) 3770005192108154 a001 2584/87403803*33385282^(17/18) 3770005192108154 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^6 3770005192108154 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^8 3770005192108154 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^10 3770005192108154 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^12 3770005192108154 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^14 3770005192108154 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^16 3770005192108154 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^18 3770005192108154 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^20 3770005192108154 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^22 3770005192108154 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^24 3770005192108154 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^26 3770005192108154 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^28 3770005192108154 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^30 3770005192108154 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^32 3770005192108154 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^34 3770005192108154 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^36 3770005192108154 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^38 3770005192108154 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^40 3770005192108154 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^42 3770005192108154 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^44 3770005192108154 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^46 3770005192108154 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^48 3770005192108154 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^50 3770005192108154 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^52 3770005192108154 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^54 3770005192108154 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^56 3770005192108154 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^58 3770005192108154 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^60 3770005192108154 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^62 3770005192108154 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^64 3770005192108154 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^68 3770005192108154 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^66 3770005192108154 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^67 3770005192108154 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^65 3770005192108154 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^63 3770005192108154 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^61 3770005192108154 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^59 3770005192108154 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^57 3770005192108154 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^55 3770005192108154 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^53 3770005192108154 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^51 3770005192108154 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^49 3770005192108154 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^47 3770005192108154 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^45 3770005192108154 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^43 3770005192108154 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^41 3770005192108154 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^39 3770005192108154 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^37 3770005192108154 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^35 3770005192108154 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^33 3770005192108154 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^31 3770005192108154 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^29 3770005192108154 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^27 3770005192108154 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^25 3770005192108154 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^23 3770005192108154 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^21 3770005192108154 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^19 3770005192108154 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^17 3770005192108154 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^15 3770005192108154 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^13 3770005192108154 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^11 3770005192108154 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^9 3770005192108154 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^7 3770005192108155 a001 2584/54018521*33385282^(11/12) 3770005192108156 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^5 3770005192108160 a001 11921884780/31622993 3770005192108160 a001 2584/20633239*(1/2+1/2*5^(1/2))^31 3770005192108160 a001 2584/20633239*9062201101803^(1/2) 3770005192108163 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2)^3 3770005192108169 a001 1292/16692641*12752043^(16/17) 3770005192108174 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^38 3770005192108210 a001 9107509552/24157817 3770005192108212 a001 646/1970299*(1/2+1/2*5^(1/2))^29 3770005192108212 a001 646/1970299*1322157322203^(1/2) 3770005192108215 a004 Fibonacci(33)/Lucas(18)/(1/2+sqrt(5)/2) 3770005192108277 a001 2584/12752043*4870847^(15/16) 3770005192108310 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^36 3770005192108517 a001 2584/3010349*7881196^(9/11) 3770005192108558 a001 3478759096/9227465 3770005192108561 a001 105937/1926*271443^(2/13) 3770005192108567 a001 2584/3010349*141422324^(9/13) 3770005192108567 a001 2584/3010349*2537720636^(3/5) 3770005192108567 a001 2584/3010349*45537549124^(9/17) 3770005192108567 a001 2584/3010349*817138163596^(9/19) 3770005192108567 a001 2584/3010349*14662949395604^(3/7) 3770005192108567 a001 2584/3010349*(1/2+1/2*5^(1/2))^27 3770005192108567 a001 2584/3010349*192900153618^(1/2) 3770005192108567 a001 2584/3010349*10749957122^(9/16) 3770005192108567 a001 2584/3010349*599074578^(9/14) 3770005192108569 a001 2584/3010349*33385282^(3/4) 3770005192108570 a001 1346269/11556+1346269/11556*5^(1/2) 3770005192108834 a001 514229/5778*439204^(1/9) 3770005192109008 a001 2584/4870847*1860498^(14/15) 3770005192109240 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^34 3770005192109547 a001 2584/3010349*1860498^(9/10) 3770005192110942 a001 664383868/1762289 3770005192110996 a001 2584/1149851*20633239^(5/7) 3770005192111000 a001 514229/5778*7881196^(1/11) 3770005192111001 a001 416020/2889*271443^(1/13) 3770005192111002 a001 2584/1149851*2537720636^(5/9) 3770005192111002 a001 2584/1149851*312119004989^(5/11) 3770005192111002 a001 2584/1149851*(1/2+1/2*5^(1/2))^25 3770005192111002 a001 2584/1149851*3461452808002^(5/12) 3770005192111002 a001 2584/1149851*28143753123^(1/2) 3770005192111002 a001 2584/1149851*228826127^(5/8) 3770005192111006 a001 514229/5778*141422324^(1/13) 3770005192111006 a001 514229/5778*2537720636^(1/15) 3770005192111006 a001 514229/5778*45537549124^(1/17) 3770005192111006 a001 514229/5778*14662949395604^(1/21) 3770005192111006 a001 514229/5778*(1/2+1/2*5^(1/2))^3 3770005192111006 a001 514229/5778*192900153618^(1/18) 3770005192111006 a001 514229/5778*10749957122^(1/16) 3770005192111006 a001 514229/5778*599074578^(1/14) 3770005192111006 a001 514229/5778*33385282^(1/12) 3770005192111115 a001 514229/5778*1860498^(1/10) 3770005192111910 a001 2584/1149851*1860498^(5/6) 3770005192113994 a001 1292/930249*710647^(13/14) 3770005192115616 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^32 3770005192123183 a001 1346269/5778*103682^(1/24) 3770005192127279 a001 507544112/1346269 3770005192127695 a001 34/5779*(1/2+1/2*5^(1/2))^23 3770005192127695 a001 34/5779*4106118243^(1/2) 3770005192127697 a001 98209/2889*20633239^(1/7) 3770005192127698 a001 98209/2889*2537720636^(1/9) 3770005192127698 a001 98209/2889*312119004989^(1/11) 3770005192127698 a001 98209/2889*(1/2+1/2*5^(1/2))^5 3770005192127698 a001 98209/2889*28143753123^(1/10) 3770005192127698 a001 98209/2889*228826127^(1/8) 3770005192127880 a001 98209/2889*1860498^(1/6) 3770005192136290 a001 416020/2889*103682^(1/12) 3770005192144663 a001 121393/5778*103682^(1/4) 3770005192147916 a001 2584/710647*271443^(12/13) 3770005192154843 a001 514229/5778*103682^(1/8) 3770005192159139 a001 105937/1926*103682^(1/6) 3770005192159317 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^30 3770005192200760 a001 98209/2889*103682^(5/24) 3770005192217831 a001 1346269/5778*39603^(1/22) 3770005192226905 a001 2584/167761*439204^(7/9) 3770005192239255 a001 193864600/514229 3770005192242068 a001 2584/167761*7881196^(7/11) 3770005192242101 a001 2584/167761*20633239^(3/5) 3770005192242106 a001 2584/167761*141422324^(7/13) 3770005192242106 a001 2584/167761*2537720636^(7/15) 3770005192242106 a001 2584/167761*17393796001^(3/7) 3770005192242106 a001 2584/167761*45537549124^(7/17) 3770005192242106 a001 2584/167761*14662949395604^(1/3) 3770005192242106 a001 2584/167761*(1/2+1/2*5^(1/2))^21 3770005192242106 a001 2584/167761*192900153618^(7/18) 3770005192242106 a001 2584/167761*10749957122^(7/16) 3770005192242106 a001 2584/167761*599074578^(1/2) 3770005192242108 a001 75025/5778*20633239^(1/5) 3770005192242108 a001 2584/167761*33385282^(7/12) 3770005192242110 a001 75025/5778*17393796001^(1/7) 3770005192242110 a001 75025/5778*14662949395604^(1/9) 3770005192242110 a001 75025/5778*(1/2+1/2*5^(1/2))^7 3770005192242110 a001 75025/5778*599074578^(1/6) 3770005192242869 a001 2584/167761*1860498^(7/10) 3770005192243976 a001 75025/5778*710647^(1/4) 3770005192247705 a001 2584/167761*710647^(3/4) 3770005192267828 a001 2584/64079*64079^(19/23) 3770005192325586 a001 416020/2889*39603^(1/11) 3770005192344397 a001 75025/5778*103682^(7/24) 3770005192378459 a001 2584/271443*103682^(11/12) 3770005192438787 a001 514229/5778*39603^(3/22) 3770005192458850 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^28 3770005192463782 a001 34/5779*103682^(23/24) 3770005192537731 a001 105937/1926*39603^(2/11) 3770005192548968 a001 2584/167761*103682^(7/8) 3770005192631539 a001 2576/321*39603^(4/11) 3770005192667024 a001 28657/5778*64079^(9/23) 3770005192674000 a001 98209/2889*39603^(5/22) 3770005192712551 a001 121393/5778*39603^(3/11) 3770005192932341 a001 1346269/5778*15127^(1/20) 3770005193006750 a001 2177932/5777 3770005193006933 a001 75025/5778*39603^(7/22) 3770005193019783 a001 28657/5778*439204^(1/3) 3770005193026281 a001 28657/5778*7881196^(3/11) 3770005193026294 a001 2584/64079*817138163596^(1/3) 3770005193026294 a001 2584/64079*(1/2+1/2*5^(1/2))^19 3770005193026294 a001 2584/64079*87403803^(1/2) 3770005193026298 a001 28657/5778*141422324^(3/13) 3770005193026298 a001 28657/5778*2537720636^(1/5) 3770005193026298 a001 28657/5778*45537549124^(3/17) 3770005193026298 a001 28657/5778*14662949395604^(1/7) 3770005193026298 a001 28657/5778*(1/2+1/2*5^(1/2))^9 3770005193026298 a001 28657/5778*192900153618^(1/6) 3770005193026298 a001 28657/5778*10749957122^(3/16) 3770005193026298 a001 28657/5778*599074578^(3/14) 3770005193026298 a001 28657/5778*33385282^(1/4) 3770005193026624 a001 28657/5778*1860498^(3/10) 3770005193157810 a001 28657/5778*103682^(3/8) 3770005193303931 a001 2584/64079*103682^(19/24) 3770005193306827 a001 646/6119*24476^(17/21) 3770005193754607 a001 416020/2889*15127^(1/10) 3770005193942661 a001 1292/51841*39603^(10/11) 3770005194009642 a001 28657/5778*39603^(9/22) 3770005194511881 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^26 3770005194536576 a001 2584/167761*39603^(21/22) 3770005194582318 a001 514229/5778*15127^(3/20) 3770005194658984 a001 98209/682*521^(2/13) 3770005195102243 a001 2584/64079*39603^(19/22) 3770005195104844 a001 5473/2889*24476^(11/21) 3770005195395673 a001 317811/3571*1364^(1/5) 3770005195395772 a001 105937/1926*15127^(1/5) 3770005196246552 a001 98209/2889*15127^(1/4) 3770005196999612 a001 121393/5778*15127^(3/10) 3770005197722571 a001 646/6119*64079^(17/23) 3770005197942131 a001 17711/5778*15127^(1/2) 3770005197962090 a001 5473/2889*64079^(11/23) 3770005198008504 a001 75025/5778*15127^(7/20) 3770005198267244 a001 28284464/75025 3770005198284211 a001 832040/39603*3571^(6/17) 3770005198347620 a001 2576/321*15127^(2/5) 3770005198382135 a001 1346269/5778*5778^(1/18) 3770005198401182 a001 5473/2889*7881196^(1/3) 3770005198401199 a001 646/6119*45537549124^(1/3) 3770005198401199 a001 646/6119*(1/2+1/2*5^(1/2))^17 3770005198401202 a001 5473/2889*312119004989^(1/5) 3770005198401202 a001 5473/2889*(1/2+1/2*5^(1/2))^11 3770005198401202 a001 5473/2889*1568397607^(1/4) 3770005198401211 a001 646/6119*12752043^(1/2) 3770005198561940 a001 5473/2889*103682^(11/24) 3770005198649611 a001 646/6119*103682^(17/24) 3770005199603068 a001 5473/2889*39603^(1/2) 3770005200258627 a001 646/6119*39603^(17/22) 3770005200338172 a001 46347/2206*3571^(6/17) 3770005200440234 a001 28657/5778*15127^(9/20) 3770005200637841 a001 5702887/271443*3571^(6/17) 3770005200681562 a001 14930352/710647*3571^(6/17) 3770005200687941 a001 39088169/1860498*3571^(6/17) 3770005200688872 a001 102334155/4870847*3571^(6/17) 3770005200689007 a001 267914296/12752043*3571^(6/17) 3770005200689027 a001 701408733/33385282*3571^(6/17) 3770005200689030 a001 1836311903/87403803*3571^(6/17) 3770005200689031 a001 102287808/4868641*3571^(6/17) 3770005200689031 a001 12586269025/599074578*3571^(6/17) 3770005200689031 a001 32951280099/1568397607*3571^(6/17) 3770005200689031 a001 86267571272/4106118243*3571^(6/17) 3770005200689031 a001 225851433717/10749957122*3571^(6/17) 3770005200689031 a001 591286729879/28143753123*3571^(6/17) 3770005200689031 a001 1548008755920/73681302247*3571^(6/17) 3770005200689031 a001 4052739537881/192900153618*3571^(6/17) 3770005200689031 a001 225749145909/10745088481*3571^(6/17) 3770005200689031 a001 6557470319842/312119004989*3571^(6/17) 3770005200689031 a001 2504730781961/119218851371*3571^(6/17) 3770005200689031 a001 956722026041/45537549124*3571^(6/17) 3770005200689031 a001 365435296162/17393796001*3571^(6/17) 3770005200689031 a001 139583862445/6643838879*3571^(6/17) 3770005200689031 a001 53316291173/2537720636*3571^(6/17) 3770005200689031 a001 20365011074/969323029*3571^(6/17) 3770005200689031 a001 7778742049/370248451*3571^(6/17) 3770005200689031 a001 2971215073/141422324*3571^(6/17) 3770005200689032 a001 1134903170/54018521*3571^(6/17) 3770005200689039 a001 433494437/20633239*3571^(6/17) 3770005200689091 a001 165580141/7881196*3571^(6/17) 3770005200689447 a001 63245986/3010349*3571^(6/17) 3770005200691883 a001 24157817/1149851*3571^(6/17) 3770005200708583 a001 9227465/439204*3571^(6/17) 3770005200823047 a001 3524578/167761*3571^(6/17) 3770005201188823 a001 2584/9349*9349^(15/19) 3770005201607016 a001 514229/15127*3571^(5/17) 3770005201607590 a001 1346269/64079*3571^(6/17) 3770005204532293 a001 2584/39603*15127^(9/10) 3770005204654195 a001 416020/2889*5778^(1/9) 3770005205729162 a001 4181/5778*9349^(13/19) 3770005206984930 a001 514229/24476*3571^(6/17) 3770005207462680 a001 5473/2889*15127^(11/20) 3770005208583565 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^24 3770005208677938 a001 2584/64079*15127^(19/20) 3770005209175084 a001 75025/9349*3571^(8/17) 3770005210931700 a001 514229/5778*5778^(1/6) 3770005212405301 a001 646/6119*15127^(17/20) 3770005213075855 a001 2178309/9349*1364^(1/15) 3770005215676264 a001 1346269/39603*3571^(5/17) 3770005217194948 a001 105937/1926*5778^(2/9) 3770005217728940 a001 1762289/51841*3571^(5/17) 3770005218028421 a001 9227465/271443*3571^(5/17) 3770005218072115 a001 24157817/710647*3571^(5/17) 3770005218078490 a001 31622993/930249*3571^(5/17) 3770005218079420 a001 165580141/4870847*3571^(5/17) 3770005218079556 a001 433494437/12752043*3571^(5/17) 3770005218079576 a001 567451585/16692641*3571^(5/17) 3770005218079579 a001 2971215073/87403803*3571^(5/17) 3770005218079579 a001 7778742049/228826127*3571^(5/17) 3770005218079579 a001 10182505537/299537289*3571^(5/17) 3770005218079579 a001 53316291173/1568397607*3571^(5/17) 3770005218079579 a001 139583862445/4106118243*3571^(5/17) 3770005218079579 a001 182717648081/5374978561*3571^(5/17) 3770005218079579 a001 956722026041/28143753123*3571^(5/17) 3770005218079579 a001 2504730781961/73681302247*3571^(5/17) 3770005218079579 a001 3278735159921/96450076809*3571^(5/17) 3770005218079579 a001 10610209857723/312119004989*3571^(5/17) 3770005218079579 a001 4052739537881/119218851371*3571^(5/17) 3770005218079579 a001 387002188980/11384387281*3571^(5/17) 3770005218079579 a001 591286729879/17393796001*3571^(5/17) 3770005218079579 a001 225851433717/6643838879*3571^(5/17) 3770005218079579 a001 1135099622/33391061*3571^(5/17) 3770005218079579 a001 32951280099/969323029*3571^(5/17) 3770005218079579 a001 12586269025/370248451*3571^(5/17) 3770005218079579 a001 1201881744/35355581*3571^(5/17) 3770005218079580 a001 1836311903/54018521*3571^(5/17) 3770005218079588 a001 701408733/20633239*3571^(5/17) 3770005218079640 a001 66978574/1970299*3571^(5/17) 3770005218079995 a001 102334155/3010349*3571^(5/17) 3770005218082430 a001 39088169/1149851*3571^(5/17) 3770005218099119 a001 196452/5779*3571^(5/17) 3770005218213511 a001 5702887/167761*3571^(5/17) 3770005218993624 a001 832040/15127*3571^(4/17) 3770005218997563 a001 2178309/64079*3571^(5/17) 3770005223495522 a001 98209/2889*5778^(5/18) 3770005224371538 a001 208010/6119*3571^(5/17) 3770005226052486 r005 Re(z^2+c),c=21/122+15/44*I,n=27 3770005226380510 a001 121393/9349*3571^(7/17) 3770005226889228 a001 1597/5778*3571^(15/17) 3770005229698377 a001 121393/5778*5778^(1/3) 3770005230746311 a001 2584/9349*24476^(5/7) 3770005231345652 a001 4181/5778*24476^(13/21) 3770005233066238 a001 726103/13201*3571^(4/17) 3770005234323202 a001 10803704/28657 3770005234642556 a001 2584/9349*64079^(15/23) 3770005234722398 a001 4181/5778*64079^(13/23) 3770005235119405 a001 5702887/103682*3571^(4/17) 3770005235160972 a001 2584/9349*167761^(3/5) 3770005235230488 a001 2584/9349*439204^(5/9) 3770005235241318 a001 2584/9349*7881196^(5/11) 3770005235241342 a001 2584/9349*20633239^(3/7) 3770005235241345 a001 2584/9349*141422324^(5/13) 3770005235241345 a001 2584/9349*2537720636^(1/3) 3770005235241345 a001 2584/9349*45537549124^(5/17) 3770005235241345 a001 2584/9349*312119004989^(3/11) 3770005235241345 a001 2584/9349*14662949395604^(5/21) 3770005235241345 a001 2584/9349*(1/2+1/2*5^(1/2))^15 3770005235241345 a001 2584/9349*192900153618^(5/18) 3770005235241345 a001 2584/9349*28143753123^(3/10) 3770005235241345 a001 2584/9349*10749957122^(5/16) 3770005235241345 a001 2584/9349*599074578^(5/14) 3770005235241345 a001 2584/9349*228826127^(3/8) 3770005235241347 a001 2584/9349*33385282^(5/12) 3770005235241348 a001 4181/5778*141422324^(1/3) 3770005235241348 a001 4181/5778*(1/2+1/2*5^(1/2))^13 3770005235241348 a001 4181/5778*73681302247^(1/4) 3770005235241890 a001 2584/9349*1860498^(1/2) 3770005235266931 a001 4181/5778*271443^(1/2) 3770005235418958 a001 4976784/90481*3571^(4/17) 3770005235431311 a001 4181/5778*103682^(13/24) 3770005235460533 a001 2584/9349*103682^(5/8) 3770005235462662 a001 39088169/710647*3571^(4/17) 3770005235469038 a001 831985/15126*3571^(4/17) 3770005235469969 a001 267914296/4870847*3571^(4/17) 3770005235470104 a001 233802911/4250681*3571^(4/17) 3770005235470124 a001 1836311903/33385282*3571^(4/17) 3770005235470127 a001 1602508992/29134601*3571^(4/17) 3770005235470127 a001 12586269025/228826127*3571^(4/17) 3770005235470127 a001 10983760033/199691526*3571^(4/17) 3770005235470127 a001 86267571272/1568397607*3571^(4/17) 3770005235470127 a001 75283811239/1368706081*3571^(4/17) 3770005235470127 a001 591286729879/10749957122*3571^(4/17) 3770005235470127 a001 12585437040/228811001*3571^(4/17) 3770005235470127 a001 4052739537881/73681302247*3571^(4/17) 3770005235470127 a001 3536736619241/64300051206*3571^(4/17) 3770005235470127 a001 6557470319842/119218851371*3571^(4/17) 3770005235470127 a001 2504730781961/45537549124*3571^(4/17) 3770005235470127 a001 956722026041/17393796001*3571^(4/17) 3770005235470127 a001 365435296162/6643838879*3571^(4/17) 3770005235470127 a001 139583862445/2537720636*3571^(4/17) 3770005235470127 a001 53316291173/969323029*3571^(4/17) 3770005235470128 a001 20365011074/370248451*3571^(4/17) 3770005235470128 a001 7778742049/141422324*3571^(4/17) 3770005235470129 a001 2971215073/54018521*3571^(4/17) 3770005235470136 a001 1134903170/20633239*3571^(4/17) 3770005235470188 a001 433494437/7881196*3571^(4/17) 3770005235470544 a001 165580141/3010349*3571^(4/17) 3770005235472979 a001 63245986/1149851*3571^(4/17) 3770005235489673 a001 24157817/439204*3571^(4/17) 3770005235604092 a001 9227465/167761*3571^(4/17) 3770005236157063 a001 75025/5778*5778^(7/18) 3770005236385678 a001 1346269/15127*3571^(3/17) 3770005236388332 a001 3524578/64079*3571^(4/17) 3770005236661734 a001 4181/5778*39603^(13/22) 3770005236880253 a001 2584/9349*39603^(15/22) 3770005238027592 a001 3571/377*4181^(28/39) 3770005238877826 m001 GAMMA(11/24)*exp(Bloch)^2/log(2+sqrt(3)) 3770005240299139 a001 6765/15127*9349^(14/19) 3770005240483176 a001 1346269/5778*2207^(1/16) 3770005241763592 a001 1346269/24476*3571^(4/17) 3770005241828630 m005 (1/3*gamma+3/7)/(7/9*3^(1/2)+3/10) 3770005241945973 a001 2576/321*5778^(4/9) 3770005243841769 a001 196418/9349*3571^(6/17) 3770005245423713 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^25 3770005245950368 a001 4181/5778*15127^(13/20) 3770005247343181 a001 6765/103682*9349^(18/19) 3770005247555551 m005 (1/2*2^(1/2)+3)/(4*5^(1/2)+8/9) 3770005247597906 a001 2584/9349*15127^(3/4) 3770005249488381 a001 28657/5778*5778^(1/2) 3770005249830486 a001 2255/13201*9349^(16/19) 3770005250018787 r009 Re(z^3+c),c=-69/118+41/64*I,n=3 3770005250457006 a001 3524578/39603*3571^(3/17) 3770005250882192 a001 6765/64079*9349^(17/19) 3770005250915518 a001 2255/1926*5778^(2/3) 3770005252440072 a001 17711/5778*5778^(5/9) 3770005252509985 a001 9227465/103682*3571^(3/17) 3770005252809511 a001 24157817/271443*3571^(3/17) 3770005252853211 a001 63245986/710647*3571^(3/17) 3770005252859587 a001 165580141/1860498*3571^(3/17) 3770005252860517 a001 433494437/4870847*3571^(3/17) 3770005252860653 a001 1134903170/12752043*3571^(3/17) 3770005252860673 a001 2971215073/33385282*3571^(3/17) 3770005252860676 a001 7778742049/87403803*3571^(3/17) 3770005252860676 a001 20365011074/228826127*3571^(3/17) 3770005252860676 a001 53316291173/599074578*3571^(3/17) 3770005252860676 a001 139583862445/1568397607*3571^(3/17) 3770005252860676 a001 365435296162/4106118243*3571^(3/17) 3770005252860676 a001 956722026041/10749957122*3571^(3/17) 3770005252860676 a001 2504730781961/28143753123*3571^(3/17) 3770005252860676 a001 6557470319842/73681302247*3571^(3/17) 3770005252860676 a001 10610209857723/119218851371*3571^(3/17) 3770005252860676 a001 4052739537881/45537549124*3571^(3/17) 3770005252860676 a001 1548008755920/17393796001*3571^(3/17) 3770005252860676 a001 591286729879/6643838879*3571^(3/17) 3770005252860676 a001 225851433717/2537720636*3571^(3/17) 3770005252860676 a001 86267571272/969323029*3571^(3/17) 3770005252860676 a001 32951280099/370248451*3571^(3/17) 3770005252860676 a001 12586269025/141422324*3571^(3/17) 3770005252860677 a001 4807526976/54018521*3571^(3/17) 3770005252860685 a001 1836311903/20633239*3571^(3/17) 3770005252860737 a001 3524667/39604*3571^(3/17) 3770005252861092 a001 267914296/3010349*3571^(3/17) 3770005252863527 a001 102334155/1149851*3571^(3/17) 3770005252880219 a001 39088169/439204*3571^(3/17) 3770005252994628 a001 14930352/167761*3571^(3/17) 3770005253775651 a001 311187/2161*3571^(2/17) 3770005253778796 a001 5702887/64079*3571^(3/17) 3770005258911159 a001 17711/15127*9349^(12/19) 3770005259153565 a001 2178309/24476*3571^(3/17) 3770005259495396 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^27 3770005260797433 a001 6765/24476*9349^(15/19) 3770005261205309 a001 317811/9349*3571^(5/17) 3770005261548427 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^29 3770005261670345 a001 2584/3571*3571^(13/17) 3770005261714398 a001 17711/271443*9349^(18/19) 3770005261847961 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^31 3770005261891662 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^33 3770005261898038 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^35 3770005261898968 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^37 3770005261899104 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^39 3770005261899124 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^41 3770005261899126 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^43 3770005261899127 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^45 3770005261899127 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^47 3770005261899127 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^49 3770005261899127 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^51 3770005261899127 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^53 3770005261899127 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^55 3770005261899127 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^57 3770005261899127 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^59 3770005261899127 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^61 3770005261899127 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^63 3770005261899127 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^65 3770005261899127 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^67 3770005261899127 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^69 3770005261899127 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^71 3770005261899127 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^73 3770005261899127 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^75 3770005261899127 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^77 3770005261899127 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^79 3770005261899127 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^81 3770005261899127 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^83 3770005261899127 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^85 3770005261899127 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^87 3770005261899127 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^89 3770005261899127 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^91 3770005261899127 a004 Fibonacci(88)*Lucas(19)/(1/2+sqrt(5)/2)^93 3770005261899127 a004 Fibonacci(90)*Lucas(19)/(1/2+sqrt(5)/2)^95 3770005261899127 a004 Fibonacci(92)*Lucas(19)/(1/2+sqrt(5)/2)^97 3770005261899127 a004 Fibonacci(94)*Lucas(19)/(1/2+sqrt(5)/2)^99 3770005261899127 a004 Fibonacci(95)*Lucas(19)/(1/2+sqrt(5)/2)^100 3770005261899127 a004 Fibonacci(93)*Lucas(19)/(1/2+sqrt(5)/2)^98 3770005261899127 a004 Fibonacci(91)*Lucas(19)/(1/2+sqrt(5)/2)^96 3770005261899127 a004 Fibonacci(89)*Lucas(19)/(1/2+sqrt(5)/2)^94 3770005261899127 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^92 3770005261899127 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^90 3770005261899127 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^88 3770005261899127 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^86 3770005261899127 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^84 3770005261899127 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^82 3770005261899127 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^80 3770005261899127 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^78 3770005261899127 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^76 3770005261899127 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^74 3770005261899127 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^72 3770005261899127 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^70 3770005261899127 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^68 3770005261899127 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^66 3770005261899127 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^64 3770005261899127 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^62 3770005261899127 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^60 3770005261899127 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^58 3770005261899127 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^56 3770005261899127 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^54 3770005261899127 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^52 3770005261899127 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^50 3770005261899127 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^48 3770005261899127 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^46 3770005261899127 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^44 3770005261899127 a001 2/4181*(1/2+1/2*5^(1/2))^33 3770005261899128 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^42 3770005261899136 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^40 3770005261899188 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^38 3770005261899543 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^36 3770005261901978 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^34 3770005261918671 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^32 3770005262033082 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^30 3770005262309440 m001 ln(BesselJ(0,1))/FeigenbaumKappa^2*sin(Pi/12) 3770005262817270 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^28 3770005263811130 a001 6624/101521*9349^(18/19) 3770005264117040 a001 121393/1860498*9349^(18/19) 3770005264161671 a001 317811/4870847*9349^(18/19) 3770005264168183 a001 832040/12752043*9349^(18/19) 3770005264169133 a001 311187/4769326*9349^(18/19) 3770005264169271 a001 5702887/87403803*9349^(18/19) 3770005264169292 a001 14930352/228826127*9349^(18/19) 3770005264169295 a001 39088169/599074578*9349^(18/19) 3770005264169295 a001 14619165/224056801*9349^(18/19) 3770005264169295 a001 267914296/4106118243*9349^(18/19) 3770005264169295 a001 701408733/10749957122*9349^(18/19) 3770005264169295 a001 1836311903/28143753123*9349^(18/19) 3770005264169295 a001 686789568/10525900321*9349^(18/19) 3770005264169295 a001 12586269025/192900153618*9349^(18/19) 3770005264169295 a001 32951280099/505019158607*9349^(18/19) 3770005264169295 a001 86267571272/1322157322203*9349^(18/19) 3770005264169295 a001 32264490531/494493258286*9349^(18/19) 3770005264169295 a001 1548008755920/23725150497407*9349^(18/19) 3770005264169295 a001 365435296162/5600748293801*9349^(18/19) 3770005264169295 a001 139583862445/2139295485799*9349^(18/19) 3770005264169295 a001 53316291173/817138163596*9349^(18/19) 3770005264169295 a001 20365011074/312119004989*9349^(18/19) 3770005264169295 a001 7778742049/119218851371*9349^(18/19) 3770005264169295 a001 2971215073/45537549124*9349^(18/19) 3770005264169295 a001 1134903170/17393796001*9349^(18/19) 3770005264169295 a001 433494437/6643838879*9349^(18/19) 3770005264169295 a001 165580141/2537720636*9349^(18/19) 3770005264169295 a001 63245986/969323029*9349^(18/19) 3770005264169296 a001 24157817/370248451*9349^(18/19) 3770005264169304 a001 9227465/141422324*9349^(18/19) 3770005264169357 a001 3524578/54018521*9349^(18/19) 3770005264169688 a001 17711/167761*9349^(17/19) 3770005264169720 a001 1346269/20633239*9349^(18/19) 3770005264172207 a001 514229/7881196*9349^(18/19) 3770005264189255 a001 196418/3010349*9349^(18/19) 3770005264306102 a001 75025/1149851*9349^(18/19) 3770005264503201 a001 28657/15127*9349^(11/19) 3770005265106982 a001 28657/439204*9349^(18/19) 3770005265337770 a001 10946/15127*9349^(13/19) 3770005265504526 a001 6624/2161*9349^(10/19) 3770005265955201 a001 17711/103682*9349^(16/19) 3770005266108307 a001 11592/109801*9349^(17/19) 3770005266129226 m001 1/GAMMA(1/12)*ln(Bloch)*gamma 3770005266391148 a001 121393/1149851*9349^(17/19) 3770005266432414 a001 317811/3010349*9349^(17/19) 3770005266438435 a001 208010/1970299*9349^(17/19) 3770005266439313 a001 2178309/20633239*9349^(17/19) 3770005266439441 a001 5702887/54018521*9349^(17/19) 3770005266439460 a001 3732588/35355581*9349^(17/19) 3770005266439463 a001 39088169/370248451*9349^(17/19) 3770005266439463 a001 102334155/969323029*9349^(17/19) 3770005266439463 a001 66978574/634430159*9349^(17/19) 3770005266439463 a001 701408733/6643838879*9349^(17/19) 3770005266439463 a001 1836311903/17393796001*9349^(17/19) 3770005266439463 a001 1201881744/11384387281*9349^(17/19) 3770005266439463 a001 12586269025/119218851371*9349^(17/19) 3770005266439463 a001 32951280099/312119004989*9349^(17/19) 3770005266439463 a001 21566892818/204284540899*9349^(17/19) 3770005266439463 a001 225851433717/2139295485799*9349^(17/19) 3770005266439463 a001 182717648081/1730726404001*9349^(17/19) 3770005266439463 a001 139583862445/1322157322203*9349^(17/19) 3770005266439463 a001 53316291173/505019158607*9349^(17/19) 3770005266439463 a001 10182505537/96450076809*9349^(17/19) 3770005266439463 a001 7778742049/73681302247*9349^(17/19) 3770005266439463 a001 2971215073/28143753123*9349^(17/19) 3770005266439463 a001 567451585/5374978561*9349^(17/19) 3770005266439463 a001 433494437/4106118243*9349^(17/19) 3770005266439463 a001 165580141/1568397607*9349^(17/19) 3770005266439463 a001 31622993/299537289*9349^(17/19) 3770005266439464 a001 24157817/228826127*9349^(17/19) 3770005266439472 a001 9227465/87403803*9349^(17/19) 3770005266439521 a001 1762289/16692641*9349^(17/19) 3770005266439856 a001 1346269/12752043*9349^(17/19) 3770005266442156 a001 514229/4870847*9349^(17/19) 3770005266457918 a001 98209/930249*9349^(17/19) 3770005266565953 a001 75025/710647*9349^(17/19) 3770005267306440 a001 28657/271443*9349^(17/19) 3770005267410416 a001 5473/2889*5778^(11/18) 3770005267847471 a001 5702887/39603*3571^(2/17) 3770005267886128 a001 6765/15127*24476^(2/3) 3770005268192175 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^26 3770005268259350 a001 75025/15127*9349^(9/19) 3770005268307765 a001 15456/90481*9349^(16/19) 3770005268442507 a001 17711/39603*9349^(14/19) 3770005268651000 a001 121393/710647*9349^(16/19) 3770005268701077 a001 105937/620166*9349^(16/19) 3770005268708383 a001 832040/4870847*9349^(16/19) 3770005268709449 a001 726103/4250681*9349^(16/19) 3770005268709605 a001 5702887/33385282*9349^(16/19) 3770005268709628 a001 4976784/29134601*9349^(16/19) 3770005268709631 a001 39088169/228826127*9349^(16/19) 3770005268709631 a001 34111385/199691526*9349^(16/19) 3770005268709631 a001 267914296/1568397607*9349^(16/19) 3770005268709631 a001 233802911/1368706081*9349^(16/19) 3770005268709631 a001 1836311903/10749957122*9349^(16/19) 3770005268709631 a001 1602508992/9381251041*9349^(16/19) 3770005268709631 a001 12586269025/73681302247*9349^(16/19) 3770005268709631 a001 10983760033/64300051206*9349^(16/19) 3770005268709631 a001 86267571272/505019158607*9349^(16/19) 3770005268709631 a001 75283811239/440719107401*9349^(16/19) 3770005268709631 a001 2504730781961/14662949395604*9349^(16/19) 3770005268709631 a001 139583862445/817138163596*9349^(16/19) 3770005268709631 a001 53316291173/312119004989*9349^(16/19) 3770005268709631 a001 20365011074/119218851371*9349^(16/19) 3770005268709631 a001 7778742049/45537549124*9349^(16/19) 3770005268709631 a001 2971215073/17393796001*9349^(16/19) 3770005268709631 a001 1134903170/6643838879*9349^(16/19) 3770005268709631 a001 433494437/2537720636*9349^(16/19) 3770005268709631 a001 165580141/969323029*9349^(16/19) 3770005268709632 a001 63245986/370248451*9349^(16/19) 3770005268709633 a001 24157817/141422324*9349^(16/19) 3770005268709642 a001 9227465/54018521*9349^(16/19) 3770005268709701 a001 3524578/20633239*9349^(16/19) 3770005268710108 a001 1346269/7881196*9349^(16/19) 3770005268712899 a001 514229/3010349*9349^(16/19) 3770005268732027 a001 196418/1149851*9349^(16/19) 3770005268863131 a001 75025/439204*9349^(16/19) 3770005269494212 a001 17711/64079*9349^(15/19) 3770005269761730 a001 28657/167761*9349^(16/19) 3770005269900522 a001 7465176/51841*3571^(2/17) 3770005270200058 a001 39088169/271443*3571^(2/17) 3770005270243760 a001 14619165/101521*3571^(2/17) 3770005270250136 a001 133957148/930249*3571^(2/17) 3770005270251066 a001 701408733/4870847*3571^(2/17) 3770005270251202 a001 1836311903/12752043*3571^(2/17) 3770005270251221 a001 14930208/103681*3571^(2/17) 3770005270251224 a001 12586269025/87403803*3571^(2/17) 3770005270251225 a001 32951280099/228826127*3571^(2/17) 3770005270251225 a001 43133785636/299537289*3571^(2/17) 3770005270251225 a001 32264490531/224056801*3571^(2/17) 3770005270251225 a001 591286729879/4106118243*3571^(2/17) 3770005270251225 a001 774004377960/5374978561*3571^(2/17) 3770005270251225 a001 4052739537881/28143753123*3571^(2/17) 3770005270251225 a001 1515744265389/10525900321*3571^(2/17) 3770005270251225 a001 3278735159921/22768774562*3571^(2/17) 3770005270251225 a001 2504730781961/17393796001*3571^(2/17) 3770005270251225 a001 956722026041/6643838879*3571^(2/17) 3770005270251225 a001 182717648081/1268860318*3571^(2/17) 3770005270251225 a001 139583862445/969323029*3571^(2/17) 3770005270251225 a001 53316291173/370248451*3571^(2/17) 3770005270251225 a001 10182505537/70711162*3571^(2/17) 3770005270251226 a001 7778742049/54018521*3571^(2/17) 3770005270251234 a001 2971215073/20633239*3571^(2/17) 3770005270251285 a001 567451585/3940598*3571^(2/17) 3770005270251641 a001 433494437/3010349*3571^(2/17) 3770005270254076 a001 165580141/1149851*3571^(2/17) 3770005270270769 a001 31622993/219602*3571^(2/17) 3770005270344396 a001 121393/15127*9349^(8/19) 3770005270385181 a001 24157817/167761*3571^(2/17) 3770005270596299 a001 10946/167761*9349^(18/19) 3770005270763055 a001 46368/167761*9349^(15/19) 3770005270948177 a001 121393/439204*9349^(15/19) 3770005270975186 a001 317811/1149851*9349^(15/19) 3770005270979126 a001 832040/3010349*9349^(15/19) 3770005270979701 a001 2178309/7881196*9349^(15/19) 3770005270979785 a001 5702887/20633239*9349^(15/19) 3770005270979797 a001 14930352/54018521*9349^(15/19) 3770005270979799 a001 39088169/141422324*9349^(15/19) 3770005270979800 a001 102334155/370248451*9349^(15/19) 3770005270979800 a001 267914296/969323029*9349^(15/19) 3770005270979800 a001 701408733/2537720636*9349^(15/19) 3770005270979800 a001 1836311903/6643838879*9349^(15/19) 3770005270979800 a001 4807526976/17393796001*9349^(15/19) 3770005270979800 a001 12586269025/45537549124*9349^(15/19) 3770005270979800 a001 32951280099/119218851371*9349^(15/19) 3770005270979800 a001 86267571272/312119004989*9349^(15/19) 3770005270979800 a001 225851433717/817138163596*9349^(15/19) 3770005270979800 a001 1548008755920/5600748293801*9349^(15/19) 3770005270979800 a001 139583862445/505019158607*9349^(15/19) 3770005270979800 a001 53316291173/192900153618*9349^(15/19) 3770005270979800 a001 20365011074/73681302247*9349^(15/19) 3770005270979800 a001 7778742049/28143753123*9349^(15/19) 3770005270979800 a001 2971215073/10749957122*9349^(15/19) 3770005270979800 a001 1134903170/4106118243*9349^(15/19) 3770005270979800 a001 433494437/1568397607*9349^(15/19) 3770005270979800 a001 165580141/599074578*9349^(15/19) 3770005270979800 a001 63245986/228826127*9349^(15/19) 3770005270979800 a001 24157817/87403803*9349^(15/19) 3770005270979805 a001 9227465/33385282*9349^(15/19) 3770005270979837 a001 3524578/12752043*9349^(15/19) 3770005270980057 a001 1346269/4870847*9349^(15/19) 3770005270981562 a001 514229/1860498*9349^(15/19) 3770005270991878 a001 196418/710647*9349^(15/19) 3770005271062589 a001 75025/271443*9349^(15/19) 3770005271166420 a001 3524578/15127*3571^(1/17) 3770005271169377 a001 9227465/64079*3571^(2/17) 3770005271522623 a001 6765/15127*64079^(14/23) 3770005271547243 a001 28657/103682*9349^(15/19) 3770005272081490 a001 6765/15127*20633239^(2/5) 3770005272081493 a001 6765/15127*17393796001^(2/7) 3770005272081493 a001 6765/15127*14662949395604^(2/9) 3770005272081493 a001 6765/15127*(1/2+1/2*5^(1/2))^14 3770005272081493 a001 6765/15127*10749957122^(7/24) 3770005272081493 a001 6765/15127*4106118243^(7/23) 3770005272081493 a001 6765/15127*1568397607^(7/22) 3770005272081493 a001 6765/15127*599074578^(1/3) 3770005272081493 a001 6765/15127*228826127^(7/20) 3770005272081493 a001 6765/15127*87403803^(7/19) 3770005272081495 a001 6765/15127*33385282^(7/18) 3770005272081503 a001 6765/15127*12752043^(7/17) 3770005272081563 a001 6765/15127*4870847^(7/16) 3770005272082001 a001 6765/15127*1860498^(7/15) 3770005272085226 a001 6765/15127*710647^(1/2) 3770005272109044 a001 6765/15127*271443^(7/13) 3770005272132660 a001 45765225/121393 3770005272238368 m002 Pi^2/4+Log[Pi]/5+ProductLog[Pi] 3770005272286068 a001 6765/15127*103682^(7/12) 3770005272381812 a001 5473/51841*9349^(17/19) 3770005272548569 a001 23184/51841*9349^(14/19) 3770005272685274 a001 196418/15127*9349^(7/19) 3770005273147635 a001 121393/271443*9349^(14/19) 3770005273235038 a001 317811/710647*9349^(14/19) 3770005273247789 a001 416020/930249*9349^(14/19) 3770005273249650 a001 2178309/4870847*9349^(14/19) 3770005273249921 a001 5702887/12752043*9349^(14/19) 3770005273249961 a001 7465176/16692641*9349^(14/19) 3770005273249967 a001 39088169/87403803*9349^(14/19) 3770005273249968 a001 102334155/228826127*9349^(14/19) 3770005273249968 a001 133957148/299537289*9349^(14/19) 3770005273249968 a001 701408733/1568397607*9349^(14/19) 3770005273249968 a001 1836311903/4106118243*9349^(14/19) 3770005273249968 a001 2403763488/5374978561*9349^(14/19) 3770005273249968 a001 12586269025/28143753123*9349^(14/19) 3770005273249968 a001 32951280099/73681302247*9349^(14/19) 3770005273249968 a001 43133785636/96450076809*9349^(14/19) 3770005273249968 a001 225851433717/505019158607*9349^(14/19) 3770005273249968 a001 591286729879/1322157322203*9349^(14/19) 3770005273249968 a001 10610209857723/23725150497407*9349^(14/19) 3770005273249968 a001 182717648081/408569081798*9349^(14/19) 3770005273249968 a001 139583862445/312119004989*9349^(14/19) 3770005273249968 a001 53316291173/119218851371*9349^(14/19) 3770005273249968 a001 10182505537/22768774562*9349^(14/19) 3770005273249968 a001 7778742049/17393796001*9349^(14/19) 3770005273249968 a001 2971215073/6643838879*9349^(14/19) 3770005273249968 a001 567451585/1268860318*9349^(14/19) 3770005273249968 a001 433494437/969323029*9349^(14/19) 3770005273249968 a001 165580141/370248451*9349^(14/19) 3770005273249968 a001 31622993/70711162*9349^(14/19) 3770005273249970 a001 24157817/54018521*9349^(14/19) 3770005273249985 a001 9227465/20633239*9349^(14/19) 3770005273250089 a001 1762289/3940598*9349^(14/19) 3770005273250800 a001 1346269/3010349*9349^(14/19) 3770005273255671 a001 514229/1149851*9349^(14/19) 3770005273289055 a001 98209/219602*9349^(14/19) 3770005273517878 a001 75025/167761*9349^(14/19) 3770005273611140 a001 6765/15127*39603^(7/11) 3770005274034549 a001 28657/39603*9349^(13/19) 3770005274869117 a001 10946/39603*9349^(15/19) 3770005274928434 a001 317811/15127*9349^(6/19) 3770005275035874 a001 15456/13201*9349^(12/19) 3770005275086254 a001 28657/64079*9349^(14/19) 3770005275303392 a001 75025/103682*9349^(13/19) 3770005275488513 a001 196418/271443*9349^(13/19) 3770005275515522 a001 514229/710647*9349^(13/19) 3770005275519463 a001 1346269/1860498*9349^(13/19) 3770005275520038 a001 3524578/4870847*9349^(13/19) 3770005275520122 a001 9227465/12752043*9349^(13/19) 3770005275520134 a001 24157817/33385282*9349^(13/19) 3770005275520136 a001 63245986/87403803*9349^(13/19) 3770005275520136 a001 165580141/228826127*9349^(13/19) 3770005275520136 a001 433494437/599074578*9349^(13/19) 3770005275520136 a001 1134903170/1568397607*9349^(13/19) 3770005275520136 a001 2971215073/4106118243*9349^(13/19) 3770005275520136 a001 7778742049/10749957122*9349^(13/19) 3770005275520136 a001 20365011074/28143753123*9349^(13/19) 3770005275520136 a001 53316291173/73681302247*9349^(13/19) 3770005275520136 a001 139583862445/192900153618*9349^(13/19) 3770005275520136 a001 10610209857723/14662949395604*9349^(13/19) 3770005275520136 a001 591286729879/817138163596*9349^(13/19) 3770005275520136 a001 225851433717/312119004989*9349^(13/19) 3770005275520136 a001 86267571272/119218851371*9349^(13/19) 3770005275520136 a001 32951280099/45537549124*9349^(13/19) 3770005275520136 a001 12586269025/17393796001*9349^(13/19) 3770005275520136 a001 4807526976/6643838879*9349^(13/19) 3770005275520136 a001 1836311903/2537720636*9349^(13/19) 3770005275520136 a001 701408733/969323029*9349^(13/19) 3770005275520136 a001 267914296/370248451*9349^(13/19) 3770005275520136 a001 102334155/141422324*9349^(13/19) 3770005275520137 a001 39088169/54018521*9349^(13/19) 3770005275520141 a001 14930352/20633239*9349^(13/19) 3770005275520173 a001 5702887/7881196*9349^(13/19) 3770005275520393 a001 2178309/3010349*9349^(13/19) 3770005275521898 a001 832040/1149851*9349^(13/19) 3770005275532215 a001 317811/439204*9349^(13/19) 3770005275557887 a007 Real Root Of 110*x^4+608*x^3+908*x^2+753*x+291 3770005275602925 a001 121393/167761*9349^(13/19) 3770005275920823 a001 10946/64079*9349^(16/19) 3770005276009774 a001 2584/15127*5778^(8/9) 3770005276087580 a001 46368/64079*9349^(13/19) 3770005276544334 a001 1762289/12238*3571^(2/17) 3770005277208918 a001 514229/15127*9349^(5/19) 3770005277388438 a001 121393/103682*9349^(12/19) 3770005277731673 a001 105937/90481*9349^(12/19) 3770005277781750 a001 832040/710647*9349^(12/19) 3770005277789056 a001 726103/620166*9349^(12/19) 3770005277790122 a001 5702887/4870847*9349^(12/19) 3770005277790278 a001 4976784/4250681*9349^(12/19) 3770005277790300 a001 39088169/33385282*9349^(12/19) 3770005277790304 a001 34111385/29134601*9349^(12/19) 3770005277790304 a001 267914296/228826127*9349^(12/19) 3770005277790304 a001 233802911/199691526*9349^(12/19) 3770005277790304 a001 1836311903/1568397607*9349^(12/19) 3770005277790304 a001 1602508992/1368706081*9349^(12/19) 3770005277790304 a001 12586269025/10749957122*9349^(12/19) 3770005277790304 a001 10983760033/9381251041*9349^(12/19) 3770005277790304 a001 86267571272/73681302247*9349^(12/19) 3770005277790304 a001 75283811239/64300051206*9349^(12/19) 3770005277790304 a001 2504730781961/2139295485799*9349^(12/19) 3770005277790304 a001 365435296162/312119004989*9349^(12/19) 3770005277790304 a001 139583862445/119218851371*9349^(12/19) 3770005277790304 a001 53316291173/45537549124*9349^(12/19) 3770005277790304 a001 20365011074/17393796001*9349^(12/19) 3770005277790304 a001 7778742049/6643838879*9349^(12/19) 3770005277790304 a001 2971215073/2537720636*9349^(12/19) 3770005277790304 a001 1134903170/969323029*9349^(12/19) 3770005277790304 a001 433494437/370248451*9349^(12/19) 3770005277790304 a001 165580141/141422324*9349^(12/19) 3770005277790306 a001 63245986/54018521*9349^(12/19) 3770005277790314 a001 24157817/20633239*9349^(12/19) 3770005277790374 a001 9227465/7881196*9349^(12/19) 3770005277790697 a001 75025/39603*9349^(11/19) 3770005277790781 a001 3524578/3010349*9349^(12/19) 3770005277793571 a001 1346269/1149851*9349^(12/19) 3770005277812699 a001 514229/439204*9349^(12/19) 3770005277943803 a001 196418/167761*9349^(12/19) 3770005278606174 a001 514229/9349*3571^(4/17) 3770005278842403 a001 75025/64079*9349^(12/19) 3770005279409454 a001 17711/24476*9349^(13/19) 3770005279475146 a001 832040/15127*9349^(4/19) 3770005279729316 a001 98209/51841*9349^(11/19) 3770005279875743 a001 121393/39603*9349^(10/19) 3770005280012157 a001 514229/271443*9349^(11/19) 3770005280053423 a001 1346269/710647*9349^(11/19) 3770005280059444 a001 1762289/930249*9349^(11/19) 3770005280060322 a001 9227465/4870847*9349^(11/19) 3770005280060450 a001 24157817/12752043*9349^(11/19) 3770005280060469 a001 31622993/16692641*9349^(11/19) 3770005280060472 a001 165580141/87403803*9349^(11/19) 3770005280060472 a001 433494437/228826127*9349^(11/19) 3770005280060472 a001 567451585/299537289*9349^(11/19) 3770005280060472 a001 2971215073/1568397607*9349^(11/19) 3770005280060472 a001 7778742049/4106118243*9349^(11/19) 3770005280060472 a001 10182505537/5374978561*9349^(11/19) 3770005280060472 a001 53316291173/28143753123*9349^(11/19) 3770005280060472 a001 139583862445/73681302247*9349^(11/19) 3770005280060472 a001 182717648081/96450076809*9349^(11/19) 3770005280060472 a001 956722026041/505019158607*9349^(11/19) 3770005280060472 a001 10610209857723/5600748293801*9349^(11/19) 3770005280060472 a001 591286729879/312119004989*9349^(11/19) 3770005280060472 a001 225851433717/119218851371*9349^(11/19) 3770005280060472 a001 21566892818/11384387281*9349^(11/19) 3770005280060472 a001 32951280099/17393796001*9349^(11/19) 3770005280060472 a001 12586269025/6643838879*9349^(11/19) 3770005280060472 a001 1201881744/634430159*9349^(11/19) 3770005280060472 a001 1836311903/969323029*9349^(11/19) 3770005280060472 a001 701408733/370248451*9349^(11/19) 3770005280060472 a001 66978574/35355581*9349^(11/19) 3770005280060473 a001 102334155/54018521*9349^(11/19) 3770005280060481 a001 39088169/20633239*9349^(11/19) 3770005280060530 a001 3732588/1970299*9349^(11/19) 3770005280060865 a001 5702887/3010349*9349^(11/19) 3770005280063165 a001 2178309/1149851*9349^(11/19) 3770005280078927 a001 208010/109801*9349^(11/19) 3770005280186962 a001 317811/167761*9349^(11/19) 3770005280927449 a001 121393/64079*9349^(11/19) 3770005281358474 a001 2255/13201*24476^(16/21) 3770005281746819 a001 1346269/15127*9349^(3/19) 3770005281972476 a001 317811/103682*9349^(10/19) 3770005282216622 a001 196418/39603*9349^(9/19) 3770005282263859 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^27 3770005282278385 a001 832040/271443*9349^(10/19) 3770005282323016 a001 311187/101521*9349^(10/19) 3770005282329528 a001 5702887/1860498*9349^(10/19) 3770005282330478 a001 14930352/4870847*9349^(10/19) 3770005282330617 a001 39088169/12752043*9349^(10/19) 3770005282330637 a001 14619165/4769326*9349^(10/19) 3770005282330640 a001 267914296/87403803*9349^(10/19) 3770005282330640 a001 701408733/228826127*9349^(10/19) 3770005282330640 a001 1836311903/599074578*9349^(10/19) 3770005282330640 a001 686789568/224056801*9349^(10/19) 3770005282330640 a001 12586269025/4106118243*9349^(10/19) 3770005282330640 a001 32951280099/10749957122*9349^(10/19) 3770005282330640 a001 86267571272/28143753123*9349^(10/19) 3770005282330640 a001 32264490531/10525900321*9349^(10/19) 3770005282330640 a001 591286729879/192900153618*9349^(10/19) 3770005282330640 a001 1548008755920/505019158607*9349^(10/19) 3770005282330640 a001 1515744265389/494493258286*9349^(10/19) 3770005282330640 a001 2504730781961/817138163596*9349^(10/19) 3770005282330640 a001 956722026041/312119004989*9349^(10/19) 3770005282330640 a001 365435296162/119218851371*9349^(10/19) 3770005282330640 a001 139583862445/45537549124*9349^(10/19) 3770005282330640 a001 53316291173/17393796001*9349^(10/19) 3770005282330640 a001 20365011074/6643838879*9349^(10/19) 3770005282330640 a001 7778742049/2537720636*9349^(10/19) 3770005282330640 a001 2971215073/969323029*9349^(10/19) 3770005282330640 a001 1134903170/370248451*9349^(10/19) 3770005282330641 a001 433494437/141422324*9349^(10/19) 3770005282330642 a001 165580141/54018521*9349^(10/19) 3770005282330649 a001 63245986/20633239*9349^(10/19) 3770005282330702 a001 24157817/7881196*9349^(10/19) 3770005282331065 a001 9227465/3010349*9349^(10/19) 3770005282333553 a001 3524578/1149851*9349^(10/19) 3770005282350600 a001 1346269/439204*9349^(10/19) 3770005282467447 a001 514229/167761*9349^(10/19) 3770005282512362 a001 2255/90481*24476^(20/21) 3770005282557150 a001 17711/15127*24476^(4/7) 3770005282812167 a001 6765/103682*24476^(6/7) 3770005282997153 a001 615/15251*24476^(19/21) 3770005283268328 a001 196418/64079*9349^(10/19) 3770005283614283 a001 6765/15127*15127^(7/10) 3770005284016412 a001 311187/2161*9349^(2/19) 3770005284252960 a001 514229/103682*9349^(9/19) 3770005284380679 a001 6765/64079*24476^(17/21) 3770005284459781 a001 105937/13201*9349^(8/19) 3770005284550058 a001 1346269/271443*9349^(9/19) 3770005284593404 a001 3524578/710647*9349^(9/19) 3770005284599728 a001 9227465/1860498*9349^(9/19) 3770005284600651 a001 24157817/4870847*9349^(9/19) 3770005284600786 a001 63245986/12752043*9349^(9/19) 3770005284600805 a001 165580141/33385282*9349^(9/19) 3770005284600808 a001 433494437/87403803*9349^(9/19) 3770005284600809 a001 1134903170/228826127*9349^(9/19) 3770005284600809 a001 2971215073/599074578*9349^(9/19) 3770005284600809 a001 7778742049/1568397607*9349^(9/19) 3770005284600809 a001 20365011074/4106118243*9349^(9/19) 3770005284600809 a001 53316291173/10749957122*9349^(9/19) 3770005284600809 a001 139583862445/28143753123*9349^(9/19) 3770005284600809 a001 365435296162/73681302247*9349^(9/19) 3770005284600809 a001 956722026041/192900153618*9349^(9/19) 3770005284600809 a001 2504730781961/505019158607*9349^(9/19) 3770005284600809 a001 10610209857723/2139295485799*9349^(9/19) 3770005284600809 a001 4052739537881/817138163596*9349^(9/19) 3770005284600809 a001 140728068720/28374454999*9349^(9/19) 3770005284600809 a001 591286729879/119218851371*9349^(9/19) 3770005284600809 a001 225851433717/45537549124*9349^(9/19) 3770005284600809 a001 86267571272/17393796001*9349^(9/19) 3770005284600809 a001 32951280099/6643838879*9349^(9/19) 3770005284600809 a001 1144206275/230701876*9349^(9/19) 3770005284600809 a001 4807526976/969323029*9349^(9/19) 3770005284600809 a001 1836311903/370248451*9349^(9/19) 3770005284600809 a001 701408733/141422324*9349^(9/19) 3770005284600810 a001 267914296/54018521*9349^(9/19) 3770005284600817 a001 9303105/1875749*9349^(9/19) 3770005284600869 a001 39088169/7881196*9349^(9/19) 3770005284601221 a001 14930352/3010349*9349^(9/19) 3770005284603637 a001 5702887/1149851*9349^(9/19) 3770005284620194 a001 2178309/439204*9349^(9/19) 3770005284733675 a001 75640/15251*9349^(9/19) 3770005285001496 a001 28657/24476*9349^(12/19) 3770005285005221 m001 1/exp(Robbin)^2*ErdosBorwein*log(1+sqrt(2)) 3770005285209518 a001 6624/2161*24476^(10/21) 3770005285238052 a001 9227465/39603*3571^(1/17) 3770005285511487 a001 317811/64079*9349^(9/19) 3770005285514469 a001 2255/13201*64079^(16/23) 3770005285674146 a001 17711/15127*64079^(12/23) 3770005285836064 a001 5473/12238*9349^(14/19) 3770005285993842 a001 75025/15127*24476^(3/7) 3770005286002821 a001 11592/6119*9349^(11/19) 3770005286108390 a001 121393/15127*24476^(8/21) 3770005286144491 a001 17711/15127*439204^(4/9) 3770005286153155 a001 17711/15127*7881196^(4/11) 3770005286153177 a001 2255/13201*(1/2+1/2*5^(1/2))^16 3770005286153177 a001 2255/13201*23725150497407^(1/4) 3770005286153177 a001 2255/13201*73681302247^(4/13) 3770005286153177 a001 2255/13201*10749957122^(1/3) 3770005286153177 a001 2255/13201*4106118243^(8/23) 3770005286153177 a001 2255/13201*1568397607^(4/11) 3770005286153177 a001 2255/13201*599074578^(8/21) 3770005286153177 a001 17711/15127*141422324^(4/13) 3770005286153177 a001 2255/13201*228826127^(2/5) 3770005286153177 a001 17711/15127*2537720636^(4/15) 3770005286153177 a001 17711/15127*45537549124^(4/17) 3770005286153177 a001 17711/15127*817138163596^(4/19) 3770005286153177 a001 17711/15127*14662949395604^(4/21) 3770005286153177 a001 17711/15127*(1/2+1/2*5^(1/2))^12 3770005286153177 a001 17711/15127*192900153618^(2/9) 3770005286153177 a001 17711/15127*73681302247^(3/13) 3770005286153177 a001 17711/15127*10749957122^(1/4) 3770005286153177 a001 17711/15127*4106118243^(6/23) 3770005286153177 a001 17711/15127*1568397607^(3/11) 3770005286153177 a001 17711/15127*599074578^(2/7) 3770005286153177 a001 17711/15127*228826127^(3/10) 3770005286153177 a001 2255/13201*87403803^(8/19) 3770005286153177 a001 17711/15127*87403803^(6/19) 3770005286153178 a001 17711/15127*33385282^(1/3) 3770005286153179 a001 2255/13201*33385282^(4/9) 3770005286153185 a001 17711/15127*12752043^(6/17) 3770005286153188 a001 2255/13201*12752043^(8/17) 3770005286153237 a001 17711/15127*4870847^(3/8) 3770005286153257 a001 2255/13201*4870847^(1/2) 3770005286153613 a001 17711/15127*1860498^(2/5) 3770005286153758 a001 2255/13201*1860498^(8/15) 3770005286156376 a001 17711/15127*710647^(3/7) 3770005286157443 a001 2255/13201*710647^(4/7) 3770005286160642 a001 39938305/105937 3770005286176792 a001 17711/15127*271443^(6/13) 3770005286178692 a001 28657/15127*24476^(11/21) 3770005286184664 a001 2255/13201*271443^(8/13) 3770005286286800 a001 3524578/15127*9349^(1/19) 3770005286328527 a001 17711/15127*103682^(1/2) 3770005286386977 a001 2255/13201*103682^(2/3) 3770005286478769 a001 196418/15127*24476^(1/3) 3770005286519188 a001 416020/51841*9349^(8/19) 3770005286740266 a001 514229/39603*9349^(7/19) 3770005286751429 a001 317811/15127*24476^(2/7) 3770005286819651 a001 726103/90481*9349^(8/19) 3770005286863489 a001 5702887/710647*9349^(8/19) 3770005286869884 a001 829464/103361*9349^(8/19) 3770005286870817 a001 39088169/4870847*9349^(8/19) 3770005286870954 a001 34111385/4250681*9349^(8/19) 3770005286870973 a001 133957148/16692641*9349^(8/19) 3770005286870976 a001 233802911/29134601*9349^(8/19) 3770005286870977 a001 1836311903/228826127*9349^(8/19) 3770005286870977 a001 267084832/33281921*9349^(8/19) 3770005286870977 a001 12586269025/1568397607*9349^(8/19) 3770005286870977 a001 10983760033/1368706081*9349^(8/19) 3770005286870977 a001 43133785636/5374978561*9349^(8/19) 3770005286870977 a001 75283811239/9381251041*9349^(8/19) 3770005286870977 a001 591286729879/73681302247*9349^(8/19) 3770005286870977 a001 86000486440/10716675201*9349^(8/19) 3770005286870977 a001 4052739537881/505019158607*9349^(8/19) 3770005286870977 a001 3278735159921/408569081798*9349^(8/19) 3770005286870977 a001 2504730781961/312119004989*9349^(8/19) 3770005286870977 a001 956722026041/119218851371*9349^(8/19) 3770005286870977 a001 182717648081/22768774562*9349^(8/19) 3770005286870977 a001 139583862445/17393796001*9349^(8/19) 3770005286870977 a001 53316291173/6643838879*9349^(8/19) 3770005286870977 a001 10182505537/1268860318*9349^(8/19) 3770005286870977 a001 7778742049/969323029*9349^(8/19) 3770005286870977 a001 2971215073/370248451*9349^(8/19) 3770005286870977 a001 567451585/70711162*9349^(8/19) 3770005286870978 a001 433494437/54018521*9349^(8/19) 3770005286870986 a001 165580141/20633239*9349^(8/19) 3770005286871038 a001 31622993/3940598*9349^(8/19) 3770005286871394 a001 24157817/3010349*9349^(8/19) 3770005286873837 a001 9227465/1149851*9349^(8/19) 3770005286890581 a001 1762289/219602*9349^(8/19) 3770005287005348 a001 1346269/167761*9349^(8/19) 3770005287061414 a001 514229/15127*24476^(5/21) 3770005287146212 r005 Im(z^2+c),c=5/122+21/47*I,n=42 3770005287291075 a001 24157817/103682*3571^(1/17) 3770005287357143 a001 832040/15127*24476^(4/21) 3770005287464303 a001 17711/15127*39603^(6/11) 3770005287487661 a001 6765/103682*64079^(18/23) 3770005287590607 a001 63245986/271443*3571^(1/17) 3770005287634308 a001 165580141/710647*3571^(1/17) 3770005287638764 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^29 3770005287640684 a001 433494437/1860498*3571^(1/17) 3770005287641615 a001 1134903170/4870847*3571^(1/17) 3770005287641750 a001 2971215073/12752043*3571^(1/17) 3770005287641770 a001 7778742049/33385282*3571^(1/17) 3770005287641773 a001 20365011074/87403803*3571^(1/17) 3770005287641773 a001 53316291173/228826127*3571^(1/17) 3770005287641773 a001 139583862445/599074578*3571^(1/17) 3770005287641773 a001 365435296162/1568397607*3571^(1/17) 3770005287641773 a001 956722026041/4106118243*3571^(1/17) 3770005287641773 a001 2504730781961/10749957122*3571^(1/17) 3770005287641773 a001 6557470319842/28143753123*3571^(1/17) 3770005287641773 a001 10610209857723/45537549124*3571^(1/17) 3770005287641773 a001 4052739537881/17393796001*3571^(1/17) 3770005287641773 a001 1548008755920/6643838879*3571^(1/17) 3770005287641773 a001 591286729879/2537720636*3571^(1/17) 3770005287641773 a001 225851433717/969323029*3571^(1/17) 3770005287641773 a001 86267571272/370248451*3571^(1/17) 3770005287641774 a001 63246219/271444*3571^(1/17) 3770005287641775 a001 12586269025/54018521*3571^(1/17) 3770005287641782 a001 4807526976/20633239*3571^(1/17) 3770005287641834 a001 1836311903/7881196*3571^(1/17) 3770005287642189 a001 701408733/3010349*3571^(1/17) 3770005287644625 a001 267914296/1149851*3571^(1/17) 3770005287658317 a001 1346269/15127*24476^(1/7) 3770005287661317 a001 102334155/439204*3571^(1/17) 3770005287671218 a001 6765/710647*64079^(22/23) 3770005287707356 a001 2255/90481*64079^(20/23) 3770005287738147 a001 6765/439204*64079^(21/23) 3770005287775728 a001 39088169/167761*3571^(1/17) 3770005287791972 a001 514229/64079*9349^(8/19) 3770005287807015 a001 6624/2161*64079^(10/23) 3770005287901345 a001 2255/13201*39603^(8/11) 3770005287932397 a001 615/15251*64079^(19/23) 3770005287957411 a001 311187/2161*24476^(2/21) 3770005288152626 a001 6624/2161*167761^(2/5) 3770005288186387 a001 121393/15127*64079^(8/23) 3770005288193179 a001 6765/103682*439204^(2/3) 3770005288206175 a001 6765/103682*7881196^(6/11) 3770005288206206 a001 6624/2161*20633239^(2/7) 3770005288206208 a001 6765/103682*141422324^(6/13) 3770005288206208 a001 6765/103682*2537720636^(2/5) 3770005288206208 a001 6765/103682*45537549124^(6/17) 3770005288206208 a001 6765/103682*14662949395604^(2/7) 3770005288206208 a001 6765/103682*(1/2+1/2*5^(1/2))^18 3770005288206208 a001 6765/103682*192900153618^(1/3) 3770005288206208 a001 6765/103682*10749957122^(3/8) 3770005288206208 a001 6765/103682*4106118243^(9/23) 3770005288206208 a001 6765/103682*1568397607^(9/22) 3770005288206208 a001 6765/103682*599074578^(3/7) 3770005288206208 a001 6765/103682*228826127^(9/20) 3770005288206208 a001 6624/2161*2537720636^(2/9) 3770005288206208 a001 6624/2161*312119004989^(2/11) 3770005288206208 a001 6624/2161*(1/2+1/2*5^(1/2))^10 3770005288206208 a001 6624/2161*28143753123^(1/5) 3770005288206208 a001 6624/2161*10749957122^(5/24) 3770005288206208 a001 6624/2161*4106118243^(5/23) 3770005288206208 a001 6624/2161*1568397607^(5/22) 3770005288206208 a001 6624/2161*599074578^(5/21) 3770005288206208 a001 6624/2161*228826127^(1/4) 3770005288206208 a001 6624/2161*87403803^(5/19) 3770005288206208 a001 6765/103682*87403803^(9/19) 3770005288206209 a001 6624/2161*33385282^(5/18) 3770005288206210 a001 6765/103682*33385282^(1/2) 3770005288206215 a001 6624/2161*12752043^(5/17) 3770005288206220 a001 6765/103682*12752043^(9/17) 3770005288206258 a001 6624/2161*4870847^(5/16) 3770005288206297 a001 6765/103682*4870847^(9/16) 3770005288206571 a001 6624/2161*1860498^(1/3) 3770005288206862 a001 6765/103682*1860498^(3/5) 3770005288207297 a001 712908/1891 3770005288208874 a001 6624/2161*710647^(5/14) 3770005288211007 a001 6765/103682*710647^(9/14) 3770005288225888 a001 6624/2161*271443^(5/13) 3770005288241631 a001 6765/103682*271443^(9/13) 3770005288257299 a001 3524578/15127*24476^(1/21) 3770005288297017 a001 196418/15127*64079^(7/23) 3770005288309927 a001 317811/15127*64079^(6/23) 3770005288331590 a001 75025/15127*64079^(9/23) 3770005288352333 a001 6624/2161*103682^(5/12) 3770005288360163 a001 514229/15127*64079^(5/23) 3770005288396141 a001 832040/15127*64079^(4/23) 3770005288398577 a001 2255/90481*167761^(4/5) 3770005288422952 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^31 3770005288437566 a001 1346269/15127*64079^(3/23) 3770005288469233 a001 6765/103682*103682^(3/4) 3770005288476910 a001 311187/2161*64079^(2/23) 3770005288505736 a001 2255/90481*20633239^(4/7) 3770005288505741 a001 2255/90481*2537720636^(4/9) 3770005288505741 a001 2255/90481*(1/2+1/2*5^(1/2))^20 3770005288505741 a001 2255/90481*23725150497407^(5/16) 3770005288505741 a001 2255/90481*505019158607^(5/14) 3770005288505741 a001 2255/90481*73681302247^(5/13) 3770005288505741 a001 2255/90481*28143753123^(2/5) 3770005288505741 a001 2255/90481*10749957122^(5/12) 3770005288505741 a001 2255/90481*4106118243^(10/23) 3770005288505741 a001 2255/90481*1568397607^(5/11) 3770005288505741 a001 2255/90481*599074578^(10/21) 3770005288505741 a001 2255/90481*228826127^(1/2) 3770005288505741 a001 121393/15127*(1/2+1/2*5^(1/2))^8 3770005288505741 a001 121393/15127*23725150497407^(1/8) 3770005288505741 a001 121393/15127*505019158607^(1/7) 3770005288505741 a001 121393/15127*73681302247^(2/13) 3770005288505741 a001 121393/15127*10749957122^(1/6) 3770005288505741 a001 121393/15127*4106118243^(4/23) 3770005288505741 a001 121393/15127*1568397607^(2/11) 3770005288505741 a001 121393/15127*599074578^(4/21) 3770005288505741 a001 121393/15127*228826127^(1/5) 3770005288505741 a001 121393/15127*87403803^(4/19) 3770005288505742 a001 2255/90481*87403803^(10/19) 3770005288505742 a001 121393/15127*33385282^(2/9) 3770005288505743 a001 2255/90481*33385282^(5/9) 3770005288505747 a001 121393/15127*12752043^(4/17) 3770005288505755 a001 2255/90481*12752043^(10/17) 3770005288505781 a001 121393/15127*4870847^(1/4) 3770005288505841 a001 2255/90481*4870847^(5/8) 3770005288505900 a001 273741215/726103 3770005288506032 a001 121393/15127*1860498^(4/15) 3770005288506467 a001 2255/90481*1860498^(2/3) 3770005288507874 a001 121393/15127*710647^(2/7) 3770005288511073 a001 2255/90481*710647^(5/7) 3770005288517049 a001 3524578/15127*64079^(1/23) 3770005288521485 a001 121393/15127*271443^(4/13) 3770005288532968 a001 514229/15127*167761^(1/5) 3770005288537364 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^33 3770005288538446 a001 55/15126*439204^(8/9) 3770005288545100 a001 317811/15127*439204^(2/9) 3770005288545100 a001 2255/90481*271443^(10/13) 3770005288549402 a001 6765/710647*7881196^(2/3) 3770005288549432 a001 317811/15127*7881196^(2/11) 3770005288549443 a001 6765/710647*312119004989^(2/5) 3770005288549443 a001 6765/710647*(1/2+1/2*5^(1/2))^22 3770005288549443 a001 6765/710647*10749957122^(11/24) 3770005288549443 a001 6765/710647*4106118243^(11/23) 3770005288549443 a001 6765/710647*1568397607^(1/2) 3770005288549443 a001 6765/710647*599074578^(11/21) 3770005288549443 a001 6765/710647*228826127^(11/20) 3770005288549443 a001 317811/15127*141422324^(2/13) 3770005288549443 a001 317811/15127*2537720636^(2/15) 3770005288549443 a001 317811/15127*45537549124^(2/17) 3770005288549443 a001 317811/15127*14662949395604^(2/21) 3770005288549443 a001 317811/15127*(1/2+1/2*5^(1/2))^6 3770005288549443 a001 317811/15127*10749957122^(1/8) 3770005288549443 a001 317811/15127*4106118243^(3/23) 3770005288549443 a001 317811/15127*1568397607^(3/22) 3770005288549443 a001 317811/15127*599074578^(1/7) 3770005288549443 a001 317811/15127*228826127^(3/20) 3770005288549443 a001 317811/15127*87403803^(3/19) 3770005288549443 a001 6765/710647*87403803^(11/19) 3770005288549443 a001 317811/15127*33385282^(1/6) 3770005288549445 a001 6765/710647*33385282^(11/18) 3770005288549447 a001 317811/15127*12752043^(3/17) 3770005288549458 a001 6765/710647*12752043^(11/17) 3770005288549466 a001 2149991415/5702887 3770005288549472 a001 317811/15127*4870847^(3/16) 3770005288549552 a001 6765/710647*4870847^(11/16) 3770005288549660 a001 317811/15127*1860498^(1/5) 3770005288550241 a001 6765/710647*1860498^(11/15) 3770005288551042 a001 317811/15127*710647^(3/14) 3770005288554056 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^35 3770005288555152 a001 1346269/15127*439204^(1/9) 3770005288555308 a001 6765/710647*710647^(11/14) 3770005288555774 a001 55/15126*7881196^(8/11) 3770005288555818 a001 55/15126*141422324^(8/13) 3770005288555819 a001 55/15126*2537720636^(8/15) 3770005288555819 a001 55/15126*45537549124^(8/17) 3770005288555819 a001 55/15126*14662949395604^(8/21) 3770005288555819 a001 55/15126*(1/2+1/2*5^(1/2))^24 3770005288555819 a001 55/15126*192900153618^(4/9) 3770005288555819 a001 55/15126*73681302247^(6/13) 3770005288555819 a001 55/15126*10749957122^(1/2) 3770005288555819 a001 55/15126*4106118243^(12/23) 3770005288555819 a001 55/15126*1568397607^(6/11) 3770005288555819 a001 55/15126*599074578^(4/7) 3770005288555819 a001 55/15126*228826127^(3/5) 3770005288555819 a001 832040/15127*(1/2+1/2*5^(1/2))^4 3770005288555819 a001 832040/15127*23725150497407^(1/16) 3770005288555819 a001 832040/15127*73681302247^(1/13) 3770005288555819 a001 832040/15127*10749957122^(1/12) 3770005288555819 a001 832040/15127*4106118243^(2/23) 3770005288555819 a001 832040/15127*1568397607^(1/11) 3770005288555819 a001 832040/15127*599074578^(2/21) 3770005288555819 a001 832040/15127*228826127^(1/10) 3770005288555819 a001 832040/15127*87403803^(2/19) 3770005288555819 a001 55/15126*87403803^(12/19) 3770005288555819 a001 832040/15127*33385282^(1/9) 3770005288555821 a001 55/15126*33385282^(2/3) 3770005288555821 a001 832040/15127*12752043^(2/17) 3770005288555822 a001 234531275/622098 3770005288555835 a001 55/15126*12752043^(12/17) 3770005288555838 a001 832040/15127*4870847^(1/8) 3770005288555938 a001 55/15126*4870847^(3/4) 3770005288555964 a001 832040/15127*1860498^(2/15) 3770005288556492 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^37 3770005288556690 a001 55/15126*1860498^(4/5) 3770005288556749 a001 6765/4870847*141422324^(2/3) 3770005288556749 a001 6765/4870847*(1/2+1/2*5^(1/2))^26 3770005288556749 a001 6765/4870847*73681302247^(1/2) 3770005288556749 a001 6765/4870847*10749957122^(13/24) 3770005288556749 a001 6765/4870847*4106118243^(13/23) 3770005288556749 a001 6765/4870847*1568397607^(13/22) 3770005288556749 a001 6765/4870847*599074578^(13/21) 3770005288556749 a001 6765/4870847*228826127^(13/20) 3770005288556749 a001 311187/2161*(1/2+1/2*5^(1/2))^2 3770005288556749 a001 311187/2161*10749957122^(1/24) 3770005288556749 a001 311187/2161*4106118243^(1/23) 3770005288556749 a001 311187/2161*1568397607^(1/22) 3770005288556749 a001 311187/2161*599074578^(1/21) 3770005288556749 a001 311187/2161*228826127^(1/20) 3770005288556749 a001 311187/2161*87403803^(1/19) 3770005288556749 a001 311187/2161*33385282^(1/18) 3770005288556749 a001 6765/4870847*87403803^(13/19) 3770005288556749 a001 14736260385/39088169 3770005288556750 a001 311187/2161*12752043^(1/17) 3770005288556751 a001 6765/4870847*33385282^(13/18) 3770005288556759 a001 311187/2161*4870847^(1/16) 3770005288556766 a001 6765/4870847*12752043^(13/17) 3770005288556821 a001 311187/2161*1860498^(1/15) 3770005288556847 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^39 3770005288556849 a001 6765/33385282*7881196^(10/11) 3770005288556877 a001 2255/4250681*20633239^(4/5) 3770005288556878 a001 6765/4870847*4870847^(13/16) 3770005288556884 a001 2255/4250681*17393796001^(4/7) 3770005288556884 a001 2255/4250681*14662949395604^(4/9) 3770005288556884 a001 2255/4250681*(1/2+1/2*5^(1/2))^28 3770005288556884 a001 2255/4250681*505019158607^(1/2) 3770005288556884 a001 2255/4250681*73681302247^(7/13) 3770005288556884 a001 2255/4250681*10749957122^(7/12) 3770005288556884 a001 2255/4250681*4106118243^(14/23) 3770005288556884 a001 2255/4250681*1568397607^(7/11) 3770005288556884 a001 2255/4250681*599074578^(2/3) 3770005288556885 a001 2255/4250681*228826127^(7/10) 3770005288556885 a001 5702887/15127 3770005288556885 a001 2255/4250681*87403803^(14/19) 3770005288556885 a001 832040/15127*710647^(1/7) 3770005288556887 a001 2255/4250681*33385282^(7/9) 3770005288556897 a001 6765/33385282*20633239^(6/7) 3770005288556899 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^41 3770005288556904 a001 2255/4250681*12752043^(14/17) 3770005288556904 a001 6765/33385282*141422324^(10/13) 3770005288556904 a001 6765/33385282*2537720636^(2/3) 3770005288556904 a001 6765/33385282*45537549124^(10/17) 3770005288556904 a001 6765/33385282*312119004989^(6/11) 3770005288556904 a001 6765/33385282*14662949395604^(10/21) 3770005288556904 a001 6765/33385282*(1/2+1/2*5^(1/2))^30 3770005288556904 a001 6765/33385282*192900153618^(5/9) 3770005288556904 a001 6765/33385282*28143753123^(3/5) 3770005288556904 a001 6765/33385282*10749957122^(5/8) 3770005288556904 a001 6765/33385282*4106118243^(15/23) 3770005288556904 a001 6765/33385282*1568397607^(15/22) 3770005288556904 a001 6765/33385282*599074578^(5/7) 3770005288556904 a001 12625478910/33489287 3770005288556904 a001 6765/33385282*228826127^(3/4) 3770005288556904 a004 Fibonacci(36)/Lucas(20)/(1/2+sqrt(5)/2)^2 3770005288556905 a001 6765/33385282*87403803^(15/19) 3770005288556906 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^43 3770005288556907 a001 6765/33385282*33385282^(5/6) 3770005288556907 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^32/Lucas(38) 3770005288556907 a001 2255/29134601*23725150497407^(1/2) 3770005288556907 a001 2255/29134601*73681302247^(8/13) 3770005288556907 a001 2255/29134601*10749957122^(2/3) 3770005288556907 a001 2255/29134601*4106118243^(16/23) 3770005288556907 a001 2255/29134601*1568397607^(8/11) 3770005288556907 a001 88143821095/233802911 3770005288556907 a001 2255/29134601*599074578^(16/21) 3770005288556907 a001 2255/29134601*228826127^(4/5) 3770005288556907 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^4 3770005288556907 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^45 3770005288556907 a001 2255/199691526*141422324^(12/13) 3770005288556908 a001 2255/29134601*87403803^(16/19) 3770005288556908 a001 6765/228826127*45537549124^(2/3) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(40) 3770005288556908 a001 6765/228826127*10749957122^(17/24) 3770005288556908 a001 6765/228826127*4106118243^(17/23) 3770005288556908 a001 692290558575/1836311903 3770005288556908 a001 6765/228826127*1568397607^(17/22) 3770005288556908 a001 6765/228826127*599074578^(17/21) 3770005288556908 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^47 3770005288556908 a001 2255/199691526*2537720636^(4/5) 3770005288556908 a001 6765/228826127*228826127^(17/20) 3770005288556908 a001 2255/199691526*45537549124^(12/17) 3770005288556908 a001 2255/199691526*14662949395604^(4/7) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(42) 3770005288556908 a001 2255/199691526*505019158607^(9/14) 3770005288556908 a001 2255/199691526*192900153618^(2/3) 3770005288556908 a001 2255/199691526*73681302247^(9/13) 3770005288556908 a001 2255/199691526*10749957122^(3/4) 3770005288556908 a001 75518342185/200313624 3770005288556908 a001 2255/199691526*4106118243^(18/23) 3770005288556908 a001 2255/199691526*1568397607^(9/11) 3770005288556908 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^49 3770005288556908 a001 6765/1568397607*817138163596^(2/3) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(44) 3770005288556908 a001 86273274159/228841255 3770005288556908 a001 6765/1568397607*10749957122^(19/24) 3770005288556908 a001 2255/199691526*599074578^(6/7) 3770005288556908 a001 6765/1568397607*4106118243^(19/23) 3770005288556908 a001 2255/1368706081*2537720636^(8/9) 3770005288556908 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^51 3770005288556908 a001 6765/10749957122*2537720636^(14/15) 3770005288556908 a001 2255/1368706081*312119004989^(8/11) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(46) 3770005288556908 a001 2255/1368706081*23725150497407^(5/8) 3770005288556908 a001 2255/1368706081*73681302247^(10/13) 3770005288556908 a001 4140883341265/10983760033 3770005288556908 a001 2255/1368706081*28143753123^(4/5) 3770005288556908 a001 6765/1568397607*1568397607^(19/22) 3770005288556908 a001 2255/1368706081*10749957122^(5/6) 3770005288556908 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^53 3770005288556908 a001 6765/10749957122*17393796001^(6/7) 3770005288556908 a001 6765/10749957122*45537549124^(14/17) 3770005288556908 a001 6765/10749957122*14662949395604^(2/3) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(48) 3770005288556908 a001 6765/10749957122*505019158607^(3/4) 3770005288556908 a001 6765/10749957122*192900153618^(7/9) 3770005288556908 a001 4065364999080/10783446409 3770005288556908 a001 2255/1368706081*4106118243^(20/23) 3770005288556908 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^55 3770005288556908 a001 55/228811001*312119004989^(4/5) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(50) 3770005288556908 a001 28382036651375/75283811239 3770005288556908 a001 55/228811001*73681302247^(11/13) 3770005288556908 a001 6765/10749957122*10749957122^(7/8) 3770005288556908 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^57 3770005288556908 a001 2255/64300051206*45537549124^(16/17) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(52) 3770005288556908 a001 222915409869735/591286729879 3770005288556908 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^59 3770005288556908 a001 2255/64300051206*14662949395604^(16/21) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(54) 3770005288556908 a001 10783446409/28603266 3770005288556908 a001 6765/505019158607*312119004989^(10/11) 3770005288556908 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^61 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(56) 3770005288556908 a001 1527884949095505/4052739537881 3770005288556908 a001 2255/64300051206*192900153618^(8/9) 3770005288556908 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^63 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(58) 3770005288556908 a001 1333351575877145/3536736619241 3770005288556908 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^65 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(60) 3770005288556908 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^67 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(62) 3770005288556908 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^69 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(64) 3770005288556908 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^71 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(66) 3770005288556908 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^73 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(68) 3770005288556908 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^75 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(70) 3770005288556908 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^77 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(72) 3770005288556908 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^79 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(74) 3770005288556908 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^81 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(76) 3770005288556908 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^83 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(78) 3770005288556908 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^85 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(80) 3770005288556908 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^87 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(82) 3770005288556908 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^89 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(84) 3770005288556908 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^91 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(86) 3770005288556908 a004 Fibonacci(20)*Lucas(87)/(1/2+sqrt(5)/2)^93 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(88) 3770005288556908 a004 Fibonacci(20)*Lucas(89)/(1/2+sqrt(5)/2)^95 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(90) 3770005288556908 a004 Fibonacci(20)*Lucas(91)/(1/2+sqrt(5)/2)^97 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(92) 3770005288556908 a004 Fibonacci(20)*Lucas(93)/(1/2+sqrt(5)/2)^99 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^88/Lucas(94) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^90/Lucas(96) 3770005288556908 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^6 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^92/Lucas(98) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^93/Lucas(99) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^94/Lucas(100) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^91/Lucas(97) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^89/Lucas(95) 3770005288556908 a004 Fibonacci(20)*Lucas(94)/(1/2+sqrt(5)/2)^100 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(93) 3770005288556908 a004 Fibonacci(20)*Lucas(92)/(1/2+sqrt(5)/2)^98 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(91) 3770005288556908 a004 Fibonacci(20)*Lucas(90)/(1/2+sqrt(5)/2)^96 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(89) 3770005288556908 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^94 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(87) 3770005288556908 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^92 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(85) 3770005288556908 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^90 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(83) 3770005288556908 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^88 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(81) 3770005288556908 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^86 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(79) 3770005288556908 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^84 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(77) 3770005288556908 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^82 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(75) 3770005288556908 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^80 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(73) 3770005288556908 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^78 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(71) 3770005288556908 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^76 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(69) 3770005288556908 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^74 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(67) 3770005288556908 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^72 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(65) 3770005288556908 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^70 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(63) 3770005288556908 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^68 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(61) 3770005288556908 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^66 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(59) 3770005288556908 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^64 3770005288556908 a001 1236084889267965/3278735159921 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(57) 3770005288556908 a001 2255/440719107401*505019158607^(13/14) 3770005288556908 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^62 3770005288556908 a001 944284829440425/2504730781961 3770005288556908 a001 615/28374454999*14662949395604^(7/9) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(55) 3770005288556908 a001 615/28374454999*505019158607^(7/8) 3770005288556908 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^60 3770005288556908 a001 6765/817138163596*192900153618^(17/18) 3770005288556908 a001 6765/45537549124*45537549124^(15/17) 3770005288556908 a001 360684709785345/956722026041 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(53) 3770005288556908 a001 2255/64300051206*73681302247^(12/13) 3770005288556908 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^58 3770005288556908 a001 6765/45537549124*312119004989^(9/11) 3770005288556908 a001 68884649957805/182717648081 3770005288556908 a001 6765/45537549124*14662949395604^(5/7) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(51) 3770005288556908 a001 6765/45537549124*192900153618^(5/6) 3770005288556908 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^56 3770005288556908 a001 6765/45537549124*28143753123^(9/10) 3770005288556908 a001 10524637992297/27916772489 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(49) 3770005288556908 a001 55/228811001*10749957122^(11/12) 3770005288556908 a001 6765/73681302247*10749957122^(23/24) 3770005288556908 a001 6765/45537549124*10749957122^(15/16) 3770005288556908 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^54 3770005288556908 a001 615/230701876*2537720636^(13/15) 3770005288556908 a001 20100269968845/53316291173 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(47) 3770005288556908 a001 6765/10749957122*4106118243^(21/23) 3770005288556908 a001 55/228811001*4106118243^(22/23) 3770005288556908 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^52 3770005288556908 a001 3838809972525/10182505537 3770005288556908 a001 615/230701876*45537549124^(13/17) 3770005288556908 a001 615/230701876*14662949395604^(13/21) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(45) 3770005288556908 a001 615/230701876*192900153618^(13/18) 3770005288556908 a001 615/230701876*73681302247^(3/4) 3770005288556908 a001 615/230701876*10749957122^(13/16) 3770005288556908 a001 2255/1368706081*1568397607^(10/11) 3770005288556908 a001 6765/10749957122*1568397607^(21/22) 3770005288556908 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^50 3770005288556908 a001 2932589866305/7778742049 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(43) 3770005288556908 a001 6765/1568397607*599074578^(19/21) 3770005288556908 a001 2255/1368706081*599074578^(20/21) 3770005288556908 a001 615/230701876*599074578^(13/14) 3770005288556908 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^48 3770005288556908 a001 6765/370248451*2537720636^(7/9) 3770005288556908 a001 1120149653865/2971215073 3770005288556908 a001 6765/370248451*17393796001^(5/7) 3770005288556908 a001 6765/370248451*312119004989^(7/11) 3770005288556908 a001 6765/370248451*14662949395604^(5/9) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(41) 3770005288556908 a001 6765/370248451*505019158607^(5/8) 3770005288556908 a001 6765/370248451*28143753123^(7/10) 3770005288556908 a001 6765/141422324*141422324^(11/13) 3770005288556908 a001 6765/370248451*599074578^(5/6) 3770005288556908 a001 2255/199691526*228826127^(9/10) 3770005288556908 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^8 3770005288556908 a001 6765/1568397607*228826127^(19/20) 3770005288556908 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^10 3770005288556908 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^12 3770005288556908 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^14 3770005288556908 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^16 3770005288556908 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^18 3770005288556908 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^20 3770005288556908 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^22 3770005288556908 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^24 3770005288556908 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^26 3770005288556908 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^28 3770005288556908 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^30 3770005288556908 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^32 3770005288556908 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^34 3770005288556908 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^36 3770005288556908 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^38 3770005288556908 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^40 3770005288556908 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^42 3770005288556908 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^44 3770005288556908 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^46 3770005288556908 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^48 3770005288556908 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^50 3770005288556908 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^52 3770005288556908 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^54 3770005288556908 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^56 3770005288556908 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^58 3770005288556908 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^60 3770005288556908 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^62 3770005288556908 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^66 3770005288556908 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^64 3770005288556908 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^63 3770005288556908 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^65 3770005288556908 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^61 3770005288556908 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^59 3770005288556908 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^57 3770005288556908 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^55 3770005288556908 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^53 3770005288556908 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^51 3770005288556908 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^49 3770005288556908 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^47 3770005288556908 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^45 3770005288556908 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^43 3770005288556908 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^41 3770005288556908 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^39 3770005288556908 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^37 3770005288556908 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^35 3770005288556908 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^33 3770005288556908 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^31 3770005288556908 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^29 3770005288556908 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^27 3770005288556908 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^25 3770005288556908 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^23 3770005288556908 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^21 3770005288556908 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^19 3770005288556908 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^17 3770005288556908 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^15 3770005288556908 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^13 3770005288556908 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^11 3770005288556908 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^9 3770005288556908 a001 6765/370248451*228826127^(7/8) 3770005288556908 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^7 3770005288556908 a001 42785909529/113490317 3770005288556908 a001 6765/141422324*2537720636^(11/15) 3770005288556908 a001 6765/141422324*45537549124^(11/17) 3770005288556908 a001 6765/141422324*312119004989^(3/5) 3770005288556908 a001 6765/141422324*817138163596^(11/19) 3770005288556908 a001 6765/141422324*14662949395604^(11/21) 3770005288556908 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(39) 3770005288556908 a001 6765/141422324*192900153618^(11/18) 3770005288556908 a001 6765/141422324*10749957122^(11/16) 3770005288556908 a001 6765/141422324*1568397607^(3/4) 3770005288556908 a001 6765/141422324*599074578^(11/14) 3770005288556908 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^5 3770005288556908 a001 6765/228826127*87403803^(17/19) 3770005288556908 a001 2255/199691526*87403803^(18/19) 3770005288556908 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^44 3770005288556909 a001 163427632005/433494437 3770005288556909 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^31/Lucas(37) 3770005288556909 a001 6765/54018521*9062201101803^(1/2) 3770005288556909 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2)^3 3770005288556910 a001 2255/29134601*33385282^(8/9) 3770005288556911 a001 6765/228826127*33385282^(17/18) 3770005288556911 a001 6765/141422324*33385282^(11/12) 3770005288556911 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^42 3770005288556916 a001 62423800725/165580141 3770005288556917 a001 615/1875749*(1/2+1/2*5^(1/2))^29 3770005288556917 a001 615/1875749*1322157322203^(1/2) 3770005288556917 a004 Fibonacci(35)/Lucas(20)/(1/2+sqrt(5)/2) 3770005288556919 a001 6765/7881196*7881196^(9/11) 3770005288556925 a001 6765/33385282*12752043^(15/17) 3770005288556929 a001 2255/29134601*12752043^(16/17) 3770005288556931 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^40 3770005288556968 a001 11921885085/31622993 3770005288556968 a001 6765/7881196*141422324^(9/13) 3770005288556968 a001 6765/7881196*2537720636^(3/5) 3770005288556968 a001 6765/7881196*45537549124^(9/17) 3770005288556968 a001 6765/7881196*817138163596^(9/19) 3770005288556968 a001 6765/7881196*14662949395604^(3/7) 3770005288556968 a001 6765/7881196*(1/2+1/2*5^(1/2))^27 3770005288556968 a001 6765/7881196*192900153618^(1/2) 3770005288556968 a001 6765/7881196*10749957122^(9/16) 3770005288556968 a001 6765/7881196*599074578^(9/14) 3770005288556968 a001 1762289/15127+1762289/15127*5^(1/2) 3770005288556971 a001 6765/7881196*33385282^(3/4) 3770005288557024 a001 2255/4250681*4870847^(7/8) 3770005288557053 a001 6765/33385282*4870847^(15/16) 3770005288557067 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^38 3770005288557282 a001 311187/2161*710647^(1/14) 3770005288557317 a001 6765/3010349*20633239^(5/7) 3770005288557318 a001 1346269/15127*7881196^(1/11) 3770005288557322 a001 9107509785/24157817 3770005288557324 a001 6765/3010349*2537720636^(5/9) 3770005288557324 a001 6765/3010349*312119004989^(5/11) 3770005288557324 a001 6765/3010349*(1/2+1/2*5^(1/2))^25 3770005288557324 a001 6765/3010349*3461452808002^(5/12) 3770005288557324 a001 6765/3010349*28143753123^(1/2) 3770005288557324 a001 6765/3010349*228826127^(5/8) 3770005288557324 a001 1346269/15127*141422324^(1/13) 3770005288557324 a001 1346269/15127*2537720636^(1/15) 3770005288557324 a001 1346269/15127*45537549124^(1/17) 3770005288557324 a001 1346269/15127*14662949395604^(1/21) 3770005288557324 a001 1346269/15127*(1/2+1/2*5^(1/2))^3 3770005288557324 a001 1346269/15127*192900153618^(1/18) 3770005288557324 a001 1346269/15127*10749957122^(1/16) 3770005288557324 a001 1346269/15127*599074578^(1/14) 3770005288557324 a001 1346269/15127*33385282^(1/12) 3770005288557433 a001 1346269/15127*1860498^(1/10) 3770005288557693 a001 6765/4870847*1860498^(13/15) 3770005288557901 a001 2255/4250681*1860498^(14/15) 3770005288557949 a001 6765/7881196*1860498^(9/10) 3770005288557997 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^36 3770005288558231 a001 6765/3010349*1860498^(5/6) 3770005288559750 a001 695751837/1845493 3770005288559758 a001 514229/15127*20633239^(1/7) 3770005288559759 a001 6765/1149851*(1/2+1/2*5^(1/2))^23 3770005288559759 a001 6765/1149851*4106118243^(1/2) 3770005288559759 a001 514229/15127*2537720636^(1/9) 3770005288559759 a001 514229/15127*312119004989^(1/11) 3770005288559759 a001 514229/15127*(1/2+1/2*5^(1/2))^5 3770005288559759 a001 514229/15127*28143753123^(1/10) 3770005288559759 a001 514229/15127*228826127^(1/8) 3770005288559913 a001 14930352/64079*3571^(1/17) 3770005288559941 a001 514229/15127*1860498^(1/6) 3770005288560685 a001 311187/2161*271443^(1/13) 3770005288561250 a001 317811/15127*271443^(3/13) 3770005288561251 a001 6765/439204*439204^(7/9) 3770005288562217 a001 55/15126*710647^(6/7) 3770005288563681 a001 6765/4870847*710647^(13/14) 3770005288563690 a001 832040/15127*271443^(2/13) 3770005288564373 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^34 3770005288571581 a001 3524578/15127*103682^(1/24) 3770005288576391 a001 664383885/1762289 3770005288576413 a001 6765/439204*7881196^(7/11) 3770005288576446 a001 6765/439204*20633239^(3/5) 3770005288576450 a001 196418/15127*20633239^(1/5) 3770005288576451 a001 6765/439204*141422324^(7/13) 3770005288576451 a001 6765/439204*2537720636^(7/15) 3770005288576451 a001 6765/439204*17393796001^(3/7) 3770005288576451 a001 6765/439204*45537549124^(7/17) 3770005288576451 a001 6765/439204*14662949395604^(1/3) 3770005288576451 a001 6765/439204*(1/2+1/2*5^(1/2))^21 3770005288576451 a001 6765/439204*192900153618^(7/18) 3770005288576451 a001 6765/439204*10749957122^(7/16) 3770005288576451 a001 6765/439204*599074578^(1/2) 3770005288576452 a001 196418/15127*17393796001^(1/7) 3770005288576452 a001 196418/15127*14662949395604^(1/9) 3770005288576452 a001 196418/15127*(1/2+1/2*5^(1/2))^7 3770005288576452 a001 196418/15127*599074578^(1/6) 3770005288576453 a001 6765/439204*33385282^(7/12) 3770005288577214 a001 6765/439204*1860498^(7/10) 3770005288578318 a001 196418/15127*710647^(1/4) 3770005288582050 a001 6765/439204*710647^(3/4) 3770005288585974 a001 311187/2161*103682^(1/12) 3770005288592737 a001 6765/710647*271443^(11/13) 3770005288601161 a001 1346269/15127*103682^(1/8) 3770005288603049 a001 55/15126*271443^(12/13) 3770005288608074 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^32 3770005288614269 a001 832040/15127*103682^(1/6) 3770005288622641 a001 121393/15127*103682^(1/3) 3770005288632822 a001 514229/15127*103682^(5/24) 3770005288637118 a001 317811/15127*103682^(1/4) 3770005288666229 a001 3524578/15127*39603^(1/22) 3770005288678739 a001 196418/15127*103682^(7/24) 3770005288684348 a001 75025/15127*439204^(1/3) 3770005288690447 a001 507544125/1346269 3770005288690846 a001 75025/15127*7881196^(3/11) 3770005288690863 a001 615/15251*817138163596^(1/3) 3770005288690863 a001 615/15251*(1/2+1/2*5^(1/2))^19 3770005288690863 a001 75025/15127*141422324^(3/13) 3770005288690863 a001 75025/15127*2537720636^(1/5) 3770005288690863 a001 75025/15127*45537549124^(3/17) 3770005288690863 a001 75025/15127*14662949395604^(1/7) 3770005288690863 a001 75025/15127*(1/2+1/2*5^(1/2))^9 3770005288690863 a001 75025/15127*192900153618^(1/6) 3770005288690863 a001 75025/15127*10749957122^(3/16) 3770005288690863 a001 75025/15127*599074578^(3/14) 3770005288690863 a001 615/15251*87403803^(1/2) 3770005288690864 a001 75025/15127*33385282^(1/4) 3770005288691190 a001 75025/15127*1860498^(3/10) 3770005288757644 a001 75025/24476*9349^(10/19) 3770005288775270 a001 311187/2161*39603^(1/11) 3770005288790861 a001 1346269/103682*9349^(7/19) 3770005288796423 a001 6765/64079*64079^(17/23) 3770005288797991 a001 2255/90481*103682^(5/6) 3770005288822375 a001 75025/15127*103682^(3/8) 3770005288856277 a001 416020/2889*2207^(1/8) 3770005288870917 a001 6765/710647*103682^(11/12) 3770005288883314 a001 6765/439204*103682^(7/8) 3770005288885105 a001 1346269/15127*39603^(3/22) 3770005288892379 a001 317811/2207*843^(1/7) 3770005288895846 a001 6765/1149851*103682^(23/24) 3770005288907607 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^30 3770005288968500 a001 615/15251*103682^(19/24) 3770005288992861 a001 832040/15127*39603^(2/11) 3770005289006493 a001 832040/39603*9349^(6/19) 3770005289035939 a001 28657/15127*64079^(11/23) 3770005289090039 a001 3524578/271443*9349^(7/19) 3770005289106062 a001 514229/15127*39603^(5/22) 3770005289133689 a001 9227465/710647*9349^(7/19) 3770005289140057 a001 24157817/1860498*9349^(7/19) 3770005289140986 a001 63245986/4870847*9349^(7/19) 3770005289141122 a001 165580141/12752043*9349^(7/19) 3770005289141142 a001 433494437/33385282*9349^(7/19) 3770005289141144 a001 1134903170/87403803*9349^(7/19) 3770005289141145 a001 2971215073/228826127*9349^(7/19) 3770005289141145 a001 7778742049/599074578*9349^(7/19) 3770005289141145 a001 20365011074/1568397607*9349^(7/19) 3770005289141145 a001 53316291173/4106118243*9349^(7/19) 3770005289141145 a001 139583862445/10749957122*9349^(7/19) 3770005289141145 a001 365435296162/28143753123*9349^(7/19) 3770005289141145 a001 956722026041/73681302247*9349^(7/19) 3770005289141145 a001 2504730781961/192900153618*9349^(7/19) 3770005289141145 a001 10610209857723/817138163596*9349^(7/19) 3770005289141145 a001 4052739537881/312119004989*9349^(7/19) 3770005289141145 a001 1548008755920/119218851371*9349^(7/19) 3770005289141145 a001 591286729879/45537549124*9349^(7/19) 3770005289141145 a001 7787980473/599786069*9349^(7/19) 3770005289141145 a001 86267571272/6643838879*9349^(7/19) 3770005289141145 a001 32951280099/2537720636*9349^(7/19) 3770005289141145 a001 12586269025/969323029*9349^(7/19) 3770005289141145 a001 4807526976/370248451*9349^(7/19) 3770005289141145 a001 1836311903/141422324*9349^(7/19) 3770005289141146 a001 701408733/54018521*9349^(7/19) 3770005289141154 a001 9238424/711491*9349^(7/19) 3770005289141206 a001 102334155/7881196*9349^(7/19) 3770005289141560 a001 39088169/3010349*9349^(7/19) 3770005289143993 a001 14930352/1149851*9349^(7/19) 3770005289160666 a001 5702887/439204*9349^(7/19) 3770005289205006 a001 317811/15127*39603^(3/11) 3770005289274941 a001 2178309/167761*9349^(7/19) 3770005289298813 a001 6624/2161*39603^(5/11) 3770005289341275 a001 196418/15127*39603^(7/22) 3770005289379825 a001 121393/15127*39603^(4/11) 3770005289380739 a001 3524578/15127*15127^(1/20) 3770005289472200 a001 193864605/514229 3770005289475031 a001 28657/15127*7881196^(1/3) 3770005289475051 a001 6765/64079*45537549124^(1/3) 3770005289475051 a001 6765/64079*(1/2+1/2*5^(1/2))^17 3770005289475051 a001 28657/15127*312119004989^(1/5) 3770005289475051 a001 28657/15127*(1/2+1/2*5^(1/2))^11 3770005289475051 a001 28657/15127*1568397607^(1/4) 3770005289475063 a001 6765/64079*12752043^(1/2) 3770005289635788 a001 28657/15127*103682^(11/24) 3770005289674207 a001 75025/15127*39603^(9/22) 3770005289723463 a001 6765/64079*103682^(17/24) 3770005290058199 a001 832040/64079*9349^(7/19) 3770005290172897 a001 6765/103682*39603^(9/11) 3770005290204290 a001 311187/2161*15127^(1/10) 3770005290354921 a001 6765/24476*24476^(5/7) 3770005290676916 a001 28657/15127*39603^(1/2) 3770005290690951 a001 2255/90481*39603^(10/11) 3770005290766812 a001 615/15251*39603^(19/22) 3770005290842691 a001 121393/24476*9349^(9/19) 3770005290870922 a001 6765/439204*39603^(21/22) 3770005290954259 a001 10946/15127*24476^(13/21) 3770005290960638 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^28 3770005291028636 a001 1346269/15127*15127^(3/20) 3770005291060455 a001 46347/2206*9349^(6/19) 3770005291278167 a001 1346269/39603*9349^(5/19) 3770005291332479 a001 6765/64079*39603^(17/22) 3770005291360124 a001 5702887/271443*9349^(6/19) 3770005291403845 a001 14930352/710647*9349^(6/19) 3770005291410223 a001 39088169/1860498*9349^(6/19) 3770005291411154 a001 102334155/4870847*9349^(6/19) 3770005291411290 a001 267914296/12752043*9349^(6/19) 3770005291411310 a001 701408733/33385282*9349^(6/19) 3770005291411313 a001 1836311903/87403803*9349^(6/19) 3770005291411313 a001 102287808/4868641*9349^(6/19) 3770005291411313 a001 12586269025/599074578*9349^(6/19) 3770005291411313 a001 32951280099/1568397607*9349^(6/19) 3770005291411313 a001 86267571272/4106118243*9349^(6/19) 3770005291411313 a001 225851433717/10749957122*9349^(6/19) 3770005291411313 a001 591286729879/28143753123*9349^(6/19) 3770005291411313 a001 1548008755920/73681302247*9349^(6/19) 3770005291411313 a001 4052739537881/192900153618*9349^(6/19) 3770005291411313 a001 225749145909/10745088481*9349^(6/19) 3770005291411313 a001 6557470319842/312119004989*9349^(6/19) 3770005291411313 a001 2504730781961/119218851371*9349^(6/19) 3770005291411313 a001 956722026041/45537549124*9349^(6/19) 3770005291411313 a001 365435296162/17393796001*9349^(6/19) 3770005291411313 a001 139583862445/6643838879*9349^(6/19) 3770005291411313 a001 53316291173/2537720636*9349^(6/19) 3770005291411313 a001 20365011074/969323029*9349^(6/19) 3770005291411313 a001 7778742049/370248451*9349^(6/19) 3770005291411313 a001 2971215073/141422324*9349^(6/19) 3770005291411314 a001 1134903170/54018521*9349^(6/19) 3770005291411322 a001 433494437/20633239*9349^(6/19) 3770005291411374 a001 165580141/7881196*9349^(6/19) 3770005291411729 a001 63245986/3010349*9349^(6/19) 3770005291414166 a001 24157817/1149851*9349^(6/19) 3770005291430866 a001 9227465/439204*9349^(6/19) 3770005291545329 a001 3524578/167761*9349^(6/19) 3770005291850901 a001 832040/15127*15127^(1/5) 3770005292329873 a001 1346269/64079*9349^(6/19) 3770005292678613 a001 514229/15127*15127^(1/4) 3770005293183569 a001 98209/12238*9349^(8/19) 3770005293330842 a001 1762289/51841*9349^(5/19) 3770005293492067 a001 317811/15127*15127^(3/10) 3770005293547760 a001 726103/13201*9349^(4/19) 3770005293630324 a001 9227465/271443*9349^(5/19) 3770005293674018 a001 24157817/710647*9349^(5/19) 3770005293680392 a001 31622993/930249*9349^(5/19) 3770005293681322 a001 165580141/4870847*9349^(5/19) 3770005293681458 a001 433494437/12752043*9349^(5/19) 3770005293681478 a001 567451585/16692641*9349^(5/19) 3770005293681481 a001 2971215073/87403803*9349^(5/19) 3770005293681481 a001 7778742049/228826127*9349^(5/19) 3770005293681481 a001 10182505537/299537289*9349^(5/19) 3770005293681481 a001 53316291173/1568397607*9349^(5/19) 3770005293681481 a001 139583862445/4106118243*9349^(5/19) 3770005293681481 a001 182717648081/5374978561*9349^(5/19) 3770005293681481 a001 956722026041/28143753123*9349^(5/19) 3770005293681481 a001 2504730781961/73681302247*9349^(5/19) 3770005293681481 a001 3278735159921/96450076809*9349^(5/19) 3770005293681481 a001 10610209857723/312119004989*9349^(5/19) 3770005293681481 a001 4052739537881/119218851371*9349^(5/19) 3770005293681481 a001 387002188980/11384387281*9349^(5/19) 3770005293681481 a001 591286729879/17393796001*9349^(5/19) 3770005293681481 a001 225851433717/6643838879*9349^(5/19) 3770005293681481 a001 1135099622/33391061*9349^(5/19) 3770005293681481 a001 32951280099/969323029*9349^(5/19) 3770005293681481 a001 12586269025/370248451*9349^(5/19) 3770005293681481 a001 1201881744/35355581*9349^(5/19) 3770005293681483 a001 1836311903/54018521*9349^(5/19) 3770005293681490 a001 701408733/20633239*9349^(5/19) 3770005293681542 a001 66978574/1970299*9349^(5/19) 3770005293681897 a001 102334155/3010349*9349^(5/19) 3770005293684332 a001 39088169/1149851*9349^(5/19) 3770005293701022 a001 196452/5779*9349^(5/19) 3770005293815413 a001 5702887/167761*9349^(5/19) 3770005293934799 a001 5702887/24476*3571^(1/17) 3770005294251167 a001 6765/24476*64079^(15/23) 3770005294331005 a001 10946/15127*64079^(13/23) 3770005294342847 a001 196418/15127*15127^(7/20) 3770005294599466 a001 2178309/64079*9349^(5/19) 3770005294769583 a001 6765/24476*167761^(3/5) 3770005294830412 a001 37024845/98209 3770005294830533 a001 3524578/15127*5778^(1/18) 3770005294839098 a001 6765/24476*439204^(5/9) 3770005294849928 a001 6765/24476*7881196^(5/11) 3770005294849952 a001 6765/24476*20633239^(3/7) 3770005294849956 a001 6765/24476*141422324^(5/13) 3770005294849956 a001 10946/15127*141422324^(1/3) 3770005294849956 a001 6765/24476*2537720636^(1/3) 3770005294849956 a001 6765/24476*45537549124^(5/17) 3770005294849956 a001 6765/24476*312119004989^(3/11) 3770005294849956 a001 6765/24476*14662949395604^(5/21) 3770005294849956 a001 6765/24476*(1/2+1/2*5^(1/2))^15 3770005294849956 a001 6765/24476*192900153618^(5/18) 3770005294849956 a001 6765/24476*28143753123^(3/10) 3770005294849956 a001 6765/24476*10749957122^(5/16) 3770005294849956 a001 6765/24476*599074578^(5/14) 3770005294849956 a001 6765/24476*228826127^(3/8) 3770005294849956 a001 10946/15127*(1/2+1/2*5^(1/2))^13 3770005294849956 a001 10946/15127*73681302247^(1/4) 3770005294849957 a001 6765/24476*33385282^(5/12) 3770005294850501 a001 6765/24476*1860498^(1/2) 3770005294875539 a001 10946/15127*271443^(1/2) 3770005295039918 a001 10946/15127*103682^(13/24) 3770005295069143 a001 6765/24476*103682^(5/8) 3770005295095907 a001 121393/15127*15127^(2/5) 3770005295426728 a001 10959/844*9349^(7/19) 3770005295600927 a001 5702887/103682*9349^(4/19) 3770005295818148 a001 3524578/39603*9349^(3/19) 3770005295900480 a001 4976784/90481*9349^(4/19) 3770005295944184 a001 39088169/710647*9349^(4/19) 3770005295950560 a001 831985/15126*9349^(4/19) 3770005295951491 a001 267914296/4870847*9349^(4/19) 3770005295951626 a001 233802911/4250681*9349^(4/19) 3770005295951646 a001 1836311903/33385282*9349^(4/19) 3770005295951649 a001 1602508992/29134601*9349^(4/19) 3770005295951649 a001 12586269025/228826127*9349^(4/19) 3770005295951649 a001 10983760033/199691526*9349^(4/19) 3770005295951649 a001 86267571272/1568397607*9349^(4/19) 3770005295951649 a001 75283811239/1368706081*9349^(4/19) 3770005295951649 a001 591286729879/10749957122*9349^(4/19) 3770005295951649 a001 12585437040/228811001*9349^(4/19) 3770005295951649 a001 4052739537881/73681302247*9349^(4/19) 3770005295951649 a001 3536736619241/64300051206*9349^(4/19) 3770005295951649 a001 6557470319842/119218851371*9349^(4/19) 3770005295951649 a001 2504730781961/45537549124*9349^(4/19) 3770005295951649 a001 956722026041/17393796001*9349^(4/19) 3770005295951649 a001 365435296162/6643838879*9349^(4/19) 3770005295951649 a001 139583862445/2537720636*9349^(4/19) 3770005295951649 a001 53316291173/969323029*9349^(4/19) 3770005295951650 a001 20365011074/370248451*9349^(4/19) 3770005295951650 a001 7778742049/141422324*9349^(4/19) 3770005295951651 a001 2971215073/54018521*9349^(4/19) 3770005295951658 a001 1134903170/20633239*9349^(4/19) 3770005295951710 a001 433494437/7881196*9349^(4/19) 3770005295952066 a001 165580141/3010349*9349^(4/19) 3770005295954501 a001 63245986/1149851*9349^(4/19) 3770005295971195 a001 24157817/439204*9349^(4/19) 3770005295992782 a001 832040/9349*3571^(3/17) 3770005296029495 a001 17711/39603*24476^(2/3) 3770005296038426 a001 17711/15127*15127^(3/5) 3770005296085614 a001 9227465/167761*9349^(4/19) 3770005296104800 a001 75025/15127*15127^(9/20) 3770005296270342 a001 10946/15127*39603^(13/22) 3770005296335543 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^29 3770005296443915 a001 6624/2161*15127^(1/2) 3770005296488863 a001 6765/24476*39603^(15/22) 3770005296627747 a001 17711/710647*24476^(20/21) 3770005296672785 r005 Re(z^2+c),c=13/102+7/25*I,n=9 3770005296869854 a001 3524578/64079*9349^(4/19) 3770005296954425 a001 17711/439204*24476^(19/21) 3770005297183384 a001 17711/271443*24476^(6/7) 3770005297483189 a001 17711/103682*24476^(16/21) 3770005297637580 a001 4181/15127*9349^(15/19) 3770005297668174 a001 17711/167761*24476^(17/21) 3770005297707213 a001 514229/24476*9349^(6/19) 3770005297871127 a001 9227465/103682*9349^(3/19) 3770005298088232 a001 5702887/39603*9349^(2/19) 3770005298170653 a001 24157817/271443*9349^(3/19) 3770005298214353 a001 63245986/710647*9349^(3/19) 3770005298220729 a001 165580141/1860498*9349^(3/19) 3770005298221659 a001 433494437/4870847*9349^(3/19) 3770005298221794 a001 1134903170/12752043*9349^(3/19) 3770005298221814 a001 2971215073/33385282*9349^(3/19) 3770005298221817 a001 7778742049/87403803*9349^(3/19) 3770005298221818 a001 20365011074/228826127*9349^(3/19) 3770005298221818 a001 53316291173/599074578*9349^(3/19) 3770005298221818 a001 139583862445/1568397607*9349^(3/19) 3770005298221818 a001 365435296162/4106118243*9349^(3/19) 3770005298221818 a001 956722026041/10749957122*9349^(3/19) 3770005298221818 a001 2504730781961/28143753123*9349^(3/19) 3770005298221818 a001 6557470319842/73681302247*9349^(3/19) 3770005298221818 a001 10610209857723/119218851371*9349^(3/19) 3770005298221818 a001 4052739537881/45537549124*9349^(3/19) 3770005298221818 a001 1548008755920/17393796001*9349^(3/19) 3770005298221818 a001 591286729879/6643838879*9349^(3/19) 3770005298221818 a001 225851433717/2537720636*9349^(3/19) 3770005298221818 a001 86267571272/969323029*9349^(3/19) 3770005298221818 a001 32951280099/370248451*9349^(3/19) 3770005298221818 a001 12586269025/141422324*9349^(3/19) 3770005298221819 a001 4807526976/54018521*9349^(3/19) 3770005298221827 a001 1836311903/20633239*9349^(3/19) 3770005298221878 a001 3524667/39604*9349^(3/19) 3770005298222234 a001 267914296/3010349*9349^(3/19) 3770005298224669 a001 102334155/1149851*9349^(3/19) 3770005298241361 a001 39088169/439204*9349^(3/19) 3770005298355770 a001 14930352/167761*9349^(3/19) 3770005298388574 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^31 3770005298536529 a001 28657/15127*15127^(11/20) 3770005298681864 a001 15456/13201*24476^(4/7) 3770005298687154 a001 2576/103361*24476^(20/21) 3770005298688107 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^33 3770005298731809 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^35 3770005298738185 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^37 3770005298739115 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^39 3770005298739251 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^41 3770005298739270 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^43 3770005298739273 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^45 3770005298739274 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^47 3770005298739274 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^49 3770005298739274 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^51 3770005298739274 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^53 3770005298739274 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^55 3770005298739274 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^57 3770005298739274 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^59 3770005298739274 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^61 3770005298739274 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^63 3770005298739274 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^65 3770005298739274 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^67 3770005298739274 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^69 3770005298739274 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^71 3770005298739274 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^73 3770005298739274 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^75 3770005298739274 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^77 3770005298739274 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^79 3770005298739274 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^81 3770005298739274 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^83 3770005298739274 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^85 3770005298739274 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^87 3770005298739274 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^89 3770005298739274 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^91 3770005298739274 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^93 3770005298739274 a004 Fibonacci(88)*Lucas(21)/(1/2+sqrt(5)/2)^95 3770005298739274 a004 Fibonacci(90)*Lucas(21)/(1/2+sqrt(5)/2)^97 3770005298739274 a004 Fibonacci(92)*Lucas(21)/(1/2+sqrt(5)/2)^99 3770005298739274 a004 Fibonacci(93)*Lucas(21)/(1/2+sqrt(5)/2)^100 3770005298739274 a004 Fibonacci(91)*Lucas(21)/(1/2+sqrt(5)/2)^98 3770005298739274 a004 Fibonacci(89)*Lucas(21)/(1/2+sqrt(5)/2)^96 3770005298739274 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^94 3770005298739274 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^92 3770005298739274 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^90 3770005298739274 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^88 3770005298739274 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^86 3770005298739274 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^84 3770005298739274 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^82 3770005298739274 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^80 3770005298739274 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^78 3770005298739274 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^76 3770005298739274 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^74 3770005298739274 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^72 3770005298739274 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^70 3770005298739274 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^68 3770005298739274 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^66 3770005298739274 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^64 3770005298739274 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^62 3770005298739274 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^60 3770005298739274 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^58 3770005298739274 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^56 3770005298739274 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^54 3770005298739274 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^52 3770005298739274 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^50 3770005298739274 a001 1/5473*(1/2+1/2*5^(1/2))^35 3770005298739274 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^48 3770005298739274 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^46 3770005298739275 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^44 3770005298739283 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^42 3770005298739335 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^40 3770005298739690 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^38 3770005298742125 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^36 3770005298758818 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^34 3770005298873229 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^32 3770005298987618 a001 121393/4870847*24476^(20/21) 3770005298990764 a001 46368/1149851*24476^(19/21) 3770005299031455 a001 105937/4250681*24476^(20/21) 3770005299037850 a001 416020/16692641*24476^(20/21) 3770005299038783 a001 726103/29134601*24476^(20/21) 3770005299038920 a001 5702887/228826127*24476^(20/21) 3770005299038939 a001 829464/33281921*24476^(20/21) 3770005299038942 a001 39088169/1568397607*24476^(20/21) 3770005299038943 a001 34111385/1368706081*24476^(20/21) 3770005299038943 a001 133957148/5374978561*24476^(20/21) 3770005299038943 a001 233802911/9381251041*24476^(20/21) 3770005299038943 a001 1836311903/73681302247*24476^(20/21) 3770005299038943 a001 267084832/10716675201*24476^(20/21) 3770005299038943 a001 12586269025/505019158607*24476^(20/21) 3770005299038943 a001 10983760033/440719107401*24476^(20/21) 3770005299038943 a001 43133785636/1730726404001*24476^(20/21) 3770005299038943 a001 75283811239/3020733700601*24476^(20/21) 3770005299038943 a001 182717648081/7331474697802*24476^(20/21) 3770005299038943 a001 139583862445/5600748293801*24476^(20/21) 3770005299038943 a001 53316291173/2139295485799*24476^(20/21) 3770005299038943 a001 10182505537/408569081798*24476^(20/21) 3770005299038943 a001 7778742049/312119004989*24476^(20/21) 3770005299038943 a001 2971215073/119218851371*24476^(20/21) 3770005299038943 a001 567451585/22768774562*24476^(20/21) 3770005299038943 a001 433494437/17393796001*24476^(20/21) 3770005299038943 a001 165580141/6643838879*24476^(20/21) 3770005299038943 a001 31622993/1268860318*24476^(20/21) 3770005299038944 a001 24157817/969323029*24476^(20/21) 3770005299038952 a001 9227465/370248451*24476^(20/21) 3770005299039004 a001 1762289/70711162*24476^(20/21) 3770005299039360 a001 1346269/54018521*24476^(20/21) 3770005299041803 a001 514229/20633239*24476^(20/21) 3770005299051700 a001 17711/64079*24476^(5/7) 3770005299058547 a001 98209/3940598*24476^(20/21) 3770005299139938 a001 5702887/64079*9349^(3/19) 3770005299173314 a001 75025/3010349*24476^(20/21) 3770005299280116 a001 6624/101521*24476^(6/7) 3770005299287861 a001 121393/3010349*24476^(19/21) 3770005299331207 a001 317811/7881196*24476^(19/21) 3770005299333509 a001 2255/13201*15127^(4/5) 3770005299337531 a001 75640/1875749*24476^(19/21) 3770005299338454 a001 2178309/54018521*24476^(19/21) 3770005299338589 a001 5702887/141422324*24476^(19/21) 3770005299338608 a001 14930352/370248451*24476^(19/21) 3770005299338611 a001 39088169/969323029*24476^(19/21) 3770005299338612 a001 9303105/230701876*24476^(19/21) 3770005299338612 a001 267914296/6643838879*24476^(19/21) 3770005299338612 a001 701408733/17393796001*24476^(19/21) 3770005299338612 a001 1836311903/45537549124*24476^(19/21) 3770005299338612 a001 4807526976/119218851371*24476^(19/21) 3770005299338612 a001 1144206275/28374454999*24476^(19/21) 3770005299338612 a001 32951280099/817138163596*24476^(19/21) 3770005299338612 a001 86267571272/2139295485799*24476^(19/21) 3770005299338612 a001 225851433717/5600748293801*24476^(19/21) 3770005299338612 a001 365435296162/9062201101803*24476^(19/21) 3770005299338612 a001 139583862445/3461452808002*24476^(19/21) 3770005299338612 a001 53316291173/1322157322203*24476^(19/21) 3770005299338612 a001 20365011074/505019158607*24476^(19/21) 3770005299338612 a001 7778742049/192900153618*24476^(19/21) 3770005299338612 a001 2971215073/73681302247*24476^(19/21) 3770005299338612 a001 1134903170/28143753123*24476^(19/21) 3770005299338612 a001 433494437/10749957122*24476^(19/21) 3770005299338612 a001 165580141/4106118243*24476^(19/21) 3770005299338612 a001 63245986/1568397607*24476^(19/21) 3770005299338613 a001 24157817/599074578*24476^(19/21) 3770005299338621 a001 9227465/228826127*24476^(19/21) 3770005299338672 a001 3524578/87403803*24476^(19/21) 3770005299339024 a001 1346269/33385282*24476^(19/21) 3770005299341440 a001 514229/12752043*24476^(19/21) 3770005299357997 a001 196418/4870847*24476^(19/21) 3770005299466188 a001 75025/39603*24476^(11/21) 3770005299471478 a001 75025/1860498*24476^(19/21) 3770005299580736 a001 121393/39603*24476^(10/21) 3770005299586025 a001 121393/1860498*24476^(6/7) 3770005299606794 a001 11592/109801*24476^(17/21) 3770005299630657 a001 317811/4870847*24476^(6/7) 3770005299637168 a001 832040/12752043*24476^(6/7) 3770005299638118 a001 311187/4769326*24476^(6/7) 3770005299638257 a001 5702887/87403803*24476^(6/7) 3770005299638277 a001 14930352/228826127*24476^(6/7) 3770005299638280 a001 39088169/599074578*24476^(6/7) 3770005299638281 a001 14619165/224056801*24476^(6/7) 3770005299638281 a001 267914296/4106118243*24476^(6/7) 3770005299638281 a001 701408733/10749957122*24476^(6/7) 3770005299638281 a001 1836311903/28143753123*24476^(6/7) 3770005299638281 a001 686789568/10525900321*24476^(6/7) 3770005299638281 a001 12586269025/192900153618*24476^(6/7) 3770005299638281 a001 32951280099/505019158607*24476^(6/7) 3770005299638281 a001 86267571272/1322157322203*24476^(6/7) 3770005299638281 a001 32264490531/494493258286*24476^(6/7) 3770005299638281 a001 591286729879/9062201101803*24476^(6/7) 3770005299638281 a001 1548008755920/23725150497407*24476^(6/7) 3770005299638281 a001 365435296162/5600748293801*24476^(6/7) 3770005299638281 a001 139583862445/2139295485799*24476^(6/7) 3770005299638281 a001 53316291173/817138163596*24476^(6/7) 3770005299638281 a001 20365011074/312119004989*24476^(6/7) 3770005299638281 a001 7778742049/119218851371*24476^(6/7) 3770005299638281 a001 2971215073/45537549124*24476^(6/7) 3770005299638281 a001 1134903170/17393796001*24476^(6/7) 3770005299638281 a001 433494437/6643838879*24476^(6/7) 3770005299638281 a001 165580141/2537720636*24476^(6/7) 3770005299638281 a001 63245986/969323029*24476^(6/7) 3770005299638282 a001 24157817/370248451*24476^(6/7) 3770005299638290 a001 9227465/141422324*24476^(6/7) 3770005299638343 a001 3524578/54018521*24476^(6/7) 3770005299638706 a001 1346269/20633239*24476^(6/7) 3770005299641193 a001 514229/7881196*24476^(6/7) 3770005299651038 a001 28657/39603*24476^(13/21) 3770005299657417 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^30 3770005299658241 a001 196418/3010349*24476^(6/7) 3770005299665991 a001 17711/39603*64079^(14/23) 3770005299775087 a001 75025/1149851*24476^(6/7) 3770005299835753 a001 15456/90481*24476^(16/21) 3770005299889635 a001 121393/1149851*24476^(17/21) 3770005299930901 a001 317811/3010349*24476^(17/21) 3770005299936921 a001 208010/1970299*24476^(17/21) 3770005299937800 a001 2178309/20633239*24476^(17/21) 3770005299937928 a001 5702887/54018521*24476^(17/21) 3770005299937947 a001 3732588/35355581*24476^(17/21) 3770005299937949 a001 39088169/370248451*24476^(17/21) 3770005299937950 a001 102334155/969323029*24476^(17/21) 3770005299937950 a001 66978574/634430159*24476^(17/21) 3770005299937950 a001 701408733/6643838879*24476^(17/21) 3770005299937950 a001 1836311903/17393796001*24476^(17/21) 3770005299937950 a001 1201881744/11384387281*24476^(17/21) 3770005299937950 a001 12586269025/119218851371*24476^(17/21) 3770005299937950 a001 32951280099/312119004989*24476^(17/21) 3770005299937950 a001 21566892818/204284540899*24476^(17/21) 3770005299937950 a001 225851433717/2139295485799*24476^(17/21) 3770005299937950 a001 182717648081/1730726404001*24476^(17/21) 3770005299937950 a001 139583862445/1322157322203*24476^(17/21) 3770005299937950 a001 53316291173/505019158607*24476^(17/21) 3770005299937950 a001 10182505537/96450076809*24476^(17/21) 3770005299937950 a001 7778742049/73681302247*24476^(17/21) 3770005299937950 a001 2971215073/28143753123*24476^(17/21) 3770005299937950 a001 567451585/5374978561*24476^(17/21) 3770005299937950 a001 433494437/4106118243*24476^(17/21) 3770005299937950 a001 165580141/1568397607*24476^(17/21) 3770005299937950 a001 31622993/299537289*24476^(17/21) 3770005299937951 a001 24157817/228826127*24476^(17/21) 3770005299937958 a001 9227465/87403803*24476^(17/21) 3770005299938007 a001 1762289/16692641*24476^(17/21) 3770005299938343 a001 1346269/12752043*24476^(17/21) 3770005299940642 a001 514229/4870847*24476^(17/21) 3770005299951115 a001 196418/39603*24476^(3/7) 3770005299956404 a001 98209/930249*24476^(17/21) 3770005299959938 a001 28657/1149851*24476^(20/21) 3770005299973441 a001 208010/6119*9349^(5/19) 3770005300064440 a001 75025/710647*24476^(17/21) 3770005300135557 a001 23184/51841*24476^(2/3) 3770005300141283 a001 7465176/51841*9349^(2/19) 3770005300178987 a001 121393/710647*24476^(16/21) 3770005300223775 a001 105937/13201*24476^(8/21) 3770005300224857 a001 17711/39603*20633239^(2/5) 3770005300224861 a001 17711/39603*17393796001^(2/7) 3770005300224861 a001 17711/39603*14662949395604^(2/9) 3770005300224861 a001 17711/39603*(1/2+1/2*5^(1/2))^14 3770005300224861 a001 17711/39603*505019158607^(1/4) 3770005300224861 a001 17711/39603*10749957122^(7/24) 3770005300224861 a001 17711/39603*4106118243^(7/23) 3770005300224861 a001 17711/39603*1568397607^(7/22) 3770005300224861 a001 17711/39603*599074578^(1/3) 3770005300224861 a001 17711/39603*228826127^(7/20) 3770005300224861 a001 17711/39603*87403803^(7/19) 3770005300224862 a001 17711/39603*33385282^(7/18) 3770005300224871 a001 17711/39603*12752043^(7/17) 3770005300224931 a001 17711/39603*4870847^(7/16) 3770005300225369 a001 17711/39603*1860498^(7/15) 3770005300225950 a001 313679521/832040 3770005300228594 a001 17711/39603*710647^(1/2) 3770005300229064 a001 105937/620166*24476^(16/21) 3770005300236371 a001 832040/4870847*24476^(16/21) 3770005300237437 a001 726103/4250681*24476^(16/21) 3770005300237592 a001 5702887/33385282*24476^(16/21) 3770005300237615 a001 4976784/29134601*24476^(16/21) 3770005300237618 a001 39088169/228826127*24476^(16/21) 3770005300237619 a001 34111385/199691526*24476^(16/21) 3770005300237619 a001 267914296/1568397607*24476^(16/21) 3770005300237619 a001 233802911/1368706081*24476^(16/21) 3770005300237619 a001 1836311903/10749957122*24476^(16/21) 3770005300237619 a001 1602508992/9381251041*24476^(16/21) 3770005300237619 a001 12586269025/73681302247*24476^(16/21) 3770005300237619 a001 10983760033/64300051206*24476^(16/21) 3770005300237619 a001 86267571272/505019158607*24476^(16/21) 3770005300237619 a001 75283811239/440719107401*24476^(16/21) 3770005300237619 a001 2504730781961/14662949395604*24476^(16/21) 3770005300237619 a001 139583862445/817138163596*24476^(16/21) 3770005300237619 a001 53316291173/312119004989*24476^(16/21) 3770005300237619 a001 20365011074/119218851371*24476^(16/21) 3770005300237619 a001 7778742049/45537549124*24476^(16/21) 3770005300237619 a001 2971215073/17393796001*24476^(16/21) 3770005300237619 a001 1134903170/6643838879*24476^(16/21) 3770005300237619 a001 433494437/2537720636*24476^(16/21) 3770005300237619 a001 165580141/969323029*24476^(16/21) 3770005300237619 a001 63245986/370248451*24476^(16/21) 3770005300237620 a001 24157817/141422324*24476^(16/21) 3770005300237629 a001 9227465/54018521*24476^(16/21) 3770005300237688 a001 3524578/20633239*24476^(16/21) 3770005300238095 a001 1346269/7881196*24476^(16/21) 3770005300240886 a001 514229/3010349*24476^(16/21) 3770005300249290 a001 28657/710647*24476^(19/21) 3770005300252412 a001 17711/39603*271443^(7/13) 3770005300260014 a001 196418/1149851*24476^(16/21) 3770005300320543 a001 46368/167761*24476^(5/7) 3770005300358432 a001 9227465/39603*9349^(1/19) 3770005300391118 a001 75025/439204*24476^(16/21) 3770005300429436 a001 17711/39603*103682^(7/12) 3770005300440819 a001 39088169/271443*9349^(2/19) 3770005300484521 a001 14619165/101521*9349^(2/19) 3770005300490897 a001 133957148/930249*9349^(2/19) 3770005300491827 a001 701408733/4870847*9349^(2/19) 3770005300491963 a001 1836311903/12752043*9349^(2/19) 3770005300491982 a001 14930208/103681*9349^(2/19) 3770005300491985 a001 12586269025/87403803*9349^(2/19) 3770005300491986 a001 32951280099/228826127*9349^(2/19) 3770005300491986 a001 43133785636/299537289*9349^(2/19) 3770005300491986 a001 32264490531/224056801*9349^(2/19) 3770005300491986 a001 591286729879/4106118243*9349^(2/19) 3770005300491986 a001 774004377960/5374978561*9349^(2/19) 3770005300491986 a001 4052739537881/28143753123*9349^(2/19) 3770005300491986 a001 1515744265389/10525900321*9349^(2/19) 3770005300491986 a001 3278735159921/22768774562*9349^(2/19) 3770005300491986 a001 2504730781961/17393796001*9349^(2/19) 3770005300491986 a001 956722026041/6643838879*9349^(2/19) 3770005300491986 a001 182717648081/1268860318*9349^(2/19) 3770005300491986 a001 139583862445/969323029*9349^(2/19) 3770005300491986 a001 53316291173/370248451*9349^(2/19) 3770005300491986 a001 10182505537/70711162*9349^(2/19) 3770005300491987 a001 7778742049/54018521*9349^(2/19) 3770005300491995 a001 2971215073/20633239*9349^(2/19) 3770005300492047 a001 567451585/3940598*9349^(2/19) 3770005300492402 a001 433494437/3010349*9349^(2/19) 3770005300494837 a001 165580141/1149851*9349^(2/19) 3770005300505665 a001 121393/439204*24476^(5/7) 3770005300511530 a001 31622993/219602*9349^(2/19) 3770005300532674 a001 317811/1149851*24476^(5/7) 3770005300533760 a001 514229/39603*24476^(1/3) 3770005300536615 a001 832040/3010349*24476^(5/7) 3770005300537189 a001 2178309/7881196*24476^(5/7) 3770005300537273 a001 5702887/20633239*24476^(5/7) 3770005300537286 a001 14930352/54018521*24476^(5/7) 3770005300537287 a001 39088169/141422324*24476^(5/7) 3770005300537288 a001 102334155/370248451*24476^(5/7) 3770005300537288 a001 267914296/969323029*24476^(5/7) 3770005300537288 a001 701408733/2537720636*24476^(5/7) 3770005300537288 a001 1836311903/6643838879*24476^(5/7) 3770005300537288 a001 4807526976/17393796001*24476^(5/7) 3770005300537288 a001 12586269025/45537549124*24476^(5/7) 3770005300537288 a001 32951280099/119218851371*24476^(5/7) 3770005300537288 a001 86267571272/312119004989*24476^(5/7) 3770005300537288 a001 225851433717/817138163596*24476^(5/7) 3770005300537288 a001 1548008755920/5600748293801*24476^(5/7) 3770005300537288 a001 139583862445/505019158607*24476^(5/7) 3770005300537288 a001 53316291173/192900153618*24476^(5/7) 3770005300537288 a001 20365011074/73681302247*24476^(5/7) 3770005300537288 a001 7778742049/28143753123*24476^(5/7) 3770005300537288 a001 2971215073/10749957122*24476^(5/7) 3770005300537288 a001 1134903170/4106118243*24476^(5/7) 3770005300537288 a001 433494437/1568397607*24476^(5/7) 3770005300537288 a001 165580141/599074578*24476^(5/7) 3770005300537288 a001 63245986/228826127*24476^(5/7) 3770005300537288 a001 24157817/87403803*24476^(5/7) 3770005300537293 a001 9227465/33385282*24476^(5/7) 3770005300537325 a001 3524578/12752043*24476^(5/7) 3770005300537545 a001 1346269/4870847*24476^(5/7) 3770005300539050 a001 514229/1860498*24476^(5/7) 3770005300549366 a001 196418/710647*24476^(5/7) 3770005300575968 a001 28657/439204*24476^(6/7) 3770005300620077 a001 75025/271443*24476^(5/7) 3770005300625942 a001 24157817/167761*9349^(2/19) 3770005300734624 a001 121393/271443*24476^(2/3) 3770005300804927 a001 28657/271443*24476^(17/21) 3770005300822026 a001 317811/710647*24476^(2/3) 3770005300829489 a001 832040/39603*24476^(2/7) 3770005300834778 a001 416020/930249*24476^(2/3) 3770005300836639 a001 2178309/4870847*24476^(2/3) 3770005300836910 a001 5702887/12752043*24476^(2/3) 3770005300836950 a001 7465176/16692641*24476^(2/3) 3770005300836956 a001 39088169/87403803*24476^(2/3) 3770005300836956 a001 102334155/228826127*24476^(2/3) 3770005300836957 a001 133957148/299537289*24476^(2/3) 3770005300836957 a001 701408733/1568397607*24476^(2/3) 3770005300836957 a001 1836311903/4106118243*24476^(2/3) 3770005300836957 a001 2403763488/5374978561*24476^(2/3) 3770005300836957 a001 12586269025/28143753123*24476^(2/3) 3770005300836957 a001 32951280099/73681302247*24476^(2/3) 3770005300836957 a001 43133785636/96450076809*24476^(2/3) 3770005300836957 a001 225851433717/505019158607*24476^(2/3) 3770005300836957 a001 591286729879/1322157322203*24476^(2/3) 3770005300836957 a001 10610209857723/23725150497407*24476^(2/3) 3770005300836957 a001 182717648081/408569081798*24476^(2/3) 3770005300836957 a001 139583862445/312119004989*24476^(2/3) 3770005300836957 a001 53316291173/119218851371*24476^(2/3) 3770005300836957 a001 10182505537/22768774562*24476^(2/3) 3770005300836957 a001 7778742049/17393796001*24476^(2/3) 3770005300836957 a001 2971215073/6643838879*24476^(2/3) 3770005300836957 a001 567451585/1268860318*24476^(2/3) 3770005300836957 a001 433494437/969323029*24476^(2/3) 3770005300836957 a001 165580141/370248451*24476^(2/3) 3770005300836957 a001 31622993/70711162*24476^(2/3) 3770005300836959 a001 24157817/54018521*24476^(2/3) 3770005300836974 a001 9227465/20633239*24476^(2/3) 3770005300837078 a001 1762289/3940598*24476^(2/3) 3770005300837789 a001 1346269/3010349*24476^(2/3) 3770005300842659 a001 514229/1149851*24476^(2/3) 3770005300876044 a001 98209/219602*24476^(2/3) 3770005300919881 a001 75025/103682*24476^(13/21) 3770005301034429 a001 121393/103682*24476^(4/7) 3770005301103879 a001 311187/2161*5778^(1/9) 3770005301104731 a001 28657/103682*24476^(5/7) 3770005301104867 a001 75025/167761*24476^(2/3) 3770005301105003 a001 196418/271443*24476^(13/21) 3770005301130663 a001 1346269/39603*24476^(5/21) 3770005301132012 a001 514229/710647*24476^(13/21) 3770005301135952 a001 1346269/1860498*24476^(13/21) 3770005301136527 a001 3524578/4870847*24476^(13/21) 3770005301136611 a001 9227465/12752043*24476^(13/21) 3770005301136624 a001 24157817/33385282*24476^(13/21) 3770005301136625 a001 63245986/87403803*24476^(13/21) 3770005301136626 a001 165580141/228826127*24476^(13/21) 3770005301136626 a001 433494437/599074578*24476^(13/21) 3770005301136626 a001 1134903170/1568397607*24476^(13/21) 3770005301136626 a001 2971215073/4106118243*24476^(13/21) 3770005301136626 a001 7778742049/10749957122*24476^(13/21) 3770005301136626 a001 20365011074/28143753123*24476^(13/21) 3770005301136626 a001 53316291173/73681302247*24476^(13/21) 3770005301136626 a001 139583862445/192900153618*24476^(13/21) 3770005301136626 a001 10610209857723/14662949395604*24476^(13/21) 3770005301136626 a001 591286729879/817138163596*24476^(13/21) 3770005301136626 a001 225851433717/312119004989*24476^(13/21) 3770005301136626 a001 86267571272/119218851371*24476^(13/21) 3770005301136626 a001 32951280099/45537549124*24476^(13/21) 3770005301136626 a001 12586269025/17393796001*24476^(13/21) 3770005301136626 a001 4807526976/6643838879*24476^(13/21) 3770005301136626 a001 1836311903/2537720636*24476^(13/21) 3770005301136626 a001 701408733/969323029*24476^(13/21) 3770005301136626 a001 267914296/370248451*24476^(13/21) 3770005301136626 a001 102334155/141422324*24476^(13/21) 3770005301136626 a001 39088169/54018521*24476^(13/21) 3770005301136631 a001 14930352/20633239*24476^(13/21) 3770005301136663 a001 5702887/7881196*24476^(13/21) 3770005301136883 a001 2178309/3010349*24476^(13/21) 3770005301138388 a001 832040/1149851*24476^(13/21) 3770005301148704 a001 317811/439204*24476^(13/21) 3770005301219415 a001 121393/167761*24476^(13/21) 3770005301289717 a001 28657/167761*24476^(16/21) 3770005301377663 a001 105937/90481*24476^(4/7) 3770005301404808 a001 98209/51841*24476^(11/21) 3770005301410138 a001 9227465/64079*9349^(2/19) 3770005301427740 a001 832040/710647*24476^(4/7) 3770005301429757 a001 726103/13201*24476^(4/21) 3770005301435047 a001 726103/620166*24476^(4/7) 3770005301436112 a001 5702887/4870847*24476^(4/7) 3770005301436268 a001 4976784/4250681*24476^(4/7) 3770005301436291 a001 39088169/33385282*24476^(4/7) 3770005301436294 a001 34111385/29134601*24476^(4/7) 3770005301436294 a001 267914296/228826127*24476^(4/7) 3770005301436295 a001 233802911/199691526*24476^(4/7) 3770005301436295 a001 1836311903/1568397607*24476^(4/7) 3770005301436295 a001 1602508992/1368706081*24476^(4/7) 3770005301436295 a001 12586269025/10749957122*24476^(4/7) 3770005301436295 a001 10983760033/9381251041*24476^(4/7) 3770005301436295 a001 86267571272/73681302247*24476^(4/7) 3770005301436295 a001 75283811239/64300051206*24476^(4/7) 3770005301436295 a001 2504730781961/2139295485799*24476^(4/7) 3770005301436295 a001 365435296162/312119004989*24476^(4/7) 3770005301436295 a001 139583862445/119218851371*24476^(4/7) 3770005301436295 a001 53316291173/45537549124*24476^(4/7) 3770005301436295 a001 20365011074/17393796001*24476^(4/7) 3770005301436295 a001 7778742049/6643838879*24476^(4/7) 3770005301436295 a001 2971215073/2537720636*24476^(4/7) 3770005301436295 a001 1134903170/969323029*24476^(4/7) 3770005301436295 a001 433494437/370248451*24476^(4/7) 3770005301436295 a001 165580141/141422324*24476^(4/7) 3770005301436296 a001 63245986/54018521*24476^(4/7) 3770005301436305 a001 24157817/20633239*24476^(4/7) 3770005301436364 a001 9227465/7881196*24476^(4/7) 3770005301436771 a001 3524578/3010349*24476^(4/7) 3770005301439562 a001 1346269/1149851*24476^(4/7) 3770005301458690 a001 514229/439204*24476^(4/7) 3770005301589794 a001 196418/167761*24476^(4/7) 3770005301639184 a001 17711/103682*64079^(16/23) 3770005301677468 a001 317811/103682*24476^(10/21) 3770005301687649 a001 514229/271443*24476^(11/21) 3770005301704069 a001 46368/64079*24476^(13/21) 3770005301710448 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^31 3770005301728914 a001 1346269/710647*24476^(11/21) 3770005301729645 a001 3524578/39603*24476^(1/7) 3770005301734935 a001 1762289/930249*24476^(11/21) 3770005301735813 a001 9227465/4870847*24476^(11/21) 3770005301735942 a001 24157817/12752043*24476^(11/21) 3770005301735960 a001 31622993/16692641*24476^(11/21) 3770005301735963 a001 165580141/87403803*24476^(11/21) 3770005301735963 a001 433494437/228826127*24476^(11/21) 3770005301735964 a001 567451585/299537289*24476^(11/21) 3770005301735964 a001 2971215073/1568397607*24476^(11/21) 3770005301735964 a001 7778742049/4106118243*24476^(11/21) 3770005301735964 a001 10182505537/5374978561*24476^(11/21) 3770005301735964 a001 53316291173/28143753123*24476^(11/21) 3770005301735964 a001 139583862445/73681302247*24476^(11/21) 3770005301735964 a001 182717648081/96450076809*24476^(11/21) 3770005301735964 a001 956722026041/505019158607*24476^(11/21) 3770005301735964 a001 10610209857723/5600748293801*24476^(11/21) 3770005301735964 a001 591286729879/312119004989*24476^(11/21) 3770005301735964 a001 225851433717/119218851371*24476^(11/21) 3770005301735964 a001 21566892818/11384387281*24476^(11/21) 3770005301735964 a001 32951280099/17393796001*24476^(11/21) 3770005301735964 a001 12586269025/6643838879*24476^(11/21) 3770005301735964 a001 1201881744/634430159*24476^(11/21) 3770005301735964 a001 1836311903/969323029*24476^(11/21) 3770005301735964 a001 701408733/370248451*24476^(11/21) 3770005301735964 a001 66978574/35355581*24476^(11/21) 3770005301735965 a001 102334155/54018521*24476^(11/21) 3770005301735972 a001 39088169/20633239*24476^(11/21) 3770005301736021 a001 3732588/1970299*24476^(11/21) 3770005301736356 a001 5702887/3010349*24476^(11/21) 3770005301738656 a001 2178309/1149851*24476^(11/21) 3770005301749278 a001 17711/1860498*64079^(22/23) 3770005301754418 a001 208010/109801*24476^(11/21) 3770005301754508 a001 17711/39603*39603^(7/11) 3770005301793138 a001 17711/1149851*64079^(21/23) 3770005301798861 a001 15456/13201*64079^(12/23) 3770005301822741 a001 17711/710647*64079^(20/23) 3770005301858878 a001 17711/271443*64079^(18/23) 3770005301862454 a001 317811/167761*24476^(11/21) 3770005301889669 a001 17711/439204*64079^(19/23) 3770005301983377 a001 832040/271443*24476^(10/21) 3770005301987453 a001 514229/103682*24476^(3/7) 3770005302028009 a001 311187/101521*24476^(10/21) 3770005302029231 a001 5702887/39603*24476^(2/21) 3770005302034520 a001 5702887/1860498*24476^(10/21) 3770005302035470 a001 14930352/4870847*24476^(10/21) 3770005302035609 a001 39088169/12752043*24476^(10/21) 3770005302035629 a001 14619165/4769326*24476^(10/21) 3770005302035632 a001 267914296/87403803*24476^(10/21) 3770005302035632 a001 701408733/228826127*24476^(10/21) 3770005302035632 a001 1836311903/599074578*24476^(10/21) 3770005302035633 a001 686789568/224056801*24476^(10/21) 3770005302035633 a001 12586269025/4106118243*24476^(10/21) 3770005302035633 a001 32951280099/10749957122*24476^(10/21) 3770005302035633 a001 86267571272/28143753123*24476^(10/21) 3770005302035633 a001 32264490531/10525900321*24476^(10/21) 3770005302035633 a001 591286729879/192900153618*24476^(10/21) 3770005302035633 a001 1548008755920/505019158607*24476^(10/21) 3770005302035633 a001 1515744265389/494493258286*24476^(10/21) 3770005302035633 a001 2504730781961/817138163596*24476^(10/21) 3770005302035633 a001 956722026041/312119004989*24476^(10/21) 3770005302035633 a001 365435296162/119218851371*24476^(10/21) 3770005302035633 a001 139583862445/45537549124*24476^(10/21) 3770005302035633 a001 53316291173/17393796001*24476^(10/21) 3770005302035633 a001 20365011074/6643838879*24476^(10/21) 3770005302035633 a001 7778742049/2537720636*24476^(10/21) 3770005302035633 a001 2971215073/969323029*24476^(10/21) 3770005302035633 a001 1134903170/370248451*24476^(10/21) 3770005302035633 a001 433494437/141422324*24476^(10/21) 3770005302035634 a001 165580141/54018521*24476^(10/21) 3770005302035642 a001 63245986/20633239*24476^(10/21) 3770005302035694 a001 24157817/7881196*24476^(10/21) 3770005302036057 a001 9227465/3010349*24476^(10/21) 3770005302038545 a001 3524578/1149851*24476^(10/21) 3770005302055592 a001 1346269/439204*24476^(10/21) 3770005302083919 a001 17711/167761*64079^(17/23) 3770005302172439 a001 514229/167761*24476^(10/21) 3770005302177917 a001 6765/9349*9349^(13/19) 3770005302178232 a001 121393/39603*64079^(10/23) 3770005302245114 a001 1346269/24476*9349^(4/19) 3770005302269206 a001 15456/13201*439204^(4/9) 3770005302277870 a001 15456/13201*7881196^(4/11) 3770005302277892 a001 15456/13201*141422324^(4/13) 3770005302277892 a001 17711/103682*(1/2+1/2*5^(1/2))^16 3770005302277892 a001 17711/103682*23725150497407^(1/4) 3770005302277892 a001 17711/103682*73681302247^(4/13) 3770005302277892 a001 17711/103682*10749957122^(1/3) 3770005302277892 a001 17711/103682*4106118243^(8/23) 3770005302277892 a001 17711/103682*1568397607^(4/11) 3770005302277892 a001 15456/13201*2537720636^(4/15) 3770005302277892 a001 15456/13201*45537549124^(4/17) 3770005302277892 a001 15456/13201*817138163596^(4/19) 3770005302277892 a001 15456/13201*14662949395604^(4/21) 3770005302277892 a001 15456/13201*(1/2+1/2*5^(1/2))^12 3770005302277892 a001 15456/13201*192900153618^(2/9) 3770005302277892 a001 15456/13201*73681302247^(3/13) 3770005302277892 a001 15456/13201*10749957122^(1/4) 3770005302277892 a001 15456/13201*4106118243^(6/23) 3770005302277892 a001 15456/13201*1568397607^(3/11) 3770005302277892 a001 17711/103682*599074578^(8/21) 3770005302277892 a001 15456/13201*599074578^(2/7) 3770005302277892 a001 15456/13201*228826127^(3/10) 3770005302277892 a001 17711/103682*228826127^(2/5) 3770005302277892 a001 15456/13201*87403803^(6/19) 3770005302277892 a001 17711/103682*87403803^(8/19) 3770005302277893 a001 15456/13201*33385282^(1/3) 3770005302277894 a001 17711/103682*33385282^(4/9) 3770005302277900 a001 15456/13201*12752043^(6/17) 3770005302277903 a001 17711/103682*12752043^(8/17) 3770005302277952 a001 15456/13201*4870847^(3/8) 3770005302277972 a001 17711/103682*4870847^(1/2) 3770005302278051 a001 39105888/103729 3770005302278328 a001 15456/13201*1860498^(2/5) 3770005302278473 a001 17711/103682*1860498^(8/15) 3770005302281091 a001 15456/13201*710647^(3/7) 3770005302282158 a001 17711/103682*710647^(4/7) 3770005302283182 a001 416020/51841*24476^(8/21) 3770005302284551 a001 1346269/271443*24476^(3/7) 3770005302288862 a001 196418/39603*64079^(9/23) 3770005302301507 a001 15456/13201*271443^(6/13) 3770005302301772 a001 105937/13201*64079^(8/23) 3770005302309379 a001 17711/103682*271443^(8/13) 3770005302323435 a001 75025/39603*64079^(11/23) 3770005302327897 a001 3524578/710647*24476^(3/7) 3770005302328932 a001 9227465/39603*24476^(1/21) 3770005302334221 a001 9227465/1860498*24476^(3/7) 3770005302335144 a001 24157817/4870847*24476^(3/7) 3770005302335278 a001 63245986/12752043*24476^(3/7) 3770005302335298 a001 165580141/33385282*24476^(3/7) 3770005302335301 a001 433494437/87403803*24476^(3/7) 3770005302335301 a001 1134903170/228826127*24476^(3/7) 3770005302335301 a001 2971215073/599074578*24476^(3/7) 3770005302335301 a001 7778742049/1568397607*24476^(3/7) 3770005302335301 a001 20365011074/4106118243*24476^(3/7) 3770005302335301 a001 53316291173/10749957122*24476^(3/7) 3770005302335301 a001 139583862445/28143753123*24476^(3/7) 3770005302335301 a001 365435296162/73681302247*24476^(3/7) 3770005302335301 a001 956722026041/192900153618*24476^(3/7) 3770005302335301 a001 2504730781961/505019158607*24476^(3/7) 3770005302335301 a001 10610209857723/2139295485799*24476^(3/7) 3770005302335301 a001 140728068720/28374454999*24476^(3/7) 3770005302335301 a001 591286729879/119218851371*24476^(3/7) 3770005302335301 a001 225851433717/45537549124*24476^(3/7) 3770005302335301 a001 86267571272/17393796001*24476^(3/7) 3770005302335301 a001 32951280099/6643838879*24476^(3/7) 3770005302335301 a001 1144206275/230701876*24476^(3/7) 3770005302335301 a001 4807526976/969323029*24476^(3/7) 3770005302335302 a001 1836311903/370248451*24476^(3/7) 3770005302335302 a001 701408733/141422324*24476^(3/7) 3770005302335303 a001 267914296/54018521*24476^(3/7) 3770005302335310 a001 9303105/1875749*24476^(3/7) 3770005302335362 a001 39088169/7881196*24476^(3/7) 3770005302335714 a001 14930352/3010349*24476^(3/7) 3770005302338130 a001 5702887/1149851*24476^(3/7) 3770005302352008 a001 514229/39603*64079^(7/23) 3770005302354686 a001 2178309/439204*24476^(3/7) 3770005302387987 a001 832040/39603*64079^(6/23) 3770005302411456 a001 24157817/103682*9349^(1/19) 3770005302429411 a001 1346269/39603*64079^(5/23) 3770005302453242 a001 15456/13201*103682^(1/2) 3770005302468168 a001 75640/15251*24476^(3/7) 3770005302468756 a001 726103/13201*64079^(4/23) 3770005302488393 a001 75025/64079*24476^(4/7) 3770005302494636 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^33 3770005302508894 a001 3524578/39603*64079^(3/23) 3770005302511692 a001 17711/103682*103682^(2/3) 3770005302513962 a001 17711/710647*167761^(4/5) 3770005302523843 a001 121393/39603*167761^(2/5) 3770005302548730 a001 5702887/39603*64079^(2/23) 3770005302564396 a001 17711/271443*439204^(2/3) 3770005302577392 a001 17711/271443*7881196^(6/11) 3770005302577423 a001 121393/39603*20633239^(2/7) 3770005302577425 a001 17711/271443*141422324^(6/13) 3770005302577425 a001 17711/271443*2537720636^(2/5) 3770005302577425 a001 17711/271443*45537549124^(6/17) 3770005302577425 a001 17711/271443*14662949395604^(2/7) 3770005302577425 a001 17711/271443*(1/2+1/2*5^(1/2))^18 3770005302577425 a001 17711/271443*192900153618^(1/3) 3770005302577425 a001 17711/271443*10749957122^(3/8) 3770005302577425 a001 17711/271443*4106118243^(9/23) 3770005302577425 a001 17711/271443*1568397607^(9/22) 3770005302577425 a001 121393/39603*2537720636^(2/9) 3770005302577425 a001 121393/39603*312119004989^(2/11) 3770005302577425 a001 121393/39603*(1/2+1/2*5^(1/2))^10 3770005302577425 a001 121393/39603*28143753123^(1/5) 3770005302577425 a001 121393/39603*10749957122^(5/24) 3770005302577425 a001 121393/39603*4106118243^(5/23) 3770005302577425 a001 121393/39603*1568397607^(5/22) 3770005302577425 a001 121393/39603*599074578^(5/21) 3770005302577425 a001 17711/271443*599074578^(3/7) 3770005302577425 a001 121393/39603*228826127^(1/4) 3770005302577425 a001 17711/271443*228826127^(9/20) 3770005302577425 a001 121393/39603*87403803^(5/19) 3770005302577425 a001 17711/271443*87403803^(9/19) 3770005302577426 a001 121393/39603*33385282^(5/18) 3770005302577427 a001 17711/271443*33385282^(1/2) 3770005302577432 a001 121393/39603*12752043^(5/17) 3770005302577438 a001 17711/271443*12752043^(9/17) 3770005302577448 a001 2149991423/5702887 3770005302577475 a001 121393/39603*4870847^(5/16) 3770005302577515 a001 17711/271443*4870847^(9/16) 3770005302577788 a001 121393/39603*1860498^(1/3) 3770005302578079 a001 17711/271443*1860498^(3/5) 3770005302580091 a001 121393/39603*710647^(5/14) 3770005302582224 a001 17711/271443*710647^(9/14) 3770005302583645 a001 726103/90481*24476^(8/21) 3770005302584356 a001 1346269/103682*24476^(1/3) 3770005302588681 a001 9227465/39603*64079^(1/23) 3770005302597105 a001 121393/39603*271443^(5/13) 3770005302602217 a001 1346269/39603*167761^(1/5) 3770005302602941 a001 121393/64079*24476^(11/21) 3770005302609048 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^35 3770005302611060 a001 17711/4870847*439204^(8/9) 3770005302612848 a001 17711/271443*271443^(9/13) 3770005302616242 a001 17711/1149851*439204^(7/9) 3770005302621121 a001 17711/710647*20633239^(4/7) 3770005302621127 a001 17711/710647*2537720636^(4/9) 3770005302621127 a001 17711/710647*(1/2+1/2*5^(1/2))^20 3770005302621127 a001 17711/710647*23725150497407^(5/16) 3770005302621127 a001 17711/710647*505019158607^(5/14) 3770005302621127 a001 17711/710647*73681302247^(5/13) 3770005302621127 a001 17711/710647*28143753123^(2/5) 3770005302621127 a001 17711/710647*10749957122^(5/12) 3770005302621127 a001 17711/710647*4106118243^(10/23) 3770005302621127 a001 17711/710647*1568397607^(5/11) 3770005302621127 a001 105937/13201*(1/2+1/2*5^(1/2))^8 3770005302621127 a001 105937/13201*23725150497407^(1/8) 3770005302621127 a001 105937/13201*505019158607^(1/7) 3770005302621127 a001 105937/13201*73681302247^(2/13) 3770005302621127 a001 105937/13201*10749957122^(1/6) 3770005302621127 a001 105937/13201*4106118243^(4/23) 3770005302621127 a001 105937/13201*1568397607^(2/11) 3770005302621127 a001 105937/13201*599074578^(4/21) 3770005302621127 a001 17711/710647*599074578^(10/21) 3770005302621127 a001 105937/13201*228826127^(1/5) 3770005302621127 a001 17711/710647*228826127^(1/2) 3770005302621127 a001 105937/13201*87403803^(4/19) 3770005302621127 a001 17711/710647*87403803^(10/19) 3770005302621127 a001 105937/13201*33385282^(2/9) 3770005302621128 a001 17711/710647*33385282^(5/9) 3770005302621130 a001 1876250207/4976784 3770005302621132 a001 105937/13201*12752043^(4/17) 3770005302621140 a001 17711/710647*12752043^(10/17) 3770005302621166 a001 105937/13201*4870847^(1/4) 3770005302621226 a001 17711/710647*4870847^(5/8) 3770005302621417 a001 105937/13201*1860498^(4/15) 3770005302621853 a001 17711/710647*1860498^(2/3) 3770005302623159 a001 832040/39603*439204^(2/9) 3770005302623259 a001 105937/13201*710647^(2/7) 3770005302625740 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^37 3770005302626459 a001 17711/710647*710647^(5/7) 3770005302626481 a001 3524578/39603*439204^(1/9) 3770005302627462 a001 17711/1860498*7881196^(2/3) 3770005302627482 a001 5702887/710647*24476^(8/21) 3770005302627491 a001 832040/39603*7881196^(2/11) 3770005302627502 a001 832040/39603*141422324^(2/13) 3770005302627502 a001 17711/1860498*312119004989^(2/5) 3770005302627502 a001 17711/1860498*(1/2+1/2*5^(1/2))^22 3770005302627502 a001 17711/1860498*10749957122^(11/24) 3770005302627502 a001 17711/1860498*4106118243^(11/23) 3770005302627502 a001 17711/1860498*1568397607^(1/2) 3770005302627502 a001 832040/39603*2537720636^(2/15) 3770005302627502 a001 832040/39603*45537549124^(2/17) 3770005302627502 a001 832040/39603*14662949395604^(2/21) 3770005302627502 a001 832040/39603*(1/2+1/2*5^(1/2))^6 3770005302627502 a001 832040/39603*10749957122^(1/8) 3770005302627502 a001 832040/39603*4106118243^(3/23) 3770005302627502 a001 832040/39603*1568397607^(3/22) 3770005302627502 a001 832040/39603*599074578^(1/7) 3770005302627502 a001 17711/1860498*599074578^(11/21) 3770005302627502 a001 832040/39603*228826127^(3/20) 3770005302627503 a001 17711/1860498*228826127^(11/20) 3770005302627503 a001 832040/39603*87403803^(3/19) 3770005302627503 a001 17711/1860498*87403803^(11/19) 3770005302627503 a001 14736260440/39088169 3770005302627503 a001 832040/39603*33385282^(1/6) 3770005302627505 a001 17711/1860498*33385282^(11/18) 3770005302627507 a001 832040/39603*12752043^(3/17) 3770005302627517 a001 17711/1860498*12752043^(11/17) 3770005302627532 a001 832040/39603*4870847^(3/16) 3770005302627612 a001 17711/1860498*4870847^(11/16) 3770005302627720 a001 832040/39603*1860498^(1/5) 3770005302628176 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^39 3770005302628301 a001 17711/1860498*1860498^(11/15) 3770005302628389 a001 17711/4870847*7881196^(8/11) 3770005302628433 a001 17711/4870847*141422324^(8/13) 3770005302628433 a001 17711/4870847*2537720636^(8/15) 3770005302628433 a001 17711/4870847*45537549124^(8/17) 3770005302628433 a001 17711/4870847*14662949395604^(8/21) 3770005302628433 a001 17711/4870847*(1/2+1/2*5^(1/2))^24 3770005302628433 a001 17711/4870847*192900153618^(4/9) 3770005302628433 a001 17711/4870847*73681302247^(6/13) 3770005302628433 a001 17711/4870847*10749957122^(1/2) 3770005302628433 a001 17711/4870847*4106118243^(12/23) 3770005302628433 a001 17711/4870847*1568397607^(6/11) 3770005302628433 a001 726103/13201*(1/2+1/2*5^(1/2))^4 3770005302628433 a001 726103/13201*23725150497407^(1/16) 3770005302628433 a001 726103/13201*73681302247^(1/13) 3770005302628433 a001 726103/13201*10749957122^(1/12) 3770005302628433 a001 726103/13201*4106118243^(2/23) 3770005302628433 a001 726103/13201*1568397607^(1/11) 3770005302628433 a001 726103/13201*599074578^(2/21) 3770005302628433 a001 17711/4870847*599074578^(4/7) 3770005302628433 a001 726103/13201*228826127^(1/10) 3770005302628433 a001 17711/4870847*228826127^(3/5) 3770005302628433 a001 726103/13201*87403803^(2/19) 3770005302628433 a001 1837144319/4873055 3770005302628433 a001 17711/4870847*87403803^(12/19) 3770005302628433 a001 726103/13201*33385282^(1/9) 3770005302628435 a001 17711/4870847*33385282^(2/3) 3770005302628435 a001 726103/13201*12752043^(2/17) 3770005302628449 a001 17711/4870847*12752043^(12/17) 3770005302628453 a001 726103/13201*4870847^(1/8) 3770005302628531 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^41 3770005302628536 a001 17711/87403803*7881196^(10/11) 3770005302628551 a001 17711/20633239*7881196^(9/11) 3770005302628552 a001 17711/4870847*4870847^(3/4) 3770005302628568 a001 17711/12752043*141422324^(2/3) 3770005302628568 a001 17711/12752043*(1/2+1/2*5^(1/2))^26 3770005302628568 a001 17711/12752043*73681302247^(1/2) 3770005302628568 a001 17711/12752043*10749957122^(13/24) 3770005302628568 a001 17711/12752043*4106118243^(13/23) 3770005302628568 a001 17711/12752043*1568397607^(13/22) 3770005302628568 a001 5702887/39603*(1/2+1/2*5^(1/2))^2 3770005302628568 a001 5702887/39603*10749957122^(1/24) 3770005302628568 a001 5702887/39603*4106118243^(1/23) 3770005302628568 a001 5702887/39603*1568397607^(1/22) 3770005302628568 a001 5702887/39603*599074578^(1/21) 3770005302628568 a001 5702887/39603*228826127^(1/20) 3770005302628568 a001 17711/12752043*599074578^(13/21) 3770005302628568 a001 101003831657/267914296 3770005302628568 a001 5702887/39603*87403803^(1/19) 3770005302628568 a001 17711/12752043*228826127^(13/20) 3770005302628569 a001 5702887/39603*33385282^(1/18) 3770005302628569 a001 17711/12752043*87403803^(13/19) 3770005302628570 a001 5702887/39603*12752043^(1/17) 3770005302628571 a001 17711/12752043*33385282^(13/18) 3770005302628578 a001 726103/13201*1860498^(2/15) 3770005302628578 a001 5702887/39603*4870847^(1/16) 3770005302628581 a001 17711/33385282*20633239^(4/5) 3770005302628583 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^43 3770005302628584 a001 17711/87403803*20633239^(6/7) 3770005302628586 a001 17711/12752043*12752043^(13/17) 3770005302628588 a001 17711/33385282*17393796001^(4/7) 3770005302628588 a001 17711/33385282*14662949395604^(4/9) 3770005302628588 a001 17711/33385282*(1/2+1/2*5^(1/2))^28 3770005302628588 a001 17711/33385282*505019158607^(1/2) 3770005302628588 a001 17711/33385282*73681302247^(7/13) 3770005302628588 a001 17711/33385282*10749957122^(7/12) 3770005302628588 a001 17711/33385282*4106118243^(14/23) 3770005302628588 a001 17711/33385282*1568397607^(7/11) 3770005302628588 a001 4976784/13201 3770005302628588 a001 17711/33385282*599074578^(2/3) 3770005302628588 a001 17711/33385282*228826127^(7/10) 3770005302628589 a001 17711/33385282*87403803^(14/19) 3770005302628590 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^45 3770005302628591 a001 17711/33385282*33385282^(7/9) 3770005302628591 a001 17711/87403803*141422324^(10/13) 3770005302628591 a001 17711/87403803*2537720636^(2/3) 3770005302628591 a001 17711/87403803*45537549124^(10/17) 3770005302628591 a001 17711/87403803*312119004989^(6/11) 3770005302628591 a001 17711/87403803*14662949395604^(10/21) 3770005302628591 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^30/Lucas(38) 3770005302628591 a001 17711/87403803*192900153618^(5/9) 3770005302628591 a001 17711/87403803*28143753123^(3/5) 3770005302628591 a001 17711/87403803*10749957122^(5/8) 3770005302628591 a001 17711/87403803*4106118243^(15/23) 3770005302628591 a001 692290561159/1836311903 3770005302628591 a001 17711/87403803*1568397607^(15/22) 3770005302628591 a004 Fibonacci(38)/Lucas(22)/(1/2+sqrt(5)/2)^2 3770005302628591 a001 17711/87403803*599074578^(5/7) 3770005302628591 a001 17711/87403803*228826127^(3/4) 3770005302628591 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^47 3770005302628591 a001 17711/1568397607*141422324^(12/13) 3770005302628591 a001 17711/370248451*141422324^(11/13) 3770005302628592 a001 17711/87403803*87403803^(15/19) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(40) 3770005302628592 a001 17711/228826127*23725150497407^(1/2) 3770005302628592 a001 17711/228826127*505019158607^(4/7) 3770005302628592 a001 17711/228826127*73681302247^(8/13) 3770005302628592 a001 17711/228826127*10749957122^(2/3) 3770005302628592 a001 86306677105/228929856 3770005302628592 a001 17711/228826127*4106118243^(16/23) 3770005302628592 a001 17711/228826127*1568397607^(8/11) 3770005302628592 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^4 3770005302628592 a001 17711/228826127*599074578^(16/21) 3770005302628592 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^49 3770005302628592 a001 17711/228826127*228826127^(4/5) 3770005302628592 a001 17711/599074578*45537549124^(2/3) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(42) 3770005302628592 a001 4745030096456/12586269025 3770005302628592 a001 17711/599074578*10749957122^(17/24) 3770005302628592 a001 17711/599074578*4106118243^(17/23) 3770005302628592 a001 17711/599074578*1568397607^(17/22) 3770005302628592 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^6 3770005302628592 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^51 3770005302628592 a001 17711/1568397607*2537720636^(4/5) 3770005302628592 a001 17711/599074578*599074578^(17/21) 3770005302628592 a001 17711/1568397607*45537549124^(12/17) 3770005302628592 a001 17711/1568397607*14662949395604^(4/7) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(44) 3770005302628592 a001 17711/1568397607*505019158607^(9/14) 3770005302628592 a001 17711/1568397607*192900153618^(2/3) 3770005302628592 a001 17711/1568397607*73681302247^(9/13) 3770005302628592 a001 4140883356721/10983760033 3770005302628592 a001 17711/1568397607*10749957122^(3/4) 3770005302628592 a001 17711/1568397607*4106118243^(18/23) 3770005302628592 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^53 3770005302628592 a001 17711/10749957122*2537720636^(8/9) 3770005302628592 a001 17711/28143753123*2537720636^(14/15) 3770005302628592 a001 17711/6643838879*2537720636^(13/15) 3770005302628592 a001 17711/1568397607*1568397607^(9/11) 3770005302628592 a001 17711/4106118243*817138163596^(2/3) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(46) 3770005302628592 a001 32522920114033/86267571272 3770005302628592 a001 17711/4106118243*10749957122^(19/24) 3770005302628592 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^55 3770005302628592 a001 17711/4106118243*4106118243^(19/23) 3770005302628592 a001 17711/10749957122*312119004989^(8/11) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(48) 3770005302628592 a001 17711/10749957122*23725150497407^(5/8) 3770005302628592 a001 4054576679616/10754830177 3770005302628592 a001 17711/10749957122*73681302247^(10/13) 3770005302628592 a001 17711/10749957122*28143753123^(4/5) 3770005302628592 a001 17711/28143753123*17393796001^(6/7) 3770005302628592 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^57 3770005302628592 a001 17711/28143753123*45537549124^(14/17) 3770005302628592 a001 17711/10749957122*10749957122^(5/6) 3770005302628592 a001 17711/28143753123*817138163596^(14/19) 3770005302628592 a001 17711/28143753123*14662949395604^(2/3) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(50) 3770005302628592 a001 17711/28143753123*505019158607^(3/4) 3770005302628592 a001 17711/28143753123*192900153618^(7/9) 3770005302628592 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^59 3770005302628592 a001 17711/505019158607*45537549124^(16/17) 3770005302628592 a001 17711/119218851371*45537549124^(15/17) 3770005302628592 a001 17711/73681302247*312119004989^(4/5) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(52) 3770005302628592 a001 17711/73681302247*23725150497407^(11/16) 3770005302628592 a001 194533373944463/516002918640 3770005302628592 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^61 3770005302628592 a001 17711/73681302247*73681302247^(11/13) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(54) 3770005302628592 a001 1527884954798392/4052739537881 3770005302628592 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^63 3770005302628592 a001 17711/1322157322203*312119004989^(10/11) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(56) 3770005302628592 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^65 3770005302628592 a001 17711/2139295485799*817138163596^(17/19) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(58) 3770005302628592 a001 17711/1322157322203*3461452808002^(5/6) 3770005302628592 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^67 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(60) 3770005302628592 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^69 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(62) 3770005302628592 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^71 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(64) 3770005302628592 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^73 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(66) 3770005302628592 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^75 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(68) 3770005302628592 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^77 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(70) 3770005302628592 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^79 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(72) 3770005302628592 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^81 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(74) 3770005302628592 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^83 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(76) 3770005302628592 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^85 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(78) 3770005302628592 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^87 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(80) 3770005302628592 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^89 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(82) 3770005302628592 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^91 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(84) 3770005302628592 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^93 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(86) 3770005302628592 a004 Fibonacci(22)*Lucas(87)/(1/2+sqrt(5)/2)^95 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(88) 3770005302628592 a004 Fibonacci(22)*Lucas(89)/(1/2+sqrt(5)/2)^97 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(90) 3770005302628592 a004 Fibonacci(22)*Lucas(91)/(1/2+sqrt(5)/2)^99 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(92) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(94) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^88/Lucas(96) 3770005302628592 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^8 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^90/Lucas(98) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^91/Lucas(99) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^92/Lucas(100) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^89/Lucas(97) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^87/Lucas(95) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(93) 3770005302628592 a004 Fibonacci(22)*Lucas(92)/(1/2+sqrt(5)/2)^100 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(91) 3770005302628592 a004 Fibonacci(22)*Lucas(90)/(1/2+sqrt(5)/2)^98 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(89) 3770005302628592 a004 Fibonacci(22)*Lucas(88)/(1/2+sqrt(5)/2)^96 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(87) 3770005302628592 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^94 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(85) 3770005302628592 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^92 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(83) 3770005302628592 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^90 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(81) 3770005302628592 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^88 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(79) 3770005302628592 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^86 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(77) 3770005302628592 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^84 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(75) 3770005302628592 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^82 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(73) 3770005302628592 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^80 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(71) 3770005302628592 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^78 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(69) 3770005302628592 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^76 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(67) 3770005302628592 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^74 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(65) 3770005302628592 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^72 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(63) 3770005302628592 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^70 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(61) 3770005302628592 a001 17711/14662949395604*3461452808002^(11/12) 3770005302628592 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^68 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(59) 3770005302628592 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^66 3770005302628592 a001 17711/817138163596*14662949395604^(7/9) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(57) 3770005302628592 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^64 3770005302628592 a001 17711/817138163596*505019158607^(7/8) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(55) 3770005302628592 a001 17711/505019158607*192900153618^(8/9) 3770005302628592 a001 17711/2139295485799*192900153618^(17/18) 3770005302628592 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^62 3770005302628592 a001 17711/119218851371*312119004989^(9/11) 3770005302628592 a001 944284832965003/2504730781961 3770005302628592 a001 17711/119218851371*14662949395604^(5/7) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(53) 3770005302628592 a001 17711/119218851371*192900153618^(5/6) 3770005302628592 a001 17711/505019158607*73681302247^(12/13) 3770005302628592 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^60 3770005302628592 a001 360684711131614/956722026041 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(51) 3770005302628592 a001 17711/119218851371*28143753123^(9/10) 3770005302628592 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^58 3770005302628592 a001 137769300429839/365435296162 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(49) 3770005302628592 a001 17711/28143753123*10749957122^(7/8) 3770005302628592 a001 17711/73681302247*10749957122^(11/12) 3770005302628592 a001 17711/119218851371*10749957122^(15/16) 3770005302628592 a001 17711/192900153618*10749957122^(23/24) 3770005302628592 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^56 3770005302628592 a001 17711/6643838879*45537549124^(13/17) 3770005302628592 a001 591271799527/1568358005 3770005302628592 a001 17711/6643838879*14662949395604^(13/21) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(47) 3770005302628592 a001 17711/6643838879*192900153618^(13/18) 3770005302628592 a001 17711/6643838879*73681302247^(3/4) 3770005302628592 a001 17711/6643838879*10749957122^(13/16) 3770005302628592 a001 17711/10749957122*4106118243^(20/23) 3770005302628592 a001 17711/28143753123*4106118243^(21/23) 3770005302628592 a001 17711/73681302247*4106118243^(22/23) 3770005302628592 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^54 3770005302628592 a001 20100270043870/53316291173 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(45) 3770005302628592 a001 17711/4106118243*1568397607^(19/22) 3770005302628592 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^10 3770005302628592 a001 17711/10749957122*1568397607^(10/11) 3770005302628592 a001 17711/28143753123*1568397607^(21/22) 3770005302628592 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^12 3770005302628592 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^14 3770005302628592 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^16 3770005302628592 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^18 3770005302628592 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^20 3770005302628592 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^22 3770005302628592 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^24 3770005302628592 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^26 3770005302628592 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^28 3770005302628592 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^30 3770005302628592 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^32 3770005302628592 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^34 3770005302628592 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^36 3770005302628592 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^38 3770005302628592 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^40 3770005302628592 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^42 3770005302628592 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^44 3770005302628592 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^46 3770005302628592 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^48 3770005302628592 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^50 3770005302628592 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^52 3770005302628592 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^54 3770005302628592 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^56 3770005302628592 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^58 3770005302628592 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^60 3770005302628592 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^62 3770005302628592 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^64 3770005302628592 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^63 3770005302628592 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^61 3770005302628592 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^59 3770005302628592 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^57 3770005302628592 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^55 3770005302628592 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^53 3770005302628592 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^51 3770005302628592 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^49 3770005302628592 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^47 3770005302628592 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^45 3770005302628592 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^43 3770005302628592 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^41 3770005302628592 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^39 3770005302628592 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^37 3770005302628592 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^35 3770005302628592 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^33 3770005302628592 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^31 3770005302628592 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^29 3770005302628592 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^27 3770005302628592 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^25 3770005302628592 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^23 3770005302628592 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^21 3770005302628592 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^19 3770005302628592 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^17 3770005302628592 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^15 3770005302628592 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^13 3770005302628592 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^11 3770005302628592 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^9 3770005302628592 a001 17711/969323029*2537720636^(7/9) 3770005302628592 a001 17711/969323029*17393796001^(5/7) 3770005302628592 a001 7677619973707/20365011074 3770005302628592 a001 17711/969323029*312119004989^(7/11) 3770005302628592 a001 17711/969323029*14662949395604^(5/9) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(43) 3770005302628592 a001 17711/969323029*505019158607^(5/8) 3770005302628592 a001 17711/969323029*28143753123^(7/10) 3770005302628592 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^7 3770005302628592 a001 17711/1568397607*599074578^(6/7) 3770005302628592 a001 17711/4106118243*599074578^(19/21) 3770005302628592 a001 17711/6643838879*599074578^(13/14) 3770005302628592 a001 17711/10749957122*599074578^(20/21) 3770005302628592 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^50 3770005302628592 a001 17711/969323029*599074578^(5/6) 3770005302628592 a001 17711/370248451*2537720636^(11/15) 3770005302628592 a001 2932589877251/7778742049 3770005302628592 a001 17711/370248451*45537549124^(11/17) 3770005302628592 a001 17711/370248451*312119004989^(3/5) 3770005302628592 a001 17711/370248451*817138163596^(11/19) 3770005302628592 a001 17711/370248451*14662949395604^(11/21) 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(41) 3770005302628592 a001 17711/370248451*192900153618^(11/18) 3770005302628592 a001 17711/370248451*10749957122^(11/16) 3770005302628592 a001 17711/370248451*1568397607^(3/4) 3770005302628592 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^5 3770005302628592 a001 17711/370248451*599074578^(11/14) 3770005302628592 a001 17711/599074578*228826127^(17/20) 3770005302628592 a001 17711/1568397607*228826127^(9/10) 3770005302628592 a001 17711/969323029*228826127^(7/8) 3770005302628592 a001 17711/4106118243*228826127^(19/20) 3770005302628592 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^48 3770005302628592 a001 1120149658046/2971215073 3770005302628592 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(39) 3770005302628592 a001 17711/141422324*9062201101803^(1/2) 3770005302628592 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2)^3 3770005302628592 a001 17711/228826127*87403803^(16/19) 3770005302628592 a001 17711/599074578*87403803^(17/19) 3770005302628592 a001 17711/1568397607*87403803^(18/19) 3770005302628592 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^46 3770005302628593 a001 427859096887/1134903170 3770005302628593 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^29/Lucas(37) 3770005302628593 a001 17711/54018521*1322157322203^(1/2) 3770005302628593 a004 Fibonacci(37)/Lucas(22)/(1/2+sqrt(5)/2) 3770005302628594 a001 17711/87403803*33385282^(5/6) 3770005302628595 a001 17711/228826127*33385282^(8/9) 3770005302628595 a001 17711/370248451*33385282^(11/12) 3770005302628595 a001 17711/599074578*33385282^(17/18) 3770005302628595 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^44 3770005302628600 a001 17711/20633239*141422324^(9/13) 3770005302628600 a001 163427632615/433494437 3770005302628600 a001 17711/20633239*2537720636^(3/5) 3770005302628600 a001 17711/20633239*45537549124^(9/17) 3770005302628600 a001 17711/20633239*817138163596^(9/19) 3770005302628600 a001 17711/20633239*14662949395604^(3/7) 3770005302628600 a001 17711/20633239*(1/2+1/2*5^(1/2))^27 3770005302628600 a001 17711/20633239*192900153618^(1/2) 3770005302628600 a001 17711/20633239*10749957122^(9/16) 3770005302628600 a001 9227465/79206+9227465/79206*5^(1/2) 3770005302628600 a001 17711/20633239*599074578^(9/14) 3770005302628603 a001 17711/20633239*33385282^(3/4) 3770005302628607 a001 17711/33385282*12752043^(14/17) 3770005302628612 a001 17711/87403803*12752043^(15/17) 3770005302628613 a001 17711/228826127*12752043^(16/17) 3770005302628615 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^42 3770005302628641 a001 5702887/39603*1860498^(1/15) 3770005302628646 a001 89/39604*20633239^(5/7) 3770005302628647 a001 3524578/39603*7881196^(1/11) 3770005302628652 a001 62423800958/165580141 3770005302628652 a001 3524578/39603*141422324^(1/13) 3770005302628652 a001 89/39604*2537720636^(5/9) 3770005302628652 a001 89/39604*312119004989^(5/11) 3770005302628652 a001 89/39604*(1/2+1/2*5^(1/2))^25 3770005302628652 a001 89/39604*3461452808002^(5/12) 3770005302628652 a001 89/39604*28143753123^(1/2) 3770005302628652 a001 3524578/39603*2537720636^(1/15) 3770005302628652 a001 3524578/39603*45537549124^(1/17) 3770005302628652 a001 3524578/39603*14662949395604^(1/21) 3770005302628652 a001 3524578/39603*(1/2+1/2*5^(1/2))^3 3770005302628652 a001 3524578/39603*192900153618^(1/18) 3770005302628652 a001 3524578/39603*10749957122^(1/16) 3770005302628652 a001 3524578/39603*599074578^(1/14) 3770005302628652 a001 89/39604*228826127^(5/8) 3770005302628653 a001 3524578/39603*33385282^(1/12) 3770005302628698 a001 17711/12752043*4870847^(13/16) 3770005302628727 a001 17711/33385282*4870847^(7/8) 3770005302628740 a001 17711/87403803*4870847^(15/16) 3770005302628751 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^40 3770005302628761 a001 3524578/39603*1860498^(1/10) 3770005302629006 a001 1346269/39603*20633239^(1/7) 3770005302629007 a001 23843770259/63245986 3770005302629008 a001 17711/3010349*(1/2+1/2*5^(1/2))^23 3770005302629008 a001 17711/3010349*4106118243^(1/2) 3770005302629008 a001 1346269/39603*2537720636^(1/9) 3770005302629008 a001 1346269/39603*312119004989^(1/11) 3770005302629008 a001 1346269/39603*(1/2+1/2*5^(1/2))^5 3770005302629008 a001 1346269/39603*28143753123^(1/10) 3770005302629008 a001 1346269/39603*228826127^(1/8) 3770005302629102 a001 5702887/39603*710647^(1/14) 3770005302629102 a001 832040/39603*710647^(3/14) 3770005302629189 a001 1346269/39603*1860498^(1/6) 3770005302629304 a001 17711/4870847*1860498^(4/5) 3770005302629499 a001 726103/13201*710647^(1/7) 3770005302629512 a001 17711/12752043*1860498^(13/15) 3770005302629560 a001 89/39604*1860498^(5/6) 3770005302629581 a001 17711/20633239*1860498^(9/10) 3770005302629605 a001 17711/33385282*1860498^(14/15) 3770005302629681 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^38 3770005302631404 a001 17711/1149851*7881196^(7/11) 3770005302631438 a001 17711/1149851*20633239^(3/5) 3770005302631441 a001 514229/39603*20633239^(1/5) 3770005302631442 a001 9107509819/24157817 3770005302631443 a001 17711/1149851*141422324^(7/13) 3770005302631443 a001 17711/1149851*2537720636^(7/15) 3770005302631443 a001 17711/1149851*17393796001^(3/7) 3770005302631443 a001 17711/1149851*45537549124^(7/17) 3770005302631443 a001 17711/1149851*14662949395604^(1/3) 3770005302631443 a001 17711/1149851*(1/2+1/2*5^(1/2))^21 3770005302631443 a001 17711/1149851*192900153618^(7/18) 3770005302631443 a001 17711/1149851*10749957122^(7/16) 3770005302631443 a001 514229/39603*17393796001^(1/7) 3770005302631443 a001 514229/39603*14662949395604^(1/9) 3770005302631443 a001 514229/39603*(1/2+1/2*5^(1/2))^7 3770005302631443 a001 514229/39603*599074578^(1/6) 3770005302631443 a001 17711/1149851*599074578^(1/2) 3770005302631445 a001 17711/1149851*33385282^(7/12) 3770005302632205 a001 17711/1149851*1860498^(7/10) 3770005302632504 a001 5702887/39603*271443^(1/13) 3770005302633309 a001 514229/39603*710647^(1/4) 3770005302633368 a001 17711/1860498*710647^(11/14) 3770005302633878 a001 829464/103361*24476^(8/21) 3770005302634811 a001 39088169/4870847*24476^(8/21) 3770005302634831 a001 17711/4870847*710647^(6/7) 3770005302634947 a001 34111385/4250681*24476^(8/21) 3770005302634967 a001 133957148/16692641*24476^(8/21) 3770005302634970 a001 233802911/29134601*24476^(8/21) 3770005302634970 a001 1836311903/228826127*24476^(8/21) 3770005302634970 a001 267084832/33281921*24476^(8/21) 3770005302634970 a001 12586269025/1568397607*24476^(8/21) 3770005302634970 a001 10983760033/1368706081*24476^(8/21) 3770005302634970 a001 43133785636/5374978561*24476^(8/21) 3770005302634970 a001 75283811239/9381251041*24476^(8/21) 3770005302634970 a001 591286729879/73681302247*24476^(8/21) 3770005302634970 a001 86000486440/10716675201*24476^(8/21) 3770005302634970 a001 4052739537881/505019158607*24476^(8/21) 3770005302634970 a001 3536736619241/440719107401*24476^(8/21) 3770005302634970 a001 3278735159921/408569081798*24476^(8/21) 3770005302634970 a001 2504730781961/312119004989*24476^(8/21) 3770005302634970 a001 956722026041/119218851371*24476^(8/21) 3770005302634970 a001 182717648081/22768774562*24476^(8/21) 3770005302634970 a001 139583862445/17393796001*24476^(8/21) 3770005302634970 a001 53316291173/6643838879*24476^(8/21) 3770005302634970 a001 10182505537/1268860318*24476^(8/21) 3770005302634970 a001 7778742049/969323029*24476^(8/21) 3770005302634970 a001 2971215073/370248451*24476^(8/21) 3770005302634971 a001 567451585/70711162*24476^(8/21) 3770005302634972 a001 433494437/54018521*24476^(8/21) 3770005302634979 a001 165580141/20633239*24476^(8/21) 3770005302635031 a001 31622993/3940598*24476^(8/21) 3770005302635388 a001 24157817/3010349*24476^(8/21) 3770005302635500 a001 17711/12752043*710647^(13/14) 3770005302636057 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^36 3770005302636304 a001 726103/13201*271443^(2/13) 3770005302636870 a001 105937/13201*271443^(4/13) 3770005302637042 a001 17711/1149851*710647^(3/4) 3770005302637831 a001 9227465/1149851*24476^(8/21) 3770005302639310 a001 832040/39603*271443^(3/13) 3770005302641621 a001 196418/39603*439204^(1/3) 3770005302643213 a001 9227465/39603*103682^(1/24) 3770005302648119 a001 196418/39603*7881196^(3/11) 3770005302648127 a001 3478759198/9227465 3770005302648135 a001 196418/39603*141422324^(3/13) 3770005302648135 a001 17711/439204*817138163596^(1/3) 3770005302648135 a001 17711/439204*(1/2+1/2*5^(1/2))^19 3770005302648135 a001 196418/39603*2537720636^(1/5) 3770005302648135 a001 196418/39603*45537549124^(3/17) 3770005302648135 a001 196418/39603*817138163596^(3/19) 3770005302648135 a001 196418/39603*14662949395604^(1/7) 3770005302648135 a001 196418/39603*(1/2+1/2*5^(1/2))^9 3770005302648135 a001 196418/39603*192900153618^(1/6) 3770005302648135 a001 196418/39603*10749957122^(3/16) 3770005302648135 a001 196418/39603*599074578^(3/14) 3770005302648136 a001 17711/439204*87403803^(1/2) 3770005302648136 a001 196418/39603*33385282^(1/4) 3770005302648462 a001 196418/39603*1860498^(3/10) 3770005302654575 a001 1762289/219602*24476^(8/21) 3770005302657793 a001 5702887/39603*103682^(1/12) 3770005302660485 a001 17711/710647*271443^(10/13) 3770005302670797 a001 17711/1860498*271443^(11/13) 3770005302672490 a001 3524578/39603*103682^(1/8) 3770005302673243 a001 28657/64079*24476^(2/3) 3770005302675663 a001 17711/4870847*271443^(12/13) 3770005302679758 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^34 3770005302686883 a001 726103/13201*103682^(1/6) 3770005302702070 a001 1346269/39603*103682^(5/24) 3770005302710988 a001 63245986/271443*9349^(1/19) 3770005302715177 a001 832040/39603*103682^(1/4) 3770005302723550 a001 121393/39603*103682^(5/12) 3770005302733730 a001 514229/39603*103682^(7/24) 3770005302737861 a001 9227465/39603*39603^(1/22) 3770005302738026 a001 105937/13201*103682^(1/3) 3770005302754689 a001 165580141/710647*9349^(1/19) 3770005302761065 a001 433494437/1860498*9349^(1/19) 3770005302761995 a001 1134903170/4870847*9349^(1/19) 3770005302762131 a001 2971215073/12752043*9349^(1/19) 3770005302762151 a001 7778742049/33385282*9349^(1/19) 3770005302762154 a001 20365011074/87403803*9349^(1/19) 3770005302762154 a001 53316291173/228826127*9349^(1/19) 3770005302762154 a001 139583862445/599074578*9349^(1/19) 3770005302762154 a001 365435296162/1568397607*9349^(1/19) 3770005302762154 a001 956722026041/4106118243*9349^(1/19) 3770005302762154 a001 2504730781961/10749957122*9349^(1/19) 3770005302762154 a001 6557470319842/28143753123*9349^(1/19) 3770005302762154 a001 10610209857723/45537549124*9349^(1/19) 3770005302762154 a001 4052739537881/17393796001*9349^(1/19) 3770005302762154 a001 1548008755920/6643838879*9349^(1/19) 3770005302762154 a001 591286729879/2537720636*9349^(1/19) 3770005302762154 a001 225851433717/969323029*9349^(1/19) 3770005302762154 a001 86267571272/370248451*9349^(1/19) 3770005302762154 a001 63246219/271444*9349^(1/19) 3770005302762155 a001 12586269025/54018521*9349^(1/19) 3770005302762163 a001 4807526976/20633239*9349^(1/19) 3770005302762215 a001 1836311903/7881196*9349^(1/19) 3770005302762486 a001 14929975/39602 3770005302762527 a001 75025/39603*7881196^(1/3) 3770005302762547 a001 17711/167761*45537549124^(1/3) 3770005302762547 a001 17711/167761*(1/2+1/2*5^(1/2))^17 3770005302762547 a001 75025/39603*312119004989^(1/5) 3770005302762547 a001 75025/39603*(1/2+1/2*5^(1/2))^11 3770005302762547 a001 75025/39603*1568397607^(1/4) 3770005302762559 a001 17711/167761*12752043^(1/2) 3770005302762570 a001 701408733/3010349*9349^(1/19) 3770005302765005 a001 267914296/1149851*9349^(1/19) 3770005302769342 a001 1346269/167761*24476^(8/21) 3770005302779648 a001 196418/39603*103682^(3/8) 3770005302781698 a001 102334155/439204*9349^(1/19) 3770005302840450 a001 17711/271443*103682^(3/4) 3770005302847089 a001 5702887/39603*39603^(1/11) 3770005302883450 a001 46347/2206*24476^(2/7) 3770005302883534 a001 3524578/271443*24476^(1/3) 3770005302896109 a001 39088169/167761*9349^(1/19) 3770005302913376 a001 17711/710647*103682^(5/6) 3770005302923284 a001 75025/39603*103682^(11/24) 3770005302925773 a001 17711/439204*103682^(19/24) 3770005302927183 a001 9227465/710647*24476^(1/3) 3770005302933552 a001 24157817/1860498*24476^(1/3) 3770005302934481 a001 63245986/4870847*24476^(1/3) 3770005302934616 a001 165580141/12752043*24476^(1/3) 3770005302934636 a001 433494437/33385282*24476^(1/3) 3770005302934639 a001 1134903170/87403803*24476^(1/3) 3770005302934639 a001 2971215073/228826127*24476^(1/3) 3770005302934639 a001 7778742049/599074578*24476^(1/3) 3770005302934639 a001 20365011074/1568397607*24476^(1/3) 3770005302934639 a001 53316291173/4106118243*24476^(1/3) 3770005302934639 a001 139583862445/10749957122*24476^(1/3) 3770005302934639 a001 365435296162/28143753123*24476^(1/3) 3770005302934639 a001 956722026041/73681302247*24476^(1/3) 3770005302934639 a001 2504730781961/192900153618*24476^(1/3) 3770005302934639 a001 10610209857723/817138163596*24476^(1/3) 3770005302934639 a001 4052739537881/312119004989*24476^(1/3) 3770005302934639 a001 1548008755920/119218851371*24476^(1/3) 3770005302934639 a001 591286729879/45537549124*24476^(1/3) 3770005302934639 a001 7787980473/599786069*24476^(1/3) 3770005302934639 a001 86267571272/6643838879*24476^(1/3) 3770005302934639 a001 32951280099/2537720636*24476^(1/3) 3770005302934639 a001 12586269025/969323029*24476^(1/3) 3770005302934639 a001 4807526976/370248451*24476^(1/3) 3770005302934640 a001 1836311903/141422324*24476^(1/3) 3770005302934641 a001 701408733/54018521*24476^(1/3) 3770005302934648 a001 9238424/711491*24476^(1/3) 3770005302934700 a001 102334155/7881196*24476^(1/3) 3770005302935055 a001 39088169/3010349*24476^(1/3) 3770005302937487 a001 14930352/1149851*24476^(1/3) 3770005302938305 a001 17711/1149851*103682^(7/8) 3770005302947946 a001 17711/64079*64079^(15/23) 3770005302948977 a001 17711/1860498*103682^(11/12) 3770005302954160 a001 5702887/439204*24476^(1/3) 3770005302956434 a001 3524578/39603*39603^(3/22) 3770005302965095 a001 17711/3010349*103682^(23/24) 3770005302973320 a001 196418/64079*24476^(10/21) 3770005302979291 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^32 3770005303010959 a001 17711/167761*103682^(17/24) 3770005303027784 a001 28657/39603*64079^(13/23) 3770005303034081 a001 6765/103682*15127^(9/10) 3770005303065475 a001 726103/13201*39603^(2/11) 3770005303068436 a001 2178309/167761*24476^(1/3) 3770005303175310 a001 1346269/39603*39603^(5/22) 3770005303183119 a001 5702887/271443*24476^(2/7) 3770005303183338 a001 1762289/51841*24476^(5/21) 3770005303226840 a001 14930352/710647*24476^(2/7) 3770005303233219 a001 39088169/1860498*24476^(2/7) 3770005303234149 a001 102334155/4870847*24476^(2/7) 3770005303234285 a001 267914296/12752043*24476^(2/7) 3770005303234305 a001 701408733/33385282*24476^(2/7) 3770005303234308 a001 1836311903/87403803*24476^(2/7) 3770005303234308 a001 102287808/4868641*24476^(2/7) 3770005303234308 a001 12586269025/599074578*24476^(2/7) 3770005303234308 a001 32951280099/1568397607*24476^(2/7) 3770005303234308 a001 86267571272/4106118243*24476^(2/7) 3770005303234308 a001 225851433717/10749957122*24476^(2/7) 3770005303234308 a001 591286729879/28143753123*24476^(2/7) 3770005303234308 a001 1548008755920/73681302247*24476^(2/7) 3770005303234308 a001 4052739537881/192900153618*24476^(2/7) 3770005303234308 a001 225749145909/10745088481*24476^(2/7) 3770005303234308 a001 6557470319842/312119004989*24476^(2/7) 3770005303234308 a001 2504730781961/119218851371*24476^(2/7) 3770005303234308 a001 956722026041/45537549124*24476^(2/7) 3770005303234308 a001 365435296162/17393796001*24476^(2/7) 3770005303234308 a001 139583862445/6643838879*24476^(2/7) 3770005303234308 a001 53316291173/2537720636*24476^(2/7) 3770005303234308 a001 20365011074/969323029*24476^(2/7) 3770005303234308 a001 7778742049/370248451*24476^(2/7) 3770005303234309 a001 2971215073/141422324*24476^(2/7) 3770005303234310 a001 1134903170/54018521*24476^(2/7) 3770005303234317 a001 433494437/20633239*24476^(2/7) 3770005303234369 a001 165580141/7881196*24476^(2/7) 3770005303234725 a001 63245986/3010349*24476^(2/7) 3770005303237161 a001 24157817/1149851*24476^(2/7) 3770005303245980 a001 317811/64079*24476^(3/7) 3770005303253861 a001 9227465/439204*24476^(2/7) 3770005303283065 a001 832040/39603*39603^(3/11) 3770005303368324 a001 3524578/167761*24476^(2/7) 3770005303396266 a001 514229/39603*39603^(7/22) 3770005303452371 a001 9227465/39603*15127^(1/20) 3770005303466362 a001 17711/64079*167761^(3/5) 3770005303479153 a001 6765/64079*15127^(17/20) 3770005303482820 a001 9227465/271443*24476^(5/21) 3770005303482924 a001 5702887/103682*24476^(4/21) 3770005303495210 a001 105937/13201*39603^(4/11) 3770005303526514 a001 24157817/710647*24476^(5/21) 3770005303532888 a001 31622993/930249*24476^(5/21) 3770005303533818 a001 165580141/4870847*24476^(5/21) 3770005303533954 a001 433494437/12752043*24476^(5/21) 3770005303533974 a001 567451585/16692641*24476^(5/21) 3770005303533977 a001 2971215073/87403803*24476^(5/21) 3770005303533977 a001 7778742049/228826127*24476^(5/21) 3770005303533977 a001 10182505537/299537289*24476^(5/21) 3770005303533977 a001 53316291173/1568397607*24476^(5/21) 3770005303533977 a001 139583862445/4106118243*24476^(5/21) 3770005303533977 a001 182717648081/5374978561*24476^(5/21) 3770005303533977 a001 956722026041/28143753123*24476^(5/21) 3770005303533977 a001 2504730781961/73681302247*24476^(5/21) 3770005303533977 a001 3278735159921/96450076809*24476^(5/21) 3770005303533977 a001 10610209857723/312119004989*24476^(5/21) 3770005303533977 a001 4052739537881/119218851371*24476^(5/21) 3770005303533977 a001 387002188980/11384387281*24476^(5/21) 3770005303533977 a001 591286729879/17393796001*24476^(5/21) 3770005303533977 a001 225851433717/6643838879*24476^(5/21) 3770005303533977 a001 1135099622/33391061*24476^(5/21) 3770005303533977 a001 32951280099/969323029*24476^(5/21) 3770005303533977 a001 12586269025/370248451*24476^(5/21) 3770005303533978 a001 1201881744/35355581*24476^(5/21) 3770005303533979 a001 1836311903/54018521*24476^(5/21) 3770005303533986 a001 701408733/20633239*24476^(5/21) 3770005303534038 a001 66978574/1970299*24476^(5/21) 3770005303534393 a001 102334155/3010349*24476^(5/21) 3770005303535877 a001 17711/64079*439204^(5/9) 3770005303536828 a001 39088169/1149851*24476^(5/21) 3770005303546319 a001 507544127/1346269 3770005303546707 a001 17711/64079*7881196^(5/11) 3770005303546731 a001 17711/64079*20633239^(3/7) 3770005303546735 a001 17711/64079*141422324^(5/13) 3770005303546735 a001 28657/39603*141422324^(1/3) 3770005303546735 a001 17711/64079*2537720636^(1/3) 3770005303546735 a001 17711/64079*45537549124^(5/17) 3770005303546735 a001 17711/64079*312119004989^(3/11) 3770005303546735 a001 17711/64079*14662949395604^(5/21) 3770005303546735 a001 17711/64079*(1/2+1/2*5^(1/2))^15 3770005303546735 a001 17711/64079*192900153618^(5/18) 3770005303546735 a001 17711/64079*28143753123^(3/10) 3770005303546735 a001 17711/64079*10749957122^(5/16) 3770005303546735 a001 28657/39603*(1/2+1/2*5^(1/2))^13 3770005303546735 a001 28657/39603*73681302247^(1/4) 3770005303546735 a001 17711/64079*599074578^(5/14) 3770005303546735 a001 17711/64079*228826127^(3/8) 3770005303546736 a001 17711/64079*33385282^(5/12) 3770005303547280 a001 17711/64079*1860498^(1/2) 3770005303553518 a001 196452/5779*24476^(5/21) 3770005303555965 a001 514229/64079*24476^(8/21) 3770005303572318 a001 28657/39603*271443^(1/2) 3770005303589018 a001 15456/13201*39603^(6/11) 3770005303631480 a001 196418/39603*39603^(9/22) 3770005303667909 a001 5702887/167761*24476^(5/21) 3770005303670030 a001 121393/39603*39603^(5/11) 3770005303680294 a001 14930352/64079*9349^(1/19) 3770005303736697 a001 28657/39603*103682^(13/24) 3770005303763479 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^33 3770005303765922 a001 17711/64079*103682^(5/8) 3770005303772053 a001 23184/51841*64079^(14/23) 3770005303782477 a001 4976784/90481*24476^(4/21) 3770005303782625 a001 9227465/103682*24476^(1/7) 3770005303803240 a001 46368/4870847*64079^(22/23) 3770005303826181 a001 39088169/710647*24476^(4/21) 3770005303832557 a001 831985/15126*24476^(4/21) 3770005303833487 a001 267914296/4870847*24476^(4/21) 3770005303833623 a001 233802911/4250681*24476^(4/21) 3770005303833643 a001 1836311903/33385282*24476^(4/21) 3770005303833646 a001 1602508992/29134601*24476^(4/21) 3770005303833646 a001 12586269025/228826127*24476^(4/21) 3770005303833646 a001 10983760033/199691526*24476^(4/21) 3770005303833646 a001 86267571272/1568397607*24476^(4/21) 3770005303833646 a001 75283811239/1368706081*24476^(4/21) 3770005303833646 a001 591286729879/10749957122*24476^(4/21) 3770005303833646 a001 12585437040/228811001*24476^(4/21) 3770005303833646 a001 4052739537881/73681302247*24476^(4/21) 3770005303833646 a001 3536736619241/64300051206*24476^(4/21) 3770005303833646 a001 6557470319842/119218851371*24476^(4/21) 3770005303833646 a001 2504730781961/45537549124*24476^(4/21) 3770005303833646 a001 956722026041/17393796001*24476^(4/21) 3770005303833646 a001 365435296162/6643838879*24476^(4/21) 3770005303833646 a001 139583862445/2537720636*24476^(4/21) 3770005303833646 a001 53316291173/969323029*24476^(4/21) 3770005303833646 a001 20365011074/370248451*24476^(4/21) 3770005303833647 a001 7778742049/141422324*24476^(4/21) 3770005303833648 a001 2971215073/54018521*24476^(4/21) 3770005303833655 a001 1134903170/20633239*24476^(4/21) 3770005303833707 a001 433494437/7881196*24476^(4/21) 3770005303834062 a001 165580141/3010349*24476^(4/21) 3770005303836498 a001 63245986/1149851*24476^(4/21) 3770005303843734 a001 46368/3010349*64079^(21/23) 3770005303851694 a001 832040/64079*24476^(1/3) 3770005303853191 a001 24157817/439204*24476^(4/21) 3770005303882148 a001 2576/103361*64079^(20/23) 3770005303926008 a001 46368/1149851*64079^(19/23) 3770005303955611 a001 6624/101521*64079^(18/23) 3770005303964412 a001 75025/39603*39603^(1/2) 3770005303967611 a001 9227465/167761*24476^(4/21) 3770005303991748 a001 15456/90481*64079^(16/23) 3770005304022539 a001 11592/109801*64079^(17/23) 3770005304026060 a001 17711/103682*39603^(8/11) 3770005304063012 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^35 3770005304082150 a001 24157817/271443*24476^(1/7) 3770005304082281 a001 7465176/51841*24476^(2/21) 3770005304102909 a001 121393/12752043*64079^(22/23) 3770005304106714 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^37 3770005304113090 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^39 3770005304114020 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^41 3770005304114156 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^43 3770005304114175 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^45 3770005304114178 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^47 3770005304114179 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^49 3770005304114179 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^51 3770005304114179 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^53 3770005304114179 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^55 3770005304114179 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^57 3770005304114179 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^59 3770005304114179 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^61 3770005304114179 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^63 3770005304114179 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^65 3770005304114179 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^67 3770005304114179 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^69 3770005304114179 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^71 3770005304114179 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^73 3770005304114179 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^75 3770005304114179 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^77 3770005304114179 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^79 3770005304114179 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^81 3770005304114179 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^83 3770005304114179 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^85 3770005304114179 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^87 3770005304114179 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^89 3770005304114179 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^91 3770005304114179 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^93 3770005304114179 a004 Fibonacci(86)*Lucas(23)/(1/2+sqrt(5)/2)^95 3770005304114179 a004 Fibonacci(88)*Lucas(23)/(1/2+sqrt(5)/2)^97 3770005304114179 a004 Fibonacci(90)*Lucas(23)/(1/2+sqrt(5)/2)^99 3770005304114179 a004 Fibonacci(91)*Lucas(23)/(1/2+sqrt(5)/2)^100 3770005304114179 a004 Fibonacci(89)*Lucas(23)/(1/2+sqrt(5)/2)^98 3770005304114179 a004 Fibonacci(87)*Lucas(23)/(1/2+sqrt(5)/2)^96 3770005304114179 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^94 3770005304114179 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^92 3770005304114179 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^90 3770005304114179 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^88 3770005304114179 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^86 3770005304114179 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^84 3770005304114179 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^82 3770005304114179 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^80 3770005304114179 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^78 3770005304114179 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^76 3770005304114179 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^74 3770005304114179 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^72 3770005304114179 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^70 3770005304114179 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^68 3770005304114179 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^66 3770005304114179 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^64 3770005304114179 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^62 3770005304114179 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^60 3770005304114179 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^58 3770005304114179 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^56 3770005304114179 a001 2/28657*(1/2+1/2*5^(1/2))^37 3770005304114179 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^54 3770005304114179 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^52 3770005304114179 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^50 3770005304114179 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^48 3770005304114180 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^46 3770005304114188 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^44 3770005304114240 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^42 3770005304114595 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^40 3770005304117030 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^38 3770005304125850 a001 63245986/710647*24476^(1/7) 3770005304132226 a001 165580141/1860498*24476^(1/7) 3770005304133156 a001 433494437/4870847*24476^(1/7) 3770005304133292 a001 1134903170/12752043*24476^(1/7) 3770005304133312 a001 2971215073/33385282*24476^(1/7) 3770005304133315 a001 7778742049/87403803*24476^(1/7) 3770005304133315 a001 20365011074/228826127*24476^(1/7) 3770005304133315 a001 53316291173/599074578*24476^(1/7) 3770005304133315 a001 139583862445/1568397607*24476^(1/7) 3770005304133315 a001 365435296162/4106118243*24476^(1/7) 3770005304133315 a001 956722026041/10749957122*24476^(1/7) 3770005304133315 a001 2504730781961/28143753123*24476^(1/7) 3770005304133315 a001 6557470319842/73681302247*24476^(1/7) 3770005304133315 a001 10610209857723/119218851371*24476^(1/7) 3770005304133315 a001 4052739537881/45537549124*24476^(1/7) 3770005304133315 a001 1548008755920/17393796001*24476^(1/7) 3770005304133315 a001 591286729879/6643838879*24476^(1/7) 3770005304133315 a001 225851433717/2537720636*24476^(1/7) 3770005304133315 a001 86267571272/969323029*24476^(1/7) 3770005304133315 a001 32951280099/370248451*24476^(1/7) 3770005304133315 a001 12586269025/141422324*24476^(1/7) 3770005304133317 a001 4807526976/54018521*24476^(1/7) 3770005304133324 a001 1836311903/20633239*24476^(1/7) 3770005304133376 a001 3524667/39604*24476^(1/7) 3770005304133723 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^36 3770005304133731 a001 267914296/3010349*24476^(1/7) 3770005304136167 a001 102334155/1149851*24476^(1/7) 3770005304142912 a001 121393/7881196*64079^(21/23) 3770005304146630 a001 317811/33385282*64079^(22/23) 3770005304151425 a001 121393/103682*64079^(12/23) 3770005304152859 a001 39088169/439204*24476^(1/7) 3770005304152868 a001 1346269/64079*24476^(2/7) 3770005304153008 a001 832040/87403803*64079^(22/23) 3770005304153939 a001 46347/4868641*64079^(22/23) 3770005304154075 a001 5702887/599074578*64079^(22/23) 3770005304154095 a001 14930352/1568397607*64079^(22/23) 3770005304154098 a001 39088169/4106118243*64079^(22/23) 3770005304154098 a001 102334155/10749957122*64079^(22/23) 3770005304154098 a001 267914296/28143753123*64079^(22/23) 3770005304154098 a001 701408733/73681302247*64079^(22/23) 3770005304154098 a001 1836311903/192900153618*64079^(22/23) 3770005304154098 a001 102287808/10745088481*64079^(22/23) 3770005304154098 a001 12586269025/1322157322203*64079^(22/23) 3770005304154098 a001 32951280099/3461452808002*64079^(22/23) 3770005304154098 a001 86267571272/9062201101803*64079^(22/23) 3770005304154098 a001 225851433717/23725150497407*64079^(22/23) 3770005304154098 a001 139583862445/14662949395604*64079^(22/23) 3770005304154098 a001 53316291173/5600748293801*64079^(22/23) 3770005304154098 a001 20365011074/2139295485799*64079^(22/23) 3770005304154098 a001 7778742049/817138163596*64079^(22/23) 3770005304154098 a001 2971215073/312119004989*64079^(22/23) 3770005304154098 a001 1134903170/119218851371*64079^(22/23) 3770005304154098 a001 433494437/45537549124*64079^(22/23) 3770005304154098 a001 165580141/17393796001*64079^(22/23) 3770005304154098 a001 63245986/6643838879*64079^(22/23) 3770005304154099 a001 24157817/2537720636*64079^(22/23) 3770005304154107 a001 9227465/969323029*64079^(22/23) 3770005304154159 a001 3524578/370248451*64079^(22/23) 3770005304154514 a001 1346269/141422324*64079^(22/23) 3770005304156951 a001 514229/54018521*64079^(22/23) 3770005304173651 a001 196418/20633239*64079^(22/23) 3770005304182611 a001 121393/4870847*64079^(20/23) 3770005304186561 a001 10959/711491*64079^(21/23) 3770005304192930 a001 832040/54018521*64079^(21/23) 3770005304193859 a001 2178309/141422324*64079^(21/23) 3770005304193994 a001 5702887/370248451*64079^(21/23) 3770005304194014 a001 14930352/969323029*64079^(21/23) 3770005304194017 a001 39088169/2537720636*64079^(21/23) 3770005304194017 a001 102334155/6643838879*64079^(21/23) 3770005304194017 a001 9238424/599786069*64079^(21/23) 3770005304194017 a001 701408733/45537549124*64079^(21/23) 3770005304194017 a001 1836311903/119218851371*64079^(21/23) 3770005304194017 a001 4807526976/312119004989*64079^(21/23) 3770005304194017 a001 12586269025/817138163596*64079^(21/23) 3770005304194017 a001 32951280099/2139295485799*64079^(21/23) 3770005304194017 a001 86267571272/5600748293801*64079^(21/23) 3770005304194017 a001 7787980473/505618944676*64079^(21/23) 3770005304194017 a001 365435296162/23725150497407*64079^(21/23) 3770005304194017 a001 139583862445/9062201101803*64079^(21/23) 3770005304194017 a001 53316291173/3461452808002*64079^(21/23) 3770005304194017 a001 20365011074/1322157322203*64079^(21/23) 3770005304194017 a001 7778742049/505019158607*64079^(21/23) 3770005304194017 a001 2971215073/192900153618*64079^(21/23) 3770005304194017 a001 1134903170/73681302247*64079^(21/23) 3770005304194017 a001 433494437/28143753123*64079^(21/23) 3770005304194017 a001 165580141/10749957122*64079^(21/23) 3770005304194018 a001 63245986/4106118243*64079^(21/23) 3770005304194019 a001 24157817/1568397607*64079^(21/23) 3770005304194026 a001 9227465/599074578*64079^(21/23) 3770005304194078 a001 3524578/228826127*64079^(21/23) 3770005304194433 a001 1346269/87403803*64079^(21/23) 3770005304196865 a001 514229/33385282*64079^(21/23) 3770005304213538 a001 196418/12752043*64079^(21/23) 3770005304216789 a001 46368/167761*64079^(15/23) 3770005304223106 a001 121393/3010349*64079^(19/23) 3770005304226448 a001 105937/4250681*64079^(20/23) 3770005304232844 a001 416020/16692641*64079^(20/23) 3770005304233777 a001 726103/29134601*64079^(20/23) 3770005304233913 a001 5702887/228826127*64079^(20/23) 3770005304233933 a001 829464/33281921*64079^(20/23) 3770005304233936 a001 39088169/1568397607*64079^(20/23) 3770005304233937 a001 34111385/1368706081*64079^(20/23) 3770005304233937 a001 133957148/5374978561*64079^(20/23) 3770005304233937 a001 233802911/9381251041*64079^(20/23) 3770005304233937 a001 1836311903/73681302247*64079^(20/23) 3770005304233937 a001 267084832/10716675201*64079^(20/23) 3770005304233937 a001 12586269025/505019158607*64079^(20/23) 3770005304233937 a001 10983760033/440719107401*64079^(20/23) 3770005304233937 a001 43133785636/1730726404001*64079^(20/23) 3770005304233937 a001 75283811239/3020733700601*64079^(20/23) 3770005304233937 a001 182717648081/7331474697802*64079^(20/23) 3770005304233937 a001 139583862445/5600748293801*64079^(20/23) 3770005304233937 a001 53316291173/2139295485799*64079^(20/23) 3770005304233937 a001 10182505537/408569081798*64079^(20/23) 3770005304233937 a001 7778742049/312119004989*64079^(20/23) 3770005304233937 a001 2971215073/119218851371*64079^(20/23) 3770005304233937 a001 567451585/22768774562*64079^(20/23) 3770005304233937 a001 433494437/17393796001*64079^(20/23) 3770005304233937 a001 165580141/6643838879*64079^(20/23) 3770005304233937 a001 31622993/1268860318*64079^(20/23) 3770005304233938 a001 24157817/969323029*64079^(20/23) 3770005304233946 a001 9227465/370248451*64079^(20/23) 3770005304233998 a001 1762289/70711162*64079^(20/23) 3770005304234354 a001 1346269/54018521*64079^(20/23) 3770005304236797 a001 514229/20633239*64079^(20/23) 3770005304248134 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^34 3770005304253541 a001 98209/3940598*64079^(20/23) 3770005304261520 a001 121393/1860498*64079^(18/23) 3770005304262054 a001 98209/51841*64079^(11/23) 3770005304266452 a001 317811/7881196*64079^(19/23) 3770005304267267 a001 14930352/167761*24476^(1/7) 3770005304272776 a001 75640/1875749*64079^(19/23) 3770005304273698 a001 2178309/54018521*64079^(19/23) 3770005304273833 a001 5702887/141422324*64079^(19/23) 3770005304273853 a001 14930352/370248451*64079^(19/23) 3770005304273855 a001 39088169/969323029*64079^(19/23) 3770005304273856 a001 9303105/230701876*64079^(19/23) 3770005304273856 a001 267914296/6643838879*64079^(19/23) 3770005304273856 a001 701408733/17393796001*64079^(19/23) 3770005304273856 a001 1836311903/45537549124*64079^(19/23) 3770005304273856 a001 4807526976/119218851371*64079^(19/23) 3770005304273856 a001 1144206275/28374454999*64079^(19/23) 3770005304273856 a001 32951280099/817138163596*64079^(19/23) 3770005304273856 a001 86267571272/2139295485799*64079^(19/23) 3770005304273856 a001 225851433717/5600748293801*64079^(19/23) 3770005304273856 a001 591286729879/14662949395604*64079^(19/23) 3770005304273856 a001 365435296162/9062201101803*64079^(19/23) 3770005304273856 a001 139583862445/3461452808002*64079^(19/23) 3770005304273856 a001 53316291173/1322157322203*64079^(19/23) 3770005304273856 a001 20365011074/505019158607*64079^(19/23) 3770005304273856 a001 7778742049/192900153618*64079^(19/23) 3770005304273856 a001 2971215073/73681302247*64079^(19/23) 3770005304273856 a001 1134903170/28143753123*64079^(19/23) 3770005304273856 a001 433494437/10749957122*64079^(19/23) 3770005304273856 a001 165580141/4106118243*64079^(19/23) 3770005304273856 a001 63245986/1568397607*64079^(19/23) 3770005304273857 a001 24157817/599074578*64079^(19/23) 3770005304273865 a001 9227465/228826127*64079^(19/23) 3770005304273916 a001 3524578/87403803*64079^(19/23) 3770005304274269 a001 1346269/33385282*64079^(19/23) 3770005304274965 a001 317811/103682*64079^(10/23) 3770005304276110 a001 5702887/39603*15127^(1/10) 3770005304276684 a001 514229/12752043*64079^(19/23) 3770005304288114 a001 75025/7881196*64079^(22/23) 3770005304293241 a001 196418/4870847*64079^(19/23) 3770005304296627 a001 75025/103682*64079^(13/23) 3770005304305380 a001 121393/1149851*64079^(17/23) 3770005304306151 a001 317811/4870847*64079^(18/23) 3770005304312663 a001 832040/12752043*64079^(18/23) 3770005304313613 a001 311187/4769326*64079^(18/23) 3770005304313752 a001 5702887/87403803*64079^(18/23) 3770005304313772 a001 14930352/228826127*64079^(18/23) 3770005304313775 a001 39088169/599074578*64079^(18/23) 3770005304313775 a001 14619165/224056801*64079^(18/23) 3770005304313775 a001 267914296/4106118243*64079^(18/23) 3770005304313775 a001 701408733/10749957122*64079^(18/23) 3770005304313775 a001 1836311903/28143753123*64079^(18/23) 3770005304313775 a001 686789568/10525900321*64079^(18/23) 3770005304313775 a001 12586269025/192900153618*64079^(18/23) 3770005304313775 a001 32951280099/505019158607*64079^(18/23) 3770005304313775 a001 86267571272/1322157322203*64079^(18/23) 3770005304313775 a001 32264490531/494493258286*64079^(18/23) 3770005304313775 a001 591286729879/9062201101803*64079^(18/23) 3770005304313775 a001 1548008755920/23725150497407*64079^(18/23) 3770005304313775 a001 139583862445/2139295485799*64079^(18/23) 3770005304313775 a001 53316291173/817138163596*64079^(18/23) 3770005304313775 a001 20365011074/312119004989*64079^(18/23) 3770005304313775 a001 7778742049/119218851371*64079^(18/23) 3770005304313775 a001 2971215073/45537549124*64079^(18/23) 3770005304313775 a001 1134903170/17393796001*64079^(18/23) 3770005304313775 a001 433494437/6643838879*64079^(18/23) 3770005304313775 a001 165580141/2537720636*64079^(18/23) 3770005304313775 a001 63245986/969323029*64079^(18/23) 3770005304313777 a001 24157817/370248451*64079^(18/23) 3770005304313784 a001 9227465/141422324*64079^(18/23) 3770005304313837 a001 3524578/54018521*64079^(18/23) 3770005304314200 a001 1346269/20633239*64079^(18/23) 3770005304316687 a001 514229/7881196*64079^(18/23) 3770005304325201 a001 514229/103682*64079^(9/23) 3770005304327814 a001 75025/4870847*64079^(21/23) 3770005304330920 a001 23184/51841*20633239^(2/5) 3770005304330923 a001 23184/51841*17393796001^(2/7) 3770005304330923 a001 23184/51841*14662949395604^(2/9) 3770005304330923 a001 23184/51841*(1/2+1/2*5^(1/2))^14 3770005304330923 a001 23184/51841*505019158607^(1/4) 3770005304330923 a001 23184/51841*10749957122^(7/24) 3770005304330923 a001 23184/51841*4106118243^(7/23) 3770005304330923 a001 23184/51841*1568397607^(7/22) 3770005304330923 a001 23184/51841*599074578^(1/3) 3770005304330923 a001 23184/51841*228826127^(7/20) 3770005304330923 a001 23184/51841*87403803^(7/19) 3770005304330924 a001 23184/51841*33385282^(7/18) 3770005304330933 a001 23184/51841*12752043^(7/17) 3770005304330946 a001 2149991424/5702887 3770005304330993 a001 23184/51841*4870847^(7/16) 3770005304331431 a001 23184/51841*1860498^(7/15) 3770005304333735 a001 196418/3010349*64079^(18/23) 3770005304334656 a001 23184/51841*710647^(1/2) 3770005304334982 a001 121393/710647*64079^(16/23) 3770005304342507 a001 615/15251*15127^(19/20) 3770005304346645 a001 317811/3010349*64079^(17/23) 3770005304352666 a001 208010/1970299*64079^(17/23) 3770005304353544 a001 2178309/20633239*64079^(17/23) 3770005304353673 a001 5702887/54018521*64079^(17/23) 3770005304353691 a001 3732588/35355581*64079^(17/23) 3770005304353694 a001 39088169/370248451*64079^(17/23) 3770005304353694 a001 102334155/969323029*64079^(17/23) 3770005304353694 a001 66978574/634430159*64079^(17/23) 3770005304353694 a001 701408733/6643838879*64079^(17/23) 3770005304353694 a001 1836311903/17393796001*64079^(17/23) 3770005304353694 a001 1201881744/11384387281*64079^(17/23) 3770005304353694 a001 12586269025/119218851371*64079^(17/23) 3770005304353694 a001 32951280099/312119004989*64079^(17/23) 3770005304353694 a001 21566892818/204284540899*64079^(17/23) 3770005304353694 a001 225851433717/2139295485799*64079^(17/23) 3770005304353694 a001 182717648081/1730726404001*64079^(17/23) 3770005304353694 a001 139583862445/1322157322203*64079^(17/23) 3770005304353694 a001 53316291173/505019158607*64079^(17/23) 3770005304353694 a001 10182505537/96450076809*64079^(17/23) 3770005304353694 a001 7778742049/73681302247*64079^(17/23) 3770005304353694 a001 2971215073/28143753123*64079^(17/23) 3770005304353694 a001 567451585/5374978561*64079^(17/23) 3770005304353694 a001 433494437/4106118243*64079^(17/23) 3770005304353695 a001 165580141/1568397607*64079^(17/23) 3770005304353695 a001 31622993/299537289*64079^(17/23) 3770005304353696 a001 24157817/228826127*64079^(17/23) 3770005304353703 a001 9227465/87403803*64079^(17/23) 3770005304353752 a001 1762289/16692641*64079^(17/23) 3770005304354087 a001 1346269/12752043*64079^(17/23) 3770005304356387 a001 514229/4870847*64079^(17/23) 3770005304358474 a001 23184/51841*271443^(7/13) 3770005304361179 a001 416020/51841*64079^(8/23) 3770005304368308 a001 75025/3010349*64079^(20/23) 3770005304371120 a001 121393/271443*64079^(14/23) 3770005304372149 a001 98209/930249*64079^(17/23) 3770005304381817 a001 39088169/271443*24476^(2/21) 3770005304381955 a001 24157817/103682*24476^(1/21) 3770005304385060 a001 105937/620166*64079^(16/23) 3770005304392366 a001 832040/4870847*64079^(16/23) 3770005304393432 a001 726103/4250681*64079^(16/23) 3770005304393587 a001 5702887/33385282*64079^(16/23) 3770005304393610 a001 4976784/29134601*64079^(16/23) 3770005304393613 a001 39088169/228826127*64079^(16/23) 3770005304393614 a001 34111385/199691526*64079^(16/23) 3770005304393614 a001 267914296/1568397607*64079^(16/23) 3770005304393614 a001 233802911/1368706081*64079^(16/23) 3770005304393614 a001 1836311903/10749957122*64079^(16/23) 3770005304393614 a001 1602508992/9381251041*64079^(16/23) 3770005304393614 a001 12586269025/73681302247*64079^(16/23) 3770005304393614 a001 10983760033/64300051206*64079^(16/23) 3770005304393614 a001 86267571272/505019158607*64079^(16/23) 3770005304393614 a001 75283811239/440719107401*64079^(16/23) 3770005304393614 a001 2504730781961/14662949395604*64079^(16/23) 3770005304393614 a001 139583862445/817138163596*64079^(16/23) 3770005304393614 a001 53316291173/312119004989*64079^(16/23) 3770005304393614 a001 20365011074/119218851371*64079^(16/23) 3770005304393614 a001 7778742049/45537549124*64079^(16/23) 3770005304393614 a001 2971215073/17393796001*64079^(16/23) 3770005304393614 a001 1134903170/6643838879*64079^(16/23) 3770005304393614 a001 433494437/2537720636*64079^(16/23) 3770005304393614 a001 165580141/969323029*64079^(16/23) 3770005304393614 a001 63245986/370248451*64079^(16/23) 3770005304393615 a001 24157817/141422324*64079^(16/23) 3770005304393624 a001 9227465/54018521*64079^(16/23) 3770005304393683 a001 3524578/20633239*64079^(16/23) 3770005304394090 a001 1346269/7881196*64079^(16/23) 3770005304396881 a001 514229/3010349*64079^(16/23) 3770005304401910 a001 121393/439204*64079^(15/23) 3770005304402604 a001 1346269/103682*64079^(7/23) 3770005304406722 a001 75025/1860498*64079^(19/23) 3770005304416009 a001 196418/1149851*64079^(16/23) 3770005304425519 a001 14619165/101521*24476^(2/21) 3770005304426605 a001 10946/39603*24476^(5/7) 3770005304428919 a001 317811/1149851*64079^(15/23) 3770005304431895 a001 133957148/930249*24476^(2/21) 3770005304432825 a001 701408733/4870847*24476^(2/21) 3770005304432860 a001 832040/3010349*64079^(15/23) 3770005304432961 a001 1836311903/12752043*24476^(2/21) 3770005304432981 a001 14930208/103681*24476^(2/21) 3770005304432984 a001 12586269025/87403803*24476^(2/21) 3770005304432984 a001 32951280099/228826127*24476^(2/21) 3770005304432984 a001 43133785636/299537289*24476^(2/21) 3770005304432984 a001 32264490531/224056801*24476^(2/21) 3770005304432984 a001 591286729879/4106118243*24476^(2/21) 3770005304432984 a001 774004377960/5374978561*24476^(2/21) 3770005304432984 a001 4052739537881/28143753123*24476^(2/21) 3770005304432984 a001 1515744265389/10525900321*24476^(2/21) 3770005304432984 a001 3278735159921/22768774562*24476^(2/21) 3770005304432984 a001 2504730781961/17393796001*24476^(2/21) 3770005304432984 a001 956722026041/6643838879*24476^(2/21) 3770005304432984 a001 182717648081/1268860318*24476^(2/21) 3770005304432984 a001 139583862445/969323029*24476^(2/21) 3770005304432984 a001 53316291173/370248451*24476^(2/21) 3770005304432984 a001 10182505537/70711162*24476^(2/21) 3770005304432986 a001 7778742049/54018521*24476^(2/21) 3770005304432993 a001 2971215073/20633239*24476^(2/21) 3770005304433045 a001 567451585/3940598*24476^(2/21) 3770005304433400 a001 433494437/3010349*24476^(2/21) 3770005304433435 a001 2178309/7881196*64079^(15/23) 3770005304433519 a001 5702887/20633239*64079^(15/23) 3770005304433531 a001 14930352/54018521*64079^(15/23) 3770005304433533 a001 39088169/141422324*64079^(15/23) 3770005304433533 a001 102334155/370248451*64079^(15/23) 3770005304433533 a001 267914296/969323029*64079^(15/23) 3770005304433533 a001 701408733/2537720636*64079^(15/23) 3770005304433533 a001 1836311903/6643838879*64079^(15/23) 3770005304433533 a001 4807526976/17393796001*64079^(15/23) 3770005304433533 a001 12586269025/45537549124*64079^(15/23) 3770005304433533 a001 32951280099/119218851371*64079^(15/23) 3770005304433533 a001 86267571272/312119004989*64079^(15/23) 3770005304433533 a001 225851433717/817138163596*64079^(15/23) 3770005304433533 a001 1548008755920/5600748293801*64079^(15/23) 3770005304433533 a001 139583862445/505019158607*64079^(15/23) 3770005304433533 a001 53316291173/192900153618*64079^(15/23) 3770005304433533 a001 20365011074/73681302247*64079^(15/23) 3770005304433533 a001 7778742049/28143753123*64079^(15/23) 3770005304433533 a001 2971215073/10749957122*64079^(15/23) 3770005304433533 a001 1134903170/4106118243*64079^(15/23) 3770005304433533 a001 433494437/1568397607*64079^(15/23) 3770005304433533 a001 165580141/599074578*64079^(15/23) 3770005304433533 a001 63245986/228826127*64079^(15/23) 3770005304433534 a001 24157817/87403803*64079^(15/23) 3770005304433539 a001 9227465/33385282*64079^(15/23) 3770005304433571 a001 3524578/12752043*64079^(15/23) 3770005304433790 a001 1346269/4870847*64079^(15/23) 3770005304435295 a001 514229/1860498*64079^(15/23) 3770005304435836 a001 165580141/1149851*24476^(2/21) 3770005304441948 a001 46347/2206*64079^(6/23) 3770005304445612 a001 196418/710647*64079^(15/23) 3770005304450582 a001 75025/1149851*64079^(18/23) 3770005304451962 a001 2178309/64079*24476^(5/21) 3770005304452528 a001 31622993/219602*24476^(2/21) 3770005304458522 a001 317811/710647*64079^(14/23) 3770005304471274 a001 416020/930249*64079^(14/23) 3770005304473135 a001 2178309/4870847*64079^(14/23) 3770005304473406 a001 5702887/12752043*64079^(14/23) 3770005304473446 a001 7465176/16692641*64079^(14/23) 3770005304473451 a001 39088169/87403803*64079^(14/23) 3770005304473452 a001 102334155/228826127*64079^(14/23) 3770005304473452 a001 133957148/299537289*64079^(14/23) 3770005304473452 a001 701408733/1568397607*64079^(14/23) 3770005304473452 a001 1836311903/4106118243*64079^(14/23) 3770005304473452 a001 2403763488/5374978561*64079^(14/23) 3770005304473452 a001 12586269025/28143753123*64079^(14/23) 3770005304473452 a001 32951280099/73681302247*64079^(14/23) 3770005304473452 a001 43133785636/96450076809*64079^(14/23) 3770005304473452 a001 225851433717/505019158607*64079^(14/23) 3770005304473452 a001 591286729879/1322157322203*64079^(14/23) 3770005304473452 a001 10610209857723/23725150497407*64079^(14/23) 3770005304473452 a001 182717648081/408569081798*64079^(14/23) 3770005304473452 a001 139583862445/312119004989*64079^(14/23) 3770005304473452 a001 53316291173/119218851371*64079^(14/23) 3770005304473452 a001 10182505537/22768774562*64079^(14/23) 3770005304473452 a001 7778742049/17393796001*64079^(14/23) 3770005304473452 a001 2971215073/6643838879*64079^(14/23) 3770005304473452 a001 567451585/1268860318*64079^(14/23) 3770005304473452 a001 433494437/969323029*64079^(14/23) 3770005304473452 a001 165580141/370248451*64079^(14/23) 3770005304473453 a001 31622993/70711162*64079^(14/23) 3770005304473455 a001 24157817/54018521*64079^(14/23) 3770005304473470 a001 9227465/20633239*64079^(14/23) 3770005304473574 a001 1762289/3940598*64079^(14/23) 3770005304474284 a001 1346269/3010349*64079^(14/23) 3770005304479155 a001 514229/1149851*64079^(14/23) 3770005304480185 a001 75025/710647*64079^(17/23) 3770005304481749 a001 196418/271443*64079^(13/23) 3770005304482087 a001 1762289/51841*64079^(5/23) 3770005304494659 a001 105937/90481*64079^(12/23) 3770005304508758 a001 514229/710647*64079^(13/23) 3770005304512540 a001 98209/219602*64079^(14/23) 3770005304512698 a001 1346269/1860498*64079^(13/23) 3770005304513273 a001 3524578/4870847*64079^(13/23) 3770005304513357 a001 9227465/12752043*64079^(13/23) 3770005304513370 a001 24157817/33385282*64079^(13/23) 3770005304513371 a001 63245986/87403803*64079^(13/23) 3770005304513372 a001 165580141/228826127*64079^(13/23) 3770005304513372 a001 433494437/599074578*64079^(13/23) 3770005304513372 a001 1134903170/1568397607*64079^(13/23) 3770005304513372 a001 2971215073/4106118243*64079^(13/23) 3770005304513372 a001 7778742049/10749957122*64079^(13/23) 3770005304513372 a001 20365011074/28143753123*64079^(13/23) 3770005304513372 a001 53316291173/73681302247*64079^(13/23) 3770005304513372 a001 139583862445/192900153618*64079^(13/23) 3770005304513372 a001 365435296162/505019158607*64079^(13/23) 3770005304513372 a001 10610209857723/14662949395604*64079^(13/23) 3770005304513372 a001 225851433717/312119004989*64079^(13/23) 3770005304513372 a001 86267571272/119218851371*64079^(13/23) 3770005304513372 a001 32951280099/45537549124*64079^(13/23) 3770005304513372 a001 12586269025/17393796001*64079^(13/23) 3770005304513372 a001 4807526976/6643838879*64079^(13/23) 3770005304513372 a001 1836311903/2537720636*64079^(13/23) 3770005304513372 a001 701408733/969323029*64079^(13/23) 3770005304513372 a001 267914296/370248451*64079^(13/23) 3770005304513372 a001 102334155/141422324*64079^(13/23) 3770005304513372 a001 39088169/54018521*64079^(13/23) 3770005304513377 a001 14930352/20633239*64079^(13/23) 3770005304513409 a001 5702887/7881196*64079^(13/23) 3770005304513629 a001 2178309/3010349*64079^(13/23) 3770005304514707 a001 2178309/24476*9349^(3/19) 3770005304515134 a001 832040/1149851*64079^(13/23) 3770005304516322 a001 75025/271443*64079^(15/23) 3770005304521922 a001 5702887/103682*64079^(4/23) 3770005304525450 a001 317811/439204*64079^(13/23) 3770005304535498 a001 23184/51841*103682^(7/12) 3770005304544114 a001 17711/271443*39603^(9/11) 3770005304544737 a001 832040/710647*64079^(12/23) 3770005304544895 a001 514229/271443*64079^(11/23) 3770005304547113 a001 75025/439204*64079^(16/23) 3770005304547667 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^35 3770005304552043 a001 726103/620166*64079^(12/23) 3770005304553109 a001 5702887/4870847*64079^(12/23) 3770005304553264 a001 4976784/4250681*64079^(12/23) 3770005304553287 a001 39088169/33385282*64079^(12/23) 3770005304553290 a001 34111385/29134601*64079^(12/23) 3770005304553291 a001 267914296/228826127*64079^(12/23) 3770005304553291 a001 233802911/199691526*64079^(12/23) 3770005304553291 a001 1836311903/1568397607*64079^(12/23) 3770005304553291 a001 1602508992/1368706081*64079^(12/23) 3770005304553291 a001 12586269025/10749957122*64079^(12/23) 3770005304553291 a001 10983760033/9381251041*64079^(12/23) 3770005304553291 a001 86267571272/73681302247*64079^(12/23) 3770005304553291 a001 75283811239/64300051206*64079^(12/23) 3770005304553291 a001 2504730781961/2139295485799*64079^(12/23) 3770005304553291 a001 365435296162/312119004989*64079^(12/23) 3770005304553291 a001 139583862445/119218851371*64079^(12/23) 3770005304553291 a001 53316291173/45537549124*64079^(12/23) 3770005304553291 a001 20365011074/17393796001*64079^(12/23) 3770005304553291 a001 7778742049/6643838879*64079^(12/23) 3770005304553291 a001 2971215073/2537720636*64079^(12/23) 3770005304553291 a001 1134903170/969323029*64079^(12/23) 3770005304553291 a001 433494437/370248451*64079^(12/23) 3770005304553291 a001 165580141/141422324*64079^(12/23) 3770005304553292 a001 63245986/54018521*64079^(12/23) 3770005304553301 a001 24157817/20633239*64079^(12/23) 3770005304553360 a001 9227465/7881196*64079^(12/23) 3770005304553768 a001 3524578/3010349*64079^(12/23) 3770005304556558 a001 1346269/1149851*64079^(12/23) 3770005304561874 a001 9227465/103682*64079^(3/23) 3770005304566941 a001 24157817/167761*24476^(2/21) 3770005304573369 a001 2576/103361*167761^(4/5) 3770005304575686 a001 514229/439204*64079^(12/23) 3770005304580874 a001 832040/271443*64079^(10/23) 3770005304586161 a001 1346269/710647*64079^(11/23) 3770005304592182 a001 1762289/930249*64079^(11/23) 3770005304593060 a001 9227465/4870847*64079^(11/23) 3770005304593188 a001 24157817/12752043*64079^(11/23) 3770005304593207 a001 31622993/16692641*64079^(11/23) 3770005304593210 a001 165580141/87403803*64079^(11/23) 3770005304593210 a001 433494437/228826127*64079^(11/23) 3770005304593210 a001 567451585/299537289*64079^(11/23) 3770005304593210 a001 2971215073/1568397607*64079^(11/23) 3770005304593210 a001 7778742049/4106118243*64079^(11/23) 3770005304593210 a001 10182505537/5374978561*64079^(11/23) 3770005304593210 a001 53316291173/28143753123*64079^(11/23) 3770005304593210 a001 139583862445/73681302247*64079^(11/23) 3770005304593210 a001 182717648081/96450076809*64079^(11/23) 3770005304593210 a001 956722026041/505019158607*64079^(11/23) 3770005304593210 a001 10610209857723/5600748293801*64079^(11/23) 3770005304593210 a001 591286729879/312119004989*64079^(11/23) 3770005304593210 a001 225851433717/119218851371*64079^(11/23) 3770005304593210 a001 21566892818/11384387281*64079^(11/23) 3770005304593210 a001 32951280099/17393796001*64079^(11/23) 3770005304593210 a001 12586269025/6643838879*64079^(11/23) 3770005304593210 a001 1201881744/634430159*64079^(11/23) 3770005304593210 a001 1836311903/969323029*64079^(11/23) 3770005304593210 a001 701408733/370248451*64079^(11/23) 3770005304593210 a001 66978574/35355581*64079^(11/23) 3770005304593211 a001 102334155/54018521*64079^(11/23) 3770005304593219 a001 39088169/20633239*64079^(11/23) 3770005304593267 a001 3732588/1970299*64079^(11/23) 3770005304593603 a001 5702887/3010349*64079^(11/23) 3770005304595903 a001 2178309/1149851*64079^(11/23) 3770005304596161 a001 121393/167761*64079^(13/23) 3770005304601781 a001 7465176/51841*64079^(2/23) 3770005304611665 a001 208010/109801*64079^(11/23) 3770005304619975 a001 17711/167761*39603^(17/22) 3770005304620575 a001 317811/103682*167761^(2/5) 3770005304621770 a001 121393/103682*439204^(4/9) 3770005304622298 a001 1346269/271443*64079^(9/23) 3770005304625505 a001 311187/101521*64079^(10/23) 3770005304630434 a001 121393/103682*7881196^(4/11) 3770005304630456 a001 121393/103682*141422324^(4/13) 3770005304630456 a001 121393/103682*2537720636^(4/15) 3770005304630456 a001 15456/90481*(1/2+1/2*5^(1/2))^16 3770005304630456 a001 15456/90481*23725150497407^(1/4) 3770005304630456 a001 15456/90481*73681302247^(4/13) 3770005304630456 a001 15456/90481*10749957122^(1/3) 3770005304630456 a001 121393/103682*45537549124^(4/17) 3770005304630456 a001 121393/103682*817138163596^(4/19) 3770005304630456 a001 121393/103682*14662949395604^(4/21) 3770005304630456 a001 121393/103682*(1/2+1/2*5^(1/2))^12 3770005304630456 a001 121393/103682*192900153618^(2/9) 3770005304630456 a001 121393/103682*73681302247^(3/13) 3770005304630456 a001 121393/103682*10749957122^(1/4) 3770005304630456 a001 15456/90481*4106118243^(8/23) 3770005304630456 a001 121393/103682*4106118243^(6/23) 3770005304630456 a001 121393/103682*1568397607^(3/11) 3770005304630456 a001 15456/90481*1568397607^(4/11) 3770005304630456 a001 121393/103682*599074578^(2/7) 3770005304630456 a001 15456/90481*599074578^(8/21) 3770005304630456 a001 121393/103682*228826127^(3/10) 3770005304630456 a001 15456/90481*228826127^(2/5) 3770005304630456 a001 121393/103682*87403803^(6/19) 3770005304630456 a001 15456/90481*87403803^(8/19) 3770005304630457 a001 121393/103682*33385282^(1/3) 3770005304630458 a001 15456/90481*33385282^(4/9) 3770005304630460 a001 39088546/103683 3770005304630464 a001 121393/103682*12752043^(6/17) 3770005304630467 a001 15456/90481*12752043^(8/17) 3770005304630516 a001 121393/103682*4870847^(3/8) 3770005304630536 a001 15456/90481*4870847^(1/2) 3770005304630892 a001 121393/103682*1860498^(2/5) 3770005304631037 a001 15456/90481*1860498^(8/15) 3770005304632017 a001 5702887/1860498*64079^(10/23) 3770005304632967 a001 14930352/4870847*64079^(10/23) 3770005304633106 a001 39088169/12752043*64079^(10/23) 3770005304633126 a001 14619165/4769326*64079^(10/23) 3770005304633129 a001 267914296/87403803*64079^(10/23) 3770005304633129 a001 701408733/228826127*64079^(10/23) 3770005304633129 a001 1836311903/599074578*64079^(10/23) 3770005304633129 a001 686789568/224056801*64079^(10/23) 3770005304633129 a001 12586269025/4106118243*64079^(10/23) 3770005304633129 a001 32951280099/10749957122*64079^(10/23) 3770005304633129 a001 86267571272/28143753123*64079^(10/23) 3770005304633129 a001 32264490531/10525900321*64079^(10/23) 3770005304633129 a001 591286729879/192900153618*64079^(10/23) 3770005304633129 a001 1548008755920/505019158607*64079^(10/23) 3770005304633129 a001 1515744265389/494493258286*64079^(10/23) 3770005304633129 a001 2504730781961/817138163596*64079^(10/23) 3770005304633129 a001 956722026041/312119004989*64079^(10/23) 3770005304633129 a001 365435296162/119218851371*64079^(10/23) 3770005304633129 a001 139583862445/45537549124*64079^(10/23) 3770005304633129 a001 53316291173/17393796001*64079^(10/23) 3770005304633129 a001 20365011074/6643838879*64079^(10/23) 3770005304633129 a001 7778742049/2537720636*64079^(10/23) 3770005304633129 a001 2971215073/969323029*64079^(10/23) 3770005304633129 a001 1134903170/370248451*64079^(10/23) 3770005304633130 a001 433494437/141422324*64079^(10/23) 3770005304633131 a001 165580141/54018521*64079^(10/23) 3770005304633138 a001 63245986/20633239*64079^(10/23) 3770005304633191 a001 24157817/7881196*64079^(10/23) 3770005304633554 a001 9227465/3010349*64079^(10/23) 3770005304633656 a001 121393/103682*710647^(3/7) 3770005304634722 a001 15456/90481*710647^(4/7) 3770005304636042 a001 3524578/1149851*64079^(10/23) 3770005304641705 a001 24157817/103682*64079^(1/23) 3770005304653089 a001 1346269/439204*64079^(10/23) 3770005304654072 a001 121393/103682*271443^(6/13) 3770005304654892 a001 1762289/51841*167761^(1/5) 3770005304661128 a001 6624/101521*439204^(2/3) 3770005304661643 a001 726103/90481*64079^(8/23) 3770005304661943 a001 15456/90481*271443^(8/13) 3770005304662079 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^37 3770005304664227 a001 15456/4250681*439204^(8/9) 3770005304665644 a001 3524578/710647*64079^(9/23) 3770005304666838 a001 46368/3010349*439204^(7/9) 3770005304671968 a001 9227465/1860498*64079^(9/23) 3770005304672891 a001 24157817/4870847*64079^(9/23) 3770005304673026 a001 63245986/12752043*64079^(9/23) 3770005304673045 a001 165580141/33385282*64079^(9/23) 3770005304673048 a001 433494437/87403803*64079^(9/23) 3770005304673049 a001 1134903170/228826127*64079^(9/23) 3770005304673049 a001 2971215073/599074578*64079^(9/23) 3770005304673049 a001 7778742049/1568397607*64079^(9/23) 3770005304673049 a001 20365011074/4106118243*64079^(9/23) 3770005304673049 a001 53316291173/10749957122*64079^(9/23) 3770005304673049 a001 139583862445/28143753123*64079^(9/23) 3770005304673049 a001 365435296162/73681302247*64079^(9/23) 3770005304673049 a001 956722026041/192900153618*64079^(9/23) 3770005304673049 a001 2504730781961/505019158607*64079^(9/23) 3770005304673049 a001 10610209857723/2139295485799*64079^(9/23) 3770005304673049 a001 4052739537881/817138163596*64079^(9/23) 3770005304673049 a001 140728068720/28374454999*64079^(9/23) 3770005304673049 a001 591286729879/119218851371*64079^(9/23) 3770005304673049 a001 225851433717/45537549124*64079^(9/23) 3770005304673049 a001 86267571272/17393796001*64079^(9/23) 3770005304673049 a001 32951280099/6643838879*64079^(9/23) 3770005304673049 a001 1144206275/230701876*64079^(9/23) 3770005304673049 a001 4807526976/969323029*64079^(9/23) 3770005304673049 a001 1836311903/370248451*64079^(9/23) 3770005304673049 a001 701408733/141422324*64079^(9/23) 3770005304673050 a001 267914296/54018521*64079^(9/23) 3770005304673057 a001 9303105/1875749*64079^(9/23) 3770005304673109 a001 39088169/7881196*64079^(9/23) 3770005304673461 a001 14930352/3010349*64079^(9/23) 3770005304674124 a001 6624/101521*7881196^(6/11) 3770005304674155 a001 317811/103682*20633239^(2/7) 3770005304674157 a001 6624/101521*141422324^(6/13) 3770005304674158 a001 6624/101521*2537720636^(2/5) 3770005304674158 a001 317811/103682*2537720636^(2/9) 3770005304674158 a001 6624/101521*45537549124^(6/17) 3770005304674158 a001 6624/101521*14662949395604^(2/7) 3770005304674158 a001 6624/101521*(1/2+1/2*5^(1/2))^18 3770005304674158 a001 6624/101521*192900153618^(1/3) 3770005304674158 a001 6624/101521*10749957122^(3/8) 3770005304674158 a001 317811/103682*312119004989^(2/11) 3770005304674158 a001 317811/103682*(1/2+1/2*5^(1/2))^10 3770005304674158 a001 317811/103682*28143753123^(1/5) 3770005304674158 a001 317811/103682*10749957122^(5/24) 3770005304674158 a001 317811/103682*4106118243^(5/23) 3770005304674158 a001 6624/101521*4106118243^(9/23) 3770005304674158 a001 317811/103682*1568397607^(5/22) 3770005304674158 a001 6624/101521*1568397607^(9/22) 3770005304674158 a001 317811/103682*599074578^(5/21) 3770005304674158 a001 6624/101521*599074578^(3/7) 3770005304674158 a001 317811/103682*228826127^(1/4) 3770005304674158 a001 6624/101521*228826127^(9/20) 3770005304674158 a001 317811/103682*87403803^(5/19) 3770005304674158 a001 6624/101521*87403803^(9/19) 3770005304674158 a001 14736260448/39088169 3770005304674159 a001 317811/103682*33385282^(5/18) 3770005304674159 a001 6624/101521*33385282^(1/2) 3770005304674164 a001 317811/103682*12752043^(5/17) 3770005304674170 a001 6624/101521*12752043^(9/17) 3770005304674207 a001 317811/103682*4870847^(5/16) 3770005304674247 a001 6624/101521*4870847^(9/16) 3770005304674521 a001 317811/103682*1860498^(1/3) 3770005304674811 a001 6624/101521*1860498^(3/5) 3770005304675877 a001 5702887/1149851*64079^(9/23) 3770005304676824 a001 317811/103682*710647^(5/14) 3770005304677121 a001 46347/2206*439204^(2/9) 3770005304677959 a001 514229/103682*439204^(1/3) 3770005304678771 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^39 3770005304678957 a001 6624/101521*710647^(9/14) 3770005304679460 a001 9227465/103682*439204^(1/9) 3770005304680528 a001 2576/103361*20633239^(4/7) 3770005304680534 a001 2576/103361*2537720636^(4/9) 3770005304680534 a001 2576/103361*(1/2+1/2*5^(1/2))^20 3770005304680534 a001 2576/103361*23725150497407^(5/16) 3770005304680534 a001 2576/103361*505019158607^(5/14) 3770005304680534 a001 2576/103361*73681302247^(5/13) 3770005304680534 a001 2576/103361*28143753123^(2/5) 3770005304680534 a001 2576/103361*10749957122^(5/12) 3770005304680534 a001 416020/51841*(1/2+1/2*5^(1/2))^8 3770005304680534 a001 416020/51841*23725150497407^(1/8) 3770005304680534 a001 416020/51841*73681302247^(2/13) 3770005304680534 a001 416020/51841*10749957122^(1/6) 3770005304680534 a001 416020/51841*4106118243^(4/23) 3770005304680534 a001 2576/103361*4106118243^(10/23) 3770005304680534 a001 416020/51841*1568397607^(2/11) 3770005304680534 a001 2576/103361*1568397607^(5/11) 3770005304680534 a001 416020/51841*599074578^(4/21) 3770005304680534 a001 2576/103361*599074578^(10/21) 3770005304680534 a001 416020/51841*228826127^(1/5) 3770005304680534 a001 2576/103361*228826127^(1/2) 3770005304680534 a001 33402624/88601 3770005304680534 a001 416020/51841*87403803^(4/19) 3770005304680534 a001 2576/103361*87403803^(10/19) 3770005304680534 a001 416020/51841*33385282^(2/9) 3770005304680535 a001 2576/103361*33385282^(5/9) 3770005304680539 a001 416020/51841*12752043^(4/17) 3770005304680547 a001 2576/103361*12752043^(10/17) 3770005304680573 a001 416020/51841*4870847^(1/4) 3770005304680633 a001 2576/103361*4870847^(5/8) 3770005304680824 a001 416020/51841*1860498^(4/15) 3770005304681207 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^41 3770005304681260 a001 2576/103361*1860498^(2/3) 3770005304681423 a001 46368/4870847*7881196^(2/3) 3770005304681453 a001 46347/2206*7881196^(2/11) 3770005304681464 a001 46347/2206*141422324^(2/13) 3770005304681464 a001 46347/2206*2537720636^(2/15) 3770005304681464 a001 46368/4870847*312119004989^(2/5) 3770005304681464 a001 46368/4870847*(1/2+1/2*5^(1/2))^22 3770005304681464 a001 46368/4870847*10749957122^(11/24) 3770005304681464 a001 46347/2206*45537549124^(2/17) 3770005304681464 a001 46347/2206*14662949395604^(2/21) 3770005304681464 a001 46347/2206*(1/2+1/2*5^(1/2))^6 3770005304681464 a001 46347/2206*10749957122^(1/8) 3770005304681464 a001 46347/2206*4106118243^(3/23) 3770005304681464 a001 46368/4870847*4106118243^(11/23) 3770005304681464 a001 46347/2206*1568397607^(3/22) 3770005304681464 a001 46368/4870847*1568397607^(1/2) 3770005304681464 a001 46347/2206*599074578^(1/7) 3770005304681464 a001 46368/4870847*599074578^(11/21) 3770005304681464 a001 12625478964/33489287 3770005304681464 a001 46347/2206*228826127^(3/20) 3770005304681464 a001 46368/4870847*228826127^(11/20) 3770005304681464 a001 46347/2206*87403803^(3/19) 3770005304681464 a001 46368/4870847*87403803^(11/19) 3770005304681464 a001 46347/2206*33385282^(1/6) 3770005304681466 a001 46368/4870847*33385282^(11/18) 3770005304681468 a001 46347/2206*12752043^(3/17) 3770005304681479 a001 46368/4870847*12752043^(11/17) 3770005304681487 a001 63245986/271443*24476^(1/21) 3770005304681494 a001 46347/2206*4870847^(3/16) 3770005304681555 a001 15456/4250681*7881196^(8/11) 3770005304681562 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^43 3770005304681567 a001 46368/228826127*7881196^(10/11) 3770005304681573 a001 46368/4870847*4870847^(11/16) 3770005304681574 a001 46368/54018521*7881196^(9/11) 3770005304681599 a001 15456/4250681*141422324^(8/13) 3770005304681599 a001 15456/4250681*2537720636^(8/15) 3770005304681599 a001 15456/4250681*45537549124^(8/17) 3770005304681599 a001 15456/4250681*14662949395604^(8/21) 3770005304681599 a001 15456/4250681*(1/2+1/2*5^(1/2))^24 3770005304681599 a001 15456/4250681*192900153618^(4/9) 3770005304681599 a001 15456/4250681*73681302247^(6/13) 3770005304681599 a001 15456/4250681*10749957122^(1/2) 3770005304681599 a001 5702887/103682*(1/2+1/2*5^(1/2))^4 3770005304681599 a001 5702887/103682*23725150497407^(1/16) 3770005304681599 a001 5702887/103682*73681302247^(1/13) 3770005304681599 a001 5702887/103682*10749957122^(1/12) 3770005304681599 a001 5702887/103682*4106118243^(2/23) 3770005304681599 a001 15456/4250681*4106118243^(12/23) 3770005304681599 a001 5702887/103682*1568397607^(1/11) 3770005304681599 a001 15456/4250681*1568397607^(6/11) 3770005304681599 a001 5702887/103682*599074578^(2/21) 3770005304681599 a001 88143821472/233802911 3770005304681599 a001 15456/4250681*599074578^(4/7) 3770005304681599 a001 5702887/103682*228826127^(1/10) 3770005304681600 a001 15456/4250681*228826127^(3/5) 3770005304681600 a001 5702887/103682*87403803^(2/19) 3770005304681600 a001 15456/4250681*87403803^(12/19) 3770005304681600 a001 5702887/103682*33385282^(1/9) 3770005304681602 a001 15456/4250681*33385282^(2/3) 3770005304681602 a001 5702887/103682*12752043^(2/17) 3770005304681614 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^45 3770005304681615 a001 46368/228826127*20633239^(6/7) 3770005304681615 a001 15456/29134601*20633239^(4/5) 3770005304681616 a001 15456/4250681*12752043^(12/17) 3770005304681619 a001 144/103681*141422324^(2/3) 3770005304681619 a001 144/103681*(1/2+1/2*5^(1/2))^26 3770005304681619 a001 144/103681*73681302247^(1/2) 3770005304681619 a001 144/103681*10749957122^(13/24) 3770005304681619 a001 7465176/51841*(1/2+1/2*5^(1/2))^2 3770005304681619 a001 7465176/51841*10749957122^(1/24) 3770005304681619 a001 7465176/51841*4106118243^(1/23) 3770005304681619 a001 7465176/51841*1568397607^(1/22) 3770005304681619 a001 144/103681*4106118243^(13/23) 3770005304681619 a001 692290561536/1836311903 3770005304681619 a001 7465176/51841*599074578^(1/21) 3770005304681619 a001 144/103681*1568397607^(13/22) 3770005304681619 a001 7465176/51841*228826127^(1/20) 3770005304681619 a001 144/103681*599074578^(13/21) 3770005304681619 a001 7465176/51841*87403803^(1/19) 3770005304681619 a001 144/103681*228826127^(13/20) 3770005304681619 a001 5702887/103682*4870847^(1/8) 3770005304681619 a001 7465176/51841*33385282^(1/18) 3770005304681620 a001 144/103681*87403803^(13/19) 3770005304681621 a001 7465176/51841*12752043^(1/17) 3770005304681621 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^47 3770005304681622 a001 144/103681*33385282^(13/18) 3770005304681622 a001 15456/29134601*17393796001^(4/7) 3770005304681622 a001 15456/29134601*14662949395604^(4/9) 3770005304681622 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^28/Lucas(38) 3770005304681622 a001 15456/29134601*73681302247^(7/13) 3770005304681622 a001 15456/29134601*10749957122^(7/12) 3770005304681622 a001 39088169/103682 3770005304681622 a001 15456/29134601*4106118243^(14/23) 3770005304681622 a001 15456/29134601*1568397607^(7/11) 3770005304681622 a001 15456/29134601*599074578^(2/3) 3770005304681622 a001 15456/29134601*228826127^(7/10) 3770005304681622 a001 46368/228826127*141422324^(10/13) 3770005304681622 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^49 3770005304681622 a001 15456/1368706081*141422324^(12/13) 3770005304681622 a001 46368/969323029*141422324^(11/13) 3770005304681623 a001 15456/29134601*87403803^(14/19) 3770005304681623 a001 46368/228826127*2537720636^(2/3) 3770005304681623 a001 46368/228826127*45537549124^(10/17) 3770005304681623 a001 46368/228826127*312119004989^(6/11) 3770005304681623 a001 46368/228826127*14662949395604^(10/21) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(40) 3770005304681623 a001 46368/228826127*192900153618^(5/9) 3770005304681623 a001 46368/228826127*28143753123^(3/5) 3770005304681623 a001 86273274528/228841255 3770005304681623 a001 46368/228826127*10749957122^(5/8) 3770005304681623 a004 Fibonacci(40)/Lucas(24)/(1/2+sqrt(5)/2)^2 3770005304681623 a001 46368/228826127*4106118243^(15/23) 3770005304681623 a001 46368/228826127*1568397607^(15/22) 3770005304681623 a001 46368/228826127*599074578^(5/7) 3770005304681623 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^51 3770005304681623 a001 46368/228826127*228826127^(3/4) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(42) 3770005304681623 a001 2576/33281921*23725150497407^(1/2) 3770005304681623 a001 2576/33281921*505019158607^(4/7) 3770005304681623 a001 2576/33281921*73681302247^(8/13) 3770005304681623 a001 4140883358976/10983760033 3770005304681623 a001 2576/33281921*10749957122^(2/3) 3770005304681623 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^4 3770005304681623 a001 2576/33281921*4106118243^(16/23) 3770005304681623 a001 2576/33281921*1568397607^(8/11) 3770005304681623 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^53 3770005304681623 a001 2576/33281921*599074578^(16/21) 3770005304681623 a001 6624/224056801*45537549124^(2/3) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(44) 3770005304681623 a001 4065365016468/10783446409 3770005304681623 a001 6624/224056801*10749957122^(17/24) 3770005304681623 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^6 3770005304681623 a001 6624/224056801*4106118243^(17/23) 3770005304681623 a001 15456/1368706081*2537720636^(4/5) 3770005304681623 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^55 3770005304681623 a001 6624/10525900321*2537720636^(14/15) 3770005304681623 a001 15456/9381251041*2537720636^(8/9) 3770005304681623 a001 46368/17393796001*2537720636^(13/15) 3770005304681623 a001 6624/224056801*1568397607^(17/22) 3770005304681623 a001 15456/1368706081*45537549124^(12/17) 3770005304681623 a001 15456/1368706081*14662949395604^(4/7) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(46) 3770005304681623 a001 15456/1368706081*505019158607^(9/14) 3770005304681623 a001 15456/1368706081*192900153618^(2/3) 3770005304681623 a001 15456/1368706081*73681302247^(9/13) 3770005304681623 a001 15456/1368706081*10749957122^(3/4) 3770005304681623 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^8 3770005304681623 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^57 3770005304681623 a001 15456/1368706081*4106118243^(18/23) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(48) 3770005304681623 a001 222915410823168/591286729879 3770005304681623 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^59 3770005304681623 a001 6624/10525900321*17393796001^(6/7) 3770005304681623 a001 23184/5374978561*10749957122^(19/24) 3770005304681623 a001 15456/9381251041*312119004989^(8/11) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(50) 3770005304681623 a001 15456/9381251041*23725150497407^(5/8) 3770005304681623 a001 73686884110/195455651 3770005304681623 a001 15456/9381251041*73681302247^(10/13) 3770005304681623 a001 6624/10525900321*45537549124^(14/17) 3770005304681623 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^61 3770005304681623 a001 15456/440719107401*45537549124^(16/17) 3770005304681623 a001 46368/312119004989*45537549124^(15/17) 3770005304681623 a001 15456/9381251041*28143753123^(4/5) 3770005304681623 a001 6624/10525900321*817138163596^(14/19) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(52) 3770005304681623 a001 1527884955630432/4052739537881 3770005304681623 a001 6624/10525900321*505019158607^(3/4) 3770005304681623 a001 6624/10525900321*192900153618^(7/9) 3770005304681623 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^63 3770005304681623 a001 2576/10716675201*312119004989^(4/5) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(54) 3770005304681623 a001 2576/10716675201*23725150497407^(11/16) 3770005304681623 a001 190478797368576/505248088463 3770005304681623 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^65 3770005304681623 a001 144/10749853441*312119004989^(10/11) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(56) 3770005304681623 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^67 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(58) 3770005304681623 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^69 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(60) 3770005304681623 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^71 3770005304681623 a001 144/10749853441*3461452808002^(5/6) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(62) 3770005304681623 a001 46368/23725150497407*14662949395604^(6/7) 3770005304681623 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^73 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(64) 3770005304681623 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^75 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(66) 3770005304681623 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^77 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(68) 3770005304681623 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^79 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(70) 3770005304681623 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^81 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(72) 3770005304681623 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^83 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(74) 3770005304681623 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^85 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(76) 3770005304681623 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^87 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(78) 3770005304681623 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^89 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(80) 3770005304681623 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^91 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(82) 3770005304681623 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^93 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(84) 3770005304681623 a004 Fibonacci(24)*Lucas(85)/(1/2+sqrt(5)/2)^95 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(86) 3770005304681623 a004 Fibonacci(24)*Lucas(87)/(1/2+sqrt(5)/2)^97 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(88) 3770005304681623 a004 Fibonacci(24)*Lucas(89)/(1/2+sqrt(5)/2)^99 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(90) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(92) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(94) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^86/Lucas(96) 3770005304681623 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^10 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^88/Lucas(98) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^89/Lucas(99) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^90/Lucas(100) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^87/Lucas(97) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^85/Lucas(95) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(93) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(91) 3770005304681623 a004 Fibonacci(24)*Lucas(90)/(1/2+sqrt(5)/2)^100 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(89) 3770005304681623 a004 Fibonacci(24)*Lucas(88)/(1/2+sqrt(5)/2)^98 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(87) 3770005304681623 a004 Fibonacci(24)*Lucas(86)/(1/2+sqrt(5)/2)^96 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(85) 3770005304681623 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^94 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(83) 3770005304681623 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^92 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(81) 3770005304681623 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^90 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(79) 3770005304681623 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^88 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(77) 3770005304681623 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^86 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(75) 3770005304681623 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^84 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(73) 3770005304681623 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^82 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(71) 3770005304681623 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^80 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(69) 3770005304681623 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^78 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(67) 3770005304681623 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^76 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(65) 3770005304681623 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^74 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(63) 3770005304681623 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^72 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(61) 3770005304681623 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^70 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(59) 3770005304681623 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^68 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(57) 3770005304681623 a001 15456/3020733700601*505019158607^(13/14) 3770005304681623 a001 46368/2139295485799*505019158607^(7/8) 3770005304681623 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^66 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(55) 3770005304681623 a001 15456/440719107401*192900153618^(8/9) 3770005304681623 a001 46368/5600748293801*192900153618^(17/18) 3770005304681623 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^64 3770005304681623 a001 46368/312119004989*192900153618^(5/6) 3770005304681623 a001 1236084894554832/3278735159921 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(53) 3770005304681623 a001 2576/10716675201*73681302247^(11/13) 3770005304681623 a001 15456/440719107401*73681302247^(12/13) 3770005304681623 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^62 3770005304681623 a001 944284833479232/2504730781961 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(51) 3770005304681623 a001 46368/312119004989*28143753123^(9/10) 3770005304681623 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^60 3770005304681623 a001 46368/17393796001*45537549124^(13/17) 3770005304681623 a001 360684711328032/956722026041 3770005304681623 a001 46368/17393796001*14662949395604^(13/21) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(49) 3770005304681623 a001 46368/17393796001*192900153618^(13/18) 3770005304681623 a001 46368/17393796001*73681302247^(3/4) 3770005304681623 a001 15456/9381251041*10749957122^(5/6) 3770005304681623 a001 6624/10525900321*10749957122^(7/8) 3770005304681623 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^12 3770005304681623 a001 2576/10716675201*10749957122^(11/12) 3770005304681623 a001 46368/312119004989*10749957122^(15/16) 3770005304681623 a001 46368/505019158607*10749957122^(23/24) 3770005304681623 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^14 3770005304681623 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^16 3770005304681623 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^18 3770005304681623 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^20 3770005304681623 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^22 3770005304681623 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^24 3770005304681623 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^26 3770005304681623 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^28 3770005304681623 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^30 3770005304681623 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^32 3770005304681623 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^34 3770005304681623 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^36 3770005304681623 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^38 3770005304681623 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^40 3770005304681623 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^42 3770005304681623 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^44 3770005304681623 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^46 3770005304681623 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^48 3770005304681623 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^50 3770005304681623 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^52 3770005304681623 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^54 3770005304681623 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^56 3770005304681623 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^58 3770005304681623 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^62 3770005304681623 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^60 3770005304681623 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^61 3770005304681623 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^59 3770005304681623 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^57 3770005304681623 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^55 3770005304681623 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^53 3770005304681623 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^51 3770005304681623 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^49 3770005304681623 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^47 3770005304681623 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^45 3770005304681623 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^43 3770005304681623 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^41 3770005304681623 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^39 3770005304681623 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^37 3770005304681623 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^35 3770005304681623 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^33 3770005304681623 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^31 3770005304681623 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^29 3770005304681623 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^27 3770005304681623 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^25 3770005304681623 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^23 3770005304681623 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^21 3770005304681623 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^19 3770005304681623 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^17 3770005304681623 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^15 3770005304681623 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^13 3770005304681623 a001 46368/17393796001*10749957122^(13/16) 3770005304681623 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^11 3770005304681623 a001 68884650252432/182717648081 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(47) 3770005304681623 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^9 3770005304681623 a001 11592/634430159*2537720636^(7/9) 3770005304681623 a001 23184/5374978561*4106118243^(19/23) 3770005304681623 a001 15456/9381251041*4106118243^(20/23) 3770005304681623 a001 6624/10525900321*4106118243^(21/23) 3770005304681623 a001 2576/10716675201*4106118243^(22/23) 3770005304681623 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^56 3770005304681623 a001 11592/634430159*17393796001^(5/7) 3770005304681623 a001 10524638037312/27916772489 3770005304681623 a001 11592/634430159*312119004989^(7/11) 3770005304681623 a001 11592/634430159*14662949395604^(5/9) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(45) 3770005304681623 a001 11592/634430159*505019158607^(5/8) 3770005304681623 a001 11592/634430159*28143753123^(7/10) 3770005304681623 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^7 3770005304681623 a001 15456/1368706081*1568397607^(9/11) 3770005304681623 a001 23184/5374978561*1568397607^(19/22) 3770005304681623 a001 15456/9381251041*1568397607^(10/11) 3770005304681623 a001 6624/10525900321*1568397607^(21/22) 3770005304681623 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^54 3770005304681623 a001 46368/969323029*2537720636^(11/15) 3770005304681623 a001 46368/969323029*45537549124^(11/17) 3770005304681623 a001 20100270054816/53316291173 3770005304681623 a001 46368/969323029*312119004989^(3/5) 3770005304681623 a001 46368/969323029*817138163596^(11/19) 3770005304681623 a001 46368/969323029*14662949395604^(11/21) 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(43) 3770005304681623 a001 46368/969323029*192900153618^(11/18) 3770005304681623 a001 46368/969323029*10749957122^(11/16) 3770005304681623 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^5 3770005304681623 a001 46368/969323029*1568397607^(3/4) 3770005304681623 a001 6624/224056801*599074578^(17/21) 3770005304681623 a001 15456/1368706081*599074578^(6/7) 3770005304681623 a001 11592/634430159*599074578^(5/6) 3770005304681623 a001 23184/5374978561*599074578^(19/21) 3770005304681623 a001 46368/17393796001*599074578^(13/14) 3770005304681623 a001 15456/9381251041*599074578^(20/21) 3770005304681623 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^52 3770005304681623 a001 46368/969323029*599074578^(11/14) 3770005304681623 a001 3838809988944/10182505537 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(41) 3770005304681623 a001 46368/370248451*9062201101803^(1/2) 3770005304681623 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2)^3 3770005304681623 a001 2576/33281921*228826127^(4/5) 3770005304681623 a001 6624/224056801*228826127^(17/20) 3770005304681623 a001 11592/634430159*228826127^(7/8) 3770005304681623 a001 15456/1368706081*228826127^(9/10) 3770005304681623 a001 23184/5374978561*228826127^(19/20) 3770005304681623 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^50 3770005304681623 a001 2932589878848/7778742049 3770005304681623 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(39) 3770005304681623 a001 11592/35355581*1322157322203^(1/2) 3770005304681623 a004 Fibonacci(39)/Lucas(24)/(1/2+sqrt(5)/2) 3770005304681623 a001 46368/228826127*87403803^(15/19) 3770005304681623 a001 2576/33281921*87403803^(16/19) 3770005304681623 a001 6624/224056801*87403803^(17/19) 3770005304681623 a001 15456/1368706081*87403803^(18/19) 3770005304681623 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^48 3770005304681624 a001 46368/54018521*141422324^(9/13) 3770005304681624 a001 46368/54018521*2537720636^(3/5) 3770005304681624 a001 1120149658656/2971215073 3770005304681624 a001 46368/54018521*45537549124^(9/17) 3770005304681624 a001 46368/54018521*817138163596^(9/19) 3770005304681624 a001 46368/54018521*14662949395604^(3/7) 3770005304681624 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^27/Lucas(37) 3770005304681624 a001 46368/54018521*192900153618^(1/2) 3770005304681624 a001 46368/54018521*10749957122^(9/16) 3770005304681624 a001 24157817/207364+24157817/207364*5^(1/2) 3770005304681624 a001 46368/54018521*599074578^(9/14) 3770005304681625 a001 15456/29134601*33385282^(7/9) 3770005304681625 a001 46368/20633239*20633239^(5/7) 3770005304681625 a001 46368/228826127*33385282^(5/6) 3770005304681626 a001 2576/33281921*33385282^(8/9) 3770005304681626 a001 46368/969323029*33385282^(11/12) 3770005304681626 a001 6624/224056801*33385282^(17/18) 3770005304681626 a001 9227465/103682*7881196^(1/11) 3770005304681626 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^46 3770005304681626 a001 46368/54018521*33385282^(3/4) 3770005304681629 a001 7465176/51841*4870847^(1/16) 3770005304681631 a001 9227465/103682*141422324^(1/13) 3770005304681632 a001 42785909712/113490317 3770005304681632 a001 46368/20633239*2537720636^(5/9) 3770005304681632 a001 9227465/103682*2537720636^(1/15) 3770005304681632 a001 46368/20633239*312119004989^(5/11) 3770005304681632 a001 46368/20633239*(1/2+1/2*5^(1/2))^25 3770005304681632 a001 46368/20633239*3461452808002^(5/12) 3770005304681632 a001 46368/20633239*28143753123^(1/2) 3770005304681632 a001 9227465/103682*45537549124^(1/17) 3770005304681632 a001 9227465/103682*14662949395604^(1/21) 3770005304681632 a001 9227465/103682*(1/2+1/2*5^(1/2))^3 3770005304681632 a001 9227465/103682*192900153618^(1/18) 3770005304681632 a001 9227465/103682*10749957122^(1/16) 3770005304681632 a001 9227465/103682*599074578^(1/14) 3770005304681632 a001 46368/20633239*228826127^(5/8) 3770005304681632 a001 9227465/103682*33385282^(1/12) 3770005304681637 a001 144/103681*12752043^(13/17) 3770005304681641 a001 15456/29134601*12752043^(14/17) 3770005304681643 a001 46368/228826127*12752043^(15/17) 3770005304681644 a001 2576/33281921*12752043^(16/17) 3770005304681646 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^44 3770005304681682 a001 46347/2206*1860498^(1/5) 3770005304681682 a001 1762289/51841*20633239^(1/7) 3770005304681683 a001 163427632704/433494437 3770005304681683 a001 1762289/51841*2537720636^(1/9) 3770005304681683 a001 11592/1970299*(1/2+1/2*5^(1/2))^23 3770005304681683 a001 1762289/51841*312119004989^(1/11) 3770005304681683 a001 1762289/51841*(1/2+1/2*5^(1/2))^5 3770005304681683 a001 1762289/51841*28143753123^(1/10) 3770005304681683 a001 11592/1970299*4106118243^(1/2) 3770005304681683 a001 1762289/51841*228826127^(1/8) 3770005304681692 a001 7465176/51841*1860498^(1/15) 3770005304681719 a001 15456/4250681*4870847^(3/4) 3770005304681740 a001 9227465/103682*1860498^(1/10) 3770005304681745 a001 5702887/103682*1860498^(2/15) 3770005304681748 a001 144/103681*4870847^(13/16) 3770005304681761 a001 15456/29134601*4870847^(7/8) 3770005304681772 a001 46368/228826127*4870847^(15/16) 3770005304681782 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^42 3770005304681865 a001 1762289/51841*1860498^(1/6) 3770005304682000 a001 46368/3010349*7881196^(7/11) 3770005304682033 a001 46368/3010349*20633239^(3/5) 3770005304682037 a001 1346269/103682*20633239^(1/5) 3770005304682039 a001 46368/3010349*141422324^(7/13) 3770005304682039 a001 62423800992/165580141 3770005304682039 a001 46368/3010349*2537720636^(7/15) 3770005304682039 a001 46368/3010349*17393796001^(3/7) 3770005304682039 a001 46368/3010349*45537549124^(7/17) 3770005304682039 a001 46368/3010349*14662949395604^(1/3) 3770005304682039 a001 46368/3010349*(1/2+1/2*5^(1/2))^21 3770005304682039 a001 46368/3010349*192900153618^(7/18) 3770005304682039 a001 46368/3010349*10749957122^(7/16) 3770005304682039 a001 1346269/103682*17393796001^(1/7) 3770005304682039 a001 1346269/103682*14662949395604^(1/9) 3770005304682039 a001 1346269/103682*(1/2+1/2*5^(1/2))^7 3770005304682039 a001 1346269/103682*599074578^(1/6) 3770005304682039 a001 46368/3010349*599074578^(1/2) 3770005304682041 a001 46368/3010349*33385282^(7/12) 3770005304682152 a001 7465176/51841*710647^(1/14) 3770005304682262 a001 46368/4870847*1860498^(11/15) 3770005304682471 a001 15456/4250681*1860498^(4/5) 3770005304682539 a001 46368/20633239*1860498^(5/6) 3770005304682563 a001 144/103681*1860498^(13/15) 3770005304682604 a001 46368/54018521*1860498^(9/10) 3770005304682639 a001 15456/29134601*1860498^(14/15) 3770005304682666 a001 5702887/103682*710647^(1/7) 3770005304682666 a001 416020/51841*710647^(2/7) 3770005304682712 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^40 3770005304682801 a001 46368/3010349*1860498^(7/10) 3770005304683063 a001 46347/2206*710647^(3/14) 3770005304683905 a001 1346269/103682*710647^(1/4) 3770005304684457 a001 514229/103682*7881196^(3/11) 3770005304684474 a001 11921885136/31622993 3770005304684474 a001 514229/103682*141422324^(3/13) 3770005304684474 a001 514229/103682*2537720636^(1/5) 3770005304684474 a001 46368/1149851*817138163596^(1/3) 3770005304684474 a001 46368/1149851*(1/2+1/2*5^(1/2))^19 3770005304684474 a001 514229/103682*45537549124^(3/17) 3770005304684474 a001 514229/103682*817138163596^(3/19) 3770005304684474 a001 514229/103682*14662949395604^(1/7) 3770005304684474 a001 514229/103682*(1/2+1/2*5^(1/2))^9 3770005304684474 a001 514229/103682*192900153618^(1/6) 3770005304684474 a001 514229/103682*10749957122^(3/16) 3770005304684474 a001 514229/103682*599074578^(3/14) 3770005304684474 a001 46368/1149851*87403803^(1/2) 3770005304684475 a001 514229/103682*33385282^(1/4) 3770005304684801 a001 514229/103682*1860498^(3/10) 3770005304685555 a001 7465176/51841*271443^(1/13) 3770005304685866 a001 2576/103361*710647^(5/7) 3770005304687329 a001 46368/4870847*710647^(11/14) 3770005304687637 a001 46368/3010349*710647^(3/4) 3770005304687998 a001 15456/4250681*710647^(6/7) 3770005304688551 a001 144/103681*710647^(13/14) 3770005304689088 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^38 3770005304689471 a001 5702887/103682*271443^(2/13) 3770005304692434 a001 2178309/439204*64079^(9/23) 3770005304693271 a001 46347/2206*271443^(3/13) 3770005304693837 a001 317811/103682*271443^(5/13) 3770005304696236 a001 24157817/103682*103682^(1/24) 3770005304696277 a001 416020/51841*271443^(4/13) 3770005304701146 a001 98209/51841*7881196^(1/3) 3770005304701165 a001 9107509824/24157817 3770005304701166 a001 11592/109801*45537549124^(1/3) 3770005304701166 a001 11592/109801*(1/2+1/2*5^(1/2))^17 3770005304701166 a001 98209/51841*312119004989^(1/5) 3770005304701166 a001 98209/51841*(1/2+1/2*5^(1/2))^11 3770005304701166 a001 98209/51841*1568397607^(1/4) 3770005304701178 a001 11592/109801*12752043^(1/2) 3770005304701782 a001 3524578/271443*64079^(7/23) 3770005304705480 a001 5702887/710647*64079^(8/23) 3770005304706790 a001 196418/167761*64079^(12/23) 3770005304709580 a001 6624/101521*271443^(9/13) 3770005304710844 a001 7465176/51841*103682^(1/12) 3770005304711875 a001 829464/103361*64079^(8/23) 3770005304712809 a001 39088169/4870847*64079^(8/23) 3770005304712945 a001 34111385/4250681*64079^(8/23) 3770005304712965 a001 133957148/16692641*64079^(8/23) 3770005304712967 a001 233802911/29134601*64079^(8/23) 3770005304712968 a001 1836311903/228826127*64079^(8/23) 3770005304712968 a001 267084832/33281921*64079^(8/23) 3770005304712968 a001 12586269025/1568397607*64079^(8/23) 3770005304712968 a001 10983760033/1368706081*64079^(8/23) 3770005304712968 a001 43133785636/5374978561*64079^(8/23) 3770005304712968 a001 75283811239/9381251041*64079^(8/23) 3770005304712968 a001 591286729879/73681302247*64079^(8/23) 3770005304712968 a001 86000486440/10716675201*64079^(8/23) 3770005304712968 a001 4052739537881/505019158607*64079^(8/23) 3770005304712968 a001 3278735159921/408569081798*64079^(8/23) 3770005304712968 a001 2504730781961/312119004989*64079^(8/23) 3770005304712968 a001 956722026041/119218851371*64079^(8/23) 3770005304712968 a001 182717648081/22768774562*64079^(8/23) 3770005304712968 a001 139583862445/17393796001*64079^(8/23) 3770005304712968 a001 53316291173/6643838879*64079^(8/23) 3770005304712968 a001 10182505537/1268860318*64079^(8/23) 3770005304712968 a001 7778742049/969323029*64079^(8/23) 3770005304712968 a001 2971215073/370248451*64079^(8/23) 3770005304712968 a001 567451585/70711162*64079^(8/23) 3770005304712969 a001 433494437/54018521*64079^(8/23) 3770005304712977 a001 165580141/20633239*64079^(8/23) 3770005304713029 a001 31622993/3940598*64079^(8/23) 3770005304713385 a001 24157817/3010349*64079^(8/23) 3770005304715828 a001 9227465/1149851*64079^(8/23) 3770005304719700 a001 317811/167761*64079^(11/23) 3770005304719892 a001 2576/103361*271443^(10/13) 3770005304724085 a001 17711/439204*39603^(19/22) 3770005304724758 a001 46368/4870847*271443^(11/13) 3770005304725188 a001 165580141/710647*24476^(1/21) 3770005304725469 a001 9227465/103682*103682^(1/8) 3770005304728830 a001 15456/4250681*271443^(12/13) 3770005304731564 a001 433494437/1860498*24476^(1/21) 3770005304732494 a001 1134903170/4870847*24476^(1/21) 3770005304732573 a001 1762289/219602*64079^(8/23) 3770005304732630 a001 2971215073/12752043*24476^(1/21) 3770005304732650 a001 7778742049/33385282*24476^(1/21) 3770005304732653 a001 20365011074/87403803*24476^(1/21) 3770005304732653 a001 53316291173/228826127*24476^(1/21) 3770005304732653 a001 139583862445/599074578*24476^(1/21) 3770005304732653 a001 365435296162/1568397607*24476^(1/21) 3770005304732653 a001 956722026041/4106118243*24476^(1/21) 3770005304732653 a001 2504730781961/10749957122*24476^(1/21) 3770005304732653 a001 6557470319842/28143753123*24476^(1/21) 3770005304732653 a001 10610209857723/45537549124*24476^(1/21) 3770005304732653 a001 4052739537881/17393796001*24476^(1/21) 3770005304732653 a001 1548008755920/6643838879*24476^(1/21) 3770005304732653 a001 591286729879/2537720636*24476^(1/21) 3770005304732653 a001 225851433717/969323029*24476^(1/21) 3770005304732653 a001 86267571272/370248451*24476^(1/21) 3770005304732653 a001 63246219/271444*24476^(1/21) 3770005304732655 a001 12586269025/54018521*24476^(1/21) 3770005304732662 a001 4807526976/20633239*24476^(1/21) 3770005304732714 a001 1836311903/7881196*24476^(1/21) 3770005304732789 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^36 3770005304733069 a001 701408733/3010349*24476^(1/21) 3770005304735205 a001 46368/167761*167761^(3/5) 3770005304735505 a001 267914296/1149851*24476^(1/21) 3770005304740049 a001 5702887/103682*103682^(1/6) 3770005304741363 a001 75025/167761*64079^(14/23) 3770005304741617 a001 5702887/271443*64079^(6/23) 3770005304745431 a001 9227465/710647*64079^(7/23) 3770005304751799 a001 24157817/1860498*64079^(7/23) 3770005304751850 a001 3524578/64079*24476^(4/21) 3770005304752197 a001 102334155/439204*24476^(1/21) 3770005304752729 a001 63245986/4870847*64079^(7/23) 3770005304752864 a001 165580141/12752043*64079^(7/23) 3770005304752884 a001 433494437/33385282*64079^(7/23) 3770005304752887 a001 1134903170/87403803*64079^(7/23) 3770005304752887 a001 2971215073/228826127*64079^(7/23) 3770005304752887 a001 7778742049/599074578*64079^(7/23) 3770005304752887 a001 20365011074/1568397607*64079^(7/23) 3770005304752887 a001 53316291173/4106118243*64079^(7/23) 3770005304752887 a001 139583862445/10749957122*64079^(7/23) 3770005304752887 a001 365435296162/28143753123*64079^(7/23) 3770005304752887 a001 956722026041/73681302247*64079^(7/23) 3770005304752887 a001 2504730781961/192900153618*64079^(7/23) 3770005304752887 a001 10610209857723/817138163596*64079^(7/23) 3770005304752887 a001 4052739537881/312119004989*64079^(7/23) 3770005304752887 a001 1548008755920/119218851371*64079^(7/23) 3770005304752887 a001 591286729879/45537549124*64079^(7/23) 3770005304752887 a001 7787980473/599786069*64079^(7/23) 3770005304752887 a001 86267571272/6643838879*64079^(7/23) 3770005304752887 a001 32951280099/2537720636*64079^(7/23) 3770005304752887 a001 12586269025/969323029*64079^(7/23) 3770005304752887 a001 4807526976/370248451*64079^(7/23) 3770005304752887 a001 1836311903/141422324*64079^(7/23) 3770005304752889 a001 701408733/54018521*64079^(7/23) 3770005304752896 a001 9238424/711491*64079^(7/23) 3770005304752948 a001 102334155/7881196*64079^(7/23) 3770005304753303 a001 39088169/3010349*64079^(7/23) 3770005304754746 a001 1762289/51841*103682^(5/24) 3770005304755735 a001 14930352/1149851*64079^(7/23) 3770005304769139 a001 46347/2206*103682^(1/4) 3770005304769936 a001 514229/167761*64079^(10/23) 3770005304772408 a001 5702887/439204*64079^(7/23) 3770005304781568 a001 9227465/271443*64079^(5/23) 3770005304784326 a001 1346269/103682*103682^(7/24) 3770005304785338 a001 14930352/710647*64079^(6/23) 3770005304790884 a001 24157817/103682*39603^(1/22) 3770005304791717 a001 39088169/1860498*64079^(6/23) 3770005304792648 a001 102334155/4870847*64079^(6/23) 3770005304792783 a001 267914296/12752043*64079^(6/23) 3770005304792803 a001 701408733/33385282*64079^(6/23) 3770005304792806 a001 1836311903/87403803*64079^(6/23) 3770005304792806 a001 102287808/4868641*64079^(6/23) 3770005304792807 a001 12586269025/599074578*64079^(6/23) 3770005304792807 a001 32951280099/1568397607*64079^(6/23) 3770005304792807 a001 86267571272/4106118243*64079^(6/23) 3770005304792807 a001 225851433717/10749957122*64079^(6/23) 3770005304792807 a001 591286729879/28143753123*64079^(6/23) 3770005304792807 a001 1548008755920/73681302247*64079^(6/23) 3770005304792807 a001 4052739537881/192900153618*64079^(6/23) 3770005304792807 a001 225749145909/10745088481*64079^(6/23) 3770005304792807 a001 6557470319842/312119004989*64079^(6/23) 3770005304792807 a001 2504730781961/119218851371*64079^(6/23) 3770005304792807 a001 956722026041/45537549124*64079^(6/23) 3770005304792807 a001 365435296162/17393796001*64079^(6/23) 3770005304792807 a001 139583862445/6643838879*64079^(6/23) 3770005304792807 a001 53316291173/2537720636*64079^(6/23) 3770005304792807 a001 20365011074/969323029*64079^(6/23) 3770005304792807 a001 7778742049/370248451*64079^(6/23) 3770005304792807 a001 2971215073/141422324*64079^(6/23) 3770005304792808 a001 1134903170/54018521*64079^(6/23) 3770005304792815 a001 433494437/20633239*64079^(6/23) 3770005304792867 a001 165580141/7881196*64079^(6/23) 3770005304793223 a001 63245986/3010349*64079^(6/23) 3770005304795659 a001 24157817/1149851*64079^(6/23) 3770005304797433 a001 416020/51841*103682^(1/3) 3770005304804720 a001 46368/167761*439204^(5/9) 3770005304805806 a001 121393/103682*103682^(1/2) 3770005304805915 a001 75640/15251*64079^(9/23) 3770005304806336 a001 17711/710647*39603^(10/11) 3770005304812359 a001 9227465/439204*64079^(6/23) 3770005304815550 a001 46368/167761*7881196^(5/11) 3770005304815569 a001 695751840/1845493 3770005304815574 a001 46368/167761*20633239^(3/7) 3770005304815578 a001 46368/167761*141422324^(5/13) 3770005304815578 a001 75025/103682*141422324^(1/3) 3770005304815578 a001 46368/167761*2537720636^(1/3) 3770005304815578 a001 46368/167761*45537549124^(5/17) 3770005304815578 a001 46368/167761*312119004989^(3/11) 3770005304815578 a001 46368/167761*14662949395604^(5/21) 3770005304815578 a001 46368/167761*(1/2+1/2*5^(1/2))^15 3770005304815578 a001 46368/167761*192900153618^(5/18) 3770005304815578 a001 46368/167761*28143753123^(3/10) 3770005304815578 a001 46368/167761*10749957122^(5/16) 3770005304815578 a001 75025/103682*(1/2+1/2*5^(1/2))^13 3770005304815578 a001 75025/103682*73681302247^(1/4) 3770005304815578 a001 46368/167761*599074578^(5/14) 3770005304815578 a001 46368/167761*228826127^(3/8) 3770005304815579 a001 46368/167761*33385282^(5/12) 3770005304815986 a001 514229/103682*103682^(3/8) 3770005304816123 a001 46368/167761*1860498^(1/2) 3770005304820282 a001 317811/103682*103682^(5/12) 3770005304821475 a001 4976784/90481*64079^(4/23) 3770005304825262 a001 24157817/710647*64079^(5/23) 3770005304831637 a001 31622993/930249*64079^(5/23) 3770005304832567 a001 165580141/4870847*64079^(5/23) 3770005304832703 a001 433494437/12752043*64079^(5/23) 3770005304832722 a001 567451585/16692641*64079^(5/23) 3770005304832725 a001 2971215073/87403803*64079^(5/23) 3770005304832726 a001 7778742049/228826127*64079^(5/23) 3770005304832726 a001 10182505537/299537289*64079^(5/23) 3770005304832726 a001 53316291173/1568397607*64079^(5/23) 3770005304832726 a001 139583862445/4106118243*64079^(5/23) 3770005304832726 a001 182717648081/5374978561*64079^(5/23) 3770005304832726 a001 956722026041/28143753123*64079^(5/23) 3770005304832726 a001 2504730781961/73681302247*64079^(5/23) 3770005304832726 a001 3278735159921/96450076809*64079^(5/23) 3770005304832726 a001 10610209857723/312119004989*64079^(5/23) 3770005304832726 a001 4052739537881/119218851371*64079^(5/23) 3770005304832726 a001 387002188980/11384387281*64079^(5/23) 3770005304832726 a001 591286729879/17393796001*64079^(5/23) 3770005304832726 a001 225851433717/6643838879*64079^(5/23) 3770005304832726 a001 1135099622/33391061*64079^(5/23) 3770005304832726 a001 32951280099/969323029*64079^(5/23) 3770005304832726 a001 12586269025/370248451*64079^(5/23) 3770005304832726 a001 1201881744/35355581*64079^(5/23) 3770005304832727 a001 1836311903/54018521*64079^(5/23) 3770005304832735 a001 701408733/20633239*64079^(5/23) 3770005304832787 a001 66978574/1970299*64079^(5/23) 3770005304833142 a001 102334155/3010349*64079^(5/23) 3770005304835577 a001 39088169/1149851*64079^(5/23) 3770005304841161 a001 75025/103682*271443^(1/2) 3770005304847201 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^37 3770005304847339 a001 1346269/167761*64079^(8/23) 3770005304852266 a001 196452/5779*64079^(5/23) 3770005304861399 a001 24157817/271443*64079^(3/23) 3770005304861904 a001 98209/51841*103682^(11/24) 3770005304864256 a001 15456/90481*103682^(2/3) 3770005304865180 a001 39088169/710647*64079^(4/23) 3770005304866608 a001 39088169/167761*24476^(1/21) 3770005304871556 a001 831985/15126*64079^(4/23) 3770005304872486 a001 267914296/4870847*64079^(4/23) 3770005304872622 a001 233802911/4250681*64079^(4/23) 3770005304872642 a001 1836311903/33385282*64079^(4/23) 3770005304872645 a001 1602508992/29134601*64079^(4/23) 3770005304872645 a001 12586269025/228826127*64079^(4/23) 3770005304872645 a001 10983760033/199691526*64079^(4/23) 3770005304872645 a001 86267571272/1568397607*64079^(4/23) 3770005304872645 a001 75283811239/1368706081*64079^(4/23) 3770005304872645 a001 591286729879/10749957122*64079^(4/23) 3770005304872645 a001 12585437040/228811001*64079^(4/23) 3770005304872645 a001 4052739537881/73681302247*64079^(4/23) 3770005304872645 a001 3536736619241/64300051206*64079^(4/23) 3770005304872645 a001 6557470319842/119218851371*64079^(4/23) 3770005304872645 a001 2504730781961/45537549124*64079^(4/23) 3770005304872645 a001 956722026041/17393796001*64079^(4/23) 3770005304872645 a001 365435296162/6643838879*64079^(4/23) 3770005304872645 a001 139583862445/2537720636*64079^(4/23) 3770005304872645 a001 53316291173/969323029*64079^(4/23) 3770005304872645 a001 20365011074/370248451*64079^(4/23) 3770005304872645 a001 7778742049/141422324*64079^(4/23) 3770005304872646 a001 2971215073/54018521*64079^(4/23) 3770005304872654 a001 1134903170/20633239*64079^(4/23) 3770005304872706 a001 433494437/7881196*64079^(4/23) 3770005304873061 a001 165580141/3010349*64079^(4/23) 3770005304873833 a001 121393/4870847*167761^(4/5) 3770005304875497 a001 63245986/1149851*64079^(4/23) 3770005304886684 a001 2178309/167761*64079^(7/23) 3770005304890902 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^39 3770005304892190 a001 24157817/439204*64079^(4/23) 3770005304897278 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^41 3770005304898208 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^43 3770005304898344 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^45 3770005304898364 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^47 3770005304898366 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^49 3770005304898367 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^51 3770005304898367 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^53 3770005304898367 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^55 3770005304898367 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^57 3770005304898367 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^59 3770005304898367 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^61 3770005304898367 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^63 3770005304898367 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^65 3770005304898367 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^67 3770005304898367 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^69 3770005304898367 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^71 3770005304898367 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^73 3770005304898367 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^75 3770005304898367 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^77 3770005304898367 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^79 3770005304898367 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^81 3770005304898367 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^83 3770005304898367 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^85 3770005304898367 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^87 3770005304898367 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^89 3770005304898367 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^91 3770005304898367 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^93 3770005304898367 a004 Fibonacci(84)*Lucas(25)/(1/2+sqrt(5)/2)^95 3770005304898367 a004 Fibonacci(86)*Lucas(25)/(1/2+sqrt(5)/2)^97 3770005304898367 a004 Fibonacci(88)*Lucas(25)/(1/2+sqrt(5)/2)^99 3770005304898367 a004 Fibonacci(89)*Lucas(25)/(1/2+sqrt(5)/2)^100 3770005304898367 a004 Fibonacci(87)*Lucas(25)/(1/2+sqrt(5)/2)^98 3770005304898367 a004 Fibonacci(85)*Lucas(25)/(1/2+sqrt(5)/2)^96 3770005304898367 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^94 3770005304898367 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^92 3770005304898367 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^90 3770005304898367 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^88 3770005304898367 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^86 3770005304898367 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^84 3770005304898367 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^82 3770005304898367 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^80 3770005304898367 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^78 3770005304898367 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^76 3770005304898367 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^74 3770005304898367 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^72 3770005304898367 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^70 3770005304898367 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^68 3770005304898367 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^66 3770005304898367 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^64 3770005304898367 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^62 3770005304898367 a001 2/75025*(1/2+1/2*5^(1/2))^39 3770005304898367 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^60 3770005304898367 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^58 3770005304898367 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^56 3770005304898367 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^54 3770005304898367 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^52 3770005304898367 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^50 3770005304898368 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^48 3770005304898376 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^46 3770005304898428 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^44 3770005304898783 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^42 3770005304900140 a001 7465176/51841*39603^(1/11) 3770005304901218 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^40 3770005304901317 a001 39088169/271443*64079^(2/23) 3770005304905099 a001 63245986/710647*64079^(3/23) 3770005304911475 a001 165580141/1860498*64079^(3/23) 3770005304912405 a001 433494437/4870847*64079^(3/23) 3770005304912541 a001 1134903170/12752043*64079^(3/23) 3770005304912561 a001 2971215073/33385282*64079^(3/23) 3770005304912564 a001 7778742049/87403803*64079^(3/23) 3770005304912564 a001 20365011074/228826127*64079^(3/23) 3770005304912564 a001 53316291173/599074578*64079^(3/23) 3770005304912564 a001 139583862445/1568397607*64079^(3/23) 3770005304912564 a001 365435296162/4106118243*64079^(3/23) 3770005304912564 a001 956722026041/10749957122*64079^(3/23) 3770005304912564 a001 2504730781961/28143753123*64079^(3/23) 3770005304912564 a001 6557470319842/73681302247*64079^(3/23) 3770005304912564 a001 10610209857723/119218851371*64079^(3/23) 3770005304912564 a001 4052739537881/45537549124*64079^(3/23) 3770005304912564 a001 1548008755920/17393796001*64079^(3/23) 3770005304912564 a001 591286729879/6643838879*64079^(3/23) 3770005304912564 a001 225851433717/2537720636*64079^(3/23) 3770005304912564 a001 86267571272/969323029*64079^(3/23) 3770005304912564 a001 32951280099/370248451*64079^(3/23) 3770005304912565 a001 12586269025/141422324*64079^(3/23) 3770005304912566 a001 4807526976/54018521*64079^(3/23) 3770005304912573 a001 1836311903/20633239*64079^(3/23) 3770005304912625 a001 3524667/39604*64079^(3/23) 3770005304912980 a001 267914296/3010349*64079^(3/23) 3770005304915416 a001 102334155/1149851*64079^(3/23) 3770005304917670 a001 105937/4250681*167761^(4/5) 3770005304917911 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^38 3770005304920326 a001 121393/439204*167761^(3/5) 3770005304924065 a001 416020/16692641*167761^(4/5) 3770005304924999 a001 726103/29134601*167761^(4/5) 3770005304925135 a001 5702887/228826127*167761^(4/5) 3770005304925155 a001 829464/33281921*167761^(4/5) 3770005304925157 a001 39088169/1568397607*167761^(4/5) 3770005304925158 a001 34111385/1368706081*167761^(4/5) 3770005304925158 a001 133957148/5374978561*167761^(4/5) 3770005304925158 a001 233802911/9381251041*167761^(4/5) 3770005304925158 a001 1836311903/73681302247*167761^(4/5) 3770005304925158 a001 267084832/10716675201*167761^(4/5) 3770005304925158 a001 12586269025/505019158607*167761^(4/5) 3770005304925158 a001 10983760033/440719107401*167761^(4/5) 3770005304925158 a001 43133785636/1730726404001*167761^(4/5) 3770005304925158 a001 75283811239/3020733700601*167761^(4/5) 3770005304925158 a001 182717648081/7331474697802*167761^(4/5) 3770005304925158 a001 139583862445/5600748293801*167761^(4/5) 3770005304925158 a001 53316291173/2139295485799*167761^(4/5) 3770005304925158 a001 10182505537/408569081798*167761^(4/5) 3770005304925158 a001 7778742049/312119004989*167761^(4/5) 3770005304925158 a001 2971215073/119218851371*167761^(4/5) 3770005304925158 a001 567451585/22768774562*167761^(4/5) 3770005304925158 a001 433494437/17393796001*167761^(4/5) 3770005304925158 a001 165580141/6643838879*167761^(4/5) 3770005304925158 a001 31622993/1268860318*167761^(4/5) 3770005304925159 a001 24157817/969323029*167761^(4/5) 3770005304925167 a001 9227465/370248451*167761^(4/5) 3770005304925219 a001 1762289/70711162*167761^(4/5) 3770005304925575 a001 1346269/54018521*167761^(4/5) 3770005304925913 a001 17711/1149851*39603^(21/22) 3770005304926485 a001 832040/271443*167761^(2/5) 3770005304926823 a001 3524578/167761*64079^(6/23) 3770005304928018 a001 514229/20633239*167761^(4/5) 3770005304929986 a001 121393/271443*20633239^(2/5) 3770005304929989 a001 121393/271443*17393796001^(2/7) 3770005304929989 a001 121393/271443*14662949395604^(2/9) 3770005304929989 a001 121393/271443*(1/2+1/2*5^(1/2))^14 3770005304929989 a001 121393/271443*505019158607^(1/4) 3770005304929989 a001 121393/271443*10749957122^(7/24) 3770005304929989 a001 121393/271443*4106118243^(7/23) 3770005304929989 a001 121393/271443*1568397607^(7/22) 3770005304929989 a001 121393/271443*599074578^(1/3) 3770005304929989 a001 121393/271443*228826127^(7/20) 3770005304929990 a001 121393/271443*87403803^(7/19) 3770005304929990 a001 14736260449/39088169 3770005304929991 a001 121393/271443*33385282^(7/18) 3770005304929999 a001 121393/271443*12752043^(7/17) 3770005304930059 a001 121393/271443*4870847^(7/16) 3770005304930498 a001 121393/271443*1860498^(7/15) 3770005304932108 a001 39088169/439204*64079^(3/23) 3770005304933722 a001 121393/271443*710647^(1/2) 3770005304937182 a001 6624/101521*103682^(3/4) 3770005304941237 a001 63245986/271443*64079^(1/23) 3770005304944762 a001 98209/3940598*167761^(4/5) 3770005304945019 a001 14619165/101521*64079^(2/23) 3770005304947335 a001 317811/1149851*167761^(3/5) 3770005304949579 a001 11592/109801*103682^(17/24) 3770005304951276 a001 832040/3010349*167761^(3/5) 3770005304951395 a001 133957148/930249*64079^(2/23) 3770005304951851 a001 2178309/7881196*167761^(3/5) 3770005304951935 a001 5702887/20633239*167761^(3/5) 3770005304951947 a001 14930352/54018521*167761^(3/5) 3770005304951949 a001 39088169/141422324*167761^(3/5) 3770005304951949 a001 102334155/370248451*167761^(3/5) 3770005304951949 a001 267914296/969323029*167761^(3/5) 3770005304951949 a001 701408733/2537720636*167761^(3/5) 3770005304951949 a001 1836311903/6643838879*167761^(3/5) 3770005304951949 a001 4807526976/17393796001*167761^(3/5) 3770005304951949 a001 12586269025/45537549124*167761^(3/5) 3770005304951949 a001 32951280099/119218851371*167761^(3/5) 3770005304951949 a001 86267571272/312119004989*167761^(3/5) 3770005304951949 a001 225851433717/817138163596*167761^(3/5) 3770005304951949 a001 1548008755920/5600748293801*167761^(3/5) 3770005304951949 a001 139583862445/505019158607*167761^(3/5) 3770005304951949 a001 53316291173/192900153618*167761^(3/5) 3770005304951949 a001 20365011074/73681302247*167761^(3/5) 3770005304951949 a001 7778742049/28143753123*167761^(3/5) 3770005304951949 a001 2971215073/10749957122*167761^(3/5) 3770005304951949 a001 1134903170/4106118243*167761^(3/5) 3770005304951949 a001 433494437/1568397607*167761^(3/5) 3770005304951949 a001 165580141/599074578*167761^(3/5) 3770005304951949 a001 63245986/228826127*167761^(3/5) 3770005304951950 a001 24157817/87403803*167761^(3/5) 3770005304951954 a001 9227465/33385282*167761^(3/5) 3770005304951987 a001 3524578/12752043*167761^(3/5) 3770005304952206 a001 1346269/4870847*167761^(3/5) 3770005304952325 a001 701408733/4870847*64079^(2/23) 3770005304952460 a001 1836311903/12752043*64079^(2/23) 3770005304952480 a001 14930208/103681*64079^(2/23) 3770005304952483 a001 12586269025/87403803*64079^(2/23) 3770005304952484 a001 32951280099/228826127*64079^(2/23) 3770005304952484 a001 43133785636/299537289*64079^(2/23) 3770005304952484 a001 32264490531/224056801*64079^(2/23) 3770005304952484 a001 591286729879/4106118243*64079^(2/23) 3770005304952484 a001 774004377960/5374978561*64079^(2/23) 3770005304952484 a001 4052739537881/28143753123*64079^(2/23) 3770005304952484 a001 1515744265389/10525900321*64079^(2/23) 3770005304952484 a001 3278735159921/22768774562*64079^(2/23) 3770005304952484 a001 2504730781961/17393796001*64079^(2/23) 3770005304952484 a001 956722026041/6643838879*64079^(2/23) 3770005304952484 a001 182717648081/1268860318*64079^(2/23) 3770005304952484 a001 139583862445/969323029*64079^(2/23) 3770005304952484 a001 53316291173/370248451*64079^(2/23) 3770005304952484 a001 10182505537/70711162*64079^(2/23) 3770005304952485 a001 7778742049/54018521*64079^(2/23) 3770005304952493 a001 2971215073/20633239*64079^(2/23) 3770005304952544 a001 567451585/3940598*64079^(2/23) 3770005304952900 a001 433494437/3010349*64079^(2/23) 3770005304953711 a001 514229/1860498*167761^(3/5) 3770005304954374 a001 9227465/271443*167761^(1/5) 3770005304955335 a001 165580141/1149851*64079^(2/23) 3770005304957541 a001 121393/271443*271443^(7/13) 3770005304961612 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^39 3770005304962111 a001 46368/1149851*103682^(19/24) 3770005304963780 a001 121393/33385282*439204^(8/9) 3770005304964028 a001 196418/710647*167761^(3/5) 3770005304965005 a001 105937/90481*439204^(4/9) 3770005304966016 a001 121393/7881196*439204^(7/9) 3770005304966658 a001 5702887/167761*64079^(5/23) 3770005304967037 a001 121393/1860498*439204^(2/3) 3770005304967121 a001 28657/39603*39603^(13/22) 3770005304971116 a001 311187/101521*167761^(2/5) 3770005304972028 a001 31622993/219602*64079^(2/23) 3770005304972783 a001 2576/103361*103682^(5/6) 3770005304973669 a001 105937/90481*7881196^(4/11) 3770005304973691 a001 105937/90481*141422324^(4/13) 3770005304973691 a001 105937/90481*2537720636^(4/15) 3770005304973691 a001 121393/710647*(1/2+1/2*5^(1/2))^16 3770005304973691 a001 121393/710647*23725150497407^(1/4) 3770005304973691 a001 121393/710647*73681302247^(4/13) 3770005304973691 a001 105937/90481*45537549124^(4/17) 3770005304973691 a001 105937/90481*817138163596^(4/19) 3770005304973691 a001 105937/90481*14662949395604^(4/21) 3770005304973691 a001 105937/90481*(1/2+1/2*5^(1/2))^12 3770005304973691 a001 105937/90481*192900153618^(2/9) 3770005304973691 a001 105937/90481*73681302247^(3/13) 3770005304973691 a001 105937/90481*10749957122^(1/4) 3770005304973691 a001 121393/710647*10749957122^(1/3) 3770005304973691 a001 105937/90481*4106118243^(6/23) 3770005304973691 a001 121393/710647*4106118243^(8/23) 3770005304973691 a001 105937/90481*1568397607^(3/11) 3770005304973691 a001 121393/710647*1568397607^(4/11) 3770005304973691 a001 105937/90481*599074578^(2/7) 3770005304973691 a001 121393/710647*599074578^(8/21) 3770005304973691 a001 105937/90481*228826127^(3/10) 3770005304973691 a001 121393/710647*228826127^(2/5) 3770005304973691 a001 12860010241/34111385 3770005304973691 a001 105937/90481*87403803^(6/19) 3770005304973691 a001 121393/710647*87403803^(8/19) 3770005304973692 a001 105937/90481*33385282^(1/3) 3770005304973692 a001 121393/710647*33385282^(4/9) 3770005304973699 a001 105937/90481*12752043^(6/17) 3770005304973702 a001 121393/710647*12752043^(8/17) 3770005304973750 a001 105937/90481*4870847^(3/8) 3770005304973770 a001 121393/710647*4870847^(1/2) 3770005304974126 a001 105937/90481*1860498^(2/5) 3770005304974272 a001 121393/710647*1860498^(8/15) 3770005304975057 a001 1346269/271443*439204^(1/3) 3770005304976790 a001 5702887/271443*439204^(2/9) 3770005304976890 a001 105937/90481*710647^(3/7) 3770005304977628 a001 5702887/1860498*167761^(2/5) 3770005304977957 a001 121393/710647*710647^(4/7) 3770005304978304 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^41 3770005304978578 a001 14930352/4870847*167761^(2/5) 3770005304978716 a001 39088169/12752043*167761^(2/5) 3770005304978737 a001 14619165/4769326*167761^(2/5) 3770005304978740 a001 267914296/87403803*167761^(2/5) 3770005304978740 a001 701408733/228826127*167761^(2/5) 3770005304978740 a001 1836311903/599074578*167761^(2/5) 3770005304978740 a001 686789568/224056801*167761^(2/5) 3770005304978740 a001 12586269025/4106118243*167761^(2/5) 3770005304978740 a001 32951280099/10749957122*167761^(2/5) 3770005304978740 a001 86267571272/28143753123*167761^(2/5) 3770005304978740 a001 32264490531/10525900321*167761^(2/5) 3770005304978740 a001 591286729879/192900153618*167761^(2/5) 3770005304978740 a001 1548008755920/505019158607*167761^(2/5) 3770005304978740 a001 1515744265389/494493258286*167761^(2/5) 3770005304978740 a001 2504730781961/817138163596*167761^(2/5) 3770005304978740 a001 956722026041/312119004989*167761^(2/5) 3770005304978740 a001 365435296162/119218851371*167761^(2/5) 3770005304978740 a001 139583862445/45537549124*167761^(2/5) 3770005304978740 a001 53316291173/17393796001*167761^(2/5) 3770005304978740 a001 20365011074/6643838879*167761^(2/5) 3770005304978740 a001 7778742049/2537720636*167761^(2/5) 3770005304978740 a001 2971215073/969323029*167761^(2/5) 3770005304978740 a001 1134903170/370248451*167761^(2/5) 3770005304978740 a001 433494437/141422324*167761^(2/5) 3770005304978741 a001 165580141/54018521*167761^(2/5) 3770005304978749 a001 63245986/20633239*167761^(2/5) 3770005304978802 a001 24157817/7881196*167761^(2/5) 3770005304978986 a001 24157817/271443*439204^(1/9) 3770005304979165 a001 9227465/3010349*167761^(2/5) 3770005304980034 a001 121393/1860498*7881196^(6/11) 3770005304980064 a001 832040/271443*20633239^(2/7) 3770005304980067 a001 121393/1860498*141422324^(6/13) 3770005304980067 a001 121393/1860498*2537720636^(2/5) 3770005304980067 a001 832040/271443*2537720636^(2/9) 3770005304980067 a001 121393/1860498*45537549124^(6/17) 3770005304980067 a001 121393/1860498*14662949395604^(2/7) 3770005304980067 a001 121393/1860498*(1/2+1/2*5^(1/2))^18 3770005304980067 a001 121393/1860498*192900153618^(1/3) 3770005304980067 a001 832040/271443*312119004989^(2/11) 3770005304980067 a001 832040/271443*(1/2+1/2*5^(1/2))^10 3770005304980067 a001 832040/271443*28143753123^(1/5) 3770005304980067 a001 832040/271443*10749957122^(5/24) 3770005304980067 a001 121393/1860498*10749957122^(3/8) 3770005304980067 a001 832040/271443*4106118243^(5/23) 3770005304980067 a001 121393/1860498*4106118243^(9/23) 3770005304980067 a001 832040/271443*1568397607^(5/22) 3770005304980067 a001 121393/1860498*1568397607^(9/22) 3770005304980067 a001 832040/271443*599074578^(5/21) 3770005304980067 a001 121393/1860498*599074578^(3/7) 3770005304980067 a001 12625478965/33489287 3770005304980067 a001 832040/271443*228826127^(1/4) 3770005304980067 a001 121393/1860498*228826127^(9/20) 3770005304980067 a001 832040/271443*87403803^(5/19) 3770005304980067 a001 121393/1860498*87403803^(9/19) 3770005304980068 a001 832040/271443*33385282^(5/18) 3770005304980068 a001 121393/1860498*33385282^(1/2) 3770005304980074 a001 832040/271443*12752043^(5/17) 3770005304980079 a001 121393/1860498*12752043^(9/17) 3770005304980116 a001 832040/271443*4870847^(5/16) 3770005304980156 a001 121393/1860498*4870847^(9/16) 3770005304980430 a001 832040/271443*1860498^(1/3) 3770005304980720 a001 121393/1860498*1860498^(3/5) 3770005304980740 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^43 3770005304980992 a001 121393/4870847*20633239^(4/7) 3770005304980997 a001 121393/4870847*2537720636^(4/9) 3770005304980997 a001 121393/4870847*(1/2+1/2*5^(1/2))^20 3770005304980997 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^20/Lucas(32) 3770005304980997 a001 121393/4870847*23725150497407^(5/16) 3770005304980997 a001 121393/4870847*505019158607^(5/14) 3770005304980997 a001 121393/4870847*73681302247^(5/13) 3770005304980997 a001 726103/90481*(1/2+1/2*5^(1/2))^8 3770005304980997 a001 726103/90481*23725150497407^(1/8) 3770005304980997 a001 726103/90481*73681302247^(2/13) 3770005304980997 a001 121393/4870847*28143753123^(2/5) 3770005304980997 a001 726103/90481*10749957122^(1/6) 3770005304980997 a001 121393/4870847*10749957122^(5/12) 3770005304980997 a001 726103/90481*4106118243^(4/23) 3770005304980997 a001 121393/4870847*4106118243^(10/23) 3770005304980997 a001 726103/90481*1568397607^(2/11) 3770005304980997 a001 121393/4870847*1568397607^(5/11) 3770005304980997 a001 88143821479/233802911 3770005304980997 a001 726103/90481*599074578^(4/21) 3770005304980997 a001 121393/4870847*599074578^(10/21) 3770005304980997 a001 726103/90481*228826127^(1/5) 3770005304980997 a001 121393/4870847*228826127^(1/2) 3770005304980997 a001 726103/90481*87403803^(4/19) 3770005304980997 a001 121393/4870847*87403803^(10/19) 3770005304980998 a001 726103/90481*33385282^(2/9) 3770005304980999 a001 121393/4870847*33385282^(5/9) 3770005304981002 a001 726103/90481*12752043^(4/17) 3770005304981011 a001 121393/4870847*12752043^(10/17) 3770005304981037 a001 726103/90481*4870847^(1/4) 3770005304981092 a001 121393/12752043*7881196^(2/3) 3770005304981095 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^45 3770005304981096 a001 121393/4870847*4870847^(5/8) 3770005304981101 a001 121393/599074578*7881196^(10/11) 3770005304981106 a001 233/271444*7881196^(9/11) 3770005304981108 a001 121393/33385282*7881196^(8/11) 3770005304981122 a001 5702887/271443*7881196^(2/11) 3770005304981133 a001 5702887/271443*141422324^(2/13) 3770005304981133 a001 5702887/271443*2537720636^(2/15) 3770005304981133 a001 121393/12752043*312119004989^(2/5) 3770005304981133 a001 121393/12752043*(1/2+1/2*5^(1/2))^22 3770005304981133 a001 5702887/271443*45537549124^(2/17) 3770005304981133 a001 5702887/271443*14662949395604^(2/21) 3770005304981133 a001 5702887/271443*(1/2+1/2*5^(1/2))^6 3770005304981133 a001 5702887/271443*10749957122^(1/8) 3770005304981133 a001 121393/12752043*10749957122^(11/24) 3770005304981133 a001 5702887/271443*4106118243^(3/23) 3770005304981133 a001 121393/12752043*4106118243^(11/23) 3770005304981133 a001 5702887/271443*1568397607^(3/22) 3770005304981133 a001 692290561591/1836311903 3770005304981133 a001 121393/12752043*1568397607^(1/2) 3770005304981133 a001 5702887/271443*599074578^(1/7) 3770005304981133 a001 121393/12752043*599074578^(11/21) 3770005304981133 a001 5702887/271443*228826127^(3/20) 3770005304981133 a001 121393/12752043*228826127^(11/20) 3770005304981133 a001 5702887/271443*87403803^(3/19) 3770005304981133 a001 121393/12752043*87403803^(11/19) 3770005304981133 a001 5702887/271443*33385282^(1/6) 3770005304981135 a001 121393/12752043*33385282^(11/18) 3770005304981137 a001 5702887/271443*12752043^(3/17) 3770005304981147 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^47 3770005304981148 a001 121393/12752043*12752043^(11/17) 3770005304981148 a001 121393/599074578*20633239^(6/7) 3770005304981149 a001 121393/228826127*20633239^(4/5) 3770005304981151 a001 121393/54018521*20633239^(5/7) 3770005304981152 a001 24157817/271443*7881196^(1/11) 3770005304981152 a001 121393/33385282*141422324^(8/13) 3770005304981152 a001 121393/33385282*2537720636^(8/15) 3770005304981152 a001 121393/33385282*45537549124^(8/17) 3770005304981152 a001 121393/33385282*14662949395604^(8/21) 3770005304981152 a001 121393/33385282*(1/2+1/2*5^(1/2))^24 3770005304981152 a001 121393/33385282*192900153618^(4/9) 3770005304981152 a001 121393/33385282*73681302247^(6/13) 3770005304981152 a001 4976784/90481*(1/2+1/2*5^(1/2))^4 3770005304981152 a001 4976784/90481*23725150497407^(1/16) 3770005304981152 a001 4976784/90481*73681302247^(1/13) 3770005304981152 a001 4976784/90481*10749957122^(1/12) 3770005304981152 a001 121393/33385282*10749957122^(1/2) 3770005304981152 a001 4976784/90481*4106118243^(2/23) 3770005304981152 a001 12586390419/33385604 3770005304981152 a001 121393/33385282*4106118243^(12/23) 3770005304981152 a001 4976784/90481*1568397607^(1/11) 3770005304981152 a001 121393/33385282*1568397607^(6/11) 3770005304981152 a001 4976784/90481*599074578^(2/21) 3770005304981152 a001 121393/33385282*599074578^(4/7) 3770005304981152 a001 4976784/90481*228826127^(1/10) 3770005304981152 a001 121393/33385282*228826127^(3/5) 3770005304981153 a001 4976784/90481*87403803^(2/19) 3770005304981153 a001 121393/33385282*87403803^(12/19) 3770005304981153 a001 4976784/90481*33385282^(1/9) 3770005304981155 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^49 3770005304981155 a001 121393/33385282*33385282^(2/3) 3770005304981155 a001 4976784/90481*12752043^(2/17) 3770005304981155 a001 121393/87403803*141422324^(2/3) 3770005304981155 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^26/Lucas(38) 3770005304981155 a001 121393/87403803*73681302247^(1/2) 3770005304981155 a001 39088169/271443*(1/2+1/2*5^(1/2))^2 3770005304981155 a001 39088169/271443*10749957122^(1/24) 3770005304981155 a001 4745030099417/12586269025 3770005304981155 a001 39088169/271443*4106118243^(1/23) 3770005304981155 a001 121393/87403803*10749957122^(13/24) 3770005304981155 a001 39088169/271443*1568397607^(1/22) 3770005304981155 a001 121393/87403803*4106118243^(13/23) 3770005304981155 a001 39088169/271443*599074578^(1/21) 3770005304981155 a001 121393/87403803*1568397607^(13/22) 3770005304981155 a001 39088169/271443*228826127^(1/20) 3770005304981155 a001 121393/87403803*599074578^(13/21) 3770005304981155 a001 39088169/271443*87403803^(1/19) 3770005304981155 a001 121393/87403803*228826127^(13/20) 3770005304981156 a001 39088169/271443*33385282^(1/18) 3770005304981156 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^51 3770005304981156 a001 121393/10749957122*141422324^(12/13) 3770005304981156 a001 121393/2537720636*141422324^(11/13) 3770005304981156 a001 121393/87403803*87403803^(13/19) 3770005304981156 a001 121393/599074578*141422324^(10/13) 3770005304981156 a001 121393/228826127*17393796001^(4/7) 3770005304981156 a001 121393/228826127*14662949395604^(4/9) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(40) 3770005304981156 a001 121393/228826127*505019158607^(1/2) 3770005304981156 a001 121393/228826127*73681302247^(7/13) 3770005304981156 a001 34111385/90481 3770005304981156 a001 121393/228826127*10749957122^(7/12) 3770005304981156 a001 121393/228826127*4106118243^(14/23) 3770005304981156 a001 121393/228826127*1568397607^(7/11) 3770005304981156 a001 121393/228826127*599074578^(2/3) 3770005304981156 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^53 3770005304981156 a001 121393/228826127*228826127^(7/10) 3770005304981156 a001 121393/599074578*2537720636^(2/3) 3770005304981156 a001 121393/599074578*45537549124^(10/17) 3770005304981156 a001 121393/599074578*312119004989^(6/11) 3770005304981156 a001 121393/599074578*14662949395604^(10/21) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(42) 3770005304981156 a001 121393/599074578*192900153618^(5/9) 3770005304981156 a001 4065365016791/10783446409 3770005304981156 a004 Fibonacci(42)/Lucas(26)/(1/2+sqrt(5)/2)^2 3770005304981156 a001 121393/599074578*28143753123^(3/5) 3770005304981156 a001 121393/599074578*10749957122^(5/8) 3770005304981156 a001 121393/599074578*4106118243^(15/23) 3770005304981156 a001 121393/599074578*1568397607^(15/22) 3770005304981156 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^55 3770005304981156 a001 121393/599074578*599074578^(5/7) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(44) 3770005304981156 a001 121393/1568397607*23725150497407^(1/2) 3770005304981156 a001 121393/1568397607*505019158607^(4/7) 3770005304981156 a001 121393/1568397607*73681302247^(8/13) 3770005304981156 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^4 3770005304981156 a001 121393/1568397607*10749957122^(2/3) 3770005304981156 a001 121393/1568397607*4106118243^(16/23) 3770005304981156 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^57 3770005304981156 a001 121393/192900153618*2537720636^(14/15) 3770005304981156 a001 121393/73681302247*2537720636^(8/9) 3770005304981156 a001 121393/45537549124*2537720636^(13/15) 3770005304981156 a001 121393/10749957122*2537720636^(4/5) 3770005304981156 a001 121393/1568397607*1568397607^(8/11) 3770005304981156 a001 121393/6643838879*2537720636^(7/9) 3770005304981156 a001 121393/4106118243*45537549124^(2/3) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(46) 3770005304981156 a001 222915410840879/591286729879 3770005304981156 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^6 3770005304981156 a001 121393/4106118243*10749957122^(17/24) 3770005304981156 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^59 3770005304981156 a001 121393/4106118243*4106118243^(17/23) 3770005304981156 a001 121393/10749957122*45537549124^(12/17) 3770005304981156 a001 121393/10749957122*14662949395604^(4/7) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(48) 3770005304981156 a001 121393/10749957122*505019158607^(9/14) 3770005304981156 a001 121393/10749957122*192900153618^(2/3) 3770005304981156 a001 121393/10749957122*73681302247^(9/13) 3770005304981156 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^8 3770005304981156 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^61 3770005304981156 a001 121393/192900153618*17393796001^(6/7) 3770005304981156 a001 121393/10749957122*10749957122^(3/4) 3770005304981156 a001 121393/28143753123*817138163596^(2/3) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(50) 3770005304981156 a001 1527884955751825/4052739537881 3770005304981156 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^10 3770005304981156 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^63 3770005304981156 a001 121393/3461452808002*45537549124^(16/17) 3770005304981156 a001 121393/192900153618*45537549124^(14/17) 3770005304981156 a001 121393/817138163596*45537549124^(15/17) 3770005304981156 a001 121393/73681302247*312119004989^(8/11) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(52) 3770005304981156 a001 121393/73681302247*23725150497407^(5/8) 3770005304981156 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^65 3770005304981156 a001 121393/73681302247*73681302247^(10/13) 3770005304981156 a001 121393/192900153618*14662949395604^(2/3) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(54) 3770005304981156 a001 121393/192900153618*505019158607^(3/4) 3770005304981156 a001 121393/505019158607*312119004989^(4/5) 3770005304981156 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^67 3770005304981156 a001 121393/9062201101803*312119004989^(10/11) 3770005304981156 a001 121393/817138163596*312119004989^(9/11) 3770005304981156 a001 121393/192900153618*192900153618^(7/9) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(56) 3770005304981156 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^69 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(58) 3770005304981156 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^71 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(60) 3770005304981156 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^73 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(62) 3770005304981156 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^75 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(64) 3770005304981156 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^77 3770005304981156 a001 121393/23725150497407*23725150497407^(13/16) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(66) 3770005304981156 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^79 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(68) 3770005304981156 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^81 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(70) 3770005304981156 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^83 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(72) 3770005304981156 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^85 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(74) 3770005304981156 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^87 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(76) 3770005304981156 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^89 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(78) 3770005304981156 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^91 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(80) 3770005304981156 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^93 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(82) 3770005304981156 a004 Fibonacci(26)*Lucas(83)/(1/2+sqrt(5)/2)^95 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(84) 3770005304981156 a004 Fibonacci(26)*Lucas(85)/(1/2+sqrt(5)/2)^97 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(86) 3770005304981156 a004 Fibonacci(26)*Lucas(87)/(1/2+sqrt(5)/2)^99 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(88) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(90) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(92) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(94) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^84/Lucas(96) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^86/Lucas(98) 3770005304981156 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^12 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^87/Lucas(99) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^88/Lucas(100) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^85/Lucas(97) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^83/Lucas(95) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(93) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(91) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(89) 3770005304981156 a004 Fibonacci(26)*Lucas(88)/(1/2+sqrt(5)/2)^100 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(87) 3770005304981156 a004 Fibonacci(26)*Lucas(86)/(1/2+sqrt(5)/2)^98 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(85) 3770005304981156 a004 Fibonacci(26)*Lucas(84)/(1/2+sqrt(5)/2)^96 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(83) 3770005304981156 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^94 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(81) 3770005304981156 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^92 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(79) 3770005304981156 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^90 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(77) 3770005304981156 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^88 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(75) 3770005304981156 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^86 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(73) 3770005304981156 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^84 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(71) 3770005304981156 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^82 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(69) 3770005304981156 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^80 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(67) 3770005304981156 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^78 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(65) 3770005304981156 a001 121393/14662949395604*14662949395604^(17/21) 3770005304981156 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^76 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(63) 3770005304981156 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^74 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(61) 3770005304981156 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^72 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(59) 3770005304981156 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^70 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(57) 3770005304981156 a001 121393/5600748293801*505019158607^(7/8) 3770005304981156 a001 121393/23725150497407*505019158607^(13/14) 3770005304981156 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^68 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(55) 3770005304981156 a001 121393/3461452808002*192900153618^(8/9) 3770005304981156 a001 121393/14662949395604*192900153618^(17/18) 3770005304981156 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^66 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(53) 3770005304981156 a001 121393/45537549124*45537549124^(13/17) 3770005304981156 a001 121393/505019158607*73681302247^(11/13) 3770005304981156 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^14 3770005304981156 a001 121393/3461452808002*73681302247^(12/13) 3770005304981156 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^16 3770005304981156 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^18 3770005304981156 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^20 3770005304981156 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^22 3770005304981156 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^24 3770005304981156 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^26 3770005304981156 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^28 3770005304981156 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^30 3770005304981156 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^32 3770005304981156 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^34 3770005304981156 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^36 3770005304981156 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^38 3770005304981156 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^40 3770005304981156 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^42 3770005304981156 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^44 3770005304981156 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^46 3770005304981156 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^48 3770005304981156 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^50 3770005304981156 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^52 3770005304981156 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^54 3770005304981156 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^56 3770005304981156 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^60 3770005304981156 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^64 3770005304981156 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^58 3770005304981156 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^57 3770005304981156 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^59 3770005304981156 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^55 3770005304981156 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^53 3770005304981156 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^51 3770005304981156 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^49 3770005304981156 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^47 3770005304981156 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^45 3770005304981156 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^43 3770005304981156 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^41 3770005304981156 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^39 3770005304981156 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^37 3770005304981156 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^35 3770005304981156 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^33 3770005304981156 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^31 3770005304981156 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^29 3770005304981156 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^27 3770005304981156 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^25 3770005304981156 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^23 3770005304981156 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^21 3770005304981156 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^19 3770005304981156 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^17 3770005304981156 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^15 3770005304981156 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^13 3770005304981156 a001 1236084894653041/3278735159921 3770005304981156 a001 121393/45537549124*14662949395604^(13/21) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(51) 3770005304981156 a001 121393/45537549124*192900153618^(13/18) 3770005304981156 a001 121393/45537549124*73681302247^(3/4) 3770005304981156 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^11 3770005304981156 a001 121393/73681302247*28143753123^(4/5) 3770005304981156 a001 121393/817138163596*28143753123^(9/10) 3770005304981156 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^62 3770005304981156 a001 944284833554257/2504730781961 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(49) 3770005304981156 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^9 3770005304981156 a001 121393/28143753123*10749957122^(19/24) 3770005304981156 a001 121393/73681302247*10749957122^(5/6) 3770005304981156 a001 121393/45537549124*10749957122^(13/16) 3770005304981156 a001 121393/192900153618*10749957122^(7/8) 3770005304981156 a001 121393/505019158607*10749957122^(11/12) 3770005304981156 a001 121393/817138163596*10749957122^(15/16) 3770005304981156 a001 121393/1322157322203*10749957122^(23/24) 3770005304981156 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^60 3770005304981156 a001 121393/6643838879*17393796001^(5/7) 3770005304981156 a001 121393/6643838879*312119004989^(7/11) 3770005304981156 a001 121393/6643838879*14662949395604^(5/9) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(47) 3770005304981156 a001 121393/6643838879*505019158607^(5/8) 3770005304981156 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^7 3770005304981156 a001 121393/6643838879*28143753123^(7/10) 3770005304981156 a001 121393/10749957122*4106118243^(18/23) 3770005304981156 a001 121393/2537720636*2537720636^(11/15) 3770005304981156 a001 121393/28143753123*4106118243^(19/23) 3770005304981156 a001 121393/73681302247*4106118243^(20/23) 3770005304981156 a001 121393/192900153618*4106118243^(21/23) 3770005304981156 a001 121393/505019158607*4106118243^(22/23) 3770005304981156 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^58 3770005304981156 a001 121393/2537720636*45537549124^(11/17) 3770005304981156 a001 121393/2537720636*312119004989^(3/5) 3770005304981156 a001 121393/2537720636*14662949395604^(11/21) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(45) 3770005304981156 a001 121393/2537720636*192900153618^(11/18) 3770005304981156 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^5 3770005304981156 a001 121393/2537720636*10749957122^(11/16) 3770005304981156 a001 121393/4106118243*1568397607^(17/22) 3770005304981156 a001 121393/10749957122*1568397607^(9/11) 3770005304981156 a001 121393/28143753123*1568397607^(19/22) 3770005304981156 a001 121393/73681302247*1568397607^(10/11) 3770005304981156 a001 121393/192900153618*1568397607^(21/22) 3770005304981156 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^56 3770005304981156 a001 121393/2537720636*1568397607^(3/4) 3770005304981156 a001 52623190190741/139583862445 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(43) 3770005304981156 a001 121393/969323029*9062201101803^(1/2) 3770005304981156 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2)^3 3770005304981156 a001 121393/1568397607*599074578^(16/21) 3770005304981156 a001 121393/4106118243*599074578^(17/21) 3770005304981156 a001 121393/2537720636*599074578^(11/14) 3770005304981156 a001 