3908800000955152 r005 Im(z^2+c),c=-4/17+3/55*I,n=19 3908800013594977 s002 sum(A242699[n]/(n*exp(n)+1),n=1..infinity) 3908800022462073 m001 Sierpinski^2*Artin/ln(Ei(1)) 3908800034918902 a007 Real Root Of -22*x^4-865*x^3-210*x^2-467*x+170 3908800036982226 r005 Im(z^2+c),c=-4/9+3/46*I,n=30 3908800037873417 a001 7/13201*322^(35/47) 3908800044677852 r009 Im(z^3+c),c=-37/94+17/48*I,n=16 3908800047121395 m001 GAMMA(1/12)*Sierpinski*ln(Zeta(5))^2 3908800047861914 m001 1/Riemann3rdZero/Paris^2/exp(Salem)^2 3908800076141946 r005 Re(z^2+c),c=-45/86+14/55*I,n=57 3908800078311121 r002 49th iterates of z^2 + 3908800084564750 m001 Pi+exp(1/2)-QuadraticClass 3908800087100164 a007 Real Root Of -92*x^4-551*x^3-696*x^2+196*x-30 3908800102571546 m005 (1/2*Zeta(3)+1/4)/(7/9*gamma-2/3) 3908800123214548 r005 Im(z^2+c),c=-71/78+11/42*I,n=38 3908800131035847 r002 12th iterates of z^2 + 3908800131574660 m005 (1/2*gamma+7/8)/(7/10*Pi+7/9) 3908800140123617 s002 sum(A242700[n]/(n*exp(n)+1),n=1..infinity) 3908800152628536 r005 Re(z^2+c),c=29/74+9/41*I,n=13 3908800156919425 r005 Re(z^2+c),c=-1/29+30/41*I,n=61 3908800157291582 s002 sum(A242701[n]/(n*exp(n)+1),n=1..infinity) 3908800157895857 r005 Im(z^2+c),c=3/10+17/50*I,n=14 3908800158425171 m001 (Zeta(5)+gamma(3))/(Khinchin-Trott2nd) 3908800159529127 a007 Real Root Of 444*x^4-176*x^3+975*x^2-860*x-506 3908800159981579 s002 sum(A092885[n]/(n*exp(n)+1),n=1..infinity) 3908800159985317 s002 sum(A213598[n]/(n*exp(n)+1),n=1..infinity) 3908800159985317 s002 sum(A000041[n]/(n*exp(n)+1),n=1..infinity) 3908800164416074 m001 (GaussAGM+MinimumGamma)^GAMMA(13/24) 3908800170623727 r005 Re(z^2+c),c=-57/98+19/28*I,n=6 3908800172435586 m005 (1/3*2^(1/2)-3/7)/(5*5^(1/2)-2/9) 3908800175314279 a007 Real Root Of 228*x^4+790*x^3-425*x^2-359*x-954 3908800179688391 a001 615*843^(14/51) 3908800184650748 r002 15th iterates of z^2 + 3908800184790372 a001 1/322*(1/2*5^(1/2)+1/2)*76^(9/19) 3908800187345462 r005 Im(z^2+c),c=-4/17+3/55*I,n=21 3908800191077734 a001 2207/55*2971215073^(8/19) 3908800197028334 m001 MasserGramain*Totient-Weierstrass 3908800202597658 r009 Re(z^3+c),c=-35/66+13/36*I,n=48 3908800204347781 a007 Real Root Of -954*x^4+673*x^3-593*x^2-563*x-67 3908800205445003 s002 sum(A280662[n]/(n*exp(n)+1),n=1..infinity) 3908800212539288 a007 Real Root Of -258*x^4-865*x^3+404*x^2-848*x-919 3908800229191587 r005 Im(z^2+c),c=-4/17+3/55*I,n=23 3908800236846607 r005 Im(z^2+c),c=-4/17+3/55*I,n=25 3908800238042346 r005 Im(z^2+c),c=-4/17+3/55*I,n=27 3908800238199590 r005 Im(z^2+c),c=-4/17+3/55*I,n=29 3908800238215069 r005 Im(z^2+c),c=-4/17+3/55*I,n=32 3908800238215263 r005 Im(z^2+c),c=-4/17+3/55*I,n=34 3908800238215276 r005 Im(z^2+c),c=-4/17+3/55*I,n=31 3908800238215426 r005 Im(z^2+c),c=-4/17+3/55*I,n=36 3908800238215469 r005 Im(z^2+c),c=-4/17+3/55*I,n=38 3908800238215478 r005 Im(z^2+c),c=-4/17+3/55*I,n=40 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=42 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=44 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=46 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=49 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=51 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=53 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=55 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=57 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=59 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=61 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=63 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=64 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=62 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=60 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=58 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=56 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=54 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=52 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=50 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=47 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=48 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=45 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=43 3908800238215480 r005 Im(z^2+c),c=-4/17+3/55*I,n=41 3908800238215484 r005 Im(z^2+c),c=-4/17+3/55*I,n=39 3908800238215504 r005 Im(z^2+c),c=-4/17+3/55*I,n=37 3908800238215593 r005 Im(z^2+c),c=-4/17+3/55*I,n=35 3908800238215838 r005 Im(z^2+c),c=-4/17+3/55*I,n=33 3908800238219002 r005 Im(z^2+c),c=-4/17+3/55*I,n=30 3908800238271142 r005 Im(z^2+c),c=-4/17+3/55*I,n=28 3908800238715626 r005 Im(z^2+c),c=-4/17+3/55*I,n=26 3908800241800237 r005 Im(z^2+c),c=-4/17+3/55*I,n=24 3908800260076479 r005 Im(z^2+c),c=-4/17+3/55*I,n=22 3908800261686237 h001 (7/11*exp(2)+6/7)/(2/9*exp(1)+9/11) 3908800264634819 r005 Im(z^2+c),c=9/28+7/29*I,n=29 3908800273312189 a007 Real Root Of -325*x^4-996*x^3+932*x^2-434*x+449 3908800284251632 r005 Im(z^2+c),c=-1/27+29/56*I,n=37 3908800287888837 m004 (-5*Pi)/6-24*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi] 3908800288424536 r005 Im(z^2+c),c=-2/17+24/43*I,n=34 3908800288817245 a007 Real Root Of 36*x^4-14*x^3-583*x^2+116*x+121 3908800319058435 m001 (GAMMA(7/12)-MinimumGamma)/(Niven+Trott) 3908800319729104 m001 1/Pi^2*exp(GAMMA(2/3))/Zeta(9)^2 3908800322625093 a001 267914296/843*521^(10/13) 3908800326084860 a007 Real Root Of 260*x^4+929*x^3-494*x^2-354*x+951 3908800346996438 m001 (Pi+GAMMA(3/4))/(CopelandErdos+QuadraticClass) 3908800350975525 a007 Real Root Of -494*x^4+603*x^3+451*x^2+810*x-410 3908800351280175 r005 Im(z^2+c),c=-4/17+3/55*I,n=20 3908800353322065 r005 Re(z^2+c),c=-14/27+13/46*I,n=59 3908800364620261 m002 -1+Pi^4+Pi^5-Sinh[Pi] 3908800366858639 a007 Real Root Of 267*x^4+856*x^3-760*x^2-240*x-533 3908800371377557 m001 (Zeta(3)+Niven)/(OrthogonalArrays-TwinPrimes) 3908800382763006 a007 Real Root Of 625*x^4+21*x^3+22*x^2+99*x+22 3908800405225045 r005 Im(z^2+c),c=-17/29+13/31*I,n=43 3908800409412263 m001 RenyiParking/(Zeta(1/2)-ZetaP(2)) 3908800414040097 r005 Im(z^2+c),c=-4/17+3/55*I,n=15 3908800414688101 r002 50th iterates of z^2 + 3908800416247009 r005 Re(z^2+c),c=-29/62+23/57*I,n=23 3908800427724721 a001 2/89*21^(2/11) 3908800428634243 m005 (1/6*Catalan-1/2)/(1/2*gamma+3/5) 3908800430516143 r005 Im(z^2+c),c=-15/82+33/50*I,n=21 3908800438315425 r009 Im(z^3+c),c=-7/17+21/61*I,n=22 3908800453295283 r005 Re(z^2+c),c=-47/62+1/54*I,n=60 3908800458562419 r005 Re(z^2+c),c=-43/82+3/44*I,n=9 3908800459885937 l006 ln(2141/3165) 3908800460253907 a001 4/75025*233^(26/33) 3908800462767032 s002 sum(A136884[n]/(n^3*10^n+1),n=1..infinity) 3908800466672904 a007 Real Root Of -741*x^4-547*x^3+272*x^2+372*x-137 3908800493367773 r009 Im(z^3+c),c=-2/5+26/55*I,n=6 3908800495959106 m005 (1/2*Pi+9/10)/(3/7*Pi-5/7) 3908800505132276 m001 1/ln(Riemann2ndZero)^2*GAMMA(1/4) 3908800513440238 a007 Real Root Of -238*x^4+2*x^3-736*x^2+606*x+355 3908800518243873 m005 (1/2*exp(1)-4/11)/(5/8*Pi+7/12) 3908800518357540 a007 Real Root Of 980*x^4+352*x^3+507*x^2-991*x+266 3908800539920889 r005 Re(z^2+c),c=-13/14+37/218*I,n=44 3908800560672055 b008 Pi+2*E*Sin[3] 3908800569145922 r005 Re(z^2+c),c=-11/16+1/84*I,n=14 3908800583873469 r008 a(0)=4,K{-n^6,4*n^3+9*n^2-n} 3908800626972934 r002 60th iterates of z^2 + 3908800635960582 m008 (2/3*Pi^5-4)/(1/6*Pi^5+1/6) 3908800640280713 r005 Re(z^2+c),c=-57/110+9/29*I,n=30 3908800644968383 r005 Re(z^2+c),c=-75/118+2/9*I,n=15 3908800649202324 r009 Re(z^3+c),c=-43/106+9/59*I,n=25 3908800665243180 m001 1/ln(arctan(1/2))/GAMMA(1/12)*sin(Pi/5)^2 3908800670948030 r009 Im(z^3+c),c=-15/26+2/9*I,n=4 3908800683292458 p001 sum(1/(318*n+131)/n/(6^n),n=1..infinity) 3908800695324122 m001 (Zeta(3)*TwinPrimes+Riemann3rdZero)/TwinPrimes 3908800697220830 r005 Im(z^2+c),c=-4/17+3/55*I,n=18 3908800700033844 m005 (1/2*3^(1/2)-4)/(1/9*Catalan+7/10) 3908800711090002 m005 (1/3*3^(1/2)-1/12)/(5/7*5^(1/2)-1/3) 3908800713678438 r009 Im(z^3+c),c=-27/86+20/51*I,n=14 3908800724360652 r005 Im(z^2+c),c=-19/18+11/254*I,n=7 3908800728007552 a001 4/4181*75025^(20/27) 3908800732104580 m001 Lehmer^2/exp(FeigenbaumAlpha)^2/BesselK(1,1) 3908800744597574 r005 Im(z^2+c),c=3/19+17/44*I,n=26 3908800751631910 r008 a(0)=0,K{-n^6,-2+2*n^3-9*n^2+7*n} 3908800751631910 r008 a(0)=0,K{-n^6,2-2*n^3+9*n^2-7*n} 3908800758334998 r005 Im(z^2+c),c=1/86+23/51*I,n=8 3908800767720849 s002 sum(A239276[n]/((2^n-1)/n),n=1..infinity) 3908800776776494 r002 61th iterates of z^2 + 3908800796422424 r005 Re(z^2+c),c=-45/86+14/55*I,n=58 3908800807885451 r005 Im(z^2+c),c=-11/114+21/38*I,n=61 3908800827550957 r005 Re(z^2+c),c=1/25+4/19*I,n=7 3908800871683316 a007 Real Root Of -292*x^4+319*x^3-387*x^2+811*x+402 3908800875461392 r005 Im(z^2+c),c=-13/94+19/33*I,n=51 3908800881234891 m005 (15/44+1/4*5^(1/2))/(4/5*3^(1/2)+11/12) 3908800891095002 m005 (1/2*gamma+8/9)/(3/11*Pi-5/9) 3908800904618034 r002 31th iterates of z^2 + 3908800904893438 m001 (ln(3)+Sarnak)/(Weierstrass-ZetaQ(3)) 3908800909375040 h001 (11/12*exp(1)+3/7)/(1/11*exp(1)+1/2) 3908800911201868 m008 (4/5*Pi^6-5)/(2*Pi^4+2/3) 3908800916041589 m005 (1/2*2^(1/2)-1/6)/(3/5+7/20*5^(1/2)) 3908800929692110 r009 Im(z^3+c),c=-31/74+17/50*I,n=39 3908800948218875 m001 1/GAMMA(3/4)^2*DuboisRaymond*ln(sqrt(3))^2 3908800951480936 m002 -1/(3*E^Pi)+4/Pi^2 3908800953566810 l006 ln(6400/9461) 3908800975510852 p001 sum((-1)^n/(263*n+252)/(32^n),n=0..infinity) 3908800975756156 r009 Im(z^3+c),c=-43/98+19/58*I,n=26 3908800976895107 r005 Im(z^2+c),c=-69/64+21/59*I,n=3 3908800980565103 r009 Re(z^3+c),c=-47/90+9/32*I,n=46 3908800984792971 r005 Im(z^2+c),c=-17/16+29/110*I,n=47 3908800998622896 p004 log(34679/23459) 3908801009053925 m001 Magata/Gompertz/MinimumGamma 3908801012635515 a007 Real Root Of 859*x^4-654*x^3+891*x^2-882*x-540 3908801017216522 r005 Im(z^2+c),c=-121/126+9/28*I,n=5 3908801017353493 m001 (Zeta(1/2)+GAMMA(5/6))/(Trott-Thue) 3908801020408163 r002 2th iterates of z^2 + 3908801030122965 r005 Im(z^2+c),c=-9/26+22/31*I,n=3 3908801030448464 r005 Im(z^2+c),c=-5/31+23/38*I,n=56 3908801031167602 r002 25th iterates of z^2 + 3908801037241963 l006 ln(143/7127) 3908801039408657 m001 exp(Rabbit)/Niven^2*RenyiParking^2 3908801046252426 m001 (BesselI(1,2)-cos(1))/(Khinchin+ZetaQ(4)) 3908801055299828 a001 10182505537/682*199^(2/11) 3908801061953485 m001 (Chi(1)+OneNinth)/(-Paris+PolyaRandomWalk3D) 3908801064186771 a001 123/11*(1/2*5^(1/2)+1/2)^19*11^(11/20) 3908801065031733 r005 Re(z^2+c),c=-19/30+6/41*I,n=6 3908801068722558 m001 (Shi(1)-gamma(1))/(-FeigenbaumB+Landau) 3908801089984467 r002 63th iterates of z^2 + 3908801093145204 m001 (Sierpinski+Thue)/(Ei(1,1)-HardyLittlewoodC4) 3908801097350739 r009 Im(z^3+c),c=-47/98+11/37*I,n=41 3908801097994618 r005 Im(z^2+c),c=-17/118+39/59*I,n=38 3908801099944900 r005 Re(z^2+c),c=-17/30+11/70*I,n=9 3908801103114315 a001 322/32951280099*8^(2/3) 3908801106245856 r005 Im(z^2+c),c=9/74+17/43*I,n=10 3908801127901604 m001 (Catalan+BesselJ(0,1))/(-ln(3)+GAMMA(7/12)) 3908801128172264 r005 Im(z^2+c),c=-16/13+3/46*I,n=41 3908801129683764 r005 Re(z^2+c),c=-33/62+4/41*I,n=9 3908801150750001 m001 (Rabbit-Tribonacci)/(polylog(4,1/2)-Magata) 3908801151670255 h001 (4/9*exp(1)+5/7)/(5/8*exp(2)+3/10) 3908801167288745 r008 a(0)=4,K{-n^6,19-16*n+7*n^2+3*n^3} 3908801168174232 a001 2/17711*6557470319842^(10/17) 3908801172125387 m004 -110*Pi+E^(Sqrt[5]*Pi)/ProductLog[Sqrt[5]*Pi] 3908801180708394 r005 Im(z^2+c),c=-4/17+3/55*I,n=16 3908801181281791 p002 log(12^(3/4)-2^(3/4)-15) 3908801191751878 a001 433494437/322*322^(7/12) 3908801201740256 l006 ln(4259/6296) 3908801202360932 r005 Im(z^2+c),c=-2/27+31/52*I,n=25 3908801206405945 r009 Re(z^3+c),c=-41/118+4/59*I,n=6 3908801208440352 r005 Re(z^2+c),c=-57/106+2/57*I,n=15 3908801216332889 r009 Im(z^3+c),c=-3/56+22/49*I,n=10 3908801216543048 r005 Re(z^2+c),c=-25/46+1/41*I,n=41 3908801221841007 r005 Re(z^2+c),c=-41/78+11/46*I,n=50 3908801236280287 m001 Psi(1,1/3)^ln(2)-Shi(1) 3908801256814639 r005 Im(z^2+c),c=-3/32+27/49*I,n=64 3908801262434175 a007 Real Root Of -771*x^4-493*x^3-962*x^2+958*x+510 3908801265677196 m001 (sin(1/5*Pi)*Cahen-ZetaR(2))/sin(1/5*Pi) 3908801269515174 r005 Re(z^2+c),c=-27/50+5/51*I,n=26 3908801271169229 a007 Real Root Of 10*x^4-118*x^3-374*x^2+885*x-208 3908801279735384 m009 (5/6*Psi(1,2/3)+4/5)/(40*Catalan+5*Pi^2-1/5) 3908801284962438 r002 8th iterates of z^2 + 3908801294851187 r009 Im(z^3+c),c=-47/118+19/54*I,n=13 3908801299660252 r002 19th iterates of z^2 + 3908801324882028 r005 Im(z^2+c),c=-2/11+23/38*I,n=44 3908801332651293 r005 Im(z^2+c),c=-2/3+6/83*I,n=60 3908801347423871 a001 17711/76*11^(11/51) 3908801373675546 r002 16th iterates of z^2 + 3908801375926130 m001 (Porter+Trott)/(GAMMA(23/24)-OrthogonalArrays) 3908801394624110 r002 13th iterates of z^2 + 3908801398317346 m001 ZetaQ(2)^Backhouse*ThueMorse^Backhouse 3908801399261531 m001 1/exp(Rabbit)/GolombDickman^2*GAMMA(1/6)^2 3908801401180503 r009 Im(z^3+c),c=-4/9+11/34*I,n=37 3908801406283473 r005 Im(z^2+c),c=19/110+3/8*I,n=34 3908801414771511 a005 (1/cos(5/69*Pi))^1902 3908801416855232 a007 Real Root Of 184*x^4+735*x^3+96*x^2+150*x+62 3908801430325584 a001 433494437/843*521^(9/13) 3908801430420149 a007 Real Root Of -202*x^4-757*x^3+204*x^2+359*x+232 3908801431496904 r005 Re(z^2+c),c=-10/29+26/41*I,n=49 3908801443144594 r005 Im(z^2+c),c=19/70+17/60*I,n=55 3908801450808787 l006 ln(6377/9427) 3908801452190690 r005 Re(z^2+c),c=19/56+5/57*I,n=49 3908801462339264 r009 Re(z^3+c),c=-12/19+21/37*I,n=5 3908801462944853 m001 (2^(1/3)+Bloch)/(FeigenbaumAlpha+Tetranacci) 3908801463796757 h001 (7/9*exp(2)+7/10)/(6/11*exp(1)+1/6) 3908801468949654 r009 Re(z^3+c),c=-49/122+6/41*I,n=10 3908801471390479 r005 Re(z^2+c),c=-39/74+21/50*I,n=43 3908801493023781 m001 HardyLittlewoodC5/(Gompertz+ZetaP(2)) 3908801513604754 a007 Real Root Of 856*x^4-629*x^3+12*x^2-590*x-290 3908801517287668 m001 Si(Pi)*(ln(Pi)+cos(1/12*Pi)) 3908801517287668 m001 Si(Pi)*(ln(Pi)+cos(Pi/12)) 3908801522933260 m001 FeigenbaumD^2/Magata/ln(GAMMA(11/12)) 3908801534273220 r005 Im(z^2+c),c=-43/38+3/62*I,n=42 3908801557373487 m001 (Catalan-Psi(1,1/3))/(ln(2^(1/2)+1)+Porter) 3908801573750218 a007 Real Root Of -74*x^4-376*x^3-266*x^2+366*x+314 3908801574587477 r005 Re(z^2+c),c=-47/90+13/64*I,n=14 3908801603796811 m001 FeigenbaumC/(PrimesInBinary+ZetaQ(2)) 3908801606182149 a001 11/987*8^(35/58) 3908801607709708 r005 Im(z^2+c),c=11/74+31/63*I,n=15 3908801610834950 r005 Im(z^2+c),c=8/23+7/33*I,n=49 3908801617618793 m005 (-25/44+1/4*5^(1/2))/(5/11*Pi+11/12) 3908801632264701 s001 sum(exp(-Pi/2)^(n-1)*A086660[n],n=1..infinity) 3908801632921101 a001 1/1602508992*8^(15/17) 3908801638535470 r005 Re(z^2+c),c=-5/8+81/181*I,n=30 3908801642556075 r005 Im(z^2+c),c=31/126+13/42*I,n=49 3908801650072119 r009 Re(z^3+c),c=-2/5+8/55*I,n=23 3908801653507462 r005 Re(z^2+c),c=-37/54+11/46*I,n=52 3908801655135852 r009 Im(z^3+c),c=-16/27+5/11*I,n=9 3908801659782218 r005 Re(z^2+c),c=-29/110+40/63*I,n=46 3908801683585034 m005 (1/2*Catalan+1/3)/(1/11*Catalan-2/7) 3908801693610059 m005 (1/2*5^(1/2)-8/9)/(1/4*Zeta(3)+2/7) 3908801694778004 a007 Real Root Of -18*x^4-695*x^3+345*x^2+368*x-64 3908801697424892 a001 9107507955/233 3908801734511595 h001 (7/8*exp(2)+7/12)/(4/7*exp(1)+1/4) 3908801742324586 l006 ln(199/9918) 3908801749855990 a007 Real Root Of 947*x^4-580*x^3-86*x^2-505*x-241 3908801761766420 r005 Im(z^2+c),c=-35/34+29/75*I,n=9 3908801777112019 a007 Real Root Of -350*x^4+99*x^3+763*x^2+649*x-368 3908801777315125 a007 Real Root Of 136*x^4+439*x^3-581*x^2-955*x-386 3908801781933036 r004 Im(z^2+c),c=-1/22+10/19*I,z(0)=I,n=22 3908801791445547 a001 439204/377*4807526976^(6/23) 3908801791501978 a001 7881196/377*75025^(6/23) 3908801827421517 r002 20th iterates of z^2 + 3908801828642444 m001 (Totient-ThueMorse)/(Magata-MertensB2) 3908801835719395 r005 Im(z^2+c),c=-37/30+3/121*I,n=3 3908801840650453 m001 (Mills-Trott)/(arctan(1/3)-gamma(2)) 3908801854041619 a001 7/121393*17711^(25/58) 3908801874401225 a001 161/1762289*233^(4/15) 3908801879442016 a007 Real Root Of 158*x^4+669*x^3+412*x^2+772*x-207 3908801893915195 s002 sum(A157395[n]/(2^n-1),n=1..infinity) 3908801898988426 r009 Im(z^3+c),c=-29/102+23/57*I,n=14 3908801908013093 r002 42th iterates of z^2 + 3908801910871468 r002 56th iterates of z^2 + 3908801930153392 r005 Im(z^2+c),c=7/58+22/53*I,n=32 3908801938909009 r005 Re(z^2+c),c=-9/17+5/36*I,n=16 3908801940121153 a007 Real Root Of 128*x^4+325*x^3-702*x^2-56*x+36 3908801946368787 a001 1568397607*144^(11/17) 3908801947201375 r005 Im(z^2+c),c=-83/114+3/29*I,n=28 3908801951650539 l006 ln(2118/3131) 3908801969702367 h001 (-exp(1)+3)/(-6*exp(-1)-5) 3908801973314268 a007 Real Root Of 172*x^4+752*x^3+176*x^2-286*x+952 3908801982647260 r002 4th iterates of z^2 + 3908801986720653 r002 5th iterates of z^2 + 3908801987242870 r009 Im(z^3+c),c=-33/64+9/34*I,n=30 3908801994419428 r005 Re(z^2+c),c=-47/90+8/31*I,n=31 3908802009383900 r002 22th iterates of z^2 + 3908802011104817 r009 Im(z^3+c),c=-53/102+10/63*I,n=48 3908802025230522 r009 Im(z^3+c),c=-33/86+39/58*I,n=25 3908802027394637 m001 (Zeta(3)+ln(2^(1/2)+1))/(Kolakoski-MertensB1) 3908802035014715 m001 (MasserGramain-Riemann2ndZero)^ZetaP(2) 3908802057110238 m004 -1+125*Pi-5/(4*ProductLog[Sqrt[5]*Pi]) 3908802071391987 a007 Real Root Of 209*x^4+240*x^3+410*x^2-547*x-267 3908802074661378 m001 (gamma(1)-Magata)/(QuadraticClass+ZetaQ(3)) 3908802086645958 a007 Real Root Of -956*x^4+751*x^3+502*x^2+797*x+302 3908802095249907 m001 (FeigenbaumD+FeigenbaumMu)/(ln(5)+gamma(2)) 3908802099365996 r002 21th iterates of z^2 + 3908802105181148 b008 7*E+13*Cosh[1] 3908802116014657 r002 4th iterates of z^2 + 3908802142242284 p001 sum(1/(310*n+257)/(100^n),n=0..infinity) 3908802149476476 r005 Im(z^2+c),c=3/122+25/52*I,n=48 3908802156532716 m002 4*Pi^4+Log[Pi]+Csch[Pi]*Log[Pi] 3908802168288156 r009 Im(z^3+c),c=-15/122+23/48*I,n=2 3908802170961527 m001 (Lehmer-TreeGrowth2nd)/(Pi+BesselJ(0,1)) 3908802177208678 r009 Im(z^3+c),c=-1/17+34/59*I,n=2 3908802182116154 m006 (1/3*ln(Pi)+4/5)/(3/4*Pi+2/3) 3908802186183732 r005 Re(z^2+c),c=-16/25+3/56*I,n=10 3908802191226176 m001 (3^(1/2)-gamma)/(-HeathBrownMoroz+Otter) 3908802210982322 r005 Re(z^2+c),c=13/98+37/63*I,n=5 3908802237142494 r005 Re(z^2+c),c=-35/66+12/59*I,n=34 3908802240779495 r002 24th iterates of z^2 + 3908802240886759 m001 1/BesselJ(1,1)*ln(KhintchineLevy)^2*sin(Pi/5) 3908802243464614 m001 BesselK(0,1)*exp(Kolakoski)^2*Ei(1) 3908802244889576 m004 5+(Cosh[Sqrt[5]*Pi]*Cot[Sqrt[5]*Pi])/18 3908802246716991 m001 (Gompertz+ZetaQ(3))/(GAMMA(3/4)+FellerTornier) 3908802255224596 r008 a(0)=4,K{-n^6,36-9*n+25*n^2-15*n^3} 3908802275694493 p001 sum((-1)^n/(403*n+83)/n/(5^n),n=1..infinity) 3908802285142539 m001 exp(BesselJ(1,1))/Kolakoski*sqrt(2)^2 3908802291422580 m001 (-Stephens+Trott)/(ln(2)/ln(10)+ln(Pi)) 3908802314103192 a007 Real Root Of 292*x^4+957*x^3-646*x^2+320*x+110 3908802325697730 b008 -4+ArcCoth[(7*Pi)/2] 3908802330840089 r005 Re(z^2+c),c=-125/114+12/43*I,n=10 3908802338853367 r002 5th iterates of z^2 + 3908802339062665 m001 (Pi-1)/(ln(gamma)+ZetaQ(4)) 3908802345604275 a007 Real Root Of 8*x^4-425*x^3+362*x^2-141*x+25 3908802369275289 h001 (-4*exp(2)+2)/(-exp(-3)-7) 3908802377235913 a001 11/610*121393^(17/37) 3908802382832618 a001 9107509552/233 3908802384586929 m001 (exp(-Pi)*BesselI(0,2)+BesselI(1,2))/exp(-Pi) 3908802384586929 m001 exp(Pi)*BesselI(1,2)+BesselI(0,2) 3908802389099628 r005 Re(z^2+c),c=-53/98+4/55*I,n=16 3908802394793710 a007 Real Root Of 321*x^4+77*x^3+572*x^2-887*x-437 3908802400219220 a007 Real Root Of 563*x^4-760*x^3-645*x^2-678*x-225 3908802402945883 r005 Im(z^2+c),c=6/25+7/16*I,n=9 3908802426824652 a001 20365011074/843*199^(1/11) 3908802447254769 r002 49th iterates of z^2 + 3908802452903328 h001 (2/7*exp(1)+3/8)/(11/12*exp(1)+5/11) 3908802456131299 l006 ln(6331/9359) 3908802456148154 a007 Real Root Of -696*x^4+143*x^3-286*x^2+733*x+355 3908802468740394 r005 Re(z^2+c),c=-61/78+13/54*I,n=6 3908802475944050 a003 cos(Pi*8/95)-cos(Pi*29/95) 3908802482832618 a001 9107509785/233 3908802491043000 r005 Im(z^2+c),c=-19/98+11/17*I,n=28 3908802496352457 m001 sinh(1)/ln(Sierpinski)^2*sqrt(3)^2 3908802497424892 a001 9107509819/233 3908802499497500 a001 78176249/2-89/2*5^(1/2) 3908802499570815 a001 9107509824/233 3908802499914163 a001 45537549124/233*8^(1/3) 3908802499914163 a001 2/233*(1/2+1/2*5^(1/2))^51 3908802500000001 a001 24157529/2+24157817/2*5^(1/2) 3908802500858369 a001 9107509827/233 3908802506437768 a001 9107509840/233 3908802517856965 r005 Re(z^2+c),c=4/17+19/37*I,n=18 3908802530237038 r005 Im(z^2+c),c=4/17+8/25*I,n=37 3908802536774917 r009 Im(z^3+c),c=-31/64+7/24*I,n=33 3908802537715981 r005 Re(z^2+c),c=-53/102+8/29*I,n=47 3908802538026388 a001 233802911/281*521^(8/13) 3908802540342769 r009 Im(z^3+c),c=-29/64+20/63*I,n=43 3908802544635193 a001 9107509929/233 3908802546590587 a008 Real Root of x^4-2*x^3-44*x^2-68*x-20 3908802552867107 r009 Im(z^3+c),c=-37/110+18/47*I,n=31 3908802575044642 a007 Real Root Of -126*x^4-375*x^3+694*x^2+706*x-826 3908802575154889 a007 Real Root Of 586*x^4-910*x^3+414*x^2+57*x-109 3908802579250681 m001 1/GAMMA(13/24)/ln(ArtinRank2)^2/Zeta(3) 3908802612972412 a007 Real Root Of -170*x^4-393*x^3+943*x^2-698*x-922 3908802625779995 r009 Re(z^3+c),c=-7/16+11/58*I,n=19 3908802631781314 r005 Im(z^2+c),c=-19/42+29/54*I,n=9 3908802648969024 m005 (1/3*exp(1)-3/7)/(1/7*exp(1)+5/6) 3908802649972649 a001 3571/13*4807526976^(16/19) 3908802660178745 p001 sum(1/(259*n+192)/n/(6^n),n=1..infinity) 3908802671427427 a007 Real Root Of -95*x^4-358*x^3+337*x^2+883*x-901 3908802689501140 r005 Im(z^2+c),c=25/86+4/15*I,n=27 3908802690745268 r009 Im(z^3+c),c=-4/9+11/34*I,n=36 3908802696849537 r009 Im(z^3+c),c=-1/12+17/38*I,n=7 3908802700115643 a007 Real Root Of -899*x^4+282*x^3-35*x^2+582*x-218 3908802704670457 a007 Real Root Of -537*x^4+740*x^3+252*x^2+946*x+388 3908802709748724 l006 ln(4213/6228) 3908802714979609 m001 ErdosBorwein^CareFree/(ErdosBorwein^Khinchin) 3908802739317601 r004 Im(z^2+c),c=-1/20+10/19*I,z(0)=I,n=38 3908802743963205 m008 (2/5*Pi^3-3)/(3/4*Pi^3+4/5) 3908802744175930 m001 FeigenbaumC^(Pi^(1/2))/RenyiParking 3908802751425945 r005 Im(z^2+c),c=-77/122+4/55*I,n=50 3908802752220331 l006 ln(2609/2713) 3908802752220331 p004 log(2713/2609) 3908802758940466 m001 (-Ei(1)+ZetaP(2))/(cos(1)-gamma) 3908802766491887 r005 Re(z^2+c),c=-13/24+5/62*I,n=35 3908802772560540 m004 -6/5+125*Pi-Sin[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 3908802774336635 r009 Im(z^3+c),c=-15/94+24/55*I,n=12 3908802793153823 a008 Real Root of x^4-2*x^3-14*x^2+12*x+53 3908802794795636 p004 log(23873/479) 3908802805060438 m004 -E^(Sqrt[5]*Pi)/6+5*Pi+30*Sqrt[5]*Pi 3908802805072878 a001 267914296/2207*521^(12/13) 3908802806437768 a001 9107510539/233 3908802810830649 b008 2+Cosh[ArcTan[Pi]] 3908802820436720 m001 exp(GAMMA(11/12))*OneNinth^2*GAMMA(19/24) 3908802826020320 m001 (-Ei(1,1)+HardyLittlewoodC4)/(1-GAMMA(3/4)) 3908802831658785 r005 Im(z^2+c),c=35/102+5/22*I,n=29 3908802838142948 m005 (1/8+1/4*5^(1/2))/(5/6*2^(1/2)+4/7) 3908802838703064 m001 GAMMA(13/24)/(Trott2nd^QuadraticClass) 3908802847509800 m001 (-FeigenbaumDelta+Lehmer)/(Si(Pi)-cos(1/5*Pi)) 3908802847850909 r002 55th iterates of z^2 + 3908802858551499 r002 51th iterates of z^2 + 3908802859944823 a007 Real Root Of -153*x^4-642*x^3-130*x^2+354*x+745 3908802867167152 r005 Re(z^2+c),c=-55/82+9/40*I,n=22 3908802872131006 r005 Im(z^2+c),c=-63/58+1/22*I,n=13 3908802875706951 r005 Re(z^2+c),c=-29/56+6/17*I,n=28 3908802880411928 a007 Real Root Of -198*x^4-810*x^3-234*x^2-232*x+515 3908802885256116 r005 Im(z^2+c),c=1/12+19/43*I,n=37 3908802888572883 m003 -5/4+5*Cot[1/2+Sqrt[5]/2]-Sinh[1/2+Sqrt[5]/2] 3908802891312963 m001 (-ln(2)+ln(5))/(exp(Pi)+ln(2)/ln(10)) 3908802906031010 r002 39th iterates of z^2 + 3908802906269882 r005 Im(z^2+c),c=-7/17+3/47*I,n=16 3908802906315808 a007 Real Root Of 662*x^4+675*x^3+925*x^2-937*x-38 3908802906658189 r005 Im(z^2+c),c=13/82+17/44*I,n=45 3908802939512001 b008 1/5+5*ExpIntegralEi[1/5] 3908802947557095 r009 Im(z^3+c),c=-13/27+13/47*I,n=15 3908802956498741 a001 7881196/13*514229^(16/19) 3908802957665933 a001 7/5702887*55^(19/22) 3908802964290872 l006 ln(6308/9325) 3908802979012969 r005 Im(z^2+c),c=19/58+7/29*I,n=5 3908802980833647 a007 Real Root Of 245*x^4+901*x^3-20*x^2+756*x-123 3908802991415768 a001 29/1346269*3^(32/59) 3908802998195686 a001 39603/2*233^(29/53) 3908803024957057 a003 cos(Pi*29/73)*cos(Pi*41/89) 3908803039826582 a007 Real Root Of -509*x^4-18*x^3-862*x^2+878*x-33 3908803054183448 m001 gamma(1)^exp(1)/(gamma(1)^BesselK(1,1)) 3908803067268766 a007 Real Root Of 263*x^4-205*x^3+855*x^2-350*x-15 3908803076251779 r005 Im(z^2+c),c=-31/30+1/24*I,n=8 3908803097406094 r005 Im(z^2+c),c=-11/58+35/59*I,n=48 3908803140674061 a003 sin(Pi*10/101)-sin(Pi*27/110) 3908803156633819 m005 (1/3*Catalan+1/5)/(10/11*Zeta(3)+1/5) 3908803156974388 r005 Im(z^2+c),c=-3/4+19/88*I,n=12 3908803181258056 m005 (1/3*3^(1/2)+2/5)/(6/11*Catalan-3) 3908803182500373 r005 Im(z^2+c),c=-23/90+11/17*I,n=34 3908803184218502 m001 1/GAMMA(5/12)^2/GAMMA(3/4)/exp(GAMMA(7/12)) 3908803191713225 m008 (5*Pi-2/3)/(2/5*Pi^6+1/4) 3908803193195103 m004 -2+125*Pi+Cos[Sqrt[5]*Pi]^2/3 3908803207033268 m002 Cosh[Pi]/3+6*Csch[Pi]*Sech[Pi] 3908803214372588 m001 (2^(1/2)+Conway)/(-FeigenbaumKappa+TwinPrimes) 3908803223727630 a007 Real Root Of 59*x^4+149*x^3-585*x^2-991*x+190 3908803223796126 b008 (3*E)/Pi+Coth[1] 3908803225193692 r002 48th iterates of z^2 + 3908803234643819 r002 30th iterates of z^2 + 3908803245321711 r005 Im(z^2+c),c=33/98+1/5*I,n=61 3908803252725595 m001 (-Artin+3)/(exp(1)+4) 3908803256841836 m001 (Pi+2)/(-exp(1/2)+1/3) 3908803259218662 h001 (-4*exp(7)+1)/(-2*exp(4)-3) 3908803283334116 m001 (BesselK(1,1)+Kolakoski)/(3^(1/2)-exp(1/Pi)) 3908803302550536 m005 (1/2*exp(1)+2/11)/(1/10*gamma-4) 3908803319585108 a007 Real Root Of 676*x^4+863*x^3+988*x^2-767*x-415 3908803322846324 m001 (Zeta(1,2)-HeathBrownMoroz)/(Zeta(3)-3^(1/3)) 3908803325484324 r002 41th iterates of z^2 + 3908803340581980 m001 (Mills+Riemann1stZero)/(Zeta(1,2)+MertensB3) 3908803341551949 m001 (CareFree+Lehmer)/(ln(gamma)+ln(2^(1/2)+1)) 3908803348134062 r009 Im(z^3+c),c=-7/16+20/61*I,n=23 3908803355280970 m009 (3*Psi(1,2/3)-5/6)/(6*Psi(1,2/3)+3) 3908803373748023 q001 1483/3794 3908803380834336 a001 89/199*64079^(41/50) 3908803383432682 r009 Im(z^3+c),c=-37/110+18/47*I,n=34 3908803389540963 m001 Sierpinski^2*Porter/ln(GAMMA(17/24)) 3908803389791397 a007 Real Root Of -219*x^4+270*x^3-921*x^2-5*x+160 3908803394735487 a001 11*89^(35/44) 3908803399072209 m001 (1+ln(gamma))/(ln(3)+ZetaQ(2)) 3908803399402069 r005 Im(z^2+c),c=25/122+8/23*I,n=35 3908803422924636 r005 Re(z^2+c),c=-11/21+9/31*I,n=25 3908803427407543 r005 Re(z^2+c),c=37/122+3/62*I,n=56 3908803454195773 r005 Im(z^2+c),c=1/126+28/57*I,n=52 3908803460685616 m006 (2/3*exp(Pi)+2)/(5/6*exp(2*Pi)-2/5) 3908803476169646 l006 ln(2095/3097) 3908803490480583 a001 233802911/1926*521^(12/13) 3908803499741758 m001 (3^(1/2))^GlaisherKinkelin/polylog(4,1/2) 3908803521903178 r005 Im(z^2+c),c=-1/31+33/64*I,n=62 3908803539841139 r002 47th iterates of z^2 + 3908803542801172 l006 ln(56/2791) 3908803544496437 r005 Re(z^2+c),c=-23/74+29/52*I,n=5 3908803561524012 r005 Im(z^2+c),c=7/29+27/61*I,n=13 3908803563109616 r002 9th iterates of z^2 + 3908803563131181 m001 (-GaussAGM+Stephens)/(Zeta(3)-cos(1)) 3908803574449567 a007 Real Root Of 163*x^4+812*x^3+679*x^2+153*x+667 3908803583207168 r009 Im(z^3+c),c=-37/110+18/47*I,n=37 3908803590480239 a001 1836311903/15127*521^(12/13) 3908803605069993 a001 1602508992/13201*521^(12/13) 3908803607198609 a001 12586269025/103682*521^(12/13) 3908803607509170 a001 121393*521^(12/13) 3908803607554480 a001 86267571272/710647*521^(12/13) 3908803607561091 a001 75283811239/620166*521^(12/13) 3908803607562056 a001 591286729879/4870847*521^(12/13) 3908803607562196 a001 516002918640/4250681*521^(12/13) 3908803607562217 a001 4052739537881/33385282*521^(12/13) 3908803607562220 a001 3536736619241/29134601*521^(12/13) 3908803607562222 a001 6557470319842/54018521*521^(12/13) 3908803607562230 a001 2504730781961/20633239*521^(12/13) 3908803607562283 a001 956722026041/7881196*521^(12/13) 3908803607562652 a001 365435296162/3010349*521^(12/13) 3908803607565177 a001 139583862445/1149851*521^(12/13) 3908803607582484 a001 53316291173/439204*521^(12/13) 3908803607638870 m004 (-5*Cot[Sqrt[5]*Pi])/3+125*Pi*Coth[Sqrt[5]*Pi] 3908803607701107 a001 20365011074/167761*521^(12/13) 3908803608514167 a001 7778742049/64079*521^(12/13) 3908803611345768 r005 Im(z^2+c),c=11/86+25/61*I,n=37 3908803612372731 r005 Re(z^2+c),c=-113/114+17/59*I,n=10 3908803614086957 a001 2971215073/24476*521^(12/13) 3908803618272552 r005 Re(z^2+c),c=-73/122+17/59*I,n=5 3908803622494656 r005 Im(z^2+c),c=1/126+28/57*I,n=55 3908803629808276 r009 Im(z^3+c),c=-37/110+18/47*I,n=40 3908803638601855 r009 Im(z^3+c),c=-37/110+18/47*I,n=38 3908803640154078 r009 Im(z^3+c),c=-37/110+18/47*I,n=41 3908803640195772 m005 (-7/36+1/4*5^(1/2))/(10/11*Catalan+1/10) 3908803640296928 r009 Im(z^3+c),c=-37/110+18/47*I,n=43 3908803641926004 r009 Im(z^3+c),c=-37/110+18/47*I,n=44 3908803642553935 r009 Im(z^3+c),c=-37/110+18/47*I,n=46 3908803642707638 r009 Im(z^3+c),c=-37/110+18/47*I,n=47 3908803642905726 r005 Re(z^2+c),c=-9/13+5/32*I,n=23 3908803642983569 r009 Im(z^3+c),c=-37/110+18/47*I,n=50 3908803643010426 r009 Im(z^3+c),c=-37/110+18/47*I,n=49 3908803643071089 r009 Im(z^3+c),c=-37/110+18/47*I,n=53 3908803643094162 r009 Im(z^3+c),c=-37/110+18/47*I,n=52 3908803643097075 r009 Im(z^3+c),c=-37/110+18/47*I,n=56 3908803643104436 r009 Im(z^3+c),c=-37/110+18/47*I,n=59 3908803643106446 r009 Im(z^3+c),c=-37/110+18/47*I,n=62 3908803643106832 r009 Im(z^3+c),c=-37/110+18/47*I,n=55 3908803643107291 r009 Im(z^3+c),c=-37/110+18/47*I,n=64 3908803643107428 r009 Im(z^3+c),c=-37/110+18/47*I,n=63 3908803643107508 r009 Im(z^3+c),c=-37/110+18/47*I,n=61 3908803643107820 r009 Im(z^3+c),c=-37/110+18/47*I,n=58 3908803643108450 r009 Im(z^3+c),c=-37/110+18/47*I,n=60 3908803643113045 r009 Im(z^3+c),c=-37/110+18/47*I,n=57 3908803643132926 r009 Im(z^3+c),c=-37/110+18/47*I,n=54 3908803643216255 r009 Im(z^3+c),c=-37/110+18/47*I,n=51 3908803643555702 r009 Im(z^3+c),c=-37/110+18/47*I,n=48 3908803644901487 r009 Im(z^3+c),c=-37/110+18/47*I,n=45 3908803645727507 a001 1134903170/843*521^(7/13) 3908803650093763 r009 Im(z^3+c),c=-37/110+18/47*I,n=42 3908803652283428 a001 1134903170/9349*521^(12/13) 3908803652862990 a007 Real Root Of 692*x^4-927*x^3+549*x^2-455*x+17 3908803654406562 r009 Im(z^3+c),c=-37/110+18/47*I,n=35 3908803669555853 r009 Im(z^3+c),c=-37/110+18/47*I,n=39 3908803704747184 m001 (Conway+MertensB1)/(Salem-StronglyCareFree) 3908803710804632 r005 Re(z^2+c),c=-45/86+14/55*I,n=64 3908803731929336 a008 Real Root of (-2+5*x+2*x^4-2*x^8) 3908803738061251 r009 Re(z^3+c),c=-33/86+40/59*I,n=21 3908803740170203 r009 Im(z^3+c),c=-37/110+18/47*I,n=36 3908803742185614 m001 (-GAMMA(5/6)+Tetranacci)/(sin(1)+Zeta(3)) 3908803742725460 r005 Im(z^2+c),c=-8/19+13/23*I,n=53 3908803744889858 m001 (KhinchinLevy+ZetaQ(4))/(arctan(1/3)-Kac) 3908803747665775 m005 (1/2*exp(1)-2/7)/(9/11*5^(1/2)+11/12) 3908803747996230 p001 sum((-1)^n/(388*n+241)/(6^n),n=0..infinity) 3908803764894352 r009 Re(z^3+c),c=-47/90+14/59*I,n=42 3908803769345218 m001 (ln(2)-Zeta(1,2))/(BesselK(1,1)+FeigenbaumMu) 3908803776207279 m004 -1+125*Pi-(3*Cot[Sqrt[5]*Pi])/4 3908803778421650 r005 Re(z^2+c),c=-65/122+8/43*I,n=46 3908803784546066 a007 Real Root Of 27*x^4-351*x^3+75*x^2-532*x-241 3908803792032621 m004 -125*Pi+(3*Cot[Sqrt[5]*Pi])/4+Tanh[Sqrt[5]*Pi] 3908803802825840 r009 Im(z^3+c),c=-37/110+18/47*I,n=32 3908803809867719 a008 Real Root of x^4-2*x^3+30*x^2+30*x+7 3908803819254645 r005 Re(z^2+c),c=-29/56+2/7*I,n=49 3908803822500466 m001 (2^(1/2)-Psi(2,1/3))/(gamma(2)+Backhouse) 3908803837028378 r005 Re(z^2+c),c=-7/13+5/39*I,n=39 3908803846307438 m001 (Artin+FellerTornier)/(Zeta(1/2)-arctan(1/3)) 3908803846775061 m002 Pi^5+Pi^6*Sech[Pi]+Sinh[Pi]/6 3908803855391358 r005 Im(z^2+c),c=-12/19+4/55*I,n=50 3908803860276192 b008 ArcCoth[(2*(4+E))/5] 3908803873683206 r005 Im(z^2+c),c=1/9+19/45*I,n=41 3908803876454652 m001 ZetaQ(2)^BesselJ(1,1)*2^(1/2) 3908803876705516 r005 Re(z^2+c),c=1/46+7/26*I,n=18 3908803876882523 m001 cos(1)/exp(RenyiParking)/cos(Pi/5)^2 3908803878357289 r002 43th iterates of z^2 + 3908803884639988 r005 Im(z^2+c),c=-5/38+23/40*I,n=41 3908803887391083 a003 cos(Pi*7/113)*sin(Pi*3/23) 3908803888379275 a007 Real Root Of -334*x^4-143*x^3+530*x^2+864*x+256 3908803888944814 r005 Im(z^2+c),c=-24/31+1/62*I,n=31 3908803900321437 r005 Im(z^2+c),c=1/54+2/53*I,n=4 3908803907809989 r002 28th iterates of z^2 + 3908803912774073 a001 433494437/2207*521^(11/13) 3908803914085960 a001 433494437/3571*521^(12/13) 3908803937534715 r002 52th iterates of z^2 + 3908803952998668 a007 Real Root Of 216*x^4+819*x^3-160*x^2-323*x-329 3908803964756260 m001 FransenRobinson+GAMMA(5/6)^Kolakoski 3908803977842031 m001 (Stephens-TwinPrimes)/(ln(3)+GAMMA(11/12)) 3908803978602215 r005 Im(z^2+c),c=-11/70+26/45*I,n=45 3908803980449518 r009 Im(z^3+c),c=-25/106+25/36*I,n=14 3908803986545663 r009 Im(z^3+c),c=-37/110+18/47*I,n=33 3908803991808602 l006 ln(6262/9257) 3908803991915566 r009 Re(z^3+c),c=-39/82+6/25*I,n=18 3908804001829707 r002 5th iterates of z^2 + 3908804003933879 r002 22th iterates of z^2 + 3908804021101059 m001 (exp(-1/2*Pi)+Pi^(1/2))/(3^(1/2)-GAMMA(3/4)) 3908804024688904 r005 Re(z^2+c),c=27/94+25/54*I,n=37 3908804027403708 m001 (Si(Pi)+1/3)/(BesselI(1,2)+4) 3908804032389827 r005 Re(z^2+c),c=-53/102+3/11*I,n=35 3908804054462566 r005 Im(z^2+c),c=9/94+20/47*I,n=10 3908804059915507 s002 sum(A192577[n]/(10^n-1),n=1..infinity) 3908804066642073 r005 Re(z^2+c),c=9/46+11/30*I,n=35 3908804089886281 a003 -3/2-cos(1/5*Pi)-cos(2/15*Pi)-cos(7/27*Pi) 3908804095908847 r005 Im(z^2+c),c=-3/11+3/53*I,n=19 3908804117769284 r005 Re(z^2+c),c=-25/46+1/49*I,n=33 3908804128474830 r005 Im(z^2+c),c=1/98+19/39*I,n=25 3908804129624318 q001 1363/3487 3908804170914716 m001 (ln(5)-BesselI(1,1))/(Niven+Riemann3rdZero) 3908804183367887 r002 42th iterates of z^2 + 3908804183372983 m001 (cos(1)-sin(1))/(DuboisRaymond+Stephens) 3908804187075127 r005 Im(z^2+c),c=-11/54+21/26*I,n=54 3908804200170008 a007 Real Root Of 541*x^4-613*x^3+407*x^2-485*x-301 3908804212604535 a001 34/9062201101803*47^(14/23) 3908804217754526 m001 Rabbit^2*GolombDickman*exp((2^(1/3)))^2 3908804221299832 a007 Real Root Of -20*x^4-802*x^3-787*x^2+159*x-63 3908804248510438 m001 1/BesselK(0,1)^2/exp(ErdosBorwein)*sin(Pi/5)^2 3908804251051120 l006 ln(4167/6160) 3908804259368635 m005 (1/2*2^(1/2)+6)/(73/66+3/11*5^(1/2)) 3908804266620823 m001 (-ln(2+3^(1/2))+FeigenbaumD)/(2^(1/3)-ln(5)) 3908804286144062 s002 sum(A013907[n]/((3*n)!),n=1..infinity) 3908804291343255 a007 Real Root Of 294*x^4+992*x^3-812*x^2-726*x+181 3908804301255653 a007 Real Root Of 969*x^4+78*x^3-6*x^2-377*x+121 3908804321919265 p004 log(33863/22907) 3908804324755865 a007 Real Root Of 166*x^4+628*x^3-16*x^2+423*x+652 3908804328933135 a001 322/17711*377^(4/31) 3908804331362488 m006 (3/4*exp(2*Pi)-1/5)/(Pi^2+2/5) 3908804331900777 m009 (2/3*Psi(1,1/3)+3)/(1/6*Psi(1,2/3)-3) 3908804333396452 a001 133957148/161*322^(2/3) 3908804336050629 r002 32th iterates of z^2 + 3908804354189431 r002 15th iterates of z^2 + 3908804354986327 r005 Im(z^2+c),c=-7/52+13/24*I,n=19 3908804368717081 r002 57th iterates of z^2 + 3908804376571649 h001 (1/7*exp(2)+1/12)/(3/4*exp(1)+7/8) 3908804377161899 m005 (1/3*gamma+3/7)/(1/4*exp(1)+10/11) 3908804381658258 a001 4807526976/521*199^(3/11) 3908804402256778 p001 sum(1/(371*n+256)/(625^n),n=0..infinity) 3908804404422340 m005 (1/4*5^(1/2)+3/4)/(7/8*Pi+3/5) 3908804414343374 a001 7/10946*433494437^(11/14) 3908804416253624 r005 Im(z^2+c),c=23/70+13/36*I,n=20 3908804417801853 m005 (1/6+1/4*5^(1/2))/(5/6*gamma-2/3) 3908804420868277 a001 1/311187*365435296162^(11/14) 3908804471775828 m001 (Otter-TreeGrowth2nd)/(LaplaceLimit-Mills) 3908804475664812 a001 199/8*121393^(4/17) 3908804492564388 g007 Psi(2,5/7)+Psi(2,4/5)+Psi(2,2/5)-Psi(2,6/7) 3908804500405924 m001 1/Bloch/CopelandErdos^2/ln(Khintchine)^2 3908804501272566 a003 sin(Pi*1/83)/cos(Pi*38/81) 3908804511249325 l006 ln(6239/9223) 3908804514512570 m001 (Zeta(3)+GAMMA(17/24))/(Magata+Otter) 3908804519304124 r009 Im(z^3+c),c=-10/19+8/37*I,n=60 3908804532172355 m001 1/Ei(1)*KhintchineLevy/ln(GAMMA(19/24)) 3908804541450223 r009 Re(z^3+c),c=-53/102+11/38*I,n=22 3908804549172564 m001 exp(1/2)*Zeta(1/2)^BesselI(0,2) 3908804550496322 r002 46th iterates of z^2 + 3908804552514367 m003 1+2*Cot[1/2+Sqrt[5]/2]+3*Csc[1/2+Sqrt[5]/2] 3908804562358809 m001 (Catalan+Ei(1))/(-PolyaRandomWalk3D+ThueMorse) 3908804565980774 m001 (-Ei(1)+DuboisRaymond)/(Chi(1)-ln(2^(1/2)+1)) 3908804571036518 m001 (Artin+FeigenbaumB)/(3^(1/2)+GAMMA(2/3)) 3908804587405437 a007 Real Root Of -173*x^4-616*x^3-37*x^2-834*x+902 3908804590354259 m001 (Si(Pi)+3^(1/3))/(-exp(1/exp(1))+BesselK(1,1)) 3908804592868292 r002 40th iterates of z^2 + 3908804595530686 r009 Im(z^3+c),c=-31/74+17/50*I,n=38 3908804597470977 p002 log(10^(12/7)-5^(5/12)) 3908804597566855 r005 Im(z^2+c),c=9/56+5/13*I,n=38 3908804598181971 a001 567451585/2889*521^(11/13) 3908804599286677 a007 Real Root Of -911*x^4+936*x^3-280*x^2+883*x-337 3908804600858369 a001 9107514720/233 3908804601626123 a001 39088169-55*5^(1/2) 3908804602941685 a001 39088131-38*5^(1/2) 3908804613327875 a007 Real Root Of 239*x^4+925*x^3-24*x^2+296*x+974 3908804618321100 r005 Re(z^2+c),c=-15/28+1/20*I,n=13 3908804623171334 a007 Real Root Of 968*x^4-381*x^3+30*x^2-256*x-150 3908804623981584 r005 Re(z^2+c),c=-14/27+13/46*I,n=64 3908804652662690 m001 (Zeta(1,2)-ZetaP(4))/(cos(1/5*Pi)+ln(gamma)) 3908804655927339 b008 2+7*ArcCosh[100] 3908804664723032 r002 3th iterates of z^2 + 3908804681541018 a007 Real Root Of 185*x^4-908*x^3-394*x^2-935*x-36 3908804686873551 r005 Im(z^2+c),c=15/74+29/62*I,n=16 3908804698181656 a001 2971215073/15127*521^(11/13) 3908804705749041 r005 Im(z^2+c),c=29/110+7/24*I,n=45 3908804707186804 r005 Re(z^2+c),c=-21/40+13/53*I,n=31 3908804710826039 a007 Real Root Of 271*x^4+921*x^3-408*x^2+516*x-8 3908804712771414 a001 7778742049/39603*521^(11/13) 3908804714900031 a001 10182505537/51841*521^(11/13) 3908804715210592 a001 53316291173/271443*521^(11/13) 3908804715255902 a001 139583862445/710647*521^(11/13) 3908804715262513 a001 182717648081/930249*521^(11/13) 3908804715263477 a001 956722026041/4870847*521^(11/13) 3908804715263618 a001 2504730781961/12752043*521^(11/13) 3908804715263639 a001 3278735159921/16692641*521^(11/13) 3908804715263644 a001 10610209857723/54018521*521^(11/13) 3908804715263651 a001 4052739537881/20633239*521^(11/13) 3908804715263705 a001 387002188980/1970299*521^(11/13) 3908804715264074 a001 591286729879/3010349*521^(11/13) 3908804715266599 a001 225851433717/1149851*521^(11/13) 3908804715283906 a001 196418*521^(11/13) 3908804715402529 a001 32951280099/167761*521^(11/13) 3908804716000540 r002 22th iterates of z^2 + 3908804716215589 a001 12586269025/64079*521^(11/13) 3908804716954929 r009 Im(z^3+c),c=-37/110+18/47*I,n=29 3908804718141391 r005 Im(z^2+c),c=10/29+2/9*I,n=42 3908804721788380 a001 1201881744/6119*521^(11/13) 3908804723452664 r005 Re(z^2+c),c=29/82+5/32*I,n=23 3908804727631436 r009 Re(z^3+c),c=-23/82+29/40*I,n=10 3908804731185223 m005 (2*2^(1/2)-5/6)/(7/4+3/2*5^(1/2)) 3908804750762499 r005 Im(z^2+c),c=11/118+14/25*I,n=4 3908804753428940 a001 1836311903/843*521^(6/13) 3908804759182919 a003 cos(Pi*9/62)/cos(Pi*26/61) 3908804759984863 a001 1836311903/9349*521^(11/13) 3908804765383085 a007 Real Root Of 11*x^4+438*x^3+322*x^2+338*x+889 3908804766467713 a001 1/5*4181^(31/49) 3908804783317346 a007 Real Root Of -781*x^4+533*x^3+832*x^2+671*x-403 3908804786205813 r005 Im(z^2+c),c=3/14+23/62*I,n=13 3908804792835100 a007 Real Root Of 696*x^4-78*x^3-124*x^2-829*x-326 3908804793430330 s002 sum(A039457[n]/((pi^n+1)/n),n=1..infinity) 3908804801104058 r005 Im(z^2+c),c=-3/11+3/53*I,n=21 3908804801946971 m003 36+2*Coth[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2] 3908804802009395 h001 (1/9*exp(1)+1/5)/(1/10*exp(2)+6/11) 3908804803363240 r009 Im(z^3+c),c=-37/110+18/47*I,n=30 3908804829268767 m001 (1+FellerTornier)/(FransenRobinson+Stephens) 3908804844087267 r005 Im(z^2+c),c=41/94+5/12*I,n=5 3908804874324276 r005 Im(z^2+c),c=-53/122+28/53*I,n=34 3908804875092987 r009 Re(z^3+c),c=-23/56+6/35*I,n=7 3908804891790780 m001 (ln(5)+Artin)/(FeigenbaumB-Totient) 3908804904732328 r002 37th iterates of z^2 + 3908804915186063 m001 GAMMA(7/12)/ReciprocalFibonacci*Thue 3908804927743015 r009 Im(z^3+c),c=-45/98+2/47*I,n=46 3908804928062720 s002 sum(A171994[n]/(64^n),n=1..infinity) 3908804929005659 m001 1/BesselK(1,1)/RenyiParking^2*ln(Zeta(5))^2 3908804970614314 r005 Im(z^2+c),c=-2/19+34/61*I,n=64 3908804973003208 r005 Re(z^2+c),c=1/70+37/59*I,n=38 3908804984484672 a007 Real Root Of 882*x^4-234*x^3+299*x^2+236*x+12 3908804989240506 r009 Im(z^3+c),c=-63/122+11/40*I,n=45 3908804989392081 r008 a(0)=4,K{-n^6,8-5*n^3+4*n^2-2*n} 3908804989560468 m001 ThueMorse/Otter/FeigenbaumMu 3908804991590341 m001 (-PlouffeB+Sarnak)/(BesselK(0,1)-GAMMA(11/12)) 3908804993686996 r005 Re(z^2+c),c=-55/102+7/58*I,n=34 3908804994569949 m001 GAMMA(2/3)^2*LaplaceLimit*ln(LambertW(1))^2 3908805005697640 m002 1+2*Cosh[Pi]*Log[Pi]+Sinh[Pi] 3908805010184957 m001 (1-AlladiGrinstead)/(FeigenbaumMu+Mills) 3908805020475581 a001 701408733/2207*521^(10/13) 3908805021787469 a001 701408733/3571*521^(11/13) 3908805031446540 q001 1243/3180 3908805034534015 l006 ln(2072/3063) 3908805039293459 a001 7778742049/322*123^(1/10) 3908805044972614 m001 (Mills-Sarnak)/(ln(2+3^(1/2))-FransenRobinson) 3908805045749619 m001 (2^(1/3))^2*Si(Pi)^2/exp(log(2+sqrt(3)))^2 3908805050663183 r005 Re(z^2+c),c=-18/31+13/35*I,n=26 3908805072400909 a007 Real Root Of -407*x^4-197*x^3-893*x^2+721*x+416 3908805077626758 m001 KhinchinHarmonic/ln(gamma)/StolarskyHarborth 3908805078798167 m001 (sin(1)+FeigenbaumKappa)^(3^(1/2)) 3908805093126717 r005 Im(z^2+c),c=7/19+5/54*I,n=46 3908805094466241 a003 -1/2+2*cos(4/21*Pi)-cos(3/10*Pi)-cos(2/21*Pi) 3908805098347798 p004 log(34439/691) 3908805100318033 h001 (1/5*exp(1)+3/4)/(3/7*exp(2)+1/7) 3908805108920341 a008 Real Root of x^4-28*x^2-4*x+210 3908805109892649 a007 Real Root Of -153*x^4-335*x^3+866*x^2-513*x+473 3908805113888438 r005 Im(z^2+c),c=-5/98+12/23*I,n=24 3908805123044419 a007 Real Root Of -105*x^4-402*x^3+4*x^2+44*x+614 3908805133897827 a001 47/2504730781961*377^(9/10) 3908805139880835 m005 (1/2*2^(1/2)+1/5)/(5/9*gamma+2) 3908805143183890 r009 Re(z^3+c),c=-7/17+4/25*I,n=20 3908805150352145 r005 Im(z^2+c),c=-3/11+3/53*I,n=23 3908805152312540 p001 sum((-1)^n/(550*n+251)/(16^n),n=0..infinity) 3908805166246515 m001 Khintchine*exp(DuboisRaymond)^2*Paris 3908805173392473 r005 Re(z^2+c),c=-25/62+26/49*I,n=32 3908805176677199 m001 GAMMA(2/3)+ln(3)+Backhouse 3908805179413524 r002 25th iterates of z^2 + 3908805179413524 r002 25th iterates of z^2 + 3908805191650821 a007 Real Root Of -700*x^4+400*x^3-471*x^2-264*x+9 3908805200228872 m005 (1/2*Catalan+11/12)/(-109/24+11/24*5^(1/2)) 3908805204692429 r002 6th iterates of z^2 + 3908805210224807 m005 (1/3*Pi+1/5)/(4/11*2^(1/2)-5/6) 3908805214856158 a008 Real Root of x^4+3*x^2-14*x-334 3908805220858731 m001 (GaussAGM+OneNinth)/(exp(Pi)+cos(1/12*Pi)) 3908805239824426 m005 (1/2*2^(1/2)-1/8)/(7/9*exp(1)-5/8) 3908805255626999 r002 37th iterates of z^2 + 3908805256151034 r005 Im(z^2+c),c=-3/11+3/53*I,n=25 3908805270124455 a007 Real Root Of -393*x^4+865*x^3-107*x^2+634*x+325 3908805281619187 a007 Real Root Of 290*x^4-922*x^3-692*x^2-156*x+215 3908805282394681 r005 Im(z^2+c),c=-3/11+3/53*I,n=27 3908805284615654 a007 Real Root Of 275*x^4+996*x^3-559*x^2-784*x+763 3908805288083869 r005 Im(z^2+c),c=-3/11+3/53*I,n=29 3908805289175556 r005 Im(z^2+c),c=-3/11+3/53*I,n=31 3908805289357066 r005 Im(z^2+c),c=-3/11+3/53*I,n=33 3908805289381004 r005 Im(z^2+c),c=-3/11+3/53*I,n=35 3908805289381160 r005 Im(z^2+c),c=-3/11+3/53*I,n=36 3908805289381272 r005 Im(z^2+c),c=-3/11+3/53*I,n=38 3908805289381627 r005 Im(z^2+c),c=-3/11+3/53*I,n=40 3908805289381760 r005 Im(z^2+c),c=-3/11+3/53*I,n=42 3908805289381797 r005 Im(z^2+c),c=-3/11+3/53*I,n=44 3908805289381805 r005 Im(z^2+c),c=-3/11+3/53*I,n=46 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=48 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=50 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=52 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=55 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=57 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=59 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=61 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=63 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=64 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=62 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=60 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=58 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=54 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=56 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=53 3908805289381807 r005 Im(z^2+c),c=-3/11+3/53*I,n=51 3908805289381808 r005 Im(z^2+c),c=-3/11+3/53*I,n=49 3908805289381808 r005 Im(z^2+c),c=-3/11+3/53*I,n=47 3908805289381812 r005 Im(z^2+c),c=-3/11+3/53*I,n=45 3908805289381830 r005 Im(z^2+c),c=-3/11+3/53*I,n=43 3908805289381902 r005 Im(z^2+c),c=-3/11+3/53*I,n=41 3908805289382132 r005 Im(z^2+c),c=-3/11+3/53*I,n=39 3908805289382554 r005 Im(z^2+c),c=-3/11+3/53*I,n=37 3908805289388416 r005 Im(z^2+c),c=-3/11+3/53*I,n=34 3908805289457032 r005 Im(z^2+c),c=-3/11+3/53*I,n=32 3908805289911603 r005 Im(z^2+c),c=-3/11+3/53*I,n=30 3908805292443191 r005 Im(z^2+c),c=-3/11+3/53*I,n=28 3908805300709158 a001 47/55*377^(29/45) 3908805304850155 r005 Im(z^2+c),c=-3/11+3/53*I,n=26 3908805307160337 b008 (65+E)*EulerGamma 3908805314598471 r009 Re(z^3+c),c=-37/82+3/14*I,n=10 3908805326568137 r005 Im(z^2+c),c=-4/9+3/46*I,n=28 3908805328915666 a007 Real Root Of -275*x^4+384*x^3+318*x^2+954*x-438 3908805332904848 a007 Real Root Of -877*x^4-679*x^3-266*x^2+303*x+139 3908805349936722 r005 Re(z^2+c),c=-17/30+1/28*I,n=12 3908805353100447 a007 Real Root Of -46*x^4-273*x^3-536*x^2-574*x+380 3908805358558992 r005 Im(z^2+c),c=-3/11+3/53*I,n=24 3908805370419533 b008 1+11*Zeta[-1/16] 3908805378958659 m001 (GAMMA(23/24)-FeigenbaumMu)/(Robbin-Trott) 3908805391013097 m001 (Ei(1,1)-MasserGramain*Thue)/Thue 3908805399247730 l006 ln(193/9619) 3908805399247730 p004 log(9619/193) 3908805400953201 a003 sin(Pi*15/61)/cos(Pi*31/70) 3908805404290746 r002 22i'th iterates of 2*x/(1-x^2) of 3908805407825624 r005 Re(z^2+c),c=-25/46+1/42*I,n=37 3908805408926355 r002 44th iterates of z^2 + 3908805418877039 m001 (Otter-ReciprocalLucas)/(Zeta(3)-Backhouse) 3908805427488828 r005 Re(z^2+c),c=-13/30+17/32*I,n=34 3908805430398188 a005 (1/cos(13/238*Pi))^559 3908805430920864 a007 Real Root Of -749*x^4-891*x^3-857*x^2+89*x+130 3908805431903678 r005 Re(z^2+c),c=-139/102+2/23*I,n=8 3908805440293377 s002 sum(A024848[n]/((pi^n+1)/n),n=1..infinity) 3908805442839769 r002 52th iterates of z^2 + 3908805444174363 m003 -5+(E^(1/2+Sqrt[5]/2)*Coth[1/2+Sqrt[5]/2])/5 3908805455551794 m001 (GAMMA(5/6)-Si(Pi))/(GAMMA(11/12)+Kolakoski) 3908805470091532 r002 33th iterates of z^2 + 3908805488333199 m001 Si(Pi)*(GAMMA(7/12)+LandauRamanujan2nd) 3908805499176632 r005 Re(z^2+c),c=29/82+13/37*I,n=16 3908805499450256 a007 Real Root Of 960*x^4+301*x^3-536*x^2-761*x-220 3908805534555149 r004 Re(z^2+c),c=-3/7+3/11*I,z(0)=-1,n=10 3908805557241557 r005 Im(z^2+c),c=-3/11+3/53*I,n=22 3908805561705501 l006 ln(6193/9155) 3908805567346067 a001 1/76*(1/2*5^(1/2)+1/2)^20*199^(9/16) 3908805570313610 m001 (-Conway+ZetaP(2))/(cos(1)-exp(1)) 3908805583826454 a007 Real Root Of 266*x^4-819*x^3+308*x^2-904*x+349 3908805599254499 r005 Im(z^2+c),c=-17/26+39/94*I,n=46 3908805621571757 r009 Re(z^3+c),c=-31/60+15/53*I,n=61 3908805623016843 m004 -16+130*Pi-ProductLog[Sqrt[5]*Pi] 3908805626599014 a001 199/8*165580141^(7/18) 3908805651519386 r005 Re(z^2+c),c=-2/3+11/70*I,n=6 3908805652028549 r005 Im(z^2+c),c=-11/86+31/51*I,n=45 3908805652876384 a007 Real Root Of 805*x^4-974*x^3+478*x^2-87*x-184 3908805683679713 a007 Real Root Of 121*x^4-535*x^3+502*x^2-403*x-269 3908805689855390 m005 (1/2*Zeta(3)-6/11)/(1/4*Pi+7/11) 3908805692765497 h005 exp(sin(Pi*9/46)+sin(Pi*17/59)) 3908805694136460 m001 (CareFree-MertensB1)/(ln(2)+BesselJ(1,1)) 3908805700665879 m001 Sierpinski*exp(Riemann2ndZero)^2/Zeta(3) 3908805702151996 r005 Re(z^2+c),c=-3/31+31/33*I,n=9 3908805705883674 a001 1836311903/5778*521^(10/13) 3908805708508154 a001 165580141/1364*521^(12/13) 3908805709321933 m001 TwinPrimes^2*Lehmer^2/exp(Zeta(1,2)) 3908805721420570 r002 45th iterates of z^2 + 3908805725293767 r009 Re(z^3+c),c=-11/98+8/17*I,n=2 3908805737978884 m001 (3^(1/2)+Lehmer)/(-MertensB2+TreeGrowth2nd) 3908805749720663 r005 Im(z^2+c),c=-49/106+34/59*I,n=32 3908805759161750 r005 Im(z^2+c),c=2/29+5/11*I,n=17 3908805766595960 b008 -1+Sqrt[Cos[1/8]] 3908805787447890 a005 (1/cos(6/185*Pi))^705 3908805802737833 r005 Re(z^2+c),c=-33/34+62/103*I,n=2 3908805805883387 a001 686789568/2161*521^(10/13) 3908805813357732 a007 Real Root Of 714*x^4-704*x^3+529*x^2-958*x-514 3908805820473149 a001 12586269025/39603*521^(10/13) 3908805822601767 a001 32951280099/103682*521^(10/13) 3908805822912328 a001 86267571272/271443*521^(10/13) 3908805822957638 a001 317811*521^(10/13) 3908805822964249 a001 591286729879/1860498*521^(10/13) 3908805822965213 a001 1548008755920/4870847*521^(10/13) 3908805822965354 a001 4052739537881/12752043*521^(10/13) 3908805822965374 a001 1515744265389/4769326*521^(10/13) 3908805822965387 a001 6557470319842/20633239*521^(10/13) 3908805822965441 a001 2504730781961/7881196*521^(10/13) 3908805822965809 a001 956722026041/3010349*521^(10/13) 3908805822968334 a001 365435296162/1149851*521^(10/13) 3908805822985641 a001 139583862445/439204*521^(10/13) 3908805823104265 a001 53316291173/167761*521^(10/13) 3908805823917325 a001 20365011074/64079*521^(10/13) 3908805825606971 s002 sum(A084251[n]/(n*exp(n)+1),n=1..infinity) 3908805826762350 l006 ln(4121/6092) 3908805829490118 a001 7778742049/24476*521^(10/13) 3908805839732111 r005 Im(z^2+c),c=-3/11+3/53*I,n=17 3908805842469162 r005 Re(z^2+c),c=-5/7+5/87*I,n=14 3908805845033127 m001 1/FeigenbaumC^2/ln(Niven)^2*GAMMA(11/24)^2 3908805861130686 a001 2971215073/843*521^(5/13) 3908805867686611 a001 2971215073/9349*521^(10/13) 3908805885592176 r005 Im(z^2+c),c=-5/56+29/47*I,n=46 3908805888343119 r002 43th iterates of z^2 + 3908805888343119 r002 43th iterates of z^2 + 3908805899288255 a001 377/843*817138163596^(2/3) 3908805899288255 a001 377/843*(1/2+1/2*5^(1/2))^38 3908805899288255 a001 377/843*10749957122^(19/24) 3908805899288255 a001 377/843*4106118243^(19/23) 3908805899288255 a001 377/843*1568397607^(19/22) 3908805899288255 a001 377/843*599074578^(19/21) 3908805899288255 a001 377/843*228826127^(19/20) 3908805900265706 r002 12th iterates of z^2 + 3908805910109866 r009 Im(z^3+c),c=-13/28+9/29*I,n=22 3908805914839514 a007 Real Root Of 166*x^4+459*x^3-763*x^2-298*x-846 3908805925467476 r005 Im(z^2+c),c=-7/46+7/12*I,n=30 3908805928782628 r005 Im(z^2+c),c=7/86+8/17*I,n=14 3908805940067203 a007 Real Root Of -670*x^4-342*x^3-89*x^2+484*x+198 3908805958166908 a007 Real Root Of 517*x^4-571*x^3-430*x^2-907*x-335 3908805972683035 r005 Im(z^2+c),c=-19/102+41/61*I,n=32 3908805989302593 r005 Im(z^2+c),c=-7/62+19/32*I,n=39 3908805993598596 h001 (1/11*exp(1)+3/4)/(5/6*exp(1)+2/7) 3908805995174395 a003 sin(Pi*3/14)*sin(Pi*11/51) 3908806011313454 r005 Re(z^2+c),c=-19/34+1/114*I,n=14 3908806013766280 r002 41th iterates of z^2 + 3908806013766280 r002 41th iterates of z^2 + 3908806014336127 r005 Im(z^2+c),c=1/12+19/43*I,n=47 3908806036169783 r008 a(0)=0,K{-n^6,-28-35*n^3+21*n^2+39*n} 3908806045936881 a007 Real Root Of -18*x^4+824*x^3+222*x^2+648*x-336 3908806049446269 m001 1/exp(GAMMA(1/12))^2/Sierpinski/Zeta(7)^2 3908806068909009 r009 Re(z^3+c),c=-7/16+34/61*I,n=7 3908806081956592 r004 Im(z^2+c),c=-35/24+11/21*I,z(0)=-1,n=3 3908806087184837 m001 exp(GAMMA(1/24))^2*Si(Pi)*log(1+sqrt(2)) 3908806090842777 r005 Re(z^2+c),c=-13/25+17/62*I,n=59 3908806092807249 l006 ln(6170/9121) 3908806093978125 m001 (Otter+Robbin)/(GAMMA(2/3)-BesselI(0,2)) 3908806103028068 p001 sum(1/(509*n+256)/(512^n),n=0..infinity) 3908806109743369 r005 Im(z^2+c),c=-3/11+3/53*I,n=20 3908806120605326 r002 43th iterates of z^2 + 3908806126000696 q001 1123/2873 3908806128177403 a001 1134903170/2207*521^(9/13) 3908806129489292 a001 1134903170/3571*521^(10/13) 3908806133251229 r005 Im(z^2+c),c=1/12+19/43*I,n=44 3908806136655889 r009 Re(z^3+c),c=-1/29+43/48*I,n=3 3908806138555483 a001 2/29*3571^(31/40) 3908806149010741 r002 46th iterates of z^2 + 3908806158086206 l006 ln(137/6828) 3908806165366169 m005 (1/3*gamma+1/6)/(7/12*gamma-3/7) 3908806166942953 s002 sum(A014399[n]/((exp(n)+1)/n),n=1..infinity) 3908806182712861 m001 GAMMA(23/24)^2/exp(GAMMA(13/24))^2*Pi^2 3908806192741759 a007 Real Root Of 112*x^4-115*x^3+885*x^2-625*x-389 3908806199916445 m001 (-KhinchinHarmonic+Robbin)/(1+Pi^(1/2)) 3908806222655183 m001 (2^(1/2)+Cahen)/(-KhinchinLevy+TwinPrimes) 3908806232628077 r005 Re(z^2+c),c=5/24+8/21*I,n=53 3908806239723235 a007 Real Root Of -443*x^4+137*x^3+162*x^2+679*x-288 3908806269662442 m001 Riemann3rdZero^2*exp(FeigenbaumB)*exp(1) 3908806288389483 m001 FeigenbaumD*ln(Magata)/sin(1) 3908806292051177 m001 1/ln(Riemann1stZero)^2/Magata^2/Pi 3908806297187629 h001 (-2*exp(4)-8)/(-2*exp(5)-3) 3908806314149513 r002 7th iterates of z^2 + 3908806328129478 r002 23th iterates of z^2 + 3908806358506802 r005 Im(z^2+c),c=-5/54+11/20*I,n=56 3908806366830547 a007 Real Root Of 393*x^4+117*x^3+385*x^2-399*x+15 3908806382811742 m001 (Trott2nd-ThueMorse)/(ln(5)-GolombDickman) 3908806383201807 a001 11/121393*2584^(8/43) 3908806390480505 a001 39088169-47*5^(1/2) 3908806392882394 s001 sum(exp(-3*Pi)^n*A237078[n],n=1..infinity) 3908806400378248 a007 Real Root Of 31*x^4-606*x^3-147*x^2-664*x-274 3908806402847471 r005 Re(z^2+c),c=7/27+2/63*I,n=53 3908806416649222 r009 Im(z^3+c),c=-43/94+17/43*I,n=10 3908806442787400 m001 1/GAMMA(11/12)^2/FeigenbaumB^2*ln(sqrt(3))^2 3908806451260261 r005 Re(z^2+c),c=-31/58+7/41*I,n=53 3908806454562885 r009 Im(z^3+c),c=-23/50+5/16*I,n=43 3908806455146480 h001 (-6*exp(1)-7)/(-2*exp(3/2)+3) 3908806459951551 m005 (2*Catalan+5/6)/(3/5*2^(1/2)-1/6) 3908806462136490 s002 sum(A040639[n]/(64^n),n=1..infinity) 3908806466159315 r005 Im(z^2+c),c=-99/86+3/13*I,n=12 3908806471543711 m001 GAMMA(5/6)^2/ErdosBorwein^2/ln(log(1+sqrt(2))) 3908806490509588 r002 7th iterates of z^2 + 3908806493996608 r005 Im(z^2+c),c=-3/11+3/53*I,n=18 3908806496047308 a007 Real Root Of -150*x^4-59*x^3-950*x^2+606*x+382 3908806499532638 s002 sum(A027431[n]/(64^n),n=1..infinity) 3908806502647011 m005 (1/2*Catalan-5)/(5/9*Pi-7/12) 3908806509890109 r005 Re(z^2+c),c=-65/122+10/59*I,n=21 3908806512287278 m001 Cahen/Backhouse^2*ln(GAMMA(1/4)) 3908806522319242 r005 Im(z^2+c),c=-5/34+36/59*I,n=59 3908806526318494 m001 GolombDickman^Thue/(ZetaQ(3)^Thue) 3908806527540017 m001 (Catalan-Ei(1))/(-Artin+Champernowne) 3908806559798378 m001 (Otter+TwinPrimes)/(KhinchinLevy-MertensB1) 3908806561967920 m001 ln(FeigenbaumKappa)*Bloch^2*gamma 3908806595714610 s002 sum(A033112[n]/(2^n+1),n=1..infinity) 3908806596899077 s002 sum(A233383[n]/(exp(n)-1),n=1..infinity) 3908806603051087 m004 (-380*Pi)/3+5*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 3908806615345742 r005 Re(z^2+c),c=-13/25+17/62*I,n=45 3908806627883375 l006 ln(2049/3029) 3908806655908932 r005 Im(z^2+c),c=3/13+17/52*I,n=6 3908806657864286 h002 exp(1/7*(10^(2/3)-13*7^(1/3))*7^(2/3)) 3908806663490086 r009 Re(z^3+c),c=-53/110+2/35*I,n=6 3908806663547384 g006 Psi(1,1/7)-Psi(1,4/9)-Psi(1,5/6)-Psi(1,2/3) 3908806685260103 m001 (ln(2+3^(1/2))-Artin)/(Landau-Otter) 3908806709938047 m001 (ln(5)-FeigenbaumD)/(Magata-TwinPrimes) 3908806725163125 m001 (Landau+Lehmer)/(BesselI(0,1)+GAMMA(13/24)) 3908806733669847 m001 Catalan^GAMMA(1/6)/(GAMMA(13/24)^GAMMA(1/6)) 3908806736603918 m008 (3/4*Pi^3+1/3)/(1/5*Pi^3-1/6) 3908806739341295 m001 (Rabbit+TreeGrowth2nd)/(Zeta(1,2)+Cahen) 3908806741968995 r005 Re(z^2+c),c=-53/102+8/29*I,n=49 3908806742622868 m001 (Champernowne+FeigenbaumD)/(Landau+ZetaP(3)) 3908806750328583 r005 Re(z^2+c),c=-16/31+1/3*I,n=10 3908806752126505 p003 LerchPhi(1/8,1,110/39) 3908806813585690 a001 2971215073/5778*521^(9/13) 3908806816210172 a001 66978574/341*521^(11/13) 3908806824621125 m001 ReciprocalLucas^FeigenbaumKappa+2^(1/2) 3908806832902782 r002 51th iterates of z^2 + 3908806848762555 a003 sin(Pi*1/27)+sin(Pi*7/79) 3908806853548925 r005 Im(z^2+c),c=-2/23+29/53*I,n=64 3908806854878499 a007 Real Root Of -475*x^4+822*x^3-843*x^2+568*x+411 3908806869177953 r005 Im(z^2+c),c=-11/17+12/25*I,n=24 3908806873496674 a005 (1/cos(11/118*Pi))^1566 3908806877656578 r002 58th iterates of z^2 + 3908806885905687 m001 (5^(1/2)-Ei(1,1))/(-Lehmer+ZetaP(4)) 3908806908492667 a005 (1/cos(29/77*Pi))^44 3908806913585432 a001 7778742049/15127*521^(9/13) 3908806917485232 r005 Re(z^2+c),c=7/27+2/63*I,n=51 3908806928175198 a001 20365011074/39603*521^(9/13) 3908806930303816 a001 53316291173/103682*521^(9/13) 3908806930614377 a001 139583862445/271443*521^(9/13) 3908806930659688 a001 365435296162/710647*521^(9/13) 3908806930666298 a001 956722026041/1860498*521^(9/13) 3908806930667263 a001 2504730781961/4870847*521^(9/13) 3908806930667403 a001 6557470319842/12752043*521^(9/13) 3908806930667437 a001 10610209857723/20633239*521^(9/13) 3908806930667490 a001 4052739537881/7881196*521^(9/13) 3908806930667859 a001 1548008755920/3010349*521^(9/13) 3908806930670384 a001 514229*521^(9/13) 3908806930687691 a001 225851433717/439204*521^(9/13) 3908806930806315 a001 86267571272/167761*521^(9/13) 3908806931619375 a001 32951280099/64079*521^(9/13) 3908806936714255 r005 Re(z^2+c),c=-35/64+3/32*I,n=10 3908806937192169 a001 12586269025/24476*521^(9/13) 3908806968832747 a001 1602508992/281*521^(4/13) 3908806975388674 a001 4807526976/9349*521^(9/13) 3908806980794657 a007 Real Root Of 75*x^4+238*x^3+48*x^2+859*x-670 3908807023084769 r005 Im(z^2+c),c=-1/29+31/60*I,n=36 3908807040842992 a005 (1/sin(73/203*Pi))^128 3908807060995296 a007 Real Root Of 68*x^4+181*x^3-221*x^2+628*x+767 3908807075213276 m001 (gamma(1)+KhinchinLevy*ZetaP(2))/KhinchinLevy 3908807100390660 r009 Im(z^3+c),c=-51/110+18/59*I,n=21 3908807124607583 r009 Re(z^3+c),c=-57/122+13/58*I,n=37 3908807124677669 a001 53316291173/2207*199^(1/11) 3908807134012308 m001 1/Si(Pi)/ln(Bloch)/Tribonacci 3908807138371156 p003 LerchPhi(1/3,4,471/205) 3908807157928639 m001 Salem/Artin*exp((2^(1/3)))^2 3908807166370044 r002 6th iterates of z^2 + 3908807166978659 l006 ln(6124/9053) 3908807170464540 a007 Real Root Of -221*x^4-660*x^3+724*x^2-447*x-635 3908807177988295 r009 Re(z^3+c),c=-25/66+6/53*I,n=7 3908807187527965 r005 Im(z^2+c),c=-6/31+19/32*I,n=62 3908807187717126 a007 Real Root Of 305*x^4+968*x^3-838*x^2+305*x+607 3908807188393080 r002 9th iterates of z^2 + 3908807201866131 r009 Re(z^3+c),c=-29/54+5/16*I,n=59 3908807222043134 a007 Real Root Of 915*x^4-461*x^3+604*x^2-414*x-303 3908807227612071 h001 (1/5*exp(1)+9/11)/(4/9*exp(2)+1/5) 3908807230478813 m001 (gamma-sin(1))/(Zeta(1,2)+MertensB1) 3908807235879539 a001 1836311903/2207*521^(8/13) 3908807235998174 r005 Im(z^2+c),c=-25/34+23/124*I,n=30 3908807237191428 a001 1836311903/3571*521^(9/13) 3908807238924013 r009 Im(z^3+c),c=-29/64+20/63*I,n=42 3908807239599610 r005 Im(z^2+c),c=-31/70+4/63*I,n=13 3908807263243008 m005 (1/2*gamma-4/5)/(6*5^(1/2)-1/3) 3908807263973646 r009 Im(z^3+c),c=-31/74+17/50*I,n=42 3908807286368306 r005 Re(z^2+c),c=-25/58+19/43*I,n=19 3908807292006157 a008 Real Root of x^4-x^3+16*x^2-14*x-8 3908807296803342 r005 Im(z^2+c),c=31/90+8/41*I,n=63 3908807304758039 r005 Im(z^2+c),c=1/36+21/46*I,n=9 3908807309325438 r005 Re(z^2+c),c=-5/12+11/23*I,n=22 3908807317754348 r009 Im(z^3+c),c=-37/110+18/47*I,n=27 3908807328243468 a007 Real Root Of -947*x^4-295*x^3-926*x^2+238*x+239 3908807332502232 m008 (5/6*Pi^2+4/5)/(3/4*Pi^3-1/6) 3908807349283139 r005 Re(z^2+c),c=-25/48+7/26*I,n=62 3908807349300336 m005 (1/2*5^(1/2)+5/6)/(8/11*Zeta(3)-3/8) 3908807353508846 a007 Real Root Of -607*x^4-41*x^3-641*x^2-191*x+35 3908807373629520 r005 Re(z^2+c),c=-27/50+6/55*I,n=34 3908807373817867 r002 41th iterates of z^2 + 3908807376932011 r009 Im(z^3+c),c=-41/114+16/43*I,n=14 3908807377830515 h001 (-5*exp(2/3)+8)/(-9*exp(-3)-4) 3908807395676048 r005 Im(z^2+c),c=-13/38+29/51*I,n=41 3908807401805839 g002 Psi(5/12)+Psi(7/9)-Psi(4/9)-Psi(7/8) 3908807428251132 m008 (3*Pi^5-1/5)/(1/5*Pi^4+4) 3908807431097946 m001 (exp(1/exp(1))-gamma)/(DuboisRaymond+Trott2nd) 3908807438047664 l006 ln(4075/6024) 3908807452300914 a007 Real Root Of 153*x^4+577*x^3-100*x^2-100*x-120 3908807475043551 a001 165580141/322*322^(3/4) 3908807476270450 m001 (ln(Pi)-sin(1))/(-sin(1/12*Pi)+MertensB2) 3908807482462977 q001 1003/2566 3908807506335265 m005 (41/36+1/4*5^(1/2))/(1/2*2^(1/2)-3/11) 3908807509100001 m001 (Zeta(1/2)-FeigenbaumD)/(OneNinth-ZetaQ(4)) 3908807509345890 m001 MinimumGamma^2/exp(Khintchine)*FeigenbaumD 3908807525786500 r005 Re(z^2+c),c=17/62+2/63*I,n=13 3908807530133385 p002 log(1/11*(4^(2/3)+4^(3/4))^(1/2)*11^(2/3)) 3908807542127583 r005 Im(z^2+c),c=5/24+11/27*I,n=9 3908807554532581 p004 log(21067/14251) 3908807554947673 r005 Im(z^2+c),c=-1/13+25/46*I,n=40 3908807578563666 r005 Re(z^2+c),c=-27/50+5/46*I,n=29 3908807595334956 m008 (2*Pi-1/4)/(1/6*Pi^4-4/5) 3908807597653759 m001 1/Robbin^2*ln(Paris)*exp(1)^2 3908807603824172 r005 Im(z^2+c),c=3/50+27/59*I,n=34 3908807607498397 r002 7th iterates of z^2 + 3908807622722221 s002 sum(A029273[n]/(exp(n)),n=1..infinity) 3908807642136838 m001 (Pi+AlladiGrinstead*Trott2nd)/AlladiGrinstead 3908807650626038 r005 Im(z^2+c),c=-7/10+39/196*I,n=64 3908807682169062 s002 sum(A040638[n]/(64^n),n=1..infinity) 3908807689726084 m004 -6+5/Pi+25*Sqrt[5]*Pi-Sinh[Sqrt[5]*Pi] 3908807696761923 m001 GAMMA(7/12)/exp(FeigenbaumKappa)/Zeta(7) 3908807710138557 l006 ln(6101/9019) 3908807718424626 r005 Re(z^2+c),c=-11/8+83/235*I,n=2 3908807746073638 m001 (Catalan+gamma(3))/(Porter+QuadraticClass) 3908807762115984 r005 Im(z^2+c),c=-5/28+29/50*I,n=42 3908807790422717 r004 Im(z^2+c),c=-1/12-7/13*I,z(0)=I,n=25 3908807810086131 a001 139583862445/5778*199^(1/11) 3908807815901381 a007 Real Root Of -932*x^4+353*x^3-814*x^2+236*x-8 3908807821429344 m001 Champernowne^(Pi*2^(1/2)/GAMMA(3/4)*MertensB2) 3908807836298140 l006 ln(7250/7539) 3908807841135163 a007 Real Root Of 149*x^4-877*x^3+555*x^2-340*x+97 3908807859820492 p001 sum((-1)^n/(524*n+255)/(100^n),n=0..infinity) 3908807874290294 a001 4/17711*233^(52/55) 3908807877966833 r002 49th iterates of z^2 + 3908807901223557 r005 Im(z^2+c),c=-61/82+8/61*I,n=17 3908807902500164 r002 42th iterates of z^2 + 3908807910085899 a001 365435296162/15127*199^(1/11) 3908807921288021 a001 267084832/321*521^(8/13) 3908807923912503 a001 433494437/1364*521^(10/13) 3908807924675668 a001 956722026041/39603*199^(1/11) 3908807926804287 a001 2504730781961/103682*199^(1/11) 3908807927114848 a001 6557470319842/271443*199^(1/11) 3908807927188162 a001 10610209857723/439204*199^(1/11) 3908807927306786 a001 4052739537881/167761*199^(1/11) 3908807928119846 a001 1548008755920/64079*199^(1/11) 3908807931031204 r005 Im(z^2+c),c=-25/86+18/31*I,n=42 3908807931301251 m001 1/GAMMA(13/24)^2/FeigenbaumD*exp(Zeta(5)) 3908807931683548 h001 (2/9*exp(2)+1/4)/(5/8*exp(2)+2/9) 3908807933692642 a001 591286729879/24476*199^(1/11) 3908807933859169 r005 Im(z^2+c),c=29/90+10/51*I,n=23 3908807946504028 m001 (CareFree+KhinchinHarmonic)/(ln(3)-Bloch) 3908807965308640 s002 sum(A205283[n]/(n*exp(pi*n)+1),n=1..infinity) 3908807966180502 l006 ln(81/4037) 3908807971889156 a001 225851433717/9349*199^(1/11) 3908807980316942 m007 (-2/5*gamma-4/5*ln(2)-3/5)/(-2*gamma+4/5) 3908807998837054 a001 5/199*1364^(3/49) 3908808000000001 a001 24157639/2+24157817/2*5^(1/2) 3908808000813061 a001 78176283/2-55/2*5^(1/2) 3908808007997915 m001 sin(1)^GAMMA(1/3)*FeigenbaumDelta^GAMMA(1/3) 3908808011764844 r005 Re(z^2+c),c=-71/122+24/59*I,n=17 3908808018325111 r005 Im(z^2+c),c=19/70+17/60*I,n=45 3908808021287791 a001 12586269025/15127*521^(8/13) 3908808035877561 a001 10983760033/13201*521^(8/13) 3908808035884740 r005 Im(z^2+c),c=-167/126+5/63*I,n=16 3908808037384018 a008 Real Root of (1+3*x-6*x^3-6*x^4+5*x^5) 3908808037447527 r002 57th iterates of z^2 + 3908808038006180 a001 43133785636/51841*521^(8/13) 3908808038316741 a001 75283811239/90481*521^(8/13) 3908808038362051 a001 591286729879/710647*521^(8/13) 3908808038368662 a001 832040*521^(8/13) 3908808038369626 a001 4052739537881/4870847*521^(8/13) 3908808038369767 a001 3536736619241/4250681*521^(8/13) 3908808038369854 a001 3278735159921/3940598*521^(8/13) 3908808038370222 a001 2504730781961/3010349*521^(8/13) 3908808038372747 a001 956722026041/1149851*521^(8/13) 3908808038390054 a001 182717648081/219602*521^(8/13) 3908808038508678 a001 139583862445/167761*521^(8/13) 3908808039321738 a001 53316291173/64079*521^(8/13) 3908808044824469 r005 Im(z^2+c),c=-17/25+19/64*I,n=14 3908808044894535 a001 10182505537/12238*521^(8/13) 3908808059324299 r009 Im(z^3+c),c=-23/126+19/44*I,n=16 3908808065282972 m001 (2^(1/2)-Ei(1))/(GAMMA(11/12)+ZetaP(3)) 3908808069322509 m001 (exp(-1/2*Pi)+GAMMA(23/24))/(ln(Pi)+Zeta(1/2)) 3908808070978802 m001 (-ln(2^(1/2)+1)+AlladiGrinstead)/(1+sin(1)) 3908808076535121 a001 7778742049/843*521^(3/13) 3908808077403040 s002 sum(A247967[n]/(exp(n)-1),n=1..infinity) 3908808082640998 r002 34th iterates of z^2 + 3908808083091050 a001 7778742049/9349*521^(8/13) 3908808095382785 r002 37th iterates of z^2 + 3908808097039852 r002 3th iterates of z^2 + 3908808109047728 m001 exp(GAMMA(5/12))/ErdosBorwein^2*Zeta(3) 3908808110724708 m001 1/exp(Ei(1))/PrimesInBinary^2/sqrt(5) 3908808114565105 a007 Real Root Of -183*x^4+557*x^3-914*x^2+437*x+348 3908808115570464 m001 sin(1/5*Pi)^exp(1/Pi)*Thue^exp(1/Pi) 3908808122236948 s002 sum(A205283[n]/(n*exp(pi*n)-1),n=1..infinity) 3908808143586010 m001 (HeathBrownMoroz+Porter)/(Catalan-cos(1)) 3908808152128665 r002 7th iterates of z^2 + 3908808157047906 r002 23th iterates of z^2 + 3908808184724441 r005 Im(z^2+c),c=-29/114+35/57*I,n=34 3908808193567763 r009 Im(z^3+c),c=-37/122+23/56*I,n=6 3908808202394142 a001 1/1563*(1/2*5^(1/2)+1/2)^3*3^(1/3) 3908808214804503 a001 13/4870847*7^(10/51) 3908808222700330 m001 (Kolakoski-Otter)/(gamma(1)+Kac) 3908808226071862 r002 23th iterates of z^2 + 3908808233691977 a001 86267571272/3571*199^(1/11) 3908808249823757 m004 -125/Pi+Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 3908808257409210 l006 ln(2026/2995) 3908808259417903 r005 Im(z^2+c),c=1/17+27/61*I,n=12 3908808266990132 r002 48th iterates of z^2 + 3908808270131492 m001 (exp(-1/2*Pi)+Trott2nd)/BesselK(1,1) 3908808281953825 r008 a(0)=0,K{-n^6,10-16*n-35*n^2+13*n^3} 3908808287401068 r009 Re(z^3+c),c=-41/110+41/62*I,n=6 3908808300024104 m001 ln(GAMMA(1/24))/Bloch^2/GAMMA(1/4) 3908808302267804 m001 (cos(1/5*Pi)+Artin*KhinchinHarmonic)/Artin 3908808310214371 m009 (32/5*Catalan+4/5*Pi^2-1)/(Psi(1,2/3)+1/5) 3908808311567452 r005 Re(z^2+c),c=-61/118+9/52*I,n=5 3908808315137085 r002 41th iterates of z^2 + 3908808330135621 m002 -4+5*Csch[Pi]-ProductLog[Pi]/Pi 3908808330986852 a001 2/11*29^(41/45) 3908808343581989 a001 2971215073/2207*521^(7/13) 3908808344893879 a001 2971215073/3571*521^(8/13) 3908808346076721 r008 a(0)=4,K{-n^6,-4+5*n^3+4*n^2+7*n} 3908808373714496 a007 Real Root Of -133*x^4-478*x^3+319*x^2+589*x-71 3908808383411467 b008 -14/3+2^(-2/5) 3908808394938956 a001 124/5*17711^(2/43) 3908808398091941 a007 Real Root Of 442*x^4+467*x^3+347*x^2-641*x-286 3908808398518069 r005 Re(z^2+c),c=-15/118+43/61*I,n=6 3908808399586077 r009 Re(z^3+c),c=-21/46+7/33*I,n=33 3908808412870444 m001 1/RenyiParking/CopelandErdos^2*ln(Salem) 3908808414725770 r009 Im(z^3+c),c=-2/25+7/11*I,n=2 3908808416063332 r002 55th iterates of z^2 + 3908808418443027 a007 Real Root Of -574*x^4-343*x^3-916*x^2+819*x+453 3908808425055535 m001 (GAMMA(23/24)+Paris)/(3^(1/2)+ln(Pi)) 3908808440754338 p004 log(26921/18211) 3908808453700186 a003 cos(Pi*15/77)-cos(Pi*25/116) 3908808462618178 m001 ln(2)/ln(10)+GaussAGM*OneNinth 3908808463573114 r005 Re(z^2+c),c=7/19+7/38*I,n=42 3908808478763910 r009 Im(z^3+c),c=-11/23+7/19*I,n=14 3908808489308785 r005 Im(z^2+c),c=1/62+23/48*I,n=18 3908808496717975 r008 a(0)=0,K{-n^6,-25+25*n^3-36*n^2+62*n} 3908808500042593 m001 (Riemann1stZero-Tribonacci)/(Magata-MertensB1) 3908808508741129 r009 Re(z^3+c),c=-23/56+10/63*I,n=20 3908808509328490 r005 Re(z^2+c),c=-47/110+23/54*I,n=11 3908808510394162 a001 13201/48*3^(8/25) 3908808529317422 m001 ln(Trott)*Riemann3rdZero^2*sinh(1)^2 3908808552038341 r005 Im(z^2+c),c=-1/31+17/33*I,n=31 3908808561544814 r005 Re(z^2+c),c=35/118+6/47*I,n=3 3908808565136337 r002 6th iterates of z^2 + 3908808569116830 m001 1/Ei(1)^2*(3^(1/3))*exp(GAMMA(1/12))^2 3908808594327070 r009 Im(z^3+c),c=-7/110+37/47*I,n=22 3908808596833120 r005 Im(z^2+c),c=-25/38+2/55*I,n=18 3908808610087781 r002 15th iterates of z^2 + 3908808623837668 s002 sum(A194729[n]/(16^n),n=1..infinity) 3908808631806969 m005 (1/2*Pi+2)/(3/40+3/8*5^(1/2)) 3908808632824194 r005 Re(z^2+c),c=-15/44+25/46*I,n=23 3908808638106324 r002 13th iterates of z^2 + 3908808641110562 m005 (1/2*Catalan-3/8)/(5/7*gamma-1/5) 3908808648545715 r002 37th iterates of z^2 + 3908808660741872 m001 Pi-1+Zeta(3)+BesselI(1,1) 3908808669656767 m005 (1/2*Pi+4/7)/(9/10*gamma-6) 3908808672065015 m001 DuboisRaymond/ln(Conway)^2/sin(1)^2 3908808673284123 m005 (1/3*Pi-1/7)/(6/11*Pi+3/5) 3908808673799923 r002 12th iterates of z^2 + 3908808686595543 r009 Im(z^3+c),c=-51/98+2/11*I,n=46 3908808687936030 r005 Re(z^2+c),c=31/78+7/34*I,n=13 3908808693476465 m005 (1/2*Zeta(3)+7/9)/(9/10*Pi+7/10) 3908808700956118 r005 Re(z^2+c),c=-8/21+8/15*I,n=33 3908808706407901 h001 (9/11*exp(1)+4/7)/(2/9*exp(1)+1/9) 3908808718251637 r005 Im(z^2+c),c=17/48+2/31*I,n=25 3908808719974122 m003 -5+Csc[1/2+Sqrt[5]/2]/6+Tanh[1/2+Sqrt[5]/2] 3908808721995247 a007 Real Root Of 707*x^4-418*x^3-56*x^2-100*x-72 3908808722737580 a007 Real Root Of 29*x^4-352*x^3+763*x^2+520*x+562 3908808732949805 r009 Re(z^3+c),c=-4/17+41/56*I,n=14 3908808744929884 m001 ln(FeigenbaumD)^2/MadelungNaCl^2*GAMMA(3/4) 3908808750901186 a007 Real Root Of -68*x^4-291*x^3-294*x^2-955*x-746 3908808763272702 r005 Im(z^2+c),c=23/106+9/19*I,n=20 3908808767798605 r009 Re(z^3+c),c=-39/82+7/30*I,n=59 3908808769119728 m005 (1/2*Zeta(3)+1/5)/(19/15+7/20*5^(1/2)) 3908808779221400 m001 (Artin+Trott)/(Shi(1)+gamma(1)) 3908808779726862 r009 Re(z^3+c),c=-55/114+5/63*I,n=32 3908808786314126 a007 Real Root Of 209*x^4-176*x^3-481*x^2-496*x+273 3908808787461733 a007 Real Root Of 187*x^4+30*x^3+853*x^2-384*x-283 3908808797281836 m001 (-3^(1/3)+arctan(1/2))/(exp(Pi)+Ei(1)) 3908808806745668 m001 BesselJ(0,1)/exp(GaussKuzminWirsing)/Zeta(3)^2 3908808808837463 l006 ln(6055/8951) 3908808809643706 r005 Re(z^2+c),c=-49/114+10/19*I,n=6 3908808816975791 m001 (Paris+ZetaQ(3))/(1+MadelungNaCl) 3908808818952402 m005 (1/2*gamma+10/11)/(2*3^(1/2)-2/5) 3908808831959990 r005 Im(z^2+c),c=-1/122+30/59*I,n=20 3908808836220857 r005 Re(z^2+c),c=-41/40+7/52*I,n=26 3908808840461139 m001 (MertensB3-Riemann3rdZero)/(BesselI(1,1)-Kac) 3908808844318508 m006 (3/5*exp(Pi)-4/5)/(5/6/Pi-3/5) 3908808847737998 r005 Im(z^2+c),c=-31/36+1/38*I,n=19 3908808860405116 r002 4th iterates of z^2 + 3908808869344837 r005 Re(z^2+c),c=19/66+1/49*I,n=47 3908808869629788 s002 sum(A167557[n]/(n^3*2^n+1),n=1..infinity) 3908808873334931 a003 sin(Pi*11/69)*sin(Pi*33/109) 3908808884190536 a007 Real Root Of -940*x^4-129*x^3+512*x^2+747*x+228 3908808886940851 m001 (GAMMA(23/24)+OneNinth)/(2^(1/3)+GAMMA(13/24)) 3908808887595568 s002 sum(A091460[n]/((exp(n)+1)*n),n=1..infinity) 3908808888373495 m001 (-gamma+LaplaceLimit)/(2^(1/3)-exp(Pi)) 3908808935386539 a007 Real Root Of 224*x^4+762*x^3-319*x^2+462*x-103 3908808943090818 a007 Real Root Of 197*x^4+790*x^3+280*x^2+617*x-674 3908808952579503 m001 MertensB3+Sierpinski-ZetaQ(3) 3908808986296149 a001 29/2178309*3^(50/51) 3908809001484799 m001 Niven^GolombDickman/FeigenbaumMu 3908809004945978 r002 45th iterates of z^2 + 3908809005331070 m001 (MadelungNaCl-Porter)/(ln(5)+2*Pi/GAMMA(5/6)) 3908809024042623 r002 6th iterates of z^2 + 3908809028990665 a001 7778742049/5778*521^(7/13) 3908809031615148 a001 701408733/1364*521^(9/13) 3908809034359228 m008 (3*Pi^6+4/5)/(3/4*Pi^4+3/4) 3908809037337764 a008 Real Root of x^2-x-152397 3908809042492418 a007 Real Root Of -54*x^4+771*x^3-977*x^2-68*x+170 3908809051606745 a007 Real Root Of -261*x^4-879*x^3+509*x^2-156*x+46 3908809054624159 a007 Real Root Of -268*x^4-892*x^3+317*x^2-943*x+761 3908809055227447 m001 (-Ei(1,1)+Sierpinski)/(2^(1/2)-cos(1/5*Pi)) 3908809055243239 r005 Re(z^2+c),c=17/98+11/17*I,n=4 3908809066197948 r005 Re(z^2+c),c=-57/106+7/51*I,n=53 3908809086125523 l006 ln(4029/5956) 3908809101086950 a003 cos(Pi*28/109)*cos(Pi*21/68) 3908809106531208 m001 (arctan(1/3)+Niven)/(PolyaRandomWalk3D-Thue) 3908809119754039 m006 (1/5*Pi+5)/(4/Pi+1/6) 3908809128990463 a001 20365011074/15127*521^(7/13) 3908809134906029 a001 3/13*63245986^(2/7) 3908809136775786 r002 58th iterates of z^2 + 3908809143580237 a001 53316291173/39603*521^(7/13) 3908809145708857 a001 139583862445/103682*521^(7/13) 3908809146019418 a001 365435296162/271443*521^(7/13) 3908809146064729 a001 956722026041/710647*521^(7/13) 3908809146071339 a001 2504730781961/1860498*521^(7/13) 3908809146072304 a001 6557470319842/4870847*521^(7/13) 3908809146072531 a001 10610209857723/7881196*521^(7/13) 3908809146072900 a001 1346269*521^(7/13) 3908809146075425 a001 1548008755920/1149851*521^(7/13) 3908809146092732 a001 591286729879/439204*521^(7/13) 3908809146211356 a001 225851433717/167761*521^(7/13) 3908809147024416 a001 86267571272/64079*521^(7/13) 3908809152597214 a001 32951280099/24476*521^(7/13) 3908809155589664 a007 Real Root Of -16*x^4-623*x^3+74*x^2-780*x+346 3908809166331688 r009 Im(z^3+c),c=-11/25+16/49*I,n=32 3908809184237809 a001 12586269025/843*521^(2/13) 3908809190793740 a001 12586269025/9349*521^(7/13) 3908809194210671 r005 Im(z^2+c),c=9/58+31/58*I,n=26 3908809207613988 q001 883/2259 3908809219614219 r002 35th iterates of z^2 + 3908809241862244 m005 (1/2*2^(1/2)-1/4)/(11/40+2/5*5^(1/2)) 3908809249594832 m001 KhinchinLevy/(3^(1/2)+Conway) 3908809258794499 r005 Im(z^2+c),c=7/54+18/43*I,n=15 3908809270980741 m001 1/GAMMA(5/6)^2*exp(OneNinth)/sqrt(5) 3908809279165905 a007 Real Root Of -538*x^4+642*x^3+490*x^2+903*x+329 3908809285810369 a001 161/416020*233^(14/33) 3908809290825050 l006 ln(187/9320) 3908809295240252 a001 78176291/2-47/2*5^(1/2) 3908809297368876 a001 39088169-34*5^(1/2) 3908809298688524 a001 11921868361/305 3908809299048171 r009 Im(z^3+c),c=-3/82+21/47*I,n=5 3908809303807049 m004 -125*Pi+Csc[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/2 3908809304248347 m001 (BesselI(0,1)-arctan(1/3))/(Pi^(1/2)+Cahen) 3908809306761197 r005 Im(z^2+c),c=27/74+1/8*I,n=61 3908809313722225 a007 Real Root Of 49*x^4-507*x^3+722*x^2-300*x-259 3908809313986137 a007 Real Root Of -244*x^4-873*x^3+458*x^2+667*x+432 3908809329186410 a003 cos(Pi*13/81)-cos(Pi*12/65) 3908809363812915 r009 Im(z^3+c),c=-37/78+14/47*I,n=25 3908809364470874 l006 ln(6032/8917) 3908809365868699 m005 (1/2*exp(1)+7/10)/(1/10*3^(1/2)-7/10) 3908809368547738 r005 Re(z^2+c),c=27/86+2/31*I,n=64 3908809379152812 r005 Re(z^2+c),c=17/60+1/55*I,n=63 3908809383960254 m008 (2/5*Pi^2+5)/(3/4*Pi^5-3/5) 3908809384424895 h003 exp(Pi*(15^(1/2)+19^(1/2)*6^(1/4))) 3908809397522764 r002 28th iterates of z^2 + 3908809398396240 m001 Sierpinski^2/Rabbit^2*ln(GAMMA(1/6))^2 3908809402716576 r002 40th iterates of z^2 + 3908809404750127 r009 Im(z^3+c),c=-59/106+6/59*I,n=3 3908809407964875 r002 45th iterates of z^2 + 3908809409112465 a003 cos(Pi*16/81)-sin(Pi*13/40) 3908809409288274 a001 15127/13*832040^(4/45) 3908809421757216 m001 FibonacciFactorial*exp(Backhouse)^2*sqrt(3) 3908809424378092 a007 Real Root Of 97*x^4+345*x^3-355*x^2-908*x-165 3908809428449878 m005 (1/3*5^(1/2)-1/11)/(1/4*Pi+8/9) 3908809436953611 r005 Im(z^2+c),c=-25/66+32/63*I,n=9 3908809438758365 a001 39088169/843*1364^(14/15) 3908809451284753 a001 4807526976/2207*521^(6/13) 3908809452596643 a001 4807526976/3571*521^(7/13) 3908809455438622 a007 Real Root Of 226*x^4+837*x^3-97*x^2+444*x+447 3908809458280895 b008 1/(21*E^(5/2)) 3908809471309413 m001 (Pi^(1/2)+KomornikLoreti)/(Chi(1)-gamma(1)) 3908809475416694 m005 (1/2*exp(1)-9/11)/(3/10*Zeta(3)-2/9) 3908809488854113 r009 Re(z^3+c),c=-11/36+43/63*I,n=3 3908809493793841 r008 a(0)=4,K{-n^6,-16+7*n^3-8*n^2+29*n} 3908809502826221 m001 (GAMMA(2/3)-DuboisRaymond)/(Otter+Trott) 3908809524826116 a003 cos(Pi*6/61)-sin(Pi*15/79) 3908809528538814 a001 28143753123*144^(9/17) 3908809534304290 r002 46th iterates of z^2 + 3908809539337693 m001 1/GAMMA(1/4)/Riemann2ndZero*ln(sin(1))^2 3908809540782682 r009 Im(z^3+c),c=-37/110+18/47*I,n=26 3908809543663635 m001 Shi(1)^Mills*Khinchin^Mills 3908809544925979 r002 30th iterates of z^2 + 3908809549925957 m001 (Si(Pi)+FeigenbaumC)/(GaussAGM+OneNinth) 3908809551168628 a001 47*(1/2*5^(1/2)+1/2)^31*9349^(13/15) 3908809578821602 a001 63245986/843*1364^(13/15) 3908809589038583 a001 47*(1/2*5^(1/2)+1/2)^26*64079^(14/15) 3908809597728319 m001 1/exp(Robbin)/KhintchineLevy^2/Zeta(1,2) 3908809602106489 a003 sin(Pi*1/116)-sin(Pi*7/51) 3908809620274970 r005 Re(z^2+c),c=9/56+11/34*I,n=27 3908809623105672 m001 (BesselJ(1,1)-Pi^(1/2))/(Magata+ZetaQ(4)) 3908809626735429 r002 47th iterates of z^2 + 3908809641090706 m001 1/Zeta(3)*GAMMA(13/24)^2/ln(sqrt(Pi)) 3908809644292787 r005 Im(z^2+c),c=-8/21+9/16*I,n=24 3908809652518937 a007 Real Root Of -105*x^4-275*x^3+481*x^2+41*x+899 3908809653969844 m005 (5*gamma-3/5)/(3/5*2^(1/2)+5) 3908809660124541 r008 a(0)=4,K{-n^6,2+9*n^2+2*n} 3908809674036029 a007 Real Root Of -252*x^4-977*x^3-235*x^2-850*x+747 3908809687568216 m001 StolarskyHarborth^(Riemann2ndZero/LambertW(1)) 3908809689133478 r005 Im(z^2+c),c=25/118+14/41*I,n=30 3908809704144759 m005 (1/3*3^(1/2)+1/4)/(6/7*5^(1/2)+1/5) 3908809706465101 r002 63i'th iterates of 2*x/(1-x^2) of 3908809711451270 a001 123/610*13^(8/31) 3908809715241307 r009 Re(z^3+c),c=-37/106+5/63*I,n=4 3908809718884843 a001 34111385/281*1364^(4/5) 3908809726040684 b008 1/3+Pi+Sin[Pi/7] 3908809727242532 r005 Im(z^2+c),c=5/114+29/61*I,n=6 3908809728124797 r005 Re(z^2+c),c=-69/56+13/60*I,n=4 3908809738419134 r005 Re(z^2+c),c=-27/52+7/25*I,n=37 3908809742700471 a007 Real Root Of -48*x^4-254*x^3-516*x^2-782*x+863 3908809743958259 g002 Psi(1/9)-Psi(1/10)-Psi(5/9)-Psi(5/7) 3908809770381652 m004 -5-5*Sqrt[5]*Pi+(Pi*Cos[Sqrt[5]*Pi])/Sqrt[5] 3908809780795661 a007 Real Root Of 51*x^4+159*x^3+85*x^2+719*x-898 3908809788231886 s002 sum(A002799[n]/(n^3*2^n+1),n=1..infinity) 3908809794827833 m001 (-Porter+Sarnak)/(gamma+PisotVijayaraghavan) 3908809796061599 r005 Im(z^2+c),c=17/52+7/25*I,n=21 3908809796654606 r005 Im(z^2+c),c=-31/60+4/61*I,n=17 3908809798047325 r002 54th iterates of z^2 + 3908809805948055 r005 Im(z^2+c),c=1/4+13/49*I,n=8 3908809818513048 r002 10th iterates of z^2 + 3908809823970937 b008 1/4+Csc[Pi/122] 3908809841256184 r002 21th iterates of z^2 + 3908809844905570 r005 Re(z^2+c),c=-23/48+27/59*I,n=61 3908809847311243 r005 Im(z^2+c),c=-51/70+2/55*I,n=52 3908809852559549 m005 (1/2*gamma-1/4)/(11/12*3^(1/2)-3/5) 3908809858948089 a001 165580141/843*1364^(11/15) 3908809864760448 a007 Real Root Of 216*x^4+667*x^3-639*x^2+354*x+558 3908809868322597 a001 2207*233^(29/55) 3908809868828539 p003 LerchPhi(1/6,1,664/227) 3908809874035891 a001 2889/305*89^(6/19) 3908809879471095 r005 Re(z^2+c),c=-14/27+13/46*I,n=62 3908809879860779 a001 281/726103*377^(23/59) 3908809882639513 m001 ln(Conway)*Cahen^2/FransenRobinson 3908809898381006 a003 sin(Pi*9/53)*sin(Pi*12/43) 3908809909908332 r002 40th iterates of z^2 + 3908809915882599 m005 (1/3*Zeta(3)-1/10)/(3/7*3^(1/2)-3/4) 3908809916886451 a003 sin(Pi*7/82)/sin(Pi*23/97) 3908809924357730 l006 ln(2003/2961) 3908809935012935 r005 Re(z^2+c),c=-14/19+3/43*I,n=16 3908809948167594 r009 Im(z^3+c),c=-35/82+19/58*I,n=10 3908809950273595 m001 (KhinchinLevy+ZetaQ(4))/(ln(Pi)+Ei(1)) 3908809953236121 r005 Im(z^2+c),c=-9/14+91/225*I,n=54 3908809958382480 r002 16th iterates of z^2 + 3908809967579301 r005 Im(z^2+c),c=-41/66+3/37*I,n=12 3908809968998420 r005 Im(z^2+c),c=-3/31+26/47*I,n=52 3908809970048734 h001 (2/9*exp(2)+5/12)/(3/5*exp(2)+5/6) 3908809974427474 s001 sum(exp(-Pi)^n*A010163[n],n=1..infinity) 3908809974427474 s002 sum(A010163[n]/(exp(pi*n)),n=1..infinity) 3908809981511470 r005 Im(z^2+c),c=9/74+13/19*I,n=7 3908809989761963 r002 2th iterates of z^2 + 3908809990022850 r005 Im(z^2+c),c=-7/94+11/21*I,n=20 3908809990094236 r005 Im(z^2+c),c=11/42+7/16*I,n=5 3908809999011340 a001 267914296/843*1364^(2/3) 3908810000421984 r005 Im(z^2+c),c=-5/106+32/61*I,n=47 3908810000912313 m006 (5*exp(Pi)-3/4)/(3*Pi^2-1/5) 3908810028116154 a001 32951280099/1364*199^(1/11) 3908810030857281 r002 17th iterates of z^2 + 3908810034318513 r005 Re(z^2+c),c=-59/110+7/46*I,n=46 3908810034335251 m001 Ei(1)*sin(1/12*Pi)-ln(2^(1/2)+1) 3908810034335251 m001 Ei(1)*sin(Pi/12)-ln(1+sqrt(2)) 3908810036246624 m001 LambertW(1)/LaplaceLimit/exp(cosh(1))^2 3908810046640122 r005 Im(z^2+c),c=9/64+18/31*I,n=22 3908810047647433 a001 4/3*6765^(5/41) 3908810052980300 m001 (DuboisRaymond+Tribonacci)/(Ei(1)-exp(1/Pi)) 3908810059474929 m001 FeigenbaumD^gamma/ZetaP(2) 3908810071332136 a007 Real Root Of -945*x^4+719*x^3-753*x^2-499*x-15 3908810077699234 p003 LerchPhi(1/1024,5,153/80) 3908810083028376 m001 (ln(2^(1/2)+1)+exp(-1/2*Pi))/(Tetranacci+Thue) 3908810101780196 r005 Re(z^2+c),c=1/4+1/42*I,n=44 3908810111016311 m001 Salem^2/exp(FeigenbaumB)^2/sin(Pi/12)^2 3908810135287725 p001 sum(1/(598*n+259)/(25^n),n=0..infinity) 3908810136693623 a001 12586269025/5778*521^(6/13) 3908810137978599 r009 Re(z^3+c),c=-45/86+19/52*I,n=25 3908810139074596 a001 433494437/843*1364^(3/5) 3908810139318107 a001 567451585/682*521^(8/13) 3908810139424377 r005 Im(z^2+c),c=-3/16+37/60*I,n=41 3908810144758754 r005 Im(z^2+c),c=-7/12+1/14*I,n=62 3908810156307851 r005 Re(z^2+c),c=-57/86+7/45*I,n=6 3908810156503617 m004 -2+125*Pi+(Cot[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/6 3908810157212602 m001 (Si(Pi)-Zeta(5))/(-BesselI(0,2)+DuboisRaymond) 3908810159382788 m004 -2+125*Pi+Cot[Sqrt[5]*Pi]/6 3908810168558368 m001 (sin(1)+Ei(1,1))/(-Sarnak+ZetaP(2)) 3908810178565554 m005 (1/2*gamma-7/10)/(1/11*gamma+1) 3908810178927966 r009 Re(z^3+c),c=-17/82+21/34*I,n=4 3908810183004072 r005 Im(z^2+c),c=11/38+5/19*I,n=58 3908810189976468 a005 (1/cos(12/133*Pi))^712 3908810192904067 a007 Real Root Of 205*x^4-535*x^3-147*x^2+63*x+25 3908810232445389 m001 ((1+3^(1/2))^(1/2)-Mills)/(Trott2nd+Thue) 3908810236693450 a001 32951280099/15127*521^(6/13) 3908810249636124 h001 (1/2*exp(2)+2/9)/(1/9*exp(1)+7/10) 3908810251283228 a001 86267571272/39603*521^(6/13) 3908810253411848 a001 225851433717/103682*521^(6/13) 3908810253722410 a001 591286729879/271443*521^(6/13) 3908810253767720 a001 1548008755920/710647*521^(6/13) 3908810253774331 a001 4052739537881/1860498*521^(6/13) 3908810253775295 a001 2178309*521^(6/13) 3908810253775891 a001 6557470319842/3010349*521^(6/13) 3908810253778416 a001 2504730781961/1149851*521^(6/13) 3908810253795723 a001 956722026041/439204*521^(6/13) 3908810253914347 a001 365435296162/167761*521^(6/13) 3908810254727408 a001 139583862445/64079*521^(6/13) 3908810258124608 r005 Re(z^2+c),c=-17/32+12/47*I,n=20 3908810260300207 a001 53316291173/24476*521^(6/13) 3908810264254802 r005 Im(z^2+c),c=7/66+23/54*I,n=34 3908810279137857 a001 233802911/281*1364^(8/15) 3908810283753861 m001 (PrimesInBinary+Rabbit)/(ln(2)-FeigenbaumMu) 3908810291940812 a001 20365011074/843*521^(1/13) 3908810298496744 a001 20365011074/9349*521^(6/13) 3908810303052248 l006 ln(106/5283) 3908810307143422 r009 Re(z^3+c),c=-27/58+17/33*I,n=19 3908810309650303 r009 Im(z^3+c),c=-10/21+8/27*I,n=25 3908810310046773 m001 (Shi(1)-exp(1/Pi))/(Bloch+PolyaRandomWalk3D) 3908810331556990 m001 (Riemann2ndZero+ZetaP(4))/(Psi(2,1/3)+ln(Pi)) 3908810336562646 m001 (-FeigenbaumAlpha+Totient)/(Chi(1)-cos(1)) 3908810337474714 r005 Re(z^2+c),c=-16/29+2/17*I,n=15 3908810359363247 a001 18/55*10946^(4/15) 3908810360429946 b008 11/4+ArcCosh[7/4] 3908810363834592 m001 BesselK(1,1)/exp(FeigenbaumB)/sin(Pi/12)^2 3908810390526968 r005 Re(z^2+c),c=-79/82+11/60*I,n=30 3908810390889150 r008 a(0)=4,K{-n^6,-28-26*n^3+20*n^2+44*n} 3908810406996435 m001 ZetaP(3)^BesselI(0,2)/(ZetaP(3)^BesselK(0,1)) 3908810415402865 a001 39088169-29*5^(1/2) 3908810419201124 a001 1134903170/843*1364^(7/15) 3908810431781168 r002 28th iterates of z^2 + 3908810471720741 a007 Real Root Of 538*x^4-303*x^3-288*x^2-761*x+347 3908810488547059 l006 ln(5986/8849) 3908810516417469 a001 2161/3*6765^(39/40) 3908810528046770 r002 25th iterates of z^2 + 3908810534833702 m008 (1/4*Pi^6-4/5)/(2*Pi^5+4/5) 3908810541059004 a007 Real Root Of -410*x^4-395*x^3-87*x^2+674*x-217 3908810549734485 r009 Im(z^3+c),c=-39/64+31/53*I,n=3 3908810557182681 r005 Re(z^2+c),c=-53/102+17/62*I,n=40 3908810558987831 a001 7778742049/2207*521^(5/13) 3908810559264395 a001 1836311903/843*1364^(2/5) 3908810560299721 a001 7778742049/3571*521^(6/13) 3908810576303304 q001 1/2558323 3908810589326654 r009 Re(z^3+c),c=-39/82+7/30*I,n=64 3908810597145446 a001 377/2207*2537720636^(8/9) 3908810597145446 a001 377/2207*312119004989^(8/11) 3908810597145446 a001 377/2207*(1/2+1/2*5^(1/2))^40 3908810597145446 a001 377/2207*23725150497407^(5/8) 3908810597145446 a001 377/2207*73681302247^(10/13) 3908810597145446 a001 377/2207*28143753123^(4/5) 3908810597145446 a001 377/2207*10749957122^(5/6) 3908810597145446 a001 377/2207*4106118243^(20/23) 3908810597145446 a001 377/2207*1568397607^(10/11) 3908810597145446 a001 377/2207*599074578^(20/21) 3908810597153021 a001 329/281*141422324^(12/13) 3908810597153021 a001 329/281*2537720636^(4/5) 3908810597153021 a001 329/281*45537549124^(12/17) 3908810597153021 a001 329/281*14662949395604^(4/7) 3908810597153021 a001 329/281*(1/2+1/2*5^(1/2))^36 3908810597153021 a001 329/281*505019158607^(9/14) 3908810597153021 a001 329/281*192900153618^(2/3) 3908810597153021 a001 329/281*73681302247^(9/13) 3908810597153021 a001 329/281*10749957122^(3/4) 3908810597153021 a001 329/281*4106118243^(18/23) 3908810597153021 a001 329/281*1568397607^(9/11) 3908810597153021 a001 329/281*599074578^(6/7) 3908810597153021 a001 329/281*228826127^(9/10) 3908810597153021 a001 329/281*87403803^(18/19) 3908810603499011 r005 Im(z^2+c),c=-19/30+38/103*I,n=36 3908810607401873 m001 RenyiParking^MertensB3*Stephens 3908810612044536 m008 (1/5*Pi^3-2/3)/(Pi-3) 3908810614579716 r002 29th iterates of z^2 + 3908810616693176 a001 14619165/46*322^(5/6) 3908810618691368 m001 HardyLittlewoodC4^(BesselI(1,2)*Otter) 3908810620057903 r009 Im(z^3+c),c=-27/56+9/19*I,n=31 3908810634260104 m001 1/Pi*exp(CareFree)^2/gamma^2 3908810635489535 m001 (-sin(Pi/5)+5)/GAMMA(5/6) 3908810639910355 r005 Re(z^2+c),c=-31/58+7/41*I,n=32 3908810643230665 a001 1/48*46368^(19/39) 3908810651896209 m001 (Chi(1)-Pi^(1/2))/(Cahen+MadelungNaCl) 3908810653347163 r005 Im(z^2+c),c=23/114+20/57*I,n=27 3908810673877961 a007 Real Root Of 339*x^4-120*x^3+876*x^2+491*x+43 3908810686427006 m001 Cahen/(ZetaR(2)^ReciprocalFibonacci) 3908810692119720 m001 (Pi-Ei(1,1))/(ErdosBorwein-Thue) 3908810694380122 l006 ln(4641/4826) 3908810698250076 r005 Re(z^2+c),c=11/36+3/55*I,n=56 3908810699327671 a001 2971215073/843*1364^(1/3) 3908810699328636 a007 Real Root Of 159*x^4+822*x^3+745*x^2-203*x-202 3908810706288694 m001 Otter^ln(3)/sin(1) 3908810706359829 m001 exp(Sierpinski)^2*Bloch^2/Zeta(9) 3908810709730008 m001 (-Trott+ZetaQ(4))/(exp(Pi)+Artin) 3908810730072264 m005 (1/3*Zeta(3)-1/12)/(4/7*Zeta(3)+1/8) 3908810750625867 m001 1/FeigenbaumC/ln(Khintchine)/sqrt(2) 3908810755574925 m004 5-Log[Sqrt[5]*Pi]+(625*Log[Sqrt[5]*Pi])/Pi 3908810765290017 r005 Re(z^2+c),c=-13/24+3/31*I,n=25 3908810769368181 a007 Real Root Of 151*x^4-61*x^3+570*x^2-94*x-131 3908810772270679 l006 ln(3983/5888) 3908810796226794 r005 Im(z^2+c),c=-1/14+19/35*I,n=34 3908810798152104 m005 (1/3*Catalan-1/8)/(7/12*2^(1/2)-4/11) 3908810801625357 a005 (1/cos(21/205*Pi))^288 3908810809768310 r002 33th iterates of z^2 + 3908810811847929 m001 exp(PisotVijayaraghavan)^2*Artin*exp(1)^2 3908810812111521 r002 14th iterates of z^2 + 3908810814600267 m005 (1/2*Catalan+7/9)/(3/8*5^(1/2)-4) 3908810821536245 r009 Re(z^3+c),c=-17/64+32/41*I,n=3 3908810825645797 a007 Real Root Of -177*x^4-672*x^3+124*x^2+82*x-388 3908810837117405 m001 1/Magata^2/FeigenbaumDelta^2/exp(Trott) 3908810839390952 a001 1602508992/281*1364^(4/15) 3908810841248542 a007 Real Root Of 166*x^4+522*x^3-487*x^2+80*x+177 3908810854603098 m001 (5^(1/2)+ln(2))/(2*Pi/GAMMA(5/6)+Tetranacci) 3908810869235289 a003 sin(Pi*17/94)*sin(Pi*22/85) 3908810872803853 a007 Real Root Of -339*x^4-459*x^3-448*x^2+499*x+244 3908810877210233 m001 OneNinth^2/Paris*exp(Zeta(3)) 3908810878262541 m001 1/sin(Pi/5)^2/FeigenbaumB^2*exp(sqrt(5)) 3908810881915758 m001 (Riemann3rdZero+Tetranacci)/(Cahen-MertensB3) 3908810887974031 r005 Re(z^2+c),c=11/52+22/57*I,n=15 3908810890626011 r005 Re(z^2+c),c=-31/58+1/25*I,n=13 3908810894250885 r009 Im(z^3+c),c=-41/98+1/39*I,n=2 3908810941033016 s002 sum(A005964[n]/(n^3*exp(n)-1),n=1..infinity) 3908810944555122 r002 52th iterates of z^2 + 3908810953834940 a003 sin(Pi*13/103)/sin(Pi*32/71) 3908810955068772 r005 Im(z^2+c),c=7/66+23/54*I,n=33 3908810965963179 m002 -4*Pi^4-Cosh[Pi]/5+ProductLog[Pi] 3908810970129379 a003 sin(Pi*7/108)/cos(Pi*17/52) 3908810978484403 r005 Im(z^2+c),c=13/102+23/56*I,n=27 3908810979454239 a001 7778742049/843*1364^(1/5) 3908810987241698 s002 sum(A110549[n]/(n*pi^n+1),n=1..infinity) 3908811003379579 m001 Sierpinski/Kolakoski/FeigenbaumB 3908811017083278 r002 44th iterates of z^2 + 3908811017499807 r005 Im(z^2+c),c=25/94+14/47*I,n=20 3908811036783553 r005 Im(z^2+c),c=7/36+21/59*I,n=12 3908811057088647 l006 ln(5963/8815) 3908811093112085 a001 62423713157/1597 3908811099169642 r005 Im(z^2+c),c=-4/3+7/163*I,n=25 3908811109571269 r005 Im(z^2+c),c=-1/36+35/62*I,n=22 3908811111150639 a001 4976784/281*3571^(16/17) 3908811119517530 a001 12586269025/843*1364^(2/15) 3908811124313158 r005 Re(z^2+c),c=-13/46+35/61*I,n=21 3908811125523976 m001 exp(BesselJ(0,1))^2*FeigenbaumD^2*sinh(1) 3908811129181486 a001 24157817/843*3571^(15/17) 3908811132123505 r002 10th iterates of z^2 + 3908811139733457 r009 Im(z^3+c),c=-8/19+21/62*I,n=32 3908811144804596 s001 sum(exp(-3*Pi/4)^n*A182260[n],n=1..infinity) 3908811147212327 a001 39088169/843*3571^(14/17) 3908811161276938 a001 3665737348901/2*987^(7/9) 3908811165243170 a001 63245986/843*3571^(13/17) 3908811183274012 a001 34111385/281*3571^(12/17) 3908811185085402 m001 1/ln(TreeGrowth2nd)/FeigenbaumC*sin(Pi/5) 3908811187257486 r005 Re(z^2+c),c=-2/3+24/101*I,n=35 3908811195393262 m001 Pi+Pi^(1/2)*(1-LambertW(1)) 3908811198518491 r005 Re(z^2+c),c=-4/9+10/23*I,n=21 3908811201304854 a001 165580141/843*3571^(11/17) 3908811209720789 r005 Re(z^2+c),c=1/4+1/42*I,n=45 3908811213663036 r005 Im(z^2+c),c=2/7+11/41*I,n=33 3908811219335697 a001 267914296/843*3571^(10/17) 3908811237366540 a001 433494437/843*3571^(9/17) 3908811244396895 a001 10182505537/2889*521^(5/13) 3908811247021380 a001 1836311903/1364*521^(7/13) 3908811254089396 a007 Real Root Of -957*x^4+447*x^3+6*x^2+693*x+319 3908811255397382 a001 233802911/281*3571^(8/17) 3908811259580826 a001 20365011074/843*1364^(1/15) 3908811263447731 m009 (1/3*Psi(1,2/3)+5)/(3/2*Pi^2+3/5) 3908811273428225 a001 1134903170/843*3571^(7/17) 3908811274830190 r005 Im(z^2+c),c=-2/3+76/191*I,n=11 3908811282554517 a001 377/5778*2537720636^(14/15) 3908811282554517 a001 377/5778*17393796001^(6/7) 3908811282554517 a001 377/5778*45537549124^(14/17) 3908811282554517 a001 377/5778*817138163596^(14/19) 3908811282554517 a001 377/5778*14662949395604^(2/3) 3908811282554517 a001 377/5778*(1/2+1/2*5^(1/2))^42 3908811282554517 a001 377/5778*505019158607^(3/4) 3908811282554517 a001 377/5778*192900153618^(7/9) 3908811282554517 a001 377/5778*10749957122^(7/8) 3908811282554517 a001 377/5778*4106118243^(21/23) 3908811282554517 a001 377/5778*1568397607^(21/22) 3908811282562253 a001 2584/843*45537549124^(2/3) 3908811282562253 a001 2584/843*(1/2+1/2*5^(1/2))^34 3908811282562253 a001 2584/843*10749957122^(17/24) 3908811282562253 a001 2584/843*4106118243^(17/23) 3908811282562253 a001 2584/843*1568397607^(17/22) 3908811282562253 a001 2584/843*599074578^(17/21) 3908811282562253 a001 2584/843*228826127^(17/20) 3908811282562254 a001 2584/843*87403803^(17/19) 3908811282562256 a001 2584/843*33385282^(17/18) 3908811283380951 a007 Real Root Of 146*x^4-605*x^3-725*x^2-142*x+199 3908811285735212 p004 log(14669/9923) 3908811285944930 r009 Re(z^3+c),c=-49/118+10/17*I,n=61 3908811288302185 r005 Im(z^2+c),c=-8/23+7/12*I,n=60 3908811290201855 r005 Im(z^2+c),c=13/54+13/41*I,n=20 3908811291459068 a001 1836311903/843*3571^(6/17) 3908811293431519 r002 45th iterates of z^2 + 3908811293431519 r002 45th iterates of z^2 + 3908811296149177 a007 Real Root Of 750*x^4-296*x^3-127*x^2+2*x-15 3908811309489911 a001 2971215073/843*3571^(5/17) 3908811314745557 p001 sum(1/(547*n+490)/n/(25^n),n=1..infinity) 3908811315870218 m001 LambertW(1)+Zeta(1,-1)-Trott 3908811321912362 m008 (1/6*Pi^5-3)/(2/5*Pi^5+2/5) 3908811326268600 r005 Re(z^2+c),c=-18/31+23/59*I,n=47 3908811327520754 a001 1602508992/281*3571^(4/17) 3908811335052246 a001 505019158607/34*6557470319842^(11/19) 3908811344396750 a001 53316291173/15127*521^(5/13) 3908811345551598 a001 7778742049/843*3571^(3/17) 3908811348597999 m005 (1/2*3^(1/2)+1/10)/(1/3*2^(1/2)+2) 3908811349005391 r005 Re(z^2+c),c=-49/94+4/15*I,n=61 3908811354915092 a001 163427402749/4181 3908811355945803 r009 Re(z^3+c),c=-39/86+5/24*I,n=27 3908811357276559 a001 5702887/843*9349^(18/19) 3908811358986533 a001 139583862445/39603*521^(5/13) 3908811359630345 a001 9227465/843*9349^(17/19) 3908811361115153 a001 182717648081/51841*521^(5/13) 3908811361376386 r005 Re(z^2+c),c=-37/50+3/16*I,n=34 3908811361425715 a001 956722026041/271443*521^(5/13) 3908811361471025 a001 2504730781961/710647*521^(5/13) 3908811361477636 a001 3278735159921/930249*521^(5/13) 3908811361479196 a001 10610209857723/3010349*521^(5/13) 3908811361481721 a001 4052739537881/1149851*521^(5/13) 3908811361499028 a001 387002188980/109801*521^(5/13) 3908811361617652 a001 591286729879/167761*521^(5/13) 3908811361984085 a001 4976784/281*9349^(16/19) 3908811362430713 a001 225851433717/64079*521^(5/13) 3908811363582441 a001 12586269025/843*3571^(2/17) 3908811364337842 a001 24157817/843*9349^(15/19) 3908811364815101 r005 Im(z^2+c),c=-4/3+32/153*I,n=4 3908811366691593 a001 39088169/843*9349^(14/19) 3908811368003514 a001 21566892818/6119*521^(5/13) 3908811369045346 a001 63245986/843*9349^(13/19) 3908811371399098 a001 34111385/281*9349^(12/19) 3908811373752851 a001 165580141/843*9349^(11/19) 3908811374223584 m004 -125/Pi+(Sqrt[5]*E^(Sqrt[5]*Pi)*Pi)/2 3908811376106603 a001 267914296/843*9349^(10/19) 3908811378460355 a001 433494437/843*9349^(9/19) 3908811380814108 a001 233802911/281*9349^(8/19) 3908811381613284 a001 20365011074/843*3571^(1/17) 3908811382554372 a001 377/15127*312119004989^(4/5) 3908811382554372 a001 377/15127*(1/2+1/2*5^(1/2))^44 3908811382554372 a001 377/15127*23725150497407^(11/16) 3908811382554372 a001 377/15127*73681302247^(11/13) 3908811382554372 a001 377/15127*10749957122^(11/12) 3908811382554372 a001 377/15127*4106118243^(22/23) 3908811382562112 a001 2255/281*(1/2+1/2*5^(1/2))^32 3908811382562112 a001 2255/281*23725150497407^(1/2) 3908811382562112 a001 2255/281*505019158607^(4/7) 3908811382562112 a001 2255/281*73681302247^(8/13) 3908811382562112 a001 2255/281*10749957122^(2/3) 3908811382562112 a001 2255/281*4106118243^(16/23) 3908811382562112 a001 2255/281*1568397607^(8/11) 3908811382562112 a001 2255/281*599074578^(16/21) 3908811382562112 a001 2255/281*228826127^(4/5) 3908811382562113 a001 2255/281*87403803^(16/19) 3908811382562115 a001 2255/281*33385282^(8/9) 3908811382562135 a001 2255/281*12752043^(16/17) 3908811383167860 a001 1134903170/843*9349^(7/19) 3908811385521613 a001 1836311903/843*9349^(6/19) 3908811387875365 a001 2971215073/843*9349^(5/19) 3908811390229118 a001 1602508992/281*9349^(4/19) 3908811392582870 a001 7778742049/843*9349^(3/19) 3908811393111638 a001 16456095965/421 3908811393429916 a001 726103/281*24476^(20/21) 3908811393740846 a001 3524578/843*24476^(19/21) 3908811394051461 a001 5702887/843*24476^(6/7) 3908811394362197 a001 9227465/843*24476^(17/21) 3908811394499498 r004 Im(z^2+c),c=-7/8+1/4*I,z(0)=exp(7/8*I*Pi),n=56 3908811394499498 r004 Im(z^2+c),c=-7/8-1/4*I,z(0)=exp(1/8*I*Pi),n=56 3908811394672887 a001 4976784/281*24476^(16/21) 3908811394936623 a001 12586269025/843*9349^(2/19) 3908811394983594 a001 24157817/843*24476^(5/7) 3908811395294294 a001 39088169/843*24476^(2/3) 3908811395604997 a001 63245986/843*24476^(13/21) 3908811395915699 a001 34111385/281*24476^(4/7) 3908811396226402 a001 165580141/843*24476^(11/21) 3908811396537104 a001 267914296/843*24476^(10/21) 3908811396847807 a001 433494437/843*24476^(3/7) 3908811397144155 a001 377/39603*(1/2+1/2*5^(1/2))^46 3908811397144155 a001 377/39603*10749957122^(23/24) 3908811397151838 a001 17711/843*7881196^(10/11) 3908811397151887 a001 17711/843*20633239^(6/7) 3908811397151895 a001 17711/843*141422324^(10/13) 3908811397151895 a001 17711/843*2537720636^(2/3) 3908811397151895 a001 17711/843*45537549124^(10/17) 3908811397151895 a001 17711/843*312119004989^(6/11) 3908811397151895 a001 17711/843*14662949395604^(10/21) 3908811397151895 a001 17711/843*(1/2+1/2*5^(1/2))^30 3908811397151895 a001 17711/843*192900153618^(5/9) 3908811397151895 a001 17711/843*28143753123^(3/5) 3908811397151895 a001 17711/843*10749957122^(5/8) 3908811397151895 a001 17711/843*4106118243^(15/23) 3908811397151895 a001 17711/843*1568397607^(15/22) 3908811397151895 a001 17711/843*599074578^(5/7) 3908811397151895 a001 17711/843*228826127^(3/4) 3908811397151896 a001 17711/843*87403803^(15/19) 3908811397151898 a001 17711/843*33385282^(5/6) 3908811397151916 a001 17711/843*12752043^(15/17) 3908811397152050 a001 17711/843*4870847^(15/16) 3908811397158509 a001 233802911/281*24476^(8/21) 3908811397290375 a001 20365011074/843*9349^(1/19) 3908811397352734 a001 20633239/233*34^(8/19) 3908811397469211 a001 1134903170/843*24476^(1/3) 3908811397779914 a001 1836311903/843*24476^(2/7) 3908811398090616 a001 2971215073/843*24476^(5/21) 3908811398401318 a001 1602508992/281*24476^(4/21) 3908811398684438 a001 39088152-17*5^(1/2) 3908811398684440 a001 1120148082521/28657 3908811398712021 a001 7778742049/843*24476^(1/7) 3908811398732439 a001 832040/843*64079^(22/23) 3908811398775389 a001 1346269/843*64079^(21/23) 3908811398816182 a001 726103/281*64079^(20/23) 3908811398857799 a001 3524578/843*64079^(19/23) 3908811398899101 a001 5702887/843*64079^(18/23) 3908811398940523 a001 9227465/843*64079^(17/23) 3908811398981899 a001 4976784/281*64079^(16/23) 3908811399022723 a001 12586269025/843*24476^(2/21) 3908811399023293 a001 24157817/843*64079^(15/23) 3908811399064680 a001 39088169/843*64079^(14/23) 3908811399106070 a001 63245986/843*64079^(13/23) 3908811399147459 a001 34111385/281*64079^(12/23) 3908811399188848 a001 165580141/843*64079^(11/23) 3908811399230237 a001 267914296/843*64079^(10/23) 3908811399271626 a001 433494437/843*64079^(9/23) 3908811399272776 a001 377/103682*45537549124^(16/17) 3908811399272776 a001 377/103682*14662949395604^(16/21) 3908811399272776 a001 377/103682*(1/2+1/2*5^(1/2))^48 3908811399272776 a001 377/103682*192900153618^(8/9) 3908811399272776 a001 377/103682*73681302247^(12/13) 3908811399280508 a001 15456/281*20633239^(4/5) 3908811399280516 a001 15456/281*17393796001^(4/7) 3908811399280516 a001 15456/281*14662949395604^(4/9) 3908811399280516 a001 15456/281*(1/2+1/2*5^(1/2))^28 3908811399280516 a001 15456/281*73681302247^(7/13) 3908811399280516 a001 15456/281*10749957122^(7/12) 3908811399280516 a001 15456/281*4106118243^(14/23) 3908811399280516 a001 15456/281*1568397607^(7/11) 3908811399280516 a001 15456/281*599074578^(2/3) 3908811399280516 a001 15456/281*228826127^(7/10) 3908811399280516 a001 15456/281*87403803^(14/19) 3908811399280519 a001 15456/281*33385282^(7/9) 3908811399280536 a001 15456/281*12752043^(14/17) 3908811399280660 a001 15456/281*4870847^(7/8) 3908811399281570 a001 15456/281*1860498^(14/15) 3908811399313015 a001 233802911/281*64079^(8/23) 3908811399333425 a001 20365011074/843*24476^(1/21) 3908811399354404 a001 1134903170/843*64079^(7/23) 3908811399395793 a001 1836311903/843*64079^(6/23) 3908811399437182 a001 2971215073/843*64079^(5/23) 3908811399478571 a001 1602508992/281*64079^(4/23) 3908811399497500 a001 2932585752473/75025 3908811399519960 a001 7778742049/843*64079^(3/23) 3908811399532853 a001 726103/281*167761^(4/5) 3908811399560797 a001 24157817/843*167761^(3/5) 3908811399561350 a001 12586269025/843*64079^(2/23) 3908811399583337 a001 377/271443*312119004989^(10/11) 3908811399583337 a001 377/271443*(1/2+1/2*5^(1/2))^50 3908811399583337 a001 377/271443*3461452808002^(5/6) 3908811399588573 a001 267914296/843*167761^(2/5) 3908811399591077 a001 121393/843*141422324^(2/3) 3908811399591077 a001 121393/843*(1/2+1/2*5^(1/2))^26 3908811399591077 a001 121393/843*73681302247^(1/2) 3908811399591077 a001 121393/843*10749957122^(13/24) 3908811399591077 a001 121393/843*4106118243^(13/23) 3908811399591077 a001 121393/843*1568397607^(13/22) 3908811399591077 a001 121393/843*599074578^(13/21) 3908811399591077 a001 121393/843*228826127^(13/20) 3908811399591078 a001 121393/843*87403803^(13/19) 3908811399591080 a001 121393/843*33385282^(13/18) 3908811399591096 a001 121393/843*12752043^(13/17) 3908811399591211 a001 121393/843*4870847^(13/16) 3908811399592056 a001 121393/843*1860498^(13/15) 3908811399598264 a001 121393/843*710647^(13/14) 3908811399602739 a001 20365011074/843*64079^(1/23) 3908811399616124 a001 3838804587449/98209 3908811399616350 a001 2971215073/843*167761^(1/5) 3908811399618376 a001 377*439204^(8/9) 3908811399628648 a001 377/710647*(1/2+1/2*5^(1/2))^52 3908811399628648 a001 377/710647*23725150497407^(13/16) 3908811399628648 a001 377/710647*505019158607^(13/14) 3908811399628799 a001 1346269/843*439204^(7/9) 3908811399630595 a001 5702887/843*439204^(2/3) 3908811399632872 a001 24157817/843*439204^(5/9) 3908811399633431 a001 20100241772221/514229 3908811399635122 a001 34111385/281*439204^(4/9) 3908811399635258 a001 377/1860498*14662949395604^(6/7) 3908811399635258 a001 377/1860498*(1/2+1/2*5^(1/2))^54 3908811399635956 a001 52623116141765/1346269 3908811399636223 a001 377/4870847*14662949395604^(8/9) 3908811399636223 a001 377/4870847*(1/2+1/2*5^(1/2))^56 3908811399636325 a001 68884553326537/1762289 3908811399636342 a001 377*7881196^(8/11) 3908811399636364 a001 377/12752043*(1/2+1/2*5^(1/2))^58 3908811399636379 a001 27744938755189/709805 3908811399636384 a001 377/33385282*14662949395604^(20/21) 3908811399636384 a001 377/33385282*(1/2+1/2*5^(1/2))^60 3908811399636386 a001 944283504799297/24157817 3908811399636387 a001 1236083155290217/31622993 3908811399636388 a001 377*141422324^(8/13) 3908811399636388 a001 377*2537720636^(8/15) 3908811399636388 a001 377*45537549124^(8/17) 3908811399636388 a001 377*14662949395604^(8/21) 3908811399636388 a001 377*192900153618^(4/9) 3908811399636388 a001 377*73681302247^(6/13) 3908811399636388 a001 377*10749957122^(1/2) 3908811399636388 a001 377*4106118243^(12/23) 3908811399636388 a001 377*1568397607^(6/11) 3908811399636388 a001 377*599074578^(4/7) 3908811399636388 a001 377*228826127^(3/5) 3908811399636388 a001 190478529350551/4873055 3908811399636388 a001 377*87403803^(12/19) 3908811399636388 a001 1527882805781137/39088169 3908811399636390 a001 377*33385282^(2/3) 3908811399636391 a001 4052772923485/103683 3908811399636397 a001 13/711491*(1/2+1/2*5^(1/2))^59 3908811399636405 a001 377*12752043^(12/17) 3908811399636412 a001 222915097164383/5702887 3908811399636451 a001 377/7881196*14662949395604^(19/21) 3908811399636451 a001 377/7881196*(1/2+1/2*5^(1/2))^57 3908811399636511 a001 377*4870847^(3/4) 3908811399636552 a001 4054570976729/103729 3908811399636819 a001 377/3010349*(1/2+1/2*5^(1/2))^55 3908811399636819 a001 377/3010349*3461452808002^(11/12) 3908811399637291 a001 377*1860498^(4/5) 3908811399637373 a001 433494437/843*439204^(1/3) 3908811399637517 a001 4065359296193/104005 3908811399639344 a001 377/1149851*(1/2+1/2*5^(1/2))^53 3908811399639625 a001 1836311903/843*439204^(2/9) 3908811399641876 a001 7778742049/843*439204^(1/9) 3908811399642956 a001 832040/843*7881196^(2/3) 3908811399642998 a001 832040/843*312119004989^(2/5) 3908811399642998 a001 832040/843*(1/2+1/2*5^(1/2))^22 3908811399642998 a001 832040/843*10749957122^(11/24) 3908811399642998 a001 832040/843*4106118243^(11/23) 3908811399642998 a001 832040/843*1568397607^(1/2) 3908811399642998 a001 832040/843*599074578^(11/21) 3908811399642998 a001 832040/843*228826127^(11/20) 3908811399642999 a001 832040/843*87403803^(11/19) 3908811399643001 a001 832040/843*33385282^(11/18) 3908811399643014 a001 832040/843*12752043^(11/17) 3908811399643022 a001 377*710647^(6/7) 3908811399643112 a001 832040/843*4870847^(11/16) 3908811399643826 a001 832040/843*1860498^(11/15) 3908811399643958 a001 726103/281*20633239^(4/7) 3908811399643963 a001 726103/281*2537720636^(4/9) 3908811399643963 a001 726103/281*(1/2+1/2*5^(1/2))^20 3908811399643963 a001 726103/281*23725150497407^(5/16) 3908811399643963 a001 726103/281*505019158607^(5/14) 3908811399643963 a001 726103/281*73681302247^(5/13) 3908811399643963 a001 726103/281*28143753123^(2/5) 3908811399643963 a001 726103/281*10749957122^(5/12) 3908811399643963 a001 726103/281*4106118243^(10/23) 3908811399643963 a001 726103/281*1568397607^(5/11) 3908811399643963 a001 726103/281*599074578^(10/21) 3908811399643963 a001 726103/281*228826127^(1/2) 3908811399643963 a001 726103/281*87403803^(10/19) 3908811399643965 a001 726103/281*33385282^(5/9) 3908811399643977 a001 726103/281*12752043^(10/17) 3908811399644066 a001 726103/281*4870847^(5/8) 3908811399644069 a001 5702887/843*7881196^(6/11) 3908811399644100 a001 24157817/843*7881196^(5/11) 3908811399644103 a001 5702887/843*141422324^(6/13) 3908811399644104 a001 5702887/843*2537720636^(2/5) 3908811399644104 a001 5702887/843*45537549124^(6/17) 3908811399644104 a001 5702887/843*14662949395604^(2/7) 3908811399644104 a001 5702887/843*(1/2+1/2*5^(1/2))^18 3908811399644104 a001 5702887/843*192900153618^(1/3) 3908811399644104 a001 5702887/843*10749957122^(3/8) 3908811399644104 a001 5702887/843*4106118243^(9/23) 3908811399644104 a001 5702887/843*1568397607^(9/22) 3908811399644104 a001 5702887/843*599074578^(3/7) 3908811399644104 a001 5702887/843*228826127^(9/20) 3908811399644104 a001 5702887/843*87403803^(9/19) 3908811399644105 a001 34111385/281*7881196^(4/11) 3908811399644105 a001 5702887/843*33385282^(1/2) 3908811399644107 a001 165580141/843*7881196^(1/3) 3908811399644110 a001 433494437/843*7881196^(3/11) 3908811399644116 a001 1836311903/843*7881196^(2/11) 3908811399644116 a001 5702887/843*12752043^(9/17) 3908811399644122 a001 7778742049/843*7881196^(1/11) 3908811399644123 a001 39088169/843*20633239^(2/5) 3908811399644124 a001 4976784/281*(1/2+1/2*5^(1/2))^16 3908811399644124 a001 4976784/281*23725150497407^(1/4) 3908811399644124 a001 4976784/281*73681302247^(4/13) 3908811399644124 a001 4976784/281*10749957122^(1/3) 3908811399644124 a001 4976784/281*4106118243^(8/23) 3908811399644124 a001 4976784/281*1568397607^(4/11) 3908811399644124 a001 4976784/281*599074578^(8/21) 3908811399644124 a001 4976784/281*228826127^(2/5) 3908811399644124 a001 4976784/281*87403803^(8/19) 3908811399644125 a001 267914296/843*20633239^(2/7) 3908811399644125 a001 24157817/843*20633239^(3/7) 3908811399644126 a001 4976784/281*33385282^(4/9) 3908811399644126 a001 1134903170/843*20633239^(1/5) 3908811399644126 a001 2971215073/843*20633239^(1/7) 3908811399644127 a001 39088169/843*17393796001^(2/7) 3908811399644127 a001 39088169/843*14662949395604^(2/9) 3908811399644127 a001 39088169/843*(1/2+1/2*5^(1/2))^14 3908811399644127 a001 39088169/843*10749957122^(7/24) 3908811399644127 a001 39088169/843*4106118243^(7/23) 3908811399644127 a001 39088169/843*1568397607^(7/22) 3908811399644127 a001 39088169/843*599074578^(1/3) 3908811399644127 a001 39088169/843*228826127^(7/20) 3908811399644127 a001 39088169/843*87403803^(7/19) 3908811399644127 a001 34111385/281*141422324^(4/13) 3908811399644128 a001 34111385/281*2537720636^(4/15) 3908811399644128 a001 34111385/281*45537549124^(4/17) 3908811399644128 a001 34111385/281*817138163596^(4/19) 3908811399644128 a001 34111385/281*14662949395604^(4/21) 3908811399644128 a001 34111385/281*(1/2+1/2*5^(1/2))^12 3908811399644128 a001 34111385/281*192900153618^(2/9) 3908811399644128 a001 34111385/281*73681302247^(3/13) 3908811399644128 a001 34111385/281*10749957122^(1/4) 3908811399644128 a001 34111385/281*4106118243^(6/23) 3908811399644128 a001 34111385/281*1568397607^(3/11) 3908811399644128 a001 34111385/281*599074578^(2/7) 3908811399644128 a001 34111385/281*228826127^(3/10) 3908811399644128 a001 433494437/843*141422324^(3/13) 3908811399644128 a001 1836311903/843*141422324^(2/13) 3908811399644128 a001 7778742049/843*141422324^(1/13) 3908811399644128 a001 267914296/843*2537720636^(2/9) 3908811399644128 a001 267914296/843*312119004989^(2/11) 3908811399644128 a001 267914296/843*(1/2+1/2*5^(1/2))^10 3908811399644128 a001 267914296/843*28143753123^(1/5) 3908811399644128 a001 267914296/843*10749957122^(5/24) 3908811399644128 a001 267914296/843*4106118243^(5/23) 3908811399644128 a001 267914296/843*1568397607^(5/22) 3908811399644128 a001 267914296/843*599074578^(5/21) 3908811399644128 a001 233802911/281*(1/2+1/2*5^(1/2))^8 3908811399644128 a001 233802911/281*23725150497407^(1/8) 3908811399644128 a001 233802911/281*505019158607^(1/7) 3908811399644128 a001 233802911/281*73681302247^(2/13) 3908811399644128 a001 233802911/281*10749957122^(1/6) 3908811399644128 a001 233802911/281*4106118243^(4/23) 3908811399644128 a001 233802911/281*1568397607^(2/11) 3908811399644128 a001 1836311903/843*2537720636^(2/15) 3908811399644128 a001 1836311903/843*45537549124^(2/17) 3908811399644128 a001 1836311903/843*14662949395604^(2/21) 3908811399644128 a001 1836311903/843*(1/2+1/2*5^(1/2))^6 3908811399644128 a001 1836311903/843*10749957122^(1/8) 3908811399644128 a001 1836311903/843*4106118243^(3/23) 3908811399644128 a001 1602508992/281*(1/2+1/2*5^(1/2))^4 3908811399644128 a001 1602508992/281*23725150497407^(1/16) 3908811399644128 a001 1602508992/281*73681302247^(1/13) 3908811399644128 a001 1602508992/281*10749957122^(1/12) 3908811399644128 a001 7778742049/843*2537720636^(1/15) 3908811399644128 a001 1836311903/843*1568397607^(3/22) 3908811399644128 a001 1602508992/281*4106118243^(2/23) 3908811399644128 a001 12586269025/843*(1/2+1/2*5^(1/2))^2 3908811399644128 a001 12586269025/843*10749957122^(1/24) 3908811399644128 a001 10983760033/281 3908811399644128 a001 10182505537/843+10182505537/843*5^(1/2) 3908811399644128 a001 12586269025/843*4106118243^(1/23) 3908811399644128 a001 7778742049/843*45537549124^(1/17) 3908811399644128 a001 7778742049/843*14662949395604^(1/21) 3908811399644128 a001 7778742049/843*(1/2+1/2*5^(1/2))^3 3908811399644128 a001 7778742049/843*192900153618^(1/18) 3908811399644128 a001 7778742049/843*10749957122^(1/16) 3908811399644128 a001 2971215073/843*2537720636^(1/9) 3908811399644128 a001 12586269025/843*1568397607^(1/22) 3908811399644128 a001 2971215073/843*312119004989^(1/11) 3908811399644128 a001 2971215073/843*(1/2+1/2*5^(1/2))^5 3908811399644128 a001 2971215073/843*28143753123^(1/10) 3908811399644128 a001 1602508992/281*1568397607^(1/11) 3908811399644128 a001 233802911/281*599074578^(4/21) 3908811399644128 a001 12586269025/843*599074578^(1/21) 3908811399644128 a001 1134903170/843*17393796001^(1/7) 3908811399644128 a001 1134903170/843*14662949395604^(1/9) 3908811399644128 a001 1134903170/843*(1/2+1/2*5^(1/2))^7 3908811399644128 a001 7778742049/843*599074578^(1/14) 3908811399644128 a001 1602508992/281*599074578^(2/21) 3908811399644128 a001 1836311903/843*599074578^(1/7) 3908811399644128 a001 1134903170/843*599074578^(1/6) 3908811399644128 a001 12586269025/843*228826127^(1/20) 3908811399644128 a001 433494437/843*2537720636^(1/5) 3908811399644128 a001 433494437/843*45537549124^(3/17) 3908811399644128 a001 433494437/843*817138163596^(3/19) 3908811399644128 a001 433494437/843*14662949395604^(1/7) 3908811399644128 a001 433494437/843*(1/2+1/2*5^(1/2))^9 3908811399644128 a001 433494437/843*192900153618^(1/6) 3908811399644128 a001 433494437/843*10749957122^(3/16) 3908811399644128 a001 433494437/843*599074578^(3/14) 3908811399644128 a001 1602508992/281*228826127^(1/10) 3908811399644128 a001 267914296/843*228826127^(1/4) 3908811399644128 a001 2971215073/843*228826127^(1/8) 3908811399644128 a001 1836311903/843*228826127^(3/20) 3908811399644128 a001 233802911/281*228826127^(1/5) 3908811399644128 a001 12586269025/843*87403803^(1/19) 3908811399644128 a001 165580141/843*312119004989^(1/5) 3908811399644128 a001 165580141/843*(1/2+1/2*5^(1/2))^11 3908811399644128 a001 165580141/843*1568397607^(1/4) 3908811399644128 a001 1602508992/281*87403803^(2/19) 3908811399644128 a001 1836311903/843*87403803^(3/19) 3908811399644128 a001 34111385/281*87403803^(6/19) 3908811399644128 a001 233802911/281*87403803^(4/19) 3908811399644128 a001 267914296/843*87403803^(5/19) 3908811399644128 a001 63245986/843*141422324^(1/3) 3908811399644128 a001 12586269025/843*33385282^(1/18) 3908811399644128 a001 63245986/843*(1/2+1/2*5^(1/2))^13 3908811399644128 a001 63245986/843*73681302247^(1/4) 3908811399644128 a001 7778742049/843*33385282^(1/12) 3908811399644128 a001 1602508992/281*33385282^(1/9) 3908811399644128 a001 1836311903/843*33385282^(1/6) 3908811399644128 a001 233802911/281*33385282^(2/9) 3908811399644128 a001 39088169/843*33385282^(7/18) 3908811399644128 a001 433494437/843*33385282^(1/4) 3908811399644129 a001 267914296/843*33385282^(5/18) 3908811399644129 a001 34111385/281*33385282^(1/3) 3908811399644129 a001 24157817/843*141422324^(5/13) 3908811399644129 a001 24157817/843*2537720636^(1/3) 3908811399644129 a001 24157817/843*45537549124^(5/17) 3908811399644129 a001 24157817/843*312119004989^(3/11) 3908811399644129 a001 24157817/843*14662949395604^(5/21) 3908811399644129 a001 24157817/843*(1/2+1/2*5^(1/2))^15 3908811399644129 a001 24157817/843*192900153618^(5/18) 3908811399644129 a001 24157817/843*28143753123^(3/10) 3908811399644129 a001 24157817/843*10749957122^(5/16) 3908811399644129 a001 24157817/843*599074578^(5/14) 3908811399644129 a001 24157817/843*228826127^(3/8) 3908811399644129 a001 12586269025/843*12752043^(1/17) 3908811399644130 a001 24157817/843*33385282^(5/12) 3908811399644130 a001 1602508992/281*12752043^(2/17) 3908811399644132 a001 1836311903/843*12752043^(3/17) 3908811399644133 a001 233802911/281*12752043^(4/17) 3908811399644135 a001 267914296/843*12752043^(5/17) 3908811399644135 a001 4976784/281*12752043^(8/17) 3908811399644136 a001 34111385/281*12752043^(6/17) 3908811399644137 a001 9227465/843*45537549124^(1/3) 3908811399644137 a001 9227465/843*(1/2+1/2*5^(1/2))^17 3908811399644137 a001 39088169/843*12752043^(7/17) 3908811399644138 a001 12586269025/843*4870847^(1/16) 3908811399644148 a001 1602508992/281*4870847^(1/8) 3908811399644149 a001 9227465/843*12752043^(1/2) 3908811399644159 a001 1836311903/843*4870847^(3/16) 3908811399644169 a001 233802911/281*4870847^(1/4) 3908811399644179 a001 267914296/843*4870847^(5/16) 3908811399644189 a001 34111385/281*4870847^(3/8) 3908811399644191 a001 3524578/843*817138163596^(1/3) 3908811399644191 a001 3524578/843*(1/2+1/2*5^(1/2))^19 3908811399644191 a001 3524578/843*87403803^(1/2) 3908811399644196 a001 5702887/843*4870847^(9/16) 3908811399644199 a001 39088169/843*4870847^(7/16) 3908811399644203 a001 12586269025/843*1860498^(1/15) 3908811399644206 a001 4976784/281*4870847^(1/2) 3908811399644241 a001 7778742049/843*1860498^(1/10) 3908811399644278 a001 1602508992/281*1860498^(2/15) 3908811399644316 a001 2971215073/843*1860498^(1/6) 3908811399644353 a001 1836311903/843*1860498^(1/5) 3908811399644429 a001 233802911/281*1860498^(4/15) 3908811399644466 a001 433494437/843*1860498^(3/10) 3908811399644504 a001 267914296/843*1860498^(1/3) 3908811399644519 a001 1346269/843*7881196^(7/11) 3908811399644553 a001 1346269/843*20633239^(3/5) 3908811399644559 a001 1346269/843*141422324^(7/13) 3908811399644559 a001 1346269/843*2537720636^(7/15) 3908811399644559 a001 1346269/843*17393796001^(3/7) 3908811399644559 a001 1346269/843*45537549124^(7/17) 3908811399644559 a001 1346269/843*14662949395604^(1/3) 3908811399644559 a001 1346269/843*(1/2+1/2*5^(1/2))^21 3908811399644559 a001 1346269/843*192900153618^(7/18) 3908811399644559 a001 1346269/843*10749957122^(7/16) 3908811399644559 a001 1346269/843*599074578^(1/2) 3908811399644561 a001 1346269/843*33385282^(7/12) 3908811399644579 a001 34111385/281*1860498^(2/5) 3908811399644654 a001 39088169/843*1860498^(7/15) 3908811399644680 a001 12586269025/843*710647^(1/14) 3908811399644694 a001 24157817/843*1860498^(1/2) 3908811399644716 a001 726103/281*1860498^(2/3) 3908811399644726 a001 4976784/281*1860498^(8/15) 3908811399644781 a001 5702887/843*1860498^(3/5) 3908811399645233 a001 1602508992/281*710647^(1/7) 3908811399645349 a001 1346269/843*1860498^(7/10) 3908811399645786 a001 1836311903/843*710647^(3/14) 3908811399646063 a001 1134903170/843*710647^(1/4) 3908811399646339 a001 233802911/281*710647^(2/7) 3908811399646892 a001 267914296/843*710647^(5/14) 3908811399647084 a001 514229/843*(1/2+1/2*5^(1/2))^23 3908811399647084 a001 514229/843*4106118243^(1/2) 3908811399647445 a001 34111385/281*710647^(3/7) 3908811399647997 a001 39088169/843*710647^(1/2) 3908811399648208 a001 12586269025/843*271443^(1/13) 3908811399648547 a001 4976784/281*710647^(4/7) 3908811399649079 a001 5702887/843*710647^(9/14) 3908811399649080 a001 832040/843*710647^(11/14) 3908811399649491 a001 726103/281*710647^(5/7) 3908811399650364 a001 1346269/843*710647^(3/4) 3908811399652289 a001 1602508992/281*271443^(2/13) 3908811399656370 a001 1836311903/843*271443^(3/13) 3908811399656651 a001 377/439204*817138163596^(17/19) 3908811399656651 a001 377/439204*14662949395604^(17/21) 3908811399656651 a001 377/439204*(1/2+1/2*5^(1/2))^51 3908811399656651 a001 377/439204*192900153618^(17/18) 3908811399659278 a001 20365011074/843*103682^(1/24) 3908811399660451 a001 233802911/281*271443^(4/13) 3908811399664384 a001 196418/843*20633239^(5/7) 3908811399664391 a001 196418/843*2537720636^(5/9) 3908811399664391 a001 196418/843*312119004989^(5/11) 3908811399664391 a001 196418/843*(1/2+1/2*5^(1/2))^25 3908811399664391 a001 196418/843*3461452808002^(5/12) 3908811399664391 a001 196418/843*28143753123^(1/2) 3908811399664391 a001 196418/843*228826127^(5/8) 3908811399664532 a001 267914296/843*271443^(5/13) 3908811399665332 a001 196418/843*1860498^(5/6) 3908811399668612 a001 34111385/281*271443^(6/13) 3908811399670653 a001 63245986/843*271443^(1/2) 3908811399672693 a001 39088169/843*271443^(7/13) 3908811399674429 a001 12586269025/843*103682^(1/12) 3908811399676770 a001 4976784/281*271443^(8/13) 3908811399679992 a007 Real Root Of 65*x^4-641*x^3+937*x^2+399*x-27 3908811399680831 a001 5702887/843*271443^(9/13) 3908811399684771 a001 726103/281*271443^(10/13) 3908811399685357 a001 377*271443^(12/13) 3908811399687887 a001 832040/843*271443^(11/13) 3908811399689438 a001 4745023422425/121393 3908811399689579 a001 7778742049/843*103682^(1/8) 3908811399704730 a001 1602508992/281*103682^(1/6) 3908811399719880 a001 2971215073/843*103682^(5/24) 3908811399735031 a001 1836311903/843*103682^(1/4) 3908811399750181 a001 1134903170/843*103682^(7/24) 3908811399757411 a001 20365011074/843*39603^(1/22) 3908811399765332 a001 233802911/281*103682^(1/3) 3908811399775275 a001 377/167761*14662949395604^(7/9) 3908811399775275 a001 377/167761*(1/2+1/2*5^(1/2))^49 3908811399775275 a001 377/167761*505019158607^(7/8) 3908811399780482 a001 433494437/843*103682^(3/8) 3908811399782963 a001 75025/843*7881196^(9/11) 3908811399783015 a001 75025/843*141422324^(9/13) 3908811399783015 a001 75025/843*2537720636^(3/5) 3908811399783015 a001 75025/843*45537549124^(9/17) 3908811399783015 a001 75025/843*817138163596^(9/19) 3908811399783015 a001 75025/843*14662949395604^(3/7) 3908811399783015 a001 75025/843*(1/2+1/2*5^(1/2))^27 3908811399783015 a001 75025/843*192900153618^(1/2) 3908811399783015 a001 75025/843*10749957122^(9/16) 3908811399783015 a001 75025/843*599074578^(9/14) 3908811399783018 a001 75025/843*33385282^(3/4) 3908811399784031 a001 75025/843*1860498^(9/10) 3908811399795633 a001 267914296/843*103682^(5/12) 3908811399810783 a001 165580141/843*103682^(11/24) 3908811399825933 a001 34111385/281*103682^(1/2) 3908811399841084 a001 63245986/843*103682^(13/24) 3908811399856234 a001 39088169/843*103682^(7/12) 3908811399870694 a001 12586269025/843*39603^(1/11) 3908811399871386 a001 24157817/843*103682^(5/8) 3908811399886532 a001 4976784/281*103682^(2/3) 3908811399901695 a001 9227465/843*103682^(17/24) 3908811399916812 a001 5702887/843*103682^(3/4) 3908811399932050 a001 3524578/843*103682^(19/24) 3908811399946973 a001 726103/281*103682^(5/6) 3908811399962719 a001 1346269/843*103682^(7/8) 3908811399976309 a001 832040/843*103682^(11/12) 3908811399983977 a001 7778742049/843*39603^(3/22) 3908811399995545 a001 514229/843*103682^(23/24) 3908811400000001 a001 24157707/2+24157817/2*5^(1/2) 3908811400097261 a001 1602508992/281*39603^(2/11) 3908811400210544 a001 2971215073/843*39603^(5/22) 3908811400323827 a001 1836311903/843*39603^(3/11) 3908811400437111 a001 1134903170/843*39603^(7/22) 3908811400498228 a001 20365011074/843*15127^(1/20) 3908811400550394 a001 233802911/281*39603^(4/11) 3908811400588336 a001 377/64079*(1/2+1/2*5^(1/2))^47 3908811400596076 a001 28657/843*(1/2+1/2*5^(1/2))^29 3908811400596076 a001 28657/843*1322157322203^(1/2) 3908811400663677 a001 433494437/843*39603^(9/22) 3908811400776961 a001 267914296/843*39603^(5/11) 3908811400890244 a001 165580141/843*39603^(1/2) 3908811401003527 a001 34111385/281*39603^(6/11) 3908811401116811 a001 63245986/843*39603^(13/22) 3908811401230093 a001 39088169/843*39603^(7/11) 3908811401343378 a001 24157817/843*39603^(15/22) 3908811401352329 a001 12586269025/843*15127^(1/10) 3908811401456657 a001 4976784/281*39603^(8/11) 3908811401569953 a001 9227465/843*39603^(17/22) 3908811401683203 a001 5702887/843*39603^(9/11) 3908811401796573 a001 3524578/843*39603^(19/22) 3908811401909629 a001 726103/281*39603^(10/11) 3908811402023508 a001 1346269/843*39603^(21/22) 3908811402090819 a007 Real Root Of -118*x^4-550*x^3-417*x^2-139*x+527 3908811402128620 a001 692289587431/17711 3908811402206430 a001 7778742049/843*15127^(3/20) 3908811403060531 a001 1602508992/281*15127^(1/5) 3908811403914631 a001 2971215073/843*15127^(1/4) 3908811404768732 a001 1836311903/843*15127^(3/10) 3908811405622833 a001 1134903170/843*15127^(7/20) 3908811406148676 a001 20365011074/843*5778^(1/18) 3908811406161137 a001 13/844*45537549124^(15/17) 3908811406161137 a001 13/844*312119004989^(9/11) 3908811406161137 a001 13/844*14662949395604^(5/7) 3908811406161137 a001 13/844*(1/2+1/2*5^(1/2))^45 3908811406161137 a001 13/844*192900153618^(5/6) 3908811406161137 a001 13/844*28143753123^(9/10) 3908811406161137 a001 13/844*10749957122^(15/16) 3908811406168877 a001 10946/843*(1/2+1/2*5^(1/2))^31 3908811406168877 a001 10946/843*9062201101803^(1/2) 3908811406200062 a001 32951280099/9349*521^(5/13) 3908811406476934 a001 233802911/281*15127^(2/5) 3908811407331034 a001 433494437/843*15127^(9/20) 3908811408185135 a001 267914296/843*15127^(1/2) 3908811409039236 a001 165580141/843*15127^(11/20) 3908811409817229 p001 sum((-1)^n/(587*n+247)/(8^n),n=0..infinity) 3908811409893337 a001 34111385/281*15127^(3/5) 3908811410747438 a001 63245986/843*15127^(13/20) 3908811411601538 a001 39088169/843*15127^(7/10) 3908811412455640 a001 24157817/843*15127^(3/4) 3908811412653225 a001 12586269025/843*5778^(1/9) 3908811413309736 a001 4976784/281*15127^(4/5) 3908811414163850 a001 9227465/843*15127^(17/20) 3908811415017917 a001 5702887/843*15127^(9/10) 3908811415067166 r009 Im(z^3+c),c=-41/98+16/47*I,n=22 3908811415872105 a001 3524578/843*15127^(19/20) 3908811416718403 a001 88143697447/2255 3908811419157773 a001 7778742049/843*5778^(1/6) 3908811420893572 r005 Re(z^2+c),c=-35/34+23/99*I,n=46 3908811421692252 r005 Im(z^2+c),c=-2/25+31/56*I,n=28 3908811422490343 s001 sum(exp(-Pi)^n*A200128[n],n=1..infinity) 3908811422490343 s002 sum(A200128[n]/(exp(pi*n)),n=1..infinity) 3908811425662322 a001 1602508992/281*5778^(2/9) 3908811429522640 a001 7/144*10946^(25/53) 3908811432166870 a001 2971215073/843*5778^(5/18) 3908811437720366 m001 (gamma(2)+OneNinth)^HardHexagonsEntropy 3908811438671419 a001 1836311903/843*5778^(1/3) 3908811444357685 a001 377/9349*(1/2+1/2*5^(1/2))^43 3908811444365424 a001 4181/843*141422324^(11/13) 3908811444365424 a001 4181/843*2537720636^(11/15) 3908811444365424 a001 4181/843*45537549124^(11/17) 3908811444365424 a001 4181/843*312119004989^(3/5) 3908811444365424 a001 4181/843*14662949395604^(11/21) 3908811444365424 a001 4181/843*(1/2+1/2*5^(1/2))^33 3908811444365424 a001 4181/843*192900153618^(11/18) 3908811444365424 a001 4181/843*10749957122^(11/16) 3908811444365424 a001 4181/843*1568397607^(3/4) 3908811444365424 a001 4181/843*599074578^(11/14) 3908811444365427 a001 4181/843*33385282^(11/12) 3908811445175967 a001 1134903170/843*5778^(7/18) 3908811449799817 a001 20365011074/843*2207^(1/16) 3908811451547110 p001 sum(1/(553*n+254)/n/(32^n),n=1..infinity) 3908811451680516 a001 233802911/281*5778^(4/9) 3908811457753913 r002 46th iterates of z^2 + 3908811458185064 a001 433494437/843*5778^(1/2) 3908811458356242 r009 Re(z^3+c),c=-7/106+37/63*I,n=18 3908811464689613 a001 267914296/843*5778^(5/9) 3908811471194162 a001 165580141/843*5778^(11/18) 3908811475409836 q001 763/1952 3908811476096737 r002 58th iterates of z^2 + 3908811477698710 a001 34111385/281*5778^(2/3) 3908811480710484 r009 Im(z^3+c),c=-6/13+19/61*I,n=33 3908811484203259 a001 63245986/843*5778^(13/18) 3908811490707807 a001 39088169/843*5778^(7/9) 3908811494945964 r005 Re(z^2+c),c=-7/22+31/53*I,n=42 3908811497212358 a001 24157817/843*5778^(5/6) 3908811499955507 a001 12586269025/843*2207^(1/8) 3908811503716901 a001 4976784/281*5778^(8/9) 3908811509878404 r002 52th iterates of z^2 + 3908811510221463 a001 9227465/843*5778^(17/18) 3908811515759541 r002 28th iterates of z^2 + 3908811516718266 a001 12625461199/323 3908811522064129 r002 64th iterates of z^2 + 3908811524081889 r005 Im(z^2+c),c=-37/110+29/54*I,n=12 3908811537734323 m008 (5/6*Pi^6+1/5)/(2/3*Pi^5+1) 3908811550111198 a001 7778742049/843*2207^(3/16) 3908811566757854 m005 (1/2*Zeta(3)+3/8)/(3/7*Catalan-1/7) 3908811568459853 a001 15127/1597*89^(6/19) 3908811588440018 v002 sum(1/(5^n+(10*n^2-8*n+39)),n=1..infinity) 3908811596927460 a007 Real Root Of 345*x^4-817*x^3+889*x^2+562*x+27 3908811600266889 a001 1602508992/281*2207^(1/4) 3908811602668473 a008 Real Root of (2+5*x-2*x^2-5*x^3-4*x^4-6*x^5) 3908811620128209 m001 (5^(1/2)-Si(Pi))/(gamma(1)+GAMMA(11/12)) 3908811628167007 a001 322/121393*28657^(18/37) 3908811629040489 r005 Re(z^2+c),c=-57/110+8/27*I,n=32 3908811630033049 l006 ln(1980/2927) 3908811631967401 m008 (5/6*Pi-5)/(2/3*Pi^4-4) 3908811635814567 r009 Im(z^3+c),c=-27/122+17/37*I,n=3 3908811637542398 r005 Re(z^2+c),c=37/114+12/23*I,n=3 3908811649405443 m001 (Rabbit+Tetranacci)/(gamma(1)-BesselK(1,1)) 3908811650422581 a001 2971215073/843*2207^(5/16) 3908811654429347 r002 59th iterates of z^2 + 3908811661410186 a007 Real Root Of -967*x^4-438*x^3-589*x^2-372*x-59 3908811661654346 a005 (1/sin(8/103*Pi))^35 3908811666691223 a001 12586269025/2207*521^(4/13) 3908811668003113 a001 12586269025/3571*521^(5/13) 3908811678941549 r005 Re(z^2+c),c=-13/14+94/165*I,n=2 3908811698103859 r002 12th iterates of z^2 + 3908811700578273 a001 1836311903/843*2207^(3/8) 3908811700865503 r005 Im(z^2+c),c=-31/78+23/40*I,n=25 3908811706160739 a001 377/3571*(1/2+1/2*5^(1/2))^41 3908811706168455 a001 1597/843*2537720636^(7/9) 3908811706168455 a001 1597/843*17393796001^(5/7) 3908811706168455 a001 1597/843*312119004989^(7/11) 3908811706168455 a001 1597/843*14662949395604^(5/9) 3908811706168455 a001 1597/843*(1/2+1/2*5^(1/2))^35 3908811706168455 a001 1597/843*505019158607^(5/8) 3908811706168455 a001 1597/843*28143753123^(7/10) 3908811706168455 a001 1597/843*599074578^(5/6) 3908811706168455 a001 1597/843*228826127^(7/8) 3908811709016924 p003 LerchPhi(1/25,2,353/219) 3908811714700568 m005 (4/5*exp(1)-5/6)/(2/5*2^(1/2)-3/5) 3908811722630979 m001 1/3-arctan(1/2)^GAMMA(17/24) 3908811747985481 l006 ln(131/6529) 3908811747985481 p004 log(6529/131) 3908811750733967 a001 1134903170/843*2207^(7/16) 3908811777062937 r009 Re(z^3+c),c=-6/11+1/7*I,n=14 3908811785436745 a001 17393796001/8*5702887^(7/9) 3908811785436754 a001 20633239/8*32951280099^(7/9) 3908811785436764 a001 299537289/4*433494437^(7/9) 3908811785444503 a001 710647/8*2504730781961^(7/9) 3908811785544787 a001 505019158607/8*75025^(7/9) 3908811792526433 a001 20365011074/843*843^(1/14) 3908811792565159 m001 (cos(1/5*Pi)+Totient)^Grothendieck 3908811796437720 m001 Shi(1)+Backhouse+HardHexagonsEntropy 3908811800889660 a001 233802911/281*2207^(1/2) 3908811807780496 r002 18th iterates of z^2 + 3908811813206005 r005 Re(z^2+c),c=-25/46+1/40*I,n=38 3908811813860493 m001 (2^(1/3)+Si(Pi))/(-arctan(1/2)+Landau) 3908811815673107 a001 39603/4181*89^(6/19) 3908811818745177 b008 Pi*Sqrt[ArcSec[44]] 3908811830359180 m005 (1/2*Pi-3/10)/(7/8*Pi-6) 3908811840371141 r008 a(0)=4,K{-n^6,-15-3*n^3-43*n^2+71*n} 3908811842736750 a001 64079/3*3524578^(22/23) 3908811847338483 r005 Im(z^2+c),c=-5/48+16/29*I,n=35 3908811849342815 r002 28th iterates of z^2 + 3908811851045355 a001 433494437/843*2207^(9/16) 3908811851741037 a001 51841/5473*89^(6/19) 3908811852535041 a007 Real Root Of 842*x^4+885*x^3+78*x^2-689*x-27 3908811857003278 a001 271443/28657*89^(6/19) 3908811857771028 a001 710647/75025*89^(6/19) 3908811857883041 a001 930249/98209*89^(6/19) 3908811857899384 a001 4870847/514229*89^(6/19) 3908811857901768 a001 12752043/1346269*89^(6/19) 3908811857902116 a001 16692641/1762289*89^(6/19) 3908811857902167 a001 87403803/9227465*89^(6/19) 3908811857902174 a001 228826127/24157817*89^(6/19) 3908811857902175 a001 299537289/31622993*89^(6/19) 3908811857902176 a001 1568397607/165580141*89^(6/19) 3908811857902176 a001 4106118243/433494437*89^(6/19) 3908811857902176 a001 5374978561/567451585*89^(6/19) 3908811857902176 a001 28143753123/2971215073*89^(6/19) 3908811857902176 a001 73681302247/7778742049*89^(6/19) 3908811857902176 a001 96450076809/10182505537*89^(6/19) 3908811857902176 a001 505019158607/53316291173*89^(6/19) 3908811857902176 a001 1322157322203/139583862445*89^(6/19) 3908811857902176 a001 1730726404001/182717648081*89^(6/19) 3908811857902176 a001 23725150497407/2504730781961*89^(6/19) 3908811857902176 a001 2139295485799/225851433717*89^(6/19) 3908811857902176 a001 204284540899/21566892818*89^(6/19) 3908811857902176 a001 312119004989/32951280099*89^(6/19) 3908811857902176 a001 119218851371/12586269025*89^(6/19) 3908811857902176 a001 11384387281/1201881744*89^(6/19) 3908811857902176 a001 17393796001/1836311903*89^(6/19) 3908811857902176 a001 6643838879/701408733*89^(6/19) 3908811857902176 a001 634430159/66978574*89^(6/19) 3908811857902176 a001 969323029/102334155*89^(6/19) 3908811857902176 a001 370248451/39088169*89^(6/19) 3908811857902179 a001 35355581/3732588*89^(6/19) 3908811857902198 a001 54018521/5702887*89^(6/19) 3908811857902331 a001 20633239/2178309*89^(6/19) 3908811857903242 a001 1970299/208010*89^(6/19) 3908811857909484 a001 3010349/317811*89^(6/19) 3908811857952269 a001 1149851/121393*89^(6/19) 3908811858245524 a001 109801/11592*89^(6/19) 3908811860255521 a001 167761/17711*89^(6/19) 3908811874032245 a001 64079/6765*89^(6/19) 3908811875104536 m005 (1/3*exp(1)-1/6)/(2/5*Catalan-5/9) 3908811878014039 a007 Real Root Of -355*x^4-30*x^3+961*x^2+730*x-30 3908811878354220 r002 12th iterates of z^2 + 3908811890521965 r002 52th iterates of z^2 + 3908811901201050 a001 267914296/843*2207^(5/8) 3908811914053959 m001 1/TwinPrimes^2/Porter*exp(Catalan) 3908811926389616 m005 (1/2*exp(1)-8/11)/(1/2*2^(1/2)-6/11) 3908811932041606 r009 Im(z^3+c),c=-31/74+17/50*I,n=36 3908811934619128 a007 Real Root Of 79*x^4+262*x^3-13*x^2+821*x+613 3908811934826531 s002 sum(A001323[n]/(n^2*pi^n-1),n=1..infinity) 3908811951356746 a001 165580141/843*2207^(11/16) 3908811956127304 m001 (Pi^(1/2)+HardyLittlewoodC5)/(cos(1)-ln(3)) 3908811968459317 a001 6119/646*89^(6/19) 3908811993267182 p001 sum(1/(229*n+34)/n/(10^n),n=1..infinity) 3908811993754145 a007 Real Root Of -550*x^4-242*x^3+168*x^2+978*x+355 3908811999523647 p001 sum(1/(550*n+531)/n/(24^n),n=1..infinity) 3908812001512442 a001 34111385/281*2207^(3/4) 3908812001705451 m001 (3^(1/2)-GAMMA(3/4))/(-FellerTornier+ZetaP(2)) 3908812037508683 m001 (-gamma(3)+BesselK(1,1))/(sin(1)+ln(2)) 3908812037657930 m001 MertensB1/Backhouse^2/ln(GAMMA(1/24)) 3908812040717537 r005 Im(z^2+c),c=11/29+7/32*I,n=14 3908812051424170 r002 42th iterates of z^2 + 3908812051668139 a001 63245986/843*2207^(13/16) 3908812062560056 m001 Conway^Grothendieck*Conway^ReciprocalFibonacci 3908812066244239 r005 Im(z^2+c),c=9/56+5/13*I,n=39 3908812067901944 r002 53th iterates of z^2 + 3908812068898405 r005 Im(z^2+c),c=-5/21+52/61*I,n=8 3908812073963081 m001 (Conway-GAMMA(7/12))/Stephens 3908812080312492 a008 Real Root of x^2-x-153179 3908812101700963 a007 Real Root Of 558*x^4-599*x^3+669*x^2-857*x-486 3908812101823836 a001 39088169/843*2207^(7/8) 3908812126747095 m001 1/FeigenbaumKappa/exp(Backhouse)/BesselJ(1,1) 3908812136896864 m001 (2^(1/3)-sin(1/5*Pi))/(Landau+Salem) 3908812151979537 a001 24157817/843*2207^(15/16) 3908812173781998 r009 Re(z^3+c),c=-15/44+2/39*I,n=7 3908812181549474 b008 -2/9+LogIntegral[Sqrt[3]] 3908812185408778 a001 12586269025/843*843^(1/7) 3908812187034432 a005 (1/cos(25/188*Pi))^220 3908812194658046 m001 1/MinimumGamma^2*CopelandErdos^2/exp(Ei(1)) 3908812196021417 a007 Real Root Of -152*x^4+842*x^3+520*x^2+854*x-460 3908812200386787 r005 Im(z^2+c),c=-2/23+23/42*I,n=52 3908812204210488 r005 Re(z^2+c),c=-13/24+4/49*I,n=33 3908812204257247 a001 39088169-21*5^(1/2) 3908812207431608 l006 ln(5917/8747) 3908812207701432 a001 78176309/2-29/2*5^(1/2) 3908812211066763 r005 Re(z^2+c),c=-51/94+2/35*I,n=34 3908812227020464 a007 Real Root Of 213*x^4+863*x^3-26*x^2-689*x-479 3908812229731881 a007 Real Root Of 153*x^4+367*x^3-691*x^2+625*x-798 3908812241636456 b008 Pi+34*SinhIntegral[1] 3908812252991207 a001 199/610*6557470319842^(17/24) 3908812257527610 a007 Real Root Of -203*x^4-660*x^3+540*x^2+106*x+136 3908812259079005 r005 Re(z^2+c),c=-31/86+3/5*I,n=13 3908812271314313 m005 (1/2*Catalan+3/10)/(7/9*5^(1/2)+1/5) 3908812277099535 r009 Re(z^3+c),c=-29/62+17/64*I,n=10 3908812277622565 r005 Im(z^2+c),c=-2/3+6/41*I,n=27 3908812281996106 r005 Re(z^2+c),c=6/17+8/55*I,n=31 3908812291901353 r005 Re(z^2+c),c=-21/34+4/21*I,n=9 3908812304396780 a001 13/6643838879*47^(7/9) 3908812313004978 r005 Re(z^2+c),c=-65/122+9/49*I,n=34 3908812316679864 m005 (1/3*gamma+2/11)/(8/9*Zeta(3)-1/9) 3908812333866424 r009 Im(z^3+c),c=-14/29+17/58*I,n=33 3908812341462433 r009 Re(z^3+c),c=-17/48+4/51*I,n=10 3908812352100481 a001 10983760033/1926*521^(4/13) 3908812354724966 a001 2971215073/1364*521^(6/13) 3908812360559757 r005 Im(z^2+c),c=3/122+25/52*I,n=57 3908812362095871 a007 Real Root Of 3*x^4+97*x^3-810*x^2-713*x-515 3908812365629544 a007 Real Root Of 501*x^4+597*x^3-719*x^2-945*x+38 3908812371715006 r005 Re(z^2+c),c=13/102+15/34*I,n=33 3908812374908814 a001 521/610*28657^(19/51) 3908812379728391 r005 Re(z^2+c),c=-11/17+10/33*I,n=45 3908812381155804 r009 Re(z^3+c),c=-19/48+11/63*I,n=3 3908812388750251 a007 Real Root Of 373*x^4+939*x^3+566*x^2-560*x-258 3908812410459057 r009 Im(z^3+c),c=-31/74+17/50*I,n=46 3908812411378712 a007 Real Root Of -847*x^4-313*x^3-865*x^2-149*x+75 3908812413572221 r009 Re(z^3+c),c=-59/114+23/60*I,n=63 3908812422090338 r005 Re(z^2+c),c=-13/18+16/93*I,n=42 3908812424707560 r005 Re(z^2+c),c=15/52+2/41*I,n=39 3908812439465207 p004 log(22079/443) 3908812447080965 r009 Im(z^3+c),c=-31/94+23/24*I,n=2 3908812452100364 a001 86267571272/15127*521^(4/13) 3908812454714835 a007 Real Root Of 742*x^4-740*x^3-321*x^2-907*x-367 3908812466690151 a001 75283811239/13201*521^(4/13) 3908812468818772 a001 591286729879/103682*521^(4/13) 3908812469129334 a001 516002918640/90481*521^(4/13) 3908812469174644 a001 4052739537881/710647*521^(4/13) 3908812469181255 a001 3536736619241/620166*521^(4/13) 3908812469185341 a001 6557470319842/1149851*521^(4/13) 3908812469202648 a001 2504730781961/439204*521^(4/13) 3908812469321272 a001 956722026041/167761*521^(4/13) 3908812470134333 a001 365435296162/64079*521^(4/13) 3908812475707135 a001 139583862445/24476*521^(4/13) 3908812476626771 a007 Real Root Of -767*x^4+80*x^3-990*x^2+893*x+523 3908812480249227 r009 Im(z^3+c),c=-31/74+17/50*I,n=45 3908812484121966 m001 (Gompertz+ZetaQ(4))/(ArtinRank2+FeigenbaumB) 3908812493193579 r005 Im(z^2+c),c=1/48+34/57*I,n=7 3908812494223696 m005 (1/2*gamma-1/5)/(8/9*3^(1/2)+8/11) 3908812497591175 a003 cos(Pi*1/37)*cos(Pi*42/113) 3908812497817459 l006 ln(3937/5820) 3908812507070046 h001 (5/7*exp(1)+8/11)/(4/5*exp(2)+11/12) 3908812512478541 a001 199*(1/2*5^(1/2)+1/2)^4*3^(23/24) 3908812513903694 a001 53316291173/9349*521^(4/13) 3908812530101022 m005 (25/36+1/4*5^(1/2))/(9/11*Pi+7/11) 3908812533887204 m005 (1/2*Catalan-5/8)/(3*Zeta(3)+2/3) 3908812534440555 r005 Re(z^2+c),c=-53/98+2/21*I,n=48 3908812538280918 r009 Re(z^3+c),c=-29/56+17/62*I,n=63 3908812548862366 b008 4-ArcSinh[Catalan]/9 3908812558832465 m004 5/2+(50*Sqrt[5])/Pi+Tanh[Sqrt[5]*Pi] 3908812574370496 a007 Real Root Of 93*x^4+101*x^3-881*x^2+586*x+73 3908812578291163 a001 7778742049/843*843^(3/14) 3908812578461640 p001 sum(1/(369*n+256)/(625^n),n=0..infinity) 3908812582615193 a007 Real Root Of -468*x^4-104*x^3-656*x^2+893*x+454 3908812591943877 a007 Real Root Of -224*x^4-749*x^3+764*x^2+869*x-717 3908812593768454 a007 Real Root Of -270*x^4-996*x^3+350*x^2+457*x-15 3908812597271493 m001 (Kac+ZetaQ(2))/(cos(1/5*Pi)-HardyLittlewoodC3) 3908812598384886 b008 -5+E^(Pi/36) 3908812610006430 r002 43th iterates of z^2 + 3908812610923192 a001 47/2*6765^(3/52) 3908812615672230 a001 9349/987*89^(6/19) 3908812616904495 m001 1/GAMMA(23/24)*MertensB1*exp(Zeta(1,2))^2 3908812637804255 r002 7th iterates of z^2 + 3908812637959175 m004 3+(50*Sqrt[5])/Pi+Tanh[Sqrt[5]*Pi]/2 3908812641722956 a007 Real Root Of 299*x^4+897*x^3-976*x^2+379*x+165 3908812645591174 r005 Im(z^2+c),c=-5/28+7/12*I,n=28 3908812668584251 m005 (1/2*exp(1)+3/11)/(1/3*2^(1/2)-8/9) 3908812684027091 r005 Re(z^2+c),c=-29/62+28/61*I,n=53 3908812686236339 a005 (1/sin(74/157*Pi))^903 3908812695078570 r005 Re(z^2+c),c=-49/106+27/56*I,n=64 3908812696306943 r005 Im(z^2+c),c=31/126+13/42*I,n=53 3908812701388195 a007 Real Root Of 642*x^4+90*x^3+286*x^2-12*x-58 3908812708639052 m001 ln(Zeta(3))/FeigenbaumDelta/Zeta(7) 3908812713021539 r005 Im(z^2+c),c=13/86+20/51*I,n=44 3908812718763831 m006 (2*Pi-3/5)/(5/6*ln(Pi)+1/2) 3908812721390018 p001 sum(1/(313*n+311)/(3^n),n=0..infinity) 3908812721526684 b008 Log[6*Sqrt[69]] 3908812724943476 r002 25th iterates of z^2 + 3908812729797897 l006 ln(156/7775) 3908812729984459 r002 25th iterates of z^2 + 3908812732784866 g002 Psi(4/11)+Psi(7/9)-Psi(9/10)-Psi(3/10) 3908812734303343 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(5/8*I*Pi),n=56 3908812739211848 m001 Zeta(5)^2*(2^(1/3))/ln(sqrt(2)) 3908812771658124 a007 Real Root Of -22*x^4-849*x^3+451*x^2+904*x-451 3908812774394928 a001 20365011074/2207*521^(3/13) 3908812775706819 a001 20365011074/3571*521^(4/13) 3908812789336467 l006 ln(5894/8713) 3908812796212595 m004 -4-(50*Sqrt[5])/Pi+Tanh[Sqrt[5]*Pi]/2 3908812796570306 r009 Im(z^3+c),c=-8/19+21/62*I,n=24 3908812804752323 p001 sum(1/(507*n+256)/(512^n),n=0..infinity) 3908812825244101 r002 48th iterates of z^2 + 3908812827957790 a001 5/24476*2^(44/47) 3908812836537827 r002 39th iterates of z^2 + 3908812846092833 r005 Re(z^2+c),c=43/98+5/14*I,n=30 3908812853443922 m001 (Ei(1)-BesselK(1,1))/(FeigenbaumMu-MertensB1) 3908812866395403 r005 Im(z^2+c),c=19/126+19/56*I,n=3 3908812871336869 a007 Real Root Of -639*x^4-557*x^3-835*x^2+749*x+402 3908812875077640 a001 39088169-18*5^(1/2) 3908812877122631 a005 (1/cos(21/218*Pi))^1168 3908812887918045 r002 56th iterates of z^2 + 3908812894536714 b008 19/4+(E+Pi)^2 3908812899638587 q001 1406/3597 3908812921967600 r009 Im(z^3+c),c=-13/58+27/64*I,n=10 3908812955651230 r009 Im(z^3+c),c=-13/46+17/41*I,n=6 3908812971173587 a001 1602508992/281*843^(2/7) 3908812974909661 r009 Re(z^3+c),c=-7/15+8/39*I,n=13 3908813007565924 m001 Catalan*Zeta(3)+FransenRobinson 3908813010438411 r002 7th iterates of z^2 + 3908813035585191 a007 Real Root Of -103*x^4-400*x^3+205*x^2+785*x+92 3908813038875071 r005 Re(z^2+c),c=-43/122+27/50*I,n=23 3908813043168384 r009 Im(z^3+c),c=-31/74+17/50*I,n=49 3908813054770068 h001 (-exp(6)-5)/(-7*exp(5)-6) 3908813088747104 r002 57th iterates of z^2 + 3908813090785934 m006 (1/3*exp(2*Pi)+1/6)/(1/2*Pi+3) 3908813093358165 p003 LerchPhi(1/64,5,49/102) 3908813104357665 a007 Real Root Of -599*x^4-316*x^3-949*x^2+253*x+239 3908813114551875 m001 (-MinimumGamma+Robbin)/(Si(Pi)+DuboisRaymond) 3908813115495682 r009 Re(z^3+c),c=-53/90+13/53*I,n=7 3908813117788678 a001 34/123*5778^(1/25) 3908813142023442 r005 Im(z^2+c),c=-33/122+30/49*I,n=60 3908813152594778 m001 (GlaisherKinkelin+Gompertz)/(ln(5)-GAMMA(5/6)) 3908813154564958 r005 Im(z^2+c),c=-13/122+24/43*I,n=58 3908813159899477 a007 Real Root Of 259*x^4+860*x^3-510*x^2+182*x-597 3908813168302023 r002 25th iterates of z^2 + 3908813177350226 m005 (1/2*Catalan-4)/(5/6*Catalan+1/7) 3908813187846780 m001 (Backhouse-CareFree)/(GAMMA(3/4)+ArtinRank2) 3908813200355516 r005 Im(z^2+c),c=-15/94+34/57*I,n=56 3908813233234352 r002 64th iterates of z^2 + 3908813235380206 b008 -4+InverseGudermannian[(2*Pi)/69] 3908813239231831 r005 Re(z^2+c),c=-13/98+26/41*I,n=23 3908813266078219 r005 Im(z^2+c),c=-19/42+23/42*I,n=53 3908813270693298 m001 (-ZetaP(2)+ZetaP(4))/(sin(1)+Zeta(1,2)) 3908813275412669 r005 Re(z^2+c),c=-25/54+29/59*I,n=32 3908813288109311 a007 Real Root Of 180*x^4+819*x^3+452*x^2-58*x-240 3908813291608106 r002 18th iterates of z^2 + 3908813299717456 m001 (Rabbit+Salem)/(1-polylog(4,1/2)) 3908813305652355 m001 (GAMMA(23/24)-Otter)/(TreeGrowth2nd+ZetaQ(2)) 3908813306279952 m001 1/GAMMA(1/3)/Artin*exp(Zeta(1,2)) 3908813311661173 s001 sum(exp(-Pi)^n*A225537[n],n=1..infinity) 3908813311661173 s002 sum(A225537[n]/(exp(pi*n)),n=1..infinity) 3908813312784563 m005 (-3/20+1/4*5^(1/2))/(3/7*Pi-3/10) 3908813318997586 r005 Im(z^2+c),c=-21/19+10/31*I,n=6 3908813322591733 a005 (1/cos(80/227*Pi))^16 3908813339682935 a007 Real Root Of -16*x^4-624*x^3+53*x^2-61*x+854 3908813340527934 r005 Im(z^2+c),c=13/62+28/51*I,n=15 3908813340674680 r005 Im(z^2+c),c=9/98+17/39*I,n=34 3908813348917597 m001 Pi+ln(2)/ln(10)+GAMMA(13/24)-GAMMA(19/24) 3908813354482220 a001 7778742049/521*199^(2/11) 3908813364056051 a001 2971215073/843*843^(5/14) 3908813368634864 a001 199/3524578*20365011074^(21/22) 3908813375800588 l006 ln(1957/2893) 3908813378226858 r005 Im(z^2+c),c=-17/122+32/59*I,n=19 3908813387400016 a007 Real Root Of 176*x^4+503*x^3-542*x^2+663*x-173 3908813387930334 r005 Re(z^2+c),c=-27/52+17/61*I,n=55 3908813398622969 m001 (arctan(1/2)+HardHexagonsEntropy)/PlouffeB 3908813407730779 b008 4/13+Sqrt[2]/17 3908813409387048 a007 Real Root Of 242*x^4+765*x^3-993*x^2-963*x+602 3908813413054322 a001 2/13*1597^(25/57) 3908813431489375 r009 Im(z^3+c),c=-5/16+29/31*I,n=2 3908813431561489 m008 (4/5*Pi^3-4/5)/(2*Pi^3-3/5) 3908813432753884 m005 (1+1/4*5^(1/2))/(4/11*exp(1)+3) 3908813440390813 l006 ln(181/9021) 3908813447092054 m001 (-Grothendieck+Robbin)/(2^(1/3)+ErdosBorwein) 3908813451365979 a001 322/233*8^(1/2) 3908813459528107 r005 Im(z^2+c),c=-15/82+35/58*I,n=63 3908813459804381 a001 53316291173/5778*521^(3/13) 3908813462428867 a001 1201881744/341*521^(5/13) 3908813476352135 r005 Im(z^2+c),c=11/78+2/5*I,n=36 3908813481087747 p003 LerchPhi(1/16,5,182/239) 3908813489669562 p001 sum((-1)^n/(325*n+83)/n/(6^n),n=1..infinity) 3908813491420443 m008 (2/5*Pi+5)/(1/6*Pi^6-1/6) 3908813494302744 m006 (2*ln(Pi)+1)/(5/Pi-3/4) 3908813496055771 r008 a(0)=4,K{-n^6,5+n^3+n^2+7*n} 3908813500000001 a001 24157749/2+24157817/2*5^(1/2) 3908813500586510 a001 377/1364*2537720636^(13/15) 3908813500586510 a001 377/1364*45537549124^(13/17) 3908813500586510 a001 377/1364*14662949395604^(13/21) 3908813500586510 a001 377/1364*(1/2+1/2*5^(1/2))^39 3908813500586510 a001 377/1364*192900153618^(13/18) 3908813500586510 a001 377/1364*73681302247^(3/4) 3908813500586510 a001 377/1364*10749957122^(13/16) 3908813500586510 a001 377/1364*599074578^(13/14) 3908813500593121 a001 610/843*(1/2+1/2*5^(1/2))^37 3908813502128623 a001 78176317/2-21/2*5^(1/2) 3908813524092025 r005 Im(z^2+c),c=-5/58+35/64*I,n=58 3908813531833818 m005 (1/2*3^(1/2)+7/8)/(11/10+3/2*5^(1/2)) 3908813544197732 r009 Im(z^3+c),c=-23/52+13/40*I,n=30 3908813549662448 b008 E^5+16*E^E 3908813559804293 a001 139583862445/15127*521^(3/13) 3908813560493532 r005 Im(z^2+c),c=-11/98+32/57*I,n=63 3908813574394084 a001 365435296162/39603*521^(3/13) 3908813576522705 a001 956722026041/103682*521^(3/13) 3908813576833267 a001 2504730781961/271443*521^(3/13) 3908813576878577 a001 6557470319842/710647*521^(3/13) 3908813576889274 a001 10610209857723/1149851*521^(3/13) 3908813576906581 a001 4052739537881/439204*521^(3/13) 3908813577025205 a001 140728068720/15251*521^(3/13) 3908813577838266 a001 591286729879/64079*521^(3/13) 3908813583411070 a001 7787980473/844*521^(3/13) 3908813603384512 r005 Im(z^2+c),c=19/70+17/60*I,n=50 3908813606451226 a007 Real Root Of 925*x^4-412*x^3-657*x^2-287*x-58 3908813615186282 r002 31th iterates of z^2 + 3908813620547987 r009 Im(z^3+c),c=-19/34+13/63*I,n=2 3908813621607639 a001 86267571272/9349*521^(3/13) 3908813632065718 q001 1/2558321 3908813639351618 r002 9th iterates of z^2 + 3908813667739424 r009 Im(z^3+c),c=-31/74+17/50*I,n=52 3908813676088763 m001 (gamma-ln(3))/(HeathBrownMoroz+MertensB3) 3908813700346060 r005 Re(z^2+c),c=-17/60+31/49*I,n=58 3908813706152995 r009 Im(z^3+c),c=-31/74+17/50*I,n=53 3908813720812564 r005 Re(z^2+c),c=-29/56+17/61*I,n=33 3908813728906052 m005 (1/2*5^(1/2)+3/8)/(-3/2+1/2*5^(1/2)) 3908813735003872 m001 (gamma+Pi^(1/2))/(-StronglyCareFree+ZetaP(3)) 3908813735870195 b008 39+ArcCsch[1]/10 3908813744588846 a007 Real Root Of 101*x^4-545*x^3-262*x^2-112*x+114 3908813756938554 a001 1836311903/843*843^(3/7) 3908813758345326 a001 31622993/161*322^(11/12) 3908813758697100 s001 sum(exp(-3*Pi)^n*A036175[n],n=1..infinity) 3908813762315350 r005 Re(z^2+c),c=9/44+11/25*I,n=17 3908813763751039 b008 5*(3/7+E^2) 3908813765156353 r009 Im(z^3+c),c=-31/74+17/50*I,n=56 3908813777385606 m001 (Chi(1)-ln(5))/(-Robbin+Thue) 3908813782389253 r002 15th iterates of z^2 + 3908813799223898 r005 Re(z^2+c),c=-57/106+7/51*I,n=60 3908813799594232 l006 ln(6673/6939) 3908813811815302 a007 Real Root Of 202*x^4+777*x^3-118*x^2-224*x+176 3908813829045537 m001 LaplaceLimit*Conway*ln(Trott) 3908813839093829 r009 Im(z^3+c),c=-31/74+17/50*I,n=59 3908813849554961 r009 Im(z^3+c),c=-31/74+17/50*I,n=60 3908813854421415 r009 Im(z^3+c),c=-31/74+17/50*I,n=63 3908813866625107 r009 Re(z^3+c),c=-41/78+27/58*I,n=26 3908813868872170 r009 Im(z^3+c),c=-31/74+17/50*I,n=62 3908813870094370 r009 Im(z^3+c),c=-31/74+17/50*I,n=64 3908813882098948 a001 32951280099/2207*521^(2/13) 3908813883410839 a001 32951280099/3571*521^(3/13) 3908813885953641 r009 Im(z^3+c),c=-31/74+17/50*I,n=57 3908813888166597 r009 Im(z^3+c),c=-31/74+17/50*I,n=61 3908813892920946 r002 12th iterates of z^2 + 3908813896996271 r009 Im(z^3+c),c=-31/74+17/50*I,n=55 3908813897636039 m001 MadelungNaCl^2/Cahen^2*exp(Riemann3rdZero)^2 3908813897747160 r005 Re(z^2+c),c=-10/19+13/59*I,n=23 3908813904426695 h001 (-4*exp(-3)-4)/(-5*exp(3)-7) 3908813916030700 r009 Im(z^3+c),c=-31/74+17/50*I,n=58 3908813916617929 r005 Im(z^2+c),c=-115/98+3/59*I,n=35 3908813923897578 r009 Im(z^3+c),c=-1/66+10/23*I,n=3 3908813924322023 r009 Re(z^3+c),c=-29/56+24/61*I,n=29 3908813926741157 r005 Re(z^2+c),c=-55/102+7/61*I,n=26 3908813940674833 m001 ln(Pi)^ZetaP(4)/Sierpinski 3908813941894305 a007 Real Root Of 998*x^4-769*x^3+828*x^2-190*x-270 3908813954301043 r009 Im(z^3+c),c=-33/122+20/49*I,n=16 3908813961361111 r009 Im(z^3+c),c=-31/74+17/50*I,n=50 3908813962351776 s001 sum(exp(-3*Pi)^n*A136892[n],n=1..infinity) 3908813966877764 l006 ln(5848/8645) 3908813973951989 r009 Im(z^3+c),c=-29/66+21/64*I,n=22 3908813977455217 a007 Real Root Of 756*x^4-797*x^3+912*x^2+45*x-187 3908813983461323 r005 Im(z^2+c),c=-11/58+10/17*I,n=50 3908813987538820 a001 39088160-9*5^(1/2) 3908813988586303 r009 Im(z^3+c),c=-19/102+25/58*I,n=15 3908813993111629 a001 39088169-13*5^(1/2) 3908813994397021 h001 (5/8*exp(1)+1/3)/(7/12*exp(2)+8/9) 3908813996239905 s001 sum(exp(-3*Pi)^n*A135036[n],n=1..infinity) 3908813996557377 a001 23843765379/610 3908814000483110 s001 sum(exp(-3*Pi)^n*A166796[n],n=1..infinity) 3908814003588404 m005 (1/3*Zeta(3)-2/11)/(7/9*Zeta(3)-3/8) 3908814008460411 r005 Re(z^2+c),c=-57/106+7/51*I,n=58 3908814027465443 r002 29th iterates of z^2 + 3908814028340437 r005 Re(z^2+c),c=-5/7+51/118*I,n=2 3908814032643337 r009 Im(z^3+c),c=-31/74+17/50*I,n=54 3908814044396084 r009 Re(z^3+c),c=-12/23+17/58*I,n=64 3908814056933563 r005 Im(z^2+c),c=21/64+3/14*I,n=60 3908814059326352 r005 Im(z^2+c),c=-14/25+15/31*I,n=54 3908814059957846 m005 (1/3*Pi-1/12)/(9/11*5^(1/2)+7/11) 3908814089064652 m001 GAMMA(11/12)^2/ln(PrimesInBinary)^2*exp(1) 3908814090727552 m001 (Zeta(3)+Cahen)/(2^(1/3)-3^(1/2)) 3908814102549034 a007 Real Root Of 471*x^4-388*x^3+148*x^2-919*x-416 3908814117274683 m005 (1/2*exp(1)+4)/(3/10*exp(1)+5/9) 3908814117507137 a007 Real Root Of -170*x^4-462*x^3+764*x^2-114*x-25 3908814117640951 r005 Im(z^2+c),c=11/54+15/43*I,n=40 3908814118570035 r005 Im(z^2+c),c=-151/122+1/60*I,n=46 3908814124257069 r005 Re(z^2+c),c=-51/94+2/31*I,n=31 3908814133244218 r009 Im(z^3+c),c=-31/74+17/50*I,n=43 3908814133448759 r005 Re(z^2+c),c=-1/114+32/49*I,n=27 3908814133736686 m005 (1/2*2^(1/2)+4/5)/(1/12*3^(1/2)-4) 3908814135709563 r009 Im(z^3+c),c=-37/110+18/47*I,n=24 3908814135961582 r005 Re(z^2+c),c=-57/106+7/51*I,n=62 3908814136619810 a001 102334155/2207*1364^(14/15) 3908814140986478 m001 (1-GAMMA(5/6))/(Rabbit+Sierpinski) 3908814144996600 m002 3*E^Pi+Pi^6/3+Tanh[Pi] 3908814149821096 a001 1134903170/843*843^(1/2) 3908814159092154 p003 LerchPhi(1/8,2,228/139) 3908814159313873 r005 Re(z^2+c),c=1/9+1/4*I,n=21 3908814173956869 a007 Real Root Of 104*x^4+424*x^3+225*x^2+805*x+753 3908814178386592 r005 Im(z^2+c),c=-55/46+2/37*I,n=25 3908814180310165 r005 Im(z^2+c),c=-3/118+25/48*I,n=22 3908814184034255 m001 (Paris-cos(1)*TwinPrimes)/TwinPrimes 3908814207950304 g002 Psi(10/11)-Psi(7/11)-Psi(4/9)-Psi(4/5) 3908814208528180 r002 34th iterates of z^2 + 3908814211547685 r005 Im(z^2+c),c=4/19+12/35*I,n=36 3908814216911247 s001 sum(exp(-3*Pi)^(n-1)*A283341[n],n=1..infinity) 3908814218673133 r005 Re(z^2+c),c=-67/110+13/40*I,n=32 3908814220661902 r009 Im(z^3+c),c=-31/74+17/50*I,n=48 3908814220707162 m001 1/GAMMA(1/4)^2/(3^(1/3))^2/exp(sqrt(5)) 3908814259757157 r002 14th iterates of z^2 + 3908814264163290 l006 ln(3891/5752) 3908814275267716 r005 Re(z^2+c),c=-9/17+10/47*I,n=60 3908814276683215 a001 165580141/2207*1364^(13/15) 3908814286353470 r009 Im(z^3+c),c=-31/74+17/50*I,n=51 3908814300719060 m005 (3/4*Catalan-2)/(1/2*exp(1)+2) 3908814328500616 m001 TreeGrowth2nd/(BesselK(0,1)+CareFree) 3908814334137266 r009 Im(z^3+c),c=-43/110+21/59*I,n=19 3908814341071658 a007 Real Root Of 180*x^4+754*x^3+148*x^2-60*x+515 3908814343361016 r005 Re(z^2+c),c=-57/106+7/51*I,n=55 3908814347723077 r002 39th iterates of z^2 + 3908814352953842 v003 sum((26+11*n^2-21*n)/n^(n-1),n=1..infinity) 3908814355527741 r009 Im(z^3+c),c=-5/18+19/28*I,n=17 3908814356796505 a001 103682/89*63245986^(17/24) 3908814372415573 a007 Real Root Of -326*x^4-97*x^3-700*x^2-135*x+56 3908814389017163 r009 Re(z^3+c),c=-33/70+7/13*I,n=18 3908814389719042 r005 Re(z^2+c),c=9/34+1/28*I,n=39 3908814394153529 p003 LerchPhi(1/5,2,392/235) 3908814414070434 m001 (GAMMA(5/6)+FeigenbaumC)/(Porter-Rabbit) 3908814416746624 a001 267914296/2207*1364^(4/5) 3908814436520698 r005 Re(z^2+c),c=-40/31+2/51*I,n=14 3908814440325224 a001 39088169-11*5^(1/2) 3908814444963013 r005 Im(z^2+c),c=8/23+3/16*I,n=57 3908814452606668 m001 (Kac+Sierpinski)/(arctan(1/2)-Bloch) 3908814461436032 m001 RenyiParking/(MinimumGamma-(1+3^(1/2))^(1/2)) 3908814481264687 a001 2/13*10946^(8/23) 3908814490764275 r009 Re(z^3+c),c=-45/86+8/25*I,n=54 3908814491648758 a007 Real Root Of -177*x^4-437*x^3+796*x^2-912*x-506 3908814495646432 r005 Re(z^2+c),c=-1+41/189*I,n=52 3908814498623411 m004 -125/Pi+Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 3908814506415825 m001 PrimesInBinary^(ln(2)/ln(10))+Pi 3908814507439617 h001 (7/8*exp(2)+10/11)/(4/7*exp(1)+1/3) 3908814508468870 a007 Real Root Of -241*x^4-937*x^3+222*x^2+912*x+473 3908814508921101 a001 4/377*55^(9/10) 3908814523738335 r005 Im(z^2+c),c=1/56+37/62*I,n=29 3908814538428622 r005 Im(z^2+c),c=19/70+17/60*I,n=59 3908814541296906 a001 20365011074/843*322^(1/12) 3908814542703678 a001 233802911/281*843^(4/7) 3908814546543561 m001 (HardyLittlewoodC5+ZetaQ(2))/(1-ln(2^(1/2)+1)) 3908814556810038 a001 433494437/2207*1364^(11/15) 3908814562622638 l006 ln(5825/8611) 3908814567508595 a001 43133785636/2889*521^(2/13) 3908814567565388 a007 Real Root Of 100*x^4+356*x^3-208*x^2-386*x-414 3908814570133081 a001 7778742049/1364*521^(4/13) 3908814578369168 m001 (gamma(2)+MasserGramain)/(Niven-ZetaP(4)) 3908814581391201 r005 Im(z^2+c),c=-17/90+13/25*I,n=10 3908814581847532 s001 sum(exp(-3*Pi)^n*A027283[n],n=1..infinity) 3908814589665653 q001 643/1645 3908814592787632 m005 (1/2*exp(1)+2/3)/(7/9*Zeta(3)-5/12) 3908814612020184 r005 Re(z^2+c),c=-9/17+10/47*I,n=62 3908814615619937 a007 Real Root Of 462*x^4-429*x^3-468*x^2-691*x-235 3908814615912647 r005 Re(z^2+c),c=-57/106+7/51*I,n=64 3908814619050491 h001 (4/7*exp(2)+1/12)/(1/12*exp(1)+7/8) 3908814648948816 m005 (1/3*gamma-2/5)/(1/3*exp(1)-3/8) 3908814651978240 r005 Im(z^2+c),c=-7/62+19/34*I,n=41 3908814662210985 m001 ((1+3^(1/2))^(1/2)-Paris*ThueMorse)/ThueMorse 3908814667508535 a001 32264490531/2161*521^(2/13) 3908814668939352 r005 Im(z^2+c),c=-13/110+25/41*I,n=48 3908814670600911 r009 Re(z^3+c),c=-9/19+11/48*I,n=26 3908814677332522 r002 43th iterates of z^2 + 3908814677361612 m001 (MertensB1+Riemann3rdZero)/(Trott+ZetaQ(2)) 3908814681967213 a001 2384376956/61 3908814682098330 a001 591286729879/39603*521^(2/13) 3908814682332076 r002 3th iterates of z^2 + 3908814684226952 a001 774004377960/51841*521^(2/13) 3908814684537514 a001 4052739537881/271443*521^(2/13) 3908814684582824 a001 1515744265389/101521*521^(2/13) 3908814684610828 a001 3278735159921/219602*521^(2/13) 3908814684729452 a001 2504730781961/167761*521^(2/13) 3908814684751636 r002 6th iterates of z^2 + 3908814685542513 a001 956722026041/64079*521^(2/13) 3908814690422359 m001 (GAMMA(23/24)-Conway)/(ZetaQ(3)-ZetaQ(4)) 3908814691115319 a001 182717648081/12238*521^(2/13) 3908814696873458 a001 701408733/2207*1364^(2/3) 3908814703725382 m001 (1-FeigenbaumB)/(Magata+QuadraticClass) 3908814715081919 m008 (1/5*Pi^4+3)/(1/4*Pi^3-2) 3908814729311899 a001 139583862445/9349*521^(2/13) 3908814740154069 r005 Re(z^2+c),c=5/27+17/48*I,n=28 3908814740798096 m001 exp(1/exp(1))*Riemann3rdZero+Otter 3908814749241951 a007 Real Root Of 125*x^4+424*x^3-498*x^2-760*x+780 3908814752683063 m001 FeigenbaumD^(GAMMA(11/12)/LandauRamanujan) 3908814758162155 r002 38th iterates of z^2 + 3908814762483496 r002 58th iterates of z^2 + 3908814771654894 r005 Re(z^2+c),c=-45/34+17/88*I,n=2 3908814781967213 a001 2384377017/61 3908814786466638 m006 (2/5*Pi^2-3)/(5/Pi+5/6) 3908814787026091 r009 Im(z^3+c),c=-11/126+25/56*I,n=11 3908814795792838 a007 Real Root Of -336*x^4+229*x^3+247*x^2+940*x-411 3908814796555814 a001 78176325/2-13/2*5^(1/2) 3908814796557377 a001 23843770259/610 3908814798688524 a001 11921885136/305 3908814799016393 a001 11921885137/305 3908814799049180 a001 119218851371/610*8^(1/3) 3908814799049180 a001 1/305*(1/2+1/2*5^(1/2))^53 3908814799180327 a001 4768754055/122 3908814800000001 a001 24157775/2+24157817/2*5^(1/2) 3908814805573770 a001 11921885157/305 3908814821586351 r002 15th iterates of z^2 + 3908814822029502 a001 133957148/2889*1364^(14/15) 3908814823388594 s003 concatenated sequence A343618 3908814823388594 b003 Dirichlet constant from R.J. Mathar 3908814835945645 m001 (Robbin+ThueMorse)/(Zeta(1,2)+LaplaceLimit) 3908814836920929 s002 sum(A143024[n]/(pi^n),n=1..infinity) 3908814836936882 a001 1134903170/2207*1364^(3/5) 3908814843770491 a001 23843770547/610 3908814855197973 a007 Real Root Of 631*x^4-993*x^3+628*x^2-788*x-478 3908814866704693 m005 (1/3*Pi-2/5)/(6/7+5/14*5^(1/2)) 3908814869110180 m001 GAMMA(3/4)-gamma(3)+Khinchin 3908814891288607 m001 Conway^GAMMA(17/24)+FeigenbaumAlpha 3908814893110707 r005 Re(z^2+c),c=-59/106+9/64*I,n=15 3908814903827289 m005 (1/2*Zeta(3)+2)/(1/8*Pi+3/11) 3908814919559063 r005 Re(z^2+c),c=-65/106+10/27*I,n=25 3908814922029448 a001 701408733/15127*1364^(14/15) 3908814923034622 a005 (1/cos(47/230*Pi))^58 3908814929176711 a007 Real Root Of 213*x^4+845*x^3+95*x^2+147*x-135 3908814935586300 a001 433494437/843*843^(9/14) 3908814936619244 a001 1836311903/39603*1364^(14/15) 3908814938747867 a001 46368*1364^(14/15) 3908814939058428 a001 12586269025/271443*1364^(14/15) 3908814939073629 m005 (1/2*5^(1/2)-11/12)/(7/10*gamma+1/9) 3908814939103739 a001 32951280099/710647*1364^(14/15) 3908814939110350 a001 43133785636/930249*1364^(14/15) 3908814939111314 a001 225851433717/4870847*1364^(14/15) 3908814939111455 a001 591286729879/12752043*1364^(14/15) 3908814939111475 a001 774004377960/16692641*1364^(14/15) 3908814939111478 a001 4052739537881/87403803*1364^(14/15) 3908814939111479 a001 225749145909/4868641*1364^(14/15) 3908814939111479 a001 3278735159921/70711162*1364^(14/15) 3908814939111480 a001 2504730781961/54018521*1364^(14/15) 3908814939111488 a001 956722026041/20633239*1364^(14/15) 3908814939111542 a001 182717648081/3940598*1364^(14/15) 3908814939111910 a001 139583862445/3010349*1364^(14/15) 3908814939114435 a001 53316291173/1149851*1364^(14/15) 3908814939131742 a001 10182505537/219602*1364^(14/15) 3908814939250366 a001 7778742049/167761*1364^(14/15) 3908814940063428 a001 2971215073/64079*1364^(14/15) 3908814945636234 a001 567451585/12238*1364^(14/15) 3908814951246896 r005 Re(z^2+c),c=-27/62+21/41*I,n=60 3908814962092931 a001 433494437/5778*1364^(13/15) 3908814962745448 m001 (Backhouse+LaplaceLimit)/(Psi(2,1/3)+Catalan) 3908814965649151 a007 Real Root Of -15*x^4-601*x^3-576*x^2-79*x+386 3908814977000312 a001 1836311903/2207*1364^(8/15) 3908814983832816 a001 433494437/9349*1364^(14/15) 3908814989803281 a001 53316291173/2207*521^(1/13) 3908814991115173 a001 53316291173/3571*521^(2/13) 3908814999649410 m001 1/BesselK(1,1)/exp(Cahen)^2/GAMMA(19/24) 3908815012591030 r005 Re(z^2+c),c=-27/50+3/28*I,n=37 3908815016342141 r005 Im(z^2+c),c=7/22+12/31*I,n=51 3908815023173369 r009 Re(z^3+c),c=-15/29+9/32*I,n=38 3908815029411766 a007 Real Root Of -864*x^4-891*x^3-964*x^2-346*x-21 3908815029778763 a007 Real Root Of -448*x^4-202*x^3-737*x^2+307*x+231 3908815049316412 m001 (-polylog(4,1/2)+TwinPrimes)/(2^(1/2)+5^(1/2)) 3908815051795272 m001 (1+ln(2)/ln(10))/(-GAMMA(5/6)+MinimumGamma) 3908815061019370 m001 ln(Lehmer)^2/Kolakoski/log(1+sqrt(2)) 3908815062092881 a001 1134903170/15127*1364^(13/15) 3908815076682677 a001 2971215073/39603*1364^(13/15) 3908815077910128 m001 Riemann3rdZero/MertensB1*ln(Ei(1))^2 3908815078093688 a005 (1/sin(93/191*Pi))^1612 3908815078671407 m001 GAMMA(2/3)^Pi+ln(2+3^(1/2)) 3908815078671407 m001 GAMMA(2/3)^Pi+ln(2+sqrt(3)) 3908815078811300 a001 7778742049/103682*1364^(13/15) 3908815079121862 a001 20365011074/271443*1364^(13/15) 3908815079167172 a001 53316291173/710647*1364^(13/15) 3908815079173783 a001 139583862445/1860498*1364^(13/15) 3908815079174747 a001 365435296162/4870847*1364^(13/15) 3908815079174888 a001 956722026041/12752043*1364^(13/15) 3908815079174908 a001 2504730781961/33385282*1364^(13/15) 3908815079174911 a001 6557470319842/87403803*1364^(13/15) 3908815079174912 a001 10610209857723/141422324*1364^(13/15) 3908815079174913 a001 4052739537881/54018521*1364^(13/15) 3908815079174921 a001 140728068720/1875749*1364^(13/15) 3908815079174975 a001 591286729879/7881196*1364^(13/15) 3908815079175343 a001 225851433717/3010349*1364^(13/15) 3908815079177868 a001 86267571272/1149851*1364^(13/15) 3908815079195175 a001 32951280099/439204*1364^(13/15) 3908815079313799 a001 75025*1364^(13/15) 3908815080126861 a001 4807526976/64079*1364^(13/15) 3908815085123196 a007 Real Root Of 70*x^4+118*x^3-851*x^2-806*x+558 3908815085699667 a001 1836311903/24476*1364^(13/15) 3908815086178780 m001 (BesselJ(1,1)+Lehmer)/(Trott2nd-ZetaQ(2)) 3908815102156365 a001 233802911/1926*1364^(4/5) 3908815105573770 a001 11921886072/305 3908815107598166 r005 Re(z^2+c),c=-37/70+11/50*I,n=40 3908815108866430 a007 Real Root Of 993*x^4-728*x^3+592*x^2-764*x+29 3908815110068240 m005 (1/2*Pi+7/8)/(2/11*2^(1/2)+6) 3908815111145618 a001 39088169-8*5^(1/2) 3908815117063747 a001 2971215073/2207*1364^(7/15) 3908815120085460 h001 (9/11*exp(2)+1/10)/(1/10*exp(2)+5/6) 3908815120162612 a001 78176327/2-11/2*5^(1/2) 3908815123896251 a001 701408733/9349*1364^(13/15) 3908815136210304 r002 36th iterates of z^2 + 3908815137092736 r002 13th iterates of z^2 + 3908815139785309 r009 Im(z^3+c),c=-31/74+17/50*I,n=47 3908815149773853 r002 63th iterates of z^2 + 3908815156414189 r004 Im(z^2+c),c=-7/12+1/14*I,z(0)=-1,n=64 3908815163090721 l006 ln(1934/2859) 3908815170535910 r009 Re(z^3+c),c=-41/106+8/59*I,n=4 3908815198293126 a007 Real Root Of -237*x^4-937*x^3+69*x^2+220*x-828 3908815199612372 r005 Re(z^2+c),c=-25/62+33/62*I,n=32 3908815202156318 a001 1836311903/15127*1364^(4/5) 3908815210452011 m005 (5/6*Catalan-2)/(4*Catalan-1/2) 3908815216746115 a001 1602508992/13201*1364^(4/5) 3908815218874738 a001 12586269025/103682*1364^(4/5) 3908815219185300 a001 121393*1364^(4/5) 3908815219230610 a001 86267571272/710647*1364^(4/5) 3908815219237221 a001 75283811239/620166*1364^(4/5) 3908815219238185 a001 591286729879/4870847*1364^(4/5) 3908815219238326 a001 516002918640/4250681*1364^(4/5) 3908815219238347 a001 4052739537881/33385282*1364^(4/5) 3908815219238350 a001 3536736619241/29134601*1364^(4/5) 3908815219238351 a001 6557470319842/54018521*1364^(4/5) 3908815219238359 a001 2504730781961/20633239*1364^(4/5) 3908815219238413 a001 956722026041/7881196*1364^(4/5) 3908815219238781 a001 365435296162/3010349*1364^(4/5) 3908815219241307 a001 139583862445/1149851*1364^(4/5) 3908815219258614 a001 53316291173/439204*1364^(4/5) 3908815219377238 a001 20365011074/167761*1364^(4/5) 3908815220190299 a001 7778742049/64079*1364^(4/5) 3908815225763106 a001 2971215073/24476*1364^(4/5) 3908815232217463 a003 cos(Pi*17/55)-sin(Pi*36/89) 3908815235707253 m001 (FeigenbaumB-ZetaQ(2))/(ln(gamma)-3^(1/3)) 3908815240134543 m004 -6/5+(25*Pi*Tanh[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3908815241962867 r005 Im(z^2+c),c=-29/110+1/18*I,n=7 3908815242219804 a001 567451585/2889*1364^(11/15) 3908815244171915 r005 Im(z^2+c),c=1/98+24/49*I,n=48 3908815245636107 a001 165580141/3571*1364^(14/15) 3908815247583975 r008 a(0)=4,K{-n^6,-2+5*n^3+5*n^2+4*n} 3908815251859573 a007 Real Root Of 179*x^4+423*x^3-988*x^2+194*x-670 3908815257127186 a001 4807526976/2207*1364^(2/5) 3908815262847723 r002 8th iterates of z^2 + 3908815263959691 a001 1134903170/9349*1364^(4/5) 3908815266653538 l004 Shi(529/90) 3908815273971111 r002 33th iterates of z^2 + 3908815292321961 m001 (HeathBrownMoroz+RenyiParking)/(1+Catalan) 3908815295015858 a001 987/2207*817138163596^(2/3) 3908815295015858 a001 987/2207*(1/2+1/2*5^(1/2))^38 3908815295015858 a001 987/2207*10749957122^(19/24) 3908815295015858 a001 987/2207*4106118243^(19/23) 3908815295015858 a001 987/2207*1568397607^(19/22) 3908815295015858 a001 987/2207*599074578^(19/21) 3908815295015858 a001 987/2207*228826127^(19/20) 3908815296036099 r009 Re(z^3+c),c=-9/26+4/63*I,n=7 3908815296770122 m001 (Mills+Riemann1stZero)/(Landau+Magata) 3908815314837670 m001 (3^(1/3)-FeigenbaumB)/(MinimumGamma+Paris) 3908815316116023 r005 Re(z^2+c),c=-33/46+12/49*I,n=30 3908815322058392 r005 Re(z^2+c),c=-15/28+4/51*I,n=11 3908815328468961 a001 267914296/843*843^(5/7) 3908815329623046 r002 61th iterates of z^2 + 3908815334752415 a001 39088169-7*5^(1/2) 3908815342219761 a001 2971215073/15127*1364^(11/15) 3908815348043758 h001 (4/5*exp(1)+1/7)/(7/9*exp(2)+2/11) 3908815355789620 m001 MadelungNaCl/(FeigenbaumD-5^(1/2)) 3908815356809558 a001 7778742049/39603*1364^(11/15) 3908815358938181 a001 10182505537/51841*1364^(11/15) 3908815359248743 a001 53316291173/271443*1364^(11/15) 3908815359294053 a001 139583862445/710647*1364^(11/15) 3908815359300664 a001 182717648081/930249*1364^(11/15) 3908815359301629 a001 956722026041/4870847*1364^(11/15) 3908815359301769 a001 2504730781961/12752043*1364^(11/15) 3908815359301790 a001 3278735159921/16692641*1364^(11/15) 3908815359301795 a001 10610209857723/54018521*1364^(11/15) 3908815359301803 a001 4052739537881/20633239*1364^(11/15) 3908815359301856 a001 387002188980/1970299*1364^(11/15) 3908815359302225 a001 591286729879/3010349*1364^(11/15) 3908815359304750 a001 225851433717/1149851*1364^(11/15) 3908815359322057 a001 196418*1364^(11/15) 3908815359440681 a001 32951280099/167761*1364^(11/15) 3908815360253742 a001 12586269025/64079*1364^(11/15) 3908815363872973 r009 Re(z^3+c),c=-49/118+28/47*I,n=58 3908815365826549 a001 1201881744/6119*1364^(11/15) 3908815366000722 r005 Im(z^2+c),c=19/98+17/50*I,n=11 3908815371784445 m001 (LandauRamanujan2nd+ZetaP(4))/(cos(1)+ln(Pi)) 3908815375096139 a001 34/123*322^(3/50) 3908815379172281 r005 Re(z^2+c),c=-7/10+57/226*I,n=4 3908815382283248 a001 1836311903/5778*1364^(2/3) 3908815385699552 a001 267914296/3571*1364^(13/15) 3908815391176768 b008 E/(2+ExpIntegralEi[2]) 3908815393477530 r005 Im(z^2+c),c=-9/62+23/45*I,n=10 3908815393867695 m001 ln(Salem)^2/KhintchineHarmonic*sin(Pi/12) 3908815397190631 a001 7778742049/2207*1364^(1/3) 3908815404023136 a001 1836311903/9349*1364^(11/15) 3908815416193810 r009 Im(z^3+c),c=-7/22+24/59*I,n=6 3908815431526399 m001 1/Champernowne^2*exp(Backhouse)/FeigenbaumD^2 3908815438645224 m001 (-exp(-1/2*Pi)+2/3)/GAMMA(19/24) 3908815438645224 m001 (2/3-exp(-1/2*Pi))/GAMMA(19/24) 3908815440260426 a003 cos(Pi*3/64)*sin(Pi*15/116) 3908815444974489 s002 sum(A194647[n]/(pi^n+1),n=1..infinity) 3908815453702236 r005 Re(z^2+c),c=-57/106+7/51*I,n=56 3908815455113857 l006 ln(8705/9052) 3908815459054741 m005 (1/2*3^(1/2)-2/11)/(7/12*2^(1/2)-1) 3908815460832514 m001 ln(GAMMA(19/24))^2*PrimesInBinary^2/GAMMA(5/6) 3908815479146304 r005 Re(z^2+c),c=-2/3+4/145*I,n=12 3908815482283208 a001 686789568/2161*1364^(2/3) 3908815491178226 m001 (exp(1)*exp(1/2)+ReciprocalLucas)/exp(1/2) 3908815496873007 a001 12586269025/39603*1364^(2/3) 3908815499001629 a001 32951280099/103682*1364^(2/3) 3908815499312191 a001 86267571272/271443*1364^(2/3) 3908815499357502 a001 317811*1364^(2/3) 3908815499364112 a001 591286729879/1860498*1364^(2/3) 3908815499365077 a001 1548008755920/4870847*1364^(2/3) 3908815499365218 a001 4052739537881/12752043*1364^(2/3) 3908815499365238 a001 1515744265389/4769326*1364^(2/3) 3908815499365251 a001 6557470319842/20633239*1364^(2/3) 3908815499365305 a001 2504730781961/7881196*1364^(2/3) 3908815499365673 a001 956722026041/3010349*1364^(2/3) 3908815499368198 a001 365435296162/1149851*1364^(2/3) 3908815499385505 a001 139583862445/439204*1364^(2/3) 3908815499504129 a001 53316291173/167761*1364^(2/3) 3908815500317191 a001 20365011074/64079*1364^(2/3) 3908815500396268 r002 29th iterates of z^2 + 3908815501583517 r005 Re(z^2+c),c=-39/86+3/61*I,n=3 3908815502089839 r005 Im(z^2+c),c=-5/32+29/59*I,n=7 3908815505889998 a001 7778742049/24476*1364^(2/3) 3908815522346697 a001 2971215073/5778*1364^(3/5) 3908815525763001 a001 433494437/3571*1364^(4/5) 3908815537254080 a001 12586269025/2207*1364^(4/15) 3908815539408618 r002 33th iterates of z^2 + 3908815544086586 a001 2971215073/9349*1364^(2/3) 3908815558096164 m001 (-Rabbit+Trott)/(2^(1/2)+Artin) 3908815563669849 r005 Re(z^2+c),c=-49/94+15/56*I,n=39 3908815564429499 r009 Re(z^3+c),c=-1/28+33/49*I,n=9 3908815591008355 m004 -5+10/Pi+125*Pi*Tanh[Sqrt[5]*Pi] 3908815594437713 m001 (Bloch-PlouffeB)/(Pi^(1/2)-AlladiGrinstead) 3908815595752491 m001 HardHexagonsEntropy/exp(Backhouse)/FeigenbaumB 3908815600000001 a001 24157791/2+24157817/2*5^(1/2) 3908815602678265 m001 (-Landau+MasserGramain)/(2^(1/3)+exp(1/Pi)) 3908815605572809 a001 39088165-4*5^(1/2) 3908815608075046 r009 Im(z^3+c),c=-53/114+3/19*I,n=4 3908815609178381 r004 Im(z^2+c),c=-3/26-9/16*I,z(0)=I,n=57 3908815612501688 r005 Re(z^2+c),c=-15/28+10/63*I,n=44 3908815613846190 a001 55/322*843^(25/31) 3908815617726434 a007 Real Root Of 157*x^4+587*x^3-133*x^2-324*x-828 3908815622346661 a001 7778742049/15127*1364^(3/5) 3908815631916885 a007 Real Root Of 736*x^4-759*x^3+146*x^2+20*x-77 3908815632893616 m001 (Catalan*Salem+FeigenbaumAlpha)/Catalan 3908815636936460 a001 20365011074/39603*1364^(3/5) 3908815639065083 a001 53316291173/103682*1364^(3/5) 3908815639375645 a001 139583862445/271443*1364^(3/5) 3908815639420955 a001 365435296162/710647*1364^(3/5) 3908815639427566 a001 956722026041/1860498*1364^(3/5) 3908815639428530 a001 2504730781961/4870847*1364^(3/5) 3908815639428671 a001 6557470319842/12752043*1364^(3/5) 3908815639428704 a001 10610209857723/20633239*1364^(3/5) 3908815639428758 a001 4052739537881/7881196*1364^(3/5) 3908815639429126 a001 1548008755920/3010349*1364^(3/5) 3908815639431651 a001 514229*1364^(3/5) 3908815639448958 a001 225851433717/439204*1364^(3/5) 3908815639567582 a001 86267571272/167761*1364^(3/5) 3908815640380644 a001 32951280099/64079*1364^(3/5) 3908815645953451 a001 12586269025/24476*1364^(3/5) 3908815658651627 a007 Real Root Of 212*x^4+277*x^3+481*x^2-888*x-409 3908815662410151 a001 267084832/321*1364^(8/15) 3908815665826455 a001 701408733/3571*1364^(11/15) 3908815671320252 a007 Real Root Of -304*x^4-879*x^3+986*x^2-900*x-112 3908815675213123 a001 139583862445/5778*521^(1/13) 3908815677317535 a001 20365011074/2207*1364^(1/5) 3908815677837610 a001 1144206275/124*521^(3/13) 3908815683442752 r005 Re(z^2+c),c=-45/58+13/43*I,n=4 3908815684150040 a001 4807526976/9349*1364^(3/5) 3908815705963702 a001 2/5*233^(23/55) 3908815706236266 m005 (1/2*exp(1)-7/9)/(2/5*exp(1)+2/5) 3908815712162740 r005 Re(z^2+c),c=9/29+31/53*I,n=10 3908815719305822 r002 60th iterates of z^2 + 3908815721351662 a001 165580141/843*843^(11/14) 3908815723807477 h001 (1/12*exp(1)+9/10)/(3/8*exp(2)+1/9) 3908815739691304 r005 Im(z^2+c),c=-19/31+28/57*I,n=7 3908815742324125 r005 Re(z^2+c),c=-21/44+23/56*I,n=33 3908815747882706 r002 48th iterates of z^2 + 3908815762324547 m001 ln(Niven)*Magata*arctan(1/2)^2 3908815762410119 a001 12586269025/15127*1364^(8/15) 3908815767376207 a001 78176331/2-7/2*5^(1/2) 3908815767969781 r005 Im(z^2+c),c=-29/78+49/51*I,n=3 3908815768338406 l006 ln(5779/8543) 3908815768338406 p004 log(8543/5779) 3908815770357969 r005 Im(z^2+c),c=-1/56+22/43*I,n=26 3908815775213091 a001 365435296162/15127*521^(1/13) 3908815776999918 a001 10983760033/13201*1364^(8/15) 3908815779128541 a001 43133785636/51841*1364^(8/15) 3908815779265280 r005 Re(z^2+c),c=2/15+13/28*I,n=13 3908815779439103 a001 75283811239/90481*1364^(8/15) 3908815779484413 a001 591286729879/710647*1364^(8/15) 3908815779491024 a001 832040*1364^(8/15) 3908815779491988 a001 4052739537881/4870847*1364^(8/15) 3908815779492129 a001 3536736619241/4250681*1364^(8/15) 3908815779492216 a001 3278735159921/3940598*1364^(8/15) 3908815779492584 a001 2504730781961/3010349*1364^(8/15) 3908815779495110 a001 956722026041/1149851*1364^(8/15) 3908815779512417 a001 182717648081/219602*1364^(8/15) 3908815779631041 a001 139583862445/167761*1364^(8/15) 3908815780444102 a001 53316291173/64079*1364^(8/15) 3908815781966011 a001 39088169-5*5^(1/2) 3908815786016910 a001 10182505537/12238*1364^(8/15) 3908815789802890 a001 956722026041/39603*521^(1/13) 3908815790983093 a001 62423788182/1597 3908815791931513 a001 2504730781961/103682*521^(1/13) 3908815792242075 a001 6557470319842/271443*521^(1/13) 3908815792315389 a001 10610209857723/439204*521^(1/13) 3908815792434013 a001 4052739537881/167761*521^(1/13) 3908815793247074 a001 1548008755920/64079*521^(1/13) 3908815794594178 a007 Real Root Of -963*x^4+822*x^3-744*x^2+378*x+333 3908815798819882 a001 591286729879/24476*521^(1/13) 3908815802473610 a001 7778742049/5778*1364^(7/15) 3908815805889914 a001 1134903170/3571*1364^(2/3) 3908815809014097 a001 39088169/2207*3571^(16/17) 3908815815415292 a001 322/55*121393^(5/9) 3908815817380994 a001 32951280099/2207*1364^(2/15) 3908815824213500 a001 7778742049/9349*1364^(8/15) 3908815827044961 a001 63245986/2207*3571^(15/17) 3908815829935627 r005 Im(z^2+c),c=7/26+5/17*I,n=20 3908815837016473 a001 225851433717/9349*521^(1/13) 3908815844606105 a001 370248451/89*610^(17/24) 3908815845075825 a001 102334155/2207*3571^(14/17) 3908815862736614 a007 Real Root Of 368*x^4+503*x^3+826*x^2-960*x-480 3908815863106689 a001 165580141/2207*3571^(13/17) 3908815867839715 a007 Real Root Of -927*x^4+992*x^3+36*x^2+86*x+109 3908815871007722 m001 (-MertensB2+Mills)/(BesselJ(0,1)+Zeta(1/2)) 3908815881137553 a001 267914296/2207*3571^(12/17) 3908815889474347 m001 1/(3^(1/3))/ln(Lehmer)^2*cosh(1) 3908815899168417 a001 433494437/2207*3571^(11/17) 3908815902473581 a001 20365011074/15127*1364^(7/15) 3908815912682204 r002 16th iterates of z^2 + 3908815912853431 m008 (1/6*Pi-3)/(1/3*Pi^3-4) 3908815914189443 r005 Re(z^2+c),c=-31/60+7/24*I,n=45 3908815916996862 a003 cos(Pi*1/93)*sin(Pi*11/86) 3908815917063381 a001 53316291173/39603*1364^(7/15) 3908815917199281 a001 701408733/2207*3571^(10/17) 3908815919192004 a001 139583862445/103682*1364^(7/15) 3908815919502566 a001 365435296162/271443*1364^(7/15) 3908815919547876 a001 956722026041/710647*1364^(7/15) 3908815919554487 a001 2504730781961/1860498*1364^(7/15) 3908815919555452 a001 6557470319842/4870847*1364^(7/15) 3908815919555679 a001 10610209857723/7881196*1364^(7/15) 3908815919556048 a001 1346269*1364^(7/15) 3908815919558573 a001 1548008755920/1149851*1364^(7/15) 3908815919575880 a001 591286729879/439204*1364^(7/15) 3908815919694504 a001 225851433717/167761*1364^(7/15) 3908815920507566 a001 86267571272/64079*1364^(7/15) 3908815924896014 r005 Re(z^2+c),c=-23/32+7/29*I,n=22 3908815926080373 a001 32951280099/24476*1364^(7/15) 3908815926142520 r009 Re(z^3+c),c=-25/122+25/39*I,n=2 3908815935230146 a001 1134903170/2207*3571^(9/17) 3908815939334884 m002 -E^Pi+6*Pi^2+3*Coth[Pi] 3908815940110565 r005 Im(z^2+c),c=5/126+22/37*I,n=40 3908815942537074 a001 12586269025/5778*1364^(2/5) 3908815945953378 a001 1836311903/3571*1364^(3/5) 3908815953261010 a001 1836311903/2207*3571^(8/17) 3908815953837242 r002 59th iterates of z^2 + 3908815957444459 a001 53316291173/2207*1364^(1/15) 3908815964276965 a001 12586269025/9349*1364^(7/15) 3908815966101829 r002 25th iterates of z^2 + 3908815971291875 a001 2971215073/2207*3571^(7/17) 3908815980425752 a001 329/1926*2537720636^(8/9) 3908815980425752 a001 329/1926*312119004989^(8/11) 3908815980425752 a001 329/1926*(1/2+1/2*5^(1/2))^40 3908815980425752 a001 329/1926*23725150497407^(5/8) 3908815980425752 a001 329/1926*73681302247^(10/13) 3908815980425752 a001 329/1926*28143753123^(4/5) 3908815980425752 a001 329/1926*10749957122^(5/6) 3908815980425752 a001 329/1926*4106118243^(20/23) 3908815980425752 a001 329/1926*1568397607^(10/11) 3908815980425752 a001 329/1926*599074578^(20/21) 3908815980425913 a001 2584/2207*141422324^(12/13) 3908815980425914 a001 2584/2207*2537720636^(4/5) 3908815980425914 a001 2584/2207*45537549124^(12/17) 3908815980425914 a001 2584/2207*14662949395604^(4/7) 3908815980425914 a001 2584/2207*(1/2+1/2*5^(1/2))^36 3908815980425914 a001 2584/2207*505019158607^(9/14) 3908815980425914 a001 2584/2207*192900153618^(2/3) 3908815980425914 a001 2584/2207*73681302247^(9/13) 3908815980425914 a001 2584/2207*10749957122^(3/4) 3908815980425914 a001 2584/2207*4106118243^(18/23) 3908815980425914 a001 2584/2207*1568397607^(9/11) 3908815980425914 a001 2584/2207*599074578^(6/7) 3908815980425914 a001 2584/2207*228826127^(9/10) 3908815980425914 a001 2584/2207*87403803^(18/19) 3908815984771080 m001 1/PrimesInBinary*CopelandErdos^2/ln(Rabbit) 3908815989322739 a001 4807526976/2207*3571^(6/17) 3908816005572809 a001 39088169-4*5^(1/2) 3908816007353604 a001 7778742049/2207*3571^(5/17) 3908816012370228 p004 log(21481/431) 3908816017279821 m005 (1/2*Zeta(3)+1/7)/(2/3*exp(1)+1/11) 3908816018362506 r005 Re(z^2+c),c=-71/102+1/31*I,n=14 3908816019899206 a007 Real Root Of 869*x^4+888*x^3+854*x^2-914*x-455 3908816025384469 a001 12586269025/2207*3571^(4/17) 3908816029894526 a007 Real Root Of 64*x^4+322*x^3+187*x^2-164*x+792 3908816032532281 r005 Im(z^2+c),c=11/32+2/13*I,n=20 3908816042537049 a001 32951280099/15127*1364^(2/5) 3908816043415334 a001 20365011074/2207*3571^(3/17) 3908816052094351 m001 (3^(1/3))^2/ln(TreeGrowth2nd)*cosh(1) 3908816052786414 a001 163427599167/4181 3908816055140330 a001 14930352/2207*9349^(18/19) 3908816057126849 a001 86267571272/39603*1364^(2/5) 3908816057494090 a001 24157817/2207*9349^(17/19) 3908816059255472 a001 225851433717/103682*1364^(2/5) 3908816059566034 a001 591286729879/271443*1364^(2/5) 3908816059611345 a001 1548008755920/710647*1364^(2/5) 3908816059617955 a001 4052739537881/1860498*1364^(2/5) 3908816059618920 a001 2178309*1364^(2/5) 3908816059619516 a001 6557470319842/3010349*1364^(2/5) 3908816059622041 a001 2504730781961/1149851*1364^(2/5) 3908816059639348 a001 956722026041/439204*1364^(2/5) 3908816059757972 a001 365435296162/167761*1364^(2/5) 3908816059847844 a001 39088169/2207*9349^(16/19) 3908816060571034 a001 139583862445/64079*1364^(2/5) 3908816060992225 r005 Im(z^2+c),c=10/29+4/29*I,n=42 3908816061446199 a001 32951280099/2207*3571^(2/17) 3908816062201600 a001 63245986/2207*9349^(15/19) 3908816064555355 a001 102334155/2207*9349^(14/19) 3908816066143842 a001 53316291173/24476*1364^(2/5) 3908816066909110 a001 165580141/2207*9349^(13/19) 3908816069262865 a001 267914296/2207*9349^(12/19) 3908816071616621 a001 433494437/2207*9349^(11/19) 3908816072772469 l006 ln(3845/5684) 3908816073970376 a001 701408733/2207*9349^(10/19) 3908816076085472 r005 Re(z^2+c),c=-12/17+11/61*I,n=53 3908816076324131 a001 1134903170/2207*9349^(9/19) 3908816078677886 a001 1836311903/2207*9349^(8/19) 3908816079477064 a001 53316291173/2207*3571^(1/17) 3908816080425728 a001 141/2161*2537720636^(14/15) 3908816080425728 a001 141/2161*17393796001^(6/7) 3908816080425728 a001 141/2161*45537549124^(14/17) 3908816080425728 a001 141/2161*817138163596^(14/19) 3908816080425728 a001 141/2161*14662949395604^(2/3) 3908816080425728 a001 141/2161*(1/2+1/2*5^(1/2))^42 3908816080425728 a001 141/2161*505019158607^(3/4) 3908816080425728 a001 141/2161*192900153618^(7/9) 3908816080425728 a001 141/2161*10749957122^(7/8) 3908816080425728 a001 141/2161*4106118243^(21/23) 3908816080425728 a001 141/2161*1568397607^(21/22) 3908816080425893 a001 6765/2207*45537549124^(2/3) 3908816080425893 a001 6765/2207*(1/2+1/2*5^(1/2))^34 3908816080425893 a001 6765/2207*10749957122^(17/24) 3908816080425893 a001 6765/2207*4106118243^(17/23) 3908816080425893 a001 6765/2207*1568397607^(17/22) 3908816080425893 a001 6765/2207*599074578^(17/21) 3908816080425893 a001 6765/2207*228826127^(17/20) 3908816080425893 a001 6765/2207*87403803^(17/19) 3908816080425896 a001 6765/2207*33385282^(17/18) 3908816081031642 a001 2971215073/2207*9349^(7/19) 3908816082600543 a001 10182505537/2889*1364^(1/3) 3908816083385397 a001 4807526976/2207*9349^(6/19) 3908816085739152 a001 7778742049/2207*9349^(5/19) 3908816086016848 a001 2971215073/3571*1364^(8/15) 3908816086334281 m001 (-cos(1/12*Pi)+GolombDickman)/(2^(1/2)-cos(1)) 3908816087803756 r002 62th iterates of z^2 + 3908816088092908 a001 12586269025/2207*9349^(4/19) 3908816090446663 a001 20365011074/2207*9349^(3/19) 3908816090983005 a001 78176333/2-5/2*5^(1/2) 3908816090983007 a001 427859009319/10946 3908816091293850 a001 5702887/2207*24476^(20/21) 3908816091604586 a001 9227465/2207*24476^(19/21) 3908816091915276 a001 14930352/2207*24476^(6/7) 3908816092225984 a001 24157817/2207*24476^(17/21) 3908816092536685 a001 39088169/2207*24476^(16/21) 3908816092800418 a001 32951280099/2207*9349^(2/19) 3908816092847388 a001 63245986/2207*24476^(5/7) 3908816093158091 a001 102334155/2207*24476^(2/3) 3908816093468794 a001 165580141/2207*24476^(13/21) 3908816093779496 a001 267914296/2207*24476^(4/7) 3908816094090199 a001 433494437/2207*24476^(11/21) 3908816094400902 a001 701408733/2207*24476^(10/21) 3908816094711604 a001 1134903170/2207*24476^(3/7) 3908816095015529 a001 329/13201*312119004989^(4/5) 3908816095015529 a001 329/13201*(1/2+1/2*5^(1/2))^44 3908816095015529 a001 329/13201*23725150497407^(11/16) 3908816095015529 a001 329/13201*73681302247^(11/13) 3908816095015529 a001 329/13201*10749957122^(11/12) 3908816095015529 a001 329/13201*4106118243^(22/23) 3908816095015693 a001 17711/2207*(1/2+1/2*5^(1/2))^32 3908816095015693 a001 17711/2207*23725150497407^(1/2) 3908816095015693 a001 17711/2207*505019158607^(4/7) 3908816095015693 a001 17711/2207*73681302247^(8/13) 3908816095015693 a001 17711/2207*10749957122^(2/3) 3908816095015693 a001 17711/2207*4106118243^(16/23) 3908816095015693 a001 17711/2207*1568397607^(8/11) 3908816095015693 a001 17711/2207*599074578^(16/21) 3908816095015693 a001 17711/2207*228826127^(4/5) 3908816095015694 a001 17711/2207*87403803^(16/19) 3908816095015696 a001 17711/2207*33385282^(8/9) 3908816095015716 a001 17711/2207*12752043^(16/17) 3908816095022307 a001 1836311903/2207*24476^(8/21) 3908816095154174 a001 53316291173/2207*9349^(1/19) 3908816095333010 a001 2971215073/2207*24476^(1/3) 3908816095643713 a001 4807526976/2207*24476^(2/7) 3908816095954415 a001 7778742049/2207*24476^(5/21) 3908816096265118 a001 12586269025/2207*24476^(4/21) 3908816096555815 a001 1120149428790/28657 3908816096575821 a001 20365011074/2207*24476^(1/7) 3908816096590505 m005 (2/3*Pi+4)/(5*exp(1)+2) 3908816096597204 a001 987*64079^(22/23) 3908816096638821 a001 3524578/2207*64079^(21/23) 3908816096680123 a001 5702887/2207*64079^(20/23) 3908816096721545 a001 9227465/2207*64079^(19/23) 3908816096762922 a001 14930352/2207*64079^(18/23) 3908816096804316 a001 24157817/2207*64079^(17/23) 3908816096845703 a001 39088169/2207*64079^(16/23) 3908816096886523 a001 32951280099/2207*24476^(2/21) 3908816096887093 a001 63245986/2207*64079^(15/23) 3908816096928481 a001 102334155/2207*64079^(14/23) 3908816096969871 a001 165580141/2207*64079^(13/23) 3908816097011260 a001 267914296/2207*64079^(12/23) 3908816097052649 a001 433494437/2207*64079^(11/23) 3908816097094038 a001 701408733/2207*64079^(10/23) 3908816097135427 a001 1134903170/2207*64079^(9/23) 3908816097144152 a001 21/2206*(1/2+1/2*5^(1/2))^46 3908816097144152 a001 21/2206*10749957122^(23/24) 3908816097144259 a001 46368/2207*7881196^(10/11) 3908816097144309 a001 46368/2207*20633239^(6/7) 3908816097144316 a001 46368/2207*141422324^(10/13) 3908816097144317 a001 46368/2207*2537720636^(2/3) 3908816097144317 a001 46368/2207*45537549124^(10/17) 3908816097144317 a001 46368/2207*312119004989^(6/11) 3908816097144317 a001 46368/2207*14662949395604^(10/21) 3908816097144317 a001 46368/2207*(1/2+1/2*5^(1/2))^30 3908816097144317 a001 46368/2207*192900153618^(5/9) 3908816097144317 a001 46368/2207*28143753123^(3/5) 3908816097144317 a001 46368/2207*10749957122^(5/8) 3908816097144317 a001 46368/2207*4106118243^(15/23) 3908816097144317 a001 46368/2207*1568397607^(15/22) 3908816097144317 a001 46368/2207*599074578^(5/7) 3908816097144317 a001 46368/2207*228826127^(3/4) 3908816097144317 a001 46368/2207*87403803^(15/19) 3908816097144319 a001 46368/2207*33385282^(5/6) 3908816097144338 a001 46368/2207*12752043^(15/17) 3908816097144471 a001 46368/2207*4870847^(15/16) 3908816097176816 a001 1836311903/2207*64079^(8/23) 3908816097197226 a001 53316291173/2207*24476^(1/21) 3908816097218205 a001 2971215073/2207*64079^(7/23) 3908816097259594 a001 4807526976/2207*64079^(6/23) 3908816097300983 a001 7778742049/2207*64079^(5/23) 3908816097342372 a001 12586269025/2207*64079^(4/23) 3908816097368877 a001 2932589277051/75025 3908816097383762 a001 20365011074/2207*64079^(3/23) 3908816097396795 a001 5702887/2207*167761^(4/5) 3908816097424596 a001 63245986/2207*167761^(3/5) 3908816097425151 a001 32951280099/2207*64079^(2/23) 3908816097452374 a001 701408733/2207*167761^(2/5) 3908816097454714 a001 329/90481*45537549124^(16/17) 3908816097454714 a001 329/90481*14662949395604^(16/21) 3908816097454714 a001 329/90481*(1/2+1/2*5^(1/2))^48 3908816097454714 a001 329/90481*192900153618^(8/9) 3908816097454714 a001 329/90481*73681302247^(12/13) 3908816097454871 a001 121393/2207*20633239^(4/5) 3908816097454879 a001 121393/2207*17393796001^(4/7) 3908816097454879 a001 121393/2207*14662949395604^(4/9) 3908816097454879 a001 121393/2207*(1/2+1/2*5^(1/2))^28 3908816097454879 a001 121393/2207*73681302247^(7/13) 3908816097454879 a001 121393/2207*10749957122^(7/12) 3908816097454879 a001 121393/2207*4106118243^(14/23) 3908816097454879 a001 121393/2207*1568397607^(7/11) 3908816097454879 a001 121393/2207*599074578^(2/3) 3908816097454879 a001 121393/2207*228826127^(7/10) 3908816097454879 a001 121393/2207*87403803^(14/19) 3908816097454881 a001 121393/2207*33385282^(7/9) 3908816097454898 a001 121393/2207*12752043^(14/17) 3908816097455023 a001 121393/2207*4870847^(7/8) 3908816097455932 a001 121393/2207*1860498^(14/15) 3908816097466540 a001 53316291173/2207*64079^(1/23) 3908816097480151 a001 7778742049/2207*167761^(1/5) 3908816097487501 a001 7677618402363/196418 3908816097488788 a001 832040/2207*439204^(8/9) 3908816097492231 a001 3524578/2207*439204^(7/9) 3908816097494416 a001 14930352/2207*439204^(2/3) 3908816097496672 a001 63245986/2207*439204^(5/9) 3908816097498923 a001 267914296/2207*439204^(4/9) 3908816097500024 a001 141/101521*312119004989^(10/11) 3908816097500024 a001 141/101521*(1/2+1/2*5^(1/2))^50 3908816097500024 a001 141/101521*3461452808002^(5/6) 3908816097500189 a001 317811/2207*141422324^(2/3) 3908816097500189 a001 317811/2207*(1/2+1/2*5^(1/2))^26 3908816097500189 a001 317811/2207*73681302247^(1/2) 3908816097500189 a001 317811/2207*10749957122^(13/24) 3908816097500189 a001 317811/2207*4106118243^(13/23) 3908816097500189 a001 317811/2207*1568397607^(13/22) 3908816097500189 a001 317811/2207*599074578^(13/21) 3908816097500189 a001 317811/2207*228826127^(13/20) 3908816097500189 a001 317811/2207*87403803^(13/19) 3908816097500191 a001 317811/2207*33385282^(13/18) 3908816097500207 a001 317811/2207*12752043^(13/17) 3908816097500323 a001 317811/2207*4870847^(13/16) 3908816097501168 a001 317811/2207*1860498^(13/15) 3908816097501174 a001 1134903170/2207*439204^(1/3) 3908816097503426 a001 4807526976/2207*439204^(2/9) 3908816097504808 a001 20100265930038/514229 3908816097505677 a001 20365011074/2207*439204^(1/9) 3908816097506635 a001 329/620166*(1/2+1/2*5^(1/2))^52 3908816097506635 a001 329/620166*23725150497407^(13/16) 3908816097506635 a001 329/620166*505019158607^(13/14) 3908816097506754 a001 832040/2207*7881196^(8/11) 3908816097506799 a001 832040/2207*141422324^(8/13) 3908816097506800 a001 832040/2207*2537720636^(8/15) 3908816097506800 a001 832040/2207*45537549124^(8/17) 3908816097506800 a001 832040/2207*14662949395604^(8/21) 3908816097506800 a001 832040/2207*(1/2+1/2*5^(1/2))^24 3908816097506800 a001 832040/2207*192900153618^(4/9) 3908816097506800 a001 832040/2207*73681302247^(6/13) 3908816097506800 a001 832040/2207*10749957122^(1/2) 3908816097506800 a001 832040/2207*4106118243^(12/23) 3908816097506800 a001 832040/2207*1568397607^(6/11) 3908816097506800 a001 832040/2207*599074578^(4/7) 3908816097506800 a001 832040/2207*228826127^(3/5) 3908816097506800 a001 832040/2207*87403803^(12/19) 3908816097506802 a001 832040/2207*33385282^(2/3) 3908816097506817 a001 832040/2207*12752043^(12/17) 3908816097506923 a001 832040/2207*4870847^(3/4) 3908816097507333 a001 52623179387751/1346269 3908816097507376 a001 317811/2207*710647^(13/14) 3908816097507599 a001 987/4870847*14662949395604^(6/7) 3908816097507599 a001 987/4870847*(1/2+1/2*5^(1/2))^54 3908816097507701 a001 1547969350935/39602 3908816097507703 a001 832040/2207*1860498^(4/5) 3908816097507722 a001 987*7881196^(2/3) 3908816097507740 a001 329/4250681*14662949395604^(8/9) 3908816097507740 a001 329/4250681*(1/2+1/2*5^(1/2))^56 3908816097507755 a001 360684637311894/9227465 3908816097507761 a001 141/4769326*(1/2+1/2*5^(1/2))^58 3908816097507763 a001 944284639702467/24157817 3908816097507764 a001 329/29134601*14662949395604^(20/21) 3908816097507764 a001 2472169281795507/63245986 3908816097507764 a001 6472223205684054/165580141 3908816097507764 a001 987*312119004989^(2/5) 3908816097507764 a001 987*10749957122^(11/24) 3908816097507764 a001 987*4106118243^(11/23) 3908816097507764 a001 987*1568397607^(1/2) 3908816097507764 a001 987*599074578^(11/21) 3908816097507764 a001 10472277129572601/267914296 3908816097507764 a001 987*228826127^(11/20) 3908816097507764 a001 190478758280407/4873055 3908816097507764 a001 987*87403803^(11/19) 3908816097507765 a001 1527884642093040/39088169 3908816097507766 a001 987*33385282^(11/18) 3908816097507768 a001 194533334130191/4976784 3908816097507773 a001 987/20633239*14662949395604^(19/21) 3908816097507773 a001 987/20633239*(1/2+1/2*5^(1/2))^57 3908816097507780 a001 987*12752043^(11/17) 3908816097507788 a001 222915365078679/5702887 3908816097507827 a001 987/7881196*(1/2+1/2*5^(1/2))^55 3908816097507827 a001 987/7881196*3461452808002^(11/12) 3908816097507877 a001 987*4870847^(11/16) 3908816097507891 a001 14930352/2207*7881196^(6/11) 3908816097507900 a001 5702887/2207*20633239^(4/7) 3908816097507900 a001 63245986/2207*7881196^(5/11) 3908816097507905 a001 5702887/2207*2537720636^(4/9) 3908816097507905 a001 5702887/2207*(1/2+1/2*5^(1/2))^20 3908816097507905 a001 5702887/2207*23725150497407^(5/16) 3908816097507905 a001 5702887/2207*505019158607^(5/14) 3908816097507905 a001 5702887/2207*73681302247^(5/13) 3908816097507905 a001 5702887/2207*28143753123^(2/5) 3908816097507905 a001 5702887/2207*10749957122^(5/12) 3908816097507905 a001 5702887/2207*4106118243^(10/23) 3908816097507905 a001 5702887/2207*1568397607^(5/11) 3908816097507905 a001 5702887/2207*599074578^(10/21) 3908816097507905 a001 5702887/2207*228826127^(1/2) 3908816097507905 a001 5702887/2207*87403803^(10/19) 3908816097507906 a001 267914296/2207*7881196^(4/11) 3908816097507907 a001 5702887/2207*33385282^(5/9) 3908816097507908 a001 433494437/2207*7881196^(1/3) 3908816097507912 a001 1134903170/2207*7881196^(3/11) 3908816097507917 a001 4807526976/2207*7881196^(2/11) 3908816097507919 a001 5702887/2207*12752043^(10/17) 3908816097507923 a001 20365011074/2207*7881196^(1/11) 3908816097507925 a001 102334155/2207*20633239^(2/5) 3908816097507925 a001 63245986/2207*20633239^(3/7) 3908816097507925 a001 14930352/2207*141422324^(6/13) 3908816097507925 a001 14930352/2207*2537720636^(2/5) 3908816097507925 a001 14930352/2207*45537549124^(6/17) 3908816097507925 a001 14930352/2207*14662949395604^(2/7) 3908816097507925 a001 14930352/2207*(1/2+1/2*5^(1/2))^18 3908816097507925 a001 14930352/2207*192900153618^(1/3) 3908816097507925 a001 14930352/2207*10749957122^(3/8) 3908816097507925 a001 14930352/2207*4106118243^(9/23) 3908816097507925 a001 14930352/2207*1568397607^(9/22) 3908816097507925 a001 14930352/2207*599074578^(3/7) 3908816097507925 a001 14930352/2207*228826127^(9/20) 3908816097507926 a001 14930352/2207*87403803^(9/19) 3908816097507926 a001 701408733/2207*20633239^(2/7) 3908816097507927 a001 2971215073/2207*20633239^(1/5) 3908816097507927 a001 14930352/2207*33385282^(1/2) 3908816097507928 a001 7778742049/2207*20633239^(1/7) 3908816097507928 a001 39088169/2207*(1/2+1/2*5^(1/2))^16 3908816097507928 a001 39088169/2207*23725150497407^(1/4) 3908816097507928 a001 39088169/2207*73681302247^(4/13) 3908816097507928 a001 39088169/2207*10749957122^(1/3) 3908816097507928 a001 39088169/2207*4106118243^(8/23) 3908816097507928 a001 39088169/2207*1568397607^(4/11) 3908816097507928 a001 39088169/2207*599074578^(8/21) 3908816097507928 a001 39088169/2207*228826127^(2/5) 3908816097507929 a001 39088169/2207*87403803^(8/19) 3908816097507929 a001 102334155/2207*17393796001^(2/7) 3908816097507929 a001 102334155/2207*14662949395604^(2/9) 3908816097507929 a001 102334155/2207*(1/2+1/2*5^(1/2))^14 3908816097507929 a001 102334155/2207*505019158607^(1/4) 3908816097507929 a001 102334155/2207*10749957122^(7/24) 3908816097507929 a001 102334155/2207*4106118243^(7/23) 3908816097507929 a001 102334155/2207*1568397607^(7/22) 3908816097507929 a001 267914296/2207*141422324^(4/13) 3908816097507929 a001 102334155/2207*599074578^(1/3) 3908816097507929 a001 102334155/2207*228826127^(7/20) 3908816097507929 a001 1134903170/2207*141422324^(3/13) 3908816097507929 a001 165580141/2207*141422324^(1/3) 3908816097507929 a001 4807526976/2207*141422324^(2/13) 3908816097507929 a001 20365011074/2207*141422324^(1/13) 3908816097507929 a001 267914296/2207*2537720636^(4/15) 3908816097507929 a001 267914296/2207*45537549124^(4/17) 3908816097507929 a001 267914296/2207*817138163596^(4/19) 3908816097507929 a001 267914296/2207*14662949395604^(4/21) 3908816097507929 a001 267914296/2207*(1/2+1/2*5^(1/2))^12 3908816097507929 a001 267914296/2207*192900153618^(2/9) 3908816097507929 a001 267914296/2207*73681302247^(3/13) 3908816097507929 a001 267914296/2207*10749957122^(1/4) 3908816097507929 a001 267914296/2207*4106118243^(6/23) 3908816097507929 a001 267914296/2207*1568397607^(3/11) 3908816097507929 a001 267914296/2207*599074578^(2/7) 3908816097507929 a001 701408733/2207*2537720636^(2/9) 3908816097507929 a001 701408733/2207*312119004989^(2/11) 3908816097507929 a001 701408733/2207*(1/2+1/2*5^(1/2))^10 3908816097507929 a001 701408733/2207*28143753123^(1/5) 3908816097507929 a001 701408733/2207*10749957122^(5/24) 3908816097507929 a001 701408733/2207*4106118243^(5/23) 3908816097507929 a001 701408733/2207*1568397607^(5/22) 3908816097507929 a001 1836311903/2207*(1/2+1/2*5^(1/2))^8 3908816097507929 a001 1836311903/2207*23725150497407^(1/8) 3908816097507929 a001 1836311903/2207*505019158607^(1/7) 3908816097507929 a001 1836311903/2207*73681302247^(2/13) 3908816097507929 a001 1836311903/2207*10749957122^(1/6) 3908816097507929 a001 1836311903/2207*4106118243^(4/23) 3908816097507929 a001 4807526976/2207*2537720636^(2/15) 3908816097507929 a001 7778742049/2207*2537720636^(1/9) 3908816097507929 a001 20365011074/2207*2537720636^(1/15) 3908816097507929 a001 4807526976/2207*45537549124^(2/17) 3908816097507929 a001 4807526976/2207*14662949395604^(2/21) 3908816097507929 a001 4807526976/2207*(1/2+1/2*5^(1/2))^6 3908816097507929 a001 4807526976/2207*10749957122^(1/8) 3908816097507929 a001 12586269025/2207*(1/2+1/2*5^(1/2))^4 3908816097507929 a001 12586269025/2207*23725150497407^(1/16) 3908816097507929 a001 12586269025/2207*73681302247^(1/13) 3908816097507929 a001 4807526976/2207*4106118243^(3/23) 3908816097507929 a001 12586269025/2207*10749957122^(1/12) 3908816097507929 a001 32951280099/2207*(1/2+1/2*5^(1/2))^2 3908816097507929 a001 86267571272/2207 3908816097507929 a001 53316291173/4414+53316291173/4414*5^(1/2) 3908816097507929 a001 32951280099/2207*10749957122^(1/24) 3908816097507929 a001 20365011074/2207*45537549124^(1/17) 3908816097507929 a001 20365011074/2207*14662949395604^(1/21) 3908816097507929 a001 20365011074/2207*(1/2+1/2*5^(1/2))^3 3908816097507929 a001 20365011074/2207*192900153618^(1/18) 3908816097507929 a001 20365011074/2207*10749957122^(1/16) 3908816097507929 a001 32951280099/2207*4106118243^(1/23) 3908816097507929 a001 7778742049/2207*312119004989^(1/11) 3908816097507929 a001 7778742049/2207*(1/2+1/2*5^(1/2))^5 3908816097507929 a001 7778742049/2207*28143753123^(1/10) 3908816097507929 a001 12586269025/2207*4106118243^(2/23) 3908816097507929 a001 1836311903/2207*1568397607^(2/11) 3908816097507929 a001 32951280099/2207*1568397607^(1/22) 3908816097507929 a001 2971215073/2207*17393796001^(1/7) 3908816097507929 a001 2971215073/2207*14662949395604^(1/9) 3908816097507929 a001 2971215073/2207*(1/2+1/2*5^(1/2))^7 3908816097507929 a001 12586269025/2207*1568397607^(1/11) 3908816097507929 a001 4807526976/2207*1568397607^(3/22) 3908816097507929 a001 1134903170/2207*2537720636^(1/5) 3908816097507929 a001 32951280099/2207*599074578^(1/21) 3908816097507929 a001 1134903170/2207*45537549124^(3/17) 3908816097507929 a001 1134903170/2207*817138163596^(3/19) 3908816097507929 a001 1134903170/2207*14662949395604^(1/7) 3908816097507929 a001 1134903170/2207*(1/2+1/2*5^(1/2))^9 3908816097507929 a001 1134903170/2207*192900153618^(1/6) 3908816097507929 a001 1134903170/2207*10749957122^(3/16) 3908816097507929 a001 20365011074/2207*599074578^(1/14) 3908816097507929 a001 701408733/2207*599074578^(5/21) 3908816097507929 a001 12586269025/2207*599074578^(2/21) 3908816097507929 a001 4807526976/2207*599074578^(1/7) 3908816097507929 a001 1836311903/2207*599074578^(4/21) 3908816097507929 a001 2971215073/2207*599074578^(1/6) 3908816097507929 a001 1134903170/2207*599074578^(3/14) 3908816097507929 a001 32951280099/2207*228826127^(1/20) 3908816097507929 a001 433494437/2207*312119004989^(1/5) 3908816097507929 a001 433494437/2207*(1/2+1/2*5^(1/2))^11 3908816097507929 a001 433494437/2207*1568397607^(1/4) 3908816097507929 a001 12586269025/2207*228826127^(1/10) 3908816097507929 a001 7778742049/2207*228826127^(1/8) 3908816097507929 a001 4807526976/2207*228826127^(3/20) 3908816097507929 a001 267914296/2207*228826127^(3/10) 3908816097507929 a001 1836311903/2207*228826127^(1/5) 3908816097507929 a001 701408733/2207*228826127^(1/4) 3908816097507929 a001 32951280099/2207*87403803^(1/19) 3908816097507929 a001 165580141/2207*(1/2+1/2*5^(1/2))^13 3908816097507929 a001 165580141/2207*73681302247^(1/4) 3908816097507929 a001 12586269025/2207*87403803^(2/19) 3908816097507929 a001 4807526976/2207*87403803^(3/19) 3908816097507929 a001 1836311903/2207*87403803^(4/19) 3908816097507929 a001 102334155/2207*87403803^(7/19) 3908816097507929 a001 63245986/2207*141422324^(5/13) 3908816097507929 a001 701408733/2207*87403803^(5/19) 3908816097507929 a001 267914296/2207*87403803^(6/19) 3908816097507929 a001 32951280099/2207*33385282^(1/18) 3908816097507929 a001 63245986/2207*2537720636^(1/3) 3908816097507929 a001 63245986/2207*45537549124^(5/17) 3908816097507929 a001 63245986/2207*312119004989^(3/11) 3908816097507929 a001 63245986/2207*14662949395604^(5/21) 3908816097507929 a001 63245986/2207*(1/2+1/2*5^(1/2))^15 3908816097507929 a001 63245986/2207*192900153618^(5/18) 3908816097507929 a001 63245986/2207*28143753123^(3/10) 3908816097507929 a001 63245986/2207*10749957122^(5/16) 3908816097507929 a001 63245986/2207*599074578^(5/14) 3908816097507929 a001 63245986/2207*228826127^(3/8) 3908816097507929 a001 20365011074/2207*33385282^(1/12) 3908816097507929 a001 12586269025/2207*33385282^(1/9) 3908816097507929 a001 4807526976/2207*33385282^(1/6) 3908816097507930 a001 1836311903/2207*33385282^(2/9) 3908816097507930 a001 1134903170/2207*33385282^(1/4) 3908816097507930 a001 701408733/2207*33385282^(5/18) 3908816097507930 a001 39088169/2207*33385282^(4/9) 3908816097507930 a001 267914296/2207*33385282^(1/3) 3908816097507930 a001 102334155/2207*33385282^(7/18) 3908816097507930 a001 24157817/2207*45537549124^(1/3) 3908816097507930 a001 24157817/2207*(1/2+1/2*5^(1/2))^17 3908816097507930 a001 32951280099/2207*12752043^(1/17) 3908816097507930 a001 63245986/2207*33385282^(5/12) 3908816097507932 a001 12586269025/2207*12752043^(2/17) 3908816097507933 a001 4807526976/2207*12752043^(3/17) 3908816097507934 a001 1836311903/2207*12752043^(4/17) 3908816097507936 a001 701408733/2207*12752043^(5/17) 3908816097507937 a001 267914296/2207*12752043^(6/17) 3908816097507938 a001 9227465/2207*817138163596^(1/3) 3908816097507938 a001 9227465/2207*(1/2+1/2*5^(1/2))^19 3908816097507938 a001 14930352/2207*12752043^(9/17) 3908816097507938 a001 9227465/2207*87403803^(1/2) 3908816097507939 a001 102334155/2207*12752043^(7/17) 3908816097507939 a001 32951280099/2207*4870847^(1/16) 3908816097507940 a001 39088169/2207*12752043^(8/17) 3908816097507942 a001 24157817/2207*12752043^(1/2) 3908816097507949 a001 12586269025/2207*4870847^(1/8) 3908816097507952 a001 3524578/2207*7881196^(7/11) 3908816097507960 a001 4807526976/2207*4870847^(3/16) 3908816097507970 a001 1836311903/2207*4870847^(1/4) 3908816097507980 a001 701408733/2207*4870847^(5/16) 3908816097507986 a001 3524578/2207*20633239^(3/5) 3908816097507991 a001 267914296/2207*4870847^(3/8) 3908816097507992 a001 3524578/2207*141422324^(7/13) 3908816097507992 a001 3524578/2207*2537720636^(7/15) 3908816097507992 a001 3524578/2207*17393796001^(3/7) 3908816097507992 a001 3524578/2207*45537549124^(7/17) 3908816097507992 a001 3524578/2207*14662949395604^(1/3) 3908816097507992 a001 3524578/2207*(1/2+1/2*5^(1/2))^21 3908816097507992 a001 3524578/2207*192900153618^(7/18) 3908816097507992 a001 3524578/2207*10749957122^(7/16) 3908816097507992 a001 3524578/2207*599074578^(1/2) 3908816097507994 a001 3524578/2207*33385282^(7/12) 3908816097508001 a001 102334155/2207*4870847^(7/16) 3908816097508004 a001 32951280099/2207*1860498^(1/15) 3908816097508008 a001 5702887/2207*4870847^(5/8) 3908816097508011 a001 39088169/2207*4870847^(1/2) 3908816097508018 a001 14930352/2207*4870847^(9/16) 3908816097508042 a001 20365011074/2207*1860498^(1/10) 3908816097508079 a001 12586269025/2207*1860498^(2/15) 3908816097508117 a001 7778742049/2207*1860498^(1/6) 3908816097508155 a001 4807526976/2207*1860498^(1/5) 3908816097508195 a001 987/3010349*(1/2+1/2*5^(1/2))^53 3908816097508230 a001 1836311903/2207*1860498^(4/15) 3908816097508268 a001 1134903170/2207*1860498^(3/10) 3908816097508305 a001 701408733/2207*1860498^(1/3) 3908816097508360 a001 1346269/2207*(1/2+1/2*5^(1/2))^23 3908816097508360 a001 1346269/2207*4106118243^(1/2) 3908816097508381 a001 267914296/2207*1860498^(2/5) 3908816097508456 a001 102334155/2207*1860498^(7/15) 3908816097508482 a001 32951280099/2207*710647^(1/14) 3908816097508494 a001 63245986/2207*1860498^(1/2) 3908816097508531 a001 39088169/2207*1860498^(8/15) 3908816097508592 a001 987*1860498^(11/15) 3908816097508603 a001 14930352/2207*1860498^(3/5) 3908816097508658 a001 5702887/2207*1860498^(2/3) 3908816097508782 a001 3524578/2207*1860498^(7/10) 3908816097508893 a001 32522913457713/832040 3908816097509035 a001 12586269025/2207*710647^(1/7) 3908816097509587 a001 4807526976/2207*710647^(3/14) 3908816097509864 a001 2971215073/2207*710647^(1/4) 3908816097510140 a001 1836311903/2207*710647^(2/7) 3908816097510693 a001 701408733/2207*710647^(5/14) 3908816097510720 a001 987/1149851*817138163596^(17/19) 3908816097510720 a001 987/1149851*14662949395604^(17/21) 3908816097510720 a001 987/1149851*(1/2+1/2*5^(1/2))^51 3908816097510720 a001 987/1149851*192900153618^(17/18) 3908816097510879 a001 514229/2207*20633239^(5/7) 3908816097510885 a001 514229/2207*2537720636^(5/9) 3908816097510885 a001 514229/2207*312119004989^(5/11) 3908816097510885 a001 514229/2207*(1/2+1/2*5^(1/2))^25 3908816097510885 a001 514229/2207*3461452808002^(5/12) 3908816097510885 a001 514229/2207*28143753123^(1/2) 3908816097510885 a001 514229/2207*228826127^(5/8) 3908816097511246 a001 267914296/2207*710647^(3/7) 3908816097511799 a001 102334155/2207*710647^(1/2) 3908816097511826 a001 514229/2207*1860498^(5/6) 3908816097512010 a001 32951280099/2207*271443^(1/13) 3908816097512351 a001 39088169/2207*710647^(4/7) 3908816097512901 a001 14930352/2207*710647^(9/14) 3908816097513433 a001 5702887/2207*710647^(5/7) 3908816097513434 a001 832040/2207*710647^(6/7) 3908816097513797 a001 3524578/2207*710647^(3/4) 3908816097513845 a001 987*710647^(11/14) 3908816097515504 a001 4140882509225/105937 3908816097516090 a001 12586269025/2207*271443^(2/13) 3908816097520171 a001 4807526976/2207*271443^(3/13) 3908816097523079 a001 53316291173/2207*103682^(1/24) 3908816097524252 a001 1836311903/2207*271443^(4/13) 3908816097528027 a001 987/439204*14662949395604^(7/9) 3908816097528027 a001 987/439204*(1/2+1/2*5^(1/2))^49 3908816097528027 a001 987/439204*505019158607^(7/8) 3908816097528141 a001 196418/2207*7881196^(9/11) 3908816097528192 a001 196418/2207*141422324^(9/13) 3908816097528192 a001 196418/2207*2537720636^(3/5) 3908816097528192 a001 196418/2207*45537549124^(9/17) 3908816097528192 a001 196418/2207*817138163596^(9/19) 3908816097528192 a001 196418/2207*14662949395604^(3/7) 3908816097528192 a001 196418/2207*(1/2+1/2*5^(1/2))^27 3908816097528192 a001 196418/2207*192900153618^(1/2) 3908816097528192 a001 196418/2207*10749957122^(9/16) 3908816097528192 a001 196418/2207*599074578^(9/14) 3908816097528195 a001 196418/2207*33385282^(3/4) 3908816097528333 a001 701408733/2207*271443^(5/13) 3908816097529209 a001 196418/2207*1860498^(9/10) 3908816097532414 a001 267914296/2207*271443^(6/13) 3908816097534454 a001 165580141/2207*271443^(1/2) 3908816097536494 a001 102334155/2207*271443^(7/13) 3908816097538230 a001 32951280099/2207*103682^(1/12) 3908816097540575 a001 39088169/2207*271443^(8/13) 3908816097544652 a001 14930352/2207*271443^(9/13) 3908816097548713 a001 5702887/2207*271443^(10/13) 3908816097552653 a001 987*271443^(11/13) 3908816097553380 a001 20365011074/2207*103682^(1/8) 3908816097555769 a001 832040/2207*271443^(12/13) 3908816097560814 a001 4745029125312/121393 3908816097568531 a001 12586269025/2207*103682^(1/6) 3908816097583681 a001 7778742049/2207*103682^(5/24) 3908816097598832 a001 4807526976/2207*103682^(1/4) 3908816097613982 a001 2971215073/2207*103682^(7/24) 3908816097621212 a001 53316291173/2207*39603^(1/22) 3908816097629133 a001 1836311903/2207*103682^(1/3) 3908816097644283 a001 1134903170/2207*103682^(3/8) 3908816097646652 a001 987/167761*(1/2+1/2*5^(1/2))^47 3908816097646816 a001 75025/2207*(1/2+1/2*5^(1/2))^29 3908816097646816 a001 75025/2207*1322157322203^(1/2) 3908816097659434 a001 701408733/2207*103682^(5/12) 3908816097674584 a001 433494437/2207*103682^(11/24) 3908816097689735 a001 267914296/2207*103682^(1/2) 3908816097704885 a001 165580141/2207*103682^(13/24) 3908816097720036 a001 102334155/2207*103682^(7/12) 3908816097734496 a001 32951280099/2207*39603^(1/11) 3908816097735187 a001 63245986/2207*103682^(5/8) 3908816097750336 a001 39088169/2207*103682^(2/3) 3908816097765489 a001 24157817/2207*103682^(17/24) 3908816097780634 a001 14930352/2207*103682^(3/4) 3908816097795798 a001 9227465/2207*103682^(19/24) 3908816097810915 a001 5702887/2207*103682^(5/6) 3908816097826152 a001 3524578/2207*103682^(7/8) 3908816097841075 a001 987*103682^(11/12) 3908816097847779 a001 20365011074/2207*39603^(3/22) 3908816097856822 a001 1346269/2207*103682^(23/24) 3908816097871376 a001 86306659441/2208 3908816097961063 a001 12586269025/2207*39603^(2/11) 3908816098074346 a001 7778742049/2207*39603^(5/22) 3908816098081406 r009 Im(z^3+c),c=-11/34+1/44*I,n=12 3908816098187629 a001 4807526976/2207*39603^(3/11) 3908816098300913 a001 2971215073/2207*39603^(7/22) 3908816098362031 a001 53316291173/2207*15127^(1/20) 3908816098414196 a001 1836311903/2207*39603^(4/11) 3908816098459713 a001 987/64079*45537549124^(15/17) 3908816098459713 a001 987/64079*312119004989^(9/11) 3908816098459713 a001 987/64079*14662949395604^(5/7) 3908816098459713 a001 987/64079*(1/2+1/2*5^(1/2))^45 3908816098459713 a001 987/64079*192900153618^(5/6) 3908816098459713 a001 987/64079*28143753123^(9/10) 3908816098459713 a001 987/64079*10749957122^(15/16) 3908816098459878 a001 28657/2207*(1/2+1/2*5^(1/2))^31 3908816098459878 a001 28657/2207*9062201101803^(1/2) 3908816098527480 a001 1134903170/2207*39603^(9/22) 3908816098640763 a001 701408733/2207*39603^(5/11) 3908816098754047 a001 433494437/2207*39603^(1/2) 3908816098819821 a001 86267571272/3571*521^(1/13) 3908816098867330 a001 267914296/2207*39603^(6/11) 3908816098980613 a001 165580141/2207*39603^(13/22) 3908816099093897 a001 102334155/2207*39603^(7/11) 3908816099207180 a001 63245986/2207*39603^(15/22) 3908816099216132 a001 32951280099/2207*15127^(1/10) 3908816099320463 a001 39088169/2207*39603^(8/11) 3908816099433748 a001 24157817/2207*39603^(17/22) 3908816099547027 a001 14930352/2207*39603^(9/11) 3908816099660323 a001 9227465/2207*39603^(19/22) 3908816099773573 a001 5702887/2207*39603^(10/11) 3908816099886944 a001 3524578/2207*39603^(21/22) 3908816100000001 a001 24157801/2+24157817/2*5^(1/2) 3908816100070234 a001 20365011074/2207*15127^(3/20) 3908816100924336 a001 12586269025/2207*15127^(1/5) 3908816101778438 a001 7778742049/2207*15127^(1/4) 3908816102632540 a001 4807526976/2207*15127^(3/10) 3908816103002162 m001 (Totient+ZetaP(3))/(FeigenbaumDelta-Kolakoski) 3908816103486641 a001 2971215073/2207*15127^(7/20) 3908816104012485 a001 53316291173/2207*5778^(1/18) 3908816104032521 a001 987/24476*(1/2+1/2*5^(1/2))^43 3908816104032686 a001 10946/2207*141422324^(11/13) 3908816104032686 a001 10946/2207*2537720636^(11/15) 3908816104032686 a001 10946/2207*45537549124^(11/17) 3908816104032686 a001 10946/2207*312119004989^(3/5) 3908816104032686 a001 10946/2207*14662949395604^(11/21) 3908816104032686 a001 10946/2207*(1/2+1/2*5^(1/2))^33 3908816104032686 a001 10946/2207*192900153618^(11/18) 3908816104032686 a001 10946/2207*10749957122^(11/16) 3908816104032686 a001 10946/2207*1568397607^(3/4) 3908816104032686 a001 10946/2207*599074578^(11/14) 3908816104032689 a001 10946/2207*33385282^(11/12) 3908816104340435 a001 20365011074/9349*1364^(2/5) 3908816104340743 a001 1836311903/2207*15127^(2/5) 3908816105194845 a001 1134903170/2207*15127^(9/20) 3908816106048947 a001 701408733/2207*15127^(1/2) 3908816106903049 a001 433494437/2207*15127^(11/20) 3908816107040274 m002 -1-Pi+Log[Pi]*ProductLog[Pi]-Tanh[Pi] 3908816107757150 a001 267914296/2207*15127^(3/5) 3908816108611252 a001 165580141/2207*15127^(13/20) 3908816109465354 a001 102334155/2207*15127^(7/10) 3908816110319456 a001 63245986/2207*15127^(3/4) 3908816110517041 a001 32951280099/2207*5778^(1/9) 3908816111173557 a001 39088169/2207*15127^(4/5) 3908816112027661 a001 24157817/2207*15127^(17/20) 3908816112881758 a001 14930352/2207*15127^(9/10) 3908816113735872 a001 9227465/2207*15127^(19/20) 3908816113810494 m001 (GolombDickman-TravellingSalesman)/exp(Pi) 3908816114234401 a001 34111385/281*843^(6/7) 3908816114589800 a001 88143803384/2255 3908816115011440 m001 BesselI(0,1)^MadelungNaCl*sin(Pi/12) 3908816115011440 m001 sin(1/12*Pi)*BesselI(0,1)^MadelungNaCl 3908816117021598 a001 20365011074/2207*5778^(1/6) 3908816118545775 r002 14th iterates of z^2 + 3908816123526154 a001 12586269025/2207*5778^(2/9) 3908816124599765 m001 (2^(1/2)-Catalan)/(BesselJ(1,1)+GaussAGM) 3908816125296360 r009 Re(z^3+c),c=-17/46+31/47*I,n=26 3908816130014432 r002 17th iterates of z^2 + 3908816130030710 a001 7778742049/2207*5778^(5/18) 3908816134430911 m001 (Psi(2,1/3)+ln(gamma))/(BesselI(1,1)+Thue) 3908816134598879 a007 Real Root Of 246*x^4+973*x^3-155*x^2-626*x+604 3908816135046740 r002 64th iterates of z^2 + 3908816136535267 a001 4807526976/2207*5778^(1/3) 3908816142229115 a001 987/9349*(1/2+1/2*5^(1/2))^41 3908816142229279 a001 4181/2207*2537720636^(7/9) 3908816142229279 a001 4181/2207*17393796001^(5/7) 3908816142229279 a001 4181/2207*312119004989^(7/11) 3908816142229279 a001 4181/2207*14662949395604^(5/9) 3908816142229279 a001 4181/2207*(1/2+1/2*5^(1/2))^35 3908816142229279 a001 4181/2207*505019158607^(5/8) 3908816142229279 a001 4181/2207*28143753123^(7/10) 3908816142229279 a001 4181/2207*599074578^(5/6) 3908816142229279 a001 4181/2207*228826127^(7/8) 3908816143039823 a001 2971215073/2207*5778^(7/18) 3908816147663678 a001 53316291173/2207*2207^(1/16) 3908816149544380 a001 1836311903/2207*5778^(4/9) 3908816156048936 a001 1134903170/2207*5778^(1/2) 3908816162553492 a001 701408733/2207*5778^(5/9) 3908816169058049 a001 433494437/2207*5778^(11/18) 3908816174520454 p004 log(25561/17291) 3908816175562605 a001 267914296/2207*5778^(2/3) 3908816175702959 r005 Re(z^2+c),c=-29/54+9/62*I,n=49 3908816182067162 a001 165580141/2207*5778^(13/18) 3908816182600522 a001 53316291173/15127*1364^(1/3) 3908816187568142 m003 5+25*Cos[1/2+Sqrt[5]/2]*Tanh[1/2+Sqrt[5]/2] 3908816188571718 a001 102334155/2207*5778^(7/9) 3908816195076275 a001 63245986/2207*5778^(5/6) 3908816197190323 a001 139583862445/39603*1364^(1/3) 3908816197819429 a001 32951280099/2207*2207^(1/8) 3908816199318946 a001 182717648081/51841*1364^(1/3) 3908816199629508 a001 956722026041/271443*1364^(1/3) 3908816199674818 a001 2504730781961/710647*1364^(1/3) 3908816199681429 a001 3278735159921/930249*1364^(1/3) 3908816199682989 a001 10610209857723/3010349*1364^(1/3) 3908816199685514 a001 4052739537881/1149851*1364^(1/3) 3908816199702821 a001 387002188980/109801*1364^(1/3) 3908816199821446 a001 591286729879/167761*1364^(1/3) 3908816200634507 a001 225851433717/64079*1364^(1/3) 3908816201580831 a001 39088169/2207*5778^(8/9) 3908816204619413 a007 Real Root Of 180*x^4+575*x^3-659*x^2-688*x-300 3908816206207315 a001 21566892818/6119*1364^(1/3) 3908816208085389 a001 24157817/2207*5778^(17/18) 3908816208573434 r005 Im(z^2+c),c=11/54+19/47*I,n=9 3908816214589783 a001 101003810985/2584 3908816220981062 r005 Im(z^2+c),c=1/60+8/17*I,n=9 3908816222664017 a001 10983760033/1926*1364^(4/15) 3908816223016573 m008 (1/4*Pi^4+1/5)/(2*Pi^3+4/5) 3908816225737278 a008 Real Root of x^4-x^2-64*x+32 3908816226080322 a001 4807526976/3571*1364^(7/15) 3908816229179606 a001 39088169-3*5^(1/2) 3908816244246812 r005 Re(z^2+c),c=-55/102+7/59*I,n=41 3908816244403910 a001 32951280099/9349*1364^(1/3) 3908816245202115 r005 Im(z^2+c),c=1/24+13/28*I,n=19 3908816247975180 a001 20365011074/2207*2207^(3/16) 3908816249622965 m001 2*gamma(1)/Zeta(5)*Pi/GAMMA(5/6) 3908816252786404 a001 39088167-2*5^(1/2) 3908816253046538 p001 sum((-1)^n/(251*n+244)/(10^n),n=0..infinity) 3908816253674682 r005 Im(z^2+c),c=11/38+5/19*I,n=50 3908816254469625 m006 (5*Pi^2-1/6)/(5/Pi-1/3) 3908816259935995 a003 sin(Pi*4/67)*sin(Pi*8/119) 3908816260542820 r002 35th iterates of z^2 + 3908816264759965 r002 26th iterates of z^2 + 3908816268227961 r002 26th iterates of z^2 + 3908816288784528 a001 161/305*832040^(6/19) 3908816293128039 m001 (ZetaP(2)+ZetaQ(3))/(CareFree+Weierstrass) 3908816298130931 a001 12586269025/2207*2207^(1/4) 3908816300298617 a005 (1/sin(50/187*Pi))^153 3908816302718510 m005 (1/3*Pi-1/2)/(5/12*Pi+1/11) 3908816304475328 h001 (4/7*exp(2)+10/11)/(3/11*exp(1)+4/7) 3908816316891223 m005 (1/2*Zeta(3)+2)/(5/7*Catalan+6) 3908816321192479 r009 Re(z^3+c),c=-47/102+8/37*I,n=26 3908816321283711 m009 (3/4*Psi(1,2/3)-1/4)/(24*Catalan+3*Pi^2+4/5) 3908816322664000 a001 86267571272/15127*1364^(4/15) 3908816326061298 r005 Im(z^2+c),c=-37/94+27/50*I,n=27 3908816334517604 r005 Im(z^2+c),c=-5/6+41/200*I,n=8 3908816337253801 a001 75283811239/13201*1364^(4/15) 3908816339382424 a001 591286729879/103682*1364^(4/15) 3908816339692986 a001 516002918640/90481*1364^(4/15) 3908816339738296 a001 4052739537881/710647*1364^(4/15) 3908816339744907 a001 3536736619241/620166*1364^(4/15) 3908816339748993 a001 6557470319842/1149851*1364^(4/15) 3908816339766300 a001 2504730781961/439204*1364^(4/15) 3908816339884924 a001 956722026041/167761*1364^(4/15) 3908816340697986 a001 365435296162/64079*1364^(4/15) 3908816346270794 a001 139583862445/24476*1364^(4/15) 3908816346312316 a007 Real Root Of -586*x^4+172*x^3-877*x^2+912*x+37 3908816348286683 a001 7778742049/2207*2207^(5/16) 3908816362727497 a001 53316291173/5778*1364^(1/5) 3908816366143801 a001 7778742049/3571*1364^(2/5) 3908816378422988 l006 ln(5756/8509) 3908816384467390 a001 53316291173/9349*1364^(4/15) 3908816398442436 a001 4807526976/2207*2207^(3/8) 3908816400000001 a001 24157807/2+24157817/2*5^(1/2) 3908816404032484 a001 987/3571*2537720636^(13/15) 3908816404032484 a001 987/3571*45537549124^(13/17) 3908816404032484 a001 987/3571*14662949395604^(13/21) 3908816404032484 a001 987/3571*(1/2+1/2*5^(1/2))^39 3908816404032484 a001 987/3571*192900153618^(13/18) 3908816404032484 a001 987/3571*73681302247^(3/4) 3908816404032484 a001 987/3571*10749957122^(13/16) 3908816404032484 a001 987/3571*599074578^(13/14) 3908816404032624 a001 1597/2207*(1/2+1/2*5^(1/2))^37 3908816404686260 a007 Real Root Of 21*x^4+797*x^3-909*x^2+916*x+191 3908816412037592 m008 (5/6*Pi^3+3/4)/(3/4*Pi^2-3/5) 3908816414589803 a001 78176335/2-3/2*5^(1/2) 3908816419273125 m001 (-exp(Pi)+4)/(GAMMA(5/24)+1/2) 3908816420439158 r002 62th iterates of z^2 + 3908816426567386 m005 (-5/8+1/4*5^(1/2))/(6/11*2^(1/2)+11/12) 3908816433768921 r005 Im(z^2+c),c=-77/102+7/48*I,n=16 3908816448598190 a001 2971215073/2207*2207^(7/16) 3908816452786404 a001 39088169-2*5^(1/2) 3908816461632739 b008 1/2+BesselI[1,11/2] 3908816462727482 a001 139583862445/15127*1364^(1/5) 3908816462777662 r009 Im(z^3+c),c=-23/48+14/47*I,n=32 3908816476393237 a001 62423799128/1597 3908816477317284 a001 365435296162/39603*1364^(1/5) 3908816479445908 a001 956722026041/103682*1364^(1/5) 3908816479756469 a001 2504730781961/271443*1364^(1/5) 3908816479801780 a001 6557470319842/710647*1364^(1/5) 3908816479812476 a001 10610209857723/1149851*1364^(1/5) 3908816479829783 a001 4052739537881/439204*1364^(1/5) 3908816479948407 a001 140728068720/15251*1364^(1/5) 3908816480761469 a001 591286729879/64079*1364^(1/5) 3908816484581639 m005 (1/2*Pi+5/9)/(1/6*5^(1/2)-11/12) 3908816486334278 a001 7787980473/844*1364^(1/5) 3908816490390707 a001 53316291173/2207*843^(1/14) 3908816494424082 a001 34111385/1926*3571^(16/17) 3908816495596535 r005 Im(z^2+c),c=9/98+17/39*I,n=38 3908816498753944 a001 1836311903/2207*2207^(1/2) 3908816502790981 a001 43133785636/2889*1364^(2/15) 3908816505018517 m001 KhinchinHarmonic^(BesselI(0,2)*Riemann2ndZero) 3908816506207286 a001 12586269025/3571*1364^(1/3) 3908816507117181 a001 63245986/843*843^(13/14) 3908816512454949 a001 165580141/5778*3571^(15/17) 3908816512685595 a001 199/987*233^(31/57) 3908816513420478 m001 exp(1/Pi)/BesselI(1,2)*ZetaP(2) 3908816517792945 m004 2+Sqrt[5]/Pi-(5*Log[Sqrt[5]*Pi])/Pi 3908816521656087 g006 Psi(1,7/10)+Psi(1,5/7)+Psi(1,1/6)-Psi(1,7/12) 3908816524420612 r005 Im(z^2+c),c=43/110+22/47*I,n=5 3908816524530875 a001 86267571272/9349*1364^(1/5) 3908816529721604 m001 (1+2^(1/3))/(-Ei(1)+ln(2+3^(1/2))) 3908816530485816 a001 133957148/2889*3571^(14/17) 3908816548516683 a001 433494437/5778*3571^(13/17) 3908816548909699 a001 1134903170/2207*2207^(9/16) 3908816560134671 r002 25th iterates of z^2 + 3908816564783566 v002 sum(1/(3^n+(1/2*n^2+91/2*n+9)),n=1..infinity) 3908816566547550 a001 233802911/1926*3571^(12/17) 3908816576393202 a001 39088168-5^(1/2) 3908816576393237 a001 62423800725/1597 3908816584578418 a001 567451585/2889*3571^(11/17) 3908816585049155 m004 -6+5/Pi+25*Sqrt[5]*Pi-Cosh[Sqrt[5]*Pi] 3908816587302848 m001 (2^(1/2)-BesselJ(0,1))/(Kac+MertensB2) 3908816590983093 a001 62423800958/1597 3908816593112085 a001 62423800992/1597 3908816593425172 a001 62423800997/1597 3908816593475266 a001 312119004989/1597*8^(1/3) 3908816593475266 a001 2/1597*(1/2+1/2*5^(1/2))^55 3908816593487789 a001 62423800998/1597 3908816593613024 a001 62423801000/1597 3908816594424071 a001 267914296/15127*3571^(16/17) 3908816594427050 a001 62423801013/1597 3908816595668176 m001 (-ErdosBorwein+Sarnak)/(exp(Pi)+ln(gamma)) 3908816596175719 a007 Real Root Of -562*x^4+328*x^3+340*x^2+873*x+322 3908816599065454 a001 701408733/2207*2207^(5/8) 3908816600000001 a001 24157811/2+24157817/2*5^(1/2) 3908816602609285 a001 1836311903/5778*3571^(10/17) 3908816602790970 a001 32264490531/2161*1364^(2/15) 3908816602850980 h001 (7/11*exp(1)+7/11)/(2/11*exp(1)+1/9) 3908816607799103 r005 Re(z^2+c),c=-9/17+7/16*I,n=43 3908816609013873 a001 17711*3571^(16/17) 3908816611142497 a001 1836311903/103682*3571^(16/17) 3908816611453059 a001 1602508992/90481*3571^(16/17) 3908816611498369 a001 12586269025/710647*3571^(16/17) 3908816611504980 a001 10983760033/620166*3571^(16/17) 3908816611505944 a001 86267571272/4870847*3571^(16/17) 3908816611506085 a001 75283811239/4250681*3571^(16/17) 3908816611506106 a001 591286729879/33385282*3571^(16/17) 3908816611506109 a001 516002918640/29134601*3571^(16/17) 3908816611506109 a001 4052739537881/228826127*3571^(16/17) 3908816611506109 a001 3536736619241/199691526*3571^(16/17) 3908816611506109 a001 6557470319842/370248451*3571^(16/17) 3908816611506109 a001 2504730781961/141422324*3571^(16/17) 3908816611506110 a001 956722026041/54018521*3571^(16/17) 3908816611506118 a001 365435296162/20633239*3571^(16/17) 3908816611506172 a001 139583862445/7881196*3571^(16/17) 3908816611506540 a001 53316291173/3010349*3571^(16/17) 3908816611509065 a001 20365011074/1149851*3571^(16/17) 3908816611526372 a001 7778742049/439204*3571^(16/17) 3908816611644997 a001 2971215073/167761*3571^(16/17) 3908816612454939 a001 433494437/15127*3571^(15/17) 3908816612458058 a001 1134903170/64079*3571^(16/17) 3908816617380772 a001 591286729879/39603*1364^(2/15) 3908816618030867 a001 433494437/24476*3571^(16/17) 3908816619431054 r002 26th iterates of z^2 + 3908816619509396 a001 774004377960/51841*1364^(2/15) 3908816619819958 a001 4052739537881/271443*1364^(2/15) 3908816619865268 a001 1515744265389/101521*1364^(2/15) 3908816619893272 a001 3278735159921/219602*1364^(2/15) 3908816620011896 a001 2504730781961/167761*1364^(2/15) 3908816620640153 a001 2971215073/5778*3571^(9/17) 3908816620824958 a001 956722026041/64079*1364^(2/15) 3908816626397766 a001 182717648081/12238*1364^(2/15) 3908816627044741 a001 1134903170/39603*3571^(15/17) 3908816627556151 q001 1166/2983 3908816628087767 r005 Im(z^2+c),c=-13/82+3/5*I,n=56 3908816629173364 a001 2971215073/103682*3571^(15/17) 3908816629483926 a001 7778742049/271443*3571^(15/17) 3908816629529237 a001 20365011074/710647*3571^(15/17) 3908816629535847 a001 53316291173/1860498*3571^(15/17) 3908816629536812 a001 139583862445/4870847*3571^(15/17) 3908816629536953 a001 365435296162/12752043*3571^(15/17) 3908816629536973 a001 956722026041/33385282*3571^(15/17) 3908816629536976 a001 2504730781961/87403803*3571^(15/17) 3908816629536977 a001 6557470319842/228826127*3571^(15/17) 3908816629536977 a001 10610209857723/370248451*3571^(15/17) 3908816629536977 a001 4052739537881/141422324*3571^(15/17) 3908816629536978 a001 1548008755920/54018521*3571^(15/17) 3908816629536986 a001 591286729879/20633239*3571^(15/17) 3908816629537040 a001 225851433717/7881196*3571^(15/17) 3908816629537408 a001 86267571272/3010349*3571^(15/17) 3908816629539933 a001 32951280099/1149851*3571^(15/17) 3908816629557240 a001 12586269025/439204*3571^(15/17) 3908816629675864 a001 4807526976/167761*3571^(15/17) 3908816630485806 a001 701408733/15127*3571^(14/17) 3908816630488926 a001 28657*3571^(15/17) 3908816636061735 a001 701408733/24476*3571^(15/17) 3908816638196618 a001 62423801712/1597 3908816638671020 a001 267084832/321*3571^(8/17) 3908816642854470 a001 139583862445/5778*1364^(1/15) 3908816645075608 a001 1836311903/39603*3571^(14/17) 3908816646270775 a001 20365011074/3571*1364^(4/15) 3908816647204232 a001 46368*3571^(14/17) 3908816647514794 a001 12586269025/271443*3571^(14/17) 3908816647560104 a001 32951280099/710647*3571^(14/17) 3908816647566715 a001 43133785636/930249*3571^(14/17) 3908816647567680 a001 225851433717/4870847*3571^(14/17) 3908816647567820 a001 591286729879/12752043*3571^(14/17) 3908816647567841 a001 774004377960/16692641*3571^(14/17) 3908816647567844 a001 4052739537881/87403803*3571^(14/17) 3908816647567844 a001 225749145909/4868641*3571^(14/17) 3908816647567844 a001 3278735159921/70711162*3571^(14/17) 3908816647567846 a001 2504730781961/54018521*3571^(14/17) 3908816647567853 a001 956722026041/20633239*3571^(14/17) 3908816647567907 a001 182717648081/3940598*3571^(14/17) 3908816647568276 a001 139583862445/3010349*3571^(14/17) 3908816647570801 a001 53316291173/1149851*3571^(14/17) 3908816647588108 a001 10182505537/219602*3571^(14/17) 3908816647706732 a001 7778742049/167761*3571^(14/17) 3908816648515845 m009 (2/5*Psi(1,1/3)-2)/(1/2*Psi(1,1/3)+1/6) 3908816648516674 a001 1134903170/15127*3571^(13/17) 3908816648519794 a001 2971215073/64079*3571^(14/17) 3908816649221210 a001 433494437/2207*2207^(11/16) 3908816654092602 a001 567451585/12238*3571^(14/17) 3908816656227466 a001 165580141/9349*3571^(16/17) 3908816656701888 a001 7778742049/5778*3571^(7/17) 3908816663106476 a001 2971215073/39603*3571^(13/17) 3908816664594365 a001 139583862445/9349*1364^(2/15) 3908816665235100 a001 7778742049/103682*3571^(13/17) 3908816665545662 a001 20365011074/271443*3571^(13/17) 3908816665590972 a001 53316291173/710647*3571^(13/17) 3908816665597583 a001 139583862445/1860498*3571^(13/17) 3908816665598547 a001 365435296162/4870847*3571^(13/17) 3908816665598688 a001 956722026041/12752043*3571^(13/17) 3908816665598708 a001 2504730781961/33385282*3571^(13/17) 3908816665598711 a001 6557470319842/87403803*3571^(13/17) 3908816665598712 a001 10610209857723/141422324*3571^(13/17) 3908816665598713 a001 4052739537881/54018521*3571^(13/17) 3908816665598721 a001 140728068720/1875749*3571^(13/17) 3908816665598775 a001 591286729879/7881196*3571^(13/17) 3908816665599143 a001 225851433717/3010349*3571^(13/17) 3908816665601668 a001 86267571272/1149851*3571^(13/17) 3908816665618975 a001 32951280099/439204*3571^(13/17) 3908816665737600 a001 75025*3571^(13/17) 3908816665835928 a001 1292/2889*817138163596^(2/3) 3908816665835928 a001 1292/2889*(1/2+1/2*5^(1/2))^38 3908816665835928 a001 1292/2889*10749957122^(19/24) 3908816665835928 a001 1292/2889*4106118243^(19/23) 3908816665835928 a001 1292/2889*1568397607^(19/22) 3908816665835928 a001 1292/2889*599074578^(19/21) 3908816665835928 a001 1292/2889*228826127^(19/20) 3908816666039416 r002 59th iterates of z^2 + 3908816666547541 a001 1836311903/15127*3571^(12/17) 3908816666550661 a001 4807526976/64079*3571^(13/17) 3908816672123470 a001 1836311903/24476*3571^(13/17) 3908816674258334 a001 267914296/9349*3571^(15/17) 3908816674732756 a001 12586269025/5778*3571^(6/17) 3908816676393202 a001 39088169-5^(1/2) 3908816681137344 a001 1602508992/13201*3571^(12/17) 3908816683265968 a001 12586269025/103682*3571^(12/17) 3908816683576529 a001 121393*3571^(12/17) 3908816683621840 a001 86267571272/710647*3571^(12/17) 3908816683628451 a001 75283811239/620166*3571^(12/17) 3908816683629415 a001 591286729879/4870847*3571^(12/17) 3908816683629556 a001 516002918640/4250681*3571^(12/17) 3908816683629576 a001 4052739537881/33385282*3571^(12/17) 3908816683629579 a001 3536736619241/29134601*3571^(12/17) 3908816683629581 a001 6557470319842/54018521*3571^(12/17) 3908816683629589 a001 2504730781961/20633239*3571^(12/17) 3908816683629643 a001 956722026041/7881196*3571^(12/17) 3908816683630011 a001 365435296162/3010349*3571^(12/17) 3908816683632536 a001 139583862445/1149851*3571^(12/17) 3908816683649843 a001 53316291173/439204*3571^(12/17) 3908816683768467 a001 20365011074/167761*3571^(12/17) 3908816684578409 a001 2971215073/15127*3571^(11/17) 3908816684581529 a001 7778742049/64079*3571^(12/17) 3908816690154338 a001 2971215073/24476*3571^(12/17) 3908816692289201 a001 433494437/9349*3571^(14/17) 3908816692763624 a001 10182505537/2889*3571^(5/17) 3908816697210980 a001 161/98209*233^(32/55) 3908816699168212 a001 7778742049/39603*3571^(11/17) 3908816699376967 a001 267914296/2207*2207^(3/4) 3908816700000001 a001 24157813/2+24157817/2*5^(1/2) 3908816701296835 a001 10182505537/51841*3571^(11/17) 3908816701607397 a001 53316291173/271443*3571^(11/17) 3908816701652708 a001 139583862445/710647*3571^(11/17) 3908816701659318 a001 182717648081/930249*3571^(11/17) 3908816701660283 a001 956722026041/4870847*3571^(11/17) 3908816701660424 a001 2504730781961/12752043*3571^(11/17) 3908816701660444 a001 3278735159921/16692641*3571^(11/17) 3908816701660449 a001 10610209857723/54018521*3571^(11/17) 3908816701660457 a001 4052739537881/20633239*3571^(11/17) 3908816701660511 a001 387002188980/1970299*3571^(11/17) 3908816701660879 a001 591286729879/3010349*3571^(11/17) 3908816701663404 a001 225851433717/1149851*3571^(11/17) 3908816701680711 a001 196418*3571^(11/17) 3908816701799335 a001 32951280099/167761*3571^(11/17) 3908816702609277 a001 686789568/2161*3571^(10/17) 3908816702612397 a001 12586269025/64079*3571^(11/17) 3908816706727747 r001 63i'th iterates of 2*x^2-1 of 3908816708185206 a001 1201881744/6119*3571^(11/17) 3908816708953885 p004 log(36793/24889) 3908816710320069 a001 701408733/9349*3571^(13/17) 3908816710794492 a001 10983760033/1926*3571^(4/17) 3908816711136541 m004 -4+2*Cot[Sqrt[5]*Pi]+125*Pi*Tanh[Sqrt[5]*Pi] 3908816711570326 r005 Re(z^2+c),c=-45/86+14/55*I,n=62 3908816717199080 a001 12586269025/39603*3571^(10/17) 3908816719327703 a001 32951280099/103682*3571^(10/17) 3908816719638265 a001 86267571272/271443*3571^(10/17) 3908816719683576 a001 317811*3571^(10/17) 3908816719690186 a001 591286729879/1860498*3571^(10/17) 3908816719691151 a001 1548008755920/4870847*3571^(10/17) 3908816719691292 a001 4052739537881/12752043*3571^(10/17) 3908816719691312 a001 1515744265389/4769326*3571^(10/17) 3908816719691325 a001 6557470319842/20633239*3571^(10/17) 3908816719691379 a001 2504730781961/7881196*3571^(10/17) 3908816719691747 a001 956722026041/3010349*3571^(10/17) 3908816719694272 a001 365435296162/1149851*3571^(10/17) 3908816719711579 a001 139583862445/439204*3571^(10/17) 3908816719830203 a001 53316291173/167761*3571^(10/17) 3908816720640145 a001 7778742049/15127*3571^(9/17) 3908816720643265 a001 20365011074/64079*3571^(10/17) 3908816724055014 m002 -2+6*ProductLog[Pi]+3*Sinh[Pi] 3908816725246505 a001 24476*34^(11/14) 3908816725492437 m005 (1/2*gamma-6/11)/(4/9*Catalan+1/4) 3908816726216074 a001 7778742049/24476*3571^(10/17) 3908816728350937 a001 1134903170/9349*3571^(12/17) 3908816728825360 a001 53316291173/5778*3571^(3/17) 3908816729980723 a007 Real Root Of -149*x^4-600*x^3+24*x^2+384*x+84 3908816735229948 a001 20365011074/39603*3571^(9/17) 3908816736327757 r005 Re(z^2+c),c=-49/90+2/53*I,n=20 3908816737358571 a001 53316291173/103682*3571^(9/17) 3908816737669133 a001 139583862445/271443*3571^(9/17) 3908816737714444 a001 365435296162/710647*3571^(9/17) 3908816737721054 a001 956722026041/1860498*3571^(9/17) 3908816737722019 a001 2504730781961/4870847*3571^(9/17) 3908816737722160 a001 6557470319842/12752043*3571^(9/17) 3908816737722193 a001 10610209857723/20633239*3571^(9/17) 3908816737722247 a001 4052739537881/7881196*3571^(9/17) 3908816737722615 a001 1548008755920/3010349*3571^(9/17) 3908816737725140 a001 514229*3571^(9/17) 3908816737742447 a001 225851433717/439204*3571^(9/17) 3908816737861071 a001 86267571272/167761*3571^(9/17) 3908816738196601 a001 78176337/2-1/2*5^(1/2) 3908816738196603 a001 163427627824/4181 3908816738671013 a001 12586269025/15127*3571^(8/17) 3908816738674133 a001 32951280099/64079*3571^(9/17) 3908816740550361 a001 39088169/5778*9349^(18/19) 3908816742854463 a001 365435296162/15127*1364^(1/15) 3908816742904118 a001 31622993/2889*9349^(17/19) 3908816743522316 r005 Re(z^2+c),c=-43/78+1/22*I,n=14 3908816744246942 a001 12586269025/24476*3571^(9/17) 3908816745257873 a001 34111385/1926*9349^(16/19) 3908816746381805 a001 1836311903/9349*3571^(11/17) 3908816746856228 a001 43133785636/2889*3571^(2/17) 3908816747611629 a001 165580141/5778*9349^(15/19) 3908816749256432 r005 Re(z^2+c),c=11/27+18/23*I,n=2 3908816749532724 a001 165580141/2207*2207^(13/16) 3908816749965384 a001 133957148/2889*9349^(14/19) 3908816752319140 a001 433494437/5778*9349^(13/19) 3908816753260816 a001 10983760033/13201*3571^(8/17) 3908816754672896 a001 233802911/1926*9349^(12/19) 3908816755389440 a001 43133785636/51841*3571^(8/17) 3908816755700002 a001 75283811239/90481*3571^(8/17) 3908816755745312 a001 591286729879/710647*3571^(8/17) 3908816755751923 a001 832040*3571^(8/17) 3908816755752887 a001 4052739537881/4870847*3571^(8/17) 3908816755753028 a001 3536736619241/4250681*3571^(8/17) 3908816755753115 a001 3278735159921/3940598*3571^(8/17) 3908816755753483 a001 2504730781961/3010349*3571^(8/17) 3908816755756008 a001 956722026041/1149851*3571^(8/17) 3908816755773315 a001 182717648081/219602*3571^(8/17) 3908816755891939 a001 139583862445/167761*3571^(8/17) 3908816756701881 a001 20365011074/15127*3571^(7/17) 3908816756705001 a001 53316291173/64079*3571^(8/17) 3908816757026651 a001 567451585/2889*9349^(11/19) 3908816757444266 a001 956722026041/39603*1364^(1/15) 3908816759380407 a001 1836311903/5778*9349^(10/19) 3908816759572889 a001 2504730781961/103682*1364^(1/15) 3908816759883451 a001 6557470319842/271443*1364^(1/15) 3908816759956765 a001 10610209857723/439204*1364^(1/15) 3908816760075389 a001 4052739537881/167761*1364^(1/15) 3908816760888451 a001 1548008755920/64079*1364^(1/15) 3908816761734163 a001 2971215073/5778*9349^(9/19) 3908816762277810 a001 10182505537/12238*3571^(8/17) 3908816764087919 a001 267084832/321*9349^(8/19) 3908816764412674 a001 2971215073/9349*3571^(10/17) 3908816764887096 a001 139583862445/5778*3571^(1/17) 3908816765835922 a001 2584/15127*2537720636^(8/9) 3908816765835922 a001 2584/15127*312119004989^(8/11) 3908816765835922 a001 2584/15127*(1/2+1/2*5^(1/2))^40 3908816765835922 a001 2584/15127*23725150497407^(5/8) 3908816765835922 a001 2584/15127*73681302247^(10/13) 3908816765835922 a001 2584/15127*28143753123^(4/5) 3908816765835922 a001 2584/15127*10749957122^(5/6) 3908816765835922 a001 2584/15127*4106118243^(20/23) 3908816765835922 a001 2584/15127*1568397607^(10/11) 3908816765835922 a001 2584/15127*599074578^(20/21) 3908816765835925 a001 2255/1926*141422324^(12/13) 3908816765835925 a001 2255/1926*2537720636^(4/5) 3908816765835925 a001 2255/1926*45537549124^(12/17) 3908816765835925 a001 2255/1926*14662949395604^(4/7) 3908816765835925 a001 2255/1926*(1/2+1/2*5^(1/2))^36 3908816765835925 a001 2255/1926*505019158607^(9/14) 3908816765835925 a001 2255/1926*192900153618^(2/3) 3908816765835925 a001 2255/1926*73681302247^(9/13) 3908816765835925 a001 2255/1926*10749957122^(3/4) 3908816765835925 a001 2255/1926*4106118243^(18/23) 3908816765835925 a001 2255/1926*1568397607^(9/11) 3908816765835925 a001 2255/1926*599074578^(6/7) 3908816765835925 a001 2255/1926*228826127^(9/10) 3908816765835926 a001 2255/1926*87403803^(18/19) 3908816766220980 m004 -2+Tan[Sqrt[5]*Pi]/5+125*Pi*Tanh[Sqrt[5]*Pi] 3908816766441674 a001 7778742049/5778*9349^(7/19) 3908816766461260 a001 591286729879/24476*1364^(1/15) 3908816767384313 r005 Re(z^2+c),c=-57/106+7/51*I,n=57 3908816768795430 a001 12586269025/5778*9349^(6/19) 3908816771149186 a001 10182505537/2889*9349^(5/19) 3908816771291684 a001 53316291173/39603*3571^(7/17) 3908816773420308 a001 139583862445/103682*3571^(7/17) 3908816773502941 a001 10983760033/1926*9349^(4/19) 3908816773730870 a001 365435296162/271443*3571^(7/17) 3908816773776180 a001 956722026041/710647*3571^(7/17) 3908816773782791 a001 2504730781961/1860498*3571^(7/17) 3908816773783755 a001 6557470319842/4870847*3571^(7/17) 3908816773783983 a001 10610209857723/7881196*3571^(7/17) 3908816773784351 a001 1346269*3571^(7/17) 3908816773786876 a001 1548008755920/1149851*3571^(7/17) 3908816773804184 a001 591286729879/439204*3571^(7/17) 3908816773922808 a001 225851433717/167761*3571^(7/17) 3908816774732750 a001 32951280099/15127*3571^(6/17) 3908816774735869 a001 86267571272/64079*3571^(7/17) 3908816775856697 a001 53316291173/5778*9349^(3/19) 3908816776393202 a001 213929542172/5473 3908816776703905 a001 2584*24476^(20/21) 3908816777014613 a001 24157817/5778*24476^(19/21) 3908816777325314 a001 39088169/5778*24476^(6/7) 3908816777636017 a001 31622993/2889*24476^(17/21) 3908816777946720 a001 34111385/1926*24476^(16/21) 3908816778210453 a001 43133785636/2889*9349^(2/19) 3908816778257423 a001 165580141/5778*24476^(5/7) 3908816778568125 a001 133957148/2889*24476^(2/3) 3908816778878828 a001 433494437/5778*24476^(13/21) 3908816779189531 a001 233802911/1926*24476^(4/7) 3908816779500234 a001 567451585/2889*24476^(11/21) 3908816779810936 a001 1836311903/5778*24476^(10/21) 3908816780121639 a001 2971215073/5778*24476^(3/7) 3908816780130854 m001 ln(Pi)*Bloch*Sarnak 3908816780308678 a001 32951280099/24476*3571^(7/17) 3908816780425725 a001 2584/39603*2537720636^(14/15) 3908816780425725 a001 2584/39603*17393796001^(6/7) 3908816780425725 a001 2584/39603*45537549124^(14/17) 3908816780425725 a001 2584/39603*817138163596^(14/19) 3908816780425725 a001 2584/39603*14662949395604^(2/3) 3908816780425725 a001 2584/39603*(1/2+1/2*5^(1/2))^42 3908816780425725 a001 2584/39603*505019158607^(3/4) 3908816780425725 a001 2584/39603*192900153618^(7/9) 3908816780425725 a001 2584/39603*10749957122^(7/8) 3908816780425725 a001 2584/39603*4106118243^(21/23) 3908816780425725 a001 2584/39603*1568397607^(21/22) 3908816780425728 a001 17711/5778*45537549124^(2/3) 3908816780425728 a001 17711/5778*(1/2+1/2*5^(1/2))^34 3908816780425728 a001 17711/5778*10749957122^(17/24) 3908816780425728 a001 17711/5778*4106118243^(17/23) 3908816780425728 a001 17711/5778*1568397607^(17/22) 3908816780425728 a001 17711/5778*599074578^(17/21) 3908816780425728 a001 17711/5778*228826127^(17/20) 3908816780425729 a001 17711/5778*87403803^(17/19) 3908816780425732 a001 17711/5778*33385282^(17/18) 3908816780432342 a001 267084832/321*24476^(8/21) 3908816780564208 a001 139583862445/5778*9349^(1/19) 3908816780743045 a001 7778742049/5778*24476^(1/3) 3908816781053748 a001 12586269025/5778*24476^(2/7) 3908816781364450 a001 10182505537/2889*24476^(5/21) 3908816781675153 a001 10983760033/1926*24476^(4/21) 3908816781966011 a001 1120149625208/28657 3908816781985856 a001 53316291173/5778*24476^(1/7) 3908816782007380 a001 5702887/5778*64079^(22/23) 3908816782048802 a001 9227465/5778*64079^(21/23) 3908816782090179 a001 2584*64079^(20/23) 3908816782131573 a001 24157817/5778*64079^(19/23) 3908816782172960 a001 39088169/5778*64079^(18/23) 3908816782214350 a001 31622993/2889*64079^(17/23) 3908816782255738 a001 34111385/1926*64079^(16/23) 3908816782296559 a001 43133785636/2889*24476^(2/21) 3908816782297128 a001 165580141/5778*64079^(15/23) 3908816782338517 a001 133957148/2889*64079^(14/23) 3908816782379906 a001 433494437/5778*64079^(13/23) 3908816782421295 a001 233802911/1926*64079^(12/23) 3908816782443542 a001 4807526976/9349*3571^(9/17) 3908816782462684 a001 567451585/2889*64079^(11/23) 3908816782504073 a001 1836311903/5778*64079^(10/23) 3908816782545462 a001 2971215073/5778*64079^(9/23) 3908816782554348 a001 1292/51841*312119004989^(4/5) 3908816782554348 a001 1292/51841*(1/2+1/2*5^(1/2))^44 3908816782554348 a001 1292/51841*23725150497407^(11/16) 3908816782554348 a001 1292/51841*73681302247^(11/13) 3908816782554348 a001 1292/51841*10749957122^(11/12) 3908816782554348 a001 1292/51841*4106118243^(22/23) 3908816782554352 a001 2576/321*(1/2+1/2*5^(1/2))^32 3908816782554352 a001 2576/321*23725150497407^(1/2) 3908816782554352 a001 2576/321*73681302247^(8/13) 3908816782554352 a001 2576/321*10749957122^(2/3) 3908816782554352 a001 2576/321*4106118243^(16/23) 3908816782554352 a001 2576/321*1568397607^(8/11) 3908816782554352 a001 2576/321*599074578^(16/21) 3908816782554352 a001 2576/321*228826127^(4/5) 3908816782554352 a001 2576/321*87403803^(16/19) 3908816782554355 a001 2576/321*33385282^(8/9) 3908816782554375 a001 2576/321*12752043^(16/17) 3908816782586851 a001 267084832/321*64079^(8/23) 3908816782607261 a001 139583862445/5778*24476^(1/21) 3908816782628240 a001 7778742049/5778*64079^(7/23) 3908816782669630 a001 12586269025/5778*64079^(6/23) 3908816782711019 a001 10182505537/2889*64079^(5/23) 3908816782752408 a001 10983760033/1926*64079^(4/23) 3908816782779073 a001 586517958256/15005 3908816782793797 a001 53316291173/5778*64079^(3/23) 3908816782806851 a001 2584*167761^(4/5) 3908816782834632 a001 165580141/5778*167761^(3/5) 3908816782835186 a001 43133785636/2889*64079^(2/23) 3908816782862409 a001 1836311903/5778*167761^(2/5) 3908816782864857 a001 121393/5778*7881196^(10/11) 3908816782864906 a001 121393/5778*20633239^(6/7) 3908816782864910 a001 2584/271443*(1/2+1/2*5^(1/2))^46 3908816782864910 a001 2584/271443*10749957122^(23/24) 3908816782864914 a001 121393/5778*141422324^(10/13) 3908816782864914 a001 121393/5778*2537720636^(2/3) 3908816782864914 a001 121393/5778*45537549124^(10/17) 3908816782864914 a001 121393/5778*312119004989^(6/11) 3908816782864914 a001 121393/5778*14662949395604^(10/21) 3908816782864914 a001 121393/5778*(1/2+1/2*5^(1/2))^30 3908816782864914 a001 121393/5778*192900153618^(5/9) 3908816782864914 a001 121393/5778*28143753123^(3/5) 3908816782864914 a001 121393/5778*10749957122^(5/8) 3908816782864914 a001 121393/5778*4106118243^(15/23) 3908816782864914 a001 121393/5778*1568397607^(15/22) 3908816782864914 a001 121393/5778*599074578^(5/7) 3908816782864914 a001 121393/5778*228826127^(3/4) 3908816782864914 a001 121393/5778*87403803^(15/19) 3908816782864917 a001 121393/5778*33385282^(5/6) 3908816782864935 a001 121393/5778*12752043^(15/17) 3908816782865068 a001 121393/5778*4870847^(15/16) 3908816782876575 a001 139583862445/5778*64079^(1/23) 3908816782890187 a001 10182505537/2889*167761^(1/5) 3908816782897697 a001 225812345548/5777 3908816782899788 a001 726103/1926*439204^(8/9) 3908816782902213 a001 9227465/5778*439204^(7/9) 3908816782904455 a001 39088169/5778*439204^(2/3) 3908816782906707 a001 165580141/5778*439204^(5/9) 3908816782908958 a001 233802911/1926*439204^(4/9) 3908816782910217 a001 105937/1926*20633239^(4/5) 3908816782910221 a001 2584/710647*45537549124^(16/17) 3908816782910221 a001 2584/710647*14662949395604^(16/21) 3908816782910221 a001 2584/710647*(1/2+1/2*5^(1/2))^48 3908816782910221 a001 2584/710647*192900153618^(8/9) 3908816782910221 a001 2584/710647*73681302247^(12/13) 3908816782910224 a001 105937/1926*17393796001^(4/7) 3908816782910224 a001 105937/1926*14662949395604^(4/9) 3908816782910224 a001 105937/1926*(1/2+1/2*5^(1/2))^28 3908816782910224 a001 105937/1926*505019158607^(1/2) 3908816782910224 a001 105937/1926*73681302247^(7/13) 3908816782910224 a001 105937/1926*10749957122^(7/12) 3908816782910224 a001 105937/1926*4106118243^(14/23) 3908816782910224 a001 105937/1926*1568397607^(7/11) 3908816782910224 a001 105937/1926*599074578^(2/3) 3908816782910224 a001 105937/1926*228826127^(7/10) 3908816782910225 a001 105937/1926*87403803^(14/19) 3908816782910227 a001 105937/1926*33385282^(7/9) 3908816782910244 a001 105937/1926*12752043^(14/17) 3908816782910368 a001 105937/1926*4870847^(7/8) 3908816782911210 a001 2971215073/5778*439204^(1/3) 3908816782911278 a001 105937/1926*1860498^(14/15) 3908816782913461 a001 12586269025/5778*439204^(2/9) 3908816782915004 a001 20100269454616/514229 3908816782915713 a001 53316291173/5778*439204^(1/9) 3908816782916831 a001 1292/930249*312119004989^(10/11) 3908816782916831 a001 1292/930249*(1/2+1/2*5^(1/2))^50 3908816782916831 a001 1292/930249*3461452808002^(5/6) 3908816782916835 a001 416020/2889*141422324^(2/3) 3908816782916835 a001 416020/2889*(1/2+1/2*5^(1/2))^26 3908816782916835 a001 416020/2889*73681302247^(1/2) 3908816782916835 a001 416020/2889*10749957122^(13/24) 3908816782916835 a001 416020/2889*4106118243^(13/23) 3908816782916835 a001 416020/2889*1568397607^(13/22) 3908816782916835 a001 416020/2889*599074578^(13/21) 3908816782916835 a001 416020/2889*228826127^(13/20) 3908816782916835 a001 416020/2889*87403803^(13/19) 3908816782916837 a001 416020/2889*33385282^(13/18) 3908816782916853 a001 416020/2889*12752043^(13/17) 3908816782916969 a001 416020/2889*4870847^(13/16) 3908816782917529 a001 52623188615216/1346269 3908816782917754 a001 726103/1926*7881196^(8/11) 3908816782917796 a001 2584/4870847*(1/2+1/2*5^(1/2))^52 3908816782917796 a001 2584/4870847*23725150497407^(13/16) 3908816782917796 a001 2584/4870847*505019158607^(13/14) 3908816782917799 a001 726103/1926*141422324^(8/13) 3908816782917799 a001 726103/1926*2537720636^(8/15) 3908816782917799 a001 726103/1926*45537549124^(8/17) 3908816782917799 a001 726103/1926*14662949395604^(8/21) 3908816782917799 a001 726103/1926*(1/2+1/2*5^(1/2))^24 3908816782917799 a001 726103/1926*192900153618^(4/9) 3908816782917799 a001 726103/1926*73681302247^(6/13) 3908816782917799 a001 726103/1926*10749957122^(1/2) 3908816782917799 a001 726103/1926*4106118243^(12/23) 3908816782917799 a001 726103/1926*1568397607^(6/11) 3908816782917799 a001 726103/1926*599074578^(4/7) 3908816782917799 a001 726103/1926*228826127^(3/5) 3908816782917800 a001 726103/1926*87403803^(12/19) 3908816782917802 a001 726103/1926*33385282^(2/3) 3908816782917814 a001 416020/2889*1860498^(13/15) 3908816782917816 a001 726103/1926*12752043^(12/17) 3908816782917898 a001 68884648195516/1762289 3908816782917898 a001 5702887/5778*7881196^(2/3) 3908816782917923 a001 726103/1926*4870847^(3/4) 3908816782917929 a001 39088169/5778*7881196^(6/11) 3908816782917933 a001 9227465/5778*7881196^(7/11) 3908816782917936 a001 165580141/5778*7881196^(5/11) 3908816782917937 a001 2584/12752043*14662949395604^(6/7) 3908816782917937 a001 2584/12752043*(1/2+1/2*5^(1/2))^54 3908816782917940 a001 5702887/5778*312119004989^(2/5) 3908816782917940 a001 5702887/5778*(1/2+1/2*5^(1/2))^22 3908816782917940 a001 5702887/5778*10749957122^(11/24) 3908816782917940 a001 5702887/5778*4106118243^(11/23) 3908816782917940 a001 5702887/5778*1568397607^(1/2) 3908816782917940 a001 5702887/5778*599074578^(11/21) 3908816782917940 a001 5702887/5778*228826127^(11/20) 3908816782917940 a001 5702887/5778*87403803^(11/19) 3908816782917941 a001 233802911/1926*7881196^(4/11) 3908816782917942 a001 5702887/5778*33385282^(11/18) 3908816782917943 a001 567451585/2889*7881196^(1/3) 3908816782917947 a001 2971215073/5778*7881196^(3/11) 3908816782917952 a001 72136940111576/1845493 3908816782917953 a001 12586269025/5778*7881196^(2/11) 3908816782917955 a001 2584*20633239^(4/7) 3908816782917956 a001 5702887/5778*12752043^(11/17) 3908816782917957 a001 1292/16692641*14662949395604^(8/9) 3908816782917957 a001 1292/16692641*(1/2+1/2*5^(1/2))^56 3908816782917958 a001 53316291173/5778*7881196^(1/11) 3908816782917959 a001 944284805282608/24157817 3908816782917960 a001 165580141/5778*20633239^(3/7) 3908816782917960 a001 1236084857644972/31622993 3908816782917961 a001 133957148/2889*20633239^(2/5) 3908816782917961 a001 2584/228826127*14662949395604^(20/21) 3908816782917961 a001 6472224340587224/165580141 3908816782917961 a001 16944503306471728/433494437 3908816782917961 a001 2584*2537720636^(4/9) 3908816782917961 a001 2584*23725150497407^(5/16) 3908816782917961 a001 2584*505019158607^(5/14) 3908816782917961 a001 2584*73681302247^(5/13) 3908816782917961 a001 2584*28143753123^(2/5) 3908816782917961 a001 2584*10749957122^(5/12) 3908816782917961 a001 2584*4106118243^(10/23) 3908816782917961 a001 2584*1568397607^(5/11) 3908816782917961 a001 9138927424118744/233802911 3908816782917961 a001 2584*599074578^(10/21) 3908816782917961 a001 1309034870735563/33489287 3908816782917961 a001 2584*228826127^(1/2) 3908816782917961 a001 591286714752/15127 3908816782917961 a001 2584*87403803^(10/19) 3908816782917961 a001 1527884910007336/39088169 3908816782917962 a001 1836311903/5778*20633239^(2/7) 3908816782917962 a001 2584/54018521*14662949395604^(19/21) 3908816782917962 a001 7778742049/5778*20633239^(1/5) 3908816782917963 a001 2584*33385282^(5/9) 3908816782917963 a001 10182505537/2889*20633239^(1/7) 3908816782917964 a001 39088169/5778*141422324^(6/13) 3908816782917964 a001 39088169/5778*2537720636^(2/5) 3908816782917964 a001 39088169/5778*45537549124^(6/17) 3908816782917964 a001 39088169/5778*14662949395604^(2/7) 3908816782917964 a001 39088169/5778*(1/2+1/2*5^(1/2))^18 3908816782917964 a001 39088169/5778*192900153618^(1/3) 3908816782917964 a001 39088169/5778*10749957122^(3/8) 3908816782917964 a001 39088169/5778*4106118243^(9/23) 3908816782917964 a001 39088169/5778*1568397607^(9/22) 3908816782917964 a001 39088169/5778*599074578^(3/7) 3908816782917964 a001 39088169/5778*228826127^(9/20) 3908816782917964 a001 39088169/5778*87403803^(9/19) 3908816782917964 a001 34111385/1926*(1/2+1/2*5^(1/2))^16 3908816782917964 a001 34111385/1926*23725150497407^(1/4) 3908816782917964 a001 34111385/1926*73681302247^(4/13) 3908816782917964 a001 34111385/1926*10749957122^(1/3) 3908816782917964 a001 34111385/1926*4106118243^(8/23) 3908816782917964 a001 34111385/1926*1568397607^(4/11) 3908816782917964 a001 34111385/1926*599074578^(8/21) 3908816782917964 a001 233802911/1926*141422324^(4/13) 3908816782917964 a001 433494437/5778*141422324^(1/3) 3908816782917964 a001 165580141/5778*141422324^(5/13) 3908816782917964 a001 2971215073/5778*141422324^(3/13) 3908816782917964 a001 34111385/1926*228826127^(2/5) 3908816782917964 a001 12586269025/5778*141422324^(2/13) 3908816782917964 a001 53316291173/5778*141422324^(1/13) 3908816782917964 a001 133957148/2889*17393796001^(2/7) 3908816782917964 a001 133957148/2889*14662949395604^(2/9) 3908816782917964 a001 133957148/2889*(1/2+1/2*5^(1/2))^14 3908816782917964 a001 133957148/2889*10749957122^(7/24) 3908816782917964 a001 133957148/2889*4106118243^(7/23) 3908816782917964 a001 133957148/2889*1568397607^(7/22) 3908816782917964 a001 133957148/2889*599074578^(1/3) 3908816782917964 a001 233802911/1926*2537720636^(4/15) 3908816782917964 a001 233802911/1926*45537549124^(4/17) 3908816782917964 a001 233802911/1926*817138163596^(4/19) 3908816782917964 a001 233802911/1926*14662949395604^(4/21) 3908816782917964 a001 233802911/1926*(1/2+1/2*5^(1/2))^12 3908816782917964 a001 233802911/1926*192900153618^(2/9) 3908816782917964 a001 233802911/1926*73681302247^(3/13) 3908816782917964 a001 233802911/1926*10749957122^(1/4) 3908816782917964 a001 233802911/1926*4106118243^(6/23) 3908816782917964 a001 233802911/1926*1568397607^(3/11) 3908816782917964 a001 1836311903/5778*2537720636^(2/9) 3908816782917964 a001 1836311903/5778*312119004989^(2/11) 3908816782917964 a001 1836311903/5778*(1/2+1/2*5^(1/2))^10 3908816782917964 a001 1836311903/5778*28143753123^(1/5) 3908816782917964 a001 1836311903/5778*10749957122^(5/24) 3908816782917964 a001 1836311903/5778*4106118243^(5/23) 3908816782917964 a001 12586269025/5778*2537720636^(2/15) 3908816782917964 a001 10182505537/2889*2537720636^(1/9) 3908816782917964 a001 53316291173/5778*2537720636^(1/15) 3908816782917964 a001 267084832/321*(1/2+1/2*5^(1/2))^8 3908816782917964 a001 267084832/321*23725150497407^(1/8) 3908816782917964 a001 267084832/321*505019158607^(1/7) 3908816782917964 a001 267084832/321*73681302247^(2/13) 3908816782917964 a001 2971215073/5778*2537720636^(1/5) 3908816782917964 a001 267084832/321*10749957122^(1/6) 3908816782917964 a001 12586269025/5778*45537549124^(2/17) 3908816782917964 a001 12586269025/5778*14662949395604^(2/21) 3908816782917964 a001 12586269025/5778*(1/2+1/2*5^(1/2))^6 3908816782917964 a001 10983760033/1926*(1/2+1/2*5^(1/2))^4 3908816782917964 a001 10983760033/1926*23725150497407^(1/16) 3908816782917964 a001 12586269025/5778*10749957122^(1/8) 3908816782917964 a001 10983760033/1926*73681302247^(1/13) 3908816782917964 a001 43133785636/2889*(1/2+1/2*5^(1/2))^2 3908816782917964 a001 75283811239/1926 3908816782917964 a001 139583862445/11556+139583862445/11556*5^(1/2) 3908816782917964 a001 53316291173/5778*45537549124^(1/17) 3908816782917964 a001 53316291173/5778*14662949395604^(1/21) 3908816782917964 a001 53316291173/5778*(1/2+1/2*5^(1/2))^3 3908816782917964 a001 53316291173/5778*192900153618^(1/18) 3908816782917964 a001 43133785636/2889*10749957122^(1/24) 3908816782917964 a001 10182505537/2889*312119004989^(1/11) 3908816782917964 a001 10182505537/2889*(1/2+1/2*5^(1/2))^5 3908816782917964 a001 10983760033/1926*10749957122^(1/12) 3908816782917964 a001 10182505537/2889*28143753123^(1/10) 3908816782917964 a001 53316291173/5778*10749957122^(1/16) 3908816782917964 a001 267084832/321*4106118243^(4/23) 3908816782917964 a001 43133785636/2889*4106118243^(1/23) 3908816782917964 a001 7778742049/5778*17393796001^(1/7) 3908816782917964 a001 7778742049/5778*14662949395604^(1/9) 3908816782917964 a001 7778742049/5778*(1/2+1/2*5^(1/2))^7 3908816782917964 a001 10983760033/1926*4106118243^(2/23) 3908816782917964 a001 12586269025/5778*4106118243^(3/23) 3908816782917964 a001 43133785636/2889*1568397607^(1/22) 3908816782917964 a001 2971215073/5778*45537549124^(3/17) 3908816782917964 a001 2971215073/5778*14662949395604^(1/7) 3908816782917964 a001 2971215073/5778*(1/2+1/2*5^(1/2))^9 3908816782917964 a001 2971215073/5778*192900153618^(1/6) 3908816782917964 a001 2971215073/5778*10749957122^(3/16) 3908816782917964 a001 1836311903/5778*1568397607^(5/22) 3908816782917964 a001 10983760033/1926*1568397607^(1/11) 3908816782917964 a001 12586269025/5778*1568397607^(3/22) 3908816782917964 a001 267084832/321*1568397607^(2/11) 3908816782917964 a001 43133785636/2889*599074578^(1/21) 3908816782917964 a001 567451585/2889*312119004989^(1/5) 3908816782917964 a001 567451585/2889*(1/2+1/2*5^(1/2))^11 3908816782917964 a001 53316291173/5778*599074578^(1/14) 3908816782917964 a001 567451585/2889*1568397607^(1/4) 3908816782917964 a001 10983760033/1926*599074578^(2/21) 3908816782917964 a001 233802911/1926*599074578^(2/7) 3908816782917964 a001 12586269025/5778*599074578^(1/7) 3908816782917964 a001 7778742049/5778*599074578^(1/6) 3908816782917964 a001 267084832/321*599074578^(4/21) 3908816782917964 a001 1836311903/5778*599074578^(5/21) 3908816782917964 a001 2971215073/5778*599074578^(3/14) 3908816782917964 a001 43133785636/2889*228826127^(1/20) 3908816782917964 a001 433494437/5778*(1/2+1/2*5^(1/2))^13 3908816782917964 a001 433494437/5778*73681302247^(1/4) 3908816782917964 a001 10983760033/1926*228826127^(1/10) 3908816782917964 a001 10182505537/2889*228826127^(1/8) 3908816782917964 a001 12586269025/5778*228826127^(3/20) 3908816782917964 a001 267084832/321*228826127^(1/5) 3908816782917964 a001 133957148/2889*228826127^(7/20) 3908816782917964 a001 1836311903/5778*228826127^(1/4) 3908816782917964 a001 233802911/1926*228826127^(3/10) 3908816782917964 a001 43133785636/2889*87403803^(1/19) 3908816782917964 a001 165580141/5778*2537720636^(1/3) 3908816782917964 a001 165580141/5778*45537549124^(5/17) 3908816782917964 a001 165580141/5778*312119004989^(3/11) 3908816782917964 a001 165580141/5778*14662949395604^(5/21) 3908816782917964 a001 165580141/5778*(1/2+1/2*5^(1/2))^15 3908816782917964 a001 165580141/5778*192900153618^(5/18) 3908816782917964 a001 165580141/5778*28143753123^(3/10) 3908816782917964 a001 165580141/5778*10749957122^(5/16) 3908816782917964 a001 165580141/5778*599074578^(5/14) 3908816782917964 a001 10983760033/1926*87403803^(2/19) 3908816782917964 a001 165580141/5778*228826127^(3/8) 3908816782917964 a001 12586269025/5778*87403803^(3/19) 3908816782917964 a001 267084832/321*87403803^(4/19) 3908816782917964 a001 1836311903/5778*87403803^(5/19) 3908816782917964 a001 34111385/1926*87403803^(8/19) 3908816782917964 a001 233802911/1926*87403803^(6/19) 3908816782917964 a001 133957148/2889*87403803^(7/19) 3908816782917964 a001 43133785636/2889*33385282^(1/18) 3908816782917964 a001 31622993/2889*45537549124^(1/3) 3908816782917964 a001 31622993/2889*(1/2+1/2*5^(1/2))^17 3908816782917964 a001 53316291173/5778*33385282^(1/12) 3908816782917965 a001 10983760033/1926*33385282^(1/9) 3908816782917965 a001 12586269025/5778*33385282^(1/6) 3908816782917965 a001 267084832/321*33385282^(2/9) 3908816782917965 a001 2971215073/5778*33385282^(1/4) 3908816782917965 a001 1836311903/5778*33385282^(5/18) 3908816782917965 a001 233802911/1926*33385282^(1/3) 3908816782917965 a001 39088169/5778*33385282^(1/2) 3908816782917966 a001 24157817/5778*817138163596^(1/3) 3908816782917966 a001 24157817/5778*(1/2+1/2*5^(1/2))^19 3908816782917966 a001 133957148/2889*33385282^(7/18) 3908816782917966 a001 43133785636/2889*12752043^(1/17) 3908816782917966 a001 34111385/1926*33385282^(4/9) 3908816782917966 a001 165580141/5778*33385282^(5/12) 3908816782917966 a001 24157817/5778*87403803^(1/2) 3908816782917967 a001 10983760033/1926*12752043^(2/17) 3908816782917968 a001 9227465/5778*20633239^(3/5) 3908816782917968 a001 12586269025/5778*12752043^(3/17) 3908816782917970 a001 267084832/321*12752043^(4/17) 3908816782917970 a001 2584/20633239*(1/2+1/2*5^(1/2))^55 3908816782917970 a001 2584/20633239*3461452808002^(11/12) 3908816782917971 a001 1836311903/5778*12752043^(5/17) 3908816782917973 a001 233802911/1926*12752043^(6/17) 3908816782917973 a001 9227465/5778*141422324^(7/13) 3908816782917973 a001 9227465/5778*2537720636^(7/15) 3908816782917973 a001 9227465/5778*17393796001^(3/7) 3908816782917973 a001 9227465/5778*45537549124^(7/17) 3908816782917973 a001 9227465/5778*14662949395604^(1/3) 3908816782917973 a001 9227465/5778*(1/2+1/2*5^(1/2))^21 3908816782917973 a001 9227465/5778*192900153618^(7/18) 3908816782917973 a001 9227465/5778*10749957122^(7/16) 3908816782917973 a001 9227465/5778*599074578^(1/2) 3908816782917974 a001 133957148/2889*12752043^(7/17) 3908816782917974 a001 43133785636/2889*4870847^(1/16) 3908816782917975 a001 2584*12752043^(10/17) 3908816782917975 a001 9227465/5778*33385282^(7/12) 3908816782917975 a001 34111385/1926*12752043^(8/17) 3908816782917976 a001 39088169/5778*12752043^(9/17) 3908816782917976 a001 31622993/2889*12752043^(1/2) 3908816782917985 a001 222915404166848/5702887 3908816782917985 a001 10983760033/1926*4870847^(1/8) 3908816782917995 a001 12586269025/5778*4870847^(3/16) 3908816782918005 a001 267084832/321*4870847^(1/4) 3908816782918016 a001 1836311903/5778*4870847^(5/16) 3908816782918024 a001 646/1970299*(1/2+1/2*5^(1/2))^53 3908816782918026 a001 233802911/1926*4870847^(3/8) 3908816782918027 a001 1762289/2889*(1/2+1/2*5^(1/2))^23 3908816782918027 a001 1762289/2889*4106118243^(1/2) 3908816782918036 a001 133957148/2889*4870847^(7/16) 3908816782918039 a001 43133785636/2889*1860498^(1/15) 3908816782918046 a001 34111385/1926*4870847^(1/2) 3908816782918053 a001 5702887/5778*4870847^(11/16) 3908816782918056 a001 39088169/5778*4870847^(9/16) 3908816782918064 a001 2584*4870847^(5/8) 3908816782918077 a001 53316291173/5778*1860498^(1/10) 3908816782918115 a001 10983760033/1926*1860498^(2/15) 3908816782918125 a001 28382035925272/726103 3908816782918152 a001 10182505537/2889*1860498^(1/6) 3908816782918190 a001 12586269025/5778*1860498^(1/5) 3908816782918265 a001 267084832/321*1860498^(4/15) 3908816782918303 a001 2971215073/5778*1860498^(3/10) 3908816782918341 a001 1836311903/5778*1860498^(1/3) 3908816782918389 a001 1346269/5778*20633239^(5/7) 3908816782918392 a001 2584/3010349*817138163596^(17/19) 3908816782918392 a001 2584/3010349*14662949395604^(17/21) 3908816782918392 a001 2584/3010349*(1/2+1/2*5^(1/2))^51 3908816782918392 a001 2584/3010349*192900153618^(17/18) 3908816782918396 a001 1346269/5778*2537720636^(5/9) 3908816782918396 a001 1346269/5778*312119004989^(5/11) 3908816782918396 a001 1346269/5778*(1/2+1/2*5^(1/2))^25 3908816782918396 a001 1346269/5778*3461452808002^(5/12) 3908816782918396 a001 1346269/5778*28143753123^(1/2) 3908816782918396 a001 1346269/5778*228826127^(5/8) 3908816782918416 a001 233802911/1926*1860498^(2/5) 3908816782918491 a001 133957148/2889*1860498^(7/15) 3908816782918517 a001 43133785636/2889*710647^(1/14) 3908816782918529 a001 165580141/5778*1860498^(1/2) 3908816782918566 a001 34111385/1926*1860498^(8/15) 3908816782918641 a001 39088169/5778*1860498^(3/5) 3908816782918703 a001 726103/1926*1860498^(4/5) 3908816782918714 a001 2584*1860498^(2/3) 3908816782918764 a001 9227465/5778*1860498^(7/10) 3908816782918768 a001 5702887/5778*1860498^(11/15) 3908816782919070 a001 10983760033/1926*710647^(1/7) 3908816782919090 a001 73915725365/1891 3908816782919337 a001 1346269/5778*1860498^(5/6) 3908816782919623 a001 12586269025/5778*710647^(3/14) 3908816782919899 a001 7778742049/5778*710647^(1/4) 3908816782920176 a001 267084832/321*710647^(2/7) 3908816782920728 a001 1836311903/5778*710647^(5/14) 3908816782920869 a001 514229/5778*7881196^(9/11) 3908816782920917 a001 2584/1149851*14662949395604^(7/9) 3908816782920917 a001 2584/1149851*(1/2+1/2*5^(1/2))^49 3908816782920917 a001 2584/1149851*505019158607^(7/8) 3908816782920920 a001 514229/5778*141422324^(9/13) 3908816782920921 a001 514229/5778*2537720636^(3/5) 3908816782920921 a001 514229/5778*45537549124^(9/17) 3908816782920921 a001 514229/5778*817138163596^(9/19) 3908816782920921 a001 514229/5778*14662949395604^(3/7) 3908816782920921 a001 514229/5778*(1/2+1/2*5^(1/2))^27 3908816782920921 a001 514229/5778*192900153618^(1/2) 3908816782920921 a001 514229/5778*10749957122^(9/16) 3908816782920921 a001 514229/5778*599074578^(9/14) 3908816782920923 a001 514229/5778*33385282^(3/4) 3908816782921281 a001 233802911/1926*710647^(3/7) 3908816782921834 a001 133957148/2889*710647^(1/2) 3908816782921937 a001 514229/5778*1860498^(9/10) 3908816782922045 a001 43133785636/2889*271443^(1/13) 3908816782922387 a001 34111385/1926*710647^(4/7) 3908816782922939 a001 39088169/5778*710647^(9/14) 3908816782923489 a001 2584*710647^(5/7) 3908816782923778 a001 9227465/5778*710647^(3/4) 3908816782924022 a001 5702887/5778*710647^(11/14) 3908816782924022 a001 416020/2889*710647^(13/14) 3908816782924434 a001 726103/1926*710647^(6/7) 3908816782925701 a001 4140883235328/105937 3908816782926126 a001 10983760033/1926*271443^(2/13) 3908816782930207 a001 12586269025/5778*271443^(3/13) 3908816782933115 a001 139583862445/5778*103682^(1/24) 3908816782934287 a001 267084832/321*271443^(4/13) 3908816782938224 a001 34/5779*(1/2+1/2*5^(1/2))^47 3908816782938228 a001 98209/2889*(1/2+1/2*5^(1/2))^29 3908816782938228 a001 98209/2889*1322157322203^(1/2) 3908816782938368 a001 1836311903/5778*271443^(5/13) 3908816782942449 a001 233802911/1926*271443^(6/13) 3908816782944489 a001 433494437/5778*271443^(1/2) 3908816782946530 a001 133957148/2889*271443^(7/13) 3908816782948265 a001 43133785636/2889*103682^(1/12) 3908816782950610 a001 34111385/1926*271443^(8/13) 3908816782954691 a001 39088169/5778*271443^(9/13) 3908816782958769 a001 2584*271443^(10/13) 3908816782962829 a001 5702887/5778*271443^(11/13) 3908816782963416 a001 53316291173/5778*103682^(1/8) 3908816782966769 a001 726103/1926*271443^(12/13) 3908816782971011 a001 4745029957352/121393 3908816782978566 a001 10983760033/1926*103682^(1/6) 3908816782993717 a001 10182505537/2889*103682^(5/24) 3908816783008867 a001 12586269025/5778*103682^(1/4) 3908816783024018 a001 7778742049/5778*103682^(7/24) 3908816783031248 a001 139583862445/5778*39603^(1/22) 3908816783039168 a001 267084832/321*103682^(1/3) 3908816783054319 a001 2971215073/5778*103682^(3/8) 3908816783056848 a001 2584/167761*45537549124^(15/17) 3908816783056848 a001 2584/167761*312119004989^(9/11) 3908816783056848 a001 2584/167761*14662949395604^(5/7) 3908816783056848 a001 2584/167761*(1/2+1/2*5^(1/2))^45 3908816783056848 a001 2584/167761*192900153618^(5/6) 3908816783056848 a001 2584/167761*28143753123^(9/10) 3908816783056848 a001 2584/167761*10749957122^(15/16) 3908816783056852 a001 75025/5778*(1/2+1/2*5^(1/2))^31 3908816783056852 a001 75025/5778*9062201101803^(1/2) 3908816783069469 a001 1836311903/5778*103682^(5/12) 3908816783084620 a001 567451585/2889*103682^(11/24) 3908816783099770 a001 233802911/1926*103682^(1/2) 3908816783114921 a001 433494437/5778*103682^(13/24) 3908816783130071 a001 133957148/2889*103682^(7/12) 3908816783144531 a001 43133785636/2889*39603^(1/11) 3908816783145222 a001 165580141/5778*103682^(5/8) 3908816783160372 a001 34111385/1926*103682^(2/3) 3908816783175523 a001 31622993/2889*103682^(17/24) 3908816783190673 a001 39088169/5778*103682^(3/4) 3908816783205825 a001 24157817/5778*103682^(19/24) 3908816783220971 a001 2584*103682^(5/6) 3908816783236134 a001 9227465/5778*103682^(7/8) 3908816783251251 a001 5702887/5778*103682^(11/12) 3908816783257815 a001 53316291173/5778*39603^(3/22) 3908816783266489 a001 1762289/2889*103682^(23/24) 3908816783281573 a001 75518340253/1932 3908816783371098 a001 10983760033/1926*39603^(2/11) 3908816783484381 a001 10182505537/2889*39603^(5/22) 3908816783597665 a001 12586269025/5778*39603^(3/11) 3908816783710948 a001 7778742049/5778*39603^(7/22) 3908816783772066 a001 139583862445/5778*15127^(1/20) 3908816783824232 a001 267084832/321*39603^(4/11) 3908816783869910 a001 2584/64079*(1/2+1/2*5^(1/2))^43 3908816783869913 a001 28657/5778*141422324^(11/13) 3908816783869914 a001 28657/5778*2537720636^(11/15) 3908816783869914 a001 28657/5778*45537549124^(11/17) 3908816783869914 a001 28657/5778*312119004989^(3/5) 3908816783869914 a001 28657/5778*14662949395604^(11/21) 3908816783869914 a001 28657/5778*(1/2+1/2*5^(1/2))^33 3908816783869914 a001 28657/5778*192900153618^(11/18) 3908816783869914 a001 28657/5778*10749957122^(11/16) 3908816783869914 a001 28657/5778*1568397607^(3/4) 3908816783869914 a001 28657/5778*599074578^(11/14) 3908816783869917 a001 28657/5778*33385282^(11/12) 3908816783937515 a001 2971215073/5778*39603^(9/22) 3908816784050799 a001 1836311903/5778*39603^(5/11) 3908816784164082 a001 567451585/2889*39603^(1/2) 3908816784277366 a001 233802911/1926*39603^(6/11) 3908816784390649 a001 433494437/5778*39603^(13/22) 3908816784503932 a001 133957148/2889*39603^(7/11) 3908816784617216 a001 165580141/5778*39603^(15/22) 3908816784626168 a001 43133785636/2889*15127^(1/10) 3908816784730499 a001 34111385/1926*39603^(8/11) 3908816784843783 a001 31622993/2889*39603^(17/22) 3908816784957066 a001 39088169/5778*39603^(9/11) 3908816785070351 a001 24157817/5778*39603^(19/22) 3908816785183630 a001 2584*39603^(10/11) 3908816785296926 a001 9227465/5778*39603^(21/22) 3908816785410197 a001 692290540864/17711 3908816785480270 a001 53316291173/5778*15127^(3/20) 3908816785542452 a001 10182505537/682*521^(2/13) 3908816786334269 a001 32951280099/3571*1364^(1/5) 3908816786334372 a001 10983760033/1926*15127^(1/5) 3908816787188474 a001 10182505537/2889*15127^(1/4) 3908816788042576 a001 12586269025/5778*15127^(3/10) 3908816788896678 a001 7778742049/5778*15127^(7/20) 3908816789322553 a001 86267571272/39603*3571^(6/17) 3908816789422522 a001 139583862445/5778*5778^(1/18) 3908816789442719 a001 646/6119*(1/2+1/2*5^(1/2))^41 3908816789442722 a001 5473/2889*2537720636^(7/9) 3908816789442722 a001 5473/2889*17393796001^(5/7) 3908816789442722 a001 5473/2889*312119004989^(7/11) 3908816789442722 a001 5473/2889*14662949395604^(5/9) 3908816789442722 a001 5473/2889*(1/2+1/2*5^(1/2))^35 3908816789442722 a001 5473/2889*505019158607^(5/8) 3908816789442722 a001 5473/2889*28143753123^(7/10) 3908816789442722 a001 5473/2889*599074578^(5/6) 3908816789442722 a001 5473/2889*228826127^(7/8) 3908816789750780 a001 267084832/321*15127^(2/5) 3908816790604882 a001 2971215073/5778*15127^(9/20) 3908816791451176 a001 225851433717/103682*3571^(6/17) 3908816791458984 a001 1836311903/5778*15127^(1/2) 3908816791761738 a001 591286729879/271443*3571^(6/17) 3908816791807048 a001 1548008755920/710647*3571^(6/17) 3908816791813659 a001 4052739537881/1860498*3571^(6/17) 3908816791814624 a001 2178309*3571^(6/17) 3908816791815220 a001 6557470319842/3010349*3571^(6/17) 3908816791817745 a001 2504730781961/1149851*3571^(6/17) 3908816791835052 a001 956722026041/439204*3571^(6/17) 3908816791953676 a001 365435296162/167761*3571^(6/17) 3908816792313086 a001 567451585/2889*15127^(11/20) 3908816792763618 a001 53316291173/15127*3571^(5/17) 3908816792766738 a001 139583862445/64079*3571^(6/17) 3908816793167187 a001 233802911/1926*15127^(3/5) 3908816794021289 a001 433494437/5778*15127^(13/20) 3908816794875391 a001 133957148/2889*15127^(7/10) 3908816795729493 a001 165580141/5778*15127^(3/4) 3908816795927079 a001 43133785636/2889*5778^(1/9) 3908816796583595 a001 34111385/1926*15127^(4/5) 3908816797437697 a001 31622993/2889*15127^(17/20) 3908816798291799 a001 39088169/5778*15127^(9/10) 3908816798339547 a001 53316291173/24476*3571^(6/17) 3908816799145902 a001 24157817/5778*15127^(19/20) 3908816799688482 a001 102334155/2207*2207^(7/8) 3908816800000001 a001 24157815/2+24157817/2*5^(1/2) 3908816800474410 a001 7778742049/9349*3571^(8/17) 3908816802431637 a001 53316291173/5778*5778^(1/6) 3908816804657860 a001 225851433717/9349*1364^(1/15) 3908816805985775 r009 Im(z^3+c),c=-21/46+11/35*I,n=28 3908816807353421 a001 139583862445/39603*3571^(5/17) 3908816808936194 a001 10983760033/1926*5778^(2/9) 3908816809482044 a001 182717648081/51841*3571^(5/17) 3908816809792606 a001 956722026041/271443*3571^(5/17) 3908816809837917 a001 2504730781961/710647*3571^(5/17) 3908816809844528 a001 3278735159921/930249*3571^(5/17) 3908816809846088 a001 10610209857723/3010349*3571^(5/17) 3908816809848613 a001 4052739537881/1149851*3571^(5/17) 3908816809865920 a001 387002188980/109801*3571^(5/17) 3908816809984544 a001 591286729879/167761*3571^(5/17) 3908816810794486 a001 86267571272/15127*3571^(4/17) 3908816810797606 a001 225851433717/64079*3571^(5/17) 3908816815346096 m001 1/GAMMA(5/24)/exp(GAMMA(13/24))/GAMMA(5/6) 3908816815440752 a001 10182505537/2889*5778^(5/18) 3908816816370415 a001 21566892818/6119*3571^(5/17) 3908816818505279 a001 12586269025/9349*3571^(7/17) 3908816819616458 h001 (2/11*exp(2)+3/7)/(3/5*exp(2)+1/10) 3908816821395258 m001 OneNinth^2/ln(Khintchine)*gamma^2 3908816821945309 a001 12586269025/5778*5778^(1/3) 3908816825384289 a001 75283811239/13201*3571^(4/17) 3908816827406456 r005 Re(z^2+c),c=-27/56+16/35*I,n=40 3908816827512913 a001 591286729879/103682*3571^(4/17) 3908816827639319 a001 2584/9349*2537720636^(13/15) 3908816827639319 a001 2584/9349*45537549124^(13/17) 3908816827639319 a001 2584/9349*14662949395604^(13/21) 3908816827639319 a001 2584/9349*(1/2+1/2*5^(1/2))^39 3908816827639319 a001 2584/9349*192900153618^(13/18) 3908816827639319 a001 2584/9349*73681302247^(3/4) 3908816827639319 a001 2584/9349*10749957122^(13/16) 3908816827639319 a001 2584/9349*599074578^(13/14) 3908816827639322 a001 4181/5778*(1/2+1/2*5^(1/2))^37 3908816827823475 a001 516002918640/90481*3571^(4/17) 3908816827868785 a001 4052739537881/710647*3571^(4/17) 3908816827875396 a001 3536736619241/620166*3571^(4/17) 3908816827879482 a001 6557470319842/1149851*3571^(4/17) 3908816827896789 a001 2504730781961/439204*3571^(4/17) 3908816828015413 a001 956722026041/167761*3571^(4/17) 3908816828449867 a001 7778742049/5778*5778^(7/18) 3908816828825355 a001 139583862445/15127*3571^(3/17) 3908816828828475 a001 365435296162/64079*3571^(4/17) 3908816833073723 a001 139583862445/5778*2207^(1/16) 3908816834401284 a001 139583862445/24476*3571^(4/17) 3908816834954424 a001 267084832/321*5778^(4/9) 3908816836536147 a001 20365011074/9349*3571^(6/17) 3908816837318453 a007 Real Root Of -236*x^4-835*x^3+544*x^2+788*x-7 3908816837828094 r009 Im(z^3+c),c=-4/27+47/57*I,n=57 3908816837963680 r005 Im(z^2+c),c=-3/110+31/60*I,n=26 3908816838196603 a001 163427632005/4181 3908816840550357 a001 6765*9349^(18/19) 3908816841458982 a001 2971215073/5778*5778^(1/2) 3908816842904113 a001 165580141/15127*9349^(17/19) 3908816843415158 a001 365435296162/39603*3571^(3/17) 3908816845257869 a001 267914296/15127*9349^(16/19) 3908816845543782 a001 956722026041/103682*3571^(3/17) 3908816845854344 a001 2504730781961/271443*3571^(3/17) 3908816845899654 a001 6557470319842/710647*3571^(3/17) 3908816845910350 a001 10610209857723/1149851*3571^(3/17) 3908816845927657 a001 4052739537881/439204*3571^(3/17) 3908816846046281 a001 140728068720/15251*3571^(3/17) 3908816846492688 a007 Real Root Of -540*x^4+683*x^3-543*x^2+544*x+349 3908816846856223 a001 32264490531/2161*3571^(2/17) 3908816846859343 a001 591286729879/64079*3571^(3/17) 3908816847611624 a001 433494437/15127*9349^(15/19) 3908816847963539 a001 1836311903/5778*5778^(5/9) 3908816849844241 a001 63245986/2207*2207^(15/16) 3908816849965380 a001 701408733/15127*9349^(14/19) 3908816851812415 r002 4th iterates of z^2 + 3908816852319136 a001 1134903170/15127*9349^(13/19) 3908816852432152 a001 7787980473/844*3571^(3/17) 3908816852786414 a001 163427632615/4181 3908816854468097 a001 567451585/2889*5778^(11/18) 3908816854567016 a001 32951280099/9349*3571^(5/17) 3908816854672892 a001 1836311903/15127*9349^(12/19) 3908816854827198 a001 199/121393*987^(23/50) 3908816854915092 a001 163427632704/4181 3908816855123495 m005 (1/3*Zeta(3)+1/12)/(2/5*3^(1/2)+6/11) 3908816855140160 a001 267914296/39603*9349^(18/19) 3908816855226022 a001 163427632717/4181 3908816855273857 a001 163427632719/4181 3908816855278641 a001 817138163596/4181*8^(1/3) 3908816855278641 a001 2/4181*(1/2+1/2*5^(1/2))^57 3908816855297775 a001 163427632720/4181 3908816855417364 a001 163427632725/4181 3908816856230566 a001 163427632759/4181 3908816857026647 a001 2971215073/15127*9349^(11/19) 3908816857268784 a001 701408733/103682*9349^(18/19) 3908816857493916 a001 433494437/39603*9349^(17/19) 3908816857579346 a001 1836311903/271443*9349^(18/19) 3908816857624656 a001 686789568/101521*9349^(18/19) 3908816857631267 a001 12586269025/1860498*9349^(18/19) 3908816857632231 a001 32951280099/4870847*9349^(18/19) 3908816857632372 a001 86267571272/12752043*9349^(18/19) 3908816857632393 a001 32264490531/4769326*9349^(18/19) 3908816857632396 a001 591286729879/87403803*9349^(18/19) 3908816857632396 a001 1548008755920/228826127*9349^(18/19) 3908816857632396 a001 4052739537881/599074578*9349^(18/19) 3908816857632396 a001 1515744265389/224056801*9349^(18/19) 3908816857632396 a001 6557470319842/969323029*9349^(18/19) 3908816857632396 a001 2504730781961/370248451*9349^(18/19) 3908816857632396 a001 956722026041/141422324*9349^(18/19) 3908816857632398 a001 365435296162/54018521*9349^(18/19) 3908816857632405 a001 139583862445/20633239*9349^(18/19) 3908816857632459 a001 53316291173/7881196*9349^(18/19) 3908816857632828 a001 20365011074/3010349*9349^(18/19) 3908816857635353 a001 7778742049/1149851*9349^(18/19) 3908816857652660 a001 2971215073/439204*9349^(18/19) 3908816857771284 a001 1134903170/167761*9349^(18/19) 3908816858584346 a001 433494437/64079*9349^(18/19) 3908816859380403 a001 686789568/2161*9349^(10/19) 3908816859622540 a001 567451585/51841*9349^(17/19) 3908816859847672 a001 17711*9349^(16/19) 3908816859933102 a001 2971215073/271443*9349^(17/19) 3908816859978412 a001 7778742049/710647*9349^(17/19) 3908816859985023 a001 10182505537/930249*9349^(17/19) 3908816859985987 a001 53316291173/4870847*9349^(17/19) 3908816859986128 a001 139583862445/12752043*9349^(17/19) 3908816859986148 a001 182717648081/16692641*9349^(17/19) 3908816859986151 a001 956722026041/87403803*9349^(17/19) 3908816859986152 a001 2504730781961/228826127*9349^(17/19) 3908816859986152 a001 3278735159921/299537289*9349^(17/19) 3908816859986152 a001 10610209857723/969323029*9349^(17/19) 3908816859986152 a001 4052739537881/370248451*9349^(17/19) 3908816859986152 a001 387002188980/35355581*9349^(17/19) 3908816859986153 a001 591286729879/54018521*9349^(17/19) 3908816859986161 a001 7787980473/711491*9349^(17/19) 3908816859986215 a001 21566892818/1970299*9349^(17/19) 3908816859986583 a001 32951280099/3010349*9349^(17/19) 3908816859989108 a001 12586269025/1149851*9349^(17/19) 3908816860006415 a001 1201881744/109801*9349^(17/19) 3908816860125040 a001 1836311903/167761*9349^(17/19) 3908816860938101 a001 701408733/64079*9349^(17/19) 3908816860972654 a001 233802911/1926*5778^(2/3) 3908816861446027 a001 591286729879/39603*3571^(2/17) 3908816861734159 a001 7778742049/15127*9349^(9/19) 3908816861803396 a001 163427632992/4181 3908816861976295 a001 1836311903/103682*9349^(16/19) 3908816862201428 a001 1134903170/39603*9349^(15/19) 3908816862286857 a001 1602508992/90481*9349^(16/19) 3908816862332168 a001 12586269025/710647*9349^(16/19) 3908816862338778 a001 10983760033/620166*9349^(16/19) 3908816862339743 a001 86267571272/4870847*9349^(16/19) 3908816862339884 a001 75283811239/4250681*9349^(16/19) 3908816862339904 a001 591286729879/33385282*9349^(16/19) 3908816862339907 a001 516002918640/29134601*9349^(16/19) 3908816862339908 a001 4052739537881/228826127*9349^(16/19) 3908816862339908 a001 3536736619241/199691526*9349^(16/19) 3908816862339908 a001 6557470319842/370248451*9349^(16/19) 3908816862339908 a001 2504730781961/141422324*9349^(16/19) 3908816862339909 a001 956722026041/54018521*9349^(16/19) 3908816862339917 a001 365435296162/20633239*9349^(16/19) 3908816862339971 a001 139583862445/7881196*9349^(16/19) 3908816862340339 a001 53316291173/3010349*9349^(16/19) 3908816862342864 a001 20365011074/1149851*9349^(16/19) 3908816862360171 a001 7778742049/439204*9349^(16/19) 3908816862478795 a001 2971215073/167761*9349^(16/19) 3908816863291857 a001 1134903170/64079*9349^(16/19) 3908816863574650 a001 774004377960/51841*3571^(2/17) 3908816863885212 a001 4052739537881/271443*3571^(2/17) 3908816863930523 a001 1515744265389/101521*3571^(2/17) 3908816863958526 a001 3278735159921/219602*3571^(2/17) 3908816864077150 a001 2504730781961/167761*3571^(2/17) 3908816864087915 a001 12586269025/15127*9349^(8/19) 3908816864157155 a001 165580141/24476*9349^(18/19) 3908816864330051 a001 2971215073/103682*9349^(15/19) 3908816864555183 a001 1836311903/39603*9349^(14/19) 3908816864640613 a001 7778742049/271443*9349^(15/19) 3908816864685924 a001 20365011074/710647*9349^(15/19) 3908816864692534 a001 53316291173/1860498*9349^(15/19) 3908816864693499 a001 139583862445/4870847*9349^(15/19) 3908816864693639 a001 365435296162/12752043*9349^(15/19) 3908816864693660 a001 956722026041/33385282*9349^(15/19) 3908816864693663 a001 2504730781961/87403803*9349^(15/19) 3908816864693663 a001 6557470319842/228826127*9349^(15/19) 3908816864693664 a001 10610209857723/370248451*9349^(15/19) 3908816864693664 a001 4052739537881/141422324*9349^(15/19) 3908816864693665 a001 1548008755920/54018521*9349^(15/19) 3908816864693673 a001 591286729879/20633239*9349^(15/19) 3908816864693726 a001 225851433717/7881196*9349^(15/19) 3908816864694095 a001 86267571272/3010349*9349^(15/19) 3908816864696620 a001 32951280099/1149851*9349^(15/19) 3908816864713927 a001 12586269025/439204*9349^(15/19) 3908816864832551 a001 4807526976/167761*9349^(15/19) 3908816864887092 a001 365435296162/15127*3571^(1/17) 3908816864890212 a001 956722026041/64079*3571^(2/17) 3908816865645613 a001 28657*9349^(15/19) 3908816865835922 a001 6765/15127*817138163596^(2/3) 3908816865835922 a001 6765/15127*(1/2+1/2*5^(1/2))^38 3908816865835922 a001 6765/15127*10749957122^(19/24) 3908816865835922 a001 6765/15127*4106118243^(19/23) 3908816865835922 a001 6765/15127*1568397607^(19/22) 3908816865835922 a001 6765/15127*599074578^(19/21) 3908816865835922 a001 6765/15127*228826127^(19/20) 3908816866441670 a001 20365011074/15127*9349^(7/19) 3908816866510910 a001 10946*9349^(17/19) 3908816866683807 a001 46368*9349^(14/19) 3908816866714386 m001 Ei(1)^(FeigenbaumAlpha/GAMMA(19/24)) 3908816866908939 a001 2971215073/39603*9349^(13/19) 3908816866994369 a001 12586269025/271443*9349^(14/19) 3908816867039679 a001 32951280099/710647*9349^(14/19) 3908816867046290 a001 43133785636/930249*9349^(14/19) 3908816867047254 a001 225851433717/4870847*9349^(14/19) 3908816867047395 a001 591286729879/12752043*9349^(14/19) 3908816867047416 a001 774004377960/16692641*9349^(14/19) 3908816867047419 a001 4052739537881/87403803*9349^(14/19) 3908816867047419 a001 225749145909/4868641*9349^(14/19) 3908816867047419 a001 3278735159921/70711162*9349^(14/19) 3908816867047421 a001 2504730781961/54018521*9349^(14/19) 3908816867047428 a001 956722026041/20633239*9349^(14/19) 3908816867047482 a001 182717648081/3940598*9349^(14/19) 3908816867047851 a001 139583862445/3010349*9349^(14/19) 3908816867050376 a001 53316291173/1149851*9349^(14/19) 3908816867067683 a001 10182505537/219602*9349^(14/19) 3908816867186307 a001 7778742049/167761*9349^(14/19) 3908816867477212 a001 433494437/5778*5778^(13/18) 3908816867999369 a001 2971215073/64079*9349^(14/19) 3908816868795426 a001 32951280099/15127*9349^(6/19) 3908816868864666 a001 433494437/24476*9349^(16/19) 3908816869037563 a001 7778742049/103682*9349^(13/19) 3908816869262695 a001 1602508992/13201*9349^(12/19) 3908816869348125 a001 20365011074/271443*9349^(13/19) 3908816869393435 a001 53316291173/710647*9349^(13/19) 3908816869400046 a001 139583862445/1860498*9349^(13/19) 3908816869401010 a001 365435296162/4870847*9349^(13/19) 3908816869401151 a001 956722026041/12752043*9349^(13/19) 3908816869401171 a001 2504730781961/33385282*9349^(13/19) 3908816869401174 a001 6557470319842/87403803*9349^(13/19) 3908816869401175 a001 10610209857723/141422324*9349^(13/19) 3908816869401176 a001 4052739537881/54018521*9349^(13/19) 3908816869401184 a001 140728068720/1875749*9349^(13/19) 3908816869401238 a001 591286729879/7881196*9349^(13/19) 3908816869401606 a001 225851433717/3010349*9349^(13/19) 3908816869404131 a001 86267571272/1149851*9349^(13/19) 3908816869421438 a001 32951280099/439204*9349^(13/19) 3908816869540063 a001 75025*9349^(13/19) 3908816870353124 a001 4807526976/64079*9349^(13/19) 3908816870463021 a001 182717648081/12238*3571^(2/17) 3908816871149182 a001 53316291173/15127*9349^(5/19) 3908816871218422 a001 701408733/24476*9349^(15/19) 3908816871391318 a001 12586269025/103682*9349^(12/19) 3908816871616451 a001 7778742049/39603*9349^(11/19) 3908816871701880 a001 121393*9349^(12/19) 3908816871747191 a001 86267571272/710647*9349^(12/19) 3908816871753802 a001 75283811239/620166*9349^(12/19) 3908816871754766 a001 591286729879/4870847*9349^(12/19) 3908816871754907 a001 516002918640/4250681*9349^(12/19) 3908816871754927 a001 4052739537881/33385282*9349^(12/19) 3908816871754930 a001 3536736619241/29134601*9349^(12/19) 3908816871754932 a001 6557470319842/54018521*9349^(12/19) 3908816871754940 a001 2504730781961/20633239*9349^(12/19) 3908816871754994 a001 956722026041/7881196*9349^(12/19) 3908816871755362 a001 365435296162/3010349*9349^(12/19) 3908816871757887 a001 139583862445/1149851*9349^(12/19) 3908816871775194 a001 53316291173/439204*9349^(12/19) 3908816871893818 a001 20365011074/167761*9349^(12/19) 3908816872597885 a001 53316291173/9349*3571^(4/17) 3908816872706880 a001 7778742049/64079*9349^(12/19) 3908816873502938 a001 86267571272/15127*9349^(4/19) 3908816873572178 a001 567451585/12238*9349^(14/19) 3908816873745074 a001 10182505537/51841*9349^(11/19) 3908816873970206 a001 12586269025/39603*9349^(10/19) 3908816873981770 a001 133957148/2889*5778^(7/9) 3908816874055636 a001 53316291173/271443*9349^(11/19) 3908816874100947 a001 139583862445/710647*9349^(11/19) 3908816874107557 a001 182717648081/930249*9349^(11/19) 3908816874108522 a001 956722026041/4870847*9349^(11/19) 3908816874108662 a001 2504730781961/12752043*9349^(11/19) 3908816874108683 a001 3278735159921/16692641*9349^(11/19) 3908816874108688 a001 10610209857723/54018521*9349^(11/19) 3908816874108696 a001 4052739537881/20633239*9349^(11/19) 3908816874108749 a001 387002188980/1970299*9349^(11/19) 3908816874109118 a001 591286729879/3010349*9349^(11/19) 3908816874111643 a001 225851433717/1149851*9349^(11/19) 3908816874128950 a001 196418*9349^(11/19) 3908816874247574 a001 32951280099/167761*9349^(11/19) 3908816875060636 a001 12586269025/64079*9349^(11/19) 3908816875856693 a001 139583862445/15127*9349^(3/19) 3908816875925933 a001 1836311903/24476*9349^(13/19) 3908816876098830 a001 32951280099/103682*9349^(10/19) 3908816876323962 a001 20365011074/39603*9349^(9/19) 3908816876393202 a001 213929547645/5473 3908816876409392 a001 86267571272/271443*9349^(10/19) 3908816876454702 a001 317811*9349^(10/19) 3908816876461313 a001 591286729879/1860498*9349^(10/19) 3908816876462278 a001 1548008755920/4870847*9349^(10/19) 3908816876462418 a001 4052739537881/12752043*9349^(10/19) 3908816876462439 a001 1515744265389/4769326*9349^(10/19) 3908816876462451 a001 6557470319842/20633239*9349^(10/19) 3908816876462505 a001 2504730781961/7881196*9349^(10/19) 3908816876462874 a001 956722026041/3010349*9349^(10/19) 3908816876465399 a001 365435296162/1149851*9349^(10/19) 3908816876482706 a001 139583862445/439204*9349^(10/19) 3908816876601330 a001 53316291173/167761*9349^(10/19) 3908816876703905 a001 39088169/15127*24476^(20/21) 3908816877014608 a001 63245986/15127*24476^(19/21) 3908816877325311 a001 6765*24476^(6/7) 3908816877414392 a001 20365011074/64079*9349^(10/19) 3908816877636014 a001 165580141/15127*24476^(17/21) 3908816877759096 m009 (1/2*Psi(1,1/3)+3)/(2/5*Psi(1,2/3)+5/6) 3908816877946716 a001 267914296/15127*24476^(16/21) 3908816878210449 a001 32264490531/2161*9349^(2/19) 3908816878257419 a001 433494437/15127*24476^(5/7) 3908816878279689 a001 2971215073/24476*9349^(12/19) 3908816878452586 a001 53316291173/103682*9349^(9/19) 3908816878568122 a001 701408733/15127*24476^(2/3) 3908816878677718 a001 10983760033/13201*9349^(8/19) 3908816878763148 a001 139583862445/271443*9349^(9/19) 3908816878808458 a001 365435296162/710647*9349^(9/19) 3908816878815069 a001 956722026041/1860498*9349^(9/19) 3908816878816033 a001 2504730781961/4870847*9349^(9/19) 3908816878816174 a001 6557470319842/12752043*9349^(9/19) 3908816878816207 a001 10610209857723/20633239*9349^(9/19) 3908816878816261 a001 4052739537881/7881196*9349^(9/19) 3908816878816629 a001 1548008755920/3010349*9349^(9/19) 3908816878819154 a001 514229*9349^(9/19) 3908816878836461 a001 225851433717/439204*9349^(9/19) 3908816878878825 a001 1134903170/15127*24476^(13/21) 3908816878955086 a001 86267571272/167761*9349^(9/19) 3908816879189527 a001 1836311903/15127*24476^(4/7) 3908816879476895 a001 956722026041/39603*3571^(1/17) 3908816879500230 a001 2971215073/15127*24476^(11/21) 3908816879753513 r002 57th iterates of z^2 + 3908816879768147 a001 32951280099/64079*9349^(9/19) 3908816879810933 a001 686789568/2161*24476^(10/21) 3908816880121636 a001 7778742049/15127*24476^(3/7) 3908816880425725 a001 17711/15127*141422324^(12/13) 3908816880425725 a001 2255/13201*2537720636^(8/9) 3908816880425725 a001 2255/13201*312119004989^(8/11) 3908816880425725 a001 2255/13201*(1/2+1/2*5^(1/2))^40 3908816880425725 a001 2255/13201*23725150497407^(5/8) 3908816880425725 a001 2255/13201*73681302247^(10/13) 3908816880425725 a001 2255/13201*28143753123^(4/5) 3908816880425725 a001 2255/13201*10749957122^(5/6) 3908816880425725 a001 2255/13201*4106118243^(20/23) 3908816880425725 a001 2255/13201*1568397607^(10/11) 3908816880425725 a001 2255/13201*599074578^(20/21) 3908816880425725 a001 17711/15127*2537720636^(4/5) 3908816880425725 a001 17711/15127*45537549124^(12/17) 3908816880425725 a001 17711/15127*14662949395604^(4/7) 3908816880425725 a001 17711/15127*(1/2+1/2*5^(1/2))^36 3908816880425725 a001 17711/15127*505019158607^(9/14) 3908816880425725 a001 17711/15127*192900153618^(2/3) 3908816880425725 a001 17711/15127*73681302247^(9/13) 3908816880425725 a001 17711/15127*10749957122^(3/4) 3908816880425725 a001 17711/15127*4106118243^(18/23) 3908816880425725 a001 17711/15127*1568397607^(9/11) 3908816880425725 a001 17711/15127*599074578^(6/7) 3908816880425725 a001 17711/15127*228826127^(9/10) 3908816880425725 a001 17711/15127*87403803^(18/19) 3908816880432339 a001 12586269025/15127*24476^(8/21) 3908816880486327 a001 165580141/5778*5778^(5/6) 3908816880564205 a001 365435296162/15127*9349^(1/19) 3908816880633445 a001 1201881744/6119*9349^(11/19) 3908816880743041 a001 20365011074/15127*24476^(1/3) 3908816880806342 a001 43133785636/51841*9349^(8/19) 3908816881031474 a001 53316291173/39603*9349^(7/19) 3908816881053744 a001 32951280099/15127*24476^(2/7) 3908816881116904 a001 75283811239/90481*9349^(8/19) 3908816881162214 a001 591286729879/710647*9349^(8/19) 3908816881168825 a001 832040*9349^(8/19) 3908816881169789 a001 4052739537881/4870847*9349^(8/19) 3908816881169930 a001 3536736619241/4250681*9349^(8/19) 3908816881170017 a001 3278735159921/3940598*9349^(8/19) 3908816881170385 a001 2504730781961/3010349*9349^(8/19) 3908816881172910 a001 956722026041/1149851*9349^(8/19) 3908816881190217 a001 182717648081/219602*9349^(8/19) 3908816881308841 a001 139583862445/167761*9349^(8/19) 3908816881364447 a001 53316291173/15127*24476^(5/21) 3908816881507690 r005 Re(z^2+c),c=-25/46+1/41*I,n=39 3908816881605519 a001 2504730781961/103682*3571^(1/17) 3908816881675150 a001 86267571272/15127*24476^(4/21) 3908816881916081 a001 6557470319842/271443*3571^(1/17) 3908816881966011 a001 1120149653865/28657 3908816881985852 a001 139583862445/15127*24476^(1/7) 3908816881989395 a001 10610209857723/439204*3571^(1/17) 3908816882007397 a001 14930352/15127*64079^(22/23) 3908816882048791 a001 24157817/15127*64079^(21/23) 3908816882090178 a001 39088169/15127*64079^(20/23) 3908816882108019 a001 4052739537881/167761*3571^(1/17) 3908816882121903 a001 53316291173/64079*9349^(8/19) 3908816882131568 a001 63245986/15127*64079^(19/23) 3908816882172957 a001 6765*64079^(18/23) 3908816882214346 a001 165580141/15127*64079^(17/23) 3908816882255735 a001 267914296/15127*64079^(16/23) 3908816882296555 a001 32264490531/2161*24476^(2/21) 3908816882297124 a001 433494437/15127*64079^(15/23) 3908816882338513 a001 701408733/15127*64079^(14/23) 3908816882379902 a001 1134903170/15127*64079^(13/23) 3908816882421291 a001 1836311903/15127*64079^(12/23) 3908816882462681 a001 2971215073/15127*64079^(11/23) 3908816882504070 a001 686789568/2161*64079^(10/23) 3908816882545459 a001 7778742049/15127*64079^(9/23) 3908816882554348 a001 6765/103682*2537720636^(14/15) 3908816882554348 a001 6765/103682*17393796001^(6/7) 3908816882554348 a001 6765/103682*45537549124^(14/17) 3908816882554348 a001 6765/103682*14662949395604^(2/3) 3908816882554348 a001 6765/103682*(1/2+1/2*5^(1/2))^42 3908816882554348 a001 6765/103682*505019158607^(3/4) 3908816882554348 a001 6765/103682*192900153618^(7/9) 3908816882554348 a001 6765/103682*10749957122^(7/8) 3908816882554348 a001 6765/103682*4106118243^(21/23) 3908816882554348 a001 6765/103682*1568397607^(21/22) 3908816882554348 a001 6624/2161*45537549124^(2/3) 3908816882554348 a001 6624/2161*(1/2+1/2*5^(1/2))^34 3908816882554348 a001 6624/2161*10749957122^(17/24) 3908816882554348 a001 6624/2161*4106118243^(17/23) 3908816882554348 a001 6624/2161*1568397607^(17/22) 3908816882554348 a001 6624/2161*599074578^(17/21) 3908816882554349 a001 6624/2161*228826127^(17/20) 3908816882554349 a001 6624/2161*87403803^(17/19) 3908816882554352 a001 6624/2161*33385282^(17/18) 3908816882586848 a001 12586269025/15127*64079^(8/23) 3908816882607258 a001 365435296162/15127*24476^(1/21) 3908816882628237 a001 20365011074/15127*64079^(7/23) 3908816882669626 a001 32951280099/15127*64079^(6/23) 3908816882711015 a001 53316291173/15127*64079^(5/23) 3908816882752404 a001 86267571272/15127*64079^(4/23) 3908816882779073 a001 586517973261/15005 3908816882793793 a001 139583862445/15127*64079^(3/23) 3908816882806850 a001 39088169/15127*167761^(4/5) 3908816882834628 a001 433494437/15127*167761^(3/5) 3908816882835183 a001 32264490531/2161*64079^(2/23) 3908816882862406 a001 686789568/2161*167761^(2/5) 3908816882864910 a001 2255/90481*312119004989^(4/5) 3908816882864910 a001 2255/90481*(1/2+1/2*5^(1/2))^44 3908816882864910 a001 2255/90481*23725150497407^(11/16) 3908816882864910 a001 2255/90481*73681302247^(11/13) 3908816882864910 a001 2255/90481*10749957122^(11/12) 3908816882864910 a001 2255/90481*4106118243^(22/23) 3908816882864910 a001 121393/15127*(1/2+1/2*5^(1/2))^32 3908816882864910 a001 121393/15127*23725150497407^(1/2) 3908816882864910 a001 121393/15127*505019158607^(4/7) 3908816882864910 a001 121393/15127*73681302247^(8/13) 3908816882864910 a001 121393/15127*10749957122^(2/3) 3908816882864910 a001 121393/15127*4106118243^(16/23) 3908816882864910 a001 121393/15127*1568397607^(8/11) 3908816882864910 a001 121393/15127*599074578^(16/21) 3908816882864910 a001 121393/15127*228826127^(4/5) 3908816882864911 a001 121393/15127*87403803^(16/19) 3908816882864914 a001 121393/15127*33385282^(8/9) 3908816882864933 a001 121393/15127*12752043^(16/17) 3908816882876572 a001 365435296162/15127*64079^(1/23) 3908816882890183 a001 53316291173/15127*167761^(1/5) 3908816882897697 a001 225812351325/5777 3908816882899925 a001 5702887/15127*439204^(8/9) 3908816882902202 a001 24157817/15127*439204^(7/9) 3908816882904452 a001 6765*439204^(2/3) 3908816882906703 a001 433494437/15127*439204^(5/9) 3908816882908955 a001 1836311903/15127*439204^(4/9) 3908816882910164 a001 317811/15127*7881196^(10/11) 3908816882910213 a001 317811/15127*20633239^(6/7) 3908816882910221 a001 317811/15127*141422324^(10/13) 3908816882910221 a001 6765/710647*(1/2+1/2*5^(1/2))^46 3908816882910221 a001 6765/710647*10749957122^(23/24) 3908816882910221 a001 317811/15127*2537720636^(2/3) 3908816882910221 a001 317811/15127*45537549124^(10/17) 3908816882910221 a001 317811/15127*312119004989^(6/11) 3908816882910221 a001 317811/15127*14662949395604^(10/21) 3908816882910221 a001 317811/15127*(1/2+1/2*5^(1/2))^30 3908816882910221 a001 317811/15127*192900153618^(5/9) 3908816882910221 a001 317811/15127*28143753123^(3/5) 3908816882910221 a001 317811/15127*10749957122^(5/8) 3908816882910221 a001 317811/15127*4106118243^(15/23) 3908816882910221 a001 317811/15127*1568397607^(15/22) 3908816882910221 a001 317811/15127*599074578^(5/7) 3908816882910221 a001 317811/15127*228826127^(3/4) 3908816882910221 a001 317811/15127*87403803^(15/19) 3908816882910224 a001 317811/15127*33385282^(5/6) 3908816882910242 a001 317811/15127*12752043^(15/17) 3908816882910375 a001 317811/15127*4870847^(15/16) 3908816882911206 a001 7778742049/15127*439204^(1/3) 3908816882913458 a001 32951280099/15127*439204^(2/9) 3908816882915004 a001 20100269968845/514229 3908816882915709 a001 139583862445/15127*439204^(1/9) 3908816882916824 a001 832040/15127*20633239^(4/5) 3908816882916831 a001 55/15126*45537549124^(16/17) 3908816882916831 a001 55/15126*14662949395604^(16/21) 3908816882916831 a001 55/15126*(1/2+1/2*5^(1/2))^48 3908816882916831 a001 55/15126*192900153618^(8/9) 3908816882916831 a001 55/15126*73681302247^(12/13) 3908816882916832 a001 832040/15127*17393796001^(4/7) 3908816882916832 a001 832040/15127*14662949395604^(4/9) 3908816882916832 a001 832040/15127*(1/2+1/2*5^(1/2))^28 3908816882916832 a001 832040/15127*505019158607^(1/2) 3908816882916832 a001 832040/15127*73681302247^(7/13) 3908816882916832 a001 832040/15127*10749957122^(7/12) 3908816882916832 a001 832040/15127*4106118243^(14/23) 3908816882916832 a001 832040/15127*1568397607^(7/11) 3908816882916832 a001 832040/15127*599074578^(2/3) 3908816882916832 a001 832040/15127*228826127^(7/10) 3908816882916832 a001 832040/15127*87403803^(14/19) 3908816882916834 a001 832040/15127*33385282^(7/9) 3908816882916851 a001 832040/15127*12752043^(14/17) 3908816882916976 a001 832040/15127*4870847^(7/8) 3908816882917529 a001 52623189961485/1346269 3908816882917796 a001 311187/2161*141422324^(2/3) 3908816882917796 a001 6765/4870847*312119004989^(10/11) 3908816882917796 a001 6765/4870847*(1/2+1/2*5^(1/2))^50 3908816882917796 a001 6765/4870847*3461452808002^(5/6) 3908816882917796 a001 311187/2161*(1/2+1/2*5^(1/2))^26 3908816882917796 a001 311187/2161*73681302247^(1/2) 3908816882917796 a001 311187/2161*10749957122^(13/24) 3908816882917796 a001 311187/2161*4106118243^(13/23) 3908816882917796 a001 311187/2161*1568397607^(13/22) 3908816882917796 a001 311187/2161*599074578^(13/21) 3908816882917796 a001 311187/2161*228826127^(13/20) 3908816882917796 a001 311187/2161*87403803^(13/19) 3908816882917799 a001 311187/2161*33385282^(13/18) 3908816882917814 a001 311187/2161*12752043^(13/17) 3908816882917885 a001 832040/15127*1860498^(14/15) 3908816882917891 a001 5702887/15127*7881196^(8/11) 3908816882917898 a001 68884649957805/1762289 3908816882917915 a001 14930352/15127*7881196^(2/3) 3908816882917922 a001 24157817/15127*7881196^(7/11) 3908816882917926 a001 6765*7881196^(6/11) 3908816882917930 a001 311187/2161*4870847^(13/16) 3908816882917932 a001 433494437/15127*7881196^(5/11) 3908816882917937 a001 5702887/15127*141422324^(8/13) 3908816882917937 a001 2255/4250681*(1/2+1/2*5^(1/2))^52 3908816882917937 a001 2255/4250681*23725150497407^(13/16) 3908816882917937 a001 2255/4250681*505019158607^(13/14) 3908816882917937 a001 5702887/15127*2537720636^(8/15) 3908816882917937 a001 5702887/15127*45537549124^(8/17) 3908816882917937 a001 5702887/15127*14662949395604^(8/21) 3908816882917937 a001 5702887/15127*(1/2+1/2*5^(1/2))^24 3908816882917937 a001 5702887/15127*192900153618^(4/9) 3908816882917937 a001 5702887/15127*73681302247^(6/13) 3908816882917937 a001 5702887/15127*10749957122^(1/2) 3908816882917937 a001 5702887/15127*4106118243^(12/23) 3908816882917937 a001 5702887/15127*1568397607^(6/11) 3908816882917937 a001 5702887/15127*599074578^(4/7) 3908816882917937 a001 5702887/15127*228826127^(3/5) 3908816882917937 a001 5702887/15127*87403803^(12/19) 3908816882917938 a001 1836311903/15127*7881196^(4/11) 3908816882917939 a001 5702887/15127*33385282^(2/3) 3908816882917940 a001 2971215073/15127*7881196^(1/3) 3908816882917944 a001 7778742049/15127*7881196^(3/11) 3908816882917949 a001 32951280099/15127*7881196^(2/11) 3908816882917952 a001 72136941957069/1845493 3908816882917954 a001 5702887/15127*12752043^(12/17) 3908816882917955 a001 39088169/15127*20633239^(4/7) 3908816882917955 a001 139583862445/15127*7881196^(1/11) 3908816882917957 a001 24157817/15127*20633239^(3/5) 3908816882917957 a001 433494437/15127*20633239^(3/7) 3908816882917957 a001 701408733/15127*20633239^(2/5) 3908816882917957 a001 6765/33385282*14662949395604^(6/7) 3908816882917957 a001 6765/33385282*(1/2+1/2*5^(1/2))^54 3908816882917957 a001 14930352/15127*312119004989^(2/5) 3908816882917957 a001 14930352/15127*(1/2+1/2*5^(1/2))^22 3908816882917957 a001 14930352/15127*10749957122^(11/24) 3908816882917957 a001 14930352/15127*4106118243^(11/23) 3908816882917957 a001 14930352/15127*1568397607^(1/2) 3908816882917957 a001 14930352/15127*599074578^(11/21) 3908816882917957 a001 14930352/15127*228826127^(11/20) 3908816882917958 a001 14930352/15127*87403803^(11/19) 3908816882917958 a001 686789568/2161*20633239^(2/7) 3908816882917959 a001 20365011074/15127*20633239^(1/5) 3908816882917959 a001 944284829440425/24157817 3908816882917959 a001 14930352/15127*33385282^(11/18) 3908816882917959 a001 53316291173/15127*20633239^(1/7) 3908816882917960 a001 2255/29134601*14662949395604^(8/9) 3908816882917960 a001 39088169/15127*2537720636^(4/9) 3908816882917960 a001 39088169/15127*(1/2+1/2*5^(1/2))^20 3908816882917960 a001 39088169/15127*23725150497407^(5/16) 3908816882917960 a001 39088169/15127*505019158607^(5/14) 3908816882917960 a001 39088169/15127*73681302247^(5/13) 3908816882917960 a001 39088169/15127*28143753123^(2/5) 3908816882917960 a001 39088169/15127*10749957122^(5/12) 3908816882917960 a001 39088169/15127*4106118243^(10/23) 3908816882917960 a001 39088169/15127*1568397607^(5/11) 3908816882917960 a001 39088169/15127*599074578^(10/21) 3908816882917960 a001 39088169/15127*228826127^(1/2) 3908816882917960 a001 1236084889267965/31622993 3908816882917961 a001 39088169/15127*87403803^(10/19) 3908816882917961 a001 6765*141422324^(6/13) 3908816882917961 a001 6472224506167365/165580141 3908816882917961 a001 2255/199691526*14662949395604^(20/21) 3908816882917961 a001 16944503739966165/433494437 3908816882917961 a001 260948745374889/6675901 3908816882917961 a001 6765*2537720636^(2/5) 3908816882917961 a001 6765*45537549124^(6/17) 3908816882917961 a001 6765*14662949395604^(2/7) 3908816882917961 a001 6765*192900153618^(1/3) 3908816882917961 a001 6765*10749957122^(3/8) 3908816882917961 a001 6765*4106118243^(9/23) 3908816882917961 a001 71778069687496095/1836311903 3908816882917961 a001 6765*1568397607^(9/22) 3908816882917961 a001 9138927657921655/233802911 3908816882917961 a001 433494437/15127*141422324^(5/13) 3908816882917961 a001 6765*599074578^(3/7) 3908816882917961 a001 1134903170/15127*141422324^(1/3) 3908816882917961 a001 1309034904224850/33489287 3908816882917961 a001 1836311903/15127*141422324^(4/13) 3908816882917961 a001 7778742049/15127*141422324^(3/13) 3908816882917961 a001 6765*228826127^(9/20) 3908816882917961 a001 32951280099/15127*141422324^(2/13) 3908816882917961 a001 139583862445/15127*141422324^(1/13) 3908816882917961 a001 267914296/15127*(1/2+1/2*5^(1/2))^16 3908816882917961 a001 267914296/15127*23725150497407^(1/4) 3908816882917961 a001 267914296/15127*73681302247^(4/13) 3908816882917961 a001 267914296/15127*10749957122^(1/3) 3908816882917961 a001 267914296/15127*4106118243^(8/23) 3908816882917961 a001 267914296/15127*1568397607^(4/11) 3908816882917961 a001 267914296/15127*599074578^(8/21) 3908816882917961 a001 701408733/15127*17393796001^(2/7) 3908816882917961 a001 701408733/15127*14662949395604^(2/9) 3908816882917961 a001 701408733/15127*(1/2+1/2*5^(1/2))^14 3908816882917961 a001 701408733/15127*10749957122^(7/24) 3908816882917961 a001 701408733/15127*4106118243^(7/23) 3908816882917961 a001 701408733/15127*1568397607^(7/22) 3908816882917961 a001 1836311903/15127*2537720636^(4/15) 3908816882917961 a001 1836311903/15127*45537549124^(4/17) 3908816882917961 a001 1836311903/15127*817138163596^(4/19) 3908816882917961 a001 1836311903/15127*14662949395604^(4/21) 3908816882917961 a001 1836311903/15127*(1/2+1/2*5^(1/2))^12 3908816882917961 a001 1836311903/15127*192900153618^(2/9) 3908816882917961 a001 1836311903/15127*73681302247^(3/13) 3908816882917961 a001 1836311903/15127*10749957122^(1/4) 3908816882917961 a001 1836311903/15127*4106118243^(6/23) 3908816882917961 a001 686789568/2161*2537720636^(2/9) 3908816882917961 a001 7778742049/15127*2537720636^(1/5) 3908816882917961 a001 32951280099/15127*2537720636^(2/15) 3908816882917961 a001 53316291173/15127*2537720636^(1/9) 3908816882917961 a001 139583862445/15127*2537720636^(1/15) 3908816882917961 a001 686789568/2161*312119004989^(2/11) 3908816882917961 a001 686789568/2161*(1/2+1/2*5^(1/2))^10 3908816882917961 a001 686789568/2161*28143753123^(1/5) 3908816882917961 a001 686789568/2161*10749957122^(5/24) 3908816882917961 a001 12586269025/15127*(1/2+1/2*5^(1/2))^8 3908816882917961 a001 12586269025/15127*23725150497407^(1/8) 3908816882917961 a001 12586269025/15127*505019158607^(1/7) 3908816882917961 a001 12586269025/15127*73681302247^(2/13) 3908816882917961 a001 32951280099/15127*45537549124^(2/17) 3908816882917961 a001 32951280099/15127*14662949395604^(2/21) 3908816882917961 a001 32951280099/15127*(1/2+1/2*5^(1/2))^6 3908816882917961 a001 86267571272/15127*(1/2+1/2*5^(1/2))^4 3908816882917961 a001 86267571272/15127*23725150497407^(1/16) 3908816882917961 a001 139583862445/15127*45537549124^(1/17) 3908816882917961 a001 86267571272/15127*73681302247^(1/13) 3908816882917961 a001 32264490531/2161*(1/2+1/2*5^(1/2))^2 3908816882917961 a001 591286729879/15127 3908816882917961 a001 139583862445/15127*14662949395604^(1/21) 3908816882917961 a001 139583862445/15127*(1/2+1/2*5^(1/2))^3 3908816882917961 a001 139583862445/15127*192900153618^(1/18) 3908816882917961 a001 53316291173/15127*312119004989^(1/11) 3908816882917961 a001 53316291173/15127*(1/2+1/2*5^(1/2))^5 3908816882917961 a001 12586269025/15127*10749957122^(1/6) 3908816882917961 a001 53316291173/15127*28143753123^(1/10) 3908816882917961 a001 32264490531/2161*10749957122^(1/24) 3908816882917961 a001 20365011074/15127*14662949395604^(1/9) 3908816882917961 a001 20365011074/15127*(1/2+1/2*5^(1/2))^7 3908816882917961 a001 139583862445/15127*10749957122^(1/16) 3908816882917961 a001 86267571272/15127*10749957122^(1/12) 3908816882917961 a001 32951280099/15127*10749957122^(1/8) 3908816882917961 a001 32264490531/2161*4106118243^(1/23) 3908816882917961 a001 7778742049/15127*45537549124^(3/17) 3908816882917961 a001 7778742049/15127*817138163596^(3/19) 3908816882917961 a001 7778742049/15127*14662949395604^(1/7) 3908816882917961 a001 7778742049/15127*(1/2+1/2*5^(1/2))^9 3908816882917961 a001 7778742049/15127*192900153618^(1/6) 3908816882917961 a001 686789568/2161*4106118243^(5/23) 3908816882917961 a001 7778742049/15127*10749957122^(3/16) 3908816882917961 a001 86267571272/15127*4106118243^(2/23) 3908816882917961 a001 32951280099/15127*4106118243^(3/23) 3908816882917961 a001 12586269025/15127*4106118243^(4/23) 3908816882917961 a001 32264490531/2161*1568397607^(1/22) 3908816882917961 a001 2971215073/15127*312119004989^(1/5) 3908816882917961 a001 2971215073/15127*(1/2+1/2*5^(1/2))^11 3908816882917961 a001 86267571272/15127*1568397607^(1/11) 3908816882917961 a001 1836311903/15127*1568397607^(3/11) 3908816882917961 a001 32951280099/15127*1568397607^(3/22) 3908816882917961 a001 12586269025/15127*1568397607^(2/11) 3908816882917961 a001 686789568/2161*1568397607^(5/22) 3908816882917961 a001 2971215073/15127*1568397607^(1/4) 3908816882917961 a001 32264490531/2161*599074578^(1/21) 3908816882917961 a001 1134903170/15127*(1/2+1/2*5^(1/2))^13 3908816882917961 a001 1134903170/15127*73681302247^(1/4) 3908816882917961 a001 139583862445/15127*599074578^(1/14) 3908816882917961 a001 86267571272/15127*599074578^(2/21) 3908816882917961 a001 32951280099/15127*599074578^(1/7) 3908816882917961 a001 20365011074/15127*599074578^(1/6) 3908816882917961 a001 701408733/15127*599074578^(1/3) 3908816882917961 a001 12586269025/15127*599074578^(4/21) 3908816882917961 a001 7778742049/15127*599074578^(3/14) 3908816882917961 a001 686789568/2161*599074578^(5/21) 3908816882917961 a001 1836311903/15127*599074578^(2/7) 3908816882917961 a001 32264490531/2161*228826127^(1/20) 3908816882917961 a001 433494437/15127*2537720636^(1/3) 3908816882917961 a001 433494437/15127*45537549124^(5/17) 3908816882917961 a001 433494437/15127*312119004989^(3/11) 3908816882917961 a001 433494437/15127*14662949395604^(5/21) 3908816882917961 a001 433494437/15127*(1/2+1/2*5^(1/2))^15 3908816882917961 a001 433494437/15127*192900153618^(5/18) 3908816882917961 a001 433494437/15127*28143753123^(3/10) 3908816882917961 a001 433494437/15127*10749957122^(5/16) 3908816882917961 a001 86267571272/15127*228826127^(1/10) 3908816882917961 a001 433494437/15127*599074578^(5/14) 3908816882917961 a001 53316291173/15127*228826127^(1/8) 3908816882917961 a001 32951280099/15127*228826127^(3/20) 3908816882917961 a001 12586269025/15127*228826127^(1/5) 3908816882917961 a001 686789568/2161*228826127^(1/4) 3908816882917961 a001 267914296/15127*228826127^(2/5) 3908816882917961 a001 1836311903/15127*228826127^(3/10) 3908816882917961 a001 701408733/15127*228826127^(7/20) 3908816882917961 a001 32264490531/2161*87403803^(1/19) 3908816882917961 a001 165580141/15127*45537549124^(1/3) 3908816882917961 a001 165580141/15127*(1/2+1/2*5^(1/2))^17 3908816882917961 a001 433494437/15127*228826127^(3/8) 3908816882917961 a001 86267571272/15127*87403803^(2/19) 3908816882917961 a001 32951280099/15127*87403803^(3/19) 3908816882917961 a001 12586269025/15127*87403803^(4/19) 3908816882917961 a001 6765/141422324*14662949395604^(19/21) 3908816882917961 a001 686789568/2161*87403803^(5/19) 3908816882917961 a001 1836311903/15127*87403803^(6/19) 3908816882917961 a001 6765*87403803^(9/19) 3908816882917961 a001 701408733/15127*87403803^(7/19) 3908816882917961 a001 32264490531/2161*33385282^(1/18) 3908816882917961 a001 63245986/15127*817138163596^(1/3) 3908816882917961 a001 63245986/15127*(1/2+1/2*5^(1/2))^19 3908816882917961 a001 267914296/15127*87403803^(8/19) 3908816882917961 a001 139583862445/15127*33385282^(1/12) 3908816882917961 a001 86267571272/15127*33385282^(1/9) 3908816882917961 a001 1527884949095505/39088169 3908816882917961 a001 63245986/15127*87403803^(1/2) 3908816882917961 a001 32951280099/15127*33385282^(1/6) 3908816882917962 a001 12586269025/15127*33385282^(2/9) 3908816882917962 a001 7778742049/15127*33385282^(1/4) 3908816882917962 a001 686789568/2161*33385282^(5/18) 3908816882917962 a001 1836311903/15127*33385282^(1/3) 3908816882917962 a001 24157817/15127*141422324^(7/13) 3908816882917962 a001 6765/54018521*3461452808002^(11/12) 3908816882917962 a001 24157817/15127*2537720636^(7/15) 3908816882917962 a001 24157817/15127*17393796001^(3/7) 3908816882917962 a001 24157817/15127*45537549124^(7/17) 3908816882917962 a001 24157817/15127*14662949395604^(1/3) 3908816882917962 a001 24157817/15127*(1/2+1/2*5^(1/2))^21 3908816882917962 a001 24157817/15127*192900153618^(7/18) 3908816882917962 a001 24157817/15127*10749957122^(7/16) 3908816882917962 a001 24157817/15127*599074578^(1/2) 3908816882917962 a001 701408733/15127*33385282^(7/18) 3908816882917962 a001 32264490531/2161*12752043^(1/17) 3908816882917962 a001 39088169/15127*33385282^(5/9) 3908816882917962 a001 433494437/15127*33385282^(5/12) 3908816882917962 a001 267914296/15127*33385282^(4/9) 3908816882917962 a001 6765*33385282^(1/2) 3908816882917964 a001 86267571272/15127*12752043^(2/17) 3908816882917964 a001 24157817/15127*33385282^(7/12) 3908816882917964 a001 75283813165/1926 3908816882917965 a001 32951280099/15127*12752043^(3/17) 3908816882917966 a001 12586269025/15127*12752043^(4/17) 3908816882917968 a001 686789568/2161*12752043^(5/17) 3908816882917969 a001 1836311903/15127*12752043^(6/17) 3908816882917970 a001 615/1875749*(1/2+1/2*5^(1/2))^53 3908816882917970 a001 9227465/15127*(1/2+1/2*5^(1/2))^23 3908816882917970 a001 9227465/15127*4106118243^(1/2) 3908816882917971 a001 701408733/15127*12752043^(7/17) 3908816882917971 a001 32264490531/2161*4870847^(1/16) 3908816882917972 a001 267914296/15127*12752043^(8/17) 3908816882917973 a001 14930352/15127*12752043^(11/17) 3908816882917973 a001 165580141/15127*12752043^(1/2) 3908816882917973 a001 6765*12752043^(9/17) 3908816882917974 a001 39088169/15127*12752043^(10/17) 3908816882917981 a001 86267571272/15127*4870847^(1/8) 3908816882917985 a001 222915409869735/5702887 3908816882917992 a001 32951280099/15127*4870847^(3/16) 3908816882918002 a001 12586269025/15127*4870847^(1/4) 3908816882918012 a001 686789568/2161*4870847^(5/16) 3908816882918017 a001 3524578/15127*20633239^(5/7) 3908816882918023 a001 1836311903/15127*4870847^(3/8) 3908816882918024 a001 6765/7881196*817138163596^(17/19) 3908816882918024 a001 6765/7881196*14662949395604^(17/21) 3908816882918024 a001 6765/7881196*(1/2+1/2*5^(1/2))^51 3908816882918024 a001 6765/7881196*192900153618^(17/18) 3908816882918024 a001 3524578/15127*2537720636^(5/9) 3908816882918024 a001 3524578/15127*312119004989^(5/11) 3908816882918024 a001 3524578/15127*(1/2+1/2*5^(1/2))^25 3908816882918024 a001 3524578/15127*3461452808002^(5/12) 3908816882918024 a001 3524578/15127*28143753123^(1/2) 3908816882918024 a001 3524578/15127*228826127^(5/8) 3908816882918033 a001 701408733/15127*4870847^(7/16) 3908816882918036 a001 32264490531/2161*1860498^(1/15) 3908816882918043 a001 267914296/15127*4870847^(1/2) 3908816882918053 a001 6765*4870847^(9/16) 3908816882918060 a001 5702887/15127*4870847^(3/4) 3908816882918063 a001 39088169/15127*4870847^(5/8) 3908816882918071 a001 14930352/15127*4870847^(11/16) 3908816882918074 a001 139583862445/15127*1860498^(1/10) 3908816882918111 a001 86267571272/15127*1860498^(2/15) 3908816882918125 a001 28382036651375/726103 3908816882918149 a001 53316291173/15127*1860498^(1/6) 3908816882918187 a001 32951280099/15127*1860498^(1/5) 3908816882918262 a001 12586269025/15127*1860498^(4/15) 3908816882918300 a001 7778742049/15127*1860498^(3/10) 3908816882918337 a001 686789568/2161*1860498^(1/3) 3908816882918341 a001 1346269/15127*7881196^(9/11) 3908816882918392 a001 1346269/15127*141422324^(9/13) 3908816882918392 a001 6765/3010349*14662949395604^(7/9) 3908816882918392 a001 6765/3010349*(1/2+1/2*5^(1/2))^49 3908816882918392 a001 6765/3010349*505019158607^(7/8) 3908816882918392 a001 1346269/15127*2537720636^(3/5) 3908816882918392 a001 1346269/15127*45537549124^(9/17) 3908816882918392 a001 1346269/15127*817138163596^(9/19) 3908816882918392 a001 1346269/15127*14662949395604^(3/7) 3908816882918392 a001 1346269/15127*(1/2+1/2*5^(1/2))^27 3908816882918392 a001 1346269/15127*192900153618^(1/2) 3908816882918392 a001 1346269/15127*10749957122^(9/16) 3908816882918392 a001 1346269/15127*599074578^(9/14) 3908816882918395 a001 1346269/15127*33385282^(3/4) 3908816882918412 a001 1836311903/15127*1860498^(2/5) 3908816882918488 a001 701408733/15127*1860498^(7/15) 3908816882918514 a001 32264490531/2161*710647^(1/14) 3908816882918525 a001 433494437/15127*1860498^(1/2) 3908816882918563 a001 267914296/15127*1860498^(8/15) 3908816882918638 a001 6765*1860498^(3/5) 3908816882918713 a001 39088169/15127*1860498^(2/3) 3908816882918753 a001 24157817/15127*1860498^(7/10) 3908816882918775 a001 311187/2161*1860498^(13/15) 3908816882918785 a001 14930352/15127*1860498^(11/15) 3908816882918840 a001 5702887/15127*1860498^(4/5) 3908816882918965 a001 3524578/15127*1860498^(5/6) 3908816882919066 a001 86267571272/15127*710647^(1/7) 3908816882919090 a001 73915727256/1891 3908816882919408 a001 1346269/15127*1860498^(9/10) 3908816882919619 a001 32951280099/15127*710647^(3/14) 3908816882919896 a001 20365011074/15127*710647^(1/4) 3908816882920172 a001 12586269025/15127*710647^(2/7) 3908816882920725 a001 686789568/2161*710647^(5/14) 3908816882920917 a001 6765/1149851*(1/2+1/2*5^(1/2))^47 3908816882920917 a001 514229/15127*(1/2+1/2*5^(1/2))^29 3908816882920917 a001 514229/15127*1322157322203^(1/2) 3908816882921081 a001 1548008755920/64079*3571^(1/17) 3908816882921278 a001 1836311903/15127*710647^(3/7) 3908816882921831 a001 701408733/15127*710647^(1/2) 3908816882922042 a001 32264490531/2161*271443^(1/13) 3908816882922384 a001 267914296/15127*710647^(4/7) 3908816882922936 a001 6765*710647^(9/14) 3908816882923489 a001 39088169/15127*710647^(5/7) 3908816882923767 a001 24157817/15127*710647^(3/4) 3908816882924039 a001 14930352/15127*710647^(11/14) 3908816882924571 a001 5702887/15127*710647^(6/7) 3908816882924983 a001 311187/2161*710647^(13/14) 3908816882925701 a001 4140883341265/105937 3908816882926122 a001 86267571272/15127*271443^(2/13) 3908816882930203 a001 32951280099/15127*271443^(3/13) 3908816882933111 a001 365435296162/15127*103682^(1/24) 3908816882934284 a001 12586269025/15127*271443^(4/13) 3908816882938224 a001 6765/439204*45537549124^(15/17) 3908816882938224 a001 6765/439204*312119004989^(9/11) 3908816882938224 a001 6765/439204*14662949395604^(5/7) 3908816882938224 a001 6765/439204*(1/2+1/2*5^(1/2))^45 3908816882938224 a001 6765/439204*192900153618^(5/6) 3908816882938224 a001 6765/439204*28143753123^(9/10) 3908816882938224 a001 6765/439204*10749957122^(15/16) 3908816882938224 a001 196418/15127*(1/2+1/2*5^(1/2))^31 3908816882938224 a001 196418/15127*9062201101803^(1/2) 3908816882938365 a001 686789568/2161*271443^(5/13) 3908816882942446 a001 1836311903/15127*271443^(6/13) 3908816882944486 a001 1134903170/15127*271443^(1/2) 3908816882946526 a001 701408733/15127*271443^(7/13) 3908816882948262 a001 32264490531/2161*103682^(1/12) 3908816882950607 a001 267914296/15127*271443^(8/13) 3908816882954688 a001 6765*271443^(9/13) 3908816882958768 a001 39088169/15127*271443^(10/13) 3908816882962846 a001 14930352/15127*271443^(11/13) 3908816882963412 a001 139583862445/15127*103682^(1/8) 3908816882966906 a001 5702887/15127*271443^(12/13) 3908816882971011 a001 4745030078745/121393 3908816882978563 a001 86267571272/15127*103682^(1/6) 3908816882987201 a001 7778742049/24476*9349^(10/19) 3908816882993713 a001 53316291173/15127*103682^(5/24) 3908816883008864 a001 32951280099/15127*103682^(1/4) 3908816883024014 a001 20365011074/15127*103682^(7/24) 3908816883031244 a001 365435296162/15127*39603^(1/22) 3908816883039165 a001 12586269025/15127*103682^(1/3) 3908816883054315 a001 7778742049/15127*103682^(3/8) 3908816883056848 a001 75025/15127*141422324^(11/13) 3908816883056848 a001 615/15251*(1/2+1/2*5^(1/2))^43 3908816883056848 a001 75025/15127*2537720636^(11/15) 3908816883056848 a001 75025/15127*45537549124^(11/17) 3908816883056848 a001 75025/15127*312119004989^(3/5) 3908816883056848 a001 75025/15127*817138163596^(11/19) 3908816883056848 a001 75025/15127*14662949395604^(11/21) 3908816883056848 a001 75025/15127*(1/2+1/2*5^(1/2))^33 3908816883056848 a001 75025/15127*192900153618^(11/18) 3908816883056848 a001 75025/15127*10749957122^(11/16) 3908816883056848 a001 75025/15127*1568397607^(3/4) 3908816883056848 a001 75025/15127*599074578^(11/14) 3908816883056852 a001 75025/15127*33385282^(11/12) 3908816883069466 a001 686789568/2161*103682^(5/12) 3908816883084616 a001 2971215073/15127*103682^(11/24) 3908816883099767 a001 1836311903/15127*103682^(1/2) 3908816883114917 a001 1134903170/15127*103682^(13/24) 3908816883130068 a001 701408733/15127*103682^(7/12) 3908816883144528 a001 32264490531/2161*39603^(1/11) 3908816883145218 a001 433494437/15127*103682^(5/8) 3908816883160097 a001 139583862445/103682*9349^(7/19) 3908816883160369 a001 267914296/15127*103682^(2/3) 3908816883175520 a001 165580141/15127*103682^(17/24) 3908816883190670 a001 6765*103682^(3/4) 3908816883205821 a001 63245986/15127*103682^(19/24) 3908816883220971 a001 39088169/15127*103682^(5/6) 3908816883229482 a001 43133785636/2889*2207^(1/8) 3908816883236123 a001 24157817/15127*103682^(7/8) 3908816883251269 a001 14930352/15127*103682^(11/12) 3908816883257811 a001 139583862445/15127*39603^(3/22) 3908816883266432 a001 9227465/15127*103682^(23/24) 3908816883273524 a001 32951280099/2207*843^(1/7) 3908816883281573 a001 75518342185/1932 3908816883371095 a001 86267571272/15127*39603^(2/11) 3908816883385229 a001 86267571272/39603*9349^(6/19) 3908816883470659 a001 365435296162/271443*9349^(7/19) 3908816883484378 a001 53316291173/15127*39603^(5/22) 3908816883515970 a001 956722026041/710647*9349^(7/19) 3908816883522580 a001 2504730781961/1860498*9349^(7/19) 3908816883523545 a001 6557470319842/4870847*9349^(7/19) 3908816883523773 a001 10610209857723/7881196*9349^(7/19) 3908816883524141 a001 1346269*9349^(7/19) 3908816883526666 a001 1548008755920/1149851*9349^(7/19) 3908816883543973 a001 591286729879/439204*9349^(7/19) 3908816883597661 a001 32951280099/15127*39603^(3/11) 3908816883662597 a001 225851433717/167761*9349^(7/19) 3908816883710945 a001 20365011074/15127*39603^(7/22) 3908816883772063 a001 365435296162/15127*15127^(1/20) 3908816883824228 a001 12586269025/15127*39603^(4/11) 3908816883869910 a001 6765/64079*(1/2+1/2*5^(1/2))^41 3908816883869910 a001 28657/15127*2537720636^(7/9) 3908816883869910 a001 28657/15127*17393796001^(5/7) 3908816883869910 a001 28657/15127*312119004989^(7/11) 3908816883869910 a001 28657/15127*14662949395604^(5/9) 3908816883869910 a001 28657/15127*(1/2+1/2*5^(1/2))^35 3908816883869910 a001 28657/15127*505019158607^(5/8) 3908816883869910 a001 28657/15127*28143753123^(7/10) 3908816883869910 a001 28657/15127*599074578^(5/6) 3908816883869910 a001 28657/15127*228826127^(7/8) 3908816883937512 a001 7778742049/15127*39603^(9/22) 3908816884050795 a001 686789568/2161*39603^(5/11) 3908816884164079 a001 2971215073/15127*39603^(1/2) 3908816884277362 a001 1836311903/15127*39603^(6/11) 3908816884390646 a001 1134903170/15127*39603^(13/22) 3908816884475659 a001 86267571272/64079*9349^(7/19) 3908816884503929 a001 701408733/15127*39603^(7/11) 3908816884617213 a001 433494437/15127*39603^(15/22) 3908816884626165 a001 32264490531/2161*15127^(1/10) 3908816884730496 a001 267914296/15127*39603^(8/11) 3908816884843779 a001 165580141/15127*39603^(17/22) 3908816884957063 a001 6765*39603^(9/11) 3908816885070347 a001 63245986/15127*39603^(19/22) 3908816885109167 a007 Real Root Of -893*x^4+876*x^3-753*x^2-525*x-17 3908816885183629 a001 39088169/15127*39603^(10/11) 3908816885296915 a001 24157817/15127*39603^(21/22) 3908816885340956 a001 12586269025/24476*9349^(9/19) 3908816885410197 a001 692290558575/17711 3908816885480267 a001 139583862445/15127*15127^(3/20) 3908816885513853 a001 225851433717/103682*9349^(6/19) 3908816885738985 a001 139583862445/39603*9349^(5/19) 3908816885824415 a001 591286729879/271443*9349^(6/19) 3908816885869725 a001 1548008755920/710647*9349^(6/19) 3908816885876336 a001 4052739537881/1860498*9349^(6/19) 3908816885877301 a001 2178309*9349^(6/19) 3908816885877897 a001 6557470319842/3010349*9349^(6/19) 3908816885880422 a001 2504730781961/1149851*9349^(6/19) 3908816885897729 a001 956722026041/439204*9349^(6/19) 3908816886016353 a001 365435296162/167761*9349^(6/19) 3908816886334369 a001 86267571272/15127*15127^(1/5) 3908816886829415 a001 139583862445/64079*9349^(6/19) 3908816886990885 a001 34111385/1926*5778^(8/9) 3908816887188471 a001 53316291173/15127*15127^(1/4) 3908816887694712 a001 10182505537/12238*9349^(8/19) 3908816887867609 a001 182717648081/51841*9349^(5/19) 3908816888042573 a001 32951280099/15127*15127^(3/10) 3908816888092741 a001 75283811239/13201*9349^(4/19) 3908816888178171 a001 956722026041/271443*9349^(5/19) 3908816888223481 a001 2504730781961/710647*9349^(5/19) 3908816888230092 a001 3278735159921/930249*9349^(5/19) 3908816888231652 a001 10610209857723/3010349*9349^(5/19) 3908816888234178 a001 4052739537881/1149851*9349^(5/19) 3908816888251485 a001 387002188980/109801*9349^(5/19) 3908816888370109 a001 591286729879/167761*9349^(5/19) 3908816888493890 a001 591286729879/24476*3571^(1/17) 3908816888896674 a001 20365011074/15127*15127^(7/20) 3908816889183171 a001 225851433717/64079*9349^(5/19) 3908816889422518 a001 365435296162/15127*5778^(1/18) 3908816889442719 a001 6765/24476*2537720636^(13/15) 3908816889442719 a001 6765/24476*45537549124^(13/17) 3908816889442719 a001 6765/24476*14662949395604^(13/21) 3908816889442719 a001 6765/24476*(1/2+1/2*5^(1/2))^39 3908816889442719 a001 6765/24476*192900153618^(13/18) 3908816889442719 a001 6765/24476*73681302247^(3/4) 3908816889442719 a001 6765/24476*10749957122^(13/16) 3908816889442719 a001 6765/24476*599074578^(13/14) 3908816889442719 a001 10946/15127*(1/2+1/2*5^(1/2))^37 3908816889750776 a001 12586269025/15127*15127^(2/5) 3908816890048468 a001 32951280099/24476*9349^(7/19) 3908816890221365 a001 591286729879/103682*9349^(4/19) 3908816890446497 a001 365435296162/39603*9349^(3/19) 3908816890531927 a001 516002918640/90481*9349^(4/19) 3908816890577237 a001 4052739537881/710647*9349^(4/19) 3908816890583848 a001 3536736619241/620166*9349^(4/19) 3908816890587933 a001 6557470319842/1149851*9349^(4/19) 3908816890604878 a001 7778742049/15127*15127^(9/20) 3908816890605240 a001 2504730781961/439204*9349^(4/19) 3908816890628753 a001 86267571272/9349*3571^(3/17) 3908816890723864 a001 956722026041/167761*9349^(4/19) 3908816890983007 a001 427859096887/10946 3908816891293708 a001 34111385/13201*24476^(20/21) 3908816891458980 a001 686789568/2161*15127^(1/2) 3908816891536926 a001 365435296162/64079*9349^(4/19) 3908816891604411 a001 165580141/39603*24476^(19/21) 3908816891915114 a001 267914296/39603*24476^(6/7) 3908816892225817 a001 433494437/39603*24476^(17/21) 3908816892313082 a001 2971215073/15127*15127^(11/20) 3908816892402224 a001 53316291173/24476*9349^(6/19) 3908816892536520 a001 17711*24476^(16/21) 3908816892575120 a001 956722026041/103682*9349^(3/19) 3908816892800253 a001 591286729879/39603*9349^(2/19) 3908816892847222 a001 1134903170/39603*24476^(5/7) 3908816892885682 a001 2504730781961/271443*9349^(3/19) 3908816892930993 a001 6557470319842/710647*9349^(3/19) 3908816892941689 a001 10610209857723/1149851*9349^(3/19) 3908816892958996 a001 4052739537881/439204*9349^(3/19) 3908816893077620 a001 140728068720/15251*9349^(3/19) 3908816893111638 a001 16456119120/421 3908816893157925 a001 1836311903/39603*24476^(2/3) 3908816893167184 a001 1836311903/15127*15127^(3/5) 3908816893422254 a001 213929548577/5473 3908816893422332 a001 133957148/51841*24476^(20/21) 3908816893467933 a001 32912238243/842 3908816893468628 a001 2971215073/39603*24476^(13/21) 3908816893475242 a001 2139295485799/10946*8^(1/3) 3908816893475242 a001 1/5473*(1/2+1/2*5^(1/2))^59 3908816893477069 a001 213929548580/5473 3908816893495340 a001 213929548581/5473 3908816893495443 a001 31622993/2889*5778^(17/18) 3908816893614105 a001 427859097175/10946 3908816893664253 m001 (ZetaP(2)-ZetaQ(4))/(KhinchinHarmonic-Lehmer) 3908816893732894 a001 233802911/90481*24476^(20/21) 3908816893733035 a001 433494437/103682*24476^(19/21) 3908816893778204 a001 1836311903/710647*24476^(20/21) 3908816893779331 a001 1602508992/13201*24476^(4/7) 3908816893784815 a001 267084832/103361*24476^(20/21) 3908816893785780 a001 12586269025/4870847*24476^(20/21) 3908816893785920 a001 10983760033/4250681*24476^(20/21) 3908816893785941 a001 43133785636/16692641*24476^(20/21) 3908816893785944 a001 75283811239/29134601*24476^(20/21) 3908816893785944 a001 591286729879/228826127*24476^(20/21) 3908816893785944 a001 86000486440/33281921*24476^(20/21) 3908816893785944 a001 4052739537881/1568397607*24476^(20/21) 3908816893785944 a001 3536736619241/1368706081*24476^(20/21) 3908816893785944 a001 3278735159921/1268860318*24476^(20/21) 3908816893785944 a001 2504730781961/969323029*24476^(20/21) 3908816893785944 a001 956722026041/370248451*24476^(20/21) 3908816893785945 a001 182717648081/70711162*24476^(20/21) 3908816893785946 a001 139583862445/54018521*24476^(20/21) 3908816893785954 a001 53316291173/20633239*24476^(20/21) 3908816893786007 a001 10182505537/3940598*24476^(20/21) 3908816893786376 a001 7778742049/3010349*24476^(20/21) 3908816893788901 a001 2971215073/1149851*24476^(20/21) 3908816893806208 a001 567451585/219602*24476^(20/21) 3908816893890682 a001 591286729879/64079*9349^(3/19) 3908816893924832 a001 433494437/167761*24476^(20/21) 3908816894021286 a001 1134903170/15127*15127^(13/20) 3908816894043597 a001 1134903170/271443*24476^(19/21) 3908816894043738 a001 701408733/103682*24476^(6/7) 3908816894088907 a001 2971215073/710647*24476^(19/21) 3908816894090033 a001 7778742049/39603*24476^(11/21) 3908816894095518 a001 7778742049/1860498*24476^(19/21) 3908816894096482 a001 20365011074/4870847*24476^(19/21) 3908816894096623 a001 53316291173/12752043*24476^(19/21) 3908816894096644 a001 139583862445/33385282*24476^(19/21) 3908816894096647 a001 365435296162/87403803*24476^(19/21) 3908816894096647 a001 956722026041/228826127*24476^(19/21) 3908816894096647 a001 2504730781961/599074578*24476^(19/21) 3908816894096647 a001 6557470319842/1568397607*24476^(19/21) 3908816894096647 a001 10610209857723/2537720636*24476^(19/21) 3908816894096647 a001 4052739537881/969323029*24476^(19/21) 3908816894096647 a001 1548008755920/370248451*24476^(19/21) 3908816894096647 a001 591286729879/141422324*24476^(19/21) 3908816894096648 a001 225851433717/54018521*24476^(19/21) 3908816894096656 a001 86267571272/20633239*24476^(19/21) 3908816894096710 a001 32951280099/7881196*24476^(19/21) 3908816894097078 a001 12586269025/3010349*24476^(19/21) 3908816894099604 a001 4807526976/1149851*24476^(19/21) 3908816894116911 a001 1836311903/439204*24476^(19/21) 3908816894235535 a001 701408733/167761*24476^(19/21) 3908816894354300 a001 1836311903/271443*24476^(6/7) 3908816894354440 a001 567451585/51841*24476^(17/21) 3908816894399610 a001 686789568/101521*24476^(6/7) 3908816894400736 a001 12586269025/39603*24476^(10/21) 3908816894406221 a001 12586269025/1860498*24476^(6/7) 3908816894407185 a001 32951280099/4870847*24476^(6/7) 3908816894407326 a001 86267571272/12752043*24476^(6/7) 3908816894407346 a001 32264490531/4769326*24476^(6/7) 3908816894407349 a001 591286729879/87403803*24476^(6/7) 3908816894407350 a001 1548008755920/228826127*24476^(6/7) 3908816894407350 a001 4052739537881/599074578*24476^(6/7) 3908816894407350 a001 1515744265389/224056801*24476^(6/7) 3908816894407350 a001 6557470319842/969323029*24476^(6/7) 3908816894407350 a001 2504730781961/370248451*24476^(6/7) 3908816894407350 a001 956722026041/141422324*24476^(6/7) 3908816894407351 a001 365435296162/54018521*24476^(6/7) 3908816894407359 a001 139583862445/20633239*24476^(6/7) 3908816894407413 a001 53316291173/7881196*24476^(6/7) 3908816894407781 a001 20365011074/3010349*24476^(6/7) 3908816894410306 a001 7778742049/1149851*24476^(6/7) 3908816894427188 a001 213929548632/5473 3908816894427613 a001 2971215073/439204*24476^(6/7) 3908816894546237 a001 1134903170/167761*24476^(6/7) 3908816894665002 a001 2971215073/271443*24476^(17/21) 3908816894665143 a001 1836311903/103682*24476^(16/21) 3908816894710313 a001 7778742049/710647*24476^(17/21) 3908816894711439 a001 20365011074/39603*24476^(3/7) 3908816894716923 a001 10182505537/930249*24476^(17/21) 3908816894717888 a001 53316291173/4870847*24476^(17/21) 3908816894718029 a001 139583862445/12752043*24476^(17/21) 3908816894718049 a001 182717648081/16692641*24476^(17/21) 3908816894718052 a001 956722026041/87403803*24476^(17/21) 3908816894718053 a001 2504730781961/228826127*24476^(17/21) 3908816894718053 a001 3278735159921/299537289*24476^(17/21) 3908816894718053 a001 10610209857723/969323029*24476^(17/21) 3908816894718053 a001 4052739537881/370248451*24476^(17/21) 3908816894718053 a001 387002188980/35355581*24476^(17/21) 3908816894718054 a001 591286729879/54018521*24476^(17/21) 3908816894718062 a001 7787980473/711491*24476^(17/21) 3908816894718116 a001 21566892818/1970299*24476^(17/21) 3908816894718484 a001 32951280099/3010349*24476^(17/21) 3908816894721009 a001 12586269025/1149851*24476^(17/21) 3908816894737894 a001 165580141/64079*24476^(20/21) 3908816894738316 a001 1201881744/109801*24476^(17/21) 3908816894755980 a001 21566892818/6119*9349^(5/19) 3908816894856940 a001 1836311903/167761*24476^(17/21) 3908816894875388 a001 701408733/15127*15127^(7/10) 3908816894928876 a001 774004377960/51841*9349^(2/19) 3908816894975705 a001 1602508992/90481*24476^(16/21) 3908816894975846 a001 2971215073/103682*24476^(5/7) 3908816895015528 a001 17711/39603*817138163596^(2/3) 3908816895015528 a001 17711/39603*(1/2+1/2*5^(1/2))^38 3908816895015528 a001 17711/39603*10749957122^(19/24) 3908816895015528 a001 17711/39603*4106118243^(19/23) 3908816895015528 a001 17711/39603*1568397607^(19/22) 3908816895015528 a001 17711/39603*599074578^(19/21) 3908816895015528 a001 17711/39603*228826127^(19/20) 3908816895021016 a001 12586269025/710647*24476^(16/21) 3908816895022142 a001 10983760033/13201*24476^(8/21) 3908816895027626 a001 10983760033/620166*24476^(16/21) 3908816895028591 a001 86267571272/4870847*24476^(16/21) 3908816895028731 a001 75283811239/4250681*24476^(16/21) 3908816895028752 a001 591286729879/33385282*24476^(16/21) 3908816895028755 a001 516002918640/29134601*24476^(16/21) 3908816895028755 a001 4052739537881/228826127*24476^(16/21) 3908816895028755 a001 3536736619241/199691526*24476^(16/21) 3908816895028756 a001 6557470319842/370248451*24476^(16/21) 3908816895028756 a001 2504730781961/141422324*24476^(16/21) 3908816895028757 a001 956722026041/54018521*24476^(16/21) 3908816895028765 a001 365435296162/20633239*24476^(16/21) 3908816895028818 a001 139583862445/7881196*24476^(16/21) 3908816895029187 a001 53316291173/3010349*24476^(16/21) 3908816895031712 a001 20365011074/1149851*24476^(16/21) 3908816895048597 a001 267914296/64079*24476^(19/21) 3908816895049019 a001 7778742049/439204*24476^(16/21) 3908816895154008 a001 956722026041/39603*9349^(1/19) 3908816895167643 a001 2971215073/167761*24476^(16/21) 3908816895239438 a001 4052739537881/271443*9349^(2/19) 3908816895284749 a001 1515744265389/101521*9349^(2/19) 3908816895286408 a001 7778742049/271443*24476^(5/7) 3908816895286549 a001 46368*24476^(2/3) 3908816895312752 a001 3278735159921/219602*9349^(2/19) 3908816895331718 a001 20365011074/710647*24476^(5/7) 3908816895332845 a001 53316291173/39603*24476^(1/3) 3908816895338329 a001 53316291173/1860498*24476^(5/7) 3908816895339294 a001 139583862445/4870847*24476^(5/7) 3908816895339434 a001 365435296162/12752043*24476^(5/7) 3908816895339455 a001 956722026041/33385282*24476^(5/7) 3908816895339458 a001 2504730781961/87403803*24476^(5/7) 3908816895339458 a001 6557470319842/228826127*24476^(5/7) 3908816895339458 a001 10610209857723/370248451*24476^(5/7) 3908816895339458 a001 4052739537881/141422324*24476^(5/7) 3908816895339460 a001 1548008755920/54018521*24476^(5/7) 3908816895339467 a001 591286729879/20633239*24476^(5/7) 3908816895339521 a001 225851433717/7881196*24476^(5/7) 3908816895339890 a001 86267571272/3010349*24476^(5/7) 3908816895342415 a001 32951280099/1149851*24476^(5/7) 3908816895359299 a001 433494437/64079*24476^(6/7) 3908816895359722 a001 12586269025/439204*24476^(5/7) 3908816895431376 a001 2504730781961/167761*9349^(2/19) 3908816895478346 a001 4807526976/167761*24476^(5/7) 3908816895597111 a001 12586269025/271443*24476^(2/3) 3908816895597252 a001 7778742049/103682*24476^(13/21) 3908816895642421 a001 32951280099/710647*24476^(2/3) 3908816895643547 a001 86267571272/39603*24476^(2/7) 3908816895649032 a001 43133785636/930249*24476^(2/3) 3908816895649996 a001 225851433717/4870847*24476^(2/3) 3908816895650137 a001 591286729879/12752043*24476^(2/3) 3908816895650158 a001 774004377960/16692641*24476^(2/3) 3908816895650161 a001 4052739537881/87403803*24476^(2/3) 3908816895650161 a001 225749145909/4868641*24476^(2/3) 3908816895650161 a001 3278735159921/70711162*24476^(2/3) 3908816895650162 a001 2504730781961/54018521*24476^(2/3) 3908816895650170 a001 956722026041/20633239*24476^(2/3) 3908816895650224 a001 182717648081/3940598*24476^(2/3) 3908816895650592 a001 139583862445/3010349*24476^(2/3) 3908816895653117 a001 53316291173/1149851*24476^(2/3) 3908816895670002 a001 701408733/64079*24476^(17/21) 3908816895670424 a001 10182505537/219602*24476^(2/3) 3908816895729490 a001 433494437/15127*15127^(3/4) 3908816895789049 a001 7778742049/167761*24476^(2/3) 3908816895907814 a001 20365011074/271443*24476^(13/21) 3908816895907954 a001 12586269025/103682*24476^(4/7) 3908816895927076 a001 32264490531/2161*5778^(1/9) 3908816895953124 a001 53316291173/710647*24476^(13/21) 3908816895954250 a001 139583862445/39603*24476^(5/21) 3908816895959735 a001 139583862445/1860498*24476^(13/21) 3908816895960699 a001 365435296162/4870847*24476^(13/21) 3908816895960840 a001 956722026041/12752043*24476^(13/21) 3908816895960860 a001 2504730781961/33385282*24476^(13/21) 3908816895960863 a001 6557470319842/87403803*24476^(13/21) 3908816895960864 a001 10610209857723/141422324*24476^(13/21) 3908816895960865 a001 4052739537881/54018521*24476^(13/21) 3908816895960873 a001 140728068720/1875749*24476^(13/21) 3908816895960927 a001 591286729879/7881196*24476^(13/21) 3908816895961295 a001 225851433717/3010349*24476^(13/21) 3908816895963820 a001 86267571272/1149851*24476^(13/21) 3908816895980705 a001 1134903170/64079*24476^(16/21) 3908816895981127 a001 32951280099/439204*24476^(13/21) 3908816896099751 a001 75025*24476^(13/21) 3908816896218516 a001 121393*24476^(4/7) 3908816896218657 a001 10182505537/51841*24476^(11/21) 3908816896244438 a001 956722026041/64079*9349^(2/19) 3908816896263827 a001 86267571272/710647*24476^(4/7) 3908816896264953 a001 75283811239/13201*24476^(4/21) 3908816896270437 a001 75283811239/620166*24476^(4/7) 3908816896271402 a001 591286729879/4870847*24476^(4/7) 3908816896271543 a001 516002918640/4250681*24476^(4/7) 3908816896271563 a001 4052739537881/33385282*24476^(4/7) 3908816896271566 a001 3536736619241/29134601*24476^(4/7) 3908816896271568 a001 6557470319842/54018521*24476^(4/7) 3908816896271576 a001 2504730781961/20633239*24476^(4/7) 3908816896271630 a001 956722026041/7881196*24476^(4/7) 3908816896271998 a001 365435296162/3010349*24476^(4/7) 3908816896274523 a001 139583862445/1149851*24476^(4/7) 3908816896291408 a001 28657*24476^(5/7) 3908816896291830 a001 53316291173/439204*24476^(4/7) 3908816896410454 a001 20365011074/167761*24476^(4/7) 3908816896529219 a001 53316291173/271443*24476^(11/21) 3908816896529360 a001 32951280099/103682*24476^(10/21) 3908816896555815 a001 1120149658046/28657 3908816896574529 a001 139583862445/710647*24476^(11/21) 3908816896575656 a001 365435296162/39603*24476^(1/7) 3908816896581140 a001 182717648081/930249*24476^(11/21) 3908816896582105 a001 956722026041/4870847*24476^(11/21) 3908816896582245 a001 2504730781961/12752043*24476^(11/21) 3908816896582266 a001 3278735159921/16692641*24476^(11/21) 3908816896582271 a001 10610209857723/54018521*24476^(11/21) 3908816896582279 a001 4052739537881/20633239*24476^(11/21) 3908816896582332 a001 387002188980/1970299*24476^(11/21) 3908816896582701 a001 591286729879/3010349*24476^(11/21) 3908816896583592 a001 267914296/15127*15127^(4/5) 3908816896585226 a001 225851433717/1149851*24476^(11/21) 3908816896597203 a001 39088169/39603*64079^(22/23) 3908816896602110 a001 2971215073/64079*24476^(2/3) 3908816896602533 a001 196418*24476^(11/21) 3908816896638593 a001 63245986/39603*64079^(21/23) 3908816896679982 a001 34111385/13201*64079^(20/23) 3908816896721157 a001 32951280099/167761*24476^(11/21) 3908816896721371 a001 165580141/39603*64079^(19/23) 3908816896762760 a001 267914296/39603*64079^(18/23) 3908816896804149 a001 433494437/39603*64079^(17/23) 3908816896839922 a001 86267571272/271443*24476^(10/21) 3908816896840063 a001 53316291173/103682*24476^(3/7) 3908816896845538 a001 17711*64079^(16/23) 3908816896885232 a001 317811*24476^(10/21) 3908816896886358 a001 591286729879/39603*24476^(2/21) 3908816896886927 a001 1134903170/39603*64079^(15/23) 3908816896891843 a001 591286729879/1860498*24476^(10/21) 3908816896892807 a001 1548008755920/4870847*24476^(10/21) 3908816896892948 a001 4052739537881/12752043*24476^(10/21) 3908816896892969 a001 1515744265389/4769326*24476^(10/21) 3908816896892981 a001 6557470319842/20633239*24476^(10/21) 3908816896893035 a001 2504730781961/7881196*24476^(10/21) 3908816896893404 a001 956722026041/3010349*24476^(10/21) 3908816896895929 a001 365435296162/1149851*24476^(10/21) 3908816896912813 a001 4807526976/64079*24476^(13/21) 3908816896913236 a001 139583862445/439204*24476^(10/21) 3908816896928317 a001 1836311903/39603*64079^(14/23) 3908816896969706 a001 2971215073/39603*64079^(13/23) 3908816897011095 a001 1602508992/13201*64079^(12/23) 3908816897031860 a001 53316291173/167761*24476^(10/21) 3908816897052484 a001 7778742049/39603*64079^(11/23) 3908816897093873 a001 12586269025/39603*64079^(10/23) 3908816897109735 a001 139583862445/24476*9349^(4/19) 3908816897135262 a001 20365011074/39603*64079^(9/23) 3908816897144152 a001 15456/13201*141422324^(12/13) 3908816897144152 a001 17711/103682*2537720636^(8/9) 3908816897144152 a001 17711/103682*312119004989^(8/11) 3908816897144152 a001 17711/103682*(1/2+1/2*5^(1/2))^40 3908816897144152 a001 17711/103682*23725150497407^(5/8) 3908816897144152 a001 17711/103682*73681302247^(10/13) 3908816897144152 a001 17711/103682*28143753123^(4/5) 3908816897144152 a001 17711/103682*10749957122^(5/6) 3908816897144152 a001 17711/103682*4106118243^(20/23) 3908816897144152 a001 15456/13201*2537720636^(4/5) 3908816897144152 a001 17711/103682*1568397607^(10/11) 3908816897144152 a001 15456/13201*45537549124^(12/17) 3908816897144152 a001 15456/13201*14662949395604^(4/7) 3908816897144152 a001 15456/13201*(1/2+1/2*5^(1/2))^36 3908816897144152 a001 15456/13201*505019158607^(9/14) 3908816897144152 a001 15456/13201*192900153618^(2/3) 3908816897144152 a001 15456/13201*73681302247^(9/13) 3908816897144152 a001 15456/13201*10749957122^(3/4) 3908816897144152 a001 15456/13201*4106118243^(18/23) 3908816897144152 a001 15456/13201*1568397607^(9/11) 3908816897144152 a001 17711/103682*599074578^(20/21) 3908816897144152 a001 15456/13201*599074578^(6/7) 3908816897144152 a001 15456/13201*228826127^(9/10) 3908816897144152 a001 15456/13201*87403803^(18/19) 3908816897150625 a001 139583862445/271443*24476^(3/7) 3908816897150765 a001 43133785636/51841*24476^(8/21) 3908816897176651 a001 10983760033/13201*64079^(8/23) 3908816897195935 a001 365435296162/710647*24476^(3/7) 3908816897197061 a001 956722026041/39603*24476^(1/21) 3908816897202546 a001 956722026041/1860498*24476^(3/7) 3908816897203510 a001 2504730781961/4870847*24476^(3/7) 3908816897203651 a001 6557470319842/12752043*24476^(3/7) 3908816897203684 a001 10610209857723/20633239*24476^(3/7) 3908816897203738 a001 4052739537881/7881196*24476^(3/7) 3908816897204106 a001 1548008755920/3010349*24476^(3/7) 3908816897206631 a001 514229*24476^(3/7) 3908816897218040 a001 53316291173/39603*64079^(7/23) 3908816897223516 a001 7778742049/64079*24476^(4/7) 3908816897223938 a001 225851433717/439204*24476^(3/7) 3908816897259429 a001 86267571272/39603*64079^(6/23) 3908816897282632 a001 2504730781961/103682*9349^(1/19) 3908816897300819 a001 139583862445/39603*64079^(5/23) 3908816897342208 a001 75283811239/13201*64079^(4/23) 3908816897342563 a001 86267571272/167761*24476^(3/7) 3908816897368877 a001 2932589877251/75025 3908816897383597 a001 365435296162/39603*64079^(3/23) 3908816897396654 a001 34111385/13201*167761^(4/5) 3908816897424432 a001 1134903170/39603*167761^(3/5) 3908816897424986 a001 591286729879/39603*64079^(2/23) 3908816897437694 a001 165580141/15127*15127^(17/20) 3908816897452209 a001 12586269025/39603*167761^(2/5) 3908816897454714 a001 17711/271443*2537720636^(14/15) 3908816897454714 a001 17711/271443*17393796001^(6/7) 3908816897454714 a001 17711/271443*45537549124^(14/17) 3908816897454714 a001 17711/271443*14662949395604^(2/3) 3908816897454714 a001 17711/271443*(1/2+1/2*5^(1/2))^42 3908816897454714 a001 17711/271443*505019158607^(3/4) 3908816897454714 a001 17711/271443*192900153618^(7/9) 3908816897454714 a001 17711/271443*10749957122^(7/8) 3908816897454714 a001 17711/271443*4106118243^(21/23) 3908816897454714 a001 17711/271443*1568397607^(21/22) 3908816897454714 a001 121393/39603*45537549124^(2/3) 3908816897454714 a001 121393/39603*(1/2+1/2*5^(1/2))^34 3908816897454714 a001 121393/39603*10749957122^(17/24) 3908816897454714 a001 121393/39603*4106118243^(17/23) 3908816897454714 a001 121393/39603*1568397607^(17/22) 3908816897454714 a001 121393/39603*599074578^(17/21) 3908816897454714 a001 121393/39603*228826127^(17/20) 3908816897454714 a001 121393/39603*87403803^(17/19) 3908816897454717 a001 121393/39603*33385282^(17/18) 3908816897461327 a001 75283811239/90481*24476^(8/21) 3908816897461468 a001 139583862445/103682*24476^(1/3) 3908816897466375 a001 956722026041/39603*64079^(1/23) 3908816897479987 a001 139583862445/39603*167761^(1/5) 3908816897487501 a001 7677619973707/196418 3908816897489749 a001 4976784/13201*439204^(8/9) 3908816897492004 a001 63245986/39603*439204^(7/9) 3908816897494255 a001 267914296/39603*439204^(2/3) 3908816897496507 a001 1134903170/39603*439204^(5/9) 3908816897498758 a001 1602508992/13201*439204^(4/9) 3908816897500024 a001 17711/710647*312119004989^(4/5) 3908816897500024 a001 17711/710647*(1/2+1/2*5^(1/2))^44 3908816897500024 a001 17711/710647*23725150497407^(11/16) 3908816897500024 a001 17711/710647*73681302247^(11/13) 3908816897500024 a001 17711/710647*10749957122^(11/12) 3908816897500024 a001 17711/710647*4106118243^(22/23) 3908816897500024 a001 105937/13201*(1/2+1/2*5^(1/2))^32 3908816897500024 a001 105937/13201*23725150497407^(1/2) 3908816897500024 a001 105937/13201*505019158607^(4/7) 3908816897500024 a001 105937/13201*73681302247^(8/13) 3908816897500024 a001 105937/13201*10749957122^(2/3) 3908816897500024 a001 105937/13201*4106118243^(16/23) 3908816897500024 a001 105937/13201*1568397607^(8/11) 3908816897500024 a001 105937/13201*599074578^(16/21) 3908816897500024 a001 105937/13201*228826127^(4/5) 3908816897500025 a001 105937/13201*87403803^(16/19) 3908816897500027 a001 105937/13201*33385282^(8/9) 3908816897500047 a001 105937/13201*12752043^(16/17) 3908816897501010 a001 20365011074/39603*439204^(1/3) 3908816897503261 a001 86267571272/39603*439204^(2/9) 3908816897504808 a001 20100270043870/514229 3908816897505513 a001 365435296162/39603*439204^(1/9) 3908816897506578 a001 832040/39603*7881196^(10/11) 3908816897506627 a001 832040/39603*20633239^(6/7) 3908816897506635 a001 832040/39603*141422324^(10/13) 3908816897506635 a001 17711/1860498*(1/2+1/2*5^(1/2))^46 3908816897506635 a001 17711/1860498*10749957122^(23/24) 3908816897506635 a001 832040/39603*2537720636^(2/3) 3908816897506635 a001 832040/39603*45537549124^(10/17) 3908816897506635 a001 832040/39603*312119004989^(6/11) 3908816897506635 a001 832040/39603*14662949395604^(10/21) 3908816897506635 a001 832040/39603*(1/2+1/2*5^(1/2))^30 3908816897506635 a001 832040/39603*192900153618^(5/9) 3908816897506635 a001 832040/39603*28143753123^(3/5) 3908816897506635 a001 832040/39603*10749957122^(5/8) 3908816897506635 a001 832040/39603*4106118243^(15/23) 3908816897506635 a001 832040/39603*1568397607^(15/22) 3908816897506635 a001 832040/39603*599074578^(5/7) 3908816897506635 a001 832040/39603*228826127^(3/4) 3908816897506635 a001 832040/39603*87403803^(15/19) 3908816897506638 a001 832040/39603*33385282^(5/6) 3908816897506638 a001 591286729879/710647*24476^(8/21) 3908816897506656 a001 832040/39603*12752043^(15/17) 3908816897506789 a001 832040/39603*4870847^(15/16) 3908816897507333 a001 52623190157903/1346269 3908816897507592 a001 726103/13201*20633239^(4/5) 3908816897507599 a001 17711/4870847*45537549124^(16/17) 3908816897507599 a001 17711/4870847*14662949395604^(16/21) 3908816897507599 a001 17711/4870847*(1/2+1/2*5^(1/2))^48 3908816897507599 a001 17711/4870847*192900153618^(8/9) 3908816897507599 a001 17711/4870847*73681302247^(12/13) 3908816897507599 a001 726103/13201*17393796001^(4/7) 3908816897507599 a001 726103/13201*14662949395604^(4/9) 3908816897507599 a001 726103/13201*(1/2+1/2*5^(1/2))^28 3908816897507599 a001 726103/13201*505019158607^(1/2) 3908816897507599 a001 726103/13201*73681302247^(7/13) 3908816897507599 a001 726103/13201*10749957122^(7/12) 3908816897507599 a001 726103/13201*4106118243^(14/23) 3908816897507599 a001 726103/13201*1568397607^(7/11) 3908816897507599 a001 726103/13201*599074578^(2/3) 3908816897507599 a001 726103/13201*228826127^(7/10) 3908816897507600 a001 726103/13201*87403803^(14/19) 3908816897507602 a001 726103/13201*33385282^(7/9) 3908816897507619 a001 726103/13201*12752043^(14/17) 3908816897507701 a001 1547969667751/39602 3908816897507715 a001 4976784/13201*7881196^(8/11) 3908816897507722 a001 39088169/39603*7881196^(2/3) 3908816897507724 a001 63245986/39603*7881196^(7/11) 3908816897507730 a001 267914296/39603*7881196^(6/11) 3908816897507735 a001 1134903170/39603*7881196^(5/11) 3908816897507740 a001 5702887/39603*141422324^(2/3) 3908816897507740 a001 17711/12752043*312119004989^(10/11) 3908816897507740 a001 17711/12752043*(1/2+1/2*5^(1/2))^50 3908816897507740 a001 17711/12752043*3461452808002^(5/6) 3908816897507740 a001 5702887/39603*(1/2+1/2*5^(1/2))^26 3908816897507740 a001 5702887/39603*73681302247^(1/2) 3908816897507740 a001 5702887/39603*10749957122^(13/24) 3908816897507740 a001 5702887/39603*4106118243^(13/23) 3908816897507740 a001 5702887/39603*1568397607^(13/22) 3908816897507740 a001 5702887/39603*599074578^(13/21) 3908816897507740 a001 5702887/39603*228826127^(13/20) 3908816897507740 a001 5702887/39603*87403803^(13/19) 3908816897507741 a001 1602508992/13201*7881196^(4/11) 3908816897507743 a001 5702887/39603*33385282^(13/18) 3908816897507743 a001 7778742049/39603*7881196^(1/3) 3908816897507743 a001 726103/13201*4870847^(7/8) 3908816897507747 a001 20365011074/39603*7881196^(3/11) 3908816897507753 a001 86267571272/39603*7881196^(2/11) 3908816897507755 a001 360684711131614/9227465 3908816897507758 a001 365435296162/39603*7881196^(1/11) 3908816897507758 a001 5702887/39603*12752043^(13/17) 3908816897507759 a001 34111385/13201*20633239^(4/7) 3908816897507759 a001 63245986/39603*20633239^(3/5) 3908816897507760 a001 1134903170/39603*20633239^(3/7) 3908816897507760 a001 1836311903/39603*20633239^(2/5) 3908816897507760 a001 4976784/13201*141422324^(8/13) 3908816897507761 a001 17711/33385282*(1/2+1/2*5^(1/2))^52 3908816897507761 a001 17711/33385282*23725150497407^(13/16) 3908816897507761 a001 17711/33385282*505019158607^(13/14) 3908816897507761 a001 4976784/13201*2537720636^(8/15) 3908816897507761 a001 4976784/13201*45537549124^(8/17) 3908816897507761 a001 4976784/13201*14662949395604^(8/21) 3908816897507761 a001 4976784/13201*(1/2+1/2*5^(1/2))^24 3908816897507761 a001 4976784/13201*192900153618^(4/9) 3908816897507761 a001 4976784/13201*73681302247^(6/13) 3908816897507761 a001 4976784/13201*10749957122^(1/2) 3908816897507761 a001 4976784/13201*4106118243^(12/23) 3908816897507761 a001 4976784/13201*1568397607^(6/11) 3908816897507761 a001 4976784/13201*599074578^(4/7) 3908816897507761 a001 4976784/13201*228826127^(3/5) 3908816897507761 a001 4976784/13201*87403803^(12/19) 3908816897507761 a001 12586269025/39603*20633239^(2/7) 3908816897507762 a001 53316291173/39603*20633239^(1/5) 3908816897507763 a001 944284832965003/24157817 3908816897507763 a001 139583862445/39603*20633239^(1/7) 3908816897507763 a001 4976784/13201*33385282^(2/3) 3908816897507764 a001 17711/87403803*14662949395604^(6/7) 3908816897507764 a001 39088169/39603*312119004989^(2/5) 3908816897507764 a001 39088169/39603*(1/2+1/2*5^(1/2))^22 3908816897507764 a001 39088169/39603*10749957122^(11/24) 3908816897507764 a001 39088169/39603*4106118243^(11/23) 3908816897507764 a001 39088169/39603*1568397607^(1/2) 3908816897507764 a001 39088169/39603*599074578^(11/21) 3908816897507764 a001 39088169/39603*228826127^(11/20) 3908816897507764 a001 39088169/39603*87403803^(11/19) 3908816897507764 a001 2472169787763395/63245986 3908816897507764 a001 267914296/39603*141422324^(6/13) 3908816897507764 a001 17711/228826127*14662949395604^(8/9) 3908816897507764 a001 34111385/13201*2537720636^(4/9) 3908816897507764 a001 34111385/13201*(1/2+1/2*5^(1/2))^20 3908816897507764 a001 34111385/13201*23725150497407^(5/16) 3908816897507764 a001 34111385/13201*505019158607^(5/14) 3908816897507764 a001 34111385/13201*73681302247^(5/13) 3908816897507764 a001 34111385/13201*28143753123^(2/5) 3908816897507764 a001 34111385/13201*10749957122^(5/12) 3908816897507764 a001 1134903170/39603*141422324^(5/13) 3908816897507764 a001 34111385/13201*4106118243^(10/23) 3908816897507764 a001 34111385/13201*1568397607^(5/11) 3908816897507764 a001 34111385/13201*599074578^(10/21) 3908816897507764 a001 2971215073/39603*141422324^(1/3) 3908816897507764 a001 1602508992/13201*141422324^(4/13) 3908816897507764 a001 20365011074/39603*141422324^(3/13) 3908816897507764 a001 34111385/13201*228826127^(1/2) 3908816897507764 a001 6472224530325182/165580141 3908816897507764 a001 86267571272/39603*141422324^(2/13) 3908816897507764 a001 365435296162/39603*141422324^(1/13) 3908816897507764 a001 267914296/39603*2537720636^(2/5) 3908816897507764 a001 267914296/39603*45537549124^(6/17) 3908816897507764 a001 267914296/39603*14662949395604^(2/7) 3908816897507764 a001 267914296/39603*(1/2+1/2*5^(1/2))^18 3908816897507764 a001 267914296/39603*192900153618^(1/3) 3908816897507764 a001 267914296/39603*10749957122^(3/8) 3908816897507764 a001 267914296/39603*4106118243^(9/23) 3908816897507764 a001 267914296/39603*1568397607^(9/22) 3908816897507764 a001 267914296/39603*599074578^(3/7) 3908816897507764 a001 16944503803212151/433494437 3908816897507764 a001 17711/1568397607*14662949395604^(20/21) 3908816897507764 a001 44361286879311271/1134903170 3908816897507764 a001 116139356834721662/2971215073 3908816897507764 a001 17711*23725150497407^(1/4) 3908816897507764 a001 17711*73681302247^(4/13) 3908816897507764 a001 17711*10749957122^(1/3) 3908816897507764 a001 190392529675919/4870848 3908816897507764 a001 17711*4106118243^(8/23) 3908816897507764 a001 71778069955410391/1836311903 3908816897507764 a001 17711*1568397607^(4/11) 3908816897507764 a001 1836311903/39603*17393796001^(2/7) 3908816897507764 a001 1836311903/39603*14662949395604^(2/9) 3908816897507764 a001 1836311903/39603*(1/2+1/2*5^(1/2))^14 3908816897507764 a001 1836311903/39603*10749957122^(7/24) 3908816897507764 a001 1602508992/13201*2537720636^(4/15) 3908816897507764 a001 1836311903/39603*4106118243^(7/23) 3908816897507764 a001 12586269025/39603*2537720636^(2/9) 3908816897507764 a001 20365011074/39603*2537720636^(1/5) 3908816897507764 a001 86267571272/39603*2537720636^(2/15) 3908816897507764 a001 139583862445/39603*2537720636^(1/9) 3908816897507764 a001 365435296162/39603*2537720636^(1/15) 3908816897507764 a001 1602508992/13201*45537549124^(4/17) 3908816897507764 a001 1602508992/13201*817138163596^(4/19) 3908816897507764 a001 1602508992/13201*14662949395604^(4/21) 3908816897507764 a001 1602508992/13201*(1/2+1/2*5^(1/2))^12 3908816897507764 a001 1602508992/13201*192900153618^(2/9) 3908816897507764 a001 1602508992/13201*73681302247^(3/13) 3908816897507764 a001 1602508992/13201*10749957122^(1/4) 3908816897507764 a001 12586269025/39603*312119004989^(2/11) 3908816897507764 a001 12586269025/39603*(1/2+1/2*5^(1/2))^10 3908816897507764 a001 12586269025/39603*28143753123^(1/5) 3908816897507764 a001 53316291173/39603*17393796001^(1/7) 3908816897507764 a001 10983760033/13201*(1/2+1/2*5^(1/2))^8 3908816897507764 a001 10983760033/13201*23725150497407^(1/8) 3908816897507764 a001 10983760033/13201*505019158607^(1/7) 3908816897507764 a001 10983760033/13201*73681302247^(2/13) 3908816897507764 a001 86267571272/39603*45537549124^(2/17) 3908816897507764 a001 86267571272/39603*14662949395604^(2/21) 3908816897507764 a001 86267571272/39603*(1/2+1/2*5^(1/2))^6 3908816897507764 a001 365435296162/39603*45537549124^(1/17) 3908816897507764 a001 75283811239/13201*(1/2+1/2*5^(1/2))^4 3908816897507764 a001 75283811239/13201*23725150497407^(1/16) 3908816897507764 a001 956722026041/79206+956722026041/79206*5^(1/2) 3908816897507764 a001 365435296162/39603*14662949395604^(1/21) 3908816897507764 a001 365435296162/39603*192900153618^(1/18) 3908816897507764 a001 139583862445/39603*312119004989^(1/11) 3908816897507764 a001 75283811239/13201*73681302247^(1/13) 3908816897507764 a001 139583862445/39603*(1/2+1/2*5^(1/2))^5 3908816897507764 a001 53316291173/39603*14662949395604^(1/9) 3908816897507764 a001 53316291173/39603*(1/2+1/2*5^(1/2))^7 3908816897507764 a001 139583862445/39603*28143753123^(1/10) 3908816897507764 a001 591286729879/39603*10749957122^(1/24) 3908816897507764 a001 20365011074/39603*45537549124^(3/17) 3908816897507764 a001 20365011074/39603*817138163596^(3/19) 3908816897507764 a001 20365011074/39603*14662949395604^(1/7) 3908816897507764 a001 20365011074/39603*(1/2+1/2*5^(1/2))^9 3908816897507764 a001 20365011074/39603*192900153618^(1/6) 3908816897507764 a001 12586269025/39603*10749957122^(5/24) 3908816897507764 a001 365435296162/39603*10749957122^(1/16) 3908816897507764 a001 75283811239/13201*10749957122^(1/12) 3908816897507764 a001 86267571272/39603*10749957122^(1/8) 3908816897507764 a001 10983760033/13201*10749957122^(1/6) 3908816897507764 a001 20365011074/39603*10749957122^(3/16) 3908816897507764 a001 591286729879/39603*4106118243^(1/23) 3908816897507764 a001 7778742049/39603*312119004989^(1/5) 3908816897507764 a001 7778742049/39603*(1/2+1/2*5^(1/2))^11 3908816897507764 a001 75283811239/13201*4106118243^(2/23) 3908816897507764 a001 1602508992/13201*4106118243^(6/23) 3908816897507764 a001 86267571272/39603*4106118243^(3/23) 3908816897507764 a001 10983760033/13201*4106118243^(4/23) 3908816897507764 a001 12586269025/39603*4106118243^(5/23) 3908816897507764 a001 591286729879/39603*1568397607^(1/22) 3908816897507764 a001 2971215073/39603*(1/2+1/2*5^(1/2))^13 3908816897507764 a001 2971215073/39603*73681302247^(1/4) 3908816897507764 a001 75283811239/13201*1568397607^(1/11) 3908816897507764 a001 86267571272/39603*1568397607^(3/22) 3908816897507764 a001 1836311903/39603*1568397607^(7/22) 3908816897507764 a001 10983760033/13201*1568397607^(2/11) 3908816897507764 a001 12586269025/39603*1568397607^(5/22) 3908816897507764 a001 1602508992/13201*1568397607^(3/11) 3908816897507764 a001 1134903170/39603*2537720636^(1/3) 3908816897507764 a001 7778742049/39603*1568397607^(1/4) 3908816897507764 a001 591286729879/39603*599074578^(1/21) 3908816897507764 a001 1134903170/39603*45537549124^(5/17) 3908816897507764 a001 1134903170/39603*312119004989^(3/11) 3908816897507764 a001 1134903170/39603*14662949395604^(5/21) 3908816897507764 a001 1134903170/39603*(1/2+1/2*5^(1/2))^15 3908816897507764 a001 1134903170/39603*192900153618^(5/18) 3908816897507764 a001 1134903170/39603*28143753123^(3/10) 3908816897507764 a001 1134903170/39603*10749957122^(5/16) 3908816897507764 a001 365435296162/39603*599074578^(1/14) 3908816897507764 a001 75283811239/13201*599074578^(2/21) 3908816897507764 a001 86267571272/39603*599074578^(1/7) 3908816897507764 a001 53316291173/39603*599074578^(1/6) 3908816897507764 a001 10983760033/13201*599074578^(4/21) 3908816897507764 a001 20365011074/39603*599074578^(3/14) 3908816897507764 a001 17711*599074578^(8/21) 3908816897507764 a001 12586269025/39603*599074578^(5/21) 3908816897507764 a001 1602508992/13201*599074578^(2/7) 3908816897507764 a001 1836311903/39603*599074578^(1/3) 3908816897507764 a001 591286729879/39603*228826127^(1/20) 3908816897507764 a001 433494437/39603*45537549124^(1/3) 3908816897507764 a001 433494437/39603*(1/2+1/2*5^(1/2))^17 3908816897507764 a001 1134903170/39603*599074578^(5/14) 3908816897507764 a001 75283811239/13201*228826127^(1/10) 3908816897507764 a001 10472279272886969/267914296 3908816897507764 a001 139583862445/39603*228826127^(1/8) 3908816897507764 a001 86267571272/39603*228826127^(3/20) 3908816897507764 a001 10983760033/13201*228826127^(1/5) 3908816897507764 a001 12586269025/39603*228826127^(1/4) 3908816897507764 a001 1602508992/13201*228826127^(3/10) 3908816897507764 a001 267914296/39603*228826127^(9/20) 3908816897507764 a001 1836311903/39603*228826127^(7/20) 3908816897507764 a001 17711/370248451*14662949395604^(19/21) 3908816897507764 a001 591286729879/39603*87403803^(1/19) 3908816897507764 a001 17711*228826127^(2/5) 3908816897507764 a001 165580141/39603*817138163596^(1/3) 3908816897507764 a001 165580141/39603*(1/2+1/2*5^(1/2))^19 3908816897507764 a001 1134903170/39603*228826127^(3/8) 3908816897507764 a001 75283811239/13201*87403803^(2/19) 3908816897507764 a001 190478797264847/4873055 3908816897507764 a001 86267571272/39603*87403803^(3/19) 3908816897507764 a001 63245986/39603*141422324^(7/13) 3908816897507764 a001 10983760033/13201*87403803^(4/19) 3908816897507764 a001 12586269025/39603*87403803^(5/19) 3908816897507764 a001 1602508992/13201*87403803^(6/19) 3908816897507764 a001 1836311903/39603*87403803^(7/19) 3908816897507764 a001 17711/141422324*3461452808002^(11/12) 3908816897507764 a001 34111385/13201*87403803^(10/19) 3908816897507764 a001 591286729879/39603*33385282^(1/18) 3908816897507764 a001 63245986/39603*2537720636^(7/15) 3908816897507764 a001 63245986/39603*17393796001^(3/7) 3908816897507764 a001 63245986/39603*45537549124^(7/17) 3908816897507764 a001 63245986/39603*14662949395604^(1/3) 3908816897507764 a001 63245986/39603*(1/2+1/2*5^(1/2))^21 3908816897507764 a001 63245986/39603*192900153618^(7/18) 3908816897507764 a001 63245986/39603*10749957122^(7/16) 3908816897507764 a001 63245986/39603*599074578^(1/2) 3908816897507764 a001 17711*87403803^(8/19) 3908816897507764 a001 267914296/39603*87403803^(9/19) 3908816897507764 a001 165580141/39603*87403803^(1/2) 3908816897507764 a001 365435296162/39603*33385282^(1/12) 3908816897507764 a001 75283811239/13201*33385282^(1/9) 3908816897507765 a001 1527884954798392/39088169 3908816897507765 a001 86267571272/39603*33385282^(1/6) 3908816897507765 a001 10983760033/13201*33385282^(2/9) 3908816897507765 a001 20365011074/39603*33385282^(1/4) 3908816897507765 a001 12586269025/39603*33385282^(5/18) 3908816897507765 a001 1602508992/13201*33385282^(1/3) 3908816897507765 a001 24157817/39603*(1/2+1/2*5^(1/2))^23 3908816897507765 a001 24157817/39603*4106118243^(1/2) 3908816897507765 a001 1836311903/39603*33385282^(7/18) 3908816897507765 a001 591286729879/39603*12752043^(1/17) 3908816897507766 a001 1134903170/39603*33385282^(5/12) 3908816897507766 a001 17711*33385282^(4/9) 3908816897507766 a001 39088169/39603*33385282^(11/18) 3908816897507766 a001 267914296/39603*33385282^(1/2) 3908816897507766 a001 34111385/13201*33385282^(5/9) 3908816897507766 a001 63245986/39603*33385282^(7/12) 3908816897507767 a001 9227465/39603*20633239^(5/7) 3908816897507767 a001 75283811239/13201*12752043^(2/17) 3908816897507768 a001 194533373944463/4976784 3908816897507768 a001 86267571272/39603*12752043^(3/17) 3908816897507770 a001 10983760033/13201*12752043^(4/17) 3908816897507771 a001 12586269025/39603*12752043^(5/17) 3908816897507773 a001 1602508992/13201*12752043^(6/17) 3908816897507773 a001 17711/20633239*817138163596^(17/19) 3908816897507773 a001 17711/20633239*14662949395604^(17/21) 3908816897507773 a001 17711/20633239*(1/2+1/2*5^(1/2))^51 3908816897507773 a001 17711/20633239*192900153618^(17/18) 3908816897507773 a001 9227465/39603*2537720636^(5/9) 3908816897507773 a001 9227465/39603*312119004989^(5/11) 3908816897507773 a001 9227465/39603*(1/2+1/2*5^(1/2))^25 3908816897507773 a001 9227465/39603*3461452808002^(5/12) 3908816897507773 a001 9227465/39603*28143753123^(1/2) 3908816897507773 a001 9227465/39603*228826127^(5/8) 3908816897507774 a001 1836311903/39603*12752043^(7/17) 3908816897507774 a001 591286729879/39603*4870847^(1/16) 3908816897507775 a001 17711*12752043^(8/17) 3908816897507776 a001 3524578/39603*7881196^(9/11) 3908816897507776 a001 433494437/39603*12752043^(1/2) 3908816897507777 a001 267914296/39603*12752043^(9/17) 3908816897507778 a001 4976784/13201*12752043^(12/17) 3908816897507778 a001 34111385/13201*12752043^(10/17) 3908816897507779 a001 39088169/39603*12752043^(11/17) 3908816897507785 a001 75283811239/13201*4870847^(1/8) 3908816897507788 a001 222915410701775/5702887 3908816897507795 a001 86267571272/39603*4870847^(3/16) 3908816897507805 a001 10983760033/13201*4870847^(1/4) 3908816897507816 a001 12586269025/39603*4870847^(5/16) 3908816897507826 a001 1602508992/13201*4870847^(3/8) 3908816897507827 a001 3524578/39603*141422324^(9/13) 3908816897507827 a001 89/39604*14662949395604^(7/9) 3908816897507827 a001 89/39604*(1/2+1/2*5^(1/2))^49 3908816897507827 a001 89/39604*505019158607^(7/8) 3908816897507827 a001 3524578/39603*2537720636^(3/5) 3908816897507827 a001 3524578/39603*45537549124^(9/17) 3908816897507827 a001 3524578/39603*817138163596^(9/19) 3908816897507827 a001 3524578/39603*14662949395604^(3/7) 3908816897507827 a001 3524578/39603*(1/2+1/2*5^(1/2))^27 3908816897507827 a001 3524578/39603*192900153618^(1/2) 3908816897507827 a001 3524578/39603*10749957122^(9/16) 3908816897507827 a001 3524578/39603*599074578^(9/14) 3908816897507830 a001 3524578/39603*33385282^(3/4) 3908816897507836 a001 1836311903/39603*4870847^(7/16) 3908816897507839 a001 591286729879/39603*1860498^(1/15) 3908816897507846 a001 17711*4870847^(1/2) 3908816897507857 a001 267914296/39603*4870847^(9/16) 3908816897507867 a001 34111385/13201*4870847^(5/8) 3908816897507874 a001 5702887/39603*4870847^(13/16) 3908816897507877 a001 39088169/39603*4870847^(11/16) 3908816897507877 a001 365435296162/39603*1860498^(1/10) 3908816897507884 a001 4976784/13201*4870847^(3/4) 3908816897507915 a001 75283811239/13201*1860498^(2/15) 3908816897507929 a001 86267588928/2207 3908816897507952 a001 139583862445/39603*1860498^(1/6) 3908816897507990 a001 86267571272/39603*1860498^(1/5) 3908816897508065 a001 10983760033/13201*1860498^(4/15) 3908816897508103 a001 20365011074/39603*1860498^(3/10) 3908816897508140 a001 12586269025/39603*1860498^(1/3) 3908816897508195 a001 17711/3010349*(1/2+1/2*5^(1/2))^47 3908816897508195 a001 1346269/39603*(1/2+1/2*5^(1/2))^29 3908816897508195 a001 1346269/39603*1322157322203^(1/2) 3908816897508216 a001 1602508992/13201*1860498^(2/5) 3908816897508291 a001 1836311903/39603*1860498^(7/15) 3908816897508317 a001 591286729879/39603*710647^(1/14) 3908816897508329 a001 1134903170/39603*1860498^(1/2) 3908816897508366 a001 17711*1860498^(8/15) 3908816897508442 a001 267914296/39603*1860498^(3/5) 3908816897508517 a001 34111385/13201*1860498^(2/3) 3908816897508555 a001 63245986/39603*1860498^(7/10) 3908816897508592 a001 39088169/39603*1860498^(11/15) 3908816897508653 a001 726103/13201*1860498^(14/15) 3908816897508664 a001 4976784/13201*1860498^(4/5) 3908816897508714 a001 9227465/39603*1860498^(5/6) 3908816897508719 a001 5702887/39603*1860498^(13/15) 3908816897508843 a001 3524578/39603*1860498^(9/10) 3908816897508870 a001 75283811239/13201*710647^(1/7) 3908816897508893 a001 32522920114033/832040 3908816897509423 a001 86267571272/39603*710647^(3/14) 3908816897509699 a001 53316291173/39603*710647^(1/4) 3908816897509975 a001 10983760033/13201*710647^(2/7) 3908816897510528 a001 12586269025/39603*710647^(5/14) 3908816897510720 a001 17711/1149851*45537549124^(15/17) 3908816897510720 a001 17711/1149851*312119004989^(9/11) 3908816897510720 a001 17711/1149851*14662949395604^(5/7) 3908816897510720 a001 17711/1149851*(1/2+1/2*5^(1/2))^45 3908816897510720 a001 17711/1149851*192900153618^(5/6) 3908816897510720 a001 17711/1149851*28143753123^(9/10) 3908816897510720 a001 17711/1149851*10749957122^(15/16) 3908816897510720 a001 514229/39603*(1/2+1/2*5^(1/2))^31 3908816897510720 a001 514229/39603*9062201101803^(1/2) 3908816897511081 a001 1602508992/13201*710647^(3/7) 3908816897511634 a001 1836311903/39603*710647^(1/2) 3908816897511845 a001 591286729879/39603*271443^(1/13) 3908816897512187 a001 17711*710647^(4/7) 3908816897512740 a001 267914296/39603*710647^(9/14) 3908816897513249 a001 832040*24476^(8/21) 3908816897513293 a001 34111385/13201*710647^(5/7) 3908816897513569 a001 63245986/39603*710647^(3/4) 3908816897513845 a001 39088169/39603*710647^(11/14) 3908816897514213 a001 4052739537881/4870847*24476^(8/21) 3908816897514354 a001 3536736619241/4250681*24476^(8/21) 3908816897514395 a001 4976784/13201*710647^(6/7) 3908816897514441 a001 3278735159921/3940598*24476^(8/21) 3908816897514809 a001 2504730781961/3010349*24476^(8/21) 3908816897514927 a001 5702887/39603*710647^(13/14) 3908816897515504 a001 4140883356721/105937 3908816897515926 a001 75283811239/13201*271443^(2/13) 3908816897517334 a001 956722026041/1149851*24476^(8/21) 3908816897520006 a001 86267571272/39603*271443^(3/13) 3908816897522915 a001 956722026041/39603*103682^(1/24) 3908816897524087 a001 10983760033/13201*271443^(4/13) 3908816897528027 a001 196418/39603*141422324^(11/13) 3908816897528027 a001 17711/439204*(1/2+1/2*5^(1/2))^43 3908816897528027 a001 196418/39603*2537720636^(11/15) 3908816897528027 a001 196418/39603*45537549124^(11/17) 3908816897528027 a001 196418/39603*312119004989^(3/5) 3908816897528027 a001 196418/39603*817138163596^(11/19) 3908816897528027 a001 196418/39603*14662949395604^(11/21) 3908816897528027 a001 196418/39603*(1/2+1/2*5^(1/2))^33 3908816897528027 a001 196418/39603*192900153618^(11/18) 3908816897528027 a001 196418/39603*10749957122^(11/16) 3908816897528027 a001 196418/39603*1568397607^(3/4) 3908816897528027 a001 196418/39603*599074578^(11/14) 3908816897528031 a001 196418/39603*33385282^(11/12) 3908816897528168 a001 12586269025/39603*271443^(5/13) 3908816897532249 a001 1602508992/13201*271443^(6/13) 3908816897534219 a001 12586269025/64079*24476^(11/21) 3908816897534289 a001 2971215073/39603*271443^(1/2) 3908816897534641 a001 182717648081/219602*24476^(8/21) 3908816897536330 a001 1836311903/39603*271443^(7/13) 3908816897538065 a001 591286729879/39603*103682^(1/12) 3908816897540410 a001 17711*271443^(8/13) 3908816897544491 a001 267914296/39603*271443^(9/13) 3908816897548572 a001 34111385/13201*271443^(10/13) 3908816897552652 a001 39088169/39603*271443^(11/13) 3908816897553216 a001 365435296162/39603*103682^(1/8) 3908816897556730 a001 4976784/13201*271443^(12/13) 3908816897560814 a001 4745030096456/121393 3908816897568366 a001 75283811239/13201*103682^(1/6) 3908816897583517 a001 139583862445/39603*103682^(5/24) 3908816897593194 a001 6557470319842/271443*9349^(1/19) 3908816897598667 a001 86267571272/39603*103682^(1/4) 3908816897613818 a001 53316291173/39603*103682^(7/24) 3908816897621048 a001 956722026041/39603*39603^(1/22) 3908816897628968 a001 10983760033/13201*103682^(1/3) 3908816897644119 a001 20365011074/39603*103682^(3/8) 3908816897646652 a001 17711/167761*(1/2+1/2*5^(1/2))^41 3908816897646652 a001 75025/39603*2537720636^(7/9) 3908816897646652 a001 75025/39603*17393796001^(5/7) 3908816897646652 a001 75025/39603*312119004989^(7/11) 3908816897646652 a001 75025/39603*14662949395604^(5/9) 3908816897646652 a001 75025/39603*(1/2+1/2*5^(1/2))^35 3908816897646652 a001 75025/39603*505019158607^(5/8) 3908816897646652 a001 75025/39603*28143753123^(7/10) 3908816897646652 a001 75025/39603*599074578^(5/6) 3908816897646652 a001 75025/39603*228826127^(7/8) 3908816897653265 a001 139583862445/167761*24476^(8/21) 3908816897659269 a001 12586269025/39603*103682^(5/12) 3908816897666508 a001 10610209857723/439204*9349^(1/19) 3908816897674420 a001 7778742049/39603*103682^(11/24) 3908816897689570 a001 1602508992/13201*103682^(1/2) 3908816897704721 a001 2971215073/39603*103682^(13/24) 3908816897719871 a001 1836311903/39603*103682^(7/12) 3908816897734331 a001 591286729879/39603*39603^(1/11) 3908816897735022 a001 1134903170/39603*103682^(5/8) 3908816897750172 a001 17711*103682^(2/3) 3908816897765323 a001 433494437/39603*103682^(17/24) 3908816897772030 a001 365435296162/271443*24476^(1/3) 3908816897772171 a001 225851433717/103682*24476^(2/7) 3908816897780473 a001 267914296/39603*103682^(3/4) 3908816897785132 a001 4052739537881/167761*9349^(1/19) 3908816897795624 a001 165580141/39603*103682^(19/24) 3908816897810774 a001 34111385/13201*103682^(5/6) 3908816897817341 a001 956722026041/710647*24476^(1/3) 3908816897823951 a001 2504730781961/1860498*24476^(1/3) 3908816897824916 a001 6557470319842/4870847*24476^(1/3) 3908816897825143 a001 10610209857723/7881196*24476^(1/3) 3908816897825512 a001 1346269*24476^(1/3) 3908816897825925 a001 63245986/39603*103682^(7/8) 3908816897828037 a001 1548008755920/1149851*24476^(1/3) 3908816897841075 a001 39088169/39603*103682^(11/12) 3908816897844922 a001 20365011074/64079*24476^(10/21) 3908816897845344 a001 591286729879/439204*24476^(1/3) 3908816897847614 a001 365435296162/39603*39603^(3/22) 3908816897856227 a001 24157817/39603*103682^(23/24) 3908816897871376 a001 86306677105/2208 3908816897960898 a001 75283811239/13201*39603^(2/11) 3908816897963968 a001 225851433717/167761*24476^(1/3) 3908816898074181 a001 139583862445/39603*39603^(5/22) 3908816898082733 a001 591286729879/271443*24476^(2/7) 3908816898082874 a001 182717648081/51841*24476^(5/21) 3908816898128043 a001 1548008755920/710647*24476^(2/7) 3908816898134654 a001 4052739537881/1860498*24476^(2/7) 3908816898135619 a001 2178309*24476^(2/7) 3908816898136215 a001 6557470319842/3010349*24476^(2/7) 3908816898138740 a001 2504730781961/1149851*24476^(2/7) 3908816898155624 a001 32951280099/64079*24476^(3/7) 3908816898156047 a001 956722026041/439204*24476^(2/7) 3908816898187465 a001 86267571272/39603*39603^(3/11) 3908816898274671 a001 365435296162/167761*24476^(2/7) 3908816898291796 a001 6765*15127^(9/10) 3908816898300748 a001 53316291173/39603*39603^(7/22) 3908816898361866 a001 956722026041/39603*15127^(1/20) 3908816898393436 a001 956722026041/271443*24476^(5/21) 3908816898393577 a001 591286729879/103682*24476^(4/21) 3908816898414032 a001 10983760033/13201*39603^(4/11) 3908816898438746 a001 2504730781961/710647*24476^(5/21) 3908816898445357 a001 3278735159921/930249*24476^(5/21) 3908816898446917 a001 10610209857723/3010349*24476^(5/21) 3908816898449442 a001 4052739537881/1149851*24476^(5/21) 3908816898459713 a001 17711/64079*2537720636^(13/15) 3908816898459713 a001 17711/64079*45537549124^(13/17) 3908816898459713 a001 17711/64079*14662949395604^(13/21) 3908816898459713 a001 17711/64079*(1/2+1/2*5^(1/2))^39 3908816898459713 a001 17711/64079*192900153618^(13/18) 3908816898459713 a001 17711/64079*73681302247^(3/4) 3908816898459713 a001 17711/64079*10749957122^(13/16) 3908816898459713 a001 28657/39603*(1/2+1/2*5^(1/2))^37 3908816898459713 a001 17711/64079*599074578^(13/14) 3908816898466327 a001 53316291173/64079*24476^(8/21) 3908816898466750 a001 387002188980/109801*24476^(5/21) 3908816898527315 a001 20365011074/39603*39603^(9/22) 3908816898585374 a001 591286729879/167761*24476^(5/21) 3908816898598194 a001 1548008755920/64079*9349^(1/19) 3908816898640599 a001 12586269025/39603*39603^(5/11) 3908816898684440 a001 1120149658656/28657 3908816898704139 a001 516002918640/90481*24476^(4/21) 3908816898704279 a001 956722026041/103682*24476^(1/7) 3908816898725827 a001 102334155/103682*64079^(22/23) 3908816898749449 a001 4052739537881/710647*24476^(4/21) 3908816898753882 a001 7778742049/39603*39603^(1/2) 3908816898756060 a001 3536736619241/620166*24476^(4/21) 3908816898760145 a001 6557470319842/1149851*24476^(4/21) 3908816898767217 a001 165580141/103682*64079^(21/23) 3908816898777030 a001 86267571272/64079*24476^(1/3) 3908816898777452 a001 2504730781961/439204*24476^(4/21) 3908816898808606 a001 133957148/51841*64079^(20/23) 3908816898849995 a001 433494437/103682*64079^(19/23) 3908816898867165 a001 1602508992/13201*39603^(6/11) 3908816898891384 a001 701408733/103682*64079^(18/23) 3908816898896076 a001 956722026041/167761*24476^(4/21) 3908816898932773 a001 567451585/51841*64079^(17/23) 3908816898974162 a001 1836311903/103682*64079^(16/23) 3908816898980449 a001 2971215073/39603*39603^(13/22) 3908816898995009 a001 1120149658745/28657 3908816899014841 a001 2504730781961/271443*24476^(1/7) 3908816899014982 a001 774004377960/51841*24476^(2/21) 3908816899015551 a001 2971215073/103682*64079^(15/23) 3908816899036389 a001 267914296/271443*64079^(22/23) 3908816899040374 a001 1120149658758/28657 3908816899047353 a001 1120149658760/28657 3908816899048051 a001 5600748293801/28657*8^(1/3) 3908816899048051 a001 2/28657*(1/2+1/2*5^(1/2))^61 3908816899050842 a001 1120149658761/28657 3908816899056940 a001 46368*64079^(14/23) 3908816899060152 a001 6557470319842/710647*24476^(1/7) 3908816899068290 a001 1120149658766/28657 3908816899070848 a001 10610209857723/1149851*24476^(1/7) 3908816899077778 a001 433494437/271443*64079^(21/23) 3908816899081700 a001 701408733/710647*64079^(22/23) 3908816899087733 a001 139583862445/64079*24476^(2/7) 3908816899088155 a001 4052739537881/439204*24476^(1/7) 3908816899088310 a001 1836311903/1860498*64079^(22/23) 3908816899089275 a001 4807526976/4870847*64079^(22/23) 3908816899089416 a001 12586269025/12752043*64079^(22/23) 3908816899089436 a001 32951280099/33385282*64079^(22/23) 3908816899089439 a001 86267571272/87403803*64079^(22/23) 3908816899089440 a001 225851433717/228826127*64079^(22/23) 3908816899089440 a001 591286729879/599074578*64079^(22/23) 3908816899089440 a001 1548008755920/1568397607*64079^(22/23) 3908816899089440 a001 4052739537881/4106118243*64079^(22/23) 3908816899089440 a001 4807525989/4870846*64079^(22/23) 3908816899089440 a001 6557470319842/6643838879*64079^(22/23) 3908816899089440 a001 2504730781961/2537720636*64079^(22/23) 3908816899089440 a001 956722026041/969323029*64079^(22/23) 3908816899089440 a001 365435296162/370248451*64079^(22/23) 3908816899089440 a001 139583862445/141422324*64079^(22/23) 3908816899089441 a001 53316291173/54018521*64079^(22/23) 3908816899089449 a001 20365011074/20633239*64079^(22/23) 3908816899089503 a001 7778742049/7881196*64079^(22/23) 3908816899089871 a001 2971215073/3010349*64079^(22/23) 3908816899092396 a001 1134903170/1149851*64079^(22/23) 3908816899093732 a001 1836311903/39603*39603^(7/11) 3908816899098329 a001 7778742049/103682*64079^(13/23) 3908816899109703 a001 433494437/439204*64079^(22/23) 3908816899119168 a001 233802911/90481*64079^(20/23) 3908816899123089 a001 1134903170/710647*64079^(21/23) 3908816899129700 a001 2971215073/1860498*64079^(21/23) 3908816899130664 a001 7778742049/4870847*64079^(21/23) 3908816899130805 a001 20365011074/12752043*64079^(21/23) 3908816899130825 a001 53316291173/33385282*64079^(21/23) 3908816899130828 a001 139583862445/87403803*64079^(21/23) 3908816899130829 a001 365435296162/228826127*64079^(21/23) 3908816899130829 a001 956722026041/599074578*64079^(21/23) 3908816899130829 a001 2504730781961/1568397607*64079^(21/23) 3908816899130829 a001 6557470319842/4106118243*64079^(21/23) 3908816899130829 a001 10610209857723/6643838879*64079^(21/23) 3908816899130829 a001 4052739537881/2537720636*64079^(21/23) 3908816899130829 a001 1548008755920/969323029*64079^(21/23) 3908816899130829 a001 591286729879/370248451*64079^(21/23) 3908816899130829 a001 225851433717/141422324*64079^(21/23) 3908816899130830 a001 86267571272/54018521*64079^(21/23) 3908816899130838 a001 32951280099/20633239*64079^(21/23) 3908816899130892 a001 12586269025/7881196*64079^(21/23) 3908816899131260 a001 4807526976/3010349*64079^(21/23) 3908816899133785 a001 1836311903/1149851*64079^(21/23) 3908816899139718 a001 12586269025/103682*64079^(12/23) 3908816899145898 a001 63245986/15127*15127^(19/20) 3908816899151092 a001 701408733/439204*64079^(21/23) 3908816899160557 a001 1134903170/271443*64079^(19/23) 3908816899164478 a001 1836311903/710647*64079^(20/23) 3908816899171089 a001 267084832/103361*64079^(20/23) 3908816899172053 a001 12586269025/4870847*64079^(20/23) 3908816899172194 a001 10983760033/4250681*64079^(20/23) 3908816899172214 a001 43133785636/16692641*64079^(20/23) 3908816899172217 a001 75283811239/29134601*64079^(20/23) 3908816899172218 a001 591286729879/228826127*64079^(20/23) 3908816899172218 a001 86000486440/33281921*64079^(20/23) 3908816899172218 a001 4052739537881/1568397607*64079^(20/23) 3908816899172218 a001 3536736619241/1368706081*64079^(20/23) 3908816899172218 a001 3278735159921/1268860318*64079^(20/23) 3908816899172218 a001 2504730781961/969323029*64079^(20/23) 3908816899172218 a001 956722026041/370248451*64079^(20/23) 3908816899172218 a001 182717648081/70711162*64079^(20/23) 3908816899172219 a001 139583862445/54018521*64079^(20/23) 3908816899172227 a001 53316291173/20633239*64079^(20/23) 3908816899172281 a001 10182505537/3940598*64079^(20/23) 3908816899172649 a001 7778742049/3010349*64079^(20/23) 3908816899175174 a001 2971215073/1149851*64079^(20/23) 3908816899181108 a001 10182505537/51841*64079^(11/23) 3908816899186935 a001 1120149658800/28657 3908816899192481 a001 567451585/219602*64079^(20/23) 3908816899201946 a001 1836311903/271443*64079^(18/23) 3908816899205867 a001 2971215073/710647*64079^(19/23) 3908816899206779 a001 140728068720/15251*24476^(1/7) 3908816899207016 a001 1134903170/39603*39603^(15/22) 3908816899212478 a001 7778742049/1860498*64079^(19/23) 3908816899213442 a001 20365011074/4870847*64079^(19/23) 3908816899213583 a001 53316291173/12752043*64079^(19/23) 3908816899213604 a001 139583862445/33385282*64079^(19/23) 3908816899213606 a001 365435296162/87403803*64079^(19/23) 3908816899213607 a001 956722026041/228826127*64079^(19/23) 3908816899213607 a001 2504730781961/599074578*64079^(19/23) 3908816899213607 a001 6557470319842/1568397607*64079^(19/23) 3908816899213607 a001 10610209857723/2537720636*64079^(19/23) 3908816899213607 a001 4052739537881/969323029*64079^(19/23) 3908816899213607 a001 1548008755920/370248451*64079^(19/23) 3908816899213607 a001 591286729879/141422324*64079^(19/23) 3908816899213608 a001 225851433717/54018521*64079^(19/23) 3908816899213616 a001 86267571272/20633239*64079^(19/23) 3908816899213670 a001 32951280099/7881196*64079^(19/23) 3908816899214038 a001 12586269025/3010349*64079^(19/23) 3908816899215968 a001 591286729879/39603*15127^(1/10) 3908816899216563 a001 4807526976/1149851*64079^(19/23) 3908816899222497 a001 32951280099/103682*64079^(10/23) 3908816899228327 a001 165580141/167761*64079^(22/23) 3908816899233870 a001 1836311903/439204*64079^(19/23) 3908816899243335 a001 2971215073/271443*64079^(17/23) 3908816899247256 a001 686789568/101521*64079^(18/23) 3908816899253867 a001 12586269025/1860498*64079^(18/23) 3908816899254831 a001 32951280099/4870847*64079^(18/23) 3908816899254972 a001 86267571272/12752043*64079^(18/23) 3908816899254993 a001 32264490531/4769326*64079^(18/23) 3908816899254996 a001 591286729879/87403803*64079^(18/23) 3908816899254996 a001 1548008755920/228826127*64079^(18/23) 3908816899254996 a001 4052739537881/599074578*64079^(18/23) 3908816899254996 a001 1515744265389/224056801*64079^(18/23) 3908816899254996 a001 6557470319842/969323029*64079^(18/23) 3908816899254996 a001 2504730781961/370248451*64079^(18/23) 3908816899254996 a001 956722026041/141422324*64079^(18/23) 3908816899254997 a001 365435296162/54018521*64079^(18/23) 3908816899255005 a001 139583862445/20633239*64079^(18/23) 3908816899255059 a001 53316291173/7881196*64079^(18/23) 3908816899255427 a001 20365011074/3010349*64079^(18/23) 3908816899257953 a001 7778742049/1149851*64079^(18/23) 3908816899263886 a001 53316291173/103682*64079^(9/23) 3908816899269716 a001 267914296/167761*64079^(21/23) 3908816899272775 a001 23184/51841*817138163596^(2/3) 3908816899272775 a001 23184/51841*(1/2+1/2*5^(1/2))^38 3908816899272775 a001 23184/51841*10749957122^(19/24) 3908816899272775 a001 23184/51841*4106118243^(19/23) 3908816899272775 a001 23184/51841*1568397607^(19/22) 3908816899272775 a001 23184/51841*599074578^(19/21) 3908816899272775 a001 23184/51841*228826127^(19/20) 3908816899275260 a001 2971215073/439204*64079^(18/23) 3908816899284724 a001 1602508992/90481*64079^(16/23) 3908816899288645 a001 7778742049/710647*64079^(17/23) 3908816899295256 a001 10182505537/930249*64079^(17/23) 3908816899296220 a001 53316291173/4870847*64079^(17/23) 3908816899296361 a001 139583862445/12752043*64079^(17/23) 3908816899296382 a001 182717648081/16692641*64079^(17/23) 3908816899296385 a001 956722026041/87403803*64079^(17/23) 3908816899296385 a001 2504730781961/228826127*64079^(17/23) 3908816899296385 a001 3278735159921/299537289*64079^(17/23) 3908816899296385 a001 10610209857723/969323029*64079^(17/23) 3908816899296385 a001 4052739537881/370248451*64079^(17/23) 3908816899296385 a001 387002188980/35355581*64079^(17/23) 3908816899296387 a001 591286729879/54018521*64079^(17/23) 3908816899296394 a001 7787980473/711491*64079^(17/23) 3908816899296448 a001 21566892818/1970299*64079^(17/23) 3908816899296817 a001 32951280099/3010349*64079^(17/23) 3908816899299342 a001 12586269025/1149851*64079^(17/23) 3908816899305275 a001 43133785636/51841*64079^(8/23) 3908816899311105 a001 433494437/167761*64079^(20/23) 3908816899316649 a001 1201881744/109801*64079^(17/23) 3908816899320299 a001 17711*39603^(8/11) 3908816899325544 a001 4052739537881/271443*24476^(2/21) 3908816899325685 a001 2504730781961/103682*24476^(1/21) 3908816899326113 a001 7778742049/271443*64079^(15/23) 3908816899330034 a001 12586269025/710647*64079^(16/23) 3908816899336645 a001 10983760033/620166*64079^(16/23) 3908816899337610 a001 86267571272/4870847*64079^(16/23) 3908816899337750 a001 75283811239/4250681*64079^(16/23) 3908816899337771 a001 591286729879/33385282*64079^(16/23) 3908816899337774 a001 516002918640/29134601*64079^(16/23) 3908816899337774 a001 4052739537881/228826127*64079^(16/23) 3908816899337774 a001 3536736619241/199691526*64079^(16/23) 3908816899337774 a001 6557470319842/370248451*64079^(16/23) 3908816899337775 a001 2504730781961/141422324*64079^(16/23) 3908816899337776 a001 956722026041/54018521*64079^(16/23) 3908816899337784 a001 365435296162/20633239*64079^(16/23) 3908816899337837 a001 139583862445/7881196*64079^(16/23) 3908816899338206 a001 53316291173/3010349*64079^(16/23) 3908816899340731 a001 20365011074/1149851*64079^(16/23) 3908816899346664 a001 139583862445/103682*64079^(7/23) 3908816899352495 a001 701408733/167761*64079^(19/23) 3908816899358038 a001 7778742049/439204*64079^(16/23) 3908816899367502 a001 12586269025/271443*64079^(14/23) 3908816899370855 a001 1515744265389/101521*24476^(2/21) 3908816899371423 a001 20365011074/710647*64079^(15/23) 3908816899378034 a001 53316291173/1860498*64079^(15/23) 3908816899378999 a001 139583862445/4870847*64079^(15/23) 3908816899379139 a001 365435296162/12752043*64079^(15/23) 3908816899379160 a001 956722026041/33385282*64079^(15/23) 3908816899379163 a001 2504730781961/87403803*64079^(15/23) 3908816899379163 a001 6557470319842/228826127*64079^(15/23) 3908816899379163 a001 10610209857723/370248451*64079^(15/23) 3908816899379164 a001 4052739537881/141422324*64079^(15/23) 3908816899379165 a001 1548008755920/54018521*64079^(15/23) 3908816899379173 a001 591286729879/20633239*64079^(15/23) 3908816899379226 a001 225851433717/7881196*64079^(15/23) 3908816899379595 a001 86267571272/3010349*64079^(15/23) 3908816899382120 a001 32951280099/1149851*64079^(15/23) 3908816899388053 a001 225851433717/103682*64079^(6/23) 3908816899393884 a001 1134903170/167761*64079^(18/23) 3908816899398436 a001 225851433717/64079*24476^(5/21) 3908816899398858 a001 3278735159921/219602*24476^(2/21) 3908816899399427 a001 12586269025/439204*64079^(15/23) 3908816899408891 a001 20365011074/271443*64079^(13/23) 3908816899412813 a001 32951280099/710647*64079^(14/23) 3908816899419423 a001 43133785636/930249*64079^(14/23) 3908816899420388 a001 225851433717/4870847*64079^(14/23) 3908816899420528 a001 591286729879/12752043*64079^(14/23) 3908816899420549 a001 774004377960/16692641*64079^(14/23) 3908816899420552 a001 4052739537881/87403803*64079^(14/23) 3908816899420552 a001 225749145909/4868641*64079^(14/23) 3908816899420553 a001 3278735159921/70711162*64079^(14/23) 3908816899420554 a001 2504730781961/54018521*64079^(14/23) 3908816899420562 a001 956722026041/20633239*64079^(14/23) 3908816899420615 a001 182717648081/3940598*64079^(14/23) 3908816899420984 a001 139583862445/3010349*64079^(14/23) 3908816899423509 a001 53316291173/1149851*64079^(14/23) 3908816899429442 a001 182717648081/51841*64079^(5/23) 3908816899433583 a001 433494437/39603*39603^(17/22) 3908816899435273 a001 1836311903/167761*64079^(17/23) 3908816899440816 a001 10182505537/219602*64079^(14/23) 3908816899450280 a001 121393*64079^(12/23) 3908816899454202 a001 53316291173/710647*64079^(13/23) 3908816899460812 a001 139583862445/1860498*64079^(13/23) 3908816899461777 a001 365435296162/4870847*64079^(13/23) 3908816899461918 a001 956722026041/12752043*64079^(13/23) 3908816899461938 a001 2504730781961/33385282*64079^(13/23) 3908816899461941 a001 6557470319842/87403803*64079^(13/23) 3908816899461942 a001 10610209857723/141422324*64079^(13/23) 3908816899461943 a001 4052739537881/54018521*64079^(13/23) 3908816899461951 a001 140728068720/1875749*64079^(13/23) 3908816899462005 a001 591286729879/7881196*64079^(13/23) 3908816899462373 a001 225851433717/3010349*64079^(13/23) 3908816899463491 a001 7787980473/844*9349^(3/19) 3908816899464898 a001 86267571272/1149851*64079^(13/23) 3908816899470831 a001 591286729879/103682*64079^(4/23) 3908816899476662 a001 2971215073/167761*64079^(16/23) 3908816899482205 a001 32951280099/439204*64079^(13/23) 3908816899491670 a001 53316291173/271443*64079^(11/23) 3908816899495591 a001 86267571272/710647*64079^(12/23) 3908816899497500 a001 2932589878848/75025 3908816899502202 a001 75283811239/620166*64079^(12/23) 3908816899503166 a001 591286729879/4870847*64079^(12/23) 3908816899503307 a001 516002918640/4250681*64079^(12/23) 3908816899503327 a001 4052739537881/33385282*64079^(12/23) 3908816899503330 a001 3536736619241/29134601*64079^(12/23) 3908816899503332 a001 6557470319842/54018521*64079^(12/23) 3908816899503340 a001 2504730781961/20633239*64079^(12/23) 3908816899503394 a001 956722026041/7881196*64079^(12/23) 3908816899503762 a001 365435296162/3010349*64079^(12/23) 3908816899506287 a001 139583862445/1149851*64079^(12/23) 3908816899512220 a001 956722026041/103682*64079^(3/23) 3908816899517482 a001 2504730781961/167761*24476^(2/21) 3908816899518051 a001 4807526976/167761*64079^(15/23) 3908816899523594 a001 53316291173/439204*64079^(12/23) 3908816899525278 a001 133957148/51841*167761^(4/5) 3908816899533059 a001 86267571272/271443*64079^(10/23) 3908816899536980 a001 139583862445/710647*64079^(11/23) 3908816899543591 a001 182717648081/930249*64079^(11/23) 3908816899544555 a001 956722026041/4870847*64079^(11/23) 3908816899544696 a001 2504730781961/12752043*64079^(11/23) 3908816899544716 a001 3278735159921/16692641*64079^(11/23) 3908816899544721 a001 10610209857723/54018521*64079^(11/23) 3908816899544729 a001 4052739537881/20633239*64079^(11/23) 3908816899544783 a001 387002188980/1970299*64079^(11/23) 3908816899545151 a001 591286729879/3010349*64079^(11/23) 3908816899546866 a001 267914296/39603*39603^(9/11) 3908816899547676 a001 225851433717/1149851*64079^(11/23) 3908816899553055 a001 2971215073/103682*167761^(3/5) 3908816899553609 a001 774004377960/51841*64079^(2/23) 3908816899559440 a001 7778742049/167761*64079^(14/23) 3908816899564983 a001 196418*64079^(11/23) 3908816899574448 a001 139583862445/271443*64079^(9/23) 3908816899578369 a001 317811*64079^(10/23) 3908816899580833 a001 32951280099/103682*167761^(2/5) 3908816899583337 a001 121393/103682*141422324^(12/13) 3908816899583337 a001 15456/90481*2537720636^(8/9) 3908816899583337 a001 121393/103682*2537720636^(4/5) 3908816899583337 a001 15456/90481*312119004989^(8/11) 3908816899583337 a001 15456/90481*(1/2+1/2*5^(1/2))^40 3908816899583337 a001 15456/90481*23725150497407^(5/8) 3908816899583337 a001 15456/90481*73681302247^(10/13) 3908816899583337 a001 15456/90481*28143753123^(4/5) 3908816899583337 a001 15456/90481*10749957122^(5/6) 3908816899583337 a001 121393/103682*45537549124^(12/17) 3908816899583337 a001 121393/103682*14662949395604^(4/7) 3908816899583337 a001 121393/103682*(1/2+1/2*5^(1/2))^36 3908816899583337 a001 121393/103682*505019158607^(9/14) 3908816899583337 a001 121393/103682*192900153618^(2/3) 3908816899583337 a001 121393/103682*73681302247^(9/13) 3908816899583337 a001 121393/103682*10749957122^(3/4) 3908816899583337 a001 15456/90481*4106118243^(20/23) 3908816899583337 a001 121393/103682*4106118243^(18/23) 3908816899583337 a001 121393/103682*1568397607^(9/11) 3908816899583337 a001 15456/90481*1568397607^(10/11) 3908816899583337 a001 121393/103682*599074578^(6/7) 3908816899583337 a001 15456/90481*599074578^(20/21) 3908816899583337 a001 121393/103682*228826127^(9/10) 3908816899583338 a001 121393/103682*87403803^(18/19) 3908816899584980 a001 591286729879/1860498*64079^(10/23) 3908816899585944 a001 1548008755920/4870847*64079^(10/23) 3908816899586085 a001 4052739537881/12752043*64079^(10/23) 3908816899586105 a001 1515744265389/4769326*64079^(10/23) 3908816899586118 a001 6557470319842/20633239*64079^(10/23) 3908816899586172 a001 2504730781961/7881196*64079^(10/23) 3908816899586540 a001 956722026041/3010349*64079^(10/23) 3908816899589065 a001 365435296162/1149851*64079^(10/23) 3908816899594999 a001 2504730781961/103682*64079^(1/23) 3908816899600829 a001 75025*64079^(13/23) 3908816899606372 a001 139583862445/439204*64079^(10/23) 3908816899608610 a001 182717648081/51841*167761^(1/5) 3908816899615837 a001 75283811239/90481*64079^(8/23) 3908816899616124 a001 3838809988944/98209 3908816899618375 a001 39088169/103682*439204^(8/9) 3908816899619758 a001 365435296162/710647*64079^(9/23) 3908816899620627 a001 165580141/103682*439204^(7/9) 3908816899622879 a001 701408733/103682*439204^(2/3) 3908816899625130 a001 2971215073/103682*439204^(5/9) 3908816899626369 a001 956722026041/1860498*64079^(9/23) 3908816899627333 a001 2504730781961/4870847*64079^(9/23) 3908816899627382 a001 12586269025/103682*439204^(4/9) 3908816899627474 a001 6557470319842/12752043*64079^(9/23) 3908816899627507 a001 10610209857723/20633239*64079^(9/23) 3908816899627561 a001 4052739537881/7881196*64079^(9/23) 3908816899627929 a001 1548008755920/3010349*64079^(9/23) 3908816899628648 a001 6624/101521*2537720636^(14/15) 3908816899628648 a001 6624/101521*17393796001^(6/7) 3908816899628648 a001 6624/101521*45537549124^(14/17) 3908816899628648 a001 6624/101521*14662949395604^(2/3) 3908816899628648 a001 6624/101521*(1/2+1/2*5^(1/2))^42 3908816899628648 a001 6624/101521*505019158607^(3/4) 3908816899628648 a001 6624/101521*192900153618^(7/9) 3908816899628648 a001 6624/101521*10749957122^(7/8) 3908816899628648 a001 317811/103682*45537549124^(2/3) 3908816899628648 a001 317811/103682*(1/2+1/2*5^(1/2))^34 3908816899628648 a001 317811/103682*10749957122^(17/24) 3908816899628648 a001 317811/103682*4106118243^(17/23) 3908816899628648 a001 6624/101521*4106118243^(21/23) 3908816899628648 a001 317811/103682*1568397607^(17/22) 3908816899628648 a001 6624/101521*1568397607^(21/22) 3908816899628648 a001 317811/103682*599074578^(17/21) 3908816899628648 a001 317811/103682*228826127^(17/20) 3908816899628648 a001 317811/103682*87403803^(17/19) 3908816899628651 a001 317811/103682*33385282^(17/18) 3908816899629633 a001 53316291173/103682*439204^(1/3) 3908816899630454 a001 514229*64079^(9/23) 3908816899631885 a001 225851433717/103682*439204^(2/9) 3908816899633431 a001 20100270054816/514229 3908816899634136 a001 956722026041/103682*439204^(1/9) 3908816899635258 a001 2576/103361*312119004989^(4/5) 3908816899635258 a001 2576/103361*(1/2+1/2*5^(1/2))^44 3908816899635258 a001 2576/103361*23725150497407^(11/16) 3908816899635258 a001 2576/103361*73681302247^(11/13) 3908816899635258 a001 2576/103361*10749957122^(11/12) 3908816899635258 a001 416020/51841*(1/2+1/2*5^(1/2))^32 3908816899635258 a001 416020/51841*23725150497407^(1/2) 3908816899635258 a001 416020/51841*505019158607^(4/7) 3908816899635258 a001 416020/51841*73681302247^(8/13) 3908816899635258 a001 416020/51841*10749957122^(2/3) 3908816899635258 a001 416020/51841*4106118243^(16/23) 3908816899635258 a001 2576/103361*4106118243^(22/23) 3908816899635258 a001 416020/51841*1568397607^(8/11) 3908816899635258 a001 416020/51841*599074578^(16/21) 3908816899635259 a001 416020/51841*228826127^(4/5) 3908816899635259 a001 416020/51841*87403803^(16/19) 3908816899635262 a001 416020/51841*33385282^(8/9) 3908816899635281 a001 416020/51841*12752043^(16/17) 3908816899635956 a001 52623190186560/1346269 3908816899636166 a001 46347/2206*7881196^(10/11) 3908816899636215 a001 46347/2206*20633239^(6/7) 3908816899636223 a001 46347/2206*141422324^(10/13) 3908816899636223 a001 46347/2206*2537720636^(2/3) 3908816899636223 a001 46368/4870847*(1/2+1/2*5^(1/2))^46 3908816899636223 a001 46368/4870847*10749957122^(23/24) 3908816899636223 a001 46347/2206*45537549124^(10/17) 3908816899636223 a001 46347/2206*312119004989^(6/11) 3908816899636223 a001 46347/2206*14662949395604^(10/21) 3908816899636223 a001 46347/2206*(1/2+1/2*5^(1/2))^30 3908816899636223 a001 46347/2206*192900153618^(5/9) 3908816899636223 a001 46347/2206*28143753123^(3/5) 3908816899636223 a001 46347/2206*10749957122^(5/8) 3908816899636223 a001 46347/2206*4106118243^(15/23) 3908816899636223 a001 46347/2206*1568397607^(15/22) 3908816899636223 a001 46347/2206*599074578^(5/7) 3908816899636223 a001 46347/2206*228826127^(3/4) 3908816899636223 a001 46347/2206*87403803^(15/19) 3908816899636226 a001 46347/2206*33385282^(5/6) 3908816899636244 a001 46347/2206*12752043^(15/17) 3908816899636247 a001 6557470319842/271443*24476^(1/21) 3908816899636325 a001 68884650252432/1762289 3908816899636341 a001 39088169/103682*7881196^(8/11) 3908816899636345 a001 9227465/103682*7881196^(9/11) 3908816899636346 a001 102334155/103682*7881196^(2/3) 3908816899636348 a001 165580141/103682*7881196^(7/11) 3908816899636353 a001 701408733/103682*7881196^(6/11) 3908816899636356 a001 5702887/103682*20633239^(4/5) 3908816899636359 a001 2971215073/103682*7881196^(5/11) 3908816899636364 a001 15456/4250681*45537549124^(16/17) 3908816899636364 a001 15456/4250681*14662949395604^(16/21) 3908816899636364 a001 15456/4250681*(1/2+1/2*5^(1/2))^48 3908816899636364 a001 15456/4250681*192900153618^(8/9) 3908816899636364 a001 15456/4250681*73681302247^(12/13) 3908816899636364 a001 5702887/103682*17393796001^(4/7) 3908816899636364 a001 5702887/103682*14662949395604^(4/9) 3908816899636364 a001 5702887/103682*(1/2+1/2*5^(1/2))^28 3908816899636364 a001 5702887/103682*505019158607^(1/2) 3908816899636364 a001 5702887/103682*73681302247^(7/13) 3908816899636364 a001 5702887/103682*10749957122^(7/12) 3908816899636364 a001 5702887/103682*4106118243^(14/23) 3908816899636364 a001 5702887/103682*1568397607^(7/11) 3908816899636364 a001 5702887/103682*599074578^(2/3) 3908816899636364 a001 5702887/103682*228826127^(7/10) 3908816899636364 a001 5702887/103682*87403803^(14/19) 3908816899636365 a001 12586269025/103682*7881196^(4/11) 3908816899636366 a001 5702887/103682*33385282^(7/9) 3908816899636367 a001 10182505537/51841*7881196^(1/3) 3908816899636371 a001 53316291173/103682*7881196^(3/11) 3908816899636376 a001 225851433717/103682*7881196^(2/11) 3908816899636377 a001 46347/2206*4870847^(15/16) 3908816899636379 a001 27744977794464/709805 3908816899636382 a001 956722026041/103682*7881196^(1/11) 3908816899636382 a001 165580141/103682*20633239^(3/5) 3908816899636382 a001 133957148/51841*20633239^(4/7) 3908816899636382 a001 24157817/103682*20633239^(5/7) 3908816899636383 a001 5702887/103682*12752043^(14/17) 3908816899636384 a001 2971215073/103682*20633239^(3/7) 3908816899636384 a001 46368*20633239^(2/5) 3908816899636384 a001 7465176/51841*141422324^(2/3) 3908816899636384 a001 144/103681*312119004989^(10/11) 3908816899636384 a001 144/103681*(1/2+1/2*5^(1/2))^50 3908816899636384 a001 144/103681*3461452808002^(5/6) 3908816899636384 a001 7465176/51841*(1/2+1/2*5^(1/2))^26 3908816899636384 a001 7465176/51841*73681302247^(1/2) 3908816899636384 a001 7465176/51841*10749957122^(13/24) 3908816899636384 a001 7465176/51841*4106118243^(13/23) 3908816899636384 a001 7465176/51841*1568397607^(13/22) 3908816899636384 a001 7465176/51841*599074578^(13/21) 3908816899636384 a001 7465176/51841*228826127^(13/20) 3908816899636385 a001 7465176/51841*87403803^(13/19) 3908816899636385 a001 32951280099/103682*20633239^(2/7) 3908816899636386 a001 139583862445/103682*20633239^(1/5) 3908816899636386 a001 944284833479232/24157817 3908816899636386 a001 182717648081/51841*20633239^(1/7) 3908816899636387 a001 7465176/51841*33385282^(13/18) 3908816899636387 a001 39088169/103682*141422324^(8/13) 3908816899636387 a001 39088169/103682*2537720636^(8/15) 3908816899636387 a001 15456/29134601*23725150497407^(13/16) 3908816899636387 a001 15456/29134601*505019158607^(13/14) 3908816899636387 a001 39088169/103682*45537549124^(8/17) 3908816899636387 a001 39088169/103682*14662949395604^(8/21) 3908816899636387 a001 39088169/103682*(1/2+1/2*5^(1/2))^24 3908816899636387 a001 39088169/103682*192900153618^(4/9) 3908816899636387 a001 39088169/103682*73681302247^(6/13) 3908816899636387 a001 39088169/103682*10749957122^(1/2) 3908816899636387 a001 39088169/103682*4106118243^(12/23) 3908816899636387 a001 39088169/103682*1568397607^(6/11) 3908816899636387 a001 39088169/103682*599074578^(4/7) 3908816899636387 a001 39088169/103682*228826127^(3/5) 3908816899636387 a001 1236084894554832/31622993 3908816899636387 a001 39088169/103682*87403803^(12/19) 3908816899636388 a001 701408733/103682*141422324^(6/13) 3908816899636388 a001 165580141/103682*141422324^(7/13) 3908816899636388 a001 2971215073/103682*141422324^(5/13) 3908816899636388 a001 46368/228826127*14662949395604^(6/7) 3908816899636388 a001 102334155/103682*312119004989^(2/5) 3908816899636388 a001 102334155/103682*(1/2+1/2*5^(1/2))^22 3908816899636388 a001 102334155/103682*10749957122^(11/24) 3908816899636388 a001 102334155/103682*4106118243^(11/23) 3908816899636388 a001 102334155/103682*1568397607^(1/2) 3908816899636388 a001 102334155/103682*599074578^(11/21) 3908816899636388 a001 7778742049/103682*141422324^(1/3) 3908816899636388 a001 12586269025/103682*141422324^(4/13) 3908816899636388 a001 53316291173/103682*141422324^(3/13) 3908816899636388 a001 102334155/103682*228826127^(11/20) 3908816899636388 a001 225851433717/103682*141422324^(2/13) 3908816899636388 a001 6472224533849760/165580141 3908816899636388 a001 956722026041/103682*141422324^(1/13) 3908816899636388 a001 133957148/51841*2537720636^(4/9) 3908816899636388 a001 2576/33281921*14662949395604^(8/9) 3908816899636388 a001 133957148/51841*(1/2+1/2*5^(1/2))^20 3908816899636388 a001 133957148/51841*23725150497407^(5/16) 3908816899636388 a001 133957148/51841*505019158607^(5/14) 3908816899636388 a001 133957148/51841*73681302247^(5/13) 3908816899636388 a001 133957148/51841*28143753123^(2/5) 3908816899636388 a001 133957148/51841*10749957122^(5/12) 3908816899636388 a001 133957148/51841*4106118243^(10/23) 3908816899636388 a001 133957148/51841*1568397607^(5/11) 3908816899636388 a001 133957148/51841*599074578^(10/21) 3908816899636388 a001 16944503812439616/433494437 3908816899636388 a001 701408733/103682*2537720636^(2/5) 3908816899636388 a001 701408733/103682*45537549124^(6/17) 3908816899636388 a001 701408733/103682*14662949395604^(2/7) 3908816899636388 a001 701408733/103682*(1/2+1/2*5^(1/2))^18 3908816899636388 a001 701408733/103682*192900153618^(1/3) 3908816899636388 a001 701408733/103682*10749957122^(3/8) 3908816899636388 a001 701408733/103682*4106118243^(9/23) 3908816899636388 a001 701408733/103682*1568397607^(9/22) 3908816899636388 a001 22180643451734544/567451585 3908816899636388 a001 15456/1368706081*14662949395604^(20/21) 3908816899636388 a001 1836311903/103682*(1/2+1/2*5^(1/2))^16 3908816899636388 a001 1836311903/103682*23725150497407^(1/4) 3908816899636388 a001 1836311903/103682*73681302247^(4/13) 3908816899636388 a001 1836311903/103682*10749957122^(1/3) 3908816899636388 a001 12586269025/103682*2537720636^(4/15) 3908816899636388 a001 1836311903/103682*4106118243^(8/23) 3908816899636388 a001 32951280099/103682*2537720636^(2/9) 3908816899636388 a001 116139356897967648/2971215073 3908816899636388 a001 53316291173/103682*2537720636^(1/5) 3908816899636388 a001 2971215073/103682*2537720636^(1/3) 3908816899636388 a001 225851433717/103682*2537720636^(2/15) 3908816899636388 a001 182717648081/51841*2537720636^(1/9) 3908816899636388 a001 23388983368494912/598364773 3908816899636388 a001 956722026041/103682*2537720636^(1/15) 3908816899636388 a001 46368*17393796001^(2/7) 3908816899636388 a001 46368*14662949395604^(2/9) 3908816899636388 a001 46368*505019158607^(1/4) 3908816899636388 a001 491974210682900064/12586269025 3908816899636388 a001 46368*10749957122^(7/24) 3908816899636388 a001 12586269025/103682*45537549124^(4/17) 3908816899636388 a001 12586269025/103682*817138163596^(4/19) 3908816899636388 a001 12586269025/103682*14662949395604^(4/21) 3908816899636388 a001 12586269025/103682*(1/2+1/2*5^(1/2))^12 3908816899636388 a001 12586269025/103682*192900153618^(2/9) 3908816899636388 a001 12586269025/103682*73681302247^(3/13) 3908816899636388 a001 139583862445/103682*17393796001^(1/7) 3908816899636388 a001 32951280099/103682*312119004989^(2/11) 3908816899636388 a001 32951280099/103682*(1/2+1/2*5^(1/2))^10 3908816899636388 a001 225851433717/103682*45537549124^(2/17) 3908816899636388 a001 43133785636/51841*(1/2+1/2*5^(1/2))^8 3908816899636388 a001 43133785636/51841*23725150497407^(1/8) 3908816899636388 a001 43133785636/51841*505019158607^(1/7) 3908816899636388 a001 53316291173/103682*45537549124^(3/17) 3908816899636388 a001 225851433717/103682*(1/2+1/2*5^(1/2))^6 3908816899636388 a001 774004377960/51841*(1/2+1/2*5^(1/2))^2 3908816899636388 a001 4052739537881/103682 3908816899636388 a001 956722026041/103682*(1/2+1/2*5^(1/2))^3 3908816899636388 a001 182717648081/51841*312119004989^(1/11) 3908816899636388 a001 43133785636/51841*73681302247^(2/13) 3908816899636388 a001 182717648081/51841*(1/2+1/2*5^(1/2))^5 3908816899636388 a001 139583862445/103682*14662949395604^(1/9) 3908816899636388 a001 139583862445/103682*(1/2+1/2*5^(1/2))^7 3908816899636388 a001 591286729879/103682*73681302247^(1/13) 3908816899636388 a001 32951280099/103682*28143753123^(1/5) 3908816899636388 a001 53316291173/103682*14662949395604^(1/7) 3908816899636388 a001 53316291173/103682*(1/2+1/2*5^(1/2))^9 3908816899636388 a001 53316291173/103682*192900153618^(1/6) 3908816899636388 a001 182717648081/51841*28143753123^(1/10) 3908816899636388 a001 774004377960/51841*10749957122^(1/24) 3908816899636388 a001 10182505537/51841*312119004989^(1/5) 3908816899636388 a001 10182505537/51841*(1/2+1/2*5^(1/2))^11 3908816899636388 a001 956722026041/103682*10749957122^(1/16) 3908816899636388 a001 591286729879/103682*10749957122^(1/12) 3908816899636388 a001 12586269025/103682*10749957122^(1/4) 3908816899636388 a001 225851433717/103682*10749957122^(1/8) 3908816899636388 a001 43133785636/51841*10749957122^(1/6) 3908816899636388 a001 32951280099/103682*10749957122^(5/24) 3908816899636388 a001 53316291173/103682*10749957122^(3/16) 3908816899636388 a001 774004377960/51841*4106118243^(1/23) 3908816899636388 a001 7778742049/103682*(1/2+1/2*5^(1/2))^13 3908816899636388 a001 7778742049/103682*73681302247^(1/4) 3908816899636388 a001 591286729879/103682*4106118243^(2/23) 3908816899636388 a001 225851433717/103682*4106118243^(3/23) 3908816899636388 a001 46368*4106118243^(7/23) 3908816899636388 a001 43133785636/51841*4106118243^(4/23) 3908816899636388 a001 32951280099/103682*4106118243^(5/23) 3908816899636388 a001 12586269025/103682*4106118243^(6/23) 3908816899636388 a001 774004377960/51841*1568397607^(1/22) 