121393/6643838879*599074578^(5/6) 3770005304981156 a001 121393/10749957122*599074578^(6/7) 3770005304981156 a001 121393/28143753123*599074578^(19/21) 3770005304981156 a001 121393/45537549124*599074578^(13/14) 3770005304981156 a001 121393/73681302247*599074578^(20/21) 3770005304981156 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^54 3770005304981156 a001 20100270056413/53316291173 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(41) 3770005304981156 a001 121393/370248451*1322157322203^(1/2) 3770005304981156 a004 Fibonacci(41)/Lucas(26)/(1/2+sqrt(5)/2) 3770005304981156 a001 121393/599074578*228826127^(3/4) 3770005304981156 a001 121393/1568397607*228826127^(4/5) 3770005304981156 a001 233/271444*141422324^(9/13) 3770005304981156 a001 121393/4106118243*228826127^(17/20) 3770005304981156 a001 121393/6643838879*228826127^(7/8) 3770005304981156 a001 121393/10749957122*228826127^(9/10) 3770005304981156 a001 121393/28143753123*228826127^(19/20) 3770005304981156 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^52 3770005304981156 a001 233/271444*2537720636^(3/5) 3770005304981156 a001 3838809989249/10182505537 3770005304981156 a001 233/271444*45537549124^(9/17) 3770005304981156 a001 233/271444*817138163596^(9/19) 3770005304981156 a001 233/271444*14662949395604^(3/7) 3770005304981156 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(39) 3770005304981156 a001 233/271444*192900153618^(1/2) 3770005304981156 a001 31622993/271443+31622993/271443*5^(1/2) 3770005304981156 a001 233/271444*10749957122^(9/16) 3770005304981156 a001 233/271444*599074578^(9/14) 3770005304981156 a001 121393/228826127*87403803^(14/19) 3770005304981156 a001 121393/599074578*87403803^(15/19) 3770005304981156 a001 121393/1568397607*87403803^(16/19) 3770005304981156 a001 121393/4106118243*87403803^(17/19) 3770005304981156 a001 121393/10749957122*87403803^(18/19) 3770005304981156 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^50 3770005304981157 a001 39088169/271443*12752043^(1/17) 3770005304981157 a001 24157817/271443*141422324^(1/13) 3770005304981157 a001 121393/54018521*2537720636^(5/9) 3770005304981157 a001 24157817/271443*2537720636^(1/15) 3770005304981157 a001 2932589879081/7778742049 3770005304981157 a001 121393/54018521*312119004989^(5/11) 3770005304981157 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^25/Lucas(37) 3770005304981157 a001 121393/54018521*3461452808002^(5/12) 3770005304981157 a001 24157817/271443*45537549124^(1/17) 3770005304981157 a001 24157817/271443*14662949395604^(1/21) 3770005304981157 a001 24157817/271443*(1/2+1/2*5^(1/2))^3 3770005304981157 a001 121393/54018521*28143753123^(1/2) 3770005304981157 a001 24157817/271443*10749957122^(1/16) 3770005304981157 a001 24157817/271443*599074578^(1/14) 3770005304981157 a001 121393/54018521*228826127^(5/8) 3770005304981157 a001 24157817/271443*33385282^(1/12) 3770005304981158 a001 121393/87403803*33385282^(13/18) 3770005304981158 a001 121393/228826127*33385282^(7/9) 3770005304981159 a001 233/271444*33385282^(3/4) 3770005304981159 a001 121393/599074578*33385282^(5/6) 3770005304981159 a001 121393/1568397607*33385282^(8/9) 3770005304981159 a001 121393/2537720636*33385282^(11/12) 3770005304981159 a001 121393/4106118243*33385282^(17/18) 3770005304981159 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^48 3770005304981162 a001 5702887/271443*4870847^(3/16) 3770005304981163 a001 9227465/271443*20633239^(1/7) 3770005304981165 a001 1120149658745/2971215073 3770005304981165 a001 9227465/271443*2537720636^(1/9) 3770005304981165 a001 121393/20633239*(1/2+1/2*5^(1/2))^23 3770005304981165 a001 9227465/271443*312119004989^(1/11) 3770005304981165 a001 9227465/271443*(1/2+1/2*5^(1/2))^5 3770005304981165 a001 9227465/271443*28143753123^(1/10) 3770005304981165 a001 121393/20633239*4106118243^(1/2) 3770005304981165 a001 9227465/271443*228826127^(1/8) 3770005304981165 a001 39088169/271443*4870847^(1/16) 3770005304981169 a001 121393/33385282*12752043^(12/17) 3770005304981172 a001 4976784/90481*4870847^(1/8) 3770005304981173 a001 121393/87403803*12752043^(13/17) 3770005304981175 a001 121393/228826127*12752043^(14/17) 3770005304981176 a001 121393/599074578*12752043^(15/17) 3770005304981178 a001 121393/1568397607*12752043^(16/17) 3770005304981178 a001 121393/7881196*7881196^(7/11) 3770005304981179 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^46 3770005304981211 a001 121393/7881196*20633239^(3/5) 3770005304981215 a001 3524578/271443*20633239^(1/5) 3770005304981216 a001 121393/7881196*141422324^(7/13) 3770005304981217 a001 213929548577/567451585 3770005304981217 a001 121393/7881196*2537720636^(7/15) 3770005304981217 a001 121393/7881196*17393796001^(3/7) 3770005304981217 a001 3524578/271443*17393796001^(1/7) 3770005304981217 a001 121393/7881196*45537549124^(7/17) 3770005304981217 a001 121393/7881196*14662949395604^(1/3) 3770005304981217 a001 121393/7881196*(1/2+1/2*5^(1/2))^21 3770005304981217 a001 121393/7881196*192900153618^(7/18) 3770005304981217 a001 3524578/271443*14662949395604^(1/9) 3770005304981217 a001 3524578/271443*(1/2+1/2*5^(1/2))^7 3770005304981217 a001 121393/7881196*10749957122^(7/16) 3770005304981217 a001 3524578/271443*599074578^(1/6) 3770005304981217 a001 121393/7881196*599074578^(1/2) 3770005304981219 a001 121393/7881196*33385282^(7/12) 3770005304981228 a001 39088169/271443*1860498^(1/15) 3770005304981242 a001 121393/12752043*4870847^(11/16) 3770005304981266 a001 24157817/271443*1860498^(1/10) 3770005304981272 a001 121393/33385282*4870847^(3/4) 3770005304981284 a001 121393/87403803*4870847^(13/16) 3770005304981287 a001 726103/90481*1860498^(4/15) 3770005304981295 a001 121393/228826127*4870847^(7/8) 3770005304981298 a001 4976784/90481*1860498^(2/15) 3770005304981305 a001 121393/599074578*4870847^(15/16) 3770005304981315 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^44 3770005304981346 a001 9227465/271443*1860498^(1/6) 3770005304981350 a001 5702887/271443*1860498^(1/5) 3770005304981555 a001 1346269/271443*7881196^(3/11) 3770005304981572 a001 1346269/271443*141422324^(3/13) 3770005304981572 a001 163427632717/433494437 3770005304981572 a001 1346269/271443*2537720636^(1/5) 3770005304981572 a001 121393/3010349*817138163596^(1/3) 3770005304981572 a001 121393/3010349*(1/2+1/2*5^(1/2))^19 3770005304981572 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^19/Lucas(31) 3770005304981572 a001 1346269/271443*45537549124^(3/17) 3770005304981572 a001 1346269/271443*14662949395604^(1/7) 3770005304981572 a001 1346269/271443*(1/2+1/2*5^(1/2))^9 3770005304981572 a001 1346269/271443*192900153618^(1/6) 3770005304981572 a001 1346269/271443*10749957122^(3/16) 3770005304981572 a001 1346269/271443*599074578^(3/14) 3770005304981572 a001 121393/3010349*87403803^(1/2) 3770005304981573 a001 1346269/271443*33385282^(1/4) 3770005304981652 a001 3524578/1149851*167761^(2/5) 3770005304981689 a001 39088169/271443*710647^(1/14) 3770005304981723 a001 121393/4870847*1860498^(2/3) 3770005304981899 a001 1346269/271443*1860498^(3/10) 3770005304981931 a001 121393/12752043*1860498^(11/15) 3770005304981979 a001 121393/7881196*1860498^(7/10) 3770005304982024 a001 121393/33385282*1860498^(4/5) 3770005304982065 a001 121393/54018521*1860498^(5/6) 3770005304982099 a001 121393/87403803*1860498^(13/15) 3770005304982136 a001 233/271444*1860498^(9/10) 3770005304982172 a001 121393/228826127*1860498^(14/15) 3770005304982219 a001 4976784/90481*710647^(1/7) 3770005304982245 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^42 3770005304982732 a001 5702887/271443*710647^(3/14) 3770005304982733 a001 832040/271443*710647^(5/14) 3770005304983083 a001 3524578/271443*710647^(1/4) 3770005304983130 a001 726103/90481*710647^(2/7) 3770005304983987 a001 514229/271443*7881196^(1/3) 3770005304984007 a001 62423800997/165580141 3770005304984007 a001 121393/1149851*45537549124^(1/3) 3770005304984007 a001 121393/1149851*(1/2+1/2*5^(1/2))^17 3770005304984007 a001 514229/271443*312119004989^(1/5) 3770005304984007 a001 514229/271443*(1/2+1/2*5^(1/2))^11 3770005304984007 a001 514229/271443*1568397607^(1/4) 3770005304984019 a001 121393/1149851*12752043^(1/2) 3770005304984866 a001 121393/1860498*710647^(9/14) 3770005304984938 a001 165580141/710647*64079^(1/23) 3770005304985091 a001 39088169/271443*271443^(1/13) 3770005304986329 a001 121393/4870847*710647^(5/7) 3770005304986815 a001 121393/7881196*710647^(3/4) 3770005304986998 a001 121393/12752043*710647^(11/14) 3770005304987551 a001 121393/33385282*710647^(6/7) 3770005304988087 a001 121393/87403803*710647^(13/14) 3770005304988621 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^40 3770005304988901 a001 46368/3010349*103682^(7/8) 3770005304989024 a001 4976784/90481*271443^(2/13) 3770005304989842 a001 121393/439204*439204^(5/9) 3770005304991314 a001 433494437/1860498*64079^(1/23) 3770005304992244 a001 1134903170/4870847*64079^(1/23) 3770005304992380 a001 2971215073/12752043*64079^(1/23) 3770005304992400 a001 7778742049/33385282*64079^(1/23) 3770005304992402 a001 20365011074/87403803*64079^(1/23) 3770005304992403 a001 53316291173/228826127*64079^(1/23) 3770005304992403 a001 139583862445/599074578*64079^(1/23) 3770005304992403 a001 365435296162/1568397607*64079^(1/23) 3770005304992403 a001 956722026041/4106118243*64079^(1/23) 3770005304992403 a001 2504730781961/10749957122*64079^(1/23) 3770005304992403 a001 6557470319842/28143753123*64079^(1/23) 3770005304992403 a001 10610209857723/45537549124*64079^(1/23) 3770005304992403 a001 4052739537881/17393796001*64079^(1/23) 3770005304992403 a001 1548008755920/6643838879*64079^(1/23) 3770005304992403 a001 591286729879/2537720636*64079^(1/23) 3770005304992403 a001 225851433717/969323029*64079^(1/23) 3770005304992403 a001 86267571272/370248451*64079^(1/23) 3770005304992403 a001 63246219/271444*64079^(1/23) 3770005304992404 a001 12586269025/54018521*64079^(1/23) 3770005304992412 a001 4807526976/20633239*64079^(1/23) 3770005304992464 a001 1836311903/7881196*64079^(1/23) 3770005304992819 a001 701408733/3010349*64079^(1/23) 3770005304992940 a001 5702887/271443*271443^(3/13) 3770005304995254 a001 267914296/1149851*64079^(1/23) 3770005304995769 a001 63245986/271443*103682^(1/24) 3770005304996740 a001 726103/90481*271443^(4/13) 3770005304997306 a001 105937/90481*271443^(6/13) 3770005304998067 a001 24157817/710647*167761^(1/5) 3770005304998700 a001 1346269/439204*167761^(2/5) 3770005304999746 a001 832040/271443*271443^(5/13) 3770005305000672 a001 121393/439204*7881196^(5/11) 3770005305000696 a001 121393/439204*20633239^(3/7) 3770005305000699 a001 51166889/135721 3770005305000700 a001 121393/439204*141422324^(5/13) 3770005305000700 a001 196418/271443*141422324^(1/3) 3770005305000700 a001 121393/439204*2537720636^(1/3) 3770005305000700 a001 121393/439204*45537549124^(5/17) 3770005305000700 a001 121393/439204*312119004989^(3/11) 3770005305000700 a001 121393/439204*14662949395604^(5/21) 3770005305000700 a001 121393/439204*(1/2+1/2*5^(1/2))^15 3770005305000700 a001 121393/439204*192900153618^(5/18) 3770005305000700 a001 196418/271443*(1/2+1/2*5^(1/2))^13 3770005305000700 a001 196418/271443*73681302247^(1/4) 3770005305000700 a001 121393/439204*28143753123^(3/10) 3770005305000700 a001 121393/439204*10749957122^(5/16) 3770005305000700 a001 121393/439204*599074578^(5/14) 3770005305000700 a001 121393/439204*228826127^(3/8) 3770005305000701 a001 121393/439204*33385282^(5/12) 3770005305000977 a001 28657/103682*64079^(15/23) 3770005305001244 a001 121393/439204*1860498^(1/2) 3770005305002938 a001 46368/4870847*103682^(11/12) 3770005305004442 a001 31622993/930249*167761^(1/5) 3770005305005178 a001 121393/710647*271443^(8/13) 3770005305005313 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^41 3770005305005372 a001 165580141/4870847*167761^(1/5) 3770005305005508 a001 433494437/12752043*167761^(1/5) 3770005305005528 a001 567451585/16692641*167761^(1/5) 3770005305005531 a001 2971215073/87403803*167761^(1/5) 3770005305005531 a001 7778742049/228826127*167761^(1/5) 3770005305005531 a001 10182505537/299537289*167761^(1/5) 3770005305005531 a001 53316291173/1568397607*167761^(1/5) 3770005305005531 a001 139583862445/4106118243*167761^(1/5) 3770005305005531 a001 182717648081/5374978561*167761^(1/5) 3770005305005531 a001 956722026041/28143753123*167761^(1/5) 3770005305005531 a001 2504730781961/73681302247*167761^(1/5) 3770005305005531 a001 3278735159921/96450076809*167761^(1/5) 3770005305005531 a001 10610209857723/312119004989*167761^(1/5) 3770005305005531 a001 4052739537881/119218851371*167761^(1/5) 3770005305005531 a001 387002188980/11384387281*167761^(1/5) 3770005305005531 a001 591286729879/17393796001*167761^(1/5) 3770005305005531 a001 225851433717/6643838879*167761^(1/5) 3770005305005531 a001 1135099622/33391061*167761^(1/5) 3770005305005531 a001 32951280099/969323029*167761^(1/5) 3770005305005531 a001 12586269025/370248451*167761^(1/5) 3770005305005531 a001 1201881744/35355581*167761^(1/5) 3770005305005532 a001 1836311903/54018521*167761^(1/5) 3770005305005540 a001 701408733/20633239*167761^(1/5) 3770005305005540 a001 75025/103682*103682^(13/24) 3770005305005592 a001 66978574/1970299*167761^(1/5) 3770005305005947 a001 102334155/3010349*167761^(1/5) 3770005305006609 a001 9227465/167761*64079^(4/23) 3770005305007484 a001 105937/29134601*439204^(8/9) 3770005305008382 a001 39088169/1149851*167761^(1/5) 3770005305009413 a001 9227465/103682*39603^(3/22) 3770005305009665 a001 10959/711491*439204^(7/9) 3770005305010380 a001 39088169/271443*103682^(1/12) 3770005305011669 a001 317811/4870847*439204^(2/3) 3770005305011689 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^43 3770005305011947 a001 102334155/439204*64079^(1/23) 3770005305012619 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^45 3770005305012755 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^47 3770005305012775 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^49 3770005305012778 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^51 3770005305012778 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^53 3770005305012778 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^55 3770005305012778 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^57 3770005305012778 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^59 3770005305012778 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^61 3770005305012778 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^63 3770005305012778 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^65 3770005305012778 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^67 3770005305012778 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^69 3770005305012778 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^71 3770005305012778 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^73 3770005305012778 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^75 3770005305012778 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^77 3770005305012778 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^79 3770005305012778 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^81 3770005305012778 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^83 3770005305012778 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^85 3770005305012778 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^87 3770005305012778 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^89 3770005305012778 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^91 3770005305012778 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^93 3770005305012778 a004 Fibonacci(82)*Lucas(27)/(1/2+sqrt(5)/2)^95 3770005305012778 a004 Fibonacci(84)*Lucas(27)/(1/2+sqrt(5)/2)^97 3770005305012778 a004 Fibonacci(86)*Lucas(27)/(1/2+sqrt(5)/2)^99 3770005305012778 a004 Fibonacci(87)*Lucas(27)/(1/2+sqrt(5)/2)^100 3770005305012778 a004 Fibonacci(85)*Lucas(27)/(1/2+sqrt(5)/2)^98 3770005305012778 a004 Fibonacci(83)*Lucas(27)/(1/2+sqrt(5)/2)^96 3770005305012778 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^94 3770005305012778 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^92 3770005305012778 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^90 3770005305012778 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^88 3770005305012778 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^86 3770005305012778 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^84 3770005305012778 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^82 3770005305012778 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^80 3770005305012778 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^78 3770005305012778 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^76 3770005305012778 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^74 3770005305012778 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^72 3770005305012778 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^70 3770005305012778 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^68 3770005305012778 a001 1/98209*(1/2+1/2*5^(1/2))^41 3770005305012778 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^66 3770005305012778 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^64 3770005305012778 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^62 3770005305012778 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^60 3770005305012778 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^58 3770005305012778 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^56 3770005305012778 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^54 3770005305012779 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^52 3770005305012780 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^50 3770005305012787 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^48 3770005305012839 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^46 3770005305013194 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^44 3770005305013861 a001 832040/228826127*439204^(8/9) 3770005305014791 a001 726103/199691526*439204^(8/9) 3770005305014927 a001 5702887/1568397607*439204^(8/9) 3770005305014947 a001 4976784/1368706081*439204^(8/9) 3770005305014949 a001 39088169/10749957122*439204^(8/9) 3770005305014950 a001 831985/228811001*439204^(8/9) 3770005305014950 a001 267914296/73681302247*439204^(8/9) 3770005305014950 a001 233802911/64300051206*439204^(8/9) 3770005305014950 a001 1836311903/505019158607*439204^(8/9) 3770005305014950 a001 1602508992/440719107401*439204^(8/9) 3770005305014950 a001 12586269025/3461452808002*439204^(8/9) 3770005305014950 a001 10983760033/3020733700601*439204^(8/9) 3770005305014950 a001 86267571272/23725150497407*439204^(8/9) 3770005305014950 a001 53316291173/14662949395604*439204^(8/9) 3770005305014950 a001 20365011074/5600748293801*439204^(8/9) 3770005305014950 a001 7778742049/2139295485799*439204^(8/9) 3770005305014950 a001 2971215073/817138163596*439204^(8/9) 3770005305014950 a001 1134903170/312119004989*439204^(8/9) 3770005305014950 a001 433494437/119218851371*439204^(8/9) 3770005305014950 a001 165580141/45537549124*439204^(8/9) 3770005305014950 a001 63245986/17393796001*439204^(8/9) 3770005305014951 a001 24157817/6643838879*439204^(8/9) 3770005305014959 a001 9227465/2537720636*439204^(8/9) 3770005305015011 a001 3524578/969323029*439204^(8/9) 3770005305015082 a001 832040/710647*439204^(4/9) 3770005305015366 a001 1346269/370248451*439204^(8/9) 3770005305015490 a001 121393/1860498*271443^(9/13) 3770005305015630 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^42 3770005305016034 a001 832040/54018521*439204^(7/9) 3770005305016851 a001 317811/1149851*439204^(5/9) 3770005305016963 a001 2178309/141422324*439204^(7/9) 3770005305017098 a001 5702887/370248451*439204^(7/9) 3770005305017118 a001 14930352/969323029*439204^(7/9) 3770005305017121 a001 39088169/2537720636*439204^(7/9) 3770005305017121 a001 102334155/6643838879*439204^(7/9) 3770005305017121 a001 9238424/599786069*439204^(7/9) 3770005305017121 a001 701408733/45537549124*439204^(7/9) 3770005305017121 a001 1836311903/119218851371*439204^(7/9) 3770005305017121 a001 4807526976/312119004989*439204^(7/9) 3770005305017121 a001 12586269025/817138163596*439204^(7/9) 3770005305017121 a001 32951280099/2139295485799*439204^(7/9) 3770005305017121 a001 86267571272/5600748293801*439204^(7/9) 3770005305017121 a001 7787980473/505618944676*439204^(7/9) 3770005305017121 a001 365435296162/23725150497407*439204^(7/9) 3770005305017121 a001 139583862445/9062201101803*439204^(7/9) 3770005305017121 a001 53316291173/3461452808002*439204^(7/9) 3770005305017121 a001 20365011074/1322157322203*439204^(7/9) 3770005305017121 a001 7778742049/505019158607*439204^(7/9) 3770005305017121 a001 2971215073/192900153618*439204^(7/9) 3770005305017121 a001 1134903170/73681302247*439204^(7/9) 3770005305017121 a001 433494437/28143753123*439204^(7/9) 3770005305017121 a001 165580141/10749957122*439204^(7/9) 3770005305017122 a001 63245986/4106118243*439204^(7/9) 3770005305017123 a001 24157817/1568397607*439204^(7/9) 3770005305017130 a001 9227465/599074578*439204^(7/9) 3770005305017182 a001 3524578/228826127*439204^(7/9) 3770005305017389 a001 317811/710647*20633239^(2/5) 3770005305017392 a001 317811/710647*17393796001^(2/7) 3770005305017392 a001 317811/710647*14662949395604^(2/9) 3770005305017392 a001 317811/710647*(1/2+1/2*5^(1/2))^14 3770005305017392 a001 317811/710647*505019158607^(1/4) 3770005305017392 a001 317811/710647*10749957122^(7/24) 3770005305017392 a001 317811/710647*4106118243^(7/23) 3770005305017392 a001 317811/710647*1568397607^(7/22) 3770005305017392 a001 317811/710647*599074578^(1/3) 3770005305017392 a001 267914673/710648 3770005305017392 a001 317811/710647*228826127^(7/20) 3770005305017392 a001 317811/710647*87403803^(7/19) 3770005305017393 a001 317811/710647*33385282^(7/18) 3770005305017402 a001 317811/710647*12752043^(7/17) 3770005305017462 a001 317811/710647*4870847^(7/16) 3770005305017537 a001 1346269/87403803*439204^(7/9) 3770005305017770 a001 11592/1970299*103682^(23/24) 3770005305017802 a001 514229/141422324*439204^(8/9) 3770005305017900 a001 317811/710647*1860498^(7/15) 3770005305018181 a001 832040/12752043*439204^(2/3) 3770005305018403 a001 3524578/710647*439204^(1/3) 3770005305019131 a001 311187/4769326*439204^(2/3) 3770005305019269 a001 5702887/87403803*439204^(2/3) 3770005305019290 a001 14930352/228826127*439204^(2/3) 3770005305019292 a001 39088169/599074578*439204^(2/3) 3770005305019293 a001 14619165/224056801*439204^(2/3) 3770005305019293 a001 267914296/4106118243*439204^(2/3) 3770005305019293 a001 701408733/10749957122*439204^(2/3) 3770005305019293 a001 1836311903/28143753123*439204^(2/3) 3770005305019293 a001 686789568/10525900321*439204^(2/3) 3770005305019293 a001 12586269025/192900153618*439204^(2/3) 3770005305019293 a001 32951280099/505019158607*439204^(2/3) 3770005305019293 a001 86267571272/1322157322203*439204^(2/3) 3770005305019293 a001 32264490531/494493258286*439204^(2/3) 3770005305019293 a001 591286729879/9062201101803*439204^(2/3) 3770005305019293 a001 1548008755920/23725150497407*439204^(2/3) 3770005305019293 a001 139583862445/2139295485799*439204^(2/3) 3770005305019293 a001 53316291173/817138163596*439204^(2/3) 3770005305019293 a001 20365011074/312119004989*439204^(2/3) 3770005305019293 a001 7778742049/119218851371*439204^(2/3) 3770005305019293 a001 2971215073/45537549124*439204^(2/3) 3770005305019293 a001 1134903170/17393796001*439204^(2/3) 3770005305019293 a001 433494437/6643838879*439204^(2/3) 3770005305019293 a001 165580141/2537720636*439204^(2/3) 3770005305019293 a001 63245986/969323029*439204^(2/3) 3770005305019294 a001 24157817/370248451*439204^(2/3) 3770005305019302 a001 9227465/141422324*439204^(2/3) 3770005305019355 a001 3524578/54018521*439204^(2/3) 3770005305019718 a001 1346269/20633239*439204^(2/3) 3770005305019969 a001 514229/33385282*439204^(7/9) 3770005305020356 a001 121393/4870847*271443^(10/13) 3770005305020511 a001 14930352/710647*439204^(2/9) 3770005305020791 a001 832040/3010349*439204^(5/9) 3770005305021125 a001 317811/710647*710647^(1/2) 3770005305021366 a001 2178309/7881196*439204^(5/9) 3770005305021450 a001 5702887/20633239*439204^(5/9) 3770005305021462 a001 14930352/54018521*439204^(5/9) 3770005305021464 a001 39088169/141422324*439204^(5/9) 3770005305021464 a001 102334155/370248451*439204^(5/9) 3770005305021465 a001 267914296/969323029*439204^(5/9) 3770005305021465 a001 701408733/2537720636*439204^(5/9) 3770005305021465 a001 1836311903/6643838879*439204^(5/9) 3770005305021465 a001 4807526976/17393796001*439204^(5/9) 3770005305021465 a001 12586269025/45537549124*439204^(5/9) 3770005305021465 a001 32951280099/119218851371*439204^(5/9) 3770005305021465 a001 86267571272/312119004989*439204^(5/9) 3770005305021465 a001 225851433717/817138163596*439204^(5/9) 3770005305021465 a001 1548008755920/5600748293801*439204^(5/9) 3770005305021465 a001 139583862445/505019158607*439204^(5/9) 3770005305021465 a001 53316291173/192900153618*439204^(5/9) 3770005305021465 a001 20365011074/73681302247*439204^(5/9) 3770005305021465 a001 7778742049/28143753123*439204^(5/9) 3770005305021465 a001 2971215073/10749957122*439204^(5/9) 3770005305021465 a001 1134903170/4106118243*439204^(5/9) 3770005305021465 a001 433494437/1568397607*439204^(5/9) 3770005305021465 a001 165580141/599074578*439204^(5/9) 3770005305021465 a001 63245986/228826127*439204^(5/9) 3770005305021465 a001 24157817/87403803*439204^(5/9) 3770005305021470 a001 9227465/33385282*439204^(5/9) 3770005305021502 a001 3524578/12752043*439204^(5/9) 3770005305021722 a001 1346269/4870847*439204^(5/9) 3770005305022006 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^43 3770005305022205 a001 514229/7881196*439204^(2/3) 3770005305022388 a001 726103/620166*439204^(4/9) 3770005305022686 a001 63245986/710647*439204^(1/9) 3770005305023227 a001 514229/1860498*439204^(5/9) 3770005305023454 a001 5702887/4870847*439204^(4/9) 3770005305023610 a001 4976784/4250681*439204^(4/9) 3770005305023632 a001 39088169/33385282*439204^(4/9) 3770005305023636 a001 34111385/29134601*439204^(4/9) 3770005305023636 a001 267914296/228826127*439204^(4/9) 3770005305023636 a001 233802911/199691526*439204^(4/9) 3770005305023636 a001 1836311903/1568397607*439204^(4/9) 3770005305023636 a001 1602508992/1368706081*439204^(4/9) 3770005305023636 a001 12586269025/10749957122*439204^(4/9) 3770005305023636 a001 10983760033/9381251041*439204^(4/9) 3770005305023636 a001 86267571272/73681302247*439204^(4/9) 3770005305023636 a001 75283811239/64300051206*439204^(4/9) 3770005305023636 a001 2504730781961/2139295485799*439204^(4/9) 3770005305023636 a001 365435296162/312119004989*439204^(4/9) 3770005305023636 a001 139583862445/119218851371*439204^(4/9) 3770005305023636 a001 53316291173/45537549124*439204^(4/9) 3770005305023636 a001 20365011074/17393796001*439204^(4/9) 3770005305023636 a001 7778742049/6643838879*439204^(4/9) 3770005305023636 a001 2971215073/2537720636*439204^(4/9) 3770005305023636 a001 1134903170/969323029*439204^(4/9) 3770005305023636 a001 433494437/370248451*439204^(4/9) 3770005305023636 a001 165580141/141422324*439204^(4/9) 3770005305023638 a001 63245986/54018521*439204^(4/9) 3770005305023646 a001 24157817/20633239*439204^(4/9) 3770005305023706 a001 9227465/7881196*439204^(4/9) 3770005305023746 a001 832040/710647*7881196^(4/11) 3770005305023768 a001 832040/710647*141422324^(4/13) 3770005305023768 a001 832040/710647*2537720636^(4/15) 3770005305023768 a001 832040/710647*45537549124^(4/17) 3770005305023768 a001 105937/620166*(1/2+1/2*5^(1/2))^16 3770005305023768 a001 105937/620166*23725150497407^(1/4) 3770005305023768 a001 832040/710647*817138163596^(4/19) 3770005305023768 a001 832040/710647*14662949395604^(4/21) 3770005305023768 a001 832040/710647*(1/2+1/2*5^(1/2))^12 3770005305023768 a001 832040/710647*192900153618^(2/9) 3770005305023768 a001 832040/710647*73681302247^(3/13) 3770005305023768 a001 105937/620166*73681302247^(4/13) 3770005305023768 a001 832040/710647*10749957122^(1/4) 3770005305023768 a001 105937/620166*10749957122^(1/3) 3770005305023768 a001 832040/710647*4106118243^(6/23) 3770005305023768 a001 105937/620166*4106118243^(8/23) 3770005305023768 a001 832040/710647*1568397607^(3/11) 3770005305023768 a001 105937/620166*1568397607^(4/11) 3770005305023768 a001 88143821480/233802911 3770005305023768 a001 832040/710647*599074578^(2/7) 3770005305023768 a001 105937/620166*599074578^(8/21) 3770005305023768 a001 832040/710647*228826127^(3/10) 3770005305023768 a001 105937/620166*228826127^(2/5) 3770005305023768 a001 832040/710647*87403803^(6/19) 3770005305023768 a001 105937/620166*87403803^(8/19) 3770005305023769 a001 832040/710647*33385282^(1/3) 3770005305023770 a001 105937/620166*33385282^(4/9) 3770005305023776 a001 832040/710647*12752043^(6/17) 3770005305023779 a001 105937/620166*12752043^(8/17) 3770005305023828 a001 832040/710647*4870847^(3/8) 3770005305023847 a001 105937/620166*4870847^(1/2) 3770005305024113 a001 3524578/3010349*439204^(4/9) 3770005305024204 a001 832040/710647*1860498^(2/5) 3770005305024349 a001 105937/620166*1860498^(8/15) 3770005305024427 a001 121393/12752043*271443^(11/13) 3770005305024441 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^45 3770005305024665 a001 317811/4870847*7881196^(6/11) 3770005305024696 a001 311187/101521*20633239^(2/7) 3770005305024698 a001 317811/4870847*141422324^(6/13) 3770005305024698 a001 317811/4870847*2537720636^(2/5) 3770005305024698 a001 311187/101521*2537720636^(2/9) 3770005305024698 a001 317811/4870847*45537549124^(6/17) 3770005305024698 a001 317811/4870847*14662949395604^(2/7) 3770005305024698 a001 317811/4870847*(1/2+1/2*5^(1/2))^18 3770005305024698 a001 311187/101521*312119004989^(2/11) 3770005305024698 a001 311187/101521*(1/2+1/2*5^(1/2))^10 3770005305024698 a001 317811/4870847*192900153618^(1/3) 3770005305024698 a001 311187/101521*28143753123^(1/5) 3770005305024698 a001 311187/101521*10749957122^(5/24) 3770005305024698 a001 317811/4870847*10749957122^(3/8) 3770005305024698 a001 311187/101521*4106118243^(5/23) 3770005305024698 a001 317811/4870847*4106118243^(9/23) 3770005305024698 a001 692290561599/1836311903 3770005305024698 a001 311187/101521*1568397607^(5/22) 3770005305024698 a001 317811/4870847*1568397607^(9/22) 3770005305024698 a001 311187/101521*599074578^(5/21) 3770005305024698 a001 317811/4870847*599074578^(3/7) 3770005305024698 a001 311187/101521*228826127^(1/4) 3770005305024698 a001 317811/4870847*228826127^(9/20) 3770005305024698 a001 311187/101521*87403803^(5/19) 3770005305024698 a001 317811/4870847*87403803^(9/19) 3770005305024699 a001 311187/101521*33385282^(5/18) 3770005305024700 a001 317811/4870847*33385282^(1/2) 3770005305024705 a001 311187/101521*12752043^(5/17) 3770005305024711 a001 317811/4870847*12752043^(9/17) 3770005305024727 a001 9227465/1860498*439204^(1/3) 3770005305024748 a001 311187/101521*4870847^(5/16) 3770005305024788 a001 317811/4870847*4870847^(9/16) 3770005305024796 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^47 3770005305024802 a001 317811/1568397607*7881196^(10/11) 3770005305024808 a001 317811/370248451*7881196^(9/11) 3770005305024813 a001 105937/29134601*7881196^(8/11) 3770005305024813 a001 317811/33385282*7881196^(2/3) 3770005305024827 a001 10959/711491*7881196^(7/11) 3770005305024829 a001 105937/4250681*20633239^(4/7) 3770005305024834 a001 105937/4250681*2537720636^(4/9) 3770005305024834 a001 105937/4250681*(1/2+1/2*5^(1/2))^20 3770005305024834 a001 105937/4250681*23725150497407^(5/16) 3770005305024834 a001 105937/4250681*505019158607^(5/14) 3770005305024834 a001 5702887/710647*(1/2+1/2*5^(1/2))^8 3770005305024834 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^8/Lucas(28) 3770005305024834 a001 5702887/710647*23725150497407^(1/8) 3770005305024834 a001 5702887/710647*73681302247^(2/13) 3770005305024834 a001 105937/4250681*73681302247^(5/13) 3770005305024834 a001 105937/4250681*28143753123^(2/5) 3770005305024834 a001 5702887/710647*10749957122^(1/6) 3770005305024834 a001 105937/4250681*10749957122^(5/12) 3770005305024834 a001 604146740119/1602508992 3770005305024834 a001 5702887/710647*4106118243^(4/23) 3770005305024834 a001 105937/4250681*4106118243^(10/23) 3770005305024834 a001 5702887/710647*1568397607^(2/11) 3770005305024834 a001 105937/4250681*1568397607^(5/11) 3770005305024834 a001 5702887/710647*599074578^(4/21) 3770005305024834 a001 105937/4250681*599074578^(10/21) 3770005305024834 a001 5702887/710647*228826127^(1/5) 3770005305024834 a001 105937/4250681*228826127^(1/2) 3770005305024834 a001 5702887/710647*87403803^(4/19) 3770005305024834 a001 105937/4250681*87403803^(10/19) 3770005305024835 a001 5702887/710647*33385282^(2/9) 3770005305024836 a001 105937/4250681*33385282^(5/9) 3770005305024839 a001 5702887/710647*12752043^(4/17) 3770005305024843 a001 14930352/710647*7881196^(2/11) 3770005305024848 a001 105937/4250681*12752043^(10/17) 3770005305024848 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^49 3770005305024850 a001 317811/1568397607*20633239^(6/7) 3770005305024850 a001 377/710646*20633239^(4/5) 3770005305024851 a001 317811/141422324*20633239^(5/7) 3770005305024852 a001 63245986/710647*7881196^(1/11) 3770005305024854 a001 14930352/710647*141422324^(2/13) 3770005305024854 a001 14930352/710647*2537720636^(2/15) 3770005305024854 a001 14930352/710647*45537549124^(2/17) 3770005305024854 a001 317811/33385282*312119004989^(2/5) 3770005305024854 a001 317811/33385282*(1/2+1/2*5^(1/2))^22 3770005305024854 a001 14930352/710647*14662949395604^(2/21) 3770005305024854 a001 14930352/710647*(1/2+1/2*5^(1/2))^6 3770005305024854 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^6/Lucas(28) 3770005305024854 a001 14930352/710647*10749957122^(1/8) 3770005305024854 a001 4745030099472/12586269025 3770005305024854 a001 317811/33385282*10749957122^(11/24) 3770005305024854 a001 14930352/710647*4106118243^(3/23) 3770005305024854 a001 317811/33385282*4106118243^(11/23) 3770005305024854 a001 14930352/710647*1568397607^(3/22) 3770005305024854 a001 317811/33385282*1568397607^(1/2) 3770005305024854 a001 14930352/710647*599074578^(1/7) 3770005305024854 a001 317811/33385282*599074578^(11/21) 3770005305024854 a001 14930352/710647*228826127^(3/20) 3770005305024854 a001 317811/33385282*228826127^(11/20) 3770005305024854 a001 14930352/710647*87403803^(3/19) 3770005305024854 a001 317811/33385282*87403803^(11/19) 3770005305024854 a001 14930352/710647*33385282^(1/6) 3770005305024856 a001 317811/33385282*33385282^(11/18) 3770005305024856 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^51 3770005305024857 a001 105937/29134601*141422324^(8/13) 3770005305024857 a001 105937/29134601*2537720636^(8/15) 3770005305024857 a001 105937/29134601*45537549124^(8/17) 3770005305024857 a001 105937/29134601*14662949395604^(8/21) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^24/Lucas(38) 3770005305024857 a001 39088169/710647*(1/2+1/2*5^(1/2))^4 3770005305024857 a001 39088169/710647*23725150497407^(1/16) 3770005305024857 a001 105937/29134601*192900153618^(4/9) 3770005305024857 a001 105937/29134601*73681302247^(6/13) 3770005305024857 a001 4140883359353/10983760033 3770005305024857 a001 39088169/710647*10749957122^(1/12) 3770005305024857 a001 105937/29134601*10749957122^(1/2) 3770005305024857 a001 39088169/710647*4106118243^(2/23) 3770005305024857 a001 105937/29134601*4106118243^(12/23) 3770005305024857 a001 39088169/710647*1568397607^(1/11) 3770005305024857 a001 105937/29134601*1568397607^(6/11) 3770005305024857 a001 39088169/710647*599074578^(2/21) 3770005305024857 a001 105937/29134601*599074578^(4/7) 3770005305024857 a001 39088169/710647*228826127^(1/10) 3770005305024857 a001 105937/29134601*228826127^(3/5) 3770005305024857 a001 39088169/710647*87403803^(2/19) 3770005305024857 a001 317811/228826127*141422324^(2/3) 3770005305024857 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^53 3770005305024857 a001 105937/29134601*87403803^(12/19) 3770005305024857 a001 105937/9381251041*141422324^(12/13) 3770005305024857 a001 317811/6643838879*141422324^(11/13) 3770005305024857 a001 317811/1568397607*141422324^(10/13) 3770005305024857 a001 39088169/710647*33385282^(1/9) 3770005305024857 a001 317811/370248451*141422324^(9/13) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(40) 3770005305024857 a001 14619165/101521*(1/2+1/2*5^(1/2))^2 3770005305024857 a001 32522920134705/86267571272 3770005305024857 a001 317811/228826127*73681302247^(1/2) 3770005305024857 a001 14619165/101521*10749957122^(1/24) 3770005305024857 a001 14619165/101521*4106118243^(1/23) 3770005305024857 a001 317811/228826127*10749957122^(13/24) 3770005305024857 a001 14619165/101521*1568397607^(1/22) 3770005305024857 a001 317811/228826127*4106118243^(13/23) 3770005305024857 a001 14619165/101521*599074578^(1/21) 3770005305024857 a001 317811/228826127*1568397607^(13/22) 3770005305024857 a001 14619165/101521*228826127^(1/20) 3770005305024857 a001 317811/228826127*599074578^(13/21) 3770005305024857 a001 14619165/101521*87403803^(1/19) 3770005305024857 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^55 3770005305024857 a001 317811/228826127*228826127^(13/20) 3770005305024857 a001 377/710646*17393796001^(4/7) 3770005305024857 a001 377/710646*14662949395604^(4/9) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(42) 3770005305024857 a001 267914296/710647 3770005305024857 a001 377/710646*73681302247^(7/13) 3770005305024857 a001 377/710646*10749957122^(7/12) 3770005305024857 a001 377/710646*4106118243^(14/23) 3770005305024857 a001 377/710646*1568397607^(7/11) 3770005305024857 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^57 3770005305024857 a001 377/710646*599074578^(2/3) 3770005305024857 a001 317811/1568397607*2537720636^(2/3) 3770005305024857 a001 317811/1568397607*45537549124^(10/17) 3770005305024857 a001 317811/1568397607*312119004989^(6/11) 3770005305024857 a001 317811/1568397607*14662949395604^(10/21) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(44) 3770005305024857 a001 222915410843463/591286729879 3770005305024857 a004 Fibonacci(44)/Lucas(28)/(1/2+sqrt(5)/2)^2 3770005305024857 a001 317811/1568397607*192900153618^(5/9) 3770005305024857 a001 317811/1568397607*28143753123^(3/5) 3770005305024857 a001 317811/1568397607*10749957122^(5/8) 3770005305024857 a001 317811/1568397607*4106118243^(15/23) 3770005305024857 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^59 3770005305024857 a001 317811/505019158607*2537720636^(14/15) 3770005305024857 a001 105937/64300051206*2537720636^(8/9) 3770005305024857 a001 317811/119218851371*2537720636^(13/15) 3770005305024857 a001 317811/1568397607*1568397607^(15/22) 3770005305024857 a001 105937/9381251041*2537720636^(4/5) 3770005305024857 a001 10959/599786069*2537720636^(7/9) 3770005305024857 a001 317811/6643838879*2537720636^(11/15) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(46) 3770005305024857 a001 105937/1368706081*23725150497407^(1/2) 3770005305024857 a001 105937/1368706081*505019158607^(4/7) 3770005305024857 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^4 3770005305024857 a001 105937/1368706081*73681302247^(8/13) 3770005305024857 a001 105937/1368706081*10749957122^(2/3) 3770005305024857 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^61 3770005305024857 a001 105937/1368706081*4106118243^(16/23) 3770005305024857 a001 317811/10749957122*45537549124^(2/3) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(48) 3770005305024857 a001 1527884955769536/4052739537881 3770005305024857 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^6 3770005305024857 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^63 3770005305024857 a001 317811/505019158607*17393796001^(6/7) 3770005305024857 a001 317811/10749957122*10749957122^(17/24) 3770005305024857 a001 105937/9381251041*45537549124^(12/17) 3770005305024857 a001 105937/9381251041*14662949395604^(4/7) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(50) 3770005305024857 a001 105937/9381251041*505019158607^(9/14) 3770005305024857 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^8 3770005305024857 a001 105937/9381251041*192900153618^(2/3) 3770005305024857 a001 105937/9381251041*73681302247^(9/13) 3770005305024857 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^65 3770005305024857 a001 105937/3020733700601*45537549124^(16/17) 3770005305024857 a001 317811/2139295485799*45537549124^(15/17) 3770005305024857 a001 317811/505019158607*45537549124^(14/17) 3770005305024857 a001 317811/119218851371*45537549124^(13/17) 3770005305024857 a001 317811/73681302247*817138163596^(2/3) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(52) 3770005305024857 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^10 3770005305024857 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^67 3770005305024857 a001 105937/64300051206*312119004989^(8/11) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(54) 3770005305024857 a001 105937/64300051206*23725150497407^(5/8) 3770005305024857 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^12 3770005305024857 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^69 3770005305024857 a001 105937/440719107401*312119004989^(4/5) 3770005305024857 a001 317811/505019158607*14662949395604^(2/3) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(56) 3770005305024857 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^71 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(58) 3770005305024857 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^73 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(60) 3770005305024857 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^75 3770005305024857 a001 105937/3020733700601*14662949395604^(16/21) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(62) 3770005305024857 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^77 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(64) 3770005305024857 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^79 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(66) 3770005305024857 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^81 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(68) 3770005305024857 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^83 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(70) 3770005305024857 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^85 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(72) 3770005305024857 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^87 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(74) 3770005305024857 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^89 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(76) 3770005305024857 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^91 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(78) 3770005305024857 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^93 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(80) 3770005305024857 a004 Fibonacci(28)*Lucas(81)/(1/2+sqrt(5)/2)^95 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(82) 3770005305024857 a004 Fibonacci(28)*Lucas(83)/(1/2+sqrt(5)/2)^97 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(84) 3770005305024857 a004 Fibonacci(28)*Lucas(85)/(1/2+sqrt(5)/2)^99 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(86) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(88) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(90) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(92) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(94) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^82/Lucas(96) 3770005305024857 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^14 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^84/Lucas(98) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^86/Lucas(100) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^85/Lucas(99) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^83/Lucas(97) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^81/Lucas(95) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(93) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(91) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(89) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(87) 3770005305024857 a004 Fibonacci(28)*Lucas(86)/(1/2+sqrt(5)/2)^100 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(85) 3770005305024857 a004 Fibonacci(28)*Lucas(84)/(1/2+sqrt(5)/2)^98 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(83) 3770005305024857 a004 Fibonacci(28)*Lucas(82)/(1/2+sqrt(5)/2)^96 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(81) 3770005305024857 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^94 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(79) 3770005305024857 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^92 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(77) 3770005305024857 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^90 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(75) 3770005305024857 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^88 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(73) 3770005305024857 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^86 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(71) 3770005305024857 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^84 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(69) 3770005305024857 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^82 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(67) 3770005305024857 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^80 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(65) 3770005305024857 a001 10959/505618944676*14662949395604^(7/9) 3770005305024857 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^78 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(63) 3770005305024857 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^76 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(61) 3770005305024857 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^74 3770005305024857 a001 317811/2139295485799*14662949395604^(5/7) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(59) 3770005305024857 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^72 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(57) 3770005305024857 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^16 3770005305024857 a001 10959/505618944676*505019158607^(7/8) 3770005305024857 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^18 3770005305024857 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^20 3770005305024857 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^22 3770005305024857 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^24 3770005305024857 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^26 3770005305024857 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^28 3770005305024857 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^30 3770005305024857 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^32 3770005305024857 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^34 3770005305024857 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^36 3770005305024857 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^38 3770005305024857 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^40 3770005305024857 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^42 3770005305024857 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^44 3770005305024857 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^46 3770005305024857 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^48 3770005305024857 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^50 3770005305024857 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^52 3770005305024857 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^54 3770005305024857 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^56 3770005305024857 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^58 3770005305024857 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^70 3770005305024857 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^57 3770005305024857 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^55 3770005305024857 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^53 3770005305024857 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^51 3770005305024857 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^49 3770005305024857 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^47 3770005305024857 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^45 3770005305024857 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^43 3770005305024857 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^41 3770005305024857 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^39 3770005305024857 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^37 3770005305024857 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^35 3770005305024857 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^33 3770005305024857 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^31 3770005305024857 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^29 3770005305024857 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^27 3770005305024857 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^25 3770005305024857 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^23 3770005305024857 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^21 3770005305024857 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^19 3770005305024857 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^17 3770005305024857 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^15 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(55) 3770005305024857 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^13 3770005305024857 a001 317811/505019158607*192900153618^(7/9) 3770005305024857 a001 105937/3020733700601*192900153618^(8/9) 3770005305024857 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^68 3770005305024857 a001 317811/119218851371*14662949395604^(13/21) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(53) 3770005305024857 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^11 3770005305024857 a001 317811/119218851371*192900153618^(13/18) 3770005305024857 a001 105937/64300051206*73681302247^(10/13) 3770005305024857 a001 105937/440719107401*73681302247^(11/13) 3770005305024857 a001 105937/3020733700601*73681302247^(12/13) 3770005305024857 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^66 3770005305024857 a001 317811/119218851371*73681302247^(3/4) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(51) 3770005305024857 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^9 3770005305024857 a001 10959/599786069*17393796001^(5/7) 3770005305024857 a001 105937/64300051206*28143753123^(4/5) 3770005305024857 a001 317811/2139295485799*28143753123^(9/10) 3770005305024857 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^64 3770005305024857 a001 10959/599786069*312119004989^(7/11) 3770005305024857 a001 10959/599786069*14662949395604^(5/9) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(49) 3770005305024857 a001 10959/599786069*505019158607^(5/8) 3770005305024857 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^7 3770005305024857 a001 10959/599786069*28143753123^(7/10) 3770005305024857 a001 105937/9381251041*10749957122^(3/4) 3770005305024857 a001 317811/73681302247*10749957122^(19/24) 3770005305024857 a001 317811/119218851371*10749957122^(13/16) 3770005305024857 a001 105937/64300051206*10749957122^(5/6) 3770005305024857 a001 317811/505019158607*10749957122^(7/8) 3770005305024857 a001 105937/440719107401*10749957122^(11/12) 3770005305024857 a001 317811/2139295485799*10749957122^(15/16) 3770005305024857 a001 317811/3461452808002*10749957122^(23/24) 3770005305024857 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^62 3770005305024857 a001 317811/6643838879*45537549124^(11/17) 3770005305024857 a001 317811/6643838879*312119004989^(3/5) 3770005305024857 a001 317811/6643838879*14662949395604^(11/21) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(47) 3770005305024857 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^5 3770005305024857 a001 317811/6643838879*192900153618^(11/18) 3770005305024857 a001 317811/6643838879*10749957122^(11/16) 3770005305024857 a001 317811/10749957122*4106118243^(17/23) 3770005305024857 a001 105937/9381251041*4106118243^(18/23) 3770005305024857 a001 317811/73681302247*4106118243^(19/23) 3770005305024857 a001 105937/64300051206*4106118243^(20/23) 3770005305024857 a001 317811/505019158607*4106118243^(21/23) 3770005305024857 a001 105937/440719107401*4106118243^(22/23) 3770005305024857 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^60 3770005305024857 a001 360684711360870/956722026041 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(45) 3770005305024857 a001 317811/2537720636*9062201101803^(1/2) 3770005305024857 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2)^3 3770005305024857 a001 105937/1368706081*1568397607^(8/11) 3770005305024857 a001 317811/10749957122*1568397607^(17/22) 3770005305024857 a001 317811/6643838879*1568397607^(3/4) 3770005305024857 a001 105937/9381251041*1568397607^(9/11) 3770005305024857 a001 317811/73681302247*1568397607^(19/22) 3770005305024857 a001 105937/64300051206*1568397607^(10/11) 3770005305024857 a001 317811/505019158607*1568397607^(21/22) 3770005305024857 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^58 3770005305024857 a001 137769300517407/365435296162 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(43) 3770005305024857 a001 317811/969323029*1322157322203^(1/2) 3770005305024857 a004 Fibonacci(43)/Lucas(28)/(1/2+sqrt(5)/2) 3770005305024857 a001 317811/1568397607*599074578^(5/7) 3770005305024857 a001 105937/1368706081*599074578^(16/21) 3770005305024857 a001 317811/6643838879*599074578^(11/14) 3770005305024857 a001 317811/10749957122*599074578^(17/21) 3770005305024857 a001 10959/599786069*599074578^(5/6) 3770005305024857 a001 105937/9381251041*599074578^(6/7) 3770005305024857 a001 317811/73681302247*599074578^(19/21) 3770005305024857 a001 317811/119218851371*599074578^(13/14) 3770005305024857 a001 105937/64300051206*599074578^(20/21) 3770005305024857 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^56 3770005305024857 a001 24157817/710647*20633239^(1/7) 3770005305024857 a001 317811/370248451*2537720636^(3/5) 3770005305024857 a001 317811/370248451*45537549124^(9/17) 3770005305024857 a001 52623190191351/139583862445 3770005305024857 a001 317811/370248451*14662949395604^(3/7) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(41) 3770005305024857 a001 165580141/1421294+165580141/1421294*5^(1/2) 3770005305024857 a001 317811/370248451*192900153618^(1/2) 3770005305024857 a001 317811/370248451*10749957122^(9/16) 3770005305024857 a001 317811/370248451*599074578^(9/14) 3770005305024857 a001 377/710646*228826127^(7/10) 3770005305024857 a001 317811/1568397607*228826127^(3/4) 3770005305024857 a001 105937/1368706081*228826127^(4/5) 3770005305024857 a001 317811/10749957122*228826127^(17/20) 3770005305024857 a001 10959/599786069*228826127^(7/8) 3770005305024857 a001 105937/9381251041*228826127^(9/10) 3770005305024857 a001 317811/73681302247*228826127^(19/20) 3770005305024857 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^54 3770005305024857 a001 14619165/101521*33385282^(1/18) 3770005305024857 a001 63245986/710647*141422324^(1/13) 3770005305024857 a001 317811/141422324*2537720636^(5/9) 3770005305024857 a001 63245986/710647*2537720636^(1/15) 3770005305024857 a001 20100270056646/53316291173 3770005305024857 a001 63245986/710647*45537549124^(1/17) 3770005305024857 a001 317811/141422324*312119004989^(5/11) 3770005305024857 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(39) 3770005305024857 a001 317811/141422324*3461452808002^(5/12) 3770005305024857 a001 63245986/710647*14662949395604^(1/21) 3770005305024857 a001 63245986/710647*(1/2+1/2*5^(1/2))^3 3770005305024857 a001 63245986/710647*192900153618^(1/18) 3770005305024857 a001 63245986/710647*10749957122^(1/16) 3770005305024857 a001 317811/141422324*28143753123^(1/2) 3770005305024857 a001 63245986/710647*599074578^(1/14) 3770005305024857 a001 317811/141422324*228826127^(5/8) 3770005305024857 a001 317811/228826127*87403803^(13/19) 3770005305024857 a001 377/710646*87403803^(14/19) 3770005305024858 a001 317811/1568397607*87403803^(15/19) 3770005305024858 a001 105937/1368706081*87403803^(16/19) 3770005305024858 a001 317811/10749957122*87403803^(17/19) 3770005305024858 a001 105937/9381251041*87403803^(18/19) 3770005305024858 a001 63245986/710647*33385282^(1/12) 3770005305024858 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^52 3770005305024858 a001 14930352/710647*12752043^(3/17) 3770005305024858 a001 14619165/101521*12752043^(1/17) 3770005305024858 a001 24157817/710647*2537720636^(1/9) 3770005305024858 a001 7677619978587/20365011074 3770005305024858 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^23/Lucas(37) 3770005305024858 a001 24157817/710647*312119004989^(1/11) 3770005305024858 a001 24157817/710647*(1/2+1/2*5^(1/2))^5 3770005305024858 a001 24157817/710647*28143753123^(1/10) 3770005305024858 a001 317811/54018521*4106118243^(1/2) 3770005305024858 a001 24157817/710647*228826127^(1/8) 3770005305024859 a001 105937/29134601*33385282^(2/3) 3770005305024859 a001 39088169/710647*12752043^(2/17) 3770005305024860 a001 317811/228826127*33385282^(13/18) 3770005305024860 a001 317811/370248451*33385282^(3/4) 3770005305024860 a001 377/710646*33385282^(7/9) 3770005305024860 a001 317811/1568397607*33385282^(5/6) 3770005305024860 a001 105937/1368706081*33385282^(8/9) 3770005305024860 a001 317811/6643838879*33385282^(11/12) 3770005305024860 a001 317811/10749957122*33385282^(17/18) 3770005305024861 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^50 3770005305024861 a001 10959/711491*20633239^(3/5) 3770005305024864 a001 9227465/710647*20633239^(1/5) 3770005305024866 a001 10959/711491*141422324^(7/13) 3770005305024866 a001 10959/711491*2537720636^(7/15) 3770005305024866 a001 225583836855/598364773 3770005305024866 a001 10959/711491*17393796001^(3/7) 3770005305024866 a001 9227465/710647*17393796001^(1/7) 3770005305024866 a001 10959/711491*45537549124^(7/17) 3770005305024866 a001 10959/711491*14662949395604^(1/3) 3770005305024866 a001 10959/711491*(1/2+1/2*5^(1/2))^21 3770005305024866 a001 9227465/710647*14662949395604^(1/9) 3770005305024866 a001 9227465/710647*(1/2+1/2*5^(1/2))^7 3770005305024866 a001 10959/711491*192900153618^(7/18) 3770005305024866 a001 10959/711491*10749957122^(7/16) 3770005305024866 a001 9227465/710647*599074578^(1/6) 3770005305024866 a001 10959/711491*599074578^(1/2) 3770005305024867 a001 14619165/101521*4870847^(1/16) 3770005305024868 a001 10959/711491*33385282^(7/12) 3770005305024869 a001 317811/33385282*12752043^(11/17) 3770005305024873 a001 105937/29134601*12752043^(12/17) 3770005305024874 a001 5702887/710647*4870847^(1/4) 3770005305024875 a001 317811/228826127*12752043^(13/17) 3770005305024876 a001 377/710646*12752043^(14/17) 3770005305024877 a001 39088169/710647*4870847^(1/8) 3770005305024878 a001 317811/1568397607*12752043^(15/17) 3770005305024879 a001 105937/1368706081*12752043^(16/17) 3770005305024880 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^48 3770005305024884 a001 14930352/710647*4870847^(3/16) 3770005305024901 a001 3524578/710647*7881196^(3/11) 3770005305024918 a001 3524578/710647*141422324^(3/13) 3770005305024918 a001 3524578/710647*2537720636^(1/5) 3770005305024918 a001 1120149658758/2971215073 3770005305024918 a001 3524578/710647*45537549124^(3/17) 3770005305024918 a001 317811/7881196*817138163596^(1/3) 3770005305024918 a001 317811/7881196*(1/2+1/2*5^(1/2))^19 3770005305024918 a001 3524578/710647*817138163596^(3/19) 3770005305024918 a001 3524578/710647*14662949395604^(1/7) 3770005305024918 a001 3524578/710647*(1/2+1/2*5^(1/2))^9 3770005305024918 a001 3524578/710647*192900153618^(1/6) 3770005305024918 a001 3524578/710647*10749957122^(3/16) 3770005305024918 a001 3524578/710647*599074578^(3/14) 3770005305024918 a001 317811/7881196*87403803^(1/2) 3770005305024919 a001 3524578/710647*33385282^(1/4) 3770005305024930 a001 14619165/101521*1860498^(1/15) 3770005305024933 a001 105937/4250681*4870847^(5/8) 3770005305024963 a001 317811/33385282*4870847^(11/16) 3770005305024966 a001 63245986/710647*1860498^(1/10) 3770005305024976 a001 105937/29134601*4870847^(3/4) 3770005305024986 a001 317811/228826127*4870847^(13/16) 3770005305024995 a001 24157817/271443*103682^(1/8) 3770005305024996 a001 377/710646*4870847^(7/8) 3770005305025002 a001 39088169/710647*1860498^(2/15) 3770005305025006 a001 317811/1568397607*4870847^(15/16) 3770005305025016 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^46 3770005305025040 a001 24157817/710647*1860498^(1/6) 3770005305025061 a001 311187/101521*1860498^(1/3) 3770005305025072 a001 196452/5779*167761^(1/5) 3770005305025072 a001 14930352/710647*1860498^(1/5) 3770005305025124 a001 5702887/710647*1860498^(4/15) 3770005305025245 a001 3524578/710647*1860498^(3/10) 3770005305025253 a001 1346269/710647*7881196^(1/3) 3770005305025273 a001 427859097159/1134903170 3770005305025273 a001 317811/3010349*45537549124^(1/3) 3770005305025273 a001 317811/3010349*(1/2+1/2*5^(1/2))^17 3770005305025273 a001 1346269/710647*312119004989^(1/5) 3770005305025273 a001 1346269/710647*(1/2+1/2*5^(1/2))^11 3770005305025273 a001 1346269/710647*1568397607^(1/4) 3770005305025285 a001 317811/3010349*12752043^(1/2) 3770005305025352 a001 317811/4870847*1860498^(3/5) 3770005305025390 a001 14619165/101521*710647^(1/14) 3770005305025560 a001 105937/4250681*1860498^(2/3) 3770005305025628 a001 10959/711491*1860498^(7/10) 3770005305025650 a001 24157817/4870847*439204^(1/3) 3770005305025652 a001 317811/33385282*1860498^(11/15) 3770005305025728 a001 105937/29134601*1860498^(4/5) 3770005305025765 a001 317811/141422324*1860498^(5/6) 3770005305025785 a001 63245986/12752043*439204^(1/3) 3770005305025801 a001 317811/228826127*1860498^(13/15) 3770005305025804 a001 165580141/33385282*439204^(1/3) 3770005305025807 a001 433494437/87403803*439204^(1/3) 3770005305025808 a001 1134903170/228826127*439204^(1/3) 3770005305025808 a001 2971215073/599074578*439204^(1/3) 3770005305025808 a001 7778742049/1568397607*439204^(1/3) 3770005305025808 a001 20365011074/4106118243*439204^(1/3) 3770005305025808 a001 53316291173/10749957122*439204^(1/3) 3770005305025808 a001 139583862445/28143753123*439204^(1/3) 3770005305025808 a001 365435296162/73681302247*439204^(1/3) 3770005305025808 a001 956722026041/192900153618*439204^(1/3) 3770005305025808 a001 2504730781961/505019158607*439204^(1/3) 3770005305025808 a001 10610209857723/2139295485799*439204^(1/3) 3770005305025808 a001 4052739537881/817138163596*439204^(1/3) 3770005305025808 a001 140728068720/28374454999*439204^(1/3) 3770005305025808 a001 591286729879/119218851371*439204^(1/3) 3770005305025808 a001 225851433717/45537549124*439204^(1/3) 3770005305025808 a001 86267571272/17393796001*439204^(1/3) 3770005305025808 a001 32951280099/6643838879*439204^(1/3) 3770005305025808 a001 1144206275/230701876*439204^(1/3) 3770005305025808 a001 4807526976/969323029*439204^(1/3) 3770005305025808 a001 1836311903/370248451*439204^(1/3) 3770005305025808 a001 701408733/141422324*439204^(1/3) 3770005305025809 a001 267914296/54018521*439204^(1/3) 3770005305025816 a001 9303105/1875749*439204^(1/3) 3770005305025837 a001 317811/370248451*1860498^(9/10) 3770005305025868 a001 39088169/7881196*439204^(1/3) 3770005305025874 a001 377/710646*1860498^(14/15) 3770005305025923 a001 39088169/710647*710647^(1/7) 3770005305025943 a001 17711/24476*24476^(13/21) 3770005305025946 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^44 3770005305026220 a001 14930352/3010349*439204^(1/3) 3770005305026283 a001 196418/271443*271443^(1/2) 3770005305026453 a001 14930352/710647*710647^(3/14) 3770005305026732 a001 9227465/710647*710647^(1/4) 3770005305026890 a001 39088169/1860498*439204^(2/9) 3770005305026903 a001 1346269/1149851*439204^(4/9) 3770005305026967 a001 5702887/710647*710647^(2/7) 3770005305026967 a001 832040/710647*710647^(3/7) 3770005305027364 a001 311187/101521*710647^(5/14) 3770005305027681 a001 317811/1149851*7881196^(5/11) 3770005305027705 a001 317811/1149851*20633239^(3/7) 3770005305027708 a001 317811/1149851*141422324^(5/13) 3770005305027708 a001 514229/710647*141422324^(1/3) 3770005305027709 a001 163427632719/433494437 3770005305027709 a001 317811/1149851*2537720636^(1/3) 3770005305027709 a001 317811/1149851*45537549124^(5/17) 3770005305027709 a001 317811/1149851*312119004989^(3/11) 3770005305027709 a001 317811/1149851*14662949395604^(5/21) 3770005305027709 a001 317811/1149851*(1/2+1/2*5^(1/2))^15 3770005305027709 a001 514229/710647*(1/2+1/2*5^(1/2))^13 3770005305027709 a001 317811/1149851*192900153618^(5/18) 3770005305027709 a001 514229/710647*73681302247^(1/4) 3770005305027709 a001 317811/1149851*28143753123^(3/10) 3770005305027709 a001 317811/1149851*10749957122^(5/16) 3770005305027709 a001 317811/1149851*599074578^(5/14) 3770005305027709 a001 317811/1149851*228826127^(3/8) 3770005305027710 a001 317811/1149851*33385282^(5/12) 3770005305027820 a001 102334155/4870847*439204^(2/9) 3770005305027956 a001 267914296/12752043*439204^(2/9) 3770005305027976 a001 701408733/33385282*439204^(2/9) 3770005305027979 a001 1836311903/87403803*439204^(2/9) 3770005305027979 a001 102287808/4868641*439204^(2/9) 3770005305027979 a001 12586269025/599074578*439204^(2/9) 3770005305027979 a001 32951280099/1568397607*439204^(2/9) 3770005305027979 a001 86267571272/4106118243*439204^(2/9) 3770005305027979 a001 225851433717/10749957122*439204^(2/9) 3770005305027979 a001 591286729879/28143753123*439204^(2/9) 3770005305027979 a001 1548008755920/73681302247*439204^(2/9) 3770005305027979 a001 4052739537881/192900153618*439204^(2/9) 3770005305027979 a001 225749145909/10745088481*439204^(2/9) 3770005305027979 a001 6557470319842/312119004989*439204^(2/9) 3770005305027979 a001 2504730781961/119218851371*439204^(2/9) 3770005305027979 a001 956722026041/45537549124*439204^(2/9) 3770005305027979 a001 365435296162/17393796001*439204^(2/9) 3770005305027979 a001 139583862445/6643838879*439204^(2/9) 3770005305027979 a001 53316291173/2537720636*439204^(2/9) 3770005305027979 a001 20365011074/969323029*439204^(2/9) 3770005305027979 a001 7778742049/370248451*439204^(2/9) 3770005305027979 a001 2971215073/141422324*439204^(2/9) 3770005305027980 a001 1134903170/54018521*439204^(2/9) 3770005305027988 a001 433494437/20633239*439204^(2/9) 3770005305028034 a001 105937/620166*710647^(4/7) 3770005305028040 a001 165580141/7881196*439204^(2/9) 3770005305028253 a001 317811/1149851*1860498^(1/2) 3770005305028382 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^45 3770005305028383 a001 121393/33385282*271443^(12/13) 3770005305028395 a001 63245986/3010349*439204^(2/9) 3770005305028636 a001 5702887/1149851*439204^(1/3) 3770005305028793 a001 14619165/101521*271443^(1/13) 3770005305029062 a001 165580141/1860498*439204^(1/9) 3770005305029312 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^47 3770005305029448 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^49 3770005305029467 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^51 3770005305029470 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^53 3770005305029471 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^55 3770005305029471 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^57 3770005305029471 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^59 3770005305029471 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^61 3770005305029471 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^63 3770005305029471 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^65 3770005305029471 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^67 3770005305029471 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^69 3770005305029471 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^71 3770005305029471 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^73 3770005305029471 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^75 3770005305029471 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^77 3770005305029471 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^79 3770005305029471 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^81 3770005305029471 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^83 3770005305029471 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^85 3770005305029471 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^87 3770005305029471 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^89 3770005305029471 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^91 3770005305029471 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^93 3770005305029471 a004 Fibonacci(80)*Lucas(29)/(1/2+sqrt(5)/2)^95 3770005305029471 a004 Fibonacci(82)*Lucas(29)/(1/2+sqrt(5)/2)^97 3770005305029471 a004 Fibonacci(84)*Lucas(29)/(1/2+sqrt(5)/2)^99 3770005305029471 a004 Fibonacci(85)*Lucas(29)/(1/2+sqrt(5)/2)^100 3770005305029471 a004 Fibonacci(83)*Lucas(29)/(1/2+sqrt(5)/2)^98 3770005305029471 a004 Fibonacci(81)*Lucas(29)/(1/2+sqrt(5)/2)^96 3770005305029471 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^94 3770005305029471 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^92 3770005305029471 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^90 3770005305029471 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^88 3770005305029471 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^86 3770005305029471 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^84 3770005305029471 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^82 3770005305029471 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^80 3770005305029471 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^78 3770005305029471 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^76 3770005305029471 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^74 3770005305029471 a001 2/514229*(1/2+1/2*5^(1/2))^43 3770005305029471 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^72 3770005305029471 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^70 3770005305029471 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^68 3770005305029471 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^66 3770005305029471 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^64 3770005305029471 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^62 3770005305029471 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^60 3770005305029471 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^58 3770005305029471 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^56 3770005305029471 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^54 3770005305029472 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^52 3770005305029480 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^50 3770005305029497 a001 317811/4870847*710647^(9/14) 3770005305029532 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^48 3770005305029887 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^46 3770005305029992 a001 433494437/4870847*439204^(1/9) 3770005305030127 a001 1134903170/12752043*439204^(1/9) 3770005305030140 a001 416020/930249*20633239^(2/5) 3770005305030144 a001 416020/930249*17393796001^(2/7) 3770005305030144 a001 416020/930249*14662949395604^(2/9) 3770005305030144 a001 416020/930249*(1/2+1/2*5^(1/2))^14 3770005305030144 a001 416020/930249*10749957122^(7/24) 3770005305030144 a001 416020/930249*4106118243^(7/23) 3770005305030144 a001 692290561600/1836311903 3770005305030144 a001 416020/930249*1568397607^(7/22) 3770005305030144 a001 416020/930249*599074578^(1/3) 3770005305030144 a001 416020/930249*228826127^(7/20) 3770005305030144 a001 416020/930249*87403803^(7/19) 3770005305030145 a001 416020/930249*33385282^(7/18) 3770005305030147 a001 2971215073/33385282*439204^(1/9) 3770005305030150 a001 7778742049/87403803*439204^(1/9) 3770005305030151 a001 20365011074/228826127*439204^(1/9) 3770005305030151 a001 53316291173/599074578*439204^(1/9) 3770005305030151 a001 139583862445/1568397607*439204^(1/9) 3770005305030151 a001 365435296162/4106118243*439204^(1/9) 3770005305030151 a001 956722026041/10749957122*439204^(1/9) 3770005305030151 a001 2504730781961/28143753123*439204^(1/9) 3770005305030151 a001 6557470319842/73681302247*439204^(1/9) 3770005305030151 a001 10610209857723/119218851371*439204^(1/9) 3770005305030151 a001 4052739537881/45537549124*439204^(1/9) 3770005305030151 a001 1548008755920/17393796001*439204^(1/9) 3770005305030151 a001 591286729879/6643838879*439204^(1/9) 3770005305030151 a001 225851433717/2537720636*439204^(1/9) 3770005305030151 a001 86267571272/969323029*439204^(1/9) 3770005305030151 a001 32951280099/370248451*439204^(1/9) 3770005305030151 a001 12586269025/141422324*439204^(1/9) 3770005305030152 a001 4807526976/54018521*439204^(1/9) 3770005305030153 a001 416020/930249*12752043^(7/17) 3770005305030160 a001 1836311903/20633239*439204^(1/9) 3770005305030166 a001 105937/4250681*710647^(5/7) 3770005305030211 a001 3524667/39604*439204^(1/9) 3770005305030213 a001 416020/930249*4870847^(7/16) 3770005305030465 a001 10959/711491*710647^(3/4) 3770005305030567 a001 267914296/3010349*439204^(1/9) 3770005305030652 a001 416020/930249*1860498^(7/15) 3770005305030719 a001 317811/33385282*710647^(11/14) 3770005305030817 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^47 3770005305030832 a001 24157817/1149851*439204^(2/9) 3770005305031052 a001 726103/620166*7881196^(4/11) 3770005305031074 a001 726103/620166*141422324^(4/13) 3770005305031074 a001 726103/620166*2537720636^(4/15) 3770005305031074 a001 726103/620166*45537549124^(4/17) 3770005305031074 a001 726103/620166*817138163596^(4/19) 3770005305031074 a001 832040/4870847*(1/2+1/2*5^(1/2))^16 3770005305031074 a001 726103/620166*14662949395604^(4/21) 3770005305031074 a001 726103/620166*(1/2+1/2*5^(1/2))^12 3770005305031074 a001 726103/620166*192900153618^(2/9) 3770005305031074 a001 726103/620166*73681302247^(3/13) 3770005305031074 a001 832040/4870847*73681302247^(4/13) 3770005305031074 a001 726103/620166*10749957122^(1/4) 3770005305031074 a001 832040/4870847*10749957122^(1/3) 3770005305031074 a001 229539035/608856 3770005305031074 a001 726103/620166*4106118243^(6/23) 3770005305031074 a001 832040/4870847*4106118243^(8/23) 3770005305031074 a001 726103/620166*1568397607^(3/11) 3770005305031074 a001 832040/4870847*1568397607^(4/11) 3770005305031074 a001 726103/620166*599074578^(2/7) 3770005305031074 a001 832040/4870847*599074578^(8/21) 3770005305031074 a001 726103/620166*228826127^(3/10) 3770005305031074 a001 832040/4870847*228826127^(2/5) 3770005305031074 a001 726103/620166*87403803^(6/19) 3770005305031074 a001 832040/4870847*87403803^(8/19) 3770005305031075 a001 726103/620166*33385282^(1/3) 3770005305031076 a001 832040/4870847*33385282^(4/9) 3770005305031082 a001 726103/620166*12752043^(6/17) 3770005305031085 a001 832040/4870847*12752043^(8/17) 3770005305031134 a001 726103/620166*4870847^(3/8) 3770005305031154 a001 832040/4870847*4870847^(1/2) 3770005305031172 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^49 3770005305031177 a001 832040/12752043*7881196^(6/11) 3770005305031178 a001 832040/4106118243*7881196^(10/11) 3770005305031183 a001 832040/969323029*7881196^(9/11) 3770005305031189 a001 832040/228826127*7881196^(8/11) 3770005305031192 a001 832040/87403803*7881196^(2/3) 3770005305031196 a001 832040/54018521*7881196^(7/11) 3770005305031207 a001 5702887/1860498*20633239^(2/7) 3770005305031210 a001 832040/12752043*141422324^(6/13) 3770005305031210 a001 832040/12752043*2537720636^(2/5) 3770005305031210 a001 5702887/1860498*2537720636^(2/9) 3770005305031210 a001 832040/12752043*45537549124^(6/17) 3770005305031210 a001 5702887/1860498*312119004989^(2/11) 3770005305031210 a001 832040/12752043*14662949395604^(2/7) 3770005305031210 a001 832040/12752043*(1/2+1/2*5^(1/2))^18 3770005305031210 a001 5702887/1860498*(1/2+1/2*5^(1/2))^10 3770005305031210 a001 832040/12752043*192900153618^(1/3) 3770005305031210 a001 5702887/1860498*28143753123^(1/5) 3770005305031210 a001 86273274536/228841255 3770005305031210 a001 5702887/1860498*10749957122^(5/24) 3770005305031210 a001 832040/12752043*10749957122^(3/8) 3770005305031210 a001 5702887/1860498*4106118243^(5/23) 3770005305031210 a001 832040/12752043*4106118243^(9/23) 3770005305031210 a001 5702887/1860498*1568397607^(5/22) 3770005305031210 a001 832040/12752043*1568397607^(9/22) 3770005305031210 a001 5702887/1860498*599074578^(5/21) 3770005305031210 a001 832040/12752043*599074578^(3/7) 3770005305031210 a001 5702887/1860498*228826127^(1/4) 3770005305031210 a001 832040/12752043*228826127^(9/20) 3770005305031210 a001 5702887/1860498*87403803^(5/19) 3770005305031210 a001 832040/12752043*87403803^(9/19) 3770005305031211 a001 5702887/1860498*33385282^(5/18) 3770005305031212 a001 832040/12752043*33385282^(1/2) 3770005305031217 a001 5702887/1860498*12752043^(5/17) 3770005305031222 a001 39088169/1860498*7881196^(2/11) 3770005305031222 a001 832040/12752043*12752043^(9/17) 3770005305031224 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^51 3770005305031225 a001 416020/16692641*20633239^(4/7) 3770005305031225 a001 9227465/1860498*7881196^(3/11) 3770005305031225 a001 832040/4106118243*20633239^(6/7) 3770005305031226 a001 832040/1568397607*20633239^(4/5) 3770005305031227 a001 832040/370248451*20633239^(5/7) 3770005305031228 a001 165580141/1860498*7881196^(1/11) 3770005305031229 a001 832040/54018521*20633239^(3/5) 3770005305031230 a001 416020/16692641*2537720636^(4/9) 3770005305031230 a001 416020/16692641*(1/2+1/2*5^(1/2))^20 3770005305031230 a001 416020/16692641*23725150497407^(5/16) 3770005305031230 a001 829464/103361*(1/2+1/2*5^(1/2))^8 3770005305031230 a001 829464/103361*23725150497407^(1/8) 3770005305031230 a001 829464/103361*505019158607^(1/7) 3770005305031230 a001 416020/16692641*505019158607^(5/14) 3770005305031230 a001 829464/103361*73681302247^(2/13) 3770005305031230 a001 416020/16692641*73681302247^(5/13) 3770005305031230 a001 4140883359360/10983760033 3770005305031230 a001 416020/16692641*28143753123^(2/5) 3770005305031230 a001 829464/103361*10749957122^(1/6) 3770005305031230 a001 416020/16692641*10749957122^(5/12) 3770005305031230 a001 829464/103361*4106118243^(4/23) 3770005305031230 a001 416020/16692641*4106118243^(10/23) 3770005305031230 a001 829464/103361*1568397607^(2/11) 3770005305031230 a001 416020/16692641*1568397607^(5/11) 3770005305031230 a001 829464/103361*599074578^(4/21) 3770005305031230 a001 416020/16692641*599074578^(10/21) 3770005305031230 a001 829464/103361*228826127^(1/5) 3770005305031230 a001 416020/16692641*228826127^(1/2) 3770005305031230 a001 829464/103361*87403803^(4/19) 3770005305031230 a001 416020/16692641*87403803^(10/19) 3770005305031230 a001 829464/103361*33385282^(2/9) 3770005305031232 a001 416020/16692641*33385282^(5/9) 3770005305031232 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^53 3770005305031232 a001 31622993/930249*20633239^(1/7) 3770005305031233 a001 39088169/1860498*141422324^(2/13) 3770005305031233 a001 39088169/1860498*2537720636^(2/15) 3770005305031233 a001 39088169/1860498*45537549124^(2/17) 3770005305031233 a001 832040/87403803*312119004989^(2/5) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^22/Lucas(38) 3770005305031233 a001 39088169/1860498*14662949395604^(2/21) 3770005305031233 a001 39088169/1860498*(1/2+1/2*5^(1/2))^6 3770005305031233 a001 4065365016845/10783446409 3770005305031233 a001 39088169/1860498*10749957122^(1/8) 3770005305031233 a001 832040/87403803*10749957122^(11/24) 3770005305031233 a001 39088169/1860498*4106118243^(3/23) 3770005305031233 a001 832040/87403803*4106118243^(11/23) 3770005305031233 a001 39088169/1860498*1568397607^(3/22) 3770005305031233 a001 832040/87403803*1568397607^(1/2) 3770005305031233 a001 39088169/1860498*599074578^(1/7) 3770005305031233 a001 832040/87403803*599074578^(11/21) 3770005305031233 a001 39088169/1860498*228826127^(3/20) 3770005305031233 a001 24157817/1860498*20633239^(1/5) 3770005305031233 a001 832040/87403803*228826127^(11/20) 3770005305031233 a001 39088169/1860498*87403803^(3/19) 3770005305031233 a001 832040/87403803*87403803^(11/19) 3770005305031233 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^55 3770005305031233 a001 832040/228826127*141422324^(8/13) 3770005305031233 a001 832040/73681302247*141422324^(12/13) 3770005305031233 a001 832040/17393796001*141422324^(11/13) 3770005305031233 a001 832040/4106118243*141422324^(10/13) 3770005305031233 a001 416020/299537289*141422324^(2/3) 3770005305031233 a001 832040/969323029*141422324^(9/13) 3770005305031233 a001 832040/228826127*2537720636^(8/15) 3770005305031233 a001 832040/228826127*45537549124^(8/17) 3770005305031233 a001 832040/228826127*14662949395604^(8/21) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(40) 3770005305031233 a001 831985/15126*(1/2+1/2*5^(1/2))^4 3770005305031233 a001 831985/15126*23725150497407^(1/16) 3770005305031233 a001 4054576682200/10754830177 3770005305031233 a001 832040/228826127*192900153618^(4/9) 3770005305031233 a001 831985/15126*73681302247^(1/13) 3770005305031233 a001 832040/228826127*73681302247^(6/13) 3770005305031233 a001 831985/15126*10749957122^(1/12) 3770005305031233 a001 832040/228826127*10749957122^(1/2) 3770005305031233 a001 831985/15126*4106118243^(2/23) 3770005305031233 a001 832040/228826127*4106118243^(12/23) 3770005305031233 a001 831985/15126*1568397607^(1/11) 3770005305031233 a001 832040/228826127*1568397607^(6/11) 3770005305031233 a001 831985/15126*599074578^(2/21) 3770005305031233 a001 832040/228826127*599074578^(4/7) 3770005305031233 a001 831985/15126*228826127^(1/10) 3770005305031233 a001 832040/228826127*228826127^(3/5) 3770005305031233 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^57 3770005305031233 a001 831985/15126*87403803^(2/19) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(42) 3770005305031233 a001 133957148/930249*(1/2+1/2*5^(1/2))^2 3770005305031233 a001 222915410843840/591286729879 3770005305031233 a001 416020/299537289*73681302247^(1/2) 3770005305031233 a001 133957148/930249*10749957122^(1/24) 3770005305031233 a001 133957148/930249*4106118243^(1/23) 3770005305031233 a001 416020/299537289*10749957122^(13/24) 3770005305031233 a001 133957148/930249*1568397607^(1/22) 3770005305031233 a001 416020/299537289*4106118243^(13/23) 3770005305031233 a001 133957148/930249*599074578^(1/21) 3770005305031233 a001 416020/299537289*1568397607^(13/22) 3770005305031233 a001 133957148/930249*228826127^(1/20) 3770005305031233 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^59 3770005305031233 a001 416020/299537289*599074578^(13/21) 3770005305031233 a001 832040/1568397607*17393796001^(4/7) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(44) 3770005305031233 a001 233802911/620166 3770005305031233 a001 832040/1568397607*73681302247^(7/13) 3770005305031233 a001 832040/1568397607*10749957122^(7/12) 3770005305031233 a001 832040/1568397607*4106118243^(14/23) 3770005305031233 a001 832040/4106118243*2537720636^(2/3) 3770005305031233 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^61 3770005305031233 a001 832040/1568397607*1568397607^(7/11) 3770005305031233 a001 832040/1322157322203*2537720636^(14/15) 3770005305031233 a001 832040/505019158607*2537720636^(8/9) 3770005305031233 a001 75640/28374454999*2537720636^(13/15) 3770005305031233 a001 832040/73681302247*2537720636^(4/5) 3770005305031233 a001 208010/11384387281*2537720636^(7/9) 3770005305031233 a001 832040/17393796001*2537720636^(11/15) 3770005305031233 a001 832040/4106118243*45537549124^(10/17) 3770005305031233 a001 832040/4106118243*312119004989^(6/11) 3770005305031233 a001 832040/4106118243*14662949395604^(10/21) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(46) 3770005305031233 a001 1527884955772120/4052739537881 3770005305031233 a004 Fibonacci(46)/Lucas(30)/(1/2+sqrt(5)/2)^2 3770005305031233 a001 832040/4106118243*192900153618^(5/9) 3770005305031233 a001 832040/4106118243*28143753123^(3/5) 3770005305031233 a001 832040/4106118243*10749957122^(5/8) 3770005305031233 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^63 3770005305031233 a001 832040/4106118243*4106118243^(15/23) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(48) 3770005305031233 a001 4052740369920/10749959329 3770005305031233 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^4 3770005305031233 a001 416020/5374978561*505019158607^(4/7) 3770005305031233 a001 416020/5374978561*73681302247^(8/13) 3770005305031233 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^65 3770005305031233 a001 416020/5374978561*10749957122^(2/3) 3770005305031233 a001 832040/1322157322203*17393796001^(6/7) 3770005305031233 a001 208010/11384387281*17393796001^(5/7) 3770005305031233 a001 832040/28143753123*45537549124^(2/3) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(50) 3770005305031233 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^6 3770005305031233 a001 832040/73681302247*45537549124^(12/17) 3770005305031233 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^67 3770005305031233 a001 832040/23725150497407*45537549124^(16/17) 3770005305031233 a001 832040/5600748293801*45537549124^(15/17) 3770005305031233 a001 832040/1322157322203*45537549124^(14/17) 3770005305031233 a001 75640/28374454999*45537549124^(13/17) 3770005305031233 a001 832040/73681302247*14662949395604^(4/7) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(52) 3770005305031233 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^8 3770005305031233 a001 832040/73681302247*505019158607^(9/14) 3770005305031233 a001 832040/73681302247*192900153618^(2/3) 3770005305031233 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^69 3770005305031233 a001 832040/73681302247*73681302247^(9/13) 3770005305031233 a001 416020/96450076809*817138163596^(2/3) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(54) 3770005305031233 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^10 3770005305031233 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^71 3770005305031233 a001 832040/5600748293801*312119004989^(9/11) 3770005305031233 a001 416020/1730726404001*312119004989^(4/5) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(56) 3770005305031233 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^12 3770005305031233 a001 832040/1322157322203*817138163596^(14/19) 3770005305031233 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^73 3770005305031233 a001 832040/1322157322203*14662949395604^(2/3) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(58) 3770005305031233 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^14 3770005305031233 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^75 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(60) 3770005305031233 a001 416020/1730726404001*23725150497407^(11/16) 3770005305031233 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^77 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(62) 3770005305031233 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^79 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(64) 3770005305031233 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^81 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(66) 3770005305031233 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^83 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(68) 3770005305031233 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^85 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(70) 3770005305031233 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^87 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(72) 3770005305031233 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^89 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(74) 3770005305031233 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^91 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(76) 3770005305031233 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^93 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(78) 3770005305031233 a004 Fibonacci(30)*Lucas(79)/(1/2+sqrt(5)/2)^95 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(80) 3770005305031233 a004 Fibonacci(30)*Lucas(81)/(1/2+sqrt(5)/2)^97 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(82) 3770005305031233 a004 Fibonacci(30)*Lucas(83)/(1/2+sqrt(5)/2)^99 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(84) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(86) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(88) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(90) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(92) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(94) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^80/Lucas(96) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^82/Lucas(98) 3770005305031233 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^16 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^83/Lucas(99) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^84/Lucas(100) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^81/Lucas(97) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^79/Lucas(95) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(93) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(91) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(89) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(87) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(85) 3770005305031233 a004 Fibonacci(30)*Lucas(84)/(1/2+sqrt(5)/2)^100 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(83) 3770005305031233 a004 Fibonacci(30)*Lucas(82)/(1/2+sqrt(5)/2)^98 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(81) 3770005305031233 a004 Fibonacci(30)*Lucas(80)/(1/2+sqrt(5)/2)^96 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(79) 3770005305031233 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^94 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(77) 3770005305031233 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^92 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(75) 3770005305031233 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^90 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(73) 3770005305031233 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^88 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(71) 3770005305031233 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^86 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(69) 3770005305031233 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^84 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(67) 3770005305031233 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^82 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(65) 3770005305031233 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^80 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(63) 3770005305031233 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^78 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(61) 3770005305031233 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^18 3770005305031233 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^20 3770005305031233 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^22 3770005305031233 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^24 3770005305031233 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^26 3770005305031233 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^28 3770005305031233 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^30 3770005305031233 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^32 3770005305031233 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^34 3770005305031233 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^36 3770005305031233 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^38 3770005305031233 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^40 3770005305031233 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^42 3770005305031233 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^44 3770005305031233 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^46 3770005305031233 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^48 3770005305031233 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^50 3770005305031233 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^52 3770005305031233 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^54 3770005305031233 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^56 3770005305031233 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^76 3770005305031233 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^55 3770005305031233 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^53 3770005305031233 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^51 3770005305031233 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^49 3770005305031233 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^47 3770005305031233 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^45 3770005305031233 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^43 3770005305031233 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^41 3770005305031233 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^39 3770005305031233 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^37 3770005305031233 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^35 3770005305031233 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^33 3770005305031233 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^31 3770005305031233 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^29 3770005305031233 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^27 3770005305031233 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^25 3770005305031233 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^23 3770005305031233 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^21 3770005305031233 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^19 3770005305031233 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^17 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(59) 3770005305031233 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^15 3770005305031233 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^74 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(57) 3770005305031233 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^13 3770005305031233 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^72 3770005305031233 a001 75640/28374454999*14662949395604^(13/21) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(55) 3770005305031233 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^11 3770005305031233 a001 832040/1322157322203*192900153618^(7/9) 3770005305031233 a001 832040/5600748293801*192900153618^(5/6) 3770005305031233 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^70 3770005305031233 a001 75640/28374454999*192900153618^(13/18) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(53) 3770005305031233 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^9 3770005305031233 a001 832040/505019158607*73681302247^(10/13) 3770005305031233 a001 75640/28374454999*73681302247^(3/4) 3770005305031233 a001 416020/1730726404001*73681302247^(11/13) 3770005305031233 a001 832040/23725150497407*73681302247^(12/13) 3770005305031233 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^68 3770005305031233 a001 208010/11384387281*312119004989^(7/11) 3770005305031233 a001 208010/11384387281*14662949395604^(5/9) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(51) 3770005305031233 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^7 3770005305031233 a001 208010/11384387281*505019158607^(5/8) 3770005305031233 a001 832040/505019158607*28143753123^(4/5) 3770005305031233 a001 832040/5600748293801*28143753123^(9/10) 3770005305031233 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^66 3770005305031233 a001 208010/11384387281*28143753123^(7/10) 3770005305031233 a001 832040/17393796001*45537549124^(11/17) 3770005305031233 a001 832040/17393796001*312119004989^(3/5) 3770005305031233 a001 832040/17393796001*817138163596^(11/19) 3770005305031233 a001 832040/17393796001*14662949395604^(11/21) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(49) 3770005305031233 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^5 3770005305031233 a001 832040/17393796001*192900153618^(11/18) 3770005305031233 a001 832040/28143753123*10749957122^(17/24) 3770005305031233 a001 832040/73681302247*10749957122^(3/4) 3770005305031233 a001 416020/96450076809*10749957122^(19/24) 3770005305031233 a001 75640/28374454999*10749957122^(13/16) 3770005305031233 a001 832040/505019158607*10749957122^(5/6) 3770005305031233 a001 832040/1322157322203*10749957122^(7/8) 3770005305031233 a001 416020/1730726404001*10749957122^(11/12) 3770005305031233 a001 832040/5600748293801*10749957122^(15/16) 3770005305031233 a001 832040/9062201101803*10749957122^(23/24) 3770005305031233 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^64 3770005305031233 a001 832040/17393796001*10749957122^(11/16) 3770005305031233 a001 1236084894669460/3278735159921 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(47) 3770005305031233 a001 832040/6643838879*9062201101803^(1/2) 3770005305031233 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2)^3 3770005305031233 a001 416020/5374978561*4106118243^(16/23) 3770005305031233 a001 832040/28143753123*4106118243^(17/23) 3770005305031233 a001 832040/73681302247*4106118243^(18/23) 3770005305031233 a001 416020/96450076809*4106118243^(19/23) 3770005305031233 a001 832040/505019158607*4106118243^(20/23) 3770005305031233 a001 832040/1322157322203*4106118243^(21/23) 3770005305031233 a001 416020/1730726404001*4106118243^(22/23) 3770005305031233 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^62 3770005305031233 a001 944284833566800/2504730781961 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(45) 3770005305031233 a004 Fibonacci(45)/Lucas(30)/(1/2+sqrt(5)/2) 3770005305031233 a001 610/1860499*1322157322203^(1/2) 3770005305031233 a001 832040/4106118243*1568397607^(15/22) 3770005305031233 a001 416020/5374978561*1568397607^(8/11) 3770005305031233 a001 832040/17393796001*1568397607^(3/4) 3770005305031233 a001 832040/28143753123*1568397607^(17/22) 3770005305031233 a001 832040/73681302247*1568397607^(9/11) 3770005305031233 a001 416020/96450076809*1568397607^(19/22) 3770005305031233 a001 832040/505019158607*1568397607^(10/11) 3770005305031233 a001 832040/1322157322203*1568397607^(21/22) 3770005305031233 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^60 3770005305031233 a001 832040/969323029*2537720636^(3/5) 3770005305031233 a001 832040/969323029*45537549124^(9/17) 3770005305031233 a001 832040/969323029*817138163596^(9/19) 3770005305031233 a001 360684711361480/956722026041 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(43) 3770005305031233 a001 433494437/3720996+433494437/3720996*5^(1/2) 3770005305031233 a001 832040/969323029*192900153618^(1/2) 3770005305031233 a001 832040/969323029*10749957122^(9/16) 3770005305031233 a001 832040/1568397607*599074578^(2/3) 3770005305031233 a001 832040/4106118243*599074578^(5/7) 3770005305031233 a001 416020/5374978561*599074578^(16/21) 3770005305031233 a001 832040/17393796001*599074578^(11/14) 3770005305031233 a001 832040/28143753123*599074578^(17/21) 3770005305031233 a001 208010/11384387281*599074578^(5/6) 3770005305031233 a001 832040/73681302247*599074578^(6/7) 3770005305031233 a001 416020/96450076809*599074578^(19/21) 3770005305031233 a001 75640/28374454999*599074578^(13/14) 3770005305031233 a001 832040/505019158607*599074578^(20/21) 3770005305031233 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^58 3770005305031233 a001 832040/969323029*599074578^(9/14) 3770005305031233 a001 165580141/1860498*141422324^(1/13) 3770005305031233 a001 133957148/930249*87403803^(1/19) 3770005305031233 a001 832040/370248451*2537720636^(5/9) 3770005305031233 a001 165580141/1860498*2537720636^(1/15) 3770005305031233 a001 165580141/1860498*45537549124^(1/17) 3770005305031233 a001 832040/370248451*312119004989^(5/11) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(41) 3770005305031233 a001 165580141/1860498*14662949395604^(1/21) 3770005305031233 a001 165580141/1860498*(1/2+1/2*5^(1/2))^3 3770005305031233 a001 165580141/1860498*192900153618^(1/18) 3770005305031233 a001 165580141/1860498*10749957122^(1/16) 3770005305031233 a001 832040/370248451*28143753123^(1/2) 3770005305031233 a001 165580141/1860498*599074578^(1/14) 3770005305031233 a001 416020/299537289*228826127^(13/20) 3770005305031233 a001 832040/1568397607*228826127^(7/10) 3770005305031233 a001 832040/4106118243*228826127^(3/4) 3770005305031233 a001 416020/5374978561*228826127^(4/5) 3770005305031233 a001 832040/28143753123*228826127^(17/20) 3770005305031233 a001 208010/11384387281*228826127^(7/8) 3770005305031233 a001 832040/73681302247*228826127^(9/10) 3770005305031233 a001 416020/96450076809*228826127^(19/20) 3770005305031233 a001 39088169/1860498*33385282^(1/6) 3770005305031233 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^56 3770005305031233 a001 832040/370248451*228826127^(5/8) 3770005305031233 a001 133957148/930249*33385282^(1/18) 3770005305031233 a001 31622993/930249*2537720636^(1/9) 3770005305031233 a001 10524638038288/27916772489 3770005305031233 a001 31622993/930249*312119004989^(1/11) 3770005305031233 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(39) 3770005305031233 a001 31622993/930249*(1/2+1/2*5^(1/2))^5 3770005305031233 a001 31622993/930249*28143753123^(1/10) 3770005305031233 a001 208010/35355581*4106118243^(1/2) 3770005305031233 a001 31622993/930249*228826127^(1/8) 3770005305031233 a001 832040/228826127*87403803^(12/19) 3770005305031233 a001 831985/15126*33385282^(1/9) 3770005305031233 a001 165580141/1860498*33385282^(1/12) 3770005305031233 a001 416020/299537289*87403803^(13/19) 3770005305031233 a001 832040/1568397607*87403803^(14/19) 3770005305031233 a001 832040/4106118243*87403803^(15/19) 3770005305031233 a001 416020/5374978561*87403803^(16/19) 3770005305031234 a001 832040/28143753123*87403803^(17/19) 3770005305031234 a001 832040/73681302247*87403803^(18/19) 3770005305031234 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^54 3770005305031234 a001 832040/54018521*141422324^(7/13) 3770005305031234 a001 832040/54018521*2537720636^(7/15) 3770005305031234 a001 832040/54018521*17393796001^(3/7) 3770005305031234 a001 24157817/1860498*17393796001^(1/7) 3770005305031234 a001 832040/54018521*45537549124^(7/17) 3770005305031234 a001 20100270056680/53316291173 3770005305031234 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^21/Lucas(37) 3770005305031234 a001 24157817/1860498*14662949395604^(1/9) 3770005305031234 a001 24157817/1860498*(1/2+1/2*5^(1/2))^7 3770005305031234 a001 832040/54018521*192900153618^(7/18) 3770005305031234 a001 832040/54018521*10749957122^(7/16) 3770005305031234 a001 24157817/1860498*599074578^(1/6) 3770005305031234 a001 832040/54018521*599074578^(1/2) 3770005305031234 a001 133957148/930249*12752043^(1/17) 3770005305031235 a001 832040/87403803*33385282^(11/18) 3770005305031235 a001 829464/103361*12752043^(4/17) 3770005305031235 a001 832040/228826127*33385282^(2/3) 3770005305031236 a001 416020/299537289*33385282^(13/18) 3770005305031236 a001 832040/969323029*33385282^(3/4) 3770005305031236 a001 832040/1568397607*33385282^(7/9) 3770005305031236 a001 831985/15126*12752043^(2/17) 3770005305031236 a001 832040/4106118243*33385282^(5/6) 3770005305031236 a001 416020/5374978561*33385282^(8/9) 3770005305031236 a001 832040/17393796001*33385282^(11/12) 3770005305031236 a001 832040/28143753123*33385282^(17/18) 3770005305031236 a001 832040/54018521*33385282^(7/12) 3770005305031236 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^52 3770005305031237 a001 39088169/1860498*12752043^(3/17) 3770005305031242 a001 9227465/1860498*141422324^(3/13) 3770005305031242 a001 9227465/1860498*2537720636^(1/5) 3770005305031242 a001 3838809989300/10182505537 3770005305031242 a001 9227465/1860498*45537549124^(3/17) 3770005305031242 a001 75640/1875749*817138163596^(1/3) 3770005305031242 a001 75640/1875749*(1/2+1/2*5^(1/2))^19 3770005305031242 a001 9227465/1860498*14662949395604^(1/7) 3770005305031242 a001 9227465/1860498*(1/2+1/2*5^(1/2))^9 3770005305031242 a001 9227465/1860498*192900153618^(1/6) 3770005305031242 a001 9227465/1860498*10749957122^(3/16) 3770005305031242 a001 9227465/1860498*599074578^(3/14) 3770005305031242 a001 75640/1875749*87403803^(1/2) 3770005305031243 a001 9227465/1860498*33385282^(1/4) 3770005305031243 a001 133957148/930249*4870847^(1/16) 3770005305031243 a001 416020/16692641*12752043^(10/17) 3770005305031248 a001 832040/87403803*12752043^(11/17) 3770005305031249 a001 832040/228826127*12752043^(12/17) 3770005305031251 a001 416020/299537289*12752043^(13/17) 3770005305031252 a001 832040/1568397607*12752043^(14/17) 3770005305031253 a001 831985/15126*4870847^(1/8) 3770005305031254 a001 832040/4106118243*12752043^(15/17) 3770005305031255 a001 416020/5374978561*12752043^(16/17) 3770005305031255 a001 105937/29134601*710647^(6/7) 3770005305031256 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^50 3770005305031260 a001 5702887/1860498*4870847^(5/16) 3770005305031262 a001 39088169/1860498*4870847^(3/16) 3770005305031269 a001 829464/103361*4870847^(1/4) 3770005305031274 a001 1762289/930249*7881196^(1/3) 3770005305031294 a001 2932589879120/7778742049 3770005305031294 a001 208010/1970299*45537549124^(1/3) 3770005305031294 a001 1762289/930249*312119004989^(1/5) 3770005305031294 a001 208010/1970299*(1/2+1/2*5^(1/2))^17 3770005305031294 a001 1762289/930249*(1/2+1/2*5^(1/2))^11 3770005305031294 a001 1762289/930249*1568397607^(1/4) 3770005305031299 a001 832040/12752043*4870847^(9/16) 3770005305031305 a001 208010/1970299*12752043^(1/2) 3770005305031306 a001 133957148/930249*1860498^(1/15) 3770005305031329 a001 416020/16692641*4870847^(5/8) 3770005305031342 a001 832040/87403803*4870847^(11/16) 3770005305031342 a001 165580141/1860498*1860498^(1/10) 3770005305031352 a001 832040/228826127*4870847^(3/4) 3770005305031362 a001 416020/299537289*4870847^(13/16) 3770005305031372 a001 832040/1568397607*4870847^(7/8) 3770005305031378 a001 831985/15126*1860498^(2/15) 3770005305031382 a001 832040/4106118243*4870847^(15/16) 3770005305031392 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^48 3770005305031415 a001 31622993/930249*1860498^(1/6) 3770005305031450 a001 39088169/1860498*1860498^(1/5) 3770005305031510 a001 726103/620166*1860498^(2/5) 3770005305031520 a001 829464/103361*1860498^(4/15) 3770005305031569 a001 9227465/1860498*1860498^(3/10) 3770005305031573 a001 5702887/1860498*1860498^(1/3) 3770005305031621 a001 832040/3010349*7881196^(5/11) 3770005305031645 a001 832040/3010349*20633239^(3/7) 3770005305031649 a001 832040/3010349*141422324^(5/13) 3770005305031649 a001 1346269/1860498*141422324^(1/3) 3770005305031649 a001 832040/3010349*2537720636^(1/3) 3770005305031649 a001 1120149658760/2971215073 3770005305031649 a001 832040/3010349*45537549124^(5/17) 3770005305031649 a001 832040/3010349*312119004989^(3/11) 3770005305031649 a001 832040/3010349*14662949395604^(5/21) 3770005305031649 a001 832040/3010349*(1/2+1/2*5^(1/2))^15 3770005305031649 a001 1346269/1860498*(1/2+1/2*5^(1/2))^13 3770005305031649 a001 832040/3010349*192900153618^(5/18) 3770005305031649 a001 1346269/1860498*73681302247^(1/4) 3770005305031649 a001 832040/3010349*28143753123^(3/10) 3770005305031649 a001 832040/3010349*10749957122^(5/16) 3770005305031649 a001 832040/3010349*599074578^(5/14) 3770005305031649 a001 832040/3010349*228826127^(3/8) 3770005305031650 a001 832040/3010349*33385282^(5/12) 3770005305031655 a001 832040/4870847*1860498^(8/15) 3770005305031747 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^49 3770005305031766 a001 133957148/930249*710647^(1/14) 3770005305031789 a001 317811/228826127*710647^(13/14) 3770005305031863 a001 832040/12752043*1860498^(3/5) 3770005305031883 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^51 3770005305031903 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^53 3770005305031906 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^55 3770005305031906 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^57 3770005305031906 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^59 3770005305031906 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^61 3770005305031906 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^63 3770005305031906 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^65 3770005305031906 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^67 3770005305031906 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^69 3770005305031906 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^71 3770005305031906 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^73 3770005305031906 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^75 3770005305031906 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^77 3770005305031906 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^79 3770005305031906 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^81 3770005305031906 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^83 3770005305031906 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^85 3770005305031906 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^87 3770005305031906 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^89 3770005305031906 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^91 3770005305031906 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^93 3770005305031906 a004 Fibonacci(78)*Lucas(31)/(1/2+sqrt(5)/2)^95 3770005305031906 a004 Fibonacci(80)*Lucas(31)/(1/2+sqrt(5)/2)^97 3770005305031906 a004 Fibonacci(82)*Lucas(31)/(1/2+sqrt(5)/2)^99 3770005305031906 a004 Fibonacci(83)*Lucas(31)/(1/2+sqrt(5)/2)^100 3770005305031906 a004 Fibonacci(81)*Lucas(31)/(1/2+sqrt(5)/2)^98 3770005305031906 a004 Fibonacci(79)*Lucas(31)/(1/2+sqrt(5)/2)^96 3770005305031906 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^94 3770005305031906 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^92 3770005305031906 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^90 3770005305031906 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^88 3770005305031906 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^86 3770005305031906 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^84 3770005305031906 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^82 3770005305031906 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^80 3770005305031906 a001 2/1346269*(1/2+1/2*5^(1/2))^45 3770005305031906 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^78 3770005305031906 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^76 3770005305031906 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^74 3770005305031906 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^72 3770005305031906 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^70 3770005305031906 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^68 3770005305031906 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^66 3770005305031906 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^64 3770005305031906 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^62 3770005305031906 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^60 3770005305031906 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^58 3770005305031906 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^56 3770005305031907 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^54 3770005305031915 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^52 3770005305031956 a001 416020/16692641*1860498^(2/3) 3770005305031967 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^50 3770005305031997 a001 832040/54018521*1860498^(7/10) 3770005305032001 a001 2178309/4870847*20633239^(2/5) 3770005305032004 a001 2178309/4870847*17393796001^(2/7) 3770005305032004 a001 2178309/4870847*14662949395604^(2/9) 3770005305032004 a001 2178309/4870847*(1/2+1/2*5^(1/2))^14 3770005305032004 a001 2178309/4870847*505019158607^(1/4) 3770005305032004 a001 4745030099481/12586269025 3770005305032004 a001 2178309/4870847*10749957122^(7/24) 3770005305032004 a001 2178309/4870847*4106118243^(7/23) 3770005305032004 a001 2178309/4870847*1568397607^(7/22) 3770005305032004 a001 2178309/4870847*599074578^(1/3) 3770005305032004 a001 2178309/4870847*228826127^(7/20) 3770005305032005 a001 2178309/4870847*87403803^(7/19) 3770005305032006 a001 2178309/4870847*33385282^(7/18) 3770005305032014 a001 2178309/4870847*12752043^(7/17) 3770005305032031 a001 832040/87403803*1860498^(11/15) 3770005305032074 a001 2178309/4870847*4870847^(7/16) 3770005305032103 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^51 3770005305032104 a001 832040/228826127*1860498^(4/5) 3770005305032108 a001 987/4870846*7881196^(10/11) 3770005305032114 a001 2178309/2537720636*7881196^(9/11) 3770005305032118 a001 5702887/4870847*7881196^(4/11) 3770005305032119 a001 726103/199691526*7881196^(8/11) 3770005305032123 a001 46347/4868641*7881196^(2/3) 3770005305032125 a001 2178309/141422324*7881196^(7/11) 3770005305032127 a001 311187/4769326*7881196^(6/11) 3770005305032140 a001 5702887/4870847*141422324^(4/13) 3770005305032140 a001 5702887/4870847*2537720636^(4/15) 3770005305032140 a001 5702887/4870847*45537549124^(4/17) 3770005305032140 a001 5702887/4870847*817138163596^(4/19) 3770005305032140 a001 726103/4250681*(1/2+1/2*5^(1/2))^16 3770005305032140 a001 726103/4250681*23725150497407^(1/4) 3770005305032140 a001 5702887/4870847*14662949395604^(4/21) 3770005305032140 a001 5702887/4870847*(1/2+1/2*5^(1/2))^12 3770005305032140 a001 5702887/4870847*192900153618^(2/9) 3770005305032140 a001 5702887/4870847*73681302247^(3/13) 3770005305032140 a001 726103/4250681*73681302247^(4/13) 3770005305032140 a001 4140883359361/10983760033 3770005305032140 a001 5702887/4870847*10749957122^(1/4) 3770005305032140 a001 726103/4250681*10749957122^(1/3) 3770005305032140 a001 5702887/4870847*4106118243^(6/23) 3770005305032140 a001 726103/4250681*4106118243^(8/23) 3770005305032140 a001 5702887/4870847*1568397607^(3/11) 3770005305032140 a001 726103/4250681*1568397607^(4/11) 3770005305032140 a001 5702887/4870847*599074578^(2/7) 3770005305032140 a001 726103/4250681*599074578^(8/21) 3770005305032140 a001 5702887/4870847*228826127^(3/10) 3770005305032140 a001 726103/4250681*228826127^(2/5) 3770005305032140 a001 5702887/4870847*87403803^(6/19) 3770005305032140 a001 726103/4250681*87403803^(8/19) 3770005305032141 a001 832040/370248451*1860498^(5/6) 3770005305032141 a001 5702887/4870847*33385282^(1/3) 3770005305032142 a001 726103/4250681*33385282^(4/9) 3770005305032148 a001 24157817/4870847*7881196^(3/11) 3770005305032148 a001 5702887/4870847*12752043^(6/17) 3770005305032151 a001 726103/4250681*12752043^(8/17) 3770005305032152 a001 9227465/4870847*7881196^(1/3) 3770005305032152 a001 102334155/4870847*7881196^(2/11) 3770005305032154 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^53 3770005305032156 a001 987/4870846*20633239^(6/7) 3770005305032156 a001 726103/1368706081*20633239^(4/5) 3770005305032157 a001 2178309/969323029*20633239^(5/7) 3770005305032157 a001 14930352/4870847*20633239^(2/7) 3770005305032158 a001 726103/29134601*20633239^(4/7) 3770005305032158 a001 433494437/4870847*7881196^(1/11) 3770005305032158 a001 2178309/141422324*20633239^(3/5) 3770005305032160 a001 311187/4769326*141422324^(6/13) 3770005305032160 a001 311187/4769326*2537720636^(2/5) 3770005305032160 a001 14930352/4870847*2537720636^(2/9) 3770005305032160 a001 311187/4769326*45537549124^(6/17) 3770005305032160 a001 14930352/4870847*312119004989^(2/11) 3770005305032160 a001 311187/4769326*14662949395604^(2/7) 3770005305032160 a001 311187/4769326*(1/2+1/2*5^(1/2))^18 3770005305032160 a001 14930352/4870847*(1/2+1/2*5^(1/2))^10 3770005305032160 a001 311187/4769326*192900153618^(1/3) 3770005305032160 a001 12586269402/33385283 3770005305032160 a001 14930352/4870847*28143753123^(1/5) 3770005305032160 a001 14930352/4870847*10749957122^(5/24) 3770005305032160 a001 311187/4769326*10749957122^(3/8) 3770005305032160 a001 14930352/4870847*4106118243^(5/23) 3770005305032160 a001 311187/4769326*4106118243^(9/23) 3770005305032160 a001 14930352/4870847*1568397607^(5/22) 3770005305032160 a001 311187/4769326*1568397607^(9/22) 3770005305032160 a001 14930352/4870847*599074578^(5/21) 3770005305032160 a001 311187/4769326*599074578^(3/7) 3770005305032160 a001 14930352/4870847*228826127^(1/4) 3770005305032160 a001 311187/4769326*228826127^(9/20) 3770005305032160 a001 14930352/4870847*87403803^(5/19) 3770005305032160 a001 311187/4769326*87403803^(9/19) 3770005305032161 a001 14930352/4870847*33385282^(5/18) 3770005305032162 a001 311187/4769326*33385282^(1/2) 3770005305032162 a001 63245986/4870847*20633239^(1/5) 3770005305032162 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^55 3770005305032162 a001 165580141/4870847*20633239^(1/7) 3770005305032163 a001 726103/29134601*2537720636^(4/9) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^20/Lucas(38) 3770005305032163 a001 726103/29134601*23725150497407^(5/16) 3770005305032163 a001 39088169/4870847*(1/2+1/2*5^(1/2))^8 3770005305032163 a001 39088169/4870847*23725150497407^(1/8) 3770005305032163 a001 39088169/4870847*505019158607^(1/7) 3770005305032163 a001 4054576682201/10754830177 3770005305032163 a001 39088169/4870847*73681302247^(2/13) 3770005305032163 a001 726103/29134601*73681302247^(5/13) 3770005305032163 a001 726103/29134601*28143753123^(2/5) 3770005305032163 a001 39088169/4870847*10749957122^(1/6) 3770005305032163 a001 726103/29134601*10749957122^(5/12) 3770005305032163 a001 39088169/4870847*4106118243^(4/23) 3770005305032163 a001 726103/29134601*4106118243^(10/23) 3770005305032163 a001 39088169/4870847*1568397607^(2/11) 3770005305032163 a001 726103/29134601*1568397607^(5/11) 3770005305032163 a001 39088169/4870847*599074578^(4/21) 3770005305032163 a001 726103/29134601*599074578^(10/21) 3770005305032163 a001 39088169/4870847*228826127^(1/5) 3770005305032163 a001 726103/29134601*228826127^(1/2) 3770005305032163 a001 39088169/4870847*87403803^(4/19) 3770005305032163 a001 726103/29134601*87403803^(10/19) 3770005305032163 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^57 3770005305032163 a001 726103/64300051206*141422324^(12/13) 3770005305032163 a001 2178309/45537549124*141422324^(11/13) 3770005305032163 a001 987/4870846*141422324^(10/13) 3770005305032163 a001 2178309/2537720636*141422324^(9/13) 3770005305032163 a001 311187/224056801*141422324^(2/3) 3770005305032163 a001 726103/199691526*141422324^(8/13) 3770005305032163 a001 102334155/4870847*141422324^(2/13) 3770005305032163 a001 102334155/4870847*2537720636^(2/15) 3770005305032163 a001 102334155/4870847*45537549124^(2/17) 3770005305032163 a001 46347/4868641*312119004989^(2/5) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(40) 3770005305032163 a001 102334155/4870847*14662949395604^(2/21) 3770005305032163 a001 102334155/4870847*(1/2+1/2*5^(1/2))^6 3770005305032163 a001 222915410843895/591286729879 3770005305032163 a001 102334155/4870847*10749957122^(1/8) 3770005305032163 a001 46347/4868641*10749957122^(11/24) 3770005305032163 a001 102334155/4870847*4106118243^(3/23) 3770005305032163 a001 46347/4868641*4106118243^(11/23) 3770005305032163 a001 102334155/4870847*1568397607^(3/22) 3770005305032163 a001 46347/4868641*1568397607^(1/2) 3770005305032163 a001 102334155/4870847*599074578^(1/7) 3770005305032163 a001 46347/4868641*599074578^(11/21) 3770005305032163 a001 102334155/4870847*228826127^(3/20) 3770005305032163 a001 46347/4868641*228826127^(11/20) 3770005305032163 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^59 3770005305032163 a001 726103/199691526*2537720636^(8/15) 3770005305032163 a001 726103/199691526*45537549124^(8/17) 3770005305032163 a001 726103/199691526*14662949395604^(8/21) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(42) 3770005305032163 a001 267914296/4870847*(1/2+1/2*5^(1/2))^4 3770005305032163 a001 24316671758561/64500364830 3770005305032163 a001 267914296/4870847*73681302247^(1/13) 3770005305032163 a001 726103/199691526*73681302247^(6/13) 3770005305032163 a001 267914296/4870847*10749957122^(1/12) 3770005305032163 a001 726103/199691526*10749957122^(1/2) 3770005305032163 a001 433494437/4870847*141422324^(1/13) 3770005305032163 a001 267914296/4870847*4106118243^(2/23) 3770005305032163 a001 726103/199691526*4106118243^(12/23) 3770005305032163 a001 267914296/4870847*1568397607^(1/11) 3770005305032163 a001 726103/199691526*1568397607^(6/11) 3770005305032163 a001 267914296/4870847*599074578^(2/21) 3770005305032163 a001 726103/199691526*599074578^(4/7) 3770005305032163 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^61 3770005305032163 a001 267914296/4870847*228826127^(1/10) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(44) 3770005305032163 a001 701408733/4870847*(1/2+1/2*5^(1/2))^2 3770005305032163 a001 1527884955772497/4052739537881 3770005305032163 a001 311187/224056801*73681302247^(1/2) 3770005305032163 a001 701408733/4870847*10749957122^(1/24) 3770005305032163 a001 701408733/4870847*4106118243^(1/23) 3770005305032163 a001 311187/224056801*10749957122^(13/24) 3770005305032163 a001 701408733/4870847*1568397607^(1/22) 3770005305032163 a001 311187/224056801*4106118243^(13/23) 3770005305032163 a001 701408733/4870847*599074578^(1/21) 3770005305032163 a001 311187/224056801*1568397607^(13/22) 3770005305032163 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^63 3770005305032163 a001 311187/494493258286*2537720636^(14/15) 3770005305032163 a001 726103/440719107401*2537720636^(8/9) 3770005305032163 a001 2178309/817138163596*2537720636^(13/15) 3770005305032163 a001 726103/64300051206*2537720636^(4/5) 3770005305032163 a001 2178309/119218851371*2537720636^(7/9) 3770005305032163 a001 2178309/45537549124*2537720636^(11/15) 3770005305032163 a001 987/4870846*2537720636^(2/3) 3770005305032163 a001 726103/1368706081*17393796001^(4/7) 3770005305032163 a001 726103/1368706081*14662949395604^(4/9) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(46) 3770005305032163 a001 1836311903/4870847 3770005305032163 a001 726103/1368706081*73681302247^(7/13) 3770005305032163 a001 726103/1368706081*10749957122^(7/12) 3770005305032163 a001 726103/1368706081*4106118243^(14/23) 3770005305032163 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^65 3770005305032163 a001 987/4870846*45537549124^(10/17) 3770005305032163 a001 987/4870846*312119004989^(6/11) 3770005305032163 a001 987/4870846*14662949395604^(10/21) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(48) 3770005305032163 a004 Fibonacci(48)/Lucas(32)/(1/2+sqrt(5)/2)^2 3770005305032163 a001 987/4870846*192900153618^(5/9) 3770005305032163 a001 987/4870846*28143753123^(3/5) 3770005305032163 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^67 3770005305032163 a001 987/4870846*10749957122^(5/8) 3770005305032163 a001 311187/494493258286*17393796001^(6/7) 3770005305032163 a001 2178309/119218851371*17393796001^(5/7) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(50) 3770005305032163 a001 726103/9381251041*23725150497407^(1/2) 3770005305032163 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^4 3770005305032163 a001 726103/9381251041*505019158607^(4/7) 3770005305032163 a001 726103/9381251041*73681302247^(8/13) 3770005305032163 a001 311187/10525900321*45537549124^(2/3) 3770005305032163 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^69 3770005305032163 a001 2178309/14662949395604*45537549124^(15/17) 3770005305032163 a001 311187/494493258286*45537549124^(14/17) 3770005305032163 a001 726103/64300051206*45537549124^(12/17) 3770005305032163 a001 2178309/817138163596*45537549124^(13/17) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(52) 3770005305032163 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^6 3770005305032163 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^71 3770005305032163 a001 726103/64300051206*14662949395604^(4/7) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(54) 3770005305032163 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^8 3770005305032163 a001 726103/64300051206*505019158607^(9/14) 3770005305032163 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^73 3770005305032163 a001 2178309/14662949395604*312119004989^(9/11) 3770005305032163 a001 726103/3020733700601*312119004989^(4/5) 3770005305032163 a001 726103/440719107401*312119004989^(8/11) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(56) 3770005305032163 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^10 3770005305032163 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^75 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(58) 3770005305032163 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^12 3770005305032163 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^77 3770005305032163 a001 311187/494493258286*14662949395604^(2/3) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(60) 3770005305032163 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^14 3770005305032163 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^79 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(62) 3770005305032163 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^16 3770005305032163 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^81 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(64) 3770005305032163 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^83 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(66) 3770005305032163 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^85 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(68) 3770005305032163 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^87 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(70) 3770005305032163 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^89 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(72) 3770005305032163 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^91 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(74) 3770005305032163 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^93 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(76) 3770005305032163 a004 Fibonacci(32)*Lucas(77)/(1/2+sqrt(5)/2)^95 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(78) 3770005305032163 a004 Fibonacci(32)*Lucas(79)/(1/2+sqrt(5)/2)^97 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(80) 3770005305032163 a004 Fibonacci(32)*Lucas(81)/(1/2+sqrt(5)/2)^99 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(82) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(84) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(86) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(88) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(90) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(92) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(94) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^78/Lucas(96) 3770005305032163 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^18 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^80/Lucas(98) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^81/Lucas(99) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^82/Lucas(100) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^79/Lucas(97) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^77/Lucas(95) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(93) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(91) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(89) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(87) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(85) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(83) 3770005305032163 a004 Fibonacci(32)*Lucas(82)/(1/2+sqrt(5)/2)^100 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(81) 3770005305032163 a004 Fibonacci(32)*Lucas(80)/(1/2+sqrt(5)/2)^98 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(79) 3770005305032163 a004 Fibonacci(32)*Lucas(78)/(1/2+sqrt(5)/2)^96 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(77) 3770005305032163 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^94 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(75) 3770005305032163 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^92 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(73) 3770005305032163 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^90 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(71) 3770005305032163 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^88 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(69) 3770005305032163 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^86 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(67) 3770005305032163 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^84 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(65) 3770005305032163 a001 2178309/14662949395604*14662949395604^(5/7) 3770005305032163 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^20 3770005305032163 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^22 3770005305032163 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^24 3770005305032163 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^26 3770005305032163 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^28 3770005305032163 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^30 3770005305032163 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^32 3770005305032163 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^34 3770005305032163 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^36 3770005305032163 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^38 3770005305032163 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^40 3770005305032163 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^42 3770005305032163 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^44 3770005305032163 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^46 3770005305032163 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^48 3770005305032163 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^50 3770005305032163 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^52 3770005305032163 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^54 3770005305032163 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^82 3770005305032163 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^53 3770005305032163 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^51 3770005305032163 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^49 3770005305032163 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^47 3770005305032163 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^45 3770005305032163 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^43 3770005305032163 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^41 3770005305032163 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^39 3770005305032163 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^37 3770005305032163 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^35 3770005305032163 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^33 3770005305032163 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^31 3770005305032163 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^29 3770005305032163 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^27 3770005305032163 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^25 3770005305032163 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^23 3770005305032163 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^21 3770005305032163 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^19 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(63) 3770005305032163 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^17 3770005305032163 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^80 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(61) 3770005305032163 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^15 3770005305032163 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^78 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(59) 3770005305032163 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^13 3770005305032163 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^76 3770005305032163 a001 2178309/817138163596*14662949395604^(13/21) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(57) 3770005305032163 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^11 3770005305032163 a001 311187/494493258286*505019158607^(3/4) 3770005305032163 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^74 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(55) 3770005305032163 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^9 3770005305032163 a001 2178309/14662949395604*192900153618^(5/6) 3770005305032163 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^72 3770005305032163 a001 2178309/119218851371*312119004989^(7/11) 3770005305032163 a001 2178309/119218851371*14662949395604^(5/9) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(53) 3770005305032163 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^7 3770005305032163 a001 2178309/119218851371*505019158607^(5/8) 3770005305032163 a001 726103/64300051206*73681302247^(9/13) 3770005305032163 a001 2178309/817138163596*73681302247^(3/4) 3770005305032163 a001 726103/3020733700601*73681302247^(11/13) 3770005305032163 a001 2178309/45537549124*45537549124^(11/17) 3770005305032163 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^70 3770005305032163 a001 2178309/45537549124*312119004989^(3/5) 3770005305032163 a001 2178309/45537549124*817138163596^(11/19) 3770005305032163 a001 2178309/45537549124*14662949395604^(11/21) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(51) 3770005305032163 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^5 3770005305032163 a001 2178309/45537549124*192900153618^(11/18) 3770005305032163 a001 2178309/119218851371*28143753123^(7/10) 3770005305032163 a001 726103/440719107401*28143753123^(4/5) 3770005305032163 a001 2178309/14662949395604*28143753123^(9/10) 3770005305032163 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^68 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(49) 3770005305032163 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2)^3 3770005305032163 a001 2178309/17393796001*9062201101803^(1/2) 3770005305032163 a001 726103/9381251041*10749957122^(2/3) 3770005305032163 a001 311187/10525900321*10749957122^(17/24) 3770005305032163 a001 2178309/45537549124*10749957122^(11/16) 3770005305032163 a001 726103/64300051206*10749957122^(3/4) 3770005305032163 a001 46347/10745088481*10749957122^(19/24) 3770005305032163 a001 2178309/817138163596*10749957122^(13/16) 3770005305032163 a001 726103/440719107401*10749957122^(5/6) 3770005305032163 a001 311187/494493258286*10749957122^(7/8) 3770005305032163 a001 726103/3020733700601*10749957122^(11/12) 3770005305032163 a001 2178309/14662949395604*10749957122^(15/16) 3770005305032163 a001 2178309/23725150497407*10749957122^(23/24) 3770005305032163 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^66 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(47) 3770005305032163 a004 Fibonacci(47)/Lucas(32)/(1/2+sqrt(5)/2) 3770005305032163 a001 2178309/6643838879*1322157322203^(1/2) 3770005305032163 a001 987/4870846*4106118243^(15/23) 3770005305032163 a001 726103/9381251041*4106118243^(16/23) 3770005305032163 a001 311187/10525900321*4106118243^(17/23) 3770005305032163 a001 726103/64300051206*4106118243^(18/23) 3770005305032163 a001 46347/10745088481*4106118243^(19/23) 3770005305032163 a001 726103/440719107401*4106118243^(20/23) 3770005305032163 a001 311187/494493258286*4106118243^(21/23) 3770005305032163 a001 726103/3020733700601*4106118243^(22/23) 3770005305032163 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^64 3770005305032163 a001 2178309/2537720636*2537720636^(3/5) 3770005305032163 a001 2178309/2537720636*45537549124^(9/17) 3770005305032163 a001 2178309/2537720636*14662949395604^(3/7) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(45) 3770005305032163 a001 567451585/4870847+567451585/4870847*5^(1/2) 3770005305032163 a001 2178309/2537720636*192900153618^(1/2) 3770005305032163 a001 2178309/2537720636*10749957122^(9/16) 3770005305032163 a001 726103/1368706081*1568397607^(7/11) 3770005305032163 a001 987/4870846*1568397607^(15/22) 3770005305032163 a001 726103/9381251041*1568397607^(8/11) 3770005305032163 a001 2178309/45537549124*1568397607^(3/4) 3770005305032163 a001 311187/10525900321*1568397607^(17/22) 3770005305032163 a001 726103/64300051206*1568397607^(9/11) 3770005305032163 a001 46347/10745088481*1568397607^(19/22) 3770005305032163 a001 726103/440719107401*1568397607^(10/11) 3770005305032163 a001 311187/494493258286*1568397607^(21/22) 3770005305032163 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^62 3770005305032163 a001 701408733/4870847*228826127^(1/20) 3770005305032163 a001 2178309/969323029*2537720636^(5/9) 3770005305032163 a001 433494437/4870847*2537720636^(1/15) 3770005305032163 a001 433494437/4870847*45537549124^(1/17) 3770005305032163 a001 2178309/969323029*312119004989^(5/11) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(43) 3770005305032163 a001 433494437/4870847*14662949395604^(1/21) 3770005305032163 a001 433494437/4870847*(1/2+1/2*5^(1/2))^3 3770005305032163 a001 2178309/969323029*3461452808002^(5/12) 3770005305032163 a001 433494437/4870847*10749957122^(1/16) 3770005305032163 a001 2178309/969323029*28143753123^(1/2) 3770005305032163 a001 433494437/4870847*599074578^(1/14) 3770005305032163 a001 311187/224056801*599074578^(13/21) 3770005305032163 a001 102334155/4870847*87403803^(3/19) 3770005305032163 a001 726103/1368706081*599074578^(2/3) 3770005305032163 a001 2178309/2537720636*599074578^(9/14) 3770005305032163 a001 987/4870846*599074578^(5/7) 3770005305032163 a001 726103/9381251041*599074578^(16/21) 3770005305032163 a001 2178309/45537549124*599074578^(11/14) 3770005305032163 a001 311187/10525900321*599074578^(17/21) 3770005305032163 a001 2178309/119218851371*599074578^(5/6) 3770005305032163 a001 726103/64300051206*599074578^(6/7) 3770005305032163 a001 46347/10745088481*599074578^(19/21) 3770005305032163 a001 2178309/817138163596*599074578^(13/14) 3770005305032163 a001 726103/440719107401*599074578^(20/21) 3770005305032163 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^60 3770005305032163 a001 701408733/4870847*87403803^(1/19) 3770005305032163 a001 165580141/4870847*2537720636^(1/9) 3770005305032163 a001 165580141/4870847*312119004989^(1/11) 3770005305032163 a001 360684711361569/956722026041 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(41) 3770005305032163 a001 165580141/4870847*(1/2+1/2*5^(1/2))^5 3770005305032163 a001 165580141/4870847*28143753123^(1/10) 3770005305032163 a001 2178309/370248451*4106118243^(1/2) 3770005305032163 a001 726103/199691526*228826127^(3/5) 3770005305032163 a001 165580141/4870847*228826127^(1/8) 3770005305032163 a001 267914296/4870847*87403803^(2/19) 3770005305032163 a001 311187/224056801*228826127^(13/20) 3770005305032163 a001 2178309/969323029*228826127^(5/8) 3770005305032163 a001 726103/1368706081*228826127^(7/10) 3770005305032163 a001 987/4870846*228826127^(3/4) 3770005305032163 a001 726103/9381251041*228826127^(4/5) 3770005305032163 a001 311187/10525900321*228826127^(17/20) 3770005305032163 a001 2178309/119218851371*228826127^(7/8) 3770005305032163 a001 726103/64300051206*228826127^(9/10) 3770005305032163 a001 46347/10745088481*228826127^(19/20) 3770005305032163 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^58 3770005305032163 a001 2178309/141422324*141422324^(7/13) 3770005305032163 a001 701408733/4870847*33385282^(1/18) 3770005305032163 a001 2178309/141422324*2537720636^(7/15) 3770005305032163 a001 2178309/141422324*17393796001^(3/7) 3770005305032163 a001 63245986/4870847*17393796001^(1/7) 3770005305032163 a001 2178309/141422324*45537549124^(7/17) 3770005305032163 a001 2178309/141422324*14662949395604^(1/3) 3770005305032163 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(39) 3770005305032163 a001 63245986/4870847*14662949395604^(1/9) 3770005305032163 a001 63245986/4870847*(1/2+1/2*5^(1/2))^7 3770005305032163 a001 2178309/141422324*192900153618^(7/18) 3770005305032163 a001 2178309/141422324*10749957122^(7/16) 3770005305032164 a001 63245986/4870847*599074578^(1/6) 3770005305032164 a001 2178309/141422324*599074578^(1/2) 3770005305032164 a001 46347/4868641*87403803^(11/19) 3770005305032164 a001 39088169/4870847*33385282^(2/9) 3770005305032164 a001 433494437/4870847*33385282^(1/12) 3770005305032164 a001 726103/199691526*87403803^(12/19) 3770005305032164 a001 311187/224056801*87403803^(13/19) 3770005305032164 a001 726103/1368706081*87403803^(14/19) 3770005305032164 a001 267914296/4870847*33385282^(1/9) 3770005305032164 a001 987/4870846*87403803^(15/19) 3770005305032164 a001 726103/9381251041*87403803^(16/19) 3770005305032164 a001 311187/10525900321*87403803^(17/19) 3770005305032164 a001 726103/64300051206*87403803^(18/19) 3770005305032164 a001 102334155/4870847*33385282^(1/6) 3770005305032164 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^56 3770005305032165 a001 24157817/4870847*141422324^(3/13) 3770005305032165 a001 24157817/4870847*2537720636^(1/5) 3770005305032165 a001 24157817/4870847*45537549124^(3/17) 3770005305032165 a001 52623190191453/139583862445 3770005305032165 a001 2178309/54018521*817138163596^(1/3) 3770005305032165 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^19/Lucas(37) 3770005305032165 a001 24157817/4870847*14662949395604^(1/7) 3770005305032165 a001 24157817/4870847*(1/2+1/2*5^(1/2))^9 3770005305032165 a001 24157817/4870847*192900153618^(1/6) 3770005305032165 a001 24157817/4870847*10749957122^(3/16) 3770005305032165 a001 24157817/4870847*599074578^(3/14) 3770005305032165 a001 701408733/4870847*12752043^(1/17) 3770005305032165 a001 726103/29134601*33385282^(5/9) 3770005305032165 a001 2178309/54018521*87403803^(1/2) 3770005305032165 a001 46347/4868641*33385282^(11/18) 3770005305032165 a001 24157817/4870847*33385282^(1/4) 3770005305032165 a001 2178309/141422324*33385282^(7/12) 3770005305032166 a001 726103/199691526*33385282^(2/3) 3770005305032166 a001 311187/224056801*33385282^(13/18) 3770005305032166 a001 2178309/2537720636*33385282^(3/4) 3770005305032166 a001 726103/1368706081*33385282^(7/9) 3770005305032166 a001 267914296/4870847*12752043^(2/17) 3770005305032166 a001 987/4870846*33385282^(5/6) 3770005305032166 a001 726103/9381251041*33385282^(8/9) 3770005305032166 a001 2178309/45537549124*33385282^(11/12) 3770005305032167 a001 311187/10525900321*33385282^(17/18) 3770005305032167 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^54 3770005305032167 a001 14930352/4870847*12752043^(5/17) 3770005305032167 a001 102334155/4870847*12752043^(3/17) 3770005305032168 a001 39088169/4870847*12752043^(4/17) 3770005305032172 a001 2178309/20633239*45537549124^(1/3) 3770005305032172 a001 20100270056685/53316291173 3770005305032172 a001 9227465/4870847*312119004989^(1/5) 3770005305032172 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^17/Lucas(35) 3770005305032172 a001 9227465/4870847*(1/2+1/2*5^(1/2))^11 3770005305032172 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^11/Lucas(32) 3770005305032172 a001 9227465/4870847*1568397607^(1/4) 3770005305032172 a001 311187/4769326*12752043^(9/17) 3770005305032173 a001 701408733/4870847*4870847^(1/16) 3770005305032176 a001 726103/29134601*12752043^(10/17) 3770005305032177 a001 416020/299537289*1860498^(13/15) 3770005305032178 a001 46347/4868641*12752043^(11/17) 3770005305032180 a001 726103/199691526*12752043^(12/17) 3770005305032181 a001 311187/224056801*12752043^(13/17) 3770005305032182 a001 726103/1368706081*12752043^(14/17) 3770005305032183 a001 267914296/4870847*4870847^(1/8) 3770005305032184 a001 2178309/20633239*12752043^(1/2) 3770005305032184 a001 987/4870846*12752043^(15/17) 3770005305032185 a001 726103/9381251041*12752043^(16/17) 3770005305032186 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^52 3770005305032193 a001 102334155/4870847*4870847^(3/16) 3770005305032194 a001 832040/3010349*1860498^(1/2) 3770005305032196 a001 2178309/7881196*7881196^(5/11) 3770005305032200 a001 5702887/4870847*4870847^(3/8) 3770005305032203 a001 39088169/4870847*4870847^(1/4) 3770005305032210 a001 14930352/4870847*4870847^(5/16) 3770005305032213 a001 832040/969323029*1860498^(9/10) 3770005305032220 a001 726103/4250681*4870847^(1/2) 3770005305032220 a001 2178309/7881196*20633239^(3/7) 3770005305032224 a001 2178309/7881196*141422324^(5/13) 3770005305032224 a001 3524578/4870847*141422324^(1/3) 3770005305032224 a001 2178309/7881196*2537720636^(1/3) 3770005305032224 a001 3838809989301/10182505537 3770005305032224 a001 2178309/7881196*45537549124^(5/17) 3770005305032224 a001 2178309/7881196*312119004989^(3/11) 3770005305032224 a001 2178309/7881196*14662949395604^(5/21) 3770005305032224 a001 2178309/7881196*(1/2+1/2*5^(1/2))^15 3770005305032224 a001 3524578/4870847*(1/2+1/2*5^(1/2))^13 3770005305032224 a001 2178309/7881196*192900153618^(5/18) 3770005305032224 a001 3524578/4870847*73681302247^(1/4) 3770005305032224 a001 2178309/7881196*28143753123^(3/10) 3770005305032224 a001 2178309/7881196*10749957122^(5/16) 3770005305032224 a001 2178309/7881196*599074578^(5/14) 3770005305032224 a001 2178309/7881196*228826127^(3/8) 3770005305032225 a001 2178309/7881196*33385282^(5/12) 3770005305032236 a001 701408733/4870847*1860498^(1/15) 3770005305032238 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^53 3770005305032244 a001 5702887/28143753123*7881196^(10/11) 3770005305032249 a001 311187/4769326*4870847^(9/16) 3770005305032249 a001 5702887/6643838879*7881196^(9/11) 3770005305032250 a001 832040/1568397607*1860498^(14/15) 3770005305032255 a001 5702887/1568397607*7881196^(8/11) 3770005305032258 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^55 3770005305032259 a001 5702887/599074578*7881196^(2/3) 3770005305032260 a001 5702887/370248451*7881196^(7/11) 3770005305032261 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^57 3770005305032261 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^59 3770005305032262 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^61 3770005305032262 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^63 3770005305032262 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^65 3770005305032262 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^67 3770005305032262 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^69 3770005305032262 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^71 3770005305032262 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^73 3770005305032262 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^75 3770005305032262 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^77 3770005305032262 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^79 3770005305032262 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^81 3770005305032262 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^83 3770005305032262 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^85 3770005305032262 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^87 3770005305032262 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^89 3770005305032262 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^91 3770005305032262 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^93 3770005305032262 a004 Fibonacci(76)*Lucas(33)/(1/2+sqrt(5)/2)^95 3770005305032262 a004 Fibonacci(78)*Lucas(33)/(1/2+sqrt(5)/2)^97 3770005305032262 a004 Fibonacci(80)*Lucas(33)/(1/2+sqrt(5)/2)^99 3770005305032262 a004 Fibonacci(81)*Lucas(33)/(1/2+sqrt(5)/2)^100 3770005305032262 a004 Fibonacci(79)*Lucas(33)/(1/2+sqrt(5)/2)^98 3770005305032262 a004 Fibonacci(77)*Lucas(33)/(1/2+sqrt(5)/2)^96 3770005305032262 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^94 3770005305032262 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^92 3770005305032262 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^90 3770005305032262 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^88 3770005305032262 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^86 3770005305032262 a001 1/1762289*(1/2+1/2*5^(1/2))^47 3770005305032262 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^84 3770005305032262 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^82 3770005305032262 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^80 3770005305032262 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^78 3770005305032262 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^76 3770005305032262 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^74 3770005305032262 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^72 3770005305032262 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^70 3770005305032262 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^68 3770005305032262 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^66 3770005305032262 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^64 3770005305032262 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^62 3770005305032262 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^60 3770005305032262 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^58 3770005305032262 a001 726103/29134601*4870847^(5/8) 3770005305032263 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^56 3770005305032264 a001 14930352/73681302247*7881196^(10/11) 3770005305032265 a001 5702887/87403803*7881196^(6/11) 3770005305032267 a001 39088169/192900153618*7881196^(10/11) 3770005305032267 a001 102334155/505019158607*7881196^(10/11) 3770005305032267 a001 267914296/1322157322203*7881196^(10/11) 3770005305032267 a001 701408733/3461452808002*7881196^(10/11) 3770005305032267 a001 1836311903/9062201101803*7881196^(10/11) 3770005305032267 a001 4807526976/23725150497407*7881196^(10/11) 3770005305032267 a001 2971215073/14662949395604*7881196^(10/11) 3770005305032267 a001 1134903170/5600748293801*7881196^(10/11) 3770005305032267 a001 433494437/2139295485799*7881196^(10/11) 3770005305032267 a001 165580141/817138163596*7881196^(10/11) 3770005305032267 a001 63245986/312119004989*7881196^(10/11) 3770005305032268 a001 24157817/119218851371*7881196^(10/11) 3770005305032269 a001 14930352/17393796001*7881196^(9/11) 3770005305032270 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^54 3770005305032272 a001 39088169/45537549124*7881196^(9/11) 3770005305032272 a001 433494437/4870847*1860498^(1/10) 3770005305032272 a001 5702887/12752043*20633239^(2/5) 3770005305032272 a001 102334155/119218851371*7881196^(9/11) 3770005305032272 a001 46347/4868641*4870847^(11/16) 3770005305032273 a001 267914296/312119004989*7881196^(9/11) 3770005305032273 a001 701408733/817138163596*7881196^(9/11) 3770005305032273 a001 1836311903/2139295485799*7881196^(9/11) 3770005305032273 a001 4807526976/5600748293801*7881196^(9/11) 3770005305032273 a001 12586269025/14662949395604*7881196^(9/11) 3770005305032273 a001 20365011074/23725150497407*7881196^(9/11) 3770005305032273 a001 7778742049/9062201101803*7881196^(9/11) 3770005305032273 a001 2971215073/3461452808002*7881196^(9/11) 3770005305032273 a001 1134903170/1322157322203*7881196^(9/11) 3770005305032273 a001 433494437/505019158607*7881196^(9/11) 3770005305032273 a001 165580141/192900153618*7881196^(9/11) 3770005305032273 a001 63245986/73681302247*7881196^(9/11) 3770005305032274 a001 4976784/4250681*7881196^(4/11) 3770005305032274 a001 24157817/28143753123*7881196^(9/11) 3770005305032275 a001 4976784/1368706081*7881196^(8/11) 3770005305032276 a001 5702887/12752043*17393796001^(2/7) 3770005305032276 a001 5702887/12752043*14662949395604^(2/9) 3770005305032276 a001 5702887/12752043*(1/2+1/2*5^(1/2))^14 3770005305032276 a001 32522920134769/86267571272 3770005305032276 a001 5702887/12752043*10749957122^(7/24) 3770005305032276 a001 5702887/12752043*4106118243^(7/23) 3770005305032276 a001 5702887/12752043*1568397607^(7/22) 3770005305032276 a001 5702887/12752043*599074578^(1/3) 3770005305032276 a001 5702887/12752043*228826127^(7/20) 3770005305032276 a001 9227465/45537549124*7881196^(10/11) 3770005305032276 a001 5702887/12752043*87403803^(7/19) 3770005305032277 a001 5702887/12752043*33385282^(7/18) 3770005305032278 a001 39088169/10749957122*7881196^(8/11) 3770005305032278 a001 831985/228811001*7881196^(8/11) 3770005305032278 a001 267914296/73681302247*7881196^(8/11) 3770005305032278 a001 233802911/64300051206*7881196^(8/11) 3770005305032278 a001 1836311903/505019158607*7881196^(8/11) 3770005305032278 a001 1602508992/440719107401*7881196^(8/11) 3770005305032278 a001 12586269025/3461452808002*7881196^(8/11) 3770005305032278 a001 10983760033/3020733700601*7881196^(8/11) 3770005305032278 a001 86267571272/23725150497407*7881196^(8/11) 3770005305032278 a001 53316291173/14662949395604*7881196^(8/11) 3770005305032278 a001 20365011074/5600748293801*7881196^(8/11) 3770005305032278 a001 7778742049/2139295485799*7881196^(8/11) 3770005305032278 a001 2971215073/817138163596*7881196^(8/11) 3770005305032278 a001 1134903170/312119004989*7881196^(8/11) 3770005305032278 a001 433494437/119218851371*7881196^(8/11) 3770005305032278 a001 165580141/45537549124*7881196^(8/11) 3770005305032278 a001 63245986/17393796001*7881196^(8/11) 3770005305032278 a001 14930352/1568397607*7881196^(2/3) 3770005305032279 a001 24157817/6643838879*7881196^(8/11) 3770005305032280 a001 24157817/12752043*7881196^(1/3) 3770005305032280 a001 14930352/969323029*7881196^(7/11) 3770005305032280 a001 5702887/20633239*7881196^(5/11) 3770005305032281 a001 39088169/4106118243*7881196^(2/3) 3770005305032281 a001 9227465/10749957122*7881196^(9/11) 3770005305032282 a001 102334155/10749957122*7881196^(2/3) 3770005305032282 a001 267914296/28143753123*7881196^(2/3) 3770005305032282 a001 701408733/73681302247*7881196^(2/3) 3770005305032282 a001 1836311903/192900153618*7881196^(2/3) 3770005305032282 a001 102287808/10745088481*7881196^(2/3) 3770005305032282 a001 12586269025/1322157322203*7881196^(2/3) 3770005305032282 a001 32951280099/3461452808002*7881196^(2/3) 3770005305032282 a001 86267571272/9062201101803*7881196^(2/3) 3770005305032282 a001 225851433717/23725150497407*7881196^(2/3) 3770005305032282 a001 139583862445/14662949395604*7881196^(2/3) 3770005305032282 a001 53316291173/5600748293801*7881196^(2/3) 3770005305032282 a001 20365011074/2139295485799*7881196^(2/3) 3770005305032282 a001 7778742049/817138163596*7881196^(2/3) 3770005305032282 a001 2971215073/312119004989*7881196^(2/3) 3770005305032282 a001 1134903170/119218851371*7881196^(2/3) 3770005305032282 a001 433494437/45537549124*7881196^(2/3) 3770005305032282 a001 165580141/17393796001*7881196^(2/3) 3770005305032282 a001 63245986/6643838879*7881196^(2/3) 3770005305032282 a001 726103/199691526*4870847^(3/4) 3770005305032283 a001 63245986/12752043*7881196^(3/11) 3770005305032283 a001 24157817/2537720636*7881196^(2/3) 3770005305032283 a001 39088169/2537720636*7881196^(7/11) 3770005305032284 a001 102334155/6643838879*7881196^(7/11) 3770005305032284 a001 9238424/599786069*7881196^(7/11) 3770005305032284 a001 701408733/45537549124*7881196^(7/11) 3770005305032284 a001 1836311903/119218851371*7881196^(7/11) 3770005305032284 a001 4807526976/312119004989*7881196^(7/11) 3770005305032284 a001 12586269025/817138163596*7881196^(7/11) 3770005305032284 a001 32951280099/2139295485799*7881196^(7/11) 3770005305032284 a001 86267571272/5600748293801*7881196^(7/11) 3770005305032284 a001 7787980473/505618944676*7881196^(7/11) 3770005305032284 a001 365435296162/23725150497407*7881196^(7/11) 3770005305032284 a001 139583862445/9062201101803*7881196^(7/11) 3770005305032284 a001 53316291173/3461452808002*7881196^(7/11) 3770005305032284 a001 20365011074/1322157322203*7881196^(7/11) 3770005305032284 a001 7778742049/505019158607*7881196^(7/11) 3770005305032284 a001 2971215073/192900153618*7881196^(7/11) 3770005305032284 a001 1134903170/73681302247*7881196^(7/11) 3770005305032284 a001 433494437/28143753123*7881196^(7/11) 3770005305032284 a001 165580141/10749957122*7881196^(7/11) 3770005305032284 a001 63245986/4106118243*7881196^(7/11) 3770005305032285 a001 24157817/1568397607*7881196^(7/11) 3770005305032285 a001 5702887/12752043*12752043^(7/17) 3770005305032286 a001 14930352/228826127*7881196^(6/11) 3770005305032287 a001 9227465/2537720636*7881196^(8/11) 3770005305032288 a001 267914296/12752043*7881196^(2/11) 3770005305032289 a001 39088169/599074578*7881196^(6/11) 3770005305032289 a001 14619165/224056801*7881196^(6/11) 3770005305032289 a001 267914296/4106118243*7881196^(6/11) 3770005305032289 a001 701408733/10749957122*7881196^(6/11) 3770005305032289 a001 1836311903/28143753123*7881196^(6/11) 3770005305032289 a001 686789568/10525900321*7881196^(6/11) 3770005305032289 a001 12586269025/192900153618*7881196^(6/11) 3770005305032289 a001 32951280099/505019158607*7881196^(6/11) 3770005305032289 a001 86267571272/1322157322203*7881196^(6/11) 3770005305032289 a001 32264490531/494493258286*7881196^(6/11) 3770005305032289 a001 1548008755920/23725150497407*7881196^(6/11) 3770005305032289 a001 365435296162/5600748293801*7881196^(6/11) 3770005305032289 a001 139583862445/2139295485799*7881196^(6/11) 3770005305032289 a001 53316291173/817138163596*7881196^(6/11) 3770005305032289 a001 20365011074/312119004989*7881196^(6/11) 3770005305032289 a001 7778742049/119218851371*7881196^(6/11) 3770005305032289 a001 2971215073/45537549124*7881196^(6/11) 3770005305032289 a001 1134903170/17393796001*7881196^(6/11) 3770005305032289 a001 433494437/6643838879*7881196^(6/11) 3770005305032289 a001 165580141/2537720636*7881196^(6/11) 3770005305032289 a001 63245986/969323029*7881196^(6/11) 3770005305032290 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^55 3770005305032290 a001 24157817/370248451*7881196^(6/11) 3770005305032291 a001 9227465/969323029*7881196^(2/3) 3770005305032291 a001 5702887/28143753123*20633239^(6/7) 3770005305032292 a001 5702887/10749957122*20633239^(4/5) 3770005305032292 a001 311187/224056801*4870847^(13/16) 3770005305032292 a001 9227465/599074578*7881196^(7/11) 3770005305032293 a001 14930352/54018521*7881196^(5/11) 3770005305032293 a001 5702887/2537720636*20633239^(5/7) 3770005305032294 a001 1134903170/12752043*7881196^(1/11) 3770005305032294 a001 5702887/370248451*20633239^(3/5) 3770005305032294 a001 5702887/228826127*20633239^(4/7) 3770005305032294 a001 39088169/141422324*7881196^(5/11) 3770005305032295 a001 102334155/370248451*7881196^(5/11) 3770005305032295 a001 267914296/969323029*7881196^(5/11) 3770005305032295 a001 701408733/2537720636*7881196^(5/11) 3770005305032295 a001 1836311903/6643838879*7881196^(5/11) 3770005305032295 a001 4807526976/17393796001*7881196^(5/11) 3770005305032295 a001 12586269025/45537549124*7881196^(5/11) 3770005305032295 a001 32951280099/119218851371*7881196^(5/11) 3770005305032295 a001 86267571272/312119004989*7881196^(5/11) 3770005305032295 a001 225851433717/817138163596*7881196^(5/11) 3770005305032295 a001 1548008755920/5600748293801*7881196^(5/11) 3770005305032295 a001 139583862445/505019158607*7881196^(5/11) 3770005305032295 a001 53316291173/192900153618*7881196^(5/11) 3770005305032295 a001 20365011074/73681302247*7881196^(5/11) 3770005305032295 a001 7778742049/28143753123*7881196^(5/11) 3770005305032295 a001 2971215073/10749957122*7881196^(5/11) 3770005305032295 a001 1134903170/4106118243*7881196^(5/11) 3770005305032295 a001 433494437/1568397607*7881196^(5/11) 3770005305032295 a001 165580141/599074578*7881196^(5/11) 3770005305032295 a001 63245986/228826127*7881196^(5/11) 3770005305032295 a001 24157817/87403803*7881196^(5/11) 3770005305032296 a001 4976784/4250681*141422324^(4/13) 3770005305032296 a001 4976784/4250681*2537720636^(4/15) 3770005305032296 a001 4976784/4250681*45537549124^(4/17) 3770005305032296 a001 4976784/4250681*817138163596^(4/19) 3770005305032296 a001 4976784/4250681*14662949395604^(4/21) 3770005305032296 a001 5702887/33385282*(1/2+1/2*5^(1/2))^16 3770005305032296 a001 4976784/4250681*(1/2+1/2*5^(1/2))^12 3770005305032296 a001 28382036775408/75283811239 3770005305032296 a001 4976784/4250681*73681302247^(3/13) 3770005305032296 a001 5702887/33385282*73681302247^(4/13) 3770005305032296 a001 4976784/4250681*10749957122^(1/4) 3770005305032296 a001 5702887/33385282*10749957122^(1/3) 3770005305032296 a001 4976784/4250681*4106118243^(6/23) 3770005305032296 a001 5702887/33385282*4106118243^(8/23) 3770005305032296 a001 4976784/4250681*1568397607^(3/11) 3770005305032296 a001 5702887/33385282*1568397607^(4/11) 3770005305032296 a001 4976784/4250681*599074578^(2/7) 3770005305032296 a001 5702887/33385282*599074578^(8/21) 3770005305032296 a001 4976784/4250681*228826127^(3/10) 3770005305032296 a001 5702887/33385282*228826127^(2/5) 3770005305032296 a001 4976784/4250681*87403803^(6/19) 3770005305032296 a001 5702887/33385282*87403803^(8/19) 3770005305032296 a001 39088169/12752043*20633239^(2/7) 3770005305032296 a001 39088169/33385282*7881196^(4/11) 3770005305032297 a001 4976784/4250681*33385282^(1/3) 3770005305032297 a001 5702887/33385282*33385282^(4/9) 3770005305032297 a001 165580141/12752043*20633239^(1/5) 3770005305032298 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^57 3770005305032298 a001 433494437/12752043*20633239^(1/7) 3770005305032298 a001 9227465/141422324*7881196^(6/11) 3770005305032298 a001 5702887/87403803*141422324^(6/13) 3770005305032299 a001 5702887/87403803*2537720636^(2/5) 3770005305032299 a001 39088169/12752043*2537720636^(2/9) 3770005305032299 a001 5702887/87403803*45537549124^(6/17) 3770005305032299 a001 39088169/12752043*312119004989^(2/11) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^18/Lucas(38) 3770005305032299 a001 39088169/12752043*(1/2+1/2*5^(1/2))^10 3770005305032299 a001 222915410843903/591286729879 3770005305032299 a001 5702887/87403803*192900153618^(1/3) 3770005305032299 a001 39088169/12752043*28143753123^(1/5) 3770005305032299 a001 39088169/12752043*10749957122^(5/24) 3770005305032299 a001 5702887/87403803*10749957122^(3/8) 3770005305032299 a001 39088169/12752043*4106118243^(5/23) 3770005305032299 a001 5702887/87403803*4106118243^(9/23) 3770005305032299 a001 39088169/12752043*1568397607^(5/22) 3770005305032299 a001 5702887/87403803*1568397607^(9/22) 3770005305032299 a001 39088169/12752043*599074578^(5/21) 3770005305032299 a001 5702887/87403803*599074578^(3/7) 3770005305032299 a001 39088169/12752043*228826127^(1/4) 3770005305032299 a001 5702887/87403803*228826127^(9/20) 3770005305032299 a001 39088169/12752043*87403803^(5/19) 3770005305032299 a001 5702887/87403803*87403803^(9/19) 3770005305032299 a001 31622993/16692641*7881196^(1/3) 3770005305032299 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^59 3770005305032299 a001 5702887/505019158607*141422324^(12/13) 3770005305032299 a001 5702887/119218851371*141422324^(11/13) 3770005305032299 a001 5702887/28143753123*141422324^(10/13) 3770005305032299 a001 5702887/6643838879*141422324^(9/13) 3770005305032299 a001 5702887/4106118243*141422324^(2/3) 3770005305032299 a001 5702887/1568397607*141422324^(8/13) 3770005305032299 a001 5702887/370248451*141422324^(7/13) 3770005305032299 a001 5702887/228826127*2537720636^(4/9) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(40) 3770005305032299 a001 34111385/4250681*(1/2+1/2*5^(1/2))^8 3770005305032299 a001 34111385/4250681*23725150497407^(1/8) 3770005305032299 a001 34111385/4250681*505019158607^(1/7) 3770005305032299 a001 5702887/228826127*505019158607^(5/14) 3770005305032299 a001 34111385/4250681*73681302247^(2/13) 3770005305032299 a001 5702887/228826127*73681302247^(5/13) 3770005305032299 a001 5702887/228826127*28143753123^(2/5) 3770005305032299 a001 34111385/4250681*10749957122^(1/6) 3770005305032299 a001 5702887/228826127*10749957122^(5/12) 3770005305032299 a001 34111385/4250681*4106118243^(4/23) 3770005305032299 a001 5702887/228826127*4106118243^(10/23) 3770005305032299 a001 34111385/4250681*1568397607^(2/11) 3770005305032299 a001 5702887/228826127*1568397607^(5/11) 3770005305032299 a001 34111385/4250681*599074578^(4/21) 3770005305032299 a001 5702887/228826127*599074578^(10/21) 3770005305032299 a001 34111385/4250681*228826127^(1/5) 3770005305032299 a001 267914296/12752043*141422324^(2/13) 3770005305032299 a001 5702887/228826127*228826127^(1/2) 3770005305032299 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^61 3770005305032299 a001 1134903170/12752043*141422324^(1/13) 3770005305032299 a001 267914296/12752043*2537720636^(2/15) 3770005305032299 a001 267914296/12752043*45537549124^(2/17) 3770005305032299 a001 5702887/599074578*312119004989^(2/5) 3770005305032299 a001 267914296/12752043*14662949395604^(2/21) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(42) 3770005305032299 a001 267914296/12752043*(1/2+1/2*5^(1/2))^6 3770005305032299 a001 1527884955772552/4052739537881 3770005305032299 a001 267914296/12752043*10749957122^(1/8) 3770005305032299 a001 5702887/599074578*10749957122^(11/24) 3770005305032299 a001 267914296/12752043*4106118243^(3/23) 3770005305032299 a001 5702887/599074578*4106118243^(11/23) 3770005305032299 a001 267914296/12752043*1568397607^(3/22) 3770005305032299 a001 5702887/599074578*1568397607^(1/2) 3770005305032299 a001 267914296/12752043*599074578^(1/7) 3770005305032299 a001 5702887/599074578*599074578^(11/21) 3770005305032299 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^63 3770005305032299 a001 5702887/1568397607*2537720636^(8/15) 3770005305032299 a001 5702887/1568397607*45537549124^(8/17) 3770005305032299 a001 5702887/1568397607*14662949395604^(8/21) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(44) 3770005305032299 a001 233802911/4250681*(1/2+1/2*5^(1/2))^4 3770005305032299 a001 1333351581704057/3536736619241 3770005305032299 a001 233802911/4250681*73681302247^(1/13) 3770005305032299 a001 5702887/1568397607*73681302247^(6/13) 3770005305032299 a001 233802911/4250681*10749957122^(1/12) 3770005305032299 a001 5702887/1568397607*10749957122^(1/2) 3770005305032299 a001 233802911/4250681*4106118243^(2/23) 3770005305032299 a001 5702887/1568397607*4106118243^(12/23) 3770005305032299 a001 233802911/4250681*1568397607^(1/11) 3770005305032299 a001 5702887/1568397607*1568397607^(6/11) 3770005305032299 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^65 3770005305032299 a001 5702887/9062201101803*2537720636^(14/15) 3770005305032299 a001 233802911/4250681*599074578^(2/21) 3770005305032299 a001 5702887/3461452808002*2537720636^(8/9) 3770005305032299 a001 5702887/2139295485799*2537720636^(13/15) 3770005305032299 a001 5702887/505019158607*2537720636^(4/5) 3770005305032299 a001 5702887/312119004989*2537720636^(7/9) 3770005305032299 a001 5702887/119218851371*2537720636^(11/15) 3770005305032299 a001 5702887/28143753123*2537720636^(2/3) 3770005305032299 a001 5702887/6643838879*2537720636^(3/5) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(46) 3770005305032299 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^2 3770005305032299 a001 5702887/4106118243*73681302247^(1/2) 3770005305032299 a001 1836311903/12752043*10749957122^(1/24) 3770005305032299 a001 1836311903/12752043*4106118243^(1/23) 3770005305032299 a001 5702887/4106118243*10749957122^(13/24) 3770005305032299 a001 1836311903/12752043*1568397607^(1/22) 3770005305032299 a001 5702887/4106118243*4106118243^(13/23) 3770005305032299 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^67 3770005305032299 a001 5702887/10749957122*17393796001^(4/7) 3770005305032299 a001 5702887/10749957122*14662949395604^(4/9) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(48) 3770005305032299 a006 5^(1/2)*Fibonacci(48)/Lucas(34)/sqrt(5) 3770005305032299 a001 5702887/10749957122*73681302247^(7/13) 3770005305032299 a001 5702887/10749957122*10749957122^(7/12) 3770005305032299 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^69 3770005305032299 a001 5702887/9062201101803*17393796001^(6/7) 3770005305032299 a001 5702887/312119004989*17393796001^(5/7) 3770005305032299 a001 5702887/28143753123*45537549124^(10/17) 3770005305032299 a001 5702887/28143753123*312119004989^(6/11) 3770005305032299 a001 5702887/28143753123*14662949395604^(10/21) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(50) 3770005305032299 a004 Fibonacci(50)/Lucas(34)/(1/2+sqrt(5)/2)^2 3770005305032299 a001 5702887/28143753123*192900153618^(5/9) 3770005305032299 a001 5702887/28143753123*28143753123^(3/5) 3770005305032299 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^71 3770005305032299 a001 5702887/9062201101803*45537549124^(14/17) 3770005305032299 a001 5702887/2139295485799*45537549124^(13/17) 3770005305032299 a001 5702887/192900153618*45537549124^(2/3) 3770005305032299 a001 5702887/505019158607*45537549124^(12/17) 3770005305032299 a001 5702887/119218851371*45537549124^(11/17) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(52) 3770005305032299 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^4 3770005305032299 a001 5702887/73681302247*23725150497407^(1/2) 3770005305032299 a001 5702887/73681302247*505019158607^(4/7) 3770005305032299 a001 5702887/73681302247*73681302247^(8/13) 3770005305032299 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^73 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(54) 3770005305032299 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^6 3770005305032299 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^75 3770005305032299 a001 5702887/23725150497407*312119004989^(4/5) 3770005305032299 a001 5702887/3461452808002*312119004989^(8/11) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(56) 3770005305032299 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^8 3770005305032299 a001 5702887/1322157322203*817138163596^(2/3) 3770005305032299 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^77 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(58) 3770005305032299 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^10 3770005305032299 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^79 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(60) 3770005305032299 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^12 3770005305032299 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^81 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(62) 3770005305032299 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^14 3770005305032299 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^83 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(64) 3770005305032299 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^16 3770005305032299 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^85 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(66) 3770005305032299 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^18 3770005305032299 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^87 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(68) 3770005305032299 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^89 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(70) 3770005305032299 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^91 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(72) 3770005305032299 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^93 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(74) 3770005305032299 a004 Fibonacci(34)*Lucas(75)/(1/2+sqrt(5)/2)^95 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(76) 3770005305032299 a004 Fibonacci(34)*Lucas(77)/(1/2+sqrt(5)/2)^97 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(78) 3770005305032299 a004 Fibonacci(34)*Lucas(79)/(1/2+sqrt(5)/2)^99 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(80) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(82) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(84) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(86) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(88) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(90) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(92) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(94) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^76/Lucas(96) 3770005305032299 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^20 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^78/Lucas(98) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^79/Lucas(99) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^80/Lucas(100) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^77/Lucas(97) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^75/Lucas(95) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(93) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(91) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(89) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(87) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(85) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(83) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(81) 3770005305032299 a004 Fibonacci(34)*Lucas(80)/(1/2+sqrt(5)/2)^100 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(79) 3770005305032299 a004 Fibonacci(34)*Lucas(78)/(1/2+sqrt(5)/2)^98 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(77) 3770005305032299 a004 Fibonacci(34)*Lucas(76)/(1/2+sqrt(5)/2)^96 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(75) 3770005305032299 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^94 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(73) 3770005305032299 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^92 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(71) 3770005305032299 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^90 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(69) 3770005305032299 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^22 3770005305032299 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^24 3770005305032299 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^26 3770005305032299 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^28 3770005305032299 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^30 3770005305032299 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^32 3770005305032299 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^34 3770005305032299 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^36 3770005305032299 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^38 3770005305032299 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^40 3770005305032299 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^42 3770005305032299 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^44 3770005305032299 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^46 3770005305032299 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^48 3770005305032299 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^50 3770005305032299 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^52 3770005305032299 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^88 3770005305032299 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^51 3770005305032299 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^49 3770005305032299 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^47 3770005305032299 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^45 3770005305032299 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^43 3770005305032299 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^41 3770005305032299 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^39 3770005305032299 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^37 3770005305032299 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^35 3770005305032299 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^33 3770005305032299 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^31 3770005305032299 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^29 3770005305032299 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^27 3770005305032299 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^25 3770005305032299 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^23 3770005305032299 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^21 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(67) 3770005305032299 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^19 3770005305032299 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^86 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(65) 3770005305032299 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^17 3770005305032299 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^84 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(63) 3770005305032299 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^15 3770005305032299 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^82 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(61) 3770005305032299 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^13 3770005305032299 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^80 3770005305032299 a001 5702887/2139295485799*14662949395604^(13/21) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(59) 3770005305032299 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^11 3770005305032299 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^78 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(57) 3770005305032299 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^9 3770005305032299 a001 5702887/9062201101803*505019158607^(3/4) 3770005305032299 a001 5702887/312119004989*312119004989^(7/11) 3770005305032299 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^76 3770005305032299 a001 5702887/312119004989*14662949395604^(5/9) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(55) 3770005305032299 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^7 3770005305032299 a001 5702887/312119004989*505019158607^(5/8) 3770005305032299 a001 5702887/2139295485799*192900153618^(13/18) 3770005305032299 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^74 3770005305032299 a001 5702887/119218851371*312119004989^(3/5) 3770005305032299 a001 5702887/119218851371*14662949395604^(11/21) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(53) 3770005305032299 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^5 3770005305032299 a001 5702887/119218851371*192900153618^(11/18) 3770005305032299 a001 5702887/505019158607*73681302247^(9/13) 3770005305032299 a001 5702887/2139295485799*73681302247^(3/4) 3770005305032299 a001 5702887/3461452808002*73681302247^(10/13) 3770005305032299 a001 5702887/23725150497407*73681302247^(11/13) 3770005305032299 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^72 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(51) 3770005305032299 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2)^3 3770005305032299 a001 1597/12752044*9062201101803^(1/2) 3770005305032299 a001 5702887/312119004989*28143753123^(7/10) 3770005305032299 a001 5702887/3461452808002*28143753123^(4/5) 3770005305032299 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^70 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(49) 3770005305032299 a004 Fibonacci(49)/Lucas(34)/(1/2+sqrt(5)/2) 3770005305032299 a001 5702887/17393796001*1322157322203^(1/2) 3770005305032299 a001 5702887/28143753123*10749957122^(5/8) 3770005305032299 a001 5702887/73681302247*10749957122^(2/3) 3770005305032299 a001 5702887/119218851371*10749957122^(11/16) 3770005305032299 a001 5702887/192900153618*10749957122^(17/24) 3770005305032299 a001 5702887/505019158607*10749957122^(3/4) 3770005305032299 a001 5702887/1322157322203*10749957122^(19/24) 3770005305032299 a001 5702887/2139295485799*10749957122^(13/16) 3770005305032299 a001 5702887/3461452808002*10749957122^(5/6) 3770005305032299 a001 5702887/9062201101803*10749957122^(7/8) 3770005305032299 a001 5702887/23725150497407*10749957122^(11/12) 3770005305032299 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^68 3770005305032299 a001 5702887/6643838879*45537549124^(9/17) 3770005305032299 a001 5702887/6643838879*14662949395604^(3/7) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(47) 3770005305032299 a001 5702887/6643838879*192900153618^(1/2) 3770005305032299 a001 5702887/10749957122*4106118243^(14/23) 3770005305032299 a001 5702887/6643838879*10749957122^(9/16) 3770005305032299 a001 5702887/28143753123*4106118243^(15/23) 3770005305032299 a001 5702887/73681302247*4106118243^(16/23) 3770005305032299 a001 5702887/192900153618*4106118243^(17/23) 3770005305032299 a001 5702887/505019158607*4106118243^(18/23) 3770005305032299 a001 5702887/1322157322203*4106118243^(19/23) 3770005305032299 a001 5702887/3461452808002*4106118243^(20/23) 3770005305032299 a001 5702887/9062201101803*4106118243^(21/23) 3770005305032299 a001 5702887/23725150497407*4106118243^(22/23) 3770005305032299 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^66 3770005305032299 a001 5702887/2537720636*2537720636^(5/9) 3770005305032299 a001 1836311903/12752043*599074578^(1/21) 3770005305032299 a001 267914296/12752043*228826127^(3/20) 3770005305032299 a001 1134903170/12752043*2537720636^(1/15) 3770005305032299 a001 1134903170/12752043*45537549124^(1/17) 3770005305032299 a001 5702887/2537720636*312119004989^(5/11) 3770005305032299 a001 1134903170/12752043*14662949395604^(1/21) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(45) 3770005305032299 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^3 3770005305032299 a001 1134903170/12752043*192900153618^(1/18) 3770005305032299 a001 1134903170/12752043*10749957122^(1/16) 3770005305032299 a001 5702887/2537720636*28143753123^(1/2) 3770005305032299 a001 5702887/4106118243*1568397607^(13/22) 3770005305032299 a001 5702887/10749957122*1568397607^(7/11) 3770005305032299 a001 5702887/28143753123*1568397607^(15/22) 3770005305032299 a001 5702887/73681302247*1568397607^(8/11) 3770005305032299 a001 5702887/119218851371*1568397607^(3/4) 3770005305032299 a001 5702887/192900153618*1568397607^(17/22) 3770005305032299 a001 5702887/505019158607*1568397607^(9/11) 3770005305032299 a001 5702887/1322157322203*1568397607^(19/22) 3770005305032299 a001 1134903170/12752043*599074578^(1/14) 3770005305032299 a001 5702887/3461452808002*1568397607^(10/11) 3770005305032299 a001 5702887/9062201101803*1568397607^(21/22) 3770005305032299 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^64 3770005305032299 a001 1836311903/12752043*228826127^(1/20) 3770005305032299 a001 433494437/12752043*2537720636^(1/9) 3770005305032299 a001 433494437/12752043*312119004989^(1/11) 3770005305032299 a001 2472169789339619/6557470319842 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(43) 3770005305032299 a001 433494437/12752043*(1/2+1/2*5^(1/2))^5 3770005305032299 a001 433494437/12752043*28143753123^(1/10) 3770005305032299 a001 5702887/969323029*4106118243^(1/2) 3770005305032299 a001 5702887/1568397607*599074578^(4/7) 3770005305032299 a001 233802911/4250681*228826127^(1/10) 3770005305032299 a001 5702887/4106118243*599074578^(13/21) 3770005305032299 a001 5702887/6643838879*599074578^(9/14) 3770005305032299 a001 5702887/10749957122*599074578^(2/3) 3770005305032299 a001 5702887/28143753123*599074578^(5/7) 3770005305032299 a001 5702887/73681302247*599074578^(16/21) 3770005305032299 a001 5702887/119218851371*599074578^(11/14) 3770005305032299 a001 5702887/192900153618*599074578^(17/21) 3770005305032299 a001 5702887/312119004989*599074578^(5/6) 3770005305032299 a001 5702887/505019158607*599074578^(6/7) 3770005305032299 a001 5702887/1322157322203*599074578^(19/21) 3770005305032299 a001 5702887/2139295485799*599074578^(13/14) 3770005305032299 a001 5702887/3461452808002*599074578^(20/21) 3770005305032299 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^62 3770005305032299 a001 433494437/12752043*228826127^(1/8) 3770005305032299 a001 1836311903/12752043*87403803^(1/19) 3770005305032299 a001 5702887/370248451*2537720636^(7/15) 3770005305032299 a001 5702887/370248451*17393796001^(3/7) 3770005305032299 a001 165580141/12752043*17393796001^(1/7) 3770005305032299 a001 5702887/370248451*45537549124^(7/17) 3770005305032299 a001 944284833567067/2504730781961 3770005305032299 a001 5702887/370248451*14662949395604^(1/3) 3770005305032299 a001 165580141/12752043*14662949395604^(1/9) 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(41) 3770005305032299 a001 165580141/12752043*(1/2+1/2*5^(1/2))^7 3770005305032299 a001 5702887/370248451*192900153618^(7/18) 3770005305032299 a001 5702887/370248451*10749957122^(7/16) 3770005305032299 a001 5702887/599074578*228826127^(11/20) 3770005305032299 a001 165580141/12752043*599074578^(1/6) 3770005305032299 a001 34111385/4250681*87403803^(4/19) 3770005305032299 a001 5702887/370248451*599074578^(1/2) 3770005305032299 a001 5702887/1568397607*228826127^(3/5) 3770005305032299 a001 5702887/2537720636*228826127^(5/8) 3770005305032299 a001 5702887/4106118243*228826127^(13/20) 3770005305032299 a001 5702887/10749957122*228826127^(7/10) 3770005305032299 a001 233802911/4250681*87403803^(2/19) 3770005305032299 a001 5702887/28143753123*228826127^(3/4) 3770005305032299 a001 5702887/73681302247*228826127^(4/5) 3770005305032299 a001 5702887/192900153618*228826127^(17/20) 3770005305032299 a001 5702887/312119004989*228826127^(7/8) 3770005305032299 a001 5702887/505019158607*228826127^(9/10) 3770005305032299 a001 267914296/12752043*87403803^(3/19) 3770005305032299 a001 5702887/1322157322203*228826127^(19/20) 3770005305032299 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^60 3770005305032299 a001 63245986/12752043*141422324^(3/13) 3770005305032299 a001 1836311903/12752043*33385282^(1/18) 3770005305032299 a001 5702887/228826127*87403803^(10/19) 3770005305032299 a001 63245986/12752043*2537720636^(1/5) 3770005305032299 a001 63245986/12752043*45537549124^(3/17) 3770005305032299 a001 360684711361582/956722026041 3770005305032299 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(39) 3770005305032299 a001 63245986/12752043*(1/2+1/2*5^(1/2))^9 3770005305032299 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^9/Lucas(34) 3770005305032299 a001 63245986/12752043*192900153618^(1/6) 3770005305032299 a001 63245986/12752043*10749957122^(3/16) 3770005305032299 a001 63245986/12752043*599074578^(3/14) 3770005305032299 a001 5702887/599074578*87403803^(11/19) 3770005305032299 a001 1134903170/12752043*33385282^(1/12) 3770005305032299 a001 5702887/1568397607*87403803^(12/19) 3770005305032299 a001 5702887/4106118243*87403803^(13/19) 3770005305032299 a001 5702887/10749957122*87403803^(14/19) 3770005305032299 a001 233802911/4250681*33385282^(1/9) 3770005305032299 a001 5702887/28143753123*87403803^(15/19) 3770005305032299 a001 831985/15126*710647^(1/7) 3770005305032299 a001 5702887/73681302247*87403803^(16/19) 3770005305032299 a001 5702887/141422324*87403803^(1/2) 3770005305032299 a001 5702887/192900153618*87403803^(17/19) 3770005305032299 a001 39088169/12752043*33385282^(5/18) 3770005305032299 a001 5702887/505019158607*87403803^(18/19) 3770005305032300 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^58 3770005305032300 a001 34111385/29134601*7881196^(4/11) 3770005305032300 a001 267914296/12752043*33385282^(1/6) 3770005305032300 a001 34111385/4250681*33385282^(2/9) 3770005305032300 a001 267914296/228826127*7881196^(4/11) 3770005305032300 a001 63245986/12752043*33385282^(1/4) 3770005305032300 a001 9227465/33385282*7881196^(5/11) 3770005305032300 a001 233802911/199691526*7881196^(4/11) 3770005305032300 a001 1836311903/1568397607*7881196^(4/11) 3770005305032300 a001 1602508992/1368706081*7881196^(4/11) 3770005305032300 a001 12586269025/10749957122*7881196^(4/11) 3770005305032300 a001 10983760033/9381251041*7881196^(4/11) 3770005305032300 a001 86267571272/73681302247*7881196^(4/11) 3770005305032300 a001 75283811239/64300051206*7881196^(4/11) 3770005305032300 a001 2504730781961/2139295485799*7881196^(4/11) 3770005305032300 a001 365435296162/312119004989*7881196^(4/11) 3770005305032300 a001 139583862445/119218851371*7881196^(4/11) 3770005305032300 a001 53316291173/45537549124*7881196^(4/11) 3770005305032300 a001 20365011074/17393796001*7881196^(4/11) 3770005305032300 a001 7778742049/6643838879*7881196^(4/11) 3770005305032300 a001 2971215073/2537720636*7881196^(4/11) 3770005305032300 a001 1134903170/969323029*7881196^(4/11) 3770005305032300 a001 433494437/370248451*7881196^(4/11) 3770005305032300 a001 5702887/87403803*33385282^(1/2) 3770005305032300 a001 5702887/54018521*45537549124^(1/3) 3770005305032300 a001 137769300517679/365435296162 3770005305032300 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^17/Lucas(37) 3770005305032300 a001 24157817/12752043*(1/2+1/2*5^(1/2))^11 3770005305032300 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^11/Lucas(34) 3770005305032300 a001 24157817/12752043*1568397607^(1/4) 3770005305032300 a001 165580141/141422324*7881196^(4/11) 3770005305032300 a001 1836311903/12752043*12752043^(1/17) 3770005305032301 a001 5702887/228826127*33385282^(5/9) 3770005305032301 a001 5702887/370248451*33385282^(7/12) 3770005305032301 a001 5702887/599074578*33385282^(11/18) 3770005305032301 a001 5702887/1568397607*33385282^(2/3) 3770005305032301 a001 5702887/4106118243*33385282^(13/18) 3770005305032302 a001 165580141/87403803*7881196^(1/3) 3770005305032302 a001 5702887/6643838879*33385282^(3/4) 3770005305032302 a001 63245986/54018521*7881196^(4/11) 3770005305032302 a001 5702887/10749957122*33385282^(7/9) 3770005305032302 a001 233802911/4250681*12752043^(2/17) 3770005305032302 a001 5702887/28143753123*33385282^(5/6) 3770005305032302 a001 433494437/228826127*7881196^(1/3) 3770005305032302 a001 567451585/299537289*7881196^(1/3) 3770005305032302 a001 2971215073/1568397607*7881196^(1/3) 3770005305032302 a001 7778742049/4106118243*7881196^(1/3) 3770005305032302 a001 10182505537/5374978561*7881196^(1/3) 3770005305032302 a001 53316291173/28143753123*7881196^(1/3) 3770005305032302 a001 139583862445/73681302247*7881196^(1/3) 3770005305032302 a001 182717648081/96450076809*7881196^(1/3) 3770005305032302 a001 956722026041/505019158607*7881196^(1/3) 3770005305032302 a001 10610209857723/5600748293801*7881196^(1/3) 3770005305032302 a001 591286729879/312119004989*7881196^(1/3) 3770005305032302 a001 225851433717/119218851371*7881196^(1/3) 3770005305032302 a001 21566892818/11384387281*7881196^(1/3) 3770005305032302 a001 32951280099/17393796001*7881196^(1/3) 3770005305032302 a001 12586269025/6643838879*7881196^(1/3) 3770005305032302 a001 1201881744/634430159*7881196^(1/3) 3770005305032302 a001 1836311903/969323029*7881196^(1/3) 3770005305032302 a001 701408733/370248451*7881196^(1/3) 3770005305032302 a001 5702887/73681302247*33385282^(8/9) 3770005305032302 a001 5702887/119218851371*33385282^(11/12) 3770005305032302 a001 66978574/35355581*7881196^(1/3) 3770005305032302 a001 5702887/192900153618*33385282^(17/18) 3770005305032302 a001 165580141/33385282*7881196^(3/11) 3770005305032302 a001 726103/1368706081*4870847^(7/8) 3770005305032302 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^56 3770005305032303 a001 267914296/12752043*12752043^(3/17) 3770005305032303 a001 102334155/54018521*7881196^(1/3) 3770005305032304 a001 4976784/4250681*12752043^(6/17) 3770005305032304 a001 5702887/20633239*20633239^(3/7) 3770005305032304 a001 34111385/4250681*12752043^(4/17) 3770005305032305 a001 433494437/87403803*7881196^(3/11) 3770005305032305 a001 39088169/12752043*12752043^(5/17) 3770005305032306 a001 1134903170/228826127*7881196^(3/11) 3770005305032306 a001 2971215073/599074578*7881196^(3/11) 3770005305032306 a001 7778742049/1568397607*7881196^(3/11) 3770005305032306 a001 20365011074/4106118243*7881196^(3/11) 3770005305032306 a001 53316291173/10749957122*7881196^(3/11) 3770005305032306 a001 139583862445/28143753123*7881196^(3/11) 3770005305032306 a001 365435296162/73681302247*7881196^(3/11) 3770005305032306 a001 956722026041/192900153618*7881196^(3/11) 3770005305032306 a001 2504730781961/505019158607*7881196^(3/11) 3770005305032306 a001 10610209857723/2139295485799*7881196^(3/11) 3770005305032306 a001 4052739537881/817138163596*7881196^(3/11) 3770005305032306 a001 140728068720/28374454999*7881196^(3/11) 3770005305032306 a001 591286729879/119218851371*7881196^(3/11) 3770005305032306 a001 225851433717/45537549124*7881196^(3/11) 3770005305032306 a001 86267571272/17393796001*7881196^(3/11) 3770005305032306 a001 32951280099/6643838879*7881196^(3/11) 3770005305032306 a001 1144206275/230701876*7881196^(3/11) 3770005305032306 a001 4807526976/969323029*7881196^(3/11) 3770005305032306 a001 1836311903/370248451*7881196^(3/11) 3770005305032306 a001 701408733/141422324*7881196^(3/11) 3770005305032307 a001 5702887/33385282*12752043^(8/17) 3770005305032307 a001 267914296/54018521*7881196^(3/11) 3770005305032308 a001 701408733/33385282*7881196^(2/11) 3770005305032308 a001 5702887/20633239*141422324^(5/13) 3770005305032308 a001 9227465/12752043*141422324^(1/3) 3770005305032308 a001 5702887/20633239*2537720636^(1/3) 3770005305032308 a001 5702887/20633239*45537549124^(5/17) 3770005305032308 a001 10524638038291/27916772489 3770005305032308 a001 5702887/20633239*312119004989^(3/11) 3770005305032308 a001 5702887/20633239*14662949395604^(5/21) 3770005305032308 a001 5702887/20633239*(1/2+1/2*5^(1/2))^15 3770005305032308 a001 9227465/12752043*(1/2+1/2*5^(1/2))^13 3770005305032308 a001 5702887/20633239*192900153618^(5/18) 3770005305032308 a001 9227465/12752043*73681302247^(1/4) 3770005305032308 a001 5702887/20633239*28143753123^(3/10) 3770005305032308 a001 5702887/20633239*10749957122^(5/16) 3770005305032308 a001 5702887/20633239*599074578^(5/14) 3770005305032308 a001 5702887/20633239*228826127^(3/8) 3770005305032309 a001 267914296/4870847*1860498^(2/15) 3770005305032309 a001 1836311903/12752043*4870847^(1/16) 3770005305032309 a001 5702887/20633239*33385282^(5/12) 3770005305032310 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^57 3770005305032310 a001 24157817/20633239*7881196^(4/11) 3770005305032310 a001 39088169/20633239*7881196^(1/3) 3770005305032311 a001 1836311903/87403803*7881196^(2/11) 3770005305032311 a001 5702887/87403803*12752043^(9/17) 3770005305032311 a001 102287808/4868641*7881196^(2/11) 3770005305032311 a001 12586269025/599074578*7881196^(2/11) 3770005305032311 a001 32951280099/1568397607*7881196^(2/11) 3770005305032311 a001 86267571272/4106118243*7881196^(2/11) 3770005305032311 a001 225851433717/10749957122*7881196^(2/11) 3770005305032311 a001 591286729879/28143753123*7881196^(2/11) 3770005305032311 a001 1548008755920/73681302247*7881196^(2/11) 3770005305032311 a001 4052739537881/192900153618*7881196^(2/11) 3770005305032311 a001 225749145909/10745088481*7881196^(2/11) 3770005305032311 a001 6557470319842/312119004989*7881196^(2/11) 3770005305032311 a001 2504730781961/119218851371*7881196^(2/11) 3770005305032311 a001 956722026041/45537549124*7881196^(2/11) 3770005305032311 a001 365435296162/17393796001*7881196^(2/11) 3770005305032311 a001 139583862445/6643838879*7881196^(2/11) 3770005305032311 a001 53316291173/2537720636*7881196^(2/11) 3770005305032311 a001 20365011074/969323029*7881196^(2/11) 3770005305032311 a001 7778742049/370248451*7881196^(2/11) 3770005305032311 a001 14930352/73681302247*20633239^(6/7) 3770005305032311 a001 2971215073/141422324*7881196^(2/11) 3770005305032312 a001 4976784/9381251041*20633239^(4/5) 3770005305032312 a001 7465176/16692641*20633239^(2/5) 3770005305032312 a001 5702887/54018521*12752043^(1/2) 3770005305032312 a001 987/4870846*4870847^(15/16) 3770005305032312 a001 1134903170/54018521*7881196^(2/11) 3770005305032313 a001 14930352/6643838879*20633239^(5/7) 3770005305032313 a001 5702887/228826127*12752043^(10/17) 3770005305032313 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^59 3770005305032313 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^61 3770005305032313 a001 2971215073/33385282*7881196^(1/11) 3770005305032313 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^63 3770005305032313 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^65 3770005305032313 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^67 3770005305032313 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^69 3770005305032313 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^71 3770005305032313 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^73 3770005305032313 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^75 3770005305032313 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^77 3770005305032313 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^79 3770005305032313 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^81 3770005305032313 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^83 3770005305032313 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^85 3770005305032313 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^87 3770005305032313 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^89 3770005305032313 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^91 3770005305032313 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^93 3770005305032313 a004 Fibonacci(74)*Lucas(35)/(1/2+sqrt(5)/2)^95 3770005305032313 a004 Fibonacci(76)*Lucas(35)/(1/2+sqrt(5)/2)^97 3770005305032313 a004 Fibonacci(78)*Lucas(35)/(1/2+sqrt(5)/2)^99 3770005305032313 a004 Fibonacci(79)*Lucas(35)/(1/2+sqrt(5)/2)^100 3770005305032313 a004 Fibonacci(77)*Lucas(35)/(1/2+sqrt(5)/2)^98 3770005305032313 a004 Fibonacci(75)*Lucas(35)/(1/2+sqrt(5)/2)^96 3770005305032313 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^94 3770005305032313 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^92 3770005305032313 a001 2/9227465*(1/2+1/2*5^(1/2))^49 3770005305032313 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^90 3770005305032313 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^88 3770005305032313 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^86 3770005305032313 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^84 3770005305032313 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^82 3770005305032313 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^80 3770005305032313 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^78 3770005305032313 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^76 3770005305032313 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^74 3770005305032313 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^72 3770005305032313 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^70 3770005305032313 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^68 3770005305032313 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^66 3770005305032313 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^64 3770005305032313 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^62 3770005305032314 a001 14930352/969323029*20633239^(3/5) 3770005305032314 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^60 3770005305032314 a001 829464/33281921*20633239^(4/7) 3770005305032314 a001 5702887/599074578*12752043^(11/17) 3770005305032314 a001 39088169/192900153618*20633239^(6/7) 3770005305032314 a001 9303105/1875749*7881196^(3/11) 3770005305032315 a001 102334155/505019158607*20633239^(6/7) 3770005305032315 a001 267914296/1322157322203*20633239^(6/7) 3770005305032315 a001 701408733/3461452808002*20633239^(6/7) 3770005305032315 a001 1836311903/9062201101803*20633239^(6/7) 3770005305032315 a001 4807526976/23725150497407*20633239^(6/7) 3770005305032315 a001 2971215073/14662949395604*20633239^(6/7) 3770005305032315 a001 1134903170/5600748293801*20633239^(6/7) 3770005305032315 a001 433494437/2139295485799*20633239^(6/7) 3770005305032315 a001 39088169/73681302247*20633239^(4/5) 3770005305032315 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^58 3770005305032315 a001 165580141/817138163596*20633239^(6/7) 3770005305032315 a001 63245986/312119004989*20633239^(6/7) 3770005305032315 a001 34111385/64300051206*20633239^(4/5) 3770005305032315 a001 267914296/505019158607*20633239^(4/5) 3770005305032315 a001 233802911/440719107401*20633239^(4/5) 3770005305032315 a001 1836311903/3461452808002*20633239^(4/5) 3770005305032315 a001 1602508992/3020733700601*20633239^(4/5) 3770005305032315 a001 12586269025/23725150497407*20633239^(4/5) 3770005305032315 a001 7778742049/14662949395604*20633239^(4/5) 3770005305032315 a001 2971215073/5600748293801*20633239^(4/5) 3770005305032315 a001 1134903170/2139295485799*20633239^(4/5) 3770005305032315 a001 433494437/817138163596*20633239^(4/5) 3770005305032315 a001 165580141/312119004989*20633239^(4/5) 3770005305032315 a001 63245986/119218851371*20633239^(4/5) 3770005305032315 a001 5702887/1568397607*12752043^(12/17) 3770005305032315 a001 39088169/17393796001*20633239^(5/7) 3770005305032315 a001 7465176/16692641*17393796001^(2/7) 3770005305032315 a001 7465176/16692641*(1/2+1/2*5^(1/2))^14 3770005305032315 a001 222915410843904/591286729879 3770005305032315 a001 7465176/16692641*505019158607^(1/4) 3770005305032315 a001 7465176/16692641*10749957122^(7/24) 3770005305032315 a001 7465176/16692641*4106118243^(7/23) 3770005305032315 a001 7465176/16692641*1568397607^(7/22) 3770005305032315 a001 7465176/16692641*599074578^(1/3) 3770005305032315 a001 7465176/16692641*228826127^(7/20) 3770005305032316 a001 7465176/16692641*87403803^(7/19) 3770005305032316 a001 102334155/45537549124*20633239^(5/7) 3770005305032316 a001 267914296/119218851371*20633239^(5/7) 3770005305032316 a001 3524667/1568437211*20633239^(5/7) 3770005305032316 a001 1836311903/817138163596*20633239^(5/7) 3770005305032316 a001 4807526976/2139295485799*20633239^(5/7) 3770005305032316 a001 12586269025/5600748293801*20633239^(5/7) 3770005305032316 a001 32951280099/14662949395604*20633239^(5/7) 3770005305032316 a001 53316291173/23725150497407*20633239^(5/7) 3770005305032316 a001 20365011074/9062201101803*20633239^(5/7) 3770005305032316 a001 7778742049/3461452808002*20633239^(5/7) 3770005305032316 a001 2971215073/1322157322203*20633239^(5/7) 3770005305032316 a001 1134903170/505019158607*20633239^(5/7) 3770005305032316 a001 433494437/192900153618*20633239^(5/7) 3770005305032316 a001 24157817/119218851371*20633239^(6/7) 3770005305032316 a001 165580141/73681302247*20633239^(5/7) 3770005305032316 a001 63245986/28143753123*20633239^(5/7) 3770005305032316 a001 7778742049/87403803*7881196^(1/11) 3770005305032316 a001 14619165/4769326*20633239^(2/7) 3770005305032316 a001 14930352/54018521*20633239^(3/7) 3770005305032316 a001 39088169/2537720636*20633239^(3/5) 3770005305032316 a001 24157817/45537549124*20633239^(4/5) 3770005305032317 a001 20365011074/228826127*7881196^(1/11) 3770005305032317 a001 39088169/1568397607*20633239^(4/7) 3770005305032317 a001 53316291173/599074578*7881196^(1/11) 3770005305032317 a001 139583862445/1568397607*7881196^(1/11) 3770005305032317 a001 365435296162/4106118243*7881196^(1/11) 3770005305032317 a001 956722026041/10749957122*7881196^(1/11) 3770005305032317 a001 2504730781961/28143753123*7881196^(1/11) 3770005305032317 a001 6557470319842/73681302247*7881196^(1/11) 3770005305032317 a001 10610209857723/119218851371*7881196^(1/11) 3770005305032317 a001 4052739537881/45537549124*7881196^(1/11) 3770005305032317 a001 1548008755920/17393796001*7881196^(1/11) 3770005305032317 a001 591286729879/6643838879*7881196^(1/11) 3770005305032317 a001 225851433717/2537720636*7881196^(1/11) 3770005305032317 a001 86267571272/969323029*7881196^(1/11) 3770005305032317 a001 32951280099/370248451*7881196^(1/11) 3770005305032317 a001 5702887/4106118243*12752043^(13/17) 3770005305032317 a001 7465176/16692641*33385282^(7/18) 3770005305032317 a001 102334155/6643838879*20633239^(3/5) 3770005305032317 a001 12586269025/141422324*7881196^(1/11) 3770005305032317 a001 9238424/599786069*20633239^(3/5) 3770005305032317 a001 701408733/45537549124*20633239^(3/5) 3770005305032317 a001 1836311903/119218851371*20633239^(3/5) 3770005305032317 a001 4807526976/312119004989*20633239^(3/5) 3770005305032317 a001 12586269025/817138163596*20633239^(3/5) 3770005305032317 a001 32951280099/2139295485799*20633239^(3/5) 3770005305032317 a001 86267571272/5600748293801*20633239^(3/5) 3770005305032317 a001 7787980473/505618944676*20633239^(3/5) 3770005305032317 a001 365435296162/23725150497407*20633239^(3/5) 3770005305032317 a001 139583862445/9062201101803*20633239^(3/5) 3770005305032317 a001 53316291173/3461452808002*20633239^(3/5) 3770005305032317 a001 20365011074/1322157322203*20633239^(3/5) 3770005305032317 a001 7778742049/505019158607*20633239^(3/5) 3770005305032317 a001 2971215073/192900153618*20633239^(3/5) 3770005305032317 a001 1134903170/73681302247*20633239^(3/5) 3770005305032317 a001 433494437/28143753123*20633239^(3/5) 3770005305032317 a001 165580141/10749957122*20633239^(3/5) 3770005305032317 a001 433494437/33385282*20633239^(1/5) 3770005305032317 a001 34111385/1368706081*20633239^(4/7) 3770005305032317 a001 63245986/4106118243*20633239^(3/5) 3770005305032317 a001 133957148/5374978561*20633239^(4/7) 3770005305032317 a001 233802911/9381251041*20633239^(4/7) 3770005305032317 a001 1836311903/73681302247*20633239^(4/7) 3770005305032317 a001 267084832/10716675201*20633239^(4/7) 3770005305032317 a001 12586269025/505019158607*20633239^(4/7) 3770005305032317 a001 10983760033/440719107401*20633239^(4/7) 3770005305032317 a001 43133785636/1730726404001*20633239^(4/7) 3770005305032317 a001 75283811239/3020733700601*20633239^(4/7) 3770005305032317 a001 182717648081/7331474697802*20633239^(4/7) 3770005305032317 a001 139583862445/5600748293801*20633239^(4/7) 3770005305032317 a001 53316291173/2139295485799*20633239^(4/7) 3770005305032317 a001 10182505537/408569081798*20633239^(4/7) 3770005305032317 a001 7778742049/312119004989*20633239^(4/7) 3770005305032317 a001 2971215073/119218851371*20633239^(4/7) 3770005305032317 a001 567451585/22768774562*20633239^(4/7) 3770005305032317 a001 433494437/17393796001*20633239^(4/7) 3770005305032317 a001 24157817/10749957122*20633239^(5/7) 3770005305032317 a001 165580141/6643838879*20633239^(4/7) 3770005305032317 a001 31622993/1268860318*20633239^(4/7) 3770005305032318 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^59 3770005305032318 a001 567451585/16692641*20633239^(1/7) 3770005305032318 a001 39088169/87403803*20633239^(2/5) 3770005305032318 a001 4807526976/54018521*7881196^(1/11) 3770005305032318 a001 39088169/141422324*20633239^(3/7) 3770005305032318 a001 5702887/10749957122*12752043^(14/17) 3770005305032318 a001 24157817/1568397607*20633239^(3/5) 3770005305032318 a001 39088169/33385282*141422324^(4/13) 3770005305032318 a001 39088169/33385282*2537720636^(4/15) 3770005305032318 a001 39088169/33385282*45537549124^(4/17) 3770005305032318 a001 39088169/33385282*817138163596^(4/19) 3770005305032318 a001 39088169/33385282*14662949395604^(4/21) 3770005305032318 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^16/Lucas(38) 3770005305032318 a001 39088169/33385282*(1/2+1/2*5^(1/2))^12 3770005305032318 a001 4976784/29134601*23725150497407^(1/4) 3770005305032318 a001 39088169/33385282*192900153618^(2/9) 3770005305032318 a001 39088169/33385282*73681302247^(3/13) 3770005305032318 a001 4976784/29134601*73681302247^(4/13) 3770005305032318 a001 39088169/33385282*10749957122^(1/4) 3770005305032318 a001 4976784/29134601*10749957122^(1/3) 3770005305032318 a001 39088169/33385282*4106118243^(6/23) 3770005305032318 a001 4976784/29134601*4106118243^(8/23) 3770005305032318 a001 39088169/33385282*1568397607^(3/11) 3770005305032318 a001 4976784/29134601*1568397607^(4/11) 3770005305032318 a001 39088169/33385282*599074578^(2/7) 3770005305032318 a001 4976784/29134601*599074578^(8/21) 3770005305032318 a001 39088169/33385282*228826127^(3/10) 3770005305032318 a001 4976784/29134601*228826127^(2/5) 3770005305032318 a001 102334155/370248451*20633239^(3/7) 3770005305032318 a001 267914296/969323029*20633239^(3/7) 3770005305032318 a001 701408733/2537720636*20633239^(3/7) 3770005305032318 a001 1836311903/6643838879*20633239^(3/7) 3770005305032318 a001 4807526976/17393796001*20633239^(3/7) 3770005305032318 a001 12586269025/45537549124*20633239^(3/7) 3770005305032318 a001 32951280099/119218851371*20633239^(3/7) 3770005305032318 a001 86267571272/312119004989*20633239^(3/7) 3770005305032318 a001 225851433717/817138163596*20633239^(3/7) 3770005305032318 a001 1548008755920/5600748293801*20633239^(3/7) 3770005305032318 a001 139583862445/505019158607*20633239^(3/7) 3770005305032318 a001 53316291173/192900153618*20633239^(3/7) 3770005305032318 a001 20365011074/73681302247*20633239^(3/7) 3770005305032318 a001 7778742049/28143753123*20633239^(3/7) 3770005305032318 a001 2971215073/10749957122*20633239^(3/7) 3770005305032318 a001 1134903170/4106118243*20633239^(3/7) 3770005305032318 a001 433494437/1568397607*20633239^(3/7) 3770005305032318 a001 165580141/599074578*20633239^(3/7) 3770005305032318 a001 24157817/969323029*20633239^(4/7) 3770005305032318 a001 39088169/33385282*87403803^(6/19) 3770005305032319 a001 102334155/228826127*20633239^(2/5) 3770005305032319 a001 63245986/228826127*20633239^(3/7) 3770005305032319 a001 4976784/29134601*87403803^(8/19) 3770005305032319 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^61 3770005305032319 a001 133957148/299537289*20633239^(2/5) 3770005305032319 a001 4976784/440719107401*141422324^(12/13) 3770005305032319 a001 701408733/1568397607*20633239^(2/5) 3770005305032319 a001 1836311903/4106118243*20633239^(2/5) 3770005305032319 a001 2403763488/5374978561*20633239^(2/5) 3770005305032319 a001 12586269025/28143753123*20633239^(2/5) 3770005305032319 a001 32951280099/73681302247*20633239^(2/5) 3770005305032319 a001 43133785636/96450076809*20633239^(2/5) 3770005305032319 a001 225851433717/505019158607*20633239^(2/5) 3770005305032319 a001 591286729879/1322157322203*20633239^(2/5) 3770005305032319 a001 10610209857723/23725150497407*20633239^(2/5) 3770005305032319 a001 182717648081/408569081798*20633239^(2/5) 3770005305032319 a001 139583862445/312119004989*20633239^(2/5) 3770005305032319 a001 53316291173/119218851371*20633239^(2/5) 3770005305032319 a001 10182505537/22768774562*20633239^(2/5) 3770005305032319 a001 7778742049/17393796001*20633239^(2/5) 3770005305032319 a001 2971215073/6643838879*20633239^(2/5) 3770005305032319 a001 14930352/312119004989*141422324^(11/13) 3770005305032319 a001 14930352/228826127*141422324^(6/13) 3770005305032319 a001 567451585/1268860318*20633239^(2/5) 3770005305032319 a001 433494437/969323029*20633239^(2/5) 3770005305032319 a001 14930352/73681302247*141422324^(10/13) 3770005305032319 a001 14930352/17393796001*141422324^(9/13) 3770005305032319 a001 7465176/5374978561*141422324^(2/3) 3770005305032319 a001 4976784/1368706081*141422324^(8/13) 3770005305032319 a001 165580141/370248451*20633239^(2/5) 3770005305032319 a001 14930352/969323029*141422324^(7/13) 3770005305032319 a001 14930352/228826127*2537720636^(2/5) 3770005305032319 a001 14619165/4769326*2537720636^(2/9) 3770005305032319 a001 14930352/228826127*45537549124^(6/17) 3770005305032319 a001 14619165/4769326*312119004989^(2/11) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(40) 3770005305032319 a001 14619165/4769326*(1/2+1/2*5^(1/2))^10 3770005305032319 a001 14930352/228826127*192900153618^(1/3) 3770005305032319 a001 14619165/4769326*28143753123^(1/5) 3770005305032319 a001 14619165/4769326*10749957122^(5/24) 3770005305032319 a001 14930352/228826127*10749957122^(3/8) 3770005305032319 a001 14619165/4769326*4106118243^(5/23) 3770005305032319 a001 14930352/228826127*4106118243^(9/23) 3770005305032319 a001 14619165/4769326*1568397607^(5/22) 3770005305032319 a001 14930352/228826127*1568397607^(9/22) 3770005305032319 a001 14619165/4769326*599074578^(5/21) 3770005305032319 a001 14930352/228826127*599074578^(3/7) 3770005305032319 a001 14619165/4769326*228826127^(1/4) 3770005305032319 a001 14930352/228826127*228826127^(9/20) 3770005305032319 a001 701408733/33385282*141422324^(2/13) 3770005305032319 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^63 3770005305032319 a001 165580141/33385282*141422324^(3/13) 3770005305032319 a001 2971215073/33385282*141422324^(1/13) 3770005305032319 a001 829464/33281921*2537720636^(4/9) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(42) 3770005305032319 a001 133957148/16692641*(1/2+1/2*5^(1/2))^8 3770005305032319 a001 829464/33281921*23725150497407^(5/16) 3770005305032319 a001 1333351581704064/3536736619241 3770005305032319 a001 829464/33281921*505019158607^(5/14) 3770005305032319 a001 133957148/16692641*73681302247^(2/13) 3770005305032319 a001 829464/33281921*73681302247^(5/13) 3770005305032319 a001 829464/33281921*28143753123^(2/5) 3770005305032319 a001 133957148/16692641*10749957122^(1/6) 3770005305032319 a001 829464/33281921*10749957122^(5/12) 3770005305032319 a001 133957148/16692641*4106118243^(4/23) 3770005305032319 a001 829464/33281921*4106118243^(10/23) 3770005305032319 a001 133957148/16692641*1568397607^(2/11) 3770005305032319 a001 829464/33281921*1568397607^(5/11) 3770005305032319 a001 133957148/16692641*599074578^(4/21) 3770005305032319 a001 829464/33281921*599074578^(10/21) 3770005305032319 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^65 3770005305032319 a001 701408733/33385282*2537720636^(2/15) 3770005305032319 a001 701408733/33385282*45537549124^(2/17) 3770005305032319 a001 14930352/1568397607*312119004989^(2/5) 3770005305032319 a001 701408733/33385282*14662949395604^(2/21) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(44) 3770005305032319 a001 701408733/33385282*(1/2+1/2*5^(1/2))^6 3770005305032319 a001 701408733/33385282*10749957122^(1/8) 3770005305032319 a001 14930352/1568397607*10749957122^(11/24) 3770005305032319 a001 701408733/33385282*4106118243^(3/23) 3770005305032319 a001 14930352/1568397607*4106118243^(11/23) 3770005305032319 a001 701408733/33385282*1568397607^(3/22) 3770005305032319 a001 14930352/1568397607*1568397607^(1/2) 3770005305032319 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^67 3770005305032319 a001 14930352/23725150497407*2537720636^(14/15) 3770005305032319 a001 4976784/1368706081*2537720636^(8/15) 3770005305032319 a001 4976784/3020733700601*2537720636^(8/9) 3770005305032319 a001 14930352/5600748293801*2537720636^(13/15) 3770005305032319 a001 4976784/440719107401*2537720636^(4/5) 3770005305032319 a001 3732588/204284540899*2537720636^(7/9) 3770005305032319 a001 14930352/312119004989*2537720636^(11/15) 3770005305032319 a001 14930352/73681302247*2537720636^(2/3) 3770005305032319 a001 14930352/17393796001*2537720636^(3/5) 3770005305032319 a001 14930352/6643838879*2537720636^(5/9) 3770005305032319 a001 4976784/1368706081*45537549124^(8/17) 3770005305032319 a001 4976784/1368706081*14662949395604^(8/21) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(46) 3770005305032319 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^4 3770005305032319 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^4/Lucas(36) 3770005305032319 a001 1836311903/33385282*23725150497407^(1/16) 3770005305032319 a001 4976784/1368706081*192900153618^(4/9) 3770005305032319 a001 1836311903/33385282*73681302247^(1/13) 3770005305032319 a001 4976784/1368706081*73681302247^(6/13) 3770005305032319 a001 1836311903/33385282*10749957122^(1/12) 3770005305032319 a001 4976784/1368706081*10749957122^(1/2) 3770005305032319 a001 1836311903/33385282*4106118243^(2/23) 3770005305032319 a001 4976784/1368706081*4106118243^(12/23) 3770005305032319 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^69 3770005305032319 a001 1836311903/33385282*1568397607^(1/11) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(48) 3770005305032319 a001 14930208/103681*(1/2+1/2*5^(1/2))^2 3770005305032319 a001 7465176/5374978561*73681302247^(1/2) 3770005305032319 a001 701408733/33385282*599074578^(1/7) 3770005305032319 a001 14930208/103681*10749957122^(1/24) 3770005305032319 a001 14930208/103681*4106118243^(1/23) 3770005305032319 a001 7465176/5374978561*10749957122^(13/24) 3770005305032319 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^71 3770005305032319 a001 4976784/9381251041*17393796001^(4/7) 3770005305032319 a001 14930352/23725150497407*17393796001^(6/7) 3770005305032319 a001 3732588/204284540899*17393796001^(5/7) 3770005305032319 a001 4976784/9381251041*14662949395604^(4/9) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(50) 3770005305032319 a006 5^(1/2)*Fibonacci(50)/Lucas(36)/sqrt(5) 3770005305032319 a001 4976784/9381251041*505019158607^(1/2) 3770005305032319 a001 4976784/9381251041*73681302247^(7/13) 3770005305032319 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^73 3770005305032319 a001 14930352/73681302247*45537549124^(10/17) 3770005305032319 a001 14930352/23725150497407*45537549124^(14/17) 3770005305032319 a001 14930352/5600748293801*45537549124^(13/17) 3770005305032319 a001 4976784/440719107401*45537549124^(12/17) 3770005305032319 a001 14930352/505019158607*45537549124^(2/3) 3770005305032319 a001 14930352/312119004989*45537549124^(11/17) 3770005305032319 a001 14930352/73681302247*312119004989^(6/11) 3770005305032319 a001 14930352/73681302247*14662949395604^(10/21) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(52) 3770005305032319 a004 Fibonacci(52)/Lucas(36)/(1/2+sqrt(5)/2)^2 3770005305032319 a001 14930352/73681302247*192900153618^(5/9) 3770005305032319 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^75 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(54) 3770005305032319 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^4 3770005305032319 a001 2584/33385281*23725150497407^(1/2) 3770005305032319 a001 2584/33385281*505019158607^(4/7) 3770005305032319 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^77 3770005305032319 a001 4976784/3020733700601*312119004989^(8/11) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(56) 3770005305032319 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^6 3770005305032319 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^79 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(58) 3770005305032319 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^8 3770005305032319 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^81 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(60) 3770005305032319 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^10 3770005305032319 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^83 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(62) 3770005305032319 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^12 3770005305032319 a001 4976784/3020733700601*23725150497407^(5/8) 3770005305032319 a001 14930352/23725150497407*14662949395604^(2/3) 3770005305032319 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^85 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(64) 3770005305032319 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^14 3770005305032319 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^87 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(66) 3770005305032319 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^16 3770005305032319 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^89 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(68) 3770005305032319 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^18 3770005305032319 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^91 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(70) 3770005305032319 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^20 3770005305032319 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^93 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(72) 3770005305032319 a004 Fibonacci(36)*Lucas(73)/(1/2+sqrt(5)/2)^95 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(74) 3770005305032319 a004 Fibonacci(36)*Lucas(75)/(1/2+sqrt(5)/2)^97 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(76) 3770005305032319 a004 Fibonacci(36)*Lucas(77)/(1/2+sqrt(5)/2)^99 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(78) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(80) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(82) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(84) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(86) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(88) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(90) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(92) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(94) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^74/Lucas(96) 3770005305032319 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^22 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^76/Lucas(98) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^78/Lucas(100) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^75/Lucas(97) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^77/Lucas(99) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^73/Lucas(95) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(93) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(91) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(89) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(87) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(85) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(83) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(81) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(79) 3770005305032319 a004 Fibonacci(36)*Lucas(78)/(1/2+sqrt(5)/2)^100 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(77) 3770005305032319 a004 Fibonacci(36)*Lucas(76)/(1/2+sqrt(5)/2)^98 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(75) 3770005305032319 a004 Fibonacci(36)*Lucas(74)/(1/2+sqrt(5)/2)^96 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(73) 3770005305032319 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^24 3770005305032319 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^26 3770005305032319 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^28 3770005305032319 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^30 3770005305032319 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^32 3770005305032319 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^34 3770005305032319 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^36 3770005305032319 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^38 3770005305032319 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^40 3770005305032319 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^42 3770005305032319 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^44 3770005305032319 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^46 3770005305032319 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^48 3770005305032319 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^50 3770005305032319 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^94 3770005305032319 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^49 3770005305032319 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^47 3770005305032319 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^45 3770005305032319 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^43 3770005305032319 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^41 3770005305032319 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^39 3770005305032319 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^37 3770005305032319 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^35 3770005305032319 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^33 3770005305032319 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^31 3770005305032319 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^29 3770005305032319 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^27 3770005305032319 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^25 3770005305032319 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^23 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(71) 3770005305032319 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^21 3770005305032319 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^92 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(69) 3770005305032319 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^19 3770005305032319 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^90 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(67) 3770005305032319 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^17 3770005305032319 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^88 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(65) 3770005305032319 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^15 3770005305032319 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^86 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(63) 3770005305032319 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^13 3770005305032319 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^84 3770005305032319 a001 14930352/5600748293801*14662949395604^(13/21) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(61) 3770005305032319 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^11 3770005305032319 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^82 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(59) 3770005305032319 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^9 3770005305032319 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^80 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(57) 3770005305032319 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^7 3770005305032319 a001 14930352/23725150497407*505019158607^(3/4) 3770005305032319 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^78 3770005305032319 a001 14930352/312119004989*817138163596^(11/19) 3770005305032319 a001 14930352/312119004989*14662949395604^(11/21) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(55) 3770005305032319 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^5 3770005305032319 a001 14930352/5600748293801*192900153618^(13/18) 3770005305032319 a001 14930352/23725150497407*192900153618^(7/9) 3770005305032319 a001 14930352/312119004989*192900153618^(11/18) 3770005305032319 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^76 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(53) 3770005305032319 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2)^3 3770005305032319 a001 14930352/119218851371*9062201101803^(1/2) 3770005305032319 a001 2584/33385281*73681302247^(8/13) 3770005305032319 a001 4976784/440719107401*73681302247^(9/13) 3770005305032319 a001 14930352/5600748293801*73681302247^(3/4) 3770005305032319 a001 4976784/3020733700601*73681302247^(10/13) 3770005305032319 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^74 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(51) 3770005305032319 a004 Fibonacci(51)/Lucas(36)/(1/2+sqrt(5)/2) 3770005305032319 a001 3732588/11384387281*1322157322203^(1/2) 3770005305032319 a001 14930352/73681302247*28143753123^(3/5) 3770005305032319 a001 3732588/204284540899*28143753123^(7/10) 3770005305032319 a001 4976784/3020733700601*28143753123^(4/5) 3770005305032319 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^72 3770005305032319 a001 14930352/17393796001*45537549124^(9/17) 3770005305032319 a001 14930352/17393796001*817138163596^(9/19) 3770005305032319 a001 14930352/17393796001*14662949395604^(3/7) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(49) 3770005305032319 a001 14930352/17393796001*192900153618^(1/2) 3770005305032319 a001 4976784/9381251041*10749957122^(7/12) 3770005305032319 a001 14930352/73681302247*10749957122^(5/8) 3770005305032319 a001 2584/33385281*10749957122^(2/3) 3770005305032319 a001 14930352/312119004989*10749957122^(11/16) 3770005305032319 a001 14930352/505019158607*10749957122^(17/24) 3770005305032319 a001 4976784/440719107401*10749957122^(3/4) 3770005305032319 a001 7465176/1730726404001*10749957122^(19/24) 3770005305032319 a001 14930352/5600748293801*10749957122^(13/16) 3770005305032319 a001 4976784/3020733700601*10749957122^(5/6) 3770005305032319 a001 14930352/23725150497407*10749957122^(7/8) 3770005305032319 a001 14930352/17393796001*10749957122^(9/16) 3770005305032319 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^70 3770005305032319 a001 14930208/103681*1568397607^(1/22) 3770005305032319 a001 2971215073/33385282*2537720636^(1/15) 3770005305032319 a001 2971215073/33385282*45537549124^(1/17) 3770005305032319 a001 14930352/6643838879*312119004989^(5/11) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(47) 3770005305032319 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^3 3770005305032319 a001 14930352/6643838879*3461452808002^(5/12) 3770005305032319 a001 2971215073/33385282*192900153618^(1/18) 3770005305032319 a001 2971215073/33385282*10749957122^(1/16) 3770005305032319 a001 14930352/6643838879*28143753123^(1/2) 3770005305032319 a001 7465176/5374978561*4106118243^(13/23) 3770005305032319 a001 4976784/9381251041*4106118243^(14/23) 3770005305032319 a001 14930352/73681302247*4106118243^(15/23) 3770005305032319 a001 2584/33385281*4106118243^(16/23) 3770005305032319 a001 14930352/505019158607*4106118243^(17/23) 3770005305032319 a001 4976784/440719107401*4106118243^(18/23) 3770005305032319 a001 7465176/1730726404001*4106118243^(19/23) 3770005305032319 a001 4976784/3020733700601*4106118243^(20/23) 3770005305032319 a001 14930352/23725150497407*4106118243^(21/23) 3770005305032319 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^68 3770005305032319 a001 14930208/103681*599074578^(1/21) 3770005305032319 a001 567451585/16692641*2537720636^(1/9) 3770005305032319 a001 567451585/16692641*312119004989^(1/11) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(45) 3770005305032319 a001 567451585/16692641*(1/2+1/2*5^(1/2))^5 3770005305032319 a001 567451585/16692641*28143753123^(1/10) 3770005305032319 a001 4976784/1368706081*1568397607^(6/11) 3770005305032319 a001 196452/33391061*4106118243^(1/2) 3770005305032319 a001 1836311903/33385282*599074578^(2/21) 3770005305032319 a001 2971215073/33385282*599074578^(1/14) 3770005305032319 a001 7465176/5374978561*1568397607^(13/22) 3770005305032319 a001 4976784/9381251041*1568397607^(7/11) 3770005305032319 a001 14930352/73681302247*1568397607^(15/22) 3770005305032319 a001 2584/33385281*1568397607^(8/11) 3770005305032319 a001 14930352/312119004989*1568397607^(3/4) 3770005305032319 a001 14930352/505019158607*1568397607^(17/22) 3770005305032319 a001 4976784/440719107401*1568397607^(9/11) 3770005305032319 a001 7465176/1730726404001*1568397607^(19/22) 3770005305032319 a001 4976784/3020733700601*1568397607^(10/11) 3770005305032319 a001 14930352/23725150497407*1568397607^(21/22) 3770005305032319 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^66 3770005305032319 a001 14930208/103681*228826127^(1/20) 3770005305032319 a001 14930352/969323029*2537720636^(7/15) 3770005305032319 a001 133957148/16692641*228826127^(1/5) 3770005305032319 a001 14930352/1568397607*599074578^(11/21) 3770005305032319 a001 14930352/969323029*17393796001^(3/7) 3770005305032319 a001 433494437/33385282*17393796001^(1/7) 3770005305032319 a001 14930352/969323029*45537549124^(7/17) 3770005305032319 a001 14930352/969323029*14662949395604^(1/3) 3770005305032319 a001 433494437/33385282*14662949395604^(1/9) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(43) 3770005305032319 a001 433494437/33385282*(1/2+1/2*5^(1/2))^7 3770005305032319 a001 14930352/969323029*192900153618^(7/18) 3770005305032319 a001 14930352/969323029*10749957122^(7/16) 3770005305032319 a001 433494437/33385282*599074578^(1/6) 3770005305032319 a001 4976784/1368706081*599074578^(4/7) 3770005305032319 a001 7465176/5374978561*599074578^(13/21) 3770005305032319 a001 14930352/17393796001*599074578^(9/14) 3770005305032319 a001 1836311903/33385282*228826127^(1/10) 3770005305032319 a001 4976784/9381251041*599074578^(2/3) 3770005305032319 a001 14930352/73681302247*599074578^(5/7) 3770005305032319 a001 2584/33385281*599074578^(16/21) 3770005305032319 a001 14930352/312119004989*599074578^(11/14) 3770005305032319 a001 14930352/505019158607*599074578^(17/21) 3770005305032319 a001 3732588/204284540899*599074578^(5/6) 3770005305032319 a001 4976784/440719107401*599074578^(6/7) 3770005305032319 a001 14930352/969323029*599074578^(1/2) 3770005305032319 a001 701408733/33385282*228826127^(3/20) 3770005305032319 a001 7465176/1730726404001*599074578^(19/21) 3770005305032319 a001 567451585/16692641*228826127^(1/8) 3770005305032319 a001 14930352/5600748293801*599074578^(13/14) 3770005305032319 a001 4976784/3020733700601*599074578^(20/21) 3770005305032319 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^64 3770005305032319 a001 829464/33281921*228826127^(1/2) 3770005305032319 a001 14930208/103681*87403803^(1/19) 3770005305032319 a001 165580141/33385282*2537720636^(1/5) 3770005305032319 a001 165580141/33385282*45537549124^(3/17) 3770005305032319 a001 14930352/370248451*817138163596^(1/3) 3770005305032319 a001 165580141/33385282*14662949395604^(1/7) 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(41) 3770005305032319 a001 165580141/33385282*(1/2+1/2*5^(1/2))^9 3770005305032319 a001 165580141/33385282*192900153618^(1/6) 3770005305032319 a001 165580141/33385282*10749957122^(3/16) 3770005305032319 a001 165580141/33385282*599074578^(3/14) 3770005305032319 a001 14930352/1568397607*228826127^(11/20) 3770005305032319 a001 4976784/1368706081*228826127^(3/5) 3770005305032319 a001 14930352/6643838879*228826127^(5/8) 3770005305032319 a001 7465176/5374978561*228826127^(13/20) 3770005305032319 a001 4976784/9381251041*228826127^(7/10) 3770005305032319 a001 1836311903/33385282*87403803^(2/19) 3770005305032319 a001 14930352/73681302247*228826127^(3/4) 3770005305032319 a001 2584/33385281*228826127^(4/5) 3770005305032319 a001 14619165/4769326*87403803^(5/19) 3770005305032319 a001 233802911/4250681*4870847^(1/8) 3770005305032319 a001 14930352/505019158607*228826127^(17/20) 3770005305032319 a001 3732588/204284540899*228826127^(7/8) 3770005305032319 a001 4976784/440719107401*228826127^(9/10) 3770005305032319 a001 7465176/1730726404001*228826127^(19/20) 3770005305032319 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^62 3770005305032319 a001 701408733/33385282*87403803^(3/19) 3770005305032319 a001 133957148/16692641*87403803^(4/19) 3770005305032319 a001 14930352/228826127*87403803^(9/19) 3770005305032319 a001 14930208/103681*33385282^(1/18) 3770005305032319 a001 3732588/35355581*45537549124^(1/3) 3770005305032319 a001 31622993/16692641*312119004989^(1/5) 3770005305032319 a001 944284833567072/2504730781961 3770005305032319 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(39) 3770005305032319 a001 31622993/16692641*(1/2+1/2*5^(1/2))^11 3770005305032319 a001 31622993/16692641*1568397607^(1/4) 3770005305032319 a001 31622993/70711162*20633239^(2/5) 3770005305032319 a001 829464/33281921*87403803^(10/19) 3770005305032319 a001 14930352/370248451*87403803^(1/2) 3770005305032319 a001 2971215073/33385282*33385282^(1/12) 3770005305032319 a001 14930352/1568397607*87403803^(11/19) 3770005305032319 a001 4976784/1368706081*87403803^(12/19) 3770005305032319 a001 7465176/5374978561*87403803^(13/19) 3770005305032319 a001 267914296/87403803*20633239^(2/7) 3770005305032319 a001 4976784/9381251041*87403803^(14/19) 3770005305032319 a001 1836311903/33385282*33385282^(1/9) 3770005305032319 a001 24157817/87403803*20633239^(3/7) 3770005305032319 a001 14930352/73681302247*87403803^(15/19) 3770005305032319 a001 2584/33385281*87403803^(16/19) 3770005305032319 a001 14930352/505019158607*87403803^(17/19) 3770005305032319 a001 4976784/440719107401*87403803^(18/19) 3770005305032319 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^60 3770005305032319 a001 701408733/33385282*33385282^(1/6) 3770005305032319 a001 39088169/33385282*33385282^(1/3) 3770005305032319 a001 5702887/28143753123*12752043^(15/17) 3770005305032320 a001 133957148/16692641*33385282^(2/9) 3770005305032320 a001 701408733/228826127*20633239^(2/7) 3770005305032320 a001 1836311903/599074578*20633239^(2/7) 3770005305032320 a001 686789568/224056801*20633239^(2/7) 3770005305032320 a001 12586269025/4106118243*20633239^(2/7) 3770005305032320 a001 32951280099/10749957122*20633239^(2/7) 3770005305032320 a001 86267571272/28143753123*20633239^(2/7) 3770005305032320 a001 32264490531/10525900321*20633239^(2/7) 3770005305032320 a001 591286729879/192900153618*20633239^(2/7) 3770005305032320 a001 1548008755920/505019158607*20633239^(2/7) 3770005305032320 a001 1515744265389/494493258286*20633239^(2/7) 3770005305032320 a001 2504730781961/817138163596*20633239^(2/7) 3770005305032320 a001 956722026041/312119004989*20633239^(2/7) 3770005305032320 a001 365435296162/119218851371*20633239^(2/7) 3770005305032320 a001 139583862445/45537549124*20633239^(2/7) 3770005305032320 a001 53316291173/17393796001*20633239^(2/7) 3770005305032320 a001 20365011074/6643838879*20633239^(2/7) 3770005305032320 a001 7778742049/2537720636*20633239^(2/7) 3770005305032320 a001 2971215073/969323029*20633239^(2/7) 3770005305032320 a001 14619165/4769326*33385282^(5/18) 3770005305032320 a001 165580141/33385282*33385282^(1/4) 3770005305032320 a001 1134903170/370248451*20633239^(2/7) 3770005305032320 a001 4976784/29134601*33385282^(4/9) 3770005305032320 a001 433494437/141422324*20633239^(2/7) 3770005305032320 a001 1134903170/87403803*20633239^(1/5) 3770005305032320 a001 433494437/20633239*7881196^(2/11) 3770005305032320 a001 14930352/54018521*141422324^(5/13) 3770005305032320 a001 24157817/33385282*141422324^(1/3) 3770005305032320 a001 14930352/54018521*2537720636^(1/3) 3770005305032320 a001 14930352/54018521*45537549124^(5/17) 3770005305032320 a001 14930352/54018521*312119004989^(3/11) 3770005305032320 a001 14930352/54018521*14662949395604^(5/21) 3770005305032320 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^15/Lucas(37) 3770005305032320 a001 24157817/33385282*(1/2+1/2*5^(1/2))^13 3770005305032320 a001 14930352/54018521*192900153618^(5/18) 3770005305032320 a001 24157817/33385282*73681302247^(1/4) 3770005305032320 a001 14930352/54018521*28143753123^(3/10) 3770005305032320 a001 14930352/54018521*10749957122^(5/16) 3770005305032320 a001 14930352/54018521*599074578^(5/14) 3770005305032320 a001 14930352/54018521*228826127^(3/8) 3770005305032320 a001 14930208/103681*12752043^(1/17) 3770005305032320 a001 2971215073/228826127*20633239^(1/5) 3770005305032320 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^61 3770005305032320 a001 7778742049/599074578*20633239^(1/5) 3770005305032320 a001 20365011074/1568397607*20633239^(1/5) 3770005305032320 a001 53316291173/4106118243*20633239^(1/5) 3770005305032320 a001 139583862445/10749957122*20633239^(1/5) 3770005305032320 a001 365435296162/28143753123*20633239^(1/5) 3770005305032320 a001 956722026041/73681302247*20633239^(1/5) 3770005305032320 a001 2504730781961/192900153618*20633239^(1/5) 3770005305032320 a001 10610209857723/817138163596*20633239^(1/5) 3770005305032320 a001 4052739537881/312119004989*20633239^(1/5) 3770005305032320 a001 1548008755920/119218851371*20633239^(1/5) 3770005305032320 a001 591286729879/45537549124*20633239^(1/5) 3770005305032320 a001 7787980473/599786069*20633239^(1/5) 3770005305032320 a001 86267571272/6643838879*20633239^(1/5) 3770005305032320 a001 32951280099/2537720636*20633239^(1/5) 3770005305032320 a001 12586269025/969323029*20633239^(1/5) 3770005305032320 a001 14930352/228826127*33385282^(1/2) 3770005305032320 a001 2971215073/87403803*20633239^(1/7) 3770005305032320 a001 4807526976/370248451*20633239^(1/5) 3770005305032321 a001 1836311903/141422324*20633239^(1/5) 3770005305032321 a001 829464/33281921*33385282^(5/9) 3770005305032321 a001 14930352/969323029*33385282^(7/12) 3770005305032321 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^63 3770005305032321 a001 5702887/73681302247*12752043^(16/17) 3770005305032321 a001 7778742049/228826127*20633239^(1/7) 3770005305032321 a001 14930352/1568397607*33385282^(11/18) 3770005305032321 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^65 3770005305032321 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^67 3770005305032321 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^69 3770005305032321 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^71 3770005305032321 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^73 3770005305032321 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^75 3770005305032321 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^77 3770005305032321 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^79 3770005305032321 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^81 3770005305032321 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^83 3770005305032321 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^85 3770005305032321 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^87 3770005305032321 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^89 3770005305032321 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^91 3770005305032321 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^93 3770005305032321 a004 Fibonacci(72)*Lucas(37)/(1/2+sqrt(5)/2)^95 3770005305032321 a004 Fibonacci(74)*Lucas(37)/(1/2+sqrt(5)/2)^97 3770005305032321 a004 Fibonacci(76)*Lucas(37)/(1/2+sqrt(5)/2)^99 3770005305032321 a004 Fibonacci(77)*Lucas(37)/(1/2+sqrt(5)/2)^100 3770005305032321 a004 Fibonacci(75)*Lucas(37)/(1/2+sqrt(5)/2)^98 3770005305032321 a001 2/24157817*(1/2+1/2*5^(1/2))^51 3770005305032321 a004 Fibonacci(73)*Lucas(37)/(1/2+sqrt(5)/2)^96 3770005305032321 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^94 3770005305032321 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^92 3770005305032321 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^90 3770005305032321 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^88 3770005305032321 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^86 3770005305032321 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^84 3770005305032321 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^82 3770005305032321 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^80 3770005305032321 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^78 3770005305032321 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^76 3770005305032321 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^74 3770005305032321 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^72 3770005305032321 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^70 3770005305032321 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^68 3770005305032321 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^66 3770005305032321 a001 10182505537/299537289*20633239^(1/7) 3770005305032321 a001 53316291173/1568397607*20633239^(1/7) 3770005305032321 a001 139583862445/4106118243*20633239^(1/7) 3770005305032321 a001 182717648081/5374978561*20633239^(1/7) 3770005305032321 a001 956722026041/28143753123*20633239^(1/7) 3770005305032321 a001 2504730781961/73681302247*20633239^(1/7) 3770005305032321 a001 3278735159921/96450076809*20633239^(1/7) 3770005305032321 a001 10610209857723/312119004989*20633239^(1/7) 3770005305032321 a001 4052739537881/119218851371*20633239^(1/7) 3770005305032321 a001 387002188980/11384387281*20633239^(1/7) 3770005305032321 a001 591286729879/17393796001*20633239^(1/7) 3770005305032321 a001 225851433717/6643838879*20633239^(1/7) 3770005305032321 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^64 3770005305032321 a001 1135099622/33391061*20633239^(1/7) 3770005305032321 a001 32951280099/969323029*20633239^(1/7) 3770005305032321 a001 12586269025/370248451*20633239^(1/7) 3770005305032321 a001 165580141/54018521*20633239^(2/7) 3770005305032321 a001 4976784/1368706081*33385282^(2/3) 3770005305032321 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^62 3770005305032321 a001 1201881744/35355581*20633239^(1/7) 3770005305032321 a001 39088169/87403803*17393796001^(2/7) 3770005305032321 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^14/Lucas(38) 3770005305032321 a001 1527884955772561/4052739537881 3770005305032321 a001 39088169/87403803*10749957122^(7/24) 3770005305032321 a001 39088169/87403803*4106118243^(7/23) 3770005305032321 a001 39088169/87403803*1568397607^(7/22) 3770005305032321 a001 39088169/87403803*599074578^(1/3) 3770005305032321 a001 39088169/87403803*228826127^(7/20) 3770005305032321 a001 24157817/54018521*20633239^(2/5) 3770005305032321 a001 7465176/5374978561*33385282^(13/18) 3770005305032321 a001 14930352/17393796001*33385282^(3/4) 3770005305032321 a001 39088169/87403803*87403803^(7/19) 3770005305032321 a001 4976784/9381251041*33385282^(7/9) 3770005305032322 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^63 3770005305032322 a001 14930352/54018521*33385282^(5/12) 3770005305032322 a001 39088169/3461452808002*141422324^(12/13) 3770005305032322 a001 1836311903/33385282*12752043^(2/17) 3770005305032322 a001 4181/87403804*141422324^(11/13) 3770005305032322 a001 39088169/192900153618*141422324^(10/13) 3770005305032322 a001 39088169/45537549124*141422324^(9/13) 3770005305032322 a001 34111385/29134601*141422324^(4/13) 3770005305032322 a001 39088169/28143753123*141422324^(2/3) 3770005305032322 a001 39088169/10749957122*141422324^(8/13) 3770005305032322 a001 39088169/2537720636*141422324^(7/13) 3770005305032322 a001 39088169/599074578*141422324^(6/13) 3770005305032322 a001 34111385/29134601*2537720636^(4/15) 3770005305032322 a001 34111385/29134601*45537549124^(4/17) 3770005305032322 a001 34111385/29134601*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(40) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^12/Lucas(38) 3770005305032322 a001 190478797386295/505248088463 3770005305032322 a001 34111385/29134601*192900153618^(2/9) 3770005305032322 a001 34111385/29134601*73681302247^(3/13) 3770005305032322 a001 39088169/228826127*73681302247^(4/13) 3770005305032322 a001 34111385/29134601*10749957122^(1/4) 3770005305032322 a001 39088169/228826127*10749957122^(1/3) 3770005305032322 a001 34111385/29134601*4106118243^(6/23) 3770005305032322 a001 39088169/228826127*4106118243^(8/23) 3770005305032322 a001 34111385/29134601*1568397607^(3/11) 3770005305032322 a001 39088169/228826127*1568397607^(4/11) 3770005305032322 a001 14930352/73681302247*33385282^(5/6) 3770005305032322 a001 34111385/29134601*599074578^(2/7) 3770005305032322 a001 39088169/228826127*599074578^(8/21) 3770005305032322 a001 34111385/29134601*228826127^(3/10) 3770005305032322 a001 39088169/228826127*228826127^(2/5) 3770005305032322 a001 433494437/87403803*141422324^(3/13) 3770005305032322 a001 1836311903/87403803*141422324^(2/13) 3770005305032322 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^65 3770005305032322 a001 7778742049/87403803*141422324^(1/13) 3770005305032322 a001 39088169/599074578*2537720636^(2/5) 3770005305032322 a001 267914296/87403803*2537720636^(2/9) 3770005305032322 a001 39088169/599074578*45537549124^(6/17) 3770005305032322 a001 267914296/87403803*312119004989^(2/11) 3770005305032322 a001 39088169/599074578*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(42) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^10/Lucas(38) 3770005305032322 a001 39088169/599074578*192900153618^(1/3) 3770005305032322 a001 267914296/87403803*28143753123^(1/5) 3770005305032322 a001 267914296/87403803*10749957122^(5/24) 3770005305032322 a001 39088169/599074578*10749957122^(3/8) 3770005305032322 a001 267914296/87403803*4106118243^(5/23) 3770005305032322 a001 39088169/599074578*4106118243^(9/23) 3770005305032322 a001 267914296/87403803*1568397607^(5/22) 3770005305032322 a001 39088169/599074578*1568397607^(9/22) 3770005305032322 a001 267914296/87403803*599074578^(5/21) 3770005305032322 a001 39088169/599074578*599074578^(3/7) 3770005305032322 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^67 3770005305032322 a001 39088169/1568397607*2537720636^(4/9) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(44) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^8/Lucas(38) 3770005305032322 a001 233802911/29134601*23725150497407^(1/8) 3770005305032322 a001 233802911/29134601*505019158607^(1/7) 3770005305032322 a001 39088169/1568397607*505019158607^(5/14) 3770005305032322 a001 233802911/29134601*73681302247^(2/13) 3770005305032322 a001 39088169/1568397607*73681302247^(5/13) 3770005305032322 a001 39088169/1568397607*28143753123^(2/5) 3770005305032322 a001 233802911/29134601*10749957122^(1/6) 3770005305032322 a001 39088169/1568397607*10749957122^(5/12) 3770005305032322 a001 233802911/29134601*4106118243^(4/23) 3770005305032322 a001 39088169/1568397607*4106118243^(10/23) 3770005305032322 a001 233802911/29134601*1568397607^(2/11) 3770005305032322 a001 39088169/1568397607*1568397607^(5/11) 3770005305032322 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^69 3770005305032322 a001 39088169/23725150497407*2537720636^(8/9) 3770005305032322 a001 39088169/14662949395604*2537720636^(13/15) 3770005305032322 a001 39088169/3461452808002*2537720636^(4/5) 3770005305032322 a001 39088169/2139295485799*2537720636^(7/9) 3770005305032322 a001 4181/87403804*2537720636^(11/15) 3770005305032322 a001 39088169/192900153618*2537720636^(2/3) 3770005305032322 a001 39088169/45537549124*2537720636^(3/5) 3770005305032322 a001 39088169/10749957122*2537720636^(8/15) 3770005305032322 a001 39088169/17393796001*2537720636^(5/9) 3770005305032322 a001 1836311903/87403803*2537720636^(2/15) 3770005305032322 a001 1836311903/87403803*45537549124^(2/17) 3770005305032322 a001 1836311903/87403803*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^6/Lucas(38) 3770005305032322 a001 1836311903/87403803*10749957122^(1/8) 3770005305032322 a001 39088169/4106118243*10749957122^(11/24) 3770005305032322 a001 1836311903/87403803*4106118243^(3/23) 3770005305032322 a001 39088169/4106118243*4106118243^(11/23) 3770005305032322 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 39088169/10749957122*45537549124^(8/17) 3770005305032322 a001 39088169/10749957122*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^4/Lucas(38) 3770005305032322 a001 1602508992/29134601*23725150497407^(1/16) 3770005305032322 a001 1602508992/29134601*73681302247^(1/13) 3770005305032322 a001 39088169/10749957122*73681302247^(6/13) 3770005305032322 a001 1602508992/29134601*10749957122^(1/12) 3770005305032322 a001 7778742049/87403803*2537720636^(1/15) 3770005305032322 a001 39088169/10749957122*10749957122^(1/2) 3770005305032322 a001 1836311903/87403803*1568397607^(3/22) 3770005305032322 a001 1602508992/29134601*4106118243^(2/23) 3770005305032322 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 39088169/2139295485799*17393796001^(5/7) 3770005305032322 a001 39088169/73681302247*17393796001^(4/7) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(38) 3770005305032322 a001 39088169/28143753123*73681302247^(1/2) 3770005305032322 a001 12586269025/87403803*10749957122^(1/24) 3770005305032322 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 39088169/14662949395604*45537549124^(13/17) 3770005305032322 a001 39088169/3461452808002*45537549124^(12/17) 3770005305032322 a001 39088169/1322157322203*45537549124^(2/3) 3770005305032322 a001 39088169/192900153618*45537549124^(10/17) 3770005305032322 a001 4181/87403804*45537549124^(11/17) 3770005305032322 a001 39088169/73681302247*14662949395604^(4/9) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(52) 3770005305032322 a006 5^(1/2)*Fibonacci(52)/Lucas(38)/sqrt(5) 3770005305032322 a001 39088169/73681302247*505019158607^(1/2) 3770005305032322 a001 39088169/73681302247*73681302247^(7/13) 3770005305032322 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 39088169/192900153618*312119004989^(6/11) 3770005305032322 a001 39088169/192900153618*14662949395604^(10/21) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(54) 3770005305032322 a004 Fibonacci(54)/Lucas(38)/(1/2+sqrt(5)/2)^2 3770005305032322 a001 39088169/192900153618*192900153618^(5/9) 3770005305032322 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 39088169/2139295485799*312119004989^(7/11) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(56) 3770005305032322 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(58) 3770005305032322 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 39088169/3461452808002*14662949395604^(4/7) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 39088169/23725150497407*23725150497407^(5/8) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(38)*Lucas(71)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(38)*Lucas(73)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(38)*Lucas(75)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(76) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(78) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(80) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(82) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(84) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(86) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(88) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(90) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(92) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(94) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^72/Lucas(96) 3770005305032322 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^74/Lucas(98) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^75/Lucas(99) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^76/Lucas(100) 3770005305032322 a004 Fibonacci(76)/Lucas(38)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^73/Lucas(97) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^71/Lucas(95) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(93) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(91) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(89) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(87) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(85) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(83) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(81) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(79) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(77) 3770005305032322 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^44 3770005305032322 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^48 3770005305032322 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^46 3770005305032322 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^47 3770005305032322 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^45 3770005305032322 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^43 3770005305032322 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(38)*Lucas(74)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(38)*Lucas(72)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^13 3770005305032322 a001 39088169/14662949395604*14662949395604^(13/21) 3770005305032322 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(59) 3770005305032322 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(57) 3770005305032322 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^5 3770005305032322 a001 39088169/2139295485799*505019158607^(5/8) 3770005305032322 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^80 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(55) 3770005305032322 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2)^3 3770005305032322 a001 39088169/312119004989*9062201101803^(1/2) 3770005305032322 a001 39088169/3461452808002*192900153618^(2/3) 3770005305032322 a001 39088169/14662949395604*192900153618^(13/18) 3770005305032322 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^78 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(53) 3770005305032322 a004 Fibonacci(53)/Lucas(38)/(1/2+sqrt(5)/2) 3770005305032322 a001 39088169/119218851371*1322157322203^(1/2) 3770005305032322 a001 39088169/505019158607*73681302247^(8/13) 3770005305032322 a001 39088169/3461452808002*73681302247^(9/13) 3770005305032322 a001 39088169/14662949395604*73681302247^(3/4) 3770005305032322 a001 39088169/23725150497407*73681302247^(10/13) 3770005305032322 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 39088169/45537549124*45537549124^(9/17) 3770005305032322 a001 39088169/45537549124*817138163596^(9/19) 3770005305032322 a001 39088169/45537549124*14662949395604^(3/7) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)/Lucas(38) 3770005305032322 a001 39088169/45537549124*192900153618^(1/2) 3770005305032322 a001 39088169/192900153618*28143753123^(3/5) 3770005305032322 a001 39088169/2139295485799*28143753123^(7/10) 3770005305032322 a001 39088169/23725150497407*28143753123^(4/5) 3770005305032322 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 12586269025/87403803*4106118243^(1/23) 3770005305032322 a001 7778742049/87403803*45537549124^(1/17) 3770005305032322 a001 39088169/17393796001*312119004989^(5/11) 3770005305032322 a001 7778742049/87403803*14662949395604^(1/21) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^3/Lucas(38) 3770005305032322 a001 39088169/17393796001*3461452808002^(5/12) 3770005305032322 a001 39088169/28143753123*10749957122^(13/24) 3770005305032322 a001 7778742049/87403803*10749957122^(1/16) 3770005305032322 a001 39088169/17393796001*28143753123^(1/2) 3770005305032322 a001 39088169/73681302247*10749957122^(7/12) 3770005305032322 a001 39088169/45537549124*10749957122^(9/16) 3770005305032322 a001 39088169/192900153618*10749957122^(5/8) 3770005305032322 a001 2971215073/87403803*2537720636^(1/9) 3770005305032322 a001 39088169/505019158607*10749957122^(2/3) 3770005305032322 a001 4181/87403804*10749957122^(11/16) 3770005305032322 a001 39088169/1322157322203*10749957122^(17/24) 3770005305032322 a001 39088169/3461452808002*10749957122^(3/4) 3770005305032322 a001 39088169/9062201101803*10749957122^(19/24) 3770005305032322 a001 39088169/14662949395604*10749957122^(13/16) 3770005305032322 a001 39088169/23725150497407*10749957122^(5/6) 3770005305032322 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 12586269025/87403803*1568397607^(1/22) 3770005305032322 a001 39088169/10749957122*4106118243^(12/23) 3770005305032322 a001 2971215073/87403803*312119004989^(1/11) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^5/Lucas(38) 3770005305032322 a001 2971215073/87403803*28143753123^(1/10) 3770005305032322 a001 1602508992/29134601*1568397607^(1/11) 3770005305032322 a001 39088169/28143753123*4106118243^(13/23) 3770005305032322 a001 39088169/73681302247*4106118243^(14/23) 3770005305032322 a001 39088169/192900153618*4106118243^(15/23) 3770005305032322 a001 39088169/505019158607*4106118243^(16/23) 3770005305032322 a001 39088169/1322157322203*4106118243^(17/23) 3770005305032322 a001 39088169/3461452808002*4106118243^(18/23) 3770005305032322 a001 39088169/9062201101803*4106118243^(19/23) 3770005305032322 a001 39088169/23725150497407*4106118243^(20/23) 3770005305032322 a001 39088169/6643838879*4106118243^(1/2) 3770005305032322 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^70 3770005305032322 a001 39088169/2537720636*2537720636^(7/15) 3770005305032322 a001 233802911/29134601*599074578^(4/21) 3770005305032322 a001 12586269025/87403803*599074578^(1/21) 3770005305032322 a001 39088169/4106118243*1568397607^(1/2) 3770005305032322 a001 39088169/2537720636*17393796001^(3/7) 3770005305032322 a001 1134903170/87403803*17393796001^(1/7) 3770005305032322 a001 39088169/2537720636*45537549124^(7/17) 3770005305032322 a001 39088169/2537720636*14662949395604^(1/3) 3770005305032322 a001 1134903170/87403803*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(45) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(38) 3770005305032322 a001 39088169/2537720636*192900153618^(7/18) 3770005305032322 a001 39088169/2537720636*10749957122^(7/16) 3770005305032322 a001 7778742049/87403803*599074578^(1/14) 3770005305032322 a001 39088169/10749957122*1568397607^(6/11) 3770005305032322 a001 39088169/28143753123*1568397607^(13/22) 3770005305032322 a001 1602508992/29134601*599074578^(2/21) 3770005305032322 a001 39088169/73681302247*1568397607^(7/11) 3770005305032322 a001 39088169/192900153618*1568397607^(15/22) 3770005305032322 a001 39088169/505019158607*1568397607^(8/11) 3770005305032322 a001 4181/87403804*1568397607^(3/4) 3770005305032322 a001 39088169/1322157322203*1568397607^(17/22) 3770005305032322 a001 39088169/3461452808002*1568397607^(9/11) 3770005305032322 a001 1836311903/87403803*599074578^(1/7) 3770005305032322 a001 39088169/9062201101803*1568397607^(19/22) 3770005305032322 a001 39088169/23725150497407*1568397607^(10/11) 3770005305032322 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^68 3770005305032322 a001 1134903170/87403803*599074578^(1/6) 3770005305032322 a001 39088169/1568397607*599074578^(10/21) 3770005305032322 a001 12586269025/87403803*228826127^(1/20) 3770005305032322 a001 433494437/87403803*2537720636^(1/5) 3770005305032322 a001 433494437/87403803*45537549124^(3/17) 3770005305032322 a001 39088169/969323029*817138163596^(1/3) 3770005305032322 a001 433494437/87403803*14662949395604^(1/7) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(43) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^9/Lucas(38) 3770005305032322 a001 433494437/87403803*192900153618^(1/6) 3770005305032322 a001 433494437/87403803*10749957122^(3/16) 3770005305032322 a001 39088169/4106118243*599074578^(11/21) 3770005305032322 a001 39088169/2537720636*599074578^(1/2) 3770005305032322 a001 39088169/10749957122*599074578^(4/7) 3770005305032322 a001 433494437/87403803*599074578^(3/14) 3770005305032322 a001 39088169/28143753123*599074578^(13/21) 3770005305032322 a001 39088169/45537549124*599074578^(9/14) 3770005305032322 a001 39088169/73681302247*599074578^(2/3) 3770005305032322 a001 1602508992/29134601*228826127^(1/10) 3770005305032322 a001 267914296/87403803*228826127^(1/4) 3770005305032322 a001 39088169/192900153618*599074578^(5/7) 3770005305032322 a001 39088169/505019158607*599074578^(16/21) 3770005305032322 a001 4181/87403804*599074578^(11/14) 3770005305032322 a001 39088169/1322157322203*599074578^(17/21) 3770005305032322 a001 39088169/2139295485799*599074578^(5/6) 3770005305032322 a001 39088169/3461452808002*599074578^(6/7) 3770005305032322 a001 2971215073/87403803*228826127^(1/8) 3770005305032322 a001 39088169/9062201101803*599074578^(19/21) 3770005305032322 a001 39088169/14662949395604*599074578^(13/14) 3770005305032322 a001 39088169/23725150497407*599074578^(20/21) 3770005305032322 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^66 3770005305032322 a001 1836311903/87403803*228826127^(3/20) 3770005305032322 a001 701408733/54018521*20633239^(1/5) 3770005305032322 a001 233802911/29134601*228826127^(1/5) 3770005305032322 a001 39088169/599074578*228826127^(9/20) 3770005305032322 a001 12586269025/87403803*87403803^(1/19) 3770005305032322 a001 39088169/370248451*45537549124^(1/3) 3770005305032322 a001 165580141/87403803*312119004989^(1/5) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(41) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(38) 3770005305032322 a001 165580141/87403803*1568397607^(1/4) 3770005305032322 a001 39088169/1568397607*228826127^(1/2) 3770005305032322 a001 39088169/4106118243*228826127^(11/20) 3770005305032322 a001 39088169/10749957122*228826127^(3/5) 3770005305032322 a001 39088169/17393796001*228826127^(5/8) 3770005305032322 a001 39088169/28143753123*228826127^(13/20) 3770005305032322 a001 39088169/73681302247*228826127^(7/10) 3770005305032322 a001 1602508992/29134601*87403803^(2/19) 3770005305032322 a001 39088169/192900153618*228826127^(3/4) 3770005305032322 a001 39088169/505019158607*228826127^(4/5) 3770005305032322 a001 39088169/1322157322203*228826127^(17/20) 3770005305032322 a001 39088169/2139295485799*228826127^(7/8) 3770005305032322 a001 39088169/3461452808002*228826127^(9/10) 3770005305032322 a001 39088169/9062201101803*228826127^(19/20) 3770005305032322 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^64 3770005305032322 a001 1836311903/87403803*87403803^(3/19) 3770005305032322 a001 34111385/29134601*87403803^(6/19) 3770005305032322 a001 233802911/29134601*87403803^(4/19) 3770005305032322 a001 39088169/141422324*141422324^(5/13) 3770005305032322 a001 2584/33385281*33385282^(8/9) 3770005305032322 a001 267914296/87403803*87403803^(5/19) 3770005305032322 a001 63245986/87403803*141422324^(1/3) 3770005305032322 a001 39088169/228826127*87403803^(8/19) 3770005305032322 a001 12586269025/87403803*33385282^(1/18) 3770005305032322 a001 39088169/141422324*2537720636^(1/3) 3770005305032322 a001 39088169/141422324*45537549124^(5/17) 3770005305032322 a001 39088169/141422324*312119004989^(3/11) 3770005305032322 a001 1236084894669817/3278735159921 3770005305032322 a001 39088169/141422324*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(39) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^13/Lucas(38) 3770005305032322 a001 39088169/141422324*192900153618^(5/18) 3770005305032322 a001 63245986/87403803*73681302247^(1/4) 3770005305032322 a001 39088169/141422324*28143753123^(3/10) 3770005305032322 a001 39088169/141422324*10749957122^(5/16) 3770005305032322 a001 39088169/141422324*599074578^(5/14) 3770005305032322 a001 14930352/312119004989*33385282^(11/12) 3770005305032322 a001 39088169/141422324*228826127^(3/8) 3770005305032322 a001 39088169/599074578*87403803^(9/19) 3770005305032322 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^65 3770005305032322 a001 34111385/3020733700601*141422324^(12/13) 3770005305032322 a001 39088169/969323029*87403803^(1/2) 3770005305032322 a001 39088169/1568397607*87403803^(10/19) 3770005305032322 a001 102334155/2139295485799*141422324^(11/13) 3770005305032322 a001 102334155/505019158607*141422324^(10/13) 3770005305032322 a001 7778742049/87403803*33385282^(1/12) 3770005305032322 a001 39088169/4106118243*87403803^(11/19) 3770005305032322 a001 102334155/119218851371*141422324^(9/13) 3770005305032322 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^67 3770005305032322 a001 14619165/10525900321*141422324^(2/3) 3770005305032322 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^69 3770005305032322 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^71 3770005305032322 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^73 3770005305032322 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^75 3770005305032322 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^77 3770005305032322 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^79 3770005305032322 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(70)*Lucas(39)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(72)*Lucas(39)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(74)*Lucas(39)/(1/2+sqrt(5)/2)^99 3770005305032322 a001 1/31622993*(1/2+1/2*5^(1/2))^53 3770005305032322 a004 Fibonacci(75)*Lucas(39)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(73)*Lucas(39)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(71)*Lucas(39)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^80 3770005305032322 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^78 3770005305032322 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^76 3770005305032322 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^74 3770005305032322 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 831985/228811001*141422324^(8/13) 3770005305032322 a001 14930352/505019158607*33385282^(17/18) 3770005305032322 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^70 3770005305032322 a001 267914296/23725150497407*141422324^(12/13) 3770005305032322 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^68 3770005305032322 a001 39088169/10749957122*87403803^(12/19) 3770005305032322 a001 102334155/6643838879*141422324^(7/13) 3770005305032322 a001 267914296/5600748293801*141422324^(11/13) 3770005305032322 a001 701408733/14662949395604*141422324^(11/13) 3770005305032322 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^66 3770005305032322 a001 14619165/224056801*141422324^(6/13) 3770005305032322 a001 1134903170/23725150497407*141422324^(11/13) 3770005305032322 a001 39088169/28143753123*87403803^(13/19) 3770005305032322 a001 267914296/1322157322203*141422324^(10/13) 3770005305032322 a001 433494437/9062201101803*141422324^(11/13) 3770005305032322 a001 701408733/3461452808002*141422324^(10/13) 3770005305032322 a001 165580141/14662949395604*141422324^(12/13) 3770005305032322 a001 1836311903/9062201101803*141422324^(10/13) 3770005305032322 a001 4807526976/23725150497407*141422324^(10/13) 3770005305032322 a001 2971215073/14662949395604*141422324^(10/13) 3770005305032322 a001 1134903170/5600748293801*141422324^(10/13) 3770005305032322 a001 102334155/228826127*17393796001^(2/7) 3770005305032322 a001 102334155/228826127*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(40) 3770005305032322 a001 102334155/228826127*505019158607^(1/4) 3770005305032322 a001 102334155/228826127*10749957122^(7/24) 3770005305032322 a001 102334155/228826127*4106118243^(7/23) 3770005305032322 a001 102334155/228826127*1568397607^(7/22) 3770005305032322 a001 267914296/312119004989*141422324^(9/13) 3770005305032322 a001 433494437/2139295485799*141422324^(10/13) 3770005305032322 a001 267914296/228826127*141422324^(4/13) 3770005305032322 a001 102334155/228826127*599074578^(1/3) 3770005305032322 a001 133957148/96450076809*141422324^(2/3) 3770005305032322 a001 701408733/817138163596*141422324^(9/13) 3770005305032322 a001 165580141/3461452808002*141422324^(11/13) 3770005305032322 a001 1836311903/2139295485799*141422324^(9/13) 3770005305032322 a001 4807526976/5600748293801*141422324^(9/13) 3770005305032322 a001 12586269025/14662949395604*141422324^(9/13) 3770005305032322 a001 20365011074/23725150497407*141422324^(9/13) 3770005305032322 a001 7778742049/9062201101803*141422324^(9/13) 3770005305032322 a001 2971215073/3461452808002*141422324^(9/13) 3770005305032322 a001 1134903170/1322157322203*141422324^(9/13) 3770005305032322 a001 39088169/73681302247*87403803^(14/19) 3770005305032322 a001 701408733/505019158607*141422324^(2/3) 3770005305032322 a001 267914296/73681302247*141422324^(8/13) 3770005305032322 a001 433494437/505019158607*141422324^(9/13) 3770005305032322 a001 1836311903/1322157322203*141422324^(2/3) 3770005305032322 a001 14930208/10749853441*141422324^(2/3) 3770005305032322 a001 12586269025/9062201101803*141422324^(2/3) 3770005305032322 a001 32951280099/23725150497407*141422324^(2/3) 3770005305032322 a001 10182505537/7331474697802*141422324^(2/3) 3770005305032322 a001 7778742049/5600748293801*141422324^(2/3) 3770005305032322 a001 2971215073/2139295485799*141422324^(2/3) 3770005305032322 a001 567451585/408569081798*141422324^(2/3) 3770005305032322 a001 433494437/312119004989*141422324^(2/3) 3770005305032322 a001 102334155/228826127*228826127^(7/20) 3770005305032322 a001 1602508992/29134601*33385282^(1/9) 3770005305032322 a001 233802911/64300051206*141422324^(8/13) 3770005305032322 a001 165580141/817138163596*141422324^(10/13) 3770005305032322 a001 102334155/370248451*141422324^(5/13) 3770005305032322 a001 1836311903/505019158607*141422324^(8/13) 3770005305032322 a001 1602508992/440719107401*141422324^(8/13) 3770005305032322 a001 12586269025/3461452808002*141422324^(8/13) 3770005305032322 a001 10983760033/3020733700601*141422324^(8/13) 3770005305032322 a001 86267571272/23725150497407*141422324^(8/13) 3770005305032322 a001 53316291173/14662949395604*141422324^(8/13) 3770005305032322 a001 20365011074/5600748293801*141422324^(8/13) 3770005305032322 a001 7778742049/2139295485799*141422324^(8/13) 3770005305032322 a001 2971215073/817138163596*141422324^(8/13) 3770005305032322 a001 1134903170/312119004989*141422324^(8/13) 3770005305032322 a001 1134903170/228826127*141422324^(3/13) 3770005305032322 a001 9238424/599786069*141422324^(7/13) 3770005305032322 a001 433494437/119218851371*141422324^(8/13) 3770005305032322 a001 165580141/228826127*141422324^(1/3) 3770005305032322 a001 39088169/192900153618*87403803^(15/19) 3770005305032322 a001 701408733/45537549124*141422324^(7/13) 3770005305032322 a001 165580141/192900153618*141422324^(9/13) 3770005305032322 a001 1836311903/119218851371*141422324^(7/13) 3770005305032322 a001 4807526976/312119004989*141422324^(7/13) 3770005305032322 a001 12586269025/817138163596*141422324^(7/13) 3770005305032322 a001 32951280099/2139295485799*141422324^(7/13) 3770005305032322 a001 86267571272/5600748293801*141422324^(7/13) 3770005305032322 a001 7787980473/505618944676*141422324^(7/13) 3770005305032322 a001 365435296162/23725150497407*141422324^(7/13) 3770005305032322 a001 139583862445/9062201101803*141422324^(7/13) 3770005305032322 a001 53316291173/3461452808002*141422324^(7/13) 3770005305032322 a001 20365011074/1322157322203*141422324^(7/13) 3770005305032322 a001 7778742049/505019158607*141422324^(7/13) 3770005305032322 a001 2971215073/192900153618*141422324^(7/13) 3770005305032322 a001 102287808/4868641*141422324^(2/13) 3770005305032322 a001 1134903170/73681302247*141422324^(7/13) 3770005305032322 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^67 3770005305032322 a001 165580141/119218851371*141422324^(2/3) 3770005305032322 a001 267914296/4106118243*141422324^(6/13) 3770005305032322 a001 433494437/28143753123*141422324^(7/13) 3770005305032322 a001 701408733/10749957122*141422324^(6/13) 3770005305032322 a001 165580141/45537549124*141422324^(8/13) 3770005305032322 a001 1836311903/28143753123*141422324^(6/13) 3770005305032322 a001 686789568/10525900321*141422324^(6/13) 3770005305032322 a001 12586269025/192900153618*141422324^(6/13) 3770005305032322 a001 32951280099/505019158607*141422324^(6/13) 3770005305032322 a001 86267571272/1322157322203*141422324^(6/13) 3770005305032322 a001 32264490531/494493258286*141422324^(6/13) 3770005305032322 a001 1548008755920/23725150497407*141422324^(6/13) 3770005305032322 a001 365435296162/5600748293801*141422324^(6/13) 3770005305032322 a001 139583862445/2139295485799*141422324^(6/13) 3770005305032322 a001 53316291173/817138163596*141422324^(6/13) 3770005305032322 a001 20365011074/312119004989*141422324^(6/13) 3770005305032322 a001 7778742049/119218851371*141422324^(6/13) 3770005305032322 a001 2971215073/45537549124*141422324^(6/13) 3770005305032322 a001 20365011074/228826127*141422324^(1/13) 3770005305032322 a001 1134903170/17393796001*141422324^(6/13) 3770005305032322 a001 433494437/6643838879*141422324^(6/13) 3770005305032322 a001 267914296/228826127*2537720636^(4/15) 3770005305032322 a001 267914296/228826127*45537549124^(4/17) 3770005305032322 a001 267914296/228826127*817138163596^(4/19) 3770005305032322 a001 267914296/228826127*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(42) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(40) 3770005305032322 a001 267914296/228826127*192900153618^(2/9) 3770005305032322 a001 267914296/228826127*73681302247^(3/13) 3770005305032322 a001 34111385/199691526*73681302247^(4/13) 3770005305032322 a001 267914296/228826127*10749957122^(1/4) 3770005305032322 a001 34111385/199691526*10749957122^(1/3) 3770005305032322 a001 267914296/228826127*4106118243^(6/23) 3770005305032322 a001 34111385/199691526*4106118243^(8/23) 3770005305032322 a001 267914296/228826127*1568397607^(3/11) 3770005305032322 a001 34111385/199691526*1568397607^(4/11) 3770005305032322 a001 267914296/228826127*599074578^(2/7) 3770005305032322 a001 267914296/969323029*141422324^(5/13) 3770005305032322 a001 34111385/199691526*599074578^(8/21) 3770005305032322 a001 39088169/505019158607*87403803^(16/19) 3770005305032322 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^69 3770005305032322 a001 165580141/10749957122*141422324^(7/13) 3770005305032322 a001 14619165/224056801*2537720636^(2/5) 3770005305032322 a001 701408733/228826127*2537720636^(2/9) 3770005305032322 a001 14619165/224056801*45537549124^(6/17) 3770005305032322 a001 701408733/228826127*312119004989^(2/11) 3770005305032322 a001 14619165/224056801*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(44) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(40) 3770005305032322 a001 14619165/224056801*192900153618^(1/3) 3770005305032322 a001 701408733/228826127*28143753123^(1/5) 3770005305032322 a001 701408733/228826127*10749957122^(5/24) 3770005305032322 a001 14619165/224056801*10749957122^(3/8) 3770005305032322 a001 701408733/228826127*4106118243^(5/23) 3770005305032322 a001 701408733/2537720636*141422324^(5/13) 3770005305032322 a001 14619165/224056801*4106118243^(9/23) 3770005305032322 a001 701408733/228826127*1568397607^(5/22) 3770005305032322 a001 14619165/224056801*1568397607^(9/22) 3770005305032322 a001 1836311903/6643838879*141422324^(5/13) 3770005305032322 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 4807526976/17393796001*141422324^(5/13) 3770005305032322 a001 12586269025/45537549124*141422324^(5/13) 3770005305032322 a001 32951280099/119218851371*141422324^(5/13) 3770005305032322 a001 86267571272/312119004989*141422324^(5/13) 3770005305032322 a001 225851433717/817138163596*141422324^(5/13) 3770005305032322 a001 1548008755920/5600748293801*141422324^(5/13) 3770005305032322 a001 139583862445/505019158607*141422324^(5/13) 3770005305032322 a001 53316291173/192900153618*141422324^(5/13) 3770005305032322 a001 20365011074/73681302247*141422324^(5/13) 3770005305032322 a001 7778742049/28143753123*141422324^(5/13) 3770005305032322 a001 34111385/1368706081*2537720636^(4/9) 3770005305032322 a001 34111385/3020733700601*2537720636^(4/5) 3770005305032322 a001 102334155/5600748293801*2537720636^(7/9) 3770005305032322 a001 2971215073/10749957122*141422324^(5/13) 3770005305032322 a001 102334155/2139295485799*2537720636^(11/15) 3770005305032322 a001 102334155/505019158607*2537720636^(2/3) 3770005305032322 a001 102334155/119218851371*2537720636^(3/5) 3770005305032322 a001 102334155/45537549124*2537720636^(5/9) 3770005305032322 a001 831985/228811001*2537720636^(8/15) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(40) 3770005305032322 a001 1836311903/228826127*23725150497407^(1/8) 3770005305032322 a001 34111385/1368706081*23725150497407^(5/16) 3770005305032322 a001 1836311903/228826127*505019158607^(1/7) 3770005305032322 a001 1836311903/228826127*73681302247^(2/13) 3770005305032322 a001 34111385/1368706081*73681302247^(5/13) 3770005305032322 a001 34111385/1368706081*28143753123^(2/5) 3770005305032322 a001 1836311903/228826127*10749957122^(1/6) 3770005305032322 a001 34111385/1368706081*10749957122^(5/12) 3770005305032322 a001 102334155/6643838879*2537720636^(7/15) 3770005305032322 a001 1836311903/228826127*4106118243^(4/23) 3770005305032322 a001 1134903170/4106118243*141422324^(5/13) 3770005305032322 a001 34111385/1368706081*4106118243^(10/23) 3770005305032322 a001 102287808/4868641*2537720636^(2/15) 3770005305032322 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 7778742049/228826127*2537720636^(1/9) 3770005305032322 a001 20365011074/228826127*2537720636^(1/15) 3770005305032322 a001 102287808/4868641*45537549124^(2/17) 3770005305032322 a001 102334155/10749957122*312119004989^(2/5) 3770005305032322 a001 102287808/4868641*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(40) 3770005305032322 a001 102287808/4868641*10749957122^(1/8) 3770005305032322 a001 102334155/10749957122*10749957122^(11/24) 3770005305032322 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 102334155/5600748293801*17393796001^(5/7) 3770005305032322 a001 34111385/64300051206*17393796001^(4/7) 3770005305032322 a001 831985/228811001*45537549124^(8/17) 3770005305032322 a001 831985/228811001*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(40) 3770005305032322 a001 12586269025/228826127*23725150497407^(1/16) 3770005305032322 a001 831985/228811001*192900153618^(4/9) 3770005305032322 a001 12586269025/228826127*73681302247^(1/13) 3770005305032322 a001 831985/228811001*73681302247^(6/13) 3770005305032322 a001 102287808/4868641*4106118243^(3/23) 3770005305032322 a001 12586269025/228826127*10749957122^(1/12) 3770005305032322 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 34111385/3020733700601*45537549124^(12/17) 3770005305032322 a001 6765/228826126*45537549124^(2/3) 3770005305032322 a001 102334155/2139295485799*45537549124^(11/17) 3770005305032322 a001 102334155/505019158607*45537549124^(10/17) 3770005305032322 a001 102334155/119218851371*45537549124^(9/17) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(40) 3770005305032322 a001 14619165/10525900321*73681302247^(1/2) 3770005305032322 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 34111385/64300051206*14662949395604^(4/9) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(54) 3770005305032322 a006 5^(1/2)*Fibonacci(54)/Lucas(40)/sqrt(5) 3770005305032322 a001 34111385/64300051206*505019158607^(1/2) 3770005305032322 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 102334155/505019158607*312119004989^(6/11) 3770005305032322 a001 102334155/5600748293801*312119004989^(7/11) 3770005305032322 a001 102334155/2139295485799*312119004989^(3/5) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(56) 3770005305032322 a004 Fibonacci(56)/Lucas(40)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 102334155/2139295485799*817138163596^(11/19) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(58) 3770005305032322 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(40)*Lucas(69)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(40)*Lucas(71)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(40)*Lucas(73)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(80) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(82) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(84) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(86) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(88) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(90) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(92) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(94) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^70/Lucas(96) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^72/Lucas(98) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^74/Lucas(100) 3770005305032322 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^73/Lucas(99) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^71/Lucas(97) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^69/Lucas(95) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(93) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(91) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(89) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(87) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(85) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(83) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(81) 3770005305032322 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^46 3770005305032322 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^44 3770005305032322 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^45 3770005305032322 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^43 3770005305032322 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(40)*Lucas(74)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(40)*Lucas(72)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(40)*Lucas(70)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 102334155/5600748293801*14662949395604^(5/9) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 102334155/2139295485799*14662949395604^(11/21) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(59) 3770005305032322 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(57) 3770005305032322 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2)^3 3770005305032322 a001 102334155/817138163596*9062201101803^(1/2) 3770005305032322 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(55) 3770005305032322 a004 Fibonacci(55)/Lucas(40)/(1/2+sqrt(5)/2) 3770005305032322 a001 9303105/28374454999*1322157322203^(1/2) 3770005305032322 a001 102334155/505019158607*192900153618^(5/9) 3770005305032322 a001 102334155/2139295485799*192900153618^(11/18) 3770005305032322 a001 34111385/3020733700601*192900153618^(2/3) 3770005305032322 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 102334155/119218851371*817138163596^(9/19) 3770005305032322 a001 102334155/119218851371*14662949395604^(3/7) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(40) 3770005305032322 a001 102334155/119218851371*192900153618^(1/2) 3770005305032322 a001 34111385/440719107401*73681302247^(8/13) 3770005305032322 a001 34111385/3020733700601*73681302247^(9/13) 3770005305032322 a001 32951280099/228826127*10749957122^(1/24) 3770005305032322 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 20365011074/228826127*45537549124^(1/17) 3770005305032322 a001 102334155/45537549124*312119004989^(5/11) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(40) 3770005305032322 a001 102334155/45537549124*3461452808002^(5/12) 3770005305032322 a001 20365011074/228826127*192900153618^(1/18) 3770005305032322 a001 102334155/505019158607*28143753123^(3/5) 3770005305032322 a001 102334155/5600748293801*28143753123^(7/10) 3770005305032322 a001 20365011074/228826127*10749957122^(1/16) 3770005305032322 a001 102334155/45537549124*28143753123^(1/2) 3770005305032322 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 32951280099/228826127*4106118243^(1/23) 3770005305032322 a001 831985/228811001*10749957122^(1/2) 3770005305032322 a001 7778742049/228826127*312119004989^(1/11) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(40) 3770005305032322 a001 7778742049/228826127*28143753123^(1/10) 3770005305032322 a001 12586269025/228826127*4106118243^(2/23) 3770005305032322 a001 14619165/10525900321*10749957122^(13/24) 3770005305032322 a001 102334155/119218851371*10749957122^(9/16) 3770005305032322 a001 34111385/64300051206*10749957122^(7/12) 3770005305032322 a001 102334155/505019158607*10749957122^(5/8) 3770005305032322 a001 34111385/440719107401*10749957122^(2/3) 3770005305032322 a001 102334155/2139295485799*10749957122^(11/16) 3770005305032322 a001 6765/228826126*10749957122^(17/24) 3770005305032322 a001 34111385/3020733700601*10749957122^(3/4) 3770005305032322 a001 102334155/23725150497407*10749957122^(19/24) 3770005305032322 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 1836311903/228826127*1568397607^(2/11) 3770005305032322 a001 32951280099/228826127*1568397607^(1/22) 3770005305032322 a001 102334155/10749957122*4106118243^(11/23) 3770005305032322 a001 102334155/6643838879*17393796001^(3/7) 3770005305032322 a001 2971215073/228826127*17393796001^(1/7) 3770005305032322 a001 102334155/6643838879*45537549124^(7/17) 3770005305032322 a001 102334155/6643838879*14662949395604^(1/3) 3770005305032322 a001 2971215073/228826127*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(40) 3770005305032322 a001 102334155/6643838879*192900153618^(7/18) 3770005305032322 a001 102334155/6643838879*10749957122^(7/16) 3770005305032322 a001 831985/228811001*4106118243^(12/23) 3770005305032322 a001 102334155/17393796001*4106118243^(1/2) 3770005305032322 a001 14619165/10525900321*4106118243^(13/23) 3770005305032322 a001 12586269025/228826127*1568397607^(1/11) 3770005305032322 a001 34111385/64300051206*4106118243^(14/23) 3770005305032322 a001 102334155/505019158607*4106118243^(15/23) 3770005305032322 a001 34111385/440719107401*4106118243^(16/23) 3770005305032322 a001 6765/228826126*4106118243^(17/23) 3770005305032322 a001 34111385/3020733700601*4106118243^(18/23) 3770005305032322 a001 102287808/4868641*1568397607^(3/22) 3770005305032322 a001 102334155/23725150497407*4106118243^(19/23) 3770005305032322 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 1134903170/228826127*2537720636^(1/5) 3770005305032322 a001 34111385/1368706081*1568397607^(5/11) 3770005305032322 a001 32951280099/228826127*599074578^(1/21) 3770005305032322 a001 1134903170/228826127*45537549124^(3/17) 3770005305032322 a001 1134903170/228826127*817138163596^(3/19) 3770005305032322 a001 1134903170/228826127*14662949395604^(1/7) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(45) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(40) 3770005305032322 a001 1134903170/228826127*192900153618^(1/6) 3770005305032322 a001 1134903170/228826127*10749957122^(3/16) 3770005305032322 a001 102334155/10749957122*1568397607^(1/2) 3770005305032322 a001 20365011074/228826127*599074578^(1/14) 3770005305032322 a001 831985/228811001*1568397607^(6/11) 3770005305032322 a001 14619165/10525900321*1568397607^(13/22) 3770005305032322 a001 701408733/228826127*599074578^(5/21) 3770005305032322 a001 34111385/64300051206*1568397607^(7/11) 3770005305032322 a001 12586269025/228826127*599074578^(2/21) 3770005305032322 a001 102334155/505019158607*1568397607^(15/22) 3770005305032322 a001 34111385/440719107401*1568397607^(8/11) 3770005305032322 a001 102334155/2139295485799*1568397607^(3/4) 3770005305032322 a001 6765/228826126*1568397607^(17/22) 3770005305032322 a001 34111385/3020733700601*1568397607^(9/11) 3770005305032322 a001 102334155/23725150497407*1568397607^(19/22) 3770005305032322 a001 102287808/4868641*599074578^(1/7) 3770005305032322 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^70 3770005305032322 a001 1836311903/228826127*599074578^(4/21) 3770005305032322 a001 2971215073/228826127*599074578^(1/6) 3770005305032322 a001 233802911/199691526*141422324^(4/13) 3770005305032322 a001 433494437/1568397607*141422324^(5/13) 3770005305032322 a001 433494437/599074578*141422324^(1/3) 3770005305032322 a001 1134903170/228826127*599074578^(3/14) 3770005305032322 a001 14619165/224056801*599074578^(3/7) 3770005305032322 a001 32951280099/228826127*228826127^(1/20) 3770005305032322 a001 102334155/969323029*45537549124^(1/3) 3770005305032322 a001 433494437/228826127*312119004989^(1/5) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(43) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(40) 3770005305032322 a001 433494437/228826127*1568397607^(1/4) 3770005305032322 a001 34111385/1368706081*599074578^(10/21) 3770005305032322 a001 102334155/6643838879*599074578^(1/2) 3770005305032322 a001 102334155/10749957122*599074578^(11/21) 3770005305032322 a001 831985/228811001*599074578^(4/7) 3770005305032322 a001 14619165/10525900321*599074578^(13/21) 3770005305032322 a001 102334155/119218851371*599074578^(9/14) 3770005305032322 a001 34111385/64300051206*599074578^(2/3) 3770005305032322 a001 12586269025/228826127*228826127^(1/10) 3770005305032322 a001 102334155/505019158607*599074578^(5/7) 3770005305032322 a001 34111385/440719107401*599074578^(16/21) 3770005305032322 a001 1134903170/1568397607*141422324^(1/3) 3770005305032322 a001 102334155/2139295485799*599074578^(11/14) 3770005305032322 a001 6765/228826126*599074578^(17/21) 3770005305032322 a001 102334155/5600748293801*599074578^(5/6) 3770005305032322 a001 34111385/3020733700601*599074578^(6/7) 3770005305032322 a001 7778742049/228826127*228826127^(1/8) 3770005305032322 a001 2971215073/4106118243*141422324^(1/3) 3770005305032322 a001 7778742049/10749957122*141422324^(1/3) 3770005305032322 a001 20365011074/28143753123*141422324^(1/3) 3770005305032322 a001 53316291173/73681302247*141422324^(1/3) 3770005305032322 a001 139583862445/192900153618*141422324^(1/3) 3770005305032322 a001 365435296162/505019158607*141422324^(1/3) 3770005305032322 a001 10610209857723/14662949395604*141422324^(1/3) 3770005305032322 a001 225851433717/312119004989*141422324^(1/3) 3770005305032322 a001 86267571272/119218851371*141422324^(1/3) 3770005305032322 a001 32951280099/45537549124*141422324^(1/3) 3770005305032322 a001 12586269025/17393796001*141422324^(1/3) 3770005305032322 a001 4807526976/6643838879*141422324^(1/3) 3770005305032322 a001 102334155/23725150497407*599074578^(19/21) 3770005305032322 a001 1836311903/2537720636*141422324^(1/3) 3770005305032322 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^68 3770005305032322 a001 102287808/4868641*228826127^(3/20) 3770005305032322 a001 267914296/228826127*228826127^(3/10) 3770005305032322 a001 701408733/969323029*141422324^(1/3) 3770005305032322 a001 1836311903/1568397607*141422324^(4/13) 3770005305032322 a001 165580141/2537720636*141422324^(6/13) 3770005305032322 a001 1602508992/1368706081*141422324^(4/13) 3770005305032322 a001 12586269025/10749957122*141422324^(4/13) 3770005305032322 a001 10983760033/9381251041*141422324^(4/13) 3770005305032322 a001 86267571272/73681302247*141422324^(4/13) 3770005305032322 a001 75283811239/64300051206*141422324^(4/13) 3770005305032322 a001 2504730781961/2139295485799*141422324^(4/13) 3770005305032322 a001 365435296162/312119004989*141422324^(4/13) 3770005305032322 a001 139583862445/119218851371*141422324^(4/13) 3770005305032322 a001 53316291173/45537549124*141422324^(4/13) 3770005305032322 a001 20365011074/17393796001*141422324^(4/13) 3770005305032322 a001 7778742049/6643838879*141422324^(4/13) 3770005305032322 a001 1836311903/228826127*228826127^(1/5) 3770005305032322 a001 2971215073/2537720636*141422324^(4/13) 3770005305032322 a001 701408733/228826127*228826127^(1/4) 3770005305032322 a001 165580141/599074578*141422324^(5/13) 3770005305032322 a001 2971215073/599074578*141422324^(3/13) 3770005305032322 a001 34111385/199691526*228826127^(2/5) 3770005305032322 a001 1134903170/969323029*141422324^(4/13) 3770005305032322 a001 39088169/1322157322203*87403803^(17/19) 3770005305032322 a001 32951280099/228826127*87403803^(1/19) 3770005305032322 a001 267914296/370248451*141422324^(1/3) 3770005305032322 a001 7778742049/1568397607*141422324^(3/13) 3770005305032322 a001 102334155/370248451*2537720636^(1/3) 3770005305032322 a001 102334155/370248451*45537549124^(5/17) 3770005305032322 a001 102334155/370248451*312119004989^(3/11) 3770005305032322 a001 102334155/370248451*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(41) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(40) 3770005305032322 a001 102334155/370248451*192900153618^(5/18) 3770005305032322 a001 165580141/228826127*73681302247^(1/4) 3770005305032322 a001 102334155/370248451*28143753123^(3/10) 3770005305032322 a001 102334155/370248451*10749957122^(5/16) 3770005305032322 a001 20365011074/4106118243*141422324^(3/13) 3770005305032322 a001 53316291173/10749957122*141422324^(3/13) 3770005305032322 a001 139583862445/28143753123*141422324^(3/13) 3770005305032322 a001 365435296162/73681302247*141422324^(3/13) 3770005305032322 a001 956722026041/192900153618*141422324^(3/13) 3770005305032322 a001 2504730781961/505019158607*141422324^(3/13) 3770005305032322 a001 10610209857723/2139295485799*141422324^(3/13) 3770005305032322 a001 4052739537881/817138163596*141422324^(3/13) 3770005305032322 a001 140728068720/28374454999*141422324^(3/13) 3770005305032322 a001 591286729879/119218851371*141422324^(3/13) 3770005305032322 a001 225851433717/45537549124*141422324^(3/13) 3770005305032322 a001 86267571272/17393796001*141422324^(3/13) 3770005305032322 a001 32951280099/6643838879*141422324^(3/13) 3770005305032322 a001 1144206275/230701876*141422324^(3/13) 3770005305032322 a001 14619165/224056801*228826127^(9/20) 3770005305032322 a001 102334155/370248451*599074578^(5/14) 3770005305032322 a001 4807526976/969323029*141422324^(3/13) 3770005305032322 a001 12586269025/599074578*141422324^(2/13) 3770005305032322 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^69 3770005305032322 a001 34111385/1368706081*228826127^(1/2) 3770005305032322 a001 102334155/10749957122*228826127^(11/20) 3770005305032322 a001 32951280099/1568397607*141422324^(2/13) 3770005305032322 a001 86267571272/4106118243*141422324^(2/13) 3770005305032322 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 225851433717/10749957122*141422324^(2/13) 3770005305032322 a001 591286729879/28143753123*141422324^(2/13) 3770005305032322 a001 1548008755920/73681302247*141422324^(2/13) 3770005305032322 a001 4052739537881/192900153618*141422324^(2/13) 3770005305032322 a001 225749145909/10745088481*141422324^(2/13) 3770005305032322 a001 6557470319842/312119004989*141422324^(2/13) 3770005305032322 a001 2504730781961/119218851371*141422324^(2/13) 3770005305032322 a001 956722026041/45537549124*141422324^(2/13) 3770005305032322 a001 365435296162/17393796001*141422324^(2/13) 3770005305032322 a001 139583862445/6643838879*141422324^(2/13) 3770005305032322 a001 831985/228811001*228826127^(3/5) 3770005305032322 a001 53316291173/2537720636*141422324^(2/13) 3770005305032322 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^73 3770005305032322 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^75 3770005305032322 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^77 3770005305032322 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^79 3770005305032322 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(68)*Lucas(41)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(70)*Lucas(41)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(72)*Lucas(41)/(1/2+sqrt(5)/2)^99 3770005305032322 a001 2/165580141*(1/2+1/2*5^(1/2))^55 3770005305032322 a004 Fibonacci(73)*Lucas(41)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(71)*Lucas(41)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(69)*Lucas(41)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^80 3770005305032322 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^78 3770005305032322 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^76 3770005305032322 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 102334155/45537549124*228826127^(5/8) 3770005305032322 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 433494437/370248451*141422324^(4/13) 3770005305032322 a001 39088169/3461452808002*87403803^(18/19) 3770005305032322 a001 14619165/10525900321*228826127^(13/20) 3770005305032322 a001 53316291173/599074578*141422324^(1/13) 3770005305032322 a001 20365011074/969323029*141422324^(2/13) 3770005305032322 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^70 3770005305032322 a001 34111385/64300051206*228826127^(7/10) 3770005305032322 a001 133957148/299537289*17393796001^(2/7) 3770005305032322 a001 133957148/299537289*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(42) 3770005305032322 a001 133957148/299537289*505019158607^(1/4) 3770005305032322 a001 133957148/299537289*10749957122^(7/24) 3770005305032322 a001 133957148/299537289*4106118243^(7/23) 3770005305032322 a001 133957148/299537289*1568397607^(7/22) 3770005305032322 a001 12586269025/228826127*87403803^(2/19) 3770005305032322 a001 102334155/505019158607*228826127^(3/4) 3770005305032322 a001 133957148/299537289*599074578^(1/3) 3770005305032322 a001 102334155/370248451*228826127^(3/8) 3770005305032322 a001 1836311903/370248451*141422324^(3/13) 3770005305032322 a001 139583862445/1568397607*141422324^(1/13) 3770005305032322 a001 365435296162/4106118243*141422324^(1/13) 3770005305032322 a001 956722026041/10749957122*141422324^(1/13) 3770005305032322 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 2504730781961/28143753123*141422324^(1/13) 3770005305032322 a001 6557470319842/73681302247*141422324^(1/13) 3770005305032322 a001 10610209857723/119218851371*141422324^(1/13) 3770005305032322 a001 4052739537881/45537549124*141422324^(1/13) 3770005305032322 a001 1548008755920/17393796001*141422324^(1/13) 3770005305032322 a001 591286729879/6643838879*141422324^(1/13) 3770005305032322 a001 34111385/440719107401*228826127^(4/5) 3770005305032322 a001 225851433717/2537720636*141422324^(1/13) 3770005305032322 a001 233802911/199691526*2537720636^(4/15) 3770005305032322 a001 233802911/199691526*45537549124^(4/17) 3770005305032322 a001 233802911/199691526*817138163596^(4/19) 3770005305032322 a001 233802911/199691526*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(44) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(42) 3770005305032322 a001 233802911/199691526*192900153618^(2/9) 3770005305032322 a001 233802911/199691526*73681302247^(3/13) 3770005305032322 a001 267914296/1568397607*73681302247^(4/13) 3770005305032322 a001 233802911/199691526*10749957122^(1/4) 3770005305032322 a001 267914296/1568397607*10749957122^(1/3) 3770005305032322 a001 233802911/199691526*4106118243^(6/23) 3770005305032322 a001 267914296/1568397607*4106118243^(8/23) 3770005305032322 a001 233802911/199691526*1568397607^(3/11) 3770005305032322 a001 267914296/1568397607*1568397607^(4/11) 3770005305032322 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 267914296/23725150497407*2537720636^(4/5) 3770005305032322 a001 267914296/4106118243*2537720636^(2/5) 3770005305032322 a001 10946/599074579*2537720636^(7/9) 3770005305032322 a001 267914296/5600748293801*2537720636^(11/15) 3770005305032322 a001 267914296/1322157322203*2537720636^(2/3) 3770005305032322 a001 1836311903/599074578*2537720636^(2/9) 3770005305032322 a001 267914296/312119004989*2537720636^(3/5) 3770005305032322 a001 267914296/119218851371*2537720636^(5/9) 3770005305032322 a001 267914296/73681302247*2537720636^(8/15) 3770005305032322 a001 6765/228826126*228826127^(17/20) 3770005305032322 a001 133957148/5374978561*2537720636^(4/9) 3770005305032322 a001 9238424/599786069*2537720636^(7/15) 3770005305032322 a001 267914296/4106118243*45537549124^(6/17) 3770005305032322 a001 1836311903/599074578*312119004989^(2/11) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(42) 3770005305032322 a001 267914296/4106118243*192900153618^(1/3) 3770005305032322 a001 1836311903/599074578*28143753123^(1/5) 3770005305032322 a001 1836311903/599074578*10749957122^(5/24) 3770005305032322 a001 267914296/4106118243*10749957122^(3/8) 3770005305032322 a001 1836311903/599074578*4106118243^(5/23) 3770005305032322 a001 267914296/4106118243*4106118243^(9/23) 3770005305032322 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 12586269025/599074578*2537720636^(2/15) 3770005305032322 a001 10182505537/299537289*2537720636^(1/9) 3770005305032322 a001 53316291173/599074578*2537720636^(1/15) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(42) 3770005305032322 a001 267084832/33281921*23725150497407^(1/8) 3770005305032322 a001 133957148/5374978561*23725150497407^(5/16) 3770005305032322 a001 267084832/33281921*505019158607^(1/7) 3770005305032322 a001 133957148/5374978561*505019158607^(5/14) 3770005305032322 a001 267084832/33281921*73681302247^(2/13) 3770005305032322 a001 133957148/5374978561*73681302247^(5/13) 3770005305032322 a001 2971215073/599074578*2537720636^(1/5) 3770005305032322 a001 133957148/5374978561*28143753123^(2/5) 3770005305032322 a001 267084832/33281921*10749957122^(1/6) 3770005305032322 a001 133957148/5374978561*10749957122^(5/12) 3770005305032322 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 10946/599074579*17393796001^(5/7) 3770005305032322 a001 267914296/505019158607*17393796001^(4/7) 3770005305032322 a001 12586269025/599074578*45537549124^(2/17) 3770005305032322 a001 267914296/28143753123*312119004989^(2/5) 3770005305032322 a001 12586269025/599074578*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(42) 3770005305032322 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 267914296/73681302247*45537549124^(8/17) 3770005305032322 a001 267914296/23725150497407*45537549124^(12/17) 3770005305032322 a001 267914296/9062201101803*45537549124^(2/3) 3770005305032322 a001 267914296/5600748293801*45537549124^(11/17) 3770005305032322 a001 267914296/1322157322203*45537549124^(10/17) 3770005305032322 a001 267914296/312119004989*45537549124^(9/17) 3770005305032322 a001 267914296/73681302247*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(42) 3770005305032322 a001 10983760033/199691526*23725150497407^(1/16) 3770005305032322 a001 12586269025/599074578*10749957122^(1/8) 3770005305032322 a001 10983760033/199691526*73681302247^(1/13) 3770005305032322 a001 267914296/73681302247*73681302247^(6/13) 3770005305032322 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(42) 3770005305032322 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 10946/599074579*312119004989^(7/11) 3770005305032322 a001 267914296/5600748293801*312119004989^(3/5) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(56) 3770005305032322 a006 5^(1/2)*Fibonacci(56)/Lucas(42)/sqrt(5) 3770005305032322 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(58) 3770005305032322 a004 Fibonacci(58)/Lucas(42)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^4 3770005305032322 a001 133957148/1730726404001*23725150497407^(1/2) 3770005305032322 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(42)*Lucas(67)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(42)*Lucas(69)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(42)*Lucas(71)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(84) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(86) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(88) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(90) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(92) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(94) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^68/Lucas(96) 3770005305032322 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^70/Lucas(98) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^71/Lucas(99) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^72/Lucas(100) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^69/Lucas(97) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^67/Lucas(95) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(93) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(91) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(89) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(87) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(85) 3770005305032322 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^44 3770005305032322 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^43 3770005305032322 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(42)*Lucas(72)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(42)*Lucas(70)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(42)*Lucas(68)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 10946/599074579*14662949395604^(5/9) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(59) 3770005305032322 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(57) 3770005305032322 a004 Fibonacci(57)/Lucas(42)/(1/2+sqrt(5)/2) 3770005305032322 a001 10946/599074579*505019158607^(5/8) 3770005305032322 a001 267914296/23725150497407*505019158607^(9/14) 3770005305032322 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 267914296/312119004989*817138163596^(9/19) 3770005305032322 a001 267914296/312119004989*14662949395604^(3/7) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(42) 3770005305032322 a001 267914296/1322157322203*192900153618^(5/9) 3770005305032322 a001 267914296/23725150497407*192900153618^(2/3) 3770005305032322 a001 267914296/312119004989*192900153618^(1/2) 3770005305032322 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 53316291173/599074578*45537549124^(1/17) 3770005305032322 a001 133957148/96450076809*73681302247^(1/2) 3770005305032322 a001 267914296/119218851371*312119004989^(5/11) 3770005305032322 a001 53316291173/599074578*14662949395604^(1/21) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(42) 3770005305032322 a001 267914296/119218851371*3461452808002^(5/12) 3770005305032322 a001 53316291173/599074578*192900153618^(1/18) 3770005305032322 a001 267914296/505019158607*73681302247^(7/13) 3770005305032322 a001 133957148/1730726404001*73681302247^(8/13) 3770005305032322 a001 267914296/23725150497407*73681302247^(9/13) 3770005305032322 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 43133785636/299537289*10749957122^(1/24) 3770005305032322 a001 10182505537/299537289*312119004989^(1/11) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(42) 3770005305032322 a001 10983760033/199691526*10749957122^(1/12) 3770005305032322 a001 10182505537/299537289*28143753123^(1/10) 3770005305032322 a001 53316291173/599074578*10749957122^(1/16) 3770005305032322 a001 267914296/119218851371*28143753123^(1/2) 3770005305032322 a001 267914296/1322157322203*28143753123^(3/5) 3770005305032322 a001 10946/599074579*28143753123^(7/10) 3770005305032322 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 267084832/33281921*4106118243^(4/23) 3770005305032322 a001 9238424/599786069*17393796001^(3/7) 3770005305032322 a001 43133785636/299537289*4106118243^(1/23) 3770005305032322 a001 267914296/28143753123*10749957122^(11/24) 3770005305032322 a001 7778742049/599074578*17393796001^(1/7) 3770005305032322 a001 9238424/599786069*45537549124^(7/17) 3770005305032322 a001 9238424/599786069*14662949395604^(1/3) 3770005305032322 a001 7778742049/599074578*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(42) 3770005305032322 a001 9238424/599786069*192900153618^(7/18) 3770005305032322 a001 267914296/73681302247*10749957122^(1/2) 3770005305032322 a001 86267571272/969323029*141422324^(1/13) 3770005305032322 a001 133957148/96450076809*10749957122^(13/24) 3770005305032322 a001 267914296/312119004989*10749957122^(9/16) 3770005305032322 a001 10983760033/199691526*4106118243^(2/23) 3770005305032322 a001 267914296/505019158607*10749957122^(7/12) 3770005305032322 a001 267914296/1322157322203*10749957122^(5/8) 3770005305032322 a001 133957148/1730726404001*10749957122^(2/3) 3770005305032322 a001 267914296/5600748293801*10749957122^(11/16) 3770005305032322 a001 267914296/9062201101803*10749957122^(17/24) 3770005305032322 a001 12586269025/599074578*4106118243^(3/23) 3770005305032322 a001 267914296/23725150497407*10749957122^(3/4) 3770005305032322 a001 9238424/599786069*10749957122^(7/16) 3770005305032322 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 133957148/5374978561*4106118243^(10/23) 3770005305032322 a001 43133785636/299537289*1568397607^(1/22) 3770005305032322 a001 2971215073/599074578*45537549124^(3/17) 3770005305032322 a001 267914296/6643838879*817138163596^(1/3) 3770005305032322 a001 2971215073/599074578*817138163596^(3/19) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(42) 3770005305032322 a001 2971215073/599074578*192900153618^(1/6) 3770005305032322 a001 2971215073/599074578*10749957122^(3/16) 3770005305032322 a001 267914296/28143753123*4106118243^(11/23) 3770005305032322 a001 66978574/11384387281*4106118243^(1/2) 3770005305032322 a001 267914296/73681302247*4106118243^(12/23) 3770005305032322 a001 1836311903/599074578*1568397607^(5/22) 3770005305032322 a001 133957148/96450076809*4106118243^(13/23) 3770005305032322 a001 267914296/505019158607*4106118243^(14/23) 3770005305032322 a001 10983760033/199691526*1568397607^(1/11) 3770005305032322 a001 267914296/1322157322203*4106118243^(15/23) 3770005305032322 a001 133957148/1730726404001*4106118243^(16/23) 3770005305032322 a001 267914296/9062201101803*4106118243^(17/23) 3770005305032322 a001 267914296/23725150497407*4106118243^(18/23) 3770005305032322 a001 12586269025/599074578*1568397607^(3/22) 3770005305032322 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 267084832/33281921*1568397607^(2/11) 3770005305032322 a001 267914296/4106118243*1568397607^(9/22) 3770005305032322 a001 43133785636/299537289*599074578^(1/21) 3770005305032322 a001 66978574/634430159*45537549124^(1/3) 3770005305032322 a001 567451585/299537289*312119004989^(1/5) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(45) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(42) 3770005305032322 a001 133957148/5374978561*1568397607^(5/11) 3770005305032322 a001 53316291173/599074578*599074578^(1/14) 3770005305032322 a001 267914296/28143753123*1568397607^(1/2) 3770005305032322 a001 267914296/73681302247*1568397607^(6/11) 3770005305032322 a001 133957148/96450076809*1568397607^(13/22) 3770005305032322 a001 567451585/299537289*1568397607^(1/4) 3770005305032322 a001 267914296/505019158607*1568397607^(7/11) 3770005305032322 a001 10983760033/199691526*599074578^(2/21) 3770005305032322 a001 267914296/1322157322203*1568397607^(15/22) 3770005305032322 a001 133957148/1730726404001*1568397607^(8/11) 3770005305032322 a001 267914296/5600748293801*1568397607^(3/4) 3770005305032322 a001 267914296/9062201101803*1568397607^(17/22) 3770005305032322 a001 267914296/23725150497407*1568397607^(9/11) 3770005305032322 a001 233802911/199691526*599074578^(2/7) 3770005305032322 a001 12586269025/599074578*599074578^(1/7) 3770005305032322 a001 102334155/5600748293801*228826127^(7/8) 3770005305032322 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 7778742049/599074578*599074578^(1/6) 3770005305032322 a001 267084832/33281921*599074578^(4/21) 3770005305032322 a001 1836311903/599074578*599074578^(5/21) 3770005305032322 a001 2971215073/599074578*599074578^(3/14) 3770005305032322 a001 267914296/1568397607*599074578^(8/21) 3770005305032322 a001 34111385/3020733700601*228826127^(9/10) 3770005305032322 a001 43133785636/299537289*228826127^(1/20) 3770005305032322 a001 267914296/969323029*2537720636^(1/3) 3770005305032322 a001 267914296/969323029*45537549124^(5/17) 3770005305032322 a001 267914296/969323029*312119004989^(3/11) 3770005305032322 a001 267914296/969323029*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(43) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(42) 3770005305032322 a001 267914296/969323029*192900153618^(5/18) 3770005305032322 a001 433494437/599074578*73681302247^(1/4) 3770005305032322 a001 267914296/969323029*28143753123^(3/10) 3770005305032322 a001 267914296/969323029*10749957122^(5/16) 3770005305032322 a001 267914296/4106118243*599074578^(3/7) 3770005305032322 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 133957148/5374978561*599074578^(10/21) 3770005305032322 a001 9238424/599786069*599074578^(1/2) 3770005305032322 a001 267914296/28143753123*599074578^(11/21) 3770005305032322 a001 267914296/73681302247*599074578^(4/7) 3770005305032322 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^75 3770005305032322 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^77 3770005305032322 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^79 3770005305032322 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(66)*Lucas(43)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(68)*Lucas(43)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(70)*Lucas(43)/(1/2+sqrt(5)/2)^99 3770005305032322 a001 2/433494437*(1/2+1/2*5^(1/2))^57 3770005305032322 a004 Fibonacci(71)*Lucas(43)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(69)*Lucas(43)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(67)*Lucas(43)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 133957148/96450076809*599074578^(13/21) 3770005305032322 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^78 3770005305032322 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 267914296/312119004989*599074578^(9/14) 3770005305032322 a001 102334155/23725150497407*228826127^(19/20) 3770005305032322 a001 267914296/505019158607*599074578^(2/3) 3770005305032322 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 10983760033/199691526*228826127^(1/10) 3770005305032322 a001 701408733/1568397607*17393796001^(2/7) 3770005305032322 a001 701408733/1568397607*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(44) 3770005305032322 a001 701408733/1568397607*505019158607^(1/4) 3770005305032322 a001 701408733/1568397607*10749957122^(7/24) 3770005305032322 a001 267914296/1322157322203*599074578^(5/7) 3770005305032322 a001 701408733/1568397607*4106118243^(7/23) 3770005305032322 a001 267914296/969323029*599074578^(5/14) 3770005305032322 a001 701408733/1568397607*1568397607^(7/22) 3770005305032322 a001 133957148/1730726404001*599074578^(16/21) 3770005305032322 a001 267914296/5600748293801*599074578^(11/14) 3770005305032322 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 267914296/9062201101803*599074578^(17/21) 3770005305032322 a001 701408733/14662949395604*2537720636^(11/15) 3770005305032322 a001 701408733/3461452808002*2537720636^(2/3) 3770005305032322 a001 1836311903/1568397607*2537720636^(4/15) 3770005305032322 a001 701408733/817138163596*2537720636^(3/5) 3770005305032322 a001 3524667/1568437211*2537720636^(5/9) 3770005305032322 a001 233802911/64300051206*2537720636^(8/15) 3770005305032322 a001 701408733/45537549124*2537720636^(7/15) 3770005305032322 a001 701408733/10749957122*2537720636^(2/5) 3770005305032322 a001 233802911/9381251041*2537720636^(4/9) 3770005305032322 a001 1836311903/1568397607*45537549124^(4/17) 3770005305032322 a001 1836311903/1568397607*817138163596^(4/19) 3770005305032322 a001 1836311903/1568397607*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(44) 3770005305032322 a001 1836311903/1568397607*192900153618^(2/9) 3770005305032322 a001 1836311903/1568397607*73681302247^(3/13) 3770005305032322 a001 233802911/1368706081*73681302247^(4/13) 3770005305032322 a001 10946/599074579*599074578^(5/6) 3770005305032322 a001 1836311903/1568397607*10749957122^(1/4) 3770005305032322 a001 233802911/1368706081*10749957122^(1/3) 3770005305032322 a001 1836311903/1568397607*4106118243^(6/23) 3770005305032322 a001 686789568/224056801*2537720636^(2/9) 3770005305032322 a001 233802911/1368706081*4106118243^(8/23) 3770005305032322 a001 7778742049/1568397607*2537720636^(1/5) 3770005305032322 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 32951280099/1568397607*2537720636^(2/15) 3770005305032322 a001 53316291173/1568397607*2537720636^(1/9) 3770005305032322 a001 139583862445/1568397607*2537720636^(1/15) 3770005305032322 a001 701408733/10749957122*45537549124^(6/17) 3770005305032322 a001 686789568/224056801*312119004989^(2/11) 3770005305032322 a001 701408733/10749957122*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(44) 3770005305032322 a001 701408733/10749957122*192900153618^(1/3) 3770005305032322 a001 686789568/224056801*28143753123^(1/5) 3770005305032322 a001 686789568/224056801*10749957122^(5/24) 3770005305032322 a001 701408733/10749957122*10749957122^(3/8) 3770005305032322 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 233802911/440719107401*17393796001^(4/7) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(44) 3770005305032322 a001 12586269025/1568397607*23725150497407^(1/8) 3770005305032322 a001 12586269025/1568397607*505019158607^(1/7) 3770005305032322 a001 233802911/9381251041*505019158607^(5/14) 3770005305032322 a001 12586269025/1568397607*73681302247^(2/13) 3770005305032322 a001 233802911/9381251041*73681302247^(5/13) 3770005305032322 a001 701408733/45537549124*17393796001^(3/7) 3770005305032322 a001 233802911/9381251041*28143753123^(2/5) 3770005305032322 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 701408733/23725150497407*45537549124^(2/3) 3770005305032322 a001 701408733/14662949395604*45537549124^(11/17) 3770005305032322 a001 701408733/3461452808002*45537549124^(10/17) 3770005305032322 a001 233802911/64300051206*45537549124^(8/17) 3770005305032322 a001 701408733/817138163596*45537549124^(9/17) 3770005305032322 a001 32951280099/1568397607*45537549124^(2/17) 3770005305032322 a001 701408733/73681302247*312119004989^(2/5) 3770005305032322 a001 32951280099/1568397607*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(44) 3770005305032322 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 233802911/64300051206*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(44) 3770005305032322 a001 86267571272/1568397607*23725150497407^(1/16) 3770005305032322 a001 139583862445/1568397607*45537549124^(1/17) 3770005305032322 a001 233802911/64300051206*192900153618^(4/9) 3770005305032322 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 701408733/14662949395604*312119004989^(3/5) 3770005305032322 a001 701408733/3461452808002*312119004989^(6/11) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(44) 3770005305032322 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(58) 3770005305032322 a006 5^(1/2)*Fibonacci(58)/Lucas(44)/sqrt(5) 3770005305032322 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 701408733/3461452808002*14662949395604^(10/21) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(44)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^4 3770005305032322 a001 233802911/3020733700601*23725150497407^(1/2) 3770005305032322 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(44)*Lucas(65)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(44)*Lucas(67)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(44)*Lucas(69)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(88) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(90) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(92) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(94) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^66/Lucas(96) 3770005305032322 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^68/Lucas(98) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^69/Lucas(99) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^70/Lucas(100) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^67/Lucas(97) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^65/Lucas(95) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(93) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(91) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(89) 3770005305032322 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(44)*Lucas(70)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(44)*Lucas(68)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(44)*Lucas(66)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(59) 3770005305032322 a004 Fibonacci(59)/Lucas(44)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(44) 3770005305032322 a001 233802911/3020733700601*505019158607^(4/7) 3770005305032322 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 139583862445/1568397607*14662949395604^(1/21) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(44) 3770005305032322 a001 139583862445/1568397607*192900153618^(1/18) 3770005305032322 a001 701408733/3461452808002*192900153618^(5/9) 3770005305032322 a001 701408733/14662949395604*192900153618^(11/18) 3770005305032322 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 233802911/64300051206*73681302247^(6/13) 3770005305032322 a001 53316291173/1568397607*312119004989^(1/11) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(44) 3770005305032322 a001 701408733/505019158607*73681302247^(1/2) 3770005305032322 a001 233802911/440719107401*73681302247^(7/13) 3770005305032322 a001 233802911/3020733700601*73681302247^(8/13) 3770005305032322 a001 12586269025/1568397607*10749957122^(1/6) 3770005305032322 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 53316291173/1568397607*28143753123^(1/10) 3770005305032322 a001 701408733/45537549124*45537549124^(7/17) 3770005305032322 a001 32264490531/224056801*10749957122^(1/24) 3770005305032322 a001 701408733/45537549124*14662949395604^(1/3) 3770005305032322 a001 20365011074/1568397607*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(44) 3770005305032322 a001 701408733/45537549124*192900153618^(7/18) 3770005305032322 a001 139583862445/1568397607*10749957122^(1/16) 3770005305032322 a001 3524667/1568437211*28143753123^(1/2) 3770005305032322 a001 86267571272/1568397607*10749957122^(1/12) 3770005305032322 a001 701408733/3461452808002*28143753123^(3/5) 3770005305032322 a001 32951280099/1568397607*10749957122^(1/8) 3770005305032322 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 233802911/9381251041*10749957122^(5/12) 3770005305032322 a001 32264490531/224056801*4106118243^(1/23) 3770005305032322 a001 7778742049/1568397607*45537549124^(3/17) 3770005305032322 a001 701408733/17393796001*817138163596^(1/3) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(44) 3770005305032322 a001 7778742049/1568397607*192900153618^(1/6) 3770005305032322 a001 701408733/73681302247*10749957122^(11/24) 3770005305032322 a001 686789568/224056801*4106118243^(5/23) 3770005305032322 a001 701408733/45537549124*10749957122^(7/16) 3770005305032322 a001 233802911/64300051206*10749957122^(1/2) 3770005305032322 a001 701408733/505019158607*10749957122^(13/24) 3770005305032322 a001 701408733/817138163596*10749957122^(9/16) 3770005305032322 a001 7778742049/1568397607*10749957122^(3/16) 3770005305032322 a001 233802911/440719107401*10749957122^(7/12) 3770005305032322 a001 86267571272/1568397607*4106118243^(2/23) 3770005305032322 a001 701408733/3461452808002*10749957122^(5/8) 3770005305032322 a001 233802911/3020733700601*10749957122^(2/3) 3770005305032322 a001 701408733/14662949395604*10749957122^(11/16) 3770005305032322 a001 701408733/23725150497407*10749957122^(17/24) 3770005305032322 a001 32951280099/1568397607*4106118243^(3/23) 3770005305032322 a001 10182505537/299537289*228826127^(1/8) 3770005305032322 a001 267914296/23725150497407*599074578^(6/7) 3770005305032322 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 12586269025/1568397607*4106118243^(4/23) 3770005305032322 a001 7778742049/370248451*141422324^(2/13) 3770005305032322 a001 701408733/10749957122*4106118243^(9/23) 3770005305032322 a001 32264490531/224056801*1568397607^(1/22) 3770005305032322 a001 701408733/6643838879*45537549124^(1/3) 3770005305032322 a001 2971215073/1568397607*312119004989^(1/5) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(44) 3770005305032322 a001 233802911/9381251041*4106118243^(10/23) 3770005305032322 a001 701408733/73681302247*4106118243^(11/23) 3770005305032322 a001 701408733/119218851371*4106118243^(1/2) 3770005305032322 a001 233802911/64300051206*4106118243^(12/23) 3770005305032322 a001 701408733/505019158607*4106118243^(13/23) 3770005305032322 a001 233802911/440719107401*4106118243^(14/23) 3770005305032322 a001 86267571272/1568397607*1568397607^(1/11) 3770005305032322 a001 701408733/3461452808002*4106118243^(15/23) 3770005305032322 a001 233802911/3020733700601*4106118243^(16/23) 3770005305032322 a001 701408733/23725150497407*4106118243^(17/23) 3770005305032322 a001 1836311903/1568397607*1568397607^(3/11) 3770005305032322 a001 32951280099/1568397607*1568397607^(3/22) 3770005305032322 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 12586269025/1568397607*1568397607^(2/11) 3770005305032322 a001 686789568/224056801*1568397607^(5/22) 3770005305032322 a001 233802911/1368706081*1568397607^(4/11) 3770005305032322 a001 701408733/2537720636*2537720636^(1/3) 3770005305032322 a001 2971215073/1568397607*1568397607^(1/4) 3770005305032322 a001 32264490531/224056801*599074578^(1/21) 3770005305032322 a001 701408733/2537720636*45537549124^(5/17) 3770005305032322 a001 701408733/2537720636*312119004989^(3/11) 3770005305032322 a001 701408733/2537720636*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(45) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(44) 