3908816899636388 a001 2971215073/103682*45537549124^(5/17) 3908816899636388 a001 2971215073/103682*312119004989^(3/11) 3908816899636388 a001 2971215073/103682*14662949395604^(5/21) 3908816899636388 a001 2971215073/103682*(1/2+1/2*5^(1/2))^15 3908816899636388 a001 2971215073/103682*192900153618^(5/18) 3908816899636388 a001 2971215073/103682*28143753123^(3/10) 3908816899636388 a001 2971215073/103682*10749957122^(5/16) 3908816899636388 a001 591286729879/103682*1568397607^(1/11) 3908816899636388 a001 71778069994498560/1836311903 3908816899636388 a001 225851433717/103682*1568397607^(3/22) 3908816899636388 a001 43133785636/51841*1568397607^(2/11) 3908816899636388 a001 1836311903/103682*1568397607^(4/11) 3908816899636388 a001 32951280099/103682*1568397607^(5/22) 3908816899636388 a001 10182505537/51841*1568397607^(1/4) 3908816899636388 a001 12586269025/103682*1568397607^(3/11) 3908816899636388 a001 46368*1568397607^(7/22) 3908816899636388 a001 774004377960/51841*599074578^(1/21) 3908816899636388 a001 567451585/51841*45537549124^(1/3) 3908816899636388 a001 567451585/51841*(1/2+1/2*5^(1/2))^17 3908816899636388 a001 956722026041/103682*599074578^(1/14) 3908816899636388 a001 591286729879/103682*599074578^(2/21) 3908816899636388 a001 9138927697009824/233802911 3908816899636388 a001 225851433717/103682*599074578^(1/7) 3908816899636388 a001 139583862445/103682*599074578^(1/6) 3908816899636388 a001 43133785636/51841*599074578^(4/21) 3908816899636388 a001 53316291173/103682*599074578^(3/14) 3908816899636388 a001 32951280099/103682*599074578^(5/21) 3908816899636388 a001 701408733/103682*599074578^(3/7) 3908816899636388 a001 12586269025/103682*599074578^(2/7) 3908816899636388 a001 46368*599074578^(1/3) 3908816899636388 a001 774004377960/51841*228826127^(1/20) 3908816899636388 a001 1836311903/103682*599074578^(8/21) 3908816899636388 a001 2971215073/103682*599074578^(5/14) 3908816899636388 a001 46368/969323029*14662949395604^(19/21) 3908816899636388 a001 433494437/103682*817138163596^(1/3) 3908816899636388 a001 433494437/103682*(1/2+1/2*5^(1/2))^19 3908816899636388 a001 591286729879/103682*228826127^(1/10) 3908816899636388 a001 182717648081/51841*228826127^(1/8) 3908816899636388 a001 3472241140116/88831 3908816899636388 a001 225851433717/103682*228826127^(3/20) 3908816899636388 a001 43133785636/51841*228826127^(1/5) 3908816899636388 a001 32951280099/103682*228826127^(1/4) 3908816899636388 a001 12586269025/103682*228826127^(3/10) 3908816899636388 a001 46368*228826127^(7/20) 3908816899636388 a001 133957148/51841*228826127^(1/2) 3908816899636388 a001 774004377960/51841*87403803^(1/19) 3908816899636388 a001 2971215073/103682*228826127^(3/8) 3908816899636388 a001 165580141/103682*2537720636^(7/15) 3908816899636388 a001 46368/370248451*3461452808002^(11/12) 3908816899636388 a001 165580141/103682*17393796001^(3/7) 3908816899636388 a001 165580141/103682*45537549124^(7/17) 3908816899636388 a001 165580141/103682*14662949395604^(1/3) 3908816899636388 a001 165580141/103682*(1/2+1/2*5^(1/2))^21 3908816899636388 a001 165580141/103682*192900153618^(7/18) 3908816899636388 a001 165580141/103682*10749957122^(7/16) 3908816899636388 a001 1836311903/103682*228826127^(2/5) 3908816899636388 a001 701408733/103682*228826127^(9/20) 3908816899636388 a001 165580141/103682*599074578^(1/2) 3908816899636388 a001 591286729879/103682*87403803^(2/19) 3908816899636388 a001 190478797368576/4873055 3908816899636388 a001 225851433717/103682*87403803^(3/19) 3908816899636388 a001 43133785636/51841*87403803^(4/19) 3908816899636388 a001 32951280099/103682*87403803^(5/19) 3908816899636388 a001 12586269025/103682*87403803^(6/19) 3908816899636388 a001 46368*87403803^(7/19) 3908816899636388 a001 774004377960/51841*33385282^(1/18) 3908816899636388 a001 31622993/51841*(1/2+1/2*5^(1/2))^23 3908816899636388 a001 31622993/51841*4106118243^(1/2) 3908816899636388 a001 1836311903/103682*87403803^(8/19) 3908816899636388 a001 102334155/103682*87403803^(11/19) 3908816899636388 a001 701408733/103682*87403803^(9/19) 3908816899636388 a001 133957148/51841*87403803^(10/19) 3908816899636388 a001 433494437/103682*87403803^(1/2) 3908816899636388 a001 956722026041/103682*33385282^(1/12) 3908816899636388 a001 591286729879/103682*33385282^(1/9) 3908816899636388 a001 1527884955630432/39088169 3908816899636388 a001 225851433717/103682*33385282^(1/6) 3908816899636388 a001 43133785636/51841*33385282^(2/9) 3908816899636389 a001 53316291173/103682*33385282^(1/4) 3908816899636389 a001 32951280099/103682*33385282^(5/18) 3908816899636389 a001 12586269025/103682*33385282^(1/3) 3908816899636389 a001 24157817/103682*2537720636^(5/9) 3908816899636389 a001 46368/54018521*817138163596^(17/19) 3908816899636389 a001 46368/54018521*14662949395604^(17/21) 3908816899636389 a001 46368/54018521*192900153618^(17/18) 3908816899636389 a001 24157817/103682*312119004989^(5/11) 3908816899636389 a001 24157817/103682*(1/2+1/2*5^(1/2))^25 3908816899636389 a001 24157817/103682*3461452808002^(5/12) 3908816899636389 a001 24157817/103682*28143753123^(1/2) 3908816899636389 a001 46368*33385282^(7/18) 3908816899636389 a001 24157817/103682*228826127^(5/8) 3908816899636389 a001 774004377960/51841*12752043^(1/17) 3908816899636389 a001 2971215073/103682*33385282^(5/12) 3908816899636389 a001 1836311903/103682*33385282^(4/9) 3908816899636389 a001 701408733/103682*33385282^(1/2) 3908816899636390 a001 39088169/103682*33385282^(2/3) 3908816899636390 a001 133957148/51841*33385282^(5/9) 3908816899636390 a001 102334155/103682*33385282^(11/18) 3908816899636390 a001 165580141/103682*33385282^(7/12) 3908816899636391 a001 591286729879/103682*12752043^(2/17) 3908816899636391 a001 4052778626050/103683 3908816899636392 a001 225851433717/103682*12752043^(3/17) 3908816899636393 a001 43133785636/51841*12752043^(4/17) 3908816899636395 a001 32951280099/103682*12752043^(5/17) 3908816899636396 a001 12586269025/103682*12752043^(6/17) 3908816899636397 a001 9227465/103682*141422324^(9/13) 3908816899636397 a001 9227465/103682*2537720636^(3/5) 3908816899636397 a001 46368/20633239*14662949395604^(7/9) 3908816899636397 a001 46368/20633239*(1/2+1/2*5^(1/2))^49 3908816899636397 a001 46368/20633239*505019158607^(7/8) 3908816899636397 a001 9227465/103682*45537549124^(9/17) 3908816899636397 a001 9227465/103682*817138163596^(9/19) 3908816899636397 a001 9227465/103682*14662949395604^(3/7) 3908816899636397 a001 9227465/103682*(1/2+1/2*5^(1/2))^27 3908816899636397 a001 9227465/103682*192900153618^(1/2) 3908816899636397 a001 9227465/103682*10749957122^(9/16) 3908816899636397 a001 9227465/103682*599074578^(9/14) 3908816899636398 a001 46368*12752043^(7/17) 3908816899636398 a001 774004377960/51841*4870847^(1/16) 3908816899636399 a001 1836311903/103682*12752043^(8/17) 3908816899636399 a001 9227465/103682*33385282^(3/4) 3908816899636400 a001 567451585/51841*12752043^(1/2) 3908816899636400 a001 701408733/103682*12752043^(9/17) 3908816899636402 a001 133957148/51841*12752043^(10/17) 3908816899636403 a001 7465176/51841*12752043^(13/17) 3908816899636403 a001 102334155/103682*12752043^(11/17) 3908816899636404 a001 39088169/103682*12752043^(12/17) 3908816899636408 a001 591286729879/103682*4870847^(1/8) 3908816899636412 a001 222915410823168/5702887 3908816899636419 a001 225851433717/103682*4870847^(3/16) 3908816899636429 a001 43133785636/51841*4870847^(1/4) 3908816899636439 a001 32951280099/103682*4870847^(5/16) 3908816899636449 a001 12586269025/103682*4870847^(3/8) 3908816899636451 a001 11592/1970299*(1/2+1/2*5^(1/2))^47 3908816899636451 a001 1762289/51841*(1/2+1/2*5^(1/2))^29 3908816899636451 a001 1762289/51841*1322157322203^(1/2) 3908816899636460 a001 46368*4870847^(7/16) 3908816899636463 a001 774004377960/51841*1860498^(1/15) 3908816899636470 a001 1836311903/103682*4870847^(1/2) 3908816899636480 a001 701408733/103682*4870847^(9/16) 3908816899636491 a001 133957148/51841*4870847^(5/8) 3908816899636501 a001 956722026041/103682*1860498^(1/10) 3908816899636501 a001 102334155/103682*4870847^(11/16) 3908816899636508 a001 5702887/103682*4870847^(7/8) 3908816899636511 a001 39088169/103682*4870847^(3/4) 3908816899636518 a001 7465176/51841*4870847^(13/16) 3908816899636538 a001 591286729879/103682*1860498^(2/15) 3908816899636552 a001 4054576681824/103729 3908816899636576 a001 182717648081/51841*1860498^(1/6) 3908816899636614 a001 225851433717/103682*1860498^(1/5) 3908816899636689 a001 43133785636/51841*1860498^(4/15) 3908816899636726 a001 53316291173/103682*1860498^(3/10) 3908816899636764 a001 32951280099/103682*1860498^(1/3) 3908816899636819 a001 46368/3010349*45537549124^(15/17) 3908816899636819 a001 46368/3010349*312119004989^(9/11) 3908816899636819 a001 46368/3010349*14662949395604^(5/7) 3908816899636819 a001 46368/3010349*(1/2+1/2*5^(1/2))^45 3908816899636819 a001 46368/3010349*192900153618^(5/6) 3908816899636819 a001 46368/3010349*28143753123^(9/10) 3908816899636819 a001 46368/3010349*10749957122^(15/16) 3908816899636819 a001 1346269/103682*(1/2+1/2*5^(1/2))^31 3908816899636819 a001 1346269/103682*9062201101803^(1/2) 3908816899636839 a001 12586269025/103682*1860498^(2/5) 3908816899636915 a001 46368*1860498^(7/15) 3908816899636941 a001 774004377960/51841*710647^(1/14) 3908816899636952 a001 2971215073/103682*1860498^(1/2) 3908816899636990 a001 1836311903/103682*1860498^(8/15) 3908816899637065 a001 701408733/103682*1860498^(3/5) 3908816899637141 a001 133957148/51841*1860498^(2/3) 3908816899637178 a001 165580141/103682*1860498^(7/10) 3908816899637216 a001 102334155/103682*1860498^(11/15) 3908816899637291 a001 39088169/103682*1860498^(4/5) 3908816899637330 a001 24157817/103682*1860498^(5/6) 3908816899637363 a001 7465176/51841*1860498^(13/15) 3908816899637413 a001 9227465/103682*1860498^(9/10) 3908816899637418 a001 5702887/103682*1860498^(14/15) 3908816899637493 a001 591286729879/103682*710647^(1/7) 3908816899637517 a001 4065365016468/104005 3908816899638046 a001 225851433717/103682*710647^(3/14) 3908816899638323 a001 139583862445/103682*710647^(1/4) 3908816899638599 a001 43133785636/51841*710647^(2/7) 3908816899639152 a001 32951280099/103682*710647^(5/14) 3908816899639344 a001 514229/103682*141422324^(11/13) 3908816899639344 a001 514229/103682*2537720636^(11/15) 3908816899639344 a001 46368/1149851*(1/2+1/2*5^(1/2))^43 3908816899639344 a001 514229/103682*45537549124^(11/17) 3908816899639344 a001 514229/103682*312119004989^(3/5) 3908816899639344 a001 514229/103682*14662949395604^(11/21) 3908816899639344 a001 514229/103682*(1/2+1/2*5^(1/2))^33 3908816899639344 a001 514229/103682*192900153618^(11/18) 3908816899639344 a001 514229/103682*10749957122^(11/16) 3908816899639344 a001 514229/103682*1568397607^(3/4) 3908816899639344 a001 514229/103682*599074578^(11/14) 3908816899639347 a001 514229/103682*33385282^(11/12) 3908816899639705 a001 12586269025/103682*710647^(3/7) 3908816899640258 a001 46368*710647^(1/2) 3908816899640468 a001 774004377960/51841*271443^(1/13) 3908816899640811 a001 1836311903/103682*710647^(4/7) 3908816899641363 a001 701408733/103682*710647^(9/14) 3908816899641916 a001 133957148/51841*710647^(5/7) 3908816899642193 a001 165580141/103682*710647^(3/4) 3908816899642218 a001 20365011074/167761*64079^(12/23) 3908816899642469 a001 102334155/103682*710647^(11/14) 3908816899643021 a001 39088169/103682*710647^(6/7) 3908816899643571 a001 7465176/51841*710647^(13/14) 3908816899644128 a001 10983775488/281 3908816899644549 a001 591286729879/103682*271443^(2/13) 3908816899647761 a001 225851433717/439204*64079^(9/23) 3908816899648630 a001 225851433717/103682*271443^(3/13) 3908816899651538 a001 2504730781961/103682*103682^(1/24) 3908816899652711 a001 43133785636/51841*271443^(4/13) 3908816899656651 a001 98209/51841*2537720636^(7/9) 3908816899656651 a001 11592/109801*(1/2+1/2*5^(1/2))^41 3908816899656651 a001 98209/51841*17393796001^(5/7) 3908816899656651 a001 98209/51841*312119004989^(7/11) 3908816899656651 a001 98209/51841*14662949395604^(5/9) 3908816899656651 a001 98209/51841*(1/2+1/2*5^(1/2))^35 3908816899656651 a001 98209/51841*505019158607^(5/8) 3908816899656651 a001 98209/51841*28143753123^(7/10) 3908816899656651 a001 98209/51841*599074578^(5/6) 3908816899656651 a001 98209/51841*228826127^(7/8) 3908816899656792 a001 32951280099/103682*271443^(5/13) 3908816899657226 a001 365435296162/271443*64079^(7/23) 3908816899660150 a001 165580141/39603*39603^(19/22) 3908816899660872 a001 12586269025/103682*271443^(6/13) 3908816899661147 a001 591286729879/710647*64079^(8/23) 3908816899662913 a001 7778742049/103682*271443^(1/2) 3908816899664953 a001 46368*271443^(7/13) 3908816899666689 a001 774004377960/51841*103682^(1/12) 3908816899667758 a001 832040*64079^(8/23) 3908816899668722 a001 4052739537881/4870847*64079^(8/23) 3908816899668863 a001 3536736619241/4250681*64079^(8/23) 3908816899668950 a001 3278735159921/3940598*64079^(8/23) 3908816899669034 a001 1836311903/103682*271443^(8/13) 3908816899669319 a001 2504730781961/3010349*64079^(8/23) 3908816899671844 a001 956722026041/1149851*64079^(8/23) 3908816899673115 a001 701408733/103682*271443^(9/13) 3908816899677196 a001 133957148/51841*271443^(10/13) 3908816899681276 a001 102334155/103682*271443^(11/13) 3908816899681839 a001 956722026041/103682*103682^(1/8) 3908816899683607 a001 32951280099/167761*64079^(11/23) 3908816899685357 a001 39088169/103682*271443^(12/13) 3908816899689151 a001 182717648081/219602*64079^(8/23) 3908816899689438 a001 4745030099040/121393 3908816899696990 a001 591286729879/103682*103682^(1/6) 3908816899698615 a001 591286729879/271443*64079^(6/23) 3908816899702536 a001 956722026041/710647*64079^(7/23) 3908816899709138 a001 365435296162/64079*24476^(4/21) 3908816899709147 a001 2504730781961/1860498*64079^(7/23) 3908816899709561 a001 10610209857723/439204*24476^(1/21) 3908816899710112 a001 6557470319842/4870847*64079^(7/23) 3908816899710339 a001 10610209857723/7881196*64079^(7/23) 3908816899710708 a001 1346269*64079^(7/23) 3908816899712140 a001 182717648081/51841*103682^(5/24) 3908816899713233 a001 1548008755920/1149851*64079^(7/23) 3908816899724997 a001 53316291173/167761*64079^(10/23) 3908816899727291 a001 225851433717/103682*103682^(1/4) 3908816899730540 a001 591286729879/439204*64079^(7/23) 3908816899740004 a001 956722026041/271443*64079^(5/23) 3908816899742441 a001 139583862445/103682*103682^(7/24) 3908816899743925 a001 1548008755920/710647*64079^(6/23) 3908816899749671 a001 2504730781961/103682*39603^(1/22) 3908816899750536 a001 4052739537881/1860498*64079^(6/23) 3908816899751501 a001 2178309*64079^(6/23) 3908816899752097 a001 6557470319842/3010349*64079^(6/23) 3908816899754622 a001 2504730781961/1149851*64079^(6/23) 3908816899757592 a001 43133785636/51841*103682^(1/3) 3908816899766386 a001 86267571272/167761*64079^(9/23) 3908816899771929 a001 956722026041/439204*64079^(6/23) 3908816899772742 a001 53316291173/103682*103682^(3/8) 3908816899773433 a001 34111385/13201*39603^(10/11) 3908816899775275 a001 46368/167761*2537720636^(13/15) 3908816899775275 a001 46368/167761*45537549124^(13/17) 3908816899775275 a001 46368/167761*14662949395604^(13/21) 3908816899775275 a001 46368/167761*(1/2+1/2*5^(1/2))^39 3908816899775275 a001 46368/167761*192900153618^(13/18) 3908816899775275 a001 46368/167761*73681302247^(3/4) 3908816899775275 a001 46368/167761*10749957122^(13/16) 3908816899775275 a001 75025/103682*(1/2+1/2*5^(1/2))^37 3908816899775275 a001 46368/167761*599074578^(13/14) 3908816899781393 a001 516002918640/90481*64079^(4/23) 3908816899785315 a001 2504730781961/710647*64079^(5/23) 3908816899787893 a001 32951280099/103682*103682^(5/12) 3908816899791925 a001 3278735159921/930249*64079^(5/23) 3908816899793486 a001 10610209857723/3010349*64079^(5/23) 3908816899796011 a001 4052739537881/1149851*64079^(5/23) 3908816899803043 a001 10182505537/51841*103682^(11/24) 3908816899807775 a001 139583862445/167761*64079^(8/23) 3908816899808063 a001 2932589879081/75025 3908816899813318 a001 387002188980/109801*64079^(5/23) 3908816899818194 a001 12586269025/103682*103682^(1/2) 3908816899822782 a001 2504730781961/271443*64079^(3/23) 3908816899826704 a001 4052739537881/710647*64079^(4/23) 3908816899828185 a001 4052739537881/167761*24476^(1/21) 3908816899833314 a001 3536736619241/620166*64079^(4/23) 3908816899833344 a001 7778742049/103682*103682^(13/24) 3908816899835840 a001 233802911/90481*167761^(4/5) 3908816899837400 a001 6557470319842/1149851*64079^(4/23) 3908816899848495 a001 46368*103682^(7/12) 3908816899849164 a001 225851433717/167761*64079^(7/23) 3908816899853382 a001 586517975823/15005 3908816899854707 a001 2504730781961/439204*64079^(4/23) 3908816899860046 a001 586517975824/15005 3908816899861112 a001 14662949395604/75025*8^(1/3) 3908816899861112 a001 2/75025*(1/2+1/2*5^(1/2))^63 3908816899861379 a001 2932589879121/75025 3908816899862955 a001 774004377960/51841*39603^(1/11) 3908816899863617 a001 7778742049/271443*167761^(3/5) 3908816899863645 a001 2971215073/103682*103682^(5/8) 3908816899864045 a001 2932589879123/75025 3908816899864171 a001 4052739537881/271443*64079^(2/23) 3908816899868093 a001 6557470319842/710647*64079^(3/23) 3908816899878789 a001 10610209857723/1149851*64079^(3/23) 3908816899878796 a001 1836311903/103682*103682^(2/3) 3908816899881150 a001 1836311903/710647*167761^(4/5) 3908816899881372 a001 2932589879136/75025 3908816899886717 a001 63245986/39603*39603^(21/22) 3908816899887761 a001 267084832/103361*167761^(4/5) 3908816899888725 a001 12586269025/4870847*167761^(4/5) 3908816899888866 a001 10983760033/4250681*167761^(4/5) 3908816899888886 a001 43133785636/16692641*167761^(4/5) 3908816899888889 a001 75283811239/29134601*167761^(4/5) 3908816899888890 a001 591286729879/228826127*167761^(4/5) 3908816899888890 a001 86000486440/33281921*167761^(4/5) 3908816899888890 a001 4052739537881/1568397607*167761^(4/5) 3908816899888890 a001 3536736619241/1368706081*167761^(4/5) 3908816899888890 a001 3278735159921/1268860318*167761^(4/5) 3908816899888890 a001 2504730781961/969323029*167761^(4/5) 3908816899888890 a001 956722026041/370248451*167761^(4/5) 3908816899888890 a001 182717648081/70711162*167761^(4/5) 3908816899888891 a001 139583862445/54018521*167761^(4/5) 3908816899888899 a001 53316291173/20633239*167761^(4/5) 3908816899888953 a001 10182505537/3940598*167761^(4/5) 3908816899889321 a001 7778742049/3010349*167761^(4/5) 3908816899890553 a001 365435296162/167761*64079^(6/23) 3908816899891395 a001 86267571272/271443*167761^(2/5) 3908816899891846 a001 2971215073/1149851*167761^(4/5) 3908816899893899 a001 121393/271443*817138163596^(2/3) 3908816899893899 a001 121393/271443*(1/2+1/2*5^(1/2))^38 3908816899893899 a001 121393/271443*10749957122^(19/24) 3908816899893899 a001 121393/271443*4106118243^(19/23) 3908816899893899 a001 121393/271443*1568397607^(19/22) 3908816899893899 a001 121393/271443*599074578^(19/21) 3908816899893899 a001 121393/271443*228826127^(19/20) 3908816899893946 a001 567451585/51841*103682^(17/24) 3908816899896096 a001 4052739537881/439204*64079^(3/23) 3908816899905561 a001 6557470319842/271443*64079^(1/23) 3908816899908928 a001 20365011074/710647*167761^(3/5) 3908816899909097 a001 701408733/103682*103682^(3/4) 3908816899909153 a001 567451585/219602*167761^(4/5) 3908816899909482 a001 1515744265389/101521*64079^(2/23) 3908816899915538 a001 53316291173/1860498*167761^(3/5) 3908816899916503 a001 139583862445/4870847*167761^(3/5) 3908816899916643 a001 365435296162/12752043*167761^(3/5) 3908816899916664 a001 956722026041/33385282*167761^(3/5) 3908816899916667 a001 2504730781961/87403803*167761^(3/5) 3908816899916667 a001 6557470319842/228826127*167761^(3/5) 3908816899916668 a001 10610209857723/370248451*167761^(3/5) 3908816899916668 a001 4052739537881/141422324*167761^(3/5) 3908816899916669 a001 1548008755920/54018521*167761^(3/5) 3908816899916677 a001 591286729879/20633239*167761^(3/5) 3908816899916730 a001 225851433717/7881196*167761^(3/5) 3908816899917099 a001 86267571272/3010349*167761^(3/5) 3908816899919172 a001 956722026041/271443*167761^(1/5) 3908816899919624 a001 32951280099/1149851*167761^(3/5) 3908816899924247 a001 433494437/103682*103682^(19/24) 3908816899926686 a001 3838809989249/98209 3908816899928938 a001 34111385/90481*439204^(8/9) 3908816899931189 a001 433494437/271443*439204^(7/9) 3908816899931942 a001 591286729879/167761*64079^(5/23) 3908816899933441 a001 1836311903/271443*439204^(2/3) 3908816899935692 a001 7778742049/271443*439204^(5/9) 3908816899936705 a001 317811*167761^(2/5) 3908816899936931 a001 12586269025/439204*167761^(3/5) 3908816899937485 a001 3278735159921/219602*64079^(2/23) 3908816899937944 a001 121393*439204^(4/9) 3908816899939210 a001 105937/90481*141422324^(12/13) 3908816899939210 a001 121393/710647*2537720636^(8/9) 3908816899939210 a001 105937/90481*2537720636^(4/5) 3908816899939210 a001 105937/90481*45537549124^(12/17) 3908816899939210 a001 121393/710647*312119004989^(8/11) 3908816899939210 a001 121393/710647*(1/2+1/2*5^(1/2))^40 3908816899939210 a001 121393/710647*23725150497407^(5/8) 3908816899939210 a001 121393/710647*73681302247^(10/13) 3908816899939210 a001 105937/90481*14662949395604^(4/7) 3908816899939210 a001 105937/90481*(1/2+1/2*5^(1/2))^36 3908816899939210 a001 105937/90481*505019158607^(9/14) 3908816899939210 a001 105937/90481*192900153618^(2/3) 3908816899939210 a001 105937/90481*73681302247^(9/13) 3908816899939210 a001 121393/710647*28143753123^(4/5) 3908816899939210 a001 105937/90481*10749957122^(3/4) 3908816899939210 a001 121393/710647*10749957122^(5/6) 3908816899939210 a001 105937/90481*4106118243^(18/23) 3908816899939210 a001 121393/710647*4106118243^(20/23) 3908816899939210 a001 105937/90481*1568397607^(9/11) 3908816899939210 a001 121393/710647*1568397607^(10/11) 3908816899939210 a001 105937/90481*599074578^(6/7) 3908816899939210 a001 121393/710647*599074578^(20/21) 3908816899939210 a001 105937/90481*228826127^(9/10) 3908816899939210 a001 105937/90481*87403803^(18/19) 3908816899939398 a001 133957148/51841*103682^(5/6) 3908816899940195 a001 139583862445/271443*439204^(1/3) 3908816899942447 a001 591286729879/271443*439204^(2/9) 3908816899943316 a001 591286729879/1860498*167761^(2/5) 3908816899943993 a001 20100270056413/514229 3908816899944280 a001 1548008755920/4870847*167761^(2/5) 3908816899944421 a001 4052739537881/12752043*167761^(2/5) 3908816899944441 a001 1515744265389/4769326*167761^(2/5) 3908816899944454 a001 6557470319842/20633239*167761^(2/5) 3908816899944508 a001 2504730781961/7881196*167761^(2/5) 3908816899944698 a001 2504730781961/271443*439204^(1/9) 3908816899944876 a001 956722026041/3010349*167761^(2/5) 3908816899945820 a001 121393/1860498*2537720636^(14/15) 3908816899945820 a001 121393/1860498*17393796001^(6/7) 3908816899945820 a001 121393/1860498*45537549124^(14/17) 3908816899945820 a001 832040/271443*45537549124^(2/3) 3908816899945820 a001 121393/1860498*817138163596^(14/19) 3908816899945820 a001 121393/1860498*14662949395604^(2/3) 3908816899945820 a001 121393/1860498*(1/2+1/2*5^(1/2))^42 3908816899945820 a001 121393/1860498*505019158607^(3/4) 3908816899945820 a001 121393/1860498*192900153618^(7/9) 3908816899945820 a001 832040/271443*(1/2+1/2*5^(1/2))^34 3908816899945820 a001 832040/271443*10749957122^(17/24) 3908816899945820 a001 121393/1860498*10749957122^(7/8) 3908816899945820 a001 832040/271443*4106118243^(17/23) 3908816899945820 a001 121393/1860498*4106118243^(21/23) 3908816899945820 a001 832040/271443*1568397607^(17/22) 3908816899945820 a001 121393/1860498*1568397607^(21/22) 3908816899945820 a001 832040/271443*599074578^(17/21) 3908816899945821 a001 832040/271443*228826127^(17/20) 3908816899945821 a001 832040/271443*87403803^(17/19) 3908816899945824 a001 832040/271443*33385282^(17/18) 3908816899946518 a001 52623190190741/1346269 3908816899946785 a001 121393/4870847*312119004989^(4/5) 3908816899946785 a001 121393/4870847*(1/2+1/2*5^(1/2))^44 3908816899946785 a001 121393/4870847*23725150497407^(11/16) 3908816899946785 a001 121393/4870847*73681302247^(11/13) 3908816899946785 a001 726103/90481*(1/2+1/2*5^(1/2))^32 3908816899946785 a001 726103/90481*23725150497407^(1/2) 3908816899946785 a001 726103/90481*505019158607^(4/7) 3908816899946785 a001 726103/90481*73681302247^(8/13) 3908816899946785 a001 726103/90481*10749957122^(2/3) 3908816899946785 a001 121393/4870847*10749957122^(11/12) 3908816899946785 a001 726103/90481*4106118243^(16/23) 3908816899946785 a001 121393/4870847*4106118243^(22/23) 3908816899946785 a001 726103/90481*1568397607^(8/11) 3908816899946785 a001 726103/90481*599074578^(16/21) 3908816899946785 a001 726103/90481*228826127^(4/5) 3908816899946785 a001 726103/90481*87403803^(16/19) 3908816899946788 a001 726103/90481*33385282^(8/9) 3908816899946808 a001 726103/90481*12752043^(16/17) 3908816899946868 a001 5702887/271443*7881196^(10/11) 3908816899946887 a001 68884650257905/1762289 3908816899946900 a001 24157817/271443*7881196^(9/11) 3908816899946904 a001 34111385/90481*7881196^(8/11) 3908816899946908 a001 267914296/271443*7881196^(2/3) 3908816899946910 a001 433494437/271443*7881196^(7/11) 3908816899946915 a001 1836311903/271443*7881196^(6/11) 3908816899946918 a001 5702887/271443*20633239^(6/7) 3908816899946921 a001 7778742049/271443*7881196^(5/11) 3908816899946926 a001 5702887/271443*141422324^(10/13) 3908816899946926 a001 5702887/271443*2537720636^(2/3) 3908816899946926 a001 5702887/271443*45537549124^(10/17) 3908816899946926 a001 121393/12752043*(1/2+1/2*5^(1/2))^46 3908816899946926 a001 5702887/271443*312119004989^(6/11) 3908816899946926 a001 5702887/271443*14662949395604^(10/21) 3908816899946926 a001 5702887/271443*(1/2+1/2*5^(1/2))^30 3908816899946926 a001 5702887/271443*192900153618^(5/9) 3908816899946926 a001 5702887/271443*28143753123^(3/5) 3908816899946926 a001 5702887/271443*10749957122^(5/8) 3908816899946926 a001 121393/12752043*10749957122^(23/24) 3908816899946926 a001 5702887/271443*4106118243^(15/23) 3908816899946926 a001 5702887/271443*1568397607^(15/22) 3908816899946926 a001 5702887/271443*599074578^(5/7) 3908816899946926 a001 5702887/271443*228826127^(3/4) 3908816899946926 a001 5702887/271443*87403803^(15/19) 3908816899946927 a001 121393*7881196^(4/11) 3908816899946929 a001 5702887/271443*33385282^(5/6) 3908816899946929 a001 53316291173/271443*7881196^(1/3) 3908816899946933 a001 139583862445/271443*7881196^(3/11) 3908816899946938 a001 591286729879/271443*7881196^(2/11) 3908816899946939 a001 4976784/90481*20633239^(4/5) 3908816899946941 a001 360684711356689/9227465 3908816899946943 a001 63245986/271443*20633239^(5/7) 3908816899946944 a001 2504730781961/271443*7881196^(1/11) 3908816899946944 a001 433494437/271443*20633239^(3/5) 3908816899946944 a001 233802911/90481*20633239^(4/7) 3908816899946946 a001 7778742049/271443*20633239^(3/7) 3908816899946946 a001 12586269025/271443*20633239^(2/5) 3908816899946946 a001 4976784/90481*17393796001^(4/7) 3908816899946946 a001 121393/33385282*45537549124^(16/17) 3908816899946946 a001 121393/33385282*14662949395604^(16/21) 3908816899946946 a001 121393/33385282*(1/2+1/2*5^(1/2))^48 3908816899946946 a001 121393/33385282*192900153618^(8/9) 3908816899946946 a001 121393/33385282*73681302247^(12/13) 3908816899946946 a001 4976784/90481*14662949395604^(4/9) 3908816899946946 a001 4976784/90481*(1/2+1/2*5^(1/2))^28 3908816899946946 a001 4976784/90481*73681302247^(7/13) 3908816899946946 a001 4976784/90481*10749957122^(7/12) 3908816899946946 a001 4976784/90481*4106118243^(14/23) 3908816899946946 a001 4976784/90481*1568397607^(7/11) 3908816899946946 a001 4976784/90481*599074578^(2/3) 3908816899946946 a001 4976784/90481*228826127^(7/10) 3908816899946947 a001 4976784/90481*87403803^(14/19) 3908816899946947 a001 5702887/271443*12752043^(15/17) 3908816899946947 a001 86267571272/271443*20633239^(2/7) 3908816899946948 a001 365435296162/271443*20633239^(1/5) 3908816899946948 a001 944284833554257/24157817 3908816899946948 a001 956722026041/271443*20633239^(1/7) 3908816899946949 a001 4976784/90481*33385282^(7/9) 3908816899946949 a001 39088169/271443*141422324^(2/3) 3908816899946949 a001 121393/87403803*312119004989^(10/11) 3908816899946949 a001 121393/87403803*3461452808002^(5/6) 3908816899946949 a001 39088169/271443*(1/2+1/2*5^(1/2))^26 3908816899946949 a001 39088169/271443*73681302247^(1/2) 3908816899946949 a001 39088169/271443*10749957122^(13/24) 3908816899946949 a001 39088169/271443*4106118243^(13/23) 3908816899946949 a001 39088169/271443*1568397607^(13/22) 3908816899946949 a001 39088169/271443*599074578^(13/21) 3908816899946949 a001 39088169/271443*228826127^(13/20) 3908816899946949 a001 5305085384777/135721 3908816899946949 a001 34111385/90481*141422324^(8/13) 3908816899946950 a001 39088169/271443*87403803^(13/19) 3908816899946950 a001 433494437/271443*141422324^(7/13) 3908816899946950 a001 1836311903/271443*141422324^(6/13) 3908816899946950 a001 7778742049/271443*141422324^(5/13) 3908816899946950 a001 34111385/90481*2537720636^(8/15) 3908816899946950 a001 34111385/90481*45537549124^(8/17) 3908816899946950 a001 121393/228826127*23725150497407^(13/16) 3908816899946950 a001 121393/228826127*505019158607^(13/14) 3908816899946950 a001 34111385/90481*14662949395604^(8/21) 3908816899946950 a001 34111385/90481*(1/2+1/2*5^(1/2))^24 3908816899946950 a001 34111385/90481*192900153618^(4/9) 3908816899946950 a001 34111385/90481*73681302247^(6/13) 3908816899946950 a001 34111385/90481*10749957122^(1/2) 3908816899946950 a001 34111385/90481*4106118243^(12/23) 3908816899946950 a001 34111385/90481*1568397607^(6/11) 3908816899946950 a001 34111385/90481*599074578^(4/7) 3908816899946950 a001 20365011074/271443*141422324^(1/3) 3908816899946950 a001 121393*141422324^(4/13) 3908816899946950 a001 139583862445/271443*141422324^(3/13) 3908816899946950 a001 591286729879/271443*141422324^(2/13) 3908816899946950 a001 34111385/90481*228826127^(3/5) 3908816899946950 a001 6472224534363989/165580141 3908816899946950 a001 2504730781961/271443*141422324^(1/13) 3908816899946950 a001 121393/599074578*14662949395604^(6/7) 3908816899946950 a001 267914296/271443*312119004989^(2/5) 3908816899946950 a001 267914296/271443*(1/2+1/2*5^(1/2))^22 3908816899946950 a001 267914296/271443*10749957122^(11/24) 3908816899946950 a001 267914296/271443*4106118243^(11/23) 3908816899946950 a001 267914296/271443*1568397607^(1/2) 3908816899946950 a001 267914296/271443*599074578^(11/21) 3908816899946950 a001 16944503813785885/433494437 3908816899946950 a001 233802911/90481*2537720636^(4/9) 3908816899946950 a001 121393/1568397607*14662949395604^(8/9) 3908816899946950 a001 233802911/90481*(1/2+1/2*5^(1/2))^20 3908816899946950 a001 233802911/90481*23725150497407^(5/16) 3908816899946950 a001 233802911/90481*505019158607^(5/14) 3908816899946950 a001 233802911/90481*73681302247^(5/13) 3908816899946950 a001 233802911/90481*28143753123^(2/5) 3908816899946950 a001 233802911/90481*10749957122^(5/12) 3908816899946950 a001 233802911/90481*4106118243^(10/23) 3908816899946950 a001 233802911/90481*1568397607^(5/11) 3908816899946950 a001 22180643453496833/567451585 3908816899946950 a001 1836311903/271443*2537720636^(2/5) 3908816899946950 a001 1836311903/271443*45537549124^(6/17) 3908816899946950 a001 1836311903/271443*14662949395604^(2/7) 3908816899946950 a001 1836311903/271443*(1/2+1/2*5^(1/2))^18 3908816899946950 a001 1836311903/271443*192900153618^(1/3) 3908816899946950 a001 1836311903/271443*10749957122^(3/8) 3908816899946950 a001 7778742049/271443*2537720636^(1/3) 3908816899946950 a001 121393*2537720636^(4/15) 3908816899946950 a001 1836311903/271443*4106118243^(9/23) 3908816899946950 a001 86267571272/271443*2537720636^(2/9) 3908816899946950 a001 139583862445/271443*2537720636^(1/5) 3908816899946950 a001 116139356907195113/2971215073 3908816899946950 a001 591286729879/271443*2537720636^(2/15) 3908816899946950 a001 956722026041/271443*2537720636^(1/9) 3908816899946950 a001 2504730781961/271443*2537720636^(1/15) 3908816899946950 a001 121393/10749957122*14662949395604^(20/21) 3908816899946950 a001 1602508992/90481*(1/2+1/2*5^(1/2))^16 3908816899946950 a001 1602508992/90481*23725150497407^(1/4) 3908816899946950 a001 1602508992/90481*73681302247^(4/13) 3908816899946950 a001 1602508992/90481*10749957122^(1/3) 3908816899946950 a001 304056783814591673/7778742049 3908816899946950 a001 12586269025/271443*17393796001^(2/7) 3908816899946950 a001 12586269025/271443*14662949395604^(2/9) 3908816899946950 a001 12586269025/271443*(1/2+1/2*5^(1/2))^14 3908816899946950 a001 398015497268289953/10182505537 3908816899946950 a001 365435296162/271443*17393796001^(1/7) 3908816899946950 a001 121393*45537549124^(4/17) 3908816899946950 a001 121393*817138163596^(4/19) 3908816899946950 a001 121393*14662949395604^(4/21) 3908816899946950 a001 121393*192900153618^(2/9) 3908816899946950 a001 121393*73681302247^(3/13) 3908816899946950 a001 139583862445/271443*45537549124^(3/17) 3908816899946950 a001 591286729879/271443*45537549124^(2/17) 3908816899946950 a001 86267571272/271443*312119004989^(2/11) 3908816899946950 a001 86267571272/271443*(1/2+1/2*5^(1/2))^10 3908816899946950 a001 75283811239/90481*(1/2+1/2*5^(1/2))^8 3908816899946950 a001 75283811239/90481*23725150497407^(1/8) 3908816899946950 a001 75283811239/90481*505019158607^(1/7) 3908816899946950 a001 516002918640/90481*(1/2+1/2*5^(1/2))^4 3908816899946950 a001 2504730781961/271443*14662949395604^(1/21) 3908816899946950 a001 2504730781961/271443*(1/2+1/2*5^(1/2))^3 3908816899946950 a001 2504730781961/271443*192900153618^(1/18) 3908816899946950 a001 139583862445/271443*817138163596^(3/19) 3908816899946950 a001 139583862445/271443*14662949395604^(1/7) 3908816899946950 a001 139583862445/271443*(1/2+1/2*5^(1/2))^9 3908816899946950 a001 139583862445/271443*192900153618^(1/6) 3908816899946950 a001 75283811239/90481*73681302247^(2/13) 3908816899946950 a001 53316291173/271443*312119004989^(1/5) 3908816899946950 a001 53316291173/271443*(1/2+1/2*5^(1/2))^11 3908816899946950 a001 956722026041/271443*28143753123^(1/10) 3908816899946950 a001 86267571272/271443*28143753123^(1/5) 3908816899946950 a001 4052739537881/271443*10749957122^(1/24) 3908816899946950 a001 20365011074/271443*(1/2+1/2*5^(1/2))^13 3908816899946950 a001 20365011074/271443*73681302247^(1/4) 3908816899946950 a001 2504730781961/271443*10749957122^(1/16) 3908816899946950 a001 516002918640/90481*10749957122^(1/12) 3908816899946950 a001 491974210721988233/12586269025 3908816899946950 a001 591286729879/271443*10749957122^(1/8) 3908816899946950 a001 12586269025/271443*10749957122^(7/24) 3908816899946950 a001 75283811239/90481*10749957122^(1/6) 3908816899946950 a001 139583862445/271443*10749957122^(3/16) 3908816899946950 a001 86267571272/271443*10749957122^(5/24) 3908816899946950 a001 121393*10749957122^(1/4) 3908816899946950 a001 4052739537881/271443*4106118243^(1/23) 3908816899946950 a001 7778742049/271443*45537549124^(5/17) 3908816899946950 a001 7778742049/271443*312119004989^(3/11) 3908816899946950 a001 7778742049/271443*14662949395604^(5/21) 3908816899946950 a001 7778742049/271443*(1/2+1/2*5^(1/2))^15 3908816899946950 a001 7778742049/271443*192900153618^(5/18) 3908816899946950 a001 7778742049/271443*28143753123^(3/10) 3908816899946950 a001 516002918640/90481*4106118243^(2/23) 3908816899946950 a001 7778742049/271443*10749957122^(5/16) 3908816899946950 a001 591286729879/271443*4106118243^(3/23) 3908816899946950 a001 1304982131301365/33385604 3908816899946950 a001 75283811239/90481*4106118243^(4/23) 3908816899946950 a001 1602508992/90481*4106118243^(8/23) 3908816899946950 a001 86267571272/271443*4106118243^(5/23) 3908816899946950 a001 121393*4106118243^(6/23) 3908816899946950 a001 12586269025/271443*4106118243^(7/23) 3908816899946950 a001 4052739537881/271443*1568397607^(1/22) 3908816899946950 a001 2971215073/271443*45537549124^(1/3) 3908816899946950 a001 2971215073/271443*(1/2+1/2*5^(1/2))^17 3908816899946950 a001 516002918640/90481*1568397607^(1/11) 3908816899946950 a001 591286729879/271443*1568397607^(3/22) 3908816899946950 a001 71778070000201447/1836311903 3908816899946950 a001 75283811239/90481*1568397607^(2/11) 3908816899946950 a001 86267571272/271443*1568397607^(5/22) 3908816899946950 a001 53316291173/271443*1568397607^(1/4) 3908816899946950 a001 1836311903/271443*1568397607^(9/22) 3908816899946950 a001 121393*1568397607^(3/11) 3908816899946950 a001 12586269025/271443*1568397607^(7/22) 3908816899946950 a001 4052739537881/271443*599074578^(1/21) 3908816899946950 a001 1602508992/90481*1568397607^(4/11) 3908816899946950 a001 121393/2537720636*14662949395604^(19/21) 3908816899946950 a001 1134903170/271443*817138163596^(1/3) 3908816899946950 a001 1134903170/271443*(1/2+1/2*5^(1/2))^19 3908816899946950 a001 2504730781961/271443*599074578^(1/14) 3908816899946950 a001 516002918640/90481*599074578^(2/21) 3908816899946950 a001 591286729879/271443*599074578^(1/7) 3908816899946950 a001 9138927697735927/233802911 3908816899946950 a001 365435296162/271443*599074578^(1/6) 3908816899946950 a001 75283811239/90481*599074578^(4/21) 3908816899946950 a001 139583862445/271443*599074578^(3/14) 3908816899946950 a001 86267571272/271443*599074578^(5/21) 3908816899946950 a001 121393*599074578^(2/7) 3908816899946950 a001 233802911/90481*599074578^(10/21) 3908816899946950 a001 12586269025/271443*599074578^(1/3) 3908816899946950 a001 4052739537881/271443*228826127^(1/20) 3908816899946950 a001 433494437/271443*2537720636^(7/15) 3908816899946950 a001 7778742049/271443*599074578^(5/14) 3908816899946950 a001 1602508992/90481*599074578^(8/21) 3908816899946950 a001 433494437/271443*17393796001^(3/7) 3908816899946950 a001 433494437/271443*45537549124^(7/17) 3908816899946950 a001 121393/969323029*3461452808002^(11/12) 3908816899946950 a001 433494437/271443*14662949395604^(1/3) 3908816899946950 a001 433494437/271443*(1/2+1/2*5^(1/2))^21 3908816899946950 a001 433494437/271443*192900153618^(7/18) 3908816899946950 a001 433494437/271443*10749957122^(7/16) 3908816899946950 a001 1836311903/271443*599074578^(3/7) 3908816899946950 a001 516002918640/90481*228826127^(1/10) 3908816899946950 a001 956722026041/271443*228826127^(1/8) 3908816899946950 a001 433494437/271443*599074578^(1/2) 3908816899946950 a001 1309034909927737/33489287 3908816899946950 a001 591286729879/271443*228826127^(3/20) 3908816899946950 a001 75283811239/90481*228826127^(1/5) 3908816899946950 a001 86267571272/271443*228826127^(1/4) 3908816899946950 a001 121393*228826127^(3/10) 3908816899946950 a001 12586269025/271443*228826127^(7/20) 3908816899946950 a001 4052739537881/271443*87403803^(1/19) 3908816899946950 a001 7778742049/271443*228826127^(3/8) 3908816899946950 a001 165580141/271443*(1/2+1/2*5^(1/2))^23 3908816899946950 a001 165580141/271443*4106118243^(1/2) 3908816899946950 a001 1602508992/90481*228826127^(2/5) 3908816899946950 a001 267914296/271443*228826127^(11/20) 3908816899946950 a001 1836311903/271443*228826127^(9/20) 3908816899946950 a001 233802911/90481*228826127^(1/2) 3908816899946950 a001 516002918640/90481*87403803^(2/19) 3908816899946950 a001 1333351581685969/34111385 3908816899946950 a001 591286729879/271443*87403803^(3/19) 3908816899946950 a001 75283811239/90481*87403803^(4/19) 3908816899946950 a001 86267571272/271443*87403803^(5/19) 3908816899946950 a001 121393*87403803^(6/19) 3908816899946950 a001 12586269025/271443*87403803^(7/19) 3908816899946950 a001 4052739537881/271443*33385282^(1/18) 3908816899946950 a001 63245986/271443*2537720636^(5/9) 3908816899946950 a001 233/271444*817138163596^(17/19) 3908816899946950 a001 233/271444*14662949395604^(17/21) 3908816899946950 a001 233/271444*192900153618^(17/18) 3908816899946950 a001 63245986/271443*312119004989^(5/11) 3908816899946950 a001 63245986/271443*(1/2+1/2*5^(1/2))^25 3908816899946950 a001 63245986/271443*3461452808002^(5/12) 3908816899946950 a001 63245986/271443*28143753123^(1/2) 3908816899946950 a001 1602508992/90481*87403803^(8/19) 3908816899946950 a001 63245986/271443*228826127^(5/8) 3908816899946950 a001 1836311903/271443*87403803^(9/19) 3908816899946950 a001 34111385/90481*87403803^(12/19) 3908816899946950 a001 1134903170/271443*87403803^(1/2) 3908816899946950 a001 233802911/90481*87403803^(10/19) 3908816899946950 a001 267914296/271443*87403803^(11/19) 3908816899946950 a001 2504730781961/271443*33385282^(1/12) 3908816899946950 a001 516002918640/90481*33385282^(1/9) 3908816899946950 a001 1527884955751825/39088169 3908816899946950 a001 591286729879/271443*33385282^(1/6) 3908816899946950 a001 75283811239/90481*33385282^(2/9) 3908816899946951 a001 139583862445/271443*33385282^(1/4) 3908816899946951 a001 86267571272/271443*33385282^(5/18) 3908816899946951 a001 121393*33385282^(1/3) 3908816899946951 a001 24157817/271443*141422324^(9/13) 3908816899946951 a001 24157817/271443*2537720636^(3/5) 3908816899946951 a001 24157817/271443*45537549124^(9/17) 3908816899946951 a001 121393/54018521*14662949395604^(7/9) 3908816899946951 a001 121393/54018521*505019158607^(7/8) 3908816899946951 a001 24157817/271443*817138163596^(9/19) 3908816899946951 a001 24157817/271443*14662949395604^(3/7) 3908816899946951 a001 24157817/271443*(1/2+1/2*5^(1/2))^27 3908816899946951 a001 24157817/271443*192900153618^(1/2) 3908816899946951 a001 24157817/271443*10749957122^(9/16) 3908816899946951 a001 24157817/271443*599074578^(9/14) 3908816899946951 a001 12586269025/271443*33385282^(7/18) 3908816899946951 a001 4052739537881/271443*12752043^(1/17) 3908816899946951 a001 7778742049/271443*33385282^(5/12) 3908816899946951 a001 1602508992/90481*33385282^(4/9) 3908816899946951 a001 1836311903/271443*33385282^(1/2) 3908816899946952 a001 233802911/90481*33385282^(5/9) 3908816899946952 a001 39088169/271443*33385282^(13/18) 3908816899946952 a001 433494437/271443*33385282^(7/12) 3908816899946952 a001 267914296/271443*33385282^(11/18) 3908816899946952 a001 34111385/90481*33385282^(2/3) 3908816899946953 a001 516002918640/90481*12752043^(2/17) 3908816899946953 a001 4052778626372/103683 3908816899946954 a001 24157817/271443*33385282^(3/4) 3908816899946954 a001 591286729879/271443*12752043^(3/17) 3908816899946955 a001 75283811239/90481*12752043^(4/17) 3908816899946957 a001 86267571272/271443*12752043^(5/17) 3908816899946958 a001 121393*12752043^(6/17) 3908816899946959 a001 121393/20633239*(1/2+1/2*5^(1/2))^47 3908816899946959 a001 9227465/271443*(1/2+1/2*5^(1/2))^29 3908816899946959 a001 9227465/271443*1322157322203^(1/2) 3908816899946960 a001 12586269025/271443*12752043^(7/17) 3908816899946960 a001 4052739537881/271443*4870847^(1/16) 3908816899946961 a001 1602508992/90481*12752043^(8/17) 3908816899946962 a001 2971215073/271443*12752043^(1/2) 3908816899946962 a001 1836311903/271443*12752043^(9/17) 3908816899946964 a001 233802911/90481*12752043^(10/17) 3908816899946965 a001 267914296/271443*12752043^(11/17) 3908816899946966 a001 4976784/90481*12752043^(14/17) 3908816899946967 a001 34111385/90481*12752043^(12/17) 3908816899946968 a001 39088169/271443*12752043^(13/17) 3908816899946970 a001 516002918640/90481*4870847^(1/8) 3908816899946974 a001 222915410840879/5702887 3908816899946981 a001 591286729879/271443*4870847^(3/16) 3908816899946991 a001 75283811239/90481*4870847^(1/4) 3908816899947001 a001 86267571272/271443*4870847^(5/16) 3908816899947011 a001 121393*4870847^(3/8) 3908816899947013 a001 121393/7881196*45537549124^(15/17) 3908816899947013 a001 121393/7881196*312119004989^(9/11) 3908816899947013 a001 121393/7881196*14662949395604^(5/7) 3908816899947013 a001 121393/7881196*(1/2+1/2*5^(1/2))^45 3908816899947013 a001 121393/7881196*192900153618^(5/6) 3908816899947013 a001 3524578/271443*(1/2+1/2*5^(1/2))^31 3908816899947013 a001 3524578/271443*9062201101803^(1/2) 3908816899947013 a001 121393/7881196*28143753123^(9/10) 3908816899947013 a001 121393/7881196*10749957122^(15/16) 3908816899947022 a001 12586269025/271443*4870847^(7/16) 3908816899947025 a001 4052739537881/271443*1860498^(1/15) 3908816899947032 a001 1602508992/90481*4870847^(1/2) 3908816899947042 a001 1836311903/271443*4870847^(9/16) 3908816899947053 a001 233802911/90481*4870847^(5/8) 3908816899947063 a001 2504730781961/271443*1860498^(1/10) 3908816899947063 a001 267914296/271443*4870847^(11/16) 3908816899947073 a001 34111385/90481*4870847^(3/4) 3908816899947080 a001 5702887/271443*4870847^(15/16) 3908816899947083 a001 39088169/271443*4870847^(13/16) 3908816899947090 a001 4976784/90481*4870847^(7/8) 3908816899947100 a001 516002918640/90481*1860498^(2/15) 3908816899947114 a001 28382036775023/726103 3908816899947138 a001 956722026041/271443*1860498^(1/6) 3908816899947176 a001 591286729879/271443*1860498^(1/5) 3908816899947251 a001 75283811239/90481*1860498^(4/15) 3908816899947288 a001 139583862445/271443*1860498^(3/10) 3908816899947326 a001 86267571272/271443*1860498^(1/3) 3908816899947381 a001 1346269/271443*141422324^(11/13) 3908816899947381 a001 1346269/271443*2537720636^(11/15) 3908816899947381 a001 1346269/271443*45537549124^(11/17) 3908816899947381 a001 121393/3010349*(1/2+1/2*5^(1/2))^43 3908816899947381 a001 1346269/271443*312119004989^(3/5) 3908816899947381 a001 1346269/271443*817138163596^(11/19) 3908816899947381 a001 1346269/271443*14662949395604^(11/21) 3908816899947381 a001 1346269/271443*(1/2+1/2*5^(1/2))^33 3908816899947381 a001 1346269/271443*192900153618^(11/18) 3908816899947381 a001 1346269/271443*10749957122^(11/16) 3908816899947381 a001 1346269/271443*1568397607^(3/4) 3908816899947381 a001 1346269/271443*599074578^(11/14) 3908816899947384 a001 1346269/271443*33385282^(11/12) 3908816899947401 a001 365435296162/1149851*167761^(2/5) 3908816899947401 a001 121393*1860498^(2/5) 3908816899947477 a001 12586269025/271443*1860498^(7/15) 3908816899947503 a001 4052739537881/271443*710647^(1/14) 3908816899947514 a001 7778742049/271443*1860498^(1/2) 3908816899947552 a001 1602508992/90481*1860498^(8/15) 3908816899947627 a001 1836311903/271443*1860498^(3/5) 3908816899947703 a001 233802911/90481*1860498^(2/3) 3908816899947740 a001 433494437/271443*1860498^(7/10) 3908816899947778 a001 267914296/271443*1860498^(11/15) 3908816899947853 a001 34111385/90481*1860498^(4/5) 3908816899947891 a001 63245986/271443*1860498^(5/6) 3908816899947928 a001 39088169/271443*1860498^(13/15) 3908816899947967 a001 24157817/271443*1860498^(9/10) 3908816899948000 a001 4976784/90481*1860498^(14/15) 3908816899948055 a001 516002918640/90481*710647^(1/7) 3908816899948079 a001 4065365016791/104005 3908816899948608 a001 591286729879/271443*710647^(3/14) 3908816899948885 a001 365435296162/271443*710647^(1/4) 3908816899949161 a001 75283811239/90481*710647^(2/7) 3908816899949714 a001 86267571272/271443*710647^(5/14) 3908816899949906 a001 514229/271443*2537720636^(7/9) 3908816899949906 a001 514229/271443*17393796001^(5/7) 3908816899949906 a001 121393/1149851*(1/2+1/2*5^(1/2))^41 3908816899949906 a001 514229/271443*312119004989^(7/11) 3908816899949906 a001 514229/271443*14662949395604^(5/9) 3908816899949906 a001 514229/271443*(1/2+1/2*5^(1/2))^35 3908816899949906 a001 514229/271443*505019158607^(5/8) 3908816899949906 a001 514229/271443*28143753123^(7/10) 3908816899949906 a001 514229/271443*599074578^(5/6) 3908816899949906 a001 514229/271443*228826127^(7/8) 3908816899950267 a001 121393*710647^(3/7) 3908816899950820 a001 12586269025/271443*710647^(1/2) 3908816899951030 a001 4052739537881/271443*271443^(1/13) 3908816899951373 a001 1602508992/90481*710647^(4/7) 3908816899951925 a001 1836311903/271443*710647^(9/14) 3908816899952478 a001 233802911/90481*710647^(5/7) 3908816899952755 a001 433494437/271443*710647^(3/4) 3908816899953031 a001 267914296/271443*710647^(11/14) 3908816899953584 a001 34111385/90481*710647^(6/7) 3908816899954136 a001 39088169/271443*710647^(13/14) 3908816899954548 a001 165580141/103682*103682^(7/8) 3908816899954690 a001 4140883359305/105937 3908816899955111 a001 516002918640/90481*271443^(2/13) 3908816899959192 a001 591286729879/271443*271443^(3/13) 3908816899962100 a001 6557470319842/271443*103682^(1/24) 3908816899963273 a001 75283811239/90481*271443^(4/13) 3908816899964483 a001 2504730781961/710647*167761^(1/5) 3908816899964708 a001 139583862445/439204*167761^(2/5) 3908816899967213 a001 121393/439204*2537720636^(13/15) 3908816899967213 a001 121393/439204*45537549124^(13/17) 3908816899967213 a001 121393/439204*14662949395604^(13/21) 3908816899967213 a001 121393/439204*(1/2+1/2*5^(1/2))^39 3908816899967213 a001 121393/439204*192900153618^(13/18) 3908816899967213 a001 121393/439204*73681302247^(3/4) 3908816899967213 a001 196418/271443*(1/2+1/2*5^(1/2))^37 3908816899967213 a001 121393/439204*10749957122^(13/16) 3908816899967213 a001 121393/439204*599074578^(13/14) 3908816899967354 a001 86267571272/271443*271443^(5/13) 3908816899969699 a001 102334155/103682*103682^(11/12) 3908816899971093 a001 3278735159921/930249*167761^(1/5) 3908816899971434 a001 121393*271443^(6/13) 3908816899971998 a001 7677619978587/196418 3908816899972654 a001 10610209857723/3010349*167761^(1/5) 3908816899973331 a001 956722026041/167761*64079^(4/23) 3908816899973475 a001 20365011074/271443*271443^(1/2) 3908816899974248 a001 267914296/710647*439204^(8/9) 3908816899975179 a001 4052739537881/1149851*167761^(1/5) 3908816899975515 a001 12586269025/271443*271443^(7/13) 3908816899976238 a001 956722026041/103682*39603^(3/22) 3908816899976500 a001 1134903170/710647*439204^(7/9) 3908816899977251 a001 4052739537881/271443*103682^(1/12) 3908816899978617 a001 3838809989300/98209 3908816899978751 a001 686789568/101521*439204^(2/3) 3908816899978874 a001 10610209857723/439204*64079^(1/23) 3908816899979596 a001 1602508992/90481*271443^(8/13) 3908816899979635 a001 3838809989301/98209 3908816899980144 a001 7677619978603/196418 3908816899980859 a001 233802911/620166*439204^(8/9) 3908816899981003 a001 20365011074/710647*439204^(5/9) 3908816899981823 a001 1836311903/4870847*439204^(8/9) 3908816899981964 a001 1602508992/4250681*439204^(8/9) 3908816899981985 a001 12586269025/33385282*439204^(8/9) 3908816899981988 a001 10983760033/29134601*439204^(8/9) 3908816899981988 a001 86267571272/228826127*439204^(8/9) 3908816899981988 a001 267913919/710646*439204^(8/9) 3908816899981988 a001 591286729879/1568397607*439204^(8/9) 3908816899981988 a001 516002918640/1368706081*439204^(8/9) 3908816899981988 a001 4052739537881/10749957122*439204^(8/9) 3908816899981988 a001 3536736619241/9381251041*439204^(8/9) 3908816899981988 a001 6557470319842/17393796001*439204^(8/9) 3908816899981988 a001 2504730781961/6643838879*439204^(8/9) 3908816899981988 a001 956722026041/2537720636*439204^(8/9) 3908816899981988 a001 365435296162/969323029*439204^(8/9) 3908816899981988 a001 139583862445/370248451*439204^(8/9) 3908816899981988 a001 53316291173/141422324*439204^(8/9) 3908816899981989 a001 20365011074/54018521*439204^(8/9) 3908816899981997 a001 7778742049/20633239*439204^(8/9) 3908816899982051 a001 2971215073/7881196*439204^(8/9) 3908816899982419 a001 1134903170/3010349*439204^(8/9) 3908816899982689 a001 225812352312/5777 3908816899983110 a001 2971215073/1860498*439204^(7/9) 3908816899983254 a001 86267571272/710647*439204^(4/9) 3908816899983677 a001 1836311903/271443*271443^(9/13) 3908816899984075 a001 7778742049/4870847*439204^(7/9) 3908816899984216 a001 20365011074/12752043*439204^(7/9) 3908816899984236 a001 53316291173/33385282*439204^(7/9) 3908816899984239 a001 139583862445/87403803*439204^(7/9) 3908816899984239 a001 365435296162/228826127*439204^(7/9) 3908816899984240 a001 956722026041/599074578*439204^(7/9) 3908816899984240 a001 2504730781961/1568397607*439204^(7/9) 3908816899984240 a001 6557470319842/4106118243*439204^(7/9) 3908816899984240 a001 10610209857723/6643838879*439204^(7/9) 3908816899984240 a001 4052739537881/2537720636*439204^(7/9) 3908816899984240 a001 1548008755920/969323029*439204^(7/9) 3908816899984240 a001 591286729879/370248451*439204^(7/9) 3908816899984240 a001 225851433717/141422324*439204^(7/9) 3908816899984241 a001 86267571272/54018521*439204^(7/9) 3908816899984249 a001 32951280099/20633239*439204^(7/9) 3908816899984303 a001 12586269025/7881196*439204^(7/9) 3908816899984520 a001 317811/710647*817138163596^(2/3) 3908816899984520 a001 317811/710647*(1/2+1/2*5^(1/2))^38 3908816899984520 a001 317811/710647*10749957122^(19/24) 3908816899984520 a001 317811/710647*4106118243^(19/23) 3908816899984520 a001 317811/710647*1568397607^(19/22) 3908816899984520 a001 317811/710647*599074578^(19/21) 3908816899984520 a001 317811/710647*228826127^(19/20) 3908816899984671 a001 4807526976/3010349*439204^(7/9) 3908816899984850 a001 31622993/51841*103682^(23/24) 3908816899984944 a001 433494437/1149851*439204^(8/9) 3908816899985362 a001 12586269025/1860498*439204^(2/3) 3908816899985506 a001 365435296162/710647*439204^(1/3) 3908816899986326 a001 32951280099/4870847*439204^(2/3) 3908816899986467 a001 86267571272/12752043*439204^(2/3) 3908816899986488 a001 32264490531/4769326*439204^(2/3) 3908816899986491 a001 591286729879/87403803*439204^(2/3) 3908816899986491 a001 1548008755920/228826127*439204^(2/3) 3908816899986491 a001 4052739537881/599074578*439204^(2/3) 3908816899986491 a001 1515744265389/224056801*439204^(2/3) 3908816899986491 a001 6557470319842/969323029*439204^(2/3) 3908816899986491 a001 2504730781961/370248451*439204^(2/3) 3908816899986491 a001 956722026041/141422324*439204^(2/3) 3908816899986492 a001 365435296162/54018521*439204^(2/3) 3908816899986500 a001 139583862445/20633239*439204^(2/3) 3908816899986554 a001 53316291173/7881196*439204^(2/3) 3908816899986922 a001 20365011074/3010349*439204^(2/3) 3908816899987196 a001 1836311903/1149851*439204^(7/9) 3908816899987613 a001 53316291173/1860498*439204^(5/9) 3908816899987757 a001 1548008755920/710647*439204^(2/9) 3908816899987758 a001 233802911/90481*271443^(10/13) 3908816899988578 a001 139583862445/4870847*439204^(5/9) 3908816899988719 a001 365435296162/12752043*439204^(5/9) 3908816899988739 a001 956722026041/33385282*439204^(5/9) 3908816899988742 a001 2504730781961/87403803*439204^(5/9) 3908816899988742 a001 6557470319842/228826127*439204^(5/9) 3908816899988743 a001 10610209857723/370248451*439204^(5/9) 3908816899988743 a001 4052739537881/141422324*439204^(5/9) 3908816899988744 a001 1548008755920/54018521*439204^(5/9) 3908816899988752 a001 591286729879/20633239*439204^(5/9) 3908816899988805 a001 225851433717/7881196*439204^(5/9) 3908816899989174 a001 86267571272/3010349*439204^(5/9) 3908816899989304 a001 20100270056646/514229 3908816899989447 a001 7778742049/1149851*439204^(2/3) 3908816899989865 a001 75283811239/620166*439204^(4/9) 3908816899990009 a001 6557470319842/710647*439204^(1/9) 3908816899990829 a001 591286729879/4870847*439204^(4/9) 3908816899990970 a001 516002918640/4250681*439204^(4/9) 3908816899990991 a001 4052739537881/33385282*439204^(4/9) 3908816899990994 a001 3536736619241/29134601*439204^(4/9) 3908816899990995 a001 6557470319842/54018521*439204^(4/9) 3908816899991003 a001 2504730781961/20633239*439204^(4/9) 3908816899991057 a001 956722026041/7881196*439204^(4/9) 3908816899991131 a001 832040/710647*141422324^(12/13) 3908816899991131 a001 105937/620166*2537720636^(8/9) 3908816899991131 a001 832040/710647*2537720636^(4/5) 3908816899991131 a001 832040/710647*45537549124^(12/17) 3908816899991131 a001 105937/620166*312119004989^(8/11) 3908816899991131 a001 105937/620166*(1/2+1/2*5^(1/2))^40 3908816899991131 a001 105937/620166*23725150497407^(5/8) 3908816899991131 a001 832040/710647*14662949395604^(4/7) 3908816899991131 a001 832040/710647*(1/2+1/2*5^(1/2))^36 3908816899991131 a001 832040/710647*505019158607^(9/14) 3908816899991131 a001 832040/710647*192900153618^(2/3) 3908816899991131 a001 832040/710647*73681302247^(9/13) 3908816899991131 a001 105937/620166*73681302247^(10/13) 3908816899991131 a001 105937/620166*28143753123^(4/5) 3908816899991131 a001 832040/710647*10749957122^(3/4) 3908816899991131 a001 105937/620166*10749957122^(5/6) 3908816899991131 a001 832040/710647*4106118243^(18/23) 3908816899991131 a001 105937/620166*4106118243^(20/23) 3908816899991131 a001 832040/710647*1568397607^(9/11) 3908816899991131 a001 105937/620166*1568397607^(10/11) 3908816899991131 a001 832040/710647*599074578^(6/7) 3908816899991131 a001 105937/620166*599074578^(20/21) 3908816899991131 a001 832040/710647*228826127^(9/10) 3908816899991131 a001 832040/710647*87403803^(18/19) 3908816899991425 a001 365435296162/3010349*439204^(4/9) 3908816899991699 a001 32951280099/1149851*439204^(5/9) 3908816899991829 a001 52623190191351/1346269 3908816899991838 a001 267914296/271443*271443^(11/13) 3908816899992095 a001 317811/4870847*2537720636^(14/15) 3908816899992095 a001 317811/4870847*17393796001^(6/7) 3908816899992095 a001 317811/4870847*45537549124^(14/17) 3908816899992095 a001 311187/101521*45537549124^(2/3) 3908816899992095 a001 317811/4870847*14662949395604^(2/3) 3908816899992095 a001 317811/4870847*(1/2+1/2*5^(1/2))^42 3908816899992095 a001 317811/4870847*505019158607^(3/4) 3908816899992095 a001 311187/101521*(1/2+1/2*5^(1/2))^34 3908816899992095 a001 317811/4870847*192900153618^(7/9) 3908816899992095 a001 311187/101521*10749957122^(17/24) 3908816899992095 a001 317811/4870847*10749957122^(7/8) 3908816899992095 a001 311187/101521*4106118243^(17/23) 3908816899992095 a001 317811/4870847*4106118243^(21/23) 3908816899992095 a001 311187/101521*1568397607^(17/22) 3908816899992095 a001 317811/4870847*1568397607^(21/22) 3908816899992095 a001 311187/101521*599074578^(17/21) 3908816899992095 a001 311187/101521*228826127^(17/20) 3908816899992096 a001 311187/101521*87403803^(17/19) 3908816899992099 a001 311187/101521*33385282^(17/18) 3908816899992116 a001 956722026041/1860498*439204^(1/3) 3908816899992197 a001 137769300517407/3524578 3908816899992199 a001 14930352/710647*7881196^(10/11) 3908816899992209 a001 63245986/710647*7881196^(9/11) 3908816899992214 a001 267914296/710647*7881196^(8/11) 3908816899992218 a001 701408733/710647*7881196^(2/3) 3908816899992220 a001 1134903170/710647*7881196^(7/11) 3908816899992226 a001 686789568/101521*7881196^(6/11) 3908816899992231 a001 20365011074/710647*7881196^(5/11) 3908816899992236 a001 105937/4250681*312119004989^(4/5) 3908816899992236 a001 105937/4250681*(1/2+1/2*5^(1/2))^44 3908816899992236 a001 105937/4250681*23725150497407^(11/16) 3908816899992236 a001 5702887/710647*(1/2+1/2*5^(1/2))^32 3908816899992236 a001 5702887/710647*505019158607^(4/7) 3908816899992236 a001 5702887/710647*73681302247^(8/13) 3908816899992236 a001 105937/4250681*73681302247^(11/13) 3908816899992236 a001 5702887/710647*10749957122^(2/3) 3908816899992236 a001 105937/4250681*10749957122^(11/12) 3908816899992236 a001 5702887/710647*4106118243^(16/23) 3908816899992236 a001 105937/4250681*4106118243^(22/23) 3908816899992236 a001 5702887/710647*1568397607^(8/11) 3908816899992236 a001 5702887/710647*599074578^(16/21) 3908816899992236 a001 5702887/710647*228826127^(4/5) 3908816899992236 a001 5702887/710647*87403803^(16/19) 3908816899992237 a001 86267571272/710647*7881196^(4/11) 3908816899992239 a001 139583862445/710647*7881196^(1/3) 3908816899992239 a001 5702887/710647*33385282^(8/9) 3908816899992243 a001 365435296162/710647*7881196^(3/11) 3908816899992249 a001 1548008755920/710647*7881196^(2/11) 3908816899992249 a001 14930352/710647*20633239^(6/7) 3908816899992251 a001 5548995559398/141961 3908816899992252 a001 39088169/710647*20633239^(4/5) 3908816899992254 a001 165580141/710647*20633239^(5/7) 3908816899992254 a001 6557470319842/710647*7881196^(1/11) 3908816899992255 a001 1134903170/710647*20633239^(3/5) 3908816899992255 a001 1836311903/710647*20633239^(4/7) 3908816899992256 a001 20365011074/710647*20633239^(3/7) 3908816899992256 a001 32951280099/710647*20633239^(2/5) 3908816899992256 a001 14930352/710647*141422324^(10/13) 3908816899992257 a001 14930352/710647*2537720636^(2/3) 3908816899992257 a001 14930352/710647*45537549124^(10/17) 3908816899992257 a001 14930352/710647*312119004989^(6/11) 3908816899992257 a001 317811/33385282*(1/2+1/2*5^(1/2))^46 3908816899992257 a001 14930352/710647*14662949395604^(10/21) 3908816899992257 a001 14930352/710647*(1/2+1/2*5^(1/2))^30 3908816899992257 a001 14930352/710647*192900153618^(5/9) 3908816899992257 a001 14930352/710647*28143753123^(3/5) 3908816899992257 a001 14930352/710647*10749957122^(5/8) 3908816899992257 a001 317811/33385282*10749957122^(23/24) 3908816899992257 a001 14930352/710647*4106118243^(15/23) 3908816899992257 a001 14930352/710647*1568397607^(15/22) 3908816899992257 a001 14930352/710647*599074578^(5/7) 3908816899992257 a001 14930352/710647*228826127^(3/4) 3908816899992257 a001 14930352/710647*87403803^(15/19) 3908816899992257 a001 317811*20633239^(2/7) 3908816899992258 a001 956722026041/710647*20633239^(1/5) 3908816899992259 a001 5702887/710647*12752043^(16/17) 3908816899992259 a001 944284833565203/24157817 3908816899992259 a001 2504730781961/710647*20633239^(1/7) 3908816899992259 a001 14930352/710647*33385282^(5/6) 3908816899992260 a001 39088169/710647*17393796001^(4/7) 3908816899992260 a001 105937/29134601*45537549124^(16/17) 3908816899992260 a001 105937/29134601*14662949395604^(16/21) 3908816899992260 a001 39088169/710647*14662949395604^(4/9) 3908816899992260 a001 39088169/710647*(1/2+1/2*5^(1/2))^28 3908816899992260 a001 105937/29134601*192900153618^(8/9) 3908816899992260 a001 39088169/710647*73681302247^(7/13) 3908816899992260 a001 105937/29134601*73681302247^(12/13) 3908816899992260 a001 39088169/710647*10749957122^(7/12) 3908816899992260 a001 39088169/710647*4106118243^(14/23) 3908816899992260 a001 39088169/710647*1568397607^(7/11) 3908816899992260 a001 39088169/710647*599074578^(2/3) 3908816899992260 a001 39088169/710647*228826127^(7/10) 3908816899992260 a001 14619165/101521*141422324^(2/3) 3908816899992260 a001 2472169789334739/63245986 3908816899992260 a001 39088169/710647*87403803^(14/19) 3908816899992260 a001 267914296/710647*141422324^(8/13) 3908816899992260 a001 1134903170/710647*141422324^(7/13) 3908816899992260 a001 686789568/101521*141422324^(6/13) 3908816899992260 a001 20365011074/710647*141422324^(5/13) 3908816899992260 a001 317811/228826127*312119004989^(10/11) 3908816899992260 a001 317811/228826127*3461452808002^(5/6) 3908816899992260 a001 14619165/101521*(1/2+1/2*5^(1/2))^26 3908816899992260 a001 14619165/101521*73681302247^(1/2) 3908816899992260 a001 14619165/101521*10749957122^(13/24) 3908816899992260 a001 14619165/101521*4106118243^(13/23) 3908816899992260 a001 14619165/101521*1568397607^(13/22) 3908816899992260 a001 14619165/101521*599074578^(13/21) 3908816899992260 a001 53316291173/710647*141422324^(1/3) 3908816899992260 a001 86267571272/710647*141422324^(4/13) 3908816899992260 a001 365435296162/710647*141422324^(3/13) 3908816899992260 a001 1548008755920/710647*141422324^(2/13) 3908816899992260 a001 6472224534439014/165580141 3908816899992260 a001 14619165/101521*228826127^(13/20) 3908816899992260 a001 6557470319842/710647*141422324^(1/13) 3908816899992260 a001 267914296/710647*2537720636^(8/15) 3908816899992260 a001 267914296/710647*45537549124^(8/17) 3908816899992260 a001 377/710646*505019158607^(13/14) 3908816899992260 a001 267914296/710647*14662949395604^(8/21) 3908816899992260 a001 267914296/710647*(1/2+1/2*5^(1/2))^24 3908816899992260 a001 267914296/710647*192900153618^(4/9) 3908816899992260 a001 267914296/710647*73681302247^(6/13) 3908816899992260 a001 267914296/710647*10749957122^(1/2) 3908816899992260 a001 267914296/710647*4106118243^(12/23) 3908816899992260 a001 267914296/710647*1568397607^(6/11) 3908816899992260 a001 267914296/710647*599074578^(4/7) 3908816899992260 a001 16944503813982303/433494437 3908816899992260 a001 701408733/710647*312119004989^(2/5) 3908816899992260 a001 317811/1568397607*14662949395604^(6/7) 3908816899992260 a001 701408733/710647*(1/2+1/2*5^(1/2))^22 3908816899992260 a001 701408733/710647*10749957122^(11/24) 3908816899992260 a001 701408733/710647*4106118243^(11/23) 3908816899992260 a001 701408733/710647*1568397607^(1/2) 3908816899992260 a001 8872257381501579/226980634 3908816899992260 a001 1836311903/710647*2537720636^(4/9) 3908816899992260 a001 686789568/101521*2537720636^(2/5) 3908816899992260 a001 105937/1368706081*14662949395604^(8/9) 3908816899992260 a001 1836311903/710647*(1/2+1/2*5^(1/2))^20 3908816899992260 a001 1836311903/710647*23725150497407^(5/16) 3908816899992260 a001 1836311903/710647*505019158607^(5/14) 3908816899992260 a001 1836311903/710647*73681302247^(5/13) 3908816899992260 a001 1836311903/710647*28143753123^(2/5) 3908816899992260 a001 1836311903/710647*10749957122^(5/12) 3908816899992260 a001 20365011074/710647*2537720636^(1/3) 3908816899992260 a001 86267571272/710647*2537720636^(4/15) 3908816899992260 a001 317811*2537720636^(2/9) 3908816899992260 a001 1836311903/710647*4106118243^(10/23) 3908816899992260 a001 365435296162/710647*2537720636^(1/5) 3908816899992260 a001 116139356908541382/2971215073 3908816899992260 a001 1548008755920/710647*2537720636^(2/15) 3908816899992260 a001 2504730781961/710647*2537720636^(1/9) 3908816899992260 a001 6557470319842/710647*2537720636^(1/15) 3908816899992260 a001 686789568/101521*45537549124^(6/17) 3908816899992260 a001 686789568/101521*14662949395604^(2/7) 3908816899992260 a001 686789568/101521*(1/2+1/2*5^(1/2))^18 3908816899992260 a001 686789568/101521*192900153618^(1/3) 3908816899992260 a001 686789568/101521*10749957122^(3/8) 3908816899992260 a001 23388983370624327/598364773 3908816899992260 a001 105937/9381251041*14662949395604^(20/21) 3908816899992260 a001 12586269025/710647*(1/2+1/2*5^(1/2))^16 3908816899992260 a001 12586269025/710647*23725150497407^(1/4) 3908816899992260 a001 12586269025/710647*73681302247^(4/13) 3908816899992260 a001 32951280099/710647*17393796001^(2/7) 3908816899992260 a001 796030994545807371/20365011074 3908816899992260 a001 956722026041/710647*17393796001^(1/7) 3908816899992260 a001 32951280099/710647*14662949395604^(2/9) 3908816899992260 a001 32951280099/710647*(1/2+1/2*5^(1/2))^14 3908816899992260 a001 86267571272/710647*45537549124^(4/17) 3908816899992260 a001 365435296162/710647*45537549124^(3/17) 3908816899992260 a001 2084036199819305862/53316291173 3908816899992260 a001 1548008755920/710647*45537549124^(2/17) 3908816899992260 a001 86267571272/710647*817138163596^(4/19) 3908816899992260 a001 86267571272/710647*(1/2+1/2*5^(1/2))^12 3908816899992260 a001 86267571272/710647*192900153618^(2/9) 3908816899992260 a001 317811*312119004989^(2/11) 3908816899992260 a001 2504730781961/710647*312119004989^(1/11) 3908816899992260 a001 1548008755920/710647*14662949395604^(2/21) 3908816899992260 a001 1548008755920/710647*(1/2+1/2*5^(1/2))^6 3908816899992260 a001 4052739537881/710647*(1/2+1/2*5^(1/2))^4 3908816899992260 a001 1515744265389/101521*(1/2+1/2*5^(1/2))^2 3908816899992260 a001 6557470319842/710647*(1/2+1/2*5^(1/2))^3 3908816899992260 a001 2504730781961/710647*(1/2+1/2*5^(1/2))^5 3908816899992260 a001 956722026041/710647*14662949395604^(1/9) 3908816899992260 a001 365435296162/710647*14662949395604^(1/7) 3908816899992260 a001 365435296162/710647*192900153618^(1/6) 3908816899992260 a001 139583862445/710647*312119004989^(1/5) 3908816899992260 a001 139583862445/710647*(1/2+1/2*5^(1/2))^11 3908816899992260 a001 4052739537881/710647*73681302247^(1/13) 3908816899992260 a001 3372041405092804353/86267571272 3908816899992260 a001 591286729879/710647*73681302247^(2/13) 3908816899992260 a001 53316291173/710647*(1/2+1/2*5^(1/2))^13 3908816899992260 a001 53316291173/710647*73681302247^(1/4) 3908816899992260 a001 2504730781961/710647*28143753123^(1/10) 3908816899992260 a001 429335068424499497/10983760033 3908816899992260 a001 317811*28143753123^(1/5) 3908816899992260 a001 20365011074/710647*45537549124^(5/17) 3908816899992260 a001 1515744265389/101521*10749957122^(1/24) 3908816899992260 a001 20365011074/710647*312119004989^(3/11) 3908816899992260 a001 20365011074/710647*14662949395604^(5/21) 3908816899992260 a001 20365011074/710647*(1/2+1/2*5^(1/2))^15 3908816899992260 a001 20365011074/710647*192900153618^(5/18) 3908816899992260 a001 6557470319842/710647*10749957122^(1/16) 3908816899992260 a001 4052739537881/710647*10749957122^(1/12) 3908816899992260 a001 20365011074/710647*28143753123^(3/10) 3908816899992260 a001 1548008755920/710647*10749957122^(1/8) 3908816899992260 a001 8944985649594384/228841255 3908816899992260 a001 591286729879/710647*10749957122^(1/6) 3908816899992260 a001 12586269025/710647*10749957122^(1/3) 3908816899992260 a001 365435296162/710647*10749957122^(3/16) 3908816899992260 a001 317811*10749957122^(5/24) 3908816899992260 a001 86267571272/710647*10749957122^(1/4) 3908816899992260 a001 32951280099/710647*10749957122^(7/24) 3908816899992260 a001 1515744265389/101521*4106118243^(1/23) 3908816899992260 a001 7778742049/710647*45537549124^(1/3) 3908816899992260 a001 20365011074/710647*10749957122^(5/16) 3908816899992260 a001 7778742049/710647*(1/2+1/2*5^(1/2))^17 3908816899992260 a001 4052739537881/710647*4106118243^(2/23) 3908816899992260 a001 1548008755920/710647*4106118243^(3/23) 3908816899992260 a001 62639142303191623/1602508992 3908816899992260 a001 591286729879/710647*4106118243^(4/23) 3908816899992260 a001 317811*4106118243^(5/23) 3908816899992260 a001 686789568/101521*4106118243^(9/23) 3908816899992260 a001 86267571272/710647*4106118243^(6/23) 3908816899992260 a001 32951280099/710647*4106118243^(7/23) 3908816899992260 a001 1515744265389/101521*1568397607^(1/22) 3908816899992260 a001 12586269025/710647*4106118243^(8/23) 3908816899992260 a001 317811/6643838879*14662949395604^(19/21) 3908816899992260 a001 2971215073/710647*817138163596^(1/3) 3908816899992260 a001 2971215073/710647*(1/2+1/2*5^(1/2))^19 3908816899992260 a001 4052739537881/710647*1568397607^(1/11) 3908816899992260 a001 1548008755920/710647*1568397607^(3/22) 3908816899992260 a001 71778070001033487/1836311903 3908816899992260 a001 591286729879/710647*1568397607^(2/11) 3908816899992260 a001 1134903170/710647*2537720636^(7/15) 3908816899992260 a001 317811*1568397607^(5/22) 3908816899992260 a001 139583862445/710647*1568397607^(1/4) 3908816899992260 a001 86267571272/710647*1568397607^(3/11) 3908816899992260 a001 1836311903/710647*1568397607^(5/11) 3908816899992260 a001 32951280099/710647*1568397607^(7/22) 3908816899992260 a001 1515744265389/101521*599074578^(1/21) 3908816899992260 a001 12586269025/710647*1568397607^(4/11) 3908816899992260 a001 1134903170/710647*17393796001^(3/7) 3908816899992260 a001 1134903170/710647*45537549124^(7/17) 3908816899992260 a001 317811/2537720636*3461452808002^(11/12) 3908816899992260 a001 1134903170/710647*14662949395604^(1/3) 3908816899992260 a001 1134903170/710647*(1/2+1/2*5^(1/2))^21 3908816899992260 a001 1134903170/710647*192900153618^(7/18) 3908816899992260 a001 686789568/101521*1568397607^(9/22) 3908816899992260 a001 1134903170/710647*10749957122^(7/16) 3908816899992260 a001 6557470319842/710647*599074578^(1/14) 3908816899992260 a001 4052739537881/710647*599074578^(2/21) 3908816899992260 a001 1548008755920/710647*599074578^(1/7) 3908816899992260 a001 9138927697841864/233802911 3908816899992260 a001 956722026041/710647*599074578^(1/6) 3908816899992260 a001 591286729879/710647*599074578^(4/21) 3908816899992260 a001 365435296162/710647*599074578^(3/14) 3908816899992260 a001 317811*599074578^(5/21) 3908816899992260 a001 86267571272/710647*599074578^(2/7) 3908816899992260 a001 32951280099/710647*599074578^(1/3) 3908816899992260 a001 1515744265389/101521*228826127^(1/20) 3908816899992260 a001 20365011074/710647*599074578^(5/14) 3908816899992260 a001 701408733/710647*599074578^(11/21) 3908816899992260 a001 12586269025/710647*599074578^(8/21) 3908816899992260 a001 433494437/710647*(1/2+1/2*5^(1/2))^23 3908816899992260 a001 433494437/710647*4106118243^(1/2) 3908816899992260 a001 686789568/101521*599074578^(3/7) 3908816899992260 a001 1836311903/710647*599074578^(10/21) 3908816899992260 a001 1134903170/710647*599074578^(1/2) 3908816899992260 a001 4052739537881/710647*228826127^(1/10) 3908816899992260 a001 2504730781961/710647*228826127^(1/8) 3908816899992260 a001 27777929123457/710648 3908816899992260 a001 1548008755920/710647*228826127^(3/20) 3908816899992260 a001 591286729879/710647*228826127^(1/5) 3908816899992260 a001 317811*228826127^(1/4) 3908816899992260 a001 86267571272/710647*228826127^(3/10) 3908816899992260 a001 32951280099/710647*228826127^(7/20) 3908816899992260 a001 1515744265389/101521*87403803^(1/19) 3908816899992260 a001 20365011074/710647*228826127^(3/8) 3908816899992260 a001 165580141/710647*2537720636^(5/9) 3908816899992260 a001 165580141/710647*312119004989^(5/11) 3908816899992260 a001 317811/370248451*14662949395604^(17/21) 3908816899992260 a001 165580141/710647*(1/2+1/2*5^(1/2))^25 3908816899992260 a001 165580141/710647*3461452808002^(5/12) 3908816899992260 a001 317811/370248451*192900153618^(17/18) 3908816899992260 a001 165580141/710647*28143753123^(1/2) 3908816899992260 a001 12586269025/710647*228826127^(2/5) 3908816899992260 a001 686789568/101521*228826127^(9/20) 3908816899992260 a001 267914296/710647*228826127^(3/5) 3908816899992260 a001 1836311903/710647*228826127^(1/2) 3908816899992260 a001 701408733/710647*228826127^(11/20) 3908816899992260 a001 4052739537881/710647*87403803^(2/19) 3908816899992260 a001 63245986/710647*141422324^(9/13) 3908816899992260 a001 24242756030935/620207 3908816899992260 a001 165580141/710647*228826127^(5/8) 3908816899992260 a001 1548008755920/710647*87403803^(3/19) 3908816899992260 a001 591286729879/710647*87403803^(4/19) 3908816899992260 a001 317811*87403803^(5/19) 3908816899992260 a001 86267571272/710647*87403803^(6/19) 3908816899992260 a001 32951280099/710647*87403803^(7/19) 3908816899992260 a001 1515744265389/101521*33385282^(1/18) 3908816899992260 a001 63245986/710647*2537720636^(3/5) 3908816899992260 a001 63245986/710647*45537549124^(9/17) 3908816899992260 a001 317811/141422324*14662949395604^(7/9) 3908816899992260 a001 63245986/710647*817138163596^(9/19) 3908816899992260 a001 317811/141422324*505019158607^(7/8) 3908816899992260 a001 63245986/710647*14662949395604^(3/7) 3908816899992260 a001 63245986/710647*(1/2+1/2*5^(1/2))^27 3908816899992260 a001 63245986/710647*192900153618^(1/2) 3908816899992260 a001 63245986/710647*10749957122^(9/16) 3908816899992260 a001 63245986/710647*599074578^(9/14) 3908816899992260 a001 12586269025/710647*87403803^(8/19) 3908816899992260 a001 686789568/101521*87403803^(9/19) 3908816899992260 a001 2971215073/710647*87403803^(1/2) 3908816899992260 a001 1836311903/710647*87403803^(10/19) 3908816899992260 a001 14619165/101521*87403803^(13/19) 3908816899992260 a001 6557470319842/710647*33385282^(1/12) 3908816899992260 a001 701408733/710647*87403803^(11/19) 3908816899992260 a001 267914296/710647*87403803^(12/19) 3908816899992260 a001 4052739537881/710647*33385282^(1/9) 3908816899992261 a001 1527884955769536/39088169 3908816899992261 a001 1548008755920/710647*33385282^(1/6) 3908816899992261 a001 591286729879/710647*33385282^(2/9) 3908816899992261 a001 365435296162/710647*33385282^(1/4) 3908816899992261 a001 317811*33385282^(5/18) 3908816899992261 a001 86267571272/710647*33385282^(1/3) 3908816899992261 a001 24157817/710647*(1/2+1/2*5^(1/2))^29 3908816899992261 a001 24157817/710647*1322157322203^(1/2) 3908816899992261 a001 32951280099/710647*33385282^(7/18) 3908816899992261 a001 1515744265389/101521*12752043^(1/17) 3908816899992262 a001 20365011074/710647*33385282^(5/12) 3908816899992262 a001 12586269025/710647*33385282^(4/9) 3908816899992262 a001 686789568/101521*33385282^(1/2) 3908816899992262 a001 1836311903/710647*33385282^(5/9) 3908816899992262 a001 1134903170/710647*33385282^(7/12) 3908816899992262 a001 701408733/710647*33385282^(11/18) 3908816899992262 a001 39088169/710647*33385282^(7/9) 3908816899992262 a001 267914296/710647*33385282^(2/3) 3908816899992263 a001 14619165/101521*33385282^(13/18) 3908816899992263 a001 63245986/710647*33385282^(3/4) 3908816899992263 a001 4052739537881/710647*12752043^(2/17) 3908816899992264 a001 194533374068111/4976784 3908816899992264 a001 1548008755920/710647*12752043^(3/17) 3908816899992266 a001 591286729879/710647*12752043^(4/17) 3908816899992267 a001 317811*12752043^(5/17) 3908816899992269 a001 86267571272/710647*12752043^(6/17) 3908816899992269 a001 10959/711491*45537549124^(15/17) 3908816899992269 a001 10959/711491*312119004989^(9/11) 3908816899992269 a001 10959/711491*14662949395604^(5/7) 3908816899992269 a001 10959/711491*(1/2+1/2*5^(1/2))^45 3908816899992269 a001 9227465/710647*(1/2+1/2*5^(1/2))^31 3908816899992269 a001 9227465/710647*9062201101803^(1/2) 3908816899992269 a001 10959/711491*192900153618^(5/6) 3908816899992269 a001 10959/711491*28143753123^(9/10) 3908816899992269 a001 10959/711491*10749957122^(15/16) 3908816899992270 a001 32951280099/710647*12752043^(7/17) 3908816899992270 a001 1515744265389/101521*4870847^(1/16) 3908816899992271 a001 12586269025/710647*12752043^(8/17) 3908816899992272 a001 7778742049/710647*12752043^(1/2) 3908816899992273 a001 686789568/101521*12752043^(9/17) 3908816899992274 a001 1836311903/710647*12752043^(10/17) 3908816899992276 a001 701408733/710647*12752043^(11/17) 3908816899992277 a001 267914296/710647*12752043^(12/17) 3908816899992278 a001 14930352/710647*12752043^(15/17) 3908816899992278 a001 14619165/101521*12752043^(13/17) 3908816899992279 a001 39088169/710647*12752043^(14/17) 3908816899992281 a001 4052739537881/710647*4870847^(1/8) 3908816899992284 a001 222915410843463/5702887 3908816899992291 a001 1548008755920/710647*4870847^(3/16) 3908816899992301 a001 591286729879/710647*4870847^(1/4) 3908816899992312 a001 317811*4870847^(5/16) 3908816899992322 a001 86267571272/710647*4870847^(3/8) 3908816899992323 a001 3524578/710647*141422324^(11/13) 3908816899992323 a001 3524578/710647*2537720636^(11/15) 3908816899992323 a001 3524578/710647*45537549124^(11/17) 3908816899992323 a001 3524578/710647*312119004989^(3/5) 3908816899992323 a001 317811/7881196*(1/2+1/2*5^(1/2))^43 3908816899992323 a001 3524578/710647*817138163596^(11/19) 3908816899992323 a001 3524578/710647*14662949395604^(11/21) 3908816899992323 a001 3524578/710647*(1/2+1/2*5^(1/2))^33 3908816899992323 a001 3524578/710647*192900153618^(11/18) 3908816899992323 a001 3524578/710647*10749957122^(11/16) 3908816899992323 a001 3524578/710647*1568397607^(3/4) 3908816899992323 a001 3524578/710647*599074578^(11/14) 3908816899992326 a001 3524578/710647*33385282^(11/12) 3908816899992332 a001 32951280099/710647*4870847^(7/16) 3908816899992335 a001 1515744265389/101521*1860498^(1/15) 3908816899992342 a001 12586269025/710647*4870847^(1/2) 3908816899992353 a001 686789568/101521*4870847^(9/16) 3908816899992363 a001 1836311903/710647*4870847^(5/8) 3908816899992373 a001 6557470319842/710647*1860498^(1/10) 3908816899992373 a001 701408733/710647*4870847^(11/16) 3908816899992384 a001 267914296/710647*4870847^(3/4) 3908816899992394 a001 14619165/101521*4870847^(13/16) 3908816899992401 a001 2504730781961/271443*103682^(1/8) 3908816899992404 a001 39088169/710647*4870847^(7/8) 3908816899992411 a001 4052739537881/710647*1860498^(2/15) 3908816899992411 a001 14930352/710647*4870847^(15/16) 3908816899992425 a001 28382036775352/726103 3908816899992448 a001 2504730781961/710647*1860498^(1/6) 3908816899992486 a001 387002188980/109801*167761^(1/5) 3908816899992486 a001 1548008755920/710647*1860498^(1/5) 3908816899992561 a001 591286729879/710647*1860498^(4/15) 3908816899992599 a001 365435296162/710647*1860498^(3/10) 3908816899992636 a001 317811*1860498^(1/3) 3908816899992691 a001 1346269/710647*2537720636^(7/9) 3908816899992691 a001 1346269/710647*17393796001^(5/7) 3908816899992691 a001 1346269/710647*312119004989^(7/11) 3908816899992691 a001 317811/3010349*(1/2+1/2*5^(1/2))^41 3908816899992691 a001 1346269/710647*14662949395604^(5/9) 3908816899992691 a001 1346269/710647*(1/2+1/2*5^(1/2))^35 3908816899992691 a001 1346269/710647*505019158607^(5/8) 3908816899992691 a001 1346269/710647*28143753123^(7/10) 3908816899992691 a001 1346269/710647*599074578^(5/6) 3908816899992691 a001 1346269/710647*228826127^(7/8) 3908816899992712 a001 86267571272/710647*1860498^(2/5) 3908816899992787 a001 32951280099/710647*1860498^(7/15) 3908816899992813 a001 1515744265389/101521*710647^(1/14) 3908816899992825 a001 20365011074/710647*1860498^(1/2) 3908816899992862 a001 12586269025/710647*1860498^(8/15) 3908816899992938 a001 686789568/101521*1860498^(3/5) 3908816899993013 a001 1836311903/710647*1860498^(2/3) 3908816899993051 a001 1134903170/710647*1860498^(7/10) 3908816899993081 a001 2504730781961/4870847*439204^(1/3) 3908816899993088 a001 701408733/710647*1860498^(11/15) 3908816899993163 a001 267914296/710647*1860498^(4/5) 3908816899993201 a001 165580141/710647*1860498^(5/6) 3908816899993222 a001 6557470319842/12752043*439204^(1/3) 3908816899993239 a001 14619165/101521*1860498^(13/15) 3908816899993255 a001 10610209857723/20633239*439204^(1/3) 3908816899993277 a001 63245986/710647*1860498^(9/10) 3908816899993308 a001 4052739537881/7881196*439204^(1/3) 3908816899993314 a001 39088169/710647*1860498^(14/15) 3908816899993366 a001 4052739537881/710647*710647^(1/7) 3908816899993389 a001 591325820631/15128 3908816899993677 a001 1548008755920/3010349*439204^(1/3) 3908816899993919 a001 1548008755920/710647*710647^(3/14) 3908816899993950 a001 139583862445/1149851*439204^(4/9) 3908816899994195 a001 956722026041/710647*710647^(1/4) 3908816899994368 a001 4052739537881/1860498*439204^(2/9) 3908816899994471 a001 591286729879/710647*710647^(2/7) 3908816899995024 a001 317811*710647^(5/14) 3908816899995216 a001 317811/1149851*2537720636^(13/15) 3908816899995216 a001 317811/1149851*45537549124^(13/17) 3908816899995216 a001 317811/1149851*14662949395604^(13/21) 3908816899995216 a001 317811/1149851*(1/2+1/2*5^(1/2))^39 3908816899995216 a001 514229/710647*(1/2+1/2*5^(1/2))^37 3908816899995216 a001 317811/1149851*192900153618^(13/18) 3908816899995216 a001 317811/1149851*73681302247^(3/4) 3908816899995216 a001 317811/1149851*10749957122^(13/16) 3908816899995216 a001 317811/1149851*599074578^(13/14) 3908816899995332 a001 2178309*439204^(2/9) 3908816899995577 a001 86267571272/710647*710647^(3/7) 3908816899995916 a001 20100270056680/514229 3908816899995919 a001 34111385/90481*271443^(12/13) 3908816899995928 a001 6557470319842/3010349*439204^(2/9) 3908816899996130 a001 32951280099/710647*710647^(1/2) 3908816899996202 a001 514229*439204^(1/3) 3908816899996341 a001 1515744265389/101521*271443^(1/13) 3908816899996683 a001 12586269025/710647*710647^(4/7) 3908816899996888 a001 20100270056685/514229 3908816899997083 a001 20100270056686/514229 3908816899997236 a001 686789568/101521*710647^(9/14) 3908816899997471 a001 20100270056688/514229 3908816899997742 a001 416020/930249*817138163596^(2/3) 3908816899997742 a001 416020/930249*(1/2+1/2*5^(1/2))^38 3908816899997742 a001 416020/930249*10749957122^(19/24) 3908816899997742 a001 416020/930249*4106118243^(19/23) 3908816899997742 a001 416020/930249*1568397607^(19/22) 3908816899997742 a001 416020/930249*599074578^(19/21) 3908816899997742 a001 416020/930249*228826127^(19/20) 3908816899997789 a001 1836311903/710647*710647^(5/7) 3908816899998065 a001 1134903170/710647*710647^(3/4) 3908816899998341 a001 701408733/710647*710647^(11/14) 3908816899998440 a001 52623190191440/1346269 3908816899998453 a001 2504730781961/1149851*439204^(2/9) 3908816899998706 a001 726103/620166*141422324^(12/13) 3908816899998706 a001 832040/4870847*2537720636^(8/9) 3908816899998706 a001 726103/620166*2537720636^(4/5) 3908816899998706 a001 726103/620166*45537549124^(12/17) 3908816899998706 a001 832040/4870847*312119004989^(8/11) 3908816899998706 a001 832040/4870847*(1/2+1/2*5^(1/2))^40 3908816899998706 a001 726103/620166*14662949395604^(4/7) 3908816899998706 a001 726103/620166*(1/2+1/2*5^(1/2))^36 3908816899998706 a001 726103/620166*505019158607^(9/14) 3908816899998706 a001 726103/620166*192900153618^(2/3) 3908816899998706 a001 726103/620166*73681302247^(9/13) 3908816899998706 a001 832040/4870847*73681302247^(10/13) 3908816899998706 a001 832040/4870847*28143753123^(4/5) 3908816899998706 a001 726103/620166*10749957122^(3/4) 3908816899998706 a001 832040/4870847*10749957122^(5/6) 3908816899998706 a001 726103/620166*4106118243^(18/23) 3908816899998706 a001 832040/4870847*4106118243^(20/23) 3908816899998706 a001 726103/620166*1568397607^(9/11) 3908816899998706 a001 832040/4870847*1568397607^(10/11) 3908816899998706 a001 726103/620166*599074578^(6/7) 3908816899998706 a001 832040/4870847*599074578^(20/21) 3908816899998706 a001 726103/620166*228826127^(9/10) 3908816899998707 a001 726103/620166*87403803^(18/19) 3908816899998808 a001 68884650258820/1762289 3908816899998813 a001 39088169/1860498*7881196^(10/11) 3908816899998819 a001 165580141/1860498*7881196^(9/11) 3908816899998825 a001 233802911/620166*7881196^(8/11) 3908816899998829 a001 1836311903/1860498*7881196^(2/3) 3908816899998831 a001 2971215073/1860498*7881196^(7/11) 3908816899998836 a001 12586269025/1860498*7881196^(6/11) 3908816899998842 a001 53316291173/1860498*7881196^(5/11) 3908816899998847 a001 832040/12752043*2537720636^(14/15) 3908816899998847 a001 832040/12752043*17393796001^(6/7) 3908816899998847 a001 832040/12752043*45537549124^(14/17) 3908816899998847 a001 5702887/1860498*45537549124^(2/3) 3908816899998847 a001 832040/12752043*817138163596^(14/19) 3908816899998847 a001 832040/12752043*14662949395604^(2/3) 3908816899998847 a001 832040/12752043*(1/2+1/2*5^(1/2))^42 3908816899998847 a001 5702887/1860498*(1/2+1/2*5^(1/2))^34 3908816899998847 a001 832040/12752043*505019158607^(3/4) 3908816899998847 a001 832040/12752043*192900153618^(7/9) 3908816899998847 a001 5702887/1860498*10749957122^(17/24) 3908816899998847 a001 832040/12752043*10749957122^(7/8) 3908816899998847 a001 5702887/1860498*4106118243^(17/23) 3908816899998847 a001 832040/12752043*4106118243^(21/23) 3908816899998847 a001 5702887/1860498*1568397607^(17/22) 3908816899998847 a001 832040/12752043*1568397607^(21/22) 3908816899998847 a001 5702887/1860498*599074578^(17/21) 3908816899998847 a001 5702887/1860498*228826127^(17/20) 3908816899998847 a001 5702887/1860498*87403803^(17/19) 3908816899998848 a001 75283811239/620166*7881196^(4/11) 3908816899998850 a001 182717648081/930249*7881196^(1/3) 3908816899998850 a001 5702887/1860498*33385282^(17/18) 3908816899998854 a001 956722026041/1860498*7881196^(3/11) 3908816899998859 a001 4052739537881/1860498*7881196^(2/11) 3908816899998862 a001 72136942272296/1845493 3908816899998862 a001 39088169/1860498*20633239^(6/7) 3908816899998863 a001 831985/15126*20633239^(4/5) 3908816899998864 a001 433494437/1860498*20633239^(5/7) 3908816899998865 a001 2971215073/1860498*20633239^(3/5) 3908816899998866 a001 267084832/103361*20633239^(4/7) 3908816899998867 a001 53316291173/1860498*20633239^(3/7) 3908816899998867 a001 43133785636/930249*20633239^(2/5) 3908816899998867 a001 416020/16692641*312119004989^(4/5) 3908816899998867 a001 416020/16692641*(1/2+1/2*5^(1/2))^44 3908816899998867 a001 416020/16692641*23725150497407^(11/16) 3908816899998867 a001 829464/103361*(1/2+1/2*5^(1/2))^32 3908816899998867 a001 829464/103361*23725150497407^(1/2) 3908816899998867 a001 829464/103361*73681302247^(8/13) 3908816899998867 a001 416020/16692641*73681302247^(11/13) 3908816899998867 a001 829464/103361*10749957122^(2/3) 3908816899998867 a001 416020/16692641*10749957122^(11/12) 3908816899998867 a001 829464/103361*4106118243^(16/23) 3908816899998867 a001 416020/16692641*4106118243^(22/23) 3908816899998867 a001 829464/103361*1568397607^(8/11) 3908816899998867 a001 829464/103361*599074578^(16/21) 3908816899998867 a001 829464/103361*228826127^(4/5) 3908816899998868 a001 829464/103361*87403803^(16/19) 3908816899998868 a001 591286729879/1860498*20633239^(2/7) 3908816899998869 a001 2504730781961/1860498*20633239^(1/5) 3908816899998869 a001 944284833566800/24157817 3908816899998869 a001 3278735159921/930249*20633239^(1/7) 3908816899998870 a001 39088169/1860498*141422324^(10/13) 3908816899998870 a001 39088169/1860498*2537720636^(2/3) 3908816899998870 a001 39088169/1860498*45537549124^(10/17) 3908816899998870 a001 39088169/1860498*312119004989^(6/11) 3908816899998870 a001 39088169/1860498*14662949395604^(10/21) 3908816899998870 a001 39088169/1860498*(1/2+1/2*5^(1/2))^30 3908816899998870 a001 39088169/1860498*192900153618^(5/9) 3908816899998870 a001 39088169/1860498*28143753123^(3/5) 3908816899998870 a001 39088169/1860498*10749957122^(5/8) 3908816899998870 a001 832040/87403803*10749957122^(23/24) 3908816899998870 a001 39088169/1860498*4106118243^(15/23) 3908816899998870 a001 39088169/1860498*1568397607^(15/22) 3908816899998870 a001 39088169/1860498*599074578^(5/7) 3908816899998870 a001 39088169/1860498*228826127^(3/4) 3908816899998870 a001 829464/103361*33385282^(8/9) 3908816899998871 a001 1236084894669460/31622993 3908816899998871 a001 133957148/930249*141422324^(2/3) 3908816899998871 a001 233802911/620166*141422324^(8/13) 3908816899998871 a001 39088169/1860498*87403803^(15/19) 3908816899998871 a001 165580141/1860498*141422324^(9/13) 3908816899998871 a001 2971215073/1860498*141422324^(7/13) 3908816899998871 a001 12586269025/1860498*141422324^(6/13) 3908816899998871 a001 53316291173/1860498*141422324^(5/13) 3908816899998871 a001 831985/15126*17393796001^(4/7) 3908816899998871 a001 832040/228826127*45537549124^(16/17) 3908816899998871 a001 832040/228826127*14662949395604^(16/21) 3908816899998871 a001 831985/15126*14662949395604^(4/9) 3908816899998871 a001 831985/15126*(1/2+1/2*5^(1/2))^28 3908816899998871 a001 831985/15126*505019158607^(1/2) 3908816899998871 a001 832040/228826127*192900153618^(8/9) 3908816899998871 a001 831985/15126*73681302247^(7/13) 3908816899998871 a001 832040/228826127*73681302247^(12/13) 3908816899998871 a001 831985/15126*10749957122^(7/12) 3908816899998871 a001 831985/15126*4106118243^(14/23) 3908816899998871 a001 831985/15126*1568397607^(7/11) 3908816899998871 a001 831985/15126*599074578^(2/3) 3908816899998871 a001 139583862445/1860498*141422324^(1/3) 3908816899998871 a001 75283811239/620166*141422324^(4/13) 3908816899998871 a001 956722026041/1860498*141422324^(3/13) 3908816899998871 a001 4052739537881/1860498*141422324^(2/13) 3908816899998871 a001 6472224534449960/165580141 3908816899998871 a001 831985/15126*228826127^(7/10) 3908816899998871 a001 416020/299537289*312119004989^(10/11) 3908816899998871 a001 416020/299537289*3461452808002^(5/6) 3908816899998871 a001 133957148/930249*(1/2+1/2*5^(1/2))^26 3908816899998871 a001 133957148/930249*73681302247^(1/2) 3908816899998871 a001 133957148/930249*10749957122^(13/24) 3908816899998871 a001 133957148/930249*4106118243^(13/23) 3908816899998871 a001 133957148/930249*1568397607^(13/22) 3908816899998871 a001 16944503814010960/433494437 3908816899998871 a001 133957148/930249*599074578^(13/21) 3908816899998871 a001 233802911/620166*2537720636^(8/15) 3908816899998871 a001 233802911/620166*45537549124^(8/17) 3908816899998871 a001 832040/1568397607*23725150497407^(13/16) 3908816899998871 a001 233802911/620166*14662949395604^(8/21) 3908816899998871 a001 233802911/620166*(1/2+1/2*5^(1/2))^24 3908816899998871 a001 832040/1568397607*505019158607^(13/14) 3908816899998871 a001 233802911/620166*192900153618^(4/9) 3908816899998871 a001 233802911/620166*73681302247^(6/13) 3908816899998871 a001 233802911/620166*10749957122^(1/2) 3908816899998871 a001 233802911/620166*4106118243^(12/23) 3908816899998871 a001 233802911/620166*1568397607^(6/11) 3908816899998871 a001 72723421159972/1860497 3908816899998871 a001 267084832/103361*2537720636^(4/9) 3908816899998871 a001 12586269025/1860498*2537720636^(2/5) 3908816899998871 a001 1836311903/1860498*312119004989^(2/5) 3908816899998871 a001 832040/4106118243*14662949395604^(6/7) 3908816899998871 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^22 3908816899998871 a001 1836311903/1860498*10749957122^(11/24) 3908816899998871 a001 53316291173/1860498*2537720636^(1/3) 3908816899998871 a001 2971215073/1860498*2537720636^(7/15) 3908816899998871 a001 75283811239/620166*2537720636^(4/15) 3908816899998871 a001 591286729879/1860498*2537720636^(2/9) 3908816899998871 a001 956722026041/1860498*2537720636^(1/5) 3908816899998871 a001 1836311903/1860498*4106118243^(11/23) 3908816899998871 a001 116139356908737800/2971215073 3908816899998871 a001 4052739537881/1860498*2537720636^(2/15) 3908816899998871 a001 3278735159921/930249*2537720636^(1/9) 3908816899998871 a001 416020/5374978561*14662949395604^(8/9) 3908816899998871 a001 267084832/103361*(1/2+1/2*5^(1/2))^20 3908816899998871 a001 267084832/103361*23725150497407^(5/16) 3908816899998871 a001 267084832/103361*505019158607^(5/14) 3908816899998871 a001 267084832/103361*73681302247^(5/13) 3908816899998871 a001 267084832/103361*28143753123^(2/5) 3908816899998871 a001 267084832/103361*10749957122^(5/12) 3908816899998871 a001 304056783818630480/7778742049 3908816899998871 a001 12586269025/1860498*45537549124^(6/17) 3908816899998871 a001 12586269025/1860498*14662949395604^(2/7) 3908816899998871 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^18 3908816899998871 a001 12586269025/1860498*192900153618^(1/3) 3908816899998871 a001 43133785636/930249*17393796001^(2/7) 3908816899998871 a001 398015497273576820/10182505537 3908816899998871 a001 2504730781961/1860498*17393796001^(1/7) 3908816899998871 a001 832040/73681302247*14662949395604^(20/21) 3908816899998871 a001 10983760033/620166*(1/2+1/2*5^(1/2))^16 3908816899998871 a001 10983760033/620166*23725150497407^(1/4) 3908816899998871 a001 10983760033/620166*73681302247^(4/13) 3908816899998871 a001 75283811239/620166*45537549124^(4/17) 3908816899998871 a001 956722026041/1860498*45537549124^(3/17) 3908816899998871 a001 53316291173/1860498*45537549124^(5/17) 3908816899998871 a001 2084036199822830440/53316291173 3908816899998871 a001 4052739537881/1860498*45537549124^(2/17) 3908816899998871 a001 43133785636/930249*(1/2+1/2*5^(1/2))^14 3908816899998871 a001 1091215520984267536/27916772489 3908816899998871 a001 75283811239/620166*817138163596^(4/19) 3908816899998871 a001 75283811239/620166*(1/2+1/2*5^(1/2))^12 3908816899998871 a001 182717648081/930249*312119004989^(1/5) 3908816899998871 a001 4052739537881/1860498*(1/2+1/2*5^(1/2))^6 3908816899998871 a001 3536736619241/620166*(1/2+1/2*5^(1/2))^4 3908816899998871 a001 3278735159921/930249*(1/2+1/2*5^(1/2))^5 3908816899998871 a001 2504730781961/1860498*14662949395604^(1/9) 3908816899998871 a001 2504730781961/1860498*(1/2+1/2*5^(1/2))^7 3908816899998871 a001 956722026041/1860498*(1/2+1/2*5^(1/2))^9 3908816899998871 a001 832040*505019158607^(1/7) 3908816899998871 a001 420386619524754520/10754830177 3908816899998871 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^13 3908816899998871 a001 3536736619241/620166*73681302247^(1/13) 3908816899998871 a001 421505175637313405/10783446409 3908816899998871 a001 832040*73681302247^(2/13) 3908816899998871 a001 75283811239/620166*73681302247^(3/13) 3908816899998871 a001 139583862445/1860498*73681302247^(1/4) 3908816899998871 a001 53316291173/1860498*312119004989^(3/11) 3908816899998871 a001 53316291173/1860498*14662949395604^(5/21) 3908816899998871 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^15 3908816899998871 a001 53316291173/1860498*192900153618^(5/18) 3908816899998871 a001 3278735159921/930249*28143753123^(1/10) 3908816899998871 a001 429335068425225600/10983760033 3908816899998871 a001 591286729879/1860498*28143753123^(1/5) 3908816899998871 a001 10182505537/930249*45537549124^(1/3) 3908816899998871 a001 53316291173/1860498*28143753123^(3/10) 3908816899998871 a001 10182505537/930249*(1/2+1/2*5^(1/2))^17 3908816899998871 a001 3536736619241/620166*10749957122^(1/12) 3908816899998871 a001 4052739537881/1860498*10749957122^(1/8) 3908816899998871 a001 8944985649609512/228841255 3908816899998871 a001 832040*10749957122^(1/6) 3908816899998871 a001 956722026041/1860498*10749957122^(3/16) 3908816899998871 a001 591286729879/1860498*10749957122^(5/24) 3908816899998871 a001 12586269025/1860498*10749957122^(3/8) 3908816899998871 a001 75283811239/620166*10749957122^(1/4) 3908816899998871 a001 43133785636/930249*10749957122^(7/24) 3908816899998871 a001 10983760033/620166*10749957122^(1/3) 3908816899998871 a001 53316291173/1860498*10749957122^(5/16) 3908816899998871 a001 7778742049/1860498*817138163596^(1/3) 3908816899998871 a001 832040/17393796001*14662949395604^(19/21) 3908816899998871 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^19 3908816899998871 a001 3536736619241/620166*4106118243^(2/23) 3908816899998871 a001 4052739537881/1860498*4106118243^(3/23) 3908816899998871 a001 1118556112558885/28616232 3908816899998871 a001 832040*4106118243^(4/23) 3908816899998871 a001 591286729879/1860498*4106118243^(5/23) 3908816899998871 a001 75283811239/620166*4106118243^(6/23) 3908816899998871 a001 267084832/103361*4106118243^(10/23) 3908816899998871 a001 43133785636/930249*4106118243^(7/23) 3908816899998871 a001 10983760033/620166*4106118243^(8/23) 3908816899998871 a001 2971215073/1860498*17393796001^(3/7) 3908816899998871 a001 12586269025/1860498*4106118243^(9/23) 3908816899998871 a001 2971215073/1860498*45537549124^(7/17) 3908816899998871 a001 2971215073/1860498*14662949395604^(1/3) 3908816899998871 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^21 3908816899998871 a001 2971215073/1860498*192900153618^(7/18) 3908816899998871 a001 2971215073/1860498*10749957122^(7/16) 3908816899998871 a001 3536736619241/620166*1568397607^(1/11) 3908816899998871 a001 4052739537881/1860498*1568397607^(3/22) 3908816899998871 a001 71778070001154880/1836311903 3908816899998871 a001 832040*1568397607^(2/11) 3908816899998871 a001 591286729879/1860498*1568397607^(5/22) 3908816899998871 a001 182717648081/930249*1568397607^(1/4) 3908816899998871 a001 75283811239/620166*1568397607^(3/11) 3908816899998871 a001 43133785636/930249*1568397607^(7/22) 3908816899998871 a001 1836311903/1860498*1568397607^(1/2) 3908816899998871 a001 10983760033/620166*1568397607^(4/11) 3908816899998871 a001 567451585/930249*(1/2+1/2*5^(1/2))^23 3908816899998871 a001 12586269025/1860498*1568397607^(9/22) 3908816899998871 a001 267084832/103361*1568397607^(5/11) 3908816899998871 a001 567451585/930249*4106118243^(1/2) 3908816899998871 a001 3536736619241/620166*599074578^(2/21) 3908816899998871 a001 4052739537881/1860498*599074578^(1/7) 3908816899998871 a001 9138927697857320/233802911 3908816899998871 a001 2504730781961/1860498*599074578^(1/6) 3908816899998871 a001 832040*599074578^(4/21) 3908816899998871 a001 956722026041/1860498*599074578^(3/14) 3908816899998871 a001 591286729879/1860498*599074578^(5/21) 3908816899998871 a001 75283811239/620166*599074578^(2/7) 3908816899998871 a001 43133785636/930249*599074578^(1/3) 3908816899998871 a001 433494437/1860498*2537720636^(5/9) 3908816899998871 a001 53316291173/1860498*599074578^(5/14) 3908816899998871 a001 10983760033/620166*599074578^(8/21) 3908816899998871 a001 433494437/1860498*312119004989^(5/11) 3908816899998871 a001 832040/969323029*14662949395604^(17/21) 3908816899998871 a001 433494437/1860498*(1/2+1/2*5^(1/2))^25 3908816899998871 a001 433494437/1860498*3461452808002^(5/12) 3908816899998871 a001 832040/969323029*192900153618^(17/18) 3908816899998871 a001 433494437/1860498*28143753123^(1/2) 3908816899998871 a001 233802911/620166*599074578^(4/7) 3908816899998871 a001 12586269025/1860498*599074578^(3/7) 3908816899998871 a001 267084832/103361*599074578^(10/21) 3908816899998871 a001 1836311903/1860498*599074578^(11/21) 3908816899998871 a001 2971215073/1860498*599074578^(1/2) 3908816899998871 a001 3536736619241/620166*228826127^(1/10) 3908816899998871 a001 3278735159921/930249*228826127^(1/8) 3908816899998871 a001 1309034909945125/33489287 3908816899998871 a001 4052739537881/1860498*228826127^(3/20) 3908816899998871 a001 832040*228826127^(1/5) 3908816899998871 a001 591286729879/1860498*228826127^(1/4) 3908816899998871 a001 75283811239/620166*228826127^(3/10) 3908816899998871 a001 43133785636/930249*228826127^(7/20) 3908816899998871 a001 53316291173/1860498*228826127^(3/8) 3908816899998871 a001 165580141/1860498*2537720636^(3/5) 3908816899998871 a001 165580141/1860498*45537549124^(9/17) 3908816899998871 a001 165580141/1860498*817138163596^(9/19) 3908816899998871 a001 165580141/1860498*14662949395604^(3/7) 3908816899998871 a001 165580141/1860498*(1/2+1/2*5^(1/2))^27 3908816899998871 a001 832040/370248451*505019158607^(7/8) 3908816899998871 a001 165580141/1860498*192900153618^(1/2) 3908816899998871 a001 165580141/1860498*10749957122^(9/16) 3908816899998871 a001 10983760033/620166*228826127^(2/5) 3908816899998871 a001 12586269025/1860498*228826127^(9/20) 3908816899998871 a001 165580141/1860498*599074578^(9/14) 3908816899998871 a001 267084832/103361*228826127^(1/2) 3908816899998871 a001 133957148/930249*228826127^(13/20) 3908816899998871 a001 1836311903/1860498*228826127^(11/20) 3908816899998871 a001 233802911/620166*228826127^(3/5) 3908816899998871 a001 433494437/1860498*228826127^(5/8) 3908816899998871 a001 3536736619241/620166*87403803^(2/19) 3908816899998871 a001 3463250861568/88601 3908816899998871 a001 4052739537881/1860498*87403803^(3/19) 3908816899998871 a001 832040*87403803^(4/19) 3908816899998871 a001 591286729879/1860498*87403803^(5/19) 3908816899998871 a001 75283811239/620166*87403803^(6/19) 3908816899998871 a001 43133785636/930249*87403803^(7/19) 3908816899998871 a001 31622993/930249*(1/2+1/2*5^(1/2))^29 3908816899998871 a001 31622993/930249*1322157322203^(1/2) 3908816899998871 a001 10983760033/620166*87403803^(8/19) 3908816899998871 a001 12586269025/1860498*87403803^(9/19) 3908816899998871 a001 7778742049/1860498*87403803^(1/2) 3908816899998871 a001 267084832/103361*87403803^(10/19) 3908816899998871 a001 1836311903/1860498*87403803^(11/19) 3908816899998871 a001 831985/15126*87403803^(14/19) 3908816899998871 a001 233802911/620166*87403803^(12/19) 3908816899998871 a001 133957148/930249*87403803^(13/19) 3908816899998871 a001 3536736619241/620166*33385282^(1/9) 3908816899998871 a001 1527884955772120/39088169 3908816899998871 a001 4052739537881/1860498*33385282^(1/6) 3908816899998872 a001 832040*33385282^(2/9) 3908816899998872 a001 956722026041/1860498*33385282^(1/4) 3908816899998872 a001 591286729879/1860498*33385282^(5/18) 3908816899998872 a001 75283811239/620166*33385282^(1/3) 3908816899998872 a001 832040/54018521*45537549124^(15/17) 3908816899998872 a001 832040/54018521*312119004989^(9/11) 3908816899998872 a001 24157817/1860498*(1/2+1/2*5^(1/2))^31 3908816899998872 a001 24157817/1860498*9062201101803^(1/2) 3908816899998872 a001 832040/54018521*192900153618^(5/6) 3908816899998872 a001 832040/54018521*28143753123^(9/10) 3908816899998872 a001 832040/54018521*10749957122^(15/16) 3908816899998872 a001 43133785636/930249*33385282^(7/18) 3908816899998872 a001 53316291173/1860498*33385282^(5/12) 3908816899998872 a001 10983760033/620166*33385282^(4/9) 3908816899998873 a001 12586269025/1860498*33385282^(1/2) 3908816899998873 a001 267084832/103361*33385282^(5/9) 3908816899998873 a001 2971215073/1860498*33385282^(7/12) 3908816899998873 a001 1836311903/1860498*33385282^(11/18) 3908816899998873 a001 233802911/620166*33385282^(2/3) 3908816899998873 a001 39088169/1860498*33385282^(5/6) 3908816899998873 a001 133957148/930249*33385282^(13/18) 3908816899998873 a001 831985/15126*33385282^(7/9) 3908816899998873 a001 165580141/1860498*33385282^(3/4) 3908816899998874 a001 3536736619241/620166*12752043^(2/17) 3908816899998874 a001 24316671758555/622098 3908816899998875 a001 4052739537881/1860498*12752043^(3/17) 3908816899998876 a001 832040*12752043^(4/17) 3908816899998878 a001 591286729879/1860498*12752043^(5/17) 3908816899998879 a001 75283811239/620166*12752043^(6/17) 3908816899998880 a001 9227465/1860498*141422324^(11/13) 3908816899998880 a001 9227465/1860498*2537720636^(11/15) 3908816899998880 a001 9227465/1860498*45537549124^(11/17) 3908816899998880 a001 9227465/1860498*312119004989^(3/5) 3908816899998880 a001 9227465/1860498*817138163596^(11/19) 3908816899998880 a001 75640/1875749*(1/2+1/2*5^(1/2))^43 3908816899998880 a001 9227465/1860498*14662949395604^(11/21) 3908816899998880 a001 9227465/1860498*(1/2+1/2*5^(1/2))^33 3908816899998880 a001 9227465/1860498*192900153618^(11/18) 3908816899998880 a001 9227465/1860498*10749957122^(11/16) 3908816899998880 a001 9227465/1860498*1568397607^(3/4) 3908816899998880 a001 9227465/1860498*599074578^(11/14) 3908816899998881 a001 43133785636/930249*12752043^(7/17) 3908816899998882 a001 10983760033/620166*12752043^(8/17) 3908816899998883 a001 10182505537/930249*12752043^(1/2) 3908816899998883 a001 9227465/1860498*33385282^(11/12) 3908816899998883 a001 12586269025/1860498*12752043^(9/17) 3908816899998885 a001 267084832/103361*12752043^(10/17) 3908816899998886 a001 1836311903/1860498*12752043^(11/17) 3908816899998888 a001 233802911/620166*12752043^(12/17) 3908816899998889 a001 133957148/930249*12752043^(13/17) 3908816899998890 a001 829464/103361*12752043^(16/17) 3908816899998890 a001 831985/15126*12752043^(14/17) 3908816899998891 a001 3536736619241/620166*4870847^(1/8) 3908816899998891 a001 39088169/1860498*12752043^(15/17) 3908816899998894 a001 267914296/710647*710647^(6/7) 3908816899998895 a001 222915410843840/5702887 3908816899998902 a001 4052739537881/1860498*4870847^(3/16) 3908816899998912 a001 832040*4870847^(1/4) 3908816899998922 a001 591286729879/1860498*4870847^(5/16) 3908816899998933 a001 75283811239/620166*4870847^(3/8) 3908816899998934 a001 1762289/930249*2537720636^(7/9) 3908816899998934 a001 1762289/930249*17393796001^(5/7) 3908816899998934 a001 1762289/930249*312119004989^(7/11) 3908816899998934 a001 208010/1970299*(1/2+1/2*5^(1/2))^41 3908816899998934 a001 1762289/930249*14662949395604^(5/9) 3908816899998934 a001 1762289/930249*(1/2+1/2*5^(1/2))^35 3908816899998934 a001 1762289/930249*505019158607^(5/8) 3908816899998934 a001 1762289/930249*28143753123^(7/10) 3908816899998934 a001 1762289/930249*599074578^(5/6) 3908816899998934 a001 1762289/930249*228826127^(7/8) 3908816899998943 a001 43133785636/930249*4870847^(7/16) 3908816899998953 a001 10983760033/620166*4870847^(1/2) 3908816899998963 a001 12586269025/1860498*4870847^(9/16) 3908816899998974 a001 267084832/103361*4870847^(5/8) 3908816899998984 a001 1836311903/1860498*4870847^(11/16) 3908816899998994 a001 233802911/620166*4870847^(3/4) 3908816899999005 a001 133957148/930249*4870847^(13/16) 3908816899999015 a001 831985/15126*4870847^(7/8) 3908816899999021 a001 3536736619241/620166*1860498^(2/15) 3908816899999025 a001 39088169/1860498*4870847^(15/16) 3908816899999035 a001 4054576682200/103729 3908816899999059 a001 3278735159921/930249*1860498^(1/6) 3908816899999097 a001 4052739537881/1860498*1860498^(1/5) 3908816899999172 a001 832040*1860498^(4/15) 3908816899999210 a001 956722026041/1860498*1860498^(3/10) 3908816899999247 a001 591286729879/1860498*1860498^(1/3) 3908816899999302 a001 832040/3010349*2537720636^(13/15) 3908816899999302 a001 832040/3010349*45537549124^(13/17) 3908816899999302 a001 832040/3010349*14662949395604^(13/21) 3908816899999302 a001 832040/3010349*(1/2+1/2*5^(1/2))^39 3908816899999302 a001 1346269/1860498*(1/2+1/2*5^(1/2))^37 3908816899999302 a001 832040/3010349*192900153618^(13/18) 3908816899999302 a001 832040/3010349*73681302247^(3/4) 3908816899999302 a001 832040/3010349*10749957122^(13/16) 3908816899999302 a001 832040/3010349*599074578^(13/14) 3908816899999322 a001 75283811239/620166*1860498^(2/5) 3908816899999398 a001 43133785636/930249*1860498^(7/15) 3908816899999405 a001 52623190191453/1346269 3908816899999435 a001 53316291173/1860498*1860498^(1/2) 3908816899999447 a001 14619165/101521*710647^(13/14) 3908816899999473 a001 10983760033/620166*1860498^(8/15) 3908816899999548 a001 12586269025/1860498*1860498^(3/5) 3908816899999554 a001 52623190191455/1346269 3908816899999624 a001 267084832/103361*1860498^(2/3) 3908816899999628 a001 52623190191456/1346269 3908816899999661 a001 2971215073/1860498*1860498^(7/10) 3908816899999671 a001 2178309/4870847*817138163596^(2/3) 3908816899999671 a001 2178309/4870847*(1/2+1/2*5^(1/2))^38 3908816899999671 a001 2178309/4870847*10749957122^(19/24) 3908816899999671 a001 2178309/4870847*4106118243^(19/23) 3908816899999671 a001 2178309/4870847*1568397607^(19/22) 3908816899999671 a001 2178309/4870847*599074578^(19/21) 3908816899999671 a001 2178309/4870847*228826127^(19/20) 3908816899999699 a001 1836311903/1860498*1860498^(11/15) 3908816899999773 a001 68884650258837/1762289 3908816899999774 a001 233802911/620166*1860498^(4/5) 3908816899999778 a001 102334155/4870847*7881196^(10/11) 3908816899999784 a001 433494437/4870847*7881196^(9/11) 3908816899999789 a001 1836311903/4870847*7881196^(8/11) 3908816899999793 a001 4807526976/4870847*7881196^(2/3) 3908816899999795 a001 7778742049/4870847*7881196^(7/11) 3908816899999801 a001 32951280099/4870847*7881196^(6/11) 3908816899999807 a001 139583862445/4870847*7881196^(5/11) 3908816899999811 a001 5702887/4870847*141422324^(12/13) 3908816899999811 a001 726103/4250681*2537720636^(8/9) 3908816899999811 a001 5702887/4870847*2537720636^(4/5) 3908816899999811 a001 5702887/4870847*45537549124^(12/17) 3908816899999811 a001 726103/4250681*312119004989^(8/11) 3908816899999811 a001 5702887/4870847*14662949395604^(4/7) 3908816899999811 a001 726103/4250681*(1/2+1/2*5^(1/2))^40 3908816899999811 a001 726103/4250681*23725150497407^(5/8) 3908816899999811 a001 5702887/4870847*(1/2+1/2*5^(1/2))^36 3908816899999811 a001 5702887/4870847*505019158607^(9/14) 3908816899999811 a001 5702887/4870847*192900153618^(2/3) 3908816899999811 a001 5702887/4870847*73681302247^(9/13) 3908816899999811 a001 726103/4250681*73681302247^(10/13) 3908816899999811 a001 726103/4250681*28143753123^(4/5) 3908816899999811 a001 5702887/4870847*10749957122^(3/4) 3908816899999811 a001 726103/4250681*10749957122^(5/6) 3908816899999811 a001 5702887/4870847*4106118243^(18/23) 3908816899999811 a001 726103/4250681*4106118243^(20/23) 3908816899999811 a001 5702887/4870847*1568397607^(9/11) 3908816899999811 a001 726103/4250681*1568397607^(10/11) 3908816899999811 a001 5702887/4870847*599074578^(6/7) 3908816899999811 a001 726103/4250681*599074578^(20/21) 3908816899999811 a001 5702887/4870847*228826127^(9/10) 3908816899999812 a001 5702887/4870847*87403803^(18/19) 3908816899999812 a001 433494437/1860498*1860498^(5/6) 3908816899999812 a001 591286729879/4870847*7881196^(4/11) 3908816899999814 a001 956722026041/4870847*7881196^(1/3) 3908816899999818 a001 2504730781961/4870847*7881196^(3/11) 3908816899999824 a001 2178309*7881196^(2/11) 3908816899999826 a001 360684711361569/9227465 3908816899999827 a001 102334155/4870847*20633239^(6/7) 3908816899999828 a001 267914296/4870847*20633239^(4/5) 3908816899999829 a001 1134903170/4870847*20633239^(5/7) 3908816899999830 a001 7778742049/4870847*20633239^(3/5) 3908816899999830 a001 12586269025/4870847*20633239^(4/7) 3908816899999831 a001 139583862445/4870847*20633239^(3/7) 3908816899999832 a001 225851433717/4870847*20633239^(2/5) 3908816899999832 a001 311187/4769326*2537720636^(14/15) 3908816899999832 a001 311187/4769326*17393796001^(6/7) 3908816899999832 a001 311187/4769326*45537549124^(14/17) 3908816899999832 a001 14930352/4870847*45537549124^(2/3) 3908816899999832 a001 311187/4769326*14662949395604^(2/3) 3908816899999832 a001 311187/4769326*(1/2+1/2*5^(1/2))^42 3908816899999832 a001 14930352/4870847*(1/2+1/2*5^(1/2))^34 3908816899999832 a001 311187/4769326*505019158607^(3/4) 3908816899999832 a001 311187/4769326*192900153618^(7/9) 3908816899999832 a001 14930352/4870847*10749957122^(17/24) 3908816899999832 a001 311187/4769326*10749957122^(7/8) 3908816899999832 a001 14930352/4870847*4106118243^(17/23) 3908816899999832 a001 311187/4769326*4106118243^(21/23) 3908816899999832 a001 14930352/4870847*1568397607^(17/22) 3908816899999832 a001 311187/4769326*1568397607^(21/22) 3908816899999832 a001 14930352/4870847*599074578^(17/21) 3908816899999832 a001 14930352/4870847*228826127^(17/20) 3908816899999832 a001 14930352/4870847*87403803^(17/19) 3908816899999833 a001 1548008755920/4870847*20633239^(2/7) 3908816899999833 a001 6557470319842/4870847*20633239^(1/5) 3908816899999834 a001 944284833567033/24157817 3908816899999835 a001 726103/29134601*312119004989^(4/5) 3908816899999835 a001 39088169/4870847*(1/2+1/2*5^(1/2))^32 3908816899999835 a001 39088169/4870847*23725150497407^(1/2) 3908816899999835 a001 39088169/4870847*505019158607^(4/7) 3908816899999835 a001 39088169/4870847*73681302247^(8/13) 3908816899999835 a001 726103/29134601*73681302247^(11/13) 3908816899999835 a001 39088169/4870847*10749957122^(2/3) 3908816899999835 a001 726103/29134601*10749957122^(11/12) 3908816899999835 a001 39088169/4870847*4106118243^(16/23) 3908816899999835 a001 726103/29134601*4106118243^(22/23) 3908816899999835 a001 39088169/4870847*1568397607^(8/11) 3908816899999835 a001 39088169/4870847*599074578^(16/21) 3908816899999835 a001 39088169/4870847*228826127^(4/5) 3908816899999835 a001 102334155/4870847*141422324^(10/13) 3908816899999835 a001 14930352/4870847*33385282^(17/18) 3908816899999835 a001 1236084894669765/31622993 3908816899999835 a001 701408733/4870847*141422324^(2/3) 3908816899999835 a001 433494437/4870847*141422324^(9/13) 3908816899999835 a001 1836311903/4870847*141422324^(8/13) 3908816899999835 a001 7778742049/4870847*141422324^(7/13) 3908816899999835 a001 32951280099/4870847*141422324^(6/13) 3908816899999835 a001 39088169/4870847*87403803^(16/19) 3908816899999835 a001 139583862445/4870847*141422324^(5/13) 3908816899999835 a001 102334155/4870847*2537720636^(2/3) 3908816899999835 a001 102334155/4870847*45537549124^(10/17) 3908816899999835 a001 102334155/4870847*312119004989^(6/11) 3908816899999835 a001 102334155/4870847*14662949395604^(10/21) 3908816899999835 a001 102334155/4870847*(1/2+1/2*5^(1/2))^30 3908816899999835 a001 102334155/4870847*192900153618^(5/9) 3908816899999835 a001 102334155/4870847*28143753123^(3/5) 3908816899999835 a001 102334155/4870847*10749957122^(5/8) 3908816899999835 a001 46347/4868641*10749957122^(23/24) 3908816899999835 a001 102334155/4870847*4106118243^(15/23) 3908816899999835 a001 102334155/4870847*1568397607^(15/22) 3908816899999835 a001 102334155/4870847*599074578^(5/7) 3908816899999835 a001 365435296162/4870847*141422324^(1/3) 3908816899999835 a001 591286729879/4870847*141422324^(4/13) 3908816899999835 a001 2504730781961/4870847*141422324^(3/13) 3908816899999835 a001 2178309*141422324^(2/13) 3908816899999835 a001 6472224534451557/165580141 3908816899999835 a001 102334155/4870847*228826127^(3/4) 3908816899999835 a001 267914296/4870847*17393796001^(4/7) 3908816899999835 a001 726103/199691526*45537549124^(16/17) 3908816899999835 a001 267914296/4870847*14662949395604^(4/9) 3908816899999835 a001 267914296/4870847*(1/2+1/2*5^(1/2))^28 3908816899999835 a001 267914296/4870847*505019158607^(1/2) 3908816899999835 a001 726103/199691526*192900153618^(8/9) 3908816899999835 a001 267914296/4870847*73681302247^(7/13) 3908816899999835 a001 726103/199691526*73681302247^(12/13) 3908816899999835 a001 267914296/4870847*10749957122^(7/12) 3908816899999835 a001 267914296/4870847*4106118243^(14/23) 3908816899999835 a001 267914296/4870847*1568397607^(7/11) 3908816899999835 a001 16944503814015141/433494437 3908816899999835 a001 267914296/4870847*599074578^(2/3) 3908816899999835 a001 311187/224056801*312119004989^(10/11) 3908816899999835 a001 701408733/4870847*(1/2+1/2*5^(1/2))^26 3908816899999835 a001 311187/224056801*3461452808002^(5/6) 3908816899999835 a001 701408733/4870847*73681302247^(1/2) 3908816899999835 a001 701408733/4870847*10749957122^(13/24) 3908816899999835 a001 701408733/4870847*4106118243^(13/23) 3908816899999835 a001 701408733/4870847*1568397607^(13/22) 3908816899999835 a001 22180643453796933/567451585 3908816899999835 a001 1836311903/4870847*2537720636^(8/15) 3908816899999835 a001 12586269025/4870847*2537720636^(4/9) 3908816899999835 a001 7778742049/4870847*2537720636^(7/15) 3908816899999835 a001 32951280099/4870847*2537720636^(2/5) 3908816899999835 a001 1836311903/4870847*45537549124^(8/17) 3908816899999835 a001 1836311903/4870847*14662949395604^(8/21) 3908816899999835 a001 726103/1368706081*23725150497407^(13/16) 3908816899999835 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^24 3908816899999835 a001 726103/1368706081*505019158607^(13/14) 3908816899999835 a001 1836311903/4870847*192900153618^(4/9) 3908816899999835 a001 1836311903/4870847*73681302247^(6/13) 3908816899999835 a001 1836311903/4870847*10749957122^(1/2) 3908816899999835 a001 139583862445/4870847*2537720636^(1/3) 3908816899999835 a001 591286729879/4870847*2537720636^(4/15) 3908816899999835 a001 1548008755920/4870847*2537720636^(2/9) 3908816899999835 a001 2504730781961/4870847*2537720636^(1/5) 3908816899999835 a001 1836311903/4870847*4106118243^(12/23) 3908816899999835 a001 116139356908766457/2971215073 3908816899999835 a001 2178309*2537720636^(2/15) 3908816899999835 a001 4807526976/4870847*312119004989^(2/5) 3908816899999835 a001 987/4870846*14662949395604^(6/7) 3908816899999835 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^22 3908816899999835 a001 4807526976/4870847*10749957122^(11/24) 3908816899999835 a001 304056783818705505/7778742049 3908816899999835 a001 726103/9381251041*14662949395604^(8/9) 3908816899999835 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^20 3908816899999835 a001 12586269025/4870847*23725150497407^(5/16) 3908816899999835 a001 12586269025/4870847*505019158607^(5/14) 3908816899999835 a001 12586269025/4870847*73681302247^(5/13) 3908816899999835 a001 225851433717/4870847*17393796001^(2/7) 3908816899999835 a001 12586269025/4870847*28143753123^(2/5) 3908816899999835 a001 398015497273675029/10182505537 3908816899999835 a001 6557470319842/4870847*17393796001^(1/7) 3908816899999835 a001 32951280099/4870847*45537549124^(6/17) 3908816899999835 a001 32951280099/4870847*14662949395604^(2/7) 3908816899999835 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^18 3908816899999835 a001 32951280099/4870847*192900153618^(1/3) 3908816899999835 a001 139583862445/4870847*45537549124^(5/17) 3908816899999835 a001 591286729879/4870847*45537549124^(4/17) 3908816899999835 a001 53316291173/4870847*45537549124^(1/3) 3908816899999835 a001 2504730781961/4870847*45537549124^(3/17) 3908816899999835 a001 2084036199823344669/53316291173 3908816899999835 a001 2178309*45537549124^(2/17) 3908816899999835 a001 726103/64300051206*14662949395604^(20/21) 3908816899999835 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^16 3908816899999835 a001 5456077604922683949/139583862445 3908816899999835 a001 225851433717/4870847*14662949395604^(2/9) 3908816899999835 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^14 3908816899999835 a001 1548008755920/4870847*312119004989^(2/11) 3908816899999835 a001 1548008755920/4870847*(1/2+1/2*5^(1/2))^10 3908816899999835 a001 2178309*14662949395604^(2/21) 3908816899999835 a001 2504730781961/4870847*(1/2+1/2*5^(1/2))^9 3908816899999835 a001 956722026041/4870847*(1/2+1/2*5^(1/2))^11 3908816899999835 a001 2504730781961/4870847*192900153618^(1/6) 3908816899999835 a001 139583862445/4870847*312119004989^(3/11) 3908816899999835 a001 139583862445/4870847*14662949395604^(5/21) 3908816899999835 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^15 3908816899999835 a001 139583862445/4870847*192900153618^(5/18) 3908816899999835 a001 421505175637417410/10783446409 3908816899999835 a001 4052739537881/4870847*73681302247^(2/13) 3908816899999835 a001 591286729879/4870847*73681302247^(3/13) 3908816899999835 a001 365435296162/4870847*73681302247^(1/4) 3908816899999835 a001 429335068425331537/10983760033 3908816899999835 a001 1548008755920/4870847*28143753123^(1/5) 3908816899999835 a001 139583862445/4870847*28143753123^(3/10) 3908816899999835 a001 20365011074/4870847*817138163596^(1/3) 3908816899999835 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^19 3908816899999835 a001 2178309*10749957122^(1/8) 3908816899999835 a001 491974210728644553/12586269025 3908816899999835 a001 4052739537881/4870847*10749957122^(1/6) 3908816899999835 a001 2504730781961/4870847*10749957122^(3/16) 3908816899999835 a001 1548008755920/4870847*10749957122^(5/24) 3908816899999835 a001 7778742049/4870847*17393796001^(3/7) 3908816899999835 a001 591286729879/4870847*10749957122^(1/4) 3908816899999835 a001 12586269025/4870847*10749957122^(5/12) 3908816899999835 a001 225851433717/4870847*10749957122^(7/24) 3908816899999835 a001 139583862445/4870847*10749957122^(5/16) 3908816899999835 a001 86267571272/4870847*10749957122^(1/3) 3908816899999835 a001 32951280099/4870847*10749957122^(3/8) 3908816899999835 a001 7778742049/4870847*45537549124^(7/17) 3908816899999835 a001 7778742049/4870847*14662949395604^(1/3) 3908816899999835 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^21 3908816899999835 a001 2178309/17393796001*3461452808002^(11/12) 3908816899999835 a001 7778742049/4870847*192900153618^(7/18) 3908816899999835 a001 7778742049/4870847*10749957122^(7/16) 3908816899999835 a001 2178309*4106118243^(3/23) 3908816899999835 a001 23799066224663/608856 3908816899999835 a001 4052739537881/4870847*4106118243^(4/23) 3908816899999835 a001 1548008755920/4870847*4106118243^(5/23) 3908816899999835 a001 591286729879/4870847*4106118243^(6/23) 3908816899999835 a001 225851433717/4870847*4106118243^(7/23) 3908816899999835 a001 4807526976/4870847*4106118243^(11/23) 3908816899999835 a001 86267571272/4870847*4106118243^(8/23) 3908816899999835 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^23 3908816899999835 a001 32951280099/4870847*4106118243^(9/23) 3908816899999835 a001 12586269025/4870847*4106118243^(10/23) 3908816899999835 a001 2971215073/4870847*4106118243^(1/2) 3908816899999835 a001 2178309*1568397607^(3/22) 3908816899999835 a001 71778070001172591/1836311903 3908816899999835 a001 1134903170/4870847*2537720636^(5/9) 3908816899999835 a001 4052739537881/4870847*1568397607^(2/11) 3908816899999835 a001 1548008755920/4870847*1568397607^(5/22) 3908816899999835 a001 956722026041/4870847*1568397607^(1/4) 3908816899999835 a001 591286729879/4870847*1568397607^(3/11) 3908816899999835 a001 225851433717/4870847*1568397607^(7/22) 3908816899999835 a001 86267571272/4870847*1568397607^(4/11) 3908816899999835 a001 1134903170/4870847*312119004989^(5/11) 3908816899999835 a001 2178309/2537720636*817138163596^(17/19) 3908816899999835 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^25 3908816899999835 a001 1134903170/4870847*3461452808002^(5/12) 3908816899999835 a001 2178309/2537720636*192900153618^(17/18) 3908816899999835 a001 1134903170/4870847*28143753123^(1/2) 3908816899999835 a001 1836311903/4870847*1568397607^(6/11) 3908816899999835 a001 32951280099/4870847*1568397607^(9/22) 3908816899999835 a001 12586269025/4870847*1568397607^(5/11) 3908816899999835 a001 4807526976/4870847*1568397607^(1/2) 3908816899999835 a001 2178309*599074578^(1/7) 3908816899999835 a001 9138927697859575/233802911 3908816899999835 a001 6557470319842/4870847*599074578^(1/6) 3908816899999835 a001 4052739537881/4870847*599074578^(4/21) 3908816899999835 a001 2504730781961/4870847*599074578^(3/14) 3908816899999835 a001 1548008755920/4870847*599074578^(5/21) 3908816899999835 a001 591286729879/4870847*599074578^(2/7) 3908816899999835 a001 225851433717/4870847*599074578^(1/3) 3908816899999835 a001 433494437/4870847*2537720636^(3/5) 3908816899999835 a001 139583862445/4870847*599074578^(5/14) 3908816899999835 a001 86267571272/4870847*599074578^(8/21) 3908816899999835 a001 433494437/4870847*45537549124^(9/17) 3908816899999835 a001 433494437/4870847*817138163596^(9/19) 3908816899999835 a001 2178309/969323029*14662949395604^(7/9) 3908816899999835 a001 433494437/4870847*(1/2+1/2*5^(1/2))^27 3908816899999835 a001 2178309/969323029*505019158607^(7/8) 3908816899999835 a001 433494437/4870847*192900153618^(1/2) 3908816899999835 a001 433494437/4870847*10749957122^(9/16) 3908816899999835 a001 32951280099/4870847*599074578^(3/7) 3908816899999835 a001 701408733/4870847*599074578^(13/21) 3908816899999835 a001 12586269025/4870847*599074578^(10/21) 3908816899999835 a001 7778742049/4870847*599074578^(1/2) 3908816899999835 a001 4807526976/4870847*599074578^(11/21) 3908816899999835 a001 1836311903/4870847*599074578^(4/7) 3908816899999835 a001 1309034909945448/33489287 3908816899999835 a001 433494437/4870847*599074578^(9/14) 3908816899999835 a001 2178309*228826127^(3/20) 3908816899999835 a001 4052739537881/4870847*228826127^(1/5) 3908816899999835 a001 1548008755920/4870847*228826127^(1/4) 3908816899999835 a001 591286729879/4870847*228826127^(3/10) 3908816899999835 a001 225851433717/4870847*228826127^(7/20) 3908816899999835 a001 139583862445/4870847*228826127^(3/8) 3908816899999835 a001 165580141/4870847*(1/2+1/2*5^(1/2))^29 3908816899999835 a001 165580141/4870847*1322157322203^(1/2) 3908816899999835 a001 86267571272/4870847*228826127^(2/5) 3908816899999835 a001 32951280099/4870847*228826127^(9/20) 3908816899999835 a001 12586269025/4870847*228826127^(1/2) 3908816899999835 a001 4807526976/4870847*228826127^(11/20) 3908816899999835 a001 267914296/4870847*228826127^(7/10) 3908816899999835 a001 1836311903/4870847*228826127^(3/5) 3908816899999835 a001 701408733/4870847*228826127^(13/20) 3908816899999835 a001 1134903170/4870847*228826127^(5/8) 3908816899999835 a001 190478797386287/4873055 3908816899999835 a001 2178309*87403803^(3/19) 3908816899999835 a001 4052739537881/4870847*87403803^(4/19) 3908816899999835 a001 1548008755920/4870847*87403803^(5/19) 3908816899999835 a001 591286729879/4870847*87403803^(6/19) 3908816899999835 a001 225851433717/4870847*87403803^(7/19) 3908816899999835 a001 2178309/141422324*45537549124^(15/17) 3908816899999835 a001 2178309/141422324*312119004989^(9/11) 3908816899999835 a001 2178309/141422324*14662949395604^(5/7) 3908816899999835 a001 63245986/4870847*(1/2+1/2*5^(1/2))^31 3908816899999835 a001 2178309/141422324*192900153618^(5/6) 3908816899999835 a001 2178309/141422324*28143753123^(9/10) 3908816899999835 a001 2178309/141422324*10749957122^(15/16) 3908816899999835 a001 86267571272/4870847*87403803^(8/19) 3908816899999835 a001 32951280099/4870847*87403803^(9/19) 3908816899999836 a001 20365011074/4870847*87403803^(1/2) 3908816899999836 a001 12586269025/4870847*87403803^(10/19) 3908816899999836 a001 4807526976/4870847*87403803^(11/19) 3908816899999836 a001 1836311903/4870847*87403803^(12/19) 3908816899999836 a001 102334155/4870847*87403803^(15/19) 3908816899999836 a001 701408733/4870847*87403803^(13/19) 3908816899999836 a001 267914296/4870847*87403803^(14/19) 3908816899999836 a001 1527884955772497/39088169 3908816899999836 a001 2178309*33385282^(1/6) 3908816899999836 a001 4052739537881/4870847*33385282^(2/9) 3908816899999836 a001 2504730781961/4870847*33385282^(1/4) 3908816899999836 a001 1548008755920/4870847*33385282^(5/18) 3908816899999836 a001 591286729879/4870847*33385282^(1/3) 3908816899999836 a001 24157817/4870847*141422324^(11/13) 3908816899999837 a001 24157817/4870847*2537720636^(11/15) 3908816899999837 a001 24157817/4870847*45537549124^(11/17) 3908816899999837 a001 24157817/4870847*312119004989^(3/5) 3908816899999837 a001 24157817/4870847*817138163596^(11/19) 3908816899999837 a001 24157817/4870847*14662949395604^(11/21) 3908816899999837 a001 24157817/4870847*(1/2+1/2*5^(1/2))^33 3908816899999837 a001 24157817/4870847*192900153618^(11/18) 3908816899999837 a001 24157817/4870847*10749957122^(11/16) 3908816899999837 a001 24157817/4870847*1568397607^(3/4) 3908816899999837 a001 24157817/4870847*599074578^(11/14) 3908816899999837 a001 225851433717/4870847*33385282^(7/18) 3908816899999837 a001 139583862445/4870847*33385282^(5/12) 3908816899999837 a001 86267571272/4870847*33385282^(4/9) 3908816899999837 a001 32951280099/4870847*33385282^(1/2) 3908816899999837 a001 12586269025/4870847*33385282^(5/9) 3908816899999837 a001 7778742049/4870847*33385282^(7/12) 3908816899999837 a001 4807526976/4870847*33385282^(11/18) 3908816899999838 a001 1836311903/4870847*33385282^(2/3) 3908816899999838 a001 701408733/4870847*33385282^(13/18) 3908816899999838 a001 39088169/4870847*33385282^(8/9) 3908816899999838 a001 433494437/4870847*33385282^(3/4) 3908816899999838 a001 267914296/4870847*33385282^(7/9) 3908816899999838 a001 102334155/4870847*33385282^(5/6) 3908816899999839 a001 24316671758561/622098 3908816899999839 a001 2178309*12752043^(3/17) 3908816899999840 a001 24157817/4870847*33385282^(11/12) 3908816899999841 a001 4052739537881/4870847*12752043^(4/17) 3908816899999842 a001 1548008755920/4870847*12752043^(5/17) 3908816899999844 a001 591286729879/4870847*12752043^(6/17) 3908816899999844 a001 9227465/4870847*2537720636^(7/9) 3908816899999844 a001 9227465/4870847*17393796001^(5/7) 3908816899999844 a001 9227465/4870847*312119004989^(7/11) 3908816899999844 a001 9227465/4870847*14662949395604^(5/9) 3908816899999844 a001 2178309/20633239*(1/2+1/2*5^(1/2))^41 3908816899999844 a001 9227465/4870847*(1/2+1/2*5^(1/2))^35 3908816899999844 a001 9227465/4870847*505019158607^(5/8) 3908816899999844 a001 9227465/4870847*28143753123^(7/10) 3908816899999844 a001 9227465/4870847*599074578^(5/6) 3908816899999845 a001 9227465/4870847*228826127^(7/8) 3908816899999845 a001 225851433717/4870847*12752043^(7/17) 3908816899999847 a001 86267571272/4870847*12752043^(8/17) 3908816899999847 a001 53316291173/4870847*12752043^(1/2) 3908816899999848 a001 32951280099/4870847*12752043^(9/17) 3908816899999849 a001 12586269025/4870847*12752043^(10/17) 3908816899999849 a001 133957148/930249*1860498^(13/15) 3908816899999851 a001 4807526976/4870847*12752043^(11/17) 3908816899999852 a001 1836311903/4870847*12752043^(12/17) 3908816899999854 a001 701408733/4870847*12752043^(13/17) 3908816899999855 a001 267914296/4870847*12752043^(14/17) 3908816899999856 a001 102334155/4870847*12752043^(15/17) 3908816899999857 a001 39088169/4870847*12752043^(16/17) 3908816899999859 a001 222915410843895/5702887 3908816899999866 a001 2178309*4870847^(3/16) 3908816899999876 a001 4052739537881/4870847*4870847^(1/4) 3908816899999887 a001 1548008755920/4870847*4870847^(5/16) 3908816899999887 a001 165580141/1860498*1860498^(9/10) 3908816899999897 a001 591286729879/4870847*4870847^(3/8) 3908816899999898 a001 2178309/7881196*2537720636^(13/15) 3908816899999898 a001 2178309/7881196*45537549124^(13/17) 3908816899999898 a001 2178309/7881196*14662949395604^(13/21) 3908816899999898 a001 2178309/7881196*(1/2+1/2*5^(1/2))^39 3908816899999898 a001 3524578/4870847*(1/2+1/2*5^(1/2))^37 3908816899999898 a001 2178309/7881196*192900153618^(13/18) 3908816899999898 a001 2178309/7881196*73681302247^(3/4) 3908816899999898 a001 2178309/7881196*10749957122^(13/16) 3908816899999898 a001 2178309/7881196*599074578^(13/14) 3908816899999907 a001 225851433717/4870847*4870847^(7/16) 3908816899999914 a001 137769300517679/3524578 3908816899999918 a001 86267571272/4870847*4870847^(1/2) 3908816899999919 a001 267914296/12752043*7881196^(10/11) 3908816899999924 a001 1134903170/12752043*7881196^(9/11) 3908816899999925 a001 831985/15126*1860498^(14/15) 3908816899999928 a001 32951280099/4870847*4870847^(9/16) 3908816899999930 a001 1602508992/4250681*7881196^(8/11) 3908816899999934 a001 12586269025/12752043*7881196^(2/3) 3908816899999936 a001 20365011074/12752043*7881196^(7/11) 3908816899999938 a001 12586269025/4870847*4870847^(5/8) 3908816899999939 a001 701408733/33385282*7881196^(10/11) 3908816899999942 a001 86267571272/12752043*7881196^(6/11) 3908816899999942 a001 1836311903/87403803*7881196^(10/11) 3908816899999943 a001 102287808/4868641*7881196^(10/11) 3908816899999943 a001 68884650258840/1762289 3908816899999943 a001 12586269025/599074578*7881196^(10/11) 3908816899999943 a001 32951280099/1568397607*7881196^(10/11) 3908816899999943 a001 86267571272/4106118243*7881196^(10/11) 3908816899999943 a001 225851433717/10749957122*7881196^(10/11) 3908816899999943 a001 591286729879/28143753123*7881196^(10/11) 3908816899999943 a001 1548008755920/73681302247*7881196^(10/11) 3908816899999943 a001 4052739537881/192900153618*7881196^(10/11) 3908816899999943 a001 225749145909/10745088481*7881196^(10/11) 3908816899999943 a001 6557470319842/312119004989*7881196^(10/11) 3908816899999943 a001 2504730781961/119218851371*7881196^(10/11) 3908816899999943 a001 956722026041/45537549124*7881196^(10/11) 3908816899999943 a001 365435296162/17393796001*7881196^(10/11) 3908816899999943 a001 139583862445/6643838879*7881196^(10/11) 3908816899999943 a001 53316291173/2537720636*7881196^(10/11) 3908816899999943 a001 20365011074/969323029*7881196^(10/11) 3908816899999943 a001 7778742049/370248451*7881196^(10/11) 3908816899999943 a001 2971215073/141422324*7881196^(10/11) 3908816899999944 a001 1134903170/54018521*7881196^(10/11) 3908816899999945 a001 2971215073/33385282*7881196^(9/11) 3908816899999947 a001 365435296162/12752043*7881196^(5/11) 3908816899999948 a001 7778742049/87403803*7881196^(9/11) 3908816899999948 a001 20365011074/228826127*7881196^(9/11) 3908816899999949 a001 53316291173/599074578*7881196^(9/11) 3908816899999949 a001 139583862445/1568397607*7881196^(9/11) 3908816899999949 a001 365435296162/4106118243*7881196^(9/11) 3908816899999949 a001 956722026041/10749957122*7881196^(9/11) 3908816899999949 a001 2504730781961/28143753123*7881196^(9/11) 3908816899999949 a001 6557470319842/73681302247*7881196^(9/11) 3908816899999949 a001 10610209857723/119218851371*7881196^(9/11) 3908816899999949 a001 4052739537881/45537549124*7881196^(9/11) 3908816899999949 a001 1548008755920/17393796001*7881196^(9/11) 3908816899999949 a001 591286729879/6643838879*7881196^(9/11) 3908816899999949 a001 225851433717/2537720636*7881196^(9/11) 3908816899999949 a001 4807526976/4870847*4870847^(11/16) 3908816899999949 a001 86267571272/969323029*7881196^(9/11) 3908816899999949 a001 32951280099/370248451*7881196^(9/11) 3908816899999949 a001 12586269025/141422324*7881196^(9/11) 3908816899999950 a001 4807526976/54018521*7881196^(9/11) 3908816899999951 a001 12586269025/33385282*7881196^(8/11) 3908816899999952 a001 5702887/12752043*817138163596^(2/3) 3908816899999952 a001 5702887/12752043*(1/2+1/2*5^(1/2))^38 3908816899999952 a001 5702887/12752043*10749957122^(19/24) 3908816899999952 a001 5702887/12752043*4106118243^(19/23) 3908816899999952 a001 5702887/12752043*1568397607^(19/22) 3908816899999952 a001 5702887/12752043*599074578^(19/21) 3908816899999952 a001 433494437/20633239*7881196^(10/11) 3908816899999952 a001 5702887/12752043*228826127^(19/20) 3908816899999953 a001 516002918640/4250681*7881196^(4/11) 3908816899999954 a001 10983760033/29134601*7881196^(8/11) 3908816899999954 a001 86267571272/228826127*7881196^(8/11) 3908816899999954 a001 267913919/710646*7881196^(8/11) 3908816899999954 a001 591286729879/1568397607*7881196^(8/11) 3908816899999954 a001 516002918640/1368706081*7881196^(8/11) 3908816899999954 a001 4052739537881/10749957122*7881196^(8/11) 3908816899999954 a001 3536736619241/9381251041*7881196^(8/11) 3908816899999954 a001 6557470319842/17393796001*7881196^(8/11) 3908816899999954 a001 2504730781961/6643838879*7881196^(8/11) 3908816899999954 a001 956722026041/2537720636*7881196^(8/11) 3908816899999954 a001 365435296162/969323029*7881196^(8/11) 3908816899999954 a001 139583862445/370248451*7881196^(8/11) 3908816899999954 a001 53316291173/141422324*7881196^(8/11) 3908816899999955 a001 32951280099/33385282*7881196^(2/3) 3908816899999955 a001 2504730781961/12752043*7881196^(1/3) 3908816899999956 a001 20365011074/54018521*7881196^(8/11) 3908816899999956 a001 53316291173/33385282*7881196^(7/11) 3908816899999958 a001 86267571272/87403803*7881196^(2/3) 3908816899999958 a001 1836311903/20633239*7881196^(9/11) 3908816899999958 a001 225851433717/228826127*7881196^(2/3) 3908816899999958 a001 591286729879/599074578*7881196^(2/3) 3908816899999958 a001 1548008755920/1568397607*7881196^(2/3) 3908816899999958 a001 4052739537881/4106118243*7881196^(2/3) 3908816899999958 a001 4807525989/4870846*7881196^(2/3) 3908816899999958 a001 6557470319842/6643838879*7881196^(2/3) 3908816899999958 a001 2504730781961/2537720636*7881196^(2/3) 3908816899999958 a001 956722026041/969323029*7881196^(2/3) 3908816899999958 a001 365435296162/370248451*7881196^(2/3) 3908816899999958 a001 139583862445/141422324*7881196^(2/3) 3908816899999959 a001 6557470319842/12752043*7881196^(3/11) 3908816899999959 a001 1836311903/4870847*4870847^(3/4) 3908816899999959 a001 53316291173/54018521*7881196^(2/3) 3908816899999959 a001 139583862445/87403803*7881196^(7/11) 3908816899999960 a001 365435296162/228826127*7881196^(7/11) 3908816899999960 a001 956722026041/599074578*7881196^(7/11) 3908816899999960 a001 2504730781961/1568397607*7881196^(7/11) 3908816899999960 a001 6557470319842/4106118243*7881196^(7/11) 3908816899999960 a001 10610209857723/6643838879*7881196^(7/11) 3908816899999960 a001 4052739537881/2537720636*7881196^(7/11) 3908816899999960 a001 1548008755920/969323029*7881196^(7/11) 3908816899999960 a001 591286729879/370248451*7881196^(7/11) 3908816899999960 a001 225851433717/141422324*7881196^(7/11) 3908816899999961 a001 86267571272/54018521*7881196^(7/11) 3908816899999962 a001 32264490531/4769326*7881196^(6/11) 3908816899999963 a001 7778742049/20633239*7881196^(8/11) 3908816899999965 a001 591286729879/87403803*7881196^(6/11) 3908816899999966 a001 1548008755920/228826127*7881196^(6/11) 3908816899999966 a001 4052739537881/599074578*7881196^(6/11) 3908816899999966 a001 1515744265389/224056801*7881196^(6/11) 3908816899999966 a001 6557470319842/969323029*7881196^(6/11) 3908816899999966 a001 2504730781961/370248451*7881196^(6/11) 3908816899999966 a001 956722026041/141422324*7881196^(6/11) 3908816899999967 a001 360684711361582/9227465 3908816899999967 a001 365435296162/54018521*7881196^(6/11) 3908816899999967 a001 20365011074/20633239*7881196^(2/3) 3908816899999968 a001 956722026041/33385282*7881196^(5/11) 3908816899999968 a001 267914296/12752043*20633239^(6/7) 3908816899999969 a001 233802911/4250681*20633239^(4/5) 3908816899999969 a001 701408733/4870847*4870847^(13/16) 3908816899999969 a001 32951280099/20633239*7881196^(7/11) 3908816899999969 a001 2971215073/12752043*20633239^(5/7) 3908816899999970 a001 20365011074/12752043*20633239^(3/5) 3908816899999971 a001 10983760033/4250681*20633239^(4/7) 3908816899999971 a001 2504730781961/87403803*7881196^(5/11) 3908816899999971 a001 6557470319842/228826127*7881196^(5/11) 3908816899999971 a001 10610209857723/370248451*7881196^(5/11) 3908816899999972 a001 4052739537881/141422324*7881196^(5/11) 3908816899999972 a001 365435296162/12752043*20633239^(3/7) 3908816899999972 a001 4976784/4250681*141422324^(12/13) 3908816899999972 a001 591286729879/12752043*20633239^(2/5) 3908816899999972 a001 5702887/33385282*2537720636^(8/9) 3908816899999972 a001 4976784/4250681*2537720636^(4/5) 3908816899999972 a001 4976784/4250681*45537549124^(12/17) 3908816899999972 a001 5702887/33385282*312119004989^(8/11) 3908816899999972 a001 4976784/4250681*14662949395604^(4/7) 3908816899999972 a001 5702887/33385282*(1/2+1/2*5^(1/2))^40 3908816899999972 a001 4976784/4250681*(1/2+1/2*5^(1/2))^36 3908816899999972 a001 5702887/33385282*23725150497407^(5/8) 3908816899999972 a001 4976784/4250681*505019158607^(9/14) 3908816899999972 a001 4976784/4250681*192900153618^(2/3) 3908816899999972 a001 4976784/4250681*73681302247^(9/13) 3908816899999972 a001 5702887/33385282*73681302247^(10/13) 3908816899999972 a001 5702887/33385282*28143753123^(4/5) 3908816899999972 a001 4976784/4250681*10749957122^(3/4) 3908816899999972 a001 5702887/33385282*10749957122^(5/6) 3908816899999972 a001 4976784/4250681*4106118243^(18/23) 3908816899999972 a001 5702887/33385282*4106118243^(20/23) 3908816899999972 a001 4976784/4250681*1568397607^(9/11) 3908816899999972 a001 5702887/33385282*1568397607^(10/11) 3908816899999972 a001 4976784/4250681*599074578^(6/7) 3908816899999972 a001 5702887/33385282*599074578^(20/21) 3908816899999973 a001 4976784/4250681*228826127^(9/10) 3908816899999973 a001 1548008755920/54018521*7881196^(5/11) 3908816899999973 a001 4976784/4250681*87403803^(18/19) 3908816899999973 a001 4052739537881/12752043*20633239^(2/7) 3908816899999974 a001 4052739537881/33385282*7881196^(4/11) 3908816899999975 a001 944284833567067/24157817 3908816899999975 a001 139583862445/20633239*7881196^(6/11) 3908816899999975 a001 5702887/87403803*2537720636^(14/15) 3908816899999975 a001 5702887/87403803*17393796001^(6/7) 3908816899999975 a001 5702887/87403803*45537549124^(14/17) 3908816899999975 a001 39088169/12752043*45537549124^(2/3) 3908816899999975 a001 5702887/87403803*14662949395604^(2/3) 3908816899999975 a001 39088169/12752043*(1/2+1/2*5^(1/2))^34 3908816899999975 a001 5702887/87403803*505019158607^(3/4) 3908816899999975 a001 5702887/87403803*192900153618^(7/9) 3908816899999975 a001 39088169/12752043*10749957122^(17/24) 3908816899999975 a001 5702887/87403803*10749957122^(7/8) 3908816899999975 a001 39088169/12752043*4106118243^(17/23) 3908816899999975 a001 5702887/87403803*4106118243^(21/23) 3908816899999975 a001 39088169/12752043*1568397607^(17/22) 3908816899999975 a001 5702887/87403803*1568397607^(21/22) 3908816899999975 a001 39088169/12752043*599074578^(17/21) 3908816899999976 a001 39088169/12752043*228826127^(17/20) 3908816899999976 a001 3278735159921/16692641*7881196^(1/3) 3908816899999976 a001 2472169789339619/63245986 3908816899999976 a001 267914296/12752043*141422324^(10/13) 3908816899999976 a001 1134903170/12752043*141422324^(9/13) 3908816899999976 a001 1836311903/12752043*141422324^(2/3) 3908816899999976 a001 1602508992/4250681*141422324^(8/13) 3908816899999976 a001 20365011074/12752043*141422324^(7/13) 3908816899999976 a001 86267571272/12752043*141422324^(6/13) 3908816899999976 a001 365435296162/12752043*141422324^(5/13) 3908816899999976 a001 5702887/228826127*312119004989^(4/5) 3908816899999976 a001 34111385/4250681*(1/2+1/2*5^(1/2))^32 3908816899999976 a001 34111385/4250681*23725150497407^(1/2) 3908816899999976 a001 34111385/4250681*505019158607^(4/7) 3908816899999976 a001 34111385/4250681*73681302247^(8/13) 3908816899999976 a001 5702887/228826127*73681302247^(11/13) 3908816899999976 a001 34111385/4250681*10749957122^(2/3) 3908816899999976 a001 5702887/228826127*10749957122^(11/12) 3908816899999976 a001 34111385/4250681*4106118243^(16/23) 3908816899999976 a001 5702887/228826127*4106118243^(22/23) 3908816899999976 a001 34111385/4250681*1568397607^(8/11) 3908816899999976 a001 34111385/4250681*599074578^(16/21) 3908816899999976 a001 956722026041/12752043*141422324^(1/3) 3908816899999976 a001 516002918640/4250681*141422324^(4/13) 3908816899999976 a001 39088169/12752043*87403803^(17/19) 3908816899999976 a001 6557470319842/12752043*141422324^(3/13) 3908816899999976 a001 6472224534451790/165580141 3908816899999976 a001 34111385/4250681*228826127^(4/5) 3908816899999976 a001 267914296/12752043*2537720636^(2/3) 3908816899999976 a001 267914296/12752043*45537549124^(10/17) 3908816899999976 a001 267914296/12752043*312119004989^(6/11) 3908816899999976 a001 267914296/12752043*14662949395604^(10/21) 3908816899999976 a001 267914296/12752043*(1/2+1/2*5^(1/2))^30 3908816899999976 a001 267914296/12752043*192900153618^(5/9) 3908816899999976 a001 267914296/12752043*28143753123^(3/5) 3908816899999976 a001 267914296/12752043*10749957122^(5/8) 3908816899999976 a001 5702887/599074578*10749957122^(23/24) 3908816899999976 a001 267914296/12752043*4106118243^(15/23) 3908816899999976 a001 267914296/12752043*1568397607^(15/22) 3908816899999976 a001 16944503814015751/433494437 3908816899999976 a001 267914296/12752043*599074578^(5/7) 3908816899999976 a001 233802911/4250681*17393796001^(4/7) 3908816899999976 a001 5702887/1568397607*45537549124^(16/17) 3908816899999976 a001 233802911/4250681*14662949395604^(4/9) 3908816899999976 a001 233802911/4250681*(1/2+1/2*5^(1/2))^28 3908816899999976 a001 233802911/4250681*505019158607^(1/2) 3908816899999976 a001 5702887/1568397607*192900153618^(8/9) 3908816899999976 a001 233802911/4250681*73681302247^(7/13) 3908816899999976 a001 5702887/1568397607*73681302247^(12/13) 3908816899999976 a001 233802911/4250681*10749957122^(7/12) 3908816899999976 a001 233802911/4250681*4106118243^(14/23) 3908816899999976 a001 44361286907595463/1134903170 3908816899999976 a001 233802911/4250681*1568397607^(7/11) 3908816899999976 a001 1602508992/4250681*2537720636^(8/15) 3908816899999976 a001 20365011074/12752043*2537720636^(7/15) 3908816899999976 a001 10983760033/4250681*2537720636^(4/9) 3908816899999976 a001 2971215073/12752043*2537720636^(5/9) 3908816899999976 a001 86267571272/12752043*2537720636^(2/5) 3908816899999976 a001 5702887/4106118243*312119004989^(10/11) 3908816899999976 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^26 3908816899999976 a001 5702887/4106118243*3461452808002^(5/6) 3908816899999976 a001 1836311903/12752043*73681302247^(1/2) 3908816899999976 a001 1836311903/12752043*10749957122^(13/24) 3908816899999976 a001 365435296162/12752043*2537720636^(1/3) 3908816899999976 a001 516002918640/4250681*2537720636^(4/15) 3908816899999976 a001 4052739537881/12752043*2537720636^(2/9) 3908816899999976 a001 6557470319842/12752043*2537720636^(1/5) 3908816899999976 a001 1836311903/12752043*4106118243^(13/23) 3908816899999976 a001 116139356908770638/2971215073 3908816899999976 a001 1602508992/4250681*45537549124^(8/17) 3908816899999976 a001 1602508992/4250681*14662949395604^(8/21) 3908816899999976 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^24 3908816899999976 a001 5702887/10749957122*23725150497407^(13/16) 3908816899999976 a001 5702887/10749957122*505019158607^(13/14) 3908816899999976 a001 1602508992/4250681*192900153618^(4/9) 3908816899999976 a001 1602508992/4250681*73681302247^(6/13) 3908816899999976 a001 1602508992/4250681*10749957122^(1/2) 3908816899999976 a001 304056783818716451/7778742049 3908816899999976 a001 12586269025/12752043*312119004989^(2/5) 3908816899999976 a001 5702887/28143753123*14662949395604^(6/7) 3908816899999976 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^22 3908816899999976 a001 591286729879/12752043*17393796001^(2/7) 3908816899999976 a001 20365011074/12752043*17393796001^(3/7) 3908816899999976 a001 498453972791095/12752042 3908816899999976 a001 86267571272/12752043*45537549124^(6/17) 3908816899999976 a001 5702887/73681302247*14662949395604^(8/9) 3908816899999976 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^20 3908816899999976 a001 10983760033/4250681*23725150497407^(5/16) 3908816899999976 a001 10983760033/4250681*505019158607^(5/14) 3908816899999976 a001 139583862445/12752043*45537549124^(1/3) 3908816899999976 a001 365435296162/12752043*45537549124^(5/17) 3908816899999976 a001 10983760033/4250681*73681302247^(5/13) 3908816899999976 a001 6557470319842/12752043*45537549124^(3/17) 3908816899999976 a001 2084036199823419694/53316291173 3908816899999976 a001 86267571272/12752043*14662949395604^(2/7) 3908816899999976 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^18 3908816899999976 a001 14284196614945221407/365435296162 3908816899999976 a001 365435296162/12752043*312119004989^(3/11) 3908816899999976 a001 591286729879/12752043*(1/2+1/2*5^(1/2))^14 3908816899999976 a001 516002918640/4250681*817138163596^(4/19) 3908816899999976 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^12 3908816899999976 a001 4052739537881/12752043*(1/2+1/2*5^(1/2))^10 3908816899999976 a001 3536736619241/4250681*(1/2+1/2*5^(1/2))^8 3908816899999976 a001 6557470319842/12752043*(1/2+1/2*5^(1/2))^9 3908816899999976 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^11 3908816899999976 a001 956722026041/12752043*(1/2+1/2*5^(1/2))^13 3908816899999976 a001 23112315624967562447/591286729879 3908816899999976 a001 2942706336674113680/75283811239 3908816899999976 a001 365435296162/12752043*192900153618^(5/18) 3908816899999976 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^17 3908816899999976 a001 3372041405099460673/86267571272 3908816899999976 a001 3536736619241/4250681*73681302247^(2/13) 3908816899999976 a001 516002918640/4250681*73681302247^(3/13) 3908816899999976 a001 956722026041/12752043*73681302247^(1/4) 3908816899999976 a001 75283811239/4250681*73681302247^(4/13) 3908816899999976 a001 53316291173/12752043*817138163596^(1/3) 3908816899999976 a001 5702887/119218851371*14662949395604^(19/21) 3908816899999976 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^19 3908816899999976 a001 429335068425346993/10983760033 3908816899999976 a001 4052739537881/12752043*28143753123^(1/5) 3908816899999976 a001 20365011074/12752043*45537549124^(7/17) 3908816899999976 a001 10983760033/4250681*28143753123^(2/5) 3908816899999976 a001 365435296162/12752043*28143753123^(3/10) 3908816899999976 a001 20365011074/12752043*14662949395604^(1/3) 3908816899999976 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^21 3908816899999976 a001 1597/12752044*3461452808002^(11/12) 3908816899999976 a001 20365011074/12752043*192900153618^(7/18) 3908816899999976 a001 491974210728662264/12586269025 3908816899999976 a001 3536736619241/4250681*10749957122^(1/6) 3908816899999976 a001 6557470319842/12752043*10749957122^(3/16) 3908816899999976 a001 4052739537881/12752043*10749957122^(5/24) 3908816899999976 a001 516002918640/4250681*10749957122^(1/4) 3908816899999976 a001 591286729879/12752043*10749957122^(7/24) 3908816899999976 a001 12586269025/12752043*10749957122^(11/24) 3908816899999976 a001 365435296162/12752043*10749957122^(5/16) 3908816899999976 a001 75283811239/4250681*10749957122^(1/3) 3908816899999976 a001 86267571272/12752043*10749957122^(3/8) 3908816899999976 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^23 3908816899999976 a001 10983760033/4250681*10749957122^(5/12) 3908816899999976 a001 20365011074/12752043*10749957122^(7/16) 3908816899999976 a001 62639142303315271/1602508992 3908816899999976 a001 3536736619241/4250681*4106118243^(4/23) 3908816899999976 a001 4052739537881/12752043*4106118243^(5/23) 3908816899999976 a001 516002918640/4250681*4106118243^(6/23) 3908816899999976 a001 591286729879/12752043*4106118243^(7/23) 3908816899999976 a001 75283811239/4250681*4106118243^(8/23) 3908816899999976 a001 1602508992/4250681*4106118243^(12/23) 3908816899999976 a001 2971215073/12752043*312119004989^(5/11) 3908816899999976 a001 5702887/6643838879*14662949395604^(17/21) 3908816899999976 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^25 3908816899999976 a001 2971215073/12752043*3461452808002^(5/12) 3908816899999976 a001 5702887/6643838879*192900153618^(17/18) 3908816899999976 a001 86267571272/12752043*4106118243^(9/23) 3908816899999976 a001 2971215073/12752043*28143753123^(1/2) 3908816899999976 a001 10983760033/4250681*4106118243^(10/23) 3908816899999976 a001 12586269025/12752043*4106118243^(11/23) 3908816899999976 a001 7778742049/12752043*4106118243^(1/2) 3908816899999976 a001 71778070001175175/1836311903 3908816899999976 a001 1134903170/12752043*2537720636^(3/5) 3908816899999976 a001 3536736619241/4250681*1568397607^(2/11) 3908816899999976 a001 4052739537881/12752043*1568397607^(5/22) 3908816899999976 a001 2504730781961/12752043*1568397607^(1/4) 3908816899999976 a001 516002918640/4250681*1568397607^(3/11) 3908816899999976 a001 591286729879/12752043*1568397607^(7/22) 3908816899999976 a001 75283811239/4250681*1568397607^(4/11) 3908816899999976 a001 1134903170/12752043*45537549124^(9/17) 3908816899999976 a001 1134903170/12752043*817138163596^(9/19) 3908816899999976 a001 5702887/2537720636*14662949395604^(7/9) 3908816899999976 a001 1134903170/12752043*14662949395604^(3/7) 3908816899999976 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^27 3908816899999976 a001 5702887/2537720636*505019158607^(7/8) 3908816899999976 a001 1134903170/12752043*192900153618^(1/2) 3908816899999976 a001 1134903170/12752043*10749957122^(9/16) 3908816899999976 a001 86267571272/12752043*1568397607^(9/22) 3908816899999976 a001 1836311903/12752043*1568397607^(13/22) 3908816899999976 a001 10983760033/4250681*1568397607^(5/11) 3908816899999976 a001 12586269025/12752043*1568397607^(1/2) 3908816899999976 a001 1602508992/4250681*1568397607^(6/11) 3908816899999976 a001 9138927697859904/233802911 3908816899999976 a001 3536736619241/4250681*599074578^(4/21) 3908816899999976 a001 6557470319842/12752043*599074578^(3/14) 3908816899999976 a001 4052739537881/12752043*599074578^(5/21) 3908816899999976 a001 516002918640/4250681*599074578^(2/7) 3908816899999976 a001 591286729879/12752043*599074578^(1/3) 3908816899999976 a001 365435296162/12752043*599074578^(5/14) 3908816899999976 a001 75283811239/4250681*599074578^(8/21) 3908816899999976 a001 433494437/12752043*(1/2+1/2*5^(1/2))^29 3908816899999976 a001 433494437/12752043*1322157322203^(1/2) 3908816899999976 a001 86267571272/12752043*599074578^(3/7) 3908816899999976 a001 10983760033/4250681*599074578^(10/21) 3908816899999976 a001 20365011074/12752043*599074578^(1/2) 3908816899999976 a001 233802911/4250681*599074578^(2/3) 3908816899999976 a001 12586269025/12752043*599074578^(11/21) 3908816899999976 a001 1602508992/4250681*599074578^(4/7) 3908816899999976 a001 1836311903/12752043*599074578^(13/21) 3908816899999976 a001 1134903170/12752043*599074578^(9/14) 3908816899999976 a001 10472279279563961/267914296 3908816899999976 a001 3536736619241/4250681*228826127^(1/5) 3908816899999976 a001 4052739537881/12752043*228826127^(1/4) 3908816899999976 a001 516002918640/4250681*228826127^(3/10) 3908816899999976 a001 591286729879/12752043*228826127^(7/20) 3908816899999976 a001 365435296162/12752043*228826127^(3/8) 3908816899999976 a001 5702887/370248451*45537549124^(15/17) 3908816899999976 a001 5702887/370248451*312119004989^(9/11) 3908816899999976 a001 5702887/370248451*14662949395604^(5/7) 3908816899999976 a001 165580141/12752043*(1/2+1/2*5^(1/2))^31 3908816899999976 a001 165580141/12752043*9062201101803^(1/2) 3908816899999976 a001 5702887/370248451*192900153618^(5/6) 3908816899999976 a001 5702887/370248451*28143753123^(9/10) 3908816899999976 a001 5702887/370248451*10749957122^(15/16) 3908816899999976 a001 75283811239/4250681*228826127^(2/5) 3908816899999976 a001 63245986/12752043*141422324^(11/13) 3908816899999976 a001 86267571272/12752043*228826127^(9/20) 3908816899999976 a001 10983760033/4250681*228826127^(1/2) 3908816899999976 a001 12586269025/12752043*228826127^(11/20) 3908816899999976 a001 1602508992/4250681*228826127^(3/5) 3908816899999976 a001 267914296/12752043*228826127^(3/4) 3908816899999976 a001 2971215073/12752043*228826127^(5/8) 3908816899999976 a001 1836311903/12752043*228826127^(13/20) 3908816899999976 a001 233802911/4250681*228826127^(7/10) 3908816899999976 a001 1333351581704057/34111385 3908816899999976 a001 3536736619241/4250681*87403803^(4/19) 3908816899999976 a001 4052739537881/12752043*87403803^(5/19) 3908816899999976 a001 516002918640/4250681*87403803^(6/19) 3908816899999976 a001 591286729879/12752043*87403803^(7/19) 3908816899999976 a001 63245986/12752043*2537720636^(11/15) 3908816899999976 a001 63245986/12752043*45537549124^(11/17) 3908816899999976 a001 63245986/12752043*312119004989^(3/5) 3908816899999976 a001 63245986/12752043*14662949395604^(11/21) 3908816899999976 a001 63245986/12752043*(1/2+1/2*5^(1/2))^33 3908816899999976 a001 63245986/12752043*192900153618^(11/18) 3908816899999976 a001 63245986/12752043*10749957122^(11/16) 3908816899999976 a001 63245986/12752043*1568397607^(3/4) 3908816899999976 a001 63245986/12752043*599074578^(11/14) 3908816899999976 a001 75283811239/4250681*87403803^(8/19) 3908816899999976 a001 86267571272/12752043*87403803^(9/19) 3908816899999976 a001 53316291173/12752043*87403803^(1/2) 3908816899999976 a001 10983760033/4250681*87403803^(10/19) 3908816899999976 a001 12586269025/12752043*87403803^(11/19) 3908816899999976 a001 1602508992/4250681*87403803^(12/19) 3908816899999976 a001 1836311903/12752043*87403803^(13/19) 3908816899999976 a001 34111385/4250681*87403803^(16/19) 3908816899999976 a001 233802911/4250681*87403803^(14/19) 3908816899999976 a001 267914296/12752043*87403803^(15/19) 3908816899999976 a001 1527884955772552/39088169 3908816899999976 a001 3536736619241/620166*710647^(1/7) 3908816899999977 a001 3536736619241/29134601*7881196^(4/11) 3908816899999977 a001 3536736619241/4250681*33385282^(2/9) 3908816899999977 a001 6557470319842/12752043*33385282^(1/4) 3908816899999977 a001 4052739537881/12752043*33385282^(5/18) 3908816899999977 a001 516002918640/4250681*33385282^(1/3) 3908816899999977 a001 24157817/12752043*2537720636^(7/9) 3908816899999977 a001 24157817/12752043*17393796001^(5/7) 3908816899999977 a001 24157817/12752043*312119004989^(7/11) 3908816899999977 a001 24157817/12752043*14662949395604^(5/9) 3908816899999977 a001 24157817/12752043*(1/2+1/2*5^(1/2))^35 3908816899999977 a001 24157817/12752043*505019158607^(5/8) 3908816899999977 a001 24157817/12752043*28143753123^(7/10) 3908816899999977 a001 24157817/12752043*599074578^(5/6) 3908816899999977 a001 591286729879/12752043*33385282^(7/18) 3908816899999977 a001 24157817/12752043*228826127^(7/8) 3908816899999977 a001 365435296162/12752043*33385282^(5/12) 3908816899999978 a001 75283811239/4250681*33385282^(4/9) 3908816899999978 a001 86267571272/12752043*33385282^(1/2) 3908816899999978 a001 10983760033/4250681*33385282^(5/9) 3908816899999978 a001 20365011074/12752043*33385282^(7/12) 3908816899999978 a001 12586269025/12752043*33385282^(11/18) 3908816899999978 a001 1602508992/4250681*33385282^(2/3) 3908816899999978 a001 6557470319842/54018521*7881196^(4/11) 3908816899999979 a001 1836311903/12752043*33385282^(13/18) 3908816899999979 a001 1134903170/12752043*33385282^(3/4) 3908816899999979 a001 233802911/4250681*33385282^(7/9) 3908816899999979 a001 39088169/12752043*33385282^(17/18) 3908816899999979 a001 267914296/12752043*33385282^(5/6) 3908816899999979 a001 34111385/4250681*33385282^(8/9) 3908816899999979 a001 63245986/12752043*33385282^(11/12) 3908816899999979 a001 267914296/4870847*4870847^(7/8) 3908816899999979 a001 194533374068495/4976784 3908816899999980 a001 10610209857723/54018521*7881196^(1/3) 3908816899999981 a001 591286729879/20633239*7881196^(5/11) 3908816899999982 a001 3536736619241/4250681*12752043^(4/17) 3908816899999983 a001 4052739537881/12752043*12752043^(5/17) 3908816899999984 a001 516002918640/4250681*12752043^(6/17) 3908816899999985 a001 5702887/20633239*2537720636^(13/15) 3908816899999985 a001 5702887/20633239*45537549124^(13/17) 3908816899999985 a001 5702887/20633239*14662949395604^(13/21) 3908816899999985 a001 5702887/20633239*(1/2+1/2*5^(1/2))^39 3908816899999985 a001 9227465/12752043*(1/2+1/2*5^(1/2))^37 3908816899999985 a001 5702887/20633239*192900153618^(13/18) 3908816899999985 a001 5702887/20633239*73681302247^(3/4) 3908816899999985 a001 5702887/20633239*10749957122^(13/16) 3908816899999985 a001 5702887/20633239*599074578^(13/14) 3908816899999986 a001 591286729879/12752043*12752043^(7/17) 3908816899999986 a001 2504730781961/20633239*7881196^(4/11) 3908816899999987 a001 75283811239/4250681*12752043^(8/17) 3908816899999988 a001 139583862445/12752043*12752043^(1/2) 3908816899999988 a001 4052739537881/20633239*7881196^(1/3) 3908816899999989 a001 701408733/33385282*20633239^(6/7) 3908816899999989 a001 32039013/2+20633239/2*5^(1/2) 3908816899999989 a001 360684711361584/9227465 3908816899999989 a001 86267571272/12752043*12752043^(9/17) 3908816899999989 a001 1836311903/33385282*20633239^(4/5) 3908816899999990 a001 102334155/4870847*4870847^(15/16) 3908816899999990 a001 7778742049/33385282*20633239^(5/7) 3908816899999990 a001 10983760033/4250681*12752043^(10/17) 3908816899999991 a001 53316291173/33385282*20633239^(3/5) 3908816899999991 a001 43133785636/16692641*20633239^(4/7) 3908816899999992 a001 12586269025/12752043*12752043^(11/17) 3908816899999992 a001 1836311903/87403803*20633239^(6/7) 3908816899999992 a001 10610209857723/20633239*7881196^(3/11) 3908816899999992 a001 102287808/4868641*20633239^(6/7) 3908816899999992 a001 12586269025/599074578*20633239^(6/7) 3908816899999992 a001 32951280099/1568397607*20633239^(6/7) 3908816899999992 a001 86267571272/4106118243*20633239^(6/7) 3908816899999992 a001 225851433717/10749957122*20633239^(6/7) 3908816899999992 a001 591286729879/28143753123*20633239^(6/7) 3908816899999992 a001 1548008755920/73681302247*20633239^(6/7) 3908816899999992 a001 4052739537881/192900153618*20633239^(6/7) 3908816899999992 a001 225749145909/10745088481*20633239^(6/7) 3908816899999992 a001 6557470319842/312119004989*20633239^(6/7) 3908816899999992 a001 2504730781961/119218851371*20633239^(6/7) 3908816899999992 a001 956722026041/45537549124*20633239^(6/7) 3908816899999992 a001 365435296162/17393796001*20633239^(6/7) 3908816899999992 a001 139583862445/6643838879*20633239^(6/7) 3908816899999992 a001 53316291173/2537720636*20633239^(6/7) 3908816899999992 a001 20365011074/969323029*20633239^(6/7) 3908816899999992 a001 1602508992/29134601*20633239^(4/5) 3908816899999992 a001 7778742049/370248451*20633239^(6/7) 3908816899999992 a001 2971215073/141422324*20633239^(6/7) 3908816899999993 a001 956722026041/33385282*20633239^(3/7) 3908816899999993 a001 12586269025/228826127*20633239^(4/5) 3908816899999993 a001 10983760033/199691526*20633239^(4/5) 3908816899999993 a001 86267571272/1568397607*20633239^(4/5) 3908816899999993 a001 75283811239/1368706081*20633239^(4/5) 3908816899999993 a001 591286729879/10749957122*20633239^(4/5) 3908816899999993 a001 12585437040/228811001*20633239^(4/5) 3908816899999993 a001 4052739537881/73681302247*20633239^(4/5) 3908816899999993 a001 3536736619241/64300051206*20633239^(4/5) 3908816899999993 a001 6557470319842/119218851371*20633239^(4/5) 3908816899999993 a001 2504730781961/45537549124*20633239^(4/5) 3908816899999993 a001 956722026041/17393796001*20633239^(4/5) 3908816899999993 a001 365435296162/6643838879*20633239^(4/5) 3908816899999993 a001 139583862445/2537720636*20633239^(4/5) 3908816899999993 a001 53316291173/969323029*20633239^(4/5) 3908816899999993 a001 20365011074/370248451*20633239^(4/5) 3908816899999993 a001 774004377960/16692641*20633239^(2/5) 3908816899999993 a001 7778742049/141422324*20633239^(4/5) 3908816899999993 a001 1602508992/4250681*12752043^(12/17) 3908816899999993 a001 20365011074/87403803*20633239^(5/7) 3908816899999993 a001 7465176/16692641*817138163596^(2/3) 3908816899999993 a001 7465176/16692641*(1/2+1/2*5^(1/2))^38 3908816899999993 a001 7465176/16692641*10749957122^(19/24) 3908816899999993 a001 7465176/16692641*4106118243^(19/23) 3908816899999993 a001 7465176/16692641*1568397607^(19/22) 3908816899999993 a001 7465176/16692641*599074578^(19/21) 3908816899999993 a001 7465176/16692641*228826127^(19/20) 3908816899999993 a001 53316291173/228826127*20633239^(5/7) 3908816899999993 a001 139583862445/599074578*20633239^(5/7) 3908816899999993 a001 365435296162/1568397607*20633239^(5/7) 3908816899999993 a001 956722026041/4106118243*20633239^(5/7) 3908816899999993 a001 2504730781961/10749957122*20633239^(5/7) 3908816899999993 a001 6557470319842/28143753123*20633239^(5/7) 3908816899999993 a001 10610209857723/45537549124*20633239^(5/7) 3908816899999993 a001 4052739537881/17393796001*20633239^(5/7) 3908816899999993 a001 1548008755920/6643838879*20633239^(5/7) 3908816899999993 a001 591286729879/2537720636*20633239^(5/7) 3908816899999993 a001 225851433717/969323029*20633239^(5/7) 3908816899999993 a001 86267571272/370248451*20633239^(5/7) 3908816899999993 a001 1134903170/54018521*20633239^(6/7) 3908816899999994 a001 5702887+14930352*5^(1/2) 3908816899999994 a001 63246219/271444*20633239^(5/7) 3908816899999994 a001 1515744265389/4769326*20633239^(2/7) 3908816899999994 a001 139583862445/87403803*20633239^(3/5) 3908816899999994 a001 2971215073/54018521*20633239^(4/5) 3908816899999994 a001 75283811239/29134601*20633239^(4/7) 3908816899999994 a001 1836311903/12752043*12752043^(13/17) 3908816899999994 a001 365435296162/228826127*20633239^(3/5) 3908816899999994 a001 956722026041/599074578*20633239^(3/5) 3908816899999995 a001 2504730781961/1568397607*20633239^(3/5) 3908816899999995 a001 6557470319842/4106118243*20633239^(3/5) 3908816899999995 a001 10610209857723/6643838879*20633239^(3/5) 3908816899999995 a001 4052739537881/2537720636*20633239^(3/5) 3908816899999995 a001 1548008755920/969323029*20633239^(3/5) 3908816899999995 a001 591286729879/370248451*20633239^(3/5) 3908816899999995 a001 591286729879/228826127*20633239^(4/7) 3908816899999995 a001 225851433717/141422324*20633239^(3/5) 3908816899999995 a001 86000486440/33281921*20633239^(4/7) 3908816899999995 a001 4052739537881/1568397607*20633239^(4/7) 3908816899999995 a001 3536736619241/1368706081*20633239^(4/7) 3908816899999995 a001 3278735159921/1268860318*20633239^(4/7) 3908816899999995 a001 2504730781961/969323029*20633239^(4/7) 3908816899999995 a001 12586269025/54018521*20633239^(5/7) 3908816899999995 a001 956722026041/370248451*20633239^(4/7) 3908816899999995 a001 182717648081/70711162*20633239^(4/7) 3908816899999995 a001 944284833567072/24157817 3908816899999996 a001 2504730781961/87403803*20633239^(3/7) 3908816899999996 a001 233802911/4250681*12752043^(14/17) 3908816899999996 a001 39088169/33385282*141422324^(12/13) 3908816899999996 a001 4052739537881/87403803*20633239^(2/5) 3908816899999996 a001 86267571272/54018521*20633239^(3/5) 3908816899999996 a001 4976784/29134601*2537720636^(8/9) 3908816899999996 a001 39088169/33385282*2537720636^(4/5) 3908816899999996 a001 39088169/33385282*45537549124^(12/17) 3908816899999996 a001 4976784/29134601*312119004989^(8/11) 3908816899999996 a001 39088169/33385282*14662949395604^(4/7) 3908816899999996 a001 39088169/33385282*(1/2+1/2*5^(1/2))^36 3908816899999996 a001 4976784/29134601*23725150497407^(5/8) 3908816899999996 a001 39088169/33385282*505019158607^(9/14) 3908816899999996 a001 39088169/33385282*192900153618^(2/3) 3908816899999996 a001 39088169/33385282*73681302247^(9/13) 3908816899999996 a001 4976784/29134601*73681302247^(10/13) 3908816899999996 a001 4976784/29134601*28143753123^(4/5) 3908816899999996 a001 39088169/33385282*10749957122^(3/4) 3908816899999996 a001 4976784/29134601*10749957122^(5/6) 3908816899999996 a001 39088169/33385282*4106118243^(18/23) 3908816899999996 a001 4976784/29134601*4106118243^(20/23) 3908816899999996 a001 39088169/33385282*1568397607^(9/11) 3908816899999996 a001 4976784/29134601*1568397607^(10/11) 3908816899999996 a001 6557470319842/228826127*20633239^(3/7) 3908816899999996 a001 39088169/33385282*599074578^(6/7) 3908816899999996 a001 4976784/29134601*599074578^(20/21) 3908816899999996 a001 39088169/33385282*228826127^(9/10) 3908816899999996 a001 139583862445/54018521*20633239^(4/7) 3908816899999996 a001 10610209857723/370248451*20633239^(3/7) 3908816899999996 a001 225749145909/4868641*20633239^(2/5) 3908816899999996 a001 4052739537881/141422324*20633239^(3/7) 3908816899999996 a001 1236084894669816/31622993 3908816899999996 a001 701408733/33385282*141422324^(10/13) 3908816899999996 a001 165580141/33385282*141422324^(11/13) 3908816899999996 a001 2971215073/33385282*141422324^(9/13) 3908816899999996 a001 14930208/103681*141422324^(2/3) 3908816899999996 a001 12586269025/33385282*141422324^(8/13) 3908816899999996 a001 53316291173/33385282*141422324^(7/13) 3908816899999996 a001 32264490531/4769326*141422324^(6/13) 3908816899999996 a001 14930352/228826127*2537720636^(14/15) 3908816899999996 a001 956722026041/33385282*141422324^(5/13) 3908816899999996 a001 14930352/228826127*17393796001^(6/7) 3908816899999996 a001 14930352/228826127*45537549124^(14/17) 3908816899999996 a001 14619165/4769326*45537549124^(2/3) 3908816899999996 a001 14930352/228826127*817138163596^(14/19) 3908816899999996 a001 14930352/228826127*14662949395604^(2/3) 3908816899999996 a001 14619165/4769326*(1/2+1/2*5^(1/2))^34 3908816899999996 a001 14930352/228826127*505019158607^(3/4) 3908816899999996 a001 14930352/228826127*192900153618^(7/9) 3908816899999996 a001 14619165/4769326*10749957122^(17/24) 3908816899999996 a001 14930352/228826127*10749957122^(7/8) 3908816899999996 a001 14619165/4769326*4106118243^(17/23) 3908816899999996 a001 14930352/228826127*4106118243^(21/23) 3908816899999996 a001 14619165/4769326*1568397607^(17/22) 3908816899999996 a001 14930352/228826127*1568397607^(21/22) 3908816899999996 a001 14619165/4769326*599074578^(17/21) 3908816899999996 a001 2504730781961/33385282*141422324^(1/3) 3908816899999996 a001 4052739537881/33385282*141422324^(4/13) 3908816899999996 a001 39088169/33385282*87403803^(18/19) 3908816899999996 a001 6472224534451824/165580141 3908816899999996 a001 14619165/4769326*228826127^(17/20) 3908816899999996 a001 829464/33281921*312119004989^(4/5) 3908816899999996 a001 133957148/16692641*(1/2+1/2*5^(1/2))^32 3908816899999996 a001 133957148/16692641*23725150497407^(1/2) 3908816899999996 a001 133957148/16692641*505019158607^(4/7) 3908816899999996 a001 133957148/16692641*73681302247^(8/13) 3908816899999996 a001 829464/33281921*73681302247^(11/13) 3908816899999996 a001 133957148/16692641*10749957122^(2/3) 3908816899999996 a001 829464/33281921*10749957122^(11/12) 3908816899999996 a001 133957148/16692641*4106118243^(16/23) 3908816899999996 a001 829464/33281921*4106118243^(22/23) 3908816899999996 a001 133957148/16692641*1568397607^(8/11) 3908816899999997 a001 16944503814015840/433494437 3908816899999997 a001 133957148/16692641*599074578^(16/21) 3908816899999997 a001 701408733/33385282*2537720636^(2/3) 3908816899999997 a001 701408733/33385282*45537549124^(10/17) 3908816899999997 a001 701408733/33385282*312119004989^(6/11) 3908816899999997 a001 701408733/33385282*14662949395604^(10/21) 3908816899999997 a001 701408733/33385282*(1/2+1/2*5^(1/2))^30 3908816899999997 a001 701408733/33385282*192900153618^(5/9) 3908816899999997 a001 701408733/33385282*28143753123^(3/5) 3908816899999997 a001 701408733/33385282*10749957122^(5/8) 3908816899999997 a001 14930352/1568397607*10749957122^(23/24) 3908816899999997 a001 701408733/33385282*4106118243^(15/23) 3908816899999997 a001 1304743732576344/33379505 3908816899999997 a001 701408733/33385282*1568397607^(15/22) 3908816899999997 a001 12586269025/33385282*2537720636^(8/15) 3908816899999997 a001 7778742049/33385282*2537720636^(5/9) 3908816899999997 a001 53316291173/33385282*2537720636^(7/15) 3908816899999997 a001 2971215073/33385282*2537720636^(3/5) 3908816899999997 a001 43133785636/16692641*2537720636^(4/9) 3908816899999997 a001 32264490531/4769326*2537720636^(2/5) 3908816899999997 a001 1836311903/33385282*17393796001^(4/7) 3908816899999997 a001 4976784/1368706081*45537549124^(16/17) 3908816899999997 a001 1836311903/33385282*14662949395604^(4/9) 3908816899999997 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^28 3908816899999997 a001 1836311903/33385282*505019158607^(1/2) 3908816899999997 a001 4976784/1368706081*192900153618^(8/9) 3908816899999997 a001 1836311903/33385282*73681302247^(7/13) 3908816899999997 a001 4976784/1368706081*73681302247^(12/13) 3908816899999997 a001 1836311903/33385282*10749957122^(7/12) 3908816899999997 a001 956722026041/33385282*2537720636^(1/3) 3908816899999997 a001 4052739537881/33385282*2537720636^(4/15) 3908816899999997 a001 1515744265389/4769326*2537720636^(2/9) 3908816899999997 a001 1836311903/33385282*4106118243^(14/23) 3908816899999997 a001 116139356908771248/2971215073 3908816899999997 a001 7465176/5374978561*312119004989^(10/11) 3908816899999997 a001 14930208/103681*(1/2+1/2*5^(1/2))^26 3908816899999997 a001 7465176/5374978561*3461452808002^(5/6) 3908816899999997 a001 14930208/103681*73681302247^(1/2) 3908816899999997 a001 14930208/103681*10749957122^(13/24) 3908816899999997 a001 304056783818718048/7778742049 3908816899999997 a001 12586269025/33385282*45537549124^(8/17) 3908816899999997 a001 53316291173/33385282*17393796001^(3/7) 3908816899999997 a001 12586269025/33385282*14662949395604^(8/21) 3908816899999997 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^24 3908816899999997 a001 4976784/9381251041*23725150497407^(13/16) 3908816899999997 a001 4976784/9381251041*505019158607^(13/14) 3908816899999997 a001 12586269025/33385282*192900153618^(4/9) 3908816899999997 a001 12586269025/33385282*73681302247^(6/13) 3908816899999997 a001 774004377960/16692641*17393796001^(2/7) 3908816899999997 a001 398015497273691448/10182505537 3908816899999997 a001 32951280099/33385282*312119004989^(2/5) 3908816899999997 a001 14930352/73681302247*14662949395604^(6/7) 3908816899999997 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^22 3908816899999997 a001 32264490531/4769326*45537549124^(6/17) 3908816899999997 a001 182717648081/16692641*45537549124^(1/3) 3908816899999997 a001 956722026041/33385282*45537549124^(5/17) 3908816899999997 a001 53316291173/33385282*45537549124^(7/17) 3908816899999997 a001 4052739537881/33385282*45537549124^(4/17) 3908816899999997 a001 2084036199823430640/53316291173 3908816899999997 a001 2584/33385281*14662949395604^(8/9) 3908816899999997 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^20 3908816899999997 a001 43133785636/16692641*23725150497407^(5/16) 3908816899999997 a001 43133785636/16692641*505019158607^(5/14) 3908816899999997 a001 5456077604922909024/139583862445 3908816899999997 a001 32264490531/4769326*14662949395604^(2/7) 3908816899999997 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^18 3908816899999997 a001 956722026041/33385282*312119004989^(3/11) 3908816899999997 a001 1515744265389/4769326*312119004989^(2/11) 3908816899999997 a001 774004377960/16692641*(1/2+1/2*5^(1/2))^14 3908816899999997 a001 1515744265389/4769326*(1/2+1/2*5^(1/2))^10 3908816899999997 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^13 3908816899999997 a001 23112315624967683840/591286729879 3908816899999997 a001 2942706336674129136/75283811239 3908816899999997 a001 956722026041/33385282*192900153618^(5/18) 3908816899999997 a001 139583862445/33385282*817138163596^(1/3) 3908816899999997 a001 14930352/312119004989*14662949395604^(19/21) 3908816899999997 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^19 3908816899999997 a001 1304969584016826/33385283 3908816899999997 a001 4052739537881/33385282*73681302247^(3/13) 3908816899999997 a001 43133785636/16692641*73681302247^(5/13) 3908816899999997 a001 2504730781961/33385282*73681302247^(1/4) 3908816899999997 a001 591286729879/33385282*73681302247^(4/13) 3908816899999997 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^21 3908816899999997 a001 14930352/119218851371*3461452808002^(11/12) 3908816899999997 a001 53316291173/33385282*192900153618^(7/18) 3908816899999997 a001 429335068425349248/10983760033 3908816899999997 a001 1515744265389/4769326*28143753123^(1/5) 3908816899999997 a001 956722026041/33385282*28143753123^(3/10) 3908816899999997 a001 43133785636/16692641*28143753123^(2/5) 3908816899999997 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^23 3908816899999997 a001 491974210728664848/12586269025 3908816899999997 a001 1515744265389/4769326*10749957122^(5/24) 3908816899999997 a001 4052739537881/33385282*10749957122^(1/4) 3908816899999997 a001 774004377960/16692641*10749957122^(7/24) 3908816899999997 a001 956722026041/33385282*10749957122^(5/16) 3908816899999997 a001 591286729879/33385282*10749957122^(1/3) 3908816899999997 a001 12586269025/33385282*10749957122^(1/2) 3908816899999997 a001 32264490531/4769326*10749957122^(3/8) 3908816899999997 a001 7778742049/33385282*312119004989^(5/11) 3908816899999997 a001 14930352/17393796001*817138163596^(17/19) 3908816899999997 a001 14930352/17393796001*14662949395604^(17/21) 3908816899999997 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^25 3908816899999997 a001 14930352/17393796001*192900153618^(17/18) 3908816899999997 a001 43133785636/16692641*10749957122^(5/12) 3908816899999997 a001 32951280099/33385282*10749957122^(11/24) 3908816899999997 a001 53316291173/33385282*10749957122^(7/16) 3908816899999997 a001 7778742049/33385282*28143753123^(1/2) 3908816899999997 a001 1304982131319075/33385604 3908816899999997 a001 1515744265389/4769326*4106118243^(5/23) 3908816899999997 a001 4052739537881/33385282*4106118243^(6/23) 3908816899999997 a001 774004377960/16692641*4106118243^(7/23) 3908816899999997 a001 591286729879/33385282*4106118243^(8/23) 3908816899999997 a001 2971215073/33385282*45537549124^(9/17) 3908816899999997 a001 2971215073/33385282*817138163596^(9/19) 3908816899999997 a001 14930352/6643838879*14662949395604^(7/9) 3908816899999997 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^27 3908816899999997 a001 14930352/6643838879*505019158607^(7/8) 3908816899999997 a001 2971215073/33385282*192900153618^(1/2) 3908816899999997 a001 32264490531/4769326*4106118243^(9/23) 3908816899999997 a001 14930208/103681*4106118243^(13/23) 3908816899999997 a001 43133785636/16692641*4106118243^(10/23) 3908816899999997 a001 2971215073/33385282*10749957122^(9/16) 3908816899999997 a001 32951280099/33385282*4106118243^(11/23) 3908816899999997 a001 12586269025/33385282*4106118243^(12/23) 3908816899999997 a001 10182505537/16692641*4106118243^(1/2) 3908816899999997 a001 71778070001175552/1836311903 3908816899999997 a001 1515744265389/4769326*1568397607^(5/22) 3908816899999997 a001 3278735159921/16692641*1568397607^(1/4) 3908816899999997 a001 4052739537881/33385282*1568397607^(3/11) 3908816899999997 a001 774004377960/16692641*1568397607^(7/22) 3908816899999997 a001 591286729879/33385282*1568397607^(4/11) 3908816899999997 a001 567451585/16692641*(1/2+1/2*5^(1/2))^29 3908816899999997 a001 567451585/16692641*1322157322203^(1/2) 3908816899999997 a001 32264490531/4769326*1568397607^(9/22) 3908816899999997 a001 43133785636/16692641*1568397607^(5/11) 3908816899999997 a001 1836311903/33385282*1568397607^(7/11) 3908816899999997 a001 32951280099/33385282*1568397607^(1/2) 3908816899999997 a001 12586269025/33385282*1568397607^(6/11) 3908816899999997 a001 14930208/103681*1568397607^(13/22) 3908816899999997 a001 9138927697859952/233802911 3908816899999997 a001 1515744265389/4769326*599074578^(5/21) 3908816899999997 a001 4052739537881/33385282*599074578^(2/7) 3908816899999997 a001 774004377960/16692641*599074578^(1/3) 3908816899999997 a001 956722026041/33385282*599074578^(5/14) 3908816899999997 a001 591286729879/33385282*599074578^(8/21) 3908816899999997 a001 14930352/969323029*45537549124^(15/17) 3908816899999997 a001 14930352/969323029*312119004989^(9/11) 3908816899999997 a001 14930352/969323029*14662949395604^(5/7) 3908816899999997 a001 433494437/33385282*(1/2+1/2*5^(1/2))^31 3908816899999997 a001 14930352/969323029*192900153618^(5/6) 3908816899999997 a001 14930352/969323029*28143753123^(9/10) 3908816899999997 a001 14930352/969323029*10749957122^(15/16) 3908816899999997 a001 32264490531/4769326*599074578^(3/7) 3908816899999997 a001 43133785636/16692641*599074578^(10/21) 3908816899999997 a001 53316291173/33385282*599074578^(1/2) 3908816899999997 a001 32951280099/33385282*599074578^(11/21) 3908816899999997 a001 701408733/33385282*599074578^(5/7) 3908816899999997 a001 12586269025/33385282*599074578^(4/7) 3908816899999997 a001 14930208/103681*599074578^(13/21) 3908816899999997 a001 1836311903/33385282*599074578^(2/3) 3908816899999997 a001 2971215073/33385282*599074578^(9/14) 3908816899999997 a001 1309034909945502/33489287 3908816899999997 a001 1515744265389/4769326*228826127^(1/4) 3908816899999997 a001 4052739537881/33385282*228826127^(3/10) 3908816899999997 a001 774004377960/16692641*228826127^(7/20) 3908816899999997 a001 956722026041/33385282*228826127^(3/8) 3908816899999997 a001 165580141/33385282*2537720636^(11/15) 3908816899999997 a001 165580141/33385282*45537549124^(11/17) 3908816899999997 a001 165580141/33385282*312119004989^(3/5) 3908816899999997 a001 165580141/33385282*14662949395604^(11/21) 3908816899999997 a001 165580141/33385282*(1/2+1/2*5^(1/2))^33 3908816899999997 a001 165580141/33385282*192900153618^(11/18) 3908816899999997 a001 165580141/33385282*10749957122^(11/16) 3908816899999997 a001 165580141/33385282*1568397607^(3/4) 3908816899999997 a001 591286729879/33385282*228826127^(2/5) 3908816899999997 a001 3278735159921/70711162*20633239^(2/5) 3908816899999997 a001 32264490531/4769326*228826127^(9/20) 3908816899999997 a001 165580141/33385282*599074578^(11/14) 3908816899999997 a001 43133785636/16692641*228826127^(1/2) 3908816899999997 a001 32951280099/33385282*228826127^(11/20) 3908816899999997 a001 12586269025/33385282*228826127^(3/5) 3908816899999997 a001 7778742049/33385282*228826127^(5/8) 3908816899999997 a001 14930208/103681*228826127^(13/20) 3908816899999997 a001 133957148/16692641*228826127^(4/5) 3908816899999997 a001 1836311903/33385282*228826127^(7/10) 3908816899999997 a001 701408733/33385282*228826127^(3/4) 3908816899999997 a001 1333351581704064/34111385 3908816899999997 a001 1515744265389/4769326*87403803^(5/19) 3908816899999997 a001 4052739537881/33385282*87403803^(6/19) 3908816899999997 a001 774004377960/16692641*87403803^(7/19) 3908816899999997 a001 31622993/16692641*2537720636^(7/9) 3908816899999997 a001 31622993/16692641*17393796001^(5/7) 3908816899999997 a001 31622993/16692641*312119004989^(7/11) 3908816899999997 a001 31622993/16692641*14662949395604^(5/9) 3908816899999997 a001 31622993/16692641*(1/2+1/2*5^(1/2))^35 3908816899999997 a001 31622993/16692641*505019158607^(5/8) 3908816899999997 a001 31622993/16692641*28143753123^(7/10) 3908816899999997 a001 31622993/16692641*599074578^(5/6) 3908816899999997 a001 591286729879/33385282*87403803^(8/19) 3908816899999997 a001 32264490531/4769326*87403803^(9/19) 3908816899999997 a001 139583862445/33385282*87403803^(1/2) 3908816899999997 a001 31622993/16692641*228826127^(7/8) 3908816899999997 a001 43133785636/16692641*87403803^(10/19) 3908816899999997 a001 32951280099/33385282*87403803^(11/19) 3908816899999997 a001 12586269025/33385282*87403803^(12/19) 3908816899999997 a001 14930208/103681*87403803^(13/19) 3908816899999997 a001 1836311903/33385282*87403803^(14/19) 3908816899999997 a001 14619165/4769326*87403803^(17/19) 3908816899999997 a001 701408733/33385282*87403803^(15/19) 3908816899999997 a001 133957148/16692641*87403803^(16/19) 3908816899999997 a001 1527884955772560/39088169 3908816899999997 a001 267914296/12752043*12752043^(15/17) 3908816899999997 a001 1548008755920/54018521*20633239^(3/7) 3908816899999997 a001 1515744265389/4769326*33385282^(5/18) 3908816899999998 a001 4052739537881/33385282*33385282^(1/3) 3908816899999998 a001 2504730781961/54018521*20633239^(2/5) 3908816899999998 a001 14930352/54018521*2537720636^(13/15) 3908816899999998 a001 14930352/54018521*45537549124^(13/17) 3908816899999998 a001 14930352/54018521*14662949395604^(13/21) 3908816899999998 a001 24157817/33385282*(1/2+1/2*5^(1/2))^37 3908816899999998 a001 14930352/54018521*192900153618^(13/18) 3908816899999998 a001 14930352/54018521*73681302247^(3/4) 3908816899999998 a001 14930352/54018521*10749957122^(13/16) 3908816899999998 a001 14930352/54018521*599074578^(13/14) 3908816899999998 a001 774004377960/16692641*33385282^(7/18) 3908816899999998 a001 956722026041/33385282*33385282^(5/12) 3908816899999998 a001 591286729879/33385282*33385282^(4/9) 3908816899999998 a001 32264490531/4769326*33385282^(1/2) 3908816899999998 a001 -9227465/2+39088169/2*5^(1/2) 3908816899999998 a001 43133785636/16692641*33385282^(5/9) 3908816899999999 a001 34111385/4250681*12752043^(16/17) 3908816899999999 a001 53316291173/33385282*33385282^(7/12) 3908816899999999 a001 32951280099/33385282*33385282^(11/18) 3908816899999999 a001 12586269025/33385282*33385282^(2/3) 3908816899999999 a001 39088169/87403803*817138163596^(2/3) 3908816899999999 a001 39088169/87403803*10749957122^(19/24) 3908816899999999 a001 39088169/87403803*4106118243^(19/23) 3908816899999999 a001 39088169/87403803*1568397607^(19/22) 3908816899999999 a001 39088169/87403803*599074578^(19/21) 3908816899999999 a001 14930208/103681*33385282^(13/18) 3908816899999999 a001 39088169/87403803*228826127^(19/20) 3908816899999999 a001 2971215073/33385282*33385282^(3/4) 3908816899999999 a001 1836311903/33385282*33385282^(7/9) 3908816899999999 a001 34111385/29134601*141422324^(12/13) 3908816899999999 a001 433494437/87403803*141422324^(11/13) 3908816899999999 a001 1836311903/87403803*141422324^(10/13) 3908816899999999 a001 7778742049/87403803*141422324^(9/13) 3908816899999999 a001 12586269025/87403803*141422324^(2/3) 3908816899999999 a001 10983760033/29134601*141422324^(8/13) 3908816899999999 a001 139583862445/87403803*141422324^(7/13) 3908816899999999 a001 591286729879/87403803*141422324^(6/13) 3908816899999999 a001 39088169/228826127*2537720636^(8/9) 3908816899999999 a001 2504730781961/87403803*141422324^(5/13) 3908816899999999 a001 34111385/29134601*2537720636^(4/5) 3908816899999999 a001 34111385/29134601*45537549124^(12/17) 3908816899999999 a001 39088169/228826127*312119004989^(8/11) 3908816899999999 a001 34111385/29134601*14662949395604^(4/7) 3908816899999999 a001 34111385/29134601*505019158607^(9/14) 3908816899999999 a001 34111385/29134601*192900153618^(2/3) 3908816899999999 a001 34111385/29134601*73681302247^(9/13) 3908816899999999 a001 39088169/228826127*73681302247^(10/13) 3908816899999999 a001 39088169/228826127*28143753123^(4/5) 3908816899999999 a001 34111385/29134601*10749957122^(3/4) 3908816899999999 a001 39088169/228826127*10749957122^(5/6) 3908816899999999 a001 34111385/29134601*4106118243^(18/23) 3908816899999999 a001 39088169/228826127*4106118243^(20/23) 3908816899999999 a001 701408733/33385282*33385282^(5/6) 3908816899999999 a001 34111385/29134601*1568397607^(9/11) 3908816899999999 a001 39088169/228826127*1568397607^(10/11) 3908816899999999 a001 34111385/29134601*599074578^(6/7) 3908816899999999 a001 6557470319842/87403803*141422324^(1/3) 3908816899999999 a001 39088169/228826127*599074578^(20/21) 3908816899999999 a001 3536736619241/29134601*141422324^(4/13) 3908816899999999 a001 39088169/599074578*2537720636^(14/15) 3908816899999999 a001 39088169/599074578*17393796001^(6/7) 3908816899999999 a001 39088169/599074578*45537549124^(14/17) 3908816899999999 a001 267914296/87403803*45537549124^(2/3) 3908816899999999 a001 39088169/599074578*14662949395604^(2/3) 3908816899999999 a001 39088169/599074578*505019158607^(3/4) 3908816899999999 a001 39088169/599074578*192900153618^(7/9) 3908816899999999 a001 267914296/87403803*10749957122^(17/24) 3908816899999999 a001 39088169/599074578*10749957122^(7/8) 3908816899999999 a001 267914296/87403803*4106118243^(17/23) 3908816899999999 a001 39088169/599074578*4106118243^(21/23) 3908816899999999 a001 267914296/87403803*1568397607^(17/22) 3908816899999999 a001 39088169/599074578*1568397607^(21/22) 3908816899999999 a001 34111385/29134601*228826127^(9/10) 3908816899999999 a001 267914296/87403803*599074578^(17/21) 3908816899999999 a001 39088169/1568397607*312119004989^(4/5) 3908816899999999 a001 233802911/29134601*23725150497407^(1/2) 3908816899999999 a001 233802911/29134601*505019158607^(4/7) 3908816899999999 a001 233802911/29134601*73681302247^(8/13) 3908816899999999 a001 39088169/1568397607*73681302247^(11/13) 3908816899999999 a001 233802911/29134601*10749957122^(2/3) 3908816899999999 a001 39088169/1568397607*10749957122^(11/12) 3908816899999999 a001 233802911/29134601*4106118243^(16/23) 3908816899999999 a001 39088169/1568397607*4106118243^(22/23) 3908816899999999 a001 1836311903/87403803*2537720636^(2/3) 3908816899999999 a001 233802911/29134601*1568397607^(8/11) 3908816899999999 a001 7778742049/87403803*2537720636^(3/5) 3908816899999999 a001 20365011074/87403803*2537720636^(5/9) 3908816899999999 a001 10983760033/29134601*2537720636^(8/15) 3908816899999999 a001 139583862445/87403803*2537720636^(7/15) 3908816899999999 a001 75283811239/29134601*2537720636^(4/9) 3908816899999999 a001 591286729879/87403803*2537720636^(2/5) 3908816899999999 a001 1836311903/87403803*45537549124^(10/17) 3908816899999999 a001 1836311903/87403803*312119004989^(6/11) 3908816899999999 a001 1836311903/87403803*14662949395604^(10/21) 3908816899999999 a001 1836311903/87403803*192900153618^(5/9) 3908816899999999 a001 1836311903/87403803*28143753123^(3/5) 3908816899999999 a001 1836311903/87403803*10749957122^(5/8) 3908816899999999 a001 2504730781961/87403803*2537720636^(1/3) 3908816899999999 a001 39088169/4106118243*10749957122^(23/24) 3908816899999999 a001 3536736619241/29134601*2537720636^(4/15) 3908816899999999 a001 1836311903/87403803*4106118243^(15/23) 3908816899999999 a001 1602508992/29134601*17393796001^(4/7) 3908816899999999 a001 39088169/10749957122*45537549124^(16/17) 3908816899999999 a001 1602508992/29134601*14662949395604^(4/9) 3908816899999999 a001 39088169/10749957122*192900153618^(8/9) 3908816899999999 a001 1602508992/29134601*73681302247^(7/13) 3908816899999999 a001 39088169/10749957122*73681302247^(12/13) 3908816899999999 a001 1602508992/29134601*10749957122^(7/12) 3908816899999999 a001 139583862445/87403803*17393796001^(3/7) 3908816899999999 a001 39088169/28143753123*312119004989^(10/11) 3908816899999999 a001 39088169/28143753123*3461452808002^(5/6) 3908816899999999 a001 12586269025/87403803*73681302247^(1/2) 3908816899999999 a001 4052739537881/87403803*17393796001^(2/7) 3908816899999999 a001 10983760033/29134601*45537549124^(8/17) 3908816899999999 a001 10983760033/29134601*14662949395604^(8/21) 3908816899999999 a001 39088169/73681302247*23725150497407^(13/16) 3908816899999999 a001 39088169/73681302247*505019158607^(13/14) 3908816899999999 a001 10983760033/29134601*192900153618^(4/9) 3908816899999999 a001 591286729879/87403803*45537549124^(6/17) 3908816899999999 a001 956722026041/87403803*45537549124^(1/3) 3908816899999999 a001 2504730781961/87403803*45537549124^(5/17) 3908816899999999 a001 3536736619241/29134601*45537549124^(4/17) 3908816899999999 a001 10983760033/29134601*73681302247^(6/13) 3908816899999999 a001 86267571272/87403803*312119004989^(2/5) 3908816899999999 a001 39088169/192900153618*14662949395604^(6/7) 3908816899999999 a001 2504730781961/87403803*312119004989^(3/11) 3908816899999999 a001 3536736619241/29134601*817138163596^(4/19) 3908816900000000 a001 2504730781961/87403803*14662949395604^(5/21) 3908816900000000 a001 365435296162/87403803*817138163596^(1/3) 3908816900000000 a001 3536736619241/29134601*192900153618^(2/9) 3908816900000000 a001 2504730781961/87403803*192900153618^(5/18) 3908816900000000 a001 139583862445/87403803*14662949395604^(1/3) 3908816900000000 a001 39088169/312119004989*3461452808002^(11/12) 3908816900000000 a001 139583862445/87403803*192900153618^(7/18) 3908816900000000 a001 3536736619241/29134601*73681302247^(3/13) 3908816900000000 a001 6557470319842/87403803*73681302247^(1/4) 3908816900000000 a001 516002918640/29134601*73681302247^(4/13) 3908816900000000 a001 75283811239/29134601*73681302247^(5/13) 3908816900000000 a001 2504730781961/87403803*28143753123^(3/10) 3908816900000000 a001 20365011074/87403803*312119004989^(5/11) 3908816900000000 a001 39088169/45537549124*14662949395604^(17/21) 3908816900000000 a001 20365011074/87403803*3461452808002^(5/12) 3908816900000000 a001 75283811239/29134601*28143753123^(2/5) 3908816900000000 a001 39088169/45537549124*192900153618^(17/18) 3908816900000000 a001 20365011074/87403803*28143753123^(1/2) 3908816900000000 a001 3536736619241/29134601*10749957122^(1/4) 3908816900000000 a001 4052739537881/87403803*10749957122^(7/24) 3908816900000000 a001 2504730781961/87403803*10749957122^(5/16) 3908816900000000 a001 516002918640/29134601*10749957122^(1/3) 3908816900000000 a001 7778742049/87403803*45537549124^(9/17) 3908816900000000 a001 591286729879/87403803*10749957122^(3/8) 3908816900000000 a001 39088169/17393796001*14662949395604^(7/9) 3908816900000000 a001 7778742049/87403803*14662949395604^(3/7) 3908816900000000 a001 39088169/17393796001*505019158607^(7/8) 3908816900000000 a001 7778742049/87403803*192900153618^(1/2) 3908816900000000 a001 12586269025/87403803*10749957122^(13/24) 3908816900000000 a001 75283811239/29134601*10749957122^(5/12) 3908816900000000 a001 139583862445/87403803*10749957122^(7/16) 3908816900000000 a001 86267571272/87403803*10749957122^(11/24) 3908816900000000 a001 10983760033/29134601*10749957122^(1/2) 3908816900000000 a001 7778742049/87403803*10749957122^(9/16) 3908816900000000 a001 3536736619241/29134601*4106118243^(6/23) 3908816900000000 a001 4052739537881/87403803*4106118243^(7/23) 3908816900000000 a001 516002918640/29134601*4106118243^(8/23) 3908816900000000 a001 2971215073/87403803*1322157322203^(1/2) 3908816900000000 a001 591286729879/87403803*4106118243^(9/23) 3908816900000000 a001 75283811239/29134601*4106118243^(10/23) 3908816900000000 a001 1602508992/29134601*4106118243^(14/23) 3908816900000000 a001 86267571272/87403803*4106118243^(11/23) 3908816900000000 a001 53316291173/87403803*4106118243^(1/2) 3908816900000000 a001 10983760033/29134601*4106118243^(12/23) 3908816900000000 a001 12586269025/87403803*4106118243^(13/23) 3908816900000000 a001 3536736619241/29134601*1568397607^(3/11) 3908816900000000 a001 4052739537881/87403803*1568397607^(7/22) 3908816900000000 a001 516002918640/29134601*1568397607^(4/11) 3908816900000000 a001 39088169/2537720636*45537549124^(15/17) 3908816900000000 a001 39088169/2537720636*312119004989^(9/11) 3908816900000000 a001 39088169/2537720636*14662949395604^(5/7) 3908816900000000 a001 1134903170/87403803*9062201101803^(1/2) 3908816900000000 a001 39088169/2537720636*192900153618^(5/6) 3908816900000000 a001 39088169/2537720636*28143753123^(9/10) 3908816900000000 a001 39088169/2537720636*10749957122^(15/16) 3908816900000000 a001 591286729879/87403803*1568397607^(9/22) 3908816900000000 a001 75283811239/29134601*1568397607^(5/11) 3908816900000000 a001 86267571272/87403803*1568397607^(1/2) 3908816900000000 a001 1836311903/87403803*1568397607^(15/22) 3908816900000000 a001 10983760033/29134601*1568397607^(6/11) 3908816900000000 a001 12586269025/87403803*1568397607^(13/22) 3908816900000000 a001 1602508992/29134601*1568397607^(7/11) 3908816900000000 a001 3536736619241/29134601*599074578^(2/7) 3908816900000000 a001 4052739537881/87403803*599074578^(1/3) 3908816900000000 a001 433494437/87403803*2537720636^(11/15) 3908816900000000 a001 2504730781961/87403803*599074578^(5/14) 3908816900000000 a001 516002918640/29134601*599074578^(8/21) 3908816900000000 a001 433494437/87403803*45537549124^(11/17) 3908816900000000 a001 433494437/87403803*312119004989^(3/5) 3908816900000000 a001 433494437/87403803*817138163596^(11/19) 3908816900000000 a001 433494437/87403803*14662949395604^(11/21) 3908816900000000 a001 433494437/87403803*192900153618^(11/18) 3908816900000000 a001 433494437/87403803*10749957122^(11/16) 3908816900000000 a001 591286729879/87403803*599074578^(3/7) 3908816900000000 a001 75283811239/29134601*599074578^(10/21) 3908816900000000 a001 433494437/87403803*1568397607^(3/4) 3908816900000000 a001 139583862445/87403803*599074578^(1/2) 3908816900000000 a001 86267571272/87403803*599074578^(11/21) 3908816900000000 a001 10983760033/29134601*599074578^(4/7) 3908816900000000 a001 233802911/29134601*599074578^(16/21) 3908816900000000 a001 12586269025/87403803*599074578^(13/21) 3908816900000000 a001 7778742049/87403803*599074578^(9/14) 3908816900000000 a001 1602508992/29134601*599074578^(2/3) 3908816900000000 a001 1836311903/87403803*599074578^(5/7) 3908816900000000 a001 433494437/87403803*599074578^(11/14) 3908816900000000 a001 3536736619241/29134601*228826127^(3/10) 3908816900000000 a001 4052739537881/87403803*228826127^(7/20) 3908816900000000 a001 2504730781961/87403803*228826127^(3/8) 3908816900000000 a001 165580141/87403803*2537720636^(7/9) 3908816900000000 a001 165580141/87403803*17393796001^(5/7) 3908816900000000 a001 165580141/87403803*312119004989^(7/11) 3908816900000000 a001 165580141/87403803*14662949395604^(5/9) 3908816900000000 a001 165580141/87403803*505019158607^(5/8) 3908816900000000 a001 165580141/87403803*28143753123^(7/10) 3908816900000000 a001 516002918640/29134601*228826127^(2/5) 3908816900000000 a001 591286729879/87403803*228826127^(9/20) 3908816900000000 a001 75283811239/29134601*228826127^(1/2) 3908816900000000 a001 165580141/87403803*599074578^(5/6) 3908816900000000 a001 86267571272/87403803*228826127^(11/20) 3908816900000000 a001 10983760033/29134601*228826127^(3/5) 3908816900000000 a001 20365011074/87403803*228826127^(5/8) 3908816900000000 a001 12586269025/87403803*228826127^(13/20) 3908816900000000 a001 1602508992/29134601*228826127^(7/10) 3908816900000000 a001 267914296/87403803*228826127^(17/20) 3908816900000000 a001 1836311903/87403803*228826127^(3/4) 3908816900000000 a001 233802911/29134601*228826127^(4/5) 3908816900000000 a001 165580141/87403803*228826127^(7/8) 3908816900000000 a001 133957148/16692641*33385282^(8/9) 3908816900000000 a001 3536736619241/29134601*87403803^(6/19) 3908816900000000 a001 4052739537881/87403803*87403803^(7/19) 3908816900000000 a001 39088169/141422324*2537720636^(13/15) 3908816900000000 a001 39088169/141422324*45537549124^(13/17) 3908816900000000 a001 39088169/141422324*14662949395604^(13/21) 3908816900000000 a001 39088169/141422324*192900153618^(13/18) 3908816900000000 a001 39088169/141422324*73681302247^(3/4) 3908816900000000 a001 39088169/141422324*10749957122^(13/16) 3908816900000000 a001 39088169/141422324*599074578^(13/14) 3908816900000000 a001 516002918640/29134601*87403803^(8/19) 3908816900000000 a001 14619165/4769326*33385282^(17/18) 3908816900000000 a001 591286729879/87403803*87403803^(9/19) 3908816900000000 a001 267914296/228826127*141422324^(12/13) 3908816900000000 a001 165580141/33385282*33385282^(11/12) 3908816900000000 a001 365435296162/87403803*87403803^(1/2) 3908816900000000 a001 75283811239/29134601*87403803^(10/19) 3908816900000000 a001 1134903170/228826127*141422324^(11/13) 3908816900000000 a001 102287808/4868641*141422324^(10/13) 3908816900000000 a001 86267571272/87403803*87403803^(11/19) 3908816900000000 a001 20365011074/228826127*141422324^(9/13) 3908816900000000 a001 32951280099/228826127*141422324^(2/3) 3908816900000000 a001 86267571272/228826127*141422324^(8/13) 3908816900000000 a001 233802911/199691526*141422324^(12/13) 3908816900000000 a001 10983760033/29134601*87403803^(12/19) 3908816900000000 a001 1836311903/1568397607*141422324^(12/13) 3908816900000000 a001 1602508992/1368706081*141422324^(12/13) 3908816900000000 a001 12586269025/10749957122*141422324^(12/13) 3908816900000000 a001 10983760033/9381251041*141422324^(12/13) 3908816900000000 a001 86267571272/73681302247*141422324^(12/13) 3908816900000000 a001 75283811239/64300051206*141422324^(12/13) 3908816900000000 a001 2504730781961/2139295485799*141422324^(12/13) 3908816900000000 a001 365435296162/312119004989*141422324^(12/13) 3908816900000000 a001 139583862445/119218851371*141422324^(12/13) 3908816900000000 a001 53316291173/45537549124*141422324^(12/13) 3908816900000000 a001 20365011074/17393796001*141422324^(12/13) 3908816900000000 a001 7778742049/6643838879*141422324^(12/13) 3908816900000000 a001 365435296162/228826127*141422324^(7/13) 3908816900000000 a001 2971215073/2537720636*141422324^(12/13) 3908816900000000 a001 2971215073/599074578*141422324^(11/13) 3908816900000000 a001 1134903170/969323029*141422324^(12/13) 3908816900000000 a001 7778742049/1568397607*141422324^(11/13) 3908816900000000 a001 20365011074/4106118243*141422324^(11/13) 3908816900000000 a001 53316291173/10749957122*141422324^(11/13) 3908816900000000 a001 139583862445/28143753123*141422324^(11/13) 3908816900000000 a001 365435296162/73681302247*141422324^(11/13) 3908816900000000 a001 956722026041/192900153618*141422324^(11/13) 3908816900000000 a001 2504730781961/505019158607*141422324^(11/13) 3908816900000000 a001 10610209857723/2139295485799*141422324^(11/13) 3908816900000000 a001 4052739537881/817138163596*141422324^(11/13) 3908816900000000 a001 140728068720/28374454999*141422324^(11/13) 3908816900000000 a001 591286729879/119218851371*141422324^(11/13) 3908816900000000 a001 225851433717/45537549124*141422324^(11/13) 3908816900000000 a001 86267571272/17393796001*141422324^(11/13) 3908816900000000 a001 32951280099/6643838879*141422324^(11/13) 3908816900000000 a001 1548008755920/228826127*141422324^(6/13) 3908816900000000 a001 1144206275/230701876*141422324^(11/13) 3908816900000000 a001 12586269025/87403803*87403803^(13/19) 3908816900000000 a001 4807526976/969323029*141422324^(11/13) 3908816900000000 a001 12586269025/599074578*141422324^(10/13) 3908816900000000 a001 32951280099/1568397607*141422324^(10/13) 3908816900000000 a001 86267571272/4106118243*141422324^(10/13) 3908816900000000 a001 225851433717/10749957122*141422324^(10/13) 3908816900000000 a001 591286729879/28143753123*141422324^(10/13) 3908816900000000 a001 1548008755920/73681302247*141422324^(10/13) 3908816900000000 a001 4052739537881/192900153618*141422324^(10/13) 3908816900000000 a001 225749145909/10745088481*141422324^(10/13) 3908816900000000 a001 6557470319842/312119004989*141422324^(10/13) 3908816900000000 a001 2504730781961/119218851371*141422324^(10/13) 3908816900000000 a001 956722026041/45537549124*141422324^(10/13) 3908816900000000 a001 365435296162/17393796001*141422324^(10/13) 3908816900000000 a001 139583862445/6643838879*141422324^(10/13) 3908816900000000 a001 6557470319842/228826127*141422324^(5/13) 3908816900000000 a001 53316291173/2537720636*141422324^(10/13) 3908816900000000 a001 102334155/228826127*817138163596^(2/3) 3908816900000000 a001 102334155/228826127*10749957122^(19/24) 3908816900000000 a001 102334155/228826127*4106118243^(19/23) 3908816900000000 a001 102334155/228826127*1568397607^(19/22) 3908816900000000 a001 433494437/370248451*141422324^(12/13) 3908816900000000 a001 53316291173/599074578*141422324^(9/13) 3908816900000000 a001 20365011074/969323029*141422324^(10/13) 3908816900000000 a001 43133785636/299537289*141422324^(2/3) 3908816900000000 a001 102334155/228826127*599074578^(19/21) 3908816900000000 a001 10472279279564025/267914296 3908816900000000 a001 1836311903/370248451*141422324^(11/13) 3908816900000000 a001 139583862445/1568397607*141422324^(9/13) 3908816900000000 a001 365435296162/4106118243*141422324^(9/13) 3908816900000000 a001 956722026041/10749957122*141422324^(9/13) 3908816900000000 a001 2504730781961/28143753123*141422324^(9/13) 3908816900000000 a001 6557470319842/73681302247*141422324^(9/13) 3908816900000000 a001 10610209857723/119218851371*141422324^(9/13) 3908816900000000 a001 4052739537881/45537549124*141422324^(9/13) 3908816900000000 a001 1548008755920/17393796001*141422324^(9/13) 3908816900000000 a001 591286729879/6643838879*141422324^(9/13) 3908816900000000 a001 225851433717/2537720636*141422324^(9/13) 3908816900000000 a001 1602508992/29134601*87403803^(14/19) 3908816900000000 a001 32264490531/224056801*141422324^(2/3) 3908816900000000 a001 267913919/710646*141422324^(8/13) 3908816900000000 a001 86267571272/969323029*141422324^(9/13) 3908816900000000 a001 591286729879/4106118243*141422324^(2/3) 3908816900000000 a001 774004377960/5374978561*141422324^(2/3) 3908816900000000 a001 4052739537881/28143753123*141422324^(2/3) 3908816900000000 a001 1515744265389/10525900321*141422324^(2/3) 3908816900000000 a001 3278735159921/22768774562*141422324^(2/3) 3908816900000000 a001 2504730781961/17393796001*141422324^(2/3) 3908816900000000 a001 956722026041/6643838879*141422324^(2/3) 3908816900000000 a001 182717648081/1268860318*141422324^(2/3) 3908816900000000 a001 139583862445/969323029*141422324^(2/3) 3908816900000000 a001 591286729879/1568397607*141422324^(8/13) 3908816900000000 a001 7778742049/370248451*141422324^(10/13) 3908816900000000 a001 516002918640/1368706081*141422324^(8/13) 3908816900000000 a001 4052739537881/10749957122*141422324^(8/13) 3908816900000000 a001 3536736619241/9381251041*141422324^(8/13) 3908816900000000 a001 6557470319842/17393796001*141422324^(8/13) 3908816900000000 a001 2504730781961/6643838879*141422324^(8/13) 3908816900000000 a001 956722026041/2537720636*141422324^(8/13) 3908816900000000 a001 956722026041/599074578*141422324^(7/13) 3908816900000000 a001 365435296162/969323029*141422324^(8/13) 3908816900000000 a001 1836311903/87403803*87403803^(15/19) 3908816900000000 a001 2504730781961/1568397607*141422324^(7/13) 3908816900000000 a001 32951280099/370248451*141422324^(9/13) 3908816900000000 a001 6557470319842/4106118243*141422324^(7/13) 3908816900000000 a001 10610209857723/6643838879*141422324^(7/13) 3908816900000000 a001 4052739537881/2537720636*141422324^(7/13) 3908816900000000 a001 53316291173/370248451*141422324^(2/3) 3908816900000000 a001 34111385/29134601*87403803^(18/19) 3908816900000000 a001 4052739537881/599074578*141422324^(6/13) 3908816900000000 a001 1548008755920/969323029*141422324^(7/13) 3908816900000000 a001 1515744265389/224056801*141422324^(6/13) 3908816900000000 a001 139583862445/370248451*141422324^(8/13) 3908816900000000 a001 34111385/199691526*2537720636^(8/9) 3908816900000000 a001 6557470319842/969323029*141422324^(6/13) 3908816900000000 a001 267914296/228826127*2537720636^(4/5) 3908816900000000 a001 267914296/228826127*45537549124^(12/17) 3908816900000000 a001 34111385/199691526*312119004989^(8/11) 3908816900000000 a001 267914296/228826127*14662949395604^(4/7) 3908816900000000 a001 34111385/199691526*23725150497407^(5/8) 3908816900000000 a001 267914296/228826127*505019158607^(9/14) 3908816900000000 a001 267914296/228826127*192900153618^(2/3) 3908816900000000 a001 267914296/228826127*73681302247^(9/13) 3908816900000000 a001 34111385/199691526*73681302247^(10/13) 3908816900000000 a001 34111385/199691526*28143753123^(4/5) 3908816900000000 a001 267914296/228826127*10749957122^(3/4) 3908816900000000 a001 34111385/199691526*10749957122^(5/6) 3908816900000000 a001 267914296/228826127*4106118243^(18/23) 3908816900000000 a001 34111385/199691526*4106118243^(20/23) 3908816900000000 a001 267914296/228826127*1568397607^(9/11) 3908816900000000 a001 34111385/199691526*1568397607^(10/11) 3908816900000000 a001 9138927697859960/233802911 3908816900000000 a001 233802911/29134601*87403803^(16/19) 3908816900000000 a001 102334155/228826127*228826127^(19/20) 3908816900000000 a001 14619165/224056801*2537720636^(14/15) 3908816900000000 a001 591286729879/370248451*141422324^(7/13) 3908816900000000 a001 14619165/224056801*17393796001^(6/7) 3908816900000000 a001 14619165/224056801*45537549124^(14/17) 3908816900000000 a001 701408733/228826127*45537549124^(2/3) 3908816900000000 a001 14619165/224056801*817138163596^(14/19) 3908816900000000 a001 14619165/224056801*14662949395604^(2/3) 3908816900000000 a001 14619165/224056801*505019158607^(3/4) 3908816900000000 a001 14619165/224056801*192900153618^(7/9) 3908816900000000 a001 701408733/228826127*10749957122^(17/24) 3908816900000000 a001 14619165/224056801*10749957122^(7/8) 3908816900000000 a001 267914296/228826127*599074578^(6/7) 3908816900000000 a001 701408733/228826127*4106118243^(17/23) 3908816900000000 a001 14619165/224056801*4106118243^(21/23) 3908816900000000 a001 71778070001175615/1836311903 3908816900000000 a001 34111385/199691526*599074578^(20/21) 3908816900000000 a001 102287808/4868641*2537720636^(2/3) 3908816900000000 a001 20365011074/228826127*2537720636^(3/5) 3908816900000000 a001 701408733/228826127*1568397607^(17/22) 3908816900000000 a001 53316291173/228826127*2537720636^(5/9) 3908816900000000 a001 86267571272/228826127*2537720636^(8/15) 3908816900000000 a001 365435296162/228826127*2537720636^(7/15) 3908816900000000 a001 591286729879/228826127*2537720636^(4/9) 3908816900000000 a001 1548008755920/228826127*2537720636^(2/5) 3908816900000000 a001 34111385/1368706081*312119004989^(4/5) 3908816900000000 a001 1836311903/228826127*23725150497407^(1/2) 3908816900000000 a001 1836311903/228826127*505019158607^(4/7) 3908816900000000 a001 1836311903/228826127*73681302247^(8/13) 3908816900000000 a001 34111385/1368706081*73681302247^(11/13) 3908816900000000 a001 1836311903/228826127*10749957122^(2/3) 3908816900000000 a001 6557470319842/228826127*2537720636^(1/3) 3908816900000000 a001 34111385/1368706081*10749957122^(11/12) 3908816900000000 a001 8948448900473665/228929856 3908816900000000 a001 14619165/224056801*1568397607^(21/22) 3908816900000000 a001 1836311903/228826127*4106118243^(16/23) 3908816900000000 a001 102287808/4868641*45537549124^(10/17) 3908816900000000 a001 102287808/4868641*312119004989^(6/11) 3908816900000000 a001 102287808/4868641*14662949395604^(10/21) 3908816900000000 a001 102287808/4868641*192900153618^(5/9) 3908816900000000 a001 102287808/4868641*28143753123^(3/5) 3908816900000000 a001 8944985649612096/228841255 3908816900000000 a001 102287808/4868641*10749957122^(5/8) 3908816900000000 a001 12586269025/228826127*17393796001^(4/7) 3908816900000000 a001 34111385/1368706081*4106118243^(22/23) 3908816900000000 a001 831985/228811001*45537549124^(16/17) 3908816900000000 a001 365435296162/228826127*17393796001^(3/7) 3908816900000000 a001 12586269025/228826127*14662949395604^(4/9) 3908816900000000 a001 12586269025/228826127*505019158607^(1/2) 3908816900000000 a001 831985/228811001*192900153618^(8/9) 3908816900000000 a001 12586269025/228826127*73681302247^(7/13) 3908816900000000 a001 831985/228811001*73681302247^(12/13) 3908816900000000 a001 429335068425349625/10983760033 3908816900000000 a001 225749145909/4868641*17393796001^(2/7) 3908816900000000 a001 102334155/10749957122*10749957122^(23/24) 3908816900000000 a001 86267571272/228826127*45537549124^(8/17) 3908816900000000 a001 365435296162/228826127*45537549124^(7/17) 3908816900000000 a001 14619165/10525900321*312119004989^(10/11) 3908816900000000 a001 14619165/10525900321*3461452808002^(5/6) 3908816900000000 a001 1548008755920/228826127*45537549124^(6/17) 3908816900000000 a001 2504730781961/228826127*45537549124^(1/3) 3908816900000000 a001 6557470319842/228826127*45537549124^(5/17) 3908816900000000 a001 32951280099/228826127*73681302247^(1/2) 3908816900000000 a001 86267571272/228826127*14662949395604^(8/21) 3908816900000000 a001 34111385/64300051206*23725150497407^(13/16) 3908816900000000 a001 34111385/64300051206*505019158607^(13/14) 3908816900000000 a001 86267571272/228826127*192900153618^(4/9) 3908816900000000 a001 225851433717/228826127*312119004989^(2/5) 3908816900000000 a001 102334155/505019158607*14662949395604^(6/7) 3908816900000000 a001 6557470319842/228826127*312119004989^(3/11) 3908816900000000 a001 102334155/2139295485799*14662949395604^(19/21) 3908816900000000 a001 225749145909/4868641*505019158607^(1/4) 3908816900000000 a001 102334155/817138163596*3461452808002^(11/12) 3908816900000000 a001 6557470319842/228826127*192900153618^(5/18) 3908816900000000 a001 14284196614945308975/365435296162 3908816900000000 a001 365435296162/228826127*192900153618^(7/18) 3908816900000000 a001 4052739537881/228826127*73681302247^(4/13) 3908816900000000 a001 86267571272/228826127*73681302247^(6/13) 3908816900000000 a001 1091215520984582763/27916772489 3908816900000000 a001 53316291173/228826127*312119004989^(5/11) 3908816900000000 a001 102334155/119218851371*817138163596^(17/19) 3908816900000000 a001 102334155/119218851371*14662949395604^(17/21) 3908816900000000 a001 102334155/119218851371*192900153618^(17/18) 3908816900000000 a001 20365011074/228826127*45537549124^(9/17) 3908816900000000 a001 6557470319842/228826127*28143753123^(3/10) 3908816900000000 a001 2084036199823432470/53316291173 3908816900000000 a001 20365011074/228826127*817138163596^(9/19) 3908816900000000 a001 102334155/45537549124*14662949395604^(7/9) 3908816900000000 a001 102334155/45537549124*505019158607^(7/8) 3908816900000000 a001 20365011074/228826127*192900153618^(1/2) 3908816900000000 a001 591286729879/228826127*28143753123^(2/5) 3908816900000000 a001 53316291173/228826127*28143753123^(1/2) 3908816900000000 a001 225749145909/4868641*10749957122^(7/24) 3908816900000000 a001 6557470319842/228826127*10749957122^(5/16) 3908816900000000 a001 796030994547383595/20365011074 3908816900000000 a001 4052739537881/228826127*10749957122^(1/3) 3908816900000000 a001 1548008755920/228826127*10749957122^(3/8) 3908816900000000 a001 7778742049/228826127*1322157322203^(1/2) 3908816900000000 a001 591286729879/228826127*10749957122^(5/12) 3908816900000000 a001 12586269025/228826127*10749957122^(7/12) 3908816900000000 a001 365435296162/228826127*10749957122^(7/16) 3908816900000000 a001 225851433717/228826127*10749957122^(11/24) 3908816900000000 a001 86267571272/228826127*10749957122^(1/2) 3908816900000000 a001 32951280099/228826127*10749957122^(13/24) 3908816900000000 a001 20365011074/228826127*10749957122^(9/16) 3908816900000000 a001 225749145909/4868641*4106118243^(7/23) 3908816900000000 a001 304056783818718315/7778742049 3908816900000000 a001 4052739537881/228826127*4106118243^(8/23) 3908816900000000 a001 102334155/6643838879*45537549124^(15/17) 3908816900000000 a001 102334155/6643838879*312119004989^(9/11) 3908816900000000 a001 102334155/6643838879*14662949395604^(5/7) 3908816900000000 a001 102334155/6643838879*192900153618^(5/6) 3908816900000000 a001 1548008755920/228826127*4106118243^(9/23) 3908816900000000 a001 102334155/6643838879*28143753123^(9/10) 3908816900000000 a001 591286729879/228826127*4106118243^(10/23) 3908816900000000 a001 225851433717/228826127*4106118243^(11/23) 3908816900000000 a001 139583862445/228826127*4106118243^(1/2) 3908816900000000 a001 102287808/4868641*4106118243^(15/23) 3908816900000000 a001 102334155/6643838879*10749957122^(15/16) 3908816900000000 a001 86267571272/228826127*4106118243^(12/23) 3908816900000000 a001 32951280099/228826127*4106118243^(13/23) 3908816900000000 a001 12586269025/228826127*4106118243^(14/23) 3908816900000000 a001 1134903170/228826127*2537720636^(11/15) 3908816900000000 a001 225749145909/4868641*1568397607^(7/22) 3908816900000000 a001 116139356908771350/2971215073 3908816900000000 a001 4052739537881/228826127*1568397607^(4/11) 3908816900000000 a001 1134903170/228826127*45537549124^(11/17) 3908816900000000 a001 1134903170/228826127*312119004989^(3/5) 3908816900000000 a001 1134903170/228826127*14662949395604^(11/21) 3908816900000000 a001 1134903170/228826127*192900153618^(11/18) 3908816900000000 a001 1134903170/228826127*10749957122^(11/16) 3908816900000000 a001 1548008755920/228826127*1568397607^(9/22) 3908816900000000 a001 591286729879/228826127*1568397607^(5/11) 3908816900000000 a001 225851433717/228826127*1568397607^(1/2) 3908816900000000 a001 86267571272/228826127*1568397607^(6/11) 3908816900000000 a001 1836311903/228826127*1568397607^(8/11) 3908816900000000 a001 32951280099/228826127*1568397607^(13/22) 3908816900000000 a001 12586269025/228826127*1568397607^(7/11) 3908816900000000 a001 102287808/4868641*1568397607^(15/22) 3908816900000000 a001 1134903170/228826127*1568397607^(3/4) 3908816900000000 a001 8872257381519147/226980634 3908816900000000 a001 225749145909/4868641*599074578^(1/3) 3908816900000000 a001 433494437/228826127*2537720636^(7/9) 3908816900000000 a001 6557470319842/228826127*599074578^(5/14) 3908816900000000 a001 4052739537881/228826127*599074578^(8/21) 3908816900000000 a001 433494437/228826127*17393796001^(5/7) 3908816900000000 a001 433494437/228826127*312119004989^(7/11) 3908816900000000 a001 433494437/228826127*14662949395604^(5/9) 3908816900000000 a001 433494437/228826127*505019158607^(5/8) 3908816900000000 a001 433494437/228826127*28143753123^(7/10) 3908816900000000 a001 1548008755920/228826127*599074578^(3/7) 3908816900000000 a001 591286729879/228826127*599074578^(10/21) 3908816900000000 a001 365435296162/228826127*599074578^(1/2) 3908816900000000 a001 225851433717/228826127*599074578^(11/21) 3908816900000000 a001 86267571272/228826127*599074578^(4/7) 3908816900000000 a001 32951280099/228826127*599074578^(13/21) 3908816900000000 a001 20365011074/228826127*599074578^(9/14) 3908816900000000 a001 701408733/228826127*599074578^(17/21) 3908816900000000 a001 12586269025/228826127*599074578^(2/3) 3908816900000000 a001 102287808/4868641*599074578^(5/7) 3908816900000000 a001 1836311903/228826127*599074578^(16/21) 3908816900000000 a001 1134903170/228826127*599074578^(11/14) 3908816900000000 a001 267914296/87403803*87403803^(17/19) 3908816900000000 a001 2504730781961/370248451*141422324^(6/13) 3908816900000000 a001 433494437/228826127*599074578^(5/6) 3908816900000000 a001 16944503814015855/433494437 3908816900000000 a001 225749145909/4868641*228826127^(7/20) 3908816900000000 a001 102334155/370248451*2537720636^(13/15) 3908816900000000 a001 6557470319842/228826127*228826127^(3/8) 3908816900000000 a001 10610209857723/370248451*141422324^(5/13) 3908816900000000 a001 102334155/370248451*45537549124^(13/17) 3908816900000000 a001 102334155/370248451*14662949395604^(13/21) 3908816900000000 a001 102334155/370248451*192900153618^(13/18) 3908816900000000 a001 102334155/370248451*73681302247^(3/4) 3908816900000000 a001 102334155/370248451*10749957122^(13/16) 3908816900000000 a001 4052739537881/228826127*228826127^(2/5) 3908816900000000 a001 1548008755920/228826127*228826127^(9/20) 3908816900000000 a001 591286729879/228826127*228826127^(1/2) 3908816900000000 a001 102334155/370248451*599074578^(13/14) 3908816900000000 a001 225851433717/228826127*228826127^(11/20) 3908816900000000 a001 86267571272/228826127*228826127^(3/5) 3908816900000000 a001 53316291173/228826127*228826127^(5/8) 3908816900000000 a001 32951280099/228826127*228826127^(13/20) 3908816900000000 a001 12586269025/228826127*228826127^(7/10) 3908816900000000 a001 133957148/299537289*817138163596^(2/3) 3908816900000000 a001 133957148/299537289*10749957122^(19/24) 3908816900000000 a001 133957148/299537289*4106118243^(19/23) 3908816900000000 a001 71778070001175616/1836311903 3908816900000000 a001 133957148/299537289*1568397607^(19/22) 3908816900000000 a001 102287808/4868641*228826127^(3/4) 3908816900000000 a001 267914296/228826127*228826127^(9/10) 3908816900000000 a001 1836311903/228826127*228826127^(4/5) 3908816900000000 a001 267914296/1568397607*2537720636^(8/9) 3908816900000000 a001 233802911/199691526*2537720636^(4/5) 3908816900000000 a001 701408733/228826127*228826127^(17/20) 3908816900000000 a001 233802911/199691526*45537549124^(12/17) 3908816900000000 a001 267914296/1568397607*312119004989^(8/11) 3908816900000000 a001 233802911/199691526*14662949395604^(4/7) 3908816900000000 a001 233802911/199691526*505019158607^(9/14) 3908816900000000 a001 233802911/199691526*192900153618^(2/3) 3908816900000000 a001 233802911/199691526*73681302247^(9/13) 3908816900000000 a001 267914296/1568397607*73681302247^(10/13) 3908816900000000 a001 267914296/1568397607*28143753123^(4/5) 3908816900000000 a001 233802911/199691526*10749957122^(3/4) 3908816900000000 a001 267914296/1568397607*10749957122^(5/6) 3908816900000000 a001 7829892787914457/200313624 3908816900000000 a001 233802911/199691526*4106118243^(18/23) 3908816900000000 a001 267914296/1568397607*4106118243^(20/23) 3908816900000000 a001 133957148/299537289*599074578^(19/21) 3908816900000000 a001 267914296/4106118243*2537720636^(14/15) 3908816900000000 a001 12586269025/599074578*2537720636^(2/3) 3908816900000000 a001 53316291173/599074578*2537720636^(3/5) 3908816900000000 a001 2971215073/599074578*2537720636^(11/15) 3908816900000000 a001 139583862445/599074578*2537720636^(5/9) 3908816900000000 a001 267913919/710646*2537720636^(8/15) 3908816900000000 a001 233802911/199691526*1568397607^(9/11) 3908816900000000 a001 956722026041/599074578*2537720636^(7/15) 3908816900000000 a001 86000486440/33281921*2537720636^(4/9) 3908816900000000 a001 267914296/4106118243*17393796001^(6/7) 3908816900000000 a001 4052739537881/599074578*2537720636^(2/5) 3908816900000000 a001 267914296/4106118243*45537549124^(14/17) 3908816900000000 a001 1836311903/599074578*45537549124^(2/3) 3908816900000000 a001 267914296/4106118243*14662949395604^(2/3) 3908816900000000 a001 267914296/4106118243*505019158607^(3/4) 3908816900000000 a001 267914296/4106118243*192900153618^(7/9) 3908816900000000 a001 491974210728665288/12586269025 3908816900000000 a001 1836311903/599074578*10749957122^(17/24) 3908816900000000 a001 267914296/4106118243*10749957122^(7/8) 3908816900000000 a001 267914296/1568397607*1568397607^(10/11) 3908816900000000 a001 1836311903/599074578*4106118243^(17/23) 3908816900000000 a001 133957148/5374978561*312119004989^(4/5) 3908816900000000 a001 133957148/5374978561*23725150497407^(11/16) 3908816900000000 a001 267084832/33281921*505019158607^(4/7) 3908816900000000 a001 267084832/33281921*73681302247^(8/13) 3908816900000000 a001 133957148/5374978561*73681302247^(11/13) 3908816900000000 a001 429335068425349632/10983760033 3908816900000000 a001 267914296/4106118243*4106118243^(21/23) 3908816900000000 a001 267084832/33281921*10749957122^(2/3) 3908816900000000 a001 10983760033/199691526*17393796001^(4/7) 3908816900000000 a001 12586269025/599074578*45537549124^(10/17) 3908816900000000 a001 956722026041/599074578*17393796001^(3/7) 3908816900000000 a001 12586269025/599074578*312119004989^(6/11) 3908816900000000 a001 12586269025/599074578*14662949395604^(10/21) 3908816900000000 a001 12586269025/599074578*192900153618^(5/9) 3908816900000000 a001 421505175637435175/10783446409 3908816900000000 a001 133957148/5374978561*10749957122^(11/12) 3908816900000000 a001 267914296/73681302247*45537549124^(16/17) 3908816900000000 a001 12586269025/599074578*28143753123^(3/5) 3908816900000000 a001 267913919/710646*45537549124^(8/17) 3908816900000000 a001 956722026041/599074578*45537549124^(7/17) 3908816900000000 a001 10983760033/199691526*14662949395604^(4/9) 3908816900000000 a001 10983760033/199691526*505019158607^(1/2) 3908816900000000 a001 7805587099931384/199691807 3908816900000000 a001 4052739537881/599074578*45537549124^(6/17) 3908816900000000 a001 3278735159921/299537289*45537549124^(1/3) 3908816900000000 a001 267914296/73681302247*192900153618^(8/9) 3908816900000000 a001 10983760033/199691526*73681302247^(7/13) 3908816900000000 a001 133957148/96450076809*312119004989^(10/11) 3908816900000000 a001 133957148/96450076809*3461452808002^(5/6) 3908816900000000 a001 23112315624967704512/591286729879 3908816900000000 a001 267914296/73681302247*73681302247^(12/13) 3908816900000000 a001 267913919/710646*14662949395604^(8/21) 3908816900000000 a001 2521201161036696593/64500364830 3908816900000000 a001 158414167969674450184/4052739537881 3908816900000000 a001 133957148/1730726404001*14662949395604^(8/9) 3908816900000000 a001 267913919/710646*192900153618^(4/9) 3908816900000000 a001 139583862445/599074578*3461452808002^(5/12) 3908816900000000 a001 956722026041/599074578*192900153618^(7/18) 3908816900000000 a001 267914296/312119004989*192900153618^(17/18) 3908816900000000 a001 3536736619241/199691526*73681302247^(4/13) 3908816900000000 a001 43133785636/299537289*73681302247^(1/2) 3908816900000000 a001 53316291173/599074578*817138163596^(9/19) 3908816900000000 a001 267914296/119218851371*14662949395604^(7/9) 3908816900000000 a001 53316291173/599074578*14662949395604^(3/7) 3908816900000000 a001 267914296/119218851371*505019158607^(7/8) 3908816900000000 a001 267913919/710646*73681302247^(6/13) 3908816900000000 a001 53316291173/599074578*192900153618^(1/2) 3908816900000000 a001 5456077604922913904/139583862445 3908816900000000 a001 10182505537/299537289*1322157322203^(1/2) 3908816900000000 a001 86000486440/33281921*28143753123^(2/5) 3908816900000000 a001 139583862445/599074578*28143753123^(1/2) 3908816900000000 a001 9238424/599786069*45537549124^(15/17) 3908816900000000 a001 3536736619241/199691526*10749957122^(1/3) 3908816900000000 a001 2084036199823432504/53316291173 3908816900000000 a001 4052739537881/599074578*10749957122^(3/8) 3908816900000000 a001 9238424/599786069*312119004989^(9/11) 3908816900000000 a001 9238424/599786069*14662949395604^(5/7) 3908816900000000 a001 7778742049/599074578*9062201101803^(1/2) 3908816900000000 a001 9238424/599786069*192900153618^(5/6) 3908816900000000 a001 86000486440/33281921*10749957122^(5/12) 3908816900000000 a001 956722026041/599074578*10749957122^(7/16) 3908816900000000 a001 591286729879/599074578*10749957122^(11/24) 3908816900000000 a001 12586269025/599074578*10749957122^(5/8) 3908816900000000 a001 267913919/710646*10749957122^(1/2) 3908816900000000 a001 9238424/599786069*28143753123^(9/10) 3908816900000000 a001 43133785636/299537289*10749957122^(13/24) 3908816900000000 a001 10983760033/199691526*10749957122^(7/12) 3908816900000000 a001 53316291173/599074578*10749957122^(9/16) 3908816900000000 a001 267914296/28143753123*10749957122^(23/24) 3908816900000000 a001 9238424/599786069*10749957122^(15/16) 3908816900000000 a001 3536736619241/199691526*4106118243^(8/23) 3908816900000000 a001 398015497273691804/10182505537 3908816900000000 a001 2971215073/599074578*45537549124^(11/17) 3908816900000000 a001 2971215073/599074578*312119004989^(3/5) 3908816900000000 a001 2971215073/599074578*14662949395604^(11/21) 3908816900000000 a001 2971215073/599074578*192900153618^(11/18) 3908816900000000 a001 4052739537881/599074578*4106118243^(9/23) 3908816900000000 a001 86000486440/33281921*4106118243^(10/23) 3908816900000000 a001 591286729879/599074578*4106118243^(11/23) 3908816900000000 a001 2971215073/599074578*10749957122^(11/16) 3908816900000000 a001 182717648081/299537289*4106118243^(1/2) 3908816900000000 a001 267913919/710646*4106118243^(12/23) 3908816900000000 a001 267084832/33281921*4106118243^(16/23) 3908816900000000 a001 43133785636/299537289*4106118243^(13/23) 3908816900000000 a001 567451585/299537289*2537720636^(7/9) 3908816900000000 a001 10983760033/199691526*4106118243^(14/23) 3908816900000000 a001 12586269025/599074578*4106118243^(15/23) 3908816900000000 a001 133957148/5374978561*4106118243^(22/23) 3908816900000000 a001 3536736619241/199691526*1568397607^(4/11) 3908816900000000 a001 23388983370670640/598364773 3908816900000000 a001 567451585/299537289*17393796001^(5/7) 3908816900000000 a001 567451585/299537289*312119004989^(7/11) 3908816900000000 a001 567451585/299537289*14662949395604^(5/9) 3908816900000000 a001 567451585/299537289*505019158607^(5/8) 3908816900000000 a001 567451585/299537289*28143753123^(7/10) 3908816900000000 a001 4052739537881/599074578*1568397607^(9/22) 3908816900000000 a001 86000486440/33281921*1568397607^(5/11) 3908816900000000 a001 591286729879/599074578*1568397607^(1/2) 3908816900000000 a001 267913919/710646*1568397607^(6/11) 3908816900000000 a001 43133785636/299537289*1568397607^(13/22) 3908816900000000 a001 1836311903/599074578*1568397607^(17/22) 3908816900000000 a001 10983760033/199691526*1568397607^(7/11) 3908816900000000 a001 12586269025/599074578*1568397607^(15/22) 3908816900000000 a001 267084832/33281921*1568397607^(8/11) 3908816900000000 a001 2971215073/599074578*1568397607^(3/4) 3908816900000000 a001 267914296/4106118243*1568397607^(21/22) 3908816900000000 a001 267914296/969323029*2537720636^(13/15) 3908816900000000 a001 116139356908771352/2971215073 3908816900000000 a001 3536736619241/199691526*599074578^(8/21) 3908816900000000 a001 267914296/969323029*45537549124^(13/17) 3908816900000000 a001 267914296/969323029*14662949395604^(13/21) 3908816900000000 a001 267914296/969323029*192900153618^(13/18) 3908816900000000 a001 267914296/969323029*73681302247^(3/4) 3908816900000000 a001 267914296/969323029*10749957122^(13/16) 3908816900000000 a001 4052739537881/599074578*599074578^(3/7) 3908816900000000 a001 86000486440/33281921*599074578^(10/21) 3908816900000000 a001 956722026041/599074578*599074578^(1/2) 3908816900000000 a001 591286729879/599074578*599074578^(11/21) 3908816900000000 a001 433494437/228826127*228826127^(7/8) 3908816900000000 a001 267913919/710646*599074578^(4/7) 3908816900000000 a001 43133785636/299537289*599074578^(13/21) 3908816900000000 a001 53316291173/599074578*599074578^(9/14) 3908816900000000 a001 10983760033/199691526*599074578^(2/3) 3908816900000000 a001 701408733/1568397607*817138163596^(2/3) 3908816900000000 a001 491974210728665289/12586269025 3908816900000000 a001 701408733/1568397607*10749957122^(19/24) 3908816900000000 a001 233802911/199691526*599074578^(6/7) 3908816900000000 a001 12586269025/599074578*599074578^(5/7) 3908816900000000 a001 701408733/1568397607*4106118243^(19/23) 3908816900000000 a001 267084832/33281921*599074578^(16/21) 3908816900000000 a001 233802911/1368706081*2537720636^(8/9) 3908816900000000 a001 1836311903/1568397607*2537720636^(4/5) 3908816900000000 a001 1836311903/599074578*599074578^(17/21) 3908816900000000 a001 2971215073/599074578*599074578^(11/14) 3908816900000000 a001 701408733/10749957122*2537720636^(14/15) 3908816900000000 a001 267914296/1568397607*599074578^(20/21) 3908816900000000 a001 7778742049/1568397607*2537720636^(11/15) 3908816900000000 a001 32951280099/1568397607*2537720636^(2/3) 3908816900000000 a001 2971215073/1568397607*2537720636^(7/9) 3908816900000000 a001 139583862445/1568397607*2537720636^(3/5) 3908816900000000 a001 365435296162/1568397607*2537720636^(5/9) 3908816900000000 a001 591286729879/1568397607*2537720636^(8/15) 3908816900000000 a001 2504730781961/1568397607*2537720636^(7/15) 3908816900000000 a001 4052739537881/1568397607*2537720636^(4/9) 3908816900000000 a001 1515744265389/224056801*2537720636^(2/5) 3908816900000000 a001 1836311903/1568397607*45537549124^(12/17) 3908816900000000 a001 233802911/1368706081*312119004989^(8/11) 3908816900000000 a001 1836311903/1568397607*14662949395604^(4/7) 3908816900000000 a001 233802911/1368706081*23725150497407^(5/8) 3908816900000000 a001 1836311903/1568397607*505019158607^(9/14) 3908816900000000 a001 1836311903/1568397607*192900153618^(2/3) 3908816900000000 a001 1836311903/1568397607*73681302247^(9/13) 3908816900000000 a001 233802911/1368706081*73681302247^(10/13) 3908816900000000 a001 429335068425349633/10983760033 3908816900000000 a001 233802911/1368706081*28143753123^(4/5) 3908816900000000 a001 701408733/1568397607*1568397607^(19/22) 3908816900000000 a001 1836311903/1568397607*10749957122^(3/4) 3908816900000000 a001 233802911/1368706081*10749957122^(5/6) 3908816900000000 a001 1836311903/1568397607*4106118243^(18/23) 3908816900000000 a001 701408733/10749957122*17393796001^(6/7) 3908816900000000 a001 701408733/10749957122*45537549124^(14/17) 3908816900000000 a001 686789568/224056801*45537549124^(2/3) 3908816900000000 a001 701408733/10749957122*817138163596^(14/19) 3908816900000000 a001 701408733/10749957122*14662949395604^(2/3) 3908816900000000 a001 701408733/10749957122*505019158607^(3/4) 3908816900000000 a001 701408733/10749957122*192900153618^(7/9) 3908816900000000 a001 421505175637435176/10783446409 3908816900000000 a001 233802911/1368706081*4106118243^(20/23) 3908816900000000 a001 686789568/224056801*10749957122^(17/24) 3908816900000000 a001 86267571272/1568397607*17393796001^(4/7) 3908816900000000 a001 2504730781961/1568397607*17393796001^(3/7) 3908816900000000 a001 233802911/9381251041*312119004989^(4/5) 3908816900000000 a001 12586269025/1568397607*23725150497407^(1/2) 3908816900000000 a001 12586269025/1568397607*505019158607^(4/7) 3908816900000000 a001 12586269025/1568397607*73681302247^(8/13) 3908816900000000 a001 233802911/9381251041*73681302247^(11/13) 3908816900000000 a001 701408733/10749957122*10749957122^(7/8) 3908816900000000 a001 233802911/64300051206*45537549124^(16/17) 3908816900000000 a001 32951280099/1568397607*45537549124^(10/17) 3908816900000000 a001 139583862445/1568397607*45537549124^(9/17) 3908816900000000 a001 591286729879/1568397607*45537549124^(8/17) 3908816900000000 a001 2504730781961/1568397607*45537549124^(7/17) 3908816900000000 a001 32951280099/1568397607*312119004989^(6/11) 3908816900000000 a001 32951280099/1568397607*14662949395604^(10/21) 3908816900000000 a001 23112315624967704567/591286729879 3908816900000000 a001 1515744265389/224056801*45537549124^(6/17) 3908816900000000 a001 32951280099/1568397607*192900153618^(5/9) 3908816900000000 a001 233802911/64300051206*14662949395604^(16/21) 3908816900000000 a001 2521201161036696599/64500364830 3908816900000000 a001 701408733/505019158607*312119004989^(10/11) 3908816900000000 a001 1548008755920/1568397607*312119004989^(2/5) 3908816900000000 a001 158414167969674450561/4052739537881 3908816900000000 a001 233802911/64300051206*192900153618^(8/9) 3908816900000000 a001 4052739537881/1568397607*505019158607^(5/14) 3908816900000000 a001 128159754037234091373/3278735159921 3908816900000000 a001 233802911/440719107401*505019158607^(13/14) 3908816900000000 a001 139583862445/1568397607*817138163596^(9/19) 3908816900000000 a001 139583862445/1568397607*14662949395604^(3/7) 3908816900000000 a001 3524667/1568437211*505019158607^(7/8) 3908816900000000 a001 139583862445/1568397607*192900153618^(1/2) 3908816900000000 a001 701408733/817138163596*192900153618^(17/18) 3908816900000000 a001 701408733/45537549124*45537549124^(15/17) 3908816900000000 a001 37396512239913013809/956722026041 3908816900000000 a001 4052739537881/1568397607*73681302247^(5/13) 3908816900000000 a001 591286729879/1568397607*73681302247^(6/13) 3908816900000000 a001 32264490531/224056801*73681302247^(1/2) 3908816900000000 a001 233802911/64300051206*73681302247^(12/13) 3908816900000000 a001 701408733/45537549124*312119004989^(9/11) 3908816900000000 a001 701408733/45537549124*14662949395604^(5/7) 3908816900000000 a001 20365011074/1568397607*9062201101803^(1/2) 3908816900000000 a001 701408733/45537549124*192900153618^(5/6) 3908816900000000 a001 4052739537881/1568397607*28143753123^(2/5) 3908816900000000 a001 32951280099/1568397607*28143753123^(3/5) 3908816900000000 a001 365435296162/1568397607*28143753123^(1/2) 3908816900000000 a001 701408733/45537549124*28143753123^(9/10) 3908816900000000 a001 7778742049/1568397607*45537549124^(11/17) 3908816900000000 a001 1515744265389/224056801*10749957122^(3/8) 3908816900000000 a001 61304242751942853/1568358005 3908816900000000 a001 7778742049/1568397607*312119004989^(3/5) 3908816900000000 a001 7778742049/1568397607*14662949395604^(11/21) 3908816900000000 a001 7778742049/1568397607*192900153618^(11/18) 3908816900000000 a001 4052739537881/1568397607*10749957122^(5/12) 3908816900000000 a001 2504730781961/1568397607*10749957122^(7/16) 3908816900000000 a001 1548008755920/1568397607*10749957122^(11/24) 3908816900000000 a001 591286729879/1568397607*10749957122^(1/2) 3908816900000000 a001 12586269025/1568397607*10749957122^(2/3) 3908816900000000 a001 32264490531/224056801*10749957122^(13/24) 3908816900000000 a001 139583862445/1568397607*10749957122^(9/16) 3908816900000000 a001 86267571272/1568397607*10749957122^(7/12) 3908816900000000 a001 32951280099/1568397607*10749957122^(5/8) 3908816900000000 a001 233802911/9381251041*10749957122^(11/12) 3908816900000000 a001 701408733/73681302247*10749957122^(23/24) 3908816900000000 a001 701408733/45537549124*10749957122^(15/16) 3908816900000000 a001 7778742049/1568397607*10749957122^(11/16) 3908816900000000 a001 2971215073/1568397607*17393796001^(5/7) 3908816900000000 a001 701408733/2537720636*2537720636^(13/15) 3908816900000000 a001 2084036199823432509/53316291173 3908816900000000 a001 2971215073/1568397607*312119004989^(7/11) 3908816900000000 a001 2971215073/1568397607*14662949395604^(5/9) 3908816900000000 a001 2971215073/1568397607*505019158607^(5/8) 3908816900000000 a001 1515744265389/224056801*4106118243^(9/23) 3908816900000000 a001 2971215073/1568397607*28143753123^(7/10) 3908816900000000 a001 4052739537881/1568397607*4106118243^(10/23) 3908816900000000 a001 1548008755920/1568397607*4106118243^(11/23) 3908816900000000 a001 956722026041/1568397607*4106118243^(1/2) 3908816900000000 a001 591286729879/1568397607*4106118243^(12/23) 3908816900000000 a001 32264490531/224056801*4106118243^(13/23) 3908816900000000 a001 686789568/224056801*4106118243^(17/23) 3908816900000000 a001 86267571272/1568397607*4106118243^(14/23) 3908816900000000 a001 32951280099/1568397607*4106118243^(15/23) 3908816900000000 a001 12586269025/1568397607*4106118243^(16/23) 3908816900000000 a001 701408733/10749957122*4106118243^(21/23) 3908816900000000 a001 233802911/9381251041*4106118243^(22/23) 3908816900000000 a001 567451585/299537289*599074578^(5/6) 3908816900000000 a001 398015497273691805/10182505537 3908816900000000 a001 701408733/2537720636*45537549124^(13/17) 3908816900000000 a001 701408733/2537720636*14662949395604^(13/21) 3908816900000000 a001 701408733/2537720636*192900153618^(13/18) 3908816900000000 a001 701408733/2537720636*73681302247^(3/4) 3908816900000000 a001 701408733/2537720636*10749957122^(13/16) 3908816900000000 a001 1515744265389/224056801*1568397607^(9/22) 3908816900000000 a001 4052739537881/1568397607*1568397607^(5/11) 3908816900000000 a001 1836311903/10749957122*2537720636^(8/9) 3908816900000000 a001 1836311903/28143753123*2537720636^(14/15) 3908816900000000 a001 1548008755920/1568397607*1568397607^(1/2) 3908816900000000 a001 1602508992/1368706081*2537720636^(4/5) 3908816900000000 a001 591286729879/1568397607*1568397607^(6/11) 3908816900000000 a001 7778742049/4106118243*2537720636^(7/9) 3908816900000000 a001 20365011074/4106118243*2537720636^(11/15) 3908816900000000 a001 1836311903/6643838879*2537720636^(13/15) 3908816900000000 a001 32264490531/224056801*1568397607^(13/22) 3908816900000000 a001 86267571272/4106118243*2537720636^(2/3) 3908816900000000 a001 686789568/10525900321*2537720636^(14/15) 3908816900000000 a001 365435296162/4106118243*2537720636^(3/5) 3908816900000000 a001 1602508992/9381251041*2537720636^(8/9) 3908816900000000 a001 86267571272/1568397607*1568397607^(7/11) 3908816900000000 a001 12586269025/192900153618*2537720636^(14/15) 3908816900000000 a001 956722026041/4106118243*2537720636^(5/9) 3908816900000000 a001 32951280099/505019158607*2537720636^(14/15) 3908816900000000 a001 86267571272/1322157322203*2537720636^(14/15) 3908816900000000 a001 32264490531/494493258286*2537720636^(14/15) 3908816900000000 a001 365435296162/5600748293801*2537720636^(14/15) 3908816900000000 a001 139583862445/2139295485799*2537720636^(14/15) 3908816900000000 a001 53316291173/817138163596*2537720636^(14/15) 3908816900000000 a001 20365011074/312119004989*2537720636^(14/15) 3908816900000000 a001 516002918640/1368706081*2537720636^(8/15) 3908816900000000 a001 7778742049/119218851371*2537720636^(14/15) 3908816900000000 a001 4807526976/17393796001*2537720636^(13/15) 3908816900000000 a001 12586269025/73681302247*2537720636^(8/9) 3908816900000000 a001 10983760033/64300051206*2537720636^(8/9) 3908816900000000 a001 86267571272/505019158607*2537720636^(8/9) 3908816900000000 a001 75283811239/440719107401*2537720636^(8/9) 3908816900000000 a001 2504730781961/14662949395604*2537720636^(8/9) 3908816900000000 a001 139583862445/817138163596*2537720636^(8/9) 3908816900000000 a001 53316291173/312119004989*2537720636^(8/9) 3908816900000000 a001 20365011074/119218851371*2537720636^(8/9) 3908816900000000 a001 12586269025/45537549124*2537720636^(13/15) 3908816900000000 a001 32951280099/119218851371*2537720636^(13/15) 3908816900000000 a001 86267571272/312119004989*2537720636^(13/15) 3908816900000000 a001 225851433717/817138163596*2537720636^(13/15) 3908816900000000 a001 1548008755920/5600748293801*2537720636^(13/15) 3908816900000000 a001 139583862445/505019158607*2537720636^(13/15) 3908816900000000 a001 53316291173/192900153618*2537720636^(13/15) 3908816900000000 a001 20365011074/73681302247*2537720636^(13/15) 3908816900000000 a001 7778742049/45537549124*2537720636^(8/9) 3908816900000000 a001 12586269025/10749957122*2537720636^(4/5) 3908816900000000 a001 1836311903/1568397607*1568397607^(9/11) 3908816900000000 a001 7778742049/28143753123*2537720636^(13/15) 3908816900000000 a001 6557470319842/4106118243*2537720636^(7/15) 3908816900000000 a001 32951280099/1568397607*1568397607^(15/22) 3908816900000000 a001 10182505537/5374978561*2537720636^(7/9) 3908816900000000 a001 3536736619241/1368706081*2537720636^(4/9) 3908816900000000 a001 10983760033/9381251041*2537720636^(4/5) 3908816900000000 a001 86267571272/73681302247*2537720636^(4/5) 3908816900000000 a001 75283811239/64300051206*2537720636^(4/5) 3908816900000000 a001 2504730781961/2139295485799*2537720636^(4/5) 3908816900000000 a001 365435296162/312119004989*2537720636^(4/5) 3908816900000000 a001 139583862445/119218851371*2537720636^(4/5) 3908816900000000 a001 53316291173/45537549124*2537720636^(4/5) 3908816900000000 a001 53316291173/10749957122*2537720636^(11/15) 3908816900000000 a001 53316291173/28143753123*2537720636^(7/9) 3908816900000000 a001 2971215073/45537549124*2537720636^(14/15) 3908816900000000 a001 139583862445/73681302247*2537720636^(7/9) 3908816900000000 a001 182717648081/96450076809*2537720636^(7/9) 3908816900000000 a001 956722026041/505019158607*2537720636^(7/9) 3908816900000000 a001 10610209857723/5600748293801*2537720636^(7/9) 3908816900000000 a001 591286729879/312119004989*2537720636^(7/9) 3908816900000000 a001 225851433717/119218851371*2537720636^(7/9) 3908816900000000 a001 2971215073/10749957122*2537720636^(13/15) 3908816900000000 a001 20365011074/17393796001*2537720636^(4/5) 3908816900000000 a001 21566892818/11384387281*2537720636^(7/9) 3908816900000000 a001 1836311903/4106118243*817138163596^(2/3) 3908816900000000 a001 3372041405099481409/86267571272 3908816900000000 a001 32951280099/17393796001*2537720636^(7/9) 3908816900000000 a001 139583862445/28143753123*2537720636^(11/15) 3908816900000000 a001 365435296162/73681302247*2537720636^(11/15) 3908816900000000 a001 956722026041/192900153618*2537720636^(11/15) 3908816900000000 a001 2504730781961/505019158607*2537720636^(11/15) 3908816900000000 a001 4052739537881/817138163596*2537720636^(11/15) 3908816900000000 a001 140728068720/28374454999*2537720636^(11/15) 3908816900000000 a001 591286729879/119218851371*2537720636^(11/15) 3908816900000000 a001 225851433717/45537549124*2537720636^(11/15) 3908816900000000 a001 225851433717/10749957122*2537720636^(2/3) 3908816900000000 a001 12586269025/1568397607*1568397607^(8/11) 3908816900000000 a001 2971215073/17393796001*2537720636^(8/9) 3908816900000000 a001 1836311903/4106118243*10749957122^(19/24) 3908816900000000 a001 86267571272/17393796001*2537720636^(11/15) 3908816900000000 a001 591286729879/28143753123*2537720636^(2/3) 3908816900000000 a001 1548008755920/73681302247*2537720636^(2/3) 3908816900000000 a001 4052739537881/192900153618*2537720636^(2/3) 3908816900000000 a001 225749145909/10745088481*2537720636^(2/3) 3908816900000000 a001 6557470319842/312119004989*2537720636^(2/3) 3908816900000000 a001 2504730781961/119218851371*2537720636^(2/3) 3908816900000000 a001 956722026041/45537549124*2537720636^(2/3) 3908816900000000 a001 956722026041/10749957122*2537720636^(3/5) 3908816900000000 a001 686789568/224056801*1568397607^(17/22) 3908816900000000 a001 365435296162/17393796001*2537720636^(2/3) 3908816900000000 a001 12586269025/6643838879*2537720636^(7/9) 3908816900000000 a001 7778742049/1568397607*1568397607^(3/4) 3908816900000000 a001 7778742049/6643838879*2537720636^(4/5) 3908816900000000 a001 233802911/1368706081*1568397607^(10/11) 3908816900000000 a001 2504730781961/10749957122*2537720636^(5/9) 3908816900000000 a001 2504730781961/28143753123*2537720636^(3/5) 3908816900000000 a001 6557470319842/73681302247*2537720636^(3/5) 3908816900000000 a001 10610209857723/119218851371*2537720636^(3/5) 3908816900000000 a001 4052739537881/45537549124*2537720636^(3/5) 3908816900000000 a001 4052739537881/10749957122*2537720636^(8/15) 3908816900000000 a001 32951280099/6643838879*2537720636^(11/15) 3908816900000000 a001 1548008755920/17393796001*2537720636^(3/5) 3908816900000000 a001 6557470319842/28143753123*2537720636^(5/9) 3908816900000000 a001 10610209857723/45537549124*2537720636^(5/9) 3908816900000000 a001 3536736619241/9381251041*2537720636^(8/15) 3908816900000000 a001 4052739537881/17393796001*2537720636^(5/9) 3908816900000000 a001 139583862445/6643838879*2537720636^(2/3) 3908816900000000 a001 6557470319842/17393796001*2537720636^(8/15) 3908816900000000 a001 591286729879/6643838879*2537720636^(3/5) 3908816900000000 a001 1836311903/4106118243*4106118243^(19/23) 3908816900000000 a001 1602508992/1368706081*45537549124^(12/17) 3908816900000000 a001 1836311903/10749957122*312119004989^(8/11) 3908816900000000 a001 1602508992/1368706081*14662949395604^(4/7) 3908816900000000 a001 1602508992/1368706081*505019158607^(9/14) 3908816900000000 a001 420386619524875968/10754830177 3908816900000000 a001 1602508992/1368706081*192900153618^(2/3) 3908816900000000 a001 1602508992/1368706081*73681302247^(9/13) 3908816900000000 a001 1836311903/10749957122*73681302247^(10/13) 3908816900000000 a001 1836311903/10749957122*28143753123^(4/5) 3908816900000000 a001 1548008755920/6643838879*2537720636^(5/9) 3908816900000000 a001 1836311903/28143753123*17393796001^(6/7) 3908816900000000 a001 1602508992/1368706081*10749957122^(3/4) 3908816900000000 a001 75283811239/1368706081*17393796001^(4/7) 3908816900000000 a001 1836311903/28143753123*45537549124^(14/17) 3908816900000000 a001 12586269025/4106118243*45537549124^(2/3) 3908816900000000 a001 1836311903/10749957122*10749957122^(5/6) 3908816900000000 a001 6557470319842/4106118243*17393796001^(3/7) 3908816900000000 a001 1836311903/28143753123*14662949395604^(2/3) 3908816900000000 a001 1836311903/28143753123*505019158607^(3/4) 3908816900000000 a001 1836311903/28143753123*192900153618^(7/9) 3908816900000000 a001 2504730781961/6643838879*2537720636^(8/15) 3908816900000000 a001 1836311903/505019158607*45537549124^(16/17) 3908816900000000 a001 1836311903/119218851371*45537549124^(15/17) 3908816900000000 a001 86267571272/4106118243*45537549124^(10/17) 3908816900000000 a001 365435296162/4106118243*45537549124^(9/17) 3908816900000000 a001 516002918640/1368706081*45537549124^(8/17) 3908816900000000 a001 6557470319842/4106118243*45537549124^(7/17) 3908816900000000 a001 1836311903/73681302247*312119004989^(4/5) 3908816900000000 a001 10983760033/1368706081*23725150497407^(1/2) 3908816900000000 a001 10983760033/1368706081*505019158607^(4/7) 3908816900000000 a001 10983760033/1368706081*73681302247^(8/13) 3908816900000000 a001 86267571272/4106118243*312119004989^(6/11) 3908816900000000 a001 1836311903/73681302247*73681302247^(11/13) 3908816900000000 a001 158414167969674450616/4052739537881 3908816900000000 a001 86267571272/4106118243*192900153618^(5/9) 3908816900000000 a001 1836311903/1322157322203*312119004989^(10/11) 3908816900000000 a001 19749222668768696831/505248088463 3908816900000000 a001 1836311903/1322157322203*3461452808002^(5/6) 3908816900000000 a001 1836311903/817138163596*505019158607^(7/8) 3908816900000000 a001 139583862445/4106118243*1322157322203^(1/2) 3908816900000000 a001 365435296162/4106118243*192900153618^(1/2) 3908816900000000 a001 1836311903/505019158607*192900153618^(8/9) 3908816900000000 a001 1836311903/2139295485799*192900153618^(17/18) 3908816900000000 a001 1836311903/119218851371*312119004989^(9/11) 3908816900000000 a001 1836311903/119218851371*14662949395604^(5/7) 3908816900000000 a001 516002918640/1368706081*73681302247^(6/13) 3908816900000000 a001 591286729879/4106118243*73681302247^(1/2) 3908816900000000 a001 1836311903/119218851371*192900153618^(5/6) 3908816900000000 a001 75283811239/1368706081*73681302247^(7/13) 3908816900000000 a001 1836311903/505019158607*73681302247^(12/13) 3908816900000000 a001 20365011074/4106118243*45537549124^(11/17) 3908816900000000 a001 20365011074/4106118243*312119004989^(3/5) 3908816900000000 a001 20365011074/4106118243*14662949395604^(11/21) 3908816900000000 a001 20365011074/4106118243*192900153618^(11/18) 3908816900000000 a001 3536736619241/1368706081*28143753123^(2/5) 3908816900000000 a001 956722026041/4106118243*28143753123^(1/2) 3908816900000000 a001 86267571272/4106118243*28143753123^(3/5) 3908816900000000 a001 7778742049/4106118243*17393796001^(5/7) 3908816900000000 a001 1836311903/119218851371*28143753123^(9/10) 3908816900000000 a001 7778742049/4106118243*312119004989^(7/11) 3908816900000000 a001 14284196614945309247/365435296162 3908816900000000 a001 7778742049/4106118243*505019158607^(5/8) 3908816900000000 a001 3536736619241/1368706081*10749957122^(5/12) 3908816900000000 a001 6557470319842/4106118243*10749957122^(7/16) 3908816900000000 a001 4052739537881/4106118243*10749957122^(11/24) 3908816900000000 a001 7778742049/4106118243*28143753123^(7/10) 3908816900000000 a001 516002918640/1368706081*10749957122^(1/2) 3908816900000000 a001 591286729879/4106118243*10749957122^(13/24) 3908816900000000 a001 12586269025/4106118243*10749957122^(17/24) 3908816900000000 a001 365435296162/4106118243*10749957122^(9/16) 3908816900000000 a001 75283811239/1368706081*10749957122^(7/12) 3908816900000000 a001 86267571272/4106118243*10749957122^(5/8) 3908816900000000 a001 10983760033/1368706081*10749957122^(2/3) 3908816900000000 a001 1836311903/28143753123*10749957122^(7/8) 3908816900000000 a001 20365011074/4106118243*10749957122^(11/16) 3908816900000000 a001 1836311903/73681302247*10749957122^(11/12) 3908816900000000 a001 1836311903/119218851371*10749957122^(15/16) 3908816900000000 a001 1836311903/192900153618*10749957122^(23/24) 3908816900000000 a001 10610209857723/6643838879*2537720636^(7/15) 3908816900000000 a001 1134903170/4106118243*2537720636^(13/15) 3908816900000000 a001 1836311903/6643838879*45537549124^(13/17) 3908816900000000 a001 5456077604922913919/139583862445 3908816900000000 a001 1836311903/6643838879*14662949395604^(13/21) 3908816900000000 a001 1836311903/6643838879*192900153618^(13/18) 3908816900000000 a001 1836311903/6643838879*73681302247^(3/4) 3908816900000000 a001 3536736619241/1368706081*4106118243^(10/23) 3908816900000000 a001 4052739537881/4106118243*4106118243^(11/23) 3908816900000000 a001 2504730781961/4106118243*4106118243^(1/2) 3908816900000000 a001 1836311903/6643838879*10749957122^(13/16) 3908816900000000 a001 516002918640/1368706081*4106118243^(12/23) 3908816900000000 a001 701408733/10749957122*1568397607^(21/22) 3908816900000000 a001 591286729879/4106118243*4106118243^(13/23) 3908816900000000 a001 75283811239/1368706081*4106118243^(14/23) 3908816900000000 a001 1602508992/1368706081*4106118243^(18/23) 3908816900000000 a001 86267571272/4106118243*4106118243^(15/23) 3908816900000000 a001 10983760033/1368706081*4106118243^(16/23) 3908816900000000 a001 2403763488/5374978561*817138163596^(2/3) 3908816900000000 a001 23112315624967704576/591286729879 3908816900000000 a001 12586269025/4106118243*4106118243^(17/23) 3908816900000000 a001 1836311903/10749957122*4106118243^(20/23) 3908816900000000 a001 686789568/10525900321*17393796001^(6/7) 3908816900000000 a001 591286729879/10749957122*17393796001^(4/7) 3908816900000000 a001 10182505537/5374978561*17393796001^(5/7) 3908816900000000 a001 2403763488/5374978561*10749957122^(19/24) 3908816900000000 a001 12586269025/10749957122*45537549124^(12/17) 3908816900000000 a001 1602508992/9381251041*312119004989^(8/11) 3908816900000000 a001 12586269025/10749957122*14662949395604^(4/7) 3908816900000000 a001 12586269025/10749957122*505019158607^(9/14) 3908816900000000 a001 12586269025/10749957122*192900153618^(2/3) 3908816900000000 a001 12586269025/10749957122*73681302247^(9/13) 3908816900000000 a001 1602508992/9381251041*73681302247^(10/13) 3908816900000000 a001 686789568/10525900321*45537549124^(14/17) 3908816900000000 a001 32951280099/10749957122*45537549124^(2/3) 3908816900000000 a001 1602508992/440719107401*45537549124^(16/17) 3908816900000000 a001 4807526976/312119004989*45537549124^(15/17) 3908816900000000 a001 225851433717/10749957122*45537549124^(10/17) 3908816900000000 a001 956722026041/10749957122*45537549124^(9/17) 3908816900000000 a001 1602508992/9381251041*28143753123^(4/5) 3908816900000000 a001 53316291173/10749957122*45537549124^(11/17) 3908816900000000 a001 4052739537881/10749957122*45537549124^(8/17) 3908816900000000 a001 686789568/10525900321*817138163596^(14/19) 3908816900000000 a001 158414167969674450624/4052739537881 3908816900000000 a001 686789568/10525900321*505019158607^(3/4) 3908816900000000 a001 686789568/10525900321*192900153618^(7/9) 3908816900000000 a001 267084832/10716675201*312119004989^(4/5) 3908816900000000 a001 267084832/10716675201*23725150497407^(11/16) 3908816900000000 a001 420196226995078656/10749959329 3908816900000000 a001 43133785636/5374978561*505019158607^(4/7) 3908816900000000 a001 14930208/10749853441*312119004989^(10/11) 3908816900000000 a001 2504730781961/10749957122*312119004989^(5/11) 3908816900000000 a001 14930208/10749853441*3461452808002^(5/6) 3908816900000000 a001 2504730781961/10749957122*3461452808002^(5/12) 3908816900000000 a001 1602508992/3020733700601*505019158607^(13/14) 3908816900000000 a001 4807526976/312119004989*14662949395604^(5/7) 3908816900000000 a001 139583862445/10749957122*9062201101803^(1/2) 3908816900000000 a001 225851433717/10749957122*192900153618^(5/9) 3908816900000000 a001 4052739537881/10749957122*192900153618^(4/9) 3908816900000000 a001 956722026041/10749957122*192900153618^(1/2) 3908816900000000 a001 1602508992/440719107401*192900153618^(8/9) 3908816900000000 a001 4807526976/5600748293801*192900153618^(17/18) 3908816900000000 a001 4807526976/312119004989*192900153618^(5/6) 3908816900000000 a001 53316291173/10749957122*312119004989^(3/5) 3908816900000000 a001 128159754037234091424/3278735159921 3908816900000000 a001 4052739537881/10749957122*73681302247^(6/13) 3908816900000000 a001 43133785636/5374978561*73681302247^(8/13) 3908816900000000 a001 591286729879/10749957122*73681302247^(7/13) 3908816900000000 a001 267084832/10716675201*73681302247^(11/13) 3908816900000000 a001 1602508992/440719107401*73681302247^(12/13) 3908816900000000 a001 10182505537/5374978561*312119004989^(7/11) 3908816900000000 a001 10182505537/5374978561*14662949395604^(5/9) 3908816900000000 a001 10182505537/5374978561*505019158607^(5/8) 3908816900000000 a001 2504730781961/10749957122*28143753123^(1/2) 3908816900000000 a001 225851433717/10749957122*28143753123^(3/5) 3908816900000000 a001 4807526976/312119004989*28143753123^(9/10) 3908816900000000 a001 10182505537/5374978561*28143753123^(7/10) 3908816900000000 a001 1836311903/28143753123*4106118243^(21/23) 3908816900000000 a001 4807526976/17393796001*45537549124^(13/17) 3908816900000000 a001 37396512239913013824/956722026041 3908816900000000 a001 4807526976/17393796001*14662949395604^(13/21) 3908816900000000 a001 4807526976/17393796001*192900153618^(13/18) 3908816900000000 a001 4807526976/17393796001*73681302247^(3/4) 3908816900000000 a001 4807525989/4870846*10749957122^(11/24) 3908816900000000 a001 4052739537881/10749957122*10749957122^(1/2) 3908816900000000 a001 12586269025/192900153618*17393796001^(6/7) 3908816900000000 a001 774004377960/5374978561*10749957122^(13/24) 3908816900000000 a001 956722026041/10749957122*10749957122^(9/16) 3908816900000000 a001 591286729879/10749957122*10749957122^(7/12) 3908816900000000 a001 53316291173/28143753123*17393796001^(5/7) 3908816900000000 a001 12586269025/10749957122*10749957122^(3/4) 3908816900000000 a001 225851433717/10749957122*10749957122^(5/8) 3908816900000000 a001 12585437040/228811001*17393796001^(4/7) 3908816900000000 a001 32951280099/505019158607*17393796001^(6/7) 3908816900000000 a001 43133785636/5374978561*10749957122^(2/3) 3908816900000000 a001 86267571272/1322157322203*17393796001^(6/7) 3908816900000000 a001 32264490531/494493258286*17393796001^(6/7) 3908816900000000 a001 1548008755920/23725150497407*17393796001^(6/7) 3908816900000000 a001 365435296162/5600748293801*17393796001^(6/7) 3908816900000000 a001 139583862445/2139295485799*17393796001^(6/7) 3908816900000000 a001 1836311903/73681302247*4106118243^(22/23) 3908816900000000 a001 32951280099/10749957122*10749957122^(17/24) 3908816900000000 a001 1602508992/9381251041*10749957122^(5/6) 3908816900000000 a001 53316291173/10749957122*10749957122^(11/16) 3908816900000000 a001 139583862445/73681302247*17393796001^(5/7) 3908816900000000 a001 12586269025/28143753123*817138163596^(2/3) 3908816900000000 a001 182717648081/96450076809*17393796001^(5/7) 3908816900000000 a001 956722026041/505019158607*17393796001^(5/7) 3908816900000000 a001 10610209857723/5600748293801*17393796001^(5/7) 3908816900000000 a001 591286729879/312119004989*17393796001^(5/7) 3908816900000000 a001 20365011074/312119004989*17393796001^(6/7) 3908816900000000 a001 225851433717/119218851371*17393796001^(5/7) 3908816900000000 a001 4052739537881/73681302247*17393796001^(4/7) 3908816900000000 a001 3536736619241/64300051206*17393796001^(4/7) 3908816900000000 a001 21566892818/11384387281*17393796001^(5/7) 3908816900000000 a001 6557470319842/119218851371*17393796001^(4/7) 3908816900000000 a001 10983760033/9381251041*45537549124^(12/17) 3908816900000000 a001 12586269025/3461452808002*45537549124^(16/17) 3908816900000000 a001 12586269025/192900153618*45537549124^(14/17) 3908816900000000 a001 12586269025/817138163596*45537549124^(15/17) 3908816900000000 a001 86267571272/28143753123*45537549124^(2/3) 3908816900000000 a001 139583862445/28143753123*45537549124^(11/17) 3908816900000000 a001 591286729879/28143753123*45537549124^(10/17) 3908816900000000 a001 2504730781961/28143753123*45537549124^(9/17) 3908816900000000 a001 3536736619241/9381251041*45537549124^(8/17) 3908816900000000 a001 12586269025/73681302247*312119004989^(8/11) 3908816900000000 a001 10983760033/9381251041*14662949395604^(4/7) 3908816900000000 a001 10983760033/9381251041*505019158607^(9/14) 3908816900000000 a001 10983760033/9381251041*192900153618^(2/3) 3908816900000000 a001 2504730781961/45537549124*17393796001^(4/7) 3908816900000000 a001 10983760033/9381251041*73681302247^(9/13) 3908816900000000 a001 12586269025/73681302247*73681302247^(10/13) 3908816900000000 a001 12586269025/192900153618*14662949395604^(2/3) 3908816900000000 a001 12586269025/192900153618*505019158607^(3/4) 3908816900000000 a001 12586269025/505019158607*312119004989^(4/5) 3908816900000000 a001 12586269025/817138163596*312119004989^(9/11) 3908816900000000 a001 12586269025/192900153618*192900153618^(7/9) 3908816900000000 a001 12585437040/228811001*14662949395604^(4/9) 3908816900000000 a001 12586269025/5600748293801*505019158607^(7/8) 3908816900000000 a001 3536736619241/9381251041*192900153618^(4/9) 3908816900000000 a001 2504730781961/28143753123*192900153618^(1/2) 3908816900000000 a001 12586269025/3461452808002*192900153618^(8/9) 3908816900000000 a001 12586269025/817138163596*192900153618^(5/6) 3908816900000000 a001 139583862445/28143753123*192900153618^(11/18) 3908816900000000 a001 53316291173/28143753123*312119004989^(7/11) 3908816900000000 a001 53316291173/28143753123*14662949395604^(5/9) 3908816900000000 a001 53316291173/28143753123*505019158607^(5/8) 3908816900000000 a001 3536736619241/9381251041*73681302247^(6/13) 3908816900000000 a001 4052739537881/28143753123*73681302247^(1/2) 3908816900000000 a001 12585437040/228811001*73681302247^(7/13) 3908816900000000 a001 12586269025/45537549124*45537549124^(13/17) 3908816900000000 a001 12586269025/505019158607*73681302247^(11/13) 3908816900000000 a001 12586269025/3461452808002*73681302247^(12/13) 3908816900000000 a001 128159754037234091425/3278735159921 3908816900000000 a001 12586269025/45537549124*14662949395604^(13/21) 3908816900000000 a001 12586269025/45537549124*192900153618^(13/18) 3908816900000000 a001 267084832/10716675201*10749957122^(11/12) 3908816900000000 a001 12586269025/45537549124*73681302247^(3/4) 3908816900000000 a001 10983760033/3020733700601*45537549124^(16/17) 3908816900000000 a001 6557470319842/28143753123*28143753123^(1/2) 3908816900000000 a001 32951280099/2139295485799*45537549124^(15/17) 3908816900000000 a001 32951280099/505019158607*45537549124^(14/17) 3908816900000000 a001 86267571272/73681302247*45537549124^(12/17) 3908816900000000 a001 4807526976/312119004989*10749957122^(15/16) 3908816900000000 a001 32264490531/10525900321*45537549124^(2/3) 3908816900000000 a001 591286729879/28143753123*28143753123^(3/5) 3908816900000000 a001 365435296162/73681302247*45537549124^(11/17) 3908816900000000 a001 32951280099/119218851371*45537549124^(13/17) 3908816900000000 a001 86267571272/23725150497407*45537549124^(16/17) 3908816900000000 a001 1548008755920/73681302247*45537549124^(10/17) 3908816900000000 a001 86267571272/5600748293801*45537549124^(15/17) 3908816900000000 a001 6557470319842/73681302247*45537549124^(9/17) 3908816900000000 a001 12586269025/73681302247*28143753123^(4/5) 3908816900000000 a001 7787980473/505618944676*45537549124^(15/17) 3908816900000000 a001 86267571272/1322157322203*45537549124^(14/17) 3908816900000000 a001 139583862445/9062201101803*45537549124^(15/17) 3908816900000000 a001 32264490531/494493258286*45537549124^(14/17) 3908816900000000 a001 365435296162/5600748293801*45537549124^(14/17) 3908816900000000 a001 139583862445/2139295485799*45537549124^(14/17) 3908816900000000 a001 53316291173/14662949395604*45537549124^(16/17) 3908816900000000 a001 225851433717/817138163596*45537549124^(13/17) 3908816900000000 a001 102287808/10745088481*10749957122^(23/24) 3908816900000000 a001 139583862445/505019158607*45537549124^(13/17) 3908816900000000 a001 53316291173/3461452808002*45537549124^(15/17) 3908816900000000 a001 591286729879/192900153618*45537549124^(2/3) 3908816900000000 a001 956722026041/192900153618*45537549124^(11/17) 3908816900000000 a001 1548008755920/505019158607*45537549124^(2/3) 3908816900000000 a001 1515744265389/494493258286*45537549124^(2/3) 3908816900000000 a001 2504730781961/817138163596*45537549124^(2/3) 3908816900000000 a001 2504730781961/505019158607*45537549124^(11/17) 3908816900000000 a001 4052739537881/192900153618*45537549124^(10/17) 3908816900000000 a001 4052739537881/817138163596*45537549124^(11/17) 3908816900000000 a001 140728068720/28374454999*45537549124^(11/17) 3908816900000000 a001 225749145909/10745088481*45537549124^(10/17) 3908816900000000 a001 6557470319842/312119004989*45537549124^(10/17) 3908816900000000 a001 139583862445/119218851371*45537549124^(12/17) 3908816900000000 a001 365435296162/119218851371*45537549124^(2/3) 3908816900000000 a001 591286729879/119218851371*45537549124^(11/17) 3908816900000000 a001 10983760033/64300051206*312119004989^(8/11) 3908816900000000 a001 10983760033/64300051206*23725150497407^(5/8) 3908816900000000 a001 86267571272/73681302247*505019158607^(9/14) 3908816900000000 a001 86267571272/73681302247*192900153618^(2/3) 3908816900000000 a001 10983760033/440719107401*312119004989^(4/5) 3908816900000000 a001 32951280099/505019158607*505019158607^(3/4) 3908816900000000 a001 10610209857723/119218851371*45537549124^(9/17) 3908816900000000 a001 32951280099/14662949395604*505019158607^(7/8) 3908816900000000 a001 139583862445/73681302247*14662949395604^(5/9) 3908816900000000 a001 139583862445/73681302247*505019158607^(5/8) 3908816900000000 a001 32951280099/505019158607*192900153618^(7/9) 3908816900000000 a001 32951280099/2139295485799*192900153618^(5/6) 3908816900000000 a001 10983760033/3020733700601*192900153618^(8/9) 3908816900000000 a001 12586269025/817138163596*28143753123^(9/10) 3908816900000000 a001 32951280099/119218851371*192900153618^(13/18) 3908816900000000 a001 1515744265389/10525900321*73681302247^(1/2) 3908816900000000 a001 4052739537881/73681302247*73681302247^(7/13) 3908816900000000 a001 86267571272/73681302247*73681302247^(9/13) 3908816900000000 a001 20365011074/73681302247*45537549124^(13/17) 3908816900000000 a001 10983760033/64300051206*73681302247^(10/13) 3908816900000000 a001 43133785636/96450076809*817138163596^(2/3) 3908816900000000 a001 86267571272/505019158607*312119004989^(8/11) 3908816900000000 a001 43133785636/1730726404001*312119004989^(4/5) 3908816900000000 a001 4052739537881/192900153618*312119004989^(6/11) 3908816900000000 a001 182717648081/96450076809*312119004989^(7/11) 3908816900000000 a001 10983760033/440719107401*73681302247^(11/13) 3908816900000000 a001 3536736619241/64300051206*14662949395604^(4/9) 3908816900000000 a001 182717648081/96450076809*505019158607^(5/8) 3908816900000000 a001 10983760033/3020733700601*73681302247^(12/13) 3908816900000000 a001 75283811239/3020733700601*312119004989^(4/5) 3908816900000000 a001 182717648081/7331474697802*312119004989^(4/5) 3908816900000000 a001 139583862445/312119004989*817138163596^(2/3) 3908816900000000 a001 32951280099/119218851371*73681302247^(3/4) 3908816900000000 a001 139583862445/505019158607*192900153618^(13/18) 3908816900000000 a001 140728068720/28374454999*192900153618^(11/18) 3908816900000000 a001 139583862445/2139295485799*192900153618^(7/9) 3908816900000000 a001 139583862445/9062201101803*192900153618^(5/6) 3908816900000000 a001 20365011074/1322157322203*45537549124^(15/17) 3908816900000000 a001 225851433717/119218851371*312119004989^(7/11) 3908816900000000 a001 53316291173/3461452808002*312119004989^(9/11) 3908816900000000 a001 53316291173/2139295485799*312119004989^(4/5) 3908816900000000 a001 225851433717/119218851371*14662949395604^(5/9) 3908816900000000 a001 3536736619241/64300051206*73681302247^(7/13) 3908816900000000 a001 53316291173/23725150497407*505019158607^(7/8) 3908816900000000 a001 139583862445/119218851371*14662949395604^(4/7) 3908816900000000 a001 10610209857723/119218851371*192900153618^(1/2) 3908816900000000 a001 591286729879/119218851371*192900153618^(11/18) 3908816900000000 a001 53316291173/3461452808002*192900153618^(5/6) 3908816900000000 a001 53316291173/817138163596*192900153618^(7/9) 3908816900000000 a001 53316291173/14662949395604*192900153618^(8/9) 3908816900000000 a001 20365011074/312119004989*45537549124^(14/17) 3908816900000000 a001 139583862445/119218851371*192900153618^(2/3) 3908816900000000 a001 4052739537881/505019158607*73681302247^(8/13) 3908816900000000 a001 86267571272/505019158607*73681302247^(10/13) 3908816900000000 a001 3278735159921/408569081798*73681302247^(8/13) 3908816900000000 a001 86267571272/312119004989*73681302247^(3/4) 3908816900000000 a001 2504730781961/2139295485799*73681302247^(9/13) 3908816900000000 a001 43133785636/1730726404001*73681302247^(11/13) 3908816900000000 a001 225851433717/817138163596*73681302247^(3/4) 3908816900000000 a001 1548008755920/5600748293801*73681302247^(3/4) 3908816900000000 a001 139583862445/505019158607*73681302247^(3/4) 3908816900000000 a001 75283811239/3020733700601*73681302247^(11/13) 3908816900000000 a001 139583862445/817138163596*73681302247^(10/13) 3908816900000000 a001 182717648081/7331474697802*73681302247^(11/13) 3908816900000000 a001 139583862445/5600748293801*73681302247^(11/13) 3908816900000000 a001 225851433717/45537549124*45537549124^(11/17) 3908816900000000 a001 139583862445/45537549124*45537549124^(2/3) 3908816900000000 a001 53316291173/192900153618*73681302247^(3/4) 3908816900000000 a001 956722026041/45537549124*45537549124^(10/17) 3908816900000000 a001 139583862445/119218851371*73681302247^(9/13) 3908816900000000 a001 53316291173/45537549124*45537549124^(12/17) 3908816900000000 a001 53316291173/312119004989*73681302247^(10/13) 3908816900000000 a001 4052739537881/45537549124*45537549124^(9/17) 3908816900000000 a001 53316291173/14662949395604*73681302247^(12/13) 3908816900000000 a001 20365011074/73681302247*14662949395604^(13/21) 3908816900000000 a001 20365011074/73681302247*192900153618^(13/18) 3908816900000000 a001 20365011074/73681302247*73681302247^(3/4) 3908816900000000 a001 21566892818/11384387281*312119004989^(7/11) 3908816900000000 a001 21566892818/11384387281*14662949395604^(5/9) 3908816900000000 a001 21566892818/11384387281*505019158607^(5/8) 3908816900000000 a001 10182505537/7331474697802*312119004989^(10/11) 3908816900000000 a001 20365011074/1322157322203*312119004989^(9/11) 3908816900000000 a001 10182505537/408569081798*312119004989^(4/5) 3908816900000000 a001 10182505537/7331474697802*3461452808002^(5/6) 3908816900000000 a001 182717648081/22768774562*23725150497407^(1/2) 3908816900000000 a001 182717648081/22768774562*505019158607^(4/7) 3908816900000000 a001 20365011074/312119004989*817138163596^(14/19) 3908816900000000 a001 20365011074/312119004989*14662949395604^(2/3) 3908816900000000 a001 20365011074/312119004989*505019158607^(3/4) 3908816900000000 a001 956722026041/45537549124*192900153618^(5/9) 3908816900000000 a001 20365011074/1322157322203*192900153618^(5/6) 3908816900000000 a001 20365011074/5600748293801*192900153618^(8/9) 3908816900000000 a001 20365011074/312119004989*192900153618^(7/9) 3908816900000000 a001 20365011074/119218851371*312119004989^(8/11) 3908816900000000 a001 20365011074/119218851371*23725150497407^(5/8) 3908816900000000 a001 53316291173/45537549124*505019158607^(9/14) 3908816900000000 a001 1548008755920/73681302247*28143753123^(3/5) 3908816900000000 a001 3278735159921/22768774562*73681302247^(1/2) 3908816900000000 a001 2504730781961/45537549124*73681302247^(7/13) 3908816900000000 a001 182717648081/22768774562*73681302247^(8/13) 3908816900000000 a001 10182505537/408569081798*73681302247^(11/13) 3908816900000000 a001 20365011074/5600748293801*73681302247^(12/13) 3908816900000000 a001 53316291173/45537549124*73681302247^(9/13) 3908816900000000 a001 20365011074/119218851371*73681302247^(10/13) 3908816900000000 a001 139583862445/73681302247*28143753123^(7/10) 3908816900000000 a001 4052739537881/192900153618*28143753123^(3/5) 3908816900000000 a001 225749145909/10745088481*28143753123^(3/5) 3908816900000000 a001 32951280099/17393796001*17393796001^(5/7) 3908816900000000 a001 6557470319842/312119004989*28143753123^(3/5) 3908816900000000 a001 10983760033/64300051206*28143753123^(4/5) 3908816900000000 a001 2504730781961/119218851371*28143753123^(3/5) 3908816900000000 a001 182717648081/96450076809*28143753123^(7/10) 3908816900000000 a001 956722026041/505019158607*28143753123^(7/10) 3908816900000000 a001 591286729879/312119004989*28143753123^(7/10) 3908816900000000 a001 225851433717/119218851371*28143753123^(7/10) 3908816900000000 a001 32951280099/2139295485799*28143753123^(9/10) 3908816900000000 a001 10182505537/22768774562*817138163596^(2/3) 3908816900000000 a001 86267571272/505019158607*28143753123^(4/5) 3908816900000000 a001 75283811239/440719107401*28143753123^(4/5) 3908816900000000 a001 2504730781961/14662949395604*28143753123^(4/5) 3908816900000000 a001 139583862445/817138163596*28143753123^(4/5) 3908816900000000 a001 53316291173/312119004989*28143753123^(4/5) 3908816900000000 a001 86267571272/5600748293801*28143753123^(9/10) 3908816900000000 a001 10610209857723/45537549124*28143753123^(1/2) 3908816900000000 a001 7787980473/505618944676*28143753123^(9/10) 3908816900000000 a001 365435296162/23725150497407*28143753123^(9/10) 3908816900000000 a001 139583862445/9062201101803*28143753123^(9/10) 3908816900000000 a001 53316291173/3461452808002*28143753123^(9/10) 3908816900000000 a001 956722026041/45537549124*28143753123^(3/5) 3908816900000000 a001 21566892818/11384387281*28143753123^(7/10) 3908816900000000 a001 956722026041/17393796001*17393796001^(4/7) 3908816900000000 a001 20365011074/119218851371*28143753123^(4/5) 3908816900000000 a001 20365011074/1322157322203*28143753123^(9/10) 3908816900000000 a001 7778742049/28143753123*45537549124^(13/17) 3908816900000000 a001 4807526976/17393796001*10749957122^(13/16) 3908816900000000 a001 97905340104793732225/2504730781961 3908816900000000 a001 7778742049/28143753123*14662949395604^(13/21) 3908816900000000 a001 7778742049/28143753123*192900153618^(13/18) 3908816900000000 a001 7778742049/28143753123*73681302247^(3/4) 3908816900000000 a001 7778742049/2139295485799*45537549124^(16/17) 3908816900000000 a001 7778742049/505019158607*45537549124^(15/17) 3908816900000000 a001 86267571272/17393796001*45537549124^(11/17) 3908816900000000 a001 7778742049/119218851371*45537549124^(14/17) 3908816900000000 a001 365435296162/17393796001*45537549124^(10/17) 3908816900000000 a001 1548008755920/17393796001*45537549124^(9/17) 3908816900000000 a001 53316291173/17393796001*45537549124^(2/3) 3908816900000000 a001 3536736619241/9381251041*10749957122^(1/2) 3908816900000000 a001 6557470319842/17393796001*45537549124^(8/17) 3908816900000000 a001 32951280099/17393796001*312119004989^(7/11) 3908816900000000 a001 19716885236497552527/504420793834 3908816900000000 a001 32951280099/17393796001*14662949395604^(5/9) 3908816900000000 a001 32951280099/17393796001*505019158607^(5/8) 3908816900000000 a001 86267571272/17393796001*312119004989^(3/5) 3908816900000000 a001 86267571272/17393796001*817138163596^(11/19) 3908816900000000 a001 86267571272/17393796001*14662949395604^(11/21) 3908816900000000 a001 7778742049/505019158607*312119004989^(9/11) 3908816900000000 a001 86267571272/17393796001*192900153618^(11/18) 3908816900000000 a001 4052739537881/17393796001*312119004989^(5/11) 3908816900000000 a001 365435296162/17393796001*312119004989^(6/11) 3908816900000000 a001 1548008755920/17393796001*817138163596^(9/19) 3908816900000000 a001 591286729879/17393796001*1322157322203^(1/2) 3908816900000000 a001 1548008755920/17393796001*14662949395604^(3/7) 3908816900000000 a001 7778742049/3461452808002*505019158607^(7/8) 3908816900000000 a001 139583862445/17393796001*23725150497407^(1/2) 3908816900000000 a001 365435296162/17393796001*192900153618^(5/9) 3908816900000000 a001 7778742049/505019158607*192900153618^(5/6) 3908816900000000 a001 7778742049/2139295485799*192900153618^(8/9) 3908816900000000 a001 7778742049/9062201101803*192900153618^(17/18) 3908816900000000 a001 7778742049/119218851371*817138163596^(14/19) 3908816900000000 a001 414733676044142633477/10610209857723 3908816900000000 a001 7778742049/119218851371*505019158607^(3/4) 3908816900000000 a001 6557470319842/17393796001*73681302247^(6/13) 3908816900000000 a001 7778742049/119218851371*192900153618^(7/9) 3908816900000000 a001 2504730781961/17393796001*73681302247^(1/2) 3908816900000000 a001 956722026041/17393796001*73681302247^(7/13) 3908816900000000 a001 4052739537881/28143753123*10749957122^(13/24) 3908816900000000 a001 139583862445/17393796001*73681302247^(8/13) 3908816900000000 a001 20365011074/17393796001*45537549124^(12/17) 3908816900000000 a001 7778742049/312119004989*73681302247^(11/13) 3908816900000000 a001 7778742049/2139295485799*73681302247^(12/13) 3908816900000000 a001 2504730781961/28143753123*10749957122^(9/16) 3908816900000000 a001 7778742049/45537549124*312119004989^(8/11) 3908816900000000 a001 12585437040/228811001*10749957122^(7/12) 3908816900000000 a001 158414167969674450626/4052739537881 3908816900000000 a001 20365011074/17393796001*505019158607^(9/14) 3908816900000000 a001 20365011074/17393796001*192900153618^(2/3) 3908816900000000 a001 20365011074/17393796001*73681302247^(9/13) 3908816900000000 a001 7778742049/45537549124*73681302247^(10/13) 3908816900000000 a001 4052739537881/17393796001*28143753123^(1/2) 3908816900000000 a001 32951280099/17393796001*28143753123^(7/10) 3908816900000000 a001 365435296162/17393796001*28143753123^(3/5) 3908816900000000 a001 591286729879/28143753123*10749957122^(5/8) 3908816900000000 a001 12586269025/28143753123*10749957122^(19/24) 3908816900000000 a001 7778742049/505019158607*28143753123^(9/10) 3908816900000000 a001 75283811239/9381251041*10749957122^(2/3) 3908816900000000 a001 1515744265389/10525900321*10749957122^(13/24) 3908816900000000 a001 6557470319842/73681302247*10749957122^(9/16) 3908816900000000 a001 139583862445/28143753123*10749957122^(11/16) 3908816900000000 a001 7778742049/45537549124*28143753123^(4/5) 3908816900000000 a001 86267571272/28143753123*10749957122^(17/24) 3908816900000000 a001 4052739537881/73681302247*10749957122^(7/12) 3908816900000000 a001 10610209857723/119218851371*10749957122^(9/16) 3908816900000000 a001 3536736619241/64300051206*10749957122^(7/12) 3908816900000000 a001 10983760033/9381251041*10749957122^(3/4) 3908816900000000 a001 6557470319842/119218851371*10749957122^(7/12) 3908816900000000 a001 3278735159921/22768774562*10749957122^(13/24) 3908816900000000 a001 1548008755920/73681302247*10749957122^(5/8) 3908816900000000 a001 4052739537881/45537549124*10749957122^(9/16) 3908816900000000 a001 4052739537881/192900153618*10749957122^(5/8) 3908816900000000 a001 225749145909/10745088481*10749957122^(5/8) 3908816900000000 a001 6557470319842/312119004989*10749957122^(5/8) 3908816900000000 a001 2504730781961/119218851371*10749957122^(5/8) 3908816900000000 a001 2504730781961/45537549124*10749957122^(7/12) 3908816900000000 a001 591286729879/73681302247*10749957122^(2/3) 3908816900000000 a001 86000486440/10716675201*10749957122^(2/3) 3908816900000000 a001 12586269025/73681302247*10749957122^(5/6) 3908816900000000 a001 4052739537881/505019158607*10749957122^(2/3) 3908816900000000 a001 3278735159921/408569081798*10749957122^(2/3) 3908816900000000 a001 2504730781961/312119004989*10749957122^(2/3) 3908816900000000 a001 956722026041/119218851371*10749957122^(2/3) 3908816900000000 a001 956722026041/45537549124*10749957122^(5/8) 3908816900000000 a001 956722026041/192900153618*10749957122^(11/16) 3908816900000000 a001 32264490531/10525900321*10749957122^(17/24) 3908816900000000 a001 2504730781961/505019158607*10749957122^(11/16) 3908816900000000 a001 4052739537881/817138163596*10749957122^(11/16) 3908816900000000 a001 140728068720/28374454999*10749957122^(11/16) 3908816900000000 a001 591286729879/119218851371*10749957122^(11/16) 3908816900000000 a001 591286729879/192900153618*10749957122^(17/24) 3908816900000000 a001 1548008755920/505019158607*10749957122^(17/24) 3908816900000000 a001 1515744265389/494493258286*10749957122^(17/24) 3908816900000000 a001 2504730781961/817138163596*10749957122^(17/24) 3908816900000000 a001 956722026041/312119004989*10749957122^(17/24) 3908816900000000 a001 365435296162/119218851371*10749957122^(17/24) 3908816900000000 a001 12586269025/45537549124*10749957122^(13/16) 3908816900000000 a001 86267571272/73681302247*10749957122^(3/4) 3908816900000000 a001 12586269025/192900153618*10749957122^(7/8) 3908816900000000 a001 225851433717/45537549124*10749957122^(11/16) 3908816900000000 a001 75283811239/64300051206*10749957122^(3/4) 3908816900000000 a001 32951280099/73681302247*10749957122^(19/24) 3908816900000000 a001 2504730781961/2139295485799*10749957122^(3/4) 3908816900000000 a001 365435296162/312119004989*10749957122^(3/4) 3908816900000000 a001 139583862445/119218851371*10749957122^(3/4) 3908816900000000 a001 60508827864880718401/1548008755920 3908816900000000 a001 139583862445/45537549124*10749957122^(17/24) 3908816900000000 a001 12586269025/505019158607*10749957122^(11/12) 3908816900000000 a001 43133785636/96450076809*10749957122^(19/24) 3908816900000000 a001 225851433717/505019158607*10749957122^(19/24) 3908816900000000 a001 12586269025/817138163596*10749957122^(15/16) 3908816900000000 a001 182717648081/408569081798*10749957122^(19/24) 3908816900000000 a001 139583862445/312119004989*10749957122^(19/24) 3908816900000000 a001 32951280099/119218851371*10749957122^(13/16) 3908816900000000 a001 53316291173/119218851371*10749957122^(19/24) 3908816900000000 a001 10983760033/64300051206*10749957122^(5/6) 3908816900000000 a001 86267571272/312119004989*10749957122^(13/16) 3908816900000000 a001 12586269025/1322157322203*10749957122^(23/24) 3908816900000000 a001 139583862445/505019158607*10749957122^(13/16) 3908816900000000 a001 53316291173/45537549124*10749957122^(3/4) 3908816900000000 a001 53316291173/192900153618*10749957122^(13/16) 3908816900000000 a001 86267571272/505019158607*10749957122^(5/6) 3908816900000000 a001 75283811239/440719107401*10749957122^(5/6) 3908816900000000 a001 2504730781961/14662949395604*10749957122^(5/6) 3908816900000000 a001 139583862445/817138163596*10749957122^(5/6) 3908816900000000 a001 53316291173/312119004989*10749957122^(5/6) 3908816900000000 a001 20365011074/73681302247*10749957122^(13/16) 3908816900000000 a001 32951280099/505019158607*10749957122^(7/8) 3908816900000000 a001 86267571272/1322157322203*10749957122^(7/8) 3908816900000000 a001 32264490531/494493258286*10749957122^(7/8) 3908816900000000 a001 1548008755920/23725150497407*10749957122^(7/8) 3908816900000000 a001 365435296162/5600748293801*10749957122^(7/8) 3908816900000000 a001 139583862445/2139295485799*10749957122^(7/8) 3908816900000000 a001 6557470319842/17393796001*10749957122^(1/2) 3908816900000000 a001 53316291173/817138163596*10749957122^(7/8) 3908816900000000 a001 10983760033/440719107401*10749957122^(11/12) 3908816900000000 a001 20365011074/119218851371*10749957122^(5/6) 3908816900000000 a001 10182505537/22768774562*10749957122^(19/24) 3908816900000000 a001 43133785636/1730726404001*10749957122^(11/12) 3908816900000000 a001 75283811239/3020733700601*10749957122^(11/12) 3908816900000000 a001 32951280099/2139295485799*10749957122^(15/16) 3908816900000000 a001 182717648081/7331474697802*10749957122^(11/12) 3908816900000000 a001 139583862445/5600748293801*10749957122^(11/12) 3908816900000000 a001 2504730781961/17393796001*10749957122^(13/24) 3908816900000000 a001 53316291173/2139295485799*10749957122^(11/12) 3908816900000000 a001 20365011074/312119004989*10749957122^(7/8) 3908816900000000 a001 86267571272/5600748293801*10749957122^(15/16) 3908816900000000 a001 32951280099/3461452808002*10749957122^(23/24) 3908816900000000 a001 7787980473/505618944676*10749957122^(15/16) 3908816900000000 a001 139583862445/9062201101803*10749957122^(15/16) 3908816900000000 a001 1548008755920/17393796001*10749957122^(9/16) 3908816900000000 a001 53316291173/3461452808002*10749957122^(15/16) 3908816900000000 a001 86267571272/9062201101803*10749957122^(23/24) 3908816900000000 a001 956722026041/17393796001*10749957122^(7/12) 3908816900000000 a001 53316291173/5600748293801*10749957122^(23/24) 3908816900000000 a001 10182505537/408569081798*10749957122^(11/12) 3908816900000000 a001 20365011074/1322157322203*10749957122^(15/16) 3908816900000000 a001 365435296162/17393796001*10749957122^(5/8) 3908816900000000 a001 20365011074/2139295485799*10749957122^(23/24) 3908816900000000 a001 7778742049/28143753123*10749957122^(13/16) 3908816900000000 a001 139583862445/17393796001*10749957122^(2/3) 3908816900000000 a001 86267571272/17393796001*10749957122^(11/16) 3908816900000000 a001 53316291173/17393796001*10749957122^(17/24) 3908816900000000 a001 20365011074/17393796001*10749957122^(3/4) 3908816900000000 a001 7778742049/119218851371*10749957122^(7/8) 3908816900000000 a001 7778742049/45537549124*10749957122^(5/6) 3908816900000000 a001 7778742049/312119004989*10749957122^(11/12) 3908816900000000 a001 7778742049/505019158607*10749957122^(15/16) 3908816900000000 a001 7778742049/817138163596*10749957122^(23/24) 3908816900000000 a001 7778742049/17393796001*10749957122^(19/24) 3908816900000000 a001 2971215073/10749957122*45537549124^(13/17) 3908816900000000 a001 1134903170/17393796001*2537720636^(14/15) 3908816900000000 a001 2971215073/10749957122*14662949395604^(13/21) 3908816900000000 a001 2971215073/10749957122*192900153618^(13/18) 3908816900000000 a001 2971215073/10749957122*73681302247^(3/4) 3908816900000000 a001 12586269025/6643838879*17393796001^(5/7) 3908816900000000 a001 4807525989/4870846*4106118243^(11/23) 3908816900000000 a001 2971215073/45537549124*17393796001^(6/7) 3908816900000000 a001 365435296162/6643838879*17393796001^(4/7) 3908816900000000 a001 3278735159921/5374978561*4106118243^(1/2) 3908816900000000 a001 2971215073/10749957122*10749957122^(13/16) 3908816900000000 a001 10610209857723/6643838879*17393796001^(3/7) 3908816900000000 a001 12586269025/6643838879*312119004989^(7/11) 3908816900000000 a001 12586269025/6643838879*14662949395604^(5/9) 3908816900000000 a001 12586269025/6643838879*505019158607^(5/8) 3908816900000000 a001 32951280099/6643838879*45537549124^(11/17) 3908816900000000 a001 2971215073/192900153618*45537549124^(15/17) 3908816900000000 a001 2971215073/817138163596*45537549124^(16/17) 3908816900000000 a001 12586269025/6643838879*28143753123^(7/10) 3908816900000000 a001 4052739537881/10749957122*4106118243^(12/23) 3908816900000000 a001 139583862445/6643838879*45537549124^(10/17) 3908816900000000 a001 591286729879/6643838879*45537549124^(9/17) 3908816900000000 a001 2504730781961/6643838879*45537549124^(8/17) 3908816900000000 a001 10610209857723/6643838879*45537549124^(7/17) 3908816900000000 a001 32951280099/6643838879*312119004989^(3/5) 3908816900000000 a001 32951280099/6643838879*817138163596^(11/19) 3908816900000000 a001 32951280099/6643838879*14662949395604^(11/21) 3908816900000000 a001 32951280099/6643838879*192900153618^(11/18) 3908816900000000 a001 2971215073/192900153618*312119004989^(9/11) 3908816900000000 a001 7538809061013770084/192866774113 3908816900000000 a001 2971215073/192900153618*14662949395604^(5/7) 3908816900000000 a001 1548008755920/6643838879*312119004989^(5/11) 3908816900000000 a001 225851433717/6643838879*1322157322203^(1/2) 3908816900000000 a001 1548008755920/6643838879*3461452808002^(5/12) 3908816900000000 a001 10610209857723/6643838879*14662949395604^(1/3) 3908816900000000 a001 139583862445/6643838879*14662949395604^(10/21) 3908816900000000 a001 414733676044142633485/10610209857723 3908816900000000 a001 10610209857723/6643838879*192900153618^(7/18) 3908816900000000 a001 2504730781961/6643838879*192900153618^(4/9) 3908816900000000 a001 139583862445/6643838879*192900153618^(5/9) 3908816900000000 a001 2971215073/119218851371*312119004989^(4/5) 3908816900000000 a001 2971215073/119218851371*23725150497407^(11/16) 3908816900000000 a001 158414167969674450629/4052739537881 3908816900000000 a001 2504730781961/6643838879*73681302247^(6/13) 3908816900000000 a001 2971215073/45537549124*45537549124^(14/17) 3908816900000000 a001 956722026041/6643838879*73681302247^(1/2) 3908816900000000 a001 365435296162/6643838879*73681302247^(7/13) 3908816900000000 a001 20365011074/6643838879*45537549124^(2/3) 3908816900000000 a001 2971215073/817138163596*73681302247^(12/13) 3908816900000000 a001 53316291173/6643838879*73681302247^(8/13) 3908816900000000 a001 2971215073/119218851371*73681302247^(11/13) 3908816900000000 a001 2971215073/45537549124*14662949395604^(2/3) 3908816900000000 a001 2971215073/45537549124*505019158607^(3/4) 3908816900000000 a001 2971215073/45537549124*192900153618^(7/9) 3908816900000000 a001 1548008755920/6643838879*28143753123^(1/2) 3908816900000000 a001 139583862445/6643838879*28143753123^(3/5) 3908816900000000 a001 2971215073/192900153618*28143753123^(9/10) 3908816900000000 a001 774004377960/5374978561*4106118243^(13/23) 3908816900000000 a001 7778742049/6643838879*45537549124^(12/17) 3908816900000000 a001 1201881744/634430159*2537720636^(7/9) 3908816900000000 a001 2971215073/17393796001*312119004989^(8/11) 3908816900000000 a001 2971215073/17393796001*23725150497407^(5/8) 3908816900000000 a001 23112315624967704577/591286729879 3908816900000000 a001 7778742049/6643838879*192900153618^(2/3) 3908816900000000 a001 7778742049/6643838879*73681302247^(9/13) 3908816900000000 a001 2971215073/17393796001*73681302247^(10/13) 3908816900000000 a001 10610209857723/6643838879*10749957122^(7/16) 3908816900000000 a001 6557470319842/6643838879*10749957122^(11/24) 3908816900000000 a001 2971215073/17393796001*28143753123^(4/5) 3908816900000000 a001 2504730781961/6643838879*10749957122^(1/2) 3908816900000000 a001 956722026041/6643838879*10749957122^(13/24) 3908816900000000 a001 591286729879/10749957122*4106118243^(14/23) 3908816900000000 a001 591286729879/6643838879*10749957122^(9/16) 3908816900000000 a001 365435296162/6643838879*10749957122^(7/12) 3908816900000000 a001 139583862445/6643838879*10749957122^(5/8) 3908816900000000 a001 32951280099/6643838879*10749957122^(11/16) 3908816900000000 a001 53316291173/6643838879*10749957122^(2/3) 3908816900000000 a001 20365011074/6643838879*10749957122^(17/24) 3908816900000000 a001 3536736619241/9381251041*4106118243^(12/23) 3908816900000000 a001 225851433717/10749957122*4106118243^(15/23) 3908816900000000 a001 2971215073/119218851371*10749957122^(11/12) 3908816900000000 a001 2971215073/45537549124*10749957122^(7/8) 3908816900000000 a001 2971215073/192900153618*10749957122^(15/16) 3908816900000000 a001 2971215073/312119004989*10749957122^(23/24) 3908816900000000 a001 2403763488/5374978561*4106118243^(19/23) 3908816900000000 a001 4052739537881/28143753123*4106118243^(13/23) 3908816900000000 a001 7778742049/6643838879*10749957122^(3/4) 3908816900000000 a001 43133785636/5374978561*4106118243^(16/23) 3908816900000000 a001 10610209857723/17393796001*4106118243^(1/2) 3908816900000000 a001 2971215073/17393796001*10749957122^(5/6) 3908816900000000 a001 1515744265389/10525900321*4106118243^(13/23) 3908816900000000 a001 3278735159921/22768774562*4106118243^(13/23) 3908816900000000 a001 6557470319842/17393796001*4106118243^(12/23) 3908816900000000 a001 12585437040/228811001*4106118243^(14/23) 3908816900000000 a001 32951280099/10749957122*4106118243^(17/23) 3908816900000000 a001 4052739537881/73681302247*4106118243^(14/23) 3908816900000000 a001 3536736619241/64300051206*4106118243^(14/23) 3908816900000000 a001 6557470319842/119218851371*4106118243^(14/23) 3908816900000000 a001 12586269025/10749957122*4106118243^(18/23) 3908816900000000 a001 2504730781961/45537549124*4106118243^(14/23) 3908816900000000 a001 2504730781961/17393796001*4106118243^(13/23) 3908816900000000 a001 591286729879/28143753123*4106118243^(15/23) 3908816900000000 a001 1548008755920/73681302247*4106118243^(15/23) 3908816900000000 a001 4052739537881/192900153618*4106118243^(15/23) 3908816900000000 a001 225749145909/10745088481*4106118243^(15/23) 3908816900000000 a001 6557470319842/312119004989*4106118243^(15/23) 3908816900000000 a001 2504730781961/119218851371*4106118243^(15/23) 3908816900000000 a001 956722026041/45537549124*4106118243^(15/23) 3908816900000000 a001 956722026041/17393796001*4106118243^(14/23) 3908816900000000 a001 1134903170/6643838879*2537720636^(8/9) 3908816900000000 a001 75283811239/9381251041*4106118243^(16/23) 3908816900000000 a001 1144206275/230701876*2537720636^(11/15) 3908816900000000 a001 591286729879/73681302247*4106118243^(16/23) 3908816900000000 a001 86000486440/10716675201*4106118243^(16/23) 3908816900000000 a001 4052739537881/505019158607*4106118243^(16/23) 3908816900000000 a001 3536736619241/440719107401*4106118243^(16/23) 3908816900000000 a001 3278735159921/408569081798*4106118243^(16/23) 3908816900000000 a001 2504730781961/312119004989*4106118243^(16/23) 3908816900000000 a001 956722026041/119218851371*4106118243^(16/23) 3908816900000000 a001 1602508992/9381251041*4106118243^(20/23) 3908816900000000 a001 182717648081/22768774562*4106118243^(16/23) 3908816900000000 a001 365435296162/17393796001*4106118243^(15/23) 3908816900000000 a001 86267571272/28143753123*4106118243^(17/23) 3908816900000000 a001 32264490531/10525900321*4106118243^(17/23) 3908816900000000 a001 591286729879/192900153618*4106118243^(17/23) 3908816900000000 a001 1548008755920/505019158607*4106118243^(17/23) 3908816900000000 a001 1515744265389/494493258286*4106118243^(17/23) 3908816900000000 a001 2504730781961/817138163596*4106118243^(17/23) 3908816900000000 a001 956722026041/312119004989*4106118243^(17/23) 3908816900000000 a001 365435296162/119218851371*4106118243^(17/23) 3908816900000000 a001 139583862445/45537549124*4106118243^(17/23) 3908816900000000 a001 139583862445/17393796001*4106118243^(16/23) 3908816900000000 a001 10983760033/9381251041*4106118243^(18/23) 3908816900000000 a001 2971215073/6643838879*817138163596^(2/3) 3908816900000000 a001 686789568/10525900321*4106118243^(21/23) 3908816900000000 a001 86267571272/73681302247*4106118243^(18/23) 3908816900000000 a001 75283811239/64300051206*4106118243^(18/23) 3908816900000000 a001 2504730781961/2139295485799*4106118243^(18/23) 3908816900000000 a001 365435296162/312119004989*4106118243^(18/23) 3908816900000000 a001 12586269025/28143753123*4106118243^(19/23) 3908816900000000 a001 139583862445/119218851371*4106118243^(18/23) 3908816900000000 a001 53316291173/45537549124*4106118243^(18/23) 3908816900000000 a001 53316291173/17393796001*4106118243^(17/23) 3908816900000000 a001 267084832/10716675201*4106118243^(22/23) 3908816900000000 a001 32951280099/73681302247*4106118243^(19/23) 3908816900000000 a001 43133785636/96450076809*4106118243^(19/23) 3908816900000000 a001 225851433717/505019158607*4106118243^(19/23) 3908816900000000 a001 591286729879/1322157322203*4106118243^(19/23) 3908816900000000 a001 182717648081/408569081798*4106118243^(19/23) 3908816900000000 a001 139583862445/312119004989*4106118243^(19/23) 3908816900000000 a001 53316291173/119218851371*4106118243^(19/23) 3908816900000000 a001 10182505537/22768774562*4106118243^(19/23) 3908816900000000 a001 12586269025/73681302247*4106118243^(20/23) 3908816900000000 a001 20365011074/17393796001*4106118243^(18/23) 3908816900000000 a001 6557470319842/6643838879*4106118243^(11/23) 3908816900000000 a001 10983760033/64300051206*4106118243^(20/23) 3908816900000000 a001 86267571272/505019158607*4106118243^(20/23) 3908816900000000 a001 75283811239/440719107401*4106118243^(20/23) 3908816900000000 a001 139583862445/817138163596*4106118243^(20/23) 3908816900000000 a001 53316291173/312119004989*4106118243^(20/23) 3908816900000000 a001 53316291173/2537720636*2537720636^(2/3) 3908816900000000 a001 20365011074/119218851371*4106118243^(20/23) 3908816900000000 a001 2971215073/6643838879*10749957122^(19/24) 3908816900000000 a001 4052739537881/6643838879*4106118243^(1/2) 3908816900000000 a001 12586269025/192900153618*4106118243^(21/23) 3908816900000000 a001 2504730781961/6643838879*4106118243^(12/23) 3908816900000000 a001 2971215073/2537720636*2537720636^(4/5) 3908816900000000 a001 32951280099/505019158607*4106118243^(21/23) 3908816900000000 a001 86267571272/1322157322203*4106118243^(21/23) 3908816900000000 a001 32264490531/494493258286*4106118243^(21/23) 3908816900000000 a001 365435296162/5600748293801*4106118243^(21/23) 3908816900000000 a001 139583862445/2139295485799*4106118243^(21/23) 3908816900000000 a001 53316291173/817138163596*4106118243^(21/23) 3908816900000000 a001 20365011074/312119004989*4106118243^(21/23) 3908816900000000 a001 7778742049/45537549124*4106118243^(20/23) 3908816900000000 a001 12586269025/505019158607*4106118243^(22/23) 3908816900000000 a001 7778742049/17393796001*4106118243^(19/23) 3908816900000000 a001 956722026041/6643838879*4106118243^(13/23) 3908816900000000 a001 10983760033/440719107401*4106118243^(22/23) 3908816900000000 a001 43133785636/1730726404001*4106118243^(22/23) 3908816900000000 a001 75283811239/3020733700601*4106118243^(22/23) 3908816900000000 a001 182717648081/7331474697802*4106118243^(22/23) 3908816900000000 a001 139583862445/5600748293801*4106118243^(22/23) 3908816900000000 a001 53316291173/2139295485799*4106118243^(22/23) 3908816900000000 a001 10182505537/408569081798*4106118243^(22/23) 3908816900000000 a001 7778742049/119218851371*4106118243^(21/23) 3908816900000000 a001 365435296162/6643838879*4106118243^(14/23) 3908816900000000 a001 7778742049/312119004989*4106118243^(22/23) 3908816900000000 a001 139583862445/6643838879*4106118243^(15/23) 3908816900000000 a001 225851433717/2537720636*2537720636^(3/5) 3908816900000000 a001 53316291173/6643838879*4106118243^(16/23) 3908816900000000 a001 20365011074/6643838879*4106118243^(17/23) 3908816900000000 a001 591286729879/2537720636*2537720636^(5/9) 3908816900000000 a001 7778742049/6643838879*4106118243^(18/23) 3908816900000000 a001 956722026041/2537720636*2537720636^(8/15) 3908816900000000 a001 2971215073/45537549124*4106118243^(21/23) 3908816900000000 a001 2971215073/17393796001*4106118243^(20/23) 3908816900000000 a001 2971215073/119218851371*4106118243^(22/23) 3908816900000000 a001 4052739537881/2537720636*2537720636^(7/15) 3908816900000000 a001 3278735159921/1268860318*2537720636^(4/9) 3908816900000000 a001 2971215073/6643838879*4106118243^(19/23) 3908816900000000 a001 1134903170/4106118243*45537549124^(13/17) 3908816900000000 a001 2084036199823432510/53316291173 3908816900000000 a001 1134903170/4106118243*14662949395604^(13/21) 3908816900000000 a001 1134903170/4106118243*192900153618^(13/18) 3908816900000000 a001 1134903170/4106118243*73681302247^(3/4) 3908816900000000 a001 1134903170/4106118243*10749957122^(13/16) 3908816900000000 a001 3536736619241/1368706081*1568397607^(5/11) 3908816900000000 a001 4052739537881/4106118243*1568397607^(1/2) 3908816900000000 a001 1201881744/634430159*17393796001^(5/7) 3908816900000000 a001 1091215520984582784/27916772489 3908816900000000 a001 1201881744/634430159*312119004989^(7/11) 3908816900000000 a001 1201881744/634430159*14662949395604^(5/9) 3908816900000000 a001 1201881744/634430159*505019158607^(5/8) 3908816900000000 a001 1201881744/634430159*28143753123^(7/10) 3908816900000000 a001 139583862445/2537720636*17393796001^(4/7) 3908816900000000 a001 1144206275/230701876*45537549124^(11/17) 3908816900000000 a001 4052739537881/2537720636*17393796001^(3/7) 3908816900000000 a001 1144206275/230701876*312119004989^(3/5) 3908816900000000 a001 1144206275/230701876*14662949395604^(11/21) 3908816900000000 a001 1144206275/230701876*192900153618^(11/18) 3908816900000000 a001 1134903170/73681302247*45537549124^(15/17) 3908816900000000 a001 1134903170/312119004989*45537549124^(16/17) 3908816900000000 a001 225851433717/2537720636*45537549124^(9/17) 3908816900000000 a001 956722026041/2537720636*45537549124^(8/17) 3908816900000000 a001 53316291173/2537720636*45537549124^(10/17) 3908816900000000 a001 4052739537881/2537720636*45537549124^(7/17) 3908816900000000 a001 1134903170/73681302247*312119004989^(9/11) 3908816900000000 a001 1134903170/73681302247*14662949395604^(5/7) 3908816900000000 a001 32951280099/2537720636*9062201101803^(1/2) 3908816900000000 a001 1134903170/73681302247*192900153618^(5/6) 3908816900000000 a001 97905340104793732240/2504730781961 3908816900000000 a001 1135099622/33391061*1322157322203^(1/2) 3908816900000000 a001 567451585/408569081798*312119004989^(10/11) 3908816900000000 a001 1134903170/505019158607*14662949395604^(7/9) 3908816900000000 a001 1134903170/1322157322203*817138163596^(17/19) 3908816900000000 a001 10610209857723/2537720636*817138163596^(1/3) 3908816900000000 a001 3278735159921/1268860318*505019158607^(5/14) 3908816900000000 a001 1134903170/2139295485799*505019158607^(13/14) 3908816900000000 a001 225851433717/2537720636*192900153618^(1/2) 3908816900000000 a001 1134903170/312119004989*14662949395604^(16/21) 3908816900000000 a001 139583862445/2537720636*14662949395604^(4/9) 3908816900000000 a001 956722026041/2537720636*192900153618^(4/9) 3908816900000000 a001 1134903170/1322157322203*192900153618^(17/18) 3908816900000000 a001 1134903170/312119004989*192900153618^(8/9) 3908816900000000 a001 53316291173/2537720636*312119004989^(6/11) 3908816900000000 a001 53316291173/2537720636*14662949395604^(10/21) 3908816900000000 a001 3278735159921/1268860318*73681302247^(5/13) 3908816900000000 a001 956722026041/2537720636*73681302247^(6/13) 3908816900000000 a001 53316291173/2537720636*192900153618^(5/9) 3908816900000000 a001 182717648081/1268860318*73681302247^(1/2) 3908816900000000 a001 139583862445/2537720636*73681302247^(7/13) 3908816900000000 a001 1134903170/312119004989*73681302247^(12/13) 3908816900000000 a001 1134903170/17393796001*17393796001^(6/7) 3908816900000000 a001 567451585/22768774562*312119004989^(4/5) 3908816900000000 a001 10182505537/1268860318*23725150497407^(1/2) 3908816900000000 a001 3278735159921/1268860318*28143753123^(2/5) 3908816900000000 a001 10182505537/1268860318*73681302247^(8/13) 3908816900000000 a001 591286729879/2537720636*28143753123^(1/2) 3908816900000000 a001 567451585/22768774562*73681302247^(11/13) 3908816900000000 a001 53316291173/2537720636*28143753123^(3/5) 3908816900000000 a001 1134903170/73681302247*28143753123^(9/10) 3908816900000000 a001 1134903170/17393796001*45537549124^(14/17) 3908816900000000 a001 7778742049/2537720636*45537549124^(2/3) 3908816900000000 a001 1134903170/17393796001*817138163596^(14/19) 3908816900000000 a001 1134903170/17393796001*14662949395604^(2/3) 3908816900000000 a001 1134903170/17393796001*505019158607^(3/4) 3908816900000000 a001 1134903170/17393796001*192900153618^(7/9) 3908816900000000 a001 3278735159921/1268860318*10749957122^(5/12) 3908816900000000 a001 4052739537881/2537720636*10749957122^(7/16) 3908816900000000 a001 2504730781961/2537720636*10749957122^(11/24) 3908816900000000 a001 956722026041/2537720636*10749957122^(1/2) 3908816900000000 a001 1144206275/230701876*10749957122^(11/16) 3908816900000000 a001 182717648081/1268860318*10749957122^(13/24) 3908816900000000 a001 225851433717/2537720636*10749957122^(9/16) 3908816900000000 a001 139583862445/2537720636*10749957122^(7/12) 3908816900000000 a001 53316291173/2537720636*10749957122^(5/8) 3908816900000000 a001 10182505537/1268860318*10749957122^(2/3) 3908816900000000 a001 516002918640/1368706081*1568397607^(6/11) 3908816900000000 a001 1134903170/73681302247*10749957122^(15/16) 3908816900000000 a001 1134903170/119218851371*10749957122^(23/24) 3908816900000000 a001 567451585/22768774562*10749957122^(11/12) 3908816900000000 a001 7778742049/2537720636*10749957122^(17/24) 3908816900000000 a001 1134903170/17393796001*10749957122^(7/8) 3908816900000000 a001 2971215073/2537720636*45537549124^(12/17) 3908816900000000 a001 1134903170/6643838879*312119004989^(8/11) 3908816900000000 a001 2971215073/2537720636*14662949395604^(4/7) 3908816900000000 a001 1134903170/6643838879*23725150497407^(5/8) 3908816900000000 a001 2971215073/2537720636*192900153618^(2/3) 3908816900000000 a001 99177688385278865/2537281508 3908816900000000 a001 2971215073/2537720636*73681302247^(9/13) 3908816900000000 a001 1134903170/6643838879*73681302247^(10/13) 3908816900000000 a001 1134903170/6643838879*28143753123^(4/5) 3908816900000000 a001 591286729879/4106118243*1568397607^(13/22) 3908816900000000 a001 3278735159921/1268860318*4106118243^(10/23) 3908816900000000 a001 2504730781961/2537720636*4106118243^(11/23) 3908816900000000 a001 2971215073/2537720636*10749957122^(3/4) 3908816900000000 a001 1134903780/1860499*4106118243^(1/2) 3908816900000000 a001 1134903170/6643838879*10749957122^(5/6) 3908816900000000 a001 956722026041/2537720636*4106118243^(12/23) 3908816900000000 a001 182717648081/1268860318*4106118243^(13/23) 3908816900000000 a001 139583862445/2537720636*4106118243^(14/23) 3908816900000000 a001 53316291173/2537720636*4106118243^(15/23) 3908816900000000 a001 4807525989/4870846*1568397607^(1/2) 3908816900000000 a001 10182505537/1268860318*4106118243^(16/23) 3908816900000000 a001 75283811239/1368706081*1568397607^(7/11) 3908816900000000 a001 7778742049/2537720636*4106118243^(17/23) 3908816900000000 a001 567451585/22768774562*4106118243^(22/23) 3908816900000000 a001 1134903170/17393796001*4106118243^(21/23) 3908816900000000 a001 4052739537881/10749957122*1568397607^(6/11) 3908816900000000 a001 86267571272/4106118243*1568397607^(15/22) 3908816900000000 a001 3536736619241/9381251041*1568397607^(6/11) 3908816900000000 a001 2971215073/2537720636*4106118243^(18/23) 3908816900000000 a001 6557470319842/17393796001*1568397607^(6/11) 3908816900000000 a001 6557470319842/6643838879*1568397607^(1/2) 3908816900000000 a001 1134903170/6643838879*4106118243^(20/23) 3908816900000000 a001 774004377960/5374978561*1568397607^(13/22) 3908816900000000 a001 1836311903/4106118243*1568397607^(19/22) 3908816900000000 a001 10983760033/1368706081*1568397607^(8/11) 3908816900000000 a001 4052739537881/28143753123*1568397607^(13/22) 3908816900000000 a001 1515744265389/10525900321*1568397607^(13/22) 3908816900000000 a001 3278735159921/22768774562*1568397607^(13/22) 3908816900000000 a001 2504730781961/17393796001*1568397607^(13/22) 3908816900000000 a001 2504730781961/6643838879*1568397607^(6/11) 3908816900000000 a001 20365011074/4106118243*1568397607^(3/4) 3908816900000000 a001 591286729879/10749957122*1568397607^(7/11) 3908816900000000 a001 12586269025/4106118243*1568397607^(17/22) 3908816900000000 a001 12585437040/228811001*1568397607^(7/11) 3908816900000000 a001 4052739537881/73681302247*1568397607^(7/11) 3908816900000000 a001 3536736619241/64300051206*1568397607^(7/11) 3908816900000000 a001 6557470319842/119218851371*1568397607^(7/11) 3908816900000000 a001 2504730781961/45537549124*1568397607^(7/11) 3908816900000000 a001 956722026041/17393796001*1568397607^(7/11) 3908816900000000 a001 956722026041/6643838879*1568397607^(13/22) 3908816900000000 a001 1602508992/1368706081*1568397607^(9/11) 3908816900000000 a001 225851433717/10749957122*1568397607^(15/22) 3908816900000000 a001 591286729879/28143753123*1568397607^(15/22) 3908816900000000 a001 1548008755920/73681302247*1568397607^(15/22) 3908816900000000 a001 4052739537881/192900153618*1568397607^(15/22) 3908816900000000 a001 225749145909/10745088481*1568397607^(15/22) 3908816900000000 a001 6557470319842/312119004989*1568397607^(15/22) 3908816900000000 a001 2504730781961/119218851371*1568397607^(15/22) 3908816900000000 a001 956722026041/45537549124*1568397607^(15/22) 3908816900000000 a001 365435296162/17393796001*1568397607^(15/22) 3908816900000000 a001 365435296162/6643838879*1568397607^(7/11) 3908816900000000 a001 43133785636/5374978561*1568397607^(8/11) 3908816900000000 a001 75283811239/9381251041*1568397607^(8/11) 3908816900000000 a001 591286729879/73681302247*1568397607^(8/11) 3908816900000000 a001 86000486440/10716675201*1568397607^(8/11) 3908816900000000 a001 4052739537881/505019158607*1568397607^(8/11) 3908816900000000 a001 3278735159921/408569081798*1568397607^(8/11) 3908816900000000 a001 2504730781961/312119004989*1568397607^(8/11) 3908816900000000 a001 956722026041/119218851371*1568397607^(8/11) 3908816900000000 a001 182717648081/22768774562*1568397607^(8/11) 3908816900000000 a001 53316291173/10749957122*1568397607^(3/4) 3908816900000000 a001 139583862445/17393796001*1568397607^(8/11) 3908816900000000 a001 139583862445/6643838879*1568397607^(15/22) 3908816900000000 a001 1836311903/10749957122*1568397607^(10/11) 3908816900000000 a001 139583862445/28143753123*1568397607^(3/4) 3908816900000000 a001 365435296162/73681302247*1568397607^(3/4) 3908816900000000 a001 956722026041/192900153618*1568397607^(3/4) 3908816900000000 a001 2504730781961/505019158607*1568397607^(3/4) 3908816900000000 a001 10610209857723/2139295485799*1568397607^(3/4) 3908816900000000 a001 4052739537881/817138163596*1568397607^(3/4) 3908816900000000 a001 140728068720/28374454999*1568397607^(3/4) 3908816900000000 a001 591286729879/119218851371*1568397607^(3/4) 3908816900000000 a001 32951280099/10749957122*1568397607^(17/22) 3908816900000000 a001 225851433717/45537549124*1568397607^(3/4) 3908816900000000 a001 86267571272/17393796001*1568397607^(3/4) 3908816900000000 a001 567451585/1268860318*817138163596^(2/3) 3908816900000000 a001 1288005205276048900/32951280099 3908816900000000 a001 86267571272/28143753123*1568397607^(17/22) 3908816900000000 a001 32264490531/10525900321*1568397607^(17/22) 3908816900000000 a001 591286729879/192900153618*1568397607^(17/22) 3908816900000000 a001 1548008755920/505019158607*1568397607^(17/22) 3908816900000000 a001 1515744265389/494493258286*1568397607^(17/22) 3908816900000000 a001 2504730781961/817138163596*1568397607^(17/22) 3908816900000000 a001 956722026041/312119004989*1568397607^(17/22) 3908816900000000 a001 365435296162/119218851371*1568397607^(17/22) 3908816900000000 a001 139583862445/45537549124*1568397607^(17/22) 3908816900000000 a001 567451585/1268860318*10749957122^(19/24) 3908816900000000 a001 53316291173/17393796001*1568397607^(17/22) 3908816900000000 a001 53316291173/6643838879*1568397607^(8/11) 3908816900000000 a001 12586269025/10749957122*1568397607^(9/11) 3908816900000000 a001 32951280099/6643838879*1568397607^(3/4) 3908816900000000 a001 1836311903/28143753123*1568397607^(21/22) 3908816900000000 a001 10983760033/9381251041*1568397607^(9/11) 3908816900000000 a001 86267571272/73681302247*1568397607^(9/11) 3908816900000000 a001 75283811239/64300051206*1568397607^(9/11) 3908816900000000 a001 2504730781961/2139295485799*1568397607^(9/11) 3908816900000000 a001 365435296162/312119004989*1568397607^(9/11) 3908816900000000 a001 139583862445/119218851371*1568397607^(9/11) 3908816900000000 a001 53316291173/45537549124*1568397607^(9/11) 3908816900000000 a001 2403763488/5374978561*1568397607^(19/22) 3908816900000000 a001 20365011074/17393796001*1568397607^(9/11) 3908816900000000 a001 20365011074/6643838879*1568397607^(17/22) 3908816900000000 a001 3278735159921/1268860318*1568397607^(5/11) 3908816900000000 a001 12586269025/28143753123*1568397607^(19/22) 3908816900000000 a001 32951280099/73681302247*1568397607^(19/22) 3908816900000000 a001 43133785636/96450076809*1568397607^(19/22) 3908816900000000 a001 225851433717/505019158607*1568397607^(19/22) 3908816900000000 a001 591286729879/1322157322203*1568397607^(19/22) 3908816900000000 a001 182717648081/408569081798*1568397607^(19/22) 3908816900000000 a001 139583862445/312119004989*1568397607^(19/22) 3908816900000000 a001 53316291173/119218851371*1568397607^(19/22) 3908816900000000 a001 10182505537/22768774562*1568397607^(19/22) 3908816900000000 a001 7778742049/17393796001*1568397607^(19/22) 3908816900000000 a001 2504730781961/2537720636*1568397607^(1/2) 3908816900000000 a001 7778742049/6643838879*1568397607^(9/11) 3908816900000000 a001 567451585/1268860318*4106118243^(19/23) 3908816900000000 a001 1602508992/9381251041*1568397607^(10/11) 3908816900000000 a001 12586269025/73681302247*1568397607^(10/11) 3908816900000000 a001 10983760033/64300051206*1568397607^(10/11) 3908816900000000 a001 86267571272/505019158607*1568397607^(10/11) 3908816900000000 a001 75283811239/440719107401*1568397607^(10/11) 3908816900000000 a001 139583862445/817138163596*1568397607^(10/11) 3908816900000000 a001 53316291173/312119004989*1568397607^(10/11) 3908816900000000 a001 20365011074/119218851371*1568397607^(10/11) 3908816900000000 a001 7778742049/45537549124*1568397607^(10/11) 3908816900000000 a001 956722026041/2537720636*1568397607^(6/11) 3908816900000000 a001 686789568/10525900321*1568397607^(21/22) 3908816900000000 a001 12586269025/192900153618*1568397607^(21/22) 3908816900000000 a001 32951280099/505019158607*1568397607^(21/22) 3908816900000000 a001 86267571272/1322157322203*1568397607^(21/22) 3908816900000000 a001 32264490531/494493258286*1568397607^(21/22) 3908816900000000 a001 591286729879/9062201101803*1568397607^(21/22) 3908816900000000 a001 365435296162/5600748293801*1568397607^(21/22) 3908816900000000 a001 139583862445/2139295485799*1568397607^(21/22) 3908816900000000 a001 53316291173/817138163596*1568397607^(21/22) 3908816900000000 a001 20365011074/312119004989*1568397607^(21/22) 3908816900000000 a001 7778742049/119218851371*1568397607^(21/22) 3908816900000000 a001 182717648081/1268860318*1568397607^(13/22) 3908816900000000 a001 2971215073/17393796001*1568397607^(10/11) 3908816900000000 a001 2971215073/6643838879*1568397607^(19/22) 3908816900000000 a001 2971215073/45537549124*1568397607^(21/22) 3908816900000000 a001 139583862445/2537720636*1568397607^(7/11) 3908816900000000 a001 53316291173/2537720636*1568397607^(15/22) 3908816900000000 a001 10182505537/1268860318*1568397607^(8/11) 3908816900000000 a001 1144206275/230701876*1568397607^(3/4) 3908816900000000 a001 7778742049/2537720636*1568397607^(17/22) 3908816900000000 a001 2971215073/2537720636*1568397607^(9/11) 3908816900000000 a001 433494437/1568397607*2537720636^(13/15) 3908816900000000 a001 1134903170/17393796001*1568397607^(21/22) 3908816900000000 a001 1134903170/6643838879*1568397607^(10/11) 3908816900000000 a001 304056783818718321/7778742049 3908816900000000 a001 433494437/1568397607*45537549124^(13/17) 3908816900000000 a001 433494437/1568397607*14662949395604^(13/21) 3908816900000000 a001 433494437/1568397607*192900153618^(13/18) 3908816900000000 a001 433494437/1568397607*73681302247^(3/4) 3908816900000000 a001 567451585/1268860318*1568397607^(19/22) 3908816900000000 a001 433494437/1568397607*10749957122^(13/16) 3908816900000000 a001 1515744265389/224056801*599074578^(3/7) 3908816900000000 a001 267914296/969323029*599074578^(13/14) 3908816900000000 a001 1836311903/969323029*2537720636^(7/9) 3908816900000000 a001 4052739537881/1568397607*599074578^(10/21) 3908816900000000 a001 4807526976/969323029*2537720636^(11/15) 3908816900000000 a001 433494437/6643838879*2537720636^(14/15) 3908816900000000 a001 20365011074/969323029*2537720636^(2/3) 3908816900000000 a001 86267571272/969323029*2537720636^(3/5) 3908816900000000 a001 225851433717/969323029*2537720636^(5/9) 3908816900000000 a001 365435296162/969323029*2537720636^(8/15) 3908816900000000 a001 2504730781961/1568397607*599074578^(1/2) 3908816900000000 a001 1548008755920/969323029*2537720636^(7/15) 3908816900000000 a001 2504730781961/969323029*2537720636^(4/9) 3908816900000000 a001 6557470319842/969323029*2537720636^(2/5) 3908816900000000 a001 1836311903/969323029*17393796001^(5/7) 3908816900000000 a001 796030994547383611/20365011074 3908816900000000 a001 1836311903/969323029*312119004989^(7/11) 3908816900000000 a001 1836311903/969323029*14662949395604^(5/9) 3908816900000000 a001 1836311903/969323029*505019158607^(5/8) 3908816900000000 a001 1836311903/969323029*28143753123^(7/10) 3908816900000000 a001 1548008755920/1568397607*599074578^(11/21) 3908816900000000 a001 4807526976/969323029*45537549124^(11/17) 3908816900000000 a001 2084036199823432512/53316291173 3908816900000000 a001 4807526976/969323029*312119004989^(3/5) 3908816900000000 a001 4807526976/969323029*14662949395604^(11/21) 3908816900000000 a001 4807526976/969323029*192900153618^(11/18) 3908816900000000 a001 4807526976/969323029*10749957122^(11/16) 3908816900000000 a001 53316291173/969323029*17393796001^(4/7) 3908816900000000 a001 433494437/28143753123*45537549124^(15/17) 3908816900000000 a001 1548008755920/969323029*17393796001^(3/7) 3908816900000000 a001 1091215520984582785/27916772489 3908816900000000 a001 433494437/28143753123*312119004989^(9/11) 3908816900000000 a001 433494437/28143753123*14662949395604^(5/7) 3908816900000000 a001 12586269025/969323029*9062201101803^(1/2) 3908816900000000 a001 433494437/28143753123*192900153618^(5/6) 3908816900000000 a001 433494437/119218851371*45537549124^(16/17) 3908816900000000 a001 86267571272/969323029*45537549124^(9/17) 3908816900000000 a001 365435296162/969323029*45537549124^(8/17) 3908816900000000 a001 1548008755920/969323029*45537549124^(7/17) 3908816900000000 a001 14284196614945309263/365435296162 3908816900000000 a001 32951280099/969323029*1322157322203^(1/2) 3908816900000000 a001 6557470319842/969323029*45537549124^(6/17) 3908816900000000 a001 10610209857723/969323029*45537549124^(1/3) 3908816900000000 a001 433494437/28143753123*28143753123^(9/10) 3908816900000000 a001 86267571272/969323029*817138163596^(9/19) 3908816900000000 a001 37396512239913013864/956722026041 3908816900000000 a001 433494437/192900153618*505019158607^(7/8) 3908816900000000 a001 86267571272/969323029*192900153618^(1/2) 3908816900000000 a001 225851433717/969323029*312119004989^(5/11) 3908816900000000 a001 225851433717/969323029*3461452808002^(5/12) 3908816900000000 a001 256319508074468183123/6557470319842 3908816900000000 a001 1548008755920/969323029*14662949395604^(1/3) 3908816900000000 a001 2504730781961/969323029*23725150497407^(5/16) 3908816900000000 a001 2504730781961/969323029*505019158607^(5/14) 3908816900000000 a001 433494437/817138163596*505019158607^(13/14) 3908816900000000 a001 433494437/312119004989*3461452808002^(5/6) 3908816900000000 a001 12101765572976143693/309601751184 3908816900000000 a001 1548008755920/969323029*192900153618^(7/18) 3908816900000000 a001 365435296162/969323029*192900153618^(4/9) 3908816900000000 a001 433494437/505019158607*192900153618^(17/18) 3908816900000000 a001 433494437/119218851371*14662949395604^(16/21) 3908816900000000 a001 2504730781961/969323029*73681302247^(5/13) 3908816900000000 a001 23112315624967704601/591286729879 3908816900000000 a001 365435296162/969323029*73681302247^(6/13) 3908816900000000 a001 433494437/119218851371*192900153618^(8/9) 3908816900000000 a001 139583862445/969323029*73681302247^(1/2) 3908816900000000 a001 53316291173/969323029*73681302247^(7/13) 3908816900000000 a001 20365011074/969323029*45537549124^(10/17) 3908816900000000 a001 433494437/119218851371*73681302247^(12/13) 3908816900000000 a001 20365011074/969323029*312119004989^(6/11) 3908816900000000 a001 20365011074/969323029*14662949395604^(10/21) 3908816900000000 a001 8828119010022395338/225851433717 3908816900000000 a001 20365011074/969323029*192900153618^(5/9) 3908816900000000 a001 2504730781961/969323029*28143753123^(2/5) 3908816900000000 a001 225851433717/969323029*28143753123^(1/2) 3908816900000000 a001 20365011074/969323029*28143753123^(3/5) 3908816900000000 a001 6557470319842/969323029*10749957122^(3/8) 3908816900000000 a001 433494437/17393796001*312119004989^(4/5) 3908816900000000 a001 7778742049/969323029*23725150497407^(1/2) 3908816900000000 a001 433494437/17393796001*23725150497407^(11/16) 3908816900000000 a001 3372041405099481413/86267571272 3908816900000000 a001 7778742049/969323029*73681302247^(8/13) 3908816900000000 a001 433494437/17393796001*73681302247^(11/13) 3908816900000000 a001 2504730781961/969323029*10749957122^(5/12) 3908816900000000 a001 1548008755920/969323029*10749957122^(7/16) 3908816900000000 a001 956722026041/969323029*10749957122^(11/24) 3908816900000000 a001 365435296162/969323029*10749957122^(1/2) 3908816900000000 a001 139583862445/969323029*10749957122^(13/24) 3908816900000000 a001 86267571272/969323029*10749957122^(9/16) 3908816900000000 a001 53316291173/969323029*10749957122^(7/12) 3908816900000000 a001 20365011074/969323029*10749957122^(5/8) 3908816900000000 a001 433494437/28143753123*10749957122^(15/16) 3908816900000000 a001 433494437/45537549124*10749957122^(23/24) 3908816900000000 a001 7778742049/969323029*10749957122^(2/3) 3908816900000000 a001 433494437/17393796001*10749957122^(11/12) 3908816900000000 a001 433494437/2537720636*2537720636^(8/9) 3908816900000000 a001 433494437/6643838879*17393796001^(6/7) 3908816900000000 a001 433494437/6643838879*45537549124^(14/17) 3908816900000000 a001 2971215073/969323029*45537549124^(2/3) 3908816900000000 a001 433494437/6643838879*14662949395604^(2/3) 3908816900000000 a001 433494437/6643838879*505019158607^(3/4) 3908816900000000 a001 433494437/6643838879*192900153618^(7/9) 3908816900000000 a001 1288005205276048901/32951280099 3908816900000000 a001 6557470319842/969323029*4106118243^(9/23) 3908816900000000 a001 2504730781961/969323029*4106118243^(10/23) 3908816900000000 a001 956722026041/969323029*4106118243^(11/23) 3908816900000000 a001 2971215073/969323029*10749957122^(17/24) 3908816900000000 a001 591286729879/969323029*4106118243^(1/2) 3908816900000000 a001 433494437/6643838879*10749957122^(7/8) 3908816900000000 a001 365435296162/969323029*4106118243^(12/23) 3908816900000000 a001 1134903170/969323029*2537720636^(4/5) 3908816900000000 a001 139583862445/969323029*4106118243^(13/23) 3908816900000000 a001 53316291173/969323029*4106118243^(14/23) 3908816900000000 a001 20365011074/969323029*4106118243^(15/23) 3908816900000000 a001 7778742049/969323029*4106118243^(16/23) 3908816900000000 a001 433494437/17393796001*4106118243^(22/23) 3908816900000000 a001 2971215073/969323029*4106118243^(17/23) 3908816900000000 a001 433494437/6643838879*4106118243^(21/23) 3908816900000000 a001 591286729879/1568397607*599074578^(4/7) 3908816900000000 a001 1134903170/969323029*45537549124^(12/17) 3908816900000000 a001 433494437/2537720636*312119004989^(8/11) 3908816900000000 a001 1134903170/969323029*14662949395604^(4/7) 3908816900000000 a001 1134903170/969323029*505019158607^(9/14) 3908816900000000 a001 1134903170/969323029*192900153618^(2/3) 3908816900000000 a001 1134903170/969323029*73681302247^(9/13) 3908816900000000 a001 433494437/2537720636*73681302247^(10/13) 3908816900000000 a001 433494437/2537720636*28143753123^(4/5) 3908816900000000 a001 98394842145733058/2517253805 3908816900000000 a001 1134903170/969323029*10749957122^(3/4) 3908816900000000 a001 433494437/2537720636*10749957122^(5/6) 3908816900000000 a001 6557470319842/969323029*1568397607^(9/22) 3908816900000000 a001 2504730781961/969323029*1568397607^(5/11) 3908816900000000 a001 1134903170/969323029*4106118243^(18/23) 3908816900000000 a001 3536736619241/1368706081*599074578^(10/21) 3908816900000000 a001 956722026041/969323029*1568397607^(1/2) 3908816900000000 a001 433494437/2537720636*4106118243^(20/23) 3908816900000000 a001 365435296162/969323029*1568397607^(6/11) 3908816900000000 a001 139583862445/969323029*1568397607^(13/22) 3908816900000000 a001 32264490531/224056801*599074578^(13/21) 3908816900000000 a001 53316291173/969323029*1568397607^(7/11) 3908816900000000 a001 6557470319842/4106118243*599074578^(1/2) 3908816900000000 a001 20365011074/969323029*1568397607^(15/22) 3908816900000000 a001 4807526976/969323029*1568397607^(3/4) 3908816900000000 a001 7778742049/969323029*1568397607^(8/11) 3908816900000000 a001 139583862445/1568397607*599074578^(9/14) 3908816900000000 a001 4052739537881/4106118243*599074578^(11/21) 3908816900000000 a001 2971215073/969323029*1568397607^(17/22) 3908816900000000 a001 10610209857723/6643838879*599074578^(1/2) 3908816900000000 a001 4807525989/4870846*599074578^(11/21) 3908816900000000 a001 86267571272/1568397607*599074578^(2/3) 3908816900000000 a001 433494437/6643838879*1568397607^(21/22) 3908816900000000 a001 3278735159921/1268860318*599074578^(10/21) 3908816900000000 a001 6557470319842/6643838879*599074578^(11/21) 3908816900000000 a001 516002918640/1368706081*599074578^(4/7) 3908816900000000 a001 4052739537881/2537720636*599074578^(1/2) 3908816900000000 a001 1134903170/969323029*1568397607^(9/11) 3908816900000000 a001 32951280099/1568397607*599074578^(5/7) 3908816900000000 a001 4052739537881/10749957122*599074578^(4/7) 3908816900000000 a001 433494437/2537720636*1568397607^(10/11) 3908816900000000 a001 3536736619241/9381251041*599074578^(4/7) 3908816900000000 a001 6557470319842/17393796001*599074578^(4/7) 3908816900000000 a001 2504730781961/2537720636*599074578^(11/21) 3908816900000000 a001 2504730781961/6643838879*599074578^(4/7) 3908816900000000 a001 591286729879/4106118243*599074578^(13/21) 3908816900000000 a001 701408733/1568397607*599074578^(19/21) 3908816900000000 a001 12586269025/1568397607*599074578^(16/21) 3908816900000000 a001 774004377960/5374978561*599074578^(13/21) 3908816900000000 a001 4052739537881/28143753123*599074578^(13/21) 3908816900000000 a001 1515744265389/10525900321*599074578^(13/21) 3908816900000000 a001 3278735159921/22768774562*599074578^(13/21) 3908816900000000 a001 2504730781961/17393796001*599074578^(13/21) 3908816900000000 a001 365435296162/4106118243*599074578^(9/14) 3908816900000000 a001 956722026041/2537720636*599074578^(4/7) 3908816900000000 a001 956722026041/6643838879*599074578^(13/21) 3908816900000000 a001 956722026041/10749957122*599074578^(9/14) 3908816900000000 a001 7778742049/1568397607*599074578^(11/14) 3908816900000000 a001 2504730781961/28143753123*599074578^(9/14) 3908816900000000 a001 6557470319842/73681302247*599074578^(9/14) 3908816900000000 a001 10610209857723/119218851371*599074578^(9/14) 3908816900000000 a001 4052739537881/45537549124*599074578^(9/14) 3908816900000000 a001 1548008755920/17393796001*599074578^(9/14) 3908816900000000 a001 75283811239/1368706081*599074578^(2/3) 3908816900000000 a001 591286729879/6643838879*599074578^(9/14) 3908816900000000 a001 686789568/224056801*599074578^(17/21) 3908816900000000 a001 591286729879/10749957122*599074578^(2/3) 3908816900000000 a001 12585437040/228811001*599074578^(2/3) 3908816900000000 a001 4052739537881/73681302247*599074578^(2/3) 3908816900000000 a001 3536736619241/64300051206*599074578^(2/3) 3908816900000000 a001 6557470319842/119218851371*599074578^(2/3) 3908816900000000 a001 2504730781961/45537549124*599074578^(2/3) 3908816900000000 a001 956722026041/17393796001*599074578^(2/3) 3908816900000000 a001 182717648081/1268860318*599074578^(13/21) 3908816900000000 a001 365435296162/6643838879*599074578^(2/3) 3908816900000000 a001 1836311903/1568397607*599074578^(6/7) 3908816900000000 a001 86267571272/4106118243*599074578^(5/7) 3908816900000000 a001 2971215073/1568397607*599074578^(5/6) 3908816900000000 a001 225851433717/2537720636*599074578^(9/14) 3908816900000000 a001 225851433717/10749957122*599074578^(5/7) 3908816900000000 a001 591286729879/28143753123*599074578^(5/7) 3908816900000000 a001 1548008755920/73681302247*599074578^(5/7) 3908816900000000 a001 4052739537881/192900153618*599074578^(5/7) 3908816900000000 a001 225749145909/10745088481*599074578^(5/7) 3908816900000000 a001 6557470319842/312119004989*599074578^(5/7) 3908816900000000 a001 2504730781961/119218851371*599074578^(5/7) 3908816900000000 a001 956722026041/45537549124*599074578^(5/7) 3908816900000000 a001 365435296162/17393796001*599074578^(5/7) 3908816900000000 a001 139583862445/2537720636*599074578^(2/3) 3908816900000000 a001 139583862445/6643838879*599074578^(5/7) 3908816900000000 a001 10983760033/1368706081*599074578^(16/21) 3908816900000000 a001 43133785636/5374978561*599074578^(16/21) 3908816900000000 a001 75283811239/9381251041*599074578^(16/21) 3908816900000000 a001 591286729879/73681302247*599074578^(16/21) 3908816900000000 a001 86000486440/10716675201*599074578^(16/21) 3908816900000000 a001 4052739537881/505019158607*599074578^(16/21) 3908816900000000 a001 3278735159921/408569081798*599074578^(16/21) 3908816900000000 a001 2504730781961/312119004989*599074578^(16/21) 3908816900000000 a001 956722026041/119218851371*599074578^(16/21) 3908816900000000 a001 182717648081/22768774562*599074578^(16/21) 3908816900000000 a001 139583862445/17393796001*599074578^(16/21) 3908816900000000 a001 433494437/969323029*817138163596^(2/3) 3908816900000000 a001 20365011074/4106118243*599074578^(11/14) 3908816900000000 a001 433494437/969323029*10749957122^(19/24) 3908816900000000 a001 187917426909946969/4807526976 3908816900000000 a001 53316291173/2537720636*599074578^(5/7) 3908816900000000 a001 53316291173/6643838879*599074578^(16/21) 3908816900000000 a001 433494437/969323029*4106118243^(19/23) 3908816900000000 a001 53316291173/10749957122*599074578^(11/14) 3908816900000000 a001 233802911/1368706081*599074578^(20/21) 3908816900000000 a001 139583862445/28143753123*599074578^(11/14) 3908816900000000 a001 365435296162/73681302247*599074578^(11/14) 3908816900000000 a001 956722026041/192900153618*599074578^(11/14) 3908816900000000 a001 2504730781961/505019158607*599074578^(11/14) 3908816900000000 a001 10610209857723/2139295485799*599074578^(11/14) 3908816900000000 a001 140728068720/28374454999*599074578^(11/14) 3908816900000000 a001 591286729879/119218851371*599074578^(11/14) 3908816900000000 a001 225851433717/45537549124*599074578^(11/14) 3908816900000000 a001 86267571272/17393796001*599074578^(11/14) 3908816900000000 a001 12586269025/4106118243*599074578^(17/21) 3908816900000000 a001 32951280099/6643838879*599074578^(11/14) 3908816900000000 a001 32951280099/10749957122*599074578^(17/21) 3908816900000000 a001 86267571272/28143753123*599074578^(17/21) 3908816900000000 a001 32264490531/10525900321*599074578^(17/21) 3908816900000000 a001 591286729879/192900153618*599074578^(17/21) 3908816900000000 a001 1548008755920/505019158607*599074578^(17/21) 3908816900000000 a001 1515744265389/494493258286*599074578^(17/21) 3908816900000000 a001 2504730781961/817138163596*599074578^(17/21) 3908816900000000 a001 956722026041/312119004989*599074578^(17/21) 3908816900000000 a001 365435296162/119218851371*599074578^(17/21) 3908816900000000 a001 139583862445/45537549124*599074578^(17/21) 3908816900000000 a001 6557470319842/969323029*599074578^(3/7) 3908816900000000 a001 53316291173/17393796001*599074578^(17/21) 3908816900000000 a001 7778742049/4106118243*599074578^(5/6) 3908816900000000 a001 10182505537/1268860318*599074578^(16/21) 3908816900000000 a001 20365011074/6643838879*599074578^(17/21) 3908816900000000 a001 10182505537/5374978561*599074578^(5/6) 3908816900000000 a001 1602508992/1368706081*599074578^(6/7) 3908816900000000 a001 53316291173/28143753123*599074578^(5/6) 3908816900000000 a001 139583862445/73681302247*599074578^(5/6) 3908816900000000 a001 182717648081/96450076809*599074578^(5/6) 3908816900000000 a001 956722026041/505019158607*599074578^(5/6) 3908816900000000 a001 10610209857723/5600748293801*599074578^(5/6) 3908816900000000 a001 591286729879/312119004989*599074578^(5/6) 3908816900000000 a001 225851433717/119218851371*599074578^(5/6) 3908816900000000 a001 21566892818/11384387281*599074578^(5/6) 3908816900000000 a001 32951280099/17393796001*599074578^(5/6) 3908816900000000 a001 701408733/2537720636*599074578^(13/14) 3908816900000000 a001 1144206275/230701876*599074578^(11/14) 3908816900000000 a001 12586269025/6643838879*599074578^(5/6) 3908816900000000 a001 12586269025/10749957122*599074578^(6/7) 3908816900000000 a001 10983760033/9381251041*599074578^(6/7) 3908816900000000 a001 86267571272/73681302247*599074578^(6/7) 3908816900000000 a001 75283811239/64300051206*599074578^(6/7) 3908816900000000 a001 2504730781961/2139295485799*599074578^(6/7) 3908816900000000 a001 365435296162/312119004989*599074578^(6/7) 3908816900000000 a001 139583862445/119218851371*599074578^(6/7) 3908816900000000 a001 53316291173/45537549124*599074578^(6/7) 3908816900000000 a001 2504730781961/969323029*599074578^(10/21) 3908816900000000 a001 20365011074/17393796001*599074578^(6/7) 3908816900000000 a001 1836311903/4106118243*599074578^(19/21) 3908816900000000 a001 7778742049/2537720636*599074578^(17/21) 3908816900000000 a001 7778742049/6643838879*599074578^(6/7) 3908816900000000 a001 1548008755920/969323029*599074578^(1/2) 3908816900000000 a001 1201881744/634430159*599074578^(5/6) 3908816900000000 a001 433494437/969323029*1568397607^(19/22) 3908816900000000 a001 2403763488/5374978561*599074578^(19/21) 3908816900000000 a001 12586269025/28143753123*599074578^(19/21) 3908816900000000 a001 32951280099/73681302247*599074578^(19/21) 3908816900000000 a001 43133785636/96450076809*599074578^(19/21) 3908816900000000 a001 225851433717/505019158607*599074578^(19/21) 3908816900000000 a001 591286729879/1322157322203*599074578^(19/21) 3908816900000000 a001 182717648081/408569081798*599074578^(19/21) 3908816900000000 a001 139583862445/312119004989*599074578^(19/21) 3908816900000000 a001 53316291173/119218851371*599074578^(19/21) 3908816900000000 a001 10182505537/22768774562*599074578^(19/21) 3908816900000000 a001 956722026041/969323029*599074578^(11/21) 3908816900000000 a001 7778742049/17393796001*599074578^(19/21) 3908816900000000 a001 1836311903/6643838879*599074578^(13/14) 3908816900000000 a001 2971215073/2537720636*599074578^(6/7) 3908816900000000 a001 2971215073/6643838879*599074578^(19/21) 3908816900000000 a001 4807526976/17393796001*599074578^(13/14) 3908816900000000 a001 1836311903/10749957122*599074578^(20/21) 3908816900000000 a001 12586269025/45537549124*599074578^(13/14) 3908816900000000 a001 32951280099/119218851371*599074578^(13/14) 3908816900000000 a001 86267571272/312119004989*599074578^(13/14) 3908816900000000 a001 225851433717/817138163596*599074578^(13/14) 3908816900000000 a001 1548008755920/5600748293801*599074578^(13/14) 3908816900000000 a001 139583862445/505019158607*599074578^(13/14) 3908816900000000 a001 53316291173/192900153618*599074578^(13/14) 3908816900000000 a001 20365011074/73681302247*599074578^(13/14) 3908816900000000 a001 7778742049/28143753123*599074578^(13/14) 3908816900000000 a001 2971215073/10749957122*599074578^(13/14) 3908816900000000 a001 1602508992/9381251041*599074578^(20/21) 3908816900000000 a001 12586269025/73681302247*599074578^(20/21) 3908816900000000 a001 10983760033/64300051206*599074578^(20/21) 3908816900000000 a001 86267571272/505019158607*599074578^(20/21) 3908816900000000 a001 75283811239/440719107401*599074578^(20/21) 3908816900000000 a001 2504730781961/14662949395604*599074578^(20/21) 3908816900000000 a001 139583862445/817138163596*599074578^(20/21) 3908816900000000 a001 53316291173/312119004989*599074578^(20/21) 3908816900000000 a001 20365011074/119218851371*599074578^(20/21) 3908816900000000 a001 365435296162/969323029*599074578^(4/7) 3908816900000000 a001 7778742049/45537549124*599074578^(20/21) 3908816900000000 a001 2971215073/17393796001*599074578^(20/21) 3908816900000000 a001 1134903170/4106118243*599074578^(13/14) 3908816900000000 a001 139583862445/969323029*599074578^(13/21) 3908816900000000 a001 567451585/1268860318*599074578^(19/21) 3908816900000000 a001 1134903170/6643838879*599074578^(20/21) 3908816900000000 a001 86267571272/969323029*599074578^(9/14) 3908816900000000 a001 53316291173/969323029*599074578^(2/3) 3908816900000000 a001 20365011074/969323029*599074578^(5/7) 3908816900000000 a001 7778742049/969323029*599074578^(16/21) 3908816900000000 a001 4807526976/969323029*599074578^(11/14) 3908816900000000 a001 433494437/1568397607*599074578^(13/14) 3908816900000000 a001 1836311903/969323029*599074578^(5/6) 3908816900000000 a001 2971215073/969323029*599074578^(17/21) 3908816900000000 a001 1134903170/969323029*599074578^(6/7) 3908816900000000 a001 433494437/2537720636*599074578^(20/21) 3908816900000000 a001 22180643453797868/567451585 3908816900000000 a001 165580141/599074578*2537720636^(13/15) 3908816900000000 a001 165580141/599074578*45537549124^(13/17) 3908816900000000 a001 165580141/599074578*14662949395604^(13/21) 3908816900000000 a001 165580141/599074578*192900153618^(13/18) 3908816900000000 a001 165580141/599074578*73681302247^(3/4) 3908816900000000 a001 165580141/599074578*10749957122^(13/16) 3908816900000000 a001 433494437/969323029*599074578^(19/21) 3908816900000000 a001 3536736619241/199691526*228826127^(2/5) 3908816900000000 a001 4052739537881/599074578*228826127^(9/20) 3908816900000000 a001 86000486440/33281921*228826127^(1/2) 3908816900000000 a001 701408733/370248451*2537720636^(7/9) 3908816900000000 a001 116139356908771353/2971215073 3908816900000000 a001 701408733/370248451*17393796001^(5/7) 3908816900000000 a001 701408733/370248451*312119004989^(7/11) 3908816900000000 a001 701408733/370248451*14662949395604^(5/9) 3908816900000000 a001 701408733/370248451*505019158607^(5/8) 3908816900000000 a001 701408733/370248451*28143753123^(7/10) 3908816900000000 a001 165580141/599074578*599074578^(13/14) 3908816900000000 a001 1836311903/370248451*2537720636^(11/15) 3908816900000000 a001 7778742049/370248451*2537720636^(2/3) 3908816900000000 a001 32951280099/370248451*2537720636^(3/5) 3908816900000000 a001 86267571272/370248451*2537720636^(5/9) 3908816900000000 a001 139583862445/370248451*2537720636^(8/15) 3908816900000000 a001 591286729879/370248451*2537720636^(7/15) 3908816900000000 a001 956722026041/370248451*2537720636^(4/9) 3908816900000000 a001 304056783818718323/7778742049 3908816900000000 a001 2504730781961/370248451*2537720636^(2/5) 3908816900000000 a001 1836311903/370248451*45537549124^(11/17) 3908816900000000 a001 1836311903/370248451*312119004989^(3/5) 3908816900000000 a001 1836311903/370248451*14662949395604^(11/21) 3908816900000000 a001 1836311903/370248451*192900153618^(11/18) 3908816900000000 a001 1836311903/370248451*10749957122^(11/16) 3908816900000000 a001 10610209857723/370248451*2537720636^(1/3) 3908816900000000 a001 398015497273691808/10182505537 3908816900000000 a001 701408733/141422324*141422324^(11/13) 3908816900000000 a001 165580141/10749957122*45537549124^(15/17) 3908816900000000 a001 165580141/10749957122*312119004989^(9/11) 3908816900000000 a001 165580141/10749957122*14662949395604^(5/7) 3908816900000000 a001 4807526976/370248451*9062201101803^(1/2) 3908816900000000 a001 165580141/10749957122*192900153618^(5/6) 3908816900000000 a001 165580141/10749957122*28143753123^(9/10) 3908816900000000 a001 591286729879/370248451*17393796001^(3/7) 3908816900000000 a001 20365011074/370248451*17393796001^(4/7) 3908816900000000 a001 2084036199823432525/53316291173 3908816900000000 a001 12586269025/370248451*1322157322203^(1/2) 3908816900000000 a001 165580141/10749957122*10749957122^(15/16) 3908816900000000 a001 32951280099/370248451*45537549124^(9/17) 3908816900000000 a001 139583862445/370248451*45537549124^(8/17) 3908816900000000 a001 591286729879/370248451*45537549124^(7/17) 3908816900000000 a001 5456077604922913959/139583862445 3908816900000000 a001 32951280099/370248451*817138163596^(9/19) 3908816900000000 a001 165580141/73681302247*14662949395604^(7/9) 3908816900000000 a001 32951280099/370248451*14662949395604^(3/7) 3908816900000000 a001 165580141/73681302247*505019158607^(7/8) 3908816900000000 a001 32951280099/370248451*192900153618^(1/2) 3908816900000000 a001 2504730781961/370248451*45537549124^(6/17) 3908816900000000 a001 4052739537881/370248451*45537549124^(1/3) 3908816900000000 a001 10610209857723/370248451*45537549124^(5/17) 3908816900000000 a001 86267571272/370248451*312119004989^(5/11) 3908816900000000 a001 165580141/192900153618*817138163596^(17/19) 3908816900000000 a001 165580141/192900153618*14662949395604^(17/21) 3908816900000000 a001 86267571272/370248451*3461452808002^(5/12) 3908816900000000 a001 10610209857723/370248451*312119004989^(3/11) 3908816900000000 a001 1548008755920/370248451*817138163596^(1/3) 3908816900000000 a001 128159754037234092360/3278735159921 3908816900000000 a001 10610209857723/370248451*14662949395604^(5/21) 3908816900000000 a001 10610209857723/370248451*192900153618^(5/18) 3908816900000000 a001 139583862445/370248451*14662949395604^(8/21) 3908816900000000 a001 23112315624967704745/591286729879 3908816900000000 a001 165580141/312119004989*505019158607^(13/14) 3908816900000000 a001 139583862445/370248451*192900153618^(4/9) 3908816900000000 a001 165580141/45537549124*45537549124^(16/17) 3908816900000000 a001 6557470319842/370248451*73681302247^(4/13) 3908816900000000 a001 165580141/119218851371*312119004989^(10/11) 3908816900000000 a001 165580141/119218851371*3461452808002^(5/6) 3908816900000000 a001 8828119010022395393/225851433717 3908816900000000 a001 139583862445/370248451*73681302247^(6/13) 3908816900000000 a001 53316291173/370248451*73681302247^(1/2) 3908816900000000 a001 10610209857723/370248451*28143753123^(3/10) 3908816900000000 a001 165580141/45537549124*14662949395604^(16/21) 3908816900000000 a001 20365011074/370248451*14662949395604^(4/9) 3908816900000000 a001 956722026041/370248451*28143753123^(2/5) 3908816900000000 a001 165580141/45537549124*192900153618^(8/9) 3908816900000000 a001 1686020702549740717/43133785636 3908816900000000 a001 20365011074/370248451*73681302247^(7/13) 3908816900000000 a001 86267571272/370248451*28143753123^(1/2) 3908816900000000 a001 165580141/45537549124*73681302247^(12/13) 3908816900000000 a001 10610209857723/370248451*10749957122^(5/16) 3908816900000000 a001 6557470319842/370248451*10749957122^(1/3) 3908816900000000 a001 7778742049/370248451*45537549124^(10/17) 3908816900000000 a001 2504730781961/370248451*10749957122^(3/8) 3908816900000000 a001 7778742049/370248451*312119004989^(6/11) 3908816900000000 a001 7778742049/370248451*14662949395604^(10/21) 3908816900000000 a001 7778742049/370248451*192900153618^(5/9) 3908816900000000 a001 1288005205276048909/32951280099 3908816900000000 a001 956722026041/370248451*10749957122^(5/12) 3908816900000000 a001 591286729879/370248451*10749957122^(7/16) 3908816900000000 a001 365435296162/370248451*10749957122^(11/24) 3908816900000000 a001 7778742049/370248451*28143753123^(3/5) 3908816900000000 a001 139583862445/370248451*10749957122^(1/2) 3908816900000000 a001 32951280099/370248451*10749957122^(9/16) 3908816900000000 a001 53316291173/370248451*10749957122^(13/24) 3908816900000000 a001 20365011074/370248451*10749957122^(7/12) 3908816900000000 a001 7778742049/370248451*10749957122^(5/8) 3908816900000000 a001 165580141/2537720636*2537720636^(14/15) 3908816900000000 a001 165580141/17393796001*10749957122^(23/24) 3908816900000000 a001 6557470319842/370248451*4106118243^(8/23) 3908816900000000 a001 165580141/6643838879*312119004989^(4/5) 3908816900000000 a001 2971215073/370248451*23725150497407^(1/2) 3908816900000000 a001 165580141/6643838879*23725150497407^(11/16) 3908816900000000 a001 2971215073/370248451*73681302247^(8/13) 3908816900000000 a001 165580141/6643838879*73681302247^(11/13) 3908816900000000 a001 2504730781961/370248451*4106118243^(9/23) 3908816900000000 a001 491974210728665293/12586269025 3908816900000000 a001 956722026041/370248451*4106118243^(10/23) 3908816900000000 a001 365435296162/370248451*4106118243^(11/23) 3908816900000000 a001 2971215073/370248451*10749957122^(2/3) 3908816900000000 a001 225851433717/370248451*4106118243^(1/2) 3908816900000000 a001 165580141/6643838879*10749957122^(11/12) 3908816900000000 a001 139583862445/370248451*4106118243^(12/23) 3908816900000000 a001 53316291173/370248451*4106118243^(13/23) 3908816900000000 a001 20365011074/370248451*4106118243^(14/23) 3908816900000000 a001 7778742049/370248451*4106118243^(15/23) 3908816900000000 a001 2971215073/370248451*4106118243^(16/23) 3908816900000000 a001 165580141/6643838879*4106118243^(22/23) 3908816900000000 a001 6557470319842/370248451*1568397607^(4/11) 3908816900000000 a001 165580141/2537720636*17393796001^(6/7) 3908816900000000 a001 165580141/2537720636*45537549124^(14/17) 3908816900000000 a001 1134903170/370248451*45537549124^(2/3) 3908816900000000 a001 165580141/2537720636*14662949395604^(2/3) 3908816900000000 a001 165580141/2537720636*505019158607^(3/4) 3908816900000000 a001 165580141/2537720636*192900153618^(7/9) 3908816900000000 a001 1134903170/370248451*10749957122^(17/24) 3908816900000000 a001 165580141/2537720636*10749957122^(7/8) 3908816900000000 a001 93958713454973485/2403763488 3908816900000000 a001 2504730781961/370248451*1568397607^(9/22) 3908816900000000 a001 956722026041/370248451*1568397607^(5/11) 3908816900000000 a001 1134903170/370248451*4106118243^(17/23) 3908816900000000 a001 365435296162/370248451*1568397607^(1/2) 3908816900000000 a001 165580141/2537720636*4106118243^(21/23) 3908816900000000 a001 139583862445/370248451*1568397607^(6/11) 3908816900000000 a001 53316291173/370248451*1568397607^(13/22) 3908816900000000 a001 1836311903/370248451*1568397607^(3/4) 3908816900000000 a001 20365011074/370248451*1568397607^(7/11) 3908816900000000 a001 7778742049/370248451*1568397607^(15/22) 3908816900000000 a001 2971215073/370248451*1568397607^(8/11) 3908816900000000 a001 591286729879/599074578*228826127^(11/20) 3908816900000000 a001 1134903170/370248451*1568397607^(17/22) 3908816900000000 a001 165580141/2537720636*1568397607^(21/22) 3908816900000000 a001 1515744265389/224056801*228826127^(9/20) 3908816900000000 a001 165580141/969323029*2537720636^(8/9) 3908816900000000 a001 433494437/370248451*2537720636^(4/5) 3908816900000000 a001 10610209857723/370248451*599074578^(5/14) 3908816900000000 a001 6557470319842/370248451*599074578^(8/21) 3908816900000000 a001 433494437/370248451*45537549124^(12/17) 3908816900000000 a001 165580141/969323029*312119004989^(8/11) 3908816900000000 a001 165580141/969323029*23725150497407^(5/8) 3908816900000000 a001 433494437/370248451*505019158607^(9/14) 3908816900000000 a001 433494437/370248451*192900153618^(2/3) 3908816900000000 a001 433494437/370248451*73681302247^(9/13) 3908816900000000 a001 165580141/969323029*73681302247^(10/13) 3908816900000000 a001 165580141/969323029*28143753123^(4/5) 3908816900000000 a001 433494437/370248451*10749957122^(3/4) 3908816900000000 a001 165580141/969323029*10749957122^(5/6) 3908816900000000 a001 433494437/370248451*4106118243^(18/23) 3908816900000000 a001 165580141/969323029*4106118243^(20/23) 3908816900000000 a001 71778070001175617/1836311903 3908816900000000 a001 2504730781961/370248451*599074578^(3/7) 3908816900000000 a001 956722026041/370248451*599074578^(10/21) 3908816900000000 a001 267913919/710646*228826127^(3/5) 3908816900000000 a001 591286729879/370248451*599074578^(1/2) 3908816900000000 a001 433494437/370248451*1568397607^(9/11) 3908816900000000 a001 165580141/969323029*1568397607^(10/11) 3908816900000000 a001 365435296162/370248451*599074578^(11/21) 3908816900000000 a001 139583862445/370248451*599074578^(4/7) 3908816900000000 a001 53316291173/370248451*599074578^(13/21) 3908816900000000 a001 32951280099/370248451*599074578^(9/14) 3908816900000000 a001 4052739537881/1568397607*228826127^(1/2) 3908816900000000 a001 139583862445/599074578*228826127^(5/8) 3908816900000000 a001 20365011074/370248451*599074578^(2/3) 3908816900000000 a001 701408733/370248451*599074578^(5/6) 3908816900000000 a001 7778742049/370248451*599074578^(5/7) 3908816900000000 a001 1836311903/370248451*599074578^(11/14) 3908816900000000 a001 2971215073/370248451*599074578^(16/21) 3908816900000000 a001 3536736619241/1368706081*228826127^(1/2) 3908816900000000 a001 43133785636/299537289*228826127^(13/20) 3908816900000000 a001 6557470319842/969323029*228826127^(9/20) 3908816900000000 a001 3278735159921/1268860318*228826127^(1/2) 3908816900000000 a001 1134903170/370248451*599074578^(17/21) 3908816900000000 a001 1548008755920/1568397607*228826127^(11/20) 3908816900000000 a001 4052739537881/4106118243*228826127^(11/20) 3908816900000000 a001 4807525989/4870846*228826127^(11/20) 3908816900000000 a001 6557470319842/6643838879*228826127^(11/20) 3908816900000000 a001 10983760033/199691526*228826127^(7/10) 3908816900000000 a001 2504730781961/969323029*228826127^(1/2) 3908816900000000 a001 2504730781961/2537720636*228826127^(11/20) 3908816900000000 a001 433494437/370248451*599074578^(6/7) 3908816900000000 a001 165580141/969323029*599074578^(20/21) 3908816900000000 a001 591286729879/1568397607*228826127^(3/5) 3908816900000000 a001 165580141/141422324*141422324^(12/13) 3908816900000000 a001 516002918640/1368706081*228826127^(3/5) 3908816900000000 a001 4052739537881/10749957122*228826127^(3/5) 3908816900000000 a001 3536736619241/9381251041*228826127^(3/5) 3908816900000000 a001 6557470319842/17393796001*228826127^(3/5) 3908816900000000 a001 2504730781961/6643838879*228826127^(3/5) 3908816900000000 a001 365435296162/1568397607*228826127^(5/8) 3908816900000000 a001 12586269025/599074578*228826127^(3/4) 3908816900000000 a001 2971215073/141422324*141422324^(10/13) 3908816900000000 a001 956722026041/969323029*228826127^(11/20) 3908816900000000 a001 956722026041/2537720636*228826127^(3/5) 3908816900000000 a001 956722026041/4106118243*228826127^(5/8) 3908816900000000 a001 2504730781961/10749957122*228826127^(5/8) 3908816900000000 a001 6557470319842/28143753123*228826127^(5/8) 3908816900000000 a001 10610209857723/45537549124*228826127^(5/8) 3908816900000000 a001 4052739537881/17393796001*228826127^(5/8) 3908816900000000 a001 1548008755920/6643838879*228826127^(5/8) 3908816900000000 a001 32264490531/224056801*228826127^(13/20) 3908816900000000 a001 591286729879/2537720636*228826127^(5/8) 3908816900000000 a001 591286729879/4106118243*228826127^(13/20) 3908816900000000 a001 774004377960/5374978561*228826127^(13/20) 3908816900000000 a001 4052739537881/28143753123*228826127^(13/20) 3908816900000000 a001 1515744265389/10525900321*228826127^(13/20) 3908816900000000 a001 3278735159921/22768774562*228826127^(13/20) 3908816900000000 a001 2504730781961/17393796001*228826127^(13/20) 3908816900000000 a001 956722026041/6643838879*228826127^(13/20) 3908816900000000 a001 267084832/33281921*228826127^(4/5) 3908816900000000 a001 365435296162/969323029*228826127^(3/5) 3908816900000000 a001 182717648081/1268860318*228826127^(13/20) 3908816900000000 a001 133957148/299537289*228826127^(19/20) 3908816900000000 a001 86267571272/1568397607*228826127^(7/10) 3908816900000000 a001 225851433717/969323029*228826127^(5/8) 3908816900000000 a001 75283811239/1368706081*228826127^(7/10) 3908816900000000 a001 591286729879/10749957122*228826127^(7/10) 3908816900000000 a001 12585437040/228811001*228826127^(7/10) 3908816900000000 a001 4052739537881/73681302247*228826127^(7/10) 3908816900000000 a001 3536736619241/64300051206*228826127^(7/10) 3908816900000000 a001 6557470319842/119218851371*228826127^(7/10) 3908816900000000 a001 2504730781961/45537549124*228826127^(7/10) 3908816900000000 a001 956722026041/17393796001*228826127^(7/10) 3908816900000000 a001 1836311903/599074578*228826127^(17/20) 3908816900000000 a001 365435296162/6643838879*228826127^(7/10) 3908816900000000 a001 139583862445/969323029*228826127^(13/20) 3908816900000000 a001 139583862445/2537720636*228826127^(7/10) 3908816900000000 a001 32951280099/1568397607*228826127^(3/4) 3908816900000000 a001 233802911/199691526*228826127^(9/10) 3908816900000000 a001 567451585/299537289*228826127^(7/8) 3908816900000000 a001 86267571272/4106118243*228826127^(3/4) 3908816900000000 a001 225851433717/10749957122*228826127^(3/4) 3908816900000000 a001 591286729879/28143753123*228826127^(3/4) 3908816900000000 a001 1548008755920/73681302247*228826127^(3/4) 3908816900000000 a001 4052739537881/192900153618*228826127^(3/4) 3908816900000000 a001 225749145909/10745088481*228826127^(3/4) 3908816900000000 a001 6557470319842/312119004989*228826127^(3/4) 3908816900000000 a001 2504730781961/119218851371*228826127^(3/4) 3908816900000000 a001 956722026041/45537549124*228826127^(3/4) 3908816900000000 a001 365435296162/17393796001*228826127^(3/4) 3908816900000000 a001 139583862445/6643838879*228826127^(3/4) 3908816900000000 a001 53316291173/969323029*228826127^(7/10) 3908816900000000 a001 10610209857723/370248451*228826127^(3/8) 3908816900000000 a001 53316291173/2537720636*228826127^(3/4) 3908816900000000 a001 165580141/370248451*817138163596^(2/3) 3908816900000000 a001 165580141/370248451*10749957122^(19/24) 3908816900000000 a001 165580141/370248451*4106118243^(19/23) 3908816900000000 a001 12586269025/1568397607*228826127^(4/5) 3908816900000000 a001 6557470319842/370248451*228826127^(2/5) 3908816900000000 a001 165580141/370248451*1568397607^(19/22) 3908816900000000 a001 27416783093579881/701408733 3908816900000000 a001 10983760033/1368706081*228826127^(4/5) 3908816900000000 a001 43133785636/5374978561*228826127^(4/5) 3908816900000000 a001 75283811239/9381251041*228826127^(4/5) 3908816900000000 a001 591286729879/73681302247*228826127^(4/5) 3908816900000000 a001 86000486440/10716675201*228826127^(4/5) 3908816900000000 a001 4052739537881/505019158607*228826127^(4/5) 3908816900000000 a001 3536736619241/440719107401*228826127^(4/5) 3908816900000000 a001 3278735159921/408569081798*228826127^(4/5) 3908816900000000 a001 2504730781961/312119004989*228826127^(4/5) 3908816900000000 a001 956722026041/119218851371*228826127^(4/5) 3908816900000000 a001 182717648081/22768774562*228826127^(4/5) 3908816900000000 a001 139583862445/17393796001*228826127^(4/5) 3908816900000000 a001 53316291173/6643838879*228826127^(4/5) 3908816900000000 a001 12586269025/141422324*141422324^(9/13) 3908816900000000 a001 20365011074/969323029*228826127^(3/4) 3908816900000000 a001 10182505537/1268860318*228826127^(4/5) 3908816900000000 a001 686789568/224056801*228826127^(17/20) 3908816900000000 a001 2504730781961/370248451*228826127^(9/20) 3908816900000000 a001 12586269025/4106118243*228826127^(17/20) 3908816900000000 a001 32951280099/10749957122*228826127^(17/20) 3908816900000000 a001 86267571272/28143753123*228826127^(17/20) 3908816900000000 a001 32264490531/10525900321*228826127^(17/20) 3908816900000000 a001 591286729879/192900153618*228826127^(17/20) 3908816900000000 a001 1548008755920/505019158607*228826127^(17/20) 3908816900000000 a001 1515744265389/494493258286*228826127^(17/20) 3908816900000000 a001 2504730781961/817138163596*228826127^(17/20) 3908816900000000 a001 956722026041/312119004989*228826127^(17/20) 3908816900000000 a001 365435296162/119218851371*228826127^(17/20) 3908816900000000 a001 139583862445/45537549124*228826127^(17/20) 3908816900000000 a001 53316291173/17393796001*228826127^(17/20) 3908816900000000 a001 20365011074/6643838879*228826127^(17/20) 3908816900000000 a001 2971215073/1568397607*228826127^(7/8) 3908816900000000 a001 7778742049/969323029*228826127^(4/5) 3908816900000000 a001 7778742049/2537720636*228826127^(17/20) 3908816900000000 a001 7778742049/4106118243*228826127^(7/8) 3908816900000000 a001 10182505537/70711162*141422324^(2/3) 3908816900000000 a001 10182505537/5374978561*228826127^(7/8) 3908816900000000 a001 53316291173/28143753123*228826127^(7/8) 3908816900000000 a001 139583862445/73681302247*228826127^(7/8) 3908816900000000 a001 182717648081/96450076809*228826127^(7/8) 3908816900000000 a001 956722026041/505019158607*228826127^(7/8) 3908816900000000 a001 10610209857723/5600748293801*228826127^(7/8) 3908816900000000 a001 591286729879/312119004989*228826127^(7/8) 3908816900000000 a001 225851433717/119218851371*228826127^(7/8) 3908816900000000 a001 21566892818/11384387281*228826127^(7/8) 3908816900000000 a001 32951280099/17393796001*228826127^(7/8) 3908816900000000 a001 1836311903/1568397607*228826127^(9/10) 3908816900000000 a001 12586269025/6643838879*228826127^(7/8) 3908816900000000 a001 956722026041/370248451*228826127^(1/2) 3908816900000000 a001 1201881744/634430159*228826127^(7/8) 3908816900000000 a001 165580141/370248451*599074578^(19/21) 3908816900000000 a001 1602508992/1368706081*228826127^(9/10) 3908816900000000 a001 12586269025/10749957122*228826127^(9/10) 3908816900000000 a001 10983760033/9381251041*228826127^(9/10) 3908816900000000 a001 86267571272/73681302247*228826127^(9/10) 3908816900000000 a001 75283811239/64300051206*228826127^(9/10) 3908816900000000 a001 2504730781961/2139295485799*228826127^(9/10) 3908816900000000 a001 365435296162/312119004989*228826127^(9/10) 3908816900000000 a001 139583862445/119218851371*228826127^(9/10) 3908816900000000 a001 53316291173/45537549124*228826127^(9/10) 3908816900000000 a001 20365011074/17393796001*228826127^(9/10) 3908816900000000 a001 7778742049/6643838879*228826127^(9/10) 3908816900000000 a001 2971215073/969323029*228826127^(17/20) 3908816900000000 a001 701408733/1568397607*228826127^(19/20) 3908816900000000 a001 2971215073/2537720636*228826127^(9/10) 3908816900000000 a001 1836311903/969323029*228826127^(7/8) 3908816900000000 a001 365435296162/370248451*228826127^(11/20) 3908816900000000 a001 1836311903/4106118243*228826127^(19/20) 3908816900000000 a001 2403763488/5374978561*228826127^(19/20) 3908816900000000 a001 12586269025/28143753123*228826127^(19/20) 3908816900000000 a001 32951280099/73681302247*228826127^(19/20) 3908816900000000 a001 43133785636/96450076809*228826127^(19/20) 3908816900000000 a001 225851433717/505019158607*228826127^(19/20) 3908816900000000 a001 182717648081/408569081798*228826127^(19/20) 3908816900000000 a001 139583862445/312119004989*228826127^(19/20) 3908816900000000 a001 53316291173/119218851371*228826127^(19/20) 3908816900000000 a001 10182505537/22768774562*228826127^(19/20) 3908816900000000 a001 7778742049/17393796001*228826127^(19/20) 3908816900000000 a001 2971215073/6643838879*228826127^(19/20) 3908816900000000 a001 1134903170/969323029*228826127^(9/10) 3908816900000000 a001 567451585/1268860318*228826127^(19/20) 3908816900000000 a001 139583862445/370248451*228826127^(3/5) 3908816900000000 a001 53316291173/141422324*141422324^(8/13) 3908816900000000 a001 86267571272/370248451*228826127^(5/8) 3908816900000000 a001 53316291173/370248451*228826127^(13/20) 3908816900000000 a001 433494437/969323029*228826127^(19/20) 3908816900000000 a001 20365011074/370248451*228826127^(7/10) 3908816900000000 a001 7778742049/370248451*228826127^(3/4) 3908816900000000 a001 2971215073/370248451*228826127^(4/5) 3908816900000000 a001 225851433717/141422324*141422324^(7/13) 3908816900000000 a001 701408733/370248451*228826127^(7/8) 3908816900000000 a001 6472224534451830/165580141 3908816900000000 a001 1134903170/370248451*228826127^(17/20) 3908816900000000 a001 433494437/370248451*228826127^(9/10) 3908816900000000 a001 956722026041/141422324*141422324^(6/13) 3908816900000000 a001 225749145909/4868641*87403803^(7/19) 3908816900000000 a001 63245986/228826127*2537720636^(13/15) 3908816900000000 a001 4052739537881/141422324*141422324^(5/13) 3908816900000000 a001 63245986/228826127*45537549124^(13/17) 3908816900000000 a001 63245986/228826127*14662949395604^(13/21) 3908816900000000 a001 63245986/228826127*192900153618^(13/18) 3908816900000000 a001 63245986/228826127*73681302247^(3/4) 3908816900000000 a001 63245986/228826127*10749957122^(13/16) 3908816900000000 a001 165580141/370248451*228826127^(19/20) 3908816900000000 a001 10610209857723/141422324*141422324^(1/3) 3908816900000000 a001 63245986/228826127*599074578^(13/14) 3908816900000000 a001 4052739537881/228826127*87403803^(8/19) 3908816900000000 a001 1548008755920/228826127*87403803^(9/19) 3908816900000000 a001 16944503814015856/433494437 3908816900000000 a001 956722026041/228826127*87403803^(1/2) 3908816900000000 a001 66978574/35355581*2537720636^(7/9) 3908816900000000 a001 66978574/35355581*17393796001^(5/7) 3908816900000000 a001 66978574/35355581*312119004989^(7/11) 3908816900000000 a001 66978574/35355581*14662949395604^(5/9) 3908816900000000 a001 66978574/35355581*505019158607^(5/8) 3908816900000000 a001 66978574/35355581*28143753123^(7/10) 3908816900000000 a001 22180643453797869/567451585 3908816900000000 a001 701408733/141422324*2537720636^(11/15) 3908816900000000 a001 66978574/35355581*599074578^(5/6) 3908816900000000 a001 701408733/141422324*45537549124^(11/17) 3908816900000000 a001 701408733/141422324*312119004989^(3/5) 3908816900000000 a001 701408733/141422324*817138163596^(11/19) 3908816900000000 a001 701408733/141422324*14662949395604^(11/21) 3908816900000000 a001 701408733/141422324*192900153618^(11/18) 3908816900000000 a001 701408733/141422324*10749957122^(11/16) 3908816900000000 a001 591286729879/228826127*87403803^(10/19) 3908816900000000 a001 701408733/141422324*1568397607^(3/4) 3908816900000000 a001 12586269025/141422324*2537720636^(3/5) 3908816900000000 a001 63246219/271444*2537720636^(5/9) 3908816900000000 a001 53316291173/141422324*2537720636^(8/15) 3908816900000000 a001 116139356908771358/2971215073 3908816900000000 a001 2971215073/141422324*2537720636^(2/3) 3908816900000000 a001 225851433717/141422324*2537720636^(7/15) 3908816900000000 a001 182717648081/70711162*2537720636^(4/9) 3908816900000000 a001 956722026041/141422324*2537720636^(2/5) 3908816900000000 a001 63245986/4106118243*45537549124^(15/17) 3908816900000000 a001 63245986/4106118243*312119004989^(9/11) 3908816900000000 a001 1836311903/141422324*9062201101803^(1/2) 3908816900000000 a001 63245986/4106118243*192900153618^(5/6) 3908816900000000 a001 63245986/4106118243*28143753123^(9/10) 3908816900000000 a001 4052739537881/141422324*2537720636^(1/3) 3908816900000000 a001 63245986/4106118243*10749957122^(15/16) 3908816900000000 a001 304056783818718336/7778742049 3908816900000000 a001 1201881744/35355581*1322157322203^(1/2) 3908816900000000 a001 398015497273691825/10182505537 3908816900000000 a001 12586269025/141422324*45537549124^(9/17) 3908816900000000 a001 225851433717/141422324*17393796001^(3/7) 3908816900000000 a001 12586269025/141422324*817138163596^(9/19) 3908816900000000 a001 12586269025/141422324*14662949395604^(3/7) 3908816900000000 a001 63245986/28143753123*505019158607^(7/8) 3908816900000000 a001 12586269025/141422324*192900153618^(1/2) 3908816900000000 a001 3278735159921/70711162*17393796001^(2/7) 3908816900000000 a001 2084036199823432614/53316291173 3908816900000000 a001 225851433717/141422324*45537549124^(7/17) 3908816900000000 a001 63246219/271444*312119004989^(5/11) 3908816900000000 a001 63245986/73681302247*817138163596^(17/19) 3908816900000000 a001 63245986/73681302247*14662949395604^(17/21) 3908816900000000 a001 956722026041/141422324*45537549124^(6/17) 3908816900000000 a001 387002188980/35355581*45537549124^(1/3) 3908816900000000 a001 63245986/73681302247*192900153618^(17/18) 3908816900000000 a001 53316291173/141422324*45537549124^(8/17) 3908816900000000 a001 4052739537881/141422324*45537549124^(5/17) 3908816900000000 a001 5456077604922914192/139583862445 3908816900000000 a001 225851433717/141422324*14662949395604^(1/3) 3908816900000000 a001 128159754037234097833/3278735159921 3908816900000000 a001 -31622993+31622993*5^(1/2) 3908816900000000 a001 23112315624967705732/591286729879 3908816900000000 a001 139583862445/141422324*312119004989^(2/5) 3908816900000000 a001 956722026041/141422324*192900153618^(1/3) 3908816900000000 a001 63245986/312119004989*14662949395604^(6/7) 3908816900000000 a001 8828119010022395770/225851433717 3908816900000000 a001 10610209857723/141422324*73681302247^(1/4) 3908816900000000 a001 2504730781961/141422324*73681302247^(4/13) 3908816900000000 a001 53316291173/141422324*14662949395604^(8/21) 3908816900000000 a001 182717648081/70711162*73681302247^(5/13) 3908816900000000 a001 63245986/119218851371*505019158607^(13/14) 3908816900000000 a001 53316291173/141422324*192900153618^(4/9) 3908816900000000 a001 1686020702549740789/43133785636 3908816900000000 a001 53316291173/141422324*73681302247^(6/13) 3908816900000000 a001 4052739537881/141422324*28143753123^(3/10) 3908816900000000 a001 63246219/271444*28143753123^(1/2) 3908816900000000 a001 31622993/22768774562*312119004989^(10/11) 3908816900000000 a001 31622993/22768774562*3461452808002^(5/6) 3908816900000000 a001 182717648081/70711162*28143753123^(2/5) 3908816900000000 a001 10182505537/70711162*73681302247^(1/2) 3908816900000000 a001 5527919335948708/141421803 3908816900000000 a001 7778742049/141422324*17393796001^(4/7) 3908816900000000 a001 3278735159921/70711162*10749957122^(7/24) 3908816900000000 a001 4052739537881/141422324*10749957122^(5/16) 3908816900000000 a001 63245986/17393796001*45537549124^(16/17) 3908816900000000 a001 2504730781961/141422324*10749957122^(1/3) 3908816900000000 a001 956722026041/141422324*10749957122^(3/8) 3908816900000000 a001 63245986/17393796001*14662949395604^(16/21) 3908816900000000 a001 7778742049/141422324*14662949395604^(4/9) 3908816900000000 a001 63245986/17393796001*192900153618^(8/9) 3908816900000000 a001 7778742049/141422324*73681302247^(7/13) 3908816900000000 a001 63245986/17393796001*73681302247^(12/13) 3908816900000000 a001 12586269025/141422324*10749957122^(9/16) 3908816900000000 a001 182717648081/70711162*10749957122^(5/12) 3908816900000000 a001 225851433717/141422324*10749957122^(7/16) 3908816900000000 a001 139583862445/141422324*10749957122^(11/24) 3908816900000000 a001 53316291173/141422324*10749957122^(1/2) 3908816900000000 a001 491974210728665314/12586269025 3908816900000000 a001 10182505537/70711162*10749957122^(13/24) 3908816900000000 a001 7778742049/141422324*10749957122^(7/12) 3908816900000000 a001 3278735159921/70711162*4106118243^(7/23) 3908816900000000 a001 2504730781961/141422324*4106118243^(8/23) 3908816900000000 a001 2971215073/141422324*45537549124^(10/17) 3908816900000000 a001 2971215073/141422324*312119004989^(6/11) 3908816900000000 a001 2971215073/141422324*14662949395604^(10/21) 3908816900000000 a001 2971215073/141422324*192900153618^(5/9) 3908816900000000 a001 956722026041/141422324*4106118243^(9/23) 3908816900000000 a001 2971215073/141422324*28143753123^(3/5) 3908816900000000 a001 182717648081/70711162*4106118243^(10/23) 3908816900000000 a001 2971215073/141422324*10749957122^(5/8) 3908816900000000 a001 139583862445/141422324*4106118243^(11/23) 3908816900000000 a001 21566892818/35355581*4106118243^(1/2) 3908816900000000 a001 63245986/6643838879*10749957122^(23/24) 3908816900000000 a001 53316291173/141422324*4106118243^(12/23) 3908816900000000 a001 93958713454973489/2403763488 3908816900000000 a001 10182505537/70711162*4106118243^(13/23) 3908816900000000 a001 7778742049/141422324*4106118243^(14/23) 3908816900000000 a001 2971215073/141422324*4106118243^(15/23) 3908816900000000 a001 3278735159921/70711162*1568397607^(7/22) 3908816900000000 a001 2504730781961/141422324*1568397607^(4/11) 3908816900000000 a001 31622993/1268860318*312119004989^(4/5) 3908816900000000 a001 31622993/1268860318*23725150497407^(11/16) 3908816900000000 a001 567451585/70711162*505019158607^(4/7) 3908816900000000 a001 567451585/70711162*73681302247^(8/13) 3908816900000000 a001 31622993/1268860318*73681302247^(11/13) 3908816900000000 a001 567451585/70711162*10749957122^(2/3) 3908816900000000 a001 31622993/1268860318*10749957122^(11/12) 3908816900000000 a001 956722026041/141422324*1568397607^(9/22) 3908816900000000 a001 182717648081/70711162*1568397607^(5/11) 3908816900000000 a001 567451585/70711162*4106118243^(16/23) 3908816900000000 a001 139583862445/141422324*1568397607^(1/2) 3908816900000000 a001 31622993/1268860318*4106118243^(22/23) 3908816900000000 a001 71778070001175620/1836311903 3908816900000000 a001 53316291173/141422324*1568397607^(6/11) 3908816900000000 a001 10182505537/70711162*1568397607^(13/22) 3908816900000000 a001 7778742049/141422324*1568397607^(7/11) 3908816900000000 a001 2971215073/141422324*1568397607^(15/22) 3908816900000000 a001 567451585/70711162*1568397607^(8/11) 3908816900000000 a001 63245986/969323029*2537720636^(14/15) 3908816900000000 a001 3278735159921/70711162*599074578^(1/3) 3908816900000000 a001 4052739537881/141422324*599074578^(5/14) 3908816900000000 a001 63245986/969323029*17393796001^(6/7) 3908816900000000 a001 2504730781961/141422324*599074578^(8/21) 3908816900000000 a001 63245986/969323029*45537549124^(14/17) 3908816900000000 a001 433494437/141422324*45537549124^(2/3) 3908816900000000 a001 63245986/969323029*817138163596^(14/19) 3908816900000000 a001 63245986/969323029*14662949395604^(2/3) 3908816900000000 a001 63245986/969323029*505019158607^(3/4) 3908816900000000 a001 63245986/969323029*192900153618^(7/9) 3908816900000000 a001 433494437/141422324*10749957122^(17/24) 3908816900000000 a001 63245986/969323029*10749957122^(7/8) 3908816900000000 a001 433494437/141422324*4106118243^(17/23) 3908816900000000 a001 63245986/969323029*4106118243^(21/23) 3908816900000000 a001 956722026041/141422324*599074578^(3/7) 3908816900000000 a001 182717648081/70711162*599074578^(10/21) 3908816900000000 a001 433494437/141422324*1568397607^(17/22) 3908816900000000 a001 225851433717/141422324*599074578^(1/2) 3908816900000000 a001 63245986/969323029*1568397607^(21/22) 3908816900000000 a001 139583862445/141422324*599074578^(11/21) 3908816900000000 a001 27416783093579882/701408733 3908816900000000 a001 53316291173/141422324*599074578^(4/7) 3908816900000000 a001 10182505537/70711162*599074578^(13/21) 3908816900000000 a001 701408733/141422324*599074578^(11/14) 3908816900000000 a001 12586269025/141422324*599074578^(9/14) 3908816900000000 a001 7778742049/141422324*599074578^(2/3) 3908816900000000 a001 2971215073/141422324*599074578^(5/7) 3908816900000000 a001 567451585/70711162*599074578^(16/21) 3908816900000000 a001 3536736619241/199691526*87403803^(8/19) 3908816900000000 a001 433494437/141422324*599074578^(17/21) 3908816900000000 a001 3278735159921/70711162*228826127^(7/20) 3908816900000000 a001 225851433717/228826127*87403803^(11/19) 3908816900000000 a001 63245986/370248451*2537720636^(8/9) 3908816900000000 a001 4052739537881/141422324*228826127^(3/8) 3908816900000000 a001 165580141/141422324*2537720636^(4/5) 3908816900000000 a001 165580141/141422324*45537549124^(12/17) 3908816900000000 a001 63245986/370248451*312119004989^(8/11) 3908816900000000 a001 165580141/141422324*14662949395604^(4/7) 3908816900000000 a001 63245986/370248451*23725150497407^(5/8) 3908816900000000 a001 165580141/141422324*505019158607^(9/14) 3908816900000000 a001 165580141/141422324*192900153618^(2/3) 3908816900000000 a001 165580141/141422324*73681302247^(9/13) 3908816900000000 a001 63245986/370248451*73681302247^(10/13) 3908816900000000 a001 63245986/370248451*28143753123^(4/5) 3908816900000000 a001 165580141/141422324*10749957122^(3/4) 3908816900000000 a001 63245986/370248451*10749957122^(5/6) 3908816900000000 a001 165580141/141422324*4106118243^(18/23) 3908816900000000 a001 63245986/370248451*4106118243^(20/23) 3908816900000000 a001 165580141/141422324*1568397607^(9/11) 3908816900000000 a001 2504730781961/141422324*228826127^(2/5) 3908816900000000 a001 63245986/370248451*1568397607^(10/11) 3908816900000000 a001 956722026041/141422324*228826127^(9/20) 3908816900000000 a001 4052739537881/599074578*87403803^(9/19) 3908816900000000 a001 182717648081/70711162*228826127^(1/2) 3908816900000000 a001 165580141/141422324*599074578^(6/7) 3908816900000000 a001 63245986/370248451*599074578^(20/21) 3908816900000000 a001 5236139639782013/133957148 3908816900000000 a001 139583862445/141422324*228826127^(11/20) 3908816900000000 a001 53316291173/141422324*228826127^(3/5) 3908816900000000 a001 1515744265389/224056801*87403803^(9/19) 3908816900000000 a001 63246219/271444*228826127^(5/8) 3908816900000000 a001 6557470319842/370248451*87403803^(8/19) 3908816900000000 a001 10182505537/70711162*228826127^(13/20) 3908816900000000 a001 2504730781961/599074578*87403803^(1/2) 3908816900000000 a001 6557470319842/969323029*87403803^(9/19) 3908816900000000 a001 7778742049/141422324*228826127^(7/10) 3908816900000000 a001 86267571272/228826127*87403803^(12/19) 3908816900000000 a001 66978574/35355581*228826127^(7/8) 3908816900000000 a001 2971215073/141422324*228826127^(3/4) 3908816900000000 a001 6557470319842/1568397607*87403803^(1/2) 3908816900000000 a001 567451585/70711162*228826127^(4/5) 3908816900000000 a001 10610209857723/2537720636*87403803^(1/2) 3908816900000000 a001 86000486440/33281921*87403803^(10/19) 3908816900000000 a001 4052739537881/969323029*87403803^(1/2) 3908816900000000 a001 433494437/141422324*228826127^(17/20) 3908816900000000 a001 4052739537881/1568397607*87403803^(10/19) 3908816900000000 a001 3536736619241/1368706081*87403803^(10/19) 3908816900000000 a001 3278735159921/1268860318*87403803^(10/19) 3908816900000000 a001 2504730781961/370248451*87403803^(9/19) 3908816900000000 a001 2504730781961/969323029*87403803^(10/19) 3908816900000000 a001 32951280099/228826127*87403803^(13/19) 3908816900000000 a001 1548008755920/370248451*87403803^(1/2) 3908816900000000 a001 591286729879/599074578*87403803^(11/19) 3908816900000000 a001 165580141/141422324*228826127^(9/10) 3908816900000000 a001 1548008755920/1568397607*87403803^(11/19) 3908816900000000 a001 4052739537881/4106118243*87403803^(11/19) 3908816900000000 a001 4807525989/4870846*87403803^(11/19) 3908816900000000 a001 6557470319842/6643838879*87403803^(11/19) 3908816900000000 a001 2504730781961/2537720636*87403803^(11/19) 3908816900000000 a001 956722026041/370248451*87403803^(10/19) 3908816900000000 a001 956722026041/969323029*87403803^(11/19) 3908816900000000 a001 12586269025/228826127*87403803^(14/19) 3908816900000000 a001 267913919/710646*87403803^(12/19) 3908816900000000 a001 591286729879/1568397607*87403803^(12/19) 3908816900000000 a001 516002918640/1368706081*87403803^(12/19) 3908816900000000 a001 4052739537881/10749957122*87403803^(12/19) 3908816900000000 a001 3536736619241/9381251041*87403803^(12/19) 3908816900000000 a001 6557470319842/17393796001*87403803^(12/19) 3908816900000000 a001 2504730781961/6643838879*87403803^(12/19) 3908816900000000 a001 956722026041/2537720636*87403803^(12/19) 3908816900000000 a001 365435296162/370248451*87403803^(11/19) 3908816900000000 a001 365435296162/969323029*87403803^(12/19) 3908816900000000 a001 102287808/4868641*87403803^(15/19) 3908816900000000 a001 43133785636/299537289*87403803^(13/19) 3908816900000000 a001 32264490531/224056801*87403803^(13/19) 3908816900000000 a001 591286729879/4106118243*87403803^(13/19) 3908816900000000 a001 774004377960/5374978561*87403803^(13/19) 3908816900000000 a001 4052739537881/28143753123*87403803^(13/19) 3908816900000000 a001 1515744265389/10525900321*87403803^(13/19) 3908816900000000 a001 3278735159921/22768774562*87403803^(13/19) 3908816900000000 a001 2504730781961/17393796001*87403803^(13/19) 3908816900000000 a001 956722026041/6643838879*87403803^(13/19) 3908816900000000 a001 182717648081/1268860318*87403803^(13/19) 3908816900000000 a001 139583862445/370248451*87403803^(12/19) 3908816900000000 a001 139583862445/969323029*87403803^(13/19) 3908816900000000 a001 1836311903/228826127*87403803^(16/19) 3908816900000000 a001 267914296-102334155*5^(1/2) 3908816900000000 a001 10983760033/199691526*87403803^(14/19) 3908816900000000 a001 86267571272/1568397607*87403803^(14/19) 3908816900000000 a001 75283811239/1368706081*87403803^(14/19) 3908816900000000 a001 591286729879/10749957122*87403803^(14/19) 3908816900000000 a001 12585437040/228811001*87403803^(14/19) 3908816900000000 a001 4052739537881/73681302247*87403803^(14/19) 3908816900000000 a001 3536736619241/64300051206*87403803^(14/19) 3908816900000000 a001 6557470319842/119218851371*87403803^(14/19) 3908816900000000 a001 2504730781961/45537549124*87403803^(14/19) 3908816900000000 a001 956722026041/17393796001*87403803^(14/19) 3908816900000000 a001 365435296162/6643838879*87403803^(14/19) 3908816900000000 a001 139583862445/2537720636*87403803^(14/19) 3908816900000000 a001 53316291173/370248451*87403803^(13/19) 3908816900000000 a001 53316291173/969323029*87403803^(14/19) 3908816900000000 a001 701408733/228826127*87403803^(17/19) 3908816900000000 a001 3278735159921/70711162*87403803^(7/19) 3908816900000000 a001 31622993/70711162*817138163596^(2/3) 3908816900000000 a001 31622993/70711162*10749957122^(19/24) 3908816900000000 a001 31622993/70711162*4106118243^(19/23) 3908816900000000 a001 31622993/70711162*1568397607^(19/22) 3908816900000000 a001 12586269025/599074578*87403803^(15/19) 3908816900000000 a001 267914296/228826127*87403803^(18/19) 3908816900000000 a001 31622993/70711162*599074578^(19/21) 3908816900000000 a001 32951280099/1568397607*87403803^(15/19) 3908816900000000 a001 86267571272/4106118243*87403803^(15/19) 3908816900000000 a001 225851433717/10749957122*87403803^(15/19) 3908816900000000 a001 591286729879/28143753123*87403803^(15/19) 3908816900000000 a001 1548008755920/73681302247*87403803^(15/19) 3908816900000000 a001 4052739537881/192900153618*87403803^(15/19) 3908816900000000 a001 225749145909/10745088481*87403803^(15/19) 3908816900000000 a001 6557470319842/312119004989*87403803^(15/19) 3908816900000000 a001 2504730781961/119218851371*87403803^(15/19) 3908816900000000 a001 956722026041/45537549124*87403803^(15/19) 3908816900000000 a001 365435296162/17393796001*87403803^(15/19) 3908816900000000 a001 139583862445/6643838879*87403803^(15/19) 3908816900000000 a001 53316291173/2537720636*87403803^(15/19) 3908816900000000 a001 20365011074/370248451*87403803^(14/19) 3908816900000000 a001 20365011074/969323029*87403803^(15/19) 3908816900000000 a001 2504730781961/141422324*87403803^(8/19) 3908816900000000 a001 267084832/33281921*87403803^(16/19) 3908816900000000 a001 12586269025/1568397607*87403803^(16/19) 3908816900000000 a001 10983760033/1368706081*87403803^(16/19) 3908816900000000 a001 43133785636/5374978561*87403803^(16/19) 3908816900000000 a001 75283811239/9381251041*87403803^(16/19) 3908816900000000 a001 591286729879/73681302247*87403803^(16/19) 3908816900000000 a001 86000486440/10716675201*87403803^(16/19) 3908816900000000 a001 4052739537881/505019158607*87403803^(16/19) 3908816900000000 a001 3536736619241/440719107401*87403803^(16/19) 3908816900000000 a001 3278735159921/408569081798*87403803^(16/19) 3908816900000000 a001 2504730781961/312119004989*87403803^(16/19) 3908816900000000 a001 956722026041/119218851371*87403803^(16/19) 3908816900000000 a001 182717648081/22768774562*87403803^(16/19) 3908816900000000 a001 139583862445/17393796001*87403803^(16/19) 3908816900000000 a001 53316291173/6643838879*87403803^(16/19) 3908816900000000 a001 10182505537/1268860318*87403803^(16/19) 3908816900000000 a001 7778742049/370248451*87403803^(15/19) 3908816900000000 a001 7778742049/969323029*87403803^(16/19) 3908816900000000 a001 956722026041/141422324*87403803^(9/19) 3908816900000000 a001 1836311903/599074578*87403803^(17/19) 3908816900000000 a001 591286729879/141422324*87403803^(1/2) 3908816900000000 a001 686789568/224056801*87403803^(17/19) 3908816900000000 a001 12586269025/4106118243*87403803^(17/19) 3908816900000000 a001 32951280099/10749957122*87403803^(17/19) 3908816900000000 a001 86267571272/28143753123*87403803^(17/19) 3908816900000000 a001 32264490531/10525900321*87403803^(17/19) 3908816900000000 a001 591286729879/192900153618*87403803^(17/19) 3908816900000000 a001 1548008755920/505019158607*87403803^(17/19) 3908816900000000 a001 1515744265389/494493258286*87403803^(17/19) 3908816900000000 a001 2504730781961/817138163596*87403803^(17/19) 3908816900000000 a001 956722026041/312119004989*87403803^(17/19) 3908816900000000 a001 365435296162/119218851371*87403803^(17/19) 3908816900000000 a001 139583862445/45537549124*87403803^(17/19) 3908816900000000 a001 53316291173/17393796001*87403803^(17/19) 3908816900000000 a001 20365011074/6643838879*87403803^(17/19) 3908816900000000 a001 7778742049/2537720636*87403803^(17/19) 3908816900000000 a001 2971215073/370248451*87403803^(16/19) 3908816900000000 a001 31622993/70711162*228826127^(19/20) 3908816900000000 a001 2971215073/969323029*87403803^(17/19) 3908816900000000 a001 182717648081/70711162*87403803^(10/19) 3908816900000000 a001 4000054745112196/102334155 3908816900000000 a001 233802911/199691526*87403803^(18/19) 3908816900000000 a001 1836311903/1568397607*87403803^(18/19) 3908816900000000 a001 1602508992/1368706081*87403803^(18/19) 3908816900000000 a001 12586269025/10749957122*87403803^(18/19) 3908816900000000 a001 10983760033/9381251041*87403803^(18/19) 3908816900000000 a001 86267571272/73681302247*87403803^(18/19) 3908816900000000 a001 75283811239/64300051206*87403803^(18/19) 3908816900000000 a001 2504730781961/2139295485799*87403803^(18/19) 3908816900000000 a001 365435296162/312119004989*87403803^(18/19) 3908816900000000 a001 139583862445/119218851371*87403803^(18/19) 3908816900000000 a001 53316291173/45537549124*87403803^(18/19) 3908816900000000 a001 20365011074/17393796001*87403803^(18/19) 3908816900000000 a001 7778742049/6643838879*87403803^(18/19) 3908816900000000 a001 2971215073/2537720636*87403803^(18/19) 3908816900000000 a001 1134903170/370248451*87403803^(17/19) 3908816900000001 a001 1134903170/969323029*87403803^(18/19) 3908816900000001 a001 139583862445/141422324*87403803^(11/19) 3908816900000001 a001 433494437/370248451*87403803^(18/19) 3908816900000001 a001 53316291173/141422324*87403803^(12/19) 3908816900000001 a001 10182505537/70711162*87403803^(13/19) 3908816900000001 a001 7778742049/141422324*87403803^(14/19) 3908816900000001 a001 2971215073/141422324*87403803^(15/19) 3908816900000001 a001 567451585/70711162*87403803^(16/19) 3908816900000001 a001 165580141/2-39088169/2*5^(1/2) 3908816900000001 a001 3536736619241/29134601*33385282^(1/3) 3908816900000001 a001 433494437/141422324*87403803^(17/19) 3908816900000001 a001 165580141/141422324*87403803^(18/19) 3908816900000001 a001 24157817/87403803*2537720636^(13/15) 3908816900000001 a001 24157817/87403803*45537549124^(13/17) 3908816900000001 a001 24157817/87403803*14662949395604^(13/21) 3908816900000001 a001 24157817/87403803*192900153618^(13/18) 3908816900000001 a001 24157817/87403803*73681302247^(3/4) 3908816900000001 a001 24157817/87403803*10749957122^(13/16) 3908816900000001 a001 24157817/87403803*599074578^(13/14) 3908816900000001 a001 4052739537881/87403803*33385282^(7/18) 3908816900000001 a001 -102334155+63245986*5^(1/2) 3908816900000001 a001 2504730781961/87403803*33385282^(5/12) 3908816900000001 a001 516002918640/29134601*33385282^(4/9) 3908816900000001 a001 2472169789339635/63245986 3908816900000001 a001 197203134-70711162*5^(1/2) 3908816900000001 a001 267914296/54018521*141422324^(11/13) 3908816900000001 a001 1134903170/54018521*141422324^(10/13) 3908816900000001 a001 4807526976/54018521*141422324^(9/13) 3908816900000001 a001 7778742049/54018521*141422324^(2/3) 3908816900000001 a001 20365011074/54018521*141422324^(8/13) 3908816900000001 a001 86267571272/54018521*141422324^(7/13) 3908816900000001 a001 591286729879/87403803*33385282^(1/2) 3908816900000001 a001 365435296162/54018521*141422324^(6/13) 3908816900000001 a001 1548008755920/54018521*141422324^(5/13) 3908816900000001 a001 102334155/54018521*2537720636^(7/9) 3908816900000001 a001 102334155/54018521*17393796001^(5/7) 3908816900000001 a001 102334155/54018521*312119004989^(7/11) 3908816900000001 a001 102334155/54018521*14662949395604^(5/9) 3908816900000001 a001 102334155/54018521*505019158607^(5/8) 3908816900000001 a001 102334155/54018521*28143753123^(7/10) 3908816900000001 a001 102334155/54018521*599074578^(5/6) 3908816900000001 a001 4052739537881/54018521*141422324^(1/3) 3908816900000001 a001 6557470319842/54018521*141422324^(4/13) 3908816900000001 a001 225749145909/4868641*33385282^(7/18) 3908816900000001 a001 6472224534451832/165580141 3908816900000001 a001 433494437/20633239*20633239^(6/7) 3908816900000001 a001 267914296/54018521*2537720636^(11/15) 3908816900000001 a001 267914296/54018521*45537549124^(11/17) 3908816900000001 a001 267914296/54018521*312119004989^(3/5) 3908816900000001 a001 267914296/54018521*817138163596^(11/19) 3908816900000001 a001 267914296/54018521*14662949395604^(11/21) 3908816900000001 a001 267914296/54018521*192900153618^(11/18) 3908816900000001 a001 267914296/54018521*10749957122^(11/16) 3908816900000001 a001 267914296/54018521*1568397607^(3/4) 3908816900000001 a001 102334155/54018521*228826127^(7/8) 3908816900000001 a001 16944503814015861/433494437 3908816900000001 a001 267914296/54018521*599074578^(11/14) 3908816900000001 a001 24157817/1568397607*45537549124^(15/17) 3908816900000001 a001 24157817/1568397607*312119004989^(9/11) 3908816900000001 a001 24157817/1568397607*14662949395604^(5/7) 3908816900000001 a001 701408733/54018521*9062201101803^(1/2) 3908816900000001 a001 24157817/1568397607*192900153618^(5/6) 3908816900000001 a001 24157817/1568397607*28143753123^(9/10) 3908816900000001 a001 24157817/1568397607*10749957122^(15/16) 3908816900000001 a001 44361286907595751/1134903170 3908816900000001 a001 4807526976/54018521*2537720636^(3/5) 3908816900000001 a001 12586269025/54018521*2537720636^(5/9) 3908816900000001 a001 20365011074/54018521*2537720636^(8/15) 3908816900000001 a001 86267571272/54018521*2537720636^(7/15) 3908816900000001 a001 139583862445/54018521*2537720636^(4/9) 3908816900000001 a001 365435296162/54018521*2537720636^(2/5) 3908816900000001 a001 1836311903/54018521*1322157322203^(1/2) 3908816900000001 a001 1548008755920/54018521*2537720636^(1/3) 3908816900000001 a001 6557470319842/54018521*2537720636^(4/15) 3908816900000001 a001 116139356908771392/2971215073 3908816900000001 a001 4807526976/54018521*45537549124^(9/17) 3908816900000001 a001 4807526976/54018521*817138163596^(9/19) 3908816900000001 a001 24157817/10749957122*14662949395604^(7/9) 3908816900000001 a001 24157817/10749957122*505019158607^(7/8) 3908816900000001 a001 4807526976/54018521*192900153618^(1/2) 3908816900000001 a001 304056783818718425/7778742049 3908816900000001 a001 4807526976/54018521*10749957122^(9/16) 3908816900000001 a001 86267571272/54018521*17393796001^(3/7) 3908816900000001 a001 12586269025/54018521*312119004989^(5/11) 3908816900000001 a001 24157817/28143753123*817138163596^(17/19) 3908816900000001 a001 12586269025/54018521*3461452808002^(5/12) 3908816900000001 a001 24157817/28143753123*192900153618^(17/18) 3908816900000001 a001 2504730781961/54018521*17393796001^(2/7) 3908816900000001 a001 796030994547383883/20365011074 3908816900000001 a001 12586269025/54018521*28143753123^(1/2) 3908816900000001 a001 86267571272/54018521*45537549124^(7/17) 3908816900000001 a001 365435296162/54018521*45537549124^(6/17) 3908816900000001 a001 591286729879/54018521*45537549124^(1/3) 3908816900000001 a001 1548008755920/54018521*45537549124^(5/17) 3908816900000001 a001 6557470319842/54018521*45537549124^(4/17) 3908816900000001 a001 2084036199823433224/53316291173 3908816900000001 a001 86267571272/54018521*14662949395604^(1/3) 3908816900000001 a001 24157817/192900153618*3461452808002^(11/12) 3908816900000001 a001 5456077604922915789/139583862445 3908816900000001 a001 225851433717/54018521*817138163596^(1/3) 3908816900000001 a001 1548008755920/54018521*312119004989^(3/11) 3908816900000001 a001 10610209857723/54018521*312119004989^(1/5) 3908816900000001 a001 1548008755920/54018521*14662949395604^(5/21) 3908816900000001 a001 8828119010022398354/225851433717 3908816900000001 a001 6557470319842/54018521*192900153618^(2/9) 3908816900000001 a001 24157817/312119004989*14662949395604^(8/9) 3908816900000001 a001 139583862445/54018521*23725150497407^(5/16) 3908816900000001 a001 139583862445/54018521*505019158607^(5/14) 3908816900000001 a001 3372041405099482565/86267571272 3908816900000001 a001 6557470319842/54018521*73681302247^(3/13) 3908816900000001 a001 4052739537881/54018521*73681302247^(1/4) 3908816900000001 a001 956722026041/54018521*73681302247^(4/13) 3908816900000001 a001 53316291173/54018521*312119004989^(2/5) 3908816900000001 a001 24157817/119218851371*14662949395604^(6/7) 3908816900000001 a001 139583862445/54018521*73681302247^(5/13) 3908816900000001 a001 1288005205276049341/32951280099 3908816900000001 a001 20365011074/54018521*45537549124^(8/17) 3908816900000001 a001 1548008755920/54018521*28143753123^(3/10) 3908816900000001 a001 20365011074/54018521*14662949395604^(8/21) 3908816900000001 a001 24157817/45537549124*505019158607^(13/14) 3908816900000001 a001 20365011074/54018521*192900153618^(4/9) 3908816900000001 a001 139583862445/54018521*28143753123^(2/5) 3908816900000001 a001 20365011074/54018521*73681302247^(6/13) 3908816900000001 a001 491974210728665458/12586269025 3908816900000001 a001 6557470319842/54018521*10749957122^(1/4) 3908816900000001 a001 2504730781961/54018521*10749957122^(7/24) 3908816900000001 a001 1548008755920/54018521*10749957122^(5/16) 3908816900000001 a001 956722026041/54018521*10749957122^(1/3) 3908816900000001 a001 365435296162/54018521*10749957122^(3/8) 3908816900000001 a001 24157817/17393796001*312119004989^(10/11) 3908816900000001 a001 24157817/17393796001*3461452808002^(5/6) 3908816900000001 a001 7778742049/54018521*73681302247^(1/2) 3908816900000001 a001 139583862445/54018521*10749957122^(5/12) 3908816900000001 a001 86267571272/54018521*10749957122^(7/16) 3908816900000001 a001 53316291173/54018521*10749957122^(11/24) 3908816900000001 a001 20365011074/54018521*10749957122^(1/2) 3908816900000001 a001 7778742049/54018521*10749957122^(13/24) 3908816900000001 a001 187917426909947033/4807526976 3908816900000001 a001 6557470319842/54018521*4106118243^(6/23) 3908816900000001 a001 2504730781961/54018521*4106118243^(7/23) 3908816900000001 a001 956722026041/54018521*4106118243^(8/23) 3908816900000001 a001 2971215073/54018521*17393796001^(4/7) 3908816900000001 a001 24157817/6643838879*45537549124^(16/17) 3908816900000001 a001 24157817/6643838879*14662949395604^(16/21) 3908816900000001 a001 2971215073/54018521*14662949395604^(4/9) 3908816900000001 a001 24157817/6643838879*192900153618^(8/9) 3908816900000001 a001 2971215073/54018521*73681302247^(7/13) 3908816900000001 a001 24157817/6643838879*73681302247^(12/13) 3908816900000001 a001 365435296162/54018521*4106118243^(9/23) 3908816900000001 a001 139583862445/54018521*4106118243^(10/23) 3908816900000001 a001 2971215073/54018521*10749957122^(7/12) 3908816900000001 a001 53316291173/54018521*4106118243^(11/23) 3908816900000001 a001 32951280099/54018521*4106118243^(1/2) 3908816900000001 a001 20365011074/54018521*4106118243^(12/23) 3908816900000001 a001 7778742049/54018521*4106118243^(13/23) 3908816900000001 a001 1134903170/54018521*2537720636^(2/3) 3908816900000001 a001 2971215073/54018521*4106118243^(14/23) 3908816900000001 a001 71778070001175641/1836311903 3908816900000001 a001 10610209857723/54018521*1568397607^(1/4) 3908816900000001 a001 6557470319842/54018521*1568397607^(3/11) 3908816900000001 a001 2504730781961/54018521*1568397607^(7/22) 3908816900000001 a001 956722026041/54018521*1568397607^(4/11) 3908816900000001 a001 1134903170/54018521*45537549124^(10/17) 3908816900000001 a001 1134903170/54018521*312119004989^(6/11) 3908816900000001 a001 1134903170/54018521*14662949395604^(10/21) 3908816900000001 a001 1134903170/54018521*192900153618^(5/9) 3908816900000001 a001 1134903170/54018521*28143753123^(3/5) 3908816900000001 a001 1134903170/54018521*10749957122^(5/8) 3908816900000001 a001 24157817/2537720636*10749957122^(23/24) 3908816900000001 a001 365435296162/54018521*1568397607^(9/22) 3908816900000001 a001 139583862445/54018521*1568397607^(5/11) 3908816900000001 a001 1134903170/54018521*4106118243^(15/23) 3908816900000001 a001 53316291173/54018521*1568397607^(1/2) 3908816900000001 a001 20365011074/54018521*1568397607^(6/11) 3908816900000001 a001 7778742049/54018521*1568397607^(13/22) 3908816900000001 a001 2971215073/54018521*1568397607^(7/11) 3908816900000001 a001 1134903170/54018521*1568397607^(15/22) 3908816900000001 a001 27416783093579890/701408733 3908816900000001 a001 6557470319842/54018521*599074578^(2/7) 3908816900000001 a001 2504730781961/54018521*599074578^(1/3) 3908816900000001 a001 1548008755920/54018521*599074578^(5/14) 3908816900000001 a001 956722026041/54018521*599074578^(8/21) 3908816900000001 a001 24157817/969323029*312119004989^(4/5) 3908816900000001 a001 433494437/54018521*23725150497407^(1/2) 3908816900000001 a001 24157817/969323029*23725150497407^(11/16) 3908816900000001 a001 433494437/54018521*73681302247^(8/13) 3908816900000001 a001 24157817/969323029*73681302247^(11/13) 3908816900000001 a001 433494437/54018521*10749957122^(2/3) 3908816900000001 a001 24157817/969323029*10749957122^(11/12) 3908816900000001 a001 433494437/54018521*4106118243^(16/23) 3908816900000001 a001 24157817/969323029*4106118243^(22/23) 3908816900000001 a001 365435296162/54018521*599074578^(3/7) 3908816900000001 a001 139583862445/54018521*599074578^(10/21) 3908816900000001 a001 433494437/54018521*1568397607^(8/11) 3908816900000001 a001 86267571272/54018521*599074578^(1/2) 3908816900000001 a001 53316291173/54018521*599074578^(11/21) 3908816900000001 a001 20365011074/54018521*599074578^(4/7) 3908816900000001 a001 7778742049/54018521*599074578^(13/21) 3908816900000001 a001 4807526976/54018521*599074578^(9/14) 3908816900000001 a001 2971215073/54018521*599074578^(2/3) 3908816900000001 a001 1134903170/54018521*599074578^(5/7) 3908816900000001 a001 433494437/54018521*599074578^(16/21) 3908816900000001 a001 63245986/54018521*141422324^(12/13) 3908816900000001 a001 10472279279564029/267914296 3908816900000001 a001 6557470319842/54018521*228826127^(3/10) 3908816900000001 a001 2504730781961/54018521*228826127^(7/20) 3908816900000001 a001 24157817/370248451*2537720636^(14/15) 3908816900000001 a001 1548008755920/54018521*228826127^(3/8) 3908816900000001 a001 24157817/370248451*17393796001^(6/7) 3908816900000001 a001 24157817/370248451*45537549124^(14/17) 3908816900000001 a001 165580141/54018521*45537549124^(2/3) 3908816900000001 a001 24157817/370248451*14662949395604^(2/3) 3908816900000001 a001 24157817/370248451*505019158607^(3/4) 3908816900000001 a001 24157817/370248451*192900153618^(7/9) 3908816900000001 a001 165580141/54018521*10749957122^(17/24) 3908816900000001 a001 24157817/370248451*10749957122^(7/8) 3908816900000001 a001 165580141/54018521*4106118243^(17/23) 3908816900000001 a001 24157817/370248451*4106118243^(21/23) 3908816900000001 a001 165580141/54018521*1568397607^(17/22) 3908816900000001 a001 956722026041/54018521*228826127^(2/5) 3908816900000001 a001 24157817/370248451*1568397607^(21/22) 3908816900000001 a001 365435296162/54018521*228826127^(9/20) 3908816900000001 a001 139583862445/54018521*228826127^(1/2) 3908816900000001 a001 165580141/54018521*599074578^(17/21) 3908816900000001 a001 53316291173/54018521*228826127^(11/20) 3908816900000001 a001 20365011074/54018521*228826127^(3/5) 3908816900000001 a001 12586269025/54018521*228826127^(5/8) 3908816900000001 a001 6557470319842/228826127*33385282^(5/12) 3908816900000001 a001 7778742049/54018521*228826127^(13/20) 3908816900000001 a001 2971215073/54018521*228826127^(7/10) 3908816900000001 a001 1134903170/54018521*228826127^(3/4) 3908816900000001 a001 433494437/54018521*228826127^(4/5) 3908816900000001 a001 165580141/54018521*228826127^(17/20) 3908816900000001 a001 75283811239/29134601*33385282^(5/9) 3908816900000001 a001 4000054745112197/102334155 3908816900000001 a001 4052739537881/228826127*33385282^(4/9) 3908816900000002 a001 10610209857723/370248451*33385282^(5/12) 3908816900000002 a001 6557470319842/54018521*87403803^(6/19) 3908816900000002 a001 2504730781961/54018521*87403803^(7/19) 3908816900000002 a001 139583862445/87403803*33385282^(7/12) 3908816900000002 a001 24157817/141422324*2537720636^(8/9) 3908816900000002 a001 63245986/54018521*2537720636^(4/5) 3908816900000002 a001 63245986/54018521*45537549124^(12/17) 3908816900000002 a001 24157817/141422324*312119004989^(8/11) 3908816900000002 a001 24157817/141422324*23725150497407^(5/8) 3908816900000002 a001 63245986/54018521*505019158607^(9/14) 3908816900000002 a001 63245986/54018521*192900153618^(2/3) 3908816900000002 a001 63245986/54018521*73681302247^(9/13) 3908816900000002 a001 24157817/141422324*73681302247^(10/13) 3908816900000002 a001 24157817/141422324*28143753123^(4/5) 3908816900000002 a001 63245986/54018521*10749957122^(3/4) 3908816900000002 a001 24157817/141422324*10749957122^(5/6) 3908816900000002 a001 63245986/54018521*4106118243^(18/23) 3908816900000002 a001 24157817/141422324*4106118243^(20/23) 3908816900000002 a001 63245986/54018521*1568397607^(9/11) 3908816900000002 a001 24157817/141422324*1568397607^(10/11) 3908816900000002 a001 63245986/54018521*599074578^(6/7) 3908816900000002 a001 24157817/141422324*599074578^(20/21) 3908816900000002 a001 3536736619241/199691526*33385282^(4/9) 3908816900000002 a001 956722026041/54018521*87403803^(8/19) 3908816900000002 a001 3278735159921/70711162*33385282^(7/18) 3908816900000002 a001 365435296162/54018521*87403803^(9/19) 3908816900000002 a001 6557470319842/370248451*33385282^(4/9) 3908816900000002 a001 225851433717/54018521*87403803^(1/2) 3908816900000002 a001 63245986/54018521*228826127^(9/10) 3908816900000002 a001 139583862445/54018521*87403803^(10/19) 3908816900000002 a001 86267571272/87403803*33385282^(11/18) 3908816900000002 a001 53316291173/54018521*87403803^(11/19) 3908816900000002 a001 4052739537881/141422324*33385282^(5/12) 3908816900000002 a001 20365011074/54018521*87403803^(12/19) 3908816900000002 a001 1548008755920/228826127*33385282^(1/2) 3908816900000002 a001 7778742049/54018521*87403803^(13/19) 3908816900000002 a001 2971215073/54018521*87403803^(14/19) 3908816900000002 a001 4052739537881/599074578*33385282^(1/2) 3908816900000002 a001 1134903170/54018521*87403803^(15/19) 3908816900000002 a001 1515744265389/224056801*33385282^(1/2) 3908816900000002 a001 2504730781961/141422324*33385282^(4/9) 3908816900000002 a001 6557470319842/969323029*33385282^(1/2) 3908816900000002 a001 433494437/54018521*87403803^(16/19) 3908816900000002 a001 2504730781961/370248451*33385282^(1/2) 3908816900000002 a001 165580141/54018521*87403803^(17/19) 3908816900000002 a001 10983760033/29134601*33385282^(2/3) 3908816900000002 a001 1134903170/20633239*20633239^(4/5) 3908816900000002 a001 591286729879/228826127*33385282^(5/9) 3908816900000002 a001 86000486440/33281921*33385282^(5/9) 3908816900000002 a001 4052739537881/1568397607*33385282^(5/9) 3908816900000002 a001 3536736619241/1368706081*33385282^(5/9) 3908816900000002 a001 956722026041/141422324*33385282^(1/2) 3908816900000002 a001 3278735159921/1268860318*33385282^(5/9) 3908816900000002 a001 2504730781961/969323029*33385282^(5/9) 3908816900000002 a001 365435296162/228826127*33385282^(7/12) 3908816900000002 a001 956722026041/370248451*33385282^(5/9) 3908816900000002 a001 63245986/54018521*87403803^(18/19) 3908816900000002 a001 12586269025/87403803*33385282^(13/18) 3908816900000002 a001 956722026041/599074578*33385282^(7/12) 3908816900000002 a001 2504730781961/1568397607*33385282^(7/12) 3908816900000002 a001 6557470319842/4106118243*33385282^(7/12) 3908816900000002 a001 10610209857723/6643838879*33385282^(7/12) 3908816900000002 a001 4052739537881/2537720636*33385282^(7/12) 3908816900000002 a001 -117264507/2+87403803/2*5^(1/2) 3908816900000002 a001 1527884955772562/39088169 3908816900000002 a001 1548008755920/969323029*33385282^(7/12) 3908816900000002 a001 225851433717/228826127*33385282^(11/18) 3908816900000002 a001 591286729879/370248451*33385282^(7/12) 3908816900000002 a001 7778742049/87403803*33385282^(3/4) 3908816900000002 a001 591286729879/599074578*33385282^(11/18) 3908816900000002 a001 1548008755920/1568397607*33385282^(11/18) 3908816900000002 a001 4052739537881/4106118243*33385282^(11/18) 3908816900000002 a001 4807525989/4870846*33385282^(11/18) 3908816900000002 a001 6557470319842/6643838879*33385282^(11/18) 3908816900000002 a001 182717648081/70711162*33385282^(5/9) 3908816900000002 a001 2504730781961/2537720636*33385282^(11/18) 3908816900000002 a001 956722026041/969323029*33385282^(11/18) 3908816900000002 a001 365435296162/370248451*33385282^(11/18) 3908816900000002 a001 1602508992/29134601*33385282^(7/9) 3908816900000002 a001 225851433717/141422324*33385282^(7/12) 3908816900000002 a001 86267571272/228826127*33385282^(2/3) 3908816900000002 a001 267913919/710646*33385282^(2/3) 3908816900000002 a001 591286729879/1568397607*33385282^(2/3) 3908816900000002 a001 516002918640/1368706081*33385282^(2/3) 3908816900000002 a001 4052739537881/10749957122*33385282^(2/3) 3908816900000002 a001 3536736619241/9381251041*33385282^(2/3) 3908816900000002 a001 6557470319842/17393796001*33385282^(2/3) 3908816900000002 a001 2504730781961/6643838879*33385282^(2/3) 3908816900000002 a001 139583862445/141422324*33385282^(11/18) 3908816900000002 a001 956722026041/2537720636*33385282^(2/3) 3908816900000002 a001 365435296162/969323029*33385282^(2/3) 3908816900000002 a001 139583862445/370248451*33385282^(2/3) 3908816900000002 a001 1836311903/87403803*33385282^(5/6) 3908816900000002 a001 32951280099/228826127*33385282^(13/18) 3908816900000002 a001 55780810-7465176*5^(1/2) 3908816900000003 a001 6557470319842/54018521*33385282^(1/3) 3908816900000003 a001 43133785636/299537289*33385282^(13/18) 3908816900000003 a001 32264490531/224056801*33385282^(13/18) 3908816900000003 a001 591286729879/4106118243*33385282^(13/18) 3908816900000003 a001 774004377960/5374978561*33385282^(13/18) 3908816900000003 a001 4052739537881/28143753123*33385282^(13/18) 3908816900000003 a001 1515744265389/10525900321*33385282^(13/18) 3908816900000003 a001 3278735159921/22768774562*33385282^(13/18) 3908816900000003 a001 2504730781961/17393796001*33385282^(13/18) 3908816900000003 a001 956722026041/6643838879*33385282^(13/18) 3908816900000003 a001 53316291173/141422324*33385282^(2/3) 3908816900000003 a001 182717648081/1268860318*33385282^(13/18) 3908816900000003 a001 139583862445/969323029*33385282^(13/18) 3908816900000003 a001 20365011074/228826127*33385282^(3/4) 3908816900000003 a001 53316291173/370248451*33385282^(13/18) 3908816900000003 a001 233802911/29134601*33385282^(8/9) 3908816900000003 a001 53316291173/599074578*33385282^(3/4) 3908816900000003 a001 4807526976/20633239*20633239^(5/7) 3908816900000003 a001 139583862445/1568397607*33385282^(3/4) 3908816900000003 a001 365435296162/4106118243*33385282^(3/4) 3908816900000003 a001 956722026041/10749957122*33385282^(3/4) 3908816900000003 a001 2504730781961/28143753123*33385282^(3/4) 3908816900000003 a001 6557470319842/73681302247*33385282^(3/4) 3908816900000003 a001 10610209857723/119218851371*33385282^(3/4) 3908816900000003 a001 4052739537881/45537549124*33385282^(3/4) 3908816900000003 a001 1548008755920/17393796001*33385282^(3/4) 3908816900000003 a001 591286729879/6643838879*33385282^(3/4) 3908816900000003 a001 225851433717/2537720636*33385282^(3/4) 3908816900000003 a001 86267571272/969323029*33385282^(3/4) 3908816900000003 a001 12586269025/228826127*33385282^(7/9) 3908816900000003 a001 32951280099/370248451*33385282^(3/4) 3908816900000003 a001 24157817/54018521*817138163596^(2/3) 3908816900000003 a001 24157817/54018521*10749957122^(19/24) 3908816900000003 a001 24157817/54018521*4106118243^(19/23) 3908816900000003 a001 24157817/54018521*1568397607^(19/22) 3908816900000003 a001 24157817/54018521*599074578^(19/21) 3908816900000003 a001 2504730781961/54018521*33385282^(7/18) 3908816900000003 a001 433494437/87403803*33385282^(11/12) 3908816900000003 a001 10983760033/199691526*33385282^(7/9) 3908816900000003 a001 86267571272/1568397607*33385282^(7/9) 3908816900000003 a001 75283811239/1368706081*33385282^(7/9) 3908816900000003 a001 591286729879/10749957122*33385282^(7/9) 3908816900000003 a001 12585437040/228811001*33385282^(7/9) 3908816900000003 a001 4052739537881/73681302247*33385282^(7/9) 3908816900000003 a001 3536736619241/64300051206*33385282^(7/9) 3908816900000003 a001 6557470319842/119218851371*33385282^(7/9) 3908816900000003 a001 2504730781961/45537549124*33385282^(7/9) 3908816900000003 a001 956722026041/17393796001*33385282^(7/9) 3908816900000003 a001 365435296162/6643838879*33385282^(7/9) 3908816900000003 a001 10182505537/70711162*33385282^(13/18) 3908816900000003 a001 139583862445/2537720636*33385282^(7/9) 3908816900000003 a001 53316291173/969323029*33385282^(7/9) 3908816900000003 a001 24157817/54018521*228826127^(19/20) 3908816900000003 a001 20365011074/370248451*33385282^(7/9) 3908816900000003 a001 267914296/87403803*33385282^(17/18) 3908816900000003 a001 1548008755920/54018521*33385282^(5/12) 3908816900000003 a001 12586269025/141422324*33385282^(3/4) 3908816900000003 a001 102287808/4868641*33385282^(5/6) 3908816900000003 a001 956722026041/54018521*33385282^(4/9) 3908816900000003 a001 12586269025/599074578*33385282^(5/6) 3908816900000003 a001 32951280099/1568397607*33385282^(5/6) 3908816900000003 a001 86267571272/4106118243*33385282^(5/6) 3908816900000003 a001 225851433717/10749957122*33385282^(5/6) 3908816900000003 a001 591286729879/28143753123*33385282^(5/6) 3908816900000003 a001 1548008755920/73681302247*33385282^(5/6) 3908816900000003 a001 4052739537881/192900153618*33385282^(5/6) 3908816900000003 a001 225749145909/10745088481*33385282^(5/6) 3908816900000003 a001 6557470319842/312119004989*33385282^(5/6) 3908816900000003 a001 2504730781961/119218851371*33385282^(5/6) 3908816900000003 a001 956722026041/45537549124*33385282^(5/6) 3908816900000003 a001 365435296162/17393796001*33385282^(5/6) 3908816900000003 a001 139583862445/6643838879*33385282^(5/6) 3908816900000003 a001 53316291173/2537720636*33385282^(5/6) 3908816900000003 a001 7778742049/141422324*33385282^(7/9) 3908816900000003 a001 20365011074/969323029*33385282^(5/6) 3908816900000003 a001 7778742049/370248451*33385282^(5/6) 3908816900000003 a001 1836311903/228826127*33385282^(8/9) 3908816900000003 a001 365435296162/54018521*33385282^(1/2) 3908816900000003 a001 267084832/33281921*33385282^(8/9) 3908816900000003 a001 12586269025/1568397607*33385282^(8/9) 3908816900000003 a001 10983760033/1368706081*33385282^(8/9) 3908816900000003 a001 43133785636/5374978561*33385282^(8/9) 3908816900000003 a001 75283811239/9381251041*33385282^(8/9) 3908816900000003 a001 591286729879/73681302247*33385282^(8/9) 3908816900000003 a001 86000486440/10716675201*33385282^(8/9) 3908816900000003 a001 4052739537881/505019158607*33385282^(8/9) 3908816900000003 a001 3278735159921/408569081798*33385282^(8/9) 3908816900000003 a001 2504730781961/312119004989*33385282^(8/9) 3908816900000003 a001 956722026041/119218851371*33385282^(8/9) 3908816900000003 a001 182717648081/22768774562*33385282^(8/9) 3908816900000003 a001 139583862445/17393796001*33385282^(8/9) 3908816900000003 a001 53316291173/6643838879*33385282^(8/9) 3908816900000003 a001 10182505537/1268860318*33385282^(8/9) 3908816900000003 a001 2971215073/141422324*33385282^(5/6) 3908816900000003 a001 7778742049/969323029*33385282^(8/9) 3908816900000003 a001 1134903170/228826127*33385282^(11/12) 3908816900000003 a001 2971215073/370248451*33385282^(8/9) 3908816900000003 a001 -14930352+24157817*5^(1/2) 3908816900000003 a001 2971215073/599074578*33385282^(11/12) 3908816900000003 a001 7778742049/1568397607*33385282^(11/12) 3908816900000003 a001 20365011074/4106118243*33385282^(11/12) 3908816900000003 a001 53316291173/10749957122*33385282^(11/12) 3908816900000003 a001 