3770005305032322 a001 701408733/2537720636*192900153618^(5/18) 3770005305032322 a001 1134903170/1568397607*73681302247^(1/4) 3770005305032322 a001 701408733/2537720636*28143753123^(3/10) 3770005305032322 a001 701408733/10749957122*1568397607^(9/22) 3770005305032322 a001 701408733/2537720636*10749957122^(5/16) 3770005305032322 a001 233802911/9381251041*1568397607^(5/11) 3770005305032322 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 139583862445/1568397607*599074578^(1/14) 3770005305032322 a001 701408733/73681302247*1568397607^(1/2) 3770005305032322 a001 233802911/64300051206*1568397607^(6/11) 3770005305032322 a001 701408733/505019158607*1568397607^(13/22) 3770005305032322 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 1836311903/9062201101803*2537720636^(2/3) 3770005305032322 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(64)*Lucas(45)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(66)*Lucas(45)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(68)*Lucas(45)/(1/2+sqrt(5)/2)^99 3770005305032322 a001 1/567451585*(1/2+1/2*5^(1/2))^59 3770005305032322 a004 Fibonacci(69)*Lucas(45)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(67)*Lucas(45)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(65)*Lucas(45)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 1836311903/2139295485799*2537720636^(3/5) 3770005305032322 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 233802911/440719107401*1568397607^(7/11) 3770005305032322 a001 1836311903/817138163596*2537720636^(5/9) 3770005305032322 a001 1836311903/505019158607*2537720636^(8/15) 3770005305032322 a001 86267571272/1568397607*599074578^(2/21) 3770005305032322 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 1836311903/119218851371*2537720636^(7/15) 3770005305032322 a001 701408733/3461452808002*1568397607^(15/22) 3770005305032322 a001 1836311903/73681302247*2537720636^(4/9) 3770005305032322 a001 1836311903/28143753123*2537720636^(2/5) 3770005305032322 a001 1836311903/4106118243*17393796001^(2/7) 3770005305032322 a001 1836311903/4106118243*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(46) 3770005305032322 a001 1836311903/4106118243*505019158607^(1/4) 3770005305032322 a001 1836311903/4106118243*10749957122^(7/24) 3770005305032322 a001 4807526976/23725150497407*2537720636^(2/3) 3770005305032322 a001 233802911/3020733700601*1568397607^(8/11) 3770005305032322 a001 1602508992/1368706081*2537720636^(4/15) 3770005305032322 a001 4807526976/5600748293801*2537720636^(3/5) 3770005305032322 a001 701408733/14662949395604*1568397607^(3/4) 3770005305032322 a001 1836311903/4106118243*4106118243^(7/23) 3770005305032322 a001 12586269025/4106118243*2537720636^(2/9) 3770005305032322 a001 4807526976/2139295485799*2537720636^(5/9) 3770005305032322 a001 12586269025/14662949395604*2537720636^(3/5) 3770005305032322 a001 20365011074/23725150497407*2537720636^(3/5) 3770005305032322 a001 701408733/23725150497407*1568397607^(17/22) 3770005305032322 a001 1602508992/440719107401*2537720636^(8/15) 3770005305032322 a001 20365011074/4106118243*2537720636^(1/5) 3770005305032322 a001 7778742049/9062201101803*2537720636^(3/5) 3770005305032322 a001 1836311903/6643838879*2537720636^(1/3) 3770005305032322 a001 12586269025/5600748293801*2537720636^(5/9) 3770005305032322 a001 32951280099/14662949395604*2537720636^(5/9) 3770005305032322 a001 53316291173/23725150497407*2537720636^(5/9) 3770005305032322 a001 20365011074/9062201101803*2537720636^(5/9) 3770005305032322 a001 12586269025/3461452808002*2537720636^(8/15) 3770005305032322 a001 10983760033/3020733700601*2537720636^(8/15) 3770005305032322 a001 7778742049/3461452808002*2537720636^(5/9) 3770005305032322 a001 86267571272/23725150497407*2537720636^(8/15) 3770005305032322 a001 53316291173/14662949395604*2537720636^(8/15) 3770005305032322 a001 20365011074/5600748293801*2537720636^(8/15) 3770005305032322 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 4807526976/312119004989*2537720636^(7/15) 3770005305032322 a001 2971215073/14662949395604*2537720636^(2/3) 3770005305032322 a001 86267571272/4106118243*2537720636^(2/15) 3770005305032322 a001 7778742049/2139295485799*2537720636^(8/15) 3770005305032322 a001 267084832/10716675201*2537720636^(4/9) 3770005305032322 a001 139583862445/4106118243*2537720636^(1/9) 3770005305032322 a001 12586269025/817138163596*2537720636^(7/15) 3770005305032322 a001 32951280099/2139295485799*2537720636^(7/15) 3770005305032322 a001 86267571272/5600748293801*2537720636^(7/15) 3770005305032322 a001 7787980473/505618944676*2537720636^(7/15) 3770005305032322 a001 365435296162/23725150497407*2537720636^(7/15) 3770005305032322 a001 139583862445/9062201101803*2537720636^(7/15) 3770005305032322 a001 53316291173/3461452808002*2537720636^(7/15) 3770005305032322 a001 20365011074/1322157322203*2537720636^(7/15) 3770005305032322 a001 686789568/10525900321*2537720636^(2/5) 3770005305032322 a001 2971215073/3461452808002*2537720636^(3/5) 3770005305032322 a001 12586269025/505019158607*2537720636^(4/9) 3770005305032322 a001 365435296162/4106118243*2537720636^(1/15) 3770005305032322 a001 10983760033/440719107401*2537720636^(4/9) 3770005305032322 a001 7778742049/505019158607*2537720636^(7/15) 3770005305032322 a001 43133785636/1730726404001*2537720636^(4/9) 3770005305032322 a001 75283811239/3020733700601*2537720636^(4/9) 3770005305032322 a001 182717648081/7331474697802*2537720636^(4/9) 3770005305032322 a001 139583862445/5600748293801*2537720636^(4/9) 3770005305032322 a001 53316291173/2139295485799*2537720636^(4/9) 3770005305032322 a001 10182505537/408569081798*2537720636^(4/9) 3770005305032322 a001 1602508992/1368706081*45537549124^(4/17) 3770005305032322 a001 1602508992/1368706081*817138163596^(4/19) 3770005305032322 a001 1602508992/1368706081*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(46) 3770005305032322 a001 1836311903/10749957122*23725150497407^(1/4) 3770005305032322 a001 1602508992/1368706081*192900153618^(2/9) 3770005305032322 a001 1602508992/1368706081*73681302247^(3/13) 3770005305032322 a001 1836311903/10749957122*73681302247^(4/13) 3770005305032322 a001 1602508992/1368706081*10749957122^(1/4) 3770005305032322 a001 7778742049/312119004989*2537720636^(4/9) 3770005305032322 a001 1836311903/10749957122*10749957122^(1/3) 3770005305032322 a001 2971215073/1322157322203*2537720636^(5/9) 3770005305032322 a001 12586269025/192900153618*2537720636^(2/5) 3770005305032322 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 32951280099/505019158607*2537720636^(2/5) 3770005305032322 a001 86267571272/1322157322203*2537720636^(2/5) 3770005305032322 a001 32264490531/494493258286*2537720636^(2/5) 3770005305032322 a001 1548008755920/23725150497407*2537720636^(2/5) 3770005305032322 a001 365435296162/5600748293801*2537720636^(2/5) 3770005305032322 a001 139583862445/2139295485799*2537720636^(2/5) 3770005305032322 a001 53316291173/817138163596*2537720636^(2/5) 3770005305032322 a001 20365011074/312119004989*2537720636^(2/5) 3770005305032322 a001 1836311903/3461452808002*17393796001^(4/7) 3770005305032322 a001 1836311903/28143753123*45537549124^(6/17) 3770005305032322 a001 1836311903/119218851371*17393796001^(3/7) 3770005305032322 a001 12586269025/4106118243*312119004989^(2/11) 3770005305032322 a001 1836311903/28143753123*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(46) 3770005305032322 a001 1836311903/28143753123*192900153618^(1/3) 3770005305032322 a001 12586269025/4106118243*28143753123^(1/5) 3770005305032322 a001 2971215073/817138163596*2537720636^(8/15) 3770005305032322 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 53316291173/4106118243*17393796001^(1/7) 3770005305032322 a001 1836311903/9062201101803*45537549124^(10/17) 3770005305032322 a001 1836311903/2139295485799*45537549124^(9/17) 3770005305032322 a001 1836311903/505019158607*45537549124^(8/17) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(46) 3770005305032322 a001 10983760033/1368706081*23725150497407^(1/8) 3770005305032322 a001 1836311903/73681302247*23725150497407^(5/16) 3770005305032322 a001 1836311903/73681302247*505019158607^(5/14) 3770005305032322 a001 10983760033/1368706081*73681302247^(2/13) 3770005305032322 a001 1836311903/119218851371*45537549124^(7/17) 3770005305032322 a001 1836311903/73681302247*73681302247^(5/13) 3770005305032322 a001 86267571272/4106118243*45537549124^(2/17) 3770005305032322 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 1836311903/192900153618*312119004989^(2/5) 3770005305032322 a001 86267571272/4106118243*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(46) 3770005305032322 a001 365435296162/4106118243*45537549124^(1/17) 3770005305032322 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 1836311903/9062201101803*312119004989^(6/11) 3770005305032322 a001 1836311903/505019158607*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(46) 3770005305032322 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(46) 3770005305032322 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(60) 3770005305032322 a006 5^(1/2)*Fibonacci(60)/Lucas(46)/sqrt(5) 3770005305032322 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(46)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(46)*Lucas(63)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(46)*Lucas(65)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(46)*Lucas(67)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(92) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(94) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^64/Lucas(96) 3770005305032322 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^66/Lucas(98) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^68/Lucas(100) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^65/Lucas(97) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^67/Lucas(99) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^63/Lucas(95) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(93) 3770005305032322 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(46)*Lucas(68)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(46)*Lucas(66)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(46)*Lucas(64)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2)^3 3770005305032322 a001 1836311903/14662949395604*9062201101803^(1/2) 3770005305032322 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(46)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 1836311903/2139295485799*14662949395604^(3/7) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(46) 3770005305032322 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(46) 3770005305032322 a001 1836311903/23725150497407*505019158607^(4/7) 3770005305032322 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 139583862445/4106118243*312119004989^(1/11) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(46) 3770005305032322 a001 1836311903/2139295485799*192900153618^(1/2) 3770005305032322 a001 1836311903/9062201101803*192900153618^(5/9) 3770005305032322 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 1836311903/119218851371*14662949395604^(1/3) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(46) 3770005305032322 a001 1836311903/119218851371*192900153618^(7/18) 3770005305032322 a001 1836311903/505019158607*73681302247^(6/13) 3770005305032322 a001 1836311903/1322157322203*73681302247^(1/2) 3770005305032322 a001 1836311903/3461452808002*73681302247^(7/13) 3770005305032322 a001 1836311903/23725150497407*73681302247^(8/13) 3770005305032322 a001 139583862445/4106118243*28143753123^(1/10) 3770005305032322 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 1836311903/73681302247*28143753123^(2/5) 3770005305032322 a001 591286729879/4106118243*10749957122^(1/24) 3770005305032322 a001 20365011074/4106118243*45537549124^(3/17) 3770005305032322 a001 1836311903/45537549124*817138163596^(1/3) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(46) 3770005305032322 a001 20365011074/4106118243*192900153618^(1/6) 3770005305032322 a001 12586269025/4106118243*10749957122^(5/24) 3770005305032322 a001 7778742049/119218851371*2537720636^(2/5) 3770005305032322 a001 1836311903/817138163596*28143753123^(1/2) 3770005305032322 a001 75283811239/1368706081*10749957122^(1/12) 3770005305032322 a001 1836311903/9062201101803*28143753123^(3/5) 3770005305032322 a001 86267571272/4106118243*10749957122^(1/8) 3770005305032322 a001 10983760033/1368706081*10749957122^(1/6) 3770005305032322 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 1836311903/28143753123*10749957122^(3/8) 3770005305032322 a001 20365011074/4106118243*10749957122^(3/16) 3770005305032322 a001 4807526976/17393796001*2537720636^(1/3) 3770005305032322 a001 591286729879/4106118243*4106118243^(1/23) 3770005305032322 a001 1836311903/17393796001*45537549124^(1/3) 3770005305032322 a001 7778742049/4106118243*312119004989^(1/5) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(46) 3770005305032322 a001 1836311903/73681302247*10749957122^(5/12) 3770005305032322 a001 1836311903/119218851371*10749957122^(7/16) 3770005305032322 a001 1836311903/192900153618*10749957122^(11/24) 3770005305032322 a001 1836311903/505019158607*10749957122^(1/2) 3770005305032322 a001 1836311903/1322157322203*10749957122^(13/24) 3770005305032322 a001 1836311903/2139295485799*10749957122^(9/16) 3770005305032322 a001 1836311903/3461452808002*10749957122^(7/12) 3770005305032322 a001 75283811239/1368706081*4106118243^(2/23) 3770005305032322 a001 1836311903/9062201101803*10749957122^(5/8) 3770005305032322 a001 1836311903/23725150497407*10749957122^(2/3) 3770005305032322 a001 12586269025/45537549124*2537720636^(1/3) 3770005305032322 a001 1602508992/1368706081*4106118243^(6/23) 3770005305032322 a001 32951280099/119218851371*2537720636^(1/3) 3770005305032322 a001 86267571272/312119004989*2537720636^(1/3) 3770005305032322 a001 225851433717/817138163596*2537720636^(1/3) 3770005305032322 a001 1548008755920/5600748293801*2537720636^(1/3) 3770005305032322 a001 139583862445/505019158607*2537720636^(1/3) 3770005305032322 a001 53316291173/192900153618*2537720636^(1/3) 3770005305032322 a001 86267571272/4106118243*4106118243^(3/23) 3770005305032322 a001 20365011074/73681302247*2537720636^(1/3) 3770005305032322 a001 12586269025/10749957122*2537720636^(4/15) 3770005305032322 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 2971215073/192900153618*2537720636^(7/15) 3770005305032322 a001 7778742049/28143753123*2537720636^(1/3) 3770005305032322 a001 10983760033/1368706081*4106118243^(4/23) 3770005305032322 a001 12586269025/4106118243*4106118243^(5/23) 3770005305032322 a001 1836311903/10749957122*4106118243^(8/23) 3770005305032322 a001 2971215073/119218851371*2537720636^(4/9) 3770005305032322 a001 32951280099/10749957122*2537720636^(2/9) 3770005305032322 a001 10983760033/9381251041*2537720636^(4/15) 3770005305032322 a001 86267571272/73681302247*2537720636^(4/15) 3770005305032322 a001 75283811239/64300051206*2537720636^(4/15) 3770005305032322 a001 2504730781961/2139295485799*2537720636^(4/15) 3770005305032322 a001 365435296162/312119004989*2537720636^(4/15) 3770005305032322 a001 139583862445/119218851371*2537720636^(4/15) 3770005305032322 a001 53316291173/45537549124*2537720636^(4/15) 3770005305032322 a001 591286729879/4106118243*1568397607^(1/22) 3770005305032322 a001 53316291173/10749957122*2537720636^(1/5) 3770005305032322 a001 2971215073/45537549124*2537720636^(2/5) 3770005305032322 a001 2971215073/10749957122*2537720636^(1/3) 3770005305032322 a001 20365011074/17393796001*2537720636^(4/15) 3770005305032322 a001 1836311903/28143753123*4106118243^(9/23) 3770005305032322 a001 1836311903/6643838879*45537549124^(5/17) 3770005305032322 a001 1836311903/6643838879*312119004989^(3/11) 3770005305032322 a001 1836311903/6643838879*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(46) 3770005305032322 a001 1836311903/6643838879*192900153618^(5/18) 3770005305032322 a001 2971215073/4106118243*73681302247^(1/4) 3770005305032322 a001 1836311903/6643838879*28143753123^(3/10) 3770005305032322 a001 86267571272/28143753123*2537720636^(2/9) 3770005305032322 a001 32264490531/10525900321*2537720636^(2/9) 3770005305032322 a001 591286729879/192900153618*2537720636^(2/9) 3770005305032322 a001 1548008755920/505019158607*2537720636^(2/9) 3770005305032322 a001 1515744265389/494493258286*2537720636^(2/9) 3770005305032322 a001 2504730781961/817138163596*2537720636^(2/9) 3770005305032322 a001 956722026041/312119004989*2537720636^(2/9) 3770005305032322 a001 365435296162/119218851371*2537720636^(2/9) 3770005305032322 a001 139583862445/45537549124*2537720636^(2/9) 3770005305032322 a001 1836311903/6643838879*10749957122^(5/16) 3770005305032322 a001 1836311903/73681302247*4106118243^(10/23) 3770005305032322 a001 139583862445/28143753123*2537720636^(1/5) 3770005305032322 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 365435296162/73681302247*2537720636^(1/5) 3770005305032322 a001 53316291173/17393796001*2537720636^(2/9) 3770005305032322 a001 956722026041/192900153618*2537720636^(1/5) 3770005305032322 a001 2504730781961/505019158607*2537720636^(1/5) 3770005305032322 a001 10610209857723/2139295485799*2537720636^(1/5) 3770005305032322 a001 4052739537881/817138163596*2537720636^(1/5) 3770005305032322 a001 140728068720/28374454999*2537720636^(1/5) 3770005305032322 a001 591286729879/119218851371*2537720636^(1/5) 3770005305032322 a001 1836311903/192900153618*4106118243^(11/23) 3770005305032322 a001 225851433717/45537549124*2537720636^(1/5) 3770005305032322 a001 1836311903/312119004989*4106118243^(1/2) 3770005305032322 a001 225851433717/10749957122*2537720636^(2/15) 3770005305032322 a001 1836311903/505019158607*4106118243^(12/23) 3770005305032322 a001 86267571272/17393796001*2537720636^(1/5) 3770005305032322 a001 182717648081/5374978561*2537720636^(1/9) 3770005305032322 a001 1836311903/1322157322203*4106118243^(13/23) 3770005305032322 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 1836311903/3461452808002*4106118243^(14/23) 3770005305032322 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(62)*Lucas(47)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(64)*Lucas(47)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(66)*Lucas(47)/(1/2+sqrt(5)/2)^99 3770005305032322 a001 2/2971215073*(1/2+1/2*5^(1/2))^61 3770005305032322 a004 Fibonacci(67)*Lucas(47)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(65)*Lucas(47)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(63)*Lucas(47)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 75283811239/1368706081*1568397607^(1/11) 3770005305032322 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 591286729879/28143753123*2537720636^(2/15) 3770005305032322 a001 1548008755920/73681302247*2537720636^(2/15) 3770005305032322 a001 4052739537881/192900153618*2537720636^(2/15) 3770005305032322 a001 225749145909/10745088481*2537720636^(2/15) 3770005305032322 a001 6557470319842/312119004989*2537720636^(2/15) 3770005305032322 a001 1836311903/9062201101803*4106118243^(15/23) 3770005305032322 a001 956722026041/45537549124*2537720636^(2/15) 3770005305032322 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 956722026041/10749957122*2537720636^(1/15) 3770005305032322 a001 956722026041/28143753123*2537720636^(1/9) 3770005305032322 a001 2403763488/5374978561*17393796001^(2/7) 3770005305032322 a001 1836311903/23725150497407*4106118243^(16/23) 3770005305032322 a001 2504730781961/73681302247*2537720636^(1/9) 3770005305032322 a001 365435296162/17393796001*2537720636^(2/15) 3770005305032322 a001 2403763488/5374978561*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(48) 3770005305032322 a001 3278735159921/96450076809*2537720636^(1/9) 3770005305032322 a001 10610209857723/312119004989*2537720636^(1/9) 3770005305032322 a001 4052739537881/119218851371*2537720636^(1/9) 3770005305032322 a001 387002188980/11384387281*2537720636^(1/9) 3770005305032322 a001 7778742049/6643838879*2537720636^(4/15) 3770005305032322 a001 2403763488/5374978561*10749957122^(7/24) 3770005305032322 a001 591286729879/17393796001*2537720636^(1/9) 3770005305032322 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 2504730781961/28143753123*2537720636^(1/15) 3770005305032322 a001 20365011074/6643838879*2537720636^(2/9) 3770005305032322 a001 1602508992/3020733700601*17393796001^(4/7) 3770005305032322 a001 6557470319842/73681302247*2537720636^(1/15) 3770005305032322 a001 10610209857723/119218851371*2537720636^(1/15) 3770005305032322 a001 4807526976/312119004989*17393796001^(3/7) 3770005305032322 a001 12586269025/10749957122*45537549124^(4/17) 3770005305032322 a001 12586269025/10749957122*817138163596^(4/19) 3770005305032322 a001 12586269025/10749957122*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(48) 3770005305032322 a001 12586269025/10749957122*192900153618^(2/9) 3770005305032322 a001 12586269025/10749957122*73681302247^(3/13) 3770005305032322 a001 4052739537881/45537549124*2537720636^(1/15) 3770005305032322 a001 1602508992/9381251041*73681302247^(4/13) 3770005305032322 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 139583862445/10749957122*17393796001^(1/7) 3770005305032322 a001 686789568/10525900321*45537549124^(6/17) 3770005305032322 a001 4807526976/23725150497407*45537549124^(10/17) 3770005305032322 a001 4807526976/5600748293801*45537549124^(9/17) 3770005305032322 a001 1602508992/440719107401*45537549124^(8/17) 3770005305032322 a001 4807526976/312119004989*45537549124^(7/17) 3770005305032322 a001 32951280099/10749957122*312119004989^(2/11) 3770005305032322 a001 686789568/10525900321*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(48) 3770005305032322 a001 686789568/10525900321*192900153618^(1/3) 3770005305032322 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 225851433717/10749957122*45537549124^(2/17) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(48) 3770005305032322 a001 43133785636/5374978561*23725150497407^(1/8) 3770005305032322 a001 267084832/10716675201*23725150497407^(5/16) 3770005305032322 a001 267084832/10716675201*505019158607^(5/14) 3770005305032322 a001 53316291173/10749957122*45537549124^(3/17) 3770005305032322 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 102287808/10745088481*312119004989^(2/5) 3770005305032322 a001 225851433717/10749957122*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(48) 3770005305032322 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 1602508992/440719107401*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(48) 3770005305032322 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(48) 3770005305032322 a004 Fibonacci(48)*Lucas(61)/(1/2+sqrt(5)/2)^95 3770005305032322 a001 1602508992/3020733700601*14662949395604^(4/9) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(62) 3770005305032322 a006 5^(1/2)*Fibonacci(62)/Lucas(48)/sqrt(5) 3770005305032322 a004 Fibonacci(48)*Lucas(63)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(48)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(48)*Lucas(65)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^62/Lucas(96) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^64/Lucas(98) 3770005305032322 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^65/Lucas(99) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^66/Lucas(100) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^63/Lucas(97) 3770005305032322 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^61/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(48)*Lucas(66)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(48)*Lucas(64)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(48)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(48)*Lucas(62)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(48) 3770005305032322 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(48) 3770005305032322 a001 1201881744/3665737348901*1322157322203^(1/2) 3770005305032322 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(48) 3770005305032322 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^90 3770005305032322 a001 4807526976/312119004989*14662949395604^(1/3) 3770005305032322 a001 139583862445/10749957122*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(48) 3770005305032322 a001 1602508992/440719107401*192900153618^(4/9) 3770005305032322 a001 4807526976/5600748293801*192900153618^(1/2) 3770005305032322 a001 4807526976/312119004989*192900153618^(7/18) 3770005305032322 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 267084832/10716675201*73681302247^(5/13) 3770005305032322 a001 32951280099/6643838879*2537720636^(1/5) 3770005305032322 a001 32951280099/10749957122*28143753123^(1/5) 3770005305032322 a001 4807526976/119218851371*817138163596^(1/3) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(48) 3770005305032322 a001 53316291173/10749957122*192900153618^(1/6) 3770005305032322 a001 1602508992/440719107401*73681302247^(6/13) 3770005305032322 a001 14930208/10749853441*73681302247^(1/2) 3770005305032322 a001 1602508992/3020733700601*73681302247^(7/13) 3770005305032322 a001 182717648081/5374978561*28143753123^(1/10) 3770005305032322 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 1201881744/11384387281*45537549124^(1/3) 3770005305032322 a001 774004377960/5374978561*10749957122^(1/24) 3770005305032322 a001 10182505537/5374978561*312119004989^(1/5) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(48) 3770005305032322 a001 956722026041/10749957122*10749957122^(1/16) 3770005305032322 a001 4807526976/2139295485799*28143753123^(1/2) 3770005305032322 a001 591286729879/10749957122*10749957122^(1/12) 3770005305032322 a001 4807526976/23725150497407*28143753123^(3/5) 3770005305032322 a001 12586269025/10749957122*10749957122^(1/4) 3770005305032322 a001 225851433717/10749957122*10749957122^(1/8) 3770005305032322 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 43133785636/5374978561*10749957122^(1/6) 3770005305032322 a001 1548008755920/17393796001*2537720636^(1/15) 3770005305032322 a001 1602508992/9381251041*10749957122^(1/3) 3770005305032322 a001 53316291173/10749957122*10749957122^(3/16) 3770005305032322 a001 774004377960/5374978561*4106118243^(1/23) 3770005305032322 a001 686789568/10525900321*10749957122^(3/8) 3770005305032322 a001 4807526976/17393796001*45537549124^(5/17) 3770005305032322 a001 4807526976/17393796001*312119004989^(3/11) 3770005305032322 a001 4807526976/17393796001*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(48) 3770005305032322 a001 4807526976/17393796001*192900153618^(5/18) 3770005305032322 a001 7778742049/10749957122*73681302247^(1/4) 3770005305032322 a001 267084832/10716675201*10749957122^(5/12) 3770005305032322 a001 4807526976/17393796001*28143753123^(3/10) 3770005305032322 a001 4807526976/312119004989*10749957122^(7/16) 3770005305032322 a001 102287808/10745088481*10749957122^(11/24) 3770005305032322 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 1602508992/440719107401*10749957122^(1/2) 3770005305032322 a001 14930208/10749853441*10749957122^(13/24) 3770005305032322 a001 86267571272/4106118243*1568397607^(3/22) 3770005305032322 a001 4807526976/5600748293801*10749957122^(9/16) 3770005305032322 a001 1602508992/3020733700601*10749957122^(7/12) 3770005305032322 a001 591286729879/10749957122*4106118243^(2/23) 3770005305032322 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 12586269025/28143753123*17393796001^(2/7) 3770005305032322 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(60)*Lucas(49)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(62)*Lucas(49)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(64)*Lucas(49)/(1/2+sqrt(5)/2)^99 3770005305032322 a001 2/7778742049*(1/2+1/2*5^(1/2))^63 3770005305032322 a004 Fibonacci(65)*Lucas(49)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(63)*Lucas(49)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(61)*Lucas(49)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^90 3770005305032322 a001 4807526976/23725150497407*10749957122^(5/8) 3770005305032322 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 12586269025/23725150497407*17393796001^(4/7) 3770005305032322 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 12586269025/817138163596*17393796001^(3/7) 3770005305032322 a001 4807526976/17393796001*10749957122^(5/16) 3770005305032322 a001 12586269025/28143753123*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(50) 3770005305032322 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 365435296162/28143753123*17393796001^(1/7) 3770005305032322 a001 32951280099/2139295485799*17393796001^(3/7) 3770005305032322 a001 10983760033/9381251041*45537549124^(4/17) 3770005305032322 a001 12586269025/14662949395604*45537549124^(9/17) 3770005305032322 a001 12586269025/3461452808002*45537549124^(8/17) 3770005305032322 a001 12586269025/192900153618*45537549124^(6/17) 3770005305032322 a001 12586269025/817138163596*45537549124^(7/17) 3770005305032322 a001 10983760033/9381251041*817138163596^(4/19) 3770005305032322 a001 10983760033/9381251041*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(50) 3770005305032322 a001 86267571272/5600748293801*17393796001^(3/7) 3770005305032322 a001 10983760033/9381251041*192900153618^(2/9) 3770005305032322 a001 7787980473/505618944676*17393796001^(3/7) 3770005305032322 a001 365435296162/23725150497407*17393796001^(3/7) 3770005305032322 a001 139583862445/9062201101803*17393796001^(3/7) 3770005305032322 a001 10983760033/9381251041*73681302247^(3/13) 3770005305032322 a001 12586269025/73681302247*73681302247^(4/13) 3770005305032322 a001 12586269025/119218851371*45537549124^(1/3) 3770005305032322 a001 139583862445/28143753123*45537549124^(3/17) 3770005305032322 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 591286729879/28143753123*45537549124^(2/17) 3770005305032322 a001 32951280099/73681302247*17393796001^(2/7) 3770005305032322 a001 2504730781961/28143753123*45537549124^(1/17) 3770005305032322 a001 12586269025/192900153618*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(50) 3770005305032322 a001 12586269025/192900153618*192900153618^(1/3) 3770005305032322 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 12586269025/1322157322203*312119004989^(2/5) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(50) 3770005305032322 a001 12586269025/505019158607*23725150497407^(5/16) 3770005305032322 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(50) 3770005305032322 a004 Fibonacci(50)*Lucas(59)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(50) 3770005305032322 a001 12585437040/228811001*23725150497407^(1/16) 3770005305032322 a004 Fibonacci(50)*Lucas(61)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(50) 3770005305032322 a004 Fibonacci(50)*Lucas(63)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(64) 3770005305032322 a006 5^(1/2)*Fibonacci(64)/Lucas(50)/sqrt(5) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(50)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^60/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^62/Lucas(98) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^63/Lucas(99) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^64/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^61/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^59/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(50)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(50)*Lucas(64)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(50) 3770005305032322 a004 Fibonacci(50)*Lucas(62)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(50) 3770005305032322 a004 Fibonacci(50)*Lucas(60)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(50) 3770005305032322 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(50) 3770005305032322 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 1144206275/28374454999*817138163596^(1/3) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(50) 3770005305032322 a001 12586269025/14662949395604*192900153618^(1/2) 3770005305032322 a001 12585437040/228811001*73681302247^(1/13) 3770005305032322 a001 75283811239/9381251041*73681302247^(2/13) 3770005305032322 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^90 3770005305032322 a001 12586269025/505019158607*73681302247^(5/13) 3770005305032322 a001 53316291173/28143753123*312119004989^(1/5) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(50) 3770005305032322 a001 12586269025/3461452808002*73681302247^(6/13) 3770005305032322 a001 12586269025/9062201101803*73681302247^(1/2) 3770005305032322 a001 12586269025/23725150497407*73681302247^(7/13) 3770005305032322 a001 956722026041/28143753123*28143753123^(1/10) 3770005305032322 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 86267571272/28143753123*28143753123^(1/5) 3770005305032322 a001 43133785636/96450076809*17393796001^(2/7) 3770005305032322 a001 225851433717/505019158607*17393796001^(2/7) 3770005305032322 a001 182717648081/408569081798*17393796001^(2/7) 3770005305032322 a001 20365011074/1322157322203*17393796001^(3/7) 3770005305032322 a001 139583862445/312119004989*17393796001^(2/7) 3770005305032322 a001 12586269025/45537549124*45537549124^(5/17) 3770005305032322 a001 4052739537881/28143753123*10749957122^(1/24) 3770005305032322 a001 53316291173/119218851371*17393796001^(2/7) 3770005305032322 a001 12586269025/45537549124*312119004989^(3/11) 3770005305032322 a001 12586269025/45537549124*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(50) 3770005305032322 a001 12586269025/45537549124*192900153618^(5/18) 3770005305032322 a001 12586269025/505019158607*28143753123^(2/5) 3770005305032322 a001 20365011074/28143753123*73681302247^(1/4) 3770005305032322 a001 2504730781961/28143753123*10749957122^(1/16) 3770005305032322 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 956722026041/73681302247*17393796001^(1/7) 3770005305032322 a001 12586269025/5600748293801*28143753123^(1/2) 3770005305032322 a001 12585437040/228811001*10749957122^(1/12) 3770005305032322 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 2504730781961/192900153618*17393796001^(1/7) 3770005305032322 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(58)*Lucas(51)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(60)*Lucas(51)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(62)*Lucas(51)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(63)*Lucas(51)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(61)*Lucas(51)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(59)*Lucas(51)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 10610209857723/817138163596*17393796001^(1/7) 3770005305032322 a001 4052739537881/312119004989*17393796001^(1/7) 3770005305032322 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^90 3770005305032322 a001 10983760033/3020733700601*45537549124^(8/17) 3770005305032322 a001 12586269025/45537549124*28143753123^(3/10) 3770005305032322 a001 32951280099/2139295485799*45537549124^(7/17) 3770005305032322 a001 32951280099/73681302247*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(52) 3770005305032322 a001 32951280099/73681302247*505019158607^(1/4) 3770005305032322 a001 32951280099/505019158607*45537549124^(6/17) 3770005305032322 a001 32951280099/312119004989*45537549124^(1/3) 3770005305032322 a001 86267571272/73681302247*45537549124^(4/17) 3770005305032322 a001 365435296162/73681302247*45537549124^(3/17) 3770005305032322 a001 32951280099/119218851371*45537549124^(5/17) 3770005305032322 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 86267571272/23725150497407*45537549124^(8/17) 3770005305032322 a001 1548008755920/73681302247*45537549124^(2/17) 3770005305032322 a001 86267571272/5600748293801*45537549124^(7/17) 3770005305032322 a001 6557470319842/73681302247*45537549124^(1/17) 3770005305032322 a001 86267571272/73681302247*817138163596^(4/19) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(52) 3770005305032322 a001 10983760033/64300051206*23725150497407^(1/4) 3770005305032322 a001 7787980473/505618944676*45537549124^(7/17) 3770005305032322 a001 365435296162/23725150497407*45537549124^(7/17) 3770005305032322 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^93 3770005305032322 a001 32951280099/14662949395604*312119004989^(5/11) 3770005305032322 a001 139583862445/9062201101803*45537549124^(7/17) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(52) 3770005305032322 a001 21566892818/204284540899*45537549124^(1/3) 3770005305032322 a004 Fibonacci(52)*Lucas(57)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(52) 3770005305032322 a004 Fibonacci(52)*Lucas(59)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(52) 3770005305032322 a004 Fibonacci(52)*Lucas(61)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(66) 3770005305032322 a006 5^(1/2)*Fibonacci(66)/Lucas(52)/sqrt(5) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(52)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^58/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^60/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^61/Lucas(99) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^62/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^59/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^57/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(52)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(52) 3770005305032322 a004 Fibonacci(52)*Lucas(62)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(52) 3770005305032322 a004 Fibonacci(52)*Lucas(60)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(52) 3770005305032322 a004 Fibonacci(52)*Lucas(58)/(1/2+sqrt(5)/2)^96 3770005305032322 a001 10983760033/440719107401*505019158607^(5/14) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(52) 3770005305032322 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^94 3770005305032322 a001 32951280099/505019158607*192900153618^(1/3) 3770005305032322 a001 139583862445/73681302247*312119004989^(1/5) 3770005305032322 a001 32264490531/494493258286*45537549124^(6/17) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(52) 3770005305032322 a001 10983760033/3020733700601*192900153618^(4/9) 3770005305032322 a001 365435296162/5600748293801*45537549124^(6/17) 3770005305032322 a001 139583862445/2139295485799*45537549124^(6/17) 3770005305032322 a001 182717648081/1730726404001*45537549124^(1/3) 3770005305032322 a001 86267571272/312119004989*45537549124^(5/17) 3770005305032322 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 10983760033/64300051206*73681302247^(4/13) 3770005305032322 a001 139583862445/1322157322203*45537549124^(1/3) 3770005305032322 a001 1548008755920/5600748293801*45537549124^(5/17) 3770005305032322 a001 139583862445/505019158607*45537549124^(5/17) 3770005305032322 a001 53316291173/3461452808002*45537549124^(7/17) 3770005305032322 a001 32951280099/119218851371*312119004989^(3/11) 3770005305032322 a001 10983760033/440719107401*73681302247^(5/13) 3770005305032322 a001 32951280099/119218851371*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(52) 3770005305032322 a001 32951280099/119218851371*192900153618^(5/18) 3770005305032322 a001 10983760033/3020733700601*73681302247^(6/13) 3770005305032322 a001 53316291173/192900153618*45537549124^(5/17) 3770005305032322 a001 53316291173/817138163596*45537549124^(6/17) 3770005305032322 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^93 3770005305032322 a001 32951280099/23725150497407*73681302247^(1/2) 3770005305032322 a001 2504730781961/505019158607*45537549124^(3/17) 3770005305032322 a001 4052739537881/192900153618*45537549124^(2/17) 3770005305032322 a001 4052739537881/817138163596*45537549124^(3/17) 3770005305032322 a001 140728068720/28374454999*45537549124^(3/17) 3770005305032322 a004 Fibonacci(56)*Lucas(53)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(58)*Lucas(53)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(60)*Lucas(53)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(61)*Lucas(53)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(59)*Lucas(53)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(57)*Lucas(53)/(1/2+sqrt(5)/2)^96 3770005305032322 a001 53316291173/73681302247*73681302247^(1/4) 3770005305032322 a001 225749145909/10745088481*45537549124^(2/17) 3770005305032322 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^94 3770005305032322 a001 2504730781961/73681302247*28143753123^(1/10) 3770005305032322 a001 43133785636/96450076809*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(54) 3770005305032322 a001 43133785636/96450076809*505019158607^(1/4) 3770005305032322 a001 6557470319842/312119004989*45537549124^(2/17) 3770005305032322 a004 Fibonacci(54)*Lucas(55)/(1/2+sqrt(5)/2)^95 3770005305032322 a001 139583862445/119218851371*45537549124^(4/17) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(54) 3770005305032322 a004 Fibonacci(54)*Lucas(57)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(54) 3770005305032322 a001 182717648081/96450076809*312119004989^(1/5) 3770005305032322 a004 Fibonacci(54)*Lucas(59)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(68) 3770005305032322 a006 5^(1/2)*Fibonacci(68)/Lucas(54)/sqrt(5) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(54)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^56/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^58/Lucas(98) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^60/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^57/Lucas(97) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^59/Lucas(99) 3770005305032322 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^55/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(54)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(54) 3770005305032322 a004 Fibonacci(54)*Lucas(60)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(54) 3770005305032322 a004 Fibonacci(54)*Lucas(58)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(54) 3770005305032322 a001 75283811239/64300051206*192900153618^(2/9) 3770005305032322 a004 Fibonacci(54)*Lucas(56)/(1/2+sqrt(5)/2)^96 3770005305032322 a001 86267571272/1322157322203*192900153618^(1/3) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(54) 3770005305032322 a001 86267571272/5600748293801*192900153618^(7/18) 3770005305032322 a001 591286729879/119218851371*45537549124^(3/17) 3770005305032322 a004 Fibonacci(56)*Lucas(55)/(1/2+sqrt(5)/2)^97 3770005305032322 a001 3536736619241/64300051206*73681302247^(1/13) 3770005305032322 a004 Fibonacci(58)*Lucas(55)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(59)*Lucas(55)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(57)*Lucas(55)/(1/2+sqrt(5)/2)^98 3770005305032322 a001 225851433717/505019158607*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(56) 3770005305032322 a001 1548008755920/505019158607*312119004989^(2/11) 3770005305032322 a004 Fibonacci(56)*Lucas(57)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(70) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(56)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^54/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^56/Lucas(98) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^58/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^57/Lucas(99) 3770005305032322 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^55/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^53/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(56)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(56) 3770005305032322 a004 Fibonacci(56)*Lucas(58)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(56) 3770005305032322 a001 1515744265389/494493258286*312119004989^(2/11) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(72) 3770005305032322 a006 5^(1/2)*Fibonacci(72)/Lucas(58)/sqrt(5) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(58)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^52/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^54/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^44 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^55/Lucas(99) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^56/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^53/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^51/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(58)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(58) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(74) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(60)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^50/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^46 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^52/Lucas(98) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^53/Lucas(99) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^54/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^51/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^49/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(60)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(60) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(76) 3770005305032322 a006 5^(1/2)*Fibonacci(76)/Lucas(62)/sqrt(5) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(62)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^48/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^50/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^48 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^51/Lucas(99) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^52/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^49/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^47/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(62)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(62) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(78) 3770005305032322 a006 5^(1/2)*Fibonacci(78)/Lucas(64)/sqrt(5) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(64)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^46/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^48/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^50 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^49/Lucas(99) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^50/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^47/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^45/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(64)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(64) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(80) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(66)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^44/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^52 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^46/Lucas(98) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^48/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^45/Lucas(97) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^47/Lucas(99) 3770005305032322 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^43/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(66)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(66) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(82) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(68)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^42/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^54 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^44/Lucas(98) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^45/Lucas(99) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^46/Lucas(100) 3770005305032322 a004 Fibonacci(68)*Lucas(1)/(1/2+sqrt(5)/2)^54 3770005305032322 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^43/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^41/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(68)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(81) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(68) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(82) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(84) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(70)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^40/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^56 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^42/Lucas(98) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^44/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^41/Lucas(97) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^43/Lucas(99) 3770005305032322 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^39/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(70)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(83) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(81) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(70) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(82) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(84) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(86) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(72)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^38/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^40/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^58 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^41/Lucas(99) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^42/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^39/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^37/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(72)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(85) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(83) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(81) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(72) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(76) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(78) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(80) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(82) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(84) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^4/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(86) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(88) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(90) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(92) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(94) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^36/Lucas(96) 3770005305032322 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^60 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^38/Lucas(98) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^40/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(74)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^39/Lucas(99) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^37/Lucas(97) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^35/Lucas(95) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(93) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(91) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(89) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(87) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(85) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(83) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(81) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(79) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(77) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(75) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(78) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(80) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(82) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(84) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(86) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(88) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(90) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(76)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(94) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^34/Lucas(96) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^36/Lucas(98) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^37/Lucas(99) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^38/Lucas(100) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^35/Lucas(97) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^33/Lucas(95) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(93) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(91) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(89) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(87) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^3/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(85) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(83) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(81) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(79) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(77) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(80) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(82) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(84) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(86) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(88) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(90) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(92) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(94) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^32/Lucas(96) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^34/Lucas(98) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^35/Lucas(99) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^36/Lucas(100) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^33/Lucas(97) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^31/Lucas(95) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(93) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(91) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(89) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(87) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(85) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(83) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(81) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(79) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^14/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^16/Lucas(82) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^18/Lucas(84) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^20/Lucas(86) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(88) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(90) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(92) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(94) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^30/Lucas(96) 3770005305032322 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^66 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^32/Lucas(98) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^33/Lucas(99) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^34/Lucas(100) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^31/Lucas(97) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^29/Lucas(95) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(93) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(91) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(89) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(87) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^19/Lucas(85) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^17/Lucas(83) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^13/Lucas(80) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^14/Lucas(82) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^16/Lucas(84) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(86) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(88) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(90) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(92) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(94) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^28/Lucas(96) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^30/Lucas(98) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^31/Lucas(99) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^32/Lucas(100) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^29/Lucas(97) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^27/Lucas(95) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(93) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(91) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(89) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(87) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^17/Lucas(85) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^15/Lucas(83) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^14/Lucas(84) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^16/Lucas(86) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^18/Lucas(88) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(90) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(92) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(94) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^26/Lucas(96) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^28/Lucas(98) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^29/Lucas(99) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^30/Lucas(100) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^27/Lucas(97) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^25/Lucas(95) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(93) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(91) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(89) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^17/Lucas(87) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^15/Lucas(85) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^14/Lucas(86) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^16/Lucas(88) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^18/Lucas(90) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(92) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(94) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^24/Lucas(96) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^26/Lucas(98) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^27/Lucas(99) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^28/Lucas(100) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^25/Lucas(97) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^23/Lucas(95) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(93) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(91) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^17/Lucas(89) 3770005305032322 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^15/Lucas(87) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^14/Lucas(88) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^16/Lucas(90) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^18/Lucas(92) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^20/Lucas(94) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^22/Lucas(96) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^24/Lucas(98) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^26/Lucas(100) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^25/Lucas(99) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^23/Lucas(97) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^21/Lucas(95) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^19/Lucas(93) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^17/Lucas(91) 3770005305032322 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^15/Lucas(89) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^14/Lucas(90) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^16/Lucas(92) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^18/Lucas(94) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^20/Lucas(96) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^22/Lucas(98) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^23/Lucas(99) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^24/Lucas(100) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^21/Lucas(97) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^19/Lucas(95) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^17/Lucas(93) 3770005305032322 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^15/Lucas(91) 3770005305032322 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^14/Lucas(92) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^12/Lucas(92) 3770005305032322 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^18/Lucas(96) 3770005305032322 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^20/Lucas(98) 3770005305032322 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^21/Lucas(99) 3770005305032322 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^22/Lucas(100) 3770005305032322 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^19/Lucas(97) 3770005305032322 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^17/Lucas(95) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^13/Lucas(92) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^14/Lucas(94) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^16/Lucas(96) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^18/Lucas(98) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^19/Lucas(99) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^20/Lucas(100) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^17/Lucas(97) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^15/Lucas(95) 3770005305032322 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^14/Lucas(96) 3770005305032322 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^10/Lucas(96) 3770005305032322 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^16/Lucas(98) 3770005305032322 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^17/Lucas(99) 3770005305032322 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^15/Lucas(97) 3770005305032322 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^14/Lucas(98) 3770005305032322 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^16/Lucas(100) 3770005305032322 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^13/Lucas(99) 3770005305032322 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^14/Lucas(100) 3770005305032322 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^15/Lucas(99) 3770005305032322 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^14/Lucas(99) 3770005305032322 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^15/Lucas(98) 3770005305032322 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^16/Lucas(99) 3770005305032322 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^17/Lucas(100) 3770005305032322 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^13/Lucas(97) 3770005305032322 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^14/Lucas(97) 3770005305032322 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^15/Lucas(96) 3770005305032322 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^17/Lucas(98) 3770005305032322 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^18/Lucas(99) 3770005305032322 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^19/Lucas(100) 3770005305032322 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^16/Lucas(97) 3770005305032322 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^14/Lucas(95) 3770005305032322 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^13/Lucas(93) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^17/Lucas(96) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^19/Lucas(98) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^20/Lucas(99) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^21/Lucas(100) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^18/Lucas(97) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^16/Lucas(95) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^14/Lucas(93) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^15/Lucas(92) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^17/Lucas(94) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^19/Lucas(96) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^21/Lucas(98) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^22/Lucas(99) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^23/Lucas(100) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^20/Lucas(97) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^18/Lucas(95) 3770005305032322 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^12/Lucas(91) 3770005305032322 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^14/Lucas(91) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^15/Lucas(90) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^17/Lucas(92) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^19/Lucas(94) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^21/Lucas(96) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^23/Lucas(98) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^24/Lucas(99) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^25/Lucas(100) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^22/Lucas(97) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^20/Lucas(95) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^18/Lucas(93) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^16/Lucas(91) 3770005305032322 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^14/Lucas(89) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^15/Lucas(88) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^17/Lucas(90) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(92) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(94) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^23/Lucas(96) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^25/Lucas(98) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^27/Lucas(100) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^24/Lucas(97) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^26/Lucas(99) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^22/Lucas(95) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(93) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^18/Lucas(91) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^16/Lucas(89) 3770005305032322 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^14/Lucas(87) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^15/Lucas(86) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^17/Lucas(88) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(90) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(92) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(94) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^25/Lucas(96) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^27/Lucas(98) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^28/Lucas(99) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^29/Lucas(100) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^26/Lucas(97) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^24/Lucas(95) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(93) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(91) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^18/Lucas(89) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^16/Lucas(87) 3770005305032322 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^14/Lucas(85) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^15/Lucas(84) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^17/Lucas(86) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(88) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(90) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(92) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(94) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^27/Lucas(96) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^29/Lucas(98) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^30/Lucas(99) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^31/Lucas(100) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^28/Lucas(97) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^26/Lucas(95) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(93) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(91) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(89) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^18/Lucas(87) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^16/Lucas(85) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^14/Lucas(83) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^15/Lucas(82) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^17/Lucas(84) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(86) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(88) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(90) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(92) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(94) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^29/Lucas(96) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^31/Lucas(98) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^32/Lucas(99) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^33/Lucas(100) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^30/Lucas(97) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^28/Lucas(95) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(93) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(91) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(89) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(87) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(85) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^16/Lucas(83) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^14/Lucas(81) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(80) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^17/Lucas(82) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(84) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(86) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(88) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(90) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(92) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(94) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^31/Lucas(96) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^33/Lucas(98) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^34/Lucas(99) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^35/Lucas(100) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^32/Lucas(97) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^30/Lucas(95) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(93) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(91) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(89) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(87) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(85) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^18/Lucas(83) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(81) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(79) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(78) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^17/Lucas(80) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(82) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(84) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(86) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(88) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(90) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(92) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(94) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^33/Lucas(96) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^35/Lucas(98) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^37/Lucas(100) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^36/Lucas(99) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^34/Lucas(97) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^32/Lucas(95) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(93) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(91) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(89) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(87) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(85) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(83) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(81) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(79) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^14/Lucas(77) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(78) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(80) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(82) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(84) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(86) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(88) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(90) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(92) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(94) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^35/Lucas(96) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^37/Lucas(98) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^39/Lucas(100) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^36/Lucas(97) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^38/Lucas(99) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^34/Lucas(95) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(93) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(75)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(89) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(87) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(85) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(83) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(81) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(79) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(77) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(75) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(74) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(78) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(82) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(84) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(86) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(88) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(73)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(92) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(73)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^37/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(73)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^39/Lucas(98) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^40/Lucas(99) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^41/Lucas(100) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^38/Lucas(97) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^36/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(73)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(73)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(73)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(89) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(87) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(85) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(83) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(81) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(77) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(75) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(73) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(82) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(84) 3770005305032322 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(71)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^39/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^41/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^42/Lucas(99) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^43/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^40/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^38/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(71)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(85) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(83) 3770005305032322 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(81) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(71) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(82) 3770005305032322 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(69)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^41/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^43/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^44/Lucas(99) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^45/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^42/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^40/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(69)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(83) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(81) 3770005305032322 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(69) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(80) 3770005305032322 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(67)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^43/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^45/Lucas(98) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^46/Lucas(99) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^47/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^44/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^42/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(67)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(81) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(79) 3770005305032322 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(67) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(78) 3770005305032322 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(65)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^45/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^47/Lucas(98) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^49/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^48/Lucas(99) 3770005305032322 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^46/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^44/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(65)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(79) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(77) 3770005305032322 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(65) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(76) 3770005305032322 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(63)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^47/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^49/Lucas(98) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^50/Lucas(99) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^51/Lucas(100) 3770005305032322 a004 Fibonacci(63)*Lucas(1)/(1/2+sqrt(5)/2)^49 3770005305032322 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^48/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^46/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(63)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(77) 3770005305032322 a006 5^(1/2)*Fibonacci(77)/Lucas(63)/sqrt(5) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(75) 3770005305032322 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(63) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(74) 3770005305032322 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(61)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^49/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^51/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^52/Lucas(99) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^53/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^50/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^48/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(61)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(75) 3770005305032322 a006 5^(1/2)*Fibonacci(75)/Lucas(61)/sqrt(5) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(73) 3770005305032322 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(61) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(72) 3770005305032322 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(59)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^51/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^53/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^54/Lucas(99) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^55/Lucas(100) 3770005305032322 a004 Fibonacci(59)*Lucas(1)/(1/2+sqrt(5)/2)^45 3770005305032322 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^52/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^50/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(59)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(73) 3770005305032322 a006 5^(1/2)*Fibonacci(73)/Lucas(59)/sqrt(5) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(71) 3770005305032322 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(59) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(70) 3770005305032322 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(57)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^53/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^55/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^56/Lucas(99) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^57/Lucas(100) 3770005305032322 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^54/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^52/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(57)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(71) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(69) 3770005305032322 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(57) 3770005305032322 a004 Fibonacci(58)*Lucas(56)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(57)*Lucas(56)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(55) 3770005305032322 a004 Fibonacci(55)*Lucas(57)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(55) 3770005305032322 a004 Fibonacci(55)*Lucas(59)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(68) 3770005305032322 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(55)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^55/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^57/Lucas(98) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^58/Lucas(99) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^59/Lucas(100) 3770005305032322 a004 Fibonacci(55)*Lucas(1)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^56/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^54/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(55)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(69) 3770005305032322 a006 5^(1/2)*Fibonacci(69)/Lucas(55)/sqrt(5) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(67) 3770005305032322 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(55) 3770005305032322 a004 Fibonacci(55)*Lucas(58)/(1/2+sqrt(5)/2)^99 3770005305032322 a001 139583862445/5600748293801*505019158607^(5/14) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(55) 3770005305032322 a001 139583862445/817138163596*23725150497407^(1/4) 3770005305032322 a001 139583862445/505019158607*192900153618^(5/18) 3770005305032322 a004 Fibonacci(55)*Lucas(56)/(1/2+sqrt(5)/2)^97 3770005305032322 a001 10182505537/22768774562*17393796001^(2/7) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(55) 3770005305032322 a004 Fibonacci(56)*Lucas(54)/(1/2+sqrt(5)/2)^96 3770005305032322 a001 4052739537881/505019158607*73681302247^(2/13) 3770005305032322 a004 Fibonacci(58)*Lucas(54)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(60)*Lucas(54)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(59)*Lucas(54)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(57)*Lucas(54)/(1/2+sqrt(5)/2)^97 3770005305032322 a001 139583862445/192900153618*73681302247^(1/4) 3770005305032322 a001 3278735159921/408569081798*73681302247^(2/13) 3770005305032322 a004 Fibonacci(55)*Lucas(54)/(1/2+sqrt(5)/2)^95 3770005305032322 a001 10610209857723/119218851371*45537549124^(1/17) 3770005305032322 a001 2504730781961/2139295485799*73681302247^(3/13) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(53) 3770005305032322 a001 365435296162/505019158607*73681302247^(1/4) 3770005305032322 a001 75283811239/440719107401*73681302247^(4/13) 3770005305032322 a001 225851433717/312119004989*73681302247^(1/4) 3770005305032322 a001 365435296162/312119004989*73681302247^(3/13) 3770005305032322 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^94 3770005305032322 a001 32264490531/10525900321*28143753123^(1/5) 3770005305032322 a001 53316291173/23725150497407*312119004989^(5/11) 3770005305032322 a001 53316291173/5600748293801*312119004989^(2/5) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(53) 3770005305032322 a004 Fibonacci(53)*Lucas(57)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(53) 3770005305032322 a004 Fibonacci(53)*Lucas(59)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(53) 3770005305032322 a004 Fibonacci(53)*Lucas(61)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(66) 3770005305032322 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(53)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^57/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^59/Lucas(98) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^60/Lucas(99) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^61/Lucas(100) 3770005305032322 a004 Fibonacci(53)*Lucas(1)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^58/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^56/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(53)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(67) 3770005305032322 a006 5^(1/2)*Fibonacci(67)/Lucas(53)/sqrt(5) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(65) 3770005305032322 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(53) 3770005305032322 a004 Fibonacci(53)*Lucas(60)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(53) 3770005305032322 a004 Fibonacci(53)*Lucas(58)/(1/2+sqrt(5)/2)^97 3770005305032322 a001 53316291173/817138163596*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(53) 3770005305032322 a001 53316291173/2139295485799*505019158607^(5/14) 3770005305032322 a004 Fibonacci(53)*Lucas(56)/(1/2+sqrt(5)/2)^95 3770005305032322 a001 139583862445/119218851371*817138163596^(4/19) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(53) 3770005305032322 a001 53316291173/3461452808002*192900153618^(7/18) 3770005305032322 a001 53316291173/14662949395604*192900153618^(4/9) 3770005305032322 a001 139583862445/119218851371*192900153618^(2/9) 3770005305032322 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^93 3770005305032322 a001 956722026041/119218851371*73681302247^(2/13) 3770005305032322 a001 3278735159921/96450076809*28143753123^(1/10) 3770005305032322 a001 139583862445/119218851371*73681302247^(3/13) 3770005305032322 a001 10610209857723/312119004989*28143753123^(1/10) 3770005305032322 a001 53316291173/312119004989*73681302247^(4/13) 3770005305032322 a001 53316291173/119218851371*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(53) 3770005305032322 a001 20365011074/73681302247*45537549124^(5/17) 3770005305032322 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 1515744265389/10525900321*10749957122^(1/24) 3770005305032322 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(58)*Lucas(52)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(60)*Lucas(52)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(62)*Lucas(52)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(61)*Lucas(52)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(59)*Lucas(52)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(57)*Lucas(52)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^93 3770005305032322 a001 4052739537881/119218851371*28143753123^(1/10) 3770005305032322 a001 591286729879/192900153618*28143753123^(1/5) 3770005305032322 a001 20365011074/23725150497407*45537549124^(9/17) 3770005305032322 a001 1548008755920/505019158607*28143753123^(1/5) 3770005305032322 a001 1515744265389/494493258286*28143753123^(1/5) 3770005305032322 a001 2504730781961/817138163596*28143753123^(1/5) 3770005305032322 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 20365011074/5600748293801*45537549124^(8/17) 3770005305032322 a001 32951280099/119218851371*28143753123^(3/10) 3770005305032322 a001 20365011074/1322157322203*45537549124^(7/17) 3770005305032322 a001 10182505537/96450076809*45537549124^(1/3) 3770005305032322 a001 20365011074/73681302247*312119004989^(3/11) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(51) 3770005305032322 a001 20365011074/73681302247*192900153618^(5/18) 3770005305032322 a001 10983760033/440719107401*28143753123^(2/5) 3770005305032322 a001 365435296162/119218851371*28143753123^(1/5) 3770005305032322 a001 32951280099/45537549124*73681302247^(1/4) 3770005305032322 a001 6557470319842/73681302247*10749957122^(1/16) 3770005305032322 a001 86267571272/312119004989*28143753123^(3/10) 3770005305032322 a001 139583862445/28143753123*10749957122^(3/16) 3770005305032322 a001 225851433717/817138163596*28143753123^(3/10) 3770005305032322 a001 1548008755920/5600748293801*28143753123^(3/10) 3770005305032322 a001 139583862445/505019158607*28143753123^(3/10) 3770005305032322 a001 225851433717/45537549124*45537549124^(3/17) 3770005305032322 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^90 3770005305032322 a001 53316291173/192900153618*28143753123^(3/10) 3770005305032322 a001 956722026041/45537549124*45537549124^(2/17) 3770005305032322 a001 53316291173/45537549124*45537549124^(4/17) 3770005305032322 a001 32951280099/14662949395604*28143753123^(1/2) 3770005305032322 a001 21566892818/11384387281*312119004989^(1/5) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(51) 3770005305032322 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 20365011074/9062201101803*312119004989^(5/11) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(51) 3770005305032322 a001 20365011074/2139295485799*312119004989^(2/5) 3770005305032322 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(51) 3770005305032322 a004 Fibonacci(51)*Lucas(59)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(51) 3770005305032322 a004 Fibonacci(51)*Lucas(61)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(51) 3770005305032322 a004 Fibonacci(51)*Lucas(63)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(64) 3770005305032322 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(51)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^59/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^61/Lucas(98) 3770005305032322 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^62/Lucas(99) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^63/Lucas(100) 3770005305032322 a004 Fibonacci(51)*Lucas(1)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^60/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^58/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(51)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(65) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(63) 3770005305032322 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(51) 3770005305032322 a004 Fibonacci(51)*Lucas(62)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(51) 3770005305032322 a004 Fibonacci(51)*Lucas(60)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(51) 3770005305032322 a004 Fibonacci(51)*Lucas(58)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(51) 3770005305032322 a001 182717648081/22768774562*23725150497407^(1/8) 3770005305032322 a001 10182505537/408569081798*23725150497407^(5/16) 3770005305032322 a001 10182505537/408569081798*505019158607^(5/14) 3770005305032322 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^93 3770005305032322 a001 20365011074/1322157322203*192900153618^(7/18) 3770005305032322 a001 20365011074/312119004989*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(51) 3770005305032322 a001 2504730781961/45537549124*73681302247^(1/13) 3770005305032322 a001 75283811239/3020733700601*28143753123^(2/5) 3770005305032322 a001 20365011074/312119004989*192900153618^(1/3) 3770005305032322 a001 182717648081/7331474697802*28143753123^(2/5) 3770005305032322 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 182717648081/22768774562*73681302247^(2/13) 3770005305032322 a001 139583862445/5600748293801*28143753123^(2/5) 3770005305032322 a001 4052739537881/73681302247*10749957122^(1/12) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(51) 3770005305032322 a001 20365011074/119218851371*23725150497407^(1/4) 3770005305032322 a001 10182505537/408569081798*73681302247^(5/13) 3770005305032322 a001 53316291173/45537549124*192900153618^(2/9) 3770005305032322 a001 20365011074/5600748293801*73681302247^(6/13) 3770005305032322 a001 10182505537/7331474697802*73681302247^(1/2) 3770005305032322 a001 53316291173/2139295485799*28143753123^(2/5) 3770005305032322 a001 53316291173/45537549124*73681302247^(3/13) 3770005305032322 a001 387002188980/11384387281*28143753123^(1/10) 3770005305032322 a001 20365011074/119218851371*73681302247^(4/13) 3770005305032322 a001 10610209857723/119218851371*10749957122^(1/16) 3770005305032322 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 20365011074/73681302247*28143753123^(3/10) 3770005305032322 a001 3536736619241/64300051206*10749957122^(1/12) 3770005305032322 a001 53316291173/23725150497407*28143753123^(1/2) 3770005305032322 a001 10983760033/9381251041*10749957122^(1/4) 3770005305032322 a001 2403763488/5374978561*4106118243^(7/23) 3770005305032322 a001 139583862445/45537549124*28143753123^(1/5) 3770005305032322 a001 6557470319842/119218851371*10749957122^(1/12) 3770005305032322 a001 3278735159921/22768774562*10749957122^(1/24) 3770005305032322 a001 1548008755920/73681302247*10749957122^(1/8) 3770005305032322 a001 10182505537/22768774562*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(51) 3770005305032322 a001 10182505537/408569081798*28143753123^(2/5) 3770005305032322 a001 4052739537881/45537549124*10749957122^(1/16) 3770005305032322 a001 4052739537881/192900153618*10749957122^(1/8) 3770005305032322 a001 225749145909/10745088481*10749957122^(1/8) 3770005305032322 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 6557470319842/312119004989*10749957122^(1/8) 3770005305032322 a001 20365011074/9062201101803*28143753123^(1/2) 3770005305032322 a001 2504730781961/119218851371*10749957122^(1/8) 3770005305032322 a001 2504730781961/45537549124*10749957122^(1/12) 3770005305032322 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^90 3770005305032322 a001 591286729879/73681302247*10749957122^(1/6) 3770005305032322 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(60)*Lucas(50)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(62)*Lucas(50)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(64)*Lucas(50)/(1/2+sqrt(5)/2)^100 3770005305032322 a001 2/12586269025*(1/2+1/2*5^(1/2))^64 3770005305032322 a004 Fibonacci(63)*Lucas(50)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(61)*Lucas(50)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(59)*Lucas(50)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 4052739537881/28143753123*4106118243^(1/23) 3770005305032322 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 86000486440/10716675201*10749957122^(1/6) 3770005305032322 a001 7778742049/14662949395604*17393796001^(4/7) 3770005305032322 a001 12586269025/73681302247*10749957122^(1/3) 3770005305032322 a001 365435296162/73681302247*10749957122^(3/16) 3770005305032322 a001 3536736619241/440719107401*10749957122^(1/6) 3770005305032322 a001 3278735159921/408569081798*10749957122^(1/6) 3770005305032322 a001 2504730781961/312119004989*10749957122^(1/6) 3770005305032322 a001 956722026041/119218851371*10749957122^(1/6) 3770005305032322 a001 956722026041/45537549124*10749957122^(1/8) 3770005305032322 a001 956722026041/192900153618*10749957122^(3/16) 3770005305032322 a001 32264490531/10525900321*10749957122^(5/24) 3770005305032322 a001 2504730781961/505019158607*10749957122^(3/16) 3770005305032322 a001 4052739537881/817138163596*10749957122^(3/16) 3770005305032322 a001 140728068720/28374454999*10749957122^(3/16) 3770005305032322 a001 591286729879/119218851371*10749957122^(3/16) 3770005305032322 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 591286729879/192900153618*10749957122^(5/24) 3770005305032322 a001 1548008755920/505019158607*10749957122^(5/24) 3770005305032322 a001 1515744265389/494493258286*10749957122^(5/24) 3770005305032322 a001 2504730781961/817138163596*10749957122^(5/24) 3770005305032322 a001 956722026041/312119004989*10749957122^(5/24) 3770005305032322 a001 365435296162/119218851371*10749957122^(5/24) 3770005305032322 a001 7778742049/505019158607*17393796001^(3/7) 3770005305032322 a001 7778742049/28143753123*45537549124^(5/17) 3770005305032322 a001 12586269025/45537549124*10749957122^(5/16) 3770005305032322 a001 182717648081/22768774562*10749957122^(1/6) 3770005305032322 a001 86267571272/73681302247*10749957122^(1/4) 3770005305032322 a001 12586269025/192900153618*10749957122^(3/8) 3770005305032322 a001 139583862445/6643838879*2537720636^(2/15) 3770005305032322 a001 7778742049/28143753123*312119004989^(3/11) 3770005305032322 a001 7778742049/28143753123*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(49) 3770005305032322 a001 7778742049/28143753123*192900153618^(5/18) 3770005305032322 a001 12586269025/17393796001*73681302247^(1/4) 3770005305032322 a001 225851433717/45537549124*10749957122^(3/16) 3770005305032322 a001 75283811239/64300051206*10749957122^(1/4) 3770005305032322 a001 32951280099/73681302247*10749957122^(7/24) 3770005305032322 a001 2504730781961/2139295485799*10749957122^(1/4) 3770005305032322 a001 365435296162/312119004989*10749957122^(1/4) 3770005305032322 a001 139583862445/119218851371*10749957122^(1/4) 3770005305032322 a001 139583862445/45537549124*10749957122^(5/24) 3770005305032322 a001 12586269025/505019158607*10749957122^(5/12) 3770005305032322 a001 1515744265389/10525900321*4106118243^(1/23) 3770005305032322 a001 7778742049/28143753123*28143753123^(3/10) 3770005305032322 a001 43133785636/96450076809*10749957122^(7/24) 3770005305032322 a001 225851433717/505019158607*10749957122^(7/24) 3770005305032322 a001 591286729879/1322157322203*10749957122^(7/24) 3770005305032322 a001 182717648081/408569081798*10749957122^(7/24) 3770005305032322 a001 139583862445/312119004989*10749957122^(7/24) 3770005305032322 a001 32951280099/119218851371*10749957122^(5/16) 3770005305032322 a001 53316291173/119218851371*10749957122^(7/24) 3770005305032322 a001 10983760033/64300051206*10749957122^(1/3) 3770005305032322 a001 86267571272/312119004989*10749957122^(5/16) 3770005305032322 a001 225851433717/817138163596*10749957122^(5/16) 3770005305032322 a001 12586269025/1322157322203*10749957122^(11/24) 3770005305032322 a001 1548008755920/5600748293801*10749957122^(5/16) 3770005305032322 a001 139583862445/505019158607*10749957122^(5/16) 3770005305032322 a001 53316291173/45537549124*10749957122^(1/4) 3770005305032322 a001 53316291173/192900153618*10749957122^(5/16) 3770005305032322 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 7787980473/599786069*17393796001^(1/7) 3770005305032322 a001 86267571272/505019158607*10749957122^(1/3) 3770005305032322 a001 75283811239/440719107401*10749957122^(1/3) 3770005305032322 a001 2504730781961/14662949395604*10749957122^(1/3) 3770005305032322 a001 139583862445/817138163596*10749957122^(1/3) 3770005305032322 a001 7778742049/73681302247*45537549124^(1/3) 3770005305032322 a001 53316291173/312119004989*10749957122^(1/3) 3770005305032322 a001 20365011074/73681302247*10749957122^(5/16) 3770005305032322 a001 7778742049/9062201101803*45537549124^(9/17) 3770005305032322 a001 32951280099/505019158607*10749957122^(3/8) 3770005305032322 a001 12586269025/3461452808002*10749957122^(1/2) 3770005305032322 a001 7778742049/2139295485799*45537549124^(8/17) 3770005305032322 a001 7778742049/505019158607*45537549124^(7/17) 3770005305032322 a001 32951280099/17393796001*312119004989^(1/5) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(49) 3770005305032322 a001 86267571272/17393796001*45537549124^(3/17) 3770005305032322 a001 7778742049/119218851371*45537549124^(6/17) 3770005305032322 a001 86267571272/1322157322203*10749957122^(3/8) 3770005305032322 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 32264490531/494493258286*10749957122^(3/8) 3770005305032322 a001 591286729879/9062201101803*10749957122^(3/8) 3770005305032322 a001 1548008755920/23725150497407*10749957122^(3/8) 3770005305032322 a001 365435296162/17393796001*45537549124^(2/17) 3770005305032322 a001 139583862445/2139295485799*10749957122^(3/8) 3770005305032322 a001 1548008755920/17393796001*45537549124^(1/17) 3770005305032322 a001 7778742049/192900153618*817138163596^(1/3) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(49) 3770005305032322 a001 86267571272/17393796001*192900153618^(1/6) 3770005305032322 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^90 3770005305032322 a001 7778742049/3461452808002*312119004989^(5/11) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(49) 3770005305032322 a001 591286729879/17393796001*312119004989^(1/11) 3770005305032322 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(49) 3770005305032322 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(49) 3770005305032322 a004 Fibonacci(49)*Lucas(61)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(62) 3770005305032322 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(49) 3770005305032322 a004 Fibonacci(49)*Lucas(63)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(49)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(49)*Lucas(65)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(94) 3770005305032322 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^61/Lucas(96) 3770005305032322 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^63/Lucas(98) 3770005305032322 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^64/Lucas(99) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^65/Lucas(100) 3770005305032322 a004 Fibonacci(98)/Lucas(49)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^62/Lucas(97) 3770005305032322 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^60/Lucas(95) 3770005305032322 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(49)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(49)*Lucas(64)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(63) 3770005305032322 a006 5^(1/2)*Fibonacci(63)/Lucas(49)/sqrt(5) 3770005305032322 a004 Fibonacci(49)*Lucas(62)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(61) 3770005305032322 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(49) 3770005305032322 a004 Fibonacci(49)*Lucas(60)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(49) 3770005305032322 a001 7778742049/23725150497407*1322157322203^(1/2) 3770005305032322 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^93 3770005305032322 a001 1548008755920/17393796001*192900153618^(1/18) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(49) 3770005305032322 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(49) 3770005305032322 a001 139583862445/17393796001*23725150497407^(1/8) 3770005305032322 a001 7778742049/312119004989*23725150497407^(5/16) 3770005305032322 a001 139583862445/17393796001*505019158607^(1/7) 3770005305032322 a001 7778742049/2139295485799*192900153618^(4/9) 3770005305032322 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 139583862445/17393796001*73681302247^(2/13) 3770005305032322 a001 53316291173/17393796001*312119004989^(2/11) 3770005305032322 a001 7778742049/119218851371*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(49) 3770005305032322 a001 7778742049/119218851371*192900153618^(1/3) 3770005305032322 a001 7778742049/2139295485799*73681302247^(6/13) 3770005305032322 a001 7778742049/5600748293801*73681302247^(1/2) 3770005305032322 a001 7778742049/14662949395604*73681302247^(7/13) 3770005305032322 a001 10983760033/440719107401*10749957122^(5/12) 3770005305032322 a001 12586269025/9062201101803*10749957122^(13/24) 3770005305032322 a001 591286729879/17393796001*28143753123^(1/10) 3770005305032322 a001 20365011074/119218851371*10749957122^(1/3) 3770005305032322 a001 10182505537/22768774562*10749957122^(7/24) 3770005305032322 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 43133785636/1730726404001*10749957122^(5/12) 3770005305032322 a001 32951280099/2139295485799*10749957122^(7/16) 3770005305032322 a001 12586269025/14662949395604*10749957122^(9/16) 3770005305032322 a001 182717648081/7331474697802*10749957122^(5/12) 3770005305032322 a001 139583862445/5600748293801*10749957122^(5/12) 3770005305032322 a001 53316291173/17393796001*28143753123^(1/5) 3770005305032322 a001 2504730781961/17393796001*10749957122^(1/24) 3770005305032322 a001 20365011074/17393796001*45537549124^(4/17) 3770005305032322 a001 53316291173/2139295485799*10749957122^(5/12) 3770005305032322 a001 20365011074/312119004989*10749957122^(3/8) 3770005305032322 a001 86267571272/5600748293801*10749957122^(7/16) 3770005305032322 a001 32951280099/3461452808002*10749957122^(11/24) 3770005305032322 a001 12586269025/23725150497407*10749957122^(7/12) 3770005305032322 a001 20365011074/17393796001*817138163596^(4/19) 3770005305032322 a001 20365011074/17393796001*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(49) 3770005305032322 a001 139583862445/9062201101803*10749957122^(7/16) 3770005305032322 a001 7778742049/312119004989*28143753123^(2/5) 3770005305032322 a001 20365011074/17393796001*73681302247^(3/13) 3770005305032322 a001 7778742049/45537549124*73681302247^(4/13) 3770005305032322 a001 1548008755920/17393796001*10749957122^(1/16) 3770005305032322 a001 53316291173/3461452808002*10749957122^(7/16) 3770005305032322 a001 12585437040/228811001*4106118243^(2/23) 3770005305032322 a001 7778742049/3461452808002*28143753123^(1/2) 3770005305032322 a001 86267571272/9062201101803*10749957122^(11/24) 3770005305032322 a001 956722026041/17393796001*10749957122^(1/12) 3770005305032322 a001 53316291173/5600748293801*10749957122^(11/24) 3770005305032322 a001 32951280099/10749957122*4106118243^(5/23) 3770005305032322 a001 10182505537/408569081798*10749957122^(5/12) 3770005305032322 a001 10983760033/3020733700601*10749957122^(1/2) 3770005305032322 a001 20365011074/1322157322203*10749957122^(7/16) 3770005305032322 a001 86267571272/23725150497407*10749957122^(1/2) 3770005305032322 a001 365435296162/17393796001*10749957122^(1/8) 3770005305032322 a001 53316291173/14662949395604*10749957122^(1/2) 3770005305032322 a001 20365011074/2139295485799*10749957122^(11/24) 3770005305032322 a001 32951280099/23725150497407*10749957122^(13/24) 3770005305032322 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 7778742049/28143753123*10749957122^(5/16) 3770005305032322 a001 139583862445/17393796001*10749957122^(1/6) 3770005305032322 a001 20365011074/5600748293801*10749957122^(1/2) 3770005305032322 a001 86267571272/17393796001*10749957122^(3/16) 3770005305032322 a001 4052739537881/73681302247*4106118243^(2/23) 3770005305032322 a001 3536736619241/64300051206*4106118243^(2/23) 3770005305032322 a001 10182505537/7331474697802*10749957122^(13/24) 3770005305032322 a001 53316291173/17393796001*10749957122^(5/24) 3770005305032322 a001 6557470319842/119218851371*4106118243^(2/23) 3770005305032322 a001 20365011074/23725150497407*10749957122^(9/16) 3770005305032322 a001 225851433717/6643838879*2537720636^(1/9) 3770005305032322 a001 12586269025/10749957122*4106118243^(6/23) 3770005305032322 a001 2504730781961/45537549124*4106118243^(2/23) 3770005305032322 a001 7778742049/17393796001*17393796001^(2/7) 3770005305032322 a001 2504730781961/17393796001*4106118243^(1/23) 3770005305032322 a001 20365011074/17393796001*10749957122^(1/4) 3770005305032322 a001 591286729879/28143753123*4106118243^(3/23) 3770005305032322 a001 7778742049/17393796001*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(49) 3770005305032322 a001 7778742049/17393796001*505019158607^(1/4) 3770005305032322 a001 7778742049/119218851371*10749957122^(3/8) 3770005305032322 a001 7778742049/45537549124*10749957122^(1/3) 3770005305032322 a001 7778742049/312119004989*10749957122^(5/12) 3770005305032322 a001 7778742049/505019158607*10749957122^(7/16) 3770005305032322 a001 7778742049/817138163596*10749957122^(11/24) 3770005305032322 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 1548008755920/73681302247*4106118243^(3/23) 3770005305032322 a001 7778742049/2139295485799*10749957122^(1/2) 3770005305032322 a001 4052739537881/192900153618*4106118243^(3/23) 3770005305032322 a001 225749145909/10745088481*4106118243^(3/23) 3770005305032322 a001 6557470319842/312119004989*4106118243^(3/23) 3770005305032322 a001 2504730781961/119218851371*4106118243^(3/23) 3770005305032322 a001 7778742049/5600748293801*10749957122^(13/24) 3770005305032322 a001 7778742049/9062201101803*10749957122^(9/16) 3770005305032322 a001 956722026041/45537549124*4106118243^(3/23) 3770005305032322 a001 7778742049/14662949395604*10749957122^(7/12) 3770005305032322 a001 956722026041/17393796001*4106118243^(2/23) 3770005305032322 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(62)*Lucas(48)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(64)*Lucas(48)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(66)*Lucas(48)/(1/2+sqrt(5)/2)^100 3770005305032322 a001 1/2403763488*(1/2+1/2*5^(1/2))^62 3770005305032322 a004 Fibonacci(65)*Lucas(48)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(63)*Lucas(48)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(61)*Lucas(48)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 75283811239/9381251041*4106118243^(4/23) 3770005305032322 a001 7778742049/17393796001*10749957122^(7/24) 3770005305032322 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 774004377960/5374978561*1568397607^(1/22) 3770005305032322 a001 591286729879/73681302247*4106118243^(4/23) 3770005305032322 a001 86000486440/10716675201*4106118243^(4/23) 3770005305032322 a001 4052739537881/505019158607*4106118243^(4/23) 3770005305032322 a001 3278735159921/408569081798*4106118243^(4/23) 3770005305032322 a001 2504730781961/312119004989*4106118243^(4/23) 3770005305032322 a001 956722026041/119218851371*4106118243^(4/23) 3770005305032322 a001 1602508992/9381251041*4106118243^(8/23) 3770005305032322 a001 1836311903/4106118243*1568397607^(7/22) 3770005305032322 a001 182717648081/22768774562*4106118243^(4/23) 3770005305032322 a001 365435296162/17393796001*4106118243^(3/23) 3770005305032322 a001 86267571272/28143753123*4106118243^(5/23) 3770005305032322 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 591286729879/6643838879*2537720636^(1/15) 3770005305032322 a001 32264490531/10525900321*4106118243^(5/23) 3770005305032322 a001 591286729879/192900153618*4106118243^(5/23) 3770005305032322 a001 1548008755920/505019158607*4106118243^(5/23) 3770005305032322 a001 1515744265389/494493258286*4106118243^(5/23) 3770005305032322 a001 2504730781961/817138163596*4106118243^(5/23) 3770005305032322 a001 956722026041/312119004989*4106118243^(5/23) 3770005305032322 a001 365435296162/119218851371*4106118243^(5/23) 3770005305032322 a001 139583862445/45537549124*4106118243^(5/23) 3770005305032322 a001 139583862445/17393796001*4106118243^(4/23) 3770005305032322 a001 2971215073/10749957122*45537549124^(5/17) 3770005305032322 a001 2971215073/10749957122*312119004989^(3/11) 3770005305032322 a001 2971215073/10749957122*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(47) 3770005305032322 a001 2971215073/10749957122*192900153618^(5/18) 3770005305032322 a001 10983760033/9381251041*4106118243^(6/23) 3770005305032322 a001 4807526976/6643838879*73681302247^(1/4) 3770005305032322 a001 686789568/10525900321*4106118243^(9/23) 3770005305032322 a001 2971215073/10749957122*28143753123^(3/10) 3770005305032322 a001 10983760033/1368706081*1568397607^(2/11) 3770005305032322 a001 86267571272/73681302247*4106118243^(6/23) 3770005305032322 a001 75283811239/64300051206*4106118243^(6/23) 3770005305032322 a001 2504730781961/2139295485799*4106118243^(6/23) 3770005305032322 a001 365435296162/312119004989*4106118243^(6/23) 3770005305032322 a001 12586269025/28143753123*4106118243^(7/23) 3770005305032322 a001 139583862445/119218851371*4106118243^(6/23) 3770005305032322 a001 53316291173/45537549124*4106118243^(6/23) 3770005305032322 a001 53316291173/17393796001*4106118243^(5/23) 3770005305032322 a001 2971215073/10749957122*10749957122^(5/16) 3770005305032322 a001 267084832/10716675201*4106118243^(10/23) 3770005305032322 a001 4052739537881/28143753123*1568397607^(1/22) 3770005305032322 a001 32951280099/73681302247*4106118243^(7/23) 3770005305032322 a001 43133785636/96450076809*4106118243^(7/23) 3770005305032322 a001 225851433717/505019158607*4106118243^(7/23) 3770005305032322 a001 591286729879/1322157322203*4106118243^(7/23) 3770005305032322 a001 182717648081/408569081798*4106118243^(7/23) 3770005305032322 a001 139583862445/312119004989*4106118243^(7/23) 3770005305032322 a001 53316291173/119218851371*4106118243^(7/23) 3770005305032322 a001 1515744265389/10525900321*1568397607^(1/22) 3770005305032322 a001 3278735159921/22768774562*1568397607^(1/22) 3770005305032322 a001 10182505537/22768774562*4106118243^(7/23) 3770005305032322 a001 12586269025/73681302247*4106118243^(8/23) 3770005305032322 a001 20365011074/17393796001*4106118243^(6/23) 3770005305032322 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 102287808/10745088481*4106118243^(11/23) 3770005305032322 a001 10983760033/64300051206*4106118243^(8/23) 3770005305032322 a001 86267571272/505019158607*4106118243^(8/23) 3770005305032322 a001 75283811239/440719107401*4106118243^(8/23) 3770005305032322 a001 2504730781961/14662949395604*4106118243^(8/23) 3770005305032322 a001 139583862445/817138163596*4106118243^(8/23) 3770005305032322 a001 53316291173/312119004989*4106118243^(8/23) 3770005305032322 a001 2971215073/5600748293801*17393796001^(4/7) 3770005305032322 a001 1201881744/204284540899*4106118243^(1/2) 3770005305032322 a001 20365011074/119218851371*4106118243^(8/23) 3770005305032322 a001 2971215073/192900153618*17393796001^(3/7) 3770005305032322 a001 2971215073/28143753123*45537549124^(1/3) 3770005305032322 a001 12586269025/6643838879*312119004989^(1/5) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(47) 3770005305032322 a001 2504730781961/17393796001*1568397607^(1/22) 3770005305032322 a001 12586269025/192900153618*4106118243^(9/23) 3770005305032322 a001 86267571272/6643838879*17393796001^(1/7) 3770005305032322 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 1602508992/440719107401*4106118243^(12/23) 3770005305032322 a001 2971215073/14662949395604*45537549124^(10/17) 3770005305032322 a001 32951280099/6643838879*45537549124^(3/17) 3770005305032322 a001 2971215073/3461452808002*45537549124^(9/17) 3770005305032322 a001 2971215073/192900153618*45537549124^(7/17) 3770005305032322 a001 2971215073/817138163596*45537549124^(8/17) 3770005305032322 a001 2971215073/73681302247*817138163596^(1/3) 3770005305032322 a001 32951280099/6643838879*14662949395604^(1/7) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(47) 3770005305032322 a001 32951280099/6643838879*192900153618^(1/6) 3770005305032322 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 139583862445/6643838879*45537549124^(2/17) 3770005305032322 a001 591286729879/6643838879*45537549124^(1/17) 3770005305032322 a001 2971215073/192900153618*14662949395604^(1/3) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(47) 3770005305032322 a001 2971215073/192900153618*192900153618^(7/18) 3770005305032322 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 2971215073/14662949395604*312119004989^(6/11) 3770005305032322 a001 225851433717/6643838879*312119004989^(1/11) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(47) 3770005305032322 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(47) 3770005305032322 a001 2971215073/1322157322203*3461452808002^(5/12) 3770005305032322 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(60) 3770005305032322 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(47) 3770005305032322 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(47)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(47)*Lucas(63)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(47)*Lucas(65)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(47)*Lucas(67)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(90) 3770005305032322 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(92) 3770005305032322 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(94) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^63/Lucas(96) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^65/Lucas(98) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^66/Lucas(99) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^67/Lucas(100) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^64/Lucas(97) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^62/Lucas(95) 3770005305032322 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(93) 3770005305032322 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(91) 3770005305032322 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(47)*Lucas(66)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(47)*Lucas(64)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(47)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(47)*Lucas(62)/(1/2+sqrt(5)/2)^95 3770005305032322 a001 2971215073/5600748293801*14662949395604^(4/9) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(61) 3770005305032322 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(59) 3770005305032322 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(47) 3770005305032322 a001 2971215073/9062201101803*1322157322203^(1/2) 3770005305032322 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(47) 3770005305032322 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 2971215073/312119004989*312119004989^(2/5) 3770005305032322 a001 139583862445/6643838879*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(47) 3770005305032322 a001 2971215073/3461452808002*192900153618^(1/2) 3770005305032322 a001 2971215073/817138163596*192900153618^(4/9) 3770005305032322 a001 2971215073/14662949395604*192900153618^(5/9) 3770005305032322 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(47) 3770005305032322 a001 53316291173/6643838879*23725150497407^(1/8) 3770005305032322 a001 2971215073/119218851371*23725150497407^(5/16) 3770005305032322 a001 2971215073/119218851371*505019158607^(5/14) 3770005305032322 a001 2971215073/817138163596*73681302247^(6/13) 3770005305032322 a001 2971215073/2139295485799*73681302247^(1/2) 3770005305032322 a001 2971215073/5600748293801*73681302247^(7/13) 3770005305032322 a001 225851433717/6643838879*28143753123^(1/10) 3770005305032322 a001 2971215073/119218851371*73681302247^(5/13) 3770005305032322 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 2971215073/45537549124*45537549124^(6/17) 3770005305032322 a001 956722026041/6643838879*10749957122^(1/24) 3770005305032322 a001 32951280099/505019158607*4106118243^(9/23) 3770005305032322 a001 20365011074/6643838879*312119004989^(2/11) 3770005305032322 a001 2971215073/45537549124*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(47) 3770005305032322 a001 2971215073/45537549124*192900153618^(1/3) 3770005305032322 a001 86267571272/1322157322203*4106118243^(9/23) 3770005305032322 a001 591286729879/6643838879*10749957122^(1/16) 3770005305032322 a001 32264490531/494493258286*4106118243^(9/23) 3770005305032322 a001 591286729879/9062201101803*4106118243^(9/23) 3770005305032322 a001 1548008755920/23725150497407*4106118243^(9/23) 3770005305032322 a001 365435296162/5600748293801*4106118243^(9/23) 3770005305032322 a001 139583862445/2139295485799*4106118243^(9/23) 3770005305032322 a001 2971215073/119218851371*28143753123^(2/5) 3770005305032322 a001 53316291173/817138163596*4106118243^(9/23) 3770005305032322 a001 2971215073/1322157322203*28143753123^(1/2) 3770005305032322 a001 365435296162/6643838879*10749957122^(1/12) 3770005305032322 a001 20365011074/6643838879*28143753123^(1/5) 3770005305032322 a001 2971215073/14662949395604*28143753123^(3/5) 3770005305032322 a001 20365011074/312119004989*4106118243^(9/23) 3770005305032322 a001 139583862445/6643838879*10749957122^(1/8) 3770005305032322 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 32951280099/6643838879*10749957122^(3/16) 3770005305032322 a001 53316291173/6643838879*10749957122^(1/6) 3770005305032322 a001 7778742049/45537549124*4106118243^(8/23) 3770005305032322 a001 12586269025/505019158607*4106118243^(10/23) 3770005305032322 a001 7778742049/17393796001*4106118243^(7/23) 3770005305032322 a001 14930208/10749853441*4106118243^(13/23) 3770005305032322 a001 20365011074/6643838879*10749957122^(5/24) 3770005305032322 a001 956722026041/6643838879*4106118243^(1/23) 3770005305032322 a001 10983760033/440719107401*4106118243^(10/23) 3770005305032322 a001 43133785636/1730726404001*4106118243^(10/23) 3770005305032322 a001 75283811239/3020733700601*4106118243^(10/23) 3770005305032322 a001 182717648081/7331474697802*4106118243^(10/23) 3770005305032322 a001 139583862445/5600748293801*4106118243^(10/23) 3770005305032322 a001 7778742049/6643838879*45537549124^(4/17) 3770005305032322 a001 53316291173/2139295485799*4106118243^(10/23) 3770005305032322 a001 7778742049/6643838879*817138163596^(4/19) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(47) 3770005305032322 a001 2971215073/17393796001*23725150497407^(1/4) 3770005305032322 a001 7778742049/6643838879*192900153618^(2/9) 3770005305032322 a001 7778742049/6643838879*73681302247^(3/13) 3770005305032322 a001 2971215073/17393796001*73681302247^(4/13) 3770005305032322 a001 10182505537/408569081798*4106118243^(10/23) 3770005305032322 a001 2971215073/119218851371*10749957122^(5/12) 3770005305032322 a001 2971215073/45537549124*10749957122^(3/8) 3770005305032322 a001 2971215073/192900153618*10749957122^(7/16) 3770005305032322 a001 7778742049/119218851371*4106118243^(9/23) 3770005305032322 a001 2971215073/312119004989*10749957122^(11/24) 3770005305032322 a001 2971215073/817138163596*10749957122^(1/2) 3770005305032322 a001 12586269025/1322157322203*4106118243^(11/23) 3770005305032322 a001 2971215073/2139295485799*10749957122^(13/24) 3770005305032322 a001 1602508992/3020733700601*4106118243^(14/23) 3770005305032322 a001 2971215073/3461452808002*10749957122^(9/16) 3770005305032322 a001 2971215073/5600748293801*10749957122^(7/12) 3770005305032322 a001 365435296162/6643838879*4106118243^(2/23) 3770005305032322 a001 2971215073/14662949395604*10749957122^(5/8) 3770005305032322 a001 7778742049/6643838879*10749957122^(1/4) 3770005305032322 a001 32951280099/3461452808002*4106118243^(11/23) 3770005305032322 a001 591286729879/10749957122*1568397607^(1/11) 3770005305032322 a001 86267571272/9062201101803*4106118243^(11/23) 3770005305032322 a001 225851433717/23725150497407*4106118243^(11/23) 3770005305032322 a001 139583862445/14662949395604*4106118243^(11/23) 3770005305032322 a001 12586269025/2139295485799*4106118243^(1/2) 3770005305032322 a001 53316291173/5600748293801*4106118243^(11/23) 3770005305032322 a001 2971215073/17393796001*10749957122^(1/3) 3770005305032322 a001 20365011074/2139295485799*4106118243^(11/23) 3770005305032322 a001 7778742049/312119004989*4106118243^(10/23) 3770005305032322 a001 32951280099/5600748293801*4106118243^(1/2) 3770005305032322 a001 1135099622/192933544679*4106118243^(1/2) 3770005305032322 a001 139583862445/23725150497407*4106118243^(1/2) 3770005305032322 a001 12586269025/3461452808002*4106118243^(12/23) 3770005305032322 a001 53316291173/9062201101803*4106118243^(1/2) 3770005305032322 a001 4807526976/23725150497407*4106118243^(15/23) 3770005305032322 a001 10182505537/1730726404001*4106118243^(1/2) 3770005305032322 a001 139583862445/6643838879*4106118243^(3/23) 3770005305032322 a001 10983760033/3020733700601*4106118243^(12/23) 3770005305032322 a001 86267571272/23725150497407*4106118243^(12/23) 3770005305032322 a001 53316291173/14662949395604*4106118243^(12/23) 3770005305032322 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 20365011074/5600748293801*4106118243^(12/23) 3770005305032322 a001 7778742049/817138163596*4106118243^(11/23) 3770005305032322 a001 12586269025/4106118243*1568397607^(5/22) 3770005305032322 a001 12586269025/9062201101803*4106118243^(13/23) 3770005305032322 a001 7778742049/1322157322203*4106118243^(1/2) 3770005305032322 a001 53316291173/6643838879*4106118243^(4/23) 3770005305032322 a001 32951280099/23725150497407*4106118243^(13/23) 3770005305032322 a001 10182505537/7331474697802*4106118243^(13/23) 3770005305032322 a001 7778742049/2139295485799*4106118243^(12/23) 3770005305032322 a001 12586269025/23725150497407*4106118243^(14/23) 3770005305032322 a001 12585437040/228811001*1568397607^(1/11) 3770005305032322 a001 20365011074/6643838879*4106118243^(5/23) 3770005305032322 a001 4052739537881/73681302247*1568397607^(1/11) 3770005305032322 a001 7778742049/5600748293801*4106118243^(13/23) 3770005305032322 a001 3536736619241/64300051206*1568397607^(1/11) 3770005305032322 a001 6557470319842/119218851371*1568397607^(1/11) 3770005305032322 a001 2504730781961/45537549124*1568397607^(1/11) 3770005305032322 a001 7778742049/14662949395604*4106118243^(14/23) 3770005305032322 a001 956722026041/17393796001*1568397607^(1/11) 3770005305032322 a001 956722026041/6643838879*1568397607^(1/22) 3770005305032322 a001 1134903170/23725150497407*2537720636^(11/15) 3770005305032322 a001 7778742049/6643838879*4106118243^(6/23) 3770005305032322 a001 1602508992/1368706081*1568397607^(3/11) 3770005305032322 a001 1134903170/4106118243*2537720636^(1/3) 3770005305032322 a001 2971215073/6643838879*17393796001^(2/7) 3770005305032322 a001 2971215073/6643838879*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(47) 3770005305032322 a001 2971215073/6643838879*505019158607^(1/4) 3770005305032322 a001 7778742049/4106118243*1568397607^(1/4) 3770005305032322 a001 2971215073/45537549124*4106118243^(9/23) 3770005305032322 a001 2971215073/17393796001*4106118243^(8/23) 3770005305032322 a001 225851433717/10749957122*1568397607^(3/22) 3770005305032322 a001 2971215073/6643838879*10749957122^(7/24) 3770005305032322 a001 2971215073/119218851371*4106118243^(10/23) 3770005305032322 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 2971215073/312119004989*4106118243^(11/23) 3770005305032322 a001 1134903170/5600748293801*2537720636^(2/3) 3770005305032322 a001 2971215073/505019158607*4106118243^(1/2) 3770005305032322 a001 2971215073/817138163596*4106118243^(12/23) 3770005305032322 a001 591286729879/28143753123*1568397607^(3/22) 3770005305032322 a001 1548008755920/73681302247*1568397607^(3/22) 3770005305032322 a001 4052739537881/192900153618*1568397607^(3/22) 3770005305032322 a001 225749145909/10745088481*1568397607^(3/22) 3770005305032322 a001 6557470319842/312119004989*1568397607^(3/22) 3770005305032322 a001 2504730781961/119218851371*1568397607^(3/22) 3770005305032322 a001 956722026041/45537549124*1568397607^(3/22) 3770005305032322 a001 2971215073/2139295485799*4106118243^(13/23) 3770005305032322 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 20365011074/1568397607*599074578^(1/6) 3770005305032322 a001 365435296162/17393796001*1568397607^(3/22) 3770005305032322 a001 2971215073/5600748293801*4106118243^(14/23) 3770005305032322 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(64)*Lucas(46)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(66)*Lucas(46)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(68)*Lucas(46)/(1/2+sqrt(5)/2)^100 3770005305032322 a001 2/1836311903*(1/2+1/2*5^(1/2))^60 3770005305032322 a004 Fibonacci(67)*Lucas(46)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(65)*Lucas(46)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(63)*Lucas(46)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 365435296162/6643838879*1568397607^(1/11) 3770005305032322 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 2971215073/14662949395604*4106118243^(15/23) 3770005305032322 a001 1134903170/1322157322203*2537720636^(3/5) 3770005305032322 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 2971215073/6643838879*4106118243^(7/23) 3770005305032322 a001 43133785636/5374978561*1568397607^(2/11) 3770005305032322 a001 1134903170/505019158607*2537720636^(5/9) 3770005305032322 a001 1134903170/312119004989*2537720636^(8/15) 3770005305032322 a001 75283811239/9381251041*1568397607^(2/11) 3770005305032322 a001 591286729879/4106118243*599074578^(1/21) 3770005305032322 a001 591286729879/73681302247*1568397607^(2/11) 3770005305032322 a001 86000486440/10716675201*1568397607^(2/11) 3770005305032322 a001 4052739537881/505019158607*1568397607^(2/11) 3770005305032322 a001 3278735159921/408569081798*1568397607^(2/11) 3770005305032322 a001 2504730781961/312119004989*1568397607^(2/11) 3770005305032322 a001 956722026041/119218851371*1568397607^(2/11) 3770005305032322 a001 182717648081/22768774562*1568397607^(2/11) 3770005305032322 a001 12586269025/599074578*228826127^(3/20) 3770005305032322 a001 139583862445/17393796001*1568397607^(2/11) 3770005305032322 a001 139583862445/6643838879*1568397607^(3/22) 3770005305032322 a001 1836311903/10749957122*1568397607^(4/11) 3770005305032322 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 1134903170/73681302247*2537720636^(7/15) 3770005305032322 a001 32951280099/10749957122*1568397607^(5/22) 3770005305032322 a001 567451585/22768774562*2537720636^(4/9) 3770005305032322 a001 86267571272/28143753123*1568397607^(5/22) 3770005305032322 a001 32264490531/10525900321*1568397607^(5/22) 3770005305032322 a001 591286729879/192900153618*1568397607^(5/22) 3770005305032322 a001 1548008755920/505019158607*1568397607^(5/22) 3770005305032322 a001 1515744265389/494493258286*1568397607^(5/22) 3770005305032322 a001 2504730781961/817138163596*1568397607^(5/22) 3770005305032322 a001 956722026041/312119004989*1568397607^(5/22) 3770005305032322 a001 365435296162/119218851371*1568397607^(5/22) 3770005305032322 a001 139583862445/45537549124*1568397607^(5/22) 3770005305032322 a001 10182505537/5374978561*1568397607^(1/4) 3770005305032322 a001 53316291173/17393796001*1568397607^(5/22) 3770005305032322 a001 1134903170/4106118243*45537549124^(5/17) 3770005305032322 a001 1134903170/4106118243*312119004989^(3/11) 3770005305032322 a001 1134903170/4106118243*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(45) 3770005305032322 a001 1134903170/4106118243*192900153618^(5/18) 3770005305032322 a001 1836311903/2537720636*73681302247^(1/4) 3770005305032322 a001 1134903170/4106118243*28143753123^(3/10) 3770005305032322 a001 1134903170/17393796001*2537720636^(2/5) 3770005305032322 a001 53316291173/6643838879*1568397607^(2/11) 3770005305032322 a001 1134903170/4106118243*10749957122^(5/16) 3770005305032322 a001 53316291173/28143753123*1568397607^(1/4) 3770005305032322 a001 12586269025/10749957122*1568397607^(3/11) 3770005305032322 a001 139583862445/73681302247*1568397607^(1/4) 3770005305032322 a001 182717648081/96450076809*1568397607^(1/4) 3770005305032322 a001 956722026041/505019158607*1568397607^(1/4) 3770005305032322 a001 10610209857723/5600748293801*1568397607^(1/4) 3770005305032322 a001 591286729879/312119004989*1568397607^(1/4) 3770005305032322 a001 225851433717/119218851371*1568397607^(1/4) 3770005305032322 a001 21566892818/11384387281*1568397607^(1/4) 3770005305032322 a001 32951280099/17393796001*1568397607^(1/4) 3770005305032322 a001 1836311903/28143753123*1568397607^(9/22) 3770005305032322 a001 10983760033/9381251041*1568397607^(3/11) 3770005305032322 a001 86267571272/73681302247*1568397607^(3/11) 3770005305032322 a001 75283811239/64300051206*1568397607^(3/11) 3770005305032322 a001 2504730781961/2139295485799*1568397607^(3/11) 3770005305032322 a001 365435296162/312119004989*1568397607^(3/11) 3770005305032322 a001 139583862445/119218851371*1568397607^(3/11) 3770005305032322 a001 53316291173/45537549124*1568397607^(3/11) 3770005305032322 a001 2403763488/5374978561*1568397607^(7/22) 3770005305032322 a001 20365011074/17393796001*1568397607^(3/11) 3770005305032322 a001 20365011074/6643838879*1568397607^(5/22) 3770005305032322 a001 701408733/1568397607*599074578^(1/3) 3770005305032322 a001 12586269025/1568397607*599074578^(4/21) 3770005305032322 a001 1144206275/230701876*2537720636^(1/5) 3770005305032322 a001 12586269025/6643838879*1568397607^(1/4) 3770005305032322 a001 774004377960/5374978561*599074578^(1/21) 3770005305032322 a001 7778742049/2537720636*2537720636^(2/9) 3770005305032322 a001 1836311903/73681302247*1568397607^(5/11) 3770005305032322 a001 12586269025/28143753123*1568397607^(7/22) 3770005305032322 a001 32951280099/73681302247*1568397607^(7/22) 3770005305032322 a001 43133785636/96450076809*1568397607^(7/22) 3770005305032322 a001 225851433717/505019158607*1568397607^(7/22) 3770005305032322 a001 591286729879/1322157322203*1568397607^(7/22) 3770005305032322 a001 182717648081/408569081798*1568397607^(7/22) 3770005305032322 a001 139583862445/312119004989*1568397607^(7/22) 3770005305032322 a001 53316291173/119218851371*1568397607^(7/22) 3770005305032322 a001 10182505537/22768774562*1568397607^(7/22) 3770005305032322 a001 4052739537881/28143753123*599074578^(1/21) 3770005305032322 a001 1515744265389/10525900321*599074578^(1/21) 3770005305032322 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 3278735159921/22768774562*599074578^(1/21) 3770005305032322 a001 53316291173/2537720636*2537720636^(2/15) 3770005305032322 a001 7778742049/17393796001*1568397607^(7/22) 3770005305032322 a001 2504730781961/17393796001*599074578^(1/21) 3770005305032322 a001 2971215073/2537720636*2537720636^(4/15) 3770005305032322 a001 7778742049/6643838879*1568397607^(3/11) 3770005305032322 a001 1602508992/9381251041*1568397607^(4/11) 3770005305032322 a001 1135099622/33391061*2537720636^(1/9) 3770005305032322 a001 365435296162/4106118243*599074578^(1/14) 3770005305032322 a001 1836311903/192900153618*1568397607^(1/2) 3770005305032322 a001 225851433717/2537720636*2537720636^(1/15) 3770005305032322 a001 12586269025/73681302247*1568397607^(4/11) 3770005305032322 a001 567451585/5374978561*45537549124^(1/3) 3770005305032322 a001 1201881744/634430159*312119004989^(1/5) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(45) 3770005305032322 a001 10983760033/64300051206*1568397607^(4/11) 3770005305032322 a001 86267571272/505019158607*1568397607^(4/11) 3770005305032322 a001 75283811239/440719107401*1568397607^(4/11) 3770005305032322 a001 2504730781961/14662949395604*1568397607^(4/11) 3770005305032322 a001 139583862445/817138163596*1568397607^(4/11) 3770005305032322 a001 53316291173/312119004989*1568397607^(4/11) 3770005305032322 a001 20365011074/119218851371*1568397607^(4/11) 3770005305032322 a001 7778742049/45537549124*1568397607^(4/11) 3770005305032322 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 1134903170/2139295485799*17393796001^(4/7) 3770005305032322 a001 1134903170/73681302247*17393796001^(3/7) 3770005305032322 a001 1144206275/230701876*45537549124^(3/17) 3770005305032322 a001 1134903170/28143753123*817138163596^(1/3) 3770005305032322 a001 1144206275/230701876*14662949395604^(1/7) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(45) 3770005305032322 a001 1144206275/230701876*192900153618^(1/6) 3770005305032322 a001 32951280099/2537720636*17393796001^(1/7) 3770005305032322 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 1134903170/73681302247*45537549124^(7/17) 3770005305032322 a001 1134903170/23725150497407*45537549124^(11/17) 3770005305032322 a001 1134903170/5600748293801*45537549124^(10/17) 3770005305032322 a001 1134903170/1322157322203*45537549124^(9/17) 3770005305032322 a001 1134903170/312119004989*45537549124^(8/17) 3770005305032322 a001 1134903170/73681302247*14662949395604^(1/3) 3770005305032322 a001 32951280099/2537720636*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(45) 3770005305032322 a001 1134903170/73681302247*192900153618^(7/18) 3770005305032322 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 225851433717/2537720636*45537549124^(1/17) 3770005305032322 a001 1135099622/33391061*312119004989^(1/11) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(45) 3770005305032322 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^86 3770005305032322 a001 1134903170/505019158607*312119004989^(5/11) 3770005305032322 a001 1134903170/23725150497407*312119004989^(3/5) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(45) 3770005305032322 a001 1134903170/505019158607*3461452808002^(5/12) 3770005305032322 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^88 3770005305032322 a001 1134903170/1322157322203*817138163596^(9/19) 3770005305032322 a001 1134903170/1322157322203*14662949395604^(3/7) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(58) 3770005305032322 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(45) 3770005305032322 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(45)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(45)*Lucas(65)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(45)*Lucas(67)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(45)*Lucas(69)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(86) 3770005305032322 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(88) 3770005305032322 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(90) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(92) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(94) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^65/Lucas(96) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^67/Lucas(98) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^68/Lucas(99) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^69/Lucas(100) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^66/Lucas(97) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^64/Lucas(95) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(93) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(91) 3770005305032322 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(89) 3770005305032322 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(87) 3770005305032322 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(45)*Lucas(68)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(45)*Lucas(66)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(45)*Lucas(64)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(45)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(59) 3770005305032322 a006 5^(1/2)*Fibonacci(59)/Lucas(45)/sqrt(5) 3770005305032322 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(57) 3770005305032322 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(45) 3770005305032322 a001 567451585/7331474697802*505019158607^(4/7) 3770005305032322 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^87 3770005305032322 a001 1134903170/312119004989*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(45) 3770005305032322 a001 1134903170/1322157322203*192900153618^(1/2) 3770005305032322 a001 1134903170/5600748293801*192900153618^(5/9) 3770005305032322 a001 1134903170/23725150497407*192900153618^(11/18) 3770005305032322 a001 1134903170/312119004989*192900153618^(4/9) 3770005305032322 a001 139583862445/2537720636*73681302247^(1/13) 3770005305032322 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 956722026041/6643838879*599074578^(1/21) 3770005305032322 a001 1134903170/119218851371*312119004989^(2/5) 3770005305032322 a001 53316291173/2537720636*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(45) 3770005305032322 a001 567451585/408569081798*73681302247^(1/2) 3770005305032322 a001 1134903170/312119004989*73681302247^(6/13) 3770005305032322 a001 1134903170/2139295485799*73681302247^(7/13) 3770005305032322 a001 567451585/7331474697802*73681302247^(8/13) 3770005305032322 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 1144206275/230701876*10749957122^(3/16) 3770005305032322 a001 182717648081/1268860318*10749957122^(1/24) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(45) 3770005305032322 a001 10182505537/1268860318*23725150497407^(1/8) 3770005305032322 a001 567451585/22768774562*23725150497407^(5/16) 3770005305032322 a001 10182505537/1268860318*505019158607^(1/7) 3770005305032322 a001 567451585/22768774562*505019158607^(5/14) 3770005305032322 a001 10182505537/1268860318*73681302247^(2/13) 3770005305032322 a001 225851433717/2537720636*10749957122^(1/16) 3770005305032322 a001 567451585/22768774562*73681302247^(5/13) 3770005305032322 a001 1134903170/505019158607*28143753123^(1/2) 3770005305032322 a001 139583862445/2537720636*10749957122^(1/12) 3770005305032322 a001 1134903170/5600748293801*28143753123^(3/5) 3770005305032322 a001 567451585/22768774562*28143753123^(2/5) 3770005305032322 a001 53316291173/2537720636*10749957122^(1/8) 3770005305032322 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 10182505537/1268860318*10749957122^(1/6) 3770005305032322 a001 686789568/10525900321*1568397607^(9/22) 3770005305032322 a001 182717648081/1268860318*4106118243^(1/23) 3770005305032322 a001 1134903170/17393796001*45537549124^(6/17) 3770005305032322 a001 1134903170/17393796001*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(45) 3770005305032322 a001 1134903170/17393796001*192900153618^(1/3) 3770005305032322 a001 7778742049/2537720636*28143753123^(1/5) 3770005305032322 a001 1134903170/73681302247*10749957122^(7/16) 3770005305032322 a001 1134903170/119218851371*10749957122^(11/24) 3770005305032322 a001 567451585/22768774562*10749957122^(5/12) 3770005305032322 a001 1134903170/312119004989*10749957122^(1/2) 3770005305032322 a001 567451585/408569081798*10749957122^(13/24) 3770005305032322 a001 1134903170/1322157322203*10749957122^(9/16) 3770005305032322 a001 1134903170/2139295485799*10749957122^(7/12) 3770005305032322 a001 7778742049/2537720636*10749957122^(5/24) 3770005305032322 a001 139583862445/2537720636*4106118243^(2/23) 3770005305032322 a001 1134903170/5600748293801*10749957122^(5/8) 3770005305032322 a001 567451585/7331474697802*10749957122^(2/3) 3770005305032322 a001 1134903170/23725150497407*10749957122^(11/16) 3770005305032322 a001 1134903170/17393796001*10749957122^(3/8) 3770005305032322 a001 1836311903/505019158607*1568397607^(6/11) 3770005305032322 a001 53316291173/2537720636*4106118243^(3/23) 3770005305032322 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 12586269025/192900153618*1568397607^(9/22) 3770005305032322 a001 10182505537/1268860318*4106118243^(4/23) 3770005305032322 a001 32951280099/505019158607*1568397607^(9/22) 3770005305032322 a001 86267571272/1322157322203*1568397607^(9/22) 3770005305032322 a001 32264490531/494493258286*1568397607^(9/22) 3770005305032322 a001 1548008755920/23725150497407*1568397607^(9/22) 3770005305032322 a001 365435296162/5600748293801*1568397607^(9/22) 3770005305032322 a001 139583862445/2139295485799*1568397607^(9/22) 3770005305032322 a001 53316291173/817138163596*1568397607^(9/22) 3770005305032322 a001 20365011074/312119004989*1568397607^(9/22) 3770005305032322 a001 7778742049/119218851371*1568397607^(9/22) 3770005305032322 a001 7778742049/2537720636*4106118243^(5/23) 3770005305032322 a001 182717648081/1268860318*1568397607^(1/22) 3770005305032322 a001 2971215073/17393796001*1568397607^(4/11) 3770005305032322 a001 2971215073/6643838879*1568397607^(7/22) 3770005305032322 a001 267084832/10716675201*1568397607^(5/11) 3770005305032322 a001 2971215073/2537720636*45537549124^(4/17) 3770005305032322 a001 2971215073/2537720636*817138163596^(4/19) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(45) 3770005305032322 a001 1134903170/6643838879*23725150497407^(1/4) 3770005305032322 a001 2971215073/2537720636*192900153618^(2/9) 3770005305032322 a001 2971215073/2537720636*73681302247^(3/13) 3770005305032322 a001 1134903170/6643838879*73681302247^(4/13) 3770005305032322 a001 2971215073/2537720636*10749957122^(1/4) 3770005305032322 a001 1134903170/6643838879*10749957122^(1/3) 3770005305032322 a001 1836311903/1322157322203*1568397607^(13/22) 3770005305032322 a001 567451585/22768774562*4106118243^(10/23) 3770005305032322 a001 1134903170/17393796001*4106118243^(9/23) 3770005305032322 a001 12586269025/505019158607*1568397607^(5/11) 3770005305032322 a001 1134903170/119218851371*4106118243^(11/23) 3770005305032322 a001 10983760033/440719107401*1568397607^(5/11) 3770005305032322 a001 43133785636/1730726404001*1568397607^(5/11) 3770005305032322 a001 75283811239/3020733700601*1568397607^(5/11) 3770005305032322 a001 182717648081/7331474697802*1568397607^(5/11) 3770005305032322 a001 139583862445/5600748293801*1568397607^(5/11) 3770005305032322 a001 53316291173/2139295485799*1568397607^(5/11) 3770005305032322 a001 567451585/96450076809*4106118243^(1/2) 3770005305032322 a001 10182505537/408569081798*1568397607^(5/11) 3770005305032322 a001 1134903170/312119004989*4106118243^(12/23) 3770005305032322 a001 7778742049/312119004989*1568397607^(5/11) 3770005305032322 a001 567451585/408569081798*4106118243^(13/23) 3770005305032322 a001 2971215073/45537549124*1568397607^(9/22) 3770005305032322 a001 956722026041/10749957122*599074578^(1/14) 3770005305032322 a001 1134903170/2139295485799*4106118243^(14/23) 3770005305032322 a001 139583862445/2537720636*1568397607^(1/11) 3770005305032322 a001 2971215073/2537720636*4106118243^(6/23) 3770005305032322 a001 7778742049/1568397607*599074578^(3/14) 3770005305032322 a001 1134903170/5600748293801*4106118243^(15/23) 3770005305032322 a001 102287808/10745088481*1568397607^(1/2) 3770005305032322 a001 567451585/7331474697802*4106118243^(16/23) 3770005305032322 a001 2504730781961/28143753123*599074578^(1/14) 3770005305032322 a001 1134903170/6643838879*4106118243^(8/23) 3770005305032322 a001 6557470319842/73681302247*599074578^(1/14) 3770005305032322 a001 10610209857723/119218851371*599074578^(1/14) 3770005305032322 a001 1836311903/3461452808002*1568397607^(7/11) 3770005305032322 a001 4052739537881/45537549124*599074578^(1/14) 3770005305032322 a001 12586269025/1322157322203*1568397607^(1/2) 3770005305032322 a001 1548008755920/17393796001*599074578^(1/14) 3770005305032322 a001 32951280099/3461452808002*1568397607^(1/2) 3770005305032322 a001 86267571272/9062201101803*1568397607^(1/2) 3770005305032322 a001 225851433717/23725150497407*1568397607^(1/2) 3770005305032322 a001 139583862445/14662949395604*1568397607^(1/2) 3770005305032322 a001 53316291173/5600748293801*1568397607^(1/2) 3770005305032322 a001 20365011074/2139295485799*1568397607^(1/2) 3770005305032322 a001 75283811239/1368706081*599074578^(2/21) 3770005305032322 a001 7778742049/817138163596*1568397607^(1/2) 3770005305032322 a001 2971215073/119218851371*1568397607^(5/11) 3770005305032322 a001 53316291173/2537720636*1568397607^(3/22) 3770005305032322 a001 1602508992/440719107401*1568397607^(6/11) 3770005305032322 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 1836311903/9062201101803*1568397607^(15/22) 3770005305032322 a001 12586269025/3461452808002*1568397607^(6/11) 3770005305032322 a001 10983760033/3020733700601*1568397607^(6/11) 3770005305032322 a001 591286729879/6643838879*599074578^(1/14) 3770005305032322 a001 86267571272/23725150497407*1568397607^(6/11) 3770005305032322 a001 53316291173/14662949395604*1568397607^(6/11) 3770005305032322 a001 20365011074/5600748293801*1568397607^(6/11) 3770005305032322 a001 7778742049/2139295485799*1568397607^(6/11) 3770005305032322 a001 2971215073/312119004989*1568397607^(1/2) 3770005305032322 a001 10182505537/1268860318*1568397607^(2/11) 3770005305032322 a001 14930208/10749853441*1568397607^(13/22) 3770005305032322 a001 1836311903/23725150497407*1568397607^(8/11) 3770005305032322 a001 12586269025/9062201101803*1568397607^(13/22) 3770005305032322 a001 32951280099/23725150497407*1568397607^(13/22) 3770005305032322 a001 10182505537/7331474697802*1568397607^(13/22) 3770005305032322 a001 7778742049/5600748293801*1568397607^(13/22) 3770005305032322 a001 2971215073/817138163596*1568397607^(6/11) 3770005305032322 a001 686789568/224056801*599074578^(5/21) 3770005305032322 a001 1201881744/634430159*1568397607^(1/4) 3770005305032322 a001 1602508992/3020733700601*1568397607^(7/11) 3770005305032322 a001 7778742049/2537720636*1568397607^(5/22) 3770005305032322 a001 591286729879/10749957122*599074578^(2/21) 3770005305032322 a001 12586269025/23725150497407*1568397607^(7/11) 3770005305032322 a001 7778742049/14662949395604*1568397607^(7/11) 3770005305032322 a001 2971215073/2139295485799*1568397607^(13/22) 3770005305032322 a001 12585437040/228811001*599074578^(2/21) 3770005305032322 a001 4052739537881/73681302247*599074578^(2/21) 3770005305032322 a001 3536736619241/64300051206*599074578^(2/21) 3770005305032322 a001 6557470319842/119218851371*599074578^(2/21) 3770005305032322 a001 2504730781961/45537549124*599074578^(2/21) 3770005305032322 a001 4807526976/23725150497407*1568397607^(15/22) 3770005305032322 a001 956722026041/17393796001*599074578^(2/21) 3770005305032322 a001 2971215073/5600748293801*1568397607^(7/11) 3770005305032322 a001 182717648081/1268860318*599074578^(1/21) 3770005305032322 a001 365435296162/6643838879*599074578^(2/21) 3770005305032322 a001 2971215073/2537720636*1568397607^(3/11) 3770005305032322 a001 2971215073/14662949395604*1568397607^(15/22) 3770005305032322 a001 567451585/1268860318*17393796001^(2/7) 3770005305032322 a001 567451585/1268860318*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(45) 3770005305032322 a001 567451585/1268860318*505019158607^(1/4) 3770005305032322 a001 567451585/1268860318*10749957122^(7/24) 3770005305032322 a001 1134903170/17393796001*1568397607^(9/22) 3770005305032322 a001 1134903170/6643838879*1568397607^(4/11) 3770005305032322 a001 567451585/1268860318*4106118243^(7/23) 3770005305032322 a001 1836311903/1568397607*599074578^(2/7) 3770005305032322 a001 86267571272/4106118243*599074578^(1/7) 3770005305032322 a001 567451585/22768774562*1568397607^(5/11) 3770005305032322 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 225851433717/2537720636*599074578^(1/14) 3770005305032322 a001 1134903170/119218851371*1568397607^(1/2) 3770005305032322 a001 1134903170/312119004989*1568397607^(6/11) 3770005305032322 a001 225851433717/10749957122*599074578^(1/7) 3770005305032322 a001 567451585/408569081798*1568397607^(13/22) 3770005305032322 a001 591286729879/28143753123*599074578^(1/7) 3770005305032322 a001 1548008755920/73681302247*599074578^(1/7) 3770005305032322 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 4052739537881/192900153618*599074578^(1/7) 3770005305032322 a001 225749145909/10745088481*599074578^(1/7) 3770005305032322 a001 6557470319842/312119004989*599074578^(1/7) 3770005305032322 a001 2504730781961/119218851371*599074578^(1/7) 3770005305032322 a001 956722026041/45537549124*599074578^(1/7) 3770005305032322 a001 365435296162/17393796001*599074578^(1/7) 3770005305032322 a001 53316291173/4106118243*599074578^(1/6) 3770005305032322 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^80 3770005305032322 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(66)*Lucas(44)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(68)*Lucas(44)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(70)*Lucas(44)/(1/2+sqrt(5)/2)^100 3770005305032322 a001 2/701408733*(1/2+1/2*5^(1/2))^58 3770005305032322 a004 Fibonacci(69)*Lucas(44)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(67)*Lucas(44)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(65)*Lucas(44)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 1134903170/2139295485799*1568397607^(7/11) 3770005305032322 a001 139583862445/2537720636*599074578^(2/21) 3770005305032322 a001 139583862445/6643838879*599074578^(1/7) 3770005305032322 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 1134903170/5600748293801*1568397607^(15/22) 3770005305032322 a001 567451585/1268860318*1568397607^(7/22) 3770005305032322 a001 567451585/7331474697802*1568397607^(8/11) 3770005305032322 a001 139583862445/10749957122*599074578^(1/6) 3770005305032322 a001 1134903170/23725150497407*1568397607^(3/4) 3770005305032322 a001 365435296162/28143753123*599074578^(1/6) 3770005305032322 a001 956722026041/73681302247*599074578^(1/6) 3770005305032322 a001 2504730781961/192900153618*599074578^(1/6) 3770005305032322 a001 10610209857723/817138163596*599074578^(1/6) 3770005305032322 a001 4052739537881/312119004989*599074578^(1/6) 3770005305032322 a001 1548008755920/119218851371*599074578^(1/6) 3770005305032322 a001 591286729879/45537549124*599074578^(1/6) 3770005305032322 a001 7787980473/599786069*599074578^(1/6) 3770005305032322 a001 10983760033/1368706081*599074578^(4/21) 3770005305032322 a001 86267571272/6643838879*599074578^(1/6) 3770005305032322 a001 43133785636/5374978561*599074578^(4/21) 3770005305032322 a001 75283811239/9381251041*599074578^(4/21) 3770005305032322 a001 591286729879/73681302247*599074578^(4/21) 3770005305032322 a001 86000486440/10716675201*599074578^(4/21) 3770005305032322 a001 4052739537881/505019158607*599074578^(4/21) 3770005305032322 a001 3278735159921/408569081798*599074578^(4/21) 3770005305032322 a001 2504730781961/312119004989*599074578^(4/21) 3770005305032322 a001 956722026041/119218851371*599074578^(4/21) 3770005305032322 a001 182717648081/22768774562*599074578^(4/21) 3770005305032322 a001 139583862445/17393796001*599074578^(4/21) 3770005305032322 a001 20365011074/4106118243*599074578^(3/14) 3770005305032322 a001 32264490531/224056801*228826127^(1/20) 3770005305032322 a001 53316291173/2537720636*599074578^(1/7) 3770005305032322 a001 53316291173/6643838879*599074578^(4/21) 3770005305032322 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 53316291173/10749957122*599074578^(3/14) 3770005305032322 a001 233802911/1368706081*599074578^(8/21) 3770005305032322 a001 139583862445/28143753123*599074578^(3/14) 3770005305032322 a001 365435296162/73681302247*599074578^(3/14) 3770005305032322 a001 956722026041/192900153618*599074578^(3/14) 3770005305032322 a001 2504730781961/505019158607*599074578^(3/14) 3770005305032322 a001 10610209857723/2139295485799*599074578^(3/14) 3770005305032322 a001 4052739537881/817138163596*599074578^(3/14) 3770005305032322 a001 140728068720/28374454999*599074578^(3/14) 3770005305032322 a001 591286729879/119218851371*599074578^(3/14) 3770005305032322 a001 225851433717/45537549124*599074578^(3/14) 3770005305032322 a001 86267571272/17393796001*599074578^(3/14) 3770005305032322 a001 12586269025/4106118243*599074578^(5/21) 3770005305032322 a001 433494437/1568397607*2537720636^(1/3) 3770005305032322 a001 32951280099/2537720636*599074578^(1/6) 3770005305032322 a001 32951280099/6643838879*599074578^(3/14) 3770005305032322 a001 32951280099/10749957122*599074578^(5/21) 3770005305032322 a001 433494437/1568397607*45537549124^(5/17) 3770005305032322 a001 433494437/1568397607*312119004989^(3/11) 3770005305032322 a001 433494437/1568397607*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(44) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(43) 3770005305032322 a001 433494437/1568397607*192900153618^(5/18) 3770005305032322 a001 701408733/969323029*73681302247^(1/4) 3770005305032322 a001 433494437/1568397607*28143753123^(3/10) 3770005305032322 a001 433494437/1568397607*10749957122^(5/16) 3770005305032322 a001 86267571272/28143753123*599074578^(5/21) 3770005305032322 a001 32264490531/10525900321*599074578^(5/21) 3770005305032322 a001 591286729879/192900153618*599074578^(5/21) 3770005305032322 a001 1548008755920/505019158607*599074578^(5/21) 3770005305032322 a001 1515744265389/494493258286*599074578^(5/21) 3770005305032322 a001 2504730781961/817138163596*599074578^(5/21) 3770005305032322 a001 956722026041/312119004989*599074578^(5/21) 3770005305032322 a001 365435296162/119218851371*599074578^(5/21) 3770005305032322 a001 139583862445/45537549124*599074578^(5/21) 3770005305032322 a001 53316291173/17393796001*599074578^(5/21) 3770005305032322 a001 10182505537/1268860318*599074578^(4/21) 3770005305032322 a001 20365011074/6643838879*599074578^(5/21) 3770005305032322 a001 1602508992/1368706081*599074578^(2/7) 3770005305032322 a001 701408733/2537720636*599074578^(5/14) 3770005305032322 a001 1144206275/230701876*599074578^(3/14) 3770005305032322 a001 701408733/10749957122*599074578^(3/7) 3770005305032322 a001 12586269025/10749957122*599074578^(2/7) 3770005305032322 a001 10983760033/9381251041*599074578^(2/7) 3770005305032322 a001 86267571272/73681302247*599074578^(2/7) 3770005305032322 a001 75283811239/64300051206*599074578^(2/7) 3770005305032322 a001 2504730781961/2139295485799*599074578^(2/7) 3770005305032322 a001 365435296162/312119004989*599074578^(2/7) 3770005305032322 a001 139583862445/119218851371*599074578^(2/7) 3770005305032322 a001 53316291173/45537549124*599074578^(2/7) 3770005305032322 a001 20365011074/17393796001*599074578^(2/7) 3770005305032322 a001 1836311903/4106118243*599074578^(1/3) 3770005305032322 a001 7778742049/2537720636*599074578^(5/21) 3770005305032322 a001 7778742049/6643838879*599074578^(2/7) 3770005305032322 a001 591286729879/4106118243*228826127^(1/20) 3770005305032322 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 2403763488/5374978561*599074578^(1/3) 3770005305032322 a001 233802911/9381251041*599074578^(10/21) 3770005305032322 a001 12586269025/28143753123*599074578^(1/3) 3770005305032322 a001 32951280099/73681302247*599074578^(1/3) 3770005305032322 a001 43133785636/96450076809*599074578^(1/3) 3770005305032322 a001 225851433717/505019158607*599074578^(1/3) 3770005305032322 a001 10610209857723/23725150497407*599074578^(1/3) 3770005305032322 a001 182717648081/408569081798*599074578^(1/3) 3770005305032322 a001 139583862445/312119004989*599074578^(1/3) 3770005305032322 a001 53316291173/119218851371*599074578^(1/3) 3770005305032322 a001 10182505537/22768774562*599074578^(1/3) 3770005305032322 a001 7778742049/17393796001*599074578^(1/3) 3770005305032322 a001 433494437/23725150497407*2537720636^(7/9) 3770005305032322 a001 774004377960/5374978561*228826127^(1/20) 3770005305032322 a001 433494437/9062201101803*2537720636^(11/15) 3770005305032322 a001 4052739537881/28143753123*228826127^(1/20) 3770005305032322 a001 1515744265389/10525900321*228826127^(1/20) 3770005305032322 a001 3278735159921/22768774562*228826127^(1/20) 3770005305032322 a001 2504730781961/17393796001*228826127^(1/20) 3770005305032322 a001 1836311903/6643838879*599074578^(5/14) 3770005305032322 a001 433494437/2139295485799*2537720636^(2/3) 3770005305032322 a001 433494437/505019158607*2537720636^(3/5) 3770005305032322 a001 2971215073/2537720636*599074578^(2/7) 3770005305032322 a001 2971215073/6643838879*599074578^(1/3) 3770005305032322 a001 956722026041/6643838879*228826127^(1/20) 3770005305032322 a001 433494437/192900153618*2537720636^(5/9) 3770005305032322 a001 433494437/119218851371*2537720636^(8/15) 3770005305032322 a001 701408733/45537549124*599074578^(1/2) 3770005305032322 a001 4807526976/17393796001*599074578^(5/14) 3770005305032322 a001 433494437/28143753123*2537720636^(7/15) 3770005305032322 a001 1836311903/10749957122*599074578^(8/21) 3770005305032322 a001 12586269025/45537549124*599074578^(5/14) 3770005305032322 a001 32951280099/119218851371*599074578^(5/14) 3770005305032322 a001 86267571272/312119004989*599074578^(5/14) 3770005305032322 a001 225851433717/817138163596*599074578^(5/14) 3770005305032322 a001 1548008755920/5600748293801*599074578^(5/14) 3770005305032322 a001 139583862445/505019158607*599074578^(5/14) 3770005305032322 a001 53316291173/192900153618*599074578^(5/14) 3770005305032322 a001 20365011074/73681302247*599074578^(5/14) 3770005305032322 a001 7778742049/28143753123*599074578^(5/14) 3770005305032322 a001 433494437/17393796001*2537720636^(4/9) 3770005305032322 a001 433494437/4106118243*45537549124^(1/3) 3770005305032322 a001 1836311903/969323029*312119004989^(1/5) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(43) 3770005305032322 a001 2971215073/10749957122*599074578^(5/14) 3770005305032322 a001 267084832/33281921*228826127^(1/5) 3770005305032322 a001 4807526976/969323029*2537720636^(1/5) 3770005305032322 a001 433494437/6643838879*2537720636^(2/5) 3770005305032322 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 20365011074/969323029*2537720636^(2/15) 3770005305032322 a001 32951280099/969323029*2537720636^(1/9) 3770005305032322 a001 1602508992/9381251041*599074578^(8/21) 3770005305032322 a001 2971215073/969323029*2537720636^(2/9) 3770005305032322 a001 701408733/73681302247*599074578^(11/21) 3770005305032322 a001 86267571272/969323029*2537720636^(1/15) 3770005305032322 a001 4807526976/969323029*45537549124^(3/17) 3770005305032322 a001 433494437/10749957122*817138163596^(1/3) 3770005305032322 a001 4807526976/969323029*14662949395604^(1/7) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(43) 3770005305032322 a001 4807526976/969323029*192900153618^(1/6) 3770005305032322 a001 4807526976/969323029*10749957122^(3/16) 3770005305032322 a001 12586269025/73681302247*599074578^(8/21) 3770005305032322 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 10983760033/64300051206*599074578^(8/21) 3770005305032322 a001 86267571272/505019158607*599074578^(8/21) 3770005305032322 a001 75283811239/440719107401*599074578^(8/21) 3770005305032322 a001 2504730781961/14662949395604*599074578^(8/21) 3770005305032322 a001 139583862445/817138163596*599074578^(8/21) 3770005305032322 a001 53316291173/312119004989*599074578^(8/21) 3770005305032322 a001 433494437/28143753123*17393796001^(3/7) 3770005305032322 a001 433494437/23725150497407*17393796001^(5/7) 3770005305032322 a001 20365011074/119218851371*599074578^(8/21) 3770005305032322 a001 433494437/817138163596*17393796001^(4/7) 3770005305032322 a001 12586269025/969323029*17393796001^(1/7) 3770005305032322 a001 433494437/28143753123*45537549124^(7/17) 3770005305032322 a001 433494437/28143753123*14662949395604^(1/3) 3770005305032322 a001 12586269025/969323029*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(43) 3770005305032322 a001 433494437/28143753123*192900153618^(7/18) 3770005305032322 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 433494437/14662949395604*45537549124^(2/3) 3770005305032322 a001 433494437/9062201101803*45537549124^(11/17) 3770005305032322 a001 433494437/2139295485799*45537549124^(10/17) 3770005305032322 a001 433494437/505019158607*45537549124^(9/17) 3770005305032322 a001 32951280099/969323029*312119004989^(1/11) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(43) 3770005305032322 a001 433494437/119218851371*45537549124^(8/17) 3770005305032322 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 32951280099/969323029*28143753123^(1/10) 3770005305032322 a001 86267571272/969323029*45537549124^(1/17) 3770005305032322 a001 433494437/192900153618*312119004989^(5/11) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(43) 3770005305032322 a001 433494437/192900153618*3461452808002^(5/12) 3770005305032322 a001 86267571272/969323029*192900153618^(1/18) 3770005305032322 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 433494437/23725150497407*312119004989^(7/11) 3770005305032322 a001 433494437/2139295485799*312119004989^(6/11) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(56) 3770005305032322 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(43) 3770005305032322 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(58) 3770005305032322 a004 Fibonacci(58)/Lucas(43)/(1/2+sqrt(5)/2) 3770005305032322 a001 433494437/1322157322203*1322157322203^(1/2) 3770005305032322 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^92 3770005305032322 a001 433494437/23725150497407*14662949395604^(5/9) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(43)*Lucas(67)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(43)*Lucas(69)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(43)*Lucas(71)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(82) 3770005305032322 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(84) 3770005305032322 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(86) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(88) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(90) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(92) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(94) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^67/Lucas(96) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^69/Lucas(98) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^71/Lucas(100) 3770005305032322 a004 Fibonacci(43)*Lucas(1)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^68/Lucas(97) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^70/Lucas(99) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^66/Lucas(95) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(93) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(91) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(89) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(87) 3770005305032322 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^43 3770005305032322 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(85) 3770005305032322 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(83) 3770005305032322 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(43)*Lucas(70)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(43)*Lucas(68)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(43)*Lucas(66)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^4 3770005305032322 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^89 3770005305032322 a001 433494437/2139295485799*14662949395604^(10/21) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(59) 3770005305032322 a004 Fibonacci(59)/Lucas(43)/(1/2+sqrt(5)/2)^2 3770005305032322 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(57) 3770005305032322 a006 5^(1/2)*Fibonacci(57)/Lucas(43)/sqrt(5) 3770005305032322 a001 433494437/23725150497407*505019158607^(5/8) 3770005305032322 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^85 3770005305032322 a001 433494437/505019158607*192900153618^(1/2) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(55) 3770005305032322 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(43) 3770005305032322 a001 433494437/2139295485799*192900153618^(5/9) 3770005305032322 a001 433494437/9062201101803*192900153618^(11/18) 3770005305032322 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 433494437/119218851371*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(43) 3770005305032322 a001 433494437/119218851371*192900153618^(4/9) 3770005305032322 a001 53316291173/969323029*73681302247^(1/13) 3770005305032322 a001 433494437/817138163596*73681302247^(7/13) 3770005305032322 a001 433494437/312119004989*73681302247^(1/2) 3770005305032322 a001 433494437/5600748293801*73681302247^(8/13) 3770005305032322 a001 433494437/119218851371*73681302247^(6/13) 3770005305032322 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 139583862445/969323029*10749957122^(1/24) 3770005305032322 a001 20365011074/969323029*45537549124^(2/17) 3770005305032322 a001 20365011074/969323029*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(43) 3770005305032322 a001 86267571272/969323029*10749957122^(1/16) 3770005305032322 a001 433494437/192900153618*28143753123^(1/2) 3770005305032322 a001 433494437/2139295485799*28143753123^(3/5) 3770005305032322 a001 53316291173/969323029*10749957122^(1/12) 3770005305032322 a001 433494437/23725150497407*28143753123^(7/10) 3770005305032322 a001 7778742049/45537549124*599074578^(8/21) 3770005305032322 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 20365011074/969323029*10749957122^(1/8) 3770005305032322 a001 433494437/28143753123*10749957122^(7/16) 3770005305032322 a001 139583862445/969323029*4106118243^(1/23) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(43) 3770005305032322 a001 433494437/17393796001*23725150497407^(5/16) 3770005305032322 a001 7778742049/969323029*505019158607^(1/7) 3770005305032322 a001 433494437/17393796001*505019158607^(5/14) 3770005305032322 a001 7778742049/969323029*73681302247^(2/13) 3770005305032322 a001 433494437/17393796001*73681302247^(5/13) 3770005305032322 a001 433494437/17393796001*28143753123^(2/5) 3770005305032322 a001 433494437/119218851371*10749957122^(1/2) 3770005305032322 a001 433494437/45537549124*10749957122^(11/24) 3770005305032322 a001 433494437/312119004989*10749957122^(13/24) 3770005305032322 a001 7778742049/969323029*10749957122^(1/6) 3770005305032322 a001 433494437/505019158607*10749957122^(9/16) 3770005305032322 a001 433494437/817138163596*10749957122^(7/12) 3770005305032322 a001 53316291173/969323029*4106118243^(2/23) 3770005305032322 a001 433494437/2139295485799*10749957122^(5/8) 3770005305032322 a001 433494437/5600748293801*10749957122^(2/3) 3770005305032322 a001 433494437/9062201101803*10749957122^(11/16) 3770005305032322 a001 433494437/14662949395604*10749957122^(17/24) 3770005305032322 a001 433494437/17393796001*10749957122^(5/12) 3770005305032322 a001 20365011074/969323029*4106118243^(3/23) 3770005305032322 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 7778742049/969323029*4106118243^(4/23) 3770005305032322 a001 139583862445/969323029*1568397607^(1/22) 3770005305032322 a001 433494437/6643838879*45537549124^(6/17) 3770005305032322 a001 2971215073/969323029*312119004989^(2/11) 3770005305032322 a001 433494437/6643838879*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(43) 3770005305032322 a001 433494437/6643838879*192900153618^(1/3) 3770005305032322 a001 2971215073/969323029*28143753123^(1/5) 3770005305032322 a001 2971215073/17393796001*599074578^(8/21) 3770005305032322 a001 2971215073/969323029*10749957122^(5/24) 3770005305032322 a001 433494437/6643838879*10749957122^(3/8) 3770005305032322 a001 1134903170/4106118243*599074578^(5/14) 3770005305032322 a001 433494437/45537549124*4106118243^(11/23) 3770005305032322 a001 433494437/17393796001*4106118243^(10/23) 3770005305032322 a001 433494437/73681302247*4106118243^(1/2) 3770005305032322 a001 433494437/119218851371*4106118243^(12/23) 3770005305032322 a001 433494437/312119004989*4106118243^(13/23) 3770005305032322 a001 2971215073/969323029*4106118243^(5/23) 3770005305032322 a001 433494437/817138163596*4106118243^(14/23) 3770005305032322 a001 53316291173/969323029*1568397607^(1/11) 3770005305032322 a001 433494437/2139295485799*4106118243^(15/23) 3770005305032322 a001 433494437/5600748293801*4106118243^(16/23) 3770005305032322 a001 1836311903/969323029*1568397607^(1/4) 3770005305032322 a001 433494437/14662949395604*4106118243^(17/23) 3770005305032322 a001 433494437/6643838879*4106118243^(9/23) 3770005305032322 a001 182717648081/1268860318*228826127^(1/20) 3770005305032322 a001 133957148/299537289*228826127^(7/20) 3770005305032322 a001 20365011074/969323029*1568397607^(3/22) 3770005305032322 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 1836311903/28143753123*599074578^(3/7) 3770005305032322 a001 7778742049/969323029*1568397607^(2/11) 3770005305032322 a001 1134903170/969323029*2537720636^(4/15) 3770005305032322 a001 2971215073/969323029*1568397607^(5/22) 3770005305032322 a001 686789568/10525900321*599074578^(3/7) 3770005305032322 a001 233802911/64300051206*599074578^(4/7) 3770005305032322 a001 12586269025/192900153618*599074578^(3/7) 3770005305032322 a001 32951280099/505019158607*599074578^(3/7) 3770005305032322 a001 86267571272/1322157322203*599074578^(3/7) 3770005305032322 a001 32264490531/494493258286*599074578^(3/7) 3770005305032322 a001 1548008755920/23725150497407*599074578^(3/7) 3770005305032322 a001 365435296162/5600748293801*599074578^(3/7) 3770005305032322 a001 139583862445/2139295485799*599074578^(3/7) 3770005305032322 a001 53316291173/817138163596*599074578^(3/7) 3770005305032322 a001 20365011074/312119004989*599074578^(3/7) 3770005305032322 a001 139583862445/969323029*599074578^(1/21) 3770005305032322 a001 7778742049/119218851371*599074578^(3/7) 3770005305032322 a001 2971215073/45537549124*599074578^(3/7) 3770005305032322 a001 1134903170/969323029*45537549124^(4/17) 3770005305032322 a001 1134903170/969323029*817138163596^(4/19) 3770005305032322 a001 1134903170/969323029*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(45) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(43) 3770005305032322 a001 1134903170/969323029*192900153618^(2/9) 3770005305032322 a001 1134903170/969323029*73681302247^(3/13) 3770005305032322 a001 433494437/2537720636*73681302247^(4/13) 3770005305032322 a001 1134903170/969323029*10749957122^(1/4) 3770005305032322 a001 433494437/2537720636*10749957122^(1/3) 3770005305032322 a001 1134903170/969323029*4106118243^(6/23) 3770005305032322 a001 567451585/1268860318*599074578^(1/3) 3770005305032322 a001 1134903170/6643838879*599074578^(8/21) 3770005305032322 a001 433494437/2537720636*4106118243^(8/23) 3770005305032322 a001 433494437/17393796001*1568397607^(5/11) 3770005305032322 a001 433494437/6643838879*1568397607^(9/22) 3770005305032322 a001 86267571272/969323029*599074578^(1/14) 3770005305032322 a001 1836311903/73681302247*599074578^(10/21) 3770005305032322 a001 433494437/45537549124*1568397607^(1/2) 3770005305032322 a001 433494437/119218851371*1568397607^(6/11) 3770005305032322 a001 433494437/312119004989*1568397607^(13/22) 3770005305032322 a001 267084832/10716675201*599074578^(10/21) 3770005305032322 a001 701408733/505019158607*599074578^(13/21) 3770005305032322 a001 433494437/817138163596*1568397607^(7/11) 3770005305032322 a001 12586269025/505019158607*599074578^(10/21) 3770005305032322 a001 10983760033/440719107401*599074578^(10/21) 3770005305032322 a001 43133785636/1730726404001*599074578^(10/21) 3770005305032322 a001 75283811239/3020733700601*599074578^(10/21) 3770005305032322 a001 182717648081/7331474697802*599074578^(10/21) 3770005305032322 a001 139583862445/5600748293801*599074578^(10/21) 3770005305032322 a001 53316291173/2139295485799*599074578^(10/21) 3770005305032322 a001 10182505537/408569081798*599074578^(10/21) 3770005305032322 a001 53316291173/969323029*599074578^(2/21) 3770005305032322 a001 7778742049/312119004989*599074578^(10/21) 3770005305032322 a001 1134903170/969323029*1568397607^(3/11) 3770005305032322 a001 1836311903/119218851371*599074578^(1/2) 3770005305032322 a001 433494437/2139295485799*1568397607^(15/22) 3770005305032322 a001 2971215073/119218851371*599074578^(10/21) 3770005305032322 a001 1134903170/17393796001*599074578^(3/7) 3770005305032322 a001 433494437/5600748293801*1568397607^(8/11) 3770005305032322 a001 433494437/2537720636*1568397607^(4/11) 3770005305032322 a001 433494437/9062201101803*1568397607^(3/4) 3770005305032322 a001 433494437/14662949395604*1568397607^(17/22) 3770005305032322 a001 4807526976/312119004989*599074578^(1/2) 3770005305032322 a001 701408733/817138163596*599074578^(9/14) 3770005305032322 a001 12586269025/817138163596*599074578^(1/2) 3770005305032322 a001 32951280099/2139295485799*599074578^(1/2) 3770005305032322 a001 86267571272/5600748293801*599074578^(1/2) 3770005305032322 a001 7787980473/505618944676*599074578^(1/2) 3770005305032322 a001 365435296162/23725150497407*599074578^(1/2) 3770005305032322 a001 139583862445/9062201101803*599074578^(1/2) 3770005305032322 a001 53316291173/3461452808002*599074578^(1/2) 3770005305032322 a001 20365011074/1322157322203*599074578^(1/2) 3770005305032322 a001 7778742049/505019158607*599074578^(1/2) 3770005305032322 a001 1836311903/192900153618*599074578^(11/21) 3770005305032322 a001 2971215073/192900153618*599074578^(1/2) 3770005305032322 a001 102287808/10745088481*599074578^(11/21) 3770005305032322 a001 233802911/440719107401*599074578^(2/3) 3770005305032322 a001 12586269025/1322157322203*599074578^(11/21) 3770005305032322 a001 32951280099/3461452808002*599074578^(11/21) 3770005305032322 a001 86267571272/9062201101803*599074578^(11/21) 3770005305032322 a001 225851433717/23725150497407*599074578^(11/21) 3770005305032322 a001 139583862445/14662949395604*599074578^(11/21) 3770005305032322 a001 53316291173/5600748293801*599074578^(11/21) 3770005305032322 a001 20365011074/2139295485799*599074578^(11/21) 3770005305032322 a001 20365011074/969323029*599074578^(1/7) 3770005305032322 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 2971215073/312119004989*599074578^(11/21) 3770005305032322 a001 567451585/22768774562*599074578^(10/21) 3770005305032322 a001 86267571272/1568397607*228826127^(1/10) 3770005305032322 a001 12586269025/969323029*599074578^(1/6) 3770005305032322 a001 1836311903/505019158607*599074578^(4/7) 3770005305032322 a001 1134903170/73681302247*599074578^(1/2) 3770005305032322 a001 102287808/4868641*87403803^(3/19) 3770005305032322 a001 1602508992/440719107401*599074578^(4/7) 3770005305032322 a001 701408733/3461452808002*599074578^(5/7) 3770005305032322 a001 12586269025/3461452808002*599074578^(4/7) 3770005305032322 a001 10983760033/3020733700601*599074578^(4/7) 3770005305032322 a001 86267571272/23725150497407*599074578^(4/7) 3770005305032322 a001 53316291173/14662949395604*599074578^(4/7) 3770005305032322 a001 20365011074/5600748293801*599074578^(4/7) 3770005305032322 a001 7778742049/2139295485799*599074578^(4/7) 3770005305032322 a001 7778742049/969323029*599074578^(4/21) 3770005305032322 a001 2971215073/817138163596*599074578^(4/7) 3770005305032322 a001 1134903170/119218851371*599074578^(11/21) 3770005305032322 a001 4807526976/969323029*599074578^(3/14) 3770005305032322 a001 433494437/1568397607*599074578^(5/14) 3770005305032322 a001 1836311903/1322157322203*599074578^(13/21) 3770005305032322 a001 14930208/10749853441*599074578^(13/21) 3770005305032322 a001 233802911/3020733700601*599074578^(16/21) 3770005305032322 a001 12586269025/9062201101803*599074578^(13/21) 3770005305032322 a001 32951280099/23725150497407*599074578^(13/21) 3770005305032322 a001 10182505537/7331474697802*599074578^(13/21) 3770005305032322 a001 7778742049/5600748293801*599074578^(13/21) 3770005305032322 a001 1836311903/2139295485799*599074578^(9/14) 3770005305032322 a001 1134903170/312119004989*599074578^(4/7) 3770005305032322 a001 2971215073/2139295485799*599074578^(13/21) 3770005305032322 a001 2971215073/969323029*599074578^(5/21) 3770005305032322 a001 4807526976/5600748293801*599074578^(9/14) 3770005305032322 a001 701408733/14662949395604*599074578^(11/14) 3770005305032322 a001 12586269025/14662949395604*599074578^(9/14) 3770005305032322 a001 20365011074/23725150497407*599074578^(9/14) 3770005305032322 a001 7778742049/9062201101803*599074578^(9/14) 3770005305032322 a001 1836311903/3461452808002*599074578^(2/3) 3770005305032322 a001 2971215073/3461452808002*599074578^(9/14) 3770005305032322 a001 1602508992/3020733700601*599074578^(2/3) 3770005305032322 a001 701408733/23725150497407*599074578^(17/21) 3770005305032322 a001 75283811239/1368706081*228826127^(1/10) 3770005305032322 a001 12586269025/23725150497407*599074578^(2/3) 3770005305032322 a001 7778742049/14662949395604*599074578^(2/3) 3770005305032322 a001 567451585/408569081798*599074578^(13/21) 3770005305032322 a001 2971215073/5600748293801*599074578^(2/3) 3770005305032322 a001 591286729879/10749957122*228826127^(1/10) 3770005305032322 a001 12585437040/228811001*228826127^(1/10) 3770005305032322 a001 4052739537881/73681302247*228826127^(1/10) 3770005305032322 a001 3536736619241/64300051206*228826127^(1/10) 3770005305032322 a001 6557470319842/119218851371*228826127^(1/10) 3770005305032322 a001 2504730781961/45537549124*228826127^(1/10) 3770005305032322 a001 956722026041/17393796001*228826127^(1/10) 3770005305032322 a001 1836311903/599074578*228826127^(1/4) 3770005305032322 a001 1836311903/9062201101803*599074578^(5/7) 3770005305032322 a001 365435296162/6643838879*228826127^(1/10) 3770005305032322 a001 1134903170/1322157322203*599074578^(9/14) 3770005305032322 a001 53316291173/1568397607*228826127^(1/8) 3770005305032322 a001 4807526976/23725150497407*599074578^(5/7) 3770005305032322 a001 1134903170/2139295485799*599074578^(2/3) 3770005305032322 a001 2971215073/14662949395604*599074578^(5/7) 3770005305032322 a001 1134903170/969323029*599074578^(2/7) 3770005305032322 a001 139583862445/969323029*228826127^(1/20) 3770005305032322 a001 1836311903/23725150497407*599074578^(16/21) 3770005305032322 a001 139583862445/2537720636*228826127^(1/10) 3770005305032322 a001 433494437/969323029*17393796001^(2/7) 3770005305032322 a001 433494437/969323029*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(43) 3770005305032322 a001 433494437/969323029*505019158607^(1/4) 3770005305032322 a001 433494437/969323029*10749957122^(7/24) 3770005305032322 a001 1134903170/5600748293801*599074578^(5/7) 3770005305032322 a001 433494437/969323029*4106118243^(7/23) 3770005305032322 a001 433494437/969323029*1568397607^(7/22) 3770005305032322 a001 567451585/7331474697802*599074578^(16/21) 3770005305032322 a001 433494437/2537720636*599074578^(8/21) 3770005305032322 a001 433494437/6643838879*599074578^(3/7) 3770005305032322 a001 139583862445/4106118243*228826127^(1/8) 3770005305032322 a001 1134903170/23725150497407*599074578^(11/14) 3770005305032322 a001 182717648081/5374978561*228826127^(1/8) 3770005305032322 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 956722026041/28143753123*228826127^(1/8) 3770005305032322 a001 2504730781961/73681302247*228826127^(1/8) 3770005305032322 a001 3278735159921/96450076809*228826127^(1/8) 3770005305032322 a001 10610209857723/312119004989*228826127^(1/8) 3770005305032322 a001 4052739537881/119218851371*228826127^(1/8) 3770005305032322 a001 387002188980/11384387281*228826127^(1/8) 3770005305032322 a001 591286729879/17393796001*228826127^(1/8) 3770005305032322 a001 433494437/17393796001*599074578^(10/21) 3770005305032322 a001 225851433717/6643838879*228826127^(1/8) 3770005305032322 a001 433494437/28143753123*599074578^(1/2) 3770005305032322 a001 32951280099/1568397607*228826127^(3/20) 3770005305032322 a001 433494437/45537549124*599074578^(11/21) 3770005305032322 a001 233802911/199691526*228826127^(3/10) 3770005305032322 a001 1135099622/33391061*228826127^(1/8) 3770005305032322 a001 433494437/119218851371*599074578^(4/7) 3770005305032322 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^74 3770005305032322 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^76 3770005305032322 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^78 3770005305032322 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^80 3770005305032322 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(68)*Lucas(42)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(70)*Lucas(42)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(72)*Lucas(42)/(1/2+sqrt(5)/2)^100 3770005305032322 a001 1/133957148*(1/2+1/2*5^(1/2))^56 3770005305032322 a004 Fibonacci(71)*Lucas(42)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(69)*Lucas(42)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(67)*Lucas(42)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 433494437/312119004989*599074578^(13/21) 3770005305032322 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 86267571272/4106118243*228826127^(3/20) 3770005305032322 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 433494437/505019158607*599074578^(9/14) 3770005305032322 a001 225851433717/10749957122*228826127^(3/20) 3770005305032322 a001 591286729879/28143753123*228826127^(3/20) 3770005305032322 a001 1548008755920/73681302247*228826127^(3/20) 3770005305032322 a001 4052739537881/192900153618*228826127^(3/20) 3770005305032322 a001 225749145909/10745088481*228826127^(3/20) 3770005305032322 a001 6557470319842/312119004989*228826127^(3/20) 3770005305032322 a001 2504730781961/119218851371*228826127^(3/20) 3770005305032322 a001 956722026041/45537549124*228826127^(3/20) 3770005305032322 a001 365435296162/17393796001*228826127^(3/20) 3770005305032322 a001 139583862445/6643838879*228826127^(3/20) 3770005305032322 a001 433494437/817138163596*599074578^(2/3) 3770005305032322 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 53316291173/969323029*228826127^(1/10) 3770005305032322 a001 53316291173/2537720636*228826127^(3/20) 3770005305032322 a001 433494437/2139295485799*599074578^(5/7) 3770005305032322 a001 433494437/969323029*599074578^(1/3) 3770005305032322 a001 433494437/5600748293801*599074578^(16/21) 3770005305032322 a001 433494437/9062201101803*599074578^(11/14) 3770005305032322 a001 433494437/14662949395604*599074578^(17/21) 3770005305032322 a001 433494437/23725150497407*599074578^(5/6) 3770005305032322 a001 12586269025/1568397607*228826127^(1/5) 3770005305032322 a001 32951280099/370248451*141422324^(1/13) 3770005305032322 a001 32951280099/969323029*228826127^(1/8) 3770005305032322 a001 10983760033/1368706081*228826127^(1/5) 3770005305032322 a001 43133785636/5374978561*228826127^(1/5) 3770005305032322 a001 75283811239/9381251041*228826127^(1/5) 3770005305032322 a001 591286729879/73681302247*228826127^(1/5) 3770005305032322 a001 86000486440/10716675201*228826127^(1/5) 3770005305032322 a001 4052739537881/505019158607*228826127^(1/5) 3770005305032322 a001 3278735159921/408569081798*228826127^(1/5) 3770005305032322 a001 2504730781961/312119004989*228826127^(1/5) 3770005305032322 a001 956722026041/119218851371*228826127^(1/5) 3770005305032322 a001 182717648081/22768774562*228826127^(1/5) 3770005305032322 a001 139583862445/17393796001*228826127^(1/5) 3770005305032322 a001 53316291173/6643838879*228826127^(1/5) 3770005305032322 a001 63245986/5600748293801*141422324^(12/13) 3770005305032322 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 20365011074/969323029*228826127^(3/20) 3770005305032322 a001 10182505537/1268860318*228826127^(1/5) 3770005305032322 a001 43133785636/299537289*87403803^(1/19) 3770005305032322 a001 686789568/224056801*228826127^(1/4) 3770005305032322 a001 267914296/1568397607*228826127^(2/5) 3770005305032322 a001 165580141/599074578*2537720636^(1/3) 3770005305032322 a001 165580141/599074578*45537549124^(5/17) 3770005305032322 a001 165580141/599074578*312119004989^(3/11) 3770005305032322 a001 165580141/599074578*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(42) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(41) 3770005305032322 a001 165580141/599074578*192900153618^(5/18) 3770005305032322 a001 267914296/370248451*73681302247^(1/4) 3770005305032322 a001 165580141/599074578*28143753123^(3/10) 3770005305032322 a001 165580141/599074578*10749957122^(5/16) 3770005305032322 a001 12586269025/4106118243*228826127^(1/4) 3770005305032322 a001 32951280099/10749957122*228826127^(1/4) 3770005305032322 a001 86267571272/28143753123*228826127^(1/4) 3770005305032322 a001 32264490531/10525900321*228826127^(1/4) 3770005305032322 a001 591286729879/192900153618*228826127^(1/4) 3770005305032322 a001 1548008755920/505019158607*228826127^(1/4) 3770005305032322 a001 1515744265389/494493258286*228826127^(1/4) 3770005305032322 a001 2504730781961/817138163596*228826127^(1/4) 3770005305032322 a001 956722026041/312119004989*228826127^(1/4) 3770005305032322 a001 365435296162/119218851371*228826127^(1/4) 3770005305032322 a001 139583862445/45537549124*228826127^(1/4) 3770005305032322 a001 53316291173/17393796001*228826127^(1/4) 3770005305032322 a001 20365011074/6643838879*228826127^(1/4) 3770005305032322 a001 7778742049/969323029*228826127^(1/5) 3770005305032322 a001 7778742049/2537720636*228826127^(1/4) 3770005305032322 a001 1836311903/1568397607*228826127^(3/10) 3770005305032322 a001 267914296/969323029*228826127^(3/8) 3770005305032322 a001 165580141/599074578*599074578^(5/14) 3770005305032322 a001 1602508992/1368706081*228826127^(3/10) 3770005305032322 a001 12586269025/10749957122*228826127^(3/10) 3770005305032322 a001 10983760033/9381251041*228826127^(3/10) 3770005305032322 a001 86267571272/73681302247*228826127^(3/10) 3770005305032322 a001 75283811239/64300051206*228826127^(3/10) 3770005305032322 a001 2504730781961/2139295485799*228826127^(3/10) 3770005305032322 a001 365435296162/312119004989*228826127^(3/10) 3770005305032322 a001 139583862445/119218851371*228826127^(3/10) 3770005305032322 a001 53316291173/45537549124*228826127^(3/10) 3770005305032322 a001 20365011074/17393796001*228826127^(3/10) 3770005305032322 a001 267914296/4106118243*228826127^(9/20) 3770005305032322 a001 7778742049/6643838879*228826127^(3/10) 3770005305032322 a001 2971215073/969323029*228826127^(1/4) 3770005305032322 a001 701408733/1568397607*228826127^(7/20) 3770005305032322 a001 2971215073/2537720636*228826127^(3/10) 3770005305032322 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^70 3770005305032322 a001 32264490531/224056801*87403803^(1/19) 3770005305032322 a001 1836311903/4106118243*228826127^(7/20) 3770005305032322 a001 2403763488/5374978561*228826127^(7/20) 3770005305032322 a001 12586269025/28143753123*228826127^(7/20) 3770005305032322 a001 32951280099/73681302247*228826127^(7/20) 3770005305032322 a001 43133785636/96450076809*228826127^(7/20) 3770005305032322 a001 225851433717/505019158607*228826127^(7/20) 3770005305032322 a001 10610209857723/23725150497407*228826127^(7/20) 3770005305032322 a001 182717648081/408569081798*228826127^(7/20) 3770005305032322 a001 139583862445/312119004989*228826127^(7/20) 3770005305032322 a001 53316291173/119218851371*228826127^(7/20) 3770005305032322 a001 10182505537/22768774562*228826127^(7/20) 3770005305032322 a001 7778742049/17393796001*228826127^(7/20) 3770005305032322 a001 2971215073/6643838879*228826127^(7/20) 3770005305032322 a001 133957148/5374978561*228826127^(1/2) 3770005305032322 a001 591286729879/4106118243*87403803^(1/19) 3770005305032322 a001 774004377960/5374978561*87403803^(1/19) 3770005305032322 a001 165580141/1568397607*45537549124^(1/3) 3770005305032322 a001 4052739537881/28143753123*87403803^(1/19) 3770005305032322 a001 701408733/370248451*312119004989^(1/5) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(44) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(41) 3770005305032322 a001 1515744265389/10525900321*87403803^(1/19) 3770005305032322 a001 3278735159921/22768774562*87403803^(1/19) 3770005305032322 a001 2504730781961/17393796001*87403803^(1/19) 3770005305032322 a001 701408733/2537720636*228826127^(3/8) 3770005305032322 a001 956722026041/6643838879*87403803^(1/19) 3770005305032322 a001 1134903170/969323029*228826127^(3/10) 3770005305032322 a001 701408733/370248451*1568397607^(1/4) 3770005305032322 a001 567451585/1268860318*228826127^(7/20) 3770005305032322 a001 182717648081/1268860318*87403803^(1/19) 3770005305032322 a001 1836311903/54018521*20633239^(1/7) 3770005305032322 a001 1836311903/6643838879*228826127^(3/8) 3770005305032322 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 4807526976/17393796001*228826127^(3/8) 3770005305032322 a001 12586269025/45537549124*228826127^(3/8) 3770005305032322 a001 32951280099/119218851371*228826127^(3/8) 3770005305032322 a001 86267571272/312119004989*228826127^(3/8) 3770005305032322 a001 225851433717/817138163596*228826127^(3/8) 3770005305032322 a001 1548008755920/5600748293801*228826127^(3/8) 3770005305032322 a001 139583862445/505019158607*228826127^(3/8) 3770005305032322 a001 53316291173/192900153618*228826127^(3/8) 3770005305032322 a001 20365011074/73681302247*228826127^(3/8) 3770005305032322 a001 7778742049/28143753123*228826127^(3/8) 3770005305032322 a001 165580141/14662949395604*2537720636^(4/5) 3770005305032322 a001 233802911/1368706081*228826127^(2/5) 3770005305032322 a001 165580141/9062201101803*2537720636^(7/9) 3770005305032322 a001 2971215073/10749957122*228826127^(3/8) 3770005305032322 a001 165580141/3461452808002*2537720636^(11/15) 3770005305032322 a001 165580141/817138163596*2537720636^(2/3) 3770005305032322 a001 165580141/192900153618*2537720636^(3/5) 3770005305032322 a001 1836311903/370248451*2537720636^(1/5) 3770005305032322 a001 165580141/73681302247*2537720636^(5/9) 3770005305032322 a001 165580141/45537549124*2537720636^(8/15) 3770005305032322 a001 165580141/10749957122*2537720636^(7/15) 3770005305032322 a001 1836311903/370248451*45537549124^(3/17) 3770005305032322 a001 165580141/4106118243*817138163596^(1/3) 3770005305032322 a001 1836311903/370248451*14662949395604^(1/7) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(41) 3770005305032322 a001 1836311903/370248451*192900153618^(1/6) 3770005305032322 a001 1836311903/370248451*10749957122^(3/16) 3770005305032322 a001 165580141/6643838879*2537720636^(4/9) 3770005305032322 a001 1134903170/4106118243*228826127^(3/8) 3770005305032322 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 12586269025/370248451*2537720636^(1/9) 3770005305032322 a001 7778742049/370248451*2537720636^(2/15) 3770005305032322 a001 32951280099/370248451*2537720636^(1/15) 3770005305032322 a001 165580141/10749957122*17393796001^(3/7) 3770005305032322 a001 4807526976/370248451*17393796001^(1/7) 3770005305032322 a001 165580141/10749957122*45537549124^(7/17) 3770005305032322 a001 165580141/10749957122*14662949395604^(1/3) 3770005305032322 a001 4807526976/370248451*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(41) 3770005305032322 a001 165580141/10749957122*192900153618^(7/18) 3770005305032322 a001 165580141/10749957122*10749957122^(7/16) 3770005305032322 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 165580141/9062201101803*17393796001^(5/7) 3770005305032322 a001 165580141/312119004989*17393796001^(4/7) 3770005305032322 a001 12586269025/370248451*312119004989^(1/11) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(41) 3770005305032322 a001 12586269025/370248451*28143753123^(1/10) 3770005305032322 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^78 3770005305032322 a001 165580141/14662949395604*45537549124^(12/17) 3770005305032322 a001 165580141/5600748293801*45537549124^(2/3) 3770005305032322 a001 165580141/3461452808002*45537549124^(11/17) 3770005305032322 a001 165580141/192900153618*45537549124^(9/17) 3770005305032322 a001 165580141/817138163596*45537549124^(10/17) 3770005305032322 a001 32951280099/370248451*45537549124^(1/17) 3770005305032322 a001 165580141/73681302247*312119004989^(5/11) 3770005305032322 a001 32951280099/370248451*14662949395604^(1/21) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(41) 3770005305032322 a001 165580141/73681302247*3461452808002^(5/12) 3770005305032322 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 165580141/192900153618*817138163596^(9/19) 3770005305032322 a001 165580141/192900153618*14662949395604^(3/7) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(54) 3770005305032322 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(41) 3770005305032322 a001 165580141/192900153618*192900153618^(1/2) 3770005305032322 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 165580141/3461452808002*312119004989^(3/5) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(56) 3770005305032322 a004 Fibonacci(56)/Lucas(41)/(1/2+sqrt(5)/2) 3770005305032322 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(58) 3770005305032322 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2)^3 3770005305032322 a001 165580141/1322157322203*9062201101803^(1/2) 3770005305032322 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(41)*Lucas(69)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(41)*Lucas(71)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(41)*Lucas(73)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(78) 3770005305032322 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(80) 3770005305032322 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(82) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(84) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(86) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(88) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(90) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(92) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(94) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^69/Lucas(96) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^71/Lucas(98) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^72/Lucas(99) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^73/Lucas(100) 3770005305032322 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^70/Lucas(97) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^68/Lucas(95) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(93) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(91) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(89) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(87) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(85) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(83) 3770005305032322 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^45 3770005305032322 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^43 3770005305032322 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^44 3770005305032322 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(81) 3770005305032322 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(79) 3770005305032322 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(41)*Lucas(72)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(41)*Lucas(70)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(41)*Lucas(68)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^91 3770005305032322 a001 165580141/14662949395604*14662949395604^(4/7) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(59) 3770005305032322 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^4 3770005305032322 a001 165580141/2139295485799*23725150497407^(1/2) 3770005305032322 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(57) 3770005305032322 a004 Fibonacci(57)/Lucas(41)/(1/2+sqrt(5)/2)^2 3770005305032322 a001 165580141/2139295485799*505019158607^(4/7) 3770005305032322 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^83 3770005305032322 a001 165580141/312119004989*14662949395604^(4/9) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(55) 3770005305032322 a001 165580141/312119004989*505019158607^(1/2) 3770005305032322 a001 165580141/3461452808002*192900153618^(11/18) 3770005305032322 a001 165580141/14662949395604*192900153618^(2/3) 3770005305032322 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^81 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(53) 3770005305032322 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(41) 3770005305032322 a001 165580141/312119004989*73681302247^(7/13) 3770005305032322 a001 165580141/2139295485799*73681302247^(8/13) 3770005305032322 a001 165580141/14662949395604*73681302247^(9/13) 3770005305032322 a001 165580141/119218851371*73681302247^(1/2) 3770005305032322 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 165580141/45537549124*45537549124^(8/17) 3770005305032322 a001 32951280099/370248451*10749957122^(1/16) 3770005305032322 a001 53316291173/370248451*10749957122^(1/24) 3770005305032322 a001 165580141/73681302247*28143753123^(1/2) 3770005305032322 a001 165580141/45537549124*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(41) 3770005305032322 a001 165580141/45537549124*192900153618^(4/9) 3770005305032322 a001 20365011074/370248451*73681302247^(1/13) 3770005305032322 a001 165580141/45537549124*73681302247^(6/13) 3770005305032322 a001 165580141/817138163596*28143753123^(3/5) 3770005305032322 a001 165580141/9062201101803*28143753123^(7/10) 3770005305032322 a001 20365011074/370248451*10749957122^(1/12) 3770005305032322 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^77 3770005305032322 a001 53316291173/370248451*4106118243^(1/23) 3770005305032322 a001 7778742049/370248451*45537549124^(2/17) 3770005305032322 a001 165580141/17393796001*312119004989^(2/5) 3770005305032322 a001 7778742049/370248451*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(41) 3770005305032322 a001 7778742049/370248451*10749957122^(1/8) 3770005305032322 a001 165580141/119218851371*10749957122^(13/24) 3770005305032322 a001 165580141/45537549124*10749957122^(1/2) 3770005305032322 a001 165580141/192900153618*10749957122^(9/16) 3770005305032322 a001 165580141/312119004989*10749957122^(7/12) 3770005305032322 a001 165580141/817138163596*10749957122^(5/8) 3770005305032322 a001 20365011074/370248451*4106118243^(2/23) 3770005305032322 a001 165580141/2139295485799*10749957122^(2/3) 3770005305032322 a001 165580141/3461452808002*10749957122^(11/16) 3770005305032322 a001 165580141/5600748293801*10749957122^(17/24) 3770005305032322 a001 165580141/14662949395604*10749957122^(3/4) 3770005305032322 a001 165580141/17393796001*10749957122^(11/24) 3770005305032322 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 7778742049/370248451*4106118243^(3/23) 3770005305032322 a001 53316291173/370248451*1568397607^(1/22) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(41) 3770005305032322 a001 165580141/6643838879*23725150497407^(5/16) 3770005305032322 a001 2971215073/370248451*505019158607^(1/7) 3770005305032322 a001 165580141/6643838879*505019158607^(5/14) 3770005305032322 a001 2971215073/370248451*73681302247^(2/13) 3770005305032322 a001 165580141/6643838879*73681302247^(5/13) 3770005305032322 a001 165580141/6643838879*28143753123^(2/5) 3770005305032322 a001 2971215073/370248451*10749957122^(1/6) 3770005305032322 a001 165580141/6643838879*10749957122^(5/12) 3770005305032322 a001 165580141/28143753123*4106118243^(1/2) 3770005305032322 a001 165580141/45537549124*4106118243^(12/23) 3770005305032322 a001 165580141/17393796001*4106118243^(11/23) 3770005305032322 a001 2971215073/370248451*4106118243^(4/23) 3770005305032322 a001 165580141/119218851371*4106118243^(13/23) 3770005305032322 a001 165580141/312119004989*4106118243^(14/23) 3770005305032322 a001 20365011074/370248451*1568397607^(1/11) 3770005305032322 a001 165580141/817138163596*4106118243^(15/23) 3770005305032322 a001 165580141/2139295485799*4106118243^(16/23) 3770005305032322 a001 165580141/5600748293801*4106118243^(17/23) 3770005305032322 a001 165580141/14662949395604*4106118243^(18/23) 3770005305032322 a001 165580141/6643838879*4106118243^(10/23) 3770005305032322 a001 7778742049/370248451*1568397607^(3/22) 3770005305032322 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 165580141/2537720636*2537720636^(2/5) 3770005305032322 a001 2971215073/370248451*1568397607^(2/11) 3770005305032322 a001 1134903170/370248451*2537720636^(2/9) 3770005305032322 a001 53316291173/370248451*599074578^(1/21) 3770005305032322 a001 165580141/2537720636*45537549124^(6/17) 3770005305032322 a001 1134903170/370248451*312119004989^(2/11) 3770005305032322 a001 165580141/2537720636*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(45) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(41) 3770005305032322 a001 165580141/2537720636*192900153618^(1/3) 3770005305032322 a001 1134903170/370248451*28143753123^(1/5) 3770005305032322 a001 1134903170/370248451*10749957122^(5/24) 3770005305032322 a001 165580141/2537720636*10749957122^(3/8) 3770005305032322 a001 1134903170/370248451*4106118243^(5/23) 3770005305032322 a001 165580141/2537720636*4106118243^(9/23) 3770005305032322 a001 32951280099/370248451*599074578^(1/14) 3770005305032322 a001 165580141/17393796001*1568397607^(1/2) 3770005305032322 a001 165580141/6643838879*1568397607^(5/11) 3770005305032322 a001 165580141/45537549124*1568397607^(6/11) 3770005305032322 a001 165580141/119218851371*1568397607^(13/22) 3770005305032322 a001 1134903170/370248451*1568397607^(5/22) 3770005305032322 a001 165580141/312119004989*1568397607^(7/11) 3770005305032322 a001 20365011074/370248451*599074578^(2/21) 3770005305032322 a001 1836311903/10749957122*228826127^(2/5) 3770005305032322 a001 165580141/817138163596*1568397607^(15/22) 3770005305032322 a001 165580141/2139295485799*1568397607^(8/11) 3770005305032322 a001 165580141/3461452808002*1568397607^(3/4) 3770005305032322 a001 165580141/5600748293801*1568397607^(17/22) 3770005305032322 a001 165580141/2537720636*1568397607^(9/22) 3770005305032322 a001 165580141/14662949395604*1568397607^(9/11) 3770005305032322 a001 1602508992/9381251041*228826127^(2/5) 3770005305032322 a001 12586269025/73681302247*228826127^(2/5) 3770005305032322 a001 10983760033/64300051206*228826127^(2/5) 3770005305032322 a001 86267571272/505019158607*228826127^(2/5) 3770005305032322 a001 75283811239/440719107401*228826127^(2/5) 3770005305032322 a001 2504730781961/14662949395604*228826127^(2/5) 3770005305032322 a001 139583862445/817138163596*228826127^(2/5) 3770005305032322 a001 53316291173/312119004989*228826127^(2/5) 3770005305032322 a001 20365011074/119218851371*228826127^(2/5) 3770005305032322 a001 7778742049/45537549124*228826127^(2/5) 3770005305032322 a001 2971215073/17393796001*228826127^(2/5) 3770005305032322 a001 63245986/1322157322203*141422324^(11/13) 3770005305032322 a001 7778742049/370248451*599074578^(1/7) 3770005305032322 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 267914296/28143753123*228826127^(11/20) 3770005305032322 a001 4807526976/370248451*599074578^(1/6) 3770005305032322 a001 1134903170/6643838879*228826127^(2/5) 3770005305032322 a001 433494437/1568397607*228826127^(3/8) 3770005305032322 a001 1836311903/370248451*599074578^(3/14) 3770005305032322 a001 2971215073/370248451*599074578^(4/21) 3770005305032322 a001 139583862445/969323029*87403803^(1/19) 3770005305032322 a001 1134903170/370248451*599074578^(5/21) 3770005305032322 a001 701408733/10749957122*228826127^(9/20) 3770005305032322 a001 53316291173/370248451*228826127^(1/20) 3770005305032322 a001 433494437/370248451*2537720636^(4/15) 3770005305032322 a001 433494437/370248451*45537549124^(4/17) 3770005305032322 a001 433494437/370248451*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(43) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(41) 3770005305032322 a001 165580141/969323029*23725150497407^(1/4) 3770005305032322 a001 433494437/370248451*192900153618^(2/9) 3770005305032322 a001 433494437/370248451*73681302247^(3/13) 3770005305032322 a001 165580141/969323029*73681302247^(4/13) 3770005305032322 a001 433494437/370248451*10749957122^(1/4) 3770005305032322 a001 165580141/969323029*10749957122^(1/3) 3770005305032322 a001 433494437/370248451*4106118243^(6/23) 3770005305032322 a001 165580141/969323029*4106118243^(8/23) 3770005305032322 a001 1836311903/228826127*87403803^(4/19) 3770005305032322 a001 433494437/370248451*1568397607^(3/11) 3770005305032322 a001 165580141/969323029*1568397607^(4/11) 3770005305032322 a001 1836311903/28143753123*228826127^(9/20) 3770005305032322 a001 686789568/10525900321*228826127^(9/20) 3770005305032322 a001 12586269025/192900153618*228826127^(9/20) 3770005305032322 a001 32951280099/505019158607*228826127^(9/20) 3770005305032322 a001 86267571272/1322157322203*228826127^(9/20) 3770005305032322 a001 32264490531/494493258286*228826127^(9/20) 3770005305032322 a001 1548008755920/23725150497407*228826127^(9/20) 3770005305032322 a001 365435296162/5600748293801*228826127^(9/20) 3770005305032322 a001 139583862445/2139295485799*228826127^(9/20) 3770005305032322 a001 53316291173/817138163596*228826127^(9/20) 3770005305032322 a001 20365011074/312119004989*228826127^(9/20) 3770005305032322 a001 7778742049/119218851371*228826127^(9/20) 3770005305032322 a001 2971215073/45537549124*228826127^(9/20) 3770005305032322 a001 165580141/2537720636*599074578^(3/7) 3770005305032322 a001 165580141/6643838879*599074578^(10/21) 3770005305032322 a001 267914296/73681302247*228826127^(3/5) 3770005305032322 a001 165580141/10749957122*599074578^(1/2) 3770005305032322 a001 1134903170/17393796001*228826127^(9/20) 3770005305032322 a001 165580141/17393796001*599074578^(11/21) 3770005305032322 a001 433494437/969323029*228826127^(7/20) 3770005305032322 a001 433494437/2537720636*228826127^(2/5) 3770005305032322 a001 165580141/45537549124*599074578^(4/7) 3770005305032322 a001 165580141/119218851371*599074578^(13/21) 3770005305032322 a001 165580141/192900153618*599074578^(9/14) 3770005305032322 a001 233802911/9381251041*228826127^(1/2) 3770005305032322 a001 267914296/119218851371*228826127^(5/8) 3770005305032322 a001 165580141/312119004989*599074578^(2/3) 3770005305032322 a001 433494437/370248451*599074578^(2/7) 3770005305032322 a001 20365011074/370248451*228826127^(1/10) 3770005305032322 a001 165580141/817138163596*599074578^(5/7) 3770005305032322 a001 165580141/2139295485799*599074578^(16/21) 3770005305032322 a001 165580141/969323029*599074578^(8/21) 3770005305032322 a001 165580141/3461452808002*599074578^(11/14) 3770005305032322 a001 1836311903/73681302247*228826127^(1/2) 3770005305032322 a001 267084832/10716675201*228826127^(1/2) 3770005305032322 a001 12586269025/505019158607*228826127^(1/2) 3770005305032322 a001 10983760033/440719107401*228826127^(1/2) 3770005305032322 a001 43133785636/1730726404001*228826127^(1/2) 3770005305032322 a001 75283811239/3020733700601*228826127^(1/2) 3770005305032322 a001 182717648081/7331474697802*228826127^(1/2) 3770005305032322 a001 139583862445/5600748293801*228826127^(1/2) 3770005305032322 a001 53316291173/2139295485799*228826127^(1/2) 3770005305032322 a001 10182505537/408569081798*228826127^(1/2) 3770005305032322 a001 165580141/5600748293801*599074578^(17/21) 3770005305032322 a001 7778742049/312119004989*228826127^(1/2) 3770005305032322 a001 2971215073/119218851371*228826127^(1/2) 3770005305032322 a001 165580141/9062201101803*599074578^(5/6) 3770005305032322 a001 133957148/96450076809*228826127^(13/20) 3770005305032322 a001 12586269025/370248451*228826127^(1/8) 3770005305032322 a001 433494437/6643838879*228826127^(9/20) 3770005305032322 a001 165580141/14662949395604*599074578^(6/7) 3770005305032322 a001 567451585/22768774562*228826127^(1/2) 3770005305032322 a001 102334155/228826127*87403803^(7/19) 3770005305032322 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^69 3770005305032322 a001 701408733/73681302247*228826127^(11/20) 3770005305032322 a001 7778742049/370248451*228826127^(3/20) 3770005305032322 a001 1836311903/192900153618*228826127^(11/20) 3770005305032322 a001 102287808/10745088481*228826127^(11/20) 3770005305032322 a001 12586269025/1322157322203*228826127^(11/20) 3770005305032322 a001 32951280099/3461452808002*228826127^(11/20) 3770005305032322 a001 86267571272/9062201101803*228826127^(11/20) 3770005305032322 a001 225851433717/23725150497407*228826127^(11/20) 3770005305032322 a001 139583862445/14662949395604*228826127^(11/20) 3770005305032322 a001 53316291173/5600748293801*228826127^(11/20) 3770005305032322 a001 20365011074/2139295485799*228826127^(11/20) 3770005305032322 a001 7778742049/817138163596*228826127^(11/20) 3770005305032322 a001 2971215073/312119004989*228826127^(11/20) 3770005305032322 a001 267914296/505019158607*228826127^(7/10) 3770005305032322 a001 433494437/17393796001*228826127^(1/2) 3770005305032322 a001 1134903170/119218851371*228826127^(11/20) 3770005305032322 a001 10983760033/199691526*87403803^(2/19) 3770005305032322 a001 233802911/64300051206*228826127^(3/5) 3770005305032322 a001 2971215073/370248451*228826127^(1/5) 3770005305032322 a001 1836311903/505019158607*228826127^(3/5) 3770005305032322 a001 1602508992/440719107401*228826127^(3/5) 3770005305032322 a001 12586269025/3461452808002*228826127^(3/5) 3770005305032322 a001 10983760033/3020733700601*228826127^(3/5) 3770005305032322 a001 86267571272/23725150497407*228826127^(3/5) 3770005305032322 a001 53316291173/14662949395604*228826127^(3/5) 3770005305032322 a001 20365011074/5600748293801*228826127^(3/5) 3770005305032322 a001 7778742049/2139295485799*228826127^(3/5) 3770005305032322 a001 2971215073/817138163596*228826127^(3/5) 3770005305032322 a001 3524667/1568437211*228826127^(5/8) 3770005305032322 a001 267914296/1322157322203*228826127^(3/4) 3770005305032322 a001 63245986/312119004989*141422324^(10/13) 3770005305032322 a001 433494437/45537549124*228826127^(11/20) 3770005305032322 a001 1134903170/312119004989*228826127^(3/5) 3770005305032322 a001 165580141/599074578*228826127^(3/8) 3770005305032322 a001 63245986/228826127*141422324^(5/13) 3770005305032322 a001 1836311903/817138163596*228826127^(5/8) 3770005305032322 a001 4807526976/2139295485799*228826127^(5/8) 3770005305032322 a001 12586269025/5600748293801*228826127^(5/8) 3770005305032322 a001 32951280099/14662949395604*228826127^(5/8) 3770005305032322 a001 53316291173/23725150497407*228826127^(5/8) 3770005305032322 a001 20365011074/9062201101803*228826127^(5/8) 3770005305032322 a001 7778742049/3461452808002*228826127^(5/8) 3770005305032322 a001 2971215073/1322157322203*228826127^(5/8) 3770005305032322 a001 701408733/505019158607*228826127^(13/20) 3770005305032322 a001 1134903170/505019158607*228826127^(5/8) 3770005305032322 a001 1134903170/370248451*228826127^(1/4) 3770005305032322 a001 1836311903/1322157322203*228826127^(13/20) 3770005305032322 a001 14930208/10749853441*228826127^(13/20) 3770005305032322 a001 12586269025/9062201101803*228826127^(13/20) 3770005305032322 a001 32951280099/23725150497407*228826127^(13/20) 3770005305032322 a001 10182505537/7331474697802*228826127^(13/20) 3770005305032322 a001 7778742049/5600748293801*228826127^(13/20) 3770005305032322 a001 2971215073/2139295485799*228826127^(13/20) 3770005305032322 a001 133957148/1730726404001*228826127^(4/5) 3770005305032322 a001 433494437/119218851371*228826127^(3/5) 3770005305032322 a001 567451585/408569081798*228826127^(13/20) 3770005305032322 a001 233802911/440719107401*228826127^(7/10) 3770005305032322 a001 433494437/192900153618*228826127^(5/8) 3770005305032322 a001 1836311903/3461452808002*228826127^(7/10) 3770005305032322 a001 1602508992/3020733700601*228826127^(7/10) 3770005305032322 a001 12586269025/23725150497407*228826127^(7/10) 3770005305032322 a001 7778742049/14662949395604*228826127^(7/10) 3770005305032322 a001 86267571272/1568397607*87403803^(2/19) 3770005305032322 a001 2971215073/5600748293801*228826127^(7/10) 3770005305032322 a001 267914296/9062201101803*228826127^(17/20) 3770005305032322 a001 433494437/312119004989*228826127^(13/20) 3770005305032322 a001 1134903170/2139295485799*228826127^(7/10) 3770005305032322 a001 75283811239/1368706081*87403803^(2/19) 3770005305032322 a001 591286729879/10749957122*87403803^(2/19) 3770005305032322 a001 12585437040/228811001*87403803^(2/19) 3770005305032322 a001 4052739537881/73681302247*87403803^(2/19) 3770005305032322 a001 3536736619241/64300051206*87403803^(2/19) 3770005305032322 a001 6557470319842/119218851371*87403803^(2/19) 3770005305032322 a001 2504730781961/45537549124*87403803^(2/19) 3770005305032322 a001 956722026041/17393796001*87403803^(2/19) 3770005305032322 a001 365435296162/6643838879*87403803^(2/19) 3770005305032322 a001 701408733/3461452808002*228826127^(3/4) 3770005305032322 a001 10946/599074579*228826127^(7/8) 3770005305032322 a001 139583862445/2537720636*87403803^(2/19) 3770005305032322 a001 433494437/370248451*228826127^(3/10) 3770005305032322 a001 53316291173/370248451*87403803^(1/19) 3770005305032322 a001 102334155/141422324*141422324^(1/3) 3770005305032322 a001 1836311903/9062201101803*228826127^(3/4) 3770005305032322 a001 4807526976/23725150497407*228826127^(3/4) 3770005305032322 a001 2971215073/14662949395604*228826127^(3/4) 3770005305032322 a001 267914296/23725150497407*228826127^(9/10) 3770005305032322 a001 433494437/817138163596*228826127^(7/10) 3770005305032322 a001 1134903170/5600748293801*228826127^(3/4) 3770005305032322 a001 165580141/370248451*17393796001^(2/7) 3770005305032322 a001 165580141/370248451*14662949395604^(2/9) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(41) 3770005305032322 a001 165580141/370248451*10749957122^(7/24) 3770005305032322 a001 165580141/370248451*4106118243^(7/23) 3770005305032322 a001 165580141/370248451*1568397607^(7/22) 3770005305032322 a001 53316291173/969323029*87403803^(2/19) 3770005305032322 a001 233802911/3020733700601*228826127^(4/5) 3770005305032322 a001 701408733/228826127*87403803^(5/19) 3770005305032322 a001 1836311903/23725150497407*228826127^(4/5) 3770005305032322 a001 63245986/73681302247*141422324^(9/13) 3770005305032322 a001 433494437/2139295485799*228826127^(3/4) 3770005305032322 a001 567451585/7331474697802*228826127^(4/5) 3770005305032322 a001 165580141/370248451*599074578^(1/3) 3770005305032322 a001 701408733/23725150497407*228826127^(17/20) 3770005305032322 a001 165580141/969323029*228826127^(2/5) 3770005305032322 a001 165580141/2537720636*228826127^(9/20) 3770005305032322 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^68 3770005305032322 a001 433494437/5600748293801*228826127^(4/5) 3770005305032322 a001 31622993/22768774562*141422324^(2/3) 3770005305032322 a001 165580141/6643838879*228826127^(1/2) 3770005305032322 a001 433494437/14662949395604*228826127^(17/20) 3770005305032322 a001 433494437/23725150497407*228826127^(7/8) 3770005305032322 a001 165580141/17393796001*228826127^(11/20) 3770005305032322 a001 12586269025/599074578*87403803^(3/19) 3770005305032322 a001 1836311903/87403803*33385282^(1/6) 3770005305032322 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^70 3770005305032322 a001 165580141/45537549124*228826127^(3/5) 3770005305032322 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^72 3770005305032322 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^74 3770005305032322 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^76 3770005305032322 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^78 3770005305032322 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^80 3770005305032322 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^82 3770005305032322 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^84 3770005305032322 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(70)*Lucas(40)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(72)*Lucas(40)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(74)*Lucas(40)/(1/2+sqrt(5)/2)^100 3770005305032322 a001 2/102334155*(1/2+1/2*5^(1/2))^54 3770005305032322 a004 Fibonacci(73)*Lucas(40)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(71)*Lucas(40)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(69)*Lucas(40)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 64300051206/34111385*8^(1/3) 3770005305032322 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^79 3770005305032322 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^77 3770005305032322 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^75 3770005305032322 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 165580141/73681302247*228826127^(5/8) 3770005305032322 a001 63245986/17393796001*141422324^(8/13) 3770005305032322 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 267914296/228826127*87403803^(6/19) 3770005305032322 a001 165580141/119218851371*228826127^(13/20) 3770005305032322 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^69 3770005305032322 a001 32951280099/1568397607*87403803^(3/19) 3770005305032322 a001 86267571272/4106118243*87403803^(3/19) 3770005305032322 a001 225851433717/10749957122*87403803^(3/19) 3770005305032322 a001 165580141/312119004989*228826127^(7/10) 3770005305032322 a001 591286729879/28143753123*87403803^(3/19) 3770005305032322 a001 1548008755920/73681302247*87403803^(3/19) 3770005305032322 a001 4052739537881/192900153618*87403803^(3/19) 3770005305032322 a001 225749145909/10745088481*87403803^(3/19) 3770005305032322 a001 6557470319842/312119004989*87403803^(3/19) 3770005305032322 a001 2504730781961/119218851371*87403803^(3/19) 3770005305032322 a001 956722026041/45537549124*87403803^(3/19) 3770005305032322 a001 365435296162/17393796001*87403803^(3/19) 3770005305032322 a001 139583862445/6643838879*87403803^(3/19) 3770005305032322 a001 53316291173/2537720636*87403803^(3/19) 3770005305032322 a001 20365011074/370248451*87403803^(2/19) 3770005305032322 a001 165580141/370248451*228826127^(7/20) 3770005305032322 a001 165580141/817138163596*228826127^(3/4) 3770005305032322 a001 20365011074/969323029*87403803^(3/19) 3770005305032322 a001 165580141/2139295485799*228826127^(4/5) 3770005305032322 a001 63245986/4106118243*141422324^(7/13) 3770005305032322 a001 165580141/5600748293801*228826127^(17/20) 3770005305032322 a001 165580141/9062201101803*228826127^(7/8) 3770005305032322 a001 165580141/14662949395604*228826127^(9/10) 3770005305032322 a001 267084832/33281921*87403803^(4/19) 3770005305032322 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^67 3770005305032322 a001 12586269025/1568397607*87403803^(4/19) 3770005305032322 a001 10983760033/1368706081*87403803^(4/19) 3770005305032322 a001 43133785636/5374978561*87403803^(4/19) 3770005305032322 a001 75283811239/9381251041*87403803^(4/19) 3770005305032322 a001 591286729879/73681302247*87403803^(4/19) 3770005305032322 a001 86000486440/10716675201*87403803^(4/19) 3770005305032322 a001 4052739537881/505019158607*87403803^(4/19) 3770005305032322 a001 3536736619241/440719107401*87403803^(4/19) 3770005305032322 a001 3278735159921/408569081798*87403803^(4/19) 3770005305032322 a001 2504730781961/312119004989*87403803^(4/19) 3770005305032322 a001 956722026041/119218851371*87403803^(4/19) 3770005305032322 a001 182717648081/22768774562*87403803^(4/19) 3770005305032322 a001 139583862445/17393796001*87403803^(4/19) 3770005305032322 a001 53316291173/6643838879*87403803^(4/19) 3770005305032322 a001 10182505537/1268860318*87403803^(4/19) 3770005305032322 a001 7778742049/370248451*87403803^(3/19) 3770005305032322 a001 63245986/969323029*141422324^(6/13) 3770005305032322 a001 7778742049/969323029*87403803^(4/19) 3770005305032322 a001 32951280099/228826127*33385282^(1/18) 3770005305032322 a001 63245986/228826127*2537720636^(1/3) 3770005305032322 a001 63245986/228826127*45537549124^(5/17) 3770005305032322 a001 63245986/228826127*312119004989^(3/11) 3770005305032322 a001 63245986/228826127*14662949395604^(5/21) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(40) 3770005305032322 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(39) 3770005305032322 a001 63245986/228826127*192900153618^(5/18) 3770005305032322 a001 102334155/141422324*73681302247^(1/4) 3770005305032322 a001 63245986/228826127*28143753123^(3/10) 3770005305032322 a001 63245986/228826127*10749957122^(5/16) 3770005305032322 a001 1836311903/599074578*87403803^(5/19) 3770005305032322 a001 63245986/228826127*599074578^(5/14) 3770005305032322 a001 34111385/199691526*87403803^(8/19) 3770005305032322 a001 686789568/224056801*87403803^(5/19) 3770005305032322 a001 12586269025/4106118243*87403803^(5/19) 3770005305032322 a001 32951280099/10749957122*87403803^(5/19) 3770005305032322 a001 86267571272/28143753123*87403803^(5/19) 3770005305032322 a001 32264490531/10525900321*87403803^(5/19) 3770005305032322 a001 591286729879/192900153618*87403803^(5/19) 3770005305032322 a001 1548008755920/505019158607*87403803^(5/19) 3770005305032322 a001 1515744265389/494493258286*87403803^(5/19) 3770005305032322 a001 2504730781961/817138163596*87403803^(5/19) 3770005305032322 a001 956722026041/312119004989*87403803^(5/19) 3770005305032322 a001 365435296162/119218851371*87403803^(5/19) 3770005305032322 a001 139583862445/45537549124*87403803^(5/19) 3770005305032322 a001 53316291173/17393796001*87403803^(5/19) 3770005305032322 a001 20365011074/6643838879*87403803^(5/19) 3770005305032322 a001 7778742049/2537720636*87403803^(5/19) 3770005305032322 a001 2971215073/370248451*87403803^(4/19) 3770005305032322 a001 2971215073/969323029*87403803^(5/19) 3770005305032322 a001 701408733/141422324*141422324^(3/13) 3770005305032322 a001 63245986/228826127*228826127^(3/8) 3770005305032322 a001 233802911/199691526*87403803^(6/19) 3770005305032322 a001 1836311903/1568397607*87403803^(6/19) 3770005305032322 a001 1602508992/1368706081*87403803^(6/19) 3770005305032322 a001 12586269025/10749957122*87403803^(6/19) 3770005305032322 a001 10983760033/9381251041*87403803^(6/19) 3770005305032322 a001 86267571272/73681302247*87403803^(6/19) 3770005305032322 a001 75283811239/64300051206*87403803^(6/19) 3770005305032322 a001 2504730781961/2139295485799*87403803^(6/19) 3770005305032322 a001 365435296162/312119004989*87403803^(6/19) 3770005305032322 a001 139583862445/119218851371*87403803^(6/19) 3770005305032322 a001 53316291173/45537549124*87403803^(6/19) 3770005305032322 a001 20365011074/17393796001*87403803^(6/19) 3770005305032322 a001 7778742049/6643838879*87403803^(6/19) 3770005305032322 a001 2971215073/2537720636*87403803^(6/19) 3770005305032322 a001 1134903170/370248451*87403803^(5/19) 3770005305032322 a001 165580141/141422324*141422324^(4/13) 3770005305032322 a001 2971215073/141422324*141422324^(2/13) 3770005305032322 a001 14619165/224056801*87403803^(9/19) 3770005305032322 a001 1134903170/969323029*87403803^(6/19) 3770005305032322 a001 133957148/299537289*87403803^(7/19) 3770005305032322 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^66 3770005305032322 a001 12586269025/141422324*141422324^(1/13) 3770005305032322 a001 9303105/230701876*87403803^(1/2) 3770005305032322 a001 43133785636/299537289*33385282^(1/18) 3770005305032322 a001 31622993/299537289*45537549124^(1/3) 3770005305032322 a001 66978574/35355581*312119004989^(1/5) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(42) 3770005305032322 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(39) 3770005305032322 a001 66978574/35355581*1568397607^(1/4) 3770005305032322 a001 701408733/1568397607*87403803^(7/19) 3770005305032322 a001 1836311903/4106118243*87403803^(7/19) 3770005305032322 a001 2403763488/5374978561*87403803^(7/19) 3770005305032322 a001 12586269025/28143753123*87403803^(7/19) 3770005305032322 a001 32951280099/73681302247*87403803^(7/19) 3770005305032322 a001 43133785636/96450076809*87403803^(7/19) 3770005305032322 a001 225851433717/505019158607*87403803^(7/19) 3770005305032322 a001 591286729879/1322157322203*87403803^(7/19) 3770005305032322 a001 10610209857723/23725150497407*87403803^(7/19) 3770005305032322 a001 139583862445/312119004989*87403803^(7/19) 3770005305032322 a001 53316291173/119218851371*87403803^(7/19) 3770005305032322 a001 10182505537/22768774562*87403803^(7/19) 3770005305032322 a001 7778742049/17393796001*87403803^(7/19) 3770005305032322 a001 2971215073/6643838879*87403803^(7/19) 3770005305032322 a001 567451585/1268860318*87403803^(7/19) 3770005305032322 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^68 3770005305032322 a001 32264490531/224056801*33385282^(1/18) 3770005305032322 a001 701408733/141422324*2537720636^(1/5) 3770005305032322 a001 701408733/141422324*45537549124^(3/17) 3770005305032322 a001 63245986/1568397607*817138163596^(1/3) 3770005305032322 a001 701408733/141422324*14662949395604^(1/7) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(44) 3770005305032322 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(39) 3770005305032322 a001 701408733/141422324*192900153618^(1/6) 3770005305032322 a001 701408733/141422324*10749957122^(3/16) 3770005305032322 a001 433494437/370248451*87403803^(6/19) 3770005305032322 a001 34111385/1368706081*87403803^(10/19) 3770005305032322 a001 591286729879/4106118243*33385282^(1/18) 3770005305032322 a001 774004377960/5374978561*33385282^(1/18) 3770005305032322 a001 4052739537881/28143753123*33385282^(1/18) 3770005305032322 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^70 3770005305032322 a001 1515744265389/10525900321*33385282^(1/18) 3770005305032322 a001 3278735159921/22768774562*33385282^(1/18) 3770005305032322 a001 2504730781961/17393796001*33385282^(1/18) 3770005305032322 a001 63245986/23725150497407*2537720636^(13/15) 3770005305032322 a001 956722026041/6643838879*33385282^(1/18) 3770005305032322 a001 63245986/4106118243*2537720636^(7/15) 3770005305032322 a001 63245986/5600748293801*2537720636^(4/5) 3770005305032322 a001 31622993/1730726404001*2537720636^(7/9) 3770005305032322 a001 63245986/1322157322203*2537720636^(11/15) 3770005305032322 a001 63245986/312119004989*2537720636^(2/3) 3770005305032322 a001 63245986/73681302247*2537720636^(3/5) 3770005305032322 a001 63245986/28143753123*2537720636^(5/9) 3770005305032322 a001 63245986/17393796001*2537720636^(8/15) 3770005305032322 a001 63245986/4106118243*17393796001^(3/7) 3770005305032322 a001 1836311903/141422324*17393796001^(1/7) 3770005305032322 a001 63245986/4106118243*45537549124^(7/17) 3770005305032322 a001 63245986/4106118243*14662949395604^(1/3) 3770005305032322 a001 1836311903/141422324*14662949395604^(1/9) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(46) 3770005305032322 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(39) 3770005305032322 a001 63245986/4106118243*192900153618^(7/18) 3770005305032322 a001 63245986/4106118243*10749957122^(7/16) 3770005305032322 a001 1201881744/35355581*2537720636^(1/9) 3770005305032322 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^72 3770005305032322 a001 12586269025/141422324*2537720636^(1/15) 3770005305032322 a001 1201881744/35355581*312119004989^(1/11) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(48) 3770005305032322 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(39) 3770005305032322 a001 1201881744/35355581*28143753123^(1/10) 3770005305032322 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^74 3770005305032322 a001 31622993/1730726404001*17393796001^(5/7) 3770005305032322 a001 63245986/119218851371*17393796001^(4/7) 3770005305032322 a001 12586269025/141422324*45537549124^(1/17) 3770005305032322 a001 63245986/28143753123*312119004989^(5/11) 3770005305032322 a001 12586269025/141422324*14662949395604^(1/21) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(50) 3770005305032322 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(39) 3770005305032322 a001 12586269025/141422324*192900153618^(1/18) 3770005305032322 a001 12586269025/141422324*10749957122^(1/16) 3770005305032322 a001 63245986/28143753123*28143753123^(1/2) 3770005305032322 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^76 3770005305032322 a001 63245986/73681302247*45537549124^(9/17) 3770005305032322 a001 63245986/23725150497407*45537549124^(13/17) 3770005305032322 a001 63245986/5600748293801*45537549124^(12/17) 3770005305032322 a001 63245986/2139295485799*45537549124^(2/3) 3770005305032322 a001 63245986/1322157322203*45537549124^(11/17) 3770005305032322 a001 63245986/312119004989*45537549124^(10/17) 3770005305032322 a001 63245986/73681302247*817138163596^(9/19) 3770005305032322 a001 63245986/73681302247*14662949395604^(3/7) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(52) 3770005305032322 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(39) 3770005305032322 a001 63245986/73681302247*192900153618^(1/2) 3770005305032322 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^78 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(54) 3770005305032322 a004 Fibonacci(54)/Lucas(39)/(1/2+sqrt(5)/2) 3770005305032322 a001 31622993/96450076809*1322157322203^(1/2) 3770005305032322 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^80 3770005305032322 a001 63245986/1322157322203*312119004989^(3/5) 3770005305032322 a001 31622993/1730726404001*312119004989^(7/11) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(56) 3770005305032322 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2)^3 3770005305032322 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^82 3770005305032322 a001 31622993/7331474697802*817138163596^(2/3) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(58) 3770005305032322 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^5 3770005305032322 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^84 3770005305032322 a001 31622993/1730726404001*14662949395604^(5/9) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(60) 3770005305032322 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^7 3770005305032322 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^86 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(62) 3770005305032322 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^9 3770005305032322 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^88 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(64) 3770005305032322 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^11 3770005305032322 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^90 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(66) 3770005305032322 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^13 3770005305032322 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^92 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(68) 3770005305032322 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^15 3770005305032322 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^94 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(70) 3770005305032322 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^17 3770005305032322 a004 Fibonacci(39)*Lucas(71)/(1/2+sqrt(5)/2)^96 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(72) 3770005305032322 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^19 3770005305032322 a004 Fibonacci(39)*Lucas(73)/(1/2+sqrt(5)/2)^98 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(74) 3770005305032322 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^21 3770005305032322 a004 Fibonacci(39)*Lucas(75)/(1/2+sqrt(5)/2)^100 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(76) 3770005305032322 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^23 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(78) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(80) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(82) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(84) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(86) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(88) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(90) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(92) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(94) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^71/Lucas(96) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^73/Lucas(98) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^75/Lucas(100) 3770005305032322 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^25 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^72/Lucas(97) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^74/Lucas(99) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^70/Lucas(95) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(93) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(91) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(89) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(87) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(85) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(83) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(81) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(79) 3770005305032322 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^27 3770005305032322 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^29 3770005305032322 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^31 3770005305032322 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^33 3770005305032322 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^35 3770005305032322 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^37 3770005305032322 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^39 3770005305032322 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^41 3770005305032322 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^43 3770005305032322 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^47 3770005305032322 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^45 3770005305032322 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^46 3770005305032322 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^44 3770005305032322 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^42 3770005305032322 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^40 3770005305032322 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^38 3770005305032322 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^36 3770005305032322 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^34 3770005305032322 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^32 3770005305032322 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^30 3770005305032322 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^28 3770005305032322 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^26 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(77) 3770005305032322 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^24 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(75) 3770005305032322 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^22 3770005305032322 a004 Fibonacci(39)*Lucas(74)/(1/2+sqrt(5)/2)^99 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(73) 3770005305032322 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^20 3770005305032322 a004 Fibonacci(39)*Lucas(72)/(1/2+sqrt(5)/2)^97 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(71) 3770005305032322 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^18 3770005305032322 a004 Fibonacci(39)*Lucas(70)/(1/2+sqrt(5)/2)^95 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(69) 3770005305032322 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^16 3770005305032322 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^93 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(67) 3770005305032322 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^14 3770005305032322 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^91 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(65) 3770005305032322 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^12 3770005305032322 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^89 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(63) 3770005305032322 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^10 3770005305032322 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^87 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(61) 3770005305032322 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^8 3770005305032322 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^85 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(59) 3770005305032322 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^6 3770005305032322 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^83 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(57) 3770005305032322 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^4 3770005305032322 a001 31622993/408569081798*23725150497407^(1/2) 3770005305032322 a001 31622993/1730726404001*505019158607^(5/8) 3770005305032322 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^81 3770005305032322 a001 63245986/312119004989*14662949395604^(10/21) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(55) 3770005305032322 a004 Fibonacci(55)/Lucas(39)/(1/2+sqrt(5)/2)^2 3770005305032322 a001 63245986/1322157322203*192900153618^(11/18) 3770005305032322 a001 63245986/23725150497407*192900153618^(13/18) 3770005305032322 a001 63245986/312119004989*192900153618^(5/9) 3770005305032322 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^79 3770005305032322 a001 63245986/119218851371*14662949395604^(4/9) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(53) 3770005305032322 a006 5^(1/2)*Fibonacci(53)/Lucas(39)/sqrt(5) 3770005305032322 a001 63245986/119218851371*505019158607^(1/2) 3770005305032322 a001 31622993/408569081798*73681302247^(8/13) 3770005305032322 a001 63245986/5600748293801*73681302247^(9/13) 3770005305032322 a001 63245986/23725150497407*73681302247^(3/4) 3770005305032322 a001 63245986/119218851371*73681302247^(7/13) 3770005305032322 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^77 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(51) 3770005305032322 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(39) 3770005305032322 a001 182717648081/1268860318*33385282^(1/18) 3770005305032322 a001 31622993/22768774562*73681302247^(1/2) 3770005305032322 a001 63245986/312119004989*28143753123^(3/5) 3770005305032322 a001 10182505537/70711162*10749957122^(1/24) 3770005305032322 a001 31622993/1730726404001*28143753123^(7/10) 3770005305032322 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^75 3770005305032322 a001 2971215073/141422324*2537720636^(2/15) 3770005305032322 a001 10182505537/70711162*4106118243^(1/23) 3770005305032322 a001 63245986/17393796001*45537549124^(8/17) 3770005305032322 a001 63245986/17393796001*14662949395604^(8/21) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(49) 3770005305032322 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(39) 3770005305032322 a001 7778742049/141422324*23725150497407^(1/16) 3770005305032322 a001 63245986/17393796001*192900153618^(4/9) 3770005305032322 a001 7778742049/141422324*73681302247^(1/13) 3770005305032322 a001 63245986/17393796001*73681302247^(6/13) 3770005305032322 a001 7778742049/141422324*10749957122^(1/12) 3770005305032322 a001 63245986/73681302247*10749957122^(9/16) 3770005305032322 a001 63245986/119218851371*10749957122^(7/12) 3770005305032322 a001 31622993/22768774562*10749957122^(13/24) 3770005305032322 a001 63245986/312119004989*10749957122^(5/8) 3770005305032322 a001 31622993/408569081798*10749957122^(2/3) 3770005305032322 a001 63245986/1322157322203*10749957122^(11/16) 3770005305032322 a001 63245986/2139295485799*10749957122^(17/24) 3770005305032322 a001 63245986/5600748293801*10749957122^(3/4) 3770005305032322 a001 31622993/7331474697802*10749957122^(19/24) 3770005305032322 a001 63245986/23725150497407*10749957122^(13/16) 3770005305032322 a001 63245986/17393796001*10749957122^(1/2) 3770005305032322 a001 7778742049/141422324*4106118243^(2/23) 3770005305032322 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^73 3770005305032322 a001 10182505537/70711162*1568397607^(1/22) 3770005305032322 a001 31622993/5374978561*4106118243^(1/2) 3770005305032322 a001 2971215073/141422324*45537549124^(2/17) 3770005305032322 a001 63245986/6643838879*312119004989^(2/5) 3770005305032322 a001 2971215073/141422324*14662949395604^(2/21) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(47) 3770005305032322 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(39) 3770005305032322 a001 2971215073/141422324*10749957122^(1/8) 3770005305032322 a001 63245986/6643838879*10749957122^(11/24) 3770005305032322 a001 2971215073/141422324*4106118243^(3/23) 3770005305032322 a001 31622993/22768774562*4106118243^(13/23) 3770005305032322 a001 63245986/17393796001*4106118243^(12/23) 3770005305032322 a001 63245986/119218851371*4106118243^(14/23) 3770005305032322 a001 63245986/312119004989*4106118243^(15/23) 3770005305032322 a001 7778742049/141422324*1568397607^(1/11) 3770005305032322 a001 31622993/408569081798*4106118243^(16/23) 3770005305032322 a001 63245986/2139295485799*4106118243^(17/23) 3770005305032322 a001 63245986/5600748293801*4106118243^(18/23) 3770005305032322 a001 31622993/7331474697802*4106118243^(19/23) 3770005305032322 a001 63245986/6643838879*4106118243^(11/23) 3770005305032322 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^71 3770005305032322 a001 2971215073/141422324*1568397607^(3/22) 3770005305032322 a001 31622993/1268860318*2537720636^(4/9) 3770005305032322 a001 10182505537/70711162*599074578^(1/21) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(45) 3770005305032322 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(39) 3770005305032322 a001 567451585/70711162*23725150497407^(1/8) 3770005305032322 a001 31622993/1268860318*23725150497407^(5/16) 3770005305032322 a001 31622993/1268860318*505019158607^(5/14) 3770005305032322 a001 567451585/70711162*73681302247^(2/13) 3770005305032322 a001 31622993/1268860318*73681302247^(5/13) 3770005305032322 a001 31622993/1268860318*28143753123^(2/5) 3770005305032322 a001 567451585/70711162*10749957122^(1/6) 3770005305032322 a001 31622993/1268860318*10749957122^(5/12) 3770005305032322 a001 567451585/70711162*4106118243^(4/23) 3770005305032322 a001 31622993/1268860318*4106118243^(10/23) 3770005305032322 a001 701408733/141422324*599074578^(3/14) 3770005305032322 a001 12586269025/141422324*599074578^(1/14) 3770005305032322 a001 63245986/17393796001*1568397607^(6/11) 3770005305032322 a001 63245986/6643838879*1568397607^(1/2) 3770005305032322 a001 567451585/70711162*1568397607^(2/11) 3770005305032322 a001 31622993/22768774562*1568397607^(13/22) 3770005305032322 a001 63245986/119218851371*1568397607^(7/11) 3770005305032322 a001 7778742049/141422324*599074578^(2/21) 3770005305032322 a001 63245986/312119004989*1568397607^(15/22) 3770005305032322 a001 31622993/408569081798*1568397607^(8/11) 3770005305032322 a001 63245986/1322157322203*1568397607^(3/4) 3770005305032322 a001 63245986/2139295485799*1568397607^(17/22) 3770005305032322 a001 63245986/5600748293801*1568397607^(9/11) 3770005305032322 a001 31622993/1268860318*1568397607^(5/11) 3770005305032322 a001 31622993/7331474697802*1568397607^(19/22) 3770005305032322 a001 433494437/969323029*87403803^(7/19) 3770005305032322 a001 1836311903/141422324*599074578^(1/6) 3770005305032322 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^69 3770005305032322 a001 2971215073/141422324*599074578^(1/7) 3770005305032322 a001 567451585/70711162*599074578^(4/21) 3770005305032322 a001 139583862445/969323029*33385282^(1/18) 3770005305032322 a001 10182505537/70711162*228826127^(1/20) 3770005305032322 a001 63245986/969323029*2537720636^(2/5) 3770005305032322 a001 433494437/141422324*2537720636^(2/9) 3770005305032322 a001 63245986/969323029*45537549124^(6/17) 3770005305032322 a001 433494437/141422324*312119004989^(2/11) 3770005305032322 a001 63245986/969323029*14662949395604^(2/7) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(43) 3770005305032322 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(39) 3770005305032322 a001 63245986/969323029*192900153618^(1/3) 3770005305032322 a001 433494437/141422324*28143753123^(1/5) 3770005305032322 a001 433494437/141422324*10749957122^(5/24) 3770005305032322 a001 63245986/969323029*10749957122^(3/8) 3770005305032322 a001 433494437/141422324*4106118243^(5/23) 3770005305032322 a001 63245986/969323029*4106118243^(9/23) 3770005305032322 a001 433494437/141422324*1568397607^(5/22) 3770005305032322 a001 63245986/969323029*1568397607^(9/22) 3770005305032322 a001 63245986/4106118243*599074578^(1/2) 3770005305032322 a001 31622993/1268860318*599074578^(10/21) 3770005305032322 a001 63245986/6643838879*599074578^(11/21) 3770005305032322 a001 63245986/17393796001*599074578^(4/7) 3770005305032322 a001 31622993/22768774562*599074578^(13/21) 3770005305032322 a001 433494437/141422324*599074578^(5/21) 3770005305032322 a001 63245986/73681302247*599074578^(9/14) 3770005305032322 a001 63245986/119218851371*599074578^(2/3) 3770005305032322 a001 7778742049/141422324*228826127^(1/10) 3770005305032322 a001 267914296/1568397607*87403803^(8/19) 3770005305032322 a001 63245986/312119004989*599074578^(5/7) 3770005305032322 a001 31622993/408569081798*599074578^(16/21) 3770005305032322 a001 63245986/1322157322203*599074578^(11/14) 3770005305032322 a001 63245986/2139295485799*599074578^(17/21) 3770005305032322 a001 63245986/969323029*599074578^(3/7) 3770005305032322 a001 31622993/1730726404001*599074578^(5/6) 3770005305032322 a001 1201881744/35355581*228826127^(1/8) 3770005305032322 a001 63245986/5600748293801*599074578^(6/7) 3770005305032322 a001 31622993/7331474697802*599074578^(19/21) 3770005305032322 a001 63245986/23725150497407*599074578^(13/14) 3770005305032322 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^67 3770005305032322 a001 2971215073/141422324*228826127^(3/20) 3770005305032322 a001 567451585/70711162*228826127^(1/5) 3770005305032322 a001 233802911/1368706081*87403803^(8/19) 3770005305032322 a001 1836311903/10749957122*87403803^(8/19) 3770005305032322 a001 1602508992/9381251041*87403803^(8/19) 3770005305032322 a001 12586269025/73681302247*87403803^(8/19) 3770005305032322 a001 10983760033/64300051206*87403803^(8/19) 3770005305032322 a001 86267571272/505019158607*87403803^(8/19) 3770005305032322 a001 75283811239/440719107401*87403803^(8/19) 3770005305032322 a001 2504730781961/14662949395604*87403803^(8/19) 3770005305032322 a001 139583862445/817138163596*87403803^(8/19) 3770005305032322 a001 53316291173/312119004989*87403803^(8/19) 3770005305032322 a001 20365011074/119218851371*87403803^(8/19) 3770005305032322 a001 7778742049/45537549124*87403803^(8/19) 3770005305032322 a001 2971215073/17393796001*87403803^(8/19) 3770005305032322 a001 1134903170/6643838879*87403803^(8/19) 3770005305032322 a001 20365011074/228826127*33385282^(1/12) 3770005305032322 a001 433494437/141422324*228826127^(1/4) 3770005305032322 a001 433494437/2537720636*87403803^(8/19) 3770005305032322 a001 102334155/10749957122*87403803^(11/19) 3770005305032322 a001 10182505537/70711162*87403803^(1/19) 3770005305032322 a001 53316291173/370248451*33385282^(1/18) 3770005305032322 a001 165580141/141422324*2537720636^(4/15) 3770005305032322 a001 165580141/141422324*45537549124^(4/17) 3770005305032322 a001 165580141/141422324*817138163596^(4/19) 3770005305032322 a001 165580141/141422324*14662949395604^(4/21) 3770005305032322 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(41) 3770005305032322 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(39) 3770005305032322 a001 165580141/141422324*192900153618^(2/9) 3770005305032322 a001 165580141/141422324*73681302247^(3/13) 3770005305032322 a001 63245986/370248451*73681302247^(4/13) 3770005305032322 a001 165580141/141422324*10749957122^(1/4) 3770005305032322 a001 63245986/370248451*10749957122^(1/3) 3770005305032322 a001 165580141/141422324*4106118243^(6/23) 3770005305032322 a001 63245986/370248451*4106118243^(8/23) 3770005305032322 a001 165580141/141422324*1568397607^(3/11) 3770005305032322 a001 63245986/370248451*1568397607^(4/11) 3770005305032322 a001 165580141/141422324*599074578^(2/7) 3770005305032322 a001 63245986/370248451*599074578^(8/21) 3770005305032322 a001 267914296/4106118243*87403803^(9/19) 3770005305032322 a001 63245986/969323029*228826127^(9/20) 3770005305032322 a001 31622993/1268860318*228826127^(1/2) 3770005305032322 a001 63245986/6643838879*228826127^(11/20) 3770005305032322 a001 63245986/17393796001*228826127^(3/5) 3770005305032322 a001 701408733/10749957122*87403803^(9/19) 3770005305032322 a001 63245986/28143753123*228826127^(5/8) 3770005305032322 a001 1836311903/28143753123*87403803^(9/19) 3770005305032322 a001 686789568/10525900321*87403803^(9/19) 3770005305032322 a001 12586269025/192900153618*87403803^(9/19) 3770005305032322 a001 32951280099/505019158607*87403803^(9/19) 3770005305032322 a001 86267571272/1322157322203*87403803^(9/19) 3770005305032322 a001 32264490531/494493258286*87403803^(9/19) 3770005305032322 a001 1548008755920/23725150497407*87403803^(9/19) 3770005305032322 a001 365435296162/5600748293801*87403803^(9/19) 3770005305032322 a001 139583862445/2139295485799*87403803^(9/19) 3770005305032322 a001 53316291173/817138163596*87403803^(9/19) 3770005305032322 a001 20365011074/312119004989*87403803^(9/19) 3770005305032322 a001 7778742049/119218851371*87403803^(9/19) 3770005305032322 a001 2971215073/45537549124*87403803^(9/19) 3770005305032322 a001 1134903170/17393796001*87403803^(9/19) 3770005305032322 a001 31622993/22768774562*228826127^(13/20) 3770005305032322 a001 267914296/6643838879*87403803^(1/2) 3770005305032322 a001 165580141/370248451*87403803^(7/19) 3770005305032322 a001 165580141/141422324*228826127^(3/10) 3770005305032322 a001 433494437/6643838879*87403803^(9/19) 3770005305032322 a001 63245986/119218851371*228826127^(7/10) 3770005305032322 a001 165580141/969323029*87403803^(8/19) 3770005305032322 a001 831985/228811001*87403803^(12/19) 3770005305032322 a001 7778742049/141422324*87403803^(2/19) 3770005305032322 a001 63245986/312119004989*228826127^(3/4) 3770005305032322 a001 63245986/370248451*228826127^(2/5) 3770005305032322 a001 701408733/17393796001*87403803^(1/2) 3770005305032322 a001 31622993/408569081798*228826127^(4/5) 3770005305032322 a001 1836311903/45537549124*87403803^(1/2) 3770005305032322 a001 4807526976/119218851371*87403803^(1/2) 3770005305032322 a001 1144206275/28374454999*87403803^(1/2) 3770005305032322 a001 32951280099/817138163596*87403803^(1/2) 3770005305032322 a001 86267571272/2139295485799*87403803^(1/2) 3770005305032322 a001 225851433717/5600748293801*87403803^(1/2) 3770005305032322 a001 591286729879/14662949395604*87403803^(1/2) 3770005305032322 a001 365435296162/9062201101803*87403803^(1/2) 3770005305032322 a001 139583862445/3461452808002*87403803^(1/2) 3770005305032322 a001 53316291173/1322157322203*87403803^(1/2) 3770005305032322 a001 20365011074/505019158607*87403803^(1/2) 3770005305032322 a001 7778742049/192900153618*87403803^(1/2) 3770005305032322 a001 2971215073/73681302247*87403803^(1/2) 3770005305032322 a001 1134903170/28143753123*87403803^(1/2) 3770005305032322 a001 133957148/5374978561*87403803^(10/19) 3770005305032322 a001 63245986/2139295485799*228826127^(17/20) 3770005305032322 a001 433494437/10749957122*87403803^(1/2) 3770005305032322 a001 31622993/1730726404001*228826127^(7/8) 3770005305032322 a001 63245986/5600748293801*228826127^(9/10) 3770005305032322 a001 233802911/29134601*33385282^(2/9) 3770005305032322 a001 31622993/7331474697802*228826127^(19/20) 3770005305032322 a001 233802911/9381251041*87403803^(10/19) 3770005305032322 a001 1836311903/73681302247*87403803^(10/19) 3770005305032322 a001 267084832/10716675201*87403803^(10/19) 3770005305032322 a001 12586269025/505019158607*87403803^(10/19) 3770005305032322 a001 10983760033/440719107401*87403803^(10/19) 3770005305032322 a001 43133785636/1730726404001*87403803^(10/19) 3770005305032322 a001 75283811239/3020733700601*87403803^(10/19) 3770005305032322 a001 182717648081/7331474697802*87403803^(10/19) 3770005305032322 a001 139583862445/5600748293801*87403803^(10/19) 3770005305032322 a001 53316291173/2139295485799*87403803^(10/19) 3770005305032322 a001 10182505537/408569081798*87403803^(10/19) 3770005305032322 a001 7778742049/312119004989*87403803^(10/19) 3770005305032322 a001 2971215073/119218851371*87403803^(10/19) 3770005305032322 a001 567451585/22768774562*87403803^(10/19) 3770005305032322 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^65 3770005305032322 a001 165580141/2537720636*87403803^(9/19) 3770005305032322 a001 433494437/17393796001*87403803^(10/19) 3770005305032322 a001 14619165/10525900321*87403803^(13/19) 3770005305032322 a001 2971215073/141422324*87403803^(3/19) 3770005305032322 a001 53316291173/599074578*33385282^(1/12) 3770005305032322 a001 165580141/4106118243*87403803^(1/2) 3770005305032322 a001 267914296/28143753123*87403803^(11/19) 3770005305032322 a001 139583862445/1568397607*33385282^(1/12) 3770005305032322 a001 365435296162/4106118243*33385282^(1/12) 3770005305032322 a001 956722026041/10749957122*33385282^(1/12) 3770005305032322 a001 2504730781961/28143753123*33385282^(1/12) 3770005305032322 a001 6557470319842/73681302247*33385282^(1/12) 3770005305032322 a001 10610209857723/119218851371*33385282^(1/12) 3770005305032322 a001 4052739537881/45537549124*33385282^(1/12) 3770005305032322 a001 1548008755920/17393796001*33385282^(1/12) 3770005305032322 a001 591286729879/6643838879*33385282^(1/12) 3770005305032322 a001 225851433717/2537720636*33385282^(1/12) 3770005305032322 a001 701408733/73681302247*87403803^(11/19) 3770005305032322 a001 1836311903/192900153618*87403803^(11/19) 3770005305032322 a001 102287808/10745088481*87403803^(11/19) 3770005305032322 a001 12586269025/1322157322203*87403803^(11/19) 3770005305032322 a001 32951280099/3461452808002*87403803^(11/19) 3770005305032322 a001 86267571272/9062201101803*87403803^(11/19) 3770005305032322 a001 225851433717/23725150497407*87403803^(11/19) 3770005305032322 a001 139583862445/14662949395604*87403803^(11/19) 3770005305032322 a001 53316291173/5600748293801*87403803^(11/19) 3770005305032322 a001 20365011074/2139295485799*87403803^(11/19) 3770005305032322 a001 7778742049/817138163596*87403803^(11/19) 3770005305032322 a001 2971215073/312119004989*87403803^(11/19) 3770005305032322 a001 86267571272/969323029*33385282^(1/12) 3770005305032323 a001 1134903170/119218851371*87403803^(11/19) 3770005305032323 a001 165580141/6643838879*87403803^(10/19) 3770005305032323 a001 433494437/45537549124*87403803^(11/19) 3770005305032323 a001 34111385/64300051206*87403803^(14/19) 3770005305032323 a001 567451585/70711162*87403803^(4/19) 3770005305032323 a001 267914296/73681302247*87403803^(12/19) 3770005305032323 a001 12586269025/228826127*33385282^(1/9) 3770005305032323 a001 32951280099/370248451*33385282^(1/12) 3770005305032323 a001 233802911/64300051206*87403803^(12/19) 3770005305032323 a001 1836311903/505019158607*87403803^(12/19) 3770005305032323 a001 1602508992/440719107401*87403803^(12/19) 3770005305032323 a001 12586269025/3461452808002*87403803^(12/19) 3770005305032323 a001 10983760033/3020733700601*87403803^(12/19) 3770005305032323 a001 86267571272/23725150497407*87403803^(12/19) 3770005305032323 a001 53316291173/14662949395604*87403803^(12/19) 3770005305032323 a001 20365011074/5600748293801*87403803^(12/19) 3770005305032323 a001 7778742049/2139295485799*87403803^(12/19) 3770005305032323 a001 2971215073/817138163596*87403803^(12/19) 3770005305032323 a001 1134903170/312119004989*87403803^(12/19) 3770005305032323 a001 165580141/17393796001*87403803^(11/19) 3770005305032323 a001 433494437/119218851371*87403803^(12/19) 3770005305032323 a001 102334155/505019158607*87403803^(15/19) 3770005305032323 a001 433494437/141422324*87403803^(5/19) 3770005305032323 a001 133957148/96450076809*87403803^(13/19) 3770005305032323 a001 39088169/87403803*33385282^(7/18) 3770005305032323 a001 701408733/505019158607*87403803^(13/19) 3770005305032323 a001 1836311903/1322157322203*87403803^(13/19) 3770005305032323 a001 14930208/10749853441*87403803^(13/19) 3770005305032323 a001 12586269025/9062201101803*87403803^(13/19) 3770005305032323 a001 32951280099/23725150497407*87403803^(13/19) 3770005305032323 a001 10182505537/7331474697802*87403803^(13/19) 3770005305032323 a001 7778742049/5600748293801*87403803^(13/19) 3770005305032323 a001 2971215073/2139295485799*87403803^(13/19) 3770005305032323 a001 567451585/408569081798*87403803^(13/19) 3770005305032323 a001 165580141/45537549124*87403803^(12/19) 3770005305032323 a001 433494437/312119004989*87403803^(13/19) 3770005305032323 a001 34111385/440719107401*87403803^(16/19) 3770005305032323 a001 267914296/505019158607*87403803^(14/19) 3770005305032323 a001 433494437/87403803*33385282^(1/4) 3770005305032323 a001 233802911/440719107401*87403803^(14/19) 3770005305032323 a001 1836311903/3461452808002*87403803^(14/19) 3770005305032323 a001 1602508992/3020733700601*87403803^(14/19) 3770005305032323 a001 12586269025/23725150497407*87403803^(14/19) 3770005305032323 a001 7778742049/14662949395604*87403803^(14/19) 3770005305032323 a001 2971215073/5600748293801*87403803^(14/19) 3770005305032323 a001 1134903170/2139295485799*87403803^(14/19) 3770005305032323 a001 165580141/119218851371*87403803^(13/19) 3770005305032323 a001 10983760033/199691526*33385282^(1/9) 3770005305032323 a001 433494437/817138163596*87403803^(14/19) 3770005305032323 a001 6765/228826126*87403803^(17/19) 3770005305032323 a001 165580141/141422324*87403803^(6/19) 3770005305032323 a001 86267571272/1568397607*33385282^(1/9) 3770005305032323 a001 75283811239/1368706081*33385282^(1/9) 3770005305032323 a001 591286729879/10749957122*33385282^(1/9) 3770005305032323 a001 12585437040/228811001*33385282^(1/9) 3770005305032323 a001 4052739537881/73681302247*33385282^(1/9) 3770005305032323 a001 3536736619241/64300051206*33385282^(1/9) 3770005305032323 a001 6557470319842/119218851371*33385282^(1/9) 3770005305032323 a001 2504730781961/45537549124*33385282^(1/9) 3770005305032323 a001 956722026041/17393796001*33385282^(1/9) 3770005305032323 a001 365435296162/6643838879*33385282^(1/9) 3770005305032323 a001 10182505537/70711162*33385282^(1/18) 3770005305032323 a001 139583862445/2537720636*33385282^(1/9) 3770005305032323 a001 31622993/70711162*17393796001^(2/7) 3770005305032323 a001 31622993/70711162*14662949395604^(2/9) 3770005305032323 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(39) 3770005305032323 a001 31622993/70711162*505019158607^(1/4) 3770005305032323 a001 31622993/70711162*10749957122^(7/24) 3770005305032323 a001 31622993/70711162*4106118243^(7/23) 3770005305032323 a001 31622993/70711162*1568397607^(7/22) 3770005305032323 a001 267914296/1322157322203*87403803^(15/19) 3770005305032323 a001 53316291173/969323029*33385282^(1/9) 3770005305032323 a001 31622993/70711162*599074578^(1/3) 3770005305032323 a001 701408733/3461452808002*87403803^(15/19) 3770005305032323 a001 1836311903/9062201101803*87403803^(15/19) 3770005305032323 a001 4807526976/23725150497407*87403803^(15/19) 3770005305032323 a001 2971215073/14662949395604*87403803^(15/19) 3770005305032323 a001 1134903170/5600748293801*87403803^(15/19) 3770005305032323 a001 165580141/312119004989*87403803^(14/19) 3770005305032323 a001 433494437/2139295485799*87403803^(15/19) 3770005305032323 a001 34111385/3020733700601*87403803^(18/19) 3770005305032323 a001 31622993/70711162*228826127^(7/20) 3770005305032323 a001 20365011074/370248451*33385282^(1/9) 3770005305032323 a001 133957148/1730726404001*87403803^(16/19) 3770005305032323 a001 233802911/3020733700601*87403803^(16/19) 3770005305032323 a001 1836311903/23725150497407*87403803^(16/19) 3770005305032323 a001 567451585/7331474697802*87403803^(16/19) 3770005305032323 a001 165580141/817138163596*87403803^(15/19) 3770005305032323 a001 433494437/5600748293801*87403803^(16/19) 3770005305032323 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^64 3770005305032323 a001 63245986/370248451*87403803^(8/19) 3770005305032323 a001 63245986/969323029*87403803^(9/19) 3770005305032323 a001 267914296/9062201101803*87403803^(17/19) 3770005305032323 a001 63245986/1568397607*87403803^(1/2) 3770005305032323 a001 267914296/87403803*33385282^(5/18) 3770005305032323 a001 701408733/23725150497407*87403803^(17/19) 3770005305032323 a001 165580141/2139295485799*87403803^(16/19) 3770005305032323 a001 433494437/14662949395604*87403803^(17/19) 3770005305032323 a001 31622993/1268860318*87403803^(10/19) 3770005305032323 a001 267914296/23725150497407*87403803^(18/19) 3770005305032323 a001 165580141/5600748293801*87403803^(17/19) 3770005305032323 a001 12586269025/141422324*33385282^(1/12) 3770005305032323 a001 63245986/6643838879*87403803^(11/19) 3770005305032323 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^66 3770005305032323 a001 102287808/4868641*33385282^(1/6) 3770005305032323 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^68 3770005305032323 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^70 3770005305032323 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^72 3770005305032323 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^74 3770005305032323 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^76 3770005305032323 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^78 3770005305032323 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^80 3770005305032323 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^82 3770005305032323 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^84 3770005305032323 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^86 3770005305032323 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^88 3770005305032323 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^90 3770005305032323 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^92 3770005305032323 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^94 3770005305032323 a004 Fibonacci(72)*Lucas(38)/(1/2+sqrt(5)/2)^96 3770005305032323 a004 Fibonacci(74)*Lucas(38)/(1/2+sqrt(5)/2)^98 3770005305032323 a004 Fibonacci(76)*Lucas(38)/(1/2+sqrt(5)/2)^100 3770005305032323 a001 2/39088169*(1/2+1/2*5^(1/2))^52 3770005305032323 a004 Fibonacci(75)*Lucas(38)/(1/2+sqrt(5)/2)^99 3770005305032323 a004 Fibonacci(73)*Lucas(38)/(1/2+sqrt(5)/2)^97 3770005305032323 a004 Fibonacci(71)*Lucas(38)/(1/2+sqrt(5)/2)^95 3770005305032323 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^93 3770005305032323 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^91 3770005305032323 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^89 3770005305032323 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^87 3770005305032323 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^85 3770005305032323 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^83 3770005305032323 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^81 3770005305032323 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^79 3770005305032323 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^77 3770005305032323 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^75 3770005305032323 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^73 3770005305032323 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^71 3770005305032323 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^69 3770005305032323 a001 165580141/14662949395604*87403803^(18/19) 3770005305032323 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^67 3770005305032323 a001 63245986/17393796001*87403803^(12/19) 3770005305032323 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^65 3770005305032323 a001 31622993/22768774562*87403803^(13/19) 3770005305032323 a001 63245986/119218851371*87403803^(14/19) 3770005305032323 a001 12586269025/599074578*33385282^(1/6) 3770005305032323 a001 31622993/70711162*87403803^(7/19) 3770005305032323 a001 34111385/29134601*33385282^(1/3) 3770005305032323 a001 32951280099/1568397607*33385282^(1/6) 3770005305032323 a001 86267571272/4106118243*33385282^(1/6) 3770005305032323 a001 225851433717/10749957122*33385282^(1/6) 3770005305032323 a001 591286729879/28143753123*33385282^(1/6) 3770005305032323 a001 1548008755920/73681302247*33385282^(1/6) 3770005305032323 a001 4052739537881/192900153618*33385282^(1/6) 3770005305032323 a001 225749145909/10745088481*33385282^(1/6) 3770005305032323 a001 6557470319842/312119004989*33385282^(1/6) 3770005305032323 a001 2504730781961/119218851371*33385282^(1/6) 3770005305032323 a001 956722026041/45537549124*33385282^(1/6) 3770005305032323 a001 365435296162/17393796001*33385282^(1/6) 3770005305032323 a001 139583862445/6643838879*33385282^(1/6) 3770005305032323 a001 53316291173/2537720636*33385282^(1/6) 3770005305032323 a001 7778742049/141422324*33385282^(1/9) 3770005305032323 a001 20365011074/969323029*33385282^(1/6) 3770005305032323 a001 63245986/312119004989*87403803^(15/19) 3770005305032323 a001 7778742049/370248451*33385282^(1/6) 3770005305032323 a001 31622993/408569081798*87403803^(16/19) 3770005305032323 a001 63245986/2139295485799*87403803^(17/19) 3770005305032323 a001 63245986/5600748293801*87403803^(18/19) 3770005305032323 a001 1836311903/228826127*33385282^(2/9) 3770005305032323 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^63 3770005305032323 a001 701408733/33385282*12752043^(3/17) 3770005305032323 a001 24157817/87403803*141422324^(5/13) 3770005305032323 a001 39088169/54018521*141422324^(1/3) 3770005305032323 a001 267084832/33281921*33385282^(2/9) 3770005305032323 a001 12586269025/1568397607*33385282^(2/9) 3770005305032323 a001 10983760033/1368706081*33385282^(2/9) 3770005305032323 a001 43133785636/5374978561*33385282^(2/9) 3770005305032323 a001 75283811239/9381251041*33385282^(2/9) 3770005305032323 a001 591286729879/73681302247*33385282^(2/9) 3770005305032323 a001 86000486440/10716675201*33385282^(2/9) 3770005305032323 a001 4052739537881/505019158607*33385282^(2/9) 3770005305032323 a001 3536736619241/440719107401*33385282^(2/9) 3770005305032323 a001 3278735159921/408569081798*33385282^(2/9) 3770005305032323 a001 2504730781961/312119004989*33385282^(2/9) 3770005305032323 a001 956722026041/119218851371*33385282^(2/9) 3770005305032323 a001 182717648081/22768774562*33385282^(2/9) 3770005305032323 a001 139583862445/17393796001*33385282^(2/9) 3770005305032323 a001 53316291173/6643838879*33385282^(2/9) 3770005305032323 a001 10182505537/1268860318*33385282^(2/9) 3770005305032323 a001 2971215073/141422324*33385282^(1/6) 3770005305032323 a001 7778742049/969323029*33385282^(2/9) 3770005305032323 a001 1134903170/228826127*33385282^(1/4) 3770005305032323 a001 2971215073/370248451*33385282^(2/9) 3770005305032323 a001 24157817/87403803*2537720636^(1/3) 3770005305032323 a001 24157817/87403803*45537549124^(5/17) 3770005305032323 a001 24157817/87403803*312119004989^(3/11) 3770005305032323 a001 944284833567073/2504730781961 3770005305032323 a001 24157817/87403803*14662949395604^(5/21) 3770005305032323 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^15/Lucas(38) 3770005305032323 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^13/Lucas(37) 3770005305032323 a001 24157817/87403803*192900153618^(5/18) 3770005305032323 a001 39088169/54018521*73681302247^(1/4) 3770005305032323 a001 24157817/87403803*28143753123^(3/10) 3770005305032323 a001 24157817/87403803*10749957122^(5/16) 3770005305032323 a001 24157817/87403803*599074578^(5/14) 3770005305032323 a001 24157817/87403803*228826127^(3/8) 3770005305032323 a001 2971215073/599074578*33385282^(1/4) 3770005305032323 a001 7778742049/1568397607*33385282^(1/4) 3770005305032323 a001 20365011074/4106118243*33385282^(1/4) 3770005305032323 a001 53316291173/10749957122*33385282^(1/4) 3770005305032323 a001 139583862445/28143753123*33385282^(1/4) 3770005305032323 a001 365435296162/73681302247*33385282^(1/4) 3770005305032323 a001 956722026041/192900153618*33385282^(1/4) 3770005305032323 a001 2504730781961/505019158607*33385282^(1/4) 3770005305032323 a001 10610209857723/2139295485799*33385282^(1/4) 3770005305032323 a001 4052739537881/817138163596*33385282^(1/4) 3770005305032323 a001 140728068720/28374454999*33385282^(1/4) 3770005305032323 a001 591286729879/119218851371*33385282^(1/4) 3770005305032323 a001 225851433717/45537549124*33385282^(1/4) 3770005305032323 a001 86267571272/17393796001*33385282^(1/4) 3770005305032323 a001 32951280099/6643838879*33385282^(1/4) 3770005305032323 a001 1144206275/230701876*33385282^(1/4) 3770005305032323 a001 4807526976/969323029*33385282^(1/4) 3770005305032323 a001 701408733/228826127*33385282^(5/18) 3770005305032323 a001 12586269025/87403803*12752043^(1/17) 3770005305032323 a001 1836311903/370248451*33385282^(1/4) 3770005305032323 a001 1836311903/599074578*33385282^(5/18) 3770005305032323 a001 39088169/228826127*33385282^(4/9) 3770005305032323 a001 686789568/224056801*33385282^(5/18) 3770005305032323 a001 12586269025/4106118243*33385282^(5/18) 3770005305032323 a001 32951280099/10749957122*33385282^(5/18) 3770005305032323 a001 86267571272/28143753123*33385282^(5/18) 3770005305032323 a001 32264490531/10525900321*33385282^(5/18) 3770005305032323 a001 591286729879/192900153618*33385282^(5/18) 3770005305032323 a001 1548008755920/505019158607*33385282^(5/18) 3770005305032323 a001 1515744265389/494493258286*33385282^(5/18) 3770005305032323 a001 2504730781961/817138163596*33385282^(5/18) 3770005305032323 a001 956722026041/312119004989*33385282^(5/18) 3770005305032323 a001 365435296162/119218851371*33385282^(5/18) 3770005305032323 a001 139583862445/45537549124*33385282^(5/18) 3770005305032323 a001 53316291173/17393796001*33385282^(5/18) 3770005305032323 a001 20365011074/6643838879*33385282^(5/18) 3770005305032323 a001 7778742049/2537720636*33385282^(5/18) 3770005305032323 a001 567451585/70711162*33385282^(2/9) 3770005305032323 a001 2971215073/969323029*33385282^(5/18) 3770005305032323 a001 1134903170/370248451*33385282^(5/18) 3770005305032323 a001 701408733/141422324*33385282^(1/4) 3770005305032323 a001 267914296/228826127*33385282^(1/3) 3770005305032323 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^62 3770005305032323 a001 39088169/141422324*33385282^(5/12) 3770005305032323 a001 233802911/199691526*33385282^(1/3) 3770005305032323 a001 24157817/2139295485799*141422324^(12/13) 3770005305032323 a001 1836311903/1568397607*33385282^(1/3) 3770005305032323 a001 1602508992/1368706081*33385282^(1/3) 3770005305032323 a001 12586269025/10749957122*33385282^(1/3) 3770005305032323 a001 10983760033/9381251041*33385282^(1/3) 3770005305032323 a001 86267571272/73681302247*33385282^(1/3) 3770005305032323 a001 75283811239/64300051206*33385282^(1/3) 3770005305032323 a001 2504730781961/2139295485799*33385282^(1/3) 3770005305032323 a001 365435296162/312119004989*33385282^(1/3) 3770005305032323 a001 139583862445/119218851371*33385282^(1/3) 3770005305032323 a001 53316291173/45537549124*33385282^(1/3) 3770005305032323 a001 20365011074/17393796001*33385282^(1/3) 3770005305032323 a001 7778742049/6643838879*33385282^(1/3) 3770005305032323 a001 2971215073/2537720636*33385282^(1/3) 3770005305032323 a001 433494437/141422324*33385282^(5/18) 3770005305032323 a001 1134903170/969323029*33385282^(1/3) 3770005305032323 a001 24157817/505019158607*141422324^(11/13) 3770005305032323 a001 24157817/119218851371*141422324^(10/13) 3770005305032323 a001 433494437/370248451*33385282^(1/3) 3770005305032323 a001 24157817/28143753123*141422324^(9/13) 3770005305032323 a001 24157817/17393796001*141422324^(2/3) 3770005305032323 a001 102334155/228826127*33385282^(7/18) 3770005305032323 a001 24157817/6643838879*141422324^(8/13) 3770005305032323 a001 39088169/599074578*33385282^(1/2) 3770005305032323 a001 24157817/1568397607*141422324^(7/13) 3770005305032323 a001 24157817/228826127*45537549124^(1/3) 3770005305032323 a001 102334155/54018521*312119004989^(1/5) 3770005305032323 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(40) 3770005305032323 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^11/Lucas(37) 3770005305032323 a001 102334155/54018521*1568397607^(1/4) 3770005305032323 a001 24157817/370248451*141422324^(6/13) 3770005305032323 a001 267914296/54018521*141422324^(3/13) 3770005305032323 a001 1134903170/54018521*141422324^(2/13) 3770005305032323 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^64 3770005305032323 a001 9227465/45537549124*20633239^(6/7) 3770005305032323 a001 4807526976/54018521*141422324^(1/13) 3770005305032323 a001 267914296/54018521*2537720636^(1/5) 3770005305032323 a001 267914296/54018521*45537549124^(3/17) 3770005305032323 a001 24157817/599074578*817138163596^(1/3) 3770005305032323 a001 267914296/54018521*14662949395604^(1/7) 3770005305032323 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(42) 3770005305032323 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^9/Lucas(37) 3770005305032323 a001 267914296/54018521*192900153618^(1/6) 3770005305032323 a001 267914296/54018521*10749957122^(3/16) 3770005305032323 a001 267914296/54018521*599074578^(3/14) 3770005305032324 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^66 3770005305032324 a001 24157817/1568397607*2537720636^(7/15) 3770005305032324 a001 24157817/1568397607*17393796001^(3/7) 3770005305032324 a001 701408733/54018521*17393796001^(1/7) 3770005305032324 a001 24157817/1568397607*45537549124^(7/17) 3770005305032324 a001 24157817/1568397607*14662949395604^(1/3) 3770005305032324 a001 701408733/54018521*14662949395604^(1/9) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(44) 3770005305032324 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^7/Lucas(37) 3770005305032324 a001 24157817/1568397607*192900153618^(7/18) 3770005305032324 a001 24157817/1568397607*10749957122^(7/16) 3770005305032324 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^68 3770005305032324 a001 24157817/14662949395604*2537720636^(8/9) 3770005305032324 a001 24157817/9062201101803*2537720636^(13/15) 3770005305032324 a001 24157817/2139295485799*2537720636^(4/5) 3770005305032324 a001 24157817/1322157322203*2537720636^(7/9) 3770005305032324 a001 24157817/505019158607*2537720636^(11/15) 3770005305032324 a001 24157817/119218851371*2537720636^(2/3) 3770005305032324 a001 24157817/10749957122*2537720636^(5/9) 3770005305032324 a001 24157817/28143753123*2537720636^(3/5) 3770005305032324 a001 1836311903/54018521*2537720636^(1/9) 3770005305032324 a001 32951280099/228826127*12752043^(1/17) 3770005305032324 a001 24157817/6643838879*2537720636^(8/15) 3770005305032324 a001 1836311903/54018521*312119004989^(1/11) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(46) 3770005305032324 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^5/Lucas(37) 3770005305032324 a001 1836311903/54018521*28143753123^(1/10) 3770005305032324 a001 24157817/4106118243*4106118243^(1/2) 3770005305032324 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^70 3770005305032324 a001 4807526976/54018521*2537720636^(1/15) 3770005305032324 a001 4807526976/54018521*45537549124^(1/17) 3770005305032324 a001 24157817/10749957122*312119004989^(5/11) 3770005305032324 a001 4807526976/54018521*14662949395604^(1/21) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(48) 3770005305032324 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^3/Lucas(37) 3770005305032324 a001 24157817/10749957122*3461452808002^(5/12) 3770005305032324 a001 4807526976/54018521*10749957122^(1/16) 3770005305032324 a001 24157817/10749957122*28143753123^(1/2) 3770005305032324 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^72 3770005305032324 a001 24157817/1322157322203*17393796001^(5/7) 3770005305032324 a001 24157817/28143753123*45537549124^(9/17) 3770005305032324 a001 24157817/45537549124*17393796001^(4/7) 3770005305032324 a001 24157817/28143753123*817138163596^(9/19) 3770005305032324 a001 24157817/28143753123*14662949395604^(3/7) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(50) 3770005305032324 a004 Fibonacci(50)*(1/2+sqrt(5)/2)/Lucas(37) 3770005305032324 a001 24157817/28143753123*192900153618^(1/2) 3770005305032324 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^74 3770005305032324 a001 24157817/9062201101803*45537549124^(13/17) 3770005305032324 a001 24157817/2139295485799*45537549124^(12/17) 3770005305032324 a001 24157817/817138163596*45537549124^(2/3) 3770005305032324 a001 24157817/505019158607*45537549124^(11/17) 3770005305032324 a001 24157817/119218851371*45537549124^(10/17) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(52) 3770005305032324 a004 Fibonacci(52)/Lucas(37)/(1/2+sqrt(5)/2) 3770005305032324 a001 24157817/73681302247*1322157322203^(1/2) 3770005305032324 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^76 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(54) 3770005305032324 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2)^3 3770005305032324 a001 24157817/192900153618*9062201101803^(1/2) 3770005305032324 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^78 3770005305032324 a001 24157817/505019158607*312119004989^(3/5) 3770005305032324 a001 24157817/14662949395604*312119004989^(8/11) 3770005305032324 a001 24157817/1322157322203*312119004989^(7/11) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(56) 3770005305032324 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^5 3770005305032324 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^80 3770005305032324 a001 24157817/1322157322203*14662949395604^(5/9) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(58) 3770005305032324 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^7 3770005305032324 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^82 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(60) 3770005305032324 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^9 3770005305032324 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^84 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(62) 3770005305032324 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^11 3770005305032324 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^86 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(64) 3770005305032324 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^13 3770005305032324 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^88 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(66) 3770005305032324 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^15 3770005305032324 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^90 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(68) 3770005305032324 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^17 3770005305032324 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^92 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(70) 3770005305032324 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^19 3770005305032324 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^94 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(72) 3770005305032324 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^21 3770005305032324 a004 Fibonacci(37)*Lucas(73)/(1/2+sqrt(5)/2)^96 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(74) 3770005305032324 a004 Fibonacci(37)*Lucas(75)/(1/2+sqrt(5)/2)^98 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(76) 3770005305032324 a004 Fibonacci(37)*Lucas(77)/(1/2+sqrt(5)/2)^100 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(78) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(80) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(82) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(84) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(86) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(88) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(90) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(92) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(94) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^73/Lucas(96) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^75/Lucas(98) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^77/Lucas(100) 3770005305032324 a004 Fibonacci(74)/Lucas(37)/(1/2+sqrt(5)/2)^23 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^74/Lucas(97) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^76/Lucas(99) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^72/Lucas(95) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(93) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(91) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(89) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(87) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(85) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(83) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(81) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(79) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(77) 3770005305032324 a004 Fibonacci(37)*Lucas(76)/(1/2+sqrt(5)/2)^99 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(75) 3770005305032324 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^25 3770005305032324 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^27 3770005305032324 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^29 3770005305032324 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^31 3770005305032324 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^33 3770005305032324 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^35 3770005305032324 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^37 3770005305032324 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^39 3770005305032324 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^41 3770005305032324 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^43 3770005305032324 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^45 3770005305032324 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^47 3770005305032324 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^49 3770005305032324 a004 Fibonacci(37)*Lucas(74)/(1/2+sqrt(5)/2)^97 3770005305032324 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^48 3770005305032324 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^46 3770005305032324 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^44 3770005305032324 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^42 3770005305032324 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^40 3770005305032324 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^38 3770005305032324 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^36 3770005305032324 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^34 3770005305032324 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^32 3770005305032324 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^30 3770005305032324 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^28 3770005305032324 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^26 3770005305032324 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^24 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(73) 3770005305032324 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^22 3770005305032324 a004 Fibonacci(37)*Lucas(72)/(1/2+sqrt(5)/2)^95 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(71) 3770005305032324 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^20 3770005305032324 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^93 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(69) 3770005305032324 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^18 3770005305032324 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^91 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(67) 3770005305032324 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^16 3770005305032324 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^89 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(65) 3770005305032324 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^14 3770005305032324 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^87 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(63) 3770005305032324 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^12 3770005305032324 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^85 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(61) 3770005305032324 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^10 3770005305032324 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^83 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(59) 3770005305032324 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^8 3770005305032324 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^81 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(57) 3770005305032324 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^6 3770005305032324 a001 24157817/1322157322203*505019158607^(5/8) 3770005305032324 a001 24157817/2139295485799*505019158607^(9/14) 3770005305032324 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^79 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(55) 3770005305032324 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^4 3770005305032324 a001 24157817/312119004989*23725150497407^(1/2) 3770005305032324 a001 24157817/2139295485799*192900153618^(2/3) 3770005305032324 a001 24157817/9062201101803*192900153618^(13/18) 3770005305032324 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^77 3770005305032324 a001 24157817/119218851371*312119004989^(6/11) 3770005305032324 a001 24157817/119218851371*14662949395604^(10/21) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(53) 3770005305032324 a004 Fibonacci(53)/Lucas(37)/(1/2+sqrt(5)/2)^2 3770005305032324 a001 24157817/119218851371*192900153618^(5/9) 3770005305032324 a001 24157817/2139295485799*73681302247^(9/13) 3770005305032324 a001 24157817/9062201101803*73681302247^(3/4) 3770005305032324 a001 24157817/14662949395604*73681302247^(10/13) 3770005305032324 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^75 3770005305032324 a001 24157817/45537549124*14662949395604^(4/9) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(51) 3770005305032324 a006 5^(1/2)*Fibonacci(51)/Lucas(37)/sqrt(5) 3770005305032324 a001 24157817/45537549124*73681302247^(7/13) 3770005305032324 a001 24157817/119218851371*28143753123^(3/5) 3770005305032324 a001 24157817/1322157322203*28143753123^(7/10) 3770005305032324 a001 24157817/14662949395604*28143753123^(4/5) 3770005305032324 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^73 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(49) 3770005305032324 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^2/Lucas(37) 3770005305032324 a001 24157817/17393796001*73681302247^(1/2) 3770005305032324 a001 24157817/28143753123*10749957122^(9/16) 3770005305032324 a001 7778742049/54018521*10749957122^(1/24) 3770005305032324 a001 24157817/119218851371*10749957122^(5/8) 3770005305032324 a001 24157817/45537549124*10749957122^(7/12) 3770005305032324 a001 24157817/312119004989*10749957122^(2/3) 3770005305032324 a001 7778742049/54018521*4106118243^(1/23) 3770005305032324 a001 24157817/505019158607*10749957122^(11/16) 3770005305032324 a001 24157817/817138163596*10749957122^(17/24) 3770005305032324 a001 24157817/2139295485799*10749957122^(3/4) 3770005305032324 a001 24157817/5600748293801*10749957122^(19/24) 3770005305032324 a001 24157817/9062201101803*10749957122^(13/16) 3770005305032324 a001 24157817/14662949395604*10749957122^(5/6) 3770005305032324 a001 24157817/17393796001*10749957122^(13/24) 3770005305032324 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^71 3770005305032324 a001 7778742049/54018521*1568397607^(1/22) 3770005305032324 a001 24157817/6643838879*45537549124^(8/17) 3770005305032324 a001 24157817/6643838879*14662949395604^(8/21) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(47) 3770005305032324 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^4/Lucas(37) 3770005305032324 a001 2971215073/54018521*23725150497407^(1/16) 3770005305032324 a001 24157817/6643838879*192900153618^(4/9) 3770005305032324 a001 2971215073/54018521*73681302247^(1/13) 3770005305032324 a001 24157817/6643838879*73681302247^(6/13) 3770005305032324 a001 2971215073/54018521*10749957122^(1/12) 3770005305032324 a001 24157817/6643838879*10749957122^(1/2) 3770005305032324 a001 2971215073/54018521*4106118243^(2/23) 3770005305032324 a001 24157817/45537549124*4106118243^(14/23) 3770005305032324 a001 24157817/17393796001*4106118243^(13/23) 3770005305032324 a001 24157817/119218851371*4106118243^(15/23) 3770005305032324 a001 24157817/312119004989*4106118243^(16/23) 3770005305032324 a001 24157817/817138163596*4106118243^(17/23) 3770005305032324 a001 24157817/2139295485799*4106118243^(18/23) 3770005305032324 a001 24157817/5600748293801*4106118243^(19/23) 3770005305032324 a001 24157817/14662949395604*4106118243^(20/23) 3770005305032324 a001 24157817/6643838879*4106118243^(12/23) 3770005305032324 a001 701408733/54018521*599074578^(1/6) 3770005305032324 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^69 3770005305032324 a001 2971215073/54018521*1568397607^(1/11) 3770005305032324 a001 1134903170/54018521*2537720636^(2/15) 3770005305032324 a001 7778742049/54018521*599074578^(1/21) 3770005305032324 a001 1134903170/54018521*45537549124^(2/17) 3770005305032324 a001 24157817/2537720636*312119004989^(2/5) 3770005305032324 a001 1134903170/54018521*14662949395604^(2/21) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(45) 3770005305032324 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^6/Lucas(37) 3770005305032324 a001 1134903170/54018521*10749957122^(1/8) 3770005305032324 a001 24157817/2537720636*10749957122^(11/24) 3770005305032324 a001 1134903170/54018521*4106118243^(3/23) 3770005305032324 a001 24157817/2537720636*4106118243^(11/23) 3770005305032324 a001 4807526976/54018521*599074578^(1/14) 3770005305032324 a001 1134903170/54018521*1568397607^(3/22) 3770005305032324 a001 24157817/17393796001*1568397607^(13/22) 3770005305032324 a001 24157817/6643838879*1568397607^(6/11) 3770005305032324 a001 24157817/45537549124*1568397607^(7/11) 3770005305032324 a001 24157817/119218851371*1568397607^(15/22) 3770005305032324 a001 2971215073/54018521*599074578^(2/21) 3770005305032324 a001 24157817/312119004989*1568397607^(8/11) 3770005305032324 a001 24157817/505019158607*1568397607^(3/4) 3770005305032324 a001 24157817/817138163596*1568397607^(17/22) 3770005305032324 a001 24157817/2139295485799*1568397607^(9/11) 3770005305032324 a001 24157817/5600748293801*1568397607^(19/22) 3770005305032324 a001 24157817/2537720636*1568397607^(1/2) 3770005305032324 a001 24157817/14662949395604*1568397607^(10/11) 3770005305032324 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^67 3770005305032324 a001 1134903170/54018521*599074578^(1/7) 3770005305032324 a001 133957148/299537289*33385282^(7/18) 3770005305032324 a001 7778742049/54018521*228826127^(1/20) 3770005305032324 a001 24157817/1568397607*599074578^(1/2) 3770005305032324 a001 24157817/969323029*2537720636^(4/9) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(43) 3770005305032324 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^8/Lucas(37) 3770005305032324 a001 24157817/969323029*23725150497407^(5/16) 3770005305032324 a001 433494437/54018521*505019158607^(1/7) 3770005305032324 a001 24157817/969323029*505019158607^(5/14) 3770005305032324 a001 433494437/54018521*73681302247^(2/13) 3770005305032324 a001 24157817/969323029*73681302247^(5/13) 3770005305032324 a001 24157817/969323029*28143753123^(2/5) 3770005305032324 a001 433494437/54018521*10749957122^(1/6) 3770005305032324 a001 24157817/969323029*10749957122^(5/12) 3770005305032324 a001 433494437/54018521*4106118243^(4/23) 3770005305032324 a001 24157817/969323029*4106118243^(10/23) 3770005305032324 a001 433494437/54018521*1568397607^(2/11) 3770005305032324 a001 24157817/969323029*1568397607^(5/11) 3770005305032324 a001 433494437/54018521*599074578^(4/21) 3770005305032324 a001 24157817/2537720636*599074578^(11/21) 3770005305032324 a001 24157817/6643838879*599074578^(4/7) 3770005305032324 a001 24157817/17393796001*599074578^(13/21) 3770005305032324 a001 24157817/28143753123*599074578^(9/14) 3770005305032324 a001 24157817/45537549124*599074578^(2/3) 3770005305032324 a001 2971215073/54018521*228826127^(1/10) 3770005305032324 a001 24157817/119218851371*599074578^(5/7) 3770005305032324 a001 24157817/312119004989*599074578^(16/21) 3770005305032324 a001 24157817/505019158607*599074578^(11/14) 3770005305032324 a001 24157817/817138163596*599074578^(17/21) 3770005305032324 a001 24157817/1322157322203*599074578^(5/6) 3770005305032324 a001 1836311903/54018521*228826127^(1/8) 3770005305032324 a001 24157817/2139295485799*599074578^(6/7) 3770005305032324 a001 24157817/969323029*599074578^(10/21) 3770005305032324 a001 24157817/5600748293801*599074578^(19/21) 3770005305032324 a001 24157817/9062201101803*599074578^(13/14) 3770005305032324 a001 24157817/14662949395604*599074578^(20/21) 3770005305032324 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^65 3770005305032324 a001 1134903170/54018521*228826127^(3/20) 3770005305032324 a001 433494437/54018521*228826127^(1/5) 3770005305032324 a001 701408733/1568397607*33385282^(7/18) 3770005305032324 a001 1836311903/4106118243*33385282^(7/18) 3770005305032324 a001 2403763488/5374978561*33385282^(7/18) 3770005305032324 a001 12586269025/28143753123*33385282^(7/18) 3770005305032324 a001 32951280099/73681302247*33385282^(7/18) 3770005305032324 a001 43133785636/96450076809*33385282^(7/18) 3770005305032324 a001 225851433717/505019158607*33385282^(7/18) 3770005305032324 a001 591286729879/1322157322203*33385282^(7/18) 3770005305032324 a001 10610209857723/23725150497407*33385282^(7/18) 3770005305032324 a001 182717648081/408569081798*33385282^(7/18) 3770005305032324 a001 139583862445/312119004989*33385282^(7/18) 3770005305032324 a001 53316291173/119218851371*33385282^(7/18) 3770005305032324 a001 10182505537/22768774562*33385282^(7/18) 3770005305032324 a001 7778742049/17393796001*33385282^(7/18) 3770005305032324 a001 2971215073/6643838879*33385282^(7/18) 3770005305032324 a001 567451585/1268860318*33385282^(7/18) 3770005305032324 a001 7778742049/54018521*87403803^(1/19) 3770005305032324 a001 24157817/370248451*2537720636^(2/5) 3770005305032324 a001 165580141/54018521*2537720636^(2/9) 3770005305032324 a001 24157817/370248451*45537549124^(6/17) 3770005305032324 a001 165580141/54018521*312119004989^(2/11) 3770005305032324 a001 24157817/370248451*14662949395604^(2/7) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(41) 3770005305032324 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^10/Lucas(37) 3770005305032324 a001 24157817/370248451*192900153618^(1/3) 3770005305032324 a001 165580141/54018521*28143753123^(1/5) 3770005305032324 a001 165580141/54018521*10749957122^(5/24) 3770005305032324 a001 24157817/370248451*10749957122^(3/8) 3770005305032324 a001 165580141/54018521*4106118243^(5/23) 3770005305032324 a001 24157817/370248451*4106118243^(9/23) 3770005305032324 a001 165580141/54018521*1568397607^(5/22) 3770005305032324 a001 24157817/370248451*1568397607^(9/22) 3770005305032324 a001 165580141/54018521*599074578^(5/21) 3770005305032324 a001 433494437/969323029*33385282^(7/18) 3770005305032324 a001 24157817/370248451*599074578^(3/7) 3770005305032324 a001 24157817/969323029*228826127^(1/2) 3770005305032324 a001 24157817/2537720636*228826127^(11/20) 3770005305032324 a001 24157817/6643838879*228826127^(3/5) 3770005305032324 a001 24157817/10749957122*228826127^(5/8) 3770005305032324 a001 165580141/54018521*228826127^(1/4) 3770005305032324 a001 24157817/17393796001*228826127^(13/20) 3770005305032324 a001 24157817/45537549124*228826127^(7/10) 3770005305032324 a001 165580141/141422324*33385282^(1/3) 3770005305032324 a001 2971215073/54018521*87403803^(2/19) 3770005305032324 a001 24157817/119218851371*228826127^(3/4) 3770005305032324 a001 24157817/312119004989*228826127^(4/5) 3770005305032324 a001 24157817/370248451*228826127^(9/20) 3770005305032324 a001 24157817/817138163596*228826127^(17/20) 3770005305032324 a001 43133785636/299537289*12752043^(1/17) 3770005305032324 a001 24157817/1322157322203*228826127^(7/8) 3770005305032324 a001 24157817/2139295485799*228826127^(9/10) 3770005305032324 a001 24157817/5600748293801*228826127^(19/20) 3770005305032324 a001 32264490531/224056801*12752043^(1/17) 3770005305032324 a001 591286729879/4106118243*12752043^(1/17) 3770005305032324 a001 774004377960/5374978561*12752043^(1/17) 3770005305032324 a001 4052739537881/28143753123*12752043^(1/17) 3770005305032324 a001 1515744265389/10525900321*12752043^(1/17) 3770005305032324 a001 3278735159921/22768774562*12752043^(1/17) 3770005305032324 a001 2504730781961/17393796001*12752043^(1/17) 3770005305032324 a001 956722026041/6643838879*12752043^(1/17) 3770005305032324 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^63 3770005305032324 a001 182717648081/1268860318*12752043^(1/17) 3770005305032324 a001 102334155/370248451*33385282^(5/12) 3770005305032324 a001 139583862445/969323029*12752043^(1/17) 3770005305032324 a001 165580141/370248451*33385282^(7/18) 3770005305032324 a001 1134903170/54018521*87403803^(3/19) 3770005305032324 a001 39088169/1568397607*33385282^(5/9) 3770005305032324 a001 53316291173/370248451*12752043^(1/17) 3770005305032324 a001 433494437/54018521*87403803^(4/19) 3770005305032324 a001 267914296/969323029*33385282^(5/12) 3770005305032324 a001 701408733/2537720636*33385282^(5/12) 3770005305032324 a001 1836311903/6643838879*33385282^(5/12) 3770005305032324 a001 4807526976/17393796001*33385282^(5/12) 3770005305032324 a001 12586269025/45537549124*33385282^(5/12) 3770005305032324 a001 32951280099/119218851371*33385282^(5/12) 3770005305032324 a001 86267571272/312119004989*33385282^(5/12) 3770005305032324 a001 225851433717/817138163596*33385282^(5/12) 3770005305032324 a001 1548008755920/5600748293801*33385282^(5/12) 3770005305032324 a001 139583862445/505019158607*33385282^(5/12) 3770005305032324 a001 53316291173/192900153618*33385282^(5/12) 3770005305032324 a001 20365011074/73681302247*33385282^(5/12) 3770005305032324 a001 7778742049/28143753123*33385282^(5/12) 3770005305032324 a001 2971215073/10749957122*33385282^(5/12) 3770005305032324 a001 1134903170/4106118243*33385282^(5/12) 3770005305032324 a001 433494437/1568397607*33385282^(5/12) 3770005305032324 a001 34111385/199691526*33385282^(4/9) 3770005305032324 a001 63245986/54018521*141422324^(4/13) 3770005305032324 a001 165580141/599074578*33385282^(5/12) 3770005305032324 a001 165580141/54018521*87403803^(5/19) 3770005305032324 a001 7778742049/54018521*33385282^(1/18) 3770005305032324 a001 39088169/2537720636*33385282^(7/12) 3770005305032324 a001 63245986/54018521*2537720636^(4/15) 3770005305032324 a001 63245986/54018521*45537549124^(4/17) 3770005305032324 a001 63245986/54018521*14662949395604^(4/21) 3770005305032324 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(39) 3770005305032324 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^12/Lucas(37) 3770005305032324 a001 24157817/141422324*23725150497407^(1/4) 3770005305032324 a001 1527884955772562/4052739537881 3770005305032324 a001 63245986/54018521*192900153618^(2/9) 3770005305032324 a001 63245986/54018521*73681302247^(3/13) 3770005305032324 a001 24157817/141422324*73681302247^(4/13) 3770005305032324 a001 63245986/54018521*10749957122^(1/4) 3770005305032324 a001 24157817/141422324*10749957122^(1/3) 3770005305032324 a001 63245986/54018521*4106118243^(6/23) 3770005305032324 a001 24157817/141422324*4106118243^(8/23) 3770005305032324 a001 63245986/54018521*1568397607^(3/11) 3770005305032324 a001 24157817/141422324*1568397607^(4/11) 3770005305032324 a001 63245986/54018521*599074578^(2/7) 3770005305032324 a001 24157817/141422324*599074578^(8/21) 3770005305032324 a001 267914296/1568397607*33385282^(4/9) 3770005305032324 a001 233802911/1368706081*33385282^(4/9) 3770005305032324 a001 63245986/54018521*228826127^(3/10) 3770005305032324 a001 1836311903/10749957122*33385282^(4/9) 3770005305032324 a001 1602508992/9381251041*33385282^(4/9) 3770005305032324 a001 12586269025/73681302247*33385282^(4/9) 3770005305032324 a001 10983760033/64300051206*33385282^(4/9) 3770005305032324 a001 86267571272/505019158607*33385282^(4/9) 3770005305032324 a001 75283811239/440719107401*33385282^(4/9) 3770005305032324 a001 2504730781961/14662949395604*33385282^(4/9) 3770005305032324 a001 139583862445/817138163596*33385282^(4/9) 3770005305032324 a001 53316291173/312119004989*33385282^(4/9) 3770005305032324 a001 20365011074/119218851371*33385282^(4/9) 3770005305032324 a001 7778742049/45537549124*33385282^(4/9) 3770005305032324 a001 2971215073/17393796001*33385282^(4/9) 3770005305032324 a001 1134903170/6643838879*33385282^(4/9) 3770005305032324 a001 433494437/2537720636*33385282^(4/9) 3770005305032324 a001 24157817/141422324*228826127^(2/5) 3770005305032324 a001 63245986/228826127*33385282^(5/12) 3770005305032324 a001 24157817/599074578*87403803^(1/2) 3770005305032324 a001 165580141/969323029*33385282^(4/9) 3770005305032324 a001 10182505537/70711162*12752043^(1/17) 3770005305032324 a001 24157817/370248451*87403803^(9/19) 3770005305032324 a001 24157817/969323029*87403803^(10/19) 3770005305032324 a001 39088169/4106118243*33385282^(11/18) 3770005305032324 a001 4807526976/54018521*33385282^(1/12) 3770005305032324 a001 24157817/2537720636*87403803^(11/19) 3770005305032324 a001 24157817/6643838879*87403803^(12/19) 3770005305032324 a001 14619165/224056801*33385282^(1/2) 3770005305032324 a001 24157817/17393796001*87403803^(13/19) 3770005305032324 a001 63245986/54018521*87403803^(6/19) 3770005305032324 a001 24157817/45537549124*87403803^(14/19) 3770005305032324 a001 2971215073/54018521*33385282^(1/9) 3770005305032324 a001 9227465/33385282*20633239^(3/7) 3770005305032324 a001 267914296/4106118243*33385282^(1/2) 3770005305032324 a001 24157817/119218851371*87403803^(15/19) 3770005305032324 a001 24157817/141422324*87403803^(8/19) 3770005305032324 a001 701408733/10749957122*33385282^(1/2) 3770005305032324 a001 1836311903/28143753123*33385282^(1/2) 3770005305032324 a001 686789568/10525900321*33385282^(1/2) 3770005305032324 a001 12586269025/192900153618*33385282^(1/2) 3770005305032324 a001 32951280099/505019158607*33385282^(1/2) 3770005305032324 a001 86267571272/1322157322203*33385282^(1/2) 3770005305032324 a001 32264490531/494493258286*33385282^(1/2) 3770005305032324 a001 591286729879/9062201101803*33385282^(1/2) 3770005305032324 a001 1548008755920/23725150497407*33385282^(1/2) 3770005305032324 a001 139583862445/2139295485799*33385282^(1/2) 3770005305032324 a001 53316291173/817138163596*33385282^(1/2) 3770005305032324 a001 20365011074/312119004989*33385282^(1/2) 3770005305032324 a001 7778742049/119218851371*33385282^(1/2) 3770005305032324 a001 2971215073/45537549124*33385282^(1/2) 3770005305032324 a001 1134903170/17393796001*33385282^(1/2) 3770005305032324 a001 31622993/70711162*33385282^(7/18) 3770005305032324 a001 433494437/6643838879*33385282^(1/2) 3770005305032324 a001 24157817/312119004989*87403803^(16/19) 3770005305032324 a001 63245986/370248451*33385282^(4/9) 3770005305032324 a001 165580141/2537720636*33385282^(1/2) 3770005305032324 a001 24157817/817138163596*87403803^(17/19) 3770005305032324 a001 24157817/2139295485799*87403803^(18/19) 3770005305032324 a001 39088169/10749957122*33385282^(2/3) 3770005305032324 a001 9227465/17393796001*20633239^(4/5) 3770005305032324 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^61 3770005305032324 a001 34111385/1368706081*33385282^(5/9) 3770005305032324 a001 1134903170/54018521*33385282^(1/6) 3770005305032324 a001 133957148/5374978561*33385282^(5/9) 3770005305032324 a001 233802911/9381251041*33385282^(5/9) 3770005305032324 a001 1836311903/73681302247*33385282^(5/9) 3770005305032324 a001 267084832/10716675201*33385282^(5/9) 3770005305032324 a001 12586269025/505019158607*33385282^(5/9) 3770005305032324 a001 10983760033/440719107401*33385282^(5/9) 3770005305032324 a001 43133785636/1730726404001*33385282^(5/9) 3770005305032324 a001 75283811239/3020733700601*33385282^(5/9) 3770005305032324 a001 182717648081/7331474697802*33385282^(5/9) 3770005305032324 a001 139583862445/5600748293801*33385282^(5/9) 3770005305032324 a001 53316291173/2139295485799*33385282^(5/9) 3770005305032324 a001 10182505537/408569081798*33385282^(5/9) 3770005305032324 a001 7778742049/312119004989*33385282^(5/9) 3770005305032324 a001 2971215073/119218851371*33385282^(5/9) 3770005305032324 a001 567451585/22768774562*33385282^(5/9) 3770005305032324 a001 433494437/17393796001*33385282^(5/9) 3770005305032324 a001 63245986/969323029*33385282^(1/2) 3770005305032324 a001 102334155/6643838879*33385282^(7/12) 3770005305032324 a001 165580141/6643838879*33385282^(5/9) 3770005305032324 a001 39088169/28143753123*33385282^(13/18) 3770005305032324 a001 9238424/599786069*33385282^(7/12) 3770005305032324 a001 701408733/45537549124*33385282^(7/12) 3770005305032324 a001 1836311903/119218851371*33385282^(7/12) 3770005305032324 a001 4807526976/312119004989*33385282^(7/12) 3770005305032324 a001 12586269025/817138163596*33385282^(7/12) 3770005305032324 a001 32951280099/2139295485799*33385282^(7/12) 3770005305032324 a001 86267571272/5600748293801*33385282^(7/12) 3770005305032324 a001 7787980473/505618944676*33385282^(7/12) 3770005305032324 a001 365435296162/23725150497407*33385282^(7/12) 3770005305032324 a001 139583862445/9062201101803*33385282^(7/12) 3770005305032324 a001 53316291173/3461452808002*33385282^(7/12) 3770005305032324 a001 20365011074/1322157322203*33385282^(7/12) 3770005305032324 a001 7778742049/505019158607*33385282^(7/12) 3770005305032324 a001 2971215073/192900153618*33385282^(7/12) 3770005305032324 a001 1134903170/73681302247*33385282^(7/12) 3770005305032324 a001 433494437/28143753123*33385282^(7/12) 3770005305032324 a001 102334155/10749957122*33385282^(11/18) 3770005305032324 a001 165580141/10749957122*33385282^(7/12) 3770005305032324 a001 39088169/45537549124*33385282^(3/4) 3770005305032324 a001 433494437/54018521*33385282^(2/9) 3770005305032324 a001 267914296/28143753123*33385282^(11/18) 3770005305032324 a001 133957148/16692641*12752043^(4/17) 3770005305032324 a001 701408733/73681302247*33385282^(11/18) 3770005305032324 a001 1836311903/192900153618*33385282^(11/18) 3770005305032324 a001 102287808/10745088481*33385282^(11/18) 3770005305032324 a001 12586269025/1322157322203*33385282^(11/18) 3770005305032324 a001 32951280099/3461452808002*33385282^(11/18) 3770005305032324 a001 86267571272/9062201101803*33385282^(11/18) 3770005305032324 a001 225851433717/23725150497407*33385282^(11/18) 3770005305032324 a001 139583862445/14662949395604*33385282^(11/18) 3770005305032324 a001 53316291173/5600748293801*33385282^(11/18) 3770005305032324 a001 20365011074/2139295485799*33385282^(11/18) 3770005305032324 a001 7778742049/817138163596*33385282^(11/18) 3770005305032324 a001 2971215073/312119004989*33385282^(11/18) 3770005305032324 a001 1134903170/119218851371*33385282^(11/18) 3770005305032324 a001 31622993/1268860318*33385282^(5/9) 3770005305032324 a001 433494437/45537549124*33385282^(11/18) 3770005305032324 a001 165580141/17393796001*33385282^(11/18) 3770005305032324 a001 267914296/54018521*33385282^(1/4) 3770005305032324 a001 39088169/73681302247*33385282^(7/9) 3770005305032324 a001 63245986/4106118243*33385282^(7/12) 3770005305032324 a001 831985/228811001*33385282^(2/3) 3770005305032324 a001 24157817/87403803*33385282^(5/12) 3770005305032324 a001 1602508992/29134601*12752043^(2/17) 3770005305032324 a001 267914296/73681302247*33385282^(2/3) 3770005305032324 a001 233802911/64300051206*33385282^(2/3) 3770005305032324 a001 1836311903/505019158607*33385282^(2/3) 3770005305032324 a001 1602508992/440719107401*33385282^(2/3) 3770005305032324 a001 12586269025/3461452808002*33385282^(2/3) 3770005305032324 a001 10983760033/3020733700601*33385282^(2/3) 3770005305032324 a001 86267571272/23725150497407*33385282^(2/3) 3770005305032324 a001 53316291173/14662949395604*33385282^(2/3) 3770005305032324 a001 20365011074/5600748293801*33385282^(2/3) 3770005305032324 a001 7778742049/2139295485799*33385282^(2/3) 3770005305032324 a001 2971215073/817138163596*33385282^(2/3) 3770005305032324 a001 1134903170/312119004989*33385282^(2/3) 3770005305032324 a001 63245986/6643838879*33385282^(11/18) 3770005305032324 a001 433494437/119218851371*33385282^(2/3) 3770005305032324 a001 165580141/54018521*33385282^(5/18) 3770005305032324 a001 165580141/45537549124*33385282^(2/3) 3770005305032325 a001 39088169/192900153618*33385282^(5/6) 3770005305032325 a001 14619165/10525900321*33385282^(13/18) 3770005305032325 a001 133957148/96450076809*33385282^(13/18) 3770005305032325 a001 701408733/505019158607*33385282^(13/18) 3770005305032325 a001 1836311903/1322157322203*33385282^(13/18) 3770005305032325 a001 14930208/10749853441*33385282^(13/18) 3770005305032325 a001 12586269025/9062201101803*33385282^(13/18) 3770005305032325 a001 32951280099/23725150497407*33385282^(13/18) 3770005305032325 a001 10182505537/7331474697802*33385282^(13/18) 3770005305032325 a001 7778742049/5600748293801*33385282^(13/18) 3770005305032325 a001 2971215073/2139295485799*33385282^(13/18) 3770005305032325 a001 567451585/408569081798*33385282^(13/18) 3770005305032325 a001 63245986/17393796001*33385282^(2/3) 3770005305032325 a001 433494437/312119004989*33385282^(13/18) 3770005305032325 a001 102334155/119218851371*33385282^(3/4) 3770005305032325 a001 165580141/119218851371*33385282^(13/18) 3770005305032325 a001 39088169/505019158607*33385282^(8/9) 3770005305032325 a001 267914296/312119004989*33385282^(3/4) 3770005305032325 a001 9227465/4106118243*20633239^(5/7) 3770005305032325 a001 701408733/817138163596*33385282^(3/4) 3770005305032325 a001 1836311903/2139295485799*33385282^(3/4) 3770005305032325 a001 4807526976/5600748293801*33385282^(3/4) 3770005305032325 a001 12586269025/14662949395604*33385282^(3/4) 3770005305032325 a001 20365011074/23725150497407*33385282^(3/4) 3770005305032325 a001 7778742049/9062201101803*33385282^(3/4) 3770005305032325 a001 2971215073/3461452808002*33385282^(3/4) 3770005305032325 a001 1134903170/1322157322203*33385282^(3/4) 3770005305032325 a001 433494437/505019158607*33385282^(3/4) 3770005305032325 a001 34111385/64300051206*33385282^(7/9) 3770005305032325 a001 165580141/192900153618*33385282^(3/4) 3770005305032325 a001 24157817/54018521*17393796001^(2/7) 3770005305032325 a001 24157817/54018521*14662949395604^(2/9) 3770005305032325 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^14/Lucas(37) 3770005305032325 a001 24157817/54018521*505019158607^(1/4) 3770005305032325 a001 24157817/54018521*10749957122^(7/24) 3770005305032325 a001 24157817/54018521*4106118243^(7/23) 3770005305032325 a001 24157817/54018521*1568397607^(7/22) 3770005305032325 a001 24157817/54018521*599074578^(1/3) 3770005305032325 a001 4181/87403804*33385282^(11/12) 3770005305032325 a001 63245986/54018521*33385282^(1/3) 3770005305032325 a001 24157817/54018521*228826127^(7/20) 3770005305032325 a001 267914296/505019158607*33385282^(7/9) 3770005305032325 a001 233802911/440719107401*33385282^(7/9) 3770005305032325 a001 1836311903/3461452808002*33385282^(7/9) 3770005305032325 a001 1602508992/3020733700601*33385282^(7/9) 3770005305032325 a001 12586269025/23725150497407*33385282^(7/9) 3770005305032325 a001 7778742049/14662949395604*33385282^(7/9) 3770005305032325 a001 2971215073/5600748293801*33385282^(7/9) 3770005305032325 a001 1134903170/2139295485799*33385282^(7/9) 3770005305032325 a001 31622993/22768774562*33385282^(13/18) 3770005305032325 a001 433494437/817138163596*33385282^(7/9) 3770005305032325 a001 12586269025/228826127*12752043^(2/17) 3770005305032325 a001 7778742049/54018521*12752043^(1/17) 3770005305032325 a001 165580141/312119004989*33385282^(7/9) 3770005305032325 a001 39088169/1322157322203*33385282^(17/18) 3770005305032325 a001 10983760033/199691526*12752043^(2/17) 3770005305032325 a001 63245986/73681302247*33385282^(3/4) 3770005305032325 a001 86267571272/1568397607*12752043^(2/17) 3770005305032325 a001 75283811239/1368706081*12752043^(2/17) 3770005305032325 a001 591286729879/10749957122*12752043^(2/17) 3770005305032325 a001 12585437040/228811001*12752043^(2/17) 3770005305032325 a001 4052739537881/73681302247*12752043^(2/17) 3770005305032325 a001 3536736619241/64300051206*12752043^(2/17) 3770005305032325 a001 6557470319842/119218851371*12752043^(2/17) 3770005305032325 a001 2504730781961/45537549124*12752043^(2/17) 3770005305032325 a001 956722026041/17393796001*12752043^(2/17) 3770005305032325 a001 365435296162/6643838879*12752043^(2/17) 3770005305032325 a001 139583862445/2537720636*12752043^(2/17) 3770005305032325 a001 53316291173/969323029*12752043^(2/17) 3770005305032325 a001 102334155/505019158607*33385282^(5/6) 3770005305032325 a001 20365011074/370248451*12752043^(2/17) 3770005305032325 a001 24157817/54018521*87403803^(7/19) 3770005305032325 a001 7465176/16692641*12752043^(7/17) 3770005305032325 a001 267914296/1322157322203*33385282^(5/6) 3770005305032325 a001 701408733/3461452808002*33385282^(5/6) 3770005305032325 a001 1836311903/9062201101803*33385282^(5/6) 3770005305032325 a001 4807526976/23725150497407*33385282^(5/6) 3770005305032325 a001 2971215073/14662949395604*33385282^(5/6) 3770005305032325 a001 63245986/119218851371*33385282^(7/9) 3770005305032325 a001 1134903170/5600748293801*33385282^(5/6) 3770005305032325 a001 433494437/2139295485799*33385282^(5/6) 3770005305032325 a001 165580141/817138163596*33385282^(5/6) 3770005305032325 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^60 3770005305032325 a001 7778742049/141422324*12752043^(2/17) 3770005305032325 a001 34111385/440719107401*33385282^(8/9) 3770005305032325 a001 24157817/141422324*33385282^(4/9) 3770005305032325 a001 133957148/1730726404001*33385282^(8/9) 3770005305032325 a001 233802911/3020733700601*33385282^(8/9) 3770005305032325 a001 1836311903/23725150497407*33385282^(8/9) 3770005305032325 a001 63245986/312119004989*33385282^(5/6) 3770005305032325 a001 567451585/7331474697802*33385282^(8/9) 3770005305032325 a001 433494437/5600748293801*33385282^(8/9) 3770005305032325 a001 24157817/370248451*33385282^(1/2) 3770005305032325 a001 102334155/2139295485799*33385282^(11/12) 3770005305032325 a001 165580141/2139295485799*33385282^(8/9) 3770005305032325 a001 267914296/5600748293801*33385282^(11/12) 3770005305032325 a001 701408733/14662949395604*33385282^(11/12) 3770005305032325 a001 1134903170/23725150497407*33385282^(11/12) 3770005305032325 a001 433494437/9062201101803*33385282^(11/12) 3770005305032325 a001 6765/228826126*33385282^(17/18) 3770005305032325 a001 165580141/3461452808002*33385282^(11/12) 3770005305032325 a001 24157817/969323029*33385282^(5/9) 3770005305032325 a001 267914296/9062201101803*33385282^(17/18) 3770005305032325 a001 701408733/23725150497407*33385282^(17/18) 3770005305032325 a001 31622993/408569081798*33385282^(8/9) 3770005305032325 a001 433494437/14662949395604*33385282^(17/18) 3770005305032325 a001 165580141/5600748293801*33385282^(17/18) 3770005305032325 a001 24157817/1568397607*33385282^(7/12) 3770005305032326 a001 63245986/1322157322203*33385282^(11/12) 3770005305032326 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^62 3770005305032326 a001 1836311903/20633239*7881196^(1/11) 3770005305032326 a001 24157817/2537720636*33385282^(11/18) 3770005305032326 a001 14619165/4769326*12752043^(5/17) 3770005305032326 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^64 3770005305032326 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^66 3770005305032326 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^68 3770005305032326 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^70 3770005305032326 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^72 3770005305032326 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^74 3770005305032326 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^76 3770005305032326 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^78 3770005305032326 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^80 3770005305032326 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^82 3770005305032326 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^84 3770005305032326 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^86 3770005305032326 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^88 3770005305032326 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^90 3770005305032326 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^92 3770005305032326 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^94 3770005305032326 a004 Fibonacci(74)*Lucas(36)/(1/2+sqrt(5)/2)^96 3770005305032326 a004 Fibonacci(76)*Lucas(36)/(1/2+sqrt(5)/2)^98 3770005305032326 a004 Fibonacci(78)*Lucas(36)/(1/2+sqrt(5)/2)^100 3770005305032326 a004 Fibonacci(77)*Lucas(36)/(1/2+sqrt(5)/2)^99 3770005305032326 a004 Fibonacci(75)*Lucas(36)/(1/2+sqrt(5)/2)^97 3770005305032326 a004 Fibonacci(73)*Lucas(36)/(1/2+sqrt(5)/2)^95 3770005305032326 a001 1/7465176*(1/2+1/2*5^(1/2))^50 3770005305032326 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^93 3770005305032326 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^91 3770005305032326 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^89 3770005305032326 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^87 3770005305032326 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^85 3770005305032326 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^83 3770005305032326 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^81 3770005305032326 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^79 3770005305032326 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^77 3770005305032326 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^75 3770005305032326 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^73 3770005305032326 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^71 3770005305032326 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^69 3770005305032326 a001 63245986/2139295485799*33385282^(17/18) 3770005305032326 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^67 3770005305032326 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^65 3770005305032326 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^63 3770005305032326 a001 9227465/599074578*20633239^(3/5) 3770005305032326 a001 24157817/6643838879*33385282^(2/3) 3770005305032326 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^61 3770005305032326 a001 1836311903/87403803*12752043^(3/17) 3770005305032326 a001 24157817/17393796001*33385282^(13/18) 3770005305032326 a001 9227465/370248451*20633239^(4/7) 3770005305032326 a001 24157817/28143753123*33385282^(3/4) 3770005305032326 a001 24157817/54018521*33385282^(7/18) 3770005305032326 a001 24157817/45537549124*33385282^(7/9) 3770005305032326 a001 102287808/4868641*12752043^(3/17) 3770005305032326 a001 2971215073/54018521*12752043^(2/17) 3770005305032326 a001 12586269025/599074578*12752043^(3/17) 3770005305032326 a001 32951280099/1568397607*12752043^(3/17) 3770005305032326 a001 86267571272/4106118243*12752043^(3/17) 3770005305032326 a001 225851433717/10749957122*12752043^(3/17) 3770005305032326 a001 591286729879/28143753123*12752043^(3/17) 3770005305032326 a001 1548008755920/73681302247*12752043^(3/17) 3770005305032326 a001 4052739537881/192900153618*12752043^(3/17) 3770005305032326 a001 225749145909/10745088481*12752043^(3/17) 3770005305032326 a001 6557470319842/312119004989*12752043^(3/17) 3770005305032326 a001 2504730781961/119218851371*12752043^(3/17) 3770005305032326 a001 956722026041/45537549124*12752043^(3/17) 3770005305032326 a001 365435296162/17393796001*12752043^(3/17) 3770005305032326 a001 139583862445/6643838879*12752043^(3/17) 3770005305032326 a001 53316291173/2537720636*12752043^(3/17) 3770005305032326 a001 20365011074/969323029*12752043^(3/17) 3770005305032326 a001 24157817/119218851371*33385282^(5/6) 3770005305032326 a001 7778742049/370248451*12752043^(3/17) 3770005305032326 a001 2971215073/141422324*12752043^(3/17) 3770005305032327 a001 24157817/312119004989*33385282^(8/9) 3770005305032327 a001 39088169/33385282*12752043^(6/17) 3770005305032327 a001 24157817/505019158607*33385282^(11/12) 3770005305032327 a001 24157817/817138163596*33385282^(17/18) 3770005305032327 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^59 3770005305032327 a001 233802911/29134601*12752043^(4/17) 3770005305032328 a001 1836311903/228826127*12752043^(4/17) 3770005305032328 a001 1134903170/54018521*12752043^(3/17) 3770005305032328 a001 9227465/33385282*141422324^(5/13) 3770005305032328 a001 14930352/20633239*141422324^(1/3) 3770005305032328 a001 267084832/33281921*12752043^(4/17) 3770005305032328 a001 12586269025/1568397607*12752043^(4/17) 3770005305032328 a001 10983760033/1368706081*12752043^(4/17) 3770005305032328 a001 43133785636/5374978561*12752043^(4/17) 3770005305032328 a001 75283811239/9381251041*12752043^(4/17) 3770005305032328 a001 591286729879/73681302247*12752043^(4/17) 3770005305032328 a001 86000486440/10716675201*12752043^(4/17) 3770005305032328 a001 4052739537881/505019158607*12752043^(4/17) 3770005305032328 a001 3536736619241/440719107401*12752043^(4/17) 3770005305032328 a001 3278735159921/408569081798*12752043^(4/17) 3770005305032328 a001 2504730781961/312119004989*12752043^(4/17) 3770005305032328 a001 956722026041/119218851371*12752043^(4/17) 3770005305032328 a001 182717648081/22768774562*12752043^(4/17) 3770005305032328 a001 139583862445/17393796001*12752043^(4/17) 3770005305032328 a001 53316291173/6643838879*12752043^(4/17) 3770005305032328 a001 10182505537/1268860318*12752043^(4/17) 3770005305032328 a001 7778742049/969323029*12752043^(4/17) 3770005305032328 a001 9227465/33385282*2537720636^(1/3) 3770005305032328 a001 9227465/33385282*45537549124^(5/17) 3770005305032328 a001 9227465/33385282*312119004989^(3/11) 3770005305032328 a001 68884650258840/182717648081 3770005305032328 a001 9227465/33385282*14662949395604^(5/21) 3770005305032328 a001 9227465/33385282*(1/2+1/2*5^(1/2))^15 3770005305032328 a001 14930352/20633239*(1/2+1/2*5^(1/2))^13 3770005305032328 a001 9227465/33385282*192900153618^(5/18) 3770005305032328 a001 14930352/20633239*73681302247^(1/4) 3770005305032328 a001 9227465/33385282*28143753123^(3/10) 3770005305032328 a001 9227465/33385282*10749957122^(5/16) 3770005305032328 a001 9227465/33385282*599074578^(5/14) 3770005305032328 a001 2971215073/370248451*12752043^(4/17) 3770005305032328 a001 9227465/33385282*228826127^(3/8) 3770005305032328 a001 3524578/17393796001*7881196^(10/11) 3770005305032328 a001 567451585/70711162*12752043^(4/17) 3770005305032329 a001 267914296/87403803*12752043^(5/17) 3770005305032329 a001 63245986/20633239*20633239^(2/7) 3770005305032329 a001 14930208/103681*4870847^(1/16) 3770005305032329 a001 267914296/12752043*4870847^(3/16) 3770005305032329 a001 701408733/228826127*12752043^(5/17) 3770005305032329 a001 433494437/54018521*12752043^(4/17) 3770005305032329 a001 1836311903/599074578*12752043^(5/17) 3770005305032329 a001 686789568/224056801*12752043^(5/17) 3770005305032329 a001 12586269025/4106118243*12752043^(5/17) 3770005305032329 a001 32951280099/10749957122*12752043^(5/17) 3770005305032329 a001 86267571272/28143753123*12752043^(5/17) 3770005305032329 a001 32264490531/10525900321*12752043^(5/17) 3770005305032329 a001 591286729879/192900153618*12752043^(5/17) 3770005305032329 a001 1548008755920/505019158607*12752043^(5/17) 3770005305032329 a001 1515744265389/494493258286*12752043^(5/17) 3770005305032329 a001 2504730781961/817138163596*12752043^(5/17) 3770005305032329 a001 956722026041/312119004989*12752043^(5/17) 3770005305032329 a001 365435296162/119218851371*12752043^(5/17) 3770005305032329 a001 139583862445/45537549124*12752043^(5/17) 3770005305032329 a001 53316291173/17393796001*12752043^(5/17) 3770005305032329 a001 20365011074/6643838879*12752043^(5/17) 3770005305032329 a001 7778742049/2537720636*12752043^(5/17) 3770005305032329 a001 2971215073/969323029*12752043^(5/17) 3770005305032329 a001 1134903170/370248451*12752043^(5/17) 3770005305032329 a001 9227465/33385282*33385282^(5/12) 3770005305032329 a001 433494437/141422324*12752043^(5/17) 3770005305032329 a001 4976784/29134601*12752043^(8/17) 3770005305032329 a001 9238424/711491*20633239^(1/5) 3770005305032330 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^58 3770005305032330 a001 701408733/20633239*20633239^(1/7) 3770005305032330 a001 34111385/29134601*12752043^(6/17) 3770005305032330 a001 267914296/228826127*12752043^(6/17) 3770005305032330 a001 165580141/54018521*12752043^(5/17) 3770005305032330 a001 233802911/199691526*12752043^(6/17) 3770005305032330 a001 1836311903/1568397607*12752043^(6/17) 3770005305032330 a001 1602508992/1368706081*12752043^(6/17) 3770005305032330 a001 