139583862445/28143753123*33385282^(11/12) 3908816900000003 a001 365435296162/73681302247*33385282^(11/12) 3908816900000003 a001 956722026041/192900153618*33385282^(11/12) 3908816900000003 a001 2504730781961/505019158607*33385282^(11/12) 3908816900000003 a001 10610209857723/2139295485799*33385282^(11/12) 3908816900000003 a001 4052739537881/817138163596*33385282^(11/12) 3908816900000003 a001 140728068720/28374454999*33385282^(11/12) 3908816900000003 a001 591286729879/119218851371*33385282^(11/12) 3908816900000003 a001 225851433717/45537549124*33385282^(11/12) 3908816900000003 a001 86267571272/17393796001*33385282^(11/12) 3908816900000003 a001 32951280099/6643838879*33385282^(11/12) 3908816900000003 a001 1144206275/230701876*33385282^(11/12) 3908816900000003 a001 4807526976/969323029*33385282^(11/12) 3908816900000003 a001 701408733/228826127*33385282^(17/18) 3908816900000003 a001 1836311903/370248451*33385282^(11/12) 3908816900000003 a001 139583862445/54018521*33385282^(5/9) 3908816900000003 a001 1836311903/599074578*33385282^(17/18) 3908816900000003 a001 686789568/224056801*33385282^(17/18) 3908816900000003 a001 12586269025/4106118243*33385282^(17/18) 3908816900000003 a001 32951280099/10749957122*33385282^(17/18) 3908816900000003 a001 86267571272/28143753123*33385282^(17/18) 3908816900000003 a001 32264490531/10525900321*33385282^(17/18) 3908816900000003 a001 591286729879/192900153618*33385282^(17/18) 3908816900000003 a001 1548008755920/505019158607*33385282^(17/18) 3908816900000003 a001 1515744265389/494493258286*33385282^(17/18) 3908816900000003 a001 2504730781961/817138163596*33385282^(17/18) 3908816900000003 a001 956722026041/312119004989*33385282^(17/18) 3908816900000003 a001 365435296162/119218851371*33385282^(17/18) 3908816900000003 a001 139583862445/45537549124*33385282^(17/18) 3908816900000003 a001 53316291173/17393796001*33385282^(17/18) 3908816900000003 a001 20365011074/6643838879*33385282^(17/18) 3908816900000003 a001 7778742049/2537720636*33385282^(17/18) 3908816900000003 a001 567451585/70711162*33385282^(8/9) 3908816900000003 a001 2971215073/969323029*33385282^(17/18) 3908816900000003 a001 1134903170/370248451*33385282^(17/18) 3908816900000003 a001 86267571272/54018521*33385282^(7/12) 3908816900000003 a001 701408733/141422324*33385282^(11/12) 3908816900000003 a001 53316291173/54018521*33385282^(11/18) 3908816900000004 a001 433494437/141422324*33385282^(17/18) 3908816900000004 a001 1515744265389/4769326*12752043^(5/17) 3908816900000004 a001 32951280099/20633239*20633239^(3/5) 3908816900000004 a001 20365011074/54018521*33385282^(2/3) 3908816900000004 a001 7778742049/54018521*33385282^(13/18) 3908816900000004 a001 53316291173/20633239*20633239^(4/7) 3908816900000004 a001 4807526976/54018521*33385282^(3/4) 3908816900000004 a001 2971215073/54018521*33385282^(7/9) 3908816900000004 a001 1134903170/54018521*33385282^(5/6) 3908816900000004 a001 57543099/2+9227465/2*5^(1/2) 3908816900000004 a001 433494437/54018521*33385282^(8/9) 3908816900000005 a001 267914296/54018521*33385282^(11/12) 3908816900000005 a001 165580141/54018521*33385282^(17/18) 3908816900000005 a001 4052739537881/33385282*12752043^(6/17) 3908816900000005 a001 591286729879/20633239*20633239^(3/7) 3908816900000006 a001 956722026041/20633239*20633239^(2/5) 3908816900000006 a001 9227465/33385282*2537720636^(13/15) 3908816900000006 a001 9227465/33385282*45537549124^(13/17) 3908816900000006 a001 9227465/33385282*14662949395604^(13/21) 3908816900000006 a001 9227465/33385282*(1/2+1/2*5^(1/2))^39 3908816900000006 a001 14930352/20633239*(1/2+1/2*5^(1/2))^37 3908816900000006 a001 9227465/33385282*192900153618^(13/18) 3908816900000006 a001 9227465/33385282*73681302247^(3/4) 3908816900000006 a001 9227465/33385282*10749957122^(13/16) 3908816900000006 a001 9227465/33385282*599074578^(13/14) 3908816900000006 a001 165580141/7881196*7881196^(10/11) 3908816900000006 a001 1762289+16692641*5^(1/2) 3908816900000006 a001 583600122205489/14930352 3908816900000006 a001 774004377960/16692641*12752043^(7/17) 3908816900000007 a001 6557470319842/20633239*20633239^(2/7) 3908816900000008 a001 944284833567075/24157817 3908816900000008 a001 591286729879/33385282*12752043^(8/17) 3908816900000008 a001 3536736619241/29134601*12752043^(6/17) 3908816900000009 a001 182717648081/16692641*12752043^(1/2) 3908816900000009 a001 39088169/20633239*2537720636^(7/9) 3908816900000009 a001 39088169/20633239*17393796001^(5/7) 3908816900000009 a001 39088169/20633239*312119004989^(7/11) 3908816900000009 a001 39088169/20633239*14662949395604^(5/9) 3908816900000009 a001 39088169/20633239*(1/2+1/2*5^(1/2))^35 3908816900000009 a001 39088169/20633239*505019158607^(5/8) 3908816900000009 a001 39088169/20633239*28143753123^(7/10) 3908816900000009 a001 39088169/20633239*599074578^(5/6) 3908816900000009 a001 39088169/20633239*228826127^(7/8) 3908816900000009 a001 9303105/1875749*141422324^(11/13) 3908816900000009 a001 1236084894669820/31622993 3908816900000009 a001 433494437/20633239*141422324^(10/13) 3908816900000009 a001 1836311903/20633239*141422324^(9/13) 3908816900000009 a001 2971215073/20633239*141422324^(2/3) 3908816900000009 a001 7778742049/20633239*141422324^(8/13) 3908816900000009 a001 32951280099/20633239*141422324^(7/13) 3908816900000009 a001 139583862445/20633239*141422324^(6/13) 3908816900000009 a001 591286729879/20633239*141422324^(5/13) 3908816900000009 a001 9303105/1875749*2537720636^(11/15) 3908816900000009 a001 9303105/1875749*45537549124^(11/17) 3908816900000009 a001 9303105/1875749*312119004989^(3/5) 3908816900000009 a001 9303105/1875749*14662949395604^(11/21) 3908816900000009 a001 9303105/1875749*(1/2+1/2*5^(1/2))^33 3908816900000009 a001 9303105/1875749*192900153618^(11/18) 3908816900000009 a001 9303105/1875749*10749957122^(11/16) 3908816900000009 a001 9303105/1875749*1568397607^(3/4) 3908816900000009 a001 9303105/1875749*599074578^(11/14) 3908816900000009 a001 140728068720/1875749*141422324^(1/3) 3908816900000009 a001 2504730781961/20633239*141422324^(4/13) 3908816900000009 a001 10610209857723/20633239*141422324^(3/13) 3908816900000009 a001 6472224534451845/165580141 3908816900000009 a001 9227465/599074578*45537549124^(15/17) 3908816900000009 a001 9227465/599074578*312119004989^(9/11) 3908816900000009 a001 9227465/599074578*14662949395604^(5/7) 3908816900000009 a001 9238424/711491*(1/2+1/2*5^(1/2))^31 3908816900000009 a001 9238424/711491*9062201101803^(1/2) 3908816900000009 a001 9227465/599074578*192900153618^(5/6) 3908816900000009 a001 9227465/599074578*28143753123^(9/10) 3908816900000009 a001 9227465/599074578*10749957122^(15/16) 3908816900000009 a001 16944503814015895/433494437 3908816900000009 a001 701408733/20633239*(1/2+1/2*5^(1/2))^29 3908816900000009 a001 701408733/20633239*1322157322203^(1/2) 3908816900000009 a001 4436128690759584/113490317 3908816900000009 a001 1836311903/20633239*2537720636^(3/5) 3908816900000009 a001 4807526976/20633239*2537720636^(5/9) 3908816900000009 a001 7778742049/20633239*2537720636^(8/15) 3908816900000009 a001 32951280099/20633239*2537720636^(7/15) 3908816900000009 a001 53316291173/20633239*2537720636^(4/9) 3908816900000009 a001 139583862445/20633239*2537720636^(2/5) 3908816900000009 a001 1836311903/20633239*45537549124^(9/17) 3908816900000009 a001 1836311903/20633239*14662949395604^(3/7) 3908816900000009 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^27 3908816900000009 a001 9227465/4106118243*505019158607^(7/8) 3908816900000009 a001 1836311903/20633239*192900153618^(1/2) 3908816900000009 a001 1836311903/20633239*10749957122^(9/16) 3908816900000009 a001 591286729879/20633239*2537720636^(1/3) 3908816900000009 a001 2504730781961/20633239*2537720636^(4/15) 3908816900000009 a001 6557470319842/20633239*2537720636^(2/9) 3908816900000009 a001 10610209857723/20633239*2537720636^(1/5) 3908816900000009 a001 116139356908771625/2971215073 3908816900000009 a001 4807526976/20633239*312119004989^(5/11) 3908816900000009 a001 9227465/10749957122*817138163596^(17/19) 3908816900000009 a001 9227465/10749957122*14662949395604^(17/21) 3908816900000009 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^25 3908816900000009 a001 4807526976/20633239*3461452808002^(5/12) 3908816900000009 a001 9227465/10749957122*192900153618^(17/18) 3908816900000009 a001 4807526976/20633239*28143753123^(1/2) 3908816900000009 a001 23388983370670695/598364773 3908816900000009 a001 32951280099/20633239*17393796001^(3/7) 3908816900000009 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^23 3908816900000009 a001 956722026041/20633239*17393796001^(2/7) 3908816900000009 a001 398015497273692740/10182505537 3908816900000009 a001 32951280099/20633239*45537549124^(7/17) 3908816900000009 a001 32951280099/20633239*14662949395604^(1/3) 3908816900000009 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^21 3908816900000009 a001 32951280099/20633239*192900153618^(7/18) 3908816900000009 a001 139583862445/20633239*45537549124^(6/17) 3908816900000009 a001 591286729879/20633239*45537549124^(5/17) 3908816900000009 a001 2504730781961/20633239*45537549124^(4/17) 3908816900000009 a001 10610209857723/20633239*45537549124^(3/17) 3908816900000009 a001 2084036199823437405/53316291173 3908816900000009 a001 86267571272/20633239*817138163596^(1/3) 3908816900000009 a001 9227465/192900153618*14662949395604^(19/21) 3908816900000009 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^19 3908816900000009 a001 1091215520984585347/27916772489 3908816900000009 a001 7787980473/711491*(1/2+1/2*5^(1/2))^17 3908816900000009 a001 591286729879/20633239*312119004989^(3/11) 3908816900000009 a001 591286729879/20633239*(1/2+1/2*5^(1/2))^15 3908816900000009 a001 10610209857723/20633239*817138163596^(3/19) 3908816900000009 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^13 3908816900000009 a001 4052739537881/20633239*(1/2+1/2*5^(1/2))^11 3908816900000009 a001 10610209857723/20633239*14662949395604^(1/7) 3908816900000009 a001 10610209857723/20633239*(1/2+1/2*5^(1/2))^9 3908816900000009 a001 6557470319842/20633239*(1/2+1/2*5^(1/2))^10 3908816900000009 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^12 3908816900000009 a001 956722026041/20633239*(1/2+1/2*5^(1/2))^14 3908816900000009 a001 10610209857723/20633239*192900153618^(1/6) 3908816900000009 a001 2504730781961/20633239*192900153618^(2/9) 3908816900000009 a001 591286729879/20633239*192900153618^(5/18) 3908816900000009 a001 139583862445/20633239*14662949395604^(2/7) 3908816900000009 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^18 3908816900000009 a001 139583862445/20633239*192900153618^(1/3) 3908816900000009 a001 1686020702549744665/43133785636 3908816900000009 a001 2504730781961/20633239*73681302247^(3/13) 3908816900000009 a001 140728068720/1875749*73681302247^(1/4) 3908816900000009 a001 365435296162/20633239*73681302247^(4/13) 3908816900000009 a001 9227465/119218851371*14662949395604^(8/9) 3908816900000009 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^20 3908816900000009 a001 53316291173/20633239*23725150497407^(5/16) 3908816900000009 a001 53316291173/20633239*505019158607^(5/14) 3908816900000009 a001 53316291173/20633239*73681302247^(5/13) 3908816900000009 a001 1288005205276051925/32951280099 3908816900000009 a001 6557470319842/20633239*28143753123^(1/5) 3908816900000009 a001 591286729879/20633239*28143753123^(3/10) 3908816900000009 a001 20365011074/20633239*312119004989^(2/5) 3908816900000009 a001 9227465/45537549124*14662949395604^(6/7) 3908816900000009 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^22 3908816900000009 a001 53316291173/20633239*28143753123^(2/5) 3908816900000009 a001 98394842145733289/2517253805 3908816900000009 a001 10610209857723/20633239*10749957122^(3/16) 3908816900000009 a001 6557470319842/20633239*10749957122^(5/24) 3908816900000009 a001 2504730781961/20633239*10749957122^(1/4) 3908816900000009 a001 956722026041/20633239*10749957122^(7/24) 3908816900000009 a001 591286729879/20633239*10749957122^(5/16) 3908816900000009 a001 365435296162/20633239*10749957122^(1/3) 3908816900000009 a001 7778742049/20633239*45537549124^(8/17) 3908816900000009 a001 139583862445/20633239*10749957122^(3/8) 3908816900000009 a001 7778742049/20633239*14662949395604^(8/21) 3908816900000009 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^24 3908816900000009 a001 9227465/17393796001*23725150497407^(13/16) 3908816900000009 a001 9227465/17393796001*505019158607^(13/14) 3908816900000009 a001 7778742049/20633239*192900153618^(4/9) 3908816900000009 a001 7778742049/20633239*73681302247^(6/13) 3908816900000009 a001 32951280099/20633239*10749957122^(7/16) 3908816900000009 a001 53316291173/20633239*10749957122^(5/12) 3908816900000009 a001 20365011074/20633239*10749957122^(11/24) 3908816900000009 a001 7778742049/20633239*10749957122^(1/2) 3908816900000009 a001 93958713454973705/2403763488 3908816900000009 a001 6557470319842/20633239*4106118243^(5/23) 3908816900000009 a001 2504730781961/20633239*4106118243^(6/23) 3908816900000009 a001 956722026041/20633239*4106118243^(7/23) 3908816900000009 a001 365435296162/20633239*4106118243^(8/23) 3908816900000009 a001 9227465/6643838879*312119004989^(10/11) 3908816900000009 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^26 3908816900000009 a001 9227465/6643838879*3461452808002^(5/6) 3908816900000009 a001 2971215073/20633239*73681302247^(1/2) 3908816900000009 a001 139583862445/20633239*4106118243^(9/23) 3908816900000009 a001 53316291173/20633239*4106118243^(10/23) 3908816900000009 a001 2971215073/20633239*10749957122^(13/24) 3908816900000009 a001 1144206275/1875749*4106118243^(1/2) 3908816900000009 a001 20365011074/20633239*4106118243^(11/23) 3908816900000009 a001 7778742049/20633239*4106118243^(12/23) 3908816900000009 a001 2971215073/20633239*4106118243^(13/23) 3908816900000009 a001 71778070001175785/1836311903 3908816900000009 a001 6557470319842/20633239*1568397607^(5/22) 3908816900000009 a001 4052739537881/20633239*1568397607^(1/4) 3908816900000009 a001 2504730781961/20633239*1568397607^(3/11) 3908816900000009 a001 956722026041/20633239*1568397607^(7/22) 3908816900000009 a001 365435296162/20633239*1568397607^(4/11) 3908816900000009 a001 1134903170/20633239*17393796001^(4/7) 3908816900000009 a001 9227465/2537720636*45537549124^(16/17) 3908816900000009 a001 9227465/2537720636*14662949395604^(16/21) 3908816900000009 a001 1134903170/20633239*14662949395604^(4/9) 3908816900000009 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^28 3908816900000009 a001 9227465/2537720636*192900153618^(8/9) 3908816900000009 a001 1134903170/20633239*73681302247^(7/13) 3908816900000009 a001 9227465/2537720636*73681302247^(12/13) 3908816900000009 a001 1134903170/20633239*10749957122^(7/12) 3908816900000009 a001 139583862445/20633239*1568397607^(9/22) 3908816900000009 a001 53316291173/20633239*1568397607^(5/11) 3908816900000009 a001 1134903170/20633239*4106118243^(14/23) 3908816900000009 a001 20365011074/20633239*1568397607^(1/2) 3908816900000009 a001 7778742049/20633239*1568397607^(6/11) 3908816900000009 a001 2971215073/20633239*1568397607^(13/22) 3908816900000009 a001 1134903170/20633239*1568397607^(7/11) 3908816900000009 a001 27416783093579945/701408733 3908816900000009 a001 10610209857723/20633239*599074578^(3/14) 3908816900000009 a001 6557470319842/20633239*599074578^(5/21) 3908816900000009 a001 2504730781961/20633239*599074578^(2/7) 3908816900000009 a001 956722026041/20633239*599074578^(1/3) 3908816900000009 a001 433494437/20633239*2537720636^(2/3) 3908816900000009 a001 591286729879/20633239*599074578^(5/14) 3908816900000009 a001 365435296162/20633239*599074578^(8/21) 3908816900000009 a001 433494437/20633239*45537549124^(10/17) 3908816900000009 a001 433494437/20633239*312119004989^(6/11) 3908816900000009 a001 433494437/20633239*14662949395604^(10/21) 3908816900000009 a001 433494437/20633239*(1/2+1/2*5^(1/2))^30 3908816900000009 a001 433494437/20633239*192900153618^(5/9) 3908816900000009 a001 433494437/20633239*28143753123^(3/5) 3908816900000009 a001 433494437/20633239*10749957122^(5/8) 3908816900000009 a001 9227465/969323029*10749957122^(23/24) 3908816900000009 a001 433494437/20633239*4106118243^(15/23) 3908816900000009 a001 139583862445/20633239*599074578^(3/7) 3908816900000009 a001 53316291173/20633239*599074578^(10/21) 3908816900000009 a001 433494437/20633239*1568397607^(15/22) 3908816900000009 a001 32951280099/20633239*599074578^(1/2) 3908816900000009 a001 20365011074/20633239*599074578^(11/21) 3908816900000009 a001 7778742049/20633239*599074578^(4/7) 3908816900000009 a001 1836311903/20633239*599074578^(9/14) 3908816900000009 a001 2971215073/20633239*599074578^(13/21) 3908816900000009 a001 1134903170/20633239*599074578^(2/3) 3908816900000009 a001 402779972290925/10304396 3908816900000009 a001 433494437/20633239*599074578^(5/7) 3908816900000009 a001 6557470319842/20633239*228826127^(1/4) 3908816900000009 a001 2504730781961/20633239*228826127^(3/10) 3908816900000009 a001 956722026041/20633239*228826127^(7/20) 3908816900000009 a001 591286729879/20633239*228826127^(3/8) 3908816900000009 a001 9227465/370248451*312119004989^(4/5) 3908816900000009 a001 165580141/20633239*(1/2+1/2*5^(1/2))^32 3908816900000009 a001 165580141/20633239*23725150497407^(1/2) 3908816900000009 a001 165580141/20633239*505019158607^(4/7) 3908816900000009 a001 165580141/20633239*73681302247^(8/13) 3908816900000009 a001 9227465/370248451*73681302247^(11/13) 3908816900000009 a001 165580141/20633239*10749957122^(2/3) 3908816900000009 a001 9227465/370248451*10749957122^(11/12) 3908816900000009 a001 165580141/20633239*4106118243^(16/23) 3908816900000009 a001 9227465/370248451*4106118243^(22/23) 3908816900000009 a001 165580141/20633239*1568397607^(8/11) 3908816900000009 a001 365435296162/20633239*228826127^(2/5) 3908816900000009 a001 139583862445/20633239*228826127^(9/20) 3908816900000009 a001 165580141/20633239*599074578^(16/21) 3908816900000009 a001 32264490531/4769326*12752043^(9/17) 3908816900000009 a001 53316291173/20633239*228826127^(1/2) 3908816900000009 a001 20365011074/20633239*228826127^(11/20) 3908816900000009 a001 7778742049/20633239*228826127^(3/5) 3908816900000009 a001 4807526976/20633239*228826127^(5/8) 3908816900000009 a001 2971215073/20633239*228826127^(13/20) 3908816900000009 a001 1134903170/20633239*228826127^(7/10) 3908816900000009 a001 433494437/20633239*228826127^(3/4) 3908816900000009 a001 800010949022441/20466831 3908816900000009 a001 165580141/20633239*228826127^(4/5) 3908816900000009 a001 6557470319842/20633239*87403803^(5/19) 3908816900000009 a001 2504730781961/20633239*87403803^(6/19) 3908816900000009 a001 956722026041/20633239*87403803^(7/19) 3908816900000009 a001 9227465/141422324*2537720636^(14/15) 3908816900000009 a001 9227465/141422324*17393796001^(6/7) 3908816900000009 a001 9227465/141422324*45537549124^(14/17) 3908816900000009 a001 63245986/20633239*45537549124^(2/3) 3908816900000009 a001 9227465/141422324*817138163596^(14/19) 3908816900000009 a001 9227465/141422324*14662949395604^(2/3) 3908816900000009 a001 63245986/20633239*(1/2+1/2*5^(1/2))^34 3908816900000009 a001 9227465/141422324*505019158607^(3/4) 3908816900000009 a001 9227465/141422324*192900153618^(7/9) 3908816900000009 a001 63245986/20633239*10749957122^(17/24) 3908816900000009 a001 9227465/141422324*10749957122^(7/8) 3908816900000009 a001 63245986/20633239*4106118243^(17/23) 3908816900000009 a001 9227465/141422324*4106118243^(21/23) 3908816900000009 a001 63245986/20633239*1568397607^(17/22) 3908816900000009 a001 9227465/141422324*1568397607^(21/22) 3908816900000009 a001 63245986/20633239*599074578^(17/21) 3908816900000009 a001 4052739537881/87403803*12752043^(7/17) 3908816900000009 a001 365435296162/20633239*87403803^(8/19) 3908816900000009 a001 139583862445/20633239*87403803^(9/19) 3908816900000009 a001 86267571272/20633239*87403803^(1/2) 3908816900000009 a001 63245986/20633239*228826127^(17/20) 3908816900000009 a001 53316291173/20633239*87403803^(10/19) 3908816900000009 a001 20365011074/20633239*87403803^(11/19) 3908816900000010 a001 7778742049/20633239*87403803^(12/19) 3908816900000010 a001 2971215073/20633239*87403803^(13/19) 3908816900000010 a001 1134903170/20633239*87403803^(14/19) 3908816900000010 a001 433494437/20633239*87403803^(15/19) 3908816900000010 a001 165580141/20633239*87403803^(16/19) 3908816900000010 a001 1527884955772565/39088169 3908816900000010 a001 225749145909/4868641*12752043^(7/17) 3908816900000010 a001 6557470319842/54018521*12752043^(6/17) 3908816900000010 a001 63245986/20633239*87403803^(17/19) 3908816900000010 a001 10610209857723/20633239*33385282^(1/4) 3908816900000010 a001 3278735159921/70711162*12752043^(7/17) 3908816900000010 a001 6557470319842/20633239*33385282^(5/18) 3908816900000010 a001 24157817/20633239*141422324^(12/13) 3908816900000010 a001 2504730781961/20633239*33385282^(1/3) 3908816900000011 a001 9227465/54018521*2537720636^(8/9) 3908816900000011 a001 24157817/20633239*2537720636^(4/5) 3908816900000011 a001 24157817/20633239*45537549124^(12/17) 3908816900000011 a001 9227465/54018521*312119004989^(8/11) 3908816900000011 a001 24157817/20633239*14662949395604^(4/7) 3908816900000011 a001 24157817/20633239*(1/2+1/2*5^(1/2))^36 3908816900000011 a001 24157817/20633239*505019158607^(9/14) 3908816900000011 a001 24157817/20633239*192900153618^(2/3) 3908816900000011 a001 24157817/20633239*73681302247^(9/13) 3908816900000011 a001 9227465/54018521*73681302247^(10/13) 3908816900000011 a001 9227465/54018521*28143753123^(4/5) 3908816900000011 a001 24157817/20633239*10749957122^(3/4) 3908816900000011 a001 9227465/54018521*10749957122^(5/6) 3908816900000011 a001 24157817/20633239*4106118243^(18/23) 3908816900000011 a001 9227465/54018521*4106118243^(20/23) 3908816900000011 a001 24157817/20633239*1568397607^(9/11) 3908816900000011 a001 9227465/54018521*1568397607^(10/11) 3908816900000011 a001 24157817/20633239*599074578^(6/7) 3908816900000011 a001 9227465/54018521*599074578^(20/21) 3908816900000011 a001 956722026041/20633239*33385282^(7/18) 3908816900000011 a001 24157817/20633239*228826127^(9/10) 3908816900000011 a001 43133785636/16692641*12752043^(10/17) 3908816900000011 a001 591286729879/20633239*33385282^(5/12) 3908816900000011 a001 365435296162/20633239*33385282^(4/9) 3908816900000011 a001 516002918640/29134601*12752043^(8/17) 3908816900000011 a001 139583862445/20633239*33385282^(1/2) 3908816900000011 a001 24157817/20633239*87403803^(18/19) 3908816900000011 a001 53316291173/20633239*33385282^(5/9) 3908816900000011 a001 32951280099/20633239*33385282^(7/12) 3908816900000011 a001 4052739537881/228826127*12752043^(8/17) 3908816900000011 a001 2504730781961/54018521*12752043^(7/17) 3908816900000011 a001 3536736619241/199691526*12752043^(8/17) 3908816900000011 a001 20365011074/20633239*33385282^(11/18) 3908816900000011 a001 6557470319842/370248451*12752043^(8/17) 3908816900000011 a001 3524667/39604*7881196^(9/11) 3908816900000012 a001 956722026041/87403803*12752043^(1/2) 3908816900000012 a001 2504730781961/141422324*12752043^(8/17) 3908816900000012 a001 7778742049/20633239*33385282^(2/3) 3908816900000012 a001 2971215073/20633239*33385282^(13/18) 3908816900000012 a001 1836311903/20633239*33385282^(3/4) 3908816900000012 a001 1134903170/20633239*33385282^(7/9) 3908816900000012 a001 2504730781961/228826127*12752043^(1/2) 3908816900000012 a001 3278735159921/299537289*12752043^(1/2) 3908816900000012 a001 10610209857723/969323029*12752043^(1/2) 3908816900000012 a001 32951280099/33385282*12752043^(11/17) 3908816900000012 a001 4052739537881/370248451*12752043^(1/2) 3908816900000012 a001 433494437/20633239*33385282^(5/6) 3908816900000012 a001 591286729879/87403803*12752043^(9/17) 3908816900000012 a001 387002188980/35355581*12752043^(1/2) 3908816900000012 a001 9303105/1875749*33385282^(11/12) 3908816900000012 a001 165580141/20633239*33385282^(8/9) 3908816900000013 a001 1548008755920/228826127*12752043^(9/17) 3908816900000013 a001 956722026041/54018521*12752043^(8/17) 3908816900000013 a001 63245986/20633239*33385282^(17/18) 3908816900000013 a001 4052739537881/599074578*12752043^(9/17) 3908816900000013 a001 1515744265389/224056801*12752043^(9/17) 3908816900000013 a001 6557470319842/969323029*12752043^(9/17) 3908816900000013 a001 2504730781961/370248451*12752043^(9/17) 3908816900000013 a001 291800061102745/7465176 3908816900000013 a001 956722026041/141422324*12752043^(9/17) 3908816900000013 a001 591286729879/54018521*12752043^(1/2) 3908816900000013 a001 12586269025/33385282*12752043^(12/17) 3908816900000014 a001 75283811239/29134601*12752043^(10/17) 3908816900000014 a001 591286729879/228826127*12752043^(10/17) 3908816900000014 a001 365435296162/54018521*12752043^(9/17) 3908816900000014 a001 86000486440/33281921*12752043^(10/17) 3908816900000014 a001 4052739537881/1568397607*12752043^(10/17) 3908816900000014 a001 3536736619241/1368706081*12752043^(10/17) 3908816900000014 a001 3278735159921/1268860318*12752043^(10/17) 3908816900000014 a001 2504730781961/969323029*12752043^(10/17) 3908816900000014 a001 956722026041/370248451*12752043^(10/17) 3908816900000014 a001 182717648081/70711162*12752043^(10/17) 3908816900000015 a001 14930208/103681*12752043^(13/17) 3908816900000015 a001 86267571272/87403803*12752043^(11/17) 3908816900000015 a001 225851433717/228826127*12752043^(11/17) 3908816900000015 a001 139583862445/54018521*12752043^(10/17) 3908816900000016 a001 591286729879/599074578*12752043^(11/17) 3908816900000016 a001 1548008755920/1568397607*12752043^(11/17) 3908816900000016 a001 4052739537881/4106118243*12752043^(11/17) 3908816900000016 a001 4807525989/4870846*12752043^(11/17) 3908816900000016 a001 6557470319842/6643838879*12752043^(11/17) 3908816900000016 a001 2504730781961/2537720636*12752043^(11/17) 3908816900000016 a001 956722026041/969323029*12752043^(11/17) 3908816900000016 a001 365435296162/370248451*12752043^(11/17) 3908816900000016 a001 139583862445/141422324*12752043^(11/17) 3908816900000016 a001 6557470319842/20633239*12752043^(5/17) 3908816900000016 a001 1836311903/33385282*12752043^(14/17) 3908816900000016 a001 10983760033/29134601*12752043^(12/17) 3908816900000017 a001 86267571272/228826127*12752043^(12/17) 3908816900000017 a001 53316291173/54018521*12752043^(11/17) 3908816900000017 a001 267913919/710646*12752043^(12/17) 3908816900000017 a001 591286729879/1568397607*12752043^(12/17) 3908816900000017 a001 516002918640/1368706081*12752043^(12/17) 3908816900000017 a001 4052739537881/10749957122*12752043^(12/17) 3908816900000017 a001 3536736619241/9381251041*12752043^(12/17) 3908816900000017 a001 6557470319842/17393796001*12752043^(12/17) 3908816900000017 a001 2504730781961/6643838879*12752043^(12/17) 3908816900000017 a001 956722026041/2537720636*12752043^(12/17) 3908816900000017 a001 365435296162/969323029*12752043^(12/17) 3908816900000017 a001 139583862445/370248451*12752043^(12/17) 3908816900000017 a001 222915410843904/5702887 3908816900000017 a001 3536736619241/4250681*4870847^(1/4) 3908816900000017 a001 2971215073/7881196*7881196^(8/11) 3908816900000017 a001 53316291173/141422324*12752043^(12/17) 3908816900000018 a001 2504730781961/20633239*12752043^(6/17) 3908816900000018 a001 701408733/33385282*12752043^(15/17) 3908816900000018 a001 12586269025/87403803*12752043^(13/17) 3908816900000018 a001 32951280099/228826127*12752043^(13/17) 3908816900000018 a001 20365011074/54018521*12752043^(12/17) 3908816900000018 a001 9227465/20633239*817138163596^(2/3) 3908816900000018 a001 9227465/20633239*(1/2+1/2*5^(1/2))^38 3908816900000018 a001 9227465/20633239*10749957122^(19/24) 3908816900000018 a001 9227465/20633239*4106118243^(19/23) 3908816900000018 a001 9227465/20633239*1568397607^(19/22) 3908816900000018 a001 43133785636/299537289*12752043^(13/17) 3908816900000018 a001 9227465/20633239*599074578^(19/21) 3908816900000018 a001 32264490531/224056801*12752043^(13/17) 3908816900000018 a001 591286729879/4106118243*12752043^(13/17) 3908816900000018 a001 774004377960/5374978561*12752043^(13/17) 3908816900000018 a001 4052739537881/28143753123*12752043^(13/17) 3908816900000018 a001 1515744265389/10525900321*12752043^(13/17) 3908816900000018 a001 3278735159921/22768774562*12752043^(13/17) 3908816900000018 a001 2504730781961/17393796001*12752043^(13/17) 3908816900000018 a001 956722026041/6643838879*12752043^(13/17) 3908816900000018 a001 182717648081/1268860318*12752043^(13/17) 3908816900000018 a001 139583862445/969323029*12752043^(13/17) 3908816900000018 a001 53316291173/370248451*12752043^(13/17) 3908816900000018 a001 9227465/20633239*228826127^(19/20) 3908816900000019 a001 10182505537/70711162*12752043^(13/17) 3908816900000019 a001 956722026041/20633239*12752043^(7/17) 3908816900000019 a001 133957148/16692641*12752043^(16/17) 3908816900000019 a001 1602508992/29134601*12752043^(14/17) 3908816900000020 a001 12586269025/228826127*12752043^(14/17) 3908816900000020 a001 7778742049/54018521*12752043^(13/17) 3908816900000020 a001 10983760033/199691526*12752043^(14/17) 3908816900000020 a001 86267571272/1568397607*12752043^(14/17) 3908816900000020 a001 75283811239/1368706081*12752043^(14/17) 3908816900000020 a001 591286729879/10749957122*12752043^(14/17) 3908816900000020 a001 12585437040/228811001*12752043^(14/17) 3908816900000020 a001 4052739537881/73681302247*12752043^(14/17) 3908816900000020 a001 3536736619241/64300051206*12752043^(14/17) 3908816900000020 a001 6557470319842/119218851371*12752043^(14/17) 3908816900000020 a001 2504730781961/45537549124*12752043^(14/17) 3908816900000020 a001 956722026041/17393796001*12752043^(14/17) 3908816900000020 a001 365435296162/6643838879*12752043^(14/17) 3908816900000020 a001 139583862445/2537720636*12752043^(14/17) 3908816900000020 a001 53316291173/969323029*12752043^(14/17) 3908816900000020 a001 20365011074/370248451*12752043^(14/17) 3908816900000020 a001 7778742049/141422324*12752043^(14/17) 3908816900000021 a001 365435296162/20633239*12752043^(8/17) 3908816900000021 a001 1836311903/87403803*12752043^(15/17) 3908816900000021 a001 7778742049/7881196*7881196^(2/3) 3908816900000021 a001 102287808/4868641*12752043^(15/17) 3908816900000021 a001 2971215073/54018521*12752043^(14/17) 3908816900000021 a001 12586269025/599074578*12752043^(15/17) 3908816900000021 a001 7787980473/711491*12752043^(1/2) 3908816900000021 a001 32951280099/1568397607*12752043^(15/17) 3908816900000021 a001 86267571272/4106118243*12752043^(15/17) 3908816900000021 a001 225851433717/10749957122*12752043^(15/17) 3908816900000021 a001 591286729879/28143753123*12752043^(15/17) 3908816900000021 a001 1548008755920/73681302247*12752043^(15/17) 3908816900000021 a001 4052739537881/192900153618*12752043^(15/17) 3908816900000021 a001 225749145909/10745088481*12752043^(15/17) 3908816900000021 a001 6557470319842/312119004989*12752043^(15/17) 3908816900000021 a001 2504730781961/119218851371*12752043^(15/17) 3908816900000021 a001 956722026041/45537549124*12752043^(15/17) 3908816900000021 a001 365435296162/17393796001*12752043^(15/17) 3908816900000021 a001 139583862445/6643838879*12752043^(15/17) 3908816900000021 a001 53316291173/2537720636*12752043^(15/17) 3908816900000021 a001 20365011074/969323029*12752043^(15/17) 3908816900000021 a001 7778742049/370248451*12752043^(15/17) 3908816900000021 a001 2971215073/141422324*12752043^(15/17) 3908816900000022 a001 139583862445/20633239*12752043^(9/17) 3908816900000022 a001 233802911/29134601*12752043^(16/17) 3908816900000023 a001 1836311903/228826127*12752043^(16/17) 3908816900000023 a001 1134903170/54018521*12752043^(15/17) 3908816900000023 a001 267084832/33281921*12752043^(16/17) 3908816900000023 a001 12586269025/1568397607*12752043^(16/17) 3908816900000023 a001 10983760033/1368706081*12752043^(16/17) 3908816900000023 a001 43133785636/5374978561*12752043^(16/17) 3908816900000023 a001 75283811239/9381251041*12752043^(16/17) 3908816900000023 a001 591286729879/73681302247*12752043^(16/17) 3908816900000023 a001 86000486440/10716675201*12752043^(16/17) 3908816900000023 a001 4052739537881/505019158607*12752043^(16/17) 3908816900000023 a001 3536736619241/440719107401*12752043^(16/17) 3908816900000023 a001 3278735159921/408569081798*12752043^(16/17) 3908816900000023 a001 2504730781961/312119004989*12752043^(16/17) 3908816900000023 a001 956722026041/119218851371*12752043^(16/17) 3908816900000023 a001 182717648081/22768774562*12752043^(16/17) 3908816900000023 a001 139583862445/17393796001*12752043^(16/17) 3908816900000023 a001 53316291173/6643838879*12752043^(16/17) 3908816900000023 a001 10182505537/1268860318*12752043^(16/17) 3908816900000023 a001 7778742049/969323029*12752043^(16/17) 3908816900000023 a001 2971215073/370248451*12752043^(16/17) 3908816900000023 a001 567451585/70711162*12752043^(16/17) 3908816900000023 a001 12586269025/7881196*7881196^(7/11) 3908816900000023 a001 53316291173/20633239*12752043^(10/17) 3908816900000024 a001 433494437/54018521*12752043^(16/17) 3908816900000025 a001 20365011074/20633239*12752043^(11/17) 3908816900000026 a001 7778742049/20633239*12752043^(12/17) 3908816900000027 a001 4052739537881/12752043*4870847^(5/16) 3908816900000028 a001 2971215073/20633239*12752043^(13/17) 3908816900000029 a001 53316291173/7881196*7881196^(6/11) 3908816900000029 a001 1134903170/20633239*12752043^(14/17) 3908816900000030 a001 433494437/20633239*12752043^(15/17) 3908816900000032 a001 165580141/20633239*12752043^(16/17) 3908816900000034 a001 225851433717/7881196*7881196^(5/11) 3908816900000035 a001 222915410843905/5702887 3908816900000038 a001 516002918640/4250681*4870847^(3/8) 3908816900000039 a001 3524578/12752043*2537720636^(13/15) 3908816900000039 a001 3524578/12752043*45537549124^(13/17) 3908816900000039 a001 3524578/12752043*14662949395604^(13/21) 3908816900000039 a001 3524578/12752043*(1/2+1/2*5^(1/2))^39 3908816900000039 a001 5702887/7881196*(1/2+1/2*5^(1/2))^37 3908816900000039 a001 3524578/12752043*192900153618^(13/18) 3908816900000039 a001 3524578/12752043*73681302247^(3/4) 3908816900000039 a001 3524578/12752043*10749957122^(13/16) 3908816900000039 a001 3524578/12752043*599074578^(13/14) 3908816900000040 a001 956722026041/7881196*7881196^(4/11) 3908816900000042 a001 387002188980/1970299*7881196^(1/3) 3908816900000046 a001 4052739537881/7881196*7881196^(3/11) 3908816900000048 a001 1515744265389/4769326*4870847^(5/16) 3908816900000048 a001 591286729879/12752043*4870847^(7/16) 3908816900000054 a001 72136942272318/1845493 3908816900000055 a001 165580141/7881196*20633239^(6/7) 3908816900000056 a001 433494437/7881196*20633239^(4/5) 3908816900000056 a001 1836311903/7881196*20633239^(5/7) 3908816900000057 a001 12586269025/7881196*20633239^(3/5) 3908816900000058 a001 10182505537/3940598*20633239^(4/7) 3908816900000058 a001 4052739537881/33385282*4870847^(3/8) 3908816900000058 a001 75283811239/4250681*4870847^(1/2) 3908816900000059 a001 225851433717/7881196*20633239^(3/7) 3908816900000059 a001 182717648081/3940598*20633239^(2/5) 3908816900000059 a001 3732588/1970299*2537720636^(7/9) 3908816900000059 a001 3732588/1970299*17393796001^(5/7) 3908816900000059 a001 3732588/1970299*312119004989^(7/11) 3908816900000059 a001 3732588/1970299*14662949395604^(5/9) 3908816900000059 a001 1762289/16692641*(1/2+1/2*5^(1/2))^41 3908816900000059 a001 3732588/1970299*(1/2+1/2*5^(1/2))^35 3908816900000059 a001 3732588/1970299*505019158607^(5/8) 3908816900000059 a001 3732588/1970299*28143753123^(7/10) 3908816900000059 a001 3732588/1970299*599074578^(5/6) 3908816900000060 a001 3732588/1970299*228826127^(7/8) 3908816900000060 a001 2504730781961/7881196*20633239^(2/7) 3908816900000061 a001 6557470319842/20633239*4870847^(5/16) 3908816900000061 a001 2178309*1860498^(1/5) 3908816900000061 a001 10610209857723/7881196*20633239^(1/5) 3908816900000061 a001 3536736619241/29134601*4870847^(3/8) 3908816900000062 a001 944284833567088/24157817 3908816900000062 a001 39088169/7881196*141422324^(11/13) 3908816900000062 a001 39088169/7881196*2537720636^(11/15) 3908816900000062 a001 39088169/7881196*45537549124^(11/17) 3908816900000062 a001 39088169/7881196*312119004989^(3/5) 3908816900000062 a001 39088169/7881196*817138163596^(11/19) 3908816900000062 a001 39088169/7881196*14662949395604^(11/21) 3908816900000062 a001 39088169/7881196*(1/2+1/2*5^(1/2))^33 3908816900000062 a001 39088169/7881196*192900153618^(11/18) 3908816900000062 a001 39088169/7881196*10749957122^(11/16) 3908816900000062 a001 39088169/7881196*1568397607^(3/4) 3908816900000062 a001 39088169/7881196*599074578^(11/14) 3908816900000063 a001 1236084894669837/31622993 3908816900000063 a001 3524667/39604*141422324^(9/13) 3908816900000063 a001 567451585/3940598*141422324^(2/3) 3908816900000063 a001 165580141/7881196*141422324^(10/13) 3908816900000063 a001 2971215073/7881196*141422324^(8/13) 3908816900000063 a001 12586269025/7881196*141422324^(7/13) 3908816900000063 a001 53316291173/7881196*141422324^(6/13) 3908816900000063 a001 225851433717/7881196*141422324^(5/13) 3908816900000063 a001 3524578/228826127*45537549124^(15/17) 3908816900000063 a001 3524578/228826127*312119004989^(9/11) 3908816900000063 a001 102334155/7881196*(1/2+1/2*5^(1/2))^31 3908816900000063 a001 102334155/7881196*9062201101803^(1/2) 3908816900000063 a001 3524578/228826127*192900153618^(5/6) 3908816900000063 a001 3524578/228826127*28143753123^(9/10) 3908816900000063 a001 3524578/228826127*10749957122^(15/16) 3908816900000063 a001 591286729879/7881196*141422324^(1/3) 3908816900000063 a001 956722026041/7881196*141422324^(4/13) 3908816900000063 a001 4052739537881/7881196*141422324^(3/13) 3908816900000063 a001 6472224534451934/165580141 3908816900000063 a001 66978574/1970299*(1/2+1/2*5^(1/2))^29 3908816900000063 a001 66978574/1970299*1322157322203^(1/2) 3908816900000063 a001 16944503814016128/433494437 3908816900000063 a001 3524667/39604*2537720636^(3/5) 3908816900000063 a001 3524667/39604*45537549124^(9/17) 3908816900000063 a001 3524667/39604*817138163596^(9/19) 3908816900000063 a001 3524578/1568397607*14662949395604^(7/9) 3908816900000063 a001 3524667/39604*(1/2+1/2*5^(1/2))^27 3908816900000063 a001 3524578/1568397607*505019158607^(7/8) 3908816900000063 a001 3524667/39604*192900153618^(1/2) 3908816900000063 a001 3524667/39604*10749957122^(9/16) 3908816900000063 a001 4436128690759645/113490317 3908816900000063 a001 1836311903/7881196*2537720636^(5/9) 3908816900000063 a001 12586269025/7881196*2537720636^(7/15) 3908816900000063 a001 10182505537/3940598*2537720636^(4/9) 3908816900000063 a001 53316291173/7881196*2537720636^(2/5) 3908816900000063 a001 2971215073/7881196*2537720636^(8/15) 3908816900000063 a001 1836311903/7881196*312119004989^(5/11) 3908816900000063 a001 3524578/4106118243*14662949395604^(17/21) 3908816900000063 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^25 3908816900000063 a001 1836311903/7881196*3461452808002^(5/12) 3908816900000063 a001 3524578/4106118243*192900153618^(17/18) 3908816900000063 a001 1836311903/7881196*28143753123^(1/2) 3908816900000063 a001 225851433717/7881196*2537720636^(1/3) 3908816900000063 a001 956722026041/7881196*2537720636^(4/15) 3908816900000063 a001 2504730781961/7881196*2537720636^(2/9) 3908816900000063 a001 4052739537881/7881196*2537720636^(1/5) 3908816900000063 a001 116139356908773222/2971215073 3908816900000063 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^23 3908816900000063 a001 304056783818723216/7778742049 3908816900000063 a001 12586269025/7881196*17393796001^(3/7) 3908816900000063 a001 12586269025/7881196*45537549124^(7/17) 3908816900000063 a001 12586269025/7881196*14662949395604^(1/3) 3908816900000063 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^21 3908816900000063 a001 12586269025/7881196*192900153618^(7/18) 3908816900000063 a001 182717648081/3940598*17393796001^(2/7) 3908816900000063 a001 398015497273698213/10182505537 3908816900000063 a001 10610209857723/7881196*17393796001^(1/7) 3908816900000063 a001 21566892818/1970299*45537549124^(1/3) 3908816900000063 a001 32951280099/7881196*817138163596^(1/3) 3908816900000063 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^19 3908816900000063 a001 225851433717/7881196*45537549124^(5/17) 3908816900000063 a001 956722026041/7881196*45537549124^(4/17) 3908816900000063 a001 4052739537881/7881196*45537549124^(3/17) 3908816900000063 a001 2084036199823466062/53316291173 3908816900000063 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^17 3908816900000063 a001 12260848550388768/313671601 3908816900000063 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^15 3908816900000063 a001 387002188980/1970299*(1/2+1/2*5^(1/2))^11 3908816900000063 a001 4052739537881/7881196*(1/2+1/2*5^(1/2))^9 3908816900000063 a001 10610209857723/7881196*14662949395604^(1/9) 3908816900000063 a001 10610209857723/7881196*(1/2+1/2*5^(1/2))^7 3908816900000063 a001 3278735159921/3940598*(1/2+1/2*5^(1/2))^8 3908816900000063 a001 3278735159921/3940598*23725150497407^(1/8) 3908816900000063 a001 2504730781961/7881196*(1/2+1/2*5^(1/2))^10 3908816900000063 a001 956722026041/7881196*(1/2+1/2*5^(1/2))^12 3908816900000063 a001 182717648081/3940598*14662949395604^(2/9) 3908816900000063 a001 182717648081/3940598*(1/2+1/2*5^(1/2))^14 3908816900000063 a001 182717648081/3940598*505019158607^(1/4) 3908816900000063 a001 3524578/312119004989*14662949395604^(20/21) 3908816900000063 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^16 3908816900000063 a001 139583862445/7881196*23725150497407^(1/4) 3908816900000063 a001 1686020702549767849/43133785636 3908816900000063 a001 3278735159921/3940598*73681302247^(2/13) 3908816900000063 a001 956722026041/7881196*73681302247^(3/13) 3908816900000063 a001 591286729879/7881196*73681302247^(1/4) 3908816900000063 a001 139583862445/7881196*73681302247^(4/13) 3908816900000063 a001 53316291173/7881196*14662949395604^(2/7) 3908816900000063 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^18 3908816900000063 a001 53316291173/7881196*192900153618^(1/3) 3908816900000063 a001 1288005205276069636/32951280099 3908816900000063 a001 2504730781961/7881196*28143753123^(1/5) 3908816900000063 a001 225851433717/7881196*28143753123^(3/10) 3908816900000063 a001 1762289/22768774562*14662949395604^(8/9) 3908816900000063 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^20 3908816900000063 a001 10182505537/3940598*23725150497407^(5/16) 3908816900000063 a001 10182505537/3940598*505019158607^(5/14) 3908816900000063 a001 10182505537/3940598*73681302247^(5/13) 3908816900000063 a001 10182505537/3940598*28143753123^(2/5) 3908816900000063 a001 98394842145734642/2517253805 3908816900000063 a001 3278735159921/3940598*10749957122^(1/6) 3908816900000063 a001 4052739537881/7881196*10749957122^(3/16) 3908816900000063 a001 2504730781961/7881196*10749957122^(5/24) 3908816900000063 a001 956722026041/7881196*10749957122^(1/4) 3908816900000063 a001 12586269025/7881196*10749957122^(7/16) 3908816900000063 a001 182717648081/3940598*10749957122^(7/24) 3908816900000063 a001 225851433717/7881196*10749957122^(5/16) 3908816900000063 a001 139583862445/7881196*10749957122^(1/3) 3908816900000063 a001 7778742049/7881196*312119004989^(2/5) 3908816900000063 a001 3524578/17393796001*14662949395604^(6/7) 3908816900000063 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^22 3908816900000063 a001 53316291173/7881196*10749957122^(3/8) 3908816900000063 a001 10182505537/3940598*10749957122^(5/12) 3908816900000063 a001 7778742049/7881196*10749957122^(11/24) 3908816900000063 a001 93958713454974997/2403763488 3908816900000063 a001 3278735159921/3940598*4106118243^(4/23) 3908816900000063 a001 2504730781961/7881196*4106118243^(5/23) 3908816900000063 a001 956722026041/7881196*4106118243^(6/23) 3908816900000063 a001 182717648081/3940598*4106118243^(7/23) 3908816900000063 a001 139583862445/7881196*4106118243^(8/23) 3908816900000063 a001 1201881744/1970299*4106118243^(1/2) 3908816900000063 a001 2971215073/7881196*45537549124^(8/17) 3908816900000063 a001 2971215073/7881196*14662949395604^(8/21) 3908816900000063 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^24 3908816900000063 a001 3524578/6643838879*23725150497407^(13/16) 3908816900000063 a001 3524578/6643838879*505019158607^(13/14) 3908816900000063 a001 2971215073/7881196*192900153618^(4/9) 3908816900000063 a001 2971215073/7881196*73681302247^(6/13) 3908816900000063 a001 53316291173/7881196*4106118243^(9/23) 3908816900000063 a001 10182505537/3940598*4106118243^(10/23) 3908816900000063 a001 2971215073/7881196*10749957122^(1/2) 3908816900000063 a001 7778742049/7881196*4106118243^(11/23) 3908816900000063 a001 2971215073/7881196*4106118243^(12/23) 3908816900000063 a001 71778070001176772/1836311903 3908816900000063 a001 3278735159921/3940598*1568397607^(2/11) 3908816900000063 a001 2504730781961/7881196*1568397607^(5/22) 3908816900000063 a001 387002188980/1970299*1568397607^(1/4) 3908816900000063 a001 956722026041/7881196*1568397607^(3/11) 3908816900000063 a001 182717648081/3940598*1568397607^(7/22) 3908816900000063 a001 139583862445/7881196*1568397607^(4/11) 3908816900000063 a001 1762289/1268860318*312119004989^(10/11) 3908816900000063 a001 567451585/3940598*(1/2+1/2*5^(1/2))^26 3908816900000063 a001 1762289/1268860318*3461452808002^(5/6) 3908816900000063 a001 567451585/3940598*73681302247^(1/2) 3908816900000063 a001 567451585/3940598*10749957122^(13/24) 3908816900000063 a001 53316291173/7881196*1568397607^(9/22) 3908816900000063 a001 10182505537/3940598*1568397607^(5/11) 3908816900000063 a001 567451585/3940598*4106118243^(13/23) 3908816900000063 a001 7778742049/7881196*1568397607^(1/2) 3908816900000063 a001 2971215073/7881196*1568397607^(6/11) 3908816900000063 a001 567451585/3940598*1568397607^(13/22) 3908816900000063 a001 308053742624498/7880997 3908816900000063 a001 10610209857723/7881196*599074578^(1/6) 3908816900000063 a001 3278735159921/3940598*599074578^(4/21) 3908816900000063 a001 4052739537881/7881196*599074578^(3/14) 3908816900000063 a001 2504730781961/7881196*599074578^(5/21) 3908816900000063 a001 956722026041/7881196*599074578^(2/7) 3908816900000063 a001 182717648081/3940598*599074578^(1/3) 3908816900000063 a001 225851433717/7881196*599074578^(5/14) 3908816900000063 a001 139583862445/7881196*599074578^(8/21) 3908816900000063 a001 433494437/7881196*17393796001^(4/7) 3908816900000063 a001 3524578/969323029*45537549124^(16/17) 3908816900000063 a001 3524578/969323029*14662949395604^(16/21) 3908816900000063 a001 433494437/7881196*14662949395604^(4/9) 3908816900000063 a001 433494437/7881196*(1/2+1/2*5^(1/2))^28 3908816900000063 a001 3524578/969323029*192900153618^(8/9) 3908816900000063 a001 433494437/7881196*73681302247^(7/13) 3908816900000063 a001 3524578/969323029*73681302247^(12/13) 3908816900000063 a001 433494437/7881196*10749957122^(7/12) 3908816900000063 a001 433494437/7881196*4106118243^(14/23) 3908816900000063 a001 53316291173/7881196*599074578^(3/7) 3908816900000063 a001 433494437/7881196*1568397607^(7/11) 3908816900000063 a001 10182505537/3940598*599074578^(10/21) 3908816900000063 a001 3524667/39604*599074578^(9/14) 3908816900000063 a001 12586269025/7881196*599074578^(1/2) 3908816900000063 a001 7778742049/7881196*599074578^(11/21) 3908816900000063 a001 2971215073/7881196*599074578^(4/7) 3908816900000063 a001 567451585/3940598*599074578^(13/21) 3908816900000063 a001 5236139639782097/133957148 3908816900000063 a001 433494437/7881196*599074578^(2/3) 3908816900000063 a001 3278735159921/3940598*228826127^(1/5) 3908816900000063 a001 2504730781961/7881196*228826127^(1/4) 3908816900000063 a001 956722026041/7881196*228826127^(3/10) 3908816900000063 a001 182717648081/3940598*228826127^(7/20) 3908816900000063 a001 225851433717/7881196*228826127^(3/8) 3908816900000063 a001 165580141/7881196*2537720636^(2/3) 3908816900000063 a001 165580141/7881196*45537549124^(10/17) 3908816900000063 a001 165580141/7881196*312119004989^(6/11) 3908816900000063 a001 165580141/7881196*14662949395604^(10/21) 3908816900000063 a001 165580141/7881196*(1/2+1/2*5^(1/2))^30 3908816900000063 a001 165580141/7881196*192900153618^(5/9) 3908816900000063 a001 165580141/7881196*28143753123^(3/5) 3908816900000063 a001 165580141/7881196*10749957122^(5/8) 3908816900000063 a001 3524578/370248451*10749957122^(23/24) 3908816900000063 a001 165580141/7881196*4106118243^(15/23) 3908816900000063 a001 165580141/7881196*1568397607^(15/22) 3908816900000063 a001 139583862445/7881196*228826127^(2/5) 3908816900000063 a001 53316291173/7881196*228826127^(9/20) 3908816900000063 a001 165580141/7881196*599074578^(5/7) 3908816900000063 a001 10182505537/3940598*228826127^(1/2) 3908816900000063 a001 7778742049/7881196*228826127^(11/20) 3908816900000063 a001 2971215073/7881196*228826127^(3/5) 3908816900000063 a001 1836311903/7881196*228826127^(5/8) 3908816900000063 a001 567451585/3940598*228826127^(13/20) 3908816900000063 a001 433494437/7881196*228826127^(7/10) 3908816900000063 a001 800010949022452/20466831 3908816900000063 a001 165580141/7881196*228826127^(3/4) 3908816900000063 a001 3278735159921/3940598*87403803^(4/19) 3908816900000063 a001 2504730781961/7881196*87403803^(5/19) 3908816900000063 a001 956722026041/7881196*87403803^(6/19) 3908816900000063 a001 182717648081/3940598*87403803^(7/19) 3908816900000063 a001 6557470319842/54018521*4870847^(3/8) 3908816900000063 a001 1762289/70711162*312119004989^(4/5) 3908816900000063 a001 31622993/3940598*(1/2+1/2*5^(1/2))^32 3908816900000063 a001 1762289/70711162*23725150497407^(11/16) 3908816900000063 a001 31622993/3940598*505019158607^(4/7) 3908816900000063 a001 31622993/3940598*73681302247^(8/13) 3908816900000063 a001 1762289/70711162*73681302247^(11/13) 3908816900000063 a001 31622993/3940598*10749957122^(2/3) 3908816900000063 a001 1762289/70711162*10749957122^(11/12) 3908816900000063 a001 31622993/3940598*4106118243^(16/23) 3908816900000063 a001 1762289/70711162*4106118243^(22/23) 3908816900000063 a001 31622993/3940598*1568397607^(8/11) 3908816900000063 a001 31622993/3940598*599074578^(16/21) 3908816900000063 a001 139583862445/7881196*87403803^(8/19) 3908816900000063 a001 53316291173/7881196*87403803^(9/19) 3908816900000063 a001 31622993/3940598*228826127^(4/5) 3908816900000063 a001 32951280099/7881196*87403803^(1/2) 3908816900000063 a001 10182505537/3940598*87403803^(10/19) 3908816900000063 a001 7778742049/7881196*87403803^(11/19) 3908816900000063 a001 2971215073/7881196*87403803^(12/19) 3908816900000063 a001 567451585/3940598*87403803^(13/19) 3908816900000063 a001 433494437/7881196*87403803^(14/19) 3908816900000063 a001 165580141/7881196*87403803^(15/19) 3908816900000063 a001 1527884955772586/39088169 3908816900000064 a001 31622993/3940598*87403803^(16/19) 3908816900000064 a001 3278735159921/3940598*33385282^(2/9) 3908816900000064 a001 4052739537881/7881196*33385282^(1/4) 3908816900000064 a001 2504730781961/7881196*33385282^(5/18) 3908816900000064 a001 956722026041/7881196*33385282^(1/3) 3908816900000064 a001 3524578/54018521*2537720636^(14/15) 3908816900000064 a001 3524578/54018521*17393796001^(6/7) 3908816900000064 a001 3524578/54018521*45537549124^(14/17) 3908816900000064 a001 24157817/7881196*45537549124^(2/3) 3908816900000064 a001 3524578/54018521*817138163596^(14/19) 3908816900000064 a001 3524578/54018521*14662949395604^(2/3) 3908816900000064 a001 24157817/7881196*(1/2+1/2*5^(1/2))^34 3908816900000064 a001 3524578/54018521*505019158607^(3/4) 3908816900000064 a001 3524578/54018521*192900153618^(7/9) 3908816900000064 a001 24157817/7881196*10749957122^(17/24) 3908816900000064 a001 3524578/54018521*10749957122^(7/8) 3908816900000064 a001 24157817/7881196*4106118243^(17/23) 3908816900000064 a001 3524578/54018521*4106118243^(21/23) 3908816900000064 a001 24157817/7881196*1568397607^(17/22) 3908816900000064 a001 3524578/54018521*1568397607^(21/22) 3908816900000064 a001 24157817/7881196*599074578^(17/21) 3908816900000064 a001 182717648081/3940598*33385282^(7/18) 3908816900000064 a001 24157817/7881196*228826127^(17/20) 3908816900000064 a001 225851433717/7881196*33385282^(5/12) 3908816900000065 a001 139583862445/7881196*33385282^(4/9) 3908816900000065 a001 53316291173/7881196*33385282^(1/2) 3908816900000065 a001 24157817/7881196*87403803^(17/19) 3908816900000065 a001 10182505537/3940598*33385282^(5/9) 3908816900000065 a001 12586269025/7881196*33385282^(7/12) 3908816900000065 a001 7778742049/7881196*33385282^(11/18) 3908816900000065 a001 2971215073/7881196*33385282^(2/3) 3908816900000065 a001 567451585/3940598*33385282^(13/18) 3908816900000066 a001 3524667/39604*33385282^(3/4) 3908816900000066 a001 39088169/7881196*33385282^(11/12) 3908816900000066 a001 433494437/7881196*33385282^(7/9) 3908816900000066 a001 165580141/7881196*33385282^(5/6) 3908816900000066 a001 31622993/3940598*33385282^(8/9) 3908816900000066 a001 291800061102749/7465176 3908816900000068 a001 24157817/7881196*33385282^(17/18) 3908816900000069 a001 774004377960/16692641*4870847^(7/16) 3908816900000069 a001 3278735159921/3940598*12752043^(4/17) 3908816900000069 a001 86267571272/12752043*4870847^(9/16) 3908816900000070 a001 2504730781961/7881196*12752043^(5/17) 3908816900000071 a001 2504730781961/20633239*4870847^(3/8) 3908816900000071 a001 956722026041/7881196*12752043^(6/17) 3908816900000072 a001 4052739537881/87403803*4870847^(7/16) 3908816900000072 a001 9227465/7881196*141422324^(12/13) 3908816900000072 a001 225749145909/4868641*4870847^(7/16) 3908816900000072 a001 3524578/20633239*2537720636^(8/9) 3908816900000072 a001 9227465/7881196*2537720636^(4/5) 3908816900000072 a001 9227465/7881196*45537549124^(12/17) 3908816900000072 a001 3524578/20633239*312119004989^(8/11) 3908816900000072 a001 9227465/7881196*14662949395604^(4/7) 3908816900000072 a001 3524578/20633239*(1/2+1/2*5^(1/2))^40 3908816900000072 a001 9227465/7881196*(1/2+1/2*5^(1/2))^36 3908816900000072 a001 3524578/20633239*23725150497407^(5/8) 3908816900000072 a001 9227465/7881196*505019158607^(9/14) 3908816900000072 a001 9227465/7881196*192900153618^(2/3) 3908816900000072 a001 9227465/7881196*73681302247^(9/13) 3908816900000072 a001 3524578/20633239*73681302247^(10/13) 3908816900000072 a001 3524578/20633239*28143753123^(4/5) 3908816900000072 a001 9227465/7881196*10749957122^(3/4) 3908816900000072 a001 3524578/20633239*10749957122^(5/6) 3908816900000072 a001 9227465/7881196*4106118243^(18/23) 3908816900000072 a001 3524578/20633239*4106118243^(20/23) 3908816900000072 a001 9227465/7881196*1568397607^(9/11) 3908816900000072 a001 3524578/20633239*1568397607^(10/11) 3908816900000072 a001 9227465/7881196*599074578^(6/7) 3908816900000072 a001 3524578/20633239*599074578^(20/21) 3908816900000072 a001 9227465/7881196*228826127^(9/10) 3908816900000072 a001 3278735159921/70711162*4870847^(7/16) 3908816900000073 a001 9227465/7881196*87403803^(18/19) 3908816900000073 a001 182717648081/3940598*12752043^(7/17) 3908816900000073 a001 2504730781961/54018521*4870847^(7/16) 3908816900000074 a001 139583862445/7881196*12752043^(8/17) 3908816900000075 a001 21566892818/1970299*12752043^(1/2) 3908816900000076 a001 53316291173/7881196*12752043^(9/17) 3908816900000077 a001 10182505537/3940598*12752043^(10/17) 3908816900000078 a001 7778742049/7881196*12752043^(11/17) 3908816900000079 a001 591286729879/33385282*4870847^(1/2) 3908816900000079 a001 10983760033/4250681*4870847^(5/8) 3908816900000080 a001 2971215073/7881196*12752043^(12/17) 3908816900000081 a001 956722026041/20633239*4870847^(7/16) 3908816900000081 a001 567451585/3940598*12752043^(13/17) 3908816900000082 a001 516002918640/29134601*4870847^(1/2) 3908816900000082 a001 4052739537881/228826127*4870847^(1/2) 3908816900000082 a001 3536736619241/199691526*4870847^(1/2) 3908816900000082 a001 6557470319842/370248451*4870847^(1/2) 3908816900000083 a001 2504730781961/141422324*4870847^(1/2) 3908816900000083 a001 433494437/7881196*12752043^(14/17) 3908816900000084 a001 956722026041/54018521*4870847^(1/2) 3908816900000084 a001 165580141/7881196*12752043^(15/17) 3908816900000086 a001 31622993/3940598*12752043^(16/17) 3908816900000087 a001 222915410843908/5702887 3908816900000089 a001 32264490531/4769326*4870847^(9/16) 3908816900000089 a001 12586269025/12752043*4870847^(11/16) 3908816900000092 a001 365435296162/20633239*4870847^(1/2) 3908816900000092 a001 591286729879/87403803*4870847^(9/16) 3908816900000093 a001 1548008755920/228826127*4870847^(9/16) 3908816900000093 a001 4052739537881/599074578*4870847^(9/16) 3908816900000093 a001 1515744265389/224056801*4870847^(9/16) 3908816900000093 a001 6557470319842/969323029*4870847^(9/16) 3908816900000093 a001 2504730781961/370248451*4870847^(9/16) 3908816900000093 a001 956722026041/141422324*4870847^(9/16) 3908816900000094 a001 365435296162/54018521*4870847^(9/16) 3908816900000099 a001 43133785636/16692641*4870847^(5/8) 3908816900000100 a001 1602508992/4250681*4870847^(3/4) 3908816900000102 a001 139583862445/20633239*4870847^(9/16) 3908816900000102 a001 75283811239/29134601*4870847^(5/8) 3908816900000103 a001 591286729879/228826127*4870847^(5/8) 3908816900000103 a001 86000486440/33281921*4870847^(5/8) 3908816900000103 a001 4052739537881/1568397607*4870847^(5/8) 3908816900000103 a001 3536736619241/1368706081*4870847^(5/8) 3908816900000103 a001 3278735159921/1268860318*4870847^(5/8) 3908816900000103 a001 2504730781961/969323029*4870847^(5/8) 3908816900000103 a001 956722026041/370248451*4870847^(5/8) 3908816900000103 a001 182717648081/70711162*4870847^(5/8) 3908816900000104 a001 3278735159921/3940598*4870847^(1/4) 3908816900000104 a001 139583862445/54018521*4870847^(5/8) 3908816900000110 a001 32951280099/33385282*4870847^(11/16) 3908816900000110 a001 1836311903/12752043*4870847^(13/16) 3908816900000112 a001 53316291173/20633239*4870847^(5/8) 3908816900000113 a001 86267571272/87403803*4870847^(11/16) 3908816900000113 a001 225851433717/228826127*4870847^(11/16) 3908816900000113 a001 591286729879/599074578*4870847^(11/16) 3908816900000113 a001 1548008755920/1568397607*4870847^(11/16) 3908816900000113 a001 4052739537881/4106118243*4870847^(11/16) 3908816900000113 a001 4807525989/4870846*4870847^(11/16) 3908816900000113 a001 6557470319842/6643838879*4870847^(11/16) 3908816900000113 a001 2504730781961/2537720636*4870847^(11/16) 3908816900000113 a001 956722026041/969323029*4870847^(11/16) 3908816900000113 a001 365435296162/370248451*4870847^(11/16) 3908816900000113 a001 139583862445/141422324*4870847^(11/16) 3908816900000114 a001 2504730781961/7881196*4870847^(5/16) 3908816900000115 a001 53316291173/54018521*4870847^(11/16) 3908816900000120 a001 12586269025/33385282*4870847^(3/4) 3908816900000120 a001 233802911/4250681*4870847^(7/8) 3908816900000122 a001 20365011074/20633239*4870847^(11/16) 3908816900000123 a001 10983760033/29134601*4870847^(3/4) 3908816900000124 a001 86267571272/228826127*4870847^(3/4) 3908816900000124 a001 267913919/710646*4870847^(3/4) 3908816900000124 a001 591286729879/1568397607*4870847^(3/4) 3908816900000124 a001 516002918640/1368706081*4870847^(3/4) 3908816900000124 a001 4052739537881/10749957122*4870847^(3/4) 3908816900000124 a001 3536736619241/9381251041*4870847^(3/4) 3908816900000124 a001 6557470319842/17393796001*4870847^(3/4) 3908816900000124 a001 2504730781961/6643838879*4870847^(3/4) 3908816900000124 a001 956722026041/2537720636*4870847^(3/4) 3908816900000124 a001 365435296162/969323029*4870847^(3/4) 3908816900000124 a001 139583862445/370248451*4870847^(3/4) 3908816900000124 a001 53316291173/141422324*4870847^(3/4) 3908816900000125 a001 956722026041/7881196*4870847^(3/8) 3908816900000125 a001 20365011074/54018521*4870847^(3/4) 3908816900000126 a001 1762289/3940598*817138163596^(2/3) 3908816900000126 a001 1762289/3940598*(1/2+1/2*5^(1/2))^38 3908816900000126 a001 1762289/3940598*10749957122^(19/24) 3908816900000126 a001 1762289/3940598*4106118243^(19/23) 3908816900000126 a001 1762289/3940598*1568397607^(19/22) 3908816900000126 a001 1762289/3940598*599074578^(19/21) 3908816900000126 a001 1762289/3940598*228826127^(19/20) 3908816900000130 a001 14930208/103681*4870847^(13/16) 3908816900000130 a001 267914296/12752043*4870847^(15/16) 3908816900000133 a001 7778742049/20633239*4870847^(3/4) 3908816900000133 a001 12586269025/87403803*4870847^(13/16) 3908816900000134 a001 32951280099/228826127*4870847^(13/16) 3908816900000134 a001 43133785636/299537289*4870847^(13/16) 3908816900000134 a001 32264490531/224056801*4870847^(13/16) 3908816900000134 a001 591286729879/4106118243*4870847^(13/16) 3908816900000134 a001 774004377960/5374978561*4870847^(13/16) 3908816900000134 a001 4052739537881/28143753123*4870847^(13/16) 3908816900000134 a001 1515744265389/10525900321*4870847^(13/16) 3908816900000134 a001 3278735159921/22768774562*4870847^(13/16) 3908816900000134 a001 2504730781961/17393796001*4870847^(13/16) 3908816900000134 a001 956722026041/6643838879*4870847^(13/16) 3908816900000134 a001 182717648081/1268860318*4870847^(13/16) 3908816900000134 a001 139583862445/969323029*4870847^(13/16) 3908816900000134 a001 53316291173/370248451*4870847^(13/16) 3908816900000134 a001 10182505537/70711162*4870847^(13/16) 3908816900000135 a001 182717648081/3940598*4870847^(7/16) 3908816900000135 a001 7778742049/54018521*4870847^(13/16) 3908816900000136 a001 4052739537881/4870847*1860498^(4/15) 3908816900000137 a001 28382036775408/726103 3908816900000141 a001 1836311903/33385282*4870847^(7/8) 3908816900000143 a001 2971215073/20633239*4870847^(13/16) 3908816900000144 a001 1602508992/29134601*4870847^(7/8) 3908816900000144 a001 12586269025/228826127*4870847^(7/8) 3908816900000144 a001 10983760033/199691526*4870847^(7/8) 3908816900000144 a001 86267571272/1568397607*4870847^(7/8) 3908816900000144 a001 75283811239/1368706081*4870847^(7/8) 3908816900000144 a001 591286729879/10749957122*4870847^(7/8) 3908816900000144 a001 12585437040/228811001*4870847^(7/8) 3908816900000144 a001 4052739537881/73681302247*4870847^(7/8) 3908816900000144 a001 3536736619241/64300051206*4870847^(7/8) 3908816900000144 a001 6557470319842/119218851371*4870847^(7/8) 3908816900000144 a001 2504730781961/45537549124*4870847^(7/8) 3908816900000144 a001 956722026041/17393796001*4870847^(7/8) 3908816900000144 a001 365435296162/6643838879*4870847^(7/8) 3908816900000144 a001 139583862445/2537720636*4870847^(7/8) 3908816900000144 a001 53316291173/969323029*4870847^(7/8) 3908816900000144 a001 20365011074/370248451*4870847^(7/8) 3908816900000144 a001 7778742049/141422324*4870847^(7/8) 3908816900000145 a001 139583862445/7881196*4870847^(1/2) 3908816900000146 a001 2971215073/54018521*4870847^(7/8) 3908816900000151 a001 701408733/33385282*4870847^(15/16) 3908816900000153 a001 1134903170/20633239*4870847^(7/8) 3908816900000154 a001 1836311903/87403803*4870847^(15/16) 3908816900000154 a001 102287808/4868641*4870847^(15/16) 3908816900000154 a001 12586269025/599074578*4870847^(15/16) 3908816900000154 a001 32951280099/1568397607*4870847^(15/16) 3908816900000154 a001 86267571272/4106118243*4870847^(15/16) 3908816900000154 a001 225851433717/10749957122*4870847^(15/16) 3908816900000154 a001 591286729879/28143753123*4870847^(15/16) 3908816900000154 a001 1548008755920/73681302247*4870847^(15/16) 3908816900000154 a001 4052739537881/192900153618*4870847^(15/16) 3908816900000154 a001 225749145909/10745088481*4870847^(15/16) 3908816900000154 a001 6557470319842/312119004989*4870847^(15/16) 3908816900000154 a001 2504730781961/119218851371*4870847^(15/16) 3908816900000154 a001 956722026041/45537549124*4870847^(15/16) 3908816900000154 a001 365435296162/17393796001*4870847^(15/16) 3908816900000154 a001 139583862445/6643838879*4870847^(15/16) 3908816900000154 a001 53316291173/2537720636*4870847^(15/16) 3908816900000154 a001 20365011074/969323029*4870847^(15/16) 3908816900000154 a001 7778742049/370248451*4870847^(15/16) 3908816900000155 a001 2971215073/141422324*4870847^(15/16) 3908816900000156 a001 53316291173/7881196*4870847^(9/16) 3908816900000156 a001 1134903170/54018521*4870847^(15/16) 3908816900000164 a001 433494437/20633239*4870847^(15/16) 3908816900000166 a001 10182505537/3940598*4870847^(5/8) 3908816900000174 a001 2504730781961/4870847*1860498^(3/10) 3908816900000176 a001 7778742049/7881196*4870847^(11/16) 3908816900000183 a001 85146110326225/2178309 3908816900000187 a001 2971215073/7881196*4870847^(3/4) 3908816900000197 a001 567451585/3940598*4870847^(13/16) 3908816900000207 a001 433494437/7881196*4870847^(7/8) 3908816900000212 a001 1548008755920/4870847*1860498^(1/3) 3908816900000217 a001 165580141/7881196*4870847^(15/16) 3908816900000229 a001 85146110326226/2178309 3908816900000267 a001 1346269/4870847*2537720636^(13/15) 3908816900000267 a001 1346269/4870847*45537549124^(13/17) 3908816900000267 a001 1346269/4870847*14662949395604^(13/21) 3908816900000267 a001 1346269/4870847*(1/2+1/2*5^(1/2))^39 3908816900000267 a001 2178309/3010349*(1/2+1/2*5^(1/2))^37 3908816900000267 a001 1346269/4870847*192900153618^(13/18) 3908816900000267 a001 1346269/4870847*73681302247^(3/4) 3908816900000267 a001 1346269/4870847*10749957122^(13/16) 3908816900000267 a001 1346269/4870847*599074578^(13/14) 3908816900000277 a001 3536736619241/4250681*1860498^(4/15) 3908816900000287 a001 591286729879/4870847*1860498^(2/5) 3908816900000315 a001 6557470319842/12752043*1860498^(3/10) 3908816900000348 a001 10610209857723/20633239*1860498^(3/10) 3908816900000352 a001 4052739537881/12752043*1860498^(1/3) 3908816900000362 a001 225851433717/4870847*1860498^(7/15) 3908816900000364 a001 3278735159921/3940598*1860498^(4/15) 3908816900000368 a001 137769300517695/3524578 3908816900000373 a001 1515744265389/4769326*1860498^(1/3) 3908816900000374 a001 63245986/3010349*7881196^(10/11) 3908816900000380 a001 267914296/3010349*7881196^(9/11) 3908816900000386 a001 1134903170/3010349*7881196^(8/11) 3908816900000386 a001 6557470319842/20633239*1860498^(1/3) 3908816900000389 a001 2971215073/3010349*7881196^(2/3) 3908816900000391 a001 4807526976/3010349*7881196^(7/11) 3908816900000397 a001 20365011074/3010349*7881196^(6/11) 3908816900000400 a001 139583862445/4870847*1860498^(1/2) 3908816900000402 a001 4052739537881/7881196*1860498^(3/10) 3908816900000403 a001 86267571272/3010349*7881196^(5/11) 3908816900000407 a001 5702887/3010349*2537720636^(7/9) 3908816900000407 a001 5702887/3010349*17393796001^(5/7) 3908816900000407 a001 5702887/3010349*312119004989^(7/11) 3908816900000407 a001 1346269/12752043*(1/2+1/2*5^(1/2))^41 3908816900000407 a001 5702887/3010349*14662949395604^(5/9) 3908816900000407 a001 5702887/3010349*(1/2+1/2*5^(1/2))^35 3908816900000407 a001 5702887/3010349*505019158607^(5/8) 3908816900000407 a001 5702887/3010349*28143753123^(7/10) 3908816900000407 a001 5702887/3010349*599074578^(5/6) 3908816900000407 a001 5702887/3010349*228826127^(7/8) 3908816900000408 a001 365435296162/3010349*7881196^(4/11) 3908816900000410 a001 591286729879/3010349*7881196^(1/3) 3908816900000414 a001 1548008755920/3010349*7881196^(3/11) 3908816900000420 a001 6557470319842/3010349*7881196^(2/11) 3908816900000422 a001 4052739537881/710647*271443^(2/13) 3908816900000422 a001 27744977797048/709805 3908816900000424 a001 63245986/3010349*20633239^(6/7) 3908816900000424 a001 165580141/3010349*20633239^(4/5) 3908816900000425 a001 701408733/3010349*20633239^(5/7) 3908816900000426 a001 4807526976/3010349*20633239^(3/5) 3908816900000426 a001 7778742049/3010349*20633239^(4/7) 3908816900000427 a001 86267571272/3010349*20633239^(3/7) 3908816900000428 a001 516002918640/4250681*1860498^(2/5) 3908816900000428 a001 139583862445/3010349*20633239^(2/5) 3908816900000428 a001 14930352/3010349*141422324^(11/13) 3908816900000428 a001 14930352/3010349*2537720636^(11/15) 3908816900000428 a001 14930352/3010349*45537549124^(11/17) 3908816900000428 a001 14930352/3010349*312119004989^(3/5) 3908816900000428 a001 1346269/33385282*(1/2+1/2*5^(1/2))^43 3908816900000428 a001 14930352/3010349*14662949395604^(11/21) 3908816900000428 a001 14930352/3010349*(1/2+1/2*5^(1/2))^33 3908816900000428 a001 14930352/3010349*192900153618^(11/18) 3908816900000428 a001 14930352/3010349*10749957122^(11/16) 3908816900000428 a001 14930352/3010349*1568397607^(3/4) 3908816900000428 a001 14930352/3010349*599074578^(11/14) 3908816900000429 a001 956722026041/3010349*20633239^(2/7) 3908816900000430 a001 1346269*20633239^(1/5) 3908816900000430 a001 944284833567177/24157817 3908816900000430 a001 10610209857723/3010349*20633239^(1/7) 3908816900000431 a001 1346269/87403803*45537549124^(15/17) 3908816900000431 a001 1346269/87403803*312119004989^(9/11) 3908816900000431 a001 1346269/87403803*14662949395604^(5/7) 3908816900000431 a001 39088169/3010349*(1/2+1/2*5^(1/2))^31 3908816900000431 a001 39088169/3010349*9062201101803^(1/2) 3908816900000431 a001 1346269/87403803*192900153618^(5/6) 3908816900000431 a001 1346269/87403803*28143753123^(9/10) 3908816900000431 a001 1346269/87403803*10749957122^(15/16) 3908816900000431 a001 14930352/3010349*33385282^(11/12) 3908816900000431 a001 2472169789339907/63245986 3908816900000431 a001 267914296/3010349*141422324^(9/13) 3908816900000431 a001 433494437/3010349*141422324^(2/3) 3908816900000431 a001 1134903170/3010349*141422324^(8/13) 3908816900000431 a001 4807526976/3010349*141422324^(7/13) 3908816900000431 a001 20365011074/3010349*141422324^(6/13) 3908816900000431 a001 86267571272/3010349*141422324^(5/13) 3908816900000431 a001 102334155/3010349*(1/2+1/2*5^(1/2))^29 3908816900000431 a001 102334155/3010349*1322157322203^(1/2) 3908816900000431 a001 225851433717/3010349*141422324^(1/3) 3908816900000431 a001 365435296162/3010349*141422324^(4/13) 3908816900000431 a001 1548008755920/3010349*141422324^(3/13) 3908816900000431 a001 6557470319842/3010349*141422324^(2/13) 3908816900000431 a001 6472224534452544/165580141 3908816900000431 a001 267914296/3010349*2537720636^(3/5) 3908816900000431 a001 267914296/3010349*45537549124^(9/17) 3908816900000431 a001 267914296/3010349*817138163596^(9/19) 3908816900000431 a001 1346269/599074578*14662949395604^(7/9) 3908816900000431 a001 267914296/3010349*(1/2+1/2*5^(1/2))^27 3908816900000431 a001 1346269/599074578*505019158607^(7/8) 3908816900000431 a001 267914296/3010349*192900153618^(1/2) 3908816900000431 a001 267914296/3010349*10749957122^(9/16) 3908816900000431 a001 16944503814017725/433494437 3908816900000431 a001 267914296/3010349*599074578^(9/14) 3908816900000431 a001 701408733/3010349*2537720636^(5/9) 3908816900000431 a001 701408733/3010349*312119004989^(5/11) 3908816900000431 a001 1346269/1568397607*14662949395604^(17/21) 3908816900000431 a001 701408733/3010349*(1/2+1/2*5^(1/2))^25 3908816900000431 a001 1346269/1568397607*192900153618^(17/18) 3908816900000431 a001 701408733/3010349*28143753123^(1/2) 3908816900000431 a001 44361286907600631/1134903170 3908816900000431 a001 4807526976/3010349*2537720636^(7/15) 3908816900000431 a001 7778742049/3010349*2537720636^(4/9) 3908816900000431 a001 20365011074/3010349*2537720636^(2/5) 3908816900000431 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^23 3908816900000431 a001 86267571272/3010349*2537720636^(1/3) 3908816900000431 a001 365435296162/3010349*2537720636^(4/15) 3908816900000431 a001 956722026041/3010349*2537720636^(2/9) 3908816900000431 a001 1548008755920/3010349*2537720636^(1/5) 3908816900000431 a001 1836311903/3010349*4106118243^(1/2) 3908816900000431 a001 116139356908784168/2971215073 3908816900000431 a001 6557470319842/3010349*2537720636^(2/15) 3908816900000431 a001 10610209857723/3010349*2537720636^(1/9) 3908816900000431 a001 4807526976/3010349*17393796001^(3/7) 3908816900000431 a001 4807526976/3010349*45537549124^(7/17) 3908816900000431 a001 4807526976/3010349*14662949395604^(1/3) 3908816900000431 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^21 3908816900000431 a001 1346269/10749957122*3461452808002^(11/12) 3908816900000431 a001 4807526976/3010349*192900153618^(7/18) 3908816900000431 a001 4807526976/3010349*10749957122^(7/16) 3908816900000431 a001 23388983370673221/598364773 3908816900000431 a001 12586269025/3010349*817138163596^(1/3) 3908816900000431 a001 1346269/28143753123*14662949395604^(19/21) 3908816900000431 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^19 3908816900000431 a001 139583862445/3010349*17393796001^(2/7) 3908816900000431 a001 796030994547471451/20365011074 3908816900000431 a001 1346269*17393796001^(1/7) 3908816900000431 a001 32951280099/3010349*45537549124^(1/3) 3908816900000431 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^17 3908816900000431 a001 86267571272/3010349*45537549124^(5/17) 3908816900000431 a001 365435296162/3010349*45537549124^(4/17) 3908816900000431 a001 1548008755920/3010349*45537549124^(3/17) 3908816900000431 a001 2084036199823662480/53316291173 3908816900000431 a001 6557470319842/3010349*45537549124^(2/17) 3908816900000431 a001 86267571272/3010349*312119004989^(3/11) 3908816900000431 a001 86267571272/3010349*14662949395604^(5/21) 3908816900000431 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^15 3908816900000431 a001 5456077604923515989/139583862445 3908816900000431 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^13 3908816900000431 a001 10610209857723/3010349*312119004989^(1/11) 3908816900000431 a001 1548008755920/3010349*(1/2+1/2*5^(1/2))^9 3908816900000431 a001 1346269*14662949395604^(1/9) 3908816900000431 a001 10610209857723/3010349*(1/2+1/2*5^(1/2))^5 3908816900000431 a001 956722026041/3010349*(1/2+1/2*5^(1/2))^10 3908816900000431 a001 2504730781961/3010349*505019158607^(1/7) 3908816900000431 a001 1548008755920/3010349*192900153618^(1/6) 3908816900000431 a001 139583862445/3010349*14662949395604^(2/9) 3908816900000431 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^14 3908816900000431 a001 3372041405099853509/86267571272 3908816900000431 a001 2504730781961/3010349*73681302247^(2/13) 3908816900000431 a001 225851433717/3010349*73681302247^(1/4) 3908816900000431 a001 365435296162/3010349*73681302247^(3/13) 3908816900000431 a001 1346269/119218851371*14662949395604^(20/21) 3908816900000431 a001 10610209857723/3010349*28143753123^(1/10) 3908816900000431 a001 53316291173/3010349*73681302247^(4/13) 3908816900000431 a001 1288005205276191029/32951280099 3908816900000431 a001 956722026041/3010349*28143753123^(1/5) 3908816900000431 a001 20365011074/3010349*45537549124^(6/17) 3908816900000431 a001 86267571272/3010349*28143753123^(3/10) 3908816900000431 a001 20365011074/3010349*14662949395604^(2/7) 3908816900000431 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^18 3908816900000431 a001 20365011074/3010349*192900153618^(1/3) 3908816900000431 a001 6557470319842/3010349*10749957122^(1/8) 3908816900000431 a001 491974210728719578/12586269025 3908816900000431 a001 2504730781961/3010349*10749957122^(1/6) 3908816900000431 a001 1548008755920/3010349*10749957122^(3/16) 3908816900000431 a001 956722026041/3010349*10749957122^(5/24) 3908816900000431 a001 365435296162/3010349*10749957122^(1/4) 3908816900000431 a001 139583862445/3010349*10749957122^(7/24) 3908816900000431 a001 86267571272/3010349*10749957122^(5/16) 3908816900000431 a001 53316291173/3010349*10749957122^(1/3) 3908816900000431 a001 1346269/17393796001*14662949395604^(8/9) 3908816900000431 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^20 3908816900000431 a001 7778742049/3010349*505019158607^(5/14) 3908816900000431 a001 7778742049/3010349*73681302247^(5/13) 3908816900000431 a001 20365011074/3010349*10749957122^(3/8) 3908816900000431 a001 7778742049/3010349*28143753123^(2/5) 3908816900000431 a001 7778742049/3010349*10749957122^(5/12) 3908816900000431 a001 6557470319842/3010349*4106118243^(3/23) 3908816900000431 a001 187917426909967705/4807526976 3908816900000431 a001 2504730781961/3010349*4106118243^(4/23) 3908816900000431 a001 956722026041/3010349*4106118243^(5/23) 3908816900000431 a001 365435296162/3010349*4106118243^(6/23) 3908816900000431 a001 139583862445/3010349*4106118243^(7/23) 3908816900000431 a001 53316291173/3010349*4106118243^(8/23) 3908816900000431 a001 2971215073/3010349*312119004989^(2/5) 3908816900000431 a001 1346269/6643838879*14662949395604^(6/7) 3908816900000431 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^22 3908816900000431 a001 20365011074/3010349*4106118243^(9/23) 3908816900000431 a001 2971215073/3010349*10749957122^(11/24) 3908816900000431 a001 7778742049/3010349*4106118243^(10/23) 3908816900000431 a001 2971215073/3010349*4106118243^(11/23) 3908816900000431 a001 6557470319842/3010349*1568397607^(3/22) 3908816900000431 a001 71778070001183537/1836311903 3908816900000431 a001 1134903170/3010349*2537720636^(8/15) 3908816900000431 a001 2504730781961/3010349*1568397607^(2/11) 3908816900000431 a001 956722026041/3010349*1568397607^(5/22) 3908816900000431 a001 591286729879/3010349*1568397607^(1/4) 3908816900000431 a001 365435296162/3010349*1568397607^(3/11) 3908816900000431 a001 139583862445/3010349*1568397607^(7/22) 3908816900000431 a001 53316291173/3010349*1568397607^(4/11) 3908816900000431 a001 1134903170/3010349*45537549124^(8/17) 3908816900000431 a001 1346269/2537720636*23725150497407^(13/16) 3908816900000431 a001 1134903170/3010349*14662949395604^(8/21) 3908816900000431 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^24 3908816900000431 a001 1346269/2537720636*505019158607^(13/14) 3908816900000431 a001 1134903170/3010349*192900153618^(4/9) 3908816900000431 a001 1134903170/3010349*73681302247^(6/13) 3908816900000431 a001 1134903170/3010349*10749957122^(1/2) 3908816900000431 a001 20365011074/3010349*1568397607^(9/22) 3908816900000431 a001 1134903170/3010349*4106118243^(12/23) 3908816900000431 a001 7778742049/3010349*1568397607^(5/11) 3908816900000431 a001 2971215073/3010349*1568397607^(1/2) 3908816900000431 a001 1134903170/3010349*1568397607^(6/11) 3908816900000431 a001 6557470319842/3010349*599074578^(1/7) 3908816900000431 a001 27416783093582906/701408733 3908816900000431 a001 1346269*599074578^(1/6) 3908816900000431 a001 2504730781961/3010349*599074578^(4/21) 3908816900000431 a001 1548008755920/3010349*599074578^(3/14) 3908816900000431 a001 956722026041/3010349*599074578^(5/21) 3908816900000431 a001 365435296162/3010349*599074578^(2/7) 3908816900000431 a001 139583862445/3010349*599074578^(1/3) 3908816900000431 a001 86267571272/3010349*599074578^(5/14) 3908816900000431 a001 53316291173/3010349*599074578^(8/21) 3908816900000431 a001 1346269/969323029*312119004989^(10/11) 3908816900000431 a001 433494437/3010349*(1/2+1/2*5^(1/2))^26 3908816900000431 a001 1346269/969323029*3461452808002^(5/6) 3908816900000431 a001 433494437/3010349*73681302247^(1/2) 3908816900000431 a001 433494437/3010349*10749957122^(13/24) 3908816900000431 a001 433494437/3010349*4106118243^(13/23) 3908816900000431 a001 20365011074/3010349*599074578^(3/7) 3908816900000431 a001 433494437/3010349*1568397607^(13/22) 3908816900000431 a001 7778742049/3010349*599074578^(10/21) 3908816900000431 a001 4807526976/3010349*599074578^(1/2) 3908816900000431 a001 2971215073/3010349*599074578^(11/21) 3908816900000431 a001 1134903170/3010349*599074578^(4/7) 3908816900000431 a001 10610209857723/3010349*228826127^(1/8) 3908816900000431 a001 433494437/3010349*599074578^(13/21) 3908816900000431 a001 805559944581937/20608792 3908816900000431 a001 6557470319842/3010349*228826127^(3/20) 3908816900000431 a001 2504730781961/3010349*228826127^(1/5) 3908816900000431 a001 956722026041/3010349*228826127^(1/4) 3908816900000431 a001 365435296162/3010349*228826127^(3/10) 3908816900000431 a001 139583862445/3010349*228826127^(7/20) 3908816900000431 a001 86267571272/3010349*228826127^(3/8) 3908816900000431 a001 165580141/3010349*17393796001^(4/7) 3908816900000431 a001 1346269/370248451*45537549124^(16/17) 3908816900000431 a001 1346269/370248451*14662949395604^(16/21) 3908816900000431 a001 165580141/3010349*14662949395604^(4/9) 3908816900000431 a001 165580141/3010349*(1/2+1/2*5^(1/2))^28 3908816900000431 a001 1346269/370248451*192900153618^(8/9) 3908816900000431 a001 165580141/3010349*73681302247^(7/13) 3908816900000431 a001 1346269/370248451*73681302247^(12/13) 3908816900000431 a001 165580141/3010349*10749957122^(7/12) 3908816900000431 a001 165580141/3010349*4106118243^(14/23) 3908816900000431 a001 165580141/3010349*1568397607^(7/11) 3908816900000431 a001 53316291173/3010349*228826127^(2/5) 3908816900000431 a001 20365011074/3010349*228826127^(9/20) 3908816900000431 a001 165580141/3010349*599074578^(2/3) 3908816900000431 a001 7778742049/3010349*228826127^(1/2) 3908816900000431 a001 2971215073/3010349*228826127^(11/20) 3908816900000431 a001 701408733/3010349*228826127^(5/8) 3908816900000431 a001 63245986/3010349*141422324^(10/13) 3908816900000431 a001 1134903170/3010349*228826127^(3/5) 3908816900000431 a001 433494437/3010349*228826127^(13/20) 3908816900000431 a001 4000054745112637/102334155 3908816900000431 a001 165580141/3010349*228826127^(7/10) 3908816900000431 a001 6557470319842/3010349*87403803^(3/19) 3908816900000431 a001 2504730781961/3010349*87403803^(4/19) 3908816900000431 a001 956722026041/3010349*87403803^(5/19) 3908816900000432 a001 365435296162/3010349*87403803^(6/19) 3908816900000432 a001 139583862445/3010349*87403803^(7/19) 3908816900000432 a001 63245986/3010349*2537720636^(2/3) 3908816900000432 a001 63245986/3010349*45537549124^(10/17) 3908816900000432 a001 63245986/3010349*312119004989^(6/11) 3908816900000432 a001 63245986/3010349*14662949395604^(10/21) 3908816900000432 a001 63245986/3010349*(1/2+1/2*5^(1/2))^30 3908816900000432 a001 63245986/3010349*192900153618^(5/9) 3908816900000432 a001 63245986/3010349*28143753123^(3/5) 3908816900000432 a001 63245986/3010349*10749957122^(5/8) 3908816900000432 a001 1346269/141422324*10749957122^(23/24) 3908816900000432 a001 63245986/3010349*4106118243^(15/23) 3908816900000432 a001 63245986/3010349*1568397607^(15/22) 3908816900000432 a001 63245986/3010349*599074578^(5/7) 3908816900000432 a001 53316291173/3010349*87403803^(8/19) 3908816900000432 a001 20365011074/3010349*87403803^(9/19) 3908816900000432 a001 63245986/3010349*228826127^(3/4) 3908816900000432 a001 12586269025/3010349*87403803^(1/2) 3908816900000432 a001 7778742049/3010349*87403803^(10/19) 3908816900000432 a001 2971215073/3010349*87403803^(11/19) 3908816900000432 a001 1134903170/3010349*87403803^(12/19) 3908816900000432 a001 433494437/3010349*87403803^(13/19) 3908816900000432 a001 165580141/3010349*87403803^(14/19) 3908816900000432 a001 1527884955772730/39088169 3908816900000432 a001 6557470319842/3010349*33385282^(1/6) 3908816900000432 a001 63245986/3010349*87403803^(15/19) 3908816900000432 a001 2504730781961/3010349*33385282^(2/9) 3908816900000432 a001 1548008755920/3010349*33385282^(1/4) 3908816900000432 a001 956722026041/3010349*33385282^(5/18) 3908816900000433 a001 365435296162/3010349*33385282^(1/3) 3908816900000433 a001 1346269/54018521*312119004989^(4/5) 3908816900000433 a001 1346269/54018521*23725150497407^(11/16) 3908816900000433 a001 24157817/3010349*(1/2+1/2*5^(1/2))^32 3908816900000433 a001 24157817/3010349*73681302247^(8/13) 3908816900000433 a001 1346269/54018521*73681302247^(11/13) 3908816900000433 a001 24157817/3010349*10749957122^(2/3) 3908816900000433 a001 1346269/54018521*10749957122^(11/12) 3908816900000433 a001 24157817/3010349*4106118243^(16/23) 3908816900000433 a001 1346269/54018521*4106118243^(22/23) 3908816900000433 a001 24157817/3010349*1568397607^(8/11) 3908816900000433 a001 24157817/3010349*599074578^(16/21) 3908816900000433 a001 139583862445/3010349*33385282^(7/18) 3908816900000433 a001 24157817/3010349*228826127^(4/5) 3908816900000433 a001 86267571272/3010349*33385282^(5/12) 3908816900000433 a001 53316291173/3010349*33385282^(4/9) 3908816900000433 a001 20365011074/3010349*33385282^(1/2) 3908816900000433 a001 24157817/3010349*87403803^(16/19) 3908816900000433 a001 7778742049/3010349*33385282^(5/9) 3908816900000433 a001 4807526976/3010349*33385282^(7/12) 3908816900000433 a001 2971215073/3010349*33385282^(11/18) 3908816900000434 a001 1134903170/3010349*33385282^(2/3) 3908816900000434 a001 433494437/3010349*33385282^(13/18) 3908816900000434 a001 267914296/3010349*33385282^(3/4) 3908816900000434 a001 165580141/3010349*33385282^(7/9) 3908816900000434 a001 63245986/3010349*33385282^(5/6) 3908816900000435 a001 583600122205553/14930352 3908816900000436 a001 6557470319842/3010349*12752043^(3/17) 3908816900000436 a001 24157817/3010349*33385282^(8/9) 3908816900000437 a001 2504730781961/3010349*12752043^(4/17) 3908816900000438 a001 86267571272/4870847*1860498^(8/15) 3908816900000438 a001 956722026041/3010349*12752043^(5/17) 3908816900000439 a001 2504730781961/7881196*1860498^(1/3) 3908816900000440 a001 365435296162/3010349*12752043^(6/17) 3908816900000441 a001 1346269/20633239*2537720636^(14/15) 3908816900000441 a001 1346269/20633239*17393796001^(6/7) 3908816900000441 a001 1346269/20633239*45537549124^(14/17) 3908816900000441 a001 9227465/3010349*45537549124^(2/3) 3908816900000441 a001 1346269/20633239*817138163596^(14/19) 3908816900000441 a001 1346269/20633239*14662949395604^(2/3) 3908816900000441 a001 1346269/20633239*(1/2+1/2*5^(1/2))^42 3908816900000441 a001 9227465/3010349*(1/2+1/2*5^(1/2))^34 3908816900000441 a001 1346269/20633239*505019158607^(3/4) 3908816900000441 a001 1346269/20633239*192900153618^(7/9) 3908816900000441 a001 9227465/3010349*10749957122^(17/24) 3908816900000441 a001 1346269/20633239*10749957122^(7/8) 3908816900000441 a001 9227465/3010349*4106118243^(17/23) 3908816900000441 a001 1346269/20633239*4106118243^(21/23) 3908816900000441 a001 9227465/3010349*1568397607^(17/22) 3908816900000441 a001 1346269/20633239*1568397607^(21/22) 3908816900000441 a001 9227465/3010349*599074578^(17/21) 3908816900000441 a001 9227465/3010349*228826127^(17/20) 3908816900000441 a001 9227465/3010349*87403803^(17/19) 3908816900000441 a001 139583862445/3010349*12752043^(7/17) 3908816900000443 a001 53316291173/3010349*12752043^(8/17) 3908816900000443 a001 32951280099/3010349*12752043^(1/2) 3908816900000444 a001 9227465/3010349*33385282^(17/18) 3908816900000444 a001 20365011074/3010349*12752043^(9/17) 3908816900000445 a001 7778742049/3010349*12752043^(10/17) 3908816900000447 a001 2971215073/3010349*12752043^(11/17) 3908816900000448 a001 4052739537881/33385282*1860498^(2/5) 3908816900000448 a001 1134903170/3010349*12752043^(12/17) 3908816900000450 a001 433494437/3010349*12752043^(13/17) 3908816900000451 a001 165580141/3010349*12752043^(14/17) 3908816900000451 a001 3536736619241/29134601*1860498^(2/5) 3908816900000453 a001 63245986/3010349*12752043^(15/17) 3908816900000453 a001 6557470319842/54018521*1860498^(2/5) 3908816900000455 a001 24157817/3010349*12752043^(16/17) 3908816900000455 a001 222915410843929/5702887 3908816900000461 a001 2504730781961/20633239*1860498^(2/5) 3908816900000462 a001 6557470319842/3010349*4870847^(3/16) 3908816900000473 a001 2504730781961/3010349*4870847^(1/4) 3908816900000483 a001 956722026041/3010349*4870847^(5/16) 3908816900000493 a001 365435296162/3010349*4870847^(3/8) 3908816900000494 a001 3524578/3010349*141422324^(12/13) 3908816900000494 a001 1346269/7881196*2537720636^(8/9) 3908816900000494 a001 3524578/3010349*2537720636^(4/5) 3908816900000494 a001 3524578/3010349*45537549124^(12/17) 3908816900000494 a001 1346269/7881196*312119004989^(8/11) 3908816900000494 a001 1346269/7881196*(1/2+1/2*5^(1/2))^40 3908816900000494 a001 1346269/7881196*23725150497407^(5/8) 3908816900000494 a001 3524578/3010349*14662949395604^(4/7) 3908816900000494 a001 3524578/3010349*(1/2+1/2*5^(1/2))^36 3908816900000494 a001 3524578/3010349*192900153618^(2/3) 3908816900000494 a001 3524578/3010349*73681302247^(9/13) 3908816900000494 a001 1346269/7881196*73681302247^(10/13) 3908816900000494 a001 1346269/7881196*28143753123^(4/5) 3908816900000494 a001 3524578/3010349*10749957122^(3/4) 3908816900000494 a001 1346269/7881196*10749957122^(5/6) 3908816900000494 a001 3524578/3010349*4106118243^(18/23) 3908816900000494 a001 1346269/7881196*4106118243^(20/23) 3908816900000494 a001 3524578/3010349*1568397607^(9/11) 3908816900000494 a001 1346269/7881196*1568397607^(10/11) 3908816900000494 a001 3524578/3010349*599074578^(6/7) 3908816900000494 a001 1346269/7881196*599074578^(20/21) 3908816900000494 a001 3524578/3010349*228826127^(9/10) 3908816900000495 a001 3524578/3010349*87403803^(18/19) 3908816900000503 a001 591286729879/12752043*1860498^(7/15) 3908816900000503 a001 139583862445/3010349*4870847^(7/16) 3908816900000513 a001 32951280099/4870847*1860498^(3/5) 3908816900000514 a001 53316291173/3010349*4870847^(1/2) 3908816900000515 a001 956722026041/7881196*1860498^(2/5) 3908816900000523 a001 774004377960/16692641*1860498^(7/15) 3908816900000524 a001 20365011074/3010349*4870847^(9/16) 3908816900000526 a001 4052739537881/87403803*1860498^(7/15) 3908816900000527 a001 225749145909/4868641*1860498^(7/15) 3908816900000527 a001 3278735159921/70711162*1860498^(7/15) 3908816900000528 a001 2504730781961/54018521*1860498^(7/15) 3908816900000529 a001 4052739537881/1860498*710647^(3/14) 3908816900000534 a001 7778742049/3010349*4870847^(5/8) 3908816900000536 a001 956722026041/20633239*1860498^(7/15) 3908816900000541 a001 365435296162/12752043*1860498^(1/2) 3908816900000545 a001 2971215073/3010349*4870847^(11/16) 3908816900000555 a001 1134903170/3010349*4870847^(3/4) 3908816900000561 a001 956722026041/33385282*1860498^(1/2) 3908816900000564 a001 2504730781961/87403803*1860498^(1/2) 3908816900000565 a001 6557470319842/228826127*1860498^(1/2) 3908816900000565 a001 10610209857723/370248451*1860498^(1/2) 3908816900000565 a001 4052739537881/141422324*1860498^(1/2) 3908816900000565 a001 433494437/3010349*4870847^(13/16) 3908816900000566 a001 1548008755920/54018521*1860498^(1/2) 3908816900000574 a001 591286729879/20633239*1860498^(1/2) 3908816900000576 a001 165580141/3010349*4870847^(7/8) 3908816900000578 a001 75283811239/4250681*1860498^(8/15) 3908816900000586 a001 63245986/3010349*4870847^(15/16) 3908816900000588 a001 12586269025/4870847*1860498^(2/3) 3908816900000590 a001 182717648081/3940598*1860498^(7/15) 3908816900000596 a001 85146110326234/2178309 3908816900000599 a001 591286729879/33385282*1860498^(8/15) 3908816900000602 a001 516002918640/29134601*1860498^(8/15) 3908816900000602 a001 4052739537881/228826127*1860498^(8/15) 3908816900000602 a001 3536736619241/199691526*1860498^(8/15) 3908816900000602 a001 6557470319842/370248451*1860498^(8/15) 3908816900000602 a001 2504730781961/141422324*1860498^(8/15) 3908816900000604 a001 956722026041/54018521*1860498^(8/15) 3908816900000611 a001 365435296162/20633239*1860498^(8/15) 3908816900000620 a001 10610209857723/3010349*1860498^(1/6) 3908816900000626 a001 7778742049/4870847*1860498^(7/10) 3908816900000628 a001 225851433717/7881196*1860498^(1/2) 3908816900000654 a001 86267571272/12752043*1860498^(3/5) 3908816900000657 a001 6557470319842/3010349*1860498^(1/5) 3908816900000663 a001 4807526976/4870847*1860498^(11/15) 3908816900000665 a001 139583862445/7881196*1860498^(8/15) 3908816900000674 a001 32264490531/4769326*1860498^(3/5) 3908816900000677 a001 591286729879/87403803*1860498^(3/5) 3908816900000677 a001 1548008755920/228826127*1860498^(3/5) 3908816900000678 a001 4052739537881/599074578*1860498^(3/5) 3908816900000678 a001 1515744265389/224056801*1860498^(3/5) 3908816900000678 a001 6557470319842/969323029*1860498^(3/5) 3908816900000678 a001 2504730781961/370248451*1860498^(3/5) 3908816900000678 a001 956722026041/141422324*1860498^(3/5) 3908816900000679 a001 365435296162/54018521*1860498^(3/5) 3908816900000687 a001 139583862445/20633239*1860498^(3/5) 3908816900000705 a001 10610209857723/1149851*439204^(1/9) 3908816900000729 a001 10983760033/4250681*1860498^(2/3) 3908816900000732 a001 2504730781961/3010349*1860498^(4/15) 3908816900000739 a001 1836311903/4870847*1860498^(4/5) 3908816900000740 a001 53316291173/7881196*1860498^(3/5) 3908816900000749 a001 43133785636/16692641*1860498^(2/3) 3908816900000752 a001 75283811239/29134601*1860498^(2/3) 3908816900000753 a001 591286729879/228826127*1860498^(2/3) 3908816900000753 a001 86000486440/33281921*1860498^(2/3) 3908816900000753 a001 4052739537881/1568397607*1860498^(2/3) 3908816900000753 a001 3536736619241/1368706081*1860498^(2/3) 3908816900000753 a001 3278735159921/1268860318*1860498^(2/3) 3908816900000753 a001 2504730781961/969323029*1860498^(2/3) 3908816900000753 a001 956722026041/370248451*1860498^(2/3) 3908816900000753 a001 182717648081/70711162*1860498^(2/3) 3908816900000754 a001 139583862445/54018521*1860498^(2/3) 3908816900000762 a001 53316291173/20633239*1860498^(2/3) 3908816900000766 a001 20365011074/12752043*1860498^(7/10) 3908816900000770 a001 1548008755920/3010349*1860498^(3/10) 3908816900000776 a001 1134903170/4870847*1860498^(5/6) 3908816900000787 a001 53316291173/33385282*1860498^(7/10) 3908816900000790 a001 139583862445/87403803*1860498^(7/10) 3908816900000790 a001 365435296162/228826127*1860498^(7/10) 3908816900000790 a001 956722026041/599074578*1860498^(7/10) 3908816900000790 a001 2504730781961/1568397607*1860498^(7/10) 3908816900000790 a001 6557470319842/4106118243*1860498^(7/10) 3908816900000790 a001 10610209857723/6643838879*1860498^(7/10) 3908816900000790 a001 4052739537881/2537720636*1860498^(7/10) 3908816900000790 a001 1548008755920/969323029*1860498^(7/10) 3908816900000791 a001 591286729879/370248451*1860498^(7/10) 3908816900000791 a001 225851433717/141422324*1860498^(7/10) 3908816900000792 a001 86267571272/54018521*1860498^(7/10) 3908816900000800 a001 32951280099/20633239*1860498^(7/10) 3908816900000804 a001 12586269025/12752043*1860498^(11/15) 3908816900000806 a001 2504730781961/1860498*710647^(1/4) 3908816900000808 a001 956722026041/3010349*1860498^(1/3) 3908816900000814 a001 701408733/4870847*1860498^(13/15) 3908816900000816 a001 10182505537/3940598*1860498^(2/3) 3908816900000825 a001 32951280099/33385282*1860498^(11/15) 3908816900000828 a001 86267571272/87403803*1860498^(11/15) 3908816900000828 a001 225851433717/228826127*1860498^(11/15) 3908816900000828 a001 591286729879/599074578*1860498^(11/15) 3908816900000828 a001 1548008755920/1568397607*1860498^(11/15) 3908816900000828 a001 4052739537881/4106118243*1860498^(11/15) 3908816900000828 a001 4807525989/4870846*1860498^(11/15) 3908816900000828 a001 6557470319842/6643838879*1860498^(11/15) 3908816900000828 a001 2504730781961/2537720636*1860498^(11/15) 3908816900000828 a001 956722026041/969323029*1860498^(11/15) 3908816900000828 a001 365435296162/370248451*1860498^(11/15) 3908816900000828 a001 139583862445/141422324*1860498^(11/15) 3908816900000829 a001 53316291173/54018521*1860498^(11/15) 3908816900000837 a001 20365011074/20633239*1860498^(11/15) 3908816900000852 a001 433494437/4870847*1860498^(9/10) 3908816900000853 a001 12586269025/7881196*1860498^(7/10) 3908816900000863 a001 1346269/3010349*817138163596^(2/3) 3908816900000863 a001 1346269/3010349*(1/2+1/2*5^(1/2))^38 3908816900000863 a001 1346269/3010349*10749957122^(19/24) 3908816900000863 a001 1346269/3010349*4106118243^(19/23) 3908816900000863 a001 1346269/3010349*1568397607^(19/22) 3908816900000863 a001 1346269/3010349*599074578^(19/21) 3908816900000863 a001 1346269/3010349*228826127^(19/20) 3908816900000879 a001 1602508992/4250681*1860498^(4/5) 3908816900000883 a001 365435296162/3010349*1860498^(2/5) 3908816900000889 a001 267914296/4870847*1860498^(14/15) 3908816900000891 a001 7778742049/7881196*1860498^(11/15) 3908816900000900 a001 12586269025/33385282*1860498^(4/5) 3908816900000903 a001 10983760033/29134601*1860498^(4/5) 3908816900000903 a001 86267571272/228826127*1860498^(4/5) 3908816900000903 a001 267913919/710646*1860498^(4/5) 3908816900000903 a001 591286729879/1568397607*1860498^(4/5) 3908816900000903 a001 516002918640/1368706081*1860498^(4/5) 3908816900000903 a001 4052739537881/10749957122*1860498^(4/5) 3908816900000903 a001 3536736619241/9381251041*1860498^(4/5) 3908816900000903 a001 6557470319842/17393796001*1860498^(4/5) 3908816900000903 a001 2504730781961/6643838879*1860498^(4/5) 3908816900000903 a001 956722026041/2537720636*1860498^(4/5) 3908816900000903 a001 365435296162/969323029*1860498^(4/5) 3908816900000903 a001 139583862445/370248451*1860498^(4/5) 3908816900000904 a001 53316291173/141422324*1860498^(4/5) 3908816900000905 a001 20365011074/54018521*1860498^(4/5) 3908816900000913 a001 7778742049/20633239*1860498^(4/5) 3908816900000917 a001 2971215073/12752043*1860498^(5/6) 3908816900000938 a001 7778742049/33385282*1860498^(5/6) 3908816900000941 a001 20365011074/87403803*1860498^(5/6) 3908816900000941 a001 53316291173/228826127*1860498^(5/6) 3908816900000941 a001 139583862445/599074578*1860498^(5/6) 3908816900000941 a001 365435296162/1568397607*1860498^(5/6) 3908816900000941 a001 956722026041/4106118243*1860498^(5/6) 3908816900000941 a001 2504730781961/10749957122*1860498^(5/6) 3908816900000941 a001 6557470319842/28143753123*1860498^(5/6) 3908816900000941 a001 10610209857723/45537549124*1860498^(5/6) 3908816900000941 a001 4052739537881/17393796001*1860498^(5/6) 3908816900000941 a001 1548008755920/6643838879*1860498^(5/6) 3908816900000941 a001 591286729879/2537720636*1860498^(5/6) 3908816900000941 a001 225851433717/969323029*1860498^(5/6) 3908816900000941 a001 86267571272/370248451*1860498^(5/6) 3908816900000941 a001 63246219/271444*1860498^(5/6) 3908816900000942 a001 12586269025/54018521*1860498^(5/6) 3908816900000950 a001 4807526976/20633239*1860498^(5/6) 3908816900000955 a001 1836311903/12752043*1860498^(13/15) 3908816900000958 a001 139583862445/3010349*1860498^(7/15) 3908816900000961 a001 4065365016846/104005 3908816900000966 a001 2971215073/7881196*1860498^(4/5) 3908816900000975 a001 14930208/103681*1860498^(13/15) 3908816900000978 a001 12586269025/87403803*1860498^(13/15) 3908816900000979 a001 32951280099/228826127*1860498^(13/15) 3908816900000979 a001 43133785636/299537289*1860498^(13/15) 3908816900000979 a001 32264490531/224056801*1860498^(13/15) 3908816900000979 a001 591286729879/4106118243*1860498^(13/15) 3908816900000979 a001 774004377960/5374978561*1860498^(13/15) 3908816900000979 a001 4052739537881/28143753123*1860498^(13/15) 3908816900000979 a001 1515744265389/10525900321*1860498^(13/15) 3908816900000979 a001 3278735159921/22768774562*1860498^(13/15) 3908816900000979 a001 2504730781961/17393796001*1860498^(13/15) 3908816900000979 a001 956722026041/6643838879*1860498^(13/15) 3908816900000979 a001 182717648081/1268860318*1860498^(13/15) 3908816900000979 a001 139583862445/969323029*1860498^(13/15) 3908816900000979 a001 53316291173/370248451*1860498^(13/15) 3908816900000979 a001 10182505537/70711162*1860498^(13/15) 3908816900000980 a001 7778742049/54018521*1860498^(13/15) 3908816900000988 a001 2971215073/20633239*1860498^(13/15) 3908816900000992 a001 1134903170/12752043*1860498^(9/10) 3908816900000996 a001 86267571272/3010349*1860498^(1/2) 3908816900001004 a001 1836311903/7881196*1860498^(5/6) 3908816900001013 a001 2971215073/33385282*1860498^(9/10) 3908816900001016 a001 7778742049/87403803*1860498^(9/10) 3908816900001016 a001 20365011074/228826127*1860498^(9/10) 3908816900001016 a001 53316291173/599074578*1860498^(9/10) 3908816900001016 a001 139583862445/1568397607*1860498^(9/10) 3908816900001016 a001 365435296162/4106118243*1860498^(9/10) 3908816900001016 a001 956722026041/10749957122*1860498^(9/10) 3908816900001016 a001 2504730781961/28143753123*1860498^(9/10) 3908816900001016 a001 6557470319842/73681302247*1860498^(9/10) 3908816900001016 a001 10610209857723/119218851371*1860498^(9/10) 3908816900001016 a001 4052739537881/45537549124*1860498^(9/10) 3908816900001016 a001 1548008755920/17393796001*1860498^(9/10) 3908816900001016 a001 591286729879/6643838879*1860498^(9/10) 3908816900001016 a001 225851433717/2537720636*1860498^(9/10) 3908816900001016 a001 86267571272/969323029*1860498^(9/10) 3908816900001016 a001 32951280099/370248451*1860498^(9/10) 3908816900001017 a001 12586269025/141422324*1860498^(9/10) 3908816900001018 a001 4807526976/54018521*1860498^(9/10) 3908816900001026 a001 1836311903/20633239*1860498^(9/10) 3908816900001030 a001 233802911/4250681*1860498^(14/15) 3908816900001034 a001 53316291173/3010349*1860498^(8/15) 3908816900001042 a001 567451585/3940598*1860498^(13/15) 3908816900001050 a001 1836311903/33385282*1860498^(14/15) 3908816900001053 a001 1602508992/29134601*1860498^(14/15) 3908816900001054 a001 12586269025/228826127*1860498^(14/15) 3908816900001054 a001 10983760033/199691526*1860498^(14/15) 3908816900001054 a001 86267571272/1568397607*1860498^(14/15) 3908816900001054 a001 75283811239/1368706081*1860498^(14/15) 3908816900001054 a001 591286729879/10749957122*1860498^(14/15) 3908816900001054 a001 12585437040/228811001*1860498^(14/15) 3908816900001054 a001 4052739537881/73681302247*1860498^(14/15) 3908816900001054 a001 3536736619241/64300051206*1860498^(14/15) 3908816900001054 a001 6557470319842/119218851371*1860498^(14/15) 3908816900001054 a001 2504730781961/45537549124*1860498^(14/15) 3908816900001054 a001 956722026041/17393796001*1860498^(14/15) 3908816900001054 a001 365435296162/6643838879*1860498^(14/15) 3908816900001054 a001 139583862445/2537720636*1860498^(14/15) 3908816900001054 a001 53316291173/969323029*1860498^(14/15) 3908816900001054 a001 20365011074/370248451*1860498^(14/15) 3908816900001054 a001 7778742049/141422324*1860498^(14/15) 3908816900001055 a001 2971215073/54018521*1860498^(14/15) 3908816900001063 a001 1134903170/20633239*1860498^(14/15) 3908816900001079 a001 3524667/39604*1860498^(9/10) 3908816900001081 a001 32522920134769/832040 3908816900001082 a001 832040*710647^(2/7) 3908816900001109 a001 20365011074/3010349*1860498^(3/5) 3908816900001117 a001 433494437/7881196*1860498^(14/15) 3908816900001184 a001 7778742049/3010349*1860498^(2/3) 3908816900001201 a001 3252292013477/83204 3908816900001222 a001 4807526976/3010349*1860498^(7/10) 3908816900001259 a001 2971215073/3010349*1860498^(11/15) 3908816900001335 a001 1134903170/3010349*1860498^(4/5) 3908816900001372 a001 701408733/3010349*1860498^(5/6) 3908816900001410 a001 433494437/3010349*1860498^(13/15) 3908816900001448 a001 267914296/3010349*1860498^(9/10) 3908816900001485 a001 165580141/3010349*1860498^(14/15) 3908816900001494 a001 2178309*710647^(3/14) 3908816900001562 a001 32522920134773/832040 3908816900001635 a001 591286729879/1860498*710647^(5/14) 3908816900001770 a001 6557470319842/4870847*710647^(1/4) 3908816900001827 a001 514229/1860498*2537720636^(13/15) 3908816900001827 a001 514229/1860498*45537549124^(13/17) 3908816900001827 a001 514229/1860498*14662949395604^(13/21) 3908816900001827 a001 514229/1860498*(1/2+1/2*5^(1/2))^39 3908816900001827 a001 832040/1149851*(1/2+1/2*5^(1/2))^37 3908816900001827 a001 514229/1860498*192900153618^(13/18) 3908816900001827 a001 514229/1860498*73681302247^(3/4) 3908816900001827 a001 514229/1860498*10749957122^(13/16) 3908816900001827 a001 514229/1860498*599074578^(13/14) 3908816900001998 a001 10610209857723/7881196*710647^(1/4) 3908816900002047 a001 4052739537881/4870847*710647^(2/7) 3908816900002090 a001 6557470319842/3010349*710647^(3/14) 3908816900002187 a001 3536736619241/4250681*710647^(2/7) 3908816900002188 a001 75283811239/620166*710647^(3/7) 3908816900002252 a001 165580141/439204*439204^(8/9) 3908816900002274 a001 3278735159921/3940598*710647^(2/7) 3908816900002366 a001 1346269*710647^(1/4) 3908816900002525 a001 52623190191495/1346269 3908816900002600 a001 1548008755920/4870847*710647^(5/14) 3908816900002643 a001 2504730781961/3010349*710647^(2/7) 3908816900002740 a001 4052739537881/12752043*710647^(5/14) 3908816900002741 a001 43133785636/930249*710647^(1/2) 3908816900002761 a001 1515744265389/4769326*710647^(5/14) 3908816900002773 a001 6557470319842/20633239*710647^(5/14) 3908816900002792 a001 2178309/1149851*2537720636^(7/9) 3908816900002792 a001 2178309/1149851*17393796001^(5/7) 3908816900002792 a001 2178309/1149851*312119004989^(7/11) 3908816900002792 a001 514229/4870847*(1/2+1/2*5^(1/2))^41 3908816900002792 a001 2178309/1149851*14662949395604^(5/9) 3908816900002792 a001 2178309/1149851*(1/2+1/2*5^(1/2))^35 3908816900002792 a001 2178309/1149851*505019158607^(5/8) 3908816900002792 a001 2178309/1149851*28143753123^(7/10) 3908816900002792 a001 2178309/1149851*599074578^(5/6) 3908816900002792 a001 2178309/1149851*228826127^(7/8) 3908816900002827 a001 2504730781961/7881196*710647^(5/14) 3908816900002893 a001 68884650258892/1762289 3908816900002901 a001 24157817/1149851*7881196^(10/11) 3908816900002905 a001 102334155/1149851*7881196^(9/11) 3908816900002911 a001 433494437/1149851*7881196^(8/11) 3908816900002914 a001 1134903170/1149851*7881196^(2/3) 3908816900002916 a001 1836311903/1149851*7881196^(7/11) 3908816900002922 a001 7778742049/1149851*7881196^(6/11) 3908816900002928 a001 32951280099/1149851*7881196^(5/11) 3908816900002932 a001 5702887/1149851*141422324^(11/13) 3908816900002932 a001 5702887/1149851*2537720636^(11/15) 3908816900002932 a001 5702887/1149851*45537549124^(11/17) 3908816900002932 a001 5702887/1149851*312119004989^(3/5) 3908816900002932 a001 514229/12752043*(1/2+1/2*5^(1/2))^43 3908816900002932 a001 5702887/1149851*14662949395604^(11/21) 3908816900002932 a001 5702887/1149851*(1/2+1/2*5^(1/2))^33 3908816900002932 a001 5702887/1149851*192900153618^(11/18) 3908816900002932 a001 5702887/1149851*10749957122^(11/16) 3908816900002932 a001 5702887/1149851*1568397607^(3/4) 3908816900002932 a001 5702887/1149851*599074578^(11/14) 3908816900002934 a001 139583862445/1149851*7881196^(4/11) 3908816900002935 a001 225851433717/1149851*7881196^(1/3) 3908816900002936 a001 5702887/1149851*33385282^(11/12) 3908816900002939 a001 514229*7881196^(3/11) 3908816900002945 a001 2504730781961/1149851*7881196^(2/11) 3908816900002947 a001 360684711361857/9227465 3908816900002949 a001 63245986/1149851*20633239^(4/5) 3908816900002950 a001 267914296/1149851*20633239^(5/7) 3908816900002950 a001 24157817/1149851*20633239^(6/7) 3908816900002951 a001 10610209857723/1149851*7881196^(1/11) 3908816900002951 a001 1836311903/1149851*20633239^(3/5) 3908816900002951 a001 2971215073/1149851*20633239^(4/7) 3908816900002952 a001 32951280099/1149851*20633239^(3/7) 3908816900002953 a001 53316291173/1149851*20633239^(2/5) 3908816900002953 a001 514229/33385282*45537549124^(15/17) 3908816900002953 a001 514229/33385282*312119004989^(9/11) 3908816900002953 a001 514229/33385282*14662949395604^(5/7) 3908816900002953 a001 514229/33385282*(1/2+1/2*5^(1/2))^45 3908816900002953 a001 14930352/1149851*(1/2+1/2*5^(1/2))^31 3908816900002953 a001 14930352/1149851*9062201101803^(1/2) 3908816900002953 a001 514229/33385282*192900153618^(5/6) 3908816900002953 a001 514229/33385282*28143753123^(9/10) 3908816900002953 a001 514229/33385282*10749957122^(15/16) 3908816900002954 a001 365435296162/1149851*20633239^(2/7) 3908816900002955 a001 1548008755920/1149851*20633239^(1/5) 3908816900002955 a001 944284833567787/24157817 3908816900002955 a001 4052739537881/1149851*20633239^(1/7) 3908816900002956 a001 39088169/1149851*(1/2+1/2*5^(1/2))^29 3908816900002956 a001 39088169/1149851*1322157322203^(1/2) 3908816900002956 a001 102334155/1149851*141422324^(9/13) 3908816900002956 a001 1236084894670752/31622993 3908816900002956 a001 433494437/1149851*141422324^(8/13) 3908816900002956 a001 1836311903/1149851*141422324^(7/13) 3908816900002956 a001 165580141/1149851*141422324^(2/3) 3908816900002956 a001 7778742049/1149851*141422324^(6/13) 3908816900002956 a001 32951280099/1149851*141422324^(5/13) 3908816900002956 a001 102334155/1149851*2537720636^(3/5) 3908816900002956 a001 102334155/1149851*45537549124^(9/17) 3908816900002956 a001 102334155/1149851*14662949395604^(3/7) 3908816900002956 a001 102334155/1149851*(1/2+1/2*5^(1/2))^27 3908816900002956 a001 514229/228826127*505019158607^(7/8) 3908816900002956 a001 102334155/1149851*192900153618^(1/2) 3908816900002956 a001 102334155/1149851*10749957122^(9/16) 3908816900002956 a001 102334155/1149851*599074578^(9/14) 3908816900002956 a001 86267571272/1149851*141422324^(1/3) 3908816900002956 a001 139583862445/1149851*141422324^(4/13) 3908816900002956 a001 514229*141422324^(3/13) 3908816900002956 a001 2504730781961/1149851*141422324^(2/13) 3908816900002956 a001 6472224534456725/165580141 3908816900002956 a001 10610209857723/1149851*141422324^(1/13) 3908816900002956 a001 267914296/1149851*2537720636^(5/9) 3908816900002956 a001 267914296/1149851*312119004989^(5/11) 3908816900002956 a001 514229/599074578*14662949395604^(17/21) 3908816900002956 a001 267914296/1149851*(1/2+1/2*5^(1/2))^25 3908816900002956 a001 267914296/1149851*3461452808002^(5/12) 3908816900002956 a001 514229/599074578*192900153618^(17/18) 3908816900002956 a001 267914296/1149851*28143753123^(1/2) 3908816900002956 a001 16944503814028671/433494437 3908816900002956 a001 701408733/1149851*(1/2+1/2*5^(1/2))^23 3908816900002956 a001 701408733/1149851*4106118243^(1/2) 3908816900002956 a001 1304743732577332/33379505 3908816900002956 a001 1836311903/1149851*2537720636^(7/15) 3908816900002956 a001 1836311903/1149851*17393796001^(3/7) 3908816900002956 a001 1836311903/1149851*45537549124^(7/17) 3908816900002956 a001 514229/4106118243*3461452808002^(11/12) 3908816900002956 a001 1836311903/1149851*14662949395604^(1/3) 3908816900002956 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^21 3908816900002956 a001 1836311903/1149851*192900153618^(7/18) 3908816900002956 a001 7778742049/1149851*2537720636^(2/5) 3908816900002956 a001 1836311903/1149851*10749957122^(7/16) 3908816900002956 a001 32951280099/1149851*2537720636^(1/3) 3908816900002956 a001 2971215073/1149851*2537720636^(4/9) 3908816900002956 a001 139583862445/1149851*2537720636^(4/15) 3908816900002956 a001 365435296162/1149851*2537720636^(2/9) 3908816900002956 a001 514229*2537720636^(1/5) 3908816900002956 a001 116139356908859193/2971215073 3908816900002956 a001 2504730781961/1149851*2537720636^(2/15) 3908816900002956 a001 4052739537881/1149851*2537720636^(1/9) 3908816900002956 a001 10610209857723/1149851*2537720636^(1/15) 3908816900002956 a001 4807526976/1149851*817138163596^(1/3) 3908816900002956 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^19 3908816900002956 a001 304056783818948291/7778742049 3908816900002956 a001 12586269025/1149851*45537549124^(1/3) 3908816900002956 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^17 3908816900002956 a001 53316291173/1149851*17393796001^(2/7) 3908816900002956 a001 398015497273992840/10182505537 3908816900002956 a001 1548008755920/1149851*17393796001^(1/7) 3908816900002956 a001 32951280099/1149851*45537549124^(5/17) 3908816900002956 a001 32951280099/1149851*312119004989^(3/11) 3908816900002956 a001 32951280099/1149851*14662949395604^(5/21) 3908816900002956 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^15 3908816900002956 a001 32951280099/1149851*192900153618^(5/18) 3908816900002956 a001 139583862445/1149851*45537549124^(4/17) 3908816900002956 a001 514229*45537549124^(3/17) 3908816900002956 a001 2084036199825008749/53316291173 3908816900002956 a001 2504730781961/1149851*45537549124^(2/17) 3908816900002956 a001 10610209857723/1149851*45537549124^(1/17) 3908816900002956 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^13 3908816900002956 a001 5456077604927040567/139583862445 3908816900002956 a001 225851433717/1149851*312119004989^(1/5) 3908816900002956 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^11 3908816900002956 a001 4052739537881/1149851*(1/2+1/2*5^(1/2))^5 3908816900002956 a001 10610209857723/1149851*14662949395604^(1/21) 3908816900002956 a001 10610209857723/1149851*(1/2+1/2*5^(1/2))^3 3908816900002956 a001 6557470319842/1149851*(1/2+1/2*5^(1/2))^4 3908816900002956 a001 2504730781961/1149851*14662949395604^(2/21) 3908816900002956 a001 2504730781961/1149851*(1/2+1/2*5^(1/2))^6 3908816900002956 a001 956722026041/1149851*(1/2+1/2*5^(1/2))^8 3908816900002956 a001 10610209857723/1149851*192900153618^(1/18) 3908816900002956 a001 365435296162/1149851*(1/2+1/2*5^(1/2))^10 3908816900002956 a001 514229*192900153618^(1/6) 3908816900002956 a001 139583862445/1149851*817138163596^(4/19) 3908816900002956 a001 139583862445/1149851*14662949395604^(4/21) 3908816900002956 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^12 3908816900002956 a001 6557470319842/1149851*73681302247^(1/13) 3908816900002956 a001 139583862445/1149851*192900153618^(2/9) 3908816900002956 a001 86267571272/1149851*73681302247^(1/4) 3908816900002956 a001 99177688385353877/2537281508 3908816900002956 a001 956722026041/1149851*73681302247^(2/13) 3908816900002956 a001 139583862445/1149851*73681302247^(3/13) 3908816900002956 a001 53316291173/1149851*14662949395604^(2/9) 3908816900002956 a001 53316291173/1149851*505019158607^(1/4) 3908816900002956 a001 4052739537881/1149851*28143753123^(1/10) 3908816900002956 a001 1288005205277023069/32951280099 3908816900002956 a001 32951280099/1149851*28143753123^(3/10) 3908816900002956 a001 365435296162/1149851*28143753123^(1/5) 3908816900002956 a001 514229/45537549124*14662949395604^(20/21) 3908816900002956 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^16 3908816900002956 a001 20365011074/1149851*23725150497407^(1/4) 3908816900002956 a001 20365011074/1149851*73681302247^(4/13) 3908816900002956 a001 10610209857723/1149851*10749957122^(1/16) 3908816900002956 a001 6557470319842/1149851*10749957122^(1/12) 3908816900002956 a001 2504730781961/1149851*10749957122^(1/8) 3908816900002956 a001 491974210729037389/12586269025 3908816900002956 a001 956722026041/1149851*10749957122^(1/6) 3908816900002956 a001 514229*10749957122^(3/16) 3908816900002956 a001 365435296162/1149851*10749957122^(5/24) 3908816900002956 a001 139583862445/1149851*10749957122^(1/4) 3908816900002956 a001 32951280099/1149851*10749957122^(5/16) 3908816900002956 a001 53316291173/1149851*10749957122^(7/24) 3908816900002956 a001 7778742049/1149851*45537549124^(6/17) 3908816900002956 a001 7778742049/1149851*14662949395604^(2/7) 3908816900002956 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^18 3908816900002956 a001 7778742049/1149851*192900153618^(1/3) 3908816900002956 a001 20365011074/1149851*10749957122^(1/3) 3908816900002956 a001 6557470319842/1149851*4106118243^(2/23) 3908816900002956 a001 7778742049/1149851*10749957122^(3/8) 3908816900002956 a001 2504730781961/1149851*4106118243^(3/23) 3908816900002956 a001 93958713455044549/2403763488 3908816900002956 a001 956722026041/1149851*4106118243^(4/23) 3908816900002956 a001 365435296162/1149851*4106118243^(5/23) 3908816900002956 a001 139583862445/1149851*4106118243^(6/23) 3908816900002956 a001 53316291173/1149851*4106118243^(7/23) 3908816900002956 a001 20365011074/1149851*4106118243^(8/23) 3908816900002956 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^20 3908816900002956 a001 2971215073/1149851*23725150497407^(5/16) 3908816900002956 a001 2971215073/1149851*505019158607^(5/14) 3908816900002956 a001 2971215073/1149851*73681302247^(5/13) 3908816900002956 a001 2971215073/1149851*28143753123^(2/5) 3908816900002956 a001 2971215073/1149851*10749957122^(5/12) 3908816900002956 a001 7778742049/1149851*4106118243^(9/23) 3908816900002956 a001 6557470319842/1149851*1568397607^(1/11) 3908816900002956 a001 2971215073/1149851*4106118243^(10/23) 3908816900002956 a001 2504730781961/1149851*1568397607^(3/22) 3908816900002956 a001 71778070001229905/1836311903 3908816900002956 a001 956722026041/1149851*1568397607^(2/11) 3908816900002956 a001 365435296162/1149851*1568397607^(5/22) 3908816900002956 a001 225851433717/1149851*1568397607^(1/4) 3908816900002956 a001 139583862445/1149851*1568397607^(3/11) 3908816900002956 a001 53316291173/1149851*1568397607^(7/22) 3908816900002956 a001 20365011074/1149851*1568397607^(4/11) 3908816900002956 a001 1134903170/1149851*312119004989^(2/5) 3908816900002956 a001 514229/2537720636*14662949395604^(6/7) 3908816900002956 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^22 3908816900002956 a001 1134903170/1149851*10749957122^(11/24) 3908816900002956 a001 7778742049/1149851*1568397607^(9/22) 3908816900002956 a001 1134903170/1149851*4106118243^(11/23) 3908816900002956 a001 10610209857723/1149851*599074578^(1/14) 3908816900002956 a001 2971215073/1149851*1568397607^(5/11) 3908816900002956 a001 6557470319842/1149851*599074578^(2/21) 3908816900002956 a001 1134903170/1149851*1568397607^(1/2) 3908816900002956 a001 2504730781961/1149851*599074578^(1/7) 3908816900002956 a001 27416783093600617/701408733 3908816900002956 a001 1548008755920/1149851*599074578^(1/6) 3908816900002956 a001 956722026041/1149851*599074578^(4/21) 3908816900002956 a001 514229*599074578^(3/14) 3908816900002956 a001 365435296162/1149851*599074578^(5/21) 3908816900002956 a001 139583862445/1149851*599074578^(2/7) 3908816900002956 a001 53316291173/1149851*599074578^(1/3) 3908816900002956 a001 433494437/1149851*2537720636^(8/15) 3908816900002956 a001 32951280099/1149851*599074578^(5/14) 3908816900002956 a001 20365011074/1149851*599074578^(8/21) 3908816900002956 a001 433494437/1149851*45537549124^(8/17) 3908816900002956 a001 433494437/1149851*14662949395604^(8/21) 3908816900002956 a001 433494437/1149851*(1/2+1/2*5^(1/2))^24 3908816900002956 a001 514229/969323029*505019158607^(13/14) 3908816900002956 a001 433494437/1149851*192900153618^(4/9) 3908816900002956 a001 433494437/1149851*73681302247^(6/13) 3908816900002956 a001 433494437/1149851*10749957122^(1/2) 3908816900002956 a001 433494437/1149851*4106118243^(12/23) 3908816900002956 a001 7778742049/1149851*599074578^(3/7) 3908816900002956 a001 433494437/1149851*1568397607^(6/11) 3908816900002956 a001 1836311903/1149851*599074578^(1/2) 3908816900002956 a001 2971215073/1149851*599074578^(10/21) 3908816900002956 a001 1134903170/1149851*599074578^(11/21) 3908816900002956 a001 6557470319842/1149851*228826127^(1/10) 3908816900002956 a001 4052739537881/1149851*228826127^(1/8) 3908816900002956 a001 433494437/1149851*599074578^(4/7) 3908816900002956 a001 5236139639785973/133957148 3908816900002956 a001 2504730781961/1149851*228826127^(3/20) 3908816900002956 a001 956722026041/1149851*228826127^(1/5) 3908816900002956 a001 365435296162/1149851*228826127^(1/4) 3908816900002956 a001 139583862445/1149851*228826127^(3/10) 3908816900002956 a001 53316291173/1149851*228826127^(7/20) 3908816900002956 a001 32951280099/1149851*228826127^(3/8) 3908816900002956 a001 514229/370248451*312119004989^(10/11) 3908816900002956 a001 514229/370248451*3461452808002^(5/6) 3908816900002956 a001 165580141/1149851*(1/2+1/2*5^(1/2))^26 3908816900002956 a001 165580141/1149851*73681302247^(1/2) 3908816900002956 a001 165580141/1149851*10749957122^(13/24) 3908816900002956 a001 165580141/1149851*4106118243^(13/23) 3908816900002956 a001 165580141/1149851*1568397607^(13/22) 3908816900002956 a001 20365011074/1149851*228826127^(2/5) 3908816900002956 a001 7778742049/1149851*228826127^(9/20) 3908816900002956 a001 165580141/1149851*599074578^(13/21) 3908816900002956 a001 267914296/1149851*228826127^(5/8) 3908816900002956 a001 2971215073/1149851*228826127^(1/2) 3908816900002956 a001 1134903170/1149851*228826127^(11/20) 3908816900002956 a001 433494437/1149851*228826127^(3/5) 3908816900002956 a001 6557470319842/1149851*87403803^(2/19) 3908816900002956 a001 4000054745115221/102334155 3908816900002956 a001 165580141/1149851*228826127^(13/20) 3908816900002956 a001 2504730781961/1149851*87403803^(3/19) 3908816900002957 a001 956722026041/1149851*87403803^(4/19) 3908816900002957 a001 365435296162/1149851*87403803^(5/19) 3908816900002957 a001 139583862445/1149851*87403803^(6/19) 3908816900002957 a001 53316291173/1149851*87403803^(7/19) 3908816900002957 a001 63245986/1149851*17393796001^(4/7) 3908816900002957 a001 514229/141422324*45537549124^(16/17) 3908816900002957 a001 514229/141422324*14662949395604^(16/21) 3908816900002957 a001 63245986/1149851*(1/2+1/2*5^(1/2))^28 3908816900002957 a001 63245986/1149851*505019158607^(1/2) 3908816900002957 a001 514229/141422324*192900153618^(8/9) 3908816900002957 a001 63245986/1149851*73681302247^(7/13) 3908816900002957 a001 514229/141422324*73681302247^(12/13) 3908816900002957 a001 63245986/1149851*10749957122^(7/12) 3908816900002957 a001 63245986/1149851*4106118243^(14/23) 3908816900002957 a001 63245986/1149851*1568397607^(7/11) 3908816900002957 a001 63245986/1149851*599074578^(2/3) 3908816900002957 a001 20365011074/1149851*87403803^(8/19) 3908816900002957 a001 7778742049/1149851*87403803^(9/19) 3908816900002957 a001 63245986/1149851*228826127^(7/10) 3908816900002957 a001 4807526976/1149851*87403803^(1/2) 3908816900002957 a001 2971215073/1149851*87403803^(10/19) 3908816900002957 a001 10610209857723/1149851*33385282^(1/12) 3908816900002957 a001 1134903170/1149851*87403803^(11/19) 3908816900002957 a001 433494437/1149851*87403803^(12/19) 3908816900002957 a001 165580141/1149851*87403803^(13/19) 3908816900002957 a001 6557470319842/1149851*33385282^(1/9) 3908816900002957 a001 1527884955773717/39088169 3908816900002957 a001 63245986/1149851*87403803^(14/19) 3908816900002957 a001 2504730781961/1149851*33385282^(1/6) 3908816900002957 a001 956722026041/1149851*33385282^(2/9) 3908816900002957 a001 514229*33385282^(1/4) 3908816900002957 a001 365435296162/1149851*33385282^(5/18) 3908816900002958 a001 139583862445/1149851*33385282^(1/3) 3908816900002958 a001 24157817/1149851*141422324^(10/13) 3908816900002958 a001 24157817/1149851*2537720636^(2/3) 3908816900002958 a001 24157817/1149851*45537549124^(10/17) 3908816900002958 a001 24157817/1149851*312119004989^(6/11) 3908816900002958 a001 24157817/1149851*14662949395604^(10/21) 3908816900002958 a001 24157817/1149851*(1/2+1/2*5^(1/2))^30 3908816900002958 a001 24157817/1149851*192900153618^(5/9) 3908816900002958 a001 24157817/1149851*28143753123^(3/5) 3908816900002958 a001 24157817/1149851*10749957122^(5/8) 3908816900002958 a001 514229/54018521*10749957122^(23/24) 3908816900002958 a001 24157817/1149851*4106118243^(15/23) 3908816900002958 a001 24157817/1149851*1568397607^(15/22) 3908816900002958 a001 24157817/1149851*599074578^(5/7) 3908816900002958 a001 53316291173/1149851*33385282^(7/18) 3908816900002958 a001 24157817/1149851*228826127^(3/4) 3908816900002958 a001 32951280099/1149851*33385282^(5/12) 3908816900002958 a001 20365011074/1149851*33385282^(4/9) 3908816900002958 a001 24157817/1149851*87403803^(15/19) 3908816900002958 a001 7778742049/1149851*33385282^(1/2) 3908816900002958 a001 2971215073/1149851*33385282^(5/9) 3908816900002958 a001 1836311903/1149851*33385282^(7/12) 3908816900002959 a001 1134903170/1149851*33385282^(11/18) 3908816900002959 a001 433494437/1149851*33385282^(2/3) 3908816900002959 a001 102334155/1149851*33385282^(3/4) 3908816900002959 a001 165580141/1149851*33385282^(13/18) 3908816900002959 a001 6557470319842/1149851*12752043^(2/17) 3908816900002959 a001 63245986/1149851*33385282^(7/9) 3908816900002960 a001 17164709476645/439128 3908816900002961 a001 2504730781961/1149851*12752043^(3/17) 3908816900002961 a001 24157817/1149851*33385282^(5/6) 3908816900002962 a001 956722026041/1149851*12752043^(4/17) 3908816900002963 a001 365435296162/1149851*12752043^(5/17) 3908816900002965 a001 139583862445/1149851*12752043^(6/17) 3908816900002966 a001 514229/20633239*312119004989^(4/5) 3908816900002966 a001 514229/20633239*(1/2+1/2*5^(1/2))^44 3908816900002966 a001 514229/20633239*23725150497407^(11/16) 3908816900002966 a001 9227465/1149851*(1/2+1/2*5^(1/2))^32 3908816900002966 a001 9227465/1149851*23725150497407^(1/2) 3908816900002966 a001 9227465/1149851*73681302247^(8/13) 3908816900002966 a001 514229/20633239*73681302247^(11/13) 3908816900002966 a001 9227465/1149851*10749957122^(2/3) 3908816900002966 a001 514229/20633239*10749957122^(11/12) 3908816900002966 a001 9227465/1149851*4106118243^(16/23) 3908816900002966 a001 514229/20633239*4106118243^(22/23) 3908816900002966 a001 9227465/1149851*1568397607^(8/11) 3908816900002966 a001 9227465/1149851*599074578^(16/21) 3908816900002966 a001 9227465/1149851*228826127^(4/5) 3908816900002966 a001 9227465/1149851*87403803^(16/19) 3908816900002966 a001 53316291173/1149851*12752043^(7/17) 3908816900002968 a001 20365011074/1149851*12752043^(8/17) 3908816900002968 a001 12586269025/1149851*12752043^(1/2) 3908816900002969 a001 9227465/1149851*33385282^(8/9) 3908816900002969 a001 7778742049/1149851*12752043^(9/17) 3908816900002971 a001 2971215073/1149851*12752043^(10/17) 3908816900002972 a001 1134903170/1149851*12752043^(11/17) 3908816900002973 a001 433494437/1149851*12752043^(12/17) 3908816900002975 a001 165580141/1149851*12752043^(13/17) 3908816900002976 a001 63245986/1149851*12752043^(14/17) 3908816900002977 a001 6557470319842/1149851*4870847^(1/8) 3908816900002979 a001 24157817/1149851*12752043^(15/17) 3908816900002980 a001 222915410844073/5702887 3908816900002987 a001 2504730781961/1149851*4870847^(3/16) 3908816900002988 a001 9227465/1149851*12752043^(16/17) 3908816900002998 a001 956722026041/1149851*4870847^(1/4) 3908816900003008 a001 365435296162/1149851*4870847^(5/16) 3908816900003018 a001 139583862445/1149851*4870847^(3/8) 3908816900003019 a001 514229/7881196*2537720636^(14/15) 3908816900003019 a001 514229/7881196*17393796001^(6/7) 3908816900003019 a001 514229/7881196*45537549124^(14/17) 3908816900003019 a001 3524578/1149851*45537549124^(2/3) 3908816900003019 a001 514229/7881196*14662949395604^(2/3) 3908816900003019 a001 514229/7881196*(1/2+1/2*5^(1/2))^42 3908816900003019 a001 3524578/1149851*(1/2+1/2*5^(1/2))^34 3908816900003019 a001 514229/7881196*505019158607^(3/4) 3908816900003019 a001 514229/7881196*192900153618^(7/9) 3908816900003019 a001 3524578/1149851*10749957122^(17/24) 3908816900003019 a001 514229/7881196*10749957122^(7/8) 3908816900003019 a001 3524578/1149851*4106118243^(17/23) 3908816900003019 a001 514229/7881196*4106118243^(21/23) 3908816900003019 a001 3524578/1149851*1568397607^(17/22) 3908816900003019 a001 514229/7881196*1568397607^(21/22) 3908816900003019 a001 3524578/1149851*599074578^(17/21) 3908816900003019 a001 3524578/1149851*228826127^(17/20) 3908816900003020 a001 3524578/1149851*87403803^(17/19) 3908816900003023 a001 3524578/1149851*33385282^(17/18) 3908816900003028 a001 53316291173/1149851*4870847^(7/16) 3908816900003039 a001 20365011074/1149851*4870847^(1/2) 3908816900003049 a001 7778742049/1149851*4870847^(9/16) 3908816900003059 a001 2971215073/1149851*4870847^(5/8) 3908816900003069 a001 10610209857723/1149851*1860498^(1/10) 3908816900003070 a001 1134903170/1149851*4870847^(11/16) 3908816900003080 a001 433494437/1149851*4870847^(3/4) 3908816900003090 a001 165580141/1149851*4870847^(13/16) 3908816900003101 a001 63245986/1149851*4870847^(7/8) 3908816900003107 a001 6557470319842/1149851*1860498^(2/15) 3908816900003112 a001 24157817/1149851*4870847^(15/16) 3908816900003121 a001 85146110326289/2178309 3908816900003145 a001 4052739537881/1149851*1860498^(1/6) 3908816900003152 a001 591286729879/4870847*710647^(3/7) 3908816900003182 a001 2504730781961/1149851*1860498^(1/5) 3908816900003196 a001 956722026041/3010349*710647^(5/14) 3908816900003258 a001 956722026041/1149851*1860498^(4/15) 3908816900003293 a001 516002918640/4250681*710647^(3/7) 3908816900003294 a001 10983760033/620166*710647^(4/7) 3908816900003295 a001 514229*1860498^(3/10) 3908816900003314 a001 4052739537881/33385282*710647^(3/7) 3908816900003317 a001 3536736619241/29134601*710647^(3/7) 3908816900003318 a001 6557470319842/54018521*710647^(3/7) 3908816900003326 a001 2504730781961/20633239*710647^(3/7) 3908816900003333 a001 365435296162/1149851*1860498^(1/3) 3908816900003380 a001 956722026041/7881196*710647^(3/7) 3908816900003388 a001 1346269/1149851*141422324^(12/13) 3908816900003388 a001 514229/3010349*2537720636^(8/9) 3908816900003388 a001 1346269/1149851*2537720636^(4/5) 3908816900003388 a001 1346269/1149851*45537549124^(12/17) 3908816900003388 a001 514229/3010349*312119004989^(8/11) 3908816900003388 a001 514229/3010349*(1/2+1/2*5^(1/2))^40 3908816900003388 a001 514229/3010349*23725150497407^(5/8) 3908816900003388 a001 1346269/1149851*14662949395604^(4/7) 3908816900003388 a001 1346269/1149851*(1/2+1/2*5^(1/2))^36 3908816900003388 a001 1346269/1149851*505019158607^(9/14) 3908816900003388 a001 1346269/1149851*192900153618^(2/3) 3908816900003388 a001 1346269/1149851*73681302247^(9/13) 3908816900003388 a001 514229/3010349*73681302247^(10/13) 3908816900003388 a001 514229/3010349*28143753123^(4/5) 3908816900003388 a001 1346269/1149851*10749957122^(3/4) 3908816900003388 a001 514229/3010349*10749957122^(5/6) 3908816900003388 a001 1346269/1149851*4106118243^(18/23) 3908816900003388 a001 514229/3010349*4106118243^(20/23) 3908816900003388 a001 1346269/1149851*1568397607^(9/11) 3908816900003388 a001 514229/3010349*1568397607^(10/11) 3908816900003388 a001 1346269/1149851*599074578^(6/7) 3908816900003388 a001 514229/3010349*599074578^(20/21) 3908816900003388 a001 1346269/1149851*228826127^(9/10) 3908816900003388 a001 1346269/1149851*87403803^(18/19) 3908816900003408 a001 139583862445/1149851*1860498^(2/5) 3908816900003483 a001 53316291173/1149851*1860498^(7/15) 3908816900003521 a001 32951280099/1149851*1860498^(1/2) 3908816900003559 a001 20365011074/1149851*1860498^(8/15) 3908816900003634 a001 7778742049/1149851*1860498^(3/5) 3908816900003705 a001 225851433717/4870847*710647^(1/2) 3908816900003709 a001 2971215073/1149851*1860498^(2/3) 3908816900003747 a001 1836311903/1149851*1860498^(7/10) 3908816900003748 a001 365435296162/3010349*710647^(3/7) 3908816900003785 a001 1134903170/1149851*1860498^(11/15) 3908816900003846 a001 591286729879/12752043*710647^(1/2) 3908816900003846 a001 12586269025/1860498*710647^(9/14) 3908816900003860 a001 433494437/1149851*1860498^(4/5) 3908816900003866 a001 774004377960/16692641*710647^(1/2) 3908816900003869 a001 4052739537881/87403803*710647^(1/2) 3908816900003870 a001 225749145909/4868641*710647^(1/2) 3908816900003870 a001 3278735159921/70711162*710647^(1/2) 3908816900003871 a001 2504730781961/54018521*710647^(1/2) 3908816900003879 a001 956722026041/20633239*710647^(1/2) 3908816900003897 a001 267914296/1149851*1860498^(5/6) 3908816900003933 a001 182717648081/3940598*710647^(1/2) 3908816900003935 a001 165580141/1149851*1860498^(13/15) 3908816900003973 a001 102334155/1149851*1860498^(9/10) 3908816900004011 a001 63245986/1149851*1860498^(14/15) 3908816900004062 a001 6557470319842/1149851*710647^(1/7) 3908816900004086 a001 16261460067397/416020 3908816900004258 a001 86267571272/4870847*710647^(4/7) 3908816900004301 a001 139583862445/3010349*710647^(1/2) 3908816900004399 a001 75283811239/4250681*710647^(4/7) 3908816900004399 a001 267084832/103361*710647^(5/7) 3908816900004419 a001 591286729879/33385282*710647^(4/7) 3908816900004422 a001 516002918640/29134601*710647^(4/7) 3908816900004423 a001 4052739537881/228826127*710647^(4/7) 3908816900004423 a001 3536736619241/199691526*710647^(4/7) 3908816900004423 a001 6557470319842/370248451*710647^(4/7) 3908816900004423 a001 2504730781961/141422324*710647^(4/7) 3908816900004424 a001 956722026041/54018521*710647^(4/7) 3908816900004432 a001 365435296162/20633239*710647^(4/7) 3908816900004486 a001 139583862445/7881196*710647^(4/7) 3908816900004502 a001 1548008755920/710647*271443^(3/13) 3908816900004503 a001 701408733/439204*439204^(7/9) 3908816900004615 a001 2504730781961/1149851*710647^(3/14) 3908816900004676 a001 2971215073/1860498*710647^(3/4) 3908816900004811 a001 32951280099/4870847*710647^(9/14) 3908816900004854 a001 53316291173/3010349*710647^(4/7) 3908816900004891 a001 1548008755920/1149851*710647^(1/4) 3908816900004952 a001 86267571272/12752043*710647^(9/14) 3908816900004952 a001 1836311903/1860498*710647^(11/14) 3908816900004972 a001 32264490531/4769326*710647^(9/14) 3908816900004975 a001 591286729879/87403803*710647^(9/14) 3908816900004976 a001 1548008755920/228826127*710647^(9/14) 3908816900004976 a001 4052739537881/599074578*710647^(9/14) 3908816900004976 a001 1515744265389/224056801*710647^(9/14) 3908816900004976 a001 6557470319842/969323029*710647^(9/14) 3908816900004976 a001 2504730781961/370248451*710647^(9/14) 3908816900004976 a001 956722026041/141422324*710647^(9/14) 3908816900004977 a001 365435296162/54018521*710647^(9/14) 3908816900004985 a001 139583862445/20633239*710647^(9/14) 3908816900005039 a001 53316291173/7881196*710647^(9/14) 3908816900005168 a001 956722026041/1149851*710647^(2/7) 3908816900005364 a001 12586269025/4870847*710647^(5/7) 3908816900005407 a001 20365011074/3010349*710647^(9/14) 3908816900005505 a001 10983760033/4250681*710647^(5/7) 3908816900005505 a001 233802911/620166*710647^(6/7) 3908816900005525 a001 43133785636/16692641*710647^(5/7) 3908816900005528 a001 75283811239/29134601*710647^(5/7) 3908816900005528 a001 591286729879/228826127*710647^(5/7) 3908816900005529 a001 86000486440/33281921*710647^(5/7) 3908816900005529 a001 4052739537881/1568397607*710647^(5/7) 3908816900005529 a001 3536736619241/1368706081*710647^(5/7) 3908816900005529 a001 3278735159921/1268860318*710647^(5/7) 3908816900005529 a001 2504730781961/969323029*710647^(5/7) 3908816900005529 a001 956722026041/370248451*710647^(5/7) 3908816900005529 a001 182717648081/70711162*710647^(5/7) 3908816900005530 a001 139583862445/54018521*710647^(5/7) 3908816900005538 a001 53316291173/20633239*710647^(5/7) 3908816900005591 a001 10182505537/3940598*710647^(5/7) 3908816900005640 a001 7778742049/4870847*710647^(3/4) 3908816900005721 a001 365435296162/1149851*710647^(5/14) 3908816900005781 a001 20365011074/12752043*710647^(3/4) 3908816900005801 a001 53316291173/33385282*710647^(3/4) 3908816900005804 a001 139583862445/87403803*710647^(3/4) 3908816900005805 a001 365435296162/228826127*710647^(3/4) 3908816900005805 a001 956722026041/599074578*710647^(3/4) 3908816900005805 a001 2504730781961/1568397607*710647^(3/4) 3908816900005805 a001 6557470319842/4106118243*710647^(3/4) 3908816900005805 a001 10610209857723/6643838879*710647^(3/4) 3908816900005805 a001 4052739537881/2537720636*710647^(3/4) 3908816900005805 a001 1548008755920/969323029*710647^(3/4) 3908816900005805 a001 591286729879/370248451*710647^(3/4) 3908816900005805 a001 225851433717/141422324*710647^(3/4) 3908816900005806 a001 86267571272/54018521*710647^(3/4) 3908816900005814 a001 32951280099/20633239*710647^(3/4) 3908816900005868 a001 12586269025/7881196*710647^(3/4) 3908816900005913 a001 514229/1149851*817138163596^(2/3) 3908816900005913 a001 514229/1149851*(1/2+1/2*5^(1/2))^38 3908816900005913 a001 514229/1149851*10749957122^(19/24) 3908816900005913 a001 514229/1149851*4106118243^(19/23) 3908816900005913 a001 514229/1149851*1568397607^(19/22) 3908816900005913 a001 514229/1149851*599074578^(19/21) 3908816900005913 a001 514229/1149851*228826127^(19/20) 3908816900005917 a001 4807526976/4870847*710647^(11/14) 3908816900005960 a001 7778742049/3010349*710647^(5/7) 3908816900006057 a001 12586269025/12752043*710647^(11/14) 3908816900006058 a001 133957148/930249*710647^(13/14) 3908816900006078 a001 32951280099/33385282*710647^(11/14) 3908816900006081 a001 86267571272/87403803*710647^(11/14) 3908816900006081 a001 225851433717/228826127*710647^(11/14) 3908816900006081 a001 591286729879/599074578*710647^(11/14) 3908816900006081 a001 1548008755920/1568397607*710647^(11/14) 3908816900006081 a001 4052739537881/4106118243*710647^(11/14) 3908816900006081 a001 4807525989/4870846*710647^(11/14) 3908816900006081 a001 6557470319842/6643838879*710647^(11/14) 3908816900006081 a001 2504730781961/2537720636*710647^(11/14) 3908816900006081 a001 956722026041/969323029*710647^(11/14) 3908816900006081 a001 365435296162/370248451*710647^(11/14) 3908816900006082 a001 139583862445/141422324*710647^(11/14) 3908816900006083 a001 53316291173/54018521*710647^(11/14) 3908816900006091 a001 20365011074/20633239*710647^(11/14) 3908816900006144 a001 7778742049/7881196*710647^(11/14) 3908816900006236 a001 4807526976/3010349*710647^(3/4) 3908816900006274 a001 139583862445/1149851*710647^(3/7) 3908816900006469 a001 1836311903/4870847*710647^(6/7) 3908816900006513 a001 2971215073/3010349*710647^(11/14) 3908816900006607 a001 4140883359360/105937 3908816900006610 a001 1602508992/4250681*710647^(6/7) 3908816900006631 a001 12586269025/33385282*710647^(6/7) 3908816900006634 a001 10983760033/29134601*710647^(6/7) 3908816900006634 a001 86267571272/228826127*710647^(6/7) 3908816900006634 a001 267913919/710646*710647^(6/7) 3908816900006634 a001 591286729879/1568397607*710647^(6/7) 3908816900006634 a001 516002918640/1368706081*710647^(6/7) 3908816900006634 a001 4052739537881/10749957122*710647^(6/7) 3908816900006634 a001 3536736619241/9381251041*710647^(6/7) 3908816900006634 a001 6557470319842/17393796001*710647^(6/7) 3908816900006634 a001 2504730781961/6643838879*710647^(6/7) 3908816900006634 a001 956722026041/2537720636*710647^(6/7) 3908816900006634 a001 365435296162/969323029*710647^(6/7) 3908816900006634 a001 139583862445/370248451*710647^(6/7) 3908816900006634 a001 53316291173/141422324*710647^(6/7) 3908816900006636 a001 20365011074/54018521*710647^(6/7) 3908816900006643 a001 7778742049/20633239*710647^(6/7) 3908816900006697 a001 2971215073/7881196*710647^(6/7) 3908816900006754 a001 2971215073/439204*439204^(2/3) 3908816900006826 a001 53316291173/1149851*710647^(1/2) 3908816900007022 a001 701408733/4870847*710647^(13/14) 3908816900007032 a001 3536736619241/620166*271443^(2/13) 3908816900007066 a001 1134903170/3010349*710647^(6/7) 3908816900007163 a001 1836311903/12752043*710647^(13/14) 3908816900007184 a001 14930208/103681*710647^(13/14) 3908816900007187 a001 12586269025/87403803*710647^(13/14) 3908816900007187 a001 32951280099/228826127*710647^(13/14) 3908816900007187 a001 43133785636/299537289*710647^(13/14) 3908816900007187 a001 32264490531/224056801*710647^(13/14) 3908816900007187 a001 591286729879/4106118243*710647^(13/14) 3908816900007187 a001 774004377960/5374978561*710647^(13/14) 3908816900007187 a001 4052739537881/28143753123*710647^(13/14) 3908816900007187 a001 1515744265389/10525900321*710647^(13/14) 3908816900007187 a001 3278735159921/22768774562*710647^(13/14) 3908816900007187 a001 2504730781961/17393796001*710647^(13/14) 3908816900007187 a001 956722026041/6643838879*710647^(13/14) 3908816900007187 a001 182717648081/1268860318*710647^(13/14) 3908816900007187 a001 139583862445/969323029*710647^(13/14) 3908816900007187 a001 53316291173/370248451*710647^(13/14) 3908816900007187 a001 10182505537/70711162*710647^(13/14) 3908816900007188 a001 7778742049/54018521*710647^(13/14) 3908816900007196 a001 2971215073/20633239*710647^(13/14) 3908816900007250 a001 567451585/3940598*710647^(13/14) 3908816900007379 a001 20365011074/1149851*710647^(4/7) 3908816900007551 a001 4140883359361/105937 3908816900007552 a001 516002918640/90481*103682^(1/6) 3908816900007618 a001 433494437/3010349*710647^(13/14) 3908816900007866 a001 12422650078084/317811 3908816900007932 a001 7778742049/1149851*710647^(9/14) 3908816900008180 a001 955588467545/24447 3908816900008485 a001 2971215073/1149851*710647^(5/7) 3908816900008583 a001 591286729879/710647*271443^(4/13) 3908816900008761 a001 1836311903/1149851*710647^(3/4) 3908816900009006 a001 12586269025/439204*439204^(5/9) 3908816900009038 a001 1134903170/1149851*710647^(11/14) 3908816900009591 a001 433494437/1149851*710647^(6/7) 3908816900010144 a001 165580141/1149851*710647^(13/14) 3908816900010698 a001 12422650078093/317811 3908816900011113 a001 4052739537881/1860498*271443^(3/13) 3908816900011118 a001 6557470319842/1149851*271443^(2/13) 3908816900011257 a001 53316291173/439204*439204^(4/9) 3908816900012078 a001 2178309*271443^(3/13) 3908816900012523 a001 196418/710647*2537720636^(13/15) 3908816900012523 a001 196418/710647*45537549124^(13/17) 3908816900012523 a001 196418/710647*14662949395604^(13/21) 3908816900012523 a001 196418/710647*(1/2+1/2*5^(1/2))^39 3908816900012523 a001 196418/710647*192900153618^(13/18) 3908816900012523 a001 317811/439204*(1/2+1/2*5^(1/2))^37 3908816900012523 a001 196418/710647*73681302247^(3/4) 3908816900012523 a001 196418/710647*10749957122^(13/16) 3908816900012524 a001 196418/710647*599074578^(13/14) 3908816900012664 a001 317811*271443^(5/13) 3908816900012674 a001 6557470319842/3010349*271443^(3/13) 3908816900013509 a001 225851433717/439204*439204^(1/3) 3908816900014720 a001 140728068720/15251*64079^(3/23) 3908816900015194 a001 832040*271443^(4/13) 3908816900015199 a001 2504730781961/1149851*271443^(3/13) 3908816900015760 a001 956722026041/439204*439204^(2/9) 3908816900016158 a001 4052739537881/4870847*271443^(4/13) 3908816900016299 a001 3536736619241/4250681*271443^(4/13) 3908816900016386 a001 3278735159921/3940598*271443^(4/13) 3908816900016745 a001 86267571272/710647*271443^(6/13) 3908816900016755 a001 2504730781961/3010349*271443^(4/13) 3908816900017307 a001 20100270056790/514229 3908816900018012 a001 4052739537881/439204*439204^(1/9) 3908816900018785 a001 53316291173/710647*271443^(1/2) 3908816900019134 a001 208010/109801*2537720636^(7/9) 3908816900019134 a001 208010/109801*17393796001^(5/7) 3908816900019134 a001 98209/930249*(1/2+1/2*5^(1/2))^41 3908816900019134 a001 208010/109801*312119004989^(7/11) 3908816900019134 a001 208010/109801*14662949395604^(5/9) 3908816900019134 a001 208010/109801*(1/2+1/2*5^(1/2))^35 3908816900019134 a001 208010/109801*505019158607^(5/8) 3908816900019134 a001 208010/109801*28143753123^(7/10) 3908816900019134 a001 208010/109801*599074578^(5/6) 3908816900019134 a001 208010/109801*228826127^(7/8) 3908816900019275 a001 591286729879/1860498*271443^(5/13) 3908816900019280 a001 956722026041/1149851*271443^(4/13) 3908816900019832 a001 52623190191728/1346269 3908816900019841 a001 591286729879/64079*24476^(1/7) 3908816900020099 a001 2178309/439204*141422324^(11/13) 3908816900020099 a001 2178309/439204*2537720636^(11/15) 3908816900020099 a001 2178309/439204*45537549124^(11/17) 3908816900020099 a001 196418/4870847*(1/2+1/2*5^(1/2))^43 3908816900020099 a001 2178309/439204*312119004989^(3/5) 3908816900020099 a001 2178309/439204*817138163596^(11/19) 3908816900020099 a001 2178309/439204*14662949395604^(11/21) 3908816900020099 a001 2178309/439204*(1/2+1/2*5^(1/2))^33 3908816900020099 a001 2178309/439204*192900153618^(11/18) 3908816900020099 a001 2178309/439204*10749957122^(11/16) 3908816900020099 a001 2178309/439204*1568397607^(3/4) 3908816900020099 a001 2178309/439204*599074578^(11/14) 3908816900020102 a001 2178309/439204*33385282^(11/12) 3908816900020200 a001 773984834373/19801 3908816900020211 a001 39088169/439204*7881196^(9/11) 3908816900020215 a001 9227465/439204*7881196^(10/11) 3908816900020218 a001 165580141/439204*7881196^(8/11) 3908816900020221 a001 433494437/439204*7881196^(2/3) 3908816900020223 a001 701408733/439204*7881196^(7/11) 3908816900020229 a001 2971215073/439204*7881196^(6/11) 3908816900020235 a001 12586269025/439204*7881196^(5/11) 3908816900020239 a001 1548008755920/4870847*271443^(5/13) 3908816900020239 a001 196418/12752043*45537549124^(15/17) 3908816900020239 a001 196418/12752043*312119004989^(9/11) 3908816900020239 a001 196418/12752043*14662949395604^(5/7) 3908816900020239 a001 196418/12752043*(1/2+1/2*5^(1/2))^45 3908816900020239 a001 196418/12752043*192900153618^(5/6) 3908816900020239 a001 5702887/439204*(1/2+1/2*5^(1/2))^31 3908816900020239 a001 5702887/439204*9062201101803^(1/2) 3908816900020239 a001 196418/12752043*28143753123^(9/10) 3908816900020239 a001 196418/12752043*10749957122^(15/16) 3908816900020241 a001 53316291173/439204*7881196^(4/11) 3908816900020242 a001 196418*7881196^(1/3) 3908816900020246 a001 225851433717/439204*7881196^(3/11) 3908816900020252 a001 956722026041/439204*7881196^(2/11) 3908816900020254 a001 360684711363454/9227465 3908816900020257 a001 102334155/439204*20633239^(5/7) 3908816900020257 a001 24157817/439204*20633239^(4/5) 3908816900020258 a001 4052739537881/439204*7881196^(1/11) 3908816900020258 a001 701408733/439204*20633239^(3/5) 3908816900020258 a001 567451585/219602*20633239^(4/7) 3908816900020259 a001 12586269025/439204*20633239^(3/7) 3908816900020260 a001 10182505537/219602*20633239^(2/5) 3908816900020260 a001 98209/16692641*(1/2+1/2*5^(1/2))^47 3908816900020260 a001 196452/5779*(1/2+1/2*5^(1/2))^29 3908816900020260 a001 196452/5779*1322157322203^(1/2) 3908816900020261 a001 139583862445/439204*20633239^(2/7) 3908816900020262 a001 591286729879/439204*20633239^(1/5) 3908816900020262 a001 944284833571968/24157817 3908816900020262 a001 387002188980/109801*20633239^(1/7) 3908816900020263 a001 39088169/439204*141422324^(9/13) 3908816900020263 a001 39088169/439204*2537720636^(3/5) 3908816900020263 a001 39088169/439204*45537549124^(9/17) 3908816900020263 a001 196418/87403803*14662949395604^(7/9) 3908816900020263 a001 196418/87403803*505019158607^(7/8) 3908816900020263 a001 39088169/439204*817138163596^(9/19) 3908816900020263 a001 39088169/439204*14662949395604^(3/7) 3908816900020263 a001 39088169/439204*(1/2+1/2*5^(1/2))^27 3908816900020263 a001 39088169/439204*192900153618^(1/2) 3908816900020263 a001 39088169/439204*10749957122^(9/16) 3908816900020263 a001 39088169/439204*599074578^(9/14) 3908816900020263 a001 1236084894676225/31622993 3908816900020263 a001 701408733/439204*141422324^(7/13) 3908816900020263 a001 165580141/439204*141422324^(8/13) 3908816900020263 a001 2971215073/439204*141422324^(6/13) 3908816900020263 a001 12586269025/439204*141422324^(5/13) 3908816900020263 a001 102334155/439204*2537720636^(5/9) 3908816900020263 a001 196418/228826127*817138163596^(17/19) 3908816900020263 a001 196418/228826127*14662949395604^(17/21) 3908816900020263 a001 102334155/439204*312119004989^(5/11) 3908816900020263 a001 196418/228826127*192900153618^(17/18) 3908816900020263 a001 102334155/439204*(1/2+1/2*5^(1/2))^25 3908816900020263 a001 102334155/439204*3461452808002^(5/12) 3908816900020263 a001 102334155/439204*28143753123^(1/2) 3908816900020263 a001 32951280099/439204*141422324^(1/3) 3908816900020263 a001 53316291173/439204*141422324^(4/13) 3908816900020263 a001 225851433717/439204*141422324^(3/13) 3908816900020263 a001 956722026041/439204*141422324^(2/13) 3908816900020263 a001 6472224534485382/165580141 3908816900020263 a001 102334155/439204*228826127^(5/8) 3908816900020263 a001 4052739537881/439204*141422324^(1/13) 3908816900020263 a001 66978574/109801*(1/2+1/2*5^(1/2))^23 3908816900020263 a001 66978574/109801*4106118243^(1/2) 3908816900020263 a001 16944503814103696/433494437 3908816900020263 a001 701408733/439204*2537720636^(7/15) 3908816900020263 a001 701408733/439204*17393796001^(3/7) 3908816900020263 a001 701408733/439204*45537549124^(7/17) 3908816900020263 a001 196418/1568397607*3461452808002^(11/12) 3908816900020263 a001 701408733/439204*14662949395604^(1/3) 3908816900020263 a001 701408733/439204*(1/2+1/2*5^(1/2))^21 3908816900020263 a001 701408733/439204*192900153618^(7/18) 3908816900020263 a001 701408733/439204*10749957122^(7/16) 3908816900020263 a001 1304743732583109/33379505 3908816900020263 a001 196418/4106118243*14662949395604^(19/21) 3908816900020263 a001 1836311903/439204*817138163596^(1/3) 3908816900020263 a001 1836311903/439204*(1/2+1/2*5^(1/2))^19 3908816900020263 a001 12586269025/439204*2537720636^(1/3) 3908816900020263 a001 53316291173/439204*2537720636^(4/15) 3908816900020263 a001 2971215073/439204*2537720636^(2/5) 3908816900020263 a001 139583862445/439204*2537720636^(2/9) 3908816900020263 a001 225851433717/439204*2537720636^(1/5) 3908816900020263 a001 116139356909373422/2971215073 3908816900020263 a001 956722026041/439204*2537720636^(2/15) 3908816900020263 a001 387002188980/109801*2537720636^(1/9) 3908816900020263 a001 4052739537881/439204*2537720636^(1/15) 3908816900020263 a001 1201881744/109801*45537549124^(1/3) 3908816900020263 a001 1201881744/109801*(1/2+1/2*5^(1/2))^17 3908816900020263 a001 304056783820294560/7778742049 3908816900020263 a001 12586269025/439204*45537549124^(5/17) 3908816900020263 a001 12586269025/439204*312119004989^(3/11) 3908816900020263 a001 12586269025/439204*14662949395604^(5/21) 3908816900020263 a001 12586269025/439204*(1/2+1/2*5^(1/2))^15 3908816900020263 a001 12586269025/439204*192900153618^(5/18) 3908816900020263 a001 12586269025/439204*28143753123^(3/10) 3908816900020263 a001 398015497275755129/10182505537 3908816900020263 a001 591286729879/439204*17393796001^(1/7) 3908816900020263 a001 10182505537/219602*17393796001^(2/7) 3908816900020263 a001 32951280099/439204*(1/2+1/2*5^(1/2))^13 3908816900020263 a001 32951280099/439204*73681302247^(1/4) 3908816900020263 a001 2084036199834236214/53316291173 3908816900020263 a001 225851433717/439204*45537549124^(3/17) 3908816900020263 a001 956722026041/439204*45537549124^(2/17) 3908816900020263 a001 53316291173/439204*45537549124^(4/17) 3908816900020263 a001 196418*312119004989^(1/5) 3908816900020263 a001 4052739537881/439204*45537549124^(1/17) 3908816900020263 a001 225851433717/439204*14662949395604^(1/7) 3908816900020263 a001 225851433717/439204*(1/2+1/2*5^(1/2))^9 3908816900020263 a001 387002188980/109801*(1/2+1/2*5^(1/2))^5 3908816900020263 a001 3278735159921/219602*(1/2+1/2*5^(1/2))^2 3908816900020263 a001 2504730781961/439204*(1/2+1/2*5^(1/2))^4 3908816900020263 a001 2504730781961/439204*23725150497407^(1/16) 3908816900020263 a001 182717648081/219602*23725150497407^(1/8) 3908816900020263 a001 182717648081/219602*505019158607^(1/7) 3908816900020263 a001 139583862445/439204*312119004989^(2/11) 3908816900020263 a001 139583862445/439204*(1/2+1/2*5^(1/2))^10 3908816900020263 a001 2504730781961/439204*73681302247^(1/13) 3908816900020263 a001 182717648081/219602*73681302247^(2/13) 3908816900020263 a001 53316291173/439204*817138163596^(4/19) 3908816900020263 a001 53316291173/439204*14662949395604^(4/21) 3908816900020263 a001 53316291173/439204*(1/2+1/2*5^(1/2))^12 3908816900020263 a001 53316291173/439204*192900153618^(2/9) 3908816900020263 a001 53316291173/439204*73681302247^(3/13) 3908816900020263 a001 387002188980/109801*28143753123^(1/10) 3908816900020263 a001 1288005205282725956/32951280099 3908816900020263 a001 139583862445/439204*28143753123^(1/5) 3908816900020263 a001 3278735159921/219602*10749957122^(1/24) 3908816900020263 a001 10182505537/219602*14662949395604^(2/9) 3908816900020263 a001 10182505537/219602*(1/2+1/2*5^(1/2))^14 3908816900020263 a001 10182505537/219602*505019158607^(1/4) 3908816900020263 a001 4052739537881/439204*10749957122^(1/16) 3908816900020263 a001 2504730781961/439204*10749957122^(1/12) 3908816900020263 a001 956722026041/439204*10749957122^(1/8) 3908816900020263 a001 491974210731215698/12586269025 3908816900020263 a001 12586269025/439204*10749957122^(5/16) 3908816900020263 a001 182717648081/219602*10749957122^(1/6) 3908816900020263 a001 225851433717/439204*10749957122^(3/16) 3908816900020263 a001 139583862445/439204*10749957122^(5/24) 3908816900020263 a001 53316291173/439204*10749957122^(1/4) 3908816900020263 a001 3278735159921/219602*4106118243^(1/23) 3908816900020263 a001 10182505537/219602*10749957122^(7/24) 3908816900020263 a001 196418/17393796001*14662949395604^(20/21) 3908816900020263 a001 7778742049/439204*(1/2+1/2*5^(1/2))^16 3908816900020263 a001 7778742049/439204*23725150497407^(1/4) 3908816900020263 a001 7778742049/439204*73681302247^(4/13) 3908816900020263 a001 2504730781961/439204*4106118243^(2/23) 3908816900020263 a001 7778742049/439204*10749957122^(1/3) 3908816900020263 a001 956722026041/439204*4106118243^(3/23) 3908816900020263 a001 93958713455460569/2403763488 3908816900020263 a001 182717648081/219602*4106118243^(4/23) 3908816900020263 a001 139583862445/439204*4106118243^(5/23) 3908816900020263 a001 53316291173/439204*4106118243^(6/23) 3908816900020263 a001 3278735159921/219602*1568397607^(1/22) 3908816900020263 a001 10182505537/219602*4106118243^(7/23) 3908816900020263 a001 2971215073/439204*45537549124^(6/17) 3908816900020263 a001 2971215073/439204*14662949395604^(2/7) 3908816900020263 a001 2971215073/439204*(1/2+1/2*5^(1/2))^18 3908816900020263 a001 2971215073/439204*192900153618^(1/3) 3908816900020263 a001 7778742049/439204*4106118243^(8/23) 3908816900020263 a001 2971215073/439204*10749957122^(3/8) 3908816900020263 a001 2504730781961/439204*1568397607^(1/11) 3908816900020263 a001 2971215073/439204*4106118243^(9/23) 3908816900020263 a001 956722026041/439204*1568397607^(3/22) 3908816900020263 a001 71778070001547716/1836311903 3908816900020263 a001 182717648081/219602*1568397607^(2/11) 3908816900020263 a001 567451585/219602*2537720636^(4/9) 3908816900020263 a001 139583862445/439204*1568397607^(5/22) 3908816900020263 a001 196418*1568397607^(1/4) 3908816900020263 a001 53316291173/439204*1568397607^(3/11) 3908816900020263 a001 10182505537/219602*1568397607^(7/22) 3908816900020263 a001 3278735159921/219602*599074578^(1/21) 3908816900020263 a001 7778742049/439204*1568397607^(4/11) 3908816900020263 a001 98209/1268860318*14662949395604^(8/9) 3908816900020263 a001 567451585/219602*(1/2+1/2*5^(1/2))^20 3908816900020263 a001 567451585/219602*23725150497407^(5/16) 3908816900020263 a001 567451585/219602*505019158607^(5/14) 3908816900020263 a001 567451585/219602*73681302247^(5/13) 3908816900020263 a001 567451585/219602*28143753123^(2/5) 3908816900020263 a001 567451585/219602*10749957122^(5/12) 3908816900020263 a001 567451585/219602*4106118243^(10/23) 3908816900020263 a001 2971215073/439204*1568397607^(9/22) 3908816900020263 a001 4052739537881/439204*599074578^(1/14) 3908816900020263 a001 2504730781961/439204*599074578^(2/21) 3908816900020263 a001 567451585/219602*1568397607^(5/11) 3908816900020263 a001 956722026041/439204*599074578^(1/7) 3908816900020263 a001 308053742626090/7880997 3908816900020263 a001 591286729879/439204*599074578^(1/6) 3908816900020263 a001 182717648081/219602*599074578^(4/21) 3908816900020263 a001 225851433717/439204*599074578^(3/14) 3908816900020263 a001 139583862445/439204*599074578^(5/21) 3908816900020263 a001 53316291173/439204*599074578^(2/7) 3908816900020263 a001 10182505537/219602*599074578^(1/3) 3908816900020263 a001 3278735159921/219602*228826127^(1/20) 3908816900020263 a001 701408733/439204*599074578^(1/2) 3908816900020263 a001 12586269025/439204*599074578^(5/14) 3908816900020263 a001 196418/969323029*14662949395604^(6/7) 3908816900020263 a001 433494437/439204*312119004989^(2/5) 3908816900020263 a001 433494437/439204*(1/2+1/2*5^(1/2))^22 3908816900020263 a001 7778742049/439204*599074578^(8/21) 3908816900020263 a001 433494437/439204*10749957122^(11/24) 3908816900020263 a001 433494437/439204*4106118243^(11/23) 3908816900020263 a001 2971215073/439204*599074578^(3/7) 3908816900020263 a001 433494437/439204*1568397607^(1/2) 3908816900020263 a001 567451585/219602*599074578^(10/21) 3908816900020263 a001 2504730781961/439204*228826127^(1/10) 3908816900020263 a001 387002188980/109801*228826127^(1/8) 3908816900020263 a001 433494437/439204*599074578^(11/21) 3908816900020263 a001 5236139639809157/133957148 3908816900020263 a001 956722026041/439204*228826127^(3/20) 3908816900020263 a001 182717648081/219602*228826127^(1/5) 3908816900020263 a001 139583862445/439204*228826127^(1/4) 3908816900020263 a001 53316291173/439204*228826127^(3/10) 3908816900020263 a001 10182505537/219602*228826127^(7/20) 3908816900020263 a001 3278735159921/219602*87403803^(1/19) 3908816900020263 a001 12586269025/439204*228826127^(3/8) 3908816900020263 a001 165580141/439204*2537720636^(8/15) 3908816900020263 a001 165580141/439204*45537549124^(8/17) 3908816900020263 a001 196418/370248451*23725150497407^(13/16) 3908816900020263 a001 196418/370248451*505019158607^(13/14) 3908816900020263 a001 165580141/439204*14662949395604^(8/21) 3908816900020263 a001 165580141/439204*(1/2+1/2*5^(1/2))^24 3908816900020263 a001 165580141/439204*192900153618^(4/9) 3908816900020263 a001 165580141/439204*73681302247^(6/13) 3908816900020263 a001 165580141/439204*10749957122^(1/2) 3908816900020263 a001 165580141/439204*4106118243^(12/23) 3908816900020263 a001 165580141/439204*1568397607^(6/11) 3908816900020263 a001 7778742049/439204*228826127^(2/5) 3908816900020263 a001 2971215073/439204*228826127^(9/20) 3908816900020263 a001 165580141/439204*599074578^(4/7) 3908816900020263 a001 567451585/219602*228826127^(1/2) 3908816900020263 a001 433494437/439204*228826127^(11/20) 3908816900020263 a001 2504730781961/439204*87403803^(2/19) 3908816900020263 a001 31622993/219602*141422324^(2/3) 3908816900020264 a001 165580141/439204*228826127^(3/5) 3908816900020264 a001 4000054745132932/102334155 3908816900020264 a001 956722026041/439204*87403803^(3/19) 3908816900020264 a001 182717648081/219602*87403803^(4/19) 3908816900020264 a001 139583862445/439204*87403803^(5/19) 3908816900020264 a001 53316291173/439204*87403803^(6/19) 3908816900020264 a001 10182505537/219602*87403803^(7/19) 3908816900020264 a001 3278735159921/219602*33385282^(1/18) 3908816900020264 a001 98209/70711162*312119004989^(10/11) 3908816900020264 a001 98209/70711162*3461452808002^(5/6) 3908816900020264 a001 31622993/219602*(1/2+1/2*5^(1/2))^26 3908816900020264 a001 31622993/219602*73681302247^(1/2) 3908816900020264 a001 31622993/219602*10749957122^(13/24) 3908816900020264 a001 31622993/219602*4106118243^(13/23) 3908816900020264 a001 31622993/219602*1568397607^(13/22) 3908816900020264 a001 31622993/219602*599074578^(13/21) 3908816900020264 a001 7778742049/439204*87403803^(8/19) 3908816900020264 a001 2971215073/439204*87403803^(9/19) 3908816900020264 a001 31622993/219602*228826127^(13/20) 3908816900020264 a001 1836311903/439204*87403803^(1/2) 3908816900020264 a001 567451585/219602*87403803^(10/19) 3908816900020264 a001 4052739537881/439204*33385282^(1/12) 3908816900020264 a001 433494437/439204*87403803^(11/19) 3908816900020264 a001 165580141/439204*87403803^(12/19) 3908816900020264 a001 2504730781961/439204*33385282^(1/9) 3908816900020264 a001 1527884955780482/39088169 3908816900020264 a001 31622993/219602*87403803^(13/19) 3908816900020264 a001 956722026041/439204*33385282^(1/6) 3908816900020264 a001 182717648081/219602*33385282^(2/9) 3908816900020264 a001 225851433717/439204*33385282^(1/4) 3908816900020264 a001 139583862445/439204*33385282^(5/18) 3908816900020265 a001 53316291173/439204*33385282^(1/3) 3908816900020265 a001 9227465/439204*20633239^(6/7) 3908816900020265 a001 24157817/439204*17393796001^(4/7) 3908816900020265 a001 196418/54018521*45537549124^(16/17) 3908816900020265 a001 196418/54018521*14662949395604^(16/21) 3908816900020265 a001 196418/54018521*192900153618^(8/9) 3908816900020265 a001 24157817/439204*14662949395604^(4/9) 3908816900020265 a001 24157817/439204*(1/2+1/2*5^(1/2))^28 3908816900020265 a001 24157817/439204*505019158607^(1/2) 3908816900020265 a001 24157817/439204*73681302247^(7/13) 3908816900020265 a001 196418/54018521*73681302247^(12/13) 3908816900020265 a001 24157817/439204*10749957122^(7/12) 3908816900020265 a001 24157817/439204*4106118243^(14/23) 3908816900020265 a001 24157817/439204*1568397607^(7/11) 3908816900020265 a001 24157817/439204*599074578^(2/3) 3908816900020265 a001 10182505537/219602*33385282^(7/18) 3908816900020265 a001 24157817/439204*228826127^(7/10) 3908816900020265 a001 3278735159921/219602*12752043^(1/17) 3908816900020265 a001 12586269025/439204*33385282^(5/12) 3908816900020265 a001 7778742049/439204*33385282^(4/9) 3908816900020265 a001 24157817/439204*87403803^(14/19) 3908816900020265 a001 2971215073/439204*33385282^(1/2) 3908816900020265 a001 567451585/219602*33385282^(5/9) 3908816900020265 a001 701408733/439204*33385282^(7/12) 3908816900020266 a001 39088169/439204*33385282^(3/4) 3908816900020266 a001 433494437/439204*33385282^(11/18) 3908816900020266 a001 165580141/439204*33385282^(2/3) 3908816900020266 a001 31622993/219602*33385282^(13/18) 3908816900020266 a001 2504730781961/439204*12752043^(2/17) 3908816900020267 a001 17164709476721/439128 3908816900020267 a001 24157817/439204*33385282^(7/9) 3908816900020268 a001 956722026041/439204*12752043^(3/17) 3908816900020269 a001 182717648081/219602*12752043^(4/17) 3908816900020271 a001 139583862445/439204*12752043^(5/17) 3908816900020272 a001 53316291173/439204*12752043^(6/17) 3908816900020272 a001 9227465/439204*141422324^(10/13) 3908816900020273 a001 9227465/439204*2537720636^(2/3) 3908816900020273 a001 9227465/439204*45537549124^(10/17) 3908816900020273 a001 196418/20633239*(1/2+1/2*5^(1/2))^46 3908816900020273 a001 9227465/439204*312119004989^(6/11) 3908816900020273 a001 9227465/439204*14662949395604^(10/21) 3908816900020273 a001 9227465/439204*(1/2+1/2*5^(1/2))^30 3908816900020273 a001 9227465/439204*192900153618^(5/9) 3908816900020273 a001 9227465/439204*28143753123^(3/5) 3908816900020273 a001 9227465/439204*10749957122^(5/8) 3908816900020273 a001 196418/20633239*10749957122^(23/24) 3908816900020273 a001 9227465/439204*4106118243^(15/23) 3908816900020273 a001 9227465/439204*1568397607^(15/22) 3908816900020273 a001 9227465/439204*599074578^(5/7) 3908816900020273 a001 9227465/439204*228826127^(3/4) 3908816900020273 a001 9227465/439204*87403803^(15/19) 3908816900020273 a001 10182505537/219602*12752043^(7/17) 3908816900020274 a001 3278735159921/219602*4870847^(1/16) 3908816900020275 a001 7778742049/439204*12752043^(8/17) 3908816900020275 a001 1201881744/109801*12752043^(1/2) 3908816900020276 a001 9227465/439204*33385282^(5/6) 3908816900020276 a001 2971215073/439204*12752043^(9/17) 3908816900020278 a001 567451585/219602*12752043^(10/17) 3908816900020279 a001 433494437/439204*12752043^(11/17) 3908816900020280 a001 165580141/439204*12752043^(12/17) 3908816900020282 a001 31622993/219602*12752043^(13/17) 3908816900020284 a001 2504730781961/439204*4870847^(1/8) 3908816900020285 a001 24157817/439204*12752043^(14/17) 3908816900020287 a001 222915410845060/5702887 3908816900020294 a001 9227465/439204*12752043^(15/17) 3908816900020294 a001 956722026041/439204*4870847^(3/16) 3908816900020305 a001 182717648081/219602*4870847^(1/4) 3908816900020315 a001 139583862445/439204*4870847^(5/16) 3908816900020325 a001 53316291173/439204*4870847^(3/8) 3908816900020326 a001 98209/3940598*312119004989^(4/5) 3908816900020326 a001 98209/3940598*(1/2+1/2*5^(1/2))^44 3908816900020326 a001 98209/3940598*23725150497407^(11/16) 3908816900020326 a001 1762289/219602*(1/2+1/2*5^(1/2))^32 3908816900020326 a001 1762289/219602*23725150497407^(1/2) 3908816900020326 a001 1762289/219602*505019158607^(4/7) 3908816900020326 a001 1762289/219602*73681302247^(8/13) 3908816900020326 a001 98209/3940598*73681302247^(11/13) 3908816900020326 a001 1762289/219602*10749957122^(2/3) 3908816900020326 a001 98209/3940598*10749957122^(11/12) 3908816900020326 a001 1762289/219602*4106118243^(16/23) 3908816900020326 a001 98209/3940598*4106118243^(22/23) 3908816900020326 a001 1762289/219602*1568397607^(8/11) 3908816900020326 a001 1762289/219602*599074578^(16/21) 3908816900020326 a001 1762289/219602*228826127^(4/5) 3908816900020327 a001 1762289/219602*87403803^(16/19) 3908816900020329 a001 1762289/219602*33385282^(8/9) 3908816900020336 a001 10182505537/219602*4870847^(7/16) 3908816900020339 a001 3278735159921/219602*1860498^(1/15) 3908816900020346 a001 7778742049/439204*4870847^(1/2) 3908816900020349 a001 1762289/219602*12752043^(16/17) 3908816900020356 a001 2971215073/439204*4870847^(9/16) 3908816900020366 a001 567451585/219602*4870847^(5/8) 3908816900020376 a001 4052739537881/439204*1860498^(1/10) 3908816900020377 a001 433494437/439204*4870847^(11/16) 3908816900020380 a001 4052739537881/12752043*271443^(5/13) 3908816900020387 a001 165580141/439204*4870847^(3/4) 3908816900020397 a001 31622993/219602*4870847^(13/16) 3908816900020400 a001 1515744265389/4769326*271443^(5/13) 3908816900020409 a001 24157817/439204*4870847^(7/8) 3908816900020413 a001 6557470319842/20633239*271443^(5/13) 3908816900020414 a001 2504730781961/439204*1860498^(2/15) 3908816900020427 a001 9227465/439204*4870847^(15/16) 3908816900020428 a001 85146110326666/2178309 3908816900020452 a001 387002188980/109801*1860498^(1/6) 3908816900020467 a001 2504730781961/7881196*271443^(5/13) 3908816900020489 a001 956722026041/439204*1860498^(1/5) 3908816900020565 a001 182717648081/219602*1860498^(4/15) 3908816900020602 a001 225851433717/439204*1860498^(3/10) 3908816900020640 a001 139583862445/439204*1860498^(1/3) 3908816900020695 a001 196418/3010349*2537720636^(14/15) 3908816900020695 a001 196418/3010349*17393796001^(6/7) 3908816900020695 a001 196418/3010349*45537549124^(14/17) 3908816900020695 a001 1346269/439204*45537549124^(2/3) 3908816900020695 a001 196418/3010349*817138163596^(14/19) 3908816900020695 a001 196418/3010349*14662949395604^(2/3) 3908816900020695 a001 196418/3010349*(1/2+1/2*5^(1/2))^42 3908816900020695 a001 196418/3010349*505019158607^(3/4) 3908816900020695 a001 196418/3010349*192900153618^(7/9) 3908816900020695 a001 1346269/439204*(1/2+1/2*5^(1/2))^34 3908816900020695 a001 1346269/439204*10749957122^(17/24) 3908816900020695 a001 196418/3010349*10749957122^(7/8) 3908816900020695 a001 1346269/439204*4106118243^(17/23) 3908816900020695 a001 196418/3010349*4106118243^(21/23) 3908816900020695 a001 1346269/439204*1568397607^(17/22) 3908816900020695 a001 196418/3010349*1568397607^(21/22) 3908816900020695 a001 1346269/439204*599074578^(17/21) 3908816900020695 a001 1346269/439204*228826127^(17/20) 3908816900020695 a001 1346269/439204*87403803^(17/19) 3908816900020698 a001 1346269/439204*33385282^(17/18) 3908816900020715 a001 53316291173/439204*1860498^(2/5) 3908816900020790 a001 10182505537/219602*1860498^(7/15) 3908816900020816 a001 3278735159921/219602*710647^(1/14) 3908816900020826 a001 32951280099/710647*271443^(7/13) 3908816900020828 a001 12586269025/439204*1860498^(1/2) 3908816900020835 a001 956722026041/3010349*271443^(5/13) 3908816900020866 a001 7778742049/439204*1860498^(8/15) 3908816900020941 a001 2971215073/439204*1860498^(3/5) 3908816900021016 a001 567451585/219602*1860498^(2/3) 3908816900021054 a001 701408733/439204*1860498^(7/10) 3908816900021092 a001 433494437/439204*1860498^(11/15) 3908816900021167 a001 165580141/439204*1860498^(4/5) 3908816900021204 a001 102334155/439204*1860498^(5/6) 3908816900021242 a001 31622993/219602*1860498^(13/15) 3908816900021279 a001 39088169/439204*1860498^(9/10) 3908816900021319 a001 24157817/439204*1860498^(14/15) 3908816900021369 a001 2504730781961/439204*710647^(1/7) 3908816900021393 a001 16261460067469/416020 3908816900021922 a001 956722026041/439204*710647^(3/14) 3908816900022198 a001 591286729879/439204*710647^(1/4) 3908816900022475 a001 182717648081/219602*710647^(2/7) 3908816900022561 a001 1515744265389/101521*103682^(1/12) 3908816900022702 a001 956722026041/271443*103682^(5/24) 3908816900023028 a001 139583862445/439204*710647^(5/14) 3908816900023220 a001 514229/439204*141422324^(12/13) 3908816900023220 a001 196418/1149851*2537720636^(8/9) 3908816900023220 a001 514229/439204*2537720636^(4/5) 3908816900023220 a001 514229/439204*45537549124^(12/17) 3908816900023220 a001 196418/1149851*312119004989^(8/11) 3908816900023220 a001 196418/1149851*(1/2+1/2*5^(1/2))^40 3908816900023220 a001 196418/1149851*23725150497407^(5/8) 3908816900023220 a001 514229/439204*14662949395604^(4/7) 3908816900023220 a001 514229/439204*(1/2+1/2*5^(1/2))^36 3908816900023220 a001 514229/439204*505019158607^(9/14) 3908816900023220 a001 514229/439204*192900153618^(2/3) 3908816900023220 a001 196418/1149851*73681302247^(10/13) 3908816900023220 a001 514229/439204*73681302247^(9/13) 3908816900023220 a001 196418/1149851*28143753123^(4/5) 3908816900023220 a001 514229/439204*10749957122^(3/4) 3908816900023220 a001 196418/1149851*10749957122^(5/6) 3908816900023220 a001 514229/439204*4106118243^(18/23) 3908816900023220 a001 196418/1149851*4106118243^(20/23) 3908816900023220 a001 514229/439204*1568397607^(9/11) 3908816900023220 a001 196418/1149851*1568397607^(10/11) 3908816900023220 a001 514229/439204*599074578^(6/7) 3908816900023220 a001 196418/1149851*599074578^(20/21) 3908816900023220 a001 514229/439204*228826127^(9/10) 3908816900023220 a001 514229/439204*87403803^(18/19) 3908816900023356 a001 75283811239/620166*271443^(6/13) 3908816900023360 a001 365435296162/1149851*271443^(5/13) 3908816900023581 a001 53316291173/439204*710647^(3/7) 3908816900024133 a001 10182505537/219602*710647^(1/2) 3908816900024320 a001 591286729879/4870847*271443^(6/13) 3908816900024344 a001 3278735159921/219602*271443^(1/13) 3908816900024461 a001 516002918640/4250681*271443^(6/13) 3908816900024481 a001 4052739537881/33385282*271443^(6/13) 3908816900024484 a001 3536736619241/29134601*271443^(6/13) 3908816900024486 a001 6557470319842/54018521*271443^(6/13) 3908816900024494 a001 2504730781961/20633239*271443^(6/13) 3908816900024548 a001 956722026041/7881196*271443^(6/13) 3908816900024686 a001 7778742049/439204*710647^(4/7) 3908816900024906 a001 12586269025/710647*271443^(8/13) 3908816900024916 a001 365435296162/3010349*271443^(6/13) 3908816900025239 a001 2971215073/439204*710647^(9/14) 3908816900025396 a001 139583862445/1860498*271443^(1/2) 3908816900025792 a001 567451585/219602*710647^(5/7) 3908816900026068 a001 701408733/439204*710647^(3/4) 3908816900026345 a001 433494437/439204*710647^(11/14) 3908816900026360 a001 365435296162/4870847*271443^(1/2) 3908816900026501 a001 956722026041/12752043*271443^(1/2) 3908816900026522 a001 2504730781961/33385282*271443^(1/2) 3908816900026525 a001 6557470319842/87403803*271443^(1/2) 3908816900026525 a001 10610209857723/141422324*271443^(1/2) 3908816900026527 a001 4052739537881/54018521*271443^(1/2) 3908816900026534 a001 140728068720/1875749*271443^(1/2) 3908816900026588 a001 591286729879/7881196*271443^(1/2) 3908816900026898 a001 165580141/439204*710647^(6/7) 3908816900026957 a001 225851433717/3010349*271443^(1/2) 3908816900027436 a001 43133785636/930249*271443^(7/13) 3908816900027441 a001 139583862445/1149851*271443^(6/13) 3908816900027451 a001 31622993/219602*710647^(13/14) 3908816900027778 a001 433494437/167761*167761^(4/5) 3908816900028004 a001 12422650078148/317811 3908816900028401 a001 225851433717/4870847*271443^(7/13) 3908816900028425 a001 2504730781961/439204*271443^(2/13) 3908816900028542 a001 591286729879/12752043*271443^(7/13) 3908816900028562 a001 774004377960/16692641*271443^(7/13) 3908816900028565 a001 4052739537881/87403803*271443^(7/13) 3908816900028565 a001 225749145909/4868641*271443^(7/13) 3908816900028566 a001 3278735159921/70711162*271443^(7/13) 3908816900028567 a001 2504730781961/54018521*271443^(7/13) 3908816900028575 a001 956722026041/20633239*271443^(7/13) 3908816900028629 a001 182717648081/3940598*271443^(7/13) 3908816900028987 a001 686789568/101521*271443^(9/13) 3908816900028997 a001 139583862445/3010349*271443^(7/13) 3908816900029482 a001 86267571272/1149851*271443^(1/2) 3908816900031517 a001 10983760033/620166*271443^(8/13) 3908816900031522 a001 53316291173/1149851*271443^(7/13) 3908816900032482 a001 86267571272/4870847*271443^(8/13) 3908816900032506 a001 956722026041/439204*271443^(3/13) 3908816900032622 a001 75283811239/4250681*271443^(8/13) 3908816900032643 a001 591286729879/33385282*271443^(8/13) 3908816900032646 a001 516002918640/29134601*271443^(8/13) 3908816900032646 a001 4052739537881/228826127*271443^(8/13) 3908816900032646 a001 3536736619241/199691526*271443^(8/13) 3908816900032646 a001 6557470319842/370248451*271443^(8/13) 3908816900032647 a001 2504730781961/141422324*271443^(8/13) 3908816900032648 a001 956722026041/54018521*271443^(8/13) 3908816900032656 a001 365435296162/20633239*271443^(8/13) 3908816900032709 a001 139583862445/7881196*271443^(8/13) 3908816900033068 a001 1836311903/710647*271443^(10/13) 3908816900033078 a001 53316291173/3010349*271443^(8/13) 3908816900035414 a001 10610209857723/439204*103682^(1/24) 3908816900035598 a001 12586269025/1860498*271443^(9/13) 3908816900035603 a001 20365011074/1149851*271443^(8/13) 3908816900036562 a001 32951280099/4870847*271443^(9/13) 3908816900036587 a001 182717648081/219602*271443^(4/13) 3908816900036703 a001 86267571272/12752043*271443^(9/13) 3908816900036724 a001 32264490531/4769326*271443^(9/13) 3908816900036727 a001 591286729879/87403803*271443^(9/13) 3908816900036727 a001 1548008755920/228826127*271443^(9/13) 3908816900036727 a001 4052739537881/599074578*271443^(9/13) 3908816900036727 a001 1515744265389/224056801*271443^(9/13) 3908816900036727 a001 6557470319842/969323029*271443^(9/13) 3908816900036727 a001 2504730781961/370248451*271443^(9/13) 3908816900036727 a001 956722026041/141422324*271443^(9/13) 3908816900036728 a001 365435296162/54018521*271443^(9/13) 3908816900036736 a001 139583862445/20633239*271443^(9/13) 3908816900036790 a001 53316291173/7881196*271443^(9/13) 3908816900037149 a001 701408733/710647*271443^(11/13) 3908816900037158 a001 20365011074/3010349*271443^(9/13) 3908816900037712 a001 6557470319842/710647*103682^(1/8) 3908816900037853 a001 591286729879/271443*103682^(1/4) 3908816900039679 a001 267084832/103361*271443^(10/13) 3908816900039684 a001 7778742049/1149851*271443^(9/13) 3908816900040527 a001 98209/219602*817138163596^(2/3) 3908816900040527 a001 98209/219602*(1/2+1/2*5^(1/2))^38 3908816900040527 a001 98209/219602*10749957122^(19/24) 3908816900040527 a001 98209/219602*4106118243^(19/23) 3908816900040527 a001 98209/219602*1568397607^(19/22) 3908816900040527 a001 98209/219602*599074578^(19/21) 3908816900040527 a001 98209/219602*228826127^(19/20) 3908816900040643 a001 12586269025/4870847*271443^(10/13) 3908816900040667 a001 139583862445/439204*271443^(5/13) 3908816900040784 a001 10983760033/4250681*271443^(10/13) 3908816900040804 a001 43133785636/16692641*271443^(10/13) 3908816900040807 a001 75283811239/29134601*271443^(10/13) 3908816900040808 a001 591286729879/228826127*271443^(10/13) 3908816900040808 a001 86000486440/33281921*271443^(10/13) 3908816900040808 a001 4052739537881/1568397607*271443^(10/13) 3908816900040808 a001 3536736619241/1368706081*271443^(10/13) 3908816900040808 a001 3278735159921/1268860318*271443^(10/13) 3908816900040808 a001 2504730781961/969323029*271443^(10/13) 3908816900040808 a001 956722026041/370248451*271443^(10/13) 3908816900040808 a001 182717648081/70711162*271443^(10/13) 3908816900040809 a001 139583862445/54018521*271443^(10/13) 3908816900040817 a001 53316291173/20633239*271443^(10/13) 3908816900040871 a001 10182505537/3940598*271443^(10/13) 3908816900041230 a001 267914296/710647*271443^(12/13) 3908816900041239 a001 7778742049/3010349*271443^(10/13) 3908816900041389 a001 63245986/64079*64079^(22/23) 3908816900043760 a001 1836311903/1860498*271443^(11/13) 3908816900043764 a001 2971215073/1149851*271443^(10/13) 3908816900044724 a001 4807526976/4870847*271443^(11/13) 3908816900044748 a001 53316291173/439204*271443^(6/13) 3908816900044865 a001 12586269025/12752043*271443^(11/13) 3908816900044885 a001 32951280099/33385282*271443^(11/13) 3908816900044888 a001 86267571272/87403803*271443^(11/13) 3908816900044889 a001 225851433717/228826127*271443^(11/13) 3908816900044889 a001 591286729879/599074578*271443^(11/13) 3908816900044889 a001 1548008755920/1568397607*271443^(11/13) 3908816900044889 a001 4052739537881/4106118243*271443^(11/13) 3908816900044889 a001 4807525989/4870846*271443^(11/13) 3908816900044889 a001 6557470319842/6643838879*271443^(11/13) 3908816900044889 a001 2504730781961/2537720636*271443^(11/13) 3908816900044889 a001 956722026041/969323029*271443^(11/13) 3908816900044889 a001 365435296162/370248451*271443^(11/13) 3908816900044889 a001 139583862445/141422324*271443^(11/13) 3908816900044890 a001 53316291173/54018521*271443^(11/13) 3908816900044898 a001 20365011074/20633239*271443^(11/13) 3908816900044952 a001 7778742049/7881196*271443^(11/13) 3908816900045307 a001 4745030099472/121393 3908816900045320 a001 2971215073/3010349*271443^(11/13) 3908816900046789 a001 32951280099/439204*271443^(1/2) 3908816900047840 a001 233802911/620166*271443^(12/13) 3908816900047845 a001 1134903170/1149851*271443^(11/13) 3908816900048408 a001 10610209857723/1149851*103682^(1/8) 3908816900048805 a001 1836311903/4870847*271443^(12/13) 3908816900048829 a001 10182505537/219602*271443^(7/13) 3908816900048946 a001 1602508992/4250681*271443^(12/13) 3908816900048966 a001 12586269025/33385282*271443^(12/13) 3908816900048969 a001 10983760033/29134601*271443^(12/13) 3908816900048969 a001 86267571272/228826127*271443^(12/13) 3908816900048970 a001 267913919/710646*271443^(12/13) 3908816900048970 a001 591286729879/1568397607*271443^(12/13) 3908816900048970 a001 516002918640/1368706081*271443^(12/13) 3908816900048970 a001 4052739537881/10749957122*271443^(12/13) 3908816900048970 a001 3536736619241/9381251041*271443^(12/13) 3908816900048970 a001 6557470319842/17393796001*271443^(12/13) 3908816900048970 a001 2504730781961/6643838879*271443^(12/13) 3908816900048970 a001 956722026041/2537720636*271443^(12/13) 3908816900048970 a001 365435296162/969323029*271443^(12/13) 3908816900048970 a001 139583862445/370248451*271443^(12/13) 3908816900048970 a001 53316291173/141422324*271443^(12/13) 3908816900048971 a001 20365011074/54018521*271443^(12/13) 3908816900048979 a001 7778742049/20633239*271443^(12/13) 3908816900049032 a001 2971215073/7881196*271443^(12/13) 3908816900049401 a001 1134903170/3010349*271443^(12/13) 3908816900050564 a001 3278735159921/219602*103682^(1/12) 3908816900051897 a001 4745030099480/121393 3908816900051926 a001 433494437/1149851*271443^(12/13) 3908816900052721 a001 4745030099481/121393 3908816900052862 a001 4052739537881/710647*103682^(1/6) 3908816900052910 a001 7778742049/439204*271443^(8/13) 3908816900053003 a001 365435296162/271443*103682^(7/24) 3908816900053050 a001 2/121393*(1/2+1/2*5^(1/2))^64 3908816900053050 a001 23725150497407/121393*8^(1/3) 3908816900053545 a001 4745030099482/121393 3908816900055555 a001 4807526976/167761*167761^(3/5) 3908816900056016 a001 4745030099485/121393 3908816900056109 a001 2504730781961/167761*64079^(2/23) 3908816900056991 a001 2971215073/439204*271443^(9/13) 3908816900059473 a001 3536736619241/620166*103682^(1/6) 3908816900060233 a001 6557470319842/271443*39603^(1/22) 3908816900061071 a001 567451585/219602*271443^(10/13) 3908816900063558 a001 6557470319842/1149851*103682^(1/6) 3908816900065152 a001 433494437/439204*271443^(11/13) 3908816900065715 a001 4052739537881/439204*103682^(1/8) 3908816900068013 a001 2504730781961/710647*103682^(5/24) 3908816900068154 a001 75283811239/90481*103682^(1/3) 3908816900069233 a001 165580141/439204*271443^(12/13) 3908816900070070 a001 365435296162/39603*15127^(3/20) 3908816900073315 a001 4745030099506/121393 3908816900074623 a001 3278735159921/930249*103682^(5/24) 3908816900076184 a001 10610209857723/3010349*103682^(5/24) 3908816900078709 a001 4052739537881/1149851*103682^(5/24) 3908816900080865 a001 2504730781961/439204*103682^(1/6) 3908816900082778 a001 102334155/64079*64079^(21/23) 3908816900083163 a001 1548008755920/710647*103682^(1/4) 3908816900083304 a001 139583862445/271443*103682^(3/8) 3908816900083333 a001 53316291173/167761*167761^(2/5) 3908816900085837 a001 75025/271443*2537720636^(13/15) 3908816900085837 a001 75025/271443*45537549124^(13/17) 3908816900085837 a001 75025/271443*14662949395604^(13/21) 3908816900085837 a001 75025/271443*(1/2+1/2*5^(1/2))^39 3908816900085837 a001 75025/271443*192900153618^(13/18) 3908816900085837 a001 75025/271443*73681302247^(3/4) 3908816900085837 a001 121393/167761*(1/2+1/2*5^(1/2))^37 3908816900085837 a001 75025/271443*10749957122^(13/16) 3908816900085837 a001 75025/271443*599074578^(13/14) 3908816900089521 a001 591286729879/103682*39603^(2/11) 3908816900089774 a001 4052739537881/1860498*103682^(1/4) 3908816900090738 a001 2178309*103682^(1/4) 3908816900091334 a001 6557470319842/3010349*103682^(1/4) 3908816900093859 a001 2504730781961/1149851*103682^(1/4) 3908816900096016 a001 387002188980/109801*103682^(5/24) 3908816900097498 a001 4052739537881/167761*64079^(1/23) 3908816900098314 a001 956722026041/710647*103682^(7/24) 3908816900098455 a001 86267571272/271443*103682^(5/12) 3908816900104924 a001 2504730781961/1860498*103682^(7/24) 3908816900105889 a001 6557470319842/4870847*103682^(7/24) 3908816900106117 a001 10610209857723/7881196*103682^(7/24) 3908816900106485 a001 1346269*103682^(7/24) 3908816900109010 a001 1548008755920/1149851*103682^(7/24) 3908816900111110 a001 591286729879/167761*167761^(1/5) 3908816900111167 a001 956722026041/439204*103682^(1/4) 3908816900113464 a001 591286729879/710647*103682^(1/3) 3908816900113605 a001 53316291173/271443*103682^(11/24) 3908816900118624 a001 7677619978875/196418 3908816900120075 a001 832040*103682^(1/3) 3908816900120876 a001 63245986/167761*439204^(8/9) 3908816900121039 a001 4052739537881/4870847*103682^(1/3) 3908816900121180 a001 3536736619241/4250681*103682^(1/3) 3908816900121267 a001 3278735159921/3940598*103682^(1/3) 3908816900121635 a001 2504730781961/3010349*103682^(1/3) 3908816900123127 a001 267914296/167761*439204^(7/9) 3908816900124161 a001 956722026041/1149851*103682^(1/3) 3908816900124167 a001 165580141/64079*64079^(20/23) 3908816900125379 a001 1134903170/167761*439204^(2/3) 3908816900126317 a001 591286729879/439204*103682^(7/24) 3908816900127630 a001 4807526976/167761*439204^(5/9) 3908816900128615 a001 365435296162/710647*103682^(3/8) 3908816900128756 a001 121393*103682^(1/2) 3908816900129882 a001 20365011074/167761*439204^(4/9) 3908816900131148 a001 317811/167761*2537720636^(7/9) 3908816900131148 a001 317811/167761*17393796001^(5/7) 3908816900131148 a001 75025/710647*(1/2+1/2*5^(1/2))^41 3908816900131148 a001 317811/167761*312119004989^(7/11) 3908816900131148 a001 317811/167761*14662949395604^(5/9) 3908816900131148 a001 317811/167761*(1/2+1/2*5^(1/2))^35 3908816900131148 a001 317811/167761*505019158607^(5/8) 3908816900131148 a001 317811/167761*28143753123^(7/10) 3908816900131148 a001 317811/167761*599074578^(5/6) 3908816900131148 a001 317811/167761*228826127^(7/8) 3908816900132133 a001 86267571272/167761*439204^(1/3) 3908816900133547 a001 10610209857723/439204*39603^(1/22) 3908816900134385 a001 365435296162/167761*439204^(2/9) 3908816900135225 a001 956722026041/1860498*103682^(3/8) 3908816900135931 a001 20100270057400/514229 3908816900136190 a001 2504730781961/4870847*103682^(3/8) 3908816900136331 a001 6557470319842/12752043*103682^(3/8) 3908816900136364 a001 10610209857723/20633239*103682^(3/8) 3908816900136418 a001 4052739537881/7881196*103682^(3/8) 3908816900136636 a001 140728068720/15251*439204^(1/9) 3908816900136786 a001 1548008755920/3010349*103682^(3/8) 3908816900137758 a001 75640/15251*141422324^(11/13) 3908816900137758 a001 75640/15251*2537720636^(11/15) 3908816900137758 a001 75025/1860498*(1/2+1/2*5^(1/2))^43 3908816900137758 a001 75640/15251*45537549124^(11/17) 3908816900137758 a001 75640/15251*312119004989^(3/5) 3908816900137758 a001 75640/15251*14662949395604^(11/21) 3908816900137758 a001 75640/15251*(1/2+1/2*5^(1/2))^33 3908816900137758 a001 75640/15251*192900153618^(11/18) 3908816900137758 a001 75640/15251*10749957122^(11/16) 3908816900137758 a001 75640/15251*1568397607^(3/4) 3908816900137758 a001 75640/15251*599074578^(11/14) 3908816900137762 a001 75640/15251*33385282^(11/12) 3908816900138456 a001 52623190193325/1346269 3908816900138723 a001 75025/4870847*45537549124^(15/17) 3908816900138723 a001 75025/4870847*312119004989^(9/11) 3908816900138723 a001 75025/4870847*14662949395604^(5/7) 3908816900138723 a001 75025/4870847*(1/2+1/2*5^(1/2))^45 3908816900138723 a001 75025/4870847*192900153618^(5/6) 3908816900138723 a001 75025/4870847*28143753123^(9/10) 3908816900138723 a001 2178309/167761*(1/2+1/2*5^(1/2))^31 3908816900138723 a001 2178309/167761*9062201101803^(1/2) 3908816900138723 a001 75025/4870847*10749957122^(15/16) 3908816900138825 a001 137769300522575/3524578 3908816900138833 a001 14930352/167761*7881196^(9/11) 3908816900138842 a001 63245986/167761*7881196^(8/11) 3908816900138846 a001 165580141/167761*7881196^(2/3) 3908816900138848 a001 267914296/167761*7881196^(7/11) 3908816900138853 a001 1134903170/167761*7881196^(6/11) 3908816900138859 a001 4807526976/167761*7881196^(5/11) 3908816900138864 a001 75025/12752043*(1/2+1/2*5^(1/2))^47 3908816900138864 a001 5702887/167761*(1/2+1/2*5^(1/2))^29 3908816900138864 a001 5702887/167761*1322157322203^(1/2) 3908816900138865 a001 20365011074/167761*7881196^(4/11) 3908816900138867 a001 32951280099/167761*7881196^(1/3) 3908816900138870 a001 86267571272/167761*7881196^(3/11) 3908816900138876 a001 365435296162/167761*7881196^(2/11) 3908816900138878 a001 72136942274880/1845493 3908816900138880 a001 39088169/167761*20633239^(5/7) 3908816900138882 a001 140728068720/15251*7881196^(1/11) 3908816900138882 a001 267914296/167761*20633239^(3/5) 3908816900138882 a001 433494437/167761*20633239^(4/7) 3908816900138884 a001 4807526976/167761*20633239^(3/7) 3908816900138884 a001 7778742049/167761*20633239^(2/5) 3908816900138884 a001 14930352/167761*141422324^(9/13) 3908816900138884 a001 14930352/167761*2537720636^(3/5) 3908816900138884 a001 75025/33385282*14662949395604^(7/9) 3908816900138884 a001 75025/33385282*(1/2+1/2*5^(1/2))^49 3908816900138884 a001 75025/33385282*505019158607^(7/8) 3908816900138884 a001 14930352/167761*45537549124^(9/17) 3908816900138884 a001 14930352/167761*817138163596^(9/19) 3908816900138884 a001 14930352/167761*14662949395604^(3/7) 3908816900138884 a001 14930352/167761*(1/2+1/2*5^(1/2))^27 3908816900138884 a001 14930352/167761*192900153618^(1/2) 3908816900138884 a001 14930352/167761*10749957122^(9/16) 3908816900138884 a001 14930352/167761*599074578^(9/14) 3908816900138885 a001 53316291173/167761*20633239^(2/7) 3908816900138886 a001 225851433717/167761*20633239^(1/5) 3908816900138886 a001 944284833600625/24157817 3908816900138886 a001 591286729879/167761*20633239^(1/7) 3908816900138887 a001 14930352/167761*33385282^(3/4) 3908816900138887 a001 39088169/167761*2537720636^(5/9) 3908816900138887 a001 75025/87403803*817138163596^(17/19) 3908816900138887 a001 75025/87403803*14662949395604^(17/21) 3908816900138887 a001 75025/87403803*192900153618^(17/18) 3908816900138887 a001 39088169/167761*312119004989^(5/11) 3908816900138887 a001 39088169/167761*(1/2+1/2*5^(1/2))^25 3908816900138887 a001 39088169/167761*3461452808002^(5/12) 3908816900138887 a001 39088169/167761*28143753123^(1/2) 3908816900138887 a001 39088169/167761*228826127^(5/8) 3908816900138887 a001 10610170770075/271442 3908816900138887 a001 267914296/167761*141422324^(7/13) 3908816900138887 a001 1134903170/167761*141422324^(6/13) 3908816900138887 a001 4807526976/167761*141422324^(5/13) 3908816900138887 a001 9303105/15251*(1/2+1/2*5^(1/2))^23 3908816900138887 a001 9303105/15251*4106118243^(1/2) 3908816900138887 a001 75025*141422324^(1/3) 3908816900138888 a001 20365011074/167761*141422324^(4/13) 3908816900138888 a001 86267571272/167761*141422324^(3/13) 3908816900138888 a001 365435296162/167761*141422324^(2/13) 3908816900138888 a001 6472224534681800/165580141 3908816900138888 a001 140728068720/15251*141422324^(1/13) 3908816900138888 a001 267914296/167761*2537720636^(7/15) 3908816900138888 a001 267914296/167761*17393796001^(3/7) 3908816900138888 a001 75025/599074578*3461452808002^(11/12) 3908816900138888 a001 267914296/167761*45537549124^(7/17) 3908816900138888 a001 267914296/167761*14662949395604^(1/3) 3908816900138888 a001 267914296/167761*(1/2+1/2*5^(1/2))^21 3908816900138888 a001 267914296/167761*192900153618^(7/18) 3908816900138888 a001 267914296/167761*10749957122^(7/16) 3908816900138888 a001 267914296/167761*599074578^(1/2) 3908816900138888 a001 16944503814617925/433494437 3908816900138888 a001 75025/1568397607*14662949395604^(19/21) 3908816900138888 a001 701408733/167761*817138163596^(1/3) 3908816900138888 a001 701408733/167761*(1/2+1/2*5^(1/2))^19 3908816900138888 a001 8872257381834395/226980634 3908816900138888 a001 4807526976/167761*2537720636^(1/3) 3908816900138888 a001 1836311903/167761*45537549124^(1/3) 3908816900138888 a001 1836311903/167761*(1/2+1/2*5^(1/2))^17 3908816900138888 a001 20365011074/167761*2537720636^(4/15) 3908816900138888 a001 53316291173/167761*2537720636^(2/9) 3908816900138888 a001 86267571272/167761*2537720636^(1/5) 3908816900138888 a001 116139356912898000/2971215073 3908816900138888 a001 365435296162/167761*2537720636^(2/15) 3908816900138888 a001 591286729879/167761*2537720636^(1/9) 3908816900138888 a001 140728068720/15251*2537720636^(1/15) 3908816900138888 a001 4807526976/167761*45537549124^(5/17) 3908816900138888 a001 4807526976/167761*312119004989^(3/11) 3908816900138888 a001 4807526976/167761*14662949395604^(5/21) 3908816900138888 a001 4807526976/167761*(1/2+1/2*5^(1/2))^15 3908816900138888 a001 4807526976/167761*192900153618^(5/18) 3908816900138888 a001 4807526976/167761*28143753123^(3/10) 3908816900138888 a001 4807526976/167761*10749957122^(5/16) 3908816900138888 a001 304056783829522025/7778742049 3908816900138888 a001 796030994575668075/20365011074 3908816900138888 a001 75025*73681302247^(1/4) 3908816900138888 a001 225851433717/167761*17393796001^(1/7) 3908816900138888 a001 32951280099/167761*312119004989^(1/5) 3908816900138888 a001 32951280099/167761*(1/2+1/2*5^(1/2))^11 3908816900138888 a001 86267571272/167761*45537549124^(3/17) 3908816900138888 a001 365435296162/167761*45537549124^(2/17) 3908816900138888 a001 140728068720/15251*45537549124^(1/17) 3908816900138888 a001 86267571272/167761*817138163596^(3/19) 3908816900138888 a001 86267571272/167761*(1/2+1/2*5^(1/2))^9 3908816900138888 a001 86267571272/167761*192900153618^(1/6) 3908816900138888 a001 225851433717/167761*14662949395604^(1/9) 3908816900138888 a001 225851433717/167761*(1/2+1/2*5^(1/2))^7 3908816900138888 a001 591286729879/167761*(1/2+1/2*5^(1/2))^5 3908816900138888 a001 140728068720/15251*14662949395604^(1/21) 3908816900138888 a001 140728068720/15251*(1/2+1/2*5^(1/2))^3 3908816900138888 a001 2504730781961/167761*(1/2+1/2*5^(1/2))^2 3908816900138888 a001 956722026041/167761*(1/2+1/2*5^(1/2))^4 3908816900138888 a001 139583862445/167761*(1/2+1/2*5^(1/2))^8 3908816900138888 a001 139583862445/167761*23725150497407^(1/8) 3908816900138888 a001 139583862445/167761*505019158607^(1/7) 3908816900138888 a001 956722026041/167761*73681302247^(1/13) 3908816900138888 a001 139583862445/167761*73681302247^(2/13) 3908816900138888 a001 53316291173/167761*312119004989^(2/11) 3908816900138888 a001 53316291173/167761*(1/2+1/2*5^(1/2))^10 3908816900138888 a001 591286729879/167761*28143753123^(1/10) 3908816900138888 a001 53316291173/167761*28143753123^(1/5) 3908816900138888 a001 2504730781961/167761*10749957122^(1/24) 3908816900138888 a001 20365011074/167761*45537549124^(4/17) 3908816900138888 a001 20365011074/167761*817138163596^(4/19) 3908816900138888 a001 20365011074/167761*14662949395604^(4/21) 3908816900138888 a001 20365011074/167761*(1/2+1/2*5^(1/2))^12 3908816900138888 a001 20365011074/167761*192900153618^(2/9) 3908816900138888 a001 20365011074/167761*73681302247^(3/13) 3908816900138888 a001 140728068720/15251*10749957122^(1/16) 3908816900138888 a001 956722026041/167761*10749957122^(1/12) 3908816900138888 a001 365435296162/167761*10749957122^(1/8) 3908816900138888 a001 139583862445/167761*10749957122^(1/6) 3908816900138888 a001 86267571272/167761*10749957122^(3/16) 3908816900138888 a001 53316291173/167761*10749957122^(5/24) 3908816900138888 a001 7778742049/167761*17393796001^(2/7) 3908816900138888 a001 2504730781961/167761*4106118243^(1/23) 3908816900138888 a001 20365011074/167761*10749957122^(1/4) 3908816900138888 a001 7778742049/167761*14662949395604^(2/9) 3908816900138888 a001 7778742049/167761*(1/2+1/2*5^(1/2))^14 3908816900138888 a001 956722026041/167761*4106118243^(2/23) 3908816900138888 a001 7778742049/167761*10749957122^(7/24) 3908816900138888 a001 187917426916624025/4807526976 3908816900138888 a001 365435296162/167761*4106118243^(3/23) 3908816900138888 a001 139583862445/167761*4106118243^(4/23) 3908816900138888 a001 53316291173/167761*4106118243^(5/23) 3908816900138888 a001 20365011074/167761*4106118243^(6/23) 3908816900138888 a001 2504730781961/167761*1568397607^(1/22) 3908816900138888 a001 7778742049/167761*4106118243^(7/23) 3908816900138888 a001 75025/6643838879*14662949395604^(20/21) 3908816900138888 a001 2971215073/167761*(1/2+1/2*5^(1/2))^16 3908816900138888 a001 2971215073/167761*23725150497407^(1/4) 3908816900138888 a001 2971215073/167761*73681302247^(4/13) 3908816900138888 a001 2971215073/167761*10749957122^(1/3) 3908816900138888 a001 956722026041/167761*1568397607^(1/11) 3908816900138888 a001 2971215073/167761*4106118243^(8/23) 3908816900138888 a001 365435296162/167761*1568397607^(3/22) 3908816900138888 a001 71778070003726025/1836311903 3908816900138888 a001 139583862445/167761*1568397607^(2/11) 3908816900138888 a001 53316291173/167761*1568397607^(5/22) 3908816900138888 a001 1134903170/167761*2537720636^(2/5) 3908816900138888 a001 32951280099/167761*1568397607^(1/4) 3908816900138888 a001 20365011074/167761*1568397607^(3/11) 3908816900138888 a001 7778742049/167761*1568397607^(7/22) 3908816900138888 a001 2504730781961/167761*599074578^(1/21) 3908816900138888 a001 1134903170/167761*45537549124^(6/17) 3908816900138888 a001 1134903170/167761*14662949395604^(2/7) 3908816900138888 a001 1134903170/167761*(1/2+1/2*5^(1/2))^18 3908816900138888 a001 1134903170/167761*192900153618^(1/3) 3908816900138888 a001 1134903170/167761*10749957122^(3/8) 3908816900138888 a001 2971215073/167761*1568397607^(4/11) 3908816900138888 a001 1134903170/167761*4106118243^(9/23) 3908816900138888 a001 140728068720/15251*599074578^(1/14) 3908816900138888 a001 956722026041/167761*599074578^(2/21) 3908816900138888 a001 1134903170/167761*1568397607^(9/22) 3908816900138888 a001 365435296162/167761*599074578^(1/7) 3908816900138888 a001 27416783094554050/701408733 3908816900138888 a001 225851433717/167761*599074578^(1/6) 3908816900138888 a001 139583862445/167761*599074578^(4/21) 3908816900138888 a001 86267571272/167761*599074578^(3/14) 3908816900138888 a001 53316291173/167761*599074578^(5/21) 3908816900138888 a001 20365011074/167761*599074578^(2/7) 3908816900138888 a001 7778742049/167761*599074578^(1/3) 3908816900138888 a001 2504730781961/167761*228826127^(1/20) 3908816900138888 a001 4807526976/167761*599074578^(5/14) 3908816900138888 a001 433494437/167761*2537720636^(4/9) 3908816900138888 a001 75025/969323029*14662949395604^(8/9) 3908816900138888 a001 433494437/167761*(1/2+1/2*5^(1/2))^20 3908816900138888 a001 433494437/167761*23725150497407^(5/16) 3908816900138888 a001 433494437/167761*505019158607^(5/14) 3908816900138888 a001 433494437/167761*73681302247^(5/13) 3908816900138888 a001 433494437/167761*28143753123^(2/5) 3908816900138888 a001 433494437/167761*10749957122^(5/12) 3908816900138888 a001 2971215073/167761*599074578^(8/21) 3908816900138888 a001 433494437/167761*4106118243^(10/23) 3908816900138888 a001 433494437/167761*1568397607^(5/11) 3908816900138888 a001 1134903170/167761*599074578^(3/7) 3908816900138888 a001 956722026041/167761*228826127^(1/10) 3908816900138888 a001 591286729879/167761*228826127^(1/8) 3908816900138888 a001 433494437/167761*599074578^(10/21) 3908816900138888 a001 10472279279936125/267914296 3908816900138888 a001 365435296162/167761*228826127^(3/20) 3908816900138888 a001 139583862445/167761*228826127^(1/5) 3908816900138888 a001 53316291173/167761*228826127^(1/4) 3908816900138888 a001 20365011074/167761*228826127^(3/10) 3908816900138888 a001 7778742049/167761*228826127^(7/20) 3908816900138888 a001 2504730781961/167761*87403803^(1/19) 3908816900138888 a001 4807526976/167761*228826127^(3/8) 3908816900138888 a001 75025/370248451*14662949395604^(6/7) 3908816900138888 a001 165580141/167761*312119004989^(2/5) 3908816900138888 a001 165580141/167761*(1/2+1/2*5^(1/2))^22 3908816900138888 a001 165580141/167761*10749957122^(11/24) 3908816900138888 a001 165580141/167761*4106118243^(11/23) 3908816900138888 a001 165580141/167761*1568397607^(1/2) 3908816900138888 a001 2971215073/167761*228826127^(2/5) 3908816900138888 a001 1134903170/167761*228826127^(9/20) 3908816900138888 a001 165580141/167761*599074578^(11/21) 3908816900138888 a001 433494437/167761*228826127^(1/2) 3908816900138888 a001 956722026041/167761*87403803^(2/19) 3908816900138888 a001 165580141/167761*228826127^(11/20) 3908816900138888 a001 800010949050865/20466831 3908816900138888 a001 63245986/167761*141422324^(8/13) 3908816900138888 a001 365435296162/167761*87403803^(3/19) 3908816900138888 a001 139583862445/167761*87403803^(4/19) 3908816900138888 a001 53316291173/167761*87403803^(5/19) 3908816900138888 a001 20365011074/167761*87403803^(6/19) 3908816900138888 a001 7778742049/167761*87403803^(7/19) 3908816900138888 a001 2504730781961/167761*33385282^(1/18) 3908816900138888 a001 63245986/167761*2537720636^(8/15) 3908816900138888 a001 75025/141422324*23725150497407^(13/16) 3908816900138888 a001 75025/141422324*505019158607^(13/14) 3908816900138888 a001 63245986/167761*45537549124^(8/17) 3908816900138888 a001 63245986/167761*14662949395604^(8/21) 3908816900138888 a001 63245986/167761*(1/2+1/2*5^(1/2))^24 3908816900138888 a001 63245986/167761*192900153618^(4/9) 3908816900138888 a001 63245986/167761*73681302247^(6/13) 3908816900138888 a001 63245986/167761*10749957122^(1/2) 3908816900138888 a001 63245986/167761*4106118243^(12/23) 3908816900138888 a001 63245986/167761*1568397607^(6/11) 3908816900138888 a001 63245986/167761*599074578^(4/7) 3908816900138888 a001 2971215073/167761*87403803^(8/19) 3908816900138888 a001 63245986/167761*228826127^(3/5) 3908816900138888 a001 1134903170/167761*87403803^(9/19) 3908816900138888 a001 701408733/167761*87403803^(1/2) 3908816900138888 a001 433494437/167761*87403803^(10/19) 3908816900138888 a001 140728068720/15251*33385282^(1/12) 3908816900138888 a001 165580141/167761*87403803^(11/19) 3908816900138888 a001 956722026041/167761*33385282^(1/9) 3908816900138888 a001 1527884955826850/39088169 3908816900138888 a001 63245986/167761*87403803^(12/19) 3908816900138888 a001 365435296162/167761*33385282^(1/6) 3908816900138888 a001 139583862445/167761*33385282^(2/9) 3908816900138888 a001 86267571272/167761*33385282^(1/4) 3908816900138889 a001 53316291173/167761*33385282^(5/18) 3908816900138889 a001 20365011074/167761*33385282^(1/3) 3908816900138889 a001 24157817/167761*141422324^(2/3) 3908816900138889 a001 75025/54018521*312119004989^(10/11) 3908816900138889 a001 75025/54018521*3461452808002^(5/6) 3908816900138889 a001 24157817/167761*(1/2+1/2*5^(1/2))^26 3908816900138889 a001 24157817/167761*73681302247^(1/2) 3908816900138889 a001 24157817/167761*10749957122^(13/24) 3908816900138889 a001 24157817/167761*4106118243^(13/23) 3908816900138889 a001 24157817/167761*1568397607^(13/22) 3908816900138889 a001 24157817/167761*599074578^(13/21) 3908816900138889 a001 7778742049/167761*33385282^(7/18) 3908816900138889 a001 24157817/167761*228826127^(13/20) 3908816900138889 a001 2504730781961/167761*12752043^(1/17) 3908816900138889 a001 4807526976/167761*33385282^(5/12) 3908816900138889 a001 2971215073/167761*33385282^(4/9) 3908816900138889 a001 24157817/167761*87403803^(13/19) 3908816900138889 a001 1134903170/167761*33385282^(1/2) 3908816900138889 a001 9227465/167761*20633239^(4/5) 3908816900138890 a001 433494437/167761*33385282^(5/9) 3908816900138890 a001 267914296/167761*33385282^(7/12) 3908816900138890 a001 165580141/167761*33385282^(11/18) 3908816900138890 a001 63245986/167761*33385282^(2/3) 3908816900138890 a001 956722026041/167761*12752043^(2/17) 3908816900138891 a001 583600122226225/14930352 3908816900138891 a001 24157817/167761*33385282^(13/18) 3908816900138892 a001 365435296162/167761*12752043^(3/17) 3908816900138893 a001 139583862445/167761*12752043^(4/17) 3908816900138893 a001 3524578/167761*7881196^(10/11) 3908816900138895 a001 53316291173/167761*12752043^(5/17) 3908816900138896 a001 20365011074/167761*12752043^(6/17) 3908816900138897 a001 9227465/167761*17393796001^(4/7) 3908816900138897 a001 75025/20633239*45537549124^(16/17) 3908816900138897 a001 75025/20633239*14662949395604^(16/21) 3908816900138897 a001 75025/20633239*(1/2+1/2*5^(1/2))^48 3908816900138897 a001 75025/20633239*192900153618^(8/9) 3908816900138897 a001 75025/20633239*73681302247^(12/13) 3908816900138897 a001 9227465/167761*14662949395604^(4/9) 3908816900138897 a001 9227465/167761*(1/2+1/2*5^(1/2))^28 3908816900138897 a001 9227465/167761*505019158607^(1/2) 3908816900138897 a001 9227465/167761*73681302247^(7/13) 3908816900138897 a001 9227465/167761*10749957122^(7/12) 3908816900138897 a001 9227465/167761*4106118243^(14/23) 3908816900138897 a001 9227465/167761*1568397607^(7/11) 3908816900138897 a001 9227465/167761*599074578^(2/3) 3908816900138897 a001 9227465/167761*228826127^(7/10) 3908816900138897 a001 9227465/167761*87403803^(14/19) 3908816900138897 a001 7778742049/167761*12752043^(7/17) 3908816900138898 a001 2504730781961/167761*4870847^(1/16) 3908816900138899 a001 2971215073/167761*12752043^(8/17) 3908816900138899 a001 9227465/167761*33385282^(7/9) 3908816900138900 a001 1836311903/167761*12752043^(1/2) 3908816900138900 a001 1134903170/167761*12752043^(9/17) 3908816900138902 a001 433494437/167761*12752043^(10/17) 3908816900138903 a001 165580141/167761*12752043^(11/17) 3908816900138905 a001 63245986/167761*12752043^(12/17) 3908816900138907 a001 24157817/167761*12752043^(13/17) 3908816900138908 a001 956722026041/167761*4870847^(1/8) 3908816900138912 a001 222915410851825/5702887 3908816900138917 a001 9227465/167761*12752043^(14/17) 3908816900138918 a001 365435296162/167761*4870847^(3/16) 3908816900138929 a001 139583862445/167761*4870847^(1/4) 3908816900138939 a001 53316291173/167761*4870847^(5/16) 3908816900138943 a001 3524578/167761*20633239^(6/7) 3908816900138949 a001 20365011074/167761*4870847^(3/8) 3908816900138950 a001 3524578/167761*141422324^(10/13) 3908816900138950 a001 3524578/167761*2537720636^(2/3) 3908816900138950 a001 75025/7881196*(1/2+1/2*5^(1/2))^46 3908816900138950 a001 3524578/167761*45537549124^(10/17) 3908816900138950 a001 3524578/167761*312119004989^(6/11) 3908816900138950 a001 3524578/167761*14662949395604^(10/21) 3908816900138950 a001 3524578/167761*(1/2+1/2*5^(1/2))^30 3908816900138950 a001 3524578/167761*192900153618^(5/9) 3908816900138950 a001 3524578/167761*28143753123^(3/5) 3908816900138950 a001 3524578/167761*10749957122^(5/8) 3908816900138950 a001 75025/7881196*10749957122^(23/24) 3908816900138950 a001 3524578/167761*4106118243^(15/23) 3908816900138950 a001 3524578/167761*1568397607^(15/22) 3908816900138950 a001 3524578/167761*599074578^(5/7) 