12586269025/10749957122*12752043^(6/17) 3770005305032330 a001 10983760033/9381251041*12752043^(6/17) 3770005305032330 a001 86267571272/73681302247*12752043^(6/17) 3770005305032330 a001 75283811239/64300051206*12752043^(6/17) 3770005305032330 a001 2504730781961/2139295485799*12752043^(6/17) 3770005305032330 a001 365435296162/312119004989*12752043^(6/17) 3770005305032330 a001 139583862445/119218851371*12752043^(6/17) 3770005305032330 a001 53316291173/45537549124*12752043^(6/17) 3770005305032330 a001 20365011074/17393796001*12752043^(6/17) 3770005305032330 a001 7778742049/6643838879*12752043^(6/17) 3770005305032330 a001 2971215073/2537720636*12752043^(6/17) 3770005305032330 a001 1134903170/969323029*12752043^(6/17) 3770005305032330 a001 433494437/370248451*12752043^(6/17) 3770005305032331 a001 9227465/87403803*45537549124^(1/3) 3770005305032331 a001 360684711361585/956722026041 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^17/Lucas(38) 3770005305032331 a001 39088169/20633239*(1/2+1/2*5^(1/2))^11 3770005305032331 a001 39088169/20633239*1568397607^(1/4) 3770005305032331 a001 3732588/35355581*12752043^(1/2) 3770005305032331 a001 165580141/141422324*12752043^(6/17) 3770005305032331 a001 39088169/87403803*12752043^(7/17) 3770005305032331 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^60 3770005305032331 a001 9227465/817138163596*141422324^(12/13) 3770005305032331 a001 9227465/192900153618*141422324^(11/13) 3770005305032331 a001 9227465/45537549124*141422324^(10/13) 3770005305032331 a001 9227465/10749957122*141422324^(9/13) 3770005305032331 a001 9227465/6643838879*141422324^(2/3) 3770005305032331 a001 9303105/1875749*141422324^(3/13) 3770005305032331 a001 9227465/2537720636*141422324^(8/13) 3770005305032331 a001 9227465/599074578*141422324^(7/13) 3770005305032331 a001 9303105/1875749*2537720636^(1/5) 3770005305032331 a001 9303105/1875749*45537549124^(3/17) 3770005305032331 a001 9227465/228826127*817138163596^(1/3) 3770005305032331 a001 9303105/1875749*14662949395604^(1/7) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(40) 3770005305032331 a001 9303105/1875749*(1/2+1/2*5^(1/2))^9 3770005305032331 a001 9303105/1875749*192900153618^(1/6) 3770005305032331 a001 9303105/1875749*10749957122^(3/16) 3770005305032331 a001 9303105/1875749*599074578^(3/14) 3770005305032331 a001 14930352/228826127*12752043^(9/17) 3770005305032331 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^62 3770005305032331 a001 433494437/20633239*141422324^(2/13) 3770005305032331 a001 1836311903/20633239*141422324^(1/13) 3770005305032331 a001 9227465/599074578*2537720636^(7/15) 3770005305032331 a001 9227465/599074578*17393796001^(3/7) 3770005305032331 a001 9238424/711491*17393796001^(1/7) 3770005305032331 a001 9227465/599074578*45537549124^(7/17) 3770005305032331 a001 225851433340/599074577 3770005305032331 a001 9227465/599074578*14662949395604^(1/3) 3770005305032331 a001 9238424/711491*14662949395604^(1/9) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(42) 3770005305032331 a001 9238424/711491*(1/2+1/2*5^(1/2))^7 3770005305032331 a001 9227465/599074578*192900153618^(7/18) 3770005305032331 a001 9227465/599074578*10749957122^(7/16) 3770005305032331 a001 9238424/711491*599074578^(1/6) 3770005305032331 a001 9227465/599074578*599074578^(1/2) 3770005305032331 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^64 3770005305032331 a001 701408733/20633239*2537720636^(1/9) 3770005305032331 a001 701408733/20633239*312119004989^(1/11) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(44) 3770005305032331 a001 701408733/20633239*(1/2+1/2*5^(1/2))^5 3770005305032331 a001 701408733/20633239*28143753123^(1/10) 3770005305032331 a001 9227465/1568397607*4106118243^(1/2) 3770005305032331 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^66 3770005305032331 a001 9227465/4106118243*2537720636^(5/9) 3770005305032331 a001 9227465/14662949395604*2537720636^(14/15) 3770005305032331 a001 9227465/5600748293801*2537720636^(8/9) 3770005305032331 a001 9227465/3461452808002*2537720636^(13/15) 3770005305032331 a001 9227465/817138163596*2537720636^(4/5) 3770005305032331 a001 9227465/505019158607*2537720636^(7/9) 3770005305032331 a001 9227465/192900153618*2537720636^(11/15) 3770005305032331 a001 9227465/45537549124*2537720636^(2/3) 3770005305032331 a001 9227465/10749957122*2537720636^(3/5) 3770005305032331 a001 1836311903/20633239*2537720636^(1/15) 3770005305032331 a001 1836311903/20633239*45537549124^(1/17) 3770005305032331 a001 9227465/4106118243*312119004989^(5/11) 3770005305032331 a001 1836311903/20633239*14662949395604^(1/21) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(46) 3770005305032331 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^3 3770005305032331 a001 1836311903/20633239*192900153618^(1/18) 3770005305032331 a001 1836311903/20633239*10749957122^(1/16) 3770005305032331 a001 9227465/4106118243*28143753123^(1/2) 3770005305032331 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^68 3770005305032331 a001 9227465/10749957122*45537549124^(9/17) 3770005305032331 a001 9227465/10749957122*817138163596^(9/19) 3770005305032331 a001 9227465/10749957122*14662949395604^(3/7) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(48) 3770005305032331 a001 9227465/10749957122*192900153618^(1/2) 3770005305032331 a001 9227465/10749957122*10749957122^(9/16) 3770005305032331 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^70 3770005305032331 a001 9227465/14662949395604*17393796001^(6/7) 3770005305032331 a001 9227465/505019158607*17393796001^(5/7) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(50) 3770005305032331 a004 Fibonacci(50)/Lucas(35)/(1/2+sqrt(5)/2) 3770005305032331 a001 9227465/28143753123*1322157322203^(1/2) 3770005305032331 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^72 3770005305032331 a001 9227465/14662949395604*45537549124^(14/17) 3770005305032331 a001 9227465/3461452808002*45537549124^(13/17) 3770005305032331 a001 9227465/192900153618*45537549124^(11/17) 3770005305032331 a001 9227465/312119004989*45537549124^(2/3) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(52) 3770005305032331 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2)^3 3770005305032331 a001 9227465/73681302247*9062201101803^(1/2) 3770005305032331 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^74 3770005305032331 a001 9227465/192900153618*312119004989^(3/5) 3770005305032331 a001 9227465/192900153618*817138163596^(11/19) 3770005305032331 a001 9227465/192900153618*14662949395604^(11/21) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(54) 3770005305032331 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^5 3770005305032331 a001 9227465/505019158607*312119004989^(7/11) 3770005305032331 a001 9227465/192900153618*192900153618^(11/18) 3770005305032331 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^76 3770005305032331 a001 9227465/505019158607*14662949395604^(5/9) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(56) 3770005305032331 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^7 3770005305032331 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^78 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(58) 3770005305032331 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^9 3770005305032331 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^80 3770005305032331 a001 9227465/3461452808002*14662949395604^(13/21) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(60) 3770005305032331 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^11 3770005305032331 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^82 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(62) 3770005305032331 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^13 3770005305032331 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^84 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(64) 3770005305032331 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^15 3770005305032331 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^86 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(66) 3770005305032331 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^17 3770005305032331 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^88 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(68) 3770005305032331 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^19 3770005305032331 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^90 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(70) 3770005305032331 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^92 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(72) 3770005305032331 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^94 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(74) 3770005305032331 a004 Fibonacci(35)*Lucas(75)/(1/2+sqrt(5)/2)^96 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(76) 3770005305032331 a004 Fibonacci(35)*Lucas(77)/(1/2+sqrt(5)/2)^98 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(78) 3770005305032331 a004 Fibonacci(35)*Lucas(79)/(1/2+sqrt(5)/2)^100 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(80) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(82) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(84) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(86) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(88) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(90) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(92) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(94) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^75/Lucas(96) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^77/Lucas(98) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^78/Lucas(99) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^79/Lucas(100) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^76/Lucas(97) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^74/Lucas(95) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(93) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(91) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(89) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(87) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(85) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(83) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(81) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(79) 3770005305032331 a004 Fibonacci(35)*Lucas(78)/(1/2+sqrt(5)/2)^99 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(77) 3770005305032331 a004 Fibonacci(35)*Lucas(76)/(1/2+sqrt(5)/2)^97 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(75) 3770005305032331 a004 Fibonacci(35)*Lucas(74)/(1/2+sqrt(5)/2)^95 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(73) 3770005305032331 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^93 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(71) 3770005305032331 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^23 3770005305032331 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^25 3770005305032331 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^27 3770005305032331 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^29 3770005305032331 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^31 3770005305032331 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^33 3770005305032331 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^35 3770005305032331 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^37 3770005305032331 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^39 3770005305032331 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^41 3770005305032331 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^43 3770005305032331 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^45 3770005305032331 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^47 3770005305032331 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^51 3770005305032331 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^49 3770005305032331 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^91 3770005305032331 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^50 3770005305032331 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^48 3770005305032331 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^46 3770005305032331 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^44 3770005305032331 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^42 3770005305032331 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^40 3770005305032331 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^38 3770005305032331 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^36 3770005305032331 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^34 3770005305032331 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^32 3770005305032331 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^30 3770005305032331 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^28 3770005305032331 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^26 3770005305032331 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^24 3770005305032331 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^22 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(69) 3770005305032331 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^20 3770005305032331 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^89 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(67) 3770005305032331 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^18 3770005305032331 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^87 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(65) 3770005305032331 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^16 3770005305032331 a001 9227465/14662949395604*14662949395604^(2/3) 3770005305032331 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^85 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(63) 3770005305032331 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^14 3770005305032331 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^83 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(61) 3770005305032331 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^12 3770005305032331 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^81 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(59) 3770005305032331 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^10 3770005305032331 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^79 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(57) 3770005305032331 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^8 3770005305032331 a001 9227465/14662949395604*505019158607^(3/4) 3770005305032331 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^77 3770005305032331 a001 9227465/817138163596*505019158607^(9/14) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(55) 3770005305032331 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^6 3770005305032331 a001 9227465/3461452808002*192900153618^(13/18) 3770005305032331 a001 9227465/14662949395604*192900153618^(7/9) 3770005305032331 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^75 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(53) 3770005305032331 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^4 3770005305032331 a001 9227465/119218851371*23725150497407^(1/2) 3770005305032331 a001 9227465/119218851371*505019158607^(4/7) 3770005305032331 a001 9227465/817138163596*73681302247^(9/13) 3770005305032331 a001 9227465/3461452808002*73681302247^(3/4) 3770005305032331 a001 9227465/5600748293801*73681302247^(10/13) 3770005305032331 a001 9227465/119218851371*73681302247^(8/13) 3770005305032331 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^73 3770005305032331 a001 9227465/45537549124*45537549124^(10/17) 3770005305032331 a001 9227465/45537549124*312119004989^(6/11) 3770005305032331 a001 9227465/45537549124*14662949395604^(10/21) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(51) 3770005305032331 a004 Fibonacci(51)/Lucas(35)/(1/2+sqrt(5)/2)^2 3770005305032331 a001 9227465/45537549124*192900153618^(5/9) 3770005305032331 a001 9227465/505019158607*28143753123^(7/10) 3770005305032331 a001 9227465/5600748293801*28143753123^(4/5) 3770005305032331 a001 9227465/45537549124*28143753123^(3/5) 3770005305032331 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^71 3770005305032331 a001 9227465/17393796001*17393796001^(4/7) 3770005305032331 a001 9227465/17393796001*14662949395604^(4/9) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(49) 3770005305032331 a001 9227465/17393796001*505019158607^(1/2) 3770005305032331 a001 9227465/17393796001*73681302247^(7/13) 3770005305032331 a001 9227465/119218851371*10749957122^(2/3) 3770005305032331 a001 9227465/45537549124*10749957122^(5/8) 3770005305032331 a001 9227465/192900153618*10749957122^(11/16) 3770005305032331 a001 9227465/312119004989*10749957122^(17/24) 3770005305032331 a001 9227465/817138163596*10749957122^(3/4) 3770005305032331 a001 9227465/2139295485799*10749957122^(19/24) 3770005305032331 a001 9227465/3461452808002*10749957122^(13/16) 3770005305032331 a001 9227465/5600748293801*10749957122^(5/6) 3770005305032331 a001 9227465/14662949395604*10749957122^(7/8) 3770005305032331 a001 9227465/17393796001*10749957122^(7/12) 3770005305032331 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^69 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(47) 3770005305032331 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^2 3770005305032331 a001 9227465/6643838879*73681302247^(1/2) 3770005305032331 a001 2971215073/20633239*10749957122^(1/24) 3770005305032331 a001 2971215073/20633239*4106118243^(1/23) 3770005305032331 a001 9227465/6643838879*10749957122^(13/24) 3770005305032331 a001 9227465/45537549124*4106118243^(15/23) 3770005305032331 a001 9227465/17393796001*4106118243^(14/23) 3770005305032331 a001 2971215073/20633239*1568397607^(1/22) 3770005305032331 a001 9227465/119218851371*4106118243^(16/23) 3770005305032331 a001 9227465/312119004989*4106118243^(17/23) 3770005305032331 a001 9227465/817138163596*4106118243^(18/23) 3770005305032331 a001 9227465/2139295485799*4106118243^(19/23) 3770005305032331 a001 9227465/5600748293801*4106118243^(20/23) 3770005305032331 a001 9227465/14662949395604*4106118243^(21/23) 3770005305032331 a001 9227465/6643838879*4106118243^(13/23) 3770005305032331 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^67 3770005305032331 a001 9227465/2537720636*2537720636^(8/15) 3770005305032331 a001 1836311903/20633239*599074578^(1/14) 3770005305032331 a001 9227465/2537720636*45537549124^(8/17) 3770005305032331 a001 9227465/2537720636*14662949395604^(8/21) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(45) 3770005305032331 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^4 3770005305032331 a001 1134903170/20633239*23725150497407^(1/16) 3770005305032331 a001 9227465/2537720636*192900153618^(4/9) 3770005305032331 a001 1134903170/20633239*73681302247^(1/13) 3770005305032331 a001 2971215073/20633239*599074578^(1/21) 3770005305032331 a001 9227465/2537720636*73681302247^(6/13) 3770005305032331 a001 1134903170/20633239*10749957122^(1/12) 3770005305032331 a001 9227465/2537720636*10749957122^(1/2) 3770005305032331 a001 1134903170/20633239*4106118243^(2/23) 3770005305032331 a001 9227465/2537720636*4106118243^(12/23) 3770005305032331 a001 1134903170/20633239*1568397607^(1/11) 3770005305032331 a001 9227465/17393796001*1568397607^(7/11) 3770005305032331 a001 9227465/6643838879*1568397607^(13/22) 3770005305032331 a001 9227465/45537549124*1568397607^(15/22) 3770005305032331 a001 9227465/119218851371*1568397607^(8/11) 3770005305032331 a001 9227465/192900153618*1568397607^(3/4) 3770005305032331 a001 9227465/312119004989*1568397607^(17/22) 3770005305032331 a001 9227465/817138163596*1568397607^(9/11) 3770005305032331 a001 9227465/2139295485799*1568397607^(19/22) 3770005305032331 a001 9227465/5600748293801*1568397607^(10/11) 3770005305032331 a001 9227465/2537720636*1568397607^(6/11) 3770005305032331 a001 9227465/14662949395604*1568397607^(21/22) 3770005305032331 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^65 3770005305032331 a001 1134903170/20633239*599074578^(2/21) 3770005305032331 a001 2971215073/20633239*228826127^(1/20) 3770005305032331 a001 433494437/20633239*2537720636^(2/15) 3770005305032331 a001 433494437/20633239*45537549124^(2/17) 3770005305032331 a001 9227465/969323029*312119004989^(2/5) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(43) 3770005305032331 a001 433494437/20633239*(1/2+1/2*5^(1/2))^6 3770005305032331 a001 4000054745112205/10610209857723 3770005305032331 a001 433494437/20633239*10749957122^(1/8) 3770005305032331 a001 9227465/969323029*10749957122^(11/24) 3770005305032331 a001 433494437/20633239*4106118243^(3/23) 3770005305032331 a001 9227465/969323029*4106118243^(11/23) 3770005305032331 a001 433494437/20633239*1568397607^(3/22) 3770005305032331 a001 9227465/969323029*1568397607^(1/2) 3770005305032331 a001 433494437/20633239*599074578^(1/7) 3770005305032331 a001 9227465/2537720636*599074578^(4/7) 3770005305032331 a001 9227465/6643838879*599074578^(13/21) 3770005305032331 a001 9227465/10749957122*599074578^(9/14) 3770005305032331 a001 9227465/17393796001*599074578^(2/3) 3770005305032331 a001 701408733/20633239*228826127^(1/8) 3770005305032331 a001 9227465/45537549124*599074578^(5/7) 3770005305032331 a001 1134903170/20633239*228826127^(1/10) 3770005305032331 a001 9227465/119218851371*599074578^(16/21) 3770005305032331 a001 9227465/192900153618*599074578^(11/14) 3770005305032331 a001 9227465/312119004989*599074578^(17/21) 3770005305032331 a001 9227465/505019158607*599074578^(5/6) 3770005305032331 a001 9227465/817138163596*599074578^(6/7) 3770005305032331 a001 9227465/2139295485799*599074578^(19/21) 3770005305032331 a001 9227465/969323029*599074578^(11/21) 3770005305032331 a001 9227465/3461452808002*599074578^(13/14) 3770005305032331 a001 9227465/5600748293801*599074578^(20/21) 3770005305032331 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^63 3770005305032331 a001 433494437/20633239*228826127^(3/20) 3770005305032331 a001 2971215073/20633239*87403803^(1/19) 3770005305032331 a001 9227465/370248451*2537720636^(4/9) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(41) 3770005305032331 a001 165580141/20633239*(1/2+1/2*5^(1/2))^8 3770005305032331 a001 9227465/370248451*23725150497407^(5/16) 3770005305032331 a001 1527884955772565/4052739537881 3770005305032331 a001 165580141/20633239*505019158607^(1/7) 3770005305032331 a001 165580141/20633239*73681302247^(2/13) 3770005305032331 a001 9227465/370248451*73681302247^(5/13) 3770005305032331 a001 9227465/370248451*28143753123^(2/5) 3770005305032331 a001 165580141/20633239*10749957122^(1/6) 3770005305032331 a001 9227465/370248451*10749957122^(5/12) 3770005305032331 a001 165580141/20633239*4106118243^(4/23) 3770005305032331 a001 9227465/370248451*4106118243^(10/23) 3770005305032331 a001 165580141/20633239*1568397607^(2/11) 3770005305032331 a001 9227465/370248451*1568397607^(5/11) 3770005305032331 a001 165580141/20633239*599074578^(4/21) 3770005305032331 a001 9227465/370248451*599074578^(10/21) 3770005305032331 a001 165580141/20633239*228826127^(1/5) 3770005305032331 a001 9227465/969323029*228826127^(11/20) 3770005305032331 a001 9227465/2537720636*228826127^(3/5) 3770005305032331 a001 9227465/4106118243*228826127^(5/8) 3770005305032331 a001 9227465/6643838879*228826127^(13/20) 3770005305032331 a001 9227465/17393796001*228826127^(7/10) 3770005305032331 a001 1134903170/20633239*87403803^(2/19) 3770005305032331 a001 9227465/45537549124*228826127^(3/4) 3770005305032331 a001 9227465/119218851371*228826127^(4/5) 3770005305032331 a001 9227465/312119004989*228826127^(17/20) 3770005305032331 a001 9227465/505019158607*228826127^(7/8) 3770005305032331 a001 9227465/370248451*228826127^(1/2) 3770005305032331 a001 9227465/817138163596*228826127^(9/10) 3770005305032331 a001 9227465/2139295485799*228826127^(19/20) 3770005305032331 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^61 3770005305032331 a001 433494437/20633239*87403803^(3/19) 3770005305032331 a001 9227465/141422324*141422324^(6/13) 3770005305032331 a001 165580141/20633239*87403803^(4/19) 3770005305032331 a001 9227465/228826127*87403803^(1/2) 3770005305032331 a001 2971215073/20633239*33385282^(1/18) 3770005305032331 a001 9227465/141422324*2537720636^(2/5) 3770005305032331 a001 63245986/20633239*2537720636^(2/9) 3770005305032331 a001 9227465/141422324*45537549124^(6/17) 3770005305032331 a001 63245986/20633239*312119004989^(2/11) 3770005305032331 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(39) 3770005305032331 a001 63245986/20633239*(1/2+1/2*5^(1/2))^10 3770005305032331 a001 58360012220549/154800875592 3770005305032331 a001 9227465/141422324*192900153618^(1/3) 3770005305032331 a001 63245986/20633239*28143753123^(1/5) 3770005305032331 a001 63245986/20633239*10749957122^(5/24) 3770005305032331 a001 9227465/141422324*10749957122^(3/8) 3770005305032331 a001 63245986/20633239*4106118243^(5/23) 3770005305032331 a001 9227465/141422324*4106118243^(9/23) 3770005305032331 a001 63245986/20633239*1568397607^(5/22) 3770005305032331 a001 9227465/141422324*1568397607^(9/22) 3770005305032331 a001 63245986/20633239*599074578^(5/21) 3770005305032331 a001 9227465/141422324*599074578^(3/7) 3770005305032331 a001 63245986/20633239*228826127^(1/4) 3770005305032331 a001 9227465/141422324*228826127^(9/20) 3770005305032331 a001 1836311903/20633239*33385282^(1/12) 3770005305032331 a001 9227465/370248451*87403803^(10/19) 3770005305032331 a001 9227465/969323029*87403803^(11/19) 3770005305032331 a001 9227465/2537720636*87403803^(12/19) 3770005305032331 a001 63245986/20633239*87403803^(5/19) 3770005305032331 a001 9227465/6643838879*87403803^(13/19) 3770005305032331 a001 9227465/17393796001*87403803^(14/19) 3770005305032331 a001 1134903170/20633239*33385282^(1/9) 3770005305032331 a001 9227465/45537549124*87403803^(15/19) 3770005305032331 a001 9227465/119218851371*87403803^(16/19) 3770005305032331 a001 9227465/141422324*87403803^(9/19) 3770005305032332 a001 9227465/312119004989*87403803^(17/19) 3770005305032332 a001 9227465/817138163596*87403803^(18/19) 3770005305032332 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^59 3770005305032332 a001 102334155/228826127*12752043^(7/17) 3770005305032332 a001 433494437/20633239*33385282^(1/6) 3770005305032332 a001 12586269025/87403803*4870847^(1/16) 3770005305032332 a001 133957148/299537289*12752043^(7/17) 3770005305032332 a001 701408733/1568397607*12752043^(7/17) 3770005305032332 a001 1836311903/4106118243*12752043^(7/17) 3770005305032332 a001 2403763488/5374978561*12752043^(7/17) 3770005305032332 a001 12586269025/28143753123*12752043^(7/17) 3770005305032332 a001 32951280099/73681302247*12752043^(7/17) 3770005305032332 a001 43133785636/96450076809*12752043^(7/17) 3770005305032332 a001 225851433717/505019158607*12752043^(7/17) 3770005305032332 a001 591286729879/1322157322203*12752043^(7/17) 3770005305032332 a001 10610209857723/23725150497407*12752043^(7/17) 3770005305032332 a001 139583862445/312119004989*12752043^(7/17) 3770005305032332 a001 53316291173/119218851371*12752043^(7/17) 3770005305032332 a001 10182505537/22768774562*12752043^(7/17) 3770005305032332 a001 7778742049/17393796001*12752043^(7/17) 3770005305032332 a001 2971215073/6643838879*12752043^(7/17) 3770005305032332 a001 567451585/1268860318*12752043^(7/17) 3770005305032332 a001 433494437/969323029*12752043^(7/17) 3770005305032332 a001 165580141/370248451*12752043^(7/17) 3770005305032332 a001 9303105/1875749*33385282^(1/4) 3770005305032332 a001 165580141/20633239*33385282^(2/9) 3770005305032332 a001 63245986/54018521*12752043^(6/17) 3770005305032332 a001 32951280099/228826127*4870847^(1/16) 3770005305032332 a001 43133785636/299537289*4870847^(1/16) 3770005305032332 a001 3524578/12752043*7881196^(5/11) 3770005305032332 a001 31622993/70711162*12752043^(7/17) 3770005305032332 a001 32264490531/224056801*4870847^(1/16) 3770005305032332 a001 591286729879/4106118243*4870847^(1/16) 3770005305032332 a001 774004377960/5374978561*4870847^(1/16) 3770005305032332 a001 4052739537881/28143753123*4870847^(1/16) 3770005305032332 a001 1515744265389/10525900321*4870847^(1/16) 3770005305032332 a001 3278735159921/22768774562*4870847^(1/16) 3770005305032332 a001 2504730781961/17393796001*4870847^(1/16) 3770005305032332 a001 956722026041/6643838879*4870847^(1/16) 3770005305032332 a001 182717648081/1268860318*4870847^(1/16) 3770005305032332 a001 139583862445/969323029*4870847^(1/16) 3770005305032332 a001 53316291173/370248451*4870847^(1/16) 3770005305032332 a001 63245986/20633239*33385282^(5/18) 3770005305032332 a001 24157817/20633239*141422324^(4/13) 3770005305032332 a001 10182505537/70711162*4870847^(1/16) 3770005305032332 a001 24157817/20633239*2537720636^(4/15) 3770005305032332 a001 24157817/20633239*45537549124^(4/17) 3770005305032332 a001 24157817/20633239*817138163596^(4/19) 3770005305032332 a001 24157817/20633239*14662949395604^(4/21) 3770005305032332 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^16/Lucas(37) 3770005305032332 a001 24157817/20633239*(1/2+1/2*5^(1/2))^12 3770005305032332 a001 222915410843905/591286729879 3770005305032332 a001 24157817/20633239*192900153618^(2/9) 3770005305032332 a001 24157817/20633239*73681302247^(3/13) 3770005305032332 a001 9227465/54018521*73681302247^(4/13) 3770005305032332 a001 24157817/20633239*10749957122^(1/4) 3770005305032332 a001 9227465/54018521*10749957122^(1/3) 3770005305032332 a001 24157817/20633239*4106118243^(6/23) 3770005305032332 a001 9227465/54018521*4106118243^(8/23) 3770005305032332 a001 24157817/20633239*1568397607^(3/11) 3770005305032332 a001 9227465/54018521*1568397607^(4/11) 3770005305032332 a001 24157817/20633239*599074578^(2/7) 3770005305032332 a001 9227465/54018521*599074578^(8/21) 3770005305032332 a001 24157817/20633239*228826127^(3/10) 3770005305032332 a001 9227465/54018521*228826127^(2/5) 3770005305032332 a001 2971215073/20633239*12752043^(1/17) 3770005305032332 a001 829464/33281921*12752043^(10/17) 3770005305032333 a001 24157817/20633239*87403803^(6/19) 3770005305032333 a001 39088169/228826127*12752043^(8/17) 3770005305032333 a001 9227465/54018521*87403803^(8/19) 3770005305032333 a001 9227465/141422324*33385282^(1/2) 3770005305032333 a001 9227465/370248451*33385282^(5/9) 3770005305032333 a001 9227465/599074578*33385282^(7/12) 3770005305032333 a001 34111385/199691526*12752043^(8/17) 3770005305032333 a001 267914296/1568397607*12752043^(8/17) 3770005305032333 a001 233802911/1368706081*12752043^(8/17) 3770005305032333 a001 1836311903/10749957122*12752043^(8/17) 3770005305032333 a001 1602508992/9381251041*12752043^(8/17) 3770005305032333 a001 12586269025/73681302247*12752043^(8/17) 3770005305032333 a001 10983760033/64300051206*12752043^(8/17) 3770005305032333 a001 86267571272/505019158607*12752043^(8/17) 3770005305032333 a001 75283811239/440719107401*12752043^(8/17) 3770005305032333 a001 2504730781961/14662949395604*12752043^(8/17) 3770005305032333 a001 139583862445/817138163596*12752043^(8/17) 3770005305032333 a001 53316291173/312119004989*12752043^(8/17) 3770005305032333 a001 20365011074/119218851371*12752043^(8/17) 3770005305032333 a001 7778742049/45537549124*12752043^(8/17) 3770005305032333 a001 2971215073/17393796001*12752043^(8/17) 3770005305032333 a001 1134903170/6643838879*12752043^(8/17) 3770005305032333 a001 433494437/2537720636*12752043^(8/17) 3770005305032333 a001 9227465/969323029*33385282^(11/18) 3770005305032333 a001 165580141/969323029*12752043^(8/17) 3770005305032333 a001 3524578/4106118243*7881196^(9/11) 3770005305032333 a001 9227465/2537720636*33385282^(2/3) 3770005305032333 a001 39088169/370248451*12752043^(1/2) 3770005305032333 a001 63245986/370248451*12752043^(8/17) 3770005305032333 a001 7778742049/54018521*4870847^(1/16) 3770005305032333 a001 24157817/20633239*33385282^(1/3) 3770005305032334 a001 9227465/6643838879*33385282^(13/18) 3770005305032334 a001 9227465/10749957122*33385282^(3/4) 3770005305032334 a001 9227465/17393796001*33385282^(7/9) 3770005305032334 a001 102334155/969323029*12752043^(1/2) 3770005305032334 a001 66978574/634430159*12752043^(1/2) 3770005305032334 a001 1134903170/20633239*12752043^(2/17) 3770005305032334 a001 701408733/6643838879*12752043^(1/2) 3770005305032334 a001 1836311903/17393796001*12752043^(1/2) 3770005305032334 a001 1201881744/11384387281*12752043^(1/2) 3770005305032334 a001 12586269025/119218851371*12752043^(1/2) 3770005305032334 a001 32951280099/312119004989*12752043^(1/2) 3770005305032334 a001 21566892818/204284540899*12752043^(1/2) 3770005305032334 a001 225851433717/2139295485799*12752043^(1/2) 3770005305032334 a001 182717648081/1730726404001*12752043^(1/2) 3770005305032334 a001 139583862445/1322157322203*12752043^(1/2) 3770005305032334 a001 53316291173/505019158607*12752043^(1/2) 3770005305032334 a001 10182505537/96450076809*12752043^(1/2) 3770005305032334 a001 7778742049/73681302247*12752043^(1/2) 3770005305032334 a001 2971215073/28143753123*12752043^(1/2) 3770005305032334 a001 567451585/5374978561*12752043^(1/2) 3770005305032334 a001 433494437/4106118243*12752043^(1/2) 3770005305032334 a001 14930352/1568397607*12752043^(11/17) 3770005305032334 a001 165580141/1568397607*12752043^(1/2) 3770005305032334 a001 9227465/54018521*33385282^(4/9) 3770005305032334 a001 9227465/45537549124*33385282^(5/6) 3770005305032334 a001 39088169/599074578*12752043^(9/17) 3770005305032334 a001 31622993/299537289*12752043^(1/2) 3770005305032334 a001 9227465/119218851371*33385282^(8/9) 3770005305032334 a001 9227465/192900153618*33385282^(11/12) 3770005305032334 a001 9227465/312119004989*33385282^(17/18) 3770005305032334 a001 24157817/54018521*12752043^(7/17) 3770005305032334 a001 14619165/224056801*12752043^(9/17) 3770005305032334 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^57 3770005305032334 a001 267914296/4106118243*12752043^(9/17) 3770005305032334 a001 701408733/10749957122*12752043^(9/17) 3770005305032334 a001 1836311903/28143753123*12752043^(9/17) 3770005305032334 a001 686789568/10525900321*12752043^(9/17) 3770005305032334 a001 12586269025/192900153618*12752043^(9/17) 3770005305032334 a001 32951280099/505019158607*12752043^(9/17) 3770005305032334 a001 86267571272/1322157322203*12752043^(9/17) 3770005305032334 a001 32264490531/494493258286*12752043^(9/17) 3770005305032334 a001 591286729879/9062201101803*12752043^(9/17) 3770005305032334 a001 1548008755920/23725150497407*12752043^(9/17) 3770005305032334 a001 365435296162/5600748293801*12752043^(9/17) 3770005305032334 a001 139583862445/2139295485799*12752043^(9/17) 3770005305032334 a001 53316291173/817138163596*12752043^(9/17) 3770005305032334 a001 20365011074/312119004989*12752043^(9/17) 3770005305032334 a001 7778742049/119218851371*12752043^(9/17) 3770005305032334 a001 2971215073/45537549124*12752043^(9/17) 3770005305032334 a001 1134903170/17393796001*12752043^(9/17) 3770005305032334 a001 433494437/6643838879*12752043^(9/17) 3770005305032335 a001 165580141/2537720636*12752043^(9/17) 3770005305032335 a001 24157817/141422324*12752043^(8/17) 3770005305032335 a001 63245986/969323029*12752043^(9/17) 3770005305032335 a001 24157817/228826127*12752043^(1/2) 3770005305032335 a001 433494437/20633239*12752043^(3/17) 3770005305032335 a001 4976784/1368706081*12752043^(12/17) 3770005305032335 a001 39088169/1568397607*12752043^(10/17) 3770005305032336 a001 34111385/1368706081*12752043^(10/17) 3770005305032336 a001 24157817/370248451*12752043^(9/17) 3770005305032336 a001 133957148/5374978561*12752043^(10/17) 3770005305032336 a001 233802911/9381251041*12752043^(10/17) 3770005305032336 a001 1836311903/73681302247*12752043^(10/17) 3770005305032336 a001 267084832/10716675201*12752043^(10/17) 3770005305032336 a001 12586269025/505019158607*12752043^(10/17) 3770005305032336 a001 10983760033/440719107401*12752043^(10/17) 3770005305032336 a001 43133785636/1730726404001*12752043^(10/17) 3770005305032336 a001 75283811239/3020733700601*12752043^(10/17) 3770005305032336 a001 182717648081/7331474697802*12752043^(10/17) 3770005305032336 a001 139583862445/5600748293801*12752043^(10/17) 3770005305032336 a001 53316291173/2139295485799*12752043^(10/17) 3770005305032336 a001 10182505537/408569081798*12752043^(10/17) 3770005305032336 a001 7778742049/312119004989*12752043^(10/17) 3770005305032336 a001 2971215073/119218851371*12752043^(10/17) 3770005305032336 a001 567451585/22768774562*12752043^(10/17) 3770005305032336 a001 433494437/17393796001*12752043^(10/17) 3770005305032336 a001 165580141/6643838879*12752043^(10/17) 3770005305032336 a001 31622993/1268860318*12752043^(10/17) 3770005305032336 a001 9227465/20633239*20633239^(2/5) 3770005305032337 a001 165580141/20633239*12752043^(4/17) 3770005305032337 a001 7465176/5374978561*12752043^(13/17) 3770005305032337 a001 39088169/4106118243*12752043^(11/17) 3770005305032337 a001 102334155/10749957122*12752043^(11/17) 3770005305032337 a001 24157817/969323029*12752043^(10/17) 3770005305032337 a001 267914296/28143753123*12752043^(11/17) 3770005305032337 a001 701408733/73681302247*12752043^(11/17) 3770005305032337 a001 1836311903/192900153618*12752043^(11/17) 3770005305032337 a001 102287808/10745088481*12752043^(11/17) 3770005305032337 a001 12586269025/1322157322203*12752043^(11/17) 3770005305032337 a001 32951280099/3461452808002*12752043^(11/17) 3770005305032337 a001 86267571272/9062201101803*12752043^(11/17) 3770005305032337 a001 225851433717/23725150497407*12752043^(11/17) 3770005305032337 a001 139583862445/14662949395604*12752043^(11/17) 3770005305032337 a001 53316291173/5600748293801*12752043^(11/17) 3770005305032337 a001 20365011074/2139295485799*12752043^(11/17) 3770005305032337 a001 7778742049/817138163596*12752043^(11/17) 3770005305032337 a001 2971215073/312119004989*12752043^(11/17) 3770005305032337 a001 1134903170/119218851371*12752043^(11/17) 3770005305032337 a001 433494437/45537549124*12752043^(11/17) 3770005305032337 a001 165580141/17393796001*12752043^(11/17) 3770005305032337 a001 63245986/6643838879*12752043^(11/17) 3770005305032338 a001 4976784/9381251041*12752043^(14/17) 3770005305032338 a001 63245986/20633239*12752043^(5/17) 3770005305032338 a001 39088169/10749957122*12752043^(12/17) 3770005305032339 a001 831985/228811001*12752043^(12/17) 3770005305032339 a001 24157817/2537720636*12752043^(11/17) 3770005305032339 a001 267914296/73681302247*12752043^(12/17) 3770005305032339 a001 233802911/64300051206*12752043^(12/17) 3770005305032339 a001 1836311903/505019158607*12752043^(12/17) 3770005305032339 a001 1602508992/440719107401*12752043^(12/17) 3770005305032339 a001 12586269025/3461452808002*12752043^(12/17) 3770005305032339 a001 10983760033/3020733700601*12752043^(12/17) 3770005305032339 a001 86267571272/23725150497407*12752043^(12/17) 3770005305032339 a001 53316291173/14662949395604*12752043^(12/17) 3770005305032339 a001 20365011074/5600748293801*12752043^(12/17) 3770005305032339 a001 7778742049/2139295485799*12752043^(12/17) 3770005305032339 a001 2971215073/817138163596*12752043^(12/17) 3770005305032339 a001 1134903170/312119004989*12752043^(12/17) 3770005305032339 a001 433494437/119218851371*12752043^(12/17) 3770005305032339 a001 165580141/45537549124*12752043^(12/17) 3770005305032339 a001 34111385/4250681*4870847^(1/4) 3770005305032339 a001 1836311903/33385282*4870847^(1/8) 3770005305032339 a001 63245986/17393796001*12752043^(12/17) 3770005305032339 a001 3524578/969323029*7881196^(8/11) 3770005305032339 a001 14930352/73681302247*12752043^(15/17) 3770005305032339 a001 39088169/28143753123*12752043^(13/17) 3770005305032340 a001 14619165/10525900321*12752043^(13/17) 3770005305032340 a001 24157817/6643838879*12752043^(12/17) 3770005305032340 a001 9227465/20633239*17393796001^(2/7) 3770005305032340 a001 9227465/20633239*14662949395604^(2/9) 3770005305032340 a001 9227465/20633239*(1/2+1/2*5^(1/2))^14 3770005305032340 a001 6549700794325/17373187209 3770005305032340 a001 9227465/20633239*10749957122^(7/24) 3770005305032340 a001 9227465/20633239*4106118243^(7/23) 3770005305032340 a001 9227465/20633239*1568397607^(7/22) 3770005305032340 a001 9227465/20633239*599074578^(1/3) 3770005305032340 a001 133957148/96450076809*12752043^(13/17) 3770005305032340 a001 701408733/505019158607*12752043^(13/17) 3770005305032340 a001 1836311903/1322157322203*12752043^(13/17) 3770005305032340 a001 14930208/10749853441*12752043^(13/17) 3770005305032340 a001 12586269025/9062201101803*12752043^(13/17) 3770005305032340 a001 32951280099/23725150497407*12752043^(13/17) 3770005305032340 a001 10182505537/7331474697802*12752043^(13/17) 3770005305032340 a001 7778742049/5600748293801*12752043^(13/17) 3770005305032340 a001 2971215073/2139295485799*12752043^(13/17) 3770005305032340 a001 567451585/408569081798*12752043^(13/17) 3770005305032340 a001 433494437/312119004989*12752043^(13/17) 3770005305032340 a001 9227465/20633239*228826127^(7/20) 3770005305032340 a001 165580141/119218851371*12752043^(13/17) 3770005305032340 a001 9227465/20633239*87403803^(7/19) 3770005305032340 a001 31622993/22768774562*12752043^(13/17) 3770005305032341 a001 24157817/20633239*12752043^(6/17) 3770005305032341 a001 2584/33385281*12752043^(16/17) 3770005305032341 a001 39088169/73681302247*12752043^(14/17) 3770005305032341 a001 2971215073/20633239*4870847^(1/16) 3770005305032341 a001 34111385/64300051206*12752043^(14/17) 3770005305032341 a001 24157817/17393796001*12752043^(13/17) 3770005305032341 a001 9227465/20633239*33385282^(7/18) 3770005305032341 a001 267914296/505019158607*12752043^(14/17) 3770005305032341 a001 233802911/440719107401*12752043^(14/17) 3770005305032341 a001 1836311903/3461452808002*12752043^(14/17) 3770005305032341 a001 1602508992/3020733700601*12752043^(14/17) 3770005305032341 a001 12586269025/23725150497407*12752043^(14/17) 3770005305032341 a001 7778742049/14662949395604*12752043^(14/17) 3770005305032341 a001 2971215073/5600748293801*12752043^(14/17) 3770005305032341 a001 1134903170/2139295485799*12752043^(14/17) 3770005305032341 a001 433494437/817138163596*12752043^(14/17) 3770005305032341 a001 165580141/312119004989*12752043^(14/17) 3770005305032341 a001 63245986/119218851371*12752043^(14/17) 3770005305032342 a001 1602508992/29134601*4870847^(1/8) 3770005305032342 a001 12586269025/228826127*4870847^(1/8) 3770005305032342 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^56 3770005305032342 a001 10983760033/199691526*4870847^(1/8) 3770005305032342 a001 86267571272/1568397607*4870847^(1/8) 3770005305032342 a001 75283811239/1368706081*4870847^(1/8) 3770005305032342 a001 591286729879/10749957122*4870847^(1/8) 3770005305032342 a001 12585437040/228811001*4870847^(1/8) 3770005305032342 a001 4052739537881/73681302247*4870847^(1/8) 3770005305032342 a001 3536736619241/64300051206*4870847^(1/8) 3770005305032342 a001 6557470319842/119218851371*4870847^(1/8) 3770005305032342 a001 2504730781961/45537549124*4870847^(1/8) 3770005305032342 a001 956722026041/17393796001*4870847^(1/8) 3770005305032342 a001 365435296162/6643838879*4870847^(1/8) 3770005305032342 a001 139583862445/2537720636*4870847^(1/8) 3770005305032342 a001 53316291173/969323029*4870847^(1/8) 3770005305032342 a001 20365011074/370248451*4870847^(1/8) 3770005305032342 a001 9227465/87403803*12752043^(1/2) 3770005305032342 a001 39088169/192900153618*12752043^(15/17) 3770005305032342 a001 7778742049/141422324*4870847^(1/8) 3770005305032342 a001 3524578/370248451*7881196^(2/3) 3770005305032343 a001 102334155/505019158607*12752043^(15/17) 3770005305032343 a001 24157817/45537549124*12752043^(14/17) 3770005305032343 a001 267914296/1322157322203*12752043^(15/17) 3770005305032343 a001 701408733/3461452808002*12752043^(15/17) 3770005305032343 a001 1836311903/9062201101803*12752043^(15/17) 3770005305032343 a001 4807526976/23725150497407*12752043^(15/17) 3770005305032343 a001 2971215073/14662949395604*12752043^(15/17) 3770005305032343 a001 1134903170/5600748293801*12752043^(15/17) 3770005305032343 a001 433494437/2139295485799*12752043^(15/17) 3770005305032343 a001 165580141/817138163596*12752043^(15/17) 3770005305032343 a001 63245986/312119004989*12752043^(15/17) 3770005305032343 a001 9227465/54018521*12752043^(8/17) 3770005305032343 a001 2971215073/54018521*4870847^(1/8) 3770005305032344 a001 9227465/141422324*12752043^(9/17) 3770005305032344 a001 39088169/505019158607*12752043^(16/17) 3770005305032344 a001 34111385/440719107401*12752043^(16/17) 3770005305032344 a001 24157817/119218851371*12752043^(15/17) 3770005305032344 a001 133957148/1730726404001*12752043^(16/17) 3770005305032344 a001 233802911/3020733700601*12752043^(16/17) 3770005305032344 a001 1836311903/23725150497407*12752043^(16/17) 3770005305032344 a001 567451585/7331474697802*12752043^(16/17) 3770005305032344 a001 433494437/5600748293801*12752043^(16/17) 3770005305032344 a001 165580141/2139295485799*12752043^(16/17) 3770005305032344 a001 3524578/228826127*7881196^(7/11) 3770005305032344 a001 31622993/408569081798*12752043^(16/17) 3770005305032345 a001 9227465/370248451*12752043^(10/17) 3770005305032345 a001 165580141/4870847*1860498^(1/6) 3770005305032345 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^58 3770005305032345 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^60 3770005305032345 a001 24157817/312119004989*12752043^(16/17) 3770005305032345 a001 5702887/12752043*4870847^(7/16) 3770005305032345 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^62 3770005305032345 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^64 3770005305032345 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^66 3770005305032345 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^68 3770005305032345 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^70 3770005305032345 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^72 3770005305032345 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^74 3770005305032345 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^76 3770005305032345 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^78 3770005305032345 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^80 3770005305032345 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^82 3770005305032345 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^84 3770005305032345 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^86 3770005305032345 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^88 3770005305032345 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^90 3770005305032345 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^92 3770005305032345 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^94 3770005305032345 a004 Fibonacci(76)*Lucas(34)/(1/2+sqrt(5)/2)^96 3770005305032345 a004 Fibonacci(78)*Lucas(34)/(1/2+sqrt(5)/2)^98 3770005305032345 a004 Fibonacci(80)*Lucas(34)/(1/2+sqrt(5)/2)^100 3770005305032345 a004 Fibonacci(79)*Lucas(34)/(1/2+sqrt(5)/2)^99 3770005305032345 a004 Fibonacci(77)*Lucas(34)/(1/2+sqrt(5)/2)^97 3770005305032345 a004 Fibonacci(75)*Lucas(34)/(1/2+sqrt(5)/2)^95 3770005305032345 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^93 3770005305032345 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^91 3770005305032345 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^89 3770005305032345 a001 2/5702887*(1/2+1/2*5^(1/2))^48 3770005305032345 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^87 3770005305032345 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^85 3770005305032345 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^83 3770005305032345 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^81 3770005305032345 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^79 3770005305032345 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^77 3770005305032345 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^75 3770005305032345 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^73 3770005305032345 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^71 3770005305032345 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^69 3770005305032345 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^67 3770005305032345 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^65 3770005305032345 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^63 3770005305032345 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^61 3770005305032346 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^59 3770005305032346 a001 9227465/969323029*12752043^(11/17) 3770005305032347 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^57 3770005305032347 a001 9227465/2537720636*12752043^(12/17) 3770005305032348 a001 39088169/12752043*4870847^(5/16) 3770005305032349 a001 701408733/33385282*4870847^(3/16) 3770005305032349 a001 9227465/6643838879*12752043^(13/17) 3770005305032349 a001 9227465/20633239*12752043^(7/17) 3770005305032350 a001 9227465/17393796001*12752043^(14/17) 3770005305032351 a001 1134903170/20633239*4870847^(1/8) 3770005305032351 a001 3524578/54018521*7881196^(6/11) 3770005305032352 a001 1836311903/87403803*4870847^(3/16) 3770005305032352 a001 9227465/45537549124*12752043^(15/17) 3770005305032352 a001 102287808/4868641*4870847^(3/16) 3770005305032352 a001 12586269025/599074578*4870847^(3/16) 3770005305032352 a001 32951280099/1568397607*4870847^(3/16) 3770005305032352 a001 86267571272/4106118243*4870847^(3/16) 3770005305032352 a001 225851433717/10749957122*4870847^(3/16) 3770005305032352 a001 591286729879/28143753123*4870847^(3/16) 3770005305032352 a001 1548008755920/73681302247*4870847^(3/16) 3770005305032352 a001 4052739537881/192900153618*4870847^(3/16) 3770005305032352 a001 225749145909/10745088481*4870847^(3/16) 3770005305032352 a001 6557470319842/312119004989*4870847^(3/16) 3770005305032352 a001 2504730781961/119218851371*4870847^(3/16) 3770005305032352 a001 956722026041/45537549124*4870847^(3/16) 3770005305032352 a001 365435296162/17393796001*4870847^(3/16) 3770005305032352 a001 139583862445/6643838879*4870847^(3/16) 3770005305032352 a001 53316291173/2537720636*4870847^(3/16) 3770005305032352 a001 20365011074/969323029*4870847^(3/16) 3770005305032352 a001 7778742049/370248451*4870847^(3/16) 3770005305032352 a001 2971215073/141422324*4870847^(3/16) 3770005305032353 a001 9227465/119218851371*12752043^(16/17) 3770005305032353 a001 1134903170/54018521*4870847^(3/16) 3770005305032354 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^55 3770005305032355 a001 4976784/4250681*4870847^(3/8) 3770005305032356 a001 3524578/12752043*20633239^(3/7) 3770005305032359 a001 133957148/16692641*4870847^(1/4) 3770005305032359 a001 3732588/1970299*7881196^(1/3) 3770005305032360 a001 3524578/12752043*141422324^(5/13) 3770005305032360 a001 5702887/7881196*141422324^(1/3) 3770005305032360 a001 3524578/12752043*2537720636^(1/3) 3770005305032360 a001 3524578/12752043*45537549124^(5/17) 3770005305032360 a001 20100270056686/53316291173 3770005305032360 a001 3524578/12752043*312119004989^(3/11) 3770005305032360 a001 3524578/12752043*14662949395604^(5/21) 3770005305032360 a001 3524578/12752043*(1/2+1/2*5^(1/2))^15 3770005305032360 a001 5702887/7881196*(1/2+1/2*5^(1/2))^13 3770005305032360 a001 3524578/12752043*192900153618^(5/18) 3770005305032360 a001 5702887/7881196*73681302247^(1/4) 3770005305032360 a001 3524578/12752043*28143753123^(3/10) 3770005305032360 a001 3524578/12752043*10749957122^(5/16) 3770005305032360 a001 3524578/12752043*599074578^(5/14) 3770005305032360 a001 3524578/12752043*228826127^(3/8) 3770005305032361 a001 433494437/20633239*4870847^(3/16) 3770005305032361 a001 3524578/12752043*33385282^(5/12) 3770005305032361 a001 233802911/29134601*4870847^(1/4) 3770005305032362 a001 1836311903/228826127*4870847^(1/4) 3770005305032362 a001 267084832/33281921*4870847^(1/4) 3770005305032362 a001 12586269025/1568397607*4870847^(1/4) 3770005305032362 a001 10983760033/1368706081*4870847^(1/4) 3770005305032362 a001 43133785636/5374978561*4870847^(1/4) 3770005305032362 a001 75283811239/9381251041*4870847^(1/4) 3770005305032362 a001 591286729879/73681302247*4870847^(1/4) 3770005305032362 a001 86000486440/10716675201*4870847^(1/4) 3770005305032362 a001 4052739537881/505019158607*4870847^(1/4) 3770005305032362 a001 3278735159921/408569081798*4870847^(1/4) 3770005305032362 a001 2504730781961/312119004989*4870847^(1/4) 3770005305032362 a001 956722026041/119218851371*4870847^(1/4) 3770005305032362 a001 182717648081/22768774562*4870847^(1/4) 3770005305032362 a001 139583862445/17393796001*4870847^(1/4) 3770005305032362 a001 53316291173/6643838879*4870847^(1/4) 3770005305032362 a001 10182505537/1268860318*4870847^(1/4) 3770005305032362 a001 7778742049/969323029*4870847^(1/4) 3770005305032362 a001 2971215073/370248451*4870847^(1/4) 3770005305032362 a001 567451585/70711162*4870847^(1/4) 3770005305032363 a001 433494437/54018521*4870847^(1/4) 3770005305032366 a001 39088169/7881196*7881196^(3/11) 3770005305032368 a001 14619165/4769326*4870847^(5/16) 3770005305032370 a001 9227465/7881196*7881196^(4/11) 3770005305032371 a001 165580141/20633239*4870847^(1/4) 3770005305032371 a001 267914296/87403803*4870847^(5/16) 3770005305032372 a001 1836311903/12752043*1860498^(1/15) 3770005305032372 a001 701408733/228826127*4870847^(5/16) 3770005305032372 a001 1836311903/599074578*4870847^(5/16) 3770005305032372 a001 686789568/224056801*4870847^(5/16) 3770005305032372 a001 12586269025/4106118243*4870847^(5/16) 3770005305032372 a001 32951280099/10749957122*4870847^(5/16) 3770005305032372 a001 86267571272/28143753123*4870847^(5/16) 3770005305032372 a001 32264490531/10525900321*4870847^(5/16) 3770005305032372 a001 591286729879/192900153618*4870847^(5/16) 3770005305032372 a001 1548008755920/505019158607*4870847^(5/16) 3770005305032372 a001 1515744265389/494493258286*4870847^(5/16) 3770005305032372 a001 2504730781961/817138163596*4870847^(5/16) 3770005305032372 a001 956722026041/312119004989*4870847^(5/16) 3770005305032372 a001 365435296162/119218851371*4870847^(5/16) 3770005305032372 a001 139583862445/45537549124*4870847^(5/16) 3770005305032372 a001 53316291173/17393796001*4870847^(5/16) 3770005305032372 a001 20365011074/6643838879*4870847^(5/16) 3770005305032372 a001 7778742049/2537720636*4870847^(5/16) 3770005305032372 a001 2971215073/969323029*4870847^(5/16) 3770005305032372 a001 1134903170/370248451*4870847^(5/16) 3770005305032372 a001 165580141/7881196*7881196^(2/11) 3770005305032372 a001 433494437/141422324*4870847^(5/16) 3770005305032373 a001 165580141/54018521*4870847^(5/16) 3770005305032374 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^54 3770005305032375 a001 5702887/33385282*4870847^(1/2) 3770005305032375 a001 3524578/17393796001*20633239^(6/7) 3770005305032376 a001 3524578/6643838879*20633239^(4/5) 3770005305032377 a001 3524578/1568397607*20633239^(5/7) 3770005305032377 a001 3524667/39604*7881196^(1/11) 3770005305032378 a001 3524578/228826127*20633239^(3/5) 3770005305032378 a001 39088169/33385282*4870847^(3/8) 3770005305032378 a001 1762289/70711162*20633239^(4/7) 3770005305032380 a001 1762289/16692641*45537549124^(1/3) 3770005305032380 a001 591271799904/1568358005 3770005305032380 a001 3732588/1970299*312119004989^(1/5) 3770005305032380 a001 1762289/16692641*(1/2+1/2*5^(1/2))^17 3770005305032380 a001 3732588/1970299*(1/2+1/2*5^(1/2))^11 3770005305032380 a001 3732588/1970299*1568397607^(1/4) 3770005305032381 a001 63245986/20633239*4870847^(5/16) 3770005305032381 a001 102334155/4870847*1860498^(1/5) 3770005305032381 a001 102334155/7881196*20633239^(1/5) 3770005305032381 a001 34111385/29134601*4870847^(3/8) 3770005305032382 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^56 3770005305032382 a001 66978574/1970299*20633239^(1/7) 3770005305032382 a001 24157817/7881196*20633239^(2/7) 3770005305032382 a001 267914296/228826127*4870847^(3/8) 3770005305032382 a001 233802911/199691526*4870847^(3/8) 3770005305032382 a001 1836311903/1568397607*4870847^(3/8) 3770005305032382 a001 1602508992/1368706081*4870847^(3/8) 3770005305032382 a001 12586269025/10749957122*4870847^(3/8) 3770005305032382 a001 10983760033/9381251041*4870847^(3/8) 3770005305032382 a001 86267571272/73681302247*4870847^(3/8) 3770005305032382 a001 75283811239/64300051206*4870847^(3/8) 3770005305032382 a001 2504730781961/2139295485799*4870847^(3/8) 3770005305032382 a001 365435296162/312119004989*4870847^(3/8) 3770005305032382 a001 139583862445/119218851371*4870847^(3/8) 3770005305032382 a001 53316291173/45537549124*4870847^(3/8) 3770005305032382 a001 20365011074/17393796001*4870847^(3/8) 3770005305032382 a001 7778742049/6643838879*4870847^(3/8) 3770005305032382 a001 2971215073/2537720636*4870847^(3/8) 3770005305032382 a001 1134903170/969323029*4870847^(3/8) 3770005305032382 a001 433494437/370248451*4870847^(3/8) 3770005305032382 a001 165580141/141422324*4870847^(3/8) 3770005305032382 a001 39088169/7881196*141422324^(3/13) 3770005305032382 a001 39088169/7881196*2537720636^(1/5) 3770005305032382 a001 39088169/7881196*45537549124^(3/17) 3770005305032382 a001 16475639861/43701901 3770005305032382 a001 3524578/87403803*817138163596^(1/3) 3770005305032382 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^19/Lucas(38) 3770005305032382 a001 39088169/7881196*(1/2+1/2*5^(1/2))^9 3770005305032382 a001 39088169/7881196*192900153618^(1/6) 3770005305032382 a001 39088169/7881196*10749957122^(3/16) 3770005305032382 a001 39088169/7881196*599074578^(3/14) 3770005305032383 a001 3524578/87403803*87403803^(1/2) 3770005305032383 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^58 3770005305032383 a001 3524578/312119004989*141422324^(12/13) 3770005305032383 a001 3524578/228826127*141422324^(7/13) 3770005305032383 a001 3524578/73681302247*141422324^(11/13) 3770005305032383 a001 3524578/17393796001*141422324^(10/13) 3770005305032383 a001 3524578/4106118243*141422324^(9/13) 3770005305032383 a001 1762289/1268860318*141422324^(2/3) 3770005305032383 a001 3524578/969323029*141422324^(8/13) 3770005305032383 a001 3524578/228826127*2537720636^(7/15) 3770005305032383 a001 3524578/228826127*17393796001^(3/7) 3770005305032383 a001 102334155/7881196*17393796001^(1/7) 3770005305032383 a001 3524578/228826127*45537549124^(7/17) 3770005305032383 a001 102334155/7881196*14662949395604^(1/9) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(40) 3770005305032383 a001 102334155/7881196*(1/2+1/2*5^(1/2))^7 3770005305032383 a001 3524578/228826127*192900153618^(7/18) 3770005305032383 a001 3524578/228826127*10749957122^(7/16) 3770005305032383 a001 102334155/7881196*599074578^(1/6) 3770005305032383 a001 3524578/228826127*599074578^(1/2) 3770005305032383 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^60 3770005305032383 a001 3524667/39604*141422324^(1/13) 3770005305032383 a001 66978574/1970299*2537720636^(1/9) 3770005305032383 a001 66978574/1970299*312119004989^(1/11) 3770005305032383 a001 944284833567088/2504730781961 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(42) 3770005305032383 a001 66978574/1970299*(1/2+1/2*5^(1/2))^5 3770005305032383 a001 66978574/1970299*28143753123^(1/10) 3770005305032383 a001 1762289/299537289*4106118243^(1/2) 3770005305032383 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^62 3770005305032383 a001 3524578/1568397607*2537720636^(5/9) 3770005305032383 a001 3524667/39604*2537720636^(1/15) 3770005305032383 a001 3524667/39604*45537549124^(1/17) 3770005305032383 a001 3524578/1568397607*312119004989^(5/11) 3770005305032383 a001 1236084894669837/3278735159921 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(44) 3770005305032383 a001 3524667/39604*(1/2+1/2*5^(1/2))^3 3770005305032383 a001 3524667/39604*192900153618^(1/18) 3770005305032383 a001 3524667/39604*10749957122^(1/16) 3770005305032383 a001 3524578/1568397607*28143753123^(1/2) 3770005305032383 a001 66978574/1970299*228826127^(1/8) 3770005305032383 a001 165580141/7881196*141422324^(2/13) 3770005305032383 a001 3524667/39604*599074578^(1/14) 3770005305032383 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^64 3770005305032383 a001 3524578/4106118243*2537720636^(3/5) 3770005305032383 a001 3524578/5600748293801*2537720636^(14/15) 3770005305032383 a001 3524578/2139295485799*2537720636^(8/9) 3770005305032383 a001 3524578/1322157322203*2537720636^(13/15) 3770005305032383 a001 3524578/312119004989*2537720636^(4/5) 3770005305032383 a001 1762289/96450076809*2537720636^(7/9) 3770005305032383 a001 3524578/73681302247*2537720636^(11/15) 3770005305032383 a001 3524578/17393796001*2537720636^(2/3) 3770005305032383 a001 3524578/4106118243*45537549124^(9/17) 3770005305032383 a001 3524578/4106118243*817138163596^(9/19) 3770005305032383 a001 3524578/4106118243*14662949395604^(3/7) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(46) 3770005305032383 a001 3524578/4106118243*192900153618^(1/2) 3770005305032383 a001 3524578/4106118243*10749957122^(9/16) 3770005305032383 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^66 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(48) 3770005305032383 a004 Fibonacci(48)/Lucas(33)/(1/2+sqrt(5)/2) 3770005305032383 a001 1762289/5374978561*1322157322203^(1/2) 3770005305032383 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^68 3770005305032383 a001 3524578/5600748293801*17393796001^(6/7) 3770005305032383 a001 1762289/96450076809*17393796001^(5/7) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(50) 3770005305032383 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2)^3 3770005305032383 a001 3524578/28143753123*9062201101803^(1/2) 3770005305032383 a001 3524578/73681302247*45537549124^(11/17) 3770005305032383 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^70 3770005305032383 a001 3524578/23725150497407*45537549124^(15/17) 3770005305032383 a001 3524578/5600748293801*45537549124^(14/17) 3770005305032383 a001 3524578/1322157322203*45537549124^(13/17) 3770005305032383 a001 3524578/312119004989*45537549124^(12/17) 3770005305032383 a001 3524578/119218851371*45537549124^(2/3) 3770005305032383 a001 3524578/73681302247*312119004989^(3/5) 3770005305032383 a001 3524578/73681302247*14662949395604^(11/21) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(52) 3770005305032383 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^5 3770005305032383 a001 3524578/73681302247*192900153618^(11/18) 3770005305032383 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^72 3770005305032383 a001 1762289/96450076809*312119004989^(7/11) 3770005305032383 a001 1762289/96450076809*14662949395604^(5/9) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(54) 3770005305032383 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^7 3770005305032383 a001 1762289/96450076809*505019158607^(5/8) 3770005305032383 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^74 3770005305032383 a001 3524578/23725150497407*312119004989^(9/11) 3770005305032383 a001 1762289/7331474697802*312119004989^(4/5) 3770005305032383 a001 3524578/2139295485799*312119004989^(8/11) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(56) 3770005305032383 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^9 3770005305032383 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^76 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(58) 3770005305032383 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^11 3770005305032383 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^78 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(60) 3770005305032383 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^13 3770005305032383 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^80 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(62) 3770005305032383 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^15 3770005305032383 a001 3524578/23725150497407*14662949395604^(5/7) 3770005305032383 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^82 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(64) 3770005305032383 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^17 3770005305032383 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^84 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(66) 3770005305032383 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^86 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(68) 3770005305032383 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^88 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(70) 3770005305032383 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^90 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(72) 3770005305032383 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^92 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(74) 3770005305032383 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^94 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(76) 3770005305032383 a004 Fibonacci(33)*Lucas(77)/(1/2+sqrt(5)/2)^96 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(78) 3770005305032383 a004 Fibonacci(33)*Lucas(79)/(1/2+sqrt(5)/2)^98 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(80) 3770005305032383 a004 Fibonacci(33)*Lucas(81)/(1/2+sqrt(5)/2)^100 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(82) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(84) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(86) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(88) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(90) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(92) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(94) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^77/Lucas(96) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^79/Lucas(98) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^80/Lucas(99) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^81/Lucas(100) 3770005305032383 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^19 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^78/Lucas(97) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^76/Lucas(95) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(93) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(91) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(89) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(87) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(85) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(83) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(81) 3770005305032383 a004 Fibonacci(33)*Lucas(80)/(1/2+sqrt(5)/2)^99 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(79) 3770005305032383 a004 Fibonacci(33)*Lucas(78)/(1/2+sqrt(5)/2)^97 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(77) 3770005305032383 a004 Fibonacci(33)*Lucas(76)/(1/2+sqrt(5)/2)^95 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(75) 3770005305032383 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^93 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(73) 3770005305032383 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^91 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(71) 3770005305032383 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^89 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(69) 3770005305032383 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^87 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(67) 3770005305032383 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^21 3770005305032383 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^23 3770005305032383 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^25 3770005305032383 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^27 3770005305032383 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^29 3770005305032383 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^31 3770005305032383 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^33 3770005305032383 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^35 3770005305032383 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^37 3770005305032383 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^39 3770005305032383 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^41 3770005305032383 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^43 3770005305032383 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^45 3770005305032383 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^47 3770005305032383 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^49 3770005305032383 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^51 3770005305032383 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^53 3770005305032383 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^85 3770005305032383 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^52 3770005305032383 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^50 3770005305032383 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^48 3770005305032383 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^46 3770005305032383 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^44 3770005305032383 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^42 3770005305032383 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^40 3770005305032383 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^38 3770005305032383 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^36 3770005305032383 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^34 3770005305032383 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^32 3770005305032383 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^30 3770005305032383 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^28 3770005305032383 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^26 3770005305032383 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^24 3770005305032383 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^22 3770005305032383 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^20 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(65) 3770005305032383 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^18 3770005305032383 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^83 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(63) 3770005305032383 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^16 3770005305032383 a001 1762289/7331474697802*23725150497407^(11/16) 3770005305032383 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^81 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(61) 3770005305032383 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^14 3770005305032383 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^79 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(59) 3770005305032383 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^12 3770005305032383 a001 3524578/2139295485799*23725150497407^(5/8) 3770005305032383 a001 1762289/408569081798*817138163596^(2/3) 3770005305032383 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^77 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(57) 3770005305032383 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^10 3770005305032383 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^75 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(55) 3770005305032383 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^8 3770005305032383 a001 3524578/312119004989*505019158607^(9/14) 3770005305032383 a001 3524578/1322157322203*192900153618^(13/18) 3770005305032383 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^73 3770005305032383 a001 3524578/312119004989*192900153618^(2/3) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(53) 3770005305032383 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^6 3770005305032383 a001 3524578/1322157322203*73681302247^(3/4) 3770005305032383 a001 3524578/312119004989*73681302247^(9/13) 3770005305032383 a001 3524578/2139295485799*73681302247^(10/13) 3770005305032383 a001 1762289/7331474697802*73681302247^(11/13) 3770005305032383 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^71 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(51) 3770005305032383 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^4 3770005305032383 a001 1762289/22768774562*23725150497407^(1/2) 3770005305032383 a001 1762289/22768774562*505019158607^(4/7) 3770005305032383 a001 1762289/22768774562*73681302247^(8/13) 3770005305032383 a001 1762289/96450076809*28143753123^(7/10) 3770005305032383 a001 3524578/2139295485799*28143753123^(4/5) 3770005305032383 a001 3524578/23725150497407*28143753123^(9/10) 3770005305032383 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^69 3770005305032383 a001 3524578/17393796001*45537549124^(10/17) 3770005305032383 a001 3524578/17393796001*312119004989^(6/11) 3770005305032383 a001 3524578/17393796001*14662949395604^(10/21) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(49) 3770005305032383 a004 Fibonacci(49)/Lucas(33)/(1/2+sqrt(5)/2)^2 3770005305032383 a001 3524578/17393796001*192900153618^(5/9) 3770005305032383 a001 3524578/17393796001*28143753123^(3/5) 3770005305032383 a001 3524578/73681302247*10749957122^(11/16) 3770005305032383 a001 3524578/119218851371*10749957122^(17/24) 3770005305032383 a001 1762289/22768774562*10749957122^(2/3) 3770005305032383 a001 3524578/312119004989*10749957122^(3/4) 3770005305032383 a001 1762289/408569081798*10749957122^(19/24) 3770005305032383 a001 3524578/1322157322203*10749957122^(13/16) 3770005305032383 a001 3524578/2139295485799*10749957122^(5/6) 3770005305032383 a001 3524578/5600748293801*10749957122^(7/8) 3770005305032383 a001 1762289/7331474697802*10749957122^(11/12) 3770005305032383 a001 3524578/23725150497407*10749957122^(15/16) 3770005305032383 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^67 3770005305032383 a001 3524578/17393796001*10749957122^(5/8) 3770005305032383 a001 3524578/6643838879*17393796001^(4/7) 3770005305032383 a001 3524578/6643838879*14662949395604^(4/9) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(47) 3770005305032383 a006 5^(1/2)*Fibonacci(47)/Lucas(33)/sqrt(5) 3770005305032383 a001 3524578/6643838879*73681302247^(7/13) 3770005305032383 a001 3524578/6643838879*10749957122^(7/12) 3770005305032383 a001 1762289/22768774562*4106118243^(16/23) 3770005305032383 a001 3524578/17393796001*4106118243^(15/23) 3770005305032383 a001 3524578/119218851371*4106118243^(17/23) 3770005305032383 a001 3524578/312119004989*4106118243^(18/23) 3770005305032383 a001 1762289/408569081798*4106118243^(19/23) 3770005305032383 a001 3524578/2139295485799*4106118243^(20/23) 3770005305032383 a001 3524578/5600748293801*4106118243^(21/23) 3770005305032383 a001 1762289/7331474697802*4106118243^(22/23) 3770005305032383 a001 3524578/6643838879*4106118243^(14/23) 3770005305032383 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^65 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(45) 3770005305032383 a001 567451585/3940598*(1/2+1/2*5^(1/2))^2 3770005305032383 a001 4000054745112260/10610209857723 3770005305032383 a001 1762289/1268860318*73681302247^(1/2) 3770005305032383 a001 567451585/3940598*10749957122^(1/24) 3770005305032383 a001 567451585/3940598*4106118243^(1/23) 3770005305032383 a001 1762289/1268860318*10749957122^(13/24) 3770005305032383 a001 567451585/3940598*1568397607^(1/22) 3770005305032383 a001 1762289/1268860318*4106118243^(13/23) 3770005305032383 a001 3524578/17393796001*1568397607^(15/22) 3770005305032383 a001 3524578/6643838879*1568397607^(7/11) 3770005305032383 a001 567451585/3940598*599074578^(1/21) 3770005305032383 a001 1762289/22768774562*1568397607^(8/11) 3770005305032383 a001 3524578/73681302247*1568397607^(3/4) 3770005305032383 a001 3524578/119218851371*1568397607^(17/22) 3770005305032383 a001 3524578/312119004989*1568397607^(9/11) 3770005305032383 a001 1762289/408569081798*1568397607^(19/22) 3770005305032383 a001 3524578/2139295485799*1568397607^(10/11) 3770005305032383 a001 3524578/5600748293801*1568397607^(21/22) 3770005305032383 a001 1762289/1268860318*1568397607^(13/22) 3770005305032383 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^63 3770005305032383 a001 3524578/969323029*2537720636^(8/15) 3770005305032383 a001 3524578/969323029*45537549124^(8/17) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(43) 3770005305032383 a001 433494437/7881196*(1/2+1/2*5^(1/2))^4 3770005305032383 a001 1527884955772586/4052739537881 3770005305032383 a001 3524578/969323029*192900153618^(4/9) 3770005305032383 a001 433494437/7881196*73681302247^(1/13) 3770005305032383 a001 3524578/969323029*73681302247^(6/13) 3770005305032383 a001 433494437/7881196*10749957122^(1/12) 3770005305032383 a001 3524578/969323029*10749957122^(1/2) 3770005305032383 a001 433494437/7881196*4106118243^(2/23) 3770005305032383 a001 3524578/969323029*4106118243^(12/23) 3770005305032383 a001 433494437/7881196*1568397607^(1/11) 3770005305032383 a001 567451585/3940598*228826127^(1/20) 3770005305032383 a001 3524578/969323029*1568397607^(6/11) 3770005305032383 a001 433494437/7881196*599074578^(2/21) 3770005305032383 a001 3524578/4106118243*599074578^(9/14) 3770005305032383 a001 1762289/1268860318*599074578^(13/21) 3770005305032383 a001 3524578/6643838879*599074578^(2/3) 3770005305032383 a001 3524578/17393796001*599074578^(5/7) 3770005305032383 a001 1762289/22768774562*599074578^(16/21) 3770005305032383 a001 3524578/73681302247*599074578^(11/14) 3770005305032383 a001 3524578/119218851371*599074578^(17/21) 3770005305032383 a001 1762289/96450076809*599074578^(5/6) 3770005305032383 a001 3524578/312119004989*599074578^(6/7) 3770005305032383 a001 1762289/408569081798*599074578^(19/21) 3770005305032383 a001 3524578/1322157322203*599074578^(13/14) 3770005305032383 a001 3524578/2139295485799*599074578^(20/21) 3770005305032383 a001 3524578/969323029*599074578^(4/7) 3770005305032383 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^61 3770005305032383 a001 433494437/7881196*228826127^(1/10) 3770005305032383 a001 567451585/3940598*87403803^(1/19) 3770005305032383 a001 165580141/7881196*2537720636^(2/15) 3770005305032383 a001 165580141/7881196*45537549124^(2/17) 3770005305032383 a001 3524578/370248451*312119004989^(2/5) 3770005305032383 a001 165580141/7881196*14662949395604^(2/21) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(41) 3770005305032383 a001 165580141/7881196*(1/2+1/2*5^(1/2))^6 3770005305032383 a001 291800061102749/774004377960 3770005305032383 a001 165580141/7881196*10749957122^(1/8) 3770005305032383 a001 3524578/370248451*10749957122^(11/24) 3770005305032383 a001 165580141/7881196*4106118243^(3/23) 3770005305032383 a001 3524578/370248451*4106118243^(11/23) 3770005305032383 a001 165580141/7881196*1568397607^(3/22) 3770005305032383 a001 3524578/370248451*1568397607^(1/2) 3770005305032383 a001 165580141/7881196*599074578^(1/7) 3770005305032383 a001 3524578/370248451*599074578^(11/21) 3770005305032383 a001 165580141/7881196*228826127^(3/20) 3770005305032383 a001 3524578/1568397607*228826127^(5/8) 3770005305032383 a001 3524578/969323029*228826127^(3/5) 3770005305032383 a001 1762289/1268860318*228826127^(13/20) 3770005305032383 a001 3524578/6643838879*228826127^(7/10) 3770005305032383 a001 3524578/17393796001*228826127^(3/4) 3770005305032383 a001 433494437/7881196*87403803^(2/19) 3770005305032383 a001 1762289/22768774562*228826127^(4/5) 3770005305032383 a001 3524578/119218851371*228826127^(17/20) 3770005305032383 a001 1762289/96450076809*228826127^(7/8) 3770005305032383 a001 3524578/312119004989*228826127^(9/10) 3770005305032383 a001 3524578/370248451*228826127^(11/20) 3770005305032383 a001 1762289/408569081798*228826127^(19/20) 3770005305032383 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^59 3770005305032383 a001 165580141/7881196*87403803^(3/19) 3770005305032383 a001 1762289/70711162*2537720636^(4/9) 3770005305032383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(39) 3770005305032383 a001 31622993/3940598*(1/2+1/2*5^(1/2))^8 3770005305032383 a001 1762289/70711162*23725150497407^(5/16) 3770005305032383 a001 31622993/3940598*505019158607^(1/7) 3770005305032383 a001 222915410843908/591286729879 3770005305032383 a001 1762289/70711162*505019158607^(5/14) 3770005305032383 a001 31622993/3940598*73681302247^(2/13) 3770005305032383 a001 1762289/70711162*73681302247^(5/13) 3770005305032383 a001 567451585/3940598*33385282^(1/18) 3770005305032383 a001 1762289/70711162*28143753123^(2/5) 3770005305032383 a001 31622993/3940598*10749957122^(1/6) 3770005305032383 a001 1762289/70711162*10749957122^(5/12) 3770005305032383 a001 31622993/3940598*4106118243^(4/23) 3770005305032383 a001 1762289/70711162*4106118243^(10/23) 3770005305032383 a001 31622993/3940598*1568397607^(2/11) 3770005305032383 a001 1762289/70711162*1568397607^(5/11) 3770005305032383 a001 31622993/3940598*599074578^(4/21) 3770005305032383 a001 1762289/70711162*599074578^(10/21) 3770005305032383 a001 31622993/3940598*228826127^(1/5) 3770005305032383 a001 1762289/70711162*228826127^(1/2) 3770005305032383 a001 3524667/39604*33385282^(1/12) 3770005305032383 a001 31622993/3940598*87403803^(4/19) 3770005305032383 a001 3524578/370248451*87403803^(11/19) 3770005305032383 a001 3524578/969323029*87403803^(12/19) 3770005305032383 a001 1762289/1268860318*87403803^(13/19) 3770005305032383 a001 39088169/7881196*33385282^(1/4) 3770005305032383 a001 3524578/6643838879*87403803^(14/19) 3770005305032383 a001 63245986/54018521*4870847^(3/8) 3770005305032383 a001 433494437/7881196*33385282^(1/9) 3770005305032383 a001 3524578/17393796001*87403803^(15/19) 3770005305032383 a001 1762289/22768774562*87403803^(16/19) 3770005305032383 a001 3524578/119218851371*87403803^(17/19) 3770005305032383 a001 1762289/70711162*87403803^(10/19) 3770005305032383 a001 3524578/312119004989*87403803^(18/19) 3770005305032383 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^57 3770005305032384 a001 165580141/7881196*33385282^(1/6) 3770005305032384 a001 31622993/3940598*33385282^(2/9) 3770005305032384 a001 3524578/54018521*141422324^(6/13) 3770005305032384 a001 3524578/54018521*2537720636^(2/5) 3770005305032384 a001 24157817/7881196*2537720636^(2/9) 3770005305032384 a001 3524578/54018521*45537549124^(6/17) 3770005305032384 a001 24157817/7881196*312119004989^(2/11) 3770005305032384 a001 3524578/54018521*14662949395604^(2/7) 3770005305032384 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^18/Lucas(37) 3770005305032384 a001 24157817/7881196*(1/2+1/2*5^(1/2))^10 3770005305032384 a001 85146110326226/225851433717 3770005305032384 a001 3524578/54018521*192900153618^(1/3) 3770005305032384 a001 24157817/7881196*28143753123^(1/5) 3770005305032384 a001 24157817/7881196*10749957122^(5/24) 3770005305032384 a001 3524578/54018521*10749957122^(3/8) 3770005305032384 a001 24157817/7881196*4106118243^(5/23) 3770005305032384 a001 3524578/54018521*4106118243^(9/23) 3770005305032384 a001 24157817/7881196*1568397607^(5/22) 3770005305032384 a001 3524578/54018521*1568397607^(9/22) 3770005305032384 a001 24157817/7881196*599074578^(5/21) 3770005305032384 a001 3524578/54018521*599074578^(3/7) 3770005305032384 a001 24157817/7881196*228826127^(1/4) 3770005305032384 a001 3524578/54018521*228826127^(9/20) 3770005305032384 a001 567451585/3940598*12752043^(1/17) 3770005305032384 a001 24157817/7881196*87403803^(5/19) 3770005305032384 a001 3524578/54018521*87403803^(9/19) 3770005305032385 a001 3524578/228826127*33385282^(7/12) 3770005305032385 a001 7465176/16692641*4870847^(7/16) 3770005305032385 a001 1762289/70711162*33385282^(5/9) 3770005305032385 a001 3524578/370248451*33385282^(11/18) 3770005305032385 a001 24157817/7881196*33385282^(5/18) 3770005305032385 a001 3524578/969323029*33385282^(2/3) 3770005305032385 a001 1762289/1268860318*33385282^(13/18) 3770005305032385 a001 3524578/4106118243*33385282^(3/4) 3770005305032386 a001 3524578/6643838879*33385282^(7/9) 3770005305032386 a001 433494437/7881196*12752043^(2/17) 3770005305032386 a001 3524578/17393796001*33385282^(5/6) 3770005305032386 a001 3524578/54018521*33385282^(1/2) 3770005305032386 a001 1762289/22768774562*33385282^(8/9) 3770005305032386 a001 3524578/73681302247*33385282^(11/12) 3770005305032386 a001 3524578/119218851371*33385282^(17/18) 3770005305032386 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^55 3770005305032387 a001 165580141/7881196*12752043^(3/17) 3770005305032388 a001 5702887/87403803*4870847^(9/16) 3770005305032389 a001 31622993/3940598*12752043^(4/17) 3770005305032391 a001 39088169/87403803*4870847^(7/16) 3770005305032391 a001 24157817/7881196*12752043^(5/17) 3770005305032391 a001 1762289/16692641*12752043^(1/2) 3770005305032391 a001 14930208/103681*1860498^(1/15) 3770005305032392 a001 102334155/228826127*4870847^(7/16) 3770005305032392 a001 9227465/7881196*141422324^(4/13) 3770005305032392 a001 133957148/299537289*4870847^(7/16) 3770005305032392 a001 701408733/1568397607*4870847^(7/16) 3770005305032392 a001 1836311903/4106118243*4870847^(7/16) 3770005305032392 a001 2403763488/5374978561*4870847^(7/16) 3770005305032392 a001 12586269025/28143753123*4870847^(7/16) 3770005305032392 a001 32951280099/73681302247*4870847^(7/16) 3770005305032392 a001 43133785636/96450076809*4870847^(7/16) 3770005305032392 a001 225851433717/505019158607*4870847^(7/16) 3770005305032392 a001 591286729879/1322157322203*4870847^(7/16) 3770005305032392 a001 10610209857723/23725150497407*4870847^(7/16) 3770005305032392 a001 182717648081/408569081798*4870847^(7/16) 3770005305032392 a001 139583862445/312119004989*4870847^(7/16) 3770005305032392 a001 53316291173/119218851371*4870847^(7/16) 3770005305032392 a001 10182505537/22768774562*4870847^(7/16) 3770005305032392 a001 7778742049/17393796001*4870847^(7/16) 3770005305032392 a001 2971215073/6643838879*4870847^(7/16) 3770005305032392 a001 567451585/1268860318*4870847^(7/16) 3770005305032392 a001 433494437/969323029*4870847^(7/16) 3770005305032392 a001 9227465/7881196*2537720636^(4/15) 3770005305032392 a001 9227465/7881196*45537549124^(4/17) 3770005305032392 a001 9227465/7881196*817138163596^(4/19) 3770005305032392 a001 9227465/7881196*14662949395604^(4/21) 3770005305032392 a001 3524578/20633239*(1/2+1/2*5^(1/2))^16 3770005305032392 a001 9227465/7881196*(1/2+1/2*5^(1/2))^12 3770005305032392 a001 3524578/20633239*23725150497407^(1/4) 3770005305032392 a001 16261460067385/43133785636 3770005305032392 a001 9227465/7881196*73681302247^(3/13) 3770005305032392 a001 3524578/20633239*73681302247^(4/13) 3770005305032392 a001 9227465/7881196*10749957122^(1/4) 3770005305032392 a001 3524578/20633239*10749957122^(1/3) 3770005305032392 a001 9227465/7881196*4106118243^(6/23) 3770005305032392 a001 3524578/20633239*4106118243^(8/23) 3770005305032392 a001 9227465/7881196*1568397607^(3/11) 3770005305032392 a001 3524578/20633239*1568397607^(4/11) 3770005305032392 a001 9227465/7881196*599074578^(2/7) 3770005305032392 a001 3524578/20633239*599074578^(8/21) 3770005305032392 a001 9227465/7881196*228826127^(3/10) 3770005305032392 a001 165580141/370248451*4870847^(7/16) 3770005305032392 a001 3524578/20633239*228826127^(2/5) 3770005305032392 a001 9227465/7881196*87403803^(6/19) 3770005305032392 a001 24157817/20633239*4870847^(3/8) 3770005305032392 a001 3524578/20633239*87403803^(8/19) 3770005305032392 a001 31622993/70711162*4870847^(7/16) 3770005305032393 a001 567451585/3940598*4870847^(1/16) 3770005305032393 a001 9227465/7881196*33385282^(1/3) 3770005305032393 a001 3524578/20633239*33385282^(4/9) 3770005305032394 a001 24157817/54018521*4870847^(7/16) 3770005305032394 a001 12586269025/87403803*1860498^(1/15) 3770005305032395 a001 32951280099/228826127*1860498^(1/15) 3770005305032395 a001 43133785636/299537289*1860498^(1/15) 3770005305032395 a001 32264490531/224056801*1860498^(1/15) 3770005305032395 a001 591286729879/4106118243*1860498^(1/15) 3770005305032395 a001 774004377960/5374978561*1860498^(1/15) 3770005305032395 a001 4052739537881/28143753123*1860498^(1/15) 3770005305032395 a001 1515744265389/10525900321*1860498^(1/15) 3770005305032395 a001 3278735159921/22768774562*1860498^(1/15) 3770005305032395 a001 2504730781961/17393796001*1860498^(1/15) 3770005305032395 a001 956722026041/6643838879*1860498^(1/15) 3770005305032395 a001 182717648081/1268860318*1860498^(1/15) 3770005305032395 a001 139583862445/969323029*1860498^(1/15) 3770005305032395 a001 53316291173/370248451*1860498^(1/15) 3770005305032395 a001 10182505537/70711162*1860498^(1/15) 3770005305032396 a001 7778742049/54018521*1860498^(1/15) 3770005305032396 a001 3524578/54018521*12752043^(9/17) 3770005305032397 a001 1762289/70711162*12752043^(10/17) 3770005305032398 a001 4976784/29134601*4870847^(1/2) 3770005305032398 a001 3524578/370248451*12752043^(11/17) 3770005305032398 a001 5702887/228826127*4870847^(5/8) 3770005305032399 a001 3524578/969323029*12752043^(12/17) 3770005305032400 a001 9227465/7881196*12752043^(6/17) 3770005305032401 a001 1762289/1268860318*12752043^(13/17) 3770005305032401 a001 39088169/228826127*4870847^(1/2) 3770005305032402 a001 34111385/199691526*4870847^(1/2) 3770005305032402 a001 267914296/1568397607*4870847^(1/2) 3770005305032402 a001 233802911/1368706081*4870847^(1/2) 3770005305032402 a001 1836311903/10749957122*4870847^(1/2) 3770005305032402 a001 1602508992/9381251041*4870847^(1/2) 3770005305032402 a001 12586269025/73681302247*4870847^(1/2) 3770005305032402 a001 10983760033/64300051206*4870847^(1/2) 3770005305032402 a001 86267571272/505019158607*4870847^(1/2) 3770005305032402 a001 75283811239/440719107401*4870847^(1/2) 3770005305032402 a001 2504730781961/14662949395604*4870847^(1/2) 3770005305032402 a001 139583862445/817138163596*4870847^(1/2) 3770005305032402 a001 53316291173/312119004989*4870847^(1/2) 3770005305032402 a001 20365011074/119218851371*4870847^(1/2) 3770005305032402 a001 7778742049/45537549124*4870847^(1/2) 3770005305032402 a001 2971215073/17393796001*4870847^(1/2) 3770005305032402 a001 1134903170/6643838879*4870847^(1/2) 3770005305032402 a001 433494437/2537720636*4870847^(1/2) 3770005305032402 a001 165580141/969323029*4870847^(1/2) 3770005305032402 a001 63245986/370248451*4870847^(1/2) 3770005305032402 a001 3524578/6643838879*12752043^(14/17) 3770005305032403 a001 3524578/20633239*12752043^(8/17) 3770005305032403 a001 433494437/7881196*4870847^(1/8) 3770005305032403 a001 24157817/141422324*4870847^(1/2) 3770005305032403 a001 3524578/17393796001*12752043^(15/17) 3770005305032404 a001 2971215073/20633239*1860498^(1/15) 3770005305032405 a001 1762289/22768774562*12752043^(16/17) 3770005305032406 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^53 3770005305032408 a001 1134903170/12752043*1860498^(1/10) 3770005305032408 a001 14930352/228826127*4870847^(9/16) 3770005305032408 a001 5702887/599074578*4870847^(11/16) 3770005305032409 a001 9227465/20633239*4870847^(7/16) 3770005305032411 a001 39088169/599074578*4870847^(9/16) 3770005305032412 a001 14619165/224056801*4870847^(9/16) 3770005305032412 a001 267914296/4106118243*4870847^(9/16) 3770005305032412 a001 701408733/10749957122*4870847^(9/16) 3770005305032412 a001 1836311903/28143753123*4870847^(9/16) 3770005305032412 a001 686789568/10525900321*4870847^(9/16) 3770005305032412 a001 12586269025/192900153618*4870847^(9/16) 3770005305032412 a001 32951280099/505019158607*4870847^(9/16) 3770005305032412 a001 86267571272/1322157322203*4870847^(9/16) 3770005305032412 a001 32264490531/494493258286*4870847^(9/16) 3770005305032412 a001 591286729879/9062201101803*4870847^(9/16) 3770005305032412 a001 1548008755920/23725150497407*4870847^(9/16) 3770005305032412 a001 365435296162/5600748293801*4870847^(9/16) 3770005305032412 a001 139583862445/2139295485799*4870847^(9/16) 3770005305032412 a001 53316291173/817138163596*4870847^(9/16) 3770005305032412 a001 20365011074/312119004989*4870847^(9/16) 3770005305032412 a001 7778742049/119218851371*4870847^(9/16) 3770005305032412 a001 2971215073/45537549124*4870847^(9/16) 3770005305032412 a001 1134903170/17393796001*4870847^(9/16) 3770005305032412 a001 433494437/6643838879*4870847^(9/16) 3770005305032412 a001 165580141/2537720636*4870847^(9/16) 3770005305032412 a001 63245986/969323029*4870847^(9/16) 3770005305032412 a001 9227465/54018521*4870847^(1/2) 3770005305032413 a001 165580141/7881196*4870847^(3/16) 3770005305032413 a001 24157817/370248451*4870847^(9/16) 3770005305032418 a001 829464/33281921*4870847^(5/8) 3770005305032418 a001 5702887/1568397607*4870847^(3/4) 3770005305032421 a001 9227465/141422324*4870847^(9/16) 3770005305032421 a001 39088169/1568397607*4870847^(5/8) 3770005305032421 a001 34111385/1368706081*4870847^(5/8) 3770005305032422 a001 133957148/5374978561*4870847^(5/8) 3770005305032422 a001 233802911/9381251041*4870847^(5/8) 3770005305032422 a001 1836311903/73681302247*4870847^(5/8) 3770005305032422 a001 267084832/10716675201*4870847^(5/8) 3770005305032422 a001 12586269025/505019158607*4870847^(5/8) 3770005305032422 a001 10983760033/440719107401*4870847^(5/8) 3770005305032422 a001 43133785636/1730726404001*4870847^(5/8) 3770005305032422 a001 75283811239/3020733700601*4870847^(5/8) 3770005305032422 a001 182717648081/7331474697802*4870847^(5/8) 3770005305032422 a001 139583862445/5600748293801*4870847^(5/8) 3770005305032422 a001 53316291173/2139295485799*4870847^(5/8) 3770005305032422 a001 10182505537/408569081798*4870847^(5/8) 3770005305032422 a001 7778742049/312119004989*4870847^(5/8) 3770005305032422 a001 2971215073/119218851371*4870847^(5/8) 3770005305032422 a001 567451585/22768774562*4870847^(5/8) 3770005305032422 a001 433494437/17393796001*4870847^(5/8) 3770005305032422 a001 165580141/6643838879*4870847^(5/8) 3770005305032422 a001 31622993/1268860318*4870847^(5/8) 3770005305032423 a001 31622993/3940598*4870847^(1/4) 3770005305032423 a001 24157817/969323029*4870847^(5/8) 3770005305032428 a001 2971215073/33385282*1860498^(1/10) 3770005305032428 a001 14930352/1568397607*4870847^(11/16) 3770005305032428 a001 5702887/4106118243*4870847^(13/16) 3770005305032430 a001 9227465/370248451*4870847^(5/8) 3770005305032431 a001 7778742049/87403803*1860498^(1/10) 3770005305032431 a001 39088169/4106118243*4870847^(11/16) 3770005305032431 a001 20365011074/228826127*1860498^(1/10) 3770005305032431 a001 53316291173/599074578*1860498^(1/10) 3770005305032431 a001 139583862445/1568397607*1860498^(1/10) 3770005305032431 a001 365435296162/4106118243*1860498^(1/10) 3770005305032431 a001 956722026041/10749957122*1860498^(1/10) 3770005305032431 a001 2504730781961/28143753123*1860498^(1/10) 3770005305032431 a001 6557470319842/73681302247*1860498^(1/10) 3770005305032431 a001 10610209857723/119218851371*1860498^(1/10) 3770005305032431 a001 4052739537881/45537549124*1860498^(1/10) 3770005305032431 a001 1548008755920/17393796001*1860498^(1/10) 3770005305032431 a001 591286729879/6643838879*1860498^(1/10) 3770005305032431 a001 225851433717/2537720636*1860498^(1/10) 3770005305032431 a001 86267571272/969323029*1860498^(1/10) 3770005305032431 a001 32951280099/370248451*1860498^(1/10) 3770005305032431 a001 12586269025/141422324*1860498^(1/10) 3770005305032431 a001 102334155/10749957122*4870847^(11/16) 3770005305032431 a001 267914296/28143753123*4870847^(11/16) 3770005305032431 a001 701408733/73681302247*4870847^(11/16) 3770005305032431 a001 1836311903/192900153618*4870847^(11/16) 3770005305032431 a001 102287808/10745088481*4870847^(11/16) 3770005305032431 a001 12586269025/1322157322203*4870847^(11/16) 3770005305032431 a001 32951280099/3461452808002*4870847^(11/16) 3770005305032431 a001 86267571272/9062201101803*4870847^(11/16) 3770005305032431 a001 225851433717/23725150497407*4870847^(11/16) 3770005305032431 a001 139583862445/14662949395604*4870847^(11/16) 3770005305032431 a001 53316291173/5600748293801*4870847^(11/16) 3770005305032431 a001 20365011074/2139295485799*4870847^(11/16) 3770005305032431 a001 7778742049/817138163596*4870847^(11/16) 3770005305032431 a001 2971215073/312119004989*4870847^(11/16) 3770005305032431 a001 1134903170/119218851371*4870847^(11/16) 3770005305032431 a001 433494437/45537549124*4870847^(11/16) 3770005305032431 a001 165580141/17393796001*4870847^(11/16) 3770005305032432 a001 63245986/6643838879*4870847^(11/16) 3770005305032432 a001 4807526976/54018521*1860498^(1/10) 3770005305032433 a001 24157817/2537720636*4870847^(11/16) 3770005305032434 a001 24157817/7881196*4870847^(5/16) 3770005305032438 a001 4976784/1368706081*4870847^(3/4) 3770005305032438 a001 5702887/10749957122*4870847^(7/8) 3770005305032440 a001 1836311903/20633239*1860498^(1/10) 3770005305032440 a001 1762289/3940598*20633239^(2/5) 3770005305032440 a001 9227465/969323029*4870847^(11/16) 3770005305032441 a001 39088169/10749957122*4870847^(3/4) 3770005305032441 a001 831985/228811001*4870847^(3/4) 3770005305032441 a001 267914296/73681302247*4870847^(3/4) 3770005305032441 a001 233802911/64300051206*4870847^(3/4) 3770005305032441 a001 1836311903/505019158607*4870847^(3/4) 3770005305032441 a001 1602508992/440719107401*4870847^(3/4) 3770005305032441 a001 12586269025/3461452808002*4870847^(3/4) 3770005305032441 a001 10983760033/3020733700601*4870847^(3/4) 3770005305032441 a001 86267571272/23725150497407*4870847^(3/4) 3770005305032441 a001 53316291173/14662949395604*4870847^(3/4) 3770005305032441 a001 20365011074/5600748293801*4870847^(3/4) 3770005305032441 a001 7778742049/2139295485799*4870847^(3/4) 3770005305032441 a001 2971215073/817138163596*4870847^(3/4) 3770005305032441 a001 1134903170/312119004989*4870847^(3/4) 3770005305032441 a001 433494437/119218851371*4870847^(3/4) 3770005305032441 a001 165580141/45537549124*4870847^(3/4) 3770005305032442 a001 63245986/17393796001*4870847^(3/4) 3770005305032443 a001 24157817/6643838879*4870847^(3/4) 3770005305032444 a001 1762289/3940598*17393796001^(2/7) 3770005305032444 a001 1762289/3940598*14662949395604^(2/9) 3770005305032444 a001 1762289/3940598*(1/2+1/2*5^(1/2))^14 3770005305032444 a001 1762289/3940598*505019158607^(1/4) 3770005305032444 a001 12422650078084/32951280099 3770005305032444 a001 1762289/3940598*10749957122^(7/24) 3770005305032444 a001 1762289/3940598*4106118243^(7/23) 3770005305032444 a001 1762289/3940598*1568397607^(7/22) 3770005305032444 a001 1762289/3940598*599074578^(1/3) 3770005305032444 a001 1762289/3940598*228826127^(7/20) 3770005305032444 a001 1762289/3940598*87403803^(7/19) 3770005305032444 a001 233802911/4250681*1860498^(2/15) 3770005305032445 a001 1762289/3940598*33385282^(7/18) 3770005305032448 a001 7465176/5374978561*4870847^(13/16) 3770005305032448 a001 5702887/28143753123*4870847^(15/16) 3770005305032450 a001 9227465/2537720636*4870847^(3/4) 3770005305032451 a001 39088169/28143753123*4870847^(13/16) 3770005305032451 a001 14619165/10525900321*4870847^(13/16) 3770005305032451 a001 133957148/96450076809*4870847^(13/16) 3770005305032451 a001 701408733/505019158607*4870847^(13/16) 3770005305032451 a001 1836311903/1322157322203*4870847^(13/16) 3770005305032451 a001 14930208/10749853441*4870847^(13/16) 3770005305032451 a001 12586269025/9062201101803*4870847^(13/16) 3770005305032451 a001 32951280099/23725150497407*4870847^(13/16) 3770005305032451 a001 10182505537/7331474697802*4870847^(13/16) 3770005305032451 a001 7778742049/5600748293801*4870847^(13/16) 3770005305032451 a001 2971215073/2139295485799*4870847^(13/16) 3770005305032451 a001 567451585/408569081798*4870847^(13/16) 3770005305032451 a001 433494437/312119004989*4870847^(13/16) 3770005305032451 a001 165580141/119218851371*4870847^(13/16) 3770005305032451 a001 9227465/7881196*4870847^(3/8) 3770005305032452 a001 31622993/22768774562*4870847^(13/16) 3770005305032453 a001 24157817/17393796001*4870847^(13/16) 3770005305032453 a001 1762289/3940598*12752043^(7/17) 3770005305032453 a001 39088169/4870847*1860498^(4/15) 3770005305032456 a001 567451585/3940598*1860498^(1/15) 3770005305032458 a001 4976784/9381251041*4870847^(7/8) 3770005305032458 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^52 3770005305032460 a001 9227465/6643838879*4870847^(13/16) 3770005305032461 a001 39088169/73681302247*4870847^(7/8) 3770005305032461 a001 34111385/64300051206*4870847^(7/8) 3770005305032461 a001 267914296/505019158607*4870847^(7/8) 3770005305032461 a001 233802911/440719107401*4870847^(7/8) 3770005305032461 a001 1836311903/3461452808002*4870847^(7/8) 3770005305032461 a001 1602508992/3020733700601*4870847^(7/8) 3770005305032461 a001 12586269025/23725150497407*4870847^(7/8) 3770005305032461 a001 7778742049/14662949395604*4870847^(7/8) 3770005305032461 a001 2971215073/5600748293801*4870847^(7/8) 3770005305032461 a001 1134903170/2139295485799*4870847^(7/8) 3770005305032461 a001 433494437/817138163596*4870847^(7/8) 3770005305032461 a001 165580141/312119004989*4870847^(7/8) 3770005305032461 a001 63245986/119218851371*4870847^(7/8) 3770005305032463 a001 24157817/45537549124*4870847^(7/8) 3770005305032464 a001 1836311903/33385282*1860498^(2/15) 3770005305032467 a001 1602508992/29134601*1860498^(2/15) 3770005305032467 a001 12586269025/228826127*1860498^(2/15) 3770005305032467 a001 10983760033/199691526*1860498^(2/15) 3770005305032467 a001 86267571272/1568397607*1860498^(2/15) 3770005305032467 a001 75283811239/1368706081*1860498^(2/15) 3770005305032467 a001 591286729879/10749957122*1860498^(2/15) 3770005305032467 a001 12585437040/228811001*1860498^(2/15) 3770005305032467 a001 4052739537881/73681302247*1860498^(2/15) 3770005305032467 a001 3536736619241/64300051206*1860498^(2/15) 3770005305032467 a001 6557470319842/119218851371*1860498^(2/15) 3770005305032467 a001 2504730781961/45537549124*1860498^(2/15) 3770005305032467 a001 956722026041/17393796001*1860498^(2/15) 3770005305032467 a001 365435296162/6643838879*1860498^(2/15) 3770005305032467 a001 139583862445/2537720636*1860498^(2/15) 3770005305032467 a001 53316291173/969323029*1860498^(2/15) 3770005305032467 a001 20365011074/370248451*1860498^(2/15) 3770005305032468 a001 7778742049/141422324*1860498^(2/15) 3770005305032468 a001 14930352/73681302247*4870847^(15/16) 3770005305032469 a001 2971215073/54018521*1860498^(2/15) 3770005305032470 a001 9227465/17393796001*4870847^(7/8) 3770005305032471 a001 39088169/192900153618*4870847^(15/16) 3770005305032471 a001 102334155/505019158607*4870847^(15/16) 3770005305032471 a001 267914296/1322157322203*4870847^(15/16) 3770005305032471 a001 701408733/3461452808002*4870847^(15/16) 3770005305032471 a001 1836311903/9062201101803*4870847^(15/16) 3770005305032471 a001 4807526976/23725150497407*4870847^(15/16) 3770005305032471 a001 2971215073/14662949395604*4870847^(15/16) 3770005305032471 a001 1134903170/5600748293801*4870847^(15/16) 3770005305032471 a001 433494437/2139295485799*4870847^(15/16) 3770005305032471 a001 165580141/817138163596*4870847^(15/16) 3770005305032471 a001 3524578/20633239*4870847^(1/2) 3770005305032471 a001 63245986/312119004989*4870847^(15/16) 3770005305032472 a001 24157817/119218851371*4870847^(15/16) 3770005305032474 a001 3524578/54018521*4870847^(9/16) 3770005305032476 a001 1134903170/20633239*1860498^(2/15) 3770005305032478 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^54 3770005305032480 a001 9227465/45537549124*4870847^(15/16) 3770005305032481 a001 433494437/12752043*1860498^(1/6) 3770005305032481 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^56 3770005305032481 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^58 3770005305032481 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^60 3770005305032481 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^62 3770005305032481 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^64 3770005305032481 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^66 3770005305032481 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^68 3770005305032481 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^70 3770005305032481 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^72 3770005305032481 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^74 3770005305032481 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^76 3770005305032481 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^78 3770005305032481 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^80 3770005305032481 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^82 3770005305032481 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^84 3770005305032481 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^86 3770005305032481 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^88 3770005305032481 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^90 3770005305032481 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^92 3770005305032481 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^94 3770005305032481 a004 Fibonacci(78)*Lucas(32)/(1/2+sqrt(5)/2)^96 3770005305032481 a004 Fibonacci(80)*Lucas(32)/(1/2+sqrt(5)/2)^98 3770005305032481 a004 Fibonacci(82)*Lucas(32)/(1/2+sqrt(5)/2)^100 3770005305032481 a004 Fibonacci(81)*Lucas(32)/(1/2+sqrt(5)/2)^99 3770005305032481 a004 Fibonacci(79)*Lucas(32)/(1/2+sqrt(5)/2)^97 3770005305032481 a004 Fibonacci(77)*Lucas(32)/(1/2+sqrt(5)/2)^95 3770005305032481 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^93 3770005305032481 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^91 3770005305032481 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^89 3770005305032481 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^87 3770005305032481 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^85 3770005305032481 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^83 3770005305032481 a001 2/2178309*(1/2+1/2*5^(1/2))^46 3770005305032481 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^81 3770005305032481 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^79 3770005305032481 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^77 3770005305032481 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^75 3770005305032481 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^73 3770005305032481 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^71 3770005305032481 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^69 3770005305032481 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^67 3770005305032481 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^65 3770005305032481 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^63 3770005305032481 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^61 3770005305032481 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^59 3770005305032481 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^57 3770005305032482 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^55 3770005305032482 a001 1762289/70711162*4870847^(5/8) 3770005305032490 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^53 3770005305032491 a001 24157817/4870847*1860498^(3/10) 3770005305032492 a001 3524667/39604*1860498^(1/10) 3770005305032492 a001 3524578/370248451*4870847^(11/16) 3770005305032500 a001 567451585/16692641*1860498^(1/6) 3770005305032502 a001 3524578/969323029*4870847^(3/4) 3770005305032503 a001 2971215073/87403803*1860498^(1/6) 3770005305032504 a001 7778742049/228826127*1860498^(1/6) 3770005305032504 a001 10182505537/299537289*1860498^(1/6) 3770005305032504 a001 53316291173/1568397607*1860498^(1/6) 3770005305032504 a001 139583862445/4106118243*1860498^(1/6) 3770005305032504 a001 182717648081/5374978561*1860498^(1/6) 3770005305032504 a001 956722026041/28143753123*1860498^(1/6) 3770005305032504 a001 2504730781961/73681302247*1860498^(1/6) 3770005305032504 a001 3278735159921/96450076809*1860498^(1/6) 3770005305032504 a001 10610209857723/312119004989*1860498^(1/6) 3770005305032504 a001 4052739537881/119218851371*1860498^(1/6) 3770005305032504 a001 387002188980/11384387281*1860498^(1/6) 3770005305032504 a001 591286729879/17393796001*1860498^(1/6) 3770005305032504 a001 225851433717/6643838879*1860498^(1/6) 3770005305032504 a001 1135099622/33391061*1860498^(1/6) 3770005305032504 a001 32951280099/969323029*1860498^(1/6) 3770005305032504 a001 12586269025/370248451*1860498^(1/6) 3770005305032504 a001 1201881744/35355581*1860498^(1/6) 3770005305032505 a001 1836311903/54018521*1860498^(1/6) 3770005305032512 a001 1762289/1268860318*4870847^(13/16) 3770005305032513 a001 701408733/20633239*1860498^(1/6) 3770005305032513 a001 2178309/4870847*1860498^(7/15) 3770005305032513 a001 1762289/3940598*4870847^(7/16) 3770005305032517 a001 267914296/12752043*1860498^(1/5) 3770005305032522 a001 3524578/6643838879*4870847^(7/8) 3770005305032523 a001 14930352/4870847*1860498^(1/3) 3770005305032528 a001 433494437/7881196*1860498^(2/15) 3770005305032532 a001 3524578/17393796001*4870847^(15/16) 3770005305032537 a001 701408733/33385282*1860498^(1/5) 3770005305032540 a001 1836311903/87403803*1860498^(1/5) 3770005305032540 a001 102287808/4868641*1860498^(1/5) 3770005305032540 a001 12586269025/599074578*1860498^(1/5) 3770005305032540 a001 32951280099/1568397607*1860498^(1/5) 3770005305032540 a001 86267571272/4106118243*1860498^(1/5) 3770005305032540 a001 225851433717/10749957122*1860498^(1/5) 3770005305032540 a001 591286729879/28143753123*1860498^(1/5) 3770005305032540 a001 1548008755920/73681302247*1860498^(1/5) 3770005305032540 a001 4052739537881/192900153618*1860498^(1/5) 3770005305032540 a001 225749145909/10745088481*1860498^(1/5) 3770005305032540 a001 6557470319842/312119004989*1860498^(1/5) 3770005305032540 a001 2504730781961/119218851371*1860498^(1/5) 3770005305032540 a001 956722026041/45537549124*1860498^(1/5) 3770005305032540 a001 365435296162/17393796001*1860498^(1/5) 3770005305032540 a001 139583862445/6643838879*1860498^(1/5) 3770005305032540 a001 53316291173/2537720636*1860498^(1/5) 3770005305032540 a001 20365011074/969323029*1860498^(1/5) 3770005305032540 a001 7778742049/370248451*1860498^(1/5) 3770005305032540 a001 2971215073/141422324*1860498^(1/5) 3770005305032541 a001 1134903170/54018521*1860498^(1/5) 3770005305032542 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^51 3770005305032549 a001 433494437/20633239*1860498^(1/5) 3770005305032552 a001 1346269/4870847*7881196^(5/11) 3770005305032564 a001 66978574/1970299*1860498^(1/6) 3770005305032576 a001 1346269/4870847*20633239^(3/7) 3770005305032576 a001 5702887/4870847*1860498^(2/5) 3770005305032579 a001 1346269/4870847*141422324^(5/13) 3770005305032579 a001 2178309/3010349*141422324^(1/3) 3770005305032579 a001 1346269/4870847*2537720636^(1/3) 3770005305032579 a001 2932589879121/7778742049 3770005305032579 a001 1346269/4870847*45537549124^(5/17) 3770005305032579 a001 1346269/4870847*312119004989^(3/11) 3770005305032579 a001 1346269/4870847*14662949395604^(5/21) 3770005305032579 a001 1346269/4870847*(1/2+1/2*5^(1/2))^15 3770005305032579 a001 2178309/3010349*(1/2+1/2*5^(1/2))^13 3770005305032579 a001 1346269/4870847*192900153618^(5/18) 3770005305032579 a001 2178309/3010349*73681302247^(1/4) 3770005305032579 a001 1346269/4870847*28143753123^(3/10) 3770005305032579 a001 1346269/4870847*10749957122^(5/16) 3770005305032579 a001 1346269/4870847*599074578^(5/14) 3770005305032579 a001 1346269/4870847*228826127^(3/8) 3770005305032581 a001 1346269/4870847*33385282^(5/12) 3770005305032589 a001 34111385/4250681*1860498^(4/15) 3770005305032601 a001 165580141/7881196*1860498^(1/5) 3770005305032609 a001 133957148/16692641*1860498^(4/15) 3770005305032612 a001 233802911/29134601*1860498^(4/15) 3770005305032613 a001 1836311903/228826127*1860498^(4/15) 3770005305032613 a001 267084832/33281921*1860498^(4/15) 3770005305032613 a001 12586269025/1568397607*1860498^(4/15) 3770005305032613 a001 10983760033/1368706081*1860498^(4/15) 3770005305032613 a001 43133785636/5374978561*1860498^(4/15) 3770005305032613 a001 75283811239/9381251041*1860498^(4/15) 3770005305032613 a001 591286729879/73681302247*1860498^(4/15) 3770005305032613 a001 86000486440/10716675201*1860498^(4/15) 3770005305032613 a001 4052739537881/505019158607*1860498^(4/15) 3770005305032613 a001 3278735159921/408569081798*1860498^(4/15) 3770005305032613 a001 2504730781961/312119004989*1860498^(4/15) 3770005305032613 a001 956722026041/119218851371*1860498^(4/15) 3770005305032613 a001 182717648081/22768774562*1860498^(4/15) 3770005305032613 a001 139583862445/17393796001*1860498^(4/15) 3770005305032613 a001 53316291173/6643838879*1860498^(4/15) 3770005305032613 a001 10182505537/1268860318*1860498^(4/15) 3770005305032613 a001 7778742049/969323029*1860498^(4/15) 3770005305032613 a001 2971215073/370248451*1860498^(4/15) 3770005305032613 a001 567451585/70711162*1860498^(4/15) 3770005305032614 a001 433494437/54018521*1860498^(4/15) 3770005305032622 a001 165580141/20633239*1860498^(4/15) 3770005305032626 a001 63245986/12752043*1860498^(3/10) 3770005305032646 a001 165580141/33385282*1860498^(3/10) 3770005305032648 a001 433494437/87403803*1860498^(3/10) 3770005305032649 a001 1134903170/228826127*1860498^(3/10) 3770005305032649 a001 2971215073/599074578*1860498^(3/10) 3770005305032649 a001 7778742049/1568397607*1860498^(3/10) 3770005305032649 a001 20365011074/4106118243*1860498^(3/10) 3770005305032649 a001 53316291173/10749957122*1860498^(3/10) 3770005305032649 a001 139583862445/28143753123*1860498^(3/10) 3770005305032649 a001 365435296162/73681302247*1860498^(3/10) 3770005305032649 a001 956722026041/192900153618*1860498^(3/10) 3770005305032649 a001 2504730781961/505019158607*1860498^(3/10) 3770005305032649 a001 10610209857723/2139295485799*1860498^(3/10) 3770005305032649 a001 4052739537881/817138163596*1860498^(3/10) 3770005305032649 a001 140728068720/28374454999*1860498^(3/10) 3770005305032649 a001 591286729879/119218851371*1860498^(3/10) 3770005305032649 a001 225851433717/45537549124*1860498^(3/10) 3770005305032649 a001 86267571272/17393796001*1860498^(3/10) 3770005305032649 a001 32951280099/6643838879*1860498^(3/10) 3770005305032649 a001 1144206275/230701876*1860498^(3/10) 3770005305032649 a001 4807526976/969323029*1860498^(3/10) 3770005305032649 a001 1836311903/370248451*1860498^(3/10) 3770005305032649 a001 701408733/141422324*1860498^(3/10) 3770005305032650 a001 267914296/54018521*1860498^(3/10) 3770005305032658 a001 9303105/1875749*1860498^(3/10) 3770005305032662 a001 39088169/12752043*1860498^(1/3) 3770005305032674 a001 31622993/3940598*1860498^(4/15) 3770005305032678 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^50 3770005305032682 a001 14619165/4769326*1860498^(1/3) 3770005305032683 a001 1346269/6643838879*7881196^(10/11) 3770005305032685 a001 267914296/87403803*1860498^(1/3) 3770005305032685 a001 701408733/228826127*1860498^(1/3) 3770005305032685 a001 1836311903/599074578*1860498^(1/3) 3770005305032685 a001 686789568/224056801*1860498^(1/3) 3770005305032685 a001 12586269025/4106118243*1860498^(1/3) 3770005305032685 a001 32951280099/10749957122*1860498^(1/3) 3770005305032685 a001 86267571272/28143753123*1860498^(1/3) 3770005305032685 a001 32264490531/10525900321*1860498^(1/3) 3770005305032685 a001 591286729879/192900153618*1860498^(1/3) 3770005305032685 a001 1548008755920/505019158607*1860498^(1/3) 3770005305032685 a001 1515744265389/494493258286*1860498^(1/3) 3770005305032685 a001 2504730781961/817138163596*1860498^(1/3) 3770005305032685 a001 956722026041/312119004989*1860498^(1/3) 3770005305032685 a001 365435296162/119218851371*1860498^(1/3) 3770005305032685 a001 139583862445/45537549124*1860498^(1/3) 3770005305032685 a001 53316291173/17393796001*1860498^(1/3) 3770005305032685 a001 20365011074/6643838879*1860498^(1/3) 3770005305032685 a001 7778742049/2537720636*1860498^(1/3) 3770005305032685 a001 2971215073/969323029*1860498^(1/3) 3770005305032685 a001 1134903170/370248451*1860498^(1/3) 3770005305032685 a001 433494437/141422324*1860498^(1/3) 3770005305032687 a001 165580141/54018521*1860498^(1/3) 3770005305032689 a001 1346269/1568397607*7881196^(9/11) 3770005305032694 a001 1346269/370248451*7881196^(8/11) 3770005305032694 a001 63245986/20633239*1860498^(1/3) 3770005305032695 a001 5702887/3010349*7881196^(1/3) 3770005305032697 a001 701408733/4870847*710647^(1/14) 3770005305032698 a001 1346269/141422324*7881196^(2/3) 3770005305032699 a001 1346269/87403803*7881196^(7/11) 3770005305032709 a001 39088169/7881196*1860498^(3/10) 3770005305032714 a001 1346269/20633239*7881196^(6/11) 3770005305032715 a001 4807526599/12752042 3770005305032715 a001 1346269/12752043*45537549124^(1/3) 3770005305032715 a001 5702887/3010349*312119004989^(1/5) 3770005305032715 a001 1346269/12752043*(1/2+1/2*5^(1/2))^17 3770005305032715 a001 5702887/3010349*(1/2+1/2*5^(1/2))^11 3770005305032715 a001 5702887/3010349*1568397607^(1/4) 3770005305032718 a001 14930352/3010349*7881196^(3/11) 3770005305032721 a001 726103/4250681*1860498^(8/15) 3770005305032727 a001 1346269/12752043*12752043^(1/2) 3770005305032727 a001 63245986/3010349*7881196^(2/11) 3770005305032728 a001 39088169/710647*271443^(2/13) 3770005305032729 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^52 3770005305032731 a001 1346269/6643838879*20633239^(6/7) 3770005305032731 a001 1346269/2537720636*20633239^(4/5) 3770005305032731 a001 4976784/4250681*1860498^(2/5) 3770005305032732 a001 1346269/599074578*20633239^(5/7) 3770005305032732 a001 1346269/87403803*20633239^(3/5) 3770005305032733 a001 267914296/3010349*7881196^(1/11) 3770005305032734 a001 1346269/54018521*20633239^(4/7) 3770005305032735 a001 14930352/3010349*141422324^(3/13) 3770005305032735 a001 14930352/3010349*2537720636^(1/5) 3770005305032735 a001 14930352/3010349*45537549124^(3/17) 3770005305032735 a001 20100270056688/53316291173 3770005305032735 a001 1346269/33385282*817138163596^(1/3) 3770005305032735 a001 1346269/33385282*(1/2+1/2*5^(1/2))^19 3770005305032735 a001 14930352/3010349*(1/2+1/2*5^(1/2))^9 3770005305032735 a001 14930352/3010349*192900153618^(1/6) 3770005305032735 a001 14930352/3010349*10749957122^(3/16) 3770005305032735 a001 14930352/3010349*599074578^(3/14) 3770005305032735 a001 1346269/33385282*87403803^(1/2) 3770005305032736 a001 14930352/3010349*33385282^(1/4) 3770005305032736 a001 39088169/3010349*20633239^(1/5) 3770005305032737 a001 102334155/3010349*20633239^(1/7) 3770005305032737 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^54 3770005305032738 a001 1346269/87403803*141422324^(7/13) 3770005305032738 a001 1346269/87403803*2537720636^(7/15) 3770005305032738 a001 1346269/87403803*17393796001^(3/7) 3770005305032738 a001 39088169/3010349*17393796001^(1/7) 3770005305032738 a001 1346269/87403803*45537549124^(7/17) 3770005305032738 a001 52623190191461/139583862445 3770005305032738 a001 1346269/87403803*14662949395604^(1/3) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(38) 3770005305032738 a001 39088169/3010349*14662949395604^(1/9) 3770005305032738 a001 39088169/3010349*(1/2+1/2*5^(1/2))^7 3770005305032738 a001 1346269/87403803*192900153618^(7/18) 3770005305032738 a001 1346269/87403803*10749957122^(7/16) 3770005305032738 a001 39088169/3010349*599074578^(1/6) 3770005305032738 a001 1346269/87403803*599074578^(1/2) 3770005305032738 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^56 3770005305032738 a001 1346269/119218851371*141422324^(12/13) 3770005305032738 a001 1346269/28143753123*141422324^(11/13) 3770005305032738 a001 1346269/6643838879*141422324^(10/13) 3770005305032738 a001 1346269/1568397607*141422324^(9/13) 3770005305032738 a001 1346269/969323029*141422324^(2/3) 3770005305032738 a001 1346269/370248451*141422324^(8/13) 3770005305032738 a001 102334155/3010349*2537720636^(1/9) 3770005305032738 a001 102334155/3010349*312119004989^(1/11) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(40) 3770005305032738 a001 102334155/3010349*(1/2+1/2*5^(1/2))^5 3770005305032738 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^5/Lucas(31) 3770005305032738 a001 102334155/3010349*28143753123^(1/10) 3770005305032738 a001 1346269/228826127*4106118243^(1/2) 3770005305032738 a001 102334155/3010349*228826127^(1/8) 3770005305032738 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^58 3770005305032738 a001 267914296/3010349*141422324^(1/13) 3770005305032738 a001 1346269/599074578*2537720636^(5/9) 3770005305032738 a001 267914296/3010349*2537720636^(1/15) 3770005305032738 a001 267914296/3010349*45537549124^(1/17) 3770005305032738 a001 1346269/599074578*312119004989^(5/11) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(42) 3770005305032738 a001 267914296/3010349*(1/2+1/2*5^(1/2))^3 3770005305032738 a001 1346269/599074578*3461452808002^(5/12) 3770005305032738 a001 267914296/3010349*10749957122^(1/16) 3770005305032738 a001 1346269/599074578*28143753123^(1/2) 3770005305032738 a001 267914296/3010349*599074578^(1/14) 3770005305032738 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^60 3770005305032738 a001 1346269/1568397607*2537720636^(3/5) 3770005305032738 a001 1346269/1568397607*45537549124^(9/17) 3770005305032738 a001 1346269/1568397607*817138163596^(9/19) 3770005305032738 a001 1346269/1568397607*14662949395604^(3/7) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(44) 3770005305032738 a001 701408733/6020698+701408733/6020698*5^(1/2) 3770005305032738 a001 1346269/1568397607*192900153618^(1/2) 3770005305032738 a001 1346269/1568397607*10749957122^(9/16) 3770005305032738 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^62 3770005305032738 a001 1346269/2139295485799*2537720636^(14/15) 3770005305032738 a001 1346269/817138163596*2537720636^(8/9) 3770005305032738 a001 1346269/505019158607*2537720636^(13/15) 3770005305032738 a001 1346269/119218851371*2537720636^(4/5) 3770005305032738 a001 1346269/73681302247*2537720636^(7/9) 3770005305032738 a001 1346269/28143753123*2537720636^(11/15) 3770005305032738 a001 1346269/6643838879*2537720636^(2/3) 3770005305032738 a001 2472169789339907/6557470319842 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(46) 3770005305032738 a004 Fibonacci(46)/Lucas(31)/(1/2+sqrt(5)/2) 3770005305032738 a001 1346269/4106118243*1322157322203^(1/2) 3770005305032738 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^64 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(48) 3770005305032738 a001 1346269/10749957122*9062201101803^(1/2) 3770005305032738 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2)^3 3770005305032738 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^66 3770005305032738 a001 1346269/2139295485799*17393796001^(6/7) 3770005305032738 a001 1346269/73681302247*17393796001^(5/7) 3770005305032738 a001 1346269/28143753123*45537549124^(11/17) 3770005305032738 a001 1346269/28143753123*312119004989^(3/5) 3770005305032738 a001 1346269/28143753123*817138163596^(11/19) 3770005305032738 a001 1346269/28143753123*14662949395604^(11/21) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(50) 3770005305032738 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^5 3770005305032738 a001 1346269/28143753123*192900153618^(11/18) 3770005305032738 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^68 3770005305032738 a001 1346269/9062201101803*45537549124^(15/17) 3770005305032738 a001 1346269/2139295485799*45537549124^(14/17) 3770005305032738 a001 1346269/505019158607*45537549124^(13/17) 3770005305032738 a001 1346269/119218851371*45537549124^(12/17) 3770005305032738 a001 1346269/73681302247*312119004989^(7/11) 3770005305032738 a001 1346269/73681302247*14662949395604^(5/9) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(52) 3770005305032738 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^7 3770005305032738 a001 1346269/73681302247*505019158607^(5/8) 3770005305032738 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^70 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(54) 3770005305032738 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^9 3770005305032738 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^72 3770005305032738 a001 1346269/5600748293801*312119004989^(4/5) 3770005305032738 a001 1346269/817138163596*312119004989^(8/11) 3770005305032738 a001 1346269/505019158607*14662949395604^(13/21) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(56) 3770005305032738 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^11 3770005305032738 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^74 3770005305032738 a001 1346269/2139295485799*817138163596^(14/19) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(58) 3770005305032738 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^13 3770005305032738 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^76 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(60) 3770005305032738 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^15 3770005305032738 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^78 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(62) 3770005305032738 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^80 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(64) 3770005305032738 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^82 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(66) 3770005305032738 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^84 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(68) 3770005305032738 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^86 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(70) 3770005305032738 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^88 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(72) 3770005305032738 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^90 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(74) 3770005305032738 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^92 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(76) 3770005305032738 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^94 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(78) 3770005305032738 a004 Fibonacci(31)*Lucas(79)/(1/2+sqrt(5)/2)^96 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(80) 3770005305032738 a004 Fibonacci(31)*Lucas(81)/(1/2+sqrt(5)/2)^98 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(82) 3770005305032738 a004 Fibonacci(31)*Lucas(83)/(1/2+sqrt(5)/2)^100 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(84) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(86) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(88) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(90) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(92) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(94) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^79/Lucas(96) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^81/Lucas(98) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^82/Lucas(99) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^83/Lucas(100) 3770005305032738 a004 Fibonacci(31)*Lucas(1)/(1/2+sqrt(5)/2)^17 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^80/Lucas(97) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^78/Lucas(95) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(93) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(91) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(89) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(87) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(85) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(83) 3770005305032738 a004 Fibonacci(31)*Lucas(82)/(1/2+sqrt(5)/2)^99 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(81) 3770005305032738 a004 Fibonacci(31)*Lucas(80)/(1/2+sqrt(5)/2)^97 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(79) 3770005305032738 a004 Fibonacci(31)*Lucas(78)/(1/2+sqrt(5)/2)^95 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(77) 3770005305032738 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^93 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(75) 3770005305032738 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^91 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(73) 3770005305032738 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^89 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(71) 3770005305032738 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^87 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(69) 3770005305032738 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^85 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(67) 3770005305032738 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^83 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(65) 3770005305032738 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^81 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(63) 3770005305032738 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^19 3770005305032738 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^21 3770005305032738 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^23 3770005305032738 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^25 3770005305032738 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^27 3770005305032738 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^29 3770005305032738 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^31 3770005305032738 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^33 3770005305032738 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^35 3770005305032738 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^37 3770005305032738 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^39 3770005305032738 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^41 3770005305032738 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^43 3770005305032738 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^45 3770005305032738 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^47 3770005305032738 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^49 3770005305032738 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^51 3770005305032738 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^53 3770005305032738 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^55 3770005305032738 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^79 3770005305032738 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^54 3770005305032738 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^52 3770005305032738 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^50 3770005305032738 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^48 3770005305032738 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^46 3770005305032738 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^44 3770005305032738 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^42 3770005305032738 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^40 3770005305032738 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^38 3770005305032738 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^36 3770005305032738 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^34 3770005305032738 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^32 3770005305032738 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^30 3770005305032738 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^28 3770005305032738 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^26 3770005305032738 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^24 3770005305032738 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^22 3770005305032738 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^20 3770005305032738 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^18 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(61) 3770005305032738 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^16 3770005305032738 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^77 3770005305032738 a001 1346269/2139295485799*14662949395604^(2/3) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(59) 3770005305032738 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^14 3770005305032738 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^75 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(57) 3770005305032738 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^12 3770005305032738 a001 1346269/2139295485799*505019158607^(3/4) 3770005305032738 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^73 3770005305032738 a001 1346269/312119004989*817138163596^(2/3) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(55) 3770005305032738 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^10 3770005305032738 a001 1346269/505019158607*192900153618^(13/18) 3770005305032738 a001 1346269/2139295485799*192900153618^(7/9) 3770005305032738 a001 1346269/9062201101803*192900153618^(5/6) 3770005305032738 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^71 3770005305032738 a001 1346269/119218851371*14662949395604^(4/7) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(53) 3770005305032738 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^8 3770005305032738 a001 1346269/119218851371*505019158607^(9/14) 3770005305032738 a001 1346269/119218851371*192900153618^(2/3) 3770005305032738 a001 1346269/505019158607*73681302247^(3/4) 3770005305032738 a001 1346269/817138163596*73681302247^(10/13) 3770005305032738 a001 1346269/5600748293801*73681302247^(11/13) 3770005305032738 a001 1346269/45537549124*45537549124^(2/3) 3770005305032738 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^69 3770005305032738 a001 1346269/119218851371*73681302247^(9/13) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(51) 3770005305032738 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^6 3770005305032738 a001 1346269/73681302247*28143753123^(7/10) 3770005305032738 a001 1346269/817138163596*28143753123^(4/5) 3770005305032738 a001 1346269/9062201101803*28143753123^(9/10) 3770005305032738 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^67 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(49) 3770005305032738 a001 1346269/17393796001*23725150497407^(1/2) 3770005305032738 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^4 3770005305032738 a001 1346269/17393796001*505019158607^(4/7) 3770005305032738 a001 1346269/17393796001*73681302247^(8/13) 3770005305032738 a001 1346269/28143753123*10749957122^(11/16) 3770005305032738 a001 1346269/119218851371*10749957122^(3/4) 3770005305032738 a001 1346269/45537549124*10749957122^(17/24) 3770005305032738 a001 1346269/312119004989*10749957122^(19/24) 3770005305032738 a001 1346269/505019158607*10749957122^(13/16) 3770005305032738 a001 1346269/817138163596*10749957122^(5/6) 3770005305032738 a001 1346269/2139295485799*10749957122^(7/8) 3770005305032738 a001 1346269/5600748293801*10749957122^(11/12) 3770005305032738 a001 1346269/9062201101803*10749957122^(15/16) 3770005305032738 a001 1346269/14662949395604*10749957122^(23/24) 3770005305032738 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^65 3770005305032738 a001 1346269/17393796001*10749957122^(2/3) 3770005305032738 a001 1346269/6643838879*45537549124^(10/17) 3770005305032738 a001 1346269/6643838879*312119004989^(6/11) 3770005305032738 a001 1346269/6643838879*14662949395604^(10/21) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(47) 3770005305032738 a001 4000054745112637/10610209857723 3770005305032738 a004 Fibonacci(47)/Lucas(31)/(1/2+sqrt(5)/2)^2 3770005305032738 a001 1346269/6643838879*192900153618^(5/9) 3770005305032738 a001 1346269/6643838879*28143753123^(3/5) 3770005305032738 a001 1346269/6643838879*10749957122^(5/8) 3770005305032738 a001 1346269/45537549124*4106118243^(17/23) 3770005305032738 a001 1346269/17393796001*4106118243^(16/23) 3770005305032738 a001 1346269/119218851371*4106118243^(18/23) 3770005305032738 a001 1346269/312119004989*4106118243^(19/23) 3770005305032738 a001 1346269/817138163596*4106118243^(20/23) 3770005305032738 a001 1346269/2139295485799*4106118243^(21/23) 3770005305032738 a001 1346269/5600748293801*4106118243^(22/23) 3770005305032738 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^63 3770005305032738 a001 1346269/6643838879*4106118243^(15/23) 3770005305032738 a001 1346269/2537720636*17393796001^(4/7) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(45) 3770005305032738 a001 1134903170/3010349 3770005305032738 a001 1346269/2537720636*505019158607^(1/2) 3770005305032738 a001 1346269/2537720636*73681302247^(7/13) 3770005305032738 a001 1346269/2537720636*10749957122^(7/12) 3770005305032738 a001 1346269/2537720636*4106118243^(14/23) 3770005305032738 a001 1346269/17393796001*1568397607^(8/11) 3770005305032738 a001 1346269/6643838879*1568397607^(15/22) 3770005305032738 a001 1346269/28143753123*1568397607^(3/4) 3770005305032738 a001 1346269/45537549124*1568397607^(17/22) 3770005305032738 a001 1346269/119218851371*1568397607^(9/11) 3770005305032738 a001 1346269/312119004989*1568397607^(19/22) 3770005305032738 a001 1346269/817138163596*1568397607^(10/11) 3770005305032738 a001 1346269/2139295485799*1568397607^(21/22) 3770005305032738 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^61 3770005305032738 a001 1346269/2537720636*1568397607^(7/11) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(43) 3770005305032738 a001 433494437/3010349*(1/2+1/2*5^(1/2))^2 3770005305032738 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^2/Lucas(31) 3770005305032738 a001 583600122205553/1548008755920 3770005305032738 a001 1346269/969323029*73681302247^(1/2) 3770005305032738 a001 433494437/3010349*10749957122^(1/24) 3770005305032738 a001 433494437/3010349*4106118243^(1/23) 3770005305032738 a001 1346269/969323029*10749957122^(13/24) 3770005305032738 a001 433494437/3010349*1568397607^(1/22) 3770005305032738 a001 1346269/969323029*4106118243^(13/23) 3770005305032738 a001 433494437/3010349*599074578^(1/21) 3770005305032738 a001 1346269/969323029*1568397607^(13/22) 3770005305032738 a001 1346269/1568397607*599074578^(9/14) 3770005305032738 a001 1346269/2537720636*599074578^(2/3) 3770005305032738 a001 1346269/6643838879*599074578^(5/7) 3770005305032738 a001 433494437/3010349*228826127^(1/20) 3770005305032738 a001 1346269/17393796001*599074578^(16/21) 3770005305032738 a001 1346269/28143753123*599074578^(11/14) 3770005305032738 a001 1346269/45537549124*599074578^(17/21) 3770005305032738 a001 1346269/73681302247*599074578^(5/6) 3770005305032738 a001 1346269/119218851371*599074578^(6/7) 3770005305032738 a001 1346269/312119004989*599074578^(19/21) 3770005305032738 a001 1346269/505019158607*599074578^(13/14) 3770005305032738 a001 1346269/817138163596*599074578^(20/21) 3770005305032738 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^59 3770005305032738 a001 1346269/969323029*599074578^(13/21) 3770005305032738 a001 1346269/370248451*2537720636^(8/15) 3770005305032738 a001 1346269/370248451*45537549124^(8/17) 3770005305032738 a001 1346269/370248451*14662949395604^(8/21) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(41) 3770005305032738 a001 165580141/3010349*(1/2+1/2*5^(1/2))^4 3770005305032738 a001 165580141/3010349*23725150497407^(1/16) 3770005305032738 a001 1346269/370248451*192900153618^(4/9) 3770005305032738 a001 165580141/3010349*73681302247^(1/13) 3770005305032738 a001 1346269/370248451*73681302247^(6/13) 3770005305032738 a001 165580141/3010349*10749957122^(1/12) 3770005305032738 a001 1346269/370248451*10749957122^(1/2) 3770005305032738 a001 165580141/3010349*4106118243^(2/23) 3770005305032738 a001 1346269/370248451*4106118243^(12/23) 3770005305032738 a001 165580141/3010349*1568397607^(1/11) 3770005305032738 a001 1346269/370248451*1568397607^(6/11) 3770005305032738 a001 165580141/3010349*599074578^(2/21) 3770005305032738 a001 433494437/3010349*87403803^(1/19) 3770005305032738 a001 1346269/370248451*599074578^(4/7) 3770005305032738 a001 1346269/599074578*228826127^(5/8) 3770005305032738 a001 165580141/3010349*228826127^(1/10) 3770005305032738 a001 1346269/969323029*228826127^(13/20) 3770005305032738 a001 1346269/2537720636*228826127^(7/10) 3770005305032738 a001 1346269/6643838879*228826127^(3/4) 3770005305032738 a001 1346269/17393796001*228826127^(4/5) 3770005305032738 a001 1346269/45537549124*228826127^(17/20) 3770005305032738 a001 1346269/73681302247*228826127^(7/8) 3770005305032738 a001 1346269/119218851371*228826127^(9/10) 3770005305032738 a001 1346269/312119004989*228826127^(19/20) 3770005305032738 a001 1346269/370248451*228826127^(3/5) 3770005305032738 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^57 3770005305032738 a001 165580141/3010349*87403803^(2/19) 3770005305032738 a001 63245986/3010349*141422324^(2/13) 3770005305032738 a001 63245986/3010349*2537720636^(2/15) 3770005305032738 a001 63245986/3010349*45537549124^(2/17) 3770005305032738 a001 1346269/141422324*312119004989^(2/5) 3770005305032738 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(39) 3770005305032738 a001 63245986/3010349*14662949395604^(2/21) 3770005305032738 a001 63245986/3010349*(1/2+1/2*5^(1/2))^6 3770005305032738 a001 85146110326234/225851433717 3770005305032738 a001 63245986/3010349*10749957122^(1/8) 3770005305032738 a001 1346269/141422324*10749957122^(11/24) 3770005305032738 a001 63245986/3010349*4106118243^(3/23) 3770005305032738 a001 1346269/141422324*4106118243^(11/23) 3770005305032738 a001 63245986/3010349*1568397607^(3/22) 3770005305032738 a001 1346269/141422324*1568397607^(1/2) 3770005305032738 a001 63245986/3010349*599074578^(1/7) 3770005305032738 a001 433494437/3010349*33385282^(1/18) 3770005305032738 a001 1346269/141422324*599074578^(11/21) 3770005305032738 a001 63245986/3010349*228826127^(3/20) 3770005305032738 a001 1346269/141422324*228826127^(11/20) 3770005305032738 a001 63245986/3010349*87403803^(3/19) 3770005305032738 a001 267914296/3010349*33385282^(1/12) 3770005305032739 a001 1346269/370248451*87403803^(12/19) 3770005305032739 a001 1346269/969323029*87403803^(13/19) 3770005305032739 a001 1346269/2537720636*87403803^(14/19) 3770005305032739 a001 1346269/6643838879*87403803^(15/19) 3770005305032739 a001 165580141/3010349*33385282^(1/9) 3770005305032739 a001 1346269/17393796001*87403803^(16/19) 3770005305032739 a001 1346269/45537549124*87403803^(17/19) 3770005305032739 a001 1346269/119218851371*87403803^(18/19) 3770005305032739 a001 1346269/141422324*87403803^(11/19) 3770005305032739 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^55 3770005305032739 a001 63245986/3010349*33385282^(1/6) 3770005305032740 a001 1346269/54018521*2537720636^(4/9) 3770005305032740 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^20/Lucas(37) 3770005305032740 a001 1346269/54018521*23725150497407^(5/16) 3770005305032740 a001 24157817/3010349*(1/2+1/2*5^(1/2))^8 3770005305032740 a001 24157817/3010349*505019158607^(1/7) 3770005305032740 a001 1346269/54018521*505019158607^(5/14) 3770005305032740 a001 32522920134773/86267571272 3770005305032740 a001 24157817/3010349*73681302247^(2/13) 3770005305032740 a001 1346269/54018521*73681302247^(5/13) 3770005305032740 a001 1346269/54018521*28143753123^(2/5) 3770005305032740 a001 24157817/3010349*10749957122^(1/6) 3770005305032740 a001 1346269/54018521*10749957122^(5/12) 3770005305032740 a001 24157817/3010349*4106118243^(4/23) 3770005305032740 a001 1346269/54018521*4106118243^(10/23) 3770005305032740 a001 24157817/3010349*1568397607^(2/11) 3770005305032740 a001 1346269/54018521*1568397607^(5/11) 3770005305032740 a001 24157817/3010349*599074578^(4/21) 3770005305032740 a001 1346269/54018521*599074578^(10/21) 3770005305032740 a001 24157817/3010349*228826127^(1/5) 3770005305032740 a001 1346269/54018521*228826127^(1/2) 3770005305032740 a001 433494437/3010349*12752043^(1/17) 3770005305032740 a001 24157817/3010349*87403803^(4/19) 3770005305032740 a001 1346269/87403803*33385282^(7/12) 3770005305032740 a001 1346269/54018521*87403803^(10/19) 3770005305032740 a001 24157817/3010349*33385282^(2/9) 3770005305032740 a001 1346269/141422324*33385282^(11/18) 3770005305032741 a001 1346269/370248451*33385282^(2/3) 3770005305032741 a001 1346269/969323029*33385282^(13/18) 3770005305032741 a001 1346269/1568397607*33385282^(3/4) 3770005305032741 a001 1346269/2537720636*33385282^(7/9) 3770005305032741 a001 165580141/3010349*12752043^(2/17) 3770005305032741 a001 1346269/6643838879*33385282^(5/6) 3770005305032741 a001 1346269/17393796001*33385282^(8/9) 3770005305032741 a001 1346269/28143753123*33385282^(11/12) 3770005305032741 a001 1346269/54018521*33385282^(5/9) 3770005305032741 a001 1346269/45537549124*33385282^(17/18) 3770005305032742 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^53 3770005305032743 a001 63245986/3010349*12752043^(3/17) 3770005305032745 a001 9227465/3010349*20633239^(2/7) 3770005305032745 a001 24157817/3010349*12752043^(4/17) 3770005305032747 a001 1346269/20633239*141422324^(6/13) 3770005305032747 a001 1346269/20633239*2537720636^(2/5) 3770005305032747 a001 9227465/3010349*2537720636^(2/9) 3770005305032747 a001 1346269/20633239*45537549124^(6/17) 3770005305032747 a001 9227465/3010349*312119004989^(2/11) 3770005305032747 a001 1346269/20633239*14662949395604^(2/7) 3770005305032747 a001 1346269/20633239*(1/2+1/2*5^(1/2))^18 3770005305032747 a001 9227465/3010349*(1/2+1/2*5^(1/2))^10 3770005305032747 a001 1346269/20633239*192900153618^(1/3) 3770005305032747 a001 12422650078085/32951280099 3770005305032747 a001 9227465/3010349*28143753123^(1/5) 3770005305032747 a001 9227465/3010349*10749957122^(5/24) 3770005305032747 a001 1346269/20633239*10749957122^(3/8) 3770005305032747 a001 9227465/3010349*4106118243^(5/23) 3770005305032747 a001 1346269/20633239*4106118243^(9/23) 3770005305032747 a001 9227465/3010349*1568397607^(5/22) 3770005305032747 a001 1346269/20633239*1568397607^(9/22) 3770005305032747 a001 9227465/3010349*599074578^(5/21) 3770005305032747 a001 1346269/20633239*599074578^(3/7) 3770005305032747 a001 9227465/3010349*228826127^(1/4) 3770005305032747 a001 1346269/20633239*228826127^(9/20) 3770005305032747 a001 9227465/3010349*87403803^(5/19) 3770005305032747 a001 24157817/7881196*1860498^(1/3) 3770005305032747 a001 1346269/20633239*87403803^(9/19) 3770005305032748 a001 9227465/3010349*33385282^(5/18) 3770005305032748 a001 433494437/3010349*4870847^(1/16) 3770005305032749 a001 1346269/20633239*33385282^(1/2) 3770005305032753 a001 1346269/54018521*12752043^(10/17) 3770005305032753 a001 1346269/141422324*12752043^(11/17) 3770005305032754 a001 9227465/3010349*12752043^(5/17) 3770005305032754 a001 39088169/33385282*1860498^(2/5) 3770005305032755 a001 1346269/370248451*12752043^(12/17) 3770005305032756 a001 1346269/969323029*12752043^(13/17) 3770005305032757 a001 34111385/29134601*1860498^(2/5) 3770005305032757 a001 1346269/2537720636*12752043^(14/17) 3770005305032758 a001 267914296/228826127*1860498^(2/5) 3770005305032758 a001 233802911/199691526*1860498^(2/5) 3770005305032758 a001 1836311903/1568397607*1860498^(2/5) 3770005305032758 a001 1602508992/1368706081*1860498^(2/5) 3770005305032758 a001 12586269025/10749957122*1860498^(2/5) 3770005305032758 a001 10983760033/9381251041*1860498^(2/5) 3770005305032758 a001 86267571272/73681302247*1860498^(2/5) 3770005305032758 a001 75283811239/64300051206*1860498^(2/5) 3770005305032758 a001 2504730781961/2139295485799*1860498^(2/5) 3770005305032758 a001 365435296162/312119004989*1860498^(2/5) 3770005305032758 a001 139583862445/119218851371*1860498^(2/5) 3770005305032758 a001 53316291173/45537549124*1860498^(2/5) 3770005305032758 a001 20365011074/17393796001*1860498^(2/5) 3770005305032758 a001 7778742049/6643838879*1860498^(2/5) 3770005305032758 a001 2971215073/2537720636*1860498^(2/5) 3770005305032758 a001 1134903170/969323029*1860498^(2/5) 3770005305032758 a001 433494437/370248451*1860498^(2/5) 3770005305032758 a001 165580141/141422324*1860498^(2/5) 3770005305032758 a001 165580141/3010349*4870847^(1/8) 3770005305032759 a001 1346269/6643838879*12752043^(15/17) 3770005305032759 a001 63245986/54018521*1860498^(2/5) 3770005305032759 a001 1346269/20633239*12752043^(9/17) 3770005305032760 a001 1346269/17393796001*12752043^(16/17) 3770005305032761 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^51 3770005305032768 a001 24157817/20633239*1860498^(2/5) 3770005305032768 a001 63245986/3010349*4870847^(3/16) 3770005305032769 a001 2178309/7881196*1860498^(1/2) 3770005305032777 a001 3524578/3010349*7881196^(4/11) 3770005305032779 a001 24157817/3010349*4870847^(1/4) 3770005305032784 a001 5702887/12752043*1860498^(7/15) 3770005305032797 a001 9227465/3010349*4870847^(5/16) 3770005305032799 a001 3524578/3010349*141422324^(4/13) 3770005305032799 a001 3524578/3010349*2537720636^(4/15) 3770005305032799 a001 3524578/3010349*45537549124^(4/17) 3770005305032799 a001 3524578/3010349*817138163596^(4/19) 3770005305032799 a001 1346269/7881196*(1/2+1/2*5^(1/2))^16 3770005305032799 a001 1346269/7881196*23725150497407^(1/4) 3770005305032799 a001 3524578/3010349*(1/2+1/2*5^(1/2))^12 3770005305032799 a001 3524578/3010349*192900153618^(2/9) 3770005305032799 a001 3524578/3010349*73681302247^(3/13) 3770005305032799 a001 1346269/7881196*73681302247^(4/13) 3770005305032799 a001 4745030099482/12586269025 3770005305032799 a001 3524578/3010349*10749957122^(1/4) 3770005305032799 a001 1346269/7881196*10749957122^(1/3) 3770005305032799 a001 3524578/3010349*4106118243^(6/23) 3770005305032799 a001 1346269/7881196*4106118243^(8/23) 3770005305032799 a001 3524578/3010349*1568397607^(3/11) 3770005305032799 a001 1346269/7881196*1568397607^(4/11) 3770005305032799 a001 3524578/3010349*599074578^(2/7) 3770005305032799 a001 1346269/7881196*599074578^(8/21) 3770005305032799 a001 3524578/3010349*228826127^(3/10) 3770005305032799 a001 1346269/7881196*228826127^(2/5) 3770005305032799 a001 3524578/3010349*87403803^(6/19) 3770005305032799 a001 1346269/7881196*87403803^(8/19) 3770005305032800 a001 3524578/3010349*33385282^(1/3) 3770005305032800 a001 1346269/7881196*33385282^(4/9) 3770005305032807 a001 3524578/3010349*12752043^(6/17) 3770005305032810 a001 1346269/7881196*12752043^(8/17) 3770005305032811 a001 433494437/3010349*1860498^(1/15) 3770005305032813 a001 311187/4769326*1860498^(3/5) 3770005305032824 a001 7465176/16692641*1860498^(7/15) 3770005305032827 a001 9227465/7881196*1860498^(2/5) 3770005305032829 a001 39088169/87403803*1860498^(7/15) 3770005305032830 a001 102334155/228826127*1860498^(7/15) 3770005305032830 a001 133957148/299537289*1860498^(7/15) 3770005305032830 a001 701408733/1568397607*1860498^(7/15) 3770005305032830 a001 1836311903/4106118243*1860498^(7/15) 3770005305032830 a001 2403763488/5374978561*1860498^(7/15) 3770005305032830 a001 12586269025/28143753123*1860498^(7/15) 3770005305032830 a001 32951280099/73681302247*1860498^(7/15) 3770005305032830 a001 43133785636/96450076809*1860498^(7/15) 3770005305032830 a001 225851433717/505019158607*1860498^(7/15) 3770005305032830 a001 591286729879/1322157322203*1860498^(7/15) 3770005305032830 a001 10610209857723/23725150497407*1860498^(7/15) 3770005305032830 a001 139583862445/312119004989*1860498^(7/15) 3770005305032830 a001 53316291173/119218851371*1860498^(7/15) 3770005305032830 a001 10182505537/22768774562*1860498^(7/15) 3770005305032830 a001 7778742049/17393796001*1860498^(7/15) 3770005305032830 a001 2971215073/6643838879*1860498^(7/15) 3770005305032830 a001 567451585/1268860318*1860498^(7/15) 3770005305032830 a001 433494437/969323029*1860498^(7/15) 3770005305032831 a001 165580141/370248451*1860498^(7/15) 3770005305032831 a001 31622993/70711162*1860498^(7/15) 3770005305032832 a001 39088169/1860498*710647^(3/14) 3770005305032832 a001 1836311903/12752043*710647^(1/14) 3770005305032833 a001 24157817/54018521*1860498^(7/15) 3770005305032836 a001 1346269/20633239*4870847^(9/16) 3770005305032839 a001 1346269/54018521*4870847^(5/8) 3770005305032847 a001 267914296/3010349*1860498^(1/10) 3770005305032848 a001 1346269/141422324*4870847^(11/16) 3770005305032848 a001 9227465/20633239*1860498^(7/15) 3770005305032852 a001 14930208/103681*710647^(1/14) 3770005305032852 a001 5702887/20633239*1860498^(1/2) 3770005305032855 a001 12586269025/87403803*710647^(1/14) 3770005305032855 a001 32951280099/228826127*710647^(1/14) 3770005305032855 a001 43133785636/299537289*710647^(1/14) 3770005305032855 a001 32264490531/224056801*710647^(1/14) 3770005305032855 a001 591286729879/4106118243*710647^(1/14) 3770005305032855 a001 774004377960/5374978561*710647^(1/14) 3770005305032855 a001 4052739537881/28143753123*710647^(1/14) 3770005305032855 a001 1515744265389/10525900321*710647^(1/14) 3770005305032855 a001 3278735159921/22768774562*710647^(1/14) 3770005305032855 a001 2504730781961/17393796001*710647^(1/14) 3770005305032855 a001 956722026041/6643838879*710647^(1/14) 3770005305032855 a001 182717648081/1268860318*710647^(1/14) 3770005305032855 a001 139583862445/969323029*710647^(1/14) 3770005305032855 a001 53316291173/370248451*710647^(1/14) 3770005305032856 a001 10182505537/70711162*710647^(1/14) 3770005305032857 a001 7778742049/54018521*710647^(1/14) 3770005305032857 a001 1346269/370248451*4870847^(3/4) 3770005305032859 a001 3524578/3010349*4870847^(3/8) 3770005305032864 a001 2971215073/20633239*710647^(1/14) 3770005305032865 a001 14930352/54018521*1860498^(1/2) 3770005305032866 a001 39088169/141422324*1860498^(1/2) 3770005305032867 a001 102334155/370248451*1860498^(1/2) 3770005305032867 a001 267914296/969323029*1860498^(1/2) 3770005305032867 a001 701408733/2537720636*1860498^(1/2) 3770005305032867 a001 1836311903/6643838879*1860498^(1/2) 3770005305032867 a001 4807526976/17393796001*1860498^(1/2) 3770005305032867 a001 12586269025/45537549124*1860498^(1/2) 3770005305032867 a001 32951280099/119218851371*1860498^(1/2) 3770005305032867 a001 86267571272/312119004989*1860498^(1/2) 3770005305032867 a001 225851433717/817138163596*1860498^(1/2) 3770005305032867 a001 1548008755920/5600748293801*1860498^(1/2) 3770005305032867 a001 139583862445/505019158607*1860498^(1/2) 3770005305032867 a001 53316291173/192900153618*1860498^(1/2) 3770005305032867 a001 20365011074/73681302247*1860498^(1/2) 3770005305032867 a001 7778742049/28143753123*1860498^(1/2) 3770005305032867 a001 2971215073/10749957122*1860498^(1/2) 3770005305032867 a001 1134903170/4106118243*1860498^(1/2) 3770005305032867 a001 433494437/1568397607*1860498^(1/2) 3770005305032867 a001 165580141/599074578*1860498^(1/2) 3770005305032867 a001 63245986/228826127*1860498^(1/2) 3770005305032867 a001 1346269/969323029*4870847^(13/16) 3770005305032868 a001 24157817/87403803*1860498^(1/2) 3770005305032872 a001 9227465/33385282*1860498^(1/2) 3770005305032877 a001 5702887/33385282*1860498^(8/15) 3770005305032877 a001 1346269/2537720636*4870847^(7/8) 3770005305032878 a001 1346269/7881196*4870847^(1/2) 3770005305032883 a001 165580141/3010349*1860498^(2/15) 3770005305032887 a001 1346269/6643838879*4870847^(15/16) 3770005305032889 a001 726103/29134601*1860498^(2/3) 3770005305032897 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^49 3770005305032899 a001 4976784/29134601*1860498^(8/15) 3770005305032903 a001 39088169/228826127*1860498^(8/15) 3770005305032903 a001 34111385/199691526*1860498^(8/15) 3770005305032903 a001 267914296/1568397607*1860498^(8/15) 3770005305032903 a001 233802911/1368706081*1860498^(8/15) 3770005305032903 a001 1836311903/10749957122*1860498^(8/15) 3770005305032903 a001 1602508992/9381251041*1860498^(8/15) 3770005305032903 a001 12586269025/73681302247*1860498^(8/15) 3770005305032903 a001 10983760033/64300051206*1860498^(8/15) 3770005305032903 a001 86267571272/505019158607*1860498^(8/15) 3770005305032903 a001 75283811239/440719107401*1860498^(8/15) 3770005305032903 a001 2504730781961/14662949395604*1860498^(8/15) 3770005305032903 a001 139583862445/817138163596*1860498^(8/15) 3770005305032903 a001 53316291173/312119004989*1860498^(8/15) 3770005305032903 a001 20365011074/119218851371*1860498^(8/15) 3770005305032903 a001 7778742049/45537549124*1860498^(8/15) 3770005305032903 a001 2971215073/17393796001*1860498^(8/15) 3770005305032903 a001 1134903170/6643838879*1860498^(8/15) 3770005305032903 a001 433494437/2537720636*1860498^(8/15) 3770005305032903 a001 165580141/969323029*1860498^(8/15) 3770005305032903 a001 63245986/370248451*1860498^(8/15) 3770005305032904 a001 3524578/12752043*1860498^(1/2) 3770005305032905 a001 24157817/141422324*1860498^(8/15) 3770005305032913 a001 9227465/54018521*1860498^(8/15) 3770005305032916 a001 567451585/3940598*710647^(1/14) 3770005305032920 a001 102334155/3010349*1860498^(1/6) 3770005305032926 a001 2178309/141422324*1860498^(7/10) 3770005305032952 a001 1762289/3940598*1860498^(7/15) 3770005305032952 a001 5702887/87403803*1860498^(3/5) 3770005305032956 a001 63245986/3010349*1860498^(1/5) 3770005305032962 a001 46347/4868641*1860498^(11/15) 3770005305032972 a001 14930352/228826127*1860498^(3/5) 3770005305032973 a001 3524578/20633239*1860498^(8/15) 3770005305032975 a001 39088169/599074578*1860498^(3/5) 3770005305032976 a001 14619165/224056801*1860498^(3/5) 3770005305032976 a001 267914296/4106118243*1860498^(3/5) 3770005305032976 a001 701408733/10749957122*1860498^(3/5) 3770005305032976 a001 1836311903/28143753123*1860498^(3/5) 3770005305032976 a001 686789568/10525900321*1860498^(3/5) 3770005305032976 a001 12586269025/192900153618*1860498^(3/5) 3770005305032976 a001 32951280099/505019158607*1860498^(3/5) 3770005305032976 a001 86267571272/1322157322203*1860498^(3/5) 3770005305032976 a001 32264490531/494493258286*1860498^(3/5) 3770005305032976 a001 1548008755920/23725150497407*1860498^(3/5) 3770005305032976 a001 365435296162/5600748293801*1860498^(3/5) 3770005305032976 a001 139583862445/2139295485799*1860498^(3/5) 3770005305032976 a001 53316291173/817138163596*1860498^(3/5) 3770005305032976 a001 20365011074/312119004989*1860498^(3/5) 3770005305032976 a001 7778742049/119218851371*1860498^(3/5) 3770005305032976 a001 2971215073/45537549124*1860498^(3/5) 3770005305032976 a001 1134903170/17393796001*1860498^(3/5) 3770005305032976 a001 433494437/6643838879*1860498^(3/5) 3770005305032976 a001 165580141/2537720636*1860498^(3/5) 3770005305032976 a001 63245986/969323029*1860498^(3/5) 3770005305032977 a001 24157817/370248451*1860498^(3/5) 3770005305032985 a001 9227465/141422324*1860498^(3/5) 3770005305033002 a001 102334155/1149851*439204^(1/9) 3770005305033025 a001 5702887/228826127*1860498^(2/3) 3770005305033030 a001 24157817/3010349*1860498^(4/15) 3770005305033035 a001 726103/199691526*1860498^(4/5) 3770005305033038 a001 3524578/54018521*1860498^(3/5) 3770005305033045 a001 829464/33281921*1860498^(2/3) 3770005305033048 a001 39088169/1568397607*1860498^(2/3) 3770005305033048 a001 34111385/1368706081*1860498^(2/3) 3770005305033048 a001 133957148/5374978561*1860498^(2/3) 3770005305033048 a001 233802911/9381251041*1860498^(2/3) 3770005305033048 a001 1836311903/73681302247*1860498^(2/3) 3770005305033048 a001 267084832/10716675201*1860498^(2/3) 3770005305033048 a001 12586269025/505019158607*1860498^(2/3) 3770005305033048 a001 10983760033/440719107401*1860498^(2/3) 3770005305033048 a001 43133785636/1730726404001*1860498^(2/3) 3770005305033048 a001 75283811239/3020733700601*1860498^(2/3) 3770005305033048 a001 182717648081/7331474697802*1860498^(2/3) 3770005305033048 a001 139583862445/5600748293801*1860498^(2/3) 3770005305033048 a001 53316291173/2139295485799*1860498^(2/3) 3770005305033048 a001 10182505537/408569081798*1860498^(2/3) 3770005305033048 a001 7778742049/312119004989*1860498^(2/3) 3770005305033048 a001 2971215073/119218851371*1860498^(2/3) 3770005305033048 a001 567451585/22768774562*1860498^(2/3) 3770005305033048 a001 433494437/17393796001*1860498^(2/3) 3770005305033048 a001 165580141/6643838879*1860498^(2/3) 3770005305033048 a001 31622993/1268860318*1860498^(2/3) 3770005305033050 a001 24157817/969323029*1860498^(2/3) 3770005305033057 a001 9227465/370248451*1860498^(2/3) 3770005305033061 a001 5702887/370248451*1860498^(7/10) 3770005305033062 a001 14930352/3010349*1860498^(3/10) 3770005305033071 a001 2178309/969323029*1860498^(5/6) 3770005305033081 a001 14930352/969323029*1860498^(7/10) 3770005305033084 a001 39088169/2537720636*1860498^(7/10) 3770005305033085 a001 102334155/6643838879*1860498^(7/10) 3770005305033085 a001 9238424/599786069*1860498^(7/10) 3770005305033085 a001 701408733/45537549124*1860498^(7/10) 3770005305033085 a001 1836311903/119218851371*1860498^(7/10) 3770005305033085 a001 4807526976/312119004989*1860498^(7/10) 3770005305033085 a001 12586269025/817138163596*1860498^(7/10) 3770005305033085 a001 32951280099/2139295485799*1860498^(7/10) 3770005305033085 a001 86267571272/5600748293801*1860498^(7/10) 3770005305033085 a001 7787980473/505618944676*1860498^(7/10) 3770005305033085 a001 365435296162/23725150497407*1860498^(7/10) 3770005305033085 a001 139583862445/9062201101803*1860498^(7/10) 3770005305033085 a001 53316291173/3461452808002*1860498^(7/10) 3770005305033085 a001 20365011074/1322157322203*1860498^(7/10) 3770005305033085 a001 7778742049/505019158607*1860498^(7/10) 3770005305033085 a001 2971215073/192900153618*1860498^(7/10) 3770005305033085 a001 1134903170/73681302247*1860498^(7/10) 3770005305033085 a001 433494437/28143753123*1860498^(7/10) 3770005305033085 a001 165580141/10749957122*1860498^(7/10) 3770005305033085 a001 63245986/4106118243*1860498^(7/10) 3770005305033086 a001 24157817/1568397607*1860498^(7/10) 3770005305033093 a001 9227465/599074578*1860498^(7/10) 3770005305033098 a001 5702887/599074578*1860498^(11/15) 3770005305033101 a001 24157817/1860498*710647^(1/4) 3770005305033107 a001 311187/224056801*1860498^(13/15) 3770005305033109 a001 1762289/70711162*1860498^(2/3) 3770005305033110 a001 9227465/3010349*1860498^(1/3) 3770005305033118 a001 14930352/1568397607*1860498^(11/15) 3770005305033120 a001 39088169/4106118243*1860498^(11/15) 3770005305033121 a001 102334155/10749957122*1860498^(11/15) 3770005305033121 a001 267914296/28143753123*1860498^(11/15) 3770005305033121 a001 701408733/73681302247*1860498^(11/15) 3770005305033121 a001 1836311903/192900153618*1860498^(11/15) 3770005305033121 a001 102287808/10745088481*1860498^(11/15) 3770005305033121 a001 12586269025/1322157322203*1860498^(11/15) 3770005305033121 a001 32951280099/3461452808002*1860498^(11/15) 3770005305033121 a001 86267571272/9062201101803*1860498^(11/15) 3770005305033121 a001 225851433717/23725150497407*1860498^(11/15) 3770005305033121 a001 139583862445/14662949395604*1860498^(11/15) 3770005305033121 a001 53316291173/5600748293801*1860498^(11/15) 3770005305033121 a001 20365011074/2139295485799*1860498^(11/15) 3770005305033121 a001 7778742049/817138163596*1860498^(11/15) 3770005305033121 a001 2971215073/312119004989*1860498^(11/15) 3770005305033121 a001 1134903170/119218851371*1860498^(11/15) 3770005305033121 a001 433494437/45537549124*1860498^(11/15) 3770005305033121 a001 165580141/17393796001*1860498^(11/15) 3770005305033121 a001 63245986/6643838879*1860498^(11/15) 3770005305033122 a001 24157817/2537720636*1860498^(11/15) 3770005305033124 a001 1346269/4870847*1860498^(1/2) 3770005305033130 a001 9227465/969323029*1860498^(11/15) 3770005305033144 a001 2178309/2537720636*1860498^(9/10) 3770005305033145 a001 3524578/228826127*1860498^(7/10) 3770005305033151 a001 1346269/3010349*20633239^(2/5) 3770005305033154 a001 1346269/3010349*17393796001^(2/7) 3770005305033154 a001 1346269/3010349*14662949395604^(2/9) 3770005305033154 a001 1346269/3010349*(1/2+1/2*5^(1/2))^14 3770005305033154 a001 1346269/3010349*10749957122^(7/24) 3770005305033154 a001 1812440220361/4807526976 3770005305033154 a001 1346269/3010349*4106118243^(7/23) 3770005305033154 a001 1346269/3010349*1568397607^(7/22) 3770005305033154 a001 1346269/3010349*599074578^(1/3) 3770005305033154 a001 1346269/3010349*228826127^(7/20) 3770005305033154 a001 1346269/3010349*87403803^(7/19) 3770005305033156 a001 1346269/3010349*33385282^(7/18) 3770005305033164 a001 1346269/3010349*12752043^(7/17) 3770005305033170 a001 5702887/1568397607*1860498^(4/5) 3770005305033180 a001 726103/1368706081*1860498^(14/15) 3770005305033182 a001 3524578/370248451*1860498^(11/15) 3770005305033190 a001 4976784/1368706081*1860498^(4/5) 3770005305033193 a001 39088169/10749957122*1860498^(4/5) 3770005305033193 a001 831985/228811001*1860498^(4/5) 3770005305033194 a001 267914296/73681302247*1860498^(4/5) 3770005305033194 a001 233802911/64300051206*1860498^(4/5) 3770005305033194 a001 1836311903/505019158607*1860498^(4/5) 3770005305033194 a001 1602508992/440719107401*1860498^(4/5) 3770005305033194 a001 12586269025/3461452808002*1860498^(4/5) 3770005305033194 a001 10983760033/3020733700601*1860498^(4/5) 3770005305033194 a001 86267571272/23725150497407*1860498^(4/5) 3770005305033194 a001 53316291173/14662949395604*1860498^(4/5) 3770005305033194 a001 20365011074/5600748293801*1860498^(4/5) 3770005305033194 a001 7778742049/2139295485799*1860498^(4/5) 3770005305033194 a001 2971215073/817138163596*1860498^(4/5) 3770005305033194 a001 1134903170/312119004989*1860498^(4/5) 3770005305033194 a001 433494437/119218851371*1860498^(4/5) 3770005305033194 a001 165580141/45537549124*1860498^(4/5) 3770005305033194 a001 63245986/17393796001*1860498^(4/5) 3770005305033195 a001 24157817/6643838879*1860498^(4/5) 3770005305033202 a001 9227465/2537720636*1860498^(4/5) 3770005305033207 a001 5702887/2537720636*1860498^(5/6) 3770005305033224 a001 1346269/3010349*4870847^(7/16) 3770005305033226 a001 14930352/6643838879*1860498^(5/6) 3770005305033229 a001 39088169/17393796001*1860498^(5/6) 3770005305033230 a001 267914296/4870847*710647^(1/7) 3770005305033230 a001 102334155/45537549124*1860498^(5/6) 3770005305033230 a001 267914296/119218851371*1860498^(5/6) 3770005305033230 a001 3524667/1568437211*1860498^(5/6) 3770005305033230 a001 1836311903/817138163596*1860498^(5/6) 3770005305033230 a001 4807526976/2139295485799*1860498^(5/6) 3770005305033230 a001 12586269025/5600748293801*1860498^(5/6) 3770005305033230 a001 32951280099/14662949395604*1860498^(5/6) 3770005305033230 a001 53316291173/23725150497407*1860498^(5/6) 3770005305033230 a001 20365011074/9062201101803*1860498^(5/6) 3770005305033230 a001 7778742049/3461452808002*1860498^(5/6) 3770005305033230 a001 2971215073/1322157322203*1860498^(5/6) 3770005305033230 a001 1134903170/505019158607*1860498^(5/6) 3770005305033230 a001 433494437/192900153618*1860498^(5/6) 3770005305033230 a001 165580141/73681302247*1860498^(5/6) 3770005305033230 a001 63245986/28143753123*1860498^(5/6) 3770005305033231 a001 24157817/10749957122*1860498^(5/6) 3770005305033235 a001 3524578/3010349*1860498^(2/5) 3770005305033239 a001 9227465/4106118243*1860498^(5/6) 3770005305033243 a001 5702887/4106118243*1860498^(13/15) 3770005305033252 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^48 3770005305033254 a001 3524578/969323029*1860498^(4/5) 3770005305033263 a001 7465176/5374978561*1860498^(13/15) 3770005305033266 a001 39088169/28143753123*1860498^(13/15) 3770005305033266 a001 14619165/10525900321*1860498^(13/15) 3770005305033266 a001 133957148/96450076809*1860498^(13/15) 3770005305033266 a001 701408733/505019158607*1860498^(13/15) 3770005305033266 a001 1836311903/1322157322203*1860498^(13/15) 3770005305033266 a001 14930208/10749853441*1860498^(13/15) 3770005305033266 a001 12586269025/9062201101803*1860498^(13/15) 3770005305033266 a001 32951280099/23725150497407*1860498^(13/15) 3770005305033266 a001 10182505537/7331474697802*1860498^(13/15) 3770005305033266 a001 7778742049/5600748293801*1860498^(13/15) 3770005305033266 a001 2971215073/2139295485799*1860498^(13/15) 3770005305033266 a001 567451585/408569081798*1860498^(13/15) 3770005305033266 a001 433494437/312119004989*1860498^(13/15) 3770005305033266 a001 165580141/119218851371*1860498^(13/15) 3770005305033266 a001 31622993/22768774562*1860498^(13/15) 3770005305033267 a001 24157817/17393796001*1860498^(13/15) 3770005305033271 a001 433494437/3010349*710647^(1/14) 3770005305033275 a001 9227465/6643838879*1860498^(13/15) 3770005305033279 a001 5702887/6643838879*1860498^(9/10) 3770005305033291 a001 3524578/1568397607*1860498^(5/6) 3770005305033299 a001 14930352/17393796001*1860498^(9/10) 3770005305033302 a001 39088169/45537549124*1860498^(9/10) 3770005305033302 a001 102334155/119218851371*1860498^(9/10) 3770005305033302 a001 267914296/312119004989*1860498^(9/10) 3770005305033302 a001 701408733/817138163596*1860498^(9/10) 3770005305033302 a001 1836311903/2139295485799*1860498^(9/10) 3770005305033302 a001 4807526976/5600748293801*1860498^(9/10) 3770005305033302 a001 12586269025/14662949395604*1860498^(9/10) 3770005305033302 a001 20365011074/23725150497407*1860498^(9/10) 3770005305033302 a001 7778742049/9062201101803*1860498^(9/10) 3770005305033302 a001 2971215073/3461452808002*1860498^(9/10) 3770005305033302 a001 1134903170/1322157322203*1860498^(9/10) 3770005305033302 a001 433494437/505019158607*1860498^(9/10) 3770005305033302 a001 165580141/192900153618*1860498^(9/10) 3770005305033303 a001 63245986/73681302247*1860498^(9/10) 3770005305033304 a001 24157817/28143753123*1860498^(9/10) 3770005305033311 a001 9227465/10749957122*1860498^(9/10) 3770005305033316 a001 5702887/10749957122*1860498^(14/15) 3770005305033327 a001 1762289/1268860318*1860498^(13/15) 3770005305033335 a001 4976784/9381251041*1860498^(14/15) 3770005305033338 a001 39088169/73681302247*1860498^(14/15) 3770005305033339 a001 34111385/64300051206*1860498^(14/15) 3770005305033339 a001 267914296/505019158607*1860498^(14/15) 3770005305033339 a001 233802911/440719107401*1860498^(14/15) 3770005305033339 a001 1836311903/3461452808002*1860498^(14/15) 3770005305033339 a001 1602508992/3020733700601*1860498^(14/15) 3770005305033339 a001 12586269025/23725150497407*1860498^(14/15) 3770005305033339 a001 7778742049/14662949395604*1860498^(14/15) 3770005305033339 a001 2971215073/5600748293801*1860498^(14/15) 3770005305033339 a001 1134903170/2139295485799*1860498^(14/15) 3770005305033339 a001 433494437/817138163596*1860498^(14/15) 3770005305033339 a001 165580141/312119004989*1860498^(14/15) 3770005305033339 a001 63245986/119218851371*1860498^(14/15) 3770005305033340 a001 24157817/45537549124*1860498^(14/15) 3770005305033348 a001 9227465/17393796001*1860498^(14/15) 3770005305033363 a001 829464/103361*710647^(2/7) 3770005305033363 a001 3524578/4106118243*1860498^(9/10) 3770005305033365 a001 233802911/4250681*710647^(1/7) 3770005305033380 a001 1346269/7881196*1860498^(8/15) 3770005305033385 a001 1836311903/33385282*710647^(1/7) 3770005305033388 a001 1602508992/29134601*710647^(1/7) 3770005305033388 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^50 3770005305033389 a001 12586269025/228826127*710647^(1/7) 3770005305033389 a001 10983760033/199691526*710647^(1/7) 3770005305033389 a001 86267571272/1568397607*710647^(1/7) 3770005305033389 a001 75283811239/1368706081*710647^(1/7) 3770005305033389 a001 591286729879/10749957122*710647^(1/7) 3770005305033389 a001 12585437040/228811001*710647^(1/7) 3770005305033389 a001 4052739537881/73681302247*710647^(1/7) 3770005305033389 a001 3536736619241/64300051206*710647^(1/7) 3770005305033389 a001 6557470319842/119218851371*710647^(1/7) 3770005305033389 a001 2504730781961/45537549124*710647^(1/7) 3770005305033389 a001 956722026041/17393796001*710647^(1/7) 3770005305033389 a001 365435296162/6643838879*710647^(1/7) 3770005305033389 a001 139583862445/2537720636*710647^(1/7) 3770005305033389 a001 53316291173/969323029*710647^(1/7) 3770005305033389 a001 20365011074/370248451*710647^(1/7) 3770005305033389 a001 7778742049/141422324*710647^(1/7) 3770005305033390 a001 2971215073/54018521*710647^(1/7) 3770005305033398 a001 1134903170/20633239*710647^(1/7) 3770005305033399 a001 3524578/6643838879*1860498^(14/15) 3770005305033401 a001 1346269/20633239*1860498^(3/5) 3770005305033408 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^52 3770005305033411 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^54 3770005305033411 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^56 3770005305033411 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^58 3770005305033411 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^60 3770005305033411 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^62 3770005305033411 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^64 3770005305033411 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^66 3770005305033411 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^68 3770005305033411 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^70 3770005305033411 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^72 3770005305033411 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^74 3770005305033411 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^76 3770005305033411 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^78 3770005305033411 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^80 3770005305033411 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^82 3770005305033411 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^84 3770005305033411 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^86 3770005305033411 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^88 3770005305033411 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^90 3770005305033411 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^92 3770005305033411 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^94 3770005305033411 a004 Fibonacci(80)*Lucas(30)/(1/2+sqrt(5)/2)^96 3770005305033411 a004 Fibonacci(82)*Lucas(30)/(1/2+sqrt(5)/2)^98 3770005305033411 a004 Fibonacci(84)*Lucas(30)/(1/2+sqrt(5)/2)^100 3770005305033411 a004 Fibonacci(83)*Lucas(30)/(1/2+sqrt(5)/2)^99 3770005305033411 a004 Fibonacci(81)*Lucas(30)/(1/2+sqrt(5)/2)^97 3770005305033411 a004 Fibonacci(79)*Lucas(30)/(1/2+sqrt(5)/2)^95 3770005305033411 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^93 3770005305033411 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^91 3770005305033411 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^89 3770005305033411 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^87 3770005305033411 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^85 3770005305033411 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^83 3770005305033411 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^81 3770005305033411 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^79 3770005305033411 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^77 3770005305033411 a001 1/416020*(1/2+1/2*5^(1/2))^44 3770005305033411 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^75 3770005305033411 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^73 3770005305033411 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^71 3770005305033411 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^69 3770005305033411 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^67 3770005305033411 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^65 3770005305033411 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^63 3770005305033411 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^61 3770005305033411 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^59 3770005305033411 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^57 3770005305033412 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^55 3770005305033413 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^53 3770005305033420 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^51 3770005305033449 a001 433494437/7881196*710647^(1/7) 3770005305033466 a001 1346269/54018521*1860498^(2/3) 3770005305033472 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^49 3770005305033500 a001 1346269/87403803*1860498^(7/10) 3770005305033537 a001 1346269/141422324*1860498^(11/15) 3770005305033543 a001 196418/710647*439204^(5/9) 3770005305033610 a001 1346269/370248451*1860498^(4/5) 3770005305033646 a001 1346269/599074578*1860498^(5/6) 3770005305033663 a001 1346269/3010349*1860498^(7/15) 3770005305033682 a001 1346269/969323029*1860498^(13/15) 3770005305033718 a001 1346269/1568397607*1860498^(9/10) 3770005305033755 a001 1346269/2537720636*1860498^(14/15) 3770005305033763 a001 102334155/4870847*710647^(3/14) 3770005305033805 a001 165580141/3010349*710647^(1/7) 3770005305033827 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^47 3770005305033876 a001 5702887/1860498*710647^(5/14) 3770005305033876 a001 416020/930249*710647^(1/2) 3770005305033899 a001 267914296/12752043*710647^(3/14) 3770005305033918 a001 701408733/33385282*710647^(3/14) 3770005305033921 a001 1836311903/87403803*710647^(3/14) 3770005305033922 a001 102287808/4868641*710647^(3/14) 3770005305033922 a001 12586269025/599074578*710647^(3/14) 3770005305033922 a001 32951280099/1568397607*710647^(3/14) 3770005305033922 a001 86267571272/4106118243*710647^(3/14) 3770005305033922 a001 225851433717/10749957122*710647^(3/14) 3770005305033922 a001 591286729879/28143753123*710647^(3/14) 3770005305033922 a001 1548008755920/73681302247*710647^(3/14) 3770005305033922 a001 4052739537881/192900153618*710647^(3/14) 3770005305033922 a001 225749145909/10745088481*710647^(3/14) 3770005305033922 a001 6557470319842/312119004989*710647^(3/14) 3770005305033922 a001 2504730781961/119218851371*710647^(3/14) 3770005305033922 a001 956722026041/45537549124*710647^(3/14) 3770005305033922 a001 365435296162/17393796001*710647^(3/14) 3770005305033922 a001 139583862445/6643838879*710647^(3/14) 3770005305033922 a001 53316291173/2537720636*710647^(3/14) 3770005305033922 a001 20365011074/969323029*710647^(3/14) 3770005305033922 a001 7778742049/370248451*710647^(3/14) 3770005305033922 a001 2971215073/141422324*710647^(3/14) 3770005305033923 a001 1134903170/54018521*710647^(3/14) 3770005305033931 a001 433494437/20633239*710647^(3/14) 3770005305033983 a001 165580141/7881196*710647^(3/14) 3770005305034030 a001 63245986/4870847*710647^(1/4) 3770005305034057 a001 514229/1860498*7881196^(5/11) 3770005305034081 a001 514229/1860498*20633239^(3/7) 3770005305034084 a001 514229/1860498*141422324^(5/13) 3770005305034084 a001 832040/1149851*141422324^(1/3) 3770005305034084 a001 701408356/1860497 3770005305034084 a001 514229/1860498*2537720636^(1/3) 3770005305034084 a001 514229/1860498*45537549124^(5/17) 3770005305034084 a001 514229/1860498*312119004989^(3/11) 3770005305034084 a001 514229/1860498*14662949395604^(5/21) 3770005305034084 a001 514229/1860498*(1/2+1/2*5^(1/2))^15 3770005305034084 a001 832040/1149851*(1/2+1/2*5^(1/2))^13 3770005305034084 a001 514229/1860498*192900153618^(5/18) 3770005305034084 a001 832040/1149851*73681302247^(1/4) 3770005305034084 a001 514229/1860498*28143753123^(3/10) 3770005305034084 a001 514229/1860498*10749957122^(5/16) 3770005305034084 a001 514229/1860498*599074578^(5/14) 3770005305034085 a001 514229/1860498*228826127^(3/8) 3770005305034086 a001 514229/1860498*33385282^(5/12) 3770005305034165 a001 165580141/12752043*710647^(1/4) 3770005305034185 a001 433494437/33385282*710647^(1/4) 3770005305034188 a001 1134903170/87403803*710647^(1/4) 3770005305034188 a001 2971215073/228826127*710647^(1/4) 3770005305034188 a001 7778742049/599074578*710647^(1/4) 3770005305034188 a001 20365011074/1568397607*710647^(1/4) 3770005305034188 a001 53316291173/4106118243*710647^(1/4) 3770005305034188 a001 139583862445/10749957122*710647^(1/4) 3770005305034188 a001 365435296162/28143753123*710647^(1/4) 3770005305034188 a001 956722026041/73681302247*710647^(1/4) 3770005305034188 a001 2504730781961/192900153618*710647^(1/4) 3770005305034188 a001 10610209857723/817138163596*710647^(1/4) 3770005305034188 a001 4052739537881/312119004989*710647^(1/4) 3770005305034188 a001 1548008755920/119218851371*710647^(1/4) 3770005305034188 a001 591286729879/45537549124*710647^(1/4) 3770005305034188 a001 7787980473/599786069*710647^(1/4) 3770005305034188 a001 86267571272/6643838879*710647^(1/4) 3770005305034188 a001 32951280099/2537720636*710647^(1/4) 3770005305034188 a001 12586269025/969323029*710647^(1/4) 3770005305034189 a001 4807526976/370248451*710647^(1/4) 3770005305034189 a001 1836311903/141422324*710647^(1/4) 3770005305034190 a001 701408733/54018521*710647^(1/4) 3770005305034197 a001 9238424/711491*710647^(1/4) 3770005305034249 a001 102334155/7881196*710647^(1/4) 3770005305034273 a001 726103/620166*710647^(3/7) 3770005305034296 a001 39088169/4870847*710647^(2/7) 3770005305034338 a001 63245986/3010349*710647^(3/14) 3770005305034432 a001 34111385/4250681*710647^(2/7) 3770005305034452 a001 133957148/16692641*710647^(2/7) 3770005305034455 a001 233802911/29134601*710647^(2/7) 3770005305034455 a001 1836311903/228826127*710647^(2/7) 3770005305034455 a001 267084832/33281921*710647^(2/7) 3770005305034455 a001 12586269025/1568397607*710647^(2/7) 3770005305034455 a001 10983760033/1368706081*710647^(2/7) 3770005305034455 a001 43133785636/5374978561*710647^(2/7) 3770005305034455 a001 75283811239/9381251041*710647^(2/7) 3770005305034455 a001 591286729879/73681302247*710647^(2/7) 3770005305034455 a001 86000486440/10716675201*710647^(2/7) 3770005305034455 a001 4052739537881/505019158607*710647^(2/7) 3770005305034455 a001 3278735159921/408569081798*710647^(2/7) 3770005305034455 a001 2504730781961/312119004989*710647^(2/7) 3770005305034455 a001 956722026041/119218851371*710647^(2/7) 3770005305034455 a001 182717648081/22768774562*710647^(2/7) 3770005305034455 a001 139583862445/17393796001*710647^(2/7) 3770005305034455 a001 53316291173/6643838879*710647^(2/7) 3770005305034455 a001 10182505537/1268860318*710647^(2/7) 3770005305034455 a001 7778742049/969323029*710647^(2/7) 3770005305034455 a001 2971215073/370248451*710647^(2/7) 3770005305034455 a001 567451585/70711162*710647^(2/7) 3770005305034456 a001 433494437/54018521*710647^(2/7) 3770005305034464 a001 165580141/20633239*710647^(2/7) 3770005305034495 a001 196418/54018521*439204^(8/9) 3770005305034516 a001 31622993/3940598*710647^(2/7) 3770005305034604 a001 39088169/3010349*710647^(1/4) 3770005305034629 a001 514229/1860498*1860498^(1/2) 3770005305034738 a001 75025/271443*167761^(3/5) 3770005305034758 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^46 3770005305034765 a001 46368/167761*103682^(5/8) 3770005305034826 a001 14930352/4870847*710647^(5/14) 3770005305034872 a001 24157817/3010349*710647^(2/7) 3770005305034965 a001 39088169/12752043*710647^(5/14) 3770005305034985 a001 14619165/4769326*710647^(5/14) 3770005305034988 a001 267914296/87403803*710647^(5/14) 3770005305034988 a001 701408733/228826127*710647^(5/14) 3770005305034988 a001 1836311903/599074578*710647^(5/14) 3770005305034988 a001 686789568/224056801*710647^(5/14) 3770005305034988 a001 12586269025/4106118243*710647^(5/14) 3770005305034988 a001 32951280099/10749957122*710647^(5/14) 3770005305034988 a001 86267571272/28143753123*710647^(5/14) 3770005305034988 a001 32264490531/10525900321*710647^(5/14) 3770005305034988 a001 591286729879/192900153618*710647^(5/14) 3770005305034988 a001 1548008755920/505019158607*710647^(5/14) 3770005305034988 a001 1515744265389/494493258286*710647^(5/14) 3770005305034988 a001 2504730781961/817138163596*710647^(5/14) 3770005305034988 a001 956722026041/312119004989*710647^(5/14) 3770005305034988 a001 365435296162/119218851371*710647^(5/14) 3770005305034988 a001 139583862445/45537549124*710647^(5/14) 3770005305034988 a001 53316291173/17393796001*710647^(5/14) 3770005305034988 a001 20365011074/6643838879*710647^(5/14) 3770005305034988 a001 7778742049/2537720636*710647^(5/14) 3770005305034988 a001 2971215073/969323029*710647^(5/14) 3770005305034988 a001 1134903170/370248451*710647^(5/14) 3770005305034989 a001 433494437/141422324*710647^(5/14) 3770005305034990 a001 165580141/54018521*710647^(5/14) 3770005305034994 a001 2178309/1149851*7881196^(1/3) 3770005305034997 a001 63245986/20633239*710647^(5/14) 3770005305035015 a001 1120149658761/2971215073 3770005305035015 a001 514229/4870847*45537549124^(1/3) 3770005305035015 a001 2178309/1149851*312119004989^(1/5) 3770005305035015 a001 514229/4870847*(1/2+1/2*5^(1/2))^17 3770005305035015 a001 2178309/1149851*(1/2+1/2*5^(1/2))^11 3770005305035015 a001 2178309/1149851*1568397607^(1/4) 3770005305035026 a001 514229/4870847*12752043^(1/2) 3770005305035050 a001 24157817/7881196*710647^(5/14) 3770005305035113 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^48 3770005305035118 a001 514229/2537720636*7881196^(10/11) 3770005305035124 a001 514229/599074578*7881196^(9/11) 3770005305035130 a001 514229/141422324*7881196^(8/11) 3770005305035132 a001 514229/33385282*7881196^(7/11) 3770005305035134 a001 5702887/1149851*7881196^(3/11) 3770005305035134 a001 514229/54018521*7881196^(2/3) 3770005305035150 a001 5702887/1149851*141422324^(3/13) 3770005305035150 a001 5702887/1149851*2537720636^(1/5) 3770005305035150 a001 2932589879123/7778742049 3770005305035150 a001 5702887/1149851*45537549124^(3/17) 3770005305035150 a001 514229/12752043*817138163596^(1/3) 3770005305035150 a001 514229/12752043*(1/2+1/2*5^(1/2))^19 3770005305035150 a001 5702887/1149851*14662949395604^(1/7) 3770005305035150 a001 5702887/1149851*(1/2+1/2*5^(1/2))^9 3770005305035150 a001 5702887/1149851*192900153618^(1/6) 3770005305035150 a001 5702887/1149851*10749957122^(3/16) 3770005305035150 a001 5702887/1149851*599074578^(3/14) 3770005305035151 a001 514229/12752043*87403803^(1/2) 3770005305035151 a001 5702887/1149851*33385282^(1/4) 3770005305035164 a001 24157817/1149851*7881196^(2/11) 3770005305035165 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^50 3770005305035165 a001 514229/33385282*20633239^(3/5) 3770005305035166 a001 514229/2537720636*20633239^(6/7) 3770005305035167 a001 514229/969323029*20633239^(4/5) 3770005305035167 a001 514229/228826127*20633239^(5/7) 3770005305035168 a001 102334155/1149851*7881196^(1/11) 3770005305035168 a001 14930352/1149851*20633239^(1/5) 3770005305035169 a001 133957148/930249*271443^(1/13) 3770005305035170 a001 514229/33385282*141422324^(7/13) 3770005305035170 a001 514229/33385282*2537720636^(7/15) 3770005305035170 a001 514229/33385282*17393796001^(3/7) 3770005305035170 a001 3838809989304/10182505537 3770005305035170 a001 14930352/1149851*17393796001^(1/7) 3770005305035170 a001 514229/33385282*45537549124^(7/17) 3770005305035170 a001 514229/33385282*(1/2+1/2*5^(1/2))^21 3770005305035170 a001 14930352/1149851*14662949395604^(1/9) 3770005305035170 a001 14930352/1149851*(1/2+1/2*5^(1/2))^7 3770005305035170 a001 514229/33385282*192900153618^(7/18) 3770005305035170 a001 514229/33385282*10749957122^(7/16) 3770005305035170 a001 14930352/1149851*599074578^(1/6) 3770005305035170 a001 514229/33385282*599074578^(1/2) 3770005305035172 a001 39088169/1149851*20633239^(1/7) 3770005305035172 a001 514229/33385282*33385282^(7/12) 3770005305035172 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^52 3770005305035173 a001 39088169/1149851*2537720636^(1/9) 3770005305035173 a001 20100270056701/53316291173 3770005305035173 a001 39088169/1149851*312119004989^(1/11) 3770005305035173 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^23/Lucas(38) 3770005305035173 a001 39088169/1149851*(1/2+1/2*5^(1/2))^5 3770005305035173 a001 39088169/1149851*28143753123^(1/10) 3770005305035173 a001 514229/87403803*4106118243^(1/2) 3770005305035173 a001 39088169/1149851*228826127^(1/8) 3770005305035173 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^54 3770005305035173 a001 514229/45537549124*141422324^(12/13) 3770005305035173 a001 514229/10749957122*141422324^(11/13) 3770005305035173 a001 514229/2537720636*141422324^(10/13) 3770005305035173 a001 514229/599074578*141422324^(9/13) 3770005305035174 a001 514229/370248451*141422324^(2/3) 3770005305035174 a001 102334155/1149851*141422324^(1/13) 3770005305035174 a001 514229/228826127*2537720636^(5/9) 3770005305035174 a001 102334155/1149851*2537720636^(1/15) 3770005305035174 a001 102334155/1149851*45537549124^(1/17) 3770005305035174 a001 514229/228826127*312119004989^(5/11) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(40) 3770005305035174 a001 102334155/1149851*14662949395604^(1/21) 3770005305035174 a001 102334155/1149851*(1/2+1/2*5^(1/2))^3 3770005305035174 a001 102334155/1149851*192900153618^(1/18) 3770005305035174 a001 102334155/1149851*10749957122^(1/16) 3770005305035174 a001 514229/228826127*28143753123^(1/2) 3770005305035174 a001 102334155/1149851*599074578^(1/14) 3770005305035174 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^56 3770005305035174 a001 514229/228826127*228826127^(5/8) 3770005305035174 a001 514229/599074578*2537720636^(3/5) 3770005305035174 a001 514229/599074578*45537549124^(9/17) 3770005305035174 a001 514229/599074578*817138163596^(9/19) 3770005305035174 a001 514229/599074578*14662949395604^(3/7) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(42) 3770005305035174 a001 133957148/1149851+133957148/1149851*5^(1/2) 3770005305035174 a001 514229/599074578*192900153618^(1/2) 3770005305035174 a001 514229/599074578*10749957122^(9/16) 3770005305035174 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^58 3770005305035174 a001 514229/599074578*599074578^(9/14) 3770005305035174 a001 360684711361857/956722026041 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(44) 3770005305035174 a001 514229/1568397607*1322157322203^(1/2) 3770005305035174 a004 Fibonacci(44)/Lucas(29)/(1/2+sqrt(5)/2) 3770005305035174 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^60 3770005305035174 a001 514229/817138163596*2537720636^(14/15) 3770005305035174 a001 514229/312119004989*2537720636^(8/9) 3770005305035174 a001 514229/192900153618*2537720636^(13/15) 3770005305035174 a001 514229/45537549124*2537720636^(4/5) 3770005305035174 a001 514229/10749957122*2537720636^(11/15) 3770005305035174 a001 514229/28143753123*2537720636^(7/9) 3770005305035174 a001 944284833567787/2504730781961 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(46) 3770005305035174 a001 514229/4106118243*9062201101803^(1/2) 3770005305035174 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2)^3 3770005305035174 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^62 3770005305035174 a001 514229/10749957122*45537549124^(11/17) 3770005305035174 a001 514229/10749957122*312119004989^(3/5) 3770005305035174 a001 514229/10749957122*817138163596^(11/19) 3770005305035174 a001 1236084894670752/3278735159921 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(48) 3770005305035174 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^5 3770005305035174 a001 514229/10749957122*192900153618^(11/18) 3770005305035174 a001 514229/28143753123*17393796001^(5/7) 3770005305035174 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^64 3770005305035174 a001 514229/817138163596*17393796001^(6/7) 3770005305035174 a001 514229/10749957122*10749957122^(11/16) 3770005305035174 a001 514229/28143753123*312119004989^(7/11) 3770005305035174 a001 514229/28143753123*14662949395604^(5/9) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(50) 3770005305035174 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^7 3770005305035174 a001 514229/28143753123*505019158607^(5/8) 3770005305035174 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^66 3770005305035174 a001 514229/14662949395604*45537549124^(16/17) 3770005305035174 a001 514229/3461452808002*45537549124^(15/17) 3770005305035174 a001 514229/192900153618*45537549124^(13/17) 3770005305035174 a001 514229/817138163596*45537549124^(14/17) 3770005305035174 a001 514229/28143753123*28143753123^(7/10) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(52) 3770005305035174 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^9 3770005305035174 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^68 3770005305035174 a001 514229/192900153618*14662949395604^(13/21) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(54) 3770005305035174 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^11 3770005305035174 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^70 3770005305035174 a001 514229/2139295485799*312119004989^(4/5) 3770005305035174 a001 514229/192900153618*192900153618^(13/18) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(56) 3770005305035174 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^13 3770005305035174 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^72 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(58) 3770005305035174 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^74 3770005305035174 a001 514229/3461452808002*14662949395604^(5/7) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(60) 3770005305035174 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^76 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(62) 3770005305035174 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^78 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(64) 3770005305035174 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^80 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(66) 3770005305035174 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^82 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(68) 3770005305035174 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^84 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(70) 3770005305035174 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^86 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(72) 3770005305035174 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^88 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(74) 3770005305035174 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^90 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(76) 3770005305035174 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^92 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(78) 3770005305035174 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^94 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(80) 3770005305035174 a004 Fibonacci(29)*Lucas(81)/(1/2+sqrt(5)/2)^96 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(82) 3770005305035174 a004 Fibonacci(29)*Lucas(83)/(1/2+sqrt(5)/2)^98 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(84) 3770005305035174 a004 Fibonacci(29)*Lucas(85)/(1/2+sqrt(5)/2)^100 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(86) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(88) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(90) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(92) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(94) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^81/Lucas(96) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^83/Lucas(98) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^84/Lucas(99) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^85/Lucas(100) 3770005305035174 a004 Fibonacci(29)*Lucas(1)/(1/2+sqrt(5)/2)^15 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^82/Lucas(97) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^80/Lucas(95) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(93) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(91) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(89) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(87) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(85) 3770005305035174 a004 Fibonacci(29)*Lucas(84)/(1/2+sqrt(5)/2)^99 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(83) 3770005305035174 a004 Fibonacci(29)*Lucas(82)/(1/2+sqrt(5)/2)^97 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(81) 3770005305035174 a004 Fibonacci(29)*Lucas(80)/(1/2+sqrt(5)/2)^95 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(79) 3770005305035174 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^93 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(77) 3770005305035174 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^91 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(75) 3770005305035174 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^89 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(73) 3770005305035174 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^87 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(71) 3770005305035174 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^85 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(69) 3770005305035174 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^83 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(67) 3770005305035174 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^81 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(65) 3770005305035174 a001 514229/14662949395604*14662949395604^(16/21) 3770005305035174 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^79 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(63) 3770005305035174 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^77 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(61) 3770005305035174 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^75 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(59) 3770005305035174 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^17 3770005305035174 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^19 3770005305035174 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^21 3770005305035174 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^23 3770005305035174 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^25 3770005305035174 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^27 3770005305035174 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^29 3770005305035174 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^31 3770005305035174 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^33 3770005305035174 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^35 3770005305035174 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^37 3770005305035174 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^39 3770005305035174 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^41 3770005305035174 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^43 3770005305035174 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^45 3770005305035174 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^47 3770005305035174 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^49 3770005305035174 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^51 3770005305035174 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^53 3770005305035174 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^55 3770005305035174 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^57 3770005305035174 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^73 3770005305035174 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^56 3770005305035174 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^54 3770005305035174 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^52 3770005305035174 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^50 3770005305035174 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^48 3770005305035174 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^46 3770005305035174 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^44 3770005305035174 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^42 3770005305035174 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^40 3770005305035174 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^38 3770005305035174 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^36 3770005305035174 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^34 3770005305035174 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^32 3770005305035174 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^30 3770005305035174 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^28 3770005305035174 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^26 3770005305035174 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^24 3770005305035174 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^22 3770005305035174 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^20 3770005305035174 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^18 3770005305035174 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^16 3770005305035174 a001 514229/817138163596*14662949395604^(2/3) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(57) 3770005305035174 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^14 3770005305035174 a001 514229/23725150497407*505019158607^(7/8) 3770005305035174 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^71 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(55) 3770005305035174 a001 514229/312119004989*23725150497407^(5/8) 3770005305035174 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^12 3770005305035174 a001 514229/3461452808002*192900153618^(5/6) 3770005305035174 a001 514229/14662949395604*192900153618^(8/9) 3770005305035174 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^69 3770005305035174 a001 514229/119218851371*817138163596^(2/3) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(53) 3770005305035174 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^10 3770005305035174 a001 514229/192900153618*73681302247^(3/4) 3770005305035174 a001 514229/45537549124*45537549124^(12/17) 3770005305035174 a001 514229/2139295485799*73681302247^(11/13) 3770005305035174 a001 514229/14662949395604*73681302247^(12/13) 3770005305035174 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^67 3770005305035174 a001 514229/45537549124*14662949395604^(4/7) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(51) 3770005305035174 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^8 3770005305035174 a001 514229/45537549124*505019158607^(9/14) 3770005305035174 a001 514229/45537549124*192900153618^(2/3) 3770005305035174 a001 514229/45537549124*73681302247^(9/13) 3770005305035174 a001 514229/312119004989*28143753123^(4/5) 3770005305035174 a001 514229/3461452808002*28143753123^(9/10) 3770005305035174 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^65 3770005305035174 a001 514229/17393796001*45537549124^(2/3) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(49) 3770005305035174 a001 4000054745115221/10610209857723 3770005305035174 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^6 3770005305035174 a001 514229/119218851371*10749957122^(19/24) 3770005305035174 a001 514229/45537549124*10749957122^(3/4) 3770005305035174 a001 514229/192900153618*10749957122^(13/16) 3770005305035174 a001 514229/312119004989*10749957122^(5/6) 3770005305035174 a001 514229/817138163596*10749957122^(7/8) 3770005305035174 a001 514229/2139295485799*10749957122^(11/12) 3770005305035174 a001 514229/3461452808002*10749957122^(15/16) 3770005305035174 a001 514229/5600748293801*10749957122^(23/24) 3770005305035174 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^63 3770005305035174 a001 514229/17393796001*10749957122^(17/24) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(47) 3770005305035174 a001 1527884955773717/4052739537881 3770005305035174 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^4 3770005305035174 a001 514229/6643838879*505019158607^(4/7) 3770005305035174 a001 514229/6643838879*73681302247^(8/13) 3770005305035174 a001 514229/6643838879*10749957122^(2/3) 3770005305035174 a001 514229/45537549124*4106118243^(18/23) 3770005305035174 a001 514229/17393796001*4106118243^(17/23) 3770005305035174 a001 514229/119218851371*4106118243^(19/23) 3770005305035174 a001 514229/312119004989*4106118243^(20/23) 3770005305035174 a001 514229/2537720636*2537720636^(2/3) 3770005305035174 a001 514229/817138163596*4106118243^(21/23) 3770005305035174 a001 514229/2139295485799*4106118243^(22/23) 3770005305035174 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^61 3770005305035174 a001 514229/6643838879*4106118243^(16/23) 3770005305035174 a001 514229/2537720636*45537549124^(10/17) 3770005305035174 a001 514229/2537720636*312119004989^(6/11) 3770005305035174 a001 514229/2537720636*14662949395604^(10/21) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(45) 3770005305035174 a001 956721511813/2537719272 3770005305035174 a004 Fibonacci(45)/Lucas(29)/(1/2+sqrt(5)/2)^2 3770005305035174 a001 514229/2537720636*192900153618^(5/9) 3770005305035174 a001 514229/2537720636*28143753123^(3/5) 3770005305035174 a001 514229/2537720636*10749957122^(5/8) 3770005305035174 a001 514229/2537720636*4106118243^(15/23) 3770005305035174 a001 514229/10749957122*1568397607^(3/4) 3770005305035174 a001 514229/17393796001*1568397607^(17/22) 3770005305035174 a001 514229/6643838879*1568397607^(8/11) 3770005305035174 a001 514229/45537549124*1568397607^(9/11) 3770005305035174 a001 514229/119218851371*1568397607^(19/22) 3770005305035174 a001 514229/312119004989*1568397607^(10/11) 3770005305035174 a001 514229/817138163596*1568397607^(21/22) 3770005305035174 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^59 3770005305035174 a001 514229/2537720636*1568397607^(15/22) 3770005305035174 a001 514229/969323029*17393796001^(4/7) 3770005305035174 a001 514229/969323029*14662949395604^(4/9) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(43) 3770005305035174 a001 433494437/1149851 3770005305035174 a001 514229/969323029*73681302247^(7/13) 3770005305035174 a001 514229/969323029*10749957122^(7/12) 3770005305035174 a001 514229/969323029*4106118243^(14/23) 3770005305035174 a001 514229/969323029*1568397607^(7/11) 3770005305035174 a001 514229/2537720636*599074578^(5/7) 3770005305035174 a001 514229/6643838879*599074578^(16/21) 3770005305035174 a001 514229/10749957122*599074578^(11/14) 3770005305035174 a001 514229/17393796001*599074578^(17/21) 3770005305035174 a001 514229/28143753123*599074578^(5/6) 3770005305035174 a001 514229/45537549124*599074578^(6/7) 3770005305035174 a001 514229/119218851371*599074578^(19/21) 3770005305035174 a001 514229/192900153618*599074578^(13/14) 3770005305035174 a001 514229/312119004989*599074578^(20/21) 3770005305035174 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^57 3770005305035174 a001 514229/969323029*599074578^(2/3) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(41) 3770005305035174 a001 165580141/1149851*(1/2+1/2*5^(1/2))^2 3770005305035174 a001 85146110326289/225851433717 3770005305035174 a001 514229/370248451*73681302247^(1/2) 3770005305035174 a001 165580141/1149851*10749957122^(1/24) 3770005305035174 a001 165580141/1149851*4106118243^(1/23) 3770005305035174 a001 514229/370248451*10749957122^(13/24) 3770005305035174 a001 165580141/1149851*1568397607^(1/22) 3770005305035174 a001 514229/370248451*4106118243^(13/23) 3770005305035174 a001 165580141/1149851*599074578^(1/21) 3770005305035174 a001 514229/370248451*1568397607^(13/22) 3770005305035174 a001 165580141/1149851*228826127^(1/20) 3770005305035174 a001 514229/370248451*599074578^(13/21) 3770005305035174 a001 165580141/1149851*87403803^(1/19) 3770005305035174 a001 514229/969323029*228826127^(7/10) 3770005305035174 a001 514229/2537720636*228826127^(3/4) 3770005305035174 a001 514229/6643838879*228826127^(4/5) 3770005305035174 a001 514229/17393796001*228826127^(17/20) 3770005305035174 a001 514229/28143753123*228826127^(7/8) 3770005305035174 a001 514229/45537549124*228826127^(9/10) 3770005305035174 a001 514229/119218851371*228826127^(19/20) 3770005305035174 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^55 3770005305035174 a001 514229/141422324*141422324^(8/13) 3770005305035174 a001 514229/370248451*228826127^(13/20) 3770005305035174 a001 514229/141422324*2537720636^(8/15) 3770005305035174 a001 514229/141422324*45537549124^(8/17) 3770005305035174 a001 514229/141422324*14662949395604^(8/21) 3770005305035174 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(39) 3770005305035174 a001 63245986/1149851*(1/2+1/2*5^(1/2))^4 3770005305035174 a001 63245986/1149851*23725150497407^(1/16) 3770005305035174 a001 514229/141422324*192900153618^(4/9) 3770005305035174 a001 16261460067397/43133785636 3770005305035174 a001 514229/141422324*73681302247^(6/13) 3770005305035174 a001 63245986/1149851*10749957122^(1/12) 3770005305035174 a001 514229/141422324*10749957122^(1/2) 3770005305035174 a001 63245986/1149851*4106118243^(2/23) 3770005305035174 a001 514229/141422324*4106118243^(12/23) 3770005305035174 a001 63245986/1149851*1568397607^(1/11) 3770005305035174 a001 514229/141422324*1568397607^(6/11) 3770005305035174 a001 63245986/1149851*599074578^(2/21) 3770005305035174 a001 514229/141422324*599074578^(4/7) 3770005305035174 a001 63245986/1149851*228826127^(1/10) 3770005305035174 a001 102334155/1149851*33385282^(1/12) 3770005305035174 a001 165580141/1149851*33385282^(1/18) 3770005305035174 a001 514229/141422324*228826127^(3/5) 3770005305035174 a001 63245986/1149851*87403803^(2/19) 3770005305035174 a001 514229/370248451*87403803^(13/19) 3770005305035174 a001 514229/969323029*87403803^(14/19) 3770005305035174 a001 514229/2537720636*87403803^(15/19) 3770005305035174 a001 514229/6643838879*87403803^(16/19) 3770005305035174 a001 514229/17393796001*87403803^(17/19) 3770005305035174 a001 514229/45537549124*87403803^(18/19) 3770005305035174 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^53 3770005305035174 a001 514229/141422324*87403803^(12/19) 3770005305035174 a001 63245986/1149851*33385282^(1/9) 3770005305035175 a001 24157817/1149851*141422324^(2/13) 3770005305035175 a001 24157817/1149851*2537720636^(2/15) 3770005305035175 a001 24157817/1149851*45537549124^(2/17) 3770005305035175 a001 514229/54018521*312119004989^(2/5) 3770005305035175 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^22/Lucas(37) 3770005305035175 a001 24157817/1149851*14662949395604^(2/21) 3770005305035175 a001 24157817/1149851*(1/2+1/2*5^(1/2))^6 3770005305035175 a001 12422650078093/32951280099 3770005305035175 a001 24157817/1149851*10749957122^(1/8) 3770005305035175 a001 514229/54018521*10749957122^(11/24) 3770005305035175 a001 24157817/1149851*4106118243^(3/23) 3770005305035175 a001 514229/54018521*4106118243^(11/23) 3770005305035175 a001 24157817/1149851*1568397607^(3/22) 3770005305035175 a001 514229/54018521*1568397607^(1/2) 3770005305035175 a001 24157817/1149851*599074578^(1/7) 3770005305035175 a001 514229/54018521*599074578^(11/21) 3770005305035175 a001 24157817/1149851*228826127^(3/20) 3770005305035175 a001 514229/54018521*228826127^(11/20) 3770005305035175 a001 24157817/1149851*87403803^(3/19) 3770005305035175 a001 165580141/1149851*12752043^(1/17) 3770005305035175 a001 514229/54018521*87403803^(11/19) 3770005305035175 a001 24157817/1149851*33385282^(1/6) 3770005305035176 a001 514229/141422324*33385282^(2/3) 3770005305035176 a001 514229/370248451*33385282^(13/18) 3770005305035176 a001 514229/599074578*33385282^(3/4) 3770005305035176 a001 514229/969323029*33385282^(7/9) 3770005305035176 a001 514229/2537720636*33385282^(5/6) 3770005305035177 a001 63245986/1149851*12752043^(2/17) 3770005305035177 a001 514229/6643838879*33385282^(8/9) 3770005305035177 a001 514229/10749957122*33385282^(11/12) 3770005305035177 a001 514229/17393796001*33385282^(17/18) 3770005305035177 a001 514229/54018521*33385282^(11/18) 3770005305035177 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^51 3770005305035177 a001 514229/20633239*20633239^(4/7) 3770005305035179 a001 24157817/1149851*12752043^(3/17) 3770005305035182 a001 514229/20633239*2537720636^(4/9) 3770005305035182 a001 514229/20633239*(1/2+1/2*5^(1/2))^20 3770005305035182 a001 514229/20633239*23725150497407^(5/16) 3770005305035182 a001 9227465/1149851*(1/2+1/2*5^(1/2))^8 3770005305035182 a001 9227465/1149851*505019158607^(1/7) 3770005305035182 a001 514229/20633239*505019158607^(5/14) 3770005305035182 a001 9227465/1149851*73681302247^(2/13) 3770005305035182 a001 514229/20633239*73681302247^(5/13) 3770005305035182 a001 514229/20633239*28143753123^(2/5) 3770005305035182 a001 949006019897/2517253805 3770005305035182 a001 9227465/1149851*10749957122^(1/6) 3770005305035182 a001 514229/20633239*10749957122^(5/12) 3770005305035182 a001 9227465/1149851*4106118243^(4/23) 3770005305035182 a001 514229/20633239*4106118243^(10/23) 3770005305035182 a001 9227465/1149851*1568397607^(2/11) 3770005305035182 a001 514229/20633239*1568397607^(5/11) 3770005305035182 a001 9227465/1149851*599074578^(4/21) 3770005305035182 a001 514229/20633239*599074578^(10/21) 3770005305035182 a001 9227465/1149851*228826127^(1/5) 3770005305035183 a001 514229/20633239*228826127^(1/2) 3770005305035183 a001 9227465/1149851*87403803^(4/19) 3770005305035183 a001 514229/20633239*87403803^(10/19) 3770005305035183 a001 9227465/1149851*33385282^(2/9) 3770005305035184 a001 165580141/1149851*4870847^(1/16) 3770005305035184 a001 514229/20633239*33385282^(5/9) 3770005305035188 a001 9227465/1149851*12752043^(4/17) 3770005305035190 a001 514229/54018521*12752043^(11/17) 3770005305035190 a001 514229/141422324*12752043^(12/17) 3770005305035191 a001 514229/370248451*12752043^(13/17) 3770005305035193 a001 514229/969323029*12752043^(14/17) 3770005305035194 a001 63245986/1149851*4870847^(1/8) 3770005305035194 a001 514229/2537720636*12752043^(15/17) 3770005305035195 a001 514229/6643838879*12752043^(16/17) 3770005305035196 a001 514229/20633239*12752043^(10/17) 3770005305035197 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^49 3770005305035201 a001 514229/7881196*7881196^(6/11) 3770005305035205 a001 24157817/1149851*4870847^(3/16) 3770005305035222 a001 9227465/1149851*4870847^(1/4) 3770005305035232 a001 3524578/1149851*20633239^(2/7) 3770005305035234 a001 514229/7881196*141422324^(6/13) 3770005305035234 a001 514229/7881196*2537720636^(2/5) 3770005305035234 a001 3524578/1149851*2537720636^(2/9) 3770005305035234 a001 514229/7881196*45537549124^(6/17) 3770005305035234 a001 3524578/1149851*312119004989^(2/11) 3770005305035234 a001 514229/7881196*(1/2+1/2*5^(1/2))^18 3770005305035234 a001 3524578/1149851*(1/2+1/2*5^(1/2))^10 3770005305035234 a001 514229/7881196*192900153618^(1/3) 3770005305035234 a001 3524578/1149851*28143753123^(1/5) 3770005305035234 a001 3524578/1149851*10749957122^(5/24) 3770005305035234 a001 514229/7881196*10749957122^(3/8) 3770005305035234 a001 906220110181/2403763488 3770005305035234 a001 3524578/1149851*4106118243^(5/23) 3770005305035234 a001 514229/7881196*4106118243^(9/23) 3770005305035234 a001 3524578/1149851*1568397607^(5/22) 3770005305035234 a001 514229/7881196*1568397607^(9/22) 3770005305035234 a001 3524578/1149851*599074578^(5/21) 3770005305035234 a001 514229/7881196*599074578^(3/7) 3770005305035234 a001 3524578/1149851*228826127^(1/4) 3770005305035234 a001 514229/7881196*228826127^(9/20) 3770005305035234 a001 3524578/1149851*87403803^(5/19) 3770005305035235 a001 514229/7881196*87403803^(9/19) 3770005305035235 a001 3524578/1149851*33385282^(5/18) 3770005305035236 a001 514229/7881196*33385282^(1/2) 3770005305035241 a001 3524578/1149851*12752043^(5/17) 3770005305035246 a001 165580141/1149851*1860498^(1/15) 3770005305035247 a001 514229/7881196*12752043^(9/17) 3770005305035282 a001 514229/20633239*4870847^(5/8) 3770005305035282 a001 102334155/1149851*1860498^(1/10) 3770005305035284 a001 3524578/1149851*4870847^(5/16) 3770005305035284 a001 514229/54018521*4870847^(11/16) 3770005305035293 a001 514229/141422324*4870847^(3/4) 3770005305035303 a001 514229/370248451*4870847^(13/16) 3770005305035313 a001 514229/969323029*4870847^(7/8) 3770005305035319 a001 63245986/1149851*1860498^(2/15) 3770005305035323 a001 514229/2537720636*4870847^(15/16) 3770005305035324 a001 514229/7881196*4870847^(9/16) 3770005305035333 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^47 3770005305035339 a001 5702887/4870847*710647^(3/7) 3770005305035340 a001 832040/4870847*710647^(4/7) 3770005305035355 a001 39088169/1149851*1860498^(1/6) 3770005305035393 a001 24157817/1149851*1860498^(1/5) 3770005305035413 a001 9227465/3010349*710647^(5/14) 3770005305035473 a001 9227465/1149851*1860498^(4/15) 3770005305035477 a001 5702887/1149851*1860498^(3/10) 3770005305035495 a001 4976784/4250681*710647^(3/7) 3770005305035518 a001 39088169/33385282*710647^(3/7) 3770005305035521 a001 34111385/29134601*710647^(3/7) 3770005305035521 a001 267914296/228826127*710647^(3/7) 3770005305035522 a001 233802911/199691526*710647^(3/7) 3770005305035522 a001 1836311903/1568397607*710647^(3/7) 3770005305035522 a001 1602508992/1368706081*710647^(3/7) 3770005305035522 a001 12586269025/10749957122*710647^(3/7) 3770005305035522 a001 10983760033/9381251041*710647^(3/7) 3770005305035522 a001 86267571272/73681302247*710647^(3/7) 3770005305035522 a001 75283811239/64300051206*710647^(3/7) 3770005305035522 a001 2504730781961/2139295485799*710647^(3/7) 3770005305035522 a001 365435296162/312119004989*710647^(3/7) 3770005305035522 a001 139583862445/119218851371*710647^(3/7) 3770005305035522 a001 53316291173/45537549124*710647^(3/7) 3770005305035522 a001 20365011074/17393796001*710647^(3/7) 3770005305035522 a001 7778742049/6643838879*710647^(3/7) 3770005305035522 a001 2971215073/2537720636*710647^(3/7) 3770005305035522 a001 1134903170/969323029*710647^(3/7) 3770005305035522 a001 433494437/370248451*710647^(3/7) 3770005305035522 a001 165580141/141422324*710647^(3/7) 3770005305035523 a001 63245986/54018521*710647^(3/7) 3770005305035532 a001 24157817/20633239*710647^(3/7) 3770005305035568 a001 1346269/1149851*7881196^(4/11) 3770005305035590 a001 1346269/1149851*141422324^(4/13) 3770005305035590 a001 1346269/1149851*2537720636^(4/15) 3770005305035590 a001 1346269/1149851*45537549124^(4/17) 3770005305035590 a001 514229/3010349*(1/2+1/2*5^(1/2))^16 3770005305035590 a001 514229/3010349*23725150497407^(1/4) 3770005305035590 a001 1346269/1149851*817138163596^(4/19) 3770005305035590 a001 1346269/1149851*14662949395604^(4/21) 3770005305035590 a001 1346269/1149851*(1/2+1/2*5^(1/2))^12 3770005305035590 a001 1346269/1149851*192900153618^(2/9) 3770005305035590 a001 1346269/1149851*73681302247^(3/13) 3770005305035590 a001 514229/3010349*73681302247^(4/13) 3770005305035590 a001 1346269/1149851*10749957122^(1/4) 3770005305035590 a001 514229/3010349*10749957122^(1/3) 3770005305035590 a001 1346269/1149851*4106118243^(6/23) 3770005305035590 a001 514229/3010349*4106118243^(8/23) 3770005305035590 a001 692290561601/1836311903 3770005305035590 a001 1346269/1149851*1568397607^(3/11) 3770005305035590 a001 514229/3010349*1568397607^(4/11) 3770005305035590 a001 1346269/1149851*599074578^(2/7) 3770005305035590 a001 514229/3010349*599074578^(8/21) 3770005305035590 a001 1346269/1149851*228826127^(3/10) 3770005305035590 a001 514229/3010349*228826127^(2/5) 3770005305035590 a001 1346269/1149851*87403803^(6/19) 3770005305035590 a001 514229/3010349*87403803^(8/19) 3770005305035591 a001 1346269/1149851*33385282^(1/3) 3770005305035591 a001 9227465/7881196*710647^(3/7) 3770005305035591 a001 514229/3010349*33385282^(4/9) 3770005305035597 a001 3524578/1149851*1860498^(1/3) 3770005305035598 a001 1346269/1149851*12752043^(6/17) 3770005305035601 a001 514229/3010349*12752043^(8/17) 3770005305035649 a001 1346269/1149851*4870847^(3/8) 3770005305035669 a001 514229/3010349*4870847^(1/2) 3770005305035707 a001 165580141/1149851*710647^(1/14) 3770005305035737 a001 2178309/4870847*710647^(1/2) 3770005305035888 a001 514229/7881196*1860498^(3/5) 3770005305035909 a001 514229/20633239*1860498^(2/3) 3770005305035933 a001 514229/33385282*1860498^(7/10) 3770005305035974 a001 514229/54018521*1860498^(11/15) 3770005305035998 a001 3524578/3010349*710647^(3/7) 3770005305036008 a001 5702887/12752043*710647^(1/2) 3770005305036009 a001 832040/12752043*710647^(9/14) 3770005305036025 a001 1346269/1149851*1860498^(2/5) 3770005305036045 a001 514229/141422324*1860498^(4/5) 3770005305036048 a001 7465176/16692641*710647^(1/2) 3770005305036054 a001 39088169/87403803*710647^(1/2) 3770005305036055 a001 102334155/228826127*710647^(1/2) 3770005305036055 a001 133957148/299537289*710647^(1/2) 3770005305036055 a001 701408733/1568397607*710647^(1/2) 3770005305036055 a001 1836311903/4106118243*710647^(1/2) 3770005305036055 a001 2403763488/5374978561*710647^(1/2) 3770005305036055 a001 12586269025/28143753123*710647^(1/2) 3770005305036055 a001 32951280099/73681302247*710647^(1/2) 3770005305036055 a001 43133785636/96450076809*710647^(1/2) 3770005305036055 a001 225851433717/505019158607*710647^(1/2) 3770005305036055 a001 591286729879/1322157322203*710647^(1/2) 3770005305036055 a001 10610209857723/23725150497407*710647^(1/2) 3770005305036055 a001 139583862445/312119004989*710647^(1/2) 3770005305036055 a001 53316291173/119218851371*710647^(1/2) 3770005305036055 a001 10182505537/22768774562*710647^(1/2) 3770005305036055 a001 7778742049/17393796001*710647^(1/2) 3770005305036055 a001 2971215073/6643838879*710647^(1/2) 3770005305036055 a001 567451585/1268860318*710647^(1/2) 3770005305036055 a001 433494437/969323029*710647^(1/2) 3770005305036055 a001 165580141/370248451*710647^(1/2) 3770005305036055 a001 31622993/70711162*710647^(1/2) 3770005305036057 a001 24157817/54018521*710647^(1/2) 3770005305036072 a001 9227465/20633239*710647^(1/2) 3770005305036081 a001 514229/228826127*1860498^(5/6) 3770005305036099 a001 701408733/4870847*271443^(1/13) 3770005305036118 a001 514229/370248451*1860498^(13/15) 3770005305036154 a001 514229/599074578*1860498^(9/10) 3770005305036171 a001 514229/3010349*1860498^(8/15) 3770005305036176 a001 1762289/3940598*710647^(1/2) 3770005305036190 a001 514229/969323029*1860498^(14/15) 3770005305036235 a001 1836311903/12752043*271443^(1/13) 3770005305036240 a001 63245986/1149851*710647^(1/7) 3770005305036255 a001 14930208/103681*271443^(1/13) 3770005305036258 a001 12586269025/87403803*271443^(1/13) 3770005305036258 a001 32951280099/228826127*271443^(1/13) 3770005305036258 a001 43133785636/299537289*271443^(1/13) 3770005305036258 a001 32264490531/224056801*271443^(1/13) 3770005305036258 a001 591286729879/4106118243*271443^(1/13) 3770005305036258 a001 774004377960/5374978561*271443^(1/13) 3770005305036258 a001 4052739537881/28143753123*271443^(1/13) 3770005305036258 a001 1515744265389/10525900321*271443^(1/13) 3770005305036258 a001 3278735159921/22768774562*271443^(1/13) 3770005305036258 a001 2504730781961/17393796001*271443^(1/13) 3770005305036258 a001 956722026041/6643838879*271443^(1/13) 3770005305036258 a001 182717648081/1268860318*271443^(1/13) 3770005305036258 a001 139583862445/969323029*271443^(1/13) 3770005305036258 a001 53316291173/370248451*271443^(1/13) 3770005305036258 a001 10182505537/70711162*271443^(1/13) 3770005305036259 a001 7778742049/54018521*271443^(1/13) 3770005305036263 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^45 3770005305036267 a001 2971215073/20633239*271443^(1/13) 3770005305036319 a001 567451585/3940598*271443^(1/13) 3770005305036406 a001 726103/4250681*710647^(4/7) 3770005305036561 a001 5702887/33385282*710647^(4/7) 3770005305036562 a001 416020/16692641*710647^(5/7) 3770005305036584 a001 4976784/29134601*710647^(4/7) 3770005305036587 a001 39088169/228826127*710647^(4/7) 3770005305036588 a001 34111385/199691526*710647^(4/7) 3770005305036588 a001 267914296/1568397607*710647^(4/7) 3770005305036588 a001 233802911/1368706081*710647^(4/7) 3770005305036588 a001 1836311903/10749957122*710647^(4/7) 3770005305036588 a001 1602508992/9381251041*710647^(4/7) 3770005305036588 a001 12586269025/73681302247*710647^(4/7) 3770005305036588 a001 10983760033/64300051206*710647^(4/7) 3770005305036588 a001 86267571272/505019158607*710647^(4/7) 3770005305036588 a001 75283811239/440719107401*710647^(4/7) 3770005305036588 a001 2504730781961/14662949395604*710647^(4/7) 3770005305036588 a001 139583862445/817138163596*710647^(4/7) 3770005305036588 a001 53316291173/312119004989*710647^(4/7) 3770005305036588 a001 20365011074/119218851371*710647^(4/7) 3770005305036588 a001 7778742049/45537549124*710647^(4/7) 3770005305036588 a001 2971215073/17393796001*710647^(4/7) 3770005305036588 a001 1134903170/6643838879*710647^(4/7) 3770005305036588 a001 433494437/2537720636*710647^(4/7) 3770005305036588 a001 165580141/969323029*710647^(4/7) 3770005305036588 a001 63245986/370248451*710647^(4/7) 3770005305036589 a001 24157817/141422324*710647^(4/7) 3770005305036598 a001 9227465/54018521*710647^(4/7) 3770005305036642 a001 196418/12752043*439204^(7/9) 3770005305036658 a001 3524578/20633239*710647^(4/7) 3770005305036661 a001 14930352/710647*271443^(3/13) 3770005305036674 a001 433494437/3010349*271443^(1/13) 3770005305036775 a001 24157817/1149851*710647^(3/14) 3770005305036833 a001 832040/54018521*710647^(3/4) 3770005305036887 a001 1346269/3010349*710647^(1/2) 3770005305036959 a001 311187/4769326*710647^(9/14) 3770005305037037 a001 14930352/1149851*710647^(1/4) 3770005305037065 a001 1346269/7881196*710647^(4/7) 3770005305037098 a001 5702887/87403803*710647^(9/14) 3770005305037098 a001 832040/87403803*710647^(11/14) 3770005305037118 a001 14930352/228826127*710647^(9/14) 3770005305037121 a001 39088169/599074578*710647^(9/14) 3770005305037121 a001 14619165/224056801*710647^(9/14) 3770005305037121 a001 267914296/4106118243*710647^(9/14) 3770005305037121 a001 701408733/10749957122*710647^(9/14) 3770005305037121 a001 1836311903/28143753123*710647^(9/14) 3770005305037121 a001 686789568/10525900321*710647^(9/14) 3770005305037121 a001 12586269025/192900153618*710647^(9/14) 3770005305037121 a001 32951280099/505019158607*710647^(9/14) 3770005305037121 a001 86267571272/1322157322203*710647^(9/14) 3770005305037121 a001 32264490531/494493258286*710647^(9/14) 3770005305037121 a001 591286729879/9062201101803*710647^(9/14) 3770005305037121 a001 1548008755920/23725150497407*710647^(9/14) 3770005305037121 a001 365435296162/5600748293801*710647^(9/14) 3770005305037121 a001 139583862445/2139295485799*710647^(9/14) 3770005305037121 a001 53316291173/817138163596*710647^(9/14) 3770005305037121 a001 20365011074/312119004989*710647^(9/14) 3770005305037121 a001 7778742049/119218851371*710647^(9/14) 3770005305037121 a001 2971215073/45537549124*710647^(9/14) 3770005305037121 a001 1134903170/17393796001*710647^(9/14) 3770005305037121 a001 433494437/6643838879*710647^(9/14) 3770005305037121 a001 165580141/2537720636*710647^(9/14) 3770005305037121 a001 63245986/969323029*710647^(9/14) 3770005305037123 a001 24157817/370248451*710647^(9/14) 3770005305037130 a001 9227465/141422324*710647^(9/14) 3770005305037183 a001 3524578/54018521*710647^(9/14) 3770005305037315 a001 9227465/1149851*710647^(2/7) 3770005305037495 a001 726103/29134601*710647^(5/7) 3770005305037546 a001 1346269/20633239*710647^(9/14) 3770005305037631 a001 5702887/228826127*710647^(5/7) 3770005305037632 a001 832040/228826127*710647^(6/7) 3770005305037651 a001 829464/33281921*710647^(5/7) 3770005305037654 a001 39088169/1568397607*710647^(5/7) 3770005305037654 a001 34111385/1368706081*710647^(5/7) 3770005305037654 a001 133957148/5374978561*710647^(5/7) 3770005305037654 a001 233802911/9381251041*710647^(5/7) 3770005305037654 a001 1836311903/73681302247*710647^(5/7) 3770005305037654 a001 267084832/10716675201*710647^(5/7) 3770005305037654 a001 12586269025/505019158607*710647^(5/7) 3770005305037654 a001 10983760033/440719107401*710647^(5/7) 3770005305037654 a001 43133785636/1730726404001*710647^(5/7) 3770005305037654 a001 75283811239/3020733700601*710647^(5/7) 3770005305037654 a001 182717648081/7331474697802*710647^(5/7) 3770005305037654 a001 139583862445/5600748293801*710647^(5/7) 3770005305037654 a001 53316291173/2139295485799*710647^(5/7) 3770005305037654 a001 10182505537/408569081798*710647^(5/7) 3770005305037654 a001 7778742049/312119004989*710647^(5/7) 3770005305037654 a001 2971215073/119218851371*710647^(5/7) 3770005305037654 a001 567451585/22768774562*710647^(5/7) 3770005305037654 a001 433494437/17393796001*710647^(5/7) 3770005305037654 a001 165580141/6643838879*710647^(5/7) 3770005305037655 a001 31622993/1268860318*710647^(5/7) 3770005305037656 a001 24157817/969323029*710647^(5/7) 3770005305037663 a001 9227465/370248451*710647^(5/7) 3770005305037715 a001 1762289/70711162*710647^(5/7) 3770005305037762 a001 2178309/141422324*710647^(3/4) 3770005305037898 a001 5702887/370248451*710647^(3/4) 3770005305037900 a001 3524578/1149851*710647^(5/14) 3770005305037918 a001 14930352/969323029*710647^(3/4) 3770005305037921 a001 39088169/2537720636*710647^(3/4) 3770005305037921 a001 102334155/6643838879*710647^(3/4) 3770005305037921 a001 9238424/599786069*710647^(3/4) 3770005305037921 a001 701408733/45537549124*710647^(3/4) 3770005305037921 a001 1836311903/119218851371*710647^(3/4) 3770005305037921 a001 4807526976/312119004989*710647^(3/4) 3770005305037921 a001 12586269025/817138163596*710647^(3/4) 3770005305037921 a001 32951280099/2139295485799*710647^(3/4) 3770005305037921 a001 86267571272/5600748293801*710647^(3/4) 3770005305037921 a001 7787980473/505618944676*710647^(3/4) 3770005305037921 a001 365435296162/23725150497407*710647^(3/4) 3770005305037921 a001 139583862445/9062201101803*710647^(3/4) 3770005305037921 a001 53316291173/3461452808002*710647^(3/4) 3770005305037921 a001 20365011074/1322157322203*710647^(3/4) 3770005305037921 a001 7778742049/505019158607*710647^(3/4) 3770005305037921 a001 2971215073/192900153618*710647^(3/4) 3770005305037921 a001 1134903170/73681302247*710647^(3/4) 3770005305037921 a001 433494437/28143753123*710647^(3/4) 3770005305037921 a001 165580141/10749957122*710647^(3/4) 3770005305037921 a001 63245986/4106118243*710647^(3/4) 3770005305037922 a001 24157817/1568397607*710647^(3/4) 3770005305037930 a001 9227465/599074578*710647^(3/4) 3770005305037982 a001 3524578/228826127*710647^(3/4) 3770005305038021 a001 514229/1149851*20633239^(2/5) 3770005305038025 a001 514229/1149851*17393796001^(2/7) 3770005305038025 a001 514229/1149851*14662949395604^(2/9) 3770005305038025 a001 514229/1149851*(1/2+1/2*5^(1/2))^14 3770005305038025 a001 514229/1149851*10749957122^(7/24) 3770005305038025 a001 514229/1149851*4106118243^(7/23) 3770005305038025 a001 514229/1149851*1568397607^(7/22) 3770005305038025 a001 264431464441/701408733 3770005305038025 a001 514229/1149851*599074578^(1/3) 3770005305038025 a001 514229/1149851*228826127^(7/20) 3770005305038025 a001 514229/1149851*87403803^(7/19) 3770005305038026 a001 514229/1149851*33385282^(7/18) 3770005305038029 a001 46347/4868641*710647^(11/14) 3770005305038035 a001 514229/1149851*12752043^(7/17) 3770005305038072 a001 1346269/54018521*710647^(5/7) 3770005305038095 a001 514229/1149851*4870847^(7/16) 3770005305038164 a001 5702887/599074578*710647^(11/14) 3770005305038165 a001 416020/299537289*710647^(13/14) 3770005305038184 a001 14930352/1568397607*710647^(11/14) 3770005305038187 a001 39088169/4106118243*710647^(11/14) 3770005305038188 a001 102334155/10749957122*710647^(11/14) 3770005305038188 a001 267914296/28143753123*710647^(11/14) 3770005305038188 a001 701408733/73681302247*710647^(11/14) 3770005305038188 a001 1836311903/192900153618*710647^(11/14) 3770005305038188 a001 102287808/10745088481*710647^(11/14) 3770005305038188 a001 12586269025/1322157322203*710647^(11/14) 3770005305038188 a001 32951280099/3461452808002*710647^(11/14) 3770005305038188 a001 86267571272/9062201101803*710647^(11/14) 3770005305038188 a001 225851433717/23725150497407*710647^(11/14) 3770005305038188 a001 139583862445/14662949395604*710647^(11/14) 3770005305038188 a001 53316291173/5600748293801*710647^(11/14) 3770005305038188 a001 20365011074/2139295485799*710647^(11/14) 3770005305038188 a001 7778742049/817138163596*710647^(11/14) 3770005305038188 a001 2971215073/312119004989*710647^(11/14) 3770005305038188 a001 1134903170/119218851371*710647^(11/14) 3770005305038188 a001 433494437/45537549124*710647^(11/14) 3770005305038188 a001 165580141/17393796001*710647^(11/14) 3770005305038188 a001 63245986/6643838879*710647^(11/14) 3770005305038189 a001 24157817/2537720636*710647^(11/14) 3770005305038196 a001 9227465/969323029*710647^(11/14) 3770005305038248 a001 3524578/370248451*710647^(11/14) 3770005305038337 a001 1346269/87403803*710647^(3/4) 3770005305038533 a001 514229/1149851*1860498^(7/15) 3770005305038562 a001 726103/199691526*710647^(6/7) 3770005305038604 a001 1346269/141422324*710647^(11/14) 3770005305038698 a001 5702887/1568397607*710647^(6/7) 3770005305038698 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^44 3770005305038717 a001 4976784/1368706081*710647^(6/7) 3770005305038720 a001 39088169/10749957122*710647^(6/7) 3770005305038721 a001 831985/228811001*710647^(6/7) 3770005305038721 a001 267914296/73681302247*710647^(6/7) 3770005305038721 a001 233802911/64300051206*710647^(6/7) 3770005305038721 a001 1836311903/505019158607*710647^(6/7) 3770005305038721 a001 1602508992/440719107401*710647^(6/7) 3770005305038721 a001 12586269025/3461452808002*710647^(6/7) 3770005305038721 a001 10983760033/3020733700601*710647^(6/7) 3770005305038721 a001 86267571272/23725150497407*710647^(6/7) 3770005305038721 a001 53316291173/14662949395604*710647^(6/7) 3770005305038721 a001 20365011074/5600748293801*710647^(6/7) 3770005305038721 a001 7778742049/2139295485799*710647^(6/7) 3770005305038721 a001 2971215073/817138163596*710647^(6/7) 3770005305038721 a001 1134903170/312119004989*710647^(6/7) 3770005305038721 a001 433494437/119218851371*710647^(6/7) 3770005305038721 a001 165580141/45537549124*710647^(6/7) 3770005305038721 a001 63245986/17393796001*710647^(6/7) 3770005305038722 a001 24157817/6643838879*710647^(6/7) 3770005305038730 a001 9227465/2537720636*710647^(6/7) 3770005305038782 a001 3524578/969323029*710647^(6/7) 3770005305038789 a001 1346269/1149851*710647^(3/7) 3770005305039095 a001 311187/224056801*710647^(13/14) 3770005305039105 a001 831985/15126*271443^(2/13) 3770005305039110 a001 165580141/1149851*271443^(1/13) 3770005305039137 a001 1346269/370248451*710647^(6/7) 3770005305039231 a001 5702887/4106118243*710647^(13/14) 3770005305039251 a001 7465176/5374978561*710647^(13/14) 3770005305039253 a001 196418/3010349*439204^(2/3) 3770005305039254 a001 39088169/28143753123*710647^(13/14) 3770005305039254 a001 14619165/10525900321*710647^(13/14) 3770005305039254 a001 133957148/96450076809*710647^(13/14) 3770005305039254 a001 701408733/505019158607*710647^(13/14) 3770005305039254 a001 1836311903/1322157322203*710647^(13/14) 3770005305039254 a001 14930208/10749853441*710647^(13/14) 3770005305039254 a001 12586269025/9062201101803*710647^(13/14) 3770005305039254 a001 32951280099/23725150497407*710647^(13/14) 3770005305039254 a001 10182505537/7331474697802*710647^(13/14) 3770005305039254 a001 7778742049/5600748293801*710647^(13/14) 3770005305039254 a001 2971215073/2139295485799*710647^(13/14) 3770005305039254 a001 567451585/408569081798*710647^(13/14) 3770005305039254 a001 433494437/312119004989*710647^(13/14) 3770005305039254 a001 165580141/119218851371*710647^(13/14) 3770005305039254 a001 31622993/22768774562*710647^(13/14) 3770005305039255 a001 24157817/17393796001*710647^(13/14) 3770005305039263 a001 9227465/6643838879*710647^(13/14) 3770005305039315 a001 1762289/1268860318*710647^(13/14) 3770005305039470 a001 165580141/710647*103682^(1/24) 3770005305039602 a001 4976784/90481*103682^(1/6) 3770005305039628 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^46 3770005305039670 a001 1346269/969323029*710647^(13/14) 3770005305039764 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^48 3770005305039784 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^50 3770005305039787 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^52 3770005305039787 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^54 3770005305039787 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^56 3770005305039787 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^58 3770005305039787 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^60 3770005305039787 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^62 3770005305039787 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^64 3770005305039787 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^66 3770005305039787 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^68 3770005305039787 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^70 3770005305039787 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^72 3770005305039787 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^74 3770005305039787 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^76 3770005305039787 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^78 3770005305039787 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^80 3770005305039787 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^82 3770005305039787 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^84 3770005305039787 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^86 3770005305039787 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^88 3770005305039787 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^90 3770005305039787 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^92 3770005305039787 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^94 3770005305039787 a004 Fibonacci(82)*Lucas(28)/(1/2+sqrt(5)/2)^96 3770005305039787 a004 Fibonacci(84)*Lucas(28)/(1/2+sqrt(5)/2)^98 3770005305039787 a004 Fibonacci(86)*Lucas(28)/(1/2+sqrt(5)/2)^100 3770005305039787 a004 Fibonacci(85)*Lucas(28)/(1/2+sqrt(5)/2)^99 3770005305039787 a004 Fibonacci(83)*Lucas(28)/(1/2+sqrt(5)/2)^97 3770005305039787 a004 Fibonacci(81)*Lucas(28)/(1/2+sqrt(5)/2)^95 3770005305039787 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^93 3770005305039787 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^91 3770005305039787 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^89 3770005305039787 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^87 3770005305039787 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^85 3770005305039787 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^83 3770005305039787 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^81 3770005305039787 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^79 3770005305039787 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^77 3770005305039787 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^75 3770005305039787 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^73 3770005305039787 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^71 3770005305039787 a001 2/317811*(1/2+1/2*5^(1/2))^42 3770005305039787 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^69 3770005305039787 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^67 3770005305039787 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^65 3770005305039787 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^63 3770005305039787 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^61 3770005305039787 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^59 3770005305039787 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^57 3770005305039787 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^55 3770005305039787 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^53 3770005305039789 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^51 3770005305039796 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^49 3770005305039848 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^47 3770005305039855 a001 514229/3010349*710647^(4/7) 3770005305040033 a001 514229/7881196*710647^(9/14) 3770005305040035 a001 267914296/4870847*271443^(2/13) 3770005305040171 a001 233802911/4250681*271443^(2/13) 3770005305040191 a001 1836311903/33385282*271443^(2/13) 3770005305040193 a001 1602508992/29134601*271443^(2/13) 3770005305040194 a001 12586269025/228826127*271443^(2/13) 3770005305040194 a001 10983760033/199691526*271443^(2/13) 3770005305040194 a001 86267571272/1568397607*271443^(2/13) 3770005305040194 a001 75283811239/1368706081*271443^(2/13) 3770005305040194 a001 591286729879/10749957122*271443^(2/13) 3770005305040194 a001 12585437040/228811001*271443^(2/13) 3770005305040194 a001 4052739537881/73681302247*271443^(2/13) 3770005305040194 a001 3536736619241/64300051206*271443^(2/13) 3770005305040194 a001 6557470319842/119218851371*271443^(2/13) 3770005305040194 a001 2504730781961/45537549124*271443^(2/13) 3770005305040194 a001 956722026041/17393796001*271443^(2/13) 3770005305040194 a001 365435296162/6643838879*271443^(2/13) 3770005305040194 a001 139583862445/2537720636*271443^(2/13) 3770005305040194 a001 53316291173/969323029*271443^(2/13) 3770005305040194 a001 20365011074/370248451*271443^(2/13) 3770005305040194 a001 7778742049/141422324*271443^(2/13) 3770005305040195 a001 2971215073/54018521*271443^(2/13) 3770005305040203 a001 1134903170/20633239*271443^(2/13) 3770005305040203 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^45 3770005305040255 a001 433494437/7881196*271443^(2/13) 3770005305040515 a001 514229/20633239*710647^(5/7) 3770005305040577 a001 5702887/710647*271443^(4/13) 3770005305040610 a001 165580141/3010349*271443^(2/13) 3770005305040769 a001 514229/33385282*710647^(3/4) 3770005305041040 a001 514229/54018521*710647^(11/14) 3770005305041572 a001 514229/141422324*710647^(6/7) 3770005305041758 a001 514229/1149851*710647^(1/2) 3770005305042106 a001 514229/370248451*710647^(13/14) 3770005305042639 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^43 3770005305043040 a001 39088169/1860498*271443^(3/13) 3770005305043046 a001 63245986/1149851*271443^(2/13) 3770005305043971 a001 102334155/4870847*271443^(3/13) 3770005305044107 a001 267914296/12752043*271443^(3/13) 3770005305044126 a001 701408733/33385282*271443^(3/13) 3770005305044129 a001 1836311903/87403803*271443^(3/13) 3770005305044130 a001 102287808/4868641*271443^(3/13) 3770005305044130 a001 12586269025/599074578*271443^(3/13) 3770005305044130 a001 32951280099/1568397607*271443^(3/13) 3770005305044130 a001 86267571272/4106118243*271443^(3/13) 3770005305044130 a001 225851433717/10749957122*271443^(3/13) 3770005305044130 a001 591286729879/28143753123*271443^(3/13) 3770005305044130 a001 1548008755920/73681302247*271443^(3/13) 3770005305044130 a001 4052739537881/192900153618*271443^(3/13) 3770005305044130 a001 225749145909/10745088481*271443^(3/13) 3770005305044130 a001 6557470319842/312119004989*271443^(3/13) 3770005305044130 a001 2504730781961/119218851371*271443^(3/13) 3770005305044130 a001 956722026041/45537549124*271443^(3/13) 3770005305044130 a001 365435296162/17393796001*271443^(3/13) 3770005305044130 a001 139583862445/6643838879*271443^(3/13) 3770005305044130 a001 53316291173/2537720636*271443^(3/13) 3770005305044130 a001 20365011074/969323029*271443^(3/13) 3770005305044130 a001 7778742049/370248451*271443^(3/13) 3770005305044130 a001 2971215073/141422324*271443^(3/13) 3770005305044131 a001 1134903170/54018521*271443^(3/13) 3770005305044139 a001 433494437/20633239*271443^(3/13) 3770005305044191 a001 165580141/7881196*271443^(3/13) 3770005305044373 a001 196418/710647*7881196^(5/11) 3770005305044378 a001 311187/101521*271443^(5/13) 3770005305044397 a001 196418/710647*20633239^(3/7) 3770005305044401 a001 196418/710647*141422324^(5/13) 3770005305044401 a001 317811/439204*141422324^(1/3) 3770005305044401 a001 62423800998/165580141 3770005305044401 a001 196418/710647*2537720636^(1/3) 3770005305044401 a001 196418/710647*45537549124^(5/17) 3770005305044401 a001 196418/710647*312119004989^(3/11) 3770005305044401 a001 196418/710647*14662949395604^(5/21) 3770005305044401 a001 196418/710647*(1/2+1/2*5^(1/2))^15 3770005305044401 a001 196418/710647*192900153618^(5/18) 3770005305044401 a001 317811/439204*(1/2+1/2*5^(1/2))^13 3770005305044401 a001 317811/439204*73681302247^(1/4) 3770005305044401 a001 196418/710647*28143753123^(3/10) 3770005305044401 a001 196418/710647*10749957122^(5/16) 3770005305044401 a001 196418/710647*599074578^(5/14) 3770005305044401 a001 196418/710647*228826127^(3/8) 3770005305044402 a001 196418/710647*33385282^(5/12) 3770005305044546 a001 63245986/3010349*271443^(3/13) 3770005305044943 a001 317811/710647*271443^(7/13) 3770005305044946 a001 196418/710647*1860498^(1/2) 3770005305045193 a001 2178309/439204*439204^(1/3) 3770005305045846 a001 433494437/1860498*103682^(1/24) 3770005305046031 a001 514229/439204*439204^(4/9) 3770005305046516 a001 14930352/167761*64079^(3/23) 3770005305046776 a001 1134903170/4870847*103682^(1/24) 3770005305046912 a001 2971215073/12752043*103682^(1/24) 3770005305046931 a001 7778742049/33385282*103682^(1/24) 3770005305046934 a001 20365011074/87403803*103682^(1/24) 3770005305046935 a001 53316291173/228826127*103682^(1/24) 3770005305046935 a001 139583862445/599074578*103682^(1/24) 3770005305046935 a001 365435296162/1568397607*103682^(1/24) 3770005305046935 a001 956722026041/4106118243*103682^(1/24) 3770005305046935 a001 2504730781961/10749957122*103682^(1/24) 3770005305046935 a001 6557470319842/28143753123*103682^(1/24) 3770005305046935 a001 10610209857723/45537549124*103682^(1/24) 3770005305046935 a001 4052739537881/17393796001*103682^(1/24) 3770005305046935 a001 1548008755920/6643838879*103682^(1/24) 3770005305046935 a001 591286729879/2537720636*103682^(1/24) 3770005305046935 a001 225851433717/969323029*103682^(1/24) 3770005305046935 a001 86267571272/370248451*103682^(1/24) 3770005305046935 a001 63246219/271444*103682^(1/24) 3770005305046936 a001 12586269025/54018521*103682^(1/24) 3770005305046944 a001 4807526976/20633239*103682^(1/24) 3770005305046973 a001 829464/103361*271443^(4/13) 3770005305046983 a001 24157817/1149851*271443^(3/13) 3770005305046995 a001 1836311903/7881196*103682^(1/24) 3770005305047351 a001 701408733/3010349*103682^(1/24) 3770005305047383 a001 832040/710647*271443^(6/13) 3770005305047532 a001 9227465/439204*439204^(2/9) 3770005305047906 a001 39088169/4870847*271443^(4/13) 3770005305048042 a001 34111385/4250681*271443^(4/13) 3770005305048062 a001 133957148/16692641*271443^(4/13) 3770005305048065 a001 233802911/29134601*271443^(4/13) 3770005305048066 a001 1836311903/228826127*271443^(4/13) 3770005305048066 a001 267084832/33281921*271443^(4/13) 3770005305048066 a001 12586269025/1568397607*271443^(4/13) 3770005305048066 a001 10983760033/1368706081*271443^(4/13) 3770005305048066 a001 43133785636/5374978561*271443^(4/13) 3770005305048066 a001 75283811239/9381251041*271443^(4/13) 3770005305048066 a001 591286729879/73681302247*271443^(4/13) 3770005305048066 a001 86000486440/10716675201*271443^(4/13) 3770005305048066 a001 4052739537881/505019158607*271443^(4/13) 3770005305048066 a001 3278735159921/408569081798*271443^(4/13) 3770005305048066 a001 2504730781961/312119004989*271443^(4/13) 3770005305048066 a001 956722026041/119218851371*271443^(4/13) 3770005305048066 a001 182717648081/22768774562*271443^(4/13) 3770005305048066 a001 139583862445/17393796001*271443^(4/13) 3770005305048066 a001 53316291173/6643838879*271443^(4/13) 3770005305048066 a001 10182505537/1268860318*271443^(4/13) 3770005305048066 a001 7778742049/969323029*271443^(4/13) 3770005305048066 a001 2971215073/370248451*271443^(4/13) 3770005305048066 a001 567451585/70711162*271443^(4/13) 3770005305048067 a001 433494437/54018521*271443^(4/13) 3770005305048075 a001 165580141/20633239*271443^(4/13) 3770005305048127 a001 31622993/3940598*271443^(4/13) 3770005305048483 a001 24157817/3010349*271443^(4/13) 3770005305049015 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^42 3770005305049694 a001 39088169/439204*439204^(1/9) 3770005305049786 a001 267914296/1149851*103682^(1/24) 3770005305050757 a001 208010/109801*7881196^(1/3) 3770005305050777 a001 163427632720/433494437 3770005305050777 a001 98209/930249*45537549124^(1/3) 3770005305050777 a001 98209/930249*(1/2+1/2*5^(1/2))^17 3770005305050777 a001 208010/109801*312119004989^(1/5) 3770005305050777 a001 208010/109801*(1/2+1/2*5^(1/2))^11 3770005305050777 a001 208010/109801*1568397607^(1/4) 3770005305050788 a001 98209/930249*12752043^(1/2) 3770005305050889 a001 5702887/1860498*271443^(5/13) 3770005305050926 a001 9227465/1149851*271443^(4/13) 3770005305051436 a001 5702887/64079*24476^(1/7) 3770005305051450 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^44 3770005305051691 a001 2178309/439204*7881196^(3/11) 3770005305051707 a001 2178309/439204*141422324^(3/13) 3770005305051707 a001 12584091093/33379505 3770005305051707 a001 2178309/439204*2537720636^(1/5) 3770005305051707 a001 2178309/439204*45537549124^(3/17) 3770005305051707 a001 196418/4870847*817138163596^(1/3) 3770005305051707 a001 196418/4870847*(1/2+1/2*5^(1/2))^19 3770005305051707 a001 2178309/439204*14662949395604^(1/7) 3770005305051707 a001 2178309/439204*(1/2+1/2*5^(1/2))^9 3770005305051707 a001 2178309/439204*192900153618^(1/6) 3770005305051707 a001 2178309/439204*10749957122^(3/16) 3770005305051707 a001 2178309/439204*599074578^(3/14) 3770005305051707 a001 196418/4870847*87403803^(1/2) 3770005305051708 a001 2178309/439204*33385282^(1/4) 3770005305051802 a001 646/6119*5778^(17/18) 3770005305051804 a001 196418/12752043*7881196^(7/11) 3770005305051805 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^46 3770005305051811 a001 196418/969323029*7881196^(10/11) 3770005305051816 a001 196418/228826127*7881196^(9/11) 3770005305051823 a001 196418/54018521*7881196^(8/11) 3770005305051834 a001 196418/20633239*7881196^(2/3) 3770005305051838 a001 196418/12752043*20633239^(3/5) 3770005305051839 a001 14930352/4870847*271443^(5/13) 3770005305051841 a001 5702887/439204*20633239^(1/5) 3770005305051843 a001 196418/12752043*141422324^(7/13) 3770005305051843 a001 196418/12752043*2537720636^(7/15) 3770005305051843 a001 1120149658766/2971215073 3770005305051843 a001 196418/12752043*17393796001^(3/7) 3770005305051843 a001 5702887/439204*17393796001^(1/7) 3770005305051843 a001 196418/12752043*45537549124^(7/17) 3770005305051843 a001 196418/12752043*14662949395604^(1/3) 3770005305051843 a001 196418/12752043*(1/2+1/2*5^(1/2))^21 3770005305051843 a001 196418/12752043*192900153618^(7/18) 3770005305051843 a001 5702887/439204*14662949395604^(1/9) 3770005305051843 a001 5702887/439204*(1/2+1/2*5^(1/2))^7 3770005305051843 a001 196418/12752043*10749957122^(7/16) 3770005305051843 a001 5702887/439204*599074578^(1/6) 3770005305051843 a001 196418/12752043*599074578^(1/2) 3770005305051845 a001 196418/12752043*33385282^(7/12) 3770005305051857 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^48 3770005305051858 a001 196418/969323029*20633239^(6/7) 3770005305051859 a001 196418/370248451*20633239^(4/5) 3770005305051859 a001 196418/87403803*20633239^(5/7) 3770005305051860 a001 39088169/439204*7881196^(1/11) 3770005305051861 a001 196452/5779*20633239^(1/7) 3770005305051863 a001 196452/5779*2537720636^(1/9) 3770005305051863 a001 2932589879136/7778742049 3770005305051863 a001 98209/16692641*(1/2+1/2*5^(1/2))^23 3770005305051863 a001 196452/5779*312119004989^(1/11) 3770005305051863 a001 196452/5779*(1/2+1/2*5^(1/2))^5 3770005305051863 a001 196452/5779*28143753123^(1/10) 3770005305051863 a001 98209/16692641*4106118243^(1/2) 3770005305051863 a001 196452/5779*228826127^(1/8) 3770005305051864 a001 9227465/439204*7881196^(2/11) 3770005305051865 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^50 3770005305051866 a001 39088169/439204*141422324^(1/13) 3770005305051866 a001 196418/87403803*2537720636^(5/9) 3770005305051866 a001 39088169/439204*2537720636^(1/15) 3770005305051866 a001 3838809989321/10182505537 3770005305051866 a001 196418/87403803*312119004989^(5/11) 3770005305051866 a001 39088169/439204*45537549124^(1/17) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^25/Lucas(38) 3770005305051866 a001 196418/87403803*3461452808002^(5/12) 3770005305051866 a001 39088169/439204*14662949395604^(1/21) 3770005305051866 a001 39088169/439204*(1/2+1/2*5^(1/2))^3 3770005305051866 a001 39088169/439204*192900153618^(1/18) 3770005305051866 a001 39088169/439204*10749957122^(1/16) 3770005305051866 a001 196418/87403803*28143753123^(1/2) 3770005305051866 a001 39088169/439204*599074578^(1/14) 3770005305051866 a001 196418/87403803*228826127^(5/8) 3770005305051866 a001 39088169/439204*33385282^(1/12) 3770005305051866 a001 196418/228826127*141422324^(9/13) 3770005305051866 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^52 3770005305051866 a001 196418/17393796001*141422324^(12/13) 3770005305051866 a001 196418/4106118243*141422324^(11/13) 3770005305051866 a001 196418/969323029*141422324^(10/13) 3770005305051866 a001 196418/228826127*2537720636^(3/5) 3770005305051866 a001 196418/228826127*45537549124^(9/17) 3770005305051866 a001 20100270056790/53316291173 3770005305051866 a001 196418/228826127*817138163596^(9/19) 3770005305051866 a001 196418/228826127*14662949395604^(3/7) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(40) 3770005305051866 a001 196418/228826127*192900153618^(1/2) 3770005305051866 a001 102334155/878408+102334155/878408*5^(1/2) 3770005305051866 a001 196418/228826127*10749957122^(9/16) 3770005305051866 a001 196418/228826127*599074578^(9/14) 3770005305051866 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^54 3770005305051866 a001 52623190191728/139583862445 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(42) 3770005305051866 a001 98209/299537289*1322157322203^(1/2) 3770005305051866 a004 Fibonacci(42)/Lucas(27)/(1/2+sqrt(5)/2) 3770005305051866 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^56 3770005305051866 a001 68884650259197/182717648081 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(44) 3770005305051866 a001 196418/1568397607*9062201101803^(1/2) 3770005305051866 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2)^3 3770005305051866 a001 196418/4106118243*2537720636^(11/15) 3770005305051866 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^58 3770005305051866 a001 196418/312119004989*2537720636^(14/15) 3770005305051866 a001 196418/119218851371*2537720636^(8/9) 3770005305051866 a001 196418/73681302247*2537720636^(13/15) 3770005305051866 a001 98209/5374978561*2537720636^(7/9) 3770005305051866 a001 196418/17393796001*2537720636^(4/5) 3770005305051866 a001 196418/4106118243*45537549124^(11/17) 3770005305051866 a001 196418/4106118243*312119004989^(3/5) 3770005305051866 a001 196418/4106118243*817138163596^(11/19) 3770005305051866 a001 196418/4106118243*14662949395604^(11/21) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(46) 3770005305051866 a001 196418/4106118243*192900153618^(11/18) 3770005305051866 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^5 3770005305051866 a001 196418/4106118243*10749957122^(11/16) 3770005305051866 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^60 3770005305051866 a001 98209/5374978561*17393796001^(5/7) 3770005305051866 a001 98209/5374978561*312119004989^(7/11) 3770005305051866 a001 944284833571968/2504730781961 3770005305051866 a001 98209/5374978561*14662949395604^(5/9) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(48) 3770005305051866 a001 98209/5374978561*505019158607^(5/8) 3770005305051866 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^7 3770005305051866 a001 98209/5374978561*28143753123^(7/10) 3770005305051866 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^62 3770005305051866 a001 196418/312119004989*17393796001^(6/7) 3770005305051866 a001 72710876157425/192866774113 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(50) 3770005305051866 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^9 3770005305051866 a001 196418/73681302247*45537549124^(13/17) 3770005305051866 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^64 3770005305051866 a001 196418/5600748293801*45537549124^(16/17) 3770005305051866 a001 196418/1322157322203*45537549124^(15/17) 3770005305051866 a001 196418/312119004989*45537549124^(14/17) 3770005305051866 a001 196418/73681302247*14662949395604^(13/21) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(52) 3770005305051866 a001 196418/73681302247*192900153618^(13/18) 3770005305051866 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^11 3770005305051866 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^66 3770005305051866 a001 196418/73681302247*73681302247^(3/4) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(54) 3770005305051866 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^68 3770005305051866 a001 196418/1322157322203*312119004989^(9/11) 3770005305051866 a001 98209/408569081798*312119004989^(4/5) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(56) 3770005305051866 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^70 3770005305051866 a001 196418/23725150497407*817138163596^(17/19) 3770005305051866 a001 196418/1322157322203*14662949395604^(5/7) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(58) 3770005305051866 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^72 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(60) 3770005305051866 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^74 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(62) 3770005305051866 a001 196418/23725150497407*14662949395604^(17/21) 3770005305051866 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^76 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(64) 3770005305051866 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^78 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(66) 3770005305051866 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^80 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(68) 3770005305051866 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^82 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(70) 3770005305051866 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^84 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(72) 3770005305051866 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^86 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(74) 3770005305051866 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^88 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(76) 3770005305051866 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^90 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(78) 3770005305051866 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^92 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(80) 3770005305051866 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^94 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(82) 3770005305051866 a004 Fibonacci(27)*Lucas(83)/(1/2+sqrt(5)/2)^96 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(84) 3770005305051866 a004 Fibonacci(27)*Lucas(85)/(1/2+sqrt(5)/2)^98 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(86) 3770005305051866 a004 Fibonacci(27)*Lucas(87)/(1/2+sqrt(5)/2)^100 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(88) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(90) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(92) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(94) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^83/Lucas(96) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^85/Lucas(98) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^86/Lucas(99) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^87/Lucas(100) 3770005305051866 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^13 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^84/Lucas(97) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^82/Lucas(95) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(93) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(91) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(89) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(87) 3770005305051866 a004 Fibonacci(27)*Lucas(86)/(1/2+sqrt(5)/2)^99 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(85) 3770005305051866 a004 Fibonacci(27)*Lucas(84)/(1/2+sqrt(5)/2)^97 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(83) 3770005305051866 a004 Fibonacci(27)*Lucas(82)/(1/2+sqrt(5)/2)^95 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(81) 3770005305051866 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^93 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(79) 3770005305051866 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^91 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(77) 3770005305051866 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^89 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(75) 3770005305051866 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^87 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(73) 3770005305051866 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^85 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(71) 3770005305051866 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^83 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(69) 3770005305051866 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^81 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(67) 3770005305051866 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^79 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(65) 3770005305051866 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^77 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(63) 3770005305051866 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^75 3770005305051866 a001 196418/5600748293801*14662949395604^(16/21) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(61) 3770005305051866 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^73 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(59) 3770005305051866 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^71 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(57) 3770005305051866 a001 196418/9062201101803*505019158607^(7/8) 3770005305051866 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^69 3770005305051866 a001 196418/312119004989*817138163596^(14/19) 3770005305051866 a001 196418/312119004989*14662949395604^(2/3) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(55) 3770005305051866 a001 196418/312119004989*505019158607^(3/4) 3770005305051866 a001 196418/1322157322203*192900153618^(5/6) 3770005305051866 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^15 3770005305051866 a001 196418/5600748293801*192900153618^(8/9) 3770005305051866 a001 196418/23725150497407*192900153618^(17/18) 3770005305051866 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^17 3770005305051866 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^19 3770005305051866 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^21 3770005305051866 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^23 3770005305051866 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^25 3770005305051866 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^27 3770005305051866 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^29 3770005305051866 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^31 3770005305051866 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^33 3770005305051866 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^35 3770005305051866 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^37 3770005305051866 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^39 3770005305051866 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^41 3770005305051866 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^43 3770005305051866 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^45 3770005305051866 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^47 3770005305051866 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^49 3770005305051866 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^51 3770005305051866 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^53 3770005305051866 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^55 3770005305051866 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^57 3770005305051866 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^59 3770005305051866 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^67 3770005305051866 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^58 3770005305051866 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^56 3770005305051866 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^54 3770005305051866 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^52 3770005305051866 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^50 3770005305051866 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^48 3770005305051866 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^46 3770005305051866 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^44 3770005305051866 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^42 3770005305051866 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^40 3770005305051866 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^38 3770005305051866 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^36 3770005305051866 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^34 3770005305051866 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^32 3770005305051866 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^30 3770005305051866 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^28 3770005305051866 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^26 3770005305051866 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^24 3770005305051866 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^22 3770005305051866 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^20 3770005305051866 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^18 3770005305051866 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^16 3770005305051866 a001 196418/312119004989*192900153618^(7/9) 3770005305051866 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^14 3770005305051866 a001 196418/119218851371*312119004989^(8/11) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(53) 3770005305051866 a001 196418/119218851371*23725150497407^(5/8) 3770005305051866 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^12 3770005305051866 a001 98209/408569081798*73681302247^(11/13) 3770005305051866 a001 196418/5600748293801*73681302247^(12/13) 3770005305051866 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^65 3770005305051866 a001 196418/119218851371*73681302247^(10/13) 3770005305051866 a001 98209/22768774562*817138163596^(2/3) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(51) 3770005305051866 a001 4000054745132932/10610209857723 3770005305051866 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^10 3770005305051866 a001 196418/119218851371*28143753123^(4/5) 3770005305051866 a001 196418/1322157322203*28143753123^(9/10) 3770005305051866 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^63 3770005305051866 a001 196418/17393796001*45537549124^(12/17) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(49) 3770005305051866 a001 1527884955780482/4052739537881 3770005305051866 a001 196418/17393796001*505019158607^(9/14) 3770005305051866 a001 196418/17393796001*192900153618^(2/3) 3770005305051866 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^8 3770005305051866 a001 196418/17393796001*73681302247^(9/13) 3770005305051866 a001 196418/73681302247*10749957122^(13/16) 3770005305051866 a001 196418/119218851371*10749957122^(5/6) 3770005305051866 a001 98209/22768774562*10749957122^(19/24) 3770005305051866 a001 196418/312119004989*10749957122^(7/8) 3770005305051866 a001 98209/408569081798*10749957122^(11/12) 3770005305051866 a001 196418/1322157322203*10749957122^(15/16) 3770005305051866 a001 196418/2139295485799*10749957122^(23/24) 3770005305051866 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^61 3770005305051866 a001 196418/17393796001*10749957122^(3/4) 3770005305051866 a001 196418/6643838879*45537549124^(2/3) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(47) 3770005305051866 a001 291800061104257/774004377960 3770005305051866 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^6 3770005305051866 a001 196418/6643838879*10749957122^(17/24) 3770005305051866 a001 98209/22768774562*4106118243^(19/23) 3770005305051866 a001 196418/17393796001*4106118243^(18/23) 3770005305051866 a001 196418/119218851371*4106118243^(20/23) 3770005305051866 a001 196418/312119004989*4106118243^(21/23) 3770005305051866 a001 98209/408569081798*4106118243^(22/23) 3770005305051866 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^59 3770005305051866 a001 196418/6643838879*4106118243^(17/23) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(45) 3770005305051866 a001 222915410845060/591286729879 3770005305051866 a001 98209/1268860318*505019158607^(4/7) 3770005305051866 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^4 3770005305051866 a001 98209/1268860318*73681302247^(8/13) 3770005305051866 a001 98209/1268860318*10749957122^(2/3) 3770005305051866 a001 98209/1268860318*4106118243^(16/23) 3770005305051866 a001 196418/4106118243*1568397607^(3/4) 3770005305051866 a001 196418/17393796001*1568397607^(9/11) 3770005305051866 a001 196418/6643838879*1568397607^(17/22) 3770005305051866 a001 98209/22768774562*1568397607^(19/22) 3770005305051866 a001 196418/119218851371*1568397607^(10/11) 3770005305051866 a001 196418/312119004989*1568397607^(21/22) 3770005305051866 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^57 3770005305051866 a001 98209/1268860318*1568397607^(8/11) 3770005305051866 a001 196418/969323029*2537720636^(2/3) 3770005305051866 a001 196418/969323029*45537549124^(10/17) 3770005305051866 a001 196418/969323029*312119004989^(6/11) 3770005305051866 a001 196418/969323029*14662949395604^(10/21) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(43) 3770005305051866 a001 85146110326666/225851433717 3770005305051866 a001 196418/969323029*192900153618^(5/9) 3770005305051866 a004 Fibonacci(43)/Lucas(27)/(1/2+sqrt(5)/2)^2 3770005305051866 a001 196418/969323029*28143753123^(3/5) 3770005305051866 a001 196418/969323029*10749957122^(5/8) 3770005305051866 a001 196418/969323029*4106118243^(15/23) 3770005305051866 a001 196418/969323029*1568397607^(15/22) 3770005305051866 a001 196418/4106118243*599074578^(11/14) 3770005305051866 a001 98209/1268860318*599074578^(16/21) 3770005305051866 a001 196418/6643838879*599074578^(17/21) 3770005305051866 a001 98209/5374978561*599074578^(5/6) 3770005305051866 a001 196418/17393796001*599074578^(6/7) 3770005305051866 a001 98209/22768774562*599074578^(19/21) 3770005305051866 a001 196418/73681302247*599074578^(13/14) 3770005305051866 a001 196418/119218851371*599074578^(20/21) 3770005305051866 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^55 3770005305051866 a001 196418/969323029*599074578^(5/7) 3770005305051866 a001 196418/370248451*17393796001^(4/7) 3770005305051866 a001 196418/370248451*14662949395604^(4/9) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(41) 3770005305051866 a001 196418/370248451*505019158607^(1/2) 3770005305051866 a001 165580141/439204 3770005305051866 a001 196418/370248451*73681302247^(7/13) 3770005305051866 a001 196418/370248451*10749957122^(7/12) 3770005305051866 a001 196418/370248451*4106118243^(14/23) 3770005305051866 a001 196418/370248451*1568397607^(7/11) 3770005305051866 a001 196418/370248451*599074578^(2/3) 3770005305051866 a001 196418/969323029*228826127^(3/4) 3770005305051866 a001 98209/1268860318*228826127^(4/5) 3770005305051866 a001 196418/6643838879*228826127^(17/20) 3770005305051866 a001 98209/70711162*141422324^(2/3) 3770005305051866 a001 98209/5374978561*228826127^(7/8) 3770005305051866 a001 196418/17393796001*228826127^(9/10) 3770005305051866 a001 98209/22768774562*228826127^(19/20) 3770005305051866 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^53 3770005305051866 a001 196418/370248451*228826127^(7/10) 3770005305051866 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(39) 3770005305051866 a001 31622993/219602*(1/2+1/2*5^(1/2))^2 3770005305051866 a001 98209/70711162*73681302247^(1/2) 3770005305051866 a001 53316094756/141421803 3770005305051866 a001 31622993/219602*10749957122^(1/24) 3770005305051866 a001 31622993/219602*4106118243^(1/23) 3770005305051866 a001 98209/70711162*10749957122^(13/24) 3770005305051866 a001 31622993/219602*1568397607^(1/22) 3770005305051866 a001 98209/70711162*4106118243^(13/23) 3770005305051866 a001 31622993/219602*599074578^(1/21) 3770005305051866 a001 98209/70711162*1568397607^(13/22) 3770005305051866 a001 31622993/219602*228826127^(1/20) 3770005305051866 a001 98209/70711162*599074578^(13/21) 3770005305051866 a001 31622993/219602*87403803^(1/19) 3770005305051866 a001 98209/70711162*228826127^(13/20) 3770005305051866 a001 31622993/219602*33385282^(1/18) 3770005305051866 a001 196418/370248451*87403803^(14/19) 3770005305051866 a001 196418/969323029*87403803^(15/19) 3770005305051866 a001 98209/1268860318*87403803^(16/19) 3770005305051866 a001 196418/6643838879*87403803^(17/19) 3770005305051866 a001 196418/17393796001*87403803^(18/19) 3770005305051867 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^51 3770005305051867 a001 98209/70711162*87403803^(13/19) 3770005305051867 a001 196418/54018521*141422324^(8/13) 3770005305051867 a001 196418/54018521*2537720636^(8/15) 3770005305051867 a001 196418/54018521*45537549124^(8/17) 3770005305051867 a001 196418/54018521*14662949395604^(8/21) 3770005305051867 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^24/Lucas(37) 3770005305051867 a001 196418/54018521*192900153618^(4/9) 3770005305051867 a001 24157817/439204*(1/2+1/2*5^(1/2))^4 3770005305051867 a001 24157817/439204*23725150497407^(1/16) 3770005305051867 a001 24157817/439204*73681302247^(1/13) 3770005305051867 a001 196418/54018521*73681302247^(6/13) 3770005305051867 a001 24157817/439204*10749957122^(1/12) 3770005305051867 a001 4745030099506/12586269025 3770005305051867 a001 196418/54018521*10749957122^(1/2) 3770005305051867 a001 24157817/439204*4106118243^(2/23) 3770005305051867 a001 196418/54018521*4106118243^(12/23) 3770005305051867 a001 24157817/439204*1568397607^(1/11) 3770005305051867 a001 196418/54018521*1568397607^(6/11) 3770005305051867 a001 24157817/439204*599074578^(2/21) 3770005305051867 a001 196418/54018521*599074578^(4/7) 3770005305051867 a001 24157817/439204*228826127^(1/10) 3770005305051867 a001 196418/54018521*228826127^(3/5) 3770005305051867 a001 24157817/439204*87403803^(2/19) 3770005305051868 a001 31622993/219602*12752043^(1/17) 3770005305051868 a001 196418/54018521*87403803^(12/19) 3770005305051868 a001 24157817/439204*33385282^(1/9) 3770005305051868 a001 196418/228826127*33385282^(3/4) 3770005305051869 a001 98209/70711162*33385282^(13/18) 3770005305051869 a001 196418/370248451*33385282^(7/9) 3770005305051869 a001 196418/969323029*33385282^(5/6) 3770005305051869 a001 98209/1268860318*33385282^(8/9) 3770005305051869 a001 196418/4106118243*33385282^(11/12) 3770005305051869 a001 196418/6643838879*33385282^(17/18) 3770005305051869 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^49 3770005305051870 a001 196418/54018521*33385282^(2/3) 3770005305051870 a001 24157817/439204*12752043^(2/17) 3770005305051875 a001 9227465/439204*141422324^(2/13) 3770005305051875 a001 9227465/439204*2537720636^(2/15) 3770005305051875 a001 9227465/439204*45537549124^(2/17) 3770005305051875 a001 196418/20633239*312119004989^(2/5) 3770005305051875 a001 196418/20633239*(1/2+1/2*5^(1/2))^22 3770005305051875 a001 9227465/439204*14662949395604^(2/21) 3770005305051875 a001 9227465/439204*(1/2+1/2*5^(1/2))^6 3770005305051875 a001 9227465/439204*10749957122^(1/8) 3770005305051875 a001 196418/20633239*10749957122^(11/24) 3770005305051875 a001 9227465/439204*4106118243^(3/23) 3770005305051875 a001 906220110185/2403763488 3770005305051875 a001 196418/20633239*4106118243^(11/23) 3770005305051875 a001 9227465/439204*1568397607^(3/22) 3770005305051875 a001 196418/20633239*1568397607^(1/2) 3770005305051875 a001 9227465/439204*599074578^(1/7) 3770005305051875 a001 196418/20633239*599074578^(11/21) 3770005305051875 a001 9227465/439204*228826127^(3/20) 3770005305051875 a001 196418/20633239*228826127^(11/20) 3770005305051875 a001 9227465/439204*87403803^(3/19) 3770005305051875 a001 196418/20633239*87403803^(11/19) 3770005305051875 a001 9227465/439204*33385282^(1/6) 3770005305051876 a001 31622993/219602*4870847^(1/16) 3770005305051877 a001 196418/20633239*33385282^(11/18) 3770005305051879 a001 9227465/439204*12752043^(3/17) 3770005305051884 a001 196418/54018521*12752043^(12/17) 3770005305051884 a001 98209/70711162*12752043^(13/17) 3770005305051885 a001 196418/370248451*12752043^(14/17) 3770005305051886 a001 196418/969323029*12752043^(15/17) 3770005305051887 a001 24157817/439204*4870847^(1/8) 3770005305051888 a001 98209/1268860318*12752043^(16/17) 3770005305051889 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^47 3770005305051890 a001 196418/20633239*12752043^(11/17) 3770005305051905 a001 9227465/439204*4870847^(3/16) 3770005305051922 a001 98209/3940598*20633239^(4/7) 3770005305051927 a001 98209/3940598*2537720636^(4/9) 3770005305051927 a001 98209/3940598*(1/2+1/2*5^(1/2))^20 3770005305051927 a001 98209/3940598*23725150497407^(5/16) 3770005305051927 a001 98209/3940598*505019158607^(5/14) 3770005305051927 a001 1762289/219602*(1/2+1/2*5^(1/2))^8 3770005305051927 a001 1762289/219602*23725150497407^(1/8) 3770005305051927 a001 1762289/219602*505019158607^(1/7) 3770005305051927 a001 1762289/219602*73681302247^(2/13) 3770005305051927 a001 98209/3940598*73681302247^(5/13) 3770005305051927 a001 98209/3940598*28143753123^(2/5) 3770005305051927 a001 1762289/219602*10749957122^(1/6) 3770005305051927 a001 98209/3940598*10749957122^(5/12) 3770005305051927 a001 1762289/219602*4106118243^(4/23) 3770005305051927 a001 98209/3940598*4106118243^(10/23) 3770005305051927 a001 692290561604/1836311903 3770005305051927 a001 1762289/219602*1568397607^(2/11) 3770005305051927 a001 98209/3940598*1568397607^(5/11) 3770005305051927 a001 1762289/219602*599074578^(4/21) 3770005305051927 a001 98209/3940598*599074578^(10/21) 3770005305051927 a001 1762289/219602*228826127^(1/5) 3770005305051927 a001 98209/3940598*228826127^(1/2) 3770005305051927 a001 1762289/219602*87403803^(4/19) 3770005305051927 a001 98209/3940598*87403803^(10/19) 3770005305051927 a001 1762289/219602*33385282^(2/9) 3770005305051929 a001 98209/3940598*33385282^(5/9) 3770005305051932 a001 1762289/219602*12752043^(4/17) 3770005305051939 a001 31622993/219602*1860498^(1/15) 3770005305051940 a001 98209/3940598*12752043^(10/17) 3770005305051966 a001 1762289/219602*4870847^(1/4) 3770005305051974 a001 39088169/439204*1860498^(1/10) 3770005305051978 a001 39088169/12752043*271443^(5/13) 3770005305051984 a001 196418/20633239*4870847^(11/16) 3770005305051987 a001 196418/54018521*4870847^(3/4) 3770005305051995 a001 98209/70711162*4870847^(13/16) 3770005305051998 a001 14619165/4769326*271443^(5/13) 3770005305052001 a001 267914296/87403803*271443^(5/13) 3770005305052002 a001 701408733/228826127*271443^(5/13) 3770005305052002 a001 1836311903/599074578*271443^(5/13) 3770005305052002 a001 686789568/224056801*271443^(5/13) 3770005305052002 a001 12586269025/4106118243*271443^(5/13) 3770005305052002 a001 32951280099/10749957122*271443^(5/13) 3770005305052002 a001 86267571272/28143753123*271443^(5/13) 3770005305052002 a001 32264490531/10525900321*271443^(5/13) 3770005305052002 a001 591286729879/192900153618*271443^(5/13) 3770005305052002 a001 1548008755920/505019158607*271443^(5/13) 3770005305052002 a001 1515744265389/494493258286*271443^(5/13) 3770005305052002 a001 2504730781961/817138163596*271443^(5/13) 3770005305052002 a001 956722026041/312119004989*271443^(5/13) 3770005305052002 a001 365435296162/119218851371*271443^(5/13) 3770005305052002 a001 139583862445/45537549124*271443^(5/13) 3770005305052002 a001 53316291173/17393796001*271443^(5/13) 3770005305052002 a001 20365011074/6643838879*271443^(5/13) 3770005305052002 a001 7778742049/2537720636*271443^(5/13) 3770005305052002 a001 2971215073/969323029*271443^(5/13) 3770005305052002 a001 1134903170/370248451*271443^(5/13) 3770005305052002 a001 433494437/141422324*271443^(5/13) 3770005305052003 a001 165580141/54018521*271443^(5/13) 3770005305052005 a001 196418/370248451*4870847^(7/8) 3770005305052011 a001 63245986/20633239*271443^(5/13) 3770005305052013 a001 24157817/439204*1860498^(2/15) 3770005305052015 a001 196418/969323029*4870847^(15/16) 3770005305052025 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^45 3770005305052026 a001 98209/3940598*4870847^(5/8) 3770005305052034 a001 2178309/439204*1860498^(3/10) 3770005305052044 a001 196452/5779*1860498^(1/6) 3770005305052064 a001 24157817/7881196*271443^(5/13) 3770005305052093 a001 9227465/439204*1860498^(1/5) 3770005305052217 a001 1762289/219602*1860498^(4/15) 3770005305052249 a001 196418/3010349*7881196^(6/11) 3770005305052280 a001 1346269/439204*20633239^(2/7) 3770005305052282 a001 196418/3010349*141422324^(6/13) 3770005305052282 a001 196418/3010349*2537720636^(2/5) 3770005305052282 a001 1346269/439204*2537720636^(2/9) 3770005305052282 a001 196418/3010349*45537549124^(6/17) 3770005305052282 a001 196418/3010349*14662949395604^(2/7) 3770005305052282 a001 196418/3010349*(1/2+1/2*5^(1/2))^18 3770005305052282 a001 196418/3010349*192900153618^(1/3) 3770005305052282 a001 1346269/439204*312119004989^(2/11) 3770005305052282 a001 1346269/439204*(1/2+1/2*5^(1/2))^10 3770005305052282 a001 1346269/439204*28143753123^(1/5) 3770005305052282 a001 1346269/439204*10749957122^(5/24) 3770005305052282 a001 196418/3010349*10749957122^(3/8) 3770005305052282 a001 1346269/439204*4106118243^(5/23) 3770005305052282 a001 196418/3010349*4106118243^(9/23) 3770005305052282 a001 1346269/439204*1568397607^(5/22) 3770005305052282 a001 196418/3010349*1568397607^(9/22) 3770005305052282 a001 264431464442/701408733 3770005305052282 a001 1346269/439204*599074578^(5/21) 3770005305052282 a001 196418/3010349*599074578^(3/7) 3770005305052282 a001 1346269/439204*228826127^(1/4) 3770005305052282 a001 196418/3010349*228826127^(9/20) 3770005305052282 a001 1346269/439204*87403803^(5/19) 3770005305052282 a001 196418/3010349*87403803^(9/19) 3770005305052283 a001 1346269/439204*33385282^(5/18) 3770005305052284 a001 196418/3010349*33385282^(1/2) 3770005305052289 a001 1346269/439204*12752043^(5/17) 3770005305052294 a001 196418/3010349*12752043^(9/17) 3770005305052332 a001 1346269/439204*4870847^(5/16) 3770005305052371 a001 196418/3010349*4870847^(9/16) 3770005305052399 a001 31622993/219602*710647^(1/14) 3770005305052426 a001 9227465/3010349*271443^(5/13) 3770005305052605 a001 196418/12752043*1860498^(7/10) 3770005305052645 a001 1346269/439204*1860498^(1/3) 3770005305052653 a001 98209/3940598*1860498^(2/3) 3770005305052674 a001 196418/20633239*1860498^(11/15) 3770005305052739 a001 196418/54018521*1860498^(4/5) 3770005305052773 a001 196418/87403803*1860498^(5/6) 3770005305052810 a001 98209/70711162*1860498^(13/15) 3770005305052846 a001 196418/228826127*1860498^(9/10) 3770005305052883 a001 196418/370248451*1860498^(14/15) 3770005305052934 a001 24157817/439204*710647^(1/7) 3770005305052936 a001 196418/3010349*1860498^(3/5) 3770005305052955 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^43 3770005305053292 a001 514229/710647*271443^(1/2) 3770005305053475 a001 9227465/439204*710647^(3/14) 3770005305053709 a001 5702887/439204*710647^(1/4) 3770005305054060 a001 1762289/219602*710647^(2/7) 3770005305054082 a001 14619165/101521*103682^(1/12) 3770005305054227 a001 9227465/271443*103682^(5/24) 3770005305054689 a001 726103/620166*271443^(6/13) 3770005305054695 a001 514229/439204*7881196^(4/11) 3770005305054717 a001 514229/439204*141422324^(4/13) 3770005305054717 a001 514229/439204*2537720636^(4/15) 3770005305054717 a001 514229/439204*45537549124^(4/17) 3770005305054717 a001 196418/1149851*(1/2+1/2*5^(1/2))^16 3770005305054717 a001 196418/1149851*23725150497407^(1/4) 3770005305054717 a001 514229/439204*817138163596^(4/19) 3770005305054717 a001 514229/439204*14662949395604^(4/21) 3770005305054717 a001 514229/439204*(1/2+1/2*5^(1/2))^12 3770005305054717 a001 514229/439204*192900153618^(2/9) 3770005305054717 a001 196418/1149851*73681302247^(4/13) 3770005305054717 a001 514229/439204*73681302247^(3/13) 3770005305054717 a001 514229/439204*10749957122^(1/4) 3770005305054717 a001 196418/1149851*10749957122^(1/3) 3770005305054717 a001 514229/439204*4106118243^(6/23) 3770005305054717 a001 196418/1149851*4106118243^(8/23) 3770005305054717 a001 514229/439204*1568397607^(3/11) 3770005305054717 a001 196418/1149851*1568397607^(4/11) 3770005305054717 a001 514229/439204*599074578^(2/7) 3770005305054717 a001 196418/1149851*599074578^(8/21) 3770005305054717 a001 50501915861/133957148 3770005305054717 a001 514229/439204*228826127^(3/10) 3770005305054717 a001 196418/1149851*228826127^(2/5) 3770005305054718 a001 514229/439204*87403803^(6/19) 3770005305054718 a001 196418/1149851*87403803^(8/19) 3770005305054719 a001 514229/439204*33385282^(1/3) 3770005305054719 a001 196418/1149851*33385282^(4/9) 3770005305054726 a001 514229/439204*12752043^(6/17) 3770005305054728 a001 196418/1149851*12752043^(8/17) 3770005305054777 a001 514229/439204*4870847^(3/8) 3770005305054797 a001 196418/1149851*4870847^(1/2) 3770005305054914 a001 3524578/1149851*271443^(5/13) 3770005305054948 a001 1346269/439204*710647^(5/14) 3770005305055153 a001 514229/439204*1860498^(2/5) 3770005305055255 a001 105937/620166*271443^(8/13) 3770005305055298 a001 196418/1149851*1860498^(8/15) 3770005305055755 a001 5702887/4870847*271443^(6/13) 3770005305055802 a001 31622993/219602*271443^(1/13) 3770005305055911 a001 4976784/4250681*271443^(6/13) 3770005305055934 a001 39088169/33385282*271443^(6/13) 3770005305055937 a001 34111385/29134601*271443^(6/13) 3770005305055937 a001 267914296/228826127*271443^(6/13) 3770005305055937 a001 233802911/199691526*271443^(6/13) 3770005305055937 a001 1836311903/1568397607*271443^(6/13) 3770005305055937 a001 1602508992/1368706081*271443^(6/13) 3770005305055937 a001 12586269025/10749957122*271443^(6/13) 3770005305055937 a001 10983760033/9381251041*271443^(6/13) 3770005305055937 a001 86267571272/73681302247*271443^(6/13) 3770005305055937 a001 75283811239/64300051206*271443^(6/13) 3770005305055937 a001 2504730781961/2139295485799*271443^(6/13) 3770005305055937 a001 365435296162/312119004989*271443^(6/13) 3770005305055937 a001 139583862445/119218851371*271443^(6/13) 3770005305055937 a001 53316291173/45537549124*271443^(6/13) 3770005305055937 a001 20365011074/17393796001*271443^(6/13) 3770005305055937 a001 7778742049/6643838879*271443^(6/13) 3770005305055937 a001 2971215073/2537720636*271443^(6/13) 3770005305055937 a001 1134903170/969323029*271443^(6/13) 3770005305055937 a001 433494437/370248451*271443^(6/13) 3770005305055938 a001 165580141/141422324*271443^(6/13) 3770005305055939 a001 63245986/54018521*271443^(6/13) 3770005305055948 a001 24157817/20633239*271443^(6/13) 3770005305056007 a001 9227465/7881196*271443^(6/13) 3770005305056414 a001 3524578/3010349*271443^(6/13) 3770005305057081 a001 196418/3010349*710647^(9/14) 3770005305057232 a001 1346269/1860498*271443^(1/2) 3770005305057259 a001 98209/3940598*710647^(5/7) 3770005305057442 a001 196418/12752043*710647^(3/4) 3770005305057695 a001 416020/930249*271443^(7/13) 3770005305057740 a001 196418/20633239*710647^(11/14) 3770005305057807 a001 3524578/4870847*271443^(1/2) 3770005305057891 a001 9227465/12752043*271443^(1/2) 3770005305057903 a001 24157817/33385282*271443^(1/2) 3770005305057905 a001 63245986/87403803*271443^(1/2) 3770005305057905 a001 165580141/228826127*271443^(1/2) 3770005305057905 a001 433494437/599074578*271443^(1/2) 3770005305057905 a001 1134903170/1568397607*271443^(1/2) 3770005305057905 a001 2971215073/4106118243*271443^(1/2) 3770005305057905 a001 7778742049/10749957122*271443^(1/2) 3770005305057905 a001 20365011074/28143753123*271443^(1/2) 3770005305057905 a001 53316291173/73681302247*271443^(1/2) 3770005305057905 a001 139583862445/192900153618*271443^(1/2) 3770005305057905 a001 10610209857723/14662949395604*271443^(1/2) 3770005305057905 a001 591286729879/817138163596*271443^(1/2) 3770005305057905 a001 225851433717/312119004989*271443^(1/2) 3770005305057905 a001 86267571272/119218851371*271443^(1/2) 3770005305057905 a001 32951280099/45537549124*271443^(1/2) 3770005305057905 a001 12586269025/17393796001*271443^(1/2) 3770005305057905 a001 4807526976/6643838879*271443^(1/2) 3770005305057905 a001 1836311903/2537720636*271443^(1/2) 3770005305057905 a001 701408733/969323029*271443^(1/2) 3770005305057905 a001 267914296/370248451*271443^(1/2) 3770005305057906 a001 102334155/141422324*271443^(1/2) 3770005305057906 a001 39088169/54018521*271443^(1/2) 3770005305057911 a001 14930352/20633239*271443^(1/2) 3770005305057917 a001 514229/439204*710647^(3/7) 3770005305057943 a001 5702887/7881196*271443^(1/2) 3770005305058163 a001 2178309/3010349*271443^(1/2) 3770005305058266 a001 196418/54018521*710647^(6/7) 3770005305058798 a001 98209/70711162*710647^(13/14) 3770005305058983 a001 196418/1149851*710647^(4/7) 3770005305059205 a001 1346269/1149851*271443^(6/13) 3770005305059331 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^41 3770005305059529 a001 75025/3010349*167761^(4/5) 3770005305059556 a001 2178309/4870847*271443^(7/13) 3770005305059668 a001 832040/1149851*271443^(1/2) 3770005305059739 a001 24157817/439204*271443^(2/13) 3770005305059827 a001 5702887/12752043*271443^(7/13) 3770005305059867 a001 7465176/16692641*271443^(7/13) 3770005305059872 a001 39088169/87403803*271443^(7/13) 3770005305059873 a001 102334155/228826127*271443^(7/13) 3770005305059873 a001 133957148/299537289*271443^(7/13) 3770005305059873 a001 701408733/1568397607*271443^(7/13) 3770005305059873 a001 1836311903/4106118243*271443^(7/13) 3770005305059873 a001 2403763488/5374978561*271443^(7/13) 3770005305059873 a001 12586269025/28143753123*271443^(7/13) 3770005305059873 a001 32951280099/73681302247*271443^(7/13) 3770005305059873 a001 43133785636/96450076809*271443^(7/13) 3770005305059873 a001 225851433717/505019158607*271443^(7/13) 3770005305059873 a001 591286729879/1322157322203*271443^(7/13) 3770005305059873 a001 10610209857723/23725150497407*271443^(7/13) 3770005305059873 a001 182717648081/408569081798*271443^(7/13) 3770005305059873 a001 139583862445/312119004989*271443^(7/13) 3770005305059873 a001 53316291173/119218851371*271443^(7/13) 3770005305059873 a001 10182505537/22768774562*271443^(7/13) 3770005305059873 a001 7778742049/17393796001*271443^(7/13) 3770005305059873 a001 2971215073/6643838879*271443^(7/13) 3770005305059873 a001 567451585/1268860318*271443^(7/13) 3770005305059873 a001 433494437/969323029*271443^(7/13) 3770005305059873 a001 165580141/370248451*271443^(7/13) 3770005305059874 a001 31622993/70711162*271443^(7/13) 3770005305059876 a001 24157817/54018521*271443^(7/13) 3770005305059891 a001 9227465/20633239*271443^(7/13) 3770005305059995 a001 1762289/3940598*271443^(7/13) 3770005305060121 a001 317811/4870847*271443^(9/13) 3770005305060458 a001 133957148/930249*103682^(1/12) 3770005305060705 a001 1346269/3010349*271443^(7/13) 3770005305061388 a001 701408733/4870847*103682^(1/12) 3770005305061524 a001 1836311903/12752043*103682^(1/12) 3770005305061544 a001 14930208/103681*103682^(1/12) 3770005305061547 a001 12586269025/87403803*103682^(1/12) 3770005305061547 a001 32951280099/228826127*103682^(1/12) 3770005305061547 a001 43133785636/299537289*103682^(1/12) 3770005305061547 a001 32264490531/224056801*103682^(1/12) 3770005305061547 a001 591286729879/4106118243*103682^(1/12) 3770005305061547 a001 774004377960/5374978561*103682^(1/12) 3770005305061547 a001 4052739537881/28143753123*103682^(1/12) 3770005305061547 a001 1515744265389/10525900321*103682^(1/12) 3770005305061547 a001 3278735159921/22768774562*103682^(1/12) 3770005305061547 a001 2504730781961/17393796001*103682^(1/12) 3770005305061547 a001 956722026041/6643838879*103682^(1/12) 3770005305061547 a001 182717648081/1268860318*103682^(1/12) 3770005305061547 a001 139583862445/969323029*103682^(1/12) 3770005305061547 a001 53316291173/370248451*103682^(1/12) 3770005305061547 a001 10182505537/70711162*103682^(1/12) 3770005305061548 a001 7778742049/54018521*103682^(1/12) 3770005305061556 a001 2971215073/20633239*103682^(1/12) 3770005305061608 a001 567451585/3940598*103682^(1/12) 3770005305061963 a001 433494437/3010349*103682^(1/12) 3770005305062561 a001 832040/4870847*271443^(8/13) 3770005305063627 a001 726103/4250681*271443^(8/13) 3770005305063683 a001 9227465/439204*271443^(3/13) 3770005305063783 a001 5702887/33385282*271443^(8/13) 3770005305063805 a001 4976784/29134601*271443^(8/13) 3770005305063809 a001 39088169/228826127*271443^(8/13) 3770005305063809 a001 34111385/199691526*271443^(8/13) 3770005305063809 a001 267914296/1568397607*271443^(8/13) 3770005305063809 a001 233802911/1368706081*271443^(8/13) 3770005305063809 a001 1836311903/10749957122*271443^(8/13) 3770005305063809 a001 1602508992/9381251041*271443^(8/13) 3770005305063809 a001 12586269025/73681302247*271443^(8/13) 3770005305063809 a001 10983760033/64300051206*271443^(8/13) 3770005305063809 a001 86267571272/505019158607*271443^(8/13) 3770005305063809 a001 75283811239/440719107401*271443^(8/13) 3770005305063809 a001 2504730781961/14662949395604*271443^(8/13) 3770005305063809 a001 139583862445/817138163596*271443^(8/13) 3770005305063809 a001 53316291173/312119004989*271443^(8/13) 3770005305063809 a001 20365011074/119218851371*271443^(8/13) 3770005305063809 a001 7778742049/45537549124*271443^(8/13) 3770005305063809 a001 2971215073/17393796001*271443^(8/13) 3770005305063809 a001 1134903170/6643838879*271443^(8/13) 3770005305063809 a001 433494437/2537720636*271443^(8/13) 3770005305063809 a001 165580141/969323029*271443^(8/13) 3770005305063809 a001 63245986/370248451*271443^(8/13) 3770005305063811 a001 24157817/141422324*271443^(8/13) 3770005305063819 a001 9227465/54018521*271443^(8/13) 3770005305063879 a001 3524578/20633239*271443^(8/13) 3770005305064193 a001 105937/4250681*271443^(10/13) 3770005305064286 a001 1346269/7881196*271443^(8/13) 3770005305064399 a001 165580141/1149851*103682^(1/12) 3770005305065576 a001 514229/1149851*271443^(7/13) 3770005305066478 a001 102334155/439204*103682^(1/24) 3770005305066633 a001 832040/12752043*271443^(9/13) 3770005305067077 a001 514229/3010349*271443^(8/13) 3770005305067583 a001 311187/4769326*271443^(9/13) 3770005305067670 a001 1762289/219602*271443^(4/13) 3770005305067721 a001 5702887/87403803*271443^(9/13) 3770005305067742 a001 14930352/228826127*271443^(9/13) 3770005305067745 a001 39088169/599074578*271443^(9/13) 3770005305067745 a001 14619165/224056801*271443^(9/13) 3770005305067745 a001 267914296/4106118243*271443^(9/13) 3770005305067745 a001 701408733/10749957122*271443^(9/13) 3770005305067745 a001 1836311903/28143753123*271443^(9/13) 3770005305067745 a001 686789568/10525900321*271443^(9/13) 3770005305067745 a001 12586269025/192900153618*271443^(9/13) 3770005305067745 a001 32951280099/505019158607*271443^(9/13) 3770005305067745 a001 86267571272/1322157322203*271443^(9/13) 3770005305067745 a001 32264490531/494493258286*271443^(9/13) 3770005305067745 a001 591286729879/9062201101803*271443^(9/13) 3770005305067745 a001 1548008755920/23725150497407*271443^(9/13) 3770005305067745 a001 139583862445/2139295485799*271443^(9/13) 3770005305067745 a001 53316291173/817138163596*271443^(9/13) 3770005305067745 a001 20365011074/312119004989*271443^(9/13) 3770005305067745 a001 7778742049/119218851371*271443^(9/13) 3770005305067745 a001 2971215073/45537549124*271443^(9/13) 3770005305067745 a001 1134903170/17393796001*271443^(9/13) 3770005305067745 a001 433494437/6643838879*271443^(9/13) 3770005305067745 a001 165580141/2537720636*271443^(9/13) 3770005305067745 a001 63245986/969323029*271443^(9/13) 3770005305067746 a001 24157817/370248451*271443^(9/13) 3770005305067754 a001 9227465/141422324*271443^(9/13) 3770005305067807 a001 3524578/54018521*271443^(9/13) 3770005305068148 a001 317811/33385282*271443^(11/13) 3770005305068170 a001 1346269/20633239*271443^(9/13) 3770005305068695 a001 63245986/710647*103682^(1/8) 3770005305068808 a001 5702887/271443*103682^(1/4) 3770005305069984 a001 317811/439204*271443^(1/2) 3770005305070588 a001 416020/16692641*271443^(10/13) 3770005305070657 a001 514229/7881196*271443^(9/13) 3770005305071406 a001 98209/219602*20633239^(2/5) 3770005305071410 a001 98209/219602*17393796001^(2/7) 3770005305071410 a001 98209/219602*14662949395604^(2/9) 3770005305071410 a001 98209/219602*(1/2+1/2*5^(1/2))^14 3770005305071410 a001 98209/219602*505019158607^(1/4) 3770005305071410 a001 98209/219602*10749957122^(7/24) 3770005305071410 a001 98209/219602*4106118243^(7/23) 3770005305071410 a001 98209/219602*1568397607^(7/22) 3770005305071410 a001 98209/219602*599074578^(1/3) 3770005305071410 a001 98209/219602*228826127^(7/20) 3770005305071410 a001 38580030724/102334155 3770005305071410 a001 98209/219602*87403803^(7/19) 3770005305071411 a001 98209/219602*33385282^(7/18) 3770005305071419 a001 98209/219602*12752043^(7/17) 3770005305071479 a001 98209/219602*4870847^(7/16) 3770005305071522 a001 726103/29134601*271443^(10/13) 3770005305071658 a001 5702887/228826127*271443^(10/13) 3770005305071678 a001 829464/33281921*271443^(10/13) 3770005305071680 a001 39088169/1568397607*271443^(10/13) 3770005305071681 a001 34111385/1368706081*271443^(10/13) 3770005305071681 a001 133957148/5374978561*271443^(10/13) 3770005305071681 a001 233802911/9381251041*271443^(10/13) 3770005305071681 a001 1836311903/73681302247*271443^(10/13) 3770005305071681 a001 267084832/10716675201*271443^(10/13) 3770005305071681 a001 12586269025/505019158607*271443^(10/13) 3770005305071681 a001 10983760033/440719107401*271443^(10/13) 3770005305071681 a001 43133785636/1730726404001*271443^(10/13) 3770005305071681 a001 75283811239/3020733700601*271443^(10/13) 3770005305071681 a001 182717648081/7331474697802*271443^(10/13) 3770005305071681 a001 139583862445/5600748293801*271443^(10/13) 3770005305071681 a001 53316291173/2139295485799*271443^(10/13) 3770005305071681 a001 10182505537/408569081798*271443^(10/13) 3770005305071681 a001 7778742049/312119004989*271443^(10/13) 3770005305071681 a001 2971215073/119218851371*271443^(10/13) 3770005305071681 a001 567451585/22768774562*271443^(10/13) 3770005305071681 a001 433494437/17393796001*271443^(10/13) 3770005305071681 a001 165580141/6643838879*271443^(10/13) 3770005305071681 a001 31622993/1268860318*271443^(10/13) 3770005305071682 a001 24157817/969323029*271443^(10/13) 3770005305071690 a001 9227465/370248451*271443^(10/13) 3770005305071742 a001 1762289/70711162*271443^(10/13) 3770005305071918 a001 98209/219602*1860498^(7/15) 3770005305071961 a001 1346269/439204*271443^(5/13) 3770005305072087 a001 105937/29134601*271443^(12/13) 3770005305072098 a001 1346269/54018521*271443^(10/13) 3770005305072658 a001 28657/3010349*64079^(22/23) 3770005305074527 a001 832040/87403803*271443^(11/13) 3770005305074541 a001 514229/20633239*271443^(10/13) 3770005305075071 a001 165580141/1860498*103682^(1/8) 3770005305075142 a001 98209/219602*710647^(1/2) 3770005305075458 a001 46347/4868641*271443^(11/13) 3770005305075594 a001 5702887/599074578*271443^(11/13) 3770005305075613 a001 14930352/1568397607*271443^(11/13) 3770005305075616 a001 39088169/4106118243*271443^(11/13) 3770005305075617 a001 102334155/10749957122*271443^(11/13) 3770005305075617 a001 267914296/28143753123*271443^(11/13) 3770005305075617 a001 701408733/73681302247*271443^(11/13) 3770005305075617 a001 1836311903/192900153618*271443^(11/13) 3770005305075617 a001 102287808/10745088481*271443^(11/13) 3770005305075617 a001 12586269025/1322157322203*271443^(11/13) 3770005305075617 a001 32951280099/3461452808002*271443^(11/13) 3770005305075617 a001 86267571272/9062201101803*271443^(11/13) 3770005305075617 a001 225851433717/23725150497407*271443^(11/13) 3770005305075617 a001 139583862445/14662949395604*271443^(11/13) 3770005305075617 a001 53316291173/5600748293801*271443^(11/13) 3770005305075617 a001 20365011074/2139295485799*271443^(11/13) 3770005305075617 a001 7778742049/817138163596*271443^(11/13) 3770005305075617 a001 2971215073/312119004989*271443^(11/13) 3770005305075617 a001 1134903170/119218851371*271443^(11/13) 3770005305075617 a001 433494437/45537549124*271443^(11/13) 3770005305075617 a001 165580141/17393796001*271443^(11/13) 3770005305075617 a001 63245986/6643838879*271443^(11/13) 3770005305075618 a001 24157817/2537720636*271443^(11/13) 3770005305075626 a001 9227465/969323029*271443^(11/13) 3770005305075678 a001 3524578/370248451*271443^(11/13) 3770005305076001 a001 433494437/4870847*103682^(1/8) 3770005305076024 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^40 3770005305076033 a001 1346269/141422324*271443^(11/13) 3770005305076136 a001 1134903170/12752043*103682^(1/8) 3770005305076156 a001 2971215073/33385282*103682^(1/8) 3770005305076159 a001 7778742049/87403803*103682^(1/8) 3770005305076160 a001 20365011074/228826127*103682^(1/8) 3770005305076160 a001 53316291173/599074578*103682^(1/8) 3770005305076160 a001 139583862445/1568397607*103682^(1/8) 3770005305076160 a001 365435296162/4106118243*103682^(1/8) 3770005305076160 a001 956722026041/10749957122*103682^(1/8) 3770005305076160 a001 2504730781961/28143753123*103682^(1/8) 3770005305076160 a001 6557470319842/73681302247*103682^(1/8) 3770005305076160 a001 10610209857723/119218851371*103682^(1/8) 3770005305076160 a001 4052739537881/45537549124*103682^(1/8) 3770005305076160 a001 1548008755920/17393796001*103682^(1/8) 3770005305076160 a001 591286729879/6643838879*103682^(1/8) 3770005305076160 a001 225851433717/2537720636*103682^(1/8) 3770005305076160 a001 86267571272/969323029*103682^(1/8) 3770005305076160 a001 32951280099/370248451*103682^(1/8) 3770005305076160 a001 12586269025/141422324*103682^(1/8) 3770005305076161 a001 4807526976/54018521*103682^(1/8) 3770005305076169 a001 1836311903/20633239*103682^(1/8) 3770005305076220 a001 3524667/39604*103682^(1/8) 3770005305076576 a001 267914296/3010349*103682^(1/8) 3770005305078333 a001 514229/439204*271443^(6/13) 3770005305078464 a001 832040/228826127*271443^(12/13) 3770005305078470 a001 514229/54018521*271443^(11/13) 3770005305079011 a001 102334155/1149851*103682^(1/8) 3770005305079394 a001 726103/199691526*271443^(12/13) 3770005305079530 a001 5702887/1568397607*271443^(12/13) 3770005305079549 a001 4976784/1368706081*271443^(12/13) 3770005305079552 a001 39088169/10749957122*271443^(12/13) 3770005305079553 a001 831985/228811001*271443^(12/13) 3770005305079553 a001 267914296/73681302247*271443^(12/13) 3770005305079553 a001 233802911/64300051206*271443^(12/13) 3770005305079553 a001 1836311903/505019158607*271443^(12/13) 3770005305079553 a001 1602508992/440719107401*271443^(12/13) 3770005305079553 a001 12586269025/3461452808002*271443^(12/13) 3770005305079553 a001 10983760033/3020733700601*271443^(12/13) 3770005305079553 a001 86267571272/23725150497407*271443^(12/13) 3770005305079553 a001 53316291173/14662949395604*271443^(12/13) 3770005305079553 a001 20365011074/5600748293801*271443^(12/13) 3770005305079553 a001 7778742049/2139295485799*271443^(12/13) 3770005305079553 a001 2971215073/817138163596*271443^(12/13) 3770005305079553 a001 1134903170/312119004989*271443^(12/13) 3770005305079553 a001 433494437/119218851371*271443^(12/13) 3770005305079553 a001 165580141/45537549124*271443^(12/13) 3770005305079553 a001 63245986/17393796001*271443^(12/13) 3770005305079554 a001 24157817/6643838879*271443^(12/13) 3770005305079562 a001 9227465/2537720636*271443^(12/13) 3770005305079613 a001 3524578/969323029*271443^(12/13) 3770005305079969 a001 1346269/370248451*271443^(12/13) 3770005305080815 a001 46368/64079*64079^(13/23) 3770005305081091 a001 31622993/219602*103682^(1/12) 3770005305082399 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^42 3770005305082404 a001 514229/141422324*271443^(12/13) 3770005305083307 a001 39088169/710647*103682^(1/6) 3770005305083330 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^44 3770005305083465 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^46 3770005305083485 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^48 3770005305083488 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^50 3770005305083489 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^52 3770005305083489 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^54 3770005305083489 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^56 3770005305083489 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^58 3770005305083489 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^60 3770005305083489 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^62 3770005305083489 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^64 3770005305083489 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^66 3770005305083489 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^68 3770005305083489 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^70 3770005305083489 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^72 3770005305083489 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^74 3770005305083489 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^76 3770005305083489 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^78 3770005305083489 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^80 3770005305083489 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^82 3770005305083489 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^84 3770005305083489 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^86 3770005305083489 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^88 3770005305083489 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^90 3770005305083489 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^92 3770005305083489 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^94 3770005305083489 a004 Fibonacci(84)*Lucas(26)/(1/2+sqrt(5)/2)^96 3770005305083489 a004 Fibonacci(86)*Lucas(26)/(1/2+sqrt(5)/2)^98 3770005305083489 a004 Fibonacci(88)*Lucas(26)/(1/2+sqrt(5)/2)^100 3770005305083489 a004 Fibonacci(87)*Lucas(26)/(1/2+sqrt(5)/2)^99 3770005305083489 a004 Fibonacci(85)*Lucas(26)/(1/2+sqrt(5)/2)^97 3770005305083489 a004 Fibonacci(83)*Lucas(26)/(1/2+sqrt(5)/2)^95 3770005305083489 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^93 3770005305083489 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^91 3770005305083489 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^89 3770005305083489 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^87 3770005305083489 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^85 3770005305083489 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^83 3770005305083489 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^81 3770005305083489 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^79 3770005305083489 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^77 3770005305083489 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^75 3770005305083489 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^73 3770005305083489 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^71 3770005305083489 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^69 3770005305083489 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^67 3770005305083489 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^65 3770005305083489 a001 2/121393*(1/2+1/2*5^(1/2))^40 3770005305083489 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^63 3770005305083489 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^61 3770005305083489 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^59 3770005305083489 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^57 3770005305083489 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^55 3770005305083489 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^53 3770005305083489 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^51 3770005305083490 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^49 3770005305083497 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^47 3770005305083504 a001 3524578/271443*103682^(7/24) 3770005305083549 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^45 3770005305083905 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^43 3770005305086204 a001 196418/1149851*271443^(8/13) 3770005305086340 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^41 3770005305086440 a001 24157817/167761*64079^(2/23) 3770005305087705 a001 196418/3010349*271443^(9/13) 3770005305089683 a001 831985/15126*103682^(1/6) 3770005305090417 a001 63245986/271443*39603^(1/22) 3770005305090613 a001 267914296/4870847*103682^(1/6) 3770005305090749 a001 233802911/4250681*103682^(1/6) 3770005305090769 a001 1836311903/33385282*103682^(1/6) 3770005305090772 a001 1602508992/29134601*103682^(1/6) 3770005305090772 a001 12586269025/228826127*103682^(1/6) 3770005305090772 a001 10983760033/199691526*103682^(1/6) 3770005305090772 a001 86267571272/1568397607*103682^(1/6) 3770005305090772 a001 75283811239/1368706081*103682^(1/6) 3770005305090772 a001 591286729879/10749957122*103682^(1/6) 3770005305090772 a001 12585437040/228811001*103682^(1/6) 3770005305090772 a001 4052739537881/73681302247*103682^(1/6) 3770005305090772 a001 3536736619241/64300051206*103682^(1/6) 3770005305090772 a001 6557470319842/119218851371*103682^(1/6) 3770005305090772 a001 2504730781961/45537549124*103682^(1/6) 3770005305090772 a001 956722026041/17393796001*103682^(1/6) 3770005305090772 a001 365435296162/6643838879*103682^(1/6) 3770005305090772 a001 139583862445/2537720636*103682^(1/6) 3770005305090772 a001 53316291173/969323029*103682^(1/6) 3770005305090772 a001 20365011074/370248451*103682^(1/6) 3770005305090772 a001 7778742049/141422324*103682^(1/6) 3770005305090773 a001 2971215073/54018521*103682^(1/6) 3770005305090781 a001 1134903170/20633239*103682^(1/6) 3770005305090833 a001 433494437/7881196*103682^(1/6) 3770005305091188 a001 165580141/3010349*103682^(1/6) 3770005305091285 a001 98209/3940598*271443^(10/13) 3770005305093624 a001 63245986/1149851*103682^(1/6) 3770005305095170 a001 196418/20633239*271443^(11/13) 3770005305095703 a001 39088169/439204*103682^(1/8) 3770005305097897 a001 726103/90481*103682^(1/3) 3770005305097921 a001 24157817/710647*103682^(5/24) 3770005305098961 a001 98209/219602*271443^(7/13) 3770005305099098 a001 196418/54018521*271443^(12/13) 3770005305099964 a001 3524578/39603*15127^(3/20) 3770005305103032 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^39 3770005305104253 a001 75025/271443*439204^(5/9) 3770005305104296 a001 31622993/930249*103682^(5/24) 3770005305105226 a001 165580141/4870847*103682^(5/24) 3770005305105361 a001 433494437/12752043*103682^(5/24) 3770005305105381 a001 567451585/16692641*103682^(5/24) 3770005305105384 a001 2971215073/87403803*103682^(5/24) 3770005305105385 a001 7778742049/228826127*103682^(5/24) 3770005305105385 a001 10182505537/299537289*103682^(5/24) 3770005305105385 a001 53316291173/1568397607*103682^(5/24) 3770005305105385 a001 139583862445/4106118243*103682^(5/24) 3770005305105385 a001 182717648081/5374978561*103682^(5/24) 3770005305105385 a001 956722026041/28143753123*103682^(5/24) 3770005305105385 a001 2504730781961/73681302247*103682^(5/24) 3770005305105385 a001 3278735159921/96450076809*103682^(5/24) 3770005305105385 a001 10610209857723/312119004989*103682^(5/24) 3770005305105385 a001 4052739537881/119218851371*103682^(5/24) 3770005305105385 a001 387002188980/11384387281*103682^(5/24) 3770005305105385 a001 591286729879/17393796001*103682^(5/24) 3770005305105385 a001 225851433717/6643838879*103682^(5/24) 3770005305105385 a001 1135099622/33391061*103682^(5/24) 3770005305105385 a001 32951280099/969323029*103682^(5/24) 3770005305105385 a001 12586269025/370248451*103682^(5/24) 3770005305105385 a001 1201881744/35355581*103682^(5/24) 3770005305105386 a001 1836311903/54018521*103682^(5/24) 3770005305105393 a001 701408733/20633239*103682^(5/24) 3770005305105445 a001 66978574/1970299*103682^(5/24) 3770005305105801 a001 102334155/3010349*103682^(5/24) 3770005305108236 a001 39088169/1149851*103682^(5/24) 3770005305110317 a001 24157817/439204*103682^(1/6) 3770005305111072 a001 28657/1860498*64079^(21/23) 3770005305112529 a001 14930352/710647*103682^(1/4) 3770005305113084 a001 1346269/271443*103682^(3/8) 3770005305115084 a001 75025/271443*7881196^(5/11) 3770005305115107 a001 75025/271443*20633239^(3/7) 3770005305115110 a001 9107509825/24157817 3770005305115111 a001 75025/271443*141422324^(5/13) 3770005305115111 a001 121393/167761*141422324^(1/3) 3770005305115111 a001 75025/271443*2537720636^(1/3) 3770005305115111 a001 75025/271443*45537549124^(5/17) 3770005305115111 a001 75025/271443*312119004989^(3/11) 3770005305115111 a001 75025/271443*14662949395604^(5/21) 3770005305115111 a001 75025/271443*(1/2+1/2*5^(1/2))^15 3770005305115111 a001 75025/271443*192900153618^(5/18) 3770005305115111 a001 75025/271443*28143753123^(3/10) 3770005305115111 a001 121393/167761*(1/2+1/2*5^(1/2))^13 3770005305115111 a001 121393/167761*73681302247^(1/4) 3770005305115111 a001 75025/271443*10749957122^(5/16) 3770005305115111 a001 75025/271443*599074578^(5/14) 3770005305115111 a001 75025/271443*228826127^(3/8) 3770005305115113 a001 75025/271443*33385282^(5/12) 3770005305115547 a001 514229/167761*167761^(2/5) 3770005305115656 a001 75025/271443*1860498^(1/2) 3770005305118641 a001 5702887/103682*39603^(2/11) 3770005305118907 a001 39088169/1860498*103682^(1/4) 3770005305119838 a001 102334155/4870847*103682^(1/4) 3770005305119974 a001 267914296/12752043*103682^(1/4) 3770005305119994 a001 701408733/33385282*103682^(1/4) 3770005305119997 a001 1836311903/87403803*103682^(1/4) 3770005305119997 a001 102287808/4868641*103682^(1/4) 3770005305119997 a001 12586269025/599074578*103682^(1/4) 3770005305119997 a001 32951280099/1568397607*103682^(1/4) 3770005305119997 a001 86267571272/4106118243*103682^(1/4) 3770005305119997 a001 225851433717/10749957122*103682^(1/4) 3770005305119997 a001 591286729879/28143753123*103682^(1/4) 3770005305119997 a001 1548008755920/73681302247*103682^(1/4) 3770005305119997 a001 4052739537881/192900153618*103682^(1/4) 3770005305119997 a001 225749145909/10745088481*103682^(1/4) 3770005305119997 a001 6557470319842/312119004989*103682^(1/4) 3770005305119997 a001 2504730781961/119218851371*103682^(1/4) 3770005305119997 a001 956722026041/45537549124*103682^(1/4) 3770005305119997 a001 365435296162/17393796001*103682^(1/4) 3770005305119997 a001 139583862445/6643838879*103682^(1/4) 3770005305119997 a001 53316291173/2537720636*103682^(1/4) 3770005305119997 a001 20365011074/969323029*103682^(1/4) 3770005305119997 a001 7778742049/370248451*103682^(1/4) 3770005305119997 a001 2971215073/141422324*103682^(1/4) 3770005305119998 a001 1134903170/54018521*103682^(1/4) 3770005305120006 a001 433494437/20633239*103682^(1/4) 3770005305120058 a001 165580141/7881196*103682^(1/4) 3770005305120413 a001 63245986/3010349*103682^(1/4) 3770005305122850 a001 24157817/1149851*103682^(1/4) 3770005305124925 a001 196452/5779*103682^(5/24) 3770005305126192 a001 832040/271443*103682^(5/12) 3770005305126358 a001 39088169/167761*64079^(1/23) 3770005305127153 a001 9227465/710647*103682^(7/24) 3770005305133522 a001 24157817/1860498*103682^(7/24) 3770005305134118 a001 165580141/710647*39603^(1/22) 3770005305134451 a001 63245986/4870847*103682^(7/24) 3770005305134564 a001 121393/271443*103682^(7/12) 3770005305134586 a001 165580141/12752043*103682^(7/24) 3770005305134606 a001 433494437/33385282*103682^(7/24) 3770005305134609 a001 1134903170/87403803*103682^(7/24) 3770005305134610 a001 2971215073/228826127*103682^(7/24) 3770005305134610 a001 7778742049/599074578*103682^(7/24) 3770005305134610 a001 20365011074/1568397607*103682^(7/24) 3770005305134610 a001 53316291173/4106118243*103682^(7/24) 3770005305134610 a001 139583862445/10749957122*103682^(7/24) 3770005305134610 a001 365435296162/28143753123*103682^(7/24) 3770005305134610 a001 956722026041/73681302247*103682^(7/24) 3770005305134610 a001 2504730781961/192900153618*103682^(7/24) 3770005305134610 a001 10610209857723/817138163596*103682^(7/24) 3770005305134610 a001 4052739537881/312119004989*103682^(7/24) 3770005305134610 a001 1548008755920/119218851371*103682^(7/24) 3770005305134610 a001 591286729879/45537549124*103682^(7/24) 3770005305134610 a001 7787980473/599786069*103682^(7/24) 3770005305134610 a001 86267571272/6643838879*103682^(7/24) 3770005305134610 a001 32951280099/2537720636*103682^(7/24) 3770005305134610 a001 12586269025/969323029*103682^(7/24) 3770005305134610 a001 4807526976/370248451*103682^(7/24) 3770005305134610 a001 1836311903/141422324*103682^(7/24) 3770005305134611 a001 701408733/54018521*103682^(7/24) 3770005305134618 a001 9238424/711491*103682^(7/24) 3770005305134670 a001 102334155/7881196*103682^(7/24) 3770005305135025 a001 39088169/3010349*103682^(7/24) 3770005305137458 a001 14930352/1149851*103682^(7/24) 3770005305139463 a001 5702887/167761*167761^(1/5) 3770005305139550 a001 9227465/439204*103682^(1/4) 3770005305140494 a001 433494437/1860498*39603^(1/22) 3770005305140694 a001 121393/167761*271443^(1/2) 3770005305141424 a001 1134903170/4870847*39603^(1/22) 3770005305141560 a001 2971215073/12752043*39603^(1/22) 3770005305141579 a001 7778742049/33385282*39603^(1/22) 3770005305141582 a001 20365011074/87403803*39603^(1/22) 3770005305141583 a001 53316291173/228826127*39603^(1/22) 3770005305141583 a001 139583862445/599074578*39603^(1/22) 3770005305141583 a001 365435296162/1568397607*39603^(1/22) 3770005305141583 a001 956722026041/4106118243*39603^(1/22) 3770005305141583 a001 2504730781961/10749957122*39603^(1/22) 3770005305141583 a001 6557470319842/28143753123*39603^(1/22) 3770005305141583 a001 10610209857723/45537549124*39603^(1/22) 3770005305141583 a001 4052739537881/17393796001*39603^(1/22) 3770005305141583 a001 1548008755920/6643838879*39603^(1/22) 3770005305141583 a001 591286729879/2537720636*39603^(1/22) 3770005305141583 a001 225851433717/969323029*39603^(1/22) 3770005305141583 a001 86267571272/370248451*39603^(1/22) 3770005305141583 a001 63246219/271444*39603^(1/22) 3770005305141584 a001 12586269025/54018521*39603^(1/22) 3770005305141592 a001 4807526976/20633239*39603^(1/22) 3770005305141643 a001 1836311903/7881196*39603^(1/22) 3770005305141734 a001 5702887/710647*103682^(1/3) 3770005305141999 a001 701408733/3010349*39603^(1/22) 3770005305144434 a001 267914296/1149851*39603^(1/22) 3770005305144745 a001 514229/271443*103682^(11/24) 3770005305146734 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^38 3770005305148130 a001 829464/103361*103682^(1/3) 3770005305148914 a001 75025/20633239*439204^(8/9) 3770005305149041 a001 105937/90481*103682^(1/2) 3770005305149063 a001 39088169/4870847*103682^(1/3) 3770005305149199 a001 34111385/4250681*103682^(1/3) 3770005305149219 a001 133957148/16692641*103682^(1/3) 3770005305149222 a001 233802911/29134601*103682^(1/3) 3770005305149222 a001 1836311903/228826127*103682^(1/3) 3770005305149222 a001 267084832/33281921*103682^(1/3) 3770005305149222 a001 12586269025/1568397607*103682^(1/3) 3770005305149222 a001 10983760033/1368706081*103682^(1/3) 3770005305149222 a001 43133785636/5374978561*103682^(1/3) 3770005305149222 a001 75283811239/9381251041*103682^(1/3) 3770005305149222 a001 591286729879/73681302247*103682^(1/3) 3770005305149222 a001 86000486440/10716675201*103682^(1/3) 3770005305149222 a001 4052739537881/505019158607*103682^(1/3) 3770005305149222 a001 3278735159921/408569081798*103682^(1/3) 3770005305149222 a001 2504730781961/312119004989*103682^(1/3) 3770005305149222 a001 956722026041/119218851371*103682^(1/3) 3770005305149222 a001 182717648081/22768774562*103682^(1/3) 3770005305149222 a001 139583862445/17393796001*103682^(1/3) 3770005305149222 a001 53316291173/6643838879*103682^(1/3) 3770005305149222 a001 10182505537/1268860318*103682^(1/3) 3770005305149222 a001 7778742049/969323029*103682^(1/3) 3770005305149222 a001 2971215073/370248451*103682^(1/3) 3770005305149222 a001 567451585/70711162*103682^(1/3) 3770005305149223 a001 433494437/54018521*103682^(1/3) 3770005305149231 a001 165580141/20633239*103682^(1/3) 3770005305149283 a001 31622993/3940598*103682^(1/3) 3770005305149639 a001 24157817/3010349*103682^(1/3) 3770005305150918 a001 75025/4870847*439204^(7/9) 3770005305152082 a001 9227465/1149851*103682^(1/3) 3770005305154130 a001 5702887/439204*103682^(7/24) 3770005305154931 a001 28657/1149851*64079^(20/23) 3770005305156100 a001 75025/1149851*439204^(2/3) 3770005305156430 a001 3524578/710647*103682^(3/8) 3770005305158674 a001 75640/15251*439204^(1/3) 3770005305158792 a001 317811/167761*7881196^(1/3) 3770005305158812 a001 23843770275/63245986 3770005305158812 a001 75025/710647*45537549124^(1/3) 3770005305158812 a001 75025/710647*(1/2+1/2*5^(1/2))^17 3770005305158812 a001 317811/167761*312119004989^(1/5) 3770005305158812 a001 317811/167761*(1/2+1/2*5^(1/2))^11 3770005305158812 a001 317811/167761*1568397607^(1/4) 3770005305158824 a001 75025/710647*12752043^(1/2) 3770005305161126 a001 102334155/439204*39603^(1/22) 3770005305161995 a001 3524578/167761*439204^(2/9) 3770005305162754 a001 9227465/1860498*103682^(3/8) 3770005305163426 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^40 3770005305163677 a001 24157817/4870847*103682^(3/8) 3770005305163812 a001 63245986/12752043*103682^(3/8) 3770005305163831 a001 165580141/33385282*103682^(3/8) 3770005305163834 a001 433494437/87403803*103682^(3/8) 3770005305163834 a001 1134903170/228826127*103682^(3/8) 3770005305163835 a001 2971215073/599074578*103682^(3/8) 3770005305163835 a001 7778742049/1568397607*103682^(3/8) 3770005305163835 a001 20365011074/4106118243*103682^(3/8) 3770005305163835 a001 53316291173/10749957122*103682^(3/8) 3770005305163835 a001 139583862445/28143753123*103682^(3/8) 3770005305163835 a001 365435296162/73681302247*103682^(3/8) 3770005305163835 a001 956722026041/192900153618*103682^(3/8) 3770005305163835 a001 2504730781961/505019158607*103682^(3/8) 3770005305163835 a001 10610209857723/2139295485799*103682^(3/8) 3770005305163835 a001 4052739537881/817138163596*103682^(3/8) 3770005305163835 a001 140728068720/28374454999*103682^(3/8) 3770005305163835 a001 591286729879/119218851371*103682^(3/8) 3770005305163835 a001 225851433717/45537549124*103682^(3/8) 3770005305163835 a001 86267571272/17393796001*103682^(3/8) 3770005305163835 a001 32951280099/6643838879*103682^(3/8) 3770005305163835 a001 1144206275/230701876*103682^(3/8) 3770005305163835 a001 4807526976/969323029*103682^(3/8) 3770005305163835 a001 1836311903/370248451*103682^(3/8) 3770005305163835 a001 701408733/141422324*103682^(3/8) 3770005305163836 a001 267914296/54018521*103682^(3/8) 3770005305163843 a001 9303105/1875749*103682^(3/8) 3770005305163895 a001 39088169/7881196*103682^(3/8) 3770005305164103 a001 14930352/167761*439204^(1/9) 3770005305164247 a001 14930352/3010349*103682^(3/8) 3770005305165172 a001 75640/15251*7881196^(3/11) 3770005305165188 a001 75640/15251*141422324^(3/13) 3770005305165188 a001 62423801000/165580141 3770005305165188 a001 75640/15251*2537720636^(1/5) 3770005305165188 a001 75025/1860498*817138163596^(1/3) 3770005305165188 a001 75025/1860498*(1/2+1/2*5^(1/2))^19 3770005305165188 a001 75640/15251*45537549124^(3/17) 3770005305165188 a001 75640/15251*14662949395604^(1/7) 3770005305165188 a001 75640/15251*(1/2+1/2*5^(1/2))^9 3770005305165188 a001 75640/15251*192900153618^(1/6) 3770005305165188 a001 75640/15251*10749957122^(3/16) 3770005305165188 a001 75640/15251*599074578^(3/14) 3770005305165189 a001 75025/1860498*87403803^(1/2) 3770005305165189 a001 75640/15251*33385282^(1/4) 3770005305165515 a001 75640/15251*1860498^(3/10) 3770005305165862 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^42 3770005305166080 a001 75025/4870847*7881196^(7/11) 3770005305166113 a001 75025/4870847*20633239^(3/5) 3770005305166117 a001 2178309/167761*20633239^(1/5) 3770005305166119 a001 75025/4870847*141422324^(7/13) 3770005305166119 a001 163427632725/433494437 3770005305166119 a001 75025/4870847*2537720636^(7/15) 3770005305166119 a001 75025/4870847*17393796001^(3/7) 3770005305166119 a001 75025/4870847*45537549124^(7/17) 3770005305166119 a001 75025/4870847*14662949395604^(1/3) 3770005305166119 a001 75025/4870847*(1/2+1/2*5^(1/2))^21 3770005305166119 a001 75025/4870847*192900153618^(7/18) 3770005305166119 a001 2178309/167761*17393796001^(1/7) 3770005305166119 a001 2178309/167761*14662949395604^(1/9) 3770005305166119 a001 2178309/167761*(1/2+1/2*5^(1/2))^7 3770005305166119 a001 75025/4870847*10749957122^(7/16) 3770005305166119 a001 2178309/167761*599074578^(1/6) 3770005305166119 a001 75025/4870847*599074578^(1/2) 3770005305166121 a001 75025/4870847*33385282^(7/12) 3770005305166217 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^44 3770005305166222 a001 75025/370248451*7881196^(10/11) 3770005305166227 a001 75025/87403803*7881196^(9/11) 3770005305166242 a001 75025/20633239*7881196^(8/11) 3770005305166253 a001 5702887/167761*20633239^(1/7) 3770005305166254 a001 85571819435/226980634 3770005305166254 a001 5702887/167761*2537720636^(1/9) 3770005305166254 a001 75025/12752043*(1/2+1/2*5^(1/2))^23 3770005305166254 a001 5702887/167761*312119004989^(1/11) 3770005305166254 a001 5702887/167761*(1/2+1/2*5^(1/2))^5 3770005305166254 a001 5702887/167761*28143753123^(1/10) 3770005305166254 a001 75025/12752043*4106118243^(1/2) 3770005305166254 a001 5702887/167761*228826127^(1/8) 3770005305166268 a001 75025/33385282*20633239^(5/7) 3770005305166269 a001 14930352/167761*7881196^(1/11) 3770005305166269 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^46 3770005305166270 a001 75025/370248451*20633239^(6/7) 3770005305166271 a001 75025/141422324*20633239^(4/5) 3770005305166274 a001 14930352/167761*141422324^(1/13) 3770005305166274 a001 75025/33385282*2537720636^(5/9) 3770005305166274 a001 1120149658800/2971215073 3770005305166274 a001 14930352/167761*2537720636^(1/15) 3770005305166274 a001 75025/33385282*312119004989^(5/11) 3770005305166274 a001 75025/33385282*(1/2+1/2*5^(1/2))^25 3770005305166274 a001 75025/33385282*3461452808002^(5/12) 3770005305166274 a001 75025/33385282*28143753123^(1/2) 3770005305166274 a001 14930352/167761*45537549124^(1/17) 3770005305166274 a001 14930352/167761*14662949395604^(1/21) 3770005305166274 a001 14930352/167761*(1/2+1/2*5^(1/2))^3 3770005305166274 a001 14930352/167761*192900153618^(1/18) 3770005305166274 a001 14930352/167761*10749957122^(1/16) 3770005305166274 a001 14930352/167761*599074578^(1/14) 3770005305166274 a001 75025/33385282*228826127^(5/8) 3770005305166274 a001 14930352/167761*33385282^(1/12) 3770005305166276 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^48 3770005305166277 a001 75025/87403803*141422324^(9/13) 3770005305166277 a001 75025/87403803*2537720636^(3/5) 3770005305166277 a001 2932589879225/7778742049 3770005305166277 a001 75025/87403803*45537549124^(9/17) 3770005305166277 a001 75025/87403803*817138163596^(9/19) 3770005305166277 a001 75025/87403803*14662949395604^(3/7) 3770005305166277 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^27/Lucas(38) 3770005305166277 a001 75025/87403803*192900153618^(1/2) 3770005305166277 a001 39088169/335522+39088169/335522*5^(1/2) 3770005305166277 a001 75025/87403803*10749957122^(9/16) 3770005305166277 a001 75025/87403803*599074578^(9/14) 3770005305166277 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^50 3770005305166277 a001 75025/6643838879*141422324^(12/13) 3770005305166277 a001 75025/1568397607*141422324^(11/13) 3770005305166277 a001 75025/370248451*141422324^(10/13) 3770005305166277 a001 7677619978875/20365011074 3770005305166277 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(40) 3770005305166277 a001 75025/228826127*1322157322203^(1/2) 3770005305166277 a004 Fibonacci(40)/Lucas(25)/(1/2+sqrt(5)/2) 3770005305166278 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^52 3770005305166278 a001 20100270057400/53316291173 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(42) 3770005305166278 a001 75025/599074578*9062201101803^(1/2) 3770005305166278 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2)^3 3770005305166278 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^54 3770005305166278 a001 75025/1568397607*2537720636^(11/15) 3770005305166278 a001 75025/1568397607*45537549124^(11/17) 3770005305166278 a001 118254359985/313671601 3770005305166278 a001 75025/1568397607*312119004989^(3/5) 3770005305166278 a001 75025/1568397607*14662949395604^(11/21) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(44) 3770005305166278 a001 75025/1568397607*192900153618^(11/18) 3770005305166278 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^5 3770005305166278 a001 75025/1568397607*10749957122^(11/16) 3770005305166278 a001 75025/4106118243*2537720636^(7/9) 3770005305166278 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^56 3770005305166278 a001 75025/119218851371*2537720636^(14/15) 3770005305166278 a001 75025/45537549124*2537720636^(8/9) 3770005305166278 a001 75025/28143753123*2537720636^(13/15) 3770005305166278 a001 75025/1568397607*1568397607^(3/4) 3770005305166278 a001 75025/6643838879*2537720636^(4/5) 3770005305166278 a001 75025/4106118243*17393796001^(5/7) 3770005305166278 a001 75025/4106118243*312119004989^(7/11) 3770005305166278 a001 137769300522575/365435296162 3770005305166278 a001 75025/4106118243*14662949395604^(5/9) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(46) 3770005305166278 a001 75025/4106118243*505019158607^(5/8) 3770005305166278 a001 75025/4106118243*28143753123^(7/10) 3770005305166278 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^7 3770005305166278 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^58 3770005305166278 a001 360684711374400/956722026041 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(48) 3770005305166278 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^9 3770005305166278 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^60 3770005305166278 a001 75025/119218851371*17393796001^(6/7) 3770005305166278 a001 75025/28143753123*45537549124^(13/17) 3770005305166278 a001 75025/28143753123*14662949395604^(13/21) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(50) 3770005305166278 a001 75025/28143753123*192900153618^(13/18) 3770005305166278 a001 75025/28143753123*73681302247^(3/4) 3770005305166278 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^62 3770005305166278 a001 75025/2139295485799*45537549124^(16/17) 3770005305166278 a001 75025/505019158607*45537549124^(15/17) 3770005305166278 a001 75025/119218851371*45537549124^(14/17) 3770005305166278 a001 2472169789427475/6557470319842 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(52) 3770005305166278 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^64 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(54) 3770005305166278 a001 75025/505019158607*312119004989^(9/11) 3770005305166278 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^66 3770005305166278 a001 75025/5600748293801*312119004989^(10/11) 3770005305166278 a001 75025/505019158607*14662949395604^(5/7) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(56) 3770005305166278 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^68 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(58) 3770005305166278 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^70 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(60) 3770005305166278 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^72 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(62) 3770005305166278 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^74 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(64) 3770005305166278 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^76 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(66) 3770005305166278 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^78 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(68) 3770005305166278 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^80 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(70) 3770005305166278 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^82 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(72) 3770005305166278 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^84 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(74) 3770005305166278 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^86 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(76) 3770005305166278 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^88 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(78) 3770005305166278 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^90 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(80) 3770005305166278 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^92 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(82) 3770005305166278 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^94 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(84) 3770005305166278 a004 Fibonacci(25)*Lucas(85)/(1/2+sqrt(5)/2)^96 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(86) 3770005305166278 a004 Fibonacci(25)*Lucas(87)/(1/2+sqrt(5)/2)^98 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(88) 3770005305166278 a004 Fibonacci(25)*Lucas(89)/(1/2+sqrt(5)/2)^100 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(90) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(92) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(94) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^85/Lucas(96) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^87/Lucas(98) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^88/Lucas(99) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^89/Lucas(100) 3770005305166278 a004 Fibonacci(25)*Lucas(1)/(1/2+sqrt(5)/2)^11 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^86/Lucas(97) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^84/Lucas(95) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(93) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(91) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(89) 3770005305166278 a004 Fibonacci(25)*Lucas(88)/(1/2+sqrt(5)/2)^99 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(87) 3770005305166278 a004 Fibonacci(25)*Lucas(86)/(1/2+sqrt(5)/2)^97 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(85) 3770005305166278 a004 Fibonacci(25)*Lucas(84)/(1/2+sqrt(5)/2)^95 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(83) 3770005305166278 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^93 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(81) 3770005305166278 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^91 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(79) 3770005305166278 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^89 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(77) 3770005305166278 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^87 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(75) 3770005305166278 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^85 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(73) 3770005305166278 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^83 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(71) 3770005305166278 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^81 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(69) 3770005305166278 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^79 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(67) 3770005305166278 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^77 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(65) 3770005305166278 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^75 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(63) 3770005305166278 a001 75025/14662949395604*23725150497407^(13/16) 3770005305166278 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^73 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(61) 3770005305166278 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^71 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(59) 3770005305166278 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^69 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(57) 3770005305166278 a001 75025/3461452808002*505019158607^(7/8) 3770005305166278 a001 75025/14662949395604*505019158607^(13/14) 3770005305166278 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^67 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(55) 3770005305166278 a001 75025/312119004989*23725150497407^(11/16) 3770005305166278 a001 75025/505019158607*192900153618^(5/6) 3770005305166278 a001 75025/2139295485799*192900153618^(8/9) 3770005305166278 a001 75025/9062201101803*192900153618^(17/18) 3770005305166278 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^65 3770005305166278 a001 75025/119218851371*817138163596^(14/19) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(53) 3770005305166278 a001 4000054745254325/10610209857723 3770005305166278 a001 75025/119218851371*505019158607^(3/4) 3770005305166278 a001 75025/119218851371*192900153618^(7/9) 3770005305166278 a001 75025/312119004989*73681302247^(11/13) 3770005305166278 a001 75025/2139295485799*73681302247^(12/13) 3770005305166278 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^63 3770005305166278 a001 75025/45537549124*312119004989^(8/11) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(51) 3770005305166278 a001 75025/45537549124*23725150497407^(5/8) 3770005305166278 a001 1527884955826850/4052739537881 3770005305166278 a001 75025/45537549124*73681302247^(10/13) 3770005305166278 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^13 3770005305166278 a001 75025/505019158607*28143753123^(9/10) 3770005305166278 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^15 3770005305166278 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^17 3770005305166278 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^19 3770005305166278 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^21 3770005305166278 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^23 3770005305166278 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^25 3770005305166278 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^27 3770005305166278 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^29 3770005305166278 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^31 3770005305166278 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^33 3770005305166278 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^35 3770005305166278 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^37 3770005305166278 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^39 3770005305166278 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^41 3770005305166278 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^43 3770005305166278 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^45 3770005305166278 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^47 3770005305166278 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^49 3770005305166278 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^51 3770005305166278 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^53 3770005305166278 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^55 3770005305166278 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^57 3770005305166278 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^61 3770005305166278 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^59 3770005305166278 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^60 3770005305166278 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^58 3770005305166278 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^56 3770005305166278 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^54 3770005305166278 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^52 3770005305166278 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^50 3770005305166278 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^48 3770005305166278 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^46 3770005305166278 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^44 3770005305166278 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^42 3770005305166278 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^40 3770005305166278 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^38 3770005305166278 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^36 3770005305166278 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^34 3770005305166278 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^32 3770005305166278 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^30 3770005305166278 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^28 3770005305166278 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^26 3770005305166278 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^24 3770005305166278 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^22 3770005305166278 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^20 3770005305166278 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^18 3770005305166278 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^16 3770005305166278 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^14 3770005305166278 a001 75025/45537549124*28143753123^(4/5) 3770005305166278 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^12 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(49) 3770005305166278 a001 116720024445245/309601751184 3770005305166278 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^10 3770005305166278 a001 75025/28143753123*10749957122^(13/16) 3770005305166278 a001 75025/119218851371*10749957122^(7/8) 3770005305166278 a001 75025/45537549124*10749957122^(5/6) 3770005305166278 a001 75025/312119004989*10749957122^(11/12) 3770005305166278 a001 75025/505019158607*10749957122^(15/16) 3770005305166278 a001 75025/817138163596*10749957122^(23/24) 3770005305166278 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^59 3770005305166278 a001 75025/17393796001*10749957122^(19/24) 3770005305166278 a001 75025/6643838879*45537549124^(12/17) 3770005305166278 a001 75025/6643838879*14662949395604^(4/7) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(47) 3770005305166278 a001 222915410851825/591286729879 3770005305166278 a001 75025/6643838879*192900153618^(2/3) 3770005305166278 a001 75025/6643838879*73681302247^(9/13) 3770005305166278 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^8 3770005305166278 a001 75025/6643838879*10749957122^(3/4) 3770005305166278 a001 75025/45537549124*4106118243^(20/23) 3770005305166278 a001 75025/17393796001*4106118243^(19/23) 3770005305166278 a001 75025/119218851371*4106118243^(21/23) 3770005305166278 a001 75025/312119004989*4106118243^(22/23) 3770005305166278 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^57 3770005305166278 a001 75025/6643838879*4106118243^(18/23) 3770005305166278 a001 75025/2537720636*45537549124^(2/3) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(45) 3770005305166278 a001 85146110329250/225851433717 3770005305166278 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^6 3770005305166278 a001 75025/2537720636*10749957122^(17/24) 3770005305166278 a001 75025/2537720636*4106118243^(17/23) 3770005305166278 a001 75025/17393796001*1568397607^(19/22) 3770005305166278 a001 75025/6643838879*1568397607^(9/11) 3770005305166278 a001 75025/45537549124*1568397607^(10/11) 3770005305166278 a001 75025/119218851371*1568397607^(21/22) 3770005305166278 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^55 3770005305166278 a001 75025/2537720636*1568397607^(17/22) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(43) 3770005305166278 a001 75025/969323029*23725150497407^(1/2) 3770005305166278 a001 75025/969323029*505019158607^(4/7) 3770005305166278 a001 32522920135925/86267571272 3770005305166278 a001 75025/969323029*73681302247^(8/13) 3770005305166278 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^4 3770005305166278 a001 75025/969323029*10749957122^(2/3) 3770005305166278 a001 75025/969323029*4106118243^(16/23) 3770005305166278 a001 75025/969323029*1568397607^(8/11) 3770005305166278 a001 75025/1568397607*599074578^(11/14) 3770005305166278 a001 75025/4106118243*599074578^(5/6) 3770005305166278 a001 75025/2537720636*599074578^(17/21) 3770005305166278 a001 75025/6643838879*599074578^(6/7) 3770005305166278 a001 75025/17393796001*599074578^(19/21) 3770005305166278 a001 75025/28143753123*599074578^(13/14) 3770005305166278 a001 75025/45537549124*599074578^(20/21) 3770005305166278 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^53 3770005305166278 a001 75025/969323029*599074578^(16/21) 3770005305166278 a001 75025/370248451*2537720636^(2/3) 3770005305166278 a001 75025/370248451*45537549124^(10/17) 3770005305166278 a001 75025/370248451*312119004989^(6/11) 3770005305166278 a001 75025/370248451*14662949395604^(10/21) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(41) 3770005305166278 a001 75025/370248451*192900153618^(5/9) 3770005305166278 a001 12422650078525/32951280099 3770005305166278 a001 75025/370248451*28143753123^(3/5) 3770005305166278 a004 Fibonacci(41)/Lucas(25)/(1/2+sqrt(5)/2)^2 3770005305166278 a001 75025/370248451*10749957122^(5/8) 3770005305166278 a001 75025/370248451*4106118243^(15/23) 3770005305166278 a001 75025/370248451*1568397607^(15/22) 3770005305166278 a001 75025/370248451*599074578^(5/7) 3770005305166278 a001 75025/969323029*228826127^(4/5) 3770005305166278 a001 75025/2537720636*228826127^(17/20) 3770005305166278 a001 75025/4106118243*228826127^(7/8) 3770005305166278 a001 75025/6643838879*228826127^(9/10) 3770005305166278 a001 75025/17393796001*228826127^(19/20) 3770005305166278 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^51 3770005305166278 a001 75025/370248451*228826127^(3/4) 3770005305166278 a001 75025/141422324*17393796001^(4/7) 3770005305166278 a001 75025/141422324*14662949395604^(4/9) 3770005305166278 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(39) 3770005305166278 a001 75025/141422324*73681302247^(7/13) 3770005305166278 a001 63245986/167761 3770005305166278 a001 75025/141422324*10749957122^(7/12) 3770005305166278 a001 75025/141422324*4106118243^(14/23) 3770005305166278 a001 75025/141422324*1568397607^(7/11) 3770005305166278 a001 75025/141422324*599074578^(2/3) 3770005305166278 a001 75025/141422324*228826127^(7/10) 3770005305166278 a001 75025/370248451*87403803^(15/19) 3770005305166278 a001 75025/969323029*87403803^(16/19) 3770005305166278 a001 75025/2537720636*87403803^(17/19) 3770005305166278 a001 75025/6643838879*87403803^(18/19) 3770005305166278 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^49 3770005305166278 a001 75025/141422324*87403803^(14/19) 3770005305166279 a001 75025/54018521*141422324^(2/3) 3770005305166279 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^26/Lucas(37) 3770005305166279 a001 75025/54018521*73681302247^(1/2) 3770005305166279 a001 24157817/167761*(1/2+1/2*5^(1/2))^2 3770005305166279 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^2/Lucas(25) 3770005305166279 a001 24157817/167761*10749957122^(1/24) 3770005305166279 a001 24157817/167761*4106118243^(1/23) 3770005305166279 a001 75025/54018521*10749957122^(13/24) 3770005305166279 a001 1812440220425/4807526976 3770005305166279 a001 24157817/167761*1568397607^(1/22) 3770005305166279 a001 75025/54018521*4106118243^(13/23) 3770005305166279 a001 24157817/167761*599074578^(1/21) 3770005305166279 a001 75025/54018521*1568397607^(13/22) 3770005305166279 a001 24157817/167761*228826127^(1/20) 3770005305166279 a001 75025/54018521*599074578^(13/21) 3770005305166279 a001 24157817/167761*87403803^(1/19) 3770005305166279 a001 75025/54018521*228826127^(13/20) 3770005305166279 a001 24157817/167761*33385282^(1/18) 3770005305166279 a001 75025/54018521*87403803^(13/19) 3770005305166280 a001 75025/87403803*33385282^(3/4) 3770005305166280 a001 24157817/167761*12752043^(1/17) 3770005305166280 a001 75025/141422324*33385282^(7/9) 3770005305166280 a001 75025/370248451*33385282^(5/6) 3770005305166281 a001 75025/969323029*33385282^(8/9) 3770005305166281 a001 75025/1568397607*33385282^(11/12) 3770005305166281 a001 75025/2537720636*33385282^(17/18) 3770005305166281 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^47 3770005305166281 a001 75025/54018521*33385282^(13/18) 3770005305166286 a001 75025/20633239*141422324^(8/13) 3770005305166286 a001 75025/20633239*2537720636^(8/15) 3770005305166286 a001 75025/20633239*45537549124^(8/17) 3770005305166286 a001 75025/20633239*14662949395604^(8/21) 3770005305166286 a001 75025/20633239*(1/2+1/2*5^(1/2))^24 3770005305166286 a001 75025/20633239*192900153618^(4/9) 3770005305166286 a001 75025/20633239*73681302247^(6/13) 3770005305166286 a001 9227465/167761*(1/2+1/2*5^(1/2))^4 3770005305166286 a001 9227465/167761*23725150497407^(1/16) 3770005305166286 a001 9227465/167761*73681302247^(1/13) 3770005305166286 a001 9227465/167761*10749957122^(1/12) 3770005305166286 a001 75025/20633239*10749957122^(1/2) 3770005305166286 a001 9227465/167761*4106118243^(2/23) 3770005305166286 a001 75025/20633239*4106118243^(12/23) 3770005305166286 a001 9227465/167761*1568397607^(1/11) 3770005305166286 a001 692290561625/1836311903 3770005305166286 a001 75025/20633239*1568397607^(6/11) 3770005305166286 a001 9227465/167761*599074578^(2/21) 3770005305166286 a001 75025/20633239*599074578^(4/7) 3770005305166286 a001 9227465/167761*228826127^(1/10) 3770005305166286 a001 75025/20633239*228826127^(3/5) 3770005305166286 a001 9227465/167761*87403803^(2/19) 3770005305166287 a001 75025/20633239*87403803^(12/19) 3770005305166287 a001 9227465/167761*33385282^(1/9) 3770005305166289 a001 75025/20633239*33385282^(2/3) 3770005305166289 a001 24157817/167761*4870847^(1/16) 3770005305166289 a001 9227465/167761*12752043^(2/17) 3770005305166297 a001 75025/54018521*12752043^(13/17) 3770005305166297 a001 75025/141422324*12752043^(14/17) 3770005305166298 a001 75025/7881196*7881196^(2/3) 3770005305166298 a001 75025/370248451*12752043^(15/17) 3770005305166299 a001 75025/969323029*12752043^(16/17) 3770005305166301 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^45 3770005305166303 a001 75025/20633239*12752043^(12/17) 3770005305166306 a001 9227465/167761*4870847^(1/8) 3770005305166327 a001 3524578/167761*7881196^(2/11) 3770005305166338 a001 3524578/167761*141422324^(2/13) 3770005305166338 a001 3524578/167761*2537720636^(2/15) 3770005305166338 a001 75025/7881196*312119004989^(2/5) 3770005305166338 a001 75025/7881196*(1/2+1/2*5^(1/2))^22 3770005305166338 a001 3524578/167761*45537549124^(2/17) 3770005305166338 a001 3524578/167761*14662949395604^(2/21) 3770005305166338 a001 3524578/167761*(1/2+1/2*5^(1/2))^6 3770005305166338 a001 3524578/167761*10749957122^(1/8) 3770005305166338 a001 75025/7881196*10749957122^(11/24) 3770005305166338 a001 3524578/167761*4106118243^(3/23) 3770005305166338 a001 75025/7881196*4106118243^(11/23) 3770005305166338 a001 3524578/167761*1568397607^(3/22) 3770005305166338 a001 75025/7881196*1568397607^(1/2) 3770005305166338 a001 3524578/167761*599074578^(1/7) 3770005305166338 a001 2971140050/7880997 3770005305166338 a001 75025/7881196*599074578^(11/21) 3770005305166338 a001 3524578/167761*228826127^(3/20) 3770005305166338 a001 75025/7881196*228826127^(11/20) 3770005305166338 a001 3524578/167761*87403803^(3/19) 3770005305166339 a001 75025/7881196*87403803^(11/19) 3770005305166339 a001 3524578/167761*33385282^(1/6) 3770005305166340 a001 75025/7881196*33385282^(11/18) 3770005305166342 a001 3524578/167761*12752043^(3/17) 3770005305166351 a001 24157817/167761*1860498^(1/15) 3770005305166353 a001 75025/7881196*12752043^(11/17) 3770005305166368 a001 3524578/167761*4870847^(3/16) 3770005305166383 a001 14930352/167761*1860498^(1/10) 3770005305166406 a001 75025/20633239*4870847^(3/4) 3770005305166408 a001 75025/54018521*4870847^(13/16) 3770005305166417 a001 75025/141422324*4870847^(7/8) 3770005305166427 a001 75025/370248451*4870847^(15/16) 3770005305166432 a001 9227465/167761*1860498^(2/15) 3770005305166436 a001 5702887/167761*1860498^(1/6) 3770005305166436 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^43 3770005305166447 a001 75025/7881196*4870847^(11/16) 3770005305166556 a001 3524578/167761*1860498^(1/5) 3770005305166663 a001 5702887/1149851*103682^(3/8) 3770005305166688 a001 75025/3010349*20633239^(4/7) 3770005305166694 a001 75025/3010349*2537720636^(4/9) 3770005305166694 a001 75025/3010349*(1/2+1/2*5^(1/2))^20 3770005305166694 a001 75025/3010349*23725150497407^(5/16) 3770005305166694 a001 75025/3010349*505019158607^(5/14) 3770005305166694 a001 75025/3010349*73681302247^(5/13) 3770005305166694 a001 75025/3010349*28143753123^(2/5) 3770005305166694 a001 1346269/167761*(1/2+1/2*5^(1/2))^8 3770005305166694 a001 1346269/167761*23725150497407^(1/8) 3770005305166694 a001 1346269/167761*505019158607^(1/7) 3770005305166694 a001 1346269/167761*73681302247^(2/13) 3770005305166694 a001 1346269/167761*10749957122^(1/6) 3770005305166694 a001 75025/3010349*10749957122^(5/12) 3770005305166694 a001 1346269/167761*4106118243^(4/23) 3770005305166694 a001 75025/3010349*4106118243^(10/23) 3770005305166694 a001 1346269/167761*1568397607^(2/11) 3770005305166694 a001 75025/3010349*1568397607^(5/11) 3770005305166694 a001 1346269/167761*599074578^(4/21) 3770005305166694 a001 75025/3010349*599074578^(10/21) 3770005305166694 a001 101003831725/267914296 3770005305166694 a001 1346269/167761*228826127^(1/5) 3770005305166694 a001 75025/3010349*228826127^(1/2) 3770005305166694 a001 1346269/167761*87403803^(4/19) 3770005305166694 a001 75025/3010349*87403803^(10/19) 3770005305166694 a001 1346269/167761*33385282^(2/9) 3770005305166695 a001 75025/3010349*33385282^(5/9) 3770005305166699 a001 1346269/167761*12752043^(4/17) 3770005305166707 a001 75025/3010349*12752043^(10/17) 3770005305166733 a001 1346269/167761*4870847^(1/4) 3770005305166793 a001 75025/3010349*4870847^(5/8) 3770005305166812 a001 24157817/167761*710647^(1/14) 3770005305166881 a001 75025/4870847*1860498^(7/10) 3770005305166984 a001 1346269/167761*1860498^(4/15) 3770005305167137 a001 75025/7881196*1860498^(11/15) 3770005305167158 a001 75025/20633239*1860498^(4/5) 3770005305167182 a001 75025/33385282*1860498^(5/6) 3770005305167223 a001 75025/54018521*1860498^(13/15) 3770005305167257 a001 75025/87403803*1860498^(9/10) 3770005305167294 a001 75025/141422324*1860498^(14/15) 3770005305167353 a001 9227465/167761*710647^(1/7) 3770005305167367 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^41 3770005305167420 a001 75025/3010349*1860498^(2/3) 3770005305167938 a001 3524578/167761*710647^(3/14) 3770005305167985 a001 2178309/167761*710647^(1/4) 3770005305168826 a001 1346269/167761*710647^(2/7) 3770005305168827 a001 1762289/219602*103682^(1/3) 3770005305169096 a001 75025/1149851*7881196^(6/11) 3770005305169126 a001 514229/167761*20633239^(2/7) 3770005305169129 a001 75025/1149851*141422324^(6/13) 3770005305169129 a001 75025/1149851*2537720636^(2/5) 3770005305169129 a001 514229/167761*2537720636^(2/9) 3770005305169129 a001 75025/1149851*45537549124^(6/17) 3770005305169129 a001 75025/1149851*14662949395604^(2/7) 3770005305169129 a001 75025/1149851*(1/2+1/2*5^(1/2))^18 3770005305169129 a001 75025/1149851*192900153618^(1/3) 3770005305169129 a001 514229/167761*312119004989^(2/11) 3770005305169129 a001 514229/167761*(1/2+1/2*5^(1/2))^10 3770005305169129 a001 514229/167761*28143753123^(1/5) 3770005305169129 a001 514229/167761*10749957122^(5/24) 3770005305169129 a001 75025/1149851*10749957122^(3/8) 3770005305169129 a001 514229/167761*4106118243^(5/23) 3770005305169129 a001 75025/1149851*4106118243^(9/23) 3770005305169129 a001 514229/167761*1568397607^(5/22) 3770005305169129 a001 75025/1149851*1568397607^(9/22) 3770005305169129 a001 514229/167761*599074578^(5/21) 3770005305169129 a001 75025/1149851*599074578^(3/7) 3770005305169129 a001 514229/167761*228826127^(1/4) 3770005305169129 a001 75025/1149851*228826127^(9/20) 3770005305169129 a001 7716006145/20466831 3770005305169129 a001 514229/167761*87403803^(5/19) 3770005305169129 a001 75025/1149851*87403803^(9/19) 3770005305169130 a001 514229/167761*33385282^(5/18) 3770005305169131 a001 75025/1149851*33385282^(1/2) 3770005305169136 a001 514229/167761*12752043^(5/17) 3770005305169141 a001 75025/1149851*12752043^(9/17) 3770005305169179 a001 514229/167761*4870847^(5/16) 3770005305169218 a001 75025/1149851*4870847^(9/16) 3770005305169492 a001 514229/167761*1860498^(1/3) 3770005305169782 a001 75025/1149851*1860498^(3/5) 3770005305170215 a001 24157817/167761*271443^(1/13) 3770005305170823 a001 311187/101521*103682^(5/12) 3770005305171717 a001 75025/4870847*710647^(3/4) 3770005305171795 a001 514229/167761*710647^(5/14) 3770005305172026 a001 75025/3010349*710647^(5/7) 3770005305172204 a001 75025/7881196*710647^(11/14) 3770005305172685 a001 75025/20633239*710647^(6/7) 3770005305173211 a001 75025/54018521*710647^(13/14) 3770005305173743 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^39 3770005305173928 a001 75025/1149851*710647^(9/14) 3770005305174158 a001 9227465/167761*271443^(2/13) 3770005305177135 a001 196418/167761*439204^(4/9) 3770005305177335 a001 5702887/1860498*103682^(5/12) 3770005305178146 a001 3524578/167761*271443^(3/13) 3770005305178285 a001 14930352/4870847*103682^(5/12) 3770005305178423 a001 39088169/12752043*103682^(5/12) 3770005305178444 a001 14619165/4769326*103682^(5/12) 3770005305178447 a001 267914296/87403803*103682^(5/12) 3770005305178447 a001 701408733/228826127*103682^(5/12) 3770005305178447 a001 1836311903/599074578*103682^(5/12) 3770005305178447 a001 686789568/224056801*103682^(5/12) 3770005305178447 a001 12586269025/4106118243*103682^(5/12) 3770005305178447 a001 32951280099/10749957122*103682^(5/12) 3770005305178447 a001 86267571272/28143753123*103682^(5/12) 3770005305178447 a001 32264490531/10525900321*103682^(5/12) 3770005305178447 a001 591286729879/192900153618*103682^(5/12) 3770005305178447 a001 1548008755920/505019158607*103682^(5/12) 3770005305178447 a001 1515744265389/494493258286*103682^(5/12) 3770005305178447 a001 2504730781961/817138163596*103682^(5/12) 3770005305178447 a001 956722026041/312119004989*103682^(5/12) 3770005305178447 a001 365435296162/119218851371*103682^(5/12) 3770005305178447 a001 139583862445/45537549124*103682^(5/12) 3770005305178447 a001 53316291173/17393796001*103682^(5/12) 3770005305178447 a001 20365011074/6643838879*103682^(5/12) 3770005305178447 a001 7778742049/2537720636*103682^(5/12) 3770005305178447 a001 2971215073/969323029*103682^(5/12) 3770005305178447 a001 1134903170/370248451*103682^(5/12) 3770005305178447 a001 433494437/141422324*103682^(5/12) 3770005305178448 a001 165580141/54018521*103682^(5/12) 3770005305178456 a001 63245986/20633239*103682^(5/12) 3770005305178509 a001 24157817/7881196*103682^(5/12) 3770005305178872 a001 9227465/3010349*103682^(5/12) 3770005305180890 a001 39088169/167761*103682^(1/24) 3770005305181359 a001 3524578/1149851*103682^(5/12) 3770005305182437 a001 1346269/167761*271443^(4/13) 3770005305183219 a001 2178309/439204*103682^(3/8) 3770005305184534 a001 28657/710647*64079^(19/23) 3770005305185642 a001 17711/64079*39603^(15/22) 3770005305185799 a001 196418/167761*7881196^(4/11) 3770005305185821 a001 196418/167761*141422324^(4/13) 3770005305185821 a001 196418/167761*2537720636^(4/15) 3770005305185821 a001 75025/439204*(1/2+1/2*5^(1/2))^16 3770005305185821 a001 75025/439204*23725150497407^(1/4) 3770005305185821 a001 75025/439204*73681302247^(4/13) 3770005305185821 a001 196418/167761*45537549124^(4/17) 3770005305185821 a001 196418/167761*817138163596^(4/19) 3770005305185821 a001 196418/167761*14662949395604^(4/21) 3770005305185821 a001 196418/167761*(1/2+1/2*5^(1/2))^12 3770005305185821 a001 196418/167761*192900153618^(2/9) 3770005305185821 a001 196418/167761*73681302247^(3/13) 3770005305185821 a001 75025/439204*10749957122^(1/3) 3770005305185821 a001 196418/167761*10749957122^(1/4) 3770005305185821 a001 196418/167761*4106118243^(6/23) 3770005305185821 a001 75025/439204*4106118243^(8/23) 3770005305185821 a001 196418/167761*1568397607^(3/11) 3770005305185821 a001 75025/439204*1568397607^(4/11) 3770005305185821 a001 196418/167761*599074578^(2/7) 3770005305185821 a001 75025/439204*599074578^(8/21) 3770005305185821 a001 196418/167761*228826127^(3/10) 3770005305185821 a001 75025/439204*228826127^(2/5) 3770005305185822 a001 196418/167761*87403803^(6/19) 3770005305185822 a001 75025/439204*87403803^(8/19) 3770005305185822 a001 14736260450/39088169 3770005305185822 a001 196418/167761*33385282^(1/3) 3770005305185823 a001 75025/439204*33385282^(4/9) 3770005305185830 a001 196418/167761*12752043^(6/17) 3770005305185832 a001 75025/439204*12752043^(8/17) 3770005305185881 a001 196418/167761*4870847^(3/8) 3770005305185901 a001 75025/439204*4870847^(1/2) 3770005305186010 a001 1346269/710647*103682^(11/24) 3770005305186257 a001 196418/167761*1860498^(2/5) 3770005305186402 a001 75025/439204*1860498^(8/15) 3770005305188808 a001 514229/167761*271443^(5/13) 3770005305189021 a001 196418/167761*710647^(3/7) 3770005305190087 a001 75025/439204*710647^(4/7) 3770005305190662 a001 196418/271443*103682^(13/24) 3770005305192031 a001 1762289/930249*103682^(11/24) 3770005305192909 a001 9227465/4870847*103682^(11/24) 3770005305193038 a001 24157817/12752043*103682^(11/24) 3770005305193056 a001 31622993/16692641*103682^(11/24) 3770005305193059 a001 165580141/87403803*103682^(11/24) 3770005305193059 a001 433494437/228826127*103682^(11/24) 3770005305193060 a001 567451585/299537289*103682^(11/24) 3770005305193060 a001 2971215073/1568397607*103682^(11/24) 3770005305193060 a001 7778742049/4106118243*103682^(11/24) 3770005305193060 a001 10182505537/5374978561*103682^(11/24) 3770005305193060 a001 53316291173/28143753123*103682^(11/24) 3770005305193060 a001 139583862445/73681302247*103682^(11/24) 3770005305193060 a001 182717648081/96450076809*103682^(11/24) 3770005305193060 a001 956722026041/505019158607*103682^(11/24) 3770005305193060 a001 10610209857723/5600748293801*103682^(11/24) 3770005305193060 a001 591286729879/312119004989*103682^(11/24) 3770005305193060 a001 225851433717/119218851371*103682^(11/24) 3770005305193060 a001 21566892818/11384387281*103682^(11/24) 3770005305193060 a001 32951280099/17393796001*103682^(11/24) 3770005305193060 a001 12586269025/6643838879*103682^(11/24) 3770005305193060 a001 1201881744/634430159*103682^(11/24) 3770005305193060 a001 1836311903/969323029*103682^(11/24) 3770005305193060 a001 701408733/370248451*103682^(11/24) 3770005305193060 a001 66978574/35355581*103682^(11/24) 3770005305193061 a001 102334155/54018521*103682^(11/24) 3770005305193068 a001 39088169/20633239*103682^(11/24) 3770005305193117 a001 3732588/1970299*103682^(11/24) 3770005305193452 a001 5702887/3010349*103682^(11/24) 3770005305195504 a001 24157817/167761*103682^(1/12) 3770005305195752 a001 2178309/1149851*103682^(11/24) 3770005305198407 a001 1346269/439204*103682^(5/12) 3770005305199118 a001 832040/710647*103682^(1/2) 3770005305199676 a001 39088169/271443*39603^(1/11) 3770005305204552 a001 75025/1149851*271443^(9/13) 3770005305206052 a001 75025/3010349*271443^(10/13) 3770005305206424 a001 726103/620166*103682^(1/2) 3770005305207490 a001 5702887/4870847*103682^(1/2) 3770005305207490 a001 121393/710647*103682^(2/3) 3770005305207645 a001 4976784/4250681*103682^(1/2) 3770005305207668 a001 39088169/33385282*103682^(1/2) 3770005305207671 a001 34111385/29134601*103682^(1/2) 3770005305207672 a001 267914296/228826127*103682^(1/2) 3770005305207672 a001 233802911/199691526*103682^(1/2) 3770005305207672 a001 1836311903/1568397607*103682^(1/2) 3770005305207672 a001 1602508992/1368706081*103682^(1/2) 3770005305207672 a001 12586269025/10749957122*103682^(1/2) 3770005305207672 a001 10983760033/9381251041*103682^(1/2) 3770005305207672 a001 86267571272/73681302247*103682^(1/2) 3770005305207672 a001 75283811239/64300051206*103682^(1/2) 3770005305207672 a001 2504730781961/2139295485799*103682^(1/2) 3770005305207672 a001 365435296162/312119004989*103682^(1/2) 3770005305207672 a001 139583862445/119218851371*103682^(1/2) 3770005305207672 a001 53316291173/45537549124*103682^(1/2) 3770005305207672 a001 20365011074/17393796001*103682^(1/2) 3770005305207672 a001 7778742049/6643838879*103682^(1/2) 3770005305207672 a001 2971215073/2537720636*103682^(1/2) 3770005305207672 a001 1134903170/969323029*103682^(1/2) 3770005305207672 a001 433494437/370248451*103682^(1/2) 3770005305207672 a001 165580141/141422324*103682^(1/2) 3770005305207673 a001 63245986/54018521*103682^(1/2) 3770005305207682 a001 24157817/20633239*103682^(1/2) 3770005305207742 a001 9227465/7881196*103682^(1/2) 3770005305208149 a001 3524578/3010349*103682^(1/2) 3770005305209437 a001 196418/167761*271443^(6/13) 3770005305209633 a001 75025/7881196*271443^(11/13) 3770005305210112 a001 14930352/167761*103682^(1/8) 3770005305210939 a001 1346269/1149851*103682^(1/2) 3770005305211514 a001 208010/109801*103682^(11/24) 3770005305213517 a001 75025/20633239*271443^(12/13) 3770005305217308 a001 75025/439204*271443^(8/13) 3770005305217444 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^37 3770005305217671 a001 514229/710647*103682^(13/24) 3770005305219887 a001 121393/439204*103682^(5/8) 3770005305220672 a001 28657/271443*64079^(17/23) 3770005305221611 a001 1346269/1860498*103682^(13/24) 3770005305221967 a001 317811/710647*103682^(7/12) 3770005305222186 a001 3524578/4870847*103682^(13/24) 3770005305222270 a001 9227465/12752043*103682^(13/24) 3770005305222282 a001 24157817/33385282*103682^(13/24) 3770005305222284 a001 63245986/87403803*103682^(13/24) 3770005305222284 a001 165580141/228826127*103682^(13/24) 3770005305222284 a001 433494437/599074578*103682^(13/24) 3770005305222284 a001 1134903170/1568397607*103682^(13/24) 3770005305222284 a001 2971215073/4106118243*103682^(13/24) 3770005305222284 a001 7778742049/10749957122*103682^(13/24) 3770005305222284 a001 20365011074/28143753123*103682^(13/24) 3770005305222284 a001 53316291173/73681302247*103682^(13/24) 3770005305222284 a001 139583862445/192900153618*103682^(13/24) 3770005305222284 a001 365435296162/505019158607*103682^(13/24) 3770005305222284 a001 10610209857723/14662949395604*103682^(13/24) 3770005305222284 a001 225851433717/312119004989*103682^(13/24) 3770005305222284 a001 86267571272/119218851371*103682^(13/24) 3770005305222284 a001 32951280099/45537549124*103682^(13/24) 3770005305222284 a001 12586269025/17393796001*103682^(13/24) 3770005305222284 a001 4807526976/6643838879*103682^(13/24) 3770005305222284 a001 1836311903/2537720636*103682^(13/24) 3770005305222284 a001 701408733/969323029*103682^(13/24) 3770005305222284 a001 267914296/370248451*103682^(13/24) 3770005305222285 a001 102334155/141422324*103682^(13/24) 3770005305222285 a001 39088169/54018521*103682^(13/24) 3770005305222290 a001 14930352/20633239*103682^(13/24) 3770005305222322 a001 5702887/7881196*103682^(13/24) 3770005305222542 a001 2178309/3010349*103682^(13/24) 3770005305224047 a001 832040/1149851*103682^(13/24) 3770005305224736 a001 9227465/167761*103682^(1/6) 3770005305227986 a001 1762289/51841*39603^(5/22) 3770005305230067 a001 514229/439204*103682^(1/2) 3770005305232419 a001 121393/1149851*103682^(17/24) 3770005305234363 a001 317811/439204*103682^(13/24) 3770005305234719 a001 416020/930249*103682^(7/12) 3770005305236579 a001 2178309/4870847*103682^(7/12) 3770005305236851 a001 5702887/12752043*103682^(7/12) 3770005305236890 a001 7465176/16692641*103682^(7/12) 3770005305236896 a001 39088169/87403803*103682^(7/12) 3770005305236897 a001 102334155/228826127*103682^(7/12) 3770005305236897 a001 133957148/299537289*103682^(7/12) 3770005305236897 a001 701408733/1568397607*103682^(7/12) 3770005305236897 a001 1836311903/4106118243*103682^(7/12) 3770005305236897 a001 2403763488/5374978561*103682^(7/12) 3770005305236897 a001 12586269025/28143753123*103682^(7/12) 3770005305236897 a001 32951280099/73681302247*103682^(7/12) 3770005305236897 a001 43133785636/96450076809*103682^(7/12) 3770005305236897 a001 225851433717/505019158607*103682^(7/12) 3770005305236897 a001 591286729879/1322157322203*103682^(7/12) 3770005305236897 a001 10610209857723/23725150497407*103682^(7/12) 3770005305236897 a001 182717648081/408569081798*103682^(7/12) 3770005305236897 a001 139583862445/312119004989*103682^(7/12) 3770005305236897 a001 53316291173/119218851371*103682^(7/12) 3770005305236897 a001 10182505537/22768774562*103682^(7/12) 3770005305236897 a001 7778742049/17393796001*103682^(7/12) 3770005305236897 a001 2971215073/6643838879*103682^(7/12) 3770005305236897 a001 567451585/1268860318*103682^(7/12) 3770005305236897 a001 433494437/969323029*103682^(7/12) 3770005305236897 a001 165580141/370248451*103682^(7/12) 3770005305236897 a001 31622993/70711162*103682^(7/12) 3770005305236900 a001 24157817/54018521*103682^(7/12) 3770005305236915 a001 9227465/20633239*103682^(7/12) 3770005305237018 a001 1762289/3940598*103682^(7/12) 3770005305237729 a001 1346269/3010349*103682^(7/12) 3770005305239317 a001 5702887/167761*103682^(5/24) 3770005305242600 a001 514229/1149851*103682^(7/12) 3770005305243091 a001 121393/1860498*103682^(3/4) 3770005305243378 a001 14619165/101521*39603^(1/11) 3770005305246896 a001 317811/1149851*103682^(5/8) 3770005305249754 a001 133957148/930249*39603^(1/11) 3770005305250684 a001 701408733/4870847*39603^(1/11) 3770005305250820 a001 1836311903/12752043*39603^(1/11) 3770005305250836 a001 832040/3010349*103682^(5/8) 3770005305250840 a001 14930208/103681*39603^(1/11) 3770005305250843 a001 12586269025/87403803*39603^(1/11) 3770005305250843 a001 32951280099/228826127*39603^(1/11) 3770005305250843 a001 43133785636/299537289*39603^(1/11) 3770005305250843 a001 32264490531/224056801*39603^(1/11) 3770005305250843 a001 591286729879/4106118243*39603^(1/11) 3770005305250843 a001 774004377960/5374978561*39603^(1/11) 3770005305250843 a001 4052739537881/28143753123*39603^(1/11) 3770005305250843 a001 1515744265389/10525900321*39603^(1/11) 3770005305250843 a001 3278735159921/22768774562*39603^(1/11) 3770005305250843 a001 2504730781961/17393796001*39603^(1/11) 3770005305250843 a001 956722026041/6643838879*39603^(1/11) 3770005305250843 a001 182717648081/1268860318*39603^(1/11) 3770005305250843 a001 139583862445/969323029*39603^(1/11) 3770005305250843 a001 53316291173/370248451*39603^(1/11) 3770005305250843 a001 10182505537/70711162*39603^(1/11) 3770005305250844 a001 7778742049/54018521*39603^(1/11) 3770005305250852 a001 2971215073/20633239*39603^(1/11) 3770005305250904 a001 567451585/3940598*39603^(1/11) 3770005305251259 a001 433494437/3010349*39603^(1/11) 3770005305251411 a001 2178309/7881196*103682^(5/8) 3770005305251462 a001 28657/439204*64079^(18/23) 3770005305251495 a001 5702887/20633239*103682^(5/8) 3770005305251507 a001 14930352/54018521*103682^(5/8) 3770005305251509 a001 39088169/141422324*103682^(5/8) 3770005305251509 a001 102334155/370248451*103682^(5/8) 3770005305251509 a001 267914296/969323029*103682^(5/8) 3770005305251509 a001 701408733/2537720636*103682^(5/8) 3770005305251509 a001 1836311903/6643838879*103682^(5/8) 3770005305251509 a001 4807526976/17393796001*103682^(5/8) 3770005305251509 a001 12586269025/45537549124*103682^(5/8) 3770005305251509 a001 32951280099/119218851371*103682^(5/8) 3770005305251509 a001 86267571272/312119004989*103682^(5/8) 3770005305251509 a001 225851433717/817138163596*103682^(5/8) 3770005305251509 a001 1548008755920/5600748293801*103682^(5/8) 3770005305251509 a001 139583862445/505019158607*103682^(5/8) 3770005305251509 a001 53316291173/192900153618*103682^(5/8) 3770005305251509 a001 20365011074/73681302247*103682^(5/8) 3770005305251509 a001 7778742049/28143753123*103682^(5/8) 3770005305251509 a001 2971215073/10749957122*103682^(5/8) 3770005305251509 a001 1134903170/4106118243*103682^(5/8) 3770005305251509 a001 433494437/1568397607*103682^(5/8) 3770005305251509 a001 165580141/599074578*103682^(5/8) 3770005305251510 a001 63245986/228826127*103682^(5/8) 3770005305251510 a001 24157817/87403803*103682^(5/8) 3770005305251515 a001 9227465/33385282*103682^(5/8) 3770005305251547 a001 3524578/12752043*103682^(5/8) 3770005305251767 a001 1346269/4870847*103682^(5/8) 3770005305253272 a001 514229/1860498*103682^(5/8) 3770005305253695 a001 165580141/1149851*39603^(1/11) 3770005305254013 a001 3524578/167761*103682^(1/4) 3770005305257568 a001 105937/620166*103682^(2/3) 3770005305259209 a001 121393/3010349*103682^(19/24) 3770005305263588 a001 196418/710647*103682^(5/8) 3770005305264874 a001 832040/4870847*103682^(2/3) 3770005305265940 a001 726103/4250681*103682^(2/3) 3770005305266095 a001 5702887/33385282*103682^(2/3) 3770005305266118 a001 4976784/29134601*103682^(2/3) 3770005305266121 a001 39088169/228826127*103682^(2/3) 3770005305266122 a001 34111385/199691526*103682^(2/3) 3770005305266122 a001 267914296/1568397607*103682^(2/3) 3770005305266122 a001 233802911/1368706081*103682^(2/3) 3770005305266122 a001 1836311903/10749957122*103682^(2/3) 3770005305266122 a001 1602508992/9381251041*103682^(2/3) 3770005305266122 a001 12586269025/73681302247*103682^(2/3) 3770005305266122 a001 10983760033/64300051206*103682^(2/3) 3770005305266122 a001 86267571272/505019158607*103682^(2/3) 3770005305266122 a001 75283811239/440719107401*103682^(2/3) 3770005305266122 a001 2504730781961/14662949395604*103682^(2/3) 3770005305266122 a001 139583862445/817138163596*103682^(2/3) 3770005305266122 a001 53316291173/312119004989*103682^(2/3) 3770005305266122 a001 20365011074/119218851371*103682^(2/3) 3770005305266122 a001 7778742049/45537549124*103682^(2/3) 3770005305266122 a001 2971215073/17393796001*103682^(2/3) 3770005305266122 a001 1134903170/6643838879*103682^(2/3) 3770005305266122 a001 433494437/2537720636*103682^(2/3) 3770005305266122 a001 165580141/969323029*103682^(2/3) 3770005305266122 a001 63245986/370248451*103682^(2/3) 3770005305266123 a001 24157817/141422324*103682^(2/3) 3770005305266132 a001 9227465/54018521*103682^(2/3) 3770005305266191 a001 3524578/20633239*103682^(2/3) 3770005305266599 a001 1346269/7881196*103682^(2/3) 3770005305268406 a001 2178309/167761*103682^(7/24) 3770005305269389 a001 514229/3010349*103682^(2/3) 3770005305270387 a001 31622993/219602*39603^(1/11) 3770005305273247 a001 121393/4870847*103682^(5/6) 3770005305273685 a001 317811/3010349*103682^(17/24) 3770005305275538 a001 39088169/167761*39603^(1/22) 3770005305275985 a001 98209/219602*103682^(7/12) 3770005305279706 a001 208010/1970299*103682^(17/24) 3770005305280584 a001 2178309/20633239*103682^(17/24) 3770005305280713 a001 5702887/54018521*103682^(17/24) 3770005305280731 a001 3732588/35355581*103682^(17/24) 3770005305280734 a001 39088169/370248451*103682^(17/24) 3770005305280734 a001 102334155/969323029*103682^(17/24) 3770005305280734 a001 66978574/634430159*103682^(17/24) 3770005305280734 a001 701408733/6643838879*103682^(17/24) 3770005305280734 a001 1836311903/17393796001*103682^(17/24) 3770005305280734 a001 1201881744/11384387281*103682^(17/24) 3770005305280734 a001 12586269025/119218851371*103682^(17/24) 3770005305280734 a001 32951280099/312119004989*103682^(17/24) 3770005305280734 a001 21566892818/204284540899*103682^(17/24) 3770005305280734 a001 225851433717/2139295485799*103682^(17/24) 3770005305280734 a001 182717648081/1730726404001*103682^(17/24) 3770005305280734 a001 139583862445/1322157322203*103682^(17/24) 3770005305280734 a001 53316291173/505019158607*103682^(17/24) 3770005305280734 a001 10182505537/96450076809*103682^(17/24) 3770005305280734 a001 7778742049/73681302247*103682^(17/24) 3770005305280734 a001 2971215073/28143753123*103682^(17/24) 3770005305280734 a001 567451585/5374978561*103682^(17/24) 3770005305280734 a001 433494437/4106118243*103682^(17/24) 3770005305280734 a001 165580141/1568397607*103682^(17/24) 3770005305280735 a001 31622993/299537289*103682^(17/24) 3770005305280736 a001 24157817/228826127*103682^(17/24) 3770005305280743 a001 9227465/87403803*103682^(17/24) 3770005305280792 a001 1762289/16692641*103682^(17/24) 3770005305281127 a001 1346269/12752043*103682^(17/24) 3770005305283427 a001 514229/4870847*103682^(17/24) 3770005305283593 a001 1346269/167761*103682^(1/3) 3770005305287723 a001 317811/4870847*103682^(3/4) 3770005305288079 a001 121393/7881196*103682^(7/8) 3770005305288517 a001 196418/1149851*103682^(2/3) 3770005305294235 a001 832040/12752043*103682^(3/4) 3770005305295185 a001 311187/4769326*103682^(3/4) 3770005305295323 a001 5702887/87403803*103682^(3/4) 3770005305295343 a001 14930352/228826127*103682^(3/4) 3770005305295346 a001 39088169/599074578*103682^(3/4) 3770005305295347 a001 14619165/224056801*103682^(3/4) 3770005305295347 a001 267914296/4106118243*103682^(3/4) 3770005305295347 a001 701408733/10749957122*103682^(3/4) 3770005305295347 a001 1836311903/28143753123*103682^(3/4) 3770005305295347 a001 686789568/10525900321*103682^(3/4) 3770005305295347 a001 12586269025/192900153618*103682^(3/4) 3770005305295347 a001 32951280099/505019158607*103682^(3/4) 3770005305295347 a001 86267571272/1322157322203*103682^(3/4) 3770005305295347 a001 32264490531/494493258286*103682^(3/4) 3770005305295347 a001 591286729879/9062201101803*103682^(3/4) 3770005305295347 a001 1548008755920/23725150497407*103682^(3/4) 3770005305295347 a001 139583862445/2139295485799*103682^(3/4) 3770005305295347 a001 53316291173/817138163596*103682^(3/4) 3770005305295347 a001 20365011074/312119004989*103682^(3/4) 3770005305295347 a001 7778742049/119218851371*103682^(3/4) 3770005305295347 a001 2971215073/45537549124*103682^(3/4) 3770005305295347 a001 1134903170/17393796001*103682^(3/4) 3770005305295347 a001 433494437/6643838879*103682^(3/4) 3770005305295347 a001 165580141/2537720636*103682^(3/4) 3770005305295347 a001 63245986/969323029*103682^(3/4) 3770005305295348 a001 24157817/370248451*103682^(3/4) 3770005305295356 a001 9227465/141422324*103682^(3/4) 3770005305295409 a001 3524578/54018521*103682^(3/4) 3770005305295772 a001 1346269/20633239*103682^(3/4) 3770005305296701 a001 75640/15251*103682^(3/8) 3770005305298259 a001 514229/7881196*103682^(3/4) 3770005305299189 a001 98209/930249*103682^(17/24) 3770005305300229 a001 75025/167761*20633239^(2/5) 3770005305300233 a001 75025/167761*17393796001^(2/7) 3770005305300233 a001 75025/167761*14662949395604^(2/9) 3770005305300233 a001 75025/167761*(1/2+1/2*5^(1/2))^14 3770005305300233 a001 75025/167761*505019158607^(1/4) 3770005305300233 a001 75025/167761*10749957122^(7/24) 3770005305300233 a001 75025/167761*4106118243^(7/23) 3770005305300233 a001 75025/167761*1568397607^(7/22) 3770005305300233 a001 75025/167761*599074578^(1/3) 3770005305300233 a001 75025/167761*228826127^(7/20) 3770005305300233 a001 75025/167761*87403803^(7/19) 3770005305300234 a001 75025/167761*33385282^(7/18) 3770005305300236 a001 5628750625/14930352 3770005305300242 a001 75025/167761*12752043^(7/17) 3770005305300302 a001 75025/167761*4870847^(7/16) 3770005305300741 a001 75025/167761*1860498^(7/15) 3770005305302555 a001 317811/7881196*103682^(19/24) 3770005305302607 a001 121393/12752043*103682^(11/12) 3770005305303965 a001 75025/167761*710647^(1/2) 3770005305305073 a001 121393/167761*103682^(13/24) 3770005305308879 a001 75640/1875749*103682^(19/24) 3770005305308939 a001 24157817/271443*39603^(3/22) 3770005305309802 a001 2178309/54018521*103682^(19/24) 3770005305309936 a001 5702887/141422324*103682^(19/24) 3770005305309956 a001 14930352/370248451*103682^(19/24) 3770005305309959 a001 39088169/969323029*103682^(19/24) 3770005305309959 a001 9303105/230701876*103682^(19/24) 3770005305309959 a001 267914296/6643838879*103682^(19/24) 3770005305309959 a001 701408733/17393796001*103682^(19/24) 3770005305309959 a001 1836311903/45537549124*103682^(19/24) 3770005305309959 a001 4807526976/119218851371*103682^(19/24) 3770005305309959 a001 1144206275/28374454999*103682^(19/24) 3770005305309959 a001 32951280099/817138163596*103682^(19/24) 3770005305309959 a001 86267571272/2139295485799*103682^(19/24) 3770005305309959 a001 225851433717/5600748293801*103682^(19/24) 3770005305309959 a001 591286729879/14662949395604*103682^(19/24) 3770005305309959 a001 365435296162/9062201101803*103682^(19/24) 3770005305309959 a001 139583862445/3461452808002*103682^(19/24) 3770005305309959 a001 53316291173/1322157322203*103682^(19/24) 3770005305309959 a001 20365011074/505019158607*103682^(19/24) 3770005305309959 a001 7778742049/192900153618*103682^(19/24) 3770005305309959 a001 2971215073/73681302247*103682^(19/24) 3770005305309959 a001 1134903170/28143753123*103682^(19/24) 3770005305309959 a001 433494437/10749957122*103682^(19/24) 3770005305309959 a001 165580141/4106118243*103682^(19/24) 3770005305309960 a001 63245986/1568397607*103682^(19/24) 3770005305309961 a001 24157817/599074578*103682^(19/24) 3770005305309968 a001 9227465/228826127*103682^(19/24) 3770005305310020 a001 3524578/87403803*103682^(19/24) 3770005305310372 a001 1346269/33385282*103682^(19/24) 3770005305312788 a001 514229/12752043*103682^(19/24) 3770005305315254 a001 514229/167761*103682^(5/12) 3770005305315307 a001 196418/3010349*103682^(3/4) 3770005305317084 a001 105937/4250681*103682^(5/6) 3770005305317252 a001 121393/20633239*103682^(23/24) 3770005305319550 a001 317811/167761*103682^(11/24) 3770005305323479 a001 416020/16692641*103682^(5/6) 3770005305324412 a001 726103/29134601*103682^(5/6) 3770005305324549 a001 5702887/228826127*103682^(5/6) 3770005305324568 a001 829464/33281921*103682^(5/6) 3770005305324571 a001 39088169/1568397607*103682^(5/6) 3770005305324572 a001 34111385/1368706081*103682^(5/6) 3770005305324572 a001 133957148/5374978561*103682^(5/6) 3770005305324572 a001 233802911/9381251041*103682^(5/6) 3770005305324572 a001 1836311903/73681302247*103682^(5/6) 3770005305324572 a001 267084832/10716675201*103682^(5/6) 3770005305324572 a001 12586269025/505019158607*103682^(5/6) 3770005305324572 a001 10983760033/440719107401*103682^(5/6) 3770005305324572 a001 43133785636/1730726404001*103682^(5/6) 3770005305324572 a001 75283811239/3020733700601*103682^(5/6) 3770005305324572 a001 182717648081/7331474697802*103682^(5/6) 3770005305324572 a001 139583862445/5600748293801*103682^(5/6) 3770005305324572 a001 53316291173/2139295485799*103682^(5/6) 3770005305324572 a001 10182505537/408569081798*103682^(5/6) 3770005305324572 a001 7778742049/312119004989*103682^(5/6) 3770005305324572 a001 2971215073/119218851371*103682^(5/6) 3770005305324572 a001 567451585/22768774562*103682^(5/6) 3770005305324572 a001 433494437/17393796001*103682^(5/6) 3770005305324572 a001 165580141/6643838879*103682^(5/6) 3770005305324572 a001 31622993/1268860318*103682^(5/6) 3770005305324573 a001 24157817/969323029*103682^(5/6) 3770005305324581 a001 9227465/370248451*103682^(5/6) 3770005305324633 a001 1762289/70711162*103682^(5/6) 3770005305324989 a001 1346269/54018521*103682^(5/6) 3770005305327432 a001 514229/20633239*103682^(5/6) 3770005305327784 a001 75025/167761*271443^(7/13) 3770005305329344 a001 196418/4870847*103682^(19/24) 3770005305331728 a001 10959/711491*103682^(7/8) 3770005305331855 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^36 3770005305334298 a001 75025/271443*103682^(5/8) 3770005305337027 a001 46347/2206*39603^(3/11) 3770005305338096 a001 832040/54018521*103682^(7/8) 3770005305339026 a001 2178309/141422324*103682^(7/8) 3770005305339161 a001 5702887/370248451*103682^(7/8) 3770005305339181 a001 14930352/969323029*103682^(7/8) 3770005305339184 a001 39088169/2537720636*103682^(7/8) 3770005305339184 a001 102334155/6643838879*103682^(7/8) 3770005305339184 a001 9238424/599786069*103682^(7/8) 3770005305339184 a001 701408733/45537549124*103682^(7/8) 3770005305339184 a001 1836311903/119218851371*103682^(7/8) 3770005305339184 a001 4807526976/312119004989*103682^(7/8) 3770005305339184 a001 12586269025/817138163596*103682^(7/8) 3770005305339184 a001 32951280099/2139295485799*103682^(7/8) 3770005305339184 a001 86267571272/5600748293801*103682^(7/8) 3770005305339184 a001 7787980473/505618944676*103682^(7/8) 3770005305339184 a001 365435296162/23725150497407*103682^(7/8) 3770005305339184 a001 139583862445/9062201101803*103682^(7/8) 3770005305339184 a001 53316291173/3461452808002*103682^(7/8) 3770005305339184 a001 20365011074/1322157322203*103682^(7/8) 3770005305339184 a001 7778742049/505019158607*103682^(7/8) 3770005305339184 a001 2971215073/192900153618*103682^(7/8) 3770005305339184 a001 1134903170/73681302247*103682^(7/8) 3770005305339184 a001 433494437/28143753123*103682^(7/8) 3770005305339184 a001 165580141/10749957122*103682^(7/8) 3770005305339185 a001 63245986/4106118243*103682^(7/8) 3770005305339186 a001 24157817/1568397607*103682^(7/8) 3770005305339193 a001 9227465/599074578*103682^(7/8) 3770005305339245 a001 3524578/228826127*103682^(7/8) 3770005305339600 a001 1346269/87403803*103682^(7/8) 3770005305342032 a001 514229/33385282*103682^(7/8) 3770005305344176 a001 98209/3940598*103682^(5/6) 3770005305346328 a001 317811/33385282*103682^(11/12) 3770005305351137 a001 9227465/64079*24476^(2/21) 3770005305351535 a001 5473/219602*24476^(20/21) 3770005305352639 a001 63245986/710647*39603^(3/22) 3770005305352707 a001 832040/87403803*103682^(11/12) 3770005305353638 a001 46347/4868641*103682^(11/12) 3770005305353774 a001 5702887/599074578*103682^(11/12) 3770005305353793 a001 14930352/1568397607*103682^(11/12) 3770005305353796 a001 39088169/4106118243*103682^(11/12) 3770005305353797 a001 102334155/10749957122*103682^(11/12) 3770005305353797 a001 267914296/28143753123*103682^(11/12) 3770005305353797 a001 701408733/73681302247*103682^(11/12) 3770005305353797 a001 1836311903/192900153618*103682^(11/12) 3770005305353797 a001 102287808/10745088481*103682^(11/12) 3770005305353797 a001 12586269025/1322157322203*103682^(11/12) 3770005305353797 a001 32951280099/3461452808002*103682^(11/12) 3770005305353797 a001 86267571272/9062201101803*103682^(11/12) 3770005305353797 a001 225851433717/23725150497407*103682^(11/12) 3770005305353797 a001 139583862445/14662949395604*103682^(11/12) 3770005305353797 a001 53316291173/5600748293801*103682^(11/12) 3770005305353797 a001 20365011074/2139295485799*103682^(11/12) 3770005305353797 a001 7778742049/817138163596*103682^(11/12) 3770005305353797 a001 2971215073/312119004989*103682^(11/12) 3770005305353797 a001 1134903170/119218851371*103682^(11/12) 3770005305353797 a001 433494437/45537549124*103682^(11/12) 3770005305353797 a001 165580141/17393796001*103682^(11/12) 3770005305353797 a001 63245986/6643838879*103682^(11/12) 3770005305353798 a001 24157817/2537720636*103682^(11/12) 3770005305353806 a001 9227465/969323029*103682^(11/12) 3770005305353858 a001 3524578/370248451*103682^(11/12) 3770005305354213 a001 1346269/141422324*103682^(11/12) 3770005305356650 a001 514229/54018521*103682^(11/12) 3770005305358705 a001 196418/12752043*103682^(7/8) 3770005305359015 a001 165580141/1860498*39603^(3/22) 3770005305359945 a001 433494437/4870847*39603^(3/22) 3770005305360080 a001 1134903170/12752043*39603^(3/22) 3770005305360100 a001 2971215073/33385282*39603^(3/22) 3770005305360103 a001 7778742049/87403803*39603^(3/22) 3770005305360104 a001 20365011074/228826127*39603^(3/22) 3770005305360104 a001 53316291173/599074578*39603^(3/22) 3770005305360104 a001 139583862445/1568397607*39603^(3/22) 3770005305360104 a001 365435296162/4106118243*39603^(3/22) 3770005305360104 a001 956722026041/10749957122*39603^(3/22) 3770005305360104 a001 2504730781961/28143753123*39603^(3/22) 3770005305360104 a001 6557470319842/73681302247*39603^(3/22) 3770005305360104 a001 10610209857723/119218851371*39603^(3/22) 3770005305360104 a001 4052739537881/45537549124*39603^(3/22) 3770005305360104 a001 1548008755920/17393796001*39603^(3/22) 3770005305360104 a001 591286729879/6643838879*39603^(3/22) 3770005305360104 a001 225851433717/2537720636*39603^(3/22) 3770005305360104 a001 86267571272/969323029*39603^(3/22) 3770005305360104 a001 32951280099/370248451*39603^(3/22) 3770005305360104 a001 12586269025/141422324*39603^(3/22) 3770005305360105 a001 4807526976/54018521*39603^(3/22) 3770005305360113 a001 1836311903/20633239*39603^(3/22) 3770005305360164 a001 3524667/39604*39603^(3/22) 3770005305360520 a001 267914296/3010349*39603^(3/22) 3770005305360946 a001 317811/54018521*103682^(23/24) 3770005305361171 a001 196418/167761*103682^(1/2) 3770005305362955 a001 102334155/1149851*39603^(3/22) 3770005305367320 a001 208010/35355581*103682^(23/24) 3770005305368250 a001 2178309/370248451*103682^(23/24) 3770005305368386 a001 5702887/969323029*103682^(23/24) 3770005305368406 a001 196452/33391061*103682^(23/24) 3770005305368409 a001 39088169/6643838879*103682^(23/24) 3770005305368409 a001 102334155/17393796001*103682^(23/24) 3770005305368409 a001 66978574/11384387281*103682^(23/24) 3770005305368409 a001 701408733/119218851371*103682^(23/24) 3770005305368409 a001 1836311903/312119004989*103682^(23/24) 3770005305368409 a001 1201881744/204284540899*103682^(23/24) 3770005305368409 a001 12586269025/2139295485799*103682^(23/24) 3770005305368409 a001 32951280099/5600748293801*103682^(23/24) 3770005305368409 a001 1135099622/192933544679*103682^(23/24) 3770005305368409 a001 139583862445/23725150497407*103682^(23/24) 3770005305368409 a001 53316291173/9062201101803*103682^(23/24) 3770005305368409 a001 10182505537/1730726404001*103682^(23/24) 3770005305368409 a001 7778742049/1322157322203*103682^(23/24) 3770005305368409 a001 2971215073/505019158607*103682^(23/24) 3770005305368409 a001 567451585/96450076809*103682^(23/24) 3770005305368409 a001 433494437/73681302247*103682^(23/24) 3770005305368409 a001 165580141/28143753123*103682^(23/24) 3770005305368409 a001 31622993/5374978561*103682^(23/24) 3770005305368411 a001 24157817/4106118243*103682^(23/24) 3770005305368418 a001 9227465/1568397607*103682^(23/24) 3770005305368470 a001 1762289/299537289*103682^(23/24) 3770005305368825 a001 1346269/228826127*103682^(23/24) 3770005305371260 a001 514229/87403803*103682^(23/24) 3770005305373349 a001 196418/20633239*103682^(11/12) 3770005305375557 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^38 3770005305379647 a001 39088169/439204*39603^(3/22) 3770005305381933 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^40 3770005305382863 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^42 3770005305382999 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^44 3770005305383018 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^46 3770005305383021 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^48 3770005305383022 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^50 3770005305383022 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^52 3770005305383022 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^54 3770005305383022 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^56 3770005305383022 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^58 3770005305383022 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^60 3770005305383022 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^62 3770005305383022 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^64 3770005305383022 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^66 3770005305383022 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^68 3770005305383022 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^70 3770005305383022 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^72 3770005305383022 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^74 3770005305383022 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^76 3770005305383022 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^78 3770005305383022 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^80 3770005305383022 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^82 3770005305383022 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^84 3770005305383022 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^86 3770005305383022 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^88 3770005305383022 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^90 3770005305383022 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^92 3770005305383022 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^94 3770005305383022 a004 Fibonacci(86)*Lucas(24)/(1/2+sqrt(5)/2)^96 3770005305383022 a004 Fibonacci(88)*Lucas(24)/(1/2+sqrt(5)/2)^98 3770005305383022 a004 Fibonacci(90)*Lucas(24)/(1/2+sqrt(5)/2)^100 3770005305383022 a004 Fibonacci(89)*Lucas(24)/(1/2+sqrt(5)/2)^99 3770005305383022 a004 Fibonacci(87)*Lucas(24)/(1/2+sqrt(5)/2)^97 3770005305383022 a004 Fibonacci(85)*Lucas(24)/(1/2+sqrt(5)/2)^95 3770005305383022 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^93 3770005305383022 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^91 3770005305383022 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^89 3770005305383022 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^87 3770005305383022 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^85 3770005305383022 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^83 3770005305383022 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^81 3770005305383022 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^79 3770005305383022 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^77 3770005305383022 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^75 3770005305383022 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^73 3770005305383022 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^71 3770005305383022 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^69 3770005305383022 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^67 3770005305383022 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^65 3770005305383022 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^63 3770005305383022 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^61 3770005305383022 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^59 3770005305383022 a001 1/23184*(1/2+1/2*5^(1/2))^38 3770005305383022 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^57 3770005305383022 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^55 3770005305383022 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^53 3770005305383022 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^51 3770005305383022 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^49 3770005305383023 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^47 3770005305383031 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^45 3770005305383082 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^43 3770005305383438 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^41 3770005305384800 a001 24157817/167761*39603^(1/11) 3770005305385873 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^39 3770005305387950 a001 98209/16692641*103682^(23/24) 3770005305402566 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^37 3770005305407225 a001 75025/710647*103682^(17/24) 3770005305418194 a001 4976784/90481*39603^(2/11) 3770005305419621 a001 75025/439204*103682^(2/3) 3770005305432154 a001 75025/1149851*103682^(3/4) 3770005305442826 a001 75025/1860498*103682^(19/24) 3770005305445712 a001 28657/167761*64079^(16/23) 3770005305446862 a001 1346269/103682*39603^(7/22) 3770005305458943 a001 75025/3010349*103682^(5/6) 3770005305460187 a001 121393/64079*64079^(11/23) 3770005305461899 a001 39088169/710647*39603^(2/11) 3770005305468275 a001 831985/15126*39603^(2/11) 3770005305469205 a001 267914296/4870847*39603^(2/11) 3770005305469341 a001 233802911/4250681*39603^(2/11) 3770005305469361 a001 1836311903/33385282*39603^(2/11) 3770005305469364 a001 1602508992/29134601*39603^(2/11) 3770005305469364 a001 12586269025/228826127*39603^(2/11) 3770005305469364 a001 10983760033/199691526*39603^(2/11) 3770005305469364 a001 86267571272/1568397607*39603^(2/11) 3770005305469364 a001 75283811239/1368706081*39603^(2/11) 3770005305469364 a001 591286729879/10749957122*39603^(2/11) 3770005305469364 a001 12585437040/228811001*39603^(2/11) 3770005305469364 a001 4052739537881/73681302247*39603^(2/11) 3770005305469364 a001 3536736619241/64300051206*39603^(2/11) 3770005305469364 a001 6557470319842/119218851371*39603^(2/11) 3770005305469364 a001 2504730781961/45537549124*39603^(2/11) 3770005305469364 a001 956722026041/17393796001*39603^(2/11) 3770005305469364 a001 365435296162/6643838879*39603^(2/11) 3770005305469364 a001 139583862445/2537720636*39603^(2/11) 3770005305469364 a001 53316291173/969323029*39603^(2/11) 3770005305469364 a001 20365011074/370248451*39603^(2/11) 3770005305469364 a001 7778742049/141422324*39603^(2/11) 3770005305469365 a001 2971215073/54018521*39603^(2/11) 3770005305469373 a001 1134903170/20633239*39603^(2/11) 3770005305469425 a001 433494437/7881196*39603^(2/11) 3770005305469780 a001 165580141/3010349*39603^(2/11) 3770005305472216 a001 63245986/1149851*39603^(2/11) 3770005305472981 a001 75025/4870847*103682^(7/8) 3770005305487813 a001 75025/7881196*103682^(11/12) 3770005305488909 a001 24157817/439204*39603^(2/11) 3770005305494056 a001 14930352/167761*39603^(3/22) 3770005305502341 a001 75025/12752043*103682^(23/24) 3770005305504808 a001 75025/167761*103682^(7/12) 3770005305505395 a001 24157817/103682*15127^(1/20) 3770005305516977 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^35 3770005305519393 a001 28657/103682*167761^(3/5) 3770005305527467 a001 9227465/271443*39603^(5/22) 3770005305554617 a001 416020/51841*39603^(4/11) 3770005305558976 a001 10946/15127*15127^(13/20) 3770005305570817 a001 196418/64079*64079^(10/23) 3770005305571161 a001 24157817/710647*39603^(5/22) 3770005305577536 a001 31622993/930249*39603^(5/22) 3770005305578466 a001 165580141/4870847*39603^(5/22) 3770005305578601 a001 433494437/12752043*39603^(5/22) 3770005305578621 a001 567451585/16692641*39603^(5/22) 3770005305578624 a001 2971215073/87403803*39603^(5/22) 3770005305578625 a001 7778742049/228826127*39603^(5/22) 3770005305578625 a001 10182505537/299537289*39603^(5/22) 3770005305578625 a001 53316291173/1568397607*39603^(5/22) 3770005305578625 a001 139583862445/4106118243*39603^(5/22) 3770005305578625 a001 182717648081/5374978561*39603^(5/22) 3770005305578625 a001 956722026041/28143753123*39603^(5/22) 3770005305578625 a001 2504730781961/73681302247*39603^(5/22) 3770005305578625 a001 3278735159921/96450076809*39603^(5/22) 3770005305578625 a001 10610209857723/312119004989*39603^(5/22) 3770005305578625 a001 4052739537881/119218851371*39603^(5/22) 3770005305578625 a001 387002188980/11384387281*39603^(5/22) 3770005305578625 a001 591286729879/17393796001*39603^(5/22) 3770005305578625 a001 225851433717/6643838879*39603^(5/22) 3770005305578625 a001 1135099622/33391061*39603^(5/22) 3770005305578625 a001 32951280099/969323029*39603^(5/22) 3770005305578625 a001 12586269025/370248451*39603^(5/22) 3770005305578625 a001 1201881744/35355581*39603^(5/22) 3770005305578626 a001 1836311903/54018521*39603^(5/22) 3770005305578633 a001 701408733/20633239*39603^(5/22) 3770005305578685 a001 66978574/1970299*39603^(5/22) 3770005305579041 a001 102334155/3010349*39603^(5/22) 3770005305580494 a001 10946/271443*24476^(19/21) 3770005305581476 a001 39088169/1149851*39603^(5/22) 3770005305583727 a001 317811/64079*64079^(9/23) 3770005305588908 a001 28657/103682*439204^(5/9) 3770005305598165 a001 196452/5779*39603^(5/22) 3770005305599705 a001 664383888/1762289 3770005305599738 a001 28657/103682*7881196^(5/11) 3770005305599762 a001 28657/103682*20633239^(3/7) 3770005305599766 a001 28657/103682*141422324^(5/13) 3770005305599766 a001 46368/64079*141422324^(1/3) 3770005305599766 a001 28657/103682*2537720636^(1/3) 3770005305599766 a001 28657/103682*45537549124^(5/17) 3770005305599766 a001 28657/103682*312119004989^(3/11) 3770005305599766 a001 28657/103682*14662949395604^(5/21) 3770005305599766 a001 28657/103682*(1/2+1/2*5^(1/2))^15 3770005305599766 a001 28657/103682*192900153618^(5/18) 3770005305599766 a001 28657/103682*28143753123^(3/10) 3770005305599766 a001 28657/103682*10749957122^(5/16) 3770005305599766 a001 46368/64079*(1/2+1/2*5^(1/2))^13 3770005305599766 a001 46368/64079*73681302247^(1/4) 3770005305599766 a001 28657/103682*599074578^(5/14) 3770005305599766 a001 28657/103682*228826127^(3/8) 3770005305599767 a001 28657/103682*33385282^(5/12) 3770005305600311 a001 28657/103682*1860498^(1/2) 3770005305603328 a001 9227465/167761*39603^(2/11) 3770005305605390 a001 75025/64079*64079^(12/23) 3770005305625349 a001 46368/64079*271443^(1/2) 3770005305633963 a001 514229/64079*64079^(8/23) 3770005305636696 a001 5702887/271443*39603^(3/11) 3770005305650793 a001 14930352/64079*24476^(1/21) 3770005305667818 a001 514229/103682*39603^(9/22) 3770005305669942 a001 832040/64079*64079^(7/23) 3770005305680417 a001 14930352/710647*39603^(3/11) 3770005305686795 a001 39088169/1860498*39603^(3/11) 3770005305687726 a001 102334155/4870847*39603^(3/11) 3770005305687862 a001 267914296/12752043*39603^(3/11) 3770005305687882 a001 701408733/33385282*39603^(3/11) 3770005305687885 a001 1836311903/87403803*39603^(3/11) 3770005305687885 a001 102287808/4868641*39603^(3/11) 3770005305687885 a001 12586269025/599074578*39603^(3/11) 3770005305687885 a001 32951280099/1568397607*39603^(3/11) 3770005305687885 a001 86267571272/4106118243*39603^(3/11) 3770005305687885 a001 225851433717/10749957122*39603^(3/11) 3770005305687885 a001 591286729879/28143753123*39603^(3/11) 3770005305687885 a001 1548008755920/73681302247*39603^(3/11) 3770005305687885 a001 4052739537881/192900153618*39603^(3/11) 3770005305687885 a001 225749145909/10745088481*39603^(3/11) 3770005305687885 a001 6557470319842/312119004989*39603^(3/11) 3770005305687885 a001 2504730781961/119218851371*39603^(3/11) 3770005305687885 a001 956722026041/45537549124*39603^(3/11) 3770005305687885 a001 365435296162/17393796001*39603^(3/11) 3770005305687885 a001 139583862445/6643838879*39603^(3/11) 3770005305687885 a001 53316291173/2537720636*39603^(3/11) 3770005305687885 a001 20365011074/969323029*39603^(3/11) 3770005305687885 a001 7778742049/370248451*39603^(3/11) 3770005305687885 a001 2971215073/141422324*39603^(3/11) 3770005305687886 a001 1134903170/54018521*39603^(3/11) 3770005305687894 a001 433494437/20633239*39603^(3/11) 3770005305687946 a001 165580141/7881196*39603^(3/11) 3770005305688301 a001 63245986/3010349*39603^(3/11) 3770005305690738 a001 24157817/1149851*39603^(3/11) 3770005305707438 a001 9227465/439204*39603^(3/11) 3770005305711366 a001 1346269/64079*64079^(6/23) 3770005305712557 a001 5702887/167761*39603^(5/22) 3770005305746040 a001 3524578/271443*39603^(7/22) 3770005305750710 a001 2178309/64079*64079^(5/23) 3770005305766762 a001 317811/103682*39603^(5/11) 3770005305789689 a001 9227465/710647*39603^(7/22) 3770005305789728 a001 46368/64079*103682^(13/24) 3770005305790849 a001 3524578/64079*64079^(4/23) 3770005305796058 a001 24157817/1860498*39603^(7/22) 3770005305796987 a001 63245986/4870847*39603^(7/22) 3770005305797122 a001 165580141/12752043*39603^(7/22) 3770005305797142 a001 433494437/33385282*39603^(7/22) 3770005305797145 a001 1134903170/87403803*39603^(7/22) 3770005305797146 a001 2971215073/228826127*39603^(7/22) 3770005305797146 a001 7778742049/599074578*39603^(7/22) 3770005305797146 a001 20365011074/1568397607*39603^(7/22) 3770005305797146 a001 53316291173/4106118243*39603^(7/22) 3770005305797146 a001 139583862445/10749957122*39603^(7/22) 3770005305797146 a001 365435296162/28143753123*39603^(7/22) 3770005305797146 a001 956722026041/73681302247*39603^(7/22) 3770005305797146 a001 2504730781961/192900153618*39603^(7/22) 3770005305797146 a001 10610209857723/817138163596*39603^(7/22) 3770005305797146 a001 4052739537881/312119004989*39603^(7/22) 3770005305797146 a001 1548008755920/119218851371*39603^(7/22) 3770005305797146 a001 591286729879/45537549124*39603^(7/22) 3770005305797146 a001 7787980473/599786069*39603^(7/22) 3770005305797146 a001 86267571272/6643838879*39603^(7/22) 3770005305797146 a001 32951280099/2537720636*39603^(7/22) 3770005305797146 a001 12586269025/969323029*39603^(7/22) 3770005305797146 a001 4807526976/370248451*39603^(7/22) 3770005305797146 a001 1836311903/141422324*39603^(7/22) 3770005305797147 a001 701408733/54018521*39603^(7/22) 3770005305797154 a001 9238424/711491*39603^(7/22) 3770005305797206 a001 102334155/7881196*39603^(7/22) 3770005305797561 a001 39088169/3010349*39603^(7/22) 3770005305799994 a001 14930352/1149851*39603^(7/22) 3770005305804927 a001 63245986/271443*15127^(1/20) 3770005305816510 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^34 3770005305816666 a001 5702887/439204*39603^(7/22) 3770005305818953 a001 28657/103682*103682^(5/8) 3770005305821901 a001 3524578/167761*39603^(3/11) 3770005305830685 a001 5702887/64079*64079^(3/23) 3770005305846153 a001 28657/1149851*167761^(4/5) 3770005305848628 a001 165580141/710647*15127^(1/20) 3770005305855004 a001 433494437/1860498*15127^(1/20) 3770005305855081 a001 726103/90481*39603^(4/11) 3770005305855934 a001 1134903170/4870847*15127^(1/20) 3770005305856070 a001 2971215073/12752043*15127^(1/20) 3770005305856090 a001 7778742049/33385282*15127^(1/20) 3770005305856092 a001 20365011074/87403803*15127^(1/20) 3770005305856093 a001 53316291173/228826127*15127^(1/20) 3770005305856093 a001 139583862445/599074578*15127^(1/20) 3770005305856093 a001 365435296162/1568397607*15127^(1/20) 3770005305856093 a001 956722026041/4106118243*15127^(1/20) 3770005305856093 a001 2504730781961/10749957122*15127^(1/20) 3770005305856093 a001 6557470319842/28143753123*15127^(1/20) 3770005305856093 a001 10610209857723/45537549124*15127^(1/20) 3770005305856093 a001 4052739537881/17393796001*15127^(1/20) 3770005305856093 a001 1548008755920/6643838879*15127^(1/20) 3770005305856093 a001 591286729879/2537720636*15127^(1/20) 3770005305856093 a001 225851433717/969323029*15127^(1/20) 3770005305856093 a001 86267571272/370248451*15127^(1/20) 3770005305856093 a001 63246219/271444*15127^(1/20) 3770005305856094 a001 12586269025/54018521*15127^(1/20) 3770005305856102 a001 4807526976/20633239*15127^(1/20) 3770005305856154 a001 1836311903/7881196*15127^(1/20) 3770005305856509 a001 701408733/3010349*15127^(1/20) 3770005305858944 a001 267914296/1149851*15127^(1/20) 3770005305860570 a001 23184/51841*39603^(7/11) 3770005305870636 a001 9227465/64079*64079^(2/23) 3770005305875637 a001 102334155/439204*15127^(1/20) 3770005305880299 a001 5473/51841*24476^(17/21) 3770005305898918 a001 5702887/710647*39603^(4/11) 3770005305899279 a001 121393/64079*7881196^(1/3) 3770005305899290 a001 3478759201/9227465 3770005305899299 a001 28657/271443*45537549124^(1/3) 3770005305899299 a001 28657/271443*(1/2+1/2*5^(1/2))^17 3770005305899299 a001 121393/64079*312119004989^(1/5) 3770005305899299 a001 121393/64079*(1/2+1/2*5^(1/2))^11 3770005305899299 a001 121393/64079*1568397607^(1/4) 3770005305899311 a001 28657/271443*12752043^(1/2) 3770005305903032 a001 98209/51841*39603^(1/2) 3770005305905314 a001 829464/103361*39603^(4/11) 3770005305906247 a001 39088169/4870847*39603^(4/11) 3770005305906383 a001 34111385/4250681*39603^(4/11) 3770005305906403 a001 133957148/16692641*39603^(4/11) 3770005305906406 a001 233802911/29134601*39603^(4/11) 3770005305906406 a001 1836311903/228826127*39603^(4/11) 3770005305906406 a001 267084832/33281921*39603^(4/11) 3770005305906406 a001 12586269025/1568397607*39603^(4/11) 3770005305906406 a001 10983760033/1368706081*39603^(4/11) 3770005305906406 a001 43133785636/5374978561*39603^(4/11) 3770005305906406 a001 75283811239/9381251041*39603^(4/11) 3770005305906406 a001 591286729879/73681302247*39603^(4/11) 3770005305906406 a001 86000486440/10716675201*39603^(4/11) 3770005305906406 a001 4052739537881/505019158607*39603^(4/11) 3770005305906406 a001 3278735159921/408569081798*39603^(4/11) 3770005305906406 a001 2504730781961/312119004989*39603^(4/11) 3770005305906406 a001 956722026041/119218851371*39603^(4/11) 3770005305906406 a001 182717648081/22768774562*39603^(4/11) 3770005305906406 a001 139583862445/17393796001*39603^(4/11) 3770005305906406 a001 53316291173/6643838879*39603^(4/11) 3770005305906406 a001 10182505537/1268860318*39603^(4/11) 3770005305906406 a001 7778742049/969323029*39603^(4/11) 3770005305906406 a001 2971215073/370248451*39603^(4/11) 3770005305906406 a001 567451585/70711162*39603^(4/11) 3770005305906407 a001 433494437/54018521*39603^(4/11) 3770005305906415 a001 165580141/20633239*39603^(4/11) 3770005305906467 a001 31622993/3940598*39603^(4/11) 3770005305906823 a001 24157817/3010349*39603^(4/11) 3770005305909266 a001 9227465/1149851*39603^(4/11) 3770005305910543 a001 14930352/64079*64079^(1/23) 3770005305916427 a001 196418/64079*167761^(2/5) 3770005305923516 a001 726103/13201*15127^(1/5) 3770005305923516 a001 2178309/64079*167761^(1/5) 3770005305926011 a001 1762289/219602*39603^(4/11) 3770005305930922 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^36 3770005305930942 a001 2178309/167761*39603^(7/22) 3770005305933154 a001 28657/7881196*439204^(8/9) 3770005305934176 a001 28657/1860498*439204^(7/9) 3770005305936486 a001 317811/64079*439204^(1/3) 3770005305941582 a001 121393/103682*39603^(6/11) 3770005305942984 a001 317811/64079*7881196^(3/11) 3770005305942999 a001 9107509827/24157817 3770005305943000 a001 317811/64079*141422324^(3/13) 3770005305943001 a001 28657/710647*817138163596^(1/3) 3770005305943001 a001 28657/710647*(1/2+1/2*5^(1/2))^19 3770005305943001 a001 317811/64079*2537720636^(1/5) 3770005305943001 a001 317811/64079*45537549124^(3/17) 3770005305943001 a001 317811/64079*817138163596^(3/19) 3770005305943001 a001 317811/64079*14662949395604^(1/7) 3770005305943001 a001 317811/64079*(1/2+1/2*5^(1/2))^9 3770005305943001 a001 317811/64079*192900153618^(1/6) 3770005305943001 a001 317811/64079*10749957122^(3/16) 3770005305943001 a001 317811/64079*599074578^(3/14) 3770005305943001 a001 28657/710647*87403803^(1/2) 3770005305943001 a001 317811/64079*33385282^(1/4) 3770005305943327 a001 317811/64079*1860498^(3/10) 3770005305946539 a001 1346269/64079*439204^(2/9) 3770005305947614 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^38 3770005305948271 a001 5702887/64079*439204^(1/9) 3770005305949338 a001 28657/1860498*7881196^(7/11) 3770005305949371 a001 28657/1860498*20633239^(3/5) 3770005305949375 a001 832040/64079*20633239^(1/5) 3770005305949376 a001 11921885140/31622993 3770005305949376 a001 28657/1860498*141422324^(7/13) 3770005305949376 a001 28657/1860498*2537720636^(7/15) 3770005305949376 a001 28657/1860498*17393796001^(3/7) 3770005305949376 a001 28657/1860498*45537549124^(7/17) 3770005305949376 a001 28657/1860498*14662949395604^(1/3) 3770005305949376 a001 28657/1860498*(1/2+1/2*5^(1/2))^21 3770005305949376 a001 28657/1860498*192900153618^(7/18) 3770005305949376 a001 28657/1860498*10749957122^(7/16) 3770005305949376 a001 832040/64079*17393796001^(1/7) 3770005305949376 a001 832040/64079*14662949395604^(1/9) 3770005305949376 a001 832040/64079*(1/2+1/2*5^(1/2))^7 3770005305949376 a001 832040/64079*599074578^(1/6) 3770005305949376 a001 28657/1860498*599074578^(1/2) 3770005305949378 a001 28657/1860498*33385282^(7/12) 3770005305950050 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^40 3770005305950139 a001 28657/1860498*1860498^(7/10) 3770005305950305 a001 2178309/64079*20633239^(1/7) 3770005305950307 a001 62423801013/165580141 3770005305950307 a001 28657/4870847*(1/2+1/2*5^(1/2))^23 3770005305950307 a001 28657/4870847*4106118243^(1/2) 3770005305950307 a001 2178309/64079*2537720636^(1/9) 3770005305950307 a001 2178309/64079*312119004989^(1/11) 3770005305950307 a001 2178309/64079*(1/2+1/2*5^(1/2))^5 3770005305950307 a001 2178309/64079*28143753123^(1/10) 3770005305950307 a001 2178309/64079*228826127^(1/8) 3770005305950405 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^42 3770005305950411 a001 28657/141422324*7881196^(10/11) 3770005305950413 a001 28657/33385282*7881196^(9/11) 3770005305950436 a001 28657/12752043*20633239^(5/7) 3770005305950437 a001 5702887/64079*7881196^(1/11) 3770005305950442 a001 5702887/64079*141422324^(1/13) 3770005305950442 a001 163427632759/433494437 3770005305950442 a001 28657/12752043*2537720636^(5/9) 3770005305950442 a001 28657/12752043*312119004989^(5/11) 3770005305950442 a001 28657/12752043*(1/2+1/2*5^(1/2))^25 3770005305950442 a001 28657/12752043*3461452808002^(5/12) 3770005305950442 a001 28657/12752043*28143753123^(1/2) 3770005305950442 a001 5702887/64079*2537720636^(1/15) 3770005305950442 a001 5702887/64079*45537549124^(1/17) 3770005305950442 a001 5702887/64079*14662949395604^(1/21) 3770005305950442 a001 5702887/64079*(1/2+1/2*5^(1/2))^3 3770005305950442 a001 5702887/64079*192900153618^(1/18) 3770005305950442 a001 5702887/64079*10749957122^(1/16) 3770005305950442 a001 5702887/64079*599074578^(1/14) 3770005305950442 a001 28657/12752043*228826127^(5/8) 3770005305950443 a001 5702887/64079*33385282^(1/12) 3770005305950457 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^44 3770005305950458 a001 28657/141422324*20633239^(6/7) 3770005305950460 a001 28657/54018521*20633239^(4/5) 3770005305950462 a001 28657/33385282*141422324^(9/13) 3770005305950462 a001 12584091096/33379505 3770005305950462 a001 28657/33385282*2537720636^(3/5) 3770005305950462 a001 28657/33385282*45537549124^(9/17) 3770005305950462 a001 28657/33385282*817138163596^(9/19) 3770005305950462 a001 28657/33385282*14662949395604^(3/7) 3770005305950462 a001 28657/33385282*(1/2+1/2*5^(1/2))^27 3770005305950462 a001 28657/33385282*192900153618^(1/2) 3770005305950462 a001 28657/33385282*10749957122^(9/16) 3770005305950462 a001 7465176/64079+7465176/64079*5^(1/2) 3770005305950462 a001 28657/33385282*599074578^(9/14) 3770005305950464 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^46 3770005305950465 a001 28657/33385282*33385282^(3/4) 3770005305950465 a001 1120149659033/2971215073 3770005305950465 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^29/Lucas(38) 3770005305950465 a001 28657/87403803*1322157322203^(1/2) 3770005305950465 a004 Fibonacci(38)/Lucas(23)/(1/2+sqrt(5)/2) 3770005305950465 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^48 3770005305950465 a001 28657/2537720636*141422324^(12/13) 3770005305950465 a001 28657/599074578*141422324^(11/13) 3770005305950466 a001 2932589879835/7778742049 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(40) 3770005305950466 a001 28657/228826127*9062201101803^(1/2) 3770005305950466 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2)^3 3770005305950466 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^50 3770005305950466 a001 28657/599074578*2537720636^(11/15) 3770005305950466 a001 3838809990236/10182505537 3770005305950466 a001 28657/599074578*45537549124^(11/17) 3770005305950466 a001 28657/599074578*312119004989^(3/5) 3770005305950466 a001 28657/599074578*817138163596^(11/19) 3770005305950466 a001 28657/599074578*14662949395604^(11/21) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(42) 3770005305950466 a001 28657/599074578*192900153618^(11/18) 3770005305950466 a001 28657/599074578*10749957122^(11/16) 3770005305950466 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^5 3770005305950466 a001 28657/599074578*1568397607^(3/4) 3770005305950466 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^52 3770005305950466 a001 28657/599074578*599074578^(11/14) 3770005305950466 a001 28657/1568397607*2537720636^(7/9) 3770005305950466 a001 28657/1568397607*17393796001^(5/7) 3770005305950466 a001 20100270061581/53316291173 3770005305950466 a001 28657/1568397607*312119004989^(7/11) 3770005305950466 a001 28657/1568397607*14662949395604^(5/9) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(44) 3770005305950466 a001 28657/1568397607*505019158607^(5/8) 3770005305950466 a001 28657/1568397607*28143753123^(7/10) 3770005305950466 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^7 3770005305950466 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^54 3770005305950466 a001 28657/45537549124*2537720636^(14/15) 3770005305950466 a001 28657/10749957122*2537720636^(13/15) 3770005305950466 a001 28657/17393796001*2537720636^(8/9) 3770005305950466 a001 52623190204271/139583862445 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(46) 3770005305950466 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^56 3770005305950466 a001 28657/10749957122*45537549124^(13/17) 3770005305950466 a001 28657/10749957122*14662949395604^(13/21) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(48) 3770005305950466 a001 28657/10749957122*192900153618^(13/18) 3770005305950466 a001 28657/10749957122*73681302247^(3/4) 3770005305950466 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^58 3770005305950466 a001 28657/45537549124*17393796001^(6/7) 3770005305950466 a001 28657/10749957122*10749957122^(13/16) 3770005305950466 a001 360684711449425/956722026041 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(50) 3770005305950466 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^60 3770005305950466 a001 28657/192900153618*45537549124^(15/17) 3770005305950466 a001 944284833797043/2504730781961 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(52) 3770005305950466 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^62 3770005305950466 a001 28657/192900153618*312119004989^(9/11) 3770005305950466 a001 72710876174756/192866774113 3770005305950466 a001 28657/192900153618*14662949395604^(5/7) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(54) 3770005305950466 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^64 3770005305950466 a001 28657/2139295485799*312119004989^(10/11) 3770005305950466 a001 28657/192900153618*192900153618^(5/6) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(56) 3770005305950466 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^66 3770005305950466 a001 28657/1322157322203*14662949395604^(7/9) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(58) 3770005305950466 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^68 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(60) 3770005305950466 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^70 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(62) 3770005305950466 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^72 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(64) 3770005305950466 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^74 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(66) 3770005305950466 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^76 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(68) 3770005305950466 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^78 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(70) 3770005305950466 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^80 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(72) 3770005305950466 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^82 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(74) 3770005305950466 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^84 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(76) 3770005305950466 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^86 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(78) 3770005305950466 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^88 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(80) 3770005305950466 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^90 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(82) 3770005305950466 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^92 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(84) 3770005305950466 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^94 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(86) 3770005305950466 a004 Fibonacci(23)*Lucas(87)/(1/2+sqrt(5)/2)^96 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(88) 3770005305950466 a004 Fibonacci(23)*Lucas(89)/(1/2+sqrt(5)/2)^98 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(90) 3770005305950466 a004 Fibonacci(23)*Lucas(91)/(1/2+sqrt(5)/2)^100 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(92) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(94) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^87/Lucas(96) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^89/Lucas(98) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^90/Lucas(99) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^91/Lucas(100) 3770005305950466 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^9 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^88/Lucas(97) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^86/Lucas(95) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(93) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(91) 3770005305950466 a004 Fibonacci(23)*Lucas(90)/(1/2+sqrt(5)/2)^99 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(89) 3770005305950466 a004 Fibonacci(23)*Lucas(88)/(1/2+sqrt(5)/2)^97 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(87) 3770005305950466 a004 Fibonacci(23)*Lucas(86)/(1/2+sqrt(5)/2)^95 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(85) 3770005305950466 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^93 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(83) 3770005305950466 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^91 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(81) 3770005305950466 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^89 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(79) 3770005305950466 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^87 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(77) 3770005305950466 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^85 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(75) 3770005305950466 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^83 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(73) 3770005305950466 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^81 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(71) 3770005305950466 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^79 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(69) 3770005305950466 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^77 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(67) 3770005305950466 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^75 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(65) 3770005305950466 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^73 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(63) 3770005305950466 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^71 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(61) 3770005305950466 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^69 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(59) 3770005305950466 a001 28657/2139295485799*3461452808002^(5/6) 3770005305950466 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^67 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(57) 3770005305950466 a001 28657/1322157322203*505019158607^(7/8) 3770005305950466 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^65 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(55) 3770005305950466 a001 4000054746086365/10610209857723 3770005305950466 a001 28657/3461452808002*192900153618^(17/18) 3770005305950466 a001 28657/817138163596*192900153618^(8/9) 3770005305950466 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^63 3770005305950466 a001 28657/119218851371*312119004989^(4/5) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(53) 3770005305950466 a001 1527884956144661/4052739537881 3770005305950466 a001 28657/45537549124*45537549124^(14/17) 3770005305950466 a001 28657/817138163596*73681302247^(12/13) 3770005305950466 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^61 3770005305950466 a001 28657/119218851371*73681302247^(11/13) 3770005305950466 a001 28657/45537549124*817138163596^(14/19) 3770005305950466 a001 28657/45537549124*14662949395604^(2/3) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(51) 3770005305950466 a001 28657/45537549124*505019158607^(3/4) 3770005305950466 a001 28657/45537549124*192900153618^(7/9) 3770005305950466 a001 28657/192900153618*28143753123^(9/10) 3770005305950466 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^59 3770005305950466 a001 28657/17393796001*312119004989^(8/11) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(49) 3770005305950466 a001 28657/17393796001*23725150497407^(5/8) 3770005305950466 a001 222915410898193/591286729879 3770005305950466 a001 28657/17393796001*73681302247^(10/13) 3770005305950466 a001 28657/17393796001*28143753123^(4/5) 3770005305950466 a001 28657/119218851371*10749957122^(11/12) 3770005305950466 a001 28657/45537549124*10749957122^(7/8) 3770005305950466 a001 28657/192900153618*10749957122^(15/16) 3770005305950466 a001 28657/312119004989*10749957122^(23/24) 3770005305950466 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^57 3770005305950466 a001 28657/17393796001*10749957122^(5/6) 3770005305950466 a001 28657/6643838879*817138163596^(2/3) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(47) 3770005305950466 a001 85146110346961/225851433717 3770005305950466 a001 28657/6643838879*10749957122^(19/24) 3770005305950466 a001 28657/2537720636*2537720636^(4/5) 3770005305950466 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^11 3770005305950466 a001 28657/45537549124*4106118243^(21/23) 3770005305950466 a001 28657/17393796001*4106118243^(20/23) 3770005305950466 a001 28657/119218851371*4106118243^(22/23) 3770005305950466 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^13 3770005305950466 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^15 3770005305950466 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^17 3770005305950466 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^19 3770005305950466 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^21 3770005305950466 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^23 3770005305950466 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^25 3770005305950466 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^27 3770005305950466 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^29 3770005305950466 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^31 3770005305950466 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^33 3770005305950466 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^35 3770005305950466 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^37 3770005305950466 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^39 3770005305950466 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^41 3770005305950466 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^43 3770005305950466 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^45 3770005305950466 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^47 3770005305950466 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^49 3770005305950466 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^51 3770005305950466 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^53 3770005305950466 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^55 3770005305950466 a004 Fibonacci(92)/Lucas(23)/(1/2+sqrt(5)/2)^55 3770005305950466 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^57 3770005305950466 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^59 3770005305950466 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^63 3770005305950466 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^61 3770005305950466 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^62 3770005305950466 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^60 3770005305950466 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^58 3770005305950466 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^56 3770005305950466 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^54 3770005305950466 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^52 3770005305950466 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^50 3770005305950466 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^48 3770005305950466 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^46 3770005305950466 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^44 3770005305950466 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^42 3770005305950466 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^40 3770005305950466 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^38 3770005305950466 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^36 3770005305950466 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^34 3770005305950466 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^32 3770005305950466 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^30 3770005305950466 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^28 3770005305950466 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^26 3770005305950466 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^24 3770005305950466 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^22 3770005305950466 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^20 3770005305950466 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^18 3770005305950466 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^16 3770005305950466 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^14 3770005305950466 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^12 3770005305950466 a001 28657/6643838879*4106118243^(19/23) 3770005305950466 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^10 3770005305950466 a001 28657/2537720636*45537549124^(12/17) 3770005305950466 a001 28657/2537720636*14662949395604^(4/7) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(45) 3770005305950466 a001 28657/2537720636*505019158607^(9/14) 3770005305950466 a001 28657/2537720636*192900153618^(2/3) 3770005305950466 a001 956556474785/2537281508 3770005305950466 a001 28657/2537720636*73681302247^(9/13) 3770005305950466 a001 28657/2537720636*10749957122^(3/4) 3770005305950466 a001 28657/2537720636*4106118243^(18/23) 3770005305950466 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^8 3770005305950466 a001 28657/17393796001*1568397607^(10/11) 3770005305950466 a001 28657/6643838879*1568397607^(19/22) 3770005305950466 a001 28657/45537549124*1568397607^(21/22) 3770005305950466 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^53 3770005305950466 a001 28657/2537720636*1568397607^(9/11) 3770005305950466 a001 28657/969323029*45537549124^(2/3) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(43) 3770005305950466 a001 12422650081109/32951280099 3770005305950466 a001 28657/969323029*10749957122^(17/24) 3770005305950466 a001 28657/969323029*4106118243^(17/23) 3770005305950466 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^6 3770005305950466 a001 28657/969323029*1568397607^(17/22) 3770005305950466 a001 28657/1568397607*599074578^(5/6) 3770005305950466 a001 28657/2537720636*599074578^(6/7) 3770005305950466 a001 28657/6643838879*599074578^(19/21) 3770005305950466 a001 28657/10749957122*599074578^(13/14) 3770005305950466 a001 28657/17393796001*599074578^(20/21) 3770005305950466 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^51 3770005305950466 a001 28657/969323029*599074578^(17/21) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(41) 3770005305950466 a001 28657/370248451*23725150497407^(1/2) 3770005305950466 a001 28657/370248451*505019158607^(4/7) 3770005305950466 a001 28657/370248451*73681302247^(8/13) 3770005305950466 a001 4745030100637/12586269025 3770005305950466 a001 28657/370248451*10749957122^(2/3) 3770005305950466 a001 28657/370248451*4106118243^(16/23) 3770005305950466 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^4 3770005305950466 a001 28657/370248451*1568397607^(8/11) 3770005305950466 a001 28657/370248451*599074578^(16/21) 3770005305950466 a001 28657/141422324*141422324^(10/13) 3770005305950466 a001 28657/1568397607*228826127^(7/8) 3770005305950466 a001 28657/969323029*228826127^(17/20) 3770005305950466 a001 28657/2537720636*228826127^(9/10) 3770005305950466 a001 28657/6643838879*228826127^(19/20) 3770005305950466 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^49 3770005305950466 a001 28657/370248451*228826127^(4/5) 3770005305950466 a001 28657/141422324*2537720636^(2/3) 3770005305950466 a001 28657/141422324*45537549124^(10/17) 3770005305950466 a001 28657/141422324*312119004989^(6/11) 3770005305950466 a001 28657/141422324*14662949395604^(10/21) 3770005305950466 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(39) 3770005305950466 a001 28657/141422324*192900153618^(5/9) 3770005305950466 a001 28657/141422324*28143753123^(3/5) 3770005305950466 a001 28657/141422324*10749957122^(5/8) 3770005305950466 a001 906220110401/2403763488 3770005305950466 a001 28657/141422324*4106118243^(15/23) 3770005305950466 a004 Fibonacci(39)/Lucas(23)/(1/2+sqrt(5)/2)^2 3770005305950466 a001 28657/141422324*1568397607^(15/22) 3770005305950466 a001 28657/141422324*599074578^(5/7) 3770005305950466 a001 28657/141422324*228826127^(3/4) 3770005305950466 a001 28657/370248451*87403803^(16/19) 3770005305950466 a001 28657/969323029*87403803^(17/19) 3770005305950466 a001 28657/2537720636*87403803^(18/19) 3770005305950466 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^47 3770005305950466 a001 28657/141422324*87403803^(15/19) 3770005305950467 a001 28657/54018521*17393796001^(4/7) 3770005305950467 a001 28657/54018521*14662949395604^(4/9) 3770005305950467 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^28/Lucas(37) 3770005305950467 a001 28657/54018521*73681302247^(7/13) 3770005305950467 a001 28657/54018521*10749957122^(7/12) 3770005305950467 a001 28657/54018521*4106118243^(14/23) 3770005305950467 a001 24157817/64079 3770005305950467 a001 28657/54018521*1568397607^(7/11) 3770005305950467 a001 28657/54018521*599074578^(2/3) 3770005305950467 a001 28657/54018521*228826127^(7/10) 3770005305950467 a001 28657/54018521*87403803^(14/19) 3770005305950469 a001 28657/141422324*33385282^(5/6) 3770005305950469 a001 28657/370248451*33385282^(8/9) 3770005305950469 a001 28657/599074578*33385282^(11/12) 3770005305950469 a001 28657/969323029*33385282^(17/18) 3770005305950469 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^45 3770005305950470 a001 28657/54018521*33385282^(7/9) 3770005305950474 a001 28657/20633239*141422324^(2/3) 3770005305950474 a001 28657/20633239*(1/2+1/2*5^(1/2))^26 3770005305950474 a001 28657/20633239*73681302247^(1/2) 3770005305950474 a001 28657/20633239*10749957122^(13/24) 3770005305950474 a001 28657/20633239*4106118243^(13/23) 3770005305950474 a001 9227465/64079*(1/2+1/2*5^(1/2))^2 3770005305950474 a001 9227465/64079*10749957122^(1/24) 3770005305950474 a001 9227465/64079*4106118243^(1/23) 3770005305950474 a001 9227465/64079*1568397607^(1/22) 3770005305950474 a001 9227465/64079*599074578^(1/21) 3770005305950474 a001 28657/20633239*1568397607^(13/22) 3770005305950474 a001 264431464505/701408733 3770005305950474 a001 9227465/64079*228826127^(1/20) 3770005305950474 a001 28657/20633239*599074578^(13/21) 3770005305950474 a001 9227465/64079*87403803^(1/19) 3770005305950475 a001 28657/20633239*228826127^(13/20) 3770005305950475 a001 9227465/64079*33385282^(1/18) 3770005305950475 a001 28657/20633239*87403803^(13/19) 3770005305950476 a001 9227465/64079*12752043^(1/17) 3770005305950477 a001 28657/20633239*33385282^(13/18) 3770005305950482 a001 28657/7881196*7881196^(8/11) 3770005305950484 a001 9227465/64079*4870847^(1/16) 3770005305950486 a001 28657/54018521*12752043^(14/17) 3770005305950486 a001 28657/141422324*12752043^(15/17) 3770005305950487 a001 28657/370248451*12752043^(16/17) 3770005305950488 a001 2178309/64079*1860498^(1/6) 3770005305950489 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^43 3770005305950492 a001 28657/20633239*12752043^(13/17) 3770005305950526 a001 28657/7881196*141422324^(8/13) 3770005305950526 a001 28657/7881196*2537720636^(8/15) 3770005305950526 a001 28657/7881196*45537549124^(8/17) 3770005305950526 a001 28657/7881196*14662949395604^(8/21) 3770005305950526 a001 28657/7881196*(1/2+1/2*5^(1/2))^24 3770005305950526 a001 28657/7881196*192900153618^(4/9) 3770005305950526 a001 28657/7881196*73681302247^(6/13) 3770005305950526 a001 28657/7881196*10749957122^(1/2) 3770005305950526 a001 28657/7881196*4106118243^(12/23) 3770005305950526 a001 3524578/64079*(1/2+1/2*5^(1/2))^4 3770005305950526 a001 3524578/64079*23725150497407^(1/16) 3770005305950526 a001 3524578/64079*73681302247^(1/13) 3770005305950526 a001 3524578/64079*10749957122^(1/12) 3770005305950526 a001 3524578/64079*4106118243^(2/23) 3770005305950526 a001 3524578/64079*1568397607^(1/11) 3770005305950526 a001 28657/7881196*1568397607^(6/11) 3770005305950526 a001 3524578/64079*599074578^(2/21) 3770005305950526 a001 28657/7881196*599074578^(4/7) 3770005305950526 a001 3524578/64079*228826127^(1/10) 3770005305950526 a001 50501915873/133957148 3770005305950526 a001 28657/7881196*228826127^(3/5) 3770005305950526 a001 3524578/64079*87403803^(2/19) 3770005305950527 a001 28657/7881196*87403803^(12/19) 3770005305950527 a001 3524578/64079*33385282^(1/9) 3770005305950529 a001 28657/7881196*33385282^(2/3) 3770005305950529 a001 3524578/64079*12752043^(2/17) 3770005305950543 a001 28657/7881196*12752043^(12/17) 3770005305950546 a001 3524578/64079*4870847^(1/8) 3770005305950547 a001 9227465/64079*1860498^(1/15) 3770005305950551 a001 5702887/64079*1860498^(1/10) 3770005305950604 a001 28657/20633239*4870847^(13/16) 3770005305950606 a001 28657/54018521*4870847^(7/8) 3770005305950615 a001 28657/141422324*4870847^(15/16) 3770005305950625 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^41 3770005305950645 a001 28657/7881196*4870847^(3/4) 3770005305950672 a001 3524578/64079*1860498^(2/15) 3770005305950841 a001 28657/3010349*7881196^(2/3) 3770005305950871 a001 1346269/64079*7881196^(2/11) 3770005305950882 a001 1346269/64079*141422324^(2/13) 3770005305950882 a001 28657/3010349*312119004989^(2/5) 3770005305950882 a001 28657/3010349*(1/2+1/2*5^(1/2))^22 3770005305950882 a001 28657/3010349*10749957122^(11/24) 3770005305950882 a001 28657/3010349*4106118243^(11/23) 3770005305950882 a001 1346269/64079*2537720636^(2/15) 3770005305950882 a001 1346269/64079*45537549124^(2/17) 3770005305950882 a001 1346269/64079*14662949395604^(2/21) 3770005305950882 a001 1346269/64079*(1/2+1/2*5^(1/2))^6 3770005305950882 a001 1346269/64079*10749957122^(1/8) 3770005305950882 a001 1346269/64079*4106118243^(3/23) 3770005305950882 a001 1346269/64079*1568397607^(3/22) 3770005305950882 a001 28657/3010349*1568397607^(1/2) 3770005305950882 a001 1346269/64079*599074578^(1/7) 3770005305950882 a001 28657/3010349*599074578^(11/21) 3770005305950882 a001 1346269/64079*228826127^(3/20) 3770005305950882 a001 28657/3010349*228826127^(11/20) 3770005305950882 a001 38580030733/102334155 3770005305950882 a001 1346269/64079*87403803^(3/19) 3770005305950882 a001 28657/3010349*87403803^(11/19) 3770005305950882 a001 1346269/64079*33385282^(1/6) 3770005305950884 a001 28657/3010349*33385282^(11/18) 3770005305950886 a001 1346269/64079*12752043^(3/17) 3770005305950897 a001 28657/3010349*12752043^(11/17) 3770005305950911 a001 1346269/64079*4870847^(3/16) 3770005305950991 a001 28657/3010349*4870847^(11/16) 3770005305951008 a001 9227465/64079*710647^(1/14) 3770005305951099 a001 1346269/64079*1860498^(1/5) 3770005305951243 a001 832040/64079*710647^(1/4) 3770005305951350 a001 28657/12752043*1860498^(5/6) 3770005305951398 a001 28657/7881196*1860498^(4/5) 3770005305951418 a001 28657/20633239*1860498^(13/15) 3770005305951442 a001 28657/33385282*1860498^(9/10) 3770005305951483 a001 28657/54018521*1860498^(14/15) 3770005305951555 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^39 3770005305951593 a001 3524578/64079*710647^(1/7) 3770005305951680 a001 28657/3010349*1860498^(11/15) 3770005305952481 a001 1346269/64079*710647^(3/14) 3770005305953312 a001 28657/1149851*20633239^(4/7) 3770005305953317 a001 28657/1149851*2537720636^(4/9) 3770005305953317 a001 28657/1149851*(1/2+1/2*5^(1/2))^20 3770005305953317 a001 28657/1149851*23725150497407^(5/16) 3770005305953317 a001 28657/1149851*505019158607^(5/14) 3770005305953317 a001 28657/1149851*73681302247^(5/13) 3770005305953317 a001 28657/1149851*28143753123^(2/5) 3770005305953317 a001 28657/1149851*10749957122^(5/12) 3770005305953317 a001 28657/1149851*4106118243^(10/23) 3770005305953317 a001 514229/64079*(1/2+1/2*5^(1/2))^8 3770005305953317 a001 514229/64079*23725150497407^(1/8) 3770005305953317 a001 514229/64079*505019158607^(1/7) 3770005305953317 a001 514229/64079*73681302247^(2/13) 3770005305953317 a001 514229/64079*10749957122^(1/6) 3770005305953317 a001 514229/64079*4106118243^(4/23) 3770005305953317 a001 514229/64079*1568397607^(2/11) 3770005305953317 a001 28657/1149851*1568397607^(5/11) 3770005305953317 a001 514229/64079*599074578^(4/21) 3770005305953317 a001 28657/1149851*599074578^(10/21) 3770005305953317 a001 514229/64079*228826127^(1/5) 3770005305953317 a001 28657/1149851*228826127^(1/2) 3770005305953317 a001 514229/64079*87403803^(4/19) 3770005305953317 a001 28657/1149851*87403803^(10/19) 3770005305953317 a001 14736260453/39088169 3770005305953318 a001 514229/64079*33385282^(2/9) 3770005305953319 a001 28657/1149851*33385282^(5/9) 3770005305953322 a001 514229/64079*12752043^(4/17) 3770005305953331 a001 28657/1149851*12752043^(10/17) 3770005305953357 a001 514229/64079*4870847^(1/4) 3770005305953416 a001 28657/1149851*4870847^(5/8) 3770005305953607 a001 514229/64079*1860498^(4/15) 3770005305954043 a001 28657/1149851*1860498^(2/3) 3770005305954410 a001 9227465/64079*271443^(1/13) 3770005305954975 a001 28657/1860498*710647^(3/4) 3770005305955450 a001 514229/64079*710647^(2/7) 3770005305956747 a001 28657/3010349*710647^(11/14) 3770005305956925 a001 28657/7881196*710647^(6/7) 3770005305956980 a001 28657/439204*439204^(2/3) 3770005305957406 a001 28657/20633239*710647^(13/14) 3770005305957931 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^37 3770005305958398 a001 3524578/64079*271443^(2/13) 3770005305958649 a001 28657/1149851*710647^(5/7) 3770005305962689 a001 1346269/64079*271443^(3/13) 3770005305964916 a001 1346269/271443*39603^(9/22) 3770005305965075 a001 14930352/64079*103682^(1/24) 3770005305969061 a001 514229/64079*271443^(4/13) 3770005305969976 a001 28657/439204*7881196^(6/11) 3770005305970007 a001 196418/64079*20633239^(2/7) 3770005305970009 a001 28657/439204*141422324^(6/13) 3770005305970009 a001 28657/439204*2537720636^(2/5) 3770005305970009 a001 28657/439204*45537549124^(6/17) 3770005305970009 a001 28657/439204*14662949395604^(2/7) 3770005305970009 a001 28657/439204*(1/2+1/2*5^(1/2))^18 3770005305970009 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^18/Lucas(27) 3770005305970009 a001 28657/439204*192900153618^(1/3) 3770005305970009 a001 28657/439204*10749957122^(3/8) 3770005305970009 a001 28657/439204*4106118243^(9/23) 3770005305970009 a001 196418/64079*2537720636^(2/9) 3770005305970009 a001 196418/64079*312119004989^(2/11) 3770005305970009 a001 196418/64079*(1/2+1/2*5^(1/2))^10 3770005305970009 a001 196418/64079*28143753123^(1/5) 3770005305970009 a001 196418/64079*10749957122^(5/24) 3770005305970009 a001 196418/64079*4106118243^(5/23) 3770005305970009 a001 196418/64079*1568397607^(5/22) 3770005305970009 a001 28657/439204*1568397607^(9/22) 3770005305970009 a001 196418/64079*599074578^(5/21) 3770005305970009 a001 28657/439204*599074578^(3/7) 3770005305970009 a001 196418/64079*228826127^(1/4) 3770005305970009 a001 28657/439204*228826127^(9/20) 3770005305970010 a001 196418/64079*87403803^(5/19) 3770005305970010 a001 28657/439204*87403803^(9/19) 3770005305970010 a001 196418/64079*33385282^(5/18) 3770005305970011 a001 28657/439204*33385282^(1/2) 3770005305970013 a001 165551489/439128 3770005305970016 a001 196418/64079*12752043^(5/17) 3770005305970022 a001 28657/439204*12752043^(9/17) 3770005305970059 a001 196418/64079*4870847^(5/16) 3770005305970099 a001 28657/439204*4870847^(9/16) 3770005305970372 a001 196418/64079*1860498^(1/3) 3770005305970663 a001 28657/439204*1860498^(3/5) 3770005305972676 a001 196418/64079*710647^(5/14) 3770005305974808 a001 28657/439204*710647^(9/14) 3770005305979699 a001 9227465/64079*103682^(1/12) 3770005305989689 a001 196418/64079*271443^(5/13) 3770005305990048 a001 39088169/167761*15127^(1/20) 3770005305992676 a001 28657/1149851*271443^(10/13) 3770005305994176 a001 28657/3010349*271443^(11/13) 3770005305994280 a001 5702887/64079*103682^(1/8) 3770005305997757 a001 28657/7881196*271443^(12/13) 3770005306001632 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^35 3770005306005432 a001 28657/439204*271443^(9/13) 3770005306008262 a001 3524578/710647*39603^(9/22) 3770005306008976 a001 3524578/64079*103682^(1/6) 3770005306014586 a001 9227465/1860498*39603^(9/22) 3770005306015509 a001 24157817/4870847*39603^(9/22) 3770005306015644 a001 63245986/12752043*39603^(9/22) 3770005306015663 a001 165580141/33385282*39603^(9/22) 3770005306015666 a001 433494437/87403803*39603^(9/22) 3770005306015666 a001 1134903170/228826127*39603^(9/22) 3770005306015667 a001 2971215073/599074578*39603^(9/22) 3770005306015667 a001 7778742049/1568397607*39603^(9/22) 3770005306015667 a001 20365011074/4106118243*39603^(9/22) 3770005306015667 a001 53316291173/10749957122*39603^(9/22) 3770005306015667 a001 139583862445/28143753123*39603^(9/22) 3770005306015667 a001 365435296162/73681302247*39603^(9/22) 3770005306015667 a001 956722026041/192900153618*39603^(9/22) 3770005306015667 a001 2504730781961/505019158607*39603^(9/22) 3770005306015667 a001 10610209857723/2139295485799*39603^(9/22) 3770005306015667 a001 4052739537881/817138163596*39603^(9/22) 3770005306015667 a001 140728068720/28374454999*39603^(9/22) 3770005306015667 a001 591286729879/119218851371*39603^(9/22) 3770005306015667 a001 225851433717/45537549124*39603^(9/22) 3770005306015667 a001 86267571272/17393796001*39603^(9/22) 3770005306015667 a001 32951280099/6643838879*39603^(9/22) 3770005306015667 a001 1144206275/230701876*39603^(9/22) 3770005306015667 a001 4807526976/969323029*39603^(9/22) 3770005306015667 a001 1836311903/370248451*39603^(9/22) 3770005306015667 a001 701408733/141422324*39603^(9/22) 3770005306015668 a001 267914296/54018521*39603^(9/22) 3770005306015675 a001 9303105/1875749*39603^(9/22) 3770005306015727 a001 39088169/7881196*39603^(9/22) 3770005306016079 a001 14930352/3010349*39603^(9/22) 3770005306018495 a001 5702887/1149851*39603^(9/22) 3770005306023369 a001 2178309/64079*103682^(5/24) 3770005306035051 a001 2178309/439204*39603^(9/22) 3770005306038557 a001 1346269/64079*103682^(1/4) 3770005306040777 a001 1346269/167761*39603^(4/11) 3770005306051664 a001 832040/64079*103682^(7/24) 3770005306059723 a001 14930352/64079*39603^(1/22) 3770005306060037 a001 121393/64079*103682^(11/24) 3770005306065284 a001 10946/167761*24476^(6/7) 3770005306070217 a001 514229/64079*103682^(1/3) 3770005306072672 a001 832040/271443*39603^(5/11) 3770005306074513 a001 317811/64079*103682^(3/8) 3770005306075735 a001 75025/64079*439204^(4/9) 3770005306084399 a001 75025/64079*7881196^(4/11) 3770005306084421 a001 75025/64079*141422324^(4/13) 3770005306084421 a001 28657/167761*(1/2+1/2*5^(1/2))^16 3770005306084421 a001 28657/167761*23725150497407^(1/4) 3770005306084421 a001 28657/167761*73681302247^(4/13) 3770005306084421 a001 28657/167761*10749957122^(1/3) 3770005306084421 a001 75025/64079*2537720636^(4/15) 3770005306084421 a001 28657/167761*4106118243^(8/23) 3770005306084421 a001 75025/64079*45537549124^(4/17) 3770005306084421 a001 75025/64079*817138163596^(4/19) 3770005306084421 a001 75025/64079*14662949395604^(4/21) 3770005306084421 a001 75025/64079*(1/2+1/2*5^(1/2))^12 3770005306084421 a001 75025/64079*192900153618^(2/9) 3770005306084421 a001 75025/64079*73681302247^(3/13) 3770005306084421 a001 75025/64079*10749957122^(1/4) 3770005306084421 a001 75025/64079*4106118243^(6/23) 3770005306084421 a001 28657/167761*1568397607^(4/11) 3770005306084421 a001 75025/64079*1568397607^(3/11) 3770005306084421 a001 75025/64079*599074578^(2/7) 3770005306084421 a001 28657/167761*599074578^(8/21) 3770005306084421 a001 75025/64079*228826127^(3/10) 3770005306084421 a001 28657/167761*228826127^(2/5) 3770005306084421 a001 75025/64079*87403803^(6/19) 3770005306084421 a001 28657/167761*87403803^(8/19) 3770005306084422 a001 75025/64079*33385282^(1/3) 3770005306084422 a001 28657/167761*33385282^(4/9) 3770005306084429 a001 75025/64079*12752043^(6/17) 3770005306084432 a001 28657/167761*12752043^(8/17) 3770005306084444 a001 2149991425/5702887 3770005306084481 a001 75025/64079*4870847^(3/8) 3770005306084500 a001 28657/167761*4870847^(1/2) 3770005306084857 a001 75025/64079*1860498^(2/5) 3770005306085002 a001 28657/167761*1860498^(8/15) 3770005306087620 a001 75025/64079*710647^(3/7) 3770005306088687 a001 28657/167761*710647^(4/7) 3770005306108036 a001 75025/64079*271443^(6/13) 3770005306115908 a001 28657/167761*271443^(8/13) 3770005306116134 a001 196418/64079*103682^(5/12) 3770005306117303 a001 311187/101521*39603^(5/11) 3770005306123815 a001 5702887/1860498*39603^(5/11) 3770005306124765 a001 14930352/4870847*39603^(5/11) 3770005306124903 a001 39088169/12752043*39603^(5/11) 3770005306124924 a001 14619165/4769326*39603^(5/11) 3770005306124927 a001 267914296/87403803*39603^(5/11) 3770005306124927 a001 701408733/228826127*39603^(5/11) 3770005306124927 a001 1836311903/599074578*39603^(5/11) 3770005306124927 a001 686789568/224056801*39603^(5/11) 3770005306124927 a001 12586269025/4106118243*39603^(5/11) 3770005306124927 a001 32951280099/10749957122*39603^(5/11) 3770005306124927 a001 86267571272/28143753123*39603^(5/11) 3770005306124927 a001 32264490531/10525900321*39603^(5/11) 3770005306124927 a001 591286729879/192900153618*39603^(5/11) 3770005306124927 a001 1548008755920/505019158607*39603^(5/11) 3770005306124927 a001 1515744265389/494493258286*39603^(5/11) 3770005306124927 a001 2504730781961/817138163596*39603^(5/11) 3770005306124927 a001 956722026041/312119004989*39603^(5/11) 3770005306124927 a001 365435296162/119218851371*39603^(5/11) 3770005306124927 a001 139583862445/45537549124*39603^(5/11) 3770005306124927 a001 53316291173/17393796001*39603^(5/11) 3770005306124927 a001 20365011074/6643838879*39603^(5/11) 3770005306124927 a001 7778742049/2537720636*39603^(5/11) 3770005306124927 a001 2971215073/969323029*39603^(5/11) 3770005306124927 a001 1134903170/370248451*39603^(5/11) 3770005306124927 a001 433494437/141422324*39603^(5/11) 3770005306124928 a001 165580141/54018521*39603^(5/11) 3770005306124936 a001 63245986/20633239*39603^(5/11) 3770005306124989 a001 24157817/7881196*39603^(5/11) 3770005306125352 a001 9227465/3010349*39603^(5/11) 3770005306127839 a001 3524578/1149851*39603^(5/11) 3770005306144887 a001 1346269/439204*39603^(5/11) 3770005306147711 a001 28657/271443*103682^(17/24) 3770005306148533 a001 75640/15251*39603^(9/22) 3770005306168995 a001 9227465/64079*39603^(1/11) 3770005306185873 a001 514229/271443*39603^(1/2) 3770005306220638 a001 28657/710647*103682^(19/24) 3770005306227138 a001 1346269/710647*39603^(1/2) 3770005306233034 a001 28657/439204*103682^(3/4) 3770005306233159 a001 1762289/930249*39603^(1/2) 3770005306234037 a001 9227465/4870847*39603^(1/2) 3770005306234166 a001 24157817/12752043*39603^(1/2) 3770005306234184 a001 31622993/16692641*39603^(1/2) 3770005306234187 a001 165580141/87403803*39603^(1/2) 3770005306234187 a001 433494437/228826127*39603^(1/2) 3770005306234187 a001 567451585/299537289*39603^(1/2) 3770005306234188 a001 2971215073/1568397607*39603^(1/2) 3770005306234188 a001 7778742049/4106118243*39603^(1/2) 3770005306234188 a001 10182505537/5374978561*39603^(1/2) 3770005306234188 a001 53316291173/28143753123*39603^(1/2) 3770005306234188 a001 139583862445/73681302247*39603^(1/2) 3770005306234188 a001 182717648081/96450076809*39603^(1/2) 3770005306234188 a001 956722026041/505019158607*39603^(1/2) 3770005306234188 a001 10610209857723/5600748293801*39603^(1/2) 3770005306234188 a001 591286729879/312119004989*39603^(1/2) 3770005306234188 a001 225851433717/119218851371*39603^(1/2) 3770005306234188 a001 21566892818/11384387281*39603^(1/2) 3770005306234188 a001 32951280099/17393796001*39603^(1/2) 3770005306234188 a001 12586269025/6643838879*39603^(1/2) 3770005306234188 a001 1201881744/634430159*39603^(1/2) 3770005306234188 a001 1836311903/969323029*39603^(1/2) 3770005306234188 a001 701408733/370248451*39603^(1/2) 3770005306234188 a001 66978574/35355581*39603^(1/2) 3770005306234189 a001 102334155/54018521*39603^(1/2) 3770005306234196 a001 39088169/20633239*39603^(1/2) 3770005306234245 a001 3732588/1970299*39603^(1/2) 3770005306234580 a001 5702887/3010349*39603^(1/2) 3770005306235964 a001 75025/103682*39603^(13/22) 3770005306236880 a001 2178309/1149851*39603^(1/2) 3770005306245567 a001 28657/1149851*103682^(5/6) 3770005306252642 a001 208010/109801*39603^(1/2) 3770005306256239 a001 28657/1860498*103682^(7/8) 3770005306259771 a001 75025/64079*103682^(1/2) 3770005306261734 a001 514229/167761*39603^(5/11) 3770005306272356 a001 28657/3010349*103682^(11/12) 3770005306278224 a001 5702887/64079*39603^(3/22) 3770005306284817 a001 105937/90481*39603^(6/11) 3770005306286394 a001 28657/4870847*103682^(23/24) 3770005306301165 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^33 3770005306309739 a001 28657/64079*64079^(14/23) 3770005306318221 a001 28657/167761*103682^(2/3) 3770005306329161 a001 7465176/51841*15127^(1/10) 3770005306334894 a001 832040/710647*39603^(6/11) 3770005306342200 a001 726103/620166*39603^(6/11) 3770005306343266 a001 5702887/4870847*39603^(6/11) 3770005306343421 a001 4976784/4250681*39603^(6/11) 3770005306343444 a001 39088169/33385282*39603^(6/11) 3770005306343447 a001 34111385/29134601*39603^(6/11) 3770005306343448 a001 267914296/228826127*39603^(6/11) 3770005306343448 a001 233802911/199691526*39603^(6/11) 3770005306343448 a001 1836311903/1568397607*39603^(6/11) 3770005306343448 a001 1602508992/1368706081*39603^(6/11) 3770005306343448 a001 12586269025/10749957122*39603^(6/11) 3770005306343448 a001 10983760033/9381251041*39603^(6/11) 3770005306343448 a001 86267571272/73681302247*39603^(6/11) 3770005306343448 a001 75283811239/64300051206*39603^(6/11) 3770005306343448 a001 2504730781961/2139295485799*39603^(6/11) 3770005306343448 a001 365435296162/312119004989*39603^(6/11) 3770005306343448 a001 139583862445/119218851371*39603^(6/11) 3770005306343448 a001 53316291173/45537549124*39603^(6/11) 3770005306343448 a001 20365011074/17393796001*39603^(6/11) 3770005306343448 a001 7778742049/6643838879*39603^(6/11) 3770005306343448 a001 2971215073/2537720636*39603^(6/11) 3770005306343448 a001 1134903170/969323029*39603^(6/11) 3770005306343448 a001 433494437/370248451*39603^(6/11) 3770005306343448 a001 165580141/141422324*39603^(6/11) 3770005306343449 a001 63245986/54018521*39603^(6/11) 3770005306343458 a001 24157817/20633239*39603^(6/11) 3770005306343518 a001 9227465/7881196*39603^(6/11) 3770005306343925 a001 3524578/3010349*39603^(6/11) 3770005306346715 a001 1346269/1149851*39603^(6/11) 3770005306360678 a001 317811/167761*39603^(1/2) 3770005306365843 a001 514229/439204*39603^(6/11) 3770005306378624 a001 15456/90481*39603^(8/11) 3770005306387568 a001 3524578/64079*39603^(2/11) 3770005306421086 a001 196418/271443*39603^(13/22) 3770005306448095 a001 514229/710647*39603^(13/22) 3770005306452035 a001 1346269/1860498*39603^(13/22) 3770005306452610 a001 3524578/4870847*39603^(13/22) 3770005306452694 a001 9227465/12752043*39603^(13/22) 3770005306452706 a001 24157817/33385282*39603^(13/22) 3770005306452708 a001 63245986/87403803*39603^(13/22) 3770005306452708 a001 165580141/228826127*39603^(13/22) 3770005306452708 a001 433494437/599074578*39603^(13/22) 3770005306452708 a001 1134903170/1568397607*39603^(13/22) 3770005306452708 a001 2971215073/4106118243*39603^(13/22) 3770005306452708 a001 7778742049/10749957122*39603^(13/22) 3770005306452708 a001 20365011074/28143753123*39603^(13/22) 3770005306452708 a001 53316291173/73681302247*39603^(13/22) 3770005306452708 a001 139583862445/192900153618*39603^(13/22) 3770005306452708 a001 365435296162/505019158607*39603^(13/22) 3770005306452708 a001 10610209857723/14662949395604*39603^(13/22) 3770005306452708 a001 225851433717/312119004989*39603^(13/22) 3770005306452708 a001 86267571272/119218851371*39603^(13/22) 3770005306452708 a001 32951280099/45537549124*39603^(13/22) 3770005306452708 a001 12586269025/17393796001*39603^(13/22) 3770005306452708 a001 4807526976/6643838879*39603^(13/22) 3770005306452708 a001 1836311903/2537720636*39603^(13/22) 3770005306452708 a001 701408733/969323029*39603^(13/22) 3770005306452708 a001 267914296/370248451*39603^(13/22) 3770005306452709 a001 102334155/141422324*39603^(13/22) 3770005306452709 a001 39088169/54018521*39603^(13/22) 3770005306452714 a001 14930352/20633239*39603^(13/22) 3770005306452746 a001 5702887/7881196*39603^(13/22) 3770005306452966 a001 2178309/3010349*39603^(13/22) 3770005306454471 a001 832040/1149851*39603^(13/22) 3770005306454485 a001 46368/167761*39603^(15/22) 3770005306459636 a001 121393/271443*39603^(7/11) 3770005306464787 a001 317811/439204*39603^(13/22) 3770005306496609 a001 2178309/64079*39603^(5/22) 3770005306496947 a001 196418/167761*39603^(6/11) 3770005306535497 a001 121393/167761*39603^(13/22) 3770005306547039 a001 317811/710647*39603^(7/11) 3770005306558595 a001 11592/109801*39603^(17/22) 3770005306559791 a001 416020/930249*39603^(7/11) 3770005306561651 a001 2178309/4870847*39603^(7/11) 3770005306561923 a001 5702887/12752043*39603^(7/11) 3770005306561962 a001 7465176/16692641*39603^(7/11) 3770005306561968 a001 39088169/87403803*39603^(7/11) 3770005306561969 a001 102334155/228826127*39603^(7/11) 3770005306561969 a001 133957148/299537289*39603^(7/11) 3770005306561969 a001 701408733/1568397607*39603^(7/11) 3770005306561969 a001 1836311903/4106118243*39603^(7/11) 3770005306561969 a001 2403763488/5374978561*39603^(7/11) 3770005306561969 a001 12586269025/28143753123*39603^(7/11) 3770005306561969 a001 32951280099/73681302247*39603^(7/11) 3770005306561969 a001 43133785636/96450076809*39603^(7/11) 3770005306561969 a001 225851433717/505019158607*39603^(7/11) 3770005306561969 a001 591286729879/1322157322203*39603^(7/11) 3770005306561969 a001 10610209857723/23725150497407*39603^(7/11) 3770005306561969 a001 182717648081/408569081798*39603^(7/11) 3770005306561969 a001 139583862445/312119004989*39603^(7/11) 3770005306561969 a001 53316291173/119218851371*39603^(7/11) 3770005306561969 a001 10182505537/22768774562*39603^(7/11) 3770005306561969 a001 7778742049/17393796001*39603^(7/11) 3770005306561969 a001 2971215073/6643838879*39603^(7/11) 3770005306561969 a001 567451585/1268860318*39603^(7/11) 3770005306561969 a001 433494437/969323029*39603^(7/11) 3770005306561969 a001 165580141/370248451*39603^(7/11) 3770005306561969 a001 31622993/70711162*39603^(7/11) 3770005306561972 a001 24157817/54018521*39603^(7/11) 3770005306561987 a001 9227465/20633239*39603^(7/11) 3770005306562090 a001 1762289/3940598*39603^(7/11) 3770005306562801 a001 1346269/3010349*39603^(7/11) 3770005306567672 a001 514229/1149851*39603^(7/11) 3770005306601057 a001 98209/219602*39603^(7/11) 3770005306606445 a001 1346269/64079*39603^(3/11) 3770005306628697 a001 39088169/271443*15127^(1/10) 3770005306639607 a001 121393/439204*39603^(15/22) 3770005306640846 a001 6624/101521*39603^(9/11) 3770005306666616 a001 317811/1149851*39603^(15/22) 3770005306670556 a001 832040/3010349*39603^(15/22) 3770005306671131 a001 2178309/7881196*39603^(15/22) 3770005306671215 a001 5702887/20633239*39603^(15/22) 3770005306671227 a001 14930352/54018521*39603^(15/22) 3770005306671229 a001 39088169/141422324*39603^(15/22) 3770005306671229 a001 102334155/370248451*39603^(15/22) 3770005306671229 a001 267914296/969323029*39603^(15/22) 3770005306671229 a001 701408733/2537720636*39603^(15/22) 3770005306671229 a001 1836311903/6643838879*39603^(15/22) 3770005306671229 a001 4807526976/17393796001*39603^(15/22) 3770005306671229 a001 12586269025/45537549124*39603^(15/22) 3770005306671229 a001 32951280099/119218851371*39603^(15/22) 3770005306671229 a001 86267571272/312119004989*39603^(15/22) 3770005306671229 a001 225851433717/817138163596*39603^(15/22) 3770005306671229 a001 1548008755920/5600748293801*39603^(15/22) 3770005306671229 a001 139583862445/505019158607*39603^(15/22) 3770005306671229 a001 53316291173/192900153618*39603^(15/22) 3770005306671229 a001 20365011074/73681302247*39603^(15/22) 3770005306671229 a001 7778742049/28143753123*39603^(15/22) 3770005306671229 a001 2971215073/10749957122*39603^(15/22) 3770005306671229 a001 1134903170/4106118243*39603^(15/22) 3770005306671229 a001 433494437/1568397607*39603^(15/22) 3770005306671229 a001 165580141/599074578*39603^(15/22) 3770005306671230 a001 63245986/228826127*39603^(15/22) 3770005306671230 a001 24157817/87403803*39603^(15/22) 3770005306671235 a001 9227465/33385282*39603^(15/22) 3770005306671267 a001 3524578/12752043*39603^(15/22) 3770005306671487 a001 1346269/4870847*39603^(15/22) 3770005306672399 a001 14619165/101521*15127^(1/10) 3770005306672992 a001 514229/1860498*39603^(15/22) 3770005306678775 a001 133957148/930249*15127^(1/10) 3770005306679705 a001 701408733/4870847*15127^(1/10) 3770005306679840 a001 1836311903/12752043*15127^(1/10) 3770005306679860 a001 14930208/103681*15127^(1/10) 3770005306679863 a001 12586269025/87403803*15127^(1/10) 3770005306679864 a001 32951280099/228826127*15127^(1/10) 3770005306679864 a001 43133785636/299537289*15127^(1/10) 3770005306679864 a001 32264490531/224056801*15127^(1/10) 3770005306679864 a001 591286729879/4106118243*15127^(1/10) 3770005306679864 a001 774004377960/5374978561*15127^(1/10) 3770005306679864 a001 4052739537881/28143753123*15127^(1/10) 3770005306679864 a001 1515744265389/10525900321*15127^(1/10) 3770005306679864 a001 3278735159921/22768774562*15127^(1/10) 3770005306679864 a001 2504730781961/17393796001*15127^(1/10) 3770005306679864 a001 956722026041/6643838879*15127^(1/10) 3770005306679864 a001 182717648081/1268860318*15127^(1/10) 3770005306679864 a001 139583862445/969323029*15127^(1/10) 3770005306679864 a001 53316291173/370248451*15127^(1/10) 3770005306679864 a001 10182505537/70711162*15127^(1/10) 3770005306679865 a001 7778742049/54018521*15127^(1/10) 3770005306679873 a001 2971215073/20633239*15127^(1/10) 3770005306679924 a001 567451585/3940598*15127^(1/10) 3770005306680280 a001 433494437/3010349*15127^(1/10) 3770005306682715 a001 165580141/1149851*15127^(1/10) 3770005306683308 a001 196418/710647*39603^(15/22) 3770005306699408 a001 31622993/219602*15127^(1/10) 3770005306714200 a001 832040/64079*39603^(7/22) 3770005306721858 a001 121393/710647*39603^(8/11) 3770005306747861 a001 1346269/39603*15127^(1/4) 3770005306754018 a001 75025/271443*39603^(15/22) 3770005306760423 a001 46368/1149851*39603^(19/22) 3770005306771936 a001 105937/620166*39603^(8/11) 3770005306774233 a001 14930352/64079*15127^(1/20) 3770005306779242 a001 832040/4870847*39603^(8/11) 3770005306780308 a001 726103/4250681*39603^(8/11) 3770005306780463 a001 5702887/33385282*39603^(8/11) 3770005306780486 a001 4976784/29134601*39603^(8/11) 3770005306780489 a001 39088169/228826127*39603^(8/11) 3770005306780490 a001 34111385/199691526*39603^(8/11) 3770005306780490 a001 267914296/1568397607*39603^(8/11) 3770005306780490 a001 233802911/1368706081*39603^(8/11) 3770005306780490 a001 1836311903/10749957122*39603^(8/11) 3770005306780490 a001 1602508992/9381251041*39603^(8/11) 3770005306780490 a001 12586269025/73681302247*39603^(8/11) 3770005306780490 a001 10983760033/64300051206*39603^(8/11) 3770005306780490 a001 86267571272/505019158607*39603^(8/11) 3770005306780490 a001 75283811239/440719107401*39603^(8/11) 3770005306780490 a001 2504730781961/14662949395604*39603^(8/11) 3770005306780490 a001 139583862445/817138163596*39603^(8/11) 3770005306780490 a001 53316291173/312119004989*39603^(8/11) 3770005306780490 a001 20365011074/119218851371*39603^(8/11) 3770005306780490 a001 7778742049/45537549124*39603^(8/11) 3770005306780490 a001 2971215073/17393796001*39603^(8/11) 3770005306780490 a001 1134903170/6643838879*39603^(8/11) 3770005306780490 a001 433494437/2537720636*39603^(8/11) 3770005306780490 a001 165580141/969323029*39603^(8/11) 3770005306780490 a001 63245986/370248451*39603^(8/11) 3770005306780491 a001 24157817/141422324*39603^(8/11) 3770005306780500 a001 9227465/54018521*39603^(8/11) 3770005306780559 a001 3524578/20633239*39603^(8/11) 3770005306780967 a001 1346269/7881196*39603^(8/11) 3770005306783757 a001 514229/3010349*39603^(8/11) 3770005306785095 a001 1762289/12238*9349^(2/19) 3770005306802885 a001 196418/1149851*39603^(8/11) 3770005306813820 a001 24157817/167761*15127^(1/10) 3770005306827401 a001 514229/64079*39603^(4/11) 3770005306829880 a001 75025/167761*39603^(7/11) 3770005306841435 a001 121393/1149851*39603^(17/22) 3770005306865743 a001 2576/103361*39603^(10/11) 3770005306868605 a001 28657/64079*20633239^(2/5) 3770005306868609 a001 28657/64079*17393796001^(2/7) 3770005306868609 a001 28657/64079*14662949395604^(2/9) 3770005306868609 a001 28657/64079*(1/2+1/2*5^(1/2))^14 3770005306868609 a001 28657/64079*10749957122^(7/24) 3770005306868609 a001 28657/64079*4106118243^(7/23) 3770005306868609 a001 28657/64079*1568397607^(7/22) 3770005306868609 a001 28657/64079*599074578^(1/3) 3770005306868609 a001 28657/64079*228826127^(7/20) 3770005306868609 a001 28657/64079*87403803^(7/19) 3770005306868610 a001 28657/64079*33385282^(7/18) 3770005306868619 a001 28657/64079*12752043^(7/17) 3770005306868679 a001 28657/64079*4870847^(7/16) 3770005306868768 a001 821223649/2178309 3770005306869117 a001 28657/64079*1860498^(7/15) 3770005306872342 a001 28657/64079*710647^(1/2) 3770005306882701 a001 317811/3010349*39603^(17/22) 3770005306888722 a001 208010/1970299*39603^(17/22) 3770005306889600 a001 2178309/20633239*39603^(17/22) 3770005306889729 a001 5702887/54018521*39603^(17/22) 3770005306889747 a001 3732588/35355581*39603^(17/22) 3770005306889750 a001 39088169/370248451*39603^(17/22) 3770005306889750 a001 102334155/969323029*39603^(17/22) 3770005306889750 a001 66978574/634430159*39603^(17/22) 3770005306889750 a001 701408733/6643838879*39603^(17/22) 3770005306889750 a001 1836311903/17393796001*39603^(17/22) 3770005306889750 a001 1201881744/11384387281*39603^(17/22) 3770005306889750 a001 12586269025/119218851371*39603^(17/22) 3770005306889750 a001 32951280099/312119004989*39603^(17/22) 3770005306889750 a001 21566892818/204284540899*39603^(17/22) 3770005306889750 a001 225851433717/2139295485799*39603^(17/22) 3770005306889750 a001 182717648081/1730726404001*39603^(17/22) 3770005306889750 a001 139583862445/1322157322203*39603^(17/22) 3770005306889750 a001 53316291173/505019158607*39603^(17/22) 3770005306889750 a001 10182505537/96450076809*39603^(17/22) 3770005306889750 a001 7778742049/73681302247*39603^(17/22) 3770005306889750 a001 2971215073/28143753123*39603^(17/22) 3770005306889750 a001 567451585/5374978561*39603^(17/22) 3770005306889750 a001 433494437/4106118243*39603^(17/22) 3770005306889750 a001 165580141/1568397607*39603^(17/22) 3770005306889751 a001 31622993/299537289*39603^(17/22) 3770005306889752 a001 24157817/228826127*39603^(17/22) 3770005306889759 a001 9227465/87403803*39603^(17/22) 3770005306889808 a001 1762289/16692641*39603^(17/22) 3770005306890143 a001 1346269/12752043*39603^(17/22) 3770005306892443 a001 514229/4870847*39603^(17/22) 3770005306896160 a001 28657/64079*271443^(7/13) 3770005306908205 a001 98209/930249*39603^(17/22) 3770005306926345 a001 317811/64079*39603^(9/22) 3770005306933989 a001 75025/439204*39603^(8/11) 3770005306946755 a001 121393/1860498*39603^(9/11) 3770005306976509 a001 46368/3010349*39603^(21/22) 3770005306991387 a001 317811/4870847*39603^(9/11) 3770005306997899 a001 832040/12752043*39603^(9/11) 3770005306998849 a001 311187/4769326*39603^(9/11) 3770005306998987 a001 5702887/87403803*39603^(9/11) 3770005306999007 a001 14930352/228826127*39603^(9/11) 3770005306999010 a001 39088169/599074578*39603^(9/11) 3770005306999011 a001 14619165/224056801*39603^(9/11) 3770005306999011 a001 267914296/4106118243*39603^(9/11) 3770005306999011 a001 701408733/10749957122*39603^(9/11) 3770005306999011 a001 1836311903/28143753123*39603^(9/11) 3770005306999011 a001 686789568/10525900321*39603^(9/11) 3770005306999011 a001 12586269025/192900153618*39603^(9/11) 3770005306999011 a001 32951280099/505019158607*39603^(9/11) 3770005306999011 a001 86267571272/1322157322203*39603^(9/11) 3770005306999011 a001 32264490531/494493258286*39603^(9/11) 3770005306999011 a001 1548008755920/23725150497407*39603^(9/11) 3770005306999011 a001 365435296162/5600748293801*39603^(9/11) 3770005306999011 a001 139583862445/2139295485799*39603^(9/11) 3770005306999011 a001 53316291173/817138163596*39603^(9/11) 3770005306999011 a001 20365011074/312119004989*39603^(9/11) 3770005306999011 a001 7778742049/119218851371*39603^(9/11) 3770005306999011 a001 2971215073/45537549124*39603^(9/11) 3770005306999011 a001 1134903170/17393796001*39603^(9/11) 3770005306999011 a001 433494437/6643838879*39603^(9/11) 3770005306999011 a001 165580141/2537720636*39603^(9/11) 3770005306999011 a001 63245986/969323029*39603^(9/11) 3770005306999012 a001 24157817/370248451*39603^(9/11) 3770005306999020 a001 9227465/141422324*39603^(9/11) 3770005306999073 a001 3524578/54018521*39603^(9/11) 3770005306999436 a001 1346269/20633239*39603^(9/11) 3770005307001923 a001 514229/7881196*39603^(9/11) 3770005307016241 a001 75025/710647*39603^(17/22) 3770005307018971 a001 196418/3010349*39603^(9/11) 3770005307020152 a001 46368/64079*39603^(13/22) 3770005307057521 a001 121393/3010349*39603^(19/22) 3770005307062614 a001 196418/64079*39603^(5/11) 3770005307073184 a001 28657/64079*103682^(7/12) 3770005307085353 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^32 3770005307100867 a001 317811/7881196*39603^(19/22) 3770005307101165 a001 121393/64079*39603^(1/2) 3770005307107191 a001 75640/1875749*39603^(19/22) 3770005307108114 a001 2178309/54018521*39603^(19/22) 3770005307108248 a001 5702887/141422324*39603^(19/22) 3770005307108268 a001 14930352/370248451*39603^(19/22) 3770005307108271 a001 39088169/969323029*39603^(19/22) 3770005307108271 a001 9303105/230701876*39603^(19/22) 3770005307108271 a001 267914296/6643838879*39603^(19/22) 3770005307108271 a001 701408733/17393796001*39603^(19/22) 3770005307108271 a001 1836311903/45537549124*39603^(19/22) 3770005307108271 a001 4807526976/119218851371*39603^(19/22) 3770005307108271 a001 1144206275/28374454999*39603^(19/22) 3770005307108271 a001 32951280099/817138163596*39603^(19/22) 3770005307108271 a001 86267571272/2139295485799*39603^(19/22) 3770005307108271 a001 225851433717/5600748293801*39603^(19/22) 3770005307108271 a001 591286729879/14662949395604*39603^(19/22) 3770005307108271 a001 365435296162/9062201101803*39603^(19/22) 3770005307108271 a001 139583862445/3461452808002*39603^(19/22) 3770005307108271 a001 53316291173/1322157322203*39603^(19/22) 3770005307108271 a001 20365011074/505019158607*39603^(19/22) 3770005307108271 a001 7778742049/192900153618*39603^(19/22) 3770005307108271 a001 2971215073/73681302247*39603^(19/22) 3770005307108271 a001 1134903170/28143753123*39603^(19/22) 3770005307108271 a001 433494437/10749957122*39603^(19/22) 3770005307108271 a001 165580141/4106118243*39603^(19/22) 3770005307108272 a001 63245986/1568397607*39603^(19/22) 3770005307108273 a001 24157817/599074578*39603^(19/22) 3770005307108280 a001 9227465/228826127*39603^(19/22) 3770005307108332 a001 3524578/87403803*39603^(19/22) 3770005307108684 a001 1346269/33385282*39603^(19/22) 3770005307111100 a001 514229/12752043*39603^(19/22) 3770005307127656 a001 196418/4870847*39603^(19/22) 3770005307135818 a001 75025/1149851*39603^(9/11) 3770005307152944 a001 9227465/103682*15127^(3/20) 3770005307166207 a001 121393/4870847*39603^(10/11) 3770005307168928 a001 4181/39603*9349^(17/19) 3770005307206517 a001 6765/24476*15127^(3/4) 3770005307210044 a001 105937/4250681*39603^(10/11) 3770005307216439 a001 416020/16692641*39603^(10/11) 3770005307217372 a001 726103/29134601*39603^(10/11) 3770005307217509 a001 5702887/228826127*39603^(10/11) 3770005307217528 a001 829464/33281921*39603^(10/11) 3770005307217531 a001 39088169/1568397607*39603^(10/11) 3770005307217532 a001 34111385/1368706081*39603^(10/11) 3770005307217532 a001 133957148/5374978561*39603^(10/11) 3770005307217532 a001 233802911/9381251041*39603^(10/11) 3770005307217532 a001 1836311903/73681302247*39603^(10/11) 3770005307217532 a001 267084832/10716675201*39603^(10/11) 3770005307217532 a001 12586269025/505019158607*39603^(10/11) 3770005307217532 a001 10983760033/440719107401*39603^(10/11) 3770005307217532 a001 43133785636/1730726404001*39603^(10/11) 3770005307217532 a001 75283811239/3020733700601*39603^(10/11) 3770005307217532 a001 182717648081/7331474697802*39603^(10/11) 3770005307217532 a001 139583862445/5600748293801*39603^(10/11) 3770005307217532 a001 53316291173/2139295485799*39603^(10/11) 3770005307217532 a001 10182505537/408569081798*39603^(10/11) 3770005307217532 a001 7778742049/312119004989*39603^(10/11) 3770005307217532 a001 2971215073/119218851371*39603^(10/11) 3770005307217532 a001 567451585/22768774562*39603^(10/11) 3770005307217532 a001 433494437/17393796001*39603^(10/11) 3770005307217532 a001 165580141/6643838879*39603^(10/11) 3770005307217532 a001 31622993/1268860318*39603^(10/11) 3770005307217533 a001 24157817/969323029*39603^(10/11) 3770005307217541 a001 9227465/370248451*39603^(10/11) 3770005307217593 a001 1762289/70711162*39603^(10/11) 3770005307217949 a001 1346269/54018521*39603^(10/11) 3770005307220392 a001 514229/20633239*39603^(10/11) 3770005307237136 a001 98209/3940598*39603^(10/11) 3770005307238673 a001 28657/103682*39603^(15/22) 3770005307241138 a001 75025/1860498*39603^(19/22) 3770005307275687 a001 121393/7881196*39603^(21/22) 3770005307319336 a001 10959/711491*39603^(21/22) 3770005307325704 a001 832040/54018521*39603^(21/22) 3770005307326634 a001 2178309/141422324*39603^(21/22) 3770005307326769 a001 5702887/370248451*39603^(21/22) 3770005307326789 a001 14930352/969323029*39603^(21/22) 3770005307326792 a001 39088169/2537720636*39603^(21/22) 3770005307326792 a001 102334155/6643838879*39603^(21/22) 3770005307326792 a001 9238424/599786069*39603^(21/22) 3770005307326792 a001 701408733/45537549124*39603^(21/22) 3770005307326792 a001 1836311903/119218851371*39603^(21/22) 3770005307326792 a001 4807526976/312119004989*39603^(21/22) 3770005307326792 a001 12586269025/817138163596*39603^(21/22) 3770005307326792 a001 32951280099/2139295485799*39603^(21/22) 3770005307326792 a001 86267571272/5600748293801*39603^(21/22) 3770005307326792 a001 7787980473/505618944676*39603^(21/22) 3770005307326792 a001 365435296162/23725150497407*39603^(21/22) 3770005307326792 a001 139583862445/9062201101803*39603^(21/22) 3770005307326792 a001 53316291173/3461452808002*39603^(21/22) 3770005307326792 a001 20365011074/1322157322203*39603^(21/22) 3770005307326792 a001 7778742049/505019158607*39603^(21/22) 3770005307326792 a001 2971215073/192900153618*39603^(21/22) 3770005307326792 a001 1134903170/73681302247*39603^(21/22) 3770005307326792 a001 433494437/28143753123*39603^(21/22) 3770005307326792 a001 165580141/10749957122*39603^(21/22) 3770005307326793 a001 63245986/4106118243*39603^(21/22) 3770005307326794 a001 24157817/1568397607*39603^(21/22) 3770005307326801 a001 9227465/599074578*39603^(21/22) 3770005307326853 a001 3524578/228826127*39603^(21/22) 3770005307327208 a001 1346269/87403803*39603^(21/22) 3770005307329640 a001 514229/33385282*39603^(21/22) 3770005307346313 a001 196418/12752043*39603^(21/22) 3770005307351903 a001 75025/3010349*39603^(10/11) 3770005307378019 a001 1346269/15127*5778^(1/6) 3770005307384886 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^34 3770005307395547 a001 75025/64079*39603^(6/11) 3770005307428588 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^36 3770005307434964 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^38 3770005307435894 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^40 3770005307436030 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^42 3770005307436049 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^44 3770005307436052 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^46 3770005307436053 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^48 3770005307436053 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^50 3770005307436053 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^52 3770005307436053 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^54 3770005307436053 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^56 3770005307436053 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^58 3770005307436053 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^60 3770005307436053 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^62 3770005307436053 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^64 3770005307436053 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^66 3770005307436053 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^68 3770005307436053 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^70 3770005307436053 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^72 3770005307436053 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^74 3770005307436053 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^76 3770005307436053 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^78 3770005307436053 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^80 3770005307436053 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^82 3770005307436053 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^84 3770005307436053 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^86 3770005307436053 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^88 3770005307436053 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^90 3770005307436053 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^92 3770005307436053 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^94 3770005307436053 a004 Fibonacci(88)*Lucas(22)/(1/2+sqrt(5)/2)^96 3770005307436053 a004 Fibonacci(90)*Lucas(22)/(1/2+sqrt(5)/2)^98 3770005307436053 a004 Fibonacci(92)*Lucas(22)/(1/2+sqrt(5)/2)^100 3770005307436053 a004 Fibonacci(91)*Lucas(22)/(1/2+sqrt(5)/2)^99 3770005307436053 a004 Fibonacci(89)*Lucas(22)/(1/2+sqrt(5)/2)^97 3770005307436053 a004 Fibonacci(87)*Lucas(22)/(1/2+sqrt(5)/2)^95 3770005307436053 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^93 3770005307436053 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^91 3770005307436053 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^89 3770005307436053 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^87 3770005307436053 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^85 3770005307436053 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^83 3770005307436053 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^81 3770005307436053 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^79 3770005307436053 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^77 3770005307436053 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^75 3770005307436053 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^73 3770005307436053 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^71 3770005307436053 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^69 3770005307436053 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^67 3770005307436053 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^65 3770005307436053 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^63 3770005307436053 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^61 3770005307436053 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^59 3770005307436053 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^57 3770005307436053 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^55 3770005307436053 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^53 3770005307436053 a001 2/17711*(1/2+1/2*5^(1/2))^36 3770005307436053 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^51 3770005307436053 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^49 3770005307436053 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^47 3770005307436054 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^45 3770005307436062 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^43 3770005307436113 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^41 3770005307436469 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^39 3770005307438904 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^37 3770005307448810 a001 10946/64079*24476^(16/21) 3770005307452469 a001 24157817/271443*15127^(3/20) 3770005307455597 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^35 3770005307460589 a001 75025/4870847*39603^(21/22) 3770005307496170 a001 63245986/710647*15127^(3/20) 3770005307502545 a001 165580141/1860498*15127^(3/20) 3770005307503475 a001 433494437/4870847*15127^(3/20) 3770005307503611 a001 1134903170/12752043*15127^(3/20) 3770005307503631 a001 2971215073/33385282*15127^(3/20) 3770005307503634 a001 7778742049/87403803*15127^(3/20) 3770005307503634 a001 20365011074/228826127*15127^(3/20) 3770005307503634 a001 53316291173/599074578*15127^(3/20) 3770005307503634 a001 139583862445/1568397607*15127^(3/20) 3770005307503634 a001 365435296162/4106118243*15127^(3/20) 3770005307503634 a001 956722026041/10749957122*15127^(3/20) 3770005307503634 a001 2504730781961/28143753123*15127^(3/20) 3770005307503634 a001 6557470319842/73681302247*15127^(3/20) 3770005307503634 a001 10610209857723/119218851371*15127^(3/20) 3770005307503634 a001 4052739537881/45537549124*15127^(3/20) 3770005307503634 a001 1548008755920/17393796001*15127^(3/20) 3770005307503634 a001 591286729879/6643838879*15127^(3/20) 3770005307503634 a001 225851433717/2537720636*15127^(3/20) 3770005307503634 a001 86267571272/969323029*15127^(3/20) 3770005307503634 a001 32951280099/370248451*15127^(3/20) 3770005307503635 a001 12586269025/141422324*15127^(3/20) 3770005307503636 a001 4807526976/54018521*15127^(3/20) 3770005307503643 a001 1836311903/20633239*15127^(3/20) 3770005307503695 a001 3524667/39604*15127^(3/20) 3770005307504050 a001 267914296/3010349*15127^(3/20) 3770005307506486 a001 102334155/1149851*15127^(3/20) 3770005307523178 a001 39088169/439204*15127^(3/20) 3770005307570008 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^33 3770005307570127 a001 832040/39603*15127^(3/10) 3770005307598016 a001 9227465/64079*15127^(1/10) 3770005307637586 a001 14930352/167761*15127^(3/20) 3770005307678312 a001 11592/6119*24476^(11/21) 3770005307756727 a001 28657/271443*39603^(17/22) 3770005307832589 a001 28657/167761*39603^(8/11) 3770005307936698 a001 28657/439204*39603^(9/11) 3770005307976682 a001 5702887/103682*15127^(1/5) 3770005308018950 a001 28657/710647*39603^(19/22) 3770005308138527 a001 28657/1149851*39603^(10/11) 3770005308220633 a001 4181/64079*9349^(18/19) 3770005308243847 a001 28657/1860498*39603^(21/22) 3770005308276235 a001 4976784/90481*15127^(1/5) 3770005308319940 a001 39088169/710647*15127^(1/5) 3770005308322851 a001 10946/39603*64079^(15/23) 3770005308326316 a001 831985/15126*15127^(1/5) 3770005308327246 a001 267914296/4870847*15127^(1/5) 3770005308327382 a001 233802911/4250681*15127^(1/5) 3770005308327402 a001 1836311903/33385282*15127^(1/5) 3770005308327405 a001 1602508992/29134601*15127^(1/5) 3770005308327405 a001 12586269025/228826127*15127^(1/5) 3770005308327405 a001 10983760033/199691526*15127^(1/5) 3770005308327405 a001 86267571272/1568397607*15127^(1/5) 3770005308327405 a001 75283811239/1368706081*15127^(1/5) 3770005308327405 a001 591286729879/10749957122*15127^(1/5) 3770005308327405 a001 12585437040/228811001*15127^(1/5) 3770005308327405 a001 4052739537881/73681302247*15127^(1/5) 3770005308327405 a001 3536736619241/64300051206*15127^(1/5) 3770005308327405 a001 6557470319842/119218851371*15127^(1/5) 3770005308327405 a001 2504730781961/45537549124*15127^(1/5) 3770005308327405 a001 956722026041/17393796001*15127^(1/5) 3770005308327405 a001 365435296162/6643838879*15127^(1/5) 3770005308327405 a001 139583862445/2537720636*15127^(1/5) 3770005308327405 a001 53316291173/969323029*15127^(1/5) 3770005308327405 a001 20365011074/370248451*15127^(1/5) 3770005308327405 a001 7778742049/141422324*15127^(1/5) 3770005308327406 a001 2971215073/54018521*15127^(1/5) 3770005308327414 a001 1134903170/20633239*15127^(1/5) 3770005308327466 a001 433494437/7881196*15127^(1/5) 3770005308327821 a001 165580141/3010349*15127^(1/5) 3770005308330257 a001 63245986/1149851*15127^(1/5) 3770005308346950 a001 24157817/439204*15127^(1/5) 3770005308354196 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^31 3770005308397838 a001 514229/39603*15127^(7/20) 3770005308398256 a001 28657/64079*39603^(7/11) 3770005308402689 a001 17711/24476*64079^(13/23) 3770005308421755 a001 5702887/64079*15127^(3/20) 3770005308461369 a001 9227465/167761*15127^(1/5) 3770005308462636 a001 75025/24476*24476^(10/21) 3770005308577183 a001 121393/24476*24476^(3/7) 3770005308647486 a001 28657/24476*24476^(4/7) 3770005308800537 a001 1762289/51841*15127^(1/4) 3770005308841267 a001 10946/39603*167761^(3/5) 3770005308902165 a001 9227465/39603*5778^(1/18) 3770005308910782 a001 10946/39603*439204^(5/9) 3770005308918789 a001 193864606/514229 3770005308921612 a001 10946/39603*7881196^(5/11) 3770005308921636 a001 10946/39603*20633239^(3/7) 3770005308921640 a001 10946/39603*141422324^(5/13) 3770005308921640 a001 17711/24476*141422324^(1/3) 3770005308921640 a001 10946/39603*2537720636^(1/3) 3770005308921640 a001 10946/39603*45537549124^(5/17) 3770005308921640 a001 10946/39603*312119004989^(3/11) 3770005308921640 a001 10946/39603*14662949395604^(5/21) 3770005308921640 a001 10946/39603*(1/2+1/2*5^(1/2))^15 3770005308921640 a001 10946/39603*192900153618^(5/18) 3770005308921640 a001 10946/39603*28143753123^(3/10) 3770005308921640 a001 10946/39603*10749957122^(5/16) 3770005308921640 a001 10946/39603*599074578^(5/14) 3770005308921640 a001 17711/24476*(1/2+1/2*5^(1/2))^13 3770005308921640 a001 17711/24476*73681302247^(1/4) 3770005308921640 a001 10946/39603*228826127^(3/8) 3770005308921641 a001 10946/39603*33385282^(5/12) 3770005308922185 a001 10946/39603*1860498^(1/2) 3770005308947223 a001 17711/24476*271443^(1/2) 3770005308947563 a001 98209/12238*24476^(8/21) 3770005309055179 a001 5702887/24476*9349^(1/19) 3770005309100018 a001 9227465/271443*15127^(1/4) 3770005309111602 a001 17711/24476*103682^(13/24) 3770005309140827 a001 10946/39603*103682^(5/8) 3770005309143712 a001 24157817/710647*15127^(1/4) 3770005309150087 a001 31622993/930249*15127^(1/4) 3770005309151017 a001 165580141/4870847*15127^(1/4) 3770005309151153 a001 433494437/12752043*15127^(1/4) 3770005309151172 a001 567451585/16692641*15127^(1/4) 3770005309151175 a001 2971215073/87403803*15127^(1/4) 3770005309151176 a001 7778742049/228826127*15127^(1/4) 3770005309151176 a001 10182505537/299537289*15127^(1/4) 3770005309151176 a001 53316291173/1568397607*15127^(1/4) 3770005309151176 a001 139583862445/4106118243*15127^(1/4) 3770005309151176 a001 182717648081/5374978561*15127^(1/4) 3770005309151176 a001 956722026041/28143753123*15127^(1/4) 3770005309151176 a001 2504730781961/73681302247*15127^(1/4) 3770005309151176 a001 3278735159921/96450076809*15127^(1/4) 3770005309151176 a001 10610209857723/312119004989*15127^(1/4) 3770005309151176 a001 4052739537881/119218851371*15127^(1/4) 3770005309151176 a001 387002188980/11384387281*15127^(1/4) 3770005309151176 a001 591286729879/17393796001*15127^(1/4) 3770005309151176 a001 225851433717/6643838879*15127^(1/4) 3770005309151176 a001 1135099622/33391061*15127^(1/4) 3770005309151176 a001 32951280099/969323029*15127^(1/4) 3770005309151176 a001 12586269025/370248451*15127^(1/4) 3770005309151176 a001 1201881744/35355581*15127^(1/4) 3770005309151177 a001 1836311903/54018521*15127^(1/4) 3770005309151185 a001 701408733/20633239*15127^(1/4) 3770005309151237 a001 66978574/1970299*15127^(1/4) 3770005309151592 a001 102334155/3010349*15127^(1/4) 3770005309154027 a001 39088169/1149851*15127^(1/4) 3770005309170716 a001 196452/5779*15127^(1/4) 3770005309211292 a001 105937/13201*15127^(2/5) 3770005309220223 a001 10959/844*24476^(1/3) 3770005309245609 a001 3524578/64079*15127^(1/5) 3770005309285108 a001 5702887/167761*15127^(1/4) 3770005309530208 a001 514229/24476*24476^(2/7) 3770005309624088 a001 46347/2206*15127^(3/10) 3770005309825937 a001 208010/6119*24476^(5/21) 3770005309923757 a001 5702887/271443*15127^(3/10) 3770005309967478 a001 14930352/710647*15127^(3/10) 3770005309973857 a001 39088169/1860498*15127^(3/10) 3770005309974788 a001 102334155/4870847*15127^(3/10) 3770005309974923 a001 267914296/12752043*15127^(3/10) 3770005309974943 a001 701408733/33385282*15127^(3/10) 3770005309974946 a001 1836311903/87403803*15127^(3/10) 3770005309974947 a001 102287808/4868641*15127^(3/10) 3770005309974947 a001 12586269025/599074578*15127^(3/10) 3770005309974947 a001 32951280099/1568397607*15127^(3/10) 3770005309974947 a001 86267571272/4106118243*15127^(3/10) 3770005309974947 a001 225851433717/10749957122*15127^(3/10) 3770005309974947 a001 591286729879/28143753123*15127^(3/10) 3770005309974947 a001 1548008755920/73681302247*15127^(3/10) 3770005309974947 a001 4052739537881/192900153618*15127^(3/10) 3770005309974947 a001 225749145909/10745088481*15127^(3/10) 3770005309974947 a001 6557470319842/312119004989*15127^(3/10) 3770005309974947 a001 2504730781961/119218851371*15127^(3/10) 3770005309974947 a001 956722026041/45537549124*15127^(3/10) 3770005309974947 a001 365435296162/17393796001*15127^(3/10) 3770005309974947 a001 139583862445/6643838879*15127^(3/10) 3770005309974947 a001 53316291173/2537720636*15127^(3/10) 3770005309974947 a001 20365011074/969323029*15127^(3/10) 3770005309974947 a001 7778742049/370248451*15127^(3/10) 3770005309974947 a001 2971215073/141422324*15127^(3/10) 3770005309974948 a001 1134903170/54018521*15127^(3/10) 3770005309974955 a001 433494437/20633239*15127^(3/10) 3770005309975007 a001 165580141/7881196*15127^(3/10) 3770005309975363 a001 63245986/3010349*15127^(3/10) 3770005309977799 a001 24157817/1149851*15127^(3/10) 3770005309994499 a001 9227465/439204*15127^(3/10) 3770005310062072 a001 196418/39603*15127^(9/20) 3770005310069160 a001 2178309/64079*15127^(1/4) 3770005310108963 a001 3524578/167761*15127^(3/10) 3770005310127111 a001 1346269/24476*24476^(4/21) 3770005310296043 a001 5473/51841*64079^(17/23) 3770005310342026 a001 17711/24476*39603^(13/22) 3770005310407227 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^30 3770005310426205 a001 2178309/24476*24476^(1/7) 3770005310448434 a001 1346269/103682*15127^(7/20) 3770005310449998 a001 10946/1149851*64079^(22/23) 3770005310479601 a001 10946/710647*64079^(21/23) 3770005310515738 a001 10946/271443*64079^(19/23) 3770005310535559 a001 11592/6119*64079^(11/23) 3770005310546529 a001 5473/219602*64079^(20/23) 3770005310560547 a001 10946/39603*39603^(15/22) 3770005310726093 a001 1762289/12238*24476^(2/21) 3770005310740779 a001 10946/167761*64079^(18/23) 3770005310747612 a001 3524578/271443*15127^(7/20) 3770005310791261 a001 9227465/710647*15127^(7/20) 3770005310797629 a001 24157817/1860498*15127^(7/20) 3770005310798559 a001 63245986/4870847*15127^(7/20) 3770005310798694 a001 165580141/12752043*15127^(7/20) 3770005310798714 a001 433494437/33385282*15127^(7/20) 3770005310798717 a001 1134903170/87403803*15127^(7/20) 3770005310798717 a001 2971215073/228826127*15127^(7/20) 3770005310798717 a001 7778742049/599074578*15127^(7/20) 3770005310798717 a001 20365011074/1568397607*15127^(7/20) 3770005310798717 a001 53316291173/4106118243*15127^(7/20) 3770005310798717 a001 139583862445/10749957122*15127^(7/20) 3770005310798717 a001 365435296162/28143753123*15127^(7/20) 3770005310798717 a001 956722026041/73681302247*15127^(7/20) 3770005310798717 a001 2504730781961/192900153618*15127^(7/20) 3770005310798717 a001 10610209857723/817138163596*15127^(7/20) 3770005310798717 a001 4052739537881/312119004989*15127^(7/20) 3770005310798717 a001 1548008755920/119218851371*15127^(7/20) 3770005310798717 a001 591286729879/45537549124*15127^(7/20) 3770005310798717 a001 7787980473/599786069*15127^(7/20) 3770005310798717 a001 86267571272/6643838879*15127^(7/20) 3770005310798717 a001 32951280099/2537720636*15127^(7/20) 3770005310798717 a001 12586269025/969323029*15127^(7/20) 3770005310798717 a001 4807526976/370248451*15127^(7/20) 3770005310798717 a001 1836311903/141422324*15127^(7/20) 3770005310798719 a001 701408733/54018521*15127^(7/20) 3770005310798726 a001 9238424/711491*15127^(7/20) 3770005310798778 a001 102334155/7881196*15127^(7/20) 3770005310799133 a001 39088169/3010349*15127^(7/20) 3770005310801565 a001 14930352/1149851*15127^(7/20) 3770005310815133 a001 121393/39603*15127^(1/2) 3770005310818238 a001 5702887/439204*15127^(7/20) 3770005310893506 a001 1346269/64079*15127^(3/10) 3770005310914931 a001 121393/24476*64079^(9/23) 3770005310932514 a001 2178309/167761*15127^(7/20) 3770005310955189 a001 24157817/103682*5778^(1/18) 3770005310974255 a001 507544128/1346269 3770005310974651 a001 11592/6119*7881196^(1/3) 3770005310974671 a001 5473/51841*45537549124^(1/3) 3770005310974671 a001 5473/51841*(1/2+1/2*5^(1/2))^17 3770005310974671 a001 11592/6119*312119004989^(1/5) 3770005310974671 a001 11592/6119*(1/2+1/2*5^(1/2))^11 3770005310974671 a001 11592/6119*1568397607^(1/4) 3770005310974683 a001 5473/51841*12752043^(1/2) 3770005311025560 a001 98209/12238*64079^(8/23) 3770005311025678 a001 5702887/24476*24476^(1/21) 3770005311038471 a001 10959/844*64079^(7/23) 3770005311060133 a001 75025/24476*64079^(10/23) 3770005311088706 a001 514229/24476*64079^(6/23) 3770005311124685 a001 208010/6119*64079^(5/23) 3770005311135408 a001 11592/6119*103682^(11/24) 3770005311166110 a001 1346269/24476*64079^(4/23) 3770005311191415 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^32 3770005311205454 a001 2178309/24476*64079^(3/23) 3770005311223083 a001 5473/51841*103682^(17/24) 3770005311237750 a001 5473/219602*167761^(4/5) 3770005311245593 a001 1762289/12238*64079^(2/23) 3770005311254721 a001 63245986/271443*5778^(1/18) 3770005311267690 a001 121393/24476*439204^(1/3) 3770005311270699 a001 416020/51841*15127^(2/5) 3770005311274144 a001 664383889/1762289 3770005311274188 a001 121393/24476*7881196^(3/11) 3770005311274204 a001 121393/24476*141422324^(3/13) 3770005311274204 a001 10946/271443*817138163596^(1/3) 3770005311274204 a001 10946/271443*(1/2+1/2*5^(1/2))^19 3770005311274204 a001 121393/24476*2537720636^(1/5) 3770005311274204 a001 121393/24476*45537549124^(3/17) 3770005311274204 a001 121393/24476*817138163596^(3/19) 3770005311274204 a001 121393/24476*14662949395604^(1/7) 3770005311274204 a001 121393/24476*(1/2+1/2*5^(1/2))^9 3770005311274204 a001 121393/24476*192900153618^(1/6) 3770005311274204 a001 121393/24476*10749957122^(3/16) 3770005311274204 a001 121393/24476*599074578^(3/14) 3770005311274204 a001 10946/271443*87403803^(1/2) 3770005311274205 a001 121393/24476*33385282^(1/4) 3770005311274531 a001 121393/24476*1860498^(3/10) 3770005311285428 a001 5702887/24476*64079^(1/23) 3770005311297490 a001 208010/6119*167761^(1/5) 3770005311298422 a001 165580141/710647*5778^(1/18) 3770005311302705 a001 10946/710647*439204^(7/9) 3770005311304798 a001 433494437/1860498*5778^(1/18) 3770005311305728 a001 1134903170/4870847*5778^(1/18) 3770005311305827 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^34 3770005311305864 a001 2971215073/12752043*5778^(1/18) 3770005311305884 a001 7778742049/33385282*5778^(1/18) 3770005311305887 a001 20365011074/87403803*5778^(1/18) 3770005311305887 a001 53316291173/228826127*5778^(1/18) 3770005311305887 a001 139583862445/599074578*5778^(1/18) 3770005311305887 a001 365435296162/1568397607*5778^(1/18) 3770005311305887 a001 956722026041/4106118243*5778^(1/18) 3770005311305887 a001 2504730781961/10749957122*5778^(1/18) 3770005311305887 a001 6557470319842/28143753123*5778^(1/18) 3770005311305887 a001 10610209857723/45537549124*5778^(1/18) 3770005311305887 a001 4052739537881/17393796001*5778^(1/18) 3770005311305887 a001 1548008755920/6643838879*5778^(1/18) 3770005311305887 a001 591286729879/2537720636*5778^(1/18) 3770005311305887 a001 225851433717/969323029*5778^(1/18) 3770005311305887 a001 86267571272/370248451*5778^(1/18) 3770005311305887 a001 63246219/271444*5778^(1/18) 3770005311305888 a001 12586269025/54018521*5778^(1/18) 3770005311305896 a001 4807526976/20633239*5778^(1/18) 3770005311305948 a001 1836311903/7881196*5778^(1/18) 3770005311306303 a001 701408733/3010349*5778^(1/18) 3770005311308414 a001 10946/3010349*439204^(8/9) 3770005311308739 a001 267914296/1149851*5778^(1/18) 3770005311317867 a001 10946/710647*7881196^(7/11) 3770005311317897 a001 267596862/709805 3770005311317900 a001 10946/710647*20633239^(3/5) 3770005311317904 a001 10959/844*20633239^(1/5) 3770005311317905 a001 10946/710647*141422324^(7/13) 3770005311317906 a001 10946/710647*2537720636^(7/15) 3770005311317906 a001 10946/710647*17393796001^(3/7) 3770005311317906 a001 10946/710647*45537549124^(7/17) 3770005311317906 a001 10946/710647*14662949395604^(1/3) 3770005311317906 a001 10946/710647*(1/2+1/2*5^(1/2))^21 3770005311317906 a001 10946/710647*192900153618^(7/18) 3770005311317906 a001 10946/710647*10749957122^(7/16) 3770005311317906 a001 10946/710647*599074578^(1/2) 3770005311317906 a001 10959/844*17393796001^(1/7) 3770005311317906 a001 10959/844*14662949395604^(1/9) 3770005311317906 a001 10959/844*(1/2+1/2*5^(1/2))^7 3770005311317906 a001 10959/844*599074578^(1/6) 3770005311317907 a001 10946/710647*33385282^(7/12) 3770005311318668 a001 10946/710647*1860498^(7/10) 3770005311319772 a001 10959/844*710647^(1/4) 3770005311322519 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^36 3770005311323040 a001 2178309/24476*439204^(1/9) 3770005311323504 a001 10946/710647*710647^(3/4) 3770005311323879 a001 514229/24476*439204^(2/9) 3770005311324280 a001 9107509840/24157817 3770005311324280 a001 208010/6119*20633239^(1/7) 3770005311324281 a001 5473/930249*(1/2+1/2*5^(1/2))^23 3770005311324281 a001 5473/930249*4106118243^(1/2) 3770005311324281 a001 208010/6119*2537720636^(1/9) 3770005311324281 a001 208010/6119*312119004989^(1/11) 3770005311324281 a001 208010/6119*(1/2+1/2*5^(1/2))^5 3770005311324281 a001 208010/6119*28143753123^(1/10) 3770005311324281 a001 208010/6119*228826127^(1/8) 3770005311324463 a001 208010/6119*1860498^(1/6) 3770005311324955 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^38 3770005311325205 a001 10946/4870847*20633239^(5/7) 3770005311325206 a001 2178309/24476*7881196^(1/11) 3770005311325212 a001 11921885157/31622993 3770005311325212 a001 2178309/24476*141422324^(1/13) 3770005311325212 a001 10946/4870847*2537720636^(5/9) 3770005311325212 a001 10946/4870847*312119004989^(5/11) 3770005311325212 a001 10946/4870847*(1/2+1/2*5^(1/2))^25 3770005311325212 a001 10946/4870847*3461452808002^(5/12) 3770005311325212 a001 10946/4870847*28143753123^(1/2) 3770005311325212 a001 2178309/24476*2537720636^(1/15) 3770005311325212 a001 2178309/24476*45537549124^(1/17) 3770005311325212 a001 2178309/24476*14662949395604^(1/21) 3770005311325212 a001 2178309/24476*(1/2+1/2*5^(1/2))^3 3770005311325212 a001 2178309/24476*192900153618^(1/18) 3770005311325212 a001 2178309/24476*10749957122^(1/16) 3770005311325212 a001 2178309/24476*599074578^(1/14) 3770005311325212 a001 10946/4870847*228826127^(5/8) 3770005311325212 a001 2178309/24476*33385282^(1/12) 3770005311325298 a001 10946/12752043*7881196^(9/11) 3770005311325310 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^40 3770005311325317 a001 10946/54018521*7881196^(10/11) 3770005311325321 a001 2178309/24476*1860498^(1/10) 3770005311325347 a001 10946/12752043*141422324^(9/13) 3770005311325347 a001 62423801102/165580141 3770005311325347 a001 10946/12752043*2537720636^(3/5) 3770005311325347 a001 10946/12752043*45537549124^(9/17) 3770005311325347 a001 10946/12752043*14662949395604^(3/7) 3770005311325347 a001 10946/12752043*(1/2+1/2*5^(1/2))^27 3770005311325347 a001 10946/12752043*192900153618^(1/2) 3770005311325347 a001 10946/12752043*10749957122^(9/16) 3770005311325347 a001 10946/12752043*599074578^(9/14) 3770005311325347 a001 5702887/48952+5702887/48952*5^(1/2) 3770005311325350 a001 10946/12752043*33385282^(3/4) 3770005311325362 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^42 3770005311325364 a001 10946/54018521*20633239^(6/7) 3770005311325367 a001 163427632992/433494437 3770005311325367 a001 5473/16692641*(1/2+1/2*5^(1/2))^29 3770005311325367 a001 5473/16692641*1322157322203^(1/2) 3770005311325367 a004 Fibonacci(36)/Lucas(21)/(1/2+sqrt(5)/2) 3770005311325369 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^44 3770005311325370 a001 213929548937/567451585 3770005311325370 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^31/Lucas(38) 3770005311325370 a001 10946/87403803*9062201101803^(1/2) 3770005311325370 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2)^3 3770005311325370 a001 10946/228826127*141422324^(11/13) 3770005311325370 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^46 3770005311325370 a001 10946/969323029*141422324^(12/13) 3770005311325371 a001 10946/228826127*2537720636^(11/15) 3770005311325371 a001 1120149660630/2971215073 3770005311325371 a001 10946/228826127*45537549124^(11/17) 3770005311325371 a001 10946/228826127*312119004989^(3/5) 3770005311325371 a001 10946/228826127*817138163596^(11/19) 3770005311325371 a001 10946/228826127*14662949395604^(11/21) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(40) 3770005311325371 a001 10946/228826127*192900153618^(11/18) 3770005311325371 a001 10946/228826127*10749957122^(11/16) 3770005311325371 a001 10946/228826127*1568397607^(3/4) 3770005311325371 a001 10946/228826127*599074578^(11/14) 3770005311325371 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^5 3770005311325371 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^48 3770005311325371 a001 5473/299537289*2537720636^(7/9) 3770005311325371 a001 225583837232/598364773 3770005311325371 a001 5473/299537289*17393796001^(5/7) 3770005311325371 a001 5473/299537289*312119004989^(7/11) 3770005311325371 a001 5473/299537289*14662949395604^(5/9) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(42) 3770005311325371 a001 5473/299537289*505019158607^(5/8) 3770005311325371 a001 5473/299537289*28143753123^(7/10) 3770005311325371 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^50 3770005311325371 a001 5473/299537289*599074578^(5/6) 3770005311325371 a001 3838809995709/10182505537 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(44) 3770005311325371 a001 10946/4106118243*2537720636^(13/15) 3770005311325371 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^52 3770005311325371 a001 10946/17393796001*2537720636^(14/15) 3770005311325371 a001 10946/6643838879*2537720636^(8/9) 3770005311325371 a001 10946/4106118243*45537549124^(13/17) 3770005311325371 a001 20100270090238/53316291173 3770005311325371 a001 10946/4106118243*14662949395604^(13/21) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(46) 3770005311325371 a001 10946/4106118243*192900153618^(13/18) 3770005311325371 a001 10946/4106118243*73681302247^(3/4) 3770005311325371 a001 10946/4106118243*10749957122^(13/16) 3770005311325371 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^54 3770005311325371 a001 52623190279296/139583862445 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(48) 3770005311325371 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^56 3770005311325371 a001 68884650373825/182717648081 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(50) 3770005311325371 a001 10946/73681302247*45537549124^(15/17) 3770005311325371 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^58 3770005311325371 a001 10946/312119004989*45537549124^(16/17) 3770005311325371 a001 10946/73681302247*312119004989^(9/11) 3770005311325371 a001 10946/73681302247*14662949395604^(5/7) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(52) 3770005311325371 a001 10946/73681302247*192900153618^(5/6) 3770005311325371 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^60 3770005311325371 a001 944284835143312/2504730781961 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(54) 3770005311325371 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^62 3770005311325371 a001 5473/408569081798*312119004989^(10/11) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(56) 3770005311325371 a001 10946/1322157322203*817138163596^(17/19) 3770005311325371 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^64 3770005311325371 a001 10946/1322157322203*14662949395604^(17/21) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(58) 3770005311325371 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^66 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(60) 3770005311325371 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^68 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(62) 3770005311325371 a001 10946/23725150497407*14662949395604^(19/21) 3770005311325371 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^70 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(64) 3770005311325371 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^72 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(66) 3770005311325371 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^74 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(68) 3770005311325371 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^76 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(70) 3770005311325371 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^78 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(72) 3770005311325371 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^80 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(74) 3770005311325371 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^82 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(76) 3770005311325371 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^84 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(78) 3770005311325371 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^86 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(80) 3770005311325371 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^88 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(82) 3770005311325371 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^90 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(84) 3770005311325371 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^92 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(86) 3770005311325371 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^94 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(88) 3770005311325371 a004 Fibonacci(21)*Lucas(89)/(1/2+sqrt(5)/2)^96 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(90) 3770005311325371 a004 Fibonacci(21)*Lucas(91)/(1/2+sqrt(5)/2)^98 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(92) 3770005311325371 a004 Fibonacci(21)*Lucas(93)/(1/2+sqrt(5)/2)^100 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(94) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^89/Lucas(96) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^91/Lucas(98) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^92/Lucas(99) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^93/Lucas(100) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^90/Lucas(97) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^88/Lucas(95) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(93) 3770005311325371 a004 Fibonacci(21)*Lucas(92)/(1/2+sqrt(5)/2)^99 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(91) 3770005311325371 a004 Fibonacci(21)*Lucas(90)/(1/2+sqrt(5)/2)^97 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(89) 3770005311325371 a004 Fibonacci(21)*Lucas(88)/(1/2+sqrt(5)/2)^95 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(87) 3770005311325371 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^93 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(85) 3770005311325371 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^91 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(83) 3770005311325371 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^89 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(81) 3770005311325371 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^87 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(79) 3770005311325371 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^85 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(77) 3770005311325371 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^83 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(75) 3770005311325371 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^81 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(73) 3770005311325371 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^79 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(71) 3770005311325371 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^77 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(69) 3770005311325371 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^75 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(67) 3770005311325371 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^73 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(65) 3770005311325371 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^71 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(63) 3770005311325371 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^69 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(61) 3770005311325371 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^67 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(59) 3770005311325371 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^65 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(57) 3770005311325371 a001 10946/2139295485799*505019158607^(13/14) 3770005311325371 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^63 3770005311325371 a001 10946/312119004989*14662949395604^(16/21) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(55) 3770005311325371 a001 1527884958322970/4052739537881 3770005311325371 a001 10946/1322157322203*192900153618^(17/18) 3770005311325371 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^61 3770005311325371 a001 10946/312119004989*192900153618^(8/9) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(53) 3770005311325371 a001 291800061589829/774004377960 3770005311325371 a001 10946/312119004989*73681302247^(12/13) 3770005311325371 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^59 3770005311325371 a001 10946/17393796001*17393796001^(6/7) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(51) 3770005311325371 a001 5473/22768774562*23725150497407^(11/16) 3770005311325371 a001 222915411216004/591286729879 3770005311325371 a001 5473/22768774562*73681302247^(11/13) 3770005311325371 a001 10946/73681302247*28143753123^(9/10) 3770005311325371 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^57 3770005311325371 a001 10946/17393796001*45537549124^(14/17) 3770005311325371 a001 10946/17393796001*817138163596^(14/19) 3770005311325371 a001 10946/17393796001*14662949395604^(2/3) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(49) 3770005311325371 a001 10946/17393796001*505019158607^(3/4) 3770005311325371 a001 10946/17393796001*192900153618^(7/9) 3770005311325371 a001 10946/73681302247*10749957122^(15/16) 3770005311325371 a001 10946/119218851371*10749957122^(23/24) 3770005311325371 a001 5473/22768774562*10749957122^(11/12) 3770005311325371 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^55 3770005311325371 a001 10946/17393796001*10749957122^(7/8) 3770005311325371 a001 10946/6643838879*312119004989^(8/11) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(47) 3770005311325371 a001 10946/6643838879*23725150497407^(5/8) 3770005311325371 a001 16261460094529/43133785636 3770005311325371 a001 10946/6643838879*73681302247^(10/13) 3770005311325371 a001 10946/6643838879*28143753123^(4/5) 3770005311325371 a001 10946/6643838879*10749957122^(5/6) 3770005311325371 a001 5473/22768774562*4106118243^(22/23) 3770005311325371 a001 10946/17393796001*4106118243^(21/23) 3770005311325371 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^53 3770005311325371 a001 10946/6643838879*4106118243^(20/23) 3770005311325371 a001 5473/1268860318*817138163596^(2/3) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(45) 3770005311325371 a001 12422650098820/32951280099 3770005311325371 a001 5473/1268860318*10749957122^(19/24) 3770005311325371 a001 5473/1268860318*4106118243^(19/23) 3770005311325371 a001 10946/17393796001*1568397607^(21/22) 3770005311325371 a001 10946/6643838879*1568397607^(10/11) 3770005311325371 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^51 3770005311325371 a001 5473/1268860318*1568397607^(19/22) 3770005311325371 a001 10946/969323029*2537720636^(4/5) 3770005311325371 a001 10946/969323029*45537549124^(12/17) 3770005311325371 a001 10946/969323029*14662949395604^(4/7) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(43) 3770005311325371 a001 10946/969323029*505019158607^(9/14) 3770005311325371 a001 10946/969323029*192900153618^(2/3) 3770005311325371 a001 10946/969323029*73681302247^(9/13) 3770005311325371 a001 4745030107402/12586269025 3770005311325371 a001 10946/969323029*10749957122^(3/4) 3770005311325371 a001 10946/969323029*4106118243^(18/23) 3770005311325371 a001 10946/969323029*1568397607^(9/11) 3770005311325371 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^9 3770005311325371 a001 10946/4106118243*599074578^(13/14) 3770005311325371 a001 5473/1268860318*599074578^(19/21) 3770005311325371 a001 10946/6643838879*599074578^(20/21) 3770005311325371 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^11 3770005311325371 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^13 3770005311325371 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^15 3770005311325371 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^17 3770005311325371 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^19 3770005311325371 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^21 3770005311325371 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^23 3770005311325371 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^25 3770005311325371 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^27 3770005311325371 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^29 3770005311325371 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^31 3770005311325371 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^33 3770005311325371 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^35 3770005311325371 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^37 3770005311325371 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^39 3770005311325371 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^41 3770005311325371 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^43 3770005311325371 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^45 3770005311325371 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^47 3770005311325371 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^49 3770005311325371 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^51 3770005311325371 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^53 3770005311325371 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^55 3770005311325371 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^57 3770005311325371 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^59 3770005311325371 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^61 3770005311325371 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^65 3770005311325371 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^63 3770005311325371 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^64 3770005311325371 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^62 3770005311325371 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^60 3770005311325371 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^58 3770005311325371 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^56 3770005311325371 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^54 3770005311325371 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^52 3770005311325371 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^50 3770005311325371 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^48 3770005311325371 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^46 3770005311325371 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^44 3770005311325371 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^42 3770005311325371 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^40 3770005311325371 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^38 3770005311325371 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^36 3770005311325371 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^34 3770005311325371 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^32 3770005311325371 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^30 3770005311325371 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^28 3770005311325371 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^26 3770005311325371 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^24 3770005311325371 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^22 3770005311325371 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^20 3770005311325371 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^18 3770005311325371 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^16 3770005311325371 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^14 3770005311325371 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^12 3770005311325371 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^10 3770005311325371 a001 10946/969323029*599074578^(6/7) 3770005311325371 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^8 3770005311325371 a001 10946/370248451*45537549124^(2/3) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(41) 3770005311325371 a001 10946/370248451*10749957122^(17/24) 3770005311325371 a001 906220111693/2403763488 3770005311325371 a001 10946/370248451*4106118243^(17/23) 3770005311325371 a001 10946/370248451*1568397607^(17/22) 3770005311325371 a001 10946/370248451*599074578^(17/21) 3770005311325371 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^6 3770005311325371 a001 5473/299537289*228826127^(7/8) 3770005311325371 a001 10946/969323029*228826127^(9/10) 3770005311325371 a001 5473/1268860318*228826127^(19/20) 3770005311325371 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^47 3770005311325371 a001 10946/370248451*228826127^(17/20) 3770005311325371 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(39) 3770005311325371 a001 5473/70711162*23725150497407^(1/2) 3770005311325371 a001 5473/70711162*505019158607^(4/7) 3770005311325371 a001 5473/70711162*73681302247^(8/13) 3770005311325371 a001 5473/70711162*10749957122^(2/3) 3770005311325371 a001 5473/70711162*4106118243^(16/23) 3770005311325371 a001 692290562756/1836311903 3770005311325371 a001 5473/70711162*1568397607^(8/11) 3770005311325371 a001 5473/70711162*599074578^(16/21) 3770005311325371 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^4 3770005311325371 a001 5473/70711162*228826127^(4/5) 3770005311325371 a001 10946/370248451*87403803^(17/19) 3770005311325371 a001 10946/969323029*87403803^(18/19) 3770005311325371 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^45 3770005311325371 a001 5473/70711162*87403803^(16/19) 3770005311325372 a001 10946/54018521*141422324^(10/13) 3770005311325372 a001 10946/54018521*2537720636^(2/3) 3770005311325372 a001 10946/54018521*45537549124^(10/17) 3770005311325372 a001 10946/54018521*312119004989^(6/11) 3770005311325372 a001 10946/54018521*14662949395604^(10/21) 3770005311325372 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^30/Lucas(37) 3770005311325372 a001 10946/54018521*192900153618^(5/9) 3770005311325372 a001 10946/54018521*28143753123^(3/5) 3770005311325372 a001 10946/54018521*10749957122^(5/8) 3770005311325372 a001 10946/54018521*4106118243^(15/23) 3770005311325372 a001 10946/54018521*1568397607^(15/22) 3770005311325372 a001 264431464882/701408733 3770005311325372 a001 10946/54018521*599074578^(5/7) 3770005311325372 a004 Fibonacci(37)/Lucas(21)/(1/2+sqrt(5)/2)^2 3770005311325372 a001 10946/54018521*228826127^(3/4) 3770005311325372 a001 10946/54018521*87403803^(15/19) 3770005311325372 a001 10946/20633239*20633239^(4/5) 3770005311325374 a001 10946/228826127*33385282^(11/12) 3770005311325374 a001 5473/70711162*33385282^(8/9) 3770005311325374 a001 10946/370248451*33385282^(17/18) 3770005311325374 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^43 3770005311325375 a001 10946/54018521*33385282^(5/6) 3770005311325379 a001 10946/20633239*17393796001^(4/7) 3770005311325379 a001 10946/20633239*14662949395604^(4/9) 3770005311325379 a001 10946/20633239*(1/2+1/2*5^(1/2))^28 3770005311325379 a001 10946/20633239*505019158607^(1/2) 3770005311325379 a001 10946/20633239*73681302247^(7/13) 3770005311325379 a001 10946/20633239*10749957122^(7/12) 3770005311325379 a001 10946/20633239*4106118243^(14/23) 3770005311325379 a001 10946/20633239*1568397607^(7/11) 3770005311325379 a001 10946/20633239*599074578^(2/3) 3770005311325379 a001 9227465/24476 3770005311325380 a001 10946/20633239*228826127^(7/10) 3770005311325380 a001 10946/20633239*87403803^(14/19) 3770005311325382 a001 10946/20633239*33385282^(7/9) 3770005311325392 a001 10946/54018521*12752043^(15/17) 3770005311325393 a001 5473/70711162*12752043^(16/17) 3770005311325394 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^41 3770005311325399 a001 10946/20633239*12752043^(14/17) 3770005311325431 a001 102334155/439204*5778^(1/18) 3770005311325431 a001 5473/3940598*141422324^(2/3) 3770005311325431 a001 5473/3940598*(1/2+1/2*5^(1/2))^26 3770005311325431 a001 5473/3940598*73681302247^(1/2) 3770005311325431 a001 5473/3940598*10749957122^(13/24) 3770005311325431 a001 5473/3940598*4106118243^(13/23) 3770005311325431 a001 5473/3940598*1568397607^(13/22) 3770005311325431 a001 5473/3940598*599074578^(13/21) 3770005311325431 a001 1762289/12238*(1/2+1/2*5^(1/2))^2 3770005311325431 a001 1762289/12238*10749957122^(1/24) 3770005311325431 a001 1762289/12238*4106118243^(1/23) 3770005311325431 a001 1762289/12238*1568397607^(1/22) 3770005311325431 a001 1762289/12238*599074578^(1/21) 3770005311325431 a001 1762289/12238*228826127^(1/20) 3770005311325431 a001 1762289/12238*87403803^(1/19) 3770005311325431 a001 5473/3940598*228826127^(13/20) 3770005311325431 a001 38580030788/102334155 3770005311325431 a001 1762289/12238*33385282^(1/18) 3770005311325432 a001 5473/3940598*87403803^(13/19) 3770005311325433 a001 1762289/12238*12752043^(1/17) 3770005311325434 a001 5473/3940598*33385282^(13/18) 3770005311325441 a001 1762289/12238*4870847^(1/16) 3770005311325449 a001 5473/3940598*12752043^(13/17) 3770005311325504 a001 1762289/12238*1860498^(1/15) 3770005311325518 a001 10946/20633239*4870847^(7/8) 3770005311325521 a001 10946/54018521*4870847^(15/16) 3770005311325530 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^39 3770005311325560 a001 5473/3940598*4870847^(13/16) 3770005311325742 a001 10946/3010349*7881196^(8/11) 3770005311325786 a001 10946/3010349*141422324^(8/13) 3770005311325787 a001 10946/3010349*2537720636^(8/15) 3770005311325787 a001 10946/3010349*45537549124^(8/17) 3770005311325787 a001 10946/3010349*14662949395604^(8/21) 3770005311325787 a001 10946/3010349*(1/2+1/2*5^(1/2))^24 3770005311325787 a001 10946/3010349*192900153618^(4/9) 3770005311325787 a001 10946/3010349*73681302247^(6/13) 3770005311325787 a001 10946/3010349*10749957122^(1/2) 3770005311325787 a001 10946/3010349*4106118243^(12/23) 3770005311325787 a001 10946/3010349*1568397607^(6/11) 3770005311325787 a001 10946/3010349*599074578^(4/7) 3770005311325787 a001 1346269/24476*(1/2+1/2*5^(1/2))^4 3770005311325787 a001 1346269/24476*23725150497407^(1/16) 3770005311325787 a001 1346269/24476*73681302247^(1/13) 3770005311325787 a001 1346269/24476*10749957122^(1/12) 3770005311325787 a001 1346269/24476*4106118243^(2/23) 3770005311325787 a001 1346269/24476*1568397607^(1/11) 3770005311325787 a001 1346269/24476*599074578^(2/21) 3770005311325787 a001 1346269/24476*228826127^(1/10) 3770005311325787 a001 10946/3010349*228826127^(3/5) 3770005311325787 a001 1346269/24476*87403803^(2/19) 3770005311325787 a001 10946/3010349*87403803^(12/19) 3770005311325787 a001 1346269/24476*33385282^(1/9) 3770005311325787 a001 14736260474/39088169 3770005311325789 a001 10946/3010349*33385282^(2/3) 3770005311325789 a001 1346269/24476*12752043^(2/17) 3770005311325803 a001 10946/3010349*12752043^(12/17) 3770005311325806 a001 1346269/24476*4870847^(1/8) 3770005311325906 a001 10946/3010349*4870847^(3/4) 3770005311325932 a001 1346269/24476*1860498^(2/15) 3770005311325965 a001 1762289/12238*710647^(1/14) 3770005311326119 a001 10946/4870847*1860498^(5/6) 3770005311326328 a001 10946/12752043*1860498^(9/10) 3770005311326375 a001 5473/3940598*1860498^(13/15) 3770005311326396 a001 10946/20633239*1860498^(14/15) 3770005311326460 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^37 3770005311326658 a001 10946/3010349*1860498^(4/5) 3770005311326853 a001 1346269/24476*710647^(1/7) 3770005311328182 a001 10946/1149851*7881196^(2/3) 3770005311328211 a001 514229/24476*7881196^(2/11) 3770005311328222 a001 514229/24476*141422324^(2/13) 3770005311328222 a001 10946/1149851*312119004989^(2/5) 3770005311328222 a001 10946/1149851*(1/2+1/2*5^(1/2))^22 3770005311328222 a001 10946/1149851*10749957122^(11/24) 3770005311328222 a001 10946/1149851*4106118243^(11/23) 3770005311328222 a001 10946/1149851*1568397607^(1/2) 3770005311328222 a001 10946/1149851*599074578^(11/21) 3770005311328222 a001 514229/24476*2537720636^(2/15) 3770005311328222 a001 514229/24476*45537549124^(2/17) 3770005311328222 a001 514229/24476*14662949395604^(2/21) 3770005311328222 a001 514229/24476*(1/2+1/2*5^(1/2))^6 3770005311328222 a001 514229/24476*10749957122^(1/8) 3770005311328222 a001 514229/24476*4106118243^(3/23) 3770005311328222 a001 514229/24476*1568397607^(3/22) 3770005311328222 a001 514229/24476*599074578^(1/7) 3770005311328222 a001 514229/24476*228826127^(3/20) 3770005311328222 a001 10946/1149851*228826127^(11/20) 3770005311328222 a001 514229/24476*87403803^(3/19) 3770005311328222 a001 10946/1149851*87403803^(11/19) 3770005311328223 a001 514229/24476*33385282^(1/6) 3770005311328224 a001 10946/1149851*33385282^(11/18) 3770005311328225 a001 2814375317/7465176 3770005311328226 a001 514229/24476*12752043^(3/17) 3770005311328237 a001 10946/1149851*12752043^(11/17) 3770005311328252 a001 514229/24476*4870847^(3/16) 3770005311328331 a001 10946/1149851*4870847^(11/16) 3770005311328440 a001 514229/24476*1860498^(1/5) 3770005311329021 a001 10946/1149851*1860498^(11/15) 3770005311329367 a001 1762289/12238*271443^(1/13) 3770005311329822 a001 514229/24476*710647^(3/14) 3770005311332185 a001 10946/3010349*710647^(6/7) 3770005311332363 a001 5473/3940598*710647^(13/14) 3770005311332836 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^35 3770005311333658 a001 1346269/24476*271443^(2/13) 3770005311334087 a001 10946/1149851*710647^(11/14) 3770005311339960 a001 5702887/24476*103682^(1/24) 3770005311340030 a001 514229/24476*271443^(3/13) 3770005311344909 a001 5473/219602*20633239^(4/7) 3770005311344914 a001 5473/219602*2537720636^(4/9) 3770005311344914 a001 5473/219602*(1/2+1/2*5^(1/2))^20 3770005311344914 a001 5473/219602*23725150497407^(5/16) 3770005311344914 a001 5473/219602*505019158607^(5/14) 3770005311344914 a001 5473/219602*73681302247^(5/13) 3770005311344914 a001 5473/219602*28143753123^(2/5) 3770005311344914 a001 5473/219602*10749957122^(5/12) 3770005311344914 a001 5473/219602*4106118243^(10/23) 3770005311344914 a001 5473/219602*1568397607^(5/11) 3770005311344914 a001 5473/219602*599074578^(10/21) 3770005311344914 a001 98209/12238*(1/2+1/2*5^(1/2))^8 3770005311344914 a001 98209/12238*23725150497407^(1/8) 3770005311344914 a001 98209/12238*73681302247^(2/13) 3770005311344914 a001 98209/12238*10749957122^(1/6) 3770005311344914 a001 98209/12238*4106118243^(4/23) 3770005311344914 a001 98209/12238*1568397607^(2/11) 3770005311344914 a001 98209/12238*599074578^(4/21) 3770005311344914 a001 98209/12238*228826127^(1/5) 3770005311344914 a001 5473/219602*228826127^(1/2) 3770005311344915 a001 98209/12238*87403803^(4/19) 3770005311344915 a001 5473/219602*87403803^(10/19) 3770005311344915 a001 98209/12238*33385282^(2/9) 3770005311344916 a001 5473/219602*33385282^(5/9) 3770005311344920 a001 98209/12238*12752043^(4/17) 3770005311344928 a001 5473/219602*12752043^(10/17) 3770005311344938 a001 2149991428/5702887 3770005311344954 a001 98209/12238*4870847^(1/4) 3770005311345014 a001 5473/219602*4870847^(5/8) 3770005311345205 a001 98209/12238*1860498^(4/15) 3770005311345641 a001 5473/219602*1860498^(2/3) 3770005311347047 a001 98209/12238*710647^(2/7) 3770005311350247 a001 5473/219602*710647^(5/7) 3770005311354656 a001 1762289/12238*103682^(1/12) 3770005311360658 a001 98209/12238*271443^(4/13) 3770005311369049 a001 2178309/24476*103682^(1/8) 3770005311371517 a001 10946/1149851*271443^(11/13) 3770005311373017 a001 10946/3010349*271443^(12/13) 3770005311376537 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^33 3770005311384237 a001 1346269/24476*103682^(1/6) 3770005311384273 a001 5473/219602*271443^(10/13) 3770005311397344 a001 208010/6119*103682^(5/24) 3770005311405717 a001 121393/24476*103682^(3/8) 3770005311405744 a001 75025/24476*167761^(2/5) 3770005311415897 a001 514229/24476*103682^(1/4) 3770005311420193 a001 10959/844*103682^(7/24) 3770005311434608 a001 5702887/24476*39603^(1/22) 3770005311439842 a001 39088169/167761*5778^(1/18) 3770005311446297 a001 10946/167761*439204^(2/3) 3770005311459293 a001 10946/167761*7881196^(6/11) 3770005311459323 a001 75025/24476*20633239^(2/7) 3770005311459326 a001 10946/167761*141422324^(6/13) 3770005311459326 a001 10946/167761*2537720636^(2/5) 3770005311459326 a001 10946/167761*45537549124^(6/17) 3770005311459326 a001 10946/167761*14662949395604^(2/7) 3770005311459326 a001 10946/167761*(1/2+1/2*5^(1/2))^18 3770005311459326 a001 10946/167761*192900153618^(1/3) 3770005311459326 a001 10946/167761*10749957122^(3/8) 3770005311459326 a001 10946/167761*4106118243^(9/23) 3770005311459326 a001 10946/167761*1568397607^(9/22) 3770005311459326 a001 10946/167761*599074578^(3/7) 3770005311459326 a001 75025/24476*2537720636^(2/9) 3770005311459326 a001 75025/24476*312119004989^(2/11) 3770005311459326 a001 75025/24476*(1/2+1/2*5^(1/2))^10 3770005311459326 a001 75025/24476*28143753123^(1/5) 3770005311459326 a001 75025/24476*10749957122^(5/24) 3770005311459326 a001 75025/24476*4106118243^(5/23) 3770005311459326 a001 75025/24476*1568397607^(5/22) 3770005311459326 a001 75025/24476*599074578^(5/21) 3770005311459326 a001 75025/24476*228826127^(1/4) 3770005311459326 a001 10946/167761*228826127^(9/20) 3770005311459326 a001 75025/24476*87403803^(5/19) 3770005311459326 a001 10946/167761*87403803^(9/19) 3770005311459327 a001 75025/24476*33385282^(5/18) 3770005311459328 a001 10946/167761*33385282^(1/2) 3770005311459333 a001 75025/24476*12752043^(5/17) 3770005311459338 a001 10946/167761*12752043^(9/17) 3770005311459376 a001 75025/24476*4870847^(5/16) 3770005311459415 a001 10946/167761*4870847^(9/16) 3770005311459485 a001 821223650/2178309 3770005311459689 a001 75025/24476*1860498^(1/3) 3770005311459979 a001 10946/167761*1860498^(3/5) 3770005311461814 a001 98209/12238*103682^(1/3) 3770005311461992 a001 75025/24476*710647^(5/14) 3770005311464125 a001 10946/167761*710647^(9/14) 3770005311479005 a001 75025/24476*271443^(5/13) 3770005311494749 a001 10946/167761*271443^(9/13) 3770005311543952 a001 1762289/12238*39603^(1/11) 3770005311551841 a001 10946/271443*103682^(19/24) 3770005311571163 a001 726103/90481*15127^(2/5) 3770005311604806 a001 10946/64079*64079^(16/23) 3770005311605451 a001 75025/24476*103682^(5/12) 3770005311615000 a001 5702887/710647*15127^(2/5) 3770005311621396 a001 829464/103361*15127^(2/5) 3770005311622329 a001 39088169/4870847*15127^(2/5) 3770005311622465 a001 34111385/4250681*15127^(2/5) 3770005311622485 a001 133957148/16692641*15127^(2/5) 3770005311622488 a001 233802911/29134601*15127^(2/5) 3770005311622488 a001 1836311903/228826127*15127^(2/5) 3770005311622488 a001 267084832/33281921*15127^(2/5) 3770005311622488 a001 12586269025/1568397607*15127^(2/5) 3770005311622488 a001 10983760033/1368706081*15127^(2/5) 3770005311622488 a001 43133785636/5374978561*15127^(2/5) 3770005311622488 a001 75283811239/9381251041*15127^(2/5) 3770005311622488 a001 591286729879/73681302247*15127^(2/5) 3770005311622488 a001 86000486440/10716675201*15127^(2/5) 3770005311622488 a001 4052739537881/505019158607*15127^(2/5) 3770005311622488 a001 3278735159921/408569081798*15127^(2/5) 3770005311622488 a001 2504730781961/312119004989*15127^(2/5) 3770005311622488 a001 956722026041/119218851371*15127^(2/5) 3770005311622488 a001 182717648081/22768774562*15127^(2/5) 3770005311622488 a001 139583862445/17393796001*15127^(2/5) 3770005311622488 a001 53316291173/6643838879*15127^(2/5) 3770005311622488 a001 10182505537/1268860318*15127^(2/5) 3770005311622488 a001 7778742049/969323029*15127^(2/5) 3770005311622488 a001 2971215073/370248451*15127^(2/5) 3770005311622488 a001 567451585/70711162*15127^(2/5) 3770005311622489 a001 433494437/54018521*15127^(2/5) 3770005311622497 a001 165580141/20633239*15127^(2/5) 3770005311622549 a001 31622993/3940598*15127^(2/5) 3770005311622905 a001 24157817/3010349*15127^(2/5) 3770005311624768 a001 10946/710647*103682^(7/8) 3770005311625348 a001 9227465/1149851*15127^(2/5) 3770005311637164 a001 5473/219602*103682^(5/6) 3770005311642093 a001 1762289/219602*15127^(2/5) 3770005311649697 a001 10946/1149851*103682^(11/12) 3770005311652993 a001 2178309/24476*39603^(3/22) 3770005311660369 a001 5473/930249*103682^(23/24) 3770005311676070 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^31 3770005311715772 a001 832040/64079*15127^(7/20) 3770005311722351 a001 10946/167761*103682^(3/4) 3770005311756859 a001 1346269/167761*15127^(2/5) 3770005311757651 a001 17711/39603*15127^(7/10) 3770005311762829 a001 1346269/24476*39603^(2/11) 3770005311764483 a001 28657/24476*64079^(12/23) 3770005311824025 a001 75025/39603*15127^(11/20) 3770005311870584 a001 208010/6119*39603^(5/22) 3770005311983785 a001 514229/24476*39603^(3/11) 3770005312082729 a001 10959/844*39603^(7/22) 3770005312098411 a001 514229/103682*15127^(9/20) 3770005312149118 a001 5702887/24476*15127^(1/20) 3770005312163141 a001 15456/13201*15127^(3/5) 3770005312176536 a001 11592/6119*39603^(1/2) 3770005312218998 a001 98209/12238*39603^(4/11) 3770005312224027 a001 14930352/64079*5778^(1/18) 3770005312234828 a001 28657/24476*439204^(4/9) 3770005312243492 a001 28657/24476*7881196^(4/11) 3770005312243514 a001 28657/24476*141422324^(4/13) 3770005312243514 a001 10946/64079*(1/2+1/2*5^(1/2))^16 3770005312243514 a001 10946/64079*23725150497407^(1/4) 3770005312243514 a001 10946/64079*73681302247^(4/13) 3770005312243514 a001 10946/64079*10749957122^(1/3) 3770005312243514 a001 10946/64079*4106118243^(8/23) 3770005312243514 a001 10946/64079*1568397607^(4/11) 3770005312243514 a001 10946/64079*599074578^(8/21) 3770005312243514 a001 28657/24476*2537720636^(4/15) 3770005312243514 a001 28657/24476*45537549124^(4/17) 3770005312243514 a001 28657/24476*817138163596^(4/19) 3770005312243514 a001 28657/24476*14662949395604^(4/21) 3770005312243514 a001 28657/24476*(1/2+1/2*5^(1/2))^12 3770005312243514 a001 28657/24476*192900153618^(2/9) 3770005312243514 a001 28657/24476*73681302247^(3/13) 3770005312243514 a001 28657/24476*10749957122^(1/4) 3770005312243514 a001 28657/24476*4106118243^(6/23) 3770005312243514 a001 28657/24476*1568397607^(3/11) 3770005312243514 a001 28657/24476*599074578^(2/7) 3770005312243514 a001 10946/64079*228826127^(2/5) 3770005312243514 a001 28657/24476*228826127^(3/10) 3770005312243514 a001 28657/24476*87403803^(6/19) 3770005312243514 a001 10946/64079*87403803^(8/19) 3770005312243515 a001 28657/24476*33385282^(1/3) 3770005312243515 a001 10946/64079*33385282^(4/9) 3770005312243522 a001 28657/24476*12752043^(6/17) 3770005312243525 a001 10946/64079*12752043^(8/17) 3770005312243574 a001 28657/24476*4870847^(3/8) 3770005312243593 a001 10946/64079*4870847^(1/2) 3770005312243950 a001 28657/24476*1860498^(2/5) 3770005312244095 a001 10946/64079*1860498^(8/15) 3770005312244603 a001 156839761/416020 3770005312246713 a001 28657/24476*710647^(3/7) 3770005312247780 a001 10946/64079*710647^(4/7) 3770005312257549 a001 121393/24476*39603^(9/22) 3770005312267129 a001 28657/24476*271443^(6/13) 3770005312275001 a001 10946/64079*271443^(8/13) 3770005312395508 a001 1346269/271443*15127^(9/20) 3770005312418864 a001 28657/24476*103682^(1/2) 3770005312438854 a001 3524578/710647*15127^(9/20) 3770005312445178 a001 9227465/1860498*15127^(9/20) 3770005312446101 a001 24157817/4870847*15127^(9/20) 3770005312446236 a001 63245986/12752043*15127^(9/20) 3770005312446255 a001 165580141/33385282*15127^(9/20) 3770005312446258 a001 433494437/87403803*15127^(9/20) 3770005312446259 a001 1134903170/228826127*15127^(9/20) 3770005312446259 a001 2971215073/599074578*15127^(9/20) 3770005312446259 a001 7778742049/1568397607*15127^(9/20) 3770005312446259 a001 20365011074/4106118243*15127^(9/20) 3770005312446259 a001 53316291173/10749957122*15127^(9/20) 3770005312446259 a001 139583862445/28143753123*15127^(9/20) 3770005312446259 a001 365435296162/73681302247*15127^(9/20) 3770005312446259 a001 956722026041/192900153618*15127^(9/20) 3770005312446259 a001 2504730781961/505019158607*15127^(9/20) 3770005312446259 a001 10610209857723/2139295485799*15127^(9/20) 3770005312446259 a001 140728068720/28374454999*15127^(9/20) 3770005312446259 a001 591286729879/119218851371*15127^(9/20) 3770005312446259 a001 225851433717/45537549124*15127^(9/20) 3770005312446259 a001 86267571272/17393796001*15127^(9/20) 3770005312446259 a001 32951280099/6643838879*15127^(9/20) 3770005312446259 a001 1144206275/230701876*15127^(9/20) 3770005312446259 a001 4807526976/969323029*15127^(9/20) 3770005312446259 a001 1836311903/370248451*15127^(9/20) 3770005312446259 a001 701408733/141422324*15127^(9/20) 3770005312446260 a001 267914296/54018521*15127^(9/20) 3770005312446268 a001 9303105/1875749*15127^(9/20) 3770005312446319 a001 39088169/7881196*15127^(9/20) 3770005312446671 a001 14930352/3010349*15127^(9/20) 3770005312449087 a001 5702887/1149851*15127^(9/20) 3770005312465644 a001 2178309/439204*15127^(9/20) 3770005312477314 a001 10946/64079*103682^(2/3) 3770005312543483 a001 514229/64079*15127^(2/5) 3770005312551931 a001 75025/24476*39603^(5/11) 3770005312579125 a001 75640/15251*15127^(9/20) 3770005312832099 a001 5473/51841*39603^(17/22) 3770005312911865 a001 317811/103682*15127^(1/2) 3770005312972973 a001 1762289/12238*15127^(1/10) 3770005313217774 a001 832040/271443*15127^(1/2) 3770005313262406 a001 311187/101521*15127^(1/2) 3770005313268917 a001 5702887/1860498*15127^(1/2) 3770005313269867 a001 14930352/4870847*15127^(1/2) 3770005313270006 a001 39088169/12752043*15127^(1/2) 3770005313270026 a001 14619165/4769326*15127^(1/2) 3770005313270029 a001 267914296/87403803*15127^(1/2) 3770005313270029 a001 701408733/228826127*15127^(1/2) 3770005313270029 a001 1836311903/599074578*15127^(1/2) 3770005313270029 a001 686789568/224056801*15127^(1/2) 3770005313270029 a001 12586269025/4106118243*15127^(1/2) 3770005313270029 a001 32951280099/10749957122*15127^(1/2) 3770005313270029 a001 86267571272/28143753123*15127^(1/2) 3770005313270029 a001 32264490531/10525900321*15127^(1/2) 3770005313270029 a001 591286729879/192900153618*15127^(1/2) 3770005313270029 a001 1548008755920/505019158607*15127^(1/2) 3770005313270029 a001 1515744265389/494493258286*15127^(1/2) 3770005313270029 a001 2504730781961/817138163596*15127^(1/2) 3770005313270029 a001 956722026041/312119004989*15127^(1/2) 3770005313270029 a001 365435296162/119218851371*15127^(1/2) 3770005313270029 a001 139583862445/45537549124*15127^(1/2) 3770005313270029 a001 53316291173/17393796001*15127^(1/2) 3770005313270029 a001 20365011074/6643838879*15127^(1/2) 3770005313270029 a001 7778742049/2537720636*15127^(1/2) 3770005313270029 a001 2971215073/969323029*15127^(1/2) 3770005313270030 a001 1134903170/370248451*15127^(1/2) 3770005313270030 a001 433494437/141422324*15127^(1/2) 3770005313270031 a001 165580141/54018521*15127^(1/2) 3770005313270039 a001 63245986/20633239*15127^(1/2) 3770005313270091 a001 24157817/7881196*15127^(1/2) 3770005313270454 a001 9227465/3010349*15127^(1/2) 3770005313272942 a001 3524578/1149851*15127^(1/2) 3770005313289989 a001 1346269/439204*15127^(1/2) 3770005313350153 a001 10946/271443*39603^(19/22) 3770005313356937 a001 317811/64079*15127^(9/20) 3770005313384836 a001 1346269/9349*3571^(2/17) 3770005313406836 a001 514229/167761*15127^(1/2) 3770005313423053 a001 5473/12238*24476^(2/3) 3770005313426015 a001 10946/167761*39603^(9/11) 3770005313530124 a001 5473/219602*39603^(10/11) 3770005313554640 a001 28657/24476*39603^(6/11) 3770005313612376 a001 10946/710647*39603^(21/22) 3770005313650078 a001 832040/15127*5778^(2/9) 3770005313729101 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^29 3770005313762644 a001 98209/51841*15127^(11/20) 3770005313796524 a001 2178309/24476*15127^(3/20) 3770005313991682 a001 10946/64079*39603^(8/11) 3770005314045485 a001 514229/271443*15127^(11/20) 3770005314086751 a001 1346269/710647*15127^(11/20) 3770005314092772 a001 1762289/930249*15127^(11/20) 3770005314093650 a001 9227465/4870847*15127^(11/20) 3770005314093778 a001 24157817/12752043*15127^(11/20) 3770005314093797 a001 31622993/16692641*15127^(11/20) 3770005314093800 a001 165580141/87403803*15127^(11/20) 3770005314093800 a001 433494437/228826127*15127^(11/20) 3770005314093800 a001 567451585/299537289*15127^(11/20) 3770005314093800 a001 2971215073/1568397607*15127^(11/20) 3770005314093800 a001 7778742049/4106118243*15127^(11/20) 3770005314093800 a001 10182505537/5374978561*15127^(11/20) 3770005314093800 a001 53316291173/28143753123*15127^(11/20) 3770005314093800 a001 139583862445/73681302247*15127^(11/20) 3770005314093800 a001 182717648081/96450076809*15127^(11/20) 3770005314093800 a001 956722026041/505019158607*15127^(11/20) 3770005314093800 a001 10610209857723/5600748293801*15127^(11/20) 3770005314093800 a001 591286729879/312119004989*15127^(11/20) 3770005314093800 a001 225851433717/119218851371*15127^(11/20) 3770005314093800 a001 21566892818/11384387281*15127^(11/20) 3770005314093800 a001 32951280099/17393796001*15127^(11/20) 3770005314093800 a001 12586269025/6643838879*15127^(11/20) 3770005314093800 a001 1201881744/634430159*15127^(11/20) 3770005314093800 a001 1836311903/969323029*15127^(11/20) 3770005314093800 a001 701408733/370248451*15127^(11/20) 3770005314093800 a001 66978574/35355581*15127^(11/20) 3770005314093801 a001 102334155/54018521*15127^(11/20) 3770005314093809 a001 39088169/20633239*15127^(11/20) 3770005314093858 a001 3732588/1970299*15127^(11/20) 3770005314094193 a001 5702887/3010349*15127^(11/20) 3770005314096493 a001 2178309/1149851*15127^(11/20) 3770005314112255 a001 208010/109801*15127^(11/20) 3770005314207717 a001 196418/64079*15127^(1/2) 3770005314220290 a001 317811/167761*15127^(11/20) 3770005314255754 a001 28657/39603*15127^(13/20) 3770005314515705 a001 121393/103682*15127^(3/5) 3770005314620870 a001 1346269/24476*15127^(1/5) 3770005314858939 a001 105937/90481*15127^(3/5) 3770005314909017 a001 832040/710647*15127^(3/5) 3770005314916323 a001 726103/620166*15127^(3/5) 3770005314917389 a001 5702887/4870847*15127^(3/5) 3770005314917544 a001 4976784/4250681*15127^(3/5) 3770005314917567 a001 39088169/33385282*15127^(3/5) 3770005314917570 a001 34111385/29134601*15127^(3/5) 3770005314917571 a001 267914296/228826127*15127^(3/5) 3770005314917571 a001 233802911/199691526*15127^(3/5) 3770005314917571 a001 1836311903/1568397607*15127^(3/5) 3770005314917571 a001 1602508992/1368706081*15127^(3/5) 3770005314917571 a001 12586269025/10749957122*15127^(3/5) 3770005314917571 a001 10983760033/9381251041*15127^(3/5) 3770005314917571 a001 86267571272/73681302247*15127^(3/5) 3770005314917571 a001 75283811239/64300051206*15127^(3/5) 3770005314917571 a001 2504730781961/2139295485799*15127^(3/5) 3770005314917571 a001 365435296162/312119004989*15127^(3/5) 3770005314917571 a001 139583862445/119218851371*15127^(3/5) 3770005314917571 a001 53316291173/45537549124*15127^(3/5) 3770005314917571 a001 20365011074/17393796001*15127^(3/5) 3770005314917571 a001 7778742049/6643838879*15127^(3/5) 3770005314917571 a001 2971215073/2537720636*15127^(3/5) 3770005314917571 a001 1134903170/969323029*15127^(3/5) 3770005314917571 a001 433494437/370248451*15127^(3/5) 3770005314917571 a001 165580141/141422324*15127^(3/5) 3770005314917572 a001 63245986/54018521*15127^(3/5) 3770005314917581 a001 24157817/20633239*15127^(3/5) 3770005314917640 a001 9227465/7881196*15127^(3/5) 3770005314918048 a001 3524578/3010349*15127^(3/5) 3770005314920838 a001 1346269/1149851*15127^(3/5) 3770005314939966 a001 514229/439204*15127^(3/5) 3770005314960777 a001 121393/64079*15127^(11/20) 3770005315071070 a001 196418/167761*15127^(3/5) 3770005315175698 a001 5702887/39603*5778^(1/9) 3770005315443135 a001 208010/6119*15127^(1/4) 3770005315458224 a001 17711/103682*15127^(4/5) 3770005315524597 a001 75025/103682*15127^(13/20) 3770005315709719 a001 196418/271443*15127^(13/20) 3770005315736728 a001 514229/710647*15127^(13/20) 3770005315740669 a001 1346269/1860498*15127^(13/20) 3770005315741243 a001 3524578/4870847*15127^(13/20) 3770005315741327 a001 9227465/12752043*15127^(13/20) 3770005315741340 a001 24157817/33385282*15127^(13/20) 3770005315741341 a001 63245986/87403803*15127^(13/20) 3770005315741342 a001 165580141/228826127*15127^(13/20) 3770005315741342 a001 433494437/599074578*15127^(13/20) 3770005315741342 a001 1134903170/1568397607*15127^(13/20) 3770005315741342 a001 2971215073/4106118243*15127^(13/20) 3770005315741342 a001 7778742049/10749957122*15127^(13/20) 3770005315741342 a001 20365011074/28143753123*15127^(13/20) 3770005315741342 a001 53316291173/73681302247*15127^(13/20) 3770005315741342 a001 139583862445/192900153618*15127^(13/20) 3770005315741342 a001 365435296162/505019158607*15127^(13/20) 3770005315741342 a001 10610209857723/14662949395604*15127^(13/20) 3770005315741342 a001 225851433717/312119004989*15127^(13/20) 3770005315741342 a001 86267571272/119218851371*15127^(13/20) 3770005315741342 a001 32951280099/45537549124*15127^(13/20) 3770005315741342 a001 12586269025/17393796001*15127^(13/20) 3770005315741342 a001 4807526976/6643838879*15127^(13/20) 3770005315741342 a001 1836311903/2537720636*15127^(13/20) 3770005315741342 a001 701408733/969323029*15127^(13/20) 3770005315741342 a001 267914296/370248451*15127^(13/20) 3770005315741342 a001 102334155/141422324*15127^(13/20) 3770005315741342 a001 39088169/54018521*15127^(13/20) 3770005315741347 a001 14930352/20633239*15127^(13/20) 3770005315741379 a001 5702887/7881196*15127^(13/20) 3770005315741599 a001 2178309/3010349*15127^(13/20) 3770005315743104 a001 832040/1149851*15127^(13/20) 3770005315753420 a001 317811/439204*15127^(13/20) 3770005315824131 a001 121393/167761*15127^(13/20) 3770005315863713 a001 23184/51841*15127^(7/10) 3770005315903296 a001 17711/64079*15127^(3/4) 3770005315969670 a001 75025/64079*15127^(3/5) 3770005316270846 a001 514229/24476*15127^(3/10) 3770005316308785 a001 46368/64079*15127^(13/20) 3770005316462780 a001 121393/271443*15127^(7/10) 3770005316550182 a001 317811/710647*15127^(7/10) 3770005316562934 a001 416020/930249*15127^(7/10) 3770005316564795 a001 2178309/4870847*15127^(7/10) 3770005316565066 a001 5702887/12752043*15127^(7/10) 3770005316565106 a001 7465176/16692641*15127^(7/10) 3770005316565111 a001 39088169/87403803*15127^(7/10) 3770005316565112 a001 102334155/228826127*15127^(7/10) 3770005316565112 a001 133957148/299537289*15127^(7/10) 3770005316565112 a001 701408733/1568397607*15127^(7/10) 3770005316565112 a001 1836311903/4106118243*15127^(7/10) 3770005316565112 a001 2403763488/5374978561*15127^(7/10) 3770005316565112 a001 12586269025/28143753123*15127^(7/10) 3770005316565112 a001 32951280099/73681302247*15127^(7/10) 3770005316565112 a001 43133785636/96450076809*15127^(7/10) 3770005316565112 a001 225851433717/505019158607*15127^(7/10) 3770005316565112 a001 591286729879/1322157322203*15127^(7/10) 3770005316565112 a001 10610209857723/23725150497407*15127^(7/10) 3770005316565112 a001 139583862445/312119004989*15127^(7/10) 3770005316565112 a001 53316291173/119218851371*15127^(7/10) 3770005316565112 a001 10182505537/22768774562*15127^(7/10) 3770005316565112 a001 7778742049/17393796001*15127^(7/10) 3770005316565112 a001 2971215073/6643838879*15127^(7/10) 3770005316565112 a001 567451585/1268860318*15127^(7/10) 3770005316565112 a001 433494437/969323029*15127^(7/10) 3770005316565112 a001 165580141/370248451*15127^(7/10) 3770005316565113 a001 31622993/70711162*15127^(7/10) 3770005316565115 a001 24157817/54018521*15127^(7/10) 3770005316565130 a001 9227465/20633239*15127^(7/10) 3770005316565234 a001 1762289/3940598*15127^(7/10) 3770005316565944 a001 1346269/3010349*15127^(7/10) 3770005316570815 a001 514229/1149851*15127^(7/10) 3770005316604200 a001 98209/219602*15127^(7/10) 3770005316766649 a001 17711/167761*15127^(17/20) 3770005316797692 a001 4181/5778*5778^(13/18) 3770005316833023 a001 75025/167761*15127^(7/10) 3770005317059549 a001 5473/12238*64079^(14/23) 3770005317084301 a001 10959/844*15127^(7/20) 3770005317172139 a001 46368/167761*15127^(3/4) 3770005317228749 a001 7465176/51841*5778^(1/9) 3770005317357261 a001 121393/439204*15127^(3/4) 3770005317384269 a001 317811/1149851*15127^(3/4) 3770005317388210 a001 832040/3010349*15127^(3/4) 3770005317388785 a001 2178309/7881196*15127^(3/4) 3770005317388869 a001 5702887/20633239*15127^(3/4) 3770005317388881 a001 14930352/54018521*15127^(3/4) 3770005317388883 a001 39088169/141422324*15127^(3/4) 3770005317388883 a001 102334155/370248451*15127^(3/4) 3770005317388883 a001 267914296/969323029*15127^(3/4) 3770005317388883 a001 701408733/2537720636*15127^(3/4) 3770005317388883 a001 1836311903/6643838879*15127^(3/4) 3770005317388883 a001 4807526976/17393796001*15127^(3/4) 3770005317388883 a001 12586269025/45537549124*15127^(3/4) 3770005317388883 a001 32951280099/119218851371*15127^(3/4) 3770005317388883 a001 86267571272/312119004989*15127^(3/4) 3770005317388883 a001 225851433717/817138163596*15127^(3/4) 3770005317388883 a001 1548008755920/5600748293801*15127^(3/4) 3770005317388883 a001 139583862445/505019158607*15127^(3/4) 3770005317388883 a001 53316291173/192900153618*15127^(3/4) 3770005317388883 a001 20365011074/73681302247*15127^(3/4) 3770005317388883 a001 7778742049/28143753123*15127^(3/4) 3770005317388883 a001 2971215073/10749957122*15127^(3/4) 3770005317388883 a001 1134903170/4106118243*15127^(3/4) 3770005317388883 a001 433494437/1568397607*15127^(3/4) 3770005317388883 a001 165580141/599074578*15127^(3/4) 3770005317388883 a001 63245986/228826127*15127^(3/4) 3770005317388884 a001 24157817/87403803*15127^(3/4) 3770005317388889 a001 9227465/33385282*15127^(3/4) 3770005317388921 a001 3524578/12752043*15127^(3/4) 3770005317389140 a001 1346269/4870847*15127^(3/4) 3770005317390645 a001 514229/1860498*15127^(3/4) 3770005317400962 a001 196418/710647*15127^(3/4) 3770005317405298 a001 17711/271443*15127^(9/10) 3770005317471672 a001 75025/271443*15127^(3/4) 3770005317528285 a001 39088169/271443*5778^(1/9) 3770005317571987 a001 14619165/101521*5778^(1/9) 3770005317578363 a001 133957148/930249*5778^(1/9) 3770005317579293 a001 701408733/4870847*5778^(1/9) 3770005317579429 a001 1836311903/12752043*5778^(1/9) 3770005317579449 a001 14930208/103681*5778^(1/9) 3770005317579452 a001 12586269025/87403803*5778^(1/9) 3770005317579452 a001 32951280099/228826127*5778^(1/9) 3770005317579452 a001 43133785636/299537289*5778^(1/9) 3770005317579452 a001 32264490531/224056801*5778^(1/9) 3770005317579452 a001 591286729879/4106118243*5778^(1/9) 3770005317579452 a001 774004377960/5374978561*5778^(1/9) 3770005317579452 a001 4052739537881/28143753123*5778^(1/9) 3770005317579452 a001 1515744265389/10525900321*5778^(1/9) 3770005317579452 a001 3278735159921/22768774562*5778^(1/9) 3770005317579452 a001 2504730781961/17393796001*5778^(1/9) 3770005317579452 a001 956722026041/6643838879*5778^(1/9) 3770005317579452 a001 182717648081/1268860318*5778^(1/9) 3770005317579452 a001 139583862445/969323029*5778^(1/9) 3770005317579452 a001 53316291173/370248451*5778^(1/9) 3770005317579452 a001 10182505537/70711162*5778^(1/9) 3770005317579453 a001 7778742049/54018521*5778^(1/9) 3770005317579461 a001 2971215073/20633239*5778^(1/9) 3770005317579513 a001 567451585/3940598*5778^(1/9) 3770005317579868 a001 433494437/3010349*5778^(1/9) 3770005317582304 a001 165580141/1149851*5778^(1/9) 3770005317598912 a001 5702887/24476*5778^(1/18) 3770005317598996 a001 31622993/219602*5778^(1/9) 3770005317618415 a001 5473/12238*20633239^(2/5) 3770005317618419 a001 5473/12238*17393796001^(2/7) 3770005317618419 a001 5473/12238*14662949395604^(2/9) 3770005317618419 a001 5473/12238*(1/2+1/2*5^(1/2))^14 3770005317618419 a001 5473/12238*10749957122^(7/24) 3770005317618419 a001 5473/12238*4106118243^(7/23) 3770005317618419 a001 5473/12238*1568397607^(7/22) 3770005317618419 a001 5473/12238*599074578^(1/3) 3770005317618419 a001 5473/12238*228826127^(7/20) 3770005317618419 a001 5473/12238*87403803^(7/19) 3770005317618420 a001 5473/12238*33385282^(7/18) 3770005317618429 a001 5473/12238*12752043^(7/17) 3770005317618489 a001 5473/12238*4870847^(7/16) 3770005317618927 a001 5473/12238*1860498^(7/15) 3770005317622152 a001 5473/12238*710647^(1/2) 3770005317625884 a001 9216532/24447 3770005317645970 a001 5473/12238*271443^(7/13) 3770005317713409 a001 24157817/167761*5778^(1/9) 3770005317810788 a001 15456/90481*15127^(4/5) 3770005317822994 a001 5473/12238*103682^(7/12) 3770005317935080 a001 98209/12238*15127^(2/5) 3770005317956327 a001 28657/103682*15127^(3/4) 3770005318135875 a001 4181/24476*9349^(16/19) 3770005318154022 a001 121393/710647*15127^(4/5) 3770005318204100 a001 105937/620166*15127^(4/5) 3770005318211406 a001 832040/4870847*15127^(4/5) 3770005318212472 a001 726103/4250681*15127^(4/5) 3770005318212627 a001 5702887/33385282*15127^(4/5) 3770005318212650 a001 4976784/29134601*15127^(4/5) 3770005318212653 a001 39088169/228826127*15127^(4/5) 3770005318212654 a001 34111385/199691526*15127^(4/5) 3770005318212654 a001 267914296/1568397607*15127^(4/5) 3770005318212654 a001 233802911/1368706081*15127^(4/5) 3770005318212654 a001 1836311903/10749957122*15127^(4/5) 3770005318212654 a001 1602508992/9381251041*15127^(4/5) 3770005318212654 a001 12586269025/73681302247*15127^(4/5) 3770005318212654 a001 10983760033/64300051206*15127^(4/5) 3770005318212654 a001 86267571272/505019158607*15127^(4/5) 3770005318212654 a001 75283811239/440719107401*15127^(4/5) 3770005318212654 a001 2504730781961/14662949395604*15127^(4/5) 3770005318212654 a001 139583862445/817138163596*15127^(4/5) 3770005318212654 a001 53316291173/312119004989*15127^(4/5) 3770005318212654 a001 20365011074/119218851371*15127^(4/5) 3770005318212654 a001 7778742049/45537549124*15127^(4/5) 3770005318212654 a001 2971215073/17393796001*15127^(4/5) 3770005318212654 a001 1134903170/6643838879*15127^(4/5) 3770005318212654 a001 433494437/2537720636*15127^(4/5) 3770005318212654 a001 165580141/969323029*15127^(4/5) 3770005318212654 a001 63245986/370248451*15127^(4/5) 3770005318212655 a001 24157817/141422324*15127^(4/5) 3770005318212664 a001 9227465/54018521*15127^(4/5) 3770005318212723 a001 3524578/20633239*15127^(4/5) 3770005318213131 a001 1346269/7881196*15127^(4/5) 3770005318215921 a001 514229/3010349*15127^(4/5) 3770005318235049 a001 196418/1149851*15127^(4/5) 3770005318299779 a001 17711/439204*15127^(19/20) 3770005318366153 a001 75025/439204*15127^(4/5) 3770005318401399 a001 28657/64079*15127^(7/10) 3770005318497604 a001 9227465/64079*5778^(1/9) 3770005318688141 a001 121393/24476*15127^(9/20) 3770005318705269 a001 11592/109801*15127^(17/20) 3770005318988110 a001 121393/1149851*15127^(17/20) 3770005319029376 a001 317811/3010349*15127^(17/20) 3770005319035396 a001 208010/1970299*15127^(17/20) 3770005319036275 a001 2178309/20633239*15127^(17/20) 3770005319036403 a001 5702887/54018521*15127^(17/20) 3770005319036421 a001 3732588/35355581*15127^(17/20) 3770005319036424 a001 39088169/370248451*15127^(17/20) 3770005319036425 a001 102334155/969323029*15127^(17/20) 3770005319036425 a001 66978574/634430159*15127^(17/20) 3770005319036425 a001 701408733/6643838879*15127^(17/20) 3770005319036425 a001 1836311903/17393796001*15127^(17/20) 3770005319036425 a001 1201881744/11384387281*15127^(17/20) 3770005319036425 a001 12586269025/119218851371*15127^(17/20) 3770005319036425 a001 32951280099/312119004989*15127^(17/20) 3770005319036425 a001 21566892818/204284540899*15127^(17/20) 3770005319036425 a001 225851433717/2139295485799*15127^(17/20) 3770005319036425 a001 182717648081/1730726404001*15127^(17/20) 3770005319036425 a001 139583862445/1322157322203*15127^(17/20) 3770005319036425 a001 53316291173/505019158607*15127^(17/20) 3770005319036425 a001 10182505537/96450076809*15127^(17/20) 3770005319036425 a001 7778742049/73681302247*15127^(17/20) 3770005319036425 a001 2971215073/28143753123*15127^(17/20) 3770005319036425 a001 567451585/5374978561*15127^(17/20) 3770005319036425 a001 433494437/4106118243*15127^(17/20) 3770005319036425 a001 165580141/1568397607*15127^(17/20) 3770005319036425 a001 31622993/299537289*15127^(17/20) 3770005319036426 a001 24157817/228826127*15127^(17/20) 3770005319036433 a001 9227465/87403803*15127^(17/20) 3770005319036482 a001 1762289/16692641*15127^(17/20) 3770005319036817 a001 1346269/12752043*15127^(17/20) 3770005319039117 a001 514229/4870847*15127^(17/20) 3770005319054879 a001 98209/930249*15127^(17/20) 3770005319104006 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^28 3770005319148066 a001 5473/12238*39603^(7/11) 3770005319162915 a001 75025/710647*15127^(17/20) 3770005319264753 a001 28657/167761*15127^(4/5) 3770005319502031 a001 6624/101521*15127^(9/10) 3770005319630659 a001 17711/24476*15127^(13/20) 3770005319697033 a001 75025/24476*15127^(1/2) 3770005319807940 a001 121393/1860498*15127^(9/10) 3770005319852571 a001 317811/4870847*15127^(9/10) 3770005319859083 a001 832040/12752043*15127^(9/10) 3770005319860033 a001 311187/4769326*15127^(9/10) 3770005319860172 a001 5702887/87403803*15127^(9/10) 3770005319860192 a001 14930352/228826127*15127^(9/10) 3770005319860195 a001 39088169/599074578*15127^(9/10) 3770005319860195 a001 14619165/224056801*15127^(9/10) 3770005319860195 a001 267914296/4106118243*15127^(9/10) 3770005319860195 a001 701408733/10749957122*15127^(9/10) 3770005319860195 a001 1836311903/28143753123*15127^(9/10) 3770005319860195 a001 686789568/10525900321*15127^(9/10) 3770005319860195 a001 12586269025/192900153618*15127^(9/10) 3770005319860195 a001 32951280099/505019158607*15127^(9/10) 3770005319860195 a001 86267571272/1322157322203*15127^(9/10) 3770005319860195 a001 32264490531/494493258286*15127^(9/10) 3770005319860195 a001 591286729879/9062201101803*15127^(9/10) 3770005319860195 a001 1548008755920/23725150497407*15127^(9/10) 3770005319860195 a001 139583862445/2139295485799*15127^(9/10) 3770005319860195 a001 53316291173/817138163596*15127^(9/10) 3770005319860195 a001 20365011074/312119004989*15127^(9/10) 3770005319860195 a001 7778742049/119218851371*15127^(9/10) 3770005319860195 a001 2971215073/45537549124*15127^(9/10) 3770005319860195 a001 1134903170/17393796001*15127^(9/10) 3770005319860195 a001 433494437/6643838879*15127^(9/10) 3770005319860195 a001 165580141/2537720636*15127^(9/10) 3770005319860196 a001 63245986/969323029*15127^(9/10) 3770005319860197 a001 24157817/370248451*15127^(9/10) 3770005319860204 a001 9227465/141422324*15127^(9/10) 3770005319860257 a001 3524578/54018521*15127^(9/10) 3770005319860620 a001 1346269/20633239*15127^(9/10) 3770005319863107 a001 514229/7881196*15127^(9/10) 3770005319880155 a001 196418/3010349*15127^(9/10) 3770005319903402 a001 28657/271443*15127^(17/20) 3770005319927584 a001 514229/15127*5778^(5/18) 3770005319997002 a001 75025/1149851*15127^(9/10) 3770005320036149 a001 11592/6119*15127^(11/20) 3770005320336118 a001 46368/1149851*15127^(19/20) 3770005320633216 a001 121393/3010349*15127^(19/20) 3770005320676562 a001 317811/7881196*15127^(19/20) 3770005320682886 a001 75640/1875749*15127^(19/20) 3770005320683808 a001 2178309/54018521*15127^(19/20) 3770005320683943 a001 5702887/141422324*15127^(19/20) 3770005320683963 a001 14930352/370248451*15127^(19/20) 3770005320683966 a001 39088169/969323029*15127^(19/20) 3770005320683966 a001 9303105/230701876*15127^(19/20) 3770005320683966 a001 267914296/6643838879*15127^(19/20) 3770005320683966 a001 701408733/17393796001*15127^(19/20) 3770005320683966 a001 1836311903/45537549124*15127^(19/20) 3770005320683966 a001 4807526976/119218851371*15127^(19/20) 3770005320683966 a001 1144206275/28374454999*15127^(19/20) 3770005320683966 a001 32951280099/817138163596*15127^(19/20) 3770005320683966 a001 86267571272/2139295485799*15127^(19/20) 3770005320683966 a001 225851433717/5600748293801*15127^(19/20) 3770005320683966 a001 591286729879/14662949395604*15127^(19/20) 3770005320683966 a001 365435296162/9062201101803*15127^(19/20) 3770005320683966 a001 139583862445/3461452808002*15127^(19/20) 3770005320683966 a001 53316291173/1322157322203*15127^(19/20) 3770005320683966 a001 20365011074/505019158607*15127^(19/20) 3770005320683966 a001 7778742049/192900153618*15127^(19/20) 3770005320683966 a001 2971215073/73681302247*15127^(19/20) 3770005320683966 a001 1134903170/28143753123*15127^(19/20) 3770005320683966 a001 433494437/10749957122*15127^(19/20) 3770005320683966 a001 165580141/4106118243*15127^(19/20) 3770005320683966 a001 63245986/1568397607*15127^(19/20) 3770005320683967 a001 24157817/599074578*15127^(19/20) 3770005320683975 a001 9227465/228826127*15127^(19/20) 3770005320684026 a001 3524578/87403803*15127^(19/20) 3770005320684379 a001 1346269/33385282*15127^(19/20) 3770005320686794 a001 514229/12752043*15127^(19/20) 3770005320703351 a001 196418/4870847*15127^(19/20) 3770005320789937 a001 17711/9349*9349^(11/19) 3770005320797883 a001 28657/439204*15127^(9/10) 3770005320816832 a001 75025/1860498*15127^(19/20) 3770005321157037 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^30 3770005321278201 a001 10946/39603*15127^(3/4) 3770005321449347 a001 3524578/39603*5778^(1/6) 3770005321456570 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^32 3770005321500272 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^34 3770005321506648 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^36 3770005321507578 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^38 3770005321507714 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^40 3770005321507733 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^42 3770005321507736 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^44 3770005321507737 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^46 3770005321507737 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^48 3770005321507737 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^50 3770005321507737 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^52 3770005321507737 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^54 3770005321507737 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^56 3770005321507737 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^58 3770005321507737 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^60 3770005321507737 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^62 3770005321507737 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^64 3770005321507737 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^66 3770005321507737 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^68 3770005321507737 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^70 3770005321507737 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^72 3770005321507737 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^74 3770005321507737 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^76 3770005321507737 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^78 3770005321507737 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^80 3770005321507737 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^82 3770005321507737 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^84 3770005321507737 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^86 3770005321507737 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^88 3770005321507737 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^90 3770005321507737 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^92 3770005321507737 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^94 3770005321507737 a004 Fibonacci(90)*Lucas(20)/(1/2+sqrt(5)/2)^96 3770005321507737 a004 Fibonacci(92)*Lucas(20)/(1/2+sqrt(5)/2)^98 3770005321507737 a004 Fibonacci(94)*Lucas(20)/(1/2+sqrt(5)/2)^100 3770005321507737 a004 Fibonacci(93)*Lucas(20)/(1/2+sqrt(5)/2)^99 3770005321507737 a004 Fibonacci(91)*Lucas(20)/(1/2+sqrt(5)/2)^97 3770005321507737 a004 Fibonacci(89)*Lucas(20)/(1/2+sqrt(5)/2)^95 3770005321507737 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^93 3770005321507737 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^91 3770005321507737 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^89 3770005321507737 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^87 3770005321507737 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^85 3770005321507737 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^83 3770005321507737 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^81 3770005321507737 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^79 3770005321507737 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^77 3770005321507737 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^75 3770005321507737 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^73 3770005321507737 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^71 3770005321507737 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^69 3770005321507737 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^67 3770005321507737 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^65 3770005321507737 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^63 3770005321507737 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^61 3770005321507737 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^59 3770005321507737 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^57 3770005321507737 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^55 3770005321507737 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^53 3770005321507737 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^51 3770005321507737 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^49 3770005321507737 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^47 3770005321507737 a001 2/6765*(1/2+1/2*5^(1/2))^34 3770005321507737 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^45 3770005321507738 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^43 3770005321507746 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^41 3770005321507797 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^39 3770005321508153 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^37 3770005321510588 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^35 3770005321527281 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^33 3770005321594644 a001 28657/710647*15127^(19/20) 3770005321641692 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^31 3770005322128763 a001 28657/24476*15127^(3/5) 3770005322425880 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^29 3770005323502326 a001 9227465/103682*5778^(1/6) 3770005323801852 a001 24157817/271443*5778^(1/6) 3770005323845552 a001 63245986/710647*5778^(1/6) 3770005323851928 a001 165580141/1860498*5778^(1/6) 3770005323852858 a001 433494437/4870847*5778^(1/6) 3770005323852994 a001 1134903170/12752043*5778^(1/6) 3770005323853014 a001 2971215073/33385282*5778^(1/6) 3770005323853017 a001 7778742049/87403803*5778^(1/6) 3770005323853017 a001 20365011074/228826127*5778^(1/6) 3770005323853017 a001 53316291173/599074578*5778^(1/6) 3770005323853017 a001 139583862445/1568397607*5778^(1/6) 3770005323853017 a001 365435296162/4106118243*5778^(1/6) 3770005323853017 a001 956722026041/10749957122*5778^(1/6) 3770005323853017 a001 2504730781961/28143753123*5778^(1/6) 3770005323853017 a001 6557470319842/73681302247*5778^(1/6) 3770005323853017 a001 10610209857723/119218851371*5778^(1/6) 3770005323853017 a001 4052739537881/45537549124*5778^(1/6) 3770005323853017 a001 1548008755920/17393796001*5778^(1/6) 3770005323853017 a001 591286729879/6643838879*5778^(1/6) 3770005323853017 a001 225851433717/2537720636*5778^(1/6) 3770005323853017 a001 86267571272/969323029*5778^(1/6) 3770005323853017 a001 32951280099/370248451*5778^(1/6) 3770005323853017 a001 12586269025/141422324*5778^(1/6) 3770005323853018 a001 4807526976/54018521*5778^(1/6) 3770005323853026 a001 1836311903/20633239*5778^(1/6) 3770005323853078 a001 3524667/39604*5778^(1/6) 3770005323853433 a001 267914296/3010349*5778^(1/6) 3770005323855869 a001 102334155/1149851*5778^(1/6) 3770005323872561 a001 39088169/439204*5778^(1/6) 3770005323872561 a001 1762289/12238*5778^(1/9) 3770005323986969 a001 14930352/167761*5778^(1/6) 3770005324771137 a001 5702887/64079*5778^(1/6) 3770005324978773 a001 5473/51841*15127^(17/20) 3770005325423846 a001 10946/64079*15127^(4/5) 3770005326190833 a001 317811/15127*5778^(1/3) 3770005326287199 a001 10946/167761*15127^(9/10) 3770005326381979 a001 28657/9349*9349^(10/19) 3770005326716938 a003 sin(Pi*13/89)*sin(Pi*35/108) 3770005326925848 a001 10946/271443*15127^(19/20) 3770005327195068 a001 4181/15127*24476^(5/7) 3770005327216548 a001 10946/9349*9349^(12/19) 3770005327383305 a001 46368/9349*9349^(9/19) 3770005327722693 a001 726103/13201*5778^(2/9) 3770005327794407 a001 6765/9349*24476^(13/21) 3770005327800785 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^27 3770005329151209 a001 5473/12238*15127^(7/10) 3770005329344820 a001 2584/9349*5778^(5/6) 3770005329775859 a001 5702887/103682*5778^(2/9) 3770005330075412 a001 4976784/90481*5778^(2/9) 3770005330119117 a001 39088169/710647*5778^(2/9) 3770005330125493 a001 831985/15126*5778^(2/9) 3770005330126423 a001 267914296/4870847*5778^(2/9) 3770005330126559 a001 233802911/4250681*5778^(2/9) 3770005330126579 a001 1836311903/33385282*5778^(2/9) 3770005330126582 a001 1602508992/29134601*5778^(2/9) 3770005330126582 a001 12586269025/228826127*5778^(2/9) 3770005330126582 a001 10983760033/199691526*5778^(2/9) 3770005330126582 a001 86267571272/1568397607*5778^(2/9) 3770005330126582 a001 75283811239/1368706081*5778^(2/9) 3770005330126582 a001 591286729879/10749957122*5778^(2/9) 3770005330126582 a001 12585437040/228811001*5778^(2/9) 3770005330126582 a001 4052739537881/73681302247*5778^(2/9) 3770005330126582 a001 3536736619241/64300051206*5778^(2/9) 3770005330126582 a001 6557470319842/119218851371*5778^(2/9) 3770005330126582 a001 2504730781961/45537549124*5778^(2/9) 3770005330126582 a001 956722026041/17393796001*5778^(2/9) 3770005330126582 a001 365435296162/6643838879*5778^(2/9) 3770005330126582 a001 139583862445/2537720636*5778^(2/9) 3770005330126582 a001 53316291173/969323029*5778^(2/9) 3770005330126582 a001 20365011074/370248451*5778^(2/9) 3770005330126582 a001 7778742049/141422324*5778^(2/9) 3770005330126584 a001 2971215073/54018521*5778^(2/9) 3770005330126591 a001 1134903170/20633239*5778^(2/9) 3770005330126643 a001 433494437/7881196*5778^(2/9) 3770005330126998 a001 165580141/3010349*5778^(2/9) 3770005330129434 a001 63245986/1149851*5778^(2/9) 3770005330138128 a001 75025/9349*9349^(8/19) 3770005330145907 a001 2178309/24476*5778^(1/6) 3770005330146127 a001 24157817/439204*5778^(2/9) 3770005330260546 a001 9227465/167761*5778^(2/9) 3770005330495493 a001 514229/3571*1364^(2/15) 3770005330774810 a001 2178309/9349*3571^(1/17) 3770005331044786 a001 3524578/64079*5778^(2/9) 3770005331091314 a001 4181/15127*64079^(15/23) 3770005331171153 a001 6765/9349*64079^(13/23) 3770005331556147 a001 5656893/15005 3770005331609730 a001 4181/15127*167761^(3/5) 3770005331679245 a001 4181/15127*439204^(5/9) 3770005331690075 a001 4181/15127*7881196^(5/11) 3770005331690099 a001 4181/15127*20633239^(3/7) 3770005331690103 a001 4181/15127*141422324^(5/13) 3770005331690103 a001 4181/15127*2537720636^(1/3) 3770005331690103 a001 4181/15127*45537549124^(5/17) 3770005331690103 a001 4181/15127*312119004989^(3/11) 3770005331690103 a001 4181/15127*14662949395604^(5/21) 3770005331690103 a001 4181/15127*(1/2+1/2*5^(1/2))^15 3770005331690103 a001 4181/15127*192900153618^(5/18) 3770005331690103 a001 4181/15127*28143753123^(3/10) 3770005331690103 a001 4181/15127*10749957122^(5/16) 3770005331690103 a001 4181/15127*599074578^(5/14) 3770005331690103 a001 4181/15127*228826127^(3/8) 3770005331690103 a001 6765/9349*141422324^(1/3) 3770005331690103 a001 6765/9349*(1/2+1/2*5^(1/2))^13 3770005331690103 a001 6765/9349*73681302247^(1/4) 3770005331690104 a001 4181/15127*33385282^(5/12) 3770005331690647 a001 4181/15127*1860498^(1/2) 3770005331715686 a001 6765/9349*271443^(1/2) 3770005331880066 a001 6765/9349*103682^(13/24) 3770005331909290 a001 4181/15127*103682^(5/8) 3770005332223174 a001 121393/9349*9349^(7/19) 3770005332491406 a001 196418/15127*5778^(7/18) 3770005333110490 a001 6765/9349*39603^(13/22) 3770005333329010 a001 4181/15127*39603^(15/22) 3770005333996833 a001 1346269/39603*5778^(5/18) 3770005334564053 a001 196418/9349*9349^(6/19) 3770005336049508 a001 1762289/51841*5778^(5/18) 3770005336348990 a001 9227465/271443*5778^(5/18) 3770005336392683 a001 24157817/710647*5778^(5/18) 3770005336399058 a001 31622993/930249*5778^(5/18) 3770005336399988 a001 165580141/4870847*5778^(5/18) 3770005336400124 a001 433494437/12752043*5778^(5/18) 3770005336400144 a001 567451585/16692641*5778^(5/18) 3770005336400147 a001 2971215073/87403803*5778^(5/18) 3770005336400147 a001 7778742049/228826127*5778^(5/18) 3770005336400147 a001 10182505537/299537289*5778^(5/18) 3770005336400147 a001 53316291173/1568397607*5778^(5/18) 3770005336400147 a001 139583862445/4106118243*5778^(5/18) 3770005336400147 a001 182717648081/5374978561*5778^(5/18) 3770005336400147 a001 956722026041/28143753123*5778^(5/18) 3770005336400147 a001 2504730781961/73681302247*5778^(5/18) 3770005336400147 a001 3278735159921/96450076809*5778^(5/18) 3770005336400147 a001 10610209857723/312119004989*5778^(5/18) 3770005336400147 a001 4052739537881/119218851371*5778^(5/18) 3770005336400147 a001 387002188980/11384387281*5778^(5/18) 3770005336400147 a001 591286729879/17393796001*5778^(5/18) 3770005336400147 a001 225851433717/6643838879*5778^(5/18) 3770005336400147 a001 1135099622/33391061*5778^(5/18) 3770005336400147 a001 32951280099/969323029*5778^(5/18) 3770005336400147 a001 12586269025/370248451*5778^(5/18) 3770005336400147 a001 1201881744/35355581*5778^(5/18) 3770005336400149 a001 1836311903/54018521*5778^(5/18) 3770005336400156 a001 701408733/20633239*5778^(5/18) 3770005336400208 a001 66978574/1970299*5778^(5/18) 3770005336400563 a001 102334155/3010349*5778^(5/18) 3770005336402998 a001 39088169/1149851*5778^(5/18) 3770005336419688 a001 196452/5779*5778^(5/18) 3770005336420047 a001 1346269/24476*5778^(2/9) 3770005336534079 a001 5702887/167761*5778^(5/18) 3770005336807212 a001 317811/9349*9349^(5/19) 3770005336931575 a001 3524578/15127*2207^(1/16) 3770005337234824 a001 514229/5778*2207^(3/16) 3770005337318132 a001 2178309/64079*5778^(5/18) 3770005338694261 a001 121393/15127*5778^(4/9) 3770005339087697 a001 514229/9349*9349^(4/19) 3770005340268893 a001 832040/39603*5778^(1/3) 3770005340667414 a001 4181/39603*24476^(17/21) 3770005341353924 a001 832040/9349*9349^(3/19) 3770005341872469 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^26 3770005342121107 a001 4181/103682*24476^(19/21) 3770005342306093 a001 4181/167761*24476^(20/21) 3770005342322854 a001 46347/2206*5778^(1/3) 3770005342399123 a001 6765/9349*15127^(13/20) 3770005342465429 a001 17711/9349*24476^(11/21) 3770005342622523 a001 5702887/271443*5778^(1/3) 3770005342666244 a001 14930352/710647*5778^(1/3) 3770005342672623 a001 39088169/1860498*5778^(1/3) 3770005342673553 a001 102334155/4870847*5778^(1/3) 3770005342673689 a001 267914296/12752043*5778^(1/3) 3770005342673709 a001 701408733/33385282*5778^(1/3) 3770005342673712 a001 1836311903/87403803*5778^(1/3) 3770005342673712 a001 102287808/4868641*5778^(1/3) 3770005342673712 a001 12586269025/599074578*5778^(1/3) 3770005342673712 a001 32951280099/1568397607*5778^(1/3) 3770005342673712 a001 86267571272/4106118243*5778^(1/3) 3770005342673712 a001 225851433717/10749957122*5778^(1/3) 3770005342673712 a001 591286729879/28143753123*5778^(1/3) 3770005342673712 a001 1548008755920/73681302247*5778^(1/3) 3770005342673712 a001 4052739537881/192900153618*5778^(1/3) 3770005342673712 a001 225749145909/10745088481*5778^(1/3) 3770005342673712 a001 6557470319842/312119004989*5778^(1/3) 3770005342673712 a001 2504730781961/119218851371*5778^(1/3) 3770005342673712 a001 956722026041/45537549124*5778^(1/3) 3770005342673712 a001 365435296162/17393796001*5778^(1/3) 3770005342673712 a001 139583862445/6643838879*5778^(1/3) 3770005342673712 a001 53316291173/2537720636*5778^(1/3) 3770005342673712 a001 20365011074/969323029*5778^(1/3) 3770005342673712 a001 7778742049/370248451*5778^(1/3) 3770005342673712 a001 2971215073/141422324*5778^(1/3) 3770005342673714 a001 1134903170/54018521*5778^(1/3) 3770005342673721 a001 433494437/20633239*5778^(1/3) 3770005342673773 a001 165580141/7881196*5778^(1/3) 3770005342674128 a001 63245986/3010349*5778^(1/3) 3770005342676565 a001 24157817/1149851*5778^(1/3) 3770005342692107 a001 208010/6119*5778^(5/18) 3770005342693265 a001 9227465/439204*5778^(1/3) 3770005342807728 a001 3524578/167761*5778^(1/3) 3770005343363953 m001 GAMMA(7/24)*FeigenbaumC^2/exp(Zeta(7)) 3770005343592272 a001 1346269/64079*5778^(1/3) 3770005343625598 a001 1346269/9349*9349^(2/19) 3770005343689619 a001 4181/64079*24476^(6/7) 3770005344046664 a001 4181/15127*15127^(3/4) 3770005345083159 a001 4181/39603*64079^(17/23) 3770005345117798 a001 46368/9349*24476^(3/7) 3770005345152948 a001 75025/15127*5778^(1/2) 3770005345322675 a001 17711/9349*64079^(11/23) 3770005345742243 a001 74049691/196418 3770005345761767 a001 17711/9349*7881196^(1/3) 3770005345761787 a001 4181/39603*45537549124^(1/3) 3770005345761787 a001 4181/39603*(1/2+1/2*5^(1/2))^17 3770005345761787 a001 17711/9349*312119004989^(1/5) 3770005345761787 a001 17711/9349*(1/2+1/2*5^(1/2))^11 3770005345761787 a001 17711/9349*1568397607^(1/4) 3770005345761798 a001 4181/39603*12752043^(1/2) 3770005345895191 a001 2178309/9349*9349^(1/19) 3770005345901597 r005 Re(z^2+c),c=-33/62+2/31*I,n=10 3770005345902122 a001 75025/9349*24476^(8/21) 3770005345922525 a001 17711/9349*103682^(11/24) 3770005346010199 a001 4181/39603*103682^(17/24) 3770005346016669 a001 121393/9349*24476^(1/3) 3770005346086972 a001 28657/9349*24476^(10/21) 3770005346387048 a001 196418/9349*24476^(2/7) 3770005346546398 a001 514229/39603*5778^(7/18) 3770005346659708 a001 317811/9349*24476^(5/21) 3770005346963653 a001 17711/9349*39603^(1/2) 3770005346969694 a001 514229/9349*24476^(4/21) 3770005347056352 a001 4181/103682*64079^(19/23) 3770005347247374 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^28 3770005347265422 a001 832040/9349*24476^(1/7) 3770005347276046 a001 4181/271443*64079^(21/23) 3770005347306837 a001 4181/439204*64079^(22/23) 3770005347455545 a001 46368/9349*64079^(9/23) 3770005347501087 a001 4181/167761*64079^(20/23) 3770005347566596 a001 1346269/9349*24476^(2/21) 3770005347619215 a001 4181/39603*39603^(17/22) 3770005347808304 a001 46368/9349*439204^(1/3) 3770005347811967 a001 193864608/514229 3770005347814802 a001 46368/9349*7881196^(3/11) 3770005347814818 a001 4181/103682*817138163596^(1/3) 3770005347814818 a001 4181/103682*(1/2+1/2*5^(1/2))^19 3770005347814818 a001 4181/103682*87403803^(1/2) 3770005347814818 a001 46368/9349*141422324^(3/13) 3770005347814818 a001 46368/9349*2537720636^(1/5) 3770005347814818 a001 46368/9349*45537549124^(3/17) 3770005347814818 a001 46368/9349*14662949395604^(1/7) 3770005347814818 a001 46368/9349*(1/2+1/2*5^(1/2))^9 3770005347814818 a001 46368/9349*192900153618^(1/6) 3770005347814818 a001 46368/9349*10749957122^(3/16) 3770005347814818 a001 46368/9349*599074578^(3/14) 3770005347814819 a001 46368/9349*33385282^(1/4) 3770005347815145 a001 46368/9349*1860498^(3/10) 3770005347834917 a001 121393/9349*64079^(7/23) 3770005347865690 a001 2178309/9349*24476^(1/21) 3770005347945546 a001 196418/9349*64079^(6/23) 3770005347946331 a001 46368/9349*103682^(3/8) 3770005347958457 a001 317811/9349*64079^(5/23) 3770005347980119 a001 75025/9349*64079^(8/23) 3770005348008692 a001 514229/9349*64079^(4/23) 3770005348031562 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^30 3770005348044671 a001 832040/9349*64079^(3/23) 3770005348086095 a001 1346269/9349*64079^(2/23) 3770005348092455 a001 4181/103682*103682^(19/24) 3770005348099150 a001 4181/271443*439204^(7/9) 3770005348113935 a001 507544133/1346269 3770005348114313 a001 4181/271443*7881196^(7/11) 3770005348114346 a001 4181/271443*20633239^(3/5) 3770005348114350 a001 121393/9349*20633239^(1/5) 3770005348114351 a001 4181/271443*141422324^(7/13) 3770005348114351 a001 4181/271443*2537720636^(7/15) 3770005348114351 a001 4181/271443*17393796001^(3/7) 3770005348114351 a001 4181/271443*45537549124^(7/17) 3770005348114351 a001 4181/271443*14662949395604^(1/3) 3770005348114351 a001 4181/271443*(1/2+1/2*5^(1/2))^21 3770005348114351 a001 4181/271443*192900153618^(7/18) 3770005348114351 a001 4181/271443*10749957122^(7/16) 3770005348114351 a001 4181/271443*599074578^(1/2) 3770005348114352 a001 121393/9349*17393796001^(1/7) 3770005348114352 a001 121393/9349*14662949395604^(1/9) 3770005348114352 a001 121393/9349*(1/2+1/2*5^(1/2))^7 3770005348114352 a001 121393/9349*599074578^(1/6) 3770005348114353 a001 4181/271443*33385282^(7/12) 3770005348115114 a001 4181/271443*1860498^(7/10) 3770005348116218 a001 121393/9349*710647^(1/4) 3770005348119950 a001 4181/271443*710647^(3/4) 3770005348125440 a001 2178309/9349*64079^(1/23) 3770005348131262 a001 317811/9349*167761^(1/5) 3770005348145974 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^32 3770005348150997 a001 4181/1149851*439204^(8/9) 3770005348157992 a001 1328767791/3524578 3770005348158052 a001 317811/9349*20633239^(1/7) 3770005348158052 a001 4181/710647*(1/2+1/2*5^(1/2))^23 3770005348158052 a001 4181/710647*4106118243^(1/2) 3770005348158053 a001 317811/9349*2537720636^(1/9) 3770005348158053 a001 317811/9349*312119004989^(1/11) 3770005348158053 a001 317811/9349*(1/2+1/2*5^(1/2))^5 3770005348158053 a001 317811/9349*28143753123^(1/10) 3770005348158053 a001 317811/9349*228826127^(1/8) 3770005348158234 a001 317811/9349*1860498^(1/6) 3770005348162257 a001 832040/9349*439204^(1/9) 3770005348162666 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^34 3770005348164420 a001 695751848/1845493 3770005348164422 a001 4181/1860498*20633239^(5/7) 3770005348164423 a001 832040/9349*7881196^(1/11) 3770005348164428 a001 4181/1860498*2537720636^(5/9) 3770005348164428 a001 4181/1860498*312119004989^(5/11) 3770005348164428 a001 4181/1860498*(1/2+1/2*5^(1/2))^25 3770005348164428 a001 4181/1860498*3461452808002^(5/12) 3770005348164428 a001 4181/1860498*28143753123^(1/2) 3770005348164428 a001 4181/1860498*228826127^(5/8) 3770005348164429 a001 832040/9349*141422324^(1/13) 3770005348164429 a001 832040/9349*2537720636^(1/15) 3770005348164429 a001 832040/9349*45537549124^(1/17) 3770005348164429 a001 832040/9349*14662949395604^(1/21) 3770005348164429 a001 832040/9349*(1/2+1/2*5^(1/2))^3 3770005348164429 a001 832040/9349*192900153618^(1/18) 3770005348164429 a001 832040/9349*10749957122^(1/16) 3770005348164429 a001 832040/9349*599074578^(1/14) 3770005348164429 a001 832040/9349*33385282^(1/12) 3770005348164538 a001 832040/9349*1860498^(1/10) 3770005348165102 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^36 3770005348165309 a001 4181/4870847*7881196^(9/11) 3770005348165336 a001 4181/1860498*1860498^(5/6) 3770005348165357 a001 9107509929/24157817 3770005348165358 a001 4181/4870847*141422324^(9/13) 3770005348165359 a001 4181/4870847*2537720636^(3/5) 3770005348165359 a001 4181/4870847*45537549124^(9/17) 3770005348165359 a001 4181/4870847*817138163596^(9/19) 3770005348165359 a001 4181/4870847*14662949395604^(3/7) 3770005348165359 a001 4181/4870847*(1/2+1/2*5^(1/2))^27 3770005348165359 a001 4181/4870847*192900153618^(1/2) 3770005348165359 a001 4181/4870847*10749957122^(9/16) 3770005348165359 a001 4181/4870847*599074578^(9/14) 3770005348165359 a001 2178309/18698+2178309/18698*5^(1/2) 3770005348165361 a001 4181/4870847*33385282^(3/4) 3770005348165457 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^38 3770005348165471 a001 4181/20633239*7881196^(10/11) 3770005348165494 a001 23843770547/63245986 3770005348165494 a001 4181/12752043*(1/2+1/2*5^(1/2))^29 3770005348165494 a001 4181/12752043*1322157322203^(1/2) 3770005348165495 a004 Fibonacci(34)/Lucas(19)/(1/2+sqrt(5)/2) 3770005348165509 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^40 3770005348165514 a001 62423801712/165580141 3770005348165514 a001 4181/33385282*(1/2+1/2*5^(1/2))^31 3770005348165514 a001 4181/33385282*9062201101803^(1/2) 3770005348165515 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2)^3 3770005348165516 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^42 3770005348165517 a001 4181/87403803*141422324^(11/13) 3770005348165517 a001 163427634589/433494437 3770005348165517 a001 4181/87403803*2537720636^(11/15) 3770005348165517 a001 4181/87403803*45537549124^(11/17) 3770005348165517 a001 4181/87403803*312119004989^(3/5) 3770005348165517 a001 4181/87403803*817138163596^(11/19) 3770005348165517 a001 4181/87403803*14662949395604^(11/21) 3770005348165517 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^33/Lucas(38) 3770005348165517 a001 4181/87403803*192900153618^(11/18) 3770005348165517 a001 4181/87403803*10749957122^(11/16) 3770005348165517 a001 4181/87403803*1568397607^(3/4) 3770005348165517 a001 4181/87403803*599074578^(11/14) 3770005348165517 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^44 3770005348165517 a001 4181/370248451*141422324^(12/13) 3770005348165517 a001 85571820411/226980634 3770005348165517 a001 4181/228826127*2537720636^(7/9) 3770005348165517 a001 4181/228826127*17393796001^(5/7) 3770005348165517 a001 4181/228826127*312119004989^(7/11) 3770005348165517 a001 4181/228826127*14662949395604^(5/9) 3770005348165517 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(40) 3770005348165517 a001 4181/228826127*505019158607^(5/8) 3770005348165517 a001 4181/228826127*28143753123^(7/10) 3770005348165517 a001 4181/228826127*599074578^(5/6) 3770005348165517 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^46 3770005348165518 a001 1120149671576/2971215073 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(42) 3770005348165518 a001 4181/228826127*228826127^(7/8) 3770005348165518 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^48 3770005348165518 a001 4181/1568397607*2537720636^(13/15) 3770005348165518 a001 2932589912673/7778742049 3770005348165518 a001 4181/1568397607*45537549124^(13/17) 3770005348165518 a001 4181/1568397607*14662949395604^(13/21) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(44) 3770005348165518 a001 4181/1568397607*192900153618^(13/18) 3770005348165518 a001 4181/1568397607*73681302247^(3/4) 3770005348165518 a001 4181/1568397607*10749957122^(13/16) 3770005348165518 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^50 3770005348165518 a001 4181/6643838879*2537720636^(14/15) 3770005348165518 a001 7677620066443/20365011074 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(46) 3770005348165518 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^52 3770005348165518 a001 20100270286656/53316291173 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(48) 3770005348165518 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^54 3770005348165518 a001 4181/28143753123*45537549124^(15/17) 3770005348165518 a001 10524638158705/27916772489 3770005348165518 a001 4181/28143753123*14662949395604^(5/7) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(50) 3770005348165518 a001 4181/28143753123*192900153618^(5/6) 3770005348165518 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^56 3770005348165518 a001 4181/119218851371*45537549124^(16/17) 3770005348165518 a001 32951280099/87403802 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(52) 3770005348165518 a001 4181/28143753123*28143753123^(9/10) 3770005348165518 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^58 3770005348165518 a001 360684715488232/956722026041 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(54) 3770005348165518 a001 4181/192900153618*505019158607^(7/8) 3770005348165518 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^60 3770005348165518 a001 4181/505019158607*14662949395604^(17/21) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(56) 3770005348165518 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^62 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(58) 3770005348165518 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^64 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(60) 3770005348165518 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^66 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(62) 3770005348165518 a001 4181/3461452808002*3461452808002^(11/12) 3770005348165518 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^68 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(64) 3770005348165518 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^70 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(66) 3770005348165518 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^72 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(68) 3770005348165518 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^74 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(70) 3770005348165518 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^76 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(72) 3770005348165518 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^78 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(74) 3770005348165518 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^80 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(76) 3770005348165518 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^82 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(78) 3770005348165518 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^84 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(80) 3770005348165518 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^86 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(82) 3770005348165518 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^88 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(84) 3770005348165518 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^90 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(86) 3770005348165518 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^92 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(88) 3770005348165518 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^94 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(90) 3770005348165518 a004 Fibonacci(19)*Lucas(91)/(1/2+sqrt(5)/2)^96 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(92) 3770005348165518 a004 Fibonacci(19)*Lucas(93)/(1/2+sqrt(5)/2)^98 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^89/Lucas(94) 3770005348165518 a004 Fibonacci(19)*Lucas(95)/(1/2+sqrt(5)/2)^100 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^91/Lucas(96) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^93/Lucas(98) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^94/Lucas(99) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^95/Lucas(100) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^92/Lucas(97) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^90/Lucas(95) 3770005348165518 a004 Fibonacci(19)*Lucas(94)/(1/2+sqrt(5)/2)^99 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(93) 3770005348165518 a004 Fibonacci(19)*Lucas(92)/(1/2+sqrt(5)/2)^97 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(91) 3770005348165518 a004 Fibonacci(19)*Lucas(90)/(1/2+sqrt(5)/2)^95 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(89) 3770005348165518 a004 Fibonacci(19)*Lucas(88)/(1/2+sqrt(5)/2)^93 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(87) 3770005348165518 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^91 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(85) 3770005348165518 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^89 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(83) 3770005348165518 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^87 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(81) 3770005348165518 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^85 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(79) 3770005348165518 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^83 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(77) 3770005348165518 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^81 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(75) 3770005348165518 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^79 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(73) 3770005348165518 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^77 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(71) 3770005348165518 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^75 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(69) 3770005348165518 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^73 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(67) 3770005348165518 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^71 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(65) 3770005348165518 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^69 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(63) 3770005348165518 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^67 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(61) 3770005348165518 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^65 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(59) 3770005348165518 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^63 3770005348165518 a001 4181/312119004989*312119004989^(10/11) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(57) 3770005348165518 a001 1527884973253322/4052739537881 3770005348165518 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^61 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(55) 3770005348165518 a001 4181/312119004989*3461452808002^(5/6) 3770005348165518 a001 116720025776509/309601751184 3770005348165518 a001 4181/505019158607*192900153618^(17/18) 3770005348165518 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^59 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(53) 3770005348165518 a001 222915413394313/591286729879 3770005348165518 a001 4181/119218851371*192900153618^(8/9) 3770005348165518 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^57 3770005348165518 a001 4181/119218851371*73681302247^(12/13) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(51) 3770005348165518 a001 85146111300394/225851433717 3770005348165518 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^55 3770005348165518 a001 4181/17393796001*312119004989^(4/5) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(49) 3770005348165518 a001 4181/17393796001*23725150497407^(11/16) 3770005348165518 a001 32522920506869/86267571272 3770005348165518 a001 4181/17393796001*73681302247^(11/13) 3770005348165518 a001 4181/28143753123*10749957122^(15/16) 3770005348165518 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^53 3770005348165518 a001 4181/45537549124*10749957122^(23/24) 3770005348165518 a001 4181/17393796001*10749957122^(11/12) 3770005348165518 a001 4181/2537720636*2537720636^(8/9) 3770005348165518 a001 4181/6643838879*17393796001^(6/7) 3770005348165518 a001 4181/6643838879*45537549124^(14/17) 3770005348165518 a001 4181/6643838879*817138163596^(14/19) 3770005348165518 a001 4181/6643838879*14662949395604^(2/3) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(47) 3770005348165518 a001 4181/6643838879*505019158607^(3/4) 3770005348165518 a001 4181/6643838879*192900153618^(7/9) 3770005348165518 a001 12422650220213/32951280099 3770005348165518 a001 4181/6643838879*10749957122^(7/8) 3770005348165518 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^51 3770005348165518 a001 4181/17393796001*4106118243^(22/23) 3770005348165518 a001 4181/6643838879*4106118243^(21/23) 3770005348165518 a001 4181/2537720636*312119004989^(8/11) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(45) 3770005348165518 a001 4181/2537720636*23725150497407^(5/8) 3770005348165518 a001 4181/2537720636*73681302247^(10/13) 3770005348165518 a001 4181/2537720636*28143753123^(4/5) 3770005348165518 a001 949006030754/2517253805 3770005348165518 a001 4181/2537720636*10749957122^(5/6) 3770005348165518 a001 4181/2537720636*4106118243^(20/23) 3770005348165518 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^49 3770005348165518 a001 4181/6643838879*1568397607^(21/22) 3770005348165518 a001 4181/2537720636*1568397607^(10/11) 3770005348165518 a001 4181/969323029*817138163596^(2/3) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(43) 3770005348165518 a001 4181/969323029*10749957122^(19/24) 3770005348165518 a001 1812440241097/4807526976 3770005348165518 a001 4181/969323029*4106118243^(19/23) 3770005348165518 a001 4181/969323029*1568397607^(19/22) 3770005348165518 a001 4181/1568397607*599074578^(13/14) 3770005348165518 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^47 3770005348165518 a001 4181/2537720636*599074578^(20/21) 3770005348165518 a001 4181/969323029*599074578^(19/21) 3770005348165518 a001 4181/370248451*2537720636^(4/5) 3770005348165518 a001 4181/370248451*45537549124^(12/17) 3770005348165518 a001 4181/370248451*14662949395604^(4/7) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(41) 3770005348165518 a001 4181/370248451*505019158607^(9/14) 3770005348165518 a001 4181/370248451*192900153618^(2/3) 3770005348165518 a001 4181/370248451*73681302247^(9/13) 3770005348165518 a001 4181/370248451*10749957122^(3/4) 3770005348165518 a001 4181/370248451*4106118243^(18/23) 3770005348165518 a001 692290569521/1836311903 3770005348165518 a001 4181/370248451*1568397607^(9/11) 3770005348165518 a001 4181/370248451*599074578^(6/7) 3770005348165518 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^45 3770005348165518 a001 4181/969323029*228826127^(19/20) 3770005348165518 a001 4181/370248451*228826127^(9/10) 3770005348165518 a001 4181/141422324*45537549124^(2/3) 3770005348165518 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(39) 3770005348165518 a001 4181/141422324*10749957122^(17/24) 3770005348165518 a001 4181/141422324*4106118243^(17/23) 3770005348165518 a001 4181/141422324*1568397607^(17/22) 3770005348165518 a001 264431467466/701408733 3770005348165518 a001 4181/141422324*599074578^(17/21) 3770005348165518 a001 4181/141422324*228826127^(17/20) 3770005348165518 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^7 3770005348165518 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^9 3770005348165518 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^11 3770005348165518 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^13 3770005348165518 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^15 3770005348165518 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^17 3770005348165518 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^19 3770005348165518 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^21 3770005348165518 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^23 3770005348165518 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^25 3770005348165518 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^27 3770005348165518 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^29 3770005348165518 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^31 3770005348165518 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^33 3770005348165518 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^35 3770005348165518 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^37 3770005348165518 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^39 3770005348165518 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^41 3770005348165518 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^43 3770005348165518 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^45 3770005348165518 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^47 3770005348165518 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^49 3770005348165518 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^51 3770005348165518 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^53 3770005348165518 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^55 3770005348165518 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^57 3770005348165518 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^59 3770005348165518 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^61 3770005348165518 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^63 3770005348165518 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^67 3770005348165518 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^65 3770005348165518 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^66 3770005348165518 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^64 3770005348165518 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^62 3770005348165518 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^60 3770005348165518 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^58 3770005348165518 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^56 3770005348165518 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^54 3770005348165518 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^52 3770005348165518 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^50 3770005348165518 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^48 3770005348165518 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^46 3770005348165518 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^44 3770005348165518 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^42 3770005348165518 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^40 3770005348165518 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^38 3770005348165518 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^36 3770005348165518 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^34 3770005348165518 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^32 3770005348165518 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^30 3770005348165518 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^28 3770005348165518 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^26 3770005348165518 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^24 3770005348165518 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^22 3770005348165518 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^20 3770005348165518 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^18 3770005348165518 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^16 3770005348165518 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^14 3770005348165518 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^12 3770005348165518 a001 4181/370248451*87403803^(18/19) 3770005348165518 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^10 3770005348165518 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^8 3770005348165518 a001 4181/141422324*87403803^(17/19) 3770005348165518 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^6 3770005348165519 a001 4181/20633239*20633239^(6/7) 3770005348165519 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^32/Lucas(37) 3770005348165519 a001 4181/54018521*23725150497407^(1/2) 3770005348165519 a001 4181/54018521*505019158607^(4/7) 3770005348165519 a001 4181/54018521*73681302247^(8/13) 3770005348165519 a001 4181/54018521*10749957122^(2/3) 3770005348165519 a001 4181/54018521*4106118243^(16/23) 3770005348165519 a001 4181/54018521*1568397607^(8/11) 3770005348165519 a001 4181/54018521*599074578^(16/21) 3770005348165519 a001 101003832877/267914296 3770005348165519 a001 4181/54018521*228826127^(4/5) 3770005348165519 a001 4181/54018521*87403803^(16/19) 3770005348165519 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^4 3770005348165520 a001 4181/87403803*33385282^(11/12) 3770005348165521 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^41 3770005348165521 a001 4181/141422324*33385282^(17/18) 3770005348165522 a001 4181/54018521*33385282^(8/9) 3770005348165526 a001 4181/20633239*141422324^(10/13) 3770005348165526 a001 4181/20633239*2537720636^(2/3) 3770005348165526 a001 4181/20633239*45537549124^(10/17) 3770005348165526 a001 4181/20633239*312119004989^(6/11) 3770005348165526 a001 4181/20633239*14662949395604^(10/21) 3770005348165526 a001 4181/20633239*(1/2+1/2*5^(1/2))^30 3770005348165526 a001 4181/20633239*192900153618^(5/9) 3770005348165526 a001 4181/20633239*28143753123^(3/5) 3770005348165526 a001 4181/20633239*10749957122^(5/8) 3770005348165526 a001 4181/20633239*4106118243^(15/23) 3770005348165526 a001 4181/20633239*1568397607^(15/22) 3770005348165526 a001 4181/20633239*599074578^(5/7) 3770005348165526 a001 4181/20633239*228826127^(3/4) 3770005348165526 a001 7716006233/20466831 3770005348165527 a001 4181/20633239*87403803^(15/19) 3770005348165527 a004 Fibonacci(35)/Lucas(19)/(1/2+sqrt(5)/2)^2 3770005348165529 a001 4181/20633239*33385282^(5/6) 3770005348165541 a001 4181/54018521*12752043^(16/17) 3770005348165541 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^39 3770005348165547 a001 4181/20633239*12752043^(15/17) 3770005348165571 a001 4181/7881196*20633239^(4/5) 3770005348165578 a001 4181/7881196*17393796001^(4/7) 3770005348165578 a001 4181/7881196*14662949395604^(4/9) 3770005348165578 a001 4181/7881196*(1/2+1/2*5^(1/2))^28 3770005348165578 a001 4181/7881196*73681302247^(7/13) 3770005348165578 a001 4181/7881196*10749957122^(7/12) 3770005348165578 a001 4181/7881196*4106118243^(14/23) 3770005348165578 a001 4181/7881196*1568397607^(7/11) 3770005348165578 a001 4181/7881196*599074578^(2/3) 3770005348165578 a001 4181/7881196*228826127^(7/10) 3770005348165579 a001 4181/7881196*87403803^(14/19) 3770005348165579 a001 3524578/9349 3770005348165581 a001 4181/7881196*33385282^(7/9) 3770005348165597 a001 4181/7881196*12752043^(14/17) 3770005348165675 a001 4181/20633239*4870847^(15/16) 3770005348165676 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^37 3770005348165717 a001 4181/7881196*4870847^(7/8) 3770005348165933 a001 4181/3010349*141422324^(2/3) 3770005348165934 a001 4181/3010349*(1/2+1/2*5^(1/2))^26 3770005348165934 a001 4181/3010349*73681302247^(1/2) 3770005348165934 a001 4181/3010349*10749957122^(13/24) 3770005348165934 a001 4181/3010349*4106118243^(13/23) 3770005348165934 a001 4181/3010349*1568397607^(13/22) 3770005348165934 a001 4181/3010349*599074578^(13/21) 3770005348165934 a001 4181/3010349*228826127^(13/20) 3770005348165934 a001 4181/3010349*87403803^(13/19) 3770005348165934 a001 1346269/9349*(1/2+1/2*5^(1/2))^2 3770005348165934 a001 1346269/9349*10749957122^(1/24) 3770005348165934 a001 1346269/9349*4106118243^(1/23) 3770005348165934 a001 1346269/9349*1568397607^(1/22) 3770005348165934 a001 1346269/9349*599074578^(1/21) 3770005348165934 a001 1346269/9349*228826127^(1/20) 3770005348165934 a001 1346269/9349*87403803^(1/19) 3770005348165934 a001 1346269/9349*33385282^(1/18) 3770005348165935 a001 1346269/9349*12752043^(1/17) 3770005348165936 a001 4181/3010349*33385282^(13/18) 3770005348165937 a001 5628750689/14930352 3770005348165944 a001 1346269/9349*4870847^(1/16) 3770005348165951 a001 4181/3010349*12752043^(13/17) 3770005348166007 a001 1346269/9349*1860498^(1/15) 3770005348166063 a001 4181/3010349*4870847^(13/16) 3770005348166339 a001 4181/4870847*1860498^(9/10) 3770005348166467 a001 1346269/9349*710647^(1/14) 3770005348166595 a001 4181/7881196*1860498^(14/15) 3770005348166607 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^35 3770005348166877 a001 4181/3010349*1860498^(13/15) 3770005348168325 a001 4181/1149851*7881196^(8/11) 3770005348168369 a001 4181/1149851*141422324^(8/13) 3770005348168369 a001 4181/1149851*2537720636^(8/15) 3770005348168369 a001 4181/1149851*45537549124^(8/17) 3770005348168369 a001 4181/1149851*14662949395604^(8/21) 3770005348168369 a001 4181/1149851*(1/2+1/2*5^(1/2))^24 3770005348168369 a001 4181/1149851*192900153618^(4/9) 3770005348168369 a001 4181/1149851*73681302247^(6/13) 3770005348168369 a001 4181/1149851*10749957122^(1/2) 3770005348168369 a001 4181/1149851*4106118243^(12/23) 3770005348168369 a001 4181/1149851*1568397607^(6/11) 3770005348168369 a001 4181/1149851*599074578^(4/7) 3770005348168369 a001 4181/1149851*228826127^(3/5) 3770005348168369 a001 4181/1149851*87403803^(12/19) 3770005348168369 a001 514229/9349*(1/2+1/2*5^(1/2))^4 3770005348168369 a001 514229/9349*23725150497407^(1/16) 3770005348168369 a001 514229/9349*73681302247^(1/13) 3770005348168369 a001 514229/9349*10749957122^(1/12) 3770005348168369 a001 514229/9349*4106118243^(2/23) 3770005348168369 a001 514229/9349*1568397607^(1/11) 3770005348168369 a001 514229/9349*599074578^(2/21) 3770005348168369 a001 514229/9349*228826127^(1/10) 3770005348168369 a001 514229/9349*87403803^(2/19) 3770005348168370 a001 514229/9349*33385282^(1/9) 3770005348168371 a001 4181/1149851*33385282^(2/3) 3770005348168372 a001 514229/9349*12752043^(2/17) 3770005348168385 a001 4181/1149851*12752043^(12/17) 3770005348168389 a001 514229/9349*4870847^(1/8) 3770005348168392 a001 2149991449/5702887 3770005348168488 a001 4181/1149851*4870847^(3/4) 3770005348168515 a001 514229/9349*1860498^(2/15) 3770005348169240 a001 4181/1149851*1860498^(4/5) 3770005348169436 a001 514229/9349*710647^(1/7) 3770005348169870 a001 1346269/9349*271443^(1/13) 3770005348172865 a001 4181/3010349*710647^(13/14) 3770005348172983 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^33 3770005348174768 a001 4181/1149851*710647^(6/7) 3770005348176241 a001 514229/9349*271443^(2/13) 3770005348179972 a001 2178309/9349*103682^(1/24) 3770005348180719 a001 196418/9349*439204^(2/9) 3770005348185021 a001 4181/439204*7881196^(2/3) 3770005348185051 a001 196418/9349*7881196^(2/11) 3770005348185061 a001 4181/439204*312119004989^(2/5) 3770005348185061 a001 4181/439204*(1/2+1/2*5^(1/2))^22 3770005348185061 a001 4181/439204*10749957122^(11/24) 3770005348185061 a001 4181/439204*4106118243^(11/23) 3770005348185061 a001 4181/439204*1568397607^(1/2) 3770005348185061 a001 4181/439204*599074578^(11/21) 3770005348185061 a001 4181/439204*228826127^(11/20) 3770005348185062 a001 4181/439204*87403803^(11/19) 3770005348185062 a001 196418/9349*141422324^(2/13) 3770005348185062 a001 196418/9349*2537720636^(2/15) 3770005348185062 a001 196418/9349*45537549124^(2/17) 3770005348185062 a001 196418/9349*14662949395604^(2/21) 3770005348185062 a001 196418/9349*(1/2+1/2*5^(1/2))^6 3770005348185062 a001 196418/9349*10749957122^(1/8) 3770005348185062 a001 196418/9349*4106118243^(3/23) 3770005348185062 a001 196418/9349*1568397607^(3/22) 3770005348185062 a001 196418/9349*599074578^(1/7) 3770005348185062 a001 196418/9349*228826127^(3/20) 3770005348185062 a001 196418/9349*87403803^(3/19) 3770005348185062 a001 196418/9349*33385282^(1/6) 3770005348185063 a001 4181/439204*33385282^(11/18) 3770005348185066 a001 196418/9349*12752043^(3/17) 3770005348185076 a001 4181/439204*12752043^(11/17) 3770005348185092 a001 196418/9349*4870847^(3/16) 3770005348185171 a001 4181/439204*4870847^(11/16) 3770005348185220 a001 821223658/2178309 3770005348185280 a001 196418/9349*1860498^(1/5) 3770005348185860 a001 4181/439204*1860498^(11/15) 3770005348186661 a001 196418/9349*710647^(3/14) 3770005348190927 a001 4181/439204*710647^(11/14) 3770005348192309 a001 4181/167761*167761^(4/5) 3770005348195159 a001 1346269/9349*103682^(1/12) 3770005348196869 a001 196418/9349*271443^(3/13) 3770005348208266 a001 832040/9349*103682^(1/8) 3770005348215599 a001 4181/1149851*271443^(12/13) 3770005348216639 a001 121393/9349*103682^(7/24) 3770005348216684 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^31 3770005348226819 a001 514229/9349*103682^(1/6) 3770005348228356 a001 4181/439204*271443^(11/13) 3770005348231115 a001 317811/9349*103682^(5/24) 3770005348272737 a001 196418/9349*103682^(1/4) 3770005348274620 a001 2178309/9349*39603^(1/22) 3770005348299468 a001 4181/167761*20633239^(4/7) 3770005348299473 a001 4181/167761*2537720636^(4/9) 3770005348299473 a001 4181/167761*(1/2+1/2*5^(1/2))^20 3770005348299473 a001 4181/167761*23725150497407^(5/16) 3770005348299473 a001 4181/167761*505019158607^(5/14) 3770005348299473 a001 4181/167761*73681302247^(5/13) 3770005348299473 a001 4181/167761*28143753123^(2/5) 3770005348299473 a001 4181/167761*10749957122^(5/12) 3770005348299473 a001 4181/167761*4106118243^(10/23) 3770005348299473 a001 4181/167761*1568397607^(5/11) 3770005348299473 a001 4181/167761*599074578^(10/21) 3770005348299473 a001 4181/167761*228826127^(1/2) 3770005348299473 a001 4181/167761*87403803^(10/19) 3770005348299473 a001 75025/9349*(1/2+1/2*5^(1/2))^8 3770005348299473 a001 75025/9349*23725150497407^(1/8) 3770005348299473 a001 75025/9349*505019158607^(1/7) 3770005348299473 a001 75025/9349*73681302247^(2/13) 3770005348299473 a001 75025/9349*10749957122^(1/6) 3770005348299473 a001 75025/9349*4106118243^(4/23) 3770005348299473 a001 75025/9349*1568397607^(2/11) 3770005348299473 a001 75025/9349*599074578^(4/21) 3770005348299473 a001 75025/9349*228826127^(1/5) 3770005348299473 a001 75025/9349*87403803^(4/19) 3770005348299474 a001 75025/9349*33385282^(2/9) 3770005348299475 a001 4181/167761*33385282^(5/9) 3770005348299479 a001 75025/9349*12752043^(4/17) 3770005348299486 a001 4181/167761*12752043^(10/17) 3770005348299513 a001 75025/9349*4870847^(1/4) 3770005348299572 a001 4181/167761*4870847^(5/8) 3770005348299764 a001 75025/9349*1860498^(4/15) 3770005348300199 a001 4181/167761*1860498^(2/3) 3770005348300562 a001 62735905/166408 3770005348301606 a001 75025/9349*710647^(2/7) 3770005348304805 a001 4181/167761*710647^(5/7) 3770005348315217 a001 75025/9349*271443^(4/13) 3770005348338832 a001 4181/167761*271443^(10/13) 3770005348365114 a001 4181/64079*64079^(18/23) 3770005348384455 a001 1346269/9349*39603^(1/11) 3770005348416373 a001 75025/9349*103682^(1/3) 3770005348421213 a001 4181/271443*103682^(7/8) 3770005348492210 a001 832040/9349*39603^(3/22) 3770005348494140 a001 4181/710647*103682^(23/24) 3770005348506536 a001 4181/439204*103682^(11/12) 3770005348516217 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^29 3770005348591722 a001 4181/167761*103682^(5/6) 3770005348596994 a001 1346269/103682*5778^(7/18) 3770005348605411 a001 514229/9349*39603^(2/11) 3770005348684469 a001 28657/9349*64079^(10/23) 3770005348704355 a001 317811/9349*39603^(5/22) 3770005348747484 a008 Real Root of (-3-5*x+5*x^2-5*x^3+6*x^4-2*x^5) 3770005348798163 a001 46368/9349*39603^(9/22) 3770005348840625 a001 196418/9349*39603^(3/11) 3770005348879175 a001 121393/9349*39603^(7/22) 3770005348896172 a001 3524578/271443*5778^(7/18) 3770005348939821 a001 9227465/710647*5778^(7/18) 3770005348946189 a001 24157817/1860498*5778^(7/18) 3770005348947119 a001 63245986/4870847*5778^(7/18) 3770005348947254 a001 165580141/12752043*5778^(7/18) 3770005348947274 a001 433494437/33385282*5778^(7/18) 3770005348947277 a001 1134903170/87403803*5778^(7/18) 3770005348947277 a001 2971215073/228826127*5778^(7/18) 3770005348947277 a001 7778742049/599074578*5778^(7/18) 3770005348947277 a001 20365011074/1568397607*5778^(7/18) 3770005348947277 a001 53316291173/4106118243*5778^(7/18) 3770005348947277 a001 139583862445/10749957122*5778^(7/18) 3770005348947277 a001 365435296162/28143753123*5778^(7/18) 3770005348947277 a001 956722026041/73681302247*5778^(7/18) 3770005348947277 a001 2504730781961/192900153618*5778^(7/18) 3770005348947277 a001 10610209857723/817138163596*5778^(7/18) 3770005348947277 a001 4052739537881/312119004989*5778^(7/18) 3770005348947277 a001 1548008755920/119218851371*5778^(7/18) 3770005348947277 a001 591286729879/45537549124*5778^(7/18) 3770005348947277 a001 7787980473/599786069*5778^(7/18) 3770005348947277 a001 86267571272/6643838879*5778^(7/18) 3770005348947277 a001 32951280099/2537720636*5778^(7/18) 3770005348947277 a001 12586269025/969323029*5778^(7/18) 3770005348947277 a001 4807526976/370248451*5778^(7/18) 3770005348947278 a001 1836311903/141422324*5778^(7/18) 3770005348947279 a001 701408733/54018521*5778^(7/18) 3770005348947286 a001 9238424/711491*5778^(7/18) 3770005348947338 a001 102334155/7881196*5778^(7/18) 3770005348947693 a001 39088169/3010349*5778^(7/18) 3770005348950125 a001 14930352/1149851*5778^(7/18) 3770005348966798 a001 5702887/439204*5778^(7/18) 3770005348969612 a001 514229/24476*5778^(1/3) 3770005348989130 a001 2178309/9349*15127^(1/20) 3770005349030079 a001 28657/9349*167761^(2/5) 3770005349070632 a001 4181/64079*439204^(2/3) 3770005349081074 a001 2178309/167761*5778^(7/18) 3770005349083628 a001 4181/64079*7881196^(6/11) 3770005349083659 a001 28657/9349*20633239^(2/7) 3770005349083661 a001 4181/64079*141422324^(6/13) 3770005349083661 a001 4181/64079*2537720636^(2/5) 3770005349083661 a001 4181/64079*45537549124^(6/17) 3770005349083661 a001 4181/64079*14662949395604^(2/7) 3770005349083661 a001 4181/64079*(1/2+1/2*5^(1/2))^18 3770005349083661 a001 4181/64079*192900153618^(1/3) 3770005349083661 a001 4181/64079*10749957122^(3/8) 3770005349083661 a001 4181/64079*4106118243^(9/23) 3770005349083661 a001 4181/64079*1568397607^(9/22) 3770005349083661 a001 4181/64079*599074578^(3/7) 3770005349083661 a001 4181/64079*228826127^(9/20) 3770005349083661 a001 4181/64079*87403803^(9/19) 3770005349083661 a001 28657/9349*2537720636^(2/9) 3770005349083661 a001 28657/9349*312119004989^(2/11) 3770005349083661 a001 28657/9349*(1/2+1/2*5^(1/2))^10 3770005349083661 a001 28657/9349*28143753123^(1/5) 3770005349083661 a001 28657/9349*10749957122^(5/24) 3770005349083661 a001 28657/9349*4106118243^(5/23) 3770005349083661 a001 28657/9349*1568397607^(5/22) 3770005349083661 a001 28657/9349*599074578^(5/21) 3770005349083661 a001 28657/9349*228826127^(1/4) 3770005349083662 a001 28657/9349*87403803^(5/19) 3770005349083662 a001 28657/9349*33385282^(5/18) 3770005349083663 a001 4181/64079*33385282^(1/2) 3770005349083668 a001 28657/9349*12752043^(5/17) 3770005349083673 a001 4181/64079*12752043^(9/17) 3770005349083711 a001 28657/9349*4870847^(5/16) 3770005349083750 a001 4181/64079*4870847^(9/16) 3770005349084024 a001 28657/9349*1860498^(1/3) 3770005349084314 a001 4181/64079*1860498^(3/5) 3770005349086328 a001 28657/9349*710647^(5/14) 3770005349088460 a001 4181/64079*710647^(9/14) 3770005349091126 a001 119814917/317811 3770005349103341 a001 28657/9349*271443^(5/13) 3770005349119084 a001 4181/64079*271443^(9/13) 3770005349173557 a001 75025/9349*39603^(4/11) 3770005349229786 a001 28657/9349*103682^(5/12) 3770005349346686 a001 4181/64079*103682^(3/4) 3770005349663862 a001 4181/24476*24476^(16/21) 3770005349813475 a001 1346269/9349*15127^(1/10) 3770005349864332 a001 832040/64079*5778^(7/18) 3770005349890767 a001 4181/103682*39603^(19/22) 3770005350176266 a001 28657/9349*39603^(5/11) 3770005350408821 a001 4181/271443*39603^(21/22) 3770005350484682 a001 4181/167761*39603^(10/11) 3770005350569248 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^27 3770005350635741 a001 832040/9349*15127^(3/20) 3770005350862539 a001 10946/9349*24476^(4/7) 3770005350941858 a001 6624/2161*5778^(5/9) 3770005351003207 a001 9227465/39603*2207^(1/16) 3770005351050350 a001 4181/64079*39603^(9/11) 3770005351463452 a001 514229/9349*15127^(1/5) 3770005352276907 a001 317811/9349*15127^(1/4) 3770005352809647 a001 105937/13201*5778^(4/9) 3770005353056231 a001 24157817/103682*2207^(1/16) 3770005353127686 a001 196418/9349*15127^(3/10) 3770005353355763 a001 63245986/271443*2207^(1/16) 3770005353399464 a001 165580141/710647*2207^(1/16) 3770005353405840 a001 433494437/1860498*2207^(1/16) 3770005353406770 a001 1134903170/4870847*2207^(1/16) 3770005353406906 a001 2971215073/12752043*2207^(1/16) 3770005353406926 a001 7778742049/33385282*2207^(1/16) 3770005353406929 a001 20365011074/87403803*2207^(1/16) 3770005353406929 a001 53316291173/228826127*2207^(1/16) 3770005353406929 a001 139583862445/599074578*2207^(1/16) 3770005353406929 a001 365435296162/1568397607*2207^(1/16) 3770005353406929 a001 956722026041/4106118243*2207^(1/16) 3770005353406929 a001 2504730781961/10749957122*2207^(1/16) 3770005353406929 a001 6557470319842/28143753123*2207^(1/16) 3770005353406929 a001 10610209857723/45537549124*2207^(1/16) 3770005353406929 a001 4052739537881/17393796001*2207^(1/16) 3770005353406929 a001 1548008755920/6643838879*2207^(1/16) 3770005353406929 a001 591286729879/2537720636*2207^(1/16) 3770005353406929 a001 225851433717/969323029*2207^(1/16) 3770005353406929 a001 86267571272/370248451*2207^(1/16) 3770005353406929 a001 63246219/271444*2207^(1/16) 3770005353406930 a001 12586269025/54018521*2207^(1/16) 3770005353406938 a001 4807526976/20633239*2207^(1/16) 3770005353406990 a001 1836311903/7881196*2207^(1/16) 3770005353407345 a001 701408733/3010349*2207^(1/16) 3770005353409781 a001 267914296/1149851*2207^(1/16) 3770005353426473 a001 102334155/439204*2207^(1/16) 3770005353540884 a001 39088169/167761*2207^(1/16) 3770005353819858 a001 4181/24476*64079^(16/23) 3770005353880747 a001 121393/9349*15127^(7/20) 3770005353979535 a001 10946/9349*64079^(12/23) 3770005354325069 a001 14930352/64079*2207^(1/16) 3770005354438924 a001 2178309/9349*5778^(1/18) 3770005354449880 a001 10946/9349*439204^(4/9) 3770005354458544 a001 10946/9349*7881196^(4/11) 3770005354458566 a001 4181/24476*(1/2+1/2*5^(1/2))^16 3770005354458566 a001 4181/24476*23725150497407^(1/4) 3770005354458566 a001 4181/24476*73681302247^(4/13) 3770005354458566 a001 4181/24476*10749957122^(1/3) 3770005354458566 a001 4181/24476*4106118243^(8/23) 3770005354458566 a001 4181/24476*1568397607^(4/11) 3770005354458566 a001 4181/24476*599074578^(8/21) 3770005354458566 a001 4181/24476*228826127^(2/5) 3770005354458566 a001 4181/24476*87403803^(8/19) 3770005354458566 a001 10946/9349*141422324^(4/13) 3770005354458566 a001 10946/9349*2537720636^(4/15) 3770005354458566 a001 10946/9349*45537549124^(4/17) 3770005354458566 a001 10946/9349*817138163596^(4/19) 3770005354458566 a001 10946/9349*14662949395604^(4/21) 3770005354458566 a001 10946/9349*(1/2+1/2*5^(1/2))^12 3770005354458566 a001 10946/9349*192900153618^(2/9) 3770005354458566 a001 10946/9349*73681302247^(3/13) 3770005354458566 a001 10946/9349*10749957122^(1/4) 3770005354458566 a001 10946/9349*4106118243^(6/23) 3770005354458566 a001 10946/9349*1568397607^(3/11) 3770005354458566 a001 10946/9349*599074578^(2/7) 3770005354458566 a001 10946/9349*228826127^(3/10) 3770005354458567 a001 10946/9349*87403803^(6/19) 3770005354458567 a001 4181/24476*33385282^(4/9) 3770005354458568 a001 10946/9349*33385282^(1/3) 3770005354458575 a001 10946/9349*12752043^(6/17) 3770005354458577 a001 4181/24476*12752043^(8/17) 3770005354458626 a001 10946/9349*4870847^(3/8) 3770005354458645 a001 4181/24476*4870847^(1/2) 3770005354459002 a001 10946/9349*1860498^(2/5) 3770005354459147 a001 4181/24476*1860498^(8/15) 3770005354461766 a001 10946/9349*710647^(3/7) 3770005354462832 a001 4181/24476*710647^(4/7) 3770005354482182 a001 10946/9349*271443^(6/13) 3770005354490053 a001 4181/24476*271443^(8/13) 3770005354509732 a001 45765226/121393 3770005354633916 a001 10946/9349*103682^(1/2) 3770005354692366 a001 4181/24476*103682^(2/3) 3770005354823265 a001 17711/9349*15127^(11/20) 3770005354869054 a001 416020/51841*5778^(4/9) 3770005354889639 a001 75025/9349*15127^(2/5) 3770005355169517 a001 726103/90481*5778^(4/9) 3770005355213354 a001 5702887/710647*5778^(4/9) 3770005355219750 a001 829464/103361*5778^(4/9) 3770005355220683 a001 39088169/4870847*5778^(4/9) 3770005355220819 a001 34111385/4250681*5778^(4/9) 3770005355220839 a001 133957148/16692641*5778^(4/9) 3770005355220842 a001 233802911/29134601*5778^(4/9) 3770005355220842 a001 1836311903/228826127*5778^(4/9) 3770005355220842 a001 267084832/33281921*5778^(4/9) 3770005355220842 a001 12586269025/1568397607*5778^(4/9) 3770005355220842 a001 10983760033/1368706081*5778^(4/9) 3770005355220842 a001 43133785636/5374978561*5778^(4/9) 3770005355220842 a001 75283811239/9381251041*5778^(4/9) 3770005355220842 a001 591286729879/73681302247*5778^(4/9) 3770005355220842 a001 86000486440/10716675201*5778^(4/9) 3770005355220842 a001 4052739537881/505019158607*5778^(4/9) 3770005355220842 a001 3536736619241/440719107401*5778^(4/9) 3770005355220842 a001 3278735159921/408569081798*5778^(4/9) 3770005355220842 a001 2504730781961/312119004989*5778^(4/9) 3770005355220842 a001 956722026041/119218851371*5778^(4/9) 3770005355220842 a001 182717648081/22768774562*5778^(4/9) 3770005355220842 a001 139583862445/17393796001*5778^(4/9) 3770005355220842 a001 53316291173/6643838879*5778^(4/9) 3770005355220842 a001 10182505537/1268860318*5778^(4/9) 3770005355220842 a001 7778742049/969323029*5778^(4/9) 3770005355220842 a001 2971215073/370248451*5778^(4/9) 3770005355220843 a001 567451585/70711162*5778^(4/9) 3770005355220844 a001 433494437/54018521*5778^(4/9) 3770005355220851 a001 165580141/20633239*5778^(4/9) 3770005355220903 a001 31622993/3940598*5778^(4/9) 3770005355221260 a001 24157817/3010349*5778^(4/9) 3770005355223703 a001 9227465/1149851*5778^(4/9) 3770005355228755 a001 46368/9349*15127^(9/20) 3770005355232861 a001 10959/844*5778^(7/18) 3770005355240447 a001 1762289/219602*5778^(4/9) 3770005355355214 a001 1346269/167761*5778^(4/9) 3770005355769692 a001 10946/9349*39603^(6/11) 3770005356141837 a001 514229/64079*5778^(4/9) 3770005356206734 a001 4181/24476*39603^(8/11) 3770005357321369 a001 28657/9349*15127^(1/2) 3770005358484266 a001 28657/15127*5778^(11/18) 3770005359110221 a001 196418/39603*5778^(1/2) 3770005359516359 a001 4181/9349*9349^(14/19) 3770005359699954 a001 5702887/24476*2207^(1/16) 3770005359765889 a001 4181/39603*15127^(17/20) 3770005359911403 a001 6765/15127*5778^(7/9) 3770005360713064 a001 1346269/9349*5778^(1/9) 3770005361146559 a001 514229/103682*5778^(1/2) 3770005361435957 a001 17711/15127*5778^(2/3) 3770005361443657 a001 1346269/271443*5778^(1/2) 3770005361487003 a001 3524578/710647*5778^(1/2) 3770005361493327 a001 9227465/1860498*5778^(1/2) 3770005361494250 a001 24157817/4870847*5778^(1/2) 3770005361494384 a001 63245986/12752043*5778^(1/2) 3770005361494404 a001 165580141/33385282*5778^(1/2) 3770005361494407 a001 433494437/87403803*5778^(1/2) 3770005361494407 a001 1134903170/228826127*5778^(1/2) 3770005361494407 a001 2971215073/599074578*5778^(1/2) 3770005361494407 a001 7778742049/1568397607*5778^(1/2) 3770005361494407 a001 20365011074/4106118243*5778^(1/2) 3770005361494407 a001 53316291173/10749957122*5778^(1/2) 3770005361494407 a001 139583862445/28143753123*5778^(1/2) 3770005361494407 a001 365435296162/73681302247*5778^(1/2) 3770005361494407 a001 956722026041/192900153618*5778^(1/2) 3770005361494407 a001 2504730781961/505019158607*5778^(1/2) 3770005361494407 a001 10610209857723/2139295485799*5778^(1/2) 3770005361494407 a001 140728068720/28374454999*5778^(1/2) 3770005361494407 a001 591286729879/119218851371*5778^(1/2) 3770005361494407 a001 225851433717/45537549124*5778^(1/2) 3770005361494407 a001 86267571272/17393796001*5778^(1/2) 3770005361494407 a001 32951280099/6643838879*5778^(1/2) 3770005361494407 a001 1144206275/230701876*5778^(1/2) 3770005361494407 a001 4807526976/969323029*5778^(1/2) 3770005361494407 a001 1836311903/370248451*5778^(1/2) 3770005361494408 a001 701408733/141422324*5778^(1/2) 3770005361494409 a001 267914296/54018521*5778^(1/2) 3770005361494416 a001 9303105/1875749*5778^(1/2) 3770005361494468 a001 39088169/7881196*5778^(1/2) 3770005361494820 a001 14930352/3010349*5778^(1/2) 3770005361497236 a001 5702887/1149851*5778^(1/2) 3770005361513792 a001 2178309/439204*5778^(1/2) 3770005361533435 a001 98209/12238*5778^(4/9) 3770005361627274 a001 75640/15251*5778^(1/2) 3770005362405086 a001 317811/64079*5778^(1/2) 3770005363466462 a001 4181/103682*15127^(19/20) 3770005363911534 a001 4181/64079*15127^(9/10) 3770005364343815 a001 10946/9349*15127^(3/5) 3770005364503226 r009 Re(z^3+c),c=-13/27+4/15*I,n=60 3770005364640932 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^25 3770005365313076 a001 121393/39603*5778^(5/9) 3770005365556044 a001 1597/9349*3571^(16/17) 3770005366985124 a001 832040/9349*5778^(1/6) 3770005367409808 a001 317811/103682*5778^(5/9) 3770005367638898 a001 4181/24476*15127^(4/5) 3770005367715717 a001 832040/271443*5778^(5/9) 3770005367736290 a001 121393/24476*5778^(1/2) 3770005367760349 a001 311187/101521*5778^(5/9) 3770005367766860 a001 5702887/1860498*5778^(5/9) 3770005367767810 a001 14930352/4870847*5778^(5/9) 3770005367767949 a001 39088169/12752043*5778^(5/9) 3770005367767969 a001 14619165/4769326*5778^(5/9) 3770005367767972 a001 267914296/87403803*5778^(5/9) 3770005367767972 a001 701408733/228826127*5778^(5/9) 3770005367767973 a001 1836311903/599074578*5778^(5/9) 3770005367767973 a001 686789568/224056801*5778^(5/9) 3770005367767973 a001 12586269025/4106118243*5778^(5/9) 3770005367767973 a001 32951280099/10749957122*5778^(5/9) 3770005367767973 a001 86267571272/28143753123*5778^(5/9) 3770005367767973 a001 32264490531/10525900321*5778^(5/9) 3770005367767973 a001 591286729879/192900153618*5778^(5/9) 3770005367767973 a001 1548008755920/505019158607*5778^(5/9) 3770005367767973 a001 1515744265389/494493258286*5778^(5/9) 3770005367767973 a001 2504730781961/817138163596*5778^(5/9) 3770005367767973 a001 956722026041/312119004989*5778^(5/9) 3770005367767973 a001 365435296162/119218851371*5778^(5/9) 3770005367767973 a001 139583862445/45537549124*5778^(5/9) 3770005367767973 a001 53316291173/17393796001*5778^(5/9) 3770005367767973 a001 20365011074/6643838879*5778^(5/9) 3770005367767973 a001 7778742049/2537720636*5778^(5/9) 3770005367767973 a001 2971215073/969323029*5778^(5/9) 3770005367767973 a001 1134903170/370248451*5778^(5/9) 3770005367767973 a001 433494437/141422324*5778^(5/9) 3770005367767974 a001 165580141/54018521*5778^(5/9) 3770005367767982 a001 63245986/20633239*5778^(5/9) 3770005367768035 a001 24157817/7881196*5778^(5/9) 3770005367768397 a001 9227465/3010349*5778^(5/9) 3770005367770885 a001 3524578/1149851*5778^(5/9) 3770005367787932 a001 1346269/439204*5778^(5/9) 3770005367904779 a001 514229/167761*5778^(5/9) 3770005368705660 a001 196418/64079*5778^(5/9) 3770005371771762 a001 75025/39603*5778^(11/18) 3770005373262630 a001 514229/9349*5778^(2/9) 3770005373710382 a001 98209/51841*5778^(11/18) 3770005373993223 a001 514229/271443*5778^(11/18) 3770005374034489 a001 1346269/710647*5778^(11/18) 3770005374040509 a001 1762289/930249*5778^(11/18) 3770005374041388 a001 9227465/4870847*5778^(11/18) 3770005374041516 a001 24157817/12752043*5778^(11/18) 3770005374041534 a001 31622993/16692641*5778^(11/18) 3770005374041537 a001 165580141/87403803*5778^(11/18) 3770005374041538 a001 433494437/228826127*5778^(11/18) 3770005374041538 a001 567451585/299537289*5778^(11/18) 3770005374041538 a001 2971215073/1568397607*5778^(11/18) 3770005374041538 a001 7778742049/4106118243*5778^(11/18) 3770005374041538 a001 10182505537/5374978561*5778^(11/18) 3770005374041538 a001 53316291173/28143753123*5778^(11/18) 3770005374041538 a001 139583862445/73681302247*5778^(11/18) 3770005374041538 a001 182717648081/96450076809*5778^(11/18) 3770005374041538 a001 956722026041/505019158607*5778^(11/18) 3770005374041538 a001 10610209857723/5600748293801*5778^(11/18) 3770005374041538 a001 591286729879/312119004989*5778^(11/18) 3770005374041538 a001 225851433717/119218851371*5778^(11/18) 3770005374041538 a001 21566892818/11384387281*5778^(11/18) 3770005374041538 a001 32951280099/17393796001*5778^(11/18) 3770005374041538 a001 12586269025/6643838879*5778^(11/18) 3770005374041538 a001 1201881744/634430159*5778^(11/18) 3770005374041538 a001 1836311903/969323029*5778^(11/18) 3770005374041538 a001 701408733/370248451*5778^(11/18) 3770005374041538 a001 66978574/35355581*5778^(11/18) 3770005374041539 a001 102334155/54018521*5778^(11/18) 3770005374041546 a001 39088169/20633239*5778^(11/18) 3770005374041595 a001 3732588/1970299*5778^(11/18) 3770005374041930 a001 5702887/3010349*5778^(11/18) 3770005374044230 a001 2178309/1149851*5778^(11/18) 3770005374059992 a001 208010/109801*5778^(11/18) 3770005374168028 a001 317811/167761*5778^(11/18) 3770005374194976 a001 75025/24476*5778^(5/9) 3770005374908515 a001 121393/64079*5778^(11/18) 3770005376406301 a001 10946/15127*5778^(13/18) 3770005377560673 a001 15456/13201*5778^(2/3) 3770005379525878 a001 317811/9349*5778^(5/18) 3770005379913237 a001 121393/103682*5778^(2/3) 3770005379983887 a001 11592/6119*5778^(11/18) 3770005380256471 a001 105937/90481*5778^(2/3) 3770005380306549 a001 832040/710647*5778^(2/3) 3770005380313855 a001 726103/620166*5778^(2/3) 3770005380314921 a001 5702887/4870847*5778^(2/3) 3770005380315076 a001 4976784/4250681*5778^(2/3) 3770005380315099 a001 39088169/33385282*5778^(2/3) 3770005380315102 a001 34111385/29134601*5778^(2/3) 3770005380315103 a001 267914296/228826127*5778^(2/3) 3770005380315103 a001 233802911/199691526*5778^(2/3) 3770005380315103 a001 1836311903/1568397607*5778^(2/3) 3770005380315103 a001 1602508992/1368706081*5778^(2/3) 3770005380315103 a001 12586269025/10749957122*5778^(2/3) 3770005380315103 a001 10983760033/9381251041*5778^(2/3) 3770005380315103 a001 86267571272/73681302247*5778^(2/3) 3770005380315103 a001 75283811239/64300051206*5778^(2/3) 3770005380315103 a001 2504730781961/2139295485799*5778^(2/3) 3770005380315103 a001 365435296162/312119004989*5778^(2/3) 3770005380315103 a001 139583862445/119218851371*5778^(2/3) 3770005380315103 a001 53316291173/45537549124*5778^(2/3) 3770005380315103 a001 20365011074/17393796001*5778^(2/3) 3770005380315103 a001 7778742049/6643838879*5778^(2/3) 3770005380315103 a001 2971215073/2537720636*5778^(2/3) 3770005380315103 a001 1134903170/969323029*5778^(2/3) 3770005380315103 a001 433494437/370248451*5778^(2/3) 3770005380315103 a001 165580141/141422324*5778^(2/3) 3770005380315104 a001 63245986/54018521*5778^(2/3) 3770005380315113 a001 24157817/20633239*5778^(2/3) 3770005380315172 a001 9227465/7881196*5778^(2/3) 3770005380315579 a001 3524578/3010349*5778^(2/3) 3770005380318370 a001 1346269/1149851*5778^(2/3) 3770005380337498 a001 514229/439204*5778^(2/3) 3770005380468602 a001 196418/167761*5778^(2/3) 3770005381367201 a001 75025/64079*5778^(2/3) 3770005385103081 a001 28657/39603*5778^(13/18) 3770005385305963 a001 311187/2161*2207^(1/8) 3770005385599115 a001 105937/1926*2207^(1/4) 3770005385826452 a001 196418/9349*5778^(1/3) 3770005386371924 a001 75025/103682*5778^(13/18) 3770005386530218 a001 2255/13201*5778^(8/9) 3770005386557045 a001 196418/271443*5778^(13/18) 3770005386584054 a001 514229/710647*5778^(13/18) 3770005386587995 a001 1346269/1860498*5778^(13/18) 3770005386588570 a001 3524578/4870847*5778^(13/18) 3770005386588654 a001 9227465/12752043*5778^(13/18) 3770005386588666 a001 24157817/33385282*5778^(13/18) 3770005386588668 a001 63245986/87403803*5778^(13/18) 3770005386588668 a001 165580141/228826127*5778^(13/18) 3770005386588668 a001 433494437/599074578*5778^(13/18) 3770005386588668 a001 1134903170/1568397607*5778^(13/18) 3770005386588668 a001 2971215073/4106118243*5778^(13/18) 3770005386588668 a001 7778742049/10749957122*5778^(13/18) 3770005386588668 a001 20365011074/28143753123*5778^(13/18) 3770005386588668 a001 53316291173/73681302247*5778^(13/18) 3770005386588668 a001 139583862445/192900153618*5778^(13/18) 3770005386588668 a001 365435296162/505019158607*5778^(13/18) 3770005386588668 a001 10610209857723/14662949395604*5778^(13/18) 3770005386588668 a001 225851433717/312119004989*5778^(13/18) 3770005386588668 a001 86267571272/119218851371*5778^(13/18) 3770005386588668 a001 32951280099/45537549124*5778^(13/18) 3770005386588668 a001 12586269025/17393796001*5778^(13/18) 3770005386588668 a001 4807526976/6643838879*5778^(13/18) 3770005386588668 a001 1836311903/2537720636*5778^(13/18) 3770005386588668 a001 701408733/969323029*5778^(13/18) 3770005386588668 a001 267914296/370248451*5778^(13/18) 3770005386588668 a001 102334155/141422324*5778^(13/18) 3770005386588669 a001 39088169/54018521*5778^(13/18) 3770005386588673 a001 14930352/20633239*5778^(13/18) 3770005386588705 a001 5702887/7881196*5778^(13/18) 3770005386588925 a001 2178309/3010349*5778^(13/18) 3770005386590430 a001 832040/1149851*5778^(13/18) 3770005386600747 a001 317811/439204*5778^(13/18) 3770005386671457 a001 121393/167761*5778^(13/18) 3770005387103348 a001 4181/9349*24476^(2/3) 3770005387156112 a001 46368/64079*5778^(13/18) 3770005387526295 a001 28657/24476*5778^(2/3) 3770005388054772 a001 17711/39603*5778^(7/9) 3770005388953432 a001 6765/24476*5778^(5/6) 3770005389600048 l006 ln(4573/6667) 3770005390477986 a001 17711/24476*5778^(13/18) 3770005390739844 a001 4181/9349*64079^(14/23) 3770005391298710 a001 4181/9349*20633239^(2/5) 3770005391298714 a001 4181/9349*17393796001^(2/7) 3770005391298714 a001 4181/9349*14662949395604^(2/9) 3770005391298714 a001 4181/9349*(1/2+1/2*5^(1/2))^14 3770005391298714 a001 4181/9349*10749957122^(7/24) 3770005391298714 a001 4181/9349*4106118243^(7/23) 3770005391298714 a001 4181/9349*1568397607^(7/22) 3770005391298714 a001 4181/9349*599074578^(1/3) 3770005391298714 a001 4181/9349*228826127^(7/20) 3770005391298714 a001 4181/9349*87403803^(7/19) 3770005391298715 a001 4181/9349*33385282^(7/18) 3770005391298723 a001 4181/9349*12752043^(7/17) 3770005391298783 a001 4181/9349*4870847^(7/16) 3770005391299222 a001 4181/9349*1860498^(7/15) 3770005391302446 a001 4181/9349*710647^(1/2) 3770005391326265 a001 4181/9349*271443^(7/13) 3770005391503289 a001 4181/9349*103682^(7/12) 3770005391649413 a001 17480761/46368 3770005392029307 a001 121393/9349*5778^(7/18) 3770005392160834 a001 23184/51841*5778^(7/9) 3770005392759900 a001 121393/271443*5778^(7/9) 3770005392828361 a001 4181/9349*39603^(7/11) 3770005392847303 a001 317811/710647*5778^(7/9) 3770005392860055 a001 416020/930249*5778^(7/9) 3770005392861915 a001 2178309/4870847*5778^(7/9) 3770005392862187 a001 5702887/12752043*5778^(7/9) 3770005392862226 a001 7465176/16692641*5778^(7/9) 3770005392862232 a001 39088169/87403803*5778^(7/9) 3770005392862233 a001 102334155/228826127*5778^(7/9) 3770005392862233 a001 133957148/299537289*5778^(7/9) 3770005392862233 a001 701408733/1568397607*5778^(7/9) 3770005392862233 a001 1836311903/4106118243*5778^(7/9) 3770005392862233 a001 2403763488/5374978561*5778^(7/9) 3770005392862233 a001 12586269025/28143753123*5778^(7/9) 3770005392862233 a001 32951280099/73681302247*5778^(7/9) 3770005392862233 a001 43133785636/96450076809*5778^(7/9) 3770005392862233 a001 225851433717/505019158607*5778^(7/9) 3770005392862233 a001 591286729879/1322157322203*5778^(7/9) 3770005392862233 a001 10610209857723/23725150497407*5778^(7/9) 3770005392862233 a001 182717648081/408569081798*5778^(7/9) 3770005392862233 a001 139583862445/312119004989*5778^(7/9) 3770005392862233 a001 53316291173/119218851371*5778^(7/9) 3770005392862233 a001 10182505537/22768774562*5778^(7/9) 3770005392862233 a001 7778742049/17393796001*5778^(7/9) 3770005392862233 a001 2971215073/6643838879*5778^(7/9) 3770005392862233 a001 567451585/1268860318*5778^(7/9) 3770005392862233 a001 433494437/969323029*5778^(7/9) 3770005392862233 a001 165580141/370248451*5778^(7/9) 3770005392862233 a001 31622993/70711162*5778^(7/9) 3770005392862236 a001 24157817/54018521*5778^(7/9) 3770005392862251 a001 9227465/20633239*5778^(7/9) 3770005392862354 a001 1762289/3940598*5778^(7/9) 3770005392863065 a001 1346269/3010349*5778^(7/9) 3770005392867936 a001 514229/1149851*5778^(7/9) 3770005392900202 a001 6765/3571*3571^(11/17) 3770005392901321 a001 98209/219602*5778^(7/9) 3770005393130144 a001 75025/167761*5778^(7/9) 3770005394698520 a001 28657/64079*5778^(7/9) 3770005396125657 a001 6765/64079*5778^(17/18) 3770005396539967 a001 2178309/9349*2207^(1/16) 3770005397650211 a001 17711/64079*5778^(5/6) 3770005398487994 a001 75025/9349*5778^(4/9) 3770005398919054 a001 46368/167761*5778^(5/6) 3770005398980058 r005 Im(z^2+c),c=-1/98+11/23*I,n=60 3770005399104176 a001 121393/439204*5778^(5/6) 3770005399131184 a001 317811/1149851*5778^(5/6) 3770005399135125 a001 832040/3010349*5778^(5/6) 3770005399135700 a001 2178309/7881196*5778^(5/6) 3770005399135784 a001 5702887/20633239*5778^(5/6) 3770005399135796 a001 14930352/54018521*5778^(5/6) 3770005399135798 a001 39088169/141422324*5778^(5/6) 3770005399135798 a001 102334155/370248451*5778^(5/6) 3770005399135798 a001 267914296/969323029*5778^(5/6) 3770005399135798 a001 701408733/2537720636*5778^(5/6) 3770005399135798 a001 1836311903/6643838879*5778^(5/6) 3770005399135798 a001 4807526976/17393796001*5778^(5/6) 3770005399135798 a001 12586269025/45537549124*5778^(5/6) 3770005399135798 a001 32951280099/119218851371*5778^(5/6) 3770005399135798 a001 86267571272/312119004989*5778^(5/6) 3770005399135798 a001 225851433717/817138163596*5778^(5/6) 3770005399135798 a001 1548008755920/5600748293801*5778^(5/6) 3770005399135798 a001 139583862445/505019158607*5778^(5/6) 3770005399135798 a001 53316291173/192900153618*5778^(5/6) 3770005399135798 a001 20365011074/73681302247*5778^(5/6) 3770005399135798 a001 7778742049/28143753123*5778^(5/6) 3770005399135798 a001 2971215073/10749957122*5778^(5/6) 3770005399135798 a001 1134903170/4106118243*5778^(5/6) 3770005399135798 a001 433494437/1568397607*5778^(5/6) 3770005399135798 a001 165580141/599074578*5778^(5/6) 3770005399135798 a001 63245986/228826127*5778^(5/6) 3770005399135799 a001 24157817/87403803*5778^(5/6) 3770005399135804 a001 9227465/33385282*5778^(5/6) 3770005399135836 a001 3524578/12752043*5778^(5/6) 3770005399136055 a001 1346269/4870847*5778^(5/6) 3770005399137560 a001 514229/1860498*5778^(5/6) 3770005399147877 a001 196418/710647*5778^(5/6) 3770005399218587 a001 75025/271443*5778^(5/6) 3770005399377783 a001 5702887/39603*2207^(1/8) 3770005399703242 a001 28657/103682*5778^(5/6) 3770005401430834 a001 7465176/51841*2207^(1/8) 3770005401481079 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^24 3770005401730370 a001 39088169/271443*2207^(1/8) 3770005401774071 a001 14619165/101521*2207^(1/8) 3770005401780447 a001 133957148/930249*2207^(1/8) 3770005401781378 a001 701408733/4870847*2207^(1/8) 3770005401781513 a001 1836311903/12752043*2207^(1/8) 3770005401781533 a001 14930208/103681*2207^(1/8) 3770005401781536 a001 12586269025/87403803*2207^(1/8) 3770005401781537 a001 32951280099/228826127*2207^(1/8) 3770005401781537 a001 43133785636/299537289*2207^(1/8) 3770005401781537 a001 32264490531/224056801*2207^(1/8) 3770005401781537 a001 591286729879/4106118243*2207^(1/8) 3770005401781537 a001 774004377960/5374978561*2207^(1/8) 3770005401781537 a001 4052739537881/28143753123*2207^(1/8) 3770005401781537 a001 1515744265389/10525900321*2207^(1/8) 3770005401781537 a001 3278735159921/22768774562*2207^(1/8) 3770005401781537 a001 2504730781961/17393796001*2207^(1/8) 3770005401781537 a001 956722026041/6643838879*2207^(1/8) 3770005401781537 a001 182717648081/1268860318*2207^(1/8) 3770005401781537 a001 139583862445/969323029*2207^(1/8) 3770005401781537 a001 53316291173/370248451*2207^(1/8) 3770005401781537 a001 10182505537/70711162*2207^(1/8) 3770005401781538 a001 7778742049/54018521*2207^(1/8) 3770005401781545 a001 2971215073/20633239*2207^(1/8) 3770005401781597 a001 567451585/3940598*2207^(1/8) 3770005401781953 a001 433494437/3010349*2207^(1/8) 3770005401784388 a001 165580141/1149851*2207^(1/8) 3770005401801081 a001 31622993/219602*2207^(1/8) 3770005401915493 a001 24157817/167761*2207^(1/8) 3770005402654933 a001 17711/103682*5778^(8/9) 3770005402699689 a001 9227465/64079*2207^(1/8) 3770005402831504 a001 4181/9349*15127^(7/10) 3770005403025116 a001 10946/39603*5778^(5/6) 3770005404276904 a001 46368/9349*5778^(1/2) 3770005405007497 a001 15456/90481*5778^(8/9) 3770005405350732 a001 121393/710647*5778^(8/9) 3770005405400809 a001 105937/620166*5778^(8/9) 3770005405408115 a001 832040/4870847*5778^(8/9) 3770005405409181 a001 726103/4250681*5778^(8/9) 3770005405409337 a001 5702887/33385282*5778^(8/9) 3770005405409359 a001 4976784/29134601*5778^(8/9) 3770005405409363 a001 39088169/228826127*5778^(8/9) 3770005405409363 a001 34111385/199691526*5778^(8/9) 3770005405409363 a001 267914296/1568397607*5778^(8/9) 3770005405409363 a001 233802911/1368706081*5778^(8/9) 3770005405409363 a001 1836311903/10749957122*5778^(8/9) 3770005405409363 a001 1602508992/9381251041*5778^(8/9) 3770005405409363 a001 12586269025/73681302247*5778^(8/9) 3770005405409363 a001 10983760033/64300051206*5778^(8/9) 3770005405409363 a001 86267571272/505019158607*5778^(8/9) 3770005405409363 a001 75283811239/440719107401*5778^(8/9) 3770005405409363 a001 2504730781961/14662949395604*5778^(8/9) 3770005405409363 a001 139583862445/817138163596*5778^(8/9) 3770005405409363 a001 53316291173/312119004989*5778^(8/9) 3770005405409363 a001 20365011074/119218851371*5778^(8/9) 3770005405409363 a001 7778742049/45537549124*5778^(8/9) 3770005405409363 a001 2971215073/17393796001*5778^(8/9) 3770005405409363 a001 1134903170/6643838879*5778^(8/9) 3770005405409363 a001 433494437/2537720636*5778^(8/9) 3770005405409363 a001 165580141/969323029*5778^(8/9) 3770005405409363 a001 63245986/370248451*5778^(8/9) 3770005405409365 a001 24157817/141422324*5778^(8/9) 3770005405409373 a001 9227465/54018521*5778^(8/9) 3770005405409433 a001 3524578/20633239*5778^(8/9) 3770005405409840 a001 1346269/7881196*5778^(8/9) 3770005405412631 a001 514229/3010349*5778^(8/9) 3770005405431758 a001 196418/1149851*5778^(8/9) 3770005405448330 a001 5473/12238*5778^(7/9) 3770005405562862 a001 75025/439204*5778^(8/9) 3770005406461462 a001 28657/167761*5778^(8/9) 3770005406860647 m005 (2*gamma-3/4)/(1/3*exp(1)+1/6) 3770005408074646 a001 1762289/12238*2207^(1/8) 3770005409413153 a001 17711/167761*5778^(17/18) 3770005411351773 a001 11592/109801*5778^(17/18) 3770005411634613 a001 121393/1149851*5778^(17/18) 3770005411675879 a001 317811/3010349*5778^(17/18) 3770005411681900 a001 208010/1970299*5778^(17/18) 3770005411682778 a001 2178309/20633239*5778^(17/18) 3770005411682907 a001 5702887/54018521*5778^(17/18) 3770005411682925 a001 3732588/35355581*5778^(17/18) 3770005411682928 a001 39088169/370248451*5778^(17/18) 3770005411682928 a001 102334155/969323029*5778^(17/18) 3770005411682928 a001 66978574/634430159*5778^(17/18) 3770005411682928 a001 701408733/6643838879*5778^(17/18) 3770005411682928 a001 1836311903/17393796001*5778^(17/18) 3770005411682928 a001 1201881744/11384387281*5778^(17/18) 3770005411682928 a001 12586269025/119218851371*5778^(17/18) 3770005411682928 a001 32951280099/312119004989*5778^(17/18) 3770005411682928 a001 21566892818/204284540899*5778^(17/18) 3770005411682928 a001 225851433717/2139295485799*5778^(17/18) 3770005411682928 a001 182717648081/1730726404001*5778^(17/18) 3770005411682928 a001 139583862445/1322157322203*5778^(17/18) 3770005411682928 a001 53316291173/505019158607*5778^(17/18) 3770005411682928 a001 10182505537/96450076809*5778^(17/18) 3770005411682928 a001 7778742049/73681302247*5778^(17/18) 3770005411682928 a001 2971215073/28143753123*5778^(17/18) 3770005411682928 a001 567451585/5374978561*5778^(17/18) 3770005411682928 a001 433494437/4106118243*5778^(17/18) 3770005411682928 a001 165580141/1568397607*5778^(17/18) 3770005411682929 a001 31622993/299537289*5778^(17/18) 3770005411682930 a001 24157817/228826127*5778^(17/18) 3770005411682937 a001 9227465/87403803*5778^(17/18) 3770005411682986 a001 1762289/16692641*5778^(17/18) 3770005411683321 a001 1346269/12752043*5778^(17/18) 3770005411685621 a001 514229/4870847*5778^(17/18) 3770005411701383 a001 98209/930249*5778^(17/18) 3770005411809419 a001 75025/710647*5778^(17/18) 3770005411819312 a001 28657/9349*5778^(5/9) 3770005412549905 a001 28657/271443*5778^(17/18) 3770005412620555 a001 10946/64079*5778^(8/9) 3770005413246449 a001 6765/9349*5778^(13/18) 3770005414771004 a001 17711/9349*5778^(11/18) 3770005415552763 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^26 3770005417605794 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^28 3770005417625277 a001 5473/51841*5778^(17/18) 3770005417905327 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^30 3770005417949028 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^32 3770005417955404 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^34 3770005417956335 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^36 3770005417956470 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^38 3770005417956490 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^40 3770005417956493 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^42 3770005417956493 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^44 3770005417956494 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^46 3770005417956494 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^48 3770005417956494 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^50 3770005417956494 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^52 3770005417956494 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^54 3770005417956494 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^56 3770005417956494 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^58 3770005417956494 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^60 3770005417956494 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^62 3770005417956494 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^64 3770005417956494 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^66 3770005417956494 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^68 3770005417956494 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^70 3770005417956494 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^72 3770005417956494 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^74 3770005417956494 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^76 3770005417956494 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^78 3770005417956494 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^80 3770005417956494 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^82 3770005417956494 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^84 3770005417956494 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^86 3770005417956494 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^88 3770005417956494 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^90 3770005417956494 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^92 3770005417956494 a004 Fibonacci(90)*Lucas(18)/(1/2+sqrt(5)/2)^94 3770005417956494 a004 Fibonacci(92)*Lucas(18)/(1/2+sqrt(5)/2)^96 3770005417956494 a004 Fibonacci(94)*Lucas(18)/(1/2+sqrt(5)/2)^98 3770005417956494 a004 Fibonacci(96)*Lucas(18)/(1/2+sqrt(5)/2)^100 3770005417956494 a004 Fibonacci(95)*Lucas(18)/(1/2+sqrt(5)/2)^99 3770005417956494 a004 Fibonacci(93)*Lucas(18)/(1/2+sqrt(5)/2)^97 3770005417956494 a004 Fibonacci(91)*Lucas(18)/(1/2+sqrt(5)/2)^95 3770005417956494 a004 Fibonacci(89)*Lucas(18)/(1/2+sqrt(5)/2)^93 3770005417956494 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^91 3770005417956494 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^89 3770005417956494 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^87 3770005417956494 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^85 3770005417956494 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^83 3770005417956494 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^81 3770005417956494 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^79 3770005417956494 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^77 3770005417956494 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^75 3770005417956494 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^73 3770005417956494 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^71 3770005417956494 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^69 3770005417956494 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^67 3770005417956494 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^65 3770005417956494 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^63 3770005417956494 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^61 3770005417956494 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^59 3770005417956494 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^57 3770005417956494 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^55 3770005417956494 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^53 3770005417956494 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^51 3770005417956494 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^49 3770005417956494 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^47 3770005417956494 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^45 3770005417956494 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^43 3770005417956495 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^41 3770005417956497 a001 1/1292*(1/2+1/2*5^(1/2))^32 3770005417956502 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^39 3770005417956554 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^37 3770005417956910 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^35 3770005417959345 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^33 3770005417976037 