3908816900138951 a001 3524578/167761*228826127^(3/4) 3908816900138951 a001 3524578/167761*87403803^(15/19) 3908816900138953 a001 3524578/167761*33385282^(5/6) 3908816900138960 a001 7778742049/167761*4870847^(7/16) 3908816900138963 a001 2504730781961/167761*1860498^(1/15) 3908816900138970 a001 2971215073/167761*4870847^(1/2) 3908816900138972 a001 3524578/167761*12752043^(15/17) 3908816900138980 a001 1134903170/167761*4870847^(9/16) 3908816900138991 a001 433494437/167761*4870847^(5/8) 3908816900139000 a001 140728068720/15251*1860498^(1/10) 3908816900139001 a001 165580141/167761*4870847^(11/16) 3908816900139011 a001 63245986/167761*4870847^(3/4) 3908816900139023 a001 24157817/167761*4870847^(13/16) 3908816900139038 a001 956722026041/167761*1860498^(2/15) 3908816900139041 a001 9227465/167761*4870847^(7/8) 3908816900139052 a001 85146110329250/2178309 3908816900139076 a001 591286729879/167761*1860498^(1/6) 3908816900139105 a001 3524578/167761*4870847^(15/16) 3908816900139113 a001 365435296162/167761*1860498^(1/5) 3908816900139189 a001 139583862445/167761*1860498^(4/15) 3908816900139226 a001 86267571272/167761*1860498^(3/10) 3908816900139264 a001 53316291173/167761*1860498^(1/3) 3908816900139311 a001 514229*103682^(3/8) 3908816900139319 a001 75025/3010349*312119004989^(4/5) 3908816900139319 a001 75025/3010349*(1/2+1/2*5^(1/2))^44 3908816900139319 a001 75025/3010349*23725150497407^(11/16) 3908816900139319 a001 75025/3010349*73681302247^(11/13) 3908816900139319 a001 1346269/167761*(1/2+1/2*5^(1/2))^32 3908816900139319 a001 1346269/167761*23725150497407^(1/2) 3908816900139319 a001 1346269/167761*505019158607^(4/7) 3908816900139319 a001 1346269/167761*73681302247^(8/13) 3908816900139319 a001 1346269/167761*10749957122^(2/3) 3908816900139319 a001 75025/3010349*10749957122^(11/12) 3908816900139319 a001 1346269/167761*4106118243^(16/23) 3908816900139319 a001 75025/3010349*4106118243^(22/23) 3908816900139319 a001 1346269/167761*1568397607^(8/11) 3908816900139319 a001 1346269/167761*599074578^(16/21) 3908816900139319 a001 1346269/167761*228826127^(4/5) 3908816900139319 a001 1346269/167761*87403803^(16/19) 3908816900139322 a001 1346269/167761*33385282^(8/9) 3908816900139339 a001 20365011074/167761*1860498^(2/5) 3908816900139342 a001 1346269/167761*12752043^(16/17) 3908816900139415 a001 7778742049/167761*1860498^(7/15) 3908816900139440 a001 2504730781961/167761*710647^(1/14) 3908816900139452 a001 4807526976/167761*1860498^(1/2) 3908816900139490 a001 2971215073/167761*1860498^(8/15) 3908816900139565 a001 1134903170/167761*1860498^(3/5) 3908816900139640 a001 433494437/167761*1860498^(2/3) 3908816900139678 a001 267914296/167761*1860498^(7/10) 3908816900139716 a001 165580141/167761*1860498^(11/15) 3908816900139791 a001 63245986/167761*1860498^(4/5) 3908816900139828 a001 39088169/167761*1860498^(5/6) 3908816900139868 a001 24157817/167761*1860498^(13/15) 3908816900139900 a001 14930352/167761*1860498^(9/10) 3908816900139951 a001 9227465/167761*1860498^(14/15) 3908816900139993 a001 956722026041/167761*710647^(1/7) 3908816900140017 a001 6504584027185/166408 3908816900140546 a001 365435296162/167761*710647^(3/14) 3908816900140823 a001 225851433717/167761*710647^(1/4) 3908816900141099 a001 139583862445/167761*710647^(2/7) 3908816900141468 a001 182717648081/219602*103682^(1/3) 3908816900141652 a001 53316291173/167761*710647^(5/14) 3908816900141844 a001 75025/1149851*2537720636^(14/15) 3908816900141844 a001 75025/1149851*17393796001^(6/7) 3908816900141844 a001 75025/1149851*45537549124^(14/17) 3908816900141844 a001 75025/1149851*14662949395604^(2/3) 3908816900141844 a001 75025/1149851*(1/2+1/2*5^(1/2))^42 3908816900141844 a001 75025/1149851*505019158607^(3/4) 3908816900141844 a001 75025/1149851*192900153618^(7/9) 3908816900141844 a001 514229/167761*45537549124^(2/3) 3908816900141844 a001 514229/167761*(1/2+1/2*5^(1/2))^34 3908816900141844 a001 514229/167761*10749957122^(17/24) 3908816900141844 a001 75025/1149851*10749957122^(7/8) 3908816900141844 a001 514229/167761*4106118243^(17/23) 3908816900141844 a001 75025/1149851*4106118243^(21/23) 3908816900141844 a001 514229/167761*1568397607^(17/22) 3908816900141844 a001 75025/1149851*1568397607^(21/22) 3908816900141844 a001 514229/167761*599074578^(17/21) 3908816900141844 a001 514229/167761*228826127^(17/20) 3908816900141844 a001 514229/167761*87403803^(17/19) 3908816900141847 a001 514229/167761*33385282^(17/18) 3908816900142205 a001 20365011074/167761*710647^(3/7) 3908816900142758 a001 7778742049/167761*710647^(1/2) 3908816900142968 a001 2504730781961/167761*271443^(1/13) 3908816900143310 a001 2971215073/167761*710647^(4/7) 3908816900143765 a001 317811*103682^(5/12) 3908816900143863 a001 1134903170/167761*710647^(9/14) 3908816900143906 a001 20365011074/271443*103682^(13/24) 3908816900144416 a001 433494437/167761*710647^(5/7) 3908816900144693 a001 267914296/167761*710647^(3/4) 3908816900144969 a001 165580141/167761*710647^(11/14) 3908816900145522 a001 63245986/167761*710647^(6/7) 3908816900146076 a001 24157817/167761*710647^(13/14) 3908816900146628 a001 12422650078525/317811 3908816900147049 a001 956722026041/167761*271443^(2/13) 3908816900150376 a001 591286729879/1860498*103682^(5/12) 3908816900151130 a001 365435296162/167761*271443^(3/13) 3908816900151340 a001 1548008755920/4870847*103682^(5/12) 3908816900151481 a001 4052739537881/12752043*103682^(5/12) 3908816900151502 a001 1515744265389/4769326*103682^(5/12) 3908816900151514 a001 6557470319842/20633239*103682^(5/12) 3908816900151568 a001 2504730781961/7881196*103682^(5/12) 3908816900151936 a001 956722026041/3010349*103682^(5/12) 3908816900154038 a001 4052739537881/167761*103682^(1/24) 3908816900154462 a001 365435296162/1149851*103682^(5/12) 3908816900155211 a001 139583862445/167761*271443^(4/13) 3908816900156618 a001 225851433717/439204*103682^(3/8) 3908816900158916 a001 139583862445/710647*103682^(11/24) 3908816900159057 a001 12586269025/271443*103682^(7/12) 3908816900159151 a001 196418/167761*141422324^(12/13) 3908816900159151 a001 75025/439204*2537720636^(8/9) 3908816900159151 a001 196418/167761*2537720636^(4/5) 3908816900159151 a001 75025/439204*312119004989^(8/11) 3908816900159151 a001 75025/439204*(1/2+1/2*5^(1/2))^40 3908816900159151 a001 75025/439204*23725150497407^(5/8) 3908816900159151 a001 75025/439204*73681302247^(10/13) 3908816900159151 a001 196418/167761*45537549124^(12/17) 3908816900159151 a001 75025/439204*28143753123^(4/5) 3908816900159151 a001 196418/167761*14662949395604^(4/7) 3908816900159151 a001 196418/167761*(1/2+1/2*5^(1/2))^36 3908816900159151 a001 196418/167761*505019158607^(9/14) 3908816900159151 a001 196418/167761*192900153618^(2/3) 3908816900159151 a001 196418/167761*73681302247^(9/13) 3908816900159151 a001 75025/439204*10749957122^(5/6) 3908816900159151 a001 196418/167761*10749957122^(3/4) 3908816900159151 a001 196418/167761*4106118243^(18/23) 3908816900159151 a001 75025/439204*4106118243^(20/23) 3908816900159151 a001 196418/167761*1568397607^(9/11) 3908816900159151 a001 75025/439204*1568397607^(10/11) 3908816900159151 a001 196418/167761*599074578^(6/7) 3908816900159151 a001 75025/439204*599074578^(20/21) 3908816900159151 a001 196418/167761*228826127^(9/10) 3908816900159151 a001 196418/167761*87403803^(18/19) 3908816900159292 a001 53316291173/167761*271443^(5/13) 3908816900163372 a001 20365011074/167761*271443^(6/13) 3908816900165413 a001 75025*271443^(1/2) 3908816900165526 a001 182717648081/930249*103682^(11/24) 3908816900165556 a001 267914296/64079*64079^(19/23) 3908816900166491 a001 956722026041/4870847*103682^(11/24) 3908816900166632 a001 2504730781961/12752043*103682^(11/24) 3908816900166652 a001 3278735159921/16692641*103682^(11/24) 3908816900166657 a001 10610209857723/54018521*103682^(11/24) 3908816900166665 a001 4052739537881/20633239*103682^(11/24) 3908816900166719 a001 387002188980/1970299*103682^(11/24) 3908816900167087 a001 591286729879/3010349*103682^(11/24) 3908816900167453 a001 7778742049/167761*271443^(7/13) 3908816900169189 a001 2504730781961/167761*103682^(1/12) 3908816900169612 a001 225851433717/1149851*103682^(11/24) 3908816900171534 a001 2971215073/167761*271443^(8/13) 3908816900171769 a001 139583862445/439204*103682^(5/12) 3908816900173517 a001 4052739537881/271443*39603^(1/11) 3908816900174066 a001 86267571272/710647*103682^(1/2) 3908816900174207 a001 7778742049/271443*103682^(5/8) 3908816900175615 a001 1134903170/167761*271443^(9/13) 3908816900179696 a001 433494437/167761*271443^(10/13) 3908816900180677 a001 75283811239/620166*103682^(1/2) 3908816900181641 a001 591286729879/4870847*103682^(1/2) 3908816900181782 a001 516002918640/4250681*103682^(1/2) 3908816900181803 a001 4052739537881/33385282*103682^(1/2) 3908816900181806 a001 3536736619241/29134601*103682^(1/2) 3908816900181808 a001 6557470319842/54018521*103682^(1/2) 3908816900181815 a001 2504730781961/20633239*103682^(1/2) 3908816900181869 a001 956722026041/7881196*103682^(1/2) 3908816900182238 a001 365435296162/3010349*103682^(1/2) 3908816900183776 a001 165580141/167761*271443^(11/13) 3908816900184339 a001 140728068720/15251*103682^(1/8) 3908816900184763 a001 139583862445/1149851*103682^(1/2) 3908816900186919 a001 196418*103682^(11/24) 3908816900187857 a001 63245986/167761*271443^(12/13) 3908816900189217 a001 53316291173/710647*103682^(13/24) 3908816900189358 a001 1602508992/90481*103682^(2/3) 3908816900191938 a001 20364936050/521 3908816900195827 a001 139583862445/1860498*103682^(13/24) 3908816900196792 a001 365435296162/4870847*103682^(13/24) 3908816900196933 a001 956722026041/12752043*103682^(13/24) 3908816900196953 a001 2504730781961/33385282*103682^(13/24) 3908816900196956 a001 6557470319842/87403803*103682^(13/24) 3908816900196957 a001 10610209857723/141422324*103682^(13/24) 3908816900196958 a001 4052739537881/54018521*103682^(13/24) 3908816900196966 a001 140728068720/1875749*103682^(13/24) 3908816900197020 a001 591286729879/7881196*103682^(13/24) 3908816900197388 a001 225851433717/3010349*103682^(13/24) 3908816900199490 a001 956722026041/167761*103682^(1/6) 3908816900199913 a001 86267571272/1149851*103682^(13/24) 3908816900202070 a001 53316291173/439204*103682^(1/2) 3908816900202805 a001 182717648081/51841*39603^(5/22) 3908816900204367 a001 32951280099/710647*103682^(7/12) 3908816900204508 a001 2971215073/271443*103682^(17/24) 3908816900206946 a001 433494437/64079*64079^(18/23) 3908816900210978 a001 43133785636/930249*103682^(7/12) 3908816900211942 a001 225851433717/4870847*103682^(7/12) 3908816900212083 a001 591286729879/12752043*103682^(7/12) 3908816900212104 a001 774004377960/16692641*103682^(7/12) 3908816900212107 a001 4052739537881/87403803*103682^(7/12) 3908816900212107 a001 225749145909/4868641*103682^(7/12) 3908816900212107 a001 3278735159921/70711162*103682^(7/12) 3908816900212109 a001 2504730781961/54018521*103682^(7/12) 3908816900212116 a001 956722026041/20633239*103682^(7/12) 3908816900212170 a001 182717648081/3940598*103682^(7/12) 3908816900212539 a001 139583862445/3010349*103682^(7/12) 3908816900214640 a001 591286729879/167761*103682^(5/24) 3908816900215064 a001 53316291173/1149851*103682^(7/12) 3908816900217220 a001 32951280099/439204*103682^(13/24) 3908816900218827 a001 1515744265389/101521*39603^(1/11) 3908816900219518 a001 20365011074/710647*103682^(5/8) 3908816900219659 a001 1836311903/271443*103682^(3/4) 3908816900226128 a001 53316291173/1860498*103682^(5/8) 3908816900227093 a001 139583862445/4870847*103682^(5/8) 3908816900227234 a001 365435296162/12752043*103682^(5/8) 3908816900227254 a001 956722026041/33385282*103682^(5/8) 3908816900227257 a001 2504730781961/87403803*103682^(5/8) 3908816900227258 a001 6557470319842/228826127*103682^(5/8) 3908816900227258 a001 10610209857723/370248451*103682^(5/8) 3908816900227258 a001 4052739537881/141422324*103682^(5/8) 3908816900227259 a001 1548008755920/54018521*103682^(5/8) 3908816900227267 a001 591286729879/20633239*103682^(5/8) 3908816900227321 a001 225851433717/7881196*103682^(5/8) 3908816900227689 a001 86267571272/3010349*103682^(5/8) 3908816900229791 a001 365435296162/167761*103682^(1/4) 3908816900230214 a001 32951280099/1149851*103682^(5/8) 3908816900232371 a001 10182505537/219602*103682^(7/12) 3908816900234668 a001 12586269025/710647*103682^(2/3) 3908816900234809 a001 1134903170/271443*103682^(19/24) 3908816900241279 a001 10983760033/620166*103682^(2/3) 3908816900242243 a001 86267571272/4870847*103682^(2/3) 3908816900242384 a001 75283811239/4250681*103682^(2/3) 3908816900242405 a001 591286729879/33385282*103682^(2/3) 3908816900242408 a001 516002918640/29134601*103682^(2/3) 3908816900242408 a001 4052739537881/228826127*103682^(2/3) 3908816900242408 a001 3536736619241/199691526*103682^(2/3) 3908816900242408 a001 6557470319842/370248451*103682^(2/3) 3908816900242408 a001 2504730781961/141422324*103682^(2/3) 3908816900242410 a001 956722026041/54018521*103682^(2/3) 3908816900242417 a001 365435296162/20633239*103682^(2/3) 3908816900242471 a001 139583862445/7881196*103682^(2/3) 3908816900242840 a001 53316291173/3010349*103682^(2/3) 3908816900244941 a001 225851433717/167761*103682^(7/24) 3908816900245365 a001 20365011074/1149851*103682^(2/3) 3908816900246830 a001 3278735159921/219602*39603^(1/11) 3908816900247521 a001 12586269025/439204*103682^(5/8) 3908816900248335 a001 701408733/64079*64079^(17/23) 3908816900249819 a001 7778742049/710647*103682^(17/24) 3908816900249960 a001 233802911/90481*103682^(5/6) 3908816900252171 a001 4052739537881/167761*39603^(1/22) 3908816900256429 a001 10182505537/930249*103682^(17/24) 3908816900257394 a001 53316291173/4870847*103682^(17/24) 3908816900257535 a001 139583862445/12752043*103682^(17/24) 3908816900257555 a001 182717648081/16692641*103682^(17/24) 3908816900257558 a001 956722026041/87403803*103682^(17/24) 3908816900257559 a001 2504730781961/228826127*103682^(17/24) 3908816900257559 a001 3278735159921/299537289*103682^(17/24) 3908816900257559 a001 10610209857723/969323029*103682^(17/24) 3908816900257559 a001 4052739537881/370248451*103682^(17/24) 3908816900257559 a001 387002188980/35355581*103682^(17/24) 3908816900257560 a001 591286729879/54018521*103682^(17/24) 3908816900257568 a001 7787980473/711491*103682^(17/24) 3908816900257622 a001 21566892818/1970299*103682^(17/24) 3908816900257990 a001 32951280099/3010349*103682^(17/24) 3908816900260092 a001 139583862445/167761*103682^(1/3) 3908816900260515 a001 12586269025/1149851*103682^(17/24) 3908816900262672 a001 7778742049/439204*103682^(2/3) 3908816900264969 a001 686789568/101521*103682^(3/4) 3908816900265110 a001 433494437/271443*103682^(7/8) 3908816900271580 a001 12586269025/1860498*103682^(3/4) 3908816900272545 a001 32951280099/4870847*103682^(3/4) 3908816900272685 a001 86267571272/12752043*103682^(3/4) 3908816900272706 a001 32264490531/4769326*103682^(3/4) 3908816900272709 a001 591286729879/87403803*103682^(3/4) 3908816900272709 a001 1548008755920/228826127*103682^(3/4) 3908816900272709 a001 4052739537881/599074578*103682^(3/4) 3908816900272709 a001 1515744265389/224056801*103682^(3/4) 3908816900272709 a001 6557470319842/969323029*103682^(3/4) 3908816900272709 a001 2504730781961/370248451*103682^(3/4) 3908816900272709 a001 956722026041/141422324*103682^(3/4) 3908816900272711 a001 365435296162/54018521*103682^(3/4) 3908816900272718 a001 139583862445/20633239*103682^(3/4) 3908816900272772 a001 53316291173/7881196*103682^(3/4) 3908816900273141 a001 20365011074/3010349*103682^(3/4) 3908816900275242 a001 86267571272/167761*103682^(3/8) 3908816900275666 a001 7778742049/1149851*103682^(3/4) 3908816900277775 a001 75025/167761*817138163596^(2/3) 3908816900277775 a001 75025/167761*(1/2+1/2*5^(1/2))^38 3908816900277775 a001 75025/167761*10749957122^(19/24) 3908816900277775 a001 75025/167761*4106118243^(19/23) 3908816900277775 a001 75025/167761*1568397607^(19/22) 3908816900277775 a001 75025/167761*599074578^(19/21) 3908816900277775 a001 75025/167761*228826127^(19/20) 3908816900277822 a001 1201881744/109801*103682^(17/24) 3908816900280120 a001 2971215073/710647*103682^(19/24) 3908816900280261 a001 267914296/271443*103682^(11/12) 3908816900286731 a001 7778742049/1860498*103682^(19/24) 3908816900286800 a001 2504730781961/271443*39603^(3/22) 3908816900287695 a001 20365011074/4870847*103682^(19/24) 3908816900287836 a001 53316291173/12752043*103682^(19/24) 3908816900287856 a001 139583862445/33385282*103682^(19/24) 3908816900287859 a001 365435296162/87403803*103682^(19/24) 3908816900287860 a001 956722026041/228826127*103682^(19/24) 3908816900287860 a001 2504730781961/599074578*103682^(19/24) 3908816900287860 a001 6557470319842/1568397607*103682^(19/24) 3908816900287860 a001 10610209857723/2537720636*103682^(19/24) 3908816900287860 a001 4052739537881/969323029*103682^(19/24) 3908816900287860 a001 1548008755920/370248451*103682^(19/24) 3908816900287860 a001 591286729879/141422324*103682^(19/24) 3908816900287861 a001 225851433717/54018521*103682^(19/24) 3908816900287869 a001 86267571272/20633239*103682^(19/24) 3908816900287923 a001 32951280099/7881196*103682^(19/24) 3908816900288291 a001 12586269025/3010349*103682^(19/24) 3908816900289724 a001 1134903170/64079*64079^(16/23) 3908816900290393 a001 53316291173/167761*103682^(5/12) 3908816900290816 a001 4807526976/1149851*103682^(19/24) 3908816900292973 a001 2971215073/439204*103682^(3/4) 3908816900295270 a001 1836311903/710647*103682^(5/6) 3908816900295412 a001 165580141/271443*103682^(23/24) 3908816900301881 a001 267084832/103361*103682^(5/6) 3908816900302846 a001 12586269025/4870847*103682^(5/6) 3908816900302986 a001 10983760033/4250681*103682^(5/6) 3908816900303007 a001 43133785636/16692641*103682^(5/6) 3908816900303010 a001 75283811239/29134601*103682^(5/6) 3908816900303010 a001 591286729879/228826127*103682^(5/6) 3908816900303010 a001 86000486440/33281921*103682^(5/6) 3908816900303010 a001 4052739537881/1568397607*103682^(5/6) 3908816900303010 a001 3536736619241/1368706081*103682^(5/6) 3908816900303010 a001 3278735159921/1268860318*103682^(5/6) 3908816900303010 a001 2504730781961/969323029*103682^(5/6) 3908816900303010 a001 956722026041/370248451*103682^(5/6) 3908816900303010 a001 182717648081/70711162*103682^(5/6) 3908816900303012 a001 139583862445/54018521*103682^(5/6) 3908816900303019 a001 53316291173/20633239*103682^(5/6) 3908816900303073 a001 10182505537/3940598*103682^(5/6) 3908816900303442 a001 7778742049/3010349*103682^(5/6) 3908816900305543 a001 32951280099/167761*103682^(11/24) 3908816900305967 a001 2971215073/1149851*103682^(5/6) 3908816900308123 a001 1836311903/439204*103682^(19/24) 3908816900310421 a001 1134903170/710647*103682^(7/8) 3908816900310559 a001 12586390419/322 3908816900310703 a001 31622993/12238*24476^(20/21) 3908816900316088 a001 225851433717/103682*39603^(3/11) 3908816900317032 a001 2971215073/1860498*103682^(7/8) 3908816900317996 a001 7778742049/4870847*103682^(7/8) 3908816900318137 a001 20365011074/12752043*103682^(7/8) 3908816900318157 a001 53316291173/33385282*103682^(7/8) 3908816900318160 a001 139583862445/87403803*103682^(7/8) 3908816900318161 a001 365435296162/228826127*103682^(7/8) 3908816900318161 a001 956722026041/599074578*103682^(7/8) 3908816900318161 a001 2504730781961/1568397607*103682^(7/8) 3908816900318161 a001 6557470319842/4106118243*103682^(7/8) 3908816900318161 a001 10610209857723/6643838879*103682^(7/8) 3908816900318161 a001 4052739537881/2537720636*103682^(7/8) 3908816900318161 a001 1548008755920/969323029*103682^(7/8) 3908816900318161 a001 591286729879/370248451*103682^(7/8) 3908816900318161 a001 225851433717/141422324*103682^(7/8) 3908816900318162 a001 86267571272/54018521*103682^(7/8) 3908816900318170 a001 32951280099/20633239*103682^(7/8) 3908816900318224 a001 12586269025/7881196*103682^(7/8) 3908816900318592 a001 4807526976/3010349*103682^(7/8) 3908816900320694 a001 20365011074/167761*103682^(1/2) 3908816900321117 a001 1836311903/1149851*103682^(7/8) 3908816900323274 a001 567451585/219602*103682^(5/6) 3908816900325571 a001 701408733/710647*103682^(11/12) 3908816900330544 a001 956722026041/64079*24476^(2/21) 3908816900331113 a001 28657*64079^(15/23) 3908816900332110 a001 6557470319842/710647*39603^(3/22) 3908816900332182 a001 1836311903/1860498*103682^(11/12) 3908816900333147 a001 4807526976/4870847*103682^(11/12) 3908816900333287 a001 12586269025/12752043*103682^(11/12) 3908816900333308 a001 32951280099/33385282*103682^(11/12) 3908816900333311 a001 86267571272/87403803*103682^(11/12) 3908816900333311 a001 225851433717/228826127*103682^(11/12) 3908816900333311 a001 591286729879/599074578*103682^(11/12) 3908816900333311 a001 1548008755920/1568397607*103682^(11/12) 3908816900333311 a001 4052739537881/4106118243*103682^(11/12) 3908816900333311 a001 4807525989/4870846*103682^(11/12) 3908816900333311 a001 6557470319842/6643838879*103682^(11/12) 3908816900333311 a001 2504730781961/2537720636*103682^(11/12) 3908816900333311 a001 956722026041/969323029*103682^(11/12) 3908816900333311 a001 365435296162/370248451*103682^(11/12) 3908816900333312 a001 139583862445/141422324*103682^(11/12) 3908816900333313 a001 53316291173/54018521*103682^(11/12) 3908816900333320 a001 20365011074/20633239*103682^(11/12) 3908816900333374 a001 7778742049/7881196*103682^(11/12) 3908816900333743 a001 2971215073/3010349*103682^(11/12) 3908816900335844 a001 75025*103682^(13/24) 3908816900336268 a001 1134903170/1149851*103682^(11/12) 3908816900338424 a001 701408733/439204*103682^(7/8) 3908816900340722 a001 433494437/710647*103682^(23/24) 3908816900342807 a001 10610209857723/1149851*39603^(3/22) 3908816900347333 a001 567451585/930249*103682^(23/24) 3908816900348297 a001 2971215073/4870847*103682^(23/24) 3908816900348438 a001 7778742049/12752043*103682^(23/24) 3908816900348458 a001 10182505537/16692641*103682^(23/24) 3908816900348461 a001 53316291173/87403803*103682^(23/24) 3908816900348462 a001 139583862445/228826127*103682^(23/24) 3908816900348462 a001 182717648081/299537289*103682^(23/24) 3908816900348462 a001 956722026041/1568397607*103682^(23/24) 3908816900348462 a001 2504730781961/4106118243*103682^(23/24) 3908816900348462 a001 3278735159921/5374978561*103682^(23/24) 3908816900348462 a001 10610209857723/17393796001*103682^(23/24) 3908816900348462 a001 4052739537881/6643838879*103682^(23/24) 3908816900348462 a001 1134903780/1860499*103682^(23/24) 3908816900348462 a001 591286729879/969323029*103682^(23/24) 3908816900348462 a001 225851433717/370248451*103682^(23/24) 3908816900348462 a001 21566892818/35355581*103682^(23/24) 3908816900348463 a001 32951280099/54018521*103682^(23/24) 3908816900348471 a001 1144206275/1875749*103682^(23/24) 3908816900348525 a001 1201881744/1970299*103682^(23/24) 3908816900348893 a001 1836311903/3010349*103682^(23/24) 3908816900350995 a001 7778742049/167761*103682^(7/12) 3908816900351418 a001 701408733/1149851*103682^(23/24) 3908816900353575 a001 433494437/439204*103682^(11/12) 3908816900355848 a001 604146740119/15456 3908816900360114 a001 4052739537881/439204*39603^(3/22) 3908816900362318 a001 10788334645/276 3908816900363612 a001 1/23184*(1/2+1/2*5^(1/2))^62 3908816900363612 a001 3020733700601/15456*8^(1/3) 3908816900364475 a001 1812440220361/46368 3908816900365454 a001 2504730781961/167761*39603^(1/11) 3908816900366145 a001 4807526976/167761*103682^(5/8) 3908816900366632 a001 906220110181/23184 3908816900368725 a001 66978574/109801*103682^(23/24) 3908816900372502 a001 2971215073/64079*64079^(14/23) 3908816900381296 a001 2971215073/167761*103682^(2/3) 3908816900383885 a001 906220110185/23184 3908816900396446 a001 1836311903/167761*103682^(17/24) 3908816900400083 a001 516002918640/90481*39603^(2/11) 3908816900411597 a001 1134903170/167761*103682^(3/4) 3908816900413891 a001 4807526976/64079*64079^(13/23) 3908816900426747 a001 701408733/167761*103682^(19/24) 3908816900429372 a001 139583862445/103682*39603^(7/22) 3908816900441898 a001 433494437/167761*103682^(5/6) 3908816900445394 a001 4052739537881/710647*39603^(2/11) 3908816900452005 a001 3536736619241/620166*39603^(2/11) 3908816900455280 a001 7778742049/64079*64079^(12/23) 3908816900456090 a001 6557470319842/1149851*39603^(2/11) 3908816900457048 a001 267914296/167761*103682^(7/8) 3908816900472199 a001 165580141/167761*103682^(11/12) 3908816900473397 a001 2504730781961/439204*39603^(2/11) 3908816900478738 a001 140728068720/15251*39603^(3/22) 3908816900487349 a001 9303105/15251*103682^(23/24) 3908816900490490 a001 2504730781961/103682*15127^(1/20) 3908816900496669 a001 12586269025/64079*64079^(11/23) 3908816900502501 a001 1812440220425/46368 3908816900513367 a001 956722026041/271443*39603^(5/22) 3908816900538058 a001 20365011074/64079*64079^(10/23) 3908816900542655 a001 43133785636/51841*39603^(4/11) 3908816900558677 a001 2504730781961/710647*39603^(5/22) 3908816900565288 a001 3278735159921/930249*39603^(5/22) 3908816900566849 a001 10610209857723/3010349*39603^(5/22) 3908816900569374 a001 4052739537881/1149851*39603^(5/22) 3908816900579447 a001 32951280099/64079*64079^(9/23) 3908816900586681 a001 387002188980/109801*39603^(5/22) 3908816900588337 a001 28657/103682*2537720636^(13/15) 3908816900588337 a001 28657/103682*45537549124^(13/17) 3908816900588337 a001 28657/103682*14662949395604^(13/21) 3908816900588337 a001 28657/103682*(1/2+1/2*5^(1/2))^39 3908816900588337 a001 28657/103682*192900153618^(13/18) 3908816900588337 a001 28657/103682*73681302247^(3/4) 3908816900588337 a001 28657/103682*10749957122^(13/16) 3908816900588337 a001 46368/64079*(1/2+1/2*5^(1/2))^37 3908816900588337 a001 28657/103682*599074578^(13/14) 3908816900592021 a001 956722026041/167761*39603^(2/11) 3908816900620837 a001 53316291173/64079*64079^(8/23) 3908816900621406 a001 102334155/24476*24476^(19/21) 3908816900626650 a001 591286729879/271443*39603^(3/11) 3908816900641247 a001 1548008755920/64079*24476^(1/21) 3908816900655939 a001 53316291173/103682*39603^(9/22) 3908816900662226 a001 86267571272/64079*64079^(7/23) 3908816900671961 a001 1548008755920/710647*39603^(3/11) 3908816900678571 a001 4052739537881/1860498*39603^(3/11) 3908816900679536 a001 2178309*39603^(3/11) 3908816900680132 a001 6557470319842/3010349*39603^(3/11) 3908816900682657 a001 2504730781961/1149851*39603^(3/11) 3908816900699964 a001 956722026041/439204*39603^(3/11) 3908816900703615 a001 139583862445/64079*64079^(6/23) 3908816900705305 a001 591286729879/167761*39603^(5/22) 3908816900739934 a001 365435296162/271443*39603^(7/22) 3908816900745004 a001 225851433717/64079*64079^(5/23) 3908816900769222 a001 32951280099/103682*39603^(5/11) 3908816900785244 a001 956722026041/710647*39603^(7/22) 3908816900786393 a001 365435296162/64079*64079^(4/23) 3908816900791855 a001 2504730781961/1860498*39603^(7/22) 3908816900792819 a001 6557470319842/4870847*39603^(7/22) 3908816900793047 a001 10610209857723/7881196*39603^(7/22) 3908816900793416 a001 1346269*39603^(7/22) 3908816900795941 a001 1548008755920/1149851*39603^(7/22) 3908816900801052 a001 6557470319842/271443*15127^(1/20) 3908816900813062 a001 586517975967/15005 3908816900813248 a001 591286729879/439204*39603^(7/22) 3908816900818588 a001 365435296162/167761*39603^(3/11) 3908816900827782 a001 591286729879/64079*64079^(3/23) 3908816900840839 a001 165580141/64079*167761^(4/5) 3908816900853217 a001 75283811239/90481*39603^(4/11) 3908816900868617 a001 28657*167761^(3/5) 3908816900869171 a001 956722026041/64079*64079^(2/23) 3908816900874365 a001 10610209857723/439204*15127^(1/20) 3908816900882506 a001 10182505537/51841*39603^(1/2) 3908816900896394 a001 20365011074/64079*167761^(2/5) 3908816900898528 a001 591286729879/710647*39603^(4/11) 3908816900898899 a001 121393/64079*2537720636^(7/9) 3908816900898899 a001 28657/271443*(1/2+1/2*5^(1/2))^41 3908816900898899 a001 121393/64079*17393796001^(5/7) 3908816900898899 a001 121393/64079*312119004989^(7/11) 3908816900898899 a001 121393/64079*14662949395604^(5/9) 3908816900898899 a001 121393/64079*(1/2+1/2*5^(1/2))^35 3908816900898899 a001 121393/64079*505019158607^(5/8) 3908816900898899 a001 121393/64079*28143753123^(7/10) 3908816900898899 a001 121393/64079*599074578^(5/6) 3908816900898899 a001 121393/64079*228826127^(7/8) 3908816900905138 a001 832040*39603^(4/11) 3908816900906103 a001 4052739537881/4870847*39603^(4/11) 3908816900906244 a001 3536736619241/4250681*39603^(4/11) 3908816900906331 a001 3278735159921/3940598*39603^(4/11) 3908816900906699 a001 2504730781961/3010349*39603^(4/11) 3908816900909224 a001 956722026041/1149851*39603^(4/11) 3908816900910560 a001 1548008755920/64079*64079^(1/23) 3908816900924172 a001 75283811239/13201*15127^(1/5) 3908816900924172 a001 225851433717/64079*167761^(1/5) 3908816900926531 a001 182717648081/219602*39603^(4/11) 3908816900931686 a001 3838809990236/98209 3908816900931872 a001 225851433717/167761*39603^(7/22) 3908816900932108 a001 165580141/24476*24476^(6/7) 3908816900933939 a001 24157817/64079*439204^(8/9) 3908816900936189 a001 102334155/64079*439204^(7/9) 3908816900938440 a001 433494437/64079*439204^(2/3) 3908816900940692 a001 28657*439204^(5/9) 3908816900942943 a001 7778742049/64079*439204^(4/9) 3908816900944209 a001 317811/64079*141422324^(11/13) 3908816900944209 a001 317811/64079*2537720636^(11/15) 3908816900944209 a001 28657/710647*(1/2+1/2*5^(1/2))^43 3908816900944209 a001 317811/64079*45537549124^(11/17) 3908816900944209 a001 317811/64079*312119004989^(3/5) 3908816900944209 a001 317811/64079*817138163596^(11/19) 3908816900944209 a001 317811/64079*14662949395604^(11/21) 3908816900944209 a001 317811/64079*(1/2+1/2*5^(1/2))^33 3908816900944209 a001 317811/64079*192900153618^(11/18) 3908816900944209 a001 317811/64079*10749957122^(11/16) 3908816900944210 a001 317811/64079*1568397607^(3/4) 3908816900944210 a001 317811/64079*599074578^(11/14) 3908816900944213 a001 317811/64079*33385282^(11/12) 3908816900945195 a001 32951280099/64079*439204^(1/3) 3908816900947446 a001 139583862445/64079*439204^(2/9) 3908816900948993 a001 20100270061581/514229 3908816900949698 a001 591286729879/64079*439204^(1/9) 3908816900950820 a001 28657/1860498*45537549124^(15/17) 3908816900950820 a001 28657/1860498*312119004989^(9/11) 3908816900950820 a001 28657/1860498*14662949395604^(5/7) 3908816900950820 a001 28657/1860498*(1/2+1/2*5^(1/2))^45 3908816900950820 a001 28657/1860498*192900153618^(5/6) 3908816900950820 a001 28657/1860498*28143753123^(9/10) 3908816900950820 a001 28657/1860498*10749957122^(15/16) 3908816900950820 a001 832040/64079*(1/2+1/2*5^(1/2))^31 3908816900950820 a001 832040/64079*9062201101803^(1/2) 3908816900951518 a001 52623190204271/1346269 3908816900951785 a001 28657/4870847*(1/2+1/2*5^(1/2))^47 3908816900951785 a001 2178309/64079*(1/2+1/2*5^(1/2))^29 3908816900951785 a001 2178309/64079*1322157322203^(1/2) 3908816900951874 a001 5702887/64079*7881196^(9/11) 3908816900951887 a001 68884650275616/1762289 3908816900951905 a001 24157817/64079*7881196^(8/11) 3908816900951908 a001 63245986/64079*7881196^(2/3) 3908816900951909 a001 102334155/64079*7881196^(7/11) 3908816900951915 a001 433494437/64079*7881196^(6/11) 3908816900951921 a001 28657*7881196^(5/11) 3908816900951925 a001 5702887/64079*141422324^(9/13) 3908816900951925 a001 5702887/64079*2537720636^(3/5) 3908816900951925 a001 28657/12752043*14662949395604^(7/9) 3908816900951925 a001 28657/12752043*(1/2+1/2*5^(1/2))^49 3908816900951925 a001 28657/12752043*505019158607^(7/8) 3908816900951925 a001 5702887/64079*45537549124^(9/17) 3908816900951925 a001 5702887/64079*817138163596^(9/19) 3908816900951925 a001 5702887/64079*14662949395604^(3/7) 3908816900951925 a001 5702887/64079*(1/2+1/2*5^(1/2))^27 3908816900951925 a001 5702887/64079*192900153618^(1/2) 3908816900951925 a001 5702887/64079*10749957122^(9/16) 3908816900951925 a001 5702887/64079*599074578^(9/14) 3908816900951927 a001 7778742049/64079*7881196^(4/11) 3908816900951928 a001 5702887/64079*33385282^(3/4) 3908816900951928 a001 12586269025/64079*7881196^(1/3) 3908816900951932 a001 32951280099/64079*7881196^(3/11) 3908816900951938 a001 139583862445/64079*7881196^(2/11) 3908816900951939 a001 14930352/64079*20633239^(5/7) 3908816900951940 a001 72136942289885/1845493 3908816900951944 a001 591286729879/64079*7881196^(1/11) 3908816900951944 a001 102334155/64079*20633239^(3/5) 3908816900951944 a001 165580141/64079*20633239^(4/7) 3908816900951946 a001 28657*20633239^(3/7) 3908816900951946 a001 2971215073/64079*20633239^(2/5) 3908816900951946 a001 14930352/64079*2537720636^(5/9) 3908816900951946 a001 28657/33385282*817138163596^(17/19) 3908816900951946 a001 28657/33385282*14662949395604^(17/21) 3908816900951946 a001 28657/33385282*(1/2+1/2*5^(1/2))^51 3908816900951946 a001 28657/33385282*192900153618^(17/18) 3908816900951946 a001 14930352/64079*312119004989^(5/11) 3908816900951946 a001 14930352/64079*(1/2+1/2*5^(1/2))^25 3908816900951946 a001 14930352/64079*3461452808002^(5/12) 3908816900951946 a001 14930352/64079*28143753123^(1/2) 3908816900951946 a001 14930352/64079*228826127^(5/8) 3908816900951947 a001 20365011074/64079*20633239^(2/7) 3908816900951948 a001 86267571272/64079*20633239^(1/5) 3908816900951948 a001 944284833797043/24157817 3908816900951948 a001 225851433717/64079*20633239^(1/7) 3908816900951949 a001 39088169/64079*(1/2+1/2*5^(1/2))^23 3908816900951949 a001 39088169/64079*4106118243^(1/2) 3908816900951949 a001 1236084894970852/31622993 3908816900951949 a001 102334155/64079*141422324^(7/13) 3908816900951949 a001 433494437/64079*141422324^(6/13) 3908816900951949 a001 28657*141422324^(5/13) 3908816900951949 a001 102334155/64079*2537720636^(7/15) 3908816900951949 a001 28657/228826127*3461452808002^(11/12) 3908816900951949 a001 102334155/64079*17393796001^(3/7) 3908816900951949 a001 102334155/64079*45537549124^(7/17) 3908816900951949 a001 102334155/64079*14662949395604^(1/3) 3908816900951949 a001 102334155/64079*(1/2+1/2*5^(1/2))^21 3908816900951949 a001 102334155/64079*192900153618^(7/18) 3908816900951949 a001 102334155/64079*10749957122^(7/16) 3908816900951949 a001 102334155/64079*599074578^(1/2) 3908816900951949 a001 4807526976/64079*141422324^(1/3) 3908816900951949 a001 7778742049/64079*141422324^(4/13) 3908816900951949 a001 32951280099/64079*141422324^(3/13) 3908816900951949 a001 139583862445/64079*141422324^(2/13) 3908816900951949 a001 6472224536028069/165580141 3908816900951949 a001 591286729879/64079*141422324^(1/13) 3908816900951949 a001 28657/599074578*14662949395604^(19/21) 3908816900951949 a001 267914296/64079*817138163596^(1/3) 3908816900951949 a001 267914296/64079*(1/2+1/2*5^(1/2))^19 3908816900951949 a001 16944503818142503/433494437 3908816900951949 a001 701408733/64079*45537549124^(1/3) 3908816900951949 a001 701408733/64079*(1/2+1/2*5^(1/2))^17 3908816900951949 a001 72723421177704/1860497 3908816900951949 a001 28657*2537720636^(1/3) 3908816900951949 a001 116139356937055817/2971215073 3908816900951949 a001 304056783892768011/7778742049 3908816900951949 a001 28657*45537549124^(5/17) 3908816900951949 a001 28657*312119004989^(3/11) 3908816900951949 a001 28657*14662949395604^(5/21) 3908816900951949 a001 28657*192900153618^(5/18) 3908816900951949 a001 28657*28143753123^(3/10) 3908816900951949 a001 28657*10749957122^(5/16) 3908816900951949 a001 93958713477856097/2403763488 3908816900951949 a001 7778742049/64079*2537720636^(4/15) 3908816900951949 a001 20365011074/64079*2537720636^(2/9) 3908816900951949 a001 32951280099/64079*2537720636^(1/5) 3908816900951949 a001 139583862445/64079*2537720636^(2/15) 3908816900951949 a001 225851433717/64079*2537720636^(1/9) 3908816900951949 a001 591286729879/64079*2537720636^(1/15) 3908816900951949 a001 4807526976/64079*(1/2+1/2*5^(1/2))^13 3908816900951949 a001 4807526976/64079*73681302247^(1/4) 3908816900951949 a001 12586269025/64079*312119004989^(1/5) 3908816900951949 a001 12586269025/64079*(1/2+1/2*5^(1/2))^11 3908816900951949 a001 86267571272/64079*17393796001^(1/7) 3908816900951949 a001 32951280099/64079*45537549124^(3/17) 3908816900951949 a001 32951280099/64079*14662949395604^(1/7) 3908816900951949 a001 32951280099/64079*(1/2+1/2*5^(1/2))^9 3908816900951949 a001 32951280099/64079*192900153618^(1/6) 3908816900951949 a001 139583862445/64079*45537549124^(2/17) 3908816900951949 a001 591286729879/64079*45537549124^(1/17) 3908816900951949 a001 86267571272/64079*14662949395604^(1/9) 3908816900951949 a001 86267571272/64079*(1/2+1/2*5^(1/2))^7 3908816900951949 a001 225851433717/64079*312119004989^(1/11) 3908816900951949 a001 225851433717/64079*(1/2+1/2*5^(1/2))^5 3908816900951949 a001 591286729879/64079*14662949395604^(1/21) 3908816900951949 a001 591286729879/64079*(1/2+1/2*5^(1/2))^3 3908816900951949 a001 774004377960/64079+774004377960/64079*5^(1/2) 3908816900951949 a001 2504730781961/64079 3908816900951949 a001 139583862445/64079*14662949395604^(2/21) 3908816900951949 a001 139583862445/64079*(1/2+1/2*5^(1/2))^6 3908816900951949 a001 365435296162/64079*73681302247^(1/13) 3908816900951949 a001 53316291173/64079*(1/2+1/2*5^(1/2))^8 3908816900951949 a001 53316291173/64079*23725150497407^(1/8) 3908816900951949 a001 53316291173/64079*505019158607^(1/7) 3908816900951949 a001 53316291173/64079*73681302247^(2/13) 3908816900951949 a001 225851433717/64079*28143753123^(1/10) 3908816900951949 a001 956722026041/64079*10749957122^(1/24) 3908816900951949 a001 20365011074/64079*312119004989^(2/11) 3908816900951949 a001 20365011074/64079*(1/2+1/2*5^(1/2))^10 3908816900951949 a001 591286729879/64079*10749957122^(1/16) 3908816900951949 a001 365435296162/64079*10749957122^(1/12) 3908816900951949 a001 20365011074/64079*28143753123^(1/5) 3908816900951949 a001 139583862445/64079*10749957122^(1/8) 3908816900951949 a001 32951280099/64079*10749957122^(3/16) 3908816900951949 a001 53316291173/64079*10749957122^(1/6) 3908816900951949 a001 20365011074/64079*10749957122^(5/24) 3908816900951949 a001 956722026041/64079*4106118243^(1/23) 3908816900951949 a001 7778742049/64079*45537549124^(4/17) 3908816900951949 a001 7778742049/64079*817138163596^(4/19) 3908816900951949 a001 7778742049/64079*14662949395604^(4/21) 3908816900951949 a001 7778742049/64079*(1/2+1/2*5^(1/2))^12 3908816900951949 a001 7778742049/64079*192900153618^(2/9) 3908816900951949 a001 7778742049/64079*73681302247^(3/13) 3908816900951949 a001 365435296162/64079*4106118243^(2/23) 3908816900951949 a001 7778742049/64079*10749957122^(1/4) 3908816900951949 a001 139583862445/64079*4106118243^(3/23) 3908816900951949 a001 53316291173/64079*4106118243^(4/23) 3908816900951949 a001 20365011074/64079*4106118243^(5/23) 3908816900951949 a001 956722026041/64079*1568397607^(1/22) 3908816900951949 a001 7778742049/64079*4106118243^(6/23) 3908816900951949 a001 2971215073/64079*17393796001^(2/7) 3908816900951949 a001 2971215073/64079*14662949395604^(2/9) 3908816900951949 a001 2971215073/64079*(1/2+1/2*5^(1/2))^14 3908816900951949 a001 2971215073/64079*505019158607^(1/4) 3908816900951949 a001 2971215073/64079*10749957122^(7/24) 3908816900951949 a001 365435296162/64079*1568397607^(1/11) 3908816900951949 a001 2971215073/64079*4106118243^(7/23) 3908816900951949 a001 139583862445/64079*1568397607^(3/22) 3908816900951949 a001 53316291173/64079*1568397607^(2/11) 3908816900951949 a001 20365011074/64079*1568397607^(5/22) 3908816900951949 a001 28657/2537720636*14662949395604^(20/21) 3908816900951949 a001 12586269025/64079*1568397607^(1/4) 3908816900951949 a001 7778742049/64079*1568397607^(3/11) 3908816900951949 a001 956722026041/64079*599074578^(1/21) 3908816900951949 a001 2971215073/64079*1568397607^(7/22) 3908816900951949 a001 1134903170/64079*(1/2+1/2*5^(1/2))^16 3908816900951949 a001 1134903170/64079*23725150497407^(1/4) 3908816900951949 a001 1134903170/64079*73681302247^(4/13) 3908816900951949 a001 1134903170/64079*10749957122^(1/3) 3908816900951949 a001 1134903170/64079*4106118243^(8/23) 3908816900951949 a001 591286729879/64079*599074578^(1/14) 3908816900951949 a001 365435296162/64079*599074578^(2/21) 3908816900951949 a001 1134903170/64079*1568397607^(4/11) 3908816900951949 a001 27416783100256937/701408733 3908816900951949 a001 139583862445/64079*599074578^(1/7) 3908816900951949 a001 86267571272/64079*599074578^(1/6) 3908816900951949 a001 53316291173/64079*599074578^(4/21) 3908816900951949 a001 32951280099/64079*599074578^(3/14) 3908816900951949 a001 20365011074/64079*599074578^(5/21) 3908816900951949 a001 7778742049/64079*599074578^(2/7) 3908816900951949 a001 28657*599074578^(5/14) 3908816900951949 a001 2971215073/64079*599074578^(1/3) 3908816900951949 a001 956722026041/64079*228826127^(1/20) 3908816900951949 a001 433494437/64079*2537720636^(2/5) 3908816900951949 a001 433494437/64079*45537549124^(6/17) 3908816900951949 a001 433494437/64079*14662949395604^(2/7) 3908816900951949 a001 433494437/64079*(1/2+1/2*5^(1/2))^18 3908816900951949 a001 433494437/64079*192900153618^(1/3) 3908816900951949 a001 433494437/64079*10749957122^(3/8) 3908816900951949 a001 433494437/64079*4106118243^(9/23) 3908816900951949 a001 1134903170/64079*599074578^(8/21) 3908816900951949 a001 433494437/64079*1568397607^(9/22) 3908816900951949 a001 365435296162/64079*228826127^(1/10) 3908816900951949 a001 433494437/64079*599074578^(3/7) 3908816900951949 a001 225851433717/64079*228826127^(1/8) 3908816900951949 a001 5236139641057217/133957148 3908816900951949 a001 139583862445/64079*228826127^(3/20) 3908816900951949 a001 53316291173/64079*228826127^(1/5) 3908816900951949 a001 20365011074/64079*228826127^(1/4) 3908816900951949 a001 7778742049/64079*228826127^(3/10) 3908816900951949 a001 2971215073/64079*228826127^(7/20) 3908816900951949 a001 956722026041/64079*87403803^(1/19) 3908816900951949 a001 28657*228826127^(3/8) 3908816900951949 a001 165580141/64079*2537720636^(4/9) 3908816900951949 a001 28657/370248451*14662949395604^(8/9) 3908816900951949 a001 165580141/64079*(1/2+1/2*5^(1/2))^20 3908816900951949 a001 165580141/64079*23725150497407^(5/16) 3908816900951949 a001 165580141/64079*505019158607^(5/14) 3908816900951949 a001 165580141/64079*73681302247^(5/13) 3908816900951949 a001 165580141/64079*28143753123^(2/5) 3908816900951949 a001 165580141/64079*10749957122^(5/12) 3908816900951949 a001 165580141/64079*4106118243^(10/23) 3908816900951949 a001 165580141/64079*1568397607^(5/11) 3908816900951949 a001 1134903170/64079*228826127^(2/5) 3908816900951949 a001 165580141/64079*599074578^(10/21) 3908816900951949 a001 433494437/64079*228826127^(9/20) 3908816900951949 a001 365435296162/64079*87403803^(2/19) 3908816900951950 a001 165580141/64079*228826127^(1/2) 3908816900951950 a001 800010949217273/20466831 3908816900951950 a001 139583862445/64079*87403803^(3/19) 3908816900951950 a001 53316291173/64079*87403803^(4/19) 3908816900951950 a001 20365011074/64079*87403803^(5/19) 3908816900951950 a001 7778742049/64079*87403803^(6/19) 3908816900951950 a001 2971215073/64079*87403803^(7/19) 3908816900951950 a001 956722026041/64079*33385282^(1/18) 3908816900951950 a001 28657/141422324*14662949395604^(6/7) 3908816900951950 a001 63245986/64079*312119004989^(2/5) 3908816900951950 a001 63245986/64079*(1/2+1/2*5^(1/2))^22 3908816900951950 a001 63245986/64079*10749957122^(11/24) 3908816900951950 a001 63245986/64079*4106118243^(11/23) 3908816900951950 a001 63245986/64079*1568397607^(1/2) 3908816900951950 a001 63245986/64079*599074578^(11/21) 3908816900951950 a001 1134903170/64079*87403803^(8/19) 3908816900951950 a001 63245986/64079*228826127^(11/20) 3908816900951950 a001 267914296/64079*87403803^(1/2) 3908816900951950 a001 433494437/64079*87403803^(9/19) 3908816900951950 a001 591286729879/64079*33385282^(1/12) 3908816900951950 a001 165580141/64079*87403803^(10/19) 3908816900951950 a001 365435296162/64079*33385282^(1/9) 3908816900951950 a001 63245986/64079*87403803^(11/19) 3908816900951950 a001 1527884956144661/39088169 3908816900951950 a001 139583862445/64079*33385282^(1/6) 3908816900951950 a001 53316291173/64079*33385282^(2/9) 3908816900951950 a001 32951280099/64079*33385282^(1/4) 3908816900951950 a001 20365011074/64079*33385282^(5/18) 3908816900951951 a001 7778742049/64079*33385282^(1/3) 3908816900951951 a001 24157817/64079*141422324^(8/13) 3908816900951951 a001 24157817/64079*2537720636^(8/15) 3908816900951951 a001 28657/54018521*23725150497407^(13/16) 3908816900951951 a001 28657/54018521*505019158607^(13/14) 3908816900951951 a001 24157817/64079*45537549124^(8/17) 3908816900951951 a001 24157817/64079*14662949395604^(8/21) 3908816900951951 a001 24157817/64079*(1/2+1/2*5^(1/2))^24 3908816900951951 a001 24157817/64079*192900153618^(4/9) 3908816900951951 a001 24157817/64079*73681302247^(6/13) 3908816900951951 a001 24157817/64079*10749957122^(1/2) 3908816900951951 a001 24157817/64079*4106118243^(12/23) 3908816900951951 a001 24157817/64079*1568397607^(6/11) 3908816900951951 a001 24157817/64079*599074578^(4/7) 3908816900951951 a001 2971215073/64079*33385282^(7/18) 3908816900951951 a001 24157817/64079*228826127^(3/5) 3908816900951951 a001 956722026041/64079*12752043^(1/17) 3908816900951951 a001 28657*33385282^(5/12) 3908816900951951 a001 1134903170/64079*33385282^(4/9) 3908816900951951 a001 24157817/64079*87403803^(12/19) 3908816900951951 a001 433494437/64079*33385282^(1/2) 3908816900951951 a001 102334155/64079*33385282^(7/12) 3908816900951951 a001 165580141/64079*33385282^(5/9) 3908816900951952 a001 63245986/64079*33385282^(11/18) 3908816900951952 a001 365435296162/64079*12752043^(2/17) 3908816900951953 a001 291800061173809/7465176 3908816900951953 a001 24157817/64079*33385282^(2/3) 3908816900951954 a001 139583862445/64079*12752043^(3/17) 3908816900951955 a001 53316291173/64079*12752043^(4/17) 3908816900951957 a001 20365011074/64079*12752043^(5/17) 3908816900951958 a001 7778742049/64079*12752043^(6/17) 3908816900951958 a001 9227465/64079*141422324^(2/3) 3908816900951959 a001 28657/20633239*312119004989^(10/11) 3908816900951959 a001 28657/20633239*(1/2+1/2*5^(1/2))^50 3908816900951959 a001 28657/20633239*3461452808002^(5/6) 3908816900951959 a001 9227465/64079*(1/2+1/2*5^(1/2))^26 3908816900951959 a001 9227465/64079*73681302247^(1/2) 3908816900951959 a001 9227465/64079*10749957122^(13/24) 3908816900951959 a001 9227465/64079*4106118243^(13/23) 3908816900951959 a001 9227465/64079*1568397607^(13/22) 3908816900951959 a001 9227465/64079*599074578^(13/21) 3908816900951959 a001 9227465/64079*228826127^(13/20) 3908816900951959 a001 9227465/64079*87403803^(13/19) 3908816900951959 a001 2971215073/64079*12752043^(7/17) 3908816900951960 a001 956722026041/64079*4870847^(1/16) 3908816900951961 a001 1134903170/64079*12752043^(8/17) 3908816900951961 a001 9227465/64079*33385282^(13/18) 3908816900951961 a001 701408733/64079*12752043^(1/2) 3908816900951962 a001 433494437/64079*12752043^(9/17) 3908816900951964 a001 165580141/64079*12752043^(10/17) 3908816900951965 a001 63245986/64079*12752043^(11/17) 3908816900951968 a001 24157817/64079*12752043^(12/17) 3908816900951970 a001 365435296162/64079*4870847^(1/8) 3908816900951973 a001 222915410898193/5702887 3908816900951977 a001 9227465/64079*12752043^(13/17) 3908816900951980 a001 139583862445/64079*4870847^(3/16) 3908816900951991 a001 53316291173/64079*4870847^(1/4) 3908816900952001 a001 20365011074/64079*4870847^(5/16) 3908816900952005 a001 3524578/64079*20633239^(4/5) 3908816900952011 a001 7778742049/64079*4870847^(3/8) 3908816900952012 a001 28657/7881196*45537549124^(16/17) 3908816900952012 a001 28657/7881196*14662949395604^(16/21) 3908816900952012 a001 28657/7881196*(1/2+1/2*5^(1/2))^48 3908816900952012 a001 28657/7881196*192900153618^(8/9) 3908816900952012 a001 28657/7881196*73681302247^(12/13) 3908816900952012 a001 3524578/64079*17393796001^(4/7) 3908816900952012 a001 3524578/64079*14662949395604^(4/9) 3908816900952012 a001 3524578/64079*(1/2+1/2*5^(1/2))^28 3908816900952012 a001 3524578/64079*505019158607^(1/2) 3908816900952012 a001 3524578/64079*73681302247^(7/13) 3908816900952012 a001 3524578/64079*10749957122^(7/12) 3908816900952012 a001 3524578/64079*4106118243^(14/23) 3908816900952012 a001 3524578/64079*1568397607^(7/11) 3908816900952012 a001 3524578/64079*599074578^(2/3) 3908816900952012 a001 3524578/64079*228826127^(7/10) 3908816900952013 a001 3524578/64079*87403803^(14/19) 3908816900952015 a001 3524578/64079*33385282^(7/9) 3908816900952022 a001 2971215073/64079*4870847^(7/16) 3908816900952025 a001 956722026041/64079*1860498^(1/15) 3908816900952032 a001 1134903170/64079*4870847^(1/2) 3908816900952032 a001 3524578/64079*12752043^(14/17) 3908816900952042 a001 433494437/64079*4870847^(9/16) 3908816900952052 a001 165580141/64079*4870847^(5/8) 3908816900952062 a001 591286729879/64079*1860498^(1/10) 3908816900952063 a001 63245986/64079*4870847^(11/16) 3908816900952074 a001 24157817/64079*4870847^(3/4) 3908816900952092 a001 9227465/64079*4870847^(13/16) 3908816900952100 a001 365435296162/64079*1860498^(2/15) 3908816900952114 a001 85146110346961/2178309 3908816900952138 a001 225851433717/64079*1860498^(1/6) 3908816900952157 a001 3524578/64079*4870847^(7/8) 3908816900952175 a001 139583862445/64079*1860498^(1/5) 3908816900952251 a001 53316291173/64079*1860498^(4/15) 3908816900952288 a001 32951280099/64079*1860498^(3/10) 3908816900952324 a001 1346269/64079*7881196^(10/11) 3908816900952326 a001 20365011074/64079*1860498^(1/3) 3908816900952373 a001 1346269/64079*20633239^(6/7) 3908816900952381 a001 1346269/64079*141422324^(10/13) 3908816900952381 a001 1346269/64079*2537720636^(2/3) 3908816900952381 a001 28657/3010349*(1/2+1/2*5^(1/2))^46 3908816900952381 a001 28657/3010349*10749957122^(23/24) 3908816900952381 a001 1346269/64079*45537549124^(10/17) 3908816900952381 a001 1346269/64079*312119004989^(6/11) 3908816900952381 a001 1346269/64079*14662949395604^(10/21) 3908816900952381 a001 1346269/64079*(1/2+1/2*5^(1/2))^30 3908816900952381 a001 1346269/64079*192900153618^(5/9) 3908816900952381 a001 1346269/64079*28143753123^(3/5) 3908816900952381 a001 1346269/64079*10749957122^(5/8) 3908816900952381 a001 1346269/64079*4106118243^(15/23) 3908816900952381 a001 1346269/64079*1568397607^(15/22) 3908816900952381 a001 1346269/64079*599074578^(5/7) 3908816900952381 a001 1346269/64079*228826127^(3/4) 3908816900952381 a001 1346269/64079*87403803^(15/19) 3908816900952384 a001 1346269/64079*33385282^(5/6) 3908816900952401 a001 7778742049/64079*1860498^(2/5) 3908816900952402 a001 1346269/64079*12752043^(15/17) 3908816900952476 a001 2971215073/64079*1860498^(7/15) 3908816900952502 a001 956722026041/64079*710647^(1/14) 3908816900952514 a001 28657*1860498^(1/2) 3908816900952535 a001 1346269/64079*4870847^(15/16) 3908816900952552 a001 1134903170/64079*1860498^(8/15) 3908816900952627 a001 433494437/64079*1860498^(3/5) 3908816900952702 a001 165580141/64079*1860498^(2/3) 3908816900952740 a001 102334155/64079*1860498^(7/10) 3908816900952778 a001 63245986/64079*1860498^(11/15) 3908816900952854 a001 24157817/64079*1860498^(4/5) 3908816900952887 a001 14930352/64079*1860498^(5/6) 3908816900952937 a001 9227465/64079*1860498^(13/15) 3908816900952942 a001 5702887/64079*1860498^(9/10) 3908816900953055 a001 365435296162/64079*710647^(1/7) 3908816900953066 a001 3524578/64079*1860498^(14/15) 3908816900953079 a001 53316262529/1364 3908816900953608 a001 139583862445/64079*710647^(3/14) 3908816900953884 a001 86267571272/64079*710647^(1/4) 3908816900954161 a001 53316291173/64079*710647^(2/7) 3908816900954714 a001 20365011074/64079*710647^(5/14) 3908816900954906 a001 28657/1149851*312119004989^(4/5) 3908816900954906 a001 28657/1149851*(1/2+1/2*5^(1/2))^44 3908816900954906 a001 28657/1149851*23725150497407^(11/16) 3908816900954906 a001 28657/1149851*73681302247^(11/13) 3908816900954906 a001 28657/1149851*10749957122^(11/12) 3908816900954906 a001 28657/1149851*4106118243^(22/23) 3908816900954906 a001 514229/64079*(1/2+1/2*5^(1/2))^32 3908816900954906 a001 514229/64079*23725150497407^(1/2) 3908816900954906 a001 514229/64079*505019158607^(4/7) 3908816900954906 a001 514229/64079*73681302247^(8/13) 3908816900954906 a001 514229/64079*10749957122^(2/3) 3908816900954906 a001 514229/64079*4106118243^(16/23) 3908816900954906 a001 514229/64079*1568397607^(8/11) 3908816900954906 a001 514229/64079*599074578^(16/21) 3908816900954906 a001 514229/64079*228826127^(4/5) 3908816900954906 a001 514229/64079*87403803^(16/19) 3908816900954909 a001 514229/64079*33385282^(8/9) 3908816900954928 a001 514229/64079*12752043^(16/17) 3908816900955267 a001 7778742049/64079*710647^(3/7) 3908816900955819 a001 2971215073/64079*710647^(1/2) 3908816900956030 a001 956722026041/64079*271443^(1/13) 3908816900956372 a001 1134903170/64079*710647^(4/7) 3908816900956925 a001 433494437/64079*710647^(9/14) 3908816900957478 a001 165580141/64079*710647^(5/7) 3908816900957754 a001 102334155/64079*710647^(3/4) 3908816900958031 a001 63245986/64079*710647^(11/14) 3908816900958585 a001 24157817/64079*710647^(6/7) 3908816900959146 a001 9227465/64079*710647^(13/14) 3908816900959689 a001 12422650081109/317811 3908816900960111 a001 365435296162/64079*271443^(2/13) 3908816900964192 a001 139583862445/64079*271443^(3/13) 3908816900966501 a001 139583862445/271443*39603^(9/22) 3908816900967100 a001 1548008755920/64079*103682^(1/24) 3908816900968273 a001 53316291173/64079*271443^(4/13) 3908816900972213 a001 28657/439204*2537720636^(14/15) 3908816900972213 a001 28657/439204*17393796001^(6/7) 3908816900972213 a001 28657/439204*45537549124^(14/17) 3908816900972213 a001 28657/439204*14662949395604^(2/3) 3908816900972213 a001 28657/439204*(1/2+1/2*5^(1/2))^42 3908816900972213 a001 28657/439204*505019158607^(3/4) 3908816900972213 a001 28657/439204*192900153618^(7/9) 3908816900972213 a001 28657/439204*10749957122^(7/8) 3908816900972213 a001 28657/439204*4106118243^(21/23) 3908816900972213 a001 196418/64079*45537549124^(2/3) 3908816900972213 a001 196418/64079*(1/2+1/2*5^(1/2))^34 3908816900972213 a001 196418/64079*10749957122^(17/24) 3908816900972213 a001 196418/64079*4106118243^(17/23) 3908816900972213 a001 196418/64079*1568397607^(17/22) 3908816900972213 a001 28657/439204*1568397607^(21/22) 3908816900972213 a001 196418/64079*599074578^(17/21) 3908816900972213 a001 196418/64079*228826127^(17/20) 3908816900972213 a001 196418/64079*87403803^(17/19) 3908816900972216 a001 196418/64079*33385282^(17/18) 3908816900972353 a001 20365011074/64079*271443^(5/13) 3908816900976434 a001 7778742049/64079*271443^(6/13) 3908816900978475 a001 4807526976/64079*271443^(1/2) 3908816900980515 a001 2971215073/64079*271443^(7/13) 3908816900982250 a001 956722026041/64079*103682^(1/12) 3908816900984596 a001 1134903170/64079*271443^(8/13) 3908816900988677 a001 433494437/64079*271443^(9/13) 3908816900992757 a001 165580141/64079*271443^(10/13) 3908816900992990 a001 4052739537881/167761*15127^(1/20) 3908816900995789 a001 12586269025/103682*39603^(6/11) 3908816900996838 a001 63245986/64079*271443^(11/13) 3908816900997401 a001 591286729879/64079*103682^(1/8) 3908816901000920 a001 24157817/64079*271443^(12/13) 3908816901005000 a001 4745030100637/121393 3908816901011811 a001 365435296162/710647*39603^(9/22) 3908816901012551 a001 365435296162/64079*103682^(1/6) 3908816901018422 a001 956722026041/1860498*39603^(9/22) 3908816901019386 a001 2504730781961/4870847*39603^(9/22) 3908816901019527 a001 6557470319842/12752043*39603^(9/22) 3908816901019560 a001 10610209857723/20633239*39603^(9/22) 3908816901019614 a001 4052739537881/7881196*39603^(9/22) 3908816901019982 a001 1548008755920/3010349*39603^(9/22) 3908816901022507 a001 514229*39603^(9/22) 3908816901027702 a001 225851433717/64079*103682^(5/24) 3908816901039815 a001 225851433717/439204*39603^(9/22) 3908816901042853 a001 139583862445/64079*103682^(1/4) 3908816901045155 a001 139583862445/167761*39603^(4/11) 3908816901058003 a001 86267571272/64079*103682^(7/24) 3908816901065233 a001 1548008755920/64079*39603^(1/22) 3908816901073154 a001 53316291173/64079*103682^(1/3) 3908816901079784 a001 86267571272/271443*39603^(5/11) 3908816901088304 a001 32951280099/64079*103682^(3/8) 3908816901090837 a001 75025/64079*141422324^(12/13) 3908816901090837 a001 28657/167761*2537720636^(8/9) 3908816901090837 a001 75025/64079*2537720636^(4/5) 3908816901090837 a001 28657/167761*312119004989^(8/11) 3908816901090837 a001 28657/167761*(1/2+1/2*5^(1/2))^40 3908816901090837 a001 28657/167761*23725150497407^(5/8) 3908816901090837 a001 28657/167761*73681302247^(10/13) 3908816901090837 a001 28657/167761*28143753123^(4/5) 3908816901090837 a001 28657/167761*10749957122^(5/6) 3908816901090837 a001 28657/167761*4106118243^(20/23) 3908816901090837 a001 75025/64079*45537549124^(12/17) 3908816901090837 a001 75025/64079*14662949395604^(4/7) 3908816901090837 a001 75025/64079*(1/2+1/2*5^(1/2))^36 3908816901090837 a001 75025/64079*505019158607^(9/14) 3908816901090837 a001 75025/64079*192900153618^(2/3) 3908816901090837 a001 75025/64079*73681302247^(9/13) 3908816901090837 a001 75025/64079*10749957122^(3/4) 3908816901090837 a001 75025/64079*4106118243^(18/23) 3908816901090837 a001 28657/167761*1568397607^(10/11) 3908816901090837 a001 75025/64079*1568397607^(9/11) 3908816901090837 a001 75025/64079*599074578^(6/7) 3908816901090837 a001 28657/167761*599074578^(20/21) 3908816901090837 a001 75025/64079*228826127^(9/10) 3908816901090837 a001 75025/64079*87403803^(18/19) 3908816901103455 a001 20365011074/64079*103682^(5/12) 3908816901109073 a001 7778742049/103682*39603^(13/22) 3908816901118605 a001 12586269025/64079*103682^(11/24) 3908816901125095 a001 317811*39603^(5/11) 3908816901131705 a001 591286729879/1860498*39603^(5/11) 3908816901132670 a001 1548008755920/4870847*39603^(5/11) 3908816901132810 a001 4052739537881/12752043*39603^(5/11) 3908816901132831 a001 1515744265389/4769326*39603^(5/11) 3908816901132844 a001 6557470319842/20633239*39603^(5/11) 3908816901132897 a001 2504730781961/7881196*39603^(5/11) 3908816901133266 a001 956722026041/3010349*39603^(5/11) 3908816901133756 a001 7778742049/64079*103682^(1/2) 3908816901135791 a001 365435296162/1149851*39603^(5/11) 3908816901148906 a001 4807526976/64079*103682^(13/24) 3908816901153098 a001 139583862445/439204*39603^(5/11) 3908816901158439 a001 86267571272/167761*39603^(9/22) 3908816901164057 a001 2971215073/64079*103682^(7/12) 3908816901178516 a001 956722026041/64079*39603^(1/11) 3908816901179207 a001 28657*103682^(5/8) 3908816901193068 a001 53316291173/271443*39603^(1/2) 3908816901194358 a001 1134903170/64079*103682^(2/3) 3908816901209508 a001 701408733/64079*103682^(17/24) 3908816901222356 a001 46368*39603^(7/11) 3908816901224659 a001 433494437/64079*103682^(3/4) 3908816901238378 a001 139583862445/710647*39603^(1/2) 3908816901239809 a001 267914296/64079*103682^(19/24) 3908816901242811 a001 10946*24476^(17/21) 3908816901244989 a001 182717648081/930249*39603^(1/2) 3908816901245953 a001 956722026041/4870847*39603^(1/2) 3908816901246094 a001 2504730781961/12752043*39603^(1/2) 3908816901246114 a001 3278735159921/16692641*39603^(1/2) 3908816901246119 a001 10610209857723/54018521*39603^(1/2) 3908816901246127 a001 4052739537881/20633239*39603^(1/2) 3908816901246181 a001 387002188980/1970299*39603^(1/2) 3908816901246549 a001 591286729879/3010349*39603^(1/2) 3908816901249074 a001 225851433717/1149851*39603^(1/2) 3908816901254960 a001 165580141/64079*103682^(5/6) 3908816901266381 a001 196418*39603^(1/2) 3908816901270110 a001 102334155/64079*103682^(7/8) 3908816901271722 a001 53316291173/167761*39603^(5/11) 3908816901285261 a001 63245986/64079*103682^(11/12) 3908816901291800 a001 591286729879/64079*39603^(3/22) 3908816901300411 a001 39088169/64079*103682^(23/24) 3908816901306351 a001 121393*39603^(6/11) 3908816901315562 a001 906220110401/23184 3908816901335639 a001 2971215073/103682*39603^(15/22) 3908816901344592 a001 774004377960/51841*15127^(1/10) 3908816901351662 a001 86267571272/710647*39603^(6/11) 3908816901358272 a001 75283811239/620166*39603^(6/11) 3908816901359237 a001 591286729879/4870847*39603^(6/11) 3908816901359377 a001 516002918640/4250681*39603^(6/11) 3908816901359398 a001 4052739537881/33385282*39603^(6/11) 3908816901359401 a001 3536736619241/29134601*39603^(6/11) 3908816901359403 a001 6557470319842/54018521*39603^(6/11) 3908816901359411 a001 2504730781961/20633239*39603^(6/11) 3908816901359464 a001 956722026041/7881196*39603^(6/11) 3908816901359833 a001 365435296162/3010349*39603^(6/11) 3908816901362358 a001 139583862445/1149851*39603^(6/11) 3908816901379665 a001 53316291173/439204*39603^(6/11) 3908816901385006 a001 32951280099/167761*39603^(1/2) 3908816901405083 a001 365435296162/64079*39603^(2/11) 3908816901419635 a001 20365011074/271443*39603^(13/22) 3908816901448923 a001 1836311903/103682*39603^(8/11) 3908816901464945 a001 53316291173/710647*39603^(13/22) 3908816901471556 a001 139583862445/1860498*39603^(13/22) 3908816901472520 a001 365435296162/4870847*39603^(13/22) 3908816901472661 a001 956722026041/12752043*39603^(13/22) 3908816901472681 a001 2504730781961/33385282*39603^(13/22) 3908816901472684 a001 6557470319842/87403803*39603^(13/22) 3908816901472685 a001 10610209857723/141422324*39603^(13/22) 3908816901472686 a001 4052739537881/54018521*39603^(13/22) 3908816901472694 a001 140728068720/1875749*39603^(13/22) 3908816901472748 a001 591286729879/7881196*39603^(13/22) 3908816901473116 a001 225851433717/3010349*39603^(13/22) 3908816901475641 a001 86267571272/1149851*39603^(13/22) 3908816901492948 a001 32951280099/439204*39603^(13/22) 3908816901498289 a001 20365011074/167761*39603^(6/11) 3908816901518367 a001 225851433717/64079*39603^(5/22) 3908816901532918 a001 12586269025/271443*39603^(7/11) 3908816901553514 a001 433494437/24476*24476^(16/21) 3908816901562206 a001 567451585/51841*39603^(17/22) 3908816901578228 a001 32951280099/710647*39603^(7/11) 3908816901584839 a001 43133785636/930249*39603^(7/11) 3908816901585804 a001 225851433717/4870847*39603^(7/11) 3908816901585944 a001 591286729879/12752043*39603^(7/11) 3908816901585965 a001 774004377960/16692641*39603^(7/11) 3908816901585968 a001 4052739537881/87403803*39603^(7/11) 3908816901585968 a001 225749145909/4868641*39603^(7/11) 3908816901585969 a001 3278735159921/70711162*39603^(7/11) 3908816901585970 a001 2504730781961/54018521*39603^(7/11) 3908816901585978 a001 956722026041/20633239*39603^(7/11) 3908816901586031 a001 182717648081/3940598*39603^(7/11) 3908816901586400 a001 139583862445/3010349*39603^(7/11) 3908816901588925 a001 53316291173/1149851*39603^(7/11) 3908816901606232 a001 10182505537/219602*39603^(7/11) 3908816901611572 a001 75025*39603^(13/22) 3908816901631650 a001 139583862445/64079*39603^(3/11) 3908816901646201 a001 7778742049/271443*39603^(15/22) 3908816901655154 a001 4052739537881/271443*15127^(1/10) 3908816901675490 a001 701408733/103682*39603^(9/11) 3908816901691512 a001 20365011074/710647*39603^(15/22) 3908816901698123 a001 53316291173/1860498*39603^(15/22) 3908816901699087 a001 139583862445/4870847*39603^(15/22) 3908816901699228 a001 365435296162/12752043*39603^(15/22) 3908816901699248 a001 956722026041/33385282*39603^(15/22) 3908816901699251 a001 2504730781961/87403803*39603^(15/22) 3908816901699252 a001 6557470319842/228826127*39603^(15/22) 3908816901699252 a001 10610209857723/370248451*39603^(15/22) 3908816901699252 a001 4052739537881/141422324*39603^(15/22) 3908816901699253 a001 1548008755920/54018521*39603^(15/22) 3908816901699261 a001 591286729879/20633239*39603^(15/22) 3908816901699315 a001 225851433717/7881196*39603^(15/22) 3908816901699683 a001 86267571272/3010349*39603^(15/22) 3908816901700464 a001 1515744265389/101521*15127^(1/10) 3908816901702208 a001 32951280099/1149851*39603^(15/22) 3908816901719515 a001 12586269025/439204*39603^(15/22) 3908816901724856 a001 7778742049/167761*39603^(7/11) 3908816901728467 a001 3278735159921/219602*15127^(1/10) 3908816901744934 a001 86267571272/64079*39603^(7/22) 3908816901759485 a001 1602508992/90481*39603^(8/11) 3908816901778274 a001 139583862445/39603*15127^(1/4) 3908816901788773 a001 433494437/103682*39603^(19/22) 3908816901804795 a001 12586269025/710647*39603^(8/11) 3908816901806051 a001 1548008755920/64079*15127^(1/20) 3908816901811406 a001 10983760033/620166*39603^(8/11) 3908816901812370 a001 86267571272/4870847*39603^(8/11) 3908816901812511 a001 75283811239/4250681*39603^(8/11) 3908816901812532 a001 591286729879/33385282*39603^(8/11) 3908816901812535 a001 516002918640/29134601*39603^(8/11) 3908816901812535 a001 4052739537881/228826127*39603^(8/11) 3908816901812535 a001 3536736619241/199691526*39603^(8/11) 3908816901812535 a001 6557470319842/370248451*39603^(8/11) 3908816901812535 a001 2504730781961/141422324*39603^(8/11) 3908816901812537 a001 956722026041/54018521*39603^(8/11) 3908816901812544 a001 365435296162/20633239*39603^(8/11) 3908816901812598 a001 139583862445/7881196*39603^(8/11) 3908816901812967 a001 53316291173/3010349*39603^(8/11) 3908816901815492 a001 20365011074/1149851*39603^(8/11) 3908816901817247 a001 182717648081/12238*9349^(2/19) 3908816901832799 a001 7778742049/439204*39603^(8/11) 3908816901838139 a001 4807526976/167761*39603^(15/22) 3908816901847091 a001 2504730781961/167761*15127^(1/10) 3908816901858217 a001 53316291173/64079*39603^(4/11) 3908816901864217 a001 701408733/24476*24476^(5/7) 3908816901872768 a001 2971215073/271443*39603^(17/22) 3908816901902057 a001 133957148/51841*39603^(10/11) 3908816901903899 a001 28657/64079*817138163596^(2/3) 3908816901903899 a001 28657/64079*(1/2+1/2*5^(1/2))^38 3908816901903899 a001 28657/64079*10749957122^(19/24) 3908816901903899 a001 28657/64079*4106118243^(19/23) 3908816901903899 a001 28657/64079*1568397607^(19/22) 3908816901903899 a001 28657/64079*599074578^(19/21) 3908816901903899 a001 28657/64079*228826127^(19/20) 3908816901918079 a001 7778742049/710647*39603^(17/22) 3908816901924689 a001 10182505537/930249*39603^(17/22) 3908816901925654 a001 53316291173/4870847*39603^(17/22) 3908816901925795 a001 139583862445/12752043*39603^(17/22) 3908816901925815 a001 182717648081/16692641*39603^(17/22) 3908816901925818 a001 956722026041/87403803*39603^(17/22) 3908816901925819 a001 2504730781961/228826127*39603^(17/22) 3908816901925819 a001 3278735159921/299537289*39603^(17/22) 3908816901925819 a001 10610209857723/969323029*39603^(17/22) 3908816901925819 a001 4052739537881/370248451*39603^(17/22) 3908816901925819 a001 387002188980/35355581*39603^(17/22) 3908816901925820 a001 591286729879/54018521*39603^(17/22) 3908816901925828 a001 7787980473/711491*39603^(17/22) 3908816901925882 a001 21566892818/1970299*39603^(17/22) 3908816901926250 a001 32951280099/3010349*39603^(17/22) 3908816901928775 a001 12586269025/1149851*39603^(17/22) 3908816901946082 a001 1201881744/109801*39603^(17/22) 3908816901951423 a001 2971215073/167761*39603^(8/11) 3908816901971501 a001 32951280099/64079*39603^(9/22) 3908816901986052 a001 1836311903/271443*39603^(9/11) 3908816902015340 a001 165580141/103682*39603^(21/22) 3908816902031362 a001 686789568/101521*39603^(9/11) 3908816902037973 a001 12586269025/1860498*39603^(9/11) 3908816902038937 a001 32951280099/4870847*39603^(9/11) 3908816902039078 a001 86267571272/12752043*39603^(9/11) 3908816902039099 a001 32264490531/4769326*39603^(9/11) 3908816902039102 a001 591286729879/87403803*39603^(9/11) 3908816902039102 a001 1548008755920/228826127*39603^(9/11) 3908816902039102 a001 4052739537881/599074578*39603^(9/11) 3908816902039102 a001 1515744265389/224056801*39603^(9/11) 3908816902039102 a001 6557470319842/969323029*39603^(9/11) 3908816902039102 a001 2504730781961/370248451*39603^(9/11) 3908816902039102 a001 956722026041/141422324*39603^(9/11) 3908816902039103 a001 365435296162/54018521*39603^(9/11) 3908816902039111 a001 139583862445/20633239*39603^(9/11) 3908816902039165 a001 53316291173/7881196*39603^(9/11) 3908816902039533 a001 20365011074/3010349*39603^(9/11) 3908816902042059 a001 7778742049/1149851*39603^(9/11) 3908816902059366 a001 2971215073/439204*39603^(9/11) 3908816902064706 a001 1836311903/167761*39603^(17/22) 3908816902084784 a001 20365011074/64079*39603^(5/11) 3908816902099335 a001 1134903170/271443*39603^(19/22) 3908816902128620 a001 692290561536/17711 3908816902144646 a001 2971215073/710647*39603^(19/22) 3908816902151256 a001 7778742049/1860498*39603^(19/22) 3908816902152221 a001 20365011074/4870847*39603^(19/22) 3908816902152362 a001 53316291173/12752043*39603^(19/22) 3908816902152382 a001 139583862445/33385282*39603^(19/22) 3908816902152385 a001 365435296162/87403803*39603^(19/22) 3908816902152386 a001 956722026041/228826127*39603^(19/22) 3908816902152386 a001 2504730781961/599074578*39603^(19/22) 3908816902152386 a001 6557470319842/1568397607*39603^(19/22) 3908816902152386 a001 10610209857723/2537720636*39603^(19/22) 3908816902152386 a001 4052739537881/969323029*39603^(19/22) 3908816902152386 a001 1548008755920/370248451*39603^(19/22) 3908816902152386 a001 591286729879/141422324*39603^(19/22) 3908816902152387 a001 225851433717/54018521*39603^(19/22) 3908816902152395 a001 86267571272/20633239*39603^(19/22) 3908816902152449 a001 32951280099/7881196*39603^(19/22) 3908816902152817 a001 12586269025/3010349*39603^(19/22) 3908816902155342 a001 4807526976/1149851*39603^(19/22) 3908816902172649 a001 1836311903/439204*39603^(19/22) 3908816902174919 a001 567451585/12238*24476^(2/3) 3908816902177990 a001 1134903170/167761*39603^(9/11) 3908816902198067 a001 12586269025/64079*39603^(1/2) 3908816902198694 a001 956722026041/103682*15127^(3/20) 3908816902212619 a001 233802911/90481*39603^(10/11) 3908816902257929 a001 1836311903/710647*39603^(10/11) 3908816902264540 a001 267084832/103361*39603^(10/11) 3908816902265504 a001 12586269025/4870847*39603^(10/11) 3908816902265645 a001 10983760033/4250681*39603^(10/11) 3908816902265666 a001 43133785636/16692641*39603^(10/11) 3908816902265669 a001 75283811239/29134601*39603^(10/11) 3908816902265669 a001 591286729879/228826127*39603^(10/11) 3908816902265669 a001 86000486440/33281921*39603^(10/11) 3908816902265669 a001 4052739537881/1568397607*39603^(10/11) 3908816902265669 a001 3536736619241/1368706081*39603^(10/11) 3908816902265669 a001 3278735159921/1268860318*39603^(10/11) 3908816902265669 a001 2504730781961/969323029*39603^(10/11) 3908816902265669 a001 956722026041/370248451*39603^(10/11) 3908816902265669 a001 182717648081/70711162*39603^(10/11) 3908816902265670 a001 139583862445/54018521*39603^(10/11) 3908816902265678 a001 53316291173/20633239*39603^(10/11) 3908816902265732 a001 10182505537/3940598*39603^(10/11) 3908816902266100 a001 7778742049/3010349*39603^(10/11) 3908816902268625 a001 2971215073/1149851*39603^(10/11) 3908816902285932 a001 567451585/219602*39603^(10/11) 3908816902291273 a001 701408733/167761*39603^(19/22) 3908816902311351 a001 7778742049/64079*39603^(6/11) 3908816902325902 a001 433494437/271443*39603^(21/22) 3908816902353756 a001 63245986/9349*9349^(18/19) 3908816902371213 a001 1134903170/710647*39603^(21/22) 3908816902377823 a001 2971215073/1860498*39603^(21/22) 3908816902378788 a001 7778742049/4870847*39603^(21/22) 3908816902378928 a001 20365011074/12752043*39603^(21/22) 3908816902378949 a001 53316291173/33385282*39603^(21/22) 3908816902378952 a001 139583862445/87403803*39603^(21/22) 3908816902378952 a001 365435296162/228826127*39603^(21/22) 3908816902378952 a001 956722026041/599074578*39603^(21/22) 3908816902378953 a001 2504730781961/1568397607*39603^(21/22) 3908816902378953 a001 6557470319842/4106118243*39603^(21/22) 3908816902378953 a001 10610209857723/6643838879*39603^(21/22) 3908816902378953 a001 4052739537881/2537720636*39603^(21/22) 3908816902378953 a001 1548008755920/969323029*39603^(21/22) 3908816902378953 a001 591286729879/370248451*39603^(21/22) 3908816902378953 a001 225851433717/141422324*39603^(21/22) 3908816902378954 a001 86267571272/54018521*39603^(21/22) 3908816902378962 a001 32951280099/20633239*39603^(21/22) 3908816902379015 a001 12586269025/7881196*39603^(21/22) 3908816902379384 a001 4807526976/3010349*39603^(21/22) 3908816902381909 a001 1836311903/1149851*39603^(21/22) 3908816902399216 a001 701408733/439204*39603^(21/22) 3908816902404557 a001 433494437/167761*39603^(10/11) 3908816902424634 a001 4807526976/64079*39603^(13/22) 3908816902431634 a001 139583862445/15127*5778^(1/6) 3908816902439162 a001 692290561591/17711 3908816902484331 a001 692290561599/17711 3908816902485622 a001 1836311903/24476*24476^(13/21) 3908816902489977 a001 692290561600/17711 3908816902492236 a001 2/17711*(1/2+1/2*5^(1/2))^60 3908816902492236 a001 3461452808002/17711*8^(1/3) 3908816902495624 a001 692290561601/17711 3908816902509256 a001 2504730781961/271443*15127^(3/20) 3908816902512562 a001 7778545636/199 3908816902517840 a001 267914296/167761*39603^(21/22) 3908816902537918 a001 2971215073/64079*39603^(7/11) 3908816902554566 a001 6557470319842/710647*15127^(3/20) 3908816902565262 a001 10610209857723/1149851*15127^(3/20) 3908816902582569 a001 4052739537881/439204*15127^(3/20) 3908816902631133 a001 692290561625/17711 3908816902632376 a001 86267571272/39603*15127^(3/10) 3908816902651201 a001 28657*39603^(15/22) 3908816902660153 a001 956722026041/64079*15127^(1/10) 3908816902701193 a001 140728068720/15251*15127^(3/20) 3908816902764485 a001 1134903170/64079*39603^(8/11) 3908816902796325 a001 2971215073/24476*24476^(4/7) 3908816902877768 a001 701408733/64079*39603^(17/22) 3908816902991052 a001 433494437/64079*39603^(9/11) 3908816903052796 a001 591286729879/103682*15127^(1/5) 3908816903104335 a001 267914296/64079*39603^(19/22) 3908816903107028 a001 1201881744/6119*24476^(11/21) 3908816903217619 a001 165580141/64079*39603^(10/11) 3908816903330902 a001 102334155/64079*39603^(21/22) 3908816903363358 a001 516002918640/90481*15127^(1/5) 3908816903408668 a001 4052739537881/710647*15127^(1/5) 3908816903415279 a001 3536736619241/620166*15127^(1/5) 3908816903417731 a001 7778742049/24476*24476^(10/21) 3908816903419364 a001 6557470319842/1149851*15127^(1/5) 3908816903436671 a001 2504730781961/439204*15127^(1/5) 3908816903444187 a001 692290561769/17711 3908816903486478 a001 53316291173/39603*15127^(7/20) 3908816903514255 a001 591286729879/64079*15127^(3/20) 3908816903555295 a001 956722026041/167761*15127^(1/5) 3908816903728433 a001 12586269025/24476*24476^(3/7) 3908816903906898 a001 182717648081/51841*15127^(1/4) 3908816904012322 a001 956722026041/39603*5778^(1/18) 3908816904032522 a001 10946/39603*2537720636^(13/15) 3908816904032522 a001 10946/39603*45537549124^(13/17) 3908816904032522 a001 10946/39603*14662949395604^(13/21) 3908816904032522 a001 10946/39603*(1/2+1/2*5^(1/2))^39 3908816904032522 a001 10946/39603*192900153618^(13/18) 3908816904032522 a001 10946/39603*73681302247^(3/4) 3908816904032522 a001 10946/39603*10749957122^(13/16) 3908816904032522 a001 17711/24476*(1/2+1/2*5^(1/2))^37 3908816904032522 a001 10946/39603*599074578^(13/14) 3908816904039136 a001 10182505537/12238*24476^(8/21) 3908816904171003 a001 591286729879/24476*9349^(1/19) 3908816904217460 a001 956722026041/271443*15127^(1/4) 3908816904262770 a001 2504730781961/710647*15127^(1/4) 3908816904269381 a001 3278735159921/930249*15127^(1/4) 3908816904270941 a001 10610209857723/3010349*15127^(1/4) 3908816904273466 a001 4052739537881/1149851*15127^(1/4) 3908816904290773 a001 387002188980/109801*15127^(1/4) 3908816904340580 a001 10983760033/13201*15127^(2/5) 3908816904349839 a001 32951280099/24476*24476^(1/3) 3908816904368357 a001 365435296162/64079*15127^(1/5) 3908816904409397 a001 591286729879/167761*15127^(1/4) 3908816904660542 a001 53316291173/24476*24476^(2/7) 3908816904707511 a001 102334155/9349*9349^(17/19) 3908816904760999 a001 225851433717/103682*15127^(3/10) 3908816904971245 a001 21566892818/6119*24476^(5/21) 3908816905071561 a001 591286729879/271443*15127^(3/10) 3908816905116872 a001 1548008755920/710647*15127^(3/10) 3908816905123483 a001 4052739537881/1860498*15127^(3/10) 3908816905124447 a001 2178309*15127^(3/10) 3908816905125043 a001 6557470319842/3010349*15127^(3/10) 3908816905127568 a001 2504730781961/1149851*15127^(3/10) 3908816905144875 a001 956722026041/439204*15127^(3/10) 3908816905194682 a001 20365011074/39603*15127^(9/20) 3908816905222459 a001 225851433717/64079*15127^(1/4) 3908816905263499 a001 365435296162/167761*15127^(3/10) 3908816905281947 a001 139583862445/24476*24476^(4/21) 3908816905572809 a001 1120149660630/28657 3908816905592650 a001 7787980473/844*24476^(1/7) 3908816905614199 a001 24157817/24476*64079^(22/23) 3908816905615101 a001 139583862445/103682*15127^(7/20) 3908816905655587 a001 39088169/24476*64079^(21/23) 3908816905696977 a001 31622993/12238*64079^(20/23) 3908816905738365 a001 102334155/24476*64079^(19/23) 3908816905779755 a001 165580141/24476*64079^(18/23) 3908816905821144 a001 10946*64079^(17/23) 3908816905862533 a001 433494437/24476*64079^(16/23) 3908816905903353 a001 182717648081/12238*24476^(2/21) 3908816905903922 a001 701408733/24476*64079^(15/23) 3908816905925663 a001 365435296162/271443*15127^(7/20) 3908816905945311 a001 567451585/12238*64079^(14/23) 3908816905970974 a001 956722026041/710647*15127^(7/20) 3908816905977585 a001 2504730781961/1860498*15127^(7/20) 3908816905978549 a001 6557470319842/4870847*15127^(7/20) 3908816905978777 a001 10610209857723/7881196*15127^(7/20) 3908816905979145 a001 1346269*15127^(7/20) 3908816905981670 a001 1548008755920/1149851*15127^(7/20) 3908816905986700 a001 1836311903/24476*64079^(13/23) 3908816905993576 a007 Real Root Of 665*x^4-200*x^3+161*x^2-468*x-235 3908816905998977 a001 591286729879/439204*15127^(7/20) 3908816906028089 a001 2971215073/24476*64079^(12/23) 3908816906048784 a001 12586269025/39603*15127^(1/2) 3908816906069478 a001 1201881744/6119*64079^(11/23) 3908816906076561 a001 139583862445/64079*15127^(3/10) 3908816906110867 a001 7778742049/24476*64079^(10/23) 3908816906117601 a001 225851433717/167761*15127^(7/20) 3908816906140945 a001 2504730781961/103682*5778^(1/18) 3908816906152256 a001 12586269025/24476*64079^(9/23) 3908816906161146 a001 5473/51841*(1/2+1/2*5^(1/2))^41 3908816906161146 a001 11592/6119*2537720636^(7/9) 3908816906161146 a001 11592/6119*17393796001^(5/7) 3908816906161146 a001 11592/6119*312119004989^(7/11) 3908816906161146 a001 11592/6119*14662949395604^(5/9) 3908816906161146 a001 11592/6119*(1/2+1/2*5^(1/2))^35 3908816906161146 a001 11592/6119*505019158607^(5/8) 3908816906161146 a001 11592/6119*28143753123^(7/10) 3908816906161146 a001 11592/6119*599074578^(5/6) 3908816906161146 a001 11592/6119*228826127^(7/8) 3908816906193646 a001 10182505537/12238*64079^(8/23) 3908816906214056 a001 591286729879/24476*24476^(1/21) 3908816906235035 a001 32951280099/24476*64079^(7/23) 3908816906276424 a001 53316291173/24476*64079^(6/23) 3908816906317813 a001 21566892818/6119*64079^(5/23) 3908816906359202 a001 139583862445/24476*64079^(4/23) 3908816906385871 a001 2932589884016/75025 3908816906400591 a001 7787980473/844*64079^(3/23) 3908816906413649 a001 31622993/12238*167761^(4/5) 3908816906441426 a001 701408733/24476*167761^(3/5) 3908816906441980 a001 182717648081/12238*64079^(2/23) 3908816906451507 a001 6557470319842/271443*5778^(1/18) 3908816906469203 a001 43133785636/51841*15127^(2/5) 3908816906469203 a001 7778742049/24476*167761^(2/5) 3908816906471708 a001 121393/24476*141422324^(11/13) 3908816906471708 a001 10946/271443*(1/2+1/2*5^(1/2))^43 3908816906471708 a001 121393/24476*2537720636^(11/15) 3908816906471708 a001 121393/24476*45537549124^(11/17) 3908816906471708 a001 121393/24476*312119004989^(3/5) 3908816906471708 a001 121393/24476*14662949395604^(11/21) 3908816906471708 a001 121393/24476*(1/2+1/2*5^(1/2))^33 3908816906471708 a001 121393/24476*192900153618^(11/18) 3908816906471708 a001 121393/24476*10749957122^(11/16) 3908816906471708 a001 121393/24476*1568397607^(3/4) 3908816906471708 a001 121393/24476*599074578^(11/14) 3908816906471711 a001 121393/24476*33385282^(11/12) 3908816906483369 a001 591286729879/24476*64079^(1/23) 3908816906496981 a001 21566892818/6119*167761^(1/5) 3908816906504495 a001 3838809995709/98209 3908816906506756 a001 9227465/24476*439204^(8/9) 3908816906508997 a001 39088169/24476*439204^(7/9) 3908816906511250 a001 165580141/24476*439204^(2/3) 3908816906513501 a001 701408733/24476*439204^(5/9) 3908816906515752 a001 2971215073/24476*439204^(4/9) 3908816906517018 a001 10946/710647*45537549124^(15/17) 3908816906517018 a001 10946/710647*312119004989^(9/11) 3908816906517018 a001 10946/710647*14662949395604^(5/7) 3908816906517018 a001 10946/710647*(1/2+1/2*5^(1/2))^45 3908816906517018 a001 10946/710647*192900153618^(5/6) 3908816906517018 a001 10946/710647*28143753123^(9/10) 3908816906517018 a001 10946/710647*10749957122^(15/16) 3908816906517019 a001 10959/844*(1/2+1/2*5^(1/2))^31 3908816906517019 a001 10959/844*9062201101803^(1/2) 3908816906518004 a001 12586269025/24476*439204^(1/3) 3908816906520255 a001 53316291173/24476*439204^(2/9) 3908816906521802 a001 20100270090238/514229 3908816906522507 a001 7787980473/844*439204^(1/9) 3908816906523629 a001 5473/930249*(1/2+1/2*5^(1/2))^47 3908816906523629 a001 208010/6119*(1/2+1/2*5^(1/2))^29 3908816906523629 a001 208010/6119*1322157322203^(1/2) 3908816906524327 a001 52623190279296/1346269 3908816906524542 a001 2178309/24476*7881196^(9/11) 3908816906524594 a001 2178309/24476*141422324^(9/13) 3908816906524594 a001 10946/4870847*14662949395604^(7/9) 3908816906524594 a001 10946/4870847*(1/2+1/2*5^(1/2))^49 3908816906524594 a001 10946/4870847*505019158607^(7/8) 3908816906524594 a001 2178309/24476*2537720636^(3/5) 3908816906524594 a001 2178309/24476*45537549124^(9/17) 3908816906524594 a001 2178309/24476*817138163596^(9/19) 3908816906524594 a001 2178309/24476*14662949395604^(3/7) 3908816906524594 a001 2178309/24476*(1/2+1/2*5^(1/2))^27 3908816906524594 a001 2178309/24476*192900153618^(1/2) 3908816906524594 a001 2178309/24476*10749957122^(9/16) 3908816906524594 a001 2178309/24476*599074578^(9/14) 3908816906524596 a001 2178309/24476*33385282^(3/4) 3908816906524696 a001 68884650373825/1762289 3908816906524718 a001 24157817/24476*7881196^(2/3) 3908816906524718 a001 39088169/24476*7881196^(7/11) 3908816906524722 a001 9227465/24476*7881196^(8/11) 3908816906524724 a001 165580141/24476*7881196^(6/11) 3908816906524728 a001 5702887/24476*20633239^(5/7) 3908816906524730 a001 701408733/24476*7881196^(5/11) 3908816906524734 a001 10946/12752043*14662949395604^(17/21) 3908816906524734 a001 10946/12752043*(1/2+1/2*5^(1/2))^51 3908816906524734 a001 10946/12752043*192900153618^(17/18) 3908816906524734 a001 5702887/24476*2537720636^(5/9) 3908816906524734 a001 5702887/24476*312119004989^(5/11) 3908816906524734 a001 5702887/24476*(1/2+1/2*5^(1/2))^25 3908816906524734 a001 5702887/24476*3461452808002^(5/12) 3908816906524734 a001 5702887/24476*28143753123^(1/2) 3908816906524734 a001 5702887/24476*228826127^(5/8) 3908816906524736 a001 2971215073/24476*7881196^(4/11) 3908816906524737 a001 1201881744/6119*7881196^(1/3) 3908816906524741 a001 12586269025/24476*7881196^(3/11) 3908816906524747 a001 53316291173/24476*7881196^(2/11) 3908816906524749 a001 27744977843358/709805 3908816906524752 a001 39088169/24476*20633239^(3/5) 3908816906524753 a001 7787980473/844*7881196^(1/11) 3908816906524753 a001 31622993/12238*20633239^(4/7) 3908816906524755 a001 701408733/24476*20633239^(3/7) 3908816906524755 a001 567451585/12238*20633239^(2/5) 3908816906524755 a001 5473/16692641*(1/2+1/2*5^(1/2))^53 3908816906524755 a001 3732588/6119*(1/2+1/2*5^(1/2))^23 3908816906524755 a001 3732588/6119*4106118243^(1/2) 3908816906524756 a001 7778742049/24476*20633239^(2/7) 3908816906524757 a001 32951280099/24476*20633239^(1/5) 3908816906524757 a001 944284835143312/24157817 3908816906524757 a001 21566892818/6119*20633239^(1/7) 3908816906524758 a001 39088169/24476*141422324^(7/13) 3908816906524758 a001 10946/87403803*3461452808002^(11/12) 3908816906524758 a001 39088169/24476*2537720636^(7/15) 3908816906524758 a001 39088169/24476*17393796001^(3/7) 3908816906524758 a001 39088169/24476*45537549124^(7/17) 3908816906524758 a001 39088169/24476*14662949395604^(1/3) 3908816906524758 a001 39088169/24476*(1/2+1/2*5^(1/2))^21 3908816906524758 a001 39088169/24476*192900153618^(7/18) 3908816906524758 a001 39088169/24476*10749957122^(7/16) 3908816906524758 a001 39088169/24476*599074578^(1/2) 3908816906524758 a001 1236084896733141/31622993 3908816906524758 a001 10946/228826127*14662949395604^(19/21) 3908816906524758 a001 701408733/24476*141422324^(5/13) 3908816906524758 a001 102334155/24476*817138163596^(1/3) 3908816906524758 a001 102334155/24476*(1/2+1/2*5^(1/2))^19 3908816906524758 a001 1836311903/24476*141422324^(1/3) 3908816906524758 a001 165580141/24476*141422324^(6/13) 3908816906524758 a001 2971215073/24476*141422324^(4/13) 3908816906524758 a001 12586269025/24476*141422324^(3/13) 3908816906524758 a001 6472224545255534/165580141 3908816906524758 a001 53316291173/24476*141422324^(2/13) 3908816906524758 a001 16944503842300320/433494437 3908816906524758 a001 7787980473/844*141422324^(1/13) 3908816906524758 a001 22180643490822713/567451585 3908816906524758 a001 116139357102635958/2971215073 3908816906524758 a001 10946*45537549124^(1/3) 3908816906524758 a001 71778070120990532/1836311903 3908816906524758 a001 27416783139345106/701408733 3908816906524758 a001 10946/969323029*14662949395604^(20/21) 3908816906524758 a001 701408733/24476*2537720636^(1/3) 3908816906524758 a001 701408733/24476*45537549124^(5/17) 3908816906524758 a001 701408733/24476*312119004989^(3/11) 3908816906524758 a001 701408733/24476*14662949395604^(5/21) 3908816906524758 a001 701408733/24476*(1/2+1/2*5^(1/2))^15 3908816906524758 a001 701408733/24476*192900153618^(5/18) 3908816906524758 a001 701408733/24476*28143753123^(3/10) 3908816906524758 a001 701408733/24476*10749957122^(5/16) 3908816906524758 a001 1836311903/24476*(1/2+1/2*5^(1/2))^13 3908816906524758 a001 1836311903/24476*73681302247^(1/4) 3908816906524758 a001 12586269025/24476*2537720636^(1/5) 3908816906524758 a001 7778742049/24476*2537720636^(2/9) 3908816906524758 a001 53316291173/24476*2537720636^(2/15) 3908816906524758 a001 2971215073/24476*2537720636^(4/15) 3908816906524758 a001 21566892818/6119*2537720636^(1/9) 3908816906524758 a001 7787980473/844*2537720636^(1/15) 3908816906524758 a001 1201881744/6119*312119004989^(1/5) 3908816906524758 a001 1201881744/6119*(1/2+1/2*5^(1/2))^11 3908816906524758 a001 12586269025/24476*45537549124^(3/17) 3908816906524758 a001 12586269025/24476*817138163596^(3/19) 3908816906524758 a001 12586269025/24476*14662949395604^(1/7) 3908816906524758 a001 12586269025/24476*(1/2+1/2*5^(1/2))^9 3908816906524758 a001 12586269025/24476*192900153618^(1/6) 3908816906524758 a001 32951280099/24476*17393796001^(1/7) 3908816906524758 a001 32951280099/24476*14662949395604^(1/9) 3908816906524758 a001 32951280099/24476*(1/2+1/2*5^(1/2))^7 3908816906524758 a001 7787980473/844*45537549124^(1/17) 3908816906524758 a001 21566892818/6119*312119004989^(1/11) 3908816906524758 a001 21566892818/6119*(1/2+1/2*5^(1/2))^5 3908816906524758 a001 7787980473/844*(1/2+1/2*5^(1/2))^3 3908816906524758 a001 7787980473/844*192900153618^(1/18) 3908816906524758 a001 591286729879/48952+591286729879/48952*5^(1/2) 3908816906524758 a001 956722026041/24476 3908816906524758 a001 182717648081/12238*(1/2+1/2*5^(1/2))^2 3908816906524758 a001 139583862445/24476*(1/2+1/2*5^(1/2))^4 3908816906524758 a001 139583862445/24476*23725150497407^(1/16) 3908816906524758 a001 53316291173/24476*45537549124^(2/17) 3908816906524758 a001 139583862445/24476*73681302247^(1/13) 3908816906524758 a001 53316291173/24476*14662949395604^(2/21) 3908816906524758 a001 53316291173/24476*(1/2+1/2*5^(1/2))^6 3908816906524758 a001 21566892818/6119*28143753123^(1/10) 3908816906524758 a001 12586269025/24476*10749957122^(3/16) 3908816906524758 a001 182717648081/12238*10749957122^(1/24) 3908816906524758 a001 10182505537/12238*(1/2+1/2*5^(1/2))^8 3908816906524758 a001 10182505537/12238*23725150497407^(1/8) 3908816906524758 a001 10182505537/12238*505019158607^(1/7) 3908816906524758 a001 10182505537/12238*73681302247^(2/13) 3908816906524758 a001 7787980473/844*10749957122^(1/16) 3908816906524758 a001 139583862445/24476*10749957122^(1/12) 3908816906524758 a001 53316291173/24476*10749957122^(1/8) 3908816906524758 a001 10182505537/12238*10749957122^(1/6) 3908816906524758 a001 182717648081/12238*4106118243^(1/23) 3908816906524758 a001 7778742049/24476*312119004989^(2/11) 3908816906524758 a001 7778742049/24476*(1/2+1/2*5^(1/2))^10 3908816906524758 a001 7778742049/24476*28143753123^(1/5) 3908816906524758 a001 7778742049/24476*10749957122^(5/24) 3908816906524758 a001 139583862445/24476*4106118243^(2/23) 3908816906524758 a001 53316291173/24476*4106118243^(3/23) 3908816906524758 a001 10182505537/12238*4106118243^(4/23) 3908816906524758 a001 7778742049/24476*4106118243^(5/23) 3908816906524758 a001 182717648081/12238*1568397607^(1/22) 3908816906524758 a001 2971215073/24476*45537549124^(4/17) 3908816906524758 a001 2971215073/24476*817138163596^(4/19) 3908816906524758 a001 2971215073/24476*14662949395604^(4/21) 3908816906524758 a001 2971215073/24476*(1/2+1/2*5^(1/2))^12 3908816906524758 a001 2971215073/24476*192900153618^(2/9) 3908816906524758 a001 2971215073/24476*73681302247^(3/13) 3908816906524758 a001 2971215073/24476*10749957122^(1/4) 3908816906524758 a001 139583862445/24476*1568397607^(1/11) 3908816906524758 a001 2971215073/24476*4106118243^(6/23) 3908816906524758 a001 53316291173/24476*1568397607^(3/22) 3908816906524758 a001 10182505537/12238*1568397607^(2/11) 3908816906524758 a001 1201881744/6119*1568397607^(1/4) 3908816906524758 a001 7778742049/24476*1568397607^(5/22) 3908816906524758 a001 182717648081/12238*599074578^(1/21) 3908816906524758 a001 2971215073/24476*1568397607^(3/11) 3908816906524758 a001 567451585/12238*17393796001^(2/7) 3908816906524758 a001 567451585/12238*14662949395604^(2/9) 3908816906524758 a001 567451585/12238*(1/2+1/2*5^(1/2))^14 3908816906524758 a001 567451585/12238*505019158607^(1/4) 3908816906524758 a001 567451585/12238*10749957122^(7/24) 3908816906524758 a001 567451585/12238*4106118243^(7/23) 3908816906524758 a001 7787980473/844*599074578^(1/14) 3908816906524758 a001 139583862445/24476*599074578^(2/21) 3908816906524758 a001 567451585/12238*1568397607^(7/22) 3908816906524758 a001 53316291173/24476*599074578^(1/7) 3908816906524758 a001 32951280099/24476*599074578^(1/6) 3908816906524758 a001 10182505537/12238*599074578^(4/21) 3908816906524758 a001 701408733/24476*599074578^(5/14) 3908816906524758 a001 12586269025/24476*599074578^(3/14) 3908816906524758 a001 7778742049/24476*599074578^(5/21) 3908816906524758 a001 2971215073/24476*599074578^(2/7) 3908816906524758 a001 182717648081/12238*228826127^(1/20) 3908816906524758 a001 433494437/24476*(1/2+1/2*5^(1/2))^16 3908816906524758 a001 433494437/24476*23725150497407^(1/4) 3908816906524758 a001 433494437/24476*73681302247^(4/13) 3908816906524758 a001 433494437/24476*10749957122^(1/3) 3908816906524758 a001 567451585/12238*599074578^(1/3) 3908816906524758 a001 433494437/24476*4106118243^(8/23) 3908816906524758 a001 433494437/24476*1568397607^(4/11) 3908816906524758 a001 139583862445/24476*228826127^(1/10) 3908816906524758 a001 433494437/24476*599074578^(8/21) 3908816906524758 a001 21566892818/6119*228826127^(1/8) 3908816906524758 a001 53316291173/24476*228826127^(3/20) 3908816906524758 a001 10182505537/12238*228826127^(1/5) 3908816906524758 a001 7778742049/24476*228826127^(1/4) 3908816906524758 a001 2971215073/24476*228826127^(3/10) 3908816906524758 a001 701408733/24476*228826127^(3/8) 3908816906524758 a001 567451585/12238*228826127^(7/20) 3908816906524758 a001 182717648081/12238*87403803^(1/19) 3908816906524758 a001 165580141/24476*2537720636^(2/5) 3908816906524758 a001 165580141/24476*45537549124^(6/17) 3908816906524758 a001 165580141/24476*14662949395604^(2/7) 3908816906524758 a001 165580141/24476*(1/2+1/2*5^(1/2))^18 3908816906524758 a001 165580141/24476*192900153618^(1/3) 3908816906524758 a001 165580141/24476*10749957122^(3/8) 3908816906524758 a001 165580141/24476*4106118243^(9/23) 3908816906524758 a001 165580141/24476*1568397607^(9/22) 3908816906524758 a001 165580141/24476*599074578^(3/7) 3908816906524758 a001 433494437/24476*228826127^(2/5) 3908816906524759 a001 139583862445/24476*87403803^(2/19) 3908816906524759 a001 165580141/24476*228826127^(9/20) 3908816906524759 a001 4000054751789252/102334155 3908816906524759 a001 53316291173/24476*87403803^(3/19) 3908816906524759 a001 10182505537/12238*87403803^(4/19) 3908816906524759 a001 7778742049/24476*87403803^(5/19) 3908816906524759 a001 2971215073/24476*87403803^(6/19) 3908816906524759 a001 102334155/24476*87403803^(1/2) 3908816906524759 a001 5473/70711162*14662949395604^(8/9) 3908816906524759 a001 567451585/12238*87403803^(7/19) 3908816906524759 a001 182717648081/12238*33385282^(1/18) 3908816906524759 a001 31622993/12238*2537720636^(4/9) 3908816906524759 a001 31622993/12238*(1/2+1/2*5^(1/2))^20 3908816906524759 a001 31622993/12238*23725150497407^(5/16) 3908816906524759 a001 31622993/12238*505019158607^(5/14) 3908816906524759 a001 31622993/12238*73681302247^(5/13) 3908816906524759 a001 31622993/12238*28143753123^(2/5) 3908816906524759 a001 31622993/12238*10749957122^(5/12) 3908816906524759 a001 31622993/12238*4106118243^(10/23) 3908816906524759 a001 31622993/12238*1568397607^(5/11) 3908816906524759 a001 31622993/12238*599074578^(10/21) 3908816906524759 a001 433494437/24476*87403803^(8/19) 3908816906524759 a001 31622993/12238*228826127^(1/2) 3908816906524759 a001 165580141/24476*87403803^(9/19) 3908816906524759 a001 7787980473/844*33385282^(1/12) 3908816906524759 a001 139583862445/24476*33385282^(1/9) 3908816906524759 a001 31622993/12238*87403803^(10/19) 3908816906524759 a001 1527884958322970/39088169 3908816906524759 a001 53316291173/24476*33385282^(1/6) 3908816906524759 a001 10182505537/12238*33385282^(2/9) 3908816906524759 a001 12586269025/24476*33385282^(1/4) 3908816906524759 a001 7778742049/24476*33385282^(5/18) 3908816906524760 a001 2971215073/24476*33385282^(1/3) 3908816906524760 a001 10946/54018521*14662949395604^(6/7) 3908816906524760 a001 24157817/24476*312119004989^(2/5) 3908816906524760 a001 24157817/24476*(1/2+1/2*5^(1/2))^22 3908816906524760 a001 24157817/24476*10749957122^(11/24) 3908816906524760 a001 24157817/24476*4106118243^(11/23) 3908816906524760 a001 24157817/24476*1568397607^(1/2) 3908816906524760 a001 24157817/24476*599074578^(11/21) 3908816906524760 a001 567451585/12238*33385282^(7/18) 3908816906524760 a001 24157817/24476*228826127^(11/20) 3908816906524760 a001 182717648081/12238*12752043^(1/17) 3908816906524760 a001 701408733/24476*33385282^(5/12) 3908816906524760 a001 39088169/24476*33385282^(7/12) 3908816906524760 a001 433494437/24476*33385282^(4/9) 3908816906524760 a001 24157817/24476*87403803^(11/19) 3908816906524760 a001 165580141/24476*33385282^(1/2) 3908816906524761 a001 31622993/12238*33385282^(5/9) 3908816906524761 a001 139583862445/24476*12752043^(2/17) 3908816906524762 a001 24157817/24476*33385282^(11/18) 3908816906524762 a001 291800061589829/7465176 3908816906524763 a001 53316291173/24476*12752043^(3/17) 3908816906524764 a001 10182505537/12238*12752043^(4/17) 3908816906524766 a001 7778742049/24476*12752043^(5/17) 3908816906524767 a001 2971215073/24476*12752043^(6/17) 3908816906524768 a001 9227465/24476*141422324^(8/13) 3908816906524768 a001 10946/20633239*(1/2+1/2*5^(1/2))^52 3908816906524768 a001 10946/20633239*23725150497407^(13/16) 3908816906524768 a001 10946/20633239*505019158607^(13/14) 3908816906524768 a001 9227465/24476*2537720636^(8/15) 3908816906524768 a001 9227465/24476*45537549124^(8/17) 3908816906524768 a001 9227465/24476*14662949395604^(8/21) 3908816906524768 a001 9227465/24476*(1/2+1/2*5^(1/2))^24 3908816906524768 a001 9227465/24476*192900153618^(4/9) 3908816906524768 a001 9227465/24476*73681302247^(6/13) 3908816906524768 a001 9227465/24476*10749957122^(1/2) 3908816906524768 a001 9227465/24476*4106118243^(12/23) 3908816906524768 a001 9227465/24476*1568397607^(6/11) 3908816906524768 a001 9227465/24476*599074578^(4/7) 3908816906524768 a001 9227465/24476*228826127^(3/5) 3908816906524768 a001 9227465/24476*87403803^(12/19) 3908816906524768 a001 567451585/12238*12752043^(7/17) 3908816906524769 a001 182717648081/12238*4870847^(1/16) 3908816906524770 a001 433494437/24476*12752043^(8/17) 3908816906524770 a001 9227465/24476*33385282^(2/3) 3908816906524770 a001 10946*12752043^(1/2) 3908816906524771 a001 165580141/24476*12752043^(9/17) 3908816906524773 a001 31622993/12238*12752043^(10/17) 3908816906524775 a001 24157817/24476*12752043^(11/17) 3908816906524779 a001 139583862445/24476*4870847^(1/8) 3908816906524782 a001 139583851732/3571 3908816906524785 a001 9227465/24476*12752043^(12/17) 3908816906524789 a001 53316291173/24476*4870847^(3/16) 3908816906524800 a001 10182505537/12238*4870847^(1/4) 3908816906524810 a001 7778742049/24476*4870847^(5/16) 3908816906524820 a001 2971215073/24476*4870847^(3/8) 3908816906524821 a001 10610209857723/439204*5778^(1/18) 3908816906524821 a001 1762289/12238*141422324^(2/3) 3908816906524821 a001 5473/3940598*312119004989^(10/11) 3908816906524821 a001 5473/3940598*(1/2+1/2*5^(1/2))^50 3908816906524821 a001 5473/3940598*3461452808002^(5/6) 3908816906524821 a001 1762289/12238*(1/2+1/2*5^(1/2))^26 3908816906524821 a001 1762289/12238*73681302247^(1/2) 3908816906524821 a001 1762289/12238*10749957122^(13/24) 3908816906524821 a001 1762289/12238*4106118243^(13/23) 3908816906524821 a001 1762289/12238*1568397607^(13/22) 3908816906524821 a001 1762289/12238*599074578^(13/21) 3908816906524821 a001 1762289/12238*228826127^(13/20) 3908816906524822 a001 1762289/12238*87403803^(13/19) 3908816906524824 a001 1762289/12238*33385282^(13/18) 3908816906524831 a001 567451585/12238*4870847^(7/16) 3908816906524834 a001 182717648081/12238*1860498^(1/15) 3908816906524840 a001 1762289/12238*12752043^(13/17) 3908816906524841 a001 433494437/24476*4870847^(1/2) 3908816906524851 a001 165580141/24476*4870847^(9/16) 3908816906524862 a001 31622993/12238*4870847^(5/8) 3908816906524871 a001 7787980473/844*1860498^(1/10) 3908816906524873 a001 24157817/24476*4870847^(11/16) 3908816906524891 a001 9227465/24476*4870847^(3/4) 3908816906524909 a001 139583862445/24476*1860498^(2/15) 3908816906524923 a001 85146110468354/2178309 3908816906524947 a001 21566892818/6119*1860498^(1/6) 3908816906524955 a001 1762289/12238*4870847^(13/16) 3908816906524984 a001 53316291173/24476*1860498^(1/5) 3908816906525060 a001 10182505537/12238*1860498^(4/15) 3908816906525097 a001 12586269025/24476*1860498^(3/10) 3908816906525135 a001 7778742049/24476*1860498^(1/3) 3908816906525182 a001 1346269/24476*20633239^(4/5) 3908816906525190 a001 10946/3010349*45537549124^(16/17) 3908816906525190 a001 10946/3010349*14662949395604^(16/21) 3908816906525190 a001 10946/3010349*(1/2+1/2*5^(1/2))^48 3908816906525190 a001 10946/3010349*192900153618^(8/9) 3908816906525190 a001 10946/3010349*73681302247^(12/13) 3908816906525190 a001 1346269/24476*17393796001^(4/7) 3908816906525190 a001 1346269/24476*14662949395604^(4/9) 3908816906525190 a001 1346269/24476*(1/2+1/2*5^(1/2))^28 3908816906525190 a001 1346269/24476*73681302247^(7/13) 3908816906525190 a001 1346269/24476*10749957122^(7/12) 3908816906525190 a001 1346269/24476*4106118243^(14/23) 3908816906525190 a001 1346269/24476*1568397607^(7/11) 3908816906525190 a001 1346269/24476*599074578^(2/3) 3908816906525190 a001 1346269/24476*228826127^(7/10) 3908816906525190 a001 1346269/24476*87403803^(14/19) 3908816906525193 a001 1346269/24476*33385282^(7/9) 3908816906525210 a001 1346269/24476*12752043^(14/17) 3908816906525210 a001 2971215073/24476*1860498^(2/5) 3908816906525285 a001 567451585/12238*1860498^(7/15) 3908816906525311 a001 182717648081/12238*710647^(1/14) 3908816906525323 a001 701408733/24476*1860498^(1/2) 3908816906525334 a001 1346269/24476*4870847^(7/8) 3908816906525361 a001 433494437/24476*1860498^(8/15) 3908816906525436 a001 165580141/24476*1860498^(3/5) 3908816906525511 a001 31622993/12238*1860498^(2/3) 3908816906525548 a001 39088169/24476*1860498^(7/10) 3908816906525588 a001 24157817/24476*1860498^(11/15) 3908816906525610 a001 2178309/24476*1860498^(9/10) 3908816906525671 a001 9227465/24476*1860498^(4/5) 3908816906525675 a001 5702887/24476*1860498^(5/6) 3908816906525800 a001 1762289/12238*1860498^(13/15) 3908816906525864 a001 139583862445/24476*710647^(1/7) 3908816906525888 a001 16261460094529/416020 3908816906526244 a001 1346269/24476*1860498^(14/15) 3908816906526417 a001 53316291173/24476*710647^(3/14) 3908816906526693 a001 32951280099/24476*710647^(1/4) 3908816906526970 a001 10182505537/12238*710647^(2/7) 3908816906527523 a001 7778742049/24476*710647^(5/14) 3908816906527658 a001 514229/24476*7881196^(10/11) 3908816906527707 a001 514229/24476*20633239^(6/7) 3908816906527715 a001 514229/24476*141422324^(10/13) 3908816906527715 a001 10946/1149851*(1/2+1/2*5^(1/2))^46 3908816906527715 a001 10946/1149851*10749957122^(23/24) 3908816906527715 a001 514229/24476*2537720636^(2/3) 3908816906527715 a001 514229/24476*45537549124^(10/17) 3908816906527715 a001 514229/24476*312119004989^(6/11) 3908816906527715 a001 514229/24476*14662949395604^(10/21) 3908816906527715 a001 514229/24476*(1/2+1/2*5^(1/2))^30 3908816906527715 a001 514229/24476*192900153618^(5/9) 3908816906527715 a001 514229/24476*28143753123^(3/5) 3908816906527715 a001 514229/24476*10749957122^(5/8) 3908816906527715 a001 514229/24476*4106118243^(15/23) 3908816906527715 a001 514229/24476*1568397607^(15/22) 3908816906527715 a001 514229/24476*599074578^(5/7) 3908816906527715 a001 514229/24476*228826127^(3/4) 3908816906527715 a001 514229/24476*87403803^(15/19) 3908816906527718 a001 514229/24476*33385282^(5/6) 3908816906527736 a001 514229/24476*12752043^(15/17) 3908816906527869 a001 514229/24476*4870847^(15/16) 3908816906528076 a001 2971215073/24476*710647^(3/7) 3908816906528628 a001 567451585/12238*710647^(1/2) 3908816906528839 a001 182717648081/12238*271443^(1/13) 3908816906529181 a001 433494437/24476*710647^(4/7) 3908816906529734 a001 165580141/24476*710647^(9/14) 3908816906530287 a001 31622993/12238*710647^(5/7) 3908816906530563 a001 39088169/24476*710647^(3/4) 3908816906530841 a001 24157817/24476*710647^(11/14) 3908816906531402 a001 9227465/24476*710647^(6/7) 3908816906532008 a001 1762289/12238*710647^(13/14) 3908816906532498 a001 955588469140/24447 3908816906532920 a001 139583862445/24476*271443^(2/13) 3908816906537001 a001 53316291173/24476*271443^(3/13) 3908816906539909 a001 591286729879/24476*103682^(1/24) 3908816906541082 a001 10182505537/12238*271443^(4/13) 3908816906545022 a001 5473/219602*312119004989^(4/5) 3908816906545022 a001 5473/219602*(1/2+1/2*5^(1/2))^44 3908816906545022 a001 5473/219602*23725150497407^(11/16) 3908816906545022 a001 5473/219602*73681302247^(11/13) 3908816906545022 a001 5473/219602*10749957122^(11/12) 3908816906545022 a001 5473/219602*4106118243^(22/23) 3908816906545022 a001 98209/12238*(1/2+1/2*5^(1/2))^32 3908816906545022 a001 98209/12238*23725150497407^(1/2) 3908816906545022 a001 98209/12238*505019158607^(4/7) 3908816906545022 a001 98209/12238*73681302247^(8/13) 3908816906545022 a001 98209/12238*10749957122^(2/3) 3908816906545022 a001 98209/12238*4106118243^(16/23) 3908816906545022 a001 98209/12238*1568397607^(8/11) 3908816906545022 a001 98209/12238*599074578^(16/21) 3908816906545022 a001 98209/12238*228826127^(4/5) 3908816906545022 a001 98209/12238*87403803^(16/19) 3908816906545025 a001 98209/12238*33385282^(8/9) 3908816906545044 a001 98209/12238*12752043^(16/17) 3908816906545162 a001 7778742049/24476*271443^(5/13) 3908816906549243 a001 2971215073/24476*271443^(6/13) 3908816906551284 a001 1836311903/24476*271443^(1/2) 3908816906553324 a001 567451585/12238*271443^(7/13) 3908816906555059 a001 182717648081/12238*103682^(1/12) 3908816906557405 a001 433494437/24476*271443^(8/13) 3908816906561486 a001 165580141/24476*271443^(9/13) 3908816906565567 a001 31622993/12238*271443^(10/13) 3908816906569649 a001 24157817/24476*271443^(11/13) 3908816906570210 a001 7787980473/844*103682^(1/8) 3908816906573737 a001 9227465/24476*271443^(12/13) 3908816906577809 a001 4745030107402/121393 3908816906585361 a001 139583862445/24476*103682^(1/6) 3908816906600511 a001 21566892818/6119*103682^(5/24) 3908816906615662 a001 53316291173/24476*103682^(1/4) 3908816906630812 a001 32951280099/24476*103682^(7/24) 3908816906638042 a001 591286729879/24476*39603^(1/22) 3908816906643445 a001 4052739537881/167761*5778^(1/18) 3908816906645963 a001 10182505537/12238*103682^(1/3) 3908816906661113 a001 12586269025/24476*103682^(3/8) 3908816906663646 a001 10946/167761*2537720636^(14/15) 3908816906663646 a001 10946/167761*17393796001^(6/7) 3908816906663646 a001 10946/167761*45537549124^(14/17) 3908816906663646 a001 10946/167761*817138163596^(14/19) 3908816906663646 a001 10946/167761*14662949395604^(2/3) 3908816906663646 a001 10946/167761*(1/2+1/2*5^(1/2))^42 3908816906663646 a001 10946/167761*505019158607^(3/4) 3908816906663646 a001 10946/167761*192900153618^(7/9) 3908816906663646 a001 10946/167761*10749957122^(7/8) 3908816906663646 a001 10946/167761*4106118243^(21/23) 3908816906663646 a001 10946/167761*1568397607^(21/22) 3908816906663646 a001 75025/24476*45537549124^(2/3) 3908816906663646 a001 75025/24476*(1/2+1/2*5^(1/2))^34 3908816906663646 a001 75025/24476*10749957122^(17/24) 3908816906663646 a001 75025/24476*4106118243^(17/23) 3908816906663646 a001 75025/24476*1568397607^(17/22) 3908816906663646 a001 75025/24476*599074578^(17/21) 3908816906663646 a001 75025/24476*228826127^(17/20) 3908816906663646 a001 75025/24476*87403803^(17/19) 3908816906663649 a001 75025/24476*33385282^(17/18) 3908816906676264 a001 7778742049/24476*103682^(5/12) 3908816906691414 a001 1201881744/6119*103682^(11/24) 3908816906706565 a001 2971215073/24476*103682^(1/2) 3908816906721715 a001 1836311903/24476*103682^(13/24) 3908816906736866 a001 567451585/12238*103682^(7/12) 3908816906751325 a001 182717648081/12238*39603^(1/11) 3908816906752016 a001 701408733/24476*103682^(5/8) 3908816906767167 a001 433494437/24476*103682^(2/3) 3908816906779765 a001 75283811239/90481*15127^(2/5) 3908816906782317 a001 10946*103682^(17/24) 3908816906797468 a001 165580141/24476*103682^(3/4) 3908816906812618 a001 102334155/24476*103682^(19/24) 3908816906825076 a001 591286729879/710647*15127^(2/5) 3908816906827769 a001 31622993/12238*103682^(5/6) 3908816906831686 a001 832040*15127^(2/5) 3908816906832651 a001 4052739537881/4870847*15127^(2/5) 3908816906832792 a001 3536736619241/4250681*15127^(2/5) 3908816906832879 a001 3278735159921/3940598*15127^(2/5) 3908816906833247 a001 2504730781961/3010349*15127^(2/5) 3908816906835772 a001 956722026041/1149851*15127^(2/5) 3908816906842919 a001 39088169/24476*103682^(7/8) 3908816906853079 a001 182717648081/219602*15127^(2/5) 3908816906858071 a001 24157817/24476*103682^(11/12) 3908816906864609 a001 7787980473/844*39603^(3/22) 3908816906873217 a001 3732588/6119*103682^(23/24) 3908816906888371 a001 906220111693/23184 3908816906902886 a001 7778742049/39603*15127^(11/20) 3908816906930663 a001 86267571272/64079*15127^(7/20) 3908816906971703 a001 139583862445/167761*15127^(2/5) 3908816906977892 a001 139583862445/24476*39603^(2/11) 3908816907061267 a001 165580141/9349*9349^(16/19) 3908816907091176 a001 21566892818/6119*39603^(5/22) 3908816907204459 a001 53316291173/24476*39603^(3/11) 3908816907317743 a001 32951280099/24476*39603^(7/22) 3908816907323305 a001 53316291173/103682*15127^(9/20) 3908816907378860 a001 591286729879/24476*15127^(1/20) 3908816907431026 a001 10182505537/12238*39603^(4/11) 3908816907456507 a001 1548008755920/64079*5778^(1/18) 3908816907476708 a001 28657/24476*141422324^(12/13) 3908816907476708 a001 10946/64079*2537720636^(8/9) 3908816907476708 a001 10946/64079*312119004989^(8/11) 3908816907476708 a001 10946/64079*(1/2+1/2*5^(1/2))^40 3908816907476708 a001 10946/64079*23725150497407^(5/8) 3908816907476708 a001 10946/64079*73681302247^(10/13) 3908816907476708 a001 10946/64079*28143753123^(4/5) 3908816907476708 a001 10946/64079*10749957122^(5/6) 3908816907476708 a001 10946/64079*4106118243^(20/23) 3908816907476708 a001 10946/64079*1568397607^(10/11) 3908816907476708 a001 28657/24476*2537720636^(4/5) 3908816907476708 a001 10946/64079*599074578^(20/21) 3908816907476708 a001 28657/24476*45537549124^(12/17) 3908816907476708 a001 28657/24476*14662949395604^(4/7) 3908816907476708 a001 28657/24476*(1/2+1/2*5^(1/2))^36 3908816907476708 a001 28657/24476*505019158607^(9/14) 3908816907476708 a001 28657/24476*192900153618^(2/3) 3908816907476708 a001 28657/24476*73681302247^(9/13) 3908816907476708 a001 28657/24476*10749957122^(3/4) 3908816907476708 a001 28657/24476*4106118243^(18/23) 3908816907476708 a001 28657/24476*1568397607^(9/11) 3908816907476708 a001 28657/24476*599074578^(6/7) 3908816907476708 a001 28657/24476*228826127^(9/10) 3908816907476708 a001 28657/24476*87403803^(18/19) 3908816907544310 a001 12586269025/24476*39603^(9/22) 3908816907633867 a001 139583862445/271443*15127^(9/20) 3908816907657593 a001 7778742049/24476*39603^(5/11) 3908816907679178 a001 365435296162/710647*15127^(9/20) 3908816907685788 a001 956722026041/1860498*15127^(9/20) 3908816907686753 a001 2504730781961/4870847*15127^(9/20) 3908816907686894 a001 6557470319842/12752043*15127^(9/20) 3908816907686927 a001 10610209857723/20633239*15127^(9/20) 3908816907686981 a001 4052739537881/7881196*15127^(9/20) 3908816907687349 a001 1548008755920/3010349*15127^(9/20) 3908816907689874 a001 514229*15127^(9/20) 3908816907707181 a001 225851433717/439204*15127^(9/20) 3908816907756988 a001 1602508992/13201*15127^(3/5) 3908816907770876 a001 1201881744/6119*39603^(1/2) 3908816907784765 a001 53316291173/64079*15127^(2/5) 3908816907825805 a001 86267571272/167761*15127^(9/20) 3908816907884160 a001 2971215073/24476*39603^(6/11) 3908816907997443 a001 1836311903/24476*39603^(13/22) 3908816908110727 a001 567451585/12238*39603^(7/11) 3908816908177407 a001 32951280099/103682*15127^(1/2) 3908816908224010 a001 701408733/24476*39603^(15/22) 3908816908232962 a001 182717648081/12238*15127^(1/10) 3908816908337294 a001 433494437/24476*39603^(8/11) 3908816908450577 a001 10946*39603^(17/22) 3908816908487969 a001 86267571272/271443*15127^(1/2) 3908816908533280 a001 317811*15127^(1/2) 3908816908539890 a001 591286729879/1860498*15127^(1/2) 3908816908540855 a001 1548008755920/4870847*15127^(1/2) 3908816908540996 a001 4052739537881/12752043*15127^(1/2) 3908816908541016 a001 1515744265389/4769326*15127^(1/2) 3908816908541029 a001 6557470319842/20633239*15127^(1/2) 3908816908541083 a001 2504730781961/7881196*15127^(1/2) 3908816908541451 a001 956722026041/3010349*15127^(1/2) 3908816908543976 a001 365435296162/1149851*15127^(1/2) 3908816908561283 a001 139583862445/439204*15127^(1/2) 3908816908563861 a001 165580141/24476*39603^(9/11) 3908816908611090 a001 2971215073/39603*15127^(13/20) 3908816908638867 a001 32951280099/64079*15127^(9/20) 3908816908659622 a001 139583862445/9349*3571^(2/17) 3908816908677144 a001 102334155/24476*39603^(19/22) 3908816908679907 a001 53316291173/167761*15127^(1/2) 3908816908790428 a001 31622993/12238*39603^(10/11) 3908816908903710 a001 39088169/24476*39603^(21/22) 3908816908936191 a001 86267571272/15127*5778^(2/9) 3908816909016995 a001 692290562756/17711 3908816909031509 a001 10182505537/51841*15127^(11/20) 3908816909087064 a001 7787980473/844*15127^(3/20) 3908816909342071 a001 53316291173/271443*15127^(11/20) 3908816909387382 a001 139583862445/710647*15127^(11/20) 3908816909393992 a001 182717648081/930249*15127^(11/20) 3908816909394957 a001 956722026041/4870847*15127^(11/20) 3908816909395098 a001 2504730781961/12752043*15127^(11/20) 3908816909395118 a001 3278735159921/16692641*15127^(11/20) 3908816909395123 a001 10610209857723/54018521*15127^(11/20) 3908816909395131 a001 4052739537881/20633239*15127^(11/20) 3908816909395185 a001 387002188980/1970299*15127^(11/20) 3908816909395553 a001 591286729879/3010349*15127^(11/20) 3908816909398078 a001 225851433717/1149851*15127^(11/20) 3908816909415023 a001 267914296/9349*9349^(15/19) 3908816909415385 a001 196418*15127^(11/20) 3908816909465192 a001 1836311903/39603*15127^(7/10) 3908816909492969 a001 20365011074/64079*15127^(1/2) 3908816909534009 a001 32951280099/167761*15127^(11/20) 3908816909885611 a001 12586269025/103682*15127^(3/5) 3908816909941166 a001 139583862445/24476*15127^(1/5) 3908816910196173 a001 121393*15127^(3/5) 3908816910241484 a001 86267571272/710647*15127^(3/5) 3908816910248094 a001 75283811239/620166*15127^(3/5) 3908816910249059 a001 591286729879/4870847*15127^(3/5) 3908816910249200 a001 516002918640/4250681*15127^(3/5) 3908816910249220 a001 4052739537881/33385282*15127^(3/5) 3908816910249223 a001 3536736619241/29134601*15127^(3/5) 3908816910249225 a001 6557470319842/54018521*15127^(3/5) 3908816910249233 a001 2504730781961/20633239*15127^(3/5) 3908816910249287 a001 956722026041/7881196*15127^(3/5) 3908816910249655 a001 365435296162/3010349*15127^(3/5) 3908816910252180 a001 139583862445/1149851*15127^(3/5) 3908816910269487 a001 53316291173/439204*15127^(3/5) 3908816910319294 a001 1134903170/39603*15127^(3/4) 3908816910347071 a001 12586269025/64079*15127^(11/20) 3908816910388111 a001 20365011074/167761*15127^(3/5) 3908816910516879 a001 591286729879/39603*5778^(1/9) 3908816910739713 a001 7778742049/103682*15127^(13/20) 3908816910795268 a001 21566892818/6119*15127^(1/4) 3908816911050275 a001 20365011074/271443*15127^(13/20) 3908816911095586 a001 53316291173/710647*15127^(13/20) 3908816911102196 a001 139583862445/1860498*15127^(13/20) 3908816911103161 a001 365435296162/4870847*15127^(13/20) 3908816911103302 a001 956722026041/12752043*15127^(13/20) 3908816911103322 a001 2504730781961/33385282*15127^(13/20) 3908816911103325 a001 6557470319842/87403803*15127^(13/20) 3908816911103326 a001 10610209857723/141422324*15127^(13/20) 3908816911103327 a001 4052739537881/54018521*15127^(13/20) 3908816911103335 a001 140728068720/1875749*15127^(13/20) 3908816911103388 a001 591286729879/7881196*15127^(13/20) 3908816911103757 a001 225851433717/3010349*15127^(13/20) 3908816911106282 a001 86267571272/1149851*15127^(13/20) 3908816911123589 a001 32951280099/439204*15127^(13/20) 3908816911173396 a001 17711*15127^(4/5) 3908816911201173 a001 7778742049/64079*15127^(3/5) 3908816911242213 a001 75025*15127^(13/20) 3908816911593815 a001 46368*15127^(7/10) 3908816911649370 a001 53316291173/24476*15127^(3/10) 3908816911768779 a001 433494437/9349*9349^(14/19) 3908816911904377 a001 12586269025/271443*15127^(7/10) 3908816911949688 a001 32951280099/710647*15127^(7/10) 3908816911956298 a001 43133785636/930249*15127^(7/10) 3908816911957263 a001 225851433717/4870847*15127^(7/10) 3908816911957403 a001 591286729879/12752043*15127^(7/10) 3908816911957424 a001 774004377960/16692641*15127^(7/10) 3908816911957427 a001 4052739537881/87403803*15127^(7/10) 3908816911957427 a001 225749145909/4868641*15127^(7/10) 3908816911957428 a001 3278735159921/70711162*15127^(7/10) 3908816911957429 a001 2504730781961/54018521*15127^(7/10) 3908816911957437 a001 956722026041/20633239*15127^(7/10) 3908816911957490 a001 182717648081/3940598*15127^(7/10) 3908816911957859 a001 139583862445/3010349*15127^(7/10) 3908816911960384 a001 53316291173/1149851*15127^(7/10) 3908816911977691 a001 10182505537/219602*15127^(7/10) 3908816912027497 a001 433494437/39603*15127^(17/20) 3908816912055275 a001 4807526976/64079*15127^(13/20) 3908816912096315 a001 7778742049/167761*15127^(7/10) 3908816912447917 a001 2971215073/103682*15127^(3/4) 3908816912503472 a001 32951280099/24476*15127^(7/20) 3908816912645503 a001 774004377960/51841*5778^(1/9) 3908816912758479 a001 7778742049/271443*15127^(3/4) 3908816912803790 a001 20365011074/710647*15127^(3/4) 3908816912810400 a001 53316291173/1860498*15127^(3/4) 3908816912811365 a001 139583862445/4870847*15127^(3/4) 3908816912811505 a001 365435296162/12752043*15127^(3/4) 3908816912811526 a001 956722026041/33385282*15127^(3/4) 3908816912811529 a001 2504730781961/87403803*15127^(3/4) 3908816912811529 a001 6557470319842/228826127*15127^(3/4) 3908816912811530 a001 10610209857723/370248451*15127^(3/4) 3908816912811530 a001 4052739537881/141422324*15127^(3/4) 3908816912811531 a001 1548008755920/54018521*15127^(3/4) 3908816912811539 a001 591286729879/20633239*15127^(3/4) 3908816912811592 a001 225851433717/7881196*15127^(3/4) 3908816912811961 a001 86267571272/3010349*15127^(3/4) 3908816912814486 a001 32951280099/1149851*15127^(3/4) 3908816912831793 a001 12586269025/439204*15127^(3/4) 3908816912881599 a001 267914296/39603*15127^(9/10) 3908816912909377 a001 2971215073/64079*15127^(7/10) 3908816912950417 a001 4807526976/167761*15127^(3/4) 3908816912956065 a001 4052739537881/271443*5778^(1/9) 3908816913001375 a001 1515744265389/101521*5778^(1/9) 3908816913029316 a001 591286729879/24476*5778^(1/18) 3908816913029379 a001 3278735159921/219602*5778^(1/9) 3908816913049517 a001 5473/12238*817138163596^(2/3) 3908816913049517 a001 5473/12238*(1/2+1/2*5^(1/2))^38 3908816913049517 a001 5473/12238*10749957122^(19/24) 3908816913049517 a001 5473/12238*4106118243^(19/23) 3908816913049517 a001 5473/12238*1568397607^(19/22) 3908816913049517 a001 5473/12238*599074578^(19/21) 3908816913049517 a001 5473/12238*228826127^(19/20) 3908816913148003 a001 2504730781961/167761*5778^(1/9) 3908816913302019 a001 1836311903/103682*15127^(4/5) 3908816913357574 a001 10182505537/12238*15127^(2/5) 3908816913612581 a001 1602508992/90481*15127^(4/5) 3908816913657892 a001 12586269025/710647*15127^(4/5) 3908816913664502 a001 10983760033/620166*15127^(4/5) 3908816913665467 a001 86267571272/4870847*15127^(4/5) 3908816913665607 a001 75283811239/4250681*15127^(4/5) 3908816913665628 a001 591286729879/33385282*15127^(4/5) 3908816913665631 a001 516002918640/29134601*15127^(4/5) 3908816913665631 a001 4052739537881/228826127*15127^(4/5) 3908816913665631 a001 3536736619241/199691526*15127^(4/5) 3908816913665631 a001 6557470319842/370248451*15127^(4/5) 3908816913665632 a001 2504730781961/141422324*15127^(4/5) 3908816913665633 a001 956722026041/54018521*15127^(4/5) 3908816913665641 a001 365435296162/20633239*15127^(4/5) 3908816913665694 a001 139583862445/7881196*15127^(4/5) 3908816913666063 a001 53316291173/3010349*15127^(4/5) 3908816913668588 a001 20365011074/1149851*15127^(4/5) 3908816913685895 a001 7778742049/439204*15127^(4/5) 3908816913735701 a001 165580141/39603*15127^(19/20) 3908816913763479 a001 28657*15127^(3/4) 3908816913804519 a001 2971215073/167761*15127^(4/5) 3908816913952015 r005 Re(z^2+c),c=-57/106+7/51*I,n=63 3908816913961065 a001 956722026041/64079*5778^(1/9) 3908816914122535 a001 701408733/9349*9349^(13/19) 3908816914156121 a001 567451585/51841*15127^(17/20) 3908816914211676 a001 12586269025/24476*15127^(9/20) 3908816914466683 a001 2971215073/271443*15127^(17/20) 3908816914511993 a001 7778742049/710647*15127^(17/20) 3908816914518604 a001 10182505537/930249*15127^(17/20) 3908816914519569 a001 53316291173/4870847*15127^(17/20) 3908816914519709 a001 139583862445/12752043*15127^(17/20) 3908816914519730 a001 182717648081/16692641*15127^(17/20) 3908816914519733 a001 956722026041/87403803*15127^(17/20) 3908816914519733 a001 2504730781961/228826127*15127^(17/20) 3908816914519733 a001 3278735159921/299537289*15127^(17/20) 3908816914519733 a001 10610209857723/969323029*15127^(17/20) 3908816914519733 a001 4052739537881/370248451*15127^(17/20) 3908816914519734 a001 387002188980/35355581*15127^(17/20) 3908816914519735 a001 591286729879/54018521*15127^(17/20) 3908816914519743 a001 7787980473/711491*15127^(17/20) 3908816914519796 a001 21566892818/1970299*15127^(17/20) 3908816914520165 a001 32951280099/3010349*15127^(17/20) 3908816914522690 a001 12586269025/1149851*15127^(17/20) 3908816914539997 a001 1201881744/109801*15127^(17/20) 3908816914589800 a001 88143821424/2255 3908816914617581 a001 1134903170/64079*15127^(4/5) 3908816914658621 a001 1836311903/167761*15127^(17/20) 3908816915010223 a001 701408733/103682*15127^(9/10) 3908816915065778 a001 7778742049/24476*15127^(1/2) 3908816915320785 a001 1836311903/271443*15127^(9/10) 3908816915366095 a001 686789568/101521*15127^(9/10) 3908816915372706 a001 12586269025/1860498*15127^(9/10) 3908816915373671 a001 32951280099/4870847*15127^(9/10) 3908816915373811 a001 86267571272/12752043*15127^(9/10) 3908816915373832 a001 32264490531/4769326*15127^(9/10) 3908816915373835 a001 591286729879/87403803*15127^(9/10) 3908816915373835 a001 1548008755920/228826127*15127^(9/10) 3908816915373835 a001 4052739537881/599074578*15127^(9/10) 3908816915373835 a001 1515744265389/224056801*15127^(9/10) 3908816915373835 a001 6557470319842/969323029*15127^(9/10) 3908816915373835 a001 2504730781961/370248451*15127^(9/10) 3908816915373836 a001 956722026041/141422324*15127^(9/10) 3908816915373837 a001 365435296162/54018521*15127^(9/10) 3908816915373845 a001 139583862445/20633239*15127^(9/10) 3908816915373898 a001 53316291173/7881196*15127^(9/10) 3908816915374267 a001 20365011074/3010349*15127^(9/10) 3908816915376792 a001 7778742049/1149851*15127^(9/10) 3908816915394099 a001 2971215073/439204*15127^(9/10) 3908816915440749 a001 53316291173/15127*5778^(5/18) 3908816915471683 a001 701408733/64079*15127^(17/20) 3908816915512723 a001 1134903170/167761*15127^(9/10) 3908816915864325 a001 433494437/103682*15127^(19/20) 3908816915919880 a001 1201881744/6119*15127^(11/20) 3908816916174887 a001 1134903170/271443*15127^(19/20) 3908816916220197 a001 2971215073/710647*15127^(19/20) 3908816916226808 a001 7778742049/1860498*15127^(19/20) 3908816916227773 a001 20365011074/4870847*15127^(19/20) 3908816916227913 a001 53316291173/12752043*15127^(19/20) 3908816916227934 a001 139583862445/33385282*15127^(19/20) 3908816916227937 a001 365435296162/87403803*15127^(19/20) 3908816916227937 a001 956722026041/228826127*15127^(19/20) 3908816916227937 a001 2504730781961/599074578*15127^(19/20) 3908816916227937 a001 6557470319842/1568397607*15127^(19/20) 3908816916227937 a001 10610209857723/2537720636*15127^(19/20) 3908816916227937 a001 4052739537881/969323029*15127^(19/20) 3908816916227937 a001 1548008755920/370248451*15127^(19/20) 3908816916227938 a001 591286729879/141422324*15127^(19/20) 3908816916227939 a001 225851433717/54018521*15127^(19/20) 3908816916227947 a001 86267571272/20633239*15127^(19/20) 3908816916228000 a001 32951280099/7881196*15127^(19/20) 3908816916228369 a001 12586269025/3010349*15127^(19/20) 3908816916230894 a001 4807526976/1149851*15127^(19/20) 3908816916248201 a001 1836311903/439204*15127^(19/20) 3908816916325785 a001 433494437/64079*15127^(9/10) 3908816916366825 a001 701408733/167761*15127^(19/20) 3908816916476291 a001 1134903170/9349*9349^(12/19) 3908816916718403 a001 88143821472/2255 3908816916773982 a001 2971215073/24476*15127^(3/5) 3908816917021437 a001 365435296162/39603*5778^(1/6) 3908816917028824 a001 88143821479/2255 3908816917082039 a001 2/6765*(1/2+1/2*5^(1/2))^58 3908816917082039 a001 440719107401/2255*8^(1/3) 3908816917087952 a001 264431464441/6765 3908816917102734 a001 264431464442/6765 3908816917179887 a001 267914296/64079*15127^(19/20) 3908816917220990 a001 52886292890/1353 3908816917628084 a001 1836311903/24476*15127^(13/20) 3908816918030869 a001 63245986/3571*3571^(16/17) 3908816918033998 a001 52886292901/1353 3908816918482186 a001 567451585/12238*15127^(7/10) 3908816918830046 a001 1836311903/9349*9349^(11/19) 3908816919150061 a001 956722026041/103682*5778^(1/6) 3908816919336288 a001 701408733/24476*15127^(3/4) 3908816919460623 a001 2504730781961/271443*5778^(1/6) 3908816919505933 a001 6557470319842/710647*5778^(1/6) 3908816919516629 a001 10610209857723/1149851*5778^(1/6) 3908816919533874 a001 182717648081/12238*5778^(1/9) 3908816919533936 a001 4052739537881/439204*5778^(1/6) 3908816919652561 a001 140728068720/15251*5778^(1/6) 3908816920190390 a001 433494437/24476*15127^(4/5) 3908816920465622 a001 591286729879/64079*5778^(1/6) 3908816921044492 a001 10946*15127^(17/20) 3908816921183802 a001 2971215073/9349*9349^(10/19) 3908816921898594 a001 165580141/24476*15127^(9/10) 3908816921945307 a001 32951280099/15127*5778^(1/3) 3908816922752696 a001 102334155/24476*15127^(19/20) 3908816923525995 a001 75283811239/13201*5778^(2/9) 3908816923537558 a001 4807526976/9349*9349^(9/19) 3908816923606799 a001 264431464882/6765 3908816925081953 r005 Re(z^2+c),c=-35/66+3/23*I,n=16 3908816925654618 a001 591286729879/103682*5778^(2/9) 3908816925891314 a001 7778742049/9349*9349^(8/19) 3908816925965180 a001 516002918640/90481*5778^(2/9) 3908816926010491 a001 4052739537881/710647*5778^(2/9) 3908816926017101 a001 3536736619241/620166*5778^(2/9) 3908816926021187 a001 6557470319842/1149851*5778^(2/9) 3908816926038431 a001 7787980473/844*5778^(1/6) 3908816926038494 a001 2504730781961/439204*5778^(2/9) 3908816926157118 a001 956722026041/167761*5778^(2/9) 3908816926397769 a001 53316291173/3571*1364^(2/15) 3908816926690491 a001 225851433717/9349*3571^(1/17) 3908816926889923 m005 (1/3*Pi-2/9)/(7/9*2^(1/2)-8/9) 3908816926970180 a001 365435296162/64079*5778^(2/9) 3908816927639320 a001 4181/15127*2537720636^(13/15) 3908816927639320 a001 4181/15127*45537549124^(13/17) 3908816927639320 a001 4181/15127*14662949395604^(13/21) 3908816927639320 a001 4181/15127*(1/2+1/2*5^(1/2))^39 3908816927639320 a001 4181/15127*192900153618^(13/18) 3908816927639320 a001 4181/15127*73681302247^(3/4) 3908816927639320 a001 4181/15127*10749957122^(13/16) 3908816927639320 a001 4181/15127*599074578^(13/14) 3908816927639321 a001 6765/9349*(1/2+1/2*5^(1/2))^37 3908816928245069 a001 12586269025/9349*9349^(7/19) 3908816928449864 a001 20365011074/15127*5778^(7/18) 3908816930030552 a001 139583862445/39603*5778^(5/18) 3908816930598825 a001 20365011074/9349*9349^(6/19) 3908816932159176 a001 182717648081/51841*5778^(5/18) 3908816932469738 a001 956722026041/271443*5778^(5/18) 3908816932515048 a001 2504730781961/710647*5778^(5/18) 3908816932521659 a001 3278735159921/930249*5778^(5/18) 3908816932523220 a001 10610209857723/3010349*5778^(5/18) 3908816932525745 a001 4052739537881/1149851*5778^(5/18) 3908816932542989 a001 139583862445/24476*5778^(2/9) 3908816932543052 a001 387002188980/109801*5778^(5/18) 3908816932661676 a001 591286729879/167761*5778^(5/18) 3908816932952581 a001 32951280099/9349*9349^(5/19) 3908816933073720 a001 365435296162/15127*2207^(1/16) 3908816933385241 a001 53316291173/5778*2207^(3/16) 3908816933474738 a001 225851433717/64079*5778^(5/18) 3908816934954422 a001 12586269025/15127*5778^(4/9) 3908816935205159 r005 Im(z^2+c),c=19/70+16/49*I,n=9 3908816935306337 a001 53316291173/9349*9349^(4/19) 3908816936061738 a001 102334155/3571*3571^(15/17) 3908816936535110 a001 86267571272/39603*5778^(1/3) 3908816937660093 a001 86267571272/9349*9349^(3/19) 3908816938196601 a001 427859102055/10946 3908816938507306 a001 24157817/9349*24476^(20/21) 3908816938663734 a001 225851433717/103682*5778^(1/3) 3908816938818007 a001 4181*24476^(19/21) 3908816938974296 a001 591286729879/271443*5778^(1/3) 3908816939019606 a001 1548008755920/710647*5778^(1/3) 3908816939026217 a001 4052739537881/1860498*5778^(1/3) 3908816939027181 a001 2178309*5778^(1/3) 3908816939027777 a001 6557470319842/3010349*5778^(1/3) 3908816939030302 a001 2504730781961/1149851*5778^(1/3) 3908816939047547 a001 21566892818/6119*5778^(5/18) 3908816939047609 a001 956722026041/439204*5778^(1/3) 3908816939128710 a001 63245986/9349*24476^(6/7) 3908816939166234 a001 365435296162/167761*5778^(1/3) 3908816939439413 a001 102334155/9349*24476^(17/21) 3908816939750116 a001 165580141/9349*24476^(16/21) 3908816939979295 a001 139583862445/64079*5778^(1/3) 3908816940013848 a001 139583862445/9349*9349^(2/19) 3908816940060818 a001 267914296/9349*24476^(5/7) 3908816940371521 a001 433494437/9349*24476^(2/3) 3908816940682224 a001 701408733/9349*24476^(13/21) 3908816940992927 a001 1134903170/9349*24476^(4/7) 3908816941303629 a001 1836311903/9349*24476^(11/21) 3908816941458980 a001 7778742049/15127*5778^(1/2) 3908816941614332 a001 2971215073/9349*24476^(10/21) 3908816941925035 a001 4807526976/9349*24476^(3/7) 3908816942229124 a001 4181/39603*(1/2+1/2*5^(1/2))^41 3908816942229124 a001 17711/9349*2537720636^(7/9) 3908816942229124 a001 17711/9349*17393796001^(5/7) 3908816942229124 a001 17711/9349*312119004989^(7/11) 3908816942229124 a001 17711/9349*14662949395604^(5/9) 3908816942229124 a001 17711/9349*(1/2+1/2*5^(1/2))^35 3908816942229124 a001 17711/9349*505019158607^(5/8) 3908816942229124 a001 17711/9349*28143753123^(7/10) 3908816942229124 a001 17711/9349*599074578^(5/6) 3908816942229124 a001 17711/9349*228826127^(7/8) 3908816942235738 a001 7778742049/9349*24476^(8/21) 3908816942367604 a001 225851433717/9349*9349^(1/19) 3908816942546441 a001 12586269025/9349*24476^(1/3) 3908816942857143 a001 20365011074/9349*24476^(2/7) 3908816943039668 a001 53316291173/39603*5778^(7/18) 3908816943167846 a001 32951280099/9349*24476^(5/21) 3908816943478549 a001 53316291173/9349*24476^(4/21) 3908816943769410 a001 1120149671576/28657 3908816943789252 a001 86267571272/9349*24476^(1/7) 3908816943810809 a001 9227465/9349*64079^(22/23) 3908816943852185 a001 14930352/9349*64079^(21/23) 3908816943893579 a001 24157817/9349*64079^(20/23) 3908816943934967 a001 4181*64079^(19/23) 3908816943976356 a001 63245986/9349*64079^(18/23) 3908816944017745 a001 102334155/9349*64079^(17/23) 3908816944059134 a001 165580141/9349*64079^(16/23) 3908816944099955 a001 139583862445/9349*24476^(2/21) 3908816944100523 a001 267914296/9349*64079^(15/23) 3908816944141913 a001 433494437/9349*64079^(14/23) 3908816944183302 a001 701408733/9349*64079^(13/23) 3908816944224691 a001 1134903170/9349*64079^(12/23) 3908816944266080 a001 1836311903/9349*64079^(11/23) 3908816944307469 a001 2971215073/9349*64079^(10/23) 3908816944348858 a001 4807526976/9349*64079^(9/23) 3908816944357747 a001 4181/103682*(1/2+1/2*5^(1/2))^43 3908816944357748 a001 46368/9349*141422324^(11/13) 3908816944357748 a001 46368/9349*2537720636^(11/15) 3908816944357748 a001 46368/9349*45537549124^(11/17) 3908816944357748 a001 46368/9349*312119004989^(3/5) 3908816944357748 a001 46368/9349*14662949395604^(11/21) 3908816944357748 a001 46368/9349*(1/2+1/2*5^(1/2))^33 3908816944357748 a001 46368/9349*192900153618^(11/18) 3908816944357748 a001 46368/9349*10749957122^(11/16) 3908816944357748 a001 46368/9349*1568397607^(3/4) 3908816944357748 a001 46368/9349*599074578^(11/14) 3908816944357751 a001 46368/9349*33385282^(11/12) 3908816944390247 a001 7778742049/9349*64079^(8/23) 3908816944410657 a001 225851433717/9349*24476^(1/21) 3908816944431636 a001 12586269025/9349*64079^(7/23) 3908816944473025 a001 20365011074/9349*64079^(6/23) 3908816944514415 a001 32951280099/9349*64079^(5/23) 3908816944555804 a001 53316291173/9349*64079^(4/23) 3908816944582472 a001 2932589912673/75025 3908816944597193 a001 86267571272/9349*64079^(3/23) 3908816944610251 a001 24157817/9349*167761^(4/5) 3908816944638028 a001 267914296/9349*167761^(3/5) 3908816944638582 a001 139583862445/9349*64079^(2/23) 3908816944665805 a001 2971215073/9349*167761^(2/5) 3908816944668309 a001 4181/271443*45537549124^(15/17) 3908816944668309 a001 4181/271443*312119004989^(9/11) 3908816944668309 a001 4181/271443*14662949395604^(5/7) 3908816944668309 a001 4181/271443*(1/2+1/2*5^(1/2))^45 3908816944668309 a001 4181/271443*192900153618^(5/6) 3908816944668309 a001 4181/271443*28143753123^(9/10) 3908816944668309 a001 4181/271443*10749957122^(15/16) 3908816944668310 a001 121393/9349*(1/2+1/2*5^(1/2))^31 3908816944668310 a001 121393/9349*9062201101803^(1/2) 3908816944679971 a001 225851433717/9349*64079^(1/23) 3908816944693583 a001 32951280099/9349*167761^(1/5) 3908816944701096 a001 7677620066443/196418 3908816944703411 a001 3524578/9349*439204^(8/9) 3908816944705596 a001 14930352/9349*439204^(7/9) 3908816944707851 a001 63245986/9349*439204^(2/3) 3908816944710103 a001 267914296/9349*439204^(5/9) 3908816944712354 a001 1134903170/9349*439204^(4/9) 3908816944713620 a001 4181/710647*(1/2+1/2*5^(1/2))^47 3908816944713620 a001 317811/9349*(1/2+1/2*5^(1/2))^29 3908816944713620 a001 317811/9349*1322157322203^(1/2) 3908816944714606 a001 4807526976/9349*439204^(1/3) 3908816944716857 a001 20365011074/9349*439204^(2/9) 3908816944718403 a001 20100270286656/514229 3908816944719109 a001 86267571272/9349*439204^(1/9) 3908816944720179 a001 832040/9349*7881196^(9/11) 3908816944720230 a001 4181/1860498*14662949395604^(7/9) 3908816944720230 a001 4181/1860498*(1/2+1/2*5^(1/2))^49 3908816944720230 a001 4181/1860498*505019158607^(7/8) 3908816944720231 a001 832040/9349*141422324^(9/13) 3908816944720231 a001 832040/9349*2537720636^(3/5) 3908816944720231 a001 832040/9349*45537549124^(9/17) 3908816944720231 a001 832040/9349*817138163596^(9/19) 3908816944720231 a001 832040/9349*14662949395604^(3/7) 3908816944720231 a001 832040/9349*(1/2+1/2*5^(1/2))^27 3908816944720231 a001 832040/9349*192900153618^(1/2) 3908816944720231 a001 832040/9349*10749957122^(9/16) 3908816944720231 a001 832040/9349*599074578^(9/14) 3908816944720233 a001 832040/9349*33385282^(3/4) 3908816944720928 a001 52623190793525/1346269 3908816944721189 a001 2178309/9349*20633239^(5/7) 3908816944721195 a001 4181/4870847*817138163596^(17/19) 3908816944721195 a001 4181/4870847*14662949395604^(17/21) 3908816944721195 a001 4181/4870847*(1/2+1/2*5^(1/2))^51 3908816944721195 a001 4181/4870847*192900153618^(17/18) 3908816944721195 a001 2178309/9349*2537720636^(5/9) 3908816944721195 a001 2178309/9349*312119004989^(5/11) 3908816944721195 a001 2178309/9349*(1/2+1/2*5^(1/2))^25 3908816944721195 a001 2178309/9349*3461452808002^(5/12) 3908816944721195 a001 2178309/9349*28143753123^(1/2) 3908816944721195 a001 2178309/9349*228826127^(5/8) 3908816944721247 a001 832040/9349*1860498^(9/10) 3908816944721297 a001 137769302093919/3524578 3908816944721317 a001 14930352/9349*7881196^(7/11) 3908816944721326 a001 63245986/9349*7881196^(6/11) 3908816944721327 a001 9227465/9349*7881196^(2/3) 3908816944721331 a001 267914296/9349*7881196^(5/11) 3908816944721336 a001 4181/12752043*(1/2+1/2*5^(1/2))^53 3908816944721336 a001 5702887/9349*(1/2+1/2*5^(1/2))^23 3908816944721336 a001 5702887/9349*4106118243^(1/2) 3908816944721337 a001 1134903170/9349*7881196^(4/11) 3908816944721339 a001 1836311903/9349*7881196^(1/3) 3908816944721343 a001 4807526976/9349*7881196^(3/11) 3908816944721349 a001 20365011074/9349*7881196^(2/11) 3908816944721350 a001 360684715488232/9227465 3908816944721351 a001 14930352/9349*20633239^(3/5) 3908816944721354 a001 86267571272/9349*7881196^(1/11) 3908816944721356 a001 4181/33385282*(1/2+1/2*5^(1/2))^55 3908816944721356 a001 4181/33385282*3461452808002^(11/12) 3908816944721356 a001 267914296/9349*20633239^(3/7) 3908816944721356 a001 24157817/9349*20633239^(4/7) 3908816944721356 a001 433494437/9349*20633239^(2/5) 3908816944721356 a001 14930352/9349*141422324^(7/13) 3908816944721357 a001 14930352/9349*2537720636^(7/15) 3908816944721357 a001 14930352/9349*17393796001^(3/7) 3908816944721357 a001 14930352/9349*45537549124^(7/17) 3908816944721357 a001 14930352/9349*14662949395604^(1/3) 3908816944721357 a001 14930352/9349*(1/2+1/2*5^(1/2))^21 3908816944721357 a001 14930352/9349*192900153618^(7/18) 3908816944721357 a001 14930352/9349*10749957122^(7/16) 3908816944721357 a001 14930352/9349*599074578^(1/2) 3908816944721357 a001 2971215073/9349*20633239^(2/7) 3908816944721358 a001 944284844370777/24157817 3908816944721358 a001 12586269025/9349*20633239^(1/5) 3908816944721359 a001 14930352/9349*33385282^(7/12) 3908816944721359 a001 32951280099/9349*20633239^(1/7) 3908816944721359 a001 4181/87403803*14662949395604^(19/21) 3908816944721359 a001 2472169817624099/63245986 3908816944721360 a001 6472224608501520/165580141 3908816944721360 a001 16944504007880461/433494437 3908816944721360 a001 44361287415139863/1134903170 3908816944721360 a001 4181*817138163596^(1/3) 3908816944721360 a001 27416783407259402/701408733 3908816944721360 a001 10472279399378941/267914296 3908816944721360 a001 4181/370248451*14662949395604^(20/21) 3908816944721360 a001 4000054790877421/102334155 3908816944721360 a001 4181*87403803^(1/2) 3908816944721360 a001 267914296/9349*141422324^(5/13) 3908816944721360 a001 102334155/9349*45537549124^(1/3) 3908816944721360 a001 102334155/9349*(1/2+1/2*5^(1/2))^17 3908816944721360 a001 701408733/9349*141422324^(1/3) 3908816944721360 a001 1134903170/9349*141422324^(4/13) 3908816944721360 a001 4807526976/9349*141422324^(3/13) 3908816944721360 a001 20365011074/9349*141422324^(2/13) 3908816944721360 a001 86267571272/9349*141422324^(1/13) 3908816944721360 a001 267914296/9349*2537720636^(1/3) 3908816944721360 a001 267914296/9349*45537549124^(5/17) 3908816944721360 a001 267914296/9349*312119004989^(3/11) 3908816944721360 a001 267914296/9349*14662949395604^(5/21) 3908816944721360 a001 267914296/9349*(1/2+1/2*5^(1/2))^15 3908816944721360 a001 267914296/9349*192900153618^(5/18) 3908816944721360 a001 267914296/9349*28143753123^(3/10) 3908816944721360 a001 267914296/9349*10749957122^(5/16) 3908816944721360 a001 267914296/9349*599074578^(5/14) 3908816944721360 a001 701408733/9349*(1/2+1/2*5^(1/2))^13 3908816944721360 a001 701408733/9349*73681302247^(1/4) 3908816944721360 a001 1836311903/9349*312119004989^(1/5) 3908816944721360 a001 1836311903/9349*(1/2+1/2*5^(1/2))^11 3908816944721360 a001 4807526976/9349*2537720636^(1/5) 3908816944721360 a001 20365011074/9349*2537720636^(2/15) 3908816944721360 a001 32951280099/9349*2537720636^(1/9) 3908816944721360 a001 2971215073/9349*2537720636^(2/9) 3908816944721360 a001 86267571272/9349*2537720636^(1/15) 3908816944721360 a001 4807526976/9349*45537549124^(3/17) 3908816944721360 a001 4807526976/9349*817138163596^(3/19) 3908816944721360 a001 4807526976/9349*14662949395604^(1/7) 3908816944721360 a001 4807526976/9349*(1/2+1/2*5^(1/2))^9 3908816944721360 a001 4807526976/9349*192900153618^(1/6) 3908816944721360 a001 4807526976/9349*10749957122^(3/16) 3908816944721360 a001 12586269025/9349*17393796001^(1/7) 3908816944721360 a001 12586269025/9349*14662949395604^(1/9) 3908816944721360 a001 12586269025/9349*(1/2+1/2*5^(1/2))^7 3908816944721360 a001 32951280099/9349*312119004989^(1/11) 3908816944721360 a001 32951280099/9349*(1/2+1/2*5^(1/2))^5 3908816944721360 a001 32951280099/9349*28143753123^(1/10) 3908816944721360 a001 86267571272/9349*45537549124^(1/17) 3908816944721360 a001 86267571272/9349*14662949395604^(1/21) 3908816944721360 a001 86267571272/9349*(1/2+1/2*5^(1/2))^3 3908816944721360 a001 86267571272/9349*192900153618^(1/18) 3908816944721360 a001 225851433717/18698+225851433717/18698*5^(1/2) 3908816944721360 a001 365435296162/9349 3908816944721360 a001 139583862445/9349*(1/2+1/2*5^(1/2))^2 3908816944721360 a001 53316291173/9349*(1/2+1/2*5^(1/2))^4 3908816944721360 a001 53316291173/9349*23725150497407^(1/16) 3908816944721360 a001 53316291173/9349*73681302247^(1/13) 3908816944721360 a001 139583862445/9349*10749957122^(1/24) 3908816944721360 a001 20365011074/9349*45537549124^(2/17) 3908816944721360 a001 20365011074/9349*14662949395604^(2/21) 3908816944721360 a001 20365011074/9349*(1/2+1/2*5^(1/2))^6 3908816944721360 a001 86267571272/9349*10749957122^(1/16) 3908816944721360 a001 53316291173/9349*10749957122^(1/12) 3908816944721360 a001 20365011074/9349*10749957122^(1/8) 3908816944721360 a001 139583862445/9349*4106118243^(1/23) 3908816944721360 a001 7778742049/9349*(1/2+1/2*5^(1/2))^8 3908816944721360 a001 7778742049/9349*23725150497407^(1/8) 3908816944721360 a001 7778742049/9349*505019158607^(1/7) 3908816944721360 a001 7778742049/9349*73681302247^(2/13) 3908816944721360 a001 7778742049/9349*10749957122^(1/6) 3908816944721360 a001 53316291173/9349*4106118243^(2/23) 3908816944721360 a001 20365011074/9349*4106118243^(3/23) 3908816944721360 a001 7778742049/9349*4106118243^(4/23) 3908816944721360 a001 139583862445/9349*1568397607^(1/22) 3908816944721360 a001 2971215073/9349*312119004989^(2/11) 3908816944721360 a001 2971215073/9349*(1/2+1/2*5^(1/2))^10 3908816944721360 a001 2971215073/9349*28143753123^(1/5) 3908816944721360 a001 2971215073/9349*10749957122^(5/24) 3908816944721360 a001 2971215073/9349*4106118243^(5/23) 3908816944721360 a001 53316291173/9349*1568397607^(1/11) 3908816944721360 a001 1836311903/9349*1568397607^(1/4) 3908816944721360 a001 20365011074/9349*1568397607^(3/22) 3908816944721360 a001 7778742049/9349*1568397607^(2/11) 3908816944721360 a001 1134903170/9349*2537720636^(4/15) 3908816944721360 a001 2971215073/9349*1568397607^(5/22) 3908816944721360 a001 139583862445/9349*599074578^(1/21) 3908816944721360 a001 1134903170/9349*45537549124^(4/17) 3908816944721360 a001 1134903170/9349*817138163596^(4/19) 3908816944721360 a001 1134903170/9349*14662949395604^(4/21) 3908816944721360 a001 1134903170/9349*(1/2+1/2*5^(1/2))^12 3908816944721360 a001 1134903170/9349*192900153618^(2/9) 3908816944721360 a001 1134903170/9349*73681302247^(3/13) 3908816944721360 a001 1134903170/9349*10749957122^(1/4) 3908816944721360 a001 1134903170/9349*4106118243^(6/23) 3908816944721360 a001 86267571272/9349*599074578^(1/14) 3908816944721360 a001 53316291173/9349*599074578^(2/21) 3908816944721360 a001 1134903170/9349*1568397607^(3/11) 3908816944721360 a001 20365011074/9349*599074578^(1/7) 3908816944721360 a001 12586269025/9349*599074578^(1/6) 3908816944721360 a001 7778742049/9349*599074578^(4/21) 3908816944721360 a001 4807526976/9349*599074578^(3/14) 3908816944721360 a001 2971215073/9349*599074578^(5/21) 3908816944721360 a001 1134903170/9349*599074578^(2/7) 3908816944721360 a001 139583862445/9349*228826127^(1/20) 3908816944721360 a001 433494437/9349*17393796001^(2/7) 3908816944721360 a001 433494437/9349*14662949395604^(2/9) 3908816944721360 a001 433494437/9349*(1/2+1/2*5^(1/2))^14 3908816944721360 a001 433494437/9349*505019158607^(1/4) 3908816944721360 a001 433494437/9349*10749957122^(7/24) 3908816944721360 a001 433494437/9349*4106118243^(7/23) 3908816944721360 a001 433494437/9349*1568397607^(7/22) 3908816944721360 a001 53316291173/9349*228826127^(1/10) 3908816944721360 a001 433494437/9349*599074578^(1/3) 3908816944721360 a001 32951280099/9349*228826127^(1/8) 3908816944721360 a001 20365011074/9349*228826127^(3/20) 3908816944721360 a001 7778742049/9349*228826127^(1/5) 3908816944721360 a001 267914296/9349*228826127^(3/8) 3908816944721360 a001 2971215073/9349*228826127^(1/4) 3908816944721360 a001 1134903170/9349*228826127^(3/10) 3908816944721360 a001 139583862445/9349*87403803^(1/19) 3908816944721360 a001 165580141/9349*(1/2+1/2*5^(1/2))^16 3908816944721360 a001 165580141/9349*23725150497407^(1/4) 3908816944721360 a001 165580141/9349*73681302247^(4/13) 3908816944721360 a001 165580141/9349*10749957122^(1/3) 3908816944721360 a001 165580141/9349*4106118243^(8/23) 3908816944721360 a001 165580141/9349*1568397607^(4/11) 3908816944721360 a001 433494437/9349*228826127^(7/20) 3908816944721360 a001 165580141/9349*599074578^(8/21) 3908816944721360 a001 53316291173/9349*87403803^(2/19) 3908816944721360 a001 165580141/9349*228826127^(2/5) 3908816944721360 a001 20365011074/9349*87403803^(3/19) 3908816944721360 a001 63245986/9349*141422324^(6/13) 3908816944721360 a001 7778742049/9349*87403803^(4/19) 3908816944721360 a001 2971215073/9349*87403803^(5/19) 3908816944721360 a001 1134903170/9349*87403803^(6/19) 3908816944721360 a001 433494437/9349*87403803^(7/19) 3908816944721360 a001 139583862445/9349*33385282^(1/18) 3908816944721360 a001 63245986/9349*2537720636^(2/5) 3908816944721360 a001 63245986/9349*45537549124^(6/17) 3908816944721360 a001 63245986/9349*14662949395604^(2/7) 3908816944721360 a001 63245986/9349*(1/2+1/2*5^(1/2))^18 3908816944721360 a001 63245986/9349*192900153618^(1/3) 3908816944721360 a001 63245986/9349*10749957122^(3/8) 3908816944721360 a001 63245986/9349*4106118243^(9/23) 3908816944721360 a001 63245986/9349*1568397607^(9/22) 3908816944721360 a001 63245986/9349*599074578^(3/7) 3908816944721360 a001 63245986/9349*228826127^(9/20) 3908816944721360 a001 165580141/9349*87403803^(8/19) 3908816944721360 a001 86267571272/9349*33385282^(1/12) 3908816944721360 a001 53316291173/9349*33385282^(1/9) 3908816944721361 a001 63245986/9349*87403803^(9/19) 3908816944721361 a001 20365011074/9349*33385282^(1/6) 3908816944721361 a001 7778742049/9349*33385282^(2/9) 3908816944721361 a001 4181/54018521*14662949395604^(8/9) 3908816944721361 a001 4807526976/9349*33385282^(1/4) 3908816944721361 a001 2971215073/9349*33385282^(5/18) 3908816944721361 a001 1134903170/9349*33385282^(1/3) 3908816944721361 a001 24157817/9349*2537720636^(4/9) 3908816944721361 a001 24157817/9349*(1/2+1/2*5^(1/2))^20 3908816944721361 a001 24157817/9349*23725150497407^(5/16) 3908816944721361 a001 24157817/9349*505019158607^(5/14) 3908816944721361 a001 24157817/9349*73681302247^(5/13) 3908816944721361 a001 24157817/9349*28143753123^(2/5) 3908816944721361 a001 24157817/9349*10749957122^(5/12) 3908816944721361 a001 24157817/9349*4106118243^(10/23) 3908816944721361 a001 24157817/9349*1568397607^(5/11) 3908816944721361 a001 24157817/9349*599074578^(10/21) 3908816944721361 a001 433494437/9349*33385282^(7/18) 3908816944721361 a001 24157817/9349*228826127^(1/2) 3908816944721361 a001 139583862445/9349*12752043^(1/17) 3908816944721362 a001 267914296/9349*33385282^(5/12) 3908816944721362 a001 165580141/9349*33385282^(4/9) 3908816944721362 a001 24157817/9349*87403803^(10/19) 3908816944721362 a001 63245986/9349*33385282^(1/2) 3908816944721363 a001 53316291173/9349*12752043^(2/17) 3908816944721363 a001 583600128882545/14930352 3908816944721363 a001 24157817/9349*33385282^(5/9) 3908816944721364 a001 20365011074/9349*12752043^(3/17) 3908816944721366 a001 7778742049/9349*12752043^(4/17) 3908816944721367 a001 2971215073/9349*12752043^(5/17) 3908816944721369 a001 1134903170/9349*12752043^(6/17) 3908816944721369 a001 4181/20633239*14662949395604^(6/7) 3908816944721369 a001 4181/20633239*(1/2+1/2*5^(1/2))^54 3908816944721369 a001 9227465/9349*312119004989^(2/5) 3908816944721369 a001 9227465/9349*(1/2+1/2*5^(1/2))^22 3908816944721369 a001 9227465/9349*10749957122^(11/24) 3908816944721369 a001 9227465/9349*4106118243^(11/23) 3908816944721369 a001 9227465/9349*1568397607^(1/2) 3908816944721369 a001 9227465/9349*599074578^(11/21) 3908816944721369 a001 9227465/9349*228826127^(11/20) 3908816944721370 a001 9227465/9349*87403803^(11/19) 3908816944721370 a001 433494437/9349*12752043^(7/17) 3908816944721370 a001 139583862445/9349*4870847^(1/16) 3908816944721371 a001 9227465/9349*33385282^(11/18) 3908816944721371 a001 165580141/9349*12752043^(8/17) 3908816944721372 a001 102334155/9349*12752043^(1/2) 3908816944721373 a001 63245986/9349*12752043^(9/17) 3908816944721376 a001 24157817/9349*12752043^(10/17) 3908816944721377 a001 3524578/9349*7881196^(8/11) 3908816944721381 a001 53316291173/9349*4870847^(1/8) 3908816944721384 a001 222915413394313/5702887 3908816944721385 a001 9227465/9349*12752043^(11/17) 3908816944721391 a001 20365011074/9349*4870847^(3/16) 3908816944721401 a001 7778742049/9349*4870847^(1/4) 3908816944721412 a001 2971215073/9349*4870847^(5/16) 3908816944721422 a001 1134903170/9349*4870847^(3/8) 3908816944721422 a001 4181/7881196*(1/2+1/2*5^(1/2))^52 3908816944721422 a001 4181/7881196*23725150497407^(13/16) 3908816944721422 a001 4181/7881196*505019158607^(13/14) 3908816944721423 a001 3524578/9349*141422324^(8/13) 3908816944721423 a001 3524578/9349*2537720636^(8/15) 3908816944721423 a001 3524578/9349*45537549124^(8/17) 3908816944721423 a001 3524578/9349*14662949395604^(8/21) 3908816944721423 a001 3524578/9349*(1/2+1/2*5^(1/2))^24 3908816944721423 a001 3524578/9349*192900153618^(4/9) 3908816944721423 a001 3524578/9349*73681302247^(6/13) 3908816944721423 a001 3524578/9349*10749957122^(1/2) 3908816944721423 a001 3524578/9349*4106118243^(12/23) 3908816944721423 a001 3524578/9349*1568397607^(6/11) 3908816944721423 a001 3524578/9349*599074578^(4/7) 3908816944721423 a001 3524578/9349*228826127^(3/5) 3908816944721423 a001 3524578/9349*87403803^(12/19) 3908816944721425 a001 3524578/9349*33385282^(2/3) 3908816944721432 a001 433494437/9349*4870847^(7/16) 3908816944721435 a001 139583862445/9349*1860498^(1/15) 3908816944721440 a001 3524578/9349*12752043^(12/17) 3908816944721442 a001 165580141/9349*4870847^(1/2) 3908816944721453 a001 63245986/9349*4870847^(9/16) 3908816944721464 a001 24157817/9349*4870847^(5/8) 3908816944721473 a001 86267571272/9349*1860498^(1/10) 3908816944721483 a001 9227465/9349*4870847^(11/16) 3908816944721511 a001 53316291173/9349*1860498^(2/15) 3908816944721524 a001 85146111300394/2178309 3908816944721547 a001 3524578/9349*4870847^(3/4) 3908816944721548 a001 32951280099/9349*1860498^(1/6) 3908816944721586 a001 20365011074/9349*1860498^(1/5) 3908816944721661 a001 7778742049/9349*1860498^(4/15) 3908816944721699 a001 4807526976/9349*1860498^(3/10) 3908816944721736 a001 2971215073/9349*1860498^(1/3) 3908816944721791 a001 4181/3010349*312119004989^(10/11) 3908816944721791 a001 4181/3010349*(1/2+1/2*5^(1/2))^50 3908816944721791 a001 4181/3010349*3461452808002^(5/6) 3908816944721791 a001 1346269/9349*141422324^(2/3) 3908816944721791 a001 1346269/9349*(1/2+1/2*5^(1/2))^26 3908816944721791 a001 1346269/9349*73681302247^(1/2) 3908816944721791 a001 1346269/9349*10749957122^(13/24) 3908816944721791 a001 1346269/9349*4106118243^(13/23) 3908816944721791 a001 1346269/9349*1568397607^(13/22) 3908816944721791 a001 1346269/9349*599074578^(13/21) 3908816944721791 a001 1346269/9349*228826127^(13/20) 3908816944721792 a001 1346269/9349*87403803^(13/19) 3908816944721794 a001 1346269/9349*33385282^(13/18) 3908816944721810 a001 1346269/9349*12752043^(13/17) 3908816944721812 a001 1134903170/9349*1860498^(2/5) 3908816944721887 a001 433494437/9349*1860498^(7/15) 3908816944721913 a001 139583862445/9349*710647^(1/14) 3908816944721925 a001 267914296/9349*1860498^(1/2) 3908816944721925 a001 1346269/9349*4870847^(13/16) 3908816944721962 a001 165580141/9349*1860498^(8/15) 3908816944722038 a001 63245986/9349*1860498^(3/5) 3908816944722114 a001 24157817/9349*1860498^(2/3) 3908816944722136 a001 2178309/9349*1860498^(5/6) 3908816944722147 a001 14930352/9349*1860498^(7/10) 3908816944722197 a001 9227465/9349*1860498^(11/15) 3908816944722326 a001 3524578/9349*1860498^(4/5) 3908816944722466 a001 53316291173/9349*710647^(1/7) 3908816944722489 a001 32522920506869/832040 3908816944722770 a001 1346269/9349*1860498^(13/15) 3908816944723019 a001 20365011074/9349*710647^(3/14) 3908816944723295 a001 12586269025/9349*710647^(1/4) 3908816944723571 a001 7778742049/9349*710647^(2/7) 3908816944724124 a001 2971215073/9349*710647^(5/14) 3908816944724309 a001 514229/9349*20633239^(4/5) 3908816944724316 a001 4181/1149851*45537549124^(16/17) 3908816944724316 a001 4181/1149851*14662949395604^(16/21) 3908816944724316 a001 4181/1149851*(1/2+1/2*5^(1/2))^48 3908816944724316 a001 4181/1149851*192900153618^(8/9) 3908816944724316 a001 4181/1149851*73681302247^(12/13) 3908816944724316 a001 514229/9349*17393796001^(4/7) 3908816944724316 a001 514229/9349*14662949395604^(4/9) 3908816944724316 a001 514229/9349*(1/2+1/2*5^(1/2))^28 3908816944724316 a001 514229/9349*73681302247^(7/13) 3908816944724316 a001 514229/9349*10749957122^(7/12) 3908816944724316 a001 514229/9349*4106118243^(14/23) 3908816944724316 a001 514229/9349*1568397607^(7/11) 3908816944724316 a001 514229/9349*599074578^(2/3) 3908816944724317 a001 514229/9349*228826127^(7/10) 3908816944724317 a001 514229/9349*87403803^(14/19) 3908816944724319 a001 514229/9349*33385282^(7/9) 3908816944724336 a001 514229/9349*12752043^(14/17) 3908816944724461 a001 514229/9349*4870847^(7/8) 3908816944724677 a001 1134903170/9349*710647^(3/7) 3908816944725230 a001 433494437/9349*710647^(1/2) 3908816944725370 a001 514229/9349*1860498^(14/15) 3908816944725441 a001 139583862445/9349*271443^(1/13) 3908816944725783 a001 165580141/9349*710647^(4/7) 3908816944726336 a001 63245986/9349*710647^(9/14) 3908816944726890 a001 24157817/9349*710647^(5/7) 3908816944727162 a001 14930352/9349*710647^(3/4) 3908816944727451 a001 9227465/9349*710647^(11/14) 3908816944728057 a001 3524578/9349*710647^(6/7) 3908816944728978 a001 1346269/9349*710647^(13/14) 3908816944729099 a001 12422650220213/317811 3908816944729522 a001 53316291173/9349*271443^(2/13) 3908816944733602 a001 20365011074/9349*271443^(3/13) 3908816944736511 a001 225851433717/9349*103682^(1/24) 3908816944737683 a001 7778742049/9349*271443^(4/13) 3908816944741566 a001 196418/9349*7881196^(10/11) 3908816944741616 a001 196418/9349*20633239^(6/7) 3908816944741623 a001 4181/439204*(1/2+1/2*5^(1/2))^46 3908816944741623 a001 4181/439204*10749957122^(23/24) 3908816944741623 a001 196418/9349*141422324^(10/13) 3908816944741623 a001 196418/9349*2537720636^(2/3) 3908816944741623 a001 196418/9349*45537549124^(10/17) 3908816944741623 a001 196418/9349*312119004989^(6/11) 3908816944741623 a001 196418/9349*14662949395604^(10/21) 3908816944741623 a001 196418/9349*(1/2+1/2*5^(1/2))^30 3908816944741623 a001 196418/9349*192900153618^(5/9) 3908816944741623 a001 196418/9349*28143753123^(3/5) 3908816944741623 a001 196418/9349*10749957122^(5/8) 3908816944741623 a001 196418/9349*4106118243^(15/23) 3908816944741623 a001 196418/9349*1568397607^(15/22) 3908816944741624 a001 196418/9349*599074578^(5/7) 3908816944741624 a001 196418/9349*228826127^(3/4) 3908816944741624 a001 196418/9349*87403803^(15/19) 3908816944741626 a001 196418/9349*33385282^(5/6) 3908816944741645 a001 196418/9349*12752043^(15/17) 3908816944741764 a001 2971215073/9349*271443^(5/13) 3908816944741778 a001 196418/9349*4870847^(15/16) 3908816944745845 a001 1134903170/9349*271443^(6/13) 3908816944747885 a001 701408733/9349*271443^(1/2) 3908816944749926 a001 433494437/9349*271443^(7/13) 3908816944751661 a001 139583862445/9349*103682^(1/12) 3908816944754006 a001 165580141/9349*271443^(8/13) 3908816944758087 a001 63245986/9349*271443^(9/13) 3908816944762169 a001 24157817/9349*271443^(10/13) 3908816944766258 a001 9227465/9349*271443^(11/13) 3908816944766812 a001 86267571272/9349*103682^(1/8) 3908816944770393 a001 3524578/9349*271443^(12/13) 3908816944774410 a001 4745030153770/121393 3908816944781962 a001 53316291173/9349*103682^(1/6) 3908816944797113 a001 32951280099/9349*103682^(5/24) 3908816944812263 a001 20365011074/9349*103682^(1/4) 3908816944827414 a001 12586269025/9349*103682^(7/24) 3908816944834644 a001 225851433717/9349*39603^(1/22) 3908816944842564 a001 7778742049/9349*103682^(1/3) 3908816944857715 a001 4807526976/9349*103682^(3/8) 3908816944860247 a001 4181/167761*312119004989^(4/5) 3908816944860247 a001 4181/167761*(1/2+1/2*5^(1/2))^44 3908816944860247 a001 4181/167761*23725150497407^(11/16) 3908816944860247 a001 4181/167761*73681302247^(11/13) 3908816944860247 a001 4181/167761*10749957122^(11/12) 3908816944860247 a001 4181/167761*4106118243^(22/23) 3908816944860248 a001 75025/9349*(1/2+1/2*5^(1/2))^32 3908816944860248 a001 75025/9349*23725150497407^(1/2) 3908816944860248 a001 75025/9349*505019158607^(4/7) 3908816944860248 a001 75025/9349*73681302247^(8/13) 3908816944860248 a001 75025/9349*10749957122^(2/3) 3908816944860248 a001 75025/9349*4106118243^(16/23) 3908816944860248 a001 75025/9349*1568397607^(8/11) 3908816944860248 a001 75025/9349*599074578^(16/21) 3908816944860248 a001 75025/9349*228826127^(4/5) 3908816944860248 a001 75025/9349*87403803^(16/19) 3908816944860251 a001 75025/9349*33385282^(8/9) 3908816944860270 a001 75025/9349*12752043^(16/17) 3908816944872865 a001 2971215073/9349*103682^(5/12) 3908816944888016 a001 1836311903/9349*103682^(11/24) 3908816944903166 a001 1134903170/9349*103682^(1/2) 3908816944918317 a001 701408733/9349*103682^(13/24) 3908816944933467 a001 433494437/9349*103682^(7/12) 3908816944947927 a001 139583862445/9349*39603^(1/11) 3908816944948618 a001 267914296/9349*103682^(5/8) 3908816944963768 a001 165580141/9349*103682^(2/3) 3908816944978919 a001 102334155/9349*103682^(17/24) 3908816944994070 a001 63245986/9349*103682^(3/4) 3908816945009219 a001 4181*103682^(19/24) 3908816945024372 a001 24157817/9349*103682^(5/6) 3908816945039517 a001 14930352/9349*103682^(7/8) 3908816945054681 a001 9227465/9349*103682^(11/12) 3908816945061210 a001 86267571272/9349*39603^(3/22) 3908816945069798 a001 5702887/9349*103682^(23/24) 3908816945084972 a001 1812440241097/46368 3908816945168291 a001 139583862445/103682*5778^(7/18) 3908816945174494 a001 53316291173/9349*39603^(2/11) 3908816945287777 a001 32951280099/9349*39603^(5/22) 3908816945401061 a001 20365011074/9349*39603^(3/11) 3908816945478853 a001 365435296162/271443*5778^(7/18) 3908816945514344 a001 12586269025/9349*39603^(7/22) 3908816945524164 a001 956722026041/710647*5778^(7/18) 3908816945530775 a001 2504730781961/1860498*5778^(7/18) 3908816945531739 a001 6557470319842/4870847*5778^(7/18) 3908816945531967 a001 10610209857723/7881196*5778^(7/18) 3908816945532335 a001 1346269*5778^(7/18) 3908816945534860 a001 1548008755920/1149851*5778^(7/18) 3908816945552105 a001 53316291173/24476*5778^(1/3) 3908816945552167 a001 591286729879/439204*5778^(7/18) 3908816945575462 a001 225851433717/9349*15127^(1/20) 3908816945627628 a001 7778742049/9349*39603^(4/11) 3908816945670791 a001 225851433717/167761*5778^(7/18) 3908816945673309 a001 4181/64079*2537720636^(14/15) 3908816945673309 a001 4181/64079*17393796001^(6/7) 3908816945673309 a001 4181/64079*45537549124^(14/17) 3908816945673309 a001 4181/64079*817138163596^(14/19) 3908816945673309 a001 4181/64079*14662949395604^(2/3) 3908816945673309 a001 4181/64079*(1/2+1/2*5^(1/2))^42 3908816945673309 a001 4181/64079*505019158607^(3/4) 3908816945673309 a001 4181/64079*192900153618^(7/9) 3908816945673309 a001 4181/64079*10749957122^(7/8) 3908816945673309 a001 4181/64079*4106118243^(21/23) 3908816945673309 a001 4181/64079*1568397607^(21/22) 3908816945673310 a001 28657/9349*45537549124^(2/3) 3908816945673310 a001 28657/9349*(1/2+1/2*5^(1/2))^34 3908816945673310 a001 28657/9349*10749957122^(17/24) 3908816945673310 a001 28657/9349*4106118243^(17/23) 3908816945673310 a001 28657/9349*1568397607^(17/22) 3908816945673310 a001 28657/9349*599074578^(17/21) 3908816945673310 a001 28657/9349*228826127^(17/20) 3908816945673310 a001 28657/9349*87403803^(17/19) 3908816945673313 a001 28657/9349*33385282^(17/18) 3908816945740911 a001 4807526976/9349*39603^(9/22) 3908816945854195 a001 2971215073/9349*39603^(5/11) 3908816945967478 a001 1836311903/9349*39603^(1/2) 3908816946080762 a001 1134903170/9349*39603^(6/11) 3908816946194045 a001 701408733/9349*39603^(13/22) 3908816946307328 a001 433494437/9349*39603^(7/11) 3908816946420612 a001 267914296/9349*39603^(15/22) 3908816946429564 a001 139583862445/9349*15127^(1/10) 3908816946483853 a001 86267571272/64079*5778^(7/18) 3908816946533895 a001 165580141/9349*39603^(8/11) 3908816946647179 a001 102334155/9349*39603^(17/22) 3908816946760462 a001 63245986/9349*39603^(9/11) 3908816946873745 a001 4181*39603^(19/22) 3908816946987030 a001 24157817/9349*39603^(10/11) 3908816947100309 a001 14930352/9349*39603^(21/22) 3908816947213596 a001 692290569521/17711 3908816947283666 a001 86267571272/9349*15127^(3/20) 3908816947662745 m005 (1/2*exp(1)+1/12)/(3/5*exp(1)-2) 3908816947663524 a001 956722026041/39603*2207^(1/16) 3908816947963537 a001 686789568/2161*5778^(5/9) 3908816948137768 a001 53316291173/9349*15127^(1/5) 3908816948991870 a001 32951280099/9349*15127^(1/4) 3908816949544226 a001 10983760033/13201*5778^(4/9) 3908816949792148 a001 2504730781961/103682*2207^(1/16) 3908816949845972 a001 20365011074/9349*15127^(3/10) 3908816950102710 a001 6557470319842/271443*2207^(1/16) 3908816950176023 a001 10610209857723/439204*2207^(1/16) 3908816950294647 a001 4052739537881/167761*2207^(1/16) 3908816950700074 a001 12586269025/9349*15127^(7/20) 3908816951107709 a001 1548008755920/64079*2207^(1/16) 3908816951225918 a001 225851433717/9349*5778^(1/18) 3908816951246118 a001 4181/24476*2537720636^(8/9) 3908816951246118 a001 4181/24476*312119004989^(8/11) 3908816951246118 a001 4181/24476*(1/2+1/2*5^(1/2))^40 3908816951246118 a001 4181/24476*23725150497407^(5/8) 3908816951246118 a001 4181/24476*73681302247^(10/13) 3908816951246118 a001 4181/24476*28143753123^(4/5) 3908816951246118 a001 4181/24476*10749957122^(5/6) 3908816951246118 a001 4181/24476*4106118243^(20/23) 3908816951246118 a001 4181/24476*1568397607^(10/11) 3908816951246118 a001 4181/24476*599074578^(20/21) 3908816951246118 a001 10946/9349*141422324^(12/13) 3908816951246119 a001 10946/9349*2537720636^(4/5) 3908816951246119 a001 10946/9349*45537549124^(12/17) 3908816951246119 a001 10946/9349*14662949395604^(4/7) 3908816951246119 a001 10946/9349*(1/2+1/2*5^(1/2))^36 3908816951246119 a001 10946/9349*505019158607^(9/14) 3908816951246119 a001 10946/9349*192900153618^(2/3) 3908816951246119 a001 10946/9349*73681302247^(9/13) 3908816951246119 a001 10946/9349*10749957122^(3/4) 3908816951246119 a001 10946/9349*4106118243^(18/23) 3908816951246119 a001 10946/9349*1568397607^(9/11) 3908816951246119 a001 10946/9349*599074578^(6/7) 3908816951246119 a001 10946/9349*228826127^(9/10) 3908816951246119 a001 10946/9349*87403803^(18/19) 3908816951554176 a001 7778742049/9349*15127^(2/5) 3908816951672849 a001 43133785636/51841*5778^(4/9) 3908816951983411 a001 75283811239/90481*5778^(4/9) 3908816952028722 a001 591286729879/710647*5778^(4/9) 3908816952035332 a001 832040*5778^(4/9) 3908816952036297 a001 4052739537881/4870847*5778^(4/9) 3908816952036437 a001 3536736619241/4250681*5778^(4/9) 3908816952036524 a001 3278735159921/3940598*5778^(4/9) 3908816952036893 a001 2504730781961/3010349*5778^(4/9) 3908816952039418 a001 956722026041/1149851*5778^(4/9) 3908816952056662 a001 32951280099/24476*5778^(7/18) 3908816952056725 a001 182717648081/219602*5778^(4/9) 3908816952175349 a001 139583862445/167761*5778^(4/9) 3908816952408278 a001 4807526976/9349*15127^(9/20) 3908816952988411 a001 53316291173/64079*5778^(4/9) 3908816953262380 a001 2971215073/9349*15127^(1/2) 3908816954092607 a001 165580141/3571*3571^(14/17) 3908816954116482 a001 1836311903/9349*15127^(11/20) 3908816954468095 a001 2971215073/15127*5778^(11/18) 3908816954970584 a001 1134903170/9349*15127^(3/5) 3908816955824686 a001 701408733/9349*15127^(13/20) 3908816956048783 a001 20365011074/39603*5778^(1/2) 3908816956678788 a001 433494437/9349*15127^(7/10) 3908816956680518 a001 591286729879/24476*2207^(1/16) 3908816957063047 r005 Im(z^2+c),c=13/82+17/44*I,n=48 3908816957532890 a001 267914296/9349*15127^(3/4) 3908816957730476 a001 139583862445/9349*5778^(1/9) 3908816958177407 a001 53316291173/103682*5778^(1/2) 3908816958386992 a001 165580141/9349*15127^(4/5) 3908816958433903 a007 Real Root Of 734*x^4-925*x^3-126*x^2-851*x+390 3908816958487969 a001 139583862445/271443*5778^(1/2) 3908816958533279 a001 365435296162/710647*5778^(1/2) 3908816958539890 a001 956722026041/1860498*5778^(1/2) 3908816958540854 a001 2504730781961/4870847*5778^(1/2) 3908816958540995 a001 6557470319842/12752043*5778^(1/2) 3908816958541028 a001 10610209857723/20633239*5778^(1/2) 3908816958541082 a001 4052739537881/7881196*5778^(1/2) 3908816958541451 a001 1548008755920/3010349*5778^(1/2) 3908816958543976 a001 514229*5778^(1/2) 3908816958561220 a001 10182505537/12238*5778^(4/9) 3908816958561283 a001 225851433717/439204*5778^(1/2) 3908816958679907 a001 86267571272/167761*5778^(1/2) 3908816959241094 a001 102334155/9349*15127^(17/20) 3908816959492969 a001 32951280099/64079*5778^(1/2) 3908816960095196 a001 63245986/9349*15127^(9/10) 3908816960949297 a001 4181*15127^(19/20) 3908816960972653 a001 1836311903/15127*5778^(2/3) 3908816961803399 a001 264431467466/6765 3908816962553341 a001 12586269025/39603*5778^(5/9) 3908816964235033 a001 86267571272/9349*5778^(1/6) 3908816964681965 a001 32951280099/103682*5778^(5/9) 3908816964992527 a001 86267571272/271443*5778^(5/9) 3908816965037837 a001 317811*5778^(5/9) 3908816965044448 a001 591286729879/1860498*5778^(5/9) 3908816965045412 a001 1548008755920/4870847*5778^(5/9) 3908816965045553 a001 4052739537881/12752043*5778^(5/9) 3908816965045573 a001 1515744265389/4769326*5778^(5/9) 3908816965045586 a001 6557470319842/20633239*5778^(5/9) 3908816965045640 a001 2504730781961/7881196*5778^(5/9) 3908816965046008 a001 956722026041/3010349*5778^(5/9) 3908816965048533 a001 365435296162/1149851*5778^(5/9) 3908816965065778 a001 12586269025/24476*5778^(1/2) 3908816965065840 a001 139583862445/439204*5778^(5/9) 3908816965184465 a001 53316291173/167761*5778^(5/9) 3908816965997526 a001 20365011074/64079*5778^(5/9) 3908816967477211 a001 1134903170/15127*5778^(13/18) 3908816969057899 a001 7778742049/39603*5778^(11/18) 3908816969083580 m005 (1/3*3^(1/2)-1/6)/(7/11*Zeta(3)+2/7) 3908816970739591 a001 53316291173/9349*5778^(2/9) 3908816971003793 r009 Re(z^3+c),c=-5/82+22/43*I,n=20 3908816971186522 a001 10182505537/51841*5778^(11/18) 3908816971497084 a001 53316291173/271443*5778^(11/18) 3908816971542395 a001 139583862445/710647*5778^(11/18) 3908816971549005 a001 182717648081/930249*5778^(11/18) 3908816971549970 a001 956722026041/4870847*5778^(11/18) 3908816971550111 a001 2504730781961/12752043*5778^(11/18) 3908816971550131 a001 3278735159921/16692641*5778^(11/18) 3908816971550136 a001 10610209857723/54018521*5778^(11/18) 3908816971550144 a001 4052739537881/20633239*5778^(11/18) 3908816971550198 a001 387002188980/1970299*5778^(11/18) 3908816971550566 a001 591286729879/3010349*5778^(11/18) 3908816971553091 a001 225851433717/1149851*5778^(11/18) 3908816971570336 a001 7778742049/24476*5778^(5/9) 3908816971570398 a001 196418*5778^(11/18) 3908816971689022 a001 32951280099/167761*5778^(11/18) 3908816972123476 a001 267914296/3571*3571^(13/17) 3908816972502084 a001 12586269025/64079*5778^(11/18) 3908816973981768 a001 701408733/15127*5778^(7/9) 3908816975562457 a001 1602508992/13201*5778^(2/3) 3908816977244149 a001 32951280099/9349*5778^(5/18) 3908816977691080 a001 12586269025/103682*5778^(2/3) 3908816978001642 a001 121393*5778^(2/3) 3908816978046953 a001 86267571272/710647*5778^(2/3) 3908816978053563 a001 75283811239/620166*5778^(2/3) 3908816978054528 a001 591286729879/4870847*5778^(2/3) 3908816978054668 a001 516002918640/4250681*5778^(2/3) 3908816978054689 a001 4052739537881/33385282*5778^(2/3) 3908816978054692 a001 3536736619241/29134601*5778^(2/3) 3908816978054694 a001 6557470319842/54018521*5778^(2/3) 3908816978054702 a001 2504730781961/20633239*5778^(2/3) 3908816978054755 a001 956722026041/7881196*5778^(2/3) 3908816978055124 a001 365435296162/3010349*5778^(2/3) 3908816978057649 a001 139583862445/1149851*5778^(2/3) 3908816978074893 a001 1201881744/6119*5778^(11/18) 3908816978074956 a001 53316291173/439204*5778^(2/3) 3908816978193580 a001 20365011074/167761*5778^(2/3) 3908816979006642 a001 7778742049/64079*5778^(2/3) 3908816980486326 a001 433494437/15127*5778^(5/6) 3908816982067014 a001 2971215073/39603*5778^(13/18) 3908816983229481 a001 32264490531/2161*2207^(1/8) 3908816983541002 a001 10983760033/1926*2207^(1/4) 3908816983748707 a001 20365011074/9349*5778^(1/3) 3908816984195638 a001 7778742049/103682*5778^(13/18) 3908816984506200 a001 20365011074/271443*5778^(13/18) 3908816984551510 a001 53316291173/710647*5778^(13/18) 3908816984558121 a001 139583862445/1860498*5778^(13/18) 3908816984559086 a001 365435296162/4870847*5778^(13/18) 3908816984559226 a001 956722026041/12752043*5778^(13/18) 3908816984559247 a001 2504730781961/33385282*5778^(13/18) 3908816984559250 a001 6557470319842/87403803*5778^(13/18) 3908816984559250 a001 10610209857723/141422324*5778^(13/18) 3908816984559252 a001 4052739537881/54018521*5778^(13/18) 3908816984559259 a001 140728068720/1875749*5778^(13/18) 3908816984559313 a001 591286729879/7881196*5778^(13/18) 3908816984559682 a001 225851433717/3010349*5778^(13/18) 3908816984562207 a001 86267571272/1149851*5778^(13/18) 3908816984579451 a001 2971215073/24476*5778^(2/3) 3908816984579514 a001 32951280099/439204*5778^(13/18) 3908816984698138 a001 75025*5778^(13/18) 3908816985511200 a001 4807526976/64079*5778^(13/18) 3908816986990884 a001 267914296/15127*5778^(8/9) 3908816988571572 a001 1836311903/39603*5778^(7/9) 3908816989442720 a001 4181/9349*817138163596^(2/3) 3908816989442720 a001 4181/9349*(1/2+1/2*5^(1/2))^38 3908816989442720 a001 4181/9349*10749957122^(19/24) 3908816989442720 a001 4181/9349*4106118243^(19/23) 3908816989442720 a001 4181/9349*1568397607^(19/22) 3908816989442720 a001 4181/9349*599074578^(19/21) 3908816989442720 a001 4181/9349*228826127^(19/20) 3908816990154345 a001 433494437/3571*3571^(12/17) 3908816990253264 a001 12586269025/9349*5778^(7/18) 3908816990700196 a001 46368*5778^(7/9) 3908816990871421 r005 Re(z^2+c),c=8/21+18/49*I,n=16 3908816991010758 a001 12586269025/271443*5778^(7/9) 3908816991056068 a001 32951280099/710647*5778^(7/9) 3908816991062679 a001 43133785636/930249*5778^(7/9) 3908816991063643 a001 225851433717/4870847*5778^(7/9) 3908816991063784 a001 591286729879/12752043*5778^(7/9) 3908816991063805 a001 774004377960/16692641*5778^(7/9) 3908816991063808 a001 4052739537881/87403803*5778^(7/9) 3908816991063808 a001 225749145909/4868641*5778^(7/9) 3908816991063808 a001 3278735159921/70711162*5778^(7/9) 3908816991063809 a001 2504730781961/54018521*5778^(7/9) 3908816991063817 a001 956722026041/20633239*5778^(7/9) 3908816991063871 a001 182717648081/3940598*5778^(7/9) 3908816991064239 a001 139583862445/3010349*5778^(7/9) 3908816991066764 a001 53316291173/1149851*5778^(7/9) 3908816991084009 a001 1836311903/24476*5778^(13/18) 3908816991084071 a001 10182505537/219602*5778^(7/9) 3908816991202696 a001 7778742049/167761*5778^(7/9) 3908816992015758 a001 2971215073/64079*5778^(7/9) 3908816993402682 l006 ln(1911/2825) 3908816993495442 a001 165580141/15127*5778^(17/18) 3908816994877121 a001 225851433717/9349*2207^(1/16) 3908816995076130 a001 1134903170/39603*5778^(5/6) 3908816996757822 a001 7778742049/9349*5778^(4/9) 3908816997204754 a001 2971215073/103682*5778^(5/6) 3908816997515316 a001 7778742049/271443*5778^(5/6) 3908816997560626 a001 20365011074/710647*5778^(5/6) 3908816997567237 a001 53316291173/1860498*5778^(5/6) 3908816997568201 a001 139583862445/4870847*5778^(5/6) 3908816997568342 a001 365435296162/12752043*5778^(5/6) 3908816997568362 a001 956722026041/33385282*5778^(5/6) 3908816997568365 a001 2504730781961/87403803*5778^(5/6) 3908816997568366 a001 6557470319842/228826127*5778^(5/6) 3908816997568366 a001 10610209857723/370248451*5778^(5/6) 3908816997568366 a001 4052739537881/141422324*5778^(5/6) 3908816997568367 a001 1548008755920/54018521*5778^(5/6) 3908816997568375 a001 591286729879/20633239*5778^(5/6) 3908816997568429 a001 225851433717/7881196*5778^(5/6) 3908816997568797 a001 86267571272/3010349*5778^(5/6) 3908816997571322 a001 32951280099/1149851*5778^(5/6) 3908816997588567 a001 567451585/12238*5778^(7/9) 3908816997588629 a001 12586269025/439204*5778^(5/6) 3908816997707253 a001 4807526976/167761*5778^(5/6) 3908816997819284 a001 591286729879/39603*2207^(1/8) 3908816998520315 a001 28657*5778^(5/6) 3908816999947908 a001 774004377960/51841*2207^(1/8) 3908817000000001 a001 24157819/2+24157817/2*5^(1/2) 3908817000258470 a001 4052739537881/271443*2207^(1/8) 3908817000303781 a001 1515744265389/101521*2207^(1/8) 3908817000331784 a001 3278735159921/219602*2207^(1/8) 3908817000450408 a001 2504730781961/167761*2207^(1/8) 3908817001263470 a001 956722026041/64079*2207^(1/8) 3908817001580688 a001 17711*5778^(8/9) 3908817003262380 a001 4807526976/9349*5778^(1/2) 3908817003709311 a001 1836311903/103682*5778^(8/9) 3908817004019873 a001 1602508992/90481*5778^(8/9) 3908817004065184 a001 12586269025/710647*5778^(8/9) 3908817004071794 a001 10983760033/620166*5778^(8/9) 3908817004072759 a001 86267571272/4870847*5778^(8/9) 3908817004072900 a001 75283811239/4250681*5778^(8/9) 3908817004072920 a001 591286729879/33385282*5778^(8/9) 3908817004072923 a001 516002918640/29134601*5778^(8/9) 3908817004072924 a001 4052739537881/228826127*5778^(8/9) 3908817004072924 a001 3536736619241/199691526*5778^(8/9) 3908817004072924 a001 6557470319842/370248451*5778^(8/9) 3908817004072924 a001 2504730781961/141422324*5778^(8/9) 3908817004072925 a001 956722026041/54018521*5778^(8/9) 3908817004072933 a001 365435296162/20633239*5778^(8/9) 3908817004072987 a001 139583862445/7881196*5778^(8/9) 3908817004073355 a001 53316291173/3010349*5778^(8/9) 3908817004075880 a001 20365011074/1149851*5778^(8/9) 3908817004093124 a001 701408733/24476*5778^(5/6) 3908817004093187 a001 7778742049/439204*5778^(8/9) 3908817004211811 a001 2971215073/167761*5778^(8/9) 3908817004614790 m001 (1-Zeta(3))/(-GAMMA(3/4)+GAMMA(19/24)) 3908817005024873 a001 1134903170/64079*5778^(8/9) 3908817006836279 a001 182717648081/12238*2207^(1/8) 3908817008085245 a001 433494437/39603*5778^(17/18) 3908817008185215 a001 701408733/3571*3571^(11/17) 3908817009766938 a001 2971215073/9349*5778^(5/9) 3908817010213869 a001 567451585/51841*5778^(17/18) 3908817010524431 a001 2971215073/271443*5778^(17/18) 3908817010569742 a001 7778742049/710647*5778^(17/18) 3908817010576352 a001 10182505537/930249*5778^(17/18) 3908817010577317 a001 53316291173/4870847*5778^(17/18) 3908817010577457 a001 139583862445/12752043*5778^(17/18) 3908817010577478 a001 182717648081/16692641*5778^(17/18) 3908817010577481 a001 956722026041/87403803*5778^(17/18) 3908817010577481 a001 2504730781961/228826127*5778^(17/18) 3908817010577481 a001 3278735159921/299537289*5778^(17/18) 3908817010577482 a001 10610209857723/969323029*5778^(17/18) 3908817010577482 a001 4052739537881/370248451*5778^(17/18) 3908817010577482 a001 387002188980/35355581*5778^(17/18) 3908817010577483 a001 591286729879/54018521*5778^(17/18) 3908817010577491 a001 7787980473/711491*5778^(17/18) 3908817010577544 a001 21566892818/1970299*5778^(17/18) 3908817010577913 a001 32951280099/3010349*5778^(17/18) 3908817010580438 a001 12586269025/1149851*5778^(17/18) 3908817010597682 a001 433494437/24476*5778^(8/9) 3908817010597745 a001 1201881744/109801*5778^(17/18) 3908817010716369 a001 1836311903/167761*5778^(17/18) 3908817011529431 a001 701408733/64079*5778^(17/18) 3908817011688588 r002 39th iterates of z^2 + 3908817014589783 a001 101003831657/2584 3908817016271496 a001 1836311903/9349*5778^(11/18) 3908817016718266 a001 12625478964/323 3908817017027863 a001 12625478965/323 3908817017066563 a001 101003831721/2584 3908817017082043 a001 1/1292*(1/2+1/2*5^(1/2))^56 3908817017082043 a001 505019158607/2584*8^(1/3) 3908817017102240 a001 10946*5778^(17/18) 3908817017221362 a001 101003831725/2584 3908817018034055 a001 50501915873/1292 3908817019684454 r005 Re(z^2+c),c=-23/58+35/62*I,n=49 3908817022776053 a001 1134903170/9349*5778^(2/3) 3908817023606811 a001 50501915945/1292 3908817026216084 a001 1134903170/3571*3571^(10/17) 3908817029280611 a001 701408733/9349*5778^(13/18) 3908817033385242 a001 139583862445/15127*2207^(3/16) 3908817033696763 a001 10182505537/2889*2207^(5/16) 3908817034824916 r005 Re(z^2+c),c=-37/70+4/17*I,n=27 3908817035785169 a001 433494437/9349*5778^(7/9) 3908817036077028 r002 20th iterates of z^2 + 3908817040063504 a001 31622993/682*1364^(14/15) 3908817042289727 a001 267914296/9349*5778^(5/6) 3908817042312856 m002 4*Pi^4+(5*Tanh[Pi])/4 3908817044246953 a001 1836311903/3571*3571^(9/17) 3908817045032882 a001 139583862445/9349*2207^(1/8) 3908817047975046 a001 365435296162/39603*2207^(3/16) 3908817048794285 a001 165580141/9349*5778^(8/9) 3908817050103669 a001 956722026041/103682*2207^(3/16) 3908817050414231 a001 2504730781961/271443*2207^(3/16) 3908817050459542 a001 6557470319842/710647*2207^(3/16) 3908817050470238 a001 10610209857723/1149851*2207^(3/16) 3908817050487545 a001 4052739537881/439204*2207^(3/16) 3908817050606169 a001 140728068720/15251*2207^(3/16) 3908817051419231 a001 591286729879/64079*2207^(3/16) 3908817051741638 a001 3571/377*89^(6/19) 3908817055298843 a001 102334155/9349*5778^(17/18) 3908817055586677 r002 35th iterates of z^2 + 3908817056992040 a001 7787980473/844*2207^(3/16) 3908817059839021 r005 Re(z^2+c),c=-11/27+36/59*I,n=18 3908817061803398 a001 78176339/2+1/2*5^(1/2) 3908817061803405 a001 101003832877/2584 3908817062277823 a001 2971215073/3571*3571^(8/17) 3908817066461273 a001 86267571272/3571*1364^(1/15) 3908817075103409 a007 Real Root Of 507*x^4-796*x^3+432*x^2-897*x-476 3908817080308693 a001 4807526976/3571*3571^(7/17) 3908817083541003 a001 86267571272/15127*2207^(1/4) 3908817083852524 a001 12586269025/5778*2207^(3/8) 3908817089442713 a001 1597/5778*2537720636^(13/15) 3908817089442713 a001 1597/5778*45537549124^(13/17) 3908817089442713 a001 1597/5778*14662949395604^(13/21) 3908817089442713 a001 1597/5778*(1/2+1/2*5^(1/2))^39 3908817089442713 a001 1597/5778*192900153618^(13/18) 3908817089442713 a001 1597/5778*73681302247^(3/4) 3908817089442713 a001 1597/5778*10749957122^(13/16) 3908817089442713 a001 1597/5778*599074578^(13/14) 3908817089442734 a001 2584/3571*(1/2+1/2*5^(1/2))^37 3908817095188643 a001 86267571272/9349*2207^(3/16) 3908817098130807 a001 75283811239/13201*2207^(1/4) 3908817098339562 a001 7778742049/3571*3571^(6/17) 3908817100000001 a001 24157821/2+24157817/2*5^(1/2) 3908817100259431 a001 591286729879/103682*2207^(1/4) 3908817100569993 a001 516002918640/90481*2207^(1/4) 3908817100615304 a001 4052739537881/710647*2207^(1/4) 3908817100621914 a001 3536736619241/620166*2207^(1/4) 3908817100626000 a001 6557470319842/1149851*2207^(1/4) 3908817100643307 a001 2504730781961/439204*2207^(1/4) 3908817100761931 a001 956722026041/167761*2207^(1/4) 3908817100881708 m001 (-FeigenbaumB+Weierstrass)/(Si(Pi)+Zeta(1,2)) 3908817101574993 a001 365435296162/64079*2207^(1/4) 3908817101830839 r009 Im(z^3+c),c=-7/38+27/35*I,n=2 3908817107147802 a001 139583862445/24476*2207^(1/4) 3908817110723550 a001 505019158607*144^(7/17) 3908817116370432 a001 12586269025/3571*3571^(5/17) 3908817123606797 a001 39088169+5^(1/2) 3908817128784816 g002 Psi(11/12)-Psi(5/11)-Psi(8/9)-Psi(4/7) 3908817131593324 m001 Grothendieck^Conway*Grothendieck^GAMMA(11/12) 3908817133696766 a001 53316291173/15127*2207^(5/16) 3908817134008287 a001 7778742049/5778*2207^(7/16) 3908817134401302 a001 20365011074/3571*3571^(4/17) 3908817145344406 a001 53316291173/9349*2207^(1/4) 3908817148286570 a001 139583862445/39603*2207^(5/16) 3908817150415194 a001 182717648081/51841*2207^(5/16) 3908817150725756 a001 956722026041/271443*2207^(5/16) 3908817150771066 a001 2504730781961/710647*2207^(5/16) 3908817150777677 a001 3278735159921/930249*2207^(5/16) 3908817150779237 a001 10610209857723/3010349*2207^(5/16) 3908817150781762 a001 4052739537881/1149851*2207^(5/16) 3908817150799069 a001 387002188980/109801*2207^(5/16) 3908817150917694 a001 591286729879/167761*2207^(5/16) 3908817151730756 a001 225851433717/64079*2207^(5/16) 3908817152432172 a001 32951280099/3571*3571^(3/17) 3908817157303565 a001 21566892818/6119*2207^(5/16) 3908817158047813 r005 Re(z^2+c),c=-1/90+41/58*I,n=32 3908817161803396 a001 163427645535/4181 3908817164157177 a001 24157817/3571*9349^(18/19) 3908817166510931 a001 39088169/3571*9349^(17/19) 3908817168864687 a001 63245986/3571*9349^(16/19) 3908817170463042 a001 53316291173/3571*3571^(2/17) 3908817171218443 a001 102334155/3571*9349^(15/19) 3908817173572199 a001 165580141/3571*9349^(14/19) 3908817175800811 a001 139583862445/5778*843^(1/14) 3908817175925955 a001 267914296/3571*9349^(13/19) 3908817176261645 r005 Re(z^2+c),c=-13/106+55/63*I,n=30 3908817178279711 a001 433494437/3571*9349^(12/19) 3908817180127012 a001 9303105/124*1364^(13/15) 3908817180633467 a001 701408733/3571*9349^(11/19) 3908817182987223 a001 1134903170/3571*9349^(10/19) 3908817183852529 a001 32951280099/15127*2207^(3/8) 3908817184164050 a001 267084832/321*2207^(1/2) 3908817185340979 a001 1836311903/3571*9349^(9/19) 3908817187694735 a001 2971215073/3571*9349^(8/19) 3908817188493912 a001 86267571272/3571*3571^(1/17) 3908817189442718 a001 1597/15127*(1/2+1/2*5^(1/2))^41 3908817189442742 a001 6765/3571*2537720636^(7/9) 3908817189442742 a001 6765/3571*17393796001^(5/7) 3908817189442742 a001 6765/3571*312119004989^(7/11) 3908817189442742 a001 6765/3571*14662949395604^(5/9) 3908817189442742 a001 6765/3571*(1/2+1/2*5^(1/2))^35 3908817189442742 a001 6765/3571*505019158607^(5/8) 3908817189442742 a001 6765/3571*28143753123^(7/10) 3908817189442742 a001 6765/3571*599074578^(5/6) 3908817189442742 a001 6765/3571*228826127^(7/8) 3908817190048491 a001 4807526976/3571*9349^(7/19) 3908817190127817 m001 (GAMMA(2/3)+Kac)/(Niven+ReciprocalFibonacci) 3908817192402247 a001 7778742049/3571*9349^(6/19) 3908817192729421 r005 Im(z^2+c),c=-57/86+13/42*I,n=16 3908817194756003 a001 12586269025/3571*9349^(5/19) 3908817195500169 a001 32951280099/9349*2207^(5/16) 3908817197109759 a001 20365011074/3571*9349^(4/19) 3908817198442333 a001 86267571272/39603*2207^(3/8) 3908817199463515 a001 32951280099/3571*9349^(3/19) 3908817200000001 a001 24157823/2+24157817/2*5^(1/2) 3908817200310736 a001 9227465/3571*24476^(20/21) 3908817200570957 a001 225851433717/103682*2207^(3/8) 3908817200621426 a001 14930352/3571*24476^(19/21) 3908817200778735 m001 (-BesselJ(0,1)+ln(2))/(gamma+BesselI(0,1)) 3908817200881519 a001 591286729879/271443*2207^(3/8) 3908817200926829 a001 1548008755920/710647*2207^(3/8) 3908817200932133 a001 24157817/3571*24476^(6/7) 3908817200933440 a001 4052739537881/1860498*2207^(3/8) 3908817200934404 a001 2178309*2207^(3/8) 3908817200935001 a001 6557470319842/3010349*2207^(3/8) 3908817200937526 a001 2504730781961/1149851*2207^(3/8) 3908817200954833 a001 956722026041/439204*2207^(3/8) 3908817201073457 a001 365435296162/167761*2207^(3/8) 3908817201242834 a001 39088169/3571*24476^(17/21) 3908817201355442 r002 17th iterates of z^2 + 3908817201553538 a001 63245986/3571*24476^(16/21) 3908817201817271 a001 53316291173/3571*9349^(2/19) 3908817201864240 a001 102334155/3571*24476^(5/7) 3908817201886519 a001 139583862445/64079*2207^(3/8) 3908817202174943 a001 165580141/3571*24476^(2/3) 3908817202485646 a001 267914296/3571*24476^(13/21) 3908817202699397 m001 MertensB1*exp(GlaisherKinkelin)^2*GAMMA(1/12) 3908817202796349 a001 433494437/3571*24476^(4/7) 3908817203107052 a001 701408733/3571*24476^(11/21) 3908817203417754 a001 1134903170/3571*24476^(10/21) 3908817203728457 a001 1836311903/3571*24476^(3/7) 3908817204032522 a001 1597/39603*(1/2+1/2*5^(1/2))^43 3908817204032546 a001 17711/3571*141422324^(11/13) 3908817204032546 a001 17711/3571*2537720636^(11/15) 3908817204032546 a001 17711/3571*45537549124^(11/17) 3908817204032546 a001 17711/3571*312119004989^(3/5) 3908817204032546 a001 17711/3571*14662949395604^(11/21) 3908817204032546 a001 17711/3571*(1/2+1/2*5^(1/2))^33 3908817204032546 a001 17711/3571*192900153618^(11/18) 3908817204032546 a001 17711/3571*10749957122^(11/16) 3908817204032546 a001 17711/3571*1568397607^(3/4) 3908817204032546 a001 17711/3571*599074578^(11/14) 3908817204032550 a001 17711/3571*33385282^(11/12) 3908817204039160 a001 2971215073/3571*24476^(8/21) 3908817204171027 a001 86267571272/3571*9349^(1/19) 3908817204349863 a001 4807526976/3571*24476^(1/3) 3908817204660566 a001 7778742049/3571*24476^(2/7) 3908817204971268 a001 12586269025/3571*24476^(5/21) 3908817205281971 a001 20365011074/3571*24476^(4/21) 3908817205572809 a001 1120149746601/28657 3908817205592674 a001 32951280099/3571*24476^(1/7) 3908817205614285 a001 3524578/3571*64079^(22/23) 3908817205655587 a001 1597*64079^(21/23) 3908817205697009 a001 9227465/3571*64079^(20/23) 3908817205738386 a001 14930352/3571*64079^(19/23) 3908817205779780 a001 24157817/3571*64079^(18/23) 3908817205821167 a001 39088169/3571*64079^(17/23) 3908817205862557 a001 63245986/3571*64079^(16/23) 3908817205903377 a001 53316291173/3571*24476^(2/21) 3908817205903946 a001 102334155/3571*64079^(15/23) 3908817205945335 a001 165580141/3571*64079^(14/23) 3908817205986724 a001 267914296/3571*64079^(13/23) 3908817206028113 a001 433494437/3571*64079^(12/23) 3908817206069502 a001 701408733/3571*64079^(11/23) 3908817206110891 a001 1134903170/3571*64079^(10/23) 3908817206152280 a001 1836311903/3571*64079^(9/23) 3908817206161146 a001 1597/103682*45537549124^(15/17) 3908817206161146 a001 1597/103682*312119004989^(9/11) 3908817206161146 a001 1597/103682*14662949395604^(5/7) 3908817206161146 a001 1597/103682*(1/2+1/2*5^(1/2))^45 3908817206161146 a001 1597/103682*192900153618^(5/6) 3908817206161146 a001 1597/103682*28143753123^(9/10) 3908817206161146 a001 1597/103682*10749957122^(15/16) 3908817206161170 a001 46368/3571*(1/2+1/2*5^(1/2))^31 3908817206161170 a001 46368/3571*9062201101803^(1/2) 3908817206193670 a001 2971215073/3571*64079^(8/23) 3908817206214080 a001 86267571272/3571*24476^(1/21) 3908817206235059 a001 4807526976/3571*64079^(7/23) 3908817206276448 a001 7778742049/3571*64079^(6/23) 3908817206317837 a001 12586269025/3571*64079^(5/23) 3908817206359226 a001 20365011074/3571*64079^(4/23) 3908817206385871 a001 2932590109091/75025 3908817206400615 a001 32951280099/3571*64079^(3/23) 3908817206413682 a001 9227465/3571*167761^(4/5) 3908817206441450 a001 102334155/3571*167761^(3/5) 3908817206442004 a001 53316291173/3571*64079^(2/23) 3908817206469227 a001 1134903170/3571*167761^(2/5) 3908817206471708 a001 1597/271443*(1/2+1/2*5^(1/2))^47 3908817206471732 a001 121393/3571*(1/2+1/2*5^(1/2))^29 3908817206471732 a001 121393/3571*1322157322203^(1/2) 3908817206483393 a001 86267571272/3571*64079^(1/23) 3908817206497005 a001 12586269025/3571*167761^(1/5) 3908817206504495 a001 3838810290336/98209 3908817206507202 a001 1346269/3571*439204^(8/9) 3908817206508998 a001 1597*439204^(7/9) 3908817206511275 a001 24157817/3571*439204^(2/3) 3908817206513525 a001 102334155/3571*439204^(5/9) 3908817206515777 a001 433494437/3571*439204^(4/9) 3908817206516991 a001 317811/3571*7881196^(9/11) 3908817206517018 a001 1597/710647*14662949395604^(7/9) 3908817206517018 a001 1597/710647*(1/2+1/2*5^(1/2))^49 3908817206517018 a001 1597/710647*505019158607^(7/8) 3908817206517042 a001 317811/3571*141422324^(9/13) 3908817206517043 a001 317811/3571*2537720636^(3/5) 3908817206517043 a001 317811/3571*45537549124^(9/17) 3908817206517043 a001 317811/3571*817138163596^(9/19) 3908817206517043 a001 317811/3571*14662949395604^(3/7) 3908817206517043 a001 317811/3571*(1/2+1/2*5^(1/2))^27 3908817206517043 a001 317811/3571*192900153618^(1/2) 3908817206517043 a001 317811/3571*10749957122^(9/16) 3908817206517043 a001 317811/3571*599074578^(9/14) 3908817206517045 a001 317811/3571*33385282^(3/4) 3908817206518028 a001 1836311903/3571*439204^(1/3) 3908817206518059 a001 317811/3571*1860498^(9/10) 3908817206520279 a001 7778742049/3571*439204^(2/9) 3908817206521802 a001 20100271632925/514229 3908817206522531 a001 32951280099/3571*439204^(1/9) 3908817206523629 a001 1597/1860498*817138163596^(17/19) 3908817206523629 a001 1597/1860498*14662949395604^(17/21) 3908817206523629 a001 1597/1860498*(1/2+1/2*5^(1/2))^51 3908817206523629 a001 1597/1860498*192900153618^(17/18) 3908817206523647 a001 832040/3571*20633239^(5/7) 3908817206523653 a001 832040/3571*2537720636^(5/9) 3908817206523653 a001 832040/3571*312119004989^(5/11) 3908817206523653 a001 832040/3571*(1/2+1/2*5^(1/2))^25 3908817206523653 a001 832040/3571*3461452808002^(5/12) 3908817206523653 a001 832040/3571*28143753123^(1/2) 3908817206523653 a001 832040/3571*228826127^(5/8) 3908817206524327 a001 52623194318103/1346269 3908817206524594 a001 1597/4870847*(1/2+1/2*5^(1/2))^53 3908817206524594 a001 832040/3571*1860498^(5/6) 3908817206524618 a001 2178309/3571*(1/2+1/2*5^(1/2))^23 3908817206524618 a001 2178309/3571*4106118243^(1/2) 3908817206524696 a001 68884655660692/1762289 3908817206524718 a001 1597*7881196^(7/11) 3908817206524734 a001 1597/12752043*(1/2+1/2*5^(1/2))^55 3908817206524734 a001 1597/12752043*3461452808002^(11/12) 3908817206524749 a001 27744979972773/709805 3908817206524749 a001 24157817/3571*7881196^(6/11) 3908817206524753 a001 1597*20633239^(3/5) 3908817206524754 a001 102334155/3571*7881196^(5/11) 3908817206524755 a001 1597/33385282*14662949395604^(19/21) 3908817206524755 a001 1597/33385282*(1/2+1/2*5^(1/2))^57 3908817206524757 a001 944284907616763/24157817 3908817206524758 a001 1236084991602120/31622993 3908817206524758 a001 1597*141422324^(7/13) 3908817206524758 a001 6472225041995957/165580141 3908817206524758 a001 16944505142783631/433494437 3908817206524758 a001 1597*2537720636^(7/15) 3908817206524758 a001 1597*17393796001^(3/7) 3908817206524758 a001 1597*45537549124^(7/17) 3908817206524758 a001 1597*14662949395604^(1/3) 3908817206524758 a001 1597*192900153618^(7/18) 3908817206524758 a001 1597*10749957122^(7/16) 3908817206524758 a001 1597*599074578^(1/2) 3908817206524758 a001 956722099469/24476 3908817206524759 a001 4000055058791717/102334155 3908817206524759 a001 1597/141422324*14662949395604^(20/21) 3908817206524759 a001 1527885075587477/39088169 3908817206524760 a001 433494437/3571*7881196^(4/11) 3908817206524760 a001 1597*33385282^(7/12) 3908817206524761 a001 701408733/3571*7881196^(1/3) 3908817206524762 a001 291800083985357/7465176 3908817206524765 a001 1836311903/3571*7881196^(3/11) 3908817206524768 a001 1597/20633239*14662949395604^(8/9) 3908817206524768 a001 1597/20633239*(1/2+1/2*5^(1/2))^56 3908817206524771 a001 7778742049/3571*7881196^(2/11) 3908817206524777 a001 32951280099/3571*7881196^(1/11) 3908817206524778 a001 102334155/3571*20633239^(3/7) 3908817206524779 a001 165580141/3571*20633239^(2/5) 3908817206524779 a001 14930352/3571*817138163596^(1/3) 3908817206524779 a001 14930352/3571*(1/2+1/2*5^(1/2))^19 3908817206524779 a001 14930352/3571*87403803^(1/2) 3908817206524780 a001 1134903170/3571*20633239^(2/7) 3908817206524781 a001 4807526976/3571*20633239^(1/5) 3908817206524781 a001 12586269025/3571*20633239^(1/7) 3908817206524782 a001 39088169/3571*45537549124^(1/3) 3908817206524782 a001 39088169/3571*(1/2+1/2*5^(1/2))^17 3908817206524782 a001 102334155/3571*141422324^(5/13) 3908817206524782 a001 267914296/3571*141422324^(1/3) 3908817206524782 a001 102334155/3571*2537720636^(1/3) 3908817206524782 a001 102334155/3571*45537549124^(5/17) 3908817206524782 a001 102334155/3571*312119004989^(3/11) 3908817206524782 a001 102334155/3571*14662949395604^(5/21) 3908817206524782 a001 102334155/3571*(1/2+1/2*5^(1/2))^15 3908817206524782 a001 102334155/3571*192900153618^(5/18) 3908817206524782 a001 102334155/3571*28143753123^(3/10) 3908817206524782 a001 102334155/3571*10749957122^(5/16) 3908817206524782 a001 102334155/3571*599074578^(5/14) 3908817206524782 a001 433494437/3571*141422324^(4/13) 3908817206524782 a001 102334155/3571*228826127^(3/8) 3908817206524782 a001 1836311903/3571*141422324^(3/13) 3908817206524782 a001 7778742049/3571*141422324^(2/13) 3908817206524782 a001 32951280099/3571*141422324^(1/13) 3908817206524782 a001 267914296/3571*(1/2+1/2*5^(1/2))^13 3908817206524782 a001 267914296/3571*73681302247^(1/4) 3908817206524782 a001 701408733/3571*312119004989^(1/5) 3908817206524782 a001 701408733/3571*(1/2+1/2*5^(1/2))^11 3908817206524782 a001 701408733/3571*1568397607^(1/4) 3908817206524782 a001 1836311903/3571*2537720636^(1/5) 3908817206524782 a001 1836311903/3571*45537549124^(3/17) 3908817206524782 a001 1836311903/3571*817138163596^(3/19) 3908817206524782 a001 1836311903/3571*14662949395604^(1/7) 3908817206524782 a001 1836311903/3571*(1/2+1/2*5^(1/2))^9 3908817206524782 a001 1836311903/3571*192900153618^(1/6) 3908817206524782 a001 1836311903/3571*10749957122^(3/16) 3908817206524782 a001 12586269025/3571*2537720636^(1/9) 3908817206524782 a001 7778742049/3571*2537720636^(2/15) 3908817206524782 a001 32951280099/3571*2537720636^(1/15) 3908817206524782 a001 4807526976/3571*17393796001^(1/7) 3908817206524782 a001 4807526976/3571*14662949395604^(1/9) 3908817206524782 a001 4807526976/3571*(1/2+1/2*5^(1/2))^7 3908817206524782 a001 12586269025/3571*312119004989^(1/11) 3908817206524782 a001 12586269025/3571*(1/2+1/2*5^(1/2))^5 3908817206524782 a001 12586269025/3571*28143753123^(1/10) 3908817206524782 a001 32951280099/3571*45537549124^(1/17) 3908817206524782 a001 32951280099/3571*14662949395604^(1/21) 3908817206524782 a001 32951280099/3571*(1/2+1/2*5^(1/2))^3 3908817206524782 a001 32951280099/3571*192900153618^(1/18) 3908817206524782 a001 43133785636/3571+43133785636/3571*5^(1/2) 3908817206524782 a001 139583862445/3571 3908817206524782 a001 53316291173/3571*(1/2+1/2*5^(1/2))^2 3908817206524782 a001 32951280099/3571*10749957122^(1/16) 3908817206524782 a001 53316291173/3571*10749957122^(1/24) 3908817206524782 a001 20365011074/3571*(1/2+1/2*5^(1/2))^4 3908817206524782 a001 20365011074/3571*23725150497407^(1/16) 3908817206524782 a001 20365011074/3571*73681302247^(1/13) 3908817206524782 a001 20365011074/3571*10749957122^(1/12) 3908817206524782 a001 53316291173/3571*4106118243^(1/23) 3908817206524782 a001 7778742049/3571*45537549124^(2/17) 3908817206524782 a001 7778742049/3571*14662949395604^(2/21) 3908817206524782 a001 7778742049/3571*(1/2+1/2*5^(1/2))^6 3908817206524782 a001 7778742049/3571*10749957122^(1/8) 3908817206524782 a001 20365011074/3571*4106118243^(2/23) 3908817206524782 a001 7778742049/3571*4106118243^(3/23) 3908817206524782 a001 53316291173/3571*1568397607^(1/22) 3908817206524782 a001 2971215073/3571*(1/2+1/2*5^(1/2))^8 3908817206524782 a001 2971215073/3571*23725150497407^(1/8) 3908817206524782 a001 2971215073/3571*73681302247^(2/13) 3908817206524782 a001 2971215073/3571*10749957122^(1/6) 3908817206524782 a001 2971215073/3571*4106118243^(4/23) 3908817206524782 a001 20365011074/3571*1568397607^(1/11) 3908817206524782 a001 7778742049/3571*1568397607^(3/22) 3908817206524782 a001 2971215073/3571*1568397607^(2/11) 3908817206524782 a001 1134903170/3571*2537720636^(2/9) 3908817206524782 a001 53316291173/3571*599074578^(1/21) 3908817206524782 a001 1134903170/3571*312119004989^(2/11) 3908817206524782 a001 1134903170/3571*(1/2+1/2*5^(1/2))^10 3908817206524782 a001 1134903170/3571*28143753123^(1/5) 3908817206524782 a001 1134903170/3571*10749957122^(5/24) 3908817206524782 a001 1134903170/3571*4106118243^(5/23) 3908817206524782 a001 32951280099/3571*599074578^(1/14) 3908817206524782 a001 1134903170/3571*1568397607^(5/22) 3908817206524782 a001 20365011074/3571*599074578^(2/21) 3908817206524782 a001 7778742049/3571*599074578^(1/7) 3908817206524782 a001 4807526976/3571*599074578^(1/6) 3908817206524782 a001 1836311903/3571*599074578^(3/14) 3908817206524782 a001 2971215073/3571*599074578^(4/21) 3908817206524782 a001 1134903170/3571*599074578^(5/21) 3908817206524782 a001 53316291173/3571*228826127^(1/20) 3908817206524782 a001 433494437/3571*2537720636^(4/15) 3908817206524782 a001 433494437/3571*45537549124^(4/17) 3908817206524782 a001 433494437/3571*817138163596^(4/19) 3908817206524782 a001 433494437/3571*14662949395604^(4/21) 3908817206524782 a001 433494437/3571*(1/2+1/2*5^(1/2))^12 3908817206524782 a001 433494437/3571*192900153618^(2/9) 3908817206524782 a001 433494437/3571*73681302247^(3/13) 3908817206524782 a001 433494437/3571*10749957122^(1/4) 3908817206524782 a001 433494437/3571*4106118243^(6/23) 3908817206524782 a001 433494437/3571*1568397607^(3/11) 3908817206524782 a001 433494437/3571*599074578^(2/7) 3908817206524782 a001 20365011074/3571*228826127^(1/10) 3908817206524782 a001 12586269025/3571*228826127^(1/8) 3908817206524782 a001 7778742049/3571*228826127^(3/20) 3908817206524782 a001 2971215073/3571*228826127^(1/5) 3908817206524782 a001 1134903170/3571*228826127^(1/4) 3908817206524783 a001 433494437/3571*228826127^(3/10) 3908817206524783 a001 53316291173/3571*87403803^(1/19) 3908817206524783 a001 165580141/3571*17393796001^(2/7) 3908817206524783 a001 165580141/3571*14662949395604^(2/9) 3908817206524783 a001 165580141/3571*(1/2+1/2*5^(1/2))^14 3908817206524783 a001 165580141/3571*505019158607^(1/4) 3908817206524783 a001 165580141/3571*10749957122^(7/24) 3908817206524783 a001 165580141/3571*4106118243^(7/23) 3908817206524783 a001 165580141/3571*1568397607^(7/22) 3908817206524783 a001 165580141/3571*599074578^(1/3) 3908817206524783 a001 20365011074/3571*87403803^(2/19) 3908817206524783 a001 165580141/3571*228826127^(7/20) 3908817206524783 a001 7778742049/3571*87403803^(3/19) 3908817206524783 a001 2971215073/3571*87403803^(4/19) 3908817206524783 a001 1134903170/3571*87403803^(5/19) 3908817206524783 a001 433494437/3571*87403803^(6/19) 3908817206524783 a001 53316291173/3571*33385282^(1/18) 3908817206524783 a001 63245986/3571*(1/2+1/2*5^(1/2))^16 3908817206524783 a001 63245986/3571*23725150497407^(1/4) 3908817206524783 a001 63245986/3571*73681302247^(4/13) 3908817206524783 a001 63245986/3571*10749957122^(1/3) 3908817206524783 a001 63245986/3571*4106118243^(8/23) 3908817206524783 a001 63245986/3571*1568397607^(4/11) 3908817206524783 a001 63245986/3571*599074578^(8/21) 3908817206524783 a001 165580141/3571*87403803^(7/19) 3908817206524783 a001 63245986/3571*228826127^(2/5) 3908817206524783 a001 32951280099/3571*33385282^(1/12) 3908817206524783 a001 20365011074/3571*33385282^(1/9) 3908817206524783 a001 63245986/3571*87403803^(8/19) 3908817206524783 a001 7778742049/3571*33385282^(1/6) 3908817206524783 a001 2971215073/3571*33385282^(2/9) 3908817206524783 a001 1836311903/3571*33385282^(1/4) 3908817206524783 a001 1134903170/3571*33385282^(5/18) 3908817206524784 a001 433494437/3571*33385282^(1/3) 3908817206524784 a001 24157817/3571*141422324^(6/13) 3908817206524784 a001 24157817/3571*2537720636^(2/5) 3908817206524784 a001 24157817/3571*45537549124^(6/17) 3908817206524784 a001 24157817/3571*14662949395604^(2/7) 3908817206524784 a001 24157817/3571*(1/2+1/2*5^(1/2))^18 3908817206524784 a001 24157817/3571*192900153618^(1/3) 3908817206524784 a001 24157817/3571*10749957122^(3/8) 3908817206524784 a001 24157817/3571*4106118243^(9/23) 3908817206524784 a001 24157817/3571*1568397607^(9/22) 3908817206524784 a001 24157817/3571*599074578^(3/7) 3908817206524784 a001 24157817/3571*228826127^(9/20) 3908817206524784 a001 102334155/3571*33385282^(5/12) 3908817206524784 a001 165580141/3571*33385282^(7/18) 3908817206524784 a001 53316291173/3571*12752043^(1/17) 3908817206524784 a001 24157817/3571*87403803^(9/19) 3908817206524784 a001 63245986/3571*33385282^(4/9) 3908817206524785 a001 20365011074/3571*12752043^(2/17) 3908817206524786 a001 24157817/3571*33385282^(1/2) 3908817206524786 a001 9227465/3571*20633239^(4/7) 3908817206524787 a001 7778742049/3571*12752043^(3/17) 3908817206524788 a001 2971215073/3571*12752043^(4/17) 3908817206524790 a001 1134903170/3571*12752043^(5/17) 3908817206524791 a001 433494437/3571*12752043^(6/17) 3908817206524792 a001 9227465/3571*2537720636^(4/9) 3908817206524792 a001 9227465/3571*(1/2+1/2*5^(1/2))^20 3908817206524792 a001 9227465/3571*23725150497407^(5/16) 3908817206524792 a001 9227465/3571*505019158607^(5/14) 3908817206524792 a001 9227465/3571*73681302247^(5/13) 3908817206524792 a001 9227465/3571*28143753123^(2/5) 3908817206524792 a001 9227465/3571*10749957122^(5/12) 3908817206524792 a001 9227465/3571*4106118243^(10/23) 3908817206524792 a001 9227465/3571*1568397607^(5/11) 3908817206524792 a001 9227465/3571*599074578^(10/21) 3908817206524792 a001 9227465/3571*228826127^(1/2) 3908817206524792 a001 9227465/3571*87403803^(10/19) 3908817206524792 a001 165580141/3571*12752043^(7/17) 3908817206524793 a001 53316291173/3571*4870847^(1/16) 3908817206524794 a001 9227465/3571*33385282^(5/9) 3908817206524794 a001 39088169/3571*12752043^(1/2) 3908817206524794 a001 63245986/3571*12752043^(8/17) 3908817206524797 a001 24157817/3571*12752043^(9/17) 3908817206524803 a001 20365011074/3571*4870847^(1/8) 3908817206524803 a001 3524578/3571*7881196^(2/3) 3908817206524806 a001 9227465/3571*12752043^(10/17) 3908817206524813 a001 7778742049/3571*4870847^(3/16) 3908817206524821 a001 1597/7881196*14662949395604^(6/7) 3908817206524821 a001 1597/7881196*(1/2+1/2*5^(1/2))^54 3908817206524824 a001 2971215073/3571*4870847^(1/4) 3908817206524834 a001 1134903170/3571*4870847^(5/16) 3908817206524844 a001 433494437/3571*4870847^(3/8) 3908817206524845 a001 3524578/3571*312119004989^(2/5) 3908817206524845 a001 3524578/3571*(1/2+1/2*5^(1/2))^22 3908817206524845 a001 3524578/3571*10749957122^(11/24) 3908817206524845 a001 3524578/3571*4106118243^(11/23) 3908817206524845 a001 3524578/3571*1568397607^(1/2) 3908817206524845 a001 3524578/3571*599074578^(11/21) 3908817206524845 a001 3524578/3571*228826127^(11/20) 3908817206524846 a001 3524578/3571*87403803^(11/19) 3908817206524848 a001 3524578/3571*33385282^(11/18) 3908817206524855 a001 165580141/3571*4870847^(7/16) 3908817206524858 a001 53316291173/3571*1860498^(1/15) 3908817206524861 a001 3524578/3571*12752043^(11/17) 3908817206524865 a001 63245986/3571*4870847^(1/2) 3908817206524876 a001 24157817/3571*4870847^(9/16) 3908817206524895 a001 9227465/3571*4870847^(5/8) 3908817206524895 a001 32951280099/3571*1860498^(1/10) 3908817206524923 a001 85146117003281/2178309 3908817206524933 a001 20365011074/3571*1860498^(2/15) 3908817206524959 a001 3524578/3571*4870847^(11/16) 3908817206524971 a001 12586269025/3571*1860498^(1/6) 3908817206525008 a001 7778742049/3571*1860498^(1/5) 3908817206525084 a001 2971215073/3571*1860498^(4/15) 3908817206525121 a001 1836311903/3571*1860498^(3/10) 3908817206525159 a001 1134903170/3571*1860498^(1/3) 3908817206525168 a001 1346269/3571*7881196^(8/11) 3908817206525190 a001 1597/3010349*(1/2+1/2*5^(1/2))^52 3908817206525190 a001 1597/3010349*23725150497407^(13/16) 3908817206525190 a001 1597/3010349*505019158607^(13/14) 3908817206525214 a001 1346269/3571*141422324^(8/13) 3908817206525214 a001 1346269/3571*2537720636^(8/15) 3908817206525214 a001 1346269/3571*45537549124^(8/17) 3908817206525214 a001 1346269/3571*14662949395604^(8/21) 3908817206525214 a001 1346269/3571*(1/2+1/2*5^(1/2))^24 3908817206525214 a001 1346269/3571*192900153618^(4/9) 3908817206525214 a001 1346269/3571*73681302247^(6/13) 3908817206525214 a001 1346269/3571*10749957122^(1/2) 3908817206525214 a001 1346269/3571*4106118243^(12/23) 3908817206525214 a001 1346269/3571*1568397607^(6/11) 3908817206525214 a001 1346269/3571*599074578^(4/7) 3908817206525214 a001 1346269/3571*228826127^(3/5) 3908817206525214 a001 1346269/3571*87403803^(12/19) 3908817206525216 a001 1346269/3571*33385282^(2/3) 3908817206525231 a001 1346269/3571*12752043^(12/17) 3908817206525234 a001 433494437/3571*1860498^(2/5) 3908817206525309 a001 165580141/3571*1860498^(7/15) 3908817206525335 a001 53316291173/3571*710647^(1/14) 3908817206525337 a001 1346269/3571*4870847^(3/4) 3908817206525347 a001 102334155/3571*1860498^(1/2) 3908817206525385 a001 63245986/3571*1860498^(8/15) 