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^31 3770005418090449 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^29 3770005418874637 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^27 3770005424249542 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^25 3770005425793579 a001 4181/15127*5778^(5/6) 3770005429741348 a001 10946/9349*5778^(2/3) 3770005433059215 a001 10946/3571*3571^(10/17) 3770005433681146 a001 1346269/15127*2207^(3/16) 3770005434000732 a001 98209/2889*2207^(5/16) 3770005435118264 a001 4181/3571*3571^(12/17) 3770005441752985 a001 17711/3571*3571^(9/17) 3770005444915150 a001 1346269/9349*2207^(1/8) 3770005447752475 a001 3524578/39603*2207^(3/16) 3770005449805454 a001 9227465/103682*2207^(3/16) 3770005450104980 a001 24157817/271443*2207^(3/16) 3770005450148680 a001 63245986/710647*2207^(3/16) 3770005450155056 a001 165580141/1860498*2207^(3/16) 3770005450155986 a001 433494437/4870847*2207^(3/16) 3770005450156122 a001 1134903170/12752043*2207^(3/16) 3770005450156141 a001 2971215073/33385282*2207^(3/16) 3770005450156144 a001 7778742049/87403803*2207^(3/16) 3770005450156145 a001 20365011074/228826127*2207^(3/16) 3770005450156145 a001 53316291173/599074578*2207^(3/16) 3770005450156145 a001 139583862445/1568397607*2207^(3/16) 3770005450156145 a001 365435296162/4106118243*2207^(3/16) 3770005450156145 a001 956722026041/10749957122*2207^(3/16) 3770005450156145 a001 2504730781961/28143753123*2207^(3/16) 3770005450156145 a001 6557470319842/73681302247*2207^(3/16) 3770005450156145 a001 10610209857723/119218851371*2207^(3/16) 3770005450156145 a001 4052739537881/45537549124*2207^(3/16) 3770005450156145 a001 1548008755920/17393796001*2207^(3/16) 3770005450156145 a001 591286729879/6643838879*2207^(3/16) 3770005450156145 a001 225851433717/2537720636*2207^(3/16) 3770005450156145 a001 86267571272/969323029*2207^(3/16) 3770005450156145 a001 32951280099/370248451*2207^(3/16) 3770005450156145 a001 12586269025/141422324*2207^(3/16) 3770005450156146 a001 4807526976/54018521*2207^(3/16) 3770005450156154 a001 1836311903/20633239*2207^(3/16) 3770005450156205 a001 3524667/39604*2207^(3/16) 3770005450156561 a001 267914296/3010349*2207^(3/16) 3770005450158996 a001 102334155/1149851*2207^(3/16) 3770005450175688 a001 39088169/439204*2207^(3/16) 3770005450290097 a001 14930352/167761*2207^(3/16) 3770005451074265 a001 5702887/64079*2207^(3/16) 3770005452412394 a001 4181/39603*5778^(17/18) 3770005453694940 a001 1597/5778*9349^(15/19) 3770005454835608 a001 4181/24476*5778^(8/9) 3770005455547813 a001 1597/2207*2207^(13/16) 3770005456449035 a001 2178309/24476*2207^(3/16) 3770005458235296 a001 2584/3571*9349^(13/19) 3770005461089690 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^23 3770005462465408 a001 28657/3571*3571^(8/17) 3770005465581061 a001 832040/3571*1364^(1/15) 3770005476777973 m001 Si(Pi)*ErdosBorwein+Kolakoski 3770005478587115 a001 46368/3571*3571^(7/17) 3770005479128627 a001 4181/9349*5778^(7/9) 3770005481454412 a001 2063324/5473 3770005482054249 a001 832040/15127*2207^(1/4) 3770005482304630 a001 121393/5778*2207^(3/8) 3770005483252429 a001 1597/5778*24476^(5/7) 3770005483851787 a001 2584/3571*24476^(13/21) 3770005487148675 a001 1597/5778*64079^(15/23) 3770005487228533 a001 2584/3571*64079^(13/23) 3770005487667091 a001 1597/5778*167761^(3/5) 3770005487736606 a001 1597/5778*439204^(5/9) 3770005487747437 a001 1597/5778*7881196^(5/11) 3770005487747460 a001 1597/5778*20633239^(3/7) 3770005487747464 a001 1597/5778*141422324^(5/13) 3770005487747464 a001 1597/5778*2537720636^(1/3) 3770005487747464 a001 1597/5778*45537549124^(5/17) 3770005487747464 a001 1597/5778*312119004989^(3/11) 3770005487747464 a001 1597/5778*14662949395604^(5/21) 3770005487747464 a001 1597/5778*(1/2+1/2*5^(1/2))^15 3770005487747464 a001 1597/5778*192900153618^(5/18) 3770005487747464 a001 1597/5778*28143753123^(3/10) 3770005487747464 a001 1597/5778*10749957122^(5/16) 3770005487747464 a001 1597/5778*599074578^(5/14) 3770005487747464 a001 1597/5778*228826127^(3/8) 3770005487747466 a001 1597/5778*33385282^(5/12) 3770005487747484 a001 2584/3571*141422324^(1/3) 3770005487747484 a001 2584/3571*(1/2+1/2*5^(1/2))^13 3770005487747484 a001 2584/3571*73681302247^(1/4) 3770005487748009 a001 1597/5778*1860498^(1/2) 3770005487773067 a001 2584/3571*271443^(1/2) 3770005487937446 a001 2584/3571*103682^(13/24) 3770005487966651 a001 1597/5778*103682^(5/8) 3770005488342008 s002 sum(A244449[n]/(exp(2*pi*n)-1),n=1..infinity) 3770005489167870 a001 2584/3571*39603^(13/22) 3770005489386371 a001 1597/5778*39603^(15/22) 3770005493155385 l006 ln(2759/2865) 3770005493288253 a001 832040/9349*2207^(3/16) 3770005496126864 a001 726103/13201*2207^(1/4) 3770005496462320 a001 75025/3571*3571^(6/17) 3770005497219563 r005 Im(z^2+c),c=-1/98+11/23*I,n=64 3770005498180031 a001 5702887/103682*2207^(1/4) 3770005498456504 a001 2584/3571*15127^(13/20) 3770005498479584 a001 4976784/90481*2207^(1/4) 3770005498523288 a001 39088169/710647*2207^(1/4) 3770005498529664 a001 831985/15126*2207^(1/4) 3770005498530595 a001 267914296/4870847*2207^(1/4) 3770005498530730 a001 233802911/4250681*2207^(1/4) 3770005498530750 a001 1836311903/33385282*2207^(1/4) 3770005498530753 a001 1602508992/29134601*2207^(1/4) 3770005498530753 a001 12586269025/228826127*2207^(1/4) 3770005498530754 a001 10983760033/199691526*2207^(1/4) 3770005498530754 a001 86267571272/1568397607*2207^(1/4) 3770005498530754 a001 75283811239/1368706081*2207^(1/4) 3770005498530754 a001 591286729879/10749957122*2207^(1/4) 3770005498530754 a001 12585437040/228811001*2207^(1/4) 3770005498530754 a001 4052739537881/73681302247*2207^(1/4) 3770005498530754 a001 3536736619241/64300051206*2207^(1/4) 3770005498530754 a001 6557470319842/119218851371*2207^(1/4) 3770005498530754 a001 2504730781961/45537549124*2207^(1/4) 3770005498530754 a001 956722026041/17393796001*2207^(1/4) 3770005498530754 a001 365435296162/6643838879*2207^(1/4) 3770005498530754 a001 139583862445/2537720636*2207^(1/4) 3770005498530754 a001 53316291173/969323029*2207^(1/4) 3770005498530754 a001 20365011074/370248451*2207^(1/4) 3770005498530754 a001 7778742049/141422324*2207^(1/4) 3770005498530755 a001 2971215073/54018521*2207^(1/4) 3770005498530762 a001 1134903170/20633239*2207^(1/4) 3770005498530814 a001 433494437/7881196*2207^(1/4) 3770005498531170 a001 165580141/3010349*2207^(1/4) 3770005498533605 a001 63245986/1149851*2207^(1/4) 3770005498550299 a001 24157817/439204*2207^(1/4) 3770005498664718 a001 9227465/167761*2207^(1/4) 3770005499448958 a001 3524578/64079*2207^(1/4) 3770005500104026 a001 1597/5778*15127^(3/4) 3770005504824218 a001 1346269/24476*2207^(1/4) 3770005508272725 a001 4870847*144^(7/17) 3770005511428542 r002 21th iterates of z^2 + 3770005512892882 m001 (Porter+Riemann1stZero)/(Cahen-Shi(1)) 3770005513667748 a001 121393/3571*3571^(5/17) 3770005515588003 r005 Re(z^2+c),c=37/106+11/54*I,n=9 3770005521915621 r002 17th iterates of z^2 + 3770005529061279 r005 Im(z^2+c),c=-29/46+4/57*I,n=50 3770005530432799 a001 514229/15127*2207^(5/16) 3770005530547225 a007 Real Root Of -925*x^4-295*x^3-696*x^2+287*x+210 3770005530864361 a001 75025/5778*2207^(7/16) 3770005531129008 a001 196418/3571*3571^(4/17) 3770005538616419 r005 Im(z^2+c),c=-3/106+22/45*I,n=50 3770005541666803 a001 514229/9349*2207^(1/4) 3770005544502048 a001 1346269/39603*2207^(5/16) 3770005545603363 a001 1597/15127*9349^(17/19) 3770005546554724 a001 1762289/51841*2207^(5/16) 3770005546854205 a001 9227465/271443*2207^(5/16) 3770005546897899 a001 24157817/710647*2207^(5/16) 3770005546904274 a001 31622993/930249*2207^(5/16) 3770005546905204 a001 165580141/4870847*2207^(5/16) 3770005546905340 a001 433494437/12752043*2207^(5/16) 3770005546905360 a001 567451585/16692641*2207^(5/16) 3770005546905362 a001 2971215073/87403803*2207^(5/16) 3770005546905363 a001 7778742049/228826127*2207^(5/16) 3770005546905363 a001 10182505537/299537289*2207^(5/16) 3770005546905363 a001 53316291173/1568397607*2207^(5/16) 3770005546905363 a001 139583862445/4106118243*2207^(5/16) 3770005546905363 a001 182717648081/5374978561*2207^(5/16) 3770005546905363 a001 956722026041/28143753123*2207^(5/16) 3770005546905363 a001 2504730781961/73681302247*2207^(5/16) 3770005546905363 a001 3278735159921/96450076809*2207^(5/16) 3770005546905363 a001 10610209857723/312119004989*2207^(5/16) 3770005546905363 a001 4052739537881/119218851371*2207^(5/16) 3770005546905363 a001 387002188980/11384387281*2207^(5/16) 3770005546905363 a001 591286729879/17393796001*2207^(5/16) 3770005546905363 a001 225851433717/6643838879*2207^(5/16) 3770005546905363 a001 1135099622/33391061*2207^(5/16) 3770005546905363 a001 32951280099/969323029*2207^(5/16) 3770005546905363 a001 12586269025/370248451*2207^(5/16) 3770005546905363 a001 1201881744/35355581*2207^(5/16) 3770005546905364 a001 1836311903/54018521*2207^(5/16) 3770005546905372 a001 701408733/20633239*2207^(5/16) 3770005546905424 a001 66978574/1970299*2207^(5/16) 3770005546905779 a001 102334155/3010349*2207^(5/16) 3770005546908214 a001 39088169/1149851*2207^(5/16) 3770005546924903 a001 196452/5779*2207^(5/16) 3770005547039295 a001 5702887/167761*2207^(5/16) 3770005547823347 a001 2178309/64079*2207^(5/16) 3770005548492549 a001 317811/3571*3571^(3/17) 3770005552296895 a001 987/3571*2207^(15/16) 3770005553197323 a001 208010/6119*2207^(5/16) 3770005557538442 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^22 3770005559224396 a001 6765/3571*9349^(11/19) 3770005559824401 a005 (1/sin(77/181*Pi))^131 3770005565893415 a001 514229/3571*3571^(2/17) 3770005566101659 a001 1597/24476*9349^(18/19) 3770005568815732 m004 -120*Pi-(5*Pi*Sin[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3770005569303834 a001 2584/3571*5778^(13/18) 3770005571039192 a001 1346269/5778*843^(1/14) 3770005574871223 r009 Re(z^3+c),c=-7/114+21/38*I,n=35 3770005575153003 r005 Im(z^2+c),c=-9/106+25/48*I,n=52 3770005577836418 a001 17711/3571*9349^(9/19) 3770005578754316 a001 2576/321*2207^(1/2) 3770005578797092 a001 317811/15127*2207^(3/8) 3770005579101852 a001 1597/15127*24476^(17/21) 3770005580899889 a001 6765/3571*24476^(11/21) 3770005581850945 a001 1597/5778*5778^(5/6) 3770005583278082 a001 10803705/28657 3770005583280025 a001 832040/3571*3571^(1/17) 3770005583428461 a001 28657/3571*9349^(8/19) 3770005583517597 a001 1597/15127*64079^(17/23) 3770005583757136 a001 6765/3571*64079^(11/23) 3770005584196225 a001 1597/15127*45537549124^(1/3) 3770005584196225 a001 1597/15127*(1/2+1/2*5^(1/2))^17 3770005584196228 a001 6765/3571*7881196^(1/3) 3770005584196237 a001 1597/15127*12752043^(1/2) 3770005584196248 a001 6765/3571*312119004989^(1/5) 3770005584196248 a001 6765/3571*(1/2+1/2*5^(1/2))^11 3770005584196248 a001 6765/3571*1568397607^(1/4) 3770005584263029 a001 10946/3571*9349^(10/19) 3770005584356986 a001 6765/3571*103682^(11/24) 3770005584429786 a001 46368/3571*9349^(7/19) 3770005584444637 a001 1597/15127*103682^(17/24) 3770005585398114 a001 6765/3571*39603^(1/2) 3770005586053653 a001 1597/15127*39603^(17/22) 3770005587184609 a001 75025/3571*9349^(6/19) 3770005589269656 a001 121393/3571*9349^(5/19) 3770005590031096 a001 317811/9349*2207^(5/16) 3770005591610535 a001 196418/3571*9349^(4/19) 3770005592404474 s002 sum(A145695[n]/(exp(2/5*pi*n)),n=1..infinity) 3770005592574199 a001 1597/39603*24476^(19/21) 3770005592875153 a001 832040/39603*2207^(3/8) 3770005593257727 a001 6765/3571*15127^(11/20) 3770005593853694 a001 317811/3571*9349^(3/19) 3770005594378592 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^24 3770005594929114 a001 46347/2206*2207^(3/8) 3770005595228783 a001 5702887/271443*2207^(3/8) 3770005595272504 a001 14930352/710647*2207^(3/8) 3770005595278883 a001 39088169/1860498*2207^(3/8) 3770005595279814 a001 102334155/4870847*2207^(3/8) 3770005595279950 a001 267914296/12752043*2207^(3/8) 3770005595279970 a001 701408733/33385282*2207^(3/8) 3770005595279972 a001 1836311903/87403803*2207^(3/8) 3770005595279973 a001 102287808/4868641*2207^(3/8) 3770005595279973 a001 12586269025/599074578*2207^(3/8) 3770005595279973 a001 32951280099/1568397607*2207^(3/8) 3770005595279973 a001 86267571272/4106118243*2207^(3/8) 3770005595279973 a001 225851433717/10749957122*2207^(3/8) 3770005595279973 a001 591286729879/28143753123*2207^(3/8) 3770005595279973 a001 1548008755920/73681302247*2207^(3/8) 3770005595279973 a001 4052739537881/192900153618*2207^(3/8) 3770005595279973 a001 225749145909/10745088481*2207^(3/8) 3770005595279973 a001 6557470319842/312119004989*2207^(3/8) 3770005595279973 a001 2504730781961/119218851371*2207^(3/8) 3770005595279973 a001 956722026041/45537549124*2207^(3/8) 3770005595279973 a001 365435296162/17393796001*2207^(3/8) 3770005595279973 a001 139583862445/6643838879*2207^(3/8) 3770005595279973 a001 53316291173/2537720636*2207^(3/8) 3770005595279973 a001 20365011074/969323029*2207^(3/8) 3770005595279973 a001 7778742049/370248451*2207^(3/8) 3770005595279973 a001 2971215073/141422324*2207^(3/8) 3770005595279974 a001 1134903170/54018521*2207^(3/8) 3770005595279982 a001 433494437/20633239*2207^(3/8) 3770005595280034 a001 165580141/7881196*2207^(3/8) 3770005595280389 a001 63245986/3010349*2207^(3/8) 3770005595282826 a001 24157817/1149851*2207^(3/8) 3770005595299526 a001 9227465/439204*2207^(3/8) 3770005595413989 a001 3524578/167761*2207^(3/8) 3770005595570912 a001 17711/3571*24476^(3/7) 3770005595596405 a001 1597/64079*24476^(20/21) 3770005596134179 a001 514229/3571*9349^(2/19) 3770005596198532 a001 1346269/64079*2207^(3/8) 3770005597509444 a001 1597/39603*64079^(19/23) 3770005597908660 a001 17711/3571*64079^(9/23) 3770005598133955 a001 28284467/75025 3770005598200329 a001 1597/15127*15127^(17/20) 3770005598223282 a001 46368/3571*24476^(1/3) 3770005598261419 a001 17711/3571*439204^(1/3) 3770005598267910 a001 1597/39603*817138163596^(1/3) 3770005598267910 a001 1597/39603*(1/2+1/2*5^(1/2))^19 3770005598267910 a001 1597/39603*87403803^(1/2) 3770005598267917 a001 17711/3571*7881196^(3/11) 3770005598267933 a001 17711/3571*141422324^(3/13) 3770005598267933 a001 17711/3571*2537720636^(1/5) 3770005598267933 a001 17711/3571*45537549124^(3/17) 3770005598267933 a001 17711/3571*14662949395604^(1/7) 3770005598267933 a001 17711/3571*(1/2+1/2*5^(1/2))^9 3770005598267933 a001 17711/3571*192900153618^(1/6) 3770005598267933 a001 17711/3571*10749957122^(3/16) 3770005598267933 a001 17711/3571*599074578^(3/14) 3770005598267934 a001 17711/3571*33385282^(1/4) 3770005598268260 a001 17711/3571*1860498^(3/10) 3770005598399446 a001 17711/3571*103682^(3/8) 3770005598400407 a001 832040/3571*9349^(1/19) 3770005598545547 a001 1597/39603*103682^(19/24) 3770005599007605 a001 75025/3571*24476^(2/7) 3770005599122153 a001 121393/3571*24476^(5/21) 3770005599192456 a001 28657/3571*24476^(8/21) 3770005599251278 a001 17711/3571*39603^(9/22) 3770005599482636 a001 1597/103682*64079^(21/23) 3770005599492532 a001 196418/3571*24476^(4/21) 3770005599753497 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^26 3770005599765192 a001 317811/3571*24476^(1/7) 3770005599927372 a001 1597/167761*64079^(22/23) 3770005600041530 a001 46368/3571*64079^(7/23) 3770005600075178 a001 514229/3571*24476^(2/21) 3770005600301398 a001 37024848/98209 3770005600305741 a001 1597/103682*439204^(7/9) 3770005600320903 a001 1597/103682*7881196^(7/11) 3770005600320936 a001 1597/103682*20633239^(3/5) 3770005600320941 a001 1597/103682*141422324^(7/13) 3770005600320941 a001 1597/103682*2537720636^(7/15) 3770005600320941 a001 1597/103682*17393796001^(3/7) 3770005600320941 a001 1597/103682*45537549124^(7/17) 3770005600320941 a001 1597/103682*14662949395604^(1/3) 3770005600320941 a001 1597/103682*(1/2+1/2*5^(1/2))^21 3770005600320941 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^21/Lucas(24) 3770005600320941 a001 1597/103682*192900153618^(7/18) 3770005600320941 a001 1597/103682*10749957122^(7/16) 3770005600320941 a001 1597/103682*599074578^(1/2) 3770005600320943 a001 1597/103682*33385282^(7/12) 3770005600320963 a001 46368/3571*20633239^(1/5) 3770005600320965 a001 46368/3571*17393796001^(1/7) 3770005600320965 a001 46368/3571*14662949395604^(1/9) 3770005600320965 a001 46368/3571*(1/2+1/2*5^(1/2))^7 3770005600320965 a001 46368/3571*599074578^(1/6) 3770005600321704 a001 1597/103682*1860498^(7/10) 3770005600322831 a001 46368/3571*710647^(1/4) 3770005600326540 a001 1597/103682*710647^(3/4) 3770005600343859 a001 1597/39603*39603^(19/22) 3770005600370906 a001 832040/3571*24476^(1/21) 3770005600420901 a001 121393/3571*64079^(5/23) 3770005600423252 a001 46368/3571*103682^(7/24) 3770005600531531 a001 196418/3571*64079^(4/23) 3770005600537686 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^28 3770005600544441 a001 317811/3571*64079^(3/23) 3770005600566104 a001 75025/3571*64079^(6/23) 3770005600593707 a001 121393/3571*167761^(1/5) 3770005600594677 a001 514229/3571*64079^(2/23) 3770005600617623 a001 193864621/514229 3770005600620475 a001 1597/271443*(1/2+1/2*5^(1/2))^23 3770005600620475 a001 1597/271443*4106118243^(1/2) 3770005600620496 a001 121393/3571*20633239^(1/7) 3770005600620498 a001 121393/3571*2537720636^(1/9) 3770005600620498 a001 121393/3571*312119004989^(1/11) 3770005600620498 a001 121393/3571*(1/2+1/2*5^(1/2))^5 3770005600620498 a001 121393/3571*28143753123^(1/10) 3770005600620498 a001 121393/3571*228826127^(1/8) 3770005600620679 a001 121393/3571*1860498^(1/6) 3770005600627804 a001 1597/103682*103682^(7/8) 3770005600630656 a001 832040/3571*64079^(1/23) 3770005600652097 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^30 3770005600662028 a001 317811/3571*439204^(1/9) 3770005600663760 a001 507544167/1346269 3770005600664170 a001 1597/710647*20633239^(5/7) 3770005600664176 a001 1597/710647*2537720636^(5/9) 3770005600664176 a001 1597/710647*312119004989^(5/11) 3770005600664176 a001 1597/710647*(1/2+1/2*5^(1/2))^25 3770005600664176 a001 1597/710647*3461452808002^(5/12) 3770005600664176 a001 1597/710647*28143753123^(1/2) 3770005600664176 a001 1597/710647*228826127^(5/8) 3770005600664194 a001 317811/3571*7881196^(1/11) 3770005600664199 a001 317811/3571*141422324^(1/13) 3770005600664199 a001 317811/3571*2537720636^(1/15) 3770005600664199 a001 317811/3571*45537549124^(1/17) 3770005600664199 a001 317811/3571*14662949395604^(1/21) 3770005600664199 a001 317811/3571*(1/2+1/2*5^(1/2))^3 3770005600664199 a001 317811/3571*192900153618^(1/18) 3770005600664199 a001 317811/3571*10749957122^(1/16) 3770005600664199 a001 317811/3571*599074578^(1/14) 3770005600664199 a001 317811/3571*33385282^(1/12) 3770005600664308 a001 317811/3571*1860498^(1/10) 3770005600665083 a001 1597/710647*1860498^(5/6) 3770005600668790 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^32 3770005600670491 a001 664383940/1762289 3770005600670502 a001 1597/1860498*7881196^(9/11) 3770005600670552 a001 1597/1860498*141422324^(9/13) 3770005600670552 a001 1597/1860498*2537720636^(3/5) 3770005600670552 a001 1597/1860498*45537549124^(9/17) 3770005600670552 a001 1597/1860498*817138163596^(9/19) 3770005600670552 a001 1597/1860498*14662949395604^(3/7) 3770005600670552 a001 1597/1860498*(1/2+1/2*5^(1/2))^27 3770005600670552 a001 1597/1860498*192900153618^(1/2) 3770005600670552 a001 1597/1860498*10749957122^(9/16) 3770005600670552 a001 1597/1860498*599074578^(9/14) 3770005600670554 a001 1597/1860498*33385282^(3/4) 3770005600670575 a001 416020/3571+416020/3571*5^(1/2) 3770005600671225 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^34 3770005600671473 a001 3478759473/9227465 3770005600671482 a001 1597/4870847*(1/2+1/2*5^(1/2))^29 3770005600671482 a001 1597/4870847*1322157322203^(1/2) 3770005600671505 a004 Fibonacci(32)/Lucas(17)/(1/2+sqrt(5)/2) 3770005600671532 a001 1597/1860498*1860498^(9/10) 3770005600671580 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^36 3770005600671616 a001 9107510539/24157817 3770005600671618 a001 1597/12752043*(1/2+1/2*5^(1/2))^31 3770005600671618 a001 1597/12752043*9062201101803^(1/2) 3770005600671632 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^38 3770005600671637 a001 11921886072/31622993 3770005600671637 a001 1597/33385282*141422324^(11/13) 3770005600671638 a001 1597/33385282*2537720636^(11/15) 3770005600671638 a001 1597/33385282*45537549124^(11/17) 3770005600671638 a001 1597/33385282*312119004989^(3/5) 3770005600671638 a001 1597/33385282*817138163596^(11/19) 3770005600671638 a001 1597/33385282*14662949395604^(11/21) 3770005600671638 a001 1597/33385282*(1/2+1/2*5^(1/2))^33 3770005600671638 a001 1597/33385282*192900153618^(11/18) 3770005600671638 a001 1597/33385282*10749957122^(11/16) 3770005600671638 a001 1597/33385282*1568397607^(3/4) 3770005600671638 a001 1597/33385282*599074578^(11/14) 3770005600671640 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^40 3770005600671640 a001 62423805893/165580141 3770005600671640 a001 1597/87403803*2537720636^(7/9) 3770005600671640 a001 1597/87403803*17393796001^(5/7) 3770005600671640 a001 1597/87403803*312119004989^(7/11) 3770005600671640 a001 1597/87403803*14662949395604^(5/9) 3770005600671640 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(38) 3770005600671640 a001 1597/87403803*505019158607^(5/8) 3770005600671640 a001 1597/87403803*28143753123^(7/10) 3770005600671640 a001 1597/87403803*599074578^(5/6) 3770005600671641 a001 1597/87403803*228826127^(7/8) 3770005600671641 a001 1597/33385282*33385282^(11/12) 3770005600671641 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^42 3770005600671641 a001 163427645535/433494437 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(40) 3770005600671641 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^44 3770005600671641 a001 213929565356/567451585 3770005600671641 a001 1597/599074578*2537720636^(13/15) 3770005600671641 a001 1597/599074578*45537549124^(13/17) 3770005600671641 a001 1597/599074578*14662949395604^(13/21) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(42) 3770005600671641 a001 1597/599074578*192900153618^(13/18) 3770005600671641 a001 1597/599074578*73681302247^(3/4) 3770005600671641 a001 1597/599074578*10749957122^(13/16) 3770005600671641 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^46 3770005600671641 a001 1120149746601/2971215073 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(44) 3770005600671641 a001 1597/599074578*599074578^(13/14) 3770005600671641 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^48 3770005600671641 a001 2932590109091/7778742049 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(46) 3770005600671641 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^50 3770005600671641 a001 2403763488/6376021 3770005600671641 a001 1597/10749957122*45537549124^(15/17) 3770005600671641 a001 1597/10749957122*312119004989^(9/11) 3770005600671641 a001 1597/10749957122*14662949395604^(5/7) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(48) 3770005600671641 a001 1597/10749957122*192900153618^(5/6) 3770005600671641 a001 1597/10749957122*28143753123^(9/10) 3770005600671641 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^52 3770005600671641 a001 20100271632925/53316291173 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(50) 3770005600671641 a001 1597/10749957122*10749957122^(15/16) 3770005600671641 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^54 3770005600671641 a001 52623194318103/139583862445 3770005600671641 a001 1597/73681302247*14662949395604^(7/9) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(52) 3770005600671641 a001 1597/73681302247*505019158607^(7/8) 3770005600671641 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^56 3770005600671641 a001 1597/192900153618*14662949395604^(17/21) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(54) 3770005600671641 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^58 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(56) 3770005600671641 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^60 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(58) 3770005600671641 a001 1597/1322157322203*3461452808002^(11/12) 3770005600671641 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^62 3770005600671641 a001 1236084991602120/3278735159921 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(60) 3770005600671641 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^64 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(62) 3770005600671641 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^66 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(64) 3770005600671641 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^68 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(66) 3770005600671641 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^70 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(68) 3770005600671641 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^72 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(70) 3770005600671641 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^74 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(72) 3770005600671641 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^76 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(74) 3770005600671641 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^78 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(76) 3770005600671641 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^80 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(78) 3770005600671641 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^82 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(80) 3770005600671641 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^84 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(82) 3770005600671641 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^86 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(84) 3770005600671641 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^88 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(86) 3770005600671641 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^90 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(88) 3770005600671641 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^92 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(90) 3770005600671641 a004 Fibonacci(17)*Lucas(91)/(1/2+sqrt(5)/2)^94 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(92) 3770005600671641 a004 Fibonacci(17)*Lucas(93)/(1/2+sqrt(5)/2)^96 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^91/Lucas(94) 3770005600671641 a004 Fibonacci(17)*Lucas(95)/(1/2+sqrt(5)/2)^98 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^93/Lucas(96) 3770005600671641 a004 Fibonacci(17)*Lucas(97)/(1/2+sqrt(5)/2)^100 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^95/Lucas(98) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^96/Lucas(99) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^97/Lucas(100) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^94/Lucas(97) 3770005600671641 a004 Fibonacci(17)*Lucas(96)/(1/2+sqrt(5)/2)^99 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^92/Lucas(95) 3770005600671641 a004 Fibonacci(17)*Lucas(94)/(1/2+sqrt(5)/2)^97 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^90/Lucas(93) 3770005600671641 a004 Fibonacci(17)*Lucas(92)/(1/2+sqrt(5)/2)^95 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(91) 3770005600671641 a004 Fibonacci(17)*Lucas(90)/(1/2+sqrt(5)/2)^93 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(89) 3770005600671641 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^91 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(87) 3770005600671641 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^89 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(85) 3770005600671641 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^87 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(83) 3770005600671641 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^85 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(81) 3770005600671641 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^83 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(79) 3770005600671641 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^81 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(77) 3770005600671641 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^79 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(75) 3770005600671641 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^77 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(73) 3770005600671641 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^75 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(71) 3770005600671641 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^73 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(69) 3770005600671641 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^71 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(67) 3770005600671641 a001 1597/14662949395604*14662949395604^(20/21) 3770005600671641 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^69 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(65) 3770005600671641 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^67 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(63) 3770005600671641 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^65 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(61) 3770005600671641 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^63 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(59) 3770005600671641 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^61 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(57) 3770005600671641 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^59 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(55) 3770005600671641 a001 1597/312119004989*23725150497407^(13/16) 3770005600671641 a001 1597/312119004989*505019158607^(13/14) 3770005600671641 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^57 3770005600671641 a001 1597/45537549124*45537549124^(16/17) 3770005600671641 a001 1597/119218851371*312119004989^(10/11) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(53) 3770005600671641 a001 1597/119218851371*3461452808002^(5/6) 3770005600671641 a001 85146117003281/225851433717 3770005600671641 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^55 3770005600671641 a001 1597/45537549124*14662949395604^(16/21) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(51) 3770005600671641 a001 1597/45537549124*192900153618^(8/9) 3770005600671641 a001 16261461342589/43133785636 3770005600671641 a001 1597/45537549124*73681302247^(12/13) 3770005600671641 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^53 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(49) 3770005600671641 a001 12422651052253/32951280099 3770005600671641 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^51 3770005600671641 a001 1597/2537720636*2537720636^(14/15) 3770005600671641 a001 1597/17393796001*10749957122^(23/24) 3770005600671641 a001 1597/6643838879*312119004989^(4/5) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(47) 3770005600671641 a001 1597/6643838879*23725150497407^(11/16) 3770005600671641 a001 1597/6643838879*73681302247^(11/13) 3770005600671641 a001 4745030471581/12586269025 3770005600671641 a001 1597/6643838879*10749957122^(11/12) 3770005600671641 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^49 3770005600671641 a001 1597/6643838879*4106118243^(22/23) 3770005600671641 a001 1597/2537720636*17393796001^(6/7) 3770005600671641 a001 1597/2537720636*45537549124^(14/17) 3770005600671641 a001 1597/2537720636*817138163596^(14/19) 3770005600671641 a001 1597/2537720636*14662949395604^(2/3) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(45) 3770005600671641 a001 1597/2537720636*505019158607^(3/4) 3770005600671641 a001 1597/2537720636*192900153618^(7/9) 3770005600671641 a001 1597/2537720636*10749957122^(7/8) 3770005600671641 a001 906220181245/2403763488 3770005600671641 a001 1597/2537720636*4106118243^(21/23) 3770005600671641 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^47 3770005600671641 a001 1597/2537720636*1568397607^(21/22) 3770005600671641 a001 1597/969323029*2537720636^(8/9) 3770005600671641 a001 1597/969323029*312119004989^(8/11) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(43) 3770005600671641 a001 1597/969323029*23725150497407^(5/8) 3770005600671641 a001 1597/969323029*73681302247^(10/13) 3770005600671641 a001 1597/969323029*28143753123^(4/5) 3770005600671641 a001 1597/969323029*10749957122^(5/6) 3770005600671641 a001 1597/969323029*4106118243^(20/23) 3770005600671641 a001 692290615889/1836311903 3770005600671641 a001 1597/969323029*1568397607^(10/11) 3770005600671641 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^45 3770005600671641 a001 1597/969323029*599074578^(20/21) 3770005600671641 a001 1597/141422324*141422324^(12/13) 3770005600671641 a001 1597/370248451*817138163596^(2/3) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(41) 3770005600671641 a001 1597/370248451*10749957122^(19/24) 3770005600671641 a001 1597/370248451*4106118243^(19/23) 3770005600671641 a001 1597/370248451*1568397607^(19/22) 3770005600671641 a001 264431485177/701408733 3770005600671641 a001 1597/370248451*599074578^(19/21) 3770005600671641 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^43 3770005600671641 a001 1597/370248451*228826127^(19/20) 3770005600671641 a001 1597/141422324*2537720636^(4/5) 3770005600671641 a001 1597/141422324*45537549124^(12/17) 3770005600671641 a001 1597/141422324*14662949395604^(4/7) 3770005600671641 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(39) 3770005600671641 a001 1597/141422324*505019158607^(9/14) 3770005600671641 a001 1597/141422324*192900153618^(2/3) 3770005600671641 a001 1597/141422324*73681302247^(9/13) 3770005600671641 a001 1597/141422324*10749957122^(3/4) 3770005600671641 a001 1597/141422324*4106118243^(18/23) 3770005600671641 a001 1597/141422324*1568397607^(9/11) 3770005600671641 a001 1597/141422324*599074578^(6/7) 3770005600671641 a001 50501919821/133957148 3770005600671641 a001 1597/141422324*228826127^(9/10) 3770005600671641 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^41 3770005600671642 a001 1597/141422324*87403803^(18/19) 3770005600671642 a001 1597/54018521*45537549124^(2/3) 3770005600671642 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^34/Lucas(37) 3770005600671642 a001 1597/54018521*10749957122^(17/24) 3770005600671642 a001 1597/54018521*4106118243^(17/23) 3770005600671642 a001 1597/54018521*1568397607^(17/22) 3770005600671642 a001 1597/54018521*599074578^(17/21) 3770005600671642 a001 1597/54018521*228826127^(17/20) 3770005600671642 a001 38580033749/102334155 3770005600671643 a001 1597/54018521*87403803^(17/19) 3770005600671644 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^39 3770005600671645 a001 1597/54018521*33385282^(17/18) 3770005600671646 a001 1597/7881196*7881196^(10/11) 3770005600671650 a001 1597/20633239*(1/2+1/2*5^(1/2))^32 3770005600671650 a001 1597/20633239*23725150497407^(1/2) 3770005600671650 a001 1597/20633239*505019158607^(4/7) 3770005600671650 a001 1597/20633239*73681302247^(8/13) 3770005600671650 a001 1597/20633239*10749957122^(2/3) 3770005600671650 a001 1597/20633239*4106118243^(16/23) 3770005600671650 a001 1597/20633239*1568397607^(8/11) 3770005600671650 a001 1597/20633239*599074578^(16/21) 3770005600671650 a001 1597/20633239*228826127^(4/5) 3770005600671650 a001 1597/20633239*87403803^(16/19) 3770005600671650 a001 14736261605/39088169 3770005600671653 a001 1597/20633239*33385282^(8/9) 3770005600671661 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^5 3770005600671664 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^7 3770005600671664 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^9 3770005600671664 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^11 3770005600671664 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^13 3770005600671664 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^15 3770005600671664 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^17 3770005600671664 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^19 3770005600671664 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^21 3770005600671664 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^23 3770005600671664 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^25 3770005600671664 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^27 3770005600671664 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^29 3770005600671664 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^31 3770005600671664 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^33 3770005600671664 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^35 3770005600671664 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^37 3770005600671664 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^39 3770005600671664 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^41 3770005600671664 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^43 3770005600671664 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^45 3770005600671664 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^47 3770005600671664 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^49 3770005600671664 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^51 3770005600671664 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^53 3770005600671664 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^55 3770005600671664 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^57 3770005600671664 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^59 3770005600671664 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^61 3770005600671664 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^63 3770005600671664 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^65 3770005600671664 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^67 3770005600671664 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^69 3770005600671664 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^68 3770005600671664 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^66 3770005600671664 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^64 3770005600671664 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^62 3770005600671664 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^60 3770005600671664 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^58 3770005600671664 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^56 3770005600671664 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^54 3770005600671664 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^52 3770005600671664 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^50 3770005600671664 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^48 3770005600671664 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^46 3770005600671664 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^44 3770005600671664 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^42 3770005600671664 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^40 3770005600671664 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^38 3770005600671664 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^36 3770005600671664 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^34 3770005600671664 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^32 3770005600671664 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^30 3770005600671664 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^28 3770005600671664 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^26 3770005600671664 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^24 3770005600671664 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^22 3770005600671664 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^20 3770005600671664 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^18 3770005600671664 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^16 3770005600671664 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^14 3770005600671664 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^12 3770005600671664 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^10 3770005600671664 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^8 3770005600671665 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^6 3770005600671672 a001 1597/20633239*12752043^(16/17) 3770005600671673 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^4 3770005600671694 a001 1597/7881196*20633239^(6/7) 3770005600671702 a001 1597/7881196*141422324^(10/13) 3770005600671702 a001 1597/7881196*2537720636^(2/3) 3770005600671702 a001 1597/7881196*45537549124^(10/17) 3770005600671702 a001 1597/7881196*312119004989^(6/11) 3770005600671702 a001 1597/7881196*14662949395604^(10/21) 3770005600671702 a001 1597/7881196*(1/2+1/2*5^(1/2))^30 3770005600671702 a001 1597/7881196*192900153618^(5/9) 3770005600671702 a001 1597/7881196*28143753123^(3/5) 3770005600671702 a001 1597/7881196*10749957122^(5/8) 3770005600671702 a001 1597/7881196*4106118243^(15/23) 3770005600671702 a001 1597/7881196*1568397607^(15/22) 3770005600671702 a001 1597/7881196*599074578^(5/7) 3770005600671702 a001 1597/7881196*228826127^(3/4) 3770005600671702 a001 1597/7881196*87403803^(15/19) 3770005600671704 a001 1597/7881196*33385282^(5/6) 3770005600671705 a001 2814375533/7465176 3770005600671722 a001 1597/7881196*12752043^(15/17) 3770005600671725 a004 Fibonacci(33)/Lucas(17)/(1/2+sqrt(5)/2)^2 3770005600671800 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^35 3770005600671851 a001 1597/7881196*4870847^(15/16) 3770005600672050 a001 1597/3010349*20633239^(4/5) 3770005600672057 a001 1597/3010349*17393796001^(4/7) 3770005600672057 a001 1597/3010349*14662949395604^(4/9) 3770005600672057 a001 1597/3010349*(1/2+1/2*5^(1/2))^28 3770005600672057 a001 1597/3010349*505019158607^(1/2) 3770005600672057 a001 1597/3010349*73681302247^(7/13) 3770005600672057 a001 1597/3010349*10749957122^(7/12) 3770005600672057 a001 1597/3010349*4106118243^(14/23) 3770005600672057 a001 1597/3010349*1568397607^(7/11) 3770005600672057 a001 1597/3010349*599074578^(2/3) 3770005600672057 a001 1597/3010349*228826127^(7/10) 3770005600672057 a001 1597/3010349*87403803^(14/19) 3770005600672060 a001 1597/3010349*33385282^(7/9) 3770005600672076 a001 1597/3010349*12752043^(14/17) 3770005600672080 a001 1346269/3571 3770005600672196 a001 1597/3010349*4870847^(7/8) 3770005600672730 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^33 3770005600673073 a001 1597/3010349*1860498^(14/15) 3770005600673812 a001 1597/439204*439204^(8/9) 3770005600674492 a001 1597/1149851*141422324^(2/3) 3770005600674492 a001 1597/1149851*(1/2+1/2*5^(1/2))^26 3770005600674492 a001 1597/1149851*73681302247^(1/2) 3770005600674492 a001 1597/1149851*10749957122^(13/24) 3770005600674492 a001 1597/1149851*4106118243^(13/23) 3770005600674492 a001 1597/1149851*1568397607^(13/22) 3770005600674492 a001 1597/1149851*599074578^(13/21) 3770005600674492 a001 1597/1149851*228826127^(13/20) 3770005600674493 a001 1597/1149851*87403803^(13/19) 3770005600674495 a001 1597/1149851*33385282^(13/18) 3770005600674510 a001 1597/1149851*12752043^(13/17) 3770005600674516 a001 514229/3571*(1/2+1/2*5^(1/2))^2 3770005600674516 a001 514229/3571*10749957122^(1/24) 3770005600674516 a001 514229/3571*4106118243^(1/23) 3770005600674516 a001 514229/3571*1568397607^(1/22) 3770005600674516 a001 514229/3571*599074578^(1/21) 3770005600674516 a001 514229/3571*228826127^(1/20) 3770005600674516 a001 514229/3571*87403803^(1/19) 3770005600674516 a001 514229/3571*33385282^(1/18) 3770005600674517 a001 514229/3571*12752043^(1/17) 3770005600674525 a001 514229/3571*4870847^(1/16) 3770005600674588 a001 514229/3571*1860498^(1/15) 3770005600674621 a001 1597/1149851*4870847^(13/16) 3770005600674651 a001 821223713/2178309 3770005600675049 a001 514229/3571*710647^(1/14) 3770005600675436 a001 1597/1149851*1860498^(13/15) 3770005600678451 a001 514229/3571*271443^(1/13) 3770005600679106 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^31 3770005600681424 a001 1597/1149851*710647^(13/14) 3770005600685187 a001 832040/3571*103682^(1/24) 3770005600691141 a001 1597/439204*7881196^(8/11) 3770005600691185 a001 1597/439204*141422324^(8/13) 3770005600691185 a001 1597/439204*2537720636^(8/15) 3770005600691185 a001 1597/439204*45537549124^(8/17) 3770005600691185 a001 1597/439204*14662949395604^(8/21) 3770005600691185 a001 1597/439204*(1/2+1/2*5^(1/2))^24 3770005600691185 a001 1597/439204*192900153618^(4/9) 3770005600691185 a001 1597/439204*73681302247^(6/13) 3770005600691185 a001 1597/439204*10749957122^(1/2) 3770005600691185 a001 1597/439204*4106118243^(12/23) 3770005600691185 a001 1597/439204*1568397607^(6/11) 3770005600691185 a001 1597/439204*599074578^(4/7) 3770005600691185 a001 1597/439204*228826127^(3/5) 3770005600691185 a001 1597/439204*87403803^(12/19) 3770005600691187 a001 1597/439204*33385282^(2/3) 3770005600691201 a001 1597/439204*12752043^(12/17) 3770005600691208 a001 196418/3571*(1/2+1/2*5^(1/2))^4 3770005600691208 a001 196418/3571*23725150497407^(1/16) 3770005600691208 a001 196418/3571*73681302247^(1/13) 3770005600691208 a001 196418/3571*10749957122^(1/12) 3770005600691208 a001 196418/3571*4106118243^(2/23) 3770005600691208 a001 196418/3571*1568397607^(1/11) 3770005600691208 a001 196418/3571*599074578^(2/21) 3770005600691208 a001 196418/3571*228826127^(1/10) 3770005600691208 a001 196418/3571*87403803^(2/19) 3770005600691208 a001 196418/3571*33385282^(1/9) 3770005600691211 a001 196418/3571*12752043^(2/17) 3770005600691228 a001 196418/3571*4870847^(1/8) 3770005600691304 a001 1597/439204*4870847^(3/4) 3770005600691353 a001 196418/3571*1860498^(2/15) 3770005600692056 a001 1597/439204*1860498^(4/5) 3770005600692274 a001 156839773/416020 3770005600692274 a001 196418/3571*710647^(1/7) 3770005600693560 a001 121393/3571*103682^(5/24) 3770005600697583 a001 1597/439204*710647^(6/7) 3770005600699080 a001 196418/3571*271443^(2/13) 3770005600703741 a001 514229/3571*103682^(1/12) 3770005600708037 a001 317811/3571*103682^(1/8) 3770005600722807 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^29 3770005600738415 a001 1597/439204*271443^(12/13) 3770005600749658 a001 196418/3571*103682^(1/6) 3770005600779835 a001 832040/3571*39603^(1/22) 3770005600791399 a001 1597/64079*64079^(20/23) 3770005600801276 a001 75025/3571*439204^(2/9) 3770005600805556 a001 1597/167761*7881196^(2/3) 3770005600805596 a001 1597/167761*312119004989^(2/5) 3770005600805596 a001 1597/167761*(1/2+1/2*5^(1/2))^22 3770005600805596 a001 1597/167761*10749957122^(11/24) 3770005600805596 a001 1597/167761*4106118243^(11/23) 3770005600805596 a001 1597/167761*1568397607^(1/2) 3770005600805596 a001 1597/167761*599074578^(11/21) 3770005600805596 a001 1597/167761*228826127^(11/20) 3770005600805597 a001 1597/167761*87403803^(11/19) 3770005600805598 a001 1597/167761*33385282^(11/18) 3770005600805608 a001 75025/3571*7881196^(2/11) 3770005600805611 a001 1597/167761*12752043^(11/17) 3770005600805619 a001 75025/3571*141422324^(2/13) 3770005600805619 a001 75025/3571*2537720636^(2/15) 3770005600805619 a001 75025/3571*45537549124^(2/17) 3770005600805619 a001 75025/3571*14662949395604^(2/21) 3770005600805619 a001 75025/3571*(1/2+1/2*5^(1/2))^6 3770005600805619 a001 75025/3571*10749957122^(1/8) 3770005600805619 a001 75025/3571*4106118243^(3/23) 3770005600805619 a001 75025/3571*1568397607^(3/22) 3770005600805619 a001 75025/3571*599074578^(1/7) 3770005600805619 a001 75025/3571*228826127^(3/20) 3770005600805620 a001 75025/3571*87403803^(3/19) 3770005600805620 a001 75025/3571*33385282^(1/6) 3770005600805624 a001 75025/3571*12752043^(3/17) 3770005600805649 a001 75025/3571*4870847^(3/16) 3770005600805706 a001 1597/167761*4870847^(11/16) 3770005600805837 a001 75025/3571*1860498^(1/5) 3770005600806395 a001 1597/167761*1860498^(11/15) 3770005600807219 a001 75025/3571*710647^(3/14) 3770005600811462 a001 1597/167761*710647^(11/14) 3770005600813061 a001 119814925/317811 3770005600817427 a001 75025/3571*271443^(3/13) 3770005600848891 a001 1597/167761*271443^(11/13) 3770005600893037 a001 514229/3571*39603^(1/11) 3770005600893294 a001 75025/3571*103682^(1/4) 3770005600956562 a001 1597/271443*103682^(23/24) 3770005600991981 a001 317811/3571*39603^(3/22) 3770005601022341 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^27 3770005601085788 a001 46368/3571*39603^(7/22) 3770005601127071 a001 1597/167761*103682^(11/12) 3770005601128250 a001 196418/3571*39603^(2/11) 3770005601166800 a001 121393/3571*39603^(5/22) 3770005601270453 a001 28657/3571*64079^(8/23) 3770005601461182 a001 75025/3571*39603^(3/11) 3770005601482620 a001 1597/64079*167761^(4/5) 3770005601494346 a001 832040/3571*15127^(1/20) 3770005601570648 a001 1597/24476*24476^(6/7) 3770005601575873 a001 514229/24476*2207^(3/8) 3770005601589779 a001 1597/64079*20633239^(4/7) 3770005601589784 a001 1597/64079*2537720636^(4/9) 3770005601589784 a001 1597/64079*(1/2+1/2*5^(1/2))^20 3770005601589784 a001 1597/64079*23725150497407^(5/16) 3770005601589784 a001 1597/64079*505019158607^(5/14) 3770005601589784 a001 1597/64079*73681302247^(5/13) 3770005601589784 a001 1597/64079*28143753123^(2/5) 3770005601589784 a001 1597/64079*10749957122^(5/12) 3770005601589784 a001 1597/64079*4106118243^(10/23) 3770005601589784 a001 1597/64079*1568397607^(5/11) 3770005601589784 a001 1597/64079*599074578^(10/21) 3770005601589784 a001 1597/64079*228826127^(1/2) 3770005601589785 a001 1597/64079*87403803^(10/19) 3770005601589786 a001 1597/64079*33385282^(5/9) 3770005601589798 a001 1597/64079*12752043^(10/17) 3770005601589808 a001 28657/3571*(1/2+1/2*5^(1/2))^8 3770005601589808 a001 28657/3571*23725150497407^(1/8) 3770005601589808 a001 28657/3571*505019158607^(1/7) 3770005601589808 a001 28657/3571*73681302247^(2/13) 3770005601589808 a001 28657/3571*10749957122^(1/6) 3770005601589808 a001 28657/3571*4106118243^(4/23) 3770005601589808 a001 28657/3571*1568397607^(2/11) 3770005601589808 a001 28657/3571*599074578^(4/21) 3770005601589808 a001 28657/3571*228826127^(1/5) 3770005601589808 a001 28657/3571*87403803^(4/19) 3770005601589808 a001 28657/3571*33385282^(2/9) 3770005601589813 a001 28657/3571*12752043^(4/17) 3770005601589847 a001 28657/3571*4870847^(1/4) 3770005601589884 a001 1597/64079*4870847^(5/8) 3770005601590098 a001 28657/3571*1860498^(4/15) 3770005601590511 a001 1597/64079*1860498^(2/3) 3770005601591940 a001 28657/3571*710647^(2/7) 3770005601595117 a001 1597/64079*710647^(5/7) 3770005601605551 a001 28657/3571*271443^(4/13) 3770005601629143 a001 1597/64079*271443^(10/13) 3770005601640951 a001 45765229/121393 3770005601672164 r005 Re(z^2+c),c=-14/29+15/49*I,n=18 3770005601706707 a001 28657/3571*103682^(1/3) 3770005601882034 a001 1597/64079*103682^(5/6) 3770005602322057 a001 514229/3571*15127^(1/10) 3770005602463892 a001 28657/3571*39603^(4/11) 3770005602615412 a001 1597/103682*39603^(21/22) 3770005603075372 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^25 3770005603135511 a001 317811/3571*15127^(3/20) 3770005603774994 a001 1597/64079*39603^(10/11) 3770005603968023 a001 10946/3571*24476^(10/21) 3770005603986291 a001 196418/3571*15127^(1/5) 3770005604257320 m001 GAMMA(2/3)*ln(5)+BesselI(1,2) 3770005604739352 a001 121393/3571*15127^(1/4) 3770005605681870 a001 17711/3571*15127^(9/20) 3770005605748244 a001 75025/3571*15127^(3/10) 3770005606087360 a001 46368/3571*15127^(7/20) 3770005606246143 a001 1597/24476*64079^(18/23) 3770005606565520 a001 10946/3571*64079^(10/23) 3770005606911131 a001 10946/3571*167761^(2/5) 3770005606944140 a001 832040/3571*5778^(1/18) 3770005606951661 a001 1597/24476*439204^(2/3) 3770005606964657 a001 1597/24476*7881196^(6/11) 3770005606964690 a001 1597/24476*141422324^(6/13) 3770005606964690 a001 1597/24476*2537720636^(2/5) 3770005606964690 a001 1597/24476*45537549124^(6/17) 3770005606964690 a001 1597/24476*14662949395604^(2/7) 3770005606964690 a001 1597/24476*(1/2+1/2*5^(1/2))^18 3770005606964690 a001 1597/24476*192900153618^(1/3) 3770005606964690 a001 1597/24476*10749957122^(3/8) 3770005606964690 a001 1597/24476*4106118243^(9/23) 3770005606964690 a001 1597/24476*1568397607^(9/22) 3770005606964690 a001 1597/24476*599074578^(3/7) 3770005606964690 a001 1597/24476*228826127^(9/20) 3770005606964690 a001 1597/24476*87403803^(9/19) 3770005606964692 a001 1597/24476*33385282^(1/2) 3770005606964702 a001 1597/24476*12752043^(9/17) 3770005606964710 a001 10946/3571*20633239^(2/7) 3770005606964713 a001 10946/3571*2537720636^(2/9) 3770005606964713 a001 10946/3571*312119004989^(2/11) 3770005606964713 a001 10946/3571*(1/2+1/2*5^(1/2))^10 3770005606964713 a001 10946/3571*28143753123^(1/5) 3770005606964713 a001 10946/3571*10749957122^(5/24) 3770005606964713 a001 10946/3571*4106118243^(5/23) 3770005606964713 a001 10946/3571*1568397607^(5/22) 3770005606964713 a001 10946/3571*599074578^(5/21) 3770005606964713 a001 10946/3571*228826127^(1/4) 3770005606964713 a001 10946/3571*87403803^(5/19) 3770005606964714 a001 10946/3571*33385282^(5/18) 3770005606964720 a001 10946/3571*12752043^(5/17) 3770005606964763 a001 10946/3571*4870847^(5/16) 3770005606964779 a001 1597/24476*4870847^(9/16) 3770005606965076 a001 10946/3571*1860498^(1/3) 3770005606965343 a001 1597/24476*1860498^(3/5) 3770005606967379 a001 10946/3571*710647^(5/14) 3770005606969489 a001 1597/24476*710647^(9/14) 3770005606984392 a001 10946/3571*271443^(5/13) 3770005607000113 a001 1597/24476*271443^(9/13) 3770005607110838 a001 10946/3571*103682^(5/12) 3770005607227715 a001 1597/24476*103682^(3/4) 3770005607315389 a001 8740381/23184 3770005607482146 a001 1597/9349*9349^(16/19) 3770005608057318 a001 10946/3571*39603^(5/11) 3770005608179974 a001 28657/3571*15127^(2/5) 3770005608931379 a001 1597/24476*39603^(9/11) 3770005609800236 r009 Im(z^3+c),c=-15/31+17/63*I,n=42 3770005612786185 a001 1/322*3^(3/17) 3770005613221647 a001 514229/3571*5778^(1/9) 3770005613919555 a001 1597/39603*15127^(19/20) 3770005615202421 a001 10946/3571*15127^(1/2) 3770005616562842 a001 4181/3571*9349^(12/19) 3770005617147057 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^23 3770005619484896 a001 317811/3571*5778^(1/6) 3770005621792564 a001 1597/24476*15127^(9/10) 3770005622784864 m001 FeigenbaumDelta-GaussAGM^sin(1/5*Pi) 3770005625785470 a001 196418/3571*5778^(2/9) 3770005627198711 a001 196418/15127*2207^(7/16) 3770005628397769 a001 28657/5778*2207^(9/16) 3770005628887343 r005 Im(z^2+c),c=9/110+14/27*I,n=10 3770005631988325 a001 121393/3571*5778^(5/18) 3770005634282770 r005 Im(z^2+c),c=1/18+18/43*I,n=6 3770005638432716 a001 196418/9349*2207^(3/8) 3770005638447012 a001 75025/3571*5778^(1/3) 3770005639010136 a001 1597/9349*24476^(16/21) 3770005639828603 m001 GAMMA(7/24)^GAMMA(5/6)+exp(-1/2*Pi) 3770005640208835 a001 4181/3571*24476^(4/7) 3770005641253704 a001 514229/39603*2207^(7/16) 3770005642655037 r005 Re(z^2+c),c=-5/26+28/45*I,n=34 3770005643166132 a001 1597/9349*64079^(16/23) 3770005643304300 a001 1346269/103682*2207^(7/16) 3770005643325831 a001 4181/3571*64079^(12/23) 3770005643603478 a001 3524578/271443*2207^(7/16) 3770005643647127 a001 9227465/710647*2207^(7/16) 3770005643653496 a001 24157817/1860498*2207^(7/16) 3770005643654425 a001 63245986/4870847*2207^(7/16) 3770005643654560 a001 165580141/12752043*2207^(7/16) 3770005643654580 a001 433494437/33385282*2207^(7/16) 3770005643654583 a001 1134903170/87403803*2207^(7/16) 3770005643654583 a001 2971215073/228826127*2207^(7/16) 3770005643654584 a001 7778742049/599074578*2207^(7/16) 3770005643654584 a001 20365011074/1568397607*2207^(7/16) 3770005643654584 a001 53316291173/4106118243*2207^(7/16) 3770005643654584 a001 139583862445/10749957122*2207^(7/16) 3770005643654584 a001 365435296162/28143753123*2207^(7/16) 3770005643654584 a001 956722026041/73681302247*2207^(7/16) 3770005643654584 a001 2504730781961/192900153618*2207^(7/16) 3770005643654584 a001 10610209857723/817138163596*2207^(7/16) 3770005643654584 a001 4052739537881/312119004989*2207^(7/16) 3770005643654584 a001 1548008755920/119218851371*2207^(7/16) 3770005643654584 a001 591286729879/45537549124*2207^(7/16) 3770005643654584 a001 7787980473/599786069*2207^(7/16) 3770005643654584 a001 86267571272/6643838879*2207^(7/16) 3770005643654584 a001 32951280099/2537720636*2207^(7/16) 3770005643654584 a001 12586269025/969323029*2207^(7/16) 3770005643654584 a001 4807526976/370248451*2207^(7/16) 3770005643654584 a001 1836311903/141422324*2207^(7/16) 3770005643654585 a001 701408733/54018521*2207^(7/16) 3770005643654592 a001 9238424/711491*2207^(7/16) 3770005643654644 a001 102334155/7881196*2207^(7/16) 3770005643654999 a001 39088169/3010349*2207^(7/16) 3770005643657432 a001 14930352/1149851*2207^(7/16) 3770005643674104 a001 5702887/439204*2207^(7/16) 3770005643788380 a001 2178309/167761*2207^(7/16) 3770005643796177 a001 4181/3571*439204^(4/9) 3770005643804840 a001 1597/9349*(1/2+1/2*5^(1/2))^16 3770005643804840 a001 1597/9349*23725150497407^(1/4) 3770005643804840 a001 1597/9349*73681302247^(4/13) 3770005643804840 a001 1597/9349*10749957122^(1/3) 3770005643804840 a001 1597/9349*4106118243^(8/23) 3770005643804840 a001 1597/9349*1568397607^(4/11) 3770005643804840 a001 1597/9349*599074578^(8/21) 3770005643804840 a001 1597/9349*228826127^(2/5) 3770005643804840 a001 1597/9349*87403803^(8/19) 3770005643804841 a001 4181/3571*7881196^(4/11) 3770005643804842 a001 1597/9349*33385282^(4/9) 3770005643804851 a001 1597/9349*12752043^(8/17) 3770005643804863 a001 4181/3571*141422324^(4/13) 3770005643804863 a001 4181/3571*2537720636^(4/15) 3770005643804863 a001 4181/3571*45537549124^(4/17) 3770005643804863 a001 4181/3571*817138163596^(4/19) 3770005643804863 a001 4181/3571*14662949395604^(4/21) 3770005643804863 a001 4181/3571*(1/2+1/2*5^(1/2))^12 3770005643804863 a001 4181/3571*192900153618^(2/9) 3770005643804863 a001 4181/3571*73681302247^(3/13) 3770005643804863 a001 4181/3571*10749957122^(1/4) 3770005643804863 a001 4181/3571*4106118243^(6/23) 3770005643804863 a001 4181/3571*1568397607^(3/11) 3770005643804863 a001 4181/3571*599074578^(2/7) 3770005643804863 a001 4181/3571*228826127^(3/10) 3770005643804863 a001 4181/3571*87403803^(6/19) 3770005643804864 a001 4181/3571*33385282^(1/3) 3770005643804871 a001 4181/3571*12752043^(6/17) 3770005643804920 a001 1597/9349*4870847^(1/2) 3770005643804922 a001 4181/3571*4870847^(3/8) 3770005643805298 a001 4181/3571*1860498^(2/5) 3770005643805421 a001 1597/9349*1860498^(8/15) 3770005643808062 a001 4181/3571*710647^(3/7) 3770005643809106 a001 1597/9349*710647^(4/7) 3770005643828478 a001 4181/3571*271443^(6/13) 3770005643836327 a001 1597/9349*271443^(8/13) 3770005643980213 a001 4181/3571*103682^(1/2) 3770005644038640 a001 1597/9349*103682^(2/3) 3770005644235923 a001 46368/3571*5778^(7/18) 3770005644571638 a001 832040/64079*2207^(7/16) 3770005645115989 a001 4181/3571*39603^(6/11) 3770005645553008 a001 1597/9349*39603^(8/11) 3770005646208570 a001 6677057/17711 3770005646790370 m005 (1/2*5^(1/2)+2/5)/(1/6*Catalan+1/4) 3770005649045186 a001 832040/3571*2207^(1/16) 3770005649892303 a005 (1/sin(42/169*Pi))^207 3770005649940167 a001 10959/844*2207^(7/16) 3770005651259236 m001 1/FeigenbaumD^2/exp(ErdosBorwein)/exp(1)^2 3770005651778332 a001 28657/3571*5778^(4/9) 3770005652843292 a001 1597/3571*3571^(14/17) 3770005653205469 a001 6765/3571*5778^(11/18) 3770005653690112 a001 4181/3571*15127^(3/5) 3770005654730023 a001 17711/3571*5778^(1/2) 3770005655796896 r005 Re(z^2+c),c=19/56+8/19*I,n=23 3770005656985173 a001 1597/9349*15127^(4/5) 3770005667487599 a001 3524578/15127*843^(1/14) 3770005667850019 a001 196418/2207*843^(3/14) 3770005669517156 r009 Im(z^3+c),c=-31/110+39/56*I,n=7 3770005669700368 a001 10946/3571*5778^(5/9) 3770005673450506 a001 17711/5778*2207^(5/8) 3770005675502612 a001 121393/15127*2207^(1/2) 3770005681559233 a001 9227465/39603*843^(1/14) 3770005683612257 a001 24157817/103682*843^(1/14) 3770005683911789 a001 63245986/271443*843^(1/14) 3770005683955490 a001 165580141/710647*843^(1/14) 3770005683961866 a001 433494437/1860498*843^(1/14) 3770005683962796 a001 1134903170/4870847*843^(1/14) 3770005683962932 a001 2971215073/12752043*843^(1/14) 3770005683962951 a001 7778742049/33385282*843^(1/14) 3770005683962954 a001 20365011074/87403803*843^(1/14) 3770005683962955 a001 53316291173/228826127*843^(1/14) 3770005683962955 a001 139583862445/599074578*843^(1/14) 3770005683962955 a001 365435296162/1568397607*843^(1/14) 3770005683962955 a001 956722026041/4106118243*843^(1/14) 3770005683962955 a001 2504730781961/10749957122*843^(1/14) 3770005683962955 a001 6557470319842/28143753123*843^(1/14) 3770005683962955 a001 10610209857723/45537549124*843^(1/14) 3770005683962955 a001 4052739537881/17393796001*843^(1/14) 3770005683962955 a001 1548008755920/6643838879*843^(1/14) 3770005683962955 a001 591286729879/2537720636*843^(1/14) 3770005683962955 a001 225851433717/969323029*843^(1/14) 3770005683962955 a001 86267571272/370248451*843^(1/14) 3770005683962955 a001 63246219/271444*843^(1/14) 3770005683962956 a001 12586269025/54018521*843^(1/14) 3770005683962964 a001 4807526976/20633239*843^(1/14) 3770005683963016 a001 1836311903/7881196*843^(1/14) 3770005683963371 a001 701408733/3010349*843^(1/14) 3770005683965806 a001 267914296/1149851*843^(1/14) 3770005683982499 a001 102334155/439204*843^(1/14) 3770005684096910 a001 39088169/167761*843^(1/14) 3770005684881095 a001 14930352/64079*843^(1/14) 3770005686027910 l006 ln(5060/7377) 3770005686736617 a001 121393/9349*2207^(7/16) 3770005689617999 a001 105937/13201*2207^(1/2) 3770005690255981 a001 5702887/24476*843^(1/14) 3770005690846839 a001 1597/15127*5778^(17/18) 3770005691677406 a001 416020/51841*2207^(1/2) 3770005691977869 a001 726103/90481*2207^(1/2) 3770005692021707 a001 5702887/710647*2207^(1/2) 3770005692028102 a001 829464/103361*2207^(1/2) 3770005692029035 a001 39088169/4870847*2207^(1/2) 3770005692029172 a001 34111385/4250681*2207^(1/2) 3770005692029191 a001 133957148/16692641*2207^(1/2) 3770005692029194 a001 233802911/29134601*2207^(1/2) 3770005692029195 a001 1836311903/228826127*2207^(1/2) 3770005692029195 a001 267084832/33281921*2207^(1/2) 3770005692029195 a001 12586269025/1568397607*2207^(1/2) 3770005692029195 a001 10983760033/1368706081*2207^(1/2) 3770005692029195 a001 43133785636/5374978561*2207^(1/2) 3770005692029195 a001 75283811239/9381251041*2207^(1/2) 3770005692029195 a001 591286729879/73681302247*2207^(1/2) 3770005692029195 a001 86000486440/10716675201*2207^(1/2) 3770005692029195 a001 4052739537881/505019158607*2207^(1/2) 3770005692029195 a001 3536736619241/440719107401*2207^(1/2) 3770005692029195 a001 3278735159921/408569081798*2207^(1/2) 3770005692029195 a001 2504730781961/312119004989*2207^(1/2) 3770005692029195 a001 956722026041/119218851371*2207^(1/2) 3770005692029195 a001 182717648081/22768774562*2207^(1/2) 3770005692029195 a001 139583862445/17393796001*2207^(1/2) 3770005692029195 a001 53316291173/6643838879*2207^(1/2) 3770005692029195 a001 10182505537/1268860318*2207^(1/2) 3770005692029195 a001 7778742049/969323029*2207^(1/2) 3770005692029195 a001 2971215073/370248451*2207^(1/2) 3770005692029195 a001 567451585/70711162*2207^(1/2) 3770005692029196 a001 433494437/54018521*2207^(1/2) 3770005692029204 a001 165580141/20633239*2207^(1/2) 3770005692029256 a001 31622993/3940598*2207^(1/2) 3770005692029612 a001 24157817/3010349*2207^(1/2) 3770005692032055 a001 9227465/1149851*2207^(1/2) 3770005692048799 a001 1762289/219602*2207^(1/2) 3770005692163566 a001 1346269/167761*2207^(1/2) 3770005692950190 a001 514229/64079*2207^(1/2) 3770005697423738 a001 514229/3571*2207^(1/8) 3770005697761628 r005 Im(z^2+c),c=-1/98+11/23*I,n=58 3770005698341788 a001 98209/12238*2207^(1/2) 3770005701613365 m005 (1/2*3^(1/2)+3/8)/(2/5*3^(1/2)-4/11) 3770005713595821 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^21 3770005714526423 a007 Real Root Of -351*x^4+558*x^3+129*x^2+928*x-391 3770005719087650 a001 4181/3571*5778^(2/3) 3770005724062346 a001 75025/15127*2207^(9/16) 3770005727095996 a001 2178309/9349*843^(1/14) 3770005730521897 a001 5473/2889*2207^(11/16) 3770005732385829 r009 Im(z^3+c),c=-61/118+14/41*I,n=26 3770005732466195 a001 646/341*1364^(11/15) 3770005735296350 a001 75025/9349*2207^(1/2) 3770005738019620 a001 196418/39603*2207^(9/16) 3770005738026526 a007 Real Root Of -486*x^4-389*x^3+656*x^2+712*x-331 3770005739665430 r009 Re(z^3+c),c=-1/58+26/31*I,n=50 3770005740055958 a001 514229/103682*2207^(9/16) 3770005740353056 a001 1346269/271443*2207^(9/16) 3770005740396402 a001 3524578/710647*2207^(9/16) 3770005740402726 a001 9227465/1860498*2207^(9/16) 3770005740403649 a001 24157817/4870847*2207^(9/16) 3770005740403784 a001 63245986/12752043*2207^(9/16) 3770005740403803 a001 165580141/33385282*2207^(9/16) 3770005740403806 a001 433494437/87403803*2207^(9/16) 3770005740403807 a001 1134903170/228826127*2207^(9/16) 3770005740403807 a001 2971215073/599074578*2207^(9/16) 3770005740403807 a001 7778742049/1568397607*2207^(9/16) 3770005740403807 a001 20365011074/4106118243*2207^(9/16) 3770005740403807 a001 53316291173/10749957122*2207^(9/16) 3770005740403807 a001 139583862445/28143753123*2207^(9/16) 3770005740403807 a001 365435296162/73681302247*2207^(9/16) 3770005740403807 a001 956722026041/192900153618*2207^(9/16) 3770005740403807 a001 2504730781961/505019158607*2207^(9/16) 3770005740403807 a001 10610209857723/2139295485799*2207^(9/16) 3770005740403807 a001 4052739537881/817138163596*2207^(9/16) 3770005740403807 a001 140728068720/28374454999*2207^(9/16) 3770005740403807 a001 591286729879/119218851371*2207^(9/16) 3770005740403807 a001 225851433717/45537549124*2207^(9/16) 3770005740403807 a001 86267571272/17393796001*2207^(9/16) 3770005740403807 a001 32951280099/6643838879*2207^(9/16) 3770005740403807 a001 1144206275/230701876*2207^(9/16) 3770005740403807 a001 4807526976/969323029*2207^(9/16) 3770005740403807 a001 1836311903/370248451*2207^(9/16) 3770005740403807 a001 701408733/141422324*2207^(9/16) 3770005740403808 a001 267914296/54018521*2207^(9/16) 3770005740403815 a001 9303105/1875749*2207^(9/16) 3770005740403867 a001 39088169/7881196*2207^(9/16) 3770005740404219 a001 14930352/3010349*2207^(9/16) 3770005740406635 a001 5702887/1149851*2207^(9/16) 3770005740423192 a001 2178309/439204*2207^(9/16) 3770005740536673 a001 75640/15251*2207^(9/16) 3770005741314485 a001 317811/64079*2207^(9/16) 3770005743060855 a007 Real Root Of 384*x^4-940*x^3-27*x^2-856*x-377 3770005744181890 a001 1597/9349*5778^(8/9) 3770005744432630 m001 Ei(1)*(GAMMA(5/6)-Riemann2ndZero) 3770005745788033 a001 317811/3571*2207^(3/16) 3770005746645689 a001 121393/24476*2207^(9/16) 3770005747017125 a001 843/9227465*89^(6/19) 3770005751093281 r002 33th iterates of z^2 + 3770005756128044 a001 2255/1926*2207^(3/4) 3770005756428499 a001 1292/2889*2207^(7/8) 3770005757554775 a007 Real Root Of -928*x^4-28*x^3-470*x^2+289*x+193 3770005760574328 m001 1/GAMMA(1/4)*exp(MertensB1)*GAMMA(23/24)^2 3770005771952303 a001 6624/2161*2207^(5/8) 3770005781942546 b008 Csch[E+Sqrt[Pi/2]] 3770005783186308 a001 46368/9349*2207^(9/16) 3770005786323522 a001 121393/39603*2207^(5/8) 3770005788420254 a001 317811/103682*2207^(5/8) 3770005788726164 a001 832040/271443*2207^(5/8) 3770005788770795 a001 311187/101521*2207^(5/8) 3770005788777307 a001 5702887/1860498*2207^(5/8) 3770005788778257 a001 14930352/4870847*2207^(5/8) 3770005788778395 a001 39088169/12752043*2207^(5/8) 3770005788778416 a001 14619165/4769326*2207^(5/8) 3770005788778419 a001 267914296/87403803*2207^(5/8) 3770005788778419 a001 701408733/228826127*2207^(5/8) 3770005788778419 a001 1836311903/599074578*2207^(5/8) 3770005788778419 a001 686789568/224056801*2207^(5/8) 3770005788778419 a001 12586269025/4106118243*2207^(5/8) 3770005788778419 a001 32951280099/10749957122*2207^(5/8) 3770005788778419 a001 86267571272/28143753123*2207^(5/8) 3770005788778419 a001 32264490531/10525900321*2207^(5/8) 3770005788778419 a001 591286729879/192900153618*2207^(5/8) 3770005788778419 a001 1548008755920/505019158607*2207^(5/8) 3770005788778419 a001 1515744265389/494493258286*2207^(5/8) 3770005788778419 a001 2504730781961/817138163596*2207^(5/8) 3770005788778419 a001 956722026041/312119004989*2207^(5/8) 3770005788778419 a001 365435296162/119218851371*2207^(5/8) 3770005788778419 a001 139583862445/45537549124*2207^(5/8) 3770005788778419 a001 53316291173/17393796001*2207^(5/8) 3770005788778419 a001 20365011074/6643838879*2207^(5/8) 3770005788778419 a001 7778742049/2537720636*2207^(5/8) 3770005788778419 a001 2971215073/969323029*2207^(5/8) 3770005788778419 a001 1134903170/370248451*2207^(5/8) 3770005788778419 a001 433494437/141422324*2207^(5/8) 3770005788778420 a001 165580141/54018521*2207^(5/8) 3770005788778428 a001 63245986/20633239*2207^(5/8) 3770005788778481 a001 24157817/7881196*2207^(5/8) 3770005788778844 a001 9227465/3010349*2207^(5/8) 3770005788781331 a001 3524578/1149851*2207^(5/8) 3770005788798379 a001 1346269/439204*2207^(5/8) 3770005788915226 a001 514229/167761*2207^(5/8) 3770005789716106 a001 196418/64079*2207^(5/8) 3770005793653023 a003 sin(Pi*12/101)-sin(Pi*25/94) 3770005794189654 a001 196418/3571*2207^(1/4) 3770005795205424 a001 75025/24476*2207^(5/8) 3770005820788526 m001 1/gamma^2/ln(cos(Pi/5))^2/sqrt(Pi) 3770005821595759 a001 28657/15127*2207^(11/16) 3770005823763632 a001 1/46347*2584^(23/35) 3770005832829764 a001 28657/9349*2207^(5/8) 3770005834883257 a001 75025/39603*2207^(11/16) 3770005836821876 a001 98209/51841*2207^(11/16) 3770005837104717 a001 514229/271443*2207^(11/16) 3770005837145983 a001 1346269/710647*2207^(11/16) 3770005837152004 a001 1762289/930249*2207^(11/16) 3770005837152882 a001 9227465/4870847*2207^(11/16) 3770005837153010 a001 24157817/12752043*2207^(11/16) 3770005837153029 a001 31622993/16692641*2207^(11/16) 3770005837153032 a001 165580141/87403803*2207^(11/16) 3770005837153032 a001 433494437/228826127*2207^(11/16) 3770005837153032 a001 567451585/299537289*2207^(11/16) 3770005837153032 a001 2971215073/1568397607*2207^(11/16) 3770005837153032 a001 7778742049/4106118243*2207^(11/16) 3770005837153032 a001 10182505537/5374978561*2207^(11/16) 3770005837153032 a001 53316291173/28143753123*2207^(11/16) 3770005837153032 a001 139583862445/73681302247*2207^(11/16) 3770005837153032 a001 182717648081/96450076809*2207^(11/16) 3770005837153032 a001 956722026041/505019158607*2207^(11/16) 3770005837153032 a001 10610209857723/5600748293801*2207^(11/16) 3770005837153032 a001 591286729879/312119004989*2207^(11/16) 3770005837153032 a001 225851433717/119218851371*2207^(11/16) 3770005837153032 a001 21566892818/11384387281*2207^(11/16) 3770005837153032 a001 32951280099/17393796001*2207^(11/16) 3770005837153032 a001 12586269025/6643838879*2207^(11/16) 3770005837153032 a001 1201881744/634430159*2207^(11/16) 3770005837153032 a001 1836311903/969323029*2207^(11/16) 3770005837153032 a001 701408733/370248451*2207^(11/16) 3770005837153032 a001 66978574/35355581*2207^(11/16) 3770005837153033 a001 102334155/54018521*2207^(11/16) 3770005837153041 a001 39088169/20633239*2207^(11/16) 3770005837153090 a001 3732588/1970299*2207^(11/16) 3770005837153425 a001 5702887/3010349*2207^(11/16) 3770005837155725 a001 2178309/1149851*2207^(11/16) 3770005837171487 a001 208010/109801*2207^(11/16) 3770005837279522 a001 317811/167761*2207^(11/16) 3770005838020009 a001 121393/64079*2207^(11/16) 3770005839314003 r005 Re(z^2+c),c=-31/60+2/23*I,n=34 3770005842493557 a001 121393/3571*2207^(5/16) 3770005843095382 a001 11592/6119*2207^(11/16) 3770005852219111 m001 Shi(1)^TreeGrowth2nd/exp(1) 3770005864111275 a001 4181/5778*2207^(13/16) 3770005864528647 a001 1597/3571*9349^(14/19) 3770005866648498 a001 17711/15127*2207^(3/4) 3770005877780135 r005 Im(z^2+c),c=-31/66+2/31*I,n=18 3770005877882503 a001 17711/9349*2207^(11/16) 3770005882773215 a001 15456/13201*2207^(3/4) 3770005885125780 a001 121393/103682*2207^(3/4) 3770005885469015 a001 105937/90481*2207^(3/4) 3770005885519092 a001 832040/710647*2207^(3/4) 3770005885526398 a001 726103/620166*2207^(3/4) 3770005885527464 a001 5702887/4870847*2207^(3/4) 3770005885527619 a001 4976784/4250681*2207^(3/4) 3770005885527642 a001 39088169/33385282*2207^(3/4) 3770005885527645 a001 34111385/29134601*2207^(3/4) 3770005885527646 a001 267914296/228826127*2207^(3/4) 3770005885527646 a001 233802911/199691526*2207^(3/4) 3770005885527646 a001 1836311903/1568397607*2207^(3/4) 3770005885527646 a001 1602508992/1368706081*2207^(3/4) 3770005885527646 a001 12586269025/10749957122*2207^(3/4) 3770005885527646 a001 10983760033/9381251041*2207^(3/4) 3770005885527646 a001 86267571272/73681302247*2207^(3/4) 3770005885527646 a001 75283811239/64300051206*2207^(3/4) 3770005885527646 a001 2504730781961/2139295485799*2207^(3/4) 3770005885527646 a001 365435296162/312119004989*2207^(3/4) 3770005885527646 a001 139583862445/119218851371*2207^(3/4) 3770005885527646 a001 53316291173/45537549124*2207^(3/4) 3770005885527646 a001 20365011074/17393796001*2207^(3/4) 3770005885527646 a001 7778742049/6643838879*2207^(3/4) 3770005885527646 a001 2971215073/2537720636*2207^(3/4) 3770005885527646 a001 1134903170/969323029*2207^(3/4) 3770005885527646 a001 433494437/370248451*2207^(3/4) 3770005885527646 a001 165580141/141422324*2207^(3/4) 3770005885527647 a001 63245986/54018521*2207^(3/4) 3770005885527656 a001 24157817/20633239*2207^(3/4) 3770005885527716 a001 9227465/7881196*2207^(3/4) 3770005885528123 a001 3524578/3010349*2207^(3/4) 3770005885530913 a001 1346269/1149851*2207^(3/4) 3770005885550041 a001 514229/439204*2207^(3/4) 3770005885681145 a001 196418/167761*2207^(3/4) 3770005886579745 a001 75025/64079*2207^(3/4) 3770005890923102 r005 Im(z^2+c),c=-27/82+6/11*I,n=20 3770005891053293 a001 75025/3571*2207^(3/8) 3770005892115640 a001 1597/3571*24476^(2/3) 3770005892738839 a001 28657/24476*2207^(3/4) 3770005894298586 r005 Re(z^2+c),c=4/13+2/31*I,n=61 3770005895752136 a001 1597/3571*64079^(14/23) 3770005896311003 a001 1597/3571*20633239^(2/5) 3770005896311006 a001 1597/3571*17393796001^(2/7) 3770005896311006 a001 1597/3571*14662949395604^(2/9) 3770005896311006 a001 1597/3571*(1/2+1/2*5^(1/2))^14 3770005896311006 a001 1597/3571*10749957122^(7/24) 3770005896311006 a001 1597/3571*4106118243^(7/23) 3770005896311006 a001 1597/3571*1568397607^(7/22) 3770005896311006 a001 1597/3571*599074578^(1/3) 3770005896311006 a001 1597/3571*228826127^(7/20) 3770005896311006 a001 1597/3571*87403803^(7/19) 3770005896311007 a001 1597/3571*33385282^(7/18) 3770005896311016 a001 1597/3571*12752043^(7/17) 3770005896311076 a001 1597/3571*4870847^(7/16) 3770005896311514 a001 1597/3571*1860498^(7/15) 3770005896314739 a001 1597/3571*710647^(1/2) 3770005896338557 a001 1597/3571*271443^(7/13) 3770005896515581 a001 1597/3571*103682^(7/12) 3770005897840653 a001 1597/3571*39603^(7/11) 3770005905292610 a001 1597/322*18^(40/57) 3770005907843798 a001 1597/3571*15127^(7/10) 3770005912786400 a001 2550409/6765 3770005922682983 a001 2971215073/3*123^(5/18) 3770005923719892 a001 10946/15127*2207^(13/16) 3770005927682276 q001 636/1687 3770005927682276 r005 Im(z^2+c),c=-19/14+53/241*I,n=2 3770005930405876 l006 ln(5547/8087) 3770005931669168 a007 Real Root Of 95*x^4+584*x^3+905*x^2+65*x-516 3770005932416673 a001 28657/39603*2207^(13/16) 3770005933685516 a001 75025/103682*2207^(13/16) 3770005933870638 a001 196418/271443*2207^(13/16) 3770005933897647 a001 514229/710647*2207^(13/16) 3770005933901587 a001 1346269/1860498*2207^(13/16) 3770005933902162 a001 3524578/4870847*2207^(13/16) 3770005933902246 a001 9227465/12752043*2207^(13/16) 3770005933902258 a001 24157817/33385282*2207^(13/16) 3770005933902260 a001 63245986/87403803*2207^(13/16) 3770005933902260 a001 165580141/228826127*2207^(13/16) 3770005933902260 a001 433494437/599074578*2207^(13/16) 3770005933902260 a001 1134903170/1568397607*2207^(13/16) 3770005933902260 a001 2971215073/4106118243*2207^(13/16) 3770005933902260 a001 7778742049/10749957122*2207^(13/16) 3770005933902260 a001 20365011074/28143753123*2207^(13/16) 3770005933902260 a001 53316291173/73681302247*2207^(13/16) 3770005933902260 a001 139583862445/192900153618*2207^(13/16) 3770005933902260 a001 365435296162/505019158607*2207^(13/16) 3770005933902260 a001 10610209857723/14662949395604*2207^(13/16) 3770005933902260 a001 225851433717/312119004989*2207^(13/16) 3770005933902260 a001 86267571272/119218851371*2207^(13/16) 3770005933902260 a001 32951280099/45537549124*2207^(13/16) 3770005933902260 a001 12586269025/17393796001*2207^(13/16) 3770005933902260 a001 4807526976/6643838879*2207^(13/16) 3770005933902260 a001 1836311903/2537720636*2207^(13/16) 3770005933902260 a001 701408733/969323029*2207^(13/16) 3770005933902260 a001 267914296/370248451*2207^(13/16) 3770005933902260 a001 102334155/141422324*2207^(13/16) 3770005933902261 a001 39088169/54018521*2207^(13/16) 3770005933902266 a001 14930352/20633239*2207^(13/16) 3770005933902298 a001 5702887/7881196*2207^(13/16) 3770005933902517 a001 2178309/3010349*2207^(13/16) 3770005933904023 a001 832040/1149851*2207^(13/16) 3770005933914339 a001 317811/439204*2207^(13/16) 3770005933985049 a001 121393/167761*2207^(13/16) 3770005934469704 a001 46368/64079*2207^(13/16) 3770005934953898 a001 10946/9349*2207^(3/4) 3770005937647865 r005 Re(z^2+c),c=-9/70+32/51*I,n=20 3770005937791579 a001 17711/24476*2207^(13/16) 3770005938943252 a001 46368/3571*2207^(7/16) 3770005949326040 a001 6765/15127*2207^(7/8) 3770005949968346 a001 416020/2889*843^(1/7) 3770005949978320 r005 Re(z^2+c),c=25/98+22/47*I,n=43 3770005959678684 m001 (Ei(1,1)-Bloch)/(GAMMA(3/4)-Ei(1)) 3770005960560046 a001 6765/9349*2207^(13/16) 3770005960860501 a001 2584/9349*2207^(15/16) 3770005961857229 r009 Re(z^3+c),c=-19/52+2/17*I,n=15 3770005966101913 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^20 3770005966390079 b008 61/58+E 3770005972140155 m001 Pi^(1/2)*Niven+RenyiParking 3770005977469413 a001 17711/39603*2207^(7/8) 3770005979601237 a001 832040/3571*843^(1/14) 3770005981575476 a001 23184/51841*2207^(7/8) 3770005981632635 r005 Im(z^2+c),c=-5/106+37/41*I,n=5 3770005982174543 a001 121393/271443*2207^(7/8) 3770005982261945 a001 317811/710647*2207^(7/8) 3770005982274697 a001 416020/930249*2207^(7/8) 3770005982276557 a001 2178309/4870847*2207^(7/8) 3770005982276829 a001 5702887/12752043*2207^(7/8) 3770005982276869 a001 7465176/16692641*2207^(7/8) 3770005982276874 a001 39088169/87403803*2207^(7/8) 3770005982276875 a001 102334155/228826127*2207^(7/8) 3770005982276875 a001 133957148/299537289*2207^(7/8) 3770005982276875 a001 701408733/1568397607*2207^(7/8) 3770005982276875 a001 1836311903/4106118243*2207^(7/8) 3770005982276875 a001 2403763488/5374978561*2207^(7/8) 3770005982276875 a001 12586269025/28143753123*2207^(7/8) 3770005982276875 a001 32951280099/73681302247*2207^(7/8) 3770005982276875 a001 43133785636/96450076809*2207^(7/8) 3770005982276875 a001 225851433717/505019158607*2207^(7/8) 3770005982276875 a001 591286729879/1322157322203*2207^(7/8) 3770005982276875 a001 10610209857723/23725150497407*2207^(7/8) 3770005982276875 a001 182717648081/408569081798*2207^(7/8) 3770005982276875 a001 139583862445/312119004989*2207^(7/8) 3770005982276875 a001 53316291173/119218851371*2207^(7/8) 3770005982276875 a001 10182505537/22768774562*2207^(7/8) 3770005982276875 a001 7778742049/17393796001*2207^(7/8) 3770005982276875 a001 2971215073/6643838879*2207^(7/8) 3770005982276875 a001 567451585/1268860318*2207^(7/8) 3770005982276875 a001 433494437/969323029*2207^(7/8) 3770005982276875 a001 165580141/370248451*2207^(7/8) 3770005982276876 a001 31622993/70711162*2207^(7/8) 3770005982276878 a001 24157817/54018521*2207^(7/8) 3770005982276893 a001 9227465/20633239*2207^(7/8) 3770005982276997 a001 1762289/3940598*2207^(7/8) 3770005982277707 a001 1346269/3010349*2207^(7/8) 3770005982282578 a001 514229/1149851*2207^(7/8) 3770005982315963 a001 98209/219602*2207^(7/8) 3770005982544786 a001 75025/167761*2207^(7/8) 3770005983801815 m001 ln(BesselJ(0,1))*Porter^2*cos(Pi/5)^2 3770005984113162 a001 28657/64079*2207^(7/8) 3770005984140931 a001 1597/3571*5778^(7/9) 3770005988586711 a001 28657/3571*2207^(1/2) 3770005994862974 a001 5473/12238*2207^(7/8) 3770006003920715 m001 sin(1)/GAMMA(17/24)^2/ln(sin(Pi/12)) 3770006005940211 a001 1597/1364*1364^(4/5) 3770006008182148 r005 Re(z^2+c),c=-45/86+19/61*I,n=16 3770006009314023 r009 Re(z^3+c),c=-17/28+2/7*I,n=4 3770006020469123 a001 6765/24476*2207^(15/16) 3770006021481335 m001 (Ei(1)+MadelungNaCl)^FransenRobinson 3770006022233963 r009 Im(z^3+c),c=-5/52+20/47*I,n=9 3770006023613113 a001 4181/1364*1364^(2/3) 3770006029165903 a001 17711/64079*2207^(15/16) 3770006030434747 a001 46368/167761*2207^(15/16) 3770006030619868 a001 121393/439204*2207^(15/16) 3770006030646877 a001 317811/1149851*2207^(15/16) 3770006030650818 a001 832040/3010349*2207^(15/16) 3770006030651393 a001 2178309/7881196*2207^(15/16) 3770006030651477 a001 5702887/20633239*2207^(15/16) 3770006030651489 a001 14930352/54018521*2207^(15/16) 3770006030651491 a001 39088169/141422324*2207^(15/16) 3770006030651491 a001 102334155/370248451*2207^(15/16) 3770006030651491 a001 267914296/969323029*2207^(15/16) 3770006030651491 a001 701408733/2537720636*2207^(15/16) 3770006030651491 a001 1836311903/6643838879*2207^(15/16) 3770006030651491 a001 4807526976/17393796001*2207^(15/16) 3770006030651491 a001 12586269025/45537549124*2207^(15/16) 3770006030651491 a001 32951280099/119218851371*2207^(15/16) 3770006030651491 a001 86267571272/312119004989*2207^(15/16) 3770006030651491 a001 225851433717/817138163596*2207^(15/16) 3770006030651491 a001 1548008755920/5600748293801*2207^(15/16) 3770006030651491 a001 139583862445/505019158607*2207^(15/16) 3770006030651491 a001 53316291173/192900153618*2207^(15/16) 3770006030651491 a001 20365011074/73681302247*2207^(15/16) 3770006030651491 a001 7778742049/28143753123*2207^(15/16) 3770006030651491 a001 2971215073/10749957122*2207^(15/16) 3770006030651491 a001 1134903170/4106118243*2207^(15/16) 3770006030651491 a001 433494437/1568397607*2207^(15/16) 3770006030651491 a001 165580141/599074578*2207^(15/16) 3770006030651491 a001 63245986/228826127*2207^(15/16) 3770006030651492 a001 24157817/87403803*2207^(15/16) 3770006030651496 a001 9227465/33385282*2207^(15/16) 3770006030651528 a001 3524578/12752043*2207^(15/16) 3770006030651748 a001 1346269/4870847*2207^(15/16) 3770006030653253 a001 514229/1860498*2207^(15/16) 3770006030663570 a001 196418/710647*2207^(15/16) 3770006030734280 a001 75025/271443*2207^(15/16) 3770006031218935 a001 28657/103682*2207^(15/16) 3770006033639452 a001 17711/3571*2207^(9/16) 3770006034540809 a001 10946/39603*2207^(15/16) 3770006038264529 r008 a(0)=4,K{-n^6,9+43*n-26*n^2-22*n^3} 3770006046418049 a001 311187/2161*843^(1/7) 3770006046709978 a001 121393/2207*843^(2/7) 3770006051937083 r005 Im(z^2+c),c=-9/70+30/53*I,n=27 3770006055409316 m001 (Mills-Tetranacci)/(ln(5)-exp(1/exp(1))) 3770006055960606 r009 Re(z^3+c),c=-14/29+11/41*I,n=50 3770006056076363 a007 Real Root Of -93*x^4-170*x^3+992*x^2+980*x-727 3770006057309277 a001 4181/15127*2207^(15/16) 3770006060128829 a001 121393/843*322^(1/6) 3770006060489871 a001 5702887/39603*843^(1/7) 3770006062542923 a001 7465176/51841*843^(1/7) 3770006062550689 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^22 3770006062842459 a001 39088169/271443*843^(1/7) 3770006062886160 a001 14619165/101521*843^(1/7) 3770006062892536 a001 133957148/930249*843^(1/7) 3770006062893467 a001 701408733/4870847*843^(1/7) 3770006062893602 a001 1836311903/12752043*843^(1/7) 3770006062893622 a001 14930208/103681*843^(1/7) 3770006062893625 a001 12586269025/87403803*843^(1/7) 3770006062893625 a001 32951280099/228826127*843^(1/7) 3770006062893626 a001 43133785636/299537289*843^(1/7) 3770006062893626 a001 32264490531/224056801*843^(1/7) 3770006062893626 a001 591286729879/4106118243*843^(1/7) 3770006062893626 a001 774004377960/5374978561*843^(1/7) 3770006062893626 a001 4052739537881/28143753123*843^(1/7) 3770006062893626 a001 1515744265389/10525900321*843^(1/7) 3770006062893626 a001 3278735159921/22768774562*843^(1/7) 3770006062893626 a001 2504730781961/17393796001*843^(1/7) 3770006062893626 a001 956722026041/6643838879*843^(1/7) 3770006062893626 a001 182717648081/1268860318*843^(1/7) 3770006062893626 a001 139583862445/969323029*843^(1/7) 3770006062893626 a001 53316291173/370248451*843^(1/7) 3770006062893626 a001 10182505537/70711162*843^(1/7) 3770006062893627 a001 7778742049/54018521*843^(1/7) 3770006062893634 a001 2971215073/20633239*843^(1/7) 3770006062893686 a001 567451585/3940598*843^(1/7) 3770006062894042 a001 433494437/3010349*843^(1/7) 3770006062896477 a001 165580141/1149851*843^(1/7) 3770006062913170 a001 31622993/219602*843^(1/7) 3770006063027582 a001 24157817/167761*843^(1/7) 3770006063811778 a001 9227465/64079*843^(1/7) 3770006068543282 a001 4181/9349*2207^(7/8) 3770006069186736 a001 1762289/12238*843^(1/7) 3770006076622376 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^24 3770006078675407 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^26 3770006078974941 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^28 3770006079018642 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^30 3770006079025018 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^32 3770006079025948 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^34 3770006079026084 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^36 3770006079026104 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^38 3770006079026107 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^40 3770006079026107 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^42 3770006079026107 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^44 3770006079026107 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^46 3770006079026107 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^48 3770006079026107 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^50 3770006079026107 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^52 3770006079026107 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^54 3770006079026107 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^56 3770006079026107 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^58 3770006079026107 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^60 3770006079026107 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^62 3770006079026107 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^64 3770006079026107 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^66 3770006079026107 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^68 3770006079026107 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^70 3770006079026107 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^72 3770006079026107 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^74 3770006079026107 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^76 3770006079026107 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^78 3770006079026107 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^80 3770006079026107 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^82 3770006079026107 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^84 3770006079026107 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^86 3770006079026107 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^88 3770006079026107 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^90 3770006079026107 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^92 3770006079026107 a004 Fibonacci(92)*Lucas(16)/(1/2+sqrt(5)/2)^94 3770006079026107 a004 Fibonacci(94)*Lucas(16)/(1/2+sqrt(5)/2)^96 3770006079026107 a004 Fibonacci(96)*Lucas(16)/(1/2+sqrt(5)/2)^98 3770006079026107 a004 Fibonacci(98)*Lucas(16)/(1/2+sqrt(5)/2)^100 3770006079026107 a004 Fibonacci(97)*Lucas(16)/(1/2+sqrt(5)/2)^99 3770006079026107 a004 Fibonacci(95)*Lucas(16)/(1/2+sqrt(5)/2)^97 3770006079026107 a004 Fibonacci(93)*Lucas(16)/(1/2+sqrt(5)/2)^95 3770006079026107 a004 Fibonacci(91)*Lucas(16)/(1/2+sqrt(5)/2)^93 3770006079026107 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^91 3770006079026107 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^89 3770006079026107 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^87 3770006079026107 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^85 3770006079026107 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^83 3770006079026107 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^81 3770006079026107 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^79 3770006079026107 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^77 3770006079026107 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^75 3770006079026107 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^73 3770006079026107 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^71 3770006079026107 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^69 3770006079026107 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^67 3770006079026107 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^65 3770006079026107 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^63 3770006079026107 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^61 3770006079026107 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^59 3770006079026107 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^57 3770006079026107 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^55 3770006079026107 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^53 3770006079026107 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^51 3770006079026107 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^49 3770006079026107 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^47 3770006079026107 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^45 3770006079026107 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^43 3770006079026107 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^41 3770006079026108 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^39 3770006079026116 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^37 3770006079026168 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^35 3770006079026266 a001 2/987*(1/2+1/2*5^(1/2))^30 3770006079026523 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^33 3770006079028958 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^31 3770006079045651 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^29 3770006079160062 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^27 3770006079268891 r005 Re(z^2+c),c=-15/29+1/12*I,n=25 3770006079944251 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^25 3770006080216935 m005 (1/2*Pi-5/8)/(1/7*gamma-1/3) 3770006085319157 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^23 3770006090710849 a001 10946/3571*2207^(5/8) 3770006099094023 a001 615/124*1364^(3/5) 3770006106027246 a001 1346269/9349*843^(1/7) 3770006116316998 a001 6765/3571*2207^(11/16) 3770006116617453 a001 2584/3571*2207^(13/16) 3770006121080278 r005 Im(z^2+c),c=29/122+8/27*I,n=47 3770006122159311 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^21 3770006123041456 r005 Re(z^2+c),c=-85/122+10/49*I,n=41 3770006132024930 m001 exp(Paris)/GolombDickman*Zeta(1/2)^2 3770006135336681 l006 ln(6034/8797) 3770006141892716 r002 10th iterates of z^2 + 3770006142013253 a005 (1/sin(22/137*Pi))^43 3770006152232890 a007 Real Root Of 228*x^4+951*x^3+492*x^2+786*x+870 3770006154674351 m004 (-15*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)-120*Pi 3770006180186259 h001 (-8*exp(3)-7)/(-8*exp(4)-8) 3770006190727684 r009 Re(z^3+c),c=-3/56+23/54*I,n=10 3770006192963664 r005 Im(z^2+c),c=-1/98+11/23*I,n=61 3770006198483592 r009 Im(z^3+c),c=-29/64+5/17*I,n=29 3770006205394176 r005 Im(z^2+c),c=-5/23+23/40*I,n=44 3770006213366668 a001 1597/5778*2207^(15/16) 3770006214584746 r005 Im(z^2+c),c=-73/110+3/43*I,n=44 3770006215872079 r009 Re(z^3+c),c=-7/16+3/14*I,n=25 3770006217429127 r005 Im(z^2+c),c=13/94+19/50*I,n=28 3770006220139334 a001 1/3*4181^(16/55) 3770006224300239 a001 4181/3571*2207^(3/4) 3770006240687785 m001 GAMMA(5/12)^2*ln(Conway)*Pi 3770006242189218 m001 (Sierpinski+Thue)/(ln(2)-ErdosBorwein) 3770006253996579 a007 Real Root Of 184*x^4+648*x^3-15*x^2+689*x+363 3770006256952028 a001 5473/682*1364^(8/15) 3770006258984985 p004 log(33533/773) 3770006261740763 a001 602070/1597 3770006262999827 a001 317811/1364*521^(1/13) 3770006265023990 h001 (-3*exp(2/3)-9)/(-7*exp(3/2)-8) 3770006271326803 r005 Re(z^2+c),c=-27/40+7/34*I,n=28 3770006273788266 r005 Re(z^2+c),c=-67/110+3/50*I,n=8 3770006277555402 m005 (1/2*Catalan+5/7)/(6/7*Pi+5/12) 3770006296356182 h001 (-6*exp(1/2)-5)/(-exp(-3)+4) 3770006296522006 a001 610/2207*3571^(15/17) 3770006309658281 l006 ln(6521/9507) 3770006328902984 a001 514229/5778*843^(3/14) 3770006329714079 r005 Re(z^2+c),c=-21/46+20/43*I,n=33 3770006330388628 r009 Re(z^3+c),c=-51/110+9/37*I,n=20 3770006330767505 a007 Real Root Of 658*x^4+225*x^3-860*x^2-799*x-3 3770006331304043 a001 987/1364*3571^(13/17) 3770006340692872 b008 12*Pi+AiryAi[4] 3770006344017894 r009 Re(z^3+c),c=-17/46+8/61*I,n=4 3770006347026506 m001 (Pi+gamma)/Paris 3770006350809104 m001 (Artin+PolyaRandomWalk3D)/(Zeta(3)+ln(2)) 3770006352162137 r008 a(0)=4,K{-n^6,-1-20*n^3-37*n^2+62*n} 3770006358535878 a001 514229/3571*843^(1/7) 3770006374665487 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^19 3770006381910761 r009 Re(z^3+c),c=-7/114+21/38*I,n=37 3770006383344789 a001 17711/1364*1364^(7/15) 3770006402268358 r005 Re(z^2+c),c=-33/64+5/63*I,n=18 3770006415721432 h001 (1/8*exp(1)+5/8)/(8/9*exp(1)+1/7) 3770006417768123 b008 10*Pi+3*ArcSinh[4] 3770006417768123 b008 Pi+(3*ArcSinh[4])/10 3770006422186567 m001 FeigenbaumC/ErdosBorwein^2/ln(cosh(1))^2 3770006425349331 a001 1346269/15127*843^(3/14) 3770006425825807 a001 75025/2207*843^(5/14) 3770006426104860 r009 Re(z^3+c),c=-7/114+21/38*I,n=40 3770006439420664 a001 3524578/39603*843^(3/14) 3770006441473644 a001 9227465/103682*843^(3/14) 3770006441773169 a001 24157817/271443*843^(3/14) 3770006441816869 a001 63245986/710647*843^(3/14) 3770006441823245 a001 165580141/1860498*843^(3/14) 3770006441824175 a001 433494437/4870847*843^(3/14) 3770006441824311 a001 1134903170/12752043*843^(3/14) 3770006441824331 a001 2971215073/33385282*843^(3/14) 3770006441824334 a001 7778742049/87403803*843^(3/14) 3770006441824334 a001 20365011074/228826127*843^(3/14) 3770006441824334 a001 53316291173/599074578*843^(3/14) 3770006441824334 a001 139583862445/1568397607*843^(3/14) 3770006441824334 a001 365435296162/4106118243*843^(3/14) 3770006441824334 a001 956722026041/10749957122*843^(3/14) 3770006441824334 a001 2504730781961/28143753123*843^(3/14) 3770006441824334 a001 6557470319842/73681302247*843^(3/14) 3770006441824334 a001 10610209857723/119218851371*843^(3/14) 3770006441824334 a001 4052739537881/45537549124*843^(3/14) 3770006441824334 a001 1548008755920/17393796001*843^(3/14) 3770006441824334 a001 591286729879/6643838879*843^(3/14) 3770006441824334 a001 225851433717/2537720636*843^(3/14) 3770006441824334 a001 86267571272/969323029*843^(3/14) 3770006441824334 a001 32951280099/370248451*843^(3/14) 3770006441824335 a001 12586269025/141422324*843^(3/14) 3770006441824336 a001 4807526976/54018521*843^(3/14) 3770006441824343 a001 1836311903/20633239*843^(3/14) 3770006441824395 a001 3524667/39604*843^(3/14) 3770006441824750 a001 267914296/3010349*843^(3/14) 3770006441827186 a001 102334155/1149851*843^(3/14) 3770006441843878 a001 39088169/439204*843^(3/14) 3770006441958286 a001 14930352/167761*843^(3/14) 3770006442742455 a001 5702887/64079*843^(3/14) 3770006445071732 r009 Re(z^3+c),c=-7/114+21/38*I,n=42 3770006448117226 a001 2178309/24476*843^(3/14) 3770006463271763 a007 Real Root Of -111*x^4-509*x^3-494*x^2-681*x-397 3770006466852001 r005 Re(z^2+c),c=-13/27+10/57*I,n=8 3770006469303576 r009 Re(z^3+c),c=-7/114+21/38*I,n=44 3770006473893799 a007 Real Root Of -435*x^4-419*x^3-119*x^2+750*x+286 3770006484695452 r009 Re(z^3+c),c=-7/114+21/38*I,n=46 3770006484956454 a001 832040/9349*843^(3/14) 3770006486470415 r009 Re(z^3+c),c=-7/114+21/38*I,n=38 3770006492498403 r009 Re(z^3+c),c=-7/114+21/38*I,n=48 3770006495950719 r009 Re(z^3+c),c=-7/114+21/38*I,n=50 3770006496846357 m001 OrthogonalArrays^FeigenbaumMu+ThueMorse 3770006497317283 r009 Re(z^3+c),c=-7/114+21/38*I,n=52 3770006497799321 r009 Re(z^3+c),c=-7/114+21/38*I,n=54 3770006497945248 r009 Re(z^3+c),c=-7/114+21/38*I,n=56 3770006497957063 r009 Re(z^3+c),c=-7/114+21/38*I,n=59 3770006497959873 r009 Re(z^3+c),c=-7/114+21/38*I,n=61 3770006497963943 r009 Re(z^3+c),c=-7/114+21/38*I,n=63 3770006497968975 r009 Re(z^3+c),c=-7/114+21/38*I,n=57 3770006497972361 r009 Re(z^3+c),c=-7/114+21/38*I,n=64 3770006497975784 r009 Re(z^3+c),c=-7/114+21/38*I,n=62 3770006497978353 r009 Re(z^3+c),c=-7/114+21/38*I,n=58 3770006497979939 r009 Re(z^3+c),c=-7/114+21/38*I,n=60 3770006498042341 r009 Re(z^3+c),c=-7/114+21/38*I,n=55 3770006498313907 r009 Re(z^3+c),c=-7/114+21/38*I,n=53 3770006499138382 r009 Re(z^3+c),c=-7/114+21/38*I,n=51 3770006501340105 r009 Re(z^3+c),c=-7/114+21/38*I,n=49 3770006506606917 r009 Re(z^3+c),c=-7/114+21/38*I,n=47 3770006517789354 r009 Re(z^3+c),c=-7/114+21/38*I,n=45 3770006521756210 a001 28657/1364*1364^(2/5) 3770006523327782 a001 610/2207*9349^(15/19) 3770006526553774 m001 (-GaussAGM+TreeGrowth2nd)/(Psi(1,1/3)+Artin) 3770006527869050 a001 987/1364*9349^(13/19) 3770006533611627 h001 (1/7*exp(1)+8/9)/(10/11*exp(1)+11/12) 3770006537876594 r009 Re(z^3+c),c=-7/114+21/38*I,n=43 3770006539928890 m001 (Zeta(5)-Pi^(1/2))/(Backhouse-Magata) 3770006547191832 r009 Im(z^3+c),c=-21/106+20/49*I,n=13 3770006547971684 a008 Real Root of x^4-x^3-7*x^2+30*x-43 3770006552885280 a001 610/2207*24476^(5/7) 3770006553485548 a001 987/1364*24476^(13/21) 3770006556781527 a001 610/2207*64079^(15/23) 3770006556862296 a001 987/1364*64079^(13/23) 3770006557299943 a001 610/2207*167761^(3/5) 3770006557369458 a001 610/2207*439204^(5/9) 3770006557380289 a001 610/2207*7881196^(5/11) 3770006557380312 a001 610/2207*20633239^(3/7) 3770006557380316 a001 610/2207*141422324^(5/13) 3770006557380316 a001 610/2207*2537720636^(1/3) 3770006557380316 a001 610/2207*45537549124^(5/17) 3770006557380316 a001 610/2207*312119004989^(3/11) 3770006557380316 a001 610/2207*14662949395604^(5/21) 3770006557380316 a001 610/2207*(1/2+1/2*5^(1/2))^15 3770006557380316 a001 610/2207*192900153618^(5/18) 3770006557380316 a001 610/2207*28143753123^(3/10) 3770006557380316 a001 610/2207*10749957122^(5/16) 3770006557380316 a001 610/2207*599074578^(5/14) 3770006557380316 a001 610/2207*228826127^(3/8) 3770006557380318 a001 610/2207*33385282^(5/12) 3770006557380861 a001 610/2207*1860498^(1/2) 3770006557381246 a001 987/1364*141422324^(1/3) 3770006557381246 a001 987/1364*(1/2+1/2*5^(1/2))^13 3770006557381246 a001 987/1364*73681302247^(1/4) 3770006557406830 a001 987/1364*271443^(1/2) 3770006557571209 a001 987/1364*103682^(13/24) 3770006557599503 a001 610/2207*103682^(5/8) 3770006558801633 a001 987/1364*39603^(13/22) 3770006559019224 a001 610/2207*39603^(15/22) 3770006559075099 r009 Re(z^3+c),c=-7/114+21/38*I,n=39 3770006563332833 r009 Re(z^3+c),c=-7/114+21/38*I,n=41 3770006568090269 a001 987/1364*15127^(13/20) 3770006569736881 a001 610/2207*15127^(3/4) 3770006573555665 a001 1597/3571*2207^(7/8) 3770006579297454 a007 Real Root Of -14*x^4+980*x^3-385*x^2+118*x+152 3770006580260773 r005 Re(z^2+c),c=-15/98+58/63*I,n=11 3770006588735488 m001 1/MadelungNaCl^2/Khintchine*exp(GAMMA(5/6)) 3770006591539526 r005 Re(z^2+c),c=-27/52+1/64*I,n=26 3770006597072967 m001 ln(Tribonacci)/CareFree*TwinPrimes^2 3770006603443362 m005 (1/3*Pi+1/11)/(1/6*Catalan-5/11) 3770006626345944 h001 (1/7*exp(1)+1/2)/(2/9*exp(2)+5/7) 3770006636198448 m001 1/FeigenbaumAlpha^2/Artin^2/exp(Niven)^2 3770006637090047 a007 Real Root Of -177*x^4-567*x^3+531*x^2+434*x-537 3770006638937619 a001 987/1364*5778^(13/18) 3770006651483823 a001 610/2207*5778^(5/6) 3770006655576918 a001 11592/341*1364^(1/3) 3770006659800956 r005 Im(z^2+c),c=5/38+22/57*I,n=20 3770006667774168 a001 987/521*521^(11/13) 3770006674125026 m001 (FibonacciFactorial-Otter)/(Pi+exp(1/exp(1))) 3770006674713265 a007 Real Root Of 85*x^4+357*x^3+31*x^2-566*x-616 3770006707823403 a001 105937/1926*843^(2/7) 3770006713716049 a007 Real Root Of 205*x^4+914*x^3+298*x^2-897*x-54 3770006724715555 m001 1/BesselK(0,1)^2*TwinPrimes^2*exp(Zeta(1,2))^2 3770006737456300 a001 317811/3571*843^(3/14) 3770006741864317 a001 161/31622993*832040^(6/19) 3770006741864661 a001 161/567451585*7778742049^(6/19) 3770006747105383 r005 Im(z^2+c),c=-33/26+1/35*I,n=41 3770006756346102 r005 Re(z^2+c),c=-14/27+2/45*I,n=31 3770006759630224 r005 Im(z^2+c),c=17/98+6/17*I,n=22 3770006762170833 r002 13th iterates of z^2 + 3770006770690401 r009 Im(z^3+c),c=-27/94+21/55*I,n=21 3770006772523349 r005 Im(z^2+c),c=5/54+26/63*I,n=33 3770006791151129 a001 75025/1364*1364^(4/15) 3770006804271897 a001 46368/2207*843^(3/7) 3770006804278571 a001 832040/15127*843^(2/7) 3770006812528424 a007 Real Root Of -282*x^4-955*x^3+164*x^2-919*x-1 3770006818351191 a001 726103/13201*843^(2/7) 3770006820404358 a001 5702887/103682*843^(2/7) 3770006820703911 a001 4976784/90481*843^(2/7) 3770006820747616 a001 39088169/710647*843^(2/7) 3770006820753992 a001 831985/15126*843^(2/7) 3770006820754922 a001 267914296/4870847*843^(2/7) 3770006820755058 a001 233802911/4250681*843^(2/7) 3770006820755078 a001 1836311903/33385282*843^(2/7) 3770006820755081 a001 1602508992/29134601*843^(2/7) 3770006820755081 a001 12586269025/228826127*843^(2/7) 3770006820755081 a001 10983760033/199691526*843^(2/7) 3770006820755081 a001 86267571272/1568397607*843^(2/7) 3770006820755081 a001 75283811239/1368706081*843^(2/7) 3770006820755081 a001 591286729879/10749957122*843^(2/7) 3770006820755081 a001 12585437040/228811001*843^(2/7) 3770006820755081 a001 4052739537881/73681302247*843^(2/7) 3770006820755081 a001 3536736619241/64300051206*843^(2/7) 3770006820755081 a001 6557470319842/119218851371*843^(2/7) 3770006820755081 a001 2504730781961/45537549124*843^(2/7) 3770006820755081 a001 956722026041/17393796001*843^(2/7) 3770006820755081 a001 365435296162/6643838879*843^(2/7) 3770006820755081 a001 139583862445/2537720636*843^(2/7) 3770006820755081 a001 53316291173/969323029*843^(2/7) 3770006820755081 a001 20365011074/370248451*843^(2/7) 3770006820755081 a001 7778742049/141422324*843^(2/7) 3770006820755083 a001 2971215073/54018521*843^(2/7) 3770006820755090 a001 1134903170/20633239*843^(2/7) 3770006820755142 a001 433494437/7881196*843^(2/7) 3770006820755497 a001 165580141/3010349*843^(2/7) 3770006820757933 a001 63245986/1149851*843^(2/7) 3770006820774626 a001 24157817/439204*843^(2/7) 3770006820889045 a001 9227465/167761*843^(2/7) 3770006821673286 a001 3524578/64079*843^(2/7) 3770006824698094 r005 Im(z^2+c),c=-1/9+23/43*I,n=58 3770006826557430 a007 Real Root Of -136*x^4-319*x^3+654*x^2-518*x-868 3770006827048548 a001 1346269/24476*843^(2/7) 3770006836923003 m001 5^(1/2)*(GAMMA(23/24)+TwinPrimes) 3770006836923003 m001 sqrt(5)*(TwinPrimes+GAMMA(23/24)) 3770006863891146 a001 514229/9349*843^(2/7) 3770006869305114 m001 FeigenbaumDelta-ln(1+sqrt(2))^sin(1) 3770006869305114 m001 FeigenbaumDelta-ln(2^(1/2)+1)^sin(1) 3770006870426030 s001 sum(exp(-2*Pi)^n*A212881[n],n=1..infinity) 3770006870489014 h001 (7/12*exp(2)+1/5)/(1/8*exp(2)+3/11) 3770006882577144 m001 1/ln(Porter)*Zeta(3)^2 3770006887489368 r009 Re(z^3+c),c=-7/114+21/38*I,n=36 3770006888670541 m001 Robbin/(Grothendieck-ErdosBorwein) 3770006890421383 r005 Re(z^2+c),c=-14/27+3/58*I,n=18 3770006904579118 m005 (1/3*Zeta(3)-1/4)/(9/14+3/2*5^(1/2)) 3770006919370080 m001 FeigenbaumAlpha^GAMMA(19/24)+GaussAGM 3770006926055569 a001 121393/1364*1364^(1/5) 3770006927672570 r005 Im(z^2+c),c=-11/18+11/61*I,n=4 3770006937200009 m005 (3/5*2^(1/2)+1/4)/(4*Catalan-3/4) 3770006948180065 a007 Real Root Of -14*x^4-504*x^3+923*x^2+958*x-413 3770006952443560 a001 610/843*843^(13/14) 3770006957985753 m001 exp(GAMMA(1/24))^2*PisotVijayaraghavan/sin(1) 3770006976569121 m001 Conway*ErdosBorwein*exp(sin(Pi/5)) 3770006990797478 l006 ln(163/7071) 3770006999012115 s001 sum(exp(-2*Pi)^n*A177173[n],n=1..infinity) 3770007003550092 m001 (Shi(1)-ln(2^(1/2)+1))/(-BesselI(1,1)+Paris) 3770007005620968 a007 Real Root Of 330*x^4-714*x^3+834*x^2-707*x-430 3770007020393618 m005 (1/2*exp(1)-1/9)/(1/3*Catalan-7/11) 3770007027155086 a001 646/341*3571^(11/17) 3770007028546129 r005 Im(z^2+c),c=2/19+21/52*I,n=37 3770007031376094 r002 35th iterates of z^2 + 3770007035713105 r005 Im(z^2+c),c=9/74+20/51*I,n=40 3770007035734880 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^18 3770007051983869 r002 33th iterates of z^2 + 3770007061215845 a001 98209/682*1364^(2/15) 3770007065225647 m001 gamma(3)/(GaussAGM^ReciprocalFibonacci) 3770007068538134 h001 (5/12*exp(1)+1/10)/(11/12*exp(1)+7/9) 3770007070906966 r005 Im(z^2+c),c=23/98+11/41*I,n=8 3770007086781185 a001 98209/2889*843^(5/14) 3770007114954647 b008 Tanh[Tanh[2/53]] 3770007116414086 a001 196418/3571*843^(2/7) 3770007124747589 r005 Re(z^2+c),c=2/25+8/13*I,n=26 3770007125733794 a001 322/55*121393^(7/44) 3770007133955168 a007 Real Root Of 377*x^4-70*x^3+578*x^2-866*x-420 3770007150112818 m001 GAMMA(1/6)*ln(CareFree)*GAMMA(5/24)^2 3770007158361274 m001 (3^(1/2)-GAMMA(13/24))/(Grothendieck+Robbin) 3770007158385004 a001 615/124*3571^(9/17) 3770007164763671 v004 sum((n^3+n^2)/(exp(2*Pi*n)+1),n=1..infinity) 3770007165054548 a007 Real Root Of 422*x^4-700*x^3-132*x^2-815*x+355 3770007175316909 a001 1576240/4181 3770007175885737 m001 1/Porter^2/Paris^2/ln(GAMMA(7/24))^2 3770007179857251 a001 305/2889*9349^(17/19) 3770007182677351 a007 Real Root Of -741*x^4-86*x^3+604*x^2+805*x+228 3770007183213295 a001 514229/15127*843^(5/14) 3770007184471524 a001 28657/2207*843^(1/2) 3770007186251393 a001 987/1364*2207^(13/16) 3770007193479353 a001 646/341*9349^(11/19) 3770007196278407 a001 317811/1364*1364^(1/15) 3770007197282550 a001 1346269/39603*843^(5/14) 3770007198544036 a001 5473/682*3571^(8/17) 3770007199335227 a001 1762289/51841*843^(5/14) 3770007199634709 a001 9227465/271443*843^(5/14) 3770007199678402 a001 24157817/710647*843^(5/14) 3770007199684777 a001 31622993/930249*843^(5/14) 3770007199685707 a001 165580141/4870847*843^(5/14) 3770007199685843 a001 433494437/12752043*843^(5/14) 3770007199685863 a001 567451585/16692641*843^(5/14) 3770007199685866 a001 2971215073/87403803*843^(5/14) 3770007199685866 a001 7778742049/228826127*843^(5/14) 3770007199685866 a001 10182505537/299537289*843^(5/14) 3770007199685866 a001 53316291173/1568397607*843^(5/14) 3770007199685866 a001 139583862445/4106118243*843^(5/14) 3770007199685866 a001 182717648081/5374978561*843^(5/14) 3770007199685866 a001 956722026041/28143753123*843^(5/14) 3770007199685866 a001 2504730781961/73681302247*843^(5/14) 3770007199685866 a001 3278735159921/96450076809*843^(5/14) 3770007199685866 a001 10610209857723/312119004989*843^(5/14) 3770007199685866 a001 4052739537881/119218851371*843^(5/14) 3770007199685866 a001 387002188980/11384387281*843^(5/14) 3770007199685866 a001 591286729879/17393796001*843^(5/14) 3770007199685866 a001 225851433717/6643838879*843^(5/14) 3770007199685866 a001 1135099622/33391061*843^(5/14) 3770007199685866 a001 32951280099/969323029*843^(5/14) 3770007199685866 a001 12586269025/370248451*843^(5/14) 3770007199685866 a001 1201881744/35355581*843^(5/14) 3770007199685868 a001 1836311903/54018521*843^(5/14) 3770007199685875 a001 701408733/20633239*843^(5/14) 3770007199685927 a001 66978574/1970299*843^(5/14) 3770007199686282 a001 102334155/3010349*843^(5/14) 3770007199688717 a001 39088169/1149851*843^(5/14) 3770007199705407 a001 196452/5779*843^(5/14) 3770007199819798 a001 5702887/167761*843^(5/14) 3770007200603086 a001 4181/1364*3571^(10/17) 3770007200603851 a001 2178309/64079*843^(5/14) 3770007205977829 a001 208010/6119*843^(5/14) 3770007207237810 a001 17711/1364*3571^(7/17) 3770007207419612 m003 4+Sqrt[5]/2048-Tanh[1/2+Sqrt[5]/2]/4 3770007211981830 a007 Real Root Of -275*x^4-21*x^3-244*x^2+570*x+254 3770007213355754 a001 305/2889*24476^(17/21) 3770007215154855 a001 646/341*24476^(11/21) 3770007217771501 a001 305/2889*64079^(17/23) 3770007218012103 a001 646/341*64079^(11/23) 3770007218450129 a001 305/2889*45537549124^(1/3) 3770007218450129 a001 305/2889*(1/2+1/2*5^(1/2))^17 3770007218450141 a001 305/2889*12752043^(1/2) 3770007218451195 a001 646/341*7881196^(1/3) 3770007218451215 a001 646/341*312119004989^(1/5) 3770007218451215 a001 646/341*(1/2+1/2*5^(1/2))^11 3770007218451215 a001 646/341*1568397607^(1/4) 3770007218611953 a001 646/341*103682^(11/24) 3770007218698542 a001 305/2889*103682^(17/24) 3770007219653081 a001 646/341*39603^(1/2) 3770007220307559 a001 305/2889*39603^(17/22) 3770007222448397 a008 Real Root of (-3-6*x+6*x^2+2*x^3+x^5) 3770007227512698 a001 646/341*15127^(11/20) 3770007227950243 a001 28657/1364*3571^(6/17) 3770007232454239 a001 305/2889*15127^(17/20) 3770007232986657 a003 sin(Pi*16/79)-sin(Pi*47/111) 3770007237350284 m001 (KhinchinLevy-Otter)/(GAMMA(19/24)-CareFree) 3770007242811619 a001 317811/9349*843^(5/14) 3770007244071958 a001 11592/341*3571^(5/17) 3770007244727006 m005 (1/3*Catalan+1/8)/(4/7*Zeta(3)+5/11) 3770007259241724 r005 Re(z^2+c),c=-3/16+37/55*I,n=30 3770007261947170 a001 75025/1364*3571^(4/17) 3770007274393662 a008 Real Root of x^4-6*x^2-49*x+68 3770007279152607 a001 121393/1364*3571^(3/17) 3770007282999726 a001 610/2207*2207^(15/16) 3770007285219284 r002 38th iterates of z^2 + 3770007285247419 r009 Re(z^3+c),c=-55/114+15/56*I,n=58 3770007285249028 r005 Im(z^2+c),c=-33/34+15/58*I,n=63 3770007287460466 a001 646/341*5778^(11/18) 3770007288241140 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^20 3770007288586432 m001 1/Lehmer^2/Conway*ln(sin(1)) 3770007294468499 a001 615/124*9349^(9/19) 3770007296613875 a001 98209/682*3571^(2/17) 3770007308605883 a001 2063325/5473 3770007309205221 a001 610/15127*24476^(19/21) 3770007312203002 a001 615/124*24476^(3/7) 3770007313080530 a001 17711/1364*9349^(7/19) 3770007313977424 a001 317811/1364*3571^(1/17) 3770007314140468 a001 610/15127*64079^(19/23) 3770007314540750 a001 615/124*64079^(9/23) 3770007314893509 a001 615/124*439204^(1/3) 3770007314898935 a001 610/15127*817138163596^(1/3) 3770007314898935 a001 610/15127*(1/2+1/2*5^(1/2))^19 3770007314898935 a001 610/15127*87403803^(1/2) 3770007314900007 a001 615/124*7881196^(3/11) 3770007314900024 a001 615/124*141422324^(3/13) 3770007314900024 a001 615/124*2537720636^(1/5) 3770007314900024 a001 615/124*45537549124^(3/17) 3770007314900024 a001 615/124*14662949395604^(1/7) 3770007314900024 a001 615/124*(1/2+1/2*5^(1/2))^9 3770007314900024 a001 615/124*192900153618^(1/6) 3770007314900024 a001 615/124*10749957122^(3/16) 3770007314900024 a001 615/124*599074578^(3/14) 3770007314900025 a001 615/124*33385282^(1/4) 3770007314900351 a001 615/124*1860498^(3/10) 3770007315031536 a001 615/124*103682^(3/8) 3770007315176572 a001 610/15127*103682^(19/24) 3770007315883369 a001 615/124*39603^(9/22) 3770007316974885 a001 610/15127*39603^(19/22) 3770007318672575 a001 28657/1364*9349^(6/19) 3770007319507144 a001 5473/682*9349^(8/19) 3770007319673900 a001 11592/341*9349^(5/19) 3770007322313964 a001 615/124*15127^(9/20) 3770007322428725 a001 75025/1364*9349^(4/19) 3770007324513773 a001 121393/1364*9349^(3/19) 3770007325081306 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^22 3770007325100790 a001 305/2889*5778^(17/18) 3770007326854652 a001 98209/682*9349^(2/19) 3770007326874031 a001 17711/1364*24476^(1/3) 3770007326962161 r005 Re(z^2+c),c=-29/56+1/18*I,n=17 3770007328052482 a001 10803710/28657 3770007328132321 a001 610/39603*64079^(21/23) 3770007328692280 a001 17711/1364*64079^(7/23) 3770007328955425 a001 610/39603*439204^(7/9) 3770007328970588 a001 610/39603*7881196^(7/11) 3770007328970621 a001 610/39603*20633239^(3/5) 3770007328970626 a001 610/39603*141422324^(7/13) 3770007328970626 a001 610/39603*2537720636^(7/15) 3770007328970626 a001 610/39603*17393796001^(3/7) 3770007328970626 a001 610/39603*45537549124^(7/17) 3770007328970626 a001 610/39603*14662949395604^(1/3) 3770007328970626 a001 610/39603*(1/2+1/2*5^(1/2))^21 3770007328970626 a001 610/39603*192900153618^(7/18) 3770007328970626 a001 610/39603*10749957122^(7/16) 3770007328970626 a001 610/39603*599074578^(1/2) 3770007328970628 a001 610/39603*33385282^(7/12) 3770007328971389 a001 610/39603*1860498^(7/10) 3770007328971714 a001 17711/1364*20633239^(1/5) 3770007328971715 a001 17711/1364*17393796001^(1/7) 3770007328971715 a001 17711/1364*14662949395604^(1/9) 3770007328971715 a001 17711/1364*(1/2+1/2*5^(1/2))^7 3770007328971715 a001 17711/1364*599074578^(1/6) 3770007328973582 a001 17711/1364*710647^(1/4) 3770007328976225 a001 610/39603*710647^(3/4) 3770007329074003 a001 17711/1364*103682^(7/24) 3770007329097813 a001 317811/1364*9349^(1/19) 3770007329277488 a001 610/39603*103682^(7/8) 3770007329526402 a001 11592/341*24476^(5/21) 3770007329736539 a001 17711/1364*39603^(7/22) 3770007330310726 a001 75025/1364*24476^(4/21) 3770007330425273 a001 121393/1364*24476^(1/7) 3770007330456214 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^24 3770007330495576 a001 28657/1364*24476^(2/7) 3770007330550587 a001 610/15127*15127^(19/20) 3770007330795653 a001 98209/682*24476^(2/21) 3770007330825151 a001 11592/341*64079^(5/23) 3770007330889703 a001 5656896/15005 3770007330997956 a001 11592/341*167761^(1/5) 3770007331023658 a001 305/51841*(1/2+1/2*5^(1/2))^23 3770007331023658 a001 305/51841*4106118243^(1/2) 3770007331024746 a001 11592/341*20633239^(1/7) 3770007331024747 a001 11592/341*2537720636^(1/9) 3770007331024747 a001 11592/341*312119004989^(1/11) 3770007331024747 a001 11592/341*(1/2+1/2*5^(1/2))^5 3770007331024747 a001 11592/341*28143753123^(1/10) 3770007331024747 a001 11592/341*228826127^(1/8) 3770007331024929 a001 11592/341*1860498^(1/6) 3770007331068313 a001 317811/1364*24476^(1/21) 3770007331097810 a001 11592/341*103682^(5/24) 3770007331204523 a001 121393/1364*64079^(3/23) 3770007331240403 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^26 3770007331265098 a001 610/39603*39603^(21/22) 3770007331303648 a001 37024865/98209 3770007331315152 a001 98209/682*64079^(2/23) 3770007331322109 a001 121393/1364*439204^(1/9) 3770007331323185 a001 610/271443*20633239^(5/7) 3770007331323192 a001 610/271443*2537720636^(5/9) 3770007331323192 a001 610/271443*312119004989^(5/11) 3770007331323192 a001 610/271443*(1/2+1/2*5^(1/2))^25 3770007331323192 a001 610/271443*3461452808002^(5/12) 3770007331323192 a001 610/271443*28143753123^(1/2) 3770007331323192 a001 610/271443*228826127^(5/8) 3770007331324099 a001 610/271443*1860498^(5/6) 3770007331324275 a001 121393/1364*7881196^(1/11) 3770007331324281 a001 121393/1364*141422324^(1/13) 3770007331324281 a001 121393/1364*2537720636^(1/15) 3770007331324281 a001 121393/1364*45537549124^(1/17) 3770007331324281 a001 121393/1364*14662949395604^(1/21) 3770007331324281 a001 121393/1364*(1/2+1/2*5^(1/2))^3 3770007331324281 a001 121393/1364*192900153618^(1/18) 3770007331324281 a001 121393/1364*10749957122^(1/16) 3770007331324281 a001 121393/1364*599074578^(1/14) 3770007331324281 a001 121393/1364*33385282^(1/12) 3770007331324390 a001 121393/1364*1860498^(1/10) 3770007331328063 a001 317811/1364*64079^(1/23) 3770007331349725 a001 75025/1364*64079^(4/23) 3770007331354814 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^28 3770007331359746 a001 305/51841*103682^(23/24) 3770007331364042 a001 193864710/514229 3770007331366843 a001 610/710647*7881196^(9/11) 3770007331366893 a001 610/710647*141422324^(9/13) 3770007331366893 a001 610/710647*2537720636^(3/5) 3770007331366893 a001 610/710647*45537549124^(9/17) 3770007331366893 a001 610/710647*817138163596^(9/19) 3770007331366893 a001 610/710647*14662949395604^(3/7) 3770007331366893 a001 610/710647*(1/2+1/2*5^(1/2))^27 3770007331366893 a001 610/710647*192900153618^(1/2) 3770007331366893 a001 610/710647*10749957122^(9/16) 3770007331366893 a001 610/710647*599074578^(9/14) 3770007331366896 a001 610/710647*33385282^(3/4) 3770007331367873 a001 610/710647*1860498^(9/10) 3770007331367982 a001 317811/2728+317811/2728*5^(1/2) 3770007331368118 a001 121393/1364*103682^(1/8) 3770007331371507 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^30 3770007331372853 a001 507544400/1346269 3770007331373269 a001 305/930249*(1/2+1/2*5^(1/2))^29 3770007331373269 a001 305/930249*1322157322203^(1/2) 3770007331373942 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^32 3770007331374138 a001 664384245/1762289 3770007331374199 a001 610/4870847*(1/2+1/2*5^(1/2))^31 3770007331374199 a001 610/4870847*9062201101803^(1/2) 3770007331374297 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^34 3770007331374326 a001 695752214/1845493 3770007331374335 a001 610/12752043*141422324^(11/13) 3770007331374335 a001 610/12752043*2537720636^(11/15) 3770007331374335 a001 610/12752043*45537549124^(11/17) 3770007331374335 a001 610/12752043*312119004989^(3/5) 3770007331374335 a001 610/12752043*817138163596^(11/19) 3770007331374335 a001 610/12752043*14662949395604^(11/21) 3770007331374335 a001 610/12752043*(1/2+1/2*5^(1/2))^33 3770007331374335 a001 610/12752043*192900153618^(11/18) 3770007331374335 a001 610/12752043*10749957122^(11/16) 3770007331374335 a001 610/12752043*1568397607^(3/4) 3770007331374335 a001 610/12752043*599074578^(11/14) 3770007331374338 a001 610/12752043*33385282^(11/12) 3770007331374349 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^36 3770007331374353 a001 9107514720/24157817 3770007331374355 a001 305/16692641*2537720636^(7/9) 3770007331374355 a001 305/16692641*17393796001^(5/7) 3770007331374355 a001 305/16692641*312119004989^(7/11) 3770007331374355 a001 305/16692641*14662949395604^(5/9) 3770007331374355 a001 305/16692641*(1/2+1/2*5^(1/2))^35 3770007331374355 a001 305/16692641*505019158607^(5/8) 3770007331374355 a001 305/16692641*28143753123^(7/10) 3770007331374355 a001 305/16692641*599074578^(5/6) 3770007331374355 a001 305/16692641*228826127^(7/8) 3770007331374357 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^38 3770007331374357 a001 11921891545/31622993 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^37/Lucas(38) 3770007331374358 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^40 3770007331374358 a001 62423834550/165580141 3770007331374358 a001 610/228826127*2537720636^(13/15) 3770007331374358 a001 610/228826127*45537549124^(13/17) 3770007331374358 a001 610/228826127*14662949395604^(13/21) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^39/Lucas(40) 3770007331374358 a001 610/228826127*192900153618^(13/18) 3770007331374358 a001 610/228826127*73681302247^(3/4) 3770007331374358 a001 610/228826127*10749957122^(13/16) 3770007331374358 a001 610/228826127*599074578^(13/14) 3770007331374358 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^42 3770007331374358 a001 163427720560/433494437 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(42) 3770007331374358 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^44 3770007331374358 a001 701408733/1860497 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(44) 3770007331374358 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^46 3770007331374358 a001 1120150260830/2971215073 3770007331374358 a001 610/4106118243*45537549124^(15/17) 3770007331374358 a001 610/4106118243*312119004989^(9/11) 3770007331374358 a001 610/4106118243*14662949395604^(5/7) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(46) 3770007331374358 a001 610/4106118243*192900153618^(5/6) 3770007331374358 a001 610/4106118243*28143753123^(9/10) 3770007331374358 a001 610/4106118243*10749957122^(15/16) 3770007331374358 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^48 3770007331374358 a001 2932591455360/7778742049 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(48) 3770007331374358 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^50 3770007331374358 a001 3838812052625/10182505537 3770007331374358 a001 610/28143753123*14662949395604^(7/9) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(50) 3770007331374358 a001 610/28143753123*505019158607^(7/8) 3770007331374358 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^52 3770007331374358 a001 20100280860390/53316291173 3770007331374358 a001 610/73681302247*817138163596^(17/19) 3770007331374358 a001 610/73681302247*14662949395604^(17/21) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(52) 3770007331374358 a001 610/73681302247*192900153618^(17/18) 3770007331374358 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^54 3770007331374358 a001 10524643695184/27916772489 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(54) 3770007331374358 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^56 3770007331374358 a001 68884687283685/182717648081 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(56) 3770007331374358 a001 610/505019158607*3461452808002^(11/12) 3770007331374358 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^58 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(58) 3770007331374358 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^60 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(60) 3770007331374358 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^62 3770007331374358 a001 1236085559053705/3278735159921 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(62) 3770007331374358 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^64 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(64) 3770007331374358 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^66 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(66) 3770007331374358 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^68 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(68) 3770007331374358 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^70 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(70) 3770007331374358 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^72 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(72) 3770007331374358 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^74 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(74) 3770007331374358 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^76 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(76) 3770007331374358 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^78 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(78) 3770007331374358 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^80 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(80) 3770007331374358 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^82 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(82) 3770007331374358 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^84 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^83/Lucas(84) 3770007331374358 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^86 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^85/Lucas(86) 3770007331374358 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^88 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^87/Lucas(88) 3770007331374358 a004 Fibonacci(15)*Lucas(89)/(1/2+sqrt(5)/2)^90 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^89/Lucas(90) 3770007331374358 a004 Fibonacci(15)*Lucas(91)/(1/2+sqrt(5)/2)^92 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^91/Lucas(92) 3770007331374358 a004 Fibonacci(15)*Lucas(93)/(1/2+sqrt(5)/2)^94 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^93/Lucas(94) 3770007331374358 a004 Fibonacci(15)*Lucas(95)/(1/2+sqrt(5)/2)^96 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^95/Lucas(96) 3770007331374358 a004 Fibonacci(15)*Lucas(97)/(1/2+sqrt(5)/2)^98 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^97/Lucas(98) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^99/Lucas(100) 3770007331374358 a004 Fibonacci(15)*Lucas(99)/(1/2+sqrt(5)/2)^100 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^96/Lucas(97) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^98/Lucas(99) 3770007331374358 a004 Fibonacci(15)*Lucas(98)/(1/2+sqrt(5)/2)^99 3770007331374358 a004 Fibonacci(15)*Lucas(96)/(1/2+sqrt(5)/2)^97 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^94/Lucas(95) 3770007331374358 a004 Fibonacci(15)*Lucas(94)/(1/2+sqrt(5)/2)^95 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^92/Lucas(93) 3770007331374358 a004 Fibonacci(15)*Lucas(92)/(1/2+sqrt(5)/2)^93 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^90/Lucas(91) 3770007331374358 a004 Fibonacci(15)*Lucas(90)/(1/2+sqrt(5)/2)^91 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(89) 3770007331374358 a004 Fibonacci(15)*Lucas(88)/(1/2+sqrt(5)/2)^89 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(87) 3770007331374358 a004 Fibonacci(15)*Lucas(86)/(1/2+sqrt(5)/2)^87 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(85) 3770007331374358 a004 Fibonacci(15)*Lucas(84)/(1/2+sqrt(5)/2)^85 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(83) 3770007331374358 a004 Fibonacci(15)*Lucas(82)/(1/2+sqrt(5)/2)^83 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(81) 3770007331374358 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^81 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(79) 3770007331374358 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^79 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(77) 3770007331374358 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^77 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(75) 3770007331374358 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^75 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(73) 3770007331374358 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^73 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(71) 3770007331374358 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^71 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(69) 3770007331374358 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^69 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(67) 3770007331374358 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^67 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(65) 3770007331374358 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^65 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(63) 3770007331374358 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^63 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(61) 3770007331374358 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^61 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(59) 3770007331374358 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^59 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(57) 3770007331374358 a001 222915530658820/591286729879 3770007331374358 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^57 3770007331374358 a001 610/312119004989*14662949395604^(6/7) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(55) 3770007331374358 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^55 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(53) 3770007331374358 a001 610/119218851371*23725150497407^(13/16) 3770007331374358 a001 610/119218851371*505019158607^(13/14) 3770007331374358 a001 16261468807765/43133785636 3770007331374358 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^53 3770007331374358 a001 305/22768774562*312119004989^(10/11) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(51) 3770007331374358 a001 305/22768774562*3461452808002^(5/6) 3770007331374358 a001 12422656755140/32951280099 3770007331374358 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^51 3770007331374358 a001 610/17393796001*45537549124^(16/17) 3770007331374358 a001 610/17393796001*14662949395604^(16/21) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(49) 3770007331374358 a001 610/17393796001*192900153618^(8/9) 3770007331374358 a001 610/17393796001*73681302247^(12/13) 3770007331374358 a001 949006529978/2517253805 3770007331374358 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^49 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(47) 3770007331374358 a001 610/6643838879*10749957122^(23/24) 3770007331374358 a001 906220597265/2403763488 3770007331374358 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^47 3770007331374358 a001 305/1268860318*312119004989^(4/5) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(45) 3770007331374358 a001 305/1268860318*23725150497407^(11/16) 3770007331374358 a001 305/1268860318*73681302247^(11/13) 3770007331374358 a001 305/1268860318*10749957122^(11/12) 3770007331374358 a001 305/1268860318*4106118243^(22/23) 3770007331374358 a001 692290933700/1836311903 3770007331374358 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^45 3770007331374358 a001 610/969323029*2537720636^(14/15) 3770007331374358 a001 610/969323029*17393796001^(6/7) 3770007331374358 a001 610/969323029*45537549124^(14/17) 3770007331374358 a001 610/969323029*817138163596^(14/19) 3770007331374358 a001 610/969323029*14662949395604^(2/3) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(43) 3770007331374358 a001 610/969323029*505019158607^(3/4) 3770007331374358 a001 610/969323029*192900153618^(7/9) 3770007331374358 a001 610/969323029*10749957122^(7/8) 3770007331374358 a001 610/969323029*4106118243^(21/23) 3770007331374358 a001 610/969323029*1568397607^(21/22) 3770007331374358 a001 264431606570/701408733 3770007331374358 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^43 3770007331374358 a001 610/370248451*2537720636^(8/9) 3770007331374358 a001 610/370248451*312119004989^(8/11) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(41) 3770007331374358 a001 610/370248451*23725150497407^(5/8) 3770007331374358 a001 610/370248451*73681302247^(10/13) 3770007331374358 a001 610/370248451*28143753123^(4/5) 3770007331374358 a001 610/370248451*10749957122^(5/6) 3770007331374358 a001 610/370248451*4106118243^(20/23) 3770007331374358 a001 610/370248451*1568397607^(10/11) 3770007331374358 a001 610/370248451*599074578^(20/21) 3770007331374358 a001 50501943005/133957148 3770007331374358 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^41 3770007331374358 a001 305/70711162*817138163596^(2/3) 3770007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(39) 3770007331374358 a001 305/70711162*10749957122^(19/24) 3770007331374358 a001 305/70711162*4106118243^(19/23) 3770007331374358 a001 305/70711162*1568397607^(19/22) 3770007331374358 a001 305/70711162*599074578^(19/21) 3770007331374358 a001 305/70711162*228826127^(19/20) 3770007331374358 a001 7716010292/20466831 3770007331374359 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^39 3770007331374359 a001 610/54018521*141422324^(12/13) 3770007331374359 a001 610/54018521*2537720636^(4/5) 3770007331374359 a001 610/54018521*45537549124^(12/17) 3770007331374359 a001 610/54018521*14662949395604^(4/7) 3770007331374359 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^36/Lucas(37) 3770007331374359 a001 610/54018521*505019158607^(9/14) 3770007331374359 a001 610/54018521*192900153618^(2/3) 3770007331374359 a001 610/54018521*73681302247^(9/13) 3770007331374359 a001 610/54018521*10749957122^(3/4) 3770007331374359 a001 610/54018521*4106118243^(18/23) 3770007331374359 a001 610/54018521*1568397607^(9/11) 3770007331374359 a001 610/54018521*599074578^(6/7) 3770007331374359 a001 610/54018521*228826127^(9/10) 3770007331374360 a001 610/54018521*87403803^(18/19) 3770007331374360 a001 14736268370/39088169 3770007331374361 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^37 3770007331374367 a001 610/20633239*45537549124^(2/3) 3770007331374367 a001 610/20633239*(1/2+1/2*5^(1/2))^34 3770007331374367 a001 610/20633239*10749957122^(17/24) 3770007331374367 a001 610/20633239*4106118243^(17/23) 3770007331374367 a001 610/20633239*1568397607^(17/22) 3770007331374367 a001 610/20633239*599074578^(17/21) 3770007331374367 a001 610/20633239*228826127^(17/20) 3770007331374367 a001 610/20633239*87403803^(17/19) 3770007331374370 a001 610/20633239*33385282^(17/18) 3770007331374370 a001 2814376825/7465176 3770007331374381 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^35 3770007331374419 a001 305/3940598*(1/2+1/2*5^(1/2))^32 3770007331374419 a001 305/3940598*23725150497407^(1/2) 3770007331374419 a001 305/3940598*505019158607^(4/7) 3770007331374419 a001 305/3940598*73681302247^(8/13) 3770007331374419 a001 305/3940598*10749957122^(2/3) 3770007331374419 a001 305/3940598*4106118243^(16/23) 3770007331374419 a001 305/3940598*1568397607^(8/11) 3770007331374419 a001 305/3940598*599074578^(16/21) 3770007331374419 a001 305/3940598*228826127^(4/5) 3770007331374419 a001 305/3940598*87403803^(16/19) 3770007331374422 a001 305/3940598*33385282^(8/9) 3770007331374441 a001 305/3940598*12752043^(16/17) 3770007331374442 a001 2149992580/5702887 3770007331374517 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^33 3770007331374719 a001 610/3010349*7881196^(10/11) 3770007331374766 a001 610/3010349*20633239^(6/7) 3770007331374774 a001 610/3010349*141422324^(10/13) 3770007331374774 a001 610/3010349*2537720636^(2/3) 3770007331374774 a001 610/3010349*45537549124^(10/17) 3770007331374774 a001 610/3010349*312119004989^(6/11) 3770007331374774 a001 610/3010349*14662949395604^(10/21) 3770007331374774 a001 610/3010349*(1/2+1/2*5^(1/2))^30 3770007331374774 a001 610/3010349*192900153618^(5/9) 3770007331374774 a001 610/3010349*28143753123^(3/5) 3770007331374774 a001 610/3010349*10749957122^(5/8) 3770007331374774 a001 610/3010349*4106118243^(15/23) 3770007331374774 a001 610/3010349*1568397607^(15/22) 3770007331374774 a001 610/3010349*599074578^(5/7) 3770007331374774 a001 610/3010349*228826127^(3/4) 3770007331374774 a001 610/3010349*87403803^(15/19) 3770007331374777 a001 610/3010349*33385282^(5/6) 3770007331374795 a001 610/3010349*12752043^(15/17) 3770007331374923 a001 610/3010349*4870847^(15/16) 3770007331374933 a001 821224090/2178309 3770007331375288 a004 Fibonacci(32)/Lucas(15)/(1/2+sqrt(5)/2)^3 3770007331375424 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2)^5 3770007331375444 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^7 3770007331375447 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^9 3770007331375447 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^11 3770007331375447 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^13 3770007331375447 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^15 3770007331375447 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^17 3770007331375447 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^19 3770007331375447 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^21 3770007331375447 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^23 3770007331375447 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^25 3770007331375447 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^27 3770007331375447 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^29 3770007331375447 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^31 3770007331375447 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^33 3770007331375447 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^35 3770007331375447 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^37 3770007331375447 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^39 3770007331375447 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^41 3770007331375447 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^43 3770007331375447 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^45 3770007331375447 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^47 3770007331375447 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^49 3770007331375447 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^51 3770007331375447 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^53 3770007331375447 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^55 3770007331375447 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^57 3770007331375447 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^59 3770007331375447 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^61 3770007331375447 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^63 3770007331375447 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^65 3770007331375447 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^67 3770007331375447 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^71 3770007331375447 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^69 3770007331375447 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^70 3770007331375447 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^68 3770007331375447 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^66 3770007331375447 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^64 3770007331375447 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^62 3770007331375447 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^60 3770007331375447 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^58 3770007331375447 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^56 3770007331375447 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^54 3770007331375447 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^52 3770007331375447 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^50 3770007331375447 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^48 3770007331375447 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^46 3770007331375447 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^44 3770007331375447 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^42 3770007331375447 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^40 3770007331375447 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^38 3770007331375447 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^36 3770007331375447 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^34 3770007331375447 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^32 3770007331375447 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^30 3770007331375447 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^28 3770007331375447 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^26 3770007331375447 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^24 3770007331375447 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^22 3770007331375447 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^20 3770007331375447 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^18 3770007331375447 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^16 3770007331375447 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^14 3770007331375447 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^12 3770007331375447 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^10 3770007331375449 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^8 3770007331375456 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^6 3770007331375508 a004 Fibonacci(33)/Lucas(15)/(1/2+sqrt(5)/2)^4 3770007331375863 a004 Fibonacci(31)/Lucas(15)/(1/2+sqrt(5)/2)^2 3770007331377202 a001 610/1149851*20633239^(4/5) 3770007331377209 a001 610/1149851*17393796001^(4/7) 3770007331377209 a001 610/1149851*14662949395604^(4/9) 3770007331377209 a001 610/1149851*(1/2+1/2*5^(1/2))^28 3770007331377209 a001 610/1149851*505019158607^(1/2) 3770007331377209 a001 610/1149851*73681302247^(7/13) 3770007331377209 a001 610/1149851*10749957122^(7/12) 3770007331377209 a001 610/1149851*4106118243^(14/23) 3770007331377209 a001 610/1149851*1568397607^(7/11) 3770007331377209 a001 610/1149851*599074578^(2/3) 3770007331377210 a001 610/1149851*228826127^(7/10) 3770007331377210 a001 610/1149851*87403803^(14/19) 3770007331377212 a001 610/1149851*33385282^(7/9) 3770007331377229 a001 610/1149851*12752043^(14/17) 3770007331377349 a001 610/1149851*4870847^(7/8) 3770007331378226 a001 610/1149851*1860498^(14/15) 3770007331378299 a001 514229/1364 3770007331381823 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^29 3770007331382595 a001 317811/1364*103682^(1/24) 3770007331393902 a001 305/219602*141422324^(2/3) 3770007331393902 a001 305/219602*(1/2+1/2*5^(1/2))^26 3770007331393902 a001 305/219602*73681302247^(1/2) 3770007331393902 a001 305/219602*10749957122^(13/24) 3770007331393902 a001 305/219602*4106118243^(13/23) 3770007331393902 a001 305/219602*1568397607^(13/22) 3770007331393902 a001 305/219602*599074578^(13/21) 3770007331393902 a001 305/219602*228826127^(13/20) 3770007331393902 a001 305/219602*87403803^(13/19) 3770007331393904 a001 305/219602*33385282^(13/18) 3770007331393920 a001 305/219602*12752043^(13/17) 3770007331394031 a001 305/219602*4870847^(13/16) 3770007331394846 a001 305/219602*1860498^(13/15) 3770007331394991 a001 98209/682*(1/2+1/2*5^(1/2))^2 3770007331394991 a001 98209/682*10749957122^(1/24) 3770007331394991 a001 98209/682*4106118243^(1/23) 3770007331394991 a001 98209/682*1568397607^(1/22) 3770007331394991 a001 98209/682*599074578^(1/21) 3770007331394991 a001 98209/682*228826127^(1/20) 3770007331394991 a001 98209/682*87403803^(1/19) 3770007331394991 a001 98209/682*33385282^(1/18) 3770007331394992 a001 98209/682*12752043^(1/17) 3770007331395001 a001 98209/682*4870847^(1/16) 3770007331395064 a001 98209/682*1860498^(1/15) 3770007331395524 a001 98209/682*710647^(1/14) 3770007331398927 a001 98209/682*271443^(1/13) 3770007331400834 a001 305/219602*710647^(13/14) 3770007331401367 a001 119814980/317811 3770007331414277 a001 610/64079*64079^(22/23) 3770007331424216 a001 98209/682*103682^(1/12) 3770007331425524 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^27 3770007331477243 a001 317811/1364*39603^(1/22) 3770007331490941 a001 610/167761*439204^(8/9) 3770007331508269 a001 610/167761*7881196^(8/11) 3770007331508313 a001 610/167761*141422324^(8/13) 3770007331508313 a001 610/167761*2537720636^(8/15) 3770007331508313 a001 610/167761*45537549124^(8/17) 3770007331508313 a001 610/167761*14662949395604^(8/21) 3770007331508313 a001 610/167761*(1/2+1/2*5^(1/2))^24 3770007331508313 a001 610/167761*192900153618^(4/9) 3770007331508313 a001 610/167761*73681302247^(6/13) 3770007331508313 a001 610/167761*10749957122^(1/2) 3770007331508313 a001 610/167761*4106118243^(12/23) 3770007331508313 a001 610/167761*1568397607^(6/11) 3770007331508313 a001 610/167761*599074578^(4/7) 3770007331508314 a001 610/167761*228826127^(3/5) 3770007331508314 a001 610/167761*87403803^(12/19) 3770007331508316 a001 610/167761*33385282^(2/3) 3770007331508330 a001 610/167761*12752043^(12/17) 3770007331508433 a001 610/167761*4870847^(3/4) 3770007331509185 a001 610/167761*1860498^(4/5) 3770007331509403 a001 75025/1364*(1/2+1/2*5^(1/2))^4 3770007331509403 a001 75025/1364*23725150497407^(1/16) 3770007331509403 a001 75025/1364*73681302247^(1/13) 3770007331509403 a001 75025/1364*10749957122^(1/12) 3770007331509403 a001 75025/1364*4106118243^(2/23) 3770007331509403 a001 75025/1364*1568397607^(1/11) 3770007331509403 a001 75025/1364*599074578^(2/21) 3770007331509403 a001 75025/1364*228826127^(1/10) 3770007331509403 a001 75025/1364*87403803^(2/19) 3770007331509403 a001 75025/1364*33385282^(1/9) 3770007331509405 a001 75025/1364*12752043^(2/17) 3770007331509422 a001 75025/1364*4870847^(1/8) 3770007331509548 a001 75025/1364*1860498^(2/15) 3770007331510469 a001 75025/1364*710647^(1/7) 3770007331514712 a001 610/167761*710647^(6/7) 3770007331517274 a001 75025/1364*271443^(2/13) 3770007331555544 a001 610/167761*271443^(12/13) 3770007331559480 a001 45765250/121393 3770007331567853 a001 75025/1364*103682^(1/6) 3770007331571050 a001 11592/341*39603^(5/22) 3770007331613512 a001 98209/682*39603^(1/11) 3770007331652062 a001 121393/1364*39603^(3/22) 3770007331674027 a001 305/12238*24476^(20/21) 3770007331725058 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^25 3770007331946445 a001 75025/1364*39603^(2/11) 3770007332054075 a001 28657/1364*64079^(6/23) 3770007332191753 a001 317811/1364*15127^(1/20) 3770007332289248 a001 28657/1364*439204^(2/9) 3770007332292461 a001 610/64079*7881196^(2/3) 3770007332292502 a001 610/64079*312119004989^(2/5) 3770007332292502 a001 610/64079*(1/2+1/2*5^(1/2))^22 3770007332292502 a001 610/64079*10749957122^(11/24) 3770007332292502 a001 610/64079*4106118243^(11/23) 3770007332292502 a001 610/64079*1568397607^(1/2) 3770007332292502 a001 610/64079*599074578^(11/21) 3770007332292502 a001 610/64079*228826127^(11/20) 3770007332292502 a001 610/64079*87403803^(11/19) 3770007332292504 a001 610/64079*33385282^(11/18) 3770007332292517 a001 610/64079*12752043^(11/17) 3770007332292611 a001 610/64079*4870847^(11/16) 3770007332293301 a001 610/64079*1860498^(11/15) 3770007332293580 a001 28657/1364*7881196^(2/11) 3770007332293591 a001 28657/1364*141422324^(2/13) 3770007332293591 a001 28657/1364*2537720636^(2/15) 3770007332293591 a001 28657/1364*45537549124^(2/17) 3770007332293591 a001 28657/1364*14662949395604^(2/21) 3770007332293591 a001 28657/1364*(1/2+1/2*5^(1/2))^6 3770007332293591 a001 28657/1364*10749957122^(1/8) 3770007332293591 a001 28657/1364*4106118243^(3/23) 3770007332293591 a001 28657/1364*1568397607^(3/22) 3770007332293591 a001 28657/1364*599074578^(1/7) 3770007332293591 a001 28657/1364*228826127^(3/20) 3770007332293591 a001 28657/1364*87403803^(3/19) 3770007332293592 a001 28657/1364*33385282^(1/6) 3770007332293595 a001 28657/1364*12752043^(3/17) 3770007332293621 a001 28657/1364*4870847^(3/16) 3770007332293809 a001 28657/1364*1860498^(1/5) 3770007332295191 a001 28657/1364*710647^(3/14) 3770007332298367 a001 610/64079*710647^(11/14) 3770007332305399 a001 28657/1364*271443^(3/13) 3770007332335797 a001 610/64079*271443^(11/13) 3770007332354970 r005 Re(z^2+c),c=-23/50+16/39*I,n=38 3770007332381266 a001 28657/1364*103682^(1/4) 3770007332613977 a001 610/64079*103682^(11/12) 3770007332643202 a001 8740385/23184 3770007332949154 a001 28657/1364*39603^(3/11) 3770007333042533 a001 98209/682*15127^(1/10) 3770007333644527 a001 610/9349*9349^(18/19) 3770007333778090 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^23 3770007333795594 a001 121393/1364*15127^(3/20) 3770007334738114 a001 17711/1364*15127^(7/20) 3770007334804487 a001 75025/1364*15127^(1/5) 3770007335143603 a001 11592/341*15127^(1/4) 3770007335271146 a001 5473/682*24476^(8/21) 3770007336869024 a001 305/12238*64079^(20/23) 3770007337236218 a001 28657/1364*15127^(3/10) 3770007337349145 a001 5473/682*64079^(8/23) 3770007337560246 a001 305/12238*167761^(4/5) 3770007337641550 a001 317811/1364*5778^(1/18) 3770007337667405 a001 305/12238*20633239^(4/7) 3770007337667410 a001 305/12238*2537720636^(4/9) 3770007337667410 a001 305/12238*(1/2+1/2*5^(1/2))^20 3770007337667410 a001 305/12238*23725150497407^(5/16) 3770007337667410 a001 305/12238*505019158607^(5/14) 3770007337667410 a001 305/12238*73681302247^(5/13) 3770007337667410 a001 305/12238*28143753123^(2/5) 3770007337667410 a001 305/12238*10749957122^(5/12) 3770007337667410 a001 305/12238*4106118243^(10/23) 3770007337667410 a001 305/12238*1568397607^(5/11) 3770007337667410 a001 305/12238*599074578^(10/21) 3770007337667410 a001 305/12238*228826127^(1/2) 3770007337667410 a001 305/12238*87403803^(10/19) 3770007337667412 a001 305/12238*33385282^(5/9) 3770007337667423 a001 305/12238*12752043^(10/17) 3770007337667509 a001 305/12238*4870847^(5/8) 3770007337668136 a001 305/12238*1860498^(2/3) 3770007337668499 a001 5473/682*(1/2+1/2*5^(1/2))^8 3770007337668499 a001 5473/682*23725150497407^(1/8) 3770007337668499 a001 5473/682*505019158607^(1/7) 3770007337668499 a001 5473/682*73681302247^(2/13) 3770007337668499 a001 5473/682*10749957122^(1/6) 3770007337668499 a001 5473/682*4106118243^(4/23) 3770007337668499 a001 5473/682*1568397607^(2/11) 3770007337668499 a001 5473/682*599074578^(4/21) 3770007337668499 a001 5473/682*228826127^(1/5) 3770007337668499 a001 5473/682*87403803^(4/19) 3770007337668500 a001 5473/682*33385282^(2/9) 3770007337668504 a001 5473/682*12752043^(4/17) 3770007337668539 a001 5473/682*4870847^(1/4) 3770007337668789 a001 5473/682*1860498^(4/15) 3770007337670632 a001 5473/682*710647^(2/7) 3770007337672742 a001 305/12238*710647^(5/7) 3770007337684242 a001 5473/682*271443^(4/13) 3770007337706769 a001 305/12238*271443^(10/13) 3770007337785399 a001 5473/682*103682^(1/3) 3770007337959660 a001 305/12238*103682^(5/6) 3770007338542583 a001 5473/682*39603^(4/11) 3770007339852621 a001 305/12238*39603^(10/11) 3770007340071142 a001 6677060/17711 3770007343942128 a001 98209/682*5778^(1/9) 3770007344258668 a001 5473/682*15127^(2/5) 3770007347849781 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^21 3770007348764916 a001 610/3571*3571^(16/17) 3770007350144986 a001 121393/1364*5778^(1/6) 3770007351806971 a001 4181/1364*9349^(10/19) 3770007356603676 a001 75025/1364*5778^(2/9) 3770007362392589 a001 11592/341*5778^(5/18) 3770007369113533 a001 610/9349*24476^(6/7) 3770007369748708 a008 Real Root of x^4-x^3-29*x^2+75*x-19 3770007369935001 a001 28657/1364*5778^(1/3) 3770007371237864 s002 sum(A073404[n]/(exp(2*pi*n)+1),n=1..infinity) 3770007371362139 a001 615/124*5778^(1/2) 3770007371511974 a001 4181/1364*24476^(10/21) 3770007372886694 a001 17711/1364*5778^(7/18) 3770007373789030 a001 610/9349*64079^(18/23) 3770007374109473 a001 4181/1364*64079^(10/23) 3770007374455084 a001 4181/1364*167761^(2/5) 3770007374494548 a001 610/9349*439204^(2/3) 3770007374507544 a001 610/9349*7881196^(6/11) 3770007374507577 a001 610/9349*141422324^(6/13) 3770007374507577 a001 610/9349*2537720636^(2/5) 3770007374507577 a001 610/9349*45537549124^(6/17) 3770007374507577 a001 610/9349*14662949395604^(2/7) 3770007374507577 a001 610/9349*(1/2+1/2*5^(1/2))^18 3770007374507577 a001 610/9349*192900153618^(1/3) 3770007374507577 a001 610/9349*10749957122^(3/8) 3770007374507577 a001 610/9349*4106118243^(9/23) 3770007374507577 a001 610/9349*1568397607^(9/22) 3770007374507577 a001 610/9349*599074578^(3/7) 3770007374507577 a001 610/9349*228826127^(9/20) 3770007374507577 a001 610/9349*87403803^(9/19) 3770007374507579 a001 610/9349*33385282^(1/2) 3770007374507589 a001 610/9349*12752043^(9/17) 3770007374507666 a001 610/9349*4870847^(9/16) 3770007374508231 a001 610/9349*1860498^(3/5) 3770007374508663 a001 4181/1364*20633239^(2/7) 3770007374508666 a001 4181/1364*2537720636^(2/9) 3770007374508666 a001 4181/1364*312119004989^(2/11) 3770007374508666 a001 4181/1364*(1/2+1/2*5^(1/2))^10 3770007374508666 a001 4181/1364*28143753123^(1/5) 3770007374508666 a001 4181/1364*10749957122^(5/24) 3770007374508666 a001 4181/1364*4106118243^(5/23) 3770007374508666 a001 4181/1364*1568397607^(5/22) 3770007374508666 a001 4181/1364*599074578^(5/21) 3770007374508666 a001 4181/1364*228826127^(1/4) 3770007374508666 a001 4181/1364*87403803^(5/19) 3770007374508667 a001 4181/1364*33385282^(5/18) 3770007374508673 a001 4181/1364*12752043^(5/17) 3770007374508715 a001 4181/1364*4870847^(5/16) 3770007374509029 a001 4181/1364*1860498^(1/3) 3770007374511332 a001 4181/1364*710647^(5/14) 3770007374512376 a001 610/9349*710647^(9/14) 3770007374528345 a001 4181/1364*271443^(5/13) 3770007374543000 a001 610/9349*271443^(9/13) 3770007374654791 a001 4181/1364*103682^(5/12) 3770007374770602 a001 610/9349*103682^(3/4) 3770007375601271 a001 4181/1364*39603^(5/11) 3770007376474267 a001 610/9349*39603^(9/11) 3770007378771466 m001 (OrthogonalArrays+Salem)/(Bloch-cos(1)) 3770007379742615 a001 317811/1364*2207^(1/16) 3770007380728254 m001 Catalan*KhinchinLevy+FeigenbaumD 3770007382746377 a001 4181/1364*15127^(1/2) 3770007384835259 a001 55/199*123^(2/31) 3770007387343018 q001 1531/4061 3770007387857046 a001 5473/682*5778^(4/9) 3770007389335458 a001 610/9349*15127^(9/10) 3770007390983000 a001 510082/1353 3770007396143387 r002 35th iterates of z^2 + 3770007402899630 r005 Im(z^2+c),c=-41/78+13/29*I,n=6 3770007411760131 r002 2th iterates of z^2 + 3770007413638382 p004 log(19447/13339) 3770007418328216 a001 1597/1364*3571^(12/17) 3770007428144257 a001 98209/682*2207^(1/8) 3770007437244350 a001 4181/1364*5778^(5/9) 3770007441179681 a007 Real Root Of -331*x^4+673*x^3-979*x^2+491*x+367 3770007444298590 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^19 3770007448207017 r005 Re(z^2+c),c=-23/102+38/59*I,n=23 3770007448845009 r005 Im(z^2+c),c=-43/62+11/37*I,n=53 3770007458464776 r005 Re(z^2+c),c=-47/98+15/43*I,n=62 3770007465641287 a001 121393/5778*843^(3/7) 3770007466463938 a001 305/682*1364^(14/15) 3770007466507994 r005 Re(z^2+c),c=25/74+21/46*I,n=6 3770007476448181 a001 121393/1364*2207^(3/16) 3770007478337539 r005 Re(z^2+c),c=-29/62+25/62*I,n=46 3770007487914916 h001 (7/9*exp(1)+7/10)/(1/9*exp(1)+4/9) 3770007488086146 r005 Re(z^2+c),c=11/40+2/37*I,n=18 3770007489164233 m001 1/ln(Paris)*Conway*sin(Pi/12)^2 3770007495274190 a001 121393/3571*843^(5/14) 3770007511746439 p003 LerchPhi(1/1024,5,314/163) 3770007525007938 a001 75025/1364*2207^(1/4) 3770007535656748 r005 Im(z^2+c),c=-1/98+11/23*I,n=50 3770007542254246 a001 29/46368*55^(13/29) 3770007560023656 r005 Re(z^2+c),c=-97/82+7/27*I,n=12 3770007560080469 a001 17711/2207*843^(4/7) 3770007561130237 a001 514229/2207*322^(1/12) 3770007561690731 m001 Lehmer^2/GaussAGM(1,1/sqrt(2))^2*ln(Catalan)^2 3770007562133800 a001 317811/15127*843^(3/7) 3770007572897918 a001 11592/341*2207^(5/16) 3770007572992003 h001 (7/12*exp(1)+7/9)/(3/4*exp(2)+8/11) 3770007576211868 a001 832040/39603*843^(3/7) 3770007578265831 a001 46347/2206*843^(3/7) 3770007578565500 a001 5702887/271443*843^(3/7) 3770007578609221 a001 14930352/710647*843^(3/7) 3770007578615600 a001 39088169/1860498*843^(3/7) 3770007578616530 a001 102334155/4870847*843^(3/7) 3770007578616666 a001 267914296/12752043*843^(3/7) 3770007578616686 a001 701408733/33385282*843^(3/7) 3770007578616689 a001 1836311903/87403803*843^(3/7) 3770007578616689 a001 102287808/4868641*843^(3/7) 3770007578616689 a001 12586269025/599074578*843^(3/7) 3770007578616689 a001 32951280099/1568397607*843^(3/7) 3770007578616689 a001 86267571272/4106118243*843^(3/7) 3770007578616689 a001 225851433717/10749957122*843^(3/7) 3770007578616689 a001 591286729879/28143753123*843^(3/7) 3770007578616689 a001 1548008755920/73681302247*843^(3/7) 3770007578616689 a001 4052739537881/192900153618*843^(3/7) 3770007578616689 a001 225749145909/10745088481*843^(3/7) 3770007578616689 a001 6557470319842/312119004989*843^(3/7) 3770007578616689 a001 2504730781961/119218851371*843^(3/7) 3770007578616689 a001 956722026041/45537549124*843^(3/7) 3770007578616689 a001 365435296162/17393796001*843^(3/7) 3770007578616689 a001 139583862445/6643838879*843^(3/7) 3770007578616689 a001 53316291173/2537720636*843^(3/7) 3770007578616689 a001 20365011074/969323029*843^(3/7) 3770007578616689 a001 7778742049/370248451*843^(3/7) 3770007578616689 a001 2971215073/141422324*843^(3/7) 3770007578616691 a001 1134903170/54018521*843^(3/7) 3770007578616698 a001 433494437/20633239*843^(3/7) 3770007578616750 a001 165580141/7881196*843^(3/7) 3770007578617105 a001 63245986/3010349*843^(3/7) 3770007578619542 a001 24157817/1149851*843^(3/7) 3770007578636242 a001 9227465/439204*843^(3/7) 3770007578750705 a001 3524578/167761*843^(3/7) 3770007579535249 a001 1346269/64079*843^(3/7) 3770007580313116 m006 (1/4/Pi-3/4)/(1/3*exp(2*Pi)-2/3) 3770007583617925 a003 cos(Pi*23/85)-cos(Pi*47/115) 3770007584912593 a001 514229/24476*843^(3/7) 3770007590691146 a001 610/3571*9349^(16/19) 3770007599772890 a001 1597/1364*9349^(12/19) 3770007600943924 a007 Real Root Of -552*x^4+911*x^3-980*x^2+124*x+246 3770007604624291 r005 Im(z^2+c),c=-1/98+11/23*I,n=45 3770007606217903 r002 23th iterates of z^2 + 3770007621769455 a001 196418/9349*843^(3/7) 3770007622219152 a001 610/3571*24476^(16/21) 3770007622541398 a001 28657/1364*2207^(3/8) 3770007623392048 b008 Tanh[ArcCot[53/2]] 3770007623418895 a001 1597/1364*24476^(4/7) 3770007626375150 a001 610/3571*64079^(16/23) 3770007626535893 a001 1597/1364*64079^(12/23) 3770007627006239 a001 1597/1364*439204^(4/9) 3770007627013859 a001 610/3571*(1/2+1/2*5^(1/2))^16 3770007627013859 a001 610/3571*23725150497407^(1/4) 3770007627013859 a001 610/3571*73681302247^(4/13) 3770007627013859 a001 610/3571*10749957122^(1/3) 3770007627013859 a001 610/3571*4106118243^(8/23) 3770007627013859 a001 610/3571*1568397607^(4/11) 3770007627013859 a001 610/3571*599074578^(8/21) 3770007627013859 a001 610/3571*228826127^(2/5) 3770007627013859 a001 610/3571*87403803^(8/19) 3770007627013860 a001 610/3571*33385282^(4/9) 3770007627013870 a001 610/3571*12752043^(8/17) 3770007627013938 a001 610/3571*4870847^(1/2) 3770007627014440 a001 610/3571*1860498^(8/15) 3770007627014903 a001 1597/1364*7881196^(4/11) 3770007627014925 a001 1597/1364*141422324^(4/13) 3770007627014925 a001 1597/1364*2537720636^(4/15) 3770007627014925 a001 1597/1364*45537549124^(4/17) 3770007627014925 a001 1597/1364*817138163596^(4/19) 3770007627014925 a001 1597/1364*14662949395604^(4/21) 3770007627014925 a001 1597/1364*(1/2+1/2*5^(1/2))^12 3770007627014925 a001 1597/1364*192900153618^(2/9) 3770007627014925 a001 1597/1364*73681302247^(3/13) 3770007627014925 a001 1597/1364*10749957122^(1/4) 3770007627014925 a001 1597/1364*4106118243^(6/23) 3770007627014925 a001 1597/1364*1568397607^(3/11) 3770007627014925 a001 1597/1364*599074578^(2/7) 3770007627014925 a001 1597/1364*228826127^(3/10) 3770007627014925 a001 1597/1364*87403803^(6/19) 3770007627014926 a001 1597/1364*33385282^(1/3) 3770007627014933 a001 1597/1364*12752043^(6/17) 3770007627014984 a001 1597/1364*4870847^(3/8) 3770007627015361 a001 1597/1364*1860498^(2/5) 3770007627018124 a001 1597/1364*710647^(3/7) 3770007627018125 a001 610/3571*710647^(4/7) 3770007627038540 a001 1597/1364*271443^(6/13) 3770007627045346 a001 610/3571*271443^(8/13) 3770007627190275 a001 1597/1364*103682^(1/2) 3770007627247659 a001 610/3571*103682^(2/3) 3770007628326051 a001 1597/1364*39603^(6/11) 3770007628762028 a001 610/3571*39603^(8/11) 3770007634826617 m001 (GolombDickman+MertensB1)/(gamma+Pi^(1/2)) 3770007636394531 r005 Im(z^2+c),c=-23/18+40/183*I,n=5 3770007636900180 a001 1597/1364*15127^(3/5) 3770007640049741 m001 (-FeigenbaumD+MertensB3)/(2^(1/2)-Pi^(1/2)) 3770007640194199 a001 610/3571*15127^(4/5) 3770007654054680 a003 cos(Pi*1/102)-cos(Pi*3/34) 3770007666045979 r005 Im(z^2+c),c=-2/13+24/43*I,n=53 3770007667594158 a001 17711/1364*2207^(7/16) 3770007676105167 r005 Im(z^2+c),c=-5/42+15/28*I,n=31 3770007693030010 m004 -120*Pi-4*Sec[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770007693182739 m004 -120*Pi-4*Csch[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 3770007693283766 a007 Real Root Of 276*x^4+799*x^3-671*x^2+741*x-611 3770007702297752 a001 1597/1364*5778^(2/3) 3770007710298818 a001 317811/1364*843^(1/14) 3770007712194602 r002 3th iterates of z^2 + 3770007716758622 m001 (KhinchinLevy-Psi(1,1/3))/(-Lehmer+Otter) 3770007717882416 r005 Re(z^2+c),c=-57/110+4/63*I,n=17 3770007720856438 m005 (1/2*Catalan-9/10)/(1/2*Zeta(3)+4/7) 3770007724665580 a001 5473/682*2207^(1/2) 3770007727390962 a001 610/3571*5778^(8/9) 3770007732997029 m005 (1/2*gamma-3/11)/(3/5*Zeta(3)-3/10) 3770007734696389 r005 Re(z^2+c),c=-5/8+47/136*I,n=57 3770007735309522 p004 log(27967/19183) 3770007739938080 a001 487085/1292 3770007750271740 a001 615/124*2207^(9/16) 3770007750572195 a001 646/341*2207^(11/16) 3770007751622806 m005 (1/2*Pi+1)/(1/2*Pi-8/9) 3770007751954203 s002 sum(A236626[n]/(exp(2*pi*n)-1),n=1..infinity) 3770007762958041 r005 Im(z^2+c),c=11/56+3/8*I,n=8 3770007763371100 m001 1/Lehmer*HardHexagonsEntropy/exp(Catalan)^2 3770007772912896 m001 Robbin/MadelungNaCl*ln(GAMMA(1/24))^2 3770007794618430 r005 Re(z^2+c),c=-3/20+31/53*I,n=8 3770007805913644 p004 log(15053/347) 3770007819092313 a001 987/11*199^(16/59) 3770007827132397 m001 (sin(1)+Zeta(5))/(2^(1/2)-Catalan) 3770007828986318 r005 Im(z^2+c),c=3/56+25/57*I,n=27 3770007844757258 a001 75025/5778*843^(1/2) 3770007858255028 a001 4181/1364*2207^(5/8) 3770007862864194 m001 cos(1)^GAMMA(13/24)*MertensB2 3770007864062928 r005 Re(z^2+c),c=-85/114+11/41*I,n=4 3770007864490777 r002 17th iterates of z^2 + 3770007867955269 r005 Im(z^2+c),c=3/122+34/59*I,n=20 3770007874390165 a001 75025/3571*843^(3/7) 3770007878045668 m005 (1/2*5^(1/2)-2/5)/(1/2*exp(1)+6/11) 3770007890313632 r005 Im(z^2+c),c=31/106+5/21*I,n=51 3770007890961337 r005 Re(z^2+c),c=-11/26+21/41*I,n=57 3770007892144246 a001 199/377*8^(52/55) 3770007895110363 r005 Re(z^2+c),c=-25/48+1/47*I,n=18 3770007909863370 r005 Re(z^2+c),c=-1/42+31/47*I,n=8 3770007910929582 m001 1/ln(GAMMA(11/12))/GAMMA(1/4)*exp(1)^2 3770007935642850 r005 Re(z^2+c),c=-17/38+9/20*I,n=46 3770007941091668 a001 196418/15127*843^(1/2) 3770007947708114 a001 10946/2207*843^(9/14) 3770007949236025 s001 sum(exp(-2*Pi)^(n-1)*A281199[n],n=1..infinity) 3770007949282392 s001 sum(exp(-2*Pi)^(n-1)*A056182[n],n=1..infinity) 3770007949282392 s001 sum(exp(-2*Pi)^n*A081956[n],n=1..infinity) 3770007951054259 r002 46th iterates of z^2 + 3770007953809504 m001 (MinimumGamma-Trott2nd)/(Pi+LaplaceLimit) 3770007955146670 a001 514229/39603*843^(1/2) 3770007957197267 a001 1346269/103682*843^(1/2) 3770007957496445 a001 3524578/271443*843^(1/2) 3770007957540094 a001 9227465/710647*843^(1/2) 3770007957546463 a001 24157817/1860498*843^(1/2) 3770007957547392 a001 63245986/4870847*843^(1/2) 3770007957547527 a001 165580141/12752043*843^(1/2) 3770007957547547 a001 433494437/33385282*843^(1/2) 3770007957547550 a001 1134903170/87403803*843^(1/2) 3770007957547550 a001 2971215073/228826127*843^(1/2) 3770007957547550 a001 7778742049/599074578*843^(1/2) 3770007957547550 a001 20365011074/1568397607*843^(1/2) 3770007957547550 a001 53316291173/4106118243*843^(1/2) 3770007957547550 a001 139583862445/10749957122*843^(1/2) 3770007957547550 a001 365435296162/28143753123*843^(1/2) 3770007957547550 a001 956722026041/73681302247*843^(1/2) 3770007957547550 a001 2504730781961/192900153618*843^(1/2) 3770007957547550 a001 10610209857723/817138163596*843^(1/2) 3770007957547550 a001 4052739537881/312119004989*843^(1/2) 3770007957547550 a001 1548008755920/119218851371*843^(1/2) 3770007957547550 a001 591286729879/45537549124*843^(1/2) 3770007957547550 a001 7787980473/599786069*843^(1/2) 3770007957547550 a001 86267571272/6643838879*843^(1/2) 3770007957547550 a001 32951280099/2537720636*843^(1/2) 3770007957547550 a001 12586269025/969323029*843^(1/2) 3770007957547550 a001 4807526976/370248451*843^(1/2) 3770007957547551 a001 1836311903/141422324*843^(1/2) 3770007957547552 a001 701408733/54018521*843^(1/2) 3770007957547559 a001 9238424/711491*843^(1/2) 3770007957547611 a001 102334155/7881196*843^(1/2) 3770007957547966 a001 39088169/3010349*843^(1/2) 3770007957550398 a001 14930352/1149851*843^(1/2) 3770007957567071 a001 5702887/439204*843^(1/2) 3770007957681347 a001 2178309/167761*843^(1/2) 3770007958464605 a001 832040/64079*843^(1/2) 3770007962839270 m008 (1/4*Pi-3/5)/(1/6*Pi^3-1/4) 3770007963833138 a001 10959/844*843^(1/2) 3770007977283616 m001 Backhouse*FeigenbaumAlpha^Zeta(5) 3770007977283616 m001 FeigenbaumAlpha^Zeta(5)*Backhouse 3770007990549145 r005 Im(z^2+c),c=7/106+25/58*I,n=17 3770007996508220 r002 24th iterates of z^2 + 3770007997889565 r005 Re(z^2+c),c=-16/31+5/52*I,n=42 3770008000629610 a001 121393/9349*843^(1/2) 3770008019234508 a005 (1/sin(37/133*Pi))^5 3770008023723662 s001 sum(exp(-2*Pi)^n*A120278[n],n=1..infinity) 3770008036755781 r005 Im(z^2+c),c=19/126+10/27*I,n=31 3770008040499033 m001 (-exp(1/exp(1))+PrimesInBinary)/(1+3^(1/2)) 3770008071903757 r009 Re(z^3+c),c=-25/52+17/58*I,n=17 3770008073818278 m001 FeigenbaumD*exp(Lehmer)*log(1+sqrt(2))^2 3770008085257518 m001 1/Porter*FransenRobinson/ln(BesselK(1,1)) 3770008089256702 a001 98209/682*843^(1/7) 3770008097979811 s001 sum(exp(-2*Pi)^n*A143960[n],n=1..infinity) 3770008105368559 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^17 3770008113735207 r005 Im(z^2+c),c=41/118+11/34*I,n=41 3770008114262888 m002 -3-Cosh[Pi]+(Pi^4*ProductLog[Pi])/2 3770008114849896 m001 (GAMMA(2/3)-Bloch)/(Lehmer+MadelungNaCl) 3770008116458091 r002 19th iterates of z^2 + 3770008131347803 b008 ArcTan[ArcCot[53/2]] 3770008159397178 r002 32th iterates of z^2 + 3770008182930473 m001 (Totient-ZetaP(2))/(GAMMA(3/4)+GAMMA(5/6)) 3770008186937969 r002 21th iterates of z^2 + 3770008191083631 b008 1/128+Cosh[2] 3770008193931611 r005 Re(z^2+c),c=5/126+16/53*I,n=27 3770008194225195 m001 log(1+sqrt(2))/TwinPrimes*ln(sin(Pi/5))^2 3770008194857256 s002 sum(A283847[n]/(exp(2*pi*n)-1),n=1..infinity) 3770008202264777 m005 (4*gamma-5/6)/(4*Catalan+1/4) 3770008207510606 a001 1597/1364*2207^(3/4) 3770008222197791 a001 1346269/5778*322^(1/12) 3770008223203491 a001 2576/321*843^(4/7) 3770008223559324 r009 Re(z^3+c),c=-43/122+7/58*I,n=3 3770008241356234 r009 Im(z^3+c),c=-19/60+22/59*I,n=7 3770008243425577 r005 Re(z^2+c),c=-13/25+7/34*I,n=13 3770008243697732 r009 Im(z^3+c),c=-41/90+11/39*I,n=11 3770008252836401 a001 46368/3571*843^(1/2) 3770008271284383 r005 Im(z^2+c),c=13/56+19/63*I,n=50 3770008286061225 m004 -120*Pi-5*Cot[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770008286214892 m004 -120*Pi-5*Cot[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3770008296525434 s001 sum(exp(-2*Pi)^n*A120949[n],n=1..infinity) 3770008297588087 r005 Re(z^2+c),c=17/94+19/56*I,n=12 3770008303870531 a001 6765/2207*843^(5/7) 3770008305138764 m001 (1+GAMMA(3/4))/(-gamma(1)+polylog(4,1/2)) 3770008318646267 a001 3524578/15127*322^(1/12) 3770008319602993 r005 Re(z^2+c),c=-53/78+15/59*I,n=59 3770008319951856 a001 121393/15127*843^(4/7) 3770008325622766 r002 8th iterates of z^2 + 3770008332717910 a001 9227465/39603*322^(1/12) 3770008334067252 a001 105937/13201*843^(4/7) 3770008334770935 a001 24157817/103682*322^(1/12) 3770008335070467 a001 63245986/271443*322^(1/12) 3770008335114169 a001 165580141/710647*322^(1/12) 3770008335120545 a001 433494437/1860498*322^(1/12) 3770008335121475 a001 1134903170/4870847*322^(1/12) 3770008335121611 a001 2971215073/12752043*322^(1/12) 3770008335121630 a001 7778742049/33385282*322^(1/12) 3770008335121633 a001 20365011074/87403803*322^(1/12) 3770008335121634 a001 53316291173/228826127*322^(1/12) 3770008335121634 a001 139583862445/599074578*322^(1/12) 3770008335121634 a001 365435296162/1568397607*322^(1/12) 3770008335121634 a001 956722026041/4106118243*322^(1/12) 3770008335121634 a001 2504730781961/10749957122*322^(1/12) 3770008335121634 a001 6557470319842/28143753123*322^(1/12) 3770008335121634 a001 10610209857723/45537549124*322^(1/12) 3770008335121634 a001 4052739537881/17393796001*322^(1/12) 3770008335121634 a001 1548008755920/6643838879*322^(1/12) 3770008335121634 a001 591286729879/2537720636*322^(1/12) 3770008335121634 a001 225851433717/969323029*322^(1/12) 3770008335121634 a001 86267571272/370248451*322^(1/12) 3770008335121634 a001 63246219/271444*322^(1/12) 3770008335121635 a001 12586269025/54018521*322^(1/12) 3770008335121643 a001 4807526976/20633239*322^(1/12) 3770008335121694 a001 1836311903/7881196*322^(1/12) 3770008335122050 a001 701408733/3010349*322^(1/12) 3770008335124485 a001 267914296/1149851*322^(1/12) 3770008335141177 a001 102334155/439204*322^(1/12) 3770008335255589 a001 39088169/167761*322^(1/12) 3770008336039774 a001 14930352/64079*322^(1/12) 3770008336126661 a001 416020/51841*843^(4/7) 3770008336427124 a001 726103/90481*843^(4/7) 3770008336470961 a001 5702887/710647*843^(4/7) 3770008336477357 a001 829464/103361*843^(4/7) 3770008336478290 a001 39088169/4870847*843^(4/7) 3770008336478426 a001 34111385/4250681*843^(4/7) 3770008336478446 a001 133957148/16692641*843^(4/7) 3770008336478449 a001 233802911/29134601*843^(4/7) 3770008336478450 a001 1836311903/228826127*843^(4/7) 3770008336478450 a001 267084832/33281921*843^(4/7) 3770008336478450 a001 12586269025/1568397607*843^(4/7) 3770008336478450 a001 10983760033/1368706081*843^(4/7) 3770008336478450 a001 43133785636/5374978561*843^(4/7) 3770008336478450 a001 75283811239/9381251041*843^(4/7) 3770008336478450 a001 591286729879/73681302247*843^(4/7) 3770008336478450 a001 86000486440/10716675201*843^(4/7) 3770008336478450 a001 4052739537881/505019158607*843^(4/7) 3770008336478450 a001 3536736619241/440719107401*843^(4/7) 3770008336478450 a001 3278735159921/408569081798*843^(4/7) 3770008336478450 a001 2504730781961/312119004989*843^(4/7) 3770008336478450 a001 956722026041/119218851371*843^(4/7) 3770008336478450 a001 182717648081/22768774562*843^(4/7) 3770008336478450 a001 139583862445/17393796001*843^(4/7) 3770008336478450 a001 53316291173/6643838879*843^(4/7) 3770008336478450 a001 10182505537/1268860318*843^(4/7) 3770008336478450 a001 7778742049/969323029*843^(4/7) 3770008336478450 a001 2971215073/370248451*843^(4/7) 3770008336478450 a001 567451585/70711162*843^(4/7) 3770008336478451 a001 433494437/54018521*843^(4/7) 3770008336478459 a001 165580141/20633239*843^(4/7) 3770008336478511 a001 31622993/3940598*843^(4/7) 3770008336478867 a001 24157817/3010349*843^(4/7) 3770008336481310 a001 9227465/1149851*843^(4/7) 3770008336498054 a001 1762289/219602*843^(4/7) 3770008336612821 a001 1346269/167761*843^(4/7) 3770008337399445 a001 514229/64079*843^(4/7) 3770008341414664 a001 5702887/24476*322^(1/12) 3770008342791047 a001 98209/12238*843^(4/7) 3770008351991926 r009 Im(z^3+c),c=-29/118+24/61*I,n=7 3770008352533060 m001 GAMMA(1/24)*(GolombDickman-arctan(1/2)) 3770008362608038 r002 23th iterates of z^2 + 3770008363269167 p003 LerchPhi(1/25,3,161/116) 3770008369250111 m001 (GaussAGM+HardHexagonsEntropy)/(Ei(1)-Conway) 3770008378254705 a001 2178309/9349*322^(1/12) 3770008379745636 a001 75025/9349*843^(4/7) 3770008381206052 a003 sin(Pi*11/65)-sin(Pi*39/113) 3770008386436221 m005 (1/2*Pi+2/3)/(2/7*gamma+3/7) 3770008388366782 m004 (-5*Pi)/4-5*Sqrt[5]*Pi+2*Sin[Sqrt[5]*Pi] 3770008392359058 r005 Im(z^2+c),c=23/126+27/49*I,n=59 3770008392426619 s002 sum(A123290[n]/(exp(2*pi*n)-1),n=1..infinity) 3770008392890472 s002 sum(A228791[n]/(exp(2*pi*n)-1),n=1..infinity) 3770008399742816 a001 610/521*521^(12/13) 3770008401121556 r009 Re(z^3+c),c=-7/114+21/38*I,n=34 3770008410805502 h001 (7/11*exp(2)+4/7)/(3/10*exp(1)+7/12) 3770008412180248 m006 (1/3*exp(2*Pi)-1)/(2*exp(Pi)+4/5) 3770008424599831 q001 895/2374 3770008427139862 r005 Re(z^2+c),c=-21/44+19/53*I,n=56 3770008433837390 r002 13th iterates of z^2 + 3770008434767137 r009 Re(z^3+c),c=-11/52+11/13*I,n=8 3770008442532239 r009 Im(z^3+c),c=-41/106+17/48*I,n=3 3770008450403116 r009 Re(z^3+c),c=-11/26+11/56*I,n=37 3770008464499047 m005 (1/3*gamma-1/8)/(3/4*2^(1/2)+8/11) 3770008468116904 a001 121393/1364*843^(3/14) 3770008469527713 l006 ln(487/710) 3770008470455393 a003 -1/2+cos(4/9*Pi)+2*cos(7/27*Pi)-cos(4/15*Pi) 3770008473578172 r005 Im(z^2+c),c=13/56+19/63*I,n=51 3770008475427251 r005 Im(z^2+c),c=-31/24+1/29*I,n=57 3770008479972276 a003 sin(Pi*9/73)*sin(Pi*37/77) 3770008501357874 r002 44th iterates of z^2 + 3770008508209678 m005 (1/3*gamma-1/7)/(2/9*2^(1/2)+1) 3770008514694209 r005 Im(z^2+c),c=-7/82+18/35*I,n=23 3770008526083414 r002 50th iterates of z^2 + 3770008527999693 l006 ln(92/3991) 3770008553292888 r005 Re(z^2+c),c=-10/21+4/11*I,n=60 3770008558707940 m001 (ArtinRank2-BesselK(0,1))/(Bloch+MertensB1) 3770008576421087 m001 GAMMA(3/4)^2*exp(Artin)^2/sin(1) 3770008598255375 r009 Im(z^3+c),c=-2/11+7/17*I,n=14 3770008602587730 g007 Psi(2,3/10)-Psi(2,7/10)-Psi(2,7/9)-Psi(2,3/7) 3770008603403261 a001 28657/5778*843^(9/14) 3770008603733736 a003 cos(Pi*16/53)-cos(Pi*23/53) 3770008605111124 a007 Real Root Of 516*x^4-565*x^3-852*x^2-902*x+481 3770008607950764 r005 Im(z^2+c),c=-47/54+1/38*I,n=25 3770008611194767 r005 Re(z^2+c),c=-9/122+19/29*I,n=21 3770008630760124 a001 832040/3571*322^(1/12) 3770008633036174 a001 28657/3571*843^(4/7) 3770008635294791 r002 29th iterates of z^2 + 3770008650316633 a007 Real Root Of -20*x^4-739*x^3+551*x^2-529*x+760 3770008653002537 m001 FeigenbaumD+FellerTornier+LandauRamanujan 3770008660650129 r005 Im(z^2+c),c=-9/10+32/117*I,n=24 3770008671899101 r005 Re(z^2+c),c=-55/118+23/59*I,n=35 3770008672220899 r009 Im(z^3+c),c=-7/16+11/36*I,n=45 3770008675748489 h001 (-6*exp(1)+9)/(-exp(2)-12) 3770008694235778 s002 sum(A081958[n]/(exp(2*pi*n)-1),n=1..infinity) 3770008699067913 a001 75025/15127*843^(9/14) 3770008702643379 s002 sum(A226569[n]/(n^2*exp(n)+1),n=1..infinity) 3770008707987965 m009 (1/8*Pi^2+1/2)/(4*Catalan+1/2*Pi^2-4) 3770008713025198 a001 196418/39603*843^(9/14) 3770008715061539 a001 514229/103682*843^(9/14) 3770008715358637 a001 1346269/271443*843^(9/14) 3770008715401983 a001 3524578/710647*843^(9/14) 3770008715408307 a001 9227465/1860498*843^(9/14) 3770008715409229 a001 24157817/4870847*843^(9/14) 3770008715409364 a001 63245986/12752043*843^(9/14) 3770008715409384 a001 165580141/33385282*843^(9/14) 3770008715409387 a001 433494437/87403803*843^(9/14) 3770008715409387 a001 1134903170/228826127*843^(9/14) 3770008715409387 a001 2971215073/599074578*843^(9/14) 3770008715409387 a001 7778742049/1568397607*843^(9/14) 3770008715409387 a001 20365011074/4106118243*843^(9/14) 3770008715409387 a001 53316291173/10749957122*843^(9/14) 3770008715409387 a001 139583862445/28143753123*843^(9/14) 3770008715409387 a001 365435296162/73681302247*843^(9/14) 3770008715409387 a001 956722026041/192900153618*843^(9/14) 3770008715409387 a001 2504730781961/505019158607*843^(9/14) 3770008715409387 a001 10610209857723/2139295485799*843^(9/14) 3770008715409387 a001 140728068720/28374454999*843^(9/14) 3770008715409387 a001 591286729879/119218851371*843^(9/14) 3770008715409387 a001 225851433717/45537549124*843^(9/14) 3770008715409387 a001 86267571272/17393796001*843^(9/14) 3770008715409387 a001 32951280099/6643838879*843^(9/14) 3770008715409387 a001 1144206275/230701876*843^(9/14) 3770008715409387 a001 4807526976/969323029*843^(9/14) 3770008715409387 a001 1836311903/370248451*843^(9/14) 3770008715409387 a001 701408733/141422324*843^(9/14) 3770008715409388 a001 267914296/54018521*843^(9/14) 3770008715409396 a001 9303105/1875749*843^(9/14) 3770008715409447 a001 39088169/7881196*843^(9/14) 3770008715409800 a001 14930352/3010349*843^(9/14) 3770008715412215 a001 5702887/1149851*843^(9/14) 3770008715428772 a001 2178309/439204*843^(9/14) 3770008715542253 a001 75640/15251*843^(9/14) 3770008716320066 a001 317811/64079*843^(9/14) 3770008721651275 a001 121393/24476*843^(9/14) 3770008724504192 s002 sum(A016305[n]/(n^3*2^n+1),n=1..infinity) 3770008739064033 r005 Re(z^2+c),c=-57/110+2/37*I,n=45 3770008742410128 a001 4181/2207*843^(11/14) 3770008751577430 a007 Real Root Of -91*x^4-73*x^3+982*x^2-291*x-583 3770008758191922 a001 46368/9349*843^(9/14) 3770008770015137 a007 Real Root Of 277*x^4+848*x^3-612*x^2+380*x-387 3770008773488528 m005 (1/3*gamma+2/5)/(10/11*2^(1/2)+2/7) 3770008775926844 a007 Real Root Of 276*x^4+156*x^3+113*x^2-986*x-385 3770008782400307 r009 Re(z^3+c),c=-11/58+55/63*I,n=28 3770008789543862 m001 (Lehmer-MertensB3)/(gamma(1)-Champernowne) 3770008801175396 s002 sum(A016305[n]/(n^3*2^n-1),n=1..infinity) 3770008805776451 a001 1597/521*521^(10/13) 3770008810589522 r005 Re(z^2+c),c=-29/60+9/26*I,n=31 3770008820663623 a007 Real Root Of 927*x^4-23*x^3+407*x^2-722*x-350 3770008828023057 m004 -1/5-ProductLog[Sqrt[5]*Pi]+6*Tan[Sqrt[5]*Pi] 3770008830913255 m001 1/ln(BesselK(0,1))/MadelungNaCl^2/Zeta(9)^2 3770008847232976 a001 75025/1364*843^(2/7) 3770008851476736 r005 Re(z^2+c),c=17/98+24/59*I,n=27 3770008853011263 m001 (gamma(1)-BesselK(1,1))/(FellerTornier+Porter) 3770008854362604 r002 31th iterates of z^2 + 3770008858995369 p004 log(32839/757) 3770008867955537 m001 Rabbit^2*ln(ArtinRank2)^2/log(2+sqrt(3))^2 3770008882744901 a007 Real Root Of -803*x^4+549*x^3-530*x^2+828*x+32 3770008900844112 m004 -8+Sqrt[5]*Pi+Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 3770008912424661 r009 Im(z^3+c),c=-47/78+33/56*I,n=3 3770008935662233 m001 (ln(2^(1/2)+1)*ZetaP(2)+Mills)/ZetaP(2) 3770008947035006 r002 30th iterates of z^2 + 3770008965283584 a001 2584/2207*843^(6/7) 3770008970365547 m004 -120*Pi-6*Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3770008970520297 m004 -120*Pi-6*Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3770008971187481 a007 Real Root Of 160*x^4+509*x^3-401*x^2-340*x-630 3770008979012348 a001 17711/5778*843^(5/7) 3770008979318230 r005 Re(z^2+c),c=-10/21+4/11*I,n=62 3770008982794197 r005 Im(z^2+c),c=1/48+17/37*I,n=16 3770008989116663 m001 BesselI(1,1)^exp(1/2)*cos(Pi/12) 3770008995663444 r009 Re(z^3+c),c=-1/58+26/31*I,n=48 3770009002086089 m001 (Zeta(1/2)+BesselI(1,1))/(FeigenbaumC+Landau) 3770009006362824 m001 1/log(1+sqrt(2))/LambertW(1)^2/exp(sqrt(5)) 3770009008645263 a001 17711/3571*843^(9/14) 3770009010880542 r005 Re(z^2+c),c=5/126+16/53*I,n=26 3770009034960109 a001 521/46368*6765^(7/51) 3770009048580666 a001 1/2*123^(53/59) 3770009052207137 a007 Real Root Of -110*x^4-233*x^3-752*x^2+253*x+192 3770009062077075 a001 2584-987*5^(1/2) 3770009074048464 r005 Re(z^2+c),c=-25/58+33/64*I,n=25 3770009077514231 a001 6624/2161*843^(5/7) 3770009083968949 r005 Im(z^2+c),c=33/118+6/37*I,n=4 3770009089156051 m001 (-FeigenbaumB+ZetaQ(3))/(ArtinRank2-Catalan) 3770009090403869 a001 75025/843*322^(1/4) 3770009091885463 a001 121393/39603*843^(5/7) 3770009093982197 a001 317811/103682*843^(5/7) 3770009094288107 a001 832040/271443*843^(5/7) 3770009094332738 a001 311187/101521*843^(5/7) 3770009094339250 a001 5702887/1860498*843^(5/7) 3770009094340200 a001 14930352/4870847*843^(5/7) 3770009094340339 a001 39088169/12752043*843^(5/7) 3770009094340359 a001 14619165/4769326*843^(5/7) 3770009094340362 a001 267914296/87403803*843^(5/7) 3770009094340362 a001 701408733/228826127*843^(5/7) 3770009094340362 a001 1836311903/599074578*843^(5/7) 3770009094340362 a001 686789568/224056801*843^(5/7) 3770009094340362 a001 12586269025/4106118243*843^(5/7) 3770009094340362 a001 32951280099/10749957122*843^(5/7) 3770009094340362 a001 86267571272/28143753123*843^(5/7) 3770009094340362 a001 32264490531/10525900321*843^(5/7) 3770009094340362 a001 591286729879/192900153618*843^(5/7) 3770009094340362 a001 1548008755920/505019158607*843^(5/7) 3770009094340362 a001 1515744265389/494493258286*843^(5/7) 3770009094340362 a001 2504730781961/817138163596*843^(5/7) 3770009094340362 a001 956722026041/312119004989*843^(5/7) 3770009094340362 a001 365435296162/119218851371*843^(5/7) 3770009094340362 a001 139583862445/45537549124*843^(5/7) 3770009094340362 a001 53316291173/17393796001*843^(5/7) 3770009094340362 a001 20365011074/6643838879*843^(5/7) 3770009094340362 a001 7778742049/2537720636*843^(5/7) 3770009094340362 a001 2971215073/969323029*843^(5/7) 3770009094340362 a001 1134903170/370248451*843^(5/7) 3770009094340363 a001 433494437/141422324*843^(5/7) 3770009094340364 a001 165580141/54018521*843^(5/7) 3770009094340371 a001 63245986/20633239*843^(5/7) 3770009094340424 a001 24157817/7881196*843^(5/7) 3770009094340787 a001 9227465/3010349*843^(5/7) 3770009094343275 a001 3524578/1149851*843^(5/7) 3770009094360322 a001 1346269/439204*843^(5/7) 3770009094477169 a001 514229/167761*843^(5/7) 3770009095278051 a001 196418/64079*843^(5/7) 3770009100767373 a001 75025/24476*843^(5/7) 3770009102047480 a007 Real Root Of -655*x^4+788*x^3+746*x^2+427*x-296 3770009104484894 m001 MasserGramainDelta*Niven+Robbin 3770009105118805 r009 Re(z^3+c),c=-29/60+8/29*I,n=22 3770009106829052 m001 (gamma+Ei(1,1))/(Pi^(1/2)+PolyaRandomWalk3D) 3770009110635559 a001 228826127/55*55^(11/20) 3770009110815389 a007 Real Root Of 17*x^4+664*x^3+851*x^2-753*x-227 3770009114250635 a001 305/682*3571^(14/17) 3770009133343767 r005 Im(z^2+c),c=-18/17+15/58*I,n=52 3770009133925240 m001 (MertensB2+Rabbit)/(Shi(1)+FeigenbaumMu) 3770009138391746 a001 28657/9349*843^(5/7) 3770009143628978 r009 Im(z^3+c),c=-1/58+25/31*I,n=14 3770009151308376 r005 Re(z^2+c),c=21/74+2/63*I,n=16 3770009158363175 m001 (GAMMA(13/24)+Lehmer)/(RenyiParking-Totient) 3770009159642760 m005 (1/2*Zeta(3)-1/2)/(11/12*Pi-1/5) 3770009162286628 a007 Real Root Of 143*x^4-188*x^3-969*x^2-483*x+327 3770009174496693 p001 sum(1/(294*n+283)/(8^n),n=0..infinity) 3770009188015643 a007 Real Root Of 813*x^4+170*x^3+380*x^2-588*x-283 3770009194171874 r002 21th iterates of z^2 + 3770009225679310 a001 11592/341*843^(5/14) 3770009244249060 r009 Im(z^3+c),c=-35/64+8/63*I,n=55 3770009251055317 r005 Im(z^2+c),c=-11/25+21/43*I,n=8 3770009253762000 a007 Real Root Of 195*x^4-447*x^3+972*x^2-167*x-229 3770009261741074 r005 Im(z^2+c),c=25/94+15/56*I,n=33 3770009276664766 r005 Re(z^2+c),c=5/18+5/54*I,n=3 3770009287677162 a001 18/1597*8^(18/31) 3770009297075414 m001 BesselK(1,1)^2*Sierpinski*ln(Zeta(9))^2 3770009314647494 r002 8th iterates of z^2 + 3770009315281669 r005 Im(z^2+c),c=25/78+6/53*I,n=13 3770009325865582 r005 Re(z^2+c),c=-45/82+5/26*I,n=7 3770009325936184 a001 305/682*9349^(14/19) 3770009326006664 a007 Real Root Of -344*x^4-130*x^3-749*x^2+593*x+330 3770009335263586 a007 Real Root Of 919*x^4+443*x^3+239*x^2-973*x-37 3770009353523202 a001 305/682*24476^(2/3) 3770009354870749 r009 Re(z^3+c),c=-11/26+11/56*I,n=38 3770009354904780 a007 Real Root Of -153*x^4+489*x^3-283*x^2+492*x+255 3770009357159702 a001 305/682*64079^(14/23) 3770009357718569 a001 305/682*20633239^(2/5) 3770009357718572 a001 305/682*17393796001^(2/7) 3770009357718572 a001 305/682*14662949395604^(2/9) 3770009357718572 a001 305/682*(1/2+1/2*5^(1/2))^14 3770009357718572 a001 305/682*10749957122^(7/24) 3770009357718572 a001 305/682*4106118243^(7/23) 3770009357718572 a001 305/682*1568397607^(7/22) 3770009357718572 a001 305/682*599074578^(1/3) 3770009357718572 a001 305/682*228826127^(7/20) 3770009357718572 a001 305/682*87403803^(7/19) 3770009357718574 a001 305/682*33385282^(7/18) 3770009357718582 a001 305/682*12752043^(7/17) 3770009357718642 a001 305/682*4870847^(7/16) 3770009357719080 a001 305/682*1860498^(7/15) 3770009357722305 a001 305/682*710647^(1/2) 3770009357746123 a001 305/682*271443^(7/13) 3770009357923147 a001 305/682*103682^(7/12) 3770009359248221 a001 305/682*39603^(7/11) 3770009366042318 a001 47/28657*610^(39/46) 3770009366640138 a001 5473/2889*843^(11/14) 3770009369251375 a001 305/682*15127^(7/10) 3770009369338401 b008 (17*Sin[1/9])/5 3770009371224260 m005 (1/2*Pi+3)/(2/5*2^(1/2)-4/9) 3770009371608300 p003 LerchPhi(1/1024,2,360/221) 3770009379689863 a001 144/9349*7^(23/50) 3770009389883354 r002 40th iterates of z^2 + 3770009392966597 m001 (GaussAGM+MertensB1)/(Si(Pi)+GAMMA(11/12)) 3770009396273057 a001 10946/3571*843^(5/7) 3770009431139708 a007 Real Root Of 248*x^4+970*x^3+361*x^2+885*x+83 3770009441996178 m005 (1/2*Pi-7/8)/(4/11*exp(1)+6/7) 3770009443569714 r002 8th iterates of z^2 + 3770009445548577 a001 305/682*5778^(7/9) 3770009448126879 r005 Re(z^2+c),c=-13/27+23/62*I,n=29 3770009448263018 r005 Im(z^2+c),c=33/98+8/31*I,n=22 3770009452441690 a007 Real Root Of -295*x^4+833*x^3-882*x^2+711*x+444 3770009457320700 m005 (1/5*2^(1/2)-5/6)/(1/4*Pi-4/5) 3770009457714088 a001 28657/15127*843^(11/14) 3770009464853048 h001 (5/6*exp(2)+4/7)/(2/9*exp(2)+1/7) 3770009465581373 a001 2584/521*521^(9/13) 3770009471001598 a001 75025/39603*843^(11/14) 3770009472940220 a001 98209/51841*843^(11/14) 3770009473223061 a001 514229/271443*843^(11/14) 3770009473264327 a001 1346269/710647*843^(11/14) 3770009473270347 a001 1762289/930249*843^(11/14) 3770009473271226 a001 9227465/4870847*843^(11/14) 3770009473271354 a001 24157817/12752043*843^(11/14) 3770009473271373 a001 31622993/16692641*843^(11/14) 3770009473271375 a001 165580141/87403803*843^(11/14) 3770009473271376 a001 433494437/228826127*843^(11/14) 3770009473271376 a001 567451585/299537289*843^(11/14) 3770009473271376 a001 2971215073/1568397607*843^(11/14) 3770009473271376 a001 7778742049/4106118243*843^(11/14) 3770009473271376 a001 10182505537/5374978561*843^(11/14) 3770009473271376 a001 53316291173/28143753123*843^(11/14) 3770009473271376 a001 139583862445/73681302247*843^(11/14) 3770009473271376 a001 182717648081/96450076809*843^(11/14) 3770009473271376 a001 956722026041/505019158607*843^(11/14) 3770009473271376 a001 10610209857723/5600748293801*843^(11/14) 3770009473271376 a001 591286729879/312119004989*843^(11/14) 3770009473271376 a001 225851433717/119218851371*843^(11/14) 3770009473271376 a001 21566892818/11384387281*843^(11/14) 3770009473271376 a001 32951280099/17393796001*843^(11/14) 3770009473271376 a001 12586269025/6643838879*843^(11/14) 3770009473271376 a001 1201881744/634430159*843^(11/14) 3770009473271376 a001 1836311903/969323029*843^(11/14) 3770009473271376 a001 701408733/370248451*843^(11/14) 3770009473271376 a001 66978574/35355581*843^(11/14) 3770009473271377 a001 102334155/54018521*843^(11/14) 3770009473271384 a001 39088169/20633239*843^(11/14) 3770009473271433 a001 3732588/1970299*843^(11/14) 3770009473271769 a001 5702887/3010349*843^(11/14) 3770009473274068 a001 2178309/1149851*843^(11/14) 3770009473289831 a001 208010/109801*843^(11/14) 3770009473397866 a001 317811/167761*843^(11/14) 3770009474138354 a001 121393/64079*843^(11/14) 3770009479213731 a001 11592/6119*843^(11/14) 3770009509944200 r005 Im(z^2+c),c=3/23+21/58*I,n=3 3770009514000886 a001 17711/9349*843^(11/14) 3770009528001820 r005 Re(z^2+c),c=-37/82+22/43*I,n=31 3770009541598529 r009 Im(z^3+c),c=-23/66+19/52*I,n=7 3770009543645739 r005 Re(z^2+c),c=-6/13+15/43*I,n=18 3770009549457638 m001 MertensB1^2/ln(Conway)*MinimumGamma 3770009551933552 m001 (PlouffeB+Trott)/(BesselI(0,2)-FeigenbaumMu) 3770009557165454 m001 1/GAMMA(19/24)*Riemann3rdZero/exp(sqrt(3)) 3770009558930096 r005 Im(z^2+c),c=9/52+6/17*I,n=29 3770009561535245 h001 (7/8*exp(2)+5/8)/(5/8*exp(1)+2/11) 3770009575401256 a007 Real Root Of -354*x^4+501*x^3-502*x^2+702*x+370 3770009577012698 a001 11/1346269*13^(31/52) 3770009590673687 r005 Im(z^2+c),c=21/86+19/63*I,n=15 3770009602307359 m001 sin(1/5*Pi)^(Si(Pi)/Trott) 3770009603863854 m001 (ln(2)-Kac)/(ReciprocalLucas-ZetaP(3)) 3770009605879181 a001 28657/1364*843^(3/7) 3770009654155306 r005 Im(z^2+c),c=-1/98+11/23*I,n=57 3770009677386890 r005 Im(z^2+c),c=-97/70+6/47*I,n=4 3770009688421598 m001 (ln(2^(1/2)+1)+PrimesInBinary)/(Zeta(5)-ln(2)) 3770009707418041 r002 19th iterates of z^2 + 3770009722802689 a001 2255/1926*843^(6/7) 3770009725186872 r002 22th iterates of z^2 + 3770009735551014 m001 1/exp(BesselJ(0,1))^2*Riemann3rdZero^2/Ei(1)^2 3770009750261231 l006 ln(205/8893) 3770009752435611 a001 6765/3571*843^(11/14) 3770009752778524 a001 1597/2207*843^(13/14) 3770009769536583 a007 Real Root Of 442*x^4-353*x^3-613*x^2-953*x-300 3770009771053233 a001 1/7*(1/2*5^(1/2)+1/2)^30*3^(7/22) 3770009772836452 a001 4181/3*1364^(45/58) 3770009774831833 m001 ln(MinimumGamma)/Artin^2/FeigenbaumD^2 3770009782309917 h001 (1/9*exp(1)+1/5)/(3/7*exp(1)+1/6) 3770009786190447 p003 LerchPhi(1/10,1,407/142) 3770009800718719 q001 1154/3061 3770009800924295 m002 12*Pi^5+Pi^4*Coth[Pi] 3770009810200697 a007 Real Root Of 84*x^4+200*x^3-211*x^2+721*x-535 3770009812635489 r002 7th iterates of z^2 + 3770009833323260 a001 17711/15127*843^(6/7) 3770009836069771 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^16 3770009837014683 r005 Im(z^2+c),c=-17/78+21/37*I,n=35 3770009838777005 a007 Real Root Of 178*x^4+790*x^3+629*x^2+644*x-139 3770009847848596 r005 Re(z^2+c),c=-51/98+3/53*I,n=14 3770009849447994 a001 15456/13201*843^(6/7) 3770009851800561 a001 121393/103682*843^(6/7) 3770009852143796 a001 105937/90481*843^(6/7) 3770009852193873 a001 832040/710647*843^(6/7) 3770009852201179 a001 726103/620166*843^(6/7) 3770009852202245 a001 5702887/4870847*843^(6/7) 3770009852202401 a001 4976784/4250681*843^(6/7) 3770009852202424 a001 39088169/33385282*843^(6/7) 3770009852202427 a001 34111385/29134601*843^(6/7) 3770009852202427 a001 267914296/228826127*843^(6/7) 3770009852202427 a001 233802911/199691526*843^(6/7) 3770009852202427 a001 1836311903/1568397607*843^(6/7) 3770009852202427 a001 1602508992/1368706081*843^(6/7) 3770009852202427 a001 12586269025/10749957122*843^(6/7) 3770009852202427 a001 10983760033/9381251041*843^(6/7) 3770009852202427 a001 86267571272/73681302247*843^(6/7) 3770009852202427 a001 75283811239/64300051206*843^(6/7) 3770009852202427 a001 2504730781961/2139295485799*843^(6/7) 3770009852202427 a001 365435296162/312119004989*843^(6/7) 3770009852202427 a001 139583862445/119218851371*843^(6/7) 3770009852202427 a001 53316291173/45537549124*843^(6/7) 3770009852202427 a001 20365011074/17393796001*843^(6/7) 3770009852202427 a001 7778742049/6643838879*843^(6/7) 3770009852202427 a001 2971215073/2537720636*843^(6/7) 3770009852202427 a001 1134903170/969323029*843^(6/7) 3770009852202428 a001 433494437/370248451*843^(6/7) 3770009852202428 a001 165580141/141422324*843^(6/7) 3770009852202429 a001 63245986/54018521*843^(6/7) 3770009852202438 a001 24157817/20633239*843^(6/7) 3770009852202497 a001 9227465/7881196*843^(6/7) 3770009852202904 a001 3524578/3010349*843^(6/7) 3770009852205695 a001 1346269/1149851*843^(6/7) 3770009852224823 a001 514229/439204*843^(6/7) 3770009852355927 a001 196418/167761*843^(6/7) 3770009853254527 a001 75025/64079*843^(6/7) 3770009859413628 a001 28657/24476*843^(6/7) 3770009872786261 p004 log(14633/10037) 3770009895166098 m005 (1/2*2^(1/2)-3/7)/(1/8*gamma+2/3) 3770009901628731 a001 10946/9349*843^(6/7) 3770009910389225 a007 Real Root Of 36*x^4+34*x^3-539*x^2-590*x-14 3770009914687124 r005 Re(z^2+c),c=-57/118+15/43*I,n=31 3770009931351176 a007 Real Root Of 47*x^4-417*x^3-828*x^2-959*x-35 3770009932094559 r009 Re(z^3+c),c=-11/26+11/56*I,n=42 3770009932370858 a005 (1/sin(41/149*Pi))^148 3770009937309930 m005 (1/2*3^(1/2)-5/11)/(3/8*gamma+7/8) 3770009939511225 a007 Real Root Of -32*x^4+135*x^3-691*x^2+204*x+183 3770009940058188 h001 (1/8*exp(2)+1/10)/(3/11*exp(2)+7/10) 3770009941627881 r002 14th iterates of z^2 + 3770009945774918 m001 (Pi+cos(1/5*Pi))/(ArtinRank2-KhinchinHarmonic) 3770009947455055 r009 Re(z^3+c),c=-1/58+39/50*I,n=17 3770009958490255 a003 cos(Pi*9/89)/cos(Pi*31/74) 3770009964432704 m001 1/Zeta(1/2)^2/ln(GlaisherKinkelin)*sqrt(2)^2 3770009980846577 r005 Im(z^2+c),c=9/86+13/23*I,n=17 3770009981488368 a001 17711/1364*843^(1/2) 3770010005556494 a007 Real Root Of 455*x^4-99*x^3-711*x^2-416*x+254 3770010017978276 r005 Re(z^2+c),c=-7/15+22/61*I,n=23 3770010028243541 r002 8th iterates of z^2 + 3770010034963853 a001 305/682*2207^(7/8) 3770010086530517 a008 Real Root of x^4-2*x^3+26*x^2+6*x-487 3770010110244315 m001 Salem*GlaisherKinkelin*exp(Catalan) 3770010116207825 a001 7/4*(1/2*5^(1/2)+1/2)^4*4^(19/23) 3770010118795243 r005 Im(z^2+c),c=-149/126+15/43*I,n=4 3770010131712259 a001 372100/987 3770010132259832 r005 Im(z^2+c),c=-15/122+31/55*I,n=27 3770010137435335 m006 (4*exp(2*Pi)+3/5)/(2*Pi-3/5) 3770010139061110 r005 Re(z^2+c),c=-29/56+1/16*I,n=40 3770010140730717 p003 LerchPhi(1/32,4,90/223) 3770010141097835 m005 (1/6*Catalan-1/4)/(2*Catalan+3/4) 3770010145745669 a007 Real Root Of 257*x^4+714*x^3-800*x^2+602*x-18 3770010154381153 r005 Re(z^2+c),c=11/74+17/45*I,n=56 3770010155372998 a007 Real Root Of -490*x^4-305*x^3+621*x^2+978*x+274 3770010155777923 b008 CosIntegral[Sqrt[5/3+Pi]] 3770010161342452 a001 4181/5778*843^(13/14) 3770010169189757 a007 Real Root Of 434*x^4-93*x^3-365*x^2-578*x+266 3770010171271049 r005 Im(z^2+c),c=-35/24+19/58*I,n=3 3770010173313073 r009 Re(z^3+c),c=-11/26+11/56*I,n=41 3770010179820217 r009 Re(z^3+c),c=-11/26+11/56*I,n=43 3770010185492909 r009 Re(z^3+c),c=-31/94+1/23*I,n=11 3770010190975377 a001 4181/3571*843^(6/7) 3770010198563640 m005 (1/2*Pi+2/3)/(5/9*exp(1)-11/12) 3770010199273522 r005 Im(z^2+c),c=-65/82+7/48*I,n=14 3770010199525734 r009 Re(z^3+c),c=-11/26+11/56*I,n=47 3770010201971218 r009 Im(z^3+c),c=-5/48+11/26*I,n=4 3770010209316992 r009 Re(z^3+c),c=-11/26+11/56*I,n=46 3770010220026121 r002 57th iterates of z^2 + 3770010220951138 a001 10946/15127*843^(13/14) 3770010229647928 a001 28657/39603*843^(13/14) 3770010230916773 a001 75025/103682*843^(13/14) 3770010231101895 a001 196418/271443*843^(13/14) 3770010231128903 a001 514229/710647*843^(13/14) 3770010231132844 a001 1346269/1860498*843^(13/14) 3770010231133419 a001 3524578/4870847*843^(13/14) 3770010231133503 a001 9227465/12752043*843^(13/14) 3770010231133515 a001 24157817/33385282*843^(13/14) 3770010231133517 a001 63245986/87403803*843^(13/14) 3770010231133517 a001 165580141/228826127*843^(13/14) 3770010231133517 a001 433494437/599074578*843^(13/14) 3770010231133517 a001 1134903170/1568397607*843^(13/14) 3770010231133517 a001 2971215073/4106118243*843^(13/14) 3770010231133517 a001 7778742049/10749957122*843^(13/14) 3770010231133517 a001 20365011074/28143753123*843^(13/14) 3770010231133517 a001 53316291173/73681302247*843^(13/14) 3770010231133517 a001 139583862445/192900153618*843^(13/14) 3770010231133517 a001 365435296162/505019158607*843^(13/14) 3770010231133517 a001 10610209857723/14662949395604*843^(13/14) 3770010231133517 a001 225851433717/312119004989*843^(13/14) 3770010231133517 a001 86267571272/119218851371*843^(13/14) 3770010231133517 a001 32951280099/45537549124*843^(13/14) 3770010231133517 a001 12586269025/17393796001*843^(13/14) 3770010231133517 a001 4807526976/6643838879*843^(13/14) 3770010231133517 a001 1836311903/2537720636*843^(13/14) 3770010231133517 a001 701408733/969323029*843^(13/14) 3770010231133517 a001 267914296/370248451*843^(13/14) 3770010231133517 a001 102334155/141422324*843^(13/14) 3770010231133518 a001 39088169/54018521*843^(13/14) 3770010231133523 a001 14930352/20633239*843^(13/14) 3770010231133555 a001 5702887/7881196*843^(13/14) 3770010231133774 a001 2178309/3010349*843^(13/14) 3770010231135279 a001 832040/1149851*843^(13/14) 3770010231145596 a001 317811/439204*843^(13/14) 3770010231216306 a001 121393/167761*843^(13/14) 3770010231685542 l006 ln(7366/7649) 3770010231700962 a001 46368/64079*843^(13/14) 3770010235022840 a001 17711/24476*843^(13/14) 3770010237668185 r009 Re(z^3+c),c=-11/26+11/56*I,n=51 3770010238544780 a007 Real Root Of -172*x^4-603*x^3-828*x^2+576*x+306 3770010240780436 r009 Re(z^3+c),c=-11/26+11/56*I,n=52 3770010245035186 r009 Re(z^3+c),c=-11/26+11/56*I,n=56 3770010246183696 r009 Re(z^3+c),c=-11/26+11/56*I,n=57 3770010246479836 r009 Re(z^3+c),c=-11/26+11/56*I,n=61 3770010246608504 r009 Re(z^3+c),c=-11/26+11/56*I,n=60 3770010246737387 r009 Re(z^3+c),c=-11/26+11/56*I,n=62 3770010246787707 r009 Re(z^3+c),c=-11/26+11/56*I,n=55 3770010246806310 r009 Re(z^3+c),c=-11/26+11/56*I,n=64 3770010246882245 r009 Re(z^3+c),c=-11/26+11/56*I,n=63 3770010247235710 r009 Re(z^3+c),c=-11/26+11/56*I,n=59 3770010247392068 r009 Re(z^3+c),c=-11/26+11/56*I,n=58 3770010249155867 r009 Re(z^3+c),c=-11/26+11/56*I,n=53 3770010249312639 r009 Re(z^3+c),c=-11/26+11/56*I,n=48 3770010250385314 r009 Re(z^3+c),c=-11/26+11/56*I,n=54 3770010253108438 r009 Re(z^3+c),c=-11/26+11/56*I,n=50 3770010257791333 a001 6765/9349*843^(13/14) 3770010260138111 a003 sin(Pi*4/87)-sin(Pi*15/86) 3770010269617137 r005 Im(z^2+c),c=-47/114+29/51*I,n=61 3770010270119409 r009 Re(z^3+c),c=-11/26+11/56*I,n=49 3770010273586004 r005 Im(z^2+c),c=-1/66+15/31*I,n=20 3770010274193202 r009 Im(z^3+c),c=-33/74+10/33*I,n=16 3770010290271278 r009 Re(z^3+c),c=-33/64+17/50*I,n=52 3770010290288125 r009 Re(z^3+c),c=-9/20+14/61*I,n=28 3770010291784788 m005 (1/2*2^(1/2)+5)/(7/9*3^(1/2)+1/6) 3770010296236017 a007 Real Root Of -10*x^4-388*x^3-407*x^2+312*x+872 3770010306636037 r005 Im(z^2+c),c=23/110+10/31*I,n=38 3770010318536779 r005 Re(z^2+c),c=-83/118+5/64*I,n=10 3770010320317426 r009 Re(z^3+c),c=-11/26+11/56*I,n=45 3770010325532340 a007 Real Root Of -242*x^4-970*x^3-148*x^2+522*x+982 3770010332347220 a007 Real Root Of 61*x^4-267*x^3-339*x^2-559*x+272 3770010333744925 a007 Real Root Of 129*x^4+286*x^3-687*x^2+265*x+29 3770010339703007 r005 Im(z^2+c),c=17/78+23/52*I,n=12 3770010343169966 r005 Im(z^2+c),c=31/118+16/59*I,n=33 3770010349716221 m001 (BesselI(1,2)-Gompertz)/(Rabbit+Tetranacci) 3770010352412219 m002 -1+4*Pi^4-Cosh[Pi]*Coth[Pi] 3770010355841401 r005 Im(z^2+c),c=19/74+16/55*I,n=15 3770010361458922 a001 317811/1364*322^(1/12) 3770010369116261 a001 5473/682*843^(4/7) 3770010375193675 r009 Re(z^3+c),c=-11/26+11/56*I,n=44 3770010382413885 r005 Re(z^2+c),c=-9/13+7/45*I,n=6 3770010383261743 m001 (GAMMA(3/4)-Ei(1))/(KomornikLoreti-Trott) 3770010387646114 m001 1/FeigenbaumC*Bloch*exp(FeigenbaumD) 3770010393812210 r005 Im(z^2+c),c=7/22+9/46*I,n=29 3770010398910190 r009 Re(z^3+c),c=-9/26+5/59*I,n=6 3770010403687472 a007 Real Root Of -107*x^4-534*x^3-675*x^2-429*x+978 3770010408212815 m005 (1/2*3^(1/2)+4/11)/(2/7*Pi-4/7) 3770010413105984 r005 Im(z^2+c),c=5/32+15/41*I,n=22 3770010413848918 a001 2584/3571*843^(13/14) 3770010425475977 m001 Zeta(1/2)/(FeigenbaumMu+GaussKuzminWirsing) 3770010440969571 a007 Real Root Of -993*x^4+956*x^3+38*x^2+995*x+441 3770010474079208 m001 (-exp(1/Pi)+4)/(-GaussKuzminWirsing+1) 3770010483416189 h001 (1/3*exp(2)+1/9)/(4/5*exp(2)+11/12) 3770010483828017 r005 Re(z^2+c),c=-77/102+2/31*I,n=44 3770010489721511 b008 7*3^E*E 3770010491081830 m005 (1/2*3^(1/2)-2/9)/(10/11*Catalan+7/8) 3770010497140315 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^18 3770010506229226 r005 Re(z^2+c),c=-85/58+2/29*I,n=6 3770010511698532 b008 Log[38*(-2+Pi)] 3770010527611823 r005 Im(z^2+c),c=-1/6+32/57*I,n=34 3770010539570362 a001 233*199^(1/11) 3770010551308355 r005 Re(z^2+c),c=23/126+29/50*I,n=44 3770010558186905 r005 Im(z^2+c),c=-79/118+4/51*I,n=41 3770010567799579 r005 Re(z^2+c),c=-5/8+13/35*I,n=64 3770010591211045 a001 317811/2207*322^(1/6) 3770010593589207 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^20 3770010594528549 l006 ln(6628/9663) 3770010607660911 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^22 3770010609713945 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^24 3770010610013478 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^26 3770010610057180 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^28 3770010610063556 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^30 3770010610064486 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^32 3770010610064622 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^34 3770010610064642 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^36 3770010610064644 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^38 3770010610064645 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^40 3770010610064645 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^42 3770010610064645 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^44 3770010610064645 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^46 3770010610064645 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^48 3770010610064645 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^50 3770010610064645 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^52 3770010610064645 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^54 3770010610064645 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^56 3770010610064645 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^58 3770010610064645 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^60 3770010610064645 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^62 3770010610064645 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^64 3770010610064645 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^66 3770010610064645 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^68 3770010610064645 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^70 3770010610064645 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^72 3770010610064645 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^74 3770010610064645 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^76 3770010610064645 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^78 3770010610064645 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^80 3770010610064645 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^82 3770010610064645 a004 Fibonacci(84)*Lucas(14)/(1/2+sqrt(5)/2)^84 3770010610064645 a004 Fibonacci(86)*Lucas(14)/(1/2+sqrt(5)/2)^86 3770010610064645 a004 Fibonacci(88)*Lucas(14)/(1/2+sqrt(5)/2)^88 3770010610064645 a004 Fibonacci(90)*Lucas(14)/(1/2+sqrt(5)/2)^90 3770010610064645 a004 Fibonacci(92)*Lucas(14)/(1/2+sqrt(5)/2)^92 3770010610064645 a004 Fibonacci(94)*Lucas(14)/(1/2+sqrt(5)/2)^94 3770010610064645 a004 Fibonacci(96)*Lucas(14)/(1/2+sqrt(5)/2)^96 3770010610064645 a004 Fibonacci(100)*Lucas(14)/(1/2+sqrt(5)/2)^100 3770010610064645 a004 Fibonacci(98)*Lucas(14)/(1/2+sqrt(5)/2)^98 3770010610064645 a004 Fibonacci(99)*Lucas(14)/(1/2+sqrt(5)/2)^99 3770010610064645 a004 Fibonacci(97)*Lucas(14)/(1/2+sqrt(5)/2)^97 3770010610064645 a004 Fibonacci(95)*Lucas(14)/(1/2+sqrt(5)/2)^95 3770010610064645 a004 Fibonacci(93)*Lucas(14)/(1/2+sqrt(5)/2)^93 3770010610064645 a004 Fibonacci(91)*Lucas(14)/(1/2+sqrt(5)/2)^91 3770010610064645 a004 Fibonacci(89)*Lucas(14)/(1/2+sqrt(5)/2)^89 3770010610064645 a004 Fibonacci(87)*Lucas(14)/(1/2+sqrt(5)/2)^87 3770010610064645 a004 Fibonacci(85)*Lucas(14)/(1/2+sqrt(5)/2)^85 3770010610064645 a004 Fibonacci(83)*Lucas(14)/(1/2+sqrt(5)/2)^83 3770010610064645 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^81 3770010610064645 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^79 3770010610064645 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^77 3770010610064645 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^75 3770010610064645 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^73 3770010610064645 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^71 3770010610064645 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^69 3770010610064645 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^67 3770010610064645 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^65 3770010610064645 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^63 3770010610064645 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^61 3770010610064645 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^59 3770010610064645 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^57 3770010610064645 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^55 3770010610064645 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^53 3770010610064645 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^51 3770010610064645 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^49 3770010610064645 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^47 3770010610064645 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^45 3770010610064645 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^43 3770010610064645 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^41 3770010610064645 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^39 3770010610064646 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^37 3770010610064654 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^35 3770010610064706 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^33 3770010610065061 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^31 3770010610067496 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^29 3770010610072110 a001 2/377*(1/2+1/2*5^(1/2))^28 3770010610084189 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^27 3770010610198600 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^25 3770010610982790 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^23 3770010616312290 r005 Im(z^2+c),c=1/26+17/38*I,n=22 3770010616357702 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^21 3770010618483459 m001 (Zeta(5)+Kolakoski)/(Trott+Weierstrass) 3770010618533187 r002 24th iterates of z^2 + 3770010639186870 r005 Re(z^2+c),c=5/126+16/53*I,n=30 3770010643470103 s002 sum(A120120[n]/(exp(n)-1),n=1..infinity) 3770010653197901 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^19 3770010661847620 r002 41th iterates of z^2 + 3770010668070690 r009 Im(z^3+c),c=-7/16+11/36*I,n=42 3770010672358591 q001 1413/3748 3770010676870637 m005 (7/24+1/6*5^(1/2))/(7/9*gamma-3/11) 3770010690008023 a001 4181/521*521^(8/13) 3770010699721021 m005 (3/5*Catalan-5/6)/(1/6*Catalan+3/5) 3770010702435249 r005 Re(z^2+c),c=-1/3+25/49*I,n=10 3770010708547360 a007 Real Root Of 764*x^4+812*x^3+562*x^2-974*x-419 3770010714234620 p003 LerchPhi(1/8,3,215/154) 3770010714604985 m001 1/ln(Bloch)^2/FeigenbaumDelta^2*arctan(1/2) 3770010725278907 a001 615/124*843^(9/14) 3770010726866395 m001 (-MasserGramain+TwinPrimes)/(cos(1)-gamma) 3770010730156421 r005 Re(z^2+c),c=-47/98+16/45*I,n=33 3770010745375717 l006 ln(113/4902) 3770010755757029 a007 Real Root Of -215*x^4-972*x^3-746*x^2-713*x-736 3770010763047567 l006 ln(6141/8953) 3770010763912438 m005 (1/2*3^(1/2)+7/9)/(1/6*Zeta(3)-7/11) 3770010784216543 r005 Im(z^2+c),c=4/13+13/58*I,n=25 3770010784643637 m008 (4*Pi^2-5/6)/(1/3*Pi^5+1/2) 3770010786515877 h005 exp(cos(Pi*2/23)+sin(Pi*7/59)) 3770010797579310 m001 (Paris+Trott2nd)/(gamma(1)-MertensB1) 3770010809984666 r005 Im(z^2+c),c=-15/122+13/24*I,n=48 3770010814778525 r009 Re(z^3+c),c=-11/26+11/56*I,n=39 3770010828761419 m002 Pi^2+3*Pi^2*ProductLog[Pi]*Sinh[Pi] 3770010855204243 r005 Im(z^2+c),c=5/23+15/46*I,n=14 3770010856377126 r009 Re(z^3+c),c=-11/26+11/56*I,n=40 3770010867224108 m001 GAMMA(13/24)*RenyiParking^2*exp(sqrt(2)) 3770010868657042 a007 Real Root Of 218*x^4+800*x^3-115*x^2+48*x+644 3770010884786466 r009 Im(z^3+c),c=-23/118+11/28*I,n=2 3770010886777226 a007 Real Root Of -134*x^4-589*x^3-199*x^2+331*x-415 3770010886861012 m003 1/32+Sqrt[5]/2+Cosh[1/2+Sqrt[5]/2] 3770010891071412 p004 log(25439/17449) 3770010895749231 r002 2th iterates of z^2 + 3770010895895885 r009 Re(z^3+c),c=-11/26+11/56*I,n=36 3770010900418014 m001 Riemann1stZero/ln(Conway)/sqrt(2) 3770010905704380 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^17 3770010915419762 s001 sum(exp(-4*Pi)^(n-1)*A171489[n],n=1..infinity) 3770010916890417 m001 (MinimumGamma-Thue)/(3^(1/3)-GlaisherKinkelin) 3770010917904460 r005 Im(z^2+c),c=21/110+1/3*I,n=12 3770010923665720 a007 Real Root Of -884*x^4-506*x^3-414*x^2+149*x-5 3770010932652436 m001 (exp(-1/2*Pi)+Stephens)/(TwinPrimes-ZetaP(2)) 3770010937569483 r005 Re(z^2+c),c=5/126+16/53*I,n=31 3770010953799175 m001 Landau-StolarskyHarborth^TravellingSalesman 3770010960596918 l006 ln(5654/8243) 3770010986295507 r005 Re(z^2+c),c=-53/114+16/39*I,n=54 3770010990994638 a007 Real Root Of 132*x^4+429*x^3-449*x^2-680*x+140 3770010994723125 a007 Real Root Of 73*x^4+154*x^3-504*x^2-237*x-225 3770010995871767 m001 BesselK(1,1)/exp(OneNinth)^2*log(1+sqrt(2))^2 3770010998032617 m004 -25*Pi+5*Sqrt[5]*Pi+(5*Pi*Cot[Sqrt[5]*Pi])/3 3770011000771951 r002 34th iterates of z^2 + 3770011005484884 r005 Im(z^2+c),c=29/118+15/52*I,n=47 3770011014132706 m001 Sierpinski^TreeGrowth2nd/(Sierpinski^Porter) 3770011014138975 r005 Re(z^2+c),c=-31/60+5/57*I,n=31 3770011016553181 a001 23725150497407/377*144^(14/17) 3770011019454461 a007 Real Root Of 74*x^4+161*x^3-378*x^2+51*x-757 3770011021597687 m001 (BesselJ(0,1)+3^(1/3))/(-GAMMA(5/6)+Landau) 3770011029412023 m001 Backhouse*Riemann3rdZero+GlaisherKinkelin 3770011030308803 r005 Im(z^2+c),c=-117/118+16/61*I,n=44 3770011043553666 a007 Real Root Of 575*x^4-242*x^3+194*x^2-172*x-117 3770011048019613 r005 Im(z^2+c),c=-1/56+14/29*I,n=38 3770011051114553 r005 Re(z^2+c),c=5/126+16/53*I,n=34 3770011071511833 m008 (1/4*Pi^4-1/6)/(2/3*Pi^6+3/5) 3770011088763485 r009 Re(z^3+c),c=-41/126+1/48*I,n=5 3770011106874736 r005 Re(z^2+c),c=5/126+16/53*I,n=38 3770011109834140 r005 Re(z^2+c),c=5/126+16/53*I,n=37 3770011111951482 r005 Re(z^2+c),c=5/126+16/53*I,n=41 3770011112391779 r005 Re(z^2+c),c=5/126+16/53*I,n=42 3770011112669111 r005 Re(z^2+c),c=5/126+16/53*I,n=45 3770011112675606 r005 Re(z^2+c),c=5/126+16/53*I,n=35 3770011112773881 r005 Re(z^2+c),c=5/126+16/53*I,n=49 3770011112778550 r005 Re(z^2+c),c=5/126+16/53*I,n=46 3770011112782195 r005 Re(z^2+c),c=5/126+16/53*I,n=48 3770011112784265 r005 Re(z^2+c),c=5/126+16/53*I,n=52 3770011112784844 r005 Re(z^2+c),c=5/126+16/53*I,n=53 3770011112785486 r005 Re(z^2+c),c=5/126+16/53*I,n=56 3770011112785677 r005 Re(z^2+c),c=5/126+16/53*I,n=57 3770011112785681 r005 Re(z^2+c),c=5/126+16/53*I,n=60 3770011112785702 r005 Re(z^2+c),c=5/126+16/53*I,n=59 3770011112785702 r005 Re(z^2+c),c=5/126+16/53*I,n=63 3770011112785702 r005 Re(z^2+c),c=5/126+16/53*I,n=64 3770011112785708 r005 Re(z^2+c),c=5/126+16/53*I,n=61 3770011112785711 r005 Re(z^2+c),c=5/126+16/53*I,n=62 3770011112785778 r005 Re(z^2+c),c=5/126+16/53*I,n=58 3770011112785891 r005 Re(z^2+c),c=5/126+16/53*I,n=55 3770011112786296 r005 Re(z^2+c),c=5/126+16/53*I,n=54 3770011112788613 r005 Re(z^2+c),c=5/126+16/53*I,n=50 3770011112789060 r005 Re(z^2+c),c=5/126+16/53*I,n=51 3770011112824198 r005 Re(z^2+c),c=5/126+16/53*I,n=47 3770011112862787 r005 Re(z^2+c),c=5/126+16/53*I,n=44 3770011113112811 r005 Re(z^2+c),c=5/126+16/53*I,n=43 3770011114405288 r005 Re(z^2+c),c=5/126+16/53*I,n=40 3770011114624241 r005 Re(z^2+c),c=5/126+16/53*I,n=39 3770011132592640 r005 Re(z^2+c),c=5/126+16/53*I,n=36 3770011135503025 a007 Real Root Of 502*x^4+70*x^3-592*x^2-750*x-205 3770011142109811 r005 Re(z^2+c),c=5/126+16/53*I,n=33 3770011149012033 m005 (1/3*Pi-1/6)/(1/9*Zeta(3)+1/10) 3770011163818786 a001 4181/1364*843^(5/7) 3770011166424583 m001 (Khinchin+Otter)/(3^(1/2)-CopelandErdos) 3770011170327013 h001 (5/8*exp(1)+8/9)/(11/12*exp(2)+1/11) 3770011176060740 r002 24th iterates of z^2 + 3770011178711782 r005 Re(z^2+c),c=-31/56+19/42*I,n=50 3770011184149498 m004 12000*Pi+Tanh[Sqrt[5]*Pi] 3770011195385100 l006 ln(5167/7533) 3770011198504287 a007 Real Root Of -423*x^4+849*x^3-884*x^2+160*x+240 3770011211710843 r002 46th iterates of z^2 + 3770011219470877 a007 Real Root Of -166*x^4-579*x^3+75*x^2-644*x-985 3770011233184238 m001 Grothendieck^MadelungNaCl/gamma(1) 3770011252287942 a001 416020/2889*322^(1/6) 3770011255985120 a001 105937*3571^(9/58) 3770011259236756 p002 log(10^(12/7)-12^(6/7)) 3770011275311217 m001 (Porter-Stephens)/(arctan(1/3)-Khinchin) 3770011280417237 r009 Im(z^3+c),c=-13/74+19/46*I,n=14 3770011290354646 h001 (1/12*exp(1)+8/11)/(6/7*exp(1)+1/5) 3770011291044932 p003 LerchPhi(1/8,6,211/83) 3770011291186721 r005 Re(z^2+c),c=5/126+16/53*I,n=32 3770011292131280 a007 Real Root Of 154*x^4+768*x^3+708*x^2-58*x-239 3770011294287049 r002 35th iterates of z^2 + 3770011294543027 h001 (-4*exp(1)-1)/(-3*exp(-3)-3) 3770011297548398 m001 (exp(1)+Riemann1stZero)^GAMMA(17/24) 3770011297930262 m001 (BesselI(0,2)-Rabbit)/(ln(gamma)+cos(1/12*Pi)) 3770011298152193 a001 514229/3*9349^(5/58) 3770011311332124 m001 (2^(1/2))^GAMMA(11/12)*MertensB1 3770011312970941 r005 Re(z^2+c),c=-63/122+19/54*I,n=3 3770011314377072 a001 7/610*2584^(4/9) 3770011326566487 r005 Im(z^2+c),c=9/74+29/61*I,n=11 3770011332957114 r009 Im(z^3+c),c=-21/58+9/26*I,n=9 3770011348737781 a001 311187/2161*322^(1/6) 3770011353241136 m001 (LambertW(1)+cos(1/5*Pi))/(2^(1/2)+5^(1/2)) 3770011354110330 r002 3th iterates of z^2 + 3770011362809623 a001 5702887/39603*322^(1/6) 3770011364862677 a001 7465176/51841*322^(1/6) 3770011365162214 a001 39088169/271443*322^(1/6) 3770011365205915 a001 14619165/101521*322^(1/6) 3770011365212291 a001 133957148/930249*322^(1/6) 3770011365213222 a001 701408733/4870847*322^(1/6) 3770011365213357 a001 1836311903/12752043*322^(1/6) 3770011365213377 a001 14930208/103681*322^(1/6) 3770011365213380 a001 12586269025/87403803*322^(1/6) 3770011365213381 a001 32951280099/228826127*322^(1/6) 3770011365213381 a001 43133785636/299537289*322^(1/6) 3770011365213381 a001 32264490531/224056801*322^(1/6) 3770011365213381 a001 591286729879/4106118243*322^(1/6) 3770011365213381 a001 774004377960/5374978561*322^(1/6) 3770011365213381 a001 4052739537881/28143753123*322^(1/6) 3770011365213381 a001 1515744265389/10525900321*322^(1/6) 3770011365213381 a001 3278735159921/22768774562*322^(1/6) 3770011365213381 a001 2504730781961/17393796001*322^(1/6) 3770011365213381 a001 956722026041/6643838879*322^(1/6) 3770011365213381 a001 182717648081/1268860318*322^(1/6) 3770011365213381 a001 139583862445/969323029*322^(1/6) 3770011365213381 a001 53316291173/370248451*322^(1/6) 3770011365213381 a001 10182505537/70711162*322^(1/6) 3770011365213382 a001 7778742049/54018521*322^(1/6) 3770011365213389 a001 2971215073/20633239*322^(1/6) 3770011365213441 a001 567451585/3940598*322^(1/6) 3770011365213797 a001 433494437/3010349*322^(1/6) 3770011365216232 a001 165580141/1149851*322^(1/6) 3770011365232925 a001 31622993/219602*322^(1/6) 3770011365347337 a001 24157817/167761*322^(1/6) 3770011366131534 a001 9227465/64079*322^(1/6) 3770011371506500 a001 1762289/12238*322^(1/6) 3770011381585325 a007 Real Root Of 321*x^4+332*x^3+752*x^2-399*x-246 3770011386692384 a001 646/341*843^(11/14) 3770011408347062 a001 1346269/9349*322^(1/6) 3770011413344431 m001 (Zeta(1/2)+Totient)/(exp(Pi)+Psi(2,1/3)) 3770011417661010 a007 Real Root Of 802*x^4-364*x^3+632*x^2-484*x-308 3770011429024813 r002 34th iterates of z^2 + 3770011442114234 m001 (ZetaQ(3)+ZetaQ(4))/(FeigenbaumD+ZetaP(4)) 3770011445114394 m001 LambertW(1)*FeigenbaumD-ln(Pi) 3770011449409140 m001 3^(1/2)*FeigenbaumB*MertensB1 3770011456021475 r002 46th iterates of z^2 + 3770011457053172 m001 GlaisherKinkelin*(BesselI(0,2)+TwinPrimes) 3770011465834470 a005 (1/cos(5/146*Pi))^1023 3770011479037312 l006 ln(4680/6823) 3770011479167548 a007 Real Root Of 658*x^4-159*x^3-679*x^2-258*x+189 3770011481005862 m001 1/GAMMA(1/4)*GAMMA(1/24)/exp(cos(1)) 3770011483484078 a001 987/1364*843^(13/14) 3770011492704320 r005 Im(z^2+c),c=-41/60+4/43*I,n=49 3770011500954539 a001 5/710647*1364^(10/43) 3770011501042901 a007 Real Root Of -401*x^4+97*x^3-92*x^2-62*x+3 3770011507916049 m001 ln(2+3^(1/2))/(FeigenbaumMu-ZetaP(4)) 3770011513939972 s002 sum(A249173[n]/(n*exp(n)+1),n=1..infinity) 3770011531825105 r005 Im(z^2+c),c=9/74+20/51*I,n=32 3770011558840040 r005 Im(z^2+c),c=25/86+11/46*I,n=16 3770011564546375 a001 1364/1597*34^(8/19) 3770011567926179 a007 Real Root Of 137*x^4+238*x^3-960*x^2+174*x-622 3770011572650090 a007 Real Root Of 519*x^4+693*x^3-409*x^2-827*x-227 3770011575789485 a007 Real Root Of -18*x^4-684*x^3-222*x^2-710*x-476 3770011581133812 r009 Im(z^3+c),c=-5/102+11/14*I,n=32 3770011581221707 m005 (4*gamma+1/6)/(2/5*Pi-3/5) 3770011586022048 r005 Re(z^2+c),c=-31/48+17/64*I,n=18 3770011586947379 r005 Re(z^2+c),c=-57/110+2/37*I,n=47 3770011587178014 p004 log(19759/13553) 3770011592504551 r005 Im(z^2+c),c=5/52+9/22*I,n=16 3770011602977326 r005 Im(z^2+c),c=-45/82+27/64*I,n=15 3770011620625019 m005 (17/20+1/4*5^(1/2))/(2/5*gamma+1/7) 3770011635414003 r005 Im(z^2+c),c=-9/38+16/27*I,n=30 3770011658675276 a008 Real Root of x^4-2*x^3-31*x^2-12*x+391 3770011659238740 a007 Real Root Of -740*x^4+959*x^3-586*x^2+x+150 3770011659529401 r005 Re(z^2+c),c=-14/27+1/23*I,n=43 3770011660856049 a001 514229/3571*322^(1/6) 3770011681349105 b008 5*ArcCsch[53/4] 3770011698768721 a001 6765/521*521^(7/13) 3770011707387392 m001 (BesselJ(1,1)-GaussAGM)/(Zeta(5)-gamma(2)) 3770011711084876 r002 43th iterates of z^2 + 3770011721728256 m001 (CopelandErdos+Stephens)/(ln(2)/ln(10)+Si(Pi)) 3770011728110691 a007 Real Root Of 837*x^4+651*x^3-806*x^2-929*x+413 3770011741542276 m001 MertensB2/ln(5)/Niven 3770011742648427 r002 26th iterates of z^2 + 3770011743148405 r009 Re(z^3+c),c=-11/26+11/56*I,n=34 3770011748390543 r002 42th iterates of z^2 + 3770011767917522 p001 sum((-1)^n/(523*n+257)/(10^n),n=0..infinity) 3770011768436033 h001 (3/10*exp(1)+1/7)/(2/9*exp(2)+9/10) 3770011768554539 h001 (1/3*exp(1)+1/10)/(9/10*exp(1)+2/9) 3770011768554539 m005 (1/3*exp(1)+1/10)/(9/10*exp(1)+2/9) 3770011770337501 r005 Re(z^2+c),c=15/44+7/53*I,n=12 3770011770626855 r005 Im(z^2+c),c=-17/94+15/26*I,n=52 3770011782148930 a001 521/1597*1597^(1/51) 3770011819918606 r005 Im(z^2+c),c=9/74+20/51*I,n=41 3770011820558334 a007 Real Root Of 34*x^4-122*x^3-770*x^2+772*x+449 3770011828579627 l006 ln(4193/6113) 3770011832794969 r005 Re(z^2+c),c=-25/56+26/55*I,n=42 3770011842802482 a007 Real Root Of -615*x^4-525*x^3-818*x^2+285*x+208 3770011850788783 h001 (4/5*exp(2)+2/11)/(2/11*exp(2)+3/11) 3770011859041378 m001 (cos(1)+FransenRobinson)/(PlouffeB+ThueMorse) 3770011859207632 m001 1/ln(GAMMA(11/24))/ArtinRank2*sqrt(3) 3770011861149588 r002 11th iterates of z^2 + 3770011862412896 a001 1597/2-377/2*5^(1/2) 3770011880445899 r002 12th iterates of z^2 + 3770011881356536 r005 Re(z^2+c),c=5/126+16/53*I,n=29 3770011882906612 m001 Catalan/(TwinPrimes^Magata) 3770011884999040 m001 (MasserGramain+Tetranacci)/(2^(1/3)-gamma) 3770011897879543 r004 Im(z^2+c),c=1/42-1/12*I,z(0)=exp(3/8*I*Pi),n=4 3770011909679679 r005 Re(z^2+c),c=-29/56+15/37*I,n=22 3770011914309518 r002 10th iterates of z^2 + 3770011917620127 a003 sin(Pi*3/37)/sin(Pi*24/103) 3770011925424989 r009 Re(z^3+c),c=-14/29+15/53*I,n=21 3770011944338465 m005 (1/2*exp(1)+5/8)/(9/10*Zeta(3)-5/9) 3770011955170328 s002 sum(A157567[n]/((2*n+1)!),n=1..infinity) 3770011967780394 m001 1/exp(Robbin)*FeigenbaumAlpha*cos(1)^2 3770011970598930 m001 DuboisRaymond-FeigenbaumAlpha-MinimumGamma 3770011971906178 a001 5/4870847*64079^(14/43) 3770011972192874 a001 5/167761*24476^(1/43) 3770011979572483 r009 Re(z^3+c),c=-51/110+14/57*I,n=45 3770011988211672 r005 Im(z^2+c),c=1/94+29/48*I,n=36 3770011999555423 m001 RenyiParking^2*ln(ErdosBorwein)^2*sqrt(3)^2 3770012007557656 r009 Im(z^3+c),c=-1/54+43/54*I,n=8 3770012030072741 a007 Real Root Of -245*x^4-760*x^3+779*x^2+831*x+830 3770012031515528 r005 Re(z^2+c),c=-67/66+10/39*I,n=50 3770012044153644 a001 5/271443*2207^(4/43) 3770012047927038 r005 Re(z^2+c),c=15/46+7/57*I,n=5 3770012050739290 m005 (1/2*exp(1)+4/5)/(2/9*gamma+4/9) 3770012067257016 a007 Real Root Of -679*x^4+731*x^3-324*x^2-655*x-148 3770012077567643 m001 Zeta(9)*exp(GAMMA(1/3))^2*sqrt(Pi) 3770012098842001 m001 (HardyLittlewoodC3+MertensB1)/(exp(Pi)+Cahen) 3770012099595961 m001 GAMMA(3/4)-Psi(2,1/3)*Robbin 3770012109001859 r005 Im(z^2+c),c=9/74+20/51*I,n=30 3770012110387865 m001 (Conway-MertensB3)/(OneNinth+Robbin) 3770012120011567 a001 15456/281*322^(1/3) 3770012123691780 r005 Im(z^2+c),c=9/110+20/47*I,n=14 3770012123822843 a001 1/686789568*514229^(17/22) 3770012127927976 m005 (1/3*2^(1/2)+1/10)/(2/3*Zeta(3)+5/7) 3770012132619395 a001 377/521*1364^(13/15) 3770012151981866 a007 Real Root Of -199*x^4-665*x^3+325*x^2+60*x+174 3770012153567538 r005 Re(z^2+c),c=-19/22+22/83*I,n=11 3770012153924511 m001 (Zeta(5)+3^(1/3))/(FeigenbaumB-ZetaP(3)) 3770012164196548 m001 Sierpinski^2/exp(Artin)^2/Catalan^2 3770012173916298 a008 Real Root of x^4-x^3-2*x^2-120 3770012174187831 a001 1597/1364*843^(6/7) 3770012184012483 m001 Kolakoski/exp(GolombDickman)/GAMMA(5/6) 3770012199743935 r005 Im(z^2+c),c=29/122+8/27*I,n=46 3770012213016339 m008 (3/4*Pi^6+4)/(1/5*Pi^4-1/4) 3770012223154263 m001 (exp(1/2)+2/3)/(Pi+3) 3770012227453477 r005 Re(z^2+c),c=5/126+16/53*I,n=28 3770012228060655 b008 1+(15*Pi)/E^(1/4) 3770012258751326 m001 (Khinchin-Sierpinski)/(ln(5)+GAMMA(11/12)) 3770012267750439 l006 ln(134/5813) 3770012267878194 a007 Real Root Of -322*x^4+501*x^3-581*x^2+536*x+318 3770012269987606 l006 ln(3706/5403) 3770012270473784 m001 (Catalan-Chi(1))/(BesselJ(0,1)+Mills) 3770012273298067 r005 Im(z^2+c),c=-15/106+28/53*I,n=19 3770012276263260 m001 (-Lehmer+ZetaP(2))/(Catalan+FransenRobinson) 3770012276682670 a001 2/47*3571^(4/15) 3770012282542639 r005 Im(z^2+c),c=-13/22+44/71*I,n=44 3770012292636691 r005 Re(z^2+c),c=33/98+18/47*I,n=34 3770012293533452 m001 1/exp(sin(1))/TwinPrimes/sqrt(3) 3770012298502211 a007 Real Root Of 351*x^4-398*x^3-936*x^2-808*x-200 3770012306910262 m001 (2^(1/3)+GAMMA(11/12))/(-FeigenbaumMu+Otter) 3770012313065850 a007 Real Root Of -114*x^4-389*x^3-125*x^2-853*x+746 3770012315021109 a003 cos(Pi*16/113)-cos(Pi*34/105) 3770012318567554 m001 exp(Pi)^(Psi(2,1/3)*Sarnak) 3770012332239441 a001 514229/18*521^(32/41) 3770012339244259 r005 Re(z^2+c),c=-27/58+24/59*I,n=63 3770012354631951 a003 cos(Pi*21/62)*cos(Pi*48/101) 3770012355519974 a001 2/47*12752043^(2/15) 3770012359625021 p001 sum((-1)^n/(281*n+265)/(512^n),n=0..infinity) 3770012364224715 m005 (1/2*Catalan+4/9)/(3/8*3^(1/2)-8/9) 3770012367346945 r009 Im(z^3+c),c=-47/98+9/58*I,n=3 3770012377770671 r005 Re(z^2+c),c=-49/106+29/60*I,n=60 3770012388519979 r009 Re(z^3+c),c=-11/52+35/47*I,n=5 3770012398021951 r005 Re(z^2+c),c=-5/8+15/233*I,n=8 3770012404329611 r005 Im(z^2+c),c=-39/34+31/109*I,n=28 3770012406555209 r005 Im(z^2+c),c=-4/3+41/206*I,n=4 3770012417294529 m005 (1/2*exp(1)-2)/(2*gamma+6/11) 3770012418002881 r005 Re(z^2+c),c=19/56+37/64*I,n=25 3770012426350824 m001 GAMMA(13/24)*Rabbit*exp(sinh(1)) 3770012429033110 m001 cos(Pi/12)^2/GAMMA(7/24)^2/ln(sinh(1))^2 3770012435796023 a007 Real Root Of -158*x^4-406*x^3+477*x^2-804*x+352 3770012443648942 m001 arctan(1/2)+Porter+Tribonacci 3770012469092306 r005 Re(z^2+c),c=-27/62+1/2*I,n=64 3770012471257716 a007 Real Root Of 13*x^4+469*x^3-810*x^2-544*x+52 3770012488922325 r009 Im(z^3+c),c=-27/94+21/55*I,n=24 3770012491965404 m001 (Ei(1)+polylog(4,1/2))/(OneNinth-RenyiParking) 3770012496804610 r002 29th iterates of z^2 + 3770012501413223 s002 sum(A057900[n]/(exp(2*pi*n)-1),n=1..infinity) 3770012510850816 m005 (1/2*2^(1/2)-4/9)/(4/11*Catalan+4/11) 3770012515849912 m003 -1/2+Sqrt[5]/2+(5*E^(1/2+Sqrt[5]/2))/8 3770012528389042 r005 Im(z^2+c),c=-1/21+1/2*I,n=55 3770012529083255 r002 40th iterates of z^2 + 3770012537254551 l006 ln(6925/10096) 3770012574818604 a001 2/47*2207^(17/60) 3770012575800341 a007 Real Root Of 22*x^4+847*x^3+649*x^2-533*x+398 3770012577079158 r009 Im(z^3+c),c=-27/52+9/32*I,n=21 3770012588770526 r005 Re(z^2+c),c=-13/18+27/94*I,n=33 3770012593069832 r005 Im(z^2+c),c=7/40+13/37*I,n=38 3770012601955687 m001 exp(TwinPrimes)^2/FransenRobinson^2/(2^(1/3)) 3770012610305941 p001 sum(1/(338*n+269)/(32^n),n=0..infinity) 3770012615103898 r005 Re(z^2+c),c=-61/118+5/61*I,n=42 3770012617704253 a007 Real Root Of 875*x^4-732*x^3-902*x^2-563*x+362 3770012617746643 a007 Real Root Of 484*x^4-451*x^3-143*x^2-518*x+230 3770012636409532 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^15 3770012636895884 m001 (-gamma(3)+HardyLittlewoodC3)/(Chi(1)+sin(1)) 3770012640852384 q001 1/2652511 3770012648440118 m001 1/MadelungNaCl^2/ln(Champernowne)^2*Rabbit^2 3770012663967828 r005 Im(z^2+c),c=7/58+24/61*I,n=20 3770012669225476 r005 Re(z^2+c),c=-149/126+11/52*I,n=10 3770012669421786 m001 CopelandErdos^exp(Pi)/Kolakoski 3770012673517763 m001 Paris^2/MertensB1/ln(FeigenbaumD) 3770012687439375 r009 Re(z^3+c),c=-4/7+10/31*I,n=4 3770012692424509 a007 Real Root Of 159*x^4+620*x^3+70*x^2+153*x+684 3770012693953512 r005 Im(z^2+c),c=-33/56+3/41*I,n=24 3770012694984392 r005 Re(z^2+c),c=-61/118+5/61*I,n=40 3770012697672151 m005 (1/3*Pi+2/7)/(4/7*Zeta(3)-1/3) 3770012701069121 r009 Re(z^3+c),c=-43/94+5/21*I,n=26 3770012729820762 r005 Re(z^2+c),c=2/13+15/47*I,n=14 3770012745685033 r005 Im(z^2+c),c=11/58+19/56*I,n=39 3770012745704835 a007 Real Root Of -261*x^4+792*x^3-339*x^2+491*x+281 3770012745991481 r002 48th iterates of z^2 + 3770012746501454 m001 (GAMMA(2/3)-Zeta(1/2))/(Ei(1,1)-cos(1/12*Pi)) 3770012770130080 m001 exp(GAMMA(1/3))^2/Robbin*sinh(1) 3770012772403431 a007 Real Root Of 292*x^4+902*x^3-822*x^2-320*x-178 3770012773542653 r005 Re(z^2+c),c=-57/110+3/59*I,n=26 3770012778397254 m001 (-2*Pi/GAMMA(5/6)+Magata)/(2^(1/2)-sin(1)) 3770012789906924 a001 10946/521*521^(6/13) 3770012797338650 m009 (1/5*Psi(1,3/4)-1/6)/(Psi(1,2/3)+6) 3770012815938794 p003 LerchPhi(1/25,6,253/215) 3770012821209666 a001 87403803*144^(5/17) 3770012821952641 a007 Real Root Of 580*x^4+898*x^3+542*x^2-558*x-251 3770012830367907 m001 (GAMMA(2/3)+TwinPrimes)^Ei(1) 3770012842180553 m001 FeigenbaumD/Sierpinski/ln(log(2+sqrt(3))) 3770012844956094 l006 ln(3219/4693) 3770012850478226 m001 (Ei(1,1)+Backhouse)/(PrimesInBinary-Thue) 3770012850673288 m001 (gamma(3)+Bloch)^Mills 3770012860367779 r005 Im(z^2+c),c=-1/10+19/36*I,n=25 3770012872632342 r002 39th iterates of z^2 + 3770012885803256 a007 Real Root Of 250*x^4+986*x^3+203*x^2+202*x+207 3770012898340177 m005 (1/2*Catalan-4/11)/(4/11*Catalan-7/12) 3770012924246320 r005 Re(z^2+c),c=5/126+16/53*I,n=24 3770012926306750 r009 Im(z^3+c),c=-17/90+16/39*I,n=13 3770012933628092 m001 (ln(3)-GAMMA(19/24))/(Lehmer-Sierpinski) 3770012950034250 m001 log(2+sqrt(3))/Paris*ln(sin(Pi/5))^2 3770012959133407 r002 7th iterates of z^2 + 3770012964297639 m001 Tribonacci/DuboisRaymond/ln(GAMMA(17/24)) 3770012974245377 r009 Im(z^3+c),c=-31/118+16/41*I,n=14 3770012986236203 r005 Re(z^2+c),c=-1/60+18/35*I,n=4 3770013001962087 r005 Im(z^2+c),c=-1/122+28/57*I,n=16 3770013008242096 m001 (-TwinPrimes+ZetaP(2))/(Psi(2,1/3)-Trott2nd) 3770013010653802 m005 (5/6*Pi+1/3)/(2*2^(1/2)+5) 3770013018322694 a007 Real Root Of 265*x^4+948*x^3-83*x^2+596*x+691 3770013036164770 m002 1+E^Pi+Pi^2+Cosh[Pi]/Pi 3770013036945666 a007 Real Root Of 313*x^4+900*x^3-880*x^2+680*x+67 3770013045314919 r009 Re(z^3+c),c=-7/114+21/38*I,n=32 3770013054455962 r002 3th iterates of z^2 + 3770013069455068 l006 ln(4607/4784) 3770013079137729 r005 Im(z^2+c),c=-5/26+22/27*I,n=42 3770013087570465 m001 (Backhouse-exp(Pi)*TreeGrowth2nd)/exp(Pi) 3770013088982811 a008 Real Root of x^2-x-1459 3770013091939188 r005 Re(z^2+c),c=-57/110+2/37*I,n=49 3770013096810064 m001 LaplaceLimit^2/ArtinRank2^2/exp(GAMMA(1/24))^2 3770013145918011 r002 6th iterates of z^2 + 3770013145918011 r002 6th iterates of z^2 + 3770013148103419 s001 sum(exp(-4*Pi)^(n-1)*A105717[n],n=1..infinity) 3770013154054193 r005 Im(z^2+c),c=21/74+15/56*I,n=10 3770013154373431 r009 Re(z^3+c),c=-13/64+22/23*I,n=16 3770013155117944 m001 (-gamma(2)+Trott2nd)/(Psi(1,1/3)-sin(1/12*Pi)) 3770013155860962 h005 exp(cos(Pi*11/29)+sin(Pi*13/32)) 3770013166890276 m001 TreeGrowth2nd*exp(MadelungNaCl)/sin(Pi/12)^2 3770013168815370 m001 (Pi+BesselK(0,1))/(ErdosBorwein-Robbin) 3770013179364760 r005 Im(z^2+c),c=1/38+21/46*I,n=27 3770013180867061 m001 Pi+ln(2)/ln(10)*cos(1)/sin(1/12*Pi) 3770013184578540 a003 cos(Pi*2/45)-cos(Pi*20/69) 3770013188931836 m001 LaplaceLimit-StronglyCareFree^Si(Pi) 3770013192856569 m001 1/ln(GAMMA(17/24))/BesselK(1,1)^2/cos(1)^2 3770013203019129 l006 ln(5951/8676) 3770013204553256 r009 Im(z^3+c),c=-21/50+18/55*I,n=11 3770013225060652 a001 123/377*3^(5/38) 3770013227490083 b008 1-41*Sqrt[85] 3770013245009876 a008 Real Root of x^2-x-142507 3770013254483087 r005 Im(z^2+c),c=39/118+23/64*I,n=20 3770013261002387 h005 exp(cos(Pi*3/53)/cos(Pi*11/47)) 3770013262576141 a008 Real Root of x^2-142130 3770013274785717 r009 Im(z^3+c),c=-11/40+5/13*I,n=7 3770013280189061 a008 Real Root of x^2-x-141753 3770013292778911 a007 Real Root Of -15*x^4-571*x^3-216*x^2-350*x-795 3770013294705215 h001 (6/11*exp(2)+1/5)/(1/11*exp(1)+7/8) 3770013297969300 r005 Im(z^2+c),c=19/102+18/53*I,n=16 3770013309838573 m001 (2^(1/3)-MinimumGamma)/(-Rabbit+ZetaP(3)) 3770013319947721 m001 (FeigenbaumD-Trott2nd)/CareFree 3770013347786365 a001 7/4181*196418^(4/9) 3770013355946677 m005 (1/3*Catalan-2/3)/(4/45+7/18*5^(1/2)) 3770013370962559 r005 Re(z^2+c),c=-13/56+31/58*I,n=5 3770013372862247 r005 Im(z^2+c),c=-23/86+15/26*I,n=32 3770013373344140 m001 exp(-1/2*Pi)/(HardyLittlewoodC3-KhinchinLevy) 3770013377609259 l006 ln(155/6724) 3770013382739481 r002 18th iterates of z^2 + 3770013384780362 m009 (5/12*Pi^2-1)/(4*Psi(1,2/3)-4) 3770013389992820 a001 7/28657*14930352^(4/9) 3770013390891423 a001 7/196418*1134903170^(4/9) 3770013390910551 a001 7/1346269*86267571272^(4/9) 3770013390910958 a001 7/9227465*6557470319842^(4/9) 3770013391579307 a001 98209/682*322^(1/6) 3770013393554482 r009 Re(z^3+c),c=-1/58+26/31*I,n=36 3770013403298585 m005 (1/2*gamma-9/11)/(2/3*3^(1/2)+1/4) 3770013403529297 a001 47/233*2504730781961^(10/11) 3770013408521640 a007 Real Root Of -262*x^4-892*x^3+131*x^2-829*x+143 3770013421976014 m005 (1/2*gamma+1/5)/(7/9*exp(1)-9/11) 3770013424741077 a007 Real Root Of 549*x^4-905*x^3+868*x^2-24*x-192 3770013430665539 m001 (ln(gamma)-GAMMA(23/24))/(Lehmer-ZetaP(3)) 3770013434211446 r009 Im(z^3+c),c=-27/94+21/55*I,n=27 3770013451283737 r005 Im(z^2+c),c=9/110+21/50*I,n=35 3770013452049558 m001 (Khinchin+Stephens)/(Psi(1,1/3)-exp(1/exp(1))) 3770013459557392 v002 sum(1/(5^n*(21*n^2-50*n+92)),n=1..infinity) 3770013466067890 m001 (GAMMA(3/4)-Cahen)/(Porter+ZetaP(4)) 3770013478203080 r002 24th iterates of z^2 + 3770013484683557 m001 1/GAMMA(1/3)/exp(LandauRamanujan)^3 3770013496414126 m005 (1/2*5^(1/2)+4/7)/(2/9*Pi-1/4) 3770013503086419 r004 Re(z^2+c),c=1/24+5/8*I,z(0)=I,n=3 3770013503987082 a001 8/3010349*11^(7/48) 3770013505282609 a007 Real Root Of 316*x^4+923*x^3-781*x^2+803*x-250 3770013510601777 m001 (-Niven+Thue)/(ArtinRank2-exp(Pi)) 3770013528697183 s002 sum(A240346[n]/(exp(n)+1),n=1..infinity) 3770013535448861 r002 39th iterates of z^2 + 3770013545592616 r005 Re(z^2+c),c=-3/106+11/14*I,n=45 3770013547759552 a001 3571/4181*34^(8/19) 3770013568497214 s004 Continued Fraction of A352264 3770013570464588 r005 Im(z^2+c),c=-4/23+32/53*I,n=15 3770013581721973 m001 (Champernowne-exp(Pi))^ReciprocalFibonacci 3770013587880751 r009 Im(z^3+c),c=-27/94+21/55*I,n=30 3770013591099808 r002 50th iterates of z^2 + 3770013609571471 r005 Re(z^2+c),c=-55/94+22/53*I,n=17 3770013612398765 r009 Im(z^3+c),c=-27/94+21/55*I,n=33 3770013612761899 r009 Im(z^3+c),c=-27/94+21/55*I,n=29 3770013614868196 r009 Im(z^3+c),c=-27/94+21/55*I,n=32 3770013616226723 r009 Im(z^3+c),c=-27/94+21/55*I,n=36 3770013616335229 r009 Im(z^3+c),c=-27/94+21/55*I,n=35 3770013616773108 r009 Im(z^3+c),c=-27/94+21/55*I,n=38 3770013616808883 r009 Im(z^3+c),c=-27/94+21/55*I,n=39 3770013616879107 r009 Im(z^3+c),c=-27/94+21/55*I,n=41 3770013616894495 r009 Im(z^3+c),c=-27/94+21/55*I,n=42 3770013616902329 r009 Im(z^3+c),c=-27/94+21/55*I,n=44 3770013616906519 r009 Im(z^3+c),c=-27/94+21/55*I,n=45 3770013616907120 r009 Im(z^3+c),c=-27/94+21/55*I,n=47 3770013616908068 r009 Im(z^3+c),c=-27/94+21/55*I,n=50 3770013616908094 r009 Im(z^3+c),c=-27/94+21/55*I,n=48 3770013616908250 r009 Im(z^3+c),c=-27/94+21/55*I,n=53 3770013616908277 r009 Im(z^3+c),c=-27/94+21/55*I,n=51 3770013616908284 r009 Im(z^3+c),c=-27/94+21/55*I,n=56 3770013616908291 r009 Im(z^3+c),c=-27/94+21/55*I,n=59 3770013616908292 r009 Im(z^3+c),c=-27/94+21/55*I,n=62 3770013616908292 r009 Im(z^3+c),c=-27/94+21/55*I,n=64 3770013616908292 r009 Im(z^3+c),c=-27/94+21/55*I,n=63 3770013616908292 r009 Im(z^3+c),c=-27/94+21/55*I,n=60 3770013616908292 r009 Im(z^3+c),c=-27/94+21/55*I,n=61 3770013616908293 r009 Im(z^3+c),c=-27/94+21/55*I,n=54 3770013616908293 r009 Im(z^3+c),c=-27/94+21/55*I,n=57 3770013616908294 r009 Im(z^3+c),c=-27/94+21/55*I,n=58 3770013616908304 r009 Im(z^3+c),c=-27/94+21/55*I,n=55 3770013616908370 r009 Im(z^3+c),c=-27/94+21/55*I,n=52 3770013616908771 r009 Im(z^3+c),c=-27/94+21/55*I,n=49 3770013616911187 r009 Im(z^3+c),c=-27/94+21/55*I,n=46 3770013616925502 r009 Im(z^3+c),c=-27/94+21/55*I,n=43 3770013617009100 r009 Im(z^3+c),c=-27/94+21/55*I,n=40 3770013617490185 r009 Im(z^3+c),c=-27/94+21/55*I,n=37 3770013620217367 r009 Im(z^3+c),c=-27/94+21/55*I,n=34 3770013621331614 a001 196418/2207*322^(1/4) 3770013624909635 l006 ln(2732/3983) 3770013627884036 a001 233/843*3571^(15/17) 3770013629810970 m005 (1/3*3^(1/2)+1/8)/(38/33+7/22*5^(1/2)) 3770013635433400 r009 Im(z^3+c),c=-27/94+21/55*I,n=31 3770013638194052 r009 Im(z^3+c),c=-27/94+21/55*I,n=26 3770013642208379 s002 sum(A235457[n]/((3*n)!),n=1..infinity) 3770013661461142 b008 Sqrt[2]+26*E^(1/3) 3770013661513472 a007 Real Root Of -184*x^4+758*x^3-689*x^2+994*x+517 3770013662708912 a001 377/521*3571^(13/17) 3770013672507005 r005 Im(z^2+c),c=15/44+7/36*I,n=38 3770013672535459 a007 Real Root Of 749*x^4-78*x^3-540*x^2-961*x+37 3770013696604439 h001 (5/6*exp(2)+5/7)/(1/3*exp(1)+11/12) 3770013718869516 r009 Im(z^3+c),c=-27/94+21/55*I,n=28 3770013722079945 a007 Real Root Of 89*x^4+321*x^3-88*x^2-343*x-821 3770013734982993 r009 Im(z^3+c),c=-59/122+8/35*I,n=2 3770013742841293 r002 16th iterates of z^2 + 3770013742947858 r005 Re(z^2+c),c=-14/27+1/22*I,n=25 3770013760810820 a003 cos(Pi*3/68)/cos(Pi*27/65) 3770013762970984 a007 Real Root Of -625*x^4-255*x^3+567*x^2+625*x+154 3770013765704343 m001 (cos(1)+sin(1/12*Pi))/(GAMMA(17/24)+GaussAGM) 3770013777413817 a007 Real Root Of 549*x^4+215*x^3+321*x^2-965*x-409 3770013777601515 m001 (Catalan-Shi(1))/(Magata+PolyaRandomWalk3D) 3770013786318133 b008 20/7+Sqrt[5/6] 3770013801374577 m005 (1/2*exp(1)-1/8)/(3/5*Catalan-2/9) 3770013806933540 m006 (4/5/Pi+5/6)/(3*Pi^2-3/4) 3770013815614512 r009 Re(z^3+c),c=-1/58+26/31*I,n=46 3770013819222210 r005 Re(z^2+c),c=-47/98+7/32*I,n=10 3770013832837378 m001 Si(Pi)*(3^(1/2)+GaussKuzminWirsing) 3770013832837378 m001 Si(Pi)*(sqrt(3)+GaussKuzminWirsing) 3770013837106477 a001 9349/10946*34^(8/19) 3770013849580130 a001 17711/521*521^(5/13) 3770013852984910 r005 Re(z^2+c),c=-57/122+17/42*I,n=19 3770013854690253 a001 233/843*9349^(15/19) 3770013857182884 a001 199/6765*514229^(1/53) 3770013858919539 r005 Re(z^2+c),c=-57/110+2/37*I,n=51 3770013859274301 a001 377/521*9349^(13/19) 3770013861356824 m002 -4+Pi^(-6)+Log[Pi]/5 3770013865248345 h001 (8/11*exp(1)+1/11)/(8/11*exp(2)+1/9) 3770013870442035 m005 (1/2*gamma+5)/(5/7*5^(1/2)-3) 3770013874348879 p002 log(12^(3/2)+2^(6/7)) 3770013879321625 a001 24476/28657*34^(8/19) 3770013884247808 a001 233/843*24476^(5/7) 3770013884890849 a001 377/521*24476^(13/21) 3770013885480732 a001 64079/75025*34^(8/19) 3770013886379334 a001 167761/196418*34^(8/19) 3770013886510438 a001 439204/514229*34^(8/19) 3770013886529566 a001 1149851/1346269*34^(8/19) 3770013886532357 a001 3010349/3524578*34^(8/19) 3770013886532764 a001 7881196/9227465*34^(8/19) 3770013886532823 a001 20633239/24157817*34^(8/19) 3770013886532832 a001 54018521/63245986*34^(8/19) 3770013886532833 a001 141422324/165580141*34^(8/19) 3770013886532833 a001 370248451/433494437*34^(8/19) 3770013886532833 a001 969323029/1134903170*34^(8/19) 3770013886532833 a001 2537720636/2971215073*34^(8/19) 3770013886532833 a001 6643838879/7778742049*34^(8/19) 3770013886532833 a001 17393796001/20365011074*34^(8/19) 3770013886532833 a001 45537549124/53316291173*34^(8/19) 3770013886532833 a001 119218851371/139583862445*34^(8/19) 3770013886532833 a001 312119004989/365435296162*34^(8/19) 3770013886532833 a001 817138163596/956722026041*34^(8/19) 3770013886532833 a001 2139295485799/2504730781961*34^(8/19) 3770013886532833 a001 505019158607/591286729879*34^(8/19) 3770013886532833 a001 64300051206/75283811239*34^(8/19) 3770013886532833 a001 73681302247/86267571272*34^(8/19) 3770013886532833 a001 9381251041/10983760033*34^(8/19) 3770013886532833 a001 10749957122/12586269025*34^(8/19) 3770013886532833 a001 1368706081/1602508992*34^(8/19) 3770013886532833 a001 1568397607/1836311903*34^(8/19) 3770013886532833 a001 199691526/233802911*34^(8/19) 3770013886532833 a001 228826127/267914296*34^(8/19) 3770013886532834 a001 29134601/34111385*34^(8/19) 3770013886532837 a001 33385282/39088169*34^(8/19) 3770013886532860 a001 4250681/4976784*34^(8/19) 3770013886533015 a001 4870847/5702887*34^(8/19) 3770013886534081 a001 620166/726103*34^(8/19) 3770013886541387 a001 710647/832040*34^(8/19) 3770013886591465 a001 90481/105937*34^(8/19) 3770013886934700 a001 103682/121393*34^(8/19) 3770013888144063 a001 233/843*64079^(15/23) 3770013888267603 a001 377/521*64079^(13/23) 3770013888662480 a001 233/843*167761^(3/5) 3770013888731995 a001 233/843*439204^(5/9) 3770013888742825 a001 233/843*7881196^(5/11) 3770013888742849 a001 233/843*20633239^(3/7) 3770013888742853 a001 233/843*141422324^(5/13) 3770013888742853 a001 233/843*2537720636^(1/3) 3770013888742853 a001 233/843*45537549124^(5/17) 3770013888742853 a001 233/843*312119004989^(3/11) 3770013888742853 a001 233/843*14662949395604^(5/21) 3770013888742853 a001 233/843*(1/2+1/2*5^(1/2))^15 3770013888742853 a001 233/843*192900153618^(5/18) 3770013888742853 a001 233/843*28143753123^(3/10) 3770013888742853 a001 233/843*10749957122^(5/16) 3770013888742853 a001 233/843*599074578^(5/14) 3770013888742853 a001 233/843*228826127^(3/8) 3770013888742854 a001 233/843*33385282^(5/12) 3770013888743398 a001 233/843*1860498^(1/2) 3770013888786554 a001 377/521*141422324^(1/3) 3770013888786554 a001 377/521*(1/2+1/2*5^(1/2))^13 3770013888786554 a001 377/521*73681302247^(1/4) 3770013888812138 a001 377/521*271443^(1/2) 3770013888962041 a001 233/843*103682^(5/8) 3770013888976517 a001 377/521*103682^(13/24) 3770013889287270 a001 13201/15456*34^(8/19) 3770013890206944 a001 377/521*39603^(13/22) 3770013890381764 a001 233/843*39603^(15/22) 3770013890719611 r005 Re(z^2+c),c=-41/70+16/47*I,n=21 3770013891438632 m001 (-Khinchin+Stephens)/(FeigenbaumB-Psi(2,1/3)) 3770013892306098 r005 Re(z^2+c),c=-13/25+3/32*I,n=15 3770013897745377 m005 (1/3*gamma-1/8)/(5/7*2^(1/2)+7/9) 3770013899495598 a001 377/521*15127^(13/20) 3770013901099442 a001 233/843*15127^(3/4) 3770013904426337 a001 6/34111385*5^(9/19) 3770013905412021 a001 15127/17711*34^(8/19) 3770013913798493 r009 Im(z^3+c),c=-33/82+8/25*I,n=5 3770013927408622 a007 Real Root Of 725*x^4-697*x^3+727*x^2-901*x-495 3770013930187049 r005 Im(z^2+c),c=-17/58+37/64*I,n=37 3770013948937748 m001 Magata/(Kolakoski^BesselJ(1,1)) 3770013952964989 r002 8th iterates of z^2 + 3770013970343086 a001 377/521*5778^(13/18) 3770013982846543 a001 233/843*5778^(5/6) 3770013990809481 m001 FeigenbaumKappa+exp(1)^QuadraticClass 3770014003865952 r009 Im(z^3+c),c=-27/94+21/55*I,n=23 3770014007432020 m002 (6*E^Pi)/Pi^4+E^Pi/Pi^2 3770014013076854 h001 (-2*exp(1)-11)/(-exp(4)+11) 3770014015932714 a001 1926/2255*34^(8/19) 3770014017008269 m005 (1/3*Catalan-3/7)/(1/2*3^(1/2)-5/6) 3770014023357930 m008 (1/4*Pi^6+1)/(2/3*Pi^6-3/4) 3770014029350219 m001 1/Sierpinski^2*exp(ErdosBorwein)^2/Pi^2 3770014030849160 p004 log(29629/683) 3770014034112682 r009 Im(z^3+c),c=-29/60+10/37*I,n=43 3770014043048931 r002 52th iterates of z^2 + 3770014043655925 r005 Im(z^2+c),c=-3/28+33/62*I,n=34 3770014076678025 r009 Im(z^3+c),c=-41/98+20/61*I,n=11 3770014079849091 m005 (1/2*3^(1/2)+5)/(6*exp(1)-3/4) 3770014081836362 m001 GAMMA(3/4)*(ln(5)+Porter) 3770014083652842 r009 Im(z^3+c),c=-25/114+11/28*I,n=4 3770014088918494 r009 Im(z^3+c),c=-7/16+11/36*I,n=49 3770014091914949 r005 Im(z^2+c),c=27/122+11/35*I,n=19 3770014100428403 m005 (1/3*Pi-3)/(5*Catalan+3/5) 3770014112215590 m001 Conway/(BesselI(1,1)-Ei(1,1)) 3770014122638137 r005 Im(z^2+c),c=-59/58+10/33*I,n=23 3770014129364183 l006 ln(4977/7256) 3770014133729457 a007 Real Root Of 151*x^4+298*x^3-882*x^2+488*x-160 3770014167502776 r009 Im(z^3+c),c=-27/94+21/55*I,n=25 3770014170847382 m008 (1/3*Pi^3-1/2)/(5/6*Pi^3+1/4) 3770014177473737 a001 521/21*12586269025^(10/11) 3770014179583543 m001 (HardyLittlewoodC5-OneNinth*Trott)/Trott 3770014183727795 r005 Im(z^2+c),c=-7/60+19/33*I,n=27 3770014186823816 m002 -Pi^3+Pi^4+Pi^5+4*Log[Pi] 3770014188012420 m001 (BesselI(0,1)-ln(3))/(Magata+MertensB2) 3770014188666812 a007 Real Root Of -448*x^4+888*x^3+932*x^2+626*x-407 3770014189290780 a007 Real Root Of 175*x^4+597*x^3-332*x^2-499*x-525 3770014191575612 p004 log(32297/22153) 3770014192542217 m006 (2*Pi^2-5/6)/(5*Pi^2+4/5) 3770014192542217 m008 (2*Pi^2-5/6)/(5*Pi^2+4/5) 3770014199460302 r005 Re(z^2+c),c=-55/106+1/35*I,n=34 3770014204308181 r005 Re(z^2+c),c=6/25+5/12*I,n=63 3770014214949862 m004 -120*Pi-(5*Pi*Cos[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3770014222614581 l006 ln(176/7635) 3770014232221112 r005 Re(z^2+c),c=-57/110+2/37*I,n=53 3770014232481450 m005 (1/2*2^(1/2)-5/6)/(9/11*Pi+7/9) 3770014238569819 m005 (1/2*2^(1/2)+6/7)/(2/7*gamma+1/4) 3770014241717469 a007 Real Root Of -237*x^4-842*x^3+407*x^2+850*x+179 3770014256495928 r002 42th iterates of z^2 + 3770014260808569 s001 sum(exp(-Pi/3)^n*A223820[n],n=1..infinity) 3770014274477781 m005 (1/2*gamma-5/8)/(9/11*Catalan+1/7) 3770014276685046 r002 54th iterates of z^2 + 3770014276887084 m001 (gamma(2)+Pi^(1/2))/(Champernowne-ZetaP(4)) 3770014278615347 b008 E+ArcSinh[(2*Pi)/5] 3770014282385974 a001 514229/5778*322^(1/4) 3770014302073659 b008 37+ExpIntegralEi[EulerGamma] 3770014304983984 a007 Real Root Of -60*x^4+911*x^3+95*x^2+675*x+291 3770014321871521 a003 cos(Pi*3/74)/cos(Pi*49/118) 3770014329399233 r009 Im(z^3+c),c=-13/94+49/60*I,n=16 3770014342708792 a007 Real Root Of -311*x^4+524*x^3-203*x^2+331*x+188 3770014362302360 m005 (1/2*2^(1/2)-2/3)/(1/6*5^(1/2)+7/10) 3770014363294318 r005 Re(z^2+c),c=3/10+2/33*I,n=41 3770014374816075 r002 26th iterates of z^2 + 3770014378832525 a001 1346269/15127*322^(1/4) 3770014392528088 r002 56th iterates of z^2 + 3770014392903887 a001 3524578/39603*322^(1/4) 3770014394956871 a001 9227465/103682*322^(1/4) 3770014395256398 a001 24157817/271443*322^(1/4) 3770014395300098 a001 63245986/710647*322^(1/4) 3770014395306474 a001 165580141/1860498*322^(1/4) 3770014395307404 a001 433494437/4870847*322^(1/4) 3770014395307540 a001 1134903170/12752043*322^(1/4) 3770014395307559 a001 2971215073/33385282*322^(1/4) 3770014395307562 a001 7778742049/87403803*322^(1/4) 3770014395307563 a001 20365011074/228826127*322^(1/4) 3770014395307563 a001 53316291173/599074578*322^(1/4) 3770014395307563 a001 139583862445/1568397607*322^(1/4) 3770014395307563 a001 365435296162/4106118243*322^(1/4) 3770014395307563 a001 956722026041/10749957122*322^(1/4) 3770014395307563 a001 2504730781961/28143753123*322^(1/4) 3770014395307563 a001 6557470319842/73681302247*322^(1/4) 3770014395307563 a001 10610209857723/119218851371*322^(1/4) 3770014395307563 a001 4052739537881/45537549124*322^(1/4) 3770014395307563 a001 1548008755920/17393796001*322^(1/4) 3770014395307563 a001 591286729879/6643838879*322^(1/4) 3770014395307563 a001 225851433717/2537720636*322^(1/4) 3770014395307563 a001 86267571272/969323029*322^(1/4) 3770014395307563 a001 32951280099/370248451*322^(1/4) 3770014395307563 a001 12586269025/141422324*322^(1/4) 3770014395307564 a001 4807526976/54018521*322^(1/4) 3770014395307572 a001 1836311903/20633239*322^(1/4) 3770014395307624 a001 3524667/39604*322^(1/4) 3770014395307979 a001 267914296/3010349*322^(1/4) 3770014395310414 a001 102334155/1149851*322^(1/4) 3770014395327106 a001 39088169/439204*322^(1/4) 3770014395441515 a001 14930352/167761*322^(1/4) 3770014396225685 a001 5702887/64079*322^(1/4) 3770014401600468 a001 2178309/24476*322^(1/4) 3770014402620068 r005 Re(z^2+c),c=-57/110+2/37*I,n=55 3770014413354814 m001 (OrthogonalArrays-Porter)/(Ei(1)-FeigenbaumMu) 3770014434189793 m001 Robbin*(Psi(2,1/3)-Si(Pi)) 3770014438439774 a001 832040/9349*322^(1/4) 3770014446838848 r002 58th iterates of z^2 + 3770014450811266 r005 Re(z^2+c),c=-57/110+2/37*I,n=60 3770014451956026 r005 Re(z^2+c),c=-57/110+2/37*I,n=62 3770014452707134 r009 Re(z^3+c),c=-11/26+11/56*I,n=35 3770014456924389 r005 Re(z^2+c),c=-57/110+2/37*I,n=64 3770014459136943 m001 1/ln(GAMMA(19/24))*Magata*sqrt(Pi) 3770014462032238 r005 Re(z^2+c),c=-57/110+2/37*I,n=58 3770014469869064 r002 63th iterates of z^2 + 3770014470235444 r002 60th iterates of z^2 + 3770014472801295 r005 Re(z^2+c),c=-57/110+2/37*I,n=57 3770014474532385 r002 61th iterates of z^2 + 3770014478871111 r002 62th iterates of z^2 + 3770014480961067 r002 64th iterates of z^2 + 3770014482971201 s002 sum(A082468[n]/(n^2*10^n+1),n=1..infinity) 3770014484791260 r005 Re(z^2+c),c=-9/20+17/37*I,n=64 3770014489138424 r002 59th iterates of z^2 + 3770014496023274 r005 Re(z^2+c),c=-57/110+2/37*I,n=63 3770014496252926 r005 Re(z^2+c),c=-57/110+2/37*I,n=59 3770014496429022 r009 Im(z^3+c),c=-19/56+22/61*I,n=21 3770014498854672 r002 14th iterates of z^2 + 3770014499752393 r005 Re(z^2+c),c=-57/110+2/37*I,n=61 3770014504218888 r005 Re(z^2+c),c=-57/110+2/37*I,n=56 3770014507792200 s002 sum(A183908[n]/(exp(2*pi*n)-1),n=1..infinity) 3770014511395903 r005 Re(z^2+c),c=-65/126+25/51*I,n=56 3770014514215823 r009 Im(z^3+c),c=-13/106+19/45*I,n=3 3770014517657924 a001 377/521*2207^(13/16) 3770014525265401 r002 57th iterates of z^2 + 3770014556040756 q001 259/687 3770014567704955 r005 Im(z^2+c),c=1/38+31/54*I,n=20 3770014582289099 a007 Real Root Of -227*x^4-931*x^3-177*x^2+443*x+156 3770014594107684 m001 StronglyCareFree-cos(1/12*Pi)*LandauRamanujan 3770014602189010 r005 Re(z^2+c),c=-9/14+9/124*I,n=8 3770014603764567 m005 (-29/6+1/6*5^(1/2))/(1/5*Catalan+1) 3770014605245178 r002 55th iterates of z^2 + 3770014614363674 a001 233/843*2207^(15/16) 3770014615427921 r005 Re(z^2+c),c=-57/110+2/37*I,n=54 3770014661723945 r005 Re(z^2+c),c=-29/56+4/63*I,n=33 3770014662748717 a001 -987+610*5^(1/2) 3770014667624900 a007 Real Root Of 333*x^4+952*x^3-982*x^2+801*x+719 3770014668148437 r002 41i'th iterates of 2*x/(1-x^2) of 3770014672113645 m005 (1/2*Catalan+2/5)/(1/2*exp(1)+11/12) 3770014680064249 r005 Im(z^2+c),c=2/19+21/52*I,n=41 3770014683805748 m001 1/GAMMA(19/24)/ErdosBorwein^2/exp(sqrt(5))^2 3770014690940153 a001 317811/3571*322^(1/4) 3770014698775732 m001 Catalan/(Riemann3rdZero-TravellingSalesman) 3770014704963334 a007 Real Root Of -154*x^4-727*x^3-315*x^2+759*x-507 3770014710870869 r005 Re(z^2+c),c=-1/60+5/31*I,n=5 3770014712794133 a007 Real Root Of 73*x^4-393*x^3+634*x^2-638*x+170 3770014717203059 m005 (1/3*exp(1)-2/11)/(5/8*exp(1)+2/9) 3770014724588209 r005 Im(z^2+c),c=-75/56+1/34*I,n=30 3770014730944151 r002 9th iterates of z^2 + 3770014731983855 m001 (Zeta(5)-ln(gamma))/(FeigenbaumAlpha+Niven) 3770014739179188 r005 Im(z^2+c),c=9/122+26/61*I,n=22 3770014743248258 l006 ln(2245/3273) 3770014744830635 r005 Re(z^2+c),c=-61/118+5/61*I,n=44 3770014748387405 r009 Re(z^3+c),c=-67/118+4/35*I,n=6 3770014761287904 r005 Im(z^2+c),c=-3/86+11/16*I,n=9 3770014762686334 r002 17th iterates of z^2 + 3770014767718777 a007 Real Root Of -261*x^4-873*x^3+574*x^2+496*x-342 3770014770733593 r002 53th iterates of z^2 + 3770014772633412 m001 (FeigenbaumAlpha+Robbin)/(gamma(3)-sin(1)) 3770014773452835 a001 2207/2584*34^(8/19) 3770014775067366 r005 Im(z^2+c),c=-22/31+6/29*I,n=45 3770014779864538 r005 Re(z^2+c),c=-57/110+1/18*I,n=31 3770014783445161 r002 6th iterates of z^2 + 3770014793173652 a007 Real Root Of -719*x^4-285*x^3+817*x^2+962*x-449 3770014793553960 r002 27th iterates of z^2 + 3770014797296850 r005 Im(z^2+c),c=-4/27+5/9*I,n=50 3770014805313520 r005 Im(z^2+c),c=23/78+11/47*I,n=25 3770014809784627 a001 5/4870847*843^(23/43) 3770014812690812 m002 12*Pi+Tanh[Pi]/Pi^6 3770014827088046 r005 Im(z^2+c),c=-7/90+31/60*I,n=42 3770014829056222 m001 (Mills-ThueMorse)/(Kac+KhinchinHarmonic) 3770014844337085 a007 Real Root Of 170*x^4+691*x^3+199*x^2+200*x+610 3770014851906910 r009 Im(z^3+c),c=-7/16+11/36*I,n=48 3770014869741246 m001 (-Riemann1stZero+ZetaQ(4))/(cos(1)+Zeta(1,-1)) 3770014870099819 r005 Re(z^2+c),c=-57/110+2/37*I,n=52 3770014877451411 m008 (3/5*Pi^6+1/6)/(5*Pi^5+2/5) 3770014877915917 m001 exp(FeigenbaumC)^2/MertensB1^2*Robbin 3770014884555399 r009 Re(z^3+c),c=-25/64+39/64*I,n=9 3770014887347583 r005 Im(z^2+c),c=7/94+17/40*I,n=33 3770014887465981 l006 ln(197/8546) 3770014893127369 r002 26th iterates of z^2 + 3770014921017778 r002 3th iterates of z^2 + 3770014921272317 a001 28657/521*521^(4/13) 3770014937972628 m001 (Riemann2ndZero+ZetaQ(4))/(Cahen-Psi(2,1/3)) 3770014945804822 r004 Im(z^2+c),c=1/18+7/16*I,z(0)=I,n=39 3770014945941255 r005 Re(z^2+c),c=-59/114+3/43*I,n=38 3770014948662471 r005 Im(z^2+c),c=11/58+19/56*I,n=36 3770015008731324 m001 (Sarnak+ZetaP(3))/(Catalan+Porter) 3770015023083393 a007 Real Root Of 262*x^4+674*x^3-968*x^2+686*x-467 3770015030933863 r009 Im(z^3+c),c=-61/118+9/34*I,n=20 3770015034757129 a008 Real Root of (2+6*x+2*x^2-x^3-3*x^4+2*x^5) 3770015051989002 s002 sum(A280119[n]/(exp(2*pi*n)-1),n=1..infinity) 3770015052658564 s002 sum(A224032[n]/(exp(2*pi*n)-1),n=1..infinity) 3770015058900844 a001 1/2576*225851433717^(2/23) 3770015060953885 a001 18/17711*3524578^(2/23) 3770015062301197 a007 Real Root Of 357*x^4+133*x^3+242*x^2-999*x-38 3770015076978458 m001 1/Zeta(5)^2/ln(GlaisherKinkelin)*Zeta(7) 3770015082899886 p001 sum((-1)^n/(267*n+232)/n/(5^n),n=1..infinity) 3770015097188081 r002 51th iterates of z^2 + 3770015098078305 a001 5/15251*76^(1/31) 3770015106379014 r005 Im(z^2+c),c=5/94+18/41*I,n=31 3770015107117498 r002 31th iterates of z^2 + 3770015129642320 m001 exp(GAMMA(7/12))^2*FeigenbaumAlpha*sin(1)^2 3770015148787136 m001 Landau/(Gompertz-ZetaP(2)) 3770015151375202 a001 28657/843*322^(5/12) 3770015157779278 p004 log(21491/14741) 3770015158028509 a007 Real Root Of -761*x^4+466*x^3-394*x^2+641*x+338 3770015158911307 g002 Psi(2/9)-Psi(6/11)-Psi(7/9)-Psi(3/7) 3770015161982673 a007 Real Root Of -283*x^4-850*x^3-913*x^2+719*x+361 3770015171669441 a003 cos(Pi*27/83)-cos(Pi*54/119) 3770015174058334 r009 Im(z^3+c),c=-13/31+11/30*I,n=7 3770015177908367 m005 (1/2*Catalan-1/10)/(4/5*2^(1/2)-2/11) 3770015182912971 r002 24th iterates of z^2 + 3770015186991178 m001 (QuadraticClass+Trott)/(Ei(1)+Bloch) 3770015200455081 m002 Pi^(-6)+12*Pi 3770015200764754 r005 Im(z^2+c),c=-21/110+25/42*I,n=52 3770015208414477 r005 Re(z^2+c),c=-19/34+15/119*I,n=6 3770015219262630 r005 Im(z^2+c),c=-9/26+37/60*I,n=19 3770015226578386 r005 Re(z^2+c),c=-29/60+14/43*I,n=32 3770015229114308 m001 (-GAMMA(17/24)+GaussAGM)/(Psi(1,1/3)+Si(Pi)) 3770015230088983 m004 -120*Pi-3*Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770015230171311 m004 -120*Pi-(6*Log[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3770015230253639 m004 -120*Pi-3*Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3770015230606877 a001 4/1597*55^(5/49) 3770015230738017 a007 Real Root Of 676*x^4-380*x^3+474*x^2+131*x-52 3770015232252879 l006 ln(6248/9109) 3770015234691864 m001 ln(gamma)+MasserGramain^ZetaP(3) 3770015247192272 r005 Im(z^2+c),c=-103/114+1/31*I,n=6 3770015249489073 m001 1/ln(Zeta(7))*CopelandErdos^2/sqrt(Pi) 3770015250801296 m001 Lehmer*Backhouse^2/exp(BesselK(1,1))^2 3770015251099518 m008 (1/2*Pi^4+1/5)/(1/3*Pi+1/4) 3770015257786903 r005 Im(z^2+c),c=13/62+19/59*I,n=34 3770015267136575 r005 Re(z^2+c),c=-53/102+1/57*I,n=22 3770015273416453 a001 7331474697802/17*39088169^(18/23) 3770015273416453 a001 1268860318/17*2504730781961^(18/23) 3770015282066511 m001 1/exp(BesselK(0,1))^2/Backhouse*GAMMA(5/6)^2 3770015293540243 m001 Zeta(1,-1)*GolombDickman/Trott2nd 3770015299533582 a007 Real Root Of 214*x^4+888*x^3+558*x^2+887*x-235 3770015330886250 m004 -120*Pi-(5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/6 3770015330968658 m004 -120*Pi-(5*Sqrt[5]*Pi)/(3*E^(Sqrt[5]*Pi)) 3770015331051066 m004 -120*Pi-(5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/6 3770015333279962 m001 Pi-(exp(Pi)+3^(1/3))/BesselK(1,1) 3770015342939579 r009 Im(z^3+c),c=-7/16+11/36*I,n=52 3770015346238605 m005 (1/6*gamma-1/3)/(1/4*Catalan+2/5) 3770015349719027 m001 (GAMMA(17/24)+Riemann3rdZero)/ArtinRank2 3770015363993701 m005 (1/3*Pi-2/7)/(1/2*2^(1/2)-10/11) 3770015369950396 m005 (1/3*Zeta(3)-2/7)/(4/5*exp(1)+7/8) 3770015373810808 r005 Re(z^2+c),c=-29/60+19/37*I,n=47 3770015376676289 a007 Real Root Of 704*x^4-146*x^3+361*x^2-885*x-407 3770015378020658 r005 Im(z^2+c),c=-101/126+1/44*I,n=16 3770015391907500 m005 (1/3*3^(1/2)-1/10)/(7/10*Catalan+5/8) 3770015401755407 r009 Re(z^3+c),c=-5/74+29/41*I,n=4 3770015408731204 r005 Re(z^2+c),c=-57/110+2/37*I,n=50 3770015409706398 r009 Re(z^3+c),c=-55/106+13/37*I,n=47 3770015411039957 r005 Re(z^2+c),c=5/46+31/55*I,n=36 3770015413617136 r002 31th iterates of z^2 + 3770015418630046 r005 Im(z^2+c),c=-9/40+11/19*I,n=49 3770015421240110 s002 sum(A049680[n]/((2^n+1)/n),n=1..infinity) 3770015424226423 l006 ln(218/9457) 3770015427699976 r009 Im(z^3+c),c=-19/50+16/47*I,n=19 3770015428929974 r005 Re(z^2+c),c=-29/56+1/33*I,n=19 3770015449948499 m001 ln(GAMMA(11/24))/Riemann1stZero*cos(Pi/5) 3770015465928202 r005 Im(z^2+c),c=-7/50+23/45*I,n=13 3770015476764382 r009 Re(z^3+c),c=-29/56+13/43*I,n=60 3770015489409936 r005 Re(z^2+c),c=-17/36+19/50*I,n=63 3770015493629288 m008 (3/5*Pi^2-2)/(2/5*Pi^3-2) 3770015499872193 a007 Real Root Of -951*x^4+629*x^3+503*x^2+288*x+90 3770015504575600 m001 Niven*FeigenbaumDelta/exp(RenyiParking) 3770015505868263 m005 (1/3*5^(1/2)+1/7)/(10/11*Pi-1/2) 3770015506501026 l006 ln(4003/5836) 3770015508540353 a007 Real Root Of 203*x^4+597*x^3-331*x^2+925*x-827 3770015512470015 a001 3/121393*34^(17/22) 3770015515984850 r009 Im(z^3+c),c=-57/118+13/48*I,n=53 3770015526207254 a007 Real Root Of 701*x^4-321*x^3+480*x^2-895*x-437 3770015529447177 r005 Re(z^2+c),c=-10/21+10/39*I,n=3 3770015579327388 m001 Zeta(5)^2*MadelungNaCl*ln(Zeta(9)) 3770015592257873 r005 Re(z^2+c),c=-5/11+27/62*I,n=46 3770015599883999 m001 (Shi(1)-gamma(1))/(MertensB2+ReciprocalLucas) 3770015607842022 a007 Real Root Of 936*x^4+296*x^3-970*x^2-326*x+226 3770015626204634 m001 Bloch^BesselI(0,1)/(Zeta(1,-1)^BesselI(0,1)) 3770015634768939 a007 Real Root Of -294*x^4-650*x^3-599*x^2+689*x+316 3770015658916313 r009 Re(z^3+c),c=-43/98+11/51*I,n=26 3770015661000543 m005 (1/2*gamma-5/7)/(11/12*gamma+3/5) 3770015667735361 r005 Re(z^2+c),c=9/29+54/61*I,n=2 3770015669859274 h005 exp(sin(Pi*10/49)+sin(Pi*13/50)) 3770015677036199 r005 Re(z^2+c),c=-23/36+1/3*I,n=45 3770015679420268 r002 41th iterates of z^2 + 3770015687602995 s002 sum(A049002[n]/(pi^n+1),n=1..infinity) 3770015689564121 m006 (5*exp(2*Pi)-1/4)/(1/3*Pi^2-4) 3770015693324877 a008 Real Root of x^5-21*x^3-16*x^2+38*x+7 3770015699425325 a007 Real Root Of -265*x^4-955*x^3+215*x^2+99*x-322 3770015700347746 r005 Re(z^2+c),c=-31/60+7/62*I,n=9 3770015710811870 a007 Real Root Of 8*x^4+292*x^3-340*x^2+809*x-725 3770015712462011 s001 sum(exp(-2*Pi)^n*A253590[n],n=1..infinity) 3770015717623805 r002 49th iterates of z^2 + 3770015725905912 m001 (3^(1/2)-Ei(1))/(GAMMA(13/24)+Khinchin) 3770015733545583 m005 (1/2*Catalan-6/11)/(7/8*5^(1/2)+4/11) 3770015733653217 m001 Psi(2,1/3)*ArtinRank2+RenyiParking 3770015741829775 a007 Real Root Of -147*x^4-523*x^3-121*x^2-795*x+394 3770015763491246 r002 42th iterates of z^2 + 3770015766262954 r002 10th iterates of z^2 + 3770015774838231 r005 Re(z^2+c),c=-47/102+23/48*I,n=37 3770015784340055 r005 Re(z^2+c),c=-15/29+3/41*I,n=28 3770015787492899 m001 (-Conway+PlouffeB)/(ln(2)/ln(10)+Ei(1)) 3770015788909382 r002 39th iterates of z^2 + 3770015796888059 m005 (1/2*Pi+5/8)/(9/10*Catalan+5) 3770015800077661 m001 (LambertW(1)+Zeta(3))/(-GAMMA(19/24)+CareFree) 3770015803932440 l006 ln(5761/8399) 3770015804318824 r009 Im(z^3+c),c=-7/16+11/36*I,n=53 3770015815126132 r005 Im(z^2+c),c=35/106+16/45*I,n=43 3770015817368242 r005 Re(z^2+c),c=-53/110+20/59*I,n=54 3770015835539208 m008 (3/5*Pi^6-3)/(1/2*Pi^5-4/5) 3770015836912891 a007 Real Root Of -636*x^4+211*x^3-255*x^2+699*x-26 3770015837999894 m001 (GAMMA(3/4)-FeigenbaumC)/(Mills-Porter) 3770015838642389 a007 Real Root Of -893*x^4+148*x^3+878*x^2+534*x-316 3770015850324136 m001 (GAMMA(5/6)-PlouffeB)/(sin(1/5*Pi)+ln(Pi)) 3770015856837268 r009 Im(z^3+c),c=-7/16+11/36*I,n=56 3770015857285599 a001 12752043/89*46368^(7/23) 3770015857372767 a001 439204/89*2971215073^(7/23) 3770015867610360 a001 322/24157817*8^(1/2) 3770015867955627 m001 (Totient+Trott2nd)/(Ei(1,1)+Magata) 3770015876675064 r005 Im(z^2+c),c=5/122+21/47*I,n=45 3770015878509328 r005 Im(z^2+c),c=13/56+19/63*I,n=45 3770015884116987 m001 1/GAMMA(17/24)/ln(Trott)^2/Zeta(7) 3770015890716886 r009 Re(z^3+c),c=-21/122+40/57*I,n=6 3770015891551064 b008 33*EllipticF[Pi/3,1/2] 3770015891551064 b008 33*InverseJacobiNC[2,1/2] 3770015905197457 m001 TreeGrowth2nd^2*exp(GlaisherKinkelin)*cos(1) 3770015928774535 m001 LambertW(1)^2/ln(DuboisRaymond)^2*Pi 3770015933118783 v002 sum(1/(2^n+(n^3+5*n^2-16*n+12)),n=1..infinity) 3770015953932210 g007 Psi(2,7/9)+Psi(2,5/9)+Psi(2,6/7)-14*Zeta(3) 3770015954615722 m001 BesselK(0,1)*Chi(1)^GolombDickman 3770015957934267 r005 Im(z^2+c),c=19/102+29/43*I,n=4 3770015959209206 r005 Im(z^2+c),c=-13/114+29/49*I,n=30 3770015965327571 r009 Im(z^3+c),c=-53/118+13/28*I,n=6 3770015967431078 m005 (-17/28+1/4*5^(1/2))/(3/4*Zeta(3)+3/8) 3770015972080117 r005 Re(z^2+c),c=-27/58+25/61*I,n=51 3770015972484761 a007 Real Root Of 101*x^4-663*x^3-470*x^2-856*x+423 3770015979982175 a003 sin(Pi*3/56)/cos(Pi*41/116) 3770015984416884 p003 LerchPhi(1/25,1,593/217) 3770015985583886 a001 610/199*199^(10/11) 3770015987111661 m002 ProductLog[Pi]+4*Sech[Pi]+Pi*Sinh[Pi] 3770015988374079 a001 46368/521*521^(3/13) 3770015992852986 r005 Re(z^2+c),c=-55/106+13/38*I,n=19 3770015993797047 a008 Real Root of x^4-2*x^3-x^2-19*x-9 3770015997480768 r002 2th iterates of z^2 + 3770016034410289 a007 Real Root Of 239*x^4-419*x^3-977*x^2-882*x+489 3770016059948336 p004 log(21647/499) 3770016065999124 r005 Re(z^2+c),c=-65/126+5/48*I,n=25 3770016071666101 m001 GAMMA(23/24)*exp(Conway)/Zeta(9) 3770016085777259 r005 Re(z^2+c),c=-69/110+5/17*I,n=27 3770016086595234 a008 Real Root of x^4-x^3-28*x^2-81*x-163 3770016091275324 m005 (1/2*Catalan+5)/(9/10*3^(1/2)-1/9) 3770016100910205 r009 Im(z^3+c),c=-7/16+11/36*I,n=60 3770016101677652 m002 5*Pi^2-Csch[Pi]*Log[Pi]-Sinh[Pi] 3770016103734190 r002 18th iterates of z^2 + 3770016113159952 r008 a(0)=0,K{-n^6,-43+35*n-60*n^2+42*n^3} 3770016116630413 a007 Real Root Of 165*x^4+616*x^3-38*x^2-201*x-542 3770016118500362 r009 Im(z^3+c),c=-19/42+17/57*I,n=11 3770016127046669 m001 (Mills-TwinPrimes)/(BesselI(1,2)+Champernowne) 3770016130147601 m001 ln(OneNinth)^2/LaplaceLimit^2/sqrt(3)^2 3770016143089289 r005 Re(z^2+c),c=-29/56+3/46*I,n=29 3770016154397025 m001 (ln(2)/ln(10)+Lehmer)/(-Mills+Riemann3rdZero) 3770016174026252 r005 Re(z^2+c),c=-14/27+1/23*I,n=45 3770016175491907 r009 Im(z^3+c),c=-7/16+11/36*I,n=59 3770016177122597 r009 Im(z^3+c),c=-7/16+11/36*I,n=63 3770016186231486 r009 Im(z^3+c),c=-7/16+11/36*I,n=64 3770016192270157 r009 Re(z^3+c),c=-19/50+6/43*I,n=15 3770016199278284 h001 (3/5*exp(1)+2/11)/(3/5*exp(2)+3/8) 3770016200893308 a001 123/832040*225851433717^(10/21) 3770016201909766 m001 (FellerTornier-HardyLittlewoodC5)/exp(Pi) 3770016205066971 a007 Real Root Of 214*x^4+740*x^3+38*x^2+928*x-620 3770016207207940 r009 Im(z^3+c),c=-7/16+11/36*I,n=57 3770016217367686 a001 1/55*9227465^(10/21) 3770016217906767 r002 3th iterates of z^2 + 3770016232928848 r009 Re(z^3+c),c=-43/82+5/29*I,n=58 3770016234990942 r005 Im(z^2+c),c=-13/90+23/40*I,n=24 3770016247626950 r002 7th iterates of z^2 + 3770016247745125 m001 (exp(-1/2*Pi)+CareFree)/(GaussAGM-Lehmer) 3770016253515364 r009 Im(z^3+c),c=-7/16+11/36*I,n=61 3770016258177847 r009 Im(z^3+c),c=-47/102+13/45*I,n=15 3770016260273049 m001 1/exp(LaplaceLimit)*Si(Pi)^2*Zeta(1/2)^2 3770016263938059 m008 (1/4*Pi^3-1/2)/(1/6*Pi^4+3) 3770016267452549 r009 Im(z^3+c),c=-7/16+11/36*I,n=62 3770016295477870 m005 (1/2*Catalan-1)/(3/7*exp(1)+3/11) 3770016303291859 a007 Real Root Of 250*x^4-669*x^3-430*x^2-921*x-327 3770016307721481 l006 ln(6455/6703) 3770016309437716 s002 sum(A252964[n]/((10^n-1)/n),n=1..infinity) 3770016310484390 r002 33th iterates of z^2 + 3770016324987335 m001 1/Khintchine*exp(CareFree)/Riemann1stZero^2 3770016336572285 r009 Im(z^3+c),c=-7/16+11/36*I,n=55 3770016345741945 r005 Re(z^2+c),c=29/106+3/62*I,n=50 3770016353088540 r005 Re(z^2+c),c=-37/82+5/11*I,n=54 3770016373677561 m001 MinimumGamma+Riemann1stZero^FeigenbaumKappa 3770016393442622 a001 229971/610 3770016393451434 a001 1902-682*5^(1/2) 3770016399729185 m005 (1/2*Catalan+8/11)/(1/11*5^(1/2)+1/9) 3770016403892981 r005 Re(z^2+c),c=3/74+7/33*I,n=15 3770016411479422 a001 (2+3^(1/2))^(113/41) 3770016416475152 r009 Im(z^3+c),c=-7/16+11/36*I,n=58 3770016421604407 a001 121393/1364*322^(1/4) 3770016433760354 a007 Real Root Of -600*x^4+948*x^3+198*x^2+112*x+77 3770016447454781 r002 31th iterates of z^2 + 3770016458560210 a007 Real Root Of -810*x^4+806*x^3+707*x^2+344*x-257 3770016469311879 r005 Re(z^2+c),c=-13/27+17/47*I,n=31 3770016479745775 m001 BesselK(0,1)*exp(FransenRobinson)*cos(1) 3770016481189488 l006 ln(1758/2563) 3770016486916783 r009 Im(z^3+c),c=-2/19+27/59*I,n=2 3770016488512098 r005 Re(z^2+c),c=-57/110+2/37*I,n=48 3770016505260017 m001 (BesselI(1,2)-Psi(2,1/3))/(Kolakoski+Rabbit) 3770016513595032 m008 (4*Pi^6+1/3)/(1/5*Pi^3+4) 3770016518542565 m001 (Riemann1stZero+Robbin)/(Sierpinski+Totient) 3770016520042264 r002 15th iterates of z^2 + 3770016522822091 r005 Im(z^2+c),c=-15/98+34/61*I,n=56 3770016524799615 r009 Im(z^3+c),c=-27/94+21/55*I,n=22 3770016531974978 m001 (Zeta(1/2)-Riemann2ndZero)/Gompertz 3770016533753718 m004 -120*Pi-4*Csc[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770016533920438 m004 -120*Pi-4*Csc[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3770016537531044 m001 exp(GAMMA(19/24))/Ei(1)/GAMMA(5/12)^2 3770016550258701 r005 Re(z^2+c),c=21/86+21/53*I,n=25 3770016551120725 m001 (Cahen-gamma)/(Conway+ZetaP(2)) 3770016561193486 r005 Im(z^2+c),c=-23/34+12/113*I,n=37 3770016565704670 m005 (1/2*3^(1/2)+4)/(8/9*Zeta(3)+2/9) 3770016568699040 m005 (1/2*Zeta(3)-6/11)/(151/198+7/22*5^(1/2)) 3770016599635760 a007 Real Root Of 147*x^4+471*x^3-24*x^2+980*x-422 3770016619688016 m002 -6-12*Pi^3+ProductLog[Pi] 3770016633568904 m001 (KhinchinLevy-Robbin)/(ln(2)-FeigenbaumB) 3770016636590710 h001 (1/4*exp(1)+2/9)/(2/9*exp(2)+3/4) 3770016644787754 a008 Real Root of x^4-20*x^2-25*x-12 3770016651356900 a001 121393/2207*322^(1/3) 3770016655628513 p004 log(32609/22367) 3770016663934218 r005 Re(z^2+c),c=-4/3+31/221*I,n=8 3770016673680149 m001 (BesselK(0,1)-cos(1/12*Pi))^ErdosBorwein 3770016678413776 h001 (-4*exp(3)-4)/(-7*exp(3/2)+9) 3770016680856084 r009 Im(z^3+c),c=-11/21+3/13*I,n=62 3770016688332991 r005 Im(z^2+c),c=-15/26+7/102*I,n=59 3770016697933182 a001 1/47*(1/2*5^(1/2)+1/2)^29*7^(2/9) 3770016707317911 r005 Im(z^2+c),c=-51/52+6/23*I,n=12 3770016710447516 m006 (1/2*ln(Pi)-5/6)/(3*exp(Pi)-1/5) 3770016715705670 r005 Im(z^2+c),c=-15/38+2/33*I,n=21 3770016726160844 r005 Im(z^2+c),c=33/82+50/59*I,n=3 3770016730984867 r005 Im(z^2+c),c=-1/5+35/59*I,n=51 3770016734804598 r005 Re(z^2+c),c=-55/106+1/36*I,n=31 3770016739304570 r005 Re(z^2+c),c=1/110+30/37*I,n=7 3770016770548507 r002 16th iterates of z^2 + 3770016773268863 m001 1/GAMMA(1/3)*ln(FeigenbaumB)^2*sqrt(3)^2 3770016788114014 r009 Im(z^3+c),c=-7/16+11/36*I,n=54 3770016795642367 r002 15th iterates of z^2 + 3770016797215645 r009 Im(z^3+c),c=-57/118+7/18*I,n=10 3770016800289426 r002 13th iterates of z^2 + 3770016809485497 h001 (6/11*exp(1)+2/9)/(4/7*exp(2)+3/10) 3770016820154746 m001 (3^(1/2))^((1+3^(1/2))^(1/2)*MinimumGamma) 3770016835446277 b008 41-(7*Sqrt[2])/3 3770016836704848 m001 (-Niven+Robbin)/(Si(Pi)+Catalan) 3770016856340211 a001 144/64079*199^(30/31) 3770016860328795 r002 47th iterates of z^2 + 3770016874080309 m001 (-Ei(1)+1/3)/(-RenyiParking+1/3) 3770016880783051 r009 Im(z^3+c),c=-47/106+12/37*I,n=7 3770016883611411 r005 Im(z^2+c),c=21/64+3/8*I,n=51 3770016894800787 m002 -Pi^5/5+4*Pi^6*Tanh[Pi] 3770016933852349 a001 987/521*1364^(11/15) 3770016937458315 m001 (Landau+Robbin)/(Catalan-Gompertz) 3770016946961516 m001 1/Lehmer^2*ln(LandauRamanujan)^2*FeigenbaumC 3770016953331671 r002 38th iterates of z^2 + 3770016953599420 m001 (Porter+Rabbit)/(exp(-1/2*Pi)+2*Pi/GAMMA(5/6)) 3770016957374271 r009 Im(z^3+c),c=-7/16+11/36*I,n=44 3770016957589913 m001 (ln(2)+ln(Pi))/(gamma(1)-PrimesInBinary) 3770016958058469 r002 25th iterates of z^2 + 3770016959263754 b008 Sqrt[5]+2*(16+Sqrt[3]) 3770016973905155 r005 Im(z^2+c),c=25/56+13/36*I,n=32 3770016978682127 r005 Re(z^2+c),c=-29/56+1/16*I,n=16 3770016980709552 r005 Im(z^2+c),c=-131/98+1/35*I,n=10 3770016988006250 r009 Im(z^3+c),c=-7/17+9/28*I,n=16 3770017004001975 m006 (1/2*Pi-5/6)/(2*ln(Pi)-1/3) 3770017020933873 a007 Real Root Of 158*x^4+369*x^3-827*x^2+221*x+442 3770017022681467 r009 Re(z^3+c),c=-3/46+30/49*I,n=32 3770017027297108 m001 (sin(1/5*Pi)+Bloch)/(Gompertz-Magata) 3770017035538851 a007 Real Root Of -687*x^4-366*x^3+420*x^2+522*x-223 3770017052893045 r005 Re(z^2+c),c=-65/126+1/10*I,n=39 3770017057229647 a001 75025/521*521^(2/13) 3770017062643103 m005 (1/2*exp(1)+7/11)/(3/11*Zeta(3)-6/7) 3770017073016981 a001 29/3*55^(18/53) 3770017077320520 l006 ln(6545/9542) 3770017078183571 r005 Re(z^2+c),c=-19/34+3/5*I,n=19 3770017094765549 a007 Real Root Of -164*x^4+567*x^3-226*x^2+963*x-358 3770017098084452 h001 (-6*exp(1)-1)/(-5*exp(1)+9) 3770017098084452 m005 (4*exp(1)+2/3)/(1/3*exp(1)-3/5) 3770017114433783 a007 Real Root Of 973*x^4-167*x^3-991*x^2-615*x+362 3770017118299501 m001 Paris/Champernowne/ln(cos(Pi/5)) 3770017123132398 m001 (PlouffeB+TreeGrowth2nd)/(Chi(1)+BesselI(1,2)) 3770017134057621 a007 Real Root Of 652*x^4-607*x^3+228*x^2-74*x-106 3770017134167238 r005 Im(z^2+c),c=-9/14+68/155*I,n=39 3770017137872236 r005 Re(z^2+c),c=-59/62+6/59*I,n=18 3770017146957785 r005 Re(z^2+c),c=-21/34+7/113*I,n=8 3770017149880819 a001 3571*514229^(9/17) 3770017151462344 a007 Real Root Of -256*x^4-731*x^3+752*x^2-261*x+873 3770017155671185 r005 Re(z^2+c),c=-11/9+15/103*I,n=8 3770017155832934 r005 Re(z^2+c),c=-61/118+5/61*I,n=46 3770017159583565 m005 (1/2*2^(1/2)+4/9)/(10/11*exp(1)+7/12) 3770017167437754 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^14 3770017177867731 r005 Re(z^2+c),c=-4/9+3/8*I,n=16 3770017179028543 r005 Re(z^2+c),c=-31/60+1/62*I,n=17 3770017186033553 a007 Real Root Of -548*x^4+831*x^3-502*x^2+963*x+490 3770017203547468 m002 3*Cosh[Pi]*Coth[Pi]+3/ProductLog[Pi] 3770017207196959 r009 Im(z^3+c),c=-7/16+11/36*I,n=51 3770017211962283 r009 Im(z^3+c),c=-7/16+11/36*I,n=46 3770017215889504 r005 Re(z^2+c),c=-16/31+5/52*I,n=44 3770017224829435 r009 Im(z^3+c),c=-37/82+8/27*I,n=27 3770017237077173 m001 ArtinRank2/(Tribonacci+Trott) 3770017258745103 r005 Im(z^2+c),c=-1/122+10/21*I,n=24 3770017263383351 a001 329*1364^(1/53) 3770017268925305 p003 LerchPhi(1/512,3,707/237) 3770017277735011 a007 Real Root Of 188*x^4+690*x^3-199*x^2-287*x+741 3770017290327619 r005 Re(z^2+c),c=5/14+14/45*I,n=7 3770017296246426 l006 ln(4787/6979) 3770017301039992 m001 (-TwinPrimes+2/3)/(GAMMA(3/4)+1/2) 3770017312472184 a001 105937/1926*322^(1/3) 3770017334873399 m001 (Landau+Stephens)/(ln(3)-HardHexagonsEntropy) 3770017361665306 r005 Im(z^2+c),c=2/19+21/52*I,n=42 3770017363072387 p004 log(30757/709) 3770017370403888 r009 Im(z^3+c),c=-27/94+21/55*I,n=20 3770017395332368 r009 Im(z^3+c),c=-7/16+11/36*I,n=50 3770017400782560 m005 (1/2*gamma+1)/(-19/36+7/18*5^(1/2)) 3770017404081378 a001 322/4181*4181^(4/21) 3770017408927624 a001 832040/15127*322^(1/3) 3770017416080306 r002 5th iterates of z^2 + 3770017416080306 r002 5th iterates of z^2 + 3770017423000283 a001 726103/13201*322^(1/3) 3770017423280234 m001 FeigenbaumD*HardyLittlewoodC4-Zeta(3) 3770017425053457 a001 5702887/103682*322^(1/3) 3770017425275512 r005 Im(z^2+c),c=-47/66+1/43*I,n=39 3770017425353011 a001 4976784/90481*322^(1/3) 3770017425396715 a001 39088169/710647*322^(1/3) 3770017425403091 a001 831985/15126*322^(1/3) 3770017425404022 a001 267914296/4870847*322^(1/3) 3770017425404157 a001 233802911/4250681*322^(1/3) 3770017425404177 a001 1836311903/33385282*322^(1/3) 3770017425404180 a001 1602508992/29134601*322^(1/3) 3770017425404180 a001 12586269025/228826127*322^(1/3) 3770017425404181 a001 10983760033/199691526*322^(1/3) 3770017425404181 a001 86267571272/1568397607*322^(1/3) 3770017425404181 a001 75283811239/1368706081*322^(1/3) 3770017425404181 a001 591286729879/10749957122*322^(1/3) 3770017425404181 a001 12585437040/228811001*322^(1/3) 3770017425404181 a001 4052739537881/73681302247*322^(1/3) 3770017425404181 a001 3536736619241/64300051206*322^(1/3) 3770017425404181 a001 6557470319842/119218851371*322^(1/3) 3770017425404181 a001 2504730781961/45537549124*322^(1/3) 3770017425404181 a001 956722026041/17393796001*322^(1/3) 3770017425404181 a001 365435296162/6643838879*322^(1/3) 3770017425404181 a001 139583862445/2537720636*322^(1/3) 3770017425404181 a001 53316291173/969323029*322^(1/3) 3770017425404181 a001 20365011074/370248451*322^(1/3) 3770017425404181 a001 7778742049/141422324*322^(1/3) 3770017425404182 a001 2971215073/54018521*322^(1/3) 3770017425404189 a001 1134903170/20633239*322^(1/3) 3770017425404241 a001 433494437/7881196*322^(1/3) 3770017425404597 a001 165580141/3010349*322^(1/3) 3770017425407032 a001 63245986/1149851*322^(1/3) 3770017425423726 a001 24157817/439204*322^(1/3) 3770017425538145 a001 9227465/167761*322^(1/3) 3770017426322388 a001 3524578/64079*322^(1/3) 3770017431697665 a001 1346269/24476*322^(1/3) 3770017432951119 a001 317811/76*9349^(32/43) 3770017438080693 a001 322/28657*102334155^(4/21) 3770017438979295 a001 161/98209*2504730781961^(4/21) 3770017446935875 b008 ArcCsc[LogBarnesG[1/16]] 3770017452591861 r009 Im(z^3+c),c=-39/94+32/55*I,n=6 3770017454366229 m001 (3^(1/2)+Catalan)/(-gamma(3)+CareFree) 3770017460073451 r002 44th iterates of z^2 + 3770017460540490 a001 98209/38*24476^(31/43) 3770017468540366 a001 514229/9349*322^(1/3) 3770017469371545 m005 (1/2*Pi+5/11)/(10/11*Zeta(3)-5/9) 3770017479649975 a001 11592/19*15127^(39/43) 3770017502026714 r009 Re(z^3+c),c=-1/17+12/23*I,n=11 3770017514904984 r005 Im(z^2+c),c=8/27+15/64*I,n=35 3770017515414917 a003 cos(Pi*27/74)-cos(Pi*22/45) 3770017520171767 m008 (3/5*Pi^3-1/6)/(1/2*Pi^4+1/5) 3770017528463824 m005 (-1/6+1/6*5^(1/2))/(1/4*2^(1/2)-9/10) 3770017531452636 r009 Im(z^3+c),c=-25/62+30/59*I,n=6 3770017536243738 p004 log(32579/751) 3770017538395974 r002 2th iterates of z^2 + 3770017541215128 a001 208010/19*5778^(29/43) 3770017541874151 r005 Re(z^2+c),c=-5/8+71/188*I,n=2 3770017547207398 m009 (2/5*Psi(1,2/3)+2/3)/(1/5*Psi(1,1/3)+3) 3770017549714673 m001 (Ei(1,1)-Magata)^ln(Pi) 3770017555679007 r005 Im(z^2+c),c=9/74+20/51*I,n=36 3770017567130238 r005 Re(z^2+c),c=45/122+10/29*I,n=41 3770017588319248 r009 Re(z^3+c),c=-29/56+7/44*I,n=35 3770017590742033 r005 Re(z^2+c),c=-127/126+10/33*I,n=24 3770017593568356 r005 Re(z^2+c),c=5/28+23/45*I,n=51 3770017609074074 r008 a(0)=0,K{-n^6,50+8*n^3-87*n^2+55*n} 3770017609783183 m001 ln(Zeta(9))^2/Si(Pi)*log(2+sqrt(3))^2 3770017620885418 r005 Im(z^2+c),c=-1/98+11/23*I,n=54 3770017640570676 a005 (1/sin(79/197*Pi))^27 3770017646518846 h001 (1/5*exp(1)+5/12)/(1/4*exp(2)+7/10) 3770017647719143 r005 Im(z^2+c),c=-21/118+25/43*I,n=43 3770017660572141 m001 Salem+Sierpinski+ZetaQ(3) 3770017663496133 r002 42th iterates of z^2 + 3770017671865989 m004 -4-6*Log[Sqrt[5]*Pi]+125*Pi*Tanh[Sqrt[5]*Pi] 3770017672609422 g005 GAMMA(3/11)/GAMMA(2/9)/GAMMA(5/8)/GAMMA(3/5) 3770017680401882 m001 (2^(1/2)+Chi(1))/(-gamma+polylog(4,1/2)) 3770017691736456 m001 ln(Ei(1))*CareFree^2/sin(1) 3770017694505058 r005 Re(z^2+c),c=-15/31+11/34*I,n=29 3770017696420527 a007 Real Root Of -132*x^4-620*x^3-726*x^2+871*x+401 3770017721064017 a001 196418/3571*322^(1/3) 3770017731286215 r005 Re(z^2+c),c=-5/11+20/41*I,n=58 3770017738999514 m002 -4+Log[Pi]/5+Tanh[Pi]/Pi^6 3770017742664337 r005 Re(z^2+c),c=-61/118+5/61*I,n=37 3770017745055903 r009 Re(z^3+c),c=-19/36+15/56*I,n=52 3770017745174785 r005 Re(z^2+c),c=-61/102+15/38*I,n=47 3770017748524024 r002 28th iterates of z^2 + 3770017748857024 m001 (Chi(1)-TreeGrowth2nd)/GAMMA(11/12) 3770017754482867 a007 Real Root Of -60*x^4+169*x^3+361*x^2+798*x-360 3770017755144773 a007 Real Root Of 845*x^4+936*x^3+915*x^2+45*x-80 3770017755689245 m001 (CopelandErdos+ZetaQ(2))/(ln(5)-sin(1)) 3770017757814835 a007 Real Root Of -985*x^4-717*x^3-813*x^2-390*x-50 3770017767500814 a007 Real Root Of -236*x^4-724*x^3+519*x^2-537*x-521 3770017769296939 l006 ln(3029/4416) 3770017769921847 m001 (1+HardHexagonsEntropy)/(-MasserGramain+Trott) 3770017806049982 m001 (ln(5)+ln(2^(1/2)+1))/(gamma(3)-LaplaceLimit) 3770017809497595 g001 Re(GAMMA(37/20+I*22/15)) 3770017812415628 a007 Real Root Of -357*x^4-88*x^3-890*x^2+878*x+460 3770017812492382 r005 Im(z^2+c),c=-33/34+32/121*I,n=23 3770017817352428 r005 Re(z^2+c),c=-33/70+18/47*I,n=50 3770017818646760 a007 Real Root Of 6*x^4+235*x^3+324*x^2-316*x-939 3770017819954654 b008 3*Gamma[1/36]^2 3770017822267728 r005 Im(z^2+c),c=-9/98+21/40*I,n=36 3770017825411166 a007 Real Root Of 5*x^4+186*x^3-120*x^2-970*x-19 3770017830386328 a008 Real Root of x^4-x^3+8*x^2-69*x-2 3770017835229101 a007 Real Root Of 199*x^4+31*x^3+681*x^2-737*x-377 3770017838414620 a007 Real Root Of 292*x^4+858*x^3-960*x^2-152*x+59 3770017846269571 r005 Re(z^2+c),c=-43/90+21/58*I,n=38 3770017849202441 r005 Re(z^2+c),c=-1/25+24/37*I,n=8 3770017850793060 r009 Im(z^3+c),c=-41/86+8/29*I,n=42 3770017855714783 m007 (-4/5*gamma-8/5*ln(2)+1/5)/(-5*gamma-3/4) 3770017860396155 r005 Re(z^2+c),c=-31/60+5/51*I,n=23 3770017860535270 m001 (Chi(1)-Ei(1))/(Ei(1,1)+Sierpinski) 3770017860535270 m001 Shi(1)/(Ei(1,1)+Sierpinski) 3770017865104039 a001 2584/521*1364^(3/5) 3770017892252320 l004 Chi(630/73) 3770017907224768 m001 (1-CopelandErdos)/(-FeigenbaumAlpha+PlouffeB) 3770017927931211 m004 -120*Pi-6*Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3770017928100136 m004 -120*Pi-6*Sech[Sqrt[5]*Pi] 3770017928184599 m004 -12/E^(Sqrt[5]*Pi)-120*Pi 3770017928269062 m004 -120*Pi-6*Csch[Sqrt[5]*Pi] 3770017928437988 m004 -120*Pi-6*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3770017928577740 r005 Im(z^2+c),c=-3/118+29/60*I,n=21 3770017937548646 m001 ReciprocalFibonacci^Thue-Zeta(1,2) 3770017942715432 h001 (1/2*exp(2)+8/9)/(1/12*exp(2)+3/5) 3770017946722897 m001 1/FeigenbaumC^2/Magata/exp(Zeta(1/2)) 3770017948160830 r002 37th iterates of z^2 + 3770017958522293 r005 Re(z^2+c),c=-83/82+3/17*I,n=42 3770017964886204 r005 Re(z^2+c),c=-43/66+19/45*I,n=21 3770017977666036 a007 Real Root Of 121*x^4+424*x^3-218*x^2-402*x-141 3770017981432074 m001 (Kac-Landau)/(LaplaceLimit-QuadraticClass) 3770017985317596 m005 (9/10+1/10*5^(1/2))/(4/5*2^(1/2)-5/6) 3770017988850796 r005 Re(z^2+c),c=-2/3+5/137*I,n=10 3770018000369970 r005 Im(z^2+c),c=5/78+19/44*I,n=31 3770018004260318 r002 24i'th iterates of 2*x/(1-x^2) of 3770018012757660 m005 (1/2*5^(1/2)-5/9)/(7/11*Catalan+10/11) 3770018031214260 r009 Im(z^3+c),c=-17/44+17/50*I,n=11 3770018063496201 m001 (Zeta(5)+MertensB1)/(Sierpinski+Thue) 3770018072383204 a007 Real Root Of -482*x^4+495*x^3-764*x^2+950*x+503 3770018073021681 h001 (6/11*exp(1)+1/4)/(7/12*exp(2)+2/7) 3770018077670688 r005 Im(z^2+c),c=-4/7+3/46*I,n=23 3770018079470458 l004 Shi(630/73) 3770018081683529 a001 11/317811*13^(27/29) 3770018084230924 m001 FeigenbaumKappa^2*ln(Bloch)*sqrt(1+sqrt(3))^2 3770018084740051 m001 Pi*(Psi(1,1/3)+sin(1/5*Pi)+ln(2+3^(1/2))) 3770018098825092 a001 7/47*(1/2*5^(1/2)+1/2)*47^(5/7) 3770018104504931 l006 ln(8303/8622) 3770018106266956 p001 sum(1/(491*n+266)/(125^n),n=0..infinity) 3770018122172753 a007 Real Root Of 323*x^4-935*x^3-787*x^2-471*x+333 3770018123039397 h001 (7/10*exp(1)+3/7)/(4/5*exp(2)+3/11) 3770018125415738 a001 233*521^(1/13) 3770018128393269 r002 11th iterates of z^2 + 3770018131007121 m005 (5/6*Pi-1/2)/(5/6*Pi+3) 3770018131007121 m006 (1/2/Pi-5/6)/(3/Pi+5/6) 3770018131007121 m008 (5/6*Pi-1/2)/(5/6*Pi+3) 3770018138578935 a001 1597/521*1364^(2/3) 3770018140668438 r005 Re(z^2+c),c=-49/102+21/61*I,n=46 3770018140954909 a007 Real Root Of -826*x^4+542*x^3-972*x^2+560*x+395 3770018149047051 a001 317811/76*2207^(38/43) 3770018152937332 r002 11th iterates of z^2 + 3770018156238648 r005 Re(z^2+c),c=-69/94+4/61*I,n=43 3770018156251894 a001 4181/521*1364^(8/15) 3770018168109011 m001 (exp(Pi)+cos(1))/(-CareFree+MertensB3) 3770018170619567 m005 (1/2*2^(1/2)+6/7)/(2/11*3^(1/2)+1/10) 3770018177653341 r005 Im(z^2+c),c=7/36+11/30*I,n=8 3770018178150543 a001 17711/843*322^(1/2) 3770018197283110 r008 a(0)=0,K{-n^6,28+22*n-62*n^2+39*n^3} 3770018213234315 m005 (1/2*gamma-3/4)/(17/55+9/22*5^(1/2)) 3770018219156519 m001 1/LambertW(1)^2*exp(Champernowne)/cos(Pi/12)^2 3770018228545087 a001 987/521*3571^(11/17) 3770018231733047 a001 6765/521*1364^(7/15) 3770018237234440 m008 (5/6*Pi^6-3/5)/(1/6*Pi^4+5) 3770018258408976 a007 Real Root Of -686*x^4-232*x^3+468*x^2+805*x-31 3770018259907515 m001 (gamma+GAMMA(2/3))/(-GAMMA(11/12)+Landau) 3770018295923147 l006 ln(4300/6269) 3770018304950322 r005 Im(z^2+c),c=-93/122+25/36*I,n=4 3770018336059492 r002 11th iterates of z^2 + 3770018339596705 s002 sum(A132469[n]/(n!^3),n=1..infinity) 3770018344552269 m001 gamma(1)*polylog(4,1/2)+PrimesInBinary 3770018346702652 m005 (1/3*5^(1/2)-2/9)/(8/9*5^(1/2)-3/5) 3770018349497528 m001 ln(2^(1/2)+1)+GaussKuzminWirsing+Sierpinski 3770018358927802 m001 Sarnak^(3^(1/2))/(ZetaQ(4)^(3^(1/2))) 3770018359117736 r005 Re(z^2+c),c=-43/98+20/43*I,n=44 3770018367072791 m001 (Khinchin+MertensB3)/(BesselJ(1,1)+Kac) 3770018368749304 m001 BesselJZeros(0,1)^(FeigenbaumDelta/GAMMA(5/6)) 3770018376674070 r005 Im(z^2+c),c=-11/18+9/128*I,n=47 3770018377526909 q001 1436/3809 3770018381197784 a001 233/2207*9349^(17/19) 3770018389591560 a001 10946/521*1364^(2/5) 3770018394869848 a001 987/521*9349^(11/19) 3770018414696387 a001 233/2207*24476^(17/21) 3770018416545415 a001 987/521*24476^(11/21) 3770018419112147 a001 233/2207*64079^(17/23) 3770018419402671 a001 987/521*64079^(11/23) 3770018419790777 a001 233/2207*45537549124^(1/3) 3770018419790777 a001 233/2207*(1/2+1/2*5^(1/2))^17 3770018419790789 a001 233/2207*12752043^(1/2) 3770018419841765 a001 987/521*7881196^(1/3) 3770018419841785 a001 987/521*312119004989^(1/5) 3770018419841785 a001 987/521*(1/2+1/2*5^(1/2))^11 3770018419841785 a001 987/521*1568397607^(1/4) 3770018420002523 a001 987/521*103682^(11/24) 3770018420039190 a001 233/2207*103682^(17/24) 3770018421043654 a001 987/521*39603^(1/2) 3770018421648212 a001 233/2207*39603^(17/22) 3770018428903294 a001 987/521*15127^(11/20) 3770018433123707 r005 Im(z^2+c),c=-23/30+10/111*I,n=62 3770018433794928 a001 233/2207*15127^(17/20) 3770018436687716 a001 521/1597*6557470319842^(16/17) 3770018449320607 r002 12th iterates of z^2 + 3770018466594841 s001 sum(exp(-Pi/4)^(n-1)*A071645[n],n=1..infinity) 3770018470544245 a007 Real Root Of 223*x^4+734*x^3-273*x^2+422*x-247 3770018470830015 m001 Zeta(1,2)^2/ln(GAMMA(1/24))/exp(1)^2 3770018481087235 m001 1/Zeta(1/2)/Pi^2/ln(Zeta(3)) 3770018481738927 a007 Real Root Of 675*x^4+723*x^3+516*x^2-445*x-216 3770018488851240 a001 987/521*5778^(11/18) 3770018494051688 r009 Re(z^3+c),c=-5/62+31/56*I,n=6 3770018503178213 s002 sum(A181291[n]/(n^2*2^n-1),n=1..infinity) 3770018511082926 m001 MinimumGamma*exp(ErdosBorwein)/GAMMA(5/24)^2 3770018515984727 a001 17711/521*1364^(1/3) 3770018523790267 r002 7th iterates of z^2 + 3770018526441754 a001 233/2207*5778^(17/18) 3770018535249670 m001 Shi(1)*GAMMA(23/24)+Khinchin 3770018553508500 m005 (1/2*3^(1/2)+3/5)/(4/7*5^(1/2)-8/9) 3770018567342351 r005 Re(z^2+c),c=-57/110+2/37*I,n=46 3770018573419051 r002 8th iterates of z^2 + 3770018579167244 a001 17711/76*29^(1/7) 3770018580357504 m001 (5^(1/2)-Si(Pi))/(-sin(1/5*Pi)+ErdosBorwein) 3770018582254276 l006 ln(5571/8122) 3770018608708760 a007 Real Root Of 970*x^4-719*x^3-285*x^2+182*x+51 3770018621738844 a001 5/167761*47^(29/44) 3770018624062746 p001 sum(1/(207*n+59)/n/(100^n),n=1..infinity) 3770018627229592 p001 sum(1/(452*n+111)/n/(5^n),n=1..infinity) 3770018633117814 h001 (-5*exp(3)-6)/(-7*exp(6)+1) 3770018650015953 r002 46th iterates of z^2 + 3770018650093451 m001 (FeigenbaumAlpha+MertensB3)/(Artin+Cahen) 3770018654396594 a001 28657/521*1364^(4/15) 3770018656420287 r009 Im(z^3+c),c=-1/31+24/55*I,n=4 3770018660201008 r002 14th iterates of z^2 + 3770018665309025 r002 27th iterates of z^2 + 3770018665309025 r002 27th iterates of z^2 + 3770018679343454 a007 Real Root Of 232*x^4+640*x^3-687*x^2+484*x-984 3770018681442532 p004 log(18097/12413) 3770018696119867 m001 1/3*(3^(1/2)*CareFree-LambertW(1))*3^(1/2) 3770018700163316 a007 Real Root Of -291*x^4-916*x^3+861*x^2+801*x+485 3770018710419671 a007 Real Root Of 144*x^4+467*x^3-396*x^2-490*x-285 3770018711918850 r005 Re(z^2+c),c=-39/82+19/52*I,n=54 3770018716943083 a007 Real Root Of -924*x^4+680*x^3+826*x^2+648*x+182 3770018721044856 a007 Real Root Of -114*x^4-435*x^3+154*x^2+507*x-557 3770018731629736 r009 Im(z^3+c),c=-33/70+27/53*I,n=42 3770018732245275 a001 167761/233*1836311903^(16/17) 3770018732381915 a001 370248451/233*514229^(16/17) 3770018751860895 m004 5/Pi+Log[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/4 3770018753729720 a007 Real Root Of 143*x^4-862*x^3+316*x^2-556*x+208 3770018761428990 m001 (1+ln(2^(1/2)+1))/(-2*Pi/GAMMA(5/6)+Stephens) 3770018761472843 r009 Im(z^3+c),c=-19/90+23/28*I,n=2 3770018762205142 l006 ln(6842/9975) 3770018763201943 m005 (2^(1/2)+3)/(3/5*Catalan-2/3) 3770018765622870 m001 ln(Riemann1stZero)*ErdosBorwein/GAMMA(5/6) 3770018776322342 r009 Im(z^3+c),c=-33/82+17/52*I,n=12 3770018776754717 m001 (ArtinRank2-OneNinth)/(exp(-1/2*Pi)-Pi^(1/2)) 3770018777124542 m005 (1/2*2^(1/2)+8/11)/(1/12*gamma-3/7) 3770018785222291 a001 602072/1597 3770018786720133 a001 144*123^(1/5) 3770018788217733 a001 46368/521*1364^(1/5) 3770018794473145 a007 Real Root Of 512*x^4-66*x^3+799*x^2-871*x+208 3770018796077985 r002 31th iterates of z^2 + 3770018804809874 r005 Im(z^2+c),c=11/46+18/61*I,n=21 3770018805146001 r005 Im(z^2+c),c=-25/118+29/49*I,n=63 3770018812682805 b008 Csch[(2+EulerGamma*Pi)^(-1)] 3770018814898965 a001 377/521*843^(13/14) 3770018814952145 l004 Ci(182/83) 3770018852357695 m003 4+Sqrt[5]/16-(2*Tanh[1/2+Sqrt[5]/2])/5 3770018866487950 m001 1/ln(GAMMA(19/24))^2*Robbin^2/GAMMA(5/12)^2 3770018874495323 a007 Real Root Of 295*x^4-972*x^3+387*x^2-305*x+11 3770018884652860 r002 4th iterates of z^2 + 3770018888098025 p001 sum((-1)^n/(282*n+265)/(512^n),n=0..infinity) 3770018891018663 r005 Re(z^2+c),c=-14/27+1/23*I,n=47 3770018898146847 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^16 3770018906384943 r002 45th iterates of z^2 + 3770018916200501 a007 Real Root Of 284*x^4+985*x^3-243*x^2+402*x+378 3770018923792380 a001 75025/521*1364^(2/15) 3770018924398325 a001 2584/521*3571^(9/17) 3770018934261521 r005 Im(z^2+c),c=-2/27+25/48*I,n=16 3770018943774135 m008 (3/4*Pi^6+4)/(2*Pi^6+2/5) 3770018951117786 r005 Im(z^2+c),c=-17/30+47/82*I,n=38 3770018951964346 a001 987/521*2207^(11/16) 3770018974903448 m001 Riemann2ndZero^FellerTornier+ln(3) 3770018985526831 r002 56th iterates of z^2 + 3770018992291424 m008 (1/2*Pi^6+3/5)/(4*Pi+1/5) 3770018994869041 r004 Re(z^2+c),c=1/6+1/3*I,z(0)=exp(5/12*I*Pi),n=24 3770019010987706 r005 Re(z^2+c),c=8/25+5/63*I,n=51 3770019016036677 m005 (1/3*Pi-2/9)/(43/36+4/9*5^(1/2)) 3770019030399279 r005 Re(z^2+c),c=-5/8+49/193*I,n=13 3770019035330158 m001 arctan(1/2)^2/GAMMA(1/4)^2/ln(cosh(1)) 3770019040217453 a007 Real Root Of 167*x^4+676*x^3+41*x^2-657*x-573 3770019051184885 r005 Re(z^2+c),c=-9/19+19/55*I,n=25 3770019051736714 r009 Im(z^3+c),c=-29/122+29/34*I,n=2 3770019055628658 a001 6765/521*3571^(7/17) 3770019058697254 a001 233*1364^(1/15) 3770019060482245 a001 2584/521*9349^(9/19) 3770019060710195 a005 (1/cos(13/190*Pi))^57 3770019074801436 a001 11/21*8^(56/59) 3770019075168939 a001 233/5778*24476^(19/21) 3770019078216803 a001 2584/521*24476^(3/7) 3770019079008704 r005 Im(z^2+c),c=-5/9+25/38*I,n=7 3770019080104201 a001 233/5778*64079^(19/23) 3770019080554559 a001 2584/521*64079^(9/23) 3770019080862671 a001 233/5778*817138163596^(1/3) 3770019080862671 a001 233/5778*(1/2+1/2*5^(1/2))^19 3770019080862671 a001 233/5778*87403803^(1/2) 3770019080907319 a001 2584/521*439204^(1/3) 3770019080913817 a001 2584/521*7881196^(3/11) 3770019080913834 a001 2584/521*141422324^(3/13) 3770019080913834 a001 2584/521*2537720636^(1/5) 3770019080913834 a001 2584/521*45537549124^(3/17) 3770019080913834 a001 2584/521*14662949395604^(1/7) 3770019080913834 a001 2584/521*(1/2+1/2*5^(1/2))^9 3770019080913834 a001 2584/521*192900153618^(1/6) 3770019080913834 a001 2584/521*10749957122^(3/16) 3770019080913834 a001 2584/521*599074578^(3/14) 3770019080913835 a001 2584/521*33385282^(1/4) 3770019080914160 a001 2584/521*1860498^(3/10) 3770019081045347 a001 2584/521*103682^(3/8) 3770019081140309 a001 233/5778*103682^(19/24) 3770019081897182 a001 2584/521*39603^(9/22) 3770019082938627 a001 233/5778*39603^(19/22) 3770019088327797 a001 2584/521*15127^(9/20) 3770019088555929 a001 11/75025*3^(49/57) 3770019095787816 a001 10946/521*3571^(6/17) 3770019096514372 a001 233/5778*15127^(19/20) 3770019097846873 a001 4181/521*3571^(8/17) 3770019104481618 a001 17711/521*3571^(5/17) 3770019109672682 m001 GAMMA(5/12)^2/exp(GAMMA(23/24))^2/cosh(1) 3770019119007129 a007 Real Root Of -316*x^4-984*x^3+947*x^2+450*x-654 3770019124767256 r005 Im(z^2+c),c=-15/106+16/29*I,n=50 3770019125194117 a001 28657/521*3571^(4/17) 3770019134178426 a001 1576245/4181 3770019135795405 m001 (exp(-1/2*Pi)+StronglyCareFree)/(1+ln(5)) 3770019137376125 a001 2584/521*5778^(1/2) 3770019139485665 r009 Im(z^3+c),c=-55/126+15/49*I,n=28 3770019141315882 a001 46368/521*3571^(3/17) 3770019145446414 r005 Re(z^2+c),c=-61/118+5/61*I,n=48 3770019146780857 r002 24th iterates of z^2 + 3770019150653900 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^18 3770019159191151 a001 75025/521*3571^(2/17) 3770019161471710 a001 6765/521*9349^(7/19) 3770019165336577 a005 (1/sin(72/199*Pi))^463 3770019168017496 r005 Im(z^2+c),c=27/82+3/16*I,n=55 3770019175265255 a001 6765/521*24476^(1/3) 3770019176396642 a001 233*3571^(1/17) 3770019176473471 a001 233/15127*64079^(21/23) 3770019177083510 a001 6765/521*64079^(7/23) 3770019177296579 a001 233/15127*439204^(7/9) 3770019177311741 a001 233/15127*7881196^(7/11) 3770019177311774 a001 233/15127*20633239^(3/5) 3770019177311779 a001 233/15127*141422324^(7/13) 3770019177311779 a001 233/15127*2537720636^(7/15) 3770019177311779 a001 233/15127*17393796001^(3/7) 3770019177311779 a001 233/15127*45537549124^(7/17) 3770019177311779 a001 233/15127*14662949395604^(1/3) 3770019177311779 a001 233/15127*(1/2+1/2*5^(1/2))^21 3770019177311779 a001 233/15127*192900153618^(7/18) 3770019177311779 a001 233/15127*10749957122^(7/16) 3770019177311779 a001 233/15127*599074578^(1/2) 3770019177311781 a001 233/15127*33385282^(7/12) 3770019177312542 a001 233/15127*1860498^(7/10) 3770019177317378 a001 233/15127*710647^(3/4) 3770019177362944 a001 6765/521*20633239^(1/5) 3770019177362946 a001 6765/521*17393796001^(1/7) 3770019177362946 a001 6765/521*14662949395604^(1/9) 3770019177362946 a001 6765/521*(1/2+1/2*5^(1/2))^7 3770019177362946 a001 6765/521*599074578^(1/6) 3770019177364812 a001 6765/521*710647^(1/4) 3770019177465234 a001 6765/521*103682^(7/24) 3770019177618643 a001 233/15127*103682^(7/8) 3770019178127772 a001 6765/521*39603^(7/22) 3770019179606258 a001 233/15127*39603^(21/22) 3770019180083799 a001 17711/521*9349^(5/19) 3770019183129362 a001 6765/521*15127^(7/20) 3770019185090443 a001 4126663/10946 3770019185675862 a001 28657/521*9349^(4/19) 3770019186510433 a001 10946/521*9349^(6/19) 3770019186677191 a001 46368/521*9349^(3/19) 3770019187494183 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^20 3770019189432024 a001 75025/521*9349^(2/19) 3770019189936331 a001 17711/521*24476^(5/21) 3770019191235084 a001 17711/521*64079^(5/23) 3770019191383515 a001 233/39603*(1/2+1/2*5^(1/2))^23 3770019191383515 a001 233/39603*4106118243^(1/2) 3770019191407890 a001 17711/521*167761^(1/5) 3770019191434680 a001 17711/521*20633239^(1/7) 3770019191434682 a001 17711/521*2537720636^(1/9) 3770019191434682 a001 17711/521*312119004989^(1/11) 3770019191434682 a001 17711/521*(1/2+1/2*5^(1/2))^5 3770019191434682 a001 17711/521*28143753123^(1/10) 3770019191434682 a001 17711/521*228826127^(1/8) 3770019191434863 a001 17711/521*1860498^(1/6) 3770019191507744 a001 17711/521*103682^(5/24) 3770019191517078 a001 233*9349^(1/19) 3770019191719603 a001 233/39603*103682^(23/24) 3770019191980986 a001 17711/521*39603^(5/22) 3770019192518407 a001 10803744/28657 3770019192588710 a001 46368/521*24476^(1/7) 3770019192869108 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^22 3770019193367962 a001 46368/521*64079^(3/23) 3770019193373037 a001 75025/521*24476^(2/21) 3770019193436547 a001 233/103682*20633239^(5/7) 3770019193436554 a001 233/103682*2537720636^(5/9) 3770019193436554 a001 233/103682*312119004989^(5/11) 3770019193436554 a001 233/103682*(1/2+1/2*5^(1/2))^25 3770019193436554 a001 233/103682*3461452808002^(5/12) 3770019193436554 a001 233/103682*28143753123^(1/2) 3770019193436554 a001 233/103682*228826127^(5/8) 3770019193437461 a001 233/103682*1860498^(5/6) 3770019193485549 a001 46368/521*439204^(1/9) 3770019193487584 a001 233*24476^(1/21) 3770019193487715 a001 46368/521*7881196^(1/11) 3770019193487720 a001 46368/521*141422324^(1/13) 3770019193487720 a001 46368/521*2537720636^(1/15) 3770019193487720 a001 46368/521*45537549124^(1/17) 3770019193487720 a001 46368/521*14662949395604^(1/21) 3770019193487720 a001 46368/521*(1/2+1/2*5^(1/2))^3 3770019193487720 a001 46368/521*10749957122^(1/16) 3770019193487720 a001 46368/521*599074578^(1/14) 3770019193487720 a001 46368/521*33385282^(1/12) 3770019193487829 a001 46368/521*1860498^(1/10) 3770019193531558 a001 46368/521*103682^(1/8) 3770019193557888 a001 28657/521*24476^(4/21) 3770019193602132 a001 28284569/75025 3770019193653299 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^24 3770019193736038 a001 233/271443*7881196^(9/11) 3770019193736088 a001 233/271443*141422324^(9/13) 3770019193736088 a001 233/271443*2537720636^(3/5) 3770019193736088 a001 233/271443*45537549124^(9/17) 3770019193736088 a001 233/271443*817138163596^(9/19) 3770019193736088 a001 233/271443*14662949395604^(3/7) 3770019193736088 a001 233/271443*(1/2+1/2*5^(1/2))^27 3770019193736088 a001 233/271443*192900153618^(1/2) 3770019193736088 a001 233/271443*10749957122^(9/16) 3770019193736088 a001 233/271443*599074578^(9/14) 3770019193736090 a001 233/271443*33385282^(3/4) 3770019193737068 a001 233/271443*1860498^(9/10) 3770019193747335 a001 233*64079^(1/23) 3770019193760246 a001 74049963/196418 3770019193767711 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^26 3770019193779789 a001 233/710647*(1/2+1/2*5^(1/2))^29 3770019193779789 a001 233/710647*1322157322203^(1/2) 3770019193783314 a001 193865320/514229 3770019193784403 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^28 3770019193786165 a001 233/1860498*(1/2+1/2*5^(1/2))^31 3770019193786165 a001 233/1860498*9062201101803^(1/2) 3770019193786680 a001 507545997/1346269 3770019193786838 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^30 3770019193787095 a001 233/4870847*141422324^(11/13) 3770019193787096 a001 233/4870847*2537720636^(11/15) 3770019193787096 a001 233/4870847*45537549124^(11/17) 3770019193787096 a001 233/4870847*312119004989^(3/5) 3770019193787096 a001 233/4870847*14662949395604^(11/21) 3770019193787096 a001 233/4870847*(1/2+1/2*5^(1/2))^33 3770019193787096 a001 233/4870847*192900153618^(11/18) 3770019193787096 a001 233/4870847*10749957122^(11/16) 3770019193787096 a001 233/4870847*1568397607^(3/4) 3770019193787096 a001 233/4870847*599074578^(11/14) 3770019193787099 a001 233/4870847*33385282^(11/12) 3770019193787171 a001 1328772671/3524578 3770019193787194 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^32 3770019193787231 a001 233/12752043*2537720636^(7/9) 3770019193787231 a001 233/12752043*17393796001^(5/7) 3770019193787231 a001 233/12752043*312119004989^(7/11) 3770019193787231 a001 233/12752043*14662949395604^(5/9) 3770019193787231 a001 233/12752043*(1/2+1/2*5^(1/2))^35 3770019193787231 a001 233/12752043*505019158607^(5/8) 3770019193787231 a001 233/12752043*28143753123^(7/10) 3770019193787231 a001 233/12752043*599074578^(5/6) 3770019193787231 a001 233/12752043*228826127^(7/8) 3770019193787242 a001 3478772016/9227465 3770019193787246 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^34 3770019193787251 a001 233/33385282*(1/2+1/2*5^(1/2))^37 3770019193787253 a001 9107543377/24157817 3770019193787253 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^36 3770019193787254 a001 233/87403803*2537720636^(13/15) 3770019193787254 a001 233/87403803*45537549124^(13/17) 3770019193787254 a001 233/87403803*14662949395604^(13/21) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^39/Lucas(38) 3770019193787254 a001 233/87403803*192900153618^(13/18) 3770019193787254 a001 233/87403803*73681302247^(3/4) 3770019193787254 a001 233/87403803*10749957122^(13/16) 3770019193787254 a001 233/87403803*599074578^(13/14) 3770019193787254 a001 102334155/271442 3770019193787254 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^38 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^41/Lucas(40) 3770019193787254 a001 62424030968/165580141 3770019193787254 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^40 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(42) 3770019193787254 a001 163428234789/433494437 3770019193787254 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^42 3770019193787254 a001 233/1568397607*45537549124^(15/17) 3770019193787254 a001 233/1568397607*312119004989^(9/11) 3770019193787254 a001 233/1568397607*14662949395604^(5/7) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(44) 3770019193787254 a001 233/1568397607*192900153618^(5/6) 3770019193787254 a001 233/1568397607*28143753123^(9/10) 3770019193787254 a001 233/1568397607*10749957122^(15/16) 3770019193787254 a001 427860673399/1134903170 3770019193787254 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^44 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(46) 3770019193787254 a001 1120153785408/2971215073 3770019193787254 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^46 3770019193787254 a001 233/10749957122*14662949395604^(7/9) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(48) 3770019193787254 a001 233/10749957122*505019158607^(7/8) 3770019193787254 a001 2932600682825/7778742049 3770019193787254 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^48 3770019193787254 a001 233/28143753123*817138163596^(17/19) 3770019193787254 a001 233/28143753123*14662949395604^(17/21) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(50) 3770019193787254 a001 233/28143753123*192900153618^(17/18) 3770019193787254 a001 7677648263067/20365011074 3770019193787254 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^50 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(52) 3770019193787254 a001 20100344106376/53316291173 3770019193787254 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^52 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(54) 3770019193787254 a001 233/192900153618*3461452808002^(11/12) 3770019193787254 a001 52623384056061/139583862445 3770019193787254 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^54 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(56) 3770019193787254 a001 137769808061807/365435296162 3770019193787254 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^56 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(58) 3770019193787254 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^58 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(60) 3770019193787254 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^60 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(62) 3770019193787254 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^62 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(64) 3770019193787254 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^64 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(66) 3770019193787254 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^66 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(68) 3770019193787254 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^68 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(70) 3770019193787254 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^70 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(72) 3770019193787254 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^72 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(74) 3770019193787254 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^74 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(76) 3770019193787254 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^76 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(78) 3770019193787254 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^78 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(80) 3770019193787254 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^80 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^83/Lucas(82) 3770019193787254 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^82 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^85/Lucas(84) 3770019193787254 a004 Fibonacci(13)*Lucas(85)/(1/2+sqrt(5)/2)^84 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^87/Lucas(86) 3770019193787254 a004 Fibonacci(13)*Lucas(87)/(1/2+sqrt(5)/2)^86 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^89/Lucas(88) 3770019193787254 a004 Fibonacci(13)*Lucas(89)/(1/2+sqrt(5)/2)^88 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^91/Lucas(90) 3770019193787254 a004 Fibonacci(13)*Lucas(91)/(1/2+sqrt(5)/2)^90 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^93/Lucas(92) 3770019193787254 a004 Fibonacci(13)*Lucas(93)/(1/2+sqrt(5)/2)^92 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^95/Lucas(94) 3770019193787254 a004 Fibonacci(13)*Lucas(95)/(1/2+sqrt(5)/2)^94 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^97/Lucas(96) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^99/Lucas(98) 3770019193787254 a004 Fibonacci(13)*Lucas(97)/(1/2+sqrt(5)/2)^96 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)/Lucas(1) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^100/Lucas(99) 3770019193787254 a004 Fibonacci(13)*Lucas(100)/(1/2+sqrt(5)/2)^99 3770019193787254 a004 Fibonacci(13)*Lucas(98)/(1/2+sqrt(5)/2)^97 3770019193787254 a004 Fibonacci(13)*Lucas(99)/(1/2+sqrt(5)/2)^98 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^98/Lucas(97) 3770019193787254 a004 Fibonacci(13)*Lucas(96)/(1/2+sqrt(5)/2)^95 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^96/Lucas(95) 3770019193787254 a004 Fibonacci(13)*Lucas(94)/(1/2+sqrt(5)/2)^93 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^94/Lucas(93) 3770019193787254 a004 Fibonacci(13)*Lucas(92)/(1/2+sqrt(5)/2)^91 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^92/Lucas(91) 3770019193787254 a004 Fibonacci(13)*Lucas(90)/(1/2+sqrt(5)/2)^89 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^90/Lucas(89) 3770019193787254 a004 Fibonacci(13)*Lucas(88)/(1/2+sqrt(5)/2)^87 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^88/Lucas(87) 3770019193787254 a004 Fibonacci(13)*Lucas(86)/(1/2+sqrt(5)/2)^85 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^86/Lucas(85) 3770019193787254 a004 Fibonacci(13)*Lucas(84)/(1/2+sqrt(5)/2)^83 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^84/Lucas(83) 3770019193787254 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^81 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(81) 3770019193787254 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^79 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(79) 3770019193787254 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^77 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(77) 3770019193787254 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^75 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(75) 3770019193787254 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^73 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(73) 3770019193787254 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^71 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(71) 3770019193787254 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^69 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(69) 3770019193787254 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^67 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(67) 3770019193787254 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^65 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(65) 3770019193787254 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^63 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(63) 3770019193787254 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^61 3770019193787254 a001 1527890584523186/4052739537881 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(61) 3770019193787254 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^59 3770019193787254 a001 233/2139295485799*14662949395604^(20/21) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(59) 3770019193787254 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^57 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(57) 3770019193787254 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^55 3770019193787254 a001 85146424005746/225851433717 3770019193787254 a001 233/312119004989*14662949395604^(8/9) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(55) 3770019193787254 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^53 3770019193787254 a001 32523039949685/86267571272 3770019193787254 a001 233/119218851371*14662949395604^(6/7) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(53) 3770019193787254 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^51 3770019193787254 a001 53316291173/141421803 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(51) 3770019193787254 a001 233/45537549124*23725150497407^(13/16) 3770019193787254 a001 233/45537549124*505019158607^(13/14) 3770019193787254 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^49 3770019193787254 a001 4745047580242/12586269025 3770019193787254 a001 233/17393796001*312119004989^(10/11) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(49) 3770019193787254 a001 233/17393796001*3461452808002^(5/6) 3770019193787254 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^47 3770019193787254 a001 1812446897417/4807526976 3770019193787254 a001 233/6643838879*45537549124^(16/17) 3770019193787254 a001 233/6643838879*14662949395604^(16/21) 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(47) 3770019193787254 a001 233/6643838879*192900153618^(8/9) 3770019193787254 a001 233/6643838879*73681302247^(12/13) 3770019193787254 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^45 3770019193787254 a001 692293112009/1836311903 3770019193787254 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(45) 3770019193787254 a001 233/2537720636*10749957122^(23/24) 3770019193787254 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^43 3770019193787254 a001 264432438610/701408733 3770019193787255 a001 233/969323029*312119004989^(4/5) 3770019193787255 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(43) 3770019193787255 a001 233/969323029*23725150497407^(11/16) 3770019193787255 a001 233/969323029*73681302247^(11/13) 3770019193787255 a001 233/969323029*10749957122^(11/12) 3770019193787255 a001 233/969323029*4106118243^(22/23) 3770019193787255 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^41 3770019193787255 a001 101004203821/267914296 3770019193787255 a001 233/370248451*2537720636^(14/15) 3770019193787255 a001 233/370248451*17393796001^(6/7) 3770019193787255 a001 233/370248451*45537549124^(14/17) 3770019193787255 a001 233/370248451*14662949395604^(2/3) 3770019193787255 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(41) 3770019193787255 a001 233/370248451*505019158607^(3/4) 3770019193787255 a001 233/370248451*192900153618^(7/9) 3770019193787255 a001 233/370248451*10749957122^(7/8) 3770019193787255 a001 233/370248451*4106118243^(21/23) 3770019193787255 a001 233/370248451*1568397607^(21/22) 3770019193787255 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^39 3770019193787255 a001 38580172853/102334155 3770019193787255 a001 233/141422324*2537720636^(8/9) 3770019193787255 a001 233/141422324*312119004989^(8/11) 3770019193787255 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^40/Lucas(39) 3770019193787255 a001 233/141422324*23725150497407^(5/8) 3770019193787255 a001 233/141422324*73681302247^(10/13) 3770019193787255 a001 233/141422324*28143753123^(4/5) 3770019193787255 a001 233/141422324*10749957122^(5/6) 3770019193787255 a001 233/141422324*4106118243^(20/23) 3770019193787255 a001 233/141422324*1568397607^(10/11) 3770019193787255 a001 233/141422324*599074578^(20/21) 3770019193787255 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^37 3770019193787255 a001 14736314738/39088169 3770019193787256 a001 233/54018521*817138163596^(2/3) 3770019193787256 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^38/Lucas(37) 3770019193787256 a001 233/54018521*10749957122^(19/24) 3770019193787256 a001 233/54018521*4106118243^(19/23) 3770019193787256 a001 233/54018521*1568397607^(19/22) 3770019193787256 a001 233/54018521*599074578^(19/21) 3770019193787256 a001 233/54018521*228826127^(19/20) 3770019193787258 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^35 3770019193787259 a001 5628771361/14930352 3770019193787263 a001 233/20633239*141422324^(12/13) 3770019193787263 a001 233/20633239*2537720636^(4/5) 3770019193787263 a001 233/20633239*45537549124^(12/17) 3770019193787263 a001 233/20633239*14662949395604^(4/7) 3770019193787263 a001 233/20633239*(1/2+1/2*5^(1/2))^36 3770019193787263 a001 233/20633239*505019158607^(9/14) 3770019193787263 a001 233/20633239*192900153618^(2/3) 3770019193787263 a001 233/20633239*73681302247^(9/13) 3770019193787263 a001 233/20633239*10749957122^(3/4) 3770019193787263 a001 233/20633239*4106118243^(18/23) 3770019193787263 a001 233/20633239*1568397607^(9/11) 3770019193787263 a001 233/20633239*599074578^(6/7) 3770019193787263 a001 233/20633239*228826127^(9/10) 3770019193787264 a001 233/20633239*87403803^(18/19) 3770019193787278 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^33 3770019193787287 a001 2149999345/5702887 3770019193787315 a001 233/7881196*45537549124^(2/3) 3770019193787315 a001 233/7881196*(1/2+1/2*5^(1/2))^34 3770019193787315 a001 233/7881196*10749957122^(17/24) 3770019193787315 a001 233/7881196*4106118243^(17/23) 3770019193787315 a001 233/7881196*1568397607^(17/22) 3770019193787315 a001 233/7881196*599074578^(17/21) 3770019193787315 a001 233/7881196*228826127^(17/20) 3770019193787316 a001 233/7881196*87403803^(17/19) 3770019193787318 a001 233/7881196*33385282^(17/18) 3770019193787413 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^31 3770019193787474 a001 821226674/2178309 3770019193787671 a001 233/3010349*(1/2+1/2*5^(1/2))^32 3770019193787671 a001 233/3010349*23725150497407^(1/2) 3770019193787671 a001 233/3010349*505019158607^(4/7) 3770019193787671 a001 233/3010349*73681302247^(8/13) 3770019193787671 a001 233/3010349*10749957122^(2/3) 3770019193787671 a001 233/3010349*4106118243^(16/23) 3770019193787671 a001 233/3010349*1568397607^(8/11) 3770019193787671 a001 233/3010349*599074578^(16/21) 3770019193787671 a001 233/3010349*228826127^(4/5) 3770019193787671 a001 233/3010349*87403803^(16/19) 3770019193787674 a001 233/3010349*33385282^(8/9) 3770019193787692 a001 233/3010349*12752043^(16/17) 3770019193788344 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^29 3770019193788760 a001 313680677/832040 3770019193790051 a001 233/1149851*7881196^(10/11) 3770019193790098 a001 233/1149851*20633239^(6/7) 3770019193790106 a001 233/1149851*141422324^(10/13) 3770019193790106 a001 233/1149851*2537720636^(2/3) 3770019193790106 a001 233/1149851*45537549124^(10/17) 3770019193790106 a001 233/1149851*312119004989^(6/11) 3770019193790106 a001 233/1149851*14662949395604^(10/21) 3770019193790106 a001 233/1149851*(1/2+1/2*5^(1/2))^30 3770019193790106 a001 233/1149851*192900153618^(5/9) 3770019193790106 a001 233/1149851*28143753123^(3/5) 3770019193790106 a001 233/1149851*10749957122^(5/8) 3770019193790106 a001 233/1149851*4106118243^(15/23) 3770019193790106 a001 233/1149851*1568397607^(15/22) 3770019193790106 a001 233/1149851*599074578^(5/7) 3770019193790106 a001 233/1149851*228826127^(3/4) 3770019193790106 a001 233/1149851*87403803^(15/19) 3770019193790109 a001 233/1149851*33385282^(5/6) 3770019193790126 a001 233/1149851*12752043^(15/17) 3770019193790255 a001 233/1149851*4870847^(15/16) 3770019193794720 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^27 3770019193797571 a001 119815357/317811 3770019193801867 a001 233*103682^(1/24) 3770019193806791 a001 233/439204*20633239^(4/5) 3770019193806798 a001 233/439204*17393796001^(4/7) 3770019193806798 a001 233/439204*14662949395604^(4/9) 3770019193806798 a001 233/439204*(1/2+1/2*5^(1/2))^28 3770019193806798 a001 233/439204*505019158607^(1/2) 3770019193806798 a001 233/439204*73681302247^(7/13) 3770019193806798 a001 233/439204*10749957122^(7/12) 3770019193806798 a001 233/439204*4106118243^(14/23) 3770019193806798 a001 233/439204*1568397607^(7/11) 3770019193806798 a001 233/439204*599074578^(2/3) 3770019193806798 a001 233/439204*228826127^(7/10) 3770019193806799 a001 233/439204*87403803^(14/19) 3770019193806801 a001 233/439204*33385282^(7/9) 3770019193806817 a001 233/439204*12752043^(14/17) 3770019193806937 a001 233/439204*4870847^(7/8) 3770019193807815 a001 233/439204*1860498^(14/15) 3770019193815503 a001 46368/521*39603^(3/22) 3770019193830956 a004 Fibonacci(28)/Lucas(13)/(1/2+sqrt(5)/2) 3770019193837332 a004 Fibonacci(30)/Lucas(13)/(1/2+sqrt(5)/2)^3 3770019193838262 a004 Fibonacci(32)/Lucas(13)/(1/2+sqrt(5)/2)^5 3770019193838398 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2)^7 3770019193838418 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^9 3770019193838421 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^11 3770019193838421 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^13 3770019193838421 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^15 3770019193838421 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^17 3770019193838421 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^19 3770019193838421 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^21 3770019193838421 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^23 3770019193838421 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^25 3770019193838421 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^27 3770019193838421 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^29 3770019193838421 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^31 3770019193838421 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^33 3770019193838421 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^35 3770019193838421 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^37 3770019193838421 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^39 3770019193838421 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^41 3770019193838421 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^43 3770019193838421 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^45 3770019193838421 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^47 3770019193838421 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^49 3770019193838421 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^51 3770019193838421 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^53 3770019193838421 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^55 3770019193838421 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^57 3770019193838421 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^59 3770019193838421 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^61 3770019193838421 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^63 3770019193838421 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^65 3770019193838421 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^67 3770019193838421 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^69 3770019193838421 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^73 3770019193838421 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^71 3770019193838421 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^72 3770019193838421 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^70 3770019193838421 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^68 3770019193838421 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^66 3770019193838421 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^64 3770019193838421 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^62 3770019193838421 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^60 3770019193838421 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^58 3770019193838421 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^56 3770019193838421 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^54 3770019193838421 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^52 3770019193838421 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^50 3770019193838421 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^48 3770019193838421 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^46 3770019193838421 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^44 3770019193838421 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^42 3770019193838421 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^40 3770019193838421 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^38 3770019193838421 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^36 3770019193838421 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^34 3770019193838421 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^32 3770019193838421 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^30 3770019193838421 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^28 3770019193838421 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^26 3770019193838421 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^24 3770019193838421 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^22 3770019193838421 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^20 3770019193838421 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^18 3770019193838421 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^16 3770019193838421 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^14 3770019193838421 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^12 3770019193838422 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^10 3770019193838430 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^8 3770019193838482 a004 Fibonacci(33)/Lucas(13)/(1/2+sqrt(5)/2)^6 3770019193838837 a004 Fibonacci(31)/Lucas(13)/(1/2+sqrt(5)/2)^4 3770019193841272 a004 Fibonacci(29)/Lucas(13)/(1/2+sqrt(5)/2)^2 3770019193857965 a001 196418/521 3770019193892538 a001 75025/521*64079^(2/23) 3770019193896515 a001 233*39603^(1/22) 3770019193921210 a001 233/167761*141422324^(2/3) 3770019193921210 a001 233/167761*(1/2+1/2*5^(1/2))^26 3770019193921210 a001 233/167761*73681302247^(1/2) 3770019193921210 a001 233/167761*10749957122^(13/24) 3770019193921210 a001 233/167761*4106118243^(13/23) 3770019193921210 a001 233/167761*1568397607^(13/22) 3770019193921210 a001 233/167761*599074578^(13/21) 3770019193921210 a001 233/167761*228826127^(13/20) 3770019193921211 a001 233/167761*87403803^(13/19) 3770019193921213 a001 233/167761*33385282^(13/18) 3770019193921228 a001 233/167761*12752043^(13/17) 3770019193921339 a001 233/167761*4870847^(13/16) 3770019193922154 a001 233/167761*1860498^(13/15) 3770019193928142 a001 233/167761*710647^(13/14) 3770019193972377 a001 75025/521*(1/2+1/2*5^(1/2))^2 3770019193972377 a001 75025/521*10749957122^(1/24) 3770019193972377 a001 75025/521*4106118243^(1/23) 3770019193972377 a001 75025/521*1568397607^(1/22) 3770019193972377 a001 75025/521*599074578^(1/21) 3770019193972377 a001 75025/521*228826127^(1/20) 3770019193972377 a001 75025/521*87403803^(1/19) 3770019193972377 a001 75025/521*33385282^(1/18) 3770019193972378 a001 75025/521*12752043^(1/17) 3770019193972387 a001 75025/521*4870847^(1/16) 3770019193972449 a001 75025/521*1860498^(1/15) 3770019193972910 a001 75025/521*710647^(1/14) 3770019193976313 a001 75025/521*271443^(1/13) 3770019194001602 a001 75025/521*103682^(1/12) 3770019194137955 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^23 3770019194190899 a001 75025/521*39603^(1/11) 3770019194271911 a001 17480825/46368 3770019194596890 a001 28657/521*64079^(4/23) 3770019194611028 a001 233*15127^(1/20) 3770019194688029 a001 233/64079*439204^(8/9) 3770019194705357 a001 233/64079*7881196^(8/11) 3770019194705401 a001 233/64079*141422324^(8/13) 3770019194705401 a001 233/64079*2537720636^(8/15) 3770019194705401 a001 233/64079*45537549124^(8/17) 3770019194705401 a001 233/64079*14662949395604^(8/21) 3770019194705401 a001 233/64079*(1/2+1/2*5^(1/2))^24 3770019194705401 a001 233/64079*192900153618^(4/9) 3770019194705401 a001 233/64079*73681302247^(6/13) 3770019194705401 a001 233/64079*10749957122^(1/2) 3770019194705401 a001 233/64079*4106118243^(12/23) 3770019194705401 a001 233/64079*1568397607^(6/11) 3770019194705401 a001 233/64079*599074578^(4/7) 3770019194705401 a001 233/64079*228826127^(3/5) 3770019194705402 a001 233/64079*87403803^(12/19) 3770019194705404 a001 233/64079*33385282^(2/3) 3770019194705418 a001 233/64079*12752043^(12/17) 3770019194705520 a001 233/64079*4870847^(3/4) 3770019194706273 a001 233/64079*1860498^(4/5) 3770019194711800 a001 233/64079*710647^(6/7) 3770019194752632 a001 233/64079*271443^(12/13) 3770019194756568 a001 28657/521*(1/2+1/2*5^(1/2))^4 3770019194756568 a001 28657/521*23725150497407^(1/16) 3770019194756568 a001 28657/521*73681302247^(1/13) 3770019194756568 a001 28657/521*10749957122^(1/12) 3770019194756568 a001 28657/521*4106118243^(2/23) 3770019194756568 a001 28657/521*1568397607^(1/11) 3770019194756568 a001 28657/521*599074578^(2/21) 3770019194756568 a001 28657/521*228826127^(1/10) 3770019194756568 a001 28657/521*87403803^(2/19) 3770019194756568 a001 28657/521*33385282^(1/9) 3770019194756571 a001 28657/521*12752043^(2/17) 3770019194756588 a001 28657/521*4870847^(1/8) 3770019194756713 a001 28657/521*1860498^(2/15) 3770019194757634 a001 28657/521*710647^(1/7) 3770019194764440 a001 28657/521*271443^(2/13) 3770019194815018 a001 28657/521*103682^(1/6) 3770019195193611 a001 28657/521*39603^(2/11) 3770019195553550 a001 17711/521*15127^(1/4) 3770019195619924 a001 75025/521*15127^(1/10) 3770019195959041 a001 46368/521*15127^(3/20) 3770019196190994 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^21 3770019197109141 a001 6677081/17711 3770019198051663 a001 28657/521*15127^(1/5) 3770019198333472 a001 10946/521*24476^(2/7) 3770019198768937 r005 Im(z^2+c),c=-1/8+25/46*I,n=42 3770019199202099 a001 233/24476*64079^(22/23) 3770019199861816 r009 Im(z^3+c),c=-13/29+2/57*I,n=33 3770019199891976 a001 10946/521*64079^(6/23) 3770019200060843 a001 233*5778^(1/18) 3770019200080286 a001 233/24476*7881196^(2/3) 3770019200080326 a001 233/24476*312119004989^(2/5) 3770019200080326 a001 233/24476*(1/2+1/2*5^(1/2))^22 3770019200080326 a001 233/24476*10749957122^(11/24) 3770019200080326 a001 233/24476*4106118243^(11/23) 3770019200080326 a001 233/24476*1568397607^(1/2) 3770019200080326 a001 233/24476*599074578^(11/21) 3770019200080326 a001 233/24476*228826127^(11/20) 3770019200080326 a001 233/24476*87403803^(11/19) 3770019200080328 a001 233/24476*33385282^(11/18) 3770019200080341 a001 233/24476*12752043^(11/17) 3770019200080435 a001 233/24476*4870847^(11/16) 3770019200081125 a001 233/24476*1860498^(11/15) 3770019200086192 a001 233/24476*710647^(11/14) 3770019200123621 a001 233/24476*271443^(11/13) 3770019200127150 a001 10946/521*439204^(2/9) 3770019200131482 a001 10946/521*7881196^(2/11) 3770019200131493 a001 10946/521*141422324^(2/13) 3770019200131493 a001 10946/521*2537720636^(2/15) 3770019200131493 a001 10946/521*45537549124^(2/17) 3770019200131493 a001 10946/521*14662949395604^(2/21) 3770019200131493 a001 10946/521*(1/2+1/2*5^(1/2))^6 3770019200131493 a001 10946/521*10749957122^(1/8) 3770019200131493 a001 10946/521*4106118243^(3/23) 3770019200131493 a001 10946/521*1568397607^(3/22) 3770019200131493 a001 10946/521*599074578^(1/7) 3770019200131493 a001 10946/521*228826127^(3/20) 3770019200131493 a001 10946/521*87403803^(3/19) 3770019200131493 a001 10946/521*33385282^(1/6) 3770019200131497 a001 10946/521*12752043^(3/17) 3770019200131522 a001 10946/521*4870847^(3/16) 3770019200131710 a001 10946/521*1860498^(1/5) 3770019200133092 a001 10946/521*710647^(3/14) 3770019200143300 a001 10946/521*271443^(3/13) 3770019200219168 a001 10946/521*103682^(1/4) 3770019200401802 a001 233/24476*103682^(11/12) 3770019200787058 a001 10946/521*39603^(3/11) 3770019205074135 a001 10946/521*15127^(3/10) 3770019206519553 a001 75025/521*5778^(1/9) 3770019207887106 r005 Re(z^2+c),c=-41/98+17/32*I,n=47 3770019210262730 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^19 3770019211217770 m001 GAMMA(13/24)^(5^(1/2))+RenyiParking 3770019211217770 m001 RenyiParking+GAMMA(13/24)^sqrt(5) 3770019212308485 a001 46368/521*5778^(1/6) 3770019216555801 a001 2550418/6765 3770019218449711 q001 1177/3122 3770019218810363 a001 4181/521*9349^(8/19) 3770019219850920 a001 28657/521*5778^(2/9) 3770019221278063 a001 6765/521*5778^(7/18) 3770019222802622 a001 17711/521*5778^(5/18) 3770019230927208 a001 233/9349*24476^(20/21) 3770019234574415 a001 4181/521*24476^(8/21) 3770019235073627 m001 1/2*2^(1/2)*(Pi+1)+sin(1) 3770019235164700 r009 Re(z^3+c),c=-5/36+41/50*I,n=32 3770019236122221 a001 233/9349*64079^(20/23) 3770019236652420 a001 4181/521*64079^(8/23) 3770019236674935 r002 40th iterates of z^2 + 3770019236813445 a001 233/9349*167761^(4/5) 3770019236920604 a001 233/9349*20633239^(4/7) 3770019236920609 a001 233/9349*2537720636^(4/9) 3770019236920609 a001 233/9349*(1/2+1/2*5^(1/2))^20 3770019236920609 a001 233/9349*23725150497407^(5/16) 3770019236920609 a001 233/9349*505019158607^(5/14) 3770019236920609 a001 233/9349*73681302247^(5/13) 3770019236920609 a001 233/9349*28143753123^(2/5) 3770019236920609 a001 233/9349*10749957122^(5/12) 3770019236920609 a001 233/9349*4106118243^(10/23) 3770019236920609 a001 233/9349*1568397607^(5/11) 3770019236920609 a001 233/9349*599074578^(10/21) 3770019236920609 a001 233/9349*228826127^(1/2) 3770019236920609 a001 233/9349*87403803^(10/19) 3770019236920611 a001 233/9349*33385282^(5/9) 3770019236920623 a001 233/9349*12752043^(10/17) 3770019236920709 a001 233/9349*4870847^(5/8) 3770019236921335 a001 233/9349*1860498^(2/3) 3770019236925941 a001 233/9349*710647^(5/7) 3770019236959968 a001 233/9349*271443^(10/13) 3770019236971775 a001 4181/521*(1/2+1/2*5^(1/2))^8 3770019236971775 a001 4181/521*23725150497407^(1/8) 3770019236971775 a001 4181/521*505019158607^(1/7) 3770019236971775 a001 4181/521*73681302247^(2/13) 3770019236971775 a001 4181/521*10749957122^(1/6) 3770019236971775 a001 4181/521*4106118243^(4/23) 3770019236971775 a001 4181/521*1568397607^(2/11) 3770019236971775 a001 4181/521*599074578^(4/21) 3770019236971775 a001 4181/521*228826127^(1/5) 3770019236971775 a001 4181/521*87403803^(4/19) 3770019236971776 a001 4181/521*33385282^(2/9) 3770019236971781 a001 4181/521*12752043^(4/17) 3770019236971815 a001 4181/521*4870847^(1/4) 3770019236972066 a001 4181/521*1860498^(4/15) 3770019236973908 a001 4181/521*710647^(2/7) 3770019236987519 a001 4181/521*271443^(4/13) 3770019237088676 a001 4181/521*103682^(1/3) 3770019237212860 a001 233/9349*103682^(5/6) 3770019237773021 a001 10946/521*5778^(1/3) 3770019237845862 a001 4181/521*39603^(4/11) 3770019239105827 a001 233/9349*39603^(10/11) 3770019240428501 r005 Re(z^2+c),c=-9/52+37/59*I,n=20 3770019242162040 a001 233*2207^(1/16) 3770019243252776 r009 Im(z^3+c),c=-13/25+1/6*I,n=42 3770019243561965 a001 4181/521*15127^(2/5) 3770019245765071 m001 Kolakoski^MinimumGamma/Ei(1) 3770019250648528 r005 Im(z^2+c),c=9/94+25/61*I,n=21 3770019257386721 r009 Im(z^3+c),c=-3/50+3/7*I,n=12 3770019260319226 m001 (5^(1/2)+cos(1))/(-LambertW(1)+Conway) 3770019266474639 r002 4th iterates of z^2 + 3770019268493141 m001 (Zeta(1,2)+CopelandErdos)/(Si(Pi)-gamma(2)) 3770019277985598 a007 Real Root Of 294*x^4+393*x^3+610*x^2-834*x-386 3770019287160481 a001 4181/521*5778^(4/9) 3770019290721948 a001 75025/521*2207^(1/8) 3770019296302806 a005 (1/cos(1/77*Pi))^1594 3770019306711842 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^17 3770019315572690 a001 1597/521*3571^(10/17) 3770019329965469 m001 (-GlaisherKinkelin+ZetaP(2))/(1+Zeta(3)) 3770019335258274 m001 ln(5)^Backhouse*ln(5)^MertensB3 3770019338612077 a001 46368/521*2207^(3/16) 3770019344945662 m001 (sin(1/12*Pi)+CareFree)/(GAMMA(2/3)-ln(3)) 3770019349512056 m001 (cos(1)+exp(-1/2*Pi))/(polylog(4,1/2)+Porter) 3770019349845201 a001 974173/2584 3770019354607534 r005 Re(z^2+c),c=-61/118+5/61*I,n=38 3770019371516076 r005 Im(z^2+c),c=23/90+19/42*I,n=25 3770019371932033 m001 ArtinRank2-Chi(1)*GlaisherKinkelin 3770019384675315 r002 27th iterates of z^2 + 3770019388255712 a001 28657/521*2207^(1/4) 3770019395042785 a001 47/3*832040^(7/30) 3770019428605649 m001 (-FeigenbaumB+Gompertz)/(1-Artin) 3770019433308613 a001 17711/521*2207^(5/16) 3770019435915694 a007 Real Root Of 646*x^4-959*x^3-530*x^2-883*x-322 3770019437016449 r005 Im(z^2+c),c=-21/74+32/61*I,n=7 3770019448564505 a001 233/3571*9349^(18/19) 3770019451887776 a001 75025/1364*322^(1/3) 3770019464729691 g007 Psi(2,3/5)-Psi(2,1/12)-Psi(2,2/11)-Psi(13/10) 3770019466777062 a001 1597/521*9349^(10/19) 3770019476906318 r009 Re(z^3+c),c=-31/58+17/63*I,n=35 3770019483493721 r002 55th iterates of z^2 + 3770019483549030 r005 Re(z^2+c),c=-35/46+1/18*I,n=36 3770019484033624 a001 233/3571*24476^(6/7) 3770019486482128 a001 1597/521*24476^(10/21) 3770019486933107 r009 Re(z^3+c),c=-49/94+17/64*I,n=15 3770019488709136 a001 233/3571*64079^(18/23) 3770019489079635 a001 1597/521*64079^(10/23) 3770019489414656 a001 233/3571*439204^(2/3) 3770019489425247 a001 1597/521*167761^(2/5) 3770019489427652 a001 233/3571*7881196^(6/11) 3770019489427685 a001 233/3571*141422324^(6/13) 3770019489427686 a001 233/3571*2537720636^(2/5) 3770019489427686 a001 233/3571*45537549124^(6/17) 3770019489427686 a001 233/3571*14662949395604^(2/7) 3770019489427686 a001 233/3571*(1/2+1/2*5^(1/2))^18 3770019489427686 a001 233/3571*192900153618^(1/3) 3770019489427686 a001 233/3571*10749957122^(3/8) 3770019489427686 a001 233/3571*4106118243^(9/23) 3770019489427686 a001 233/3571*1568397607^(9/22) 3770019489427686 a001 233/3571*599074578^(3/7) 3770019489427686 a001 233/3571*228826127^(9/20) 3770019489427686 a001 233/3571*87403803^(9/19) 3770019489427687 a001 233/3571*33385282^(1/2) 3770019489427698 a001 233/3571*12752043^(9/17) 3770019489427775 a001 233/3571*4870847^(9/16) 3770019489428339 a001 233/3571*1860498^(3/5) 3770019489432485 a001 233/3571*710647^(9/14) 3770019489463109 a001 233/3571*271443^(9/13) 3770019489478826 a001 1597/521*20633239^(2/7) 3770019489478829 a001 1597/521*2537720636^(2/9) 3770019489478829 a001 1597/521*312119004989^(2/11) 3770019489478829 a001 1597/521*(1/2+1/2*5^(1/2))^10 3770019489478829 a001 1597/521*28143753123^(1/5) 3770019489478829 a001 1597/521*10749957122^(5/24) 3770019489478829 a001 1597/521*4106118243^(5/23) 3770019489478829 a001 1597/521*1568397607^(5/22) 3770019489478829 a001 1597/521*599074578^(5/21) 3770019489478829 a001 1597/521*228826127^(1/4) 3770019489478829 a001 1597/521*87403803^(5/19) 3770019489478830 a001 1597/521*33385282^(5/18) 3770019489478836 a001 1597/521*12752043^(5/17) 3770019489478879 a001 1597/521*4870847^(5/16) 3770019489479192 a001 1597/521*1860498^(1/3) 3770019489481495 a001 1597/521*710647^(5/14) 3770019489498508 a001 1597/521*271443^(5/13) 3770019489624954 a001 1597/521*103682^(5/12) 3770019489690711 a001 233/3571*103682^(3/4) 3770019490380213 a001 10946/521*2207^(3/8) 3770019490571438 a001 1597/521*39603^(5/11) 3770019490632108 r005 Im(z^2+c),c=-28/23+2/39*I,n=54 3770019491394382 a001 233/3571*39603^(9/11) 3770019497716567 a001 1597/521*15127^(1/2) 3770019500331756 r002 46th iterates of z^2 + 3770019504255614 a001 233/3571*15127^(9/10) 3770019512371446 m001 1/ln(GAMMA(23/24))/OneNinth/cos(Pi/12) 3770019513740494 a007 Real Root Of 270*x^4-609*x^3+869*x^2-513*x-355 3770019515986453 a001 6765/521*2207^(7/16) 3770019516286909 a001 2584/521*2207^(9/16) 3770019530911012 r002 54th iterates of z^2 + 3770019530952596 m003 1/72+Sqrt[5]/2+2/ProductLog[1/2+Sqrt[5]/2] 3770019550959057 l006 ln(1271/1853) 3770019552214715 a001 1597/521*5778^(5/9) 3770019552897298 r002 43th iterates of z^2 + 3770019572719283 a001 233*843^(1/14) 3770019575253924 r009 Re(z^3+c),c=-1/25+8/57*I,n=2 3770019578382904 r009 Im(z^3+c),c=-25/62+16/49*I,n=12 3770019590995039 g005 GAMMA(3/11)/Pi/csc(1/8*Pi)/GAMMA(9/10) 3770019596654817 m001 (Niven-Thue)/(Pi^(1/2)+Bloch) 3770019598488783 r009 Im(z^3+c),c=-49/110+3/10*I,n=42 3770019599107363 a001 610/521*1364^(4/5) 3770019620557991 m001 (-Rabbit+Robbin)/(BesselI(0,1)-gamma(2)) 3770019620621736 m001 1/Riemann3rdZero*Backhouse*ln(sqrt(5))^2 3770019623970078 a001 4181/521*2207^(1/2) 3770019632316946 a007 Real Root Of 222*x^4+787*x^3-361*x^2-423*x+860 3770019638167671 r005 Re(z^2+c),c=3/23+33/52*I,n=10 3770019660285342 r005 Re(z^2+c),c=-55/106+1/35*I,n=39 3770019660683143 b008 9*(E+ArcSec[10]) 3770019681640453 a001 75025/2207*322^(5/12) 3770019686160071 a007 Real Root Of -773*x^4+537*x^3+34*x^2+346*x+170 3770019692422888 a007 Real Root Of -261*x^4-959*x^3+163*x^2+111*x-560 3770019697784914 m001 ln(sin(1)*Trott2nd) 3770019710503333 r005 Im(z^2+c),c=-69/122+31/57*I,n=15 3770019718458666 m001 1/GAMMA(5/6)^2/ln(FeigenbaumB)*log(1+sqrt(2)) 3770019719612744 a007 Real Root Of -359*x^4+543*x^3+603*x^2+850*x-428 3770019723217357 m008 (3/4*Pi^6+5/6)/(1/5*Pi^6-4/5) 3770019726509532 m005 (-15/4+1/4*5^(1/2))/(2*3^(1/2)+5) 3770019727438145 m005 (1/2*gamma-7/8)/(2/5*Zeta(3)-7/11) 3770019742398837 m005 (1/2*Zeta(3)-2/11)/(6*3^(1/2)+8/11) 3770019748987394 r009 Im(z^3+c),c=-45/94+17/62*I,n=42 3770019785033292 r002 35i'th iterates of 2*x/(1-x^2) of 3770019803824889 r005 Im(z^2+c),c=15/44+8/61*I,n=26 3770019807001631 m001 (gamma+GaussAGM)/(-MertensB2+TwinPrimes) 3770019810508450 a007 Real Root Of 263*x^4-414*x^3+275*x^2+166*x-4 3770019813694212 m004 -6+125*Pi-(5*Sqrt[5]*Pi)/4-Tan[Sqrt[5]*Pi] 3770019848277143 r009 Re(z^3+c),c=-43/82+17/57*I,n=35 3770019882810293 m002 -1-Pi^5+E^Pi*Cosh[Pi]+ProductLog[Pi] 3770019888023970 r005 Re(z^2+c),c=-15/34+23/48*I,n=57 3770019925097954 m005 (1/2*gamma-5)/(3/7*Catalan+6/7) 3770019933795603 a007 Real Root Of 772*x^4-249*x^3-820*x^2-738*x+29 3770019939734908 m008 (2/5*Pi+1/4)/(2/5*Pi^4+1) 3770019946346157 a007 Real Root Of 206*x^4+763*x^3-48*x^2+40*x+103 3770019951836472 a001 75025/521*843^(1/7) 3770019957749212 r002 49th iterates of z^2 + 3770019965574026 a001 281/329*34^(8/19) 3770019967783891 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^15 3770019970654508 p004 log(37493/25717) 3770019973226746 a001 1597/521*2207^(5/8) 3770019976764233 m001 exp(Zeta(9))*Zeta(5)^2/log(1+sqrt(2))^2 3770020005547541 a007 Real Root Of 821*x^4+282*x^3+576*x^2-641*x-325 3770020013632421 m005 (1/3*5^(1/2)-1/7)/(2/9*Pi+9/10) 3770020031956708 p001 sum(1/(451*n+279)/(8^n),n=0..infinity) 3770020038115949 a007 Real Root Of -476*x^4+708*x^3+996*x^2+308*x-286 3770020062346742 r005 Re(z^2+c),c=-55/106+1/35*I,n=41 3770020079649168 a001 610/3*3571^(4/53) 3770020085488325 r005 Im(z^2+c),c=-6/17+23/38*I,n=43 3770020104749106 r002 45th iterates of z^2 + 3770020134160951 a001 1568397607*144^(3/17) 3770020141985486 h001 (-3*exp(5)-2)/(-8*exp(5)+1) 3770020145229147 r009 Im(z^3+c),c=-13/46+5/13*I,n=9 3770020147800210 a007 Real Root Of -705*x^4+715*x^3+363*x^2+207*x+79 3770020151255229 r005 Im(z^2+c),c=23/82+16/39*I,n=22 3770020153565964 r002 3th iterates of z^2 + 3770020163447608 r005 Im(z^2+c),c=-1/58+15/31*I,n=26 3770020176815560 r002 37th iterates of z^2 + 3770020178030232 m005 (1/2*Pi+1/3)/(4/7*Zeta(3)-2/11) 3770020178093243 m001 (ZetaP(2)-ZetaQ(2))/(GAMMA(7/12)-Bloch) 3770020189558823 r005 Im(z^2+c),c=-73/126+25/51*I,n=11 3770020191498052 r005 Im(z^2+c),c=-3/31+29/55*I,n=55 3770020233840310 a007 Real Root Of 261*x^4+826*x^3-836*x^2-699*x+782 3770020237109579 a001 1/46347*1346269^(15/41) 3770020239982910 r002 9th iterates of z^2 + 3770020256296149 a001 5/76*521^(12/43) 3770020261920513 s002 sum(A159051[n]/(exp(2*pi*n)-1),n=1..infinity) 3770020263424518 a001 372101/987 3770020277903047 r002 58th iterates of z^2 + 3770020280699346 m005 (1/2*Zeta(3)+1/5)/(4/7*exp(1)+4/7) 3770020291992788 a001 5^(47/57) 3770020292967129 m005 (2/3*Catalan-5/6)/(4*2^(1/2)+1/4) 3770020304063801 m001 Zeta(1,2)^FeigenbaumDelta/ReciprocalLucas 3770020315099764 r005 Im(z^2+c),c=-11/114+29/55*I,n=42 3770020320371618 r009 Im(z^3+c),c=-13/106+23/31*I,n=13 3770020324630619 m001 (KhinchinLevy+Salem)/(exp(-1/2*Pi)-GaussAGM) 3770020327129555 a001 34/167761*47^(41/54) 3770020330283920 a001 46368/521*843^(3/14) 3770020342598156 a001 98209/2889*322^(5/12) 3770020343369702 m004 20*Sec[Sqrt[5]*Pi]^2+Tan[Sqrt[5]*Pi] 3770020352759767 r002 8th iterates of z^2 + 3770020354448574 r009 Im(z^3+c),c=-7/16+11/36*I,n=47 3770020357336122 r005 Im(z^2+c),c=2/7+12/49*I,n=31 3770020358568609 r009 Im(z^3+c),c=-17/66+33/49*I,n=5 3770020361748464 m001 Pi/(GaussAGM-HeathBrownMoroz) 3770020365763325 r005 Im(z^2+c),c=29/114+16/57*I,n=26 3770020365921794 a003 -1-2*cos(13/27*Pi)+cos(7/24*Pi)+cos(11/24*Pi) 3770020383923964 r005 Im(z^2+c),c=11/56+20/59*I,n=14 3770020391645592 r005 Re(z^2+c),c=-57/110+2/21*I,n=19 3770020394186499 m001 1/exp((2^(1/3)))^2*LaplaceLimit^2/Zeta(1,2) 3770020412179700 m001 (BesselJ(1,1)-Rabbit)/(Robbin+ZetaQ(2)) 3770020427174284 m008 (1/3*Pi^3+3/5)/(Pi^3-2) 3770020429087102 r009 Re(z^3+c),c=-1/58+26/31*I,n=44 3770020429893008 h001 (1/8*exp(1)+2/7)/(1/2*exp(1)+3/10) 3770020439030604 a001 514229/15127*322^(5/12) 3770020440157331 s002 sum(A053520[n]/(exp(2*pi*n)-1),n=1..infinity) 3770020443181876 m001 (gamma+sin(1))/(-Paris+Weierstrass) 3770020453099909 a001 1346269/39603*322^(5/12) 3770020455152593 a001 1762289/51841*322^(5/12) 3770020455452076 a001 9227465/271443*322^(5/12) 3770020455495770 a001 24157817/710647*322^(5/12) 3770020455502145 a001 31622993/930249*322^(5/12) 3770020455503075 a001 165580141/4870847*322^(5/12) 3770020455503210 a001 433494437/12752043*322^(5/12) 3770020455503230 a001 567451585/16692641*322^(5/12) 3770020455503233 a001 2971215073/87403803*322^(5/12) 3770020455503234 a001 7778742049/228826127*322^(5/12) 3770020455503234 a001 10182505537/299537289*322^(5/12) 3770020455503234 a001 53316291173/1568397607*322^(5/12) 3770020455503234 a001 139583862445/4106118243*322^(5/12) 3770020455503234 a001 182717648081/5374978561*322^(5/12) 3770020455503234 a001 956722026041/28143753123*322^(5/12) 3770020455503234 a001 2504730781961/73681302247*322^(5/12) 3770020455503234 a001 3278735159921/96450076809*322^(5/12) 3770020455503234 a001 10610209857723/312119004989*322^(5/12) 3770020455503234 a001 4052739537881/119218851371*322^(5/12) 3770020455503234 a001 387002188980/11384387281*322^(5/12) 3770020455503234 a001 591286729879/17393796001*322^(5/12) 3770020455503234 a001 225851433717/6643838879*322^(5/12) 3770020455503234 a001 1135099622/33391061*322^(5/12) 3770020455503234 a001 32951280099/969323029*322^(5/12) 3770020455503234 a001 12586269025/370248451*322^(5/12) 3770020455503234 a001 1201881744/35355581*322^(5/12) 3770020455503235 a001 1836311903/54018521*322^(5/12) 3770020455503242 a001 701408733/20633239*322^(5/12) 3770020455503294 a001 66978574/1970299*322^(5/12) 3770020455503650 a001 102334155/3010349*322^(5/12) 3770020455506085 a001 39088169/1149851*322^(5/12) 3770020455522774 a001 196452/5779*322^(5/12) 3770020455637166 a001 5702887/167761*322^(5/12) 3770020456421222 a001 2178309/64079*322^(5/12) 3770020459536535 l006 ln(21/911) 3770020461795218 a001 208010/6119*322^(5/12) 3770020462226075 a007 Real Root Of 349*x^4-810*x^3-720*x^2-794*x+31 3770020468011742 m001 GAMMA(1/3)*exp(Porter)/GAMMA(7/24) 3770020470634215 l006 ln(5868/8555) 3770020471073709 r005 Im(z^2+c),c=9/98+26/63*I,n=21 3770020480514721 a001 167761*514229^(7/17) 3770020484624537 h001 (1/5*exp(1)+7/9)/(4/11*exp(2)+9/11) 3770020495196550 r005 Re(z^2+c),c=-14/27+1/23*I,n=49 3770020498629138 a001 317811/9349*322^(5/12) 3770020505888895 r005 Im(z^2+c),c=3/26+9/23*I,n=13 3770020507393976 m001 (cos(1/5*Pi)+ln(2))/(arctan(1/3)+ZetaP(4)) 3770020507931135 a007 Real Root Of 18*x^4+691*x^3+492*x^2+952*x+846 3770020518276475 m001 (ln(gamma)+arctan(1/2))/(GAMMA(5/6)-Magata) 3770020518882174 r002 47th iterates of z^2 + 3770020519231640 a007 Real Root Of 563*x^4+561*x^3-144*x^2-632*x+24 3770020523193050 m001 ln(Magata)^2/Si(Pi)/Porter^2 3770020528251511 a003 sin(Pi*7/71)-sin(Pi*16/67) 3770020530967515 r002 43th iterates of z^2 + 3770020533880903 q001 918/2435 3770020544924959 r002 53th iterates of z^2 + 3770020561587033 a001 2/47*123^(41/44) 3770020569409408 m001 (Porter+Sarnak)/(GAMMA(19/24)-Lehmer) 3770020569556295 r005 Re(z^2+c),c=-61/118+5/61*I,n=50 3770020574960432 r005 Im(z^2+c),c=-5/28+14/25*I,n=25 3770020590102435 r009 Im(z^3+c),c=-11/29+15/44*I,n=26 3770020593053362 a007 Real Root Of 266*x^4+926*x^3-463*x^2-765*x-420 3770020593572129 a001 5778*1836311903^(7/17) 3770020594267604 a007 Real Root Of 926*x^4-470*x^3+262*x^2-567*x+183 3770020605577984 r002 18th iterates of z^2 + 3770020606748811 r005 Re(z^2+c),c=-95/74+1/21*I,n=50 3770020607055535 r005 Re(z^2+c),c=-105/82+3/62*I,n=50 3770020617100233 m001 (gamma(1)-Gompertz)/(MadelungNaCl+Trott2nd) 3770020619257485 m001 1/OneNinth/ln(Riemann2ndZero)/cos(Pi/5) 3770020619307534 r002 12th iterates of z^2 + 3770020622384167 m001 ln(Pi)+BesselI(1,2)+MertensB2 3770020626902407 m001 1/exp(GAMMA(5/12))^2/Lehmer^2*cos(Pi/12)^2 3770020634269713 r005 Re(z^2+c),c=5/126+16/53*I,n=22 3770020639033322 h001 (1/3*exp(1)+1/3)/(7/8*exp(1)+10/11) 3770020639033322 m005 (1/3*exp(1)+1/3)/(7/8*exp(1)+10/11) 3770020664045268 m001 (cos(1/12*Pi)+GAMMA(17/24))/(Landau+ZetaQ(2)) 3770020665989033 m001 (exp(Pi)+BesselK(1,1))/(Stephens+ZetaQ(2)) 3770020671110975 m001 (ln(Pi)-Zeta(1,2))/(PlouffeB+ZetaP(4)) 3770020683309300 m001 (Sarnak+ZetaQ(3))/(PlouffeB+Porter) 3770020689242830 m001 (1+Grothendieck)/(-MinimumGamma+Sarnak) 3770020690771606 b008 CosIntegral[1+7*Sqrt[6]] 3770020704379556 a007 Real Root Of -684*x^4+958*x^3-630*x^2+91*x+189 3770020710484911 a001 28657/521*843^(2/7) 3770020712710882 m001 (1+Shi(1))/(Pi*2^(1/2)/GAMMA(3/4)+FeigenbaumC) 3770020712819925 m001 GolombDickman^Si(Pi)/(Shi(1)^Si(Pi)) 3770020720149241 m005 (1/2*3^(1/2)+3/4)/(1/9*2^(1/2)-1/5) 3770020722320544 r005 Re(z^2+c),c=23/56+13/63*I,n=31 3770020724910277 l006 ln(4597/6702) 3770020743739540 r005 Im(z^2+c),c=-15/26+48/125*I,n=10 3770020751092597 a001 121393/3571*322^(5/12) 3770020751205572 r005 Im(z^2+c),c=-41/74+35/61*I,n=7 3770020758587406 m005 (1/2*gamma+10/11)/(2/11*Pi-8/9) 3770020761141055 m004 2+3*Sqrt[5]*Pi-(Sqrt[5]*Sinh[Sqrt[5]*Pi])/Pi 3770020763716924 a007 Real Root Of 250*x^4+985*x^3+288*x^2+429*x-199 3770020763838927 r002 45th iterates of z^2 + 3770020765742750 r002 48th iterates of z^2 + 3770020770777800 a007 Real Root Of 237*x^4+858*x^3-289*x^2-506*x+298 3770020794384819 r005 Im(z^2+c),c=-5/58+19/36*I,n=24 3770020800956317 s001 sum(exp(-2*Pi)^(n-1)*A261473[n],n=1..infinity) 3770020821977658 m001 1/MinimumGamma^2*Magata/exp((3^(1/3))) 3770020826413155 r005 Im(z^2+c),c=-59/94+5/63*I,n=26 3770020844010362 a007 Real Root Of -950*x^4+909*x^3-184*x^2+724*x+367 3770020848033508 a007 Real Root Of 121*x^4+361*x^3-296*x^2+193*x-165 3770020858545794 p001 sum(1/(473*n+266)/(128^n),n=0..infinity) 3770020864027618 r009 Re(z^3+c),c=-11/26+11/56*I,n=31 3770020892032496 a007 Real Root Of -729*x^4+423*x^3+337*x^2+752*x+273 3770020897128909 a001 1364/121393*6765^(7/51) 3770020910414154 p003 LerchPhi(1/3,2,17/104) 3770020913124408 r005 Re(z^2+c),c=-5/8+49/134*I,n=60 3770020921312192 m001 1/MadelungNaCl^2*Cahen*exp((3^(1/3)))^2 3770020932821384 r002 40th iterates of z^2 + 3770020933340786 a001 3/11*29^(5/52) 3770020936402298 m001 Zeta(1,2)^2*CopelandErdos^2/exp(sin(Pi/12)) 3770020939710798 r005 Im(z^2+c),c=-13/82+14/25*I,n=52 3770020941887899 a001 233/1364*3571^(16/17) 3770020945133999 m001 (HeathBrownMoroz-Sarnak)/(Tribonacci+ZetaP(4)) 3770020998062515 r005 Re(z^2+c),c=-55/106+1/35*I,n=43 3770021004470775 m001 ln(GAMMA(1/12))^2*OneNinth^2/GAMMA(2/3)^2 3770021006342665 a007 Real Root Of -836*x^4+735*x^3+974*x^2+971*x-527 3770021007394116 r005 Im(z^2+c),c=1/122+29/62*I,n=27 3770021011500461 a001 610/521*3571^(12/17) 3770021029407688 a007 Real Root Of 372*x^4-534*x^3+958*x^2-230*x-259 3770021042904002 m001 Landau+MasserGramainDelta+OrthogonalArrays 3770021047235610 r002 46th iterates of z^2 + 3770021048392978 a007 Real Root Of -456*x^4+486*x^3+726*x^2+716*x+202 3770021062823262 a001 47/24157817*591286729879^(13/21) 3770021063173965 a001 47/46368*24157817^(13/21) 3770021066612031 r004 Im(z^2+c),c=-7/46+5/9*I,z(0)=I,n=59 3770021071632442 r005 Re(z^2+c),c=-13/27+19/55*I,n=28 3770021086095204 a001 17711/521*843^(5/14) 3770021096636646 s001 sum(exp(-2*Pi)^(n-1)*A174395[n],n=1..infinity) 3770021102913312 r009 Im(z^3+c),c=-17/50+4/7*I,n=3 3770021105418909 b008 ArcCsch[ProductLog[11*Pi]] 3770021124562326 r002 49th iterates of z^2 + 3770021125781122 m001 LambertW(1)/(HardHexagonsEntropy^GAMMA(3/4)) 3770021128227312 r009 Re(z^3+c),c=-7/15+17/32*I,n=18 3770021138021403 r005 Re(z^2+c),c=-55/106+1/35*I,n=37 3770021151755247 r009 Re(z^3+c),c=-8/21+33/47*I,n=16 3770021153186279 r005 Re(z^2+c),c=-17/40+27/62*I,n=16 3770021156642503 m003 -3/8+(3*Sqrt[5])/8-E^(1/2+Sqrt[5]/2)/6 3770021158114551 m001 (Kac-Mills)/(ArtinRank2-FeigenbaumAlpha) 3770021173524792 l006 ln(3326/4849) 3770021183815000 a001 233/1364*9349^(16/19) 3770021184795833 m001 cos(Pi/5)^2*arctan(1/2)^2/exp(log(2+sqrt(3))) 3770021192945789 a001 610/521*9349^(12/19) 3770021196340688 r005 Re(z^2+c),c=5/126+16/53*I,n=25 3770021211020139 r005 Re(z^2+c),c=25/64+21/59*I,n=36 3770021215343121 a001 233/1364*24476^(16/21) 3770021216591879 a001 610/521*24476^(4/7) 3770021216947016 a001 10946/843*322^(7/12) 3770021219499133 a001 233/1364*64079^(16/23) 3770021219708889 a001 610/521*64079^(12/23) 3770021220137845 a001 233/1364*(1/2+1/2*5^(1/2))^16 3770021220137845 a001 233/1364*23725150497407^(1/4) 3770021220137845 a001 233/1364*73681302247^(4/13) 3770021220137845 a001 233/1364*10749957122^(1/3) 3770021220137845 a001 233/1364*4106118243^(8/23) 3770021220137845 a001 233/1364*1568397607^(4/11) 3770021220137845 a001 233/1364*599074578^(8/21) 3770021220137845 a001 233/1364*228826127^(2/5) 3770021220137845 a001 233/1364*87403803^(8/19) 3770021220137846 a001 233/1364*33385282^(4/9) 3770021220137855 a001 233/1364*12752043^(8/17) 3770021220137924 a001 233/1364*4870847^(1/2) 3770021220138425 a001 233/1364*1860498^(8/15) 3770021220142110 a001 233/1364*710647^(4/7) 3770021220169332 a001 233/1364*271443^(8/13) 3770021220179236 a001 610/521*439204^(4/9) 3770021220187900 a001 610/521*7881196^(4/11) 3770021220187922 a001 610/521*141422324^(4/13) 3770021220187922 a001 610/521*2537720636^(4/15) 3770021220187922 a001 610/521*45537549124^(4/17) 3770021220187922 a001 610/521*817138163596^(4/19) 3770021220187922 a001 610/521*14662949395604^(4/21) 3770021220187922 a001 610/521*(1/2+1/2*5^(1/2))^12 3770021220187922 a001 610/521*192900153618^(2/9) 3770021220187922 a001 610/521*73681302247^(3/13) 3770021220187922 a001 610/521*10749957122^(1/4) 3770021220187922 a001 610/521*4106118243^(6/23) 3770021220187922 a001 610/521*1568397607^(3/11) 3770021220187922 a001 610/521*599074578^(2/7) 3770021220187922 a001 610/521*228826127^(3/10) 3770021220187922 a001 610/521*87403803^(6/19) 3770021220187923 a001 610/521*33385282^(1/3) 3770021220187930 a001 610/521*12752043^(6/17) 3770021220187982 a001 610/521*4870847^(3/8) 3770021220188358 a001 610/521*1860498^(2/5) 3770021220191121 a001 610/521*710647^(3/7) 3770021220211537 a001 610/521*271443^(6/13) 3770021220273561 s001 sum(exp(-2*Pi)^n*A268329[n],n=1..infinity) 3770021220363273 a001 610/521*103682^(1/2) 3770021220371645 a001 233/1364*103682^(2/3) 3770021221499053 a001 610/521*39603^(6/11) 3770021221886020 a001 233/1364*39603^(8/11) 3770021222363831 s002 sum(A202744[n]/(exp(2*pi*n)-1),n=1..infinity) 3770021230073212 a001 610/521*15127^(3/5) 3770021233318232 a001 233/1364*15127^(4/5) 3770021253424048 m001 cosh(1)*cos(Pi/5)*ln(gamma)^2 3770021277136292 r005 Im(z^2+c),c=17/66+15/44*I,n=10 3770021279185586 m001 (CareFree-Sarnak)/(2*Pi/GAMMA(5/6)-Bloch) 3770021288987266 a007 Real Root Of -233*x^4-611*x^3+966*x^2-186*x-102 3770021295471020 a001 610/521*5778^(2/3) 3770021302515185 r005 Im(z^2+c),c=-5/122+29/53*I,n=16 3770021305809921 r002 16th iterates of z^2 + 3770021320515309 a001 233/1364*5778^(8/9) 3770021322329574 b008 Pi+(4*Csc[2])/7 3770021329865189 a007 Real Root Of 900*x^4+969*x^3+959*x^2-94*x-138 3770021335458299 r005 Im(z^2+c),c=-13/90+31/55*I,n=32 3770021338582303 r005 Re(z^2+c),c=-31/56+22/61*I,n=9 3770021355610906 m008 (4/5*Pi^3-3/5)/(1/5*Pi^5+3) 3770021356215099 m001 (2^(1/3)+Niven)/(Rabbit+ZetaP(4)) 3770021356672284 h001 (1/8*exp(2)+5/11)/(2/5*exp(2)+7/10) 3770021376994113 r005 Im(z^2+c),c=-11/106+9/17*I,n=35 3770021377919244 m001 BesselK(1,1)*ln(FeigenbaumC)/cos(Pi/12) 3770021382805206 r005 Re(z^2+c),c=7/32+15/38*I,n=34 3770021398917971 m009 (20/3*Catalan+5/6*Pi^2+4)/(5/12*Pi^2+3/4) 3770021407062780 r005 Im(z^2+c),c=3/11+13/58*I,n=9 3770021423659085 r005 Re(z^2+c),c=1/4+1/25*I,n=6 3770021425543937 r005 Re(z^2+c),c=-14/27+1/23*I,n=51 3770021429829511 m009 (2*Pi^2-1/6)/(3*Psi(1,2/3)-4) 3770021436474006 r005 Im(z^2+c),c=-13/90+29/53*I,n=34 3770021463402738 r005 Re(z^2+c),c=-57/110+19/39*I,n=52 3770021467384526 r009 Im(z^3+c),c=-13/27+3/13*I,n=8 3770021472458948 a007 Real Root Of 96*x^4-731*x^3-662*x^2-740*x-226 3770021473724239 a001 10946/521*843^(3/7) 3770021478179775 r005 Re(z^2+c),c=-157/122+2/59*I,n=38 3770021480771312 m001 (Ei(1)-ErdosBorwein)/(StronglyCareFree-Trott) 3770021480961722 a007 Real Root Of 93*x^4+387*x^3+98*x^2-383*x-887 3770021482742371 a007 Real Root Of 371*x^4+127*x^3+396*x^2-825*x-368 3770021485450754 m001 1/FeigenbaumKappa/ln(CopelandErdos)/GAMMA(2/3) 3770021492327148 m001 (Pi+3^(1/2))/(Conway-Trott) 3770021493462230 a001 322/1597*75025^(6/23) 3770021500961103 r005 Re(z^2+c),c=-61/118+5/61*I,n=52 3770021506704537 r005 Im(z^2+c),c=25/78+3/11*I,n=17 3770021508402669 m005 (1/2*gamma-11/12)/(7/12*Pi-1/6) 3770021511661954 r005 Im(z^2+c),c=-29/106+17/29*I,n=56 3770021523049020 a007 Real Root Of 257*x^4+859*x^3-562*x^2-382*x+659 3770021524545397 h001 (3/11*exp(2)+4/5)/(10/11*exp(2)+3/4) 3770021526069656 r002 27th iterates of z^2 + 3770021533189922 r002 50th iterates of z^2 + 3770021546976671 m005 (2/5*Pi+5/6)/(1/5*exp(1)+5) 3770021549481505 r005 Re(z^2+c),c=-13/28+13/43*I,n=13 3770021556756815 m005 (2/3*exp(1)-5)/(2*gamma-2) 3770021556777133 l006 ln(5381/7845) 3770021564888259 s002 sum(A220806[n]/(exp(2*pi*n)-1),n=1..infinity) 3770021571422730 r005 Im(z^2+c),c=-29/78+3/44*I,n=6 3770021572726469 r002 58th iterates of z^2 + 3770021575935990 r009 Im(z^3+c),c=-16/31+10/63*I,n=38 3770021586582930 r005 Im(z^2+c),c=-23/42+10/23*I,n=14 3770021599930340 a007 Real Root Of x^4-283*x^3-881*x^2+859*x+394 3770021602524874 m006 (1/Pi-1/5)/(1/4*ln(Pi)-3/5) 3770021649866984 s002 sum(A192529[n]/(exp(2*pi*n)-1),n=1..infinity) 3770021650051775 m009 (1/5*Psi(1,2/3)+2)/(2/3*Psi(1,1/3)+1/5) 3770021658793726 r005 Re(z^2+c),c=-7/20+25/46*I,n=18 3770021664247287 s002 sum(A220542[n]/(exp(2*pi*n)-1),n=1..infinity) 3770021664666215 r002 51th iterates of z^2 + 3770021675898620 a007 Real Root Of 256*x^4+765*x^3-665*x^2+75*x-989 3770021676073171 s001 sum(1/10^(n-1)*A127429[n]/n!^2,n=1..infinity) 3770021680098868 a007 Real Root Of 805*x^4+56*x^3+224*x^2-700*x-309 3770021683218397 m001 Bloch+Niven^(5^(1/2)) 3770021692099631 r005 Re(z^2+c),c=23/66+11/50*I,n=8 3770021710530815 m005 (1/2*Zeta(3)-3/11)/(1/5+3/10*5^(1/2)) 3770021719775528 m008 (Pi^2+1)/(3*Pi^6-1) 3770021730456984 m001 GAMMA(19/24)/Porter^2*ln(Zeta(7))^2 3770021735384500 m002 -6+6/ProductLog[Pi]+ProductLog[Pi]/Pi^3 3770021743804111 r005 Re(z^2+c),c=-41/64+9/52*I,n=13 3770021744279938 r005 Re(z^2+c),c=-49/106+16/39*I,n=43 3770021759015598 m001 1/TreeGrowth2nd^2/ln(Artin)*GAMMA(1/3)^2 3770021761215115 a001 24476/233*6557470319842^(14/17) 3770021767508182 a001 20633239/233*1836311903^(14/17) 3770021767510539 a001 17393796001/233*514229^(14/17) 3770021778948190 a008 Real Root of x^4-x^3+x^2-32*x-42 3770021788149725 a001 322/28657*4807526976^(6/23) 3770021792223639 m001 (-exp(-Pi)+4)/(-ln(gamma)+1/2) 3770021800685696 a001 610/521*2207^(3/4) 3770021811994616 r009 Im(z^3+c),c=-37/70+15/52*I,n=47 3770021813002824 s002 sum(A199213[n]/(exp(2*pi*n)-1),n=1..infinity) 3770021817947036 a007 Real Root Of 183*x^4+909*x^3+528*x^2-957*x+627 3770021821450755 a007 Real Root Of 48*x^4+50*x^3-504*x^2-226*x-706 3770021821840233 h001 (5/11*exp(1)+3/4)/(3/5*exp(2)+5/6) 3770021823885209 r009 Im(z^3+c),c=-19/54+11/31*I,n=20 3770021829887934 a001 6765/521*843^(1/2) 3770021837501482 r009 Re(z^3+c),c=-51/106+21/58*I,n=12 3770021839464603 a001 987/199*199^(9/11) 3770021849433955 s002 sum(A048349[n]/(exp(2*pi*n)+1),n=1..infinity) 3770021852045282 a007 Real Root Of 207*x^4+548*x^3-781*x^2+156*x-764 3770021857798440 r002 35th iterates of z^2 + 3770021859913250 r005 Im(z^2+c),c=13/56+19/63*I,n=40 3770021866594783 a007 Real Root Of -114*x^4-356*x^3+492*x^2+864*x+218 3770021872852103 a002 6^(9/10)-3^(1/5) 3770021891585836 r009 Im(z^3+c),c=-29/70+17/53*I,n=26 3770021894538683 s002 sum(A130601[n]/(n^2*pi^n-1),n=1..infinity) 3770021894969204 a005 (1/cos(21/118*Pi))^245 3770021907325576 r005 Im(z^2+c),c=11/58+19/56*I,n=40 3770021929585677 r005 Re(z^2+c),c=-55/106+1/35*I,n=45 3770021930927722 r005 Re(z^2+c),c=-27/52+2/19*I,n=17 3770021931065171 m009 (6*Psi(1,2/3)-2/3)/(2*Catalan+1/4*Pi^2+2/5) 3770021936714710 a001 416020/9*1364^(25/41) 3770021946577659 m001 (Riemann3rdZero+ZetaP(4))/(gamma(1)-Lehmer) 3770021949750764 r005 Im(z^2+c),c=31/94+9/46*I,n=31 3770021955826013 r005 Re(z^2+c),c=-14/27+1/23*I,n=53 3770021956375225 r005 Im(z^2+c),c=11/82+18/47*I,n=39 3770021957481769 m001 1/Sierpinski*exp(KhintchineHarmonic)/sin(Pi/5) 3770021962965568 s002 sum(A266797[n]/(exp(2*pi*n)-1),n=1..infinity) 3770021972816832 r005 Im(z^2+c),c=11/36+9/41*I,n=33 3770021977696859 m001 1/ln(TwinPrimes)^2/MinimumGamma/GAMMA(23/24)^2 3770021988170099 r009 Im(z^3+c),c=-14/23+1/56*I,n=2 3770021989492125 r002 52th iterates of z^2 + 3770021995870572 r005 Re(z^2+c),c=-7/15+23/58*I,n=45 3770021996002761 a007 Real Root Of 183*x^4+603*x^3-230*x^2+395*x+101 3770022006919219 r005 Im(z^2+c),c=1/48+17/37*I,n=41 3770022015185561 m001 1/Salem^2/Porter/exp(GAMMA(17/24))^2 3770022015807316 h001 (3/5*exp(2)+3/11)/(3/7*exp(1)+1/12) 3770022046693141 a007 Real Root Of 132*x^4+478*x^3+135*x^2+964*x+663 3770022052022802 m001 (-Bloch+OrthogonalArrays)/(gamma+Ei(1)) 3770022059458749 r002 39th iterates of z^2 + 3770022061630800 m001 (Grothendieck-MinimumGamma)/(Thue-ZetaQ(3)) 3770022067524014 r002 53th iterates of z^2 + 3770022069186811 r005 Re(z^2+c),c=-61/118+5/61*I,n=54 3770022081511680 r005 Im(z^2+c),c=7/46+21/55*I,n=5 3770022084854331 r005 Re(z^2+c),c=15/62+1/44*I,n=13 3770022095659383 m002 -4-Pi+5/Log[Pi]-Tanh[Pi] 3770022105703258 r005 Re(z^2+c),c=-12/11+17/53*I,n=6 3770022110323644 m001 Zeta(5)*exp(LaplaceLimit)^2*cos(Pi/12) 3770022114732113 r002 31th iterates of z^2 + 3770022114789808 a007 Real Root Of 254*x^4-106*x^3-226*x^2-717*x-249 3770022114926291 s002 sum(A001340[n]/(exp(2*pi*n)-1),n=1..infinity) 3770022124538604 r005 Re(z^2+c),c=11/34+17/35*I,n=16 3770022138248846 r005 Im(z^2+c),c=7/78+5/13*I,n=5 3770022139531933 s002 sum(A243104[n]/(n^3*2^n+1),n=1..infinity) 3770022145973532 m005 (1/3*Pi+2/5)/(5/9*Catalan-1/8) 3770022146126387 r005 Im(z^2+c),c=1/110+23/49*I,n=14 3770022148780905 a007 Real Root Of -238*x^4+952*x^3-252*x^2+556*x-220 3770022151990993 r002 21th iterates of z^2 + 3770022160398229 m001 ln(3)+exp(1/exp(1))+FibonacciFactorial 3770022161095104 p001 sum(1/(311*n+27)/(5^n),n=0..infinity) 3770022177067751 l006 ln(2055/2996) 3770022198534519 r005 Re(z^2+c),c=-23/50+14/33*I,n=60 3770022210823419 m001 (FeigenbaumD+PlouffeB)/(Ei(1)-Shi(1)) 3770022210823419 m001 (FeigenbaumD+PlouffeB)/Chi(1) 3770022214095447 m001 (gamma(2)+Cahen)/(2^(1/3)+BesselK(0,1)) 3770022221563252 r002 19th iterates of z^2 + 3770022223887729 a001 233*322^(1/12) 3770022224352421 r009 Im(z^3+c),c=-45/86+5/42*I,n=3 3770022233250025 m005 (1/2*gamma-6/7)/(9/11*3^(1/2)+1/11) 3770022236315035 m001 (Pi+LambertW(1))/(FellerTornier-Mills) 3770022236885291 m005 (1/2*Zeta(3)-1/8)/(4/7*2^(1/2)+5/11) 3770022241091553 r005 Re(z^2+c),c=-11/42+32/53*I,n=41 3770022252863537 r005 Re(z^2+c),c=-14/27+1/23*I,n=55 3770022254658904 a007 Real Root Of 978*x^4-778*x^3+227*x^2-603*x+217 3770022255883340 r002 54th iterates of z^2 + 3770022264905225 h001 (7/12*exp(2)+4/9)/(4/11*exp(1)+3/11) 3770022268429105 a001 4181/521*843^(4/7) 3770022271821247 r005 Im(z^2+c),c=21/86+16/55*I,n=25 3770022286248444 m004 -2-125*Pi+24*Cos[Sqrt[5]*Pi] 3770022299294582 r005 Re(z^2+c),c=-55/106+7/59*I,n=17 3770022302847702 m008 (Pi^6-3/5)/(5/6*Pi^5-1/6) 3770022306863801 a007 Real Root Of 623*x^4-484*x^3+998*x^2-816*x-488 3770022308497018 r004 Re(z^2+c),c=-29/42-5/24*I,z(0)=-1,n=44 3770022309264989 m001 2^(1/3)-cosh(1)+TwinPrimes 3770022318370413 r002 31th iterates of z^2 + 3770022320497052 a007 Real Root Of -490*x^4+47*x^3-223*x^2-56*x+23 3770022324666737 r009 Re(z^3+c),c=-35/78+12/55*I,n=13 3770022338576342 r002 55th iterates of z^2 + 3770022342009584 a007 Real Root Of -165*x^4-480*x^3+505*x^2-282*x-629 3770022343450218 m005 (1/2*Catalan+3/8)/(7/10*gamma-5/8) 3770022344138612 r005 Im(z^2+c),c=-11/14+36/95*I,n=4 3770022348141684 r009 Im(z^3+c),c=-33/64+16/43*I,n=35 3770022354930214 r005 Im(z^2+c),c=-1/78+12/25*I,n=22 3770022360853016 m001 (QuadraticClass+Riemann1stZero)/(Pi+sin(1)) 3770022370673558 m005 (1/3*5^(1/2)-2/9)/(3/11*5^(1/2)+7/9) 3770022381676104 r005 Im(z^2+c),c=-16/31+4/9*I,n=13 3770022394988919 r005 Re(z^2+c),c=-61/118+5/61*I,n=56 3770022398800506 r005 Re(z^2+c),c=-4/11+32/53*I,n=17 3770022408709732 r002 56th iterates of z^2 + 3770022412562417 r005 Re(z^2+c),c=-35/78+30/59*I,n=50 3770022416266708 r005 Re(z^2+c),c=-14/27+1/23*I,n=57 3770022423681691 a007 Real Root Of -250*x^4+288*x^3-308*x^2+620*x+298 3770022438939295 r005 Re(z^2+c),c=-57/110+2/37*I,n=44 3770022441419520 r005 Re(z^2+c),c=-14/27+1/22*I,n=27 3770022456299796 b008 -38+KelvinBei[1,2] 3770022470537930 m005 (1/2*gamma-5/9)/(1/8*5^(1/2)+3/7) 3770022472208292 r005 Im(z^2+c),c=-13/14+59/188*I,n=13 3770022472866226 r002 43th iterates of z^2 + 3770022481503801 a001 11592/341*322^(5/12) 3770022487130690 s002 sum(A265906[n]/(exp(2*pi*n)-1),n=1..infinity) 3770022491303360 a001 2584/521*843^(9/14) 3770022494880533 r002 58th iterates of z^2 + 3770022504420526 r005 Re(z^2+c),c=-14/27+1/23*I,n=59 3770022506878599 r005 Im(z^2+c),c=9/44+16/49*I,n=34 3770022507796670 r002 57th iterates of z^2 + 3770022513434876 a001 76/1597*987^(26/41) 3770022518613040 r005 Im(z^2+c),c=-7/82+23/44*I,n=31 3770022526701296 r005 Re(z^2+c),c=-4/7+17/94*I,n=11 3770022542612806 r002 60th iterates of z^2 + 3770022547311627 b008 39+ExpIntegralEi[2/15] 3770022550949601 r005 Re(z^2+c),c=-14/27+1/23*I,n=61 3770022554758094 a007 Real Root Of -651*x^4-784*x^3+638*x^2+927*x-385 3770022563153928 r009 Re(z^3+c),c=-63/106+35/43*I,n=2 3770022568558642 r002 62th iterates of z^2 + 3770022570400692 r005 Re(z^2+c),c=-61/118+5/61*I,n=58 3770022573651146 a003 sin(Pi*13/103)*sin(Pi*34/79) 3770022574886762 r005 Re(z^2+c),c=-14/27+1/23*I,n=63 3770022580714068 s002 sum(A060389[n]/(exp(2*pi*n)-1),n=1..infinity) 3770022582371084 r002 64th iterates of z^2 + 3770022588095339 a001 987/521*843^(11/14) 3770022588387532 a007 Real Root Of 119*x^4+455*x^3-105*x^2-702*x-813 3770022590634047 r005 Im(z^2+c),c=-31/98+25/43*I,n=52 3770022602208269 a001 2/7*2^(2/5) 3770022602208269 b008 2^(2/5)/35 3770022605003470 r005 Im(z^2+c),c=-17/98+29/43*I,n=44 3770022605377366 r009 Im(z^3+c),c=-19/98+31/37*I,n=6 3770022606929575 r002 59th iterates of z^2 + 3770022610431302 r005 Re(z^2+c),c=-14/27+1/23*I,n=64 3770022615775790 r002 63th iterates of z^2 + 3770022627211701 r005 Re(z^2+c),c=-63/110+17/50*I,n=21 3770022627406186 r005 Re(z^2+c),c=-14/27+1/23*I,n=62 3770022627796013 a001 3571/317811*6765^(7/51) 3770022632960778 a001 521/34*28657^(5/57) 3770022634759105 r002 61th iterates of z^2 + 3770022643872457 m001 1/KhintchineLevy/Kolakoski^2*ln(sin(Pi/5))^2 3770022658221282 r005 Re(z^2+c),c=-61/118+5/61*I,n=60 3770022660650940 m001 KhintchineHarmonic*exp(Champernowne)^2/Lehmer 3770022660896940 r005 Re(z^2+c),c=-14/27+1/23*I,n=60 3770022661527522 r002 61th iterates of z^2 + 3770022670037433 r002 59th iterates of z^2 + 3770022675000357 m005 (1/2*2^(1/2)+1/11)/(1/7*exp(1)-3/5) 3770022683221207 r005 Re(z^2+c),c=-55/106+1/35*I,n=47 3770022683225618 s002 sum(A240346[n]/(exp(n)),n=1..infinity) 3770022689620260 r002 63th iterates of z^2 + 3770022698091087 r005 Re(z^2+c),c=-61/118+5/61*I,n=62 3770022698442192 r002 7th iterates of z^2 + 3770022707885211 r005 Re(z^2+c),c=-61/118+5/61*I,n=63 3770022711256662 a001 46368/2207*322^(1/2) 3770022713464135 r005 Re(z^2+c),c=-61/118+5/61*I,n=64 3770022714387574 r005 Im(z^2+c),c=3/122+27/59*I,n=27 3770022717115431 r002 60th iterates of z^2 + 3770022718147289 r002 64th iterates of z^2 + 3770022724284507 r009 Re(z^3+c),c=-35/58+28/57*I,n=53 3770022724415097 r002 5th iterates of z^2 + 3770022725129442 r005 Re(z^2+c),c=-14/27+1/23*I,n=58 3770022733341437 r005 Re(z^2+c),c=-61/118+5/61*I,n=61 3770022733903576 a007 Real Root Of 215*x^4-534*x^3-390*x^2-274*x+183 3770022734316971 r002 57th iterates of z^2 + 3770022737693049 r002 62th iterates of z^2 + 3770022738884754 r005 Re(z^2+c),c=37/90+11/18*I,n=12 3770022751202211 r005 Re(z^2+c),c=-13/31+19/52*I,n=2 3770022768627131 p004 log(33569/32327) 3770022777221888 r002 60th iterates of z^2 + 3770022783178358 m001 (cos(1/12*Pi)+FellerTornier)/(Magata+Trott) 3770022789426611 r009 Im(z^3+c),c=-17/31+12/49*I,n=14 3770022793397414 r005 Re(z^2+c),c=-61/118+5/61*I,n=59 3770022802310703 r005 Im(z^2+c),c=-11/14+5/23*I,n=8 3770022803945971 m002 -5+ProductLog[Pi]+ProductLog[Pi]/(6*Log[Pi]) 3770022807210210 a007 Real Root Of 156*x^4+461*x^3-447*x^2+237*x+435 3770022821131222 a007 Real Root Of 397*x^4-240*x^3+308*x^2-359*x-200 3770022831035848 a008 Real Root of (-3-5*x-x^2-6*x^3-2*x^4+x^5) 3770022840039998 m005 (1/3*Catalan+1)/(1/4*exp(1)-1/3) 3770022842424813 a001 514229/11*123^(52/57) 3770022845456206 r005 Re(z^2+c),c=-14/27+1/23*I,n=56 3770022849324037 r002 55th iterates of z^2 + 3770022851374772 r002 58th iterates of z^2 + 3770022854715632 h001 (5/7*exp(2)+5/6)/(1/9*exp(2)+4/5) 3770022859083198 l006 ln(4894/7135) 3770022861208669 m005 (1/2*gamma+7/8)/(-67/220+3/20*5^(1/2)) 3770022861667552 m005 (1/2*Zeta(3)+5)/(6/11*2^(1/2)+5/7) 3770022862096723 m002 12*Pi+ProductLog[Pi]/Pi^6 3770022867580978 r005 Re(z^2+c),c=-13/22+4/67*I,n=8 3770022878119456 a007 Real Root Of -194*x^4-255*x^3-308*x^2+671*x+287 3770022880296940 a001 9349/832040*6765^(7/51) 3770022883295194 q001 659/1748 3770022894699440 r002 7th iterates of z^2 + 3770022911822820 r005 Im(z^2+c),c=-13/27+4/63*I,n=17 3770022917136329 a001 24476/2178309*6765^(7/51) 3770022918780255 r005 Re(z^2+c),c=-61/118+5/61*I,n=57 3770022923033879 a007 Real Root Of -697*x^4+934*x^3+910*x^2+730*x+210 3770022932267036 r005 Im(z^2+c),c=13/40+5/59*I,n=5 3770022939904324 a001 15127/1346269*6765^(7/51) 3770022943674313 m001 1/FeigenbaumC/Artin/exp(GAMMA(2/3)) 3770022967791097 m001 LaplaceLimit/Bloch^2*ln(GAMMA(7/24))^2 3770022967996635 r005 Im(z^2+c),c=29/86+11/46*I,n=24 3770022968647935 m001 ((1+3^(1/2))^(1/2)-OneNinth)/HardyLittlewoodC5 3770022974896777 h001 (-exp(1)+5)/(-exp(2/3)+8) 3770022981889045 r002 56th iterates of z^2 + 3770022982881576 r005 Re(z^2+c),c=19/52+10/29*I,n=61 3770022987800006 r005 Re(z^2+c),c=-17/29+23/58*I,n=56 3770022992682612 r005 Im(z^2+c),c=-69/94+1/41*I,n=9 3770022998290065 r005 Im(z^2+c),c=41/126+6/31*I,n=43 3770022999371133 r008 a(0)=4,K{-n^6,-2-24*n+50*n^2-17*n^3} 3770023008602444 r005 Im(z^2+c),c=17/54+3/50*I,n=17 3770023010999462 m005 (1/3*gamma+1/12)/(3/5*Catalan+2/11) 3770023022697545 m001 (-Sarnak+ZetaQ(4))/(cos(1)+exp(1/Pi)) 3770023024719542 a007 Real Root Of 28*x^4-167*x^3-953*x^2+236*x-170 3770023027057855 m001 (-BesselK(0,1)+MasserGramainDelta)/(1+exp(1)) 3770023029185918 a007 Real Root Of 189*x^4+791*x^3+165*x^2-690*x-742 3770023036351096 a001 5778/514229*6765^(7/51) 3770023051531427 r002 53th iterates of z^2 + 3770023066281010 r005 Re(z^2+c),c=-14/27+1/23*I,n=54 3770023066810639 r002 5th iterates of z^2 + 3770023082163156 r005 Im(z^2+c),c=1/26+9/20*I,n=21 3770023085702463 m001 (FeigenbaumD+OrthogonalArrays)/Trott 3770023088988545 r005 Im(z^2+c),c=-9/14+53/136*I,n=18 3770023095626400 m001 (MertensB3+Weierstrass)/(Pi+(1+3^(1/2))^(1/2)) 3770023096669253 a007 Real Root Of -926*x^4+515*x^3-516*x^2+741*x+399 3770023101620073 a005 (1/cos(15/79*Pi))^7 3770023129331241 r005 Re(z^2+c),c=-16/31+5/52*I,n=46 3770023130967191 a001 17711/18*9349^(37/41) 3770023139207450 m001 (Riemann1stZero+ZetaP(3))/(2^(1/2)-MertensB2) 3770023140269801 h001 (-2*exp(-1)+5)/(-9*exp(-1)-8) 3770023140269801 m005 (1/2*exp(1)-1/5)/(4/5*exp(1)+9/10) 3770023141512967 r002 45th iterates of z^2 + 3770023142263986 b008 Pi+ProductLog[(3*Pi)/8] 3770023159815717 r005 Re(z^2+c),c=-61/118+5/61*I,n=55 3770023163320110 r005 Im(z^2+c),c=2/19+21/52*I,n=45 3770023167482220 r009 Im(z^3+c),c=-21/94+21/52*I,n=5 3770023174534898 m005 (1/3*gamma-1/7)/(2/7*Pi+5/12) 3770023177187926 r005 Im(z^2+c),c=-23/114+23/39*I,n=63 3770023184083550 a001 75025/18*15127^(29/41) 3770023190100683 m001 FeigenbaumKappa^2*RenyiParking^2/exp(Zeta(9)) 3770023197860862 r002 54th iterates of z^2 + 3770023205771621 r002 41th iterates of z^2 + 3770023213182466 a005 (1/cos(9/167*Pi))^1691 3770023228591989 m001 (Shi(1)+ln(gamma))/(-FeigenbaumKappa+ZetaQ(3)) 3770023231590291 r005 Im(z^2+c),c=13/56+19/63*I,n=42 3770023236328816 r005 Re(z^2+c),c=-55/106+1/35*I,n=49 3770023265371173 r005 Re(z^2+c),c=-13/20+11/37*I,n=31 3770023276292274 r002 44th iterates of z^2 + 3770023278801126 a001 1597/521*843^(5/7) 3770023278999145 r002 7th iterates of z^2 + 3770023287630047 a007 Real Root Of -906*x^4-792*x^3-953*x^2+867*x+34 3770023288543370 r009 Re(z^3+c),c=-23/48+17/64*I,n=25 3770023292204879 m001 (PlouffeB+ZetaP(2))/(Shi(1)+OrthogonalArrays) 3770023296838770 r002 42th iterates of z^2 + 3770023312372563 a007 Real Root Of -372*x^4+441*x^3-628*x^2-139*x+68 3770023317226586 s002 sum(A167708[n]/((3*n+1)!),n=1..infinity) 3770023319076780 m009 (3*Pi^2-1/3)/(4*Catalan+1/2*Pi^2-5/6) 3770023323104822 r005 Im(z^2+c),c=-5/29+27/52*I,n=13 3770023344407120 p004 log(33013/761) 3770023350255086 r005 Re(z^2+c),c=-7/11+13/40*I,n=45 3770023352757612 l006 ln(2839/4139) 3770023372628843 a001 121393/5778*322^(1/2) 3770023373304516 m001 1/FeigenbaumC*ln(Khintchine)^2/Riemann1stZero 3770023380071227 a007 Real Root Of -771*x^4+213*x^3+366*x^2+820*x-357 3770023385814502 a005 (1/cos(13/179*Pi))^1629 3770023387770994 m001 (-Landau+RenyiParking)/(Artin-Catalan) 3770023398471516 m001 1/Trott/ln(GAMMA(13/24))^2 3770023400952952 r002 51th iterates of z^2 + 3770023405313226 a001 199/4181*75025^(22/37) 3770023435711355 m001 (exp(1)+Si(Pi))/(-BesselI(0,1)+ZetaQ(2)) 3770023443905154 a001 20365011074/29*7^(19/22) 3770023461473580 r002 18th iterates of z^2 + 3770023462648576 m001 (ReciprocalLucas-RenyiParking)/(ln(Pi)-Porter) 3770023464036037 r005 Re(z^2+c),c=-14/27+1/23*I,n=52 3770023465846185 r002 46th iterates of z^2 + 3770023468589533 v002 sum(1/(2^n*(15*n^2+16*n-16)),n=1..infinity) 3770023469121763 a001 317811/15127*322^(1/2) 3770023470446513 a007 Real Root Of 916*x^4-452*x^3+527*x^2-436*x-282 3770023474426325 b008 1/13+BesselJ[0,7] 3770023481450695 m005 (1/2*3^(1/2)+1/6)/(7/9*exp(1)+5/8) 3770023483199891 a001 832040/39603*322^(1/2) 3770023485253862 a001 46347/2206*322^(1/2) 3770023485553532 a001 5702887/271443*322^(1/2) 3770023485597254 a001 14930352/710647*322^(1/2) 3770023485603632 a001 39088169/1860498*322^(1/2) 3770023485604563 a001 102334155/4870847*322^(1/2) 3770023485604699 a001 267914296/12752043*322^(1/2) 3770023485604719 a001 701408733/33385282*322^(1/2) 3770023485604722 a001 1836311903/87403803*322^(1/2) 3770023485604722 a001 102287808/4868641*322^(1/2) 3770023485604722 a001 12586269025/599074578*322^(1/2) 3770023485604722 a001 32951280099/1568397607*322^(1/2) 3770023485604722 a001 86267571272/4106118243*322^(1/2) 3770023485604722 a001 225851433717/10749957122*322^(1/2) 3770023485604722 a001 591286729879/28143753123*322^(1/2) 3770023485604722 a001 1548008755920/73681302247*322^(1/2) 3770023485604722 a001 4052739537881/192900153618*322^(1/2) 3770023485604722 a001 225749145909/10745088481*322^(1/2) 3770023485604722 a001 6557470319842/312119004989*322^(1/2) 3770023485604722 a001 2504730781961/119218851371*322^(1/2) 3770023485604722 a001 956722026041/45537549124*322^(1/2) 3770023485604722 a001 365435296162/17393796001*322^(1/2) 3770023485604722 a001 139583862445/6643838879*322^(1/2) 3770023485604722 a001 53316291173/2537720636*322^(1/2) 3770023485604722 a001 20365011074/969323029*322^(1/2) 3770023485604722 a001 7778742049/370248451*322^(1/2) 3770023485604722 a001 2971215073/141422324*322^(1/2) 3770023485604723 a001 1134903170/54018521*322^(1/2) 3770023485604731 a001 433494437/20633239*322^(1/2) 3770023485604783 a001 165580141/7881196*322^(1/2) 3770023485605138 a001 63245986/3010349*322^(1/2) 3770023485607575 a001 24157817/1149851*322^(1/2) 3770023485624275 a001 9227465/439204*322^(1/2) 3770023485738739 a001 3524578/167761*322^(1/2) 3770023486523286 a001 1346269/64079*322^(1/2) 3770023491900652 a001 514229/24476*322^(1/2) 3770023508034977 p003 LerchPhi(1/100,1,505/189) 3770023514859722 a001 64079*6557470319842^(5/17) 3770023515778647 a001 7881196*514229^(5/17) 3770023515785334 a001 710647*1836311903^(5/17) 3770023522047875 r005 Im(z^2+c),c=37/126+4/17*I,n=32 3770023528757670 a001 196418/9349*322^(1/2) 3770023529100052 m001 (-ErdosBorwein+Lehmer)/(Si(Pi)+Chi(1)) 3770023530301135 r005 Re(z^2+c),c=-47/98+22/63*I,n=52 3770023530644679 r005 Re(z^2+c),c=-11/31+29/52*I,n=41 3770023531814562 r002 52th iterates of z^2 + 3770023550247035 s002 sum(A009673[n]/(n*2^n-1),n=1..infinity) 3770023559526593 r005 Re(z^2+c),c=-61/118+1/34*I,n=17 3770023584482285 r002 48i'th iterates of 2*x/(1-x^2) of 3770023592457557 m001 exp(Pi)/(Ei(1,1)^arctan(1/3)) 3770023593377363 r005 Re(z^2+c),c=-61/118+5/61*I,n=53 3770023608395089 a007 Real Root Of 965*x^4+266*x^3+976*x^2-207*x-222 3770023612264221 a001 1/5374978561*3^(9/14) 3770023619564258 r005 Re(z^2+c),c=-55/106+1/35*I,n=51 3770023625704878 r005 Re(z^2+c),c=-5/56+40/49*I,n=24 3770023638374260 m001 (ln(gamma)-FeigenbaumD)/(Robbin-Stephens) 3770023638924707 r002 60th iterates of z^2 + 3770023643099816 m001 1/GlaisherKinkelin^2*exp(Si(Pi))*Paris^2 3770023650957010 r009 Re(z^3+c),c=-5/54+33/50*I,n=12 3770023656239808 m001 Sarnak*(CareFree-GAMMA(3/4)) 3770023663126683 a001 514229/18*2207^(26/41) 3770023668936001 a008 Real Root of (4+6*x-10*x^2-3*x^3) 3770023673499118 r005 Re(z^2+c),c=19/52+5/33*I,n=43 3770023684797777 r005 Im(z^2+c),c=-4/27+31/54*I,n=32 3770023687618726 m005 (1/2*5^(1/2)-2/11)/(3/11*gamma+1/11) 3770023687641004 r002 48th iterates of z^2 + 3770023692919347 m001 (Pi+3^(1/3))/(HeathBrownMoroz+Trott) 3770023697407106 a001 2207/196418*6765^(7/51) 3770023697738095 r009 Im(z^3+c),c=-1/34+25/58*I,n=6 3770023700038030 m001 Shi(1)+FeigenbaumC+QuadraticClass 3770023701358793 m004 -4+125*Pi-6*Coth[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3770023703185182 a007 Real Root Of 882*x^4+695*x^3+759*x^2-401*x+14 3770023705871723 m001 gamma(2)^cos(1/12*Pi)/ln(2)*ln(10) 3770023708108040 m001 BesselJ(1,1)^GAMMA(23/24)-ZetaQ(2) 3770023714129000 m005 (25/4+1/4*5^(1/2))/(1/3*exp(1)+9/10) 3770023715490186 m001 1/GAMMA(3/4)^2*Trott*exp(sqrt(1+sqrt(3))) 3770023716306302 p003 LerchPhi(1/6,6,313/123) 3770023720359321 m001 (Pi+cos(1/5*Pi))/(Zeta(1/2)+ThueMorse) 3770023725976730 r009 Re(z^3+c),c=-15/56+36/49*I,n=59 3770023726071729 a007 Real Root Of -847*x^4+944*x^3-776*x^2+69*x+204 3770023726642241 l006 ln(6462/9421) 3770023747205867 m001 (exp(Pi)+MadelungNaCl)/TwinPrimes 3770023747861044 r005 Im(z^2+c),c=-61/114+22/47*I,n=54 3770023773141094 m006 (1/6*exp(Pi)+1)/(3/Pi+1/3) 3770023781379446 a001 75025/3571*322^(1/2) 3770023794364012 a008 Real Root of (-4+9*x+3*x^2+9*x^4-3*x^8) 3770023794454753 r009 Re(z^3+c),c=-41/102+23/34*I,n=6 3770023795920538 m005 (1/2*2^(1/2)+5/8)/(-43/112+3/16*5^(1/2)) 3770023796394023 a007 Real Root Of -131*x^4-452*x^3+333*x^2+886*x+851 3770023804978453 a007 Real Root Of 421*x^4+972*x^3+833*x^2-279*x-180 3770023823161786 m004 -125*Pi+4*Coth[Sqrt[5]*Pi]+6*Log[Sqrt[5]*Pi] 3770023826371507 a003 sin(Pi*11/105)/sin(Pi*20/61) 3770023842138574 r002 39th iterates of z^2 + 3770023849857247 a007 Real Root Of -326*x^4+525*x^3+354*x^2+548*x+191 3770023870637912 m004 -5+125*Pi-6*Log[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3770023875064412 r005 Re(z^2+c),c=-55/106+1/35*I,n=53 3770023877864805 r002 50th iterates of z^2 + 3770023879077366 r005 Re(z^2+c),c=-9/110+31/49*I,n=11 3770023879557396 r005 Re(z^2+c),c=-13/25+1/49*I,n=20 3770023879836598 m001 1/ln(GAMMA(2/3))/CareFree^2*LambertW(1) 3770023886463254 m004 -4+125*Pi-6*Log[Sqrt[5]*Pi] 3770023897133257 a001 1364/4181*1597^(1/51) 3770023902288596 m004 -3+125*Pi-6*Log[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 3770023912362929 m001 (ln(3)+Ei(1,1))/(2^(1/3)+5^(1/2)) 3770023912990689 h001 (1/10*exp(1)+5/7)/(6/7*exp(1)+2/7) 3770023922637234 a001 1/3*(1/2*5^(1/2)+1/2)^2*76^(20/23) 3770023925473618 r005 Re(z^2+c),c=3/118+17/30*I,n=4 3770023929016284 m001 1/2*ln(1+sqrt(2))^sqrt(5) 3770023930703527 m001 exp(Ei(1))^2*LaplaceLimit*GAMMA(17/24) 3770023930821206 r002 24th iterates of z^2 + 3770023940766690 p001 sum((-1)^n/(587*n+251)/(5^n),n=0..infinity) 3770023941285030 m001 (5^(1/2)+cos(1))/(arctan(1/3)+PrimesInBinary) 3770023949764622 m004 -125*Pi+6*Log[Sqrt[5]*Pi]+4*Tanh[Sqrt[5]*Pi] 3770023952991359 r002 40th iterates of z^2 + 3770023960844383 r002 42th iterates of z^2 + 3770023983024349 m001 (1-ArtinRank2)/(-Cahen+Sarnak) 3770023994118738 r002 49th iterates of z^2 + 3770024002148123 m001 1/exp((3^(1/3)))/FeigenbaumD/GAMMA(7/12)^2 3770024005709004 r002 50th iterates of z^2 + 3770024012799962 r005 Re(z^2+c),c=-33/70+14/29*I,n=57 3770024019620002 l006 ln(3623/5282) 3770024021798154 r002 52th iterates of z^2 + 3770024024054906 r009 Im(z^3+c),c=-1/98+29/45*I,n=2 3770024025486284 a007 Real Root Of 235*x^4+808*x^3-222*x^2+192*x-298 3770024036640487 a007 Real Root Of 99*x^4+607*x^3+973*x^2+160*x-700 3770024040705826 r005 Re(z^2+c),c=-55/106+1/35*I,n=55 3770024041826161 r002 16th iterates of z^2 + 3770024050618675 r002 34th iterates of z^2 + 3770024057787229 r009 Im(z^3+c),c=-7/31+13/35*I,n=2 3770024059982007 a005 (1/sin(81/181*Pi))^603 3770024068870169 m001 Conway/(DuboisRaymond-cos(1)) 3770024071567422 m004 -4+125*Pi-6*Log[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3770024090025680 m001 (Pi^(1/2)-sin(1))/(LandauRamanujan+Niven) 3770024123437865 r002 54th iterates of z^2 + 3770024130448208 m001 1/BesselJ(0,1)*ln(RenyiParking)/Zeta(7) 3770024138188612 r005 Im(z^2+c),c=37/118+13/62*I,n=35 3770024145805153 r005 Re(z^2+c),c=-55/106+1/35*I,n=57 3770024151250409 m002 3-E^Pi/Pi^5+3*Cosh[Pi] 3770024154533588 r009 Im(z^3+c),c=-19/58+15/41*I,n=19 3770024158792235 r009 Im(z^3+c),c=-57/110+6/35*I,n=19 3770024161909967 r005 Im(z^2+c),c=11/106+17/42*I,n=28 3770024163694096 m002 -2+Pi^3+(3*Cosh[Pi])/4 3770024167938963 r005 Re(z^2+c),c=-14/27+1/23*I,n=50 3770024168159781 s002 sum(A152974[n]/(n^2*10^n+1),n=1..infinity) 3770024173524513 a001 34/1568397607*11^(3/13) 3770024187331690 m005 (1/2*2^(1/2)-1/9)/(2^(1/2)+1/6) 3770024192095378 r002 56th iterates of z^2 + 3770024194821502 m001 exp(arctan(1/2))*FeigenbaumC^2/sqrt(2) 3770024203372038 r002 7th iterates of z^2 + 3770024211346394 r005 Re(z^2+c),c=-55/106+1/35*I,n=59 3770024214645348 r002 6th iterates of z^2 + 3770024224280539 a001 2255/281*322^(2/3) 3770024225309606 r002 56i'th iterates of 2*x/(1-x^2) of 3770024237041796 r002 58th iterates of z^2 + 3770024241757492 r005 Re(z^2+c),c=3/8+10/57*I,n=53 3770024251633688 r005 Re(z^2+c),c=-55/106+1/35*I,n=61 3770024255024594 r005 Re(z^2+c),c=11/32+27/49*I,n=9 3770024259134748 r005 Im(z^2+c),c=-9/32+14/25*I,n=26 3770024263640211 r005 Re(z^2+c),c=19/98+17/31*I,n=48 3770024265778229 r002 60th iterates of z^2 + 3770024267426991 a003 cos(Pi*1/29)*sin(Pi*13/105) 3770024269789549 m001 HeathBrownMoroz^MasserGramain*Trott2nd 3770024276093373 r005 Re(z^2+c),c=-55/106+1/35*I,n=63 3770024277059412 m003 -1+(17*Sqrt[5])/32-4*Cot[1/2+Sqrt[5]/2] 3770024283810076 r002 62th iterates of z^2 + 3770024289077796 m006 (2/3*exp(Pi)-1/6)/(4*Pi^2+1) 3770024291908569 r005 Im(z^2+c),c=-3/94+23/37*I,n=13 3770024294951984 r002 64th iterates of z^2 + 3770024298470922 a007 Real Root Of -601*x^4+655*x^3+976*x^2+786*x-458 3770024301137274 m001 ln(Sierpinski)^2/Cahen*GAMMA(13/24)^2 3770024320273934 a007 Real Root Of 49*x^4-164*x^3-203*x^2-237*x+126 3770024326719312 r005 Re(z^2+c),c=-61/118+5/61*I,n=51 3770024333412150 r002 63th iterates of z^2 + 3770024339091370 r005 Re(z^2+c),c=-55/106+1/35*I,n=64 3770024347611377 r002 61th iterates of z^2 + 3770024358071002 r005 Re(z^2+c),c=-55/106+1/35*I,n=62 3770024370422689 r002 59th iterates of z^2 + 3770024371778004 r002 17th iterates of z^2 + 3770024372112577 r005 Im(z^2+c),c=-11/54+15/23*I,n=42 3770024380607044 l006 ln(1848/1919) 3770024389128112 a007 Real Root Of -524*x^4+895*x^3-842*x^2+900*x-257 3770024389330445 a007 Real Root Of 225*x^4+927*x^3+280*x^2-275*x-797 3770024389507610 r005 Re(z^2+c),c=-55/106+1/35*I,n=60 3770024392777857 a003 sin(Pi*4/65)/cos(Pi*31/94) 3770024406455099 r002 57th iterates of z^2 + 3770024407181876 m001 1/Zeta(1/2)*Robbin/ln(cos(Pi/12))^2 3770024410845652 m001 (Psi(1,1/3)-ln(2))/(FeigenbaumC+LaplaceLimit) 3770024411826563 r005 Re(z^2+c),c=-65/126+14/53*I,n=11 3770024412331157 m001 exp(-1/2*Pi)+2*exp(gamma) 3770024418805328 m001 (ln(Pi)+ln(2+3^(1/2)))/(GAMMA(13/24)-Niven) 3770024427521889 m001 (HardyLittlewoodC4+Rabbit)/(Tribonacci+Thue) 3770024430391525 a007 Real Root Of 238*x^4+178*x^3+634*x^2-434*x-249 3770024431567508 a007 Real Root Of -231*x^4+409*x^3+171*x^2+972*x-408 3770024440978486 r005 Re(z^2+c),c=-55/106+1/35*I,n=58 3770024442989101 m004 -120*Pi-(20*Sech[Sqrt[5]*Pi])/Pi 3770024443168337 m004 -120*Pi-(20*Csch[Sqrt[5]*Pi])/Pi 3770024445802874 r009 Im(z^3+c),c=-25/66+17/61*I,n=2 3770024446986039 a007 Real Root Of 166*x^4+502*x^3-556*x^2-276*x+227 3770024449020551 r005 Im(z^2+c),c=-9/14+49/141*I,n=46 3770024449214335 l006 ln(4407/6425) 3770024449753154 r005 Im(z^2+c),c=-27/44+1/30*I,n=7 3770024449957886 r005 Im(z^2+c),c=5/44+13/31*I,n=11 3770024462192597 r002 55th iterates of z^2 + 3770024465495390 s002 sum(A108433[n]/(n^3*2^n+1),n=1..infinity) 3770024465921217 r005 Im(z^2+c),c=-61/86+5/64*I,n=41 3770024476750544 a007 Real Root Of -678*x^4+181*x^3+492*x^2+971*x-432 3770024493199359 r002 38th iterates of z^2 + 3770024498839121 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^13 3770024503887087 r009 Im(z^3+c),c=-55/114+1/2*I,n=42 3770024506467713 r005 Im(z^2+c),c=13/58+17/42*I,n=8 3770024510741074 r009 Re(z^3+c),c=-25/54+14/57*I,n=27 3770024524137239 r005 Re(z^2+c),c=-55/106+1/35*I,n=56 3770024531071123 r005 Im(z^2+c),c=-3/25+34/63*I,n=60 3770024541935065 r005 Im(z^2+c),c=9/70+12/31*I,n=39 3770024546111122 r002 53th iterates of z^2 + 3770024551135187 r002 45th iterates of z^2 + 3770024576825246 a007 Real Root Of 164*x^4-389*x^3-168*x^2+17*x+35 3770024591684892 a001 3/196418*5^(32/57) 3770024595717423 r002 48th iterates of z^2 + 3770024617478604 r009 Re(z^3+c),c=-19/36+8/53*I,n=4 3770024632725182 m001 (LaplaceLimit-ZetaR(2))^Porter 3770024654340021 r005 Re(z^2+c),c=-55/106+1/44*I,n=27 3770024656395104 r005 Re(z^2+c),c=-55/106+1/35*I,n=54 3770024658857201 r005 Im(z^2+c),c=-11/90+33/61*I,n=54 3770024667875590 r002 51th iterates of z^2 + 3770024668386912 r005 Im(z^2+c),c=15/44+7/44*I,n=53 3770024673822066 r009 Re(z^3+c),c=-51/118+36/59*I,n=44 3770024679496953 r009 Im(z^3+c),c=-13/32+22/61*I,n=7 3770024696549795 p004 log(36697/25171) 3770024707134101 r008 a(0)=4,K{-n^6,27+44*n-59*n^2-8*n^3} 3770024711076929 m005 (1/2*Zeta(3)+5)/(5/9*2^(1/2)+7/10) 3770024722756314 a001 3/2207*4^(39/53) 3770024747938796 r009 Re(z^3+c),c=-17/66+37/44*I,n=3 3770024749044851 l006 ln(5191/7568) 3770024758958653 r005 Re(z^2+c),c=-55/106+1/33*I,n=28 3770024781292549 s002 sum(A130168[n]/(10^n+1),n=1..infinity) 3770024790696714 s001 sum(1/10^(n-1)*A130168[n],n=1..infinity) 3770024790696714 s001 sum(1/10^n*A130168[n],n=1..infinity) 3770024802127112 s002 sum(A130168[n]/(10^n-1),n=1..infinity) 3770024802639532 a001 7881196/233*6557470319842^(12/17) 3770024802639593 a001 2537720636/233*1836311903^(12/17) 3770024802641606 a001 817138163596/233*514229^(12/17) 3770024806723372 s001 sum(exp(-2*Pi)^n*A051540[n],n=1..infinity) 3770024829255652 r005 Im(z^2+c),c=-16/25+3/34*I,n=24 3770024833743866 r002 7th iterates of z^2 + 3770024835170352 r002 49th iterates of z^2 + 3770024837429176 s002 sum(A003183[n]/(pi^n-1),n=1..infinity) 3770024839335551 m001 ln(Porter)^2/Khintchine^2/cos(1) 3770024858525805 m005 (1/3*3^(1/2)-1/8)/(7/12*Zeta(3)-7/10) 3770024859828088 a007 Real Root Of 998*x^4-658*x^3+181*x^2-989*x-454 3770024862740210 r005 Re(z^2+c),c=-55/106+1/35*I,n=52 3770024869965064 r005 Im(z^2+c),c=-1+5/133*I,n=3 3770024919900320 q001 1059/2809 3770024921610077 a001 196418/843*123^(1/10) 3770024940172160 r005 Re(z^2+c),c=-1/44+34/53*I,n=5 3770024951849598 r005 Re(z^2+c),c=-55/118+3/8*I,n=8 3770024970191805 l006 ln(5975/8711) 3770024971764616 r009 Im(z^3+c),c=-3/10+23/61*I,n=17 3770024976576744 a007 Real Root Of 564*x^4+505*x^3+688*x^2-240*x-10 3770024982157633 r002 47th iterates of z^2 + 3770024987217407 m001 GAMMA(5/24)^2*exp(TreeGrowth2nd)^2*cos(Pi/5) 3770025011024098 a005 (1/cos(12/191*Pi))^420 3770025013256987 a003 cos(Pi*4/51)-sin(Pi*34/89) 3770025034104778 a007 Real Root Of -237*x^4-791*x^3+567*x^2+797*x+438 3770025035044992 r002 53th iterates of z^2 + 3770025045086423 r002 47th iterates of z^2 + 3770025072710219 a007 Real Root Of 116*x^4+338*x^3-334*x^2-104*x-967 3770025082006028 r009 Re(z^3+c),c=-23/62+45/64*I,n=33 3770025084100975 a007 Real Root Of 509*x^4+242*x^3-396*x^2-671*x-194 3770025093997957 m001 (Artin+FellerTornier)/(2^(1/3)+sin(1/5*Pi)) 3770025098974160 r005 Re(z^2+c),c=29/78+11/32*I,n=31 3770025112130223 r002 14th iterates of z^2 + 3770025120262841 r002 41th iterates of z^2 + 3770025126110844 m001 Totient^TwinPrimes/arctan(1/3) 3770025126492589 r005 Re(z^2+c),c=-1/38+41/57*I,n=46 3770025140035542 l006 ln(6759/9854) 3770025147850865 m001 1/BesselK(1,1)^2/(2^(1/3))^2/exp(GAMMA(7/12)) 3770025155889252 r002 46th iterates of z^2 + 3770025160214674 r005 Im(z^2+c),c=-11/74+24/43*I,n=27 3770025169449174 r009 Im(z^3+c),c=-37/106+21/59*I,n=15 3770025176919460 r005 Re(z^2+c),c=-55/106+1/35*I,n=50 3770025183365058 r005 Im(z^2+c),c=-13/56+34/63*I,n=18 3770025187454217 a007 Real Root Of 292*x^4+838*x^3-803*x^2+573*x-511 3770025195279056 r005 Re(z^2+c),c=-55/106+1/35*I,n=36 3770025197870020 a001 11/4807526976*3^(5/11) 3770025199481274 m001 BesselJ(1,1)^2/CopelandErdos/exp(GAMMA(7/24)) 3770025210364340 b008 83*ExpIntegralEi[1/2] 3770025214057342 m001 FeigenbaumB*(2*Pi/GAMMA(5/6)-Psi(1,1/3)) 3770025222535418 a005 (1/sin(67/181*Pi))^150 3770025228009679 m001 (MasserGramain-Niven)/(Champernowne+Khinchin) 3770025232181673 r005 Im(z^2+c),c=-2/13+34/61*I,n=62 3770025236504905 m001 1/exp(cos(Pi/5))^2/GaussKuzminWirsing/sqrt(3) 3770025254175761 a001 75025/521*322^(1/6) 3770025259377881 a001 5600748293801/3*4807526976^(5/21) 3770025262133952 m005 (1/3*2^(1/2)+1/4)/(6*Pi+2/7) 3770025263398525 a001 161*4181^(5/49) 3770025263761594 r002 45th iterates of z^2 + 3770025267363606 r002 44th iterates of z^2 + 3770025268795167 a007 Real Root Of 654*x^4-353*x^3+921*x^2+77*x-134 3770025272706208 m005 (1/3*Pi-3/5)/(3*gamma-6/11) 3770025274193809 m001 (Zeta(3)+GAMMA(2/3))/(3^(1/3)-LandauRamanujan) 3770025275097939 a007 Real Root Of -743*x^4+246*x^3+2*x^2+646*x-242 3770025284403507 m005 (3/5*gamma+2/3)/(3/4*Catalan+2) 3770025287639599 m001 Pi^Zeta(1,-1)*Pi^PisotVijayaraghavan 3770025293235607 r005 Re(z^2+c),c=-21/46+27/61*I,n=62 3770025309310426 m001 1/Zeta(3)^2*exp(Paris)^2/sqrt(5) 3770025331607278 r005 Re(z^2+c),c=-49/106+11/26*I,n=54 3770025333957245 m005 (1/3*Pi+1/12)/(Pi-1/7) 3770025338628762 m001 (-sin(1)+Mills)/(Psi(1,1/3)+5^(1/2)) 3770025351455651 m001 (Riemann2ndZero+Robbin)/(gamma(3)-gamma) 3770025359781259 a003 cos(Pi*32/85)*sin(Pi*43/91) 3770025359861269 m001 (-Khinchin+Robbin)/(Psi(2,1/3)+3^(1/3)) 3770025362093961 m005 (7/12+1/4*5^(1/2))/(3/10*2^(1/2)-8/11) 3770025376186989 r005 Im(z^2+c),c=-5/54+31/59*I,n=40 3770025376299619 r005 Im(z^2+c),c=-9/14+18/251*I,n=61 3770025381704363 r002 43th iterates of z^2 + 3770025381922809 l006 ln(223/9674) 3770025385887273 r005 Im(z^2+c),c=11/82+18/47*I,n=40 3770025392268886 r005 Re(z^2+c),c=-14/27+1/23*I,n=48 3770025392757406 p001 sum((-1)^n/(283*n+265)/(512^n),n=0..infinity) 3770025395363946 r005 Re(z^2+c),c=-107/106+9/29*I,n=30 3770025395894918 m001 (Zeta(3)+Ei(1))/(FeigenbaumB-Trott) 3770025397470323 r005 Im(z^2+c),c=-9/40+47/58*I,n=48 3770025401119032 r005 Re(z^2+c),c=-65/126+5/54*I,n=24 3770025401136763 r002 2th iterates of z^2 + 3770025413788787 m001 Bloch/Cahen/DuboisRaymond 3770025417125870 r005 Im(z^2+c),c=-17/29+2/29*I,n=50 3770025426030373 a007 Real Root Of -406*x^4+974*x^3-969*x^2+753*x+482 3770025427422914 a007 Real Root Of -418*x^4+953*x^3-916*x^2+274*x+293 3770025428481600 r005 Re(z^2+c),c=-75/106+8/45*I,n=53 3770025438667490 p003 LerchPhi(1/64,1,33/124) 3770025454221503 m001 BesselI(0,1)^GAMMA(7/12)-Shi(1) 3770025458399620 m001 FeigenbaumDelta-exp(1/Pi)+PlouffeB 3770025463027470 r005 Re(z^2+c),c=3/8+13/51*I,n=59 3770025477457952 m002 -3-Pi^4/4+Pi^3*Coth[Pi] 3770025489499384 r005 Re(z^2+c),c=-61/118+5/61*I,n=49 3770025496973931 r005 Im(z^2+c),c=1/110+7/15*I,n=43 3770025503579309 m001 (FeigenbaumD+ZetaP(4))/(1-3^(1/2)) 3770025512875767 a001 28657/1364*322^(1/2) 3770025516644007 r009 Re(z^3+c),c=-53/86+31/58*I,n=15 3770025534646123 r005 Im(z^2+c),c=-37/122+29/59*I,n=6 3770025538114434 s002 sum(A083128[n]/(n*exp(pi*n)-1),n=1..infinity) 3770025540182093 m005 (1/2*Catalan-4)/(2/9*gamma-2/9) 3770025543908484 r005 Re(z^2+c),c=11/74+17/45*I,n=59 3770025544497434 a001 1/20633239*76^(9/19) 3770025546634603 r009 Re(z^3+c),c=-7/114+21/38*I,n=30 3770025555022663 g007 Psi(2,10/11)+Psi(2,7/11)+Psi(2,2/5)-Psi(2,5/7) 3770025572247463 m001 Bloch^LambertW(1)*gamma 3770025576990649 r005 Re(z^2+c),c=-39/86+7/16*I,n=46 3770025577057544 r005 Im(z^2+c),c=13/56+19/63*I,n=46 3770025577886847 a003 sin(Pi*8/65)*sin(Pi*35/71) 3770025591438436 r005 Re(z^2+c),c=-27/52+6/61*I,n=17 3770025605182479 s002 sum(A140840[n]/((exp(n)+1)/n),n=1..infinity) 3770025606047019 m001 (Kolakoski+ReciprocalLucas)/(exp(1/Pi)-Cahen) 3770025639965377 r005 Re(z^2+c),c=-55/106+1/35*I,n=48 3770025646615667 m005 (5^(1/2)+5/6)/(Pi+5) 3770025648585818 m001 LandauRamanujan*TwinPrimes-QuadraticClass 3770025650154756 m001 (GaussAGM-sin(1))/(PlouffeB+Totient) 3770025662225730 p001 sum(1/(523*n+314)/n/(32^n),n=1..infinity) 3770025664685785 a001 3571/10946*1597^(1/51) 3770025670504272 m001 BesselK(1,1)^2*ln(FeigenbaumB)*LambertW(1) 3770025683504603 m001 Artin^Weierstrass-Pi*csc(5/24*Pi)/GAMMA(19/24) 3770025697654604 a007 Real Root Of -289*x^4-376*x^3-410*x^2+642*x+286 3770025699570141 r009 Im(z^3+c),c=-27/50+23/61*I,n=29 3770025703663187 r009 Im(z^3+c),c=-57/110+15/58*I,n=38 3770025703703313 a005 (1/cos(4/113*Pi))^1329 3770025707873399 m001 (Sarnak-ZetaP(2))/(BesselI(1,1)-GAMMA(17/24)) 3770025714932729 m001 1/BesselJ(1,1)*ln(GAMMA(1/4))^2 3770025722957798 r002 15th iterates of z^2 + 3770025726807906 m001 FeigenbaumB^BesselK(1,1)*BesselK(0,1) 3770025730566361 m001 (BesselK(1,1)+Gompertz)/(2^(1/2)-3^(1/2)) 3770025732718834 h001 (6/11*exp(1)+5/7)/(3/4*exp(2)+2/7) 3770025742628814 a001 28657/2207*322^(7/12) 3770025754927629 m004 Sqrt[5]*Pi+Sin[Sqrt[5]*Pi]+30*Tanh[Sqrt[5]*Pi] 3770025755691460 r005 Im(z^2+c),c=31/118+16/59*I,n=39 3770025755999425 p004 log(35963/829) 3770025767377223 a001 610/521*843^(6/7) 3770025782029771 m001 MertensB1^2/exp(FeigenbaumDelta)*sin(Pi/5) 3770025785535714 r002 13th iterates of z^2 + 3770025802839461 r009 Re(z^3+c),c=-43/90+16/61*I,n=52 3770025803730916 p001 sum((-1)^n/(261*n+253)/(10^n),n=0..infinity) 3770025819230079 r002 50th iterates of z^2 + 3770025819563546 m001 (Tetranacci-Thue)/(Pi-HardyLittlewoodC4) 3770025830179049 r002 47th iterates of z^2 + 3770025830912376 r005 Re(z^2+c),c=1/30+11/38*I,n=19 3770025839793281 q001 1459/3870 3770025841721124 r009 Im(z^3+c),c=-13/74+32/37*I,n=64 3770025843893555 r005 Re(z^2+c),c=-12/25+19/55*I,n=44 3770025847102801 a007 Real Root Of -390*x^4+278*x^3+6*x^2+788*x+319 3770025851368411 m001 (ln(gamma)+gamma(1))/(Khinchin-MertensB2) 3770025868839419 m009 (16/5*Catalan+2/5*Pi^2-1/4)/(6*Psi(1,2/3)-4/5) 3770025869254446 l005 ln(sec(375/47)) 3770025873956634 r005 Im(z^2+c),c=-55/82+3/44*I,n=50 3770025884293464 m001 (2^(1/2)-Kac)/(-OneNinth+Riemann2ndZero) 3770025891422215 a007 Real Root Of -7*x^4+944*x^3-837*x^2+760*x-218 3770025893654645 l006 ln(202/8763) 3770025922568226 a001 9349/28657*1597^(1/51) 3770025947989788 r009 Im(z^3+c),c=-17/70+17/43*I,n=5 3770025955261724 a001 55/1149851*18^(5/7) 3770025960192767 a001 24476/75025*1597^(1/51) 3770025965682114 a001 64079/196418*1597^(1/51) 3770025966557819 m001 (Zeta(5)+MinimumGamma)/LaplaceLimit 3770025968346724 m005 (1/3*exp(1)-2/3)/(2/7*gamma-4/5) 3770025969074717 a001 39603/121393*1597^(1/51) 3770025971403099 r005 Im(z^2+c),c=21/74+1/4*I,n=28 3770025978525061 r005 Re(z^2+c),c=-35/52+14/59*I,n=37 3770025981461799 a003 -1-cos(7/15*Pi)-2*cos(5/27*Pi)-cos(1/30*Pi) 3770025983446012 a001 2161/6624*1597^(1/51) 3770025987295823 r005 Re(z^2+c),c=-15/28+3/52*I,n=10 3770025992909131 r005 Im(z^2+c),c=-27/38+11/46*I,n=11 3770025998491658 m001 (2^(1/2)+BesselI(0,1))/(-Conway+Lehmer) 3770025999954826 r005 Im(z^2+c),c=-2/25+19/36*I,n=21 3770026013866879 b008 -12*Pi+ExpIntegralEi[-5] 3770026018310715 m001 (Gompertz-Shi(1))/(RenyiParking+Weierstrass) 3770026031049880 m001 (RenyiParking-StolarskyHarborth)/(Cahen-Kac) 3770026034591642 r005 Im(z^2+c),c=-129/94+6/43*I,n=4 3770026038656122 p004 log(34141/787) 3770026049010461 r009 Im(z^3+c),c=-7/32+21/52*I,n=8 3770026060018874 m001 (2^(1/2)+1)/(-Zeta(1,-1)+Weierstrass) 3770026068035688 r005 Im(z^2+c),c=-13/106+34/63*I,n=40 3770026077507513 m002 1/3+Cosh[Pi]/(Pi*ProductLog[Pi]) 3770026081948340 a001 5778/17711*1597^(1/51) 3770026085649482 m001 Lehmer^GAMMA(11/12)*Lehmer^cos(1/5*Pi) 3770026085649482 m001 Lehmer^cos(Pi/5)*Lehmer^GAMMA(11/12) 3770026091970044 a001 2/47*322^(17/45) 3770026093717124 h001 (1/4*exp(1)+2/3)/(3/8*exp(2)+4/5) 3770026113802547 r005 Re(z^2+c),c=15/56+1/13*I,n=4 3770026114729697 a007 Real Root Of -563*x^4+752*x^3+196*x^2+157*x+83 3770026115139656 m001 1/2*MasserGramain^Niven*2^(2/3) 3770026115660842 m001 1/exp(Khintchine)*CareFree/GAMMA(5/6)^2 3770026122288685 r005 Im(z^2+c),c=-7/48+24/41*I,n=29 3770026138560385 r009 Im(z^3+c),c=-27/82+15/49*I,n=2 3770026162268157 m001 (Landau-MasserGramain)/(Pi-HardyLittlewoodC5) 3770026167345372 a003 sin(Pi*22/65)/cos(Pi*20/47) 3770026179927969 m001 (2*Pi/GAMMA(5/6)+Paris)^BesselJ(0,1) 3770026185048576 r002 38th iterates of z^2 + 3770026197527795 m001 Champernowne/(KhinchinLevy-Thue) 3770026201985659 a007 Real Root Of -506*x^4-290*x^3-161*x^2+529*x+217 3770026210262710 r002 37th iterates of z^2 + 3770026214124414 a003 cos(Pi*14/103)-cos(Pi*26/81) 3770026217852969 m001 GAMMA(13/24)/ln(FeigenbaumC)^2*sin(1) 3770026227964538 a007 Real Root Of 161*x^4-552*x^3-718*x^2-921*x-278 3770026228836156 r002 30th iterates of z^2 + 3770026229054128 s002 sum(A186865[n]/(n^2*2^n+1),n=1..infinity) 3770026233181034 r004 Im(z^2+c),c=1/24+4/9*I,z(0)=I,n=26 3770026251661129 r002 21th iterates of z^2 + 3770026281302804 a001 39603/55*377^(12/43) 3770026287345696 p003 LerchPhi(1/12,1,475/168) 3770026291399758 r005 Re(z^2+c),c=-55/106+1/35*I,n=46 3770026313629553 m001 (-Catalan+StolarskyHarborth)/(1-exp(Pi)) 3770026314486822 m001 MertensB1^2*ln(Champernowne)^2*(2^(1/3)) 3770026367844429 r008 a(0)=0,K{-n^6,-21-33*n^3+79*n+n^2} 3770026375539314 m001 (GAMMA(5/12)+3)/(-GAMMA(13/24)+3) 3770026384795916 m001 (gamma(1)+Paris*StronglyCareFree)/Paris 3770026384917922 s002 sum(A276796[n]/(n^3*2^n+1),n=1..infinity) 3770026385612564 m005 (1/6*gamma+1/3)/(23/30+1/6*5^(1/2)) 3770026389605893 r009 Im(z^3+c),c=-1/11+34/49*I,n=2 3770026402917799 a001 75025/5778*322^(7/12) 3770026403480892 r005 Re(z^2+c),c=-73/126+2/7*I,n=16 3770026407771920 p001 sum((-1)^n/(473*n+331)/n/(3^n),n=1..infinity) 3770026413842693 m009 (1/5*Psi(1,3/4)-2)/(1/3*Pi^2+2/3) 3770026415569709 m001 (Psi(1,1/3)+Landau)/(ReciprocalLucas+Thue) 3770026415810160 m001 (LaplaceLimit+MertensB1)/(exp(Pi)+exp(1/Pi)) 3770026421585506 r005 Im(z^2+c),c=-2/27+31/60*I,n=31 3770026433567832 a001 3571/3*34^(17/52) 3770026434444028 l006 ln(784/1143) 3770026439247654 r009 Im(z^3+c),c=-3/110+48/61*I,n=6 3770026441949328 r005 Re(z^2+c),c=-93/70+46/51*I,n=2 3770026449781966 m001 1/exp(BesselJ(1,1))^2*Lehmer^2*sin(Pi/12) 3770026460104741 m001 exp(1/Pi)/(BesselI(1,1)+GAMMA(7/24)) 3770026461529824 r005 Im(z^2+c),c=-37/86+32/61*I,n=26 3770026469127798 m005 (1/2*Pi+8/11)/(13/36+1/9*5^(1/2)) 3770026478106829 m002 5+36*Pi^4*ProductLog[Pi] 3770026496562224 m005 (1/3*Catalan+1/2)/(5/6*5^(1/2)+3/11) 3770026499252683 a001 196418/15127*322^(7/12) 3770026504443620 r009 Im(z^3+c),c=-5/82+3/7*I,n=9 3770026510715338 r005 Re(z^2+c),c=-33/70+9/23*I,n=31 3770026510727671 r005 Re(z^2+c),c=-13/18+3/23*I,n=8 3770026513307753 a001 514229/39603*322^(7/12) 3770026515358360 a001 1346269/103682*322^(7/12) 3770026515657540 a001 3524578/271443*322^(7/12) 3770026515701190 a001 9227465/710647*322^(7/12) 3770026515707558 a001 24157817/1860498*322^(7/12) 3770026515708487 a001 63245986/4870847*322^(7/12) 3770026515708623 a001 165580141/12752043*322^(7/12) 3770026515708643 a001 433494437/33385282*322^(7/12) 3770026515708645 a001 1134903170/87403803*322^(7/12) 3770026515708646 a001 2971215073/228826127*322^(7/12) 3770026515708646 a001 7778742049/599074578*322^(7/12) 3770026515708646 a001 20365011074/1568397607*322^(7/12) 3770026515708646 a001 53316291173/4106118243*322^(7/12) 3770026515708646 a001 139583862445/10749957122*322^(7/12) 3770026515708646 a001 365435296162/28143753123*322^(7/12) 3770026515708646 a001 956722026041/73681302247*322^(7/12) 3770026515708646 a001 2504730781961/192900153618*322^(7/12) 3770026515708646 a001 10610209857723/817138163596*322^(7/12) 3770026515708646 a001 4052739537881/312119004989*322^(7/12) 3770026515708646 a001 1548008755920/119218851371*322^(7/12) 3770026515708646 a001 591286729879/45537549124*322^(7/12) 3770026515708646 a001 7787980473/599786069*322^(7/12) 3770026515708646 a001 86267571272/6643838879*322^(7/12) 3770026515708646 a001 32951280099/2537720636*322^(7/12) 3770026515708646 a001 12586269025/969323029*322^(7/12) 3770026515708646 a001 4807526976/370248451*322^(7/12) 3770026515708646 a001 1836311903/141422324*322^(7/12) 3770026515708647 a001 701408733/54018521*322^(7/12) 3770026515708655 a001 9238424/711491*322^(7/12) 3770026515708707 a001 102334155/7881196*322^(7/12) 3770026515709061 a001 39088169/3010349*322^(7/12) 3770026515711494 a001 14930352/1149851*322^(7/12) 3770026515728167 a001 5702887/439204*322^(7/12) 3770026515842443 a001 2178309/167761*322^(7/12) 3770026516625705 a001 832040/64079*322^(7/12) 3770026519838197 r005 Re(z^2+c),c=-11/24+26/57*I,n=52 3770026521994265 a001 10959/844*322^(7/12) 3770026524130525 l006 ln(181/7852) 3770026524688092 r002 19th iterates of z^2 + 3770026525105625 a008 Real Root of x^2-142131 3770026525161613 a001 -1131/2+843/2*5^(1/2) 3770026525188538 s004 Continued Fraction of A105717 3770026525188538 s004 Continued fraction of A105717 3770026525198938 a001 142130/377 3770026550910671 a001 20633239*6557470319842^(3/17) 3770026550910680 a001 87403803*1836311903^(3/17) 3770026550911183 a001 370248451*514229^(3/17) 3770026555152361 a007 Real Root Of -684*x^4+128*x^3-771*x^2+994*x+505 3770026558790918 a001 121393/9349*322^(7/12) 3770026560331281 a008 Real Root of x^2-x-141754 3770026593790760 r002 45th iterates of z^2 + 3770026594487735 m005 (1/3*exp(1)+1/3)/(7/9*Catalan-4) 3770026594508808 a001 2/514229*610^(17/48) 3770026601370377 a007 Real Root Of -25*x^4+664*x^3-220*x^2+198*x+142 3770026603608516 r005 Im(z^2+c),c=3/34+5/12*I,n=19 3770026604268484 r005 Re(z^2+c),c=-16/31+5/52*I,n=48 3770026605404436 a007 Real Root Of -890*x^4+306*x^3-676*x^2+646*x+374 3770026614208237 r005 Re(z^2+c),c=-33/74+13/28*I,n=22 3770026618525294 r005 Re(z^2+c),c=-103/78+4/53*I,n=32 3770026633899187 m001 Trott*MadelungNaCl/ln(sqrt(1+sqrt(3))) 3770026642384412 r002 36th iterates of z^2 + 3770026678872676 a007 Real Root Of -558*x^4-128*x^3+718*x^2+727*x-358 3770026680644100 m001 1/FeigenbaumD^2*CopelandErdos^2/ln(Trott)^2 3770026684817159 m001 (GAMMA(5/6)-GAMMA(11/12))/(PlouffeB+Porter) 3770026693389526 a001 7/514229*610^(29/56) 3770026710827815 a003 cos(Pi*34/101)-cos(Pi*51/110) 3770026743991082 a007 Real Root Of 187*x^4+671*x^3-148*x^2+52*x+478 3770026744239364 r005 Re(z^2+c),c=-19/94+30/47*I,n=40 3770026750140384 m005 (1/3*exp(1)-1/2)/(9/11*Catalan-6/7) 3770026757093341 a001 2207/6765*1597^(1/51) 3770026762226502 m005 (1/3*Pi+2/5)/(3/7*2^(1/2)-2/9) 3770026784019162 a007 Real Root Of -289*x^4-844*x^3+875*x^2-181*x+38 3770026784687744 m001 (MadelungNaCl+MertensB2)/(MinimumGamma-Sarnak) 3770026796083738 p001 sum(1/(601*n+336)/(2^n),n=0..infinity) 3770026800767635 s002 sum(A077318[n]/(exp(2*pi*n)-1),n=1..infinity) 3770026810998950 a001 46368/3571*322^(7/12) 3770026817903383 a007 Real Root Of 176*x^4+449*x^3-951*x^2-580*x-165 3770026818341226 m001 FeigenbaumC/(cos(1/5*Pi)^Magata) 3770026823454546 m001 (exp(1/Pi)-Landau)/(MertensB2+Riemann2ndZero) 3770026836852000 r002 5th iterates of z^2 + 3770026837948486 r005 Re(z^2+c),c=-16/31+5/52*I,n=32 3770026854138967 m001 1/Pi^2/GaussAGM(1,1/sqrt(2))/exp(gamma)^2 3770026856038511 r005 Im(z^2+c),c=1/34+13/28*I,n=13 3770026856421941 a007 Real Root Of 643*x^4-158*x^3+378*x^2-998*x+318 3770026858700574 r002 22th iterates of z^2 + 3770026862240769 a007 Real Root Of 503*x^4-121*x^3+835*x^2-275*x-239 3770026865231217 r005 Re(z^2+c),c=-5/11+6/19*I,n=11 3770026867658912 m001 PrimesInBinary^2*Niven^2/exp(Sierpinski) 3770026868608337 m008 (2/3*Pi^4+4)/(3/5*Pi^5-3/4) 3770026871920079 r005 Re(z^2+c),c=-7/114+25/28*I,n=14 3770026902868440 m005 (1/2*Catalan+1/8)/(11/12*2^(1/2)+1/4) 3770026918977337 a007 Real Root Of 196*x^4+588*x^3-475*x^2+483*x+485 3770026927827614 m001 (sin(1)+QuadraticClass)/(exp(1)+Si(Pi)) 3770026940851749 m005 (1/2*Pi-8/11)/(2*Zeta(3)-1/6) 3770026949873313 a007 Real Root Of -239*x^4-799*x^3+137*x^2-864*x+263 3770026977268643 r005 Re(z^2+c),c=-71/98+5/36*I,n=50 3770026986490803 m001 (gamma(1)-Gompertz)/(GAMMA(3/4)-ln(gamma)) 3770026995135092 s002 sum(A082014[n]/(exp(2*pi*n)-1),n=1..infinity) 3770026996572185 a007 Real Root Of 524*x^4+748*x^3+626*x^2-73*x-87 3770027002260584 a007 Real Root Of 182*x^4+67*x^3-316*x^2-863*x+363 3770027005034332 a007 Real Root Of 59*x^4+200*x^3-375*x^2-896*x+750 3770027008390489 r002 63th iterates of z^2 + 3770027008448233 r005 Im(z^2+c),c=-39/70+4/59*I,n=52 3770027026241250 a005 (1/sin(108/239*Pi))^718 3770027030817021 m001 1/Artin*exp(GAMMA(1/4))^2 3770027042021333 r002 25th iterates of z^2 + 3770027046953564 r005 Im(z^2+c),c=19/102+13/38*I,n=40 3770027047543287 a007 Real Root Of 215*x^4+723*x^3-304*x^2+314*x+813 3770027047580395 r005 Im(z^2+c),c=9/98+19/46*I,n=28 3770027051580221 r005 Im(z^2+c),c=-67/82+1/50*I,n=29 3770027055150884 r005 Re(z^2+c),c=-15/62+11/25*I,n=2 3770027055654994 a007 Real Root Of 575*x^4+60*x^3-902*x^2-938*x+467 3770027064645735 r009 Im(z^3+c),c=-25/46+10/49*I,n=36 3770027070025339 r005 Im(z^2+c),c=25/122+17/52*I,n=23 3770027086274585 r005 Im(z^2+c),c=13/62+17/56*I,n=8 3770027092498829 m004 2+3*Sqrt[5]*Pi-(Sqrt[5]*Cosh[Sqrt[5]*Pi])/Pi 3770027098436265 r005 Im(z^2+c),c=5/78+19/44*I,n=24 3770027114821969 a007 Real Root Of -127*x^4+424*x^3-165*x^2+934*x-35 3770027125948960 m001 GAMMA(17/24)^2/ln(Ei(1))^2*cos(Pi/12)^2 3770027129426683 a001 1/23184*4181^(13/50) 3770027135452181 r002 26th iterates of z^2 + 3770027136198744 p001 sum(1/(349*n+270)/(25^n),n=0..infinity) 3770027136457750 r005 Re(z^2+c),c=-14/25+10/57*I,n=11 3770027143002811 r005 Re(z^2+c),c=-55/106+1/35*I,n=44 3770027193231875 m001 (ErdosBorwein-Shi(1))/(Rabbit+RenyiParking) 3770027195476661 r005 Re(z^2+c),c=-61/118+5/61*I,n=47 3770027197355473 r005 Re(z^2+c),c=-1/48+8/55*I,n=7 3770027213495055 m001 (Psi(1,1/3)-sin(1/5*Pi))/(-CareFree+ZetaP(2)) 3770027245536948 r005 Re(z^2+c),c=-25/54+18/43*I,n=51 3770027248377339 m003 -239/60+(Sqrt[5]*Sech[1/2+Sqrt[5]/2])/4 3770027249747951 s002 sum(A029825[n]/(pi^n+1),n=1..infinity) 3770027262780403 m001 LambertW(1)*ln(Porter)*log(2+sqrt(3))^2 3770027280996775 m002 -Pi^2/(6*E^Pi)+ProductLog[Pi]/Pi^2 3770027294572593 r009 Im(z^3+c),c=-5/78+19/44*I,n=4 3770027313585922 a007 Real Root Of 27*x^4-105*x^3-720*x^2+247*x+84 3770027313994014 a001 4181/843*322^(3/4) 3770027320105756 l006 ln(160/6941) 3770027332693968 b008 -1/4+E^(-3)+EulerGamma 3770027342681244 r002 22th iterates of z^2 + 3770027352640418 m001 (GaussAGM-Niven)/(Pi-FeigenbaumB) 3770027353417443 m005 (-11/20+1/4*5^(1/2))/(11/12*exp(1)-1/10) 3770027356090621 a007 Real Root Of 198*x^4+451*x^3-975*x^2+768*x+921 3770027360488334 m001 (ZetaQ(2)-ZetaQ(4))/(Zeta(1/2)+ZetaP(4)) 3770027373643080 m002 -6+Pi^2/8+Tanh[Pi] 3770027389446407 r005 Im(z^2+c),c=-3/94+29/50*I,n=22 3770027398098287 r009 Im(z^3+c),c=-4/15+25/36*I,n=26 3770027406948347 m001 ln(gamma)^(Tribonacci/GAMMA(5/6)) 3770027413546664 r005 Im(z^2+c),c=-27/52+29/54*I,n=57 3770027417331802 a001 18/55*2^(10/49) 3770027429734120 a007 Real Root Of -594*x^4+830*x^3-709*x^2-372*x+17 3770027438942790 m005 (27/28+1/4*5^(1/2))/(3/7*Zeta(3)-1/9) 3770027444771058 r005 Re(z^2+c),c=-33/62+25/57*I,n=48 3770027447126421 a001 28143753123*144^(1/17) 3770027450648547 a007 Real Root Of 934*x^4+455*x^3+392*x^2-835*x-365 3770027461024963 m005 (1/2*5^(1/2)-1)/(1/7*Catalan+3) 3770027465804603 m001 (Psi(1,1/3)+ln(Pi))/(exp(1/Pi)+ErdosBorwein) 3770027472195979 s001 sum(exp(-2*Pi)^n*A125130[n],n=1..infinity) 3770027480962182 m001 (-PrimesInBinary+Thue)/(5^(1/2)-Shi(1)) 3770027484779078 r005 Re(z^2+c),c=-14/27+1/23*I,n=46 3770027506403938 m005 (5/12+1/6*5^(1/2))/(2/9*exp(1)-5/8) 3770027525986424 r005 Im(z^2+c),c=2/19+21/52*I,n=49 3770027531836987 s002 sum(A077324[n]/(exp(2*pi*n)-1),n=1..infinity) 3770027546890213 r005 Re(z^2+c),c=-55/106+1/35*I,n=35 3770027558352902 r002 7th iterates of z^2 + 3770027560396255 v002 sum(1/(3^n*(n^3+3*n^2+4*n+2)),n=1..infinity) 3770027565324929 a003 sin(Pi*13/99)*sin(Pi*37/95) 3770027572623277 r005 Im(z^2+c),c=5/126+22/45*I,n=4 3770027578218603 a007 Real Root Of -51*x^4-229*x^3-353*x^2-695*x+429 3770027582620712 a001 9062201101803/5*3^(2/3) 3770027585434334 s002 sum(A280398[n]/(n^3*pi^n-1),n=1..infinity) 3770027590609631 a007 Real Root Of 161*x^4+661*x^3+419*x^2+981*x+638 3770027593563334 a007 Real Root Of -200*x^4+742*x^3+617*x^2+792*x-422 3770027595931464 h001 (7/8*exp(1)+1/10)/(5/6*exp(2)+5/12) 3770027604717692 m001 GAMMA(1/6)^2*GlaisherKinkelin^2/ln(sin(Pi/12)) 3770027613203392 r002 49th iterates of z^2 + 3770027623814460 m004 -120*Pi-(25*Pi)/(6*E^(Sqrt[5]*Pi)) 3770027634626362 r005 Im(z^2+c),c=9/32+12/55*I,n=10 3770027636971407 r005 Im(z^2+c),c=-11/52+23/40*I,n=9 3770027637739847 a001 322/4181*75025^(16/29) 3770027645637513 v002 sum(1/(5^n*(22*n^2-7*n+44)),n=1..infinity) 3770027650896186 r009 Im(z^3+c),c=-10/23+18/59*I,n=17 3770027654650131 m009 (1/5*Psi(1,1/3)+1/6)/(1/2*Psi(1,1/3)+3/4) 3770027689971462 r005 Re(z^2+c),c=-33/64+5/48*I,n=36 3770027690291295 m001 1/Tribonacci^2/exp(Backhouse)^2*GAMMA(1/24) 3770027695500330 m001 (Psi(1,1/3)+BesselJ(0,1))/(ln(3)+Grothendieck) 3770027703726018 m005 (1/2*gamma-5/8)/(2/3*Zeta(3)+1/11) 3770027704910128 m008 (2/5*Pi^5-3)/(Pi^3+2/3) 3770027706411920 m004 -120*Pi-6*Cot[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770027706596320 m004 -120*Pi-6*Cot[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3770027707286239 r009 Im(z^3+c),c=-11/62+53/63*I,n=4 3770027712262732 a003 sin(Pi*14/69)/cos(Pi*49/109) 3770027713091281 r002 19th iterates of z^2 + 3770027713373377 m001 Zeta(1/2)^2*GAMMA(1/3)/exp(exp(1)) 3770027735327186 s001 sum(exp(-2*Pi)^n*A197175[n],n=1..infinity) 3770027758137770 m001 (Artin+HardyLittlewoodC3)/(Khinchin-ZetaQ(3)) 3770027763712220 r009 Im(z^3+c),c=-19/34+19/62*I,n=63 3770027764079096 a007 Real Root Of -222*x^4-747*x^3+149*x^2-557*x+602 3770027766291463 l006 ln(6569/9577) 3770027767469412 r009 Im(z^3+c),c=-3/34+26/61*I,n=12 3770027769838867 r005 Im(z^2+c),c=2/19+21/52*I,n=46 3770027786177980 m001 1/cos(Pi/5)/exp(Zeta(1/2))*sin(1)^2 3770027786645062 r005 Im(z^2+c),c=-2/21+10/19*I,n=53 3770027790071061 a007 Real Root Of 136*x^4+629*x^3+717*x^2+925*x-473 3770027801421358 r002 9th iterates of z^2 + 3770027811952957 r005 Im(z^2+c),c=-4/27+27/46*I,n=32 3770027813898264 p003 LerchPhi(1/2,2,243/131) 3770027815325111 r005 Re(z^2+c),c=-35/74+8/23*I,n=25 3770027818478385 a007 Real Root Of -575*x^4+573*x^3-481*x^2+969*x+476 3770027826472340 s002 sum(A143823[n]/((exp(n)-1)/n),n=1..infinity) 3770027829362492 r005 Im(z^2+c),c=-9/7+4/121*I,n=21 3770027832620595 a007 Real Root Of -902*x^4+366*x^3+645*x+281 3770027837773439 a001 2537720636/233*6557470319842^(10/17) 3770027837773439 a001 312119004989/233*1836311903^(10/17) 3770027841289686 r005 Im(z^2+c),c=-1/118+21/44*I,n=32 3770027861918561 m008 (3*Pi^2-1/2)/(4/5*Pi^6+3) 3770027876780150 r005 Im(z^2+c),c=-7/90+37/51*I,n=9 3770027886035680 m001 (PrimesInBinary+ZetaQ(2))/(ln(gamma)-ln(2)) 3770027894035423 r002 4th iterates of z^2 + 3770027922549648 a005 (1/cos(9/109*Pi))^39 3770027923193628 r002 12th iterates of z^2 + 3770027926284727 m001 Pi+exp(Pi)/ln(2)+GAMMA(19/24) 3770027929933471 s001 sum(exp(-2*Pi)^n*A037561[n],n=1..infinity) 3770027930025816 s001 sum(exp(-2*Pi)^n*A135512[n],n=1..infinity) 3770027946787282 l006 ln(5785/8434) 3770027957486680 a007 Real Root Of 19*x^4+697*x^3-724*x^2+126*x-673 3770027957929960 m005 (1/2*gamma+3/4)/(7/10*Catalan-11/12) 3770027958241528 m005 (3/5*exp(1)-2)/(2/3*exp(1)-5/6) 3770027958595045 a007 Real Root Of 179*x^4-193*x^3-90*x^2-553*x+228 3770027967012199 m005 (1/2*gamma-2/11)/(7/12*Pi+1) 3770027972104474 a007 Real Root Of -191*x^4-816*x^3-422*x^2-96*x+496 3770027995975149 a007 Real Root Of -704*x^4+222*x^3-344*x^2+931*x+426 3770027997304170 a001 46368/199*76^(1/9) 3770028003219909 r005 Re(z^2+c),c=-55/106+1/34*I,n=30 3770028022780817 r005 Im(z^2+c),c=-1/98+11/23*I,n=51 3770028023343235 a003 cos(Pi*7/99)*sin(Pi*12/95) 3770028027231780 r005 Im(z^2+c),c=-27/62+25/47*I,n=31 3770028028736565 m005 (1/2*Pi+2/3)/(3/8*Catalan+1/4) 3770028034838669 r005 Im(z^2+c),c=9/70+12/31*I,n=36 3770028043494739 m001 exp(Sierpinski)*Rabbit^2/sqrt(Pi) 3770028044863370 v002 sum(1/(3^n+(23*n^2-21*n+48)),n=1..infinity) 3770028047017798 m001 (Cahen-LambertW(1))/(-FeigenbaumD+TwinPrimes) 3770028049040476 a007 Real Root Of 734*x^4+362*x^3+712*x^2-810*x-402 3770028049201033 r009 Im(z^3+c),c=-45/122+17/49*I,n=14 3770028057367416 p001 sum(1/(347*n+118)/n/(6^n),n=1..infinity) 3770028063529176 b008 32*E^(1/13)+Pi 3770028065394374 a001 64079/21*63245986^(10/11) 3770028066305675 a001 7881196/21*317811^(10/11) 3770028069177189 p004 log(25031/577) 3770028073738598 r002 25th iterates of z^2 + 3770028078487359 a007 Real Root Of 113*x^4+375*x^3+439*x^2-582*x-264 3770028081282483 m001 exp(GAMMA(19/24))/ArtinRank2^2*LambertW(1) 3770028085798640 a007 Real Root Of 216*x^4+940*x^3+362*x^2-509*x-330 3770028095046376 r005 Im(z^2+c),c=-9/74+20/37*I,n=60 3770028104797515 r005 Im(z^2+c),c=-29/98+31/38*I,n=5 3770028109553691 m006 (2*exp(Pi)+1/6)/(1/2*exp(Pi)+3/4) 3770028114165150 r005 Re(z^2+c),c=-55/106+1/35*I,n=42 3770028129145131 r005 Re(z^2+c),c=-55/106+2/53*I,n=22 3770028130438759 r009 Im(z^3+c),c=-8/13+11/39*I,n=4 3770028138891274 r002 30th iterates of z^2 + 3770028142011356 m008 (5/6*Pi^3-1)/(3/5*Pi^2+2/3) 3770028147538289 l003 KelvinBer(2,41/94) 3770028159068901 a003 sin(Pi*35/93)/cos(Pi*8/19) 3770028165536516 m005 (1/2*gamma-3/10)/(5/7*Pi+7/9) 3770028172015620 a007 Real Root Of -824*x^4+339*x^3-710*x^2+762*x+423 3770028175791560 m001 (LandauRamanujan+ZetaQ(2))/(3^(1/3)-exp(Pi)) 3770028175908527 m001 (Psi(2,1/3)+Catalan)/(sin(1)+Gompertz) 3770028183875266 l006 ln(5001/7291) 3770028191814776 r005 Re(z^2+c),c=-27/52+1/63*I,n=26 3770028198097386 m005 (1/3*Zeta(3)-2/11)/(5/7*Zeta(3)-11/12) 3770028216099572 r009 Re(z^3+c),c=-43/98+8/37*I,n=19 3770028228352407 a001 843/75025*6765^(7/51) 3770028248411707 m001 ln(GAMMA(5/24))^2*GAMMA(2/3)^2*Zeta(1,2) 3770028265511581 m005 (19/24+1/8*5^(1/2))/(4/5*exp(1)+2/3) 3770028274888538 m005 (1/3*2^(1/2)+1/4)/(43/40+3/8*5^(1/2)) 3770028275212064 q001 1/26525 3770028275212064 q001 4/1061 3770028283796449 a001 46368/521*322^(1/4) 3770028296137980 h001 (1/3*exp(2)+1/3)/(10/11*exp(2)+7/10) 3770028300094946 a001 2/21*1346269^(27/46) 3770028307645308 r005 Im(z^2+c),c=19/50+8/35*I,n=54 3770028308172888 a007 Real Root Of 265*x^4+731*x^3+753*x^2-957*x-434 3770028310181598 m002 1+Pi^3*Coth[Pi]*Log[Pi]+ProductLog[Pi] 3770028310261283 a007 Real Root Of -11*x^4+274*x^3-580*x^2+267*x+198 3770028319865263 l006 ln(2652/2653) 3770028325270267 r005 Im(z^2+c),c=-65/98+18/55*I,n=30 3770028335077161 a001 969323029/21*1597^(10/11) 3770028356590539 l006 ln(139/6030) 3770028361365376 m001 1/exp(GAMMA(1/12))*Sierpinski^2*GAMMA(1/6) 3770028378175571 r005 Re(z^2+c),c=-12/29+31/58*I,n=60 3770028378195336 a001 11/46368*4181^(31/51) 3770028390321686 m001 1/exp(FeigenbaumD)/KhintchineLevy*cos(Pi/5)^2 3770028392348043 r002 48i'th iterates of 2*x/(1-x^2) of 3770028395349920 r009 Im(z^3+c),c=-5/46+27/38*I,n=2 3770028396084603 b008 1+8*Tan[1/3] 3770028400048568 r005 Im(z^2+c),c=-13/20+4/55*I,n=57 3770028408290463 r009 Re(z^3+c),c=-1/58+26/31*I,n=42 3770028412152613 s002 sum(A019006[n]/(exp(2*pi*n)+1),n=1..infinity) 3770028423546405 r005 Im(z^2+c),c=-49/118+23/38*I,n=19 3770028435719029 m001 MinimumGamma^2/ln(Cahen)/GAMMA(17/24) 3770028445528380 r005 Im(z^2+c),c=-3/4+45/212*I,n=7 3770028445684653 r005 Im(z^2+c),c=-17/46+39/61*I,n=43 3770028470004416 a007 Real Root Of -30*x^4+145*x^3+871*x^2-133*x+949 3770028476096271 r009 Im(z^3+c),c=-61/118+15/61*I,n=59 3770028476631998 a007 Real Root Of 242*x^4+953*x^3+256*x^2+260*x-480 3770028477929130 r005 Im(z^2+c),c=-17/14+6/109*I,n=56 3770028478876635 r005 Re(z^2+c),c=-16/31+5/52*I,n=50 3770028481291614 r005 Im(z^2+c),c=8/29+15/58*I,n=27 3770028488860274 r005 Im(z^2+c),c=-11/86+6/11*I,n=17 3770028490069300 p001 sum((-1)^n/(504*n+317)/n/(32^n),n=1..infinity) 3770028497204024 r005 Re(z^2+c),c=-69/98+6/47*I,n=19 3770028509119266 l006 ln(4217/6148) 3770028515113219 a007 Real Root Of 933*x^4+95*x^3-576*x^2-597*x+283 3770028524109522 r002 41th iterates of z^2 + 3770028533468894 a007 Real Root Of 112*x^4+384*x^3-103*x^2+238*x+312 3770028539659426 a001 17711/1364*322^(7/12) 3770028543718233 r002 31th iterates of z^2 + 3770028548025929 p001 sum(1/(587*n+27)/(3^n),n=0..infinity) 3770028553621167 a007 Real Root Of 971*x^4-748*x^3-964*x^2-447*x+326 3770028563810917 r009 Im(z^3+c),c=-27/94+21/55*I,n=19 3770028570385872 a005 (1/cos(2/71*Pi))^1513 3770028572854908 b005 Number DB table 3770028577405105 a007 Real Root Of 586*x^4-776*x^3+194*x^2-191*x-153 3770028595256426 r005 Re(z^2+c),c=-55/106+1/35*I,n=38 3770028598329457 r009 Im(z^3+c),c=-49/110+5/16*I,n=5 3770028602831111 a007 Real Root Of 809*x^4-116*x^3+471*x^2-935*x-442 3770028609517413 r005 Im(z^2+c),c=-11/9+14/57*I,n=7 3770028610552507 r005 Im(z^2+c),c=-13/122+33/62*I,n=50 3770028613297057 a007 Real Root Of 169*x^4+559*x^3-339*x^2-24*x+541 3770028623297378 a007 Real Root Of -155*x^4-415*x^3+479*x^2-728*x-478 3770028624996098 m006 (3/5*Pi^2-4/5)/(3/4*ln(Pi)+1/2) 3770028635694752 r009 Im(z^3+c),c=-1/27+45/58*I,n=52 3770028650885687 m001 (cos(1)*MertensB3+ln(2+3^(1/2)))/cos(1) 3770028683436994 m001 (2^(1/3)+AlladiGrinstead)/(-Sarnak+ZetaP(3)) 3770028685989184 r002 9th iterates of z^2 + 3770028691554424 r002 51th iterates of z^2 + 3770028703248817 m006 (2/3*exp(Pi)+1/2)/(5/6*Pi^2-4) 3770028724652477 a007 Real Root Of 229*x^4+743*x^3-246*x^2+745*x-143 3770028724671182 r002 11th iterates of z^2 + 3770028725865463 a007 Real Root Of -228*x^4-760*x^3+287*x^2-187*x+551 3770028726492612 m005 (1/2*Pi-1/7)/(3/8*2^(1/2)-10/11) 3770028758011310 m001 (Pi^(1/2))^FeigenbaumB*ZetaP(3)^FeigenbaumB 3770028758790633 m001 (Zeta(1,2)+BesselI(0,2))/(exp(1)+sin(1)) 3770028769412657 a001 17711/2207*322^(2/3) 3770028782681639 r005 Im(z^2+c),c=-7/78+27/53*I,n=17 3770028801781560 r005 Im(z^2+c),c=-33/74+20/37*I,n=47 3770028813185412 r005 Im(z^2+c),c=-27/29+17/57*I,n=3 3770028816237710 r002 28i'th iterates of 2*x/(1-x^2) of 3770028826625828 m001 (arctan(1/3)+MadelungNaCl)/(Sarnak-ZetaP(3)) 3770028846755816 m001 (Trott+TwinPrimes)/(BesselJ(1,1)+Totient) 3770028869774903 r009 Im(z^3+c),c=-49/110+13/43*I,n=19 3770028886587482 r005 Re(z^2+c),c=-55/106+1/35*I,n=40 3770028897648419 m009 (3*Pi^2-3/5)/(2/3*Psi(1,3/4)+6) 3770028906448638 r005 Im(z^2+c),c=-3/14+20/33*I,n=63 3770028922990622 m005 (-25/44+1/4*5^(1/2))/(3/5*exp(1)+4/5) 3770028924293484 r005 Im(z^2+c),c=-47/74+23/64*I,n=30 3770028953562842 m001 GAMMA(17/24)/exp(GAMMA(1/12))/sin(Pi/5)^2 3770028968895266 a007 Real Root Of 291*x^4+815*x^3-808*x^2+819*x-543 3770028977658370 m001 BesselK(0,1)^AlladiGrinstead/ln(2+3^(1/2)) 3770028982916289 l006 ln(3433/5005) 3770029001872351 p004 log(11149/257) 3770029001920866 r005 Im(z^2+c),c=-1/48+15/31*I,n=27 3770029005148835 a008 Real Root of (-1+2*x+x^2+5*x^4+7*x^8) 3770029006843050 s002 sum(A255539[n]/((exp(n)+1)*n),n=1..infinity) 3770029008431288 r009 Im(z^3+c),c=-1/10+17/40*I,n=11 3770029017478089 r005 Re(z^2+c),c=17/118+17/56*I,n=22 3770029044105633 a007 Real Root Of -428*x^4+943*x^3+445*x^2+910*x+339 3770029045388375 m001 (Psi(2,1/3)-exp(Pi))/(2^(1/2)+Robbin) 3770029048920713 m001 cosh(1)^2/CopelandErdos*exp(log(2+sqrt(3))) 3770029063846151 m001 1/cos(1)^2*TwinPrimes^2*ln(sqrt(1+sqrt(3)))^2 3770029069621545 r009 Im(z^3+c),c=-25/86+17/24*I,n=43 3770029073790141 m006 (1/6*ln(Pi)+3)/(1/3*exp(Pi)+3/4) 3770029082504019 r009 Im(z^3+c),c=-57/122+14/33*I,n=10 3770029086772283 r009 Im(z^3+c),c=-7/16+11/36*I,n=43 3770029095462990 m005 (1/3*Catalan-3/4)/(1/8*5^(1/2)+9/10) 3770029102534686 a001 377/11*24476^(14/59) 3770029103986553 m001 (Shi(1)-Zeta(1,2))/(-DuboisRaymond+Sarnak) 3770029106664249 m001 GAMMA(13/24)^2/ln(BesselJ(0,1))^2*Zeta(9)^2 3770029117697669 m005 (1/3*Catalan-1/2)/(2*exp(1)-3/11) 3770029133594978 r009 Re(z^3+c),c=-15/38+4/25*I,n=14 3770029133706995 r005 Im(z^2+c),c=-77/102+1/54*I,n=19 3770029136163115 a007 Real Root Of -245*x^4-855*x^3+243*x^2-256*x-740 3770029157280484 m001 (1+ln(2)/ln(10))/(-sin(1)+KhinchinLevy) 3770029159714553 r002 43th iterates of z^2 + 3770029184972962 m001 Rabbit*ln(Khintchine)^2/FeigenbaumKappa^2 3770029214310041 m001 (Psi(1,1/3)-Zeta(1/2))/(exp(-1/2*Pi)+Paris) 3770029222676689 r005 Im(z^2+c),c=-1/21+27/55*I,n=17 3770029226458145 a007 Real Root Of -84*x^4-224*x^3+161*x^2-448*x+989 3770029234990806 m005 (-9/28+1/4*5^(1/2))/(1/9*exp(1)+6) 3770029237891593 m001 GAMMA(17/24)*exp(FeigenbaumC)/GAMMA(5/12) 3770029239982817 s002 sum(A266468[n]/(exp(2*pi*n)-1),n=1..infinity) 3770029241892333 v002 sum(1/(3^n*(14*n^2-36*n+33)),n=1..infinity) 3770029247847581 r002 24th iterates of z^2 + 3770029263258944 r002 7th iterates of z^2 + 3770029271103740 r005 Re(z^2+c),c=-5/4+17/95*I,n=12 3770029277231698 r005 Im(z^2+c),c=2/19+21/52*I,n=53 3770029278667984 r002 36th iterates of z^2 + 3770029286447809 a007 Real Root Of 176*x^4+699*x^3+233*x^2+588*x+806 3770029289238805 a007 Real Root Of -687*x^4+939*x^3-218*x^2+211*x-85 3770029289399448 r005 Im(z^2+c),c=-13/18+1/7*I,n=39 3770029290049026 r005 Re(z^2+c),c=-67/126+8/21*I,n=3 3770029290829661 r002 53th iterates of z^2 + 3770029301700725 m001 ln(GAMMA(17/24))^2*Riemann1stZero^2*sqrt(3)^2 3770029311426970 l006 ln(6082/8867) 3770029322754703 m005 (1/2*Pi-4)/(7/9*Pi+4) 3770029361614304 a007 Real Root Of 252*x^4-121*x^3-709*x^2-355*x+236 3770029390829270 m004 30+Sin[Sqrt[5]*Pi]+Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi] 3770029393031999 r005 Im(z^2+c),c=-13/27+17/35*I,n=23 3770029394162048 r005 Re(z^2+c),c=-16/31+5/52*I,n=52 3770029394253906 r005 Re(z^2+c),c=-67/118+4/59*I,n=8 3770029394605268 m001 1/exp(Robbin)^2*FeigenbaumB/sin(Pi/5) 3770029403275754 a007 Real Root Of -141*x^4-270*x^3+754*x^2-872*x+12 3770029427060939 a001 55/3010349*521^(15/31) 3770029432539409 a001 2576/321*322^(2/3) 3770029437761638 r005 Re(z^2+c),c=-61/118+5/61*I,n=45 3770029440075655 m001 1/GAMMA(17/24)/Khintchine/ln(arctan(1/2)) 3770029442210208 r005 Re(z^2+c),c=-57/110+2/37*I,n=42 3770029452654568 a001 514229/2207*123^(1/10) 3770029456572026 a003 sin(Pi*4/27)*sin(Pi*20/63) 3770029458686971 h001 (7/8*exp(1)+2/7)/(9/10*exp(2)+5/12) 3770029468654646 m001 1/(2^(1/3))*ln(CopelandErdos)^2/GAMMA(5/24) 3770029474808298 a003 cos(Pi*3/23)*sin(Pi*12/89) 3770029477577854 r002 25th iterates of z^2 + 3770029480549056 r005 Re(z^2+c),c=-5/17+31/45*I,n=4 3770029484224848 m001 Pi/(ln(2)/ln(10)+sin(1/5*Pi))/Zeta(1,2) 3770029500492621 m005 (1/2*Catalan-1/10)/(3/4*2^(1/2)-1/9) 3770029501063027 h005 exp(cos(Pi*11/30)+sin(Pi*16/43)) 3770029520342011 b008 3+Log[47]/5 3770029529288318 a001 121393/15127*322^(2/3) 3770029543403794 a001 105937/13201*322^(2/3) 3770029545168736 a007 Real Root Of -701*x^4-411*x^3+143*x^2+218*x+54 3770029545463214 a001 416020/51841*322^(2/3) 3770029545763680 a001 726103/90481*322^(2/3) 3770029545786798 a001 987/76*11^(4/9) 3770029545807517 a001 5702887/710647*322^(2/3) 3770029545813913 a001 829464/103361*322^(2/3) 3770029545814846 a001 39088169/4870847*322^(2/3) 3770029545814982 a001 34111385/4250681*322^(2/3) 3770029545815002 a001 133957148/16692641*322^(2/3) 3770029545815005 a001 233802911/29134601*322^(2/3) 3770029545815005 a001 1836311903/228826127*322^(2/3) 3770029545815005 a001 267084832/33281921*322^(2/3) 3770029545815005 a001 12586269025/1568397607*322^(2/3) 3770029545815005 a001 10983760033/1368706081*322^(2/3) 3770029545815005 a001 43133785636/5374978561*322^(2/3) 3770029545815005 a001 75283811239/9381251041*322^(2/3) 3770029545815005 a001 591286729879/73681302247*322^(2/3) 3770029545815005 a001 86000486440/10716675201*322^(2/3) 3770029545815005 a001 4052739537881/505019158607*322^(2/3) 3770029545815005 a001 3536736619241/440719107401*322^(2/3) 3770029545815005 a001 3278735159921/408569081798*322^(2/3) 3770029545815005 a001 2504730781961/312119004989*322^(2/3) 3770029545815005 a001 956722026041/119218851371*322^(2/3) 3770029545815005 a001 182717648081/22768774562*322^(2/3) 3770029545815005 a001 139583862445/17393796001*322^(2/3) 3770029545815005 a001 53316291173/6643838879*322^(2/3) 3770029545815005 a001 10182505537/1268860318*322^(2/3) 3770029545815005 a001 7778742049/969323029*322^(2/3) 3770029545815005 a001 2971215073/370248451*322^(2/3) 3770029545815005 a001 567451585/70711162*322^(2/3) 3770029545815006 a001 433494437/54018521*322^(2/3) 3770029545815014 a001 165580141/20633239*322^(2/3) 3770029545815066 a001 31622993/3940598*322^(2/3) 3770029545815422 a001 24157817/3010349*322^(2/3) 3770029545817865 a001 9227465/1149851*322^(2/3) 3770029545834610 a001 1762289/219602*322^(2/3) 3770029545949377 a001 1346269/167761*322^(2/3) 3770029546736006 a001 514229/64079*322^(2/3) 3770029552127638 a001 98209/12238*322^(2/3) 3770029573977186 r005 Re(z^2+c),c=-16/31+5/52*I,n=57 3770029586045933 a001 6643838879*6557470319842^(1/17) 3770029586045933 a001 10749957122*1836311903^(1/17) 3770029586046101 a001 17393796001*514229^(1/17) 3770029586852859 a007 Real Root Of -36*x^4-99*x^3+111*x^2+502*x-199 3770029589082435 a001 75025/9349*322^(2/3) 3770029594387866 r002 55th iterates of z^2 + 3770029595035087 r005 Re(z^2+c),c=-16/31+5/52*I,n=59 3770029602432989 r009 Re(z^3+c),c=-5/12+10/49*I,n=7 3770029605200529 a007 Real Root Of 31*x^4-321*x^3+780*x^2-160*x+455 3770029617117412 g005 Pi^(1/2)*GAMMA(7/11)*GAMMA(1/11)*GAMMA(5/8) 3770029618043082 r005 Im(z^2+c),c=5/36+8/21*I,n=5 3770029621729614 r005 Im(z^2+c),c=-25/58+33/61*I,n=62 3770029624691797 r005 Re(z^2+c),c=-16/31+5/52*I,n=55 3770029635565223 r005 Re(z^2+c),c=-16/31+5/52*I,n=61 3770029651451477 m004 -6+125*Pi-6*Cot[Sqrt[5]*Pi]*Csc[Sqrt[5]*Pi] 3770029652101818 m001 1/sin(Pi/5)^2/ln(GAMMA(1/6))*sqrt(5) 3770029655651166 m001 (-Zeta(1,2)+Bloch)/(gamma(1)-ln(2)/ln(10)) 3770029665999500 m001 FellerTornier*(FeigenbaumC-LaplaceLimit) 3770029673578391 r005 Re(z^2+c),c=-16/31+5/52*I,n=63 3770029677563180 r005 Re(z^2+c),c=-121/94+1/33*I,n=18 3770029677720752 r002 23th iterates of z^2 + 3770029685774732 r002 27th iterates of z^2 + 3770029695628543 r002 13th iterates of z^2 + 3770029701909019 r002 60th iterates of z^2 + 3770029702419312 m001 (TwinPrimes+ZetaP(2))/(Ei(1)+GAMMA(11/12)) 3770029703113570 r002 62th iterates of z^2 + 3770029710780271 r005 Re(z^2+c),c=-9/19+19/51*I,n=49 3770029712740196 r002 64th iterates of z^2 + 3770029726493982 r002 58th iterates of z^2 + 3770029730275006 r002 57th iterates of z^2 + 3770029737163900 l006 ln(2649/3862) 3770029741523352 r005 Re(z^2+c),c=11/30+19/55*I,n=41 3770029746073979 m001 Niven*ErdosBorwein*exp(Riemann1stZero) 3770029748845360 r005 Re(z^2+c),c=-23/70+19/35*I,n=23 3770029751027220 r005 Im(z^2+c),c=-1/114+21/44*I,n=34 3770029755439381 s001 sum(exp(-3*Pi/5)^n*A069591[n],n=1..infinity) 3770029761991918 l006 ln(118/5119) 3770029779209316 r002 59th iterates of z^2 + 3770029781027747 r002 63th iterates of z^2 + 3770029781077170 r005 Re(z^2+c),c=-16/31+5/52*I,n=54 3770029787875123 r002 61th iterates of z^2 + 3770029798734499 a007 Real Root Of -245*x^4-666*x^3+824*x^2-645*x-337 3770029799369348 r005 Re(z^2+c),c=-16/31+5/52*I,n=64 3770029811256588 r002 56th iterates of z^2 + 3770029820241268 r005 Im(z^2+c),c=-1/36+21/43*I,n=28 3770029822409475 r005 Re(z^2+c),c=-63/122+5/56*I,n=11 3770029833001280 r005 Re(z^2+c),c=-16/31+5/52*I,n=62 3770029837555498 a007 Real Root Of -538*x^4-327*x^3-184*x^2+500*x+208 3770029842374397 a001 28657/3571*322^(2/3) 3770029850068754 m004 15/Pi+125*Pi+6*Sinh[Sqrt[5]*Pi] 3770029851959124 r005 Im(z^2+c),c=1/48+17/37*I,n=33 3770029854650344 r005 Re(z^2+c),c=-16/31+5/52*I,n=53 3770029862159130 a007 Real Root Of 49*x^4+32*x^3-35*x^2-474*x-173 3770029865738871 r005 Re(z^2+c),c=-65/126+1/10*I,n=30 3770029869551334 a007 Real Root Of 443*x^4-101*x^3+686*x^2-942*x-467 3770029873811811 r005 Re(z^2+c),c=-16/31+5/52*I,n=60 3770029876579295 r005 Im(z^2+c),c=2/19+21/52*I,n=57 3770029884093376 m001 (LambertW(1)-Psi(1,1/3))/(-MertensB1+ZetaQ(3)) 3770029886996830 m001 arctan(1/3)^Chi(1)+gamma(2) 3770029896381559 a007 Real Root Of 186*x^4+408*x^3-921*x^2+431*x-997 3770029897344030 g001 GAMMA(7/11,75/92) 3770029903235326 r005 Re(z^2+c),c=-16/31+5/52*I,n=56 3770029908795102 r005 Re(z^2+c),c=-16/31+5/52*I,n=58 3770029912032318 r005 Im(z^2+c),c=2/19+21/52*I,n=56 3770029919109478 r005 Im(z^2+c),c=2/19+21/52*I,n=52 3770029921777184 m006 (3/4*ln(Pi)+4)/(1/4*exp(2*Pi)-5) 3770029935246383 s002 sum(A159196[n]/(n*exp(pi*n)-1),n=1..infinity) 3770029953395999 p001 sum(1/(541*n+271)/(16^n),n=0..infinity) 3770029977809040 r005 Im(z^2+c),c=11/42+15/53*I,n=16 3770029979708739 a003 cos(Pi*3/64)/sin(Pi*6/71) 3770029981506508 r002 25th iterates of z^2 + 3770030005966664 r005 Im(z^2+c),c=2/19+21/52*I,n=60 3770030018228800 r002 54th iterates of z^2 + 3770030022019800 a005 (1/cos(7/183*Pi))^1774 3770030026799999 r005 Im(z^2+c),c=7/40+13/37*I,n=35 3770030028304534 a007 Real Root Of -706*x^4+953*x^3-677*x^2-150*x+105 3770030030674222 m005 (1/2*exp(1)-4/9)/(8/11*5^(1/2)+4/5) 3770030043811189 r002 6th iterates of z^2 + 3770030044371988 r005 Re(z^2+c),c=-47/118+18/37*I,n=19 3770030053754819 r005 Im(z^2+c),c=2/19+21/52*I,n=61 3770030054465394 r005 Im(z^2+c),c=2/19+21/52*I,n=50 3770030055106769 r005 Im(z^2+c),c=29/86+6/41*I,n=34 3770030064211766 r005 Im(z^2+c),c=2/19+21/52*I,n=64 3770030074802882 m001 (BesselI(0,2)-Bloch*Khinchin)/Khinchin 3770030079043887 m002 -(Cosh[Pi]/Pi^5)+(2*Sech[Pi])/Pi^6 3770030082368641 h001 (1/2*exp(2)+9/10)/(1/9*exp(1)+11/12) 3770030101070354 m004 -4+125*Pi*Coth[Sqrt[5]*Pi]-6*Log[Sqrt[5]*Pi] 3770030110125030 a007 Real Root Of -220*x^4-712*x^3+502*x^2+431*x+781 3770030113265727 m001 (PlouffeB-Trott2nd)/(ln(Pi)-GAMMA(23/24)) 3770030113725961 a001 1346269/5778*123^(1/10) 3770030116059818 r005 Im(z^2+c),c=-23/122+29/51*I,n=42 3770030121907083 r002 3th iterates of z^2 + 3770030122070823 r005 Im(z^2+c),c=2/19+21/52*I,n=63 3770030124904202 a007 Real Root Of 9*x^4+342*x^3+106*x^2+164*x+55 3770030127922652 m001 (cos(1/12*Pi)-sin(1))/(Pi^(1/2)+GAMMA(7/12)) 3770030127996400 a007 Real Root Of 259*x^4+822*x^3-803*x^2-949*x-440 3770030136198674 m001 exp(GAMMA(1/3))*FeigenbaumD/Zeta(5) 3770030144747896 a007 Real Root Of -5*x^4+394*x^3-972*x^2+442*x+326 3770030146284932 m001 1/Zeta(1/2)^2/Lehmer^2*ln(sin(Pi/5))^2 3770030147202254 r009 Re(z^3+c),c=-13/27+4/15*I,n=51 3770030165377195 r005 Im(z^2+c),c=2/19+21/52*I,n=62 3770030170856903 r005 Im(z^2+c),c=-7/10+44/183*I,n=20 3770030179996675 p001 sum(1/(511*n+269)/(25^n),n=0..infinity) 3770030188042614 a001 2584/843*322^(5/6) 3770030191878494 r005 Im(z^2+c),c=11/102+21/52*I,n=19 3770030195598859 a007 Real Root Of 981*x^4-156*x^3-502*x^2-491*x+245 3770030198676724 r005 Im(z^2+c),c=1/86+20/43*I,n=43 3770030205624809 m001 (FeigenbaumB+FeigenbaumD)/(5^(1/2)-Conway) 3770030210174997 a001 3524578/15127*123^(1/10) 3770030212432207 r005 Im(z^2+c),c=2/19+21/52*I,n=59 3770030213751262 r005 Im(z^2+c),c=-5/78+28/55*I,n=32 3770030219953727 a007 Real Root Of 238*x^4+642*x^3-773*x^2+972*x+973 3770030224246722 a001 9227465/39603*123^(1/10) 3770030226299759 a001 24157817/103682*123^(1/10) 3770030226599293 a001 63245986/271443*123^(1/10) 3770030226642994 a001 165580141/710647*123^(1/10) 3770030226649370 a001 433494437/1860498*123^(1/10) 3770030226650300 a001 1134903170/4870847*123^(1/10) 3770030226650436 a001 2971215073/12752043*123^(1/10) 3770030226650456 a001 7778742049/33385282*123^(1/10) 3770030226650459 a001 20365011074/87403803*123^(1/10) 3770030226650459 a001 53316291173/228826127*123^(1/10) 3770030226650459 a001 139583862445/599074578*123^(1/10) 3770030226650459 a001 365435296162/1568397607*123^(1/10) 3770030226650459 a001 956722026041/4106118243*123^(1/10) 3770030226650459 a001 2504730781961/10749957122*123^(1/10) 3770030226650459 a001 6557470319842/28143753123*123^(1/10) 3770030226650459 a001 10610209857723/45537549124*123^(1/10) 3770030226650459 a001 4052739537881/17393796001*123^(1/10) 3770030226650459 a001 1548008755920/6643838879*123^(1/10) 3770030226650459 a001 591286729879/2537720636*123^(1/10) 3770030226650459 a001 225851433717/969323029*123^(1/10) 3770030226650459 a001 86267571272/370248451*123^(1/10) 3770030226650459 a001 63246219/271444*123^(1/10) 3770030226650461 a001 12586269025/54018521*123^(1/10) 3770030226650468 a001 4807526976/20633239*123^(1/10) 3770030226650520 a001 1836311903/7881196*123^(1/10) 3770030226650875 a001 701408733/3010349*123^(1/10) 3770030226653311 a001 267914296/1149851*123^(1/10) 3770030226670003 a001 102334155/439204*123^(1/10) 3770030226784415 a001 39088169/167761*123^(1/10) 3770030227568605 a001 14930352/64079*123^(1/10) 3770030232943526 a001 5702887/24476*123^(1/10) 3770030242304095 s002 sum(A103355[n]/(n^3*2^n+1),n=1..infinity) 3770030244487731 r005 Im(z^2+c),c=2/19+21/52*I,n=58 3770030250533162 p004 log(36767/25219) 3770030252785650 a007 Real Root Of -104*x^4-330*x^3+191*x^2-35*x+480 3770030254700210 m002 12*Pi+Log[Pi]/Pi^6 3770030269783781 a001 2178309/9349*123^(1/10) 3770030282169161 m001 (exp(1/Pi)+TwinPrimes)/(Psi(2,1/3)+ln(Pi)) 3770030283355784 a001 3571/89*514229^(19/55) 3770030287941764 r005 Im(z^2+c),c=-19/22+1/39*I,n=19 3770030290675916 a007 Real Root Of -684*x^4-105*x^3-434*x^2+873*x+399 3770030298867321 r005 Re(z^2+c),c=-15/29+5/44*I,n=19 3770030299885259 a001 1/1353*(1/2*5^(1/2)+1/2)^5*11^(7/11) 3770030307645128 r005 Re(z^2+c),c=-57/110+4/55*I,n=21 3770030310786381 l006 ln(4514/6581) 3770030321634692 a007 Real Root Of 246*x^4+750*x^3-745*x^2-363*x-287 3770030325777149 r005 Im(z^2+c),c=2/19+21/52*I,n=54 3770030325792617 r005 Re(z^2+c),c=-29/56+3/40*I,n=23 3770030341136642 a001 2207/5*4181^(17/21) 3770030350344554 a007 Real Root Of -798*x^4+601*x^3+596*x^2+879*x+295 3770030357878132 g002 Psi(4/9)-Psi(7/11)-Psi(3/11)-Psi(9/10) 3770030358857530 m005 (19/28+1/4*5^(1/2))/(2/9*gamma+1/5) 3770030387025388 r002 6th iterates of z^2 + 3770030394071284 r005 Im(z^2+c),c=-13/46+18/31*I,n=48 3770030395631575 m004 30+Sqrt[5]*Pi+Sin[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3770030398936057 h001 (2/11*exp(2)+5/9)/(2/3*exp(2)+1/9) 3770030399326669 r005 Im(z^2+c),c=-1/8+23/44*I,n=5 3770030403321875 m001 (Stephens+ZetaQ(3))/(Pi-BesselI(1,2)) 3770030411319804 m001 (RenyiParking-TwinPrimes)/(ln(5)+Rabbit) 3770030421542619 m005 (1/2*exp(1)-3/7)/(1/9*2^(1/2)-2/11) 3770030442992828 m001 (KhinchinLevy+Landau)/(Catalan-exp(1/Pi)) 3770030450231224 r002 52th iterates of z^2 + 3770030455002962 r002 27th iterates of z^2 + 3770030462251392 a007 Real Root Of -254*x^4-855*x^3+122*x^2-739*x+977 3770030463584743 r005 Re(z^2+c),c=-16/31+5/52*I,n=51 3770030467314005 m001 (Chi(1)-Si(Pi))/(Zeta(5)+(1+3^(1/2))^(1/2)) 3770030474235586 m001 ZetaP(2)-exp(Pi)*exp(1/2) 3770030488983670 r005 Re(z^2+c),c=-39/70+24/61*I,n=17 3770030497478913 m008 (2/3*Pi^3+4)/(2/3*Pi^4+1/2) 3770030499669549 r005 Im(z^2+c),c=-35/66+1/15*I,n=49 3770030500924967 r005 Re(z^2+c),c=-33/86+12/25*I,n=14 3770030502530225 m004 -30-Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 3770030502610919 m001 Zeta(1/2)^(3^(1/2))*Zeta(1/2)^(Pi^(1/2)) 3770030502610919 m001 Zeta(1/2)^sqrt(3)*Zeta(1/2)^sqrt(Pi) 3770030522290666 a001 832040/3571*123^(1/10) 3770030544638957 r005 Im(z^2+c),c=2/19+21/52*I,n=55 3770030546067596 m001 (GAMMA(2/3)-Psi(2,1/3))/(arctan(1/3)+Salem) 3770030548993919 l006 ln(6379/9300) 3770030551693428 a001 1364/4181*6557470319842^(16/17) 3770030565943252 a007 Real Root Of -347*x^4-465*x^3-273*x^2+926*x+370 3770030566594316 r005 Re(z^2+c),c=23/70+3/31*I,n=19 3770030585011229 r002 20th iterates of z^2 + 3770030594808457 a001 219602/305*1836311903^(16/17) 3770030594830685 a001 969323029/610*514229^(16/17) 3770030597972769 a007 Real Root Of -983*x^4+465*x^3-573*x^2+766*x+415 3770030597986295 r005 Im(z^2+c),c=1/42+14/23*I,n=49 3770030600503284 m001 1/log(2+sqrt(3))*LambertW(1)*exp(sqrt(5))^2 3770030601264752 m001 (Zeta(3)+(1+3^(1/2))^(1/2))/(Porter-Rabbit) 3770030605411010 m005 (1/2*gamma-5/9)/(4/11*Catalan+3/8) 3770030609429043 m004 30+Sqrt[5]*Pi+Coth[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3770030619018487 m001 MertensB3^FeigenbaumD+ln(5) 3770030623831675 a007 Real Root Of 87*x^4+154*x^3-612*x^2+201*x+133 3770030630224086 a001 18/514229*55^(1/54) 3770030631555904 r005 Re(z^2+c),c=-61/118+5/61*I,n=39 3770030637117138 l006 ln(8329/8649) 3770030651596846 m001 (LaplaceLimit-Thue)/(FeigenbaumKappa-GaussAGM) 3770030660539499 r009 Im(z^3+c),c=-59/126+14/41*I,n=11 3770030663165846 m001 GolombDickman^(ErdosBorwein/StronglyCareFree) 3770030665133580 m001 exp(GlaisherKinkelin)^2/DuboisRaymond/sqrt(Pi) 3770030670599200 l006 ln(215/9327) 3770030692522133 m001 (Ei(1)+exp(1/Pi))/(MertensB1-ZetaP(3)) 3770030699267547 a007 Real Root Of 179*x^4+496*x^3-613*x^2+365*x+506 3770030699351257 m001 (Zeta(3)+2/3)/(-exp(-Pi)+5) 3770030715883566 r005 Im(z^2+c),c=-5/28+18/31*I,n=46 3770030720333742 m001 (exp(1)+BesselI(0,1))/(-GAMMA(7/12)+Bloch) 3770030729508692 a007 Real Root Of -969*x^4+654*x^3-370*x^2+247*x-56 3770030729888535 m005 (1/2*3^(1/2)-8/9)/(7/8*3^(1/2)-10/11) 3770030744199644 r005 Im(z^2+c),c=-8/13+4/57*I,n=64 3770030749390895 a007 Real Root Of -270*x^4+126*x^3-361*x^2+866*x+390 3770030754837445 m002 Pi^4/6+Pi^3*Cosh[Pi]*Coth[Pi] 3770030757356452 r005 Re(z^2+c),c=-43/122+34/59*I,n=25 3770030762036805 r005 Im(z^2+c),c=-123/106+3/62*I,n=51 3770030764707034 r009 Im(z^3+c),c=-15/31+13/48*I,n=37 3770030766370398 a007 Real Root Of 24*x^4-525*x^3+678*x^2-421*x+90 3770030776949885 h001 (3/10*exp(1)+11/12)/(1/2*exp(2)+9/10) 3770030782519453 r005 Re(z^2+c),c=-16/23+4/37*I,n=8 3770030783180918 r005 Im(z^2+c),c=-7/74+23/44*I,n=19 3770030786866538 a007 Real Root Of -186*x^4-458*x^3+635*x^2-819*x+920 3770030795852858 r005 Re(z^2+c),c=11/74+17/45*I,n=60 3770030808797008 s001 sum(exp(-Pi/2)^(n-1)*A139175[n],n=1..infinity) 3770030817820442 r005 Re(z^2+c),c=-17/36+18/47*I,n=46 3770030826884348 r005 Im(z^2+c),c=2/19+21/52*I,n=48 3770030828829840 r005 Re(z^2+c),c=-5/7+7/44*I,n=55 3770030841452317 m005 (1/2*3^(1/2)+5/7)/(2/5*Zeta(3)-9/10) 3770030858970962 r005 Im(z^2+c),c=7/44+18/37*I,n=7 3770030859419514 r005 Im(z^2+c),c=-5/114+25/53*I,n=11 3770030866519338 a007 Real Root Of 511*x^4-880*x^3+20*x^2-527*x-259 3770030866930662 m002 -E^Pi/6+(2*Coth[Pi])/E^Pi 3770030868257589 m003 -5+Sin[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/4 3770030872909729 a001 817138163596/233*6557470319842^(8/17) 3770030884397638 m001 Kolakoski^Sierpinski-ZetaP(3) 3770030909382944 m001 (Psi(2,1/3)+gamma)/(Zeta(5)+HardyLittlewoodC5) 3770030913123436 a001 47/46368*6765^(7/47) 3770030913502719 r002 39th iterates of z^2 + 3770030924248727 r005 Im(z^2+c),c=-11/18+47/115*I,n=50 3770030924936744 q001 1341/3557 3770030927230493 m005 (1/2*gamma+4/9)/(4/7*5^(1/2)+2/3) 3770030943941052 r002 34th iterates of z^2 + 3770030944606274 m001 1/ln(Ei(1))*Riemann2ndZero^2/GAMMA(2/3)^2 3770030949426539 r005 Im(z^2+c),c=-63/86+13/53*I,n=37 3770030951966908 r005 Im(z^2+c),c=11/118+13/29*I,n=11 3770030974561697 r005 Im(z^2+c),c=-5/52+31/59*I,n=35 3770030974946664 m001 (ln(2)+Zeta(1,-1))/(GAMMA(23/24)+Artin) 3770030975536355 r005 Im(z^2+c),c=-15/106+27/49*I,n=62 3770030992270869 a001 377/11*843^(21/59) 3770030995814512 r005 Re(z^2+c),c=-14/27+1/23*I,n=44 3770030996696921 m005 (1/3*Catalan-1/10)/(1/12*Zeta(3)+4/9) 3770030998544593 r002 12i'th iterates of 2*x/(1-x^2) of 3770031004686656 r009 Im(z^3+c),c=-1/48+38/47*I,n=30 3770031006331487 r005 Re(z^2+c),c=-14/23+25/57*I,n=63 3770031045433802 r009 Re(z^3+c),c=-43/114+17/27*I,n=27 3770031056200151 a001 538-72*5^(1/2) 3770031067713590 r005 Re(z^2+c),c=-43/78+8/47*I,n=9 3770031079718197 r005 Im(z^2+c),c=15/86+19/54*I,n=29 3770031080639070 a007 Real Root Of 155*x^4+548*x^3-165*x^2-69*x+137 3770031088022607 m001 (1-ln(2))/(-GAMMA(7/12)+TravellingSalesman) 3770031095223420 r009 Re(z^3+c),c=-19/64+31/46*I,n=31 3770031103614476 a001 53316291173/2*2^(1/2) 3770031125545547 l006 ln(1865/2719) 3770031128860719 r009 Re(z^3+c),c=-91/118+17/28*I,n=2 3770031132647857 r005 Im(z^2+c),c=7/27+11/40*I,n=32 3770031147012640 a007 Real Root Of -93*x^4-413*x^3+18*x^2+788*x-628 3770031159627631 m001 (RenyiParking+4)/(Lehmer+2/3) 3770031163190885 r002 3th iterates of z^2 + 3770031163214889 r005 Im(z^2+c),c=-9/19+3/47*I,n=19 3770031188130851 r005 Re(z^2+c),c=-23/52+9/19*I,n=42 3770031191377984 a001 233/521*1364^(14/15) 3770031210916429 m001 BesselI(0,2)/KomornikLoreti*Otter 3770031213225978 m004 -2-100/Pi+5*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi] 3770031214943018 r009 Re(z^3+c),c=-27/64+9/46*I,n=16 3770031217481789 r005 Re(z^2+c),c=-13/10+92/155*I,n=2 3770031217936474 a007 Real Root Of 481*x^4+625*x^3-237*x^2-728*x-217 3770031221507567 m005 (1/2*Pi+6/11)/(1/2*gamma+3/11) 3770031235070893 a007 Real Root Of 163*x^4-572*x^3+414*x^2+392*x+55 3770031237006832 r005 Re(z^2+c),c=17/110+21/29*I,n=5 3770031242069289 r005 Re(z^2+c),c=-51/106+15/44*I,n=41 3770031254543500 r005 Re(z^2+c),c=-57/44+3/47*I,n=26 3770031262762522 r002 50th iterates of z^2 + 3770031268468380 a007 Real Root Of 724*x^4+355*x^3+979*x^2-624*x-370 3770031269290729 a007 Real Root Of 98*x^4+379*x^3-129*x^2-363*x+976 3770031273489992 b008 1+(11*ArcCosh[3])/7 3770031273489992 b008 1+(22*ArcCsch[1])/7 3770031273636496 r005 Re(z^2+c),c=-43/78+16/63*I,n=5 3770031278299560 r005 Re(z^2+c),c=-53/118+22/43*I,n=26 3770031281732909 r008 a(0)=0,K{-n^6,22+38*n^3-62*n^2+29*n} 3770031284293267 r005 Im(z^2+c),c=-19/31+3/43*I,n=46 3770031291875887 r005 Im(z^2+c),c=-67/98+4/49*I,n=59 3770031296727120 a001 13/29*14662949395604^(9/20) 3770031299478537 m005 (1/2*3^(1/2)+1/8)/(1/6*gamma+1/6) 3770031315173081 a001 28657/521*322^(1/3) 3770031318111645 m005 (1/2*2^(1/2)+3/7)/(8/9*5^(1/2)-5) 3770031346045153 a007 Real Root Of 43*x^4-83*x^3-833*x^2+524*x+681 3770031347652369 m001 1/Pi^2*ln(Tribonacci)^2*Zeta(9) 3770031347893014 r005 Re(z^2+c),c=-123/98+13/49*I,n=8 3770031351584714 a003 sin(Pi*15/106)*sin(Pi*33/97) 3770031373076330 a007 Real Root Of 69*x^4+88*x^3-408*x^2+802*x-401 3770031383440840 r002 6th iterates of z^2 + 3770031384606156 a001 843/2584*1597^(1/51) 3770031392957988 r005 Re(z^2+c),c=47/126+6/49*I,n=44 3770031407923086 m001 RenyiParking^2/KhintchineLevy^2*ln(Sierpinski) 3770031412769930 r009 Re(z^3+c),c=-23/52+1/33*I,n=46 3770031413712722 a007 Real Root Of 611*x^4-219*x^3+902*x^2-337*x-14 3770031415423108 v002 sum(1/(5^n*(19*n^2-26*n+68)),n=1..infinity) 3770031429094340 m003 11-(E^(1/2+Sqrt[5]/2)*Sec[1/2+Sqrt[5]/2])/4 3770031434994519 m001 (gamma(2)-Champernowne)/(Otter+Stephens) 3770031436039724 r009 Im(z^3+c),c=-57/118+27/64*I,n=3 3770031444046722 r005 Re(z^2+c),c=-33/64+13/34*I,n=24 3770031445926835 r002 9th iterates of z^2 + 3770031453836391 a007 Real Root Of 145*x^4+759*x^3+888*x^2+422*x+348 3770031454632003 a007 Real Root Of 230*x^4-948*x^3+962*x^2-225*x-277 3770031464712376 h001 (-5*exp(8)-3)/(-exp(6)+8) 3770031465203633 p003 LerchPhi(1/256,3,18/13) 3770031481026000 r005 Re(z^2+c),c=-8/17+22/57*I,n=50 3770031482306276 m001 (Kolakoski+ZetaP(2))/(Pi-Zeta(1,-1)) 3770031492993685 r005 Re(z^2+c),c=-83/82+3/17*I,n=62 3770031508633378 a007 Real Root Of -993*x^4+892*x^3+635*x^2+504*x-308 3770031540022579 m001 Chi(1)/GAMMA(11/12)*Weierstrass 3770031548580033 m005 (1/4+1/6*5^(1/2))/(2/7*exp(1)+7/8) 3770031563347904 a001 1597/199*199^(8/11) 3770031566859111 r005 Im(z^2+c),c=19/102+13/38*I,n=43 3770031572205096 r009 Im(z^3+c),c=-55/106+18/53*I,n=33 3770031578464252 a001 5473/682*322^(2/3) 3770031587779075 r005 Im(z^2+c),c=2/19+21/52*I,n=51 3770031588396824 a001 317811/7*1364^(30/49) 3770031593693222 m001 GAMMA(11/24)^2*exp(GAMMA(1/4))*GAMMA(13/24)^2 3770031600304419 m001 1/GAMMA(13/24)^2*(2^(1/3))*ln(sqrt(5)) 3770031601113180 a007 Real Root Of -564*x^4+868*x^3+223*x^2+270*x+128 3770031614232939 m004 30+Sqrt[5]*Pi*Coth[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 3770031625715519 a007 Real Root Of -964*x^4+478*x^3+679*x^2+863*x-428 3770031645587413 r005 Im(z^2+c),c=-5/74+23/45*I,n=45 3770031646927429 r009 Im(z^3+c),c=-6/13+25/52*I,n=9 3770031647593284 r009 Re(z^3+c),c=-53/86+31/58*I,n=6 3770031650287856 r005 Re(z^2+c),c=29/78+5/19*I,n=58 3770031658965324 r009 Im(z^3+c),c=-23/106+23/57*I,n=15 3770031661157848 a007 Real Root Of -980*x^4+266*x^3+640*x^2+456*x+115 3770031670051687 b008 3*(3+Csc[Pi/30]) 3770031676447679 l006 ln(6676/9733) 3770031694237800 r005 Re(z^2+c),c=7/82+34/53*I,n=3 3770031696315991 h001 (4/5*exp(2)+1/5)/(1/9*exp(2)+4/5) 3770031701236799 r005 Im(z^2+c),c=-15/23+4/55*I,n=59 3770031707334229 r002 9th iterates of z^2 + 3770031707515504 r005 Re(z^2+c),c=-4/3+5/172*I,n=24 3770031708440754 r009 Im(z^3+c),c=-59/114+9/58*I,n=64 3770031710980797 m001 MertensB1^(ReciprocalFibonacci/exp(1/Pi)) 3770031716905192 r005 Im(z^2+c),c=-17/118+29/50*I,n=24 3770031719251575 m001 Ei(1)*ZetaP(4)-OneNinth 3770031730683702 m001 (cos(1)-gamma)/(-Kac+Sarnak) 3770031742082859 a001 76/13*12586269025^(10/21) 3770031746987611 m005 (1/2*gamma-6)/(2/7*2^(1/2)-5/9) 3770031751089582 r009 Re(z^3+c),c=-39/86+15/64*I,n=18 3770031751722442 m001 HardyLittlewoodC5^((1+3^(1/2))^(1/2)*Robbin) 3770031763384447 r009 Im(z^3+c),c=-29/66+3/10*I,n=13 3770031774905313 a007 Real Root Of -587*x^4-677*x^3-909*x^2+547*x+311 3770031775914162 l006 ln(97/4208) 3770031779520943 r005 Im(z^2+c),c=-5/58+7/13*I,n=21 3770031783918985 r002 21th iterates of z^2 + 3770031790689698 r009 Re(z^3+c),c=-11/29+42/61*I,n=21 3770031792208635 r005 Re(z^2+c),c=-16/31+5/52*I,n=49 3770031805458151 a005 (1/sin(92/221*Pi))^367 3770031808217668 a001 10946/2207*322^(3/4) 3770031819861771 m001 (TreeGrowth2nd-ZetaQ(3))/(GAMMA(3/4)-Totient) 3770031820210575 m004 -120*Pi-5*Sec[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770031820401485 m004 -120*Pi-5*Csch[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 3770031837805907 s002 sum(A240346[n]/(exp(n)-1),n=1..infinity) 3770031845742239 r005 Re(z^2+c),c=-27/52+1/34*I,n=22 3770031851822620 r005 Re(z^2+c),c=-61/118+5/61*I,n=43 3770031856407257 r002 5th iterates of z^2 + 3770031866596545 r005 Im(z^2+c),c=1/19+31/52*I,n=40 3770031869567611 m001 ln(GAMMA(1/6))^2*Robbin*GAMMA(5/24)^2 3770031871599693 a007 Real Root Of 339*x^4+948*x^3-918*x^2+973*x-969 3770031873733199 p001 sum((-1)^n/(284*n+265)/(512^n),n=0..infinity) 3770031890006697 l006 ln(4811/7014) 3770031900032481 r005 Im(z^2+c),c=25/74+3/37*I,n=58 3770031909784140 b008 Pi+ArcCsch[1/13+Sqrt[2]] 3770031918714694 r005 Im(z^2+c),c=-5/32+34/61*I,n=54 3770031920061237 a007 Real Root Of -294*x^4-692*x^3-830*x^2+897*x+425 3770031934465894 m005 (1/2*gamma-6)/(7/11*Zeta(3)+3/4) 3770031936121649 m005 (1/2*3^(1/2)+4)/(2/3*5^(1/2)-1/5) 3770031943454494 a007 Real Root Of -52*x^4+419*x^3+931*x^2+449*x-323 3770031948556723 s004 Continued Fraction of A171489 3770031948556723 s004 Continued fraction of A171489 3770031952753800 r002 29th iterates of z^2 + 3770031970849225 r002 36th iterates of z^2 + 3770031976747059 r002 22th iterates of z^2 + 3770031987308971 p004 log(35569/34253) 3770031995782050 a007 Real Root Of -174*x^4-796*x^3-571*x^2-21*x+534 3770031998662999 m001 BesselI(0,1)*Porter-Ei(1) 3770032002081091 r005 Re(z^2+c),c=1/15+13/19*I,n=3 3770032002510391 a007 Real Root Of 881*x^4-601*x^3+960*x^2-463*x-361 3770032003863300 b008 3-5*Sqrt[11/6] 3770032006127963 r005 Re(z^2+c),c=-3/4+8/211*I,n=24 3770032009591478 a007 Real Root Of -795*x^4+404*x^3-209*x^2+792*x+366 3770032026056738 m001 Psi(2,1/3)^Khinchin*Kolakoski 3770032030230555 m001 1/GAMMA(7/12)^2/exp(Bloch)/sin(1)^2 3770032035445215 r005 Im(z^2+c),c=17/70+16/53*I,n=9 3770032051282051 q001 941/2496 3770032067548338 r005 Im(z^2+c),c=13/60+7/23*I,n=12 3770032073377466 a007 Real Root Of 149*x^4+35*x^3-629*x^2-866*x+411 3770032075488690 p003 LerchPhi(1/12,4,130/57) 3770032085154090 r005 Re(z^2+c),c=-31/66+25/64*I,n=43 3770032088254002 r002 34th iterates of z^2 + 3770032104721838 r009 Im(z^3+c),c=-29/62+15/53*I,n=25 3770032109057890 m006 (1/3*exp(2*Pi)+5)/(4/5*Pi-3) 3770032110611559 a003 sin(Pi*19/118)-sin(Pi*39/118) 3770032113967126 m003 -3-Csc[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/4 3770032115347844 b008 (6*Pi)/5+Erfc[E] 3770032128099936 m001 1/GAMMA(1/6)/CopelandErdos*ln(GAMMA(13/24)) 3770032137611733 r002 16th iterates of z^2 + 3770032139262311 r002 3th iterates of z^2 + 3770032156001525 m005 (1/2*gamma-4/9)/(1/9*Zeta(3)+4) 3770032159107645 r002 16th iterates of z^2 + 3770032165432646 r005 Re(z^2+c),c=-29/56+1/16*I,n=38 3770032174907324 r009 Im(z^3+c),c=-41/86+8/29*I,n=35 3770032176522155 h001 (3/5*exp(2)+6/7)/(2/11*exp(1)+10/11) 3770032193357707 m008 (1/3*Pi^4+4/5)/(3*Pi-3/5) 3770032218802981 r005 Im(z^2+c),c=-3/74+23/43*I,n=16 3770032236964944 r005 Im(z^2+c),c=-85/126+23/56*I,n=11 3770032244940914 m001 exp(GAMMA(1/6))^2/Porter*cos(Pi/5) 3770032252999514 a001 317811/1364*123^(1/10) 3770032257539565 a007 Real Root Of 676*x^4+202*x^3-745*x^2-670*x+334 3770032259820476 a005 (1/cos(7/208*Pi))^237 3770032283901163 r005 Re(z^2+c),c=-45/94+3/8*I,n=31 3770032291902466 s002 sum(A231802[n]/((exp(n)+1)*n),n=1..infinity) 3770032305333607 a007 Real Root Of -867*x^4+896*x^3-130*x^2+427*x-173 3770032310914242 m001 LaplaceLimit/Artin*exp(GAMMA(7/12))^2 3770032312741347 r005 Im(z^2+c),c=11/46+8/27*I,n=16 3770032319249076 a001 3571/10946*6557470319842^(16/17) 3770032323824773 a003 cos(Pi*14/95)/cos(Pi*25/59) 3770032325539341 a001 1149851/1597*1836311903^(16/17) 3770032325544876 a001 2537720636/1597*514229^(16/17) 3770032333870681 r002 22th iterates of z^2 + 3770032343378035 a001 7/13201*199^(29/36) 3770032355558125 r002 13th iterates of z^2 + 3770032356481825 r005 Re(z^2+c),c=45/118+13/36*I,n=46 3770032373957801 l006 ln(2946/4295) 3770032378882967 m001 Sarnak^(3^(1/2))*TwinPrimes 3770032379277752 r005 Re(z^2+c),c=-14/27+2/47*I,n=23 3770032382489299 m001 BesselI(0,1)/(ReciprocalFibonacci-ZetaQ(4)) 3770032392763182 m009 (1/6*Psi(1,2/3)-4)/(4*Psi(1,2/3)-3) 3770032395012025 m001 Pi*(1+BesselJ(0,1)-BesselI(1,1)) 3770032417979193 m001 Shi(1)^BesselJ(1,1)/exp(1) 3770032421105749 l006 ln(6481/6730) 3770032432752914 h001 (1/9*exp(1)+9/11)/(7/9*exp(1)+6/7) 3770032435910564 r005 Im(z^2+c),c=-1/98+11/23*I,n=48 3770032442844797 r008 a(0)=0,K{-n^6,-3+44*n+22*n^2-37*n^3} 3770032463916965 a001 28657/5778*322^(3/4) 3770032474361177 r005 Im(z^2+c),c=-15/38+17/32*I,n=16 3770032509472549 m001 ln(BesselK(1,1))^2/FeigenbaumC*GAMMA(1/3) 3770032518665675 m004 3*E^(Sqrt[5]*Pi)+15/Pi+125*Pi 3770032541723559 r005 Im(z^2+c),c=8/29+9/35*I,n=44 3770032551858320 a007 Real Root Of -419*x^4+663*x^3-536*x^2+912*x+464 3770032557018921 r005 Re(z^2+c),c=-5/118+45/61*I,n=55 3770032559582222 a001 75025/15127*322^(3/4) 3770032573539596 a001 196418/39603*322^(3/4) 3770032575575949 a001 514229/103682*322^(3/4) 3770032575873049 a001 1346269/271443*322^(3/4) 3770032575916395 a001 3524578/710647*322^(3/4) 3770032575922720 a001 9227465/1860498*322^(3/4) 3770032575923642 a001 24157817/4870847*322^(3/4) 3770032575923777 a001 63245986/12752043*322^(3/4) 3770032575923797 a001 165580141/33385282*322^(3/4) 3770032575923799 a001 433494437/87403803*322^(3/4) 3770032575923800 a001 1134903170/228826127*322^(3/4) 3770032575923800 a001 2971215073/599074578*322^(3/4) 3770032575923800 a001 7778742049/1568397607*322^(3/4) 3770032575923800 a001 20365011074/4106118243*322^(3/4) 3770032575923800 a001 53316291173/10749957122*322^(3/4) 3770032575923800 a001 139583862445/28143753123*322^(3/4) 3770032575923800 a001 365435296162/73681302247*322^(3/4) 3770032575923800 a001 956722026041/192900153618*322^(3/4) 3770032575923800 a001 2504730781961/505019158607*322^(3/4) 3770032575923800 a001 10610209857723/2139295485799*322^(3/4) 3770032575923800 a001 4052739537881/817138163596*322^(3/4) 3770032575923800 a001 140728068720/28374454999*322^(3/4) 3770032575923800 a001 591286729879/119218851371*322^(3/4) 3770032575923800 a001 225851433717/45537549124*322^(3/4) 3770032575923800 a001 86267571272/17393796001*322^(3/4) 3770032575923800 a001 32951280099/6643838879*322^(3/4) 3770032575923800 a001 1144206275/230701876*322^(3/4) 3770032575923800 a001 4807526976/969323029*322^(3/4) 3770032575923800 a001 1836311903/370248451*322^(3/4) 3770032575923800 a001 701408733/141422324*322^(3/4) 3770032575923801 a001 267914296/54018521*322^(3/4) 3770032575923809 a001 9303105/1875749*322^(3/4) 3770032575923860 a001 39088169/7881196*322^(3/4) 3770032575924212 a001 14930352/3010349*322^(3/4) 3770032575926628 a001 5702887/1149851*322^(3/4) 3770032575943185 a001 2178309/439204*322^(3/4) 3770032576056667 a001 75640/15251*322^(3/4) 3770032576834485 a001 317811/64079*322^(3/4) 3770032577131972 a001 9349/28657*6557470319842^(16/17) 3770032578049707 a001 3010349/4181*1836311903^(16/17) 3770032578052806 a001 6643838879/4181*514229^(16/17) 3770032578999706 s002 sum(A247244[n]/((exp(n)-1)/n),n=1..infinity) 3770032582165727 a001 121393/24476*322^(3/4) 3770032586099377 a001 1597/11*521^(9/59) 3770032599407362 a001 6624*3571^(38/49) 3770032612734268 a007 Real Root Of 157*x^4-2*x^3+625*x^2-631*x-330 3770032614663779 m001 sin(Pi/5)*TreeGrowth2nd^2/ln(sqrt(3))^2 3770032614756580 a001 24476/75025*6557470319842^(16/17) 3770032614890475 a001 3940598/5473*1836311903^(16/17) 3770032614893220 a001 17393796001/10946*514229^(16/17) 3770032618706606 a001 46368/9349*322^(3/4) 3770032620245936 a001 64079/196418*6557470319842^(16/17) 3770032620265471 a001 20633239/28657*1836311903^(16/17) 3770032620268164 a001 45537549124/28657*514229^(16/17) 3770032621046822 a001 167761/514229*6557470319842^(16/17) 3770032621049673 a001 54018521/75025*1836311903^(16/17) 3770032621052358 a001 119218851371/75025*514229^(16/17) 3770032621163670 a001 439204/1346269*6557470319842^(16/17) 3770032621164086 a001 70711162/98209*1836311903^(16/17) 3770032621166770 a001 312119004989/196418*514229^(16/17) 3770032621180718 a001 1149851/3524578*6557470319842^(16/17) 3770032621180779 a001 370248451/514229*1836311903^(16/17) 3770032621183205 a001 3010349/9227465*6557470319842^(16/17) 3770032621183214 a001 969323029/1346269*1836311903^(16/17) 3770032621183462 a001 817138163596/514229*514229^(16/17) 3770032621183568 a001 7881196/24157817*6557470319842^(16/17) 3770032621183569 a001 1268860318/1762289*1836311903^(16/17) 3770032621183621 a001 20633239/63245986*6557470319842^(16/17) 3770032621183621 a001 6643838879/9227465*1836311903^(16/17) 3770032621183629 a001 54018521/165580141*6557470319842^(16/17) 3770032621183629 a001 17393796001/24157817*1836311903^(16/17) 3770032621183630 a001 141422324/433494437*6557470319842^(16/17) 3770032621183630 a001 22768774562/31622993*1836311903^(16/17) 3770032621183630 a001 370248451/1134903170*6557470319842^(16/17) 3770032621183630 a001 119218851371/165580141*1836311903^(16/17) 3770032621183630 a001 312119004989/433494437*1836311903^(16/17) 3770032621183630 a001 969323029/2971215073*6557470319842^(16/17) 3770032621183630 a001 408569081798/567451585*1836311903^(16/17) 3770032621183630 a001 2537720636/7778742049*6557470319842^(16/17) 3770032621183630 a001 2139295485799/2971215073*1836311903^(16/17) 3770032621183630 a001 5600748293801/7778742049*1836311903^(16/17) 3770032621183630 a001 7331474697802/10182505537*1836311903^(16/17) 3770032621183630 a001 23725150497407/32951280099*1836311903^(16/17) 3770032621183630 a001 9062201101803/12586269025*1836311903^(16/17) 3770032621183630 a001 10749853441/14930208*1836311903^(16/17) 3770032621183630 a001 6643838879/20365011074*6557470319842^(16/17) 3770032621183630 a001 17393796001/53316291173*6557470319842^(16/17) 3770032621183630 a001 45537549124/139583862445*6557470319842^(16/17) 3770032621183630 a001 10525900321/32264490531*6557470319842^(16/17) 3770032621183630 a001 28143753123/86267571272*6557470319842^(16/17) 3770032621183630 a001 1322157322203/1836311903*1836311903^(16/17) 3770032621183630 a001 10749957122/32951280099*6557470319842^(16/17) 3770032621183630 a001 4106118243/12586269025*6557470319842^(16/17) 3770032621183630 a001 505019158607/701408733*1836311903^(16/17) 3770032621183630 a001 224056801/686789568*6557470319842^(16/17) 3770032621183630 a001 96450076809/133957148*1836311903^(16/17) 3770032621183630 a001 599074578/1836311903*6557470319842^(16/17) 3770032621183630 a001 10525900321/14619165*1836311903^(16/17) 3770032621183630 a001 228826127/701408733*6557470319842^(16/17) 3770032621183631 a001 28143753123/39088169*1836311903^(16/17) 3770032621183631 a001 87403803/267914296*6557470319842^(16/17) 3770032621183633 a001 5374978561/7465176*1836311903^(16/17) 3770032621183634 a001 4769326/14619165*6557470319842^(16/17) 3770032621183653 a001 4106118243/5702887*1836311903^(16/17) 3770032621183654 a001 12752043/39088169*6557470319842^(16/17) 3770032621183789 a001 224056801/311187*1836311903^(16/17) 3770032621183792 a001 4870847/14930352*6557470319842^(16/17) 3770032621184719 a001 299537289/416020*1836311903^(16/17) 3770032621184742 a001 1860498/5702887*6557470319842^(16/17) 3770032621185898 a001 2139295485799/1346269*514229^(16/17) 3770032621186253 a001 5600748293801/3524578*514229^(16/17) 3770032621186305 a001 14662949395604/9227465*514229^(16/17) 3770032621186317 a001 23725150497407/14930352*514229^(16/17) 3770032621186337 a001 9062201101803/5702887*514229^(16/17) 3770032621186473 a001 494493258286/311187*514229^(16/17) 3770032621187403 a001 1322157322203/832040*514229^(16/17) 3770032621191095 a001 228826127/317811*1836311903^(16/17) 3770032621191254 a001 101521/311187*6557470319842^(16/17) 3770032621193779 a001 505019158607/317811*514229^(16/17) 3770032621234797 a001 87403803/121393*1836311903^(16/17) 3770032621235886 a001 271443/832040*6557470319842^(16/17) 3770032621237481 a001 192900153618/121393*514229^(16/17) 3770032621534336 a001 103681/144*1836311903^(16/17) 3770032621537016 a001 10525900321/6624*514229^(16/17) 3770032621541797 a001 103682/317811*6557470319842^(16/17) 3770032623587401 a001 12752043/17711*1836311903^(16/17) 3770032623590062 a001 28143753123/17711*514229^(16/17) 3770032623638545 a001 39603/121393*6557470319842^(16/17) 3770032637659323 a001 4870847/6765*1836311903^(16/17) 3770032637661848 a001 10749957122/6765*514229^(16/17) 3770032638009866 a001 2161/6624*6557470319842^(16/17) 3770032645915980 r009 Im(z^3+c),c=-7/16+11/36*I,n=40 3770032658428770 r005 Im(z^2+c),c=35/122+1/4*I,n=18 3770032664261194 r002 48th iterates of z^2 + 3770032683186682 r005 Im(z^2+c),c=-13/98+35/62*I,n=27 3770032691929082 m001 1/Riemann1stZero/GolombDickman*exp(Zeta(3)) 3770032708476124 r005 Re(z^2+c),c=-3/4+41/151*I,n=4 3770032711123693 r009 Re(z^3+c),c=-43/94+10/59*I,n=4 3770032731909116 a001 2584/7*15127^(47/49) 3770032731922074 r005 Re(z^2+c),c=-21/44+19/53*I,n=46 3770032734109712 a001 930249/1292*1836311903^(16/17) 3770032734111307 a001 4106118243/2584*514229^(16/17) 3770032736512368 a001 5778/17711*6557470319842^(16/17) 3770032740541469 l006 ln(1059/1063) 3770032767868067 r005 Re(z^2+c),c=5/29+12/35*I,n=18 3770032781222099 m001 (OneNinth+Sierpinski)^Totient 3770032784761076 r009 Im(z^3+c),c=-19/118+13/17*I,n=2 3770032792172632 m001 PrimesInBinary^(Conway/Salem) 3770032798750972 a001 6624*9349^(34/49) 3770032800101020 r005 Im(z^2+c),c=19/102+13/38*I,n=44 3770032820624244 m001 (Zeta(1,-1)-Bloch)/(cos(1/5*Pi)+ln(2^(1/2)+1)) 3770032829814857 a001 832040/7*39603^(16/49) 3770032838710956 a003 sin(Pi*9/46)*sin(Pi*22/97) 3770032839175050 a001 233/521*3571^(14/17) 3770032841395332 a007 Real Root Of -297*x^4+784*x^3+32*x^2+768*x+333 3770032841803516 r005 Re(z^2+c),c=-22/29+3/62*I,n=48 3770032848492157 r002 37th iterates of z^2 + 3770032855179303 m001 1/GAMMA(19/24)/ArtinRank2/exp(sin(Pi/5))^2 3770032856412153 m005 (1/2*Zeta(3)+1/10)/(2/3*2^(1/2)+11/12) 3770032858910633 b008 E^Sqrt[6]*Pi+Coth[1] 3770032869161532 a001 17711/3571*322^(3/4) 3770032886581548 r002 12th iterates of z^2 + 3770032886638377 a001 317811/7*5778^(25/49) 3770032898327734 r005 Im(z^2+c),c=17/52+8/49*I,n=25 3770032901081767 r005 Re(z^2+c),c=-33/70+9/23*I,n=32 3770032909297978 m005 (1/3*Catalan+1/8)/(7/8*gamma+7/11) 3770032910934530 a007 Real Root Of 8*x^4-80*x^3-402*x^2+182*x+497 3770032914277304 m001 GAMMA(5/24)/exp(CareFree)*log(2+sqrt(3))^2 3770032921727260 a007 Real Root Of 316*x^4-876*x^3-571*x^2-892*x+458 3770032922069328 r009 Re(z^3+c),c=-11/30+30/47*I,n=38 3770032934041125 r002 35th iterates of z^2 + 3770032945138184 r005 Im(z^2+c),c=-23/34+2/29*I,n=64 3770032945659416 a007 Real Root Of 64*x^4+130*x^3-256*x^2+568*x-183 3770032947264458 s001 sum(exp(-2*Pi)^n*A083937[n],n=1..infinity) 3770032952127317 l006 ln(4027/5871) 3770032963761088 r002 7th iterates of z^2 + 3770032980769376 a007 Real Root Of -115*x^4-651*x^3-945*x^2-588*x-437 3770032999759881 m001 exp(1)+Ei(1,1)+FeigenbaumB 3770033008240662 r005 Re(z^2+c),c=-13/10+11/183*I,n=38 3770033013345155 m001 1/GAMMA(1/24)*Tribonacci^2*exp(GAMMA(1/6)) 3770033020234055 s001 sum(exp(-2*Pi)^n*A085224[n],n=1..infinity) 3770033021144018 m001 BesselJ(0,1)^2*Salem/ln(sin(Pi/12))^2 3770033027619385 m002 -15/4+Pi*ProductLog[Pi] 3770033037805729 r009 Re(z^3+c),c=-1/17+14/33*I,n=4 3770033050840072 a007 Real Root Of 975*x^4-496*x^3+559*x^2-449*x-295 3770033050861931 a001 233/521*9349^(14/19) 3770033051864331 r005 Im(z^2+c),c=2/15+25/56*I,n=7 3770033065151832 r005 Re(z^2+c),c=-11/19+13/32*I,n=45 3770033070465530 q001 1482/3931 3770033070870369 m001 cos(1)^FeigenbaumC/Thue 3770033072332179 s002 sum(A231802[n]/(n*exp(n)+1),n=1..infinity) 3770033073900675 m001 Lehmer/GaussAGM(1,1/sqrt(2))*exp(Zeta(1/2))^2 3770033078449123 a001 233/521*24476^(2/3) 3770033082085646 a001 233/521*64079^(14/23) 3770033082644516 a001 233/521*20633239^(2/5) 3770033082644520 a001 233/521*17393796001^(2/7) 3770033082644520 a001 233/521*14662949395604^(2/9) 3770033082644520 a001 233/521*(1/2+1/2*5^(1/2))^14 3770033082644520 a001 233/521*505019158607^(1/4) 3770033082644520 a001 233/521*10749957122^(7/24) 3770033082644520 a001 233/521*4106118243^(7/23) 3770033082644520 a001 233/521*1568397607^(7/22) 3770033082644520 a001 233/521*599074578^(1/3) 3770033082644520 a001 233/521*228826127^(7/20) 3770033082644520 a001 233/521*87403803^(7/19) 3770033082644521 a001 233/521*33385282^(7/18) 3770033082644529 a001 233/521*12752043^(7/17) 3770033082644589 a001 233/521*4870847^(7/16) 3770033082645028 a001 233/521*1860498^(7/15) 3770033082648252 a001 233/521*710647^(1/2) 3770033082672071 a001 233/521*271443^(7/13) 3770033082849096 a001 233/521*103682^(7/12) 3770033084174178 a001 233/521*39603^(7/11) 3770033092846184 a007 Real Root Of 434*x^4-842*x^3+335*x^2-797*x+3 3770033094177395 a001 233/521*15127^(7/10) 3770033103379868 r005 Im(z^2+c),c=-7/46+28/47*I,n=38 3770033107031819 h001 (7/11*exp(1)+7/9)/(8/9*exp(2)+1/12) 3770033123866802 a001 1597/7*64079^(43/49) 3770033126745183 r002 41th iterates of z^2 + 3770033127465921 p001 sum(1/(547*n+273)/(12^n),n=0..infinity) 3770033128078653 m001 GAMMA(1/6)/ln(ArtinRank2)^2*Zeta(1,2)^2 3770033149569783 l006 ln(173/7505) 3770033156994899 r005 Im(z^2+c),c=5/122+21/47*I,n=48 3770033170475078 a001 233/521*5778^(7/9) 3770033173957919 r005 Im(z^2+c),c=17/52+11/57*I,n=64 3770033176539890 a001 832040/7*2207^(22/49) 3770033187442271 m001 HardHexagonsEntropy^2*ln(Si(Pi))*Pi 3770033187476420 s002 sum(A082509[n]/(pi^n-1),n=1..infinity) 3770033192411864 a007 Real Root Of -47*x^4-99*x^3-655*x^2+67*x+114 3770033196256434 s002 sum(A231802[n]/(n*exp(n)-1),n=1..infinity) 3770033199785128 m001 1/GAMMA(1/24)^2/MertensB1^2/exp(GAMMA(5/12))^2 3770033201750610 a007 Real Root Of 116*x^4+223*x^3-716*x^2+423*x+287 3770033220156527 m001 Zeta(1/2)^GAMMA(7/24)*GAMMA(19/24) 3770033223310654 m005 (1/2*3^(1/2)-1/11)/(10/11*Pi-4/5) 3770033226243446 r005 Re(z^2+c),c=19/74+21/40*I,n=43 3770033227945038 a008 Real Root of x^4-x^3-30*x^2+148*x-280 3770033233585934 r005 Re(z^2+c),c=-61/118+5/61*I,n=41 3770033234917990 r005 Im(z^2+c),c=-79/70+2/43*I,n=26 3770033253885780 m001 (BesselK(0,1)-cos(1))/(FeigenbaumC+MertensB3) 3770033257669274 a007 Real Root Of -153*x^4+535*x^3-316*x^2+351*x+209 3770033266359466 a007 Real Root Of 207*x^4+635*x^3-829*x^2-836*x+840 3770033271174303 r005 Im(z^2+c),c=1/48+17/37*I,n=40 3770033285582156 l006 ln(5108/7447) 3770033294118126 m001 (ln(Pi)-ln(2^(1/2)+1))/(gamma(1)-Kac) 3770033302136373 m005 (1/2*2^(1/2)+2/9)/(4/7*gamma-1/12) 3770033322792762 r005 Im(z^2+c),c=-11/122+10/17*I,n=24 3770033333135366 r005 Im(z^2+c),c=13/44+7/31*I,n=8 3770033339167000 a007 Real Root Of 98*x^4+205*x^3-555*x^2+290*x+169 3770033365119124 m001 (Psi(2,1/3)-Zeta(1,-1))/(Backhouse+ZetaQ(4)) 3770033395185866 a001 224056801/141*514229^(16/17) 3770033395190647 a001 101521/141*1836311903^(16/17) 3770033404433774 a003 cos(Pi*20/81)*cos(Pi*31/96) 3770033411658560 a001 2207/6765*6557470319842^(16/17) 3770033412310660 a007 Real Root Of 450*x^4+872*x^3+609*x^2-475*x-228 3770033421960895 m001 BesselI(0,1)/(cos(1)^(Pi^(1/2))) 3770033421960895 m001 BesselI(0,1)/(cos(1)^sqrt(Pi)) 3770033424682819 m005 (1/2*exp(1)-5/11)/(1/4*Pi-6/11) 3770033426243033 m001 Paris/Pi/csc(11/24*Pi)*GAMMA(13/24)/GAMMA(2/3) 3770033429706070 m001 TwinPrimes/ln(Khintchine)/BesselK(0,1)^2 3770033443238230 a007 Real Root Of -379*x^4-459*x^3+487*x^2+703*x-302 3770033449854937 m001 (DuboisRaymond-Lehmer)/(gamma(1)+GAMMA(5/6)) 3770033463083735 h001 (1/10*exp(1)+5/8)/(3/11*exp(2)+4/11) 3770033471310518 s002 sum(A005719[n]/(exp(2*pi*n)+1),n=1..infinity) 3770033480558590 r002 17th iterates of z^2 + 3770033485642113 r005 Im(z^2+c),c=-29/38+1/39*I,n=7 3770033495956404 r005 Re(z^2+c),c=-27/52+5/59*I,n=15 3770033498743485 r009 Re(z^3+c),c=-51/110+14/57*I,n=50 3770033501307279 m001 (Artin+Magata)/(Paris+ZetaQ(4)) 3770033502551391 l006 ln(6189/9023) 3770033516862238 a007 Real Root Of -438*x^4+986*x^3-624*x^2+251*x+245 3770033528153592 r005 Im(z^2+c),c=-13/118+23/42*I,n=27 3770033546247830 a005 (1/cos(16/165*Pi))^77 3770033548715574 r005 Re(z^2+c),c=-11/34+37/64*I,n=45 3770033551552271 r009 Im(z^3+c),c=-19/60+13/35*I,n=9 3770033553203861 r005 Im(z^2+c),c=-11/90+20/37*I,n=38 3770033556680725 a007 Real Root Of 769*x^4+772*x^3+845*x^2-864*x-420 3770033559652950 a007 Real Root Of 943*x^4-994*x^3+902*x^2-866*x-527 3770033567052744 p002 log(11^(3/2)+5^(6/5)) 3770033577814426 r005 Im(z^2+c),c=-31/114+21/37*I,n=29 3770033590445544 m001 1/exp(exp(1))/(3^(1/3))^2/sin(1) 3770033606735251 s002 sum(A118417[n]/(exp(2*pi*n)+1),n=1..infinity) 3770033620875839 a001 (5^(1/4)+1)^(1015/47) 3770033626718452 a001 1597/843*322^(11/12) 3770033629048360 a001 64079/610*6557470319842^(14/17) 3770033629966509 a001 54018521/610*1836311903^(14/17) 3770033629968859 a001 22768774562/305*514229^(14/17) 3770033631007717 b008 Sqrt[3]*E^(7/9) 3770033632793548 m001 Psi(2,1/3)*(BesselJ(0,1)-StolarskyHarborth) 3770033635427410 a001 987/11*39603^(8/59) 3770033659836020 h001 (1/11*exp(1)+4/5)/(11/12*exp(1)+2/7) 3770033674333321 m005 (1/2*3^(1/2)-2/5)/(7/10*exp(1)-2/3) 3770033697378545 a007 Real Root Of 250*x^4+756*x^3-723*x^2+x+286 3770033705834814 m001 (gamma(1)+ZetaP(3))/(cos(1/5*Pi)+Ei(1)) 3770033712935284 s002 sum(A087971[n]/(exp(2*pi*n)-1),n=1..infinity) 3770033720698808 m005 (1/3*3^(1/2)+3/4)/(7/8*gamma-6/7) 3770033722053127 r005 Im(z^2+c),c=21/74+3/13*I,n=8 3770033742503673 m001 (Chi(1)-Psi(2,1/3))/ZetaR(2) 3770033745881175 s002 sum(A207014[n]/((10^n+1)/n),n=1..infinity) 3770033745970728 s002 sum(A207014[n]/((10^n-1)/n),n=1..infinity) 3770033748722079 a007 Real Root Of 743*x^4-215*x^3+528*x^2-399*x-252 3770033753452616 r009 Im(z^3+c),c=-57/94+29/55*I,n=9 3770033759894063 a001 233/521*2207^(7/8) 3770033767494528 r005 Im(z^2+c),c=-1/15+38/63*I,n=31 3770033779406477 a001 987/11*2207^(11/59) 3770033783271021 r009 Im(z^3+c),c=-33/122+22/57*I,n=7 3770033793254625 m001 (2^(1/2)-sin(1))/(AlladiGrinstead+Rabbit) 3770033800899003 r005 Re(z^2+c),c=-1/26+41/56*I,n=64 3770033803440026 r005 Re(z^2+c),c=7/23+20/39*I,n=35 3770033814081452 r005 Re(z^2+c),c=-8/17+17/44*I,n=61 3770033828007779 r004 Im(z^2+c),c=-5/46+9/17*I,z(0)=I,n=30 3770033838926866 r009 Re(z^3+c),c=-13/27+13/48*I,n=25 3770033853425192 a007 Real Root Of -209*x^4-615*x^3+504*x^2-686*x-483 3770033856602414 a005 (1/cos(35/136*Pi))^72 3770033867394775 m005 (1/2*2^(1/2)+1/8)/(1/2*Pi+7/11) 3770033890641731 a007 Real Root Of 661*x^4+64*x^3-134*x^2-560*x-202 3770033897462974 r005 Im(z^2+c),c=-23/110+31/55*I,n=30 3770033902069094 s002 sum(A127919[n]/(exp(2*pi*n)-1),n=1..infinity) 3770033917918867 r002 16th iterates of z^2 + 3770033931521644 r009 Re(z^3+c),c=-43/90+7/26*I,n=22 3770033933641728 r009 Im(z^3+c),c=-17/64+13/18*I,n=40 3770033942208406 r005 Re(z^2+c),c=-1/18+42/53*I,n=54 3770033957212511 m005 (1/3*5^(1/2)+3/5)/(1/8*5^(1/2)-7/11) 3770033984029540 r005 Im(z^2+c),c=-41/70+4/57*I,n=28 3770033984673048 m008 (Pi^6+1/6)/(5/6*Pi^3-1/3) 3770033984779695 a007 Real Root Of 604*x^4-923*x^3+187*x^2-193*x-161 3770033986079730 m001 (-Kac+MadelungNaCl)/(Chi(1)-cos(1)) 3770033986512219 r009 Im(z^3+c),c=-1/14+25/52*I,n=2 3770034001906377 s002 sum(A190064[n]/(exp(2*pi*n)+1),n=1..infinity) 3770034030103784 m001 (CareFree+Tribonacci)/(gamma(1)-BesselK(1,1)) 3770034030268427 r005 Re(z^2+c),c=-19/94+17/28*I,n=16 3770034038086598 r002 31th iterates of z^2 + 3770034040847377 a007 Real Root Of 795*x^4-686*x^3+874*x^2+520*x+19 3770034049735921 r002 36th iterates of z^2 + 3770034055778971 m001 GAMMA(17/24)^2*ln(RenyiParking)/GAMMA(5/6)^2 3770034059538985 h001 (-2*exp(-1)+6)/(-2*exp(3/2)-5) 3770034062276228 r009 Im(z^3+c),c=-53/118+11/37*I,n=28 3770034078712728 a003 sin(Pi*15/101)-sin(Pi*22/71) 3770034080631555 p004 log(27893/26861) 3770034091904595 a007 Real Root Of 762*x^4-944*x^3-761*x^2-966*x-322 3770034103550625 a001 1322157322203/8*365435296162^(7/11) 3770034112892393 g006 Psi(1,8/9)+1/2*Pi^2-Psi(1,1/6)-Psi(1,2/5) 3770034133783829 m005 (4/5*2^(1/2)+1/6)/(1/4*gamma+1/5) 3770034147781400 r005 Re(z^2+c),c=-19/52+8/21*I,n=2 3770034148631710 r002 8th iterates of z^2 + 3770034157504828 m001 (-Bloch+Kac)/(1+Pi*csc(7/24*Pi)/GAMMA(17/24)) 3770034184681786 r005 Re(z^2+c),c=-61/118+17/38*I,n=20 3770034194609023 m001 (3^(1/2)-exp(1))/(3^(1/3)+GAMMA(19/24)) 3770034196125612 a007 Real Root Of 231*x^4+494*x^3+636*x^2-391*x-216 3770034196712664 m001 Porter^2/FibonacciFactorial^2*ln(Salem)^2 3770034205505982 s001 sum(exp(-2*Pi)^n*A192695[n],n=1..infinity) 3770034213288791 r005 Im(z^2+c),c=-12/25+19/35*I,n=54 3770034215362548 v002 sum(1/(5^n+(29*n^2-81*n+99)),n=1..infinity) 3770034228774217 r005 Im(z^2+c),c=-1/17+20/41*I,n=14 3770034234818148 r005 Im(z^2+c),c=1/86+20/43*I,n=44 3770034236265747 r005 Im(z^2+c),c=-15/16+2/61*I,n=10 3770034237805953 r005 Im(z^2+c),c=-9/58+23/42*I,n=28 3770034278217771 m001 BesselI(1,2)*(Magata-Zeta(5)) 3770034304701917 r009 Re(z^3+c),c=-10/17+31/55*I,n=6 3770034310728571 r005 Im(z^2+c),c=31/78+3/8*I,n=21 3770034341961398 a001 17711/521*322^(5/12) 3770034344633784 a001 24476/233*317811^(13/46) 3770034346166511 r005 Re(z^2+c),c=-125/122+7/54*I,n=34 3770034356520411 h001 (8/9*exp(1)+1/7)/(6/7*exp(2)+5/11) 3770034358929430 r005 Re(z^2+c),c=-11/29+31/59*I,n=33 3770034368041666 r009 Re(z^3+c),c=-3/46+15/28*I,n=8 3770034370407348 a007 Real Root Of -207*x^4+831*x^3-523*x^2+618*x-199 3770034373066288 r005 Re(z^2+c),c=-16/31+5/52*I,n=47 3770034373661776 r009 Re(z^3+c),c=-43/90+2/23*I,n=13 3770034376458545 a007 Real Root Of -910*x^4+300*x^3-921*x^2+381*x+309 3770034393883503 s002 sum(A110953[n]/(exp(2*pi*n)+1),n=1..infinity) 3770034397707908 a007 Real Root Of -168*x^4-882*x^3-913*x^2+186*x+355 3770034402505072 m005 (1/2*Catalan+1/6)/(7/10*3^(1/2)+4/9) 3770034404994020 s002 sum(A155833[n]/(2^n+1),n=1..infinity) 3770034415514400 r005 Im(z^2+c),c=2/19+21/52*I,n=47 3770034444374911 r005 Im(z^2+c),c=7/40+17/49*I,n=15 3770034459117997 a003 sin(Pi*5/89)/cos(Pi*37/107) 3770034466528543 s001 sum(exp(-2*Pi)^(n-1)*A024483[n],n=1..infinity) 3770034468525364 r008 a(0)=0,K{-n^6,25-8*n+51*n^2-42*n^3} 3770034483890568 s001 sum(exp(-2*Pi)^n*A027986[n],n=1..infinity) 3770034491357987 s001 sum(exp(-2*Pi)^(n-1)*A084180[n],n=1..infinity) 3770034491357987 s001 sum(exp(-2*Pi)^(n-1)*A020988[n],n=1..infinity) 3770034495457373 r002 6th iterates of z^2 + 3770034501085919 a001 144/29*76^(22/47) 3770034501834319 r005 Re(z^2+c),c=-5/11+9/25*I,n=16 3770034505468184 r005 Im(z^2+c),c=29/86+15/64*I,n=23 3770034506038159 h001 (5/8*exp(2)+5/6)/(1/9*exp(2)+5/8) 3770034527786161 l006 ln(1081/1576) 3770034535822195 m005 (2/5*2^(1/2)+2)/(7/3+2*5^(1/2)) 3770034540834000 s001 sum(exp(-2*Pi)^n*A177238[n],n=1..infinity) 3770034542181326 r005 Im(z^2+c),c=-3/122+8/15*I,n=16 3770034554822616 m001 ZetaQ(2)^Mills/(Robbin^Mills) 3770034563809648 a001 341/36*4181^(28/39) 3770034568712146 b008 BarnesG[Pi*ArcSinh[4]] 3770034582091365 r005 Im(z^2+c),c=13/74+20/57*I,n=30 3770034585806040 a001 615/124*322^(3/4) 3770034589149766 m008 (2/5*Pi^5-3/4)/(1/3*Pi^4-1/5) 3770034603777464 m001 1/exp(GAMMA(1/12))/FeigenbaumD/Zeta(9) 3770034613934680 s001 sum(exp(-4*Pi/5)^n*A110411[n],n=1..infinity) 3770034619723525 r002 7th iterates of z^2 + 3770034624124585 r005 Im(z^2+c),c=-29/52+4/59*I,n=42 3770034624682432 r005 Re(z^2+c),c=-27/94+18/29*I,n=41 3770034649744166 r005 Im(z^2+c),c=-1/16+29/57*I,n=21 3770034655327263 a001 3/199*123^(4/21) 3770034664182730 a007 Real Root Of x^4-519*x^3-281*x^2-884*x+401 3770034676920932 s001 sum(exp(-Pi/4)^n*A238260[n],n=1..infinity) 3770034678222945 a001 123/75025*377^(11/12) 3770034679054200 a001 521/13*1548008755920^(9/11) 3770034686366178 m001 (Kac+RenyiParking)/(gamma(1)-FeigenbaumMu) 3770034687416255 s002 sum(A220964[n]/(exp(2*pi*n)-1),n=1..infinity) 3770034688888680 s002 sum(A231125[n]/(exp(2*pi*n)-1),n=1..infinity) 3770034692906025 m008 (3/4*Pi^5+1)/(2*Pi^5-3/5) 3770034698636652 r005 Re(z^2+c),c=-25/46+20/53*I,n=26 3770034713301912 r005 Re(z^2+c),c=-77/102+1/57*I,n=34 3770034713419846 a007 Real Root Of -67*x^4+57*x^3+970*x^2-672*x+269 3770034713868033 m005 (2/3*gamma+5)/(1/5*Pi+4/5) 3770034719463575 v002 sum(1/(3^n+(22*n^2-23*n+53)),n=1..infinity) 3770034721261647 a007 Real Root Of 20*x^4-205*x^3-899*x^2+581*x-57 3770034723094879 m001 (-Paris+Thue)/(2^(1/3)-MinimumGamma) 3770034724908273 a007 Real Root Of 948*x^4-199*x^3+883*x^2-466*x-331 3770034732777635 r005 Re(z^2+c),c=-17/18+19/148*I,n=36 3770034736703520 s002 sum(A221587[n]/(exp(2*pi*n)-1),n=1..infinity) 3770034746863764 r005 Re(z^2+c),c=-15/31+4/21*I,n=10 3770034747604683 m005 (1/3*Zeta(3)+1/10)/(7/10*2^(1/2)-6/7) 3770034747974749 r005 Re(z^2+c),c=11/32+16/33*I,n=7 3770034760106077 a001 505019158607/144*144^(16/17) 3770034780058417 b008 12*Pi+Sech[E^2] 3770034780152819 b008 12*Pi+Csch[E^2] 3770034781391365 p001 sum((-1)^n/(94*n+11)/n/(25^n),n=0..infinity) 3770034783351705 r009 Im(z^3+c),c=-39/106+7/20*I,n=10 3770034783564561 a007 Real Root Of 383*x^4-656*x^3-952*x^2-762*x+450 3770034799282280 r002 28th iterates of z^2 + 3770034815559639 a001 6765/2207*322^(5/6) 3770034815732505 r005 Re(z^2+c),c=-21/44+19/53*I,n=47 3770034822903630 m001 (FellerTornier+Grothendieck)/(cos(1)-ln(3)) 3770034823519511 r005 Re(z^2+c),c=-5/82+25/31*I,n=24 3770034835557120 a007 Real Root Of 349*x^4+163*x^3+403*x^2-826*x-367 3770034843205574 q001 541/1435 3770034846014277 r009 Re(z^3+c),c=-57/110+14/55*I,n=28 3770034849040338 m005 (1/2*exp(1)+1/6)/(1/3*Pi+3) 3770034857638990 m001 MertensB1/Backhouse^2/exp(Lehmer)^2 3770034858050758 r009 Re(z^3+c),c=-13/29+5/22*I,n=36 3770034862383223 m001 BesselK(1,1)/exp(Bloch)*Zeta(9)^2 3770034876445065 r005 Re(z^2+c),c=-65/126+3/37*I,n=20 3770034881693529 r002 46th iterates of z^2 + 3770034889206458 r009 Re(z^3+c),c=-13/29+5/22*I,n=37 3770034889487214 r009 Im(z^3+c),c=-4/21+39/53*I,n=29 3770034900182243 m007 (-2/3*gamma-2*ln(2)+1/3*Pi-3)/(-2*gamma+1/6) 3770034902785399 l006 ln(76/3297) 3770034905058424 r005 Re(z^2+c),c=43/94+13/25*I,n=3 3770034906598668 m001 (TravellingSalesman-ZetaP(2))/(Cahen-Totient) 3770034916898762 h001 (1/11*exp(1)+11/12)/(4/11*exp(2)+2/5) 3770034927084620 a007 Real Root Of -217*x^4-849*x^3+49*x^2+690*x+249 3770034930703187 r005 Re(z^2+c),c=25/118+25/62*I,n=22 3770034934949940 a007 Real Root Of 6*x^4-343*x^3-505*x^2-496*x-18 3770034943551856 a007 Real Root Of -437*x^4+814*x^3+654*x^2+128*x-176 3770034963894246 m002 6*Pi*Coth[Pi]+Pi^3*Sinh[Pi] 3770034965301864 m001 exp(-1/2*Pi)^ZetaP(2)/Conway 3770034980927416 r005 Im(z^2+c),c=-109/94+7/54*I,n=4 3770034988039474 a007 Real Root Of 285*x^4+965*x^3-657*x^2-910*x+42 3770034993009202 b008 2-7*E^4*Pi^2 3770035021620678 m005 (1/3*5^(1/2)+1/2)/(3/8*2^(1/2)-1/5) 3770035031689042 a007 Real Root Of 16*x^4+591*x^3-471*x^2-406*x+107 3770035036617096 m005 (1/3*2^(1/2)-1/11)/(1/12*Zeta(3)+10/11) 3770035041533023 m001 (FransenRobinson+Gompertz)/(exp(1/Pi)-Bloch) 3770035043530748 m001 (GAMMA(3/4)+BesselI(1,1))/Weierstrass 3770035070775409 r005 Im(z^2+c),c=35/114+11/50*I,n=55 3770035085256793 s002 sum(A003305[n]/(exp(2*pi*n)-1),n=1..infinity) 3770035087087489 s002 sum(A076625[n]/(exp(2*pi*n)-1),n=1..infinity) 3770035107458871 r009 Re(z^3+c),c=-37/114+1/61*I,n=6 3770035125200921 a001 5/76*322^(13/43) 3770035125400559 m001 Paris/(BesselI(1,2)+GAMMA(23/24)) 3770035130382720 r005 Im(z^2+c),c=29/78+10/53*I,n=15 3770035135137283 r009 Re(z^3+c),c=-11/26+11/56*I,n=30 3770035144240409 m005 (1/2*exp(1)+11/12)/(1/12*gamma+5/9) 3770035145652281 h001 (4/9*exp(2)+1/12)/(1/12*exp(1)+2/3) 3770035149465336 r005 Im(z^2+c),c=-9/56+14/25*I,n=60 3770035151221136 r002 24th iterates of z^2 + 3770035161417505 r009 Re(z^3+c),c=-19/52+2/17*I,n=16 3770035183461818 r005 Im(z^2+c),c=-53/110+33/53*I,n=30 3770035184809281 s002 sum(A113449[n]/(exp(2*pi*n)-1),n=1..infinity) 3770035187262596 m004 15/Pi+125*Pi+6*Cosh[Sqrt[5]*Pi] 3770035207096428 r009 Re(z^3+c),c=-3/86+25/33*I,n=6 3770035224678832 m005 (1/3*Catalan-1/10)/(3*3^(1/2)+1/4) 3770035234218858 a007 Real Root Of -562*x^4+950*x^3-156*x^2+97*x+121 3770035238571618 a007 Real Root Of 157*x^4+566*x^3-63*x^2+8*x-462 3770035242095919 a007 Real Root Of 258*x^4+910*x^3-358*x^2-686*x-856 3770035250140333 m004 Sqrt[5]*Pi+30*Coth[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 3770035254049040 m001 FeigenbaumD^2*Sarnak^2 3770035260378941 r005 Im(z^2+c),c=7/46+17/46*I,n=25 3770035283913269 r002 8th iterates of z^2 + 3770035284271332 s002 sum(A074601[n]/(exp(2*pi*n)-1),n=1..infinity) 3770035297724175 a001 55/3010349*1364^(13/31) 3770035303874529 a007 Real Root Of -607*x^4+712*x^3+552*x^2+146*x+27 3770035310817617 m005 (1/2*Pi+2)/(1/8*gamma+7/8) 3770035313212969 p004 log(32059/739) 3770035323322952 m001 (Champernowne-Gompertz)/(Lehmer+Robbin) 3770035323341435 s002 sum(A127725[n]/(exp(2*pi*n)+1),n=1..infinity) 3770035331963601 a001 956722026041/29*76^(9/16) 3770035336040592 r009 Re(z^3+c),c=-53/86+31/58*I,n=33 3770035356427443 a007 Real Root Of 827*x^4-764*x^3+82*x^2-100*x-107 3770035358035761 m001 exp(1)/(Otter^MasserGramainDelta) 3770035360548139 a001 167761/1597*6557470319842^(14/17) 3770035360682095 a001 141422324/1597*1836311903^(14/17) 3770035360684443 a001 119218851371/1597*514229^(14/17) 3770035361311203 r009 Re(z^3+c),c=-53/86+31/58*I,n=51 3770035361341705 r009 Re(z^3+c),c=-53/86+31/58*I,n=60 3770035361512719 r002 24th iterates of z^2 + 3770035362262014 r009 Re(z^3+c),c=-53/86+31/58*I,n=42 3770035366309361 a003 cos(Pi*29/78)*sin(Pi*7/17) 3770035373866362 a007 Real Root Of -232*x^4-463*x^3-900*x^2+913*x+452 3770035391758316 r002 35th iterates of z^2 + 3770035400750969 r005 Re(z^2+c),c=-12/23+12/35*I,n=9 3770035424997422 a007 Real Root Of -920*x^4-631*x^3-885*x^2+781*x+405 3770035442340084 m001 GAMMA(5/6)^Ei(1,1)-OrthogonalArrays 3770035456217843 m006 (4/Pi-2)/(2/3*Pi-1/6) 3770035463239112 l006 ln(6783/9889) 3770035463593197 r005 Im(z^2+c),c=-4/27+28/51*I,n=34 3770035466441824 r009 Im(z^3+c),c=-13/34+19/56*I,n=20 3770035470223447 p003 LerchPhi(1/1024,1,576/217) 3770035482816720 m005 (1/2*exp(1)+5/7)/(1/12*5^(1/2)+4/11) 3770035487458774 s002 sum(A002301[n]/(exp(2*pi*n)-1),n=1..infinity) 3770035490706205 a001 17711/5778*322^(5/6) 3770035505968043 r005 Im(z^2+c),c=7/78+5/12*I,n=18 3770035513166102 m001 exp(GAMMA(1/12))*Si(Pi)^2*GAMMA(11/12)^2 3770035513769294 m001 Stephens/(Sierpinski-Shi(1)) 3770035524648682 r009 Im(z^3+c),c=-17/118+50/61*I,n=28 3770035536038332 m001 (ln(2+3^(1/2))-Pi^(1/2))/(MadelungNaCl-Otter) 3770035544505894 h001 (5/9*exp(2)+3/8)/(1/7*exp(1)+4/5) 3770035548044434 m001 (sin(1/5*Pi)-CareFree)/(FeigenbaumMu-PlouffeB) 3770035554117278 m001 Pi*(ZetaP(3)-exp(1/Pi)) 3770035554674151 r009 Re(z^3+c),c=-1/58+26/31*I,n=40 3770035559638788 a007 Real Root Of 815*x^4-770*x^3+567*x^2-206*x+7 3770035565475110 r009 Re(z^3+c),c=-1/58+26/31*I,n=38 3770035575433990 r005 Re(z^2+c),c=-12/25+17/49*I,n=60 3770035577216728 r005 Im(z^2+c),c=5/122+21/47*I,n=49 3770035577590284 a003 sin(Pi*1/55)/cos(Pi*14/31) 3770035587021926 a007 Real Root Of -279*x^4-874*x^3+463*x^2-971*x-712 3770035589208781 a001 6624/2161*322^(5/6) 3770035603580113 a001 121393/39603*322^(5/6) 3770035605676862 a001 317811/103682*322^(5/6) 3770035605982774 a001 832040/271443*322^(5/6) 3770035606027406 a001 311187/101521*322^(5/6) 3770035606033918 a001 5702887/1860498*322^(5/6) 3770035606034868 a001 14930352/4870847*322^(5/6) 3770035606035006 a001 39088169/12752043*322^(5/6) 3770035606035026 a001 14619165/4769326*322^(5/6) 3770035606035029 a001 267914296/87403803*322^(5/6) 3770035606035030 a001 701408733/228826127*322^(5/6) 3770035606035030 a001 1836311903/599074578*322^(5/6) 3770035606035030 a001 686789568/224056801*322^(5/6) 3770035606035030 a001 12586269025/4106118243*322^(5/6) 3770035606035030 a001 32951280099/10749957122*322^(5/6) 3770035606035030 a001 86267571272/28143753123*322^(5/6) 3770035606035030 a001 32264490531/10525900321*322^(5/6) 3770035606035030 a001 591286729879/192900153618*322^(5/6) 3770035606035030 a001 1548008755920/505019158607*322^(5/6) 3770035606035030 a001 1515744265389/494493258286*322^(5/6) 3770035606035030 a001 2504730781961/817138163596*322^(5/6) 3770035606035030 a001 956722026041/312119004989*322^(5/6) 3770035606035030 a001 365435296162/119218851371*322^(5/6) 3770035606035030 a001 139583862445/45537549124*322^(5/6) 3770035606035030 a001 53316291173/17393796001*322^(5/6) 3770035606035030 a001 20365011074/6643838879*322^(5/6) 3770035606035030 a001 7778742049/2537720636*322^(5/6) 3770035606035030 a001 2971215073/969323029*322^(5/6) 3770035606035030 a001 1134903170/370248451*322^(5/6) 3770035606035030 a001 433494437/141422324*322^(5/6) 3770035606035031 a001 165580141/54018521*322^(5/6) 3770035606035039 a001 63245986/20633239*322^(5/6) 3770035606035092 a001 24157817/7881196*322^(5/6) 3770035606035455 a001 9227465/3010349*322^(5/6) 3770035606037942 a001 3524578/1149851*322^(5/6) 3770035606054990 a001 1346269/439204*322^(5/6) 3770035606171838 a001 514229/167761*322^(5/6) 3770035606972725 a001 196418/64079*322^(5/6) 3770035612462085 a001 75025/24476*322^(5/6) 3770035612708984 r005 Im(z^2+c),c=-3/22+21/38*I,n=32 3770035613170685 a001 439204/4181*6557470319842^(14/17) 3770035613190229 a001 370248451/4181*1836311903^(14/17) 3770035613192577 a001 312119004989/4181*514229^(14/17) 3770035624922676 m005 (1/2*5^(1/2)+2)/(Zeta(3)-3/8) 3770035626328771 a001 13201/7*28657^(55/57) 3770035628280533 l006 ln(4633/4811) 3770035628485844 m001 (cos(1)+Otter)/(-Totient+ThueMorse) 3770035629072804 r002 15th iterates of z^2 + 3770035640354074 a007 Real Root Of -619*x^4+263*x^3-208*x^2+538*x-20 3770035640584708 l006 ln(5702/8313) 3770035650027820 a001 1149851/10946*6557470319842^(14/17) 3770035650030672 a001 969323029/10946*1836311903^(14/17) 3770035650033020 a001 408569081798/5473*514229^(14/17) 3770035650086723 a001 28657/9349*322^(5/6) 3770035655405204 a001 3010349/28657*6557470319842^(14/17) 3770035655405620 a001 2537720636/28657*1836311903^(14/17) 3770035655407968 a001 2139295485799/28657*514229^(14/17) 3770035656189754 a001 7881196/75025*6557470319842^(14/17) 3770035656189814 a001 6643838879/75025*1836311903^(14/17) 3770035656192162 a001 5600748293801/75025*514229^(14/17) 3770035656304218 a001 20633239/196418*6557470319842^(14/17) 3770035656304227 a001 17393796001/196418*1836311903^(14/17) 3770035656306575 a001 7331474697802/98209*514229^(14/17) 3770035656320918 a001 54018521/514229*6557470319842^(14/17) 3770035656320919 a001 45537549124/514229*1836311903^(14/17) 3770035656323354 a001 141422324/1346269*6557470319842^(14/17) 3770035656323355 a001 119218851371/1346269*1836311903^(14/17) 3770035656323710 a001 370248451/3524578*6557470319842^(14/17) 3770035656323710 a001 312119004989/3524578*1836311903^(14/17) 3770035656323762 a001 969323029/9227465*6557470319842^(14/17) 3770035656323762 a001 817138163596/9227465*1836311903^(14/17) 3770035656323769 a001 2537720636/24157817*6557470319842^(14/17) 3770035656323769 a001 2139295485799/24157817*1836311903^(14/17) 3770035656323770 a001 5600748293801/63245986*1836311903^(14/17) 3770035656323770 a001 6643838879/63245986*6557470319842^(14/17) 3770035656323771 a001 14662949395604/165580141*1836311903^(14/17) 3770035656323771 a001 17393796001/165580141*6557470319842^(14/17) 3770035656323771 a001 45537549124/433494437*6557470319842^(14/17) 3770035656323771 a001 119218851371/1134903170*6557470319842^(14/17) 3770035656323771 a001 312119004989/2971215073*6557470319842^(14/17) 3770035656323771 a001 817138163596/7778742049*6557470319842^(14/17) 3770035656323771 a001 10745088481/102287808*6557470319842^(14/17) 3770035656323771 a001 192900153618/1836311903*6557470319842^(14/17) 3770035656323771 a001 73681302247/701408733*6557470319842^(14/17) 3770035656323771 a001 23725150497407/267914296*1836311903^(14/17) 3770035656323771 a001 28143753123/267914296*6557470319842^(14/17) 3770035656323771 a001 3020733700601/34111385*1836311903^(14/17) 3770035656323771 a001 10749957122/102334155*6557470319842^(14/17) 3770035656323771 a001 3461452808002/39088169*1836311903^(14/17) 3770035656323771 a001 4106118243/39088169*6557470319842^(14/17) 3770035656323774 a001 440719107401/4976784*1836311903^(14/17) 3770035656323774 a001 1568397607/14930352*6557470319842^(14/17) 3770035656323794 a001 505019158607/5702887*1836311903^(14/17) 3770035656323794 a001 599074578/5702887*6557470319842^(14/17) 3770035656323930 a001 64300051206/726103*1836311903^(14/17) 3770035656323930 a001 4868641/46347*6557470319842^(14/17) 3770035656324860 a001 73681302247/832040*1836311903^(14/17) 3770035656324860 a001 87403803/832040*6557470319842^(14/17) 3770035656331236 a001 9381251041/105937*1836311903^(14/17) 3770035656331239 a001 33385282/317811*6557470319842^(14/17) 3770035656333584 a001 23725150497407/317811*514229^(14/17) 3770035656374937 a001 10749957122/121393*1836311903^(14/17) 3770035656374961 a001 12752043/121393*6557470319842^(14/17) 3770035656377286 a001 9062201101803/121393*514229^(14/17) 3770035656674473 a001 1368706081/15456*1836311903^(14/17) 3770035656674632 a001 4870847/46368*6557470319842^(14/17) 3770035656676821 a001 10749853441/144*514229^(14/17) 3770035658727521 a001 1568397607/17711*1836311903^(14/17) 3770035658728610 a001 1860498/17711*6557470319842^(14/17) 3770035658729869 a001 1322157322203/17711*514229^(14/17) 3770035660417328 r005 Re(z^2+c),c=-59/122+13/41*I,n=25 3770035665901853 m001 KomornikLoreti^FeigenbaumAlpha*ln(2^(1/2)+1) 3770035671141206 m002 3*Pi^4+(Pi^4*Tanh[Pi])/Log[Pi] 3770035672799318 a001 199691526/2255*1836311903^(14/17) 3770035672801666 a001 505019158607/6765*514229^(14/17) 3770035672806783 a001 710647/6765*6557470319842^(14/17) 3770035674917873 m005 (1/3*5^(1/2)+2/7)/(5/11*Catalan-1/7) 3770035683733331 m001 (MertensB2+ZetaQ(3))/(Pi-Artin) 3770035693693879 r005 Re(z^2+c),c=-8/11+11/59*I,n=57 3770035706091174 m004 -1+E^(Sqrt[5]*Pi)/3+3*Cot[Sqrt[5]*Pi] 3770035707251037 m005 (1/3*3^(1/2)-1/7)/(4/5*5^(1/2)-7/11) 3770035718033656 a007 Real Root Of 338*x^4-391*x^3+236*x^2-962*x-424 3770035731749387 r005 Im(z^2+c),c=-101/90+1/27*I,n=6 3770035748724944 a007 Real Root Of -246*x^4-953*x^3-367*x^2-887*x+502 3770035759264880 a007 Real Root Of -383*x^4+145*x^3+581*x^2+818*x-391 3770035760400348 m001 (Stephens-Trott2nd)/(Ei(1)-BesselJ(1,1)) 3770035769248855 a001 228826127/2584*1836311903^(14/17) 3770035769251203 a001 96450076809/1292*514229^(14/17) 3770035769300021 a001 271443/2584*6557470319842^(14/17) 3770035774751353 r005 Re(z^2+c),c=-55/122+22/51*I,n=7 3770035778160615 m005 (1/2*Pi+2/3)/(5/7*2^(1/2)-5/12) 3770035787681087 m001 (AlladiGrinstead*Stephens+Niven)/Stephens 3770035788818800 a007 Real Root Of 637*x^4-905*x^3-136*x^2+16*x-36 3770035795276360 r005 Im(z^2+c),c=-3/26+29/54*I,n=53 3770035799932940 r002 14th iterates of z^2 + 3770035801331999 r002 5th iterates of z^2 + 3770035818436002 a007 Real Root Of -266*x^4-822*x^3+621*x^2-273*x-166 3770035824990118 a008 Real Root of (-2+6*x-2*x^2+x^4+5*x^8) 3770035827779714 m001 (QuadraticClass-RenyiParking)/(Gompertz+Otter) 3770035837710305 m005 (1/2*2^(1/2)-3/8)/(4/9*3^(1/2)+1/9) 3770035856443730 r005 Re(z^2+c),c=-35/118+35/59*I,n=51 3770035866422299 r002 22th iterates of z^2 + 3770035871186894 a007 Real Root Of -740*x^4+737*x^3+841*x^2+212*x-224 3770035878033631 b008 5*E*(1/18+E) 3770035879269169 a001 2/2178309*121393^(49/54) 3770035892574520 r009 Re(z^3+c),c=-27/44+27/52*I,n=56 3770035892985979 r005 Im(z^2+c),c=2/19+21/52*I,n=44 3770035895357257 h001 (1/5*exp(2)+1/4)/(7/12*exp(2)+3/11) 3770035900903934 l006 ln(4621/6737) 3770035900903934 p004 log(6737/4621) 3770035907792798 r009 Im(z^3+c),c=-12/31+6/19*I,n=3 3770035907969847 a001 10946/3571*322^(5/6) 3770035908967778 r005 Re(z^2+c),c=19/118+16/33*I,n=46 3770035916386355 m001 (Artin+GAMMA(17/24))/BesselJ(1,1) 3770035916386355 m001 (GAMMA(17/24)+Artin)/BesselJ(1,1) 3770035918134107 m001 (Ei(1)-gamma(2))/(LandauRamanujan2nd-ZetaP(4)) 3770035922786215 m001 exp(Bloch)*Champernowne^2*cosh(1) 3770035926546308 m005 (1/2*5^(1/2)-5/11)/(4/9*Pi+4/11) 3770035927798325 r009 Im(z^3+c),c=-17/42+16/49*I,n=29 3770035929378230 h001 (3/11*exp(1)+1/12)/(2/9*exp(2)+6/11) 3770035934901456 r005 Re(z^2+c),c=-33/26+5/116*I,n=54 3770035936495851 m001 (arctan(1/3)+Artin)/(PlouffeB-TwinPrimes) 3770035949571837 m001 (1+ln(gamma))/(-Landau+LaplaceLimit) 3770035949919357 r009 Re(z^3+c),c=-53/86+31/58*I,n=24 3770035952260846 r005 Im(z^2+c),c=-2/23+28/45*I,n=46 3770035961355686 r002 3th iterates of z^2 + 3770035974537602 p004 log(12277/283) 3770035989247484 r009 Re(z^3+c),c=-43/102+11/57*I,n=14 3770035991161299 r002 26th iterates of z^2 + 3770036010425227 a007 Real Root Of -336*x^4+421*x^3-330*x^2+811*x+382 3770036024553911 a007 Real Root Of -204*x^4-661*x^3+155*x^2-810*x+535 3770036026841019 a007 Real Root Of 632*x^4+453*x^3+646*x^2-344*x-210 3770036037249563 r005 Re(z^2+c),c=-79/106+1/45*I,n=24 3770036073920701 m001 (sin(1/5*Pi)-gamma(1))/(Salem+Stephens) 3770036090258733 a001 55/710647*3571^(6/31) 3770036094523820 r005 Im(z^2+c),c=-21/34+38/117*I,n=3 3770036110572612 v002 sum(1/(5^n+(7/2*n^2+85/2*n-9)),n=1..infinity) 3770036113803824 a007 Real Root Of -994*x^4+48*x^3-958*x^2+991*x-36 3770036137750199 a001 55/1149851*9349^(7/31) 3770036148498953 a001 55/271443*15127^(2/31) 3770036160201950 m004 -120*Pi-Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 3770036160300839 m004 -120*Pi-(2*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 3770036160399729 m004 -120*Pi-Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 3770036181343664 m001 ln(3)*Psi(2,1/3)^Backhouse 3770036202478549 m005 (3*2^(1/2)+1/2)/(1/2*Catalan+4/5) 3770036207914821 a007 Real Root Of -94*x^4-296*x^3+257*x^2-32*x-645 3770036229345677 m001 (Shi(1)+gamma)/(Pi*2^(1/2)/GAMMA(3/4)+Rabbit) 3770036237840573 h001 (2/5*exp(1)+1/7)/(1/3*exp(2)+4/5) 3770036241277653 r005 Im(z^2+c),c=1/32+24/53*I,n=23 3770036247086792 b008 (31*E^(-1+Pi))/7 3770036255719215 m001 GAMMA(11/12)^2*LandauRamanujan^2/ln(sin(1)) 3770036256869631 m001 CareFree/(Backhouse+ThueMorse) 3770036282119195 m001 Si(Pi)+(5^(1/2))^AlladiGrinstead 3770036295313651 m001 1/Tribonacci^2/MadelungNaCl*ln(OneNinth) 3770036297026636 a007 Real Root Of -56*x^4+448*x^3+203*x^2+482*x+178 3770036309728235 r009 Im(z^3+c),c=-5/58+31/41*I,n=19 3770036320209070 l006 ln(3540/5161) 3770036332074093 m001 1/exp(LandauRamanujan)^2*GolombDickman/Ei(1)^2 3770036343781462 a001 18/139583862445*987^(14/17) 3770036344738215 m005 (19/42+1/6*5^(1/2))/(7/12*gamma-5/9) 3770036347483116 r009 Im(z^3+c),c=-47/106+19/63*I,n=26 3770036355234200 h002 exp(3^(7/2)-10^(3/2)) 3770036355234200 h007 exp(3^(7/2)-10^(3/2)) 3770036361181307 a004 Fibonacci(14)*Lucas(12)/(1/2+sqrt(5)/2)^12 3770036365853468 r005 Im(z^2+c),c=-23/34+2/7*I,n=18 3770036366190188 m001 BesselK(0,1)^2/ln(ArtinRank2)^2/BesselK(1,1)^2 3770036367077016 a007 Real Root Of 921*x^4-119*x^3-551*x^2-977*x-315 3770036368030876 l006 ln(207/8980) 3770036374224078 s002 sum(A052498[n]/(2^n-1),n=1..infinity) 3770036386899559 m001 (exp(1/Pi)+BesselI(1,1))/(Robbin-Salem) 3770036394368403 r005 Im(z^2+c),c=-53/48+13/51*I,n=14 3770036400918218 m005 (1/2*5^(1/2)-5/7)/(3/55+5/11*5^(1/2)) 3770036405596588 m005 (1/3*Pi+1/8)/(5/11*Catalan-8/11) 3770036427772725 r005 Re(z^2+c),c=-15/29+4/53*I,n=32 3770036428740649 m008 (3/5*Pi^6+1/3)/(5*Pi^5+5/6) 3770036430323946 a001 29134601/329*1836311903^(14/17) 3770036430326294 a001 10525900321/141*514229^(14/17) 3770036430674648 a001 2206/21*6557470319842^(14/17) 3770036432355394 a007 Real Root Of -698*x^4+610*x^3-720*x^2+875*x+479 3770036436799056 p004 log(24229/16619) 3770036454848364 r002 58th iterates of z^2 + 3770036463588937 m001 GAMMA(19/24)-sin(1/5*Pi)*FeigenbaumKappa 3770036463797855 a007 Real Root Of 278*x^4-92*x^3+302*x^2-951*x-412 3770036466925595 a007 Real Root Of -133*x^4-21*x^3-824*x^2+986*x-36 3770036468564562 m005 (1/2*gamma-4/7)/(1/4*2^(1/2)-3/7) 3770036470092595 a007 Real Root Of -22*x^4-826*x^3+136*x^2+307*x+891 3770036473997480 r005 Re(z^2+c),c=-17/56+29/50*I,n=37 3770036474832035 r009 Re(z^3+c),c=-53/122+4/19*I,n=25 3770036481867411 r002 19th iterates of z^2 + 3770036485398387 a001 1/3*(1/2*5^(1/2)+1/2)^21*29^(5/11) 3770036494574790 a007 Real Root Of -832*x^4+297*x^3-472*x^2+470*x+277 3770036497564098 r009 Im(z^3+c),c=-15/31+13/48*I,n=36 3770036500817979 r005 Im(z^2+c),c=-2/25+25/52*I,n=8 3770036506742728 r005 Im(z^2+c),c=-1/114+28/59*I,n=21 3770036510284225 m001 Riemann3rdZero^2/exp(MertensB1)^2*Zeta(7)^2 3770036522181951 a003 cos(Pi*16/71)-cos(Pi*3/8) 3770036523334027 p004 log(13907/9539) 3770036556496136 r009 Im(z^3+c),c=-45/122+17/47*I,n=7 3770036564111118 r005 Im(z^2+c),c=7/40+13/37*I,n=39 3770036578630492 r005 Re(z^2+c),c=-14/31+18/41*I,n=38 3770036580557043 m001 (Sarnak+ZetaP(4))/(Chi(1)+GAMMA(17/24)) 3770036586084490 a007 Real Root Of -126*x^4-683*x^3-969*x^2-655*x+159 3770036589540352 r005 Im(z^2+c),c=5/122+21/47*I,n=52 3770036596542292 r005 Im(z^2+c),c=25/74+3/17*I,n=55 3770036612361720 r005 Re(z^2+c),c=-53/110+20/59*I,n=42 3770036615051083 a007 Real Root Of 184*x^4+894*x^3+495*x^2-891*x+339 3770036625613590 m005 (1/2*Pi-5/11)/(1/6*3^(1/2)-2/7) 3770036627255344 m001 (-ln(2+3^(1/2))+exp(1/exp(1)))/(Catalan-gamma) 3770036635969803 r005 Re(z^2+c),c=19/64+31/60*I,n=15 3770036638706763 r002 5th iterates of z^2 + 3770036643197728 l006 ln(5999/8746) 3770036647195577 r002 35th iterates of z^2 + 3770036664537836 r005 Re(z^2+c),c=11/74+17/45*I,n=63 3770036665107454 a001 20633239/610*6557470319842^(12/17) 3770036665107463 a001 6643838879/610*1836311903^(12/17) 3770036665109476 a001 2139295485799/610*514229^(12/17) 3770036668945170 a001 1/843*(1/2*5^(1/2)+1/2)^2*3^(3/17) 3770036681861202 m005 (-3/20+1/4*5^(1/2))/(2/3*exp(1)-8/11) 3770036684246626 a001 2161/3*2178309^(16/59) 3770036686164377 m001 (PlouffeB-Stephens)/(AlladiGrinstead-Landau) 3770036691592245 a007 Real Root Of -71*x^4-81*x^3+773*x^2+104*x-592 3770036693556134 m005 (1/2*gamma+5/12)/(4/5*Zeta(3)+10/11) 3770036706662179 r005 Im(z^2+c),c=-5/78+25/49*I,n=21 3770036708945782 a001 4181/843*18^(40/57) 3770036716071559 m001 LandauRamanujan*Weierstrass+Magata 3770036720449159 a008 Real Root of (1+2*x+6*x^3+6*x^4+6*x^5) 3770036763429741 m001 (Catalan-Si(Pi))/(Mills+Salem) 3770036769832205 r005 Re(z^2+c),c=-14/27+1/23*I,n=42 3770036784147385 a003 sin(Pi*13/110)/sin(Pi*40/97) 3770036803177165 a001 161/1762289*89^(6/19) 3770036804752402 m001 exp(GAMMA(17/24))^2*Champernowne*GAMMA(7/12)^2 3770036826467744 m005 (1/3*Zeta(3)+1/10)/(4*Pi+5/7) 3770036827860676 r002 26th iterates of z^2 + 3770036836497048 r005 Im(z^2+c),c=-1/60+19/39*I,n=19 3770036855292606 r005 Im(z^2+c),c=-129/106+3/64*I,n=25 3770036855925251 a003 cos(Pi*1/44)*cos(Pi*29/77) 3770036868169829 r005 Im(z^2+c),c=11/82+18/47*I,n=43 3770036886280706 a007 Real Root Of 293*x^4-670*x^3-240*x^2-265*x+164 3770036888775250 m001 (Psi(1,1/3)-Zeta(1,2))/(-Cahen+FeigenbaumMu) 3770036900764338 r002 28th iterates of z^2 + 3770036901068778 h001 (-9*exp(1/3)+4)/(-2*exp(-2)-2) 3770036902906425 m001 (ln(2)+gamma(2))/(Niven+OneNinth) 3770036909781694 r005 Im(z^2+c),c=3/10+25/59*I,n=61 3770036918076532 h001 (7/8*exp(1)+3/10)/(9/10*exp(2)+5/11) 3770036977352439 r009 Re(z^3+c),c=-11/26+11/56*I,n=22 3770036991368680 q001 1223/3244 3770036995327483 a007 Real Root Of 579*x^4-28*x^3+92*x^2-238*x-116 3770036996549496 r005 Re(z^2+c),c=-41/90+25/56*I,n=54 3770036999119592 m008 (3/4*Pi^6-2)/(2*Pi^2-2/3) 3770037004577794 r005 Re(z^2+c),c=-57/118+22/51*I,n=29 3770037007831300 r005 Im(z^2+c),c=7/78+17/41*I,n=34 3770037007940903 r009 Re(z^3+c),c=-35/78+9/43*I,n=8 3770037017668773 r002 12th iterates of z^2 + 3770037022866595 a007 Real Root Of -230*x^4-800*x^3+228*x^2-55*x+148 3770037024910021 a003 sin(Pi*13/67)*sin(Pi*27/118) 3770037024926188 m005 (1/2*5^(1/2)+1/3)/(1/8*Zeta(3)-4) 3770037025266837 r005 Im(z^2+c),c=-3/44+22/43*I,n=47 3770037025681898 r002 10th iterates of z^2 + 3770037036945626 a007 Real Root Of -210*x^4-939*x^3-689*x^2-616*x-422 3770037050284117 a007 Real Root Of 622*x^4-330*x^3+201*x^2-653*x-305 3770037052292988 r005 Im(z^2+c),c=-3/106+22/45*I,n=47 3770037053151498 a007 Real Root Of 357*x^4-433*x^3+296*x^2-569*x-287 3770037100658058 m001 RenyiParking^2/ln(CopelandErdos)/GAMMA(23/24) 3770037104438318 m001 (arctan(1/3)-Backhouse)/(Conway+Niven) 3770037108175281 l006 ln(2459/3585) 3770037142270689 m001 GAMMA(7/12)/FeigenbaumD*Robbin 3770037147214409 r002 7th iterates of z^2 + 3770037153518198 m001 (ln(2)/ln(10)+gamma)/(GolombDickman+Niven) 3770037157097932 m001 ln(Tribonacci)/Bloch*cos(1)^2 3770037161292206 r002 49th iterates of z^2 + 3770037169192273 a003 cos(Pi*11/106)-cos(Pi*27/88) 3770037171462075 r005 Im(z^2+c),c=-3/22+31/56*I,n=8 3770037174574176 r005 Re(z^2+c),c=-10/21+13/35*I,n=34 3770037175413329 r005 Im(z^2+c),c=-71/106+2/49*I,n=29 3770037180947560 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)*(Thue-ZetaQ(4)) 3770037184157901 a003 cos(Pi*23/93)-cos(Pi*43/110) 3770037184659672 a005 (1/sin(100/233*Pi))^330 3770037194693210 a007 Real Root Of 506*x^4-440*x^3+517*x^2-812*x+246 3770037215430635 r009 Im(z^3+c),c=-17/32+10/27*I,n=8 3770037218095969 l006 ln(131/5683) 3770037218095969 p004 log(5683/131) 3770037242610804 m008 (1/3*Pi^4-4)/(1/4*Pi^3-1/5) 3770037247930142 r005 Im(z^2+c),c=15/64+7/17*I,n=5 3770037263318409 r005 Re(z^2+c),c=-25/48+5/48*I,n=15 3770037285088826 s002 sum(A099935[n]/(pi^n-1),n=1..infinity) 3770037294397902 a007 Real Root Of 281*x^4+914*x^3-701*x^2-803*x-854 3770037294854077 a007 Real Root Of -66*x^4-15*x^3+619*x^2-960*x+112 3770037301734545 m001 FeigenbaumKappa*Lehmer^2/ln(log(1+sqrt(2))) 3770037312535320 m001 (3^(1/3))^arctan(1/2)+Sierpinski 3770037315420843 s002 sum(A280921[n]/(exp(2*pi*n)-1),n=1..infinity) 3770037331297959 a007 Real Root Of 166*x^4+393*x^3-762*x^2+455*x+70 3770037380770901 a001 10946/521*322^(1/2) 3770037407474870 m001 BesselI(1,2)^(3^(1/2))/Lehmer 3770037407474870 m001 BesselI(1,2)^sqrt(3)/Lehmer 3770037411045431 m001 (Thue-TwinPrimes)/(Conway-FeigenbaumC) 3770037415503476 m005 (1/3*5^(1/2)+2/11)/(3^(1/2)+8/11) 3770037419609389 m001 LandauRamanujan/Zeta(1,-1)/GAMMA(3/4) 3770037433090391 r009 Im(z^3+c),c=-25/102+19/48*I,n=11 3770037444735959 r005 Im(z^2+c),c=1/8+5/13*I,n=14 3770037447776323 r002 4th iterates of z^2 + 3770037478376340 r002 22th iterates of z^2 + 3770037488302600 r002 13th iterates of z^2 + 3770037492496538 b008 -11/3+LogIntegral[Sqrt[2]] 3770037495526968 m004 -3/4-120*Pi+Cos[Sqrt[5]*Pi] 3770037507627016 m001 GAMMA(2/3)+(1+3^(1/2))^(1/2)*MinimumGamma 3770037518334458 a001 123/34*196418^(5/26) 3770037518481732 r005 Re(z^2+c),c=-51/122+13/28*I,n=22 3770037529509920 p001 sum(1/(265*n+79)/n/(8^n),n=1..infinity) 3770037533792214 h001 (7/11*exp(2)+7/10)/(4/11*exp(1)+4/9) 3770037537306438 m001 (arctan(1/2)+StolarskyHarborth)^ErdosBorwein 3770037541871743 a008 Real Root of x^4-x^3+x^2+53*x-70 3770037551218518 l006 ln(6296/9179) 3770037555645218 r005 Im(z^2+c),c=-43/64+9/59*I,n=29 3770037595596494 a003 cos(Pi*30/79)/sin(Pi*36/83) 3770037612689989 m005 (5^(1/2)+4/3)/(1/3*Catalan-2/5) 3770037616583994 m001 PrimesInBinary^2*DuboisRaymond^2/ln(sin(1)) 3770037620859417 r005 Im(z^2+c),c=11/58+19/56*I,n=44 3770037623899011 m005 (1/2*Zeta(3)-1/8)/(1/2*2^(1/2)+5/9) 3770037633234486 b008 11*(2/7+Pi) 3770037644091207 r005 Re(z^2+c),c=-61/118+3/32*I,n=23 3770037648048700 a001 2207/2*144^(27/38) 3770037661867507 a007 Real Root Of -18*x^4-690*x^3-423*x^2+229*x-646 3770037665685679 m001 (3^(1/2)-Psi(2,1/3))/(-ErdosBorwein+Paris) 3770037671294138 m001 (GAMMA(1/3)-FeigenbaumAlpha)/FeigenbaumDelta 3770037675528007 a001 4181/1364*322^(5/6) 3770037678978716 r009 Im(z^3+c),c=-49/110+19/61*I,n=12 3770037688816037 r009 Im(z^3+c),c=-33/70+12/49*I,n=11 3770037693214199 a001 47/610*55^(21/53) 3770037710942997 m001 Porter^ZetaR(2)/FransenRobinson 3770037736230312 a007 Real Root Of 215*x^4-683*x^3-535*x^2-726*x+382 3770037751662607 r009 Im(z^3+c),c=-27/86+13/35*I,n=14 3770037758355284 r005 Re(z^2+c),c=-31/30+9/110*I,n=26 3770037765685747 s001 sum(exp(-Pi/4)^n*A249797[n],n=1..infinity) 3770037776806480 m005 (1/3*gamma-1/7)/(4/11*2^(1/2)+4/5) 3770037780483491 r009 Im(z^3+c),c=-23/110+19/47*I,n=7 3770037796545730 a007 Real Root Of -894*x^4-491*x^3-717*x^2+797*x-29 3770037805983714 r005 Im(z^2+c),c=-7/27+21/34*I,n=59 3770037807357163 r005 Im(z^2+c),c=-3/106+3/7*I,n=5 3770037811363021 m004 -120*Pi-(10*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3770037811463217 m004 (-20*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)-120*Pi 3770037811563413 m004 -120*Pi-(10*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3770037815497312 r009 Re(z^3+c),c=-1/7+29/35*I,n=54 3770037818752061 a007 Real Root Of -138*x^4-681*x^3-557*x^2-57*x-911 3770037831071248 r005 Im(z^2+c),c=-97/126+11/60*I,n=9 3770037835149526 l006 ln(3837/5594) 3770037846466332 m001 (Stephens+ZetaQ(3))/(exp(1/Pi)+Riemann1stZero) 3770037849441420 r009 Im(z^3+c),c=-13/82+53/64*I,n=60 3770037852249905 r005 Im(z^2+c),c=6/17+13/49*I,n=34 3770037897121552 r009 Re(z^3+c),c=-9/20+11/48*I,n=18 3770037902319264 a007 Real Root Of 228*x^4-758*x^3-149*x^2-904*x+398 3770037905281794 a001 4181/2207*322^(11/12) 3770037917651662 r005 Re(z^2+c),c=-23/58+31/60*I,n=40 3770037917751389 p004 log(21821/503) 3770037926264540 a001 599074578/377*514229^(16/17) 3770037926313023 a001 271443/377*1836311903^(16/17) 3770037928592105 m001 (MertensB2+ZetaQ(3))/(gamma+ln(gamma)) 3770037958699992 r005 Im(z^2+c),c=23/114+13/40*I,n=16 3770037997615468 s002 sum(A213499[n]/(exp(n)+1),n=1..infinity) 3770038004034958 r005 Im(z^2+c),c=17/54+9/43*I,n=52 3770038013833702 a007 Real Root Of -131*x^4-432*x^3+257*x^2-149*x-899 3770038023363644 a007 Real Root Of 946*x^4+391*x^3-303*x^2-809*x+308 3770038026793209 a007 Real Root Of -167*x^4+347*x^3-370*x^2+184*x-32 3770038039179543 a001 843/2584*6557470319842^(16/17) 3770038046136047 r002 44th iterates of z^2 + 3770038055831413 b008 -5+Pi*(2+Cosh[Pi]) 3770038055831413 m002 -5+2*Pi+Pi*Cosh[Pi] 3770038060584950 b008 10+E^(3*ArcTan[2]) 3770038062199630 m001 FeigenbaumAlpha+Totient^AlladiGrinstead 3770038068932086 r005 Re(z^2+c),c=11/74+17/45*I,n=64 3770038087575766 r005 Re(z^2+c),c=-65/94+1/45*I,n=12 3770038092315405 a007 Real Root Of -708*x^4+699*x^3+504*x^2+730*x-370 3770038107835726 r002 2th iterates of z^2 + 3770038111871044 a007 Real Root Of -192*x^4+968*x^3-604*x^2-235*x+53 3770038138486069 r005 Re(z^2+c),c=-61/114+8/53*I,n=9 3770038142388131 m005 (1/2*Pi+1/8)/(3/11*Catalan+1/5) 3770038164135305 l006 ln(186/8069) 3770038172240031 r009 Im(z^3+c),c=-17/42+16/49*I,n=28 3770038177935638 l006 ln(5215/7603) 3770038187716326 r005 Im(z^2+c),c=-53/48+9/28*I,n=6 3770038198363566 m008 (1/2*Pi^2+2)/(3/5*Pi^5+1/3) 3770038206764501 r005 Im(z^2+c),c=2/13+19/31*I,n=20 3770038208968550 a007 Real Root Of -231*x^4-774*x^3+278*x^2-370*x-155 3770038214304627 r005 Im(z^2+c),c=31/94+2/7*I,n=10 3770038217308242 r005 Re(z^2+c),c=3/20+29/62*I,n=61 3770038237380372 m005 (1/2*exp(1)+11/12)/(2*exp(1)+3/5) 3770038237579057 s002 sum(A003236[n]/(n^3*exp(n)+1),n=1..infinity) 3770038237590807 m001 (gamma(3)-Riemann3rdZero)/(Robbin+ZetaQ(4)) 3770038237648442 s002 sum(A003236[n]/(n^3*exp(n)-1),n=1..infinity) 3770038269086650 a007 Real Root Of 218*x^4+578*x^3-809*x^2+426*x+37 3770038307373697 r009 Re(z^3+c),c=-41/78+2/13*I,n=9 3770038310876556 r002 22th iterates of z^2 + 3770038314682194 a007 Real Root Of -243*x^4-862*x^3+474*x^2+991*x-101 3770038329589692 r005 Im(z^2+c),c=-7/94+31/60*I,n=24 3770038336729383 m001 MertensB3/GaussKuzminWirsing*Thue 3770038344092664 a007 Real Root Of -290*x^4-701*x^3+57*x^2+908*x-307 3770038349541860 r005 Re(z^2+c),c=-39/86+17/42*I,n=26 3770038354174299 a007 Real Root Of -140*x^4-293*x^3+857*x^2-21*x+322 3770038373712662 a003 cos(Pi*23/83)*cos(Pi*28/93) 3770038377430598 l006 ln(6593/9612) 3770038387574509 a001 -144+233*5^(1/2) 3770038387963136 a007 Real Root Of 888*x^4-582*x^3+960*x^2+410*x-31 3770038395824440 a001 54018521/1597*6557470319842^(12/17) 3770038395824441 a001 17393796001/1597*1836311903^(12/17) 3770038395826454 a001 5600748293801/1597*514229^(12/17) 3770038405618867 r005 Im(z^2+c),c=19/102+13/38*I,n=48 3770038408892475 a001 3/2584*121393^(11/37) 3770038417443634 m001 (Khinchin+ZetaQ(2))^ln(2+3^(1/2)) 3770038419330339 r008 a(0)=0,K{-n^6,-27+43*n^3-55*n^2+13*n} 3770038422765919 r009 Re(z^3+c),c=-15/31+11/41*I,n=36 3770038430342968 l006 ln(7418/7703) 3770038450477536 a001 (1+2^(1/2))^(641/44) 3770038459939163 s001 sum(exp(-Pi/2)^(n-1)*A059388[n],n=1..infinity) 3770038459939163 s001 sum(exp(-Pi/2)^(n-1)*A059392[n],n=1..infinity) 3770038471811308 r005 Re(z^2+c),c=-15/26+35/96*I,n=2 3770038480243126 a007 Real Root Of 475*x^4+575*x^3-486*x^2-664*x+279 3770038482084139 m001 1/GAMMA(11/24)*(2^(1/3))^2/exp(GAMMA(7/24)) 3770038485106770 m001 (GAMMA(7/12)+Weierstrass)/(LambertW(1)-ln(3)) 3770038492471110 s002 sum(A113744[n]/(n^3*pi^n+1),n=1..infinity) 3770038496710485 r005 Im(z^2+c),c=-17/86+5/8*I,n=58 3770038501393008 r002 39th iterates of z^2 + 3770038502417246 r005 Re(z^2+c),c=-5/28+37/64*I,n=8 3770038514621227 m001 Pi*(Psi(1,1/3)+Ei(1)-gamma(2)) 3770038529516633 a001 5473/2889*322^(11/12) 3770038540754308 r002 54th iterates of z^2 + 3770038543283543 r009 Re(z^3+c),c=-7/122+19/26*I,n=48 3770038549042955 a007 Real Root Of 174*x^4-135*x^3+886*x^2-791*x+176 3770038554491387 m005 (1/2*3^(1/2)+1/11)/(4/5*exp(1)+4/11) 3770038581455003 m002 -Log[Pi]+Cosh[Pi]*ProductLog[Pi]+Pi^5*Sech[Pi] 3770038587993057 m001 Zeta(3)*Sierpinski+LaplaceLimit 3770038619481129 a001 7/1926*3^(1/30) 3770038620591287 a001 28657/15127*322^(11/12) 3770038626718546 r005 Im(z^2+c),c=-67/114+4/63*I,n=23 3770038630637246 m004 -125/Pi+Cos[Sqrt[5]*Pi]+2*Sin[Sqrt[5]*Pi] 3770038633878900 a001 75025/39603*322^(11/12) 3770038634517406 r005 Im(z^2+c),c=1/82+33/59*I,n=7 3770038635817537 a001 98209/51841*322^(11/12) 3770038636100380 a001 514229/271443*322^(11/12) 3770038636141646 a001 1346269/710647*322^(11/12) 3770038636147667 a001 1762289/930249*322^(11/12) 3770038636148545 a001 9227465/4870847*322^(11/12) 3770038636148674 a001 24157817/12752043*322^(11/12) 3770038636148692 a001 31622993/16692641*322^(11/12) 3770038636148695 a001 165580141/87403803*322^(11/12) 3770038636148695 a001 433494437/228826127*322^(11/12) 3770038636148695 a001 567451585/299537289*322^(11/12) 3770038636148695 a001 2971215073/1568397607*322^(11/12) 3770038636148695 a001 7778742049/4106118243*322^(11/12) 3770038636148695 a001 10182505537/5374978561*322^(11/12) 3770038636148695 a001 53316291173/28143753123*322^(11/12) 3770038636148695 a001 139583862445/73681302247*322^(11/12) 3770038636148695 a001 182717648081/96450076809*322^(11/12) 3770038636148695 a001 956722026041/505019158607*322^(11/12) 3770038636148695 a001 10610209857723/5600748293801*322^(11/12) 3770038636148695 a001 591286729879/312119004989*322^(11/12) 3770038636148695 a001 225851433717/119218851371*322^(11/12) 3770038636148695 a001 21566892818/11384387281*322^(11/12) 3770038636148695 a001 32951280099/17393796001*322^(11/12) 3770038636148695 a001 12586269025/6643838879*322^(11/12) 3770038636148695 a001 1201881744/634430159*322^(11/12) 3770038636148695 a001 1836311903/969323029*322^(11/12) 3770038636148695 a001 701408733/370248451*322^(11/12) 3770038636148696 a001 66978574/35355581*322^(11/12) 3770038636148697 a001 102334155/54018521*322^(11/12) 3770038636148704 a001 39088169/20633239*322^(11/12) 3770038636148753 a001 3732588/1970299*322^(11/12) 3770038636149088 a001 5702887/3010349*322^(11/12) 3770038636151388 a001 2178309/1149851*322^(11/12) 3770038636167150 a001 208010/109801*322^(11/12) 3770038636275187 a001 317811/167761*322^(11/12) 3770038637015680 a001 121393/64079*322^(11/12) 3770038642091097 a001 11592/6119*322^(11/12) 3770038648332778 a001 141422324/4181*6557470319842^(12/17) 3770038648332778 a001 45537549124/4181*1836311903^(12/17) 3770038648334791 a001 14662949395604/4181*514229^(12/17) 3770038656248960 a007 Real Root Of 777*x^4+59*x^3-936*x^2-660*x+363 3770038659372751 m001 (Cahen+GlaisherKinkelin)/(sin(1/5*Pi)-ln(3)) 3770038666237272 a007 Real Root Of -931*x^4+678*x^3+23*x^2+104*x-60 3770038676878521 a001 17711/9349*322^(11/12) 3770038685173251 a001 370248451/10946*6557470319842^(12/17) 3770038685173251 a001 119218851371/10946*1836311903^(12/17) 3770038685860370 m001 (Pi-Psi(1,1/3))/(gamma(2)-ZetaQ(3)) 3770038690548203 a001 969323029/28657*6557470319842^(12/17) 3770038690548203 a001 312119004989/28657*1836311903^(12/17) 3770038691332398 a001 2537720636/75025*6557470319842^(12/17) 3770038691332398 a001 817138163596/75025*1836311903^(12/17) 3770038691446811 a001 2139295485799/196418*1836311903^(12/17) 3770038691446811 a001 6643838879/196418*6557470319842^(12/17) 3770038691463503 a001 5600748293801/514229*1836311903^(12/17) 3770038691463503 a001 17393796001/514229*6557470319842^(12/17) 3770038691465939 a001 14662949395604/1346269*1836311903^(12/17) 3770038691465939 a001 45537549124/1346269*6557470319842^(12/17) 3770038691466294 a001 119218851371/3524578*6557470319842^(12/17) 3770038691466346 a001 312119004989/9227465*6557470319842^(12/17) 3770038691466353 a001 817138163596/24157817*6557470319842^(12/17) 3770038691466355 a001 2139295485799/63245986*6557470319842^(12/17) 3770038691466355 a001 5600748293801/165580141*6557470319842^(12/17) 3770038691466355 a001 14662949395604/433494437*6557470319842^(12/17) 3770038691466355 a001 23725150497407/701408733*6557470319842^(12/17) 3770038691466355 a001 9062201101803/267914296*6557470319842^(12/17) 3770038691466355 a001 228826126/6765*6557470319842^(12/17) 3770038691466355 a001 1322157322203/39088169*6557470319842^(12/17) 3770038691466358 a001 505019158607/14930352*6557470319842^(12/17) 3770038691466378 a001 192900153618/5702887*6557470319842^(12/17) 3770038691466514 a001 23725150497407/2178309*1836311903^(12/17) 3770038691466514 a001 10525900321/311187*6557470319842^(12/17) 3770038691467444 a001 9062201101803/832040*1836311903^(12/17) 3770038691467444 a001 28143753123/832040*6557470319842^(12/17) 3770038691473820 a001 3461452808002/317811*1836311903^(12/17) 3770038691473820 a001 10749957122/317811*6557470319842^(12/17) 3770038691517522 a001 1322157322203/121393*1836311903^(12/17) 3770038691517522 a001 4106118243/121393*6557470319842^(12/17) 3770038691817057 a001 505019158607/46368*1836311903^(12/17) 3770038691817057 a001 224056801/6624*6557470319842^(12/17) 3770038693870107 a001 192900153618/17711*1836311903^(12/17) 3770038693870107 a001 599074578/17711*6557470319842^(12/17) 3770038695411829 q001 682/1809 3770038707941915 a001 73681302247/6765*1836311903^(12/17) 3770038707941915 a001 228826127/6765*6557470319842^(12/17) 3770038707943928 a001 23725150497407/6765*514229^(12/17) 3770038717850829 r005 Re(z^2+c),c=-27/56+20/59*I,n=35 3770038720972711 m001 ZetaP(2)*(Pi*csc(11/24*Pi)/GAMMA(13/24)-ln(3)) 3770038722015529 m001 (Zeta(5)+GAMMA(13/24))/(Gompertz-Mills) 3770038729450064 a001 15127/233*21^(26/45) 3770038730379379 a003 cos(Pi*1/115)-cos(Pi*2/69) 3770038738047161 m005 (1/2*exp(1)-2/9)/(2/9*3^(1/2)-1/12) 3770038767896094 r005 Re(z^2+c),c=41/126+6/47*I,n=10 3770038785986454 m001 (ln(gamma)-MasserGramain)/(Salem-Thue) 3770038790027129 a007 Real Root Of 104*x^4-784*x^3-269*x^2-615*x+310 3770038804391529 a001 28143753123/2584*1836311903^(12/17) 3770038804391530 a001 87403803/2584*6557470319842^(12/17) 3770038804393542 a001 9062201101803/2584*514229^(12/17) 3770038821942349 r009 Im(z^3+c),c=-1/11+37/47*I,n=4 3770038851305207 m002 Pi*Cosh[Pi]+Sinh[Pi]/9 3770038854819717 a007 Real Root Of 6*x^4-7*x^3-48*x^2+409*x+637 3770038869435525 p001 sum(1/(571*n+339)/(2^n),n=0..infinity) 3770038881860659 r002 35th iterates of z^2 + 3770038882004560 m001 (exp(Pi)+1)/(-BesselI(0,1)+Kac) 3770038899780660 s001 sum(exp(-Pi)^(n-1)*A066284[n],n=1..infinity) 3770038915315090 a001 6765/3571*322^(11/12) 3770038920938874 m005 (2^(1/2)+2/5)/(2/3*exp(1)+3) 3770038927325942 m006 (2*ln(Pi)+5/6)/(2*Pi+2) 3770038932222318 s002 sum(A224748[n]/((exp(n)-1)/n),n=1..infinity) 3770038953895472 r005 Re(z^2+c),c=-16/31+5/52*I,n=45 3770038954666838 m001 1/exp(Salem)^2*GolombDickman^2*Zeta(7)^2 3770038958159437 r005 Im(z^2+c),c=-23/34+5/74*I,n=50 3770038969878607 r005 Re(z^2+c),c=-33/70+24/61*I,n=39 3770038978916320 r001 41i'th iterates of 2*x^2-1 of 3770038984083318 p001 sum(1/(555*n+268)/(32^n),n=0..infinity) 3770038985697602 r005 Im(z^2+c),c=9/106+37/62*I,n=45 3770038986694090 r005 Re(z^2+c),c=-31/30+9/110*I,n=22 3770038991247252 m001 (FellerTornier+MasserGramain)/(1-FeigenbaumMu) 3770039025790303 s002 sum(A254171[n]/(pi^n+1),n=1..infinity) 3770039032147513 r002 39th iterates of z^2 + 3770039035222675 m005 (1/2*3^(1/2)+4/5)/(1/10*2^(1/2)-7/12) 3770039046436537 a007 Real Root Of 969*x^4-329*x^3+397*x^2-492*x+18 3770039052063155 r005 Re(z^2+c),c=-33/62+13/46*I,n=14 3770039055480329 m001 (Stephens+Thue)/(Conway+FeigenbaumAlpha) 3770039066115169 m001 1/exp(TreeGrowth2nd)*Riemann2ndZero/Ei(1)^2 3770039079129457 r009 Im(z^3+c),c=-11/23+11/40*I,n=37 3770039083340341 a007 Real Root Of 155*x^4+718*x^3+713*x^2+788*x-2 3770039086786666 a007 Real Root Of 299*x^4+930*x^3-560*x^2+732*x+150 3770039088339171 m001 HardyLittlewoodC5-exp(1)-MinimumGamma 3770039088366594 m001 (ln(2^(1/2)+1)+exp(1/exp(1)))/(Kac-ZetaQ(3)) 3770039108179649 h001 (2/5*exp(1)+3/8)/(5/12*exp(2)+4/5) 3770039113922202 r005 Re(z^2+c),c=-27/52+5/51*I,n=17 3770039116186834 r005 Re(z^2+c),c=-29/62+3/7*I,n=13 3770039119354845 r009 Re(z^3+c),c=-25/58+13/63*I,n=25 3770039124193726 r005 Im(z^2+c),c=-4/7+23/55*I,n=14 3770039132413305 l006 ln(1378/2009) 3770039132542702 r005 Re(z^2+c),c=37/126+3/47*I,n=25 3770039146306975 r009 Re(z^3+c),c=-15/29+10/33*I,n=56 3770039164747742 r005 Im(z^2+c),c=-11/28+29/56*I,n=19 3770039166806464 m001 (ln(5)-GAMMA(5/6))/(Paris+Salem) 3770039175186441 m001 (-sin(1/12*Pi)+Artin)/(Si(Pi)+Zeta(3)) 3770039178184474 r005 Im(z^2+c),c=11/82+18/47*I,n=44 3770039186059366 m004 -120*Pi-(5*Pi*Tan[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3770039197026105 a003 cos(Pi*1/70)-sin(Pi*25/117) 3770039199300303 a007 Real Root Of -431*x^4+144*x^3-992*x^2+540*x+361 3770039203026109 h001 (1/9*exp(1)+2/3)/(7/10*exp(1)+2/3) 3770039204693747 r009 Im(z^3+c),c=-9/20+19/64*I,n=31 3770039207202753 m001 1/Trott^2*CareFree/exp(arctan(1/2)) 3770039225292597 r005 Re(z^2+c),c=-23/56+31/49*I,n=8 3770039229299172 r002 2th iterates of z^2 + 3770039244607271 m001 (-ln(Pi)+BesselI(1,2))/(Psi(1,1/3)+3^(1/2)) 3770039286316195 m005 (1/2*exp(1)+5/7)/(4/5*Catalan-8/11) 3770039287753519 r005 Im(z^2+c),c=-139/106+1/42*I,n=46 3770039292663018 a007 Real Root Of -431*x^4+889*x^3-529*x^2+815*x-271 3770039295443101 m001 (Pi-BesselK(0,1))/(Conway-LandauRamanujan2nd) 3770039298457819 r009 Re(z^3+c),c=-43/98+11/51*I,n=21 3770039313177368 r005 Re(z^2+c),c=-23/34+15/68*I,n=9 3770039340137594 m001 (Porter-ZetaQ(2))/(ArtinRank2-FellerTornier) 3770039341135764 r005 Im(z^2+c),c=5/122+21/47*I,n=55 3770039342791877 p001 sum((-1)^n/(478*n+249)/(5^n),n=0..infinity) 3770039364546945 r002 48th iterates of z^2 + 3770039368128347 a007 Real Root Of 16*x^4+629*x^3+947*x^2-958*x+31 3770039379733502 a001 4/161*11^(4/23) 3770039392814267 m005 (1/2*Pi+3/11)/(1/11*5^(1/2)+2/7) 3770039393813498 a007 Real Root Of 122*x^4+682*x^3+974*x^2+735*x+826 3770039437386759 m002 -3-E^Pi+Pi^(-3)-Cosh[Pi] 3770039439885223 a001 8/11*9349^(19/44) 3770039447472456 r005 Re(z^2+c),c=-16/31+3/44*I,n=13 3770039465467153 a001 10749957122/987*1836311903^(12/17) 3770039465467156 a001 4769326/141*6557470319842^(12/17) 3770039465469166 a001 494493258286/141*514229^(12/17) 3770039475052563 b008 44-5*2^(1/3) 3770039480323817 r009 Im(z^3+c),c=-11/52+15/38*I,n=4 3770039493390840 m001 1/ln(Salem)^2/DuboisRaymond*GAMMA(5/24)^2 3770039495359947 a007 Real Root Of -92*x^4-175*x^3+855*x^2+769*x-45 3770039496123726 m008 (Pi^4+4)/(1/3*Pi^2-3/5) 3770039501990616 r005 Re(z^2+c),c=-59/114+3/49*I,n=22 3770039512325249 a007 Real Root Of 144*x^4+479*x^3-75*x^2+538*x-329 3770039530522702 r005 Re(z^2+c),c=-21/86+26/33*I,n=10 3770039541300744 a001 41/4976784*121393^(11/12) 3770039541347643 a001 123/2971215073*39088169^(11/12) 3770039541347644 a001 123/591286729879*12586269025^(11/12) 3770039541638816 r002 28th iterates of z^2 + 3770039546340619 r009 Re(z^3+c),c=-17/28+24/43*I,n=37 3770039550083136 r005 Im(z^2+c),c=-15/82+31/54*I,n=58 3770039555819255 m001 (GAMMA(5/24)-Pi*OneNinth)/OneNinth 3770039560876019 m001 Catalan^2*FransenRobinson^2*ln(GAMMA(5/12))^2 3770039564424174 a007 Real Root Of -904*x^4+244*x^3+747*x^2+756*x-386 3770039568932369 m001 Zeta(5)^BesselK(1,1)-GAMMA(23/24) 3770039571965048 m001 3^(1/3)*exp(1/Pi)+KomornikLoreti 3770039573182975 r005 Re(z^2+c),c=-23/56+18/37*I,n=32 3770039586394992 r001 14i'th iterates of 2*x^2-1 of 3770039589333931 r009 Re(z^3+c),c=-49/66+23/39*I,n=2 3770039590378671 m001 (-cos(1)+GAMMA(5/6))/(ln(2)/ln(10)+2^(1/3)) 3770039597349168 r005 Im(z^2+c),c=-17/82+6/11*I,n=21 3770039608769641 a001 199/10610209857723*514229^(13/14) 3770039610459120 r002 53i'th iterates of 2*x/(1-x^2) of 3770039619936601 a007 Real Root Of -289*x^4-915*x^3+608*x^2-265*x-288 3770039623923545 m005 (1/2*gamma-1/7)/(1/2*3^(1/2)+3) 3770039636735750 r009 Im(z^3+c),c=-14/27+5/22*I,n=59 3770039643251472 m006 (1/3*exp(Pi)+4/5)/(5/Pi+2/3) 3770039644222880 m001 1/MertensB1^2/exp(FransenRobinson)^2*sin(1)^2 3770039646645826 m005 (1/2*2^(1/2)-6/7)/(1/7*2^(1/2)-3/5) 3770039651989016 m001 (Pi-3^(1/3))/(Zeta(1,2)-FeigenbaumMu) 3770039656125527 a007 Real Root Of -413*x^4-400*x^3-983*x^2-312*x+9 3770039660520436 s002 sum(A101177[n]/(exp(2*pi*n)+1),n=1..infinity) 3770039667738129 p003 LerchPhi(1/64,1,491/183) 3770039675558041 a007 Real Root Of -278*x^4-937*x^3+224*x^2-744*x-37 3770039678373177 r002 45th iterates of z^2 + 3770039681993130 r005 Re(z^2+c),c=-47/70+14/45*I,n=22 3770039700250859 a001 408569081798/305*1836311903^(10/17) 3770039700250859 a001 6643838879/610*6557470319842^(10/17) 3770039701672170 m005 (1/3*gamma-1/10)/(2/7*2^(1/2)-3/7) 3770039720100837 m001 (AlladiGrinstead+Trott)/(Pi-cos(1/12*Pi)) 3770039727343040 s002 sum(A057300[n]/(n^3*exp(n)-1),n=1..infinity) 3770039728497254 s001 sum(exp(-2*Pi/5)^n*A096933[n],n=1..infinity) 3770039728497254 s002 sum(A096933[n]/(exp(2/5*pi*n)),n=1..infinity) 3770039730916568 a007 Real Root Of -329*x^4-420*x^3+162*x^2+379*x+104 3770039745876763 a007 Real Root Of -222*x^4+770*x^3+528*x^2+27*x-122 3770039755514151 h001 (2/11*exp(1)+1/5)/(1/5*exp(2)+4/11) 3770039764331196 r005 Im(z^2+c),c=-37/66+17/35*I,n=62 3770039771091723 b008 33+ArcCosh[55] 3770039776260868 a007 Real Root Of 504*x^4-978*x^3-657*x^2-713*x-26 3770039784838840 a007 Real Root Of -24*x^4-898*x^3+268*x^2+445*x+748 3770039788716730 m005 (4/5*exp(1)+4/5)/(23/10+5/2*5^(1/2)) 3770039789818672 m001 Pi-1/Zeta(3)-Zeta(1/2) 3770039797409967 h001 (1/5*exp(2)+5/7)/(3/4*exp(2)+3/11) 3770039809045816 a001 2584/199*199^(7/11) 3770039811846978 a003 sin(Pi*3/73)*sin(Pi*7/74) 3770039813034702 m001 1/(3^(1/3))^2*CopelandErdos*exp(Zeta(3)) 3770039840426658 a008 Real Root of x^2-x-141755 3770039840898024 a007 Real Root Of -535*x^4+55*x^3-627*x^2+862*x-228 3770039846030030 a007 Real Root Of -510*x^4-77*x^3+347*x^2+491*x-220 3770039849875782 a007 Real Root Of 190*x^4+620*x^3-604*x^2-908*x+1 3770039873667282 m001 (PlouffeB+ReciprocalFibonacci)/(Artin+Cahen) 3770039887839546 r005 Re(z^2+c),c=-79/110+13/59*I,n=45 3770039905156538 r002 28th iterates of z^2 + 3770039913049393 r009 Re(z^3+c),c=-51/110+1/8*I,n=5 3770039914079970 m005 (1/3*Zeta(3)-1/9)/(7/11*gamma-3/8) 3770039927816688 a007 Real Root Of 710*x^4-993*x^3-617*x^2-94*x+162 3770039928216219 m005 (1/2*2^(1/2)+3/11)/(2/9*3^(1/2)-1/8) 3770039951912755 r005 Re(z^2+c),c=-9/10+18/95*I,n=20 3770039963454491 m001 1/MadelungNaCl*DuboisRaymond*ln(Zeta(3))^2 3770039969448947 r005 Re(z^2+c),c=-65/126+1/10*I,n=37 3770039978538351 r005 Re(z^2+c),c=-57/110+3/58*I,n=28 3770039989290665 l006 ln(5809/8469) 3770039994525447 a007 Real Root Of -565*x^4-599*x^3-888*x^2+484*x+288 3770039998046960 r005 Re(z^2+c),c=-11/26+16/31*I,n=57 3770040014669186 a002 11^(2/3)-7^(1/12) 3770040016331857 a001 9/182717648081*317811^(12/17) 3770040020011554 r005 Re(z^2+c),c=-16/29+29/61*I,n=34 3770040035380641 m005 (1/2*3^(1/2)-5/6)/(4*5^(1/2)-3/11) 3770040059738591 a003 sin(Pi*11/91)/sin(Pi*53/120) 3770040065776721 r005 Im(z^2+c),c=5/122+21/47*I,n=56 3770040070592132 m001 GaussAGM*(AlladiGrinstead-LandauRamanujan) 3770040074243809 a007 Real Root Of 102*x^4+315*x^3-144*x^2+575*x+488 3770040080160320 q001 1505/3992 3770040089927534 a007 Real Root Of -22*x^4-68*x^3-43*x^2-375*x-2 3770040090173100 r002 6th iterates of z^2 + 3770040101546392 r005 Im(z^2+c),c=5/122+21/47*I,n=59 3770040107923536 r005 Im(z^2+c),c=-3/20+11/20*I,n=34 3770040108682639 a007 Real Root Of -218*x^4-623*x^3+480*x^2-844*x+652 3770040117364325 m005 (1/2*3^(1/2)-2/3)/(1/6*gamma-5/8) 3770040121285116 a007 Real Root Of -66*x^4+916*x^3+95*x^2+872*x-390 3770040134268027 m009 (5/12*Pi^2+2)/(1/3*Psi(1,2/3)+3/5) 3770040147453489 m001 ln(Si(Pi))/GaussKuzminWirsing^2/BesselK(0,1)^2 3770040169078120 a007 Real Root Of 97*x^4-840*x^3-806*x^2-70*x+184 3770040173594436 m005 (5*exp(1)+1/2)/(1/2*2^(1/2)-1/3) 3770040174932589 m001 (-FellerTornier+Porter)/(3^(1/2)+Conway) 3770040177471691 h001 (8/11*exp(2)+3/11)/(1/4*exp(1)+9/11) 3770040190123357 a001 3571/13*196418^(33/34) 3770040191079175 r005 Re(z^2+c),c=-53/110+21/62*I,n=58 3770040193498304 m001 FeigenbaumD+GAMMA(3/4)^HardyLittlewoodC5 3770040221563703 a003 cos(Pi*42/107)+cos(Pi*50/103) 3770040229284445 a001 167761/5*832040^(13/19) 3770040243233011 a008 Real Root of x^4+14*x^2-401 3770040251642474 r005 Re(z^2+c),c=-57/110+3/53*I,n=29 3770040255763436 m001 (-sin(1/12*Pi)+MertensB1)/(2^(1/3)+ln(gamma)) 3770040255771580 l006 ln(4431/6460) 3770040267879356 r002 7th iterates of z^2 + 3770040268706161 r005 Re(z^2+c),c=-13/27+8/25*I,n=22 3770040270183070 a003 cos(Pi*25/67)*sin(Pi*25/59) 3770040277971140 a007 Real Root Of 161*x^4+579*x^3-9*x^2+321*x-161 3770040292811713 m001 ln(5)/(GAMMA(1/4)+Cahen) 3770040292811713 m001 ln(5)/(Pi*2^(1/2)/GAMMA(3/4)+Cahen) 3770040297054949 r005 Im(z^2+c),c=-23/34+4/73*I,n=28 3770040299540810 p001 sum((-1)^n/(571*n+235)/(2^n),n=0..infinity) 3770040318671257 s002 sum(A254171[n]/(pi^n),n=1..infinity) 3770040325902598 r009 Im(z^3+c),c=-6/13+25/49*I,n=21 3770040325992717 r008 a(0)=0,K{-n^6,17+36*n^3-12*n^2-67*n} 3770040329123623 m005 (1/2*5^(1/2)+5/12)/(1/5*Zeta(3)+1/6) 3770040333373939 m001 (Ei(1,1)+Cahen)/(ZetaP(4)-ZetaQ(2)) 3770040336673193 a007 Real Root Of 486*x^4-761*x^3-853*x^2-400*x+303 3770040337053942 a007 Real Root Of -196*x^4+566*x^3-681*x^2-40*x+116 3770040357328382 r009 Im(z^3+c),c=-17/40+16/51*I,n=24 3770040364957889 m001 AlladiGrinstead+ReciprocalLucas^ln(5) 3770040365905931 a007 Real Root Of 639*x^4-951*x^3-321*x^2-412*x+239 3770040382919561 a005 (1/sin(76/169*Pi))^1759 3770040388117318 a001 6765/521*322^(7/12) 3770040393557281 a007 Real Root Of 722*x^4-875*x^3+321*x^2+48*x-89 3770040399382626 a001 13/844*7^(23/50) 3770040404926262 m001 1/Paris^2/LaplaceLimit/exp(sqrt(2)) 3770040406243791 r005 Re(z^2+c),c=-23/52+25/53*I,n=59 3770040417425390 l006 ln(55/2386) 3770040447845212 r005 Im(z^2+c),c=5/78+29/64*I,n=11 3770040448609565 m005 (-11/4+1/4*5^(1/2))/(2*exp(1)+3/8) 3770040455386316 m001 (-GAMMA(3/4)+Weierstrass)/(Chi(1)-Zeta(5)) 3770040456825359 a007 Real Root Of -578*x^4+237*x^3+46*x^2+767*x+307 3770040463518585 r009 Im(z^3+c),c=-25/52+3/11*I,n=60 3770040485891038 a007 Real Root Of 79*x^4-805*x^3+803*x^2-950*x-37 3770040491389940 r005 Im(z^2+c),c=-3/29+26/49*I,n=50 3770040505774545 a001 7/1597*514229^(9/55) 3770040508831005 r005 Im(z^2+c),c=-11/62+23/38*I,n=52 3770040531502704 r005 Im(z^2+c),c=5/122+21/47*I,n=62 3770040549584505 a001 646/341*322^(11/12) 3770040556330807 m005 (1/3*3^(1/2)-1/9)/(5/6*Catalan-2) 3770040602675903 b008 7*Pi^2*Sin[EulerGamma] 3770040604759525 m005 (1/2*Pi+2)/(7/9*3^(1/2)-2/5) 3770040611626209 r009 Im(z^3+c),c=-37/110+21/58*I,n=16 3770040622530978 a008 Real Root of x^4-2*x^3-20*x^2-4*x-40 3770040638998362 r005 Im(z^2+c),c=-11/54+31/41*I,n=12 3770040641542002 a007 Real Root Of -501*x^4+331*x^3-366*x^2+560*x+291 3770040646479286 h005 exp(sin(Pi*12/41)/cos(Pi*13/44)) 3770040651728819 r005 Im(z^2+c),c=-6/7+30/121*I,n=5 3770040655828633 m008 (3*Pi^6+1/3)/(4/5*Pi^6-4) 3770040665497180 a007 Real Root Of 744*x^4-702*x^3+691*x^2-881*x-483 3770040681154093 m001 1/GAMMA(7/12)^2*FeigenbaumC^2*exp(cos(Pi/12)) 3770040683206456 g001 Pi^(1/2)*erfc(1/85*5610^(1/2)) 3770040687671498 r009 Im(z^3+c),c=-29/78+25/39*I,n=3 3770040693228339 m001 1/GAMMA(23/24)/ln(Champernowne)*cos(Pi/5) 3770040700668154 m001 ErdosBorwein^exp(Pi)*gamma(3)^exp(Pi) 3770040700963005 r009 Re(z^3+c),c=-1/17+29/57*I,n=12 3770040706359695 r005 Im(z^2+c),c=5/122+21/47*I,n=63 3770040715317504 r005 Im(z^2+c),c=-23/118+34/59*I,n=64 3770040723017256 m001 (1+gamma(1))/(-FellerTornier+ZetaP(4)) 3770040727403914 m001 (ln(2^(1/2)+1)-Kac)/(Robbin-Totient) 3770040728732394 p001 sum((-1)^n/(569*n+243)/(3^n),n=0..infinity) 3770040730348608 m001 (Otter-Tetranacci)/(3^(1/3)+GAMMA(17/24)) 3770040735439664 m001 (gamma(3)+OrthogonalArrays)/(Pi+sin(1/5*Pi)) 3770040739743104 r005 Re(z^2+c),c=-31/30+9/110*I,n=28 3770040758047141 a007 Real Root Of 24*x^4+894*x^3-428*x^2-758*x+513 3770040762809764 l006 ln(3053/4451) 3770040763432588 m001 1/cos(Pi/12)^2*ln(OneNinth)^2*sin(1)^2 3770040763601599 r005 Im(z^2+c),c=2/19+21/52*I,n=43 3770040768915496 r005 Im(z^2+c),c=-95/82+1/32*I,n=6 3770040785038059 a001 41/726103*8^(21/23) 3770040795895862 a007 Real Root Of -210*x^4-577*x^3+943*x^2+513*x+36 3770040822352480 r005 Im(z^2+c),c=5/122+21/47*I,n=58 3770040829097635 r009 Re(z^3+c),c=-43/106+4/23*I,n=15 3770040838049806 m001 StronglyCareFree^exp(1)*Zeta(1,-1)^exp(1) 3770040867301709 g003 Im(GAMMA(-87/20+I*(-281/60))) 3770040867938694 a001 47/196418*3^(12/29) 3770040877155373 m001 (HardyLittlewoodC3+Trott2nd)/(Catalan+sin(1)) 3770040878771440 r005 Im(z^2+c),c=37/106+12/59*I,n=37 3770040892263546 a004 Fibonacci(16)*Lucas(12)/(1/2+sqrt(5)/2)^14 3770040906410837 v002 sum(1/(5^n*(5/6*n^3-11/6*n+7)),n=1..infinity) 3770040909182424 r005 Im(z^2+c),c=19/102+13/38*I,n=47 3770040920950752 r005 Re(z^2+c),c=-31/60+1/63*I,n=17 3770040927069111 r009 Im(z^3+c),c=-55/106+7/31*I,n=50 3770040930051829 a007 Real Root Of -229*x^4+915*x^3+649*x^2+176*x-203 3770040936628114 h001 (7/11*exp(2)+5/8)/(2/7*exp(1)+7/11) 3770040937404028 m001 1/ln(Zeta(9))^2/RenyiParking/log(1+sqrt(2)) 3770040937586686 m001 Thue*(FeigenbaumD+Niven) 3770040948795770 m009 (3/4*Psi(1,3/4)-4)/(5/6*Psi(1,2/3)+3) 3770040958967809 r002 10th iterates of z^2 + 3770040961406271 a001 33385282/377*1836311903^(14/17) 3770040961408616 a001 28143753123/377*514229^(14/17) 3770040963810021 a001 39603/377*6557470319842^(14/17) 3770040965156366 h001 (-3*exp(-3)-7)/(-3*exp(-1)+3) 3770040966695423 m001 (Sarnak+ZetaQ(3))/(ln(2+3^(1/2))+Kac) 3770040967187217 r009 Im(z^3+c),c=-7/118+49/62*I,n=60 3770040991705567 m001 (Pi*2^(1/2)/GAMMA(3/4)+cos(1/5*Pi))/Salem 3770040992220295 a007 Real Root Of 409*x^4-726*x^3-566*x^2-830*x+424 3770041001482832 m001 BesselI(1,2)+Riemann1stZero^GAMMA(2/3) 3770041006212860 r005 Im(z^2+c),c=5/122+21/47*I,n=64 3770041014851014 a001 192900153618/89*21^(2/11) 3770041015095440 s002 sum(A142301[n]/(n^2*exp(n)+1),n=1..infinity) 3770041018086990 a003 sin(Pi*3/31)/sin(Pi*33/113) 3770041020413141 a007 Real Root Of -496*x^4+420*x^3+58*x^2+795*x+324 3770041023821224 r005 Im(z^2+c),c=3/40+17/40*I,n=25 3770041054486172 p001 sum(1/(595*n+303)/(3^n),n=0..infinity) 3770041054854670 r005 Im(z^2+c),c=5/122+21/47*I,n=60 3770041064293865 r005 Im(z^2+c),c=19/102+13/38*I,n=52 3770041071698045 r005 Re(z^2+c),c=5/74+13/37*I,n=19 3770041082389851 a007 Real Root Of -319*x^4-981*x^3+923*x^2+321*x-32 3770041105191453 r005 Im(z^2+c),c=-43/118+53/57*I,n=3 3770041109455223 a008 Real Root of x^4-x^3-20*x^2+79*x-162 3770041115970537 m006 (2/3*exp(2*Pi)-3)/(1/3/Pi-1/5) 3770041116675867 a007 Real Root Of -774*x^4+492*x^3+335*x^2+182*x+63 3770041136343592 r005 Im(z^2+c),c=5/122+21/47*I,n=61 3770041139378874 r005 Im(z^2+c),c=-5/36+28/31*I,n=6 3770041147101991 r005 Im(z^2+c),c=4/13+9/41*I,n=41 3770041153597277 r002 49th iterates of z^2 + 3770041155686272 m002 -4+Pi^3-Pi^2*Csch[Pi]+Sinh[Pi] 3770041166492612 r002 27th iterates of z^2 + 3770041188077949 r005 Im(z^2+c),c=11/114+16/39*I,n=23 3770041200020473 a001 1/2207*(1/2*5^(1/2)+1/2)^4*3^(3/17) 3770041202607515 r009 Im(z^3+c),c=-6/13+17/59*I,n=47 3770041203180635 a001 10946/2207*18^(40/57) 3770041205104910 b008 EllipticPi[1/11,Pi/8,-2] 3770041226415680 r005 Re(z^2+c),c=-23/50+10/21*I,n=27 3770041227668346 q001 823/2183 3770041232248337 r002 3th iterates of z^2 + 3770041237963810 a008 Real Root of x^3-1434*x-478 3770041237997176 l006 ln(4728/6893) 3770041240850787 m001 1/Kolakoski^2*Conway*exp(BesselK(1,1)) 3770041271931122 a007 Real Root Of 17*x^4-142*x^3-509*x^2+984*x-99 3770041281396972 r005 Im(z^2+c),c=-1/30+30/61*I,n=46 3770041283606105 m001 (MinimumGamma-ZetaQ(2))/(Pi+Lehmer) 3770041285200881 r005 Re(z^2+c),c=-47/98+17/48*I,n=38 3770041293966720 r005 Im(z^2+c),c=35/106+4/33*I,n=20 3770041294014201 r002 10th iterates of z^2 + 3770041294897534 a007 Real Root Of 503*x^4-744*x^3-638*x^2-556*x+330 3770041300206832 r009 Im(z^3+c),c=-7/48+18/43*I,n=12 3770041306201912 r005 Re(z^2+c),c=31/114+2/43*I,n=28 3770041313079048 r009 Re(z^3+c),c=-43/82+23/55*I,n=56 3770041315818389 a007 Real Root Of -278*x^4-886*x^3+535*x^2-346*x-224 3770041316484748 m001 (2^(1/3)+Pi^(1/2))/(-LaplaceLimit+Porter) 3770041318212949 m001 MertensB3*(BesselI(0,2)-ln(gamma)) 3770041334791949 p001 sum(1/(544*n+269)/(24^n),n=0..infinity) 3770041342805229 a008 Real Root of x^4-x^3-36*x^2+112*x-59 3770041360358062 r005 Im(z^2+c),c=-19/102+4/7*I,n=48 3770041379703191 a001 843/8*514229^(28/45) 3770041390334909 r005 Re(z^2+c),c=-27/52+1/19*I,n=16 3770041401085296 r005 Im(z^2+c),c=15/56+17/64*I,n=35 3770041406352802 a007 Real Root Of 147*x^4+649*x^3+70*x^2-865*x+824 3770041417044795 m001 (Artin+Grothendieck)/(Kac-ZetaQ(2)) 3770041430969231 a001 2139295485799/1597*1836311903^(10/17) 3770041430969231 a001 17393796001/1597*6557470319842^(10/17) 3770041443911936 r005 Re(z^2+c),c=39/122+12/29*I,n=44 3770041444331769 a007 Real Root Of -240*x^4+382*x^3-928*x^2-295*x+46 3770041444566703 a007 Real Root Of 764*x^4-269*x^3+468*x^2+245*x-4 3770041462983251 g006 Psi(1,1/11)+Psi(1,9/10)-Psi(1,6/11)-Psi(1,1/9) 3770041464570208 l006 ln(6403/9335) 3770041465759277 r005 Im(z^2+c),c=7/32+15/64*I,n=3 3770041483197143 a007 Real Root Of -249*x^4-795*x^3+550*x^2-61*x-345 3770041489852388 r005 Re(z^2+c),c=-61/118+5/61*I,n=36 3770041490387397 a001 199/20365011074*610^(13/14) 3770041523046192 m005 (1/2*Catalan-5/8)/(4/11*exp(1)-6/11) 3770041525358647 r005 Re(z^2+c),c=-27/52+1/44*I,n=24 3770041532121068 r005 Im(z^2+c),c=5/122+21/47*I,n=51 3770041540367706 m007 (-gamma-3*ln(2)-1/2*Pi+1/3)/(-3/4*gamma-3/5) 3770041544204876 r005 Im(z^2+c),c=15/44+10/51*I,n=33 3770041551033017 r002 5th iterates of z^2 + 3770041553339536 a004 Fibonacci(18)*Lucas(12)/(1/2+sqrt(5)/2)^16 3770041559193208 m001 (RenyiParking-Sierpinski)/(Pi+3^(1/2)) 3770041567287692 m001 (arctan(1/3)-gamma)/(Artin+GaussKuzminWirsing) 3770041570190643 m001 (GAMMA(13/24)+ThueMorse)/(Catalan+Zeta(1/2)) 3770041584293145 a001 7/55*144^(15/22) 3770041585538752 m001 HardyLittlewoodC4*MertensB3^Rabbit 3770041606025510 m001 (LaplaceLimit+Robbin)/(FeigenbaumD-exp(1)) 3770041611099971 r005 Re(z^2+c),c=-31/30+9/110*I,n=32 3770041614185938 m005 (1/2*exp(1)+6/11)/(3/8*5^(1/2)-1/3) 3770041614259770 m001 3/2*sqrt(2)+exp(1/2) 3770041619190681 r005 Re(z^2+c),c=-31/30+9/110*I,n=34 3770041620833984 s002 sum(A254171[n]/(pi^n-1),n=1..infinity) 3770041628780879 a001 199/317811*34^(28/55) 3770041649789223 a004 Fibonacci(20)*Lucas(12)/(1/2+sqrt(5)/2)^18 3770041649933013 r002 18th iterates of z^2 + 3770041657026125 m001 1/arctan(1/2)^2/Salem/exp(sinh(1))^2 3770041663797341 b008 Pi*BesselK[0,25]^2 3770041663861043 a004 Fibonacci(22)*Lucas(12)/(1/2+sqrt(5)/2)^20 3770041665914093 a004 Fibonacci(24)*Lucas(12)/(1/2+sqrt(5)/2)^22 3770041666213629 a004 Fibonacci(26)*Lucas(12)/(1/2+sqrt(5)/2)^24 3770041666257331 a004 Fibonacci(28)*Lucas(12)/(1/2+sqrt(5)/2)^26 3770041666263707 a004 Fibonacci(30)*Lucas(12)/(1/2+sqrt(5)/2)^28 3770041666264637 a004 Fibonacci(32)*Lucas(12)/(1/2+sqrt(5)/2)^30 3770041666264773 a004 Fibonacci(34)*Lucas(12)/(1/2+sqrt(5)/2)^32 3770041666264793 a004 Fibonacci(36)*Lucas(12)/(1/2+sqrt(5)/2)^34 3770041666264796 a004 Fibonacci(38)*Lucas(12)/(1/2+sqrt(5)/2)^36 3770041666264796 a004 Fibonacci(40)*Lucas(12)/(1/2+sqrt(5)/2)^38 3770041666264796 a004 Fibonacci(42)*Lucas(12)/(1/2+sqrt(5)/2)^40 3770041666264796 a004 Fibonacci(44)*Lucas(12)/(1/2+sqrt(5)/2)^42 3770041666264796 a004 Fibonacci(46)*Lucas(12)/(1/2+sqrt(5)/2)^44 3770041666264796 a004 Fibonacci(48)*Lucas(12)/(1/2+sqrt(5)/2)^46 3770041666264796 a004 Fibonacci(50)*Lucas(12)/(1/2+sqrt(5)/2)^48 3770041666264796 a004 Fibonacci(52)*Lucas(12)/(1/2+sqrt(5)/2)^50 3770041666264796 a004 Fibonacci(54)*Lucas(12)/(1/2+sqrt(5)/2)^52 3770041666264796 a004 Fibonacci(56)*Lucas(12)/(1/2+sqrt(5)/2)^54 3770041666264796 a004 Fibonacci(58)*Lucas(12)/(1/2+sqrt(5)/2)^56 3770041666264796 a004 Fibonacci(60)*Lucas(12)/(1/2+sqrt(5)/2)^58 3770041666264796 a004 Fibonacci(62)*Lucas(12)/(1/2+sqrt(5)/2)^60 3770041666264796 a004 Fibonacci(64)*Lucas(12)/(1/2+sqrt(5)/2)^62 3770041666264796 a004 Fibonacci(66)*Lucas(12)/(1/2+sqrt(5)/2)^64 3770041666264796 a004 Fibonacci(68)*Lucas(12)/(1/2+sqrt(5)/2)^66 3770041666264796 a004 Fibonacci(70)*Lucas(12)/(1/2+sqrt(5)/2)^68 3770041666264796 a004 Fibonacci(72)*Lucas(12)/(1/2+sqrt(5)/2)^70 3770041666264796 a004 Fibonacci(74)*Lucas(12)/(1/2+sqrt(5)/2)^72 3770041666264796 a004 Fibonacci(76)*Lucas(12)/(1/2+sqrt(5)/2)^74 3770041666264796 a004 Fibonacci(78)*Lucas(12)/(1/2+sqrt(5)/2)^76 3770041666264796 a004 Fibonacci(80)*Lucas(12)/(1/2+sqrt(5)/2)^78 3770041666264796 a004 Fibonacci(82)*Lucas(12)/(1/2+sqrt(5)/2)^80 3770041666264796 a004 Fibonacci(84)*Lucas(12)/(1/2+sqrt(5)/2)^82 3770041666264796 a004 Fibonacci(86)*Lucas(12)/(1/2+sqrt(5)/2)^84 3770041666264796 a004 Fibonacci(88)*Lucas(12)/(1/2+sqrt(5)/2)^86 3770041666264796 a004 Fibonacci(90)*Lucas(12)/(1/2+sqrt(5)/2)^88 3770041666264796 a004 Fibonacci(92)*Lucas(12)/(1/2+sqrt(5)/2)^90 3770041666264796 a004 Fibonacci(94)*Lucas(12)/(1/2+sqrt(5)/2)^92 3770041666264796 a004 Fibonacci(96)*Lucas(12)/(1/2+sqrt(5)/2)^94 3770041666264796 a004 Fibonacci(98)*Lucas(12)/(1/2+sqrt(5)/2)^96 3770041666264796 a004 Fibonacci(100)*Lucas(12)/(1/2+sqrt(5)/2)^98 3770041666264796 a004 Fibonacci(99)*Lucas(12)/(1/2+sqrt(5)/2)^97 3770041666264796 a004 Fibonacci(97)*Lucas(12)/(1/2+sqrt(5)/2)^95 3770041666264796 a004 Fibonacci(95)*Lucas(12)/(1/2+sqrt(5)/2)^93 3770041666264796 a004 Fibonacci(93)*Lucas(12)/(1/2+sqrt(5)/2)^91 3770041666264796 a004 Fibonacci(91)*Lucas(12)/(1/2+sqrt(5)/2)^89 3770041666264796 a004 Fibonacci(89)*Lucas(12)/(1/2+sqrt(5)/2)^87 3770041666264796 a004 Fibonacci(87)*Lucas(12)/(1/2+sqrt(5)/2)^85 3770041666264796 a004 Fibonacci(85)*Lucas(12)/(1/2+sqrt(5)/2)^83 3770041666264796 a004 Fibonacci(83)*Lucas(12)/(1/2+sqrt(5)/2)^81 3770041666264796 a004 Fibonacci(81)*Lucas(12)/(1/2+sqrt(5)/2)^79 3770041666264796 a004 Fibonacci(79)*Lucas(12)/(1/2+sqrt(5)/2)^77 3770041666264796 a004 Fibonacci(77)*Lucas(12)/(1/2+sqrt(5)/2)^75 3770041666264796 a004 Fibonacci(75)*Lucas(12)/(1/2+sqrt(5)/2)^73 3770041666264796 a004 Fibonacci(73)*Lucas(12)/(1/2+sqrt(5)/2)^71 3770041666264796 a004 Fibonacci(71)*Lucas(12)/(1/2+sqrt(5)/2)^69 3770041666264796 a004 Fibonacci(69)*Lucas(12)/(1/2+sqrt(5)/2)^67 3770041666264796 a004 Fibonacci(67)*Lucas(12)/(1/2+sqrt(5)/2)^65 3770041666264796 a004 Fibonacci(65)*Lucas(12)/(1/2+sqrt(5)/2)^63 3770041666264796 a004 Fibonacci(63)*Lucas(12)/(1/2+sqrt(5)/2)^61 3770041666264796 a004 Fibonacci(61)*Lucas(12)/(1/2+sqrt(5)/2)^59 3770041666264796 a004 Fibonacci(59)*Lucas(12)/(1/2+sqrt(5)/2)^57 3770041666264796 a004 Fibonacci(57)*Lucas(12)/(1/2+sqrt(5)/2)^55 3770041666264796 a004 Fibonacci(55)*Lucas(12)/(1/2+sqrt(5)/2)^53 3770041666264796 a004 Fibonacci(53)*Lucas(12)/(1/2+sqrt(5)/2)^51 3770041666264796 a004 Fibonacci(51)*Lucas(12)/(1/2+sqrt(5)/2)^49 3770041666264796 a004 Fibonacci(49)*Lucas(12)/(1/2+sqrt(5)/2)^47 3770041666264796 a004 Fibonacci(47)*Lucas(12)/(1/2+sqrt(5)/2)^45 3770041666264796 a004 Fibonacci(45)*Lucas(12)/(1/2+sqrt(5)/2)^43 3770041666264796 a004 Fibonacci(43)*Lucas(12)/(1/2+sqrt(5)/2)^41 3770041666264796 a004 Fibonacci(41)*Lucas(12)/(1/2+sqrt(5)/2)^39 3770041666264797 a004 Fibonacci(39)*Lucas(12)/(1/2+sqrt(5)/2)^37 3770041666264798 a004 Fibonacci(37)*Lucas(12)/(1/2+sqrt(5)/2)^35 3770041666264805 a004 Fibonacci(35)*Lucas(12)/(1/2+sqrt(5)/2)^33 3770041666264857 a004 Fibonacci(33)*Lucas(12)/(1/2+sqrt(5)/2)^31 3770041666265212 a004 Fibonacci(31)*Lucas(12)/(1/2+sqrt(5)/2)^29 3770041666267648 a004 Fibonacci(29)*Lucas(12)/(1/2+sqrt(5)/2)^27 3770041666284340 a004 Fibonacci(27)*Lucas(12)/(1/2+sqrt(5)/2)^25 3770041666398753 a004 Fibonacci(25)*Lucas(12)/(1/2+sqrt(5)/2)^23 3770041666615499 a001 1/72*(1/2+1/2*5^(1/2))^26 3770041667182949 a004 Fibonacci(23)*Lucas(12)/(1/2+sqrt(5)/2)^21 3770041667830056 m001 (sin(1/5*Pi)-gamma(1))/(Totient+ThueMorse) 3770041668256668 m001 BesselI(1,2)^Mills/(Stephens^Mills) 3770041671133108 m005 (1/2*5^(1/2)-7/8)/(9/10*exp(1)+4) 3770041672557905 a004 Fibonacci(21)*Lucas(12)/(1/2+sqrt(5)/2)^19 3770041683477771 a001 5600748293801/4181*1836311903^(10/17) 3770041683477771 a001 45537549124/4181*6557470319842^(10/17) 3770041686963204 r005 Re(z^2+c),c=-31/30+9/110*I,n=40 3770041687222990 r005 Re(z^2+c),c=-35/74+11/34*I,n=18 3770041690736121 r005 Re(z^2+c),c=-31/30+9/110*I,n=46 3770041690909517 r005 Re(z^2+c),c=-31/30+9/110*I,n=52 3770041690915988 r005 Re(z^2+c),c=-31/30+9/110*I,n=54 3770041690916203 r005 Re(z^2+c),c=-31/30+9/110*I,n=58 3770041690916344 r005 Re(z^2+c),c=-31/30+9/110*I,n=60 3770041690916407 r005 Re(z^2+c),c=-31/30+9/110*I,n=64 3770041690916454 r005 Re(z^2+c),c=-31/30+9/110*I,n=62 3770041690917384 r005 Re(z^2+c),c=-31/30+9/110*I,n=56 3770041690932953 r005 Re(z^2+c),c=-31/30+9/110*I,n=48 3770041690934514 r005 Re(z^2+c),c=-31/30+9/110*I,n=50 3770041691168916 r005 Re(z^2+c),c=-31/30+9/110*I,n=44 3770041691820876 r005 Re(z^2+c),c=-31/30+9/110*I,n=42 3770041692115292 r005 Re(z^2+c),c=-31/30+9/110*I,n=38 3770041692878008 r005 Im(z^2+c),c=-17/74+19/24*I,n=11 3770041704161254 m005 (1/3*2^(1/2)+1/6)/(3/10*Pi+3/4) 3770041708139727 a007 Real Root Of -725*x^4-798*x^3+930*x^2+860*x-399 3770041709398408 a004 Fibonacci(19)*Lucas(12)/(1/2+sqrt(5)/2)^17 3770041720011164 r005 Re(z^2+c),c=-31/30+9/110*I,n=36 3770041720318273 a001 7331474697802/5473*1836311903^(10/17) 3770041720318273 a001 119218851371/10946*6557470319842^(10/17) 3770041725693230 a001 312119004989/28657*6557470319842^(10/17) 3770041726477426 a001 817138163596/75025*6557470319842^(10/17) 3770041726591838 a001 2139295485799/196418*6557470319842^(10/17) 3770041726608531 a001 5600748293801/514229*6557470319842^(10/17) 3770041726610966 a001 14662949395604/1346269*6557470319842^(10/17) 3770041726611541 a001 23725150497407/2178309*6557470319842^(10/17) 3770041726612471 a001 9062201101803/832040*6557470319842^(10/17) 3770041726618847 a001 3461452808002/317811*6557470319842^(10/17) 3770041726662549 a001 1322157322203/121393*6557470319842^(10/17) 3770041726838548 m001 (MertensB1+OneNinth)/(ln(gamma)+GAMMA(7/12)) 3770041726962085 a001 505019158607/46368*6557470319842^(10/17) 3770041729015136 a001 23725150497407/17711*1836311903^(10/17) 3770041729015136 a001 192900153618/17711*6557470319842^(10/17) 3770041737377837 r005 Re(z^2+c),c=-31/46+11/37*I,n=33 3770041739883806 m001 Pi^(1/2)+MasserGramainDelta+ZetaP(3) 3770041743086956 a001 3020733700601/2255*1836311903^(10/17) 3770041743086956 a001 73681302247/6765*6557470319842^(10/17) 3770041750514848 r005 Re(z^2+c),c=-59/114+4/57*I,n=37 3770041760402696 r002 29th iterates of z^2 + 3770041770721247 r005 Re(z^2+c),c=-57/110+2/37*I,n=40 3770041781388757 r002 28th iterates of z^2 + 3770041817764995 a007 Real Root Of 159*x^4+316*x^3-925*x^2+315*x-853 3770041820845664 r009 Re(z^3+c),c=-11/21+9/32*I,n=51 3770041822558211 m001 BesselK(1,1)^2/Magata/exp(Zeta(5)) 3770041839536648 a001 1730726404001/1292*1836311903^(10/17) 3770041839536648 a001 28143753123/2584*6557470319842^(10/17) 3770041851460073 a007 Real Root Of 11*x^4+424*x^3+339*x^2-456*x-931 3770041858381099 r005 Im(z^2+c),c=19/102+13/38*I,n=53 3770041858386230 m001 (-OneNinth+Trott2nd)/(Si(Pi)-exp(Pi)) 3770041858881566 a001 28657/5778*18^(40/57) 3770041861096361 a001 1/5778*(1/2*5^(1/2)+1/2)^6*3^(3/17) 3770041861725096 r005 Re(z^2+c),c=-65/122+4/63*I,n=10 3770041869941272 h001 (-2*exp(-2)-8)/(-5*exp(1/3)+7) 3770041874015659 h001 (1/3*exp(1)+7/12)/(4/9*exp(2)+2/3) 3770041874261713 r005 Re(z^2+c),c=-29/56+5/59*I,n=21 3770041879220553 a008 Real Root of x^4-2*x^3-5*x^2-14*x+29 3770041879370669 m001 (arctan(1/2)+gamma(1))/(GAMMA(23/24)+Trott) 3770041897930739 m001 (GAMMA(11/12)-GaussAGM)/(Pi+exp(1)) 3770041902619155 a007 Real Root Of 911*x^4-264*x^3-2*x^2-803*x-335 3770041911787320 a007 Real Root Of 392*x^4-759*x^3+980*x^2+501*x+1 3770041917030486 r002 42th iterates of z^2 + 3770041927535436 r005 Im(z^2+c),c=5/122+21/47*I,n=53 3770041946796050 a007 Real Root Of -289*x^4-950*x^3+536*x^2-141 3770041948241387 r009 Re(z^3+c),c=-39/86+11/48*I,n=17 3770041954547062 a001 75025/15127*18^(40/57) 3770041956546059 s002 sum(A136326[n]/(n^2*exp(n)+1),n=1..infinity) 3770041956698674 m001 (2^(1/2)-sin(1))/(arctan(1/2)+GAMMA(11/12)) 3770041957546052 a001 1/15127*(1/2*5^(1/2)+1/2)^8*3^(3/17) 3770041960993993 r005 Im(z^2+c),c=5/122+21/47*I,n=57 3770041961906966 a004 Fibonacci(17)*Lucas(12)/(1/2+sqrt(5)/2)^15 3770041968504470 a001 196418/39603*18^(40/57) 3770041970540828 a001 514229/103682*18^(40/57) 3770041970837929 a001 1346269/271443*18^(40/57) 3770041970908065 a001 2178309/439204*18^(40/57) 3770041971021547 a001 75640/15251*18^(40/57) 3770041971617873 a001 1/39603*(1/2*5^(1/2)+1/2)^10*3^(3/17) 3770041971799367 a001 317811/64079*18^(40/57) 3770041974939780 a001 1/64079*(1/2*5^(1/2)+1/2)^11*3^(3/17) 3770041977130623 a001 121393/24476*18^(40/57) 3770041980314737 a001 1/24476*(1/2*5^(1/2)+1/2)^9*3^(3/17) 3770041981200573 a007 Real Root Of 982*x^4+481*x^3+308*x^2-828*x-350 3770041984335327 r009 Im(z^3+c),c=-11/29+15/44*I,n=23 3770042006207902 r005 Im(z^2+c),c=19/102+13/38*I,n=56 3770042008184648 m001 (ln(gamma)-3^(1/3))/(polylog(4,1/2)+Trott) 3770042013671592 a001 46368/9349*18^(40/57) 3770042017155243 a001 1/9349*(1/2*5^(1/2)+1/2)^7*3^(3/17) 3770042017824573 r005 Re(z^2+c),c=-41/54+2/31*I,n=24 3770042018423777 r002 17th iterates of z^2 + 3770042031930406 r005 Im(z^2+c),c=19/102+13/38*I,n=57 3770042032294210 m001 Zeta(9)^2*OneNinth^2*exp(sin(Pi/5))^2 3770042041340006 a007 Real Root Of -687*x^4-887*x^3+274*x^2+983*x+298 3770042043723938 a007 Real Root Of 990*x^4+245*x^3+498*x^2-672*x-331 3770042045452032 r005 Re(z^2+c),c=-55/118+17/42*I,n=58 3770042052407593 h001 (-11*exp(2)+1)/(-11*exp(3)+8) 3770042060315884 r002 11th iterates of z^2 + 3770042066608092 a007 Real Root Of 222*x^4+939*x^3+287*x^2-543*x-658 3770042073099919 a001 3020733700601/48*144^(14/17) 3770042104114831 l006 ln(1675/2442) 3770042105805984 r002 7th iterates of z^2 + 3770042141555527 r002 23th iterates of z^2 + 3770042141606494 a007 Real Root Of -126*x^4-270*x^3+811*x^2+362*x+824 3770042142684364 r005 Im(z^2+c),c=-19/82+25/44*I,n=35 3770042147434779 r005 Im(z^2+c),c=2/19+21/52*I,n=33 3770042151804737 m001 GAMMA(5/6)/ln(Riemann3rdZero)*Zeta(5)^2 3770042159322743 m001 (ZetaP(2)+ZetaP(4))/(Chi(1)+BesselI(1,1)) 3770042162117702 r005 Im(z^2+c),c=11/82+23/60*I,n=24 3770042163717420 m001 (Lehmer+ReciprocalLucas)/(Conway-Kac) 3770042164505060 b008 -1/4+E+Gudermannian[2] 3770042180584655 r005 Im(z^2+c),c=-3/10+23/49*I,n=4 3770042180591400 r005 Im(z^2+c),c=11/82+18/47*I,n=47 3770042184396561 m001 (GAMMA(7/12)-StronglyCareFree)/(Pi-ln(Pi)) 3770042187609936 r005 Re(z^2+c),c=-39/82+11/30*I,n=45 3770042192339863 r005 Im(z^2+c),c=19/102+13/38*I,n=61 3770042205197999 r005 Re(z^2+c),c=-8/19+13/30*I,n=19 3770042213583521 m001 GAMMA(5/6)^arctan(1/3)-LaplaceLimit 3770042228023007 m001 1/FeigenbaumD^2/Conway^2*exp(GAMMA(7/12)) 3770042230980730 m001 Ei(1)*OneNinth^2*exp(cos(1)) 3770042240048619 m001 (BesselJ(1,1)+polylog(4,1/2))/(GaussAGM+Niven) 3770042242224038 a007 Real Root Of -177*x^4-544*x^3-985*x^2+723*x+387 3770042244059619 m005 (1/2*2^(1/2)-1/8)/(4/7*Zeta(3)+6/7) 3770042245588961 p001 sum((-1)^n/(293*n+264)/(100^n),n=0..infinity) 3770042264127143 a001 17711/3571*18^(40/57) 3770042265289209 r005 Im(z^2+c),c=19/102+13/38*I,n=60 3770042268989521 r005 Im(z^2+c),c=-1/28+26/53*I,n=15 3770042269051708 r009 Im(z^3+c),c=-29/126+2/5*I,n=9 3770042269663845 a001 1/3571*(1/2*5^(1/2)+1/2)^5*3^(3/17) 3770042286791619 m001 (-OneNinth+Porter)/(Zeta(3)-sin(1)) 3770042290616132 h001 (3/10*exp(1)+4/7)/(5/12*exp(2)+3/5) 3770042294549172 r005 Re(z^2+c),c=-57/118+1/3*I,n=43 3770042302810477 r005 Im(z^2+c),c=19/102+13/38*I,n=62 3770042313190014 r005 Im(z^2+c),c=19/102+13/38*I,n=64 3770042316369816 r005 Re(z^2+c),c=-83/114+11/38*I,n=28 3770042322448747 m008 (1/6*Pi^5-4/5)/(4*Pi+3/4) 3770042324245167 a007 Real Root Of -268*x^4-897*x^3+370*x^2-439*x-839 3770042324576909 r005 Re(z^2+c),c=-15/29+1/13*I,n=33 3770042334310211 r005 Re(z^2+c),c=-47/98+19/55*I,n=34 3770042358463699 a007 Real Root Of 214*x^4+615*x^3-972*x^2-703*x+888 3770042363626690 r002 40th iterates of z^2 + 3770042365361728 r005 Im(z^2+c),c=19/102+13/38*I,n=63 3770042384350673 r005 Im(z^2+c),c=19/102+13/38*I,n=49 3770042402054658 m005 (5/6*2^(1/2)-1/5)/(-23/8+1/8*5^(1/2)) 3770042412209186 a007 Real Root Of -138*x^4-411*x^3+213*x^2-563*x+705 3770042412416220 r005 Im(z^2+c),c=23/106+6/19*I,n=28 3770042413379325 b008 41/14+Sin[1] 3770042414259928 m001 (-Rabbit+Trott)/(Si(Pi)+gamma(3)) 3770042414901561 m001 (MertensB2-Stephens)/(BesselI(1,2)-Artin) 3770042422585353 m001 (2^(1/3))^2*exp(Robbin)*GAMMA(3/4) 3770042422627780 r005 Im(z^2+c),c=19/102+13/38*I,n=58 3770042423186952 a007 Real Root Of -141*x^4-536*x^3-194*x^2-851*x-688 3770042435681200 r005 Re(z^2+c),c=-31/30+9/110*I,n=30 3770042440204722 r002 37th iterates of z^2 + 3770042448472079 r009 Im(z^3+c),c=-15/106+13/31*I,n=10 3770042454200355 r009 Re(z^3+c),c=-13/32+6/41*I,n=5 3770042464331205 r005 Im(z^2+c),c=5/82+16/37*I,n=19 3770042465812856 s002 sum(A067119[n]/(exp(2*pi*n)-1),n=1..infinity) 3770042476361573 r009 Re(z^3+c),c=-1/17+23/45*I,n=14 3770042478032634 m005 (1/2*gamma-2/3)/(7/10*exp(1)-9/10) 3770042480116454 r005 Im(z^2+c),c=19/102+13/38*I,n=59 3770042488378844 q001 1/265249 3770042500392441 r009 Im(z^3+c),c=-53/122+27/44*I,n=26 3770042500543243 h001 (5/9*exp(2)+4/7)/(2/9*exp(1)+7/11) 3770042500612804 a001 440719107401/329*1836311903^(10/17) 3770042500612804 a001 10749957122/987*6557470319842^(10/17) 3770042509681670 m005 (1/2*2^(1/2)+2/5)/(4*Catalan-8/11) 3770042512807644 a007 Real Root Of 678*x^4-357*x^3+998*x^2-412*x-330 3770042514266096 m001 BesselI(1,2)*(GAMMA(3/4)+ln(Pi)) 3770042523511030 l006 ln(199/8633) 3770042544287125 r002 4th iterates of z^2 + 3770042547725392 m009 (16/5*Catalan+2/5*Pi^2+1/2)/(2*Pi^2-1/6) 3770042548151555 m005 (11/12+1/6*5^(1/2))/(2/5*gamma+1/9) 3770042550004886 r002 15th iterates of z^2 + 3770042565787860 r005 Im(z^2+c),c=-40/31+3/55*I,n=55 3770042572875803 a001 124/5*317811^(23/58) 3770042582479338 m004 -1+E^(Sqrt[5]*Pi)/3+5/ProductLog[Sqrt[5]*Pi] 3770042584135636 b008 12+33/E^(1/4) 3770042599972155 a007 Real Root Of 78*x^4+69*x^3-987*x^2-589*x-252 3770042602013618 r002 41th iterates of z^2 + 3770042603335664 h001 (8/9*exp(2)+5/12)/(3/8*exp(1)+5/6) 3770042628244279 r004 Im(z^2+c),c=1/16+11/19*I,z(0)=I,n=16 3770042644206406 m005 (1/2*Zeta(3)-3/7)/(3/5*gamma+1/9) 3770042656985278 a007 Real Root Of -295*x^4-833*x^3+756*x^2-902*x+813 3770042672871087 m001 exp(Bloch)^2/Backhouse*MinimumGamma^2 3770042673513159 r005 Im(z^2+c),c=19/102+13/38*I,n=51 3770042674959688 r005 Im(z^2+c),c=19/102+13/38*I,n=55 3770042679301002 m004 3*Cot[Sqrt[5]*Pi]+5*Pi*Csc[Sqrt[5]*Pi]^2 3770042684652535 r005 Im(z^2+c),c=-141/118+2/39*I,n=42 3770042684905693 m005 (1/2*exp(1)+1/9)/(1/12*Zeta(3)-4) 3770042686088083 m001 (arctan(1/3)+GAMMA(11/12))/(ArtinRank2+Otter) 3770042686439019 r005 Im(z^2+c),c=25/118+11/34*I,n=13 3770042692898683 r005 Im(z^2+c),c=-6/31+9/16*I,n=12 3770042705601017 a003 cos(Pi*9/29)-sin(Pi*31/80) 3770042708853985 m001 (ln(5)-sin(1))/(CareFree+MertensB3) 3770042711347008 r009 Im(z^3+c),c=-1/28+41/51*I,n=42 3770042728104507 a007 Real Root Of 254*x^4+919*x^3+73*x^2+820*x-14 3770042728556660 r005 Re(z^2+c),c=-27/23+13/55*I,n=4 3770042734183317 m001 BesselJ(0,1)*MertensB1+FeigenbaumMu 3770042735396699 a001 2139295485799/610*6557470319842^(8/17) 3770042751444487 r009 Im(z^3+c),c=-11/62+26/63*I,n=15 3770042753558618 p003 LerchPhi(1/6,5,207/107) 3770042753853867 a007 Real Root Of 22*x^4+806*x^3-908*x^2-967*x-276 3770042766120886 r009 Re(z^3+c),c=-14/31+32/59*I,n=53 3770042772902240 m001 1/Lehmer*exp(DuboisRaymond)*Tribonacci 3770042778568934 a007 Real Root Of 729*x^4-958*x^3+237*x^2-189*x-171 3770042785969326 b008 E^2+13*Sqrt[2*E] 3770042801361598 m001 1/FeigenbaumC^2/ln(Bloch)*GAMMA(7/24)^2 3770042806874268 a007 Real Root Of 250*x^4+749*x^3-660*x^2+446*x+693 3770042817535813 s002 sum(A097023[n]/(n*2^n+1),n=1..infinity) 3770042825719150 r005 Im(z^2+c),c=27/74+12/35*I,n=35 3770042842460388 b008 3*Sqrt[2]+PolyLog[3,-1/2] 3770042850626560 h001 (11/12*exp(2)+1/11)/(7/11*exp(1)+1/11) 3770042852708960 m001 1/ln(GAMMA(7/24))*Artin/log(1+sqrt(2)) 3770042854959382 m001 exp(Rabbit)*Champernowne*GAMMA(3/4)^2 3770042860772595 a007 Real Root Of 176*x^4+571*x^3-103*x^2+852*x-282 3770042867855968 r009 Im(z^3+c),c=-25/78+17/48*I,n=5 3770042871115210 m004 -120*Pi-5*Csc[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770042871323609 m004 -120*Pi-5*Csc[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3770042872609399 a007 Real Root Of -156*x^4-487*x^3+492*x^2+391*x-100 3770042872940428 m001 (Si(Pi)+CareFree)/(-Robbin+Totient) 3770042873563147 l006 ln(5322/7759) 3770042879064302 a007 Real Root Of -379*x^4+445*x^3-291*x^2+942*x+428 3770042893887065 r005 Im(z^2+c),c=-79/106+8/27*I,n=3 3770042894354300 m005 (1/2*Pi-5/8)/(1/6*Pi-3/11) 3770042895964384 m001 (ln(3)-Ei(1,1))/(FransenRobinson-PlouffeB) 3770042914217481 m001 exp(Cahen)/ErdosBorwein/Pi 3770042916449864 a007 Real Root Of 248*x^4+921*x^3+242*x^2+921*x-716 3770042917854672 r002 27th iterates of z^2 + 3770042924535888 r005 Re(z^2+c),c=7/50+29/64*I,n=30 3770042928722039 r005 Im(z^2+c),c=-35/62+23/54*I,n=17 3770042929416594 r009 Re(z^3+c),c=-1/34+51/58*I,n=19 3770042930254960 r005 Im(z^2+c),c=5/122+21/47*I,n=54 3770042934073499 r005 Im(z^2+c),c=19/102+13/38*I,n=54 3770042950057158 m001 GAMMA(13/24)^MasserGramainDelta+Mills 3770042965257313 r005 Im(z^2+c),c=-1/114+1/26*I,n=4 3770042965549134 r002 53th iterates of z^2 + 3770042970639792 r005 Re(z^2+c),c=5/56+17/60*I,n=7 3770042971317660 r005 Im(z^2+c),c=-81/98+13/64*I,n=18 3770042972943782 p001 sum((-1)^n/(325*n+256)/(12^n),n=0..infinity) 3770042974593139 m001 (polylog(4,1/2)+LaplaceLimit)/(Otter+ZetaP(3)) 3770042983738609 m001 (-Landau+Otter)/(1-GAMMA(13/24)) 3770042991294143 m005 (1/2*Zeta(3)-10/11)/(9/11*3^(1/2)-3/5) 3770042999551891 r005 Im(z^2+c),c=25/98+19/56*I,n=10 3770043008385733 r009 Re(z^3+c),c=-17/42+9/52*I,n=20 3770043012164546 r009 Im(z^3+c),c=-41/106+20/59*I,n=10 3770043019163081 q001 964/2557 3770043032506875 r009 Im(z^3+c),c=-55/106+6/23*I,n=16 3770043039004652 r005 Re(z^2+c),c=35/94+8/47*I,n=34 3770043042244540 r005 Im(z^2+c),c=-27/122+29/48*I,n=19 3770043051483220 a001 18/139583862445*39088169^(10/17) 3770043055185051 a001 9/567451585*10946^(10/17) 3770043075353427 a003 cos(Pi*2/79)*sin(Pi*10/81) 3770043078197339 r005 Im(z^2+c),c=5/34+35/54*I,n=43 3770043091638456 m006 (1/4*exp(Pi)+5/6)/(3/4*exp(Pi)+1/5) 3770043091727090 l006 ln(2785/2892) 3770043093726945 r002 3th iterates of z^2 + 3770043112829555 r005 Re(z^2+c),c=-61/118+4/39*I,n=21 3770043121048803 m001 (-OneNinth+1/3)/(-ln(3)+1/2) 3770043141886390 a003 sin(Pi*9/104)/sin(Pi*27/107) 3770043151315978 r005 Re(z^2+c),c=-14/27+2/47*I,n=30 3770043152526049 s002 sum(A178131[n]/(2^n-1),n=1..infinity) 3770043161517540 m001 MasserGramain^(KomornikLoreti/ZetaQ(4)) 3770043176087765 m009 (2*Catalan+1/4*Pi^2-6)/(4/5*Psi(1,2/3)-2) 3770043189082134 r005 Re(z^2+c),c=-39/86+17/49*I,n=13 3770043195662932 m001 (ln(3)+FellerTornier)/(Paris-PlouffeB) 3770043206100748 m001 ZetaQ(4)*(OrthogonalArrays+QuadraticClass) 3770043208139093 r005 Im(z^2+c),c=2/27+25/59*I,n=20 3770043215008968 r002 21th iterates of z^2 + 3770043216545609 r005 Im(z^2+c),c=-1/98+11/23*I,n=47 3770043219512400 h001 (4/11*exp(1)+5/6)/(5/9*exp(2)+8/11) 3770043226956582 l006 ln(3647/5317) 3770043236136372 m001 ln(2)/ln(10)/(ln(2^(1/2)+1)^Grothendieck) 3770043259286175 m005 (1/2*gamma+1/4)/(1/9*2^(1/2)-3/10) 3770043264762072 r005 Im(z^2+c),c=-25/24+2/49*I,n=12 3770043280145673 r002 7th iterates of z^2 + 3770043292443231 a007 Real Root Of 979*x^4-947*x^3-657*x^2-450*x+294 3770043293172379 r005 Re(z^2+c),c=-49/66+3/25*I,n=10 3770043295371414 r005 Im(z^2+c),c=17/52+5/26*I,n=62 3770043300490807 a007 Real Root Of 575*x^4-991*x^3-966*x^2+18*x+172 3770043301115801 r005 Im(z^2+c),c=5/122+21/47*I,n=32 3770043301258240 r005 Im(z^2+c),c=-3/106+22/45*I,n=44 3770043303884779 m003 -3/4+(5*Sqrt[5])/32-Cos[1/2+Sqrt[5]/2]/2 3770043305015790 a007 Real Root Of -299*x^4-703*x^3-754*x^2+667*x+327 3770043311018933 r005 Im(z^2+c),c=11/82+18/47*I,n=48 3770043327755275 m001 (arctan(1/3)-Riemann2ndZero)/(ln(gamma)+ln(3)) 3770043327917569 l006 ln(144/6247) 3770043329910215 m001 BesselK(0,1)/(GAMMA(3/4)^Landau) 3770043344770037 a007 Real Root Of 393*x^4+19*x^3+322*x^2-673*x+199 3770043380043917 r005 Im(z^2+c),c=-27/46+30/61*I,n=18 3770043424817031 a007 Real Root Of 152*x^4+493*x^3-129*x^2+449*x-763 3770043436250312 m001 1/GAMMA(11/12)^2*ln(FeigenbaumKappa)*sinh(1)^2 3770043436407361 r005 Im(z^2+c),c=-7/118+23/45*I,n=25 3770043442963842 r002 4th iterates of z^2 + 3770043445573220 r005 Re(z^2+c),c=-49/54+6/29*I,n=64 3770043452852495 m001 gamma(2)*Pi*csc(1/12*Pi)/GAMMA(11/12)/Otter 3770043465556286 r005 Re(z^2+c),c=-53/36+22/39*I,n=2 3770043477844039 a001 4181/521*322^(2/3) 3770043480163583 r005 Re(z^2+c),c=-57/94+11/56*I,n=13 3770043481206761 r005 Im(z^2+c),c=-3/28+7/12*I,n=27 3770043484636476 m009 (1/2*Pi^2-4/5)/(4*Psi(1,3/4)+4/5) 3770043490331609 a007 Real Root Of 207*x^4+252*x^3+207*x^2-552*x+161 3770043503738854 a007 Real Root Of -161*x^4-528*x^3+515*x^2+692*x-479 3770043508854109 a001 322/13*1346269^(27/52) 3770043548689330 r005 Im(z^2+c),c=19/126+10/27*I,n=30 3770043553878396 a007 Real Root Of -155*x^4-788*x^3-574*x^2+610*x-454 3770043554574479 m001 HardHexagonsEntropy^2*Conway^2/ln(Catalan) 3770043561670908 l006 ln(5619/8192) 3770043562796091 m001 (ln(2+3^(1/2))-FeigenbaumMu)/(MertensB1-Thue) 3770043567472528 r002 14th iterates of z^2 + 3770043574110976 a007 Real Root Of -251*x^4-669*x^3+804*x^2-737*x+652 3770043577277875 m008 (1/6*Pi^3-4)/(1/6*Pi-5/6) 3770043583383039 m001 Catalan*exp(Tribonacci)/GAMMA(7/12) 3770043592146610 r009 Re(z^3+c),c=-61/114+26/57*I,n=35 3770043601597346 r005 Re(z^2+c),c=-53/110+16/47*I,n=29 3770043608086259 h005 exp(sin(Pi*11/53)/cos(Pi*15/43)) 3770043623066439 a007 Real Root Of -244*x^4+368*x^3+456*x^2+635*x-319 3770043634321216 r005 Re(z^2+c),c=-37/98+19/45*I,n=9 3770043642257764 a001 18*28657^(38/51) 3770043647791894 m001 (KhinchinHarmonic+Thue)/(Chi(1)-GAMMA(7/12)) 3770043648398536 r005 Im(z^2+c),c=-1/9+23/43*I,n=55 3770043673255258 r005 Re(z^2+c),c=2/17+20/47*I,n=33 3770043675839783 r002 44th iterates of z^2 + 3770043677518428 m005 (1/2*gamma+6/11)/(6*Zeta(3)-5) 3770043678084593 m005 (1/3*5^(1/2)-2/9)/(49/132+5/11*5^(1/2)) 3770043681242056 a007 Real Root Of 622*x^4-497*x^3+625*x^2-819*x+234 3770043692626376 a004 Fibonacci(15)*Lucas(12)/(1/2+sqrt(5)/2)^13 3770043703372856 m001 (3^(1/2)+arctan(1/3))/(-Cahen+Paris) 3770043709696247 a001 28657/322*123^(3/10) 3770043711011068 a003 cos(Pi*1/67)*cos(Pi*26/69) 3770043716894963 m008 (3/4*Pi^2-1/5)/(3/5*Pi^3+1/2) 3770043730508601 h001 (9/11*exp(1)+6/7)/(1/10*exp(1)+6/11) 3770043763716723 g007 Psi(2,1/12)+Psi(2,9/11)+Psi(2,2/11)-Psi(2,3/7) 3770043769421603 m001 ln(OneNinth)^2*Khintchine^2*GAMMA(23/24)^2 3770043782317219 m004 -16+125*Pi+ProductLog[Sqrt[5]*Pi]/5 3770043801385126 m001 (GAMMA(3/4)*ZetaQ(2)+ReciprocalLucas)/ZetaQ(2) 3770043804906621 m005 (-1/12+1/6*5^(1/2))/(6/7*gamma+3/11) 3770043834599360 a007 Real Root Of 283*x^4+965*x^3-450*x^2-511*x-992 3770043837675585 r005 Im(z^2+c),c=-1/17+17/28*I,n=19 3770043877091854 r005 Re(z^2+c),c=-63/122+3/38*I,n=22 3770043881735149 s002 sum(A159078[n]/(n^2*exp(n)+1),n=1..infinity) 3770043887392717 m005 (1/2*gamma-1/3)/(1+1/12*5^(1/2)) 3770043892782991 m005 (1/2*Zeta(3)+3/11)/(-3/16+3/16*5^(1/2)) 3770043894414717 a003 -1/2+2*cos(3/10*Pi)+cos(7/27*Pi)-cos(1/18*Pi) 3770043895306195 r005 Im(z^2+c),c=-7/122+27/53*I,n=10 3770043900071808 r009 Im(z^3+c),c=-27/94+21/55*I,n=17 3770043908422416 r005 Re(z^2+c),c=15/58+10/19*I,n=10 3770043917337363 r005 Im(z^2+c),c=8/23+18/61*I,n=42 3770043952215516 r005 Im(z^2+c),c=-9/44+43/61*I,n=11 3770043957427380 r002 27th iterates of z^2 + 3770043960613867 a007 Real Root Of -872*x^4+664*x^3-555*x^2+708*x-206 3770043973653672 r005 Re(z^2+c),c=-7/23+26/41*I,n=26 3770043977125637 m002 Pi^5+(3*Pi^3)/Log[Pi]^2 3770043980160912 r005 Re(z^2+c),c=6/23+31/59*I,n=23 3770043980775929 a001 615/124*18^(40/57) 3770043981749012 r002 48th iterates of z^2 + 3770043985192704 m005 (1/2*Pi+8/11)/(-47/154+9/22*5^(1/2)) 3770043988564350 r005 Re(z^2+c),c=-55/118+17/42*I,n=54 3770043996553123 a001 4106118243/377*1836311903^(12/17) 3770043996553146 a001 12752043/377*6557470319842^(12/17) 3770043996555136 a001 1322157322203/377*514229^(12/17) 3770044000384461 a001 1/1364*(1/2*5^(1/2)+1/2)^3*3^(3/17) 3770044006018321 a007 Real Root Of -265*x^4-920*x^3+561*x^2+743*x-936 3770044018090799 r005 Re(z^2+c),c=-1+17/80*I,n=52 3770044027020628 r005 Re(z^2+c),c=-8/17+1/24*I,n=5 3770044028735007 a007 Real Root Of -793*x^4+607*x^3+394*x^2+170*x-7 3770044031046390 r005 Im(z^2+c),c=21/82+7/24*I,n=15 3770044034450552 r005 Re(z^2+c),c=-27/58+23/59*I,n=33 3770044043015609 h001 (7/12*exp(1)+8/11)/(5/7*exp(2)+6/7) 3770044045053336 r005 Im(z^2+c),c=11/82+18/47*I,n=51 3770044050849181 m001 1/MertensB1*Backhouse^2/exp(Khintchine)^2 3770044063366473 r005 Re(z^2+c),c=-7/52+42/55*I,n=6 3770044066133231 a007 Real Root Of 408*x^4+499*x^3-141*x^2-968*x+350 3770044066817628 a007 Real Root Of -620*x^4-346*x^3-481*x^2+137*x+114 3770044115497203 a001 233*123^(1/10) 3770044118955218 a007 Real Root Of 23*x^4+884*x^3+612*x^2-929*x+161 3770044130573448 a001 1/3*521^(19/49) 3770044145230246 r005 Re(z^2+c),c=19/118+27/56*I,n=51 3770044145473356 a003 cos(Pi*10/67)*cos(Pi*13/36) 3770044145845360 a007 Real Root Of 300*x^4+925*x^3-831*x^2-378*x-653 3770044164771036 m002 -Pi^2/2+4/(3*Log[Pi]) 3770044166483311 r005 Re(z^2+c),c=-21/44+14/39*I,n=60 3770044180688700 l006 ln(1972/2875) 3770044191878497 a008 Real Root of x^4-8*x^2-3*x-77 3770044225312858 r002 5th iterates of z^2 + 3770044231957803 m001 Khintchine*exp(Conway)^2/cos(Pi/12) 3770044243135542 r009 Im(z^3+c),c=-15/62+19/49*I,n=4 3770044243674299 m001 (TwinPrimes+ZetaP(4))/(2^(1/2)+cos(1)) 3770044247563755 m001 1/Trott/exp(MadelungNaCl)*GAMMA(1/24) 3770044249893663 m005 (1/2*Pi-8/11)/(7/8*2^(1/2)+1) 3770044258597038 p003 LerchPhi(1/256,2,251/154) 3770044259529323 m005 (1/2*gamma+5)/(7/10*exp(1)-1/2) 3770044270004188 a001 13/103682*4^(27/34) 3770044276468587 m009 (1/5*Psi(1,1/3)-4/5)/(1/8*Pi^2+2) 3770044280690307 r005 Im(z^2+c),c=6/25+5/17*I,n=39 3770044282131802 a007 Real Root Of -733*x^4+609*x^3-458*x^2-81*x+82 3770044294439523 r005 Re(z^2+c),c=-29/90+31/56*I,n=5 3770044303788377 m001 AlladiGrinstead/(Lehmer^Zeta(1/2)) 3770044307134600 m001 (1-Psi(1,1/3))/(Ei(1)+polylog(4,1/2)) 3770044329987666 r005 Im(z^2+c),c=-9/86+17/32*I,n=50 3770044353462981 q001 1105/2931 3770044359908020 r009 Im(z^3+c),c=-27/52+9/37*I,n=56 3770044367576956 r002 14th iterates of z^2 + 3770044380615527 h001 (1/11*exp(2)+10/11)/(4/9*exp(2)+10/11) 3770044381134337 m001 (-BesselI(1,1)+Kac)/(Shi(1)-ln(gamma)) 3770044419846283 p004 log(31799/733) 3770044423372248 m004 -16+125*Pi+Tan[Sqrt[5]*Pi]/3 3770044436943348 m005 (1/3*gamma+2/7)/(11/12*Catalan+3/7) 3770044441941396 m004 -6-5*Sqrt[5]*Pi+(Sqrt[5]*Pi*Log[Sqrt[5]*Pi])/4 3770044465269352 r005 Re(z^2+c),c=31/98+11/61*I,n=3 3770044466116464 a001 5600748293801/1597*6557470319842^(8/17) 3770044487955470 r002 6th iterates of z^2 + 3770044505617257 r005 Im(z^2+c),c=23/64+22/63*I,n=51 3770044511019294 r005 Re(z^2+c),c=11/40+19/37*I,n=12 3770044519411180 m001 (DuboisRaymond+Gompertz)/(2^(1/3)+Chi(1)) 3770044524863167 r005 Re(z^2+c),c=-27/74+23/38*I,n=17 3770044532118845 r005 Im(z^2+c),c=11/82+18/47*I,n=52 3770044535211495 r005 Re(z^2+c),c=-65/126+3/31*I,n=26 3770044539738749 r005 Im(z^2+c),c=7/58+11/28*I,n=35 3770044541002205 r005 Re(z^2+c),c=-63/122+4/43*I,n=29 3770044544521034 r005 Re(z^2+c),c=-59/90+7/43*I,n=15 3770044550306510 m001 (Zeta(1,2)-MertensB3)/(OneNinth-Rabbit) 3770044565765307 r005 Im(z^2+c),c=19/102+13/38*I,n=50 3770044568215700 r005 Im(z^2+c),c=-3/52+33/49*I,n=45 3770044573397030 r005 Im(z^2+c),c=11/58+19/56*I,n=43 3770044578003301 m001 (Chi(1)-gamma)/(-GAMMA(2/3)+LaplaceLimit) 3770044590580050 r005 Re(z^2+c),c=-41/90+7/16*I,n=58 3770044594410746 a007 Real Root Of -285*x^4-971*x^3+503*x^2+599*x+653 3770044596570473 m001 (gamma+Ei(1,1))/(AlladiGrinstead+Conway) 3770044602444244 m001 Pi*GlaisherKinkelin-sin(1/12*Pi) 3770044614153811 m004 -15/E^(Sqrt[5]*Pi)-120*Pi 3770044615007481 p001 sum((-1)^n/(398*n+257)/(12^n),n=0..infinity) 3770044631498578 m005 (1/2*2^(1/2)-10/11)/(5*Catalan+7/9) 3770044658825449 m001 exp(exp(1))^2*Magata^2*sqrt(2) 3770044659259143 a001 3/89*144^(56/59) 3770044660788074 r005 Im(z^2+c),c=6/19+19/47*I,n=49 3770044665634285 a007 Real Root Of 761*x^4-754*x^3+183*x^2-427*x+160 3770044684279157 m001 (3^(1/2)-cos(1))/(BesselI(0,2)+QuadraticClass) 3770044691148069 r005 Im(z^2+c),c=11/82+18/47*I,n=55 3770044695651401 r002 8th iterates of z^2 + 3770044706232156 r002 21th iterates of z^2 + 3770044707476794 r005 Im(z^2+c),c=17/44+1/55*I,n=6 3770044708023701 r005 Im(z^2+c),c=-125/98+9/47*I,n=15 3770044718625207 a001 14662949395604/4181*6557470319842^(8/17) 3770044721297687 r005 Re(z^2+c),c=13/36+9/55*I,n=8 3770044737434877 m001 (3^(1/2)+arctan(1/2))/(-MertensB2+ZetaP(2)) 3770044740524653 l006 ln(6213/9058) 3770044745114142 m001 (GaussAGM-ZetaQ(2))/(cos(1/5*Pi)-BesselK(1,1)) 3770044746776063 r005 Re(z^2+c),c=-137/106+1/63*I,n=10 3770044747229307 m001 1/GAMMA(5/12)^2/exp(ErdosBorwein)/sinh(1) 3770044747347098 r005 Im(z^2+c),c=1/86+20/43*I,n=47 3770044747936283 r002 9th iterates of z^2 + 3770044751564156 r005 Im(z^2+c),c=-25/18+2/221*I,n=8 3770044764060117 m001 1/Robbin/Riemann1stZero^2/ln(Zeta(9)) 3770044765149452 p001 sum((-1)^n/(286*n+265)/(512^n),n=0..infinity) 3770044776609195 m001 1/exp(GAMMA(7/12))*FeigenbaumD/cosh(1) 3770044776807766 a007 Real Root Of -192*x^4-761*x^3-21*x^2+512*x+238 3770044778234440 a001 23725150497407/6765*6557470319842^(8/17) 3770044787576341 a007 Real Root Of 278*x^4-724*x^3+911*x^2-926*x-523 3770044811698969 m001 (MadelungNaCl-TravellingSalesman)/Trott2nd 3770044816228164 a007 Real Root Of 285*x^4-982*x^3+770*x^2-975*x+305 3770044816357970 r005 Im(z^2+c),c=-9/26+41/52*I,n=3 3770044820897305 r005 Im(z^2+c),c=31/94+3/16*I,n=61 3770044831405271 h001 (1/11*exp(1)+2/7)/(1/6*exp(2)+2/11) 3770044831466671 m001 1/5*FransenRobinson^Zeta(1,-1)*5^(1/2) 3770044833707741 r005 Im(z^2+c),c=33/118+21/47*I,n=42 3770044834269683 m005 (1/2*Zeta(3)-9/10)/(1/2*Pi-7/9) 3770044851181592 m005 (-15/4+1/4*5^(1/2))/(1/3*2^(1/2)+3/8) 3770044873727953 m001 HardyLittlewoodC5/(FeigenbaumB-Sarnak) 3770044874684210 a001 9062201101803/2584*6557470319842^(8/17) 3770044875972577 r005 Im(z^2+c),c=-5/27+19/34*I,n=33 3770044878741608 h001 (2/11*exp(2)+1/10)/(5/12*exp(2)+3/4) 3770044886867947 r005 Im(z^2+c),c=11/82+18/47*I,n=56 3770044898564847 m001 Zeta(9)^2*Trott*exp(sqrt(Pi))^2 3770044902902975 r005 Re(z^2+c),c=19/74+2/55*I,n=36 3770044906713419 m005 (1/2*3^(1/2)-10/11)/(3/7*3^(1/2)+2/5) 3770044912576410 r005 Im(z^2+c),c=11/82+18/47*I,n=59 3770044925094757 a001 987/64079*7^(23/50) 3770044928618345 r005 Re(z^2+c),c=-13/24+4/9*I,n=55 3770044931740269 r005 Im(z^2+c),c=-37/58+15/43*I,n=30 3770044937090235 m001 GAMMA(5/6)-Rabbit^FeigenbaumB 3770044960798798 r002 40th iterates of z^2 + 3770044972000073 h001 (2/3*exp(2)+3/8)/(1/3*exp(1)+1/2) 3770044987719772 r005 Im(z^2+c),c=11/82+18/47*I,n=63 3770044987788481 r005 Im(z^2+c),c=11/82+18/47*I,n=60 3770045000839780 l006 ln(4241/6183) 3770045008328712 s002 sum(A225650[n]/(n^3*2^n+1),n=1..infinity) 3770045015727928 r005 Im(z^2+c),c=11/82+18/47*I,n=64 3770045022582635 r009 Im(z^3+c),c=-53/102+4/17*I,n=55 3770045032658737 m001 (3^(1/2)-Zeta(3))/(-Riemann1stZero+ZetaP(4)) 3770045032846347 a007 Real Root Of 293*x^4+936*x^3-603*x^2+113*x-39 3770045034222200 r002 38th iterates of z^2 + 3770045040190175 m005 (1/6*gamma-1/2)/(1/2*2^(1/2)-3/5) 3770045041651440 m001 Ei(1)^GaussAGM/ZetaP(2) 3770045043620544 m005 (1/2*2^(1/2)-1/9)/(1/9*gamma-2/9) 3770045044986679 r005 Im(z^2+c),c=11/82+18/47*I,n=62 3770045051855277 a007 Real Root Of 272*x^4+927*x^3-522*x^2-688*x-450 3770045061361029 r005 Re(z^2+c),c=-3/5+23/114*I,n=4 3770045063434994 m006 (1/2*ln(Pi)+5)/(ln(Pi)+1/3) 3770045065915752 r002 39th iterates of z^2 + 3770045071979302 a001 7/2584*21^(32/37) 3770045091038153 r005 Im(z^2+c),c=11/82+18/47*I,n=61 3770045096539184 r002 26th iterates of z^2 + 3770045098295407 r005 Im(z^2+c),c=11/82+18/47*I,n=58 3770045100069748 r002 7th iterates of z^2 + 3770045106812528 r009 Im(z^3+c),c=-1/86+17/21*I,n=28 3770045112147317 m001 ln(OneNinth)*Tribonacci^2*sqrt(5)^2 3770045115651486 m001 1/KhintchineHarmonic*Champernowne^2/ln(Paris) 3770045120864074 m001 Shi(1)*(1-Cahen) 3770045126532096 l006 ln(89/3861) 3770045141714126 h001 (-exp(1)-1)/(-9*exp(7)+7) 3770045155570096 a007 Real Root Of 197*x^4+788*x^3+216*x^2+6*x-620 3770045158316497 r005 Im(z^2+c),c=9/118+25/59*I,n=19 3770045161649913 r005 Im(z^2+c),c=31/94+5/27*I,n=49 3770045172547371 p002 log(12^(3/5)+3^(10/3)) 3770045210034150 a007 Real Root Of 209*x^4+812*x^3-88*x^2-426*x+934 3770045220180792 r005 Im(z^2+c),c=11/82+18/47*I,n=57 3770045224068314 a007 Real Root Of -278*x^4-823*x^3+768*x^2-132*x+647 3770045230251206 a007 Real Root Of 212*x^4-742*x^3+580*x^2-821*x-436 3770045236671368 s002 sum(A117488[n]/((exp(n)+1)*n),n=1..infinity) 3770045236892065 r009 Im(z^3+c),c=-25/52+16/59*I,n=30 3770045242809862 m005 (-2/3+1/4*5^(1/2))/(11/12*exp(1)+4/11) 3770045249278772 l006 ln(6510/9491) 3770045274746292 r005 Im(z^2+c),c=-6/5+7/103*I,n=11 3770045278495547 r005 Im(z^2+c),c=5/122+21/47*I,n=46 3770045281149668 a007 Real Root Of -251*x^4-853*x^3+429*x^2+426*x+507 3770045286690256 m001 (-Tetranacci+Trott2nd)/(3^(1/2)-5^(1/2)) 3770045288066800 r005 Im(z^2+c),c=11/82+18/47*I,n=54 3770045294319580 s002 sum(A165063[n]/((pi^n-1)/n),n=1..infinity) 3770045298643481 r005 Re(z^2+c),c=33/98+5/62*I,n=8 3770045299504011 m005 (1/12+1/6*5^(1/2))/(8/11*5^(1/2)-5/12) 3770045299509514 a007 Real Root Of 202*x^4+669*x^3-463*x^2-550*x-452 3770045306550164 m001 sin(1)/(BesselI(0,1)+cos(1/12*Pi)) 3770045306550164 m001 sin(1)/(BesselI(0,1)+cos(Pi/12)) 3770045311057991 r002 40th iterates of z^2 + 3770045321715192 r009 Im(z^3+c),c=-7/20+23/63*I,n=7 3770045331031979 r002 34th iterates of z^2 + 3770045338123497 a007 Real Root Of -38*x^4+19*x^3+688*x^2+361*x+277 3770045338399165 r005 Im(z^2+c),c=-143/114+4/29*I,n=10 3770045338846269 m001 (Conway-LandauRamanujan2nd)/(3^(1/3)+Bloch) 3770045356750996 m001 (-Khinchin+Rabbit)/(Psi(2,1/3)+exp(1)) 3770045365428338 m005 (11/12+1/4*5^(1/2))/(1/4*Zeta(3)+1/11) 3770045369295830 p004 log(12799/8779) 3770045385241746 r005 Re(z^2+c),c=-61/118+1/13*I,n=26 3770045385779122 q001 1246/3305 3770045387992036 m005 (1/2*2^(1/2)-1/3)/(5/12*Zeta(3)-3/5) 3770045409869258 m001 (Shi(1)-Zeta(1/2))/(Zeta(1,-1)+Paris) 3770045411076781 a007 Real Root Of 625*x^4-698*x^3-419*x^2-771*x+375 3770045411999970 r005 Re(z^2+c),c=-55/106+1/35*I,n=33 3770045414601239 m002 3+E^Pi+ProductLog[Pi]/Pi^4+Sinh[Pi] 3770045414615015 r005 Re(z^2+c),c=-95/74+2/57*I,n=22 3770045424546121 a007 Real Root Of -570*x^4-58*x^3-944*x^2-227*x+57 3770045428789463 r005 Im(z^2+c),c=9/34+7/26*I,n=36 3770045428835695 m001 ((1+3^(1/2))^(1/2)+Niven)/(ln(3)-exp(-1/2*Pi)) 3770045449065314 r005 Im(z^2+c),c=-139/106+1/42*I,n=42 3770045457379909 s002 sum(A037073[n]/((exp(n)-1)/n),n=1..infinity) 3770045459351473 a007 Real Root Of -238*x^4+416*x^3+91*x^2+166*x-93 3770045467154957 a003 cos(Pi*23/61)/sin(Pi*20/41) 3770045521698698 m005 (1/2*exp(1)+5/9)/(10/11*2^(1/2)-7/9) 3770045535760898 a001 494493258286/141*6557470319842^(8/17) 3770045544582634 a007 Real Root Of -367*x^4+891*x^3+437*x^2+663*x+243 3770045546585877 m001 (Zeta(5)-ln(3))/(BesselI(0,2)-Cahen) 3770045556461664 m005 (-5/8+1/4*5^(1/2))/(3/11*Catalan-2) 3770045560826193 a005 (1/cos(4/71*Pi))^523 3770045572156994 m001 GAMMA(5/12)^2*GAMMA(23/24)*exp(GAMMA(5/24)) 3770045576491114 a007 Real Root Of -373*x^4+264*x^3+179*x^2+696*x+26 3770045579662146 r005 Re(z^2+c),c=-37/122+8/17*I,n=4 3770045580135517 r005 Re(z^2+c),c=-47/102+19/45*I,n=58 3770045581578497 m005 (1/2*5^(1/2)-2/9)/(1/12*gamma-2/7) 3770045585259832 m005 (1/2*5^(1/2)-3/11)/(1/9*3^(1/2)-5/12) 3770045585387257 a001 2584/167761*7^(23/50) 3770045587399953 r005 Im(z^2+c),c=-9/50+29/51*I,n=51 3770045589741228 s002 sum(A148928[n]/((exp(n)+1)*n),n=1..infinity) 3770045597517985 m005 (1/2*gamma+1/7)/(4*exp(1)+4/7) 3770045598910004 r005 Im(z^2+c),c=11/82+18/47*I,n=53 3770045602723087 m001 (Pi+BesselJ(0,1))/(Gompertz+TreeGrowth2nd) 3770045618333502 r005 Im(z^2+c),c=1/70+27/43*I,n=46 3770045627294751 r009 Re(z^3+c),c=-1/50+50/61*I,n=47 3770045647555654 m004 -2+125*Pi-Sqrt[5]*Pi*Log[Sqrt[5]*Pi] 3770045663483516 s002 sum(A269222[n]/((pi^n-1)/n),n=1..infinity) 3770045681722635 a001 6765/439204*7^(23/50) 3770045685034367 h001 (-7*exp(1)+9)/(-5*exp(4)+7) 3770045693084935 r002 4th iterates of z^2 + 3770045695777777 a001 17711/1149851*7^(23/50) 3770045697828394 a001 46368/3010349*7^(23/50) 3770045698312480 a001 75025/4870847*7^(23/50) 3770045699095746 a001 28657/1860498*7^(23/50) 3770045704464332 a001 10946/710647*7^(23/50) 3770045704683667 r005 Re(z^2+c),c=-22/17+3/25*I,n=6 3770045713637402 l006 ln(2269/3308) 3770045739506379 g005 GAMMA(6/11)/GAMMA(5/11)/GAMMA(3/5)^2 3770045741261172 a001 4181/271443*7^(23/50) 3770045742397035 r002 29th iterates of z^2 + 3770045744587237 a007 Real Root Of 762*x^4+25*x^3-308*x^2-976*x+395 3770045747253274 m001 (ln(3)+exp(1/exp(1)))/(Paris+Stephens) 3770045752971231 r005 Re(z^2+c),c=2/25+11/59*I,n=4 3770045753371686 p001 sum((-1)^n/(346*n+225)/(2^n),n=0..infinity) 3770045763041263 a007 Real Root Of 849*x^4-703*x^3+507*x^2+66*x-102 3770045774652273 r009 Im(z^3+c),c=-35/102+23/64*I,n=13 3770045775911025 r005 Re(z^2+c),c=-59/114+2/29*I,n=32 3770045802291480 r005 Im(z^2+c),c=-4/19+25/51*I,n=7 3770045806644860 m005 (1/2*Zeta(3)+4/9)/(2/3*Catalan-1/3) 3770045813581766 m001 (PlouffeB-Robbin)/(GAMMA(7/12)+Magata) 3770045815101131 r005 Im(z^2+c),c=15/74+20/61*I,n=17 3770045818421899 r009 Im(z^3+c),c=-41/118+49/53*I,n=4 3770045819306727 m001 1/BesselJ(1,1)*ln(Magata)/exp(1)^2 3770045833996196 m001 (exp(1)-FeigenbaumDelta)/polylog(4,1/2) 3770045835957543 m001 (Bloch+FeigenbaumDelta)/(PlouffeB-Tribonacci) 3770045856512054 a007 Real Root Of 177*x^4-921*x^3+135*x^2-5*x-74 3770045856733401 a007 Real Root Of -283*x^4-977*x^3+335*x^2+35*x+189 3770045868841100 m004 -6+125*Pi-5*Pi*Sin[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 3770045889114010 r005 Im(z^2+c),c=-21/94+5/9*I,n=24 3770045902501722 a007 Real Root Of -300*x^4+988*x^3-376*x^2+28*x+123 3770045913257012 a007 Real Root Of 334*x^4-839*x^3-307*x^2-838*x-324 3770045929339720 r005 Im(z^2+c),c=11/58+19/56*I,n=48 3770045933644718 r005 Im(z^2+c),c=-9/82+31/58*I,n=48 3770045947769244 r005 Im(z^2+c),c=11/82+18/47*I,n=50 3770045958681628 r005 Re(z^2+c),c=-31/66+10/43*I,n=4 3770045962423605 r005 Im(z^2+c),c=17/66+13/47*I,n=46 3770045966490105 m005 (1/2*5^(1/2)+7/12)/(5/8*Zeta(3)-3/10) 3770045981005925 m001 (BesselJ(1,1)+FeigenbaumAlpha)/(1-Ei(1,1)) 3770045984774930 m003 6+(2*Log[1/2+Sqrt[5]/2])/5-Sinh[1/2+Sqrt[5]/2] 3770045993470465 a001 1597/103682*7^(23/50) 3770046003263506 a007 Real Root Of 939*x^4-855*x^3-318*x^2-643*x-262 3770046008653786 m001 (5^(1/2)-Niven)/(-Riemann1stZero+ZetaQ(2)) 3770046024434344 s001 sum(exp(-Pi/4)^n*A115365[n],n=1..infinity) 3770046026973570 r009 Im(z^3+c),c=-49/110+3/10*I,n=41 3770046034556100 r005 Re(z^2+c),c=1/5+22/39*I,n=12 3770046040802078 h001 (5/8*exp(1)+3/10)/(7/11*exp(2)+3/5) 3770046043791505 r009 Re(z^3+c),c=-49/122+29/46*I,n=36 3770046051210426 r005 Re(z^2+c),c=-14/27+1/23*I,n=40 3770046052440116 a003 sin(Pi*15/77)*sin(Pi*18/79) 3770046056810967 r009 Re(z^3+c),c=-17/36+11/43*I,n=47 3770046061785920 h001 (2/9*exp(2)+3/8)/(3/5*exp(2)+11/12) 3770046073991120 m001 exp(Zeta(9))/Zeta(3)^2*sqrt(2)^2 3770046081086660 b008 Sqrt[2*Gamma[E,6]] 3770046083545777 a001 89/123*29^(25/51) 3770046086631757 a001 9/567451585*14930352^(8/17) 3770046086631758 a001 18/53316291173*53316291173^(8/17) 3770046106929951 a001 18/24157817*4181^(8/17) 3770046107518729 r005 Im(z^2+c),c=-2/25+29/56*I,n=36 3770046109849799 a007 Real Root Of 434*x^4-448*x^3+761*x^2-960*x+269 3770046111501721 m005 (1/3*Pi-2/5)/(6*exp(1)+6/7) 3770046118611470 a001 18/514229*17711^(56/59) 3770046144390267 r005 Im(z^2+c),c=-9/8+11/238*I,n=19 3770046165992363 r005 Im(z^2+c),c=29/86+8/23*I,n=30 3770046169258549 a007 Real Root Of 276*x^4+846*x^3-830*x^2-139*x+849 3770046180791350 a003 cos(Pi*29/113)*cos(Pi*19/60) 3770046194364650 h001 (2/9*exp(2)+2/5)/(7/11*exp(2)+5/7) 3770046198089498 m001 1/CareFree/FransenRobinson/ln((3^(1/3)))^2 3770046208208752 q001 1387/3679 3770046223505373 r005 Im(z^2+c),c=13/106+11/31*I,n=6 3770046236789650 a007 Real Root Of 195*x^4+753*x^3+62*x^2-14*x+22 3770046248295831 r009 Re(z^3+c),c=-71/122+26/55*I,n=26 3770046259031076 r005 Im(z^2+c),c=1/17+27/62*I,n=22 3770046266329723 a003 sin(Pi*14/85)-sin(Pi*31/92) 3770046266972990 p001 sum(1/(489*n+266)/(125^n),n=0..infinity) 3770046267301244 r009 Im(z^3+c),c=-49/110+3/10*I,n=45 3770046269106329 m005 (1/3*3^(1/2)-1/9)/(4/7*2^(1/2)+3/7) 3770046271567994 r005 Im(z^2+c),c=-81/86+17/58*I,n=5 3770046291913024 r002 11th iterates of z^2 + 3770046292676373 r005 Re(z^2+c),c=29/78+7/27*I,n=64 3770046309207238 r002 8th iterates of z^2 + 3770046318419024 m001 (GaussAGM+MertensB3)/(gamma(2)-BesselI(1,1)) 3770046320482363 r005 Im(z^2+c),c=7/106+19/43*I,n=14 3770046320496337 m002 -Pi^4-E^Pi*Coth[Pi]+Pi^6*Sech[Pi] 3770046324784529 a007 Real Root Of -124*x^4-593*x^3-406*x^2+65*x-710 3770046327439880 m001 Mills^Khinchin*Tribonacci 3770046332488883 m005 (1/12+1/6*5^(1/2))/(5/9*gamma+8/9) 3770046338864808 l006 ln(4835/7049) 3770046348230685 l006 ln(212/9197) 3770046351904961 a001 2584/521*322^(3/4) 3770046359939101 s002 sum(A094702[n]/(exp(2*pi*n)+1),n=1..infinity) 3770046365438543 r009 Im(z^3+c),c=-2/11+7/17*I,n=12 3770046370524825 r009 Re(z^3+c),c=-13/31+31/51*I,n=29 3770046372191794 m001 (1+3^(1/3))/(exp(-1/2*Pi)+TreeGrowth2nd) 3770046375555496 r009 Im(z^3+c),c=-45/106+17/28*I,n=20 3770046386910696 r002 20th iterates of z^2 + 3770046388204139 r005 Re(z^2+c),c=-33/26+17/46*I,n=7 3770046400803812 m001 arctan(1/3)^exp(1/Pi)*GAMMA(7/12)^exp(1/Pi) 3770046406720150 m002 -2+5*Log[Pi]+ProductLog[Pi]/E^Pi 3770046407389212 m005 (1/3*Catalan+1/4)/(1/4*3^(1/2)-2/7) 3770046408224970 m001 (Backhouse-GAMMA(13/24))^Stephens 3770046408227141 r005 Re(z^2+c),c=-11/54+29/36*I,n=45 3770046417156434 m001 (2^(1/3))^2/DuboisRaymond*exp(BesselJ(0,1))^2 3770046423909473 r005 Re(z^2+c),c=-16/31+5/52*I,n=43 3770046440060838 a001 4/3*75025^(5/54) 3770046451954296 r005 Im(z^2+c),c=3/23+19/49*I,n=15 3770046464291456 m001 (Pi+Chi(1))/GAMMA(11/12) 3770046503510388 r005 Im(z^2+c),c=-123/106+3/62*I,n=56 3770046506513991 m001 (5^(1/2)+TreeGrowth2nd)/Rabbit 3770046511421551 r005 Re(z^2+c),c=-2/13+29/30*I,n=5 3770046514635347 r005 Im(z^2+c),c=29/98+11/47*I,n=36 3770046521919524 r009 Im(z^3+c),c=-25/64+35/52*I,n=3 3770046522827036 m001 (TravellingSalesman+Thue)/(Ei(1)+BesselI(0,2)) 3770046527423825 m001 PrimesInBinary^2/CopelandErdos/exp(TwinPrimes) 3770046530200073 a007 Real Root Of 586*x^4-72*x^3+969*x^2-288*x-262 3770046542908439 m001 ln(GAMMA(1/4))/FeigenbaumAlpha^2*GAMMA(2/3)^2 3770046547498923 r009 Im(z^3+c),c=-43/82+20/43*I,n=30 3770046586467473 m005 (1/2*Catalan-1/12)/(1/12*5^(1/2)-2/7) 3770046591897728 r009 Im(z^3+c),c=-49/110+3/10*I,n=46 3770046594247101 m001 FeigenbaumDelta^CareFree+cos(1/5*Pi) 3770046594481840 a001 8/271443*521^(38/49) 3770046604261063 r009 Im(z^3+c),c=-7/16+11/36*I,n=39 3770046609378526 r009 Im(z^3+c),c=-53/118+17/57*I,n=9 3770046631463286 a007 Real Root Of -166*x^4-551*x^3+174*x^2-437*x-111 3770046632688325 m001 (gamma(3)+GlaisherKinkelin)/Magata 3770046648298900 r002 15th iterates of z^2 + 3770046660809575 a003 sin(Pi*1/82)*sin(Pi*51/115) 3770046661836066 a007 Real Root Of -738*x^4+343*x^3+559*x^2+475*x-262 3770046667449316 r005 Re(z^2+c),c=8/29+3/62*I,n=27 3770046669398228 r009 Re(z^3+c),c=-43/106+7/25*I,n=2 3770046676166470 r002 16th iterates of z^2 + 3770046688548182 r002 31th iterates of z^2 + 3770046688838540 m001 Zeta(9)^2/exp(PisotVijayaraghavan)/sin(1)^2 3770046698079581 r005 Im(z^2+c),c=11/82+18/47*I,n=49 3770046726915696 m001 (ln(2)+ZetaQ(4))^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 3770046732573583 a007 Real Root Of -105*x^4-236*x^3+555*x^2-220*x-152 3770046737972888 r005 Im(z^2+c),c=19/102+13/38*I,n=45 3770046746623012 m001 (Trott2nd+ZetaQ(3))/(DuboisRaymond-Paris) 3770046751564427 a007 Real Root Of 965*x^4-891*x^3+133*x^2-615*x-318 3770046752349775 q001 1/2652487 3770046754181892 s002 sum(A232584[n]/(exp(2*pi*n)+1),n=1..infinity) 3770046754991054 g005 GAMMA(5/7)/GAMMA(4/9)/GAMMA(7/8)/GAMMA(4/7) 3770046768260994 r002 18th iterates of z^2 + 3770046780713771 a001 11*(1/2*5^(1/2)+1/2)^10*29^(7/23) 3770046804048561 m001 exp(1/Pi)/(FeigenbaumMu+ZetaP(4)) 3770046813008404 l006 ln(9292/9649) 3770046816465597 m001 1/GAMMA(19/24)/exp(GAMMA(1/24))/Zeta(1/2) 3770046837772680 m001 (Psi(2,1/3)-polylog(4,1/2))/(Porter+ZetaQ(3)) 3770046841000249 m001 (FellerTornier+Rabbit)/(ln(3)+GAMMA(13/24)) 3770046851564391 r005 Re(z^2+c),c=-1/20+27/34*I,n=42 3770046869390106 m001 arctan(1/3)^Cahen-Thue 3770046869955953 m001 (gamma(2)-ZetaP(2))/(Ei(1,1)-exp(1/exp(1))) 3770046872497188 m001 (Weierstrass+ZetaP(4))/(Champernowne+Totient) 3770046873430462 m001 sqrt(Pi)*(2/3-Zeta(1/2)) 3770046874287658 a007 Real Root Of 407*x^4-426*x^3-507*x^2-603*x+314 3770046875390869 m003 3/8+(25*Sqrt[5])/64+E^(1/2+Sqrt[5]/2)/2 3770046877399445 m001 (Psi(2,1/3)+GAMMA(19/24))/(GaussAGM+Gompertz) 3770046878855169 q001 1528/4053 3770046891258802 r005 Re(z^2+c),c=10/27+1/5*I,n=26 3770046891725644 l006 ln(2566/3741) 3770046910104032 a007 Real Root Of 157*x^4+394*x^3-493*x^2+717*x-894 3770046915879659 r005 Re(z^2+c),c=7/74+13/43*I,n=6 3770046916741992 r005 Re(z^2+c),c=7/50+5/11*I,n=41 3770046929437925 s002 sum(A189491[n]/(exp(2*pi*n)+1),n=1..infinity) 3770046941854481 m001 ZetaR(2)^Zeta(1/2)/(Grothendieck^Zeta(1/2)) 3770046947280883 r009 Im(z^3+c),c=-63/122+8/35*I,n=50 3770046955489834 a007 Real Root Of -700*x^4+179*x^3+588*x^2+549*x-286 3770046956819177 a001 370248451*13^(19/21) 3770046957681953 r005 Im(z^2+c),c=1/48+17/37*I,n=44 3770046977787697 m001 (-Landau+ZetaP(2))/(exp(Pi)+1) 3770046981445843 m006 (1/3*exp(Pi)-5/6)/(1/3*exp(2*Pi)+4) 3770046993733737 m001 (Pi+LaplaceLimit)/(MertensB1+RenyiParking) 3770047005751816 a007 Real Root Of 830*x^4-443*x^3+185*x^2-661*x-316 3770047007377781 m005 (1/2*Pi+3/5)/(3/5*2^(1/2)-3/11) 3770047015184657 m001 ln(gamma)/FeigenbaumD/Landau 3770047031702421 a001 505019158607/377*1836311903^(10/17) 3770047031702421 a001 4106118243/377*6557470319842^(10/17) 3770047047629883 r005 Im(z^2+c),c=3/56+25/57*I,n=22 3770047056532021 a007 Real Root Of -289*x^4-843*x^3+941*x^2-151*x-733 3770047064661936 r005 Im(z^2+c),c=2/19+21/52*I,n=35 3770047078961770 r005 Im(z^2+c),c=19/102+13/38*I,n=36 3770047096738756 r005 Im(z^2+c),c=-5/82+38/61*I,n=21 3770047100654807 r005 Im(z^2+c),c=-9/122+18/35*I,n=35 3770047107523720 r005 Im(z^2+c),c=-85/66+1/30*I,n=37 3770047113641242 m001 (gamma(1)+gamma(3))/(HardyLittlewoodC5+Porter) 3770047114204979 h001 (1/10*exp(1)+1/2)/(1/4*exp(2)+1/5) 3770047133521270 m001 Zeta(7)^2*GAMMA(17/24)/ln(sqrt(2)) 3770047143486624 g006 Psi(1,1/3)-Psi(1,7/8)-2*Psi(1,5/6) 3770047147493315 a007 Real Root Of 937*x^4-950*x^3+699*x^2-843*x-487 3770047167323093 a001 13/271443*11^(37/43) 3770047180411292 m001 GAMMA(5/24)^2*BesselK(1,1)*exp(sin(Pi/5))^2 3770047181590105 r009 Re(z^3+c),c=-51/110+14/57*I,n=49 3770047224190898 m005 (1/3*Catalan+2/11)/(9/11*3^(1/2)-1/8) 3770047232223042 l006 ln(123/5336) 3770047247570480 s001 sum(exp(-2*Pi)^n*A240377[n],n=1..infinity) 3770047250105956 r005 Re(z^2+c),c=-19/40+23/63*I,n=42 3770047260608216 h001 (-7*exp(1)+11)/(-11*exp(3)+8) 3770047269567924 a001 3/4870847*11^(34/45) 3770047276014012 m005 (1/2*2^(1/2)-6/7)/(1/9*exp(1)-7/10) 3770047278088434 r005 Im(z^2+c),c=-4/21+23/40*I,n=64 3770047280901494 r005 Re(z^2+c),c=-41/86+13/36*I,n=59 3770047302521142 r002 59th iterates of z^2 + 3770047306956517 r005 Re(z^2+c),c=-2/3+45/203*I,n=4 3770047310013837 a007 Real Root Of -625*x^4+708*x^3-952*x^2-249*x+92 3770047329336523 r005 Im(z^2+c),c=-147/110+1/36*I,n=22 3770047335747099 r005 Im(z^2+c),c=-1/20+31/64*I,n=14 3770047341935064 m001 (exp(1)+gamma)/(-Backhouse+LandauRamanujan2nd) 3770047351022328 r005 Im(z^2+c),c=5/122+21/47*I,n=50 3770047371109234 r002 37th iterates of z^2 + 3770047372637557 m001 (DuboisRaymond-MinimumGamma)/(Pi+Ei(1,1)) 3770047373144470 a007 Real Root Of -139*x^4-363*x^3+539*x^2-82*x+659 3770047376164982 a007 Real Root Of -269*x^4+242*x^3-116*x^2+663*x-241 3770047381897377 r002 13th iterates of z^2 + 3770047382554704 m001 DuboisRaymond+FeigenbaumD*MertensB3 3770047384096614 l006 ln(5429/7915) 3770047405753851 a007 Real Root Of 162*x^4+540*x^3-446*x^2-904*x-860 3770047416691084 a007 Real Root Of -330*x^4+297*x^3+896*x^2+758*x+181 3770047425878726 m001 MertensB1^cos(1)/(BesselI(1,2)^cos(1)) 3770047426384076 a007 Real Root Of -554*x^4+285*x^3-316*x^2+359*x+14 3770047429350943 a007 Real Root Of 218*x^4+717*x^3-539*x^2-524*x+66 3770047442243705 b008 (17*ArcCsch[9])/5 3770047446695285 m001 MertensB1^2*DuboisRaymond^2*exp(GAMMA(1/3)) 3770047447009755 r009 Im(z^3+c),c=-65/122+13/63*I,n=11 3770047449991683 a007 Real Root Of -955*x^4+109*x^3+794*x^2+548*x-306 3770047457865846 a003 sin(Pi*19/113)-sin(Pi*35/102) 3770047468275042 r005 Re(z^2+c),c=-59/122+29/61*I,n=18 3770047486941569 r005 Im(z^2+c),c=9/70+12/31*I,n=43 3770047494506498 m001 (MinimumGamma-Shi(1))/(ThueMorse+TwinPrimes) 3770047512438258 a007 Real Root Of 841*x^4-416*x^3+404*x^2-621*x+182 3770047532877991 s002 sum(A104815[n]/(n^3*exp(n)+1),n=1..infinity) 3770047534564817 m006 (1/4*exp(2*Pi)-3/5)/(3/5*ln(Pi)-1/3) 3770047539140792 a007 Real Root Of 178*x^4+508*x^3-853*x^2-870*x+106 3770047540774510 m001 (cos(1/5*Pi)+ln(3))/((1+3^(1/2))^(1/2)+Magata) 3770047546447081 m001 Conway/(Otter^ln(Pi)) 3770047550504410 r005 Im(z^2+c),c=29/110+21/50*I,n=17 3770047569076668 m001 1/Sierpinski*exp(Riemann3rdZero)^2*Tribonacci 3770047601587740 r005 Re(z^2+c),c=27/94+3/56*I,n=21 3770047614797879 s001 sum(exp(-2*Pi)^(n-1)*A080069[n],n=1..infinity) 3770047627373122 a001 1/76*1364^(7/48) 3770047628475880 r005 Re(z^2+c),c=-37/86+30/61*I,n=57 3770047631650012 m002 -4*Pi^4+Cosh[Pi]*Coth[Pi]+Tanh[Pi] 3770047637086461 r009 Re(z^3+c),c=-19/58+1/32*I,n=4 3770047638850994 s001 sum(exp(-2*Pi)^n*A218780[n],n=1..infinity) 3770047639148338 r002 16th iterates of z^2 + 3770047667074703 r005 Re(z^2+c),c=17/66+27/52*I,n=34 3770047687994705 a007 Real Root Of -851*x^4+564*x^3-606*x^2+476*x+313 3770047707464002 r005 Im(z^2+c),c=45/122+12/47*I,n=24 3770047712830066 s001 sum(exp(-2*Pi)^(n-1)*A068551[n],n=1..infinity) 3770047722138671 a001 610/39603*7^(23/50) 3770047737752682 s001 sum(exp(-2*Pi)^(n-1)*A099919[n],n=1..infinity) 3770047741105021 r005 Re(z^2+c),c=-65/118+1/43*I,n=10 3770047748405520 m001 (Artin+HeathBrownMoroz)/(Niven-Rabbit) 3770047757676490 r009 Re(z^3+c),c=-51/110+14/57*I,n=54 3770047761954155 m001 ln(Zeta(1,-1)+ZetaR(3)) 3770047762333878 r002 30th iterates of z^2 + 3770047763784242 r005 Im(z^2+c),c=-19/21+5/18*I,n=26 3770047766640844 r009 Im(z^3+c),c=-11/26+6/19*I,n=18 3770047770327727 m001 1/Robbin*CareFree/ln(sin(Pi/5))^2 3770047788165236 r005 Im(z^2+c),c=-17/30+3/44*I,n=48 3770047789012223 r005 Re(z^2+c),c=-5/8+31/96*I,n=11 3770047790090427 a008 Real Root of (7+14*x-14*x^2-5*x^3) 3770047801089732 r005 Im(z^2+c),c=-93/82+3/64*I,n=26 3770047825390310 l006 ln(2863/4174) 3770047845488077 m001 Chi(1)^exp(1)/GAMMA(13/24) 3770047863037851 m001 sin(1/5*Pi)*ln(gamma)+FellerTornier 3770047863113065 s002 sum(A066134[n]/(16^n),n=1..infinity) 3770047870452952 r005 Im(z^2+c),c=3/29+19/47*I,n=21 3770047872857722 s002 sum(A186585[n]/(n^3*pi^n-1),n=1..infinity) 3770047874120502 r005 Im(z^2+c),c=-11/48+34/57*I,n=33 3770047912150859 a001 377/167761*199^(30/31) 3770047920188888 a001 1/76*(1/2*5^(1/2)+1/2)*9349^(1/16) 3770047922229210 a001 1/76*24476^(5/48) 3770047922884743 a001 1/76*20633239^(1/16) 3770047923515974 a001 1/4870004*(1/2*5^(1/2)+1/2)^18*64079^(5/16) 3770047926424623 a001 1/1860176*(1/2*5^(1/2)+1/2)^14*24476^(7/16) 3770047934693592 a001 17393796001/13*987^(9/11) 3770047938811636 a007 Real Root Of -155*x^4+79*x^3+984*x^2+955*x-501 3770047945160006 a007 Real Root Of 291*x^4+813*x^3-764*x^2+941*x-816 3770047959207192 h001 (7/9*exp(1)+2/7)/(4/5*exp(2)+5/11) 3770047963322572 a001 1/710524*(1/2*5^(1/2)+1/2)^20*9349^(1/16) 3770047970026371 s002 sum(A217472[n]/((2*n)!),n=1..infinity) 3770047977001424 p003 LerchPhi(1/10,2,344/207) 3770048000571344 a007 Real Root Of -662*x^4+906*x^3+269*x^2+717*x+294 3770048006543846 r005 Re(z^2+c),c=11/52+12/31*I,n=56 3770048016021563 a007 Real Root Of 839*x^4+90*x^3+128*x^2-793*x+259 3770048024216247 b008 Pi*PolyGamma[0,1/Sqrt[2]] 3770048036579241 b008 33+Log[110] 3770048046889554 m001 (gamma+Ei(1,1))/(OneNinth+Riemann2ndZero) 3770048063660846 h001 (7/8*exp(2)+4/5)/(6/11*exp(1)+4/9) 3770048077747225 r005 Im(z^2+c),c=-27/118+39/64*I,n=57 3770048078938679 r005 Im(z^2+c),c=-1/8+32/59*I,n=32 3770048086416212 a001 2/987*377^(37/42) 3770048103568390 m001 2^(1/2)+BesselJ(0,1)+BesselI(1,2) 3770048103568390 m001 sqrt(2)+BesselJ(0,1)+BesselI(1,2) 3770048112911936 r002 27th iterates of z^2 + 3770048113354716 r002 12th iterates of z^2 + 3770048116951186 m001 (ln(2)+Zeta(1,-1))/(BesselI(1,1)+GaussAGM) 3770048125181118 m002 -Pi^5/4+4*Pi^6+Tanh[Pi] 3770048143749333 r005 Re(z^2+c),c=-39/70+11/41*I,n=11 3770048154060351 p003 LerchPhi(1/6,2,285/169) 3770048158138649 r005 Re(z^2+c),c=-1/48+9/61*I,n=4 3770048163094422 a001 1/271396*(1/2*5^(1/2)+1/2)^16*3571^(3/16) 3770048164425129 m008 (2/5*Pi^2+1/5)/(1/3*Pi^3+2/3) 3770048193450851 m001 (Conway+OrthogonalArrays)/(Ei(1,1)+Zeta(1,2)) 3770048197306408 r005 Re(z^2+c),c=5/62+11/56*I,n=6 3770048198534586 r005 Im(z^2+c),c=11/82+18/47*I,n=46 3770048220163064 r005 Im(z^2+c),c=7/40+13/37*I,n=42 3770048223162744 l006 ln(6023/8781) 3770048251181865 r002 46th iterates of z^2 + 3770048253903891 r002 40th iterates of z^2 + 3770048255400978 r005 Re(z^2+c),c=-4/7+29/80*I,n=19 3770048264964237 r005 Re(z^2+c),c=-31/78+31/63*I,n=27 3770048266669808 a005 (1/cos(11/151*Pi))^486 3770048268866423 m008 (4/5*Pi^6+1/5)/(2*Pi^2+2/3) 3770048286802496 m002 -20-Cosh[Pi]+6*Sinh[Pi] 3770048290734828 a007 Real Root Of 281*x^4-116*x^3-499*x^2-764*x-229 3770048297897293 r002 19th iterates of z^2 + 3770048298116254 r005 Im(z^2+c),c=-19/90+29/50*I,n=61 3770048302828291 a001 1/103664*(1/2*5^(1/2)+1/2)^5*1364^(13/16) 3770048309065585 r005 Re(z^2+c),c=-29/54+10/31*I,n=16 3770048311260920 r002 20th iterates of z^2 + 3770048311506986 m005 (1/2*5^(1/2)+2/9)/(2*3^(1/2)+1/11) 3770048317561014 a003 cos(Pi*1/70)/sin(Pi*7/82) 3770048318237139 m003 -6+3*Cosh[1/2+Sqrt[5]/2]+5*Sech[1/2+Sqrt[5]/2] 3770048322202505 b008 75*Sqrt[ArcCsc[4]] 3770048333912289 r005 Re(z^2+c),c=-47/74+21/55*I,n=50 3770048335335899 r005 Im(z^2+c),c=-23/66+29/51*I,n=49 3770048350485299 r009 Re(z^3+c),c=-55/106+8/47*I,n=15 3770048398620373 r005 Im(z^2+c),c=7/29+5/17*I,n=19 3770048402537559 r005 Im(z^2+c),c=-3/82+31/63*I,n=20 3770048405719052 l006 ln(6507/6757) 3770048418778582 m002 -4*Csch[Pi]+Pi^5*Csch[Pi]+Sinh[Pi] 3770048420209141 m005 (1/3*gamma+1/8)/(1/9*gamma+7/9) 3770048421283247 r005 Im(z^2+c),c=-17/14+9/169*I,n=23 3770048425893010 l006 ln(157/6811) 3770048433700853 r005 Im(z^2+c),c=-6/11+3/61*I,n=11 3770048434887942 r002 12i'th iterates of 2*x/(1-x^2) of 3770048437110039 r004 Im(z^2+c),c=1/9-2/15*I,z(0)=exp(3/8*I*Pi),n=5 3770048469860027 r005 Im(z^2+c),c=11/58+19/56*I,n=49 3770048479033634 a003 sin(Pi*14/109)-sin(Pi*26/93) 3770048479550599 b008 15/4+(-3+Pi)^2 3770048491341194 r002 19th iterates of z^2 + 3770048508964575 a001 5473/9*11^(35/46) 3770048530110758 m005 (1/2*exp(1)-1/3)/(15/88+1/22*5^(1/2)) 3770048533512483 m001 Lehmer*ln(FeigenbaumDelta)^2*GAMMA(1/3) 3770048557351795 r002 17th iterates of z^2 + 3770048559516710 r002 7th iterates of z^2 + 3770048565666408 a007 Real Root Of -999*x^4-326*x^3+623*x^2+300*x-164 3770048567968097 a001 3010349/13*39088169^(9/11) 3770048567984504 a001 228826127/13*196418^(9/11) 3770048570372272 a001 39603/13*7778742049^(9/11) 3770048570968766 r002 14th iterates of z^2 + 3770048583549591 l006 ln(3160/4607) 3770048592774948 a007 Real Root Of -465*x^4+436*x^3-573*x^2+797*x-233 3770048595186141 m005 (-1/12+1/6*5^(1/2))/(7/12*exp(1)-9/11) 3770048598690739 r009 Re(z^3+c),c=-9/56+31/37*I,n=16 3770048599427933 m001 (sin(1/5*Pi)+Ei(1,1))/(GaussAGM+Mills) 3770048603951110 s002 sum(A133417[n]/(exp(2*pi*n)-1),n=1..infinity) 3770048604507064 a007 Real Root Of -814*x^4+125*x^3-880*x^2+391*x+16 3770048606725868 r005 Im(z^2+c),c=19/102+13/38*I,n=46 3770048619389055 a001 4181/199*199^(6/11) 3770048624515076 r005 Re(z^2+c),c=11/74+17/45*I,n=62 3770048632940021 r002 3th iterates of z^2 + 3770048642142717 a001 64079/5*3^(55/56) 3770048642990144 a007 Real Root Of 172*x^4+542*x^3-621*x^2-907*x-297 3770048643085117 r005 Im(z^2+c),c=7/40+13/37*I,n=43 3770048664472684 r002 3th iterates of z^2 + 3770048664977476 r002 32th iterates of z^2 + 3770048695219750 r005 Re(z^2+c),c=-7/24+32/55*I,n=32 3770048696697235 a007 Real Root Of -368*x^4-792*x^3-520*x^2+796*x+339 3770048697395932 r005 Im(z^2+c),c=5/122+21/47*I,n=44 3770048698175470 m005 (1/2*Zeta(3)-2/9)/(3^(1/2)-8/11) 3770048704783093 r009 Re(z^3+c),c=-13/27+4/15*I,n=64 3770048713438042 a007 Real Root Of 238*x^4+875*x^3+35*x^2+231*x-820 3770048714947689 a003 sin(Pi*31/114)/cos(Pi*17/39) 3770048745806121 h001 (2/5*exp(1)+6/11)/(1/2*exp(2)+7/11) 3770048751804922 a001 1/76*843^(5/32) 3770048764872734 m005 (1/2*Pi+5/7)/(3/4*2^(1/2)-5/11) 3770048766521179 m001 (1+3^(1/2))^(1/2)*MadelungNaCl+QuadraticClass 3770048769402751 r009 Re(z^3+c),c=-27/70+9/61*I,n=22 3770048770482803 r005 Im(z^2+c),c=-137/106+1/51*I,n=14 3770048771788093 m001 Magata/ln(2)*ZetaP(4) 3770048780508699 r005 Re(z^2+c),c=-23/48+11/42*I,n=10 3770048782908096 r002 37th iterates of z^2 + 3770048785760273 m005 (1/2*3^(1/2)-5/11)/(3/10*Pi-5/6) 3770048789911826 m005 (7/12+1/4*5^(1/2))/(6/11*5^(1/2)-11/12) 3770048790943438 a001 1/39596*(1/2*5^(1/2)+1/2)^3*521^(15/16) 3770048792572872 a007 Real Root Of 144*x^4-473*x^3-20*x^2-418*x-183 3770048805171924 m005 (2/5*Catalan+1/4)/(3/5*Pi-1/4) 3770048828892813 a001 18/9227465*14930352^(14/19) 3770048828892824 a001 18/7778742049*139583862445^(14/19) 3770048840620318 a007 Real Root Of -303*x^4-362*x^3+347*x^2+995*x+37 3770048844007674 h001 (4/7*exp(2)+1/10)/(1/7*exp(2)+1/11) 3770048855881471 r005 Im(z^2+c),c=-107/118+11/43*I,n=31 3770048863740653 a007 Real Root Of 784*x^4+249*x^3-537*x^2-302*x+161 3770048873665086 a007 Real Root Of 306*x^4+849*x^3-975*x^2+840*x+701 3770048888553150 r005 Re(z^2+c),c=29/106+3/62*I,n=36 3770048911584941 l006 ln(6617/9647) 3770048965154525 m001 1/Magata^2/ArtinRank2/ln(sqrt(Pi))^2 3770048974255029 r005 Im(z^2+c),c=11/58+19/56*I,n=52 3770048977619318 m002 -4-4/Pi^4+Pi*Sech[Pi] 3770048999401876 r005 Im(z^2+c),c=11/58+19/56*I,n=53 3770049002356554 m001 ZetaR(2)^KhinchinLevy*Pi*2^(1/2)/GAMMA(3/4) 3770049005541068 r009 Re(z^3+c),c=-41/94+13/61*I,n=20 3770049014061602 m005 (1/2*exp(1)-7/10)/(49/60+5/12*5^(1/2)) 3770049014902882 m001 PrimesInBinary^2*exp(ErdosBorwein)*GAMMA(5/24) 3770049035585521 r005 Im(z^2+c),c=-47/98+2/31*I,n=24 3770049038611384 a007 Real Root Of -338*x^4+947*x^3+781*x^2+964*x+310 3770049040441713 a001 9/5473*1597^(14/19) 3770049045050118 r002 38i'th iterates of 2*x/(1-x^2) of 3770049053335172 m007 (-3/5*gamma-1/4)/(-1/2*gamma-ln(2)-3/5) 3770049067561085 r005 Re(z^2+c),c=-57/110+3/55*I,n=37 3770049084834450 m001 (Cahen+GlaisherKinkelin)/(ln(3)-ln(5)) 3770049104860665 r005 Re(z^2+c),c=-16/31+23/63*I,n=17 3770049106850053 a007 Real Root Of 661*x^4-233*x^3+790*x^2-936*x-491 3770049115696088 r005 Im(z^2+c),c=15/44+17/49*I,n=58 3770049121673291 r002 6th iterates of z^2 + 3770049121782739 a001 9/31622993*701408733^(6/17) 3770049121782739 a001 9/567451585*2504730781961^(6/17) 3770049121789577 a001 9/1762289*196418^(6/17) 3770049124710904 r005 Im(z^2+c),c=-3/98+29/59*I,n=23 3770049130012640 m007 (-1/4*gamma-1/2)/(-2/3*gamma-4/3*ln(2)-2/5) 3770049140462656 a007 Real Root Of 963*x^4+322*x^3+922*x^2-750*x-416 3770049141043115 r005 Im(z^2+c),c=-25/34+1/67*I,n=53 3770049142299594 m001 Bloch^HardyLittlewoodC4*Weierstrass 3770049176397765 r002 36i'th iterates of 2*x/(1-x^2) of 3770049188502081 r002 19th iterates of z^2 + 3770049194590717 l006 ln(191/8286) 3770049211437897 l006 ln(3457/5040) 3770049222428592 a007 Real Root Of -960*x^4+323*x^3+940*x^2+614*x-363 3770049226570029 l005 sech(409/103) 3770049231022967 a005 (1/cos(13/163*Pi))^187 3770049241279577 m001 1/(2^(1/3))^2/ln(KhintchineHarmonic)/sqrt(3)^2 3770049243306009 a001 199/18*(1/2*5^(1/2)+1/2)^13*18^(13/20) 3770049247045245 m001 (ln(2^(1/2)+1)-BesselI(0,2))/(Pi+LambertW(1)) 3770049248968552 h001 (1/11*exp(1)+3/4)/(1/3*exp(2)+2/11) 3770049253758637 m001 exp(PrimesInBinary)*Artin/GAMMA(3/4)^2 3770049255151420 a005 (1/cos(19/195*Pi))^173 3770049255740477 r005 Re(z^2+c),c=31/106+1/32*I,n=2 3770049261480838 m001 1/KhintchineLevy^2/Si(Pi)^2/ln(sqrt(3)) 3770049264650289 r004 Im(z^2+c),c=-29/24+14/23*I,z(0)=-1,n=4 3770049270849328 m001 (FeigenbaumMu-Tetranacci)/(ln(2)-GAMMA(5/6)) 3770049278433837 m001 Pi+arctan(1/2)*FeigenbaumKappa 3770049298043679 m001 (Zeta(5)-GAMMA(2/3))/(Kac-Porter) 3770049299389563 a007 Real Root Of 196*x^4+594*x^3-444*x^2+303*x-313 3770049304964812 r005 Re(z^2+c),c=-7/15+11/27*I,n=41 3770049311324179 a003 sin(Pi*5/116)*sin(Pi*10/111) 3770049339117323 r005 Im(z^2+c),c=-17/28+4/57*I,n=43 3770049339531118 m001 (FeigenbaumMu+Khinchin)/(3^(1/2)+gamma(1)) 3770049343502566 r005 Re(z^2+c),c=-29/62+21/53*I,n=43 3770049347581738 a007 Real Root Of 797*x^4-741*x^3+300*x^2-837*x-414 3770049351761312 a003 cos(Pi*13/86)*cos(Pi*22/61) 3770049352190170 r002 42th iterates of z^2 + 3770049360843471 m001 GAMMA(1/4)*GAMMA(7/12)-sqrt(Pi) 3770049360843471 m001 Pi*2^(1/2)/GAMMA(3/4)*GAMMA(7/12)-Pi^(1/2) 3770049373958387 r005 Re(z^2+c),c=-53/110+23/64*I,n=31 3770049387847554 r009 Im(z^3+c),c=-35/86+12/37*I,n=16 3770049394422090 m005 (7/6+1/4*5^(1/2))/(1/3*3^(1/2)+4) 3770049396538611 m001 (ln(gamma)-Ei(1,1))/(ReciprocalLucas+ZetaP(4)) 3770049415418191 r005 Im(z^2+c),c=-16/25+1/14*I,n=63 3770049418993286 h002 exp(11^(12/5)+18^(5/12)) 3770049418993286 h007 exp(11^(12/5)+18^(5/12)) 3770049428918480 r005 Re(z^2+c),c=-41/86+13/45*I,n=15 3770049429151394 a007 Real Root Of 318*x^4-750*x^3-153*x^2-57*x+77 3770049430934145 m001 GolombDickman^(Thue/Champernowne) 3770049432172207 m001 Zeta(3)*(GAMMA(2/3)+Grothendieck) 3770049434683153 m001 1/ln(sin(Pi/12))*GAMMA(7/12)/sqrt(3)^2 3770049435406239 m005 (1/3*5^(1/2)-1/12)/(5/7*Pi-4) 3770049438163201 m008 (3/4*Pi^3+1/4)/(2*Pi^3+1/3) 3770049451390567 r005 Im(z^2+c),c=-1/46+23/48*I,n=18 3770049454337379 m005 (1/3*2^(1/2)-1/10)/(7/9*Catalan+3/11) 3770049464784824 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-ln(3)+Bloch 3770049486590713 p004 log(10513/7211) 3770049489554710 a007 Real Root Of 252*x^4+862*x^3-518*x^2-534*x+631 3770049498546384 m008 (1/4*Pi^6-3/5)/(2/3*Pi^6-5) 3770049503243462 a007 Real Root Of -769*x^4-508*x^3-159*x^2+863*x-260 3770049504634628 a001 1/3*9349^(13/49) 3770049510587751 m001 (GaussAGM+ZetaQ(4))/(ln(5)-FeigenbaumC) 3770049517659697 m001 Magata/ln(Kolakoski)^2*BesselJ(0,1)^2 3770049534447763 r005 Im(z^2+c),c=11/58+19/56*I,n=57 3770049542537943 a003 sin(Pi*4/27)-sin(Pi*30/97) 3770049545636055 h001 (8/9*exp(2)+2/3)/(7/12*exp(1)+1/3) 3770049554366866 m001 1/FeigenbaumC*exp(Paris)*Riemann3rdZero^2 3770049562985478 r005 Re(z^2+c),c=-25/52+16/47*I,n=37 3770049571437881 r002 17th iterates of z^2 + 3770049576025146 s002 sum(A104751[n]/((2^n+1)/n),n=1..infinity) 3770049583086833 m005 (1/2*Zeta(3)+5)/(7/12*exp(1)-1/10) 3770049593650968 r005 Re(z^2+c),c=-49/66+2/17*I,n=64 3770049600607674 h001 (3/5*exp(1)+1/3)/(7/12*exp(2)+9/10) 3770049608592353 m005 (2/3*2^(1/2)+1/3)/(exp(1)+2/3) 3770049629776833 r002 9th iterates of z^2 + 3770049652275793 a007 Real Root Of -239*x^4+57*x^3+695*x^2+931*x-448 3770049657503035 m001 (GAMMA(3/4)-BesselK(1,1))/(BesselI(0,2)-Kac) 3770049659865744 a007 Real Root Of 286*x^4-196*x^3-525*x^2-481*x-123 3770049663879677 r002 11i'th iterates of 2*x/(1-x^2) of 3770049667350887 m005 (1/2*Pi+7/9)/(5/6*2^(1/2)-5/9) 3770049672716116 r002 29th iterates of z^2 + 3770049676638654 r002 11th iterates of z^2 + 3770049687260561 r005 Re(z^2+c),c=-13/16+13/72*I,n=38 3770049693793169 r005 Im(z^2+c),c=19/94+18/55*I,n=15 3770049714832391 p001 sum(1/(471*n+266)/(128^n),n=0..infinity) 3770049730970544 l006 ln(225/9761) 3770049739974640 l006 ln(3754/5473) 3770049754985580 m005 (1/2*2^(1/2)-1/2)/(7/11*gamma-11/12) 3770049772393154 a007 Real Root Of -269*x^4-854*x^3+432*x^2-791*x-541 3770049774206765 r005 Re(z^2+c),c=-59/102+28/61*I,n=3 3770049784573977 r005 Im(z^2+c),c=11/58+19/56*I,n=61 3770049785292868 m001 (BesselJ(0,1)-ln(5))/(-HardyLittlewoodC3+Thue) 3770049790595543 a001 1597/521*322^(5/6) 3770049795487294 m001 (2^(1/3)+ln(gamma))/(-Ei(1)+Trott) 3770049804519494 r005 Im(z^2+c),c=11/58+19/56*I,n=56 3770049807452722 m005 (1/2*Catalan-7/9)/(6/7*3^(1/2)-7/11) 3770049825295853 r005 Im(z^2+c),c=29/118+15/52*I,n=43 3770049838389964 m001 Si(Pi)^2/FransenRobinson/exp(sin(Pi/5))^2 3770049839031848 r005 Im(z^2+c),c=11/58+19/56*I,n=62 3770049843287178 a001 121393/843*123^(1/5) 3770049850658254 r005 Im(z^2+c),c=11/82+18/47*I,n=45 3770049859311565 r005 Im(z^2+c),c=-119/106+2/41*I,n=7 3770049869440202 r005 Im(z^2+c),c=11/58+19/56*I,n=58 3770049873895178 a007 Real Root Of 304*x^4-896*x^3-141*x^2-692*x-295 3770049898601731 b008 JacobiDS[1,3]/7 3770049901010473 a007 Real Root Of 214*x^4+622*x^3-584*x^2+220*x-772 3770049902467837 r009 Im(z^3+c),c=-7/122+23/47*I,n=2 3770049903447763 r002 7th iterates of z^2 + 3770049906407875 a001 2/305*46368^(7/43) 3770049912016060 m004 -120*Pi-4*Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770049912235601 m004 -120*Pi-4*Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3770049913177908 r005 Im(z^2+c),c=-17/86+35/61*I,n=53 3770049931009740 r005 Im(z^2+c),c=11/58+19/56*I,n=64 3770049941926642 r005 Im(z^2+c),c=11/58+19/56*I,n=63 3770049943590879 r005 Im(z^2+c),c=11/58+19/56*I,n=60 3770049946635088 a007 Real Root Of 361*x^4+390*x^3+124*x^2-469*x+131 3770049956171260 m001 (-MertensB2+Salem)/(Catalan-cos(1)) 3770049995182726 r002 12th iterates of z^2 + 3770049998819119 a007 Real Root Of 474*x^4+781*x^3+682*x^2-107*x-105 3770050000901677 a007 Real Root Of 144*x^4-42*x^3-104*x^2-936*x+367 3770050005201843 m001 1/KhintchineLevy^2/exp(Bloch)/Trott^2 3770050006740411 p004 log(32233/743) 3770050008389611 a007 Real Root Of 718*x^4+781*x^3-810*x^2-799*x+360 3770050013540068 m005 (1/3*3^(1/2)-1/8)/(5*5^(1/2)+9/11) 3770050031995926 m001 (arctan(1/3)-Pi^(1/2))/(Artin+Trott) 3770050041828380 r005 Re(z^2+c),c=-47/102+11/26*I,n=46 3770050050254942 m001 TreeGrowth2nd/(BesselI(1,1)-3^(1/2)) 3770050066854163 a001 1322157322203/377*6557470319842^(8/17) 3770050068394517 a003 cos(Pi*17/115)*cos(Pi*30/83) 3770050070452132 m005 (1/3*Zeta(3)+3/7)/(10/11*3^(1/2)+5/8) 3770050079020023 r002 15th iterates of z^2 + 3770050090555261 r009 Im(z^3+c),c=-21/40+9/40*I,n=56 3770050092719605 r005 Im(z^2+c),c=11/58+19/56*I,n=59 3770050099168495 a005 (1/sin(80/179*Pi))^1579 3770050105195565 m008 (4/5*Pi^6-3/5)/(2/3*Pi^5-1/6) 3770050109370012 s001 sum(exp(-2*Pi)^n*A065805[n],n=1..infinity) 3770050110092510 m001 1/exp(Zeta(5))*(2^(1/3))^2*sin(Pi/12)^2 3770050114804302 r009 Re(z^3+c),c=-6/11+32/49*I,n=8 3770050121937470 m001 exp(1/2)/(GAMMA(1/4)+RenyiParking) 3770050126441987 a007 Real Root Of -185*x^4-626*x^3+466*x^2+973*x+874 3770050135212924 r009 Im(z^3+c),c=-21/40+19/52*I,n=15 3770050136182655 m001 ZetaP(4)/(Conway^(2/3*Pi*3^(1/2)/GAMMA(2/3))) 3770050138269209 a007 Real Root Of 286*x^4+947*x^3-729*x^2-951*x-256 3770050139894719 m009 (8/3*Catalan+1/3*Pi^2+6)/(3*Psi(1,1/3)+5/6) 3770050175328998 r005 Re(z^2+c),c=-71/70+10/59*I,n=34 3770050177734961 b008 3*Coth[E^(1/12)] 3770050191011774 l006 ln(4051/5906) 3770050195480660 m001 ln(Kolakoski)^2*GaussKuzminWirsing*GAMMA(1/24) 3770050207314553 r005 Re(z^2+c),c=13/40+13/28*I,n=5 3770050229950906 r005 Re(z^2+c),c=27/110+5/9*I,n=30 3770050242719658 r005 Im(z^2+c),c=11/58+19/56*I,n=54 3770050249987406 a001 555/2+89/2*5^(1/2) 3770050254962448 m005 (47/44+1/4*5^(1/2))/(7/11*Zeta(3)-1/3) 3770050258206069 m008 (1/4*Pi^5-4)/(1/5*Pi^4-1/4) 3770050262688908 r005 Re(z^2+c),c=-37/82+34/63*I,n=16 3770050297304115 r005 Im(z^2+c),c=-1/26+19/31*I,n=41 3770050302846284 r005 Re(z^2+c),c=-49/38+2/33*I,n=48 3770050303924451 a007 Real Root Of -165*x^4-758*x^3-698*x^2-659*x+152 3770050304682022 m001 (sin(1/5*Pi)+exp(-1/2*Pi))/(Cahen+Porter) 3770050310122041 m001 (Pi+Gompertz)/(OrthogonalArrays-ThueMorse) 3770050326386928 a001 75025/76*11^(19/34) 3770050337439568 m001 (3^(1/2)-5^(1/2))/(Zeta(1/2)+Champernowne) 3770050341841047 m001 (Bloch-FeigenbaumB)/(cos(1/12*Pi)+gamma(2)) 3770050341995513 r009 Re(z^3+c),c=-31/90+5/59*I,n=5 3770050355603263 m001 ErdosBorwein/(StronglyCareFree-Zeta(3)) 3770050360560543 m001 (Shi(1)-gamma)/(ln(gamma)+MasserGramainDelta) 3770050366900060 a001 3/514229*53316291173^(13/24) 3770050384480166 a007 Real Root Of -286*x^4-236*x^3-703*x^2+785*x+389 3770050386408508 a007 Real Root Of 128*x^4+268*x^3-615*x^2+777*x+173 3770050396274706 m002 -4+4/Pi^3+Tanh[Pi]/Pi^2 3770050396337273 a007 Real Root Of -114*x^4-337*x^3+125*x^2-673*x+658 3770050409916719 r009 Re(z^3+c),c=-11/20+5/11*I,n=9 3770050411770131 m001 (GAMMA(13/24)-Backhouse)/(FeigenbaumMu+Mills) 3770050418718613 r005 Re(z^2+c),c=-5/8+88/247*I,n=62 3770050422595315 r009 Im(z^3+c),c=-17/66+5/13*I,n=4 3770050424797387 a007 Real Root Of -142*x^4+404*x^3-727*x^2-485*x-55 3770050434525539 a007 Real Root Of 135*x^4+346*x^3-565*x^2+237*x+192 3770050450605660 r009 Re(z^3+c),c=-49/94+9/32*I,n=47 3770050466863324 r005 Im(z^2+c),c=-11/74+25/41*I,n=44 3770050473551815 a001 2/75025*46368^(1/31) 3770050476958703 r005 Im(z^2+c),c=11/58+19/56*I,n=55 3770050489802728 r005 Im(z^2+c),c=-9/86+17/32*I,n=34 3770050490018565 a007 Real Root Of 667*x^4+125*x^3-581*x^2-296*x+174 3770050491080152 a001 4/377*987^(29/56) 3770050504729917 r009 Re(z^3+c),c=-1/64+41/50*I,n=26 3770050505958268 m006 (2/5*exp(2*Pi)+1/5)/(3/5*ln(Pi)+5) 3770050506335845 r005 Im(z^2+c),c=-10/21+27/50*I,n=34 3770050511963203 r005 Im(z^2+c),c=11/58+19/56*I,n=45 3770050513390504 a007 Real Root Of -847*x^4+311*x^3-324*x^2+996*x-329 3770050515894616 r005 Re(z^2+c),c=-13/18+6/59*I,n=25 3770050525483710 r005 Im(z^2+c),c=2/19+21/52*I,n=39 3770050539479618 m001 (Otter-Riemann3rdZero)/(Robbin-ZetaP(4)) 3770050541178310 m005 (1/3*exp(1)+2/9)/(5/12*exp(1)-5/6) 3770050577889903 a001 39603/610*21^(26/45) 3770050580430663 l006 ln(4348/6339) 3770050590187689 m001 Landau^(Catalan*KhinchinHarmonic) 3770050620432447 h001 (3/5*exp(1)+7/8)/(7/9*exp(2)+9/10) 3770050624024132 r002 12th iterates of z^2 + 3770050626386029 r005 Re(z^2+c),c=-13/23+29/63*I,n=15 3770050637555536 m005 (1/2*3^(1/2)-3/8)/(6/7*gamma-5/8) 3770050649690983 m005 (4/5*2^(1/2)-1/6)/(4*gamma+1/4) 3770050649770255 m001 Bloch^KhinchinLevy+ReciprocalFibonacci 3770050654801725 a001 98209*11^(23/41) 3770050659815026 r002 25th iterates of z^2 + 3770050683990215 r009 Re(z^3+c),c=-35/74+14/59*I,n=13 3770050712942267 m001 Otter+Sarnak^HardyLittlewoodC3 3770050719551162 r005 Re(z^2+c),c=17/62+2/41*I,n=61 3770050739075555 m001 (Magata+Salem)/(GAMMA(3/4)+gamma(2)) 3770050742039046 m002 2+Pi/2+Tanh[Pi]/5 3770050756539200 a007 Real Root Of 850*x^4-722*x^3+111*x^2-306*x-187 3770050767780301 r009 Im(z^3+c),c=-17/64+7/18*I,n=10 3770050775790873 r005 Re(z^2+c),c=-21/86+3/5*I,n=7 3770050788089259 m005 (1/2*Pi+2/7)/(6*Catalan-4/7) 3770050799856046 r002 19th iterates of z^2 + 3770050809044501 r005 Re(z^2+c),c=-23/50+13/38*I,n=9 3770050819973668 m001 Khinchin^GaussAGM(1,1/sqrt(2))-GAMMA(11/24) 3770050833507924 r005 Re(z^2+c),c=-27/52+1/62*I,n=26 3770050844575334 r009 Im(z^3+c),c=-1/11+29/62*I,n=2 3770050853783219 r005 Re(z^2+c),c=-9/20+13/57*I,n=6 3770050862197895 m001 arctan(1/2)*QuadraticClass/Trott 3770050866296361 r005 Im(z^2+c),c=31/98+6/29*I,n=47 3770050867742760 m005 (2/3+1/4*5^(1/2))/(7/8*Pi-6) 3770050875136530 s002 sum(A201177[n]/(n^3*10^n+1),n=1..infinity) 3770050879090898 a008 Real Root of x^4-x^3-38*x^2-50*x+96 3770050893089897 r009 Im(z^3+c),c=-31/66+17/61*I,n=19 3770050901652001 r009 Im(z^3+c),c=-27/56+13/49*I,n=18 3770050904766403 r009 Im(z^3+c),c=-11/64+31/37*I,n=24 3770050904936979 r005 Re(z^2+c),c=-73/122+14/43*I,n=25 3770050911494678 m004 -120*Pi-(5*Pi*Tanh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3770050911605240 m004 -120*Pi-(5*Pi*Sech[Sqrt[5]*Pi])/2 3770050911715802 m004 -120*Pi-(5*Pi)/E^(Sqrt[5]*Pi) 3770050911826363 m004 -120*Pi-(5*Pi*Csch[Sqrt[5]*Pi])/2 3770050911936925 m004 -120*Pi-(5*Pi*Coth[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3770050914116338 m001 ln(2)/ln(10)*(ln(Pi)+OneNinth) 3770050920050870 l006 ln(4645/6772) 3770050925657186 r005 Re(z^2+c),c=-31/66+23/60*I,n=40 3770050929801427 r005 Im(z^2+c),c=19/58+23/62*I,n=29 3770050960079204 m005 (1/3*exp(1)+2/3)/(1/7*Zeta(3)+4) 3770050963906778 r002 12th iterates of z^2 + 3770050976783438 r005 Im(z^2+c),c=11/58+19/56*I,n=47 3770050984771761 m005 (1/3*2^(1/2)-2/5)/(3/4*2^(1/2)+5/6) 3770050991538993 h001 (-8*exp(4)-5)/(-exp(1)-9) 3770050993228376 m005 (4/5*exp(1)+2)/(4*exp(1)+1/5) 3770050995102057 r002 3th iterates of z^2 + 3770051000183805 m001 1/3*Psi(2,1/3)*3^(2/3)*Paris 3770051005561295 m001 (3^(1/3)-Niven)/ArtinRank2 3770051011870978 m001 (Cahen+KhinchinLevy)/(TwinPrimes-ZetaP(3)) 3770051024397125 r005 Im(z^2+c),c=-67/114+2/29*I,n=44 3770051026997107 s002 sum(A006161[n]/(n^3*2^n+1),n=1..infinity) 3770051037805124 r002 6th iterates of z^2 + 3770051040968315 a007 Real Root Of -571*x^4+858*x^3-995*x^2-29*x+188 3770051044156215 a001 18/1597*987^(28/55) 3770051045186703 m001 Mills^FeigenbaumMu+GAMMA(19/24) 3770051107536067 a007 Real Root Of -205*x^4-531*x^3+724*x^2-580*x+483 3770051107679561 r009 Im(z^3+c),c=-25/106+50/51*I,n=6 3770051112131091 m001 (Trott+ZetaP(4))/(ln(gamma)-Pi^(1/2)) 3770051114615430 r005 Im(z^2+c),c=11/58+19/56*I,n=51 3770051120281920 m004 -5+Tan[Sqrt[5]*Pi]+(5*Pi*Tanh[Sqrt[5]*Pi])/2 3770051140907652 a001 1/329*514229^(13/24) 3770051147569018 p004 log(28387/19471) 3770051163434415 m001 LandauRamanujan-exp(sqrt(2))-BesselK(0,1) 3770051166785708 r005 Im(z^2+c),c=-11/18+7/100*I,n=62 3770051167241088 r005 Im(z^2+c),c=-27/52+27/46*I,n=54 3770051172263032 r005 Re(z^2+c),c=-83/82+3/17*I,n=64 3770051173321296 r005 Im(z^2+c),c=-3/110+31/64*I,n=21 3770051175845295 p001 sum((-1)^n/(287*n+265)/(512^n),n=0..infinity) 3770051177975836 r005 Im(z^2+c),c=-55/86+17/57*I,n=5 3770051184435690 m001 Ei(1,1)^(sin(1)*LandauRamanujan) 3770051191994657 m001 PlouffeB^(2^(1/2))+Trott2nd 3770051193900223 s002 sum(A191479[n]/(exp(2*pi*n)-1),n=1..infinity) 3770051196050552 a008 Real Root of x^4-x^3-3*x^2+48*x-32 3770051206086177 r004 Im(z^2+c),c=-5/26+11/19*I,z(0)=I,n=36 3770051218850670 l006 ln(4942/7205) 3770051228813303 r005 Im(z^2+c),c=-13/66+22/43*I,n=10 3770051249229266 a007 Real Root Of 334*x^4-609*x^3+537*x^2-22*x-124 3770051261094102 r005 Re(z^2+c),c=-23/18+7/165*I,n=26 3770051266697068 r005 Re(z^2+c),c=-11/54+38/61*I,n=45 3770051279315245 r005 Im(z^2+c),c=-5/114+21/41*I,n=19 3770051286600792 r005 Im(z^2+c),c=29/82+13/60*I,n=43 3770051290726078 r009 Re(z^3+c),c=-5/74+35/54*I,n=46 3770051301740345 a007 Real Root Of 879*x^4-969*x^3+58*x^2-849*x+346 3770051306256184 r005 Im(z^2+c),c=-3/11+25/41*I,n=17 3770051351991706 m001 (cos(1)*GAMMA(11/24)-sqrt(Pi))/GAMMA(11/24) 3770051355175692 p004 log(14843/10181) 3770051356008115 r002 15th iterates of z^2 + 3770051358600627 r005 Re(z^2+c),c=11/74+17/45*I,n=61 3770051363990409 r005 Re(z^2+c),c=-17/30+5/24*I,n=7 3770051364878612 r009 Re(z^3+c),c=-49/118+5/24*I,n=6 3770051366139333 r002 11th iterates of z^2 + 3770051377088101 m001 (Artin+Riemann2ndZero)/(gamma+gamma(2)) 3770051382920653 a007 Real Root Of 150*x^4+133*x^3+540*x^2-733*x-349 3770051397084328 a007 Real Root Of -625*x^4+789*x^3+406*x^2-54*x-67 3770051398021630 r009 Im(z^3+c),c=-49/110+3/10*I,n=49 3770051398201998 r002 12th iterates of z^2 + 3770051414975383 m001 ReciprocalFibonacci/(QuadraticClass-gamma(2)) 3770051420313413 r005 Re(z^2+c),c=-16/31+6/61*I,n=27 3770051434656309 m001 ln(Conway)*Champernowne^2*cos(Pi/12)^2 3770051448654095 m001 BesselI(0,2)+OrthogonalArrays^Salem 3770051450947992 a007 Real Root Of -270*x^4-919*x^3+444*x^2+507*x+901 3770051460512972 m002 -3-E^Pi-Cosh[Pi]+Tanh[Pi]/Pi^3 3770051473633689 m001 (Pi-KhinchinHarmonic)/(Otter+RenyiParking) 3770051477693590 r005 Im(z^2+c),c=-1/38+20/41*I,n=42 3770051479587949 h001 (2/7*exp(1)+7/9)/(1/2*exp(2)+3/7) 3770051483772418 l006 ln(5239/7638) 3770051499055763 m001 (-gamma(1)+Magata)/(3^(1/2)-cos(1/5*Pi)) 3770051500030573 a007 Real Root Of -884*x^4+535*x^3+122*x^2+50*x-47 3770051513040716 h001 (2/11*exp(1)+10/11)/(3/7*exp(2)+5/9) 3770051526099073 r002 13th iterates of z^2 + 3770051529417687 m001 (Kolakoski-Otter)/(Zeta(3)-ln(Pi)) 3770051534429591 m001 1/Niven^2/ln(GolombDickman)/BesselJ(1,1)^2 3770051538361121 a003 sin(Pi*20/113)-sin(Pi*9/25) 3770051546860653 r005 Im(z^2+c),c=-5/44+31/58*I,n=32 3770051574319830 s002 sum(A205528[n]/((exp(n)+1)/n),n=1..infinity) 3770051599990475 r005 Im(z^2+c),c=11/48+7/23*I,n=36 3770051613848329 a001 7/8*1597^(25/49) 3770051618781052 b008 Pi+Sin[E/4] 3770051639094925 a007 Real Root Of 4*x^4+149*x^3-81*x^2-500*x-286 3770051657625733 a003 cos(Pi*14/79)*cos(Pi*35/99) 3770051665290983 m001 1-ZetaP(2)^Gompertz 3770051689309174 a001 47/121393*225851433717^(19/24) 3770051693380883 m001 (ln(Pi)+Porter)/(2^(1/3)-LambertW(1)) 3770051697280526 r005 Im(z^2+c),c=-3/28+32/61*I,n=20 3770051704186175 r005 Re(z^2+c),c=-47/46+10/41*I,n=62 3770051720268668 l006 ln(5536/8071) 3770051744183409 r005 Im(z^2+c),c=-13/44+19/32*I,n=59 3770051744555679 r009 Im(z^3+c),c=-31/70+16/53*I,n=31 3770051748867083 m001 exp(cos(Pi/5))*Niven^2/sqrt(3) 3770051751074108 a001 987/521*322^(11/12) 3770051765749575 r002 29th iterates of z^2 + 3770051772350781 a007 Real Root Of -296*x^4-956*x^3+783*x^2+531*x-557 3770051775480282 p004 log(32717/22441) 3770051780518212 r005 Im(z^2+c),c=19/48+13/64*I,n=62 3770051787301734 a007 Real Root Of -243*x^4-840*x^3+533*x^2+719*x-786 3770051788542610 m001 (gamma+cos(1))/(-GAMMA(5/6)+FeigenbaumB) 3770051794916823 a003 cos(Pi*31/108)*cos(Pi*33/113) 3770051798845536 a007 Real Root Of -482*x^4-674*x^3+34*x^2+318*x-12 3770051801142836 a008 Real Root of (-3-6*x+3*x^2-6*x^3-2*x^4-4*x^5) 3770051808452111 a007 Real Root Of -417*x^4+874*x^3+774*x^2+601*x-375 3770051822597629 r009 Re(z^3+c),c=-1/22+33/47*I,n=21 3770051828982431 r009 Re(z^3+c),c=-12/25+14/61*I,n=13 3770051839405238 r005 Im(z^2+c),c=35/106+3/34*I,n=33 3770051840781755 r005 Im(z^2+c),c=21/74+13/32*I,n=22 3770051846307513 r005 Re(z^2+c),c=-25/52+16/47*I,n=39 3770051850577048 h001 (1/2*exp(1)+1/7)/(4/9*exp(2)+7/10) 3770051853104897 m002 -1+Pi^5/4-4*Pi^6 3770051859172268 r009 Im(z^3+c),c=-49/94+10/41*I,n=64 3770051882574751 m005 (7/10+3/10*5^(1/2))/(5*gamma+3/4) 3770051890858336 r005 Re(z^2+c),c=-11/32+15/26*I,n=58 3770051898365061 r005 Im(z^2+c),c=11/58+19/56*I,n=50 3770051912420007 m001 Pi^(1/2)*Riemann2ndZero+TreeGrowth2nd 3770051912821640 m001 1/GAMMA(11/24)^2*FeigenbaumC*ln(arctan(1/2)) 3770051914378964 a007 Real Root Of 891*x^4+17*x^3-803*x^2-575*x+312 3770051922968014 r002 29th iterates of z^2 + 3770051923877394 r004 Im(z^2+c),c=3/8+3/8*I,z(0)=exp(5/8*I*Pi),n=6 3770051932681462 l006 ln(5833/8504) 3770051936518331 a007 Real Root Of -170*x^4+362*x^3+664*x^2+641*x-352 3770051960319388 m001 Zeta(1,2)*ThueMorse-gamma(2) 3770051965333134 r005 Re(z^2+c),c=-9/16+35/117*I,n=14 3770051976907031 r005 Re(z^2+c),c=-9/19+15/41*I,n=35 3770051989216221 a001 (5+5^(1/2))^(670/31) 3770051994062676 m001 (gamma(1)+GAMMA(7/12))/(Khinchin+Salem) 3770051999207897 m001 (Si(Pi)-ln(gamma))/(gamma(1)+Rabbit) 3770052015879174 a003 sin(Pi*2/85)+sin(Pi*5/51) 3770052021042263 r009 Re(z^3+c),c=-49/94+11/38*I,n=54 3770052024136557 r005 Im(z^2+c),c=23/110+10/31*I,n=39 3770052048316564 m001 ZetaP(4)^TwinPrimes*gamma(3) 3770052058414678 a007 Real Root Of -654*x^4+432*x^3-559*x^2+592*x+339 3770052088928021 m001 arctan(1/2)^2/ln(Khintchine)/gamma 3770052099214297 m001 (2^(1/2)+Zeta(5))/(Gompertz+ZetaQ(2)) 3770052099862420 r009 Im(z^3+c),c=-1/22+18/43*I,n=3 3770052121170950 a007 Real Root Of 63*x^4+294*x^3+63*x^2-481*x+318 3770052124511348 l006 ln(6130/8937) 3770052145572224 a007 Real Root Of 335*x^4-123*x^3-13*x^2-805*x-315 3770052156790168 a001 18/75025*121393^(4/17) 3770052156933313 a001 18/514229*433494437^(4/17) 3770052156936104 a001 9/1762289*1548008755920^(4/17) 3770052158171465 a007 Real Root Of 361*x^4-48*x^3-511*x^2-544*x+273 3770052165078313 m001 LandauRamanujan^GaussAGM*Bloch 3770052168561517 r005 Re(z^2+c),c=-103/90+11/42*I,n=4 3770052169927352 r005 Im(z^2+c),c=-77/114+11/35*I,n=12 3770052173780430 m008 (4/5*Pi^4-1/4)/(3/5*Pi^3+2) 3770052184167593 m001 1/FeigenbaumC*Si(Pi)^2/ln(OneNinth)^2 3770052188240864 r009 Re(z^3+c),c=-23/62+8/63*I,n=8 3770052196597578 a007 Real Root Of 536*x^4+635*x^3+819*x^2-644*x-336 3770052202479876 r009 Im(z^3+c),c=-13/38+23/64*I,n=21 3770052213856289 a007 Real Root Of 493*x^4-890*x^3-197*x^2-611*x-260 3770052225836938 r009 Im(z^3+c),c=-25/66+15/44*I,n=16 3770052257655157 m001 LambertW(1)/exp(Champernowne)^2/sinh(1) 3770052259649920 r005 Im(z^2+c),c=-7/102+27/59*I,n=5 3770052260799337 a003 cos(Pi*37/97)/sin(Pi*42/101) 3770052263887629 r002 20th iterates of z^2 + 3770052283386094 a007 Real Root Of -10*x^4+756*x^3+62*x^2+501*x-238 3770052284158514 r005 Im(z^2+c),c=6/19+5/24*I,n=63 3770052285126130 r005 Im(z^2+c),c=-5/58+28/45*I,n=49 3770052286057616 m001 (GAMMA(17/24)*MertensB1+ZetaR(2))/GAMMA(17/24) 3770052288975106 m005 (1/2*Pi+4/5)/(6/7*2^(1/2)-7/12) 3770052298611816 l006 ln(6427/9370) 3770052327557337 a007 Real Root Of 120*x^4+215*x^3-810*x^2+280*x-153 3770052329194753 m001 (BesselJ(0,1)-gamma)/(-ln(2)+DuboisRaymond) 3770052334696467 r002 50th iterates of z^2 + 3770052339382894 h001 (-exp(-1)+4)/(-7*exp(2/3)+4) 3770052344744947 r002 32th iterates of z^2 + 3770052347983629 m001 Conway*RenyiParking/Sierpinski 3770052369621214 m004 3/4+E^(Sqrt[5]*Pi)/3+ProductLog[Sqrt[5]*Pi] 3770052379846474 m001 GAMMA(2/3)/(GAMMA(13/24)^Sierpinski) 3770052381932626 l006 ln(3722/3865) 3770052393002437 m001 (cos(1/5*Pi)-Ei(1))/(2*Pi/GAMMA(5/6)-Khinchin) 3770052396452145 r009 Re(z^3+c),c=-47/102+13/54*I,n=20 3770052402873885 m001 (BesselK(0,1)-Zeta(5))/(Zeta(1,-1)+gamma(3)) 3770052438128288 r005 Im(z^2+c),c=-7/10+2/31*I,n=52 3770052440350004 m008 (3/4*Pi^5+4)/(2/3*Pi^4-3) 3770052443003036 r009 Im(z^3+c),c=-1/56+7/16*I,n=4 3770052443132568 a001 987/439204*199^(30/31) 3770052452160244 m001 ln(GAMMA(5/12))^2/KhintchineLevy/GAMMA(5/6)^2 3770052453031719 a007 Real Root Of 263*x^4+909*x^3-414*x^2-525*x-517 3770052457332199 l006 ln(6724/9803) 3770052462050218 m001 GAMMA(2/3)*(GAMMA(1/4)-sin(1)) 3770052462050218 m001 GAMMA(2/3)*(Pi*2^(1/2)/GAMMA(3/4)-sin(1)) 3770052482688395 a001 2576*47^(23/33) 3770052487590329 a007 Real Root Of 682*x^4+367*x^3+77*x^2-533*x-206 3770052494144264 s002 sum(A141126[n]/(2^n-1),n=1..infinity) 3770052512079889 m005 (1/2*3^(1/2)+1)/(7/10*gamma+1/11) 3770052528062535 m001 1/GAMMA(5/12)^2/ln(KhintchineLevy)*cos(1)^2 3770052534878427 m001 (Niven+Trott)/(ln(Pi)+Magata) 3770052552146467 a007 Real Root Of -17*x^4+179*x^3-627*x^2+890*x-601 3770052572337913 a005 (1/sin(58/227*Pi))^18 3770052574912842 r009 Re(z^3+c),c=-23/50+7/29*I,n=32 3770052594535940 r005 Re(z^2+c),c=-47/106+30/61*I,n=61 3770052595750907 r005 Im(z^2+c),c=9/70+12/31*I,n=40 3770052597517518 r009 Im(z^3+c),c=-35/74+3/11*I,n=19 3770052610503563 m001 (-FeigenbaumD+Kac)/(Psi(2,1/3)-ln(gamma)) 3770052615197078 m001 (Bloch-ThueMorse)/(sin(1/12*Pi)+ln(2+3^(1/2))) 3770052618946364 m005 (1/2*Catalan+1/7)/(3/4*5^(1/2)-1/12) 3770052642278291 r005 Im(z^2+c),c=35/106+11/58*I,n=51 3770052646421540 r005 Im(z^2+c),c=-5/66+16/31*I,n=40 3770052652911986 a007 Real Root Of 271*x^4+997*x^3-340*x^2-901*x+113 3770052660944204 m001 (Si(Pi)+ln(3))/(Psi(2,1/3)-exp(Pi)) 3770052664855334 r009 Im(z^3+c),c=-23/64+20/57*I,n=15 3770052665748160 a003 cos(Pi*14/75)-sin(Pi*38/113) 3770052669071757 s002 sum(A210838[n]/((exp(n)+1)/n),n=1..infinity) 3770052682326635 m001 1/exp(GAMMA(1/4))/ErdosBorwein/GAMMA(5/24) 3770052683649566 m005 (1/3*Catalan+1/8)/(1/10*2^(1/2)+1) 3770052684786082 r009 Re(z^3+c),c=-3/98+4/5*I,n=3 3770052691125868 m005 (1/2*Zeta(3)+2)/(2/11*3^(1/2)+3/8) 3770052722337361 r002 12th iterates of z^2 + 3770052728961403 r005 Im(z^2+c),c=-7/24+1/18*I,n=13 3770052733867390 r005 Re(z^2+c),c=-59/114+3/43*I,n=36 3770052736826827 r009 Im(z^3+c),c=-29/62+17/60*I,n=44 3770052744157758 l006 ln(34/1475) 3770052757659438 m004 -120*Pi-(25*Sech[Sqrt[5]*Pi])/Pi 3770052757771461 m004 -50/(E^(Sqrt[5]*Pi)*Pi)-120*Pi 3770052757883483 m004 -120*Pi-(25*Csch[Sqrt[5]*Pi])/Pi 3770052777355715 a007 Real Root Of -144*x^4+257*x^3+669*x^2+337*x-233 3770052787835574 m001 cos(Pi/12)/ln(arctan(1/2))*sqrt(3)^2 3770052791881478 r009 Im(z^3+c),c=-7/25+37/49*I,n=5 3770052793444969 m001 (arctan(1/3)+Bloch)/(Cahen+MinimumGamma) 3770052812374139 r005 Im(z^2+c),c=25/102+7/25*I,n=9 3770052814200047 r005 Re(z^2+c),c=-13/27+19/56*I,n=44 3770052824542155 a007 Real Root Of 788*x^4+5*x^3+745*x^2-728*x-396 3770052868929311 r005 Im(z^2+c),c=-35/66+25/42*I,n=29 3770052874523657 m001 (Grothendieck-Riemann3rdZero)/(Sarnak-Totient) 3770052881940993 m001 ln(FeigenbaumD)^2/GaussKuzminWirsing*sinh(1) 3770052884657610 r009 Im(z^3+c),c=-29/64+5/17*I,n=11 3770052888037892 r005 Re(z^2+c),c=5/14+8/43*I,n=22 3770052898440137 a003 -1/2-1/2*3^(1/2)-2*cos(5/27*Pi)-cos(5/21*Pi) 3770052904465084 a001 29/8*2^(3/53) 3770052917219560 p004 log(22637/15527) 3770052923689685 m001 Zeta(1,-1)^Magata/gamma 3770052929273956 r002 3th iterates of z^2 + 3770052933557001 a007 Real Root Of -671*x^4-70*x^3-711*x^2+942*x+466 3770052940883744 m004 -3-125/Pi+25*Pi+Log[Sqrt[5]*Pi] 3770052944167812 r009 Re(z^3+c),c=-59/122+7/26*I,n=54 3770052948925220 r005 Re(z^2+c),c=-29/56+29/60*I,n=30 3770052952271378 r005 Re(z^2+c),c=-7/10+9/224*I,n=12 3770052957676790 r009 Re(z^3+c),c=-11/25+8/37*I,n=18 3770052973642029 m001 (BesselJ(0,1)-BesselK(0,1))/(Thue+ZetaQ(2)) 3770052979760681 a008 Real Root of x^2-x-142510 3770052979970759 a007 Real Root Of 221*x^4+850*x^3+190*x^2+577*x+376 3770052988801728 m001 (-KhinchinLevy+OneNinth)/(5^(1/2)+Kac) 3770053024809631 r005 Re(z^2+c),c=-12/25+11/32*I,n=39 3770053027831714 a007 Real Root Of 284*x^4+913*x^3-605*x^2+126*x+624 3770053039052874 h001 (3/11*exp(2)+5/11)/(1/12*exp(1)+3/7) 3770053043252794 r005 Im(z^2+c),c=27/94+11/48*I,n=8 3770053045535712 r002 42th iterates of z^2 + 3770053053466330 m002 5*Pi^2-Log[Pi]*Sech[Pi]-Sinh[Pi] 3770053055226459 r005 Re(z^2+c),c=-55/106+1/43*I,n=27 3770053055258345 a007 Real Root Of 429*x^4+669*x^3+843*x^2-680*x-349 3770053058458999 r005 Re(z^2+c),c=-35/46+3/58*I,n=36 3770053063798004 a007 Real Root Of -180*x^4-534*x^3+558*x^2-118*x-627 3770053098448443 m001 Pi+(exp(Pi)-2^(1/2))*BesselI(1,2) 3770053104193890 a001 2584/1149851*199^(30/31) 3770053114829519 a005 (1/sin(67/141*Pi))^1949 3770053117844252 p003 LerchPhi(1/16,5,355/184) 3770053119785255 a007 Real Root Of 420*x^4-449*x^3-989*x^2-676*x+411 3770053122445366 r002 37th iterates of z^2 + 3770053133922009 h001 (-6*exp(4)-9)/(-11*exp(2)-8) 3770053156520385 r005 Im(z^2+c),c=-21/86+13/24*I,n=18 3770053160993536 m002 Log[Pi]/Pi+4*Pi^2*Sech[Pi] 3770053182585815 r009 Im(z^3+c),c=-2/9+21/52*I,n=6 3770053185660621 r005 Im(z^2+c),c=-65/64+18/55*I,n=18 3770053193618664 m001 AlladiGrinstead*HardyLittlewoodC4/TwinPrimes 3770053200641437 a001 6765/3010349*199^(30/31) 3770053212617750 r009 Im(z^3+c),c=-61/114+16/35*I,n=45 3770053223409615 a001 10946/4870847*199^(30/31) 3770053237798018 a008 Real Root of x^5-2*x^4-13*x^3+18*x^2+34*x-45 3770053242088786 m001 1/ln(Robbin)/Paris^2/TwinPrimes 3770053243427829 m001 ln(GAMMA(1/24))/Lehmer*sin(1)^2 3770053252084850 r009 Re(z^3+c),c=-5/74+35/54*I,n=48 3770053256722306 r005 Im(z^2+c),c=-21/62+32/55*I,n=39 3770053260249299 a001 4181/1860498*199^(30/31) 3770053262732240 m001 FibonacciFactorial+Otter-ThueMorse 3770053266869221 a001 18/75025*165580141^(7/18) 3770053267003337 a001 6/726103*956722026041^(7/18) 3770053277305667 m001 arctan(1/3)+cos(1/12*Pi)*FeigenbaumMu 3770053283897364 r005 Im(z^2+c),c=-27/23+3/61*I,n=55 3770053289587939 a007 Real Root Of 206*x^4+519*x^3-972*x^2-147*x-544 3770053293404689 r005 Im(z^2+c),c=-3/38+15/29*I,n=36 3770053303534041 m005 (1/2*Catalan+7/11)/(5^(1/2)+2/3) 3770053313742612 m005 (1/2*5^(1/2)-1/9)/(7/8*5^(1/2)+5/7) 3770053327984235 r005 Im(z^2+c),c=-67/86+25/64*I,n=4 3770053332058278 m001 MertensB1*(BesselI(0,2)-Chi(1)) 3770053345661218 r002 31th iterates of z^2 + 3770053352173230 r005 Im(z^2+c),c=-115/98+3/61*I,n=42 3770053353783973 m001 exp(1)/(Sarnak-exp(1/exp(1))) 3770053354479179 r005 Re(z^2+c),c=-17/26+1/87*I,n=10 3770053357949892 a007 Real Root Of 121*x^4-485*x^3+177*x^2-921*x-35 3770053363586389 m001 (KomornikLoreti+Lehmer)/(gamma(1)-gamma(2)) 3770053370911026 m001 1/sin(1)^2*GAMMA(7/12)^2/exp(sqrt(5))^2 3770053374938010 a001 64079/987*21^(26/45) 3770053378809750 m001 (GAMMA(23/24)-ln(5)*FeigenbaumB)/FeigenbaumB 3770053380285849 a001 9/1292*28657^(7/18) 3770053390215900 a001 38/305*10946^(5/42) 3770053395424631 r002 38th iterates of z^2 + 3770053403746361 r009 Im(z^3+c),c=-3/8+16/57*I,n=2 3770053413312028 r002 18th iterates of z^2 + 3770053441915890 r005 Re(z^2+c),c=-71/126+11/26*I,n=64 3770053475935828 q001 141/374 3770053475935828 r002 2th iterates of z^2 + 3770053475935828 r002 2th iterates of z^2 + 3770053475935828 r002 2th iterates of z^2 + 3770053475935828 r002 2th iterates of z^2 + 3770053475935828 r005 Im(z^2+c),c=-145/102+9/44*I,n=2 3770053479617155 m001 (FeigenbaumMu+Robbin)/(Psi(1,1/3)+GAMMA(5/6)) 3770053480244648 m002 (E^Pi*Pi^2)/6-Log[Pi]/Pi 3770053501270908 r005 Re(z^2+c),c=-49/66+7/46*I,n=40 3770053509364264 m004 -120*Pi-8*Sech[Sqrt[5]*Pi] 3770053509476882 m004 -16/E^(Sqrt[5]*Pi)-120*Pi 3770053509589499 m004 -120*Pi-8*Csch[Sqrt[5]*Pi] 3770053512752256 a001 1597/710647*199^(30/31) 3770053529099353 b008 38-3*Csch[3] 3770053547292785 a001 39603/377*317811^(13/46) 3770053549625254 p001 sum(1/(137*n+19)/n/(2^n),n=0..infinity) 3770053576383032 r005 Re(z^2+c),c=-113/114+7/62*I,n=28 3770053595374394 b008 1/35+SphericalBesselY[2,4] 3770053610445495 r009 Im(z^3+c),c=-17/58+19/49*I,n=6 3770053616194791 r005 Re(z^2+c),c=-17/24+10/61*I,n=40 3770053629739614 r009 Re(z^3+c),c=-12/31+23/36*I,n=64 3770053631835272 a007 Real Root Of 189*x^4-745*x^3+676*x^2-775*x-432 3770053637572329 m001 (GAMMA(19/24)+Rabbit)/(Catalan-cos(1/12*Pi)) 3770053645801041 m001 1/GAMMA(1/3)^2*ln(FeigenbaumC)/sqrt(5) 3770053646033308 r005 Im(z^2+c),c=-39/64+22/59*I,n=19 3770053650345888 r005 Re(z^2+c),c=-1/14+7/11*I,n=21 3770053652998633 a001 1860498/89*21^(19/20) 3770053656995506 m005 (1/4*Catalan-3/4)/(-5/2+1/2*5^(1/2)) 3770053658045441 r005 Re(z^2+c),c=-81/110+1/48*I,n=20 3770053661484575 m001 (exp(1)-exp(Pi))^TreeGrowth2nd 3770053667305794 m001 (MertensB2-Sarnak)/(gamma(2)+GaussAGM) 3770053670000893 r005 Re(z^2+c),c=-3/4+8/171*I,n=22 3770053672866792 a001 1/416020*610^(4/57) 3770053679120905 p004 log(30431/20873) 3770053680079408 m001 (BesselI(0,2)*ZetaP(3)-Shi(1))/ZetaP(3) 3770053680588088 b008 2^(-1/2-4*E) 3770053688162148 r005 Re(z^2+c),c=3/16+22/61*I,n=23 3770053688652159 r005 Im(z^2+c),c=-5/46+15/28*I,n=36 3770053709388117 p001 sum(1/(371*n+267)/(64^n),n=0..infinity) 3770053710434329 r005 Re(z^2+c),c=-75/122+6/49*I,n=6 3770053718788000 m001 Sierpinski^2*Conway/ln((2^(1/3))) 3770053729972769 m001 (FeigenbaumB+ZetaP(2))/(1-cos(1/12*Pi)) 3770053753012807 m001 1/GAMMA(11/12)^2/exp(Sierpinski)^2*exp(1)^2 3770053759368828 r005 Re(z^2+c),c=-11/25+17/36*I,n=37 3770053763110618 g007 Psi(2,7/12)+Psi(2,9/10)+Psi(2,4/7)-Psi(13/10) 3770053768142975 b008 6*Sqrt[3]+Cosh[4] 3770053776365421 r005 Re(z^2+c),c=5/29+16/47*I,n=20 3770053792054825 m001 (Ei(1,1)+polylog(4,1/2))/(2^(1/2)+cos(1)) 3770053793648968 r009 Im(z^3+c),c=-11/64+31/37*I,n=64 3770053801243416 r005 Re(z^2+c),c=-55/114+17/62*I,n=3 3770053813270319 m001 (-Artin+Landau)/(exp(1)+Pi^(1/2)) 3770053817356168 s002 sum(A045606[n]/((2*n+1)!),n=1..infinity) 3770053837779944 r009 Im(z^3+c),c=-11/64+31/37*I,n=44 3770053848516657 a007 Real Root Of 50*x^4-505*x^3+340*x^2-52*x-96 3770053888407779 m006 (3*Pi^2+2/3)/(1/6/Pi+3/4) 3770053889135414 a007 Real Root Of 170*x^4-388*x^3-644*x^2-865*x+435 3770053894264870 m008 (3/5*Pi^6-1/6)/(5*Pi^5-1/2) 3770053903977523 r005 Im(z^2+c),c=-1/56+14/29*I,n=41 3770053910143439 m001 ln(Robbin)^2*PisotVijayaraghavan^2*(2^(1/3)) 3770053910938636 a007 Real Root Of -151*x^4+352*x^3+504*x^2+837*x-403 3770053931454514 m003 7/2+Sqrt[5]/8+Cot[1/2+Sqrt[5]/2]/5 3770053940360380 r009 Re(z^3+c),c=-35/74+13/51*I,n=17 3770053946460420 m005 (1/2*exp(1)+7/9)/(2/7*exp(1)-5/6) 3770053957302417 r005 Re(z^2+c),c=3/25+25/58*I,n=24 3770053959251085 r005 Im(z^2+c),c=17/58+14/59*I,n=56 3770053970981708 g007 Psi(2,1/12)+Psi(2,2/7)+Psi(2,1/5)-Psi(2,3/7) 3770053974277627 r005 Im(z^2+c),c=9/64+11/23*I,n=11 3770053976584029 r009 Im(z^3+c),c=-25/114+10/23*I,n=3 3770053986836125 r009 Im(z^3+c),c=-33/70+16/57*I,n=36 3770054027052334 r005 Re(z^2+c),c=-3/5+35/109*I,n=25 3770054037554074 m001 (PlouffeB+Tetranacci)/(FeigenbaumDelta+Niven) 3770054043999102 a007 Real Root Of 163*x^4-453*x^3+583*x^2-471*x-288 3770054046710830 p004 log(36493/25031) 3770054058011727 h001 (1/3*exp(2)+3/10)/(11/12*exp(2)+5/9) 3770054060915337 r005 Im(z^2+c),c=-31/106+18/31*I,n=53 3770054062207752 r005 Im(z^2+c),c=5/22+20/63*I,n=14 3770054063458804 m001 (GAMMA(13/24)-Thue)/(cos(1/5*Pi)-BesselK(1,1)) 3770054093773878 r005 Im(z^2+c),c=-7/86+29/59*I,n=11 3770054106573856 r009 Re(z^3+c),c=-51/110+14/57*I,n=58 3770054133017859 m001 (Pi+1/2)/cos(Pi/12) 3770054138085158 a005 (1/cos(3/124*Pi))^459 3770054159847158 a003 cos(Pi*2/103)*sin(Pi*9/73) 3770054165163404 m001 arctan(1/3)/(ArtinRank2^TreeGrowth2nd) 3770054175268834 r005 Im(z^2+c),c=5/122+21/47*I,n=47 3770054185373609 a007 Real Root Of 376*x^4-521*x^3+779*x^2+242*x-55 3770054194564098 p003 LerchPhi(1/25,5,430/223) 3770054197981595 r005 Im(z^2+c),c=4/19+9/28*I,n=22 3770054210263362 m001 BesselK(1,1)^2*Porter/exp(GAMMA(1/4))^2 3770054216482749 l005 sech(527/84) 3770054222946947 a001 13/4*370248451^(16/17) 3770054241431673 r005 Re(z^2+c),c=-49/106+18/43*I,n=52 3770054242651714 a001 11/267914296*433494437^(5/22) 3770054244081969 a001 11/24157817*10946^(5/22) 3770054252153224 r005 Im(z^2+c),c=-137/110+1/48*I,n=37 3770054255322345 r005 Im(z^2+c),c=5/122+21/47*I,n=39 3770054267193682 r009 Im(z^3+c),c=-3/40+49/62*I,n=52 3770054271886479 r005 Im(z^2+c),c=-13/40+37/57*I,n=11 3770054272655202 m001 (Mills-PisotVijayaraghavan)/(PlouffeB+Trott) 3770054281111279 m005 (4/5*exp(1)+1/2)/(2/3*Pi+5) 3770054282975903 s001 sum(exp(-2*Pi)^n*A192704[n],n=1..infinity) 3770054287347867 a003 cos(Pi*15/88)*cos(Pi*16/45) 3770054293965559 r002 35th iterates of z^2 + 3770054294720736 r005 Re(z^2+c),c=31/106+14/27*I,n=15 3770054297069670 r005 Im(z^2+c),c=3/58+29/52*I,n=13 3770054302268367 r005 Re(z^2+c),c=-5/82+19/31*I,n=5 3770054303517567 r005 Re(z^2+c),c=-15/31+17/44*I,n=29 3770054307165887 a005 (1/cos(15/229*Pi))^1358 3770054342227442 r002 3th iterates of z^2 + 3770054345877127 r002 25th iterates of z^2 + 3770054356121235 a003 cos(Pi*46/105)+cos(Pi*15/34) 3770054364276956 m005 (1/2*Zeta(3)-1/6)/(85/132+5/22*5^(1/2)) 3770054373797092 r005 Re(z^2+c),c=-11/74+24/41*I,n=8 3770054374422016 a001 317811/2207*123^(1/5) 3770054391435677 r009 Im(z^3+c),c=-4/29+23/53*I,n=2 3770054393475710 m001 (Shi(1)*exp(1/exp(1))-GAMMA(5/6))/Shi(1) 3770054393912332 a007 Real Root Of 174*x^4+850*x^3+869*x^2+390*x-485 3770054430385150 r002 37th iterates of z^2 + 3770054441199823 r009 Im(z^3+c),c=-12/23+16/51*I,n=34 3770054449687762 m001 GAMMA(5/24)^2/ln(Tribonacci)/sin(1) 3770054458106788 r005 Im(z^2+c),c=-101/94+13/36*I,n=5 3770054488774273 a003 cos(Pi*37/114)*cos(Pi*52/109) 3770054493683686 r002 40th iterates of z^2 + 3770054499237839 r005 Re(z^2+c),c=-17/40+23/51*I,n=16 3770054503613793 r005 Im(z^2+c),c=19/102+13/38*I,n=38 3770054518665957 a007 Real Root Of 731*x^4-133*x^3-73*x^2-988*x-384 3770054531286482 a007 Real Root Of -156*x^4+285*x^3-632*x^2+124*x+155 3770054546391142 a007 Real Root Of 236*x^4-903*x^3-677*x^2-822*x+32 3770054549621467 r005 Im(z^2+c),c=11/82+7/19*I,n=10 3770054567312190 a001 4106118243/13*701408733^(8/23) 3770054569501105 a001 192900153618/13*10946^(8/23) 3770054569913098 m001 (3^(1/2)+Si(Pi))/(StronglyCareFree+ZetaP(3)) 3770054571143917 a007 Real Root Of 267*x^4+909*x^3-625*x^2-782*x+705 3770054586668161 a007 Real Root Of 244*x^4+715*x^3-602*x^2+675*x+122 3770054609777452 a007 Real Root Of -249*x^4-780*x^3+350*x^2-741*x+738 3770054613485135 r002 23th iterates of z^2 + 3770054613672246 m001 (-ln(2)+GAMMA(19/24))/(Si(Pi)-gamma) 3770054621580917 a007 Real Root Of -615*x^4+186*x^3-938*x^2+949*x-222 3770054644904191 r005 Re(z^2+c),c=-23/48+20/57*I,n=47 3770054655739443 b008 (27*E)/2+Coth[Pi] 3770054677748648 r002 17th iterates of z^2 + 3770054686246525 r002 21th iterates of z^2 + 3770054691904224 r005 Im(z^2+c),c=-15/14+11/256*I,n=7 3770054691935859 m001 Stephens-TreeGrowth2nd*ZetaP(2) 3770054697303804 h001 (1/8*exp(2)+1/6)/(7/9*exp(1)+7/9) 3770054701028758 a001 98209/38*18^(51/55) 3770054716718695 r009 Im(z^3+c),c=-49/110+3/10*I,n=53 3770054718453371 m001 Zeta(1/2)*ln(Sierpinski)*exp(1) 3770054719802352 m002 -Log[Pi]/6+ProductLog[Pi]+Sinh[Pi]/4 3770054737700160 a007 Real Root Of 242*x^4+788*x^3-472*x^2+201*x+803 3770054742475833 a007 Real Root Of -801*x^4+577*x^3-637*x^2+367*x+276 3770054742844294 r002 12th iterates of z^2 + 3770054753063393 m001 (2^(1/2)+Zeta(5))/(-exp(1/exp(1))+Kolakoski) 3770054758649514 m005 (1/2*Catalan-1/7)/(1/9*gamma-9/10) 3770054767300615 r005 Re(z^2+c),c=-11/23+16/45*I,n=41 3770054829194783 a003 sin(Pi*43/112)/cos(Pi*29/69) 3770054830964078 m001 FellerTornier^(sin(1/5*Pi)*Porter) 3770054833594623 r005 Im(z^2+c),c=11/40+8/31*I,n=54 3770054861559084 a007 Real Root Of 109*x^4+201*x^3-561*x^2+997*x+483 3770054880370445 r005 Im(z^2+c),c=2/23+5/12*I,n=25 3770054881043851 m001 exp(FibonacciFactorial)^2*Backhouse*Bloch^2 3770054887581354 b008 (-10*E^2)/21+Pi 3770054896556843 a001 18/1597*28657^(2/17) 3770054904998133 r005 Im(z^2+c),c=1/54+18/29*I,n=32 3770054915756842 r005 Im(z^2+c),c=7/122+17/39*I,n=15 3770054917692826 r002 28th iterates of z^2 + 3770054945989373 a007 Real Root Of 435*x^4-605*x^3-44*x^2-369*x+169 3770054952912632 b008 -1/2+(3+E^(-1))^3 3770054952951508 a007 Real Root Of -618*x^4+150*x^3+681*x^2+945*x+280 3770054956674883 a007 Real Root Of -138*x^4-438*x^3+467*x^2+751*x+602 3770054960472954 r005 Im(z^2+c),c=1/46+35/57*I,n=62 3770054971615660 r009 Im(z^3+c),c=-49/110+3/10*I,n=50 3770054977291614 m001 (MertensB3+Tribonacci)/(ln(2)/ln(10)+cos(1)) 3770054979177283 m001 (1+BesselJ(0,1))/(-DuboisRaymond+LaplaceLimit) 3770054996174210 b008 2+ProductLog[6*Sqrt[3]] 3770054998240575 r009 Re(z^3+c),c=-1/24+7/36*I,n=5 3770055000896289 m001 (GAMMA(19/24)-exp(1/2))/(2^(1/3)) 3770055000896289 m001 1/2*(GAMMA(19/24)-exp(1/2))*2^(2/3) 3770055004975155 m001 QuadraticClass^FeigenbaumC*Weierstrass 3770055006356950 a007 Real Root Of -26*x^4+61*x^3+339*x^2-840*x+536 3770055012569549 m001 (gamma(1)-Gompertz)/(cos(1/5*Pi)+cos(1/12*Pi)) 3770055021712327 m001 (2^(1/3)+exp(-1/2*Pi))/(-Zeta(1,2)+Otter) 3770055029993895 r005 Re(z^2+c),c=-16/31+3/34*I,n=24 3770055030599252 r005 Im(z^2+c),c=-5/48+17/32*I,n=52 3770055034836232 m001 Stephens^Porter*Stephens^(ln(2)/ln(10)) 3770055035506590 a001 416020/2889*123^(1/5) 3770055041356181 r005 Im(z^2+c),c=9/74+20/51*I,n=37 3770055055883751 r002 11th iterates of z^2 + 3770055055883751 r002 11th iterates of z^2 + 3770055062792344 r002 15th iterates of z^2 + 3770055063352845 r002 27th iterates of z^2 + 3770055070856004 r005 Re(z^2+c),c=-23/18+8/185*I,n=26 3770055113632942 a007 Real Root Of 17*x^4+617*x^3-902*x^2-27*x-160 3770055114638447 r009 Im(z^3+c),c=-109/126+7/60*I,n=2 3770055119647775 r002 12th iterates of z^2 + 3770055129634626 m001 (LandauRamanujan+LaplaceLimit)/(Pi+Cahen) 3770055131957549 a001 311187/2161*123^(1/5) 3770055146029555 a001 5702887/39603*123^(1/5) 3770055148082633 a001 7465176/51841*123^(1/5) 3770055148382173 a001 39088169/271443*123^(1/5) 3770055148425875 a001 14619165/101521*123^(1/5) 3770055148432251 a001 133957148/930249*123^(1/5) 3770055148433182 a001 701408733/4870847*123^(1/5) 3770055148433317 a001 1836311903/12752043*123^(1/5) 3770055148433337 a001 14930208/103681*123^(1/5) 3770055148433340 a001 12586269025/87403803*123^(1/5) 3770055148433340 a001 32951280099/228826127*123^(1/5) 3770055148433341 a001 43133785636/299537289*123^(1/5) 3770055148433341 a001 32264490531/224056801*123^(1/5) 3770055148433341 a001 591286729879/4106118243*123^(1/5) 3770055148433341 a001 774004377960/5374978561*123^(1/5) 3770055148433341 a001 4052739537881/28143753123*123^(1/5) 3770055148433341 a001 1515744265389/10525900321*123^(1/5) 3770055148433341 a001 3278735159921/22768774562*123^(1/5) 3770055148433341 a001 2504730781961/17393796001*123^(1/5) 3770055148433341 a001 956722026041/6643838879*123^(1/5) 3770055148433341 a001 182717648081/1268860318*123^(1/5) 3770055148433341 a001 139583862445/969323029*123^(1/5) 3770055148433341 a001 53316291173/370248451*123^(1/5) 3770055148433341 a001 10182505537/70711162*123^(1/5) 3770055148433342 a001 7778742049/54018521*123^(1/5) 3770055148433349 a001 2971215073/20633239*123^(1/5) 3770055148433401 a001 567451585/3940598*123^(1/5) 3770055148433757 a001 433494437/3010349*123^(1/5) 3770055148436192 a001 165580141/1149851*123^(1/5) 3770055148452885 a001 31622993/219602*123^(1/5) 3770055148567299 a001 24157817/167761*123^(1/5) 3770055148958267 a001 18/4181*102334155^(2/17) 3770055149351505 a001 9227465/64079*123^(1/5) 3770055150894479 m001 1/cosh(1)^2/ln(KhintchineHarmonic)*sqrt(5)^2 3770055154726533 a001 1762289/12238*123^(1/5) 3770055185798901 a001 9/5473*365435296162^(2/17) 3770055191567523 a001 1346269/9349*123^(1/5) 3770055195107265 r005 Re(z^2+c),c=-39/86+11/24*I,n=62 3770055198166361 r005 Re(z^2+c),c=-61/114+8/25*I,n=16 3770055221299454 r005 Im(z^2+c),c=9/70+12/31*I,n=47 3770055221497327 p004 log(35617/821) 3770055221779424 a001 17/38*11^(8/9) 3770055228051151 r005 Im(z^2+c),c=-11/10+1/232*I,n=10 3770055240510109 a007 Real Root Of 210*x^4+842*x^3-2*x^2-904*x-685 3770055243433266 a001 610/271443*199^(30/31) 3770055271447442 a007 Real Root Of -18*x^4-655*x^3+905*x^2+540*x-808 3770055272458288 r002 3th iterates of z^2 + 3770055284577922 r005 Re(z^2+c),c=-19/40+7/19*I,n=63 3770055303360430 r005 Im(z^2+c),c=29/126+13/43*I,n=16 3770055307648236 r005 Im(z^2+c),c=2/17+15/38*I,n=25 3770055310125593 r009 Re(z^3+c),c=-1/30+43/47*I,n=9 3770055317450495 m001 Kolakoski/exp(-1/2*Pi)*Paris 3770055322971520 r005 Im(z^2+c),c=19/102+13/38*I,n=42 3770055329208734 m001 PrimesInBinary*ln(Magata)^2/sqrt(1+sqrt(3)) 3770055333716831 r009 Im(z^3+c),c=-4/9+19/62*I,n=15 3770055336619303 p003 LerchPhi(1/25,4,221/173) 3770055346888193 r005 Im(z^2+c),c=-29/54+27/55*I,n=61 3770055359353696 r009 Re(z^3+c),c=-43/102+7/36*I,n=15 3770055365002989 r005 Im(z^2+c),c=7/40+13/37*I,n=47 3770055386901336 p003 LerchPhi(1/64,6,101/126) 3770055388333392 a007 Real Root Of 818*x^4-71*x^3+315*x^2-74*x-93 3770055399392465 r005 Im(z^2+c),c=-1/60+27/56*I,n=30 3770055432585523 a007 Real Root Of -269*x^4-804*x^3+633*x^2-615*x-55 3770055439671282 a007 Real Root Of -639*x^4+257*x^3-10*x^2+715*x-269 3770055444079443 a001 514229/3571*123^(1/5) 3770055445214277 p004 log(10889/251) 3770055454436974 a003 cos(Pi*15/61)*cos(Pi*11/34) 3770055459013052 r009 Re(z^3+c),c=-37/70+13/40*I,n=32 3770055463249702 a001 4/930249*1364^(46/49) 3770055469060752 l006 ln(8381/8703) 3770055470545799 r005 Re(z^2+c),c=-61/118+5/62*I,n=30 3770055490401079 m001 Paris/exp(ErdosBorwein)^2/GAMMA(23/24)^2 3770055493581823 r009 Im(z^3+c),c=-13/50+36/53*I,n=7 3770055519784705 s001 sum(exp(-2*Pi)^n*A068561[n],n=1..infinity) 3770055539554520 r005 Re(z^2+c),c=-51/122+14/51*I,n=4 3770055544073699 r009 Im(z^3+c),c=-7/31+17/18*I,n=10 3770055551244140 m005 (1/3*3^(1/2)+1/4)/(1/5*5^(1/2)-2/3) 3770055552951105 a001 322/377*34^(8/19) 3770055555153684 a004 Fibonacci(13)*Lucas(12)/(1/2+sqrt(5)/2)^11 3770055557406975 m002 -5+Cosh[Pi]/(3*Pi) 3770055579429640 h001 (1/11*exp(2)+1/12)/(7/10*exp(1)+1/10) 3770055579433082 r002 19th iterates of z^2 + 3770055582211498 m001 1/Robbin*MertensB1^2/exp(Zeta(7)) 3770055611349468 r005 Re(z^2+c),c=-21/74+33/56*I,n=4 3770055619127051 p002 log(10^(7/6)+11^(7/5)) 3770055624958341 r005 Im(z^2+c),c=-3/98+22/39*I,n=19 3770055636792935 m004 (-5*Pi)/2+5*Coth[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi] 3770055654344510 r005 Re(z^2+c),c=-61/114+17/54*I,n=12 3770055665751668 r005 Im(z^2+c),c=-17/118+10/17*I,n=26 3770055680777384 r009 Re(z^3+c),c=-7/114+21/38*I,n=28 3770055683157844 r002 33th iterates of z^2 + 3770055685669026 m001 (Stephens+ZetaP(2))/(3^(1/3)+GAMMA(17/24)) 3770055686803946 p001 sum((-1)^n/(505*n+316)/n/(32^n),n=1..infinity) 3770055698863112 r009 Im(z^3+c),c=-61/118+7/17*I,n=24 3770055715020630 r005 Re(z^2+c),c=-25/52+11/32*I,n=22 3770055727159044 r002 52th iterates of z^2 + 3770055734206344 m001 BesselJ(0,1)-GAMMA(2/3)+cos(1/12*Pi) 3770055734206344 m001 BesselJ(0,1)-GAMMA(2/3)+cos(Pi/12) 3770055742017907 r009 Im(z^3+c),c=-14/31+13/44*I,n=33 3770055746904171 a001 2584/521*18^(40/57) 3770055756164145 m001 Cahen^2/Artin*exp(GAMMA(3/4)) 3770055757851615 r009 Im(z^3+c),c=-33/52+9/52*I,n=2 3770055760359915 r005 Im(z^2+c),c=-11/102+22/41*I,n=33 3770055760697650 r005 Im(z^2+c),c=11/82+18/47*I,n=42 3770055767041817 m005 (1/2*Pi-5/7)/(9/10*Pi-5/9) 3770055767867042 g002 Psi(5/12)+Psi(4/9)+Psi(2/5)-Psi(3/10) 3770055769694549 r005 Re(z^2+c),c=-25/54+11/53*I,n=6 3770055783194422 r005 Im(z^2+c),c=-1/21+1/2*I,n=52 3770055783399742 m001 (Pi+Pi^(1/2))/(FibonacciFactorial+ZetaP(4)) 3770055786086266 r005 Re(z^2+c),c=-25/52+13/42*I,n=18 3770055791626167 a007 Real Root Of -71*x^4+883*x^3-263*x^2+371*x+226 3770055798388258 r005 Im(z^2+c),c=1/86+20/43*I,n=36 3770055799257501 m001 Zeta(5)^2/ln(GAMMA(13/24))*log(2+sqrt(3))^2 3770055809968768 m001 1/sinh(1)^2/FeigenbaumDelta/exp(sqrt(2)) 3770055826275323 m005 (1/2*5^(1/2)+1/5)/(exp(1)+7/9) 3770055855025941 a003 sin(Pi*4/85)-sin(Pi*13/74) 3770055858034550 m001 (Zeta(1,2)-polylog(4,1/2))/(FeigenbaumD+Salem) 3770055860063949 m001 arctan(1/3)^CareFree/(GAMMA(17/24)^CareFree) 3770055862962816 a001 1/521*(1/2*5^(1/2)+1/2)*3^(3/17) 3770055868420628 l006 ln(217/9414) 3770055891374062 m005 (1/3*Catalan+2/9)/(6/11*3^(1/2)+5/11) 3770055891997902 l006 ln(297/433) 3770055898122762 m001 cos(1/12*Pi)*(MinimumGamma-Si(Pi)) 3770055910049536 r009 Im(z^3+c),c=-29/50+43/57*I,n=3 3770055920338813 m001 (GAMMA(3/4)-CareFree)/(Conway-Khinchin) 3770055925440081 r005 Im(z^2+c),c=-2/31+27/53*I,n=45 3770055930153020 a003 sin(Pi*16/109)*sin(Pi*37/115) 3770055947391139 m004 -120*Pi-6*Sec[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770055947620232 m004 -120*Pi-6*Csch[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 3770055954285557 r005 Re(z^2+c),c=-15/32+22/45*I,n=38 3770055960804775 m001 (gamma(3)+Stephens)/(Zeta(1/2)+gamma(1)) 3770055968527440 p003 LerchPhi(1/512,1,85/32) 3770055976785396 m001 (ln(3)+Zeta(1,-1))/(exp(-1/2*Pi)-FeigenbaumD) 3770055986384558 a007 Real Root Of 677*x^4+903*x^3+448*x^2-703*x-294 3770055988321408 r005 Re(z^2+c),c=-16/29+1/49*I,n=10 3770055992860148 m001 (1+BesselI(0,1))/(-PisotVijayaraghavan+Sarnak) 3770055995689216 m001 exp(OneNinth)^2*LaplaceLimit^2/Zeta(3)^2 3770055995984842 a007 Real Root Of 154*x^4+291*x^3-854*x^2+807*x-337 3770056008419379 m001 (exp(Pi)-ln(3))/(-BesselK(1,1)+KhinchinLevy) 3770056019284082 r002 8th iterates of z^2 + 3770056021650963 a007 Real Root Of 176*x^4+512*x^3-429*x^2+634*x+368 3770056026520768 m001 (2^(1/2)+Artin)/(-HeathBrownMoroz+PlouffeB) 3770056028280896 m009 (3/5*Psi(1,2/3)+4)/(5*Psi(1,2/3)+1/6) 3770056029218233 r005 Re(z^2+c),c=-47/70+11/46*I,n=35 3770056035144622 r005 Im(z^2+c),c=-1/46+19/39*I,n=23 3770056075422987 r009 Im(z^3+c),c=-5/118+37/46*I,n=10 3770056082139348 r005 Im(z^2+c),c=1/82+15/32*I,n=14 3770056090681869 m001 (ArtinRank2-TravellingSalesman)/(Pi+3^(1/3)) 3770056102807501 m005 (1/3*Catalan+1/11)/(7/12*gamma+5/7) 3770056116278669 r009 Re(z^3+c),c=-47/126+3/23*I,n=9 3770056121272858 m005 (5/6*Pi-2/5)/(2*Pi-2/5) 3770056121272858 m006 (2/5/Pi-5/6)/(2/5/Pi-2) 3770056121272858 m008 (5/6*Pi-2/5)/(2*Pi-2/5) 3770056127160021 r002 46th iterates of z^2 + 3770056128838929 a007 Real Root Of 720*x^4-550*x^3+770*x^2-768*x-443 3770056137796496 r005 Im(z^2+c),c=-13/86+17/28*I,n=44 3770056144617035 r005 Im(z^2+c),c=2/19+21/52*I,n=40 3770056150268267 m001 (GAMMA(23/24)-Shi(1))/(Champernowne+Rabbit) 3770056150888014 r002 9th iterates of z^2 + 3770056154208257 m005 (1/2*gamma-5/7)/(7/10*3^(1/2)-1/12) 3770056160020353 r005 Re(z^2+c),c=-27/56+9/26*I,n=33 3770056172395855 r005 Im(z^2+c),c=-47/106+5/12*I,n=3 3770056183308766 m001 FeigenbaumAlpha+exp(1/Pi)-OneNinth 3770056183308766 m001 OneNinth-FeigenbaumAlpha-exp(1/Pi) 3770056185016786 m005 (1/2*3^(1/2)-3/10)/(2/3*Zeta(3)+7/10) 3770056199491252 m001 MertensB3/(ReciprocalFibonacci+ZetaP(3)) 3770056220569721 r009 Re(z^3+c),c=-27/70+9/61*I,n=18 3770056230500467 r009 Im(z^3+c),c=-49/110+3/10*I,n=57 3770056232851317 m001 (DuboisRaymond-Thue)/(gamma(2)+Pi^(1/2)) 3770056239914471 m005 (1/2*Pi+3/10)/(5/9*3^(1/2)+4) 3770056247200959 r009 Re(z^3+c),c=-43/122+2/21*I,n=6 3770056300017719 b008 33+ArcSinh[55] 3770056309774832 r005 Re(z^2+c),c=-27/52+19/61*I,n=16 3770056312578139 r005 Re(z^2+c),c=-27/58+13/32*I,n=59 3770056314279136 r002 17th iterates of z^2 + 3770056314559960 m001 Zeta(1/2)*(LaplaceLimit-TwinPrimes) 3770056317202642 m001 1/BesselK(0,1)*exp(Porter)/sqrt(1+sqrt(3))^2 3770056335137371 h001 (1/6*exp(1)+2/9)/(5/11*exp(1)+5/9) 3770056341176781 a001 514229/76*9349^(50/53) 3770056344822877 a005 (1/cos(14/207*Pi))^767 3770056355739810 r002 15th iterates of z^2 + 3770056370079279 m005 (1/3*3^(1/2)+2/7)/(5/12*2^(1/2)-9/11) 3770056377945180 s002 sum(A188281[n]/(n^3*10^n+1),n=1..infinity) 3770056381658024 r002 22th iterates of z^2 + 3770056382292257 m005 (1/2*Zeta(3)+3/7)/(10/11*Pi-1/8) 3770056384062712 a001 98209/38*39603^(48/53) 3770056384423163 m001 exp(Pi)^MertensB2/(ln(2)^MertensB2) 3770056386296348 b008 1/4+InverseGudermannian[Pi/9]^2 3770056400441797 m001 (cos(1/5*Pi)*ZetaP(3)+polylog(4,1/2))/ZetaP(3) 3770056402618381 m001 (FellerTornier+MertensB3)/(Ei(1)-Backhouse) 3770056414813083 m001 RenyiParking*ln(GolombDickman)^2/BesselJ(1,1) 3770056417329564 a001 1364/89*610^(8/57) 3770056425872757 m001 1/Zeta(1/2)/MinimumGamma*ln(sqrt(5)) 3770056432542847 r005 Im(z^2+c),c=1/66+25/54*I,n=44 3770056434726944 a007 Real Root Of -280*x^4-820*x^3+751*x^2-612*x-356 3770056444422682 r009 Re(z^3+c),c=-35/78+4/29*I,n=5 3770056448393224 r005 Re(z^2+c),c=-31/46+9/40*I,n=4 3770056448883692 l006 ln(183/7939) 3770056451447227 r002 22th iterates of z^2 + 3770056496542512 a003 cos(Pi*34/89)/sin(Pi*39/95) 3770056509830559 h001 (-5*exp(2)+4)/(-5*exp(2/3)+1) 3770056513598041 r005 Im(z^2+c),c=7/118+10/23*I,n=27 3770056534600023 r005 Re(z^2+c),c=23/74+14/27*I,n=3 3770056538716547 s002 sum(A203899[n]/(n^3*2^n+1),n=1..infinity) 3770056551473732 m001 (BesselI(0,2)+Porter)/(Zeta(5)+Zeta(1,2)) 3770056558755280 r005 Re(z^2+c),c=-65/122+3/31*I,n=8 3770056560285163 m005 (3/4*Catalan-3)/(-9/40+3/8*5^(1/2)) 3770056576463279 m005 (1/2*3^(1/2)-3)/(6/11*exp(1)-11/12) 3770056586403629 r005 Re(z^2+c),c=-19/52+36/61*I,n=54 3770056593361344 a007 Real Root Of 889*x^4-939*x^3+141*x^2-508*x+19 3770056613428119 r005 Im(z^2+c),c=-139/102+1/40*I,n=24 3770056626688370 r009 Im(z^3+c),c=-21/40+10/31*I,n=41 3770056628538340 r005 Im(z^2+c),c=33/98+1/5*I,n=31 3770056636312736 m001 CopelandErdos^(ArtinRank2/HardyLittlewoodC4) 3770056639691861 a001 7/281*18^(47/50) 3770056642970277 a007 Real Root Of 449*x^4+393*x^3-110*x^2-880*x-33 3770056654937690 m001 (gamma(2)+StronglyCareFree)/(Shi(1)-Zeta(5)) 3770056659756526 r001 46i'th iterates of 2*x^2-1 of 3770056668302264 m001 (Ei(1)+FeigenbaumC)/(Stephens+ThueMorse) 3770056675349313 m001 (Kolakoski+Landau)/(Lehmer+Otter) 3770056682234406 r005 Im(z^2+c),c=19/78+15/52*I,n=9 3770056695700149 r005 Im(z^2+c),c=7/78+17/41*I,n=41 3770056714509671 r009 Re(z^3+c),c=-27/70+9/61*I,n=23 3770056720419143 r009 Re(z^3+c),c=-51/110+14/57*I,n=62 3770056734926174 m005 (1/2*3^(1/2)+5/8)/(-27/40+1/8*5^(1/2)) 3770056752652539 m007 (-2/3*gamma-2*ln(2)+1/3*Pi+2)/(-2/3*gamma-3) 3770056765732647 a007 Real Root Of -200*x^4-502*x^3+821*x^2-344*x+538 3770056768861391 r005 Re(z^2+c),c=-17/30+50/123*I,n=45 3770056777579627 r002 43th iterates of z^2 + 3770056782844465 r009 Im(z^3+c),c=-25/52+3/11*I,n=57 3770056784175930 m005 (1/2*gamma-5/8)/(1/8*Catalan+7/9) 3770056786787943 r009 Im(z^3+c),c=-25/74+22/61*I,n=11 3770056794214108 r002 9th iterates of z^2 + 3770056796541892 r009 Im(z^3+c),c=-49/110+3/10*I,n=61 3770056797316680 r009 Im(z^3+c),c=-49/110+3/10*I,n=60 3770056801139414 a007 Real Root Of -441*x^4+259*x^3-497*x^2+36*x+107 3770056803313606 r009 Im(z^3+c),c=-49/110+3/10*I,n=56 3770056804112688 r002 22th iterates of z^2 + 3770056804584158 r005 Re(z^2+c),c=-65/126+1/10*I,n=33 3770056824550095 r005 Re(z^2+c),c=-59/114+1/14*I,n=31 3770056831866034 m001 1/exp(Catalan)^2/Cahen^2/GAMMA(23/24) 3770056868210109 h001 (-11*exp(3)-10)/(-3*exp(3)-1) 3770056873975401 m001 (ln(2)+Ei(1))^HardHexagonsEntropy 3770056875146684 r005 Im(z^2+c),c=-23/118+17/28*I,n=63 3770056901137777 r009 Im(z^3+c),c=-49/110+3/10*I,n=64 3770056902065125 m004 -2-(4*Sin[Sqrt[5]*Pi])/ProductLog[Sqrt[5]*Pi] 3770056902373014 a001 2178309/2*14662949395604^(20/21) 3770056902373118 a001 4052739537881/2*7881196^(10/11) 3770056902373165 a001 4052739537881/2*20633239^(6/7) 3770056902373166 a001 10610209857723/2*20633239^(4/5) 3770056902373169 a001 7465176*14662949395604^(8/9) 3770056902373172 a001 39088169/2*14662949395604^(6/7) 3770056902373173 a001 225851433717/2*141422324^(12/13) 3770056902373173 a001 956722026041/2*141422324^(11/13) 3770056902373173 a001 4052739537881/2*141422324^(10/13) 3770056902373173 a001 102334155/2*23725150497407^(13/16) 3770056902373173 a001 102334155/2*505019158607^(13/14) 3770056902373173 a001 133957148*312119004989^(10/11) 3770056902373173 a001 133957148*3461452808002^(5/6) 3770056902373173 a001 701408733/2*45537549124^(16/17) 3770056902373173 a001 701408733/2*14662949395604^(16/21) 3770056902373173 a001 701408733/2*192900153618^(8/9) 3770056902373173 a001 701408733/2*73681302247^(12/13) 3770056902373173 a001 12586269025/2*2537720636^(14/15) 3770056902373173 a001 32951280099/2*2537720636^(8/9) 3770056902373173 a001 53316291173/2*2537720636^(13/15) 3770056902373173 a001 225851433717/2*2537720636^(4/5) 3770056902373173 a001 182717648081*2537720636^(7/9) 3770056902373173 a001 956722026041/2*2537720636^(11/15) 3770056902373173 a001 4052739537881/2*2537720636^(2/3) 3770056902373173 a001 1836311903/2*10749957122^(23/24) 3770056902373173 a001 2403763488*312119004989^(4/5) 3770056902373173 a001 2403763488*23725150497407^(11/16) 3770056902373173 a001 2403763488*73681302247^(11/13) 3770056902373173 a001 12586269025/2*17393796001^(6/7) 3770056902373173 a001 182717648081*17393796001^(5/7) 3770056902373173 a001 10610209857723/2*17393796001^(4/7) 3770056902373173 a001 12586269025/2*45537549124^(14/17) 3770056902373173 a001 12586269025/2*14662949395604^(2/3) 3770056902373173 a001 12586269025/2*505019158607^(3/4) 3770056902373173 a001 12586269025/2*192900153618^(7/9) 3770056902373173 a001 2403763488*10749957122^(11/12) 3770056902373173 a001 225851433717/2*45537549124^(12/17) 3770056902373173 a001 591286729879/2*45537549124^(2/3) 3770056902373173 a001 956722026041/2*45537549124^(11/17) 3770056902373173 a001 53316291173/2*45537549124^(13/17) 3770056902373173 a001 4052739537881/2*45537549124^(10/17) 3770056902373173 a001 32951280099/2*312119004989^(8/11) 3770056902373173 a001 32951280099/2*23725150497407^(5/8) 3770056902373173 a001 32951280099/2*73681302247^(10/13) 3770056902373173 a001 43133785636*817138163596^(2/3) 3770056902373173 a001 4052739537881/2*312119004989^(6/11) 3770056902373173 a001 182717648081*312119004989^(7/11) 3770056902373173 a001 225851433717/2*505019158607^(9/14) 3770056902373173 a001 10610209857723/2*14662949395604^(4/9) 3770056902373173 a001 10610209857723/2*505019158607^(1/2) 3770056902373173 a001 182717648081*505019158607^(5/8) 3770056902373173 a001 225851433717/2*192900153618^(2/3) 3770056902373173 a001 956722026041/2*192900153618^(11/18) 3770056902373173 a001 53316291173/2*14662949395604^(13/21) 3770056902373173 a001 53316291173/2*192900153618^(13/18) 3770056902373173 a001 10610209857723/2*73681302247^(7/13) 3770056902373173 a001 774004377960*73681302247^(8/13) 3770056902373173 a001 225851433717/2*73681302247^(9/13) 3770056902373173 a001 53316291173/2*73681302247^(3/4) 3770056902373173 a001 4052739537881/2*28143753123^(3/5) 3770056902373173 a001 32951280099/2*28143753123^(4/5) 3770056902373173 a001 182717648081*28143753123^(7/10) 3770056902373173 a001 10610209857723/2*10749957122^(7/12) 3770056902373173 a001 4052739537881/2*10749957122^(5/8) 3770056902373173 a001 774004377960*10749957122^(2/3) 3770056902373173 a001 956722026041/2*10749957122^(11/16) 3770056902373173 a001 591286729879/2*10749957122^(17/24) 3770056902373173 a001 12586269025/2*10749957122^(7/8) 3770056902373173 a001 225851433717/2*10749957122^(3/4) 3770056902373173 a001 43133785636*10749957122^(19/24) 3770056902373173 a001 32951280099/2*10749957122^(5/6) 3770056902373173 a001 53316291173/2*10749957122^(13/16) 3770056902373173 a001 2971215073/2*45537549124^(15/17) 3770056902373173 a001 2971215073/2*312119004989^(9/11) 3770056902373173 a001 2971215073/2*14662949395604^(5/7) 3770056902373173 a001 2971215073/2*192900153618^(5/6) 3770056902373173 a001 2971215073/2*28143753123^(9/10) 3770056902373173 a001 2971215073/2*10749957122^(15/16) 3770056902373173 a001 10610209857723/2*4106118243^(14/23) 3770056902373173 a001 4052739537881/2*4106118243^(15/23) 3770056902373173 a001 774004377960*4106118243^(16/23) 3770056902373173 a001 591286729879/2*4106118243^(17/23) 3770056902373173 a001 225851433717/2*4106118243^(18/23) 3770056902373173 a001 2403763488*4106118243^(22/23) 3770056902373173 a001 43133785636*4106118243^(19/23) 3770056902373173 a001 32951280099/2*4106118243^(20/23) 3770056902373173 a001 12586269025/2*4106118243^(21/23) 3770056902373173 a001 10610209857723/2*1568397607^(7/11) 3770056902373173 a001 4052739537881/2*1568397607^(15/22) 3770056902373173 a001 774004377960*1568397607^(8/11) 3770056902373173 a001 956722026041/2*1568397607^(3/4) 3770056902373173 a001 591286729879/2*1568397607^(17/22) 3770056902373173 a001 225851433717/2*1568397607^(9/11) 3770056902373173 a001 43133785636*1568397607^(19/22) 3770056902373173 a001 32951280099/2*1568397607^(10/11) 3770056902373173 a001 12586269025/2*1568397607^(21/22) 3770056902373173 a001 433494437/2*14662949395604^(7/9) 3770056902373173 a001 433494437/2*505019158607^(7/8) 3770056902373173 a001 10610209857723/2*599074578^(2/3) 3770056902373173 a001 4052739537881/2*599074578^(5/7) 3770056902373173 a001 774004377960*599074578^(16/21) 3770056902373173 a001 956722026041/2*599074578^(11/14) 3770056902373173 a001 591286729879/2*599074578^(17/21) 3770056902373173 a001 182717648081*599074578^(5/6) 3770056902373173 a001 225851433717/2*599074578^(6/7) 3770056902373173 a001 43133785636*599074578^(19/21) 3770056902373173 a001 53316291173/2*599074578^(13/14) 3770056902373173 a001 32951280099/2*599074578^(20/21) 3770056902373173 a001 165580141/2*817138163596^(17/19) 3770056902373173 a001 165580141/2*14662949395604^(17/21) 3770056902373173 a001 165580141/2*192900153618^(17/18) 3770056902373173 a001 10610209857723/2*228826127^(7/10) 3770056902373173 a001 4052739537881/2*228826127^(3/4) 3770056902373173 a001 774004377960*228826127^(4/5) 3770056902373173 a001 591286729879/2*228826127^(17/20) 3770056902373173 a001 182717648081*228826127^(7/8) 3770056902373173 a001 225851433717/2*228826127^(9/10) 3770056902373173 a001 43133785636*228826127^(19/20) 3770056902373173 a001 10610209857723/2*87403803^(14/19) 3770056902373173 a001 4052739537881/2*87403803^(15/19) 3770056902373173 a001 774004377960*87403803^(16/19) 3770056902373173 a001 591286729879/2*87403803^(17/19) 3770056902373173 a001 225851433717/2*87403803^(18/19) 3770056902373174 a001 24157817/2*3461452808002^(11/12) 3770056902373175 a001 10610209857723/2*33385282^(7/9) 3770056902373176 a001 4052739537881/2*33385282^(5/6) 3770056902373176 a001 774004377960*33385282^(8/9) 3770056902373176 a001 956722026041/2*33385282^(11/12) 3770056902373176 a001 591286729879/2*33385282^(17/18) 3770056902373182 a001 9227465/2*14662949395604^(19/21) 3770056902373192 a001 10610209857723/2*12752043^(14/17) 3770056902373193 a001 4052739537881/2*12752043^(15/17) 3770056902373195 a001 774004377960*12752043^(16/17) 3770056902373312 a001 10610209857723/2*4870847^(7/8) 3770056902373322 a001 4052739537881/2*4870847^(15/16) 3770056902374189 a001 10610209857723/2*1860498^(14/15) 3770056906836149 r005 Re(z^2+c),c=-15/32+24/61*I,n=55 3770056915508936 m001 1/ln((2^(1/3)))/Kolakoski/Zeta(3)^2 3770056921625717 a007 Real Root Of -244*x^4-842*x^3+284*x^2+119*x+586 3770056921946942 a001 1/18*(1/2*5^(1/2)+1/2)^11*47^(11/12) 3770056925981394 r002 9th iterates of z^2 + 3770056929994392 a007 Real Root Of -802*x^4+688*x^3-908*x^2+623*x+417 3770056932165440 r005 Im(z^2+c),c=-35/66+1/15*I,n=51 3770056935707239 r009 Im(z^3+c),c=-65/122+13/48*I,n=48 3770056946349180 b008 3^(-1+EulerGamma)+Pi 3770056959046389 r005 Im(z^2+c),c=29/102+17/63*I,n=16 3770056973393388 r005 Re(z^2+c),c=-89/122+5/27*I,n=23 3770056975523586 r009 Re(z^3+c),c=-61/114+27/58*I,n=53 3770056978583738 r005 Im(z^2+c),c=-8/19+22/39*I,n=8 3770056989031788 m008 (1/4*Pi^5-4)/(2*Pi^6+2/5) 3770057002629426 m005 (1/2*Pi-8/11)/(5/9*exp(1)+8/11) 3770057002948641 r005 Re(z^2+c),c=-57/118+1/3*I,n=49 3770057002991258 p003 LerchPhi(1/6,5,69/226) 3770057007114726 r005 Im(z^2+c),c=-85/74+1/21*I,n=19 3770057008237650 r009 Im(z^3+c),c=-49/110+3/10*I,n=54 3770057021485868 r005 Im(z^2+c),c=19/90+17/36*I,n=16 3770057032215541 r009 Re(z^3+c),c=-1/94+33/50*I,n=16 3770057032897820 r009 Re(z^3+c),c=-11/23+2/7*I,n=17 3770057033554891 m001 (Artin-BesselJ(0,1))/(-MadelungNaCl+Rabbit) 3770057037946205 m001 Pi^2*ln(TreeGrowth2nd)/arctan(1/2)^2 3770057047123334 a001 10946/47*2^(41/59) 3770057055916941 r005 Re(z^2+c),c=-27/58+16/33*I,n=42 3770057089821135 r009 Re(z^3+c),c=-51/110+14/57*I,n=59 3770057108404903 r005 Im(z^2+c),c=29/98+24/59*I,n=31 3770057110353765 m001 (Rabbit-Sarnak)/(gamma(1)+BesselJ(1,1)) 3770057113778535 r005 Im(z^2+c),c=11/58+19/56*I,n=46 3770057123150663 r009 Im(z^3+c),c=-49/110+3/10*I,n=63 3770057129275735 r005 Re(z^2+c),c=-55/114+10/29*I,n=33 3770057144509162 a007 Real Root Of -158*x^4-497*x^3+512*x^2+326*x-761 3770057157145329 a007 Real Root Of -224*x^4-770*x^3+516*x^2+642*x-922 3770057163074569 r005 Im(z^2+c),c=29/122+8/27*I,n=42 3770057167482192 a007 Real Root Of -202*x^4-682*x^3+145*x^2-740*x-588 3770057174822800 a001 98209/682*123^(1/5) 3770057184820721 r009 Im(z^3+c),c=-49/110+3/10*I,n=62 3770057190623430 m002 -6*Pi^4+Pi^6+Log[Pi]-ProductLog[Pi] 3770057195550475 m001 ZetaP(4)/(cos(1/5*Pi)+GAMMA(3/4)) 3770057201733699 r005 Re(z^2+c),c=-8/19+21/40*I,n=52 3770057206023016 r009 Re(z^3+c),c=-51/110+14/57*I,n=53 3770057209022537 a007 Real Root Of 302*x^4+995*x^3-709*x^2-784*x-571 3770057213895392 r005 Re(z^2+c),c=25/82+4/61*I,n=54 3770057214083931 a001 6765/199*199^(5/11) 3770057216430409 a001 4/2889*3571^(6/49) 3770057217316812 h001 (-6*exp(2/3)+8)/(-2*exp(2)+5) 3770057217626881 m005 (1/3*gamma-2/9)/(8/11*Zeta(3)-1/12) 3770057223169911 r005 Im(z^2+c),c=-3/4+121/190*I,n=4 3770057262537543 a001 3/119218851371*123^(9/16) 3770057262857049 m001 BesselK(1,1)-ThueMorse^MasserGramain 3770057264213090 m001 1/Zeta(1/2)*ln(Khintchine)^2/sqrt(Pi) 3770057267461860 r005 Re(z^2+c),c=25/102+13/34*I,n=13 3770057271817858 r009 Im(z^3+c),c=-49/110+3/10*I,n=58 3770057273782792 a003 sin(Pi*6/101)/cos(Pi*39/116) 3770057286361785 r005 Im(z^2+c),c=-121/98+1/36*I,n=25 3770057286515167 m009 (3/2*Pi^2-1/2)/(3/10*Pi^2+5/6) 3770057291124624 r005 Re(z^2+c),c=-5/74+37/55*I,n=34 3770057294255472 l006 ln(149/6464) 3770057297166576 r005 Re(z^2+c),c=-57/110+3/56*I,n=34 3770057334116425 m001 1/GAMMA(23/24)/KhintchineLevy/exp(GAMMA(7/24)) 3770057342618885 a001 8/271443*9349^(26/49) 3770057352444103 a001 8/15127*15127^(10/49) 3770057364994144 a001 4/930249*64079^(30/49) 3770057366089680 a001 4/51841*39603^(18/49) 3770057381350488 m001 (sin(1/5*Pi)-Backhouse)/(Bloch+FeigenbaumC) 3770057414682822 r009 Re(z^3+c),c=-51/110+14/57*I,n=63 3770057415335002 r005 Im(z^2+c),c=29/122+8/27*I,n=41 3770057415908013 a001 4/51841*5778^(22/49) 3770057424313265 a007 Real Root Of 412*x^4-838*x^3+91*x^2-176*x+90 3770057429490358 r005 Im(z^2+c),c=-75/118+10/23*I,n=63 3770057430657872 m001 1/Ei(1)/exp(MinimumGamma)*GAMMA(7/24) 3770057433053444 r005 Re(z^2+c),c=-9/44+33/53*I,n=42 3770057441894612 r005 Im(z^2+c),c=13/110+7/12*I,n=24 3770057445048852 g002 Psi(4/7)+Psi(1/5)-Psi(11/12)-Psi(5/12) 3770057447271098 r009 Im(z^3+c),c=-49/110+3/10*I,n=59 3770057451705576 p001 sum(1/(316*n+27)/n/(8^n),n=1..infinity) 3770057465916136 m001 (exp(1/exp(1))-FellerTornier)/(Pi+Zeta(1,-1)) 3770057471056680 a003 sin(Pi*14/117)/sin(Pi*38/89) 3770057488006137 r009 Im(z^3+c),c=-27/34+8/61*I,n=2 3770057490429275 m001 exp(1/Pi)*FeigenbaumD+StolarskyHarborth 3770057498680285 a007 Real Root Of -26*x^4-991*x^3-414*x^2-300*x-796 3770057501038855 r005 Re(z^2+c),c=-16/31+5/52*I,n=41 3770057507193291 a001 199/102334155*17711^(7/13) 3770057508487626 a001 199/86267571272*4807526976^(7/13) 3770057508487626 a001 199/2504730781961*2504730781961^(7/13) 3770057508487630 a001 199/2971215073*9227465^(7/13) 3770057512317118 a007 Real Root Of -260*x^4-925*x^3+74*x^2-544*x-144 3770057515318066 r009 Re(z^3+c),c=-49/118+11/59*I,n=19 3770057527899513 a007 Real Root Of 90*x^4+393*x^3+405*x^2+843*x+299 3770057544159713 m001 ZetaP(4)^exp(1)*HardyLittlewoodC4^exp(1) 3770057553124604 r005 Im(z^2+c),c=13/50+16/61*I,n=13 3770057560721806 h001 (3/10*exp(1)+1/10)/(4/7*exp(1)+7/8) 3770057563368332 p001 sum((-1)^n/(288*n+265)/(512^n),n=0..infinity) 3770057570708497 m001 (Pi+exp(-1/2*Pi))/(GaussAGM+ZetaQ(2)) 3770057578670475 m005 (1/2*3^(1/2)+7/8)/(7/2+1/2*5^(1/2)) 3770057585363312 m001 exp(GAMMA(11/24))/OneNinth*sin(Pi/5) 3770057589586199 m001 (OneNinth+Sarnak)/(Zeta(3)-Magata) 3770057606488048 a007 Real Root Of -883*x^4-237*x^3-210*x^2+69*x+61 3770057626828898 m005 (3*gamma+4)/(3/4*Catalan+5/6) 3770057640486687 a002 5^(1/12)+5^(3/5) 3770057650291179 r009 Im(z^3+c),c=-49/110+3/10*I,n=52 3770057651686108 r005 Im(z^2+c),c=-1/54+14/29*I,n=31 3770057654087704 m001 FellerTornier*(ZetaR(2)-ln(2+3^(1/2))) 3770057655074441 h001 (7/10*exp(1)+7/8)/(8/9*exp(2)+4/5) 3770057659147022 r009 Im(z^3+c),c=-11/62+26/63*I,n=18 3770057660438309 a007 Real Root Of -826*x^4-180*x^3-839*x^2+291*x+236 3770057670860911 m001 (-FeigenbaumDelta+1)/(-GAMMA(13/24)+2/3) 3770057688811218 m001 FeigenbaumKappa^2/ln(Sierpinski)^2/cos(1) 3770057691955574 r005 Im(z^2+c),c=7/40+13/37*I,n=46 3770057693726243 b008 ArcCot[1-3*Sinh[1]] 3770057694267195 r009 Re(z^3+c),c=-51/110+14/57*I,n=55 3770057704476181 r005 Re(z^2+c),c=-31/30+9/110*I,n=24 3770057731759464 a007 Real Root Of 998*x^4-860*x^3+908*x^2-909*x-538 3770057737423504 r005 Re(z^2+c),c=-67/126+12/31*I,n=24 3770057744329391 m006 (5/6*Pi+1/5)/(5/6*Pi^2-3/4) 3770057744329391 m008 (5/6*Pi+1/5)/(5/6*Pi^2-3/4) 3770057744578074 m006 (1/6*ln(Pi)-2/5)/(3/Pi-2/5) 3770057773141476 m001 FellerTornier*BesselI(0,1)^TwinPrimes 3770057774118117 r005 Im(z^2+c),c=9/70+12/31*I,n=51 3770057777629117 r002 38th iterates of z^2 + 3770057786152587 m001 (MasserGramain+MertensB2)/(Pi+ln(2+3^(1/2))) 3770057789706839 b008 4-3*2^(3/7) 3770057806006836 r002 11th iterates of z^2 + 3770057813704267 b008 Sqrt[2]+(13*E)/15 3770057827792761 a007 Real Root Of 848*x^4-683*x^3+786*x^2+285*x-58 3770057829572895 a007 Real Root Of 715*x^4-451*x^3-277*x^2-265*x+149 3770057830057868 r005 Im(z^2+c),c=-19/16+8/41*I,n=16 3770057842809742 p004 log(34519/23677) 3770057843335287 r009 Im(z^3+c),c=-49/110+3/10*I,n=39 3770057877335242 a007 Real Root Of 309*x^4+953*x^3-685*x^2+230*x-754 3770057884526772 r002 3th iterates of z^2 + 3770057894114149 a001 3/8*75025^(23/56) 3770057897871615 b008 -9+E+14*Pi 3770057899647990 m009 (5/6*Psi(1,1/3)-3)/(32/5*Catalan+4/5*Pi^2+3/5) 3770057900665718 a001 844/13*21^(26/45) 3770057902369977 m001 GAMMA(11/12)*Trott2nd/ZetaP(4) 3770057935317580 l006 ln(4659/4838) 3770057946895993 r002 36th iterates of z^2 + 3770057950002247 a001 8/710647*2207^(37/49) 3770057952658221 a007 Real Root Of 180*x^4-274*x^3+382*x^2-685*x+215 3770057957625635 m001 Ei(1)*Sierpinski-GAMMA(5/6) 3770057968668124 r009 Im(z^3+c),c=-11/98+8/19*I,n=4 3770057969206426 m001 Salem/(MertensB1^Sierpinski) 3770057973182009 m004 75/Pi+(25*Pi)/6+Cos[Sqrt[5]*Pi] 3770057977198068 a007 Real Root Of -215*x^4+129*x^3-546*x^2+568*x+303 3770057982476827 r005 Re(z^2+c),c=-9/19+17/49*I,n=23 3770057993890980 r005 Im(z^2+c),c=-1/26+35/57*I,n=38 3770058002761472 r005 Im(z^2+c),c=7/78+17/41*I,n=40 3770058005387115 r005 Re(z^2+c),c=13/60+13/34*I,n=11 3770058014244686 a007 Real Root Of 