3908817206525461 a001 24157817/3571*1860498^(3/5) 3908817206525544 a001 9227465/3571*1860498^(2/3) 3908817206525549 a001 1597*1860498^(7/10) 3908817206525674 a001 3524578/3571*1860498^(11/15) 3908817206525888 a001 16261461342589/416020 3908817206525888 a001 20365011074/3571*710647^(1/7) 3908817206526117 a001 1346269/3571*1860498^(4/5) 3908817206526441 a001 7778742049/3571*710647^(3/14) 3908817206526717 a001 4807526976/3571*710647^(1/4) 3908817206526994 a001 2971215073/3571*710647^(2/7) 3908817206527547 a001 1134903170/3571*710647^(5/14) 3908817206527715 a001 1597/1149851*312119004989^(10/11) 3908817206527715 a001 1597/1149851*(1/2+1/2*5^(1/2))^50 3908817206527715 a001 1597/1149851*3461452808002^(5/6) 3908817206527739 a001 514229/3571*141422324^(2/3) 3908817206527739 a001 514229/3571*(1/2+1/2*5^(1/2))^26 3908817206527739 a001 514229/3571*73681302247^(1/2) 3908817206527739 a001 514229/3571*10749957122^(13/24) 3908817206527739 a001 514229/3571*4106118243^(13/23) 3908817206527739 a001 514229/3571*1568397607^(13/22) 3908817206527739 a001 514229/3571*599074578^(13/21) 3908817206527739 a001 514229/3571*228826127^(13/20) 3908817206527739 a001 514229/3571*87403803^(13/19) 3908817206527741 a001 514229/3571*33385282^(13/18) 3908817206527757 a001 514229/3571*12752043^(13/17) 3908817206527873 a001 514229/3571*4870847^(13/16) 3908817206528100 a001 433494437/3571*710647^(3/7) 3908817206528652 a001 165580141/3571*710647^(1/2) 3908817206528718 a001 514229/3571*1860498^(13/15) 3908817206528863 a001 53316291173/3571*271443^(1/13) 3908817206529205 a001 63245986/3571*710647^(4/7) 3908817206529759 a001 24157817/3571*710647^(9/14) 3908817206530320 a001 9227465/3571*710647^(5/7) 3908817206530563 a001 1597*710647^(3/4) 3908817206530927 a001 3524578/3571*710647^(11/14) 3908817206531848 a001 1346269/3571*710647^(6/7) 3908817206532498 a001 955588542481/24447 3908817206532944 a001 20365011074/3571*271443^(2/13) 3908817206534926 a001 514229/3571*710647^(13/14) 3908817206537025 a001 7778742049/3571*271443^(3/13) 3908817206539933 a001 86267571272/3571*103682^(1/24) 3908817206541106 a001 2971215073/3571*271443^(4/13) 3908817206545022 a001 1597/439204*45537549124^(16/17) 3908817206545022 a001 1597/439204*14662949395604^(16/21) 3908817206545022 a001 1597/439204*(1/2+1/2*5^(1/2))^48 3908817206545022 a001 1597/439204*192900153618^(8/9) 3908817206545022 a001 1597/439204*73681302247^(12/13) 3908817206545039 a001 196418/3571*20633239^(4/5) 3908817206545046 a001 196418/3571*17393796001^(4/7) 3908817206545046 a001 196418/3571*14662949395604^(4/9) 3908817206545046 a001 196418/3571*(1/2+1/2*5^(1/2))^28 3908817206545046 a001 196418/3571*73681302247^(7/13) 3908817206545046 a001 196418/3571*10749957122^(7/12) 3908817206545046 a001 196418/3571*4106118243^(14/23) 3908817206545046 a001 196418/3571*1568397607^(7/11) 3908817206545046 a001 196418/3571*599074578^(2/3) 3908817206545046 a001 196418/3571*228826127^(7/10) 3908817206545046 a001 196418/3571*87403803^(14/19) 3908817206545049 a001 196418/3571*33385282^(7/9) 3908817206545066 a001 196418/3571*12752043^(14/17) 3908817206545186 a001 1134903170/3571*271443^(5/13) 3908817206545190 a001 196418/3571*4870847^(7/8) 3908817206546100 a001 196418/3571*1860498^(14/15) 3908817206549267 a001 433494437/3571*271443^(6/13) 3908817206551308 a001 267914296/3571*271443^(1/2) 3908817206553348 a001 165580141/3571*271443^(7/13) 3908817206555084 a001 53316291173/3571*103682^(1/12) 3908817206557429 a001 63245986/3571*271443^(8/13) 3908817206561511 a001 24157817/3571*271443^(9/13) 3908817206565600 a001 9227465/3571*271443^(10/13) 3908817206569734 a001 3524578/3571*271443^(11/13) 3908817206570234 a001 32951280099/3571*103682^(1/8) 3908817206574183 a001 1346269/3571*271443^(12/13) 3908817206577809 a001 4745030471581/121393 3908817206585385 a001 20365011074/3571*103682^(1/6) 3908817206600535 a001 12586269025/3571*103682^(5/24) 3908817206615686 a001 7778742049/3571*103682^(1/4) 3908817206630836 a001 4807526976/3571*103682^(7/24) 3908817206638066 a001 86267571272/3571*39603^(1/22) 3908817206645987 a001 2971215073/3571*103682^(1/3) 3908817206661137 a001 1836311903/3571*103682^(3/8) 3908817206663613 a001 75025/3571*7881196^(10/11) 3908817206663646 a001 1597/167761*(1/2+1/2*5^(1/2))^46 3908817206663646 a001 1597/167761*10749957122^(23/24) 3908817206663662 a001 75025/3571*20633239^(6/7) 3908817206663670 a001 75025/3571*141422324^(10/13) 3908817206663670 a001 75025/3571*2537720636^(2/3) 3908817206663670 a001 75025/3571*45537549124^(10/17) 3908817206663670 a001 75025/3571*312119004989^(6/11) 3908817206663670 a001 75025/3571*14662949395604^(10/21) 3908817206663670 a001 75025/3571*(1/2+1/2*5^(1/2))^30 3908817206663670 a001 75025/3571*192900153618^(5/9) 3908817206663670 a001 75025/3571*28143753123^(3/5) 3908817206663670 a001 75025/3571*10749957122^(5/8) 3908817206663670 a001 75025/3571*4106118243^(15/23) 3908817206663670 a001 75025/3571*1568397607^(15/22) 3908817206663670 a001 75025/3571*599074578^(5/7) 3908817206663670 a001 75025/3571*228826127^(3/4) 3908817206663670 a001 75025/3571*87403803^(15/19) 3908817206663673 a001 75025/3571*33385282^(5/6) 3908817206663691 a001 75025/3571*12752043^(15/17) 3908817206663824 a001 75025/3571*4870847^(15/16) 3908817206676288 a001 1134903170/3571*103682^(5/12) 3908817206691438 a001 701408733/3571*103682^(11/24) 3908817206706589 a001 433494437/3571*103682^(1/2) 3908817206721739 a001 267914296/3571*103682^(13/24) 3908817206736890 a001 165580141/3571*103682^(7/12) 3908817206751349 a001 53316291173/3571*39603^(1/11) 3908817206752040 a001 102334155/3571*103682^(5/8) 3908817206767191 a001 63245986/3571*103682^(2/3) 3908817206782341 a001 39088169/3571*103682^(17/24) 3908817206797493 a001 24157817/3571*103682^(3/4) 3908817206812639 a001 14930352/3571*103682^(19/24) 3908817206827802 a001 9227465/3571*103682^(5/6) 3908817206842919 a001 1597*103682^(7/8) 3908817206858157 a001 3524578/3571*103682^(11/12) 3908817206864633 a001 32951280099/3571*39603^(3/22) 3908817206873080 a001 2178309/3571*103682^(23/24) 3908817206888371 a001 906220181245/23184 3908817206977916 a001 20365011074/3571*39603^(2/11) 3908817206983154 a007 Real Root Of -28*x^4+120*x^3+628*x^2-801*x+977 3908817207091200 a001 12586269025/3571*39603^(5/22) 3908817207204483 a001 7778742049/3571*39603^(3/11) 3908817207317767 a001 4807526976/3571*39603^(7/22) 3908817207378885 a001 86267571272/3571*15127^(1/20) 3908817207431050 a001 2971215073/3571*39603^(4/11) 3908817207459328 a001 53316291173/24476*2207^(3/8) 3908817207476708 a001 1597/64079*312119004989^(4/5) 3908817207476708 a001 1597/64079*(1/2+1/2*5^(1/2))^44 3908817207476708 a001 1597/64079*23725150497407^(11/16) 3908817207476708 a001 1597/64079*73681302247^(11/13) 3908817207476708 a001 1597/64079*10749957122^(11/12) 3908817207476708 a001 1597/64079*4106118243^(22/23) 3908817207476732 a001 28657/3571*(1/2+1/2*5^(1/2))^32 3908817207476732 a001 28657/3571*23725150497407^(1/2) 3908817207476732 a001 28657/3571*505019158607^(4/7) 3908817207476732 a001 28657/3571*73681302247^(8/13) 3908817207476732 a001 28657/3571*10749957122^(2/3) 3908817207476732 a001 28657/3571*4106118243^(16/23) 3908817207476732 a001 28657/3571*1568397607^(8/11) 3908817207476732 a001 28657/3571*599074578^(16/21) 3908817207476732 a001 28657/3571*228826127^(4/5) 3908817207476732 a001 28657/3571*87403803^(16/19) 3908817207476735 a001 28657/3571*33385282^(8/9) 3908817207476755 a001 28657/3571*12752043^(16/17) 3908817207544334 a001 1836311903/3571*39603^(9/22) 3908817207657617 a001 1134903170/3571*39603^(5/11) 3908817207770901 a001 701408733/3571*39603^(1/2) 3908817207884184 a001 433494437/3571*39603^(6/11) 3908817207997467 a001 267914296/3571*39603^(13/22) 3908817208110751 a001 165580141/3571*39603^(7/11) 3908817208224034 a001 102334155/3571*39603^(15/22) 3908817208232987 a001 53316291173/3571*15127^(1/10) 3908817208337318 a001 63245986/3571*39603^(8/11) 3908817208450601 a001 39088169/3571*39603^(17/22) 3908817208563886 a001 24157817/3571*39603^(9/11) 3908817208677165 a001 14930352/3571*39603^(19/22) 3908817208790461 a001 9227465/3571*39603^(10/11) 3908817208903711 a001 1597*39603^(21/22) 3908817209016995 a001 692290615889/17711 3908817209087089 a001 32951280099/3571*15127^(3/20) 3908817209941191 a001 20365011074/3571*15127^(1/5) 3908817210795293 a001 12586269025/3571*15127^(1/4) 3908817211649395 a001 7778742049/3571*15127^(3/10) 3908817212503497 a001 4807526976/3571*15127^(7/20) 3908817213029341 a001 86267571272/3571*5778^(1/18) 3908817213049517 a001 1597/24476*2537720636^(14/15) 3908817213049517 a001 1597/24476*17393796001^(6/7) 3908817213049517 a001 1597/24476*45537549124^(14/17) 3908817213049517 a001 1597/24476*817138163596^(14/19) 3908817213049517 a001 1597/24476*14662949395604^(2/3) 3908817213049517 a001 1597/24476*(1/2+1/2*5^(1/2))^42 3908817213049517 a001 1597/24476*505019158607^(3/4) 3908817213049517 a001 1597/24476*192900153618^(7/9) 3908817213049517 a001 1597/24476*10749957122^(7/8) 3908817213049517 a001 1597/24476*4106118243^(21/23) 3908817213049517 a001 1597/24476*1568397607^(21/22) 3908817213049541 a001 10946/3571*45537549124^(2/3) 3908817213049541 a001 10946/3571*(1/2+1/2*5^(1/2))^34 3908817213049541 a001 10946/3571*10749957122^(17/24) 3908817213049541 a001 10946/3571*4106118243^(17/23) 3908817213049541 a001 10946/3571*1568397607^(17/22) 3908817213049541 a001 10946/3571*599074578^(17/21) 3908817213049541 a001 10946/3571*228826127^(17/20) 3908817213049542 a001 10946/3571*87403803^(17/19) 3908817213049545 a001 10946/3571*33385282^(17/18) 3908817213357599 a001 2971215073/3571*15127^(2/5) 3908817214211701 a001 1836311903/3571*15127^(9/20) 3908817215065803 a001 1134903170/3571*15127^(1/2) 3908817215919905 a001 701408733/3571*15127^(11/20) 3908817216774007 a001 433494437/3571*15127^(3/5) 3908817217628109 a001 267914296/3571*15127^(13/20) 3908817218482211 a001 165580141/3571*15127^(7/10) 3908817219085360 a001 1/322*(1/2*5^(1/2)+1/2)^24*3^(3/17) 3908817219336313 a001 102334155/3571*15127^(3/4) 3908817219533899 a001 53316291173/3571*5778^(1/9) 3908817220190415 a001 63245986/3571*15127^(4/5) 3908817221044517 a001 39088169/3571*15127^(17/20) 3908817221898620 a001 24157817/3571*15127^(9/10) 3908817222752718 a001 14930352/3571*15127^(19/20) 3908817223606797 a001 39088170+5^(1/2) 3908817223606799 a001 264431485177/6765 3908817226038457 a001 32951280099/3571*5778^(1/6) 3908817226293095 m001 (-MertensB2+OneNinth)/(cos(1)+FeigenbaumC) 3908817230240890 a007 Real Root Of 710*x^4-859*x^3+900*x^2+528*x+1 3908817232543015 a001 20365011074/3571*5778^(2/9) 3908817233069777 p003 LerchPhi(1/12,3,665/223) 3908817234008292 a001 20365011074/15127*2207^(7/16) 3908817234319813 a001 2971215073/5778*2207^(9/16) 3908817239047573 a001 12586269025/3571*5778^(5/18) 3908817241298096 m005 (1/2*Pi+1/9)/(5/6*Zeta(3)-4/7) 3908817245552132 a001 7778742049/3571*5778^(1/3) 3908817245655933 a001 20365011074/9349*2207^(3/8) 3908817246154758 s002 sum(A097073[n]/((exp(n)+1)*n),n=1..infinity) 3908817248598097 a001 53316291173/39603*2207^(7/16) 3908817249488136 m001 TravellingSalesman^Mills/(Porter^Mills) 3908817250726721 a001 139583862445/103682*2207^(7/16) 3908817251037283 a001 365435296162/271443*2207^(7/16) 3908817251082593 a001 956722026041/710647*2207^(7/16) 3908817251089204 a001 2504730781961/1860498*2207^(7/16) 3908817251090168 a001 6557470319842/4870847*2207^(7/16) 3908817251090396 a001 10610209857723/7881196*2207^(7/16) 3908817251090764 a001 1346269*2207^(7/16) 3908817251093289 a001 1548008755920/1149851*2207^(7/16) 3908817251110596 a001 591286729879/439204*2207^(7/16) 3908817251229221 a001 225851433717/167761*2207^(7/16) 3908817251246122 a001 1597/9349*2537720636^(8/9) 3908817251246122 a001 1597/9349*312119004989^(8/11) 3908817251246122 a001 1597/9349*(1/2+1/2*5^(1/2))^40 3908817251246122 a001 1597/9349*23725150497407^(5/8) 3908817251246122 a001 1597/9349*73681302247^(10/13) 3908817251246122 a001 1597/9349*28143753123^(4/5) 3908817251246122 a001 1597/9349*10749957122^(5/6) 3908817251246122 a001 1597/9349*4106118243^(20/23) 3908817251246122 a001 1597/9349*1568397607^(10/11) 3908817251246122 a001 1597/9349*599074578^(20/21) 3908817251246145 a001 4181/3571*141422324^(12/13) 3908817251246146 a001 4181/3571*2537720636^(4/5) 3908817251246146 a001 4181/3571*45537549124^(12/17) 3908817251246146 a001 4181/3571*14662949395604^(4/7) 3908817251246146 a001 4181/3571*(1/2+1/2*5^(1/2))^36 3908817251246146 a001 4181/3571*505019158607^(9/14) 3908817251246146 a001 4181/3571*192900153618^(2/3) 3908817251246146 a001 4181/3571*73681302247^(9/13) 3908817251246146 a001 4181/3571*10749957122^(3/4) 3908817251246146 a001 4181/3571*4106118243^(18/23) 3908817251246146 a001 4181/3571*1568397607^(9/11) 3908817251246146 a001 4181/3571*599074578^(6/7) 3908817251246146 a001 4181/3571*228826127^(9/10) 3908817251246146 a001 4181/3571*87403803^(18/19) 3908817252042282 a001 86267571272/64079*2207^(7/16) 3908817252056690 a001 4807526976/3571*5778^(7/18) 3908817255200155 r005 Im(z^2+c),c=-15/106+27/47*I,n=55 3908817256680546 a001 86267571272/3571*2207^(1/16) 3908817257615092 a001 32951280099/24476*2207^(7/16) 3908817258561248 a001 2971215073/3571*5778^(4/9) 3908817259507605 a003 sin(Pi*23/84)/cos(Pi*40/81) 3908817265065806 a001 1836311903/3571*5778^(1/2) 3908817271570365 a001 1134903170/3571*5778^(5/9) 3908817275800818 a001 365435296162/15127*843^(1/14) 3908817276156381 a001 20365011074/2207*843^(3/14) 3908817278074923 a001 701408733/3571*5778^(11/18) 3908817278827021 h001 (1/11*exp(2)+3/5)/(7/8*exp(1)+7/8) 3908817284122125 m001 ZetaR(2)^(HardyLittlewoodC5/FeigenbaumB) 3908817284164056 a001 12586269025/15127*2207^(1/2) 3908817284475577 a001 1836311903/5778*2207^(5/8) 3908817284579481 a001 433494437/3571*5778^(2/3) 3908817287126913 a005 (1/sin(85/189*Pi))^1948 3908817288695103 m005 (1/3*Catalan+1/3)/(5/8*2^(1/2)+3/4) 3908817290390622 a001 956722026041/39603*843^(1/14) 3908817291084039 a001 267914296/3571*5778^(13/18) 3908817292519246 a001 2504730781961/103682*843^(1/14) 3908817292829808 a001 6557470319842/271443*843^(1/14) 3908817292903122 a001 10610209857723/439204*843^(1/14) 3908817293021746 a001 4052739537881/167761*843^(1/14) 3908817293834808 a001 1548008755920/64079*843^(1/14) 3908817295811697 a001 12586269025/9349*2207^(7/16) 3908817296185580 m001 GaussKuzminWirsing*Landau^ReciprocalFibonacci 3908817297588598 a001 165580141/3571*5778^(7/9) 3908817298753861 a001 10983760033/13201*2207^(1/2) 3908817299407618 a001 591286729879/24476*843^(1/14) 3908817300882485 a001 43133785636/51841*2207^(1/2) 3908817301193047 a001 75283811239/90481*2207^(1/2) 3908817301238357 a001 591286729879/710647*2207^(1/2) 3908817301244968 a001 832040*2207^(1/2) 3908817301245933 a001 4052739537881/4870847*2207^(1/2) 3908817301246073 a001 3536736619241/4250681*2207^(1/2) 3908817301246160 a001 3278735159921/3940598*2207^(1/2) 3908817301246529 a001 2504730781961/3010349*2207^(1/2) 3908817301249054 a001 956722026041/1149851*2207^(1/2) 3908817301266361 a001 182717648081/219602*2207^(1/2) 3908817301384985 a001 139583862445/167761*2207^(1/2) 3908817301517230 m001 1/GAMMA(5/6)*GAMMA(1/12)/ln(sinh(1))^2 3908817301722276 r009 Re(z^3+c),c=-37/56+37/45*I,n=2 3908817302198047 a001 53316291173/64079*2207^(1/2) 3908817304093156 a001 102334155/3571*5778^(5/6) 3908817306836311 a001 53316291173/3571*2207^(1/8) 3908817307770856 a001 10182505537/12238*2207^(1/2) 3908817310597715 a001 63245986/3571*5778^(8/9) 3908817317102272 a001 39088169/3571*5778^(17/18) 3908817320190525 a001 165580141/1364*1364^(4/5) 3908817323606811 a001 50501919821/1292 3908817326992876 r002 57th iterates of z^2 + 3908817334319821 a001 7778742049/15127*2207^(9/16) 3908817334631342 a001 567451585/2889*2207^(11/16) 3908817337402874 m005 (1/3*Catalan-1/10)/(5/7*Zeta(3)-1/3) 3908817337604223 a001 225851433717/9349*843^(1/14) 3908817345967462 a001 7778742049/9349*2207^(1/2) 3908817347213595 a001 39088169+2*5^(1/2) 3908817348909626 a001 20365011074/39603*2207^(9/16) 3908817351038250 a001 53316291173/103682*2207^(9/16) 3908817351348812 a001 139583862445/271443*2207^(9/16) 3908817351394123 a001 365435296162/710647*2207^(9/16) 3908817351400733 a001 956722026041/1860498*2207^(9/16) 3908817351401698 a001 2504730781961/4870847*2207^(9/16) 3908817351401838 a001 6557470319842/12752043*2207^(9/16) 3908817351401872 a001 10610209857723/20633239*2207^(9/16) 3908817351401925 a001 4052739537881/7881196*2207^(9/16) 3908817351402294 a001 1548008755920/3010349*2207^(9/16) 3908817351404819 a001 514229*2207^(9/16) 3908817351422126 a001 225851433717/439204*2207^(9/16) 3908817351540750 a001 86267571272/167761*2207^(9/16) 3908817352353812 a001 32951280099/64079*2207^(9/16) 3908817356992076 a001 32951280099/3571*2207^(3/16) 3908817357655883 r005 Re(z^2+c),c=-57/106+7/51*I,n=61 3908817357926622 a001 12586269025/24476*2207^(9/16) 3908817358313949 l002 polylog(5,22/57) 3908817359415664 r005 Im(z^2+c),c=-13/25+17/39*I,n=7 3908817364163067 m001 (Artin+ArtinRank2)/(ErdosBorwein-MertensB3) 3908817373243393 m001 1/sin(Pi/5)*arctan(1/2)^2/exp(sqrt(5)) 3908817384475587 a001 686789568/2161*2207^(5/8) 3908817384787108 a001 233802911/1926*2207^(3/4) 3908817385410196 a001 78176341/2+3/2*5^(1/2) 3908817396123228 a001 4807526976/9349*2207^(9/16) 3908817399065392 a001 12586269025/39603*2207^(5/8) 3908817400000001 a001 24157827/2+24157817/2*5^(1/2) 3908817401194016 a001 32951280099/103682*2207^(5/8) 3908817401504578 a001 86267571272/271443*2207^(5/8) 3908817401549888 a001 317811*2207^(5/8) 3908817401556499 a001 591286729879/1860498*2207^(5/8) 3908817401557463 a001 1548008755920/4870847*2207^(5/8) 3908817401557604 a001 4052739537881/12752043*2207^(5/8) 3908817401557625 a001 1515744265389/4769326*2207^(5/8) 3908817401557637 a001 6557470319842/20633239*2207^(5/8) 3908817401557691 a001 2504730781961/7881196*2207^(5/8) 3908817401558060 a001 956722026041/3010349*2207^(5/8) 3908817401560585 a001 365435296162/1149851*2207^(5/8) 3908817401577892 a001 139583862445/439204*2207^(5/8) 3908817401696516 a001 53316291173/167761*2207^(5/8) 3908817402074480 r009 Im(z^3+c),c=-31/74+17/50*I,n=44 3908817402509578 a001 20365011074/64079*2207^(5/8) 3908817403034031 m005 (1/3*gamma-2/9)/(6*2^(1/2)-6/7) 3908817407147842 a001 20365011074/3571*2207^(1/4) 3908817408082387 a001 7778742049/24476*2207^(5/8) 3908817429994615 m006 (Pi^2+3/5)/(5*exp(2*Pi)+1) 3908817434631353 a001 2971215073/15127*2207^(11/16) 3908817434942874 a001 433494437/5778*2207^(13/16) 3908817446278994 a001 2971215073/9349*2207^(5/8) 3908817449221158 a001 7778742049/39603*2207^(11/16) 3908817451349782 a001 10182505537/51841*2207^(11/16) 3908817451660344 a001 53316291173/271443*2207^(11/16) 3908817451705655 a001 139583862445/710647*2207^(11/16) 3908817451712265 a001 182717648081/930249*2207^(11/16) 3908817451713230 a001 956722026041/4870847*2207^(11/16) 3908817451713370 a001 2504730781961/12752043*2207^(11/16) 3908817451713391 a001 3278735159921/16692641*2207^(11/16) 3908817451713396 a001 10610209857723/54018521*2207^(11/16) 3908817451713404 a001 4052739537881/20633239*2207^(11/16) 3908817451713457 a001 387002188980/1970299*2207^(11/16) 3908817451713826 a001 591286729879/3010349*2207^(11/16) 3908817451716351 a001 225851433717/1149851*2207^(11/16) 3908817451733658 a001 196418*2207^(11/16) 3908817451852282 a001 32951280099/167761*2207^(11/16) 3908817452665344 a001 12586269025/64079*2207^(11/16) 3908817456102060 m001 (ArtinRank2+LandauRamanujan)/Artin 3908817457303608 a001 12586269025/3571*2207^(5/16) 3908817458238154 a001 1201881744/6119*2207^(11/16) 3908817460254044 a001 66978574/341*1364^(11/15) 3908817471800087 r005 Im(z^2+c),c=-20/27+11/58*I,n=36 3908817484787120 a001 1836311903/15127*2207^(3/4) 3908817485098641 a001 133957148/2889*2207^(7/8) 3908817487269152 b008 47/22+Sqrt[Pi] 3908817488064295 r005 Re(z^2+c),c=-57/106+7/51*I,n=59 3908817489764373 a007 Real Root Of 536*x^4-688*x^3-304*x^2-880*x+419 3908817491546681 m004 -125*Pi-Sqrt[5]*Pi+(25*Pi*Sin[Sqrt[5]*Pi])/6 3908817496434761 a001 1836311903/9349*2207^(11/16) 3908817498018791 m006 (5/6*Pi^2-3)/(4*Pi+4/5) 3908817498018791 m008 (5/6*Pi^2-3)/(4*Pi+4/5) 3908817499376925 a001 1602508992/13201*2207^(3/4) 3908817501505549 a001 12586269025/103682*2207^(3/4) 3908817501816111 a001 121393*2207^(3/4) 3908817501861422 a001 86267571272/710647*2207^(3/4) 3908817501868032 a001 75283811239/620166*2207^(3/4) 3908817501868997 a001 591286729879/4870847*2207^(3/4) 3908817501869137 a001 516002918640/4250681*2207^(3/4) 3908817501869158 a001 4052739537881/33385282*2207^(3/4) 3908817501869161 a001 3536736619241/29134601*2207^(3/4) 3908817501869163 a001 6557470319842/54018521*2207^(3/4) 3908817501869171 a001 2504730781961/20633239*2207^(3/4) 3908817501869224 a001 956722026041/7881196*2207^(3/4) 3908817501869593 a001 365435296162/3010349*2207^(3/4) 3908817501872118 a001 139583862445/1149851*2207^(3/4) 3908817501889425 a001 53316291173/439204*2207^(3/4) 3908817502008049 a001 20365011074/167761*2207^(3/4) 3908817502821111 a001 7778742049/64079*2207^(3/4) 3908817507459375 a001 7778742049/3571*2207^(3/8) 3908817508393921 a001 2971215073/24476*2207^(3/4) 3908817513049565 a001 1597/3571*817138163596^(2/3) 3908817513049565 a001 1597/3571*(1/2+1/2*5^(1/2))^38 3908817513049565 a001 1597/3571*10749957122^(19/24) 3908817513049565 a001 1597/3571*4106118243^(19/23) 3908817513049565 a001 1597/3571*1568397607^(19/22) 3908817513049565 a001 1597/3571*599074578^(19/21) 3908817513049565 a001 1597/3571*228826127^(19/20) 3908817533037766 m005 (-1/5+3/10*5^(1/2))/(37/40+1/8*5^(1/2)) 3908817534892704 m006 (2/3*Pi+5)/(1/3*exp(2*Pi)+3) 3908817534942887 a001 1134903170/15127*2207^(13/16) 3908817535254408 a001 165580141/5778*2207^(15/16) 3908817540800533 r002 7th iterates of z^2 + 3908817544378368 r005 Re(z^2+c),c=-9/17+10/47*I,n=64 3908817544993937 a005 (1/cos(25/124*Pi))^17 3908817546590528 a001 1134903170/9349*2207^(3/4) 3908817547213595 a001 39088171+2*5^(1/2) 3908817549532693 a001 2971215073/39603*2207^(13/16) 3908817551661317 a001 7778742049/103682*2207^(13/16) 3908817551971879 a001 20365011074/271443*2207^(13/16) 3908817552017189 a001 53316291173/710647*2207^(13/16) 3908817552023800 a001 139583862445/1860498*2207^(13/16) 3908817552024764 a001 365435296162/4870847*2207^(13/16) 3908817552024905 a001 956722026041/12752043*2207^(13/16) 3908817552024926 a001 2504730781961/33385282*2207^(13/16) 3908817552024929 a001 6557470319842/87403803*2207^(13/16) 3908817552024929 a001 10610209857723/141422324*2207^(13/16) 3908817552024931 a001 4052739537881/54018521*2207^(13/16) 3908817552024938 a001 140728068720/1875749*2207^(13/16) 3908817552024992 a001 591286729879/7881196*2207^(13/16) 3908817552025361 a001 225851433717/3010349*2207^(13/16) 3908817552027886 a001 86267571272/1149851*2207^(13/16) 3908817552045193 a001 32951280099/439204*2207^(13/16) 3908817552163817 a001 75025*2207^(13/16) 3908817552976879 a001 4807526976/64079*2207^(13/16) 3908817554136282 r005 Im(z^2+c),c=-11/10+7/151*I,n=22 3908817556100857 m001 (Riemann1stZero+TwinPrimes)/(Pi+Cahen) 3908817557615143 a001 4807526976/3571*2207^(7/16) 3908817558549689 a001 1836311903/24476*2207^(13/16) 3908817568683697 a001 43133785636/2889*843^(1/7) 3908817570820393 a001 39088169+3*5^(1/2) 3908817574437536 r002 13th iterates of z^2 + 3908817574606495 m006 (2/3*Pi-2/5)/(1/2*Pi^2-3/5) 3908817574606495 m008 (2/3*Pi-2/5)/(1/2*Pi^2-3/5) 3908817576813464 r002 15th iterates of z^2 + 3908817580746965 r005 Im(z^2+c),c=13/102+16/39*I,n=34 3908817585098655 a001 701408733/15127*2207^(7/8) 3908817585410334 a001 12860009856/329 3908817590895617 r009 Im(z^3+c),c=-13/106+25/36*I,n=2 3908817594536721 m001 1/exp(Rabbit)/Niven*FeigenbaumKappa 3908817596065900 r005 Re(z^2+c),c=-9/17+10/47*I,n=47 3908817596746297 a001 701408733/9349*2207^(13/16) 3908817597044086 r009 Im(z^3+c),c=-31/74+17/50*I,n=41 3908817599407672 a001 86267571272/3571*843^(1/14) 3908817599688461 a001 1836311903/39603*2207^(7/8) 3908817600317567 a001 433494437/1364*1364^(2/3) 3908817601817085 a001 46368*2207^(7/8) 3908817602127647 a001 12586269025/271443*2207^(7/8) 3908817602172958 a001 32951280099/710647*2207^(7/8) 3908817602179568 a001 43133785636/930249*2207^(7/8) 3908817602180533 a001 225851433717/4870847*2207^(7/8) 3908817602180673 a001 591286729879/12752043*2207^(7/8) 3908817602180694 a001 774004377960/16692641*2207^(7/8) 3908817602180697 a001 4052739537881/87403803*2207^(7/8) 3908817602180697 a001 225749145909/4868641*2207^(7/8) 3908817602180698 a001 3278735159921/70711162*2207^(7/8) 3908817602180699 a001 2504730781961/54018521*2207^(7/8) 3908817602180707 a001 956722026041/20633239*2207^(7/8) 3908817602180760 a001 182717648081/3940598*2207^(7/8) 3908817602181129 a001 139583862445/3010349*2207^(7/8) 3908817602183654 a001 53316291173/1149851*2207^(7/8) 3908817602200961 a001 10182505537/219602*2207^(7/8) 3908817602319585 a001 7778742049/167761*2207^(7/8) 3908817603132647 a001 2971215073/64079*2207^(7/8) 3908817603178881 m001 (-sin(1/5*Pi)+Kolakoski)/(Psi(2,1/3)+5^(1/2)) 3908817607770911 a001 2971215073/3571*2207^(1/2) 3908817608705457 a001 567451585/12238*2207^(7/8) 3908817613336640 l006 ln(5710/8441) 3908817617923103 p003 LerchPhi(1/2,5,74/61) 3908817617946947 m005 (1/2*gamma+1)/(2/11*Zeta(3)+1/9) 3908817619118079 r005 Im(z^2+c),c=5/22+8/23*I,n=14 3908817630598889 m004 5*Pi+30*Sqrt[5]*Pi-Sinh[Sqrt[5]*Pi]/3 3908817635254424 a001 433494437/15127*2207^(15/16) 3908817642517034 a001 514229/3*521^(46/53) 3908817646902066 a001 433494437/9349*2207^(7/8) 3908817649844230 a001 1134903170/39603*2207^(15/16) 3908817651972854 a001 2971215073/103682*2207^(15/16) 3908817652283416 a001 7778742049/271443*2207^(15/16) 3908817652328726 a001 20365011074/710647*2207^(15/16) 3908817652335337 a001 53316291173/1860498*2207^(15/16) 3908817652336302 a001 139583862445/4870847*2207^(15/16) 3908817652336442 a001 365435296162/12752043*2207^(15/16) 3908817652336463 a001 956722026041/33385282*2207^(15/16) 3908817652336466 a001 2504730781961/87403803*2207^(15/16) 3908817652336466 a001 6557470319842/228826127*2207^(15/16) 3908817652336466 a001 10610209857723/370248451*2207^(15/16) 3908817652336467 a001 4052739537881/141422324*2207^(15/16) 3908817652336468 a001 1548008755920/54018521*2207^(15/16) 3908817652336476 a001 591286729879/20633239*2207^(15/16) 3908817652336529 a001 225851433717/7881196*2207^(15/16) 3908817652336898 a001 86267571272/3010349*2207^(15/16) 3908817652339423 a001 32951280099/1149851*2207^(15/16) 3908817652356730 a001 12586269025/439204*2207^(15/16) 3908817652475354 a001 4807526976/167761*2207^(15/16) 3908817653288416 a001 28657*2207^(15/16) 3908817655025377 m001 (gamma(2)-MertensB1)/(RenyiParking-ZetaQ(2)) 3908817657926680 a001 1836311903/3571*2207^(9/16) 3908817658533623 m001 cos(1/12*Pi)^ErdosBorwein/(Paris^ErdosBorwein) 3908817658861226 a001 701408733/24476*2207^(15/16) 3908817668683714 a001 32264490531/2161*843^(1/7) 3908817669039277 a001 12586269025/2207*843^(2/7) 3908817669058912 m009 (5/6*Psi(1,1/3)-5/6)/(2*Psi(1,1/3)-4/5) 3908817682952210 a001 12586269025/843*322^(1/6) 3908817683273520 a001 591286729879/39603*843^(1/7) 3908817685402144 a001 774004377960/51841*843^(1/7) 3908817685410334 a001 12860010185/329 3908817685712706 a001 4052739537881/271443*843^(1/7) 3908817685758017 a001 1515744265389/101521*843^(1/7) 3908817685786020 a001 3278735159921/219602*843^(1/7) 3908817685904644 a001 2504730781961/167761*843^(1/7) 3908817686717706 a001 956722026041/64079*843^(1/7) 3908817692290516 a001 182717648081/12238*843^(1/7) 3908817694356168 a007 Real Root Of -902*x^4+694*x^3+21*x^2+493*x+252 3908817697057835 a001 267914296/9349*2207^(15/16) 3908817697967176 a001 1364/3*514229^(31/45) 3908817700000001 a001 24157833/2+24157817/2*5^(1/2) 3908817702431610 a001 12860010241/329 3908817702492401 a001 2/987*(1/2+1/2*5^(1/2))^54 3908817702492401 a001 64300051206/329*8^(1/3) 3908817702532928 a001 38580030724/987 3908817702634245 a001 38580030725/987 3908817703444782 a001 38580030733/987 3908817703550843 r005 Re(z^2+c),c=3/19+15/31*I,n=46 3908817708082450 a001 1134903170/3571*2207^(5/8) 3908817709016994 a001 78176343/2+5/2*5^(1/2) 3908817709017223 a001 38580030788/987 3908817713683363 m001 1/ln(Pi)/GAMMA(17/24)^2*exp(1)^2 3908817715243318 r005 Im(z^2+c),c=-17/90+37/59*I,n=41 3908817722093789 r005 Re(z^2+c),c=23/94+12/31*I,n=21 3908817729872311 m001 Pi^Bloch/(ZetaP(3)^Bloch) 3908817730487126 a001 139583862445/9349*843^(1/7) 3908817740345774 h001 (-6*exp(3)-12)/(-11*exp(1)-4) 3908817740381096 a001 701408733/1364*1364^(3/5) 3908817747213779 a001 38580031165/987 3908817749780975 h001 (7/9*exp(2)+5/7)/(5/9*exp(1)+1/7) 3908817758238220 a001 701408733/3571*2207^(11/16) 3908817759837974 a007 Real Root Of -355*x^4-63*x^3-529*x^2+828*x+409 3908817762357392 r002 63th iterates of z^2 + 3908817765657336 m001 (Grothendieck+MertensB2)/(Rabbit+Trott) 3908817766437125 m001 (Thue+ZetaP(2))/(ln(5)+KhinchinHarmonic) 3908817772405133 h001 (3/11*exp(1)+7/12)/(3/7*exp(2)+2/9) 3908817776148116 r005 Im(z^2+c),c=3/29+29/51*I,n=24 3908817794427190 a001 39088169+4*5^(1/2) 3908817801524644 s001 sum(exp(-4*Pi/5)^n*A218190[n],n=1..infinity) 3908817808393991 a001 433494437/3571*2207^(3/4) 3908817810923731 r005 Re(z^2+c),c=-19/36+13/64*I,n=23 3908817814027371 m001 1/sqrt(2)/Lehmer*ln(sqrt(Pi))^2 3908817825224492 r002 47th iterates of z^2 + 3908817825224492 r002 47th iterates of z^2 + 3908817845655897 g001 abs(GAMMA(46/15+I*13/4)) 3908817850480551 m001 exp(1/exp(1))*MasserGramainDelta*ZetaR(2) 3908817858549763 a001 267914296/3571*2207^(13/16) 3908817871262079 r005 Re(z^2+c),c=-71/122+17/46*I,n=37 3908817874479197 l006 ln(25/1246) 3908817874720020 r005 Re(z^2+c),c=11/86+27/61*I,n=54 3908817876080371 r005 Im(z^2+c),c=-1/15+32/59*I,n=31 3908817880444630 a001 567451585/682*1364^(8/15) 3908817887556727 m001 cos(1)/Si(Pi)*Totient 3908817888104144 r005 Im(z^2+c),c=13/82+17/44*I,n=49 3908817891756041 a007 Real Root Of -702*x^4+215*x^3+804*x^2+800*x-432 3908817893247608 a001 32951280099/1364*521^(1/13) 3908817899577961 s001 sum(exp(-3*Pi)^n*A230867[n],n=1..infinity) 3908817899720375 m005 (3*exp(1)-3/4)/(2/3*Pi-1/5) 3908817899838896 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(3/8*I*Pi),n=57 3908817908705535 a001 165580141/3571*2207^(7/8) 3908817909659082 a007 Real Root Of -960*x^4+161*x^3-878*x^2+721*x+448 3908817911398197 r005 Im(z^2+c),c=7/34+17/49*I,n=30 3908817925180214 l006 ln(3799/5616) 3908817940813559 m001 (FeigenbaumKappa-Kac)/(ln(2)+GAMMA(19/24)) 3908817947382845 m005 (1/2*Zeta(3)+10/11)/(3/8*2^(1/2)-11/12) 3908817958861308 a001 102334155/3571*2207^(15/16) 3908817961566623 a001 53316291173/5778*843^(3/14) 3908817962022357 m001 KhinchinLevy^GAMMA(13/24)+Sierpinski 3908817965145848 m005 (1/2*5^(1/2)-7/10)/(7/10*exp(1)-5/6) 3908817979959729 r005 Im(z^2+c),c=-39/110+33/58*I,n=19 3908817992290601 a001 53316291173/3571*843^(1/7) 3908818004956174 r005 Im(z^2+c),c=5/28+10/27*I,n=22 3908818006564858 a007 Real Root Of 390*x^4-856*x^3+385*x^2-839*x-447 3908818007705189 a001 63245986/521*521^(12/13) 3908818009017223 a001 38580033749/987 3908818010526630 r005 Im(z^2+c),c=-2/13+31/51*I,n=59 3908818018033988 a001 39088169+5*5^(1/2) 3908818020323611 p003 LerchPhi(1/10,1,616/223) 3908818020508168 a001 1836311903/1364*1364^(7/15) 3908818030556953 a007 Real Root Of -166*x^4-702*x^3-144*x^2+381*x+516 3908818032623792 a001 78176345/2+7/2*5^(1/2) 3908818034331096 a007 Real Root Of 489*x^4-170*x^3+607*x^2+602*x+121 3908818034456004 r005 Re(z^2+c),c=-57/106+8/57*I,n=32 3908818040153732 a007 Real Root Of -194*x^4-808*x^3-327*x^2-695*x-688 3908818047779047 r005 Re(z^2+c),c=-15/34+5/18*I,n=6 3908818056896432 r005 Im(z^2+c),c=-19/34+5/71*I,n=39 3908818059836603 m001 (2^(1/2)-BesselI(1,1))/(FeigenbaumB+Totient) 3908818061566650 a001 139583862445/15127*843^(3/14) 3908818061922213 a001 7778742049/2207*843^(5/14) 3908818070787624 r005 Re(z^2+c),c=-73/106+1/62*I,n=14 3908818076156457 a001 365435296162/39603*843^(3/14) 3908818078285081 a001 956722026041/103682*843^(3/14) 3908818078595644 a001 2504730781961/271443*843^(3/14) 3908818078640954 a001 6557470319842/710647*843^(3/14) 3908818078651650 a001 10610209857723/1149851*843^(3/14) 3908818078668957 a001 4052739537881/439204*843^(3/14) 3908818078787582 a001 140728068720/15251*843^(3/14) 3908818079600644 a001 591286729879/64079*843^(3/14) 3908818085173454 a001 7787980473/844*843^(3/14) 3908818096975473 r005 Re(z^2+c),c=-59/110+20/63*I,n=23 3908818104591754 m001 (ZetaP(2)+ZetaP(4))/(Cahen+Rabbit) 3908818115051991 a007 Real Root Of 288*x^4-936*x^3-417*x^2-714*x-278 3908818116908168 m001 (-FeigenbaumMu+KomornikLoreti)/(1-Backhouse) 3908818123370067 a001 86267571272/9349*843^(3/14) 3908818146638744 a001 55/521*7^(37/55) 3908818152989708 m001 (GAMMA(5/6)+GAMMA(23/24))/Psi(2,1/3) 3908818160571712 a001 2971215073/1364*1364^(2/5) 3908818168415586 r005 Re(z^2+c),c=-33/64+17/57*I,n=56 3908818172915756 b008 4-1/(19*EulerGamma) 3908818192681071 m001 (3^(1/3))*DuboisRaymond^2*ln(BesselJ(0,1))^2 3908818194427190 a001 39088173+4*5^(1/2) 3908818198459447 a001 610/2207*2537720636^(13/15) 3908818198459447 a001 610/2207*45537549124^(13/17) 3908818198459447 a001 610/2207*14662949395604^(13/21) 3908818198459447 a001 610/2207*(1/2+1/2*5^(1/2))^39 3908818198459447 a001 610/2207*192900153618^(13/18) 3908818198459447 a001 610/2207*73681302247^(3/4) 3908818198459447 a001 610/2207*10749957122^(13/16) 3908818198459447 a001 610/2207*599074578^(13/14) 3908818198460411 a001 987/1364*(1/2+1/2*5^(1/2))^37 3908818200000001 a001 24157843/2+24157817/2*5^(1/2) 3908818220014998 m005 (1/2*Pi+7/9)/(1/2*Catalan+1/7) 3908818223329351 m001 (Thue+ZetaQ(4))/(ln(5)+Lehmer) 3908818230508481 m006 (2/5*Pi+2/3)/(1/4/Pi-5) 3908818230993457 r005 Re(z^2+c),c=-33/34+19/120*I,n=34 3908818234798622 r002 29th iterates of z^2 + 3908818235015293 m001 1/GAMMA(3/4)^2/ln(Artin)/sqrt(3) 3908818236009411 r002 14th iterates of z^2 + 3908818238004553 m001 (MasserGramain+RenyiParking)/(1-Cahen) 3908818238284971 l006 ln(5687/8407) 3908818260127857 m001 (cos(1/12*Pi)+Bloch)/(5^(1/2)+3^(1/3)) 3908818268052670 m001 (Paris-StolarskyHarborth)/(Pi+Mills) 3908818272144764 r002 11th iterates of z^2 + 3908818276636554 r002 45i'th iterates of 2*x/(1-x^2) of 3908818281396855 m001 (Kolakoski+Mills)/(Psi(2,1/3)+exp(1/Pi)) 3908818281512923 a007 Real Root Of 482*x^4+302*x^3-767*x^2-990*x-263 3908818282667866 m001 (Salem+ZetaP(2))/(FeigenbaumMu+Gompertz) 3908818289162682 m001 exp(Riemann2ndZero)^2/Cahen*Salem^2 3908818300635260 a001 1201881744/341*1364^(1/3) 3908818311637335 r005 Re(z^2+c),c=-45/94+14/33*I,n=35 3908818323526915 m001 (-GAMMA(2/3)+5)/(-BesselI(0,1)+1/3) 3908818323813103 a001 5/843*15127^(29/43) 3908818354449588 a001 10983760033/1926*843^(2/7) 3908818354870177 m001 (FeigenbaumD+Otter)/(exp(1/exp(1))-gamma(3)) 3908818357357025 r005 Im(z^2+c),c=17/56+15/61*I,n=38 3908818367911461 r002 12th iterates of z^2 + 3908818375695842 m005 (1/3*gamma-3/7)/(-31/180+1/20*5^(1/2)) 3908818381864083 r005 Re(z^2+c),c=-14/27+19/54*I,n=28 3908818383211745 a001 161/5473*7778742049^(6/19) 3908818385173569 a001 32951280099/3571*843^(3/14) 3908818392714090 r005 Im(z^2+c),c=7/25+17/62*I,n=36 3908818403481338 s002 sum(A064979[n]/((2*n)!),n=1..infinity) 3908818404038463 r002 58th iterates of z^2 + 3908818424918323 a001 2207/233*2178309^(13/51) 3908818433869704 m005 (1/3*Pi-2/9)/(4/9*Pi+5/7) 3908818436316378 m001 (2^(1/3))*exp(Riemann3rdZero)^2*BesselJ(0,1)^2 3908818436585165 r005 Re(z^2+c),c=21/86+1/51*I,n=12 3908818440698814 a001 7778742049/1364*1364^(4/15) 3908818454449625 a001 86267571272/15127*843^(2/7) 3908818454805188 a001 4807526976/2207*843^(3/7) 3908818464485344 a007 Real Root Of 187*x^4+620*x^3-418*x^2-83*x-564 3908818465247584 a001 39088169+7*5^(1/2) 3908818469039434 a001 75283811239/13201*843^(2/7) 3908818471168058 a001 591286729879/103682*843^(2/7) 3908818471478621 a001 516002918640/90481*843^(2/7) 3908818471523931 a001 4052739537881/710647*843^(2/7) 3908818471530542 a001 3536736619241/620166*843^(2/7) 3908818471534627 a001 6557470319842/1149851*843^(2/7) 3908818471551934 a001 2504730781961/439204*843^(2/7) 3908818471670558 a001 956722026041/167761*843^(2/7) 3908818472483621 a001 365435296162/64079*843^(2/7) 3908818472986819 r004 Im(z^2+c),c=1/14+9/20*I,z(0)=I,n=40 3908818478056432 a001 139583862445/24476*843^(2/7) 3908818498549248 r005 Im(z^2+c),c=-17/78+3/56*I,n=10 3908818500526918 s002 sum(A161324[n]/(exp(n)-1),n=1..infinity) 3908818504628297 m005 (1/2*5^(1/2)+2/9)/(2/11*Pi-4) 3908818504670945 a007 Real Root Of 274*x^4+954*x^3-386*x^2+254*x-98 3908818511577566 p003 LerchPhi(1/125,3,40/63) 3908818516253049 a001 53316291173/9349*843^(2/7) 3908818525885002 a007 Real Root Of -935*x^4+907*x^3-734*x^2-796*x-123 3908818535417951 a007 Real Root Of 609*x^4-219*x^3+202*x^2-171*x-125 3908818548318947 r005 Im(z^2+c),c=-21/82+19/32*I,n=6 3908818548970910 r002 14th iterates of z^2 + 3908818557016719 m001 FeigenbaumC/(2*Pi/GAMMA(5/6)-ln(2^(1/2)+1)) 3908818565411825 m001 GAMMA(13/24)^LambertW(1)+Sierpinski 3908818580762373 a001 1144206275/124*1364^(1/5) 3908818591033374 r002 10th iterates of z^2 + 3908818597077894 r005 Im(z^2+c),c=3/122+25/52*I,n=61 3908818607595887 m001 (3^(1/2)-GaussKuzminWirsing)/(-Niven+Totient) 3908818610929288 m001 (sin(1)+Backhouse)/sin(1/5*Pi) 3908818610929288 m001 (sin(1)+Backhouse)/sin(Pi/5) 3908818629642689 a007 Real Root Of 146*x^4-240*x^3-803*x^2-659*x+27 3908818635343810 a007 Real Root Of 269*x^4+819*x^3-734*x^2+668*x-58 3908818645354512 r005 Im(z^2+c),c=-2/31+31/58*I,n=59 3908818648865553 a003 sin(Pi*5/119)-sin(Pi*7/40) 3908818656526835 r005 Re(z^2+c),c=-53/110+17/41*I,n=38 3908818657341280 a007 Real Root Of -917*x^4-848*x^3-274*x^2+968*x+391 3908818671876251 m009 (2*Catalan+1/4*Pi^2+3)/(5/2*Pi^2-6) 3908818673949780 m001 Pi+2^(1/2)/(gamma+BesselI(0,1)) 3908818678805238 m001 (CareFree-Otter)/Stephens 3908818679837387 a001 78176349/2+11/2*5^(1/2) 3908818683056841 r005 Im(z^2+c),c=-23/114+29/41*I,n=11 3908818688854381 a001 39088169+8*5^(1/2) 3908818694427050 a001 62423834550/1597 3908818699667545 r005 Im(z^2+c),c=2/9+22/63*I,n=14 3908818712459034 a001 24157817/1364*3571^(16/17) 3908818716408211 m005 (1/2*exp(1)-3/4)/(10/11*2^(1/2)+3/11) 3908818720825936 a001 10182505537/682*1364^(2/15) 3908818725207397 a007 Real Root Of -575*x^4-530*x^3+458*x^2+384*x-175 3908818726716260 m001 (GAMMA(7/12)-Psi(1,1/3))/(MertensB3+Thue) 3908818728778100 r005 Im(z^2+c),c=-23/34+37/116*I,n=12 3908818730489909 a001 39088169/1364*3571^(15/17) 3908818739773189 a007 Real Root Of 210*x^4+600*x^3-866*x^2-69*x-228 3908818747332593 a001 10182505537/2889*843^(5/14) 3908818748520787 a001 31622993/682*3571^(14/17) 3908818766551665 a001 9303105/124*3571^(13/17) 3908818772448087 r009 Im(z^3+c),c=-13/36+13/35*I,n=14 3908818772688944 r002 31th iterates of z^2 + 3908818772891335 r005 Re(z^2+c),c=-9/17+3/26*I,n=12 3908818776949643 r002 8th iterates of z^2 + 3908818778056577 a001 20365011074/3571*843^(2/7) 3908818784582542 a001 165580141/1364*3571^(12/17) 3908818802613420 a001 66978574/341*3571^(11/17) 3908818815319271 m001 Zeta(1,2)^(Landau/gamma(3)) 3908818820644297 a001 433494437/1364*3571^(10/17) 3908818829390335 a001 377/64079*18^(19/29) 3908818837846776 a001 47/233*591286729879^(13/21) 3908818838637752 r009 Re(z^3+c),c=-13/46+37/54*I,n=45 3908818838675175 a001 701408733/1364*3571^(9/17) 3908818846948732 r005 Re(z^2+c),c=-19/26+2/107*I,n=22 3908818847332639 a001 53316291173/15127*843^(5/14) 3908818847688203 a001 2971215073/2207*843^(1/2) 3908818856706053 a001 567451585/682*3571^(8/17) 3908818860136740 h001 (9/11*exp(1)+3/7)/(4/5*exp(2)+7/8) 3908818860889505 a001 32951280099/1364*1364^(1/15) 3908818861922450 a001 139583862445/39603*843^(5/14) 3908818862080684 a003 sin(Pi*1/88)/sin(Pi*37/101) 3908818864051075 a001 182717648081/51841*843^(5/14) 3908818864361637 a001 956722026041/271443*843^(5/14) 3908818864406947 a001 2504730781961/710647*843^(5/14) 3908818864413558 a001 3278735159921/930249*843^(5/14) 3908818864415119 a001 10610209857723/3010349*843^(5/14) 3908818864417644 a001 4052739537881/1149851*843^(5/14) 3908818864434951 a001 387002188980/109801*843^(5/14) 3908818864553575 a001 591286729879/167761*843^(5/14) 3908818865366637 a001 225851433717/64079*843^(5/14) 3908818867170407 h001 (7/10*exp(1)+1/7)/(3/5*exp(2)+4/5) 3908818868308761 l006 ln(1888/2791) 3908818870939449 a001 21566892818/6119*843^(5/14) 3908818871372361 m001 1/PrimesInBinary^2/CareFree/exp(RenyiParking) 3908818874736931 a001 1836311903/1364*3571^(7/17) 3908818883869851 a001 305/2889*(1/2+1/2*5^(1/2))^41 3908818883870976 a001 646/341*2537720636^(7/9) 3908818883870976 a001 646/341*17393796001^(5/7) 3908818883870976 a001 646/341*312119004989^(7/11) 3908818883870976 a001 646/341*14662949395604^(5/9) 3908818883870976 a001 646/341*(1/2+1/2*5^(1/2))^35 3908818883870976 a001 646/341*505019158607^(5/8) 3908818883870976 a001 646/341*28143753123^(7/10) 3908818883870976 a001 646/341*599074578^(5/6) 3908818883870976 a001 646/341*228826127^(7/8) 3908818892767809 a001 2971215073/1364*3571^(6/17) 3908818903473928 r009 Im(z^3+c),c=-53/126+16/47*I,n=18 3908818906590720 m005 (1/2*2^(1/2)-1/6)/(5/12*exp(1)+1/4) 3908818909136070 a001 32951280099/9349*843^(5/14) 3908818910798687 a001 1201881744/341*3571^(5/17) 3908818928829565 a001 7778742049/1364*3571^(4/17) 3908818928852109 m002 -3/Pi+Pi^4+Pi^5-Cosh[Pi] 3908818944026536 m001 1/3*(3^(1/3)*Magata+Sarnak)*3^(2/3) 3908818944337370 a001 4/2178309*2584^(5/52) 3908818946479204 r005 Im(z^2+c),c=-5/8+2/61*I,n=16 3908818946860443 a001 1144206275/124*3571^(3/17) 3908818948236576 m001 (Conway-Robbin)/(Zeta(3)+BesselJ(1,1)) 3908818956230566 a001 163427720560/4181 3908818958585461 a001 9227465/1364*9349^(18/19) 3908818960939206 a001 3732588/341*9349^(17/19) 3908818963292967 a001 24157817/1364*9349^(16/19) 3908818964197315 m002 -ProductLog[Pi]+ProductLog[Pi]/Pi^6+5*Tanh[Pi] 3908818964891322 a001 10182505537/682*3571^(2/17) 3908818965646723 a001 39088169/1364*9349^(15/19) 3908818968000480 a001 31622993/682*9349^(14/19) 3908818970354237 a001 9303105/124*9349^(13/19) 3908818972707994 a001 165580141/1364*9349^(12/19) 3908818975061751 a001 66978574/341*9349^(11/19) 3908818977415508 a001 433494437/1364*9349^(10/19) 3908818978592316 r005 Re(z^2+c),c=-27/58+7/19*I,n=13 3908818979769265 a001 701408733/1364*9349^(9/19) 3908818982123022 a001 567451585/682*9349^(8/19) 3908818982922200 a001 32951280099/1364*3571^(1/17) 3908818983869901 a001 610/15127*(1/2+1/2*5^(1/2))^43 3908818983871030 a001 615/124*141422324^(11/13) 3908818983871030 a001 615/124*2537720636^(11/15) 3908818983871030 a001 615/124*45537549124^(11/17) 3908818983871030 a001 615/124*312119004989^(3/5) 3908818983871030 a001 615/124*817138163596^(11/19) 3908818983871030 a001 615/124*14662949395604^(11/21) 3908818983871030 a001 615/124*(1/2+1/2*5^(1/2))^33 3908818983871030 a001 615/124*192900153618^(11/18) 3908818983871030 a001 615/124*10749957122^(11/16) 3908818983871030 a001 615/124*1568397607^(3/4) 3908818983871030 a001 615/124*599074578^(11/14) 3908818983871033 a001 615/124*33385282^(11/12) 3908818984476779 a001 1836311903/1364*9349^(7/19) 3908818986830536 a001 2971215073/1364*9349^(6/19) 3908818989184293 a001 1201881744/341*9349^(5/19) 3908818991538051 a001 7778742049/1364*9349^(4/19) 3908818993891808 a001 1144206275/124*9349^(3/19) 3908818994427188 a001 213929663565/5473 3908818994739083 a001 1762289/682*24476^(20/21) 3908818995049699 a001 5702887/1364*24476^(19/21) 3908818995360435 a001 9227465/1364*24476^(6/7) 3908818995671125 a001 3732588/341*24476^(17/21) 3908818995981833 a001 24157817/1364*24476^(16/21) 3908818996245565 a001 10182505537/682*9349^(2/19) 3908818996292534 a001 39088169/1364*24476^(5/7) 3908818996603238 a001 31622993/682*24476^(2/3) 3908818996913940 a001 9303105/124*24476^(13/21) 3908818997224643 a001 165580141/1364*24476^(4/7) 3908818997535346 a001 66978574/341*24476^(11/21) 3908818997846049 a001 433494437/1364*24476^(10/21) 3908818998156752 a001 701408733/1364*24476^(3/7) 3908818998459712 a001 610/39603*45537549124^(15/17) 3908818998459712 a001 610/39603*312119004989^(9/11) 3908818998459712 a001 610/39603*14662949395604^(5/7) 3908818998459712 a001 610/39603*(1/2+1/2*5^(1/2))^45 3908818998459712 a001 610/39603*192900153618^(5/6) 3908818998459712 a001 610/39603*28143753123^(9/10) 3908818998459712 a001 610/39603*10749957122^(15/16) 3908818998460841 a001 17711/1364*(1/2+1/2*5^(1/2))^31 3908818998460841 a001 17711/1364*9062201101803^(1/2) 3908818998467455 a001 567451585/682*24476^(8/21) 3908818998599322 a001 32951280099/1364*9349^(1/19) 3908818998778158 a001 1836311903/1364*24476^(1/3) 3908818999088861 a001 2971215073/1364*24476^(2/7) 3908818999399564 a001 1201881744/341*24476^(5/21) 3908818999710267 a001 7778742049/1364*24476^(4/21) 3908819000000001 a001 24157859/2+24157817/2*5^(1/2) 3908819000020970 a001 1144206275/124*24476^(1/7) 3908819000042949 a001 1346269/1364*64079^(22/23) 3908819000083742 a001 2178309/1364*64079^(21/23) 3908819000125359 a001 1762289/682*64079^(20/23) 3908819000166661 a001 5702887/1364*64079^(19/23) 3908819000208084 a001 9227465/1364*64079^(18/23) 3908819000249460 a001 3732588/341*64079^(17/23) 3908819000290854 a001 24157817/1364*64079^(16/23) 3908819000331673 a001 10182505537/682*24476^(2/21) 3908819000332241 a001 39088169/1364*64079^(15/23) 3908819000373631 a001 31622993/682*64079^(14/23) 3908819000415020 a001 9303105/124*64079^(13/23) 3908819000456409 a001 165580141/1364*64079^(12/23) 3908819000497798 a001 66978574/341*64079^(11/23) 3908819000539187 a001 433494437/1364*64079^(10/23) 3908819000580577 a001 701408733/1364*64079^(9/23) 3908819000588337 a001 305/51841*(1/2+1/2*5^(1/2))^47 3908819000589466 a001 11592/341*(1/2+1/2*5^(1/2))^29 3908819000589466 a001 11592/341*1322157322203^(1/2) 3908819000621966 a001 567451585/682*64079^(8/23) 3908819000642376 a001 32951280099/1364*24476^(1/21) 3908819000663355 a001 1836311903/1364*64079^(7/23) 3908819000704744 a001 2971215073/1364*64079^(6/23) 3908819000746133 a001 1201881744/341*64079^(5/23) 3908819000787522 a001 7778742049/1364*64079^(4/23) 3908819000813062 a001 586518291072/15005 3908819000828911 a001 1144206275/124*64079^(3/23) 3908819000842032 a001 1762289/682*167761^(4/5) 3908819000869746 a001 39088169/1364*167761^(3/5) 3908819000870300 a001 10182505537/682*64079^(2/23) 3908819000897524 a001 433494437/1364*167761^(2/5) 3908819000898899 a001 610/271443*14662949395604^(7/9) 3908819000898899 a001 610/271443*(1/2+1/2*5^(1/2))^49 3908819000898899 a001 610/271443*505019158607^(7/8) 3908819000899977 a001 121393/1364*7881196^(9/11) 3908819000900028 a001 121393/1364*141422324^(9/13) 3908819000900028 a001 121393/1364*2537720636^(3/5) 3908819000900028 a001 121393/1364*45537549124^(9/17) 3908819000900028 a001 121393/1364*817138163596^(9/19) 3908819000900028 a001 121393/1364*14662949395604^(3/7) 3908819000900028 a001 121393/1364*(1/2+1/2*5^(1/2))^27 3908819000900028 a001 121393/1364*192900153618^(1/2) 3908819000900028 a001 121393/1364*10749957122^(9/16) 3908819000900028 a001 121393/1364*599074578^(9/14) 3908819000900031 a001 121393/1364*33385282^(3/4) 3908819000901045 a001 121393/1364*1860498^(9/10) 3908819000911690 a001 32951280099/1364*64079^(1/23) 3908819000925301 a001 1201881744/341*167761^(1/5) 3908819000931686 a001 3838812052625/98209 3908819000937153 a001 2178309/1364*439204^(7/9) 3908819000938023 a001 514229/1364*439204^(8/9) 3908819000939579 a001 9227465/1364*439204^(2/3) 3908819000941821 a001 39088169/1364*439204^(5/9) 3908819000944073 a001 165580141/1364*439204^(4/9) 3908819000944209 a001 610/710647*817138163596^(17/19) 3908819000944209 a001 610/710647*14662949395604^(17/21) 3908819000944209 a001 610/710647*(1/2+1/2*5^(1/2))^51 3908819000944209 a001 610/710647*192900153618^(17/18) 3908819000945332 a001 317811/1364*20633239^(5/7) 3908819000945339 a001 317811/1364*2537720636^(5/9) 3908819000945339 a001 317811/1364*312119004989^(5/11) 3908819000945339 a001 317811/1364*(1/2+1/2*5^(1/2))^25 3908819000945339 a001 317811/1364*3461452808002^(5/12) 3908819000945339 a001 317811/1364*28143753123^(1/2) 3908819000945339 a001 317811/1364*228826127^(5/8) 3908819000946280 a001 317811/1364*1860498^(5/6) 3908819000946324 a001 701408733/1364*439204^(1/3) 3908819000948576 a001 2971215073/1364*439204^(2/9) 3908819000948993 a001 20100280860390/514229 3908819000950820 a001 305/930249*(1/2+1/2*5^(1/2))^53 3908819000950827 a001 1144206275/124*439204^(1/9) 3908819000951518 a001 52623218475920/1346269 3908819000951785 a001 610/4870847*(1/2+1/2*5^(1/2))^55 3908819000951785 a001 610/4870847*3461452808002^(11/12) 3908819000951887 a001 68884687283685/1762289 3908819000951925 a001 610/12752043*14662949395604^(19/21) 3908819000951925 a001 610/12752043*(1/2+1/2*5^(1/2))^57 3908819000951940 a001 72136981045238/1845493 3908819000951946 a001 305/16692641*(1/2+1/2*5^(1/2))^59 3908819000951948 a001 944285341111200/24157817 3908819000951949 a001 1236085559053705/31622993 3908819000951949 a001 6472228013211030/165580141 3908819000951949 a001 610*4106118243^(1/2) 3908819000951950 a001 800011379020724/20466831 3908819000951950 a001 1527885776996210/39088169 3908819000951951 a001 610/54018521*14662949395604^(20/21) 3908819000951953 a001 291800217942505/7465176 3908819000951959 a001 610/20633239*(1/2+1/2*5^(1/2))^58 3908819000951973 a001 222915530658820/5702887 3908819000952012 a001 305/3940598*14662949395604^(8/9) 3908819000952012 a001 305/3940598*(1/2+1/2*5^(1/2))^56 3908819000952114 a001 85146156091450/2178309 3908819000952381 a001 610/3010349*14662949395604^(6/7) 3908819000952381 a001 610/3010349*(1/2+1/2*5^(1/2))^54 3908819000952874 a001 2178309/1364*7881196^(7/11) 3908819000952908 a001 2178309/1364*20633239^(3/5) 3908819000952914 a001 2178309/1364*141422324^(7/13) 3908819000952914 a001 2178309/1364*2537720636^(7/15) 3908819000952914 a001 2178309/1364*17393796001^(3/7) 3908819000952914 a001 2178309/1364*45537549124^(7/17) 3908819000952914 a001 2178309/1364*14662949395604^(1/3) 3908819000952914 a001 2178309/1364*(1/2+1/2*5^(1/2))^21 3908819000952914 a001 2178309/1364*192900153618^(7/18) 3908819000952914 a001 2178309/1364*10749957122^(7/16) 3908819000952914 a001 2178309/1364*599074578^(1/2) 3908819000952916 a001 2178309/1364*33385282^(7/12) 3908819000953050 a001 39088169/1364*7881196^(5/11) 3908819000953054 a001 9227465/1364*7881196^(6/11) 3908819000953055 a001 5702887/1364*817138163596^(1/3) 3908819000953055 a001 5702887/1364*(1/2+1/2*5^(1/2))^19 3908819000953055 a001 5702887/1364*87403803^(1/2) 3908819000953056 a001 165580141/1364*7881196^(4/11) 3908819000953058 a001 66978574/341*7881196^(1/3) 3908819000953062 a001 701408733/1364*7881196^(3/11) 3908819000953067 a001 2971215073/1364*7881196^(2/11) 3908819000953073 a001 1144206275/124*7881196^(1/11) 3908819000953074 a001 39088169/1364*20633239^(3/7) 3908819000953075 a001 3732588/341*45537549124^(1/3) 3908819000953075 a001 3732588/341*(1/2+1/2*5^(1/2))^17 3908819000953075 a001 31622993/682*20633239^(2/5) 3908819000953076 a001 433494437/1364*20633239^(2/7) 3908819000953077 a001 1836311903/1364*20633239^(1/5) 3908819000953077 a001 1201881744/341*20633239^(1/7) 3908819000953078 a001 39088169/1364*141422324^(5/13) 3908819000953078 a001 39088169/1364*2537720636^(1/3) 3908819000953078 a001 39088169/1364*45537549124^(5/17) 3908819000953078 a001 39088169/1364*312119004989^(3/11) 3908819000953078 a001 39088169/1364*14662949395604^(5/21) 3908819000953078 a001 39088169/1364*(1/2+1/2*5^(1/2))^15 3908819000953078 a001 39088169/1364*192900153618^(5/18) 3908819000953078 a001 39088169/1364*28143753123^(3/10) 3908819000953078 a001 39088169/1364*10749957122^(5/16) 3908819000953078 a001 39088169/1364*599074578^(5/14) 3908819000953078 a001 39088169/1364*228826127^(3/8) 3908819000953079 a001 9303105/124*141422324^(1/3) 3908819000953079 a001 9303105/124*(1/2+1/2*5^(1/2))^13 3908819000953079 a001 9303105/124*73681302247^(1/4) 3908819000953079 a001 701408733/1364*141422324^(3/13) 3908819000953079 a001 165580141/1364*141422324^(4/13) 3908819000953079 a001 2971215073/1364*141422324^(2/13) 3908819000953079 a001 1144206275/124*141422324^(1/13) 3908819000953079 a001 66978574/341*312119004989^(1/5) 3908819000953079 a001 66978574/341*(1/2+1/2*5^(1/2))^11 3908819000953079 a001 66978574/341*1568397607^(1/4) 3908819000953079 a001 701408733/1364*2537720636^(1/5) 3908819000953079 a001 701408733/1364*45537549124^(3/17) 3908819000953079 a001 701408733/1364*817138163596^(3/19) 3908819000953079 a001 701408733/1364*14662949395604^(1/7) 3908819000953079 a001 701408733/1364*(1/2+1/2*5^(1/2))^9 3908819000953079 a001 701408733/1364*192900153618^(1/6) 3908819000953079 a001 701408733/1364*10749957122^(3/16) 3908819000953079 a001 1836311903/1364*17393796001^(1/7) 3908819000953079 a001 1836311903/1364*14662949395604^(1/9) 3908819000953079 a001 1836311903/1364*(1/2+1/2*5^(1/2))^7 3908819000953079 a001 1201881744/341*2537720636^(1/9) 3908819000953079 a001 1144206275/124*2537720636^(1/15) 3908819000953079 a001 1201881744/341*312119004989^(1/11) 3908819000953079 a001 1201881744/341*(1/2+1/2*5^(1/2))^5 3908819000953079 a001 1201881744/341*28143753123^(1/10) 3908819000953079 a001 1144206275/124*45537549124^(1/17) 3908819000953079 a001 1144206275/124*14662949395604^(1/21) 3908819000953079 a001 1144206275/124*(1/2+1/2*5^(1/2))^3 3908819000953079 a001 1144206275/124*192900153618^(1/18) 3908819000953079 a001 1144206275/124*10749957122^(1/16) 3908819000953079 a001 32951280099/2728+32951280099/2728*5^(1/2) 3908819000953079 a001 53316291173/1364 3908819000953079 a001 10182505537/682*(1/2+1/2*5^(1/2))^2 3908819000953079 a001 10182505537/682*10749957122^(1/24) 3908819000953079 a001 2971215073/1364*2537720636^(2/15) 3908819000953079 a001 10182505537/682*4106118243^(1/23) 3908819000953079 a001 7778742049/1364*(1/2+1/2*5^(1/2))^4 3908819000953079 a001 7778742049/1364*23725150497407^(1/16) 3908819000953079 a001 7778742049/1364*73681302247^(1/13) 3908819000953079 a001 7778742049/1364*10749957122^(1/12) 3908819000953079 a001 7778742049/1364*4106118243^(2/23) 3908819000953079 a001 10182505537/682*1568397607^(1/22) 3908819000953079 a001 2971215073/1364*45537549124^(2/17) 3908819000953079 a001 2971215073/1364*14662949395604^(2/21) 3908819000953079 a001 2971215073/1364*(1/2+1/2*5^(1/2))^6 3908819000953079 a001 2971215073/1364*10749957122^(1/8) 3908819000953079 a001 2971215073/1364*4106118243^(3/23) 3908819000953079 a001 7778742049/1364*1568397607^(1/11) 3908819000953079 a001 2971215073/1364*1568397607^(3/22) 3908819000953079 a001 10182505537/682*599074578^(1/21) 3908819000953079 a001 567451585/682*(1/2+1/2*5^(1/2))^8 3908819000953079 a001 567451585/682*23725150497407^(1/8) 3908819000953079 a001 567451585/682*505019158607^(1/7) 3908819000953079 a001 567451585/682*73681302247^(2/13) 3908819000953079 a001 567451585/682*10749957122^(1/6) 3908819000953079 a001 567451585/682*4106118243^(4/23) 3908819000953079 a001 701408733/1364*599074578^(3/14) 3908819000953079 a001 1144206275/124*599074578^(1/14) 3908819000953079 a001 567451585/682*1568397607^(2/11) 3908819000953079 a001 7778742049/1364*599074578^(2/21) 3908819000953079 a001 1836311903/1364*599074578^(1/6) 3908819000953079 a001 2971215073/1364*599074578^(1/7) 3908819000953079 a001 567451585/682*599074578^(4/21) 3908819000953079 a001 10182505537/682*228826127^(1/20) 3908819000953079 a001 433494437/1364*2537720636^(2/9) 3908819000953079 a001 433494437/1364*312119004989^(2/11) 3908819000953079 a001 433494437/1364*(1/2+1/2*5^(1/2))^10 3908819000953079 a001 433494437/1364*28143753123^(1/5) 3908819000953079 a001 433494437/1364*10749957122^(5/24) 3908819000953079 a001 433494437/1364*4106118243^(5/23) 3908819000953079 a001 433494437/1364*1568397607^(5/22) 3908819000953079 a001 433494437/1364*599074578^(5/21) 3908819000953079 a001 7778742049/1364*228826127^(1/10) 3908819000953079 a001 1201881744/341*228826127^(1/8) 3908819000953079 a001 2971215073/1364*228826127^(3/20) 3908819000953079 a001 567451585/682*228826127^(1/5) 3908819000953079 a001 433494437/1364*228826127^(1/4) 3908819000953079 a001 10182505537/682*87403803^(1/19) 3908819000953079 a001 165580141/1364*2537720636^(4/15) 3908819000953079 a001 165580141/1364*45537549124^(4/17) 3908819000953079 a001 165580141/1364*817138163596^(4/19) 3908819000953079 a001 165580141/1364*14662949395604^(4/21) 3908819000953079 a001 165580141/1364*(1/2+1/2*5^(1/2))^12 3908819000953079 a001 165580141/1364*192900153618^(2/9) 3908819000953079 a001 165580141/1364*73681302247^(3/13) 3908819000953079 a001 165580141/1364*10749957122^(1/4) 3908819000953079 a001 165580141/1364*4106118243^(6/23) 3908819000953079 a001 165580141/1364*1568397607^(3/11) 3908819000953079 a001 165580141/1364*599074578^(2/7) 3908819000953079 a001 165580141/1364*228826127^(3/10) 3908819000953079 a001 7778742049/1364*87403803^(2/19) 3908819000953079 a001 2971215073/1364*87403803^(3/19) 3908819000953079 a001 567451585/682*87403803^(4/19) 3908819000953079 a001 433494437/1364*87403803^(5/19) 3908819000953079 a001 165580141/1364*87403803^(6/19) 3908819000953079 a001 10182505537/682*33385282^(1/18) 3908819000953079 a001 31622993/682*17393796001^(2/7) 3908819000953079 a001 31622993/682*14662949395604^(2/9) 3908819000953079 a001 31622993/682*(1/2+1/2*5^(1/2))^14 3908819000953079 a001 31622993/682*505019158607^(1/4) 3908819000953079 a001 31622993/682*10749957122^(7/24) 3908819000953079 a001 31622993/682*4106118243^(7/23) 3908819000953079 a001 31622993/682*1568397607^(7/22) 3908819000953079 a001 31622993/682*599074578^(1/3) 3908819000953079 a001 31622993/682*228826127^(7/20) 3908819000953079 a001 1144206275/124*33385282^(1/12) 3908819000953079 a001 31622993/682*87403803^(7/19) 3908819000953079 a001 7778742049/1364*33385282^(1/9) 3908819000953079 a001 2971215073/1364*33385282^(1/6) 3908819000953079 a001 567451585/682*33385282^(2/9) 3908819000953080 a001 701408733/1364*33385282^(1/4) 3908819000953080 a001 39088169/1364*33385282^(5/12) 3908819000953080 a001 433494437/1364*33385282^(5/18) 3908819000953080 a001 165580141/1364*33385282^(1/3) 3908819000953080 a001 24157817/1364*(1/2+1/2*5^(1/2))^16 3908819000953080 a001 24157817/1364*23725150497407^(1/4) 3908819000953080 a001 24157817/1364*73681302247^(4/13) 3908819000953080 a001 24157817/1364*10749957122^(1/3) 3908819000953080 a001 24157817/1364*4106118243^(8/23) 3908819000953080 a001 24157817/1364*1568397607^(4/11) 3908819000953080 a001 24157817/1364*599074578^(8/21) 3908819000953080 a001 24157817/1364*228826127^(2/5) 3908819000953080 a001 10182505537/682*12752043^(1/17) 3908819000953080 a001 24157817/1364*87403803^(8/19) 3908819000953080 a001 31622993/682*33385282^(7/18) 3908819000953082 a001 7778742049/1364*12752043^(2/17) 3908819000953082 a001 24157817/1364*33385282^(4/9) 3908819000953083 a001 2971215073/1364*12752043^(3/17) 3908819000953084 a001 567451585/682*12752043^(4/17) 3908819000953086 a001 433494437/1364*12752043^(5/17) 3908819000953087 a001 3732588/341*12752043^(1/2) 3908819000953087 a001 165580141/1364*12752043^(6/17) 3908819000953088 a001 9227465/1364*141422324^(6/13) 3908819000953088 a001 9227465/1364*2537720636^(2/5) 3908819000953088 a001 9227465/1364*45537549124^(6/17) 3908819000953088 a001 9227465/1364*14662949395604^(2/7) 3908819000953088 a001 9227465/1364*(1/2+1/2*5^(1/2))^18 3908819000953088 a001 9227465/1364*192900153618^(1/3) 3908819000953088 a001 9227465/1364*10749957122^(3/8) 3908819000953088 a001 9227465/1364*4106118243^(9/23) 3908819000953088 a001 9227465/1364*1568397607^(9/22) 3908819000953088 a001 9227465/1364*599074578^(3/7) 3908819000953088 a001 9227465/1364*228826127^(9/20) 3908819000953088 a001 9227465/1364*87403803^(9/19) 3908819000953089 a001 31622993/682*12752043^(7/17) 3908819000953089 a001 10182505537/682*4870847^(1/16) 3908819000953090 a001 9227465/1364*33385282^(1/2) 3908819000953091 a001 24157817/1364*12752043^(8/17) 3908819000953099 a001 7778742049/1364*4870847^(1/8) 3908819000953101 a001 9227465/1364*12752043^(9/17) 3908819000953110 a001 2971215073/1364*4870847^(3/16) 3908819000953120 a001 567451585/682*4870847^(1/4) 3908819000953130 a001 433494437/1364*4870847^(5/16) 3908819000953136 a001 1762289/682*20633239^(4/7) 3908819000953140 a001 165580141/1364*4870847^(3/8) 3908819000953142 a001 1762289/682*2537720636^(4/9) 3908819000953142 a001 1762289/682*(1/2+1/2*5^(1/2))^20 3908819000953142 a001 1762289/682*23725150497407^(5/16) 3908819000953142 a001 1762289/682*505019158607^(5/14) 3908819000953142 a001 1762289/682*73681302247^(5/13) 3908819000953142 a001 1762289/682*28143753123^(2/5) 3908819000953142 a001 1762289/682*10749957122^(5/12) 3908819000953142 a001 1762289/682*4106118243^(10/23) 3908819000953142 a001 1762289/682*1568397607^(5/11) 3908819000953142 a001 1762289/682*599074578^(10/21) 3908819000953142 a001 1762289/682*228826127^(1/2) 3908819000953142 a001 1762289/682*87403803^(10/19) 3908819000953144 a001 1762289/682*33385282^(5/9) 3908819000953151 a001 31622993/682*4870847^(7/16) 3908819000953154 a001 10182505537/682*1860498^(1/15) 3908819000953156 a001 1762289/682*12752043^(10/17) 3908819000953162 a001 24157817/1364*4870847^(1/2) 3908819000953181 a001 9227465/1364*4870847^(9/16) 3908819000953192 a001 1144206275/124*1860498^(1/10) 3908819000953229 a001 7778742049/1364*1860498^(2/15) 3908819000953245 a001 1762289/682*4870847^(5/8) 3908819000953267 a001 1201881744/341*1860498^(1/6) 3908819000953305 a001 2971215073/1364*1860498^(1/5) 3908819000953380 a001 567451585/682*1860498^(4/15) 3908819000953417 a001 701408733/1364*1860498^(3/10) 3908819000953455 a001 433494437/1364*1860498^(1/3) 3908819000953468 a001 1346269/1364*7881196^(2/3) 3908819000953510 a001 1346269/1364*312119004989^(2/5) 3908819000953510 a001 1346269/1364*(1/2+1/2*5^(1/2))^22 3908819000953510 a001 1346269/1364*10749957122^(11/24) 3908819000953510 a001 1346269/1364*4106118243^(11/23) 3908819000953510 a001 1346269/1364*1568397607^(1/2) 3908819000953510 a001 1346269/1364*599074578^(11/21) 3908819000953510 a001 1346269/1364*228826127^(11/20) 3908819000953510 a001 1346269/1364*87403803^(11/19) 3908819000953512 a001 1346269/1364*33385282^(11/18) 3908819000953526 a001 1346269/1364*12752043^(11/17) 3908819000953530 a001 165580141/1364*1860498^(2/5) 3908819000953606 a001 31622993/682*1860498^(7/15) 3908819000953623 a001 1346269/1364*4870847^(11/16) 3908819000953632 a001 10182505537/682*710647^(1/14) 3908819000953643 a001 39088169/1364*1860498^(1/2) 3908819000953682 a001 24157817/1364*1860498^(8/15) 3908819000953704 a001 2178309/1364*1860498^(7/10) 3908819000953765 a001 9227465/1364*1860498^(3/5) 3908819000953894 a001 1762289/682*1860498^(2/3) 3908819000954184 a001 7778742049/1364*710647^(1/7) 3908819000954338 a001 1346269/1364*1860498^(11/15) 3908819000954737 a001 2971215073/1364*710647^(3/14) 3908819000954906 a001 610/1149851*(1/2+1/2*5^(1/2))^52 3908819000954906 a001 610/1149851*23725150497407^(13/16) 3908819000954906 a001 610/1149851*505019158607^(13/14) 3908819000955014 a001 1836311903/1364*710647^(1/4) 3908819000955290 a001 567451585/682*710647^(2/7) 3908819000955843 a001 433494437/1364*710647^(5/14) 3908819000955989 a001 514229/1364*7881196^(8/11) 3908819000956035 a001 514229/1364*141422324^(8/13) 3908819000956035 a001 514229/1364*2537720636^(8/15) 3908819000956035 a001 514229/1364*45537549124^(8/17) 3908819000956035 a001 514229/1364*14662949395604^(8/21) 3908819000956035 a001 514229/1364*(1/2+1/2*5^(1/2))^24 3908819000956035 a001 514229/1364*192900153618^(4/9) 3908819000956035 a001 514229/1364*73681302247^(6/13) 3908819000956035 a001 514229/1364*10749957122^(1/2) 3908819000956035 a001 514229/1364*4106118243^(12/23) 3908819000956035 a001 514229/1364*1568397607^(6/11) 3908819000956035 a001 514229/1364*599074578^(4/7) 3908819000956035 a001 514229/1364*228826127^(3/5) 3908819000956035 a001 514229/1364*87403803^(12/19) 3908819000956037 a001 514229/1364*33385282^(2/3) 3908819000956052 a001 514229/1364*12752043^(12/17) 3908819000956159 a001 514229/1364*4870847^(3/4) 3908819000956396 a001 165580141/1364*710647^(3/7) 3908819000956938 a001 514229/1364*1860498^(4/5) 3908819000956949 a001 31622993/682*710647^(1/2) 3908819000957159 a001 10182505537/682*271443^(1/13) 3908819000957503 a001 24157817/1364*710647^(4/7) 3908819000958064 a001 9227465/1364*710647^(9/14) 3908819000958670 a001 1762289/682*710647^(5/7) 3908819000958719 a001 2178309/1364*710647^(3/4) 3908819000959591 a001 1346269/1364*710647^(11/14) 3908819000959689 a001 12422656755140/317811 3908819000961240 a001 7778742049/1364*271443^(2/13) 3908819000962669 a001 514229/1364*710647^(6/7) 3908819000965321 a001 2971215073/1364*271443^(3/13) 3908819000968229 a001 32951280099/1364*103682^(1/24) 3908819000969402 a001 567451585/682*271443^(4/13) 3908819000972213 a001 305/219602*312119004989^(10/11) 3908819000972213 a001 305/219602*(1/2+1/2*5^(1/2))^50 3908819000972213 a001 305/219602*3461452808002^(5/6) 3908819000973342 a001 98209/682*141422324^(2/3) 3908819000973342 a001 98209/682*(1/2+1/2*5^(1/2))^26 3908819000973342 a001 98209/682*73681302247^(1/2) 3908819000973342 a001 98209/682*10749957122^(13/24) 3908819000973342 a001 98209/682*4106118243^(13/23) 3908819000973342 a001 98209/682*1568397607^(13/22) 3908819000973342 a001 98209/682*599074578^(13/21) 3908819000973342 a001 98209/682*228826127^(13/20) 3908819000973342 a001 98209/682*87403803^(13/19) 3908819000973345 a001 98209/682*33385282^(13/18) 3908819000973360 a001 98209/682*12752043^(13/17) 3908819000973476 a001 98209/682*4870847^(13/16) 3908819000973483 a001 433494437/1364*271443^(5/13) 3908819000974321 a001 98209/682*1860498^(13/15) 3908819000977563 a001 165580141/1364*271443^(6/13) 3908819000979604 a001 9303105/124*271443^(1/2) 3908819000980529 a001 98209/682*710647^(13/14) 3908819000981644 a001 31622993/682*271443^(7/13) 3908819000983380 a001 10182505537/682*103682^(1/12) 3908819000985726 a001 24157817/1364*271443^(8/13) 3908819000989815 a001 9227465/1364*271443^(9/13) 3908819000993950 a001 1762289/682*271443^(10/13) 3908819000998399 a001 1346269/1364*271443^(11/13) 3908819000998530 a001 1144206275/124*103682^(1/8) 3908819001005000 a001 4745032649890/121393 3908819001005005 a001 514229/1364*271443^(12/13) 3908819001013681 a001 7778742049/1364*103682^(1/6) 3908819001028831 a001 1201881744/341*103682^(5/24) 3908819001043982 a001 2971215073/1364*103682^(1/4) 3908819001059132 a001 1836311903/1364*103682^(7/24) 3908819001066362 a001 32951280099/1364*39603^(1/22) 3908819001074283 a001 567451585/682*103682^(1/3) 3908819001089433 a001 701408733/1364*103682^(3/8) 3908819001090837 a001 610/167761*45537549124^(16/17) 3908819001090837 a001 610/167761*14662949395604^(16/21) 3908819001090837 a001 610/167761*(1/2+1/2*5^(1/2))^48 3908819001090837 a001 610/167761*192900153618^(8/9) 3908819001090837 a001 610/167761*73681302247^(12/13) 3908819001091959 a001 75025/1364*20633239^(4/5) 3908819001091966 a001 75025/1364*17393796001^(4/7) 3908819001091966 a001 75025/1364*14662949395604^(4/9) 3908819001091966 a001 75025/1364*(1/2+1/2*5^(1/2))^28 3908819001091966 a001 75025/1364*505019158607^(1/2) 3908819001091966 a001 75025/1364*73681302247^(7/13) 3908819001091966 a001 75025/1364*10749957122^(7/12) 3908819001091966 a001 75025/1364*4106118243^(14/23) 3908819001091966 a001 75025/1364*1568397607^(7/11) 3908819001091966 a001 75025/1364*599074578^(2/3) 3908819001091966 a001 75025/1364*228826127^(7/10) 3908819001091967 a001 75025/1364*87403803^(14/19) 3908819001091969 a001 75025/1364*33385282^(7/9) 3908819001091986 a001 75025/1364*12752043^(14/17) 3908819001092110 a001 75025/1364*4870847^(7/8) 3908819001093020 a001 75025/1364*1860498^(14/15) 3908819001104584 a001 433494437/1364*103682^(5/12) 3908819001119734 a001 66978574/341*103682^(11/24) 3908819001134885 a001 165580141/1364*103682^(1/2) 3908819001150035 a001 9303105/124*103682^(13/24) 3908819001165186 a001 31622993/682*103682^(7/12) 3908819001179646 a001 10182505537/682*39603^(1/11) 3908819001180336 a001 39088169/1364*103682^(5/8) 3908819001195488 a001 24157817/1364*103682^(2/3) 3908819001210634 a001 3732588/341*103682^(17/24) 3908819001225797 a001 9227465/1364*103682^(3/4) 3908819001240915 a001 5702887/1364*103682^(19/24) 3908819001256152 a001 1762289/682*103682^(5/6) 3908819001271075 a001 2178309/1364*103682^(7/8) 3908819001286821 a001 1346269/1364*103682^(11/12) 3908819001292929 a001 1144206275/124*39603^(3/22) 3908819001300411 a001 610*103682^(23/24) 3908819001315562 a001 906220597265/23184 3908819001406213 a001 7778742049/1364*39603^(2/11) 3908819001519496 a001 1201881744/341*39603^(5/22) 3908819001632780 a001 2971215073/1364*39603^(3/11) 3908819001746063 a001 1836311903/1364*39603^(7/22) 3908819001807181 a001 32951280099/1364*15127^(1/20) 3908819001859347 a001 567451585/682*39603^(4/11) 3908819001903899 a001 610/64079*(1/2+1/2*5^(1/2))^46 3908819001903899 a001 610/64079*10749957122^(23/24) 3908819001904971 a001 28657/1364*7881196^(10/11) 3908819001905021 a001 28657/1364*20633239^(6/7) 3908819001905028 a001 28657/1364*141422324^(10/13) 3908819001905029 a001 28657/1364*2537720636^(2/3) 3908819001905029 a001 28657/1364*45537549124^(10/17) 3908819001905029 a001 28657/1364*312119004989^(6/11) 3908819001905029 a001 28657/1364*14662949395604^(10/21) 3908819001905029 a001 28657/1364*(1/2+1/2*5^(1/2))^30 3908819001905029 a001 28657/1364*192900153618^(5/9) 3908819001905029 a001 28657/1364*28143753123^(3/5) 3908819001905029 a001 28657/1364*10749957122^(5/8) 3908819001905029 a001 28657/1364*4106118243^(15/23) 3908819001905029 a001 28657/1364*1568397607^(15/22) 3908819001905029 a001 28657/1364*599074578^(5/7) 3908819001905029 a001 28657/1364*228826127^(3/4) 3908819001905029 a001 28657/1364*87403803^(15/19) 3908819001905032 a001 28657/1364*33385282^(5/6) 3908819001905050 a001 28657/1364*12752043^(15/17) 3908819001905183 a001 28657/1364*4870847^(15/16) 3908819001972630 a001 701408733/1364*39603^(9/22) 3908819002085914 a001 433494437/1364*39603^(5/11) 3908819002199197 a001 66978574/341*39603^(1/2) 3908819002312481 a001 165580141/1364*39603^(6/11) 3908819002425764 a001 9303105/124*39603^(13/22) 3908819002539048 a001 31622993/682*39603^(7/11) 3908819002652331 a001 39088169/1364*39603^(15/22) 3908819002661284 a001 10182505537/682*15127^(1/10) 3908819002765616 a001 24157817/1364*39603^(8/11) 3908819002878895 a001 3732588/341*39603^(17/22) 3908819002992191 a001 9227465/1364*39603^(9/11) 3908819003105441 a001 5702887/1364*39603^(19/22) 3908819003218812 a001 1762289/682*39603^(10/11) 3908819003331868 a001 2178309/1364*39603^(21/22) 3908819003444185 a001 78176351/2+13/2*5^(1/2) 3908819003444187 a001 692290933700/17711 3908819003515386 a001 1144206275/124*15127^(3/20) 3908819004369488 a001 7778742049/1364*15127^(1/5) 3908819005223591 a001 1201881744/341*15127^(1/4) 3908819006077693 a001 2971215073/1364*15127^(3/10) 3908819006931796 a001 1836311903/1364*15127^(7/20) 3908819007457640 a001 32951280099/1364*5778^(1/18) 3908819007476711 a001 305/12238*312119004989^(4/5) 3908819007476711 a001 305/12238*(1/2+1/2*5^(1/2))^44 3908819007476711 a001 305/12238*23725150497407^(11/16) 3908819007476711 a001 305/12238*73681302247^(11/13) 3908819007476711 a001 305/12238*10749957122^(11/12) 3908819007476711 a001 305/12238*4106118243^(22/23) 3908819007477841 a001 5473/682*(1/2+1/2*5^(1/2))^32 3908819007477841 a001 5473/682*23725150497407^(1/2) 3908819007477841 a001 5473/682*505019158607^(4/7) 3908819007477841 a001 5473/682*73681302247^(8/13) 3908819007477841 a001 5473/682*10749957122^(2/3) 3908819007477841 a001 5473/682*4106118243^(16/23) 3908819007477841 a001 5473/682*1568397607^(8/11) 3908819007477841 a001 5473/682*599074578^(16/21) 3908819007477841 a001 5473/682*228826127^(4/5) 3908819007477841 a001 5473/682*87403803^(16/19) 3908819007477844 a001 5473/682*33385282^(8/9) 3908819007477863 a001 5473/682*12752043^(16/17) 3908819007785898 a001 567451585/682*15127^(2/5) 3908819008640000 a001 701408733/1364*15127^(9/20) 3908819009494103 a001 433494437/1364*15127^(1/2) 3908819010348205 a001 66978574/341*15127^(11/20) 3908819011202308 a001 165580141/1364*15127^(3/5) 3908819012056410 a001 9303105/124*15127^(13/20) 3908819012910513 a001 31622993/682*15127^(7/10) 3908819013764615 a001 39088169/1364*15127^(3/4) 3908819013962201 a001 10182505537/682*5778^(1/9) 3908819014618719 a001 24157817/1364*15127^(4/5) 3908819015472816 a001 3732588/341*15127^(17/20) 3908819016125020 m005 (1/3*exp(1)-1/4)/(7/8*exp(1)-7/10) 3908819016326932 a001 9227465/1364*15127^(9/10) 3908819017022457 r002 32th iterates of z^2 + 3908819017181001 a001 5702887/1364*15127^(19/20) 3908819017209754 a007 Real Root Of 460*x^4-406*x^3+979*x^2-413*x-346 3908819018033998 a001 52886321314/1353 3908819020466762 a001 1144206275/124*5778^(1/6) 3908819026971323 a001 7778742049/1364*5778^(2/9) 3908819029217938 r005 Im(z^2+c),c=-157/118+15/47*I,n=3 3908819031331963 a007 Real Root Of -202*x^4-918*x^3-424*x^2+546*x+943 3908819033475885 a001 1201881744/341*5778^(5/18) 3908819036314201 r002 16th iterates of z^2 + 3908819039980446 a001 2971215073/1364*5778^(1/3) 3908819045673334 a001 610/9349*2537720636^(14/15) 3908819045673334 a001 610/9349*17393796001^(6/7) 3908819045673334 a001 610/9349*45537549124^(14/17) 3908819045673334 a001 610/9349*817138163596^(14/19) 3908819045673334 a001 610/9349*14662949395604^(2/3) 3908819045673334 a001 610/9349*(1/2+1/2*5^(1/2))^42 3908819045673334 a001 610/9349*505019158607^(3/4) 3908819045673334 a001 610/9349*192900153618^(7/9) 3908819045673334 a001 610/9349*10749957122^(7/8) 3908819045673334 a001 610/9349*4106118243^(21/23) 3908819045673334 a001 610/9349*1568397607^(21/22) 3908819045674462 a001 4181/1364*45537549124^(2/3) 3908819045674462 a001 4181/1364*(1/2+1/2*5^(1/2))^34 3908819045674462 a001 4181/1364*10749957122^(17/24) 3908819045674462 a001 4181/1364*4106118243^(17/23) 3908819045674462 a001 4181/1364*1568397607^(17/22) 3908819045674462 a001 4181/1364*599074578^(17/21) 3908819045674462 a001 4181/1364*228826127^(17/20) 3908819045674463 a001 4181/1364*87403803^(17/19) 3908819045674466 a001 4181/1364*33385282^(17/18) 3908819046485007 a001 1836311903/1364*5778^(7/18) 3908819051108866 a001 32951280099/1364*2207^(1/16) 3908819052989568 a001 567451585/682*5778^(4/9) 3908819059494129 a001 701408733/1364*5778^(1/2) 3908819065998691 a001 433494437/1364*5778^(5/9) 3908819072503252 a001 66978574/341*5778^(11/18) 3908819074724526 r005 Im(z^2+c),c=1/54+16/33*I,n=26 3908819079007813 a001 165580141/1364*5778^(2/3) 3908819080014431 m001 (ln(gamma)+GAMMA(17/24))/(Pi-2^(1/3)) 3908819085512374 a001 9303105/124*5778^(13/18) 3908819090040770 a007 Real Root Of -285*x^4+451*x^3-140*x^2+875*x+397 3908819092016936 a001 31622993/682*5778^(7/9) 3908819098521496 a001 39088169/1364*5778^(5/6) 3908819101264653 a001 10182505537/682*2207^(1/8) 3908819105026060 a001 24157817/1364*5778^(8/9) 3908819111530616 a001 3732588/341*5778^(17/18) 3908819113539806 r005 Re(z^2+c),c=-14/27+7/25*I,n=40 3908819115410691 a001 102334155/521*521^(11/13) 3908819118034055 a001 50501943005/1292 3908819120702739 r005 Re(z^2+c),c=-67/54+11/43*I,n=6 3908819122813347 r002 62th iterates of z^2 + 3908819124277231 r002 11th iterates of z^2 + 3908819133034379 q001 523/1338 3908819138496197 p004 log(28069/26993) 3908819140215637 a001 12586269025/5778*843^(3/7) 3908819146920682 r005 Re(z^2+c),c=-57/106+7/51*I,n=54 3908819151420441 a001 1144206275/124*2207^(3/16) 3908819155629448 m002 2-Pi^(-6)+6/Pi 3908819159194148 m005 (1/2*Catalan+5/6)/(9/10*exp(1)+6/7) 3908819170939624 a001 12586269025/3571*843^(5/14) 3908819171034444 p004 log(30851/619) 3908819179517485 r005 Im(z^2+c),c=3/23+13/32*I,n=21 3908819188492036 r005 Re(z^2+c),c=4/13+2/35*I,n=61 3908819201576230 a001 7778742049/1364*2207^(1/4) 3908819203211711 h001 (-7*exp(5)+7)/(-5*exp(4)+9) 3908819224618527 m001 (GAMMA(5/6)-ln(2)/ln(10))/(Niven+ThueMorse) 3908819228101973 b008 Pi*Sqrt[ArcTan[44]] 3908819230483127 a007 Real Root Of 21*x^4+799*x^3-879*x^2-984*x-505 3908819239164483 a001 53316291173/2207*322^(1/12) 3908819240215694 a001 32951280099/15127*843^(3/7) 3908819240571257 a001 1836311903/2207*843^(4/7) 3908819251732020 a001 1201881744/341*2207^(5/16) 3908819254805506 a001 86267571272/39603*843^(3/7) 3908819255227636 m006 (2/5*Pi-2/5)/(5/Pi+3/5) 3908819256934131 a001 225851433717/103682*843^(3/7) 3908819257244693 a001 591286729879/271443*843^(3/7) 3908819257290003 a001 1548008755920/710647*843^(3/7) 3908819257296614 a001 4052739537881/1860498*843^(3/7) 3908819257297579 a001 2178309*843^(3/7) 3908819257298175 a001 6557470319842/3010349*843^(3/7) 3908819257300700 a001 2504730781961/1149851*843^(3/7) 3908819257318007 a001 956722026041/439204*843^(3/7) 3908819257436631 a001 365435296162/167761*843^(3/7) 3908819258249693 a001 139583862445/64079*843^(3/7) 3908819259012238 a007 Real Root Of 615*x^4+560*x^3+824*x^2-374*x-253 3908819263822506 a001 53316291173/24476*843^(3/7) 3908819290767499 r005 Im(z^2+c),c=3/122+25/52*I,n=58 3908819301887810 a001 2971215073/1364*2207^(3/8) 3908819302019130 a001 20365011074/9349*843^(3/7) 3908819307476897 a001 610/3571*2537720636^(8/9) 3908819307476897 a001 610/3571*312119004989^(8/11) 3908819307476897 a001 610/3571*(1/2+1/2*5^(1/2))^40 3908819307476897 a001 610/3571*23725150497407^(5/8) 3908819307476897 a001 610/3571*73681302247^(10/13) 3908819307476897 a001 610/3571*28143753123^(4/5) 3908819307476897 a001 610/3571*10749957122^(5/6) 3908819307476897 a001 610/3571*4106118243^(20/23) 3908819307476897 a001 610/3571*1568397607^(10/11) 3908819307476897 a001 610/3571*599074578^(20/21) 3908819307478002 a001 1597/1364*141422324^(12/13) 3908819307478002 a001 1597/1364*2537720636^(4/5) 3908819307478002 a001 1597/1364*45537549124^(12/17) 3908819307478002 a001 1597/1364*14662949395604^(4/7) 3908819307478002 a001 1597/1364*(1/2+1/2*5^(1/2))^36 3908819307478002 a001 1597/1364*505019158607^(9/14) 3908819307478002 a001 1597/1364*192900153618^(2/3) 3908819307478002 a001 1597/1364*73681302247^(9/13) 3908819307478002 a001 1597/1364*10749957122^(3/4) 3908819307478002 a001 1597/1364*4106118243^(18/23) 3908819307478002 a001 1597/1364*1568397607^(9/11) 3908819307478002 a001 1597/1364*599074578^(6/7) 3908819307478002 a001 1597/1364*228826127^(9/10) 3908819307478002 a001 1597/1364*87403803^(18/19) 3908819310556540 r005 Re(z^2+c),c=-39/94+19/49*I,n=6 3908819320512347 r005 Im(z^2+c),c=7/122+28/61*I,n=30 3908819324068699 r009 Im(z^3+c),c=-15/44+8/21*I,n=20 3908819332480760 r005 Re(z^2+c),c=-59/114+17/59*I,n=57 3908819337757942 m001 (BesselI(0,1)+Bloch)/(-Landau+Paris) 3908819343256832 r005 Re(z^2+c),c=-13/21+5/54*I,n=8 3908819347146700 r002 29th iterates of z^2 + 3908819352043600 a001 1836311903/1364*2207^(7/16) 3908819359674775 a001 39088169+11*5^(1/2) 3908819365898336 m002 -3-Pi^5+ProductLog[Pi]-Pi^6*Sech[Pi] 3908819371558588 a007 Real Root Of -142*x^4-628*x^3-240*x^2+190*x+53 3908819376400343 r005 Im(z^2+c),c=19/70+17/60*I,n=53 3908819382807743 r005 Im(z^2+c),c=-39/74+2/29*I,n=32 3908819388405130 m001 (LambertW(1)-ln(3))/(BesselI(1,1)+Kolakoski) 3908819389307919 r005 Re(z^2+c),c=-59/114+17/58*I,n=19 3908819393836148 a001 32951280099/1364*843^(1/14) 3908819396765102 r005 Re(z^2+c),c=-13/14+37/221*I,n=30 3908819402199392 a001 567451585/682*2207^(1/2) 3908819405130599 m001 arctan(1/2)^exp(1/exp(1))*KhinchinLevy 3908819411056548 m001 (Chi(1)+Ei(1))/(-StronglyCareFree+ZetaP(4)) 3908819415737752 m005 (1/2*5^(1/2)-1/9)/(3/8*2^(1/2)-3/11) 3908819416133834 r009 Re(z^3+c),c=-15/31+8/33*I,n=55 3908819427211604 m005 (1/2*Catalan+3/10)/(6/7*3^(1/2)+5/11) 3908819429525284 m001 (gamma+GolombDickman)/(5^(1/2)+Chi(1)) 3908819430269481 a007 Real Root Of -769*x^4-330*x^3-717*x^2+745*x+399 3908819430977562 r002 7th iterates of z^2 + 3908819435414630 m001 GAMMA(13/24)^Ei(1)+FeigenbaumKappa 3908819444444444 r004 Im(z^2+c),c=-9/10+7/24*I,z(0)=-1,n=3 3908819446219335 r005 Re(z^2+c),c=-31/58+7/41*I,n=51 3908819452228935 m001 exp(Ei(1))*FeigenbaumD^2/GAMMA(3/4) 3908819452355184 a001 701408733/1364*2207^(9/16) 3908819453469102 r005 Re(z^2+c),c=-9/17+10/47*I,n=57 3908819457521395 r002 58i'th iterates of 2*x/(1-x^2) of 3908819460818633 r005 Re(z^2+c),c=-6/13+17/31*I,n=35 3908819461699587 m001 (Mills+ZetaQ(3))/(exp(1)+MasserGramain) 3908819485563645 r005 Im(z^2+c),c=-5/58+35/57*I,n=37 3908819488051045 a007 Real Root Of -221*x^4+950*x^3-262*x^2+957*x+476 3908819489744587 m001 (Trott2nd+ZetaP(2))/(Backhouse-FeigenbaumD) 3908819491271911 h001 (3/4*exp(1)+1/8)/(7/11*exp(2)+5/6) 3908819491559489 r009 Im(z^3+c),c=-25/52+19/64*I,n=34 3908819502510976 a001 433494437/1364*2207^(5/8) 3908819503470092 l006 ln(5641/8339) 3908819505893533 r002 63th iterates of z^2 + 3908819506249126 m001 (ln(2^(1/2)+1)+cos(1/12*Pi))/(Artin+Paris) 3908819533098720 a001 7778742049/5778*843^(1/2) 3908819539720752 m009 (5*Psi(1,3/4)+4/5)/(16*Catalan+2*Pi^2+1/6) 3908819541712506 p001 sum(1/(505*n+256)/(512^n),n=0..infinity) 3908819545473849 m001 (Chi(1)*ZetaQ(4)+Cahen)/ZetaQ(4) 3908819550672510 a001 1/1292*21^(25/47) 3908819552666770 a001 66978574/341*2207^(11/16) 3908819563822711 a001 7778742049/3571*843^(3/7) 3908819565897226 h001 (2/11*exp(2)+1/12)/(5/12*exp(2)+4/7) 3908819584830742 r005 Im(z^2+c),c=-11/19+21/50*I,n=29 3908819589523493 r002 60th iterates of z^2 + 3908819592583164 r005 Im(z^2+c),c=13/98+26/61*I,n=12 3908819599240401 r002 7th iterates of z^2 + 3908819601168055 r009 Re(z^3+c),c=-3/58+43/58*I,n=42 3908819602822564 a001 165580141/1364*2207^(3/4) 3908819606398063 m001 1/exp(Magata)/DuboisRaymond/TwinPrimes^2 3908819617574321 r008 a(0)=5,K{-n^6,40-n^3-14*n^2-25*n} 3908819620729071 r005 Re(z^2+c),c=-43/82+12/49*I,n=37 3908819622238689 h001 (-11*exp(1)-12)/(-2*exp(4)+2) 3908819631548971 m002 -Log[Pi]/2+3*Log[Pi]*Sinh[Pi] 3908819633098787 a001 20365011074/15127*843^(1/2) 3908819633454351 a001 1134903170/2207*843^(9/14) 3908819636474585 r005 Im(z^2+c),c=17/126+19/41*I,n=3 3908819647688601 a001 53316291173/39603*843^(1/2) 3908819649817226 a001 139583862445/103682*843^(1/2) 3908819650127788 a001 365435296162/271443*843^(1/2) 3908819650173099 a001 956722026041/710647*843^(1/2) 3908819650179709 a001 2504730781961/1860498*843^(1/2) 3908819650180674 a001 6557470319842/4870847*843^(1/2) 3908819650180902 a001 10610209857723/7881196*843^(1/2) 3908819650181270 a001 1346269*843^(1/2) 3908819650183795 a001 1548008755920/1149851*843^(1/2) 3908819650201102 a001 591286729879/439204*843^(1/2) 3908819650319726 a001 225851433717/167761*843^(1/2) 3908819651132789 a001 86267571272/64079*843^(1/2) 3908819652978358 a001 9303105/124*2207^(13/16) 3908819656705602 a001 32951280099/24476*843^(1/2) 3908819657313339 r002 30th iterates of z^2 + 3908819659709976 r005 Im(z^2+c),c=3/82+21/47*I,n=8 3908819662025169 p001 sum((-1)^n/(143*n+25)/(6^n),n=0..infinity) 3908819664586285 r005 Re(z^2+c),c=-51/118+23/40*I,n=60 3908819668235808 a007 Real Root Of -191*x^4-838*x^3-446*x^2-287*x+233 3908819686683800 m001 1/Porter^2/Si(Pi)^2/ln(sqrt(2)) 3908819694902230 a001 12586269025/9349*843^(1/2) 3908819703134154 a001 31622993/682*2207^(7/8) 3908819703541889 r005 Im(z^2+c),c=-1/8+35/61*I,n=45 3908819711498132 m001 MertensB3^KhinchinLevy+FeigenbaumAlpha 3908819711795771 r005 Im(z^2+c),c=3/56+16/35*I,n=19 3908819731034304 r005 Re(z^2+c),c=-3/86+4/49*I,n=6 3908819732400734 m001 1/ln(FeigenbaumD)*MertensB1^2/sqrt(Pi) 3908819740348803 a001 3571*514229^(15/17) 3908819740629569 m005 (1/3*exp(1)-1/8)/(5/6*Zeta(3)-3) 3908819743604877 q001 1/2558317 3908819753289949 a001 39088169/1364*2207^(15/16) 3908819762589568 r009 Re(z^3+c),c=-17/86+51/59*I,n=4 3908819778842533 a007 Real Root Of -62*x^4-319*x^3-165*x^2+725*x+777 3908819780606866 r002 55th iterates of z^2 + 3908819786653902 a001 11/8*610^(37/42) 3908819786719257 a001 10182505537/682*843^(1/7) 3908819787762415 m001 ln(2+3^(1/2))*gamma(1)^arctan(1/2) 3908819796802117 m001 (DuboisRaymond+Mills)/(ln(Pi)-GAMMA(7/12)) 3908819803444782 a001 38580051460/987 3908819813722770 m001 BesselJ(1,1)^(exp(1/Pi)*FeigenbaumB) 3908819822997013 l006 ln(3753/5548) 3908819825374943 r004 Im(z^2+c),c=-3/20+11/19*I,z(0)=I,n=57 3908819826214221 r005 Im(z^2+c),c=23/90+3/10*I,n=45 3908819828932937 h001 (-exp(1/3)+3)/(-2*exp(2/3)+8) 3908819829292022 r005 Re(z^2+c),c=-61/90+8/17*I,n=50 3908819833053596 m001 (Zeta(1,2)-Trott)/(Zeta(1/2)-cos(1/12*Pi)) 3908819845121470 s002 sum(A271139[n]/(pi^n-1),n=1..infinity) 3908819846138654 r005 Re(z^2+c),c=-13/18+14/99*I,n=61 3908819849437575 r009 Re(z^3+c),c=-51/110+13/59*I,n=29 3908819861159565 a007 Real Root Of 451*x^4+346*x^3+270*x^2+31*x-19 3908819872225805 r005 Im(z^2+c),c=-71/122+1/14*I,n=47 3908819898854511 r005 Im(z^2+c),c=31/126+19/62*I,n=22 3908819903421686 r005 Re(z^2+c),c=-10/17+11/28*I,n=23 3908819904828019 r009 Im(z^3+c),c=-1/15+13/29*I,n=9 3908819911331946 b008 -3/14+Sqrt[17] 3908819915230748 m001 RenyiParking^2*Backhouse^2/ln(GAMMA(2/3)) 3908819915725231 m001 TreeGrowth2nd^Si(Pi)/(TreeGrowth2nd^exp(Pi)) 3908819924575070 a001 139583862445/5778*322^(1/12) 3908819925981844 a001 267084832/321*843^(4/7) 3908819946954021 r005 Re(z^2+c),c=-17/106+23/39*I,n=8 3908819953350565 m005 (21/4+1/4*5^(1/2))/(7/10*exp(1)-5/12) 3908819956322627 a007 Real Root Of 194*x^4+544*x^3-645*x^2+940*x+730 3908819956705837 a001 4807526976/3571*843^(1/2) 3908819965334684 r005 Im(z^2+c),c=35/114+13/55*I,n=27 3908819977136041 h001 (1/5*exp(1)+7/9)/(11/12*exp(1)+8/9) 3908819978468555 r009 Re(z^3+c),c=-5/74+11/18*I,n=37 3908819980020504 a007 Real Root Of 199*x^4+956*x^3+825*x^2+254*x-973 3908819987508728 m004 -2-124*Pi+Sin[Sqrt[5]*Pi] 3908820005653932 r002 15th iterates of z^2 + 3908820007077915 r005 Re(z^2+c),c=-9/17+10/47*I,n=58 3908820024575147 a001 365435296162/15127*322^(1/12) 3908820025981921 a001 12586269025/15127*843^(4/7) 3908820026337484 a001 701408733/2207*843^(5/7) 3908820029148018 r002 5th iterates of z^2 + 3908820037362090 a007 Real Root Of 175*x^4+723*x^3-6*x^2-765*x-572 3908820039164962 a001 956722026041/39603*322^(1/12) 3908820040042756 r005 Im(z^2+c),c=-3/86+15/29*I,n=39 3908820040571736 a001 10983760033/13201*843^(4/7) 3908820041152785 h001 (3/4*exp(2)+5/9)/(4/11*exp(1)+4/7) 3908820041293587 a001 2504730781961/103682*322^(1/12) 3908820041604149 a001 6557470319842/271443*322^(1/12) 3908820041677463 a001 10610209857723/439204*322^(1/12) 3908820041796087 a001 4052739537881/167761*322^(1/12) 3908820042609150 a001 1548008755920/64079*322^(1/12) 3908820042700361 a001 43133785636/51841*843^(4/7) 3908820043010923 a001 75283811239/90481*843^(4/7) 3908820043056234 a001 591286729879/710647*843^(4/7) 3908820043062844 a001 832040*843^(4/7) 3908820043063809 a001 4052739537881/4870847*843^(4/7) 3908820043063950 a001 3536736619241/4250681*843^(4/7) 3908820043064037 a001 3278735159921/3940598*843^(4/7) 3908820043064405 a001 2504730781961/3010349*843^(4/7) 3908820043066930 a001 956722026041/1149851*843^(4/7) 3908820043084237 a001 182717648081/219602*843^(4/7) 3908820043202861 a001 139583862445/167761*843^(4/7) 3908820044015924 a001 53316291173/64079*843^(4/7) 3908820048181963 a001 591286729879/24476*322^(1/12) 3908820049588737 a001 10182505537/12238*843^(4/7) 3908820066603882 h001 (-exp(7)-8)/(-7*exp(6)-2) 3908820081561122 b008 2+E*(1/8+EulerGamma) 3908820086292510 m005 (-7/36+1/4*5^(1/2))/(5*3^(1/2)+2/3) 3908820086378596 a001 225851433717/9349*322^(1/12) 3908820087785370 a001 7778742049/9349*843^(4/7) 3908820091316520 a007 Real Root Of 171*x^4-910*x^3+721*x^2-669*x-430 3908820095223359 b008 Sqrt[3/Pi]/25 3908820098808301 r002 11th iterates of z^2 + 3908820107720895 m001 arctan(1/2)/(BesselI(0,1)^Sarnak) 3908820114159031 m001 StronglyCareFree^(2^(1/3))*ZetaQ(2) 3908820120625718 b008 2+Sqrt[3+Sqrt[-1+Sqrt[2]]] 3908820143832062 l006 ln(5618/8305) 3908820157208587 r005 Im(z^2+c),c=-39/70+28/59*I,n=45 3908820158161343 r009 Im(z^3+c),c=-17/50+25/38*I,n=55 3908820158237656 a007 Real Root Of 146*x^4+723*x^3+452*x^2-544*x+64 3908820159419072 a007 Real Root Of -243*x^4-784*x^3+395*x^2-873*x+457 3908820164670874 a007 Real Root Of -85*x^4-187*x^3+382*x^2-536*x+743 3908820169752353 a001 199*610^(2/19) 3908820179602406 a001 1144206275/124*843^(3/14) 3908820181808546 m001 (LaplaceLimit-Otter)/(exp(-1/2*Pi)-Kolakoski) 3908820193307919 p004 log(35977/24337) 3908820195941909 r005 Re(z^2+c),c=-45/86+14/55*I,n=60 3908820203652279 a007 Real Root Of 236*x^4+971*x^3-23*x^2-822*x+36 3908820209809551 r009 Re(z^3+c),c=-5/11+13/56*I,n=10 3908820223116508 a001 165580141/521*521^(10/13) 3908820223804012 r002 36th iterates of z^2 + 3908820235213928 r002 63th iterates of z^2 + 3908820242602381 m001 (Otter+ZetaP(2))/(LandauRamanujan+OneNinth) 3908820263965689 r005 Im(z^2+c),c=-7/6+9/178*I,n=47 3908820275312135 m001 1/PrimesInBinary/ln(Porter)^2*cosh(1)^2 3908820275574015 r005 Re(z^2+c),c=-5/7+10/127*I,n=12 3908820285157429 a007 Real Root Of 273*x^4-440*x^3-397*x^2-610*x+319 3908820285565770 a007 Real Root Of -590*x^4+558*x^3+460*x^2+947*x-460 3908820288372264 r005 Re(z^2+c),c=-59/110+13/41*I,n=23 3908820318865006 a001 2971215073/5778*843^(9/14) 3908820326845270 r009 Re(z^3+c),c=-23/60+29/46*I,n=9 3908820341873763 r005 Re(z^2+c),c=-9/14+99/182*I,n=3 3908820344571930 a007 Real Root Of -912*x^4-857*x^3-381*x^2+759*x+325 3908820346397186 r002 39th iterates of z^2 + 3908820346397186 r002 39th iterates of z^2 + 3908820348182228 a001 86267571272/3571*322^(1/12) 3908820349589003 a001 2971215073/3571*843^(4/7) 3908820353082663 r002 22th iterates of z^2 + 3908820363854359 m001 (Chi(1)-Zeta(5))^LandauRamanujan2nd 3908820374878516 m002 4*Pi^4+Log[Pi]+Tanh[Pi]/Pi^2 3908820380102512 r005 Im(z^2+c),c=-2/3+41/125*I,n=21 3908820408622229 a003 cos(Pi*21/67)/cos(Pi*55/111) 3908820410467421 s002 sum(A088408[n]/(2^n+1),n=1..infinity) 3908820412242367 m001 (Paris+RenyiParking)/(FeigenbaumB+MertensB3) 3908820415940061 a005 (1/sin(68/167*Pi))^85 3908820416558860 m005 (1/2*5^(1/2)+1/10)/(5/8*2^(1/2)-4) 3908820418865093 a001 7778742049/15127*843^(9/14) 3908820419220657 a001 433494437/2207*843^(11/14) 3908820423855677 r002 14th iterates of z^2 + 3908820424527713 r005 Im(z^2+c),c=-17/98+36/61*I,n=34 3908820429023437 m009 (2*Psi(1,1/3)-4/5)/(3/10*Pi^2+2) 3908820433454910 a001 20365011074/39603*843^(9/14) 3908820435583535 a001 53316291173/103682*843^(9/14) 3908820435894098 a001 139583862445/271443*843^(9/14) 3908820435939408 a001 365435296162/710647*843^(9/14) 3908820435946019 a001 956722026041/1860498*843^(9/14) 3908820435946983 a001 2504730781961/4870847*843^(9/14) 3908820435947124 a001 6557470319842/12752043*843^(9/14) 3908820435947157 a001 10610209857723/20633239*843^(9/14) 3908820435947211 a001 4052739537881/7881196*843^(9/14) 3908820435947579 a001 1548008755920/3010349*843^(9/14) 3908820435950104 a001 514229*843^(9/14) 3908820435967411 a001 225851433717/439204*843^(9/14) 3908820436086036 a001 86267571272/167761*843^(9/14) 3908820436140955 r002 14th iterates of z^2 + 3908820436899098 a001 32951280099/64079*843^(9/14) 3908820442471912 a001 12586269025/24476*843^(9/14) 3908820451966661 g007 -14*Zeta(3)-Psi(2,6/7)-Psi(2,5/6)-Psi(2,3/4) 3908820465329314 m005 (1/2*gamma+3)/(7/12*2^(1/2)-10/11) 3908820480668549 a001 4807526976/9349*843^(9/14) 3908820481512098 m001 GAMMA(7/24)^sin(1)*GAMMA(13/24)^sin(1) 3908820482338647 m001 (5^(1/2)+Chi(1))/(Artin+ThueMorse) 3908820486513746 r005 Im(z^2+c),c=1/4+11/36*I,n=46 3908820514349063 m001 DuboisRaymond/Pi^(1/2)/FransenRobinson 3908820521099280 m006 (5/6*Pi-3/4)/(4*ln(Pi)+1/5) 3908820525811716 b008 E*(4+EulerGamma)*Pi 3908820537359985 r002 29th iterates of z^2 + 3908820547220300 r002 31th iterates of z^2 + 3908820553830124 m001 (Kolakoski+MertensB3)/(Psi(2,1/3)+CareFree) 3908820560408319 s002 sum(A068663[n]/(64^n-1),n=1..infinity) 3908820562533692 r005 Re(z^2+c),c=-63/118+23/64*I,n=10 3908820563339638 a007 Real Root Of 545*x^4+601*x^3+255*x^2-328*x-144 3908820570175037 r002 32th iterates of z^2 + 3908820572485594 a001 7778742049/1364*843^(2/7) 3908820572682778 m001 (MertensB2+ZetaQ(2))/(ln(Pi)+GAMMA(13/24)) 3908820579868112 a008 Real Root of x^4-x^3+2*x^2+25*x-302 3908820595941081 a007 Real Root Of 156*x^4+417*x^3-725*x^2+188*x+299 3908820596136135 m005 (1/3*Pi-1/11)/(4/11*gamma-5/11) 3908820599081833 l005 ln(tanh(140/103*Pi)) 3908820606649290 r005 Re(z^2+c),c=-57/82+12/61*I,n=47 3908820608433143 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=29 3908820615381947 s002 sum(A113833[n]/(n!^3),n=1..infinity) 3908820622868904 a007 Real Root Of -177*x^4-629*x^3+341*x^2+133*x-936 3908820637159351 m001 (BesselJ(1,1)+GAMMA(7/12))/(Pi+Ei(1)) 3908820637242071 m001 MinimumGamma^FeigenbaumKappa+5^(1/2) 3908820649017884 a007 Real Root Of 128*x^4+271*x^3+65*x^2-607*x-234 3908820663441625 r005 Re(z^2+c),c=-27/52+17/61*I,n=57 3908820670941510 r009 Re(z^3+c),c=-43/106+9/59*I,n=24 3908820672279968 r002 30th iterates of z^2 + 3908820687559276 p003 LerchPhi(1/1024,5,67/88) 3908820692111648 m001 (Landau+MertensB1)/(FeigenbaumD-GolombDickman) 3908820711748208 a001 1836311903/5778*843^(5/7) 3908820718960431 m001 (GaussAGM+GlaisherKinkelin)/(Landau-ZetaQ(4)) 3908820724729638 a001 514229/4*76^(41/52) 3908820742472208 a001 1836311903/3571*843^(9/14) 3908820749831929 m001 1/Porter*ln(LandauRamanujan)*Zeta(1/2)^2 3908820754606029 m001 (GAMMA(7/12)-MadelungNaCl)/(OneNinth+ZetaP(2)) 3908820758975380 r002 39th iterates of z^2 + 3908820762910318 a008 Real Root of x^4-x^3-13*x^2+16*x-32 3908820773483623 h001 (7/11*exp(2)+7/11)/(1/12*exp(2)+3/4) 3908820775178367 m001 (BesselJ(1,1)-sin(1/12*Pi))/arctan(1/2) 3908820775178367 m001 (BesselJ(1,1)-sin(Pi/12))/arctan(1/2) 3908820783727616 r002 11th iterates of z^2 + 3908820786010551 r005 Im(z^2+c),c=3/110+13/27*I,n=24 3908820788019400 r009 Re(z^3+c),c=-13/30+23/41*I,n=18 3908820789458808 l006 ln(1865/2757) 3908820792227048 m005 (1/3*3^(1/2)+1/10)/(2/9*Zeta(3)-2) 3908820807179370 p001 sum(1/(367*n+256)/(625^n),n=0..infinity) 3908820811748305 a001 686789568/2161*843^(5/7) 3908820812103869 a001 267914296/2207*843^(6/7) 3908820813943712 a007 Real Root Of 189*x^4+687*x^3-27*x^2+536*x-584 3908820824610039 a001 7778742049/843*322^(1/4) 3908820826338123 a001 12586269025/39603*843^(5/7) 3908820827452656 a007 Real Root Of -236*x^4-928*x^3+25*x^2+367*x+723 3908820828466749 a001 32951280099/103682*843^(5/7) 3908820828777312 a001 86267571272/271443*843^(5/7) 3908820828822622 a001 317811*843^(5/7) 3908820828829233 a001 591286729879/1860498*843^(5/7) 3908820828830197 a001 1548008755920/4870847*843^(5/7) 3908820828830338 a001 4052739537881/12752043*843^(5/7) 3908820828830358 a001 1515744265389/4769326*843^(5/7) 3908820828830371 a001 6557470319842/20633239*843^(5/7) 3908820828830425 a001 2504730781961/7881196*843^(5/7) 3908820828830793 a001 956722026041/3010349*843^(5/7) 3908820828833318 a001 365435296162/1149851*843^(5/7) 3908820828850625 a001 139583862445/439204*843^(5/7) 3908820828969250 a001 53316291173/167761*843^(5/7) 3908820829782312 a001 20365011074/64079*843^(5/7) 3908820835355127 a001 7778742049/24476*843^(5/7) 3908820837158279 r009 Im(z^3+c),c=-23/82+19/47*I,n=8 3908820842635824 m001 (gamma+Zeta(5))/(GAMMA(19/24)+Otter) 3908820845725548 a001 23725150497407/55*55^(11/20) 3908820845761774 m001 1/PrimesInBinary^2/Si(Pi)^2/ln(cosh(1)) 3908820852365378 m001 exp(MertensB1)^2*ErdosBorwein^2/GAMMA(11/12)^2 3908820853104133 m005 (1/2*2^(1/2)+1)/(7/11*gamma+4) 3908820858070146 m005 (-23/36+1/4*5^(1/2))/(5/6*3^(1/2)+3/5) 3908820862252929 a007 Real Root Of 773*x^4+524*x^3-275*x^2-914*x-302 3908820866182098 m001 1/Catalan^2*ln(BesselJ(0,1))*GAMMA(3/4) 3908820873551767 a001 2971215073/9349*843^(5/7) 3908820891768418 l006 ln(2032/2113) 3908820893770424 r002 51th iterates of z^2 + 3908820895716296 r002 24th iterates of z^2 + 3908820897435975 m001 (Ei(1)-LambertW(1))/(gamma(2)+Magata) 3908820897714151 r005 Re(z^2+c),c=-10/19+15/64*I,n=46 3908820898377923 m001 (Kac+Sierpinski)/(arctan(1/2)-GAMMA(17/24)) 3908820907064296 m005 (1/2*Zeta(3)+1/5)/(5/12*exp(1)+11/12) 3908820911478765 b008 Pi+2*SphericalBesselJ[1,Sqrt[2]] 3908820936451318 r005 Re(z^2+c),c=-29/54+8/59*I,n=22 3908820946060221 m001 1/ln(Zeta(7))*GAMMA(2/3)^2*sqrt(Pi) 3908820965368822 a001 1201881744/341*843^(5/14) 3908820971563193 r002 44th iterates of z^2 + 3908820982712201 m001 Weierstrass/(Grothendieck-LambertW(1)) 3908821030676466 r002 16th iterates of z^2 + 3908821042793128 m001 (Zeta(3)+Zeta(1,2))/(PlouffeB-Weierstrass) 3908821049205689 r005 Im(z^2+c),c=1/118+27/55*I,n=56 3908821051032451 a007 Real Root Of -712*x^4+870*x^3+780*x^2+802*x-468 3908821058302661 r002 44th iterates of z^2 + 3908821061332467 m001 (FeigenbaumDelta-Landau)/GAMMA(11/12) 3908821061488334 r009 Im(z^3+c),c=-3/26+4/9*I,n=7 3908821061920461 m001 1/BesselK(0,1)^2*TwinPrimes^2*exp(arctan(1/2)) 3908821070762962 r002 32th iterates of z^2 + 3908821074122121 m001 FeigenbaumAlpha*Trott2nd-OneNinth 3908821074229309 r009 Im(z^3+c),c=-5/19+25/61*I,n=10 3908821080331592 a001 514229/322*7^(23/50) 3908821101906157 a001 305/682*817138163596^(2/3) 3908821101906157 a001 305/682*(1/2+1/2*5^(1/2))^38 3908821101906157 a001 305/682*10749957122^(19/24) 3908821101906157 a001 305/682*4106118243^(19/23) 3908821101906157 a001 305/682*1568397607^(19/22) 3908821101906157 a001 305/682*599074578^(19/21) 3908821101906157 a001 305/682*228826127^(19/20) 3908821102118996 r005 Re(z^2+c),c=-1+53/183*I,n=48 3908821104631450 a001 567451585/2889*843^(11/14) 3908821112692292 a003 cos(Pi*8/29)*cos(Pi*25/52) 3908821135355452 a001 1134903170/3571*843^(5/7) 3908821143140898 m001 ln(Kolakoski)^2*GolombDickman^2*Ei(1) 3908821149177232 q001 1449/3707 3908821151430828 r005 Im(z^2+c),c=-9/86+34/61*I,n=54 3908821152520725 r008 a(0)=0,K{-n^6,-10+30*n-58*n^2+41*n^3} 3908821160513385 a007 Real Root Of 219*x^4+926*x^3+424*x^2+553*x-138 3908821183796867 a007 Real Root Of -895*x^4+456*x^3+370*x^2+482*x+180 3908821185081538 r005 Re(z^2+c),c=-25/54+15/32*I,n=44 3908821189037094 r005 Re(z^2+c),c=7/20+19/44*I,n=15 3908821191397537 a007 Real Root Of -159*x^4-645*x^3-44*x^2+142*x-176 3908821203777679 a007 Real Root Of 42*x^4+44*x^3-508*x^2-68*x+319 3908821204631557 a001 2971215073/15127*843^(11/14) 3908821204987121 a001 165580141/2207*843^(13/14) 3908821214794021 a001 8/11*76^(23/25) 3908821219221377 a001 7778742049/39603*843^(11/14) 3908821220070289 r005 Re(z^2+c),c=-29/50+6/23*I,n=18 3908821221350003 a001 10182505537/51841*843^(11/14) 3908821221660565 a001 53316291173/271443*843^(11/14) 3908821221705875 a001 139583862445/710647*843^(11/14) 3908821221712486 a001 182717648081/930249*843^(11/14) 3908821221713451 a001 956722026041/4870847*843^(11/14) 3908821221713591 a001 2504730781961/12752043*843^(11/14) 3908821221713612 a001 3278735159921/16692641*843^(11/14) 3908821221713617 a001 10610209857723/54018521*843^(11/14) 3908821221713624 a001 4052739537881/20633239*843^(11/14) 3908821221713678 a001 387002188980/1970299*843^(11/14) 3908821221714047 a001 591286729879/3010349*843^(11/14) 3908821221716572 a001 225851433717/1149851*843^(11/14) 3908821221733879 a001 196418*843^(11/14) 3908821221852503 a001 32951280099/167761*843^(11/14) 3908821222665566 a001 12586269025/64079*843^(11/14) 3908821228238381 a001 1201881744/6119*843^(11/14) 3908821229525231 m001 ln(Magata)/FeigenbaumB^2/GAMMA(5/12)^2 3908821255274253 m001 BesselJZeros(0,1)*GAMMA(5/12)^Cahen 3908821263480935 b008 2+(9*Sqrt[13])/17 3908821266435025 a001 1836311903/9349*843^(11/14) 3908821266578764 p001 sum((-1)^n/(448*n+253)/(32^n),n=0..infinity) 3908821269866560 m001 (Backhouse-MinimumGamma)^GolombDickman 3908821274201476 m001 TwinPrimes/GlaisherKinkelin/ln(2+3^(1/2)) 3908821279629528 m005 (1/2*3^(1/2)+3/11)/(6/7*exp(1)+7/12) 3908821280253243 m005 (1/3*2^(1/2)-2/9)/(-1/30+3/10*5^(1/2)) 3908821281609503 r005 Im(z^2+c),c=15/56+17/50*I,n=14 3908821285714745 m001 (5^(1/2)+Zeta(5))/(-3^(1/3)+BesselI(0,2)) 3908821286419781 m001 ln(Pi)*cos(1)^KhinchinHarmonic 3908821295404631 m005 (1/2*Zeta(3)-9/11)/(13/12+2*5^(1/2)) 3908821307308753 r002 39th iterates of z^2 + 3908821316664099 r002 41th iterates of z^2 + 3908821318072367 r005 Im(z^2+c),c=-3/40+20/37*I,n=50 3908821322928364 m001 OneNinth*exp(ErdosBorwein)^2*Zeta(1/2) 3908821324490566 a007 Real Root Of -190*x^4-666*x^3+441*x^2+409*x-560 3908821330822638 a001 267914296/521*521^(9/13) 3908821338094306 m001 BesselJ(0,1)^(FeigenbaumD*Riemann1stZero) 3908821341315425 m001 Paris*ln(KhintchineLevy)^2*GAMMA(2/3) 3908821341371494 a007 Real Root Of -289*x^4-944*x^3+715*x^2-230*x-736 3908821347092882 p004 log(19231/13009) 3908821348734277 a001 1860498*34^(4/19) 3908821350169959 r005 Im(z^2+c),c=23/70+4/21*I,n=24 3908821358252089 a001 2971215073/1364*843^(3/7) 3908821366175528 m001 gamma*cos(1/5*Pi)^Tribonacci 3908821371209209 r009 Im(z^3+c),c=-7/110+23/38*I,n=2 3908821388695066 a007 Real Root Of 101*x^4-798*x^3+455*x^2+380*x+29 3908821392679469 h001 (6/7*exp(2)+11/12)/(7/11*exp(1)+1/8) 3908821398546208 r005 Re(z^2+c),c=-14/27+17/60*I,n=46 3908821401551339 r005 Re(z^2+c),c=1/4+1/42*I,n=46 3908821409758340 a007 Real Root Of 996*x^4-618*x^3+527*x^2-579*x-367 3908821416859479 m006 (1/6*Pi^2+1/3)/(1/3/Pi+2/5) 3908821427435319 r002 4th iterates of z^2 + 3908821440415524 l006 ln(5572/8237) 3908821448028394 r005 Re(z^2+c),c=-3/5+39/118*I,n=32 3908821456115290 m001 Sarnak/(MasserGramainDelta^GAMMA(23/24)) 3908821473250751 a007 Real Root Of -205*x^4-887*x^3-138*x^2+853*x+325 3908821497514731 a001 233802911/1926*843^(6/7) 3908821498596745 a007 Real Root Of -272*x^4-264*x^3-762*x^2+637*x+356 3908821500189901 a007 Real Root Of -182*x^4-525*x^3+812*x^2+506*x+704 3908821513775147 r005 Im(z^2+c),c=13/64+13/37*I,n=22 3908821514588750 a007 Real Root Of -25*x^4+110*x^3+747*x^2-425*x-669 3908821514641155 m001 (StronglyCareFree+ZetaP(3))/(Shi(1)+exp(1/Pi)) 3908821520974339 m001 (Chi(1)+Mills)/(-Stephens+Trott2nd) 3908821528238737 a001 701408733/3571*843^(11/14) 3908821541078603 r005 Re(z^2+c),c=-31/58+9/53*I,n=34 3908821542458498 m001 Otter/(gamma(1)+ZetaR(2)) 3908821558481214 r005 Im(z^2+c),c=-4/19+27/44*I,n=62 3908821559892145 r009 Im(z^3+c),c=-7/94+15/28*I,n=2 3908821560037861 b008 3+2^(-4/29) 3908821586575619 r005 Re(z^2+c),c=-17/32+3/17*I,n=21 3908821593153390 r002 2th iterates of z^2 + 3908821595147400 m001 1/Bloch^2*exp(ErdosBorwein)*KhintchineHarmonic 3908821597514848 a001 1836311903/15127*843^(6/7) 3908821597877984 a001 14736257424/377 3908821607053355 m001 1/FeigenbaumC/exp(Bloch)^2*Tribonacci 3908821607456447 a001 3571/21*610^(39/46) 3908821610263111 r005 Im(z^2+c),c=27/110+9/29*I,n=34 3908821612104669 a001 1602508992/13201*843^(6/7) 3908821613281538 m005 (1/2*Catalan+3)/(4/11*exp(1)-9/10) 3908821614233295 a001 12586269025/103682*843^(6/7) 3908821614543858 a001 121393*843^(6/7) 3908821614589168 a001 86267571272/710647*843^(6/7) 3908821614595779 a001 75283811239/620166*843^(6/7) 3908821614596743 a001 591286729879/4870847*843^(6/7) 3908821614596884 a001 516002918640/4250681*843^(6/7) 3908821614596905 a001 4052739537881/33385282*843^(6/7) 3908821614596908 a001 3536736619241/29134601*843^(6/7) 3908821614596909 a001 6557470319842/54018521*843^(6/7) 3908821614596917 a001 2504730781961/20633239*843^(6/7) 3908821614596971 a001 956722026041/7881196*843^(6/7) 3908821614597339 a001 365435296162/3010349*843^(6/7) 3908821614599865 a001 139583862445/1149851*843^(6/7) 3908821614617172 a001 53316291173/439204*843^(6/7) 3908821614735796 a001 20365011074/167761*843^(6/7) 3908821615548859 a001 7778742049/64079*843^(6/7) 3908821615882529 m004 -6/5+(25*Pi)/Log[Sqrt[5]*Pi] 3908821621121674 a001 2971215073/24476*843^(6/7) 3908821622382261 p001 sum(1/(503*n+296)/(3^n),n=0..infinity) 3908821624707175 g005 GAMMA(11/12)/GAMMA(4/9)/GAMMA(6/7)/GAMMA(3/4) 3908821628879455 r009 Re(z^3+c),c=-39/82+7/30*I,n=63 3908821632908348 m001 1/ln(FeigenbaumB)*Cahen^2/gamma 3908821635799539 r009 Im(z^3+c),c=-7/15+4/13*I,n=41 3908821641240408 a001 29/2504730781961*987^(3/17) 3908821647533213 m004 -1+(25*Pi)/Log[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi]/5 3908821658596957 p004 log(24677/16693) 3908821659318322 a001 1134903170/9349*843^(6/7) 3908821662278999 a007 Real Root Of 372*x^4+117*x^3-135*x^2-578*x-207 3908821680802694 r001 40i'th iterates of 2*x^2-1 of 3908821688005338 a005 (1/cos(7/235*Pi))^836 3908821696284626 a007 Real Root Of 692*x^4-511*x^3-273*x^2+92*x+31 3908821721413195 m001 (QuadraticClass-ThueMorse)/(Zeta(3)-gamma(3)) 3908821725765475 h001 (7/12*exp(1)+7/11)/(3/4*exp(2)+1/7) 3908821726478785 m004 -10/Pi-125*Pi+5*Coth[Sqrt[5]*Pi] 3908821729925169 m001 (Tribonacci-exp(1/exp(1)))/Psi(1,1/3) 3908821741638596 m001 (-BesselJ(1,1)+KhinchinLevy)/(1-cos(1/5*Pi)) 3908821748424881 a007 Real Root Of -702*x^4+129*x^3+265*x^2+878*x-375 3908821748515024 p002 log(11^(1/4)-13^(1/2)*5^(3/4)) 3908821751135396 a001 1836311903/1364*843^(1/2) 3908821755231992 m004 -5+125*Pi+(10*Tanh[Sqrt[5]*Pi])/Pi 3908821763780556 g002 Psi(4/5)+Psi(1/5)-Psi(9/10)-Psi(1/9) 3908821767913289 l006 ln(3707/5480) 3908821774135949 m004 -1/5+(25*Pi)/Log[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 3908821782680911 a007 Real Root Of 16*x^4-562*x^3-378*x^2+28*x+80 3908821782856885 a001 29/10610209857723*3524578^(3/17) 3908821789780278 m004 -6+10/Pi+125*Pi+Tanh[Sqrt[5]*Pi] 3908821794046748 m001 Zeta(7)^2/ln(GAMMA(5/6))^2/sqrt(Pi) 3908821821430962 m004 -4+10/Pi+125*Pi-Tanh[Sqrt[5]*Pi] 3908821824734274 r005 Re(z^2+c),c=-33/64+19/59*I,n=30 3908821825533781 m003 39/8+Sqrt[5]/64-Csc[1/2+Sqrt[5]/2] 3908821841035836 p004 log(30253/607) 3908821843285509 m001 1/GAMMA(2/3)/exp(Robbin)*GAMMA(23/24) 3908821845320300 a008 Real Root of x^2-x-152398 3908821855979328 m004 -5+125*Pi+(10*Coth[Sqrt[5]*Pi])/Pi 3908821867716598 r005 Im(z^2+c),c=7/23+12/49*I,n=48 3908821869091444 a007 Real Root Of -691*x^4+735*x^3+237*x^2+458*x-243 3908821870514251 r005 Re(z^2+c),c=-77/122+5/31*I,n=13 3908821873210446 m001 (PlouffeB-Trott2nd)/(Pi^(1/2)-Kac) 3908821873845411 r005 Im(z^2+c),c=-31/78+27/50*I,n=27 3908821877223093 a001 39603/8*1346269^(26/55) 3908821879373266 a008 Real Root of (1+x-6*x^2-6*x^3-x^4+3*x^5) 3908821879576257 m001 (Kolakoski-Magata)/(Ei(1)-FibonacciFactorial) 3908821884732330 m004 -10/Pi-125*Pi+5*Tanh[Sqrt[5]*Pi] 3908821887823097 r001 3i'th iterates of 2*x^2-1 of 3908821888322984 a001 7/4*(1/2*5^(1/2)+1/2)^28*4^(19/23) 3908821890398052 a001 433494437/5778*843^(13/14) 3908821911296882 a007 Real Root Of 675*x^4-162*x^3-663*x^2-616*x+336 3908821911843332 a007 Real Root Of 9*x^4-201*x^3-965*x^2-319*x-608 3908821921122060 a001 433494437/3571*843^(6/7) 3908821927845433 s002 sum(A187499[n]/((exp(n)-1)/n),n=1..infinity) 3908821931850445 a005 (1/cos(39/206*Pi))^215 3908821942213824 m002 -1+6/Pi^2+Log[Pi]/Pi^6 3908821948832643 a007 Real Root Of -94*x^4+451*x^3-582*x^2-82*x+86 3908821954409789 m001 (FeigenbaumDelta-Kac)/(Zeta(3)-ln(3)) 3908821960777296 r005 Re(z^2+c),c=17/122+43/58*I,n=2 3908821968432545 a001 47/17711*514229^(9/44) 3908821976570371 m005 (1/3*gamma-1/8)/(5/7*2^(1/2)+5/7) 3908821985153586 m001 1/Catalan*BesselJ(0,1)*exp(cosh(1)) 3908821990106180 m005 (1/2*2^(1/2)+9/11)/(4/5*Zeta(3)-4/7) 3908821990398179 a001 1134903170/15127*843^(13/14) 3908821995437186 p004 log(35569/24061) 3908821998992564 r002 40th iterates of z^2 + 3908822004988001 a001 2971215073/39603*843^(13/14) 3908822007116628 a001 7778742049/103682*843^(13/14) 3908822007427190 a001 20365011074/271443*843^(13/14) 3908822007472501 a001 53316291173/710647*843^(13/14) 3908822007479111 a001 139583862445/1860498*843^(13/14) 3908822007480076 a001 365435296162/4870847*843^(13/14) 3908822007480216 a001 956722026041/12752043*843^(13/14) 3908822007480237 a001 2504730781961/33385282*843^(13/14) 3908822007480240 a001 6557470319842/87403803*843^(13/14) 3908822007480241 a001 10610209857723/141422324*843^(13/14) 3908822007480242 a001 4052739537881/54018521*843^(13/14) 3908822007480250 a001 140728068720/1875749*843^(13/14) 3908822007480303 a001 591286729879/7881196*843^(13/14) 3908822007480672 a001 225851433717/3010349*843^(13/14) 3908822007483197 a001 86267571272/1149851*843^(13/14) 3908822007500504 a001 32951280099/439204*843^(13/14) 3908822007619128 a001 75025*843^(13/14) 3908822008432191 a001 4807526976/64079*843^(13/14) 3908822011420219 l006 ln(194/9669) 3908822012731214 m001 (Paris+PlouffeB)/(sin(1/5*Pi)+ln(2^(1/2)+1)) 3908822014005007 a001 1836311903/24476*843^(13/14) 3908822035198319 m008 (1/4*Pi^5-2/3)/(2*Pi^4-4/5) 3908822050365197 r005 Re(z^2+c),c=-19/36+12/47*I,n=25 3908822052201659 a001 701408733/9349*843^(13/14) 3908822055211672 m001 GAMMA(17/24)^2*Artin^2/ln(arctan(1/2))^2 3908822056005339 a007 Real Root Of 300*x^4-755*x^3+956*x^2+136*x-145 3908822076368987 r002 14th iterates of z^2 + 3908822092892615 r002 40th iterates of z^2 + 3908822096768486 l006 ln(5549/8203) 3908822106428432 r005 Im(z^2+c),c=29/110+13/44*I,n=21 3908822112507152 r002 9th iterates of z^2 + 3908822116371582 r005 Re(z^2+c),c=-35/66+8/39*I,n=36 3908822116850107 l003 cosh(2+4/101) 3908822116850107 l004 cosh(206/101) 3908822117239338 r005 Im(z^2+c),c=-1/8+29/51*I,n=63 3908822127632587 a007 Real Root Of -155*x^4-524*x^3+473*x^2+509*x-348 3908822141799905 g007 Psi(2,3/10)-Psi(2,4/9)-Psi(2,5/8)-Psi(2,1/6) 3908822142611967 a001 32951280099/1364*322^(1/12) 3908822144018742 a001 567451585/682*843^(4/7) 3908822156396456 r004 Im(z^2+c),c=2/9+1/3*I,z(0)=exp(5/8*I*Pi),n=28 3908822161126173 a007 Real Root Of 918*x^4-829*x^3-948*x^2-540*x+384 3908822165343986 m001 (exp(1)+sin(1))/(-Pi^(1/2)+FeigenbaumD) 3908822171386529 r009 Re(z^3+c),c=-1/16+23/43*I,n=27 3908822180326508 r009 Im(z^3+c),c=-5/122+53/54*I,n=8 3908822201074059 a003 cos(Pi*26/115)-cos(Pi*27/71) 3908822210634026 a007 Real Root Of -240*x^4-956*x^3+223*x^2+985*x-625 3908822219075456 m007 (-4*gamma+1)/(-3/5*gamma-9/5*ln(2)+3/10*Pi+4) 3908822232311360 m001 (HardHexagonsEntropy+OneNinth)/(5^(1/2)+ln(5)) 3908822233673137 r002 10th iterates of z^2 + 3908822236807415 r005 Im(z^2+c),c=1/106+35/61*I,n=7 3908822243698894 a003 cos(Pi*11/29)/sin(Pi*19/48) 3908822261056382 r005 Im(z^2+c),c=3/122+25/52*I,n=64 3908822271045712 m001 (-OrthogonalArrays+Weierstrass)/(exp(Pi)+Kac) 3908822283289124 a001 14736260008/377 3908822287885183 q001 926/2369 3908822288292921 a007 Real Root Of 582*x^4-642*x^3+315*x^2-661*x+235 3908822301790797 a007 Real Root Of 689*x^4-156*x^3+698*x^2-422*x-297 3908822314005423 a001 267914296/3571*843^(13/14) 3908822317709577 a007 Real Root Of -946*x^4+906*x^3+268*x^2+655*x-329 3908822318356199 r005 Im(z^2+c),c=1/86+22/45*I,n=41 3908822324644770 r005 Re(z^2+c),c=-31/58+8/47*I,n=40 3908822327326780 a001 12586269025/521*199^(1/11) 3908822333287364 m005 (1/4+1/6*5^(1/2))/(8/11*3^(1/2)+1/3) 3908822336708318 r005 Re(z^2+c),c=-27/50+4/37*I,n=44 3908822344515997 r005 Im(z^2+c),c=-10/27+27/47*I,n=20 3908822376004586 m001 LandauRamanujan-sin(1/5*Pi)*HardyLittlewoodC3 3908822380823563 a001 32951280099/2207*322^(1/6) 3908822383289124 a001 14736260385/377 3908822385090837 h001 (-7*exp(-2)-8)/(-6*exp(3/2)+4) 3908822397877984 a001 14736260440/377 3908822400265251 a001 14736260449/377 3908822400371352 a001 2/377*(1/2+1/2*5^(1/2))^52 3908822400371352 a001 73681302247/377*8^(1/3) 3908822400530503 a001 14736260450/377 3908822401326259 a001 14736260453/377 3908822405922141 r005 Im(z^2+c),c=23/78+17/48*I,n=19 3908822413358937 m005 (1/3*gamma+2/9)/(3/8*5^(1/2)+2/9) 3908822424452164 a007 Real Root Of 955*x^4-733*x^3+909*x^2-719*x-486 3908822425492304 r005 Im(z^2+c),c=-13/14+7/211*I,n=15 3908822427261821 a007 Real Root Of 15*x^4+568*x^3-716*x^2+34*x+981 3908822438529083 a001 433494437/521*521^(8/13) 3908822445092838 a001 14736260618/377 3908822463711891 r005 Re(z^2+c),c=-37/66+9/32*I,n=14 3908822478998096 a007 Real Root Of 211*x^4+594*x^3-995*x^2-232*x+514 3908822479267489 m004 -1/2+125*Pi-Log[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 3908822483243797 m005 (1/3*3^(1/2)+1/3)/(7/11*exp(1)+3/5) 3908822484521004 r005 Re(z^2+c),c=-3/86+4/49*I,n=7 3908822517166568 m005 (1/2*Zeta(3)-1/6)/(2/7*5^(1/2)-3/4) 3908822535114898 m009 (1/5*Psi(1,2/3)-3/4)/(1/6*Psi(1,2/3)+3) 3908822536902127 a001 701408733/1364*843^(9/14) 3908822543015308 r005 Re(z^2+c),c=15/86+15/44*I,n=24 3908822551222408 r005 Im(z^2+c),c=29/94+2/11*I,n=10 3908822554135620 r005 Re(z^2+c),c=17/126+37/61*I,n=21 3908822558961560 r009 Im(z^3+c),c=-9/94+25/56*I,n=7 3908822566233468 a005 (1/sin(45/136*Pi))^211 3908822584819521 r002 49th iterates of z^2 + 3908822592881407 r009 Im(z^3+c),c=-15/122+28/37*I,n=47 3908822594256515 m001 (GaussAGM+QuadraticClass)/(Ei(1)-Backhouse) 3908822614379293 r005 Im(z^2+c),c=31/78+11/50*I,n=20 3908822623392290 l006 ln(169/8423) 3908822624161859 m001 (ln(2^(1/2)+1)-BesselJ(1,1))/(Pi^(1/2)-Cahen) 3908822632334087 h001 (9/10*exp(2)+1/11)/(3/10*exp(1)+10/11) 3908822648619409 r002 20th iterates of z^2 + 3908822666330756 a007 Real Root Of -240*x^4-777*x^3+518*x^2-495*x-227 3908822669614335 r005 Im(z^2+c),c=11/27+3/13*I,n=31 3908822671396851 r009 Im(z^3+c),c=-39/86+13/45*I,n=10 3908822674154262 r005 Re(z^2+c),c=-15/28+11/60*I,n=24 3908822687384743 a007 Real Root Of -911*x^4+881*x^3-983*x^2+381*x+373 3908822687505697 m001 Kolakoski-MadelungNaCl-Otter 3908822692667438 m001 exp(Pi)^sinh(1)-Zeta(5) 3908822702607624 a007 Real Root Of 11*x^4-643*x^3+124*x^2-767*x-3 3908822717618625 r005 Re(z^2+c),c=-53/98+2/21*I,n=50 3908822721895589 r009 Re(z^3+c),c=-11/21+21/64*I,n=28 3908822725507302 r005 Im(z^2+c),c=-49/54+11/46*I,n=18 3908822729513224 a007 Real Root Of -206*x^4+221*x^3+787*x^2+983*x+282 3908822733884772 r002 31th iterates of z^2 + 3908822737108532 m001 Catalan/Robbin*ln(sin(Pi/5))^2 3908822755330052 r005 Re(z^2+c),c=-41/58+3/14*I,n=24 3908822755659145 m001 ln(2)^Sarnak*ln(2)^Tribonacci 3908822757469720 g001 GAMMA(4/7,63/82) 3908822758585074 l006 ln(1842/2723) 3908822758721543 r002 24th iterates of z^2 + 3908822786796051 a003 sin(Pi*1/77)*sin(Pi*42/103) 3908822795328826 r005 Im(z^2+c),c=7/94+13/29*I,n=28 3908822796680612 r005 Im(z^2+c),c=13/106+7/17*I,n=21 3908822811360645 a007 Real Root Of -16*x^4+356*x^3-865*x^2-901*x-788 3908822835052029 a005 (1/cos(22/123*Pi))^284 3908822838615927 r005 Re(z^2+c),c=-27/52+3/10*I,n=19 3908822849341013 r002 50th iterates of z^2 + 3908822854774706 r002 30th iterates of z^2 + 3908822858475813 a007 Real Root Of 115*x^4+158*x^3-918*x^2+845*x-81 3908822860094909 r005 Im(z^2+c),c=-15/98+25/43*I,n=52 3908822862432337 m004 -125*Pi-2*Cot[Sqrt[5]*Pi]+4*Coth[Sqrt[5]*Pi] 3908822867640346 r005 Re(z^2+c),c=-12/25+9/20*I,n=51 3908822872001762 a007 Real Root Of -140*x^4-433*x^3+250*x^2-826*x-226 3908822879252195 r005 Re(z^2+c),c=-31/58+7/41*I,n=47 3908822891183747 m004 -4+125*Pi+2*Cot[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3908822894627240 m001 ln(Magata)*CareFree*GAMMA(5/12)^2 3908822903210189 h001 (2/7*exp(2)+4/11)/(9/11*exp(2)+2/7) 3908822909908464 m004 -5+125*Pi+2*Cot[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 3908822913913584 a007 Real Root Of -160*x^4-508*x^3+467*x^2+207*x+686 3908822923639853 r005 Im(z^2+c),c=4/13+9/28*I,n=11 3908822925110348 r005 Re(z^2+c),c=-23/44+8/31*I,n=52 3908822925733805 m004 -4+125*Pi+2*Cot[Sqrt[5]*Pi] 3908822926293636 p001 sum((-1)^n/(267*n+251)/(25^n),n=0..infinity) 3908822929785552 a001 433494437/1364*843^(5/7) 3908822936926304 r009 Re(z^3+c),c=-23/58+11/46*I,n=2 3908822941559147 m004 -3+125*Pi+2*Cot[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 3908822943538617 r005 Re(z^2+c),c=1/4+1/42*I,n=43 3908822947826688 m005 (1/3*Pi+1/8)/(10/11*Pi+1/7) 3908822949167511 m004 -125*Pi+2*Coth[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]/5 3908822949899857 r005 Re(z^2+c),c=-33/62+4/21*I,n=48 3908822955769673 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=24 3908822960283919 m004 -4+125*Pi+2*Cot[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi] 3908822964992903 m004 -3+125*Pi+Tan[Sqrt[5]*Pi]/5+Tanh[Sqrt[5]*Pi] 3908822966578110 r005 Im(z^2+c),c=-29/22+3/124*I,n=44 3908822977918783 m004 -2+125*Pi+(Tan[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/5 3908822980499655 m001 (-Artin+1)/(-TwinPrimes+1/2) 3908822980818245 m004 -2+125*Pi+Tan[Sqrt[5]*Pi]/5 3908822983717711 m004 -2+125*Pi+(Coth[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/5 3908822989035173 m004 -125*Pi-2*Cot[Sqrt[5]*Pi]+4*Tanh[Sqrt[5]*Pi] 3908822996643587 m004 -1+125*Pi+Tan[Sqrt[5]*Pi]/5-Tanh[Sqrt[5]*Pi] 3908823012468929 m004 -125*Pi-Tan[Sqrt[5]*Pi]/5+2*Tanh[Sqrt[5]*Pi] 3908823017688639 a007 Real Root Of -221*x^4-659*x^3+878*x^2+354*x+203 3908823033272138 m002 -2-6/Pi+Tanh[Pi]/Pi^6 3908823036919008 r002 61th iterates of z^2 + 3908823053451097 m005 (1/2*gamma-6/11)/(2/3*2^(1/2)-2/7) 3908823066234700 a001 43133785636/2889*322^(1/6) 3908823071243319 m003 23/8+Sqrt[5]/64+Sin[1/2+Sqrt[5]/2] 3908823071797617 m001 (-ln(Pi)+GAMMA(11/12))/(3^(1/2)-ln(gamma)) 3908823110909931 a001 5/2207*5778^(37/43) 3908823115581276 m001 exp(GAMMA(23/24))*TreeGrowth2nd^2/sinh(1)^2 3908823130360508 r002 26th iterates of z^2 + 3908823131700214 m001 CareFree^exp(1/Pi)*CareFree^Mills 3908823138147359 m001 (Si(Pi)*Bloch-exp(1))/Bloch 3908823139308649 a008 Real Root of x^4-x^3-14*x^2-2*x+48 3908823142965658 p004 log(22777/457) 3908823166234858 a001 32264490531/2161*322^(1/6) 3908823168684403 s002 sum(A017158[n]/((pi^n+1)/n),n=1..infinity) 3908823179303320 r002 10th iterates of z^2 + 3908823180654746 m004 (55*Pi)/6+(5*Pi)/ProductLog[Sqrt[5]*Pi] 3908823180824684 a001 591286729879/39603*322^(1/6) 3908823182953311 a001 774004377960/51841*322^(1/6) 3908823183263874 a001 4052739537881/271443*322^(1/6) 3908823183309184 a001 1515744265389/101521*322^(1/6) 3908823183337188 a001 3278735159921/219602*322^(1/6) 3908823183455812 a001 2504730781961/167761*322^(1/6) 3908823184268875 a001 956722026041/64079*322^(1/6) 3908823188611352 r005 Im(z^2+c),c=53/126+17/39*I,n=5 3908823189841693 a001 182717648081/12238*322^(1/6) 3908823193608305 a001 167761*514229^(13/17) 3908823226594136 r005 Im(z^2+c),c=-37/98+41/64*I,n=31 3908823228038356 a001 139583862445/9349*322^(1/6) 3908823248148976 r004 Im(z^2+c),c=3/22+9/22*I,z(0)=I,n=4 3908823249316348 r005 Re(z^2+c),c=-15/26+32/101*I,n=18 3908823265410310 m001 1/Porter*DuboisRaymond^2*exp(exp(1)) 3908823267569726 r005 Re(z^2+c),c=-23/44+8/31*I,n=50 3908823270493395 m001 (gamma+Ei(1,1))/(-GAMMA(5/6)+MertensB3) 3908823282043398 r002 61th iterates of z^2 + 3908823304443026 r009 Im(z^3+c),c=-35/78+1/49*I,n=17 3908823313610544 m001 Salem*ln(ArtinRank2)/Trott 3908823322669017 a001 66978574/341*843^(11/14) 3908823337367542 r005 Im(z^2+c),c=-7/66+31/59*I,n=13 3908823338861216 m001 FeigenbaumD+PisotVijayaraghavan^Sarnak 3908823359766692 m004 4-Sin[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi]^3 3908823366661716 m001 (KhinchinHarmonic+Porter)/(2^(1/2)-5^(1/2)) 3908823376502721 m001 (2^(1/3)+gamma(3))/(Pi^(1/2)+Backhouse) 3908823380009506 m001 1/exp(FeigenbaumD)/Paris/BesselK(0,1)^2 3908823382424234 m001 FeigenbaumB+Otter^Zeta(5) 3908823392394621 h001 (11/12*exp(1)+1/9)/(8/9*exp(2)+1/11) 3908823394187854 a007 Real Root Of 142*x^4-488*x^3-597*x^2-312*x+239 3908823396751191 s002 sum(A216441[n]/((2^n+1)/n),n=1..infinity) 3908823423950042 r009 Re(z^3+c),c=-73/126+23/49*I,n=62 3908823425933793 l006 ln(5503/8135) 3908823429833613 r005 Re(z^2+c),c=-31/58+7/41*I,n=44 3908823431221036 m001 (GAMMA(3/4)-exp(1/Pi))/(Magata+PrimesInBinary) 3908823432231166 a007 Real Root Of 177*x^4-427*x^3+148*x^2-763*x+297 3908823435439531 r002 8th iterates of z^2 + 3908823441436103 a007 Real Root Of 210*x^4+930*x^3+620*x^2+621*x-527 3908823442771726 r005 Re(z^2+c),c=-61/118+15/52*I,n=40 3908823443011604 h001 (9/11*exp(2)+9/11)/(3/5*exp(1)+1/8) 3908823447854071 l006 ln(144/7177) 3908823456073297 m001 1/(3^(1/3))^2/ln(CareFree)^2/Zeta(9) 3908823458070120 m001 OneNinth/(GAMMA(3/4)+GAMMA(7/12)) 3908823458523912 g002 Psi(4/11)+Psi(3/10)-Psi(7/12)-Psi(6/7) 3908823459194308 r005 Re(z^2+c),c=-123/106+10/51*I,n=55 3908823460575401 m004 -125*Pi+(4*Sin[Sqrt[5]*Pi])/3+Tan[Sqrt[5]*Pi] 3908823461310136 r009 Re(z^3+c),c=-45/98+19/36*I,n=53 3908823466260832 s002 sum(A207073[n]/(exp(n)),n=1..infinity) 3908823468710128 a007 Real Root Of 45*x^4-202*x^3+640*x^2-998*x-501 3908823475148234 r002 44th iterates of z^2 + 3908823480718548 p001 sum((-1)^n/(517*n+248)/(10^n),n=0..infinity) 3908823482819107 a007 Real Root Of -91*x^4+853*x^3-406*x^2+340*x+248 3908823489842200 a001 53316291173/3571*322^(1/6) 3908823494452919 r005 Im(z^2+c),c=-83/110+5/52*I,n=26 3908823500473614 r009 Im(z^3+c),c=-31/74+17/50*I,n=40 3908823508133206 m001 (Ei(1,1)-gamma(2))/(LaplaceLimit-ZetaP(4)) 3908823509109831 a003 cos(Pi*22/111)*cos(Pi*33/97) 3908823517717332 r005 Im(z^2+c),c=13/106+12/29*I,n=42 3908823519869708 m008 (1/3*Pi^2-5/6)/(2*Pi^3+5/6) 3908823523031282 m001 Bloch/((2^(1/2))^Landau) 3908823525307546 r002 53th iterates of z^2 + 3908823526457578 a001 987/167761*18^(19/29) 3908823546235841 a001 701408733/521*521^(7/13) 3908823554460632 m001 (BesselI(1,1)-MasserGramainDelta)/arctan(1/3) 3908823564756732 r002 49th iterates of z^2 + 3908823564756732 r002 49th iterates of z^2 + 3908823570635701 r009 Re(z^3+c),c=-4/19+40/53*I,n=5 3908823572049414 m001 (ln(2)-Backhouse)/(FeigenbaumKappa+Gompertz) 3908823577891558 r005 Im(z^2+c),c=-7/110+6/11*I,n=28 3908823582390611 r002 3th iterates of z^2 + 3908823587886831 m001 ln(Tribonacci)/CareFree^2/Pi 3908823606100008 m001 (cos(1/12*Pi)+Robbin)/(cos(1/5*Pi)-GAMMA(3/4)) 3908823625192906 a001 41/726103*514229^(39/58) 3908823636941756 r005 Im(z^2+c),c=-23/98+11/19*I,n=26 3908823643276159 m001 1/Zeta(5)*exp(HardHexagonsEntropy)*Zeta(9)^2 3908823644891180 a001 18*13^(13/43) 3908823650663799 m005 (1/2*Zeta(3)-5/6)/(-31/72+11/24*5^(1/2)) 3908823656749587 m001 (Stephens+Totient)/(LambertW(1)-Shi(1)) 3908823657087589 r009 Im(z^3+c),c=-3/62+27/34*I,n=26 3908823666848629 m009 (4/3*Catalan+1/6*Pi^2+2/3)/(2/5*Psi(1,1/3)+5) 3908823670393263 r005 Im(z^2+c),c=-19/14+1/213*I,n=38 3908823688363846 m004 -5/Pi+125*Pi-Sin[Sqrt[5]*Pi]/3 3908823695598430 m001 GAMMA(11/12)/Riemann1stZero^2/ln(sin(Pi/12)) 3908823696515755 a001 54018521/610*34^(8/19) 3908823704786626 r005 Im(z^2+c),c=8/23+18/47*I,n=43 3908823715552521 a001 165580141/1364*843^(6/7) 3908823725963518 m001 1/Salem*ArtinRank2*exp(GAMMA(5/24))^2 3908823726148254 a007 Real Root Of -439*x^4+481*x^3+221*x^2+992*x-440 3908823757732870 r002 24th iterates of z^2 + 3908823761704424 l006 ln(3661/5412) 3908823782384240 s001 sum(1/10^(n-1)*A142207[n]/n^n,n=1..infinity) 3908823782492629 l002 Ei(2,37/93) 3908823782492629 l003 Ei(2,37/93) 3908823790477005 r005 Re(z^2+c),c=-9/20+23/43*I,n=54 3908823793930025 a007 Real Root Of 54*x^4+33*x^3-612*x^2+543*x+838 3908823799338291 r009 Re(z^3+c),c=-3/46+19/33*I,n=25 3908823812600294 a001 5/39603*39603^(42/43) 3908823813329947 r005 Im(z^2+c),c=13/82+17/44*I,n=53 3908823821925217 m001 Robbin^2/Conway^2/exp(GAMMA(5/24))^2 3908823831418017 r005 Re(z^2+c),c=-10/19+5/22*I,n=14 3908823834623289 r005 Im(z^2+c),c=-13/94+30/49*I,n=44 3908823842678912 m001 Kolakoski^ReciprocalFibonacci*Kolakoski^Sarnak 3908823846829602 a007 Real Root Of -170*x^4-490*x^3+437*x^2-760*x+774 3908823856591835 m001 (GAMMA(23/24)-Backhouse)/(Kac+Weierstrass) 3908823867071876 a007 Real Root Of -357*x^4+761*x^3-765*x^2+446*x+345 3908823875303226 r002 32th iterates of z^2 + 3908823884694212 r002 30th iterates of z^2 + 3908823898393751 r002 22th iterates of z^2 + 3908823901176014 r005 Re(z^2+c),c=-35/74+21/59*I,n=9 3908823915187757 m001 (FeigenbaumD+OneNinth)/(TwinPrimes+ZetaQ(2)) 3908823918886098 r005 Im(z^2+c),c=13/82+17/44*I,n=52 3908823925049641 r005 Re(z^2+c),c=-41/44+5/31*I,n=50 3908823937423853 r005 Re(z^2+c),c=9/52+21/62*I,n=20 3908823946798669 a007 Real Root Of -675*x^4-231*x^3-610*x^2-26*x+85 3908823966270393 a001 1602508992/281*322^(1/3) 3908823969856102 a001 7/165580141*20365011074^(17/22) 3908823970222000 a001 1/6624*514229^(17/22) 3908823977669819 r002 20th iterates of z^2 + 3908823996308217 r005 Re(z^2+c),c=-33/62+10/53*I,n=30 3908824014157323 r005 Re(z^2+c),c=-57/58+7/61*I,n=20 3908824028138346 a007 Real Root Of 910*x^4-175*x^3-267*x^2-691*x-261 3908824030321335 m001 1/Sierpinski/Bloch*exp(GAMMA(11/24))^2 3908824044716553 a001 11/20365011074*75025^(19/24) 3908824047574710 r005 Im(z^2+c),c=-1/106+5/9*I,n=19 3908824052108879 r009 Re(z^3+c),c=-3/94+4/5*I,n=4 3908824085234601 r005 Im(z^2+c),c=-9/14+11/171*I,n=14 3908824088363441 r005 Im(z^2+c),c=-5/62+26/43*I,n=27 3908824091195191 m001 (2^(1/2)+exp(1/exp(1)))/(-exp(1/Pi)+Cahen) 3908824093957865 r002 7th iterates of z^2 + 3908824098884300 l006 ln(5480/8101) 3908824103948866 a007 Real Root Of -303*x^4+822*x^3+215*x^2+512*x-275 3908824108436064 a001 9303105/124*843^(13/14) 3908824129959892 a007 Real Root Of 436*x^4+371*x^3+406*x^2-642*x-301 3908824139785961 r005 Im(z^2+c),c=-131/98+1/23*I,n=11 3908824140375659 m001 (Cahen+MertensB1)/(exp(Pi)-gamma(2)) 3908824146036785 m001 1/exp(OneNinth)^2*MadelungNaCl^2*(2^(1/3))^2 3908824152055014 m002 Pi^(-2)+4*Pi^4+Log[Pi] 3908824152730469 a003 cos(Pi*1/40)/cos(Pi*28/67) 3908824172936436 a007 Real Root Of -821*x^4+929*x^3-997*x^2+568*x+449 3908824190117304 m001 (2^(1/2)+Zeta(1,2))/(Bloch+RenyiParking) 3908824208756703 a007 Real Root Of 126*x^4+402*x^3-194*x^2+543*x-319 3908824211750453 a001 34/5779*18^(19/29) 3908824221436528 r002 46th iterates of z^2 + 3908824242560211 r005 Re(z^2+c),c=-3/40+43/56*I,n=63 3908824255033300 h001 (-4*exp(2/3)+8)/(-7*exp(-3)-5) 3908824261102563 m001 (-Bloch+Salem)/(BesselJ(0,1)+Zeta(5)) 3908824272714695 m001 1/GAMMA(19/24)/ln(KhintchineLevy)/GAMMA(5/6)^2 3908824283999142 r005 Re(z^2+c),c=-3/4+4/75*I,n=24 3908824299089433 r009 Im(z^3+c),c=-33/64+3/11*I,n=53 3908824305144339 m001 Zeta(1/2)*FeigenbaumC*MinimumGamma 3908824310400082 r002 62th iterates of z^2 + 3908824311733336 a001 6765/1149851*18^(19/29) 3908824321134806 r005 Im(z^2+c),c=41/102+8/23*I,n=31 3908824321489167 m001 ln(2^(1/2)+1)*(ZetaP(2)-ZetaQ(3)) 3908824326320642 a001 17711/3010349*18^(19/29) 3908824329041669 a007 Real Root Of 263*x^4+744*x^3-921*x^2+564*x-686 3908824329764238 a001 28657/4870847*18^(19/29) 3908824335336093 a001 5473/930249*18^(19/29) 3908824339548505 r005 Re(z^2+c),c=13/34+15/47*I,n=46 3908824353694354 r005 Re(z^2+c),c=-83/126+17/59*I,n=60 3908824361932634 m001 Trott^Psi(2,1/3)/(FeigenbaumKappa^Psi(2,1/3)) 3908824368906848 a001 5473/2*18^(23/25) 3908824369703537 a001 123/514229*1346269^(13/36) 3908824371151952 r009 Re(z^3+c),c=-39/74+10/47*I,n=53 3908824373526156 a001 4181/710647*18^(19/29) 3908824378756327 m005 (1/2*2^(1/2)-2/11)/(83/120+7/24*5^(1/2)) 3908824390936456 r005 Re(z^2+c),c=-30/29+5/59*I,n=14 3908824393506542 a003 sin(Pi*13/107)/sin(Pi*41/102) 3908824396903870 m001 1/exp(TwinPrimes)*FeigenbaumB^2/Catalan 3908824399746793 m001 (GAMMA(3/4)-ln(2))/(Zeta(1/2)+Paris) 3908824400134950 r005 Re(z^2+c),c=-25/48+16/59*I,n=41 3908824414508143 m001 1/Trott/Robbin^2/exp(Zeta(1/2))^2 3908824415186584 a007 Real Root Of -113*x^4-235*x^3+626*x^2-758*x-183 3908824417574754 p001 sum((-1)^n/(511*n+499)/n/(25^n),n=1..infinity) 3908824434878135 a007 Real Root Of 49*x^4+186*x^3+70*x^2+253*x-411 3908824440891476 a003 sin(Pi*5/36)/cos(Pi*27/58) 3908824447985825 m001 (Trott-ZetaQ(4))/(MasserGramain+Niven) 3908824459303846 m001 Rabbit^2*GolombDickman/ln(sqrt(5)) 3908824470836832 r005 Re(z^2+c),c=-51/94+3/50*I,n=41 3908824470904556 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=25 3908824475384921 r002 12th iterates of z^2 + 3908824501161651 m001 (Shi(1)+Zeta(5))/(-Cahen+OneNinth) 3908824501326259 a001 14736268370/377 3908824501442103 r005 Re(z^2+c),c=-29/54+7/43*I,n=24 3908824532138791 m001 (cos(1/5*Pi)+Kac)/(Otter+TravellingSalesman) 3908824533364826 r002 31th iterates of z^2 + 3908824544546163 r005 Re(z^2+c),c=-41/64+16/51*I,n=54 3908824548978989 a007 Real Root Of 846*x^4-966*x^3+801*x^2-617*x-441 3908824565519556 m005 (1/3*gamma-2/5)/(1/5*Catalan-5/7) 3908824571147147 r002 29th iterates of z^2 + 3908824574712781 a007 Real Root Of -970*x^4+644*x^3+317*x^2+973*x+393 3908824602338814 r009 Re(z^3+c),c=-15/86+18/25*I,n=15 3908824603928155 r005 Im(z^2+c),c=19/126+24/61*I,n=24 3908824608815927 a007 Real Root Of -32*x^4-142*x^3+160*x^2+724*x-625 3908824616993551 a007 Real Root Of -194*x^4-683*x^3+144*x^2-585*x+11 3908824618727197 l006 ln(119/5931) 3908824620147289 m002 Cosh[Pi]/3+5/(Pi^4*Log[Pi]) 3908824625671197 m005 (1/2*exp(1)+6)/(6/11*exp(1)+2/5) 3908824625858473 r005 Re(z^2+c),c=-27/52+5/18*I,n=28 3908824626826704 a007 Real Root Of 222*x^4+717*x^3-558*x^2+350*x+890 3908824635284742 a001 1597/271443*18^(19/29) 3908824636832801 m005 (1/2*Pi-4/11)/(6*gamma-3/8) 3908824637038388 a001 1/646*3^(43/51) 3908824638792975 r005 Im(z^2+c),c=-71/64+13/51*I,n=62 3908824644232350 r009 Im(z^3+c),c=-39/122+14/43*I,n=2 3908824652879319 m005 (1/3*exp(1)+1/12)/(8/11*gamma-1/6) 3908824653942913 a001 1134903170/521*521^(6/13) 3908824655387356 r002 24th iterates of z^2 + 3908824668574818 r002 9th iterates of z^2 + 3908824686473718 m005 (1/2*Catalan-1/12)/(4/45+7/18*5^(1/2)) 3908824689516500 a007 Real Root Of 930*x^4-103*x^3-427*x^2-689*x+319 3908824692922993 a001 9062201101803*144^(5/17) 3908824696677911 a007 Real Root Of 178*x^4+503*x^3-659*x^2+121*x-971 3908824705251282 r009 Re(z^3+c),c=-7/64+44/61*I,n=17 3908824705752679 r009 Re(z^3+c),c=-27/58+2/9*I,n=37 3908824715363491 a007 Real Root Of 650*x^4-526*x^3-81*x^2-945*x+398 3908824717711413 a007 Real Root Of 182*x^4+508*x^3-753*x^2+308*x+561 3908824734397855 r005 Re(z^2+c),c=-9/14+9/164*I,n=10 3908824763531357 m005 (5*Catalan+1/2)/(3/5*Catalan+3/4) 3908824765850389 a007 Real Root Of 203*x^4+970*x^3+516*x^2-706*x-102 3908824770383318 r005 Re(z^2+c),c=-19/31+13/33*I,n=53 3908824774537845 m005 (1/3*Catalan-2/9)/(9/11*Pi-4/9) 3908824777507424 l006 ln(1819/2689) 3908824789292728 m001 BesselK(0,1)*FeigenbaumAlpha-exp(1/exp(1)) 3908824807272542 a007 Real Root Of 250*x^4+719*x^3-932*x^2+79*x-872 3908824810979390 m001 ln(GAMMA(1/24))^2*Bloch^2/LambertW(1) 3908824812296633 a007 Real Root Of -580*x^4-57*x^3-442*x^2+863*x+415 3908824824454958 a007 Real Root Of -395*x^4-597*x^3-443*x^2+598*x+275 3908824828379598 m001 (-Zeta(5)+GAMMA(3/4))/(5^(1/2)-exp(1)) 3908824830036689 r005 Im(z^2+c),c=27/118+15/46*I,n=46 3908824832222891 r005 Im(z^2+c),c=-7/66+35/64*I,n=22 3908824846401611 r005 Im(z^2+c),c=-117/98+3/20*I,n=4 3908824847856553 m001 (-FeigenbaumB+Paris)/(BesselK(0,1)+Backhouse) 3908824855119278 r005 Im(z^2+c),c=-11/14+22/171*I,n=64 3908824855560095 a008 Real Root of x^2-x-153180 3908824857019582 m001 (TravellingSalesman+Trott2nd)/(Shi(1)+sin(1)) 3908824868481051 r005 Re(z^2+c),c=-14/27+13/46*I,n=44 3908824877463261 s002 sum(A186231[n]/((pi^n+1)/n),n=1..infinity) 3908824878036921 s002 sum(A186231[n]/((pi^n-1)/n),n=1..infinity) 3908824879328881 r005 Re(z^2+c),c=-25/46+2/59*I,n=26 3908824881882989 a003 sin(Pi*14/95)*sin(Pi*19/56) 3908824882226361 m001 1/Magata*ln(GaussKuzminWirsing)^2*Zeta(1,2) 3908824883213057 a007 Real Root Of 379*x^4+688*x^3+946*x^2-910*x-468 3908824900090839 a007 Real Root Of 753*x^4+530*x^3+955*x^2-443*x-305 3908824918165308 r005 Re(z^2+c),c=-51/94+3/32*I,n=23 3908824929710615 a001 29/139583862445*46368^(1/17) 3908824929732004 a001 29/365435296162*591286729879^(1/17) 3908824929732004 a001 1/7787980473*165580141^(1/17) 3908824941644337 m005 (1/2*gamma-5)/(1/3*Catalan+9/10) 3908824961298810 r002 40th iterates of z^2 + 3908824972129653 m001 (Zeta(1,-1)+gamma(1))/(CopelandErdos-ZetaP(3)) 3908824977802808 m001 (3^(1/2)-Zeta(3))/(ln(2)+LaplaceLimit) 3908824989116455 r009 Im(z^3+c),c=-10/31+7/18*I,n=16 3908824990291124 m001 (-exp(1/Pi)+BesselI(1,1))/(Si(Pi)+Ei(1,1)) 3908824991115778 a007 Real Root Of 988*x^4-646*x^3-399*x^2-930*x+440 3908824991272988 r002 35th iterates of z^2 + 3908824998552181 a007 Real Root Of -436*x^4-731*x^3-19*x^2+902*x+322 3908825000899820 a007 Real Root Of -604*x^4+367*x^3-556*x^2+545*x+334 3908825008819754 a001 38*5^(1/57) 3908825022585982 m001 Kolakoski/(Artin-gamma) 3908825052678542 m001 Lehmer/exp(Artin)^2/GAMMA(1/3)^2 3908825056437363 a007 Real Root Of -494*x^4+684*x^3+925*x^2+949*x+282 3908825056502397 m005 (-13/5+2/5*5^(1/2))/(1/4+1/12*5^(1/2)) 3908825059718343 m001 (1-GAMMA(11/12))/(-GAMMA(7/12)+OneNinth) 3908825081826278 m001 (Bloch-KhinchinLevy)/(Tribonacci-Trott) 3908825089364843 m001 Paris^ln(3)*Paris^(ln(2)/ln(10)) 3908825099132847 a007 Real Root Of -21*x^4-807*x^3+526*x^2-629*x-904 3908825102636100 r005 Re(z^2+c),c=-55/106+9/32*I,n=46 3908825110374910 m001 1/Trott^2*ln(FeigenbaumC)/log(2+sqrt(3)) 3908825113409902 m001 1/TreeGrowth2nd^2*Khintchine^2*exp(sinh(1))^2 3908825118102301 a007 Real Root Of -600*x^4+2*x^3-219*x^2+927*x-315 3908825122739575 a003 1+cos(4/15*Pi)-cos(11/27*Pi)-cos(1/24*Pi) 3908825126077247 r005 Im(z^2+c),c=-9/16+55/122*I,n=25 3908825131629401 r009 Im(z^3+c),c=-37/126+22/43*I,n=3 3908825134486940 m004 (5*Sqrt[5])/Pi+125*Pi-(25*Sin[Sqrt[5]*Pi])/Pi 3908825138783841 m008 (Pi+4)/(3/5*Pi^3-1/3) 3908825153658860 a005 (1/cos(27/124*Pi))^177 3908825154355579 m001 (-GAMMA(5/6)+Lehmer)/(BesselJ(1,1)-gamma) 3908825155131327 m001 (-exp(-1/2*Pi)+CareFree)/(gamma+ln(2)) 3908825163407380 m001 ZetaQ(2)*(Conway-gamma) 3908825173918232 m005 (1/2*exp(1)-2/5)/(1/5*Catalan-3/7) 3908825180476393 a001 521/89*4181^(39/50) 3908825191936920 m001 (LandauRamanujan2nd+MertensB1)/(Shi(1)-sin(1)) 3908825215259757 m005 (1/4*Pi-1)/(4*2^(1/2)-1/6) 3908825215723550 m006 (Pi+1/6)/(1/3*exp(Pi)+3/4) 3908825218724560 r005 Im(z^2+c),c=19/62+8/19*I,n=58 3908825233252842 r002 3th iterates of z^2 + 3908825236518534 m005 (-7/12+1/4*5^(1/2))/(7/11*Zeta(3)-1/7) 3908825248483822 m001 HardyLittlewoodC4/exp(1/Pi)*ZetaP(3) 3908825253370861 r009 Im(z^3+c),c=-23/106+13/16*I,n=2 3908825255029954 r005 Im(z^2+c),c=17/106+5/13*I,n=27 3908825256214057 h001 (9/10*exp(2)+3/5)/(7/11*exp(1)+1/8) 3908825258603702 a007 Real Root Of -228*x^4+832*x^3-624*x^2+938*x+517 3908825272173219 m001 BesselI(0,1)-Zeta(1,2)+Niven 3908825274184271 r005 Im(z^2+c),c=-7/78+17/31*I,n=53 3908825279897945 r005 Re(z^2+c),c=-17/22+6/53*I,n=52 3908825284273380 a001 10182505537/682*322^(1/6) 3908825297522546 a007 Real Root Of -28*x^4+702*x^3-84*x^2+155*x+116 3908825298665319 r009 Im(z^3+c),c=-49/106+17/54*I,n=16 3908825307969688 a007 Real Root Of -499*x^4+828*x^3+225*x^2+474*x+212 3908825311784391 r005 Re(z^2+c),c=-25/46+1/48*I,n=33 3908825316111520 a003 sin(Pi*18/107)*sin(Pi*24/85) 3908825321472879 h001 (-3*exp(2)-5)/(-exp(-3)+7) 3908825325190910 m001 1/ln(Niven)*KhintchineHarmonic^2/Zeta(1/2) 3908825331958114 r009 Re(z^3+c),c=-35/74+7/31*I,n=21 3908825360267404 g007 -Psi(2,1/12)-Psi(2,7/11)-Psi(2,5/8)-Psi(2,1/6) 3908825364816434 a007 Real Root Of 203*x^4+699*x^3-543*x^2-733*x-212 3908825370141097 a007 Real Root Of -223*x^4-605*x^3+987*x^2+20*x+924 3908825377511276 m001 (Chi(1)-Mills)/(Sarnak+Weierstrass) 3908825383089931 m005 (1/2*exp(1)+1/11)/(1/5*5^(1/2)-9/11) 3908825393909514 h001 (7/9*exp(1)+7/11)/(7/8*exp(2)+4/7) 3908825400718216 a007 Real Root Of 260*x^4+889*x^3-583*x^2-118*x+844 3908825415469179 h001 (-8*exp(2/3)+9)/(-9*exp(1/2)-2) 3908825423725245 m001 FeigenbaumDelta/(1+DuboisRaymond) 3908825426603212 r005 Im(z^2+c),c=-4/17+25/41*I,n=16 3908825429368144 m005 (1/3*exp(1)+3/4)/(-167/220+3/20*5^(1/2)) 3908825429713085 a007 Real Root Of -85*x^4-152*x^3+848*x^2+477*x-327 3908825435125455 h001 (3/11*exp(2)+6/11)/(1/12*exp(1)+3/7) 3908825438001836 r009 Re(z^3+c),c=-5/11+13/62*I,n=26 3908825449044203 s002 sum(A216441[n]/((2^n-1)/n),n=1..infinity) 3908825461875194 l006 ln(5434/8033) 3908825468397911 r009 Im(z^3+c),c=-37/90+19/55*I,n=17 3908825473638352 r002 48th iterates of z^2 + 3908825477101095 m001 1/Sierpinski*exp(FransenRobinson)^2/exp(1) 3908825481413212 r009 Re(z^3+c),c=-33/70+8/35*I,n=39 3908825490763972 r005 Im(z^2+c),c=-99/122+10/39*I,n=6 3908825490945927 a001 141422324/1597*34^(8/19) 3908825494723446 a003 sin(Pi*15/113)*sin(Pi*32/77) 3908825508224357 h001 (3/7*exp(1)+1/9)/(9/10*exp(1)+9/11) 3908825513301821 m001 (ZetaQ(3)+ZetaQ(4))/(FeigenbaumKappa+Mills) 3908825520298617 m005 (1/3*Catalan+1/2)/(8/11*exp(1)+1/12) 3908825520413131 m001 (MasserGramain-OneNinth)/(GaussAGM+Landau) 3908825522485168 a001 20365011074/2207*322^(1/4) 3908825535286718 r005 Im(z^2+c),c=-19/16+3/82*I,n=4 3908825539469893 r002 26th iterates of z^2 + 3908825548500126 r008 a(0)=0,K{-n^6,-15+39*n-19*n^2+21*n^3} 3908825554145821 r009 Re(z^3+c),c=-5/64+28/39*I,n=56 3908825558074740 m002 4*Pi^4+ProductLog[Pi]+2*Sech[Pi] 3908825594898256 a001 12752043/55*377^(10/21) 3908825597413462 v002 sum(1/(3^n*(n^3+3*n^2-15*n+12)),n=1..infinity) 3908825603976655 m001 ln(3)^Champernowne/sin(1/12*Pi) 3908825614181817 a007 Real Root Of -528*x^4+972*x^3-190*x^2+822*x-338 3908825629329889 a007 Real Root Of 448*x^4+38*x^3+790*x^2-54*x-150 3908825649135938 m001 (GAMMA(13/24)+MertensB3)/(Paris-Thue) 3908825659843199 r005 Re(z^2+c),c=-10/19+17/40*I,n=43 3908825665805980 a007 Real Root Of 165*x^4+447*x^3-712*x^2+122*x-467 3908825668786230 r002 28th iterates of z^2 + 3908825671724088 r009 Im(z^3+c),c=-1/48+49/61*I,n=32 3908825683269479 a007 Real Root Of 926*x^4-565*x^3+856*x^2-515*x+2 3908825696421567 b008 39+BesselY[0,1] 3908825698651325 r009 Im(z^3+c),c=-55/114+13/28*I,n=16 3908825710171847 r009 Re(z^3+c),c=-51/110+11/50*I,n=36 3908825738989122 r009 Im(z^3+c),c=-65/126+16/61*I,n=60 3908825739488320 r005 Im(z^2+c),c=3/122+25/52*I,n=60 3908825752749898 a001 370248451/4181*34^(8/19) 3908825761650299 a001 1836311903/521*521^(5/13) 3908825768272369 m001 MertensB1^(Thue/FibonacciFactorial) 3908825782413615 m001 (Zeta(5)+LandauRamanujan2nd)/(Pi+1) 3908825790946586 a001 969323029/10946*34^(8/19) 3908825796519407 a001 2537720636/28657*34^(8/19) 3908825797332471 a001 6643838879/75025*34^(8/19) 3908825797451096 a001 17393796001/196418*34^(8/19) 3908825797468403 a001 45537549124/514229*34^(8/19) 3908825797470928 a001 119218851371/1346269*34^(8/19) 3908825797471296 a001 312119004989/3524578*34^(8/19) 3908825797471350 a001 817138163596/9227465*34^(8/19) 3908825797471358 a001 2139295485799/24157817*34^(8/19) 3908825797471359 a001 5600748293801/63245986*34^(8/19) 3908825797471359 a001 14662949395604/165580141*34^(8/19) 3908825797471359 a001 23725150497407/267914296*34^(8/19) 3908825797471359 a001 3020733700601/34111385*34^(8/19) 3908825797471360 a001 3461452808002/39088169*34^(8/19) 3908825797471363 a001 440719107401/4976784*34^(8/19) 3908825797471383 a001 505019158607/5702887*34^(8/19) 3908825797471524 a001 64300051206/726103*34^(8/19) 3908825797472488 a001 73681302247/832040*34^(8/19) 3908825797479099 a001 9381251041/105937*34^(8/19) 3908825797524409 a001 10749957122/121393*34^(8/19) 3908825797776073 r005 Im(z^2+c),c=3/34+26/59*I,n=22 3908825797834972 a001 1368706081/15456*34^(8/19) 3908825799762752 a001 233/843*2537720636^(13/15) 3908825799762752 a001 233/843*45537549124^(13/17) 3908825799762752 a001 233/843*14662949395604^(13/21) 3908825799762752 a001 233/843*(1/2+1/2*5^(1/2))^39 3908825799762752 a001 233/843*192900153618^(13/18) 3908825799762752 a001 233/843*73681302247^(3/4) 3908825799762752 a001 233/843*10749957122^(13/16) 3908825799762752 a001 233/843*599074578^(13/14) 3908825799808062 a001 377/521*(1/2+1/2*5^(1/2))^37 3908825799963601 a001 1568397607/17711*34^(8/19) 3908825803179007 m005 (1/2*Pi+1/4)/(-41/176+5/16*5^(1/2)) 3908825804246955 r005 Im(z^2+c),c=-29/22+3/124*I,n=48 3908825806236165 l006 ln(3615/5344) 3908825814553437 a001 199691526/2255*34^(8/19) 3908825830313289 l006 ln(9583/9965) 3908825835009132 m006 (1/5*exp(Pi)-4)/(3*exp(2*Pi)+1/2) 3908825835140450 r005 Im(z^2+c),c=7/122+17/37*I,n=52 3908825855402662 m001 BesselJ(0,1)*(ln(3)-ln(5)) 3908825856647450 m001 (Ei(1,1)+BesselK(1,1))/(Riemann2ndZero-Trott) 3908825861218413 r005 Re(z^2+c),c=-59/106+5/12*I,n=57 3908825864236697 r005 Im(z^2+c),c=-17/118+21/40*I,n=13 3908825870670377 a001 29/1346269*2^(49/57) 3908825872852699 a001 63245986/199*199^(10/11) 3908825882774175 a003 cos(Pi*32/109)-sin(Pi*29/62) 3908825883179219 r005 Re(z^2+c),c=-3/4+1/107*I,n=38 3908825909397511 r005 Re(z^2+c),c=-61/102+23/63*I,n=35 3908825914553668 a001 228826127/2584*34^(8/19) 3908825919741249 r002 64th iterates of z^2 + 3908825933856312 m001 (gamma(2)+FeigenbaumB)/(Pi-Zeta(5)) 3908825938572878 m001 OneNinth*Sierpinski^2/ln(Zeta(3)) 3908825943270113 m005 (1/3*Zeta(3)-2/11)/(1/3*Zeta(3)-6) 3908825950826866 r008 a(0)=0,K{-n^6,25+34*n^2-34*n^3} 3908825964580869 r005 Im(z^2+c),c=5/44+39/62*I,n=32 3908825981496952 r005 Re(z^2+c),c=-73/74+9/53*I,n=4 3908825991760090 r002 21th iterates of z^2 + 3908825996242467 m005 (1/3*gamma+1/2)/(6/11*2^(1/2)+1) 3908826003270004 p001 sum(1/(495*n+268)/(8^n),n=0..infinity) 3908826004882580 r002 46th iterates of z^2 + 3908826014203205 m005 (1/2*exp(1)-4/7)/(7/8*2^(1/2)+7/9) 3908826030125789 p002 log(21/(11^(1/4)-15^(1/2))) 3908826048454045 a007 Real Root Of -917*x^4+402*x^3-669*x^2+157*x+209 3908826051403168 m001 (arctan(1/2)+exp(1/Pi))/(MadelungNaCl+Otter) 3908826052149502 r005 Re(z^2+c),c=-37/110+14/25*I,n=26 3908826058816055 m005 (-1/3+5/12*5^(1/2))/(5*Pi-2/5) 3908826069110525 m005 (1/2*gamma+6/11)/(1/8*Zeta(3)-4/11) 3908826078466640 m001 ln((3^(1/3)))/TwinPrimes^2/arctan(1/2)^2 3908826087484610 r005 Re(z^2+c),c=-25/48+10/29*I,n=28 3908826126439238 a007 Real Root Of -399*x^4-527*x^3-752*x^2+410*x+253 3908826141895709 r005 Im(z^2+c),c=13/82+17/44*I,n=57 3908826150350591 r002 9th iterates of z^2 + 3908826151597107 r005 Re(z^2+c),c=7/27+2/63*I,n=54 3908826152060866 l006 ln(5411/7999) 3908826160270102 r002 5th iterates of z^2 + 3908826173398767 m001 (-Gompertz+OneNinth)/(2^(1/3)+gamma(2)) 3908826207896856 a001 53316291173/5778*322^(1/4) 3908826216436983 a001 11/75025*34^(27/29) 3908826220512084 a007 Real Root Of 377*x^4-312*x^3+630*x^2-712*x-402 3908826220913350 r005 Im(z^2+c),c=23/64+2/5*I,n=4 3908826228373798 m005 (1/2*Catalan-1/8)/(41/14+5/2*5^(1/2)) 3908826231116458 b008 1+Sinh[3/8+Sqrt[2]] 3908826239639884 m003 5/2+Sinh[1/2+Sqrt[5]/2]/5+Tanh[1/2+Sqrt[5]/2] 3908826256808009 m001 (Pi-3^(1/3))/(arctan(1/3)-FeigenbaumDelta) 3908826279913967 a007 Real Root Of -441*x^4+208*x^3-701*x^2+507*x+328 3908826282228204 a008 Real Root of x^4+3*x^2-36*x-420 3908826290903715 r005 Re(z^2+c),c=-49/114+31/63*I,n=37 3908826304363449 m001 sin(1/12*Pi)+FibonacciFactorial*OneNinth 3908826304539679 r004 Im(z^2+c),c=-7/46+9/16*I,z(0)=I,n=33 3908826306308434 a007 Real Root Of -861*x^4-679*x^3+916*x^2+823*x-401 3908826307897094 a001 139583862445/15127*322^(1/4) 3908826314187258 p001 sum(1/(503*n+256)/(512^n),n=0..infinity) 3908826322486932 a001 365435296162/39603*322^(1/4) 3908826324615561 a001 956722026041/103682*322^(1/4) 3908826324926124 a001 2504730781961/271443*322^(1/4) 3908826324971434 a001 6557470319842/710647*322^(1/4) 3908826324982131 a001 10610209857723/1149851*322^(1/4) 3908826324999438 a001 4052739537881/439204*322^(1/4) 3908826325118062 a001 140728068720/15251*322^(1/4) 3908826325736088 r005 Re(z^2+c),c=-57/106+7/51*I,n=52 3908826325931126 a001 591286729879/64079*322^(1/4) 3908826331503948 a001 7787980473/844*322^(1/4) 3908826340516617 r009 Re(z^3+c),c=-5/66+40/59*I,n=27 3908826340623048 a001 7881196*514229^(11/17) 3908826343113440 a001 39603*1836311903^(11/17) 3908826350649230 r005 Im(z^2+c),c=13/82+17/44*I,n=56 3908826354149427 r002 60th iterates of z^2 + 3908826362122304 m002 1/4+4*Pi^4+Tanh[Pi] 3908826364462501 r005 Re(z^2+c),c=3/22+26/43*I,n=24 3908826364830538 r005 Im(z^2+c),c=21/64+12/55*I,n=43 3908826369700642 a001 86267571272/9349*322^(1/4) 3908826373025295 a007 Real Root Of 411*x^4-54*x^3+154*x^2-828*x-360 3908826382153249 q001 403/1031 3908826388325083 r002 22th iterates of z^2 + 3908826390135163 a008 Real Root of x^4-x^3-25*x^2+85*x-124 3908826396857604 r002 43th iterates of z^2 + 3908826405256156 b008 Pi^2*BesselJ[3,Glaisher] 3908826412402518 l006 ln(94/4685) 3908826424402185 r005 Re(z^2+c),c=-24/31+10/43*I,n=6 3908826429404780 a001 305/51841*18^(19/29) 3908826455624683 m001 Grothendieck*MasserGramainDelta+TwinPrimes 3908826466878660 m001 (ln(Pi)+Zeta(1,2))/(MasserGramain-Salem) 3908826468557443 a001 1364/1597*28657^(19/51) 3908826476819538 m001 1/exp(DuboisRaymond)^2/sin(Pi/12)^3 3908826480661359 r002 15th iterates of z^2 + 3908826485918525 m001 (Bloch+FeigenbaumKappa)/(cos(1)+gamma(1)) 3908826490704416 r005 Re(z^2+c),c=7/24+3/61*I,n=48 3908826513863780 m001 GAMMA(5/6)/(BesselK(0,1)-Rabbit) 3908826514859763 m001 (Artin+Gompertz)/(Shi(1)-cos(1/5*Pi)) 3908826515576744 m001 HardyLittlewoodC3^DuboisRaymond-Mills 3908826518329043 r009 Im(z^3+c),c=-7/106+11/18*I,n=2 3908826522253733 a007 Real Root Of x^4+392*x^3+435*x^2-685*x-89 3908826533866457 r008 a(0)=0,K{-n^6,-5+9*n+62*n^2-32*n^3} 3908826537855399 a002 6^(10/3)-11^(1/5) 3908826547551355 r009 Im(z^3+c),c=-13/122+43/56*I,n=15 3908826548624691 m001 Salem-arctan(1/3)-arctan(1/2) 3908826556187980 m001 (sin(1/5*Pi)+sin(1/12*Pi))/(Backhouse+Rabbit) 3908826558183851 r009 Im(z^3+c),c=-25/62+11/35*I,n=3 3908826563426775 m005 (1/2*Pi+5/6)/(1/10*exp(1)-1/3) 3908826567488658 r005 Im(z^2+c),c=17/60+23/57*I,n=14 3908826580142071 m001 1/ln(RenyiParking)^2*Si(Pi)^2/Zeta(5) 3908826599020862 r002 53i'th iterates of 2*x/(1-x^2) of 3908826599965587 a001 29134601/329*34^(8/19) 3908826605109428 m001 1/(2^(1/3))^2*ln(Backhouse)*GAMMA(17/24)^2 3908826608521303 b008 40+Cos[E] 3908826614989571 g007 Psi(2,1/12)+Psi(2,1/9)-14*Zeta(3)-Psi(2,1/8) 3908826615453554 p004 log(23929/16187) 3908826618517933 a001 6/329*5^(9/19) 3908826619869033 r002 54th iterates of z^2 + 3908826631504696 a001 32951280099/3571*322^(1/4) 3908826632661959 r005 Im(z^2+c),c=-5/66+33/61*I,n=52 3908826635402660 r005 Im(z^2+c),c=7/122+17/37*I,n=53 3908826651361994 m006 (5/6*Pi+5)/(2*Pi^2-1/4) 3908826651361994 m008 (5/6*Pi+5)/(2*Pi^2-1/4) 3908826665778699 r005 Im(z^2+c),c=9/32+1/4*I,n=14 3908826666534558 a007 Real Root Of 244*x^4-866*x^3-971*x^2-700*x+468 3908826675923667 r009 Im(z^3+c),c=-23/70+17/44*I,n=19 3908826683734193 h001 (3/4*exp(1)+1/10)/(2/3*exp(2)+6/11) 3908826686978600 p004 log(34549/23371) 3908826705191160 m001 (ErdosBorwein+Rabbit)/Lehmer 3908826707301648 a007 Real Root Of 26*x^4-452*x^3+184*x^2-754*x+293 3908826715457762 m001 (exp(Pi)*BesselK(0,1)-ArtinRank2)/exp(Pi) 3908826717491140 m004 -1+125*Pi-5/(Pi*Log[Sqrt[5]*Pi]) 3908826721088556 r002 48th iterates of z^2 + 3908826725237908 m005 (1/2*3^(1/2)-8/11)/(3/8*gamma-4/7) 3908826729757615 m005 (1/2*gamma-9/11)/(7/11*exp(1)-3/8) 3908826733712900 r002 12th iterates of z^2 + 3908826752221892 m005 (1/3*5^(1/2)+1/12)/(10/11*3^(1/2)+6/11) 3908826763080595 r002 23th iterates of z^2 + 3908826765540727 m001 (Shi(1)-Si(Pi))/(-BesselK(0,1)+GolombDickman) 3908826768475631 r002 56th iterates of z^2 + 3908826775815398 a007 Real Root Of -276*x^4-867*x^3+604*x^2-867*x+34 3908826796916423 a007 Real Root Of -168*x^4+329*x^3-277*x^2+778*x+370 3908826797901726 a007 Real Root Of -842*x^4+359*x^3-775*x^2-32*x+147 3908826804518660 m001 (Pi^(1/2)+Landau)/(MasserGramain-ZetaQ(2)) 3908826811078333 m001 (ln(5)+GAMMA(19/24))/(FellerTornier-MertensB2) 3908826814872670 a007 Real Root Of 326*x^4-716*x^3-959*x^2-469*x+365 3908826848138942 l006 ln(1796/2655) 3908826858191055 r005 Re(z^2+c),c=-19/42+15/29*I,n=60 3908826860942390 r009 Im(z^3+c),c=-31/118+23/56*I,n=20 3908826869357999 a001 2971215073/521*521^(4/13) 3908826873188943 a007 Real Root Of 144*x^4+596*x^3+149*x^2-44*x-470 3908826876141900 r005 Im(z^2+c),c=-12/13+17/58*I,n=40 3908826882263956 r002 9th iterates of z^2 + 3908826927281101 m005 (4/5*Catalan+4/5)/(-14/3+1/3*5^(1/2)) 3908826933887262 r005 Im(z^2+c),c=-9/94+21/38*I,n=52 3908826958440961 m001 GaussKuzminWirsing^BesselJ(0,1)-Trott 3908826961582664 r009 Im(z^3+c),c=-23/122+18/41*I,n=5 3908826966151779 r002 48th iterates of z^2 + 3908826968591635 p003 LerchPhi(1/1024,6,321/187) 3908826970544820 a007 Real Root Of 617*x^4-836*x^3+542*x^2+72*x-119 3908826985645301 r009 Im(z^3+c),c=-15/44+11/29*I,n=11 3908827006449738 r002 14th iterates of z^2 + 3908827011046283 a003 cos(Pi*15/32)-cos(Pi*47/100) 3908827024084891 a007 Real Root Of -109*x^4-119*x^3+25*x^2+331*x+121 3908827039557365 r009 Re(z^3+c),c=-13/25+19/61*I,n=27 3908827041955128 r005 Re(z^2+c),c=-27/62+31/58*I,n=53 3908827051609959 m001 (BesselI(1,1)-Sarnak)/(ln(2)-ln(3)) 3908827051748609 r005 Im(z^2+c),c=13/82+17/44*I,n=61 3908827054935458 m001 (-BesselK(0,1)+exp(1/Pi))/(exp(Pi)+2^(1/3)) 3908827058659678 r002 32th iterates of z^2 + 3908827063428281 a007 Real Root Of 233*x^4-104*x^3+773*x^2+268*x-25 3908827075127411 m005 (1/2*gamma+1/11)/(2/5*Pi-2/7) 3908827077426858 m004 -5-125*Pi+10*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 3908827081583816 m001 ln(2)^MertensB2*LandauRamanujan2nd^MertensB2 3908827086165693 r009 Im(z^3+c),c=-15/106+26/59*I,n=7 3908827088762965 a007 Real Root Of -15*x^4-587*x^3-37*x^2-411*x+98 3908827092354231 r005 Im(z^2+c),c=13/38+7/41*I,n=44 3908827103416738 r005 Im(z^2+c),c=-9/14+85/247*I,n=30 3908827107789569 r005 Re(z^2+c),c=-5/9-17/74*I,n=13 3908827107933272 a001 2971215073/843*322^(5/12) 3908827111111447 r005 Im(z^2+c),c=-37/94+5/9*I,n=16 3908827114918067 m001 (Kac-Paris)/(GAMMA(23/24)+FellerTornier) 3908827115290607 a001 4181/123*76^(1/31) 3908827129866752 r002 9th iterates of z^2 + 3908827135546347 r005 Im(z^2+c),c=-5/82+9/17*I,n=30 3908827147455884 a005 (1/cos(3/202*Pi))^1252 3908827151662554 m001 (GAMMA(7/12)+Grothendieck)/(Kolakoski-Rabbit) 3908827159292612 l006 ln(7551/7852) 3908827182433200 a007 Real Root Of -305*x^4+426*x^3-526*x^2+760*x+410 3908827192748976 r005 Im(z^2+c),c=13/82+17/44*I,n=60 3908827194233538 r009 Re(z^3+c),c=-39/82+7/30*I,n=61 3908827200671601 a007 Real Root Of -959*x^4+176*x^3-387*x^2+376*x+239 3908827229933426 a007 Real Root Of -948*x^4+405*x^3+166*x^2+719*x+302 3908827236705787 r009 Im(z^3+c),c=-8/23+17/45*I,n=18 3908827242935916 p004 log(12809/257) 3908827243258339 r002 24th iterates of z^2 + 3908827243611049 r005 Re(z^2+c),c=-21/44+26/59*I,n=55 3908827249773564 r005 Im(z^2+c),c=15/44+11/59*I,n=48 3908827250303624 a001 1/141*55^(23/54) 3908827274934024 m005 (1/2*3^(1/2)+7/8)/(7/11*2^(1/2)-5/11) 3908827285023593 l004 Pi/cosh(513/53*Pi) 3908827285023593 l004 Pi/sinh(513/53*Pi) 3908827290628013 a007 Real Root Of -409*x^4+254*x^3-260*x^2+936*x+37 3908827297711991 m001 exp(GAMMA(1/3))^2*GAMMA(1/24)/GAMMA(5/6)^2 3908827313087683 m005 (1/2*Zeta(3)-1/12)/(3/4*exp(1)-5/7) 3908827368328473 m001 FellerTornier*GaussAGM-TwinPrimes 3908827375774813 m001 (Catalan+FeigenbaumB)/(-Mills+Thue) 3908827399493185 m001 Salem/Artin/ln(sqrt(5)) 3908827412058799 p003 LerchPhi(1/64,1,207/80) 3908827412173085 m006 (1/6*Pi+2/3)/(3/Pi-4) 3908827420603470 r005 Re(z^2+c),c=-9/14+49/128*I,n=41 3908827423188074 r002 38th iterates of z^2 + 3908827432853808 m005 (1/2*Pi+9/10)/(5*2^(1/2)-3/4) 3908827459052534 r009 Im(z^3+c),c=-7/90+21/47*I,n=6 3908827466180701 r002 28th iterates of z^2 + 3908827467280823 m005 (1/2*Zeta(3)+3)/(6*2^(1/2)+8/11) 3908827481437042 r005 Im(z^2+c),c=13/82+17/44*I,n=64 3908827488316921 b008 4+BesselJ[2,33] 3908827493607980 p002 log(1/2*(11^(1/3)-12*2^(1/3))*2^(2/3)) 3908827496266662 r009 Im(z^3+c),c=-49/110+13/40*I,n=19 3908827505348094 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=28 3908827515833401 v003 sum((n^3+4*n^2-7*n+24)/(n!+1),n=1..infinity) 3908827540643716 r005 Re(z^2+c),c=-115/114+12/61*I,n=34 3908827540691144 r005 Re(z^2+c),c=-45/94+11/25*I,n=60 3908827541306224 r009 Re(z^3+c),c=-21/46+3/14*I,n=20 3908827550185207 l006 ln(5365/7931) 3908827554996248 m004 -17/5-ProductLog[Sqrt[5]*Pi]/3 3908827580937134 m001 (-ZetaP(3)+ZetaQ(3))/(exp(1)+GAMMA(7/12)) 3908827585389030 r005 Re(z^2+c),c=-73/62+16/59*I,n=17 3908827586633263 r002 57th iterates of z^2 + 3908827593690444 m001 (2^(1/3)-ln(Pi))/(Khinchin+MertensB1) 3908827596445640 r005 Re(z^2+c),c=-63/118+8/45*I,n=33 3908827599052985 m005 (1/3*Pi-3/4)/(1/11*2^(1/2)-8/9) 3908827619220535 r002 38th iterates of z^2 + 3908827622975126 m001 ln(Lehmer)*Artin*Riemann1stZero^2 3908827624973439 m005 (1/2*5^(1/2)+2/3)/(-115/198+1/18*5^(1/2)) 3908827631652860 m001 (Ei(1,1)-Backhouse)/(FeigenbaumC+MertensB3) 3908827643747213 r005 Im(z^2+c),c=-5/31+19/33*I,n=34 3908827646535993 s001 sum(exp(-3*Pi/5)^n*A163544[n],n=1..infinity) 3908827652946853 m005 (1/3*5^(1/2)-1/5)/(11/12*Catalan+5/9) 3908827688495302 r009 Im(z^3+c),c=-39/110+3/8*I,n=16 3908827690505315 m001 Zeta(1,2)*(1/2-FeigenbaumDelta) 3908827692503289 a007 Real Root Of -267*x^4-891*x^3+706*x^2+276*x-591 3908827719683359 r005 Im(z^2+c),c=-5/58+37/55*I,n=33 3908827721893512 l006 ln(163/8124) 3908827734238012 m005 (1/2*Catalan-1/12)/(2/7*exp(1)+2/11) 3908827740770666 r009 Re(z^3+c),c=-13/31+29/50*I,n=53 3908827751144178 b008 -40+2^(-2/15) 3908827755616450 r005 Im(z^2+c),c=-5/56+21/38*I,n=34 3908827756983317 m001 Artin^exp(1/Pi)/Robbin 3908827768938409 r002 34th iterates of z^2 + 3908827795230991 r002 26th iterates of z^2 + 3908827797968606 m009 (16/3*Catalan+2/3*Pi^2+6)/(1/2*Psi(1,2/3)-6) 3908827799926652 r002 61th iterates of z^2 + 3908827806151324 a003 cos(Pi*33/104)*cos(Pi*52/109) 3908827811073573 r005 Im(z^2+c),c=-25/52+21/38*I,n=49 3908827840787218 a001 1322157322203/89*46368^(7/23) 3908827840897883 a001 45537549124/89*2971215073^(7/23) 3908827851636198 m001 Paris*Thue-PlouffeB 3908827851855775 a001 1/72*(1/2*5^(1/2)+1/2)^11*4^(1/4) 3908827863810616 m002 -5+4/(E^Pi*Pi^2)+ProductLog[Pi] 3908827865235852 r005 Im(z^2+c),c=-7/58+27/47*I,n=42 3908827871085005 a007 Real Root Of 243*x^4+908*x^3-209*x^2-316*x-541 3908827874236871 r005 Re(z^2+c),c=-35/58+11/39*I,n=20 3908827875602206 r002 15th iterates of z^2 + 3908827876191910 r009 Im(z^3+c),c=-5/36+41/51*I,n=19 3908827876308449 r009 Im(z^3+c),c=-1/12+21/47*I,n=11 3908827879542211 h001 (5/12*exp(1)+3/11)/(3/7*exp(2)+3/7) 3908827879903461 r005 Im(z^2+c),c=13/82+17/44*I,n=62 3908827894824403 r009 Im(z^3+c),c=-37/110+18/47*I,n=21 3908827898134112 m001 LaplaceLimit*MasserGramainDelta^Otter 3908827903470448 l006 ln(3569/5276) 3908827908695793 r005 Re(z^2+c),c=-7/13+12/53*I,n=20 3908827917281640 r002 51th iterates of z^2 + 3908827917281640 r002 51th iterates of z^2 + 3908827921067057 b008 5*PolyGamma[0,8/3] 3908827931007230 r005 Re(z^2+c),c=1/28+14/47*I,n=18 3908827941104617 m001 (polylog(4,1/2)+Porter)/(Shi(1)+ln(gamma)) 3908827956417720 m001 (-GAMMA(11/24)+1)/(-exp(1)+1/3) 3908827959503341 r005 Im(z^2+c),c=3/52+5/9*I,n=14 3908827977066013 a001 4807526976/521*521^(3/13) 3908827978852123 r005 Re(z^2+c),c=-27/52+12/43*I,n=46 3908827982667744 m001 1/ln(GAMMA(1/12))/TreeGrowth2nd/cosh(1)^2 3908827985088226 m001 cosh(1)*ln(GAMMA(7/24))^2*sqrt(2)^2 3908827985244885 r005 Im(z^2+c),c=13/82+17/44*I,n=63 3908827991640606 m004 -6/5+(25*Pi*Coth[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 3908827998045291 a003 sin(Pi*17/90)*sin(Pi*17/69) 3908828000473029 m009 (48*Catalan+6*Pi^2-1/3)/(3/4*Psi(1,2/3)+1/3) 3908828001574550 r002 4th iterates of z^2 + 3908828002868649 r005 Im(z^2+c),c=-3/50+33/62*I,n=40 3908828009404561 m001 GAMMA(5/6)*exp(Trott)/cos(1)^2 3908828015961077 m001 (BesselI(1,1)-MertensB1)/(ln(3)-arctan(1/3)) 3908828020212720 m004 -5+10/Pi+125*Pi*Coth[Sqrt[5]*Pi] 3908828024585172 m004 -2+Cos[Sqrt[5]*Pi]/4+125*Pi*Tanh[Sqrt[5]*Pi] 3908828025938842 a007 Real Root Of -121*x^4-225*x^3+977*x^2-2*x-126 3908828060993808 a007 Real Root Of 454*x^4-426*x^3+474*x^2-994*x-497 3908828085544862 a007 Real Root Of -661*x^4-628*x^3-750*x^2+298*x+209 3908828103621068 a001 144/29*11^(37/43) 3908828108579030 m001 1/GAMMA(3/4)^2*exp(Lehmer)/GAMMA(7/24) 3908828119398480 r009 Re(z^3+c),c=-3/31+7/10*I,n=25 3908828120232117 m001 ln(Sierpinski)^2/DuboisRaymond^2*GAMMA(13/24) 3908828127018149 h001 (-6*exp(2)+11)/(-11*exp(2)-4) 3908828133044959 r005 Im(z^2+c),c=13/50+13/44*I,n=45 3908828138589632 r009 Im(z^3+c),c=-37/110+18/47*I,n=18 3908828138735382 m001 (1-exp(1/Pi))/(-DuboisRaymond+Paris) 3908828141341122 v002 sum(1/(3^n*(8*n^2+32*n-31)),n=1..infinity) 3908828144948899 r009 Re(z^3+c),c=-23/48+3/50*I,n=13 3908828145469449 m001 (Salem-Thue)/(gamma(3)+AlladiGrinstead) 3908828152374141 m008 (1/5*Pi^6-1/6)/(5*Pi^2-1/5) 3908828192167457 s001 sum(exp(-Pi/2)^(n-1)*A229496[n],n=1..infinity) 3908828193385171 a003 cos(Pi*31/115)*cos(Pi*32/107) 3908828207655719 h001 (-5*exp(1)+9)/(-8*exp(1)+10) 3908828207655719 m005 (1/2*exp(1)-9/10)/(4/5*exp(1)-1) 3908828209972327 m001 ln(2+3^(1/2))*(GAMMA(5/6)+Tribonacci) 3908828214491164 a001 103682/55*9227465^(10/21) 3908828221952338 r002 41th iterates of z^2 + 3908828222143603 m001 BesselJ(0,1)^Zeta(1,-1)*Artin 3908828222195949 r009 Re(z^3+c),c=-59/110+2/7*I,n=38 3908828224247590 r002 42th iterates of z^2 + 3908828247293227 m001 (Psi(2,1/3)+Ei(1))/(Zeta(1/2)+Paris) 3908828251488380 r005 Im(z^2+c),c=-7/10+6/197*I,n=37 3908828255386778 r005 Re(z^2+c),c=-13/24+4/59*I,n=26 3908828258276747 l006 ln(5342/7897) 3908828272224717 m005 (1/3*3^(1/2)-2/9)/(6*2^(1/2)+3/5) 3908828288978798 r005 Im(z^2+c),c=-33/52+21/58*I,n=35 3908828318905350 r002 45th iterates of z^2 + 3908828320269843 r005 Re(z^2+c),c=27/56+33/58*I,n=2 3908828322796007 r009 Im(z^3+c),c=-37/70+17/64*I,n=54 3908828323020925 r009 Re(z^3+c),c=-5/82+22/43*I,n=18 3908828340740278 m001 1/BesselK(1,1)^2*Robbin^2/exp(GAMMA(5/6)) 3908828346617133 a007 Real Root Of 453*x^4-412*x^3+754*x^2-86*x-184 3908828347597202 r005 Re(z^2+c),c=-5/8+71/210*I,n=39 3908828352547005 r002 51th iterates of z^2 + 3908828366132365 a007 Real Root Of -115*x^4-257*x^3+952*x^2+658*x-476 3908828373633096 r005 Im(z^2+c),c=13/82+17/44*I,n=58 3908828380737166 a007 Real Root Of 807*x^4-617*x^3+872*x^2-430*x-357 3908828382595474 m001 (GAMMA(13/24)+PlouffeB)/(1+Psi(2,1/3)) 3908828391409344 r009 Re(z^3+c),c=-19/32+17/36*I,n=64 3908828400817724 m001 1/BesselJ(0,1)/exp(CareFree)/sqrt(1+sqrt(3)) 3908828401363854 r009 Re(z^3+c),c=-18/31+4/17*I,n=48 3908828403425645 a001 5/199*199^(41/43) 3908828405482675 m001 GaussAGM^Magata*Sarnak 3908828425937319 a001 1144206275/124*322^(1/4) 3908828431284005 r005 Im(z^2+c),c=5/122+13/25*I,n=6 3908828461547461 a001 311187*3^(11/53) 3908828466634507 p003 LerchPhi(1/3,6,55/69) 3908828470651687 m006 (3/4*exp(2*Pi)+1/3)/(2*Pi+4) 3908828475847268 r008 a(0)=4,K{-n^6,2+5*n^3+7*n^2-2*n} 3908828494295016 r005 Im(z^2+c),c=1/28+39/46*I,n=3 3908828495383715 a007 Real Root Of 668*x^4-718*x^3+702*x^2+117*x-120 3908828507068282 r002 58th iterates of z^2 + 3908828522590703 m001 (Thue-ZetaQ(2))/(FransenRobinson-RenyiParking) 3908828524794148 a001 3571/4181*28657^(19/51) 3908828525030029 a001 4/121393*2584^(1/46) 3908828526609425 r002 32th iterates of z^2 + 3908828534662807 m001 (ArtinRank2-Rabbit)/(exp(1/Pi)+Pi^(1/2)) 3908828536285180 m001 GaussKuzminWirsing*Niven/PisotVijayaraghavan 3908828550684808 m005 (5*exp(1)-3/5)/(31/10+1/10*5^(1/2)) 3908828550700945 m002 -Cosh[Pi]+5*Cosh[Pi]*ProductLog[Pi]-Sinh[Pi] 3908828552846197 r005 Im(z^2+c),c=13/82+17/44*I,n=59 3908828599733472 r005 Im(z^2+c),c=1/118+27/55*I,n=39 3908828620261015 r005 Im(z^2+c),c=-75/86+16/53*I,n=4 3908828646825351 m005 (1/2*gamma+11/12)/(3/4*Pi+8/11) 3908828649426360 r005 Re(z^2+c),c=-31/58+7/41*I,n=49 3908828657906575 r005 Re(z^2+c),c=-47/74+14/45*I,n=45 3908828661728613 r002 56th iterates of z^2 + 3908828664149298 a001 12586269025/2207*322^(1/3) 3908828666600557 a007 Real Root Of 705*x^4+814*x^3-436*x^2-981*x+385 3908828667657827 m001 (Pi-Kac)/(LaplaceLimit-Mills) 3908828681910421 r009 Re(z^3+c),c=-2/31+13/23*I,n=23 3908828685025457 r005 Re(z^2+c),c=-25/46+25/51*I,n=41 3908828693041558 r009 Re(z^3+c),c=-13/82+53/64*I,n=26 3908828710183155 a007 Real Root Of -220*x^4+880*x^3-488*x^2+291*x+246 3908828744007020 r005 Im(z^2+c),c=1/118+27/55*I,n=57 3908828746909829 m001 (GAMMA(5/6)-OneNinth)/(Sierpinski+Trott2nd) 3908828750362522 m004 -2-125*Pi+(5*ProductLog[Sqrt[5]*Pi])/2 3908828756069714 r005 Im(z^2+c),c=-67/98+15/58*I,n=7 3908828773864198 r005 Im(z^2+c),c=-3/56+23/42*I,n=25 3908828774475616 a007 Real Root Of -365*x^4+464*x^3-144*x^2+964*x-374 3908828780038609 m002 4/E^Pi+4*Pi^4+ProductLog[Pi] 3908828781685408 r005 Re(z^2+c),c=-1/4+37/60*I,n=55 3908828800196874 r005 Im(z^2+c),c=41/122+4/19*I,n=36 3908828815206396 r002 20th iterates of z^2 + 3908828817617792 m001 GAMMA(1/3)^2*exp(GAMMA(1/24))^2/GAMMA(5/24) 3908828823093670 g006 Psi(1,10/11)-Psi(1,2/9)-Psi(1,4/5)-Psi(1,1/4) 3908828824795064 a001 9349/10946*28657^(19/51) 3908828868564608 a001 24476/28657*28657^(19/51) 3908828876177593 a001 75025/322*199^(30/31) 3908828878897195 a001 13201/15456*28657^(19/51) 3908828881076576 a007 Real Root Of 880*x^4-286*x^3-606*x^2-716*x+369 3908828886403751 a007 Real Root Of 234*x^4+749*x^3-777*x^2-420*x+336 3908828895615674 a001 15127/17711*28657^(19/51) 3908828907079028 b008 ProductLog[2*Pi^4] 3908828910253445 m001 Chi(1)^GaussKuzminWirsing*ThueMorse 3908828910695646 r002 64th iterates of z^2 + 3908828923238145 q001 1492/3817 3908828925533141 r002 45th iterates of z^2 + 3908828927014379 r009 Im(z^3+c),c=-29/98+49/50*I,n=9 3908828931168501 r002 35th iterates of z^2 + 3908828951956499 r005 Re(z^2+c),c=-53/98+2/21*I,n=52 3908828955526150 h001 (7/11*exp(1)+2/9)/(5/9*exp(2)+8/9) 3908828956151204 a005 (1/cos(7/155*Pi))^363 3908828963901332 r008 a(0)=4,K{-n^6,-4+6*n^3+n^2+9*n} 3908828972491984 l006 ln(1773/2621) 3908828978994446 a001 196418/3*18^(34/55) 3908828980747433 r002 24th iterates of z^2 + 3908829003521468 r005 Re(z^2+c),c=-19/36+10/43*I,n=14 3908829010205829 a001 1926/2255*28657^(19/51) 3908829013989906 r005 Im(z^2+c),c=-5/29+35/44*I,n=24 3908829036769230 m001 (Porter-Riemann3rdZero)/(gamma(2)-Lehmer) 3908829045401265 r002 28th iterates of z^2 + 3908829054829220 m001 1/Salem*exp(CareFree)/TreeGrowth2nd 3908829059991256 m001 Zeta(1/2)*(exp(Pi)+GAMMA(1/4)) 3908829059991256 m001 Zeta(1/2)*(exp(Pi)+Pi*2^(1/2)/GAMMA(3/4)) 3908829062674267 r005 Re(z^2+c),c=-29/54+1/40*I,n=15 3908829062934944 m001 exp(FeigenbaumD)*FeigenbaumDelta^2*GAMMA(3/4) 3908829076536566 m001 1/Porter/exp(CopelandErdos)/GAMMA(19/24)^2 3908829082509833 r005 Re(z^2+c),c=-9/14+45/197*I,n=4 3908829084774341 a001 7778742049/521*521^(2/13) 3908829088917548 p001 sum(1/(365*n+256)/(625^n),n=0..infinity) 3908829103236778 m001 gamma+FransenRobinson*KhinchinLevy 3908829110583699 a007 Real Root Of 444*x^4-788*x^3+478*x^2-785*x+30 3908829111179283 m001 1/exp(Tribonacci)*RenyiParking^2*BesselJ(1,1) 3908829116964181 r005 Im(z^2+c),c=-7/31+13/28*I,n=4 3908829126569470 a001 2207/233*13^(21/38) 3908829140340905 m004 -4+2*Cot[Sqrt[5]*Pi]+125*Pi*Coth[Sqrt[5]*Pi] 3908829170306985 a001 521/2*17711^(58/59) 3908829182776386 h001 (9/11*exp(1)+5/8)/(10/11*exp(2)+4/7) 3908829195425345 m004 -2+125*Pi*Coth[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/5 3908829199180327 a001 4768771623/122 3908829208921052 m001 1/Zeta(1/2)^2*TwinPrimes*ln(log(1+sqrt(2))) 3908829226815485 r005 Im(z^2+c),c=11/54+15/43*I,n=39 3908829229482904 r005 Re(z^2+c),c=-43/110+21/43*I,n=14 3908829239576245 m001 (-Tribonacci+ThueMorse)/(2^(1/2)+5^(1/2)) 3908829245333254 h001 (1/9*exp(2)+2/9)/(5/7*exp(1)+8/11) 3908829252554338 a001 1/10959*28657^(22/27) 3908829254886302 m002 -4+6*Pi^6*Csch[Pi]*Sech[Pi] 3908829283098201 m001 Champernowne/(Landau-Thue) 3908829285088628 r005 Re(z^2+c),c=-63/118+11/62*I,n=37 3908829292568895 r005 Re(z^2+c),c=-71/126+5/47*I,n=8 3908829309058268 m001 (ln(5)+arctan(1/3))/(2*Pi/GAMMA(5/6)-Kac) 3908829320245240 p001 sum((-1)^n/(417*n+25)/(2^n),n=0..infinity) 3908829332005368 r005 Re(z^2+c),c=9/22+16/59*I,n=4 3908829332536768 r005 Re(z^2+c),c=-49/122+11/21*I,n=40 3908829333634946 m001 (2^(1/3))*exp(Riemann3rdZero)/GAMMA(1/24) 3908829336336262 m005 (-13/30+1/6*5^(1/2))/(65/88+4/11*5^(1/2)) 3908829339296194 a001 24157817/521*1364^(14/15) 3908829349561537 a001 10983760033/1926*322^(1/3) 3908829349675513 m001 1/exp(Porter)*PisotVijayaraghavan^2*cos(Pi/12) 3908829350765849 r002 35th iterates of z^2 + 3908829358000461 a007 Real Root Of -180*x^4+632*x^3+999*x^2+736*x+177 3908829377920661 a007 Real Root Of 2*x^4-229*x^3+590*x^2-205*x-184 3908829383540786 a003 cos(Pi*18/49)-cos(Pi*56/113) 3908829391262553 m001 ln(GAMMA(1/24))^2/BesselK(0,1)*sqrt(1+sqrt(3)) 3908829401455762 m005 (1/2*exp(1)+6)/(4/9*5^(1/2)+8/9) 3908829401637718 r005 Re(z^2+c),c=-9/11+8/37*I,n=12 3908829408731048 a007 Real Root Of -879*x^4+41*x^3+279*x^2+498*x+175 3908829410661409 a007 Real Root Of -672*x^4+789*x^3-383*x^2+934*x-338 3908829418577439 r005 Re(z^2+c),c=-19/34+1/113*I,n=14 3908829422434685 a007 Real Root Of 423*x^4-110*x^3+325*x^2-33*x-79 3908829424475879 m005 (1/2*Catalan+3/5)/(3/10*Catalan-6/11) 3908829426070032 m001 cos(1)-ln(2)^DuboisRaymond 3908829427144454 a005 (1/cos(59/212*Pi))^112 3908829434040465 r009 Im(z^3+c),c=-10/21+11/36*I,n=20 3908829446528722 m008 (Pi^5-1/6)/(5/6*Pi^2-2/5) 3908829449561855 a001 86267571272/15127*322^(1/3) 3908829454942764 m001 MinimumGamma*(3^(1/2)+Riemann3rdZero) 3908829464151705 a001 75283811239/13201*322^(1/3) 3908829466280335 a001 591286729879/103682*322^(1/3) 3908829466590898 a001 516002918640/90481*322^(1/3) 3908829466631898 a007 Real Root Of 147*x^4+419*x^3-800*x^2-851*x-396 3908829466636209 a001 4052739537881/710647*322^(1/3) 3908829466642820 a001 3536736619241/620166*322^(1/3) 3908829466646905 a001 6557470319842/1149851*322^(1/3) 3908829466664212 a001 2504730781961/439204*322^(1/3) 3908829466782837 a001 956722026041/167761*322^(1/3) 3908829466886128 l006 ln(5519/5739) 3908829467595901 a001 365435296162/64079*322^(1/3) 3908829473168728 a001 139583862445/24476*322^(1/3) 3908829474577997 a001 6119/36*2504730781961^(4/21) 3908829479360142 a001 39088169/521*1364^(13/15) 3908829480952754 m001 (-Tetranacci+ThueMorse)/(Catalan-Conway) 3908829480963888 a001 167761/144*102334155^(4/21) 3908829486548045 a001 64079*6557470319842^(9/17) 3908829486936013 r009 Im(z^3+c),c=-23/118+22/53*I,n=2 3908829487500162 a001 4870847*1836311903^(9/17) 3908829487501562 a001 370248451*514229^(9/17) 3908829489618201 a001 1149851/144*4181^(4/21) 3908829493774974 a003 sin(Pi*17/100)*sin(Pi*17/61) 3908829495008126 m005 (-7/30+1/6*5^(1/2))/(1/11*2^(1/2)-1/8) 3908829505835006 l006 ln(69/3439) 3908829511365453 a001 53316291173/9349*322^(1/3) 3908829515152863 a007 Real Root Of -322*x^4-132*x^3-804*x^2-211*x+40 3908829519251017 r005 Re(z^2+c),c=-15/29+11/38*I,n=56 3908829521875861 r005 Re(z^2+c),c=-9/17+10/47*I,n=59 3908829526876393 m005 (1/2*exp(1)+1/7)/(3/11*gamma-4) 3908829530994978 r005 Im(z^2+c),c=7/122+17/37*I,n=56 3908829536983828 r005 Im(z^2+c),c=-4/15+36/59*I,n=31 3908829544174911 m001 1/GAMMA(11/12)^2*exp(Rabbit)^2/GAMMA(7/24)^2 3908829546665791 r005 Im(z^2+c),c=11/126+18/41*I,n=34 3908829552263888 m001 Gompertz/gamma(2)*HardyLittlewoodC3 3908829566339447 m001 FeigenbaumC/Backhouse/arctan(1/3) 3908829576293143 r005 Im(z^2+c),c=21/62+15/53*I,n=10 3908829580945522 r005 Im(z^2+c),c=1/118+27/55*I,n=60 3908829587925189 m006 (1/6*exp(2*Pi)-3/4)/(exp(Pi)-1/2) 3908829610493211 r005 Re(z^2+c),c=15/44+4/43*I,n=27 3908829611063108 r002 51th iterates of z^2 + 3908829619424096 a001 63245986/521*1364^(4/5) 3908829628410106 r009 Re(z^3+c),c=-15/31+12/49*I,n=31 3908829628592294 r002 51th iterates of z^2 + 3908829630275101 r005 Re(z^2+c),c=-57/106+7/51*I,n=40 3908829648714256 r009 Im(z^3+c),c=-9/17+19/62*I,n=57 3908829653740484 m001 exp(Ei(1))/BesselJ(1,1)^2/Zeta(1,2)^2 3908829661899910 m004 2/15+125*Pi-Log[Sqrt[5]*Pi] 3908829671416681 m001 (Si(Pi)+gamma(3))/(-HeathBrownMoroz+PlouffeB) 3908829671827355 a003 cos(Pi*8/57)-cos(Pi*22/67) 3908829679414149 r005 Im(z^2+c),c=7/60+23/55*I,n=42 3908829689834939 a007 Real Root Of -24*x^4-939*x^3-53*x^2-749*x-907 3908829692910700 l006 ln(5296/7829) 3908829706630238 m001 (Artin+DuboisRaymond)/(exp(1/exp(1))-gamma(2)) 3908829734050412 m001 (Pi-Backhouse)/(DuboisRaymond-Kac) 3908829736633551 r005 Re(z^2+c),c=-9/17+10/47*I,n=63 3908829743608566 r005 Im(z^2+c),c=-55/102+33/56*I,n=9 3908829759488055 a001 102334155/521*1364^(11/15) 3908829761104531 a007 Real Root Of 995*x^4-895*x^3-667*x^2-629*x+378 3908829768780342 r002 59th iterates of z^2 + 3908829773169717 a001 20365011074/3571*322^(1/3) 3908829774944312 r009 Re(z^3+c),c=-17/36+14/61*I,n=43 3908829779447175 a007 Real Root Of -165*x^4+815*x^3-689*x^2+965*x+535 3908829794834375 r005 Im(z^2+c),c=-13/98+32/55*I,n=29 3908829795618459 a001 2207/2584*28657^(19/51) 3908829806304040 r005 Im(z^2+c),c=13/82+17/44*I,n=54 3908829808312101 a007 Real Root Of 69*x^4+94*x^3-878*x^2-789*x-163 3908829811775949 r009 Re(z^3+c),c=-11/21+17/44*I,n=14 3908829830566547 r005 Im(z^2+c),c=-3/31+17/32*I,n=17 3908829837745979 p004 log(13037/8819) 3908829851174821 r005 Re(z^2+c),c=-57/82+2/17*I,n=25 3908829863603732 q001 1089/2786 3908829886449986 r005 Im(z^2+c),c=-1/52+24/47*I,n=20 3908829891642778 r005 Re(z^2+c),c=-59/114+17/59*I,n=43 3908829899552020 a001 165580141/521*1364^(2/3) 3908829917445966 m001 (CopelandErdos+ErdosBorwein)/(Magata+Mills) 3908829925936148 s002 sum(A139061[n]/(n*10^n+1),n=1..infinity) 3908829928114159 r005 Im(z^2+c),c=3/16+19/45*I,n=12 3908829938145222 a007 Real Root Of 674*x^4-935*x^3-605*x^2-739*x-268 3908829962190193 r005 Re(z^2+c),c=-19/42+1/62*I,n=3 3908829979971674 a007 Real Root Of -526*x^4-431*x^3-685*x^2+680*x+357 3908829989183540 m001 (GAMMA(2/3)-HeathBrownMoroz)/(Magata+ZetaQ(2)) 3908829993979398 m004 216+25*Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 3908829998515438 m001 1/gamma^2/ln(GAMMA(1/12))^2*log(1+sqrt(2))^2 3908830009405422 r005 Im(z^2+c),c=13/82+17/44*I,n=55 3908830010735354 m001 (CareFree+Champernowne)/(Catalan+Zeta(3)) 3908830020180065 r009 Re(z^3+c),c=-5/62+7/10*I,n=33 3908830022627985 a001 6119/2*6765^(1/36) 3908830027895385 r005 Re(z^2+c),c=-9/23+37/56*I,n=26 3908830038690969 a001 2889/305*2178309^(13/51) 3908830039615989 a001 267914296/521*1364^(3/5) 3908830039953176 r005 Re(z^2+c),c=-49/94+16/61*I,n=35 3908830055471675 l006 ln(3523/5208) 3908830057807992 r005 Re(z^2+c),c=3/8+10/33*I,n=11 3908830071172110 r004 Im(z^2+c),c=-1/14+7/13*I,z(0)=I,n=48 3908830077426962 m001 exp(Trott)*Porter^2/GAMMA(1/6) 3908830082781859 b008 35*Erfc[1+Sqrt[3]] 3908830085626620 r002 38th iterates of z^2 + 3908830095267055 a001 17711/3*9349^(51/53) 3908830100212165 r005 Im(z^2+c),c=-27/106+26/43*I,n=34 3908830101803479 r002 7th iterates of z^2 + 3908830107485380 r005 Im(z^2+c),c=7/60+23/55*I,n=18 3908830136969085 a001 105937*24476^(31/53) 3908830139314752 r005 Im(z^2+c),c=3/122+25/52*I,n=63 3908830142318221 a001 196418/3*39603^(32/53) 3908830142915347 r005 Re(z^2+c),c=-5/8+65/244*I,n=13 3908830158286679 b008 2+71*Sqrt[30] 3908830164860218 a001 7/47*(1/2*5^(1/2)+1/2)^25*47^(5/7) 3908830172280225 m001 (ZetaP(4)+ZetaR(2))/Stephens 3908830172690234 m001 (LambertW(1)+ln(5))/(gamma(3)+2*Pi/GAMMA(5/6)) 3908830179679963 a001 433494437/521*1364^(8/15) 3908830180029955 r002 23th iterates of z^2 + 3908830188367223 r005 Re(z^2+c),c=-27/62+25/57*I,n=16 3908830192482982 a001 12586269025/521*521^(1/13) 3908830195877125 a007 Real Root Of -765*x^4-639*x^3-207*x^2+658*x+26 3908830197508116 r005 Im(z^2+c),c=5/18+13/47*I,n=42 3908830200622204 m009 (4*Catalan+1/2*Pi^2+5/6)/(5/6*Psi(1,1/3)-6) 3908830201826686 m004 -5-125*Pi+5*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 3908830205797647 m005 (1/2*2^(1/2)+1/10)/(195/154+5/14*5^(1/2)) 3908830217699359 m001 (ReciprocalLucas+ZetaQ(3))/(gamma+gamma(1)) 3908830219982054 a001 843/13*55^(13/29) 3908830238128662 a007 Real Root Of 121*x^4+557*x^3+353*x^2+155*x+231 3908830240341710 a001 75025/3*5778^(45/53) 3908830249598676 a001 1836311903/843*322^(1/2) 3908830249669451 m007 (-3*gamma-9*ln(2)+3/2*Pi-1/5)/(-1/5*gamma+1) 3908830252541933 r005 Im(z^2+c),c=7/74+23/53*I,n=32 3908830261559124 r009 Im(z^3+c),c=-3/34+24/37*I,n=2 3908830275820000 m008 (2/3*Pi^5+2)/(1/2*Pi^4+4) 3908830276376329 p002 log(11^(1/4)-17^(1/2)*5^(2/3)) 3908830276970684 r002 60th iterates of z^2 + 3908830309369308 m001 ZetaQ(4)/(ZetaR(2)^ZetaP(2)) 3908830319743943 a001 701408733/521*1364^(7/15) 3908830327694533 r005 Re(z^2+c),c=-59/102+2/13*I,n=13 3908830346596692 r005 Im(z^2+c),c=6/23+5/17*I,n=32 3908830347712883 a005 (1/sin(74/191*Pi))^526 3908830348866409 m005 (1/3*2^(1/2)+1/10)/(7/8*exp(1)-11/12) 3908830350415661 r005 Re(z^2+c),c=25/102+23/37*I,n=4 3908830361245880 r002 22th iterates of z^2 + 3908830363481229 r005 Im(z^2+c),c=4/19+21/61*I,n=17 3908830366374100 m005 (1/2*gamma+3/7)/(5/12*Catalan-2/5) 3908830369443538 a007 Real Root Of -241*x^4-830*x^3+616*x^2+634*x-243 3908830390190131 a001 7/3*17711^(17/59) 3908830393126316 m001 (exp(1)+Zeta(1,-1))/(-gamma(2)+Cahen) 3908830401130644 r009 Im(z^3+c),c=-29/110+23/56*I,n=11 3908830419614071 l006 ln(5273/7795) 3908830438385137 m001 Zeta(1,2)^Shi(1)/(BesselI(0,2)^Shi(1)) 3908830449059500 m001 (OrthogonalArrays+ZetaQ(2))/(Pi+sin(1/5*Pi)) 3908830451441272 m001 RenyiParking/LaplaceLimit^2*exp(exp(1))^2 3908830451562287 m001 (BesselI(0,1)+ln(5))/(-Champernowne+Thue) 3908830456038373 a007 Real Root Of 962*x^4-752*x^3-387*x^2-766*x+381 3908830459807927 a001 1134903170/521*1364^(2/5) 3908830461423738 r005 Re(z^2+c),c=-19/34+5/97*I,n=12 3908830497643860 a001 233/2207*(1/2+1/2*5^(1/2))^41 3908830497696746 a001 987/521*2537720636^(7/9) 3908830497696746 a001 987/521*17393796001^(5/7) 3908830497696746 a001 987/521*312119004989^(7/11) 3908830497696746 a001 987/521*14662949395604^(5/9) 3908830497696746 a001 987/521*(1/2+1/2*5^(1/2))^35 3908830497696746 a001 987/521*505019158607^(5/8) 3908830497696746 a001 987/521*28143753123^(7/10) 3908830497696746 a001 987/521*599074578^(5/6) 3908830497696746 a001 987/521*228826127^(7/8) 3908830500392204 a007 Real Root Of 929*x^4+182*x^3+716*x^2-923*x-481 3908830502062597 l004 Ci(246/115) 3908830520074733 m001 arctan(1/3)*KomornikLoreti-cos(1/12*Pi) 3908830531606064 r002 9th iterates of z^2 + 3908830538557686 a007 Real Root Of -255*x^4-873*x^3+733*x^2+936*x-150 3908830552423598 p004 log(28559/19319) 3908830553941245 r005 Im(z^2+c),c=45/122+17/45*I,n=6 3908830555938884 b008 Pi-(5*Erfi[1])/3 3908830558034083 r005 Re(z^2+c),c=-11/58+31/53*I,n=8 3908830585787610 a001 7/55*4181^(23/56) 3908830597707303 m005 (1/6*Catalan-4/5)/(1/3*exp(1)+3/4) 3908830599871916 a001 1836311903/521*1364^(1/3) 3908830622698762 m001 cos(1/12*Pi)^Kolakoski-LandauRamanujan2nd 3908830635854426 a007 Real Root Of -738*x^4-773*x^3-23*x^2+853*x+308 3908830661343459 r002 3th iterates of z^2 + 3908830665380813 a001 1836311903/76*29^(1/7) 3908830671465032 a001 29/75025*17711^(29/41) 3908830677379961 m001 MertensB1*(GaussAGM+TwinPrimes) 3908830678762128 b008 -3*5^(1/4)+EulerGamma 3908830680459065 r005 Im(z^2+c),c=-7/50+31/53*I,n=47 3908830687583162 r005 Im(z^2+c),c=3/118+37/61*I,n=49 3908830697744899 r002 7th iterates of z^2 + 3908830700003019 r009 Re(z^3+c),c=-8/15+13/42*I,n=8 3908830716316849 a007 Real Root Of 114*x^4+640*x^3+638*x^2-617*x-550 3908830728776766 r005 Im(z^2+c),c=-31/114+23/39*I,n=51 3908830729416746 r002 18th iterates of z^2 + 3908830739935910 a001 2971215073/521*1364^(4/15) 3908830745839808 m001 1/Niven^2/exp(Lehmer)^2/GAMMA(13/24)^2 3908830766772766 m009 (8/5*Catalan+1/5*Pi^2-2)/(1/6*Psi(1,1/3)+2) 3908830778018578 r005 Re(z^2+c),c=-63/118+3/17*I,n=41 3908830785448572 m001 (exp(1/Pi)-Porter)/(Riemann2ndZero+Sierpinski) 3908830800619865 m005 (1/2*exp(1)-10/11)/(5*5^(1/2)+1/3) 3908830807035684 a001 196418/3*2207^(44/53) 3908830817618251 r005 Re(z^2+c),c=-17/27+1/3*I,n=52 3908830821741758 a001 7881196/233*6557470319842^(16/17) 3908830821741821 a001 17393796001/233*1836311903^(16/17) 3908830838642930 m001 (ln(5)-Bloch)/(Conway+ErdosBorwein) 3908830841552092 m001 (cos(1/5*Pi)-Zeta(1,-1))/(GAMMA(23/24)+Porter) 3908830845210493 m004 -5+(25*Sqrt[5]*Pi)/4+Tan[Sqrt[5]*Pi]/5 3908830863053707 a001 29/6765*987^(36/55) 3908830872513161 m005 (1/2*2^(1/2)-1/9)/(10/11*gamma+1) 3908830872627573 m001 1/exp(PrimesInBinary)*LandauRamanujan^2/Pi^2 3908830878447168 a001 14930208*123^(1/5) 3908830879999910 a001 4807526976/521*1364^(1/5) 3908830881120030 m001 FeigenbaumB/CopelandErdos^2/ln(Porter) 3908830881220049 r002 17th iterates of z^2 + 3908830891423088 r009 Im(z^3+c),c=-21/46+16/51*I,n=24 3908830895614701 a007 Real Root Of -927*x^4-241*x^3-389*x^2+848*x-236 3908830903672288 r005 Im(z^2+c),c=-25/74+3/50*I,n=15 3908830913239255 r002 53th iterates of z^2 + 3908830913239255 r002 53th iterates of z^2 + 3908830942643093 m005 (31/28+1/4*5^(1/2))/(1/5*Zeta(3)-2/3) 3908830946466771 r005 Im(z^2+c),c=1/126+28/57*I,n=51 3908830947880417 p004 log(24469/23531) 3908830955714194 m001 (BesselJ(1,1)+Thue)/(exp(Pi)+Psi(1,1/3)) 3908830960020120 a001 322/377*4181^(36/49) 3908830964560186 r005 Im(z^2+c),c=-55/94+23/54*I,n=48 3908830970722761 a001 3571/8*514229^(45/52) 3908830976420860 r002 7th iterates of z^2 + 3908830993613024 a001 62424030968/1597 3908831000928778 r002 47th iterates of z^2 + 3908831011696993 a001 9227465/521*3571^(16/17) 3908831020063914 a001 7778742049/521*1364^(2/15) 3908831021864559 m009 (3*Pi^2-3)/(3/5*Psi(1,1/3)+3/4) 3908831029727915 a001 14930352/521*3571^(15/17) 3908831035136193 m001 ln(Zeta(7))^2*BesselJ(0,1)*exp(1)^2 3908831038349898 h001 (7/11*exp(2)+5/11)/(4/9*exp(1)+1/9) 3908831046271899 r005 Im(z^2+c),c=-9/10+7/230*I,n=18 3908831047758854 a001 24157817/521*3571^(14/17) 3908831062815152 r008 a(0)=8,K{-n^6,64-55*n-49*n^2+41*n^3} 3908831065740703 r009 Im(z^3+c),c=-55/106+18/55*I,n=37 3908831065789786 a001 39088169/521*3571^(13/17) 3908831083820721 a001 63245986/521*3571^(12/17) 3908831095964717 r005 Re(z^2+c),c=5/74+29/45*I,n=16 3908831098188218 r005 Re(z^2+c),c=-13/25+8/35*I,n=15 3908831101851655 a001 102334155/521*3571^(11/17) 3908831103538148 l006 ln(182/9071) 3908831106626082 a007 Real Root Of 492*x^4-528*x^3-348*x^2-466*x-172 3908831107562893 r005 Re(z^2+c),c=-12/23+20/57*I,n=17 3908831108659706 a007 Real Root Of -264*x^4-802*x^3+729*x^2-408*x+999 3908831111927238 r009 Re(z^3+c),c=-47/110+5/28*I,n=21 3908831119882590 a001 165580141/521*3571^(10/17) 3908831135945604 g001 GAMMA(3/5,52/67) 3908831137913524 a001 267914296/521*3571^(9/17) 3908831145704742 m008 (2/3*Pi^3-1/2)/(1/6*Pi^5+3/5) 3908831152684693 l006 ln(1750/2587) 3908831155944459 a001 433494437/521*3571^(8/17) 3908831160127924 a001 12586269025/521*1364^(1/15) 3908831173975393 a001 701408733/521*3571^(7/17) 3908831175456857 b008 9*(1-(2*Sqrt[2])/5) 3908831178991057 m001 ((1+3^(1/2))^(1/2))^exp(1)-Trott 3908831183056420 a001 233/5778*(1/2+1/2*5^(1/2))^43 3908831183109467 a001 2584/521*141422324^(11/13) 3908831183109467 a001 2584/521*2537720636^(11/15) 3908831183109467 a001 2584/521*45537549124^(11/17) 3908831183109467 a001 2584/521*312119004989^(3/5) 3908831183109467 a001 2584/521*14662949395604^(11/21) 3908831183109467 a001 2584/521*(1/2+1/2*5^(1/2))^33 3908831183109467 a001 2584/521*192900153618^(11/18) 3908831183109467 a001 2584/521*10749957122^(11/16) 3908831183109467 a001 2584/521*1568397607^(3/4) 3908831183109467 a001 2584/521*599074578^(11/14) 3908831183109471 a001 2584/521*33385282^(11/12) 3908831184767649 m001 (-Conway+MasserGramain)/(GAMMA(3/4)-Shi(1)) 3908831186617717 r005 Im(z^2+c),c=3/122+25/52*I,n=62 3908831192006328 a001 1134903170/521*3571^(6/17) 3908831204592501 r002 52th iterates of z^2 + 3908831205894889 a003 cos(Pi*7/71)*cos(Pi*19/52) 3908831210037263 a001 1836311903/521*3571^(5/17) 3908831221541340 m001 FeigenbaumKappa/Cahen/exp(Zeta(1/2))^2 3908831228068198 a001 2971215073/521*3571^(4/17) 3908831234820667 r005 Im(z^2+c),c=13/90+25/63*I,n=26 3908831246099133 a001 4807526976/521*3571^(3/17) 3908831255417364 a001 163428234789/4181 3908831257824241 a001 3524578/521*9349^(18/19) 3908831260177919 a001 5702887/521*9349^(17/19) 3908831261977620 m001 (Pi-ReciprocalLucas)/(Salem+Tribonacci) 3908831262531716 a001 9227465/521*9349^(16/19) 3908831264130068 a001 7778742049/521*3571^(2/17) 3908831264885468 a001 14930352/521*9349^(15/19) 3908831267239237 a001 24157817/521*9349^(14/19) 3908831269519509 r005 Re(z^2+c),c=5/38+36/49*I,n=2 3908831269593000 a001 39088169/521*9349^(13/19) 3908831271946765 a001 63245986/521*9349^(12/19) 3908831274300529 a001 102334155/521*9349^(11/19) 3908831276654294 a001 165580141/521*9349^(10/19) 3908831279008058 a001 267914296/521*9349^(9/19) 3908831281361823 a001 433494437/521*9349^(8/19) 3908831282161003 a001 12586269025/521*3571^(1/17) 3908831283056785 a001 233/15127*45537549124^(15/17) 3908831283056785 a001 233/15127*312119004989^(9/11) 3908831283056785 a001 233/15127*14662949395604^(5/7) 3908831283056785 a001 233/15127*(1/2+1/2*5^(1/2))^45 3908831283056785 a001 233/15127*192900153618^(5/6) 3908831283056785 a001 233/15127*28143753123^(9/10) 3908831283056785 a001 233/15127*10749957122^(15/16) 3908831283109836 a001 6765/521*(1/2+1/2*5^(1/2))^31 3908831283109836 a001 6765/521*9062201101803^(1/2) 3908831283715587 a001 701408733/521*9349^(7/19) 3908831286069351 a001 1134903170/521*9349^(6/19) 3908831288423116 a001 1836311903/521*9349^(5/19) 3908831290776880 a001 2971215073/521*9349^(4/19) 3908831291366077 m001 (2^(1/3)+3^(1/2))/(-LambertW(1)+MertensB3) 3908831293130645 a001 4807526976/521*9349^(3/19) 3908831293614105 a001 427860673399/10946 3908831293978291 a001 1346269/521*24476^(20/21) 3908831294288399 a001 2178309/521*24476^(19/21) 3908831294599330 a001 3524578/521*24476^(6/7) 3908831294909947 a001 5702887/521*24476^(17/21) 3908831295220684 a001 9227465/521*24476^(16/21) 3908831295484409 a001 7778742049/521*9349^(2/19) 3908831295531376 a001 14930352/521*24476^(5/7) 3908831295842084 a001 24157817/521*24476^(2/3) 3908831296152787 a001 39088169/521*24476^(13/21) 3908831296463491 a001 63245986/521*24476^(4/7) 3908831296774195 a001 102334155/521*24476^(11/21) 3908831297084899 a001 165580141/521*24476^(10/21) 3908831297395603 a001 267914296/521*24476^(3/7) 3908831297646642 a001 233/39603*(1/2+1/2*5^(1/2))^47 3908831297699693 a001 17711/521*(1/2+1/2*5^(1/2))^29 3908831297699693 a001 17711/521*1322157322203^(1/2) 3908831297706307 a001 433494437/521*24476^(8/21) 3908831297838174 a001 12586269025/521*9349^(1/19) 3908831297855235 a001 33385282/377*34^(8/19) 3908831298017011 a001 701408733/521*24476^(1/3) 3908831298327715 a001 1134903170/521*24476^(2/7) 3908831298638418 a001 1836311903/521*24476^(5/21) 3908831298949122 a001 2971215073/521*24476^(4/21) 3908831299186935 a001 1120153785408/28657 3908831299259826 a001 4807526976/521*24476^(1/7) 3908831299284331 a001 514229/521*64079^(22/23) 3908831299321634 a001 832040/521*64079^(21/23) 3908831299364584 a001 1346269/521*64079^(20/23) 3908831299405377 a001 2178309/521*64079^(19/23) 3908831299446994 a001 3524578/521*64079^(18/23) 3908831299488297 a001 5702887/521*64079^(17/23) 3908831299529719 a001 9227465/521*64079^(16/23) 3908831299570530 a001 7778742049/521*24476^(2/21) 3908831299571096 a001 14930352/521*64079^(15/23) 3908831299612490 a001 24157817/521*64079^(14/23) 3908831299653877 a001 39088169/521*64079^(13/23) 3908831299695267 a001 63245986/521*64079^(12/23) 3908831299736656 a001 102334155/521*64079^(11/23) 3908831299775274 a001 233/103682*14662949395604^(7/9) 3908831299775274 a001 233/103682*(1/2+1/2*5^(1/2))^49 3908831299775274 a001 233/103682*505019158607^(7/8) 3908831299778046 a001 165580141/521*64079^(10/23) 3908831299819435 a001 267914296/521*64079^(9/23) 3908831299828273 a001 46368/521*7881196^(9/11) 3908831299828324 a001 46368/521*141422324^(9/13) 3908831299828324 a001 46368/521*2537720636^(3/5) 3908831299828324 a001 46368/521*45537549124^(9/17) 3908831299828324 a001 46368/521*817138163596^(9/19) 3908831299828324 a001 46368/521*14662949395604^(3/7) 3908831299828324 a001 46368/521*(1/2+1/2*5^(1/2))^27 3908831299828324 a001 46368/521*192900153618^(1/2) 3908831299828324 a001 46368/521*10749957122^(9/16) 3908831299828324 a001 46368/521*599074578^(9/14) 3908831299828327 a001 46368/521*33385282^(3/4) 3908831299829341 a001 46368/521*1860498^(9/10) 3908831299860824 a001 433494437/521*64079^(8/23) 3908831299881234 a001 12586269025/521*24476^(1/21) 3908831299902213 a001 701408733/521*64079^(7/23) 3908831299943603 a001 1134903170/521*64079^(6/23) 3908831299984992 a001 1836311903/521*64079^(5/23) 3908831300026381 a001 2971215073/521*64079^(4/23) 3908831300067770 a001 4807526976/521*64079^(3/23) 3908831300081259 a001 1346269/521*167761^(4/5) 3908831300085837 a001 233/271443*817138163596^(17/19) 3908831300085837 a001 233/271443*14662949395604^(17/21) 3908831300085837 a001 233/271443*(1/2+1/2*5^(1/2))^51 3908831300085837 a001 233/271443*192900153618^(17/18) 3908831300108602 a001 14930352/521*167761^(3/5) 3908831300109160 a001 7778742049/521*64079^(2/23) 3908831300118624 a001 7677648263067/196418 3908831300131148 a001 233/710647*(1/2+1/2*5^(1/2))^53 3908831300135931 a001 20100344106376/514229 3908831300136383 a001 165580141/521*167761^(2/5) 3908831300137758 a001 233/1860498*(1/2+1/2*5^(1/2))^55 3908831300137758 a001 233/1860498*3461452808002^(11/12) 3908831300138456 a001 52623384056061/1346269 3908831300138723 a001 233/4870847*14662949395604^(19/21) 3908831300138723 a001 233/4870847*(1/2+1/2*5^(1/2))^57 3908831300138825 a001 137769808061807/3524578 3908831300138864 a001 233/12752043*(1/2+1/2*5^(1/2))^59 3908831300138878 a001 72137208025872/1845493 3908831300138881 a001 233*20633239^(5/7) 3908831300138884 a001 233/33385282*(1/2+1/2*5^(1/2))^61 3908831300138886 a001 944288312326273/24157817 3908831300138887 a001 10610209857723/271442 3908831300138888 a001 233*2537720636^(5/9) 3908831300138888 a001 233*312119004989^(5/11) 3908831300138888 a001 233*3461452808002^(5/12) 3908831300138888 a001 233*28143753123^(1/2) 3908831300138888 a001 233*228826127^(5/8) 3908831300138888 a001 1527890584523186/39088169 3908831300138891 a001 583602272196913/14930352 3908831300138897 a001 233/20633239*14662949395604^(20/21) 3908831300138897 a001 233/20633239*(1/2+1/2*5^(1/2))^60 3908831300138912 a001 222916232067553/5702887 3908831300138950 a001 233/7881196*(1/2+1/2*5^(1/2))^58 3908831300139052 a001 85146424005746/2178309 3908831300139319 a001 233/3010349*14662949395604^(8/9) 3908831300139319 a001 233/3010349*(1/2+1/2*5^(1/2))^56 3908831300139829 a001 233*1860498^(5/6) 3908831300140017 a001 6504607989937/166408 3908831300141844 a001 233/1149851*14662949395604^(6/7) 3908831300141844 a001 233/1149851*(1/2+1/2*5^(1/2))^54 3908831300146628 a001 12422695843309/317811 3908831300150549 a001 12586269025/521*64079^(1/23) 3908831300159151 a001 233/439204*(1/2+1/2*5^(1/2))^52 3908831300159151 a001 233/439204*23725150497407^(13/16) 3908831300159151 a001 233/439204*505019158607^(13/14) 3908831300164160 a001 1836311903/521*167761^(1/5) 3908831300175048 a001 832040/521*439204^(7/9) 3908831300178492 a001 3524578/521*439204^(2/3) 3908831300180677 a001 14930352/521*439204^(5/9) 3908831300182932 a001 63245986/521*439204^(4/9) 3908831300184198 a001 317811/521*(1/2+1/2*5^(1/2))^23 3908831300184198 a001 317811/521*4106118243^(1/2) 3908831300185184 a001 267914296/521*439204^(1/3) 3908831300187435 a001 1134903170/521*439204^(2/9) 3908831300189687 a001 4807526976/521*439204^(1/9) 3908831300190769 a001 832040/521*7881196^(7/11) 3908831300190803 a001 832040/521*20633239^(3/5) 3908831300190809 a001 832040/521*141422324^(7/13) 3908831300190809 a001 832040/521*2537720636^(7/15) 3908831300190809 a001 832040/521*17393796001^(3/7) 3908831300190809 a001 832040/521*45537549124^(7/17) 3908831300190809 a001 832040/521*14662949395604^(1/3) 3908831300190809 a001 832040/521*(1/2+1/2*5^(1/2))^21 3908831300190809 a001 832040/521*192900153618^(7/18) 3908831300190809 a001 832040/521*10749957122^(7/16) 3908831300190809 a001 832040/521*599074578^(1/2) 3908831300190811 a001 832040/521*33385282^(7/12) 3908831300191599 a001 832040/521*1860498^(7/10) 3908831300191773 a001 2178309/521*817138163596^(1/3) 3908831300191773 a001 2178309/521*(1/2+1/2*5^(1/2))^19 3908831300191774 a001 2178309/521*87403803^(1/2) 3908831300191906 a001 14930352/521*7881196^(5/11) 3908831300191914 a001 5702887/521*45537549124^(1/3) 3908831300191914 a001 5702887/521*(1/2+1/2*5^(1/2))^17 3908831300191915 a001 63245986/521*7881196^(4/11) 3908831300191917 a001 102334155/521*7881196^(1/3) 3908831300191921 a001 267914296/521*7881196^(3/11) 3908831300191926 a001 5702887/521*12752043^(1/2) 3908831300191927 a001 1134903170/521*7881196^(2/11) 3908831300191931 a001 14930352/521*20633239^(3/7) 3908831300191932 a001 4807526976/521*7881196^(1/11) 3908831300191934 a001 14930352/521*141422324^(5/13) 3908831300191935 a001 14930352/521*2537720636^(1/3) 3908831300191935 a001 14930352/521*45537549124^(5/17) 3908831300191935 a001 14930352/521*312119004989^(3/11) 3908831300191935 a001 14930352/521*14662949395604^(5/21) 3908831300191935 a001 14930352/521*(1/2+1/2*5^(1/2))^15 3908831300191935 a001 14930352/521*192900153618^(5/18) 3908831300191935 a001 14930352/521*28143753123^(3/10) 3908831300191935 a001 14930352/521*10749957122^(5/16) 3908831300191935 a001 14930352/521*599074578^(5/14) 3908831300191935 a001 14930352/521*228826127^(3/8) 3908831300191935 a001 165580141/521*20633239^(2/7) 3908831300191936 a001 24157817/521*20633239^(2/5) 3908831300191936 a001 14930352/521*33385282^(5/12) 3908831300191936 a001 701408733/521*20633239^(1/5) 3908831300191937 a001 1836311903/521*20633239^(1/7) 3908831300191938 a001 39088169/521*141422324^(1/3) 3908831300191938 a001 39088169/521*(1/2+1/2*5^(1/2))^13 3908831300191938 a001 39088169/521*73681302247^(1/4) 3908831300191938 a001 102334155/521*312119004989^(1/5) 3908831300191938 a001 102334155/521*(1/2+1/2*5^(1/2))^11 3908831300191938 a001 102334155/521*1568397607^(1/4) 3908831300191938 a001 267914296/521*141422324^(3/13) 3908831300191938 a001 1134903170/521*141422324^(2/13) 3908831300191938 a001 4807526976/521*141422324^(1/13) 3908831300191938 a001 267914296/521*2537720636^(1/5) 3908831300191938 a001 267914296/521*45537549124^(3/17) 3908831300191938 a001 267914296/521*14662949395604^(1/7) 3908831300191938 a001 267914296/521*(1/2+1/2*5^(1/2))^9 3908831300191938 a001 267914296/521*192900153618^(1/6) 3908831300191938 a001 267914296/521*10749957122^(3/16) 3908831300191938 a001 267914296/521*599074578^(3/14) 3908831300191938 a001 701408733/521*17393796001^(1/7) 3908831300191938 a001 701408733/521*14662949395604^(1/9) 3908831300191938 a001 701408733/521*(1/2+1/2*5^(1/2))^7 3908831300191938 a001 1836311903/521*2537720636^(1/9) 3908831300191938 a001 1836311903/521*312119004989^(1/11) 3908831300191938 a001 1836311903/521*(1/2+1/2*5^(1/2))^5 3908831300191938 a001 1836311903/521*28143753123^(1/10) 3908831300191938 a001 4807526976/521*2537720636^(1/15) 3908831300191938 a001 4807526976/521*45537549124^(1/17) 3908831300191938 a001 4807526976/521*14662949395604^(1/21) 3908831300191938 a001 4807526976/521*(1/2+1/2*5^(1/2))^3 3908831300191938 a001 4807526976/521*192900153618^(1/18) 3908831300191938 a001 4807526976/521*10749957122^(1/16) 3908831300191938 a001 12586269025/1042+12586269025/1042*5^(1/2) 3908831300191938 a001 20365011074/521 3908831300191938 a001 7778742049/521*(1/2+1/2*5^(1/2))^2 3908831300191938 a001 7778742049/521*10749957122^(1/24) 3908831300191938 a001 7778742049/521*4106118243^(1/23) 3908831300191938 a001 7778742049/521*1568397607^(1/22) 3908831300191938 a001 2971215073/521*(1/2+1/2*5^(1/2))^4 3908831300191938 a001 2971215073/521*23725150497407^(1/16) 3908831300191938 a001 2971215073/521*73681302247^(1/13) 3908831300191938 a001 2971215073/521*10749957122^(1/12) 3908831300191938 a001 2971215073/521*4106118243^(2/23) 3908831300191938 a001 701408733/521*599074578^(1/6) 3908831300191938 a001 2971215073/521*1568397607^(1/11) 3908831300191938 a001 1134903170/521*2537720636^(2/15) 3908831300191938 a001 7778742049/521*599074578^(1/21) 3908831300191938 a001 1134903170/521*45537549124^(2/17) 3908831300191938 a001 1134903170/521*14662949395604^(2/21) 3908831300191938 a001 1134903170/521*(1/2+1/2*5^(1/2))^6 3908831300191938 a001 1134903170/521*10749957122^(1/8) 3908831300191938 a001 1134903170/521*4106118243^(3/23) 3908831300191938 a001 4807526976/521*599074578^(1/14) 3908831300191938 a001 1134903170/521*1568397607^(3/22) 3908831300191938 a001 2971215073/521*599074578^(2/21) 3908831300191938 a001 1134903170/521*599074578^(1/7) 3908831300191938 a001 7778742049/521*228826127^(1/20) 3908831300191938 a001 433494437/521*(1/2+1/2*5^(1/2))^8 3908831300191938 a001 433494437/521*23725150497407^(1/8) 3908831300191938 a001 433494437/521*505019158607^(1/7) 3908831300191938 a001 433494437/521*73681302247^(2/13) 3908831300191938 a001 433494437/521*10749957122^(1/6) 3908831300191938 a001 433494437/521*4106118243^(4/23) 3908831300191938 a001 433494437/521*1568397607^(2/11) 3908831300191938 a001 433494437/521*599074578^(4/21) 3908831300191938 a001 2971215073/521*228826127^(1/10) 3908831300191938 a001 1836311903/521*228826127^(1/8) 3908831300191938 a001 1134903170/521*228826127^(3/20) 3908831300191938 a001 433494437/521*228826127^(1/5) 3908831300191938 a001 7778742049/521*87403803^(1/19) 3908831300191938 a001 165580141/521*2537720636^(2/9) 3908831300191938 a001 165580141/521*312119004989^(2/11) 3908831300191938 a001 165580141/521*(1/2+1/2*5^(1/2))^10 3908831300191938 a001 165580141/521*28143753123^(1/5) 3908831300191938 a001 165580141/521*10749957122^(5/24) 3908831300191938 a001 165580141/521*4106118243^(5/23) 3908831300191938 a001 165580141/521*1568397607^(5/22) 3908831300191938 a001 165580141/521*599074578^(5/21) 3908831300191938 a001 165580141/521*228826127^(1/4) 3908831300191938 a001 2971215073/521*87403803^(2/19) 3908831300191938 a001 1134903170/521*87403803^(3/19) 3908831300191938 a001 433494437/521*87403803^(4/19) 3908831300191938 a001 63245986/521*141422324^(4/13) 3908831300191938 a001 165580141/521*87403803^(5/19) 3908831300191938 a001 7778742049/521*33385282^(1/18) 3908831300191938 a001 63245986/521*2537720636^(4/15) 3908831300191938 a001 63245986/521*45537549124^(4/17) 3908831300191938 a001 63245986/521*817138163596^(4/19) 3908831300191938 a001 63245986/521*14662949395604^(4/21) 3908831300191938 a001 63245986/521*(1/2+1/2*5^(1/2))^12 3908831300191938 a001 63245986/521*192900153618^(2/9) 3908831300191938 a001 63245986/521*73681302247^(3/13) 3908831300191938 a001 63245986/521*10749957122^(1/4) 3908831300191938 a001 63245986/521*4106118243^(6/23) 3908831300191938 a001 63245986/521*1568397607^(3/11) 3908831300191938 a001 63245986/521*599074578^(2/7) 3908831300191938 a001 63245986/521*228826127^(3/10) 3908831300191938 a001 4807526976/521*33385282^(1/12) 3908831300191938 a001 63245986/521*87403803^(6/19) 3908831300191938 a001 2971215073/521*33385282^(1/9) 3908831300191939 a001 1134903170/521*33385282^(1/6) 3908831300191939 a001 433494437/521*33385282^(2/9) 3908831300191939 a001 267914296/521*33385282^(1/4) 3908831300191939 a001 165580141/521*33385282^(5/18) 3908831300191939 a001 24157817/521*17393796001^(2/7) 3908831300191939 a001 24157817/521*14662949395604^(2/9) 3908831300191939 a001 24157817/521*(1/2+1/2*5^(1/2))^14 3908831300191939 a001 24157817/521*10749957122^(7/24) 3908831300191939 a001 24157817/521*4106118243^(7/23) 3908831300191939 a001 24157817/521*1568397607^(7/22) 3908831300191939 a001 24157817/521*599074578^(1/3) 3908831300191939 a001 63245986/521*33385282^(1/3) 3908831300191939 a001 24157817/521*228826127^(7/20) 3908831300191939 a001 7778742049/521*12752043^(1/17) 3908831300191940 a001 24157817/521*87403803^(7/19) 3908831300191941 a001 24157817/521*33385282^(7/18) 3908831300191941 a001 2971215073/521*12752043^(2/17) 3908831300191942 a001 1134903170/521*12752043^(3/17) 3908831300191944 a001 433494437/521*12752043^(4/17) 3908831300191945 a001 165580141/521*12752043^(5/17) 3908831300191947 a001 63245986/521*12752043^(6/17) 3908831300191947 a001 9227465/521*(1/2+1/2*5^(1/2))^16 3908831300191947 a001 9227465/521*23725150497407^(1/4) 3908831300191947 a001 9227465/521*73681302247^(4/13) 3908831300191947 a001 9227465/521*10749957122^(1/3) 3908831300191947 a001 9227465/521*4106118243^(8/23) 3908831300191947 a001 9227465/521*1568397607^(4/11) 3908831300191947 a001 9227465/521*599074578^(8/21) 3908831300191947 a001 9227465/521*228826127^(2/5) 3908831300191947 a001 9227465/521*87403803^(8/19) 3908831300191948 a001 7778742049/521*4870847^(1/16) 3908831300191949 a001 9227465/521*33385282^(4/9) 3908831300191949 a001 24157817/521*12752043^(7/17) 3908831300191959 a001 9227465/521*12752043^(8/17) 3908831300191959 a001 2971215073/521*4870847^(1/8) 3908831300191967 a001 3524578/521*7881196^(6/11) 3908831300191969 a001 1134903170/521*4870847^(3/16) 3908831300191979 a001 433494437/521*4870847^(1/4) 3908831300191990 a001 165580141/521*4870847^(5/16) 3908831300192000 a001 63245986/521*4870847^(3/8) 3908831300192001 a001 3524578/521*141422324^(6/13) 3908831300192001 a001 3524578/521*2537720636^(2/5) 3908831300192001 a001 3524578/521*45537549124^(6/17) 3908831300192001 a001 3524578/521*14662949395604^(2/7) 3908831300192001 a001 3524578/521*(1/2+1/2*5^(1/2))^18 3908831300192001 a001 3524578/521*192900153618^(1/3) 3908831300192001 a001 3524578/521*10749957122^(3/8) 3908831300192001 a001 3524578/521*4106118243^(9/23) 3908831300192001 a001 3524578/521*1568397607^(9/22) 3908831300192001 a001 3524578/521*599074578^(3/7) 3908831300192001 a001 3524578/521*228826127^(9/20) 3908831300192001 a001 3524578/521*87403803^(9/19) 3908831300192003 a001 3524578/521*33385282^(1/2) 3908831300192011 a001 24157817/521*4870847^(7/16) 3908831300192013 a001 7778742049/521*1860498^(1/15) 3908831300192014 a001 3524578/521*12752043^(9/17) 3908831300192030 a001 9227465/521*4870847^(1/2) 3908831300192051 a001 4807526976/521*1860498^(1/10) 3908831300192089 a001 2971215073/521*1860498^(2/15) 3908831300192094 a001 3524578/521*4870847^(9/16) 3908831300192126 a001 1836311903/521*1860498^(1/6) 3908831300192164 a001 1134903170/521*1860498^(1/5) 3908831300192239 a001 433494437/521*1860498^(4/15) 3908831300192277 a001 267914296/521*1860498^(3/10) 3908831300192315 a001 165580141/521*1860498^(1/3) 3908831300192364 a001 1346269/521*20633239^(4/7) 3908831300192369 a001 1346269/521*2537720636^(4/9) 3908831300192369 a001 1346269/521*(1/2+1/2*5^(1/2))^20 3908831300192369 a001 1346269/521*23725150497407^(5/16) 3908831300192369 a001 1346269/521*505019158607^(5/14) 3908831300192369 a001 1346269/521*73681302247^(5/13) 3908831300192369 a001 1346269/521*28143753123^(2/5) 3908831300192369 a001 1346269/521*10749957122^(5/12) 3908831300192369 a001 1346269/521*4106118243^(10/23) 3908831300192369 a001 1346269/521*1568397607^(5/11) 3908831300192369 a001 1346269/521*599074578^(10/21) 3908831300192369 a001 1346269/521*228826127^(1/2) 3908831300192370 a001 1346269/521*87403803^(10/19) 3908831300192371 a001 1346269/521*33385282^(5/9) 3908831300192384 a001 1346269/521*12752043^(10/17) 3908831300192390 a001 63245986/521*1860498^(2/5) 3908831300192466 a001 24157817/521*1860498^(7/15) 3908831300192472 a001 1346269/521*4870847^(5/8) 3908831300192491 a001 7778742049/521*710647^(1/14) 3908831300192499 a001 14930352/521*1860498^(1/2) 3908831300192550 a001 9227465/521*1860498^(8/15) 3908831300192679 a001 3524578/521*1860498^(3/5) 3908831300193044 a001 2971215073/521*710647^(1/7) 3908831300193122 a001 1346269/521*1860498^(2/3) 3908831300193597 a001 1134903170/521*710647^(3/14) 3908831300193873 a001 701408733/521*710647^(1/4) 3908831300194150 a001 433494437/521*710647^(2/7) 3908831300194190 a001 196418/521*439204^(8/9) 3908831300194702 a001 165580141/521*710647^(5/14) 3908831300194853 a001 514229/521*7881196^(2/3) 3908831300194894 a001 514229/521*312119004989^(2/5) 3908831300194894 a001 514229/521*(1/2+1/2*5^(1/2))^22 3908831300194894 a001 514229/521*10749957122^(11/24) 3908831300194894 a001 514229/521*4106118243^(11/23) 3908831300194894 a001 514229/521*1568397607^(1/2) 3908831300194894 a001 514229/521*599074578^(11/21) 3908831300194895 a001 514229/521*228826127^(11/20) 3908831300194895 a001 514229/521*87403803^(11/19) 3908831300194897 a001 514229/521*33385282^(11/18) 3908831300194910 a001 514229/521*12752043^(11/17) 3908831300195008 a001 514229/521*4870847^(11/16) 3908831300195255 a001 63245986/521*710647^(3/7) 3908831300195723 a001 514229/521*1860498^(11/15) 3908831300195809 a001 24157817/521*710647^(1/2) 3908831300196019 a001 7778742049/521*271443^(1/13) 3908831300196370 a001 9227465/521*710647^(4/7) 3908831300196614 a001 832040/521*710647^(3/4) 3908831300196977 a001 3524578/521*710647^(9/14) 3908831300197898 a001 1346269/521*710647^(5/7) 3908831300200100 a001 2971215073/521*271443^(2/13) 3908831300200976 a001 514229/521*710647^(11/14) 3908831300204181 a001 1134903170/521*271443^(3/13) 3908831300207089 a001 12586269025/521*103682^(1/24) 3908831300208261 a001 433494437/521*271443^(4/13) 3908831300212156 a001 196418/521*7881196^(8/11) 3908831300212201 a001 196418/521*141422324^(8/13) 3908831300212202 a001 196418/521*2537720636^(8/15) 3908831300212202 a001 196418/521*45537549124^(8/17) 3908831300212202 a001 196418/521*14662949395604^(8/21) 3908831300212202 a001 196418/521*(1/2+1/2*5^(1/2))^24 3908831300212202 a001 196418/521*192900153618^(4/9) 3908831300212202 a001 196418/521*73681302247^(6/13) 3908831300212202 a001 196418/521*10749957122^(1/2) 3908831300212202 a001 196418/521*4106118243^(12/23) 3908831300212202 a001 196418/521*1568397607^(6/11) 3908831300212202 a001 196418/521*599074578^(4/7) 3908831300212202 a001 196418/521*228826127^(3/5) 3908831300212202 a001 196418/521*87403803^(12/19) 3908831300212204 a001 196418/521*33385282^(2/3) 3908831300212219 a001 196418/521*12752043^(12/17) 3908831300212325 a001 196418/521*4870847^(3/4) 3908831300212342 a001 165580141/521*271443^(5/13) 3908831300213105 a001 196418/521*1860498^(4/5) 3908831300216423 a001 63245986/521*271443^(6/13) 3908831300218463 a001 39088169/521*271443^(1/2) 3908831300218836 a001 196418/521*710647^(6/7) 3908831300220505 a001 24157817/521*271443^(7/13) 3908831300222239 a001 7778742049/521*103682^(1/12) 3908831300224594 a001 9227465/521*271443^(8/13) 3908831300228728 a001 3524578/521*271443^(9/13) 3908831300233178 a001 1346269/521*271443^(10/13) 3908831300237390 a001 4807526976/521*103682^(1/8) 3908831300239783 a001 514229/521*271443^(11/13) 3908831300252540 a001 2971215073/521*103682^(1/6) 3908831300261171 a001 196418/521*271443^(12/13) 3908831300267691 a001 1836311903/521*103682^(5/24) 3908831300277776 a001 233/167761*312119004989^(10/11) 3908831300277776 a001 233/167761*(1/2+1/2*5^(1/2))^50 3908831300277776 a001 233/167761*3461452808002^(5/6) 3908831300282841 a001 1134903170/521*103682^(1/4) 3908831300297992 a001 701408733/521*103682^(7/24) 3908831300305222 a001 12586269025/521*39603^(1/22) 3908831300313143 a001 433494437/521*103682^(1/3) 3908831300328293 a001 267914296/521*103682^(3/8) 3908831300330826 a001 75025/521*141422324^(2/3) 3908831300330826 a001 75025/521*(1/2+1/2*5^(1/2))^26 3908831300330826 a001 75025/521*73681302247^(1/2) 3908831300330826 a001 75025/521*10749957122^(13/24) 3908831300330826 a001 75025/521*4106118243^(13/23) 3908831300330826 a001 