250*x^4+816*x^3-619*x^2-736*x-756 3770058019275572 a001 7/433494437*2971215073^(1/4) 3770058019275572 a001 7/1134903170*139583862445^(1/4) 3770058019275572 a001 7/2971215073*6557470319842^(1/4) 3770058019275572 a001 7/1836311903*956722026041^(1/4) 3770058019275572 a001 7/701408733*20365011074^(1/4) 3770058019275572 a001 7/267914296*433494437^(1/4) 3770058019275572 a001 7/165580141*63245986^(1/4) 3770058019275574 a001 1/14619165*9227465^(1/4) 3770058019275676 a001 7/63245986*1346269^(1/4) 3770058019280459 a001 7/39088169*196418^(1/4) 3770058019505110 a001 7/24157817*28657^(1/4) 3770058023332250 m001 (5^(1/2)*Zeta(5)+BesselI(1,2))/Zeta(5) 3770058023332250 m001 (sqrt(5)*Zeta(5)+BesselI(1,2))/Zeta(5) 3770058030059025 a001 7/14930352*4181^(1/4) 3770058048337425 m001 (-BesselI(1,2)+ArtinRank2)/(exp(Pi)-ln(gamma)) 3770058054050202 r009 Re(z^3+c),c=-41/98+27/44*I,n=60 3770058060564401 m005 (1/2*2^(1/2)-3)/(9/10*Zeta(3)+5) 3770058077438253 m005 (31/28+1/4*5^(1/2))/(5/7*Zeta(3)-5/12) 3770058091035693 m005 (1/2*Zeta(3)+2)/(5*Zeta(3)+8/9) 3770058091701548 a003 -3/2+cos(1/8*Pi)+cos(3/10*Pi)+cos(8/21*Pi) 3770058101640012 r005 Im(z^2+c),c=13/126+15/37*I,n=27 3770058104054060 a007 Real Root Of -580*x^4+3*x^3-149*x^2+907*x+375 3770058108930868 a001 1926*317811^(39/50) 3770058122950001 a007 Real Root Of -247*x^4+752*x^3-672*x^2-87*x+108 3770058122986082 q001 1/2652479 3770058132248214 r005 Im(z^2+c),c=9/70+12/31*I,n=44 3770058132946513 a007 Real Root Of -130*x^4+425*x^3+258*x^2+945*x+345 3770058136689850 h001 (1/6*exp(2)+10/11)/(5/7*exp(2)+2/5) 3770058149873829 r005 Im(z^2+c),c=-15/29+17/29*I,n=49 3770058154124582 r002 38th iterates of z^2 + 3770058168423020 a003 sin(Pi*23/100)-sin(Pi*17/69) 3770058171811497 b008 3+Csc[Pi/109] 3770058187238025 a001 39603/2*4181^(48/53) 3770058194777550 r005 Im(z^2+c),c=7/40+13/37*I,n=51 3770058202192415 r005 Im(z^2+c),c=-17/110+29/52*I,n=58 3770058204447201 r005 Im(z^2+c),c=-1/32+25/51*I,n=20 3770058209300032 a001 29/8*3^(1/28) 3770058215287038 r002 35th iterates of z^2 + 3770058221039745 m001 (Lehmer+StolarskyHarborth)/(Pi-GAMMA(2/3)) 3770058222145838 m005 (1/3*3^(1/2)+3/5)/(3*Catalan+3/8) 3770058224503294 a007 Real Root Of 650*x^4-432*x^3+714*x^2-980*x+278 3770058226082077 m001 GAMMA(1/3)+Zeta(5)^BesselJZeros(0,1) 3770058227079222 m001 (-ln(2)+FeigenbaumAlpha)/(Shi(1)-gamma) 3770058229850049 m005 (1/3*2^(1/2)-2/9)/(1/8*3^(1/2)+4/9) 3770058248655259 m005 (1/2*Zeta(3)+8/9)/(1/8*Zeta(3)-6/11) 3770058255088562 r009 Im(z^3+c),c=-4/13+13/34*I,n=6 3770058257578915 a007 Real Root Of -248*x^4-864*x^3+389*x^2+427*x-116 3770058268512818 a007 Real Root Of 585*x^4-208*x^3+940*x^2-651*x-402 3770058275927186 r005 Im(z^2+c),c=6/23+14/51*I,n=17 3770058319176261 a007 Real Root Of -771*x^4-952*x^3+817*x^2+980*x-419 3770058324621779 r005 Im(z^2+c),c=3/38+19/45*I,n=21 3770058345739185 r005 Re(z^2+c),c=-53/118+19/41*I,n=58 3770058368400324 a007 Real Root Of -180*x^4-466*x^3+651*x^2-779*x-797 3770058393484636 r009 Im(z^3+c),c=-49/110+3/10*I,n=55 3770058397509312 a007 Real Root Of 98*x^4+299*x^3-82*x^2+694*x+6 3770058402589956 h001 (3/11*exp(1)+10/11)/(5/9*exp(2)+3/11) 3770058410089817 s002 sum(A105734[n]/((exp(n)+1)*n),n=1..infinity) 3770058410240851 s002 sum(A076839[n]/((exp(n)+1)*n),n=1..infinity) 3770058411790883 m004 (-20*Sqrt[5])/Pi+125*Pi-(5*Tan[Sqrt[5]*Pi])/Pi 3770058421464328 a003 cos(Pi*26/75)/cos(Pi*47/102) 3770058436608706 a007 Real Root Of -55*x^4+51*x^3+848*x^2-622*x-554 3770058445627937 m005 (4/5*Pi+2)/(1/6*exp(1)-1/3) 3770058448006552 r005 Re(z^2+c),c=-37/60+7/57*I,n=6 3770058453811647 s001 sum(exp(-3*Pi/5)^n*A106178[n],n=1..infinity) 3770058473869148 r005 Re(z^2+c),c=-39/82+19/45*I,n=34 3770058481392449 r005 Re(z^2+c),c=-59/114+3/44*I,n=30 3770058485925641 r005 Im(z^2+c),c=-115/114+1/26*I,n=14 3770058507685515 m001 exp(GAMMA(7/24))*OneNinth^2/sin(Pi/12)^2 3770058525868053 a001 7/9227465*610^(1/4) 3770058532215787 a001 1/1149851*47^(8/21) 3770058539577914 r005 Re(z^2+c),c=-9/20+21/46*I,n=54 3770058542276117 a007 Real Root Of 2*x^4+753*x^3-379*x^2+912*x-135 3770058545437142 r005 Re(z^2+c),c=9/29+3/47*I,n=52 3770058555286689 m001 (GAMMA(2/3)-gamma(2))/(Otter+Robbin) 3770058557684420 r005 Re(z^2+c),c=-5/7+42/101*I,n=2 3770058571189056 r005 Re(z^2+c),c=-53/102+1/56*I,n=22 3770058591810682 a007 Real Root Of 441*x^4-488*x^3+520*x^2-832*x+257 3770058594377660 r005 Re(z^2+c),c=9/34+2/47*I,n=34 3770058594721979 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-ln(gamma)-Salem 3770058599587358 h001 (8/11*exp(1)+6/7)/(10/11*exp(2)+4/5) 3770058599791242 r005 Im(z^2+c),c=9/70+12/31*I,n=55 3770058603658646 h001 (-exp(2)+7)/(-2*exp(4)+6) 3770058604335298 r005 Im(z^2+c),c=-17/110+29/52*I,n=61 3770058621044449 s001 sum(exp(-4*Pi/5)^n*A235173[n],n=1..infinity) 3770058639497787 l006 ln(115/4989) 3770058655134453 m001 (BesselI(0,2)+Niven)/(gamma-sin(1/5*Pi)) 3770058661167990 h001 (-3*exp(-1)-5)/(-8*exp(1/2)-3) 3770058670289717 a007 Real Root Of 134*x^4+403*x^3-524*x^2-700*x-667 3770058679717695 r005 Re(z^2+c),c=-9/14+45/212*I,n=4 3770058679911599 m005 (1/2*Zeta(3)+5/8)/(1/11*gamma+3/11) 3770058686303435 b008 19*ArcSinh[43]^2 3770058687155592 a007 Real Root Of -836*x^4+761*x^3+498*x^2+743*x+267 3770058693820569 a007 Real Root Of 448*x^4+232*x^3+119*x^2-696*x+224 3770058701692059 a001 3/17711*317811^(12/49) 3770058701918016 m005 (1/2*Pi+7/9)/(-9/35+1/7*5^(1/2)) 3770058706844498 r002 28th iterates of z^2 + 3770058707196411 r001 5i'th iterates of 2*x^2-1 of 3770058766962578 r009 Re(z^3+c),c=-19/42+13/56*I,n=34 3770058769272118 r005 Im(z^2+c),c=11/82+18/47*I,n=41 3770058773829851 m001 Sierpinski/Backhouse^2/exp(GAMMA(19/24)) 3770058790439536 r005 Im(z^2+c),c=9/70+12/31*I,n=50 3770058793777539 r005 Re(z^2+c),c=-55/106+1/37*I,n=29 3770058795860422 r002 18th iterates of z^2 + 3770058798688105 r005 Re(z^2+c),c=-19/40+17/50*I,n=15 3770058815779509 r002 7th iterates of z^2 + 3770058824164962 g006 2*Psi(1,2/5)-Psi(1,10/11)-Psi(1,1/7) 3770058824224109 a007 Real Root Of -307*x^4-953*x^3+969*x^2+598*x-565 3770058824340651 r005 Im(z^2+c),c=3/46+26/45*I,n=14 3770058837059518 r005 Re(z^2+c),c=-37/78+19/62*I,n=15 3770058843937092 r005 Im(z^2+c),c=9/70+12/31*I,n=54 3770058855147099 a007 Real Root Of -797*x^4-921*x^3-898*x^2+884*x-32 3770058861461874 r005 Im(z^2+c),c=9/70+12/31*I,n=59 3770058867004885 m001 (2*Pi/GAMMA(5/6)+MadelungNaCl)/(Magata-Porter) 3770058874822189 m001 (Totient-ZetaQ(3))/(Champernowne+Magata) 3770058896130694 m005 (1/2*3^(1/2)-4/7)/(3/8*5^(1/2)-11/12) 3770058903406813 r005 Im(z^2+c),c=1/110+7/15*I,n=44 3770058903856313 r005 Im(z^2+c),c=-53/74+9/58*I,n=46 3770058911380184 r005 Im(z^2+c),c=9/70+12/31*I,n=58 3770058913790238 a007 Real Root Of -100*x^4+673*x^3+158*x^2+561*x-268 3770058926656704 m001 (3^(1/2)+ReciprocalFibonacci)/(Totient+Trott) 3770058940209688 r009 Im(z^3+c),c=-45/118+18/53*I,n=15 3770058942642781 r005 Im(z^2+c),c=9/70+12/31*I,n=63 3770058944252998 b008 1+33*Pi*Sinh[2] 3770058944257904 m001 OneNinth^2/ln(LaplaceLimit)^2*GAMMA(1/24)^2 3770058949032410 r005 Im(z^2+c),c=9/70+12/31*I,n=62 3770058969646024 r002 20th iterates of z^2 + 3770058972322410 r009 Re(z^3+c),c=-37/64+16/51*I,n=36 3770058977682113 r005 Im(z^2+c),c=-139/106+1/42*I,n=62 3770058988447048 a007 Real Root Of -251*x^4-879*x^3+62*x^2-660*x+236 3770058993761946 h001 (3/11*exp(1)+11/12)/(1/8*exp(1)+1/10) 3770058995320247 r005 Im(z^2+c),c=9/70+12/31*I,n=64 3770058995597074 a005 (1/cos(7/94*Pi))^715 3770058998024251 r009 Re(z^3+c),c=-3/40+35/51*I,n=25 3770059019493172 r005 Im(z^2+c),c=-5/4+36/161*I,n=7 3770059019875549 p004 log(21529/14767) 3770059021099533 r005 Im(z^2+c),c=9/70+12/31*I,n=60 3770059024082638 m001 FeigenbaumKappa^2*Salem^2/ln(TreeGrowth2nd)^2 3770059027143210 r009 Im(z^3+c),c=-11/62+26/63*I,n=20 3770059032861787 r005 Im(z^2+c),c=-7/46+5/9*I,n=46 3770059040969871 r005 Im(z^2+c),c=9/70+12/31*I,n=61 3770059045586149 r009 Re(z^3+c),c=-65/126+9/29*I,n=55 3770059053690337 r005 Im(z^2+c),c=-139/106+1/42*I,n=58 3770059055967712 r009 Re(z^3+c),c=-51/110+14/57*I,n=64 3770059059190799 m001 BesselI(0,2)^(Conway/AlladiGrinstead) 3770059073499200 r005 Im(z^2+c),c=9/70+12/31*I,n=56 3770059077141989 m002 6-Cosh[Pi]+(5*Log[Pi])/Pi 3770059078117496 r005 Re(z^2+c),c=2/13+25/64*I,n=10 3770059083958443 r002 30th iterates of z^2 + 3770059105259873 r005 Im(z^2+c),c=9/70+12/31*I,n=48 3770059105856087 r005 Im(z^2+c),c=9/70+12/31*I,n=46 3770059146350456 m001 1/OneNinth*ln(TreeGrowth2nd)^2*BesselK(1,1) 3770059148152489 r005 Im(z^2+c),c=9/70+12/31*I,n=52 3770059150966992 p004 log(20663/14173) 3770059163544439 r002 28th iterates of z^2 + 3770059167212327 a007 Real Root Of -432*x^4-165*x^3+313*x^2+861*x+280 3770059169546113 r005 Im(z^2+c),c=1/110+7/15*I,n=47 3770059177038463 r009 Re(z^3+c),c=-51/110+14/57*I,n=61 3770059180602817 r002 18th iterates of z^2 + 3770059187120884 r005 Im(z^2+c),c=9/70+12/31*I,n=57 3770059187701252 m003 -3/8+(9*Sqrt[5])/16+6*Log[1/2+Sqrt[5]/2] 3770059191682054 r009 Re(z^3+c),c=-27/70+9/61*I,n=21 3770059193226283 m005 (1/2*exp(1)+4/7)/(6*Catalan-3/8) 3770059209386725 r005 Im(z^2+c),c=7/40+13/37*I,n=55 3770059211851807 a007 Real Root Of -329*x^4+557*x^3+322*x^2+764*x-357 3770059213722150 m001 (exp(Pi)+ln(Pi))/(Pi^(1/2)+FeigenbaumDelta) 3770059215666931 r002 4th iterates of z^2 + 3770059217651520 m001 KhintchineLevy^2*MertensB1^2*exp(Zeta(1,2)) 3770059218989009 r005 Re(z^2+c),c=-15/22+15/73*I,n=30 3770059220606144 m005 (1/2*Pi+5/7)/(1/7*Zeta(3)-1/9) 3770059227591832 r005 Re(z^2+c),c=-59/94+13/40*I,n=11 3770059229419553 p001 sum(1/(423*n+272)/(16^n),n=0..infinity) 3770059232089752 m001 (Champernowne+Gompertz)/(cos(1/5*Pi)-exp(1)) 3770059235074238 m005 (1/3*2^(1/2)+1/5)/(7/9*exp(1)-1/3) 3770059239888575 r009 Re(z^3+c),c=-51/110+14/57*I,n=57 3770059256449177 a007 Real Root Of 503*x^4-290*x^3+92*x^2-921*x-386 3770059261695940 a007 Real Root Of 137*x^4+379*x^3+369*x^2-483*x-217 3770059276112854 a007 Real Root Of -91*x^4-130*x^3+892*x^2+106*x-861 3770059276373427 m005 (1/2*Catalan-3/11)/(2/5*Catalan+1/8) 3770059283913493 a001 322/28657*6765^(7/51) 3770059286372747 r009 Im(z^3+c),c=-33/64+4/31*I,n=46 3770059296483671 m001 GAMMA(1/12)/BesselJ(1,1)/ln(2) 3770059327392238 m001 (Ei(1,1)-Bloch)/(DuboisRaymond-MertensB1) 3770059332114750 r002 7th iterates of z^2 + 3770059358869025 r009 Im(z^3+c),c=-11/62+26/63*I,n=23 3770059360580064 r005 Im(z^2+c),c=23/86+10/39*I,n=13 3770059365065955 a005 (1/cos(15/149*Pi))^524 3770059369589259 l006 ln(6641/9682) 3770059370395149 m001 Shi(1)/ErdosBorwein/KhinchinHarmonic 3770059372319599 r005 Im(z^2+c),c=-7/12+16/25*I,n=4 3770059382283019 r005 Re(z^2+c),c=-3/25+11/17*I,n=53 3770059387086518 s002 sum(A075817[n]/(exp(2*pi*n)-1),n=1..infinity) 3770059393401800 m005 (1/2*3^(1/2)-2/7)/(4/9*5^(1/2)+6/11) 3770059394326580 r009 Im(z^3+c),c=-11/62+26/63*I,n=25 3770059401619240 r009 Im(z^3+c),c=-11/62+26/63*I,n=28 3770059402527434 r009 Im(z^3+c),c=-11/62+26/63*I,n=30 3770059402685475 r009 Im(z^3+c),c=-11/62+26/63*I,n=33 3770059402708498 r009 Im(z^3+c),c=-11/62+26/63*I,n=35 3770059402711864 r009 Im(z^3+c),c=-11/62+26/63*I,n=38 3770059402712442 r009 Im(z^3+c),c=-11/62+26/63*I,n=40 3770059402712512 r009 Im(z^3+c),c=-11/62+26/63*I,n=43 3770059402712524 r009 Im(z^3+c),c=-11/62+26/63*I,n=41 3770059402712527 r009 Im(z^3+c),c=-11/62+26/63*I,n=45 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=48 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=46 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=50 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=53 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=51 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=55 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=56 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=58 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=60 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=61 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=63 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=64 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=62 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=59 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=57 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=54 3770059402712528 r009 Im(z^3+c),c=-11/62+26/63*I,n=52 3770059402712529 r009 Im(z^3+c),c=-11/62+26/63*I,n=49 3770059402712529 r009 Im(z^3+c),c=-11/62+26/63*I,n=47 3770059402712536 r009 Im(z^3+c),c=-11/62+26/63*I,n=44 3770059402712551 r009 Im(z^3+c),c=-11/62+26/63*I,n=42 3770059402712589 r009 Im(z^3+c),c=-11/62+26/63*I,n=36 3770059402712839 r009 Im(z^3+c),c=-11/62+26/63*I,n=39 3770059402713387 r009 Im(z^3+c),c=-11/62+26/63*I,n=37 3770059402725235 r009 Im(z^3+c),c=-11/62+26/63*I,n=31 3770059402725862 r009 Im(z^3+c),c=-11/62+26/63*I,n=34 3770059402744460 r009 Im(z^3+c),c=-11/62+26/63*I,n=32 3770059403280672 r009 Im(z^3+c),c=-11/62+26/63*I,n=29 3770059403666708 r009 Im(z^3+c),c=-11/62+26/63*I,n=26 3770059403872385 r009 Im(z^3+c),c=-11/62+26/63*I,n=27 3770059415752887 r005 Im(z^2+c),c=7/40+13/37*I,n=52 3770059426448143 m001 (Chi(1)-ln(5))/(exp(1/exp(1))+BesselK(1,1)) 3770059426767403 r009 Im(z^3+c),c=-11/62+26/63*I,n=24 3770059431576022 h005 exp(cos(Pi*7/45)/cos(Pi*11/41)) 3770059436442627 m001 (MertensB2+Salem)/(BesselK(0,1)-Zeta(1,-1)) 3770059442133830 r005 Im(z^2+c),c=7/40+13/37*I,n=56 3770059443565516 r009 Im(z^3+c),c=-11/62+26/63*I,n=22 3770059448135400 s002 sum(A075318[n]/(10^n+1),n=1..infinity) 3770059449166515 r009 Im(z^3+c),c=-37/106+1/48*I,n=4 3770059451626633 r005 Re(z^2+c),c=-37/110+34/63*I,n=18 3770059454412563 a001 2/139583862445*46368^(7/23) 3770059454519299 a001 2/4052739537881*2971215073^(7/23) 3770059460081348 r009 Im(z^3+c),c=-11/62+26/63*I,n=21 3770059470113322 r002 3th iterates of z^2 + 3770059482272468 m006 (ln(Pi)-1/2)/(1/3*Pi^2-5) 3770059490745049 m006 (1/4*exp(2*Pi)-1/3)/(2/5*ln(Pi)-4) 3770059492219671 r009 Im(z^3+c),c=-11/21+13/55*I,n=23 3770059497085669 r005 Re(z^2+c),c=-29/60+17/46*I,n=15 3770059500671412 r005 Re(z^2+c),c=-21/46+16/37*I,n=53 3770059508499153 s002 sum(A013704[n]/(exp(2*pi*n)+1),n=1..infinity) 3770059514765153 m001 (sin(1/12*Pi)*GaussAGM+Paris)/GaussAGM 3770059519203567 m001 GAMMA(7/12)+GaussAGM*Khinchin 3770059525402240 s002 sum(A267722[n]/(exp(n)+1),n=1..infinity) 3770059527883016 r005 Im(z^2+c),c=7/40+13/37*I,n=59 3770059530412019 a007 Real Root Of -147*x^4-352*x^3+587*x^2-654*x+26 3770059532395761 l006 ln(6344/9249) 3770059539229938 r005 Im(z^2+c),c=7/40+13/37*I,n=60 3770059558941284 r009 Im(z^3+c),c=-7/16+11/36*I,n=35 3770059559884269 r005 Re(z^2+c),c=-12/23+7/50*I,n=15 3770059570606771 a001 233/15127*7^(23/50) 3770059572199322 m003 -5+4*E^(-1/2-Sqrt[5]/2)+Cosh[1/2+Sqrt[5]/2]/6 3770059572693712 a007 Real Root Of -21*x^4-88*x^3+70*x^2+905*x-346 3770059586516491 a007 Real Root Of 720*x^4+5*x^3-424*x^2-959*x+407 3770059596088462 r005 Im(z^2+c),c=7/40+13/37*I,n=64 3770059596886616 m001 1/ln(log(1+sqrt(2)))^2/Salem/sqrt(2) 3770059607938413 m001 (-exp(1/exp(1))+GAMMA(5/6))/(Ei(1)-Shi(1)) 3770059607938413 m001 (GAMMA(5/6)-exp(1/exp(1)))/Chi(1) 3770059614230047 r005 Im(z^2+c),c=7/40+13/37*I,n=63 3770059614421874 a001 89/4*3^(12/25) 3770059615247725 m001 1/TreeGrowth2nd/Lehmer^2/ln(GAMMA(1/6)) 3770059621330524 r009 Re(z^3+c),c=-55/122+11/48*I,n=21 3770059624053235 m001 CareFree/Bloch*ln(sqrt(1+sqrt(3)))^2 3770059634140434 r009 Im(z^3+c),c=-25/42+24/53*I,n=16 3770059637539621 m001 (Zeta(1,2)+GlaisherKinkelin)/(MertensB1-Salem) 3770059639662769 a007 Real Root Of -303*x^4-204*x^3+237*x^2+993*x-391 3770059653139086 r005 Im(z^2+c),c=9/70+12/31*I,n=53 3770059659644774 r009 Im(z^3+c),c=-47/126+13/36*I,n=7 3770059659983535 a007 Real Root Of -175*x^4+211*x^3+782*x^2+414*x-275 3770059662155275 l006 ln(196/8503) 3770059663149829 r005 Im(z^2+c),c=-7/32+11/19*I,n=33 3770059670683573 a008 Real Root of x^4-x^3+10*x^2-128*x+192 3770059671291238 r005 Im(z^2+c),c=7/40+13/37*I,n=50 3770059678118113 r002 26th iterates of z^2 + 3770059680924451 r005 Im(z^2+c),c=7/40+13/37*I,n=61 3770059689189988 m001 1/Zeta(7)^2*GAMMA(5/24)^2/exp(cos(Pi/5))^2 3770059693704939 r005 Im(z^2+c),c=7/40+13/37*I,n=62 3770059703395780 m005 (1/3*Zeta(3)+2/9)/(5/11*exp(1)+5/12) 3770059709619922 a001 55/199*3^(13/46) 3770059711194828 l006 ln(6047/8816) 3770059711245094 r005 Re(z^2+c),c=-65/126+1/10*I,n=35 3770059712476210 b008 Erfc[1/2+ArcCsch[8]] 3770059746585670 r005 Im(z^2+c),c=-5/17+26/43*I,n=62 3770059757601174 r005 Im(z^2+c),c=17/106+21/58*I,n=18 3770059759796507 m005 (2/3*gamma+3/5)/(2/3*exp(1)+4/5) 3770059761673251 m005 (1/2*Zeta(3)-1/4)/(4/5*3^(1/2)-5/11) 3770059772403092 r005 Im(z^2+c),c=7/40+13/37*I,n=58 3770059782673354 h001 (1/8*exp(1)+7/12)/(2/3*exp(1)+7/11) 3770059783094607 r005 Re(z^2+c),c=19/106+16/35*I,n=19 3770059787609405 h001 (9/11*exp(2)+4/11)/(1/5*exp(2)+2/9) 3770059809519605 m001 ln(Pi)/Pi*MertensB2 3770059816101976 g006 Psi(1,2/11)+Psi(1,3/10)-Psi(1,8/9)-Psi(1,5/9) 3770059843859346 r009 Re(z^3+c),c=-17/94+35/53*I,n=6 3770059850260766 r005 Im(z^2+c),c=7/40+13/37*I,n=57 3770059853382864 r005 Re(z^2+c),c=19/78+1/60*I,n=6 3770059862156829 a001 439204/5*591286729879^(11/15) 3770059862170898 a001 17393796001/5*317811^(11/15) 3770059862176373 a001 87403803/5*433494437^(11/15) 3770059866180504 r005 Im(z^2+c),c=7/40+13/37*I,n=54 3770059866288178 h001 (7/11*exp(1)+1/5)/(7/11*exp(2)+5/12) 3770059881836316 r002 40th iterates of z^2 + 3770059908464612 l006 ln(5750/8383) 3770059908802726 a001 1/322*(1/2*5^(1/2)+1/2)^3*3^(23/24) 3770059909183373 m001 BesselJZeros(0,1)*LandauRamanujan+GAMMA(11/24) 3770059919206426 r005 Re(z^2+c),c=-17/14+25/188*I,n=32 3770059937532861 a001 370248451/2*6557470319842^(15/17) 3770059937532861 a001 505019158607/2*1836311903^(15/17) 3770059938774159 h001 (8/11*exp(1)+2/11)/(2/3*exp(2)+4/5) 3770059943678483 a007 Real Root Of 322*x^4+955*x^3-832*x^2+405*x-524 3770059944594883 r004 Im(z^2+c),c=-1/10+9/17*I,z(0)=I,n=44 3770059952233118 m001 (KhinchinHarmonic+Khinchin)/(ln(gamma)-Kac) 3770059960497527 a005 (1/sin(57/127*Pi))^989 3770059968678378 a001 13/47*2^(21/47) 3770059980942774 m001 (cos(1/5*Pi)-Gompertz)/(LaplaceLimit-Paris) 3770059981130108 a003 sin(Pi*7/102)/cos(Pi*40/83) 3770059986224940 r002 20th iterates of z^2 + 3770059992437418 m001 ArtinRank2*HardHexagonsEntropy-Gompertz 3770059996494412 p001 sum((-1)^n/(434*n+239)/(3^n),n=0..infinity) 3770060008429776 a007 Real Root Of -79*x^4-302*x^3-991*x^2-258*x+29 3770060010057741 r009 Re(z^3+c),c=-11/25+30/59*I,n=7 3770060015859118 r002 5th iterates of z^2 + 3770060019156365 h001 (-8*exp(1/3)+2)/(-6*exp(1)-8) 3770060025086709 a007 Real Root Of -572*x^4-427*x^3+893*x^2+691*x-353 3770060032072338 b008 ArcCosh[E^(5/72)] 3770060044554260 r005 Im(z^2+c),c=-1/31+28/57*I,n=28 3770060070329513 p004 log(32233/22109) 3770060078271729 h001 (4/9*exp(1)+1/10)/(5/11*exp(2)+1/9) 3770060088195020 r005 Im(z^2+c),c=7/38+21/61*I,n=21 3770060116441520 r005 Re(z^2+c),c=1/30+11/38*I,n=11 3770060119227132 r005 Re(z^2+c),c=-39/86+10/23*I,n=43 3770060126291075 a003 cos(Pi*17/61)-cos(Pi*22/53) 3770060127223160 l006 ln(5453/7950) 3770060136025543 a005 (1/cos(13/139*Pi))^556 3770060137781984 m001 FeigenbaumKappa*(Pi^(1/2))^KomornikLoreti 3770060137990991 a007 Real Root Of -903*x^4+482*x^3+31*x^2+191*x-84 3770060139174106 h001 (3/5*exp(1)+11/12)/(5/6*exp(2)+3/5) 3770060146883433 r005 Im(z^2+c),c=-3/74+24/55*I,n=5 3770060165115867 r005 Im(z^2+c),c=7/40+13/37*I,n=48 3770060178336516 m001 1/GAMMA(5/24)/exp(GAMMA(1/4))^2*GAMMA(7/12)^2 3770060179872584 a008 Real Root of x^4-x^3-19*x^2+15*x+71 3770060181616905 r005 Re(z^2+c),c=-4/7+53/85*I,n=6 3770060184313469 r009 Re(z^3+c),c=-43/94+13/58*I,n=13 3770060185865656 a003 sin(Pi*2/21)/cos(Pi*3/14) 3770060217977474 r005 Im(z^2+c),c=-71/58+29/63*I,n=3 3770060239845312 m005 (1/2*exp(1)+5/9)/(13/3+1/3*5^(1/2)) 3770060243598319 r005 Im(z^2+c),c=-4/27+21/38*I,n=43 3770060254947310 r002 61th iterates of z^2 + 3770060255158463 m001 (LaplaceLimit+ThueMorse)/(1+Si(Pi)) 3770060256515456 a008 Real Root of (2+4*x-3*x^2-4*x^4-2*x^5) 3770060282072830 r005 Re(z^2+c),c=-12/25+17/49*I,n=63 3770060298233855 r005 Re(z^2+c),c=-11/27+15/29*I,n=50 3770060305661284 r005 Im(z^2+c),c=-11/50+29/50*I,n=55 3770060310733759 a007 Real Root Of 51*x^4+123*x^3+814*x^2-493*x-296 3770060327982600 s001 sum(exp(-2*Pi)^n*A209010[n],n=1..infinity) 3770060332477451 a007 Real Root Of -845*x^4-213*x^3-488*x^2+801*x+377 3770060371183908 l006 ln(5156/7517) 3770060379328469 m005 (1/2*Zeta(3)+6)/(11/12*2^(1/2)+5/11) 3770060384924595 r005 Im(z^2+c),c=11/58+19/56*I,n=34 3770060391339034 a007 Real Root Of -947*x^4+738*x^3-848*x^2+577*x+23 3770060395939343 r009 Re(z^3+c),c=-13/27+20/63*I,n=12 3770060396056821 r009 Re(z^3+c),c=-12/25+3/13*I,n=13 3770060414844934 r009 Im(z^3+c),c=-11/62+26/63*I,n=19 3770060425273963 a007 Real Root Of -997*x^4-517*x^3+803*x^2+604*x-294 3770060428208246 r005 Im(z^2+c),c=7/40+13/37*I,n=53 3770060437036928 m001 2^(1/2)/(OneNinth^TreeGrowth2nd) 3770060441219765 m001 BesselI(0,2)*ReciprocalLucas-CareFree 3770060441765795 m009 (1/4*Psi(1,2/3)+3/5)/(1/3*Pi^2+1/3) 3770060454029533 r009 Re(z^3+c),c=-19/82+40/49*I,n=4 3770060462823200 r002 50th iterates of z^2 + 3770060463313025 r005 Im(z^2+c),c=-19/62+5/9*I,n=23 3770060465222971 r005 Re(z^2+c),c=-14/27+2/45*I,n=33 3770060465290187 a001 1/3009828*(1/2*5^(1/2)+1/2)^4*39603^(1/21) 3770060475412724 a007 Real Root Of 533*x^4-583*x^3+614*x^2-360*x-265 3770060491204952 v002 sum(1/(2^n*(9*n^2+36*n-30)),n=1..infinity) 3770060492832793 m001 1/Paris/exp(Khintchine)/GAMMA(2/3)^2 3770060508174332 r009 Im(z^3+c),c=-27/56+7/22*I,n=12 3770060510392002 q001 1433/3801 3770060525672316 m001 (Rabbit+Tetranacci)/(gamma(3)+ArtinRank2) 3770060526863726 m001 (BesselJ(1,1)+Artin)/(ArtinRank2+MinimumGamma) 3770060536396122 a007 Real Root Of -462*x^4+863*x^3+70*x^2+497*x+233 3770060537754000 a007 Real Root Of -744*x^4-888*x^3-651*x^2+573*x+276 3770060541891209 a003 cos(Pi*7/60)-sin(Pi*36/85) 3770060543748450 r005 Re(z^2+c),c=-33/64+3/35*I,n=11 3770060569446290 m008 (4*Pi^5-5/6)/(1/3*Pi^6+4) 3770060569988399 b008 14+Pi*Sinh[E] 3770060570843663 r002 22th iterates of z^2 + 3770060570964479 r005 Re(z^2+c),c=-14/27+1/23*I,n=38 3770060571581428 a007 Real Root Of -78*x^4+803*x^3+110*x^2+517*x-252 3770060575059656 h005 exp(cos(Pi*11/28)+sin(Pi*28/59)) 3770060598211657 h001 (1/6*exp(2)+5/8)/(7/11*exp(2)+2/9) 3770060601643533 r005 Im(z^2+c),c=45/122+5/33*I,n=55 3770060613093076 a007 Real Root Of -26*x^4-954*x^3+971*x^2-664*x-373 3770060617618213 a008 Real Root of x^4+5*x^2-104*x+119 3770060625003860 a007 Real Root Of -64*x^4-116*x^3+291*x^2-612*x+270 3770060644968211 l006 ln(4859/7084) 3770060645528073 r009 Im(z^3+c),c=-2/21+20/47*I,n=11 3770060666907675 a007 Real Root Of -74*x^4-346*x^3+62*x^2+973*x-804 3770060667155197 r005 Re(z^2+c),c=-35/58+9/44*I,n=13 3770060671828365 a007 Real Root Of 326*x^4+981*x^3-972*x^2+44*x+690 3770060686407047 r009 Re(z^3+c),c=-51/110+14/57*I,n=60 3770060694641660 r005 Im(z^2+c),c=-5/32+27/43*I,n=24 3770060698998936 a007 Real Root Of -64*x^4+275*x^3-874*x^2+559*x+351 3770060701319175 r009 Im(z^3+c),c=-49/110+3/10*I,n=51 3770060704621696 r005 Re(z^2+c),c=-25/52+11/32*I,n=57 3770060712923859 r002 48th iterates of z^2 + 3770060715330329 m009 (2/5*Psi(1,3/4)-4)/(5/6*Psi(1,1/3)-1/2) 3770060721462117 m006 (1/3*exp(Pi)-2/5)/(4/Pi+2/3) 3770060731665801 a007 Real Root Of 56*x^4-758*x^3-671*x^2-507*x+326 3770060739155297 r005 Re(z^2+c),c=-11/23+19/42*I,n=42 3770060748641401 m001 (3^(1/2)+gamma)/(Backhouse+FeigenbaumDelta) 3770060761944264 m001 (BesselI(0,1)-Chi(1))/(PlouffeB+TwinPrimes) 3770060763009703 r002 43th iterates of z^2 + 3770060780098742 r009 Im(z^3+c),c=-11/62+26/63*I,n=17 3770060787452125 m001 1/exp((2^(1/3)))/Conway/gamma 3770060793917339 m001 exp(1)^(Si(Pi)/HardHexagonsEntropy) 3770060793917339 m001 exp(Si(Pi)/HardHexagonsEntropy) 3770060795054190 r009 Re(z^3+c),c=-5/98+18/47*I,n=10 3770060799075809 r009 Im(z^3+c),c=-57/110+18/55*I,n=23 3770060806148236 a007 Real Root Of 303*x^4-124*x^3-67*x^2-689*x-263 3770060808218480 s002 sum(A005229[n]/(n^3*2^n+1),n=1..infinity) 3770060814764376 r005 Im(z^2+c),c=2/25+8/19*I,n=27 3770060816756703 b008 4-Sech[Catalan]/3 3770060819872426 r005 Im(z^2+c),c=-83/102+1/41*I,n=9 3770060837325221 m001 1/FeigenbaumD^2*Paris^2*exp(GAMMA(23/24)) 3770060852286382 m001 1/ln(BesselJ(1,1))^2*Artin^2/GAMMA(1/24)^2 3770060857736589 r002 8th iterates of z^2 + 3770060881990430 r005 Im(z^2+c),c=-115/114+1/26*I,n=13 3770060883025963 r005 Re(z^2+c),c=11/74+17/45*I,n=58 3770060884596190 s001 sum(exp(-2*Pi)^(n-1)*A181294[n],n=1..infinity) 3770060888266303 r005 Im(z^2+c),c=-63/122+26/51*I,n=52 3770060902052556 r004 Im(z^2+c),c=5/14+1/3*I,z(0)=exp(5/8*I*Pi),n=41 3770060919550125 m001 1/GAMMA(5/12)/ln(LandauRamanujan)/arctan(1/2) 3770060931394754 a001 305/161*18^(5/21) 3770060932024730 r009 Re(z^3+c),c=-61/98+36/55*I,n=3 3770060934301970 s001 sum(exp(-2*Pi)^(n-1)*A080643[n],n=1..infinity) 3770060934755189 a005 (1/cos(22/185*Pi))^83 3770060934961410 s002 sum(A264565[n]/(exp(2*pi*n)-1),n=1..infinity) 3770060940329185 s002 sum(A018985[n]/(exp(2*pi*n)-1),n=1..infinity) 3770060940513098 s002 sum(A018986[n]/(exp(2*pi*n)-1),n=1..infinity) 3770060942238254 r005 Re(z^2+c),c=-45/44+31/49*I,n=2 3770060954400878 l006 ln(4562/6651) 3770060959721254 r005 Re(z^2+c),c=-11/10+35/137*I,n=14 3770060962311852 r002 18th iterates of z^2 + 3770060966170863 a003 cos(Pi*6/65)*sin(Pi*13/101) 3770060975476777 s001 sum(exp(-2*Pi)^n*A032389[n],n=1..infinity) 3770060979852007 r005 Re(z^2+c),c=-27/56+23/61*I,n=29 3770060982098375 a007 Real Root Of -322*x^4+520*x^3-232*x^2+763*x+355 3770060984354026 s002 sum(A023609[n]/(n^3*10^n+1),n=1..infinity) 3770060984354159 r002 25th iterates of z^2 + 3770060995301953 r002 21th iterates of z^2 + 3770061033807315 s001 sum(exp(-2*Pi)^(n-1)*A106709[n],n=1..infinity) 3770061035312459 a007 Real Root Of -719*x^4+567*x^3+727*x^2+834*x+256 3770061042221132 r005 Im(z^2+c),c=-9/14+59/146*I,n=32 3770061048213953 r002 16th iterates of z^2 + 3770061058544460 s001 sum(exp(-2*Pi)^n*A221196[n],n=1..infinity) 3770061059054741 m001 ArtinRank2/GaussKuzminWirsing^2/ln(Zeta(9)) 3770061065956311 a001 4106118243/34*956722026041^(7/24) 3770061065956314 a001 119218851371/34*9227465^(7/24) 3770061073640195 r005 Im(z^2+c),c=-5/48+17/32*I,n=54 3770061077148749 g006 Psi(1,2/11)+Psi(1,1/3)-Psi(1,11/12)-Psi(1,6/7) 3770061093902984 a007 Real Root Of 830*x^4-383*x^3+71*x^2-121*x-93 3770061100444301 a007 Real Root Of 223*x^4+806*x^3-65*x^2+414*x+624 3770061108626813 r005 Im(z^2+c),c=9/70+12/31*I,n=49 3770061113332543 r005 Im(z^2+c),c=15/62+16/55*I,n=22 3770061114074603 l006 ln(81/3514) 3770061142555953 a007 Real Root Of -803*x^4+746*x^3-693*x^2-222*x+71 3770061144603532 m001 (-ln(gamma)+Pi^(1/2))/(BesselK(0,1)-Zeta(5)) 3770061152447308 r002 28th iterates of z^2 + 3770061152754828 r005 Re(z^2+c),c=-55/54+15/46*I,n=18 3770061162574475 a008 Real Root of x^4-2*x^3-24*x^2-9*x-2 3770061171455210 m005 (1/3*3^(1/2)+1/11)/(5/8*5^(1/2)+3/8) 3770061179090023 m005 (1/2*Pi+3/7)/(-43/60+1/12*5^(1/2)) 3770061183765772 a003 sin(Pi*9/83)/sin(Pi*26/75) 3770061189977544 m001 (ln(3)-gamma(2))/(BesselI(0,2)+TwinPrimes) 3770061192856468 m001 ZetaQ(4)^(FeigenbaumC*PlouffeB) 3770061201160228 r005 Re(z^2+c),c=-79/110+9/59*I,n=57 3770061203299504 r009 Im(z^3+c),c=-3/56+29/59*I,n=2 3770061209729356 s001 sum(exp(-2*Pi)^(n-1)*A006213[n],n=1..infinity) 3770061220212835 a007 Real Root Of 230*x^4+349*x^3+106*x^2-535*x+20 3770061226411944 h001 (6/11*exp(2)+1/4)/(1/9*exp(1)+5/6) 3770061227243100 m001 (cos(1/5*Pi)-ln(5))/(Zeta(1/2)-LaplaceLimit) 3770061230259412 a007 Real Root Of 166*x^4+420*x^3-619*x^2+468*x-467 3770061230526669 m005 (1/2*Pi+9/11)/(7/12*gamma+6) 3770061233555398 m001 (-HeathBrownMoroz+Sarnak)/(1+Catalan) 3770061234324293 s001 sum(exp(-2*Pi)^n*A191644[n],n=1..infinity) 3770061234324293 s001 sum(exp(-2*Pi)^n*A029706[n],n=1..infinity) 3770061234900043 m001 gamma/(Conway^ErdosBorwein) 3770061235649982 a003 sin(Pi*11/82)*sin(Pi*25/67) 3770061236398665 m005 (1/2*5^(1/2)-3/4)/(2/5*exp(1)-1/9) 3770061241340324 r005 Im(z^2+c),c=17/90+19/56*I,n=19 3770061250910693 m005 (1/3*exp(1)-3/7)/(59/66+1/6*5^(1/2)) 3770061270904960 r005 Re(z^2+c),c=-21/44+14/39*I,n=53 3770061278085789 q001 1292/3427 3770061286700532 r005 Re(z^2+c),c=-27/52+4/41*I,n=17 3770061290282991 r005 Re(z^2+c),c=-49/102+19/55*I,n=57 3770061299961388 r005 Re(z^2+c),c=-1/10+11/17*I,n=51 3770061306929196 l006 ln(4265/6218) 3770061315783059 a007 Real Root Of 118*x^4-533*x^3-947*x^2-547*x+367 3770061317400328 m001 (Zeta(1,2)+Salem)/(cos(1/5*Pi)-3^(1/3)) 3770061320843166 a001 521*(1/2*5^(1/2)+1/2)^17*3^(9/14) 3770061330807454 s002 sum(A192469[n]/(exp(2*pi*n)-1),n=1..infinity) 3770061338079773 m001 (GAMMA(19/24)-gamma)/(GaussAGM+RenyiParking) 3770061340210036 r005 Re(z^2+c),c=-19/26+5/114*I,n=16 3770061342546696 r005 Im(z^2+c),c=-65/126+24/49*I,n=16 3770061350716936 r005 Re(z^2+c),c=-17/38+18/35*I,n=21 3770061357448614 a007 Real Root Of -15*x^4-582*x^3-599*x^2+835*x-803 3770061362852693 m001 (MertensB2+Stephens)/(Zeta(1,-1)+Lehmer) 3770061372209602 r005 Im(z^2+c),c=29/110+10/37*I,n=45 3770061377416110 m005 (1/2*exp(1)-1/11)/(8/9*Pi+4/7) 3770061391064018 m009 (3/4*Psi(1,2/3)+1/5)/(3*Psi(1,3/4)-1) 3770061394808291 r005 Im(z^2+c),c=-1/25+32/59*I,n=16 3770061402868714 p004 log(24439/16763) 3770061405731522 s001 sum(exp(-Pi/4)^n*A112613[n],n=1..infinity) 3770061405899131 m008 (1/5*Pi^5-5)/(5*Pi-4/5) 3770061408264170 r002 17th iterates of z^2 + 3770061421577581 a005 (1/cos(5/141*Pi))^954 3770061431390585 a007 Real Root Of 672*x^4-958*x^3-425*x^2-42*x+114 3770061438019160 r005 Im(z^2+c),c=-5/38+6/11*I,n=58 3770061457381520 m001 (-GAMMA(2/3)+PlouffeB)/(2^(1/2)+Catalan) 3770061461267153 m008 (3/5*Pi^6+2/5)/(5*Pi^5+1) 3770061461946907 r005 Im(z^2+c),c=-11/16+11/50*I,n=49 3770061467752255 r005 Re(z^2+c),c=25/62+17/60*I,n=3 3770061476880366 r005 Re(z^2+c),c=-37/98+28/51*I,n=49 3770061482915930 r005 Re(z^2+c),c=-19/23+11/60*I,n=52 3770061498102868 m001 (Catalan-Lehmer)/(-MertensB3+Weierstrass) 3770061503914605 m001 (ln(2)-Zeta(1,-1))/(Zeta(1,2)-Totient) 3770061504805996 h001 (-4*exp(3)+1)/(-2*exp(2/3)+6) 3770061509022735 a007 Real Root Of -235*x^4-882*x^3+22*x^2+125*x+371 3770061517460935 r005 Im(z^2+c),c=-11/14+25/136*I,n=9 3770061522562620 r009 Re(z^3+c),c=-33/86+30/49*I,n=27 3770061522742841 r002 36th iterates of z^2 + 3770061526671568 m008 (1/6*Pi+2/5)/(4/5*Pi^5+1/6) 3770061526982928 s002 sum(A128656[n]/(exp(2*pi*n)-1),n=1..infinity) 3770061534240000 r005 Im(z^2+c),c=11/58+21/62*I,n=19 3770061539560155 r002 28th iterates of z^2 + 3770061539560155 r002 28th iterates of z^2 + 3770061542505183 r005 Im(z^2+c),c=9/70+12/31*I,n=42 3770061542847292 a001 21/1364*521^(51/58) 3770061554433674 m005 (-7/12+1/4*5^(1/2))/(2*Pi+1/6) 3770061574759310 r004 Re(z^2+c),c=-13/20*I,z(0)=exp(5/12*I*Pi),n=3 3770061576137476 m002 -6-E^Pi-Sinh[Pi]+3*Tanh[Pi] 3770061578138713 s002 sum(A208044[n]/(exp(2*pi*n)-1),n=1..infinity) 3770061583441176 a007 Real Root Of -512*x^4+775*x^3+15*x^2+815*x+357 3770061605486997 r005 Re(z^2+c),c=-29/86+15/26*I,n=58 3770061608439280 r005 Im(z^2+c),c=-9/14+7/100*I,n=44 3770061614115044 g001 GAMMA(7/10,41/49) 3770061614352348 r005 Re(z^2+c),c=-51/98+6/41*I,n=6 3770061628973377 l006 ln(5596/5811) 3770061629614395 m009 (8/5*Catalan+1/5*Pi^2+1/2)/(1/6*Pi^2-3/5) 3770061649363247 m001 (Artin-HeathBrownMoroz)/(Stephens+ThueMorse) 3770061660749101 m005 (1/3*Catalan+1/9)/(1/7*3^(1/2)+6/7) 3770061660965797 r009 Re(z^3+c),c=-11/25+12/53*I,n=11 3770061678189451 a007 Real Root Of 784*x^4-352*x^3-242*x^2-970*x-366 3770061682158415 h001 (-5*exp(7)+1)/(-exp(5)+3) 3770061685687439 a007 Real Root Of -753*x^4-842*x^3-632*x^2+849*x+380 3770061693471673 r009 Re(z^3+c),c=-57/118+25/57*I,n=20 3770061699668414 r005 Im(z^2+c),c=-15/44+5/9*I,n=30 3770061700375343 s002 sum(A104033[n]/((2*n)!),n=1..infinity) 3770061712230135 l006 ln(3968/5785) 3770061728778153 r005 Re(z^2+c),c=-25/52+17/49*I,n=36 3770061747379695 r009 Im(z^3+c),c=-25/82+17/45*I,n=4 3770061754008139 a001 7/41*4^(4/7) 3770061758260835 m005 (1/2*Zeta(3)-1/9)/(4*Pi+3/7) 3770061769400156 r005 Re(z^2+c),c=-13/27+16/47*I,n=64 3770061775406417 h001 (3/7*exp(2)+3/4)/(1/10*exp(2)+3/10) 3770061791617488 m005 (1/2*Catalan-3)/(3/10*2^(1/2)+1/4) 3770061801628328 s002 sum(A012917[n]/(exp(2*pi*n)-1),n=1..infinity) 3770061809663065 m005 (1/2*Catalan+5/8)/(5/8*Pi+10/11) 3770061812485257 b008 Pi^(-1)+7*SinIntegral[1/2] 3770061817608449 a007 Real Root Of -22*x^4-832*x^3-88*x^2+363*x+170 3770061819723660 r005 Re(z^2+c),c=-7/15+21/55*I,n=30 3770061840483131 r002 14th iterates of z^2 + 3770061854753322 r002 50th iterates of z^2 + 3770061855148862 a003 2*cos(7/18*Pi)+cos(2/9*Pi)-2*cos(2/15*Pi) 3770061877079659 m001 (Magata+Mills)/(2^(1/3)+gamma(2)) 3770061878731694 s002 sum(A141147[n]/(exp(2*pi*n)-1),n=1..infinity) 3770061891971976 r004 Re(z^2+c),c=-55/46-7/22*I,z(0)=-1,n=19 3770061909949936 r002 26th iterates of z^2 + 3770061912343337 m005 (1/2*gamma-5/11)/(2*gamma-5/7) 3770061929842705 a007 Real Root Of 632*x^4+140*x^3+427*x^2-915*x+264 3770061939131161 r005 Im(z^2+c),c=-77/90+14/61*I,n=33 3770061942792674 r005 Im(z^2+c),c=3/19+33/59*I,n=58 3770061943542756 m001 (gamma(2)+FeigenbaumKappa)/(2^(1/2)-Shi(1)) 3770061948603287 r005 Im(z^2+c),c=-27/118+43/62*I,n=21 3770061949818091 r009 Im(z^3+c),c=-49/110+3/10*I,n=48 3770061966942251 m004 -6+(5*Pi)/2+Tan[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3770061969383798 a007 Real Root Of -173*x^4-541*x^3+293*x^2-425*x+193 3770061976960745 a007 Real Root Of -195*x^4-883*x^3-374*x^2+904*x+802 3770061993939920 a003 cos(Pi*16/105)*cos(Pi*40/111) 3770062009874427 r005 Re(z^2+c),c=23/74+4/59*I,n=42 3770062010187044 r005 Im(z^2+c),c=-13/54+31/49*I,n=64 3770062031290630 s002 sum(A201374[n]/(exp(2*pi*n)-1),n=1..infinity) 3770062031890939 s002 sum(A120928[n]/(exp(2*pi*n)-1),n=1..infinity) 3770062033053190 r005 Re(z^2+c),c=4/11+6/23*I,n=19 3770062038817646 r005 Im(z^2+c),c=-139/106+1/42*I,n=50 3770062040393758 a007 Real Root Of 267*x^4+958*x^3-391*x^2-814*x-116 3770062042769186 a001 55/103682*76^(24/53) 3770062043221426 r005 Im(z^2+c),c=-15/38+31/63*I,n=11 3770062044269174 a001 1346269/322*123^(29/31) 3770062085160362 a001 123/34*5^(1/39) 3770062099745490 m004 -5+(5*Pi)/2+Tan[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3770062100900797 m001 1/LaplaceLimit^2/Backhouse*exp(BesselJ(1,1))^2 3770062108447092 a003 cos(Pi*6/77)-cos(Pi*14/47) 3770062127589608 p004 log(35839/34513) 3770062132862171 h001 (1/2*exp(1)+2/9)/(1/2*exp(2)+1/2) 3770062141598570 r005 Re(z^2+c),c=-33/64+5/48*I,n=38 3770062141616694 r002 14th iterates of z^2 + 3770062147055559 r009 Re(z^3+c),c=-27/70+9/61*I,n=28 3770062152119800 r005 Im(z^2+c),c=7/40+13/37*I,n=49 3770062163598421 m001 (Rabbit+ReciprocalFibonacci)/(Kac-Niven) 3770062183112300 l006 ln(3671/5352) 3770062183808845 r009 Im(z^3+c),c=-19/74+20/51*I,n=14 3770062189592820 p001 sum((-1)^n/(615*n+259)/(12^n),n=0..infinity) 3770062192775379 r005 Re(z^2+c),c=3/8+14/41*I,n=6 3770062192824899 r005 Re(z^2+c),c=41/106+15/56*I,n=3 3770062192975362 r005 Re(z^2+c),c=-2/17+43/54*I,n=6 3770062198900022 r002 54th iterates of z^2 + 3770062221824082 r005 Re(z^2+c),c=-11/20+9/22*I,n=33 3770062224725250 r009 Re(z^3+c),c=-27/70+9/61*I,n=27 3770062233868326 q001 1151/3053 3770062242713838 m001 (Gompertz-Psi(2,1/3))/(Porter+Trott) 3770062252712325 r009 Im(z^3+c),c=-2/11+7/17*I,n=11 3770062267668067 s001 sum(exp(-Pi/4)^(n-1)*A196146[n],n=1..infinity) 3770062286883739 r009 Re(z^3+c),c=-5/14+4/35*I,n=4 3770062293157336 r002 24th iterates of z^2 + 3770062297061036 r002 18th iterates of z^2 + 3770062300248251 r005 Re(z^2+c),c=-51/106+23/63*I,n=29 3770062332174660 a007 Real Root Of -407*x^4+587*x^3+82*x^2+430*x-197 3770062335020544 m001 (-RenyiParking+Robbin)/(BesselJ(1,1)-exp(1)) 3770062347806150 m005 (1/3*exp(1)-1/5)/(13/15+9/20*5^(1/2)) 3770062351778594 m001 Kolakoski/(exp(1/exp(1))+LaplaceLimit) 3770062360295154 m005 (1/3*5^(1/2)-2/9)/(11/12*Zeta(3)+2/7) 3770062362055335 a007 Real Root Of -73*x^4+375*x^3+564*x^2+670*x+194 3770062367439968 a007 Real Root Of 150*x^4-640*x^3+515*x^2-362*x-247 3770062379512347 r005 Re(z^2+c),c=-27/50+15/52*I,n=14 3770062384037395 a001 144/199*1364^(13/15) 3770062392766750 a003 sin(Pi*1/83)*sin(Pi*43/91) 3770062393346439 r009 Re(z^3+c),c=-19/30+17/27*I,n=8 3770062403230214 r005 Re(z^2+c),c=-39/82+15/41*I,n=63 3770062410211262 p001 sum((-1)^n/(401*n+261)/(24^n),n=0..infinity) 3770062420572624 r005 Im(z^2+c),c=-27/23+3/61*I,n=60 3770062428022439 r005 Im(z^2+c),c=-5/26+29/50*I,n=35 3770062474946797 r002 17th iterates of z^2 + 3770062475681245 l006 ln(209/9067) 3770062481213830 r005 Im(z^2+c),c=9/29+3/58*I,n=20 3770062485848835 r009 Im(z^3+c),c=-53/118+10/41*I,n=2 3770062503290622 b008 11*Pi*SinIntegral[(3*Pi)/8] 3770062504980528 r005 Re(z^2+c),c=-33/70+19/51*I,n=35 3770062514294617 r009 Im(z^3+c),c=-17/42+16/49*I,n=32 3770062518698573 r009 Im(z^3+c),c=-11/62+26/63*I,n=16 3770062528355384 r002 25th iterates of z^2 + 3770062529414988 r009 Re(z^3+c),c=-51/110+14/57*I,n=51 3770062561704960 r005 Re(z^2+c),c=-49/106+17/49*I,n=18 3770062568448557 r005 Re(z^2+c),c=-5/14+19/37*I,n=17 3770062587205425 a007 Real Root Of -269*x^4-981*x^3+295*x^2+823*x+686 3770062601366324 r005 Im(z^2+c),c=-13/90+21/38*I,n=36 3770062609108436 v002 sum(1/(3^n+(18*n^2-28*n+71)),n=1..infinity) 3770062609972992 r005 Im(z^2+c),c=-115/114+1/26*I,n=11 3770062610855069 m005 (-1/6+1/6*5^(1/2))/(1/3*5^(1/2)-4/5) 3770062621966446 a003 cos(Pi*24/113)*cos(Pi*31/91) 3770062625840491 a007 Real Root Of -779*x^4-481*x^3+96*x^2+806*x-276 3770062627391047 r005 Im(z^2+c),c=1/86+20/43*I,n=50 3770062640454825 r009 Re(z^3+c),c=-27/70+9/61*I,n=29 3770062643372696 a007 Real Root Of 190*x^4+893*x^3+423*x^2-941*x-92 3770062645366150 m001 (Zeta(3)+exp(1/Pi))/(exp(-1/2*Pi)+PlouffeB) 3770062678273884 h001 (3/5*exp(1)+1/7)/(5/9*exp(2)+3/5) 3770062691135568 m001 (cos(1)+GAMMA(11/12))/(Trott+ThueMorse) 3770062718489941 a007 Real Root Of -148*x^4-520*x^3+120*x^2-174*x-327 3770062720381240 r005 Im(z^2+c),c=-15/52+19/36*I,n=7 3770062723978220 r009 Re(z^3+c),c=-35/74+8/27*I,n=13 3770062730757678 r005 Re(z^2+c),c=31/106+2/33*I,n=38 3770062736894261 l006 ln(3374/4919) 3770062739028189 r009 Re(z^3+c),c=-27/70+9/61*I,n=33 3770062739589480 a007 Real Root Of -92*x^4-491*x^3-540*x^2+116*x+388 3770062745770799 a007 Real Root Of -110*x^4+525*x^3-767*x^2+625*x+375 3770062752056236 r009 Re(z^3+c),c=-27/70+9/61*I,n=34 3770062752928483 h001 (3/4*exp(1)+2/11)/(7/9*exp(2)+1/7) 3770062767103222 a007 Real Root Of 359*x^4-561*x^3-875*x^2-660*x+396 3770062774107665 r009 Re(z^3+c),c=-27/70+9/61*I,n=39 3770062774656234 r005 Im(z^2+c),c=-139/106+1/42*I,n=54 3770062775274268 r009 Re(z^3+c),c=-27/70+9/61*I,n=38 3770062775280443 r009 Re(z^3+c),c=-27/70+9/61*I,n=40 3770062775934774 r009 Re(z^3+c),c=-27/70+9/61*I,n=44 3770062775934963 r009 Re(z^3+c),c=-27/70+9/61*I,n=45 3770062776003715 r009 Re(z^3+c),c=-27/70+9/61*I,n=46 3770062776012741 r009 Re(z^3+c),c=-27/70+9/61*I,n=50 3770062776014902 r009 Re(z^3+c),c=-27/70+9/61*I,n=51 3770062776017690 r009 Re(z^3+c),c=-27/70+9/61*I,n=56 3770062776017815 r009 Re(z^3+c),c=-27/70+9/61*I,n=55 3770062776017860 r009 Re(z^3+c),c=-27/70+9/61*I,n=57 3770062776017936 r009 Re(z^3+c),c=-27/70+9/61*I,n=61 3770062776017938 r009 Re(z^3+c),c=-27/70+9/61*I,n=62 3770062776017947 r009 Re(z^3+c),c=-27/70+9/61*I,n=63 3770062776017952 r009 Re(z^3+c),c=-27/70+9/61*I,n=64 3770062776017961 r009 Re(z^3+c),c=-27/70+9/61*I,n=60 3770062776017993 r009 Re(z^3+c),c=-27/70+9/61*I,n=58 3770062776018003 r009 Re(z^3+c),c=-27/70+9/61*I,n=59 3770062776018180 r009 Re(z^3+c),c=-27/70+9/61*I,n=52 3770062776018488 r009 Re(z^3+c),c=-27/70+9/61*I,n=54 3770062776018883 r009 Re(z^3+c),c=-27/70+9/61*I,n=49 3770062776019136 r009 Re(z^3+c),c=-27/70+9/61*I,n=53 3770062776034220 r009 Re(z^3+c),c=-27/70+9/61*I,n=48 3770062776039562 r009 Re(z^3+c),c=-27/70+9/61*I,n=47 3770062776130912 r009 Re(z^3+c),c=-27/70+9/61*I,n=43 3770062776227151 r002 7th iterates of z^2 + 3770062776301375 r009 Re(z^3+c),c=-27/70+9/61*I,n=41 3770062776424142 r009 Re(z^3+c),c=-27/70+9/61*I,n=42 3770062776449301 r009 Re(z^3+c),c=-27/70+9/61*I,n=35 3770062778181701 h001 (6/7*exp(2)+4/7)/(1/6*exp(2)+3/5) 3770062780365670 r009 Re(z^3+c),c=-27/70+9/61*I,n=37 3770062784630562 r009 Re(z^3+c),c=-27/70+9/61*I,n=36 3770062789275427 r009 Re(z^3+c),c=-27/70+9/61*I,n=32 3770062805439927 a007 Real Root Of 22*x^4+15*x^3+528*x^2-770*x+214 3770062814360738 r009 Re(z^3+c),c=-43/90+16/61*I,n=49 3770062833233299 m005 (2+5/2*5^(1/2))/(4/5*Pi-1/2) 3770062844522590 r005 Im(z^2+c),c=7/34+13/40*I,n=25 3770062864886659 a007 Real Root Of 169*x^4-137*x^3+534*x^2-359*x-222 3770062884399195 r005 Im(z^2+c),c=-13/94+6/11*I,n=5 3770062888593087 m005 (1/2*exp(1)+5/6)/(3/10*exp(1)+5) 3770062900587256 r005 Re(z^2+c),c=-57/110+2/37*I,n=38 3770062901477915 r009 Re(z^3+c),c=-27/70+9/61*I,n=31 3770062910822795 m001 (BesselI(1,1)-Backhouse)/(Lehmer-Otter) 3770062925363189 r009 Re(z^3+c),c=-27/70+9/61*I,n=30 3770062925376682 r005 Im(z^2+c),c=-9/58+19/34*I,n=53 3770062936525657 r002 50i'th iterates of 2*x/(1-x^2) of 3770062948011948 r008 a(0)=0,K{-n^6,7+15*n+48*n^2-44*n^3} 3770062958305479 m001 (exp(-1/2*Pi)+Lehmer)/(MinimumGamma+Robbin) 3770062968899628 r005 Re(z^2+c),c=-14/27+2/47*I,n=26 3770062972694993 a001 119218851371/2*6557470319842^(13/17) 3770062973963575 r002 36th iterates of z^2 + 3770062976317627 m001 1/exp(Salem)*Kolakoski^2*BesselJ(1,1)^2 3770062979994242 s002 sum(A288367[n]/((2^n+1)/n),n=1..infinity) 3770062980556187 a007 Real Root Of 952*x^4-145*x^3+907*x^2+395*x-7 3770062997375540 r002 31th iterates of z^2 + 3770063008610359 m001 (ln(3)-GAMMA(11/12))/(MertensB2+OneNinth) 3770063010022473 r002 28th iterates of z^2 + 3770063016109160 a007 Real Root Of 794*x^4+712*x^3+612*x^2-873*x-394 3770063018120952 m001 (OneNinth+ThueMorse)/(Conway-FeigenbaumD) 3770063032655351 r009 Im(z^3+c),c=-15/29+9/55*I,n=34 3770063037991840 r002 55th iterates of z^2 + 3770063039233348 b008 ArcSech[ArcCoth[19+E]] 3770063047423686 m001 GAMMA(17/24)*PrimesInBinary/Riemann1stZero 3770063052028890 l006 ln(6451/9405) 3770063069002174 r005 Re(z^2+c),c=17/48+11/41*I,n=7 3770063073751262 m001 HeathBrownMoroz^Zeta(1,-1)/Kolakoski 3770063078478579 r005 Im(z^2+c),c=-1/114+1/26*I,n=6 3770063089086274 m001 exp(MertensB1)/CopelandErdos/MinimumGamma 3770063102057209 a001 46/141*1597^(1/51) 3770063103025770 r002 27th iterates of z^2 + 3770063109260237 m001 1/ln(RenyiParking)/CopelandErdos*Sierpinski 3770063109687793 r005 Im(z^2+c),c=-7/6+58/173*I,n=4 3770063120071380 m001 (-Landau+Sierpinski)/(Psi(2,1/3)+cos(1/12*Pi)) 3770063121593457 r005 Re(z^2+c),c=-65/74+8/31*I,n=15 3770063133965485 m001 (MertensB1+ZetaQ(2))/(3^(1/2)-Psi(1,1/3)) 3770063147282827 r009 Re(z^3+c),c=-61/126+17/63*I,n=54 3770063154585814 r005 Im(z^2+c),c=-1/114+1/26*I,n=7 3770063156508651 m001 (FibonacciFactorial+Paris)/(Pi+Artin) 3770063158740882 a001 11/7778742049*987^(10/21) 3770063160546067 m005 (1/2*exp(1)+4/9)/(1/8*exp(1)-9/11) 3770063161976275 r005 Im(z^2+c),c=-115/114+1/26*I,n=12 3770063169107861 m005 (1/2*Catalan+1/6)/(7/12*Catalan-7/10) 3770063170144483 r005 Im(z^2+c),c=-115/114+1/26*I,n=20 3770063177415452 r005 Im(z^2+c),c=-115/114+1/26*I,n=19 3770063183656831 r005 Im(z^2+c),c=-115/114+1/26*I,n=22 3770063183768731 r002 34th iterates of z^2 + 3770063184362351 r005 Im(z^2+c),c=-115/114+1/26*I,n=21 3770063184369191 r002 33th iterates of z^2 + 3770063184937935 r005 Im(z^2+c),c=-1/114+1/26*I,n=10 3770063184942320 r005 Im(z^2+c),c=-115/114+1/26*I,n=28 3770063184948158 r005 Im(z^2+c),c=-115/114+1/26*I,n=27 3770063184950668 r002 40th iterates of z^2 + 3770063184952173 r002 39th iterates of z^2 + 3770063184952412 r005 Im(z^2+c),c=-115/114+1/26*I,n=25 3770063184953343 r002 42th iterates of z^2 + 3770063184953570 r002 41th iterates of z^2 + 3770063184953734 r005 Im(z^2+c),c=-115/114+1/26*I,n=34 3770063184953743 r005 Im(z^2+c),c=-1/114+1/26*I,n=11 3770063184953752 r005 Im(z^2+c),c=-115/114+1/26*I,n=33 3770063184953766 r005 Im(z^2+c),c=-1/114+1/26*I,n=13 3770063184953767 r005 Im(z^2+c),c=-115/114+1/26*I,n=36 3770063184953767 r002 48th iterates of z^2 + 3770063184953769 r005 Im(z^2+c),c=-115/114+1/26*I,n=35 3770063184953769 r002 47th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=14 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=42 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=41 3770063184953770 r002 54th iterates of z^2 + 3770063184953770 r002 53th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=39 3770063184953770 r002 56th iterates of z^2 + 3770063184953770 r002 55th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=17 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=48 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=47 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=50 3770063184953770 r002 62th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=49 3770063184953770 r002 61th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=20 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=56 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=55 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=53 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=21 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=62 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=61 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=64 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=63 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=24 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=27 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=28 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=30 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=31 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=34 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=35 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=37 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=38 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=39 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=40 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=41 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=42 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=43 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=44 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=45 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=46 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=47 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=48 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=49 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=50 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=51 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=52 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=53 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=54 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=36 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=33 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=32 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=29 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=26 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=25 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=23 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=59 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=22 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=54 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=60 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=57 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=58 3770063184953770 r002 63th iterates of z^2 + 3770063184953770 r002 64th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=51 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=19 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=52 3770063184953770 r002 59th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=18 3770063184953770 r002 60th iterates of z^2 + 3770063184953770 r002 57th iterates of z^2 + 3770063184953770 r002 58th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=45 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=40 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=46 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=43 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=16 3770063184953770 r005 Im(z^2+c),c=-115/114+1/26*I,n=44 3770063184953770 r002 51th iterates of z^2 + 3770063184953770 r005 Im(z^2+c),c=-1/114+1/26*I,n=15 3770063184953770 r002 52th iterates of z^2 + 3770063184953770 r002 49th iterates of z^2 + 3770063184953770 r002 50th iterates of z^2 + 3770063184953771 r005 Im(z^2+c),c=-115/114+1/26*I,n=37 3770063184953771 r005 Im(z^2+c),c=-115/114+1/26*I,n=38 3770063184953771 r002 45th iterates of z^2 + 3770063184953773 r002 46th iterates of z^2 + 3770063184953800 r005 Im(z^2+c),c=-115/114+1/26*I,n=26 3770063184953824 r002 43th iterates of z^2 + 3770063184953868 r005 Im(z^2+c),c=-1/114+1/26*I,n=12 3770063184953877 r002 44th iterates of z^2 + 3770063184953880 r005 Im(z^2+c),c=-115/114+1/26*I,n=31 3770063184953999 r005 Im(z^2+c),c=-115/114+1/26*I,n=32 3770063184954198 r005 Im(z^2+c),c=-115/114+1/26*I,n=29 3770063184954573 r005 Im(z^2+c),c=-115/114+1/26*I,n=30 3770063184966302 r002 37th iterates of z^2 + 3770063184979654 r002 38th iterates of z^2 + 3770063184982612 r002 35th iterates of z^2 + 3770063185005398 r002 36th iterates of z^2 + 3770063185063126 r005 Im(z^2+c),c=-1/114+1/26*I,n=9 3770063185182976 r005 Im(z^2+c),c=-115/114+1/26*I,n=23 3770063185413532 r005 Im(z^2+c),c=-115/114+1/26*I,n=24 3770063185442988 r002 31th iterates of z^2 + 3770063185988875 m001 exp(1/2)+Lehmer+GAMMA(7/12) 3770063186220175 r002 32th iterates of z^2 + 3770063186828316 r005 Im(z^2+c),c=-1/114+1/26*I,n=8 3770063200195142 m001 GAMMA(5/6)^Psi(1,1/3)*GAMMA(5/6)^Thue 3770063207052265 r002 29th iterates of z^2 + 3770063217472166 r005 Im(z^2+c),c=21/106+26/51*I,n=11 3770063228976977 r002 30th iterates of z^2 + 3770063229951091 r005 Im(z^2+c),c=-115/114+1/26*I,n=17 3770063231540983 a007 Real Root Of 366*x^4-776*x^3-565*x^2-813*x+421 3770063274542467 m001 sqrt(3)/(GAMMA(1/12)^GolombDickman) 3770063275534332 r009 Re(z^3+c),c=-13/40+1/49*I,n=6 3770063278777370 r005 Im(z^2+c),c=-115/114+1/26*I,n=18 3770063293199726 a001 3/2207*123^(29/42) 3770063301968146 m005 (1/3*exp(1)-1/5)/(3*Catalan-7/8) 3770063318202992 a003 sin(Pi*29/94)/cos(Pi*49/114) 3770063331625735 r005 Re(z^2+c),c=-31/106+25/42*I,n=51 3770063337321990 l006 ln(128/5553) 3770063344772492 m005 (1/2*3^(1/2)-3/5)/(1/8*gamma-7/9) 3770063360883473 r005 Im(z^2+c),c=-115/114+1/26*I,n=15 3770063362393212 a003 sin(Pi*34/103)/cos(Pi*32/75) 3770063362723228 a007 Real Root Of -851*x^4+218*x^3-810*x^2+809*x+449 3770063379513100 r005 Im(z^2+c),c=-3/94+27/55*I,n=40 3770063390931982 r005 Re(z^2+c),c=-2/3+108/239*I,n=14 3770063390959602 r005 Re(z^2+c),c=9/56+15/46*I,n=25 3770063397275904 a007 Real Root Of -58*x^4-266*x^3-338*x^2-615*x-51 3770063397581117 l006 ln(3077/4486) 3770063409247168 h001 (-8*exp(-2)-4)/(-exp(3/2)-9) 3770063410039729 m001 (Niven+Riemann2ndZero)/(ln(Pi)-MadelungNaCl) 3770063416798355 a007 Real Root Of -856*x^4+600*x^3-339*x^2+871*x+426 3770063430136145 m002 -6+(6*Pi*Cosh[Pi])/5 3770063435671298 h001 (4/7*exp(1)+5/8)/(5/7*exp(2)+1/2) 3770063451526541 a007 Real Root Of 496*x^4+91*x^3-677*x^2-771*x+372 3770063456513624 q001 101/2679 3770063456513624 r002 2th iterates of z^2 + 3770063456513624 r002 2th iterates of z^2 + 3770063469848873 a007 Real Root Of 309*x^4+879*x^3-967*x^2+629*x+793 3770063473632692 r005 Im(z^2+c),c=7/74+27/47*I,n=31 3770063487717130 m001 (Weierstrass+ZetaP(4))^GAMMA(13/24) 3770063491930631 a005 (1/cos(27/188*Pi))^362 3770063502427443 a003 cos(Pi*29/108)-cos(Pi*46/113) 3770063512693195 r005 Re(z^2+c),c=-15/32+13/33*I,n=61 3770063515284961 r005 Im(z^2+c),c=-115/114+1/26*I,n=16 3770063525838618 m001 (ln(gamma)-sin(1/12*Pi))/(GAMMA(17/24)+Thue) 3770063527315063 a001 11/956722026041*24157817^(10/21) 3770063527915459 m001 ln(Sierpinski)/Rabbit^2*sqrt(2)^2 3770063547604526 r002 6th iterates of z^2 + 3770063549476450 m004 -5+(5*Pi)/2+Tan[Sqrt[5]*Pi] 3770063555844812 r005 Im(z^2+c),c=-25/106+9/16*I,n=29 3770063556113059 m001 (CareFree+MadelungNaCl)/(PlouffeB+ZetaP(3)) 3770063578883581 r005 Re(z^2+c),c=-31/60+1/64*I,n=17 3770063581886847 s002 sum(A082488[n]/(n^2*pi^n+1),n=1..infinity) 3770063586291144 s002 sum(A082488[n]/(n^2*pi^n-1),n=1..infinity) 3770063589305428 r005 Re(z^2+c),c=-9/16+12/31*I,n=33 3770063598147432 h001 (-5*exp(7)-6)/(-7*exp(3)-5) 3770063622012459 r009 Re(z^3+c),c=-15/56+43/61*I,n=31 3770063625869150 r005 Re(z^2+c),c=-13/10+22/193*I,n=2 3770063628697569 r005 Im(z^2+c),c=-1/8+32/59*I,n=57 3770063643231674 m001 Catalan/MadelungNaCl^2/exp(Zeta(5))^2 3770063653405529 r005 Im(z^2+c),c=-147/110+1/25*I,n=13 3770063662403888 m001 (LambertW(1)+sin(1/5*Pi))/(OneNinth+Otter) 3770063672146577 r009 Im(z^3+c),c=-3/32+26/61*I,n=7 3770063689154911 r002 35th iterates of z^2 + 3770063711506123 m004 -120*Pi-(5*Pi*Cot[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 3770063727057791 m005 (1/3*Pi+2/3)/(3/8*Catalan+1/9) 3770063743708044 m001 Niven/MadelungNaCl/sin(1/12*Pi) 3770063750223585 r009 Re(z^3+c),c=-27/70+9/61*I,n=26 3770063753927232 a001 1/3*987^(1/56) 3770063754901298 r008 a(0)=0,K{-n^6,-5-53*n^3+67*n^2-12*n} 3770063757719927 r005 Re(z^2+c),c=3/52+25/39*I,n=53 3770063759462350 r002 25th iterates of z^2 + 3770063766334227 r008 a(0)=0,K{-n^6,11+52*n^3-61*n^2+n} 3770063766570604 a007 Real Root Of 774*x^4-460*x^3+900*x^2+165*x-106 3770063769986699 a007 Real Root Of 149*x^4+44*x^3+835*x^2-145*x-174 3770063778178238 l006 ln(5857/8539) 3770063778178238 p004 log(8539/5857) 3770063797577854 r009 Im(z^3+c),c=-7/17+1/40*I,n=2 3770063802781021 p001 sum(1/(205*n+61)/n/(100^n),n=1..infinity) 3770063832574250 m004 12000*Pi+ProductLog[Sqrt[5]*Pi] 3770063836149799 m001 (Psi(2,1/3)+ln(3))/(Zeta(1/2)+Trott2nd) 3770063841038258 m001 (-FeigenbaumMu+Salem)/(LambertW(1)-Zeta(3)) 3770063858953273 m001 exp(-Pi)/(GAMMA(2/3)-exp(-1/2*Pi)) 3770063875293119 r005 Im(z^2+c),c=29/94+12/55*I,n=54 3770063877312605 a001 89/322*3571^(15/17) 3770063900632755 m001 ln(2)^BesselI(0,1)*ln(2)^HardHexagonsEntropy 3770063909299974 m001 (-FeigenbaumC+Lehmer)/(exp(1)+LambertW(1)) 3770063913043231 m001 1/Pi^2/ln(MinimumGamma)/sin(1)^2 3770063914147307 a001 144/199*3571^(13/17) 3770063917384262 m001 (-MertensB3+Paris)/(5^(1/2)+Zeta(5)) 3770063927395338 m001 (exp(1)+ln(Pi))/(-3^(1/3)+Totient) 3770063927587154 s002 sum(A120412[n]/((exp(n)+1)*n),n=1..infinity) 3770063927843961 p001 sum((-1)^n/(289*n+265)/(512^n),n=0..infinity) 3770063938528877 r009 Im(z^3+c),c=-19/44+17/55*I,n=20 3770063946492608 b008 ArcCoth[4/3+ArcSinh[2]] 3770063955041157 m005 (1/2*Zeta(3)+1/10)/(6/7*Pi-5/6) 3770063957081859 a001 521/2584*55^(19/26) 3770063970355844 r009 Im(z^3+c),c=-1/114+32/63*I,n=2 3770063978606668 a007 Real Root Of -834*x^4+269*x^3-414*x^2+570*x+305 3770063984229175 m001 1/exp(cos(Pi/5))*LambertW(1)/sin(Pi/12)^2 3770064018227937 m001 1/exp(Robbin)^2/Bloch*Sierpinski^2 3770064028250654 a001 29/3*13^(26/49) 3770064045558666 m002 3+Pi^3+3/Log[Pi]+ProductLog[Pi] 3770064069753969 m005 (1/2*exp(1)-5/7)/(2/3*Zeta(3)+10/11) 3770064083455213 r005 Im(z^2+c),c=19/98+22/61*I,n=8 3770064091390438 m001 (GAMMA(13/24)+Trott2nd)/(1-3^(1/3)) 3770064098830260 m001 (-Zeta(1,2)+FeigenbaumB)/(Shi(1)-sin(1/5*Pi)) 3770064098992785 m001 (arctan(1/2)+exp(-1/2*Pi))/(Pi^(1/2)+ZetaQ(3)) 3770064101965344 r005 Im(z^2+c),c=35/122+4/15*I,n=16 3770064104121846 a001 89/322*9349^(15/19) 3770064110715316 a001 144/199*9349^(13/19) 3770064112636843 r009 Im(z^3+c),c=-45/106+17/54*I,n=18 3770064120331813 r005 Im(z^2+c),c=3/22+8/21*I,n=17 3770064121941437 m001 1/cos(Pi/12)^2*ErdosBorwein*exp(cosh(1))^2 3770064133679795 a001 89/322*24476^(5/7) 3770064136332205 a001 144/199*24476^(13/21) 3770064137576101 a001 89/322*64079^(15/23) 3770064138094525 a001 89/322*167761^(3/5) 3770064138164042 a001 89/322*439204^(5/9) 3770064138174872 a001 89/322*7881196^(5/11) 3770064138174896 a001 89/322*20633239^(3/7) 3770064138174900 a001 89/322*141422324^(5/13) 3770064138174900 a001 89/322*2537720636^(1/3) 3770064138174900 a001 89/322*45537549124^(5/17) 3770064138174900 a001 89/322*312119004989^(3/11) 3770064138174900 a001 89/322*14662949395604^(5/21) 3770064138174900 a001 89/322*(1/2+1/2*5^(1/2))^15 3770064138174900 a001 89/322*192900153618^(5/18) 3770064138174900 a001 89/322*28143753123^(3/10) 3770064138174900 a001 89/322*10749957122^(5/16) 3770064138174900 a001 89/322*599074578^(5/14) 3770064138174900 a001 89/322*228826127^(3/8) 3770064138174901 a001 89/322*33385282^(5/12) 3770064138175444 a001 89/322*1860498^(1/2) 3770064138394091 a001 89/322*103682^(5/8) 3770064139709004 a001 144/199*64079^(13/23) 3770064139813833 a001 89/322*39603^(15/22) 3770064140227963 a001 144/199*141422324^(1/3) 3770064140227963 a001 144/199*(1/2+1/2*5^(1/2))^13 3770064140227963 a001 144/199*73681302247^(1/4) 3770064140253547 a001 144/199*271443^(1/2) 3770064140417928 a001 144/199*103682^(13/24) 3770064141648371 a001 144/199*39603^(13/22) 3770064141875797 a007 Real Root Of 235*x^4+986*x^3+522*x^2+435*x-419 3770064150531654 a001 89/322*15127^(3/4) 3770064150937149 a001 144/199*15127^(13/20) 3770064158958245 m005 (1/2*Catalan-1/2)/(1/8*Catalan+1) 3770064166539777 a007 Real Root Of -98*x^4+686*x^3+815*x^2+735*x+200 3770064169428555 m001 Pi/(ln(2)/ln(10)+GAMMA(3/4)-ln(2)) 3770064171471051 a003 sin(Pi*3/25)/sin(Pi*28/65) 3770064178909583 r005 Im(z^2+c),c=23/90+17/61*I,n=41 3770064181591543 r009 Re(z^3+c),c=-53/122+4/19*I,n=21 3770064196095456 r005 Im(z^2+c),c=-5/24+31/60*I,n=10 3770064199436257 l006 ln(2780/4053) 3770064201234469 m001 sin(1)+Zeta(1,-1)*FransenRobinson 3770064210649635 r002 34i'th iterates of 2*x/(1-x^2) of 3770064216885304 m001 CopelandErdos+ZetaR(2)^GAMMA(23/24) 3770064221785581 a001 144/199*5778^(13/18) 3770064232279844 a001 89/322*5778^(5/6) 3770064232748859 a007 Real Root Of 9*x^4-509*x^3-526*x^2-72*x+129 3770064246935266 r009 Im(z^3+c),c=-55/122+8/27*I,n=31 3770064247968478 m005 (11/12+1/4*5^(1/2))/(1/10*2^(1/2)+1/4) 3770064252212220 r005 Im(z^2+c),c=2/25+16/31*I,n=10 3770064252652366 a007 Real Root Of -194*x^4-713*x^3+117*x^2+294*x+431 3770064258861573 p001 sum((-1)^n/(491*n+314)/n/(3^n),n=1..infinity) 3770064260196418 m001 (sin(1/12*Pi)+FeigenbaumAlpha)^Mills 3770064263098865 l006 ln(6533/6784) 3770064268649141 m001 GAMMA(17/24)^2*Trott/exp(GAMMA(7/24))^2 3770064275074260 r002 17th iterates of z^2 + 3770064277999739 m001 KhintchineLevy^2/FeigenbaumB*ln(OneNinth) 3770064280722285 m001 (-PlouffeB+Stephens)/(Si(Pi)+AlladiGrinstead) 3770064285808682 s002 sum(A180669[n]/(n^3*2^n-1),n=1..infinity) 3770064311877954 p004 log(31991/21943) 3770064316793838 r005 Im(z^2+c),c=2/15+18/47*I,n=22 3770064328270840 g005 GAMMA(8/11)*GAMMA(7/10)/GAMMA(2/11)/GAMMA(1/9) 3770064334529359 m001 FeigenbaumB^MertensB2/Ei(1,1) 3770064345905100 r002 10th iterates of z^2 + 3770064351874033 a007 Real Root Of 699*x^4+884*x^3+117*x^2-869*x-311 3770064366366249 l006 ln(175/7592) 3770064384680696 m001 Zeta(7)/Porter^2*ln(sqrt(5)) 3770064389556279 m001 (Magata+Totient)/(Gompertz+LaplaceLimit) 3770064396057009 a007 Real Root Of 353*x^4+174*x^3+839*x^2-968*x-482 3770064398744302 s002 sum(A042824[n]/((10^n+1)/n),n=1..infinity) 3770064400226897 r002 7th iterates of z^2 + 3770064406969597 a001 9349/13*17711^(17/42) 3770064421913051 r005 Im(z^2+c),c=-43/60+5/63*I,n=59 3770064424738239 r005 Re(z^2+c),c=-12/25+15/43*I,n=40 3770064428481969 r002 7th iterates of z^2 + 3770064430392525 r005 Re(z^2+c),c=-21/40+12/61*I,n=13 3770064434707075 m001 1/FeigenbaumKappa/MertensB1/ln(BesselK(0,1))^2 3770064436598138 m001 (cos(1)-sin(1))/(-exp(1/Pi)+Stephens) 3770064437475813 m001 Trott*(Ei(1,1)-LambertW(1)) 3770064440558664 m001 gamma(1)/(FeigenbaumKappa+Stephens) 3770064456873003 r005 Im(z^2+c),c=-4/29+33/59*I,n=26 3770064460495426 a007 Real Root Of -752*x^4+77*x^3-954*x^2+666*x+406 3770064475130511 h001 (-6*exp(1)-8)/(-9*exp(-3)-6) 3770064476522871 s002 sum(A248227[n]/(n^3*2^n+1),n=1..infinity) 3770064477936601 m003 7/2+Sqrt[5]/8+Cos[1/2+Sqrt[5]/2]/5 3770064483084782 s002 sum(A061288[n]/(n^3*2^n+1),n=1..infinity) 3770064483308762 s002 sum(A086525[n]/(n^3*2^n+1),n=1..infinity) 3770064489453338 m001 (ln(Pi)+Cahen)/(KomornikLoreti+Otter) 3770064497169503 a007 Real Root Of -18*x^4-653*x^3+974*x^2+341*x+880 3770064512566698 r009 Re(z^3+c),c=-27/70+9/61*I,n=24 3770064515320415 r002 3th iterates of z^2 + 3770064520940359 r005 Re(z^2+c),c=-5/62+37/58*I,n=27 3770064526899071 a007 Real Root Of -311*x^4+929*x^3-875*x^2-277*x+76 3770064540308491 a001 1/4*610^(11/26) 3770064544763780 r009 Re(z^3+c),c=-27/74+7/60*I,n=8 3770064558353659 m001 1/5*QuadraticClass^GAMMA(2/3)*5^(1/2) 3770064569737397 m001 BesselJ(1,1)+Pi^(1/2)*Riemann2ndZero 3770064573731215 s002 sum(A248231[n]/(n^3*2^n+1),n=1..infinity) 3770064582014688 r005 Re(z^2+c),c=-45/98+17/40*I,n=53 3770064591361913 a008 Real Root of (9+14*x-12*x^2-4*x^3) 3770064635904897 a005 (1/cos(18/145*Pi))^76 3770064643983662 m005 (1/3*Zeta(3)-1/7)/(5/8*2^(1/2)-1/5) 3770064668238862 l006 ln(5263/7673) 3770064673262024 m001 (Shi(1)+GAMMA(3/4))/(-Zeta(1,-1)+BesselJ(1,1)) 3770064679165659 r005 Im(z^2+c),c=7/40+13/37*I,n=44 3770064687109131 m001 (Rabbit-ZetaQ(4))/(GAMMA(7/12)-Magata) 3770064710534781 m001 (gamma(1)+RenyiParking)/(Zeta(3)+sin(1/5*Pi)) 3770064718048741 r009 Im(z^3+c),c=-61/126+17/63*I,n=54 3770064727349273 m001 1/exp(GAMMA(11/24))*(2^(1/3))^2*GAMMA(13/24) 3770064733929953 r005 Re(z^2+c),c=45/122+23/64*I,n=26 3770064743400394 r009 Re(z^3+c),c=-1/28+7/11*I,n=4 3770064754342482 a001 521/20365011074*3^(6/17) 3770064765956233 a007 Real Root Of 474*x^4-958*x^3-594*x^2-530*x+326 3770064769107715 a001 144/199*2207^(13/16) 3770064776758856 a001 11/1346269*514229^(5/43) 3770064776878702 m006 (4/5*exp(Pi)-3/4)/(2*exp(Pi)+5/6) 3770064791379438 m002 E^Pi/3+Pi^2+Pi^3*Cosh[Pi] 3770064798491284 r009 Re(z^3+c),c=-51/110+14/57*I,n=56 3770064798630353 a007 Real Root Of -49*x^4-175*x^3+103*x^2+46*x-769 3770064828154001 a007 Real Root Of -193*x^4-768*x^3-300*x^2-816*x-976 3770064831380760 m001 ln(3)*Pi^(1/2)+MasserGramainDelta 3770064833106862 r005 Re(z^2+c),c=41/106+7/30*I,n=31 3770064840965325 r005 Re(z^2+c),c=-51/106+13/38*I,n=57 3770064844962440 r009 Im(z^3+c),c=-5/23+23/57*I,n=11 3770064847345897 r005 Im(z^2+c),c=-28/25+15/61*I,n=54 3770064856085257 m001 (Pi*csc(1/24*Pi)/GAMMA(23/24)+Kolakoski)/Cahen 3770064857890566 a001 29/28657*46368^(27/49) 3770064863805392 a001 89/322*2207^(15/16) 3770064884691704 m001 Bloch*Gompertz*Totient 3770064884829098 r009 Re(z^3+c),c=-9/22+31/53*I,n=12 3770064891132437 a007 Real Root Of 290*x^4+961*x^3-659*x^2-412*x+723 3770064894157817 m005 (1/2*Zeta(3)-8/9)/(5/12*Pi-6/11) 3770064906443913 a007 Real Root Of 750*x^4-167*x^3+121*x^2-848*x-361 3770064918768559 a003 sin(Pi*1/47)*sin(Pi*21/110) 3770064949102019 r009 Re(z^3+c),c=-27/56+4/15*I,n=31 3770064959688584 l006 ln(222/9631) 3770064962190779 m005 (1/2*2^(1/2)+5/11)/(4/9*exp(1)-9/10) 3770064971944085 m002 1+3*Cosh[Pi]+Sinh[Pi]/6 3770064976348007 a001 199/89*34^(4/27) 3770064982390892 a007 Real Root Of -2*x^4-753*x^3+384*x^2+792*x+997 3770064984493654 m001 ln(gamma)^Cahen/(FeigenbaumAlpha^Cahen) 3770064984493654 m001 log(gamma)^Cahen/(FeigenbaumAlpha^Cahen) 3770064999209704 m004 -5+(5*Pi)/2+Coth[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3770065004174422 a007 Real Root Of -381*x^4-305*x^3-909*x^2+285*x+228 3770065031121620 a007 Real Root Of 445*x^4-244*x^3-335*x^2-648*x+296 3770065032634795 r005 Re(z^2+c),c=23/62+20/63*I,n=36 3770065057635870 r005 Im(z^2+c),c=35/94+7/41*I,n=6 3770065060720753 m001 FeigenbaumMu^GAMMA(2/3)/(Totient^GAMMA(2/3)) 3770065060806054 a007 Real Root Of -524*x^4-678*x^3-445*x^2+886*x+34 3770065070102195 r009 Re(z^3+c),c=-51/110+12/49*I,n=24 3770065075921908 q001 869/2305 3770065080943201 r005 Im(z^2+c),c=19/102+13/38*I,n=41 3770065089193418 r005 Im(z^2+c),c=-11/74+23/44*I,n=16 3770065090532206 m006 (3/5*ln(Pi)-1/4)/(5*exp(Pi)+1/6) 3770065106299732 r009 Im(z^3+c),c=-49/110+3/10*I,n=47 3770065115595821 m001 1/Riemann2ndZero*Artin*ln(cos(Pi/5)) 3770065116435775 s002 sum(A049508[n]/((10^n-1)/n),n=1..infinity) 3770065132010648 m004 -4+(5*Pi)/2+Tan[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 3770065140146583 h001 (5/7*exp(1)+3/4)/(8/9*exp(2)+4/7) 3770065143132814 a007 Real Root Of -277*x^4-972*x^3+205*x^2-170*x+320 3770065153459472 m001 (-exp(1/Pi)+GolombDickman)/(Chi(1)-Zeta(5)) 3770065155678138 r005 Re(z^2+c),c=-51/98+3/31*I,n=13 3770065167468756 r002 32th iterates of z^2 + 3770065169465394 r005 Im(z^2+c),c=-13/14+60/221*I,n=4 3770065181601769 a003 sin(Pi*6/97)/sin(Pi*19/111) 3770065187941347 r005 Re(z^2+c),c=-15/32+25/64*I,n=47 3770065193116501 l006 ln(2483/3620) 3770065196790620 r002 12th iterates of z^2 + 3770065198063661 r005 Re(z^2+c),c=3/10+17/33*I,n=31 3770065219795284 r005 Re(z^2+c),c=-21/34+23/62*I,n=25 3770065236439848 m006 (1/6*exp(2*Pi)-3/4)/(exp(Pi)+1/3) 3770065245208943 m001 (ln(3)+Robbin)/FeigenbaumDelta 3770065251576821 b008 36+SinhIntegral[3/2] 3770065259902702 m001 1/5*(5^(1/2)*Salem-KomornikLoreti)*5^(1/2) 3770065324396463 r005 Re(z^2+c),c=-21/46+5/13*I,n=14 3770065336841359 m001 (2^(1/2)+arctan(1/3))/(FeigenbaumMu+MertensB2) 3770065337566169 r009 Im(z^3+c),c=-55/122+11/36*I,n=11 3770065340814959 m005 (2/5*exp(1)+1/5)/(3*Catalan+2/3) 3770065349412369 m005 (1/2*3^(1/2)-5/11)/(7/10*Zeta(3)+1/4) 3770065354726071 a007 Real Root Of -15*x^4-564*x^3+43*x^2-535*x-384 3770065363937303 r005 Im(z^2+c),c=19/64+15/61*I,n=18 3770065376919948 a007 Real Root Of 866*x^4-686*x^3-181*x^2-939*x+399 3770065378989322 r005 Im(z^2+c),c=35/118+10/43*I,n=37 3770065380331217 s002 sum(A249877[n]/(n*exp(pi*n)-1),n=1..infinity) 3770065428495669 r005 Im(z^2+c),c=-11/30+21/37*I,n=20 3770065429436714 m001 FeigenbaumB/Bloch/exp(cosh(1)) 3770065431027272 m001 Zeta(5)*LaplaceLimit/MasserGramainDelta 3770065434555643 m001 (Pi+2^(1/3)+exp(gamma))/GAMMA(13/24) 3770065439418279 s002 sum(A263208[n]/(n^2*10^n+1),n=1..infinity) 3770065455889264 m001 GAMMA(5/12)^2*ln(BesselJ(1,1))^2/cos(Pi/5) 3770065460084517 m001 1/GAMMA(1/4)/exp(Riemann1stZero)^2*sin(Pi/12) 3770065485957521 m005 (1/2*5^(1/2)+3/10)/(5/6*gamma-6/7) 3770065489475754 r002 6th iterates of z^2 + 3770065498054942 r005 Im(z^2+c),c=-63/106+18/43*I,n=12 3770065500559747 m001 1/Pi^2/exp(Cahen)*sin(1)^2 3770065501560780 r005 Re(z^2+c),c=-9/20+16/35*I,n=53 3770065513246160 r005 Im(z^2+c),c=11/94+17/43*I,n=22 3770065518601309 m001 (-ln(2)+FeigenbaumB)/(1-Zeta(5)) 3770065521625899 s002 sum(A154680[n]/((2*n+1)!),n=1..infinity) 3770065529229716 m001 (LambertW(1)-Robbin)/(-Sierpinski+ZetaP(4)) 3770065535605064 r009 Im(z^3+c),c=-9/34+21/31*I,n=12 3770065537574655 a007 Real Root Of -273*x^4-847*x^3+614*x^2-236*x+148 3770065539008160 m001 ln(CareFree)^2*FeigenbaumDelta^2/Rabbit 3770065555581128 r009 Re(z^3+c),c=-31/60+11/37*I,n=35 3770065563488335 r005 Im(z^2+c),c=9/70+12/31*I,n=45 3770065571347694 m006 (2/5*exp(Pi)+4/5)/(1/4*Pi^2+1/5) 3770065598462824 a005 (1/cos(29/207*Pi))^611 3770065608066556 g005 GAMMA(11/12)*GAMMA(5/9)*GAMMA(2/7)/GAMMA(7/11) 3770065619130897 m001 GAMMA(5/12)^2*ln((3^(1/3)))/GAMMA(5/24) 3770065631416274 a007 Real Root Of -749*x^4+748*x^3+544*x^2+552*x+186 3770065636319326 m001 GAMMA(1/4)^2/OneNinth/exp(sinh(1)) 3770065654225867 r009 Re(z^3+c),c=-35/74+9/38*I,n=13 3770065672938868 r009 Im(z^3+c),c=-23/90+26/37*I,n=21 3770065709692032 r009 Re(z^3+c),c=-25/54+15/62*I,n=21 3770065738473048 m001 (Kac+Trott)/(BesselJ(0,1)-Gompertz) 3770065743723718 m001 (exp(1/Pi)+exp(-1/2*Pi))/(Champernowne-Landau) 3770065747322347 m001 MadelungNaCl^2/Bloch/ln(GAMMA(1/6)) 3770065749486751 r005 Im(z^2+c),c=-9/58+18/31*I,n=5 3770065757100699 r005 Im(z^2+c),c=9/50+1/49*I,n=7 3770065760962898 m002 -E^Pi-3*Coth[Pi]-Sinh[Pi] 3770065764123630 m001 BesselK(0,1)^2/TreeGrowth2nd*exp(sqrt(5)) 3770065766183296 a007 Real Root Of -999*x^4+48*x^3-42*x^2+823*x+339 3770065775775765 a001 39603/8*17711^(11/53) 3770065779388638 m001 GAMMA(1/4)*Riemann2ndZero*ln(GAMMA(13/24)) 3770065781130880 r005 Im(z^2+c),c=11/58+19/56*I,n=41 3770065784770143 l006 ln(4669/6807) 3770065800310025 h001 (3/4*exp(1)+5/8)/(7/8*exp(2)+3/5) 3770065804786904 r009 Re(z^3+c),c=-27/70+9/61*I,n=25 3770065812192676 r005 Im(z^2+c),c=37/118+11/52*I,n=50 3770065814379178 a007 Real Root Of 7*x^4-788*x^3-964*x^2-448*x+348 3770065829972436 a007 Real Root Of -371*x^4-358*x^3-102*x^2+905*x+344 3770065830560378 r005 Re(z^2+c),c=-7/10+227/240*I,n=3 3770065835861994 r002 35th iterates of z^2 + 3770065842529653 m001 MertensB1^LambertW(1)/(Zeta(1/2)^LambertW(1)) 3770065845954733 a007 Real Root Of -647*x^4-43*x^3+278*x^2+559*x+182 3770065856325206 m005 (1/2*Pi-5/9)/(1/2*Catalan-8/11) 3770065879132775 a007 Real Root Of 582*x^4-126*x^3+533*x^2-490*x-279 3770065884478365 r005 Re(z^2+c),c=-31/60+3/43*I,n=18 3770065887064318 a007 Real Root Of -817*x^4+865*x^3-830*x^2+958*x+542 3770065887828111 a007 Real Root Of 185*x^4+444*x^3-961*x^2+140*x+605 3770065890037531 r005 Im(z^2+c),c=-9/56+32/57*I,n=52 3770065891176795 a001 10946/199*199^(4/11) 3770065892473815 r005 Im(z^2+c),c=-13/22+37/102*I,n=5 3770065893820647 m005 (1/3*Pi-1/12)/(5/6*3^(1/2)-4) 3770065894646247 s002 sum(A179633[n]/((2^n+1)/n),n=1..infinity) 3770065902340946 r009 Im(z^3+c),c=-31/60+13/51*I,n=37 3770065906817759 r005 Im(z^2+c),c=3/110+20/43*I,n=14 3770065924939716 a007 Real Root Of -202*x^4-674*x^3+252*x^2-414*x-451 3770065928262614 r005 Im(z^2+c),c=-71/54+1/41*I,n=18 3770065940514367 a007 Real Root Of -178*x^4-820*x^3-733*x^2-500*x+553 3770065952865093 s002 sum(A086089[n]/(n^3*pi^n-1),n=1..infinity) 3770065959711535 a007 Real Root Of 778*x^4+857*x^3+775*x^2-711*x-348 3770065964553990 r005 Im(z^2+c),c=-1/9+29/56*I,n=11 3770065973051809 h001 (7/12*exp(1)+4/5)/(4/5*exp(2)+5/12) 3770065973549223 r005 Re(z^2+c),c=-31/60+5/59*I,n=28 3770065993788325 m001 (exp(-1/2*Pi)+TreeGrowth2nd)/(1-exp(1)) 3770065999077355 l006 ln(6855/9994) 3770066009507704 r004 Im(z^2+c),c=-43/42+7/23*I,z(0)=-1,n=9 3770066013153449 a007 Real Root Of 651*x^4-561*x^3-864*x^2-205*x+217 3770066016119587 r002 19th iterates of z^2 + 3770066025054508 r005 Re(z^2+c),c=-55/106+1/29*I,n=24 3770066027608681 r004 Re(z^2+c),c=3/7-21/22*I,z(0)=I,n=4 3770066027983988 s002 sum(A074184[n]/(n^3*2^n+1),n=1..infinity) 3770066035817078 m001 GolombDickman/GAMMA(5/6)/Porter 3770066044264626 s002 sum(A213854[n]/(n^3*2^n+1),n=1..infinity) 3770066045001308 a005 (1/sin(37/161*Pi))^31 3770066046558353 m001 (Zeta(1,-1)-gamma(2))/(Magata+Sarnak) 3770066047166932 a007 Real Root Of 214*x^4+910*x^3+186*x^2-767*x-5 3770066060979371 a007 Real Root Of 64*x^4-428*x^3-302*x^2-590*x+287 3770066092133701 a007 Real Root Of 118*x^4+193*x^3-882*x^2+186*x-259 3770066117230018 m001 (MadelungNaCl+OneNinth)/(BesselI(1,1)-Shi(1)) 3770066133555562 m001 ln(Riemann2ndZero)/Kolakoski/Zeta(7)^2 3770066149988155 m005 (1/20+1/4*5^(1/2))/(2/9*Pi-5/7) 3770066152267667 m001 (GaussAGM+QuadraticClass)/(ln(3)-Cahen) 3770066155547687 r009 Re(z^3+c),c=-17/30+11/30*I,n=45 3770066160627229 a007 Real Root Of 149*x^4+377*x^3-573*x^2+478*x+47 3770066163461252 h001 (1/7*exp(2)+4/9)/(5/12*exp(2)+9/10) 3770066167751247 r005 Re(z^2+c),c=-13/29+25/53*I,n=62 3770066167857180 s002 sum(A085609[n]/(16^n),n=1..infinity) 3770066171806294 m001 (-Cahen+Otter)/(LambertW(1)+2*Pi/GAMMA(5/6)) 3770066173357667 m001 (2^(1/3)+Psi(2,1/3))/(-Backhouse+Trott2nd) 3770066180420759 m001 (OneNinth+ZetaP(3))/(ln(2)-3^(1/3)) 3770066183808189 a007 Real Root Of 240*x^4+759*x^3-524*x^2-160*x-969 3770066194827595 a007 Real Root Of -90*x^4-280*x^3+473*x^2+922*x-69 3770066202586540 m001 BesselK(1,1)^Artin/Ei(1,1) 3770066206649804 a003 sin(Pi*17/88)*sin(Pi*20/87) 3770066210888103 a007 Real Root Of 532*x^4-778*x^3+589*x^2-920*x-483 3770066221529733 m005 (1/2*Zeta(3)+9/11)/(5/11*exp(1)-5) 3770066224584676 a008 Real Root of x^2-x-142511 3770066229830171 r004 Im(z^2+c),c=-11/16+3/16*I,z(0)=-1,n=6 3770066232652126 r005 Im(z^2+c),c=-7/62+15/28*I,n=53 3770066236400859 l006 ln(7470/7757) 3770066240958333 r005 Re(z^2+c),c=-61/118+6/17*I,n=3 3770066252676928 a007 Real Root Of 245*x^4+967*x^3+123*x^2-327*x-659 3770066265543484 m001 (StronglyCareFree+ThueMorse)/(5^(1/2)+Catalan) 3770066271221272 a007 Real Root Of -193*x^4+399*x^3+300*x^2+936*x-413 3770066271712109 r005 Re(z^2+c),c=-2/3+62/255*I,n=15 3770066297865884 a007 Real Root Of 100*x^4+384*x^3+20*x^2+76*x+377 3770066301874385 a003 sin(Pi*2/89)*sin(Pi*7/39) 3770066310071890 r002 17th iterates of z^2 + 3770066312414146 a008 Real Root of x^2-142134 3770066315194267 p004 log(32303/22157) 3770066337445293 r005 Re(z^2+c),c=-95/94+9/50*I,n=30 3770066356630481 r005 Im(z^2+c),c=1/52+37/63*I,n=20 3770066375147828 a001 1/89*144^(41/58) 3770066378337762 a001 521/75025*8^(48/59) 3770066392692217 m001 Ei(1,1)^(AlladiGrinstead*Kolakoski) 3770066393459568 a007 Real Root Of -278*x^4-873*x^3+756*x^2+158*x-768 3770066395118548 m005 (1/24+1/6*5^(1/2))/(3/4*3^(1/2)-1/5) 3770066400476889 a008 Real Root of x^2-x-141757 3770066433113636 m005 (5/6*2^(1/2)-2/5)/(3*gamma+1/3) 3770066434677090 r005 Im(z^2+c),c=17/58+14/59*I,n=58 3770066443484418 r009 Re(z^3+c),c=-23/48+8/31*I,n=24 3770066456808525 l006 ln(2186/3187) 3770066460806975 m005 (5/4+1/4*5^(1/2))/(1/7*3^(1/2)-8/11) 3770066466489056 a003 cos(Pi*3/29)-sin(Pi*49/110) 3770066466588029 m001 (Magata-Trott)/(ln(2^(1/2)+1)-Grothendieck) 3770066471311239 a007 Real Root Of 489*x^4-406*x^3-93*x^2-700*x+289 3770066474707470 m001 (-Artin+Khinchin)/(cos(1)-gamma(1)) 3770066479371008 r005 Im(z^2+c),c=-10/31+32/61*I,n=12 3770066485752912 r005 Im(z^2+c),c=5/24+15/49*I,n=8 3770066489110621 r005 Re(z^2+c),c=17/98+14/29*I,n=29 3770066506335313 m001 (Psi(2,1/3)+ln(2))/(-MertensB1+Niven) 3770066506457504 m008 (Pi^4-3/4)/(5/6*Pi^3-1/5) 3770066519027519 a007 Real Root Of -734*x^4+734*x^3+855*x^2+680*x+189 3770066519598647 m001 Gompertz^(Kolakoski/BesselK(0,1)) 3770066526050017 a008 Real Root of (-1+4*x-3*x^2-4*x^4-2*x^8) 3770066532391447 r005 Im(z^2+c),c=-119/114+18/61*I,n=9 3770066535249723 r005 Re(z^2+c),c=-5/9+29/57*I,n=12 3770066536493303 r005 Im(z^2+c),c=15/44+7/40*I,n=61 3770066541396738 r002 22th iterates of z^2 + 3770066542227337 a007 Real Root Of 210*x^4+523*x^3-789*x^2+762*x-312 3770066555646999 m001 (Lehmer+Trott)/(Artin+FibonacciFactorial) 3770066565014135 a008 Real Root of (2+3*x-4*x^2+4*x^3-2*x^4+6*x^5) 3770066577049004 m005 (1/3*Zeta(3)-1/12)/(1/8*Catalan+8/11) 3770066580480035 h001 (7/10*exp(1)+9/11)/(10/11*exp(2)+1/2) 3770066582971198 r002 7th iterates of z^2 + 3770066586770084 r009 Im(z^3+c),c=-29/62+15/53*I,n=29 3770066589660924 r005 Re(z^2+c),c=7/38+27/64*I,n=45 3770066592517172 r002 16th iterates of z^2 + 3770066596936799 m001 (Conway+StronglyCareFree)/(GAMMA(5/6)-gamma) 3770066610578466 s002 sum(A066508[n]/(n^3*2^n+1),n=1..infinity) 3770066619237884 r005 Im(z^2+c),c=7/40+13/37*I,n=45 3770066628270476 r005 Im(z^2+c),c=-5/102+19/42*I,n=4 3770066631501821 a001 322/3*514229^(39/49) 3770066651008323 q001 1/2652473 3770066698626016 r005 Im(z^2+c),c=-31/29+17/63*I,n=22 3770066703700529 m008 (3/5*Pi^6+1/4)/(5*Pi^5+3/5) 3770066704891771 m005 (1/3*Zeta(3)-2/3)/(8/11*gamma+2/7) 3770066744110770 m001 1/GAMMA(2/3)/ln(MertensB1)/Zeta(1/2) 3770066752863018 r009 Im(z^3+c),c=-43/90+11/40*I,n=42 3770066753499677 a007 Real Root Of 243*x^4-741*x^3+21*x^2-635*x-287 3770066755619075 b008 11/4+Cosh[1/5] 3770066783711393 r005 Re(z^2+c),c=-23/50+10/23*I,n=7 3770066796756344 r005 Im(z^2+c),c=-41/66+9/26*I,n=12 3770066797858619 r005 Re(z^2+c),c=-119/122+15/61*I,n=34 3770066798614094 m003 5/3+Sqrt[5]/4-2*Tanh[1/2+Sqrt[5]/2] 3770066803051902 m001 (BesselI(0,2)+Sarnak)/(gamma+Ei(1,1)) 3770066804770339 a007 Real Root Of 627*x^4-677*x^3+163*x^2-776*x+293 3770066809439131 r005 Im(z^2+c),c=-91/106+1/40*I,n=29 3770066810053144 a007 Real Root Of 975*x^4-676*x^3+792*x^2-752*x-452 3770066814632365 r002 32th iterates of z^2 + 3770066820203639 a007 Real Root Of -656*x^4-53*x^3-168*x^2+291*x+144 3770066835154879 m001 (Ei(1,1)*Trott2nd+ZetaP(4))/Ei(1,1) 3770066848834685 m005 (1/3*Pi-2/11)/(82/63+4/9*5^(1/2)) 3770066857686277 r009 Im(z^3+c),c=-4/23+18/43*I,n=5 3770066872780337 r005 Re(z^2+c),c=-53/70+1/56*I,n=38 3770066895954649 m001 (GaussKuzminWirsing+Paris)/(ln(2)+Artin) 3770066898027112 m001 (Tribonacci+TwinPrimes)/(Zeta(5)-Artin) 3770066898396945 m001 (Magata+MertensB1)/(BesselJ(0,1)+exp(-1/2*Pi)) 3770066906374196 m001 1/GAMMA(19/24)^2/ln(TwinPrimes)/arctan(1/2) 3770066910379175 r005 Im(z^2+c),c=-37/122+1/17*I,n=6 3770066922832394 h001 (-8*exp(2/3)-1)/(-8*exp(-3)-4) 3770066931682777 s002 sum(A275132[n]/(exp(2*pi*n)+1),n=1..infinity) 3770066948144547 r009 Im(z^3+c),c=-59/114+14/55*I,n=37 3770066957966011 l006 ln(6261/9128) 3770066962728045 m001 (Ei(1)+Backhouse)/(Conway-PrimesInBinary) 3770066966944847 m001 (Gompertz+HeathBrownMoroz)/(1-sin(1)) 3770066967292882 r005 Im(z^2+c),c=-85/58+2/7*I,n=3 3770066972261918 m002 -(Cosh[Pi]/Pi^3)+2/Log[Pi]-Tanh[Pi] 3770066977883325 m001 Shi(1)/(sin(1)+ReciprocalLucas) 3770066981395664 r005 Re(z^2+c),c=-83/86+17/49*I,n=8 3770066981748413 g006 Psi(1,10/11)+Psi(1,2/11)-Psi(1,5/8)-Psi(1,1/5) 3770066985279014 m001 (Zeta(1/2)*TreeGrowth2nd+ArtinRank2)/Zeta(1/2) 3770067009617964 l005 ln(tanh(23/86*Pi)) 3770067011789873 a005 (1/cos(11/151*Pi))^1619 3770067017227363 a003 sin(Pi*1/73)*sin(Pi*17/50) 3770067020586015 a007 Real Root Of -722*x^4+402*x^3+434*x^2+54*x-89 3770067042012800 a007 Real Root Of 820*x^4-753*x^3+332*x^2-135*x-155 3770067048366705 p004 log(16487/15877) 3770067057857150 r009 Im(z^3+c),c=-31/64+7/26*I,n=38 3770067067029204 r002 49i'th iterates of 2*x/(1-x^2) of 3770067074072705 m001 1/Porter^2/ln(CareFree)^2/Zeta(9)^2 3770067081658843 m001 (GAMMA(3/4)-exp(1))/(exp(1/Pi)+Sierpinski) 3770067097348968 a005 (1/cos(34/219*Pi))^345 3770067103558104 m001 DuboisRaymond*GlaisherKinkelin/Robbin 3770067105697381 a001 233/103682*199^(30/31) 3770067117094130 s002 sum(A276294[n]/(exp(2*pi*n)+1),n=1..infinity) 3770067119515377 a005 (1/cos(37/239*Pi))^291 3770067152161336 m005 (1/2*Zeta(3)-2/3)/(9/10*Catalan+11/12) 3770067160823926 a007 Real Root Of 20*x^4+729*x^3-948*x^2-208*x-768 3770067164315083 p003 LerchPhi(1/125,3,624/209) 3770067168864396 l006 ln(47/2039) 3770067168864396 p004 log(2039/47) 3770067175770089 m001 LambertW(1)*arctan(1/3)+DuboisRaymond 3770067183086883 r009 Im(z^3+c),c=-17/58+17/45*I,n=8 3770067226807783 l006 ln(4075/5941) 3770067228600049 r005 Im(z^2+c),c=-19/90+27/50*I,n=18 3770067240075169 r002 16th iterates of z^2 + 3770067251210842 r005 Re(z^2+c),c=-39/74+17/49*I,n=19 3770067255512572 a007 Real Root Of -43*x^4+296*x^3+470*x^2+597*x+175 3770067261990873 a007 Real Root Of -145*x^4-715*x^3-469*x^2+424*x-756 3770067264891146 m001 (ln(5)*ReciprocalFibonacci+TwinPrimes)/ln(5) 3770067273272801 m001 Champernowne^ln(2+3^(1/2))*Lehmer 3770067274982242 r005 Im(z^2+c),c=7/78+17/41*I,n=44 3770067322630761 q001 728/1931 3770067324334099 a007 Real Root Of -555*x^4+530*x^3+110*x^2+634*x+263 3770067343666411 m001 ZetaQ(3)^Mills/(OneNinth^Mills) 3770067361421844 r009 Im(z^3+c),c=-17/32+8/25*I,n=64 3770067363073824 a007 Real Root Of -415*x^4+236*x^3+947*x^2+255*x-235 3770067364989942 m001 (Pi+ln(3))/(exp(-1/2*Pi)-MertensB3) 3770067385111432 r009 Re(z^3+c),c=-16/31+11/35*I,n=23 3770067404175500 m004 -120*Pi-(5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/4 3770067404299111 m004 -120*Pi-(5*Sqrt[5]*Pi)/(2*E^(Sqrt[5]*Pi)) 3770067404422723 m004 -120*Pi-(5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/4 3770067408696238 a007 Real Root Of 318*x^4-606*x^3+800*x^2+52*x-133 3770067409480862 m001 (gamma+gamma(2))/(MasserGramain+Thue) 3770067410532513 a007 Real Root Of 562*x^4+401*x^3-179*x^2-153*x+6 3770067413647281 m001 (Salem-ZetaQ(2))/(FeigenbaumMu-Lehmer) 3770067415297681 r005 Im(z^2+c),c=-23/102+31/50*I,n=60 3770067417269517 r005 Im(z^2+c),c=35/102+5/53*I,n=21 3770067423567431 r005 Re(z^2+c),c=-25/54+17/41*I,n=57 3770067437611360 m001 GAMMA(19/24)*exp(GAMMA(11/24))/arctan(1/2)^2 3770067441936581 m001 (Cahen-Catalan)/(MasserGramain+ZetaP(4)) 3770067445835645 r005 Re(z^2+c),c=-13/58+41/63*I,n=64 3770067461197462 m005 (1/3+1/4*5^(1/2))/(4/7*2^(1/2)-4/7) 3770067482877036 m006 (4*exp(2*Pi)+3/5)/(1/Pi+1/4) 3770067502861382 r009 Re(z^3+c),c=-15/31+23/48*I,n=28 3770067507005923 m006 (5/6*Pi-3/4)/(5*Pi^2+1/5) 3770067507005923 m008 (5/6*Pi-3/4)/(5*Pi^2+1/5) 3770067509037543 l006 ln(5964/8695) 3770067509103816 m001 1/PrimesInBinary^2/ln(Paris)*GAMMA(3/4)^2 3770067524851896 m006 (2/5*ln(Pi)-1/6)/(5/6*Pi^2-1/2) 3770067526861754 a007 Real Root Of -801*x^4+666*x^3+162*x^2+576*x+246 3770067531462973 m001 (PlouffeB-Porter)/(GAMMA(19/24)+Backhouse) 3770067575571709 m001 (ZetaP(2)+ZetaQ(3))/(Zeta(1/2)+FeigenbaumD) 3770067577928721 m004 (Sqrt[5]*Pi)/6+(4*Log[Sqrt[5]*Pi])/3 3770067588235057 r009 Im(z^3+c),c=-1/48+23/55*I,n=3 3770067616288077 m001 (cos(1/5*Pi)+GAMMA(3/4))/(Ei(1,1)+Zeta(1,-1)) 3770067626018333 m001 (Paris+TwinPrimes)/(HardyLittlewoodC4+Niven) 3770067630933420 m005 (1/3*Catalan+1/12)/(6*3^(1/2)-1/12) 3770067639104084 m001 1/Salem^2*exp(GolombDickman)^2/Sierpinski^2 3770067641589719 a007 Real Root Of -780*x^4-920*x^3-904*x^2+711*x+363 3770067642011967 a007 Real Root Of -944*x^4+476*x^3+597*x^2+823*x+270 3770067651985366 a007 Real Root Of -204*x^4-729*x^3+65*x^2-228*x+365 3770067658078851 m001 cos(1/5*Pi)/polylog(4,1/2)/PrimesInBinary 3770067659360001 a007 Real Root Of -250*x^4-735*x^3+664*x^2-695*x-938 3770067666014868 a001 105937/6*29^(10/11) 3770067669798279 m005 (1/2*3^(1/2)-6)/(4/5*gamma+9/10) 3770067670664883 h001 (7/11*exp(2)+3/8)/(5/11*exp(1)+1/9) 3770067691797058 a001 11/2178309*4181^(15/29) 3770067694036803 a003 sin(Pi*7/59)/sin(Pi*5/12) 3770067703905281 m001 (-FransenRobinson+Porter)/(exp(1)+Chi(1)) 3770067711619147 p003 LerchPhi(1/32,4,145/202) 3770067714430093 a007 Real Root Of -239*x^4-817*x^3+328*x^2-145*x-705 3770067724533552 b008 12*Pi+Erfc[Sqrt[5]] 3770067733504227 r005 Re(z^2+c),c=9/29+32/63*I,n=51 3770067737823853 a007 Real Root Of 77*x^4-701*x^3+712*x^2+221*x-57 3770067741544268 r005 Re(z^2+c),c=-8/17+23/58*I,n=36 3770067745486358 m001 (-Zeta(3)+Ei(1,1))/(Chi(1)-gamma) 3770067769835104 l006 ln(8407/8730) 3770067770450022 m005 (1/3*3^(1/2)+2/11)/(1/2*5^(1/2)-11/12) 3770067811184682 r009 Im(z^3+c),c=-8/15+14/53*I,n=24 3770067813558440 a007 Real Root Of -16*x^4-578*x^3+960*x^2+378*x+700 3770067815651557 r009 Im(z^3+c),c=-103/122+7/58*I,n=2 3770067824670041 r002 3th iterates of z^2 + 3770067831545675 m001 (Riemann1stZero+Totient)/(ArtinRank2+Magata) 3770067833976426 m001 (2^(1/3)+3^(1/2))/(arctan(1/3)+Bloch) 3770067834990324 m001 OneNinth/CopelandErdos/ln(GAMMA(5/6)) 3770067837296342 r009 Re(z^3+c),c=-5/21+20/21*I,n=17 3770067850214188 m002 Pi+Pi^2-Cosh[Pi]+Pi*Sinh[Pi] 3770067850348960 a007 Real Root Of -814*x^4+538*x^3+890*x^2+860*x+243 3770067909417351 r005 Im(z^2+c),c=7/60+34/61*I,n=25 3770067911211904 a003 sin(Pi*2/43)/sin(Pi*13/103) 3770067912495577 r005 Im(z^2+c),c=8/27+7/30*I,n=49 3770067945325962 r002 56th iterates of z^2 + 3770067952287816 m005 (1/3*Pi-1/4)/(11/12*2^(1/2)+9/11) 3770067954573759 a007 Real Root Of 899*x^4-632*x^3+977*x^2-178*x-258 3770067956409704 r005 Re(z^2+c),c=-25/28+9/43*I,n=42 3770067956640791 r005 Im(z^2+c),c=1/17+27/62*I,n=24 3770067968102177 m001 (Artin-Conway)/(ErdosBorwein+Thue) 3770067974240385 r009 Im(z^3+c),c=-17/86+20/49*I,n=6 3770067991124091 r009 Im(z^3+c),c=-27/98+22/57*I,n=18 3770067997624906 s002 sum(A144983[n]/(n^2*10^n+1),n=1..infinity) 3770068012137172 m005 (1/2*exp(1)+2)/(2/11*exp(1)-7/12) 3770068013012939 s002 sum(A144983[n]/(n^2*10^n-1),n=1..infinity) 3770068035175555 m001 (MertensB1+TwinPrimes)/(Catalan+GAMMA(7/12)) 3770068042253758 m001 (Grothendieck+Khinchin)/(Salem+ZetaQ(3)) 3770068057930653 h001 (6/11*exp(2)+5/12)/(1/4*exp(1)+1/2) 3770068059495382 r002 19th iterates of z^2 + 3770068061425555 m001 1/OneNinth/FeigenbaumKappa^2/ln((3^(1/3)))^2 3770068068140344 r001 3i'th iterates of 2*x^2-1 of 3770068090801110 m001 (-gamma(3)+Sierpinski)/(GAMMA(3/4)-cos(1)) 3770068093599760 m001 1/ln(Riemann2ndZero)*Champernowne/Zeta(5)^2 3770068100261932 a007 Real Root Of -584*x^4+667*x^3+143*x^2+925*x-393 3770068117870906 l006 ln(1889/2754) 3770068122136004 h001 (7/9*exp(1)+4/7)/(8/9*exp(2)+5/9) 3770068156134323 m001 (cos(Pi/5)+1/2)/(-GaussAGM(1,1/sqrt(2))+1/2) 3770068160266819 r005 Im(z^2+c),c=-7/34+6/11*I,n=21 3770068163884214 a007 Real Root Of 205*x^4+951*x^3+848*x^2+733*x+256 3770068187606526 m001 (TwinPrimes+ZetaQ(2))/(Ei(1)-HeathBrownMoroz) 3770068189659446 a007 Real Root Of 274*x^4+860*x^3-565*x^2+132*x-742 3770068212787841 a001 29/144*28657^(26/51) 3770068215143427 a007 Real Root Of -811*x^4+486*x^3-324*x^2+447*x+257 3770068224105855 r009 Re(z^3+c),c=-27/82+1/24*I,n=10 3770068225289157 a007 Real Root Of -800*x^4+659*x^3-815*x^2-717*x-103 3770068227939977 m005 (1/3*Zeta(3)+1/9)/(65/66+1/6*5^(1/2)) 3770068241384594 a007 Real Root Of 804*x^4-617*x^3-683*x^2-674*x+368 3770068264073217 m002 -(Cosh[Pi]/Pi)+(Pi^6*Tanh[Pi])/E^Pi 3770068266944518 a007 Real Root Of -390*x^4+213*x^3-52*x^2+656*x+274 3770068277271948 m002 -2*Pi^2+Pi^5+Pi^4/ProductLog[Pi] 3770068304656576 a001 55/271443*123^(4/31) 3770068304827877 r005 Re(z^2+c),c=17/50+12/31*I,n=6 3770068306647458 r005 Re(z^2+c),c=-9/94+25/39*I,n=63 3770068313163867 p004 log(27107/18593) 3770068315467998 r005 Re(z^2+c),c=5/42+16/29*I,n=33 3770068315975648 a005 (1/cos(8/215*Pi))^1875 3770068319331717 m001 1/GAMMA(11/24)^2*exp(Khintchine)^2*cos(Pi/5)^2 3770068325758684 r002 23th iterates of z^2 + 3770068332171006 m002 -5-4/Log[Pi]+4*Sinh[Pi] 3770068336031963 r005 Re(z^2+c),c=-31/74+32/61*I,n=43 3770068342029238 a003 sin(Pi*2/71)/cos(Pi*33/67) 3770068344488832 m001 gamma(3)^Khinchin/ln(5) 3770068345770068 r005 Re(z^2+c),c=7/50+8/17*I,n=23 3770068353342808 p001 sum((-1)^n/(529*n+250)/(5^n),n=0..infinity) 3770068353641338 r005 Re(z^2+c),c=-16/31+5/52*I,n=33 3770068355029088 m001 (Totient+Thue)/(arctan(1/3)+MertensB1) 3770068371862226 m005 (1/2*Catalan+2/5)/(83/63+3/7*5^(1/2)) 3770068375373916 m001 (2^(1/3))^2/exp(Niven)/BesselJ(0,1) 3770068392452384 g006 Psi(1,1/3)-Psi(1,2/7)-2*Psi(1,1/4) 3770068396305815 r009 Re(z^3+c),c=-13/27+4/15*I,n=55 3770068410844976 a007 Real Root Of 330*x^4-854*x^3+989*x^2-374*x-334 3770068411179470 m001 Zeta(5)*GAMMA(11/24)*ln(cosh(1))^2 3770068414018277 a001 1292/161*29^(17/37) 3770068416128397 a007 Real Root Of -250*x^4-847*x^3+199*x^2-392*x+812 3770068422979324 a007 Real Root Of 118*x^4+248*x^3-798*x^2-26*x+695 3770068432686937 r002 16th iterates of z^2 + 3770068460647863 s001 sum(exp(-2*Pi)^n*A058149[n],n=1..infinity) 3770068460732699 m001 (Pi-Psi(1,1/3))/(gamma(2)-ZetaP(3)) 3770068465465001 r005 Im(z^2+c),c=51/118+19/50*I,n=7 3770068476187409 r002 35i'th iterates of 2*x/(1-x^2) of 3770068486030724 m001 (GaussAGM-Si(Pi))/(Tribonacci+Thue) 3770068488809211 m001 (FransenRobinson+Lehmer)/(3^(1/3)-cos(1)) 3770068493557727 r002 2th iterates of z^2 + 3770068499043254 m001 TwinPrimes^2*ln(BesselK(0,1)) 3770068516854551 a001 2/17*2178309^(17/43) 3770068526829237 r005 Im(z^2+c),c=5/29+13/40*I,n=7 3770068531568991 a007 Real Root Of -245*x^4-916*x^3+225*x^2+869*x+489 3770068533049223 m001 (cos(1/5*Pi)-ln(Pi))/(Kac-TravellingSalesman) 3770068555690045 r005 Re(z^2+c),c=-59/114+4/57*I,n=39 3770068571860222 m005 (1/2*Catalan-1/9)/(11/12*Zeta(3)-2/11) 3770068573010184 r005 Im(z^2+c),c=-11/90+37/61*I,n=36 3770068574769349 m008 (2/5*Pi^6-3)/(1/3*Pi^5-4/5) 3770068579061022 r005 Re(z^2+c),c=-25/52+10/29*I,n=43 3770068595000552 h001 (-6*exp(3/2)+6)/(-7*exp(1/2)+6) 3770068616429237 r009 Re(z^3+c),c=-19/46+11/60*I,n=15 3770068619759250 m001 (Ei(1)+ZetaQ(2))/(Shi(1)-cos(1)) 3770068628246328 a001 17711/322*123^(2/5) 3770068632483000 s002 sum(A177778[n]/(n*pi^n+1),n=1..infinity) 3770068635007456 m001 (sin(1/5*Pi)+Ei(1))/(Trott-ZetaP(4)) 3770068642348023 m001 BesselJ(1,1)^2*exp(Porter)^2/cos(Pi/12) 3770068652839170 r005 Im(z^2+c),c=25/114+16/53*I,n=12 3770068659713290 r004 Im(z^2+c),c=-1/24-9/17*I,z(0)=I,n=10 3770068691562695 s002 sum(A177778[n]/(n*pi^n-1),n=1..infinity) 3770068714795431 m005 (1/2*2^(1/2)-1/8)/(4/11*exp(1)+5/9) 3770068763312081 m001 (Ei(1)-BesselI(1,2))/(FeigenbaumDelta+Magata) 3770068768399414 m001 arctan(1/2)/sqrt(2)*GAMMA(1/12) 3770068768400136 r005 Re(z^2+c),c=-9/17+7/48*I,n=13 3770068783732842 m001 exp(RenyiParking)*FeigenbaumC/GAMMA(23/24) 3770068784098528 r005 Re(z^2+c),c=-47/106+33/61*I,n=53 3770068792068229 m001 (-ThueMorse+ZetaP(4))/(3^(1/2)-sin(1)) 3770068794050038 l006 ln(5370/7829) 3770068807339449 q001 1315/3488 3770068808159647 m005 (1/2*3^(1/2)+4/11)/(7/9*Pi+9/11) 3770068818071139 a003 cos(Pi*3/67)-sin(Pi*25/119) 3770068827893647 m005 (5/66+1/6*5^(1/2))/(1/14+1/2*5^(1/2)) 3770068837772333 m001 (3^(1/2)-ln(2^(1/2)+1))/(-ArtinRank2+Bloch) 3770068859411808 r005 Im(z^2+c),c=31/98+11/63*I,n=17 3770068861397670 m001 (Grothendieck+Totient)/(Zeta(3)-Artin) 3770068867042233 m008 (1/6*Pi^6+4)/(3/4*Pi+2) 3770068874695590 r005 Im(z^2+c),c=-1/114+1/26*I,n=5 3770068883328138 a007 Real Root Of 219*x^4+818*x^3-261*x^2-961*x-323 3770068889834513 r002 64th iterates of z^2 + 3770068907033608 a007 Real Root Of -284*x^4-775*x^3+980*x^2-278*x+868 3770068923693987 r005 Re(z^2+c),c=-6/13+22/51*I,n=49 3770068936249638 m002 4+Pi/(3*Log[Pi])-Log[Pi] 3770068951235038 r002 10th iterates of z^2 + 3770068951744308 m001 1/ln(FeigenbaumD)/Champernowne^2*LambertW(1) 3770068951745254 r005 Im(z^2+c),c=-23/58+4/7*I,n=12 3770068964581786 a007 Real Root Of 501*x^4-748*x^3-598*x^2-146*x+170 3770068966207672 h001 (7/9*exp(1)+5/12)/(5/6*exp(2)+5/9) 3770068983032954 a001 228826127/144*514229^(16/17) 3770068983380976 a001 51841/72*1836311903^(16/17) 3770068983769008 m001 (Porter+ZetaQ(2))/(CareFree-ln(2)/ln(10)) 3770068995729116 l006 ln(9344/9703) 3770069010014534 m001 QuadraticClass^DuboisRaymond/sin(1/12*Pi) 3770069013544088 m005 (1/2*Pi+1/3)/(1/5*2^(1/2)+2/9) 3770069022933920 m001 (Bloch-Riemann3rdZero)^PrimesInBinary 3770069037557021 a001 75025/521*123^(1/5) 3770069046395721 a007 Real Root Of -710*x^4-693*x^3-657*x^2+17*x+77 3770069048883516 a007 Real Root Of 238*x^4+711*x^3-933*x^2-742*x+482 3770069066406035 a001 144/199*843^(13/14) 3770069074239082 r002 62th iterates of z^2 + 3770069089361574 m001 BesselK(0,1)+ReciprocalFibonacci-Trott 3770069103760471 m001 1/ln(GAMMA(5/6))^2/FeigenbaumC/Pi^2 3770069103771282 m001 exp(1)*ln(BesselK(1,1))*sqrt(1+sqrt(3))^2 3770069108388310 r005 Re(z^2+c),c=-65/126+2/23*I,n=22 3770069112568910 m001 (ln(Pi)+FeigenbaumMu)/(Niven-Otter) 3770069118723471 m005 (1/2*Zeta(3)-1/10)/(5/7*gamma+11/12) 3770069119234866 m001 BesselJ(0,1)^2*TreeGrowth2nd^2*exp(Zeta(3)) 3770069136736704 a001 64079*13^(38/55) 3770069145066370 m005 (1/2*Pi-4/9)/(8/9*5^(1/2)+1) 3770069151953275 m001 (PlouffeB+Trott2nd)/(CareFree-Chi(1)) 3770069160985491 l006 ln(3481/5075) 3770069163855164 r009 Re(z^3+c),c=-29/114+55/57*I,n=17 3770069168753169 s002 sum(A217961[n]/((exp(n)+1)/n),n=1..infinity) 3770069187721711 a007 Real Root Of -223*x^4-256*x^3+298*x^2+432*x-187 3770069193933767 m001 (-Zeta(1,-1)+Gompertz)/(1-Zeta(3)) 3770069197548430 a003 sin(Pi*17/101)*sin(Pi*18/67) 3770069198405282 r008 a(0)=0,K{-n^6,56-44*n-12*n^2+27*n^3} 3770069200541297 m001 1/Porter/GlaisherKinkelin/exp(GAMMA(1/4))^2 3770069204911619 b008 -57/E^(1/3)+Pi 3770069208476702 m004 -120*Pi-6*Csc[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770069208726781 m004 -120*Pi-6*Csc[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 3770069210923071 l005 1630/97/(exp(815/97)+1) 3770069211245672 m006 (2*Pi^2+3/5)/(exp(2*Pi)+4) 3770069214771213 a007 Real Root Of -318*x^4+585*x^3-582*x^2+439*x+286 3770069224527723 r009 Re(z^3+c),c=-14/27+14/47*I,n=61 3770069229813512 r005 Re(z^2+c),c=-1/6+25/41*I,n=14 3770069232570563 r009 Re(z^3+c),c=-51/98+10/31*I,n=19 3770069232951515 m001 (PlouffeB+Stephens)/(3^(1/2)+Shi(1)) 3770069260141924 r005 Im(z^2+c),c=11/58+19/56*I,n=42 3770069260198747 m006 (3/4*exp(2*Pi)+3)/(4/Pi-1/5) 3770069263500742 r002 14th iterates of z^2 + 3770069281738364 r005 Im(z^2+c),c=-11/90+32/61*I,n=19 3770069284219171 a007 Real Root Of 594*x^4-110*x^3-233*x^2-547*x-191 3770069294354139 a007 Real Root Of -254*x^4-742*x^3+817*x^2-115*x-493 3770069305423795 m001 Riemann3rdZero^2/exp(Backhouse)*Sierpinski 3770069315335494 r005 Im(z^2+c),c=3/25+24/61*I,n=24 3770069321051412 r005 Re(z^2+c),c=-61/118+3/35*I,n=27 3770069328642283 r005 Im(z^2+c),c=-1/5+31/53*I,n=32 3770069347475669 r005 Re(z^2+c),c=-65/56+9/37*I,n=28 3770069359415182 b008 39*Sinh[Pi^2] 3770069367289971 m001 (Catalan+GAMMA(13/24))^(2^(1/2)) 3770069367289971 m001 (Catalan+GAMMA(13/24))^sqrt(2) 3770069371738885 a003 sin(Pi*14/79)*sin(Pi*22/87) 3770069379587224 b008 39*Cosh[Pi^2] 3770069380728640 m002 4+(2*Pi^6)/5-Sinh[Pi] 3770069389094977 r002 8th iterates of z^2 + 3770069397770821 a003 cos(Pi*7/48)*cos(Pi*38/105) 3770069409075414 r005 Im(z^2+c),c=5/38+25/51*I,n=3 3770069422737768 m001 1/GAMMA(17/24)/FeigenbaumB^2/ln(sin(1))^2 3770069422870866 m001 (GAMMA(19/24)+Thue)/(Psi(2,1/3)+Zeta(3)) 3770069425894085 a007 Real Root Of -792*x^4-45*x^3-919*x^2+705*x+410 3770069433326673 r002 10th iterates of z^2 + 3770069438079877 a007 Real Root Of 561*x^4-863*x^3-117*x^2-711*x-309 3770069438126182 a001 8/1149851*7^(33/38) 3770069438718897 r005 Re(z^2+c),c=-10/21+11/31*I,n=27 3770069443774661 a001 17+161*5^(1/2) 3770069450182427 p004 log(19867/13627) 3770069452097494 m001 GAMMA(5/12)*exp(GAMMA(3/4))^2/cos(Pi/5)^2 3770069453686096 m001 (ThueMorse-ZetaP(3))/(GAMMA(2/3)-Sarnak) 3770069468252083 m004 (-25*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)-120*Pi 3770069468694065 a001 2/55*1597^(13/41) 3770069474185762 r005 Im(z^2+c),c=3/50+10/23*I,n=22 3770069479603076 m001 GAMMA(7/24)/ln(Ei(1))^2*sqrt(5)^2 3770069494202489 r005 Re(z^2+c),c=-45/94+22/61*I,n=36 3770069503703156 m001 1/cos(1)^2*Salem*exp(sqrt(5)) 3770069516068836 r009 Im(z^3+c),c=-23/94+19/48*I,n=17 3770069520371952 m001 1/Pi/exp(Tribonacci)^2/Zeta(1/2)^2 3770069530234977 r005 Im(z^2+c),c=17/66+4/15*I,n=14 3770069549403254 l006 ln(5073/7396) 3770069551065875 m005 (1/3*Zeta(3)+1/12)/(7/9*Catalan+4/7) 3770069569261026 r009 Im(z^3+c),c=-49/110+3/10*I,n=43 3770069585945700 r005 Im(z^2+c),c=1/66+25/54*I,n=41 3770069596425866 r009 Im(z^3+c),c=-7/16+16/53*I,n=9 3770069608843949 l006 ln(201/8720) 3770069611709253 r005 Im(z^2+c),c=-29/46+19/62*I,n=5 3770069620909065 r002 37th iterates of z^2 + 3770069629528256 r009 Re(z^3+c),c=-55/126+10/59*I,n=4 3770069629831676 p004 log(24509/16811) 3770069669858891 m005 (1/2*gamma-9/10)/(2/5*5^(1/2)+8/11) 3770069687914329 m001 (Catalan+ln(2))/(-Zeta(1/2)+FransenRobinson) 3770069696586381 m001 Bloch*Khinchin+FeigenbaumAlpha 3770069697456737 a007 Real Root Of -96*x^4-98*x^3+945*x^2-348*x-601 3770069697640015 h001 (7/8*exp(1)+1/3)/(8/9*exp(2)+5/8) 3770069704856917 m008 (3/4*Pi^5+3/5)/(1/5*Pi^5-1/6) 3770069709014849 r005 Im(z^2+c),c=-17/62+7/12*I,n=42 3770069718509726 r005 Im(z^2+c),c=-27/50+11/23*I,n=26 3770069729088277 m001 (3^(1/2)-FeigenbaumC)/(MertensB1+ZetaQ(4)) 3770069739625099 m001 exp(Paris)*Si(Pi)^2/Zeta(9)^2 3770069746353686 a007 Real Root Of 297*x^4+840*x^3-771*x^2+818*x-946 3770069751578653 r005 Im(z^2+c),c=17/90+17/50*I,n=23 3770069752266299 l006 ln(6665/9717) 3770069753272136 m001 1/GAMMA(1/6)^2/exp(LaplaceLimit)^2*GAMMA(5/24) 3770069756686582 a001 46/141*6557470319842^(16/17) 3770069764291730 a003 sin(Pi*19/101)*sin(Pi*22/93) 3770069771449557 m003 5/2+(35*Sqrt[5])/64-Cos[1/2+Sqrt[5]/2] 3770069771945334 r005 Im(z^2+c),c=13/40+9/46*I,n=64 3770069786521493 m001 1/ln((3^(1/3)))^2/DuboisRaymond/Zeta(7)^2 3770069795155155 r005 Im(z^2+c),c=29/94+12/31*I,n=10 3770069806468256 m001 (3^(1/2)-cos(1))/(Khinchin+PlouffeB) 3770069829627371 r005 Re(z^2+c),c=-2/3+62/227*I,n=53 3770069834295214 m006 (5*Pi^2-5/6)/(3/5*ln(Pi)+3/5) 3770069858269841 m001 exp(GAMMA(1/4))^2/TreeGrowth2nd^2/GAMMA(11/24) 3770069879935785 r009 Re(z^3+c),c=-23/44+16/55*I,n=26 3770069885414332 h001 (7/9*exp(1)+3/11)/(9/11*exp(2)+2/7) 3770069888608806 a001 5778/233*28657^(2/49) 3770069898326158 a001 11*(1/2*5^(1/2)+1/2)^31*7^(1/15) 3770069903572639 p003 LerchPhi(1/2,4,195/83) 3770069908718901 r009 Im(z^3+c),c=-49/86+19/61*I,n=17 3770069912733680 r009 Re(z^3+c),c=-61/118+11/35*I,n=62 3770069914925621 m008 (1/3*Pi^3+2/3)/(3*Pi^4-2/5) 3770069919753064 m001 LandauRamanujan^PrimesInBinary-polylog(4,1/2) 3770069976524853 r005 Re(z^2+c),c=-23/34+5/102*I,n=10 3770069976970183 a007 Real Root Of -111*x^4-505*x^3-631*x^2-938*x+796 3770069980779552 a001 15127*377^(40/43) 3770069982434552 a005 (1/cos(34/173*Pi))^187 3770069982923810 r009 Im(z^3+c),c=-41/78+9/40*I,n=17 3770069983921170 a007 Real Root Of -666*x^4-4*x^3+352*x^2+816*x-344 3770069988829081 m001 (gamma(1)+GAMMA(11/12))/(MadelungNaCl+Thue) 3770070004413610 a001 199/365435296162*46368^(14/23) 3770070008010443 r005 Im(z^2+c),c=7/54+17/44*I,n=31 3770070014690972 r005 Re(z^2+c),c=-31/60+1/14*I,n=20 3770070029164400 r009 Re(z^3+c),c=-13/32+7/40*I,n=20 3770070037266686 a007 Real Root Of -731*x^4+797*x^3+552*x^2+801*x+281 3770070046080475 a007 Real Root Of -99*x^4-177*x^3+921*x^2+565*x-445 3770070047405712 a001 3461452808002/5*233^(11/15) 3770070058166671 h001 (1/2*exp(2)+10/11)/(2/7*exp(1)+4/9) 3770070068118121 p004 log(19001/13033) 3770070076107715 m005 (1/3*Catalan-2/7)/(3/7*3^(1/2)-2/9) 3770070100507011 r005 Re(z^2+c),c=-27/29+12/53*I,n=62 3770070100685755 r009 Im(z^3+c),c=-29/62+17/60*I,n=47 3770070104063335 r009 Im(z^3+c),c=-1/78+2/53*I,n=3 3770070108117107 m001 1/3*3^(1/2)*TreeGrowth2nd*ZetaR(2) 3770070118763951 r005 Re(z^2+c),c=-23/48+20/57*I,n=55 3770070122712843 m001 FeigenbaumMu-Otter^Tribonacci 3770070124190316 r005 Im(z^2+c),c=-1/78+23/48*I,n=28 3770070128711158 m001 (Shi(1)*Zeta(1,2)+Lehmer)/Shi(1) 3770070130086419 a003 sin(Pi*7/60)/cos(Pi*31/66) 3770070136194932 a007 Real Root Of -10*x^4-360*x^3+649*x^2+287*x-300 3770070143790194 r002 25th iterates of z^2 + 3770070146854364 r005 Im(z^2+c),c=-19/36+3/44*I,n=20 3770070170015659 a007 Real Root Of 622*x^4+612*x^3+581*x^2-946*x-419 3770070188207996 r002 35th iterates of z^2 + 3770070192961484 m001 (MertensB2+Trott2nd)/(3^(1/3)+exp(1/Pi)) 3770070197693523 r009 Im(z^3+c),c=-1/78+2/53*I,n=5 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=8 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=10 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=13 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=15 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=18 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=20 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=17 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=16 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=14 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=12 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=11 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=9 3770070197696423 r009 Im(z^3+c),c=-1/78+2/53*I,n=7 3770070197696430 r009 Im(z^3+c),c=-1/78+2/53*I,n=6 3770070198360726 r009 Im(z^3+c),c=-1/78+2/53*I,n=4 3770070226308129 m005 (1/2*Pi+7/9)/(7/11*5^(1/2)-4/5) 3770070232391258 r009 Re(z^3+c),c=-21/62+3/44*I,n=8 3770070257483022 b008 40/13+Log[2] 3770070263572303 r005 Im(z^2+c),c=4/17+8/27*I,n=18 3770070265639431 r002 62th iterates of z^2 + 3770070268682143 b008 22+13*Cosh[4] 3770070294707521 r002 33th iterates of z^2 + 3770070298616862 r005 Re(z^2+c),c=-13/106+5/8*I,n=17 3770070300901060 r005 Im(z^2+c),c=-5/7+3/110*I,n=53 3770070341037725 r009 Im(z^3+c),c=-31/110+25/36*I,n=53 3770070341300826 p003 LerchPhi(1/2,3,291/202) 3770070341671449 a003 cos(Pi*12/101)/cos(Pi*45/107) 3770070344470629 m001 Riemann2ndZero^2/FeigenbaumB^2/exp(sqrt(2))^2 3770070344518653 a007 Real Root Of 77*x^4+129*x^3-793*x^2-617*x+302 3770070345305182 m001 1/GAMMA(1/12)^2/exp(BesselJ(1,1))^2*Zeta(3) 3770070349288304 a007 Real Root Of -598*x^4+678*x^3+579*x^2+737*x+27 3770070353511848 l006 ln(154/6681) 3770070367943208 r005 Im(z^2+c),c=-19/54+19/34*I,n=19 3770070382761314 r009 Re(z^3+c),c=-35/78+5/22*I,n=22 3770070398701087 l006 ln(1592/2321) 3770070409158242 r005 Im(z^2+c),c=7/22+13/63*I,n=44 3770070457655267 r005 Im(z^2+c),c=19/70+11/42*I,n=36 3770070462245169 r005 Im(z^2+c),c=5/48+24/55*I,n=11 3770070466911310 r009 Re(z^3+c),c=-1/26+4/47*I,n=5 3770070467951895 a007 Real Root Of -124*x^4-318*x^3-499*x^2+304*x+171 3770070475604292 m009 (3/4*Psi(1,1/3)+3/5)/(2/5*Psi(1,3/4)-4/5) 3770070476625360 m005 (1/2*Catalan-4/7)/(-4/9+1/3*5^(1/2)) 3770070499024613 a007 Real Root Of 148*x^4+726*x^3+435*x^2-978*x-866 3770070502751020 r009 Re(z^3+c),c=-1/26+4/47*I,n=8 3770070502751344 r009 Re(z^3+c),c=-1/26+4/47*I,n=7 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=10 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=11 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=13 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=16 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=18 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=19 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=21 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=24 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=26 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=27 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=28 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=29 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=25 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=23 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=22 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=20 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=17 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=15 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=14 3770070502751481 r009 Re(z^3+c),c=-1/26+4/47*I,n=12 3770070502751497 r009 Re(z^3+c),c=-1/26+4/47*I,n=9 3770070503446936 r009 Re(z^3+c),c=-1/26+4/47*I,n=6 3770070504942341 s002 sum(A216006[n]/(n*10^n+1),n=1..infinity) 3770070512502625 m001 (HeathBrownMoroz-TwinPrimes)/MadelungNaCl 3770070525143753 p003 LerchPhi(1/25,6,387/224) 3770070527890574 m001 GAMMA(17/24)-Thue^HardyLittlewoodC3 3770070528473499 m001 (ln(2)/ln(10)+arctan(1/3))/(PlouffeB+Salem) 3770070536578475 m005 (4/5*exp(1)+2/5)/(3/4*gamma+1/4) 3770070537990570 a007 Real Root Of -240*x^4-693*x^3+965*x^2+367*x-982 3770070561275299 m001 1/GAMMA(3/4)^2*BesselJ(0,1)/ln(sin(Pi/12)) 3770070565239504 l003 sinh(2+4/107) 3770070565239504 l004 sinh(218/107) 3770070574853797 a007 Real Root Of -242*x^4-732*x^3+794*x^2+357*x-275 3770070584639896 m001 1/MinimumGamma*LaplaceLimit*ln(Zeta(7)) 3770070587397033 a001 11/5*89^(3/25) 3770070595822818 r009 Re(z^3+c),c=-29/54+9/37*I,n=59 3770070624502738 r005 Re(z^2+c),c=-5/8+77/212*I,n=57 3770070625294254 h001 (-5*exp(2/3)+7)/(-2*exp(-1)+8) 3770070627534263 m005 (1/2*gamma+1)/(5/6*Pi+4/5) 3770070627973017 a003 cos(Pi*37/120)-sin(Pi*31/79) 3770070628424424 h001 (7/10*exp(1)+1/7)/(2/3*exp(2)+1/2) 3770070638427383 r005 Im(z^2+c),c=-7/114+32/63*I,n=35 3770070648683365 q001 587/1557 3770070649499437 a007 Real Root Of -655*x^4+958*x^3+15*x^2+219*x+145 3770070651321410 a007 Real Root Of 26*x^4+990*x^3+353*x^2-592*x+102 3770070654077632 a008 Real Root of (-3-4*x-3*x^2+2*x^3-4*x^4+x^5) 3770070657654190 s002 sum(A183277[n]/(exp(2*pi*n)-1),n=1..infinity) 3770070662533876 m001 GAMMA(23/24)^2*ln(Lehmer)/Zeta(1/2) 3770070663338484 r004 Im(z^2+c),c=7/38+8/23*I,z(0)=exp(5/8*I*Pi),n=5 3770070664817038 m001 2*Pi/GAMMA(5/6)*(ArtinRank2-exp(1/Pi)) 3770070683090855 m001 1/Paris*FibonacciFactorial*ln(GAMMA(2/3)) 3770070688137512 a003 sin(Pi*37/102)/cos(Pi*30/71) 3770070710660833 r002 5th iterates of z^2 + 3770070735222353 r005 Im(z^2+c),c=9/29+11/51*I,n=47 3770070739442367 r002 7th iterates of z^2 + 3770070763452956 m001 (Mills-Trott)/(ln(3)-3^(1/3)) 3770070765884437 r005 Im(z^2+c),c=-37/122+13/23*I,n=25 3770070770906148 a001 123/17711*610^(54/55) 3770070779815344 m001 1/GAMMA(1/12)^2*ln(Si(Pi))*cos(Pi/5) 3770070782100669 a007 Real Root Of -509*x^4+107*x^3-911*x^2+996*x+521 3770070788741985 r009 Im(z^3+c),c=-7/29+25/63*I,n=14 3770070851255616 r009 Im(z^3+c),c=-61/110+23/61*I,n=57 3770070851308541 r002 14th iterates of z^2 + 3770070863331273 r005 Re(z^2+c),c=11/74+17/45*I,n=57 3770070878508686 a005 (1/sin(61/173*Pi))^74 3770070888656910 m004 2+(50*Sqrt[5])/Pi+Sin[Sqrt[5]*Pi]/6 3770070895846942 r005 Im(z^2+c),c=-67/102+18/59*I,n=51 3770070902156949 h001 (7/12*exp(1)+1/11)/(6/11*exp(2)+5/12) 3770070904786667 a001 3*(1/2*5^(1/2)+1/2)^16*76^(14/15) 3770070906001170 r009 Im(z^3+c),c=-39/122+15/41*I,n=8 3770070915033911 q001 1/265247 3770070959440133 m001 (sin(1)+Landau)/(-OneNinth+Weierstrass) 3770070972133816 r009 Im(z^3+c),c=-15/34+15/26*I,n=9 3770070977011007 m001 (GolombDickman-sin(1))/Stephens 3770070977591918 r005 Re(z^2+c),c=-55/98+13/48*I,n=11 3770070987525497 a001 3940598/17*591286729879^(20/21) 3770070987525559 a001 119218851371/34*24157817^(20/21) 3770070988676596 h001 (9/10*exp(1)+1/3)/(11/12*exp(2)+3/5) 3770070993755353 r005 Im(z^2+c),c=-5/52+19/37*I,n=17 3770070995312121 r005 Re(z^2+c),c=-10/21+9/22*I,n=34 3770071008551587 r005 Im(z^2+c),c=-87/74+5/61*I,n=3 3770071008691750 r005 Im(z^2+c),c=-5/46+26/49*I,n=29 3770071019067100 m001 FeigenbaumAlpha^Catalan/(sin(1/5*Pi)^Catalan) 3770071019067100 m001 FeigenbaumAlpha^Catalan/(sin(Pi/5)^Catalan) 3770071033528309 a007 Real Root Of 132*x^4+328*x^3-725*x^2-235*x+328 3770071041627177 r005 Re(z^2+c),c=-19/56+24/47*I,n=10 3770071051091065 r002 50th iterates of z^2 + 3770071053760745 r009 Im(z^3+c),c=-9/25+20/57*I,n=16 3770071069667526 r005 Im(z^2+c),c=-41/114+19/36*I,n=3 3770071073534473 r005 Im(z^2+c),c=-5/38+27/50*I,n=31 3770071087580775 a007 Real Root Of 595*x^4-941*x^3-244*x^2-616*x-260 3770071095410728 m001 Robbin/FransenRobinson^2*ln(cos(Pi/5))^2 3770071108384428 l006 ln(6071/8851) 3770071122271390 p001 sum((-1)^n/(309*n+254)/(10^n),n=0..infinity) 3770071125077808 m001 1/GAMMA(19/24)^2/BesselK(1,1)^2*ln(cosh(1))^2 3770071141030475 r005 Im(z^2+c),c=9/56+23/64*I,n=14 3770071146407011 m005 (1/3*2^(1/2)-1/9)/(6/11*Zeta(3)+3/10) 3770071153243727 r002 3th iterates of z^2 + 3770071157419772 a001 1/46347*377^(47/54) 3770071166182238 r009 Im(z^3+c),c=-17/29+5/61*I,n=3 3770071190215320 m005 (1/2*Catalan-7/8)/(9/10*2^(1/2)-1/6) 3770071191982252 r002 38th iterates of z^2 + 3770071201559888 r005 Im(z^2+c),c=47/118+7/34*I,n=44 3770071202621809 r002 48th iterates of z^2 + 3770071221515139 m001 Champernowne*(Pi^(1/2)-Porter) 3770071241859337 m001 (1-Kac)/(-Kolakoski+KomornikLoreti) 3770071246362081 m001 sqrt(3)+(2^(1/3))^GAMMA(7/24) 3770071276927733 r005 Im(z^2+c),c=-10/7+8/79*I,n=4 3770071299996329 m004 -120*Pi-9*Sech[Sqrt[5]*Pi] 3770071300123023 m004 -18/E^(Sqrt[5]*Pi)-120*Pi 3770071300249718 m004 -120*Pi-9*Csch[Sqrt[5]*Pi] 3770071305478609 r009 Im(z^3+c),c=-11/64+12/29*I,n=11 3770071316420184 r005 Im(z^2+c),c=-1/36+25/51*I,n=23 3770071320839581 r009 Re(z^3+c),c=-1/26+4/47*I,n=4 3770071321089307 m001 sin(1/5*Pi)^(FeigenbaumD/MinimumGamma) 3770071321158938 s002 sum(A192910[n]/(n*pi^n-1),n=1..infinity) 3770071335562978 r005 Im(z^2+c),c=17/66+13/47*I,n=47 3770071344069444 a001 2/13*8^(25/58) 3770071345249867 m007 (-3*gamma-6*ln(2)+3/4)/(-gamma-2*ln(2)+3/5) 3770071347135324 r005 Re(z^2+c),c=-29/60+18/55*I,n=29 3770071355421981 r009 Im(z^3+c),c=-13/114+27/64*I,n=6 3770071360631766 l006 ln(4479/6530) 3770071363181970 a001 98209/2*47^(9/17) 3770071386115433 r005 Re(z^2+c),c=-43/90+25/56*I,n=13 3770071386655051 a007 Real Root Of 19*x^4-28*x^3-218*x^2+338*x-966 3770071393600555 m001 exp(FeigenbaumD)/MinimumGamma^2*GAMMA(1/24)^2 3770071404095146 m001 exp(1/exp(1))*(exp(Pi)+Otter) 3770071409933719 m005 (1/2*gamma+1/2)/(11/12*exp(1)-2/5) 3770071422686074 r005 Re(z^2+c),c=-57/122+25/63*I,n=47 3770071424532249 a001 514229/11*18^(13/18) 3770071433418632 a001 1/102287808*4807526976^(9/19) 3770071433419982 a001 47/63245986*514229^(9/19) 3770071443072096 r009 Im(z^3+c),c=-27/52+21/64*I,n=23 3770071444017513 r009 Re(z^3+c),c=-49/106+9/23*I,n=5 3770071456180642 a007 Real Root Of -201*x^4-88*x^3+74*x^2+958*x+350 3770071462147442 m004 (-5*Pi)/2-Tan[Sqrt[5]*Pi]+5*Tanh[Sqrt[5]*Pi] 3770071464897780 r005 Im(z^2+c),c=11/74+16/43*I,n=32 3770071476702590 a007 Real Root Of -240*x^4-847*x^3+292*x^2+456*x+667 3770071483778163 m001 FeigenbaumKappa^2*ln(Paris)/GAMMA(5/6) 3770071490040777 r002 4th iterates of z^2 + 3770071495397692 r002 11th iterates of z^2 + 3770071521031161 m001 (GAMMA(2/3)+GAMMA(5/6))/(Trott-ZetaP(4)) 3770071527182544 r009 Re(z^3+c),c=-31/90+5/62*I,n=10 3770071527297790 r002 23th iterates of z^2 + 3770071548360011 s002 sum(A264396[n]/(n^3*2^n+1),n=1..infinity) 3770071549329751 m001 Ei(1)*exp(CareFree)/Zeta(7)^2 3770071579334553 r005 Im(z^2+c),c=29/118+15/52*I,n=42 3770071581003523 m004 18-Cos[Sqrt[5]*Pi]+125*Pi*Tan[Sqrt[5]*Pi] 3770071586056102 r002 16th iterates of z^2 + 3770071601922059 a005 (1/cos(23/226*Pi))^424 3770071618443900 r005 Re(z^2+c),c=-25/66+31/59*I,n=10 3770071638059771 m001 ln(GAMMA(1/3))^2*(2^(1/3))*GAMMA(7/24) 3770071654974785 r002 21th iterates of z^2 + 3770071663878375 a003 sin(Pi*1/84)/cos(Pi*2/49) 3770071665141009 m005 (1/3*gamma-1/11)/(9/11*Zeta(3)-5/7) 3770071666293194 r005 Re(z^2+c),c=25/64+32/59*I,n=5 3770071674687766 m001 (Zeta(1,2)+Pi^(1/2))/(FeigenbaumKappa+Thue) 3770071675455161 r002 5th iterates of z^2 + 3770071685220521 r005 Im(z^2+c),c=-81/122+19/56*I,n=54 3770071701403858 a007 Real Root Of -968*x^4-376*x^3-575*x^2+867*x+408 3770071701586973 b008 -39+Log[11/3] 3770071708572505 a007 Real Root Of -756*x^4+521*x^3-892*x^2+573*x+386 3770071712329353 m001 BesselI(0,1)+Zeta(5)+Porter 3770071719081413 m006 (1/4*Pi+1/3)/(1/4*Pi^2+1/2) 3770071719081413 m008 (1/4*Pi+1/3)/(1/4*Pi^2+1/2) 3770071719619278 a007 Real Root Of 256*x^4+704*x^3-888*x^2+336*x-105 3770071720325763 m005 (1/2*Pi+2/3)/(1/8*Zeta(3)-1/11) 3770071727640023 r009 Re(z^3+c),c=-33/98+44/51*I,n=2 3770071729174696 a007 Real Root Of -574*x^4-467*x^3+442*x^2+488*x-19 3770071729361280 a001 21/64079*64079^(49/58) 3770071741544592 r002 20th iterates of z^2 + 3770071752372476 l006 ln(107/4642) 3770071758048379 m005 (1/4*gamma+3)/(11/4+5/2*5^(1/2)) 3770071759532421 a005 (1/cos(59/240*Pi))^142 3770071763902399 a007 Real Root Of 612*x^4-766*x^3+923*x^2-635*x-424 3770071790557619 r005 Re(z^2+c),c=23/90+1/29*I,n=4 3770071804796677 r005 Re(z^2+c),c=-29/56+1/16*I,n=36 3770071805148402 r005 Im(z^2+c),c=1/6+14/39*I,n=21 3770071822601844 r009 Re(z^3+c),c=-57/94+9/13*I,n=6 3770071858971586 s002 sum(A217961[n]/((exp(n)-1)/n),n=1..infinity) 3770071859771503 r005 Im(z^2+c),c=-5/66+33/64*I,n=45 3770071877446142 r001 44i'th iterates of 2*x^2-1 of 3770071891076355 l006 ln(2887/4209) 3770071896717179 a007 Real Root Of -141*x^4-565*x^3-431*x^2-930*x+829 3770071917827961 r005 Re(z^2+c),c=-16/31+5/52*I,n=39 3770071927113362 r002 5th iterates of z^2 + 3770071931553576 r009 Re(z^3+c),c=-13/29+12/53*I,n=21 3770071933480564 r009 Re(z^3+c),c=-23/54+1/5*I,n=25 3770071944488301 r005 Re(z^2+c),c=-13/28+19/41*I,n=45 3770071957104465 a007 Real Root Of 125*x^4-685*x^3-239*x^2-368*x-144 3770071961118240 r005 Im(z^2+c),c=-29/110+20/33*I,n=31 3770071975118913 r005 Im(z^2+c),c=9/29+11/51*I,n=61 3770071979220924 m002 Log[Pi]-Log[Pi]/E^Pi+Pi^3*Sech[Pi] 3770071980366297 r005 Re(z^2+c),c=-57/110+1/20*I,n=19 3770071992516719 h001 (3/5*exp(1)+4/7)/(3/4*exp(2)+3/10) 3770071994372111 a001 21/3571*9349^(41/58) 3770071995083285 a007 Real Root Of 984*x^4-363*x^3+634*x^2-28*x-140 3770071999764440 b008 -1/18+ProductLog[2/3] 3770072002289220 m005 (1/3*3^(1/2)+1/3)/(7/8*Pi-1/3) 3770072005615074 m001 (Kac-Paris)/(GAMMA(17/24)-FeigenbaumD) 3770072018199708 a001 4250681/48*1836311903^(14/17) 3770072018202033 a001 5374978561/72*514229^(14/17) 3770072025086237 m001 (5^(1/2)-Zeta(1,-1))/(gamma(1)+Rabbit) 3770072028448114 a003 cos(Pi*29/78)-cos(Pi*52/105) 3770072034675391 a001 15127/144*6557470319842^(14/17) 3770072048509670 r005 Re(z^2+c),c=41/118+34/61*I,n=9 3770072049621581 m001 (PlouffeB+ZetaQ(4))/(GAMMA(13/24)-Artin) 3770072059306215 r004 Im(z^2+c),c=1/42+6/13*I,z(0)=I,n=24 3770072061201309 r005 Re(z^2+c),c=-61/94+16/55*I,n=22 3770072065861498 b008 Zeta[1+E,11]^2 3770072084312905 r009 Im(z^3+c),c=-1/78+2/53*I,n=2 3770072089363693 r002 29th iterates of z^2 + 3770072091592741 m001 (Psi(1,1/3)+5^(1/2))/(sin(1/5*Pi)+FeigenbaumD) 3770072101237192 m001 (-GAMMA(3/4)+arctan(1/2))/(1-Zeta(3)) 3770072105178964 a007 Real Root Of 619*x^4-374*x^3+991*x^2+200*x-98 3770072113657200 r005 Im(z^2+c),c=17/54+19/48*I,n=59 3770072172350879 r005 Im(z^2+c),c=-1/74+23/45*I,n=9 3770072177254099 r002 10th iterates of z^2 + 3770072185607920 r005 Re(z^2+c),c=-37/82+22/41*I,n=59 3770072188142167 m007 (-3/5*gamma-6/5*ln(2)+1/4)/(-4/5*gamma-2) 3770072192569866 r005 Im(z^2+c),c=11/64+17/48*I,n=22 3770072195159380 r009 Re(z^3+c),c=-61/118+15/38*I,n=29 3770072199263640 m001 (arctan(1/3)-GAMMA(7/12))/(Artin-ZetaQ(2)) 3770072200880349 r002 34th iterates of z^2 + 3770072207881721 m005 (1/3*2^(1/2)-2/7)/(11/12*Catalan-8/9) 3770072222698834 r005 Re(z^2+c),c=5/102+36/55*I,n=2 3770072224720512 a001 817138163596/5*2178309^(11/13) 3770072224720638 a001 20633239/5*591286729879^(11/13) 3770072224720647 a001 4106118243/5*1134903170^(11/13) 3770072229352854 h001 (1/7*exp(2)+5/6)/(7/12*exp(2)+7/10) 3770072248013544 a001 199/63245986*2^(6/23) 3770072256593301 r005 Im(z^2+c),c=37/118+23/57*I,n=59 3770072287919295 m001 1/GAMMA(3/4)*BesselK(0,1)^2*ln(sinh(1))^2 3770072307769404 m005 (1/2*Zeta(3)-5/7)/(2*Zeta(3)+3/5) 3770072321027543 m005 (1/2*Pi-1/7)/(7/10*3^(1/2)-5) 3770072322279638 m001 log(1+sqrt(2))*exp(Zeta(9))^2/log(2+sqrt(3))^2 3770072322686708 m005 (1/3*3^(1/2)-1/10)/(8/11*Catalan+3/5) 3770072346445611 a007 Real Root Of -266*x^4+962*x^3-875*x^2+291*x+291 3770072373121619 h001 (8/11*exp(1)+7/11)/(8/9*exp(2)+4/11) 3770072379403913 s002 sum(A125568[n]/((2^n+1)/n),n=1..infinity) 3770072391296716 r005 Im(z^2+c),c=-55/94+2/29*I,n=63 3770072396787831 r002 14th iterates of z^2 + 3770072399767122 a007 Real Root Of 212*x^4+687*x^3-493*x^2-209*x+204 3770072400592125 m001 (OrthogonalArrays-Sarnak)/(Bloch+MertensB3) 3770072422923160 r005 Im(z^2+c),c=-3/23+35/64*I,n=39 3770072424516162 r005 Re(z^2+c),c=-31/54+22/59*I,n=16 3770072434985686 r002 14th iterates of z^2 + 3770072446849016 m005 (1/2*Zeta(3)-6)/(8/9*5^(1/2)-5/9) 3770072455292705 r009 Im(z^3+c),c=-13/64+12/31*I,n=2 3770072459192372 l006 ln(4182/6097) 3770072459324256 r002 59th iterates of z^2 + 3770072461046269 r005 Re(z^2+c),c=-61/114+29/63*I,n=48 3770072506142820 m008 (1/4*Pi+2/3)/(2/5*Pi^6+3/5) 3770072509438478 m006 (1/3*exp(Pi)+3/4)/(1/6*Pi^2+3/5) 3770072518210200 r005 Im(z^2+c),c=21/118+22/63*I,n=14 3770072521775513 r009 Re(z^3+c),c=-47/106+17/42*I,n=4 3770072543008700 m001 MinimumGamma^Zeta(1,2)*ZetaQ(2) 3770072543651700 r009 Im(z^3+c),c=-47/126+21/61*I,n=24 3770072545441151 m001 (-PlouffeB+TreeGrowth2nd)/(Kac-Psi(1,1/3)) 3770072554651647 r002 9th iterates of z^2 + 3770072557493162 a007 Real Root Of 677*x^4+198*x^3+849*x^2-815*x-431 3770072560289285 r005 Im(z^2+c),c=-79/126+43/63*I,n=14 3770072575655643 m001 (ln(gamma)-gamma(2))/(ErdosBorwein-ZetaP(3)) 3770072600933429 r009 Im(z^3+c),c=-39/74+9/40*I,n=17 3770072648794702 m001 (Kac-Psi(1,1/3))/(OneNinth+Riemann3rdZero) 3770072657506296 r005 Re(z^2+c),c=-31/25+2/17*I,n=40 3770072667022165 m001 exp(PisotVijayaraghavan)^2/Artin^2/FeigenbaumD 3770072675172965 r005 Im(z^2+c),c=1/86+20/43*I,n=54 3770072687789414 m001 Zeta(1,-1)*FeigenbaumD^GaussAGM 3770072698925242 a007 Real Root Of -283*x^4+893*x^3+784*x^2+651*x-399 3770072707173943 r005 Re(z^2+c),c=8/27+3/41*I,n=13 3770072725029757 a007 Real Root Of 281*x^4+873*x^3-497*x^2+749*x-100 3770072750675449 a007 Real Root Of -283*x^4-874*x^3+546*x^2-749*x-246 3770072751683042 m001 (-GaussAGM+HardyLittlewoodC4)/(5^(1/2)-Chi(1)) 3770072758653914 l006 ln(5477/7985) 3770072765105172 r005 Im(z^2+c),c=7/40+13/37*I,n=33 3770072787666050 r005 Im(z^2+c),c=-35/66+1/15*I,n=53 3770072789018533 p001 sum(1/(503*n+308)/(3^n),n=0..infinity) 3770072796735764 m001 Pi-(exp(Pi)+5^(1/2))*ln(5) 3770072799138663 r005 Im(z^2+c),c=-6/31+25/41*I,n=63 3770072805301293 r009 Re(z^3+c),c=-41/106+8/45*I,n=3 3770072812558238 a007 Real Root Of -992*x^4-358*x^3+445*x^2+610*x-254 3770072817766290 a007 Real Root Of -51*x^4-383*x^3-924*x^2-661*x+421 3770072817955255 m001 GAMMA(1/4)-ln(1+sqrt(2))+GAMMA(23/24) 3770072821836059 a003 sin(Pi*8/67)/sin(Pi*14/33) 3770072833223827 m001 1/GAMMA(23/24)/exp((3^(1/3)))^2/Zeta(3)^2 3770072837454500 s002 sum(A131716[n]/(n^2*pi^n-1),n=1..infinity) 3770072860671456 r002 33th iterates of z^2 + 3770072873336481 m001 (Psi(1,1/3)-Shi(1))/(-Zeta(5)+Riemann3rdZero) 3770072892623571 r002 22th iterates of z^2 + 3770072899561564 r005 Im(z^2+c),c=1/38+26/57*I,n=34 3770072900361666 a007 Real Root Of -182*x^4-719*x^3+29*x^2+364*x-800 3770072908038664 r009 Re(z^3+c),c=-61/118+13/45*I,n=46 3770072913576102 m001 (Backhouse+MertensB1)/(Pi+2^(1/2)) 3770072943584236 l006 ln(6772/9873) 3770072964308911 a007 Real Root Of -792*x^4+122*x^3-691*x^2+746*x+402 3770072967501135 m005 (1/3+1/6*5^(1/2))/(7/11*exp(1)+1/7) 3770072992700729 q001 1033/2740 3770072995811415 a007 Real Root Of -236*x^4-100*x^3-312*x^2+858*x-269 3770073008676571 m001 1/exp(FeigenbaumDelta)*CopelandErdos*Niven 3770073018152978 m001 (exp(1/Pi)+GaussAGM)/(LaplaceLimit-ZetaP(4)) 3770073039760587 m001 (Pi-CareFree)/(Lehmer+ZetaQ(2)) 3770073042338027 l006 ln(167/7245) 3770073061847203 r005 Im(z^2+c),c=7/78+17/41*I,n=36 3770073072460946 a007 Real Root Of -503*x^4+118*x^3-563*x^2+744*x+377 3770073072981003 s002 sum(A006742[n]/(exp(2*pi*n)+1),n=1..infinity) 3770073079149905 m002 -Pi^5-2*Pi^3*Log[Pi] 3770073085708709 m001 1/3*(Pi+2^(1/2))/Chi(1)*3^(2/3) 3770073097127580 m001 (BesselI(1,2)+Tetranacci)/(ln(3)+Zeta(1,-1)) 3770073115859613 a007 Real Root Of 150*x^4+436*x^3-404*x^2+384*x+250 3770073144421309 r005 Re(z^2+c),c=-5/11+7/18*I,n=13 3770073148262918 a007 Real Root Of -663*x^4+763*x^3+636*x^2+491*x-303 3770073154537766 m005 (1/2*Pi+1/10)/(1/11*3^(1/2)+2/7) 3770073165949279 a007 Real Root Of -223*x^4-562*x^3+873*x^2-494*x+665 3770073171925929 s002 sum(A003993[n]/(exp(2*pi*n)+1),n=1..infinity) 3770073179779046 m001 (sin(1)+FeigenbaumKappa)/(-Mills+Sarnak) 3770073183476020 a001 1364*(1/2*5^(1/2)+1/2)^15*3^(9/14) 3770073211579798 r005 Im(z^2+c),c=-27/118+34/59*I,n=41 3770073215685164 m001 1/ln(MertensB1)^2*Bloch^2*KhintchineHarmonic^2 3770073225406815 r005 Re(z^2+c),c=-43/106+26/61*I,n=14 3770073226597088 m001 (exp(-1/2*Pi)+5)/(ln(1+sqrt(2))+1/2) 3770073227005816 r005 Re(z^2+c),c=-13/29+25/54*I,n=64 3770073229990281 r009 Re(z^3+c),c=-41/98+29/50*I,n=34 3770073234691133 m001 (Magata+Niven)/(Catalan+BesselJ(1,1)) 3770073235215133 a008 Real Root of x^3-x^2-168*x+594 3770073237632126 a007 Real Root Of -857*x^4-576*x^3+266*x^2+802*x+251 3770073246535939 r005 Im(z^2+c),c=-10/17+2/29*I,n=38 3770073248562345 a007 Real Root Of -124*x^4+576*x^3+55*x^2+721*x-308 3770073271710121 h001 (1/2*exp(2)+2/9)/(1/10*exp(2)+3/10) 3770073275016667 a007 Real Root Of -154*x^4-619*x^3-12*x^2+528*x+103 3770073278833783 a007 Real Root Of -226*x^4-796*x^3+201*x^2+169*x+783 3770073296626609 r005 Im(z^2+c),c=21/94+9/29*I,n=20 3770073326645020 r005 Re(z^2+c),c=5/94+22/35*I,n=40 3770073336069304 r005 Im(z^2+c),c=-7/8+54/233*I,n=54 3770073339034834 m001 1/Khintchine^2/Champernowne/ln(sin(1))^2 3770073340510217 m001 1/GAMMA(17/24)/ln(GAMMA(1/24))*GAMMA(7/12) 3770073391578668 m001 (ln(2)-ArtinRank2)/(Lehmer-MadelungNaCl) 3770073402635691 a001 1/370248451*76^(14/23) 3770073403280057 r009 Im(z^3+c),c=-21/44+11/40*I,n=31 3770073403858787 m005 (1/2*Pi-8/9)/(-61/90+2/9*5^(1/2)) 3770073404856013 r002 1i'th iterates of 2*x/(1-x^2) of 3770073424880189 r005 Re(z^2+c),c=-33/64+5/48*I,n=29 3770073426493669 r005 Im(z^2+c),c=9/70+12/31*I,n=38 3770073441078335 p001 sum((-1)^n/(137*n+120)/n/(10^n),n=0..infinity) 3770073444144640 r009 Re(z^3+c),c=-53/114+8/41*I,n=9 3770073447141065 r005 Im(z^2+c),c=23/78+12/53*I,n=21 3770073447417648 r005 Im(z^2+c),c=-21/44+24/49*I,n=23 3770073461582641 r005 Im(z^2+c),c=17/58+14/59*I,n=63 3770073465818299 r005 Re(z^2+c),c=-21/44+14/39*I,n=64 3770073493911436 a007 Real Root Of -207*x^4-670*x^3+295*x^2-395*x+234 3770073510181536 a007 Real Root Of 21*x^4+795*x^3+102*x^2-800*x+868 3770073529961908 a007 Real Root Of 121*x^4+429*x^3-134*x^2-147*x-106 3770073531376685 b008 8^Erfc[1]*E 3770073539846205 m005 (1/2*2^(1/2)-1/4)/(9/10*5^(1/2)-4/5) 3770073545848973 r002 40th iterates of z^2 + 3770073549422715 m001 (MertensB3-Totient)/(FeigenbaumAlpha-Lehmer) 3770073552659114 r002 14th iterates of z^2 + 3770073553252566 r002 13th iterates of z^2 + 3770073556802066 a001 21/1364*3571^(39/58) 3770073571832988 r005 Re(z^2+c),c=-14/27+5/24*I,n=13 3770073574650319 a001 13/47*9349^(2/7) 3770073577930239 a003 sin(Pi*10/83)/cos(Pi*15/32) 3770073585353219 a007 Real Root Of -606*x^4+759*x^3-259*x^2+136*x+141 3770073586974312 a001 13/47*817138163596^(2/21) 3770073586974312 a001 13/47*87403803^(1/7) 3770073589897160 m005 (1/2*Pi+6/7)/(1/11*Catalan-8/11) 3770073607701712 r009 Im(z^3+c),c=-65/122+3/11*I,n=61 3770073609844041 a001 7/55*317811^(3/35) 3770073619222108 h001 (7/8*exp(2)+1/6)/(1/2*exp(1)+2/5) 3770073622048715 p003 LerchPhi(1/100,3,221/74) 3770073623912947 m001 exp(FeigenbaumC)/MadelungNaCl*GAMMA(11/12) 3770073642941074 m009 (4*Catalan+1/2*Pi^2+6)/(1/5*Psi(1,2/3)-1) 3770073649248844 r008 a(0)=0,K{-n^6,11+43*n^3-36*n^2-44*n} 3770073650382886 l006 ln(227/9848) 3770073684854354 s001 sum(exp(-2*Pi)^n*A054138[n],n=1..infinity) 3770073691625847 p003 LerchPhi(1/8,3,105/163) 3770073700234772 a007 Real Root Of 263*x^4-276*x^3+107*x^2-779*x-329 3770073725718078 l006 ln(1295/1888) 3770073736972564 a007 Real Root Of 266*x^4+721*x^3-858*x^2+807*x+135 3770073738539977 r009 Re(z^3+c),c=-25/52+17/64*I,n=35 3770073739334816 a007 Real Root Of -88*x^4-396*x^3-176*x^2+59*x-718 3770073745819735 s001 sum(exp(-2*Pi)^n*A192696[n],n=1..infinity) 3770073749848892 a007 Real Root Of 134*x^4+400*x^3-295*x^2+571*x+709 3770073754542641 r002 52th iterates of z^2 + 3770073757987040 a007 Real Root Of -198*x^4-972*x^3-931*x^2-188*x+439 3770073760792548 g004 Im(GAMMA(-77/60+I*9/10)) 3770073767633402 a007 Real Root Of -291*x^4-937*x^3+761*x^2+601*x+28 3770073785340541 h001 (-4*exp(3)+9)/(-6*exp(1/2)+8) 3770073803718433 r002 24th iterates of z^2 + 3770073813996431 m001 (-gamma+Niven)/(2^(1/3)+3^(1/2)) 3770073818709980 r009 Im(z^3+c),c=-7/114+3/7*I,n=7 3770073818792903 r002 3th iterates of z^2 + 3770073834455391 r005 Im(z^2+c),c=25/94+15/56*I,n=43 3770073839334439 p003 LerchPhi(1/64,1,601/224) 3770073844188780 m005 (1/3*Pi+2/3)/(5/7*2^(1/2)-5/9) 3770073849584085 a001 13/47*2207^(19/56) 3770073852163984 r005 Im(z^2+c),c=3/98+17/35*I,n=6 3770073859086523 m001 1/ln(TwinPrimes)*Backhouse*Zeta(5)^2 3770073860629825 r009 Im(z^3+c),c=-12/23+11/62*I,n=14 3770073868671614 r008 a(0)=4,K{-n^6,-56+60*n+62*n^2-62*n^3} 3770073870487192 r002 16th iterates of z^2 + 3770073870960927 a005 (1/cos(9/230*Pi))^1695 3770073875624738 r009 Re(z^3+c),c=-16/31+13/42*I,n=61 3770073881319669 r005 Im(z^2+c),c=1/86+20/43*I,n=53 3770073883938089 m001 (Ei(1,1)-gamma)/(-GAMMA(23/24)+ZetaP(4)) 3770073889884347 r002 18th iterates of z^2 + 3770073896314018 m005 (1/3*Catalan-1/8)/(1/6*Pi-4/7) 3770073923018098 q001 1479/3923 3770073932607438 r005 Im(z^2+c),c=-95/102+1/31*I,n=9 3770073948361111 r005 Re(z^2+c),c=-9/14+25/79*I,n=38 3770073949849308 h001 (3/11*exp(2)+5/8)/(10/11*exp(2)+2/7) 3770073954464691 m001 GAMMA(5/24)^2*exp(PrimesInBinary)^2/sinh(1) 3770073959629607 r005 Im(z^2+c),c=-75/118+4/57*I,n=50 3770073977725895 r004 Im(z^2+c),c=-9/46-13/24*I,z(0)=I,n=30 3770073996583665 r005 Re(z^2+c),c=-17/30+33/64*I,n=8 3770073999098880 a007 Real Root Of 140*x^4+584*x^3+299*x^2+105*x-843 3770074020312392 m001 Bloch^Stephens-GAMMA(23/24) 3770074032135049 s001 sum(exp(-2*Pi)^(n-1)*A181296[n],n=1..infinity) 3770074039915246 b008 13/7+7^(1/3) 3770074041680488 m005 (1/2*Zeta(3)-3/7)/(1/7*Zeta(3)+2/7) 3770074068473051 m001 exp(sin(Pi/5))/MadelungNaCl/sqrt(1+sqrt(3))^2 3770074070617433 m005 (1/2*Zeta(3)+1/12)/(7/10*5^(1/2)+1/4) 3770074094400882 a007 Real Root Of 948*x^4-684*x^3-843*x^2-214*x+218 3770074107938744 r005 Im(z^2+c),c=1/110+7/15*I,n=50 3770074115189306 r005 Im(z^2+c),c=-1/8+32/59*I,n=29 3770074133668335 r005 Im(z^2+c),c=31/78+2/19*I,n=7 3770074134295219 r002 22th iterates of z^2 + 3770074135464956 a001 29/832040*5^(2/41) 3770074145879260 m001 ln(2)^KhinchinHarmonic*TravellingSalesman 3770074148403608 r005 Re(z^2+c),c=-41/94+29/59*I,n=64 3770074151629493 a005 (1/sin(82/197*Pi))^1024 3770074175678985 h001 (-5*exp(2)-9)/(-3*exp(1/3)-8) 3770074187698081 r009 Re(z^3+c),c=-25/52+9/26*I,n=9 3770074191530027 m002 -36-E^Pi/2+Pi^2 3770074191739651 a003 cos(Pi*1/39)-cos(Pi*27/94) 3770074192336589 r009 Im(z^3+c),c=-5/24+9/11*I,n=2 3770074194204967 r005 Re(z^2+c),c=-57/110+1/19*I,n=30 3770074205526196 s001 sum(exp(-2*Pi)^n*A065982[n],n=1..infinity) 3770074207927024 r005 Re(z^2+c),c=-25/46+17/48*I,n=9 3770074214818035 r009 Im(z^3+c),c=-35/66+16/61*I,n=58 3770074222825564 r009 Im(z^3+c),c=-41/118+28/45*I,n=13 3770074231193818 r005 Im(z^2+c),c=1/86+20/43*I,n=57 3770074234384734 r002 32th iterates of z^2 + 3770074241187504 s002 sum(A012183[n]/((exp(n)+1)/n),n=1..infinity) 3770074268718476 m001 (5^(1/2)+BesselI(0,1))/(-BesselI(1,2)+Robbin) 3770074275784052 m001 (Backhouse+Cahen)/(PlouffeB+StolarskyHarborth) 3770074290376152 m001 (1-FransenRobinson)/(Otter+Tribonacci) 3770074300582984 m001 (Pi*2^(1/2)/GAMMA(3/4))^Shi(1)*cos(1/12*Pi) 3770074303746606 a007 Real Root Of 187*x^4+834*x^3+694*x^2+562*x-833 3770074319494046 a007 Real Root Of 55*x^4+190*x^3-194*x^2-385*x+376 3770074319950138 a003 cos(Pi*39/119)-cos(Pi*31/68) 3770074323253602 m001 (polylog(4,1/2)+Cahen)/(Champernowne+Otter) 3770074323389368 r005 Re(z^2+c),c=-55/114+18/53*I,n=38 3770074326728297 m001 (ln(2)-Zeta(1,2))/(GAMMA(13/24)+Khinchin) 3770074327480753 r005 Im(z^2+c),c=7/78+17/41*I,n=48 3770074330329476 s001 sum(exp(-2*Pi)^n*A114693[n],n=1..infinity) 3770074336986994 r005 Im(z^2+c),c=-13/14+64/247*I,n=26 3770074353034435 s002 sum(A269006[n]/(exp(2*pi*n)-1),n=1..infinity) 3770074353148989 m001 LambertW(1)+Khinchin+polylog(4,1/2) 3770074353148989 m001 LambertW(1)+polylog(4,1/2)+Khinchin 3770074354625738 a007 Real Root Of -763*x^4+928*x^3-258*x^2+863*x-323 3770074370092028 m001 (Paris+PolyaRandomWalk3D)/(Niven-cos(1)) 3770074370278474 r009 Im(z^3+c),c=-45/94+14/51*I,n=48 3770074386602182 r005 Im(z^2+c),c=-1/31+28/57*I,n=41 3770074392002737 m001 (CareFree-LambertW(1))/(-FeigenbaumC+Porter) 3770074395906837 h001 (9/11*exp(2)+7/8)/(7/12*exp(1)+1/4) 3770074403554574 r009 Re(z^3+c),c=-5/118+11/52*I,n=4 3770074410181602 m005 (1/2*2^(1/2)-3/10)/(4/7*gamma+3/4) 3770074411180800 r005 Im(z^2+c),c=-1/24+33/61*I,n=12 3770074411399181 m001 1/ln(GAMMA(1/3))/Si(Pi)^2*GAMMA(5/6)^2 3770074412665099 r009 Re(z^3+c),c=-51/110+14/57*I,n=52 3770074415468857 m001 3^(1/2)+Backhouse+LandauRamanujan2nd 3770074429120581 r005 Im(z^2+c),c=-13/23+4/59*I,n=29 3770074450090238 m001 1/OneNinth^2/PrimesInBinary^2*exp(Zeta(7))^2 3770074453831774 m005 (1/2*gamma-7/11)/(4/9*exp(1)-2/7) 3770074460646299 r005 Re(z^2+c),c=-67/122+11/38*I,n=16 3770074468448645 s001 sum(exp(-2*Pi)^n*A121950[n],n=1..infinity) 3770074473475424 r002 45th iterates of z^2 + 3770074474817788 m008 (5/6*Pi^2+3/4)/(4/5*Pi^3-1) 3770074516076994 a003 cos(Pi*28/101)*cos(Pi*31/103) 3770074516676808 m001 1/Zeta(1/2)*ln(GAMMA(5/12))^2*cos(Pi/12) 3770074521933476 r002 10th iterates of z^2 + 3770074530556073 m001 (ln(Pi)+arctan(1/2))/(Magata+Thue) 3770074536823811 a001 89*199^(3/11) 3770074540899433 g006 Psi(1,7/8)+1/2*Pi^2-Psi(1,5/12)-Psi(1,4/7) 3770074544784216 m001 (Lehmer-MadelungNaCl)/(OneNinth+Otter) 3770074560617120 a001 39603/2*233^(20/37) 3770074577460670 p001 sum(1/(487*n+266)/(125^n),n=0..infinity) 3770074581917161 r002 4th iterates of z^2 + 3770074582461110 a007 Real Root Of -156*x^4-647*x^3-103*x^2+437*x-43 3770074583052158 l006 ln(6178/9007) 3770074584444428 r005 Re(z^2+c),c=-27/52+1/61*I,n=26 3770074599277620 r005 Im(z^2+c),c=1/86+20/43*I,n=41 3770074607166879 a005 (1/sin(71/199*Pi))^430 3770074629949383 a003 cos(Pi*7/54)/cos(Pi*35/83) 3770074653733612 a001 2/17*10946^(46/53) 3770074666358424 r002 15th iterates of z^2 + 3770074671943314 r005 Im(z^2+c),c=19/82+16/53*I,n=31 3770074682290014 s001 sum(exp(-2*Pi)^(n-1)*A036918[n],n=1..infinity) 3770074690731792 r009 Re(z^3+c),c=-3/7+12/59*I,n=21 3770074693787907 m001 (Pi^(1/2)*Magata+Cahen)/Pi^(1/2) 3770074698738667 a007 Real Root Of 270*x^4-49*x^3+868*x^2-646*x-375 3770074700917771 a001 89/33385282*2^(1/2) 3770074748997776 p004 log(28069/647) 3770074765384860 a001 75025/843*123^(3/10) 3770074810422129 l006 ln(4883/7119) 3770074811868253 r005 Im(z^2+c),c=-61/118+23/55*I,n=8 3770074812211753 m001 1/FeigenbaumD^2*exp(Khintchine)/cos(1) 3770074818477096 r005 Re(z^2+c),c=-21/32+19/54*I,n=11 3770074831130040 m001 (-Magata+PolyaRandomWalk3D)/(Catalan-GaussAGM) 3770074848161912 r005 Im(z^2+c),c=-35/31+2/43*I,n=29 3770074852712356 r005 Im(z^2+c),c=21/86+17/58*I,n=20 3770074857217387 m001 OneNinth^2*KhintchineLevy^2*ln((2^(1/3))) 3770074859772966 m005 (1/2*gamma-5)/(5/11*Catalan+5/6) 3770074872162810 m005 (1/2*3^(1/2)-1/5)/(7/9*2^(1/2)+2/3) 3770074899586123 s002 sum(A266507[n]/(exp(2*pi*n)-1),n=1..infinity) 3770074905519824 m001 ZetaP(4)/(Zeta(3)+FeigenbaumB) 3770074914210829 a001 3571*(1/2*5^(1/2)+1/2)^13*3^(9/14) 3770074940852908 m001 BesselJ(0,1)*Zeta(3)*HardyLittlewoodC5 3770074941253925 a007 Real Root Of -716*x^4-695*x^3+547*x^2+976*x-394 3770074948911615 b008 41-3*Csc[2] 3770074951593839 p003 LerchPhi(1/100,4,277/217) 3770074954505207 a001 76/987*21^(12/23) 3770074969986897 g007 Psi(2,2/11)+Psi(2,2/7)-Psi(2,3/8)-Psi(2,3/4) 3770074975244071 r005 Im(z^2+c),c=-6/29+6/11*I,n=21 3770074978717837 r005 Im(z^2+c),c=17/62+13/51*I,n=20 3770074991394499 r005 Re(z^2+c),c=-14/31+22/47*I,n=57 3770074994340152 m001 (Trott+ZetaP(4))/(Zeta(5)+GAMMA(17/24)) 3770074996233790 r005 Im(z^2+c),c=-1/42+15/31*I,n=17 3770074999765392 m001 ln(BesselK(1,1))^2*MinimumGamma^2/Zeta(1/2) 3770075007571118 a003 sin(Pi*10/89)/sin(Pi*41/111) 3770075013900246 r009 Re(z^3+c),c=-53/102+16/45*I,n=48 3770075020278949 r005 Im(z^2+c),c=-17/122+34/57*I,n=27 3770075028747805 a007 Real Root Of 27*x^4-208*x^3-867*x^2+916*x-824 3770075034812558 m001 (gamma(2)-Otter)/(ReciprocalLucas-Salem) 3770075038168949 r002 29th iterates of z^2 + 3770075039474573 r009 Im(z^3+c),c=-27/98+22/57*I,n=17 3770075044145290 m006 (5/6/Pi-1/4)/(1/3*Pi+3) 3770075045831605 a007 Real Root Of 143*x^4+157*x^3-110*x^2-515*x-173 3770075047575359 r002 16th iterates of z^2 + 3770075053371543 a001 1568397607/144*1836311903^(12/17) 3770075053371702 a001 4870847/144*6557470319842^(12/17) 3770075053373556 a001 505019158607/144*514229^(12/17) 3770075066493960 r002 21th iterates of z^2 + 3770075067786061 m001 (5^(1/2))^KhinchinHarmonic-GaussKuzminWirsing 3770075103053681 r005 Re(z^2+c),c=-51/98+9/34*I,n=16 3770075103999206 r005 Im(z^2+c),c=3/122+5/11*I,n=19 3770075115409520 m001 1/FeigenbaumD*exp(FeigenbaumB)*BesselJ(1,1) 3770075120628392 a007 Real Root Of 126*x^4+378*x^3-298*x^2+27*x-862 3770075144281944 a007 Real Root Of -14*x^4-544*x^3-623*x^2-454*x+856 3770075166721634 a001 9349*(1/2*5^(1/2)+1/2)^11*3^(9/14) 3770075178157287 h001 (7/10*exp(2)+3/5)/(1/3*exp(1)+5/8) 3770075201919243 l006 ln(3588/5231) 3770075203562464 a001 24476*(1/2*5^(1/2)+1/2)^9*3^(9/14) 3770075203680847 r009 Re(z^3+c),c=-5/56+43/58*I,n=39 3770075208937469 a001 64079*(1/2*5^(1/2)+1/2)^7*3^(9/14) 3770075209855629 a001 (1/2*5^(1/2)+1/2)^30*3^(9/14) 3770075209856718 a001 1860498*3^(9/14) 3770075209925559 a007 Real Root Of -853*x^4+4*x^3-457*x^2+609*x+312 3770075212259404 a001 39603*(1/2*5^(1/2)+1/2)^8*3^(9/14) 3770075226331349 a001 15127*(1/2*5^(1/2)+1/2)^10*3^(9/14) 3770075228950920 v002 sum(1/(5^n+(4*n^2+35*n-1)),n=1..infinity) 3770075232248942 r005 Re(z^2+c),c=-15/46+23/58*I,n=2 3770075242457728 m001 (2^(1/3)+Grothendieck)/(-Porter+TwinPrimes) 3770075250451048 a001 17/219602*7^(48/59) 3770075250625240 a007 Real Root Of 332*x^4+55*x^3+124*x^2-182*x-90 3770075256458177 a005 (1/cos(1/32*Pi))^1229 3770075259395361 a007 Real Root Of -539*x^4+457*x^3-538*x^2+637*x+352 3770075266467047 m005 (1/2*Zeta(3)-4/5)/(2/7*5^(1/2)-1/9) 3770075272180462 r005 Im(z^2+c),c=-7/66+33/62*I,n=46 3770075293400396 r002 3th iterates of z^2 + 3770075318654838 a007 Real Root Of -924*x^4+918*x^3+847*x^2+666*x-402 3770075322781894 a001 5778*(1/2*5^(1/2)+1/2)^12*3^(9/14) 3770075324809496 r005 Re(z^2+c),c=-8/17+17/44*I,n=62 3770075335225534 r002 58th iterates of z^2 + 3770075342772464 l006 ln(60/2603) 3770075343703110 r005 Im(z^2+c),c=1/86+20/43*I,n=51 3770075350443622 r005 Im(z^2+c),c=5/18+14/51*I,n=16 3770075364038402 m001 (gamma(1)+MertensB3)/(3^(1/2)+ln(5)) 3770075365256471 r005 Im(z^2+c),c=7/78+17/41*I,n=45 3770075385974811 m001 GAMMA(5/6)^Totient*ZetaP(4)^Totient 3770075418277562 a005 (1/sin(58/127*Pi))^887 3770075419469780 h001 (7/12*exp(2)+3/7)/(1/8*exp(2)+1/3) 3770075433157297 m001 (Mills+ZetaP(4))/(Magata+MertensB1) 3770075438519700 r005 Im(z^2+c),c=17/58+14/59*I,n=62 3770075448898281 r005 Im(z^2+c),c=-1/44+10/21*I,n=14 3770075449790762 a003 sin(Pi*8/65)*sin(Pi*36/73) 3770075457710610 a007 Real Root Of 121*x^4-206*x^3-45*x^2-517*x-202 3770075486010154 r005 Re(z^2+c),c=-13/27+15/43*I,n=33 3770075489875362 m006 (1/3*exp(2*Pi)+1/2)/(2/5*Pi^2+4/5) 3770075492177011 a007 Real Root Of 496*x^4+29*x^3-361*x^2-754*x+324 3770075492518581 r009 Re(z^3+c),c=-13/29+5/22*I,n=33 3770075492982572 m001 ln(arctan(1/2))*Ei(1)*sin(Pi/12) 3770075507763821 m005 (-13/30+1/6*5^(1/2))/(4*gamma-7/10) 3770075520231817 m001 (TreeGrowth2nd-Thue)/(DuboisRaymond-Mills) 3770075521208282 r005 Im(z^2+c),c=11/36+11/42*I,n=17 3770075526979664 l006 ln(5881/8574) 3770075569616465 m001 exp(GAMMA(3/4))^2*TreeGrowth2nd*exp(1)^2 3770075578285173 r002 41th iterates of z^2 + 3770075585040438 r005 Im(z^2+c),c=-37/62+13/35*I,n=10 3770075601180470 m001 1/GAMMA(19/24)^2*Tribonacci*ln(sin(Pi/5))^2 3770075605198397 r005 Im(z^2+c),c=-4/7+67/110*I,n=8 3770075610592478 m005 (1/3*exp(1)-2/5)/(4/11*Pi+1/5) 3770075628489268 r005 Re(z^2+c),c=-8/17+9/26*I,n=20 3770075641877608 r005 Re(z^2+c),c=-31/66+17/44*I,n=37 3770075644064033 a001 13/47*843^(19/49) 3770075647232373 m001 (PlouffeB+ZetaP(3))/(GAMMA(5/6)+Gompertz) 3770075652851433 q001 3/79574 3770075670595052 a007 Real Root Of -23*x^4-846*x^3+779*x^2-662*x-593 3770075678739476 r002 50th iterates of z^2 + 3770075694955840 b008 -13/16+Sqrt[21] 3770075696116798 r009 Re(z^3+c),c=-13/64+41/48*I,n=23 3770075723272446 a001 124/615*55^(19/26) 3770075730805528 m001 GAMMA(17/24)/Magata^2*exp(GAMMA(3/4)) 3770075733198603 r009 Re(z^3+c),c=-31/60+9/43*I,n=17 3770075769655774 r002 60th iterates of z^2 + 3770075778048841 p004 log(33863/23227) 3770075782735291 r005 Re(z^2+c),c=-73/122+18/53*I,n=25 3770075783918366 m006 (3*exp(Pi)+1)/(4/5*exp(Pi)+1/6) 3770075785620764 m001 BesselK(0,1)-Sarnak^ArtinRank2 3770075788430573 a007 Real Root Of -488*x^4-163*x^3+487*x^2+871*x-379 3770075790163981 m006 (1/5*ln(Pi)+5)/(Pi^2+4) 3770075797382203 r009 Im(z^3+c),c=-35/118+34/35*I,n=4 3770075813190723 r005 Im(z^2+c),c=-21/118+32/57*I,n=39 3770075820857977 s001 sum(exp(-4*Pi)^(n-1)*A126301[n],n=1..infinity) 3770075821535545 r002 2th iterates of z^2 + 3770075826213464 m001 Pi/(Psi(2,1/3)-3^(1/2))-arctan(1/3) 3770075827444208 m001 1/GolombDickman^2/Artin*ln(gamma) 3770075832847365 r009 Re(z^3+c),c=-23/58+2/13*I,n=6 3770075873226156 r002 22th iterates of z^2 + 3770075873368847 m005 (1/2*Pi-2/9)/(7/11*5^(1/2)-5) 3770075879602932 m005 (1/2*2^(1/2)+2/5)/(1/5*exp(1)-1/4) 3770075882972152 r005 Re(z^2+c),c=21/50+9/43*I,n=34 3770075882981995 a003 cos(Pi*25/119)-cos(Pi*39/107) 3770075911430529 s002 sum(A074599[n]/(exp(2*pi*n)-1),n=1..infinity) 3770075917039821 a005 (1/cos(20/197*Pi))^1405 3770075923981696 m001 (GAMMA(13/24)+Kac)/(2^(1/2)-GAMMA(2/3)) 3770075928436235 r005 Im(z^2+c),c=-135/118+13/41*I,n=8 3770075945344332 a001 514229/123*18^(35/46) 3770075948923500 m001 1/exp((2^(1/3)))^2/MinimumGamma/Zeta(1/2) 3770075956432508 m001 (GAMMA(7/12)-Sarnak)/(ln(2)+3^(1/3)) 3770075964449017 m001 (2^(1/3)-LaplaceLimit)/(Niven+Riemann1stZero) 3770075978690649 m004 -5+(5*Pi*Coth[Sqrt[5]*Pi])/2+Tan[Sqrt[5]*Pi] 3770075979031366 p003 LerchPhi(1/8,1,281/96) 3770075983863766 a001 2207*(1/2*5^(1/2)+1/2)^14*3^(9/14) 3770075987051216 a008 Real Root of x^4-x^3-28*x^2+19*x+214 3770076012830643 r005 Re(z^2+c),c=17/48+9/62*I,n=39 3770076035621941 l006 ln(2293/3343) 3770076035621941 p004 log(3343/2293) 3770076058499673 r009 Im(z^3+c),c=-2/17+41/57*I,n=2 3770076059496997 r005 Re(z^2+c),c=-29/56+2/35*I,n=24 3770076061936516 r009 Im(z^3+c),c=-31/58+15/61*I,n=54 3770076072353922 r005 Im(z^2+c),c=11/114+9/22*I,n=20 3770076077714433 r005 Im(z^2+c),c=1/86+20/43*I,n=60 3770076077768385 q001 446/1183 3770076090789365 m001 (GAMMA(19/24)+Bloch)/(Zeta(1,-1)+BesselK(1,1)) 3770076093469710 m001 (3^(1/3)+Bloch)/(Shi(1)+ln(gamma)) 3770076095908045 r005 Im(z^2+c),c=-11/74+18/31*I,n=32 3770076097972598 r005 Im(z^2+c),c=7/40+13/37*I,n=41 3770076108856628 r005 Im(z^2+c),c=33/82+11/52*I,n=62 3770076116382535 m005 (1/2*exp(1)+1/4)/(5/7*2^(1/2)-7/12) 3770076122943467 r009 Re(z^3+c),c=-53/102+13/45*I,n=43 3770076133143577 r009 Re(z^3+c),c=-31/64+10/37*I,n=45 3770076142764268 a001 123/8*233^(27/46) 3770076157094489 m001 (-Paris+ReciprocalFibonacci)/(3^(1/3)-gamma) 3770076171345649 m001 GAMMA(11/12)-LandauRamanujan^(3^(1/3)) 3770076171345649 m001 LandauRamanujan^(3^(1/3))-GAMMA(11/12) 3770076179546501 r002 14th iterates of z^2 + 3770076183190307 m001 Si(Pi)^BesselI(0,2)/(MertensB2^BesselI(0,2)) 3770076183808840 m001 (3^(1/3))/Rabbit/exp(Zeta(1/2))^2 3770076189759816 m001 (Riemann1stZero+Sarnak)/(2^(1/2)-exp(1/Pi)) 3770076193004428 m001 Trott/ArtinRank2^2*exp(sqrt(2))^2 3770076200156544 r002 59th iterates of z^2 + 3770076202287311 m001 1/exp(GAMMA(13/24))/Robbin^2/sinh(1) 3770076211002130 r002 63th iterates of z^2 + 3770076214821160 m001 Paris^(ln(2)/ln(10)/TravellingSalesman) 3770076237370542 r005 Re(z^2+c),c=-1/102+7/38*I,n=8 3770076261358214 r005 Re(z^2+c),c=-75/106+5/17*I,n=7 3770076285870731 m004 6+(75*Sec[Sqrt[5]*Pi])/Pi-Sin[Sqrt[5]*Pi] 3770076286349214 m005 (5/6+1/4*5^(1/2))/(53/198+1/22*5^(1/2)) 3770076294691671 m001 1/sqrt(2)/PisotVijayaraghavan^2*exp(sqrt(5)) 3770076295258775 a007 Real Root Of -83*x^4-399*x^3-395*x^2-172*x+353 3770076309899134 a003 cos(Pi*1/65)-sin(Pi*37/79) 3770076315446717 a001 41/15456*55^(5/57) 3770076353981349 m002 Pi^5+6*Pi^2*Coth[Pi]+Sinh[Pi] 3770076372215927 r005 Re(z^2+c),c=-23/44+1/56*I,n=16 3770076379808812 a007 Real Root Of 100*x^4+471*x^3+380*x^2+85*x-44 3770076380716049 a007 Real Root Of -168*x^4-350*x^3+815*x^2-949*x+23 3770076393732000 m001 LandauRamanujan/ln(MertensB1)*Robbin 3770076395347970 r005 Re(z^2+c),c=-3/38+32/49*I,n=24 3770076397336401 m001 LambertW(1)*FeigenbaumMu+KhinchinHarmonic 3770076401990543 m001 (ln(2)/ln(10))^(FeigenbaumD/gamma) 3770076403093585 a007 Real Root Of 199*x^4+433*x^3-915*x^2+998*x-232 3770076407618115 m001 (Zeta(3)-BesselJ(1,1))/(GaussAGM+KhinchinLevy) 3770076410078451 r005 Im(z^2+c),c=-15/118+25/46*I,n=57 3770076418153784 a007 Real Root Of -868*x^4+657*x^3-624*x^2+967*x+506 3770076441586478 r009 Im(z^3+c),c=-43/106+15/46*I,n=22 3770076455216023 m007 (-4*gamma+1/5)/(-1/5*gamma-2/5*ln(2)-1/6) 3770076456276143 a007 Real Root Of -142*x^4-248*x^3+859*x^2-863*x-65 3770076468334995 a007 Real Root Of 36*x^4+51*x^3-384*x^2-400*x-590 3770076471097870 a007 Real Root Of -451*x^4+602*x^3+581*x^2+945*x-462 3770076476909579 a007 Real Root Of 905*x^4-769*x^3-113*x^2-471*x-221 3770076478631867 a001 47*377^(17/23) 3770076479791775 m001 1/exp(GAMMA(3/4))^2/Salem^2/sqrt(1+sqrt(3)) 3770076480353141 r005 Im(z^2+c),c=-17/36+26/49*I,n=48 3770076487176275 a003 sin(Pi*17/106)-sin(Pi*28/85) 3770076507991609 h001 (2/9*exp(2)+6/7)/(9/11*exp(2)+7/12) 3770076510002551 m001 MasserGramain^(GAMMA(7/12)*MinimumGamma) 3770076528526248 m001 (cos(1)-cos(1/5*Pi))/(Zeta(1/2)+RenyiParking) 3770076531967226 r005 Re(z^2+c),c=-13/62+13/19*I,n=50 3770076564827281 m009 (1/8*Pi^2-5/6)/(Pi^2+3/4) 3770076571317693 l006 ln(5584/8141) 3770076573233710 a007 Real Root Of 888*x^4+639*x^3+247*x^2-844*x-337 3770076577113992 r005 Re(z^2+c),c=-53/86+5/13*I,n=49 3770076588150071 p001 sum((-1)^n/(291*n+265)/(512^n),n=0..infinity) 3770076590988462 a001 322/5*7778742049^(13/19) 3770076592125503 m005 (11/20+1/4*5^(1/2))/(5/7*exp(1)+1) 3770076604709406 r005 Re(z^2+c),c=-13/27+16/47*I,n=61 3770076606880991 m001 cos(1)/Psi(1,1/3)*CareFree 3770076608286151 a005 (1/cos(29/231*Pi))^449 3770076613157282 r005 Re(z^2+c),c=-23/50+19/45*I,n=40 3770076615289273 a007 Real Root Of 961*x^4-891*x^3-245*x^2-206*x-110 3770076616986139 a001 1364/53316291173*3^(6/17) 3770076637261202 a007 Real Root Of -93*x^4-477*x^3-565*x^2-325*x+33 3770076643664501 a007 Real Root Of -257*x^4-782*x^3+750*x^2+181*x+38 3770076646126923 m001 Zeta(5)^2*ln(Zeta(3))^2/cos(Pi/12) 3770076665872141 a001 12238*1597^(9/59) 3770076665940788 m001 sin(1/5*Pi)*Gompertz^Thue 3770076674544216 m001 (1-FeigenbaumDelta)/(-HeathBrownMoroz+Paris) 3770076678347573 a001 21/76*2^(13/29) 3770076680584088 r005 Re(z^2+c),c=-27/52+5/47*I,n=17 3770076695325950 a007 Real Root Of 633*x^4-531*x^3-330*x^2-712*x+331 3770076698958635 h001 (5/11*exp(1)+4/7)/(7/11*exp(2)+1/11) 3770076703588895 a007 Real Root Of -752*x^4+749*x^3-584*x^2+954*x+498 3770076712013957 r005 Re(z^2+c),c=-53/52+14/51*I,n=14 3770076713578247 h001 (4/5*exp(1)+1/7)/(7/9*exp(2)+2/5) 3770076723653200 r005 Im(z^2+c),c=-1/102+11/23*I,n=30 3770076747161298 m001 (BesselI(1,1)-sin(1/12*Pi))/StolarskyHarborth 3770076749389883 r002 15th iterates of z^2 + 3770076749553878 r005 Re(z^2+c),c=-57/110+3/55*I,n=39 3770076752942451 m001 (ErdosBorwein+Khinchin)/(gamma(2)-GAMMA(5/6)) 3770076764072208 m001 GAMMA(17/24)^Grothendieck-KhinchinLevy 3770076775093125 r005 Re(z^2+c),c=-29/74+19/36*I,n=40 3770076791829125 m001 1/Robbin/Si(Pi)*exp(BesselJ(0,1))^2 3770076813175791 m005 (Catalan-4/5)/(1/3*gamma-1/2) 3770076815366448 m005 (1/3*Zeta(3)+1/5)/(1/2*3^(1/2)+8/11) 3770076821125495 r005 Re(z^2+c),c=3/19+8/21*I,n=2 3770076843848586 r005 Re(z^2+c),c=-7/10+9/44*I,n=19 3770076845770189 m001 Backhouse^(3^(1/3))/(Riemann1stZero^(3^(1/3))) 3770076850431366 a007 Real Root Of 6*x^4+206*x^3-737*x^2+949*x+629 3770076865895349 r005 Im(z^2+c),c=1/86+20/43*I,n=64 3770076869585899 m001 (GaussAGM-Niven)/(Artin-FeigenbaumD) 3770076877105244 m001 Chi(1)-GAMMA(5/6)^ErdosBorwein 3770076877212300 a007 Real Root Of -18*x^4-680*x^3-50*x^2+79*x-233 3770076881700464 r005 Im(z^2+c),c=-1/29+9/17*I,n=10 3770076892393851 r009 Re(z^3+c),c=-5/13+9/61*I,n=7 3770076903127085 a003 sin(Pi*11/105)-sin(Pi*20/81) 3770076908372874 m001 (-Catalan+5)/(-GAMMA(1/12)+2/3) 3770076924580502 r002 26th iterates of z^2 + 3770076944562999 l006 ln(3291/4798) 3770076959276867 a007 Real Root Of -23*x^4-886*x^3-738*x^2-994*x-345 3770076993134398 m001 FeigenbaumD/(ZetaQ(4)^ThueMorse) 3770077006364691 r005 Im(z^2+c),c=1/86+20/43*I,n=61 3770077030368391 r005 Im(z^2+c),c=-29/82+31/54*I,n=36 3770077038756836 a007 Real Root Of 610*x^4+17*x^3+992*x^2-792*x-3 3770077045510744 m005 (1/3*3^(1/2)-1/12)/(7/12*3^(1/2)+3/10) 3770077064113192 r009 Re(z^3+c),c=-33/98+4/63*I,n=12 3770077067046157 r005 Re(z^2+c),c=13/40+17/33*I,n=35 3770077068104323 r005 Re(z^2+c),c=-4/7+41/106*I,n=35 3770077074687590 r005 Im(z^2+c),c=-4/31+29/54*I,n=28 3770077078242005 r009 Im(z^3+c),c=-12/23+13/56*I,n=49 3770077095314806 r005 Re(z^2+c),c=-13/27+12/37*I,n=27 3770077112257044 m001 1/GAMMA(13/24)^2/exp(Porter)*GAMMA(5/24) 3770077113143768 r009 Im(z^3+c),c=-11/98+14/33*I,n=7 3770077113913726 m001 (exp(1)+Si(Pi))/(gamma(1)+GAMMA(17/24)) 3770077126123972 r005 Im(z^2+c),c=1/86+20/43*I,n=63 3770077127045274 p003 LerchPhi(1/512,4,231/181) 3770077138313384 m001 (Zeta(5)-gamma)/(Cahen+Stephens) 3770077140845106 m001 Stephens^ln(2^(1/2)+1)-gamma 3770077149064406 m005 (1/2*Pi-5)/(5/6*gamma+3/7) 3770077153230899 a005 (1/sin(34/79*Pi))^819 3770077175623109 v002 sum(1/(5^n+(13/2*n^2+65/2*n-2)),n=1..infinity) 3770077183359694 r008 a(0)=0,K{-n^6,-39+52*n^3-88*n^2+49*n} 3770077186496284 m001 (Shi(1)+FeigenbaumD)/(-Porter+Weierstrass) 3770077190766321 a007 Real Root Of -121*x^4-413*x^3-155*x^2-966*x+875 3770077195046892 s002 sum(A167638[n]/(n*2^n+1),n=1..infinity) 3770077195690906 p003 LerchPhi(1/32,3,671/224) 3770077195880390 r005 Re(z^2+c),c=-47/98+15/43*I,n=54 3770077208131519 m001 Rabbit*CopelandErdos^2*exp(GAMMA(5/6))^2 3770077208209753 m001 (FeigenbaumD-KomornikLoreti)/(Pi-BesselJ(0,1)) 3770077248706230 a007 Real Root Of -144*x^4-339*x^3+676*x^2-268*x+307 3770077282106279 r005 Re(z^2+c),c=-53/110+20/59*I,n=59 3770077292097648 r009 Im(z^3+c),c=-15/34+10/33*I,n=38 3770077300503036 m001 (GolombDickman+Totient)/(GAMMA(3/4)-CareFree) 3770077302990195 m001 GAMMA(1/24)^2*(3^(1/3))*exp(GAMMA(7/24))^2 3770077309655767 r005 Im(z^2+c),c=5/122+21/47*I,n=43 3770077310078559 r005 Re(z^2+c),c=-45/94+19/54*I,n=46 3770077314098850 m005 (1/2*5^(1/2)-1/10)/(3/10*exp(1)-6/11) 3770077324100499 m001 HardyLittlewoodC3^(FransenRobinson/Mills) 3770077333299546 l006 ln(193/8373) 3770077334919690 r009 Im(z^3+c),c=-3/82+1/2*I,n=2 3770077356282276 r009 Im(z^3+c),c=-49/110+3/10*I,n=44 3770077361773173 a003 2*cos(1/18*Pi)+cos(1/24*Pi)+cos(1/5*Pi) 3770077364930439 m001 gamma(1)^(cos(1)*Zeta(1,2)) 3770077370401054 r005 Im(z^2+c),c=7/78+17/41*I,n=52 3770077404934055 a007 Real Root Of 706*x^4-655*x^3+482*x^2-438*x-283 3770077408154629 a001 45537549124/3*8^(7/16) 3770077409005932 r005 Re(z^2+c),c=-23/110+26/45*I,n=8 3770077414082427 r009 Im(z^3+c),c=-45/94+16/61*I,n=19 3770077430504174 l006 ln(4289/6253) 3770077437584159 m005 (1/2*5^(1/2)-3/7)/(1/6*5^(1/2)-5/9) 3770077439936468 a001 3571/17711*55^(19/26) 3770077446450574 a007 Real Root Of 288*x^4-912*x^3-603*x^2-798*x-3 3770077447245623 r005 Re(z^2+c),c=-53/118+28/55*I,n=50 3770077457597337 m001 (Shi(1)-Si(Pi))/(MasserGramain+MinimumGamma) 3770077468219276 r005 Im(z^2+c),c=15/44+13/60*I,n=8 3770077477115049 r002 28i'th iterates of 2*x/(1-x^2) of 3770077497220598 a007 Real Root Of -233*x^4-965*x^3-353*x^2-16*x+318 3770077534005700 r009 Im(z^3+c),c=-16/31+15/61*I,n=59 3770077534666323 m001 (exp(1/Pi)-Cahen)/(Magata-Porter) 3770077538511333 m001 GAMMA(7/24)^2/BesselJ(1,1)/ln(sqrt(Pi)) 3770077538596080 m001 sin(1/5*Pi)/(Backhouse+Riemann1stZero) 3770077545456724 r005 Re(z^2+c),c=-13/28+19/48*I,n=30 3770077549487174 r005 Im(z^2+c),c=5/86+17/39*I,n=22 3770077560094857 r005 Re(z^2+c),c=-14/27+2/47*I,n=28 3770077581724354 r009 Re(z^3+c),c=-12/31+45/64*I,n=6 3770077584126220 r005 Im(z^2+c),c=15/82+16/59*I,n=3 3770077591489520 r005 Re(z^2+c),c=-55/118+9/22*I,n=46 3770077618144976 r005 Im(z^2+c),c=-75/106+17/25*I,n=4 3770077632188405 r005 Im(z^2+c),c=11/70+17/31*I,n=3 3770077641015308 m008 (1/4*Pi^2+2/5)/(3/4*Pi^4+3) 3770077652843732 a007 Real Root Of -417*x^4+277*x^3-799*x^2+332*x+262 3770077654776867 h001 (6/7*exp(2)+1/11)/(5/12*exp(1)+4/7) 3770077654928356 a001 21/29*1364^(8/35) 3770077660282370 m001 1/cos(Pi/12)/Robbin^2*ln(log(1+sqrt(2)))^2 3770077670245358 r005 Im(z^2+c),c=31/118+16/59*I,n=35 3770077672303271 m005 (25/36+1/4*5^(1/2))/(5/12*Zeta(3)-5/6) 3770077685612475 a003 cos(Pi*30/119)-cos(Pi*43/109) 3770077690394372 a001 9349/46368*55^(19/26) 3770077705952325 a007 Real Root Of -229*x^4-900*x^3+73*x^2+741*x-208 3770077706967731 r005 Re(z^2+c),c=5/28+21/37*I,n=18 3770077713206198 m001 ln(ArtinRank2)^2*Artin*log(1+sqrt(2))^2 3770077723158360 a007 Real Root Of 620*x^4+206*x^3-70*x^2-991*x+360 3770077725086687 m005 (-5/42+1/6*5^(1/2))/(-13/16+1/16*5^(1/2)) 3770077726935688 a001 24476/121393*55^(19/26) 3770077732266994 a001 64079/317811*55^(19/26) 3770077732988067 l006 ln(5287/7708) 3770077735561922 a001 39603/196418*55^(19/26) 3770077739432881 r005 Im(z^2+c),c=7/78+17/41*I,n=51 3770077740585602 m001 (Magata-Salem)/(BesselI(1,1)-GolombDickman) 3770077749519463 a001 15127/75025*55^(19/26) 3770077760328908 r009 Im(z^3+c),c=-43/106+35/59*I,n=57 3770077778270114 s002 sum(A219377[n]/((pi^n-1)/n),n=1..infinity) 3770077812920703 r002 32th iterates of z^2 + 3770077839945454 a007 Real Root Of 894*x^4-795*x^3-103*x^2-923*x-394 3770077842560593 a007 Real Root Of -592*x^4-310*x^3-63*x^2+760*x-249 3770077845185869 a001 5778/28657*55^(19/26) 3770077850787096 r005 Im(z^2+c),c=-123/106+3/62*I,n=19 3770077851692164 r005 Im(z^2+c),c=-4/21+11/19*I,n=55 3770077866294429 a007 Real Root Of -467*x^4+888*x^3+545*x^2+346*x+110 3770077881206382 r005 Im(z^2+c),c=11/40+8/31*I,n=53 3770077884646744 r009 Im(z^3+c),c=-33/70+22/53*I,n=4 3770077903069910 m001 1/Porter*Bloch^2/ln(Zeta(9))^2 3770077904738247 a003 cos(Pi*2/91)-sin(Pi*13/61) 3770077907826402 a007 Real Root Of 793*x^4+461*x^3-796*x^2-540*x+276 3770077909861659 h001 (3/11*exp(2)+2/11)/(3/4*exp(2)+2/7) 3770077937169794 r009 Re(z^3+c),c=-9/17+9/35*I,n=53 3770077939408654 l006 ln(6285/9163) 3770077953797808 a007 Real Root Of 787*x^4+185*x^3+554*x^2-571*x-300 3770077969599456 m001 (QuadraticClass-Weierstrass)/(Artin+CareFree) 3770077990210371 m001 (gamma(1)*Thue+FransenRobinson)/gamma(1) 3770078009440224 m006 (Pi^2+1/4)/(3*ln(Pi)-3/4) 3770078016865861 m001 (Mills-Shi(1))/(-Rabbit+StronglyCareFree) 3770078035475014 r005 Im(z^2+c),c=7/78+17/41*I,n=55 3770078044525375 a007 Real Root Of -296*x^4+120*x^3+295*x^2+869*x-370 3770078046654999 h001 (-exp(1/3)+5)/(-9*exp(1/3)+3) 3770078047683496 a007 Real Root Of 129*x^4-428*x^3+749*x^2-812*x+220 3770078071241431 r005 Re(z^2+c),c=-59/122+6/19*I,n=27 3770078088545844 a001 10716675201/8*1836311903^(10/17) 3770078088545844 a001 1568397607/144*6557470319842^(10/17) 3770078088547522 a001 23725150497407/144*514229^(10/17) 3770078099934513 r005 Re(z^2+c),c=-29/106+19/45*I,n=2 3770078108377068 m001 Trott*DuboisRaymond^2*ln(GAMMA(2/3))^2 3770078117073835 a001 21/29*24476^(8/49) 3770078118101292 a001 21/29*10749957122^(1/14) 3770078118101292 a001 21/29*33385282^(2/21) 3770078118151393 a001 21/29*103682^(1/7) 3770078120925703 a001 21/29*15127^(6/35) 3770078139611073 a001 21/29*5778^(4/21) 3770078141816681 r009 Im(z^3+c),c=-67/122+5/24*I,n=47 3770078154060324 r005 Re(z^2+c),c=-57/110+2/31*I,n=23 3770078173032980 m008 (1/3*Pi^4+4/5)/(5/6*Pi^2+3/5) 3770078188679284 r005 Re(z^2+c),c=-5/8+64/247*I,n=20 3770078208648371 a007 Real Root Of 22*x^4+810*x^3-744*x^2-465*x-537 3770078211393187 r005 Re(z^2+c),c=29/90+23/47*I,n=15 3770078216771962 r005 Re(z^2+c),c=-17/38+11/24*I,n=56 3770078219997530 m001 Cahen-GlaisherKinkelin^StolarskyHarborth 3770078230224909 s002 sum(A128945[n]/((exp(n)-1)/n),n=1..infinity) 3770078231280391 l006 ln(133/5770) 3770078239151517 r005 Im(z^2+c),c=1/86+20/43*I,n=56 3770078241100943 a001 682/98209*8^(48/59) 3770078242504379 m002 E^Pi+Pi^3/E^Pi+Log[Pi]*Sinh[Pi] 3770078242989147 m001 (exp(sqrt(2))-sin(Pi/12))^GAMMA(5/24) 3770078244026851 r002 7th iterates of z^2 + 3770078245906563 s002 sum(A097671[n]/(pi^n+1),n=1..infinity) 3770078257943447 m001 (Niven+ZetaP(2))/(gamma(2)+LandauRamanujan2nd) 3770078261680606 m001 FellerTornier/DuboisRaymond/TreeGrowth2nd 3770078264125843 r005 Re(z^2+c),c=-15/34+25/53*I,n=46 3770078266701075 m002 5/(Pi^6*Log[Pi])+Sinh[Pi]/Pi^3 3770078268021112 r005 Im(z^2+c),c=1/86+20/43*I,n=58 3770078279131510 p003 LerchPhi(1/1024,2,12/233) 3770078282077699 m001 (ln(2^(1/2)+1)+Rabbit)/(2^(1/3)-Chi(1)) 3770078282802942 m001 Ei(1)*Cahen*exp(GAMMA(5/6)) 3770078282955607 r005 Im(z^2+c),c=-19/102+4/7*I,n=41 3770078283960293 a001 21/29*2207^(3/14) 3770078287269246 m008 (5/6*Pi^6-3)/(2/3*Pi^3+1/2) 3770078291776632 a003 cos(Pi*3/47)-cos(Pi*5/46) 3770078301213267 r009 Re(z^3+c),c=-16/25+41/62*I,n=3 3770078301420532 r009 Im(z^3+c),c=-19/40+13/47*I,n=27 3770078316984483 m001 (gamma(1)+GaussKuzminWirsing)^(5^(1/2)) 3770078317793653 r005 Im(z^2+c),c=1/86+20/43*I,n=62 3770078332523667 a007 Real Root Of 234*x^4+738*x^3-711*x^2-562*x+260 3770078337051629 r009 Im(z^3+c),c=-25/52+3/11*I,n=64 3770078341520989 r005 Im(z^2+c),c=7/78+17/41*I,n=56 3770078344276105 r005 Im(z^2+c),c=7/78+17/41*I,n=59 3770078347722524 a001 3571/139583862445*3^(6/17) 3770078385202177 r002 25th iterates of z^2 + 3770078406074209 r005 Re(z^2+c),c=-61/94+7/41*I,n=13 3770078407075331 h001 (-10*exp(3)-8)/(-10*exp(4)-8) 3770078427109752 p003 LerchPhi(1/25,1,276/101) 3770078448025729 r005 Re(z^2+c),c=-35/122+15/23*I,n=4 3770078451442120 m001 (GolombDickman+TwinPrimes)/Magata 3770078457832828 r005 Re(z^2+c),c=-81/62+2/39*I,n=12 3770078463577674 h001 (7/12*exp(1)+1/10)/(1/11*exp(1)+1/5) 3770078489828344 r005 Im(z^2+c),c=7/78+17/41*I,n=63 3770078494260886 r005 Im(z^2+c),c=1/66+25/54*I,n=47 3770078500893174 a001 2207/10946*55^(19/26) 3770078509858638 m001 (Paris-Tetranacci)/(ln(gamma)+MertensB2) 3770078510600218 r002 25th iterates of z^2 + 3770078522749876 r005 Im(z^2+c),c=7/78+17/41*I,n=62 3770078525515105 r005 Re(z^2+c),c=19/66+1/41*I,n=43 3770078531763257 m001 (exp(1)+Artin)/(-KomornikLoreti+Niven) 3770078540569372 r005 Im(z^2+c),c=-7/46+5/9*I,n=54 3770078548373521 m001 (GAMMA(13/24)-ArtinRank2)/(Kolakoski+Niven) 3770078558713693 r002 9th iterates of z^2 + 3770078562721511 r005 Im(z^2+c),c=7/78+17/41*I,n=60 3770078569487435 r005 Re(z^2+c),c=-5/11+19/42*I,n=55 3770078581969746 r005 Im(z^2+c),c=7/78+17/41*I,n=64 3770078600233559 a001 9349/365435296162*3^(6/17) 3770078600453154 m001 (PlouffeB+Trott)/(Psi(1,1/3)+FransenRobinson) 3770078606243653 r005 Im(z^2+c),c=7/78+17/41*I,n=58 3770078615601753 m005 (1/2*2^(1/2)-6)/(2/11*gamma-1/11) 3770078618645266 a007 Real Root Of -73*x^4-35*x^3+805*x^2-577*x-745 3770078622062002 r005 Im(z^2+c),c=-11/114+25/49*I,n=13 3770078630563744 r002 20th iterates of z^2 + 3770078637074423 a001 24476/956722026041*3^(6/17) 3770078639936870 r002 62th iterates of z^2 + 3770078642449432 a001 64079/2504730781961*3^(6/17) 3770078643233636 a001 167761/6557470319842*3^(6/17) 3770078643418761 a001 90481/3536736619241*3^(6/17) 3770078643718300 a001 103682/4052739537881*3^(6/17) 3770078645771371 a001 13201/516002918640*3^(6/17) 3770078647056740 a007 Real Root Of 108*x^4+199*x^3-661*x^2+575*x+408 3770078652779603 r005 Im(z^2+c),c=7/94+17/40*I,n=36 3770078654051187 r009 Im(z^3+c),c=-11/23+17/47*I,n=11 3770078654134886 r009 Im(z^3+c),c=-21/62+27/37*I,n=8 3770078659843329 a001 15127/591286729879*3^(6/17) 3770078670667031 r005 Im(z^2+c),c=7/78+17/41*I,n=61 3770078679300873 m001 Sierpinski/PrimesInBinary^2*ln(GAMMA(17/24)) 3770078696755518 a007 Real Root Of 947*x^4+852*x^3+311*x^2-595*x-242 3770078698755200 a007 Real Root Of 261*x^4-794*x^3+439*x^2+295*x+1 3770078702138430 r002 21th iterates of z^2 + 3770078716113184 r005 Im(z^2+c),c=-13/106+33/61*I,n=62 3770078722734230 m001 (MertensB1+TwinPrimes)/(1+exp(1/exp(1))) 3770078727213629 a007 Real Root Of -131*x^4-548*x^3-32*x^2+447*x-760 3770078727657660 r005 Re(z^2+c),c=-9/17+2/51*I,n=12 3770078736291994 m001 1/sin(Pi/12)^2*ln(log(1+sqrt(2)))*sqrt(2)^2 3770078738397357 r002 52th iterates of z^2 + 3770078740157480 q001 1197/3175 3770078749405939 m001 1/ln(Kolakoski)/ErdosBorwein/GAMMA(1/3)^2 3770078754038429 r005 Im(z^2+c),c=-5/78+27/53*I,n=40 3770078756293962 a001 1926/75283811239*3^(6/17) 3770078760111563 r009 Im(z^3+c),c=-41/98+7/22*I,n=33 3770078765687645 r009 Im(z^3+c),c=-67/122+5/24*I,n=29 3770078770301612 r005 Im(z^2+c),c=15/106+24/61*I,n=12 3770078779232577 m005 (1/3*3^(1/2)-1/3)/(4/11*gamma-6/7) 3770078784739845 r005 Im(z^2+c),c=-33/58+29/53*I,n=24 3770078790957881 a007 Real Root Of 22*x^4+829*x^3+x^2+643*x+457 3770078793203299 r005 Re(z^2+c),c=-57/110+3/41*I,n=21 3770078801048226 m001 (MasserGramainDelta+Niven)/(Thue+ZetaP(4)) 3770078806744088 h005 exp(cos(Pi*12/31)+sin(Pi*17/39)) 3770078808957900 r005 Re(z^2+c),c=-33/64+5/48*I,n=30 3770078851523592 r005 Re(z^2+c),c=-14/27+1/23*I,n=23 3770078867098055 r005 Im(z^2+c),c=-33/118+26/45*I,n=42 3770078877951024 r005 Im(z^2+c),c=29/110+10/37*I,n=44 3770078878755701 r005 Im(z^2+c),c=1/86+20/43*I,n=59 3770078893461193 r005 Im(z^2+c),c=7/78+17/41*I,n=57 3770078894000103 m001 (HardyLittlewoodC4+Kac)/(ln(2)+Grothendieck) 3770078895756749 r002 35th iterates of z^2 + 3770078912924077 r005 Re(z^2+c),c=-9/14+7/40*I,n=15 3770078916676693 r005 Im(z^2+c),c=19/126+13/35*I,n=20 3770078921212865 r005 Im(z^2+c),c=9/70+12/31*I,n=41 3770078927121905 a008 Real Root of (1+x-4*x^2+3*x^3+3*x^4-6*x^5) 3770078932855896 r005 Im(z^2+c),c=3/29+7/16*I,n=11 3770078945371601 r005 Im(z^2+c),c=-17/14+34/243*I,n=42 3770078957904342 a007 Real Root Of -176*x^4+537*x^3+615*x^2+245*x-205 3770078961951189 p003 LerchPhi(1/10,5,56/73) 3770078966912595 r005 Im(z^2+c),c=7/78+17/41*I,n=47 3770078979711838 r002 31th iterates of z^2 + 3770078985505454 m005 (1/3*gamma+2/7)/(9/11*2^(1/2)+1/9) 3770078986709117 p003 LerchPhi(1/12,5,281/231) 3770078993076638 a007 Real Root Of 331*x^4+997*x^3-983*x^2-316*x-664 3770079011783716 m005 (-15/4+1/4*5^(1/2))/(3/7*Pi-1/2) 3770079016135095 a007 Real Root Of -290*x^4-810*x^3+892*x^2-558*x+400 3770079032941289 l006 ln(998/1455) 3770079041671098 b008 17*Gamma[3/5]^2 3770079052811997 m001 (exp(Pi)+BesselI(1,2))/(-Rabbit+ZetaQ(2)) 3770079059564665 a007 Real Root Of -181*x^4+458*x^3-539*x^2+157*x+164 3770079060178113 a007 Real Root Of -744*x^4+993*x^3+638*x^2+842*x+295 3770079072591810 l006 ln(206/8937) 3770079088526244 m006 (5/6*exp(Pi)-3)/(5/6/Pi+1/6) 3770079095160909 r005 Im(z^2+c),c=7/78+17/41*I,n=54 3770079140225270 g003 Im(GAMMA(-61/15+I*(-29/30))) 3770079141864697 a003 sin(Pi*14/85)*sin(Pi*8/29) 3770079152558450 r005 Im(z^2+c),c=-3/26+11/21*I,n=19 3770079155480044 r005 Im(z^2+c),c=-109/118+11/40*I,n=15 3770079155848187 r005 Im(z^2+c),c=7/78+17/41*I,n=49 3770079163952312 m001 (Si(Pi)+GAMMA(5/12))/GAMMA(11/12) 3770079172665053 a007 Real Root Of -607*x^4-809*x^3-654*x^2+377*x+204 3770079202558179 h001 (8/11*exp(2)+1/11)/(1/11*exp(2)+7/9) 3770079208964876 r005 Im(z^2+c),c=-2/3+67/216*I,n=43 3770079220111431 m005 (1/2*Pi-4)/(5/6*3^(1/2)+5) 3770079224918679 h001 (2/7*exp(1)+5/12)/(5/6*exp(1)+9/10) 3770079251415099 a007 Real Root Of 287*x^4-319*x^3+333*x^2-636*x-310 3770079258561872 r005 Im(z^2+c),c=7/78+17/41*I,n=53 3770079261872313 r008 a(0)=5,K{-n^6,-59+28*n^3+57*n^2-25*n} 3770079271825304 a007 Real Root Of -20*x^4+239*x^3+917*x^2-884*x+481 3770079273657250 m001 ln(TreeGrowth2nd)^2*CareFree/(2^(1/3)) 3770079294249841 m005 (1/2*5^(1/2)-5/7)/(5/7*Catalan+5/12) 3770079296391536 a001 196418/2207*123^(3/10) 3770079298459371 r005 Re(z^2+c),c=-7/10+48/247*I,n=11 3770079299074553 r005 Im(z^2+c),c=-7/114+37/61*I,n=34 3770079302450622 r005 Re(z^2+c),c=-19/34+33/79*I,n=43 3770079307784075 r005 Re(z^2+c),c=-131/110+8/33*I,n=20 3770079309159262 r009 Re(z^3+c),c=-53/122+4/19*I,n=19 3770079315411331 r005 Re(z^2+c),c=29/78+21/58*I,n=42 3770079320811050 m001 (BesselI(1,1)+Magata)/(sin(1/5*Pi)-ln(2)) 3770079327004972 a001 1/3732588*2584^(1/23) 3770079331914810 a001 4/24157817*165580141^(1/23) 3770079331914812 a001 4/39088169*10610209857723^(1/23) 3770079334180002 a001 9349/5*28657^(12/41) 3770079346515413 r005 Im(z^2+c),c=-13/90+14/23*I,n=35 3770079386226099 m005 1/4*5^(1/2)/(4/5*Catalan+3/4) 3770079388418709 m002 -5/Log[Pi]+(3*Tanh[Pi])/5 3770079389743775 r005 Re(z^2+c),c=-33/70+23/60*I,n=63 3770079397829074 m001 (HardyLittlewoodC4-Paris)/(GAMMA(23/24)-Bloch) 3770079402382063 a005 (1/sin(51/181*Pi))^167 3770079402652716 r005 Re(z^2+c),c=-51/118+27/49*I,n=52 3770079402916838 m008 (3*Pi-1/3)/(1/4*Pi^6+4/5) 3770079403664659 s002 sum(A036663[n]/((exp(n)-1)/n),n=1..infinity) 3770079403741040 a001 2/377*121393^(25/33) 3770079403800307 a007 Real Root Of 136*x^4+396*x^3-413*x^2+48*x-204 3770079405986755 m005 (1/3*Zeta(3)+3/5)/(8/9*5^(1/2)+2/3) 3770079417317283 a001 21/29*843^(12/49) 3770079417376435 a001 2207/86267571272*3^(6/17) 3770079418566810 m005 (1/2*Zeta(3)-5/6)/(121/20+1/20*5^(1/2)) 3770079437666861 m001 (gamma(3)+BesselI(0,2))/(2^(1/2)-cos(1/5*Pi)) 3770079457958208 m005 (1/3*Catalan+1/4)/(3/4*Zeta(3)+4/7) 3770079464699344 a005 (1/sin(68/141*Pi))^855 3770079469362201 a008 Real Root of x^2-x-142512 3770079479722560 r005 Re(z^2+c),c=-3/4+3/31*I,n=31 3770079481057519 m001 Trott-ln(2^(1/2)+1)*BesselJ(1,1) 3770079491519537 s002 sum(A035704[n]/(pi^n+1),n=1..infinity) 3770079514080779 r002 12th iterates of z^2 + 3770079515381012 r005 Im(z^2+c),c=-99/82+2/43*I,n=32 3770079517061856 r005 Re(z^2+c),c=-89/98+11/53*I,n=62 3770079524926666 m004 -5/Pi+(Sqrt[5]*Pi*ProductLog[Sqrt[5]*Pi])/2 3770079526023947 r009 Im(z^3+c),c=-13/34+19/56*I,n=28 3770079531632621 r002 34th iterates of z^2 + 3770079534580212 a007 Real Root Of -645*x^4+26*x^3-3*x^2+841*x-305 3770079539311292 m001 Magata^(Grothendieck/BesselK(1,1)) 3770079552108621 m001 1/FeigenbaumDelta*ln(DuboisRaymond)*Zeta(5)^2 3770079556720232 r009 Im(z^3+c),c=-2/17+27/64*I,n=3 3770079558260286 m001 Sierpinski/FeigenbaumAlpha/Trott2nd 3770079570776884 r005 Im(z^2+c),c=-23/98+29/50*I,n=41 3770079572868859 a007 Real Root Of -659*x^4+540*x^3+109*x^2+868*x+354 3770079574056475 m001 (-GAMMA(13/24)+2/3)/(-GAMMA(7/24)+1/2) 3770079574757010 a008 Real Root of x^2-142135 3770079577018206 r005 Im(z^2+c),c=27/122+4/7*I,n=7 3770079578637161 m001 Zeta(5)*exp(Cahen)^2*Zeta(9)^2 3770079585751890 a007 Real Root Of 65*x^4+76*x^3+89*x^2-926*x-359 3770079605601673 r005 Re(z^2+c),c=-41/114+32/57*I,n=57 3770079632822696 b008 -4+Erfc[1/2]^2 3770079657986284 a007 Real Root Of 336*x^4-972*x^3-882*x^2-916*x+516 3770079659206882 r009 Re(z^3+c),c=-5/74+13/22*I,n=12 3770079670527834 m001 Zeta(1,2)^Champernowne-QuadraticClass 3770079680431743 a008 Real Root of x^2-x-141758 3770079683118060 a003 sin(Pi*1/62)*sin(Pi*31/116) 3770079683278887 m001 ln(Magata)/Bloch^2/Zeta(1/2) 3770079699261410 m001 exp(KhintchineHarmonic)*Bloch^2/Tribonacci^2 3770079700217014 b008 -7/3+PolyLog[2,-2] 3770079701721821 m001 (cos(1)-sin(1))/(-3^(1/3)+Cahen) 3770079704923664 m001 (3^(1/3)-cos(1))/(-CopelandErdos+Weierstrass) 3770079705448779 r005 Im(z^2+c),c=-13/14+29/103*I,n=5 3770079713602175 m001 (GaussAGM+Salem)/(BesselI(1,2)-Shi(1)) 3770079713943888 p001 sum(1/(521*n+316)/n/(32^n),n=1..infinity) 3770079718894919 r002 7th iterates of z^2 + 3770079727121843 m001 BesselJ(0,1)*ln(3)-arctan(1/2) 3770079730910670 m001 1/Kolakoski^2*ln(Champernowne)/Zeta(1,2)^2 3770079741075171 r005 Re(z^2+c),c=5/14+13/36*I,n=6 3770079743101908 h001 (5/9*exp(2)+9/10)/(2/11*exp(1)+5/6) 3770079744547334 r005 Im(z^2+c),c=1/48+17/37*I,n=47 3770079746652446 h001 (1/8*exp(2)+7/11)/(1/11*exp(1)+1/6) 3770079754586031 r002 9th iterates of z^2 + 3770079756647714 r005 Im(z^2+c),c=-5/9+25/41*I,n=12 3770079757094878 r009 Im(z^3+c),c=-1/27+17/26*I,n=2 3770079758609571 r005 Im(z^2+c),c=37/110+13/40*I,n=16 3770079775632501 r005 Re(z^2+c),c=11/34+5/56*I,n=29 3770079789877515 a003 cos(Pi*29/101)-sin(Pi*29/61) 3770079803466482 r005 Re(z^2+c),c=-11/28+22/49*I,n=12 3770079812207018 r005 Im(z^2+c),c=-2/3+1/153*I,n=61 3770079813951741 r009 Im(z^3+c),c=-5/54+20/47*I,n=8 3770079835700639 a001 305/38*76^(8/9) 3770079838961715 m001 OrthogonalArrays/(Zeta(1,2)+BesselI(1,1)) 3770079843958326 r005 Re(z^2+c),c=-13/10+8/103*I,n=23 3770079853028827 a007 Real Root Of -294*x^4-996*x^3+709*x^2+952*x-465 3770079853995892 p003 LerchPhi(1/32,4,235/184) 3770079873990328 r005 Im(z^2+c),c=-1/18+18/37*I,n=14 3770079896920173 r005 Im(z^2+c),c=-17/86+23/40*I,n=22 3770079910821465 m005 (1/2*5^(1/2)+5/9)/(1/9*3^(1/2)-7/11) 3770079919171937 b008 1+7^(Pi/6) 3770079923436035 a007 Real Root Of 260*x^4+788*x^3-988*x^2-876*x+440 3770079923645947 r009 Im(z^3+c),c=-13/34+19/56*I,n=27 3770079926358849 p001 sum(1/(179*n+28)/(3^n),n=0..infinity) 3770079928299669 h001 (-7*exp(1)+6)/(-4*exp(2)-5) 3770079944299398 a007 Real Root Of 677*x^4+850*x^3+845*x^2-880*x-420 3770079945935405 r009 Re(z^3+c),c=-33/62+15/49*I,n=33 3770079954430698 m001 (FellerTornier+MasserGramain)/(3^(1/2)+Chi(1)) 3770079957457411 a001 514229/5778*123^(3/10) 3770079971854766 a001 3571/514229*8^(48/59) 3770079972309730 r005 Im(z^2+c),c=17/90+13/38*I,n=17 3770079982479452 m001 exp(RenyiParking)^2/FibonacciFactorial*Zeta(5) 3770079994758287 l006 ln(937/973) 3770080008276643 a007 Real Root Of -378*x^4-135*x^3-417*x^2+626*x-23 3770080017013354 r005 Re(z^2+c),c=13/34+7/47*I,n=64 3770080030015782 m001 ln(3)^(Riemann3rdZero/Pi^(1/2)) 3770080039689863 r005 Im(z^2+c),c=11/122+35/47*I,n=6 3770080046206898 r005 Im(z^2+c),c=-7/38+4/7*I,n=51 3770080047640019 r002 8th iterates of z^2 + 3770080051039288 s001 sum(exp(-2*Pi)^n*A279852[n],n=1..infinity) 3770080053905642 a001 1346269/15127*123^(3/10) 3770080056325458 m001 exp(Paris)^2/CopelandErdos^2*PrimesInBinary^2 3770080058376349 r005 Im(z^2+c),c=-11/70+24/43*I,n=43 3770080060290923 r009 Re(z^3+c),c=-5/12+33/56*I,n=33 3770080060426994 l006 ln(6689/9752) 3770080061398644 m001 (Si(Pi)-ln(Pi))/(Landau+MertensB3) 3770080067977250 a001 3524578/39603*123^(3/10) 3770080070030270 a001 9227465/103682*123^(3/10) 3770080070329801 a001 24157817/271443*123^(3/10) 3770080070373502 a001 63245986/710647*123^(3/10) 3770080070379878 a001 165580141/1860498*123^(3/10) 3770080070380808 a001 433494437/4870847*123^(3/10) 3770080070380944 a001 1134903170/12752043*123^(3/10) 3770080070380964 a001 2971215073/33385282*123^(3/10) 3770080070380967 a001 7778742049/87403803*123^(3/10) 3770080070380967 a001 20365011074/228826127*123^(3/10) 3770080070380967 a001 53316291173/599074578*123^(3/10) 3770080070380967 a001 139583862445/1568397607*123^(3/10) 3770080070380967 a001 365435296162/4106118243*123^(3/10) 3770080070380967 a001 956722026041/10749957122*123^(3/10) 3770080070380967 a001 2504730781961/28143753123*123^(3/10) 3770080070380967 a001 6557470319842/73681302247*123^(3/10) 3770080070380967 a001 10610209857723/119218851371*123^(3/10) 3770080070380967 a001 4052739537881/45537549124*123^(3/10) 3770080070380967 a001 1548008755920/17393796001*123^(3/10) 3770080070380967 a001 591286729879/6643838879*123^(3/10) 3770080070380967 a001 225851433717/2537720636*123^(3/10) 3770080070380967 a001 86267571272/969323029*123^(3/10) 3770080070380967 a001 32951280099/370248451*123^(3/10) 3770080070380968 a001 12586269025/141422324*123^(3/10) 3770080070380969 a001 4807526976/54018521*123^(3/10) 3770080070380976 a001 1836311903/20633239*123^(3/10) 3770080070381028 a001 3524667/39604*123^(3/10) 3770080070381383 a001 267914296/3010349*123^(3/10) 3770080070383819 a001 102334155/1149851*123^(3/10) 3770080070400511 a001 39088169/439204*123^(3/10) 3770080070514922 a001 14930352/167761*123^(3/10) 3770080071299106 a001 5702887/64079*123^(3/10) 3770080076673982 a001 2178309/24476*123^(3/10) 3770080076991157 m001 (gamma(2)+GaussAGM)/(Riemann2ndZero+Thue) 3770080090212464 m005 (3/4*exp(1)+5/6)/(5/6*Pi+5) 3770080112853810 a005 (1/cos(5/121*Pi))^1792 3770080113513929 a001 832040/9349*123^(3/10) 3770080125436972 m001 1/GAMMA(1/12)*Khintchine*ln(sinh(1)) 3770080127656548 r005 Im(z^2+c),c=-23/34+11/119*I,n=43 3770080130193315 r005 Re(z^2+c),c=11/42+2/33*I,n=4 3770080141751730 r005 Re(z^2+c),c=3/34+15/52*I,n=24 3770080150634345 r005 Im(z^2+c),c=25/98+12/43*I,n=38 3770080168459156 r009 Re(z^3+c),c=-2/7+17/24*I,n=11 3770080180126972 r002 12th iterates of z^2 + 3770080189366291 a007 Real Root Of -207*x^4-567*x^3+808*x^2+57*x+166 3770080194684175 r005 Im(z^2+c),c=43/102+5/24*I,n=12 3770080203442369 a005 (1/cos(38/235*Pi))^61 3770080217159788 r005 Re(z^2+c),c=-19/36+3/22*I,n=13 3770080223072639 r002 14th iterates of z^2 + 3770080224368345 a001 9349/1346269*8^(48/59) 3770080230137546 m001 GAMMA(11/24)^2/exp(PrimesInBinary)*GAMMA(7/12) 3770080236616574 a003 sin(Pi*14/93)*sin(Pi*9/29) 3770080240611613 l006 ln(5691/8297) 3770080249537523 m001 ln(PrimesInBinary)^2/KhintchineLevy/sqrt(3) 3770080252355504 r009 Im(z^3+c),c=-19/58+16/43*I,n=6 3770080252659438 r005 Re(z^2+c),c=25/98+2/63*I,n=4 3770080268157369 r005 Re(z^2+c),c=-11/30+21/38*I,n=46 3770080270935801 r002 13th iterates of z^2 + 3770080279745065 h001 (3/4*exp(1)+2/9)/(7/9*exp(2)+1/4) 3770080283978715 a001 2161/311187*8^(48/59) 3770080286430560 r005 Re(z^2+c),c=13/66+21/55*I,n=13 3770080298223699 b008 4-Log[5]/7 3770080321285140 q001 751/1992 3770080337070188 a007 Real Root Of -251*x^4-905*x^3+187*x^2+229*x+418 3770080346426948 a007 Real Root Of 568*x^4+12*x^3+833*x^2-819*x-438 3770080346717623 h001 (-10*exp(1)-7)/(-12*exp(2)-2) 3770080346937102 m001 Trott^2/KhintchineLevy/exp(cos(Pi/12)) 3770080354616554 a007 Real Root Of -427*x^4+184*x^3+827*x^2+608*x-348 3770080355212583 m005 (1/2*exp(1)-4/9)/(5/8*exp(1)+8/11) 3770080356909232 m002 -6+Coth[Pi]*Log[Pi]*ProductLog[Pi]+Tanh[Pi] 3770080360877309 a007 Real Root Of -115*x^4-185*x^3+876*x^2-238*x-29 3770080362424771 r005 Re(z^2+c),c=23/94+27/58*I,n=40 3770080366018707 a001 317811/3571*123^(3/10) 3770080372068171 m001 1/ln(Niven)^2/Artin^2*GAMMA(3/4)^2 3770080380430320 a001 2889/416020*8^(48/59) 3770080381484367 r005 Im(z^2+c),c=-7/114+32/63*I,n=41 3770080389247135 r009 Im(z^3+c),c=-43/82+13/50*I,n=46 3770080410683833 r005 Im(z^2+c),c=-8/15+37/62*I,n=14 3770080417263015 m001 (1+3^(1/2))^(1/2)/Shi(1)/PrimesInBinary 3770080433806564 r009 Re(z^3+c),c=-55/114+15/56*I,n=49 3770080440261109 m001 (Bloch+CopelandErdos)/(exp(1)-sin(1)) 3770080451719256 m001 (GAMMA(3/4)-Grothendieck)/(Sarnak-Stephens) 3770080456262605 r005 Re(z^2+c),c=-3/16+21/34*I,n=22 3770080456648433 a005 (1/sin(59/141*Pi))^1913 3770080457828779 a003 sin(Pi*4/115)*sin(Pi*10/89) 3770080458143813 a007 Real Root Of 764*x^4-801*x^3-205*x^2-949*x-387 3770080460816382 r005 Im(z^2+c),c=-7/17+32/59*I,n=21 3770080461873347 a007 Real Root Of 51*x^4+47*x^3-844*x^2-898*x+826 3770080468043078 r005 Re(z^2+c),c=19/48+23/63*I,n=17 3770080479279160 r002 12th iterates of z^2 + 3770080481966067 a007 Real Root Of -120*x^4-425*x^3+56*x^2-240*x-232 3770080482086621 r005 Im(z^2+c),c=-81/106+5/17*I,n=3 3770080488136519 r005 Re(z^2+c),c=-7/10+29/152*I,n=45 3770080497431323 l006 ln(4693/6842) 3770080512820540 m001 (BesselI(0,2)+Khinchin)/ln(2+3^(1/2)) 3770080512820540 m001 (Khinchin+BesselI(0,2))/ln(2+sqrt(3)) 3770080514986320 a001 843*(1/2*5^(1/2)+1/2)^16*3^(9/14) 3770080515276611 m005 (5/66+1/6*5^(1/2))/(9/10*2^(1/2)-1/12) 3770080523301055 m001 (2^(1/2)+Zeta(3))/(-GAMMA(2/3)+TwinPrimes) 3770080525114144 r002 14th iterates of z^2 + 3770080539700784 m001 ThueMorse^(Champernowne/ZetaQ(3)) 3770080553729930 a001 521/21*5^(13/50) 3770080562450863 a005 (1/cos(13/159*Pi))^592 3770080582486044 r009 Re(z^3+c),c=-9/118+37/56*I,n=16 3770080583947443 a007 Real Root Of -197*x^4-579*x^3+693*x^2+80*x-776 3770080591308467 m005 (1/2*Catalan-5/7)/(5*2^(1/2)-3/11) 3770080605390248 l006 ln(73/3167) 3770080605390248 p004 log(3167/73) 3770080624369004 a007 Real Root Of -293*x^4-907*x^3+968*x^2+947*x+402 3770080630266721 m001 GaussKuzminWirsing-FeigenbaumKappa-exp(1) 3770080633689231 m001 1/LambertW(1)^2*ln(Bloch)^2*arctan(1/2)^2 3770080638429532 r002 3th iterates of z^2 + 3770080643692104 m001 1/exp(GAMMA(3/4))/LaplaceLimit/sinh(1) 3770080644447658 m001 (Zeta(5)-cos(1))/(-GAMMA(13/24)+FellerTornier) 3770080658610098 m001 1/exp(Riemann3rdZero)/CareFree*GAMMA(5/24)^2 3770080667483383 b008 5*SinIntegral[FresnelC[1]] 3770080674405954 m001 LambertW(1)/LandauRamanujan2nd/Sierpinski 3770080704510158 a007 Real Root Of -85*x^4+677*x^3+38*x^2+887*x+367 3770080727472538 m002 6/Pi+Log[Pi]+3*Sinh[Pi] 3770080733024093 r009 Im(z^3+c),c=-17/42+16/49*I,n=36 3770080734617996 a007 Real Root Of -157*x^4-679*x^3-636*x^2-963*x+742 3770080747864902 m001 (Kolakoski+ZetaQ(4))/(GAMMA(13/24)+Bloch) 3770080771828353 r005 Im(z^2+c),c=39/110+13/51*I,n=45 3770080786417345 m002 -4*Pi^4+(3*Pi^4)/E^Pi 3770080794410945 a007 Real Root Of 129*x^4+415*x^3-163*x^2+513*x+428 3770080804250067 m001 (2^(1/2)-ln(2))/(-Zeta(1/2)+ZetaP(2)) 3770080814207273 h001 (-exp(-1)+1)/(-5*exp(-2)-1) 3770080815162972 h001 (7/9*exp(2)+8/9)/(5/9*exp(1)+1/4) 3770080826793357 r005 Im(z^2+c),c=-1/10+28/53*I,n=41 3770080840619494 r005 Im(z^2+c),c=11/82+18/47*I,n=38 3770080842191424 a007 Real Root Of -318*x^4-938*x^3+776*x^2-730*x+198 3770080848947307 a007 Real Root Of 2*x^4+752*x^3-760*x^2+44*x+625 3770080849717696 m001 (ZetaQ(2)+ZetaQ(3))/(GAMMA(23/24)-Khinchin) 3770080868103698 r005 Im(z^2+c),c=27/82+11/58*I,n=57 3770080869455412 a007 Real Root Of -265*x^4-886*x^3+425*x^2+84*x+335 3770080869622321 r005 Im(z^2+c),c=13/50+17/62*I,n=36 3770080875992077 r005 Im(z^2+c),c=7/78+17/41*I,n=50 3770080892982316 l006 ln(3695/5387) 3770080901302626 m001 (BesselI(0,2)+HeathBrownMoroz)^ln(5) 3770080920351087 m003 15/4+(Sqrt[5]*ProductLog[1/2+Sqrt[5]/2]^2)/64 3770080930728777 a007 Real Root Of 462*x^4-133*x^3-904*x^2-917*x+472 3770080933971174 a007 Real Root Of -595*x^4-368*x^3-878*x^2+326*x+240 3770080981329397 a007 Real Root Of 182*x^4+724*x^3+101*x^2-307*x-565 3770080984959545 r005 Im(z^2+c),c=-17/14+46/233*I,n=13 3770081006760756 r005 Im(z^2+c),c=-11/70+15/23*I,n=36 3770081016043993 r008 a(0)=4,K{-n^6,9-2*n^3-9*n^2+4*n} 3770081041519454 a001 2207/317811*8^(48/59) 3770081059941164 m001 exp(GAMMA(1/4))*RenyiParking^2/GAMMA(1/6) 3770081065872882 r005 Re(z^2+c),c=-17/18+7/54*I,n=16 3770081070111000 r005 Re(z^2+c),c=-9/8+63/220*I,n=4 3770081072163610 r005 Im(z^2+c),c=1/86+20/43*I,n=46 3770081072329776 m004 -120*Pi-(30*Sech[Sqrt[5]*Pi])/Pi 3770081072598630 m004 -120*Pi-(30*Csch[Sqrt[5]*Pi])/Pi 3770081079482667 r005 Re(z^2+c),c=-73/126+1/5*I,n=4 3770081079579300 r002 4th iterates of z^2 + 3770081092423145 r005 Re(z^2+c),c=-55/118+21/52*I,n=59 3770081108936010 a003 -2*cos(1/27*Pi)-2*cos(10/27*Pi)-cos(1/24*Pi) 3770081110733807 m001 (-GAMMA(11/12)+Champernowne)/(gamma+Ei(1)) 3770081111679962 r005 Re(z^2+c),c=17/74+15/37*I,n=46 3770081123722589 a001 23725150497407/144*1836311903^(8/17) 3770081123722589 a001 505019158607/144*6557470319842^(8/17) 3770081129892734 a001 3461452808002*2504730781961^(17/21) 3770081138634090 a007 Real Root Of -470*x^4+890*x^3-11*x^2+245*x-129 3770081139416621 r005 Re(z^2+c),c=-15/29+5/51*I,n=21 3770081153422710 m001 PrimesInBinary/(ln(3)+HeathBrownMoroz) 3770081183395448 l006 ln(6392/9319) 3770081196510550 m001 (5^(1/2)+arctan(1/2))/(Champernowne+Lehmer) 3770081210128901 a007 Real Root Of -548*x^4+571*x^3+561*x^2+55*x-120 3770081228478778 a007 Real Root Of -699*x^4+227*x^3+53*x^2+930*x+35 3770081230033564 m002 3+Pi*Sech[Pi]+Sinh[Pi]/E^Pi 3770081244073684 m001 1/GAMMA(1/12)/Cahen*exp(GAMMA(23/24)) 3770081247579440 p003 LerchPhi(1/10,1,364/127) 3770081249546924 m001 (Pi-gamma)/(Backhouse-StronglyCareFree) 3770081249982821 r005 Im(z^2+c),c=-1/13+16/31*I,n=39 3770081258926062 r002 15th iterates of z^2 + 3770081258926062 r002 15th iterates of z^2 + 3770081262597897 h001 (2/3*exp(2)+2/11)/(5/12*exp(1)+2/9) 3770081263820409 r005 Re(z^2+c),c=-45/94+11/43*I,n=10 3770081268712872 a007 Real Root Of 69*x^4-868*x^3+809*x^2-806*x+234 3770081282708949 m001 1/GAMMA(13/24)*exp(Trott)^2/sqrt(1+sqrt(3)) 3770081283424311 r009 Im(z^3+c),c=-55/122+13/44*I,n=25 3770081297916736 r009 Im(z^3+c),c=-33/64+4/9*I,n=47 3770081308090500 m001 (Lehmer-ZetaP(4))/(ln(2+3^(1/2))-Khinchin) 3770081319633241 r002 54th iterates of z^2 + 3770081350169212 m001 (exp(-1/2*Pi)+ArtinRank2)/(5^(1/2)-Zeta(1,-1)) 3770081356677774 a001 7/20365011074*2^(2/15) 3770081359124732 a007 Real Root Of 918*x^4-380*x^3+128*x^2-883*x-390 3770081362662541 r002 46th iterates of z^2 + 3770081363017782 m008 (3*Pi^3+1/4)/(2*Pi^2+5) 3770081373228211 r005 Im(z^2+c),c=3/94+19/42*I,n=23 3770081375165823 m001 (GAMMA(5/6)-Cahen)/(Kac+Robbin) 3770081386030742 r009 Im(z^3+c),c=-7/16+29/51*I,n=11 3770081393761582 r002 7th iterates of z^2 + 3770081402686748 m009 (3/2*Pi^2+4)/(5*Psi(1,1/3)-3/5) 3770081408560569 m001 GAMMA(19/24)^2/ln(Backhouse)^2/sin(Pi/12) 3770081409033650 r002 25th iterates of z^2 + 3770081416404690 m001 1/exp(cos(Pi/12))^2*LambertW(1)^2*cos(Pi/5) 3770081425561952 s002 sum(A033493[n]/(exp(n)+1),n=1..infinity) 3770081437203353 m001 (-Totient+Weierstrass)/(Chi(1)+Backhouse) 3770081453837208 r002 41th iterates of z^2 + 3770081463947419 a007 Real Root Of 721*x^4+476*x^3-459*x^2-477*x+205 3770081466466324 r002 3th iterates of z^2 + 3770081469149063 r005 Im(z^2+c),c=5/86+29/51*I,n=20 3770081473513290 r002 12th iterates of z^2 + 3770081485796263 m001 Pi*(Psi(2,1/3)+BesselK(0,1))*Ei(1,1) 3770081495974877 r005 Re(z^2+c),c=-31/66+26/61*I,n=29 3770081508006296 r005 Im(z^2+c),c=-1/38+27/58*I,n=11 3770081511253745 a007 Real Root Of 741*x^4+260*x^3+819*x^2-89*x-151 3770081511892197 m001 (ln(Pi)*Ei(1,1)+Stephens)/Ei(1,1) 3770081513068171 m001 (LaplaceLimit+Sierpinski)/(CopelandErdos+Kac) 3770081521096083 h001 (9/10*exp(1)+1/7)/(8/9*exp(2)+3/10) 3770081530410904 m001 (Zeta(5)+Zeta(1/2))/(arctan(1/2)-Stephens) 3770081539943853 m005 (1/3*exp(1)+3/5)/(1/4*Zeta(3)-7/10) 3770081540686505 r005 Re(z^2+c),c=-59/114+4/57*I,n=41 3770081544820140 r005 Im(z^2+c),c=-4/15+13/23*I,n=29 3770081556449513 m001 (BesselI(1,2)-Cahen)/(Kolakoski-Landau) 3770081567552514 r009 Im(z^3+c),c=-17/42+16/49*I,n=35 3770081567699124 r002 47th iterates of z^2 + 3770081581273272 l006 ln(2697/3932) 3770081582016565 m001 QuadraticClass/Zeta(1,-1)/Riemann1stZero 3770081599377587 h002 exp(10^(10/7)+17^(6/7)) 3770081599377587 h007 exp(10^(10/7)+17^(6/7)) 3770081615134879 m005 (1/3*exp(1)-3/7)/(7/9*2^(1/2)+1/6) 3770081615401937 a007 Real Root Of -561*x^4+468*x^3+829*x^2+25*x-141 3770081619499940 b008 Pi+(3*Cos[EulerGamma])/4 3770081620455928 a007 Real Root Of -739*x^4+618*x^3-380*x^2+594*x+326 3770081628633981 a007 Real Root Of 490*x^4+403*x^3-455*x^2-721*x+305 3770081640014735 r005 Im(z^2+c),c=-31/94+21/37*I,n=41 3770081654767830 a001 15127/610*28657^(2/49) 3770081670577674 r009 Re(z^3+c),c=-1/26+4/47*I,n=3 3770081672025462 m008 (1/3*Pi^6+3)/(2/3*Pi^2+2) 3770081673001451 m003 -7+(4*Sinh[1/2+Sqrt[5]/2])/3 3770081691782758 b008 ProductLog[2/15]/Pi 3770081707296790 r002 14th iterates of z^2 + 3770081710934589 r005 Im(z^2+c),c=1/86+20/43*I,n=55 3770081714347535 m001 (-exp(1)+Lehmer)/(2^(1/3)-Psi(2,1/3)) 3770081721772110 m005 (1/2*Pi+6)/(4/9*exp(1)+4/5) 3770081727714952 m001 (1+3^(1/2))/(Cahen+StolarskyHarborth) 3770081733990285 a007 Real Root Of 147*x^4+646*x^3+552*x^2+897*x+455 3770081737812485 a003 cos(Pi*47/103)*cos(Pi*28/57) 3770081745349950 m001 (OneNinth-StronglyCareFree)/Pi^(1/2) 3770081748832281 r009 Im(z^3+c),c=-6/13+17/59*I,n=40 3770081751804266 r005 Re(z^2+c),c=-55/118+23/57*I,n=60 3770081759322196 m002 -12+Pi^4/2+Tanh[Pi] 3770081772556605 m001 1/ln(Catalan)*TwinPrimes^2/log(2+sqrt(3)) 3770081780371977 r005 Re(z^2+c),c=-33/122+15/28*I,n=5 3770081780587311 v003 sum((n^3+3*n^2-3*n+14)/n^(n-1),n=1..infinity) 3770081791128530 r009 Re(z^3+c),c=-51/110+14/57*I,n=47 3770081798763583 r002 38th iterates of z^2 + 3770081799399520 m005 (1/2*2^(1/2)-4)/(11/12*3^(1/2)-5/7) 3770081817058805 r009 Im(z^3+c),c=-9/20+14/27*I,n=15 3770081818118635 a001 7/5702887*89^(1/4) 3770081831900139 m001 (Ei(1)-CopelandErdos)/(Pi+2^(1/3)) 3770081834041467 m001 Ei(1)^(2^(1/2))*Ei(1)^Robbin 3770081848619249 r008 a(0)=4,K{-n^6,-32+48*n+38*n^2-50*n^3} 3770081853082113 r002 42th iterates of z^2 + 3770081853683234 a001 4/51841*322^(33/49) 3770081860280865 r005 Re(z^2+c),c=-59/110+20/57*I,n=19 3770081864862022 r005 Re(z^2+c),c=-7/10+5/67*I,n=10 3770081865029214 m008 (4*Pi^6+2/5)/(1/5*Pi^3+4) 3770081867837734 a001 76/1597*196418^(9/53) 3770081899450369 b008 Log[14]/7 3770081908628797 a007 Real Root Of -584*x^4+743*x^3-430*x^2+632*x+351 3770081910428053 a007 Real Root Of 6*x^4+x^3+608*x^2-731*x+189 3770081916179768 r005 Im(z^2+c),c=-7/66+33/62*I,n=49 3770081930763082 m001 GAMMA(19/24)/BesselJ(1,1)*Riemann1stZero 3770081937592005 r005 Im(z^2+c),c=-35/66+1/15*I,n=55 3770081946143735 p003 LerchPhi(1/16,1,520/187) 3770081961107843 m001 FeigenbaumB-GlaisherKinkelin^LandauRamanujan 3770081966407581 l006 ln(232/10065) 3770081973435219 a007 Real Root Of -302*x^4-154*x^3+196*x^2+565*x+183 3770081975822938 m002 (Pi^6*Cosh[Pi])/E^Pi-Pi^4*ProductLog[Pi] 3770081978075352 r005 Im(z^2+c),c=-11/70+32/57*I,n=47 3770081978339436 m001 (Otter-ReciprocalFibonacci)/(ln(Pi)+gamma(1)) 3770082006011812 h001 (-5*exp(2/3)+2)/(-7*exp(-2)+3) 3770082023936031 r009 Im(z^3+c),c=-45/86+22/51*I,n=3 3770082030363415 r005 Re(z^2+c),c=-103/126+21/44*I,n=2 3770082036777739 a001 4/75025*233^(25/32) 3770082053050759 r009 Im(z^3+c),c=-21/50+21/44*I,n=6 3770082080388866 p003 LerchPhi(1/5,5,304/157) 3770082082241106 m005 (1/3*Zeta(3)-1/7)/(7/11*Zeta(3)-5/6) 3770082091166694 r005 Re(z^2+c),c=-53/122+41/62*I,n=5 3770082096577994 p004 log(35977/24677) 3770082096713111 a001 121393/1364*123^(3/10) 3770082098484465 r009 Im(z^3+c),c=-21/26+5/39*I,n=2 3770082099329301 r009 Im(z^3+c),c=-55/114+16/59*I,n=47 3770082101208405 a007 Real Root Of 858*x^4-89*x^3+414*x^2+98*x-44 3770082113530881 q001 1056/2801 3770082123788499 m001 (exp(-1/2*Pi)+FeigenbaumMu)/(1+gamma(3)) 3770082148650210 m005 (1/3*5^(1/2)+2/5)/(2/11*Pi-7/8) 3770082154829581 r005 Re(z^2+c),c=-19/44+23/41*I,n=33 3770082157170197 m001 Catalan^Porter-sin(1) 3770082159807148 l006 ln(4396/6409) 3770082159874855 a007 Real Root Of -783*x^4-726*x^3-706*x^2+803*x+380 3770082183989071 r009 Im(z^3+c),c=-41/94+19/62*I,n=29 3770082192405096 a003 sin(Pi*3/58)/sin(Pi*12/85) 3770082193105152 a008 Real Root of x^4-9*x^2-30*x+39 3770082194315821 a007 Real Root Of -992*x^4+148*x^3-768*x^2+806*x+441 3770082195678627 r002 15th iterates of z^2 + 3770082204743509 m001 Totient/(TreeGrowth2nd^(2^(1/3))) 3770082218272820 r005 Re(z^2+c),c=-51/106+13/38*I,n=54 3770082228150773 a007 Real Root Of -995*x^4+198*x^3+433*x^2+98*x-89 3770082278269152 r009 Im(z^3+c),c=-29/64+8/27*I,n=20 3770082280247217 a007 Real Root Of 128*x^4+460*x^3-317*x^2-708*x+627 3770082290947519 m008 (3/4*Pi^3+5/6)/(2/3*Pi^6-2) 3770082299974863 a007 Real Root Of 465*x^4-761*x^3+463*x^2-756*x-401 3770082305070937 r002 26th iterates of z^2 + 3770082311181873 r005 Re(z^2+c),c=-15/16+19/127*I,n=32 3770082312475585 r005 Re(z^2+c),c=-3/8+13/40*I,n=4 3770082339268061 a007 Real Root Of -298*x^4-862*x^3+953*x^2+89*x+802 3770082340622327 b005 Number DB table 3770082342275469 r004 Re(z^2+c),c=3/11-9/23*I,z(0)=I,n=5 3770082361312967 r002 15th iterates of z^2 + 3770082362889897 r009 Re(z^3+c),c=-17/31+2/11*I,n=5 3770082375306319 m001 (MadelungNaCl+Thue)/(gamma(1)+LandauRamanujan) 3770082387518650 a007 Real Root Of -180*x^4+615*x^3+326*x^2-15*x-70 3770082389568794 a007 Real Root Of -309*x^4-556*x^3-930*x^2+680*x+365 3770082394277341 r005 Re(z^2+c),c=-11/21+19/45*I,n=36 3770082406598370 r002 24th iterates of z^2 + 3770082413584060 r005 Im(z^2+c),c=19/78+22/53*I,n=13 3770082415804818 l006 ln(6095/8886) 3770082416687818 m001 OneNinth^ZetaP(4)/(OneNinth^Niven) 3770082424816542 a007 Real Root Of 36*x^4-659*x^3+575*x^2-942*x+308 3770082427872226 p003 LerchPhi(1/12,1,393/139) 3770082429074074 r005 Re(z^2+c),c=-29/56+4/57*I,n=25 3770082433860961 r005 Im(z^2+c),c=-3/122+22/45*I,n=22 3770082443210705 a007 Real Root Of -77*x^4-110*x^3+539*x^2-712*x-684 3770082447452902 m008 (3/5*Pi^6-1/5)/(5*Pi^5-3/5) 3770082460009024 m001 ((1+3^(1/2))^(1/2)-Sierpinski)/(gamma+Ei(1)) 3770082463532030 m001 BesselJZeros(0,1)*GAMMA(5/6)+GAMMA(11/12) 3770082463687898 a003 cos(Pi*41/100)+cos(Pi*15/32) 3770082465021895 m001 Zeta(3)+GolombDickman*exp(sqrt(2)) 3770082472566744 r005 Im(z^2+c),c=-3/52+31/61*I,n=18 3770082477102351 r005 Re(z^2+c),c=27/74+8/23*I,n=2 3770082492092038 a007 Real Root Of -232*x^4+328*x^3+918*x^2+432*x+15 3770082498177158 r005 Im(z^2+c),c=3/25+9/23*I,n=17 3770082509510190 r002 17th iterates of z^2 + 3770082509953310 m006 (3/4*exp(2*Pi)+2)/(2*exp(2*Pi)-2/5) 3770082513553223 r005 Re(z^2+c),c=-9/14+69/218*I,n=54 3770082523342374 r005 Re(z^2+c),c=-14/27+1/23*I,n=36 3770082528986321 m001 (Lehmer-Magata)/(BesselJ(1,1)-KhinchinLevy) 3770082535743842 a007 Real Root Of -35*x^4+508*x^3+963*x^2+739*x-442 3770082539722634 r005 Im(z^2+c),c=-27/122+16/25*I,n=34 3770082553475584 a008 Real Root of x^4+3*x^2-58*x-26 3770082553511100 s002 sum(A125124[n]/(2^n+1),n=1..infinity) 3770082555207316 r005 Re(z^2+c),c=-59/114+7/64*I,n=19 3770082562374877 b008 1/5+16/E^(3/2) 3770082564507292 m001 PrimesInBinary*Artin/exp(sqrt(2)) 3770082569071188 m001 (Zeta(1,-1)+ln(2+3^(1/2)))/(Otter+Paris) 3770082591276554 l006 ln(159/6898) 3770082598476643 r005 Re(z^2+c),c=-17/32+11/63*I,n=13 3770082611515318 r002 49th iterates of z^2 + 3770082611515318 r002 49th iterates of z^2 + 3770082627118337 r009 Re(z^3+c),c=-67/126+8/29*I,n=48 3770082657818892 a008 Real Root of x^4-x^3-14*x^2+15*x-6 3770082666921144 r005 Re(z^2+c),c=-63/122+2/41*I,n=15 3770082668393406 r005 Re(z^2+c),c=35/122+3/61*I,n=25 3770082673316043 r009 Im(z^3+c),c=-29/126+2/5*I,n=16 3770082673641465 a007 Real Root Of 40*x^4-543*x^3+572*x^2-504*x+137 3770082674123393 a007 Real Root Of 34*x^4-920*x^3+842*x^2-603*x-397 3770082674304235 h001 (2/5*exp(1)+1/9)/(5/12*exp(2)+1/10) 3770082679870217 m001 FeigenbaumAlpha*Khinchin^PrimesInBinary 3770082696889511 a007 Real Root Of 563*x^4-819*x^3+819*x^2+458*x+1 3770082709699535 m001 (Pi+ln(2))/(FellerTornier-Totient) 3770082717660027 r005 Im(z^2+c),c=-1/40+20/43*I,n=11 3770082723054105 m001 5^(1/2)+(2^(1/3))^Si(Pi) 3770082723054105 m001 sqrt(5)+(2^(1/3))^Si(Pi) 3770082742905266 p004 log(35111/24083) 3770082751072288 r002 20th iterates of z^2 + 3770082764394480 a003 cos(Pi*28/107)-cos(Pi*45/112) 3770082765615085 m005 (1/2*gamma-5/11)/(1/12*exp(1)-2/3) 3770082772898613 r002 49th iterates of z^2 + 3770082773577170 r005 Re(z^2+c),c=-15/31+18/55*I,n=39 3770082819054966 m001 (gamma+BesselK(0,1))/(Porter+Riemann3rdZero) 3770082824701438 h005 exp(cos(Pi*21/47)/cos(Pi*23/50)) 3770082827244384 a001 843/13*89^(20/51) 3770082831298324 m001 (MinimumGamma-QuadraticClass)/(Bloch-Kac) 3770082842945384 p001 sum((-1)^n/(506*n+315)/n/(32^n),n=1..infinity) 3770082845048648 r005 Im(z^2+c),c=5/38+24/53*I,n=8 3770082866938526 r005 Re(z^2+c),c=-5/36+37/42*I,n=45 3770082871775973 r009 Im(z^3+c),c=-10/27+39/59*I,n=58 3770082876608430 r009 Re(z^3+c),c=-45/94+9/34*I,n=25 3770082884226864 p001 sum((-1)^n/(292*n+265)/(512^n),n=0..infinity) 3770082894059764 a007 Real Root Of -843*x^4-187*x^3+482*x^2+622*x+173 3770082898145017 m001 (exp(1/Pi)+(1+3^(1/2))^(1/2))/(CareFree+Paris) 3770082940144092 m001 Pi/(3^(1/2)-exp(1/2)) 3770082940144092 m001 Pi/(exp(1/2)-sqrt(3)) 3770082955162977 m001 (Riemann2ndZero+ZetaP(4))/(Psi(2,1/3)-sin(1)) 3770082968119499 r009 Re(z^3+c),c=-35/122+37/40*I,n=3 3770082969386576 r002 33th iterates of z^2 + 3770082971401360 m008 (3/4*Pi^3+1/3)/(2/5*Pi+5) 3770082976464594 a003 cos(Pi*5/116)-cos(Pi*9/92) 3770082980089146 r005 Im(z^2+c),c=-9/14+1/118*I,n=40 3770082983138596 m005 (-8/3+1/3*5^(1/2))/(1/6*gamma+5) 3770082990226453 r005 Im(z^2+c),c=11/40+8/31*I,n=59 3770082995177847 a001 843/4181*55^(19/26) 3770083001454824 m001 (Pi-KhinchinLevy)/(PolyaRandomWalk3D-Thue) 3770083001889731 a008 Real Root of x^4-x^3+10*x^2-41*x-136 3770083004103805 m001 GAMMA(1/4)^2*ln(LandauRamanujan)/Zeta(1,2) 3770083005199086 r005 Im(z^2+c),c=13/102+9/23*I,n=16 3770083011253715 m005 (-13/20+1/4*5^(1/2))/(6/7*exp(1)+1/12) 3770083014627440 h001 (-4*exp(3)-7)/(-3*exp(2)-1) 3770083019602716 a007 Real Root Of -104*x^4+603*x^3-805*x^2+539*x-119 3770083032604506 h001 (-8*exp(1/2)+3)/(-7*exp(1)-8) 3770083045543032 h001 (4/9*exp(2)+6/11)/(1/12*exp(2)+2/5) 3770083055660859 m002 -1-6*Pi^4+Pi^6+ProductLog[Pi] 3770083056025574 a005 (1/sin(68/185*Pi))^144 3770083062436260 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*(ArtinRank2+Rabbit) 3770083072969072 r005 Re(z^2+c),c=-29/94+19/30*I,n=19 3770083078174275 l006 ln(1699/2477) 3770083078174275 p004 log(2477/1699) 3770083095233226 m001 Catalan*FeigenbaumDelta*QuadraticClass 3770083102493074 q001 1361/3610 3770083122934035 r005 Re(z^2+c),c=-31/66+25/64*I,n=56 3770083140277788 r005 Im(z^2+c),c=7/118+9/23*I,n=5 3770083152614736 r005 Im(z^2+c),c=11/40+8/31*I,n=55 3770083183828171 m001 (DuboisRaymond+ZetaQ(3))/(Psi(2,1/3)+Zeta(3)) 3770083186933162 r005 Im(z^2+c),c=-11/36+10/17*I,n=44 3770083188494520 r005 Im(z^2+c),c=-13/102+27/50*I,n=34 3770083194177623 r005 Re(z^2+c),c=-19/40+19/46*I,n=32 3770083194509554 a001 28657/199*199^(2/11) 3770083197963391 a007 Real Root Of -962*x^4+197*x^3-71*x^2+21*x+48 3770083207241796 a001 521/956722026041*20365011074^(21/22) 3770083207244518 a001 521/39088169*514229^(21/22) 3770083220527101 r002 2th iterates of z^2 + 3770083221383837 r009 Im(z^3+c),c=-17/42+16/49*I,n=39 3770083222897046 r009 Re(z^3+c),c=-49/94+5/12*I,n=43 3770083235246071 m005 (1/2*5^(1/2)-1)/(8/9*gamma-1/5) 3770083236054176 a007 Real Root Of 452*x^4-562*x^3-858*x^2-841*x+460 3770083249050727 m001 Chi(1)/(Zeta(3)+Riemann2ndZero) 3770083267292738 r005 Im(z^2+c),c=17/48+3/13*I,n=41 3770083280680007 m001 (1-ln(2)/ln(10))/(Si(Pi)+gamma(3)) 3770083283743930 m001 1/FeigenbaumB*Cahen^2*ln(log(2+sqrt(3)))^2 3770083285663602 r005 Im(z^2+c),c=-5/54+12/23*I,n=29 3770083306490614 a001 199/28657*13^(31/47) 3770083309427932 a007 Real Root Of 253*x^4+722*x^3-878*x^2-176*x-607 3770083315315186 a007 Real Root Of 334*x^4+883*x^3+443*x^2-487*x-206 3770083317687980 r002 10th iterates of z^2 + 3770083366196852 r009 Im(z^3+c),c=-27/98+22/57*I,n=20 3770083366418348 a007 Real Root Of -284*x^4-837*x^3+803*x^2-427*x-500 3770083371433486 a001 39603/1597*28657^(2/49) 3770083372740777 r005 Im(z^2+c),c=-75/106+13/61*I,n=9 3770083380579086 r002 3th iterates of z^2 + 3770083393016157 a007 Real Root Of 261*x^4+103*x^3+443*x^2+47*x-45 3770083393252898 a007 Real Root Of 250*x^4+126*x^3+604*x^2-424*x-244 3770083426974931 b008 2+E^(9/7)*Pi^2 3770083444905372 a001 377/199*521^(11/13) 3770083449315339 r005 Im(z^2+c),c=-17/30+3/44*I,n=34 3770083455173858 r005 Im(z^2+c),c=7/40+13/37*I,n=40 3770083457175072 m005 (1/3*gamma+1/3)/(233/220+3/20*5^(1/2)) 3770083457194714 r009 Re(z^3+c),c=-2/29+15/22*I,n=38 3770083461378287 r002 10th iterates of z^2 + 3770083462703089 r009 Im(z^3+c),c=-43/82+13/59*I,n=39 3770083489881584 a007 Real Root Of 245*x^4+688*x^3-872*x^2-63*x-472 3770083493954031 r005 Im(z^2+c),c=27/82+5/14*I,n=9 3770083554347460 r005 Im(z^2+c),c=-49/86+31/64*I,n=21 3770083554616762 m001 (Pi-ln(gamma))/(Artin-Bloch) 3770083561867033 p004 log(24337/16693) 3770083576325392 r005 Re(z^2+c),c=-16/31+19/47*I,n=22 3770083579805494 r002 7th iterates of z^2 + 3770083586431931 m001 (gamma(1)-gamma)/(-MasserGramainDelta+Paris) 3770083588698508 r005 Im(z^2+c),c=11/82+18/47*I,n=37 3770083594211370 m003 5+E^(1+Sqrt[5])+3*Sinh[1/2+Sqrt[5]/2] 3770083598176792 r005 Im(z^2+c),c=-17/98+37/56*I,n=8 3770083610021021 r005 Re(z^2+c),c=-55/106+1/42*I,n=27 3770083612732832 r005 Im(z^2+c),c=17/60+10/31*I,n=6 3770083646234764 h001 (4/5*exp(1)+5/12)/(11/12*exp(2)+1/10) 3770083663060831 a003 cos(Pi*5/93)-cos(Pi*7/24) 3770083666908530 m001 (gamma(2)-ArtinRank2)/(Bloch+OrthogonalArrays) 3770083681076752 r005 Im(z^2+c),c=-5/74+23/45*I,n=24 3770083681901654 r005 Re(z^2+c),c=-35/62+25/62*I,n=10 3770083689432580 r002 43th iterates of z^2 + 3770083701309909 r005 Im(z^2+c),c=9/106+23/55*I,n=26 3770083714812937 a007 Real Root Of 26*x^4+973*x^3-252*x^2+742*x-832 3770083732151335 m001 (GAMMA(11/12)-GAMMA(7/12))^Conway 3770083742514535 h001 (1/7*exp(2)+10/11)/(3/5*exp(2)+7/9) 3770083757529596 m001 (sin(1)+Zeta(1/2))/(GAMMA(13/24)+ZetaQ(4)) 3770083766345508 m005 (1/3*5^(1/2)+1/10)/(7/8*5^(1/2)+2/7) 3770083767762222 a007 Real Root Of 111*x^4+165*x^3-759*x^2+992*x+945 3770083774473268 l006 ln(5798/8453) 3770083782662667 g002 Psi(5/9)+Psi(1/5)-Psi(4/9)-Psi(4/5) 3770083782742192 m001 1/Trott/MertensB1/exp(sqrt(5)) 3770083789936686 m005 (-1/18+1/6*5^(1/2))/(1/11*Pi+5/9) 3770083793425759 a007 Real Root Of -105*x^4-192*x^3+897*x^2+698*x+806 3770083863667282 a007 Real Root Of 768*x^4-804*x^3-220*x^2-832*x-341 3770083885318914 r005 Im(z^2+c),c=-15/118+35/61*I,n=27 3770083907772653 m001 1/exp((2^(1/3)))^2/Porter^2*Zeta(7) 3770083928260822 b008 -5/8+Zeta[9] 3770083935933959 r005 Im(z^2+c),c=-77/86+2/61*I,n=3 3770083937739667 r009 Re(z^3+c),c=-7/102+40/61*I,n=23 3770083948503116 a001 281/10983760033*3^(6/17) 3770083955622458 m005 (1/6*Catalan+3/4)/(1/3*exp(1)-2/3) 3770083964366579 r009 Im(z^3+c),c=-3/13+25/26*I,n=58 3770084022016667 r005 Im(z^2+c),c=15/64+25/47*I,n=36 3770084035717422 r009 Im(z^3+c),c=-41/90+12/41*I,n=39 3770084037839020 m005 (1/2*Zeta(3)+5/9)/(6/7*Pi+3/8) 3770084041241281 m004 -125*Pi+Log[Sqrt[5]*Pi]+15*Tan[Sqrt[5]*Pi] 3770084054505449 r002 25th iterates of z^2 + 3770084057069986 r005 Re(z^2+c),c=-53/110+20/59*I,n=57 3770084063083156 l006 ln(4099/5976) 3770084070055009 r009 Im(z^3+c),c=-51/98+13/57*I,n=47 3770084074442256 r005 Im(z^2+c),c=13/56+19/63*I,n=41 3770084096984097 r009 Im(z^3+c),c=-25/86+21/55*I,n=9 3770084104466467 m001 ln(MinimumGamma)/DuboisRaymond*GAMMA(11/24) 3770084137980212 r004 Im(z^2+c),c=-27/46+5/23*I,z(0)=-1,n=4 3770084157577420 a001 521/165580141*6557470319842^(17/24) 3770084157928127 a001 521/46368*63245986^(17/24) 3770084161341059 a007 Real Root Of -806*x^4-407*x^3+706*x^2+620*x-296 3770084180621855 m001 (BesselI(0,1)+cos(Pi/12))^sqrt(1+sqrt(3)) 3770084201467343 r005 Re(z^2+c),c=-17/32+9/56*I,n=13 3770084228019221 m001 1/ln(FeigenbaumD)*Salem^2*GAMMA(13/24)^2 3770084240568049 r005 Im(z^2+c),c=-61/90+8/31*I,n=28 3770084254728315 m005 1/6*5^(1/2)/(4/5*2^(1/2)-1/7) 3770084258178770 m001 1/exp(Sierpinski)*Khintchine^2/(3^(1/3)) 3770084260663104 r005 Im(z^2+c),c=-1/56+24/47*I,n=7 3770084262368272 r005 Re(z^2+c),c=-39/110+27/46*I,n=25 3770084271246845 r005 Re(z^2+c),c=-35/46+2/59*I,n=46 3770084273987079 m001 (-ln(2)+ArtinRank2)/(LambertW(1)+sin(1/5*Pi)) 3770084276967650 l006 ln(86/3731) 3770084277328382 a007 Real Root Of 717*x^4-337*x^3+21*x^2-765*x+289 3770084277900643 m001 (Otter-Robbin)/(GAMMA(19/24)-Grothendieck) 3770084280182041 r009 Re(z^3+c),c=-17/122+40/61*I,n=2 3770084292667987 r002 18th iterates of z^2 + 3770084320562782 l006 ln(6499/9475) 3770084325518320 a007 Real Root Of 334*x^4-33*x^3+101*x^2-873*x-352 3770084384399878 r009 Im(z^3+c),c=-6/13+17/59*I,n=51 3770084395924249 a007 Real Root Of -829*x^4-550*x^3+346*x^2+761*x+225 3770084400748306 a001 199/75025*21^(34/39) 3770084403752539 r005 Re(z^2+c),c=-49/118+24/49*I,n=37 3770084405409151 r005 Re(z^2+c),c=-8/15+1/54*I,n=12 3770084410020115 h001 (5/12*exp(2)+5/7)/(1/3*exp(1)+1/10) 3770084424097547 r005 Re(z^2+c),c=-33/70+25/64*I,n=32 3770084428415375 r002 14th iterates of z^2 + 3770084428683523 a007 Real Root Of 195*x^4+691*x^3+16*x^2+604*x-317 3770084432391997 a001 24476/987*28657^(2/49) 3770084433003721 r005 Re(z^2+c),c=35/114+1/15*I,n=64 3770084463969163 r002 22th iterates of z^2 + 3770084475098747 r005 Re(z^2+c),c=3/64+37/60*I,n=36 3770084483568672 m001 (Trott2nd-Weierstrass)/(Salem+Trott) 3770084515901403 r002 11th iterates of z^2 + 3770084530470728 r005 Re(z^2+c),c=-11/14+33/247*I,n=58 3770084541129002 m001 (Cahen+DuboisRaymond)/(Zeta(1,2)-GAMMA(17/24)) 3770084566232957 r009 Im(z^3+c),c=-49/110+14/57*I,n=2 3770084574911440 m001 Pi+2^(1/2)*BesselK(0,1)*GAMMA(11/12) 3770084581404274 m001 1/Ei(1)*ln(FeigenbaumDelta)*arctan(1/2) 3770084582862346 r005 Im(z^2+c),c=11/40+8/31*I,n=42 3770084593943137 m004 -120*Pi-5*Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 3770084594217564 m004 -120*Pi-5*Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3770084595086659 r009 Re(z^3+c),c=-13/27+4/15*I,n=59 3770084596127573 v002 sum(1/(5^n*(21*n^2-20*n+59)),n=1..infinity) 3770084600217122 m001 gamma^HardHexagonsEntropy-sin(1) 3770084602355263 m005 (1/2*Catalan-11/12)/(3/5*5^(1/2)-1/8) 3770084612268918 a001 2/9227465*21^(2/11) 3770084618261862 a001 15127/144*317811^(13/46) 3770084619616090 m001 1/ln(GAMMA(7/12))^2*Salem/sqrt(3) 3770084620132856 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^Thue/ArtinRank2 3770084623565496 p004 log(30469/20899) 3770084624091764 r005 Re(z^2+c),c=-41/78+1/43*I,n=14 3770084631857212 a007 Real Root Of -501*x^4+687*x^3-692*x^2-457*x-27 3770084639991624 m001 Zeta(1,2)*GaussKuzminWirsing+Robbin 3770084645032572 m001 Tribonacci^Zeta(3)*GAMMA(13/24)^Zeta(3) 3770084647918706 m001 1/Lehmer*ln(Conway)/KhintchineLevy 3770084655748078 r005 Im(z^2+c),c=-5/42+33/43*I,n=6 3770084658252341 m001 Psi(2,1/3)^(FeigenbaumD/Chi(1)) 3770084660247285 r002 19th iterates of z^2 + 3770084663547228 a003 sin(Pi*45/119)-sin(Pi*47/113) 3770084669300384 a001 521/987*8^(52/55) 3770084672152952 r005 Re(z^2+c),c=-51/106+13/37*I,n=29 3770084673663390 a003 cos(Pi*26/69)*sin(Pi*49/101) 3770084676528249 r002 3th iterates of z^2 + 3770084682971593 r005 Re(z^2+c),c=-13/27+10/29*I,n=38 3770084689795644 r005 Im(z^2+c),c=-41/52+1/51*I,n=17 3770084707455809 m001 exp(Rabbit)*FibonacciFactorial/Robbin 3770084708487450 a007 Real Root Of 687*x^4-667*x^3-445*x^2-251*x-81 3770084716083368 r009 Im(z^3+c),c=-17/42+16/49*I,n=43 3770084723911260 r005 Im(z^2+c),c=9/26+9/52*I,n=46 3770084747540423 r009 Im(z^3+c),c=-25/102+12/31*I,n=4 3770084748942432 r009 Im(z^3+c),c=-17/48+37/58*I,n=28 3770084754854304 r009 Re(z^3+c),c=-7/122+23/47*I,n=13 3770084755888795 r005 Im(z^2+c),c=-3/56+17/35*I,n=14 3770084760316510 l006 ln(2400/3499) 3770084761874501 r005 Im(z^2+c),c=-9/34+37/63*I,n=62 3770084762279030 r005 Im(z^2+c),c=1/48+17/37*I,n=38 3770084776941818 a001 3/1836311903*144^(12/19) 3770084796501157 a001 7/7778742049*46368^(2/15) 3770084796547918 a001 7/53316291173*86267571272^(2/15) 3770084796547918 a001 7/20365011074*63245986^(2/15) 3770084801809314 m001 (-MinimumGamma+Sarnak)/(2^(1/2)+Landau) 3770084813577189 r009 Im(z^3+c),c=-51/98+7/27*I,n=38 3770084820384733 r002 16th iterates of z^2 + 3770084826708591 r005 Re(z^2+c),c=5/21+13/30*I,n=35 3770084836158058 m005 (1/2*Zeta(3)-1/8)/(8/11*exp(1)-5/7) 3770084840669122 r009 Im(z^3+c),c=-17/42+16/49*I,n=42 3770084851549505 a007 Real Root Of 135*x^4-591*x^3-816*x^2-162*x+206 3770084860384707 a007 Real Root Of 339*x^4-241*x^3+814*x^2-455*x-307 3770084870773817 a007 Real Root Of 625*x^4+357*x^3+994*x^2-608*x-364 3770084881145710 r002 21th iterates of z^2 + 3770084881989269 p004 log(19219/443) 3770084886498861 r009 Re(z^3+c),c=-1/126+5/7*I,n=56 3770084888661216 r005 Im(z^2+c),c=1/110+7/15*I,n=46 3770084901399474 r005 Re(z^2+c),c=-49/90+4/47*I,n=8 3770084903570289 r009 Re(z^3+c),c=-37/94+10/63*I,n=9 3770084907230546 m005 (1/2*exp(1)+10/11)/(5/11*5^(1/2)+5) 3770084907551655 r008 a(0)=4,K{-n^6,-24-46*n^3+30*n^2+44*n} 3770084919622947 a008 Real Root of x^4-45*x^2-54*x+234 3770084939698331 r009 Im(z^3+c),c=-27/98+22/57*I,n=21 3770084945950157 r009 Im(z^3+c),c=-17/42+16/49*I,n=46 3770084949940862 a005 (1/cos(1/66*Pi))^1171 3770084951167484 r005 Im(z^2+c),c=6/17+32/57*I,n=4 3770084960229878 m001 Sierpinski^MertensB2+ln(3) 3770084980102729 r002 9th iterates of z^2 + 3770084985790413 r009 Re(z^3+c),c=-15/32+12/49*I,n=17 3770084986823098 m001 1/ln(Pi)^2*Tribonacci^2*Zeta(1/2) 3770085006771417 a001 1/72*832040^(29/50) 3770085013796229 r009 Im(z^3+c),c=-6/13+17/59*I,n=46 3770085028769701 m005 (1/2*5^(1/2)+6/7)/(-7/72+5/18*5^(1/2)) 3770085028948025 a007 Real Root Of -332*x^4+264*x^3-786*x^2+773*x+424 3770085033930273 m001 1/3/((2/3)^GaussKuzminWirsing) 3770085049584721 m001 (-Kac+Totient)/(BesselJ(0,1)+GAMMA(5/6)) 3770085057647948 r009 Im(z^3+c),c=-17/42+16/49*I,n=40 3770085066162570 r004 Re(z^2+c),c=-35/46-10/23*I,z(0)=-1,n=3 3770085068017400 r009 Im(z^3+c),c=-17/42+16/49*I,n=50 3770085068494279 s002 sum(A069946[n]/(exp(2*pi*n)+1),n=1..infinity) 3770085080917076 m001 1/ln(BesselK(0,1))*BesselJ(0,1)/GAMMA(1/24) 3770085081762326 r002 10th iterates of z^2 + 3770085083061950 r009 Im(z^3+c),c=-17/42+16/49*I,n=49 3770085085584306 r002 15th iterates of z^2 + 3770085089021547 r009 Im(z^3+c),c=-17/42+16/49*I,n=53 3770085091225520 r009 Im(z^3+c),c=-17/42+16/49*I,n=47 3770085098941691 r009 Im(z^3+c),c=-17/42+16/49*I,n=57 3770085100419210 r009 Im(z^3+c),c=-17/42+16/49*I,n=54 3770085100588899 r009 Im(z^3+c),c=-17/42+16/49*I,n=56 3770085100843210 r009 Im(z^3+c),c=-17/42+16/49*I,n=60 3770085101645154 r009 Im(z^3+c),c=-17/42+16/49*I,n=64 3770085101728804 r009 Im(z^3+c),c=-17/42+16/49*I,n=61 3770085101815510 r009 Im(z^3+c),c=-17/42+16/49*I,n=63 3770085102312302 b008 2/3+Sqrt[3]*Log[6] 3770085102477715 r009 Im(z^3+c),c=-17/42+16/49*I,n=62 3770085102900850 r009 Im(z^3+c),c=-17/42+16/49*I,n=59 3770085103441448 r009 Im(z^3+c),c=-17/42+16/49*I,n=58 3770085108704529 r009 Im(z^3+c),c=-17/42+16/49*I,n=55 3770085112760951 r009 Im(z^3+c),c=-17/42+16/49*I,n=52 3770085121390243 r009 Im(z^3+c),c=-17/42+16/49*I,n=51 3770085122037731 p004 log(11519/7901) 3770085123893157 a007 Real Root Of 72*x^4+108*x^3-721*x^2-311*x+317 3770085130554331 h001 (1/5*exp(1)+7/11)/(6/7*exp(1)+4/5) 3770085131083069 r009 Im(z^3+c),c=-49/110+3/10*I,n=37 3770085132266837 r005 Re(z^2+c),c=-45/98+17/48*I,n=16 3770085134730619 a007 Real Root Of 306*x^4-200*x^3+674*x^2-648*x-357 3770085138509251 p003 LerchPhi(1/10,4,87/68) 3770085138954122 m001 Psi(1,1/3)^Sarnak/Riemann1stZero 3770085141806448 s002 sum(A176684[n]/(exp(2*pi*n)+1),n=1..infinity) 3770085143753233 a007 Real Root Of -54*x^4-229*x^3-308*x^2-640*x+603 3770085154506717 p003 LerchPhi(1/8,4,375/164) 3770085162723326 m002 -4+(Pi^6*Coth[Pi])/E^Pi 3770085182062637 r009 Im(z^3+c),c=-17/42+16/49*I,n=48 3770085184214747 m001 1/Zeta(1,2)^2*exp(GAMMA(5/6))/cos(Pi/12)^2 3770085192745422 m001 PrimesInBinary-arctan(1/2)*StolarskyHarborth 3770085202577759 r009 Im(z^3+c),c=-9/106+23/54*I,n=6 3770085206356098 r005 Re(z^2+c),c=-59/114+26/57*I,n=56 3770085215372132 s001 sum(exp(-2*Pi)^n*A268108[n],n=1..infinity) 3770085218603543 r009 Im(z^3+c),c=-17/42+16/49*I,n=45 3770085226984214 r009 Re(z^3+c),c=-63/122+5/27*I,n=18 3770085231966299 h001 (2/11*exp(2)+6/11)/(7/12*exp(2)+7/10) 3770085232583115 a007 Real Root Of -440*x^4+917*x^3+131*x^2+357*x+174 3770085232672727 m005 (1/2*gamma+9/10)/(5^(1/2)+11/12) 3770085233660703 r009 Re(z^3+c),c=-15/31+15/59*I,n=20 3770085237237059 m005 (1/2*2^(1/2)+5/12)/(3/7*gamma-6/11) 3770085238851258 r002 30th iterates of z^2 + 3770085247852760 a007 Real Root Of 151*x^3+354*x^2-731*x+304 3770085251698788 a003 cos(Pi*2/113)-sin(Pi*39/95) 3770085258500208 m001 (exp(1/exp(1))+GAMMA(13/24))/(Cahen+ZetaP(3)) 3770085270587302 r005 Im(z^2+c),c=-71/126+2/29*I,n=26 3770085277121298 b008 1/6+51*E^2 3770085279013055 a001 4/317811*34^(14/45) 3770085279851020 l006 ln(5501/8020) 3770085288181280 r009 Im(z^3+c),c=-43/82+23/63*I,n=15 3770085306892807 m001 (MasserGramain+ZetaQ(3))/(ln(Pi)+Lehmer) 3770085314040477 r005 Re(z^2+c),c=-19/34+76/117*I,n=7 3770085321196018 m005 (1/2*gamma+7/11)/(7/9*5^(1/2)+5/7) 3770085326390217 a007 Real Root Of -192*x^4-743*x^3+20*x^2+304*x-164 3770085331250684 m001 MadelungNaCl^2*exp(Champernowne)^2/Zeta(5) 3770085345226248 s002 sum(A171870[n]/(n^3*2^n-1),n=1..infinity) 3770085346237177 m001 Shi(1)*gamma(3)/Stephens 3770085346837371 r009 Im(z^3+c),c=-17/42+16/49*I,n=44 3770085352099967 m001 Rabbit^(Pi*csc(7/24*Pi)/GAMMA(17/24))*Trott 3770085354006369 r005 Re(z^2+c),c=-21/50+18/61*I,n=6 3770085380881205 a007 Real Root Of -136*x^4-365*x^3+590*x^2+167*x+160 3770085398889657 a007 Real Root Of 232*x^4+630*x^3-734*x^2+780*x+263 3770085413230611 r005 Im(z^2+c),c=11/58+19/56*I,n=38 3770085434847704 m001 3^(1/2)/cos(1/12*Pi)/PlouffeB 3770085448883506 m001 LandauRamanujan*Artin/ln(log(2+sqrt(3)))^2 3770085449142123 r009 Im(z^3+c),c=-19/86+49/51*I,n=28 3770085449719060 m001 Riemann2ndZero^2*Rabbit*ln(cos(Pi/12))^2 3770085451718017 a007 Real Root Of 317*x^4-62*x^3-427*x^2-854*x-271 3770085459919088 r005 Re(z^2+c),c=-63/122+5/49*I,n=23 3770085478506716 a007 Real Root Of 783*x^4-851*x^3-622*x^2-278*x+223 3770085485921664 a007 Real Root Of -111*x^4-500*x^3-448*x^2-786*x-964 3770085496785874 a007 Real Root Of -22*x^4-805*x^3+937*x^2+605*x-487 3770085503590230 a001 10946/7*47^(8/35) 3770085512782914 r005 Re(z^2+c),c=-13/28+25/61*I,n=62 3770085513414962 a007 Real Root Of -851*x^4-44*x^3-975*x^2+166*x+216 3770085522029383 m001 ZetaR(2)*(KhinchinHarmonic+Kolakoski) 3770085524478667 a007 Real Root Of 170*x^4+657*x^3-237*x^2-937*x+698 3770085531372440 p004 log(27809/641) 3770085541825792 a007 Real Root Of -95*x^4+669*x^3-457*x^2+75*x+131 3770085549849990 a001 9349/233*610^(17/24) 3770085554533676 r009 Im(z^3+c),c=-17/42+16/49*I,n=33 3770085559568020 m001 (BesselI(1,1)+Backhouse)/(CareFree-Rabbit) 3770085559738262 r005 Re(z^2+c),c=-33/70+16/49*I,n=18 3770085562424115 r005 Im(z^2+c),c=19/58+8/35*I,n=19 3770085568820464 a007 Real Root Of -967*x^4-608*x^3+314*x^2+553*x-201 3770085572691789 a001 843/121393*8^(48/59) 3770085583240060 r005 Im(z^2+c),c=-17/14+24/179*I,n=61 3770085591962708 r005 Im(z^2+c),c=4/27+19/51*I,n=28 3770085596894005 r005 Re(z^2+c),c=-87/94+26/57*I,n=4 3770085612961321 m001 (-OneNinth+TwinPrimes)/(Catalan-ln(gamma)) 3770085613827376 a007 Real Root Of x^4-164*x^3-592*x^2+75*x-293 3770085631496013 m001 GAMMA(11/12)^Pi+Sierpinski 3770085664021526 m001 exp(FeigenbaumB)^2/Conway/Zeta(5)^2 3770085681941562 l006 ln(3101/4521) 3770085689773883 r002 35th iterates of z^2 + 3770085692652637 m005 (-29/44+1/4*5^(1/2))/(5/9*Pi+10/11) 3770085695983367 m001 Zeta(1,-1)^BesselK(1,1)+GaussKuzminWirsing 3770085712473669 r005 Im(z^2+c),c=7/78+17/41*I,n=46 3770085721915365 a007 Real Root Of -733*x^4+875*x^3+349*x^2+717*x-352 3770085725748537 l006 ln(185/8026) 3770085732754201 r005 Im(z^2+c),c=11/54+18/55*I,n=34 3770085740444396 m001 FeigenbaumC^2*FeigenbaumAlpha*ln(cos(Pi/5))^2 3770085759654202 r005 Im(z^2+c),c=1/110+7/15*I,n=53 3770085777779773 h001 (-exp(1)+12)/(-12*exp(1)+8) 3770085777779773 m005 (1/2*exp(1)-6)/(6*exp(1)-4) 3770085782239631 r002 24th iterates of z^2 + 3770085796872009 h001 (7/8*exp(1)+2/9)/(11/12*exp(2)+1/8) 3770085808545318 m001 (GAMMA(7/12)-Lehmer)/(GAMMA(2/3)+GAMMA(5/6)) 3770085829048585 s002 sum(A003032[n]/(exp(2*pi*n)-1),n=1..infinity) 3770085829048587 s002 sum(A193944[n]/(exp(2*pi*n)-1),n=1..infinity) 3770085832219416 r005 Im(z^2+c),c=-9/94+10/19*I,n=44 3770085836909871 a001 87843/233 3770085843516416 a007 Real Root Of -425*x^4-678*x^3+90*x^2+890*x+295 3770085843567814 m004 -120*Pi-(25*Pi)/(4*E^(Sqrt[5]*Pi)) 3770085898273400 a007 Real Root Of 251*x^4+659*x^3-968*x^2+656*x+837 3770085898660730 a007 Real Root Of 239*x^4+723*x^3-850*x^2-433*x+908 3770085905130599 a007 Real Root Of -94*x^4+884*x^3+742*x^2+841*x-468 3770085912886218 a007 Real Root Of 280*x^4+786*x^3-795*x^2+629*x-777 3770085913301551 a007 Real Root Of -524*x^4+907*x^3+200*x^2+28*x-77 3770085938159857 r002 56th iterates of z^2 + 3770085941542174 m001 exp(GAMMA(1/6))^2*Conway^2/GAMMA(7/24) 3770085966078326 r005 Im(z^2+c),c=3/26+10/19*I,n=14 3770085969967212 m001 1/ln(LambertW(1))^2/MinimumGamma*sqrt(Pi) 3770085976480543 m001 1/exp(TreeGrowth2nd)*GolombDickman*Zeta(1,2) 3770085980367616 r002 44th iterates of z^2 + 3770085987653955 m005 (1/2*exp(1)+11/12)/(11/12*Catalan-9/10) 3770085997945342 m001 1/Si(Pi)^2*exp(GaussKuzminWirsing)^2*CareFree 3770085998984501 s002 sum(A097468[n]/((exp(n)+1)/n),n=1..infinity) 3770086002367461 l006 ln(6903/10064) 3770086006471372 b008 2/3+Pi*Log[Khinchin] 3770086022568719 r002 23th iterates of z^2 + 3770086026112973 r002 33th iterates of z^2 + 3770086034207205 r005 Re(z^2+c),c=-29/82+18/35*I,n=20 3770086038658827 s001 sum(exp(-Pi/4)^n*A236737[n],n=1..infinity) 3770086043081427 r009 Im(z^3+c),c=-17/42+16/49*I,n=41 3770086043354271 a007 Real Root Of 335*x^4-733*x^3+865*x^2+557*x+41 3770086045408041 m001 exp(gamma)/(GAMMA(1/4)+ln(3)) 3770086047269117 m001 sin(Pi/12)*RenyiParking^2*ln(sinh(1))^2 3770086059819366 m001 sin(1)/((3^(1/2))^MinimumGamma) 3770086084178684 m008 (2/3*Pi^2-3/4)/(5*Pi^3-2/5) 3770086090511164 r002 3th iterates of z^2 + 3770086097108237 a007 Real Root Of -216*x^4-585*x^3+821*x^2-278*x-428 3770086099022381 m006 (5*exp(2*Pi)-1/5)/(1/3*Pi^2-4) 3770086109814492 m003 1/15+(9*Sqrt[5])/64-ProductLog[1/2+Sqrt[5]/2] 3770086116228546 r005 Re(z^2+c),c=-55/106+1/34*I,n=32 3770086117029139 r005 Im(z^2+c),c=13/58+32/61*I,n=24 3770086117046208 m001 2*Pi/GAMMA(5/6)-arctan(1/2)-MertensB3 3770086118247342 m001 KhinchinLevy/(FeigenbaumC^Ei(1)) 3770086119982677 a007 Real Root Of 48*x^4-910*x^3-902*x^2-809*x+481 3770086130987229 a001 843/5*832040^(36/49) 3770086144820397 m001 1/GAMMA(7/12)/ln(MertensB1)^2*Zeta(5) 3770086145759772 a007 Real Root Of -465*x^4+739*x^3-119*x^2+979*x+435 3770086146192446 m001 ln(2)/exp(Pi)/Kolakoski 3770086168008544 a007 Real Root Of -569*x^4+233*x^3+420*x^2+778*x-354 3770086171671232 r002 23i'th iterates of 2*x/(1-x^2) of 3770086186179748 a001 54018521/21*144^(1/13) 3770086188339176 r005 Im(z^2+c),c=-11/86+29/54*I,n=8 3770086192030212 m008 (3/5*Pi^4-3/4)/(5*Pi^5+1/4) 3770086233882344 r005 Re(z^2+c),c=-31/66+18/49*I,n=20 3770086236386565 m001 (-CopelandErdos+Porter)/(2^(1/2)+Si(Pi)) 3770086236494172 m001 LambertW(1)/Rabbit/ln(cos(Pi/5)) 3770086237645546 a003 cos(Pi*3/35)-sin(Pi*31/74) 3770086245788563 a003 sin(Pi*5/94)+sin(Pi*5/74) 3770086263714302 l006 ln(3802/5543) 3770086267870124 a007 Real Root Of 820*x^4+879*x^3-988*x^2-990*x+450 3770086276430006 r009 Im(z^3+c),c=-17/62+17/44*I,n=11 3770086289652422 m001 (Bloch-Mills)/(QuadraticClass-TwinPrimes) 3770086290855575 r009 Im(z^3+c),c=-27/98+22/57*I,n=23 3770086291025175 m001 GAMMA(23/24)^2/Catalan^2/exp(Zeta(3)) 3770086303044331 m001 (Landau+Trott2nd)/(sin(1/12*Pi)-Pi^(1/2)) 3770086320508781 a007 Real Root Of 168*x^4+665*x^3+146*x^2-63*x-618 3770086321390242 m001 Grothendieck*(cos(1/5*Pi)+Mills) 3770086333504294 r005 Re(z^2+c),c=-31/60+3/38*I,n=24 3770086337871964 r009 Im(z^3+c),c=-17/42+16/49*I,n=38 3770086339067473 a007 Real Root Of -255*x^4-992*x^3-47*x^2+508*x+942 3770086366843806 h001 (1/11*exp(1)+7/10)/(2/3*exp(1)+7/10) 3770086383362913 r009 Re(z^3+c),c=-35/78+7/25*I,n=6 3770086392587289 r005 Im(z^2+c),c=19/110+6/17*I,n=24 3770086395860279 r009 Re(z^3+c),c=-23/56+26/43*I,n=28 3770086403770206 s001 sum(exp(-2*Pi)^n*A143147[n],n=1..infinity) 3770086405267607 r005 Im(z^2+c),c=-9/70+19/35*I,n=43 3770086406128929 m005 (1/2*Catalan+5/7)/(1/3*exp(1)-7/8) 3770086406221425 a007 Real Root Of -252*x^4-917*x^3+347*x^2+968*x+489 3770086435253064 r005 Im(z^2+c),c=23/54+26/63*I,n=6 3770086472942026 a007 Real Root Of -802*x^4+363*x^3+791*x^2+969*x-481 3770086512172692 r005 Re(z^2+c),c=-67/126+41/64*I,n=13 3770086520333094 m001 (LaplaceLimit+ZetaP(2))/(3^(1/2)+GAMMA(3/4)) 3770086526576019 q001 305/809 3770086531204842 m001 Bloch/(Zeta(1/2)^Lehmer) 3770086542607493 b008 Cos[E*(1/7+EulerGamma)] 3770086548638840 m001 (Si(Pi)-gamma)/(-ln(2^(1/2)+1)+Landau) 3770086557614875 r009 Im(z^3+c),c=-1/11+23/54*I,n=10 3770086561168499 a001 55/47*18^(17/42) 3770086561846685 r005 Im(z^2+c),c=-7/118+9/20*I,n=5 3770086591431589 r005 Im(z^2+c),c=17/114+13/35*I,n=23 3770086591482961 s002 sum(A228288[n]/(exp(2*pi*n)-1),n=1..infinity) 3770086594692625 m001 BesselK(1,1)/CopelandErdos^2/exp(GAMMA(11/12)) 3770086605202713 m001 MertensB3^HardyLittlewoodC3*Pi 3770086606716396 m005 (1/2*Pi+5/11)/(2*5^(1/2)+9/10) 3770086607761551 r005 Im(z^2+c),c=9/28+17/42*I,n=49 3770086610869180 a004 Fibonacci(11)*Lucas(13)/(1/2+sqrt(5)/2)^10 3770086617851732 b008 29*Pi*Zeta[Glaisher] 3770086627710863 r005 Im(z^2+c),c=-29/54+16/35*I,n=27 3770086660963557 r005 Re(z^2+c),c=-16/31+5/52*I,n=37 3770086664353249 l006 ln(4503/6565) 3770086666263106 m001 (Cahen+2/3)/(Pi+1/3) 3770086670033234 m005 (1/2*Pi-9/11)/(3/8*Pi+9/11) 3770086671103186 s001 sum(exp(-3*Pi)^n*A266163[n],n=1..infinity) 3770086682951887 r009 Im(z^3+c),c=-27/98+22/57*I,n=14 3770086689861299 s002 sum(A041176[n]/((3*n+1)!),n=1..infinity) 3770086691002550 s002 sum(A119072[n]/((3*n+1)!),n=1..infinity) 3770086704811054 m005 (1/2*gamma-2/9)/(5/6*Pi-6/7) 3770086719365706 r002 32th iterates of z^2 + 3770086731099683 m001 (sin(1/5*Pi)+arctan(1/3))/(Landau-Otter) 3770086736760817 m001 GAMMA(17/24)^(Cahen/Zeta(1,-1)) 3770086746975484 m001 ln(Lehmer)/Cahen*arctan(1/2) 3770086749027298 a003 sin(Pi*16/97)*sin(Pi*19/69) 3770086753945049 m001 (Ei(1,1)-exp(Pi))/(-Porter+Thue) 3770086764305999 r005 Im(z^2+c),c=1/25+30/49*I,n=17 3770086767995460 a007 Real Root Of -86*x^4+453*x^3-680*x^2+804*x-229 3770086770704188 a007 Real Root Of 604*x^4+796*x^3-459*x^2-556*x+220 3770086802269245 r005 Im(z^2+c),c=-3/118+33/62*I,n=16 3770086806692101 r005 Im(z^2+c),c=-7/60+29/56*I,n=16 3770086832590152 r005 Im(z^2+c),c=-83/118+7/30*I,n=7 3770086841623553 s002 sum(A010173[n]/(n*2^n+1),n=1..infinity) 3770086848300140 a005 (1/sin(54/137*Pi))^1209 3770086848609282 m001 (3^(1/2)-exp(1/Pi))/(-GaussAGM+Grothendieck) 3770086873239568 s002 sum(A010477[n]/(n^2*10^n+1),n=1..infinity) 3770086897305371 r009 Re(z^3+c),c=-7/122+31/63*I,n=11 3770086903777174 r009 Re(z^3+c),c=-12/23+7/25*I,n=47 3770086905388413 r002 42i'th iterates of 2*x/(1-x^2) of 3770086937020508 s002 sum(A207665[n]/(n^2*exp(n)+1),n=1..infinity) 3770086942312799 m001 (exp(Pi)-ln(5))/(-LandauRamanujan2nd+Trott) 3770086957056789 l006 ln(5204/7587) 3770086957712758 m008 (5/6*Pi^4+2/3)/(1/2*Pi+3/5) 3770086959890955 r005 Re(z^2+c),c=-57/86+10/63*I,n=15 3770086970321621 r009 Im(z^3+c),c=-27/98+22/57*I,n=24 3770086983908635 m001 (Conway-ZetaQ(4))/(BesselI(0,2)+GAMMA(19/24)) 3770086984283765 l006 ln(99/4295) 3770086992908258 a007 Real Root Of -216*x^4-511*x^3+836*x^2-960*x+753 3770086993595050 r009 Im(z^3+c),c=-27/98+22/57*I,n=26 3770086998740384 m002 2+(Pi^5*Log[Pi]*Sinh[Pi])/ProductLog[Pi] 3770087004105745 r005 Im(z^2+c),c=-35/66+1/15*I,n=57 3770087008426225 a007 Real Root Of 126*x^4+656*x^3+963*x^2-986*x-476 3770087021327922 m003 16*Cosh[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2]/5 3770087030814350 m001 (Porter+StronglyCareFree)/(Pi+FransenRobinson) 3770087032855610 r005 Re(z^2+c),c=4/11+10/29*I,n=16 3770087034421325 g001 GAMMA(1/4,69/95) 3770087043560044 m001 exp(1/Pi)^FeigenbaumDelta/exp(1/Pi)^(1/2) 3770087072888399 m001 ErdosBorwein^(Si(Pi)/Robbin) 3770087076481533 b008 1/(3*Cos[1]^(1/5)) 3770087082426300 s001 sum(exp(-2*Pi)^n*A218778[n],n=1..infinity) 3770087085420743 p003 LerchPhi(1/3,2,197/112) 3770087107485653 a001 47*(1/2*5^(1/2)+1/2)^12*18^(6/19) 3770087118356546 p003 LerchPhi(1/512,2,12/233) 3770087125737259 a003 cos(Pi*9/107)/cos(Pi*38/91) 3770087129731436 r009 Re(z^3+c),c=-1/50+40/41*I,n=10 3770087134866070 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*Backhouse/MertensB2 3770087138297033 r009 Im(z^3+c),c=-27/98+22/57*I,n=29 3770087140908478 a007 Real Root Of -500*x^4+440*x^3-938*x^2+870*x+495 3770087144904985 r005 Re(z^2+c),c=-59/114+4/57*I,n=48 3770087148775783 r009 Re(z^3+c),c=-29/70+3/16*I,n=12 3770087165464919 r009 Im(z^3+c),c=-27/98+22/57*I,n=32 3770087166296096 r009 Im(z^3+c),c=-27/98+22/57*I,n=27 3770087170232062 r009 Im(z^3+c),c=-27/98+22/57*I,n=35 3770087171022093 r009 Im(z^3+c),c=-27/98+22/57*I,n=38 3770087171146099 r009 Im(z^3+c),c=-27/98+22/57*I,n=41 3770087171164471 r009 Im(z^3+c),c=-27/98+22/57*I,n=44 3770087171166283 r009 Im(z^3+c),c=-27/98+22/57*I,n=43 3770087171166929 r009 Im(z^3+c),c=-27/98+22/57*I,n=46 3770087171167012 r009 Im(z^3+c),c=-27/98+22/57*I,n=47 3770087171167257 r009 Im(z^3+c),c=-27/98+22/57*I,n=49 3770087171167331 r009 Im(z^3+c),c=-27/98+22/57*I,n=50 3770087171167344 r009 Im(z^3+c),c=-27/98+22/57*I,n=52 3770087171167362 r009 Im(z^3+c),c=-27/98+22/57*I,n=55 3770087171167365 r009 Im(z^3+c),c=-27/98+22/57*I,n=53 3770087171167366 r009 Im(z^3+c),c=-27/98+22/57*I,n=58 3770087171167367 r009 Im(z^3+c),c=-27/98+22/57*I,n=61 3770087171167367 r009 Im(z^3+c),c=-27/98+22/57*I,n=64 3770087171167367 r009 Im(z^3+c),c=-27/98+22/57*I,n=63 3770087171167367 r009 Im(z^3+c),c=-27/98+22/57*I,n=62 3770087171167367 r009 Im(z^3+c),c=-27/98+22/57*I,n=60 3770087171167367 r009 Im(z^3+c),c=-27/98+22/57*I,n=59 3770087171167367 r009 Im(z^3+c),c=-27/98+22/57*I,n=56 3770087171167368 r009 Im(z^3+c),c=-27/98+22/57*I,n=57 3770087171167375 r009 Im(z^3+c),c=-27/98+22/57*I,n=54 3770087171167422 r009 Im(z^3+c),c=-27/98+22/57*I,n=51 3770087171167716 r009 Im(z^3+c),c=-27/98+22/57*I,n=48 3770087171169472 r009 Im(z^3+c),c=-27/98+22/57*I,n=45 3770087171171061 r009 Im(z^3+c),c=-27/98+22/57*I,n=40 3770087171179373 r009 Im(z^3+c),c=-27/98+22/57*I,n=42 3770087171231358 r009 Im(z^3+c),c=-27/98+22/57*I,n=39 3770087171253301 r009 Im(z^3+c),c=-27/98+22/57*I,n=37 3770087171478470 r009 Im(z^3+c),c=-27/98+22/57*I,n=36 3770087172060568 r009 Im(z^3+c),c=-27/98+22/57*I,n=34 3770087172464721 r009 Im(z^3+c),c=-27/98+22/57*I,n=33 3770087174885047 r009 Im(z^3+c),c=-27/98+22/57*I,n=30 3770087177201683 r009 Re(z^3+c),c=-1/50+40/41*I,n=12 3770087178632732 r009 Im(z^3+c),c=-27/98+22/57*I,n=31 3770087179014930 r009 Re(z^3+c),c=-1/50+40/41*I,n=20 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=22 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=30 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=32 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=38 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=40 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=42 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=48 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=50 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=52 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=54 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=56 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=58 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=46 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=44 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=36 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=34 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=28 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=26 3770087179014932 r009 Re(z^3+c),c=-1/50+40/41*I,n=24 3770087179014952 r009 Re(z^3+c),c=-1/50+40/41*I,n=18 3770087179017095 r009 Re(z^3+c),c=-1/50+40/41*I,n=16 3770087179033145 r009 Re(z^3+c),c=-1/50+40/41*I,n=14 3770087180264919 l006 ln(5905/8609) 3770087182614015 m005 (1/3*5^(1/2)-1/7)/(1/3*Zeta(3)-5/12) 3770087191506927 a007 Real Root Of 859*x^4-295*x^3-839*x^2-831*x+431 3770087200622599 r009 Re(z^3+c),c=-14/27+9/53*I,n=34 3770087203139193 r005 Im(z^2+c),c=1/66+25/54*I,n=43 3770087219955956 r005 Im(z^2+c),c=-7/12+2/29*I,n=45 3770087220981835 a001 41*365435296162^(1/12) 3770087226870406 r009 Im(z^3+c),c=-27/98+22/57*I,n=28 3770087238802582 r002 26th iterates of z^2 + 3770087240482341 a007 Real Root Of 506*x^4+162*x^3+656*x^2-295*x-206 3770087248994807 m005 (1/2*5^(1/2)+7/8)/(2/3*Zeta(3)-3/11) 3770087249461000 r005 Re(z^2+c),c=-7/10+32/157*I,n=47 3770087256353667 r005 Im(z^2+c),c=-65/122+5/11*I,n=10 3770087269251317 r005 Re(z^2+c),c=-59/114+4/57*I,n=46 3770087274397437 r005 Re(z^2+c),c=-83/122+11/54*I,n=26 3770087275536700 m005 (1/3*gamma-2/3)/(4/5*exp(1)-11/12) 3770087276406011 r005 Re(z^2+c),c=5/17+5/41*I,n=4 3770087277261808 a001 34/28143753123*199^(13/20) 3770087278701389 r009 Re(z^3+c),c=-23/44+7/23*I,n=33 3770087278702975 r005 Re(z^2+c),c=-59/114+4/57*I,n=43 3770087293923636 r009 Im(z^3+c),c=-37/66+19/44*I,n=4 3770087309033635 r002 20th iterates of z^2 + 3770087309077371 m001 exp(sqrt(2))^(GAMMA(13/24)/MadelungNaCl) 3770087321448593 m001 1/Lehmer*Bloch/exp(RenyiParking) 3770087345172300 a007 Real Root Of 942*x^4-755*x^3+289*x^2-946*x+337 3770087356101293 l006 ln(6606/9631) 3770087370997929 m005 (1/2*gamma-3/4)/(-83/144+5/16*5^(1/2)) 3770087385567143 r005 Re(z^2+c),c=11/36+13/22*I,n=14 3770087389806075 a007 Real Root Of 202*x^4-635*x^3-460*x^2-23*x+104 3770087393423140 r005 Re(z^2+c),c=-59/114+4/57*I,n=50 3770087395102169 a003 sin(Pi*20/117)-sin(Pi*31/89) 3770087402454701 r005 Re(z^2+c),c=-59/114+3/46*I,n=26 3770087409036854 m001 (Trott+Trott2nd)/(GAMMA(13/24)-Kac) 3770087409130658 m005 (1/3*5^(1/2)+1/8)/(8/9*Catalan-7/12) 3770087415303938 m001 1/ln(Riemann3rdZero)*Riemann2ndZero/sqrt(3) 3770087427553056 a003 cos(Pi*7/107)-sin(Pi*22/107) 3770087437457915 m005 (1/2*Zeta(3)-2/3)/(5/8*2^(1/2)+6/7) 3770087438275362 r005 Im(z^2+c),c=7/94+20/47*I,n=21 3770087443885272 m001 (Paris+PolyaRandomWalk3D)/(Shi(1)+OneNinth) 3770087450965256 a007 Real Root Of 141*x^4+759*x^3+971*x^2+579*x+568 3770087451974025 a007 Real Root Of -588*x^4+958*x^3+997*x^2+412*x-17 3770087465021641 m001 CareFree*Mills-Landau 3770087465521731 r008 a(0)=4,K{-n^6,4-4*n^3+2*n^2+7*n} 3770087470341015 s002 sum(A221663[n]/(exp(2*pi*n)+1),n=1..infinity) 3770087476592542 r005 Im(z^2+c),c=1/86+20/43*I,n=52 3770087482670487 r005 Re(z^2+c),c=-17/28+8/41*I,n=13 3770087485837620 r005 Re(z^2+c),c=-5/4+63/202*I,n=9 3770087488021052 a007 Real Root Of 488*x^4-550*x^3+8*x^2-638*x-281 3770087495740639 m001 (Zeta(3)+FransenRobinson)/(Psi(1,1/3)+cos(1)) 3770087503987438 a007 Real Root Of 249*x^4+324*x^3-13*x^2-557*x+21 3770087508209551 m004 -50/Pi+125*Pi+Sin[Sqrt[5]*Pi]/3 3770087522616009 m001 (-arctan(1/3)+ZetaP(2))/(Si(Pi)+ln(5)) 3770087529346200 p003 LerchPhi(1/5,2,345/203) 3770087542966996 m002 4-Cosh[Pi]^2/(6*Pi^4) 3770087550816727 r002 45th iterates of z^2 + 3770087556168871 r009 Im(z^3+c),c=-27/98+22/57*I,n=25 3770087557338740 s001 sum(exp(-2*Pi)^n*A015945[n],n=1..infinity) 3770087559476006 r005 Im(z^2+c),c=-21/40+21/32*I,n=9 3770087566384876 r005 Re(z^2+c),c=-117/118+11/52*I,n=24 3770087568559590 m001 (Otter-Totient)/(Pi+ln(Pi)) 3770087569117791 r005 Re(z^2+c),c=-7/16+29/50*I,n=50 3770087569552579 r009 Im(z^3+c),c=-17/44+19/56*I,n=10 3770087576623513 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)/Otter*Weierstrass 3770087576630382 s001 sum(exp(-2*Pi)^n*A020729[n],n=1..infinity) 3770087598949074 r005 Re(z^2+c),c=-43/94+25/57*I,n=64 3770087631929928 p004 log(31193/719) 3770087637147965 r005 Im(z^2+c),c=1/42+27/59*I,n=41 3770087678426264 m001 1/LaplaceLimit^2/exp(Conway)/GAMMA(13/24) 3770087686465974 m001 1/Salem^2/Champernowne/exp(BesselJ(1,1)) 3770087693836870 m001 (GAMMA(5/12)-GAMMA(5/24))/BesselK(1,1) 3770087701591629 m005 (2/3*2^(1/2)-5/6)/(1/6*gamma-3) 3770087713931210 r005 Re(z^2+c),c=-59/114+4/57*I,n=52 3770087751450200 r002 2th iterates of z^2 + 3770087752714191 r009 Im(z^3+c),c=-13/32+25/36*I,n=15 3770087763259400 r005 Im(z^2+c),c=11/40+8/31*I,n=60 3770087766969546 r005 Im(z^2+c),c=-1/118+25/52*I,n=20 3770087776960256 m001 (OneNinth+TreeGrowth2nd)/(cos(1/5*Pi)+Cahen) 3770087803625351 r002 37th iterates of z^2 + 3770087804145859 a001 9/5473*28657^(45/46) 3770087805377856 r009 Im(z^3+c),c=-27/94+21/55*I,n=16 3770087810816240 m005 (1/3*Pi+3/4)/(9/11*Catalan-3/11) 3770087816600840 m001 LandauRamanujan^Si(Pi)/(OneNinth^Si(Pi)) 3770087828536143 m005 (1/2*3^(1/2)+2/7)/(-25/132+1/12*5^(1/2)) 3770087837101941 r009 Re(z^3+c),c=-3/64+4/13*I,n=8 3770087837761471 r009 Re(z^3+c),c=-14/29+15/64*I,n=13 3770087852013152 h001 (8/11*exp(1)+1/12)/(8/11*exp(2)+1/11) 3770087853629380 m008 (2/3*Pi^2+3/4)/(2*Pi^4-2/5) 3770087862770823 r002 30th iterates of z^2 + 3770087869558791 p004 log(14741/10111) 3770087873031152 r005 Im(z^2+c),c=1/110+7/15*I,n=54 3770087874537075 r002 46th iterates of z^2 + 3770087876824758 a001 18/13*3^(31/34) 3770087879906972 r005 Im(z^2+c),c=-17/13+1/25*I,n=13 3770087884694936 a007 Real Root Of -712*x^4+491*x^3-265*x^2+368*x-113 3770087885284698 m005 (1/2*3^(1/2)-5/8)/(7/12*2^(1/2)-8/9) 3770087885315774 r005 Im(z^2+c),c=-23/34+3/29*I,n=37 3770087898833630 r005 Re(z^2+c),c=-123/122+2/11*I,n=20 3770087899291170 m001 1/arctan(1/2)*MadelungNaCl^2*ln(sqrt(Pi)) 3770087909871094 m001 (GaussAGM-Kac)/(Otter+Sierpinski) 3770087919345473 r009 Im(z^3+c),c=-23/94+19/48*I,n=20 3770087921543829 a007 Real Root Of -629*x^4+932*x^3-798*x^2+212*x+256 3770087944775978 s002 sum(A104190[n]/(exp(2*pi*n)-1),n=1..infinity) 3770087946596250 r005 Im(z^2+c),c=2/21+20/49*I,n=17 3770087952769531 r005 Im(z^2+c),c=7/78+17/41*I,n=43 3770087965597499 m001 FellerTornier*(KomornikLoreti-Otter) 3770087970934682 a001 322/3*8^(29/48) 3770087974375144 m001 (ln(gamma)-exp(-1/2*Pi))/(Sierpinski-Stephens) 3770087985245545 r005 Re(z^2+c),c=-3/62+27/43*I,n=24 3770087989876631 r005 Re(z^2+c),c=2/13+7/15*I,n=33 3770087992121271 r005 Re(z^2+c),c=-59/114+4/57*I,n=54 3770088063376866 a007 Real Root Of -264*x^4-981*x^3+296*x^2+971*x+220 3770088072773903 a007 Real Root Of -223*x^4-712*x^3+607*x^2+646*x+706 3770088075829152 a007 Real Root Of 278*x^4+900*x^3-855*x^2-960*x+598 3770088087737520 l006 ln(211/9154) 3770088088234389 r005 Im(z^2+c),c=-31/106+26/49*I,n=7 3770088093938821 m001 (FibonacciFactorial-Thue)/(ln(3)-Champernowne) 3770088102952847 r005 Im(z^2+c),c=-15/86+41/63*I,n=63 3770088110674669 r009 Re(z^3+c),c=-1/50+40/41*I,n=8 3770088111366617 m001 exp(GAMMA(1/12))*Riemann3rdZero/cos(Pi/5)^2 3770088117911867 s002 sum(A275142[n]/(n^3*2^n+1),n=1..infinity) 3770088118296571 r005 Re(z^2+c),c=-2/3+26/95*I,n=40 3770088148584597 m001 (Backhouse+Bloch)/(Lehmer-StolarskyHarborth) 3770088154661755 r005 Re(z^2+c),c=-55/106+1/35*I,n=31 3770088158534924 m001 1/BesselJ(0,1)/Niven/ln(GAMMA(3/4)) 3770088159772450 r009 Im(z^3+c),c=-17/42+16/49*I,n=37 3770088160221985 r009 Im(z^3+c),c=-43/106+15/46*I,n=21 3770088192288753 r005 Re(z^2+c),c=-3/4+23/213*I,n=12 3770088198936930 r005 Re(z^2+c),c=-59/114+4/57*I,n=56 3770088200329114 r005 Re(z^2+c),c=-11/25+10/21*I,n=59 3770088202525992 r002 51th iterates of z^2 + 3770088214890536 m001 (Paris-Stephens)/BesselI(0,1) 3770088218178132 m001 exp(Rabbit)^2/Conway/sin(1) 3770088236945712 r005 Im(z^2+c),c=-31/44+1/35*I,n=41 3770088241826230 a007 Real Root Of -22*x^4-805*x^3+908*x^2-456*x+765 3770088242190119 r002 53th iterates of z^2 + 3770088253558045 m001 (Ei(1)+Zeta(1,2))/(KhinchinHarmonic+Kolakoski) 3770088283751542 m005 (1/2*Pi+9/11)/(3/10*exp(1)-2/11) 3770088286491871 a007 Real Root Of 204*x^4+640*x^3-627*x^2-548*x-72 3770088288049284 a007 Real Root Of -20*x^4+197*x^3-490*x^2+293*x-656 3770088289224304 m001 1/TreeGrowth2nd/exp(Riemann2ndZero)*sqrt(5) 3770088293807381 r009 Im(z^3+c),c=-11/27+15/46*I,n=15 3770088296837780 r009 Im(z^3+c),c=-23/94+19/48*I,n=19 3770088298694518 r002 49th iterates of z^2 + 3770088304595697 r005 Im(z^2+c),c=1/110+7/15*I,n=57 3770088310092408 r005 Im(z^2+c),c=23/70+6/35*I,n=19 3770088314526263 a003 sin(Pi*9/53)*sin(Pi*21/79) 3770088318573375 r002 55th iterates of z^2 + 3770088321798446 r005 Re(z^2+c),c=19/50+3/20*I,n=64 3770088322612846 m005 (1/2*5^(1/2)-1/9)/(3/10*5^(1/2)+2) 3770088337168218 a007 Real Root Of 504*x^4-92*x^3-23*x^2-576*x-229 3770088339496521 r005 Re(z^2+c),c=-59/114+4/57*I,n=58 3770088358393160 r005 Im(z^2+c),c=-3/25+14/25*I,n=27 3770088365943383 r005 Re(z^2+c),c=-57/110+3/59*I,n=22 3770088368573060 a001 7/832040*1346269^(28/47) 3770088391338079 r002 57th iterates of z^2 + 3770088393146485 a003 sin(Pi*7/50)*sin(Pi*9/26) 3770088400933831 r005 Re(z^2+c),c=29/106+3/62*I,n=54 3770088405483301 r005 Im(z^2+c),c=-5/66+14/25*I,n=18 3770088410056453 r005 Re(z^2+c),c=-79/82+1/61*I,n=6 3770088410136893 r009 Re(z^3+c),c=-23/52+11/50*I,n=27 3770088414284452 m001 (sin(1/12*Pi)+Kac)/(exp(Pi)+arctan(1/3)) 3770088429159422 r005 Re(z^2+c),c=-59/114+4/57*I,n=60 3770088440190350 a007 Real Root Of -583*x^4+121*x^3-989*x^2+767*x+448 3770088443972610 r005 Re(z^2+c),c=-59/114+4/57*I,n=44 3770088447896564 r002 59th iterates of z^2 + 3770088483501943 r005 Re(z^2+c),c=-59/114+4/57*I,n=62 3770088487430878 r002 61th iterates of z^2 + 3770088496041949 m002 -E^Pi+Pi+ProductLog[Pi]-Pi^3*Sinh[Pi] 3770088507189719 a001 21/29*322^(2/7) 3770088513182421 r002 63th iterates of z^2 + 3770088513910140 s001 sum(exp(-Pi/4)^n*A000211[n],n=1..infinity) 3770088514248714 b008 7*(-57+Pi) 3770088514958988 r005 Re(z^2+c),c=-59/114+4/57*I,n=64 3770088515697400 a007 Real Root Of -158*x^4-601*x^3+50*x^2+4*x-981 3770088527253666 s002 sum(A141681[n]/(n*pi^n+1),n=1..infinity) 3770088538469012 r005 Re(z^2+c),c=-8/25+29/54*I,n=12 3770088543690502 a008 Real Root of x^4-2*x^3-16*x^2+14*x-29 3770088554167929 m005 (1/2*exp(1)+1/7)/(-67/264+7/24*5^(1/2)) 3770088569731655 m009 (4/5*Psi(1,2/3)-1/4)/(3/5*Psi(1,2/3)+4) 3770088571003485 s002 sum(A228568[n]/(exp(2*pi*n)-1),n=1..infinity) 3770088575699640 r002 64th iterates of z^2 + 3770088585403083 r005 Re(z^2+c),c=-29/44+7/38*I,n=17 3770088588142596 r005 Re(z^2+c),c=-57/110+2/33*I,n=25 3770088593038869 a003 sin(Pi*12/109)/cos(Pi*16/111) 3770088596050041 r002 62th iterates of z^2 + 3770088596369898 r005 Re(z^2+c),c=-59/114+4/57*I,n=63 3770088599152962 r005 Re(z^2+c),c=-53/114+16/47*I,n=18 3770088626720231 r005 Im(z^2+c),c=17/118+16/43*I,n=11 3770088627275735 r005 Re(z^2+c),c=-14/27+1/22*I,n=29 3770088628198897 r002 60th iterates of z^2 + 3770088632832024 r009 Re(z^3+c),c=-5/56+19/43*I,n=2 3770088634819006 b008 2+21*ArcSinh[Sqrt[7]] 3770088637947851 r005 Re(z^2+c),c=-59/114+4/57*I,n=61 3770088639400061 m001 (sin(1/12*Pi)-MertensB3)/(OneNinth-Otter) 3770088639789905 r002 48th iterates of z^2 + 3770088640553745 a007 Real Root Of 237*x^4+695*x^3-738*x^2+218*x+674 3770088651163825 r002 58th iterates of z^2 + 3770088666700659 r002 20th iterates of z^2 + 3770088675977850 r002 58th iterates of z^2 + 3770088694582170 m001 (GAMMA(7/12)-Lehmer)/(sin(1/5*Pi)+Ei(1)) 3770088703196464 r002 13th iterates of z^2 + 3770088708167547 r005 Re(z^2+c),c=-59/114+4/57*I,n=59 3770088713445290 r005 Im(z^2+c),c=7/40+13/37*I,n=37 3770088729453594 a007 Real Root Of -141*x^4-356*x^3+691*x^2+323*x+805 3770088733680791 m005 (-3/20+1/4*5^(1/2))/(2/9*3^(1/2)+7/10) 3770088737372172 a007 Real Root Of 251*x^4+725*x^3-599*x^2+925*x+143 3770088739391999 a007 Real Root Of 237*x^4+879*x^3+185*x^2+839*x-244 3770088741224473 r002 56th iterates of z^2 + 3770088744430609 r005 Re(z^2+c),c=-7/10+30/217*I,n=17 3770088745476137 r009 Re(z^3+c),c=-7/106+5/8*I,n=34 3770088745764657 r002 47th iterates of z^2 + 3770088746724639 a001 29/144*17711^(23/43) 3770088746897182 r002 25th iterates of z^2 + 3770088765163523 m005 (1/2*Pi+1/6)/(17/66+1/11*5^(1/2)) 3770088769512066 m005 (1/2*exp(1)-9/11)/(3/8*Catalan-1/5) 3770088773210528 r005 Re(z^2+c),c=-13/30+25/51*I,n=54 3770088773913606 m001 (-Artin+HeathBrownMoroz)/(GAMMA(7/12)-cos(1)) 3770088785107753 m001 MadelungNaCl/(PlouffeB^MertensB2) 3770088795455687 a003 cos(Pi*9/31)-sin(Pi*53/117) 3770088799539857 v003 sum((2+11/2*n^2+9/2*n)/n^(n-1),n=1..infinity) 3770088809746206 m001 FeigenbaumDelta*(exp(-Pi)+LandauRamanujan) 3770088818597273 r002 54th iterates of z^2 + 3770088821213288 r005 Re(z^2+c),c=-59/114+4/57*I,n=57 3770088822239275 m001 (Landau-ZetaQ(2))/(GAMMA(3/4)-gamma(1)) 3770088827675880 p003 LerchPhi(1/512,4,202/89) 3770088831310235 a001 1730726404001/17*89^(7/24) 3770088834060458 r005 Im(z^2+c),c=-2/15+29/53*I,n=45 3770088834557828 a007 Real Root Of -542*x^4+955*x^3-56*x^2+490*x-217 3770088837290596 l006 ln(701/1022) 3770088841613520 m001 exp(GAMMA(1/3))^2/DuboisRaymond*sin(Pi/5)^2 3770088871233360 r005 Im(z^2+c),c=-7/12+31/92*I,n=3 3770088873023975 m001 Psi(2,1/3)*QuadraticClass*StronglyCareFree 3770088874007638 r002 50th iterates of z^2 + 3770088884370291 r002 52th iterates of z^2 + 3770088888496622 m001 Riemann2ndZero/(2*Pi/GAMMA(5/6)-gamma(2)) 3770088898991170 m001 (cos(1)*Artin+ZetaQ(4))/cos(1) 3770088916990898 m001 (PlouffeB-RenyiParking)/(Ei(1)-GAMMA(19/24)) 3770088919271041 r005 Re(z^2+c),c=19/64+3/49*I,n=51 3770088920248379 h001 (-6*exp(-1)-4)/(-9*exp(1)+8) 3770088920757712 a001 9349/144*21^(26/45) 3770088923761803 r002 34th iterates of z^2 + 3770088926691047 a001 9349/377*28657^(2/49) 3770088937206127 r005 Im(z^2+c),c=-5/22+26/31*I,n=11 3770088944414914 a007 Real Root Of 476*x^4+768*x^3-5*x^2-746*x-249 3770088952290325 m001 ln(Robbin)/DuboisRaymond^2*sin(Pi/5)^2 3770088965906833 r002 28i'th iterates of 2*x/(1-x^2) of 3770088983272104 a001 7881196/21*10610209857723^(1/13) 3770088983272156 a001 20633239/21*39088169^(1/13) 3770088983272188 a001 4250681/7*20365011074^(1/13) 3770088983282473 a001 4769326/3*75025^(1/13) 3770088993269782 r005 Re(z^2+c),c=-59/114+4/57*I,n=55 3770089021927508 m001 Magata-ln(3)+MinimumGamma 3770089032863269 a007 Real Root Of -x^4-377*x^3+3*x^2-133*x+546 3770089034714631 r005 Re(z^2+c),c=3/22+12/41*I,n=15 3770089035167335 p001 sum((-1)^n/(580*n+253)/(6^n),n=0..infinity) 3770089039009294 m001 (Stephens-ZetaQ(4))/(ln(3)+Riemann1stZero) 3770089042788061 a003 sin(Pi*5/31)*sin(Pi*32/113) 3770089055564309 a007 Real Root Of 158*x^4+8*x^3+373*x^2-465*x+17 3770089063110808 l006 ln(112/4859) 3770089065500061 a005 (1/sin(65/139*Pi))^1145 3770089068259593 r009 Re(z^3+c),c=-15/29+12/41*I,n=39 3770089075278337 m005 (1/2*Zeta(3)+2)/(2/9*gamma-9/11) 3770089090628393 m004 -120*Pi-10*Sech[Sqrt[5]*Pi] 3770089090769164 m004 -20/E^(Sqrt[5]*Pi)-120*Pi 3770089090909936 m004 -120*Pi-10*Csch[Sqrt[5]*Pi] 3770089094150230 a007 Real Root Of -505*x^4+769*x^3-573*x^2+446*x+301 3770089118507085 m005 (1/3*gamma+1/8)/(5/12*Zeta(3)-5/12) 3770089120134789 r005 Im(z^2+c),c=-59/40+13/51*I,n=3 3770089148064054 r009 Im(z^3+c),c=-23/94+19/48*I,n=22 3770089149217776 r005 Re(z^2+c),c=11/36+3/43*I,n=36 3770089152399034 m001 (MertensB2+Porter)/(2^(1/3)-Gompertz) 3770089155311472 a007 Real Root Of 418*x^4+690*x^3+447*x^2-931*x-386 3770089157748887 p001 sum((-1)^n/(293*n+265)/(512^n),n=0..infinity) 3770089163716928 a001 47/4181*610^(10/53) 3770089187280698 r009 Im(z^3+c),c=-13/34+19/56*I,n=31 3770089187622072 r005 Im(z^2+c),c=-7/10+39/197*I,n=12 3770089188384452 r009 Re(z^3+c),c=-1/38+21/29*I,n=7 3770089192275868 r005 Re(z^2+c),c=-3/122+6/47*I,n=3 3770089193301560 r002 13th iterates of z^2 + 3770089215869850 m006 (5*ln(Pi)+1/2)/(5*Pi+4/5) 3770089218394039 r005 Im(z^2+c),c=-29/27+19/55*I,n=3 3770089225350392 r005 Im(z^2+c),c=-13/62+34/57*I,n=63 3770089235693321 m001 1/ln(BesselJ(0,1))*Paris^2*Zeta(5) 3770089236473456 r005 Re(z^2+c),c=-59/114+4/57*I,n=53 3770089263399387 r005 Re(z^2+c),c=-15/29+4/45*I,n=23 3770089271422733 r005 Im(z^2+c),c=7/50+20/53*I,n=11 3770089276891616 r005 Im(z^2+c),c=1/3+6/31*I,n=38 3770089277296909 a007 Real Root Of 137*x^4+409*x^3-130*x^2+866*x-648 3770089285921892 m001 GAMMA(3/4)+ln(2+sqrt(3))*GAMMA(11/24) 3770089286752753 r005 Im(z^2+c),c=9/86+17/42*I,n=23 3770089288720065 a007 Real Root Of -265*x^4-721*x^3+965*x^2-218*x+363 3770089293360369 r005 Im(z^2+c),c=-19/26+26/119*I,n=7 3770089296201075 a007 Real Root Of -234*x^4-991*x^3-510*x^2-175*x+759 3770089305702012 m005 (1/2*Zeta(3)-10/11)/(1/6*5^(1/2)+4/9) 3770089345475199 m001 1/ln(GAMMA(11/24))*Robbin^2*LambertW(1) 3770089350990256 a007 Real Root Of -240*x^4-821*x^3+265*x^2-291*x-372 3770089351681572 m005 (1/2*gamma+1/11)/(5/12*Catalan+5/8) 3770089354825964 a001 1/5796*(1/2*5^(1/2)+1/2)^22*18^(13/22) 3770089381923612 r005 Im(z^2+c),c=-23/18+104/201*I,n=3 3770089383875227 m001 (Catalan+BesselJ(1,1))/(-GaussAGM+Weierstrass) 3770089388504093 s002 sum(A241122[n]/(exp(2*pi*n)-1),n=1..infinity) 3770089390217602 m001 (ln(Pi)+ln(2+3^(1/2)))/(Robbin-ZetaQ(3)) 3770089399616591 r009 Re(z^3+c),c=-11/40+29/39*I,n=33 3770089410181792 m005 (3*gamma+2/5)/(23/10+3/2*5^(1/2)) 3770089431248783 r009 Re(z^3+c),c=-63/122+14/33*I,n=51 3770089433335773 r005 Im(z^2+c),c=-5/21+16/25*I,n=33 3770089433530231 r005 Im(z^2+c),c=-13/102+6/11*I,n=39 3770089435779955 m001 (LambertW(1)-gamma)/(FeigenbaumB+Tribonacci) 3770089437496255 r005 Re(z^2+c),c=-59/114+4/57*I,n=45 3770089441548261 m005 (1/2*Zeta(3)+5)/(10/11*2^(1/2)+1/5) 3770089450974856 m005 (1/2*Zeta(3)-2/3)/(1/2*3^(1/2)+7/8) 3770089463458630 m001 (polylog(4,1/2)+GaussAGM)/(ThueMorse-ZetaQ(2)) 3770089466374310 a007 Real Root Of 433*x^4-925*x^3+541*x^2-971*x+330 3770089486489077 m008 (4/5*Pi^3-2/3)/(2/3*Pi^6-2/3) 3770089496226823 r005 Im(z^2+c),c=-13/25+30/49*I,n=35 3770089503336251 r005 Im(z^2+c),c=-7/13+28/51*I,n=35 3770089505426628 m001 (cos(1/5*Pi)+Bloch)/(Cahen-GaussKuzminWirsing) 3770089518515062 a007 Real Root Of -814*x^4+544*x^3-849*x^2+986*x+538 3770089527353300 a007 Real Root Of -260*x^4-706*x^3+942*x^2-272*x+280 3770089527949288 m005 (1+1/2*5^(1/2))/(5/6*Pi+3) 3770089532579559 r005 Re(z^2+c),c=-33/64+5/48*I,n=40 3770089542486646 r005 Re(z^2+c),c=-7/29+23/38*I,n=33 3770089543140556 r005 Re(z^2+c),c=-59/114+4/57*I,n=51 3770089549177732 a007 Real Root Of 132*x^4+249*x^3-942*x^2+121*x+521 3770089571898773 a001 1/15124*(1/2*5^(1/2)+1/2)^7*199^(9/16) 3770089580283536 a007 Real Root Of 276*x^4+810*x^3-936*x^2-253*x-4 3770089585496395 m001 (Niven-Rabbit)/(cos(1/5*Pi)+FeigenbaumC) 3770089587037087 m005 (1/2*3^(1/2)+1/11)/(4/5*gamma-3) 3770089607685846 r002 24th iterates of z^2 + 3770089614968526 r009 Im(z^3+c),c=-23/94+19/48*I,n=25 3770089627688340 r002 13th iterates of z^2 + 3770089630365826 r009 Im(z^3+c),c=-3/74+40/61*I,n=2 3770089641300603 r005 Im(z^2+c),c=-5/54+21/40*I,n=58 3770089653426926 r005 Re(z^2+c),c=-13/25+5/53*I,n=13 3770089657885370 r005 Im(z^2+c),c=-43/74+26/57*I,n=5 3770089667066139 m001 GAMMA(19/24)^2*exp(TwinPrimes)*sqrt(2) 3770089673806605 a007 Real Root Of -192*x^4-967*x^3-753*x^2+751*x+505 3770089675159604 r009 Im(z^3+c),c=-27/98+22/57*I,n=22 3770089675835096 r005 Im(z^2+c),c=-9/10+48/179*I,n=18 3770089677987376 r005 Im(z^2+c),c=-35/66+1/15*I,n=59 3770089684616791 r009 Im(z^3+c),c=-23/94+19/48*I,n=23 3770089694070652 r009 Im(z^3+c),c=-25/52+3/11*I,n=61 3770089698039731 m001 (Chi(1)+ln(Pi))/(-cos(1/12*Pi)+BesselJ(1,1)) 3770089710790808 r009 Im(z^3+c),c=-23/94+19/48*I,n=28 3770089717977851 r002 35th iterates of z^2 + 3770089721174321 r005 Re(z^2+c),c=-29/56+1/34*I,n=19 3770089724771076 r009 Im(z^3+c),c=-23/94+19/48*I,n=31 3770089725950426 r009 Im(z^3+c),c=-23/94+19/48*I,n=30 3770089725996699 r009 Im(z^3+c),c=-23/94+19/48*I,n=33 3770089726271795 r009 Im(z^3+c),c=-23/94+19/48*I,n=34 3770089726271855 r009 Im(z^3+c),c=-23/94+19/48*I,n=36 3770089726337184 r009 Im(z^3+c),c=-23/94+19/48*I,n=39 3770089726347556 r009 Im(z^3+c),c=-23/94+19/48*I,n=42 3770089726348670 r009 Im(z^3+c),c=-23/94+19/48*I,n=44 3770089726348781 r009 Im(z^3+c),c=-23/94+19/48*I,n=45 3770089726348818 r009 Im(z^3+c),c=-23/94+19/48*I,n=47 3770089726348862 r009 Im(z^3+c),c=-23/94+19/48*I,n=50 3770089726348869 r009 Im(z^3+c),c=-23/94+19/48*I,n=53 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=55 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=56 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=58 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=61 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=64 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=59 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=63 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=62 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=60 3770089726348870 r009 Im(z^3+c),c=-23/94+19/48*I,n=57 3770089726348871 r009 Im(z^3+c),c=-23/94+19/48*I,n=52 3770089726348871 r009 Im(z^3+c),c=-23/94+19/48*I,n=54 3770089726348873 r009 Im(z^3+c),c=-23/94+19/48*I,n=51 3770089726348874 r009 Im(z^3+c),c=-23/94+19/48*I,n=48 3770089726348881 r009 Im(z^3+c),c=-23/94+19/48*I,n=49 3770089726348983 r009 Im(z^3+c),c=-23/94+19/48*I,n=46 3770089726349057 r009 Im(z^3+c),c=-23/94+19/48*I,n=41 3770089726349698 r009 Im(z^3+c),c=-23/94+19/48*I,n=43 3770089726353293 r009 Im(z^3+c),c=-23/94+19/48*I,n=40 3770089726361016 r009 Im(z^3+c),c=-23/94+19/48*I,n=37 3770089726361466 r009 Im(z^3+c),c=-23/94+19/48*I,n=38 3770089726495107 r009 Im(z^3+c),c=-23/94+19/48*I,n=35 3770089727510640 r009 Im(z^3+c),c=-23/94+19/48*I,n=32 3770089729377686 m001 (MertensB3-Rabbit)/(GAMMA(11/12)+Gompertz) 3770089733205375 r009 Im(z^3+c),c=-23/94+19/48*I,n=29 3770089736090794 a008 Real Root of x^3-x^2-255*x+922 3770089739520322 r009 Im(z^3+c),c=-23/94+19/48*I,n=27 3770089746078733 r002 18th iterates of z^2 + 3770089748399071 r005 Im(z^2+c),c=-7/44+21/34*I,n=8 3770089751461289 r009 Im(z^3+c),c=-23/94+19/48*I,n=26 3770089754467716 r005 Re(z^2+c),c=-7/50+19/31*I,n=14 3770089768245550 a008 Real Root of x^4-14*x^2-48*x-184 3770089784852735 a007 Real Root Of 804*x^4+315*x^3+78*x^2-913*x+300 3770089791883438 r002 17th iterates of z^2 + 3770089802283188 m005 (1/3*Zeta(3)+1/10)/(1/6*exp(1)+7/8) 3770089813723155 m005 (15/28+1/4*5^(1/2))/(9/11*Pi+1/3) 3770089826927247 a007 Real Root Of -575*x^4+202*x^3-67*x^2+329*x+156 3770089829049696 a007 Real Root Of -147*x^4-520*x^3-10*x^2-496*x+105 3770089837165072 m001 1/gamma^2*Trott^2/exp(sqrt(5)) 3770089840113906 m001 (GAMMA(19/24)-Porter)/(Zeta(5)-sin(1/12*Pi)) 3770089849808110 m001 Chi(1)/(Pi*csc(7/24*Pi)/GAMMA(17/24)-Thue) 3770089850423283 r005 Re(z^2+c),c=-59/114+4/57*I,n=49 3770089868731389 a007 Real Root Of 324*x^4-53*x^3+301*x^2-492*x+139 3770089881234397 r005 Im(z^2+c),c=13/126+15/37*I,n=30 3770089883682318 r005 Im(z^2+c),c=1/110+7/15*I,n=60 3770089888685862 a007 Real Root Of 778*x^4+377*x^3-673*x^2-815*x+367 3770089893761917 q001 1384/3671 3770089897647111 r002 56th iterates of z^2 + 3770089909222183 a007 Real Root Of 269*x^4-37*x^3+804*x^2-961*x-484 3770089909777505 r009 Im(z^3+c),c=-23/94+19/48*I,n=24 3770089922552128 m001 (3^(1/2)-cos(1/5*Pi))/(ln(Pi)+Conway) 3770089940069974 r005 Re(z^2+c),c=1/46+13/49*I,n=16 3770089964580686 r005 Re(z^2+c),c=-13/27+17/50*I,n=51 3770089967813661 r005 Re(z^2+c),c=-59/114+4/57*I,n=47 3770089975377351 r002 45th iterates of z^2 + 3770089977392579 p004 log(37537/25747) 3770089978233990 m001 FeigenbaumC*exp(1/exp(1))^ReciprocalLucas 3770089988817443 m004 -4+E^(-(Sqrt[5]*Pi))+Tan[Sqrt[5]*Pi]/4 3770089997293103 m005 (1/3*3^(1/2)+1/9)/(5/8*5^(1/2)+3/7) 3770089999962375 a007 Real Root Of -376*x^4+381*x^3-591*x^2+775*x-221 3770090010975326 r005 Im(z^2+c),c=-9/8+8/173*I,n=23 3770090030950032 s002 sum(A288318[n]/(n*2^n+1),n=1..infinity) 3770090032475474 a007 Real Root Of -191*x^4-680*x^3+92*x^2-24*x+750 3770090035149250 r005 Re(z^2+c),c=-33/31+13/51*I,n=46 3770090036357773 a001 13/47*322^(19/42) 3770090069426276 m001 exp(Paris)^2*FeigenbaumB/GAMMA(13/24)^2 3770090074732006 m006 (5/6*exp(Pi)-4)/(3/4/Pi+1/6) 3770090088209847 m009 (Psi(1,3/4)-2/3)/(1/5*Pi^2+3) 3770090096624156 r009 Re(z^3+c),c=-33/70+13/51*I,n=43 3770090106160990 r005 Im(z^2+c),c=-15/26+7/102*I,n=61 3770090112827124 a001 987/199*521^(9/13) 3770090123029673 m005 (1/3*Catalan+3/4)/(7/11*Pi+4/5) 3770090129292306 m001 GAMMA(7/24)^GAMMA(23/24)/sin(1) 3770090131264411 r002 18th iterates of z^2 + 3770090138186944 m001 (2^(1/3)+Lehmer)/(PrimesInBinary+ZetaP(4)) 3770090138308281 r009 Re(z^3+c),c=-9/20+15/64*I,n=14 3770090143972877 r009 Re(z^3+c),c=-17/32+13/53*I,n=58 3770090147495208 a007 Real Root Of -201*x^4-876*x^3-386*x^2+404*x+675 3770090182793503 r002 60th iterates of z^2 + 3770090187926946 h001 (-2*exp(4)-3)/(-exp(8)+5) 3770090193380076 m005 (1/3*Catalan+3/5)/(1/3*Catalan-6/11) 3770090218160057 r009 Im(z^3+c),c=-59/114+4/11*I,n=28 3770090225467018 a007 Real Root Of 207*x^4+534*x^3-830*x^2+244*x-487 3770090230384876 r002 33th iterates of z^2 + 3770090230497786 m005 (1/3*Pi-1/2)/(10/11*Catalan-9/11) 3770090231650167 a007 Real Root Of 181*x^4-360*x^3+949*x^2+851*x+163 3770090236097240 r005 Im(z^2+c),c=-2/17+35/64*I,n=30 3770090247863812 a007 Real Root Of 221*x^4+617*x^3-846*x^2-340*x-842 3770090252759573 m001 Zeta(1/2)^GolombDickman/ReciprocalFibonacci 3770090255408892 m001 1/LambertW(1)*ln(Salem)*log(2+sqrt(3)) 3770090257267857 a001 1597/843*18^(5/21) 3770090281569380 m001 BesselK(1,1)*Artin^PlouffeB 3770090282669299 a007 Real Root Of -176*x^4-884*x^3-604*x^2+592*x-997 3770090283724621 r005 Im(z^2+c),c=1/86+20/43*I,n=48 3770090287453458 r005 Im(z^2+c),c=-53/52+7/19*I,n=13 3770090294870679 l006 ln(6713/9787) 3770090306069260 r005 Im(z^2+c),c=11/74+10/27*I,n=18 3770090324462845 m005 (1/2*3^(1/2)+7/8)/(5/6*Pi+2) 3770090331152078 r005 Re(z^2+c),c=8/23+7/52*I,n=33 3770090333694424 m001 ln(MinimumGamma)^2*ErdosBorwein^2/Paris 3770090351877965 a007 Real Root Of 203*x^4-218*x^3-984*x^2-402*x+299 3770090360942254 m003 -25/6+2*E^(-1/2-Sqrt[5]/2) 3770090361830718 m001 (Riemann2ndZero+ZetaQ(2))/(MertensB2-PlouffeB) 3770090363135926 m001 (GAMMA(3/4)+FeigenbaumB)/(Psi(2,1/3)+cos(1)) 3770090363536115 m001 (Zeta(1,2)+Lehmer)/(TreeGrowth2nd+Weierstrass) 3770090369773377 b008 2/39+EulerGamma+Pi 3770090383854015 m005 (1/2*gamma+1/6)/(7/12*Pi-5/8) 3770090385994513 r005 Im(z^2+c),c=-91/66+2/37*I,n=14 3770090391313610 m009 (24/5*Catalan+3/5*Pi^2+2)/(1/4*Pi^2+4/5) 3770090433845471 m001 1/exp(cosh(1))/Si(Pi)^2/sqrt(1+sqrt(3)) 3770090439944079 r005 Im(z^2+c),c=-7/12+8/119*I,n=27 3770090444439403 r002 35th iterates of z^2 + 3770090451408042 r005 Re(z^2+c),c=-31/46+7/32*I,n=28 3770090464824697 l006 ln(6012/8765) 3770090465670766 r005 Re(z^2+c),c=2/21+15/38*I,n=19 3770090474303397 s002 sum(A070822[n]/((pi^n+1)/n),n=1..infinity) 3770090475187037 m001 (Pi+Psi(2,1/3)/sin(1))/Zeta(1,-1) 3770090478005513 a007 Real Root Of -14*x^4+321*x^3-799*x^2-647*x-577 3770090479473863 r005 Im(z^2+c),c=-7/27+4/7*I,n=32 3770090482824397 m001 1/ln(GAMMA(19/24))*GAMMA(1/3)^2*sin(1) 3770090493639691 a007 Real Root Of -223*x^4-567*x^3+856*x^2-481*x+688 3770090494616592 m005 (1/2*exp(1)-3/7)/(2*Catalan+7/11) 3770090500406713 s002 sum(A238805[n]/(exp(2*pi*n)-1),n=1..infinity) 3770090518363558 a007 Real Root Of 817*x^4-455*x^3+85*x^2-451*x-223 3770090534178641 a007 Real Root Of -13*x^4-468*x^3+850*x^2+594*x-868 3770090543027961 m001 GAMMA(19/24)*FeigenbaumAlpha+FeigenbaumB 3770090562014325 r005 Re(z^2+c),c=-33/70+7/18*I,n=32 3770090562491025 h001 (-exp(-1)+7)/(-5*exp(1)-4) 3770090565760725 a008 Real Root of x^4-x^3-21*x^2-31*x-74 3770090566094437 r005 Re(z^2+c),c=-3/7+32/59*I,n=15 3770090571822929 m001 GAMMA(19/24)/Tribonacci*ln(arctan(1/2))^2 3770090591570776 a007 Real Root Of 339*x^4-521*x^3+660*x^2-895*x-466 3770090605648888 r005 Re(z^2+c),c=-67/126+8/39*I,n=4 3770090606718367 r002 10th iterates of z^2 + 3770090607740221 r005 Im(z^2+c),c=-13/9+5/83*I,n=7 3770090625460997 a007 Real Root Of 777*x^4-174*x^3+798*x^2-898*x-477 3770090628814553 a007 Real Root Of 168*x^4+541*x^3-116*x^2+873*x-10 3770090639268145 r005 Re(z^2+c),c=-57/118+1/3*I,n=50 3770090663735965 r002 3th iterates of z^2 + 3770090672834866 r009 Re(z^3+c),c=-43/90+3/5*I,n=17 3770090679643244 l006 ln(5311/7743) 3770090692440633 m001 GAMMA(19/24)*(Ei(1)+ln(2+3^(1/2))) 3770090692440633 m001 GAMMA(19/24)*(Ei(1)+ln(2+sqrt(3))) 3770090698603303 a007 Real Root Of -144*x^4-257*x^3+823*x^2-982*x-80 3770090702328160 m001 (LandauRamanujan2nd-Stephens)/(ln(Pi)-Conway) 3770090703662253 m001 (FeigenbaumMu-Totient)/(Ei(1)-Conway) 3770090704907508 r009 Im(z^3+c),c=-13/34+19/56*I,n=25 3770090709538759 l006 ln(125/5423) 3770090718235209 m001 exp(Riemann2ndZero)/Champernowne^2/GAMMA(1/24) 3770090718411473 r002 13th iterates of z^2 + 3770090733307406 r008 a(0)=0,K{-n^6,-5-8*n-62*n^2+49*n^3} 3770090753801203 m001 (Catalan+ln(5))/(-gamma(2)+TwinPrimes) 3770090769465762 r009 Im(z^3+c),c=-9/106+42/61*I,n=2 3770090769645122 m009 (3/2*Pi^2+5/6)/(2/5*Pi^2+1/5) 3770090782333903 p004 log(36671/25153) 3770090782552519 r004 Re(z^2+c),c=1/30-3/8*I,z(0)=exp(3/8*I*Pi),n=2 3770090782647212 m001 (Magata+Otter)/(Kac-Kolakoski) 3770090785720109 a007 Real Root Of 296*x^4+977*x^3-391*x^2+282*x-825 3770090792138024 a007 Real Root Of -2*x^4+271*x^3-936*x^2-61*x-584 3770090806323961 m001 Zeta(5)/ln(CopelandErdos)^2/log(2+sqrt(3)) 3770090808271432 m001 (Zeta(1,-1)-Trott2nd)^Lehmer 3770090811472576 r009 Re(z^3+c),c=-45/94+7/30*I,n=9 3770090815018324 a007 Real Root Of 243*x^4-283*x^3+396*x^2-886*x+288 3770090825557257 r005 Re(z^2+c),c=-55/106+1/31*I,n=26 3770090845562543 q001 1079/2862 3770090845562543 r002 2th iterates of z^2 + 3770090849595035 m001 (cos(Pi/5)+4)/(-GAMMA(5/12)+2) 3770090851470667 r008 a(0)=4,K{-n^6,-4+26*n+22*n^2-40*n^3} 3770090865921548 m005 (1/3*gamma+1/9)/(7/8*gamma+3/10) 3770090866063099 a007 Real Root Of -332*x^4-988*x^3+943*x^2-249*x-213 3770090866486633 a007 Real Root Of 320*x^4+989*x^3+887*x^2-850*x-400 3770090877081443 a007 Real Root Of -139*x^4-499*x^3+338*x^2+821*x-367 3770090879543847 r002 29th iterates of z^2 + 3770090890592460 r005 Re(z^2+c),c=19/106+23/50*I,n=14 3770090906708093 a007 Real Root Of 233*x^4+862*x^3+152*x^2+931*x+469 3770090916128247 a003 sin(Pi*1/87)/cos(Pi*4/43) 3770090923561180 m006 (3*exp(2*Pi)-5)/(4*Pi^2+3) 3770090932674264 r009 Re(z^3+c),c=-11/106+47/63*I,n=53 3770090932914662 l006 ln(9396/9757) 3770090935125755 m001 2^(1/2)/(BesselI(0,1)-Conway) 3770090959792716 l006 ln(4610/6721) 3770090960985839 a007 Real Root Of 571*x^4+141*x^3+835*x^2-844*x-33 3770090965408986 a001 1/843*(1/2*5^(1/2)+1/2)^5*3^(23/24) 3770090969272366 r005 Re(z^2+c),c=27/118+18/29*I,n=4 3770090986907530 r005 Re(z^2+c),c=5/16+32/63*I,n=55 3770091003536030 m001 BesselK(1,1)-sin(1)^Champernowne 3770091004755489 r005 Im(z^2+c),c=-35/66+1/15*I,n=61 3770091009965857 r002 62th iterates of z^2 + 3770091016813217 r005 Im(z^2+c),c=1/110+7/15*I,n=63 3770091021774448 m001 1/MadelungNaCl/ln(Artin)/cosh(1) 3770091027563493 m001 1/ln(GAMMA(1/3))/MadelungNaCl^2/log(1+sqrt(2)) 3770091030498795 m001 BesselK(0,1)*(MasserGramainDelta-exp(1)) 3770091032790653 r005 Im(z^2+c),c=15/62+12/41*I,n=24 3770091046419908 a007 Real Root Of 201*x^4+631*x^3-573*x^2-460*x-384 3770091047505036 r005 Im(z^2+c),c=11/54+18/55*I,n=26 3770091055095055 r009 Im(z^3+c),c=-6/13+17/59*I,n=50 3770091061249431 m001 1/exp(sinh(1))/FeigenbaumC*sqrt(5) 3770091091107051 a007 Real Root Of -778*x^4-675*x^3+277*x^2+468*x-18 3770091095198489 r009 Im(z^3+c),c=-6/19+23/62*I,n=13 3770091096101580 a007 Real Root Of -603*x^4+61*x^3-95*x^2+894*x+366 3770091106310552 a005 (1/sin(96/217*Pi))^640 3770091109965087 r005 Im(z^2+c),c=-1/54+29/60*I,n=33 3770091114416336 r005 Im(z^2+c),c=1/110+7/15*I,n=64 3770091116391273 m005 (1/2*2^(1/2)+1/12)/(4/5*Pi-5/12) 3770091122084083 a007 Real Root Of -171*x^4-875*x^3-698*x^2+593*x-185 3770091149348293 r009 Re(z^3+c),c=-13/27+4/15*I,n=63 3770091157978421 m006 (1/4*exp(2*Pi)+1)/(2/3*exp(2*Pi)+3/4) 3770091158793369 r005 Im(z^2+c),c=1/48+17/37*I,n=51 3770091160391602 m001 1/ln(GAMMA(1/12))*FeigenbaumAlpha/exp(1) 3770091172883920 p004 log(30539/20947) 3770091187702946 m003 -4+Sqrt[5]/16+Coth[1/2+Sqrt[5]/2]/12 3770091190011816 r005 Re(z^2+c),c=-33/94+29/49*I,n=21 3770091192941357 r005 Re(z^2+c),c=-35/118+8/11*I,n=7 3770091201929084 m001 (gamma(1)-PlouffeB)/(Riemann1stZero+ThueMorse) 3770091207631252 a007 Real Root Of -140*x^4-646*x^3-639*x^2-547*x+687 3770091211965656 m001 Porter/(Mills+Sierpinski) 3770091214467013 a003 cos(Pi*37/98)/sin(Pi*23/49) 3770091238753592 r002 28th iterates of z^2 + 3770091242608622 r002 44th iterates of z^2 + 3770091247799931 m001 1/ln(cos(Pi/12))^2/Pi^2/sqrt(5) 3770091249684054 m005 (1/2*Zeta(3)-2/5)/(5/9*Zeta(3)-6) 3770091249778454 r005 Im(z^2+c),c=1/110+7/15*I,n=56 3770091262369790 a007 Real Root Of -609*x^4+650*x^3-929*x^2+782*x+474 3770091266125907 r005 Im(z^2+c),c=7/58+11/28*I,n=28 3770091272157556 p001 sum(1/(423*n+290)/(5^n),n=0..infinity) 3770091292732355 m005 (1/3*Zeta(3)-1/10)/(1/11*Catalan+5/7) 3770091315333191 m001 exp(LaplaceLimit)^2*Artin/GAMMA(11/24)^2 3770091318639021 r009 Im(z^3+c),c=-23/94+19/48*I,n=21 3770091340420447 l006 ln(3909/5699) 3770091340434478 r005 Re(z^2+c),c=-23/48+22/63*I,n=35 3770091343439861 r005 Re(z^2+c),c=-7/15+11/28*I,n=40 3770091348193506 r002 18th iterates of z^2 + 3770091352608758 m001 2^(1/2)+((1+3^(1/2))^(1/2))^Niven 3770091354591763 m001 ln(gamma)^(BesselI(0,2)*TravellingSalesman) 3770091362631965 s002 sum(A012183[n]/((exp(n)-1)/n),n=1..infinity) 3770091395374497 r002 7th iterates of z^2 + 3770091401099651 a007 Real Root Of -265*x^4-833*x^3+391*x^2-962*x-285 3770091402830305 m001 (FeigenbaumMu+Thue)/(Catalan+sin(1/12*Pi)) 3770091416584838 s002 sum(A192411[n]/(exp(2*pi*n)-1),n=1..infinity) 3770091424875659 m001 (exp(1)+ln(Pi)*HardHexagonsEntropy)/ln(Pi) 3770091427379274 m001 (ArtinRank2+Robbin)/(Pi+arctan(1/2)) 3770091433088731 r002 64th iterates of z^2 + 3770091439744208 a003 cos(Pi*11/64)*cos(Pi*38/107) 3770091445968978 r002 5th iterates of z^2 + 3770091479436157 m005 (1/2*Zeta(3)-1/8)/(1/4*2^(1/2)+10/11) 3770091486087061 m001 Riemann1stZero-exp(1/exp(1))+Riemann3rdZero 3770091490530401 r005 Re(z^2+c),c=-15/31+20/61*I,n=41 3770091493106165 m008 (Pi^6+4/5)/(5/6*Pi^5+1/5) 3770091504900236 m001 Cahen^cos(1/12*Pi)*gamma 3770091504900236 m001 Cahen^cos(Pi/12)*gamma 3770091507985454 m005 (1/3*Zeta(3)-2/5)/(3/5*2^(1/2)-2/3) 3770091516349154 m001 GAMMA(1/3)^2/Riemann2ndZero^2*exp(Zeta(1/2)) 3770091531000713 r005 Im(z^2+c),c=1/110+7/15*I,n=61 3770091534344135 a003 cos(Pi*4/113)*cos(Pi*41/109) 3770091541306318 m001 Khinchin+KhinchinLevy^Weierstrass 3770091584446342 a007 Real Root Of 948*x^4-855*x^3+394*x^2-889*x+33 3770091585286154 m006 (1/5*ln(Pi)-2/3)/(5*exp(Pi)+2/5) 3770091606297399 r005 Im(z^2+c),c=-35/66+1/15*I,n=63 3770091625777715 r005 Re(z^2+c),c=-5/9+21/50*I,n=50 3770091635545590 r005 Im(z^2+c),c=1/86+20/43*I,n=49 3770091648867627 a007 Real Root Of -418*x^4-536*x^3-764*x^2-343*x-41 3770091657155390 r005 Im(z^2+c),c=-35/66+1/15*I,n=64 3770091662058814 r002 34th iterates of z^2 + 3770091691909459 r009 Re(z^3+c),c=-55/114+10/37*I,n=30 3770091701787253 r005 Im(z^2+c),c=3/122+16/35*I,n=41 3770091717736121 r002 7th iterates of z^2 + 3770091719375988 r005 Re(z^2+c),c=-25/54+23/55*I,n=56 3770091733405726 m001 (2^(1/2)-CareFree)/(-LandauRamanujan+Stephens) 3770091759677067 p004 log(24407/16741) 3770091759712600 r005 Re(z^2+c),c=-31/60+5/58*I,n=30 3770091760099422 m005 (1/3*2^(1/2)+2/3)/(2/9*Pi-1) 3770091777298379 m005 (1/2*Pi-7/8)/(2*gamma-3) 3770091784403823 r005 Im(z^2+c),c=11/38+6/23*I,n=17 3770091820987654 r005 Re(z^2+c),c=-23/30+3/4*I,n=3 3770091842563385 m001 (gamma(2)+exp(-1/2*Pi))/(GolombDickman-Paris) 3770091844077712 a001 6765/7*29^(19/47) 3770091844834107 a001 610/199*521^(10/13) 3770091847624357 a001 46368/199*199^(1/11) 3770091852875593 g002 Psi(2/5)-Psi(3/10)-Psi(5/7)-Psi(4/7) 3770091877134797 m005 (19/42+1/6*5^(1/2))/(1/6*2^(1/2)-5/11) 3770091887394810 l006 ln(3208/4677) 3770091900589162 m001 (GaussAGM+ZetaP(4))/(exp(1)-ln(2)/ln(10)) 3770091903127682 r005 Im(z^2+c),c=-27/56+34/61*I,n=4 3770091906817125 m001 (3^(1/3))^2*Tribonacci*ln(GAMMA(1/3)) 3770091955437950 s001 sum(exp(-Pi/2)^n*A157967[n],n=1..infinity) 3770091958650916 m001 (Artin-ArtinRank2)/(Zeta(5)-Ei(1)) 3770091971049483 m001 (-ZetaP(3)+ZetaP(4))/(1+Riemann3rdZero) 3770091989534790 m001 Pi-Psi(1,1/3)*(BesselI(1,2)-(1+3^(1/2))^(1/2)) 3770091990629962 s002 sum(A149488[n]/(n^2*2^n+1),n=1..infinity) 3770091991136435 r002 30th iterates of z^2 + 3770092000479401 r005 Im(z^2+c),c=-8/31+25/43*I,n=35 3770092003776614 a007 Real Root Of 253*x^4+737*x^3-554*x^2+735*x-974 3770092004998972 m001 (cos(1/5*Pi)+Landau)/(MadelungNaCl+Tribonacci) 3770092010006200 r005 Re(z^2+c),c=-35/74+11/29*I,n=46 3770092016599297 m006 (3/5*Pi^2-5)/(1/6*Pi^2+4/5) 3770092016599297 m008 (3/5*Pi^2-5)/(1/6*Pi^2+4/5) 3770092024337211 m001 (ln(5)+Cahen)/(FeigenbaumDelta+Mills) 3770092038608422 h001 (1/10*exp(2)+2/5)/(3/8*exp(2)+1/4) 3770092041497085 r005 Im(z^2+c),c=-35/66+1/15*I,n=62 3770092043684504 m001 3^(1/2)-KhinchinHarmonic^Totient 3770092045768147 l006 ln(138/5987) 3770092047697588 g005 GAMMA(6/7)*GAMMA(2/3)/GAMMA(4/9)^2 3770092063168430 r005 Re(z^2+c),c=-59/114+4/57*I,n=42 3770092082826117 r005 Im(z^2+c),c=-24/31+5/22*I,n=8 3770092099737864 m001 Khinchin^MertensB3*Khinchin^Trott 3770092102154475 r005 Im(z^2+c),c=19/52+35/61*I,n=15 3770092107100112 m001 1/ln(cos(Pi/12))^2/GAMMA(5/6)^2/sqrt(3) 3770092121411060 h001 (-4*exp(4)-3)/(-7*exp(2)-7) 3770092122029531 r005 Im(z^2+c),c=-11/114+29/55*I,n=46 3770092127014076 p004 log(13009/8923) 3770092138325438 a001 5/4*521^(3/17) 3770092144529735 l006 ln(8459/8784) 3770092152197719 r002 63th iterates of z^2 + 3770092173923855 m001 ln(Robbin)/Rabbit/cosh(1) 3770092174159189 r002 7th iterates of z^2 + 3770092181987043 a007 Real Root Of -159*x^4-635*x^3-224*x^2-289*x+189 3770092182260532 a008 Real Root of (2+6*x-5*x^2+4*x^4-x^5) 3770092191519387 a007 Real Root Of -279*x^4-888*x^3+371*x^2-882*x+182 3770092210802921 m001 Pi*StronglyCareFree+MertensB3 3770092213442288 h001 (2/11*exp(2)+5/6)/(8/11*exp(2)+2/5) 3770092219656717 m001 (Catalan-exp(-1/2*Pi))/(GAMMA(19/24)+CareFree) 3770092226472028 m001 -GAMMA(19/24)/(-exp(sqrt(2))+1) 3770092250876729 a001 1597/199*521^(8/13) 3770092261519515 l006 ln(5715/8332) 3770092276274612 r002 61th iterates of z^2 + 3770092290667113 r002 14th iterates of z^2 + 3770092295185193 a001 11/2178309*317811^(16/47) 3770092308830224 a007 Real Root Of 2*x^4-272*x^3-862*x^2+646*x-292 3770092311797689 r005 Im(z^2+c),c=1/48+17/37*I,n=48 3770092317577378 r005 Im(z^2+c),c=-2/15+35/64*I,n=53 3770092317947630 a007 Real Root Of 187*x^4+776*x^3-7*x^2-784*x+948 3770092337658716 r002 5th iterates of z^2 + 3770092341896039 r005 Re(z^2+c),c=1/3+7/60*I,n=18 3770092370916356 r001 62i'th iterates of 2*x^2-1 of 3770092376715369 m001 FransenRobinson/(GAMMA(17/24)-cos(1)) 3770092405797292 r009 Re(z^3+c),c=-21/50+29/49*I,n=45 3770092407922154 m008 (3/4*Pi^3+1/5)/(2*Pi^3+1/5) 3770092415959057 m005 (1/6*Pi-3)/(4*2^(1/2)-5) 3770092419499208 r005 Im(z^2+c),c=1/13+18/29*I,n=44 3770092419964979 m001 Grothendieck^FeigenbaumC/LandauRamanujan 3770092425912685 m001 (GaussAGM(1,1/sqrt(2))+1)/(-GAMMA(1/6)+2/3) 3770092437272873 m005 (1/2*2^(1/2)+5/11)/(3*Catalan+1/3) 3770092438532818 m001 exp(Trott)/Paris/exp(1) 3770092444183721 a007 Real Root Of 303*x^4-319*x^3-508*x^2-347*x+214 3770092451621838 a001 21^(17/39) 3770092453224336 r009 Re(z^3+c),c=-45/98+3/62*I,n=31 3770092453867279 m001 (GAMMA(2/3)-cos(1))/(-HardyLittlewoodC5+Kac) 3770092460960238 r009 Im(z^3+c),c=-29/126+2/5*I,n=17 3770092474676635 a001 47/610*13^(13/21) 3770092483477616 r002 27th iterates of z^2 + 3770092485188598 m001 Gompertz^arctan(1/2)-HardyLittlewoodC5 3770092497142108 r005 Re(z^2+c),c=-89/94+9/32*I,n=8 3770092508122198 r005 Im(z^2+c),c=29/98+7/30*I,n=33 3770092514168411 r005 Im(z^2+c),c=1/110+7/15*I,n=62 3770092517490071 r005 Im(z^2+c),c=23/78+4/17*I,n=46 3770092529682813 h005 exp(cos(Pi*13/37)/cos(Pi*23/59)) 3770092529817305 a003 cos(Pi*14/113)-cos(Pi*35/111) 3770092545458898 a003 sin(Pi*48/115)/cos(Pi*43/103) 3770092547491475 q001 774/2053 3770092566743060 m001 cos(1)/BesselI(0,2)*BesselI(1,2) 3770092573049444 r005 Re(z^2+c),c=-16/31+5/52*I,n=35 3770092581710929 r005 Re(z^2+c),c=-29/60+15/44*I,n=33 3770092582084428 m005 (1/2*Catalan+11/12)/(4/11*Pi-7/9) 3770092612247188 r009 Re(z^3+c),c=-11/23+15/56*I,n=21 3770092619258665 a001 123/1346269*6765^(9/56) 3770092632121745 a007 Real Root Of -890*x^4+259*x^3-601*x^2+108*x+158 3770092642826373 p001 sum(1/(370*n+267)/(64^n),n=0..infinity) 3770092647194951 r005 Im(z^2+c),c=-11/48+24/43*I,n=24 3770092664398816 r005 Re(z^2+c),c=-19/54+19/33*I,n=49 3770092676303717 a007 Real Root Of 91*x^4+561*x^3+713*x^2-936*x-426 3770092678390321 r005 Re(z^2+c),c=-11/18+19/100*I,n=13 3770092680456853 r005 Im(z^2+c),c=-29/78+13/21*I,n=45 3770092688269232 m005 (7/12+1/4*5^(1/2))/(3/8*2^(1/2)-5/6) 3770092709915783 r005 Im(z^2+c),c=1/110+7/15*I,n=59 3770092711381411 m001 1/GAMMA(5/24)*ln((3^(1/3)))^2/cos(Pi/5) 3770092712444004 m001 (BesselI(0,1)+4)/(-GAMMA(5/24)+3) 3770092714093257 a008 Real Root of x^2-x-142513 3770092736497902 a007 Real Root Of 379*x^4+122*x^3+651*x^2-672*x-347 3770092738821258 a007 Real Root Of -240*x^4+55*x^3-770*x^2+689*x+377 3770092740255854 l006 ln(2507/3655) 3770092748379797 r002 61th iterates of z^2 + 3770092756422733 r005 Re(z^2+c),c=-13/32+8/21*I,n=9 3770092770028639 h001 (1/5*exp(1)+5/9)/(10/11*exp(1)+4/9) 3770092777637877 r005 Re(z^2+c),c=7/64+17/28*I,n=3 3770092779339468 m005 (1/2*2^(1/2)-4)/(4/9*3^(1/2)-6/7) 3770092797109930 m001 (Catalan-exp(1/exp(1)))/(Landau+Thue) 3770092801506141 a007 Real Root Of 166*x^4+653*x^3-151*x^2-879*x+288 3770092804976798 r002 43th iterates of z^2 + 3770092805687209 r009 Re(z^3+c),c=-45/106+11/56*I,n=14 3770092814311728 a001 123/4181*9227465^(11/15) 3770092815046569 m001 (Magata+ZetaP(2))/(Ei(1,1)-arctan(1/3)) 3770092824345725 m001 (Zeta(1/2)+DuboisRaymond)/(ThueMorse-ZetaP(4)) 3770092839687036 m001 (-Niven+Trott2nd)/(exp(1)+3^(1/2)) 3770092847387434 m001 1/ln(FeigenbaumC)*Niven/RenyiParking 3770092848233813 r005 Re(z^2+c),c=9/29+4/57*I,n=53 3770092855872342 r004 Im(z^2+c),c=-5/34+11/20*I,z(0)=I,n=42 3770092857447007 a001 123/832040*12586269025^(11/15) 3770092864157248 m002 -E^Pi+Pi^4-Pi^3*Log[Pi]-ProductLog[Pi] 3770092865005758 m005 (1/2*exp(1)-1/8)/(1/3*3^(1/2)-1/4) 3770092871509166 a007 Real Root Of 114*x^4+359*x^3-362*x^2-505*x-552 3770092893342188 a007 Real Root Of -837*x^4-32*x^3-226*x^2+153*x+105 3770092896862981 p001 sum((-1)^n/(383*n+253)/(8^n),n=0..infinity) 3770092899194745 m005 (1/2*Pi-4/7)/(7/12*Pi+9/11) 3770092910696256 a001 2584/199*521^(7/13) 3770092912264019 r002 26th iterates of z^2 + 3770092919509474 m001 Trott+ZetaP(3)^Stephens 3770092947560682 r005 Im(z^2+c),c=-35/66+1/15*I,n=60 3770092948125469 a007 Real Root Of -188*x^4-419*x^3+789*x^2-941*x+766 3770092950617051 a007 Real Root Of 21*x^4+773*x^3-708*x^2-105*x-751 3770092952098652 r005 Im(z^2+c),c=1/110+7/15*I,n=51 3770092956617312 h001 (1/3*exp(1)+2/9)/(4/5*exp(1)+9/11) 3770092956617312 m005 (1/3*exp(1)+2/9)/(4/5*exp(1)+9/11) 3770092960339757 a008 Real Root of x^2-x-141759 3770092964246490 r009 Re(z^3+c),c=-31/64+7/26*I,n=35 3770092992453213 a007 Real Root Of -268*x^4-823*x^3+505*x^2-881*x-458 3770092998905905 r002 18th iterates of z^2 + 3770093017817672 m005 (1/2*Catalan+1/6)/(4*2^(1/2)-4) 3770093018761963 a003 sin(Pi*28/113)/cos(Pi*48/109) 3770093024375575 b008 -38+5^(-3/4) 3770093031619931 a007 Real Root Of 273*x^4+713*x^3-919*x^2+967*x-238 3770093056897230 r005 Re(z^2+c),c=-57/110+3/55*I,n=41 3770093061140089 a007 Real Root Of 76*x^4+102*x^3-454*x^2+682*x-864 3770093070470932 a007 Real Root Of 144*x^4+545*x^3+107*x^2+322*x-194 3770093079101719 m001 (Tribonacci+TwinPrimes)/(Cahen-Mills) 3770093104265312 m001 (GAMMA(2/3)-Ei(1))/(exp(1/exp(1))+gamma(2)) 3770093108885160 m005 (1/2*3^(1/2)+2/9)/(1/7*Zeta(3)-1/7) 3770093110557363 r005 Re(z^2+c),c=-53/102+7/44*I,n=15 3770093124177403 a007 Real Root Of -892*x^4+215*x^3+264*x^2+862*x+317 3770093141425657 l006 ln(6820/9943) 3770093151916952 l006 ln(151/6551) 3770093151916952 p004 log(6551/151) 3770093194784042 r005 Im(z^2+c),c=1/110+7/15*I,n=58 3770093209773146 a007 Real Root Of -206*x^4+386*x^3+114*x^2+945*x-389 3770093221667877 r005 Re(z^2+c),c=-109/86+11/13*I,n=2 3770093227293917 m008 (3*Pi^4-1)/(5/6*Pi^2-1/2) 3770093233573076 r005 Im(z^2+c),c=11/40+8/31*I,n=64 3770093238402092 r002 21th iterates of z^2 + 3770093242184929 a007 Real Root Of -231*x^4-738*x^3+183*x^2-939*x+980 3770093251591711 r005 Re(z^2+c),c=7/30+9/22*I,n=50 3770093261243186 m001 (Mills+MinimumGamma)/(GAMMA(7/12)-Kolakoski) 3770093264785112 r005 Re(z^2+c),c=-65/126+5/39*I,n=19 3770093280708245 m001 (KhinchinLevy+ZetaP(3))/(5^(1/2)+exp(1/Pi)) 3770093282043807 r005 Im(z^2+c),c=-25/46+35/58*I,n=24 3770093288856123 r002 13th iterates of z^2 + 3770093294125592 p004 log(28807/19759) 3770093297976131 m001 FransenRobinson/(ArtinRank2-3^(1/3)) 3770093300986805 m001 Pi/(Psi(1,1/3)*cos(1/5*Pi)-Zeta(1,-1)) 3770093307122320 r005 Re(z^2+c),c=-29/22+7/106*I,n=56 3770093308234859 m001 BesselJ(1,1)*PrimesInBinary+DuboisRaymond 3770093316240410 m001 (2^(1/2)-PrimesInBinary)/(Sarnak+Tetranacci) 3770093328080021 m001 (gamma(1)-Paris)/(ReciprocalLucas+Sierpinski) 3770093335014778 r005 Im(z^2+c),c=-2/29+21/41*I,n=24 3770093343402690 m001 (ln(Pi)+cos(1/12*Pi)*Sierpinski)/cos(1/12*Pi) 3770093347845647 r005 Im(z^2+c),c=-3/110+16/33*I,n=17 3770093357919657 r005 Im(z^2+c),c=-23/122+27/40*I,n=32 3770093364197530 r002 3th iterates of z^2 + 3770093374611993 l006 ln(4313/6288) 3770093392302534 m005 (1/3*exp(1)+1/6)/(7/8*5^(1/2)+8/9) 3770093394187531 b008 1/4+Sqrt[5]+E^(1/4) 3770093394214912 r005 Im(z^2+c),c=-7/10+32/221*I,n=46 3770093416559722 a007 Real Root Of 17*x^4+655*x^3+547*x^2+609*x+196 3770093420623096 r002 37th iterates of z^2 + 3770093423771481 r008 a(0)=4,K{-n^6,-12-35*n^3+3*n^2+48*n} 3770093460216505 r005 Im(z^2+c),c=17/66+13/47*I,n=51 3770093465773586 m001 Robbin^(Totient/LambertW(1)) 3770093472087079 m001 (ln(5)-Trott)/(Pi+ln(3)) 3770093479722259 r002 39th iterates of z^2 + 3770093503254076 r005 Re(z^2+c),c=-15/22+25/82*I,n=33 3770093513677022 r009 Im(z^3+c),c=-59/114+11/43*I,n=46 3770093538628381 a007 Real Root Of 65*x^4+131*x^3-322*x^2+204*x-766 3770093539786926 a007 Real Root Of -202*x^4-73*x^3+683*x^2+517*x-284 3770093544988133 r009 Im(z^3+c),c=-29/126+2/5*I,n=19 3770093558980045 a001 5473/161*123^(1/2) 3770093560549211 b008 12*Pi+Sech[7] 3770093560852514 b008 12*Pi+Csch[7] 3770093563233588 a007 Real Root Of 85*x^4+21*x^3-4*x^2-175*x-66 3770093571179711 r002 50th iterates of z^2 + 3770093582638160 r005 Im(z^2+c),c=-1/31+28/57*I,n=48 3770093586554460 a007 Real Root Of -422*x^4+846*x^3-105*x^2+804*x-325 3770093591938574 a007 Real Root Of -51*x^4+745*x^3-848*x^2-614*x-70 3770093593627831 a007 Real Root Of -268*x^4-835*x^3+586*x^2-230*x+202 3770093593780451 r002 4th iterates of z^2 + 3770093594500325 r009 Im(z^3+c),c=-37/98+10/29*I,n=10 3770093608627058 r005 Re(z^2+c),c=-21/46+27/58*I,n=52 3770093611648427 r005 Im(z^2+c),c=5/48+17/42*I,n=16 3770093619013108 m001 (AlladiGrinstead-OneNinth)/(Sarnak-Sierpinski) 3770093623945582 r002 22th iterates of z^2 + 3770093629565164 r005 Re(z^2+c),c=21/62+11/27*I,n=56 3770093632107202 r005 Im(z^2+c),c=-3/34+23/44*I,n=49 3770093634512429 l006 ln(6119/8921) 3770093639195272 r009 Im(z^3+c),c=-55/106+7/30*I,n=49 3770093647030333 r005 Im(z^2+c),c=5/62+13/31*I,n=20 3770093649701587 m008 (3*Pi^2-1/6)/(4/5*Pi^4+1/6) 3770093657604650 r009 Im(z^3+c),c=-55/114+13/48*I,n=38 3770093658001560 l006 ln(7522/7811) 3770093671909537 a007 Real Root Of -141*x^4-488*x^3+438*x^2+987*x-169 3770093673599459 m001 GAMMA(17/24)/ln(2+3^(1/2))/sin(1/12*Pi) 3770093673599459 m001 GAMMA(17/24)/ln(2+sqrt(3))/sin(Pi/12) 3770093683184651 r005 Im(z^2+c),c=25/78+7/34*I,n=37 3770093686566672 a007 Real Root Of 198*x^4-412*x^3-762*x^2-426*x-15 3770093693912847 r009 Im(z^3+c),c=-43/126+24/37*I,n=28 3770093711192624 a001 377/199*1364^(11/15) 3770093725932070 a007 Real Root Of 44*x^4+77*x^3-409*x^2-155*x+466 3770093738048904 a007 Real Root Of -255*x^4-771*x^3+745*x^2+119*x+61 3770093748439906 r002 31th iterates of z^2 + 3770093749196279 m001 (Pi-BesselK(1,1))/(MasserGramain+Trott2nd) 3770093759005784 a003 sin(Pi*22/105)-sin(Pi*52/115) 3770093760143041 m001 (1-BesselJ(0,1))/(2*Pi/GAMMA(5/6)+Robbin) 3770093766772373 m001 (Kolakoski-PlouffeB)/(Artin+Bloch) 3770093774773456 m005 (1/2*exp(1)-9/10)/(5/6*Catalan+5/11) 3770093775437180 s002 sum(A247983[n]/(n^3*2^n+1),n=1..infinity) 3770093776981147 m001 (GAMMA(17/24)+Kolakoski)/(ln(gamma)-gamma(3)) 3770093782423508 r005 Im(z^2+c),c=-57/46+11/51*I,n=6 3770093809614918 m001 1/Trott^2/exp(Riemann1stZero)^2*Catalan^2 3770093813976445 r002 12th iterates of z^2 + 3770093817592709 r002 9th iterates of z^2 + 3770093828618930 r005 Re(z^2+c),c=-2/3+23/106*I,n=9 3770093853186333 r002 37th iterates of z^2 + 3770093853749205 r002 20th iterates of z^2 + 3770093872064419 m005 (1/2*Catalan-1/2)/(7/12*gamma+7/9) 3770093880736059 r002 59th iterates of z^2 + 3770093889262403 m001 (Sierpinski+StolarskyHarborth)/(Si(Pi)-ln(Pi)) 3770093890414605 m001 ln(Khintchine)/MertensB1/Zeta(9) 3770093893882492 a001 76/233*233^(22/49) 3770093897381821 m005 (1/2*gamma-5/8)/(7/12*gamma+5/9) 3770093914814810 r009 Im(z^3+c),c=-29/70+17/53*I,n=29 3770093930433912 m001 1/GAMMA(1/24)*Sierpinski/ln(GAMMA(11/12))^2 3770093959111796 a001 46368/521*123^(3/10) 3770093959618829 p003 LerchPhi(1/1024,5,3/62) 3770093959886167 r005 Im(z^2+c),c=-19/102+37/56*I,n=5 3770093960389974 p003 LerchPhi(1/512,5,3/62) 3770093961932425 p003 LerchPhi(1/256,5,3/62) 3770093962084772 r005 Re(z^2+c),c=-33/64+2/19*I,n=27 3770093962729431 m001 (MasserGramain-ZetaQ(3))/(ln(2+3^(1/2))+Artin) 3770093965166088 p003 LerchPhi(1/125,5,3/62) 3770093966746232 p003 LerchPhi(1/100,5,3/62) 3770093971191581 p003 LerchPhi(1/64,5,3/62) 3770093977200287 m001 (-Zeta(5)+GAMMA(2/3))/(ln(2)/ln(10)+cos(1)) 3770093978468533 a007 Real Root Of -287*x^4+906*x^3-526*x^2+496*x-18 3770093982255238 v002 sum(1/(5^n*(3*n^2+37*n+20)),n=1..infinity) 3770093983549053 p003 LerchPhi(1/32,5,3/62) 3770093984549962 r005 Re(z^2+c),c=-1/20+31/43*I,n=55 3770093990475223 p003 LerchPhi(1/25,5,3/62) 3770093993499481 a007 Real Root Of -271*x^4-813*x^3+869*x^2+390*x+302 3770094001416757 a007 Real Root Of 213*x^4+612*x^3-500*x^2+988*x+595 3770094004824039 r005 Im(z^2+c),c=15/86+19/54*I,n=34 3770094008161553 r005 Re(z^2+c),c=-29/56+3/47*I,n=33 3770094008305237 p003 LerchPhi(1/16,5,3/62) 3770094023912136 r005 Im(z^2+c),c=-47/60+18/47*I,n=4 3770094024795024 m001 Zeta(5)/(Sierpinski-Zeta(1,-1)) 3770094024840200 p003 LerchPhi(1/12,5,3/62) 3770094024871094 q001 1243/3297 3770094035549698 a007 Real Root Of 211*x^4+903*x^3+463*x^2+27*x-718 3770094038086110 p003 LerchPhi(1/10,5,3/62) 3770094039343915 m001 Lehmer^(LandauRamanujan/HardyLittlewoodC5) 3770094057985144 p003 LerchPhi(1/8,5,3/62) 3770094061622764 r005 Re(z^2+c),c=-47/98+8/23*I,n=35 3770094073820079 m005 (23/28+1/4*5^(1/2))/(8/11*Catalan-3/10) 3770094075300637 a007 Real Root Of 516*x^4+145*x^3+734*x^2-382*x-251 3770094082699754 l006 ln(164/7115) 3770094090844892 a001 13/15127*521^(13/55) 3770094091231646 p003 LerchPhi(1/6,5,3/62) 3770094098117433 p004 log(35251/24179) 3770094098586211 m001 (CareFree+Lehmer)/(GAMMA(3/4)-ln(2^(1/2)+1)) 3770094104636831 r009 Im(z^3+c),c=-12/23+11/34*I,n=34 3770094110674102 r005 Im(z^2+c),c=1/32+29/64*I,n=31 3770094117903252 p003 LerchPhi(1/5,5,3/62) 3770094135150007 a001 4181/199*521^(6/13) 3770094136675300 a007 Real Root Of -337*x^4-957*x^3+999*x^2-656*x+128 3770094152925160 r005 Re(z^2+c),c=-19/58+25/49*I,n=10 3770094158037068 p003 LerchPhi(1/4,5,3/62) 3770094159197196 m009 (3*Psi(1,2/3)-1/2)/(2/3*Psi(1,3/4)-4) 3770094161474467 a007 Real Root Of 532*x^4+170*x^3-296*x^2-453*x+193 3770094174975835 s001 sum(exp(-2*Pi)^n*A037514[n],n=1..infinity) 3770094187297825 s001 sum(exp(-2*Pi)^n*A037717[n],n=1..infinity) 3770094191369238 m004 -3+(5*Sqrt[5]*Pi)/6+Tan[Sqrt[5]*Pi] 3770094204994046 a007 Real Root Of -663*x^4+836*x^3-715*x^2+836*x+475 3770094211007434 m001 (Magata-Porter)/(Robbin-Salem) 3770094213557311 a007 Real Root Of 258*x^4+794*x^3-600*x^2+183*x-357 3770094224798070 s001 sum(exp(-2*Pi)^n*A019476[n],n=1..infinity) 3770094224798070 s001 sum(exp(-2*Pi)^n*A019475[n],n=1..infinity) 3770094225272904 p003 LerchPhi(1/3,5,3/62) 3770094225376331 a007 Real Root Of -689*x^4+697*x^3-357*x^2+305*x+217 3770094230070303 a005 (1/sin(58/229*Pi))^134 3770094231857135 r005 Im(z^2+c),c=-11/118+21/40*I,n=44 3770094233352343 r002 19th iterates of z^2 + 3770094241652611 a007 Real Root Of 204*x^4+718*x^3-33*x^2+395*x-780 3770094247119161 r005 Im(z^2+c),c=-27/34+13/93*I,n=18 3770094255193786 l006 ln(1806/2633) 3770094266890268 m008 (1/4*Pi^3-1/2)/(2*Pi^6+2/3) 3770094273907342 r005 Re(z^2+c),c=-31/24+1/56*I,n=18 3770094297455652 r005 Re(z^2+c),c=-21/46+18/37*I,n=53 3770094309273146 r005 Im(z^2+c),c=-1/16+30/59*I,n=47 3770094313765197 p001 sum(1/(285*n+182)/n/(6^n),n=1..infinity) 3770094338960142 g007 Psi(2,1/12)+Psi(2,2/11)-14*Zeta(3)-Psi(2,3/8) 3770094341649280 m005 (1/2*Zeta(3)-1/3)/(-125/154+1/22*5^(1/2)) 3770094358438211 a007 Real Root Of 303*x^4-401*x^3+899*x^2-739*x-434 3770094361110406 p003 LerchPhi(1/2,5,3/62) 3770094364192547 m002 2/(Pi^4*ProductLog[Pi])+ProductLog[Pi]/3 3770094379116829 m001 (ln(2^(1/2)+1)-Weierstrass)/(Zeta(5)-ln(Pi)) 3770094436728809 a001 90481/7*34^(22/23) 3770094448759835 a007 Real Root Of 138*x^4+454*x^3-417*x^2-484*x+551 3770094449040994 r002 8th iterates of z^2 + 3770094459732633 r002 15th iterates of z^2 + 3770094476358916 r009 Im(z^3+c),c=-13/34+19/56*I,n=34 3770094477808212 m005 (1/2*Pi-2)/(7/11*Catalan+5/9) 3770094483455384 m005 (1/3*exp(1)+1/5)/(4*gamma+5/8) 3770094487556349 r005 Re(z^2+c),c=-9/38+36/61*I,n=19 3770094488321635 r005 Re(z^2+c),c=-49/106+21/50*I,n=61 3770094490578056 h001 (1/12*exp(1)+6/11)/(3/5*exp(1)+5/12) 3770094495274991 r009 Re(z^3+c),c=-14/31+28/51*I,n=9 3770094500378132 r005 Im(z^2+c),c=-25/18+7/241*I,n=19 3770094506973231 r009 Re(z^3+c),c=-11/23+14/51*I,n=18 3770094511942693 b008 -1+2^(6/13) 3770094519837476 m001 (5^(1/2)-FeigenbaumD)/(-Gompertz+Grothendieck) 3770094531147090 a007 Real Root Of -190*x^4-643*x^3+15*x^2-854*x+496 3770094535895468 a001 4181/2207*18^(5/21) 3770094544855116 r002 26th iterates of z^2 + 3770094558433872 m001 (-GaussKuzminWirsing+Magata)/(Ei(1)-exp(1)) 3770094564291029 m001 GAMMA(1/24)/exp(GolombDickman)*sqrt(3)^2 3770094573351807 r005 Im(z^2+c),c=17/56+11/49*I,n=53 3770094589343954 a001 5/4*141422324^(1/17) 3770094589389275 m009 (2/3*Psi(1,3/4)-5/6)/(4/5*Psi(1,2/3)-1/6) 3770094605896283 r005 Im(z^2+c),c=7/118+23/53*I,n=20 3770094616935234 h001 (9/10*exp(2)+3/4)/(5/11*exp(1)+8/11) 3770094628588057 r005 Re(z^2+c),c=17/48+19/64*I,n=7 3770094634203213 r005 Im(z^2+c),c=6/25+5/17*I,n=40 3770094634925869 r005 Im(z^2+c),c=25/86+5/21*I,n=25 3770094635069798 r008 a(0)=4,K{-n^6,40-42*n^3+50*n^2-44*n} 3770094636339034 r009 Im(z^3+c),c=-3/23+13/31*I,n=6 3770094643348543 r005 Im(z^2+c),c=-7/32+13/18*I,n=38 3770094645137946 m001 (ln(2)/ln(10)-sin(1))/(-3^(1/3)+ZetaQ(3)) 3770094664678639 r005 Im(z^2+c),c=-17/78+26/43*I,n=59 3770094671598264 r002 15th iterates of z^2 + 3770094678211657 r002 40th iterates of z^2 + 3770094682439506 m005 (1/2*3^(1/2)+5/9)/(3/10*exp(1)-7/9) 3770094686891353 r005 Im(z^2+c),c=-9/98+32/61*I,n=58 3770094690578283 a001 55/3*3^(21/32) 3770094709265304 m001 (DuboisRaymond+Sarnak)/(cos(1)+Ei(1)) 3770094711184784 p004 log(12143/8329) 3770094717711163 h001 (2/7*exp(1)+7/10)/(1/2*exp(2)+2/9) 3770094721353412 m005 (1/2*Pi+4/9)/(7/12*Zeta(3)-1/6) 3770094723049293 m001 ln(Niven)/Bloch/sqrt(3)^2 3770094753439260 a007 Real Root Of 128*x^4-955*x^3+948*x^2+874*x+141 3770094760740314 g001 GAMMA(1/11,43/61) 3770094765791997 r005 Re(z^2+c),c=-61/118+5/63*I,n=28 3770094776977563 a007 Real Root Of 314*x^4-857*x^3+832*x^2-932*x+34 3770094782023628 r009 Im(z^3+c),c=-13/122+26/61*I,n=5 3770094788816396 m001 1/cos(Pi/12)*TreeGrowth2nd^2*ln(cosh(1))^2 3770094790495169 m005 (1/2*Zeta(3)-1/2)/(7/9*Catalan-4/9) 3770094796643668 m001 Zeta(5)^2*(3^(1/3))/exp(sqrt(2)) 3770094802975659 r005 Im(z^2+c),c=7/78+17/41*I,n=42 3770094805892338 m009 (3*Psi(1,2/3)-2/5)/(1/2*Psi(1,2/3)+4/5) 3770094808881388 m001 (Zeta(5)-HeathBrownMoroz)/(Magata-TwinPrimes) 3770094818921057 m005 (1/2*gamma-1/6)/(8/9*exp(1)+9/11) 3770094831170700 a007 Real Root Of 49*x^4+7*x^3-498*x^2+514*x-508 3770094837433399 l006 ln(6523/9510) 3770094848070824 r005 Im(z^2+c),c=-35/66+1/15*I,n=58 3770094859378763 m001 QuadraticClass^LaplaceLimit*HardyLittlewoodC5 3770094876756714 l006 ln(177/7679) 3770094880488940 m005 (-9/28+1/4*5^(1/2))/(-5/24+3/8*5^(1/2)) 3770094891444637 h001 (3/10*exp(2)+9/11)/(1/7*exp(1)+5/12) 3770094902643297 r002 20th iterates of z^2 + 3770094914563001 r009 Re(z^3+c),c=-51/82+11/47*I,n=27 3770094919498759 r002 33th iterates of z^2 + 3770094931892803 r002 12th iterates of z^2 + 3770094942739790 r002 20th iterates of z^2 + 3770094950204174 r005 Im(z^2+c),c=-91/102+1/35*I,n=22 3770094958587398 m001 1/TreeGrowth2nd^2*ln(Robbin)^2/GAMMA(7/12)^2 3770095005911729 a001 377/199*3571^(11/17) 3770095009751722 r005 Im(z^2+c),c=-19/106+27/46*I,n=43 3770095011502555 r005 Re(z^2+c),c=-2/3+58/123*I,n=25 3770095022805157 r005 Re(z^2+c),c=-53/122+25/53*I,n=26 3770095033928405 r005 Re(z^2+c),c=-31/66+23/59*I,n=49 3770095037185748 r005 Im(z^2+c),c=5/18+12/47*I,n=32 3770095040242363 a007 Real Root Of 184*x^4+872*x^3+921*x^2+739*x-750 3770095049877626 m006 (3*Pi+2/3)/(5*exp(2*Pi)-3/4) 3770095049964903 m001 (BesselI(1,1)-cos(1))/(-GAMMA(17/24)+Kac) 3770095060355744 l006 ln(4717/6877) 3770095069943516 a001 1364/2504730781961*20365011074^(21/22) 3770095069946238 a001 124/9303105*514229^(21/22) 3770095071999900 r009 Re(z^3+c),c=-51/110+14/57*I,n=48 3770095103511176 r005 Re(z^2+c),c=-5/78+44/63*I,n=52 3770095110014913 m001 (-Zeta(1,-1)+Sarnak)/(Catalan+3^(1/3)) 3770095112821117 r005 Re(z^2+c),c=-18/31+4/33*I,n=6 3770095122222451 m001 (GAMMA(7/24)-Lehmer)/TwinPrimes 3770095143933033 a001 6765/199*521^(5/13) 3770095151535951 a001 521/17711*514229^(1/53) 3770095152298673 a001 8/271443*3^(13/58) 3770095154329663 m001 (ArtinRank2-Thue)/(Pi+ln(Pi)) 3770095156222220 a001 89/843*9349^(17/19) 3770095160139684 a001 5473/2889*18^(5/21) 3770095162261623 r005 Re(z^2+c),c=11/102+17/28*I,n=31 3770095172239877 a001 377/199*9349^(11/19) 3770095181389589 r009 Im(z^3+c),c=-23/42+17/50*I,n=64 3770095185173541 a007 Real Root Of 226*x^4+557*x^3-940*x^2+398*x-949 3770095189721506 a001 89/843*24476^(17/21) 3770095190429209 r008 a(0)=0,K{-n^6,-24-8*n+34*n^2-29*n^3} 3770095190853638 m001 1/ln(BesselJ(0,1))*MadelungNaCl/sqrt(3) 3770095191094784 m008 (3/4*Pi^5+5)/(1/5*Pi^5+1) 3770095193915885 a001 377/199*24476^(11/21) 3770095194137356 a001 89/843*64079^(17/23) 3770095194816000 a001 89/843*45537549124^(1/3) 3770095194816000 a001 89/843*(1/2+1/2*5^(1/2))^17 3770095194816011 a001 89/843*12752043^(1/2) 3770095195064418 a001 89/843*103682^(17/24) 3770095195557651 m006 (1/2/Pi+5)/(3/5*exp(Pi)-1/5) 3770095196673472 a001 89/843*39603^(17/22) 3770095196773200 a001 377/199*64079^(11/23) 3770095197212302 a001 377/199*7881196^(1/3) 3770095197212322 a001 377/199*312119004989^(1/5) 3770095197212322 a001 377/199*(1/2+1/2*5^(1/2))^11 3770095197212322 a001 377/199*1568397607^(1/4) 3770095197373063 a001 377/199*103682^(11/24) 3770095198414216 a001 377/199*39603^(1/2) 3770095201452581 m005 (1/2*gamma-4/5)/(4/5*exp(1)-9/11) 3770095204310239 m005 (1/3*Catalan+1/2)/(5*gamma-3/4) 3770095206274016 a001 377/199*15127^(11/20) 3770095208820436 a001 89/843*15127^(17/20) 3770095220759171 h001 (6/11*exp(1)+8/9)/(8/11*exp(2)+11/12) 3770095234487085 a003 sin(Pi*14/89)*sin(Pi*31/106) 3770095251215706 a001 28657/15127*18^(5/21) 3770095261477994 m008 (4/5*Pi+1/3)/(1/4*Pi^5-1) 3770095264503519 a001 75025/39603*18^(5/21) 3770095266223183 a001 377/199*5778^(11/18) 3770095266442185 a001 98209/51841*18^(5/21) 3770095266725032 a001 514229/271443*18^(5/21) 3770095266766299 a001 1346269/710647*18^(5/21) 3770095266772320 a001 1762289/930249*18^(5/21) 3770095266773198 a001 9227465/4870847*18^(5/21) 3770095266773326 a001 24157817/12752043*18^(5/21) 3770095266773345 a001 31622993/16692641*18^(5/21) 3770095266773348 a001 165580141/87403803*18^(5/21) 3770095266773348 a001 433494437/228826127*18^(5/21) 3770095266773348 a001 567451585/299537289*18^(5/21) 3770095266773348 a001 2971215073/1568397607*18^(5/21) 3770095266773348 a001 7778742049/4106118243*18^(5/21) 3770095266773348 a001 10182505537/5374978561*18^(5/21) 3770095266773348 a001 53316291173/28143753123*18^(5/21) 3770095266773348 a001 139583862445/73681302247*18^(5/21) 3770095266773348 a001 182717648081/96450076809*18^(5/21) 3770095266773348 a001 956722026041/505019158607*18^(5/21) 3770095266773348 a001 10610209857723/5600748293801*18^(5/21) 3770095266773348 a001 591286729879/312119004989*18^(5/21) 3770095266773348 a001 225851433717/119218851371*18^(5/21) 3770095266773348 a001 21566892818/11384387281*18^(5/21) 3770095266773348 a001 32951280099/17393796001*18^(5/21) 3770095266773348 a001 12586269025/6643838879*18^(5/21) 3770095266773348 a001 1201881744/634430159*18^(5/21) 3770095266773348 a001 1836311903/969323029*18^(5/21) 3770095266773348 a001 701408733/370248451*18^(5/21) 3770095266773348 a001 66978574/35355581*18^(5/21) 3770095266773349 a001 102334155/54018521*18^(5/21) 3770095266773357 a001 39088169/20633239*18^(5/21) 3770095266773405 a001 3732588/1970299*18^(5/21) 3770095266773741 a001 5702887/3010349*18^(5/21) 3770095266776041 a001 2178309/1149851*18^(5/21) 3770095266791803 a001 208010/109801*18^(5/21) 3770095266899841 a001 317811/167761*18^(5/21) 3770095267640346 a001 121393/64079*18^(5/21) 3770095272715839 a001 11592/6119*18^(5/21) 3770095272805190 m001 (MertensB1+TwinPrimes)/(ln(gamma)-Ei(1)) 3770095301469149 a001 89/843*5778^(17/18) 3770095307193793 r002 2i'th iterates of 2*x/(1-x^2) of 3770095307503785 a001 17711/9349*18^(5/21) 3770095317427372 a003 cos(Pi*9/100)*cos(Pi*39/80) 3770095326049057 m001 1/ln(FeigenbaumB)^2*FeigenbaumDelta*exp(1) 3770095331488135 r005 Im(z^2+c),c=1/48+17/37*I,n=54 3770095351074472 m001 (Si(Pi)+ln(3))/(-gamma(1)+Rabbit) 3770095363720827 h001 (1/7*exp(1)+5/7)/(4/5*exp(1)+3/4) 3770095382517593 a003 cos(Pi*34/111)*cos(Pi*57/119) 3770095403701387 r005 Re(z^2+c),c=-14/31+23/53*I,n=33 3770095408837102 p001 sum((-1)^n/(294*n+265)/(512^n),n=0..infinity) 3770095424957363 m001 (BesselJ(1,1)+Cahen)/(3^(1/2)-exp(1/exp(1))) 3770095425948969 r005 Re(z^2+c),c=-37/114+22/39*I,n=31 3770095436616966 a007 Real Root Of 931*x^4-663*x^3-434*x^2-672*x-246 3770095442386849 r005 Im(z^2+c),c=-3/32+10/19*I,n=25 3770095458230166 a007 Real Root Of 142*x^4+457*x^3-99*x^2+737*x-13 3770095471726663 s002 sum(A175533[n]/(n*10^n-1),n=1..infinity) 3770095487441812 r009 Im(z^3+c),c=-13/34+19/56*I,n=35 3770095496549546 a001 1/2207*(1/2*5^(1/2)+1/2)^7*3^(23/24) 3770095497560960 m001 (-gamma(3)+ErdosBorwein)/(cos(1)-cos(1/12*Pi)) 3770095501049648 m001 (BesselK(0,1)-cos(1))/(-Pi^(1/2)+Backhouse) 3770095504136699 a007 Real Root Of -696*x^4+387*x^3-422*x^2+669*x+347 3770095510146486 h001 (-7*exp(3)-5)/(-12*exp(1)-6) 3770095514844010 p003 LerchPhi(1/125,2,199/122) 3770095531105880 r009 Re(z^3+c),c=-1/17+41/56*I,n=50 3770095531646225 m001 (-LambertW(1)+4)/(gamma+1/3) 3770095545943936 a001 6765/3571*18^(5/21) 3770095556288646 m006 (2/3*Pi-3/4)/(2/3*exp(2*Pi)-2/5) 3770095559882505 l006 ln(2911/4244) 3770095562152741 l006 ln(190/8243) 3770095583194674 a005 (1/cos(39/125*Pi))^18 3770095591261336 m001 1/ln(Backhouse)^3*sqrt(2)^2 3770095592174994 r005 Im(z^2+c),c=-23/90+17/26*I,n=59 3770095600177739 h005 exp(cos(Pi*1/47)/cos(Pi*11/48)) 3770095602186518 l006 ln(6585/6838) 3770095605141965 r005 Re(z^2+c),c=11/74+17/45*I,n=54 3770095612510347 r002 18th iterates of z^2 + 3770095620799014 r002 15th iterates of z^2 + 3770095628827175 m005 (1/2*exp(1)-7/11)/(9/11*3^(1/2)+1/2) 3770095631461393 r002 47th iterates of z^2 + 3770095641683711 m005 (1/2*Pi-10/11)/(1/4*Zeta(3)-1/8) 3770095647018043 m001 (2^(1/3)+Shi(1))/(-Cahen+LandauRamanujan2nd) 3770095650303082 r005 Im(z^2+c),c=-101/78+12/59*I,n=5 3770095653361379 a007 Real Root Of -678*x^4+736*x^3+726*x^2-29*x-118 3770095659206806 p001 sum((-1)^n/(609*n+262)/(24^n),n=0..infinity) 3770095659411427 m001 StronglyCareFree^(exp(1)*2^(1/2)) 3770095671869712 r009 Im(z^3+c),c=-13/34+19/56*I,n=38 3770095678420047 g005 GAMMA(5/8)/GAMMA(9/11)/GAMMA(2/11)/GAMMA(1/7) 3770095687247951 r005 Re(z^2+c),c=19/74+2/49*I,n=4 3770095702885279 a007 Real Root Of -391*x^4+969*x^3-725*x^2+260*x-39 3770095705090615 r002 7th iterates of z^2 + 3770095717490852 a007 Real Root Of 519*x^4+155*x^3+467*x^2-706*x+181 3770095729345720 a001 377/199*2207^(11/16) 3770095748519854 m001 (ThueMorse-ZetaP(3))/(GAMMA(19/24)-Landau) 3770095757481330 m001 GaussKuzminWirsing*(Catalan+GAMMA(1/12)) 3770095783541468 r009 Im(z^3+c),c=-27/56+15/56*I,n=27 3770095789475015 m001 exp(cos(1))^2/MadelungNaCl*sqrt(5) 3770095790103517 r005 Re(z^2+c),c=-7/15+18/37*I,n=38 3770095794153043 m001 (Ei(1)+HeathBrownMoroz)/(PlouffeB+Trott2nd) 3770095812601327 r005 Re(z^2+c),c=-51/106+13/38*I,n=59 3770095821336158 r002 57th iterates of z^2 + 3770095826215342 r005 Im(z^2+c),c=15/38+8/31*I,n=5 3770095829288525 a007 Real Root Of 222*x^4+710*x^3-326*x^2+388*x-707 3770095830475842 s002 sum(A106679[n]/(n^2*exp(n)+1),n=1..infinity) 3770095833169878 a003 sin(Pi*31/76)/cos(Pi*23/55) 3770095859063541 s002 sum(A097378[n]/((2*n+1)!),n=1..infinity) 3770095859063766 s002 sum(A078310[n]/((2*n+1)!),n=1..infinity) 3770095870921075 a001 341/646*8^(52/55) 3770095874239815 r005 Re(z^2+c),c=-61/118+5/61*I,n=34 3770095899288582 m001 1/cosh(1)/GolombDickman/ln(log(2+sqrt(3))) 3770095900039518 l006 ln(6927/10099) 3770095904214700 m001 Backhouse*FeigenbaumMu^RenyiParking 3770095917891342 m006 (3/4*ln(Pi)+2)/(5/Pi-5/6) 3770095927070310 r002 12th iterates of z^2 + 3770095929740381 r002 57th iterates of z^2 + 3770095930148170 r009 Im(z^3+c),c=-13/34+19/56*I,n=41 3770095935539860 r005 Im(z^2+c),c=-2/3+49/199*I,n=8 3770095939138603 m001 GAMMA(1/3)/exp(Catalan)^2*Zeta(1,2)^2 3770095940409217 r005 Im(z^2+c),c=33/98+2/11*I,n=52 3770095948666681 m001 Cahen^Totient/(MertensB3^Totient) 3770095949453207 m001 BesselI(1,2)*(sin(1)+GAMMA(7/12)) 3770095951013488 m001 (Sarnak-ZetaP(3))/(gamma(1)+GAMMA(7/12)) 3770095956202575 r005 Im(z^2+c),c=-1/14+19/37*I,n=43 3770095962063936 r009 Im(z^3+c),c=-13/34+19/56*I,n=37 3770095980745735 s002 sum(A159185[n]/(64^n),n=1..infinity) 3770095985001159 m001 (GaussKuzminWirsing+Landau)/(Bloch-exp(1)) 3770095986805291 m001 (BesselI(1,1)+Mills)/(Rabbit-TwinPrimes) 3770095988776881 m001 Psi(1,1/3)^(GAMMA(23/24)/KomornikLoreti) 3770095995211647 a007 Real Root Of -284*x^4-841*x^3+658*x^2-893*x-410 3770096015820939 m005 (1/2*Zeta(3)-9/10)/(1/9*gamma-6/7) 3770096020282130 a001 1364/433494437*6557470319842^(17/24) 3770096020333298 a001 1364/121393*63245986^(17/24) 3770096023490248 a007 Real Root Of 274*x^4+991*x^3-327*x^2-566*x+263 3770096026359390 h001 (1/4*exp(2)+7/12)/(7/9*exp(2)+7/10) 3770096028369834 r009 Im(z^3+c),c=-13/34+19/56*I,n=44 3770096029562190 r009 Im(z^3+c),c=-13/34+19/56*I,n=45 3770096039310004 r009 Im(z^3+c),c=-13/34+19/56*I,n=48 3770096041094990 r005 Im(z^2+c),c=-13/40+30/49*I,n=45 3770096041848449 s002 sum(A198268[n]/(2^n-1),n=1..infinity) 3770096043595692 r009 Im(z^3+c),c=-13/34+19/56*I,n=42 3770096044892539 r009 Im(z^3+c),c=-13/34+19/56*I,n=51 3770096046059963 r009 Im(z^3+c),c=-13/34+19/56*I,n=52 3770096046218579 r009 Im(z^3+c),c=-13/34+19/56*I,n=55 3770096046486706 r009 Im(z^3+c),c=-13/34+19/56*I,n=58 3770096046500839 r009 Im(z^3+c),c=-13/34+19/56*I,n=54 3770096046591607 r009 Im(z^3+c),c=-13/34+19/56*I,n=61 3770096046594601 r009 Im(z^3+c),c=-13/34+19/56*I,n=62 3770096046611803 r009 Im(z^3+c),c=-13/34+19/56*I,n=59 3770096046614239 r009 Im(z^3+c),c=-13/34+19/56*I,n=64 3770096046627814 r009 Im(z^3+c),c=-13/34+19/56*I,n=63 3770096046668371 r009 Im(z^3+c),c=-13/34+19/56*I,n=60 3770096046716345 r009 Im(z^3+c),c=-13/34+19/56*I,n=57 3770096046806926 r009 Im(z^3+c),c=-13/34+19/56*I,n=56 3770096047584328 r009 Im(z^3+c),c=-13/34+19/56*I,n=53 3770096048272856 r009 Im(z^3+c),c=-13/34+19/56*I,n=49 3770096048915311 r009 Im(z^3+c),c=-13/34+19/56*I,n=47 3770096049264628 r009 Im(z^3+c),c=-13/34+19/56*I,n=50 3770096056471587 b008 ArcCsch[E*BarnesG[E]] 3770096061048698 r009 Im(z^3+c),c=-13/34+19/56*I,n=46 3770096079914512 a007 Real Root Of 512*x^4-890*x^3-802*x^2-763*x+439 3770096080519859 m001 exp(Niven)/ArtinRank2^2/sqrt(3)^2 3770096084020087 r009 Re(z^3+c),c=-53/110+17/62*I,n=22 3770096084851543 s002 sum(A139239[n]/(exp(2*pi*n)+1),n=1..infinity) 3770096085661783 r005 Re(z^2+c),c=-5/4+7/242*I,n=48 3770096086009890 m001 (Rabbit-ZetaQ(3))/(Cahen-FeigenbaumAlpha) 3770096087855367 r005 Im(z^2+c),c=-3/20+25/44*I,n=35 3770096093963938 r005 Im(z^2+c),c=13/42+13/60*I,n=58 3770096099786822 r009 Im(z^3+c),c=-13/34+19/56*I,n=43 3770096099827319 r005 Re(z^2+c),c=-23/54+13/35*I,n=11 3770096101864082 a007 Real Root Of 91*x^4+263*x^3-147*x^2+784*x+754 3770096104913414 r005 Re(z^2+c),c=-17/36+19/50*I,n=62 3770096105333761 a007 Real Root Of -113*x^4-234*x^3+597*x^2-273*x+775 3770096107367168 r009 Im(z^3+c),c=-1/10+17/40*I,n=14 3770096109141610 r005 Im(z^2+c),c=-3/19+24/43*I,n=24 3770096110724987 r009 Im(z^3+c),c=-17/42+16/49*I,n=34 3770096127072934 r005 Im(z^2+c),c=-61/98+1/25*I,n=15 3770096128365725 r001 38i'th iterates of 2*x^2-1 of 3770096134148836 m001 (Zeta(5)-GAMMA(2/3))/(ln(2+3^(1/2))-PlouffeB) 3770096145490607 m005 (1/2*Catalan-11/12)/(4*Pi-2/5) 3770096146602525 l006 ln(4016/5855) 3770096149343829 r009 Im(z^3+c),c=-13/34+19/56*I,n=40 3770096157634954 a001 1/5778*(1/2*5^(1/2)+1/2)^9*3^(23/24) 3770096159763672 l006 ln(203/8807) 3770096161697188 m002 Sinh[Pi]/Pi+Tanh[Pi]/(Pi^2*ProductLog[Pi]) 3770096169843381 r005 Im(z^2+c),c=-123/106+3/62*I,n=55 3770096170705647 r002 50th iterates of z^2 + 3770096186061845 r002 61th iterates of z^2 + 3770096200303648 m005 (1/2*Pi-3/8)/(5*gamma+2/7) 3770096210274179 m001 Si(Pi)/(LandauRamanujan2nd^(2*Pi/GAMMA(5/6))) 3770096222471920 r009 Im(z^3+c),c=-13/34+19/56*I,n=39 3770096224513362 r002 4th iterates of z^2 + 3770096230952370 g007 Psi(2,1/12)+Psi(2,2/11)+14*Zeta(3)-Psi(2,3/4) 3770096231178882 r005 Im(z^2+c),c=13/114+21/44*I,n=11 3770096232088357 m001 Ei(1)/ln(HardHexagonsEntropy)^2/GAMMA(5/12)^2 3770096235095388 a001 10946/199*521^(4/13) 3770096241225501 r005 Re(z^2+c),c=-55/98+10/23*I,n=64 3770096254086035 a001 1/15127*(1/2*5^(1/2)+1/2)^11*3^(23/24) 3770096255699566 r005 Re(z^2+c),c=1/9+13/32*I,n=14 3770096267831595 m001 1/exp(OneNinth)^2/GolombDickman*cos(1)^2 3770096268158059 a001 1/39603*(1/2*5^(1/2)+1/2)^13*3^(23/24) 3770096271480013 a001 1/64079*(1/2*5^(1/2)+1/2)^14*3^(23/24) 3770096272068615 m005 (4*Catalan+3/5)/(3/5*exp(1)-1/2) 3770096274691029 h003 exp(Pi*(3^(6/5)+7^(5/7))) 3770096274691029 h008 exp(Pi*(3^(6/5)+7^(5/7))) 3770096275205078 g002 Psi(10/11)+Psi(5/9)+Psi(2/7)-Psi(3/7) 3770096276855047 a001 1/24476*(1/2*5^(1/2)+1/2)^12*3^(23/24) 3770096278609037 a007 Real Root Of -675*x^4+553*x^3+766*x^2+934*x-477 3770096282549076 m001 (Landau+ZetaQ(4))^ErdosBorwein 3770096284123194 m008 (1/3*Pi^2-3)/(4/5*Pi^6-1/4) 3770096290514718 m001 Artin^(Pi^(1/2)/KomornikLoreti) 3770096312153857 m005 (1/2*5^(1/2)+6/11)/(4/7*gamma-2/7) 3770096313696084 a001 1/9349*(1/2*5^(1/2)+1/2)^10*3^(23/24) 3770096325798188 r005 Re(z^2+c),c=4/19+22/57*I,n=53 3770096327630502 r005 Im(z^2+c),c=-37/118+27/47*I,n=44 3770096343377653 r002 13th iterates of z^2 + 3770096371839715 m006 (1/4*exp(Pi)+2/5)/(1/5*Pi^2-1/3) 3770096375917259 r005 Re(z^2+c),c=23/78+1/13*I,n=15 3770096393151913 m001 ln(3)^(exp(Pi)/GAMMA(13/24)) 3770096399581017 r009 Im(z^3+c),c=-6/13+15/52*I,n=31 3770096402234330 a007 Real Root Of 298*x^4+945*x^3-720*x^2-121*x+213 3770096402528602 r005 Im(z^2+c),c=9/58+11/30*I,n=22 3770096404547792 b008 -1/2+Sech[Pi/6] 3770096407479240 r002 14th iterates of z^2 + 3770096412483653 m001 (Niven+OneNinth)/(KomornikLoreti-Mills) 3770096421517649 m001 (KhinchinLevy-Salem)/(GAMMA(2/3)+exp(1/Pi)) 3770096426949783 m001 (ln(2+3^(1/2))-Zeta(1,2))/(Gompertz+ZetaQ(4)) 3770096433337185 m005 (1/2*exp(1)+7/10)/(4/5*gamma+5) 3770096438268598 a007 Real Root Of -119*x^4-547*x^3-197*x^2+815*x+602 3770096454473492 r005 Re(z^2+c),c=-57/110+4/31*I,n=17 3770096462653241 m008 (3/5*Pi^6-3/5)/(1/2*Pi^5-1/6) 3770096463022508 q001 469/1244 3770096467173775 s001 sum(exp(-Pi/3)^(n-1)*A058553[n],n=1..infinity) 3770096468029870 r002 9th iterates of z^2 + 3770096479880019 a003 sin(Pi*9/62)*sin(Pi*35/107) 3770096480119788 l006 ln(5121/7466) 3770096511438767 r009 Re(z^3+c),c=-41/102+4/23*I,n=8 3770096515320412 a005 (1/cos(5/86*Pi))^1040 3770096535908117 a007 Real Root Of 976*x^4-929*x^3+608*x^2-849*x-476 3770096542000474 r005 Im(z^2+c),c=-11/86+31/57*I,n=53 3770096547501409 r009 Re(z^3+c),c=-13/40+1/47*I,n=7 3770096560100045 m001 (1-GAMMA(13/24))/(CopelandErdos+MinimumGamma) 3770096566208322 a001 1/3571*(1/2*5^(1/2)+1/2)^8*3^(23/24) 3770096568231852 m001 1/Catalan*exp(Lehmer)^2*GAMMA(11/12) 3770096587047430 m001 gamma(2)^(cos(1)/LandauRamanujan) 3770096595731011 r005 Im(z^2+c),c=17/62+7/27*I,n=26 3770096596957650 r002 49th iterates of z^2 + 3770096603765385 r002 24th iterates of z^2 + 3770096609115418 m001 (3^(1/3))*(GAMMA(2/3)+(2^(1/3))) 3770096609115418 m001 3^(1/3)*(2^(1/3)+GAMMA(2/3)) 3770096610673833 m005 (1/2*Zeta(3)-2/3)/(2*Catalan-1/11) 3770096627941048 b008 FresnelS[Pi^(-1/18)] 3770096629290139 m001 ln(GAMMA(7/12))/Robbin*sin(Pi/5) 3770096634016036 m005 (1/3*3^(1/2)+1/3)/(7/8*3^(1/2)+9/10) 3770096634606727 b008 41*Sin[5]^2 3770096636206925 m001 (ln(Pi)+Zeta(1,2))/ln(gamma) 3770096636206925 m001 (ln(Pi)+Zeta(1,2))/log(gamma) 3770096638871405 r005 Im(z^2+c),c=-49/86+27/59*I,n=16 3770096642947422 v002 sum(1/(5^n+(4*n^2+25*n+11)),n=1..infinity) 3770096651219449 r005 Im(z^2+c),c=-43/94+29/50*I,n=43 3770096657806868 r009 Im(z^3+c),c=-29/126+2/5*I,n=22 3770096667107271 s002 sum(A028225[n]/(n^3*10^n-1),n=1..infinity) 3770096669166836 m001 (-Ei(1)+Kolakoski)/(sin(1)+ln(gamma)) 3770096671390833 r009 Im(z^3+c),c=-7/16+11/36*I,n=36 3770096685439658 l006 ln(216/9371) 3770096691659604 r002 43th iterates of z^2 + 3770096695250737 l006 ln(6226/9077) 3770096695701971 m001 (MertensB2+ZetaP(3))/(Zeta(1/2)-MadelungNaCl) 3770096717483134 a007 Real Root Of -197*x^4-743*x^3-280*x^2-882*x+639 3770096726953791 r009 Re(z^3+c),c=-1/22+36/49*I,n=33 3770096749944964 r005 Re(z^2+c),c=-37/60+21/53*I,n=33 3770096751310710 r005 Im(z^2+c),c=11/40+8/31*I,n=50 3770096766528583 m005 (1/2*5^(1/2)-2/9)/(9/10*5^(1/2)+4/11) 3770096774389884 a007 Real Root Of -186*x^4-854*x^3-509*x^2+238*x-54 3770096783520510 r005 Re(z^2+c),c=-57/118+1/3*I,n=59 3770096788732147 a007 Real Root Of -665*x^4-381*x^3-470*x^2+897*x+398 3770096796449238 r005 Im(z^2+c),c=-109/82+8/55*I,n=7 3770096800688372 a001 3571/6557470319842*20365011074^(21/22) 3770096800691094 a001 3571/267914296*514229^(21/22) 3770096807508774 r009 Re(z^3+c),c=-29/56+15/46*I,n=64 3770096812387092 m001 (AlladiGrinstead+Lehmer)/(Pi+gamma) 3770096828434029 a007 Real Root Of -202*x^4-698*x^3+494*x^2+850*x-411 3770096831912644 r005 Im(z^2+c),c=1/110+7/15*I,n=55 3770096837261188 r002 12th iterates of z^2 + 3770096839522210 r005 Im(z^2+c),c=11/102+1/35*I,n=8 3770096845836129 r005 Re(z^2+c),c=-53/60+9/52*I,n=10 3770096853318085 m005 (1/3*Pi-1/5)/(7/9*3^(1/2)+9/10) 3770096856389150 m001 (Ei(1,1)+exp(-1/2*Pi))/(MertensB2+Paris) 3770096879648231 r005 Im(z^2+c),c=-4/23+25/39*I,n=18 3770096882431985 s002 sum(A259224[n]/(n^2*10^n+1),n=1..infinity) 3770096907562243 m001 (Zeta(1,2)-Mills)/(ln(gamma)+ln(Pi)) 3770096914176238 m001 (HardyLittlewoodC5+Kac)/(Magata-TwinPrimes) 3770096919874387 r005 Re(z^2+c),c=15/118+19/43*I,n=23 3770096946369653 m001 (GaussAGM-Paris)/(Salem+StronglyCareFree) 3770096946774906 a007 Real Root Of 269*x^4-590*x^3-66*x^2-964*x+399 3770096954579407 r009 Im(z^3+c),c=-13/34+19/56*I,n=36 3770096959764886 a007 Real Root Of -611*x^4+624*x^3-553*x^2+991*x+498 3770096964107711 r005 Re(z^2+c),c=-111/118+8/57*I,n=52 3770096966142783 r005 Im(z^2+c),c=-15/106+25/44*I,n=26 3770096967062500 m005 (1/2*2^(1/2)+9/10)/(4*Zeta(3)-6/11) 3770096978833064 m001 Trott2nd/ErdosBorwein/ZetaP(2) 3770096990883368 r009 Im(z^3+c),c=-41/98+7/22*I,n=30 3770096992511229 m001 (gamma+ln(2))/(-gamma(2)+ReciprocalFibonacci) 3770097001666035 p004 log(26209/17977) 3770097028888833 r005 Im(z^2+c),c=1/36+26/57*I,n=24 3770097036822171 m005 (1/2*2^(1/2)-4/9)/(3/8*2^(1/2)-3/5) 3770097044465929 r002 18th iterates of z^2 + 3770097052806151 a007 Real Root Of -246*x^4-180*x^3-249*x^2+701*x+295 3770097053203365 a001 9349/701408733*514229^(21/22) 3770097053953388 a007 Real Root Of -242*x^4-858*x^3+281*x^2+379*x+348 3770097075461273 r002 13th iterates of z^2 + 3770097076796308 r005 Im(z^2+c),c=-53/102+27/46*I,n=44 3770097079800643 a001 75283811239*199^(7/23) 3770097090044409 a001 24476/1836311903*514229^(21/22) 3770097090715528 m005 (1/2*Catalan+1)/(1/10*gamma-4/9) 3770097095419445 a001 64079/4807526976*514229^(21/22) 3770097096203652 a001 1/75025*514229^(21/22) 3770097096318066 a001 439204/32951280099*514229^(21/22) 3770097096334759 a001 1149851/86267571272*514229^(21/22) 3770097096337194 a001 3010349/225851433717*514229^(21/22) 3770097096337550 a001 7881196/591286729879*514229^(21/22) 3770097096337602 a001 1875749/140728068720*514229^(21/22) 3770097096337609 a001 54018521/4052739537881*514229^(21/22) 3770097096337610 a001 141422324/10610209857723*514229^(21/22) 3770097096337611 a001 87403803/6557470319842*514229^(21/22) 3770097096337614 a001 33385282/2504730781961*514229^(21/22) 3770097096337634 a001 12752043/956722026041*514229^(21/22) 3770097096337769 a001 4870847/365435296162*514229^(21/22) 3770097096338700 a001 1860498/139583862445*514229^(21/22) 3770097096345076 a001 710647/53316291173*514229^(21/22) 3770097096388778 a001 271443/20365011074*514229^(21/22) 3770097096688319 a001 103682/7778742049*514229^(21/22) 3770097098741400 a001 39603/2971215073*514229^(21/22) 3770097108293109 r009 Im(z^3+c),c=-29/126+2/5*I,n=25 3770097112152035 m005 (1/3*Zeta(3)+1/8)/(3/8*exp(1)+3/8) 3770097112813426 a001 15127/1134903170*514229^(21/22) 3770097119457979 r009 Im(z^3+c),c=-29/126+2/5*I,n=24 3770097124205990 r005 Im(z^2+c),c=-19/86+19/32*I,n=60 3770097133404781 r009 Im(z^3+c),c=-29/126+2/5*I,n=27 3770097137951545 p004 log(32653/22397) 3770097144405682 r009 Im(z^3+c),c=-29/126+2/5*I,n=30 3770097146416196 r009 Im(z^3+c),c=-29/126+2/5*I,n=33 3770097146606590 r009 Im(z^3+c),c=-29/126+2/5*I,n=35 3770097146638815 r009 Im(z^3+c),c=-29/126+2/5*I,n=38 3770097146639122 r009 Im(z^3+c),c=-29/126+2/5*I,n=36 3770097146647002 r009 Im(z^3+c),c=-29/126+2/5*I,n=41 3770097146648118 r009 Im(z^3+c),c=-29/126+2/5*I,n=43 3770097146648125 r009 Im(z^3+c),c=-29/126+2/5*I,n=44 3770097146648176 r009 Im(z^3+c),c=-29/126+2/5*I,n=46 3770097146648206 r009 Im(z^3+c),c=-29/126+2/5*I,n=49 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=52 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=54 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=57 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=55 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=60 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=62 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=63 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=64 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=61 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=59 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=58 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=51 3770097146648211 r009 Im(z^3+c),c=-29/126+2/5*I,n=56 3770097146648212 r009 Im(z^3+c),c=-29/126+2/5*I,n=53 3770097146648214 r009 Im(z^3+c),c=-29/126+2/5*I,n=50 3770097146648214 r009 Im(z^3+c),c=-29/126+2/5*I,n=47 3770097146648219 r009 Im(z^3+c),c=-29/126+2/5*I,n=48 3770097146648295 r009 Im(z^3+c),c=-29/126+2/5*I,n=45 3770097146648798 r009 Im(z^3+c),c=-29/126+2/5*I,n=42 3770097146649176 r009 Im(z^3+c),c=-29/126+2/5*I,n=40 3770097146650320 r009 Im(z^3+c),c=-29/126+2/5*I,n=39 3770097146665210 r009 Im(z^3+c),c=-29/126+2/5*I,n=37 3770097146700104 r009 Im(z^3+c),c=-29/126+2/5*I,n=32 3770097146795051 r009 Im(z^3+c),c=-29/126+2/5*I,n=34 3770097147165323 r009 Im(z^3+c),c=-29/126+2/5*I,n=28 3770097147409728 r009 Im(z^3+c),c=-29/126+2/5*I,n=31 3770097149702941 r009 Im(z^3+c),c=-29/126+2/5*I,n=29 3770097151431677 l006 ln(229/9935) 3770097159649893 b008 Sqrt[3*Coth[3/14]] 3770097163401181 a001 33385282/233*46368^(7/23) 3770097163505063 a001 1149851/233*2971215073^(7/23) 3770097169724411 r009 Re(z^3+c),c=-33/62+10/37*I,n=35 3770097175620380 r005 Im(z^2+c),c=-21/34+8/113*I,n=41 3770097180137460 r009 Im(z^3+c),c=-29/126+2/5*I,n=26 3770097180237900 a001 646/341*18^(5/21) 3770097205592794 s002 sum(A124737[n]/(n^2*pi^n-1),n=1..infinity) 3770097209261809 a001 1926/3536736619241*20365011074^(21/22) 3770097209264531 a001 5778/433494437*514229^(21/22) 3770097229896629 r005 Im(z^2+c),c=-15/26+40/89*I,n=44 3770097234854837 m006 (1/4*exp(Pi)-2/5)/(5/6*exp(Pi)-5) 3770097235129092 m001 (PisotVijayaraghavan-ZetaP(4))/(Kac-Lehmer) 3770097244851151 r005 Re(z^2+c),c=-11/27+1/2*I,n=30 3770097246094944 m001 1/Zeta(5)*Robbin*ln(arctan(1/2))^2 3770097249512633 r005 Im(z^2+c),c=-1/70+25/52*I,n=39 3770097250561607 a001 2/956722026041*21^(19/20) 3770097252586370 a007 Real Root Of -411*x^4+89*x^3-117*x^2+828*x-292 3770097255892472 r005 Re(z^2+c),c=-19/40+4/21*I,n=8 3770097257270277 r005 Re(z^2+c),c=-23/30+17/112*I,n=10 3770097265238202 m005 (1/2*Catalan-4/5)/(26/11+3*5^(1/2)) 3770097272215119 m008 (Pi^4-3/4)/(4/5*Pi^3+5/6) 3770097272537157 m008 (3*Pi^2-3/5)/(4/5*Pi^6+1/3) 3770097294792048 a001 89*521^(3/13) 3770097296014962 m001 Shi(1)+Khinchin+Trott2nd 3770097303609885 m001 Riemann2ndZero*Backhouse/exp(GAMMA(5/24)) 3770097308350422 m001 (Shi(1)-exp(1))/(-Zeta(5)+Gompertz) 3770097336453127 m001 GAMMA(19/24)/((1+3^(1/2))^(1/2)-Zeta(1/2)) 3770097336453127 m001 GAMMA(19/24)/(sqrt(1+sqrt(3))-Zeta(1/2)) 3770097337079892 m001 FeigenbaumDelta/(FeigenbaumD-exp(1/exp(1))) 3770097353512925 m005 (1/3*exp(1)+1/7)/(9/11*gamma-4/9) 3770097354922450 m001 (BesselI(1,1)-Bloch)/(Cahen+FeigenbaumC) 3770097362847494 r002 27th iterates of z^2 + 3770097363562020 r005 Im(z^2+c),c=-1/60+14/29*I,n=29 3770097368407823 r009 Im(z^3+c),c=-29/126+2/5*I,n=23 3770097377667299 r009 Im(z^3+c),c=-17/70+2/5*I,n=6 3770097378756222 r009 Re(z^3+c),c=-23/54+7/34*I,n=11 3770097386876419 a001 13/710647*24476^(29/55) 3770097400659307 m001 (Totient+TravellingSalesman)/(Psi(2,1/3)+Kac) 3770097425024497 m001 (ln(3)+3^(1/3))/(MertensB1+ThueMorse) 3770097425546121 r009 Re(z^3+c),c=-29/78+41/61*I,n=6 3770097428630813 a001 13/9349*9349^(6/55) 3770097435924727 m001 Zeta(1,2)^2*exp(Backhouse) 3770097438198257 r005 Re(z^2+c),c=-39/86+2/9*I,n=6 3770097438494608 r009 Im(z^3+c),c=-31/64+7/20*I,n=8 3770097441039974 r005 Im(z^2+c),c=-5/46+23/43*I,n=39 3770097442289103 r009 Re(z^3+c),c=-27/70+9/61*I,n=20 3770097449350050 a001 12238/305*610^(17/24) 3770097458674552 a001 11/610*121393^(32/49) 3770097461774378 r009 Im(z^3+c),c=-13/34+19/56*I,n=32 3770097474206228 m001 (ReciprocalFibonacci+ZetaP(3))/Zeta(1,2) 3770097478490860 a001 13/3010349*5778^(43/55) 3770097496250055 m002 -20+ProductLog[Pi]-Pi^3*Sinh[Pi] 3770097498848282 s002 sum(A181116[n]/(pi^n+1),n=1..infinity) 3770097505215180 a001 3571/6765*8^(52/55) 3770097520608231 m001 1/ln(Trott)*TreeGrowth2nd^2*log(1+sqrt(2)) 3770097530442949 m001 Si(Pi)*(cos(1/5*Pi)+FibonacciFactorial) 3770097567867954 a007 Real Root Of -108*x^4-475*x^3-404*x^2-363*x+739 3770097573268340 r005 Im(z^2+c),c=11/40+8/31*I,n=58 3770097575324683 r002 13th iterates of z^2 + 3770097586120448 a007 Real Root Of -267*x^4-987*x^3+286*x^2+905*x+398 3770097592207533 a007 Real Root Of -963*x^4+362*x^3-631*x^2+850*x+449 3770097593516717 a001 13/24476*2207^(14/55) 3770097596099716 r009 Im(z^3+c),c=-29/126+2/5*I,n=21 3770097610768717 r009 Re(z^3+c),c=-39/118+13/18*I,n=5 3770097611820320 m001 (-MertensB2+Tetranacci)/(exp(Pi)+Landau) 3770097630088012 m001 Niven^Grothendieck*Niven^CareFree 3770097645041551 h001 (4/7*exp(1)+1/11)/(1/2*exp(2)+2/3) 3770097655859533 s002 sum(A227264[n]/(exp(2*pi*n)-1),n=1..infinity) 3770097659582242 m001 1/Cahen/ErdosBorwein/ln(GAMMA(19/24))^2 3770097675495364 r005 Im(z^2+c),c=1/48+17/37*I,n=50 3770097677305774 r005 Im(z^2+c),c=-8/27+11/19*I,n=45 3770097687246941 a007 Real Root Of -145*x^4-656*x^3-329*x^2+419*x+397 3770097692251211 l006 ln(1105/1611) 3770097733858922 h001 (5/11*exp(1)+3/5)/(7/11*exp(2)+1/6) 3770097743655469 a001 9349/17711*8^(52/55) 3770097751027422 a001 3571/1134903170*6557470319842^(17/24) 3770097751034888 a001 3571/317811*63245986^(17/24) 3770097754885252 m008 (1/6*Pi^3-2)/(3/4*Pi^2+1) 3770097757368993 m005 (1/2*gamma-9/10)/(5/12*3^(1/2)+9/10) 3770097764607788 m005 (1/2*Zeta(3)-6)/(3^(1/2)-3/10) 3770097772716709 r005 Im(z^2+c),c=7/78+23/44*I,n=14 3770097778443439 a001 6119/11592*8^(52/55) 3770097780226676 r005 Re(z^2+c),c=-17/52+31/52*I,n=20 3770097783518935 a001 64079/121393*8^(52/55) 3770097786655764 a001 39603/75025*8^(52/55) 3770097792275749 m001 (cos(1/5*Pi)+Artin*ErdosBorwein)/Artin 3770097799943586 a001 15127/28657*8^(52/55) 3770097800797148 r005 Im(z^2+c),c=-13/106+33/61*I,n=59 3770097816445661 m001 1/LambertW(1)/ln(GAMMA(5/24))^2/Zeta(1/2)^2 3770097823912103 r009 Im(z^3+c),c=-17/90+16/39*I,n=11 3770097825659207 r002 10th iterates of z^2 + 3770097839494086 r009 Im(z^3+c),c=-29/126+2/5*I,n=20 3770097841632376 r005 Im(z^2+c),c=-45/58+1/54*I,n=19 3770097842632867 m001 (2^(1/3)-FeigenbaumC)/(MinimumGamma+ZetaQ(2)) 3770097853770299 r009 Re(z^3+c),c=-65/126+15/47*I,n=61 3770097868934381 m001 (Zeta(5)-Ei(1))/(GAMMA(7/12)+RenyiParking) 3770097870347518 a001 2207/4052739537881*20365011074^(21/22) 3770097870350240 a001 2207/165580141*514229^(21/22) 3770097891019672 a001 2889/5473*8^(52/55) 3770097899629686 r002 41th iterates of z^2 + 3770097905757246 m005 (1/3*Zeta(3)-1/3)/(2/7*Pi+8/9) 3770097928846790 m001 MinimumGamma-polylog(4,1/2)-LambertW(1) 3770097929553845 m001 (MinimumGamma+RenyiParking)/(Pi+exp(1)) 3770097931828542 m001 Zeta(3)*Niven*Tribonacci 3770097935168439 r005 Re(z^2+c),c=-55/46+15/52*I,n=6 3770097942700832 m006 (3/5*Pi+1)/(3/4*Pi^2+1/4) 3770097942700832 m008 (3/5*Pi+1)/(3/4*Pi^2+1/4) 3770097953049784 r009 Im(z^3+c),c=-17/42+16/49*I,n=31 3770097960466476 g001 Psi(11/12,59/113) 3770097962243353 r002 5th iterates of z^2 + 3770097964489450 r002 20th iterates of z^2 + 3770097966408390 r005 Re(z^2+c),c=5/14+8/37*I,n=9 3770097966773985 r009 Im(z^3+c),c=-43/122+5/14*I,n=10 3770097992205723 r002 14th iterates of z^2 + 3770097994787358 p001 sum(1/(510*n+269)/(25^n),n=0..infinity) 3770098001370160 r005 Im(z^2+c),c=-7/6+9/184*I,n=20 3770098003539757 a001 9349/2971215073*6557470319842^(17/24) 3770098003540846 a001 9349/832040*63245986^(17/24) 3770098012087661 b008 Sqrt[Pi]+2*Tanh[1+E] 3770098026674523 s001 sum(1/10^(n-1)*A068144[n]/n^n,n=1..infinity) 3770098040380810 a001 24476/7778742049*6557470319842^(17/24) 3770098040380969 a001 24476/2178309*63245986^(17/24) 3770098045755848 a001 64079/20365011074*6557470319842^(17/24) 3770098045755871 a001 64079/5702887*63245986^(17/24) 3770098046540055 a001 167761/53316291173*6557470319842^(17/24) 3770098046540058 a001 167761/14930352*63245986^(17/24) 3770098046654469 a001 439204/139583862445*6557470319842^(17/24) 3770098046654470 a001 439204/39088169*63245986^(17/24) 3770098046671162 a001 1149851/365435296162*6557470319842^(17/24) 3770098046671162 a001 1149851/102334155*63245986^(17/24) 3770098046673598 a001 3010349/956722026041*6557470319842^(17/24) 3770098046673598 a001 3010349/267914296*63245986^(17/24) 3770098046673953 a001 7881196/2504730781961*6557470319842^(17/24) 3770098046673953 a001 39604/3524667*63245986^(17/24) 3770098046674005 a001 20633239/6557470319842*6557470319842^(17/24) 3770098046674005 a001 20633239/1836311903*63245986^(17/24) 3770098046674012 a001 54018521/4807526976*63245986^(17/24) 3770098046674013 a001 141422324/12586269025*63245986^(17/24) 3770098046674014 a001 370248451/32951280099*63245986^(17/24) 3770098046674014 a001 969323029/86267571272*63245986^(17/24) 3770098046674014 a001 2537720636/225851433717*63245986^(17/24) 3770098046674014 a001 6643838879/591286729879*63245986^(17/24) 3770098046674014 a001 17393796001/1548008755920*63245986^(17/24) 3770098046674014 a001 45537549124/4052739537881*63245986^(17/24) 3770098046674014 a001 119218851371/10610209857723*63245986^(17/24) 3770098046674014 a001 73681302247/6557470319842*63245986^(17/24) 3770098046674014 a001 28143753123/2504730781961*63245986^(17/24) 3770098046674014 a001 10749957122/956722026041*63245986^(17/24) 3770098046674014 a001 4106118243/365435296162*63245986^(17/24) 3770098046674014 a001 1568397607/139583862445*63245986^(17/24) 3770098046674014 a001 599074578/53316291173*63245986^(17/24) 3770098046674014 a001 228826127/20365011074*63245986^(17/24) 3770098046674014 a001 87403803/7778742049*63245986^(17/24) 3770098046674017 a001 4769326/1515744265389*6557470319842^(17/24) 3770098046674017 a001 33385282/2971215073*63245986^(17/24) 3770098046674037 a001 12752043/4052739537881*6557470319842^(17/24) 3770098046674037 a001 12752043/1134903170*63245986^(17/24) 3770098046674172 a001 4870847/1548008755920*6557470319842^(17/24) 3770098046674173 a001 4870847/433494437*63245986^(17/24) 3770098046675103 a001 1860498/591286729879*6557470319842^(17/24) 3770098046675103 a001 1860498/165580141*63245986^(17/24) 3770098046681479 a001 710647/63245986*63245986^(17/24) 3770098046681479 a001 1/317811*6557470319842^(17/24) 3770098046725180 a001 271443/24157817*63245986^(17/24) 3770098046725181 a001 271443/86267571272*6557470319842^(17/24) 3770098047024713 a001 103682/9227465*63245986^(17/24) 3770098047024722 a001 103682/32951280099*6557470319842^(17/24) 3770098048816900 r005 Re(z^2+c),c=-13/27+10/29*I,n=29 3770098049077743 a001 39603/3524578*63245986^(17/24) 3770098049077803 a001 39603/12586269025*6557470319842^(17/24) 3770098063149418 a001 15127/1346269*63245986^(17/24) 3770098063149833 a001 2161/686789568*6557470319842^(17/24) 3770098068764745 r005 Im(z^2+c),c=-21/34+4/59*I,n=31 3770098092669320 r002 27th iterates of z^2 + 3770098110507677 r009 Im(z^3+c),c=-1/114+37/46*I,n=12 3770098111917434 m001 ln(2)/ln(10)*(MertensB3-Sierpinski) 3770098121110759 r005 Re(z^2+c),c=-57/110+2/37*I,n=36 3770098125697644 m001 2*Pi^2/Psi(2,1/3)/sin(1)/GAMMA(5/6) 3770098127736523 a007 Real Root Of -687*x^4+62*x^3-856*x^2+873*x+468 3770098133012118 r005 Re(z^2+c),c=-14/27+1/21*I,n=20 3770098136933880 h001 (2/5*exp(1)+7/9)/(6/11*exp(2)+11/12) 3770098140582687 r009 Re(z^3+c),c=-29/56+11/34*I,n=64 3770098144141030 m006 (3/5*exp(2*Pi)-3/5)/(2/5*exp(Pi)-3/4) 3770098146701403 r004 Re(z^2+c),c=1/38+11/23*I,z(0)=I,n=3 3770098147422860 r002 35th iterates of z^2 + 3770098152882230 m001 (ln(2^(1/2)+1)-Champernowne)/(Landau+Porter) 3770098152971269 m001 Otter+StronglyCareFree^AlladiGrinstead 3770098159598111 a001 5778/514229*63245986^(17/24) 3770098159600963 a001 5778/1836311903*6557470319842^(17/24) 3770098162761236 m005 (4/5*exp(1)-2/5)/(1/2*2^(1/2)+4) 3770098163613550 a003 sin(Pi*1/36)/cos(Pi*43/101) 3770098182592014 g006 Psi(1,2/11)+Psi(1,4/9)+Psi(1,6/7)-Psi(1,8/9) 3770098191123473 m001 (Backhouse+StronglyCareFree)/(2^(1/3)-Si(Pi)) 3770098191449783 l006 ln(5648/5865) 3770098198479327 s002 sum(A050891[n]/(n*pi^n+1),n=1..infinity) 3770098212905224 r005 Im(z^2+c),c=-23/18+13/248*I,n=51 3770098214047733 r005 Re(z^2+c),c=-19/54+31/51*I,n=19 3770098216356659 p003 LerchPhi(1/100,4,150/209) 3770098232291598 r002 24th iterates of z^2 + 3770098233564692 m005 (-1/66+1/6*5^(1/2))/(3/5*3^(1/2)-1/11) 3770098236479165 r005 Im(z^2+c),c=21/74+26/59*I,n=5 3770098237137320 m001 1/Pi*exp(GAMMA(1/6))^2/gamma 3770098248660025 r002 7th iterates of z^2 + 3770098250498056 a007 Real Root Of 398*x^4+469*x^3-165*x^2-856*x+313 3770098260123775 m001 (exp(1)+2^(1/2))/(GaussAGM+MertensB1) 3770098271746968 r005 Im(z^2+c),c=1/66+25/54*I,n=50 3770098285958968 r002 49th iterates of z^2 + 3770098287179040 m005 (1/3*5^(1/2)-2/11)/(6/7*gamma+1) 3770098296953865 a001 1/1364*(1/2*5^(1/2)+1/2)^6*3^(23/24) 3770098304971653 a007 Real Root Of -166*x^4-425*x^3+518*x^2-859*x+161 3770098312223321 r005 Re(z^2+c),c=29/118+1/39*I,n=28 3770098353936895 r009 Im(z^3+c),c=-17/58+8/21*I,n=9 3770098360655737 a001 114988/305 3770098366507956 a001 28657/199*521^(2/13) 3770098392066879 r005 Re(z^2+c),c=-39/86+13/28*I,n=57 3770098393952045 r002 15th iterates of z^2 + 3770098395131779 m005 (1/3*exp(1)+3/4)/(-65/132+5/12*5^(1/2)) 3770098396663662 r005 Im(z^2+c),c=-13/22+50/111*I,n=29 3770098401668747 m006 (1/2*ln(Pi)+1/2)/(2/3*Pi+3/4) 3770098406434542 p004 log(25343/17383) 3770098409345171 m001 (Zeta(1/2)-sin(1/5*Pi))/Landau 3770098411174741 a007 Real Root Of 512*x^4+683*x^3+838*x^2-881*x-425 3770098414480744 b008 LogIntegral[Pi+Log[8]] 3770098416607324 m001 1/Robbin^2*ArtinRank2^2/ln(GAMMA(1/6))^2 3770098417085969 m001 (1+GAMMA(2/3))/(-HeathBrownMoroz+Kac) 3770098423938640 r002 45i'th iterates of 2*x/(1-x^2) of 3770098431505402 m006 (1/6*Pi-2/3)/(1/5*exp(Pi)-5/6) 3770098439421085 s002 sum(A085495[n]/(exp(2*pi*n)+1),n=1..infinity) 3770098463054493 r005 Im(z^2+c),c=17/58+14/59*I,n=50 3770098470385946 r005 Im(z^2+c),c=25/86+6/25*I,n=43 3770098473581610 a004 Fibonacci(11)*Lucas(15)/(1/2+sqrt(5)/2)^12 3770098475338120 m001 (Bloch+FellerTornier)/(2^(1/2)+ln(2)) 3770098499853885 r009 Re(z^3+c),c=-25/66+7/50*I,n=8 3770098501584047 m001 BesselK(1,1)^GAMMA(19/24)*Sarnak^GAMMA(19/24) 3770098512529471 a001 987/199*1364^(3/5) 3770098515264443 a001 2207/4181*8^(52/55) 3770098517199601 a007 Real Root Of -938*x^4+873*x^3+383*x^2+787*x+308 3770098522782731 m005 (1/2*Catalan+6/11)/(8/11*Catalan-2/5) 3770098534075102 r009 Im(z^3+c),c=-13/34+19/56*I,n=30 3770098537065955 m001 Zeta(1,2)*exp(BesselK(0,1))^2/gamma 3770098553248715 r005 Im(z^2+c),c=-35/66+1/15*I,n=56 3770098562024439 r005 Im(z^2+c),c=17/66+13/47*I,n=52 3770098569470686 a007 Real Root Of -68*x^4-401*x^3-514*x^2+650*x+298 3770098574557968 r005 Im(z^2+c),c=1/60+35/46*I,n=10 3770098591585323 r009 Im(z^3+c),c=-13/34+19/56*I,n=33 3770098592159699 r005 Im(z^2+c),c=7/78+17/41*I,n=38 3770098627116658 r005 Im(z^2+c),c=1/48+17/37*I,n=57 3770098631257349 r009 Im(z^3+c),c=-10/21+13/47*I,n=37 3770098634759343 r005 Re(z^2+c),c=-63/122+4/57*I,n=13 3770098637570852 h001 (-8*exp(-3)+2)/(-7*exp(-1)+3) 3770098640443201 m001 (Sarnak-ZetaP(4))/(ln(2^(1/2)+1)+GaussAGM) 3770098646301291 r005 Im(z^2+c),c=23/70+7/62*I,n=22 3770098648297383 m004 -120*Pi-(3*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 3770098650519973 m001 (CopelandErdos-MasserGramain)/(ln(3)+gamma(2)) 3770098652734218 m001 (Paris+ZetaQ(2))/(MinimumGamma-Shi(1)) 3770098661417444 p001 sum((-1)^n/(261*n+160)/n/(6^n),n=1..infinity) 3770098662820048 a008 Real Root of (2+4*x-5*x^2-3*x^3+4*x^4+3*x^5) 3770098670044587 r005 Re(z^2+c),c=31/94+5/53*I,n=19 3770098673930951 m001 (Zeta(1,2)+Niven)/(Riemann2ndZero-TwinPrimes) 3770098674878760 a001 48/13201*521^(23/31) 3770098692585498 p004 log(36187/24821) 3770098693287724 m001 (exp(1/Pi)-Cahen)/(MasserGramain-ZetaP(2)) 3770098695208257 m001 cos(1)^FeigenbaumD/(cos(1)^ln(3)) 3770098706568480 a007 Real Root Of -111*x^4+424*x^3-482*x^2+451*x-122 3770098706588773 m006 (4*exp(Pi)+4/5)/(1/6*Pi-3) 3770098709004448 r002 41th iterates of z^2 + 3770098710505881 r005 Re(z^2+c),c=-111/118+8/57*I,n=50 3770098725857053 r005 Im(z^2+c),c=1/48+17/37*I,n=58 3770098726466829 a007 Real Root Of 28*x^4-580*x^3+130*x^2-106*x+52 3770098729520906 m001 1/GAMMA(1/24)^2*ln(Magata)^2*sinh(1)^2 3770098736036223 r005 Re(z^2+c),c=-29/56+4/61*I,n=29 3770098739194088 l006 ln(5929/8644) 3770098748604512 r005 Im(z^2+c),c=37/102+9/49*I,n=51 3770098753087261 m001 arctan(1/2)/(ZetaR(2)^ln(3)) 3770098757450422 m005 (1/2*3^(1/2)+3/8)/(11/12*exp(1)+4/5) 3770098759350611 s002 sum(A149488[n]/(n^2*2^n-1),n=1..infinity) 3770098786673121 r002 37th iterates of z^2 + 3770098800577316 b008 E*ArcTan[Sqrt[5]+Pi] 3770098808512764 m001 1/MadelungNaCl^2/Backhouse/ln(GAMMA(1/12))^2 3770098820500602 m004 -120*Pi-Sin[Sqrt[5]*Pi]/36 3770098820667294 a001 2207/196418*63245986^(17/24) 3770098820686839 a001 2207/701408733*6557470319842^(17/24) 3770098823051026 r005 Im(z^2+c),c=-11/74+29/50*I,n=32 3770098833440057 r009 Re(z^3+c),c=-5/74+35/54*I,n=50 3770098869520334 m001 5^(1/2)+(Pi^(1/2))^RenyiParking 3770098869520334 m001 sqrt(Pi)^RenyiParking+sqrt(5) 3770098907225328 r005 Im(z^2+c),c=-17/30+20/51*I,n=10 3770098908943794 a001 5/710647*123^(15/43) 3770098911133859 r008 a(0)=0,K{-n^6,5+49*n^3-57*n^2-23*n} 3770098921410157 a003 cos(Pi*1/27)-cos(Pi*28/97) 3770098928964500 a005 (1/cos(10/83*Pi))^269 3770098930037738 r009 Im(z^3+c),c=-6/13+17/59*I,n=54 3770098939814379 a001 13/24476*843^(16/55) 3770098944592463 m001 (Si(Pi)+sin(1))/(-CareFree+StronglyCareFree) 3770098946162682 a003 sin(Pi*9/71)*sin(Pi*48/113) 3770098960191189 a007 Real Root Of 232*x^4+938*x^3+19*x^2-944*x-435 3770098979009968 l006 ln(4824/7033) 3770098982684273 m001 (Thue-ThueMorse)/(ln(gamma)-HardyLittlewoodC3) 3770098982688681 a007 Real Root Of -158*x^4-288*x^3+898*x^2-859*x+485 3770098986214640 m005 (1/2*2^(1/2)-2/5)/(2/5*exp(1)-3/11) 3770098999840207 m008 (4/5*Pi^6+2/3)/(2/3*Pi^5+1/6) 3770099016200187 r002 21th iterates of z^2 + 3770099024443089 a007 Real Root Of 205*x^4+965*x^3+846*x^2+491*x+122 3770099027695809 r005 Im(z^2+c),c=1/48+17/37*I,n=61 3770099038816335 r005 Im(z^2+c),c=-1+45/143*I,n=3 3770099045543146 m001 cos(1/5*Pi)^KhinchinLevy*Landau^KhinchinLevy 3770099060547039 a007 Real Root Of 217*x^4-47*x^3-679*x^2-985*x+466 3770099071583179 a007 Real Root Of -186*x^4-788*x^3-171*x^2+771*x+688 3770099089869318 m001 (Pi-BesselK(0,1))/(Khinchin-Magata) 3770099103271589 h001 (7/10*exp(2)+8/11)/(1/6*exp(2)+1/3) 3770099113295937 m001 GAMMA(23/24)/exp(Conway)/exp(1)^2 3770099123200294 r002 18th iterates of z^2 + 3770099131484801 h001 (4/11*exp(1)+3/4)/(1/2*exp(2)+11/12) 3770099141428680 m001 BesselJ(0,1)+arctan(1/3)+FeigenbaumD 3770099145173516 m005 (1/2*exp(1)-1/11)/(1/2*gamma-5/8) 3770099148242160 a003 sin(Pi*5/86)-sin(Pi*10/53) 3770099158424877 r005 Im(z^2+c),c=-11/78+37/64*I,n=20 3770099170013120 r005 Re(z^2+c),c=-41/98+35/64*I,n=42 3770099171476031 m001 exp(sin(1))^2/Catalan^2*sin(Pi/5) 3770099183187446 r005 Im(z^2+c),c=7/94+2/63*I,n=4 3770099185469972 a001 64079/1597*610^(17/24) 3770099194534396 a001 2/3*47^(9/20) 3770099203622084 a008 Real Root of (-4+9*x+4*x^2+2*x^4-5*x^8) 3770099213137187 q001 1102/2923 3770099215329015 m009 (2/5*Psi(1,1/3)-5/6)/(2/5*Psi(1,3/4)-1/6) 3770099222132114 r002 7th iterates of z^2 + 3770099226190815 m001 (Kac-Riemann2ndZero)/(sin(1/5*Pi)-GAMMA(5/6)) 3770099234737635 m001 exp(Riemann3rdZero)^2*Rabbit^2/sin(1)^2 3770099236932533 m001 1/ln(Riemann1stZero)*Khintchine/GAMMA(13/24)^2 3770099237487350 r005 Im(z^2+c),c=-7/30+11/19*I,n=49 3770099248210267 a007 Real Root Of -204*x^4-891*x^3-272*x^2+839*x+497 3770099252051765 b008 LogBarnesG[1/(6*E^2)] 3770099265535271 m001 Pi*Champernowne-Trott 3770099281332054 a007 Real Root Of -166*x^4+185*x^3-503*x^2+616*x+317 3770099299611889 r005 Re(z^2+c),c=-59/94+11/53*I,n=4 3770099313014058 m001 gamma*DuboisRaymond^2*ln(sin(1)) 3770099322140643 r002 34th iterates of z^2 + 3770099334635706 a007 Real Root Of 73*x^4+135*x^3-624*x^2-237*x+462 3770099342117664 q001 2/53049 3770099343183053 r002 11th iterates of z^2 + 3770099352652028 m001 1/FeigenbaumB*LaplaceLimit/exp(RenyiParking) 3770099361335407 l006 ln(3719/5422) 3770099363025727 a005 (1/cos(16/183*Pi))^95 3770099365550764 a001 377/199*843^(11/14) 3770099366017219 r005 Im(z^2+c),c=-5/78+27/53*I,n=38 3770099371681406 m001 ln(5)/cos(1/5*Pi)*Ei(1) 3770099371681406 m001 ln(5)/cos(Pi/5)*Ei(1) 3770099377165701 a007 Real Root Of 915*x^4-59*x^3-249*x^2-899*x+359 3770099390023863 r005 Im(z^2+c),c=13/64+20/61*I,n=32 3770099393056755 m004 -5+125*Pi-Sqrt[5]*Pi-4*Tan[Sqrt[5]*Pi] 3770099393855679 m001 (ln(2)+Pi^(1/2))/(LaplaceLimit-ZetaQ(3)) 3770099419700183 a003 cos(Pi*13/120)-sin(Pi*38/87) 3770099430308623 m001 (ErdosBorwein+FeigenbaumB)/(Sarnak-ZetaP(4)) 3770099433633337 a001 46368/199*521^(1/13) 3770099438766588 a001 167761/4181*610^(17/24) 3770099439325850 r005 Im(z^2+c),c=5/38+27/46*I,n=17 3770099443801312 a001 2584/199*1364^(7/15) 3770099449542865 r004 Re(z^2+c),c=-21/38-1/17*I,z(0)=-1,n=8 3770099450591799 m001 (Zeta(5)+PlouffeB)/(Stephens-ZetaP(3)) 3770099460583877 a007 Real Root Of 913*x^4-252*x^3+415*x^2-32*x-103 3770099461157959 m001 Pi+exp(Pi)*exp(1/exp(1))+GAMMA(5/6) 3770099464232726 r002 9th iterates of z^2 + 3770099474456020 m001 Zeta(3)^GAMMA(3/4)*ZetaQ(3)^GAMMA(3/4) 3770099475722069 a001 219602/5473*610^(17/24) 3770099479435481 m005 (1/2*3^(1/2)+1/6)/(7/9*5^(1/2)+1) 3770099480996416 m001 (5^(1/2)-ThueMorse)/(Weierstrass+ZetaQ(3)) 3770099481113801 a001 1149851/28657*610^(17/24) 3770099481900444 a001 3010349/75025*610^(17/24) 3770099482015214 a001 3940598/98209*610^(17/24) 3770099482031958 a001 20633239/514229*610^(17/24) 3770099482034401 a001 54018521/1346269*610^(17/24) 3770099482034758 a001 70711162/1762289*610^(17/24) 3770099482034810 a001 370248451/9227465*610^(17/24) 3770099482034817 a001 969323029/24157817*610^(17/24) 3770099482034818 a001 1268860318/31622993*610^(17/24) 3770099482034819 a001 6643838879/165580141*610^(17/24) 3770099482034819 a001 17393796001/433494437*610^(17/24) 3770099482034819 a001 22768774562/567451585*610^(17/24) 3770099482034819 a001 119218851371/2971215073*610^(17/24) 3770099482034819 a001 312119004989/7778742049*610^(17/24) 3770099482034819 a001 408569081798/10182505537*610^(17/24) 3770099482034819 a001 2139295485799/53316291173*610^(17/24) 3770099482034819 a001 5600748293801/139583862445*610^(17/24) 3770099482034819 a001 7331474697802/182717648081*610^(17/24) 3770099482034819 a001 23725150497407/591286729879*610^(17/24) 3770099482034819 a001 3020733700601/75283811239*610^(17/24) 3770099482034819 a001 1730726404001/43133785636*610^(17/24) 3770099482034819 a001 440719107401/10983760033*610^(17/24) 3770099482034819 a001 505019158607/12586269025*610^(17/24) 3770099482034819 a001 10716675201/267084832*610^(17/24) 3770099482034819 a001 73681302247/1836311903*610^(17/24) 3770099482034819 a001 9381251041/233802911*610^(17/24) 3770099482034819 a001 5374978561/133957148*610^(17/24) 3770099482034819 a001 1368706081/34111385*610^(17/24) 3770099482034819 a001 1568397607/39088169*610^(17/24) 3770099482034822 a001 33281921/829464*610^(17/24) 3770099482034842 a001 228826127/5702887*610^(17/24) 3770099482034978 a001 29134601/726103*610^(17/24) 3770099482035911 a001 16692641/416020*610^(17/24) 3770099482042307 a001 4250681/105937*610^(17/24) 3770099482086145 a001 4870847/121393*610^(17/24) 3770099482386616 a001 103361/2576*610^(17/24) 3770099484446074 a001 710647/17711*610^(17/24) 3770099486625103 r002 55th iterates of z^2 + 3770099487570671 m009 (1/5*Psi(1,3/4)+1/5)/(16/5*Catalan+2/5*Pi^2-5) 3770099490911336 m002 -4*Pi^4+Coth[Pi]*ProductLog[Pi]+Sinh[Pi] 3770099495963558 m001 FellerTornier^(5^(1/2))*FellerTornier^Robbin 3770099498561812 a001 90481/2255*610^(17/24) 3770099505163931 m005 (1/2*exp(1)-3/7)/(3/5*Pi+7/12) 3770099507492929 m001 GAMMA(7/12)/Landau*Totient 3770099507877872 r005 Re(z^2+c),c=-15/22+25/98*I,n=15 3770099509748240 m001 Salem/exp(Khintchine)/GAMMA(5/12) 3770099514336372 m001 Pi/(Psi(1,1/3)-LambertW(1)/arctan(1/3)) 3770099515641464 a001 1/5473*987^(18/41) 3770099518044172 r005 Re(z^2+c),c=-27/52+1/60*I,n=26 3770099524736271 a007 Real Root Of 322*x^4-705*x^3-853*x^2-614*x+384 3770099533865759 r009 Im(z^3+c),c=-41/102+21/64*I,n=23 3770099534873613 m005 (1/2*Catalan+3/4)/(2*Zeta(3)+4/5) 3770099535274796 r005 Im(z^2+c),c=1/48+17/37*I,n=64 3770099549936907 m005 (1/3*Catalan+1/4)/(8/11*2^(1/2)+4/9) 3770099552883338 r005 Im(z^2+c),c=-15/52+15/26*I,n=39 3770099553356176 r009 Re(z^3+c),c=-25/56+9/40*I,n=31 3770099565116226 s002 sum(A003493[n]/(exp(2*pi*n)+1),n=1..infinity) 3770099567145769 a001 2255/281*29^(17/37) 3770099568321171 s002 sum(A197891[n]/(exp(2*pi*n)+1),n=1..infinity) 3770099570648697 m008 (3/4*Pi^5+1/4)/(2/3*Pi+4) 3770099571080489 m001 BesselK(0,1)-ErdosBorwein*Trott2nd 3770099571846418 a001 987/199*3571^(9/17) 3770099572303678 m001 (Backhouse+Conway)/(GolombDickman+OneNinth) 3770099577256808 a007 Real Root Of -5*x^4+432*x^3+925*x^2+423*x-314 3770099582185238 a007 Real Root Of 888*x^4-539*x^3-849*x^2-688*x+391 3770099595312523 a001 51841/1292*610^(17/24) 3770099610976465 r009 Re(z^3+c),c=-61/118+15/46*I,n=57 3770099636404495 r005 Im(z^2+c),c=3/82+21/47*I,n=19 3770099638455702 m001 (-GAMMA(19/24)+Cahen)/(sin(1)+BesselI(1,1)) 3770099643786655 m001 (ln(5)-GAMMA(7/12))/(MertensB1-PlouffeB) 3770099652561976 l006 ln(6333/9233) 3770099653331310 m005 (1/2*3^(1/2)+8/9)/(1/12*2^(1/2)-7/12) 3770099657540434 m001 (OneNinth+Otter)/StolarskyHarborth 3770099660866914 a007 Real Root Of -228*x^4-650*x^3+947*x^2+333*x-974 3770099663462615 s002 sum(A259802[n]/(exp(2*pi*n)+1),n=1..infinity) 3770099665126983 s002 sum(A202789[n]/(exp(2*pi*n)+1),n=1..infinity) 3770099686977498 a001 15456/281*123^(2/5) 3770099696015422 v002 sum(1/(5^n*(1/2*n^2+47/2*n+38)),n=1..infinity) 3770099696682526 r005 Im(z^2+c),c=-3/23+35/64*I,n=32 3770099696852222 a001 615*7^(41/44) 3770099699687909 a001 281*832040^(4/21) 3770099704673549 a001 1/682*47^(13/53) 3770099705404701 a007 Real Root Of 244*x^4+849*x^3-289*x^2-234*x-574 3770099707933249 a001 987/199*9349^(9/19) 3770099712995846 a001 1/86000486440*144^(7/10) 3770099713246906 m005 (4*2^(1/2)-1/4)/(5*exp(1)+3/4) 3770099713722628 s002 sum(A129743[n]/(exp(2*pi*n)+1),n=1..infinity) 3770099717282125 a001 1597/199*1364^(8/15) 3770099720267790 a001 89/2207*24476^(19/21) 3770099721911157 m001 1/ln(Si(Pi))/Bloch^2/GAMMA(5/24)^2 3770099722259548 m005 (1/3*Pi-1/7)/(3^(1/2)+2/3) 3770099725203157 a001 89/2207*64079^(19/23) 3770099725668186 a001 987/199*24476^(3/7) 3770099725961643 a001 89/2207*817138163596^(1/3) 3770099725961643 a001 89/2207*(1/2+1/2*5^(1/2))^19 3770099725961643 a001 89/2207*87403803^(1/2) 3770099726239287 a001 89/2207*103682^(19/24) 3770099728005992 a001 987/199*64079^(9/23) 3770099728037644 a001 89/2207*39603^(19/22) 3770099728358760 a001 987/199*439204^(1/3) 3770099728365258 a001 987/199*7881196^(3/11) 3770099728365274 a001 987/199*141422324^(3/13) 3770099728365274 a001 987/199*2537720636^(1/5) 3770099728365274 a001 987/199*45537549124^(3/17) 3770099728365274 a001 987/199*817138163596^(3/19) 3770099728365274 a001 987/199*14662949395604^(1/7) 3770099728365274 a001 987/199*(1/2+1/2*5^(1/2))^9 3770099728365274 a001 987/199*192900153618^(1/6) 3770099728365274 a001 987/199*10749957122^(3/16) 3770099728365274 a001 987/199*599074578^(3/14) 3770099728365275 a001 987/199*33385282^(1/4) 3770099728365601 a001 987/199*1860498^(3/10) 3770099728496790 a001 987/199*103682^(3/8) 3770099729348643 a001 987/199*39603^(9/22) 3770099731635938 r005 Re(z^2+c),c=-25/58+28/57*I,n=49 3770099732773150 a005 (1/sin(46/143*Pi))^8 3770099734955467 a001 4181/199*1364^(2/5) 3770099735779397 a001 987/199*15127^(9/20) 3770099736815139 m001 (BesselJ(0,1)+Champernowne)/CopelandErdos 3770099741436169 m005 (1/3*5^(1/2)+2/11)/(9/11*Pi-1/9) 3770099741613678 a001 89/2207*15127^(19/20) 3770099743907814 r005 Re(z^2+c),c=-11/24+21/46*I,n=52 3770099763448380 m001 GAMMA(17/24)^2/CopelandErdos*exp(sin(1))^2 3770099771819417 r005 Re(z^2+c),c=-45/98+17/40*I,n=45 3770099779985900 a007 Real Root Of -210*x^4-493*x^3+925*x^2-679*x+300 3770099784828774 a001 987/199*5778^(1/2) 3770099793629994 a007 Real Root Of 104*x^4+173*x^3-642*x^2+769*x+284 3770099801543080 m001 ZetaP(2)/(Magata^ZetaR(2)) 3770099810438254 a001 6765/199*1364^(1/3) 3770099813621596 r009 Im(z^3+c),c=-43/82+19/55*I,n=47 3770099813664635 a007 Real Root Of -229*x^4-752*x^3+479*x^2+64*x-600 3770099814230892 p001 sum(1/(337*n+269)/(32^n),n=0..infinity) 3770099820581080 m001 3^(1/3)-BesselI(0,2)^ZetaP(4) 3770099825808069 r005 Re(z^2+c),c=21/46+22/41*I,n=2 3770099835599820 m001 (Zeta(3)-Zeta(5))/(gamma(3)-BesselJ(1,1)) 3770099836202950 a007 Real Root Of 472*x^4+556*x^3+606*x^2-186*x-136 3770099861867177 s002 sum(A218776[n]/(exp(2*pi*n)+1),n=1..infinity) 3770099870493021 r005 Re(z^2+c),c=-63/122+13/62*I,n=4 3770099872614434 a007 Real Root Of -241*x^4-959*x^3-384*x^2-557*x+657 3770099884205059 m001 (ln(3)-2*Pi/GAMMA(5/6))/(Salem+ZetaQ(3)) 3770099884466817 r005 Re(z^2+c),c=-25/54+19/46*I,n=55 3770099897987435 r005 Im(z^2+c),c=-13/70+38/43*I,n=8 3770099901987703 a007 Real Root Of 165*x^4+472*x^3-527*x^2-87*x-879 3770099903005634 a001 11/21*28657^(5/12) 3770099904329659 r005 Im(z^2+c),c=9/122+20/47*I,n=26 3770099912030494 r005 Im(z^2+c),c=-15/94+29/52*I,n=37 3770099913276985 m001 (Khinchin*Sarnak-Otter)/Khinchin 3770099919395158 r005 Re(z^2+c),c=-35/64+27/40*I,n=5 3770099921902723 r005 Im(z^2+c),c=11/40+8/31*I,n=63 3770099930106413 m005 (1/2*Catalan+1/3)/(5/8*exp(1)+2/5) 3770099931023487 r009 Re(z^3+c),c=-13/27+4/15*I,n=61 3770099933461035 m001 (GAMMA(13/24)-Gompertz)/(Mills+MinimumGamma) 3770099940287279 m001 (Shi(1)+cos(1/5*Pi))/(-GAMMA(2/3)+Thue) 3770099945462010 m001 Salem-Zeta(1/2)*Riemann3rdZero 3770099951278607 r009 Im(z^3+c),c=-17/78+25/62*I,n=12 3770099953066426 s002 sum(A021925[n]/(n^3*10^n+1),n=1..infinity) 3770099953174345 m004 -120*Pi-5*Pi*Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3770099953473079 m004 -120*Pi-5*Pi*Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3770099958657883 a007 Real Root Of 914*x^4-601*x^3+745*x^2+280*x-51 3770099958786986 r005 Im(z^2+c),c=1/48+17/37*I,n=55 3770099963035161 a007 Real Root Of 694*x^4+762*x^3+365*x^2-464*x-200 3770099964346331 m001 TwinPrimes^2*ArtinRank2*exp(OneNinth)^2 3770099967048532 r005 Re(z^2+c),c=-23/50+27/64*I,n=50 3770099968300183 a001 10946/199*1364^(4/15) 3770099987159689 m001 (Backhouse-GAMMA(5/12))/exp(gamma) 3770099997414299 r009 Im(z^3+c),c=-23/94+19/48*I,n=18