75025/521*1568397607^(13/22) 3908831300330826 a001 75025/521*599074578^(13/21) 3908831300330826 a001 75025/521*228826127^(13/20) 3908831300330826 a001 75025/521*87403803^(13/19) 3908831300330829 a001 75025/521*33385282^(13/18) 3908831300330845 a001 75025/521*12752043^(13/17) 3908831300330960 a001 75025/521*4870847^(13/16) 3908831300331805 a001 75025/521*1860498^(13/15) 3908831300338013 a001 75025/521*710647^(13/14) 3908831300343444 a001 165580141/521*103682^(5/12) 3908831300358594 a001 102334155/521*103682^(11/24) 3908831300373745 a001 63245986/521*103682^(1/2) 3908831300388895 a001 39088169/521*103682^(13/24) 3908831300404047 a001 24157817/521*103682^(7/12) 3908831300418506 a001 7778742049/521*39603^(1/11) 3908831300419193 a001 14930352/521*103682^(5/8) 3908831300434356 a001 9227465/521*103682^(2/3) 3908831300449474 a001 5702887/521*103682^(17/24) 3908831300464711 a001 3524578/521*103682^(3/4) 3908831300479634 a001 2178309/521*103682^(19/24) 3908831300495381 a001 1346269/521*103682^(5/6) 3908831300502501 a001 1812446897417/46368 3908831300508971 a001 832040/521*103682^(7/8) 3908831300528207 a001 514229/521*103682^(11/12) 3908831300531790 a001 4807526976/521*39603^(3/22) 3908831300532661 a001 317811/521*103682^(23/24) 3908831300645074 a001 2971215073/521*39603^(2/11) 3908831300758357 a001 1836311903/521*39603^(5/22) 3908831300871641 a001 1134903170/521*39603^(3/11) 3908831300984925 a001 701408733/521*39603^(7/22) 3908831301046043 a001 12586269025/521*15127^(1/20) 3908831301090840 a001 233/64079*45537549124^(16/17) 3908831301090840 a001 233/64079*14662949395604^(16/21) 3908831301090840 a001 233/64079*(1/2+1/2*5^(1/2))^48 3908831301090840 a001 233/64079*192900153618^(8/9) 3908831301090840 a001 233/64079*73681302247^(12/13) 3908831301098209 a001 433494437/521*39603^(4/11) 3908831301143884 a001 28657/521*20633239^(4/5) 3908831301143891 a001 28657/521*17393796001^(4/7) 3908831301143891 a001 28657/521*14662949395604^(4/9) 3908831301143891 a001 28657/521*(1/2+1/2*5^(1/2))^28 3908831301143891 a001 28657/521*73681302247^(7/13) 3908831301143891 a001 28657/521*10749957122^(7/12) 3908831301143891 a001 28657/521*4106118243^(14/23) 3908831301143891 a001 28657/521*1568397607^(7/11) 3908831301143891 a001 28657/521*599074578^(2/3) 3908831301143891 a001 28657/521*228826127^(7/10) 3908831301143891 a001 28657/521*87403803^(14/19) 3908831301143894 a001 28657/521*33385282^(7/9) 3908831301143911 a001 28657/521*12752043^(14/17) 3908831301144035 a001 28657/521*4870847^(7/8) 3908831301144945 a001 28657/521*1860498^(14/15) 3908831301211493 a001 267914296/521*39603^(9/22) 3908831301324777 a001 165580141/521*39603^(5/11) 3908831301438061 a001 102334155/521*39603^(1/2) 3908831301551345 a001 63245986/521*39603^(6/11) 3908831301664628 a001 39088169/521*39603^(13/22) 3908831301777914 a001 24157817/521*39603^(7/11) 3908831301891193 a001 14930352/521*39603^(15/22) 3908831301900148 a001 7778742049/521*15127^(1/10) 3908831302004489 a001 9227465/521*39603^(8/11) 3908831302117740 a001 5702887/521*39603^(17/22) 3908831302231111 a001 3524578/521*39603^(9/11) 3908831302344167 a001 2178309/521*39603^(19/22) 3908831302458047 a001 1346269/521*39603^(10/11) 3908831302569770 a001 832040/521*39603^(21/22) 3908831302631133 a001 692293112009/17711 3908831302754253 a001 4807526976/521*15127^(3/20) 3908831303608359 a001 2971215073/521*15127^(1/5) 3908831304462464 a001 1836311903/521*15127^(1/4) 3908831304567731 r009 Im(z^3+c),c=-4/19+20/47*I,n=10 3908831305316569 a001 1134903170/521*15127^(3/10) 3908831305401703 p003 LerchPhi(1/2,3,44/149) 3908831306170674 a001 701408733/521*15127^(7/20) 3908831306663670 a001 233/24476*(1/2+1/2*5^(1/2))^46 3908831306663670 a001 233/24476*10749957122^(23/24) 3908831306696520 a001 12586269025/521*5778^(1/18) 3908831306716663 a001 10946/521*7881196^(10/11) 3908831306716713 a001 10946/521*20633239^(6/7) 3908831306716720 a001 10946/521*141422324^(10/13) 3908831306716721 a001 10946/521*2537720636^(2/3) 3908831306716721 a001 10946/521*45537549124^(10/17) 3908831306716721 a001 10946/521*312119004989^(6/11) 3908831306716721 a001 10946/521*14662949395604^(10/21) 3908831306716721 a001 10946/521*(1/2+1/2*5^(1/2))^30 3908831306716721 a001 10946/521*192900153618^(5/9) 3908831306716721 a001 10946/521*28143753123^(3/5) 3908831306716721 a001 10946/521*10749957122^(5/8) 3908831306716721 a001 10946/521*4106118243^(15/23) 3908831306716721 a001 10946/521*1568397607^(15/22) 3908831306716721 a001 10946/521*599074578^(5/7) 3908831306716721 a001 10946/521*228826127^(3/4) 3908831306716721 a001 10946/521*87403803^(15/19) 3908831306716723 a001 10946/521*33385282^(5/6) 3908831306716742 a001 10946/521*12752043^(15/17) 3908831306716875 a001 10946/521*4870847^(15/16) 3908831307024779 a001 433494437/521*15127^(2/5) 3908831307878884 a001 267914296/521*15127^(9/20) 3908831308732989 a001 165580141/521*15127^(1/2) 3908831309587094 a001 102334155/521*15127^(11/20) 3908831310441200 a001 63245986/521*15127^(3/5) 3908831311025264 a007 Real Root Of 272*x^4+928*x^3-488*x^2+71*x-341 3908831311295304 a001 39088169/521*15127^(13/20) 3908831312149411 a001 24157817/521*15127^(7/10) 3908831313003511 a001 14930352/521*15127^(3/4) 3908831313201101 a001 7778742049/521*5778^(1/9) 3908831313857629 a001 9227465/521*15127^(4/5) 3908831314711701 a001 5702887/521*15127^(17/20) 3908831315037095 m001 (Pi^(1/2)-Mills)/(Zeta(3)+gamma(2)) 3908831315565893 a001 3524578/521*15127^(9/10) 3908831315604585 a005 (1/cos(11/227*Pi))^711 3908831315959212 r005 Im(z^2+c),c=-21/122+17/32*I,n=13 3908831316419770 a001 2178309/521*15127^(19/20) 3908831316603696 r009 Im(z^3+c),c=-35/74+10/33*I,n=42 3908831317220990 a001 52886487722/1353 3908831319705683 a001 4807526976/521*5778^(1/6) 3908831320882827 r004 Im(z^2+c),c=5/42+5/12*I,z(0)=I,n=37 3908831324222457 a007 Real Root Of 96*x^4+373*x^3-142*x^2-687*x-650 3908831326210265 a001 2971215073/521*5778^(2/9) 3908831332714846 a001 1836311903/521*5778^(5/18) 3908831339219428 a001 1134903170/521*5778^(1/3) 3908831344860412 a001 233/9349*312119004989^(4/5) 3908831344860412 a001 233/9349*(1/2+1/2*5^(1/2))^44 3908831344860412 a001 233/9349*23725150497407^(11/16) 3908831344860412 a001 233/9349*73681302247^(11/13) 3908831344860412 a001 233/9349*10749957122^(11/12) 3908831344860412 a001 233/9349*4106118243^(22/23) 3908831344913462 a001 4181/521*(1/2+1/2*5^(1/2))^32 3908831344913462 a001 4181/521*23725150497407^(1/2) 3908831344913462 a001 4181/521*505019158607^(4/7) 3908831344913462 a001 4181/521*73681302247^(8/13) 3908831344913462 a001 4181/521*10749957122^(2/3) 3908831344913462 a001 4181/521*4106118243^(16/23) 3908831344913462 a001 4181/521*1568397607^(8/11) 3908831344913462 a001 4181/521*599074578^(16/21) 3908831344913462 a001 4181/521*228826127^(4/5) 3908831344913463 a001 4181/521*87403803^(16/19) 3908831344913466 a001 4181/521*33385282^(8/9) 3908831344913485 a001 4181/521*12752043^(16/17) 3908831345724010 a001 701408733/521*5778^(7/18) 3908831349934111 r002 52th iterates of z^2 + 3908831350347883 a001 12586269025/521*2207^(1/16) 3908831352228591 a001 433494437/521*5778^(4/9) 3908831354513993 a001 11/2178309*1346269^(49/51) 3908831358733173 a001 267914296/521*5778^(1/2) 3908831365237755 a001 165580141/521*5778^(5/9) 3908831366601500 r009 Im(z^3+c),c=-21/40+1/6*I,n=32 3908831371113676 r005 Re(z^2+c),c=7/23+15/29*I,n=7 3908831371742336 a001 102334155/521*5778^(11/18) 3908831378246918 a001 63245986/521*5778^(2/3) 3908831378357978 m001 (MertensB1+ZetaP(2))/(GAMMA(2/3)+Bloch) 3908831382920682 r009 Re(z^3+c),c=-12/25+14/59*I,n=34 3908831384751499 a001 39088169/521*5778^(13/18) 3908831391256083 a001 24157817/521*5778^(7/9) 3908831393845211 m001 PlouffeB^Mills/gamma(2) 3908831396599347 r005 Im(z^2+c),c=-17/14+67/253*I,n=9 3908831397760660 a001 14930352/521*5778^(5/6) 3908831400503828 a001 7778742049/521*2207^(1/8) 3908831401667193 l006 ln(9006/9365) 3908831404265254 a001 9227465/521*5778^(8/9) 3908831405303110 s002 sum(A000937[n]/(n^2*2^n+1),n=1..infinity) 3908831410651777 s002 sum(A212089[n]/(2^n+1),n=1..infinity) 3908831410769803 a001 5702887/521*5778^(17/18) 3908831417221362 a001 101004203821/2584 3908831421908366 r009 Re(z^3+c),c=-57/118+4/25*I,n=4 3908831425802260 r005 Re(z^2+c),c=-85/66+1/51*I,n=48 3908831446611882 a001 521/610*832040^(37/47) 3908831450659774 a001 4807526976/521*2207^(3/16) 3908831473193718 r005 Im(z^2+c),c=-109/90+4/41*I,n=7 3908831473383079 m001 ln(Pi)^Landau-Porter 3908831482483116 a007 Real Root Of 454*x^4-667*x^3+16*x^2-745*x+318 3908831487993817 m005 (1/2*2^(1/2)-4/9)/(11/12*gamma+1/7) 3908831492849551 a007 Real Root Of 209*x^4-102*x^3-389*x^2-93*x+97 3908831500815721 a001 2971215073/521*2207^(1/4) 3908831522429275 r005 Re(z^2+c),c=-23/38+1/7*I,n=6 3908831540679235 a001 29/1597*34^(47/54) 3908831542476298 m005 (1/2*exp(1)+2/9)/(2/7*Catalan+1/7) 3908831550971668 a001 1836311903/521*2207^(5/16) 3908831552643892 r005 Im(z^2+c),c=-4/17+3/55*I,n=13 3908831557011283 r005 Re(z^2+c),c=10/29+31/55*I,n=20 3908831567603782 a001 7778742049/1364*322^(1/3) 3908831568176229 r009 Re(z^3+c),c=-2/5+8/55*I,n=21 3908831579545154 r005 Im(z^2+c),c=-4/11+40/61*I,n=24 3908831590459479 r009 Im(z^3+c),c=-1/32+14/31*I,n=6 3908831595207255 m001 1/ln(GaussKuzminWirsing)*Cahen/sinh(1)^2 3908831601127616 a001 1134903170/521*2207^(3/8) 3908831606664799 a001 233/3571*2537720636^(14/15) 3908831606664799 a001 233/3571*17393796001^(6/7) 3908831606664799 a001 233/3571*45537549124^(14/17) 3908831606664799 a001 233/3571*14662949395604^(2/3) 3908831606664799 a001 233/3571*(1/2+1/2*5^(1/2))^42 3908831606664799 a001 233/3571*505019158607^(3/4) 3908831606664799 a001 233/3571*192900153618^(7/9) 3908831606664799 a001 233/3571*10749957122^(7/8) 3908831606664799 a001 233/3571*4106118243^(21/23) 3908831606664799 a001 233/3571*1568397607^(21/22) 3908831606717826 a001 1597/521*45537549124^(2/3) 3908831606717826 a001 1597/521*(1/2+1/2*5^(1/2))^34 3908831606717826 a001 1597/521*10749957122^(17/24) 3908831606717826 a001 1597/521*4106118243^(17/23) 3908831606717826 a001 1597/521*1568397607^(17/22) 3908831606717826 a001 1597/521*599074578^(17/21) 3908831606717826 a001 1597/521*228826127^(17/20) 3908831606717826 a001 1597/521*87403803^(17/19) 3908831606717829 a001 1597/521*33385282^(17/18) 3908831612993242 a001 4/17711*34^(7/45) 3908831619221674 r005 Re(z^2+c),c=13/50+1/39*I,n=4 3908831626851507 m001 (2^(1/2)+BesselI(0,2))/(-ErdosBorwein+Robbin) 3908831644252142 m001 (MertensB1+Mills)/(ln(3)-ArtinRank2) 3908831651283564 a001 701408733/521*2207^(7/16) 3908831654657431 r005 Im(z^2+c),c=-41/52+3/19*I,n=13 3908831667567164 a007 Real Root Of 222*x^4+657*x^3-792*x^2+260*x+530 3908831680729600 m001 (ArtinRank2-Cahen)/(Sarnak+TwinPrimes) 3908831681152750 r008 a(0)=4,K{-n^6,12+29*n-41*n^2+9*n^3} 3908831685681186 a005 (1/sin(69/233*Pi))^100 3908831693076244 a001 12586269025/521*843^(1/14) 3908831701439514 a001 433494437/521*2207^(1/2) 3908831721118376 a003 cos(Pi*2/75)-cos(Pi*29/99) 3908831733123672 a001 15127/1597*2178309^(13/51) 3908831733233949 m001 (Si(Pi)+ErdosBorwein)^ln(3) 3908831734931481 r002 29th iterates of z^2 + 3908831744085593 m005 (1/2*Zeta(3)+1/8)/(4/11*2^(1/2)-7/10) 3908831751595463 a001 267914296/521*2207^(9/16) 3908831756028414 r005 Re(z^2+c),c=-9/17+10/47*I,n=61 3908831775782049 a007 Real Root Of -187*x^4+226*x^3-360*x^2+716*x-234 3908831775977664 a007 Real Root Of -245*x^4-988*x^3+51*x^2+724*x+239 3908831778546517 m001 BesselI(1,1)/Gompertz*ThueMorse 3908831801751414 a001 165580141/521*2207^(5/8) 3908831805815953 a001 7778742049/2207*322^(5/12) 3908831829015754 m005 (1/2*Zeta(3)+1/10)/(9/11*2^(1/2)+7/11) 3908831829295324 r005 Im(z^2+c),c=-21/16+8/53*I,n=3 3908831833847771 r002 19th iterates of z^2 + 3908831835356429 a001 29/121393*2178309^(50/51) 3908831842240200 r002 42th iterates of z^2 + 3908831851907365 a001 102334155/521*2207^(11/16) 3908831852115171 r005 Re(z^2+c),c=-1/21+25/37*I,n=10 3908831862201664 a007 Real Root Of -685*x^4-793*x^3+889*x^2+930*x-436 3908831862576102 h001 (8/11*exp(2)+3/10)/(1/3*exp(1)+6/11) 3908831866619674 r005 Re(z^2+c),c=-89/86+4/49*I,n=26 3908831886398703 a007 Real Root Of 24*x^4+938*x^3-2*x^2+127*x+874 3908831892206620 l006 ln(5227/7727) 3908831892206620 p004 log(7727/5227) 3908831899111079 r005 Im(z^2+c),c=-23/18+5/159*I,n=25 3908831902063317 a001 63245986/521*2207^(3/4) 3908831908831908 q001 686/1755 3908831908831908 r002 2th iterates of z^2 + 3908831908831908 r005 Im(z^2+c),c=-29/30+49/117*I,n=2 3908831908863148 m001 2^(1/2)*LandauRamanujan2nd*Weierstrass 3908831925578203 m001 1/Magata/GolombDickman*ln(Zeta(7)) 3908831947459450 r005 Re(z^2+c),c=1/9+21/50*I,n=39 3908831952219269 a001 39088169/521*2207^(13/16) 3908831956974106 r009 Re(z^3+c),c=-1/14+29/39*I,n=50 3908831960622616 r005 Im(z^2+c),c=1/12+23/52*I,n=29 3908831974461541 m001 ln(Paris)^2*Conway*RenyiParking^2 3908831974892394 r002 58th iterates of z^2 + 3908831980338201 a001 39603/4181*2178309^(13/51) 3908831996757817 r005 Im(z^2+c),c=-18/31+25/59*I,n=9 3908831999269911 r009 Re(z^3+c),c=-2/5+8/55*I,n=28 3908832002375224 a001 24157817/521*2207^(7/8) 3908832009545174 b008 Log[9+13*Pi] 3908832014058659 m002 4*Pi^4+2*Csch[Pi]+ProductLog[Pi] 3908832017940230 r005 Re(z^2+c),c=-14/29+18/41*I,n=52 3908832034169799 r005 Im(z^2+c),c=-39/70+16/25*I,n=8 3908832040702676 r005 Re(z^2+c),c=-33/74+31/63*I,n=54 3908832052531173 a001 14930352/521*2207^(15/16) 3908832055355120 r005 Im(z^2+c),c=19/94+19/61*I,n=7 3908832059653969 m004 -12-25*Pi+(25*Pi)/ProductLog[Sqrt[5]*Pi] 3908832063863388 a003 cos(Pi*46/101)/cos(Pi*43/88) 3908832070375167 h001 (7/11*exp(1)+10/11)/(7/8*exp(2)+2/7) 3908832074722387 m005 (1/3*Pi+3)/(1/4*Pi+1/4) 3908832074722387 m006 (1/3*Pi+3)/(1/4*Pi+1/4) 3908832074722387 m008 (1/3*Pi+3)/(1/4*Pi+1/4) 3908832075291751 r005 Im(z^2+c),c=-9/29+7/12*I,n=50 3908832079125537 l006 ln(113/5632) 3908832085794101 r005 Re(z^2+c),c=-11/31+27/47*I,n=41 3908832085960589 a001 7778742049/521*843^(1/7) 3908832086666146 p002 log(15^(3/2)-10^(11/12)) 3908832093218632 a003 sin(Pi*1/65)-sin(Pi*11/76) 3908832102634245 a001 38580172853/987 3908832104643921 m001 (Ei(1)+Magata)/(QuadraticClass+Weierstrass) 3908832104848070 b008 LogBarnesG[1+Pi^(-1/4)] 3908832116070164 m001 (Kac+Trott2nd)/(5^(1/2)-BesselI(1,1)) 3908832133125200 a001 6119/646*2178309^(13/51) 3908832144972880 a007 Real Root Of -291*x^4-3*x^3-995*x^2+487*x+349 3908832146420535 m001 (ln(2)/ln(10)+Catalan)/(-ln(Pi)+Backhouse) 3908832146687299 r005 Re(z^2+c),c=-25/46+1/40*I,n=40 3908832147977341 r005 Im(z^2+c),c=-1/14+13/23*I,n=22 3908832160999127 r009 Re(z^3+c),c=-4/19+43/58*I,n=41 3908832223281051 r005 Im(z^2+c),c=11/62+23/62*I,n=28 3908832223696948 m002 -1-(Cosh[Pi]*Coth[Pi])/4 3908832225492454 r005 Im(z^2+c),c=-5/31+42/53*I,n=24 3908832226326638 a007 Real Root Of 202*x^4+572*x^3-968*x^2-666*x-808 3908832234265092 a007 Real Root Of -989*x^4-820*x^3-34*x^2+736*x+267 3908832250065641 a007 Real Root Of -709*x^4-447*x^3-144*x^2+796*x+323 3908832261496179 r005 Im(z^2+c),c=1/40+14/29*I,n=24 3908832264413493 l006 ln(3477/5140) 3908832268114742 r002 23th iterates of z^2 + 3908832271662403 r005 Im(z^2+c),c=-15/82+33/56*I,n=56 3908832277031590 r005 Im(z^2+c),c=31/126+13/42*I,n=58 3908832285064406 r002 10th iterates of z^2 + 3908832290956943 r005 Re(z^2+c),c=-8/15+2/11*I,n=39 3908832295579886 r009 Re(z^3+c),c=-61/106+9/38*I,n=23 3908832300626039 a003 sin(Pi*1/79)*sin(Pi*34/77) 3908832305844524 r005 Im(z^2+c),c=-5/86+26/49*I,n=49 3908832335920121 r005 Re(z^2+c),c=-21/38+14/51*I,n=14 3908832351538458 r002 36th iterates of z^2 + 3908832357256049 m001 KhintchineLevy^2*ln(MertensB1)^2*cosh(1) 3908832359573149 m001 1/GAMMA(2/3)/Cahen*exp(GAMMA(3/4)) 3908832368514022 m001 1/cos(Pi/5)/exp(FeigenbaumAlpha)/sin(Pi/12) 3908832384296805 a001 1/843*(1/2*5^(1/2)+1/2)^3*76^(9/19) 3908832395995606 m005 (1/2*5^(1/2)-3/7)/(5/7*5^(1/2)+1/6) 3908832402520801 a007 Real Root Of 273*x^4+900*x^3-709*x^2-149*x+270 3908832413884823 h001 (1/5*exp(2)+9/11)/(8/11*exp(2)+1/2) 3908832415700381 a007 Real Root Of -630*x^4+286*x^3+653*x^2+345*x-237 3908832421075189 r002 38th iterates of z^2 + 3908832421075189 r002 38th iterates of z^2 + 3908832424572634 a008 Real Root of x^4-26*x^2-46*x-16 3908832464955329 h001 (1/7*exp(2)+5/7)/(1/2*exp(2)+5/6) 3908832474686360 r005 Im(z^2+c),c=-3/20+30/49*I,n=62 3908832477786240 r005 Im(z^2+c),c=7/82+23/50*I,n=14 3908832478844974 a001 4807526976/521*843^(3/14) 3908832482655413 r005 Re(z^2+c),c=-53/98+2/21*I,n=54 3908832484148518 r005 Im(z^2+c),c=-59/110+32/53*I,n=24 3908832491228743 a001 10182505537/2889*322^(5/12) 3908832494329539 b008 25/7+CosIntegral[1] 3908832502525889 r005 Re(z^2+c),c=11/36+19/48*I,n=27 3908832506927557 m001 GAMMA(1/3)/Champernowne*ln(GAMMA(7/12))^2 3908832523925788 m005 (1/3*3^(1/2)+3/4)/(5/6*Pi+7/9) 3908832525968956 a005 (1/cos(73/223*Pi))^110 3908832526825583 r002 23th iterates of z^2 + 3908832529809659 m001 1/GAMMA(7/12)*TreeGrowth2nd^2/exp(sinh(1)) 3908832531751184 a007 Real Root Of -606*x^4-172*x^3+779*x^2+505*x-292 3908832533492371 m005 (1/3*3^(1/2)+1/2)/(3/4*Pi+2/5) 3908832533567591 m001 (sqrt(1+sqrt(3))+1/3)/(-sin(1)+1/3) 3908832545867529 r005 Im(z^2+c),c=-53/52+19/63*I,n=15 3908832556008861 a001 38*86267571272^(11/24) 3908832560611758 m005 (1/3*3^(1/2)+1/8)/(5/8*Pi-1/6) 3908832568588851 a007 Real Root Of -249*x^4+354*x^3+37*x^2+371*x-166 3908832580203272 r005 Re(z^2+c),c=-25/46+1/43*I,n=35 3908832580949436 r005 Im(z^2+c),c=9/118+21/47*I,n=36 3908832591229141 a001 53316291173/15127*322^(5/12) 3908832605819003 a001 139583862445/39603*322^(5/12) 3908832607947635 a001 182717648081/51841*322^(5/12) 3908832608258198 a001 956722026041/271443*322^(5/12) 3908832608303509 a001 2504730781961/710647*322^(5/12) 3908832608310120 a001 3278735159921/930249*322^(5/12) 3908832608311680 a001 10610209857723/3010349*322^(5/12) 3908832608314205 a001 4052739537881/1149851*322^(5/12) 3908832608331512 a001 387002188980/109801*322^(5/12) 3908832608450137 a001 591286729879/167761*322^(5/12) 3908832609263202 a001 225851433717/64079*322^(5/12) 3908832614836034 a001 21566892818/6119*322^(5/12) 3908832628744301 m001 (BesselK(0,1)-LandauRamanujan)/(-Paris+Trott) 3908832634381321 a001 20633239*6557470319842^(7/17) 3908832634381330 a001 599074578*1836311903^(7/17) 3908832634382547 a001 17393796001*514229^(7/17) 3908832638265387 l006 ln(5204/7693) 3908832642773705 r005 Im(z^2+c),c=-61/64+14/45*I,n=3 3908832646312438 m001 1/ln(sqrt(1+sqrt(3)))*LaplaceLimit^2/sqrt(5) 3908832652209484 m001 KhintchineHarmonic/Si(Pi)/exp(BesselJ(1,1))^2 3908832653032789 a001 32951280099/9349*322^(5/12) 3908832662418017 r005 Re(z^2+c),c=11/102+18/29*I,n=3 3908832665314537 a003 1+cos(11/27*Pi)-cos(7/27*Pi)-cos(1/24*Pi) 3908832666719838 m005 (1/3*Zeta(3)+3/7)/(3/4*5^(1/2)+4/9) 3908832674584882 r005 Im(z^2+c),c=-27/70+27/41*I,n=52 3908832682706966 a007 Real Root Of 335*x^4-59*x^3+938*x^2-950*x-526 3908832687059650 r005 Im(z^2+c),c=-2/29+31/56*I,n=16 3908832687967301 m001 (BesselI(0,1)+Artin)/(FeigenbaumMu+Kac) 3908832688380582 a007 Real Root Of 902*x^4-951*x^3-184*x^2-993*x+452 3908832688549416 a007 Real Root Of 144*x^4+403*x^3-552*x^2+241*x-172 3908832692864249 r005 Re(z^2+c),c=-29/54+9/62*I,n=51 3908832693728544 m001 (2^(1/3))/exp(LaplaceLimit)*BesselK(1,1) 3908832710991316 m008 (3/5*Pi^4-1/5)/(1/2*Pi^5-4) 3908832721822421 r002 34th iterates of z^2 + 3908832722425150 r009 Im(z^3+c),c=-29/62+19/62*I,n=36 3908832734274452 a007 Real Root Of -91*x^4-292*x^3+547*x^2+976*x-738 3908832736053343 r005 Im(z^2+c),c=-3/26+15/28*I,n=8 3908832738048651 m001 DuboisRaymond*(LambertW(1)+3^(1/3)) 3908832740782834 r005 Re(z^2+c),c=-31/60+5/29*I,n=5 3908832761615571 m001 (FransenRobinson+Sierpinski)^cos(1/5*Pi) 3908832780341452 a001 9349/987*2178309^(13/51) 3908832784299411 m001 1/FransenRobinson^2*exp(Conway)^2/BesselJ(1,1) 3908832789151588 r005 Im(z^2+c),c=15/58+19/64*I,n=45 3908832814361849 r009 Im(z^3+c),c=-29/56+3/11*I,n=52 3908832819671895 r002 55th iterates of z^2 + 3908832819671895 r002 55th iterates of z^2 + 3908832832180049 m005 (1/2*exp(1)-5/6)/(5/6*2^(1/2)+1/6) 3908832838444247 s002 sum(A181209[n]/(n^3*10^n-1),n=1..infinity) 3908832843170523 m001 FeigenbaumD/ln(FeigenbaumC)*log(1+sqrt(2)) 3908832847318238 r009 Im(z^3+c),c=-1/28+21/47*I,n=5 3908832860889046 a001 13/18*47^(25/57) 3908832871729399 a001 2971215073/521*843^(2/7) 3908832887072191 m005 (1/3*exp(1)+3/4)/(4*Zeta(3)-4/7) 3908832892243547 m005 (-1/2+1/4*5^(1/2))/(3/11*5^(1/2)+9/10) 3908832898680461 a001 1597/76*47^(41/54) 3908832902559919 m006 (2/5*Pi^2+3)/(1/3*exp(2*Pi)-3/4) 3908832912652973 m001 OneNinth^2/ln(GlaisherKinkelin)*Catalan^2 3908832913178977 m001 (BesselJ(1,1)+Sarnak)/(exp(1)+sin(1/12*Pi)) 3908832914400718 a007 Real Root Of 14*x^4+550*x^3+84*x^2-946*x-283 3908832914837263 a001 12586269025/3571*322^(5/12) 3908832928325591 r005 Re(z^2+c),c=-19/36+8/37*I,n=15 3908832928835157 r009 Im(z^3+c),c=-37/110+18/47*I,n=23 3908832932049941 m001 1/BesselK(0,1)^2*exp(CareFree)/cos(1)^2 3908832932063433 m001 (Ei(1)+arctan(1/3))/LambertW(1) 3908832932479728 r002 8th iterates of z^2 + 3908832935514986 a003 cos(Pi*16/107)*cos(Pi*16/45) 3908832940015690 m001 Lehmer^(2/3)*Lehmer^GAMMA(5/6) 3908832948427934 r005 Im(z^2+c),c=7/64+27/47*I,n=25 3908832949580416 s001 sum(exp(-Pi/3)^n*A122483[n],n=1..infinity) 3908832952432891 m005 (17/20+1/4*5^(1/2))/(-13/88+5/22*5^(1/2)) 3908832953512402 m001 (Rabbit+Riemann3rdZero)/(2^(1/3)-BesselK(1,1)) 3908832978660435 a007 Real Root Of -131*x^4-290*x^3+829*x^2-344*x-749 3908832982560086 r005 Re(z^2+c),c=1/23+16/51*I,n=9 3908832985786066 r005 Im(z^2+c),c=53/126+9/43*I,n=45 3908832994142259 p001 sum((-1)^n/(295*n+254)/(64^n),n=0..infinity) 3908832997160979 r009 Im(z^3+c),c=-15/29+13/28*I,n=30 3908833008247461 r005 Re(z^2+c),c=41/106+18/49*I,n=4 3908833011122813 r005 Re(z^2+c),c=-47/90+16/61*I,n=41 3908833013996544 m006 (1/6*exp(Pi)-1/3)/(3/5/Pi-1/5) 3908833017255139 a007 Real Root Of 16*x^4+622*x^3-132*x^2+44*x-449 3908833021653842 r005 Im(z^2+c),c=-67/106+4/55*I,n=50 3908833023419414 m001 (arctan(1/3)-Backhouse)/(Otter-ZetaQ(2)) 3908833027783018 r005 Re(z^2+c),c=-37/60+10/53*I,n=15 3908833028622888 a007 Real Root Of -158*x^4-608*x^3-44*x^2-391*x-283 3908833034389232 b008 2/3+E^Zeta[Pi] 3908833040955415 m001 1/GAMMA(23/24)/Conway^2/ln(GAMMA(5/6))^2 3908833047543104 r005 Re(z^2+c),c=1/17+24/37*I,n=22 3908833080574643 r005 Re(z^2+c),c=-15/32+23/61*I,n=18 3908833080639455 r005 Re(z^2+c),c=3/58+19/58*I,n=18 3908833084943455 a007 Real Root Of -460*x^4+613*x^3+618*x^2+957*x+327 3908833093168613 m005 (1/2*2^(1/2)-1/11)/(6*exp(1)-6/11) 3908833114024452 a001 322*28657^(9/37) 3908833122458165 p001 sum(1/(501*n+256)/(512^n),n=0..infinity) 3908833129387946 a007 Real Root Of 121*x^4+317*x^3+408*x^2-135*x-99 3908833131955483 r002 49th iterates of z^2 + 3908833136917322 m001 (exp(1/Pi)-FeigenbaumD)/(Khinchin+Robbin) 3908833141099577 r005 Re(z^2+c),c=-1/4+23/51*I,n=2 3908833156918970 r005 Re(z^2+c),c=-45/94+14/37*I,n=8 3908833158413917 a007 Real Root Of -180*x^4-821*x^3-656*x^2-966*x-765 3908833166536754 m001 (5^(1/2)+polylog(4,1/2))/CareFree 3908833188052595 r005 Im(z^2+c),c=-7/10+22/243*I,n=61 3908833189702702 r005 Re(z^2+c),c=-8/15+5/28*I,n=29 3908833193622657 a008 Real Root of x^4-x^2-53*x-11 3908833196666944 r005 Re(z^2+c),c=-2/3+38/211*I,n=11 3908833199319494 m001 Riemann3rdZero^2/Khintchine*exp(sin(Pi/12))^2 3908833210060045 l006 ln(157/7825) 3908833240705780 r005 Im(z^2+c),c=5/34+17/43*I,n=39 3908833246126674 a007 Real Root Of 722*x^4-614*x^3+499*x^2-479*x-317 3908833256263479 a001 24476/3*1346269^(42/55) 3908833261854261 a007 Real Root Of 362*x^4-753*x^3+131*x^2+303*x+45 3908833264613862 a001 1836311903/521*843^(5/14) 3908833272947096 a007 Real Root Of 81*x^4+141*x^3-557*x^2+429*x-301 3908833275469122 r005 Im(z^2+c),c=-17/36+27/59*I,n=8 3908833294156751 m001 (Ei(1,1)-cos(1))/(MasserGramain+ZetaP(3)) 3908833300776981 r002 58th iterates of z^2 + 3908833303076849 m005 (4/15+1/6*5^(1/2))/(4/5*3^(1/2)+1/4) 3908833310385554 r009 Re(z^3+c),c=-71/126+13/51*I,n=19 3908833315020466 r005 Im(z^2+c),c=-1/9+19/34*I,n=47 3908833326226513 m004 -5-125*Pi+10*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 3908833336861799 a007 Real Root Of 261*x^4+901*x^3-656*x^2-804*x-239 3908833340736634 a007 Real Root Of -790*x^4-145*x^3-921*x^2+779*x+455 3908833341127474 m002 -1-E^Pi/3+ProductLog[Pi]+Sinh[Pi] 3908833342282966 r005 Im(z^2+c),c=-1/50+31/61*I,n=44 3908833346547202 b008 (E^(-2)+Coth[2])/3 3908833368158407 m001 (Paris-Sierpinski)/(2*Pi/GAMMA(5/6)+Kolakoski) 3908833368675162 r005 Re(z^2+c),c=-57/86+10/41*I,n=26 3908833368813071 r005 Im(z^2+c),c=7/102+9/20*I,n=23 3908833373037056 r005 Im(z^2+c),c=-1/28+25/46*I,n=22 3908833378810605 r002 62th iterates of z^2 + 3908833379516952 r002 12th iterates of z^2 + 3908833387302079 r005 Re(z^2+c),c=-11/26+24/47*I,n=29 3908833390759852 m001 1/ln(PrimesInBinary)*Porter^2/Riemann3rdZero^2 3908833390948052 l006 ln(1727/2553) 3908833391266606 a001 1134903170/843*322^(7/12) 3908833394730172 m001 HeathBrownMoroz*(HardyLittlewoodC4-Trott) 3908833401099706 a001 233/1364*2537720636^(8/9) 3908833401099706 a001 233/1364*312119004989^(8/11) 3908833401099706 a001 233/1364*(1/2+1/2*5^(1/2))^40 3908833401099706 a001 233/1364*23725150497407^(5/8) 3908833401099706 a001 233/1364*73681302247^(10/13) 3908833401099706 a001 233/1364*28143753123^(4/5) 3908833401099706 a001 233/1364*10749957122^(5/6) 3908833401099706 a001 233/1364*4106118243^(20/23) 3908833401099706 a001 233/1364*1568397607^(10/11) 3908833401099706 a001 233/1364*599074578^(20/21) 3908833401151627 a001 610/521*141422324^(12/13) 3908833401151627 a001 610/521*2537720636^(4/5) 3908833401151627 a001 610/521*45537549124^(12/17) 3908833401151627 a001 610/521*14662949395604^(4/7) 3908833401151627 a001 610/521*(1/2+1/2*5^(1/2))^36 3908833401151627 a001 610/521*505019158607^(9/14) 3908833401151627 a001 610/521*192900153618^(2/3) 3908833401151627 a001 610/521*73681302247^(9/13) 3908833401151627 a001 610/521*10749957122^(3/4) 3908833401151627 a001 610/521*4106118243^(18/23) 3908833401151627 a001 610/521*1568397607^(9/11) 3908833401151627 a001 610/521*599074578^(6/7) 3908833401151628 a001 610/521*228826127^(9/10) 3908833401151628 a001 610/521*87403803^(18/19) 3908833401873085 r005 Re(z^2+c),c=-11/16+28/125*I,n=30 3908833422942804 a007 Real Root Of -599*x^4+763*x^3+446*x^2+659*x+249 3908833424313558 r002 14th iterates of z^2 + 3908833435680447 a007 Real Root Of 950*x^4+27*x^3-865*x^2-370*x+253 3908833436976020 a007 Real Root Of -533*x^4-564*x^3-279*x^2+920*x+381 3908833440820857 r005 Re(z^2+c),c=-9/16+45/106*I,n=21 3908833455993052 a003 sin(Pi*12/113)-sin(Pi*25/98) 3908833458175830 r005 Im(z^2+c),c=-25/28+4/15*I,n=5 3908833472266235 a001 3/199*76^(11/50) 3908833479406520 r005 Im(z^2+c),c=21/46+23/60*I,n=36 3908833485736995 r005 Im(z^2+c),c=-55/52+1/23*I,n=14 3908833487765138 m001 (Backhouse+Magata)/(ln(2+3^(1/2))+gamma(1)) 3908833509854573 a007 Real Root Of 188*x^4+852*x^3+521*x^2+412*x+646 3908833511485370 m001 (Salem-ZetaP(4))/(GAMMA(23/24)+KomornikLoreti) 3908833516212306 r002 14th iterates of z^2 + 3908833519948713 r009 Re(z^3+c),c=-1/48+41/50*I,n=43 3908833528996049 r005 Im(z^2+c),c=17/66+14/47*I,n=43 3908833530041502 r002 29th iterates of z^2 + 3908833542651805 r005 Re(z^2+c),c=-45/82+14/43*I,n=23 3908833543702495 a001 1149851/21*987^(13/21) 3908833550535116 r002 15th iterates of z^2 + 3908833557721411 g001 GAMMA(1/5,83/119) 3908833562353316 r005 Im(z^2+c),c=-5/66+29/47*I,n=25 3908833565243331 p001 sum(1/(309*n+257)/(100^n),n=0..infinity) 3908833598075337 m001 5^(1/2)*sin(1/5*Pi)-Niven 3908833609464739 m005 (1/2*Catalan+1/6)/(-19/77+2/11*5^(1/2)) 3908833628466033 m001 (arctan(1/2)-sin(1))/(Artin+Lehmer) 3908833641447432 r005 Im(z^2+c),c=-12/29+21/38*I,n=21 3908833649649182 p001 sum((-1)^n/(313*n+85)/n/(64^n),n=1..infinity) 3908833657498366 a001 1134903170/521*843^(3/7) 3908833664861736 r005 Im(z^2+c),c=11/126+26/59*I,n=10 3908833665318200 r009 Re(z^3+c),c=-2/5+8/55*I,n=27 3908833668876603 r005 Im(z^2+c),c=-29/106+22/37*I,n=62 3908833670003596 m001 1/exp(Niven)^2/GolombDickman*exp(1)^2 3908833673521622 r009 Re(z^3+c),c=-31/60+16/53*I,n=29 3908833675549664 a001 47/832040*832040^(24/37) 3908833680044468 r009 Im(z^3+c),c=-35/66+7/24*I,n=17 3908833683763289 r005 Im(z^2+c),c=1/12+19/43*I,n=51 3908833685316282 r002 41th iterates of z^2 + 3908833690017082 r009 Im(z^3+c),c=-14/27+13/54*I,n=45 3908833697272435 a007 Real Root Of 843*x^4-685*x^3-349*x^2-697*x+347 3908833701223759 a005 (1/sin(48/169*Pi))^125 3908833714507079 a001 843/55*225851433717^(10/21) 3908833717231923 r002 7th iterates of z^2 + 3908833726684432 r005 Im(z^2+c),c=13/82+17/44*I,n=51 3908833732769036 a007 Real Root Of 313*x^4-979*x^3-621*x^2-312*x+268 3908833733892974 r005 Im(z^2+c),c=-17/30+30/73*I,n=8 3908833735861550 r005 Re(z^2+c),c=-27/50+5/46*I,n=38 3908833744248555 r005 Im(z^2+c),c=3/122+25/52*I,n=55 3908833760985716 r009 Im(z^3+c),c=-59/122+5/17*I,n=45 3908833778220233 m001 1/FeigenbaumC^2*exp(CareFree)/cosh(1) 3908833779975805 r005 Re(z^2+c),c=5/18+1/23*I,n=50 3908833800052442 r005 Im(z^2+c),c=-19/110+23/39*I,n=59 3908833801553947 m005 (1/2*gamma+3/11)/(5^(1/2)-4/5) 3908833827546587 r009 Im(z^3+c),c=-11/90+23/52*I,n=12 3908833832278153 a003 cos(Pi*23/95)*cos(Pi*36/113) 3908833836867354 m005 (1/2*gamma+1/9)/(5/12*5^(1/2)+1/11) 3908833845858486 l006 ln(201/10018) 3908833852376403 r005 Im(z^2+c),c=7/23+13/53*I,n=55 3908833859135099 m001 ZetaQ(3)^(ZetaP(3)/QuadraticClass) 3908833863837404 r005 Re(z^2+c),c=-49/78+13/61*I,n=15 3908833870955862 m003 -18*Sec[1/2+Sqrt[5]/2]+4*Sinh[1/2+Sqrt[5]/2] 3908833872936140 m001 gamma(2)^Shi(1)*gamma(2)^HardyLittlewoodC3 3908833874988072 r005 Re(z^2+c),c=13/66+39/62*I,n=6 3908833912982693 m001 TreeGrowth2nd/(FeigenbaumDelta^ZetaP(4)) 3908833924984907 r005 Im(z^2+c),c=13/82+17/44*I,n=50 3908833926275076 r009 Im(z^3+c),c=-17/78+11/24*I,n=3 3908833942671273 a007 Real Root Of -953*x^4-601*x^3+672*x^2+958*x-419 3908833945086877 r002 57th iterates of z^2 + 3908833945086877 r002 57th iterates of z^2 + 3908833948005430 r005 Im(z^2+c),c=-7/6+49/118*I,n=3 3908833954034650 a007 Real Root Of 156*x^4-713*x^3-684*x^2-978*x-324 3908833968624228 a001 2537720636/233*6557470319842^(14/17) 3908833968624228 a001 2139295485799/233*1836311903^(14/17) 3908833973071488 m001 (5^(1/2)+ArtinRank2)/(-ZetaP(4)+ZetaQ(4)) 3908833983473742 m001 Niven^2/exp(Backhouse)/log(2+sqrt(3))^2 3908833986886463 m001 ln(Salem)^2*Niven/GAMMA(1/12) 3908833991202464 a001 167761/144*4807526976^(6/23) 3908833991377152 a001 3010349/144*75025^(6/23) 3908833999163006 a007 Real Root Of 356*x^4-193*x^3-613*x^2-524*x-131 3908834024190051 h001 (-7*exp(-2)+7)/(-3*exp(1)+8) 3908834028402082 r002 17th iterates of z^2 + 3908834040123622 r002 25th iterates of z^2 + 3908834050382908 a001 701408733/521*843^(1/2) 3908834055182675 r005 Re(z^2+c),c=-85/78+11/43*I,n=27 3908834058139559 r002 57th iterates of z^2 + 3908834066354348 m004 -3+125*Pi+(4*Csc[Sqrt[5]*Pi])/5 3908834079595810 r005 Im(z^2+c),c=31/126+13/42*I,n=54 3908834079668868 r005 Im(z^2+c),c=27/106+14/47*I,n=22 3908834081434136 m001 BesselI(1,2)^BesselK(0,1)-ErdosBorwein 3908834097957829 r002 9th iterates of z^2 + 3908834098715416 r008 a(0)=4,K{-n^6,15-15*n^3+44*n^2-30*n} 3908834106671904 r005 Re(z^2+c),c=-47/98+4/13*I,n=13 3908834109224011 r002 7th iterates of z^2 + 3908834145320672 m009 (3/5*Psi(1,1/3)-6)/(1/4*Pi^2-1) 3908834148301568 m001 (ZetaP(3)+ZetaQ(3))/(BesselI(1,1)-MertensB2) 3908834150343222 l006 ln(5158/7625) 3908834157360131 h001 (-10*exp(3)+8)/(-9*exp(4)-2) 3908834182326532 r002 5th iterates of z^2 + 3908834183497330 r005 Re(z^2+c),c=1/3+3/32*I,n=46 3908834205553805 r002 7th iterates of z^2 + 3908834207341670 q001 969/2479 3908834207531703 m004 -125*Pi-Cos[Sqrt[5]*Pi]/4+2*Coth[Sqrt[5]*Pi] 3908834212389775 a007 Real Root Of 108*x^4-501*x^3+365*x^2-881*x+316 3908834212926521 a007 Real Root Of 468*x^4-277*x^3+97*x^2-997*x-432 3908834223357095 m004 -3+125*Pi+Cos[Sqrt[5]*Pi]/4+Tanh[Sqrt[5]*Pi] 3908834223484297 r005 Re(z^2+c),c=-5/13+31/50*I,n=54 3908834236265158 m004 -2+125*Pi+(Cos[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/4 3908834236270047 r005 Im(z^2+c),c=-31/44+6/25*I,n=20 3908834239182437 m004 -2+125*Pi+Cos[Sqrt[5]*Pi]/4 3908834242099720 m004 -2+125*Pi+(Cos[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi])/4 3908834255007779 m004 -1+125*Pi+Cos[Sqrt[5]*Pi]/4-Tanh[Sqrt[5]*Pi] 3908834266727163 m003 -1/10+Sqrt[5]/512+4*Csc[1/2+Sqrt[5]/2] 3908834269223408 r005 Re(z^2+c),c=-12/23+23/61*I,n=31 3908834270833121 m004 -125*Pi-Cos[Sqrt[5]*Pi]/4+2*Tanh[Sqrt[5]*Pi] 3908834281213490 m005 (1/8*5^(1/2)-1/8)/(1/3*Pi-5) 3908834286284504 g002 Psi(6/7)+Psi(2/5)-Psi(5/11)-Psi(7/8) 3908834288153526 m001 GAMMA(11/12)^ln(2^(1/2)+1)/FeigenbaumD 3908834289432204 m001 (GaussAGM+MertensB3)/(Psi(2,1/3)-arctan(1/3)) 3908834296094508 m001 (Lehmer-Mills)/(GAMMA(2/3)+Bloch) 3908834297360530 a007 Real Root Of -9*x^4+773*x^3-834*x^2+461*x+354 3908834301071534 r005 Re(z^2+c),c=-53/98+2/21*I,n=56 3908834314794346 m001 Shi(1)^exp(1)*ReciprocalFibonacci 3908834330143751 m005 (1/3*5^(1/2)-3/4)/(4/9*5^(1/2)-7/8) 3908834338965899 r005 Re(z^2+c),c=-53/98+2/21*I,n=61 3908834367058737 s001 sum(1/10^(n-1)*A248690[n]/n^n,n=1..infinity) 3908834376672533 r005 Re(z^2+c),c=-101/98+3/28*I,n=10 3908834386783690 a001 1/322*(1/2*5^(1/2)+1/2)^7*47^(8/21) 3908834391058369 m001 1/arctan(1/2)^3*exp(FeigenbaumC)^2 3908834395470814 r002 10th iterates of z^2 + 3908834395771383 r005 Re(z^2+c),c=-53/98+2/21*I,n=63 3908834397715704 a008 Real Root of x^5-2*x^4-16*x^3+31*x^2+13*x+1 3908834409687041 r009 Im(z^3+c),c=-31/64+11/39*I,n=22 3908834417811828 a007 Real Root Of 618*x^4-303*x^3-364*x^2-297*x-93 3908834421987100 m001 1/(3^(1/3))/ln(KhintchineLevy)/Zeta(5) 3908834432514421 m001 Shi(1)/(gamma+Pi*csc(5/12*Pi)/GAMMA(7/12)) 3908834441860712 a001 12586269025/521*322^(1/12) 3908834443267491 a001 433494437/521*843^(4/7) 3908834451930876 r005 Re(z^2+c),c=-53/98+2/21*I,n=59 3908834455747824 a005 (1/cos(15/163*Pi))^1010 3908834460759521 s002 sum(A200458[n]/(n*exp(n)-1),n=1..infinity) 3908834463914520 l006 ln(3487/3626) 3908834466544806 m001 (PrimesInBinary+Rabbit)/(3^(1/2)+ln(Pi)) 3908834470626439 r005 Im(z^2+c),c=-7/10+31/174*I,n=27 3908834482124037 r009 Re(z^3+c),c=-43/118+5/52*I,n=10 3908834494224767 r002 7th iterates of z^2 + 3908834510761473 r005 Im(z^2+c),c=-7/74+26/51*I,n=8 3908834520592994 r002 43th iterates of z^2 + 3908834526967079 r005 Im(z^2+c),c=-1/40+17/33*I,n=23 3908834532264754 m005 (1/2+1/4*5^(1/2))/(1/5*exp(1)-3/11) 3908834532586121 l006 ln(3431/5072) 3908834549404195 r005 Im(z^2+c),c=-3/20+11/19*I,n=36 3908834550021299 r009 Im(z^3+c),c=-53/114+14/43*I,n=12 3908834552032257 r001 54i'th iterates of 2*x^2-1 of 3908834556017192 r002 59th iterates of z^2 + 3908834556017192 r002 59th iterates of z^2 + 3908834560892240 m005 (1/3*Catalan-1/6)/(-38/63+1/9*5^(1/2)) 3908834568043229 r005 Re(z^2+c),c=17/54+20/39*I,n=59 3908834570559422 r009 Re(z^3+c),c=-43/94+13/61*I,n=38 3908834584487278 m005 (1/2*5^(1/2)-3/10)/(7/8*exp(1)-2/7) 3908834593689030 r002 5th iterates of z^2 + 3908834606750861 m001 1/BesselK(0,1)^2/exp(Trott)^2*sin(1)^2 3908834623833628 m001 (Porter-ZetaP(2))/(cos(1/5*Pi)+KomornikLoreti) 3908834624928558 m005 (1/2*Catalan-6/7)/(2/3*gamma+7/11) 3908834648372864 r005 Re(z^2+c),c=-18/31+10/59*I,n=9 3908834654790202 m001 Catalan*(ArtinRank2+FeigenbaumMu) 3908834657642612 r002 9th iterates of z^2 + 3908834682545047 m001 ln(Lehmer)/Si(Pi)*Salem^2 3908834695613795 r005 Re(z^2+c),c=-51/94+1/24*I,n=21 3908834696658025 a007 Real Root Of 567*x^4-640*x^3+767*x^2+214*x-85 3908834699616754 r009 Re(z^3+c),c=-69/122+15/59*I,n=39 3908834709272771 a001 1201881744/341*322^(5/12) 3908834715920705 m009 (20/3*Catalan+5/6*Pi^2+1)/(2/5*Psi(1,2/3)-5/6) 3908834728419560 a007 Real Root Of -470*x^4+62*x^3+392*x^2+244*x-148 3908834736775512 r005 Re(z^2+c),c=-13/22+42/101*I,n=63 3908834738116769 a007 Real Root Of -207*x^4-585*x^3+981*x^2+219*x-747 3908834741762920 r009 Re(z^3+c),c=-1/17+16/39*I,n=4 3908834744444640 a003 cos(Pi*5/74)/sin(Pi*7/87) 3908834754315706 r002 64th iterates of z^2 + 3908834754315706 r002 64th iterates of z^2 + 3908834773165821 r005 Im(z^2+c),c=5/32+21/43*I,n=15 3908834776007528 r005 Im(z^2+c),c=-11/30+9/16*I,n=43 3908834776200043 m006 (1/6*Pi^2+2)/(1/6*exp(2*Pi)+4) 3908834798808448 r005 Re(z^2+c),c=7/50+13/34*I,n=32 3908834800082084 r009 Im(z^3+c),c=-39/86+15/47*I,n=18 3908834819361954 r002 62th iterates of z^2 + 3908834819361954 r002 62th iterates of z^2 + 3908834833185487 m005 (1/2*Catalan-3/10)/(3/7*5^(1/2)-5) 3908834834057963 a001 1/7*(1/2*5^(1/2)+1/2)^24*4^(7/10) 3908834836152113 a001 267914296/521*843^(9/14) 3908834842984313 a001 2207/21*24157817^(13/21) 3908834845725995 a001 102334155/199*199^(9/11) 3908834852576933 r002 61th iterates of z^2 + 3908834852576933 r002 61th iterates of z^2 + 3908834880605852 r005 Im(z^2+c),c=19/58+9/44*I,n=35 3908834908048841 m009 (2*Psi(1,3/4)+5/6)/(3/2*Pi^2+1/3) 3908834914591273 r005 Im(z^2+c),c=3/22+13/34*I,n=3 3908834916541096 l006 ln(5135/7591) 3908834923607229 a007 Real Root Of -125*x^4+67*x^3+850*x^2+719*x-412 3908834933186479 r005 Re(z^2+c),c=-33/62+16/53*I,n=21 3908834942371561 r002 3th iterates of z^2 + 3908834947485133 a001 4807526976/2207*322^(1/2) 3908834948048023 r005 Re(z^2+c),c=-53/98+2/21*I,n=57 3908834953364532 r009 Im(z^3+c),c=-5/12+13/38*I,n=15 3908834955432544 m001 (exp(1)+MasserGramain)/(Thue+ZetaQ(4)) 3908834958907873 m005 (1/2*3^(1/2)+1/5)/(1/7*Zeta(3)-4/9) 3908834963519708 r002 46th iterates of z^2 + 3908834966354764 r005 Im(z^2+c),c=-15/74+38/55*I,n=56 3908834971423585 r002 21th iterates of z^2 + 3908834971483163 r002 63th iterates of z^2 + 3908834971483163 r002 63th iterates of z^2 + 3908834972366698 r009 Im(z^3+c),c=-27/56+13/44*I,n=48 3908834981098014 r005 Im(z^2+c),c=-16/13+1/32*I,n=13 3908834982899434 r009 Re(z^3+c),c=-9/25+4/45*I,n=12 3908834988464624 r005 Re(z^2+c),c=-9/17+10/47*I,n=56 3908834995544778 r009 Im(z^3+c),c=-51/106+5/23*I,n=7 3908835000043188 r005 Im(z^2+c),c=-7/52+15/26*I,n=47 3908835001995889 m001 (-MertensB2+Trott2nd)/(2^(1/3)+ln(2+3^(1/2))) 3908835005936986 m005 (1/2*Pi-9/10)/(5/6*3^(1/2)+3/11) 3908835013499595 r002 60th iterates of z^2 + 3908835013499595 r002 60th iterates of z^2 + 3908835031372313 p004 log(20983/421) 3908835035390985 m001 (Psi(1,1/3)-ln(3))/(GaussAGM+Porter) 3908835042910320 m001 ErdosBorwein-OrthogonalArrays^Stephens 3908835052788980 r005 Im(z^2+c),c=23/98+22/39*I,n=64 3908835060327185 r008 a(0)=4,K{-n^6,66+27*n^3-28*n^2-53*n} 3908835082374679 r005 Re(z^2+c),c=-19/36+11/49*I,n=46 3908835086335653 r002 47th iterates of z^2 + 3908835090189528 h001 (3/10*exp(2)+5/9)/(10/11*exp(2)+3/8) 3908835092579559 m008 (1/3*Pi^3-4)/(5*Pi+1/2) 3908835102351922 m005 (1/2*3^(1/2)-7/8)/(103/77+3/7*5^(1/2)) 3908835102934844 a003 cos(Pi*6/109)-sin(Pi*16/79) 3908835113640285 r005 Re(z^2+c),c=-53/98+2/21*I,n=58 3908835117625384 m001 Mills^Conway/(Khinchin^Conway) 3908835126890883 r005 Im(z^2+c),c=1/58+16/33*I,n=29 3908835128716329 m005 (1/3*Zeta(3)+1/6)/(8/11*Pi-5/6) 3908835132135941 m001 Porter/(FeigenbaumDelta-Catalan) 3908835148762848 r005 Im(z^2+c),c=-1/46+29/57*I,n=37 3908835172260178 r005 Re(z^2+c),c=21/110+26/47*I,n=18 3908835174668903 m001 (Ei(1)-Pi^(1/2))/(Paris-ThueMorse) 3908835174713753 r005 Im(z^2+c),c=-19/26+8/29*I,n=19 3908835178917792 a001 281/329*28657^(19/51) 3908835183504803 m005 (1/3*Catalan-1/6)/(6/11*2^(1/2)-5/12) 3908835212469797 r005 Im(z^2+c),c=-8/23+37/58*I,n=61 3908835217382900 r002 42th iterates of z^2 + 3908835229036774 a001 165580141/521*843^(5/7) 3908835238464276 a007 Real Root Of 636*x^4-359*x^3+140*x^2-579*x-284 3908835241434610 r005 Re(z^2+c),c=-35/106+31/59*I,n=15 3908835252365403 r009 Re(z^3+c),c=-2/5+8/55*I,n=29 3908835258577096 m009 (1/3*Psi(1,1/3)+1)/(4*Psi(1,3/4)+1) 3908835270437326 r002 50th iterates of z^2 + 3908835281430312 m001 (2*Pi/GAMMA(5/6)+CopelandErdos)/ZetaR(2) 3908835285949999 a007 Real Root Of -23*x^4-890*x^3+348*x^2-189*x+329 3908835287451919 r005 Re(z^2+c),c=-13/10+2/103*I,n=6 3908835296173286 a007 Real Root Of 77*x^4+30*x^3-879*x^2+729*x+96 3908835297887067 r005 Re(z^2+c),c=-53/98+2/21*I,n=64 3908835298857768 m001 1/Tribonacci*Lehmer^2*ln(Trott)^2 3908835303009140 m001 (ln(Pi)-Ei(1))/(arctan(1/2)+Backhouse) 3908835354384879 r009 Im(z^3+c),c=-37/94+20/57*I,n=12 3908835364785472 m001 (Riemann2ndZero-ZetaQ(4))/(Pi+5^(1/2)) 3908835380004113 a007 Real Root Of 12*x^4+478*x^3+363*x^2+508*x-861 3908835383439842 r005 Re(z^2+c),c=-53/98+2/21*I,n=60 3908835392090026 r005 Re(z^2+c),c=-53/98+2/21*I,n=62 3908835401069280 m001 FeigenbaumC+Si(Pi)^KhinchinLevy 3908835408022175 a001 1364/5*4807526976^(17/23) 3908835411220977 a007 Real Root Of -958*x^4+300*x^3-283*x^2+101*x+123 3908835422937646 r009 Re(z^3+c),c=-47/86+13/28*I,n=20 3908835429073802 m001 Khintchine*ln(MertensB1)^2*cos(Pi/5) 3908835434751612 a007 Real Root Of -935*x^4+844*x^3-574*x^2-51*x+140 3908835446440357 r002 58th iterates of z^2 + 3908835446440357 r002 58th iterates of z^2 + 3908835466678850 a001 17/930249*11^(13/41) 3908835466749921 q001 1252/3203 3908835467557514 m001 ln(arctan(1/2))^2/GAMMA(1/3)*sqrt(Pi) 3908835469506400 m001 ln(OneNinth)^2*TwinPrimes/Catalan^2 3908835470107307 r009 Im(z^3+c),c=-1/25+23/51*I,n=6 3908835477638807 a007 Real Root Of -125*x^4-456*x^3+367*x^2+821*x-451 3908835499152576 r005 Re(z^2+c),c=15/106+25/54*I,n=35 3908835508412788 r009 Im(z^3+c),c=-2/29+62/63*I,n=8 3908835523412073 r002 14th iterates of z^2 + 3908835530100397 a007 Real Root Of 263*x^4-848*x^3+658*x^2-452*x-334 3908835533878888 a007 Real Root Of -836*x^4-323*x^3-816*x^2+801*x+438 3908835563983202 r004 Im(z^2+c),c=3/8+3/20*I,z(0)=exp(5/12*I*Pi),n=3 3908835564285701 m001 Stephens^cos(1/5*Pi)/(Tribonacci^cos(1/5*Pi)) 3908835571868574 m002 -2*Pi+4*Cosh[Pi]-Tanh[Pi] 3908835584217449 h001 (7/12*exp(1)+5/9)/(5/7*exp(2)+1/5) 3908835585094244 r005 Im(z^2+c),c=3/74+29/62*I,n=22 3908835585345706 a007 Real Root Of 210*x^4+861*x^3+309*x^2+640*x+178 3908835587014343 m001 5^(1/2)/(MertensB1^(2*Pi/GAMMA(5/6))) 3908835588823465 m005 (1/2*3^(1/2)-5/12)/(5/12*gamma+10/11) 3908835597613317 m001 OneNinth^arctan(1/2)*ln(3) 3908835615639585 r002 51th iterates of z^2 + 3908835619408534 m001 (Zeta(1,2)+Pi^(1/2))/(Conway+FeigenbaumB) 3908835621921475 a001 102334155/521*843^(11/14) 3908835622173588 m001 GaussKuzminWirsing*HardHexagonsEntropy/Trott 3908835631351687 a007 Real Root Of -56*x^4-36*x^3+520*x^2-856*x-368 3908835632898473 a001 12586269025/5778*322^(1/2) 3908835659414943 r005 Im(z^2+c),c=11/34+7/29*I,n=29 3908835663448522 m001 (-Artin+Gompertz)/(Pi^(1/2)-Psi(2,1/3)) 3908835673051965 a003 sin(Pi*11/89)/sin(Pi*21/50) 3908835689565514 r002 5th iterates of z^2 + 3908835689633491 l006 ln(1704/2519) 3908835698775859 m005 (1/3*3^(1/2)-3/5)/(-113/168+1/24*5^(1/2)) 3908835699517165 a007 Real Root Of 11*x^4-984*x^3-399*x^2-403*x+277 3908835701733999 r005 Re(z^2+c),c=-59/110+19/60*I,n=23 3908835707449903 p003 LerchPhi(1/125,1,41/160) 3908835708583883 m001 (exp(1)-gamma(1))/(-Kac+Totient) 3908835719259131 a007 Real Root Of -296*x^4-959*x^3+665*x^2-312*x+446 3908835722498155 m001 GAMMA(7/12)/BesselK(0,1)*OneNinth 3908835722498155 m001 OneNinth/BesselK(0,1)*GAMMA(7/12) 3908835728631016 m004 125*Pi-(25*Sin[Sqrt[5]*Pi]^2)/(2*Pi) 3908835732898952 a001 32951280099/15127*322^(1/2) 3908835738892817 a007 Real Root Of -868*x^4+351*x^3-836*x^2-202*x+90 3908835743641901 m005 (1/3*Zeta(3)-1/9)/(3*5^(1/2)+7/10) 3908835745699686 r005 Re(z^2+c),c=-45/82+9/37*I,n=18 3908835746597026 a001 843/2*34^(12/19) 3908835747488826 a001 86267571272/39603*322^(1/2) 3908835749617460 a001 225851433717/103682*322^(1/2) 3908835749928023 a001 591286729879/271443*322^(1/2) 3908835749973334 a001 1548008755920/710647*322^(1/2) 3908835749979945 a001 4052739537881/1860498*322^(1/2) 3908835749980909 a001 2178309*322^(1/2) 3908835749981505 a001 6557470319842/3010349*322^(1/2) 3908835749984030 a001 2504730781961/1149851*322^(1/2) 3908835750001337 a001 956722026041/439204*322^(1/2) 3908835750119962 a001 365435296162/167761*322^(1/2) 3908835750933028 a001 139583862445/64079*322^(1/2) 3908835754305871 r005 Re(z^2+c),c=-5/26+33/50*I,n=22 3908835756505864 a001 53316291173/24476*322^(1/2) 3908835763324353 m001 BesselJ(1,1)^KhinchinLevy/cos(1/12*Pi) 3908835767035475 r005 Im(z^2+c),c=-1/42+24/47*I,n=52 3908835768458975 r005 Re(z^2+c),c=-8/15+13/61*I,n=16 3908835770305708 r005 Re(z^2+c),c=-15/28+7/44*I,n=34 3908835781265196 a001 6643838879*6557470319842^(5/17) 3908835781265196 a001 73681302247*1836311903^(5/17) 3908835781266066 a001 817138163596*514229^(5/17) 3908835788794779 m005 (23/66+1/6*5^(1/2))/(6*Pi-2/5) 3908835794702650 a001 20365011074/9349*322^(1/2) 3908835840373897 m001 (5^(1/2)+BesselJ(0,1))/(OneNinth+TwinPrimes) 3908835846978014 m001 Niven/exp(Artin)*gamma^2 3908835849777757 m005 (1/2*5^(1/2)+9/10)/(-17/110+3/10*5^(1/2)) 3908835856873504 m005 (1/2*Catalan-3/8)/(-3/28+1/7*5^(1/2)) 3908835860200689 r005 Im(z^2+c),c=35/106+8/37*I,n=26 3908835864643455 r002 31th iterates of z^2 + 3908835869028369 p004 log(32713/22129) 3908835877144796 r009 Im(z^3+c),c=-31/122+49/57*I,n=2 3908835880940561 a001 1/51841*3^(9/14) 3908835882113463 m001 BesselI(0,1)^Thue/(Psi(2,1/3)^Thue) 3908835883684102 r005 Re(z^2+c),c=-39/86+9/34*I,n=4 3908835891613536 r005 Im(z^2+c),c=-2/9+3/5*I,n=64 3908835905332791 r005 Im(z^2+c),c=11/56+20/57*I,n=16 3908835905684826 r005 Im(z^2+c),c=-3/74+11/21*I,n=15 3908835924749788 r002 55th iterates of z^2 + 3908835938632724 a007 Real Root Of 311*x^4+735*x^3+625*x^2-693*x-28 3908835947532753 r005 Re(z^2+c),c=-14/27+13/46*I,n=52 3908835948879181 p004 log(22637/15313) 3908835971488999 m001 1/exp(Salem)*FeigenbaumC/Zeta(3)^2 3908835978565608 m001 (BesselI(0,2)+Pi^(1/2))/(Zeta(3)+Zeta(1,-1)) 3908835992027202 r002 3th iterates of z^2 + 3908836001826059 m001 1/exp(GaussKuzminWirsing)/ErdosBorwein/Trott^2 3908836006835331 r005 Re(z^2+c),c=-12/23+16/61*I,n=37 3908836014806215 a001 63245986/521*843^(6/7) 3908836024836090 m005 (7/18+1/6*5^(1/2))/(3/5*3^(1/2)+10/11) 3908836036359202 r009 Im(z^3+c),c=-31/118+23/56*I,n=22 3908836056507335 a001 7778742049/3571*322^(1/2) 3908836065722185 m001 (exp(Pi)+Zeta(1,-1))/(-Tetranacci+Totient) 3908836068612036 m001 Catalan^MertensB2/(Riemann2ndZero^MertensB2) 3908836069644487 s001 sum(exp(-Pi/3)^(n-1)*A116714[n],n=1..infinity) 3908836074740417 r005 Re(z^2+c),c=-10/19+14/33*I,n=43 3908836078826445 r009 Im(z^3+c),c=-19/94+27/62*I,n=5 3908836080349425 r005 Im(z^2+c),c=-107/98+16/55*I,n=9 3908836103806942 s002 sum(A190796[n]/(2^n-1),n=1..infinity) 3908836112878491 m005 (1/2*5^(1/2)-5/7)/(3/4*gamma+3/5) 3908836114499627 l006 ln(44/2193) 3908836117033899 m005 (1/2*3^(1/2)-5/7)/(1/2*5^(1/2)-5) 3908836117516911 r005 Re(z^2+c),c=31/94+5/63*I,n=60 3908836143918033 a008 Real Root of x^2-152790 3908836145014288 r005 Im(z^2+c),c=-39/106+53/57*I,n=3 3908836146831906 g007 Psi(2,1/6)-Psi(2,5/12)-Psi(13/10)-Psi(2,3/7) 3908836159871114 m001 (-arctan(1/2)+FeigenbaumMu)/(Shi(1)-Si(Pi)) 3908836160628199 r005 Im(z^2+c),c=7/122+17/37*I,n=60 3908836163491252 r005 Im(z^2+c),c=7/122+17/37*I,n=59 3908836171225224 r009 Im(z^3+c),c=-6/11+11/52*I,n=2 3908836173763021 r005 Im(z^2+c),c=-41/102+2/29*I,n=8 3908836180359538 a003 sin(Pi*5/38)-sin(Pi*30/103) 3908836184264454 r009 Re(z^3+c),c=-1/16+23/43*I,n=29 3908836191829074 r005 Re(z^2+c),c=-53/98+2/21*I,n=55 3908836202638229 a007 Real Root Of -222*x^4-913*x^3-232*x^2-187*x+112 3908836203105123 a001 1/3*(1/2*5^(1/2)+1/2)^26*76^(20/23) 3908836212856803 r002 8th iterates of z^2 + 3908836232002892 r005 Re(z^2+c),c=-19/46+17/33*I,n=37 3908836247251442 m001 (Conway-Magata)/ZetaQ(2) 3908836248092530 r005 Re(z^2+c),c=-57/82+4/25*I,n=23 3908836261777438 q001 1535/3927 3908836268942980 g007 Psi(2,3/10)-Psi(2,5/12)-Psi(2,5/6)-Psi(2,1/6) 3908836270180452 m001 (Tribonacci-ZetaQ(3))/(OneNinth-Stephens) 3908836274033488 l006 ln(6793/10042) 3908836284419596 r005 Im(z^2+c),c=-67/52+2/57*I,n=49 3908836285309091 r002 56th iterates of z^2 + 3908836285309091 r002 56th iterates of z^2 + 3908836287728122 a007 Real Root Of 228*x^4+864*x^3-124*x^2-85*x-63 3908836297132067 a001 29/987*1597^(20/57) 3908836302450539 r005 Re(z^2+c),c=-55/106+12/19*I,n=17 3908836310434150 r002 12th iterates of z^2 + 3908836316290063 m001 (Landau+ThueMorse)/(Zeta(1,-1)-BesselI(0,2)) 3908836319130742 h001 (-7*exp(-1)-6)/(-5*exp(1/3)+7) 3908836320187520 a007 Real Root Of -572*x^4-93*x^3+252*x^2+899*x-371 3908836320662607 m001 (Shi(1)+GAMMA(7/12))/(-Backhouse+Kolakoski) 3908836323228044 m001 ((1+3^(1/2))^(1/2)+MadelungNaCl)/(Trott+Thue) 3908836329644251 a007 Real Root Of 466*x^4-211*x^3+791*x^2-388*x-296 3908836336958685 r009 Re(z^3+c),c=-2/5+8/55*I,n=33 3908836374280380 r005 Im(z^2+c),c=7/114+23/57*I,n=5 3908836375634852 m005 (1/2*3^(1/2)+8/11)/(4/11*3^(1/2)-2/9) 3908836375649389 r005 Re(z^2+c),c=-43/82+11/32*I,n=26 3908836382929016 m001 Pi*LambertW(1)*Ei(1,1) 3908836385907439 m001 (-PolyaRandomWalk3D+Totient)/(Si(Pi)+CareFree) 3908836387751613 r005 Im(z^2+c),c=31/126+13/42*I,n=52 3908836392597526 r009 Re(z^3+c),c=-2/5+8/55*I,n=34 3908836407690994 a001 39088169/521*843^(13/14) 3908836416398911 a007 Real Root Of 104*x^4+496*x^3+133*x^2-801*x+181 3908836444971392 a007 Real Root Of 789*x^4-373*x^3+262*x^2-694*x-352 3908836446147947 a001 34/15127*11^(3/13) 3908836446322285 r002 5th iterates of z^2 + 3908836453933908 a007 Real Root Of 729*x^4+77*x^3-632*x^2-389*x+227 3908836462866003 a003 sin(Pi*3/59)+sin(Pi*7/94) 3908836467968054 a007 Real Root Of 988*x^4-440*x^3+241*x^2-723*x+249 3908836469713888 l006 ln(5089/7523) 3908836472136429 m001 LambertW(1)*exp(GAMMA(1/12))^2*sin(1)^2 3908836481823146 p003 LerchPhi(1/12,1,248/91) 3908836487217891 m001 cos(1)^(1/2)*cos(1)^GAMMA(23/24) 3908836494300210 m001 Robbin^2*exp(KhintchineLevy)^2/Zeta(3) 3908836499351604 r005 Re(z^2+c),c=-29/54+9/62*I,n=56 3908836501556914 r005 Re(z^2+c),c=1/17+25/38*I,n=44 3908836503064332 r005 Re(z^2+c),c=-27/50+7/57*I,n=23 3908836503556399 m001 (Zeta(3)+FransenRobinson)/GAMMA(23/24) 3908836524414110 r005 Im(z^2+c),c=-11/106+29/53*I,n=22 3908836524719110 a007 Real Root Of -235*x^4-748*x^3+521*x^2-691*x-474 3908836526522174 a008 Real Root of x^4-x^3-29*x^2+43*x+318 3908836532937060 a001 233802911/281*322^(2/3) 3908836538949175 m009 (2*Pi^2+1/6)/(24*Catalan+3*Pi^2-2/3) 3908836548216797 r005 Im(z^2+c),c=11/38+5/19*I,n=63 3908836562422068 m001 Psi(2,1/3)*(BesselI(1,2)-QuadraticClass) 3908836566484586 m001 (Chi(1)+BesselI(0,1))/(-Champernowne+Robbin) 3908836574387874 r002 32th iterates of z^2 + 3908836595625674 a007 Real Root Of -918*x^4-959*x^3+124*x^2+697*x+27 3908836606599106 r005 Re(z^2+c),c=1/4+1/42*I,n=47 3908836611609714 r005 Re(z^2+c),c=-89/86+4/49*I,n=28 3908836614402619 r009 Re(z^3+c),c=-29/56+10/41*I,n=3 3908836652335242 r009 Re(z^3+c),c=-2/5+8/55*I,n=39 3908836656942204 r009 Re(z^3+c),c=-2/5+8/55*I,n=35 3908836664144113 m001 (Pi^(1/2)-Backhouse)/AlladiGrinstead 3908836664658993 m001 BesselJ(0,1)*(ln(3)-sin(1/5*Pi)) 3908836664658993 m001 BesselJ(0,1)*(ln(3)-sin(Pi/5)) 3908836666180535 r009 Re(z^3+c),c=-2/5+8/55*I,n=40 3908836675418796 m001 FeigenbaumDelta/(Sarnak^ln(gamma)) 3908836678236618 r009 Re(z^3+c),c=-2/5+8/55*I,n=38 3908836679247838 r009 Re(z^3+c),c=-2/5+8/55*I,n=45 3908836679929225 r009 Re(z^3+c),c=-2/5+8/55*I,n=44 3908836680691721 r009 Re(z^3+c),c=-2/5+8/55*I,n=46 3908836681144919 r009 Re(z^3+c),c=-2/5+8/55*I,n=50 3908836681172450 r009 Re(z^3+c),c=-2/5+8/55*I,n=51 3908836681285290 r009 Re(z^3+c),c=-2/5+8/55*I,n=56 3908836681288794 r009 Re(z^3+c),c=-2/5+8/55*I,n=52 3908836681291532 r009 Re(z^3+c),c=-2/5+8/55*I,n=57 3908836681296353 r009 Re(z^3+c),c=-2/5+8/55*I,n=55 3908836681297155 r009 Re(z^3+c),c=-2/5+8/55*I,n=62 3908836681297432 r009 Re(z^3+c),c=-2/5+8/55*I,n=61 3908836681297796 r009 Re(z^3+c),c=-2/5+8/55*I,n=63 3908836681298269 r009 Re(z^3+c),c=-2/5+8/55*I,n=64 3908836681299412 r009 Re(z^3+c),c=-2/5+8/55*I,n=60 3908836681299510 r009 Re(z^3+c),c=-2/5+8/55*I,n=58 3908836681301500 r009 Re(z^3+c),c=-2/5+8/55*I,n=59 3908836681327373 r009 Re(z^3+c),c=-2/5+8/55*I,n=54 3908836681343390 r009 Re(z^3+c),c=-2/5+8/55*I,n=53 3908836681395320 r009 Re(z^3+c),c=-2/5+8/55*I,n=49 3908836681781120 r009 Re(z^3+c),c=-2/5+8/55*I,n=47 3908836681814841 r009 Re(z^3+c),c=-2/5+8/55*I,n=48 3908836684423484 r009 Re(z^3+c),c=-2/5+8/55*I,n=41 3908836684471404 r009 Re(z^3+c),c=-2/5+8/55*I,n=43 3908836688552816 a007 Real Root Of 324*x^4-916*x^3+951*x^2-743*x-498 3908836689148237 r009 Re(z^3+c),c=-2/5+8/55*I,n=42 3908836699118030 a007 Real Root Of 308*x^4+928*x^3-895*x^2+645*x-283 3908836710894304 a007 Real Root Of -165*x^4-512*x^3+684*x^2+415*x-888 3908836715535307 b008 Sqrt[3]*ArcCosh[2*(1+Sqrt[2])] 3908836727728115 m001 1/ln(Trott)*CopelandErdos^2/Pi 3908836730547401 a007 Real Root Of 120*x^4+37*x^3+853*x^2-847*x-462 3908836737676697 r002 7th iterates of z^2 + 3908836739261245 r005 Re(z^2+c),c=-3/4+15/248*I,n=22 3908836745066423 m001 1/ln(BesselK(1,1))^2*Paris^2/cos(Pi/12) 3908836748950169 r009 Re(z^3+c),c=-2/5+8/55*I,n=37 3908836752867893 r005 Re(z^2+c),c=-37/70+9/41*I,n=36 3908836765264832 r002 34th iterates of z^2 + 3908836777992116 a007 Real Root Of -927*x^4-702*x^3-641*x^2+313*x+200 3908836783770405 r009 Re(z^3+c),c=-2/5+8/55*I,n=36 3908836786569000 r002 44th iterates of z^2 + 3908836794215484 r009 Im(z^3+c),c=-5/23+25/59*I,n=10 3908836800530503 a001 14736314738/377 3908836805634501 m001 (BesselK(0,1)-Conway)/(Grothendieck+PlouffeB) 3908836813396386 m001 Artin^2*ln(GaussAGM(1,1/sqrt(2)))^2*Zeta(7)^2 3908836835670972 r005 Re(z^2+c),c=-53/98+1/13*I,n=24 3908836846667330 r002 18th iterates of z^2 + 3908836850374411 r005 Im(z^2+c),c=7/122+17/37*I,n=63 3908836851658404 r005 Re(z^2+c),c=-29/54+9/62*I,n=58 3908836853026115 r005 Re(z^2+c),c=-7/17+27/55*I,n=27 3908836855765742 g007 Psi(2,1/8)+Psi(2,3/7)-14*Zeta(3)-Psi(2,1/9) 3908836862404263 l006 ln(3385/5004) 3908836867942616 a007 Real Root Of -725*x^4+411*x^3-387*x^2+395*x+255 3908836878055992 r002 30th iterates of z^2 + 3908836895328258 m001 GAMMA(7/24)/(3^(1/3))^2/ln(cos(1))^2 3908836897188785 r002 54th iterates of z^2 + 3908836915583078 r009 Re(z^3+c),c=-2/5+8/55*I,n=32 3908836918158357 m001 (BesselI(1,2)-Lehmer)/(GAMMA(2/3)-ln(5)) 3908836925444109 r005 Im(z^2+c),c=-19/16+20/61*I,n=9 3908836928205568 r005 Im(z^2+c),c=-99/98+1/25*I,n=8 3908836928407653 r005 Re(z^2+c),c=-89/86+4/49*I,n=32 3908836940975414 r005 Re(z^2+c),c=-33/62+11/58*I,n=38 3908836966474222 m001 (polylog(4,1/2)-Rabbit)/(ln(3)-BesselI(1,2)) 3908836969302831 m001 (LambertW(1)-arctan(1/3))/(gamma(3)+Kac) 3908836985290442 m001 (2^(1/3)-5^(1/2))/(-Zeta(5)+Zeta(1/2)) 3908836997624705 a007 Real Root Of 68*x^4+185*x^3-275*x^2+165*x+21 3908837001145572 h001 (7/10*exp(2)+1/4)/(3/7*exp(1)+2/9) 3908837008059847 m001 Zeta(1,2)/exp(GAMMA(1/4))^2*sin(Pi/5) 3908837010030593 r005 Re(z^2+c),c=-3/86+4/49*I,n=10 3908837022329824 m001 (-Porter+Trott2nd)/(1+FeigenbaumD) 3908837028490818 p004 log(33547/32261) 3908837034179102 r005 Re(z^2+c),c=-89/86+4/49*I,n=34 3908837045452416 r005 Im(z^2+c),c=1/118+27/55*I,n=63 3908837048606849 m001 ln(GAMMA(1/6))^2/LaplaceLimit*Zeta(1,2)^2 3908837051219714 m001 (cos(1/12*Pi)-exp(1))/(-MertensB1+Rabbit) 3908837064772231 r009 Im(z^3+c),c=-29/66+17/52*I,n=40 3908837065615216 a007 Real Root Of -533*x^4+716*x^3+545*x^2+980*x+355 3908837072338325 a007 Real Root Of 214*x^4+809*x^3+22*x^2+735*x+895 3908837077451876 r005 Re(z^2+c),c=-3/86+4/49*I,n=9 3908837077831328 r002 50th iterates of z^2 + 3908837079164812 a008 Real Root of x^4-x^3-14*x^2+30*x+38 3908837079865890 a007 Real Root Of 727*x^4-621*x^3-703*x^2-738*x+416 3908837081785940 r005 Im(z^2+c),c=31/126+13/42*I,n=57 3908837082185827 a001 1/2207*(1/2*5^(1/2)+1/2)^5*76^(9/19) 3908837084241061 a007 Real Root Of -142*x^4+936*x^3-755*x^2+442*x-110 3908837085505785 r005 Re(z^2+c),c=-89/86+4/49*I,n=40 3908837086151408 r005 Re(z^2+c),c=-89/86+4/49*I,n=38 3908837088002254 r002 52th iterates of z^2 + 3908837088583814 h001 (6/7*exp(1)+5/11)/(8/9*exp(2)+5/9) 3908837088739613 r005 Re(z^2+c),c=-3/86+4/49*I,n=13 3908837088814469 r002 56th iterates of z^2 + 3908837088961430 r005 Re(z^2+c),c=-89/86+4/49*I,n=46 3908837089032287 r002 58th iterates of z^2 + 3908837089148224 r005 Re(z^2+c),c=-89/86+4/49*I,n=52 3908837089149159 r002 64th iterates of z^2 + 3908837089151290 r002 62th iterates of z^2 + 3908837089155170 r005 Re(z^2+c),c=-3/86+4/49*I,n=16 3908837089156955 r005 Re(z^2+c),c=-89/86+4/49*I,n=58 3908837089157313 r005 Re(z^2+c),c=-89/86+4/49*I,n=64 3908837089157315 r005 Re(z^2+c),c=-3/86+4/49*I,n=19 3908837089157321 r005 Re(z^2+c),c=-89/86+4/49*I,n=60 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=22 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=25 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=28 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=31 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=34 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=32 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=35 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=37 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=38 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=40 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=41 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=43 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=44 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=46 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=47 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=49 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=50 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=52 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=53 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=54 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=55 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=56 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=57 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=58 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=59 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=60 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=61 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=62 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=63 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=64 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=51 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=48 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=45 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=42 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=39 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=36 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=33 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=29 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=30 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=27 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=26 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=24 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=23 3908837089157326 r005 Re(z^2+c),c=-3/86+4/49*I,n=21 3908837089157327 r005 Re(z^2+c),c=-3/86+4/49*I,n=20 3908837089157351 r005 Re(z^2+c),c=-3/86+4/49*I,n=18 3908837089157374 r005 Re(z^2+c),c=-89/86+4/49*I,n=62 3908837089157566 r005 Re(z^2+c),c=-3/86+4/49*I,n=17 3908837089158184 r005 Re(z^2+c),c=-89/86+4/49*I,n=56 3908837089158363 r005 Re(z^2+c),c=-89/86+4/49*I,n=54 3908837089160655 r005 Re(z^2+c),c=-3/86+4/49*I,n=15 3908837089169243 r005 Re(z^2+c),c=-89/86+4/49*I,n=50 3908837089203133 r005 Re(z^2+c),c=-89/86+4/49*I,n=48 3908837089213620 r005 Re(z^2+c),c=-3/86+4/49*I,n=14 3908837089227601 r005 Re(z^2+c),c=-89/86+4/49*I,n=44 3908837089235452 r002 60th iterates of z^2 + 3908837089467792 r005 Re(z^2+c),c=-3/86+4/49*I,n=12 3908837090555383 r005 Re(z^2+c),c=-89/86+4/49*I,n=42 3908837090907791 r002 54th iterates of z^2 + 3908837095341106 r005 Im(z^2+c),c=-19/66+11/19*I,n=28 3908837101869014 r005 Re(z^2+c),c=-3/86+4/49*I,n=11 3908837103227601 r002 46th iterates of z^2 + 3908837110253667 a007 Real Root Of -946*x^4+907*x^3-439*x^2+747*x-257 3908837115509169 a001 817138163596/233*6557470319842^(12/17) 3908837123384772 r002 48th iterates of z^2 + 3908837124769369 r005 Re(z^2+c),c=-89/86+4/49*I,n=36 3908837126179576 a003 cos(Pi*13/62)-cos(Pi*31/84) 3908837132997588 r008 a(0)=4,K{-n^6,27-7*n^3-10*n^2} 3908837144632344 r005 Im(z^2+c),c=-11/62+27/41*I,n=24 3908837165598382 m001 gamma^(Pi^(1/2)/Zeta(5)) 3908837165598382 m001 gamma^(sqrt(Pi)/Zeta(5)) 3908837170431531 m004 -2+125/Pi-125*Pi*Cot[Sqrt[5]*Pi] 3908837183228206 m005 (1/2*Zeta(3)+3/4)/(1/5*exp(1)-4) 3908837183392024 r009 Re(z^3+c),c=-1/48+41/50*I,n=33 3908837191513475 m001 GAMMA(1/4)^2*OneNinth^2*ln(GAMMA(19/24))^2 3908837192864336 r004 Im(z^2+c),c=3/38-11/23*I,z(0)=I,n=18 3908837210465009 r009 Im(z^3+c),c=-5/44+49/62*I,n=4 3908837216433745 a001 3571/377*2178309^(13/51) 3908837235994490 m005 (1/2*exp(1)-2/7)/(-1/33+3/22*5^(1/2)) 3908837238444299 m005 (1/3*gamma-1/6)/(-19/90+7/18*5^(1/2)) 3908837238839882 a001 20365011074/843*123^(1/10) 3908837252997293 a007 Real Root Of 169*x^4+411*x^3-819*x^2+702*x+351 3908837256877465 l006 ln(5066/7489) 3908837266834243 r009 Im(z^3+c),c=-11/50+28/61*I,n=3 3908837272196893 r005 Re(z^2+c),c=-13/22+63/101*I,n=27 3908837275514223 m001 PrimesInBinary-exp(1)*ZetaQ(3) 3908837281036656 r005 Re(z^2+c),c=-23/48+18/41*I,n=41 3908837284127609 m001 (Kac+Landau)/(FeigenbaumD+HardyLittlewoodC4) 3908837285017923 r009 Re(z^3+c),c=-51/98+5/23*I,n=31 3908837300857188 r005 Re(z^2+c),c=-15/28+10/49*I,n=22 3908837322686248 r009 Im(z^3+c),c=-29/86+5/13*I,n=9 3908837329591215 a007 Real Root Of -218*x^4+272*x^3-865*x^2+252*x+252 3908837335613753 m008 (3/5*Pi^4+1)/(5*Pi-1/2) 3908837336610894 r009 Re(z^3+c),c=-1/54+43/51*I,n=16 3908837337271736 a007 Real Root Of -280*x^4+879*x^3-258*x^2+871*x-347 3908837350460694 r005 Im(z^2+c),c=1/12+19/43*I,n=50 3908837351957142 a007 Real Root Of 818*x^4-93*x^3-314*x^2-776*x-280 3908837362393936 m002 4*Pi^2-Sinh[Pi]/(3*Pi^2) 3908837382111027 m005 (1/2*gamma+3/5)/(8/9*5^(1/2)+2/7) 3908837390700522 m005 (1/2*Catalan-1/5)/(11/12*2^(1/2)-7/11) 3908837395403569 a007 Real Root Of 451*x^4-812*x^3-397*x^2-244*x+194 3908837398988893 r002 30th iterates of z^2 + 3908837399260638 r005 Re(z^2+c),c=-10/21+6/29*I,n=3 3908837413961234 a005 (1/cos(7/62*Pi))^272 3908837418913985 m001 Riemann2ndZero/(GaussKuzminWirsing-sin(1)) 3908837424190317 p001 sum(1/(363*n+256)/(625^n),n=0..infinity) 3908837430481847 m001 LaplaceLimit-Salem^arctan(1/3) 3908837434740444 s002 sum(A209787[n]/((exp(n)-1)/n),n=1..infinity) 3908837448705429 r009 Im(z^3+c),c=-31/118+23/56*I,n=23 3908837454786424 l006 ln(6747/9974) 3908837465794233 m001 GAMMA(3/4)+Magata-Sarnak 3908837467130533 r005 Im(z^2+c),c=-11/102+27/49*I,n=29 3908837472722466 p003 LerchPhi(1/512,1,269/105) 3908837478197078 r005 Re(z^2+c),c=-3/34+29/34*I,n=39 3908837481731230 r009 Re(z^3+c),c=-14/29+13/54*I,n=24 3908837483012854 b008 7/25+ArcCsch[9] 3908837485923638 m001 (-GaussAGM+MinimumGamma)/(LambertW(1)+Zeta(5)) 3908837493504006 r005 Re(z^2+c),c=-49/86+13/37*I,n=28 3908837509088023 a001 4870847/5*75025^(17/23) 3908837515586155 m001 (GaussAGM+Trott)/(GAMMA(3/4)-Zeta(1,2)) 3908837525655595 a001 11/46368*3^(5/11) 3908837555098119 r005 Re(z^2+c),c=-25/46+1/39*I,n=36 3908837565623377 m001 (gamma(1)+FeigenbaumDelta)/(Sarnak+ZetaP(2)) 3908837573453958 a003 cos(Pi*42/107)+cos(Pi*38/79) 3908837574629166 r005 Im(z^2+c),c=-2/19+35/59*I,n=36 3908837583532010 a001 7778742049/521*322^(1/6) 3908837585118039 r005 Im(z^2+c),c=-41/110+15/29*I,n=14 3908837597365824 m008 (4*Pi-4/5)/(Pi^5-5) 3908837623741756 r005 Re(z^2+c),c=-47/62+1/26*I,n=50 3908837625145920 r005 Re(z^2+c),c=-17/31+8/33*I,n=18 3908837625605769 m001 1/FeigenbaumD^2/ln(FeigenbaumB)^2/GAMMA(11/12) 3908837643858053 m002 -E^Pi+Pi^4+Pi^5+Cosh[Pi]-Tanh[Pi] 3908837647264557 r002 42th iterates of z^2 + 3908837648298741 m005 (2*Catalan-2)/(5/6*Catalan-1/3) 3908837653478614 m001 (Riemann2ndZero+ThueMorse)/(Conway-Si(Pi)) 3908837658034842 m001 GAMMA(19/24)^2*Trott^2*exp(log(1+sqrt(2))) 3908837688380740 r009 Im(z^3+c),c=-31/118+23/56*I,n=25 3908837693908406 r005 Im(z^2+c),c=-31/25+8/59*I,n=8 3908837703772902 r005 Re(z^2+c),c=-17/31+1/3*I,n=23 3908837721416214 m001 LambertW(1)/ln(Robbin)^2*sinh(1) 3908837723478541 b008 -43+ArcCosh[25] 3908837725200125 r005 Re(z^2+c),c=-35/74+15/32*I,n=44 3908837731665335 r009 Im(z^3+c),c=-9/23+31/60*I,n=6 3908837735785271 l006 ln(8429/8765) 3908837736853534 m001 (Zeta(5)-ln(gamma))/(BesselI(0,2)-Khinchin) 3908837759475974 r009 Re(z^3+c),c=-2/5+8/55*I,n=30 3908837764225041 r002 54th iterates of z^2 + 3908837764225041 r002 54th iterates of z^2 + 3908837767599542 a001 1/5778*(1/2*5^(1/2)+1/2)^7*76^(9/19) 3908837768177841 r009 Im(z^3+c),c=-15/29+11/40*I,n=52 3908837773717270 m005 (1/2*Pi-2)/(5*5^(1/2)-1/5) 3908837776084382 g006 Psi(1,2/11)+Psi(1,3/10)-Psi(1,5/6)-Psi(1,3/4) 3908837780120011 a007 Real Root Of -605*x^4-6*x^3-424*x^2-247*x-18 3908837784796302 r009 Im(z^3+c),c=-8/19+21/62*I,n=29 3908837790175696 r005 Im(z^2+c),c=-37/54+15/49*I,n=25 3908837802115634 r005 Im(z^2+c),c=1/118+26/53*I,n=19 3908837807703902 r005 Im(z^2+c),c=2/29+25/56*I,n=8 3908837816840591 a008 Real Root of x^4-x^3-18*x^2+139*x+57 3908837820966714 r009 Im(z^3+c),c=-31/118+23/56*I,n=19 3908837824967372 b008 E^(2+Sinh[1/2])*Pi 3908837839806243 a007 Real Root Of 972*x^4-253*x^3+782*x^2+671*x+105 3908837839830962 a007 Real Root Of -203*x^4-825*x^3-332*x^2-724*x+361 3908837840751688 r005 Im(z^2+c),c=41/110+5/28*I,n=9 3908837850944284 a001 2971215073/1364*322^(1/2) 3908837862361823 r005 Re(z^2+c),c=-31/24+2/53*I,n=8 3908837865188922 r009 Re(z^3+c),c=-2/5+8/55*I,n=31 3908837865231649 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=28 3908837867600075 a001 1/15127*(1/2*5^(1/2)+1/2)^9*76^(9/19) 3908837873830880 s002 sum(A271984[n]/((10^n+1)/n),n=1..infinity) 3908837880947610 r005 Re(z^2+c),c=-89/86+4/49*I,n=30 3908837882189957 a001 1/39603*(1/2*5^(1/2)+1/2)^11*76^(9/19) 3908837885634161 a001 1/64079*(1/2*5^(1/2)+1/2)^12*76^(9/19) 3908837891207000 a001 1/24476*(1/2*5^(1/2)+1/2)^10*76^(9/19) 3908837898487893 r005 Re(z^2+c),c=-19/36+11/49*I,n=50 3908837908395070 m001 exp(1/2)/BesselJ(0,1)/Psi(2,1/3) 3908837909734140 m004 -25*Pi+(2000*Cos[Sqrt[5]*Pi])/Pi 3908837926087392 m001 (Si(Pi)-sin(1/5*Pi))/(Pi^(1/2)+MinimumGamma) 3908837927062278 m005 (1/2*exp(1)-8/9)/(1/10*Pi+8/9) 3908837929403806 a001 1/9349*(1/2*5^(1/2)+1/2)^8*76^(9/19) 3908837934150721 r005 Re(z^2+c),c=-12/23+11/43*I,n=21 3908837937350385 r005 Re(z^2+c),c=-47/98+21/50*I,n=40 3908837944117221 r005 Re(z^2+c),c=2/17+6/23*I,n=21 3908837944336076 m001 (Kac-LaplaceLimit)/(ln(2)-GAMMA(13/24)) 3908837948749119 r005 Re(z^2+c),c=-29/54+9/62*I,n=60 3908837950640537 r005 Im(z^2+c),c=25/94+21/64*I,n=6 3908837952831960 r009 Re(z^3+c),c=-11/24+12/23*I,n=30 3908837964611920 r005 Re(z^2+c),c=27/74+18/55*I,n=2 3908837965259231 m005 (1/3*Zeta(3)-2/5)/(1/7*gamma-1/10) 3908837968919804 m001 (Ei(1)-BesselK(1,1))/(Magata-Paris) 3908837971127426 r002 23th iterates of z^2 + 3908837984402369 m001 (Khinchin+Porter)/(5^(1/2)-GAMMA(19/24)) 3908837994052565 r005 Re(z^2+c),c=-7/13+3/7*I,n=15 3908838002192633 m001 (Shi(1)*CopelandErdos-exp(-1/2*Pi))/Shi(1) 3908838005115447 r009 Re(z^3+c),c=-49/118+6/41*I,n=6 3908838013048206 r002 42th iterates of z^2 + 3908838024770028 a007 Real Root Of -860*x^4-614*x^3-793*x^2+216*x+189 3908838033395734 m001 1/exp(Robbin)*RenyiParking^2*FeigenbaumKappa 3908838034625303 m009 (3*Psi(1,2/3)-1/3)/(4/3*Catalan+1/6*Pi^2-3/5) 3908838050560856 s002 sum(A062796[n]/(16^n),n=1..infinity) 3908838051221134 l006 ln(1681/2485) 3908838086760032 r005 Re(z^2+c),c=-57/106+7/51*I,n=50 3908838089007916 a007 Real Root Of 383*x^4-411*x^3-874*x^2-652*x+404 3908838089156838 a001 2971215073/2207*322^(7/12) 3908838089822010 r005 Im(z^2+c),c=-11/56+27/46*I,n=47 3908838100073953 a001 199/5*317811^(21/58) 3908838104292381 m001 (arctan(1/2)+Otter)/(Shi(1)-ln(Pi)) 3908838105941416 a001 4/1346269*144^(54/55) 3908838138897833 m001 ln(Pi)^ln(gamma)*BesselK(0,1) 3908838138897833 m001 ln(Pi)^log(gamma)*BesselK(0,1) 3908838155685133 m001 KomornikLoreti^PrimesInBinary-ln(2^(1/2)+1) 3908838171136613 r005 Im(z^2+c),c=-3/11+3/53*I,n=15 3908838184148160 r005 Re(z^2+c),c=-29/54+9/62*I,n=54 3908838191208634 a001 1/3571*(1/2*5^(1/2)+1/2)^6*76^(9/19) 3908838194977370 a007 Real Root Of -580*x^4-371*x^3-779*x^2+966*x+488 3908838207346751 a007 Real Root Of -663*x^4-753*x^3+344*x^2+780*x-297 3908838208755536 r005 Im(z^2+c),c=7/94+7/16*I,n=13 3908838220243068 m009 (8/5*Catalan+1/5*Pi^2+3/5)/(4*Psi(1,3/4)+1/6) 3908838220612041 m002 -(Cosh[Pi]/Log[Pi])+Pi^5*Log[Pi]^2 3908838221041311 m001 (-Paris+Trott2nd)/(cos(1)+GlaisherKinkelin) 3908838240590363 a007 Real Root Of -397*x^4+451*x^3-853*x^2-490*x-25 3908838249513653 h001 (2/3*exp(1)+5/6)/(8/9*exp(2)+1/5) 3908838250082120 m008 (4/5*Pi^4-3/5)/(1/6*Pi^2+1/3) 3908838253681557 r002 40th iterates of z^2 + 3908838255083204 r009 Im(z^3+c),c=-31/118+23/56*I,n=28 3908838261735280 m001 (BesselK(1,1)-Pi^(1/2))/(Magata-ThueMorse) 3908838291750809 r009 Im(z^3+c),c=-10/19+3/31*I,n=17 3908838293956370 r009 Im(z^3+c),c=-11/30+17/46*I,n=6 3908838296982886 a003 cos(Pi*31/85)*sin(Pi*25/63) 3908838320494130 a007 Real Root Of -244*x^4-932*x^3-88*x^2-659*x+68 3908838321652303 r005 Im(z^2+c),c=-7/20+37/60*I,n=43 3908838330445516 m001 (2^(1/2)-gamma(2))/(CopelandErdos+Magata) 3908838331834875 r002 30th iterates of z^2 + 3908838341154188 r005 Im(z^2+c),c=-3/4+2/137*I,n=39 3908838361568796 r005 Re(z^2+c),c=-27/58+25/57*I,n=24 3908838370449579 a007 Real Root Of 130*x^4+588*x^3+445*x^2+272*x-967 3908838376303828 m001 (ln(2)-gamma(2))/(KomornikLoreti+Trott) 3908838379331902 r009 Im(z^3+c),c=-31/118+23/56*I,n=31 3908838393710533 m001 (Lehmer+Trott)/(sin(1/12*Pi)+GAMMA(17/24)) 3908838400237297 r009 Im(z^3+c),c=-31/118+23/56*I,n=34 3908838401003010 r009 Im(z^3+c),c=-31/118+23/56*I,n=33 3908838402002652 r009 Im(z^3+c),c=-31/118+23/56*I,n=36 3908838402146137 m005 (1/2*3^(1/2)+8/9)/(5/12*3^(1/2)-3/11) 3908838402734432 r009 Im(z^3+c),c=-31/118+23/56*I,n=39 3908838402859366 r009 Im(z^3+c),c=-31/118+23/56*I,n=37 3908838402929996 r009 Im(z^3+c),c=-31/118+23/56*I,n=42 3908838402967864 r009 Im(z^3+c),c=-31/118+23/56*I,n=45 3908838402972982 r009 Im(z^3+c),c=-31/118+23/56*I,n=47 3908838402973527 r009 Im(z^3+c),c=-31/118+23/56*I,n=48 3908838402973732 r009 Im(z^3+c),c=-31/118+23/56*I,n=50 3908838402974012 r009 Im(z^3+c),c=-31/118+23/56*I,n=53 3908838402974076 r009 Im(z^3+c),c=-31/118+23/56*I,n=56 3908838402974087 r009 Im(z^3+c),c=-31/118+23/56*I,n=59 3908838402974087 r009 Im(z^3+c),c=-31/118+23/56*I,n=58 3908838402974088 r009 Im(z^3+c),c=-31/118+23/56*I,n=61 3908838402974088 r009 Im(z^3+c),c=-31/118+23/56*I,n=64 3908838402974088 r009 Im(z^3+c),c=-31/118+23/56*I,n=62 3908838402974088 r009 Im(z^3+c),c=-31/118+23/56*I,n=63 3908838402974089 r009 Im(z^3+c),c=-31/118+23/56*I,n=60 3908838402974095 r009 Im(z^3+c),c=-31/118+23/56*I,n=57 3908838402974095 r009 Im(z^3+c),c=-31/118+23/56*I,n=55 3908838402974107 r009 Im(z^3+c),c=-31/118+23/56*I,n=51 3908838402974111 r009 Im(z^3+c),c=-31/118+23/56*I,n=54 3908838402974186 r009 Im(z^3+c),c=-31/118+23/56*I,n=52 3908838402974532 r009 Im(z^3+c),c=-31/118+23/56*I,n=44 3908838402974835 r009 Im(z^3+c),c=-31/118+23/56*I,n=49 3908838402978384 r009 Im(z^3+c),c=-31/118+23/56*I,n=46 3908838402992898 r009 Im(z^3+c),c=-31/118+23/56*I,n=43 3908838403014242 r009 Im(z^3+c),c=-31/118+23/56*I,n=41 3908838403023367 r009 Im(z^3+c),c=-31/118+23/56*I,n=40 3908838403360950 r009 Im(z^3+c),c=-31/118+23/56*I,n=38 3908838405543471 r009 Im(z^3+c),c=-31/118+23/56*I,n=35 3908838410145737 r005 Re(z^2+c),c=-5/8+11/227*I,n=10 3908838410921923 m001 Zeta(5)*(Ei(1,1)-Gompertz) 3908838414633888 r009 Im(z^3+c),c=-31/118+23/56*I,n=30 3908838416160000 r009 Im(z^3+c),c=-31/118+23/56*I,n=32 3908838424947179 m005 (1/2*3^(1/2)-7/10)/(1/7*3^(1/2)+4) 3908838425910451 m001 1/BesselJ(0,1)/ln(GlaisherKinkelin)^2/cos(1) 3908838438671698 a007 Real Root Of 189*x^4-813*x^3+24*x^2-991*x-444 3908838441296960 m005 (1/36+1/4*5^(1/2))/(7/12*Zeta(3)+4/5) 3908838446649822 r005 Re(z^2+c),c=-11/20+21/53*I,n=38 3908838450120785 r009 Re(z^3+c),c=-33/74+3/7*I,n=4 3908838451793238 r009 Im(z^3+c),c=-31/118+23/56*I,n=29 3908838452939723 l006 ln(195/9719) 3908838460142001 r005 Im(z^2+c),c=-3/94+33/64*I,n=45 3908838465167849 r009 Im(z^3+c),c=-31/118+23/56*I,n=26 3908838476185346 m005 (1/2*Pi-7/12)/(8/11*5^(1/2)+9/10) 3908838482282436 a007 Real Root Of 149*x^4+323*x^3-776*x^2+848*x-322 3908838490776238 r005 Re(z^2+c),c=-18/25+3/10*I,n=7 3908838497026849 r009 Re(z^3+c),c=-41/106+3/23*I,n=8 3908838507721914 r005 Re(z^2+c),c=-9/110+30/47*I,n=11 3908838517109239 r005 Re(z^2+c),c=-13/24+1/12*I,n=31 3908838519884660 m001 (cos(1/12*Pi)+Otter)/(Chi(1)-Zeta(1,-1)) 3908838533403924 r005 Im(z^2+c),c=7/17+6/17*I,n=20 3908838557044092 r002 52th iterates of z^2 + 3908838559407786 m001 1/Zeta(1,2)^2/exp(Khintchine)^2*exp(1)^2 3908838579820400 r002 4i'th iterates of 2*x/(1-x^2) of 3908838582567515 m001 (Tribonacci+TwinPrimes)/(ln(2)-MertensB3) 3908838583092684 r009 Im(z^3+c),c=-31/118+23/56*I,n=27 3908838604647263 m001 (Landau-TreeGrowth2nd)/(Zeta(5)+ErdosBorwein) 3908838605008301 a005 (1/cos(12/217*Pi))^1608 3908838616526175 a007 Real Root Of -181*x^4-785*x^3-310*x^2+98*x+491 3908838625098975 p003 LerchPhi(1/256,1,372/145) 3908838628032174 m005 (1/2*Zeta(3)+7/10)/(2*2^(1/2)+1/2) 3908838636798450 r005 Re(z^2+c),c=-31/66+30/61*I,n=58 3908838644766738 m001 1/GAMMA(5/24)*GAMMA(1/6)/exp(sinh(1)) 3908838651750122 l006 ln(6701/9906) 3908838653270646 a007 Real Root Of 70*x^4+144*x^3-307*x^2+553*x-889 3908838658430682 r005 Im(z^2+c),c=-15/118+25/44*I,n=61 3908838667834190 m001 (LandauRamanujan+ThueMorse)/ln(2)*ln(10) 3908838679378616 b008 2/3+7*Cos[4] 3908838697870566 r005 Re(z^2+c),c=-15/28+7/44*I,n=45 3908838713466238 a007 Real Root Of 150*x^4+547*x^3-236*x^2-349*x-107 3908838726486457 a001 233/39603*18^(19/29) 3908838760743965 r005 Re(z^2+c),c=-53/98+2/21*I,n=53 3908838764712005 m001 Zeta(1/2)^Trott2nd/Sierpinski 3908838774143452 r009 Im(z^3+c),c=-12/25+11/37*I,n=49 3908838774570729 a001 7778742049/5778*322^(7/12) 3908838803269938 b008 1/4+6*Sinh[EulerGamma] 3908838807905139 r002 9th iterates of z^2 + 3908838817638697 m001 (2^(1/2)*cos(1/5*Pi)+Zeta(1/2))/cos(1/5*Pi) 3908838817638697 m001 (sqrt(2)*cos(Pi/5)+Zeta(1/2))/cos(Pi/5) 3908838819237654 m001 (BesselI(0,1)-Zeta(1/2))/ArtinRank2 3908838831431792 r005 Re(z^2+c),c=-1+32/145*I,n=18 3908838836873783 m001 (-FellerTornier+Robbin)/(exp(1/exp(1))-gamma) 3908838837478497 m001 (Cahen-FeigenbaumMu)/(gamma(1)-gamma(3)) 3908838839520585 r009 Re(z^3+c),c=-39/82+7/30*I,n=62 3908838839972437 v002 sum(1/(3^n+(25*n^2-17*n+36)),n=1..infinity) 3908838848629893 r009 Im(z^3+c),c=-41/78+9/26*I,n=44 3908838852843586 l006 ln(5020/7421) 3908838863520794 a007 Real Root Of -64*x^4-92*x^3+425*x^2-937*x-710 3908838865946915 a001 1/72*1836311903^(10/17) 3908838866763793 p002 log(5^(12/5)+7^(5/12)) 3908838874571289 a001 20365011074/15127*322^(7/12) 3908838877020424 r005 Re(z^2+c),c=-61/106+1/10*I,n=8 3908838889161174 a001 53316291173/39603*322^(7/12) 3908838891289810 a001 139583862445/103682*322^(7/12) 3908838891600373 a001 365435296162/271443*322^(7/12) 3908838891645684 a001 956722026041/710647*322^(7/12) 3908838891652295 a001 2504730781961/1860498*322^(7/12) 3908838891653259 a001 6557470319842/4870847*322^(7/12) 3908838891653487 a001 10610209857723/7881196*322^(7/12) 3908838891653855 a001 1346269*322^(7/12) 3908838891656380 a001 1548008755920/1149851*322^(7/12) 3908838891673687 a001 591286729879/439204*322^(7/12) 3908838891792312 a001 225851433717/167761*322^(7/12) 3908838892605379 a001 86267571272/64079*322^(7/12) 3908838898178219 a001 32951280099/24476*322^(7/12) 3908838902855204 a007 Real Root Of 177*x^4+630*x^3-114*x^2+604*x+408 3908838927760489 h005 exp(cos(Pi*3/44)/cos(Pi*14/57)) 3908838928151596 a001 9062201101803*1836311903^(3/17) 3908838928151596 a001 2139295485799*6557470319842^(3/17) 3908838936375036 a001 12586269025/9349*322^(7/12) 3908838950760869 m001 (polylog(4,1/2)-Khinchin)/(ZetaQ(2)+ZetaQ(4)) 3908838951207797 m001 (Cahen-FransenRobinson)/(Zeta(5)-BesselI(1,2)) 3908838991992392 r005 Re(z^2+c),c=-22/17+1/27*I,n=54 3908839001665893 r005 Im(z^2+c),c=7/122+17/37*I,n=64 3908839039648275 r002 12th iterates of z^2 + 3908839045518901 r005 Re(z^2+c),c=-63/118+5/47*I,n=16 3908839045741010 r002 57th iterates of z^2 + 3908839051793652 r005 Re(z^2+c),c=-41/78+11/49*I,n=14 3908839085250525 r009 Im(z^3+c),c=-29/64+13/41*I,n=25 3908839088218459 r005 Re(z^2+c),c=-29/54+9/62*I,n=62 3908839099491842 r002 5th iterates of z^2 + 3908839125341017 m005 (2*2^(1/2)-3)/(2/3*Catalan-5) 3908839126641271 r002 25th iterates of z^2 + 3908839131454878 r005 Re(z^2+c),c=-37/86+33/61*I,n=29 3908839134338458 l006 ln(151/7526) 3908839142208079 r005 Im(z^2+c),c=-4/19+38/53*I,n=20 3908839165905938 r005 Im(z^2+c),c=-25/58+10/19*I,n=29 3908839198179931 a001 4807526976/3571*322^(7/12) 3908839198206305 m004 -2-125*Pi+Cos[Sqrt[5]*Pi]+6/Log[Sqrt[5]*Pi] 3908839215221005 r009 Re(z^3+c),c=-9/23+7/52*I,n=10 3908839216329652 a007 Real Root Of -233*x^4-780*x^3+470*x^2-118*x+167 3908839221603022 b008 -4+ArcCoth[11] 3908839240412091 r009 Re(z^3+c),c=-11/24+5/23*I,n=16 3908839241595428 m001 Thue^(Pi*csc(5/12*Pi)/GAMMA(7/12))/Si(Pi) 3908839244891374 r005 Im(z^2+c),c=31/126+13/42*I,n=63 3908839250453139 m001 (-MertensB2+Totient)/(1-Ei(1,1)) 3908839256415692 l006 ln(3339/4936) 3908839258154096 m005 (1/2*Zeta(3)+5/6)/(5/6*Catalan-4/5) 3908839268253380 m001 (BesselI(1,1)-gamma)/(-FellerTornier+Magata) 3908839268592737 r002 25th iterates of z^2 + 3908839271100840 m005 (1/3*exp(1)+1/11)/(7/8*gamma-1/4) 3908839272204244 a007 Real Root Of 524*x^4-58*x^3-365*x^2-760*x-257 3908839282651456 m001 OneNinth*(GAMMA(23/24)-LaplaceLimit) 3908839293014950 r005 Im(z^2+c),c=13/74+19/51*I,n=39 3908839314610159 r009 Re(z^3+c),c=-39/74+21/64*I,n=50 3908839315201633 m001 GAMMA(17/24)^2/GAMMA(1/12)^2/exp(sqrt(3))^2 3908839319554892 r005 Im(z^2+c),c=1/12+19/43*I,n=54 3908839320511337 a007 Real Root Of 98*x^4+490*x^3+442*x^2+45*x-191 3908839337352607 p004 log(37003/25031) 3908839348886870 s002 sum(A211181[n]/(n*pi^n+1),n=1..infinity) 3908839351631500 a007 Real Root Of -229*x^4-663*x^3+755*x^2-707*x-436 3908839354384442 r005 Im(z^2+c),c=9/56+12/31*I,n=17 3908839356092065 m005 (1/12+1/4*5^(1/2))/(4/9*Catalan-4/7) 3908839356770038 m001 GlaisherKinkelin*(OneNinth-ThueMorse) 3908839363034498 m005 (1/2*Catalan-3/8)/(7/11*5^(1/2)+7/10) 3908839373269150 a007 Real Root Of -119*x^4+571*x^3+441*x^2+538*x-309 3908839395732598 m001 exp(1/Pi)^ln(2^(1/2)+1)+Sierpinski 3908839396089612 r005 Im(z^2+c),c=11/52+13/38*I,n=31 3908839400898180 r005 Re(z^2+c),c=-39/62+8/55*I,n=6 3908839409484326 r005 Re(z^2+c),c=-81/110+5/24*I,n=45 3908839414976687 r005 Im(z^2+c),c=5/38+19/45*I,n=3 3908839418437818 r002 8th iterates of z^2 + 3908839424905983 m005 (9/8+1/4*5^(1/2))/(4*Zeta(3)-1/2) 3908839425669061 a005 (1/sin(52/173*Pi))^83 3908839431180585 b008 4-Sqrt[3]/19 3908839444066804 m001 (Totient-ZetaQ(2))/(MasserGramainDelta+Porter) 3908839447067118 r009 Im(z^3+c),c=-59/122+15/53*I,n=22 3908839451743128 m001 1/exp(BesselK(0,1))*Rabbit*Catalan^2 3908839456491128 m001 (BesselK(1,1)+ZetaQ(3))/(ln(3)+arctan(1/2)) 3908839462367727 a008 Real Root of (1-5*x^2+3*x^3-4*x^4-4*x^5) 3908839471358193 m001 (2*Pi/GAMMA(5/6)+Totient)/(Pi-exp(1/Pi)) 3908839486958600 r009 Re(z^3+c),c=-23/56+10/63*I,n=22 3908839492572198 m001 1/3*LandauRamanujan/GAMMA(5/6)*3^(1/2) 3908839492572198 m001 LandauRamanujan/sqrt(3)/GAMMA(5/6) 3908839517750362 m005 (1/2*Zeta(3)+2/9)/(9/10*2^(1/2)+5/6) 3908839519167624 m001 3^(1/2)+ln(2+3^(1/2))*(1+3^(1/2))^(1/2) 3908839519167624 m001 sqrt(3)+ln(2+sqrt(3))*sqrt(1+sqrt(3)) 3908839536597203 r005 Im(z^2+c),c=-5/27+30/53*I,n=18 3908839536855865 m001 (1-3^(1/2))/(-Zeta(1/2)+ThueMorse) 3908839538269371 m005 (1/2*exp(1)-2/9)/(8/9*gamma-2/9) 3908839548896712 r005 Im(z^2+c),c=-83/78+1/23*I,n=5 3908839555899253 r009 Re(z^3+c),c=-23/48+31/63*I,n=28 3908839568682956 r002 9th iterates of z^2 + 3908839577559335 m001 (Pi+Zeta(1,-1))/(GAMMA(23/24)-KomornikLoreti) 3908839579436526 m001 (2*Pi/GAMMA(5/6)-Landau)/GAMMA(17/24) 3908839592704416 r005 Im(z^2+c),c=7/122+17/37*I,n=62 3908839603815504 m001 1/GAMMA(23/24)^2/exp(Tribonacci)*sin(Pi/12) 3908839604015427 m002 Cosh[Pi]/5+(4*Pi^2)/ProductLog[Pi] 3908839609477716 r005 Im(z^2+c),c=31/126+13/42*I,n=62 3908839621286849 r009 Re(z^3+c),c=-2/29+26/41*I,n=30 3908839626284134 m001 exp(1/Pi)/(ln(gamma)^KhinchinHarmonic) 3908839640150113 b008 -4+Tan[1/11] 3908839644720748 m008 (5/6*Pi^5-4)/(3/5*Pi^2+1/2) 3908839654003381 r008 a(0)=0,K{-n^6,5+34*n+18*n^2-32*n^3} 3908839655927412 b008 2+7*ArcSinh[100] 3908839660733138 m001 (-gamma+2)/(GAMMA(13/24)+2) 3908839661845327 l006 ln(4997/7387) 3908839665678289 r005 Re(z^2+c),c=-3/22+20/31*I,n=50 3908839674610039 a001 433494437/843*322^(3/4) 3908839675742298 a007 Real Root Of -96*x^4-319*x^3+373*x^2+365*x-913 3908839681077198 r002 61th iterates of z^2 + 3908839685223535 m006 (5*exp(Pi)-1/5)/(3/Pi+2) 3908839694166207 a001 7/8*196418^(7/57) 3908839694398943 r005 Re(z^2+c),c=7/27+2/63*I,n=50 3908839695824989 h001 (2/11*exp(1)+5/7)/(11/12*exp(1)+3/5) 3908839720695520 a007 Real Root Of 191*x^4+812*x^3+196*x^2-374*x-550 3908839741583652 r005 Re(z^2+c),c=29/86+16/37*I,n=11 3908839751673948 r005 Im(z^2+c),c=3/122+25/52*I,n=59 3908839762883456 m005 (4/5*Pi+2/3)/(-1/40+3/8*5^(1/2)) 3908839769610929 r005 Im(z^2+c),c=-4/15+30/49*I,n=31 3908839771251754 r002 18th iterates of z^2 + 3908839779005524 q001 283/724 3908839780386617 r002 59th iterates of z^2 + 3908839806330695 r005 Im(z^2+c),c=-39/56+11/35*I,n=3 3908839811000455 r002 50th iterates of z^2 + 3908839819109845 a007 Real Root Of 378*x^4-525*x^3+366*x^2-725*x+250 3908839826316987 r009 Im(z^3+c),c=-31/118+23/56*I,n=24 3908839827794092 r005 Im(z^2+c),c=23/126+19/49*I,n=12 3908839854667132 m001 (-Tetranacci+Thue)/(Si(Pi)+QuadraticClass) 3908839861282036 m005 (1/3*3^(1/2)-2/11)/(7/9*5^(1/2)-8/11) 3908839862638869 a001 6/75283811239*8^(13/17) 3908839865260731 l006 ln(6655/9838) 3908839870677166 a007 Real Root Of -353*x^4-703*x^3-921*x^2+458*x+286 3908839873705199 r005 Re(z^2+c),c=-11/20+1/37*I,n=16 3908839876756286 r005 Re(z^2+c),c=-3/86+4/49*I,n=8 3908839879203615 a003 sin(Pi*9/59)*sin(Pi*19/59) 3908839890803713 r005 Im(z^2+c),c=7/122+17/37*I,n=57 3908839891606860 r005 Im(z^2+c),c=13/86+20/51*I,n=48 3908839902712516 m001 GAMMA(1/4)/exp(FeigenbaumDelta)^2*GAMMA(3/4) 3908839907519900 m001 (-ln(5)+TreeGrowth2nd)/(2^(1/3)+3^(1/2)) 3908839908160662 r005 Re(z^2+c),c=23/56+13/25*I,n=3 3908839918280138 r005 Re(z^2+c),c=-61/86+7/47*I,n=15 3908839920094180 m001 (2^(1/2)+cos(1/5*Pi))/(-ln(Pi)+Stephens) 3908839922655109 r002 63th iterates of z^2 + 3908839939114541 r009 Im(z^3+c),c=-49/102+8/27*I,n=30 3908839943792915 a003 cos(Pi*40/107)/sin(Pi*9/20) 3908839948231923 m001 (Backhouse-BesselJ(0,1))/(-Cahen+Kac) 3908839952816052 m001 BesselI(0,1)^Chi(1)-ln(5) 3908839962223767 m001 (2^(1/3)-GAMMA(23/24))/(-ArtinRank2+Paris) 3908839966809799 p001 sum(1/(499*n+256)/(512^n),n=0..infinity) 3908839974352751 r005 Re(z^2+c),c=-29/54+9/62*I,n=64 3908839976204640 r005 Re(z^2+c),c=-51/50+10/41*I,n=2 3908839976558403 a007 Real Root Of 314*x^4-355*x^3+148*x^2-345*x-186 3908839978913029 r005 Im(z^2+c),c=-49/82+21/50*I,n=12 3908839978995761 r005 Re(z^2+c),c=1/16+19/36*I,n=11 3908839985646564 a001 1/1364*(1/2*5^(1/2)+1/2)^4*76^(9/19) 3908839990702029 a003 sin(Pi*8/119)/sin(Pi*20/111) 3908839994587747 r002 51i'th iterates of 2*x/(1-x^2) of 3908840002205885 r002 7th iterates of z^2 + 3908840005698642 r005 Im(z^2+c),c=-11/70+35/53*I,n=53 3908840005744781 r005 Re(z^2+c),c=-39/38+3/31*I,n=4 3908840006185945 r002 43th iterates of z^2 + 3908840007968835 m008 (2/3*Pi^4-5)/(1/2*Pi^5+1/3) 3908840030151885 a007 Real Root Of -749*x^4-562*x^3-789*x^2-14*x+99 3908840031252227 r005 Im(z^2+c),c=-33/28+2/39*I,n=55 3908840034202759 r002 40th iterates of z^2 + 3908840036701556 m001 (Kac-Niven)/(ln(2+3^(1/2))+exp(1/exp(1))) 3908840039852999 r005 Im(z^2+c),c=-31/44+15/61*I,n=31 3908840042908540 a007 Real Root Of 210*x^4+431*x^3+582*x^2-356*x+13 3908840044367421 l006 ln(4942/5139) 3908840046084023 m001 (Zeta(1,-1)+MasserGramain)/(Salem+ZetaQ(2)) 3908840048874447 r009 Im(z^3+c),c=-37/90+19/55*I,n=18 3908840051274804 m001 (ln(2)*BesselJ(1,1)-Stephens)/ln(2) 3908840051783540 r002 14th iterates of z^2 + 3908840057722470 m001 (ln(2)+ln(2^(1/2)+1))/(gamma(1)+PlouffeB) 3908840059303653 r002 60th iterates of z^2 + 3908840068054581 m001 (PisotVijayaraghavan+ZetaQ(3))/(exp(1)+ln(2)) 3908840069447696 m005 (4/5*gamma+5/6)/(4/5*Pi+4/5) 3908840075103654 r005 Re(z^2+c),c=-13/10+6/85*I,n=24 3908840081807156 r005 Im(z^2+c),c=4/19+21/40*I,n=62 3908840083081095 m001 1/(3^(1/3))/Backhouse*ln(BesselJ(1,1)) 3908840092670338 m001 (-FeigenbaumAlpha+FeigenbaumC)/(1-exp(1)) 3908840104230274 s002 sum(A090795[n]/(exp(n)-1),n=1..infinity) 3908840108699983 m005 (1/2*5^(1/2)-1/2)/(6/11*3^(1/2)+7/11) 3908840126569068 r005 Re(z^2+c),c=-51/94+16/33*I,n=54 3908840135553336 a007 Real Root Of 514*x^4-851*x^3-41*x^2-193*x-132 3908840148081417 a007 Real Root Of -777*x^4-505*x^3+754*x^2+911*x-423 3908840154296392 r005 Re(z^2+c),c=-37/114+16/27*I,n=48 3908840155194972 m001 (ln(5)*GAMMA(7/12)-FeigenbaumC)/ln(5) 3908840155230706 r002 56th iterates of z^2 + 3908840157753789 r005 Re(z^2+c),c=-25/46+1/38*I,n=34 3908840168135736 r002 60th iterates of z^2 + 3908840171955756 a007 Real Root Of -110*x^4-189*x^3+747*x^2-897*x-528 3908840174575133 a001 521/21*3^(12/29) 3908840176500550 r002 52th iterates of z^2 + 3908840176500550 r002 52th iterates of z^2 + 3908840181379133 r005 Im(z^2+c),c=3/106+11/23*I,n=35 3908840187242853 r005 Re(z^2+c),c=-25/122+36/59*I,n=16 3908840190010387 r009 Im(z^3+c),c=-7/114+9/16*I,n=2 3908840204494904 a007 Real Root Of -522*x^4+391*x^3-230*x^2+648*x-25 3908840213929964 r002 44th iterates of z^2 + 3908840218088513 r002 5th iterates of z^2 + 3908840226925917 m005 (1/2*2^(1/2)-5/12)/(-3/8+1/2*5^(1/2)) 3908840229562178 r005 Im(z^2+c),c=17/106+22/57*I,n=21 3908840235201125 r009 Re(z^3+c),c=-41/90+23/45*I,n=10 3908840245716832 a007 Real Root Of 229*x^4+890*x^3-4*x^2-87*x-585 3908840253525255 m001 (FeigenbaumDelta+Robbin)/(GAMMA(2/3)-gamma(2)) 3908840255570688 r002 58th iterates of z^2 + 3908840267216099 s001 sum(exp(-Pi)^n*A109012[n],n=1..infinity) 3908840267216099 s002 sum(A109012[n]/(exp(pi*n)),n=1..infinity) 3908840275237184 m001 (Sarnak-ThueMorse)/(BesselI(1,2)-Kolakoski) 3908840278485592 a007 Real Root Of 109*x^4+207*x^3-970*x^2-335*x+428 3908840299360228 a007 Real Root Of -248*x^4-983*x^3-233*x^2-523*x+703 3908840302166019 m001 ln(3)^OneNinth/(ln(3)^Psi(1,1/3)) 3908840346593148 m001 (Zeta(1,2)-exp(Pi))/(-OneNinth+Sarnak) 3908840355025417 m001 Kolakoski/CareFree*ln(sqrt(2)) 3908840376138696 l006 ln(107/5333) 3908840376138696 p004 log(5333/107) 3908840386627293 r005 Im(z^2+c),c=17/114+15/38*I,n=24 3908840390078477 r005 Im(z^2+c),c=-5/114+33/56*I,n=15 3908840397327807 h001 (3/11*exp(2)+3/4)/(5/6*exp(2)+11/12) 3908840407060289 m004 -1+125*Pi-(5*Sqrt[5]*Tan[Sqrt[5]*Pi])/(4*Pi) 3908840408542995 r005 Re(z^2+c),c=-9/122+36/55*I,n=20 3908840418662799 m001 (DuboisRaymond-Salem)/(GAMMA(11/12)+Backhouse) 3908840428164910 a001 4807526976/199*76^(1/9) 3908840428613490 a001 610/123*18^(5/7) 3908840428664865 r005 Im(z^2+c),c=-49/64+1/60*I,n=36 3908840429707476 m005 (1/2*5^(1/2)-2/9)/(11/12*exp(1)-1/5) 3908840438234581 m001 (BesselI(1,1)-Shi(1))^PisotVijayaraghavan 3908840451541438 r005 Im(z^2+c),c=7/62+41/59*I,n=8 3908840453789536 m004 -2+Cos[Sqrt[5]*Pi]/4+125*Pi*Coth[Sqrt[5]*Pi] 3908840475317958 h001 (-exp(3)-2)/(-9*exp(2)+10) 3908840478328722 l006 ln(1658/2451) 3908840489284436 m001 (MertensB2-Niven)/(Bloch-Cahen) 3908840499330271 a001 439204/21*2504730781961^(10/11) 3908840499343499 a001 817138163596/21*317811^(10/11) 3908840499350534 a001 54018521/21*12586269025^(10/11) 3908840499350535 a001 6643838879/21*63245986^(10/11) 3908840499884925 p001 sum((-1)^n/(526*n+255)/(100^n),n=0..infinity) 3908840503947889 m001 (Si(Pi)+Kolakoski)/(-LaplaceLimit+Totient) 3908840512366191 r009 Re(z^3+c),c=-39/82+7/30*I,n=48 3908840520904180 r005 Im(z^2+c),c=31/90+13/61*I,n=32 3908840528764322 m001 1/GAMMA(1/24)^2*Rabbit*ln(GAMMA(2/3)) 3908840551190926 m005 (1/3*3^(1/2)-1/2)/(2/3*exp(1)+1/6) 3908840559998323 r005 Re(z^2+c),c=-35/66+11/53*I,n=35 3908840564970379 a007 Real Root Of 774*x^4-92*x^3-951*x^2-804*x+447 3908840577103996 s002 sum(A147465[n]/(n*exp(n)+1),n=1..infinity) 3908840580392766 r005 Re(z^2+c),c=-55/102+1/60*I,n=17 3908840583094379 r009 Im(z^3+c),c=-51/110+13/43*I,n=17 3908840591466074 m001 (Ei(1,1)+ZetaQ(2))/(BesselI(0,1)-LambertW(1)) 3908840595859025 r002 22th iterates of z^2 + 3908840604158605 m005 (5/6*gamma-5)/(1/3*exp(1)+1/4) 3908840628152182 s001 sum(exp(-Pi/4)^(n-1)*A085612[n],n=1..infinity) 3908840628902364 p001 sum(1/(381*n+164)/n/(5^n),n=1..infinity) 3908840631583151 r005 Re(z^2+c),c=-10/19+13/55*I,n=34 3908840638476270 r009 Im(z^3+c),c=-15/34+14/43*I,n=31 3908840646355167 a001 105937/6*3^(34/47) 3908840646798033 m001 polylog(4,1/2)^Sarnak/(Ei(1)^Sarnak) 3908840647254937 r005 Re(z^2+c),c=-40/31+2/47*I,n=38 3908840651671736 a007 Real Root Of -941*x^4+675*x^3+825*x^2+636*x-393 3908840659939925 r002 57th iterates of z^2 + 3908840663301144 r005 Im(z^2+c),c=1/52+29/60*I,n=28 3908840665032901 r005 Re(z^2+c),c=-29/52+8/63*I,n=13 3908840671814101 a003 cos(Pi*10/101)/cos(Pi*35/83) 3908840672676437 r002 19th iterates of z^2 + 3908840688940306 m001 (2*Pi/GAMMA(5/6)+Landau)/(MertensB3-Salem) 3908840690850051 r002 58th iterates of z^2 + 3908840694201720 m001 Champernowne-ZetaP(2)^Chi(1) 3908840704032544 m001 Pi^KomornikLoreti/(Pi^Gompertz) 3908840720101544 r005 Im(z^2+c),c=23/122+17/47*I,n=27 3908840722487939 a007 Real Root Of -201*x^4-833*x^3-290*x^2-377*x+131 3908840725205834 a001 4807526976/521*322^(1/4) 3908840731104554 a003 cos(Pi*25/74)-cos(Pi*38/81) 3908840731868877 r005 Re(z^2+c),c=-23/44+12/53*I,n=21 3908840738574622 r005 Im(z^2+c),c=-9/110+12/23*I,n=17 3908840740373912 a001 2889/305*13^(21/38) 3908840744120785 m001 (Si(Pi)-exp(1))/(BesselI(1,2)+Kac) 3908840745970034 r009 Im(z^3+c),c=-7/13+9/32*I,n=41 3908840756961763 m004 -3-E^(Sqrt[5]*Pi)+(3125*Pi)/Log[Sqrt[5]*Pi] 3908840759834543 r009 Im(z^3+c),c=-1/5+26/29*I,n=16 3908840769269644 m005 (1/2*5^(1/2)-3/10)/(10/11*Zeta(3)+1) 3908840776927421 m006 (5/6*exp(2*Pi)+1/3)/(3*Pi+2) 3908840786013357 r005 Re(z^2+c),c=-21/34+17/88*I,n=15 3908840786383921 a007 Real Root Of 260*x^4+761*x^3-730*x^2+937*x-431 3908840788013422 a007 Real Root Of 393*x^4+217*x^3+367*x^2-273*x-159 3908840792852161 r002 11th iterates of z^2 + 3908840806839446 a007 Real Root Of 289*x^4-52*x^3+224*x^2-184*x-116 3908840813796106 r005 Re(z^2+c),c=-67/90+1/59*I,n=30 3908840823549306 r009 Im(z^3+c),c=-37/122+23/58*I,n=18 3908840829052715 a001 521/1597*2178309^(17/35) 3908840845866843 h001 (7/11*exp(2)+7/8)/(2/11*exp(2)+1/12) 3908840870464346 r005 Im(z^2+c),c=-13/94+31/58*I,n=16 3908840894884700 m001 (Zeta(1,2)-BesselK(1,1))/(GAMMA(11/12)-Robbin) 3908840896467236 r009 Im(z^3+c),c=-41/118+1/49*I,n=5 3908840901026384 m001 (1-Cahen)/(-PisotVijayaraghavan+ThueMorse) 3908840915594623 r004 Im(z^2+c),c=5/16+2/5*I,z(0)=exp(5/8*I*Pi),n=36 3908840929499919 m001 (Otter-ReciprocalFibonacci)/(Thue+ZetaP(3)) 3908840933933465 m001 (Psi(1,1/3)-sin(1))/(Tetranacci+TreeGrowth2nd) 3908840935878711 m001 BesselI(1,1)/(OneNinth^Zeta(1,-1)) 3908840951287665 s001 sum(exp(-Pi/3)^(n-1)*A154759[n],n=1..infinity) 3908840961722554 m001 Salem*ZetaQ(4)^ln(5) 3908840966091507 r009 Re(z^3+c),c=-31/50+19/29*I,n=3 3908840991839810 r005 Re(z^2+c),c=-4/11+34/61*I,n=18 3908840992618323 a001 1836311903/1364*322^(7/12) 3908840994663743 r008 a(0)=4,K{-n^6,6+5*n^3+9*n^2-8*n} 3908840997100417 r005 Im(z^2+c),c=-17/30+9/127*I,n=30 3908840998363422 r005 Im(z^2+c),c=19/94+13/38*I,n=12 3908841004354231 r005 Re(z^2+c),c=-3/11+20/33*I,n=49 3908841004502142 a007 Real Root Of 797*x^4+254*x^3+434*x^2-433*x-239 3908841012383753 r002 42th iterates of z^2 + 3908841020990892 m004 -3-125*Pi+2*Log[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 3908841026938963 r005 Im(z^2+c),c=-3/4+58/149*I,n=6 3908841034378979 r005 Re(z^2+c),c=-67/102+7/47*I,n=17 3908841037397746 m001 (polylog(4,1/2)+GAMMA(23/24))^Pi 3908841037433138 r009 Re(z^3+c),c=-15/32+7/31*I,n=36 3908841058292971 r005 Re(z^2+c),c=17/58+2/51*I,n=38 3908841068627845 a007 Real Root Of -947*x^4+407*x^3-220*x^2+793*x+390 3908841089970538 a001 13/2*18^(18/29) 3908841095663756 l006 ln(6609/9770) 3908841101662831 m001 Khinchin^Kolakoski/(Khinchin^KhinchinHarmonic) 3908841117134870 r005 Re(z^2+c),c=-55/106+25/58*I,n=39 3908841119222782 r005 Im(z^2+c),c=-3/4+76/249*I,n=3 3908841122112378 b008 -1/2+(-1+Sqrt[Pi])^3 3908841122679088 g005 GAMMA(2/9)/GAMMA(1/11) 3908841127590367 r002 32th iterates of z^2 + 3908841130445341 m001 ln(GAMMA(19/24))/FeigenbaumAlpha^2*GAMMA(7/12) 3908841135364049 r005 Im(z^2+c),c=1/118+27/55*I,n=49 3908841136077836 m001 (ln(2)-GAMMA(7/12))/(ReciprocalLucas+ZetaP(3)) 3908841140652832 r005 Re(z^2+c),c=-53/98+3/34*I,n=28 3908841145168146 r002 5th iterates of z^2 + 3908841167202098 h001 (-12*exp(4)-12)/(-8*exp(3)-10) 3908841168539818 r005 Im(z^2+c),c=-7/6+9/178*I,n=43 3908841181584744 m001 (ArtinRank2+Niven)/(TreeGrowth2nd+ZetaP(3)) 3908841204617526 v003 sum((3*n^3-7*n^2+15*n+7)/(n!+1),n=1..infinity) 3908841207350596 m001 (Catalan-LandauRamanujan)/(Magata+Weierstrass) 3908841207842528 m001 (-Sarnak+StolarskyHarborth)/(5^(1/2)-Lehmer) 3908841211588232 r009 Re(z^3+c),c=-1/16+23/43*I,n=31 3908841213594975 r008 a(0)=4,K{-n^6,2-2*n^3+2*n^2-5*n} 3908841230303614 r005 Re(z^2+c),c=-65/122+8/43*I,n=48 3908841230831068 a001 1836311903/2207*322^(2/3) 3908841264557021 m001 LambertW(1)/(Conway^OrthogonalArrays) 3908841292194021 r002 28th iterates of z^2 + 3908841294590709 m005 (2/3*exp(1)-5/6)/(3/5*Catalan-4/5) 3908841299113312 a007 Real Root Of -253*x^4-946*x^3-16*x^2-814*x-373 3908841302398040 l006 ln(4951/7319) 3908841306386005 m001 1/BesselK(0,1)/ln(CareFree)/log(2+sqrt(3))^2 3908841330474655 r005 Re(z^2+c),c=-15/44+16/27*I,n=44 3908841351301781 r005 Re(z^2+c),c=-29/54+9/62*I,n=53 3908841357221444 r005 Im(z^2+c),c=21/62+5/29*I,n=19 3908841361210672 m001 Pi/exp(BesselJ(1,1))^2*sqrt(3)^2 3908841374777327 r005 Im(z^2+c),c=9/98+10/23*I,n=24 3908841393480099 r009 Im(z^3+c),c=-15/58+36/53*I,n=12 3908841395071446 m001 ln(sin(1))/PisotVijayaraghavan*sqrt(3)^2 3908841400321105 r009 Im(z^3+c),c=-33/70+17/56*I,n=36 3908841428745795 r008 a(0)=4,K{-n^6,6*n^3+3*n^2+3*n} 3908841429841775 r005 Im(z^2+c),c=-23/106+37/64*I,n=16 3908841436973557 m001 GAMMA(1/3)/exp(RenyiParking)*GAMMA(7/24) 3908841443774656 a007 Real Root Of -305*x^4-428*x^3-873*x^2+696*x+387 3908841443862008 m005 (1/2*Pi-5/8)/(1/7*Catalan+1/9) 3908841445025239 r005 Im(z^2+c),c=7/122+17/37*I,n=61 3908841459727252 m003 3/4+(11*Sqrt[5])/64-E^(1/2+Sqrt[5]/2) 3908841459828667 a001 15127/8*3^(39/59) 3908841463301307 r009 Re(z^3+c),c=-3/86+37/52*I,n=19 3908841476693728 r005 Im(z^2+c),c=-7/52+23/42*I,n=22 3908841479148202 l006 ln(170/8473) 3908841487811859 r005 Re(z^2+c),c=-9/17+13/61*I,n=44 3908841488563155 r002 62th iterates of z^2 + 3908841490649553 m005 (1/2*3^(1/2)+3/11)/(4/5*Pi+2/5) 3908841491249993 m001 (Pi^(1/2)+Otter)/(Catalan-Zeta(5)) 3908841491356698 m001 (-Niven+Robbin)/(3^(1/2)-Zeta(1,2)) 3908841495898846 r009 Im(z^3+c),c=-23/74+24/61*I,n=14 3908841499193964 s002 sum(A238981[n]/(16^n),n=1..infinity) 3908841506799938 a007 Real Root Of -229*x^4-873*x^3-117*x^2-691*x+408 3908841508142207 r005 Re(z^2+c),c=-31/22+28/65*I,n=2 3908841508914783 m005 (1/2*exp(1)-1/7)/(1/11*gamma-4/11) 3908841515601820 r005 Im(z^2+c),c=-13/62+11/20*I,n=13 3908841550253589 a007 Real Root Of 252*x^4-510*x^3+112*x^2-357*x-193 3908841555793120 b008 ArcCoth[2+E^(-3/8)] 3908841556448639 s002 sum(A085829[n]/(n^2*2^n-1),n=1..infinity) 3908841560558483 m001 (ln(gamma)+exp(1/Pi))/(Zeta(1,2)-GAMMA(19/24)) 3908841577695959 a007 Real Root Of -469*x^4-763*x^3-985*x^2+228*x+205 3908841617164025 a007 Real Root Of -514*x^4+940*x^3-803*x^2+837*x+518 3908841634173551 p004 log(36527/24709) 3908841639322188 m001 (-exp(1/Pi)+ThueMorse)/(2^(1/3)+Zeta(3)) 3908841649571816 r002 58th iterates of z^2 + 3908841652807383 r002 64th iterates of z^2 + 3908841663595174 a007 Real Root Of 288*x^4+944*x^3-644*x^2+430*x+666 3908841671348970 m001 (LandauRamanujan-Tetranacci)/(Pi+Zeta(1,-1)) 3908841683360427 r005 Re(z^2+c),c=-25/46+1/40*I,n=42 3908841683509946 m001 (Trott-ZetaP(2))/(Niven-Stephens) 3908841690227518 r005 Im(z^2+c),c=17/48+7/31*I,n=41 3908841695594178 r009 Re(z^3+c),c=-49/122+9/61*I,n=20 3908841704741535 r002 10th iterates of z^2 + 3908841707606611 r005 Im(z^2+c),c=9/74+17/31*I,n=21 3908841716240858 r005 Im(z^2+c),c=3/122+25/52*I,n=53 3908841717310535 l006 ln(3293/4868) 3908841720430347 m005 (1/2*Zeta(3)+7/12)/(6/7*exp(1)+7/10) 3908841722037237 m001 GAMMA(7/24)^(ln(2)*MadelungNaCl) 3908841765660231 m006 (3/5*Pi^2+1)/(5*Pi+2) 3908841765660231 m008 (3/5*Pi^2+1)/(5*Pi+2) 3908841770239022 m005 (1/2*exp(1)-8/9)/(1/6*exp(1)+3/4) 3908841773294485 r005 Im(z^2+c),c=-11/118+31/50*I,n=39 3908841776496775 r005 Im(z^2+c),c=31/126+13/42*I,n=59 3908841779839592 m001 GAMMA(7/24)^(Backhouse/Zeta(3)) 3908841798605679 m001 (-Otter+Trott2nd)/(BesselI(1,2)-sin(1)) 3908841799497332 m008 (2/5*Pi^5-2/3)/(2/5*Pi^2-5/6) 3908841800331034 r009 Im(z^3+c),c=-23/44+4/15*I,n=36 3908841821147319 a003 cos(Pi*1/118)-cos(Pi*7/24) 3908841832891616 r005 Im(z^2+c),c=5/22+11/28*I,n=8 3908841835095714 m001 1/Bloch/exp(GaussAGM(1,1/sqrt(2)))^2*Zeta(9)^2 3908841839037949 m001 (BesselI(1,2)+GAMMA(19/24))/(Si(Pi)-ln(Pi)) 3908841857785698 r005 Im(z^2+c),c=-3/56+15/28*I,n=28 3908841859557808 a007 Real Root Of -267*x^4-845*x^3+777*x^2-144*x-570 3908841862608642 r009 Im(z^3+c),c=-49/94+9/32*I,n=52 3908841863320420 m001 (Mills+Tribonacci)/(Landau+MertensB1) 3908841887648773 m001 1/ln(Zeta(5))/PrimesInBinary*sin(Pi/5) 3908841898247240 r001 39i'th iterates of 2*x^2-1 of 3908841916245510 a001 267084832/321*322^(2/3) 3908841918829318 m001 1/Tribonacci*FeigenbaumD/exp(log(2+sqrt(3))) 3908841922311456 r002 14th iterates of z^2 + 3908841924662911 r002 29th iterates of z^2 + 3908841927600423 m002 -Pi^2-4*Pi^4+Pi^2/Log[Pi] 3908841936734738 a001 53316291173/2207*123^(1/10) 3908841938666956 r008 a(0)=0,K{-n^6,-33-24*n+31*n^2+26*n^3} 3908841939140159 r002 36th iterates of z^2 + 3908841942400559 r005 Re(z^2+c),c=-53/98+2/21*I,n=34 3908841957822508 r002 62th iterates of z^2 + 3908841966130049 m001 GAMMA(5/12)^2*Paris*exp(sqrt(5))^2 3908841969794494 r002 19th iterates of z^2 + 3908841979482202 r009 Im(z^3+c),c=-55/122+15/47*I,n=34 3908841983152592 r002 5th iterates of z^2 + 3908841986566533 r005 Re(z^2+c),c=-8/15+15/38*I,n=21 3908842016246150 a001 12586269025/15127*322^(2/3) 3908842018281084 a001 64079/5*102334155^(17/21) 3908842018413446 r009 Im(z^3+c),c=-29/60+12/59*I,n=4 3908842027319636 m005 (1/2*2^(1/2)+1/3)/(2*2^(1/2)-1/6) 3908842030836047 a001 10983760033/13201*322^(2/3) 3908842032964684 a001 43133785636/51841*322^(2/3) 3908842033275248 a001 75283811239/90481*322^(2/3) 3908842033320559 a001 591286729879/710647*322^(2/3) 3908842033327170 a001 832040*322^(2/3) 3908842033328134 a001 4052739537881/4870847*322^(2/3) 3908842033328275 a001 3536736619241/4250681*322^(2/3) 3908842033328362 a001 3278735159921/3940598*322^(2/3) 3908842033328730 a001 2504730781961/3010349*322^(2/3) 3908842033331255 a001 956722026041/1149851*322^(2/3) 3908842033348563 a001 182717648081/219602*322^(2/3) 3908842033467187 a001 139583862445/167761*322^(2/3) 3908842034280255 a001 53316291173/64079*322^(2/3) 3908842037395545 m001 1/LaplaceLimit^2/ln(Champernowne)*Ei(1)^2 3908842038077783 r005 Im(z^2+c),c=10/29+10/51*I,n=52 3908842039853099 a001 10182505537/12238*322^(2/3) 3908842041651384 r005 Re(z^2+c),c=-49/94+4/15*I,n=63 3908842042176606 r002 7th iterates of z^2 + 3908842042549640 m005 (1/3*Zeta(3)-3/5)/(5/7*3^(1/2)-8/11) 3908842053496228 r005 Re(z^2+c),c=-19/34+35/118*I,n=18 3908842055436278 a001 228826127/5*4181^(17/21) 3908842058224129 p004 log(26723/18077) 3908842058283951 m001 Zeta(9)/ln(BesselK(0,1))^2*cos(1)^2 3908842066312833 m001 MadelungNaCl^(1/3)/GAMMA(7/24) 3908842069373775 a008 Real Root of (-3-6*x+5*x^2+2*x^3+2*x^4+4*x^5) 3908842071825424 r002 60th iterates of z^2 + 3908842078049947 a001 7778742049/9349*322^(2/3) 3908842079448041 a001 161/416020*377^(23/59) 3908842082724389 r005 Re(z^2+c),c=-25/46+1/40*I,n=47 3908842094553376 m001 Rabbit^GAMMA(13/24)*Kolakoski^GAMMA(13/24) 3908842096789173 r002 23th iterates of z^2 + 3908842106499288 m001 BesselK(1,1)^2*ln(CareFree)^2*Zeta(1,2)^2 3908842119458450 r002 35th iterates of z^2 + 3908842134159495 l006 ln(4928/7285) 3908842134178010 r005 Im(z^2+c),c=1/54+16/33*I,n=37 3908842139521156 r009 Im(z^3+c),c=-13/46+25/62*I,n=10 3908842154106044 r005 Im(z^2+c),c=-17/30+63/103*I,n=8 3908842155648417 m001 exp(-1/2*Pi)/arctan(1/3)/(1+3^(1/2))^(1/2) 3908842159906365 r005 Im(z^2+c),c=-28/25+13/46*I,n=40 3908842166563866 r005 Re(z^2+c),c=-29/54+9/62*I,n=63 3908842172090313 r002 47th iterates of z^2 + 3908842179745048 r002 7th iterates of z^2 + 3908842183039519 m005 (1/2*5^(1/2)-5/8)/(5/11*Pi-1/6) 3908842190164011 a001 2/17711*610^(21/38) 3908842206465057 a001 4/121393*610^(35/47) 3908842208300954 r005 Im(z^2+c),c=7/122+17/37*I,n=55 3908842237818519 m001 (gamma(2)-GaussAGM)/(MadelungNaCl+ThueMorse) 3908842248081096 r005 Re(z^2+c),c=-25/46+1/40*I,n=49 3908842253461337 r005 Im(z^2+c),c=-45/34+21/83*I,n=4 3908842253616773 p004 log(16987/11491) 3908842261618374 r005 Re(z^2+c),c=-59/102+2/33*I,n=10 3908842265309474 r005 Im(z^2+c),c=1/62+19/39*I,n=30 3908842273637565 m005 (1/3*gamma-1/7)/(4/7*exp(1)-2/7) 3908842277656537 m001 LaplaceLimit^(3^(1/3))/Riemann1stZero 3908842281754820 m001 (-MadelungNaCl+Thue)/(Si(Pi)+BesselK(0,1)) 3908842284249681 r005 Im(z^2+c),c=1/78+20/41*I,n=35 3908842289642408 r005 Re(z^2+c),c=25/82+1/12*I,n=2 3908842310641684 m001 GlaisherKinkelin*exp(Cahen)/GolombDickman 3908842316651622 m002 -Pi-Log[Pi]+4/(Pi^2*ProductLog[Pi]) 3908842317015282 a007 Real Root Of 210*x^4+625*x^3-874*x^2-673*x-974 3908842321989417 r005 Re(z^2+c),c=-5/8+59/169*I,n=46 3908842322818832 m001 (BesselJ(1,1)-Otter)/(cos(1/5*Pi)+Zeta(1,-1)) 3908842323154075 a001 3/7*9349^(41/55) 3908842323662178 r005 Re(z^2+c),c=-49/114+28/51*I,n=38 3908842326794542 m001 GaussKuzminWirsing/(arctan(1/3)-ln(3)) 3908842332431278 m001 arctan(1/3)-LandauRamanujan^(2^(1/3)) 3908842335691538 r005 Im(z^2+c),c=-1+57/211*I,n=4 3908842339855052 a001 2971215073/3571*322^(2/3) 3908842343314390 l006 ln(6563/9702) 3908842357781438 r009 Im(z^3+c),c=-1/102+6/13*I,n=4 3908842362431500 r005 Im(z^2+c),c=-77/94+1/48*I,n=37 3908842372149495 r005 Im(z^2+c),c=-15/98+31/50*I,n=8 3908842376811917 r005 Im(z^2+c),c=1/114+25/51*I,n=31 3908842378593265 m001 exp(GAMMA(23/24))^2/GAMMA(19/24)^2/Zeta(3)^2 3908842395470853 r004 Re(z^2+c),c=-1/16-15/23*I,z(0)=I,n=20 3908842406720546 r002 17th iterates of z^2 + 3908842410349002 r009 Re(z^3+c),c=-45/98+7/43*I,n=4 3908842430992272 r005 Re(z^2+c),c=-27/98+28/53*I,n=7 3908842434811254 a001 15127/1597*13^(21/38) 3908842451361617 r009 Im(z^3+c),c=-13/32+8/23*I,n=3 3908842452786509 a007 Real Root Of 190*x^4-792*x^3-136*x^2-829*x-355 3908842465318363 p001 sum(1/(348*n+263)/(16^n),n=0..infinity) 3908842483335960 p003 LerchPhi(1/6,5,139/115) 3908842496767126 a007 Real Root Of 267*x^4+734*x^3+898*x^2-812*x-417 3908842502216150 r005 Im(z^2+c),c=13/110+34/57*I,n=11 3908842522975388 r005 Im(z^2+c),c=-43/38+3/62*I,n=38 3908842527132910 r002 19th iterates of z^2 + 3908842527431041 m001 (-Kolakoski+QuadraticClass)/(Si(Pi)+Artin) 3908842535380333 h001 (8/11*exp(1)+5/7)/(1/10*exp(1)+5/12) 3908842541838937 r005 Im(z^2+c),c=-7/19+3/35*I,n=4 3908842541987114 m004 -3/4-125*Pi+5/Log[Sqrt[5]*Pi] 3908842542274617 r009 Im(z^3+c),c=-31/60+13/50*I,n=60 3908842549625570 m002 Pi^5+Pi^4/Log[Pi]-Log[Pi]/5 3908842558980816 m001 (KhinchinLevy+Robbin)/(2*Pi/GAMMA(5/6)-Chi(1)) 3908842576236690 r002 37th iterates of z^2 + 3908842576938394 b008 ArcCsc[9*(1/8+E)] 3908842579834578 r005 Im(z^2+c),c=-25/38+1/63*I,n=32 3908842580050376 m001 (FeigenbaumB+HeathBrownMoroz)/(Kac-ThueMorse) 3908842590641943 m001 (Thue+ZetaQ(4))/(1+Zeta(3)) 3908842594007404 r005 Im(z^2+c),c=-1/18+14/23*I,n=37 3908842595813442 m001 1/ln(PrimesInBinary)*CareFree^2/(3^(1/3)) 3908842604549406 r005 Re(z^2+c),c=-35/66+3/58*I,n=11 3908842615780850 a007 Real Root Of -252*x^4-206*x^3+694*x^2+576*x-313 3908842620721258 r009 Im(z^3+c),c=-23/118+3/7*I,n=9 3908842622149305 a001 139583862445/5778*123^(1/10) 3908842631130271 m001 (Pi-Zeta(1,2))/(GAMMA(13/24)-Gompertz) 3908842679133690 r005 Re(z^2+c),c=-25/46+1/40*I,n=51 3908842681412460 a007 Real Root Of 232*x^4+647*x^3-856*x^2+424*x-783 3908842682026461 a001 39603/4181*13^(21/38) 3908842684544574 m005 (1/2*Catalan-8/11)/(5*2^(1/2)-2/11) 3908842685426585 r005 Re(z^2+c),c=-47/82+6/41*I,n=6 3908842690664440 m001 (GAMMA(19/24)+3)/(-GAMMA(11/24)+3) 3908842694473754 m001 FibonacciFactorial-exp(1)*HardyLittlewoodC4 3908842694757134 r005 Re(z^2+c),c=-25/46+1/40*I,n=45 3908842722149962 a001 365435296162/15127*123^(1/10) 3908842736739862 a001 956722026041/39603*123^(1/10) 3908842738515540 a001 2/341*18^(21/32) 3908842738868500 a001 2504730781961/103682*123^(1/10) 3908842739179064 a001 6557470319842/271443*123^(1/10) 3908842739252378 a001 10610209857723/439204*123^(1/10) 3908842739371003 a001 4052739537881/167761*123^(1/10) 3908842740184070 a001 1548008755920/64079*123^(1/10) 3908842740386059 a001 64079/6765*13^(21/38) 3908842742803528 m001 1/OneNinth/Paris^2/ln(GAMMA(1/12)) 3908842745756916 a001 591286729879/24476*123^(1/10) 3908842762870704 s002 sum(A194647[n]/(pi^n),n=1..infinity) 3908842765919203 r005 Im(z^2+c),c=33/106+9/38*I,n=52 3908842767323071 a001 1/13*2584^(6/29) 3908842768779872 m001 1/sinh(1)*FibonacciFactorial^2/ln(sqrt(Pi))^2 3908842781346352 m001 HardyLittlewoodC5-Kolakoski^cos(1/12*Pi) 3908842783953770 a001 225851433717/9349*123^(1/10) 3908842793070244 r009 Re(z^3+c),c=-1/16+23/43*I,n=33 3908842795434903 r002 8th iterates of z^2 + 3908842815163420 a001 1/1353*(1/2*5^(1/2)+1/2)^29*11^(7/11) 3908842816285544 a001 267914296/843*322^(5/6) 3908842819071939 r005 Im(z^2+c),c=-1/28+27/52*I,n=28 3908842828335677 s002 sum(A285203[n]/(2^n-1),n=1..infinity) 3908842833655033 r005 Re(z^2+c),c=43/94+15/43*I,n=31 3908842834023449 r005 Im(z^2+c),c=-7/48+31/54*I,n=46 3908842834813878 a001 6119/646*13^(21/38) 3908842835781056 m001 1/5*(5^(1/2)*BesselK(1,1)-Bloch)*5^(1/2) 3908842835796614 a001 102334155/76*11^(4/9) 3908842846350795 r005 Im(z^2+c),c=-29/74+32/61*I,n=19 3908842847120643 a001 11/144*34^(25/54) 3908842866326615 m005 (1/2*Zeta(3)+9/11)/(2*3^(1/2)+1/6) 3908842870395481 m001 (-exp(1/exp(1))+Khinchin)/(3^(1/2)+3^(1/3)) 3908842876516818 a007 Real Root Of 142*x^4+382*x^3-832*x^2-497*x+434 3908842877827886 r005 Re(z^2+c),c=-49/86+7/48*I,n=11 3908842883785265 r005 Im(z^2+c),c=-3/4+55/183*I,n=8 3908842889139494 m004 -5*Csc[Sqrt[5]*Pi]+625*Pi*Csch[Sqrt[5]*Pi] 3908842892955423 r005 Im(z^2+c),c=-1/44+23/39*I,n=10 3908842907125432 r009 Re(z^3+c),c=-11/122+45/61*I,n=56 3908842907888501 m001 (Chi(1)+Zeta(3))/(-ln(gamma)+FeigenbaumDelta) 3908842909510559 a001 3/4052739537881*365435296162^(1/16) 3908842909510559 a001 3/2504730781961*165580141^(1/16) 3908842909519239 a001 1/516002918640*75025^(1/16) 3908842915776779 m001 Zeta(3)^2*Zeta(1,2)/ln(sqrt(2)) 3908842916555605 h001 (1/12*exp(1)+11/12)/(4/5*exp(1)+3/4) 3908842943891464 m008 (1/4*Pi^6-1/6)/(3/5*Pi^4+3) 3908842944524820 r002 55th iterates of z^2 + 3908842946616669 r002 45th iterates of z^2 + 3908842955232444 r005 Im(z^2+c),c=31/102+17/44*I,n=19 3908842956791961 a001 76/2178309*2178309^(23/36) 3908842957377136 r009 Re(z^3+c),c=-55/122+11/52*I,n=10 3908842959162279 h001 (-5*exp(2)-2)/(-2*exp(3/2)-1) 3908842967178860 r009 Re(z^3+c),c=-41/102+31/49*I,n=42 3908842973721292 l006 ln(1635/2417) 3908842980685246 m001 1/exp(GAMMA(7/24))^2*GAMMA(3/4)^2/cos(Pi/5) 3908842994154186 r005 Re(z^2+c),c=-7/10+33/182*I,n=49 3908842994420637 m001 (3^(1/2)+3^(1/3))/(Trott2nd+ZetaQ(2)) 3908843003673488 m001 (ln(5)+Cahen)/(2^(1/2)-Chi(1)) 3908843003705933 a007 Real Root Of -236*x^4+580*x^3+138*x^2+616*x-291 3908843004282551 a007 Real Root Of 628*x^4-962*x^3+761*x^2+111*x-145 3908843008953678 a007 Real Root Of 956*x^4-650*x^3-511*x^2-963*x+471 3908843013999440 r005 Re(z^2+c),c=-45/86+8/31*I,n=36 3908843014495437 r002 9th iterates of z^2 + 3908843022798933 r005 Im(z^2+c),c=31/126+13/42*I,n=64 3908843025408533 a007 Real Root Of -247*x^4-808*x^3+852*x^2+798*x-493 3908843027755039 r005 Im(z^2+c),c=-5/8+17/234*I,n=38 3908843038549358 r005 Im(z^2+c),c=-25/32+1/64*I,n=39 3908843042227897 a001 199/18*(1/2*5^(1/2)+1/2)^23*18^(13/22) 3908843045135094 a001 2207/8*55^(2/23) 3908843045758923 a001 86267571272/3571*123^(1/10) 3908843048653611 r005 Im(z^2+c),c=7/44+22/57*I,n=36 3908843053457477 a007 Real Root Of 143*x^4+313*x^3-264*x^2-933*x+383 3908843060659188 r005 Re(z^2+c),c=-43/118+23/48*I,n=12 3908843072364775 m001 (2^(1/3)-sin(1/5*Pi))/(-cos(1/12*Pi)+Khinchin) 3908843082591189 r005 Re(z^2+c),c=19/64+3/56*I,n=62 3908843086268066 l006 ln(6397/6652) 3908843087030122 r002 45th iterates of z^2 + 3908843092823084 r005 Re(z^2+c),c=-41/74+23/60*I,n=17 3908843093249784 m001 (-Si(Pi)+4)/ln(gamma) 3908843095928258 a007 Real Root Of 551*x^4+840*x^3+684*x^2-900*x-419 3908843096670111 r002 17th iterates of z^2 + 3908843099117448 m005 (3*gamma+1/3)/(1/5*2^(1/2)+5) 3908843099398968 m001 GAMMA(11/12)*(5^(1/2)+Porter) 3908843108948029 r005 Im(z^2+c),c=-1/28+29/56*I,n=45 3908843120965944 a001 20633239/610*6557470319842^(16/17) 3908843120965953 a001 22768774562/305*1836311903^(16/17) 3908843121239721 m005 (1/3*Pi-3/7)/(Catalan+2/3) 3908843131063859 m001 GAMMA(5/12)^(Zeta(1/2)/GAMMA(19/24)) 3908843142781546 m005 (1/2*Catalan+5/7)/(7/9*Pi+5/9) 3908843143417040 r005 Re(z^2+c),c=-25/46+1/40*I,n=53 3908843149831714 m001 1/ln((2^(1/3)))/MadelungNaCl^2/GAMMA(1/4) 3908843156350909 r005 Im(z^2+c),c=13/82+17/44*I,n=47 3908843160107399 a003 cos(Pi*16/99)*cos(Pi*37/105) 3908843180859605 m003 -3*Cos[1/2+Sqrt[5]/2]+36*Coth[1/2+Sqrt[5]/2] 3908843198062624 r005 Re(z^2+c),c=-29/54+9/62*I,n=61 3908843199648878 m001 ln(GAMMA(5/12))/TreeGrowth2nd^2*Zeta(9) 3908843200396333 q001 1578/4037 3908843202783134 a007 Real Root Of 533*x^4-764*x^3-640*x^2-887*x-307 3908843206281993 r005 Im(z^2+c),c=11/38+5/19*I,n=61 3908843207585438 r009 Re(z^3+c),c=-1/16+23/43*I,n=35 3908843210383853 a003 cos(Pi*1/69)-sin(Pi*43/105) 3908843213260155 r009 Re(z^3+c),c=-1/16+23/43*I,n=38 3908843215926551 m001 Zeta(1/2)^2*ln(ArtinRank2)^2/sin(1)^2 3908843216148400 r002 31th iterates of z^2 + 3908843225768779 r002 9th iterates of z^2 + 3908843226028762 r009 Re(z^3+c),c=-1/16+23/43*I,n=40 3908843230869488 r005 Im(z^2+c),c=6/17+7/32*I,n=49 3908843231286251 m001 (BesselI(1,2)+Artin)/(Backhouse+FeigenbaumMu) 3908843231480768 r009 Re(z^3+c),c=-1/16+23/43*I,n=36 3908843237257171 r009 Re(z^3+c),c=-1/16+23/43*I,n=42 3908843239103045 r005 Re(z^2+c),c=4/13+4/57*I,n=23 3908843240242058 r009 Im(z^3+c),c=-11/21+2/5*I,n=30 3908843243272582 r009 Re(z^3+c),c=-1/16+23/43*I,n=44 3908843245907171 r009 Re(z^3+c),c=-1/16+23/43*I,n=46 3908843246913942 r009 Re(z^3+c),c=-1/16+23/43*I,n=48 3908843247253651 r009 Re(z^3+c),c=-1/16+23/43*I,n=50 3908843247352489 r009 Re(z^3+c),c=-1/16+23/43*I,n=52 3908843247369324 r009 Re(z^3+c),c=-1/16+23/43*I,n=55 3908843247369882 r009 Re(z^3+c),c=-1/16+23/43*I,n=57 3908843247371442 r009 Re(z^3+c),c=-1/16+23/43*I,n=59 3908843247372441 r009 Re(z^3+c),c=-1/16+23/43*I,n=61 3908843247372919 r009 Re(z^3+c),c=-1/16+23/43*I,n=63 3908843247373387 r009 Re(z^3+c),c=-1/16+23/43*I,n=64 3908843247373698 r009 Re(z^3+c),c=-1/16+23/43*I,n=62 3908843247374406 r009 Re(z^3+c),c=-1/16+23/43*I,n=60 3908843247374976 r009 Re(z^3+c),c=-1/16+23/43*I,n=54 3908843247375723 r009 Re(z^3+c),c=-1/16+23/43*I,n=58 3908843247377204 r009 Re(z^3+c),c=-1/16+23/43*I,n=56 3908843247378101 r009 Re(z^3+c),c=-1/16+23/43*I,n=53 3908843247427330 r009 Re(z^3+c),c=-1/16+23/43*I,n=51 3908843247614616 r009 Re(z^3+c),c=-1/16+23/43*I,n=49 3908843248208922 r009 Re(z^3+c),c=-1/16+23/43*I,n=47 3908843249862986 r009 Re(z^3+c),c=-1/16+23/43*I,n=45 3908843253921456 r009 Re(z^3+c),c=-1/16+23/43*I,n=43 3908843257580378 r009 Im(z^3+c),c=-23/70+17/44*I,n=18 3908843262418070 r009 Re(z^3+c),c=-1/16+23/43*I,n=41 3908843275761982 r009 Re(z^3+c),c=-1/16+23/43*I,n=39 3908843280879015 r009 Re(z^3+c),c=-1/16+23/43*I,n=37 3908843292180795 m001 Catalan*BesselK(0,1)/exp(GAMMA(1/12)) 3908843303103401 r002 40th iterates of z^2 + 3908843308765667 s002 sum(A227630[n]/(n^2*exp(n)+1),n=1..infinity) 3908843326097009 r009 Im(z^3+c),c=-31/74+17/50*I,n=37 3908843351493383 m001 exp(Riemann1stZero)^2*Si(Pi)^2*BesselK(1,1) 3908843352510766 l006 ln(63/3140) 3908843354024485 r002 36th iterates of z^2 + 3908843356041347 r009 Re(z^3+c),c=-2/5+8/55*I,n=24 3908843367101096 r005 Re(z^2+c),c=-2/31+2/3*I,n=35 3908843369796626 a003 cos(Pi*45/119)/sin(Pi*17/42) 3908843372782169 r005 Re(z^2+c),c=-29/98+37/60*I,n=49 3908843412575180 m005 (1/2*exp(1)-3/4)/(1/2*gamma-4/9) 3908843415030854 m001 (3^(1/3)-Robbin)/(Pi-ln(Pi)) 3908843420311268 r009 Re(z^3+c),c=-1/16+23/43*I,n=34 3908843426077123 a001 39603/2*2^(52/53) 3908843429529129 r002 9th iterates of z^2 + 3908843429738006 m002 4*Pi^4+Pi^3/(E^Pi*ProductLog[Pi]) 3908843456413179 m009 (3*Psi(1,1/3)-1/3)/(5/6*Psi(1,1/3)-3/4) 3908843467604105 b008 3+ArcSinh[(3*Sqrt[3])/5] 3908843469694402 r005 Im(z^2+c),c=1/12+19/43*I,n=58 3908843475475041 r002 8th iterates of z^2 + 3908843476383298 a005 (1/sin(83/171*Pi))^1292 3908843482031901 a001 9349/987*13^(21/38) 3908843483302678 m006 (1/3*Pi+4)/(2/5*ln(Pi)+5/6) 3908843492323418 m001 Ei(1)*FellerTornier^HardHexagonsEntropy 3908843501357152 r005 Re(z^2+c),c=-53/98+2/21*I,n=51 3908843502267600 m005 (1/2*2^(1/2)+11/12)/(4/5+3/2*5^(1/2)) 3908843507905900 m001 (Psi(2,1/3)-gamma(1))/(FeigenbaumB+Stephens) 3908843530746373 r009 Re(z^3+c),c=-43/90+10/43*I,n=25 3908843548768872 r005 Re(z^2+c),c=-25/46+1/40*I,n=55 3908843601399982 r009 Re(z^3+c),c=-7/110+25/44*I,n=13 3908843602630772 r005 Im(z^2+c),c=-1/32+27/56*I,n=11 3908843606967120 s002 sum(A166028[n]/(pi^n-1),n=1..infinity) 3908843608577857 l006 ln(6517/9634) 3908843609531779 m001 (ln(3)-MertensB1)/(Pi-1) 3908843610611018 m002 -Pi^2+Pi^4+Pi^5-Pi^3*Sech[Pi] 3908843615771525 m004 -1+Sqrt[5]/Pi+125*Pi-ProductLog[Sqrt[5]*Pi] 3908843617076545 m001 (2^(1/2)+Zeta(5))/(2*Pi/GAMMA(5/6)+CareFree) 3908843619816946 a007 Real Root Of -252*x^4-957*x^3+229*x^2+242*x-879 3908843631300669 a003 cos(Pi*28/85)*cos(Pi*39/82) 3908843641715625 a007 Real Root Of -441*x^4-133*x^3+352*x^2+674*x-299 3908843651444233 r002 27th iterates of z^2 + 3908843675281436 m001 Catalan*GAMMA(11/12)-Stephens 3908843678493788 m001 1/ln(FeigenbaumKappa)^2*Rabbit^2*GAMMA(1/3)^2 3908843697820650 r005 Re(z^2+c),c=-45/86+14/55*I,n=49 3908843700143942 r002 40th iterates of z^2 + 3908843701722741 a007 Real Root Of 406*x^4+92*x^3-519*x^2-672*x+327 3908843706481888 p001 sum((-1)^n/(255*n+223)/(3^n),n=0..infinity) 3908843707668649 r005 Im(z^2+c),c=-1/7+34/59*I,n=61 3908843723720265 r005 Im(z^2+c),c=3/13+12/37*I,n=37 3908843730390870 m005 (1/2*Pi-7/8)/(5/6*5^(1/2)-1/12) 3908843734685049 m001 (FeigenbaumKappa-Si(Pi))/(Kolakoski+PlouffeB) 3908843734695570 a001 1/2204*(1/2*5^(1/2)+1/2)^16*76^(11/13) 3908843738049528 r005 Re(z^2+c),c=-43/78+1/62*I,n=16 3908843743328714 r005 Re(z^2+c),c=-45/86+11/46*I,n=26 3908843746175682 r002 44th iterates of z^2 + 3908843754770141 r002 45th iterates of z^2 + 3908843759689268 m001 (sin(1/12*Pi)+OneNinth)/Zeta(1,2) 3908843759689268 m001 (sin(Pi/12)+OneNinth)/Zeta(1,2) 3908843761124328 a001 48/13201*76^(17/31) 3908843767820861 r002 21th iterates of z^2 + 3908843769616573 m003 -3+Cosh[1/2+Sqrt[5]/2]+Sec[1/2+Sqrt[5]/2]/6 3908843778585694 r009 Im(z^3+c),c=-37/90+23/57*I,n=4 3908843781248492 r009 Im(z^3+c),c=-3/62+42/53*I,n=62 3908843791182900 r005 Re(z^2+c),c=35/106+25/51*I,n=5 3908843795844646 r005 Im(z^2+c),c=19/122+9/23*I,n=13 3908843798961802 m009 (1/5*Psi(1,3/4)+2/5)/(1/4*Psi(1,1/3)-1/5) 3908843800399557 a003 sin(Pi*1/31)/cos(Pi*5/12) 3908843814669120 a007 Real Root Of 25*x^4+964*x^3-518*x^2-73*x-402 3908843817977022 a007 Real Root Of 190*x^4+762*x^3+136*x^2+273*x+143 3908843818619890 a001 165580141/199*199^(8/11) 3908843821193678 l006 ln(4882/7217) 3908843821619229 r005 Im(z^2+c),c=-5/102+17/32*I,n=28 3908843825781996 r002 50th iterates of z^2 + 3908843825781996 r002 50th iterates of z^2 + 3908843834275159 r005 Re(z^2+c),c=-37/82+25/52*I,n=41 3908843838962598 a007 Real Root Of -78*x^4-488*x^3-738*x^2-110*x-90 3908843849068264 m006 (1/3*Pi^2+1/4)/(2/3*Pi-3) 3908843849068264 m008 (1/3*Pi^2+1/4)/(2/3*Pi-3) 3908843856274129 m001 (FeigenbaumMu+MasserGramainDelta)^cos(1/5*Pi) 3908843858176993 a007 Real Root Of -221*x^4-634*x^3+931*x^2-34*x-630 3908843861220246 r005 Re(z^2+c),c=-17/78+49/60*I,n=33 3908843866882183 a001 2971215073/521*322^(1/3) 3908843869735917 r005 Re(z^2+c),c=-25/46+1/40*I,n=57 3908843894372960 r005 Re(z^2+c),c=-29/54+9/62*I,n=52 3908843931350692 a001 17/161*18^(24/53) 3908843931797570 r009 Re(z^3+c),c=-31/52+29/61*I,n=23 3908843934688458 m005 (1/2*2^(1/2)+1/3)/(7/10*Catalan-3/8) 3908843940793982 r009 Re(z^3+c),c=-41/78+7/27*I,n=57 3908843948083308 q001 1295/3313 3908843952705902 a007 Real Root Of 146*x^4+594*x^3-58*x^2-392*x+746 3908843972250574 m005 (1/2*Zeta(3)+5)/(3/4*gamma+1) 3908843985802862 m001 1/ln(Paris)^2/Niven^2/GAMMA(13/24) 3908843999717939 r005 Re(z^2+c),c=-21/40+9/37*I,n=48 3908844004194344 m001 GAMMA(2/3)/(OneNinth^PlouffeB) 3908844006434461 r008 a(0)=4,K{-n^6,-14-13*n+60*n^2-18*n^3} 3908844012880009 a001 19/1201881744*13^(6/17) 3908844014809556 m001 (3^(1/3))*KhintchineHarmonic*exp(BesselJ(1,1)) 3908844034735550 s002 sum(A202916[n]/(n^3*pi^n+1),n=1..infinity) 3908844062765528 p001 sum(1/(560*n+267)/(8^n),n=0..infinity) 3908844069963815 r004 Im(z^2+c),c=-7/12+1/14*I,z(0)=-1,n=62 3908844082419886 r009 Re(z^3+c),c=-2/5+8/55*I,n=26 3908844090647890 a007 Real Root Of 563*x^4+360*x^3+929*x^2-876*x-476 3908844095777781 r005 Im(z^2+c),c=6/29+19/37*I,n=11 3908844108007846 m001 Pi/(2^(1/2)/exp(gamma)-gamma(2)) 3908844109759144 r005 Re(z^2+c),c=-25/46+1/40*I,n=59 3908844114225955 a007 Real Root Of -199*x^4-843*x^3-303*x^2-426*x-926 3908844115308898 a007 Real Root Of 103*x^4+346*x^3-84*x^2+674*x+537 3908844122923953 a007 Real Root Of -921*x^4-193*x^3+352*x^2+575*x-23 3908844123090335 r002 52th iterates of z^2 + 3908844133833002 m001 (-Khinchin+Mills)/(CareFree-Shi(1)) 3908844134294887 a001 567451585/682*322^(2/3) 3908844139062698 a007 Real Root Of 974*x^4-617*x^3+138*x^2-359*x-221 3908844142932695 r002 49th iterates of z^2 + 3908844153755686 m002 Pi^2-Cosh[Pi]/Pi-Sinh[Pi]/Log[Pi] 3908844159220335 r005 Im(z^2+c),c=-53/52+7/23*I,n=12 3908844163957748 r002 50th iterates of z^2 + 3908844171017101 r005 Im(z^2+c),c=-7/102+29/54*I,n=46 3908844171847675 r002 16th iterates of z^2 + 3908844174568063 m001 Pi+BesselJ(0,1)+gamma(3) 3908844178437763 a007 Real Root Of 79*x^4+242*x^3-212*x^2+304*x+438 3908844182664888 a003 sin(Pi*11/85)/cos(Pi*29/62) 3908844187441138 p001 sum(1/(546*n+491)/n/(25^n),n=1..infinity) 3908844188663975 r002 54th iterates of z^2 + 3908844203850860 r005 Im(z^2+c),c=-7/10+3/121*I,n=19 3908844204421432 r002 28th iterates of z^2 + 3908844246628843 m001 1/Niven/Bloch^2/ln(BesselJ(1,1))^2 3908844247931363 l006 ln(3247/4800) 3908844248066578 m001 (exp(1/Pi)-exp(Pi))/(gamma(3)+2*Pi/GAMMA(5/6)) 3908844252015246 r005 Re(z^2+c),c=-57/106+15/64*I,n=20 3908844253925986 r009 Re(z^3+c),c=-1/16+23/43*I,n=32 3908844254890863 b008 LogBarnesG[4+Sqrt[39]] 3908844258168942 m001 GAMMA(1/4)^2/exp(GAMMA(1/12))^2/sin(Pi/5)^2 3908844258543725 r005 Re(z^2+c),c=-59/110+5/51*I,n=12 3908844269708466 m001 DuboisRaymond-LaplaceLimit+Thue 3908844280547504 a001 47/365435296162*139583862445^(5/16) 3908844280547504 a001 47/32951280099*63245986^(5/16) 3908844280844990 a001 47/2971215073*28657^(5/16) 3908844282570875 r005 Re(z^2+c),c=-25/46+1/40*I,n=61 3908844284017097 r002 56th iterates of z^2 + 3908844291268943 r005 Im(z^2+c),c=-7/66+19/31*I,n=45 3908844296212231 p001 sum(1/(386*n+267)/(10^n),n=0..infinity) 3908844308655790 a007 Real Root Of -144*x^4-513*x^3+155*x^2-347*x-746 3908844315566916 r002 25th iterates of z^2 + 3908844317051166 r005 Im(z^2+c),c=11/52+13/38*I,n=26 3908844327513842 m001 Salem^2/exp(CopelandErdos)^2*GAMMA(5/12)^2 3908844342765765 r002 10th iterates of z^2 + 3908844343986057 r008 a(0)=4,K{-n^6,4-7*n^3+7*n^2+2*n} 3908844349720727 r005 Re(z^2+c),c=5/46+41/54*I,n=4 3908844361331398 r005 Im(z^2+c),c=-4/29+24/47*I,n=10 3908844372507823 a001 1134903170/2207*322^(3/4) 3908844374303787 r005 Re(z^2+c),c=-29/54+9/62*I,n=59 3908844375082700 m001 1/ln(Sierpinski)^2*FransenRobinson^2/sqrt(5) 3908844375863217 r002 58th iterates of z^2 + 3908844386918100 r002 26th iterates of z^2 + 3908844393855943 r005 Im(z^2+c),c=7/122+17/37*I,n=58 3908844393986352 m005 (5/6*gamma-1)/(4/5*Catalan-3/5) 3908844398038724 r005 Im(z^2+c),c=-6/13+13/25*I,n=18 3908844399000043 r005 Re(z^2+c),c=-47/90+16/61*I,n=30 3908844403646242 r005 Re(z^2+c),c=-25/46+1/40*I,n=63 3908844413347350 r009 Re(z^3+c),c=-11/23+27/55*I,n=25 3908844416995795 r005 Re(z^2+c),c=-9/17+5/24*I,n=32 3908844429352902 m001 GAMMA(1/6)*CopelandErdos*ln(sin(1))^2 3908844432583878 r005 Im(z^2+c),c=-2/27+7/13*I,n=36 3908844448330555 r009 Im(z^3+c),c=-19/50+21/58*I,n=24 3908844450580242 r009 Re(z^3+c),c=-39/82+7/30*I,n=50 3908844452276270 r002 60th iterates of z^2 + 3908844472283462 r002 48th iterates of z^2 + 3908844480910384 r002 47th iterates of z^2 + 3908844498020041 m001 ln(LandauRamanujan)^2*CopelandErdos^2*Paris^2 3908844511162721 r002 62th iterates of z^2 + 3908844519915264 r002 33th iterates of z^2 + 3908844524678220 m001 Ei(1)*ln((2^(1/3)))^2/sin(Pi/12) 3908844531511683 m002 Pi^3-Log[Pi]+(Pi^2*Coth[Pi])/ProductLog[Pi] 3908844534890733 r005 Re(z^2+c),c=-1/17+38/61*I,n=5 3908844540818315 a007 Real Root Of -574*x^4+704*x^3+699*x^2+707*x+225 3908844543662525 r005 Re(z^2+c),c=-89/86+4/49*I,n=22 3908844552877675 a007 Real Root Of -207*x^4-580*x^3+778*x^2-303*x+613 3908844554432989 r002 64th iterates of z^2 + 3908844562069836 r005 Re(z^2+c),c=-55/118+5/11*I,n=43 3908844582539865 a007 Real Root Of 248*x^4+833*x^3-509*x^2+243*x+581 3908844588512659 m001 1/DuboisRaymond*Cahen/ln(RenyiParking)^2 3908844619163649 s002 sum(A040641[n]/(64^n),n=1..infinity) 3908844619247945 a007 Real Root Of 995*x^4-690*x^3-665*x^2-569*x+342 3908844622129576 r005 Re(z^2+c),c=-13/24+2/29*I,n=16 3908844627991090 m006 (3/4*exp(Pi)-1)/(1/3*ln(Pi)-4/5) 3908844633753405 m003 5/2+(41*Sqrt[5])/64+Cot[1/2+Sqrt[5]/2]/2 3908844635356626 r002 8th iterates of z^2 + 3908844660876613 h001 (6/11*exp(1)+1/7)/(5/11*exp(2)+4/5) 3908844661012052 m001 (Landau-Weierstrass)/MadelungNaCl 3908844664122930 a007 Real Root Of 621*x^4-967*x^3-725*x^2-793*x+464 3908844667338924 r005 Re(z^2+c),c=17/62+1/24*I,n=3 3908844674684005 r005 Re(z^2+c),c=5/18+1/23*I,n=63 3908844676688986 l006 ln(4859/7183) 3908844681221125 m005 (2/5*gamma-3/5)/(1/4*gamma+4/5) 3908844681221125 m007 (-2/5*gamma+3/5)/(-1/4*gamma-4/5) 3908844705379052 r005 Im(z^2+c),c=1/50+12/25*I,n=19 3908844711276270 r002 8th iterates of z^2 + 3908844718214741 m001 Pi*2^(1/2)/GAMMA(3/4)+Gompertz*Weierstrass 3908844738082333 m001 1/ln(Niven)/FeigenbaumAlpha^2/BesselJ(0,1) 3908844743808892 a001 9349/2*1597^(52/57) 3908844744455852 s002 sum(A240981[n]/(64^n),n=1..infinity) 3908844755474584 a008 Real Root of x^4-2*x^3-x^2-14*x-44 3908844757838583 r005 Re(z^2+c),c=-29/54+9/62*I,n=55 3908844758726505 r005 Re(z^2+c),c=-49/94+4/15*I,n=64 3908844759773928 r009 Im(z^3+c),c=-5/13+18/49*I,n=10 3908844760091385 a007 Real Root Of 49*x^4+40*x^3+479*x^2-586*x-301 3908844763803285 r002 63th iterates of z^2 + 3908844784175479 r005 Im(z^2+c),c=7/122+17/37*I,n=50 3908844784672751 m001 (Shi(1)-ThueMorse)/ZetaQ(4) 3908844788447805 r005 Im(z^2+c),c=-1/27+14/27*I,n=54 3908844791624695 m001 Psi(1,1/3)^Lehmer-Trott2nd 3908844801620577 r005 Re(z^2+c),c=-17/32+12/59*I,n=29 3908844803981810 a001 18/233*4181^(8/17) 3908844805468599 m001 (ln(Pi)+ln(2+3^(1/2)))/(Stephens+ZetaQ(2)) 3908844814525339 r002 61th iterates of z^2 + 3908844825489909 m001 exp(GAMMA(3/4))/MertensB1/gamma^2 3908844835150304 a001 12238*987^(46/55) 3908844836652685 m004 -1+18750/(Pi*ProductLog[Sqrt[5]*Pi]) 3908844838465515 r005 Im(z^2+c),c=1/12+19/43*I,n=55 3908844840199081 a001 32951280099/1364*123^(1/10) 3908844849182555 r005 Re(z^2+c),c=-25/46+1/40*I,n=64 3908844866819230 r005 Im(z^2+c),c=-8/15+22/37*I,n=49 3908844882094836 r002 59th iterates of z^2 + 3908844888009164 r005 Re(z^2+c),c=-33/64+7/25*I,n=19 3908844891829761 l006 ln(6471/9566) 3908844915405040 a001 54018521/1597*6557470319842^(16/17) 3908844915405041 a001 119218851371/1597*1836311903^(16/17) 3908844918890891 r005 Im(z^2+c),c=-1/82+21/44*I,n=11 3908844948920077 r002 15th iterates of z^2 + 3908844949312910 r005 Re(z^2+c),c=-19/44+23/45*I,n=50 3908844949710883 r005 Re(z^2+c),c=-25/46+1/40*I,n=62 3908844966914277 r002 57th iterates of z^2 + 3908844968594766 r005 Re(z^2+c),c=-14/27+17/60*I,n=48 3908844971574413 p001 sum((-1)^n/(356*n+255)/(128^n),n=0..infinity) 3908844979421416 r005 Im(z^2+c),c=-15/14+43/122*I,n=3 3908844979944321 m001 (GAMMA(23/24)+MertensB3)/(Stephens+Trott2nd) 3908844981521201 m001 (BesselK(0,1)+GAMMA(3/4))/(ThueMorse+ZetaQ(3)) 3908844985851860 a007 Real Root Of -323*x^4-929*x^3-768*x^2+22*x+78 3908844992311783 r005 Re(z^2+c),c=-3/40+43/56*I,n=60 3908845000821380 l006 ln(7852/8165) 3908845009091616 r005 Re(z^2+c),c=-119/82+1/23*I,n=4 3908845016855720 a007 Real Root Of -72*x^4-40*x^3+784*x^2-618*x+25 3908845025523763 m001 (arctan(1/3)+Kac)/(Khinchin-MertensB1) 3908845028765009 r002 49th iterates of z^2 + 3908845033995187 m005 (1/3*2^(1/2)-1/6)/(1/11*Zeta(3)-8/9) 3908845038924741 r005 Im(z^2+c),c=1/21+23/43*I,n=17 3908845039357582 r002 9th iterates of z^2 + 3908845040704468 m009 (6*Psi(1,1/3)-2/3)/(1/4*Pi^2-4) 3908845042260577 m001 (Khinchin-Totient)/(Pi+ln(2)/ln(10)) 3908845053633446 r005 Im(z^2+c),c=-33/122+22/37*I,n=62 3908845055613115 a001 2207/21*6765^(7/47) 3908845057922816 a001 2971215073/5778*322^(3/4) 3908845062977055 r002 55th iterates of z^2 + 3908845064994834 a007 Real Root Of -847*x^4-83*x^3-572*x^2+506*x+300 3908845066777436 a005 (1/cos(12/205*Pi))^1705 3908845067995097 r002 6th iterates of z^2 + 3908845071703940 r005 Im(z^2+c),c=-7/6+40/197*I,n=20 3908845075780182 r002 49th iterates of z^2 + 3908845084415414 r005 Re(z^2+c),c=-51/94+2/37*I,n=19 3908845093015873 m001 (2^(1/3))/Artin^2*ln(GAMMA(11/24))^2 3908845094784168 r005 Re(z^2+c),c=-25/46+1/40*I,n=60 3908845097178556 a003 cos(Pi*16/79)*cos(Pi*22/65) 3908845102534784 a007 Real Root Of 19*x^4+728*x^3-581*x^2-302*x-866 3908845104392698 m001 (1-Zeta(1,-1))/(exp(1/Pi)+ErdosBorwein) 3908845110795494 m001 (Zeta(1,2)+ZetaP(3))/(3^(1/2)+Ei(1,1)) 3908845113943607 q001 1012/2589 3908845117154003 a001 514229/11*1364^(55/59) 3908845131455616 r005 Re(z^2+c),c=-25/46+1/40*I,n=43 3908845133641346 r009 Im(z^3+c),c=-31/98+11/20*I,n=3 3908845135054292 r002 7th iterates of z^2 + 3908845149627853 r002 53th iterates of z^2 + 3908845149761450 m005 (1/2*Catalan-2/5)/(8/11*5^(1/2)-1/7) 3908845157923536 a001 7778742049/15127*322^(3/4) 3908845159334674 a007 Real Root Of -65*x^4+230*x^3-763*x^2-501*x-64 3908845161234377 a003 sin(Pi*6/43)*sin(Pi*19/51) 3908845172513445 a001 20365011074/39603*322^(3/4) 3908845174642084 a001 53316291173/103682*322^(3/4) 3908845174952649 a001 139583862445/271443*322^(3/4) 3908845174997959 a001 365435296162/710647*322^(3/4) 3908845175004570 a001 956722026041/1860498*322^(3/4) 3908845175005534 a001 2504730781961/4870847*322^(3/4) 3908845175005675 a001 6557470319842/12752043*322^(3/4) 3908845175005708 a001 10610209857723/20633239*322^(3/4) 3908845175005762 a001 4052739537881/7881196*322^(3/4) 3908845175006131 a001 1548008755920/3010349*322^(3/4) 3908845175008656 a001 514229*322^(3/4) 3908845175025963 a001 225851433717/439204*322^(3/4) 3908845175144588 a001 86267571272/167761*322^(3/4) 3908845175573654 r002 51th iterates of z^2 + 3908845175957656 a001 32951280099/64079*322^(3/4) 3908845177210313 a001 141422324/4181*6557470319842^(16/17) 3908845177210313 a001 312119004989/4181*1836311903^(16/17) 3908845181530505 a001 12586269025/24476*322^(3/4) 3908845191110468 r002 46th iterates of z^2 + 3908845196367086 r009 Im(z^3+c),c=-63/122+16/61*I,n=64 3908845197970786 r008 a(0)=0,K{-n^6,-32-10*n^3+16*n^2-n} 3908845204741838 m001 (-FransenRobinson+Robbin)/(Psi(2,1/3)+Ei(1,1)) 3908845205763646 r009 Re(z^3+c),c=-17/36+20/41*I,n=16 3908845215407191 a001 370248451/10946*6557470319842^(16/17) 3908845215407191 a001 408569081798/5473*1836311903^(16/17) 3908845219671923 r005 Re(z^2+c),c=-29/54+9/62*I,n=57 3908845219727383 a001 4807526976/9349*322^(3/4) 3908845220980040 a001 969323029/28657*6557470319842^(16/17) 3908845220980040 a001 2139295485799/28657*1836311903^(16/17) 3908845221793108 a001 2537720636/75025*6557470319842^(16/17) 3908845221793108 a001 5600748293801/75025*1836311903^(16/17) 3908845221911733 a001 7331474697802/98209*1836311903^(16/17) 3908845221911733 a001 6643838879/196418*6557470319842^(16/17) 3908845221929040 a001 17393796001/514229*6557470319842^(16/17) 3908845221931565 a001 45537549124/1346269*6557470319842^(16/17) 3908845221931933 a001 119218851371/3524578*6557470319842^(16/17) 3908845221931987 a001 312119004989/9227465*6557470319842^(16/17) 3908845221931995 a001 817138163596/24157817*6557470319842^(16/17) 3908845221931996 a001 2139295485799/63245986*6557470319842^(16/17) 3908845221931996 a001 5600748293801/165580141*6557470319842^(16/17) 3908845221931996 a001 14662949395604/433494437*6557470319842^(16/17) 3908845221931996 a001 23725150497407/701408733*6557470319842^(16/17) 3908845221931996 a001 9062201101803/267914296*6557470319842^(16/17) 3908845221931996 a001 228826126/6765*6557470319842^(16/17) 3908845221931997 a001 1322157322203/39088169*6557470319842^(16/17) 3908845221932000 a001 505019158607/14930352*6557470319842^(16/17) 3908845221932020 a001 192900153618/5702887*6557470319842^(16/17) 3908845221932161 a001 10525900321/311187*6557470319842^(16/17) 3908845221933126 a001 28143753123/832040*6557470319842^(16/17) 3908845221939736 a001 23725150497407/317811*1836311903^(16/17) 3908845221939736 a001 10749957122/317811*6557470319842^(16/17) 3908845221985047 a001 9062201101803/121393*1836311903^(16/17) 3908845221985047 a001 4106118243/121393*6557470319842^(16/17) 3908845222295611 a001 10749853441/144*1836311903^(16/17) 3908845222295611 a001 224056801/6624*6557470319842^(16/17) 3908845224424250 a001 1322157322203/17711*1836311903^(16/17) 3908845224424250 a001 599074578/17711*6557470319842^(16/17) 3908845224506577 a007 Real Root Of -2*x^4-782*x^3-90*x^2+109*x+318 3908845239014160 a001 505019158607/6765*1836311903^(16/17) 3908845239014160 a001 228826127/6765*6557470319842^(16/17) 3908845244570025 r005 Re(z^2+c),c=7/30+27/43*I,n=5 3908845269130359 m005 (1/2*Catalan+5/12)/(8/9*5^(1/2)+1/4) 3908845291720493 m001 (ln(gamma)*Ei(1)+Grothendieck)/Ei(1) 3908845299252593 r005 Re(z^2+c),c=-25/46+1/40*I,n=58 3908845302123270 a007 Real Root Of 307*x^4+596*x^3+746*x^2-465*x+17 3908845303790463 m001 (exp(1/Pi)+GaussAGM)/(Lehmer-Trott2nd) 3908845305640200 a007 Real Root Of -68*x^4-32*x^3+735*x^2-501*x+775 3908845309966768 r005 Im(z^2+c),c=29/94+13/54*I,n=46 3908845315457108 a007 Real Root Of 570*x^4-56*x^3+866*x^2-545*x-362 3908845339014888 a001 96450076809/1292*1836311903^(16/17) 3908845339014888 a001 87403803/2584*6557470319842^(16/17) 3908845344462120 r001 51i'th iterates of 2*x^2-1 of 3908845353975909 m001 (-FeigenbaumDelta+Trott)/(3^(1/2)-cos(1)) 3908845358874500 r005 Im(z^2+c),c=37/126+9/35*I,n=36 3908845368243446 r002 46th iterates of z^2 + 3908845383735391 r002 37th iterates of z^2 + 3908845400384739 r009 Im(z^3+c),c=-12/23+7/31*I,n=15 3908845402600439 h001 (-3*exp(3)+2)/(-5*exp(8)+1) 3908845417345972 r005 Im(z^2+c),c=-9/122+24/43*I,n=25 3908845425099108 m006 (3/Pi-1)/(5*exp(Pi)-2/5) 3908845425793636 m005 (1/2*Catalan-1/11)/(3/7*2^(1/2)-7/10) 3908845425980843 a007 Real Root Of 584*x^4-318*x^3-55*x^2-529*x-231 3908845436440712 a007 Real Root Of -945*x^4+697*x^3-982*x^2+804*x+528 3908845438134790 r002 32th iterates of z^2 + 3908845443960084 r009 Im(z^3+c),c=-1/62+41/51*I,n=38 3908845445794900 m009 (3*Psi(1,2/3)+3/5)/(3/5*Psi(1,2/3)+2/3) 3908845446620755 m001 (5^(1/2)-Zeta(3))/(3^(1/3)+Riemann3rdZero) 3908845463834962 m001 BesselK(0,1)^2*ln(CareFree)^2/GAMMA(1/6) 3908845465886368 r002 39th iterates of z^2 + 3908845467350497 r005 Re(z^2+c),c=-39/74+11/48*I,n=41 3908845468500103 m001 (Si(Pi)+GAMMA(2/3))/(-KomornikLoreti+Niven) 3908845468752361 r005 Im(z^2+c),c=-13/22+7/99*I,n=29 3908845474108978 r005 Im(z^2+c),c=7/46+16/41*I,n=15 3908845481532699 a001 1836311903/3571*322^(3/4) 3908845491035786 m001 ln(5)^Ei(1)+exp(1/exp(1)) 3908845501819015 r005 Im(z^2+c),c=1/12+19/43*I,n=61 3908845513045579 r009 Re(z^3+c),c=-13/34+33/56*I,n=5 3908845526767118 r002 38th iterates of z^2 + 3908845527611264 s002 sum(A069418[n]/((2*n)!),n=1..infinity) 3908845535280996 m001 exp(Pi)^FellerTornier*Otter^FellerTornier 3908845540321685 l006 ln(1612/2383) 3908845540329277 a001 1364/1597*832040^(37/47) 3908845548862406 l006 ln(145/7227) 3908845552155633 r005 Re(z^2+c),c=-25/48+7/26*I,n=60 3908845552631068 m004 -125*Pi-Cos[Sqrt[5]*Pi]/2+2*Cot[Sqrt[5]*Pi] 3908845558977922 m001 KhinchinLevy*(exp(1)+Stephens) 3908845567075141 m001 (Backhouse-PlouffeB)/(Sierpinski-ZetaP(4)) 3908845578388470 r005 Re(z^2+c),c=-25/46+1/40*I,n=56 3908845578515259 m001 (2^(1/3)-gamma)/(-cos(1/5*Pi)+Zeta(1,2)) 3908845612450842 b008 FresnelC[E-2*EulerGamma] 3908845613707782 r005 Im(z^2+c),c=31/126+13/42*I,n=61 3908845615038053 r009 Im(z^3+c),c=-25/106+19/45*I,n=5 3908845616038435 r002 31th iterates of z^2 + 3908845616530506 r005 Im(z^2+c),c=17/118+21/53*I,n=22 3908845617136582 r005 Re(z^2+c),c=-5/8+16/31*I,n=3 3908845621805106 a001 2584/47*199^(29/36) 3908845624367571 m005 (1/3*Catalan-3/4)/(1/7*5^(1/2)+9/11) 3908845626990442 a007 Real Root Of -264*x^4-984*x^3+167*x^2-63*x+65 3908845632055533 p001 sum((-1)^n/(305*n+178)/n/(5^n),n=1..infinity) 3908845637626539 m004 3+15625*Pi-(25*Sqrt[5]*Cosh[Sqrt[5]*Pi])/Pi 3908845653186389 m004 (-125*Pi)/E^(Sqrt[5]*Pi)+Csc[Sqrt[5]*Pi]/2 3908845653207353 r002 24th iterates of z^2 + 3908845664038594 r005 Re(z^2+c),c=-43/62+13/43*I,n=23 3908845665868379 r005 Im(z^2+c),c=-5/52+23/50*I,n=4 3908845670335661 r005 Im(z^2+c),c=13/82+17/44*I,n=46 3908845672578336 r005 Im(z^2+c),c=-3/40+33/59*I,n=22 3908845697300286 p001 sum(1/(549*n+532)/n/(24^n),n=1..infinity) 3908845700383876 a001 233/521*817138163596^(2/3) 3908845700383876 a001 233/521*(1/2+1/2*5^(1/2))^38 3908845700383876 a001 233/521*10749957122^(19/24) 3908845700383876 a001 233/521*4106118243^(19/23) 3908845700383876 a001 233/521*1568397607^(19/22) 3908845700383876 a001 233/521*599074578^(19/21) 3908845700383876 a001 233/521*228826127^(19/20) 3908845710664440 r005 Re(z^2+c),c=-25/46+1/40*I,n=44 3908845717859516 q001 1/25583 3908845730664075 m001 (Zeta(1/2)-Ei(1,1))/(Trott-ZetaQ(2)) 3908845731919317 m001 (BesselJZeros(0,1)-exp(-1/2*Pi))^sqrt(3) 3908845745593383 r005 Im(z^2+c),c=7/27+8/27*I,n=40 3908845748167340 r005 Im(z^2+c),c=1/12+19/43*I,n=62 3908845759712262 r005 Re(z^2+c),c=-107/114+10/61*I,n=14 3908845767056987 r005 Re(z^2+c),c=-37/66+23/61*I,n=33 3908845769731960 m005 (1/2*5^(1/2)-6/11)/(1/2*Zeta(3)-5/11) 3908845780740508 m001 exp((2^(1/3)))*Riemann3rdZero^2*BesselK(0,1)^2 3908845784270106 m005 (13/12+1/4*5^(1/2))/(4/7*gamma-3/4) 3908845784753845 r005 Im(z^2+c),c=27/122+11/36*I,n=8 3908845791604680 r009 Re(z^3+c),c=-13/114+35/46*I,n=13 3908845793323086 a007 Real Root Of 590*x^4-863*x^3+585*x^2+99*x-116 3908845809536259 m001 GAMMA(23/24)*(GAMMA(3/4)+Sierpinski) 3908845813518491 p001 sum(1/(361*n+256)/(625^n),n=0..infinity) 3908845816008643 a007 Real Root Of 573*x^4-71*x^3-29*x^2-547*x-227 3908845824083360 a007 Real Root Of -896*x^4+499*x^3-558*x^2+151*x+195 3908845824392086 m001 (gamma(3)+Cahen)/(Zeta(3)-Zeta(5)) 3908845827539952 m008 (3/4*Pi^6-2/5)/(3/5*Pi^5+3/4) 3908845832103535 m006 (3/4*Pi-1/6)/(1/2*Pi^2+2/3) 3908845832103535 m008 (3/4*Pi-1/6)/(1/2*Pi^2+2/3) 3908845842054119 r005 Re(z^2+c),c=-67/122+13/40*I,n=23 3908845842088008 m001 (Robbin+ZetaQ(3))/(ln(2)/ln(10)+2^(1/2)) 3908845847784113 r002 56th iterates of z^2 + 3908845848334876 a005 (1/cos(19/196*Pi))^811 3908845854826367 b008 Pi+ExpIntegralE[2,1/13] 3908845855255909 a008 Real Root of x^4+34*x^2-2*x-6 3908845860670550 l004 Shi(251/95) 3908845865699674 r005 Im(z^2+c),c=3/98+21/44*I,n=34 3908845875223932 r005 Im(z^2+c),c=-121/82+2/23*I,n=4 3908845881279385 a007 Real Root Of 414*x^4-100*x^3-361*x^2-797*x+363 3908845883040258 m001 (3^(1/2)-Si(Pi))/(-Zeta(1/2)+ErdosBorwein) 3908845886322578 r002 39th iterates of z^2 + 3908845890503177 r005 Im(z^2+c),c=13/60+20/57*I,n=14 3908845908381026 r002 21th iterates of z^2 + 3908845917016386 a003 cos(Pi*26/115)*cos(Pi*19/58) 3908845933263696 m008 (1/5*Pi^5-4/5)/(5*Pi^3-1/2) 3908845942321796 r005 Re(z^2+c),c=-25/46+1/40*I,n=54 3908845947014300 m001 1/ln(Riemann3rdZero)/MinimumGamma*Tribonacci 3908845957963573 a001 165580141/843*322^(11/12) 3908845960778683 r005 Im(z^2+c),c=-9/86+24/43*I,n=48 3908845971779558 r005 Im(z^2+c),c=1/64+18/37*I,n=43 3908845973355771 r005 Im(z^2+c),c=-73/98+1/58*I,n=27 3908845983410507 r005 Im(z^2+c),c=1/118+27/55*I,n=59 3908845993391325 r005 Im(z^2+c),c=-67/102+11/35*I,n=14 3908845997177986 a007 Real Root Of -20*x^4+773*x^3-903*x^2+505*x+382 3908846002426251 m001 (ln(3)+ln(Pi))/(BesselI(1,1)+ZetaQ(3)) 3908846008323050 r005 Re(z^2+c),c=41/118+3/35*I,n=32 3908846014729654 m001 (Psi(1,1/3)-gamma(1))^sin(1/5*Pi) 3908846020104082 m001 (ln(5)-FeigenbaumAlpha)/(ZetaP(3)+ZetaQ(2)) 3908846024430212 a001 10525900321/141*1836311903^(16/17) 3908846024430215 a001 4769326/141*6557470319842^(16/17) 3908846037309522 r002 45th iterates of z^2 + 3908846055652448 r008 a(0)=4,K{-n^6,-19+32*n+3*n^2-3*n^3} 3908846068753865 a007 Real Root Of 951*x^4+548*x^3-681*x^2-902*x-238 3908846070947637 m001 (Shi(1)+Trott2nd)/(-ZetaP(2)+ZetaP(3)) 3908846083967211 b008 3*ArcCoth[5+E] 3908846109210903 m001 1/exp(BesselK(1,1))^2/Paris*GAMMA(17/24) 3908846115177838 m007 (-3*gamma-9*ln(2)-3/2*Pi+2/5)/(-4*gamma-5/6) 3908846130923561 m005 (1/2*gamma-11/12)/(19/16+3/16*5^(1/2)) 3908846140609635 a007 Real Root Of -843*x^4-320*x^3-371*x^2+708*x+334 3908846150734126 r005 Im(z^2+c),c=27/118+15/46*I,n=47 3908846150781775 a007 Real Root Of -517*x^4+660*x^3+736*x^2+461*x-320 3908846151587343 m001 GAMMA(7/12)*(AlladiGrinstead+MadelungNaCl) 3908846161358596 m001 (gamma(1)+gamma(2))/(Si(Pi)+sin(1/12*Pi)) 3908846171697887 m005 (1/3*Catalan+1/11)/(24/7+3*5^(1/2)) 3908846178418974 m001 Bloch*exp(ErdosBorwein)^2*gamma^2 3908846187310675 a007 Real Root Of 714*x^4-160*x^3-755*x^2-512*x-111 3908846189627620 m003 4+Sqrt[5]/256-Sin[1/2+Sqrt[5]/2]/10 3908846193456466 l006 ln(6425/9498) 3908846193977605 r002 38th iterates of z^2 + 3908846194119430 r005 Re(z^2+c),c=-45/118+25/42*I,n=38 3908846211195647 r005 Im(z^2+c),c=-3/25+22/39*I,n=52 3908846217931624 r005 Re(z^2+c),c=3/70+19/61*I,n=17 3908846219829356 r001 3i'th iterates of 2*x^2-1 of 3908846221656919 r005 Re(z^2+c),c=-5/9+1/34*I,n=14 3908846223398372 r005 Re(z^2+c),c=-63/118+6/59*I,n=14 3908846241127958 r002 20th iterates of z^2 + 3908846245967541 m001 (AlladiGrinstead+ZetaQ(2))/(Shi(1)-exp(Pi)) 3908846249400652 r005 Re(z^2+c),c=-17/32+8/35*I,n=22 3908846253772186 m001 GAMMA(2/3)^2*LandauRamanujan*exp(GAMMA(23/24)) 3908846265158160 a007 Real Root Of -125*x^4-543*x^3+17*x^2+753*x-565 3908846267052794 r005 Im(z^2+c),c=-11/15+1/52*I,n=23 3908846267858262 a001 5600748293801/610*1836311903^(14/17) 3908846267858262 a001 6643838879/610*6557470319842^(14/17) 3908846281964851 s001 sum(exp(-2*Pi/5)^n*A129267[n],n=1..infinity) 3908846281964851 s002 sum(A129267[n]/(exp(2/5*pi*n)),n=1..infinity) 3908846282263735 a007 Real Root Of -651*x^4+795*x^3-758*x^2-275*x+71 3908846284665907 a007 Real Root Of 324*x^4-434*x^3-406*x^2-306*x+200 3908846292796699 r005 Im(z^2+c),c=31/98+14/61*I,n=56 3908846300538652 r005 Im(z^2+c),c=1/12+19/43*I,n=57 3908846304314348 r005 Re(z^2+c),c=-63/122+5/17*I,n=56 3908846316755338 l006 ln(9307/9678) 3908846319597444 r002 15th iterates of z^2 + 3908846329382125 r005 Re(z^2+c),c=-5/12+21/47*I,n=6 3908846343394597 r009 Re(z^3+c),c=-59/126+9/40*I,n=34 3908846347949911 m001 (Bloch+ThueMorse)/(Zeta(5)+GAMMA(3/4)) 3908846353773394 r005 Re(z^2+c),c=-21/34+11/62*I,n=15 3908846356676796 a003 sin(Pi*1/112)/cos(Pi*13/53) 3908846361537702 r009 Im(z^3+c),c=-15/34+15/46*I,n=26 3908846365366272 r005 Im(z^2+c),c=-1/11+29/47*I,n=36 3908846377726033 m001 (GAMMA(17/24)-Conway)/(Magata+MertensB3) 3908846383292324 r005 Re(z^2+c),c=-25/46+1/40*I,n=52 3908846386657768 r002 42th iterates of z^2 + 3908846412208433 l006 ln(4813/7115) 3908846424853335 a007 Real Root Of 346*x^4-627*x^3+980*x^2-928*x-558 3908846429963078 r002 14th iterates of z^2 + 3908846436716405 r005 Re(z^2+c),c=1/15+6/17*I,n=18 3908846445114268 a007 Real Root Of 108*x^4-500*x^3+139*x^2-858*x-389 3908846453077430 r005 Re(z^2+c),c=-53/114+25/59*I,n=23 3908846476906388 r002 28th iterates of z^2 + 3908846482923151 m001 (Bloch-LaplaceLimit)/(Otter+Tetranacci) 3908846485794671 m005 (1/2*Zeta(3)+3/11)/(-123/220+7/20*5^(1/2)) 3908846507742930 r005 Im(z^2+c),c=-1/5+43/57*I,n=63 3908846515065517 r002 30th iterates of z^2 + 3908846519892594 r005 Im(z^2+c),c=13/40+3/25*I,n=14 3908846528752367 m001 FeigenbaumKappa/ln(FeigenbaumC)^2*GAMMA(11/12) 3908846538332536 a007 Real Root Of -978*x^4+806*x^3-499*x^2+89*x+182 3908846539261581 r005 Im(z^2+c),c=3/122+25/52*I,n=43 3908846542656486 a007 Real Root Of 195*x^4-877*x^3-113*x^2-734*x+352 3908846543803793 p002 log(13^(2/3)+15^(7/5)) 3908846547284081 r005 Re(z^2+c),c=-67/126+7/36*I,n=47 3908846550117665 m001 StolarskyHarborth^MadelungNaCl*Pi 3908846552432067 a007 Real Root Of -611*x^4-87*x^3-212*x^2+872*x-289 3908846559861121 m001 (exp(Pi)+exp(sqrt(2)))^ThueMorse 3908846574212910 m001 GAMMA(5/6)+KhinchinHarmonic+MertensB2 3908846581724441 m001 Zeta(1/2)^2/GAMMA(13/24)/exp(Zeta(3)) 3908846595240072 a001 9/567451585*46368^(16/17) 3908846595582298 a001 18/2504730781961*165580141^(16/17) 3908846626017421 r005 Im(z^2+c),c=-91/64+11/63*I,n=6 3908846643038073 r002 5th iterates of z^2 + 3908846643679267 r005 Im(z^2+c),c=23/94+3/7*I,n=17 3908846648001811 a007 Real Root Of -18*x^4-698*x^3+218*x^2-34*x-415 3908846648311303 m002 -E^Pi+Pi^4+Pi^5+Pi^2*ProductLog[Pi] 3908846675482253 a001 4/89*514229^(32/37) 3908846684663161 h001 (9/11*exp(1)+2/5)/(5/6*exp(2)+5/9) 3908846725983775 r002 10th iterates of z^2 + 3908846728085060 a008 Real Root of (-2+6*x-5*x^3-2*x^4) 3908846743562311 r002 58i'th iterates of 2*x/(1-x^2) of 3908846745271391 m001 Catalan^2*Cahen^2*ln(GAMMA(7/24)) 3908846763300823 p004 log(35507/24019) 3908846770483467 m001 (GAMMA(23/24)+Totient)/(2^(1/2)-cos(1/5*Pi)) 3908846787789563 r002 9th iterates of z^2 + 3908846795061424 a001 161/17*377^(37/59) 3908846797759422 a007 Real Root Of 948*x^4-667*x^3-863*x^2-720*x+431 3908846798907150 m001 (Kolakoski-Sierpinski)/(Ei(1)+Khinchin) 3908846803627161 m001 (Lehmer+Thue)/(ln(2)-arctan(1/3)) 3908846803881817 r005 Im(z^2+c),c=1/12+19/43*I,n=64 3908846805513490 a001 317811/11*3571^(52/59) 3908846809336295 m005 (1/3*2^(1/2)+1/4)/(2*gamma-3) 3908846810946104 r009 Im(z^3+c),c=-31/118+23/56*I,n=21 3908846819305644 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(3/8*I*Pi),n=56 3908846822875610 m001 (gamma(2)+BesselI(1,1))/(GAMMA(7/12)-OneNinth) 3908846829005368 r009 Im(z^3+c),c=-23/44+12/47*I,n=47 3908846833489766 a005 (1/cos(11/138*Pi))^1133 3908846843082110 r005 Re(z^2+c),c=19/54+13/25*I,n=3 3908846845981283 a001 2207/2*28657^(43/54) 3908846847529757 p001 sum(1/(497*n+256)/(512^n),n=0..infinity) 3908846848952611 r005 Re(z^2+c),c=-25/46+1/40*I,n=50 3908846850653990 m001 (PisotVijayaraghavan+Trott)/(gamma(2)-Magata) 3908846851284143 l006 ln(3201/4732) 3908846851295774 m001 Conway*Psi(1,1/3)^Weierstrass 3908846853849786 m001 1/Khintchine*ln(FransenRobinson)*Zeta(7)^2 3908846859236716 r005 Im(z^2+c),c=-3/5+30/77*I,n=17 3908846868361358 a007 Real Root Of 690*x^4+806*x^3-321*x^2-768*x+285 3908846876934573 m006 (3/Pi-2/3)/(1/2*Pi-5/6) 3908846878987366 m001 exp(GAMMA(11/12))/Riemann3rdZero^2/sinh(1) 3908846892909296 a008 Real Root of x^3-x^2+11*x+118 3908846895357267 m009 (1/4*Psi(1,3/4)-2/5)/(6*Psi(1,1/3)-1/3) 3908846898737859 m005 (5/6*Catalan-3)/(5/4+2*5^(1/2)) 3908846914136978 r009 Re(z^3+c),c=-14/27+12/43*I,n=48 3908846917821775 m002 -Pi+Pi^4+Cosh[Pi]+Pi^5/ProductLog[Pi] 3908846920448775 m005 (1/2*Pi-2/7)/(2/9*Zeta(3)-3/10) 3908846935705077 r009 Re(z^3+c),c=-63/122+13/46*I,n=60 3908846947254552 r002 23th iterates of z^2 + 3908846973501636 r005 Re(z^2+c),c=-19/74+46/55*I,n=11 3908846980225234 m005 (1/2*Pi+7/8)/(8/9*2^(1/2)+5) 3908846983002220 r005 Im(z^2+c),c=29/102+17/64*I,n=25 3908846983845288 s002 sum(A040640[n]/(64^n),n=1..infinity) 3908846990405470 a001 121393/11*4^(52/57) 3908847002035002 r005 Im(z^2+c),c=27/94+17/64*I,n=45 3908847008561057 a001 1836311903/521*322^(5/12) 3908847009317374 r005 Im(z^2+c),c=-85/126+13/62*I,n=34 3908847013585451 r005 Im(z^2+c),c=-71/98+1/52*I,n=43 3908847022307902 r002 40th iterates of z^2 + 3908847036252722 m001 Trott/(Mills+Porter) 3908847050801812 r002 10th iterates of z^2 + 3908847055653091 r005 Re(z^2+c),c=-25/46+1/40*I,n=46 3908847075829175 m001 (ln(2)+1/3)/(-Artin+3) 3908847078631357 a003 cos(Pi*7/31)*cos(Pi*39/119) 3908847081180689 a007 Real Root Of 158*x^4-628*x^3-297*x^2-987*x+465 3908847085531741 r005 Re(z^2+c),c=2/15+12/25*I,n=19 3908847091530702 a001 46368/11*15127^(56/59) 3908847094090752 r005 Im(z^2+c),c=29/98+19/54*I,n=19 3908847097637825 r005 Re(z^2+c),c=-7/15+20/49*I,n=23 3908847102096356 a007 Real Root Of 23*x^4+900*x^3+36*x^2-85*x-684 3908847102775462 r002 8th iterates of z^2 + 3908847103049731 r005 Re(z^2+c),c=-29/46+15/47*I,n=5 3908847108192227 r005 Im(z^2+c),c=-17/22+47/113*I,n=4 3908847125224052 r009 Re(z^3+c),c=-1/16+23/43*I,n=30 3908847147121005 a001 2178309/11*5778^(36/59) 3908847149970806 m001 (-Bloch+MertensB3)/(Shi(1)+ln(Pi)) 3908847153569243 r005 Re(z^2+c),c=-47/86+5/53*I,n=15 3908847161905952 m001 (exp(1)+BesselI(0,2))/(-Mills+Sierpinski) 3908847181133933 a007 Real Root Of 494*x^4+12*x^3+764*x^2-477*x-314 3908847184986595 q001 729/1865 3908847188281682 r005 Re(z^2+c),c=-1/23+39/61*I,n=12 3908847189382129 r005 Re(z^2+c),c=-25/46+1/40*I,n=48 3908847197143111 r005 Re(z^2+c),c=-59/110+7/22*I,n=23 3908847204250804 m005 (1/2*Zeta(3)+5)/(4/11*exp(1)+4/9) 3908847218671737 r002 3th iterates of z^2 + 3908847219135507 r009 Im(z^3+c),c=-1/7+19/44*I,n=4 3908847220465982 m004 3+15625*Pi-(25*Sqrt[5]*Sinh[Sqrt[5]*Pi])/Pi 3908847221609618 m001 1/sqrt(3)*exp(PrimesInBinary)/sqrt(5) 3908847226984109 v002 sum(1/(5^n*(15*n^2+11*n+31)),n=1..infinity) 3908847229411129 a007 Real Root Of -62*x^4+359*x^3-565*x^2+616*x+350 3908847230225408 r005 Im(z^2+c),c=-3/46+15/28*I,n=40 3908847236300024 l006 ln(82/4087) 3908847251302036 m001 (Stephens+StolarskyHarborth)/(Zeta(5)-exp(1)) 3908847261074003 b008 InverseErf[EulerGamma^Pi^2] 3908847275973975 a001 701408733/1364*322^(3/4) 3908847292468130 l006 ln(4790/7081) 3908847301148054 s002 sum(A056294[n]/(pi^n+1),n=1..infinity) 3908847307828942 r005 Re(z^2+c),c=-21/31+10/33*I,n=13 3908847308796652 m005 (1/2*Zeta(3)-9/11)/(2/7*5^(1/2)-1/12) 3908847309155100 m004 -125*Pi+Log[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi]/5 3908847316817477 a007 Real Root Of -705*x^4-211*x^3-434*x^2+918*x+429 3908847323690375 m001 (HardyLittlewoodC3+Mills)/(ln(3)-BesselK(1,1)) 3908847327210851 a001 9349/55*377^(11/12) 3908847329075555 m005 (1/2*Catalan-2)/(9/10*gamma-1/8) 3908847336994902 a001 5/47*199^(32/47) 3908847337454150 m005 (1/2*5^(1/2)+3)/(6*3^(1/2)+1/7) 3908847338723407 a007 Real Root Of -830*x^4-763*x^3-679*x^2+280*x+187 3908847343453525 m001 BesselJ(1,1)^Khinchin/(GolombDickman^Khinchin) 3908847350092151 r002 53th iterates of z^2 + 3908847353768932 r005 Im(z^2+c),c=-3/34+13/23*I,n=27 3908847361988270 m005 (1/2*gamma+8/11)/(5/8*exp(1)+9/10) 3908847369043224 m001 DuboisRaymond^2*exp(CopelandErdos)/GAMMA(3/4) 3908847382096791 m006 (1/2*Pi^2+1/6)/(3/5*exp(Pi)-5/6) 3908847385748952 r005 Im(z^2+c),c=1/12+19/43*I,n=63 3908847388185074 b008 Log[49+Sin[1]] 3908847391525166 m001 exp(OneNinth)/Lehmer*(3^(1/3))^2 3908847397825691 r005 Im(z^2+c),c=-63/82+2/61*I,n=3 3908847403568108 r005 Im(z^2+c),c=-1/31+33/62*I,n=22 3908847410775458 r005 Re(z^2+c),c=-65/118+1/49*I,n=16 3908847415198758 r005 Re(z^2+c),c=-13/25+9/28*I,n=28 3908847419235051 r009 Re(z^3+c),c=-45/94+9/38*I,n=41 3908847434847193 m005 (1/2*gamma-4/11)/(5/7*Zeta(3)-2/3) 3908847436959528 r005 Re(z^2+c),c=-21/40+9/37*I,n=42 3908847441029107 m001 (GolombDickman-Sarnak)/(ln(3)+3^(1/3)) 3908847444154604 r002 12th iterates of z^2 + 3908847456624402 b008 LogGamma[4+(7+Pi)^2] 3908847457300708 a001 341/36*89^(6/19) 3908847457566575 a001 1/5600748293801*4^(13/23) 3908847461159311 a008 Real Root of x^2-x-152400 3908847465585262 r002 44th iterates of z^2 + 3908847476430301 h001 (3/11*exp(2)+4/9)/(7/9*exp(2)+6/11) 3908847476526985 m001 GAMMA(13/24)^ln(5)/LambertW(1) 3908847478295501 r005 Im(z^2+c),c=1/12+19/43*I,n=59 3908847485598453 a001 47/144*17711^(24/25) 3908847499010178 a007 Real Root Of -308*x^4-982*x^3+755*x^2-368*x+280 3908847510999374 r005 Im(z^2+c),c=21/94+8/23*I,n=10 3908847513855478 l006 ln(6379/9430) 3908847514187103 a001 701408733/2207*322^(5/6) 3908847515048208 r005 Im(z^2+c),c=29/86+10/63*I,n=10 3908847533538325 r005 Im(z^2+c),c=33/106+13/55*I,n=42 3908847535445944 m001 (-Rabbit+ZetaP(4))/(exp(1)-ln(3)) 3908847544019256 r002 55th iterates of z^2 + 3908847559396587 m005 (1/2*Pi+1/6)/(7/10*2^(1/2)-6/11) 3908847566187106 h001 (7/9*exp(2)+1/6)/(1/4*exp(1)+5/6) 3908847586757370 a001 1/76*(1/2*5^(1/2)+1/2)^14*521^(15/16) 3908847593396733 r005 Re(z^2+c),c=-45/86+14/55*I,n=48 3908847596576014 a001 3571/4181*832040^(37/47) 3908847612374223 a007 Real Root Of 619*x^4-618*x^3-741*x^2-162*x+199 3908847613607961 m001 (GAMMA(2/3)-sin(1))/(-Zeta(1,2)+Artin) 3908847613638541 r005 Im(z^2+c),c=-47/86+23/54*I,n=10 3908847624241802 h001 (-9*exp(2/3)+3)/(-2*exp(3)+3) 3908847627070926 a001 18*10946^(19/23) 3908847634623486 a007 Real Root Of -240*x^4-746*x^3+991*x^2+765*x-677 3908847637967673 m001 Artin*KhinchinLevy^sin(1/12*Pi) 3908847639209936 v002 sum(1/(5^n+(30*n^2-88*n+104)),n=1..infinity) 3908847672355357 a007 Real Root Of 437*x^4-378*x^3+817*x^2-308*x-278 3908847677782554 r005 Im(z^2+c),c=7/114+24/53*I,n=19 3908847681816556 r008 a(0)=4,K{-n^6,9-7*n^3-2*n^2+9*n} 3908847687851419 r002 8th iterates of z^2 + 3908847694522664 a007 Real Root Of 614*x^4-537*x^3-465*x^2-525*x+294 3908847719631232 r005 Im(z^2+c),c=3/20+11/28*I,n=15 3908847756728241 r005 Re(z^2+c),c=-14/27+11/39*I,n=49 3908847757052941 r002 28th iterates of z^2 + 3908847759051656 a003 cos(Pi*23/101)*cos(Pi*33/101) 3908847767294571 a007 Real Root Of -148*x^4-339*x^3+899*x^2-291*x-569 3908847772565581 b008 49*Sqrt[7/11] 3908847799598697 m005 (1/3*3^(1/2)-1/9)/(10/11*Zeta(3)+1/10) 3908847811390788 r005 Im(z^2+c),c=13/86+20/51*I,n=35 3908847821800464 m005 (1/2*gamma-4/11)/(7/12*3^(1/2)+10/11) 3908847826757643 r002 54th iterates of z^2 + 3908847848314052 m001 exp(1)+PrimesInBinary+StronglyCareFree 3908847848456511 m001 (Zeta(3)-ln(2))/(ln(5)-HardyLittlewoodC4) 3908847860180126 r002 53th iterates of z^2 + 3908847883872876 a003 cos(Pi*18/103)*cos(Pi*23/66) 3908847892583583 a007 Real Root Of -226*x^4-725*x^3+649*x^2-76*x-753 3908847896578393 a001 9349/10946*832040^(37/47) 3908847897174360 a005 (1/sin(64/219*Pi))^126 3908847907374361 m005 (1/2*Pi-6)/(3/8*gamma+11/12) 3908847914354568 a007 Real Root Of -221*x^4-674*x^3+843*x^2+149*x-959 3908847915818474 a007 Real Root Of -229*x^4-841*x^3+302*x^2+596*x+948 3908847916654204 m005 (1/3*exp(1)+1/7)/(3*gamma-2) 3908847918136339 a001 3571/377*13^(21/38) 3908847922291998 r009 Re(z^3+c),c=-6/29+33/40*I,n=5 3908847927127618 m001 1/Tribonacci*CareFree^2/exp(cos(Pi/12))^2 3908847932883943 r005 Re(z^2+c),c=-25/46+1/47*I,n=33 3908847940348151 a001 24476/28657*832040^(37/47) 3908847945986008 m001 (polylog(4,1/2)-Conway)/(Zeta(3)+cos(1/5*Pi)) 3908847950680789 a001 13201/15456*832040^(37/47) 3908847967399349 a001 15127/17711*832040^(37/47) 3908847973351726 r005 Im(z^2+c),c=3/122+25/52*I,n=56 3908847991122615 r002 16th iterates of z^2 + 3908847991772955 r005 Im(z^2+c),c=1/118+27/55*I,n=64 3908847999176113 r002 9th iterates of z^2 + 3908847999179732 r005 Re(z^2+c),c=-19/50+20/33*I,n=5 3908848018811495 m001 (sin(1/5*Pi)-GAMMA(2/3))/(ln(5)-FeigenbaumMu) 3908848030906635 r002 38th iterates of z^2 + 3908848033329571 a001 329/41*3571^(6/31) 3908848041272916 m001 (ThueMorse-ZetaP(2))/(arctan(1/3)-Totient) 3908848043886866 m001 FeigenbaumMu+PlouffeB^Backhouse 3908848045970361 s002 sum(A216705[n]/(16^n),n=1..infinity) 3908848046027787 s002 sum(A216705[n]/(16^n-1),n=1..infinity) 3908848048485009 r002 36th iterates of z^2 + 3908848050964611 r002 42th iterates of z^2 + 3908848056019479 a007 Real Root Of -836*x^4+216*x^3-388*x^2+735*x+379 3908848062298795 a001 14662949395604/1597*1836311903^(14/17) 3908848062298795 a001 17393796001/1597*6557470319842^(14/17) 3908848077787585 r005 Re(z^2+c),c=-12/23+9/34*I,n=39 3908848080206416 r002 51th iterates of z^2 + 3908848081990063 a001 1926/2255*832040^(37/47) 3908848084315034 r005 Re(z^2+c),c=-65/126+8/27*I,n=43 3908848086694831 a007 Real Root Of 132*x^4+414*x^3-364*x^2+227*x+359 3908848088354461 m001 (ZetaQ(2)+ZetaQ(3))/(Artin+FibonacciFactorial) 3908848094934136 b008 E^(-3)-Csch[1/4] 3908848108899462 a007 Real Root Of 271*x^4+330*x^3-630*x^2-946*x+440 3908848110603446 m001 (GAMMA(13/24)*FeigenbaumC+Magata)/GAMMA(13/24) 3908848112682345 m001 (Kolakoski-KomornikLoreti)/(Pi-BesselK(1,1)) 3908848122760073 a007 Real Root Of -794*x^4+115*x^3-719*x^2+381*x+16 3908848127390494 a007 Real Root Of 245*x^4+981*x^3+226*x^2+564*x+145 3908848134393434 r005 Re(z^2+c),c=-55/102+5/42*I,n=44 3908848137407424 a007 Real Root Of -17*x^4-668*x^3-138*x^2-40*x+505 3908848149381579 r002 40th iterates of z^2 + 3908848150722156 m001 3^(1/3)-Shi(1)-StronglyCareFree 3908848153478528 r005 Im(z^2+c),c=19/70+17/57*I,n=16 3908848159627363 a007 Real Root Of -812*x^4+180*x^3+29*x^2+864*x+363 3908848181221968 l006 ln(1589/2349) 3908848181525401 r005 Re(z^2+c),c=-55/106+13/43*I,n=28 3908848186939729 a008 Real Root of x^4-x^2-42*x-54 3908848199602648 a001 1836311903/5778*322^(5/6) 3908848208464489 r002 23th iterates of z^2 + 3908848210967182 a007 Real Root Of 557*x^4-729*x^3+875*x^2+479*x-3 3908848211012377 r005 Im(z^2+c),c=1/12+19/43*I,n=60 3908848213743822 a007 Real Root Of 535*x^4-917*x^3-126*x^2-431*x+230 3908848213889036 a007 Real Root Of -398*x^4+336*x^3-290*x^2+490*x-158 3908848215447805 a007 Real Root Of 44*x^4-88*x^3-975*x^2+237*x+296 3908848216669204 r005 Re(z^2+c),c=-3/32+37/45*I,n=3 3908848238083499 r005 Im(z^2+c),c=-87/118+1/28*I,n=12 3908848239434208 m004 (Sqrt[5]*Pi)/Log[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/3 3908848246501948 m005 (1/2*gamma-5/12)/(6/7*Pi+7/12) 3908848256362152 m005 (1/2+3/2*5^(1/2))/(1/6*Catalan+5/6) 3908848273731915 r005 Re(z^2+c),c=-25/46+1/41*I,n=37 3908848278760468 r002 11th iterates of z^2 + 3908848289744367 m001 PisotVijayaraghavan/(PlouffeB^Backhouse) 3908848297477747 r009 Im(z^3+c),c=-14/27+11/41*I,n=44 3908848299603448 a001 686789568/2161*322^(5/6) 3908848304153140 m001 (FeigenbaumC-Khinchin)/(MinimumGamma+Sarnak) 3908848312335172 p004 log(26921/25889) 3908848314193369 a001 12586269025/39603*322^(5/6) 3908848316322009 a001 32951280099/103682*322^(5/6) 3908848316632574 a001 86267571272/271443*322^(5/6) 3908848316677885 a001 317811*322^(5/6) 3908848316684495 a001 591286729879/1860498*322^(5/6) 3908848316685460 a001 1548008755920/4870847*322^(5/6) 3908848316685600 a001 4052739537881/12752043*322^(5/6) 3908848316685621 a001 1515744265389/4769326*322^(5/6) 3908848316685634 a001 6557470319842/20633239*322^(5/6) 3908848316685687 a001 2504730781961/7881196*322^(5/6) 3908848316686056 a001 956722026041/3010349*322^(5/6) 3908848316688581 a001 365435296162/1149851*322^(5/6) 3908848316705888 a001 139583862445/439204*322^(5/6) 3908848316824513 a001 53316291173/167761*322^(5/6) 3908848317637582 a001 20365011074/64079*322^(5/6) 3908848318932360 r005 Re(z^2+c),c=-1+47/227*I,n=38 3908848322361127 r005 Re(z^2+c),c=-21/34+45/124*I,n=41 3908848323210435 a001 7778742049/24476*322^(5/6) 3908848324104278 a001 45537549124/4181*6557470319842^(14/17) 3908848328150221 r009 Re(z^3+c),c=-51/122+35/57*I,n=3 3908848332596473 a007 Real Root Of 306*x^4-922*x^3-209*x^2-864*x-368 3908848346928570 m001 Salem^Ei(1)*KhinchinHarmonic^Ei(1) 3908848361407344 a001 2971215073/9349*322^(5/6) 3908848362064038 a007 Real Root Of -18*x^4+61*x^3+516*x^2-118*x-500 3908848362301186 a001 119218851371/10946*6557470319842^(14/17) 3908848367874040 a001 312119004989/28657*6557470319842^(14/17) 3908848368687108 a001 817138163596/75025*6557470319842^(14/17) 3908848368805733 a001 2139295485799/196418*6557470319842^(14/17) 3908848368823040 a001 5600748293801/514229*6557470319842^(14/17) 3908848368825565 a001 14662949395604/1346269*6557470319842^(14/17) 3908848368826161 a001 23725150497407/2178309*6557470319842^(14/17) 3908848368827126 a001 9062201101803/832040*6557470319842^(14/17) 3908848368833737 a001 3461452808002/317811*6557470319842^(14/17) 3908848368879047 a001 1322157322203/121393*6557470319842^(14/17) 3908848369189612 a001 505019158607/46368*6557470319842^(14/17) 3908848371318253 a001 192900153618/17711*6557470319842^(14/17) 3908848371672985 a001 12238*10946^(31/50) 3908848377294196 r002 64th iterates of z^2 + 3908848377625792 m001 1/ln(GAMMA(19/24))^2/Backhouse*Zeta(1/2) 3908848379527746 a007 Real Root Of -924*x^4+981*x^3-714*x^2+291*x+303 3908848383133627 r009 Im(z^3+c),c=-17/118+28/61*I,n=2 3908848385908174 a001 73681302247/6765*6557470319842^(14/17) 3908848410436110 b008 96-43*Pi 3908848412299322 p003 LerchPhi(1/6,4,301/237) 3908848417228910 m004 -5*Csc[Sqrt[5]*Pi]+625*Pi*Sech[Sqrt[5]*Pi] 3908848427747765 r005 Re(z^2+c),c=-49/94+4/15*I,n=55 3908848428153097 s001 sum(exp(-Pi/2)^(n-1)*A150461[n],n=1..infinity) 3908848429406249 r009 Re(z^3+c),c=-53/126+7/41*I,n=23 3908848435814161 a007 Real Root Of 187*x^4+788*x^3+154*x^2-472*x-791 3908848446485743 a007 Real Root Of -237*x^4-991*x^3-398*x^2-628*x-232 3908848467376593 m001 (Catalan+Mills)/(3^(1/2)-Psi(2,1/3)) 3908848485908982 a001 23725150497407/2584*1836311903^(14/17) 3908848485908982 a001 28143753123/2584*6557470319842^(14/17) 3908848488838001 l003 tanh(45/109) 3908848488838001 l004 tanh(45/109) 3908848491705684 m001 (BesselJ(0,1)+gamma(3))/ReciprocalLucas 3908848504260158 a007 Real Root Of -269*x^4+78*x^3+22*x^2+546*x+221 3908848510969491 r005 Re(z^2+c),c=-51/98+4/29*I,n=10 3908848516789613 r005 Im(z^2+c),c=-2/25+32/59*I,n=41 3908848529889460 r002 9th iterates of z^2 + 3908848534977655 r009 Re(z^3+c),c=-37/78+10/49*I,n=8 3908848540200230 a007 Real Root Of -x^4+884*x^3+56*x^2+58*x-84 3908848551213525 m001 (ln(gamma)-ln(3))/(AlladiGrinstead+Magata) 3908848552003467 r009 Im(z^3+c),c=-35/66+16/41*I,n=52 3908848562804793 v002 sum(1/(3^n*(41/2*n^2-15/2*n-4)),n=1..infinity) 3908848563470259 a007 Real Root Of 283*x^4+625*x^3+36*x^2-830*x+275 3908848573282963 m001 CareFree/sin(1)*FeigenbaumDelta 3908848573338737 l006 ln(183/9121) 3908848574452417 r009 Re(z^3+c),c=-53/118+11/54*I,n=31 3908848578644842 m001 (GAMMA(5/6)+RenyiParking)/(Shi(1)-gamma) 3908848583688591 m001 GAMMA(1/24)*Riemann3rdZero^2/exp(GAMMA(1/4)) 3908848585749274 m001 2^(1/2)+cos(1/12*Pi)+GAMMA(7/12) 3908848585749274 m001 sqrt(2)+cos(Pi/12)+GAMMA(7/12) 3908848589265540 m001 1/2*ln(2+3^(1/2))*2^(2/3)*Artin 3908848589265540 m001 Artin/(2^(1/3))*ln(2+sqrt(3)) 3908848594315035 p004 log(30469/20611) 3908848599207606 a007 Real Root Of -768*x^4+563*x^3+717*x^2+795*x-436 3908848607666249 r005 Im(z^2+c),c=25/106+20/63*I,n=22 3908848614331851 m005 (1/3*Zeta(3)+1/7)/(7/8*3^(1/2)-1/8) 3908848623212871 a001 1134903170/3571*322^(5/6) 3908848629108424 r005 Re(z^2+c),c=19/78+1/58*I,n=17 3908848635700817 m001 (Grothendieck+Niven)/(GAMMA(19/24)-Psi(1,1/3)) 3908848660785973 r009 Re(z^3+c),c=-19/50+5/42*I,n=17 3908848674202247 m004 -125*Pi+Sec[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/2 3908848706729060 r009 Re(z^3+c),c=-27/56+13/54*I,n=39 3908848707507102 m001 exp(BesselK(1,1))/Cahen*GAMMA(19/24)^2 3908848720896522 r005 Im(z^2+c),c=17/98+13/35*I,n=19 3908848721295421 a007 Real Root Of -856*x^4+191*x^3-103*x^2+409*x+207 3908848721456742 m001 (Trott+ZetaP(3))/(cos(1)-sin(1/5*Pi)) 3908848725852943 m005 (7/24+1/6*5^(1/2))/(10/11*3^(1/2)+1/8) 3908848745593747 h001 (7/10*exp(1)+6/7)/(6/7*exp(2)+8/11) 3908848754698016 m001 GaussAGM/(KomornikLoreti^Mills) 3908848755897309 r005 Re(z^2+c),c=-41/78+13/56*I,n=30 3908848764802632 r005 Re(z^2+c),c=-11/13+11/58*I,n=56 3908848779175302 a001 2584/123*15127^(2/31) 3908848783694937 r002 2th iterates of z^2 + 3908848789002517 r005 Re(z^2+c),c=-25/42+7/43*I,n=11 3908848807560126 r009 Re(z^3+c),c=-53/90+23/40*I,n=57 3908848820286645 b008 LogGamma[E/137] 3908848827600296 m001 GAMMA(5/12)/GlaisherKinkelin/ln(GAMMA(7/12)) 3908848833720073 g003 Im(GAMMA(-251/60+I*(-21/10))) 3908848838827973 r002 17th iterates of z^2 + 3908848842249378 a007 Real Root Of -162*x^4-510*x^3+325*x^2-458*x+604 3908848842713056 m001 1/GAMMA(7/24)/GAMMA(1/6)^2*exp(log(2+sqrt(3))) 3908848847133511 m001 (cos(1)+Rabbit)/(exp(Pi)+Psi(2,1/3)) 3908848847434938 m006 (4*Pi^2-3/4)/(1/6*ln(Pi)+4/5) 3908848853435855 l006 ln(6333/9362) 3908848860193450 a001 55/15127*64079^(26/31) 3908848860760832 m001 1/TwinPrimes/ln(FeigenbaumKappa)/GAMMA(5/6)^2 3908848864370714 r005 Re(z^2+c),c=-53/98+5/39*I,n=21 3908848867406525 a001 2207/2584*832040^(37/47) 3908848870406558 r005 Im(z^2+c),c=-31/24+1/52*I,n=28 3908848875656131 r005 Im(z^2+c),c=31/126+13/42*I,n=60 3908848877993649 a001 55/39603*39603^(30/31) 3908848887195366 a001 76/987*55^(15/37) 3908848889523799 r005 Re(z^2+c),c=-5/6+126/251*I,n=2 3908848894984318 r002 48th iterates of z^2 + 3908848894984318 r002 48th iterates of z^2 + 3908848898423760 p004 log(35099/23743) 3908848917112869 a001 55/9349*24476^(27/31) 3908848935428433 a008 Real Root of x^2-152791 3908848946909246 a007 Real Root Of 117*x^4-282*x^3+508*x^2-767*x-397 3908848952326773 r005 Re(z^2+c),c=5/19+1/29*I,n=36 3908848954594761 r002 3th iterates of z^2 + 3908848968729208 q001 1175/3006 3908848977008452 r005 Re(z^2+c),c=-63/122+11/41*I,n=22 3908848988439735 r005 Re(z^2+c),c=-13/10+3/208*I,n=14 3908848989302737 r005 Re(z^2+c),c=-85/66+1/51*I,n=44 3908848992289196 r005 Im(z^2+c),c=-13/110+32/55*I,n=39 3908848993664070 m006 (3/4/Pi+2/5)/(1/4*Pi^2-5/6) 3908849006173428 r005 Im(z^2+c),c=-3/44+22/41*I,n=49 3908849007302527 r005 Im(z^2+c),c=13/86+20/51*I,n=29 3908849014225312 r004 Im(z^2+c),c=1/20+5/16*I,z(0)=I,n=5 3908849014225312 r004 Im(z^2+c),c=1/20-5/16*I,z(0)=I,n=5 3908849026986020 r002 10th iterates of z^2 + 3908849045861530 r005 Im(z^2+c),c=-29/46+4/55*I,n=50 3908849057556755 h001 (-exp(1)+6)/(-exp(1/3)-7) 3908849064725418 s002 sum(A277826[n]/((2^n-1)/n),n=1..infinity) 3908849073050380 s002 sum(A057685[n]/(64^n-1),n=1..infinity) 3908849078548538 a003 cos(Pi*1/13)-cos(Pi*10/33) 3908849078593490 l006 ln(4744/7013) 3908849078765655 m001 (2^(1/3)-ln(gamma))/(-GAMMA(11/12)+Lehmer) 3908849080387939 m001 1/exp(Zeta(3))/KhintchineLevy*cosh(1) 3908849081595449 a001 18/1346269*987^(14/17) 3908849086791874 m001 (FeigenbaumMu+Rabbit)/(ln(gamma)+BesselJ(1,1)) 3908849090510132 m005 (1/2*Zeta(3)-11/12)/(1/10*5^(1/2)-1/7) 3908849091372836 b008 -3*Sqrt[E]+Coth[2] 3908849109968319 m001 (GAMMA(23/24)+Weierstrass)/(GAMMA(3/4)-sin(1)) 3908849120336418 m001 (ln(2)*arctan(1/3)+MertensB2)/arctan(1/3) 3908849134414093 a007 Real Root Of 660*x^4-873*x^3-31*x^2-791*x-372 3908849140106500 m001 (Pi*2^(1/2)/GAMMA(3/4))^Zeta(3)-Kolakoski 3908849156482803 r005 Re(z^2+c),c=-14/27+9/23*I,n=29 3908849157713564 a007 Real Root Of -229*x^4-75*x^3+50*x^2+749*x+286 3908849159742908 r005 Re(z^2+c),c=-61/114+5/28*I,n=26 3908849160604376 p004 log(25703/17387) 3908849171324858 a001 3020733700601/329*1836311903^(14/17) 3908849171324858 a001 10749957122/987*6557470319842^(14/17) 3908849173580396 r005 Im(z^2+c),c=21/74+19/40*I,n=50 3908849178436207 m001 OneNinth*ln(FeigenbaumD)/exp(1) 3908849195770034 r009 Re(z^3+c),c=-31/66+11/48*I,n=23 3908849204869092 m004 -2+(3*Sqrt[5])/Pi+125*Pi-Log[Sqrt[5]*Pi] 3908849210444764 m002 -6+4*Pi^6+6*Sinh[Pi] 3908849214068173 r009 Im(z^3+c),c=-23/48+11/40*I,n=14 3908849220644167 m001 MasserGramainDelta+GlaisherKinkelin^Otter 3908849224762040 r005 Re(z^2+c),c=-57/106+16/37*I,n=53 3908849225662369 a001 2/6765*514229^(13/35) 3908849227481878 a007 Real Root Of 957*x^4+280*x^3-91*x^2-797*x-31 3908849233476670 m004 -4-5*Sqrt[5]*Pi+20*Csch[Sqrt[5]*Pi] 3908849235267046 r009 Im(z^3+c),c=-19/60+9/23*I,n=18 3908849238150829 r005 Re(z^2+c),c=-23/44+14/53*I,n=34 3908849239107535 m004 -4-5*Sqrt[5]*Pi+20*Sech[Sqrt[5]*Pi] 3908849239941329 r005 Re(z^2+c),c=-55/106+16/57*I,n=53 3908849240019207 r009 Im(z^3+c),c=-15/32+18/59*I,n=22 3908849240062008 m001 (Zeta(1/2)-exp(1/exp(1))*Lehmer)/Lehmer 3908849244295728 r005 Re(z^2+c),c=-25/48+1/3*I,n=23 3908849250452570 m005 (3/28+1/4*5^(1/2))/(7/10*2^(1/2)+5/7) 3908849264570609 r002 4th iterates of z^2 + 3908849288328411 m001 (-Kac+OrthogonalArrays)/(3^(1/2)+sin(1/12*Pi)) 3908849293449159 m001 (Ei(1,1)+Backhouse)/(Pi+ln(Pi)) 3908849295208570 m001 (ln(5)-Lehmer)/(Pi-cos(1)) 3908849305098729 m001 Bloch*FibonacciFactorial/ln(GAMMA(5/24)) 3908849314766711 b008 7*(2+13*(1+Pi)) 3908849315215263 r009 Im(z^3+c),c=-27/82+22/57*I,n=17 3908849330057185 p001 sum(1/(332*n+215)/n/(5^n),n=1..infinity) 3908849331298921 r005 Im(z^2+c),c=-15/122+17/30*I,n=56 3908849337843063 r005 Im(z^2+c),c=-121/98+1/64*I,n=51 3908849344617783 r005 Im(z^2+c),c=15/56+7/37*I,n=4 3908849353777709 r005 Im(z^2+c),c=-1/2*I,n=19 3908849356052743 r005 Im(z^2+c),c=-34/27+11/37*I,n=5 3908849356270548 a007 Real Root Of 20*x^4+276*x^3+892*x^2-754*x-415 3908849359457013 r009 Im(z^3+c),c=-43/98+39/64*I,n=10 3908849364637474 r002 28th iterates of z^2 + 3908849369377804 s002 sum(A146100[n]/((exp(n)+1)*n),n=1..infinity) 3908849372126206 r005 Im(z^2+c),c=-1/42+24/47*I,n=51 3908849372508950 r009 Im(z^3+c),c=-57/122+20/63*I,n=19 3908849400343125 a007 Real Root Of -70*x^4-78*x^3+642*x^2-264*x+842 3908849403054319 a007 Real Root Of -291*x^4-997*x^3+644*x^2+197*x-680 3908849412564418 m004 -5/3+125*Pi-Cos[Sqrt[5]*Pi]/5 3908849414753105 a001 2139295485799/610*6557470319842^(12/17) 3908849418732116 a001 1/843*(1/2*5^(1/2)+1/2)^26*3^(3/17) 3908849421287232 r009 Im(z^3+c),c=-71/122+14/31*I,n=16 3908849447383616 s001 sum(exp(-3*Pi/4)^n*A259811[n],n=1..infinity) 3908849449951940 r009 Re(z^3+c),c=-39/82+7/30*I,n=57 3908849484638387 a001 1/9348*(1/2*5^(1/2)+1/2)^8*123^(19/21) 3908849491483565 m001 1/exp(FeigenbaumC)*MertensB1*cos(Pi/12)^2 3908849517929416 m001 (1-LambertW(1))/(ArtinRank2+HardyLittlewoodC5) 3908849521496661 m001 (-GAMMA(11/12)+OneNinth)/(Si(Pi)-ln(5)) 3908849521780236 r005 Re(z^2+c),c=-29/54+3/19*I,n=26 3908849522621726 a007 Real Root Of -126*x^4-223*x^3+905*x^2-616*x-139 3908849530550147 l006 ln(3155/4664) 3908849530730151 r009 Re(z^3+c),c=-16/31+19/47*I,n=12 3908849538013702 r009 Re(z^3+c),c=-12/23+12/47*I,n=21 3908849540188118 h001 (5/8*exp(2)+6/11)/(1/9*exp(2)+1/2) 3908849541715587 a007 Real Root Of -251*x^4-961*x^3+363*x^2+904*x-811 3908849555958182 r005 Re(z^2+c),c=9/64+23/38*I,n=24 3908849558704303 r005 Re(z^2+c),c=-55/106+3/29*I,n=7 3908849561158730 m005 (1/2*2^(1/2)-9/11)/(5/7*exp(1)+9/10) 3908849564939441 r005 Im(z^2+c),c=19/66+17/64*I,n=38 3908849565459916 r002 24th iterates of z^2 + 3908849571140083 r009 Im(z^3+c),c=-25/126+22/53*I,n=4 3908849596754936 m004 -4/3+125*Pi-(Sqrt[5]*Sin[Sqrt[5]*Pi])/Pi 3908849612111891 m003 -11/2+Sqrt[5]/2+4*Sin[1/2+Sqrt[5]/2]^2 3908849621001942 b008 EulerGamma+LogIntegral[Log[4]] 3908849639438981 h001 (3/8*exp(1)+9/10)/(7/12*exp(2)+3/5) 3908849644255625 r005 Im(z^2+c),c=-1/24+25/48*I,n=43 3908849647439597 a007 Real Root Of -215*x^4+689*x^3+948*x^2+151*x-240 3908849658854001 l006 ln(101/5034) 3908849662361957 r002 37th iterates of z^2 + 3908849663681939 r005 Re(z^2+c),c=-29/54+8/55*I,n=41 3908849669484603 r009 Im(z^3+c),c=-5/31+13/30*I,n=6 3908849674337864 r002 22th iterates of z^2 + 3908849675497223 m006 (Pi+1/2)/(4*exp(Pi)+3/5) 3908849702357966 r005 Re(z^2+c),c=-33/74+31/61*I,n=16 3908849703985589 r005 Im(z^2+c),c=-28/23+8/55*I,n=23 3908849717961021 r005 Im(z^2+c),c=19/66+8/33*I,n=14 3908849726021895 r009 Re(z^3+c),c=-17/46+6/37*I,n=2 3908849728573346 m003 2+Cos[1/2+Sqrt[5]/2]+Sinh[1/2+Sqrt[5]/2]^2/3 3908849742477404 a001 18/956722026041*12586269025^(14/17) 3908849742477456 a001 9/567451585*3524578^(14/17) 3908849744069114 m005 (1/2*gamma-2/5)/(1/8*Zeta(3)-3) 3908849767305747 a007 Real Root Of 651*x^4+227*x^3+886*x^2-550*x-352 3908849771788161 r005 Re(z^2+c),c=-25/44+6/13*I,n=27 3908849775518880 a007 Real Root Of -598*x^4+531*x^3+302*x^2+581*x-291 3908849778095559 r002 8th iterates of z^2 + 3908849790124645 r005 Im(z^2+c),c=1/74+23/47*I,n=27 3908849792159847 r005 Re(z^2+c),c=-33/46+7/57*I,n=50 3908849810690453 m001 Mills^MertensB3-Zeta(5) 3908849812413023 r002 10th iterates of z^2 + 3908849812437738 r002 32th iterates of z^2 + 3908849816040020 a007 Real Root Of -917*x^4-785*x^3-992*x^2+844*x+456 3908849820316949 r005 Im(z^2+c),c=-5/8+17/233*I,n=56 3908849820740951 a007 Real Root Of 495*x^4+568*x^3+610*x^2-333*x-201 3908849821894407 r005 Re(z^2+c),c=9/94+21/38*I,n=5 3908849835570339 a005 (1/sin(69/157*Pi))^1215 3908849836455604 a008 Real Root of (-6-x^2+4*x^4+x^5) 3908849843603987 m005 (1/2*gamma-1/11)/(1/10*gamma+5) 3908849846130202 m001 (-Weierstrass+ZetaP(3))/(ln(5)-sin(1)) 3908849847385889 r009 Im(z^3+c),c=-29/54+11/34*I,n=22 3908849868000487 m001 (ln(5)-ln(Pi))/(GAMMA(17/24)-OrthogonalArrays) 3908849879594316 r005 Im(z^2+c),c=-1/46+27/53*I,n=48 3908849881066759 a007 Real Root Of 510*x^4+931*x^3+129*x^2-550*x-191 3908849895441184 m001 (Totient-Weierstrass)/(BesselJ(1,1)+Pi^(1/2)) 3908849895787977 m008 (1/2*Pi^5-1)/(4*Pi^4-3/4) 3908849899541364 r005 Re(z^2+c),c=-2/31+27/38*I,n=7 3908849901956199 r009 Re(z^3+c),c=-55/106+4/21*I,n=32 3908849919748646 r005 Re(z^2+c),c=7/19+23/64*I,n=32 3908849929841970 r005 Im(z^2+c),c=-13/44+13/24*I,n=7 3908849931891483 r005 Im(z^2+c),c=-157/126+16/49*I,n=17 3908849937281309 r005 Re(z^2+c),c=-5/8+59/164*I,n=34 3908849960932846 m001 Kolakoski^2*ln(GolombDickman)*GAMMA(1/4)^2 3908849977403890 a007 Real Root Of -15*x^4+361*x^3-673*x^2+103*x+165 3908849980331374 m001 ln(gamma)^(exp(1)*gamma) 3908849980331374 m001 log(gamma)^(exp(1)*gamma) 3908849984708648 l006 ln(4721/6979) 3908849994651009 r002 14th iterates of z^2 + 3908850020672046 a007 Real Root Of 276*x^4+844*x^3-753*x^2+521*x-484 3908850029398450 r005 Im(z^2+c),c=-11/58+42/61*I,n=62 3908850032710767 b008 1/4+Pi^E^(1/8) 3908850034218829 r005 Im(z^2+c),c=13/86+20/51*I,n=52 3908850035845684 r002 36th iterates of z^2 + 3908850041958389 a003 cos(Pi*35/92)*cos(Pi*48/103) 3908850053223114 r002 12th iterates of z^2 + 3908850059121964 r005 Im(z^2+c),c=-31/52+2/5*I,n=24 3908850064808820 r009 Re(z^3+c),c=-71/122+17/25*I,n=4 3908850073785707 h001 (2/9*exp(2)+1/2)/(7/11*exp(2)+7/9) 3908850075605234 a007 Real Root Of -978*x^4+892*x^3+14*x^2+349*x-169 3908850081601816 a007 Real Root Of -238*x^4-692*x^3+885*x^2-422*x-939 3908850095413871 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=24 3908850096012493 m001 (ArtinRank2-Trott)/(ln(2)-polylog(4,1/2)) 3908850102449766 r009 Re(z^3+c),c=-49/94+35/57*I,n=11 3908850105091885 r009 Im(z^3+c),c=-16/31+3/11*I,n=53 3908850105497678 a007 Real Root Of -159*x^4+948*x^3-465*x^2+590*x+362 3908850106049672 a007 Real Root Of 172*x^4+151*x^3-357*x^2-971*x-320 3908850109500990 r005 Re(z^2+c),c=-6/11+5/64*I,n=12 3908850112772114 r002 22th iterates of z^2 + 3908850145054161 m001 (gamma+Zeta(1,-1))/(-gamma(3)+GAMMA(11/12)) 3908850150242456 a001 1134903170/521*322^(1/2) 3908850154796927 r009 Re(z^3+c),c=-9/22+8/51*I,n=18 3908850166149746 m001 (-GAMMA(13/24)+Sierpinski)/(exp(Pi)+Zeta(5)) 3908850169921348 r005 Im(z^2+c),c=13/62+19/55*I,n=22 3908850171186147 m001 (Porter-TravellingSalesman)/(Ei(1,1)+Niven) 3908850176643297 r002 41th iterates of z^2 + 3908850203962395 r005 Im(z^2+c),c=13/90+2/5*I,n=20 3908850205951565 r002 15th iterates of z^2 + 3908850212618625 l006 ln(6287/9294) 3908850225577419 r005 Re(z^2+c),c=-21/44+27/64*I,n=31 3908850257966778 r002 54th iterates of z^2 + 3908850286123914 m001 (Zeta(5)+exp(1/exp(1)))/(Sarnak-TwinPrimes) 3908850294402552 s002 sum(A019083[n]/(exp(pi*n)+1),n=1..infinity) 3908850299504971 m001 ln(BesselK(0,1)*ErdosBorwein) 3908850303751464 a007 Real Root Of 929*x^4+228*x^3+895*x^2-397*x-300 3908850306920456 h001 (2/7*exp(1)+1/6)/(6/7*exp(1)+1/12) 3908850342820233 a005 (1/sin(77/163*Pi))^362 3908850352204400 a001 2/710647*29^(4/41) 3908850376414702 r005 Re(z^2+c),c=-13/22+23/82*I,n=5 3908850382360804 m001 exp(GAMMA(1/6))/CareFree/GAMMA(7/24)^2 3908850394134003 r005 Im(z^2+c),c=1/118+27/55*I,n=54 3908850396932175 a007 Real Root Of -162*x^4+33*x^3+871*x^2+644*x-383 3908850417655589 a001 433494437/1364*322^(5/6) 3908850419429468 s002 sum(A018739[n]/((exp(n)+1)/n),n=1..infinity) 3908850421176668 r009 Re(z^3+c),c=-13/32+8/43*I,n=3 3908850427992021 p001 sum(1/(295*n+36)/n/(8^n),n=1..infinity) 3908850435156468 m008 (3/4*Pi^6+1)/(1/3*Pi+4/5) 3908850439971247 r002 33th iterates of z^2 + 3908850439981404 a007 Real Root Of -492*x^4+867*x^3+585*x^2+448*x+149 3908850446422910 r005 Im(z^2+c),c=-69/98+1/40*I,n=13 3908850454604326 l005 ln(tanh(987/109*Pi)) 3908850456014482 a007 Real Root Of -936*x^4+693*x^3-2*x^2+367*x+207 3908850459457094 m001 ThueMorse^Otter/(ThueMorse^Ei(1)) 3908850467507902 r005 Im(z^2+c),c=-7/6+8/127*I,n=7 3908850480591910 r009 Im(z^3+c),c=-11/42+16/39*I,n=10 3908850503806755 r005 Im(z^2+c),c=-43/82+15/31*I,n=59 3908850507640515 r005 Im(z^2+c),c=13/86+20/51*I,n=39 3908850508502921 r005 Im(z^2+c),c=11/82+19/47*I,n=22 3908850510848467 h001 (5/8*exp(1)+6/11)/(3/4*exp(2)+1/5) 3908850517455823 r005 Re(z^2+c),c=-7/122+25/32*I,n=18 3908850524424836 r005 Im(z^2+c),c=35/102+4/43*I,n=55 3908850533663480 r005 Im(z^2+c),c=11/86+25/61*I,n=28 3908850547291767 m001 (-ErdosBorwein+ZetaQ(3))/(5^(1/2)+Si(Pi)) 3908850549864740 a007 Real Root Of 264*x^4+925*x^3-124*x^2+954*x-763 3908850549871376 m001 1/exp(exp(1))^2/Porter*log(2+sqrt(3)) 3908850577461515 r005 Im(z^2+c),c=11/58+25/62*I,n=5 3908850581186747 r002 33th iterates of z^2 + 3908850590639084 r005 Im(z^2+c),c=-2/3+45/137*I,n=48 3908850600084758 m002 3+4*Pi^4*ProductLog[Pi]*Sech[Pi] 3908850608018750 m007 (-1/2*gamma-ln(2)+4)/(-gamma+1/2) 3908850608249026 a007 Real Root Of -195*x^4-752*x^3-143*x^2-739*x-93 3908850614257414 m005 (1/2*Catalan-4/5)/(3/7*5^(1/2)-1/12) 3908850637313168 a003 cos(Pi*31/101)-sin(Pi*23/56) 3908850652224452 h001 (1/12*exp(2)+11/12)/(4/9*exp(2)+7/11) 3908850654293430 a001 322/5*55^(9/20) 3908850655540378 a007 Real Root Of -610*x^4+425*x^3-445*x^2-503*x-89 3908850655868909 a001 433494437/2207*322^(11/12) 3908850656127842 m001 (Pi+BesselI(0,2))/(ReciprocalLucas-Stephens) 3908850661809386 a007 Real Root Of -66*x^4+438*x^3+35*x^2+852*x-363 3908850681472354 m001 GaussAGM/(ZetaR(2)^AlladiGrinstead) 3908850693729144 a007 Real Root Of 268*x^4+824*x^3-865*x^2+218*x+716 3908850704478988 m001 (ln(5)+arctan(1/3))/(GAMMA(7/12)-MertensB2) 3908850722343202 a001 28143753123/377*1836311903^(16/17) 3908850722343227 a001 12752043/377*6557470319842^(16/17) 3908850729837664 r005 Im(z^2+c),c=3/20+8/21*I,n=7 3908850741611043 m001 TreeGrowth2nd^FellerTornier+Pi 3908850754630332 m001 Kolakoski/exp(Champernowne)*GAMMA(1/6) 3908850781774848 a007 Real Root Of 213*x^4+667*x^3-845*x^2-664*x+426 3908850783196013 r005 Im(z^2+c),c=-2/21+21/38*I,n=42 3908850791382306 r009 Re(z^3+c),c=-15/82+37/51*I,n=22 3908850799407314 m001 (Zeta(1,2)+Porter)/(5^(1/2)-ln(2^(1/2)+1)) 3908850818661230 r009 Im(z^3+c),c=-31/74+17/50*I,n=34 3908850835664343 r005 Im(z^2+c),c=7/60+23/55*I,n=41 3908850842863697 m009 (2*Psi(1,2/3)-2/3)/(3/2*Pi^2-5/6) 3908850843363513 a008 Real Root of x^2-x-1567 3908850847589365 a007 Real Root Of 16*x^4+644*x^3+748*x^2+849*x+207 3908850848274933 m001 (exp(1)+Robbin)/(ThueMorse+ZetaP(2)) 3908850853932066 r005 Re(z^2+c),c=-29/56+13/47*I,n=31 3908850858768820 m005 (1/3*Catalan-2/3)/(4*5^(1/2)+3/10) 3908850873756003 r005 Im(z^2+c),c=9/110+35/59*I,n=13 3908850899695860 l006 ln(1566/2315) 3908850925273621 a001 3/55*6765^(41/55) 3908850933144827 r005 Im(z^2+c),c=-41/86+11/63*I,n=4 3908850940161859 a007 Real Root Of -137*x^4-384*x^3+671*x^2+303*x-19 3908850949103759 a007 Real Root Of 29*x^4-697*x^3-871*x^2-179*x+244 3908850959872015 a007 Real Root Of 142*x^4+532*x^3-29*x^2+220*x-74 3908850965189719 a007 Real Root Of -713*x^4+44*x^3+599*x^2+514*x+2 3908850967022846 m001 ZetaP(3)^(Psi(1,1/3)*Chi(1)) 3908850974472624 m005 (1/2*2^(1/2)-2/7)/(1/6*exp(1)+5/8) 3908850979301390 a003 cos(Pi*3/53)*sin(Pi*13/100) 3908850983759460 m001 (Backhouse-Psi(2,1/3))/(OneNinth+Totient) 3908850986026910 a001 610/123*9349^(7/31) 3908850986953103 r005 Re(z^2+c),c=-49/94+15/56*I,n=43 3908850990493201 r002 48th iterates of z^2 + 3908851001201156 r005 Im(z^2+c),c=-13/86+31/53*I,n=30 3908851011341716 m001 (MinimumGamma+Weierstrass)/(exp(1)+5^(1/2)) 3908851012728917 a007 Real Root Of 937*x^4-933*x^3-417*x^2-303*x+216 3908851020317151 r005 Im(z^2+c),c=-1/29+15/29*I,n=41 3908851024435429 p002 log(17^(7/6)-15^(6/5)) 3908851027983590 m001 (Tetranacci+Thue)/(MadelungNaCl-MertensB2) 3908851031856264 m001 (2^(1/3)-BesselK(1,1))/(ErdosBorwein+ZetaP(4)) 3908851055323434 m001 (Catalan-Ei(1))/(gamma(3)+FeigenbaumAlpha) 3908851056540709 r005 Re(z^2+c),c=-55/106+16/57*I,n=59 3908851057092937 r005 Re(z^2+c),c=7/27+2/63*I,n=55 3908851057139784 r005 Re(z^2+c),c=-67/126+12/61*I,n=35 3908851069020355 a001 199/144*514229^(21/22) 3908851069460397 r002 55th iterates of z^2 + 3908851075060850 r005 Im(z^2+c),c=1/12+19/43*I,n=48 3908851075751610 p004 log(34939/701) 3908851081108938 m005 (1/2*exp(1)-3/5)/(1/3*Catalan-1/9) 3908851093325852 a007 Real Root Of -64*x^4+303*x^3+666*x^2+654*x-374 3908851094118752 m001 Champernowne/(gamma(1)^TreeGrowth2nd) 3908851120800927 b008 E+(12*E^E)/5 3908851122380416 r002 42th iterates of z^2 + 3908851150658554 a001 89/322*2^(1/2) 3908851155322889 a007 Real Root Of 268*x^4+849*x^3-683*x^2+276*x-345 3908851159717481 r002 7th iterates of z^2 + 3908851169819465 m001 (2^(1/3)+MinimumGamma)/(-Sarnak+Trott2nd) 3908851179569269 r005 Re(z^2+c),c=-55/106+16/57*I,n=36 3908851190598563 a007 Real Root Of 47*x^4-6*x^3+622*x^2-32*x-109 3908851198675977 m001 1/Sierpinski*exp(DuboisRaymond)^2/Zeta(1/2) 3908851209195081 a001 5600748293801/1597*6557470319842^(12/17) 3908851225421359 h001 (7/11*exp(2)+8/9)/(4/9*exp(1)+2/9) 3908851227348191 m001 Pi+2^(1/3)/(Zeta(3)+BesselJ(1,1)) 3908851241000135 r002 47th iterates of z^2 + 3908851244233237 s001 sum(1/10^(n-1)*A103815[n]/n^n,n=1..infinity) 3908851246339750 m001 (1+ln(gamma))/(-Backhouse+GaussKuzminWirsing) 3908851261502526 r009 Re(z^3+c),c=-13/48+31/41*I,n=3 3908851264401398 m001 (GaussAGM+MadelungNaCl)/(sin(1/5*Pi)-gamma(1)) 3908851265549582 m005 (1/2*2^(1/2)-3/8)/(5/9*Zeta(3)+2/11) 3908851269589757 r009 Re(z^3+c),c=-7/106+10/17*I,n=33 3908851276713104 a007 Real Root Of 238*x^4+929*x^3-236*x^2-682*x+862 3908851277116944 m001 (MertensB3+ThueMorse)/(Shi(1)+Magata) 3908851287059653 r005 Im(z^2+c),c=-13/58+44/59*I,n=5 3908851300600878 r005 Re(z^2+c),c=-23/36+5/22*I,n=4 3908851306655332 m001 1/Zeta(1,2)/Salem/exp(sin(1)) 3908851314143531 a001 4/233*34^(7/30) 3908851314262511 l006 ln(120/5981) 3908851329554809 r009 Im(z^3+c),c=-65/118+2/19*I,n=3 3908851332051802 m001 1/Paris/MadelungNaCl*ln(BesselJ(1,1))^2 3908851341285004 a001 567451585/2889*322^(11/12) 3908851344338155 m001 (2^(1/2)-gamma)/(-MertensB1+PlouffeB) 3908851347123195 a007 Real Root Of -113*x^4-100*x^3-877*x^2+753*x+425 3908851347676357 s002 sum(A062198[n]/(n^2*10^n+1),n=1..infinity) 3908851360796525 r005 Re(z^2+c),c=-35/118+4/7*I,n=15 3908851374580653 r002 3th iterates of z^2 + 3908851391772482 m005 (-15/4+1/4*5^(1/2))/(5/11*Catalan+2/5) 3908851396195280 m001 MadelungNaCl*exp(FeigenbaumB)*Paris^2 3908851406928856 m001 Pi^2/TwinPrimes^2*ln(sin(1)) 3908851417344726 r005 Im(z^2+c),c=7/122+17/37*I,n=54 3908851424234392 m002 1+3*E^Pi+Pi^6/3 3908851428818660 r002 22i'th iterates of 2*x/(1-x^2) of 3908851431621356 r001 1i'th iterates of 2*x^2-1 of 3908851440374288 r005 Re(z^2+c),c=-25/46+1/40*I,n=41 3908851441285885 a001 2971215073/15127*322^(11/12) 3908851442014411 m001 1/Catalan*exp(Bloch)^2/GAMMA(1/3)^2 3908851443565596 g005 GAMMA(2/11)*GAMMA(5/9)*GAMMA(2/7)/GAMMA(1/7) 3908851455875817 a001 7778742049/39603*322^(11/12) 3908851458004459 a001 10182505537/51841*322^(11/12) 3908851458315024 a001 53316291173/271443*322^(11/12) 3908851458360335 a001 139583862445/710647*322^(11/12) 3908851458366946 a001 182717648081/930249*322^(11/12) 3908851458367910 a001 956722026041/4870847*322^(11/12) 3908851458368051 a001 2504730781961/12752043*322^(11/12) 3908851458368071 a001 3278735159921/16692641*322^(11/12) 3908851458368076 a001 10610209857723/54018521*322^(11/12) 3908851458368084 a001 4052739537881/20633239*322^(11/12) 3908851458368138 a001 387002188980/1970299*322^(11/12) 3908851458368506 a001 591286729879/3010349*322^(11/12) 3908851458371031 a001 225851433717/1149851*322^(11/12) 3908851458388338 a001 196418*322^(11/12) 3908851458506964 a001 32951280099/167761*322^(11/12) 3908851459320033 a001 12586269025/64079*322^(11/12) 3908851464892891 a001 1201881744/6119*322^(11/12) 3908851471000775 a001 14662949395604/4181*6557470319842^(12/17) 3908851475168058 a003 cos(Pi*1/112)-cos(Pi*7/78) 3908851476245274 r005 Re(z^2+c),c=-47/64+5/41*I,n=35 3908851503089830 a001 1836311903/9349*322^(11/12) 3908851506530607 r005 Im(z^2+c),c=1/12+19/43*I,n=56 3908851507940678 a007 Real Root Of 244*x^4-357*x^3+624*x^2+180*x-52 3908851512017811 m004 -125*Pi+Log[Sqrt[5]*Pi]/2+Tan[Sqrt[5]*Pi]^2 3908851523005491 r005 Im(z^2+c),c=-1/13+27/52*I,n=17 3908851532696434 a007 Real Root Of -824*x^4+926*x^3-267*x^2+754*x-290 3908851532804721 a001 23725150497407/6765*6557470319842^(12/17) 3908851540508927 p004 log(36833/739) 3908851543530740 r005 Re(z^2+c),c=-53/98+2/21*I,n=49 3908851546221788 a007 Real Root Of 590*x^4-761*x^3+496*x^2-330*x-264 3908851548028421 p003 LerchPhi(1/5,6,103/88) 3908851550780655 s001 sum(exp(-3*Pi/5)^n*A006137[n],n=1..infinity) 3908851555478212 m001 GAMMA(3/4)*((3^(1/3))+MadelungNaCl) 3908851555478212 m001 GAMMA(3/4)*(3^(1/3)+MadelungNaCl) 3908851562233723 r009 Im(z^3+c),c=-3/20+43/59*I,n=2 3908851565465074 r009 Re(z^3+c),c=-51/106+13/27*I,n=22 3908851572646909 a007 Real Root Of 158*x^4+769*x^3+821*x^2+857*x-152 3908851585077204 s002 sum(A106976[n]/(2^n-1),n=1..infinity) 3908851588139975 m008 (5*Pi^5+3/4)/(4*Pi^4+2) 3908851588675801 r005 Im(z^2+c),c=-23/90+39/61*I,n=48 3908851588771376 r005 Im(z^2+c),c=19/102+15/41*I,n=21 3908851591837228 l006 ln(6241/9226) 3908851592578025 m001 MinimumGamma-Salem^BesselK(0,1) 3908851604375394 r009 Im(z^3+c),c=-23/66+16/45*I,n=5 3908851606431072 m001 (Paris-TwinPrimes)/(BesselK(1,1)+GaussAGM) 3908851616614291 r009 Im(z^3+c),c=-17/64+13/32*I,n=7 3908851619123302 r005 Im(z^2+c),c=-9/8+8/167*I,n=16 3908851619824285 m001 (ln(2)+Zeta(1/2))/(Champernowne+Tribonacci) 3908851625497123 m001 ln(GAMMA(19/24))*CopelandErdos/cos(Pi/12) 3908851632805610 a001 9062201101803/2584*6557470319842^(12/17) 3908851639177597 a007 Real Root Of 735*x^4+206*x^3-415*x^2-806*x+349 3908851643695187 r005 Re(z^2+c),c=41/114+17/59*I,n=4 3908851652107404 a007 Real Root Of -248*x^4-721*x^3+811*x^2-694*x-269 3908851665301647 r005 Im(z^2+c),c=7/54+9/22*I,n=27 3908851666807615 r002 30th iterates of z^2 + 3908851670506781 h001 (9/11*exp(2)+8/11)/(6/11*exp(1)+1/4) 3908851680031112 b008 3+SphericalBesselJ[0,3/4] 3908851684738883 m001 Tribonacci/(HeathBrownMoroz-Bloch) 3908851698802371 a001 3571*610^(41/56) 3908851707416034 r005 Im(z^2+c),c=-5/82+26/49*I,n=36 3908851711619374 r005 Im(z^2+c),c=1/66+30/61*I,n=14 3908851714044897 m001 1/ln(GAMMA(19/24))*Tribonacci^2/cos(1) 3908851714424375 a007 Real Root Of -628*x^4+910*x^3+292*x^2+526*x+230 3908851715446784 m001 (Psi(1,1/3)+ln(3))/(-Landau+Magata) 3908851718558752 r005 Re(z^2+c),c=-21/40+10/41*I,n=32 3908851721957878 m001 1/exp(CareFree)*GlaisherKinkelin^2/(3^(1/3))^2 3908851726834714 r005 Re(z^2+c),c=-27/34+24/113*I,n=10 3908851748880963 m001 (-Cahen+Grothendieck)/(ln(2)/ln(10)+gamma(2)) 3908851754032056 m002 -Pi^3+Pi^6-Pi^2*Cosh[Pi]*Sinh[Pi] 3908851754883183 r005 Im(z^2+c),c=13/86+20/51*I,n=31 3908851757392977 r005 Re(z^2+c),c=-27/56+6/13*I,n=34 3908851764895567 a001 701408733/3571*322^(11/12) 3908851767368162 a007 Real Root Of 434*x^4+781*x^3+307*x^2-526*x-216 3908851792898334 m001 Cahen/(Psi(2,1/3)^FeigenbaumMu) 3908851796973434 r002 23th iterates of z^2 + 3908851807642959 r002 48th iterates of z^2 + 3908851815736342 m005 (1/3*3^(1/2)+3/5)/(1/7*Pi-3/4) 3908851823686069 l006 ln(4675/6911) 3908851832433352 r005 Re(z^2+c),c=-15/28+7/55*I,n=20 3908851841578997 r005 Im(z^2+c),c=-77/90+1/39*I,n=24 3908851842088501 h001 (7/11*exp(1)+4/9)/(2/3*exp(2)+7/11) 3908851864764820 m001 Catalan^2/ErdosBorwein^2/ln(Zeta(7)) 3908851870880268 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=32 3908851873030870 r009 Im(z^3+c),c=-29/102+40/57*I,n=55 3908851880559918 a007 Real Root Of 732*x^4-193*x^3+830*x^2-201*x-234 3908851884312007 q001 446/1141 3908851889547770 m006 (3/5*Pi^2+1/4)/(4*ln(Pi)-3) 3908851910041344 r002 42th iterates of z^2 + 3908851912371201 r005 Re(z^2+c),c=5/82+27/43*I,n=58 3908851917594623 r009 Im(z^3+c),c=-15/44+8/21*I,n=18 3908851921372361 r005 Re(z^2+c),c=-29/28+4/53*I,n=12 3908851926209356 r005 Im(z^2+c),c=-9/122+34/35*I,n=21 3908851929028794 r009 Re(z^3+c),c=-27/62+21/44*I,n=4 3908851933680032 a001 123/832040*144^(9/46) 3908851939129332 a007 Real Root Of -133*x^4-340*x^3+737*x^2+277*x+565 3908851941267799 r005 Im(z^2+c),c=-47/114+14/25*I,n=35 3908851949259056 m004 20+(5*Sqrt[5]*Pi)/2+ProductLog[Sqrt[5]*Pi] 3908851961937848 r004 Re(z^2+c),c=-2/5+5/7*I,z(0)=exp(7/8*I*Pi),n=7 3908851981595143 r005 Re(z^2+c),c=-1/56+37/59*I,n=9 3908851986136350 r005 Im(z^2+c),c=-27/98+33/59*I,n=20 3908852013175523 m005 (1/2*exp(1)+8/9)/(-3/22+7/22*5^(1/2)) 3908852025776328 r005 Im(z^2+c),c=-125/122+10/39*I,n=20 3908852056901751 m001 Lehmer/exp(ErdosBorwein)^2*GAMMA(13/24) 3908852092211084 r002 21th iterates of z^2 + 3908852094623929 a001 1/7*4181^(56/59) 3908852096754885 r005 Re(z^2+c),c=-55/74+16/57*I,n=12 3908852097468284 m001 exp(cos(1))^2/GlaisherKinkelin/sin(Pi/5) 3908852098894866 b008 2+LogIntegral[1+Sqrt[3]] 3908852116492223 r005 Im(z^2+c),c=-1/74+35/59*I,n=32 3908852126690918 m005 (1/3*Catalan+2/3)/(11/12*gamma-7/9) 3908852128463352 r009 Re(z^3+c),c=-41/90+12/59*I,n=14 3908852144025996 r002 15th iterates of z^2 + 3908852150105472 a007 Real Root Of -641*x^4-961*x^3-457*x^2+943*x+396 3908852162179814 r009 Re(z^3+c),c=-4/7+25/54*I,n=47 3908852172996877 r005 Re(z^2+c),c=-16/25+10/41*I,n=7 3908852184978656 m002 Pi^5*Sech[Pi]+Sinh[Pi]+Log[Pi]*Tanh[Pi] 3908852185842474 a001 7*(1/2*5^(1/2)+1/2)^12*18^(4/21) 3908852213677622 m001 (-arctan(1/2)+GAMMA(17/24))/(2^(1/3)+sin(1)) 3908852226138914 r005 Im(z^2+c),c=1/12+19/43*I,n=53 3908852227209715 s001 sum(1/10^(n-1)*A225238[n]/n^n,n=1..infinity) 3908852236138631 a007 Real Root Of 403*x^4-514*x^3+361*x^2-7*x-98 3908852237540674 m005 (1/2*2^(1/2)-3/11)/(33/80+5/16*5^(1/2)) 3908852242526773 m001 1/exp(Catalan)^2*(3^(1/3))^2*GAMMA(19/24) 3908852247406885 h001 (3/8*exp(1)+1/8)/(3/4*exp(1)+8/9) 3908852249877458 r005 Im(z^2+c),c=-11/36+28/53*I,n=12 3908852254249701 m001 1/ln(Niven)*Khintchine*log(1+sqrt(2))^2 3908852280972354 r005 Im(z^2+c),c=21/122+3/8*I,n=27 3908852284951452 a001 1/521*(1/2*5^(1/2)+1/2)^2*76^(9/19) 3908852285787672 h001 (-9*exp(-2)-3)/(-4*exp(2/3)-3) 3908852287577988 r002 43th iterates of z^2 + 3908852289098924 l006 ln(3109/4596) 3908852291399334 r009 Im(z^3+c),c=-8/25+11/17*I,n=15 3908852298816012 m001 (Pi-Rabbit)/(ReciprocalLucas-Sierpinski) 3908852300284617 r005 Im(z^2+c),c=35/114+8/33*I,n=41 3908852305248194 r009 Re(z^3+c),c=-41/110+43/61*I,n=6 3908852308235116 r005 Re(z^2+c),c=1/11+12/41*I,n=21 3908852315980478 r009 Re(z^3+c),c=-39/82+7/30*I,n=58 3908852318222038 a001 494493258286/141*6557470319842^(12/17) 3908852319562426 m002 6+Pi^4/E^Pi+Pi^3/ProductLog[Pi] 3908852324211707 m001 Rabbit/(1+3^(1/2))^(1/2)/ln(3) 3908852325372710 m005 (1/2*3^(1/2)-6/7)/(3/7*2^(1/2)-5/6) 3908852330340482 r005 Re(z^2+c),c=-39/64+19/47*I,n=9 3908852339058365 a007 Real Root Of 170*x^4+501*x^3-456*x^2+967*x+982 3908852341287495 r005 Re(z^2+c),c=-59/110+9/56*I,n=28 3908852358177140 a001 17711/47*3^(1/30) 3908852358489165 m001 (Niven-PrimesInBinary)/(ln(gamma)+Ei(1,1)) 3908852366705537 a007 Real Root Of -661*x^4+413*x^3-556*x^2+532*x+333 3908852376369180 r005 Re(z^2+c),c=-39/74+3/13*I,n=33 3908852395944490 a001 123/28657*39088169^(11/12) 3908852396502821 r005 Re(z^2+c),c=-35/78+21/44*I,n=44 3908852396896448 a001 123/1134903170*4052739537881^(11/12) 3908852396896472 a001 123/5702887*12586269025^(11/12) 3908852402909674 m001 (1-polylog(4,1/2))/(Kolakoski+TreeGrowth2nd) 3908852410548871 b008 Pi*ArcTan[(-1+E)^2] 3908852410550315 h001 (1/4*exp(1)+5/12)/(10/11*exp(1)+1/3) 3908852417022917 m001 (3^(1/2)-GAMMA(13/24))/CopelandErdos 3908852432169894 r005 Re(z^2+c),c=-87/94+8/45*I,n=46 3908852435077277 r005 Re(z^2+c),c=-89/86+4/49*I,n=24 3908852437956576 a005 (1/cos(8/95*Pi))^1339 3908852438268986 m001 (2*Pi/GAMMA(5/6)+Kolakoski)/(Lehmer+MertensB2) 3908852457477441 m004 -15/Pi+125*Pi+2*Csc[Sqrt[5]*Pi] 3908852462441657 m001 FeigenbaumDelta-Paris-Robbin 3908852466798178 a001 199/53316291173*433494437^(13/14) 3908852466800923 a001 199/102334155*514229^(13/14) 3908852474758672 a003 sin(Pi*21/109)*sin(Pi*27/112) 3908852475632769 m001 1/Tribonacci/exp(Robbin)/GAMMA(1/3)^2 3908852476382262 h001 (3/11*exp(2)+11/12)/(11/12*exp(2)+8/11) 3908852477154836 m001 (1+ln(2))/(-ln(5)+Salem) 3908852486170962 r005 Im(z^2+c),c=-9/14+13/172*I,n=49 3908852488914027 r009 Re(z^3+c),c=-47/98+10/41*I,n=23 3908852502394839 a007 Real Root Of -496*x^4+53*x^3+986*x^2+465*x-324 3908852517111579 l006 ln(139/6928) 3908852520802543 a001 1/3571*18^(3/26) 3908852529131447 a007 Real Root Of 850*x^4+327*x^3+452*x^2-830*x+216 3908852558335286 m001 (sin(1/5*Pi)-ArtinRank2)/(Porter+Totient) 3908852572971494 r005 Re(z^2+c),c=-37/82+31/64*I,n=54 3908852581836265 m005 (1/3*5^(1/2)+2/7)/(7/8*Pi-1/9) 3908852588879998 m005 (1/2*3^(1/2)+5)/(1/8*gamma-2/9) 3908852598940971 a007 Real Root Of -11*x^4+772*x^3+908*x^2+876*x-527 3908852630109122 a007 Real Root Of 16*x^4-40*x^3-347*x^2+161*x-193 3908852635461796 a003 cos(Pi*7/113)-cos(Pi*11/101) 3908852636343300 r005 Im(z^2+c),c=-5/52+31/57*I,n=19 3908852638001374 a007 Real Root Of -638*x^4+252*x^3+579*x^2+623*x+185 3908852644832775 r005 Im(z^2+c),c=-163/118+3/46*I,n=13 3908852648230713 r002 56th iterates of z^2 + 3908852649441747 r002 11th iterates of z^2 + 3908852665378686 m001 (2/3)^BesselK(0,1)*arctan(1/2) 3908852680857655 r005 Im(z^2+c),c=19/58+11/51*I,n=38 3908852683028518 m002 -4+4/Pi^2-Pi^3*Log[Pi] 3908852685964003 m001 ln(gamma)/(Champernowne+GlaisherKinkelin) 3908852698411835 r009 Re(z^3+c),c=-23/56+7/44*I,n=14 3908852704688018 r002 25th iterates of z^2 + 3908852728599189 m001 (Gompertz+Niven)/(arctan(1/3)+2*Pi/GAMMA(5/6)) 3908852731137478 r005 Re(z^2+c),c=-49/90+5/62*I,n=17 3908852731856919 r005 Re(z^2+c),c=-45/82+17/44*I,n=28 3908852732371772 m001 (Ei(1)-exp(1/Pi))/(gamma(1)+OrthogonalArrays) 3908852734702057 m001 1/GAMMA(5/24)*Niven^2/exp(sqrt(2))^2 3908852736890201 r005 Re(z^2+c),c=-27/50+4/37*I,n=46 3908852736997410 m004 -15/Pi-125*Pi+5*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 3908852739767374 r009 Im(z^3+c),c=-17/38+14/45*I,n=13 3908852746485534 m001 (Rabbit+ThueMorse)/(ln(3)+Pi^(1/2)) 3908852756812810 l006 ln(4652/6877) 3908852771845567 r005 Re(z^2+c),c=-5/8+47/182*I,n=18 3908852782592291 r005 Re(z^2+c),c=-53/102+7/26*I,n=31 3908852789077245 r002 13th iterates of z^2 + 3908852791534381 a001 267914296/199*199^(7/11) 3908852795472906 r002 50th iterates of z^2 + 3908852803744250 a001 2/17*1597^(7/43) 3908852804472517 a003 cos(Pi*1/33)/sin(Pi*5/61) 3908852812818159 a007 Real Root Of 906*x^4+837*x^3-551*x^2-867*x-33 3908852822335844 m001 (3^(1/2)-MertensB3*Tribonacci)/Tribonacci 3908852838741855 a003 cos(Pi*1/77)/cos(Pi*33/79) 3908852852464468 m008 (1/2*Pi^4+5)/(1/5*Pi^2-3/5) 3908852869278143 r009 Re(z^3+c),c=-7/16+9/46*I,n=12 3908852879427915 m005 (1/2*3^(1/2)+1/5)/(9/10*2^(1/2)-4) 3908852886703539 r002 48th iterates of z^2 + 3908852889369517 a001 9/1762289*317811^(12/17) 3908852889375044 a001 9/567451585*1134903170^(12/17) 3908852889375044 a001 9/182717648081*4052739537881^(12/17) 3908852895384004 p001 sum((-1)^n/(371*n+255)/(125^n),n=0..infinity) 3908852896438840 r009 Re(z^3+c),c=-27/44+26/49*I,n=45 3908852899568914 a001 3/4*(1/2*5^(1/2)+1/2)^17*4^(3/11) 3908852905119278 m001 (BesselK(0,1)-gamma(3)*OneNinth)/OneNinth 3908852926835722 r005 Re(z^2+c),c=-71/98+1/56*I,n=20 3908852947362719 r005 Re(z^2+c),c=-33/62+9/47*I,n=37 3908852952269589 a007 Real Root Of 749*x^4-280*x^3-223*x^2-739*x-289 3908852956173697 r005 Re(z^2+c),c=-57/110+5/18*I,n=20 3908852962901037 m001 FeigenbaumAlpha/Chi(1)/LandauRamanujan 3908852983775678 r005 Im(z^2+c),c=11/34+12/55*I,n=46 3908852987733445 r002 8th iterates of z^2 + 3908852989539683 r005 Im(z^2+c),c=-11/54+21/37*I,n=27 3908852990614307 r002 64th iterates of z^2 + 3908852991537979 l006 ln(6195/9158) 3908852999577031 r009 Re(z^3+c),c=-51/110+13/58*I,n=19 3908853006663393 r005 Im(z^2+c),c=-27/22+1/71*I,n=56 3908853011400543 r005 Im(z^2+c),c=5/19+19/60*I,n=9 3908853019642880 m001 GAMMA(23/24)*Champernowne/exp(sin(Pi/5))^2 3908853024126855 a003 cos(Pi*11/82)/cos(Pi*17/40) 3908853042056740 r009 Re(z^3+c),c=-13/27+10/41*I,n=22 3908853051851657 m001 (KomornikLoreti+Niven)/(ln(5)-FeigenbaumAlpha) 3908853053148891 m001 (exp(1/Pi)+FeigenbaumC)/(KomornikLoreti-Niven) 3908853064351837 a007 Real Root Of 291*x^4+48*x^3-741*x^2-917*x+462 3908853067509953 r005 Im(z^2+c),c=13/86+20/51*I,n=43 3908853074701174 r009 Im(z^3+c),c=-37/118+20/49*I,n=6 3908853078714523 r005 Re(z^2+c),c=-6/13+27/62*I,n=31 3908853091488773 a007 Real Root Of 753*x^4-980*x^3-44*x^2-920*x-429 3908853098348649 r005 Re(z^2+c),c=-27/50+6/55*I,n=32 3908853101421205 a007 Real Root Of 57*x^4+57*x^3-852*x^2-929*x-516 3908853110301972 a001 17393796001/5*832040^(13/19) 3908853110302748 a001 33385282/5*7778742049^(13/19) 3908853110538680 r005 Re(z^2+c),c=-43/82+10/47*I,n=21 3908853121397730 a001 29/514229*8^(27/29) 3908853122411569 a007 Real Root Of 761*x^4-758*x^3-835*x^2-931*x+519 3908853134522741 r009 Re(z^3+c),c=-51/110+11/50*I,n=44 3908853144541845 m001 1/Si(Pi)^2*FeigenbaumAlpha/exp(GolombDickman) 3908853150211457 r005 Im(z^2+c),c=-123/106+11/41*I,n=64 3908853165562852 m009 (1/8*Pi^2+1)/(1/2*Psi(1,1/3)+2/3) 3908853166851821 r005 Im(z^2+c),c=-1/106+29/57*I,n=20 3908853172938714 a007 Real Root Of -82*x^4-185*x^3+257*x^2-994*x+282 3908853180205314 m001 1/GAMMA(3/4)/GAMMA(19/24)^2/exp(exp(1)) 3908853185688418 a007 Real Root Of 576*x^4-866*x^3+760*x^2-690*x-451 3908853193418001 r005 Im(z^2+c),c=2/21+25/46*I,n=11 3908853193605700 r002 46th iterates of z^2 + 3908853206654782 r005 Re(z^2+c),c=-13/10+2/139*I,n=22 3908853223514925 p004 log(30553/613) 3908853231768026 b008 PolyGamma[0,Pi]/25 3908853240712684 a001 11/233*10946^(5/22) 3908853241487352 r009 Im(z^3+c),c=-15/94+20/27*I,n=2 3908853252443031 r008 a(0)=4,K{-n^6,4+6*n^3+5*n^2-3*n} 3908853280007631 a001 1346269/843*7^(23/50) 3908853280862946 r002 20th iterates of z^2 + 3908853285837424 r005 Re(z^2+c),c=-47/98+7/16*I,n=53 3908853288246164 r009 Re(z^3+c),c=-61/126+11/64*I,n=9 3908853289183360 a007 Real Root Of -187*x^4-750*x^3-152*x^2-296*x+28 3908853291926380 a001 701408733/521*322^(7/12) 3908853292833527 a007 Real Root Of -290*x^4+836*x^3+649*x^2+869*x-482 3908853293706380 r005 Re(z^2+c),c=-85/126+11/36*I,n=62 3908853298656066 m005 (1/2*gamma+8/9)/(8/9*5^(1/2)-5) 3908853311982471 m001 (3^(1/2)*ZetaQ(3)+Magata)/ZetaQ(3) 3908853317284005 m001 1/exp(Khintchine)/ArtinRank2/Riemann3rdZero 3908853321087395 m001 (-GAMMA(5/6)+ZetaP(3))/(exp(Pi)+BesselI(0,1)) 3908853335131586 a007 Real Root Of 17*x^4+676*x^3+468*x^2+749*x+736 3908853354515867 r009 Re(z^3+c),c=-21/82+5/7*I,n=54 3908853384641741 r005 Im(z^2+c),c=-11/18+7/97*I,n=42 3908853390166080 a001 1364/4181*2178309^(17/35) 3908853395371517 h001 (2/5*exp(1)+5/11)/(1/2*exp(2)+1/4) 3908853409927531 a007 Real Root Of 95*x^4+237*x^3-300*x^2+783*x-379 3908853418276303 l006 ln(1455/1513) 3908853420633446 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=27 3908853421945023 m004 -1/3+125*Pi-Csc[Sqrt[5]*Pi] 3908853422304429 a007 Real Root Of 190*x^4+472*x^3-828*x^2+855*x-173 3908853427220137 m004 -125*Pi+Csc[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/3 3908853427837286 r005 Re(z^2+c),c=-27/50+1/13*I,n=20 3908853430271215 r005 Im(z^2+c),c=-3/86+15/29*I,n=54 3908853430666867 l006 ln(158/7875) 3908853445084671 m001 (gamma(2)+BesselK(1,1))/(3^(1/3)-gamma(1)) 3908853445372957 m004 -1/3+125*Pi-Csc[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 3908853454768526 r005 Re(z^2+c),c=-19/34+1/112*I,n=14 3908853455148317 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=31 3908853480060238 m001 (HeathBrownMoroz-TwinPrimes)/(Pi-Backhouse) 3908853488625174 r009 Im(z^3+c),c=-9/19+13/43*I,n=50 3908853488693889 r005 Im(z^2+c),c=7/122+17/37*I,n=48 3908853505631049 r005 Re(z^2+c),c=-31/60+17/58*I,n=55 3908853506988012 a005 (1/cos(42/211*Pi))^237 3908853507271051 m004 -3+125*Pi+(5*Sqrt[5]*Tanh[Sqrt[5]*Pi])/(3*Pi) 3908853509756487 a007 Real Root Of 230*x^4+681*x^3-941*x^2-168*x+699 3908853514317818 s002 sum(A260857[n]/(n!^2),n=1..infinity) 3908853529812107 r005 Im(z^2+c),c=-3/40+20/37*I,n=53 3908853556096570 r005 Re(z^2+c),c=-11/25+15/32*I,n=17 3908853559339728 a001 66978574/341*322^(11/12) 3908853561909062 m001 1/exp(LaplaceLimit)*CareFree*OneNinth 3908853569401325 m001 MertensB1^2*Bloch*ln(GAMMA(5/6)) 3908853576175716 r005 Im(z^2+c),c=31/126+13/42*I,n=47 3908853594807503 a007 Real Root Of 108*x^4-745*x^3+49*x^2-953*x+407 3908853600666797 m009 (8*Catalan+Pi^2+5/6)/(1/5*Psi(1,2/3)+4) 3908853601637053 r005 Re(z^2+c),c=-19/36+7/24*I,n=21 3908853607968079 b008 -2+Sinh[20/3] 3908853610161033 r002 5th iterates of z^2 + 3908853619412577 r005 Im(z^2+c),c=-5/6+47/192*I,n=6 3908853623700308 m009 (1/2*Pi^2+2/5)/(6*Catalan+3/4*Pi^2+3/4) 3908853625805745 r008 a(0)=4,K{-n^6,-2+7*n^3-n^2+8*n} 3908853656204191 r005 Re(z^2+c),c=-13/24+2/25*I,n=39 3908853660529687 r005 Im(z^2+c),c=-61/86+2/47*I,n=50 3908853665865110 r005 Re(z^2+c),c=1/4+1/42*I,n=48 3908853670740337 m001 OneNinth/Robbin^2/ln(GAMMA(17/24))^2 3908853671405032 m001 exp(FeigenbaumB)^2*Si(Pi)^2/arctan(1/2) 3908853673123947 r005 Re(z^2+c),c=3/23+37/56*I,n=7 3908853699212271 l006 ln(1543/2281) 3908853699212271 p004 log(2281/1543) 3908853720281248 m001 (gamma(2)+ZetaQ(3))/(cos(1)-ln(2)/ln(10)) 3908853725414625 r005 Im(z^2+c),c=3/40+22/49*I,n=22 3908853726223490 r005 Re(z^2+c),c=-7/10+13/201*I,n=12 3908853728912795 r008 a(0)=4,K{-n^6,25-3*n^3+8*n^2-18*n} 3908853744915049 r009 Im(z^3+c),c=-17/106+24/55*I,n=10 3908853752046681 m001 Porter^2*GolombDickman*ln(RenyiParking) 3908853752096181 r002 53th iterates of z^2 + 3908853761135475 r009 Re(z^3+c),c=-61/118+13/49*I,n=23 3908853761477945 r002 18th iterates of z^2 + 3908853763976523 m005 (4*2^(1/2)-2/3)/(4*Pi+1/5) 3908853764908699 p001 sum(1/(495*n+256)/(512^n),n=0..infinity) 3908853766396623 r005 Re(z^2+c),c=-16/29+13/20*I,n=5 3908853777062751 m004 -1+125*Pi-(3*Sec[Sqrt[5]*Pi])/5 3908853792888093 m004 -125*Pi+(3*Sec[Sqrt[5]*Pi])/5+Tanh[Sqrt[5]*Pi] 3908853802411750 m004 -3+125*Pi+(Sqrt[5]*Pi*Sin[Sqrt[5]*Pi])/4 3908853808313207 a007 Real Root Of 855*x^4-908*x^3-877*x^2-534*x+377 3908853810910139 m001 (Gompertz-gamma)/(-Landau+ZetaQ(2)) 3908853810937181 m001 1/2*gamma/Psi(2,1/3)/Pi*3^(1/2)*GAMMA(2/3) 3908853818233117 r005 Im(z^2+c),c=13/86+20/51*I,n=56 3908853820080507 r005 Re(z^2+c),c=-37/70+11/61*I,n=16 3908853824539004 r005 Im(z^2+c),c=-1/17+25/47*I,n=38 3908853843572191 a007 Real Root Of -658*x^4-917*x^3+304*x^2+869*x-316 3908853848192689 r005 Im(z^2+c),c=-53/90+17/36*I,n=5 3908853856069845 m005 (1/2*Catalan-5/8)/(9/10*2^(1/2)+3) 3908853869241631 a001 3461452808002/377*1836311903^(14/17) 3908853869241631 a001 4106118243/377*6557470319842^(14/17) 3908853870601331 m001 (5^(1/2))^MertensB3/RenyiParking 3908853876120653 r002 4th iterates of z^2 + 3908853878587242 r002 36th iterates of z^2 + 3908853888853490 m001 Chi(1)*BesselK(0,1)^ln(2^(1/2)+1) 3908853898557785 m001 GAMMA(19/24)/exp(Niven)^2*Zeta(7) 3908853910607883 a007 Real Root Of 209*x^4+961*x^3+644*x^2+312*x-17 3908853924725401 a001 (5+5^(1/2))^(279/25) 3908853944936574 r004 Re(z^2+c),c=-31/42-2/21*I,z(0)=-1,n=42 3908853945986997 r005 Im(z^2+c),c=1/40+25/52*I,n=31 3908853946031049 g006 Psi(1,3/8)-Psi(1,6/7)-Psi(1,4/7)-Psi(1,3/4) 3908853948206430 m008 (3*Pi-2/5)/(3/4*Pi^3-1/6) 3908853952802200 r009 Re(z^3+c),c=-17/56+35/51*I,n=37 3908853955192349 m005 (1/2*5^(1/2)-1)/(2*3^(1/2)-4/9) 3908853971417508 r002 7th iterates of z^2 + 3908853974275180 m002 -5-6/Pi^4+ProductLog[Pi]^2 3908853986535888 m001 (-Totient+Tribonacci)/(Psi(1,1/3)+FeigenbaumD) 3908854009600378 r009 Re(z^3+c),c=-15/29+7/20*I,n=44 3908854010898205 r005 Im(z^2+c),c=1/21+7/15*I,n=28 3908854015712196 r002 48th iterates of z^2 + 3908854023126180 r005 Im(z^2+c),c=-35/82+29/54*I,n=39 3908854032166173 a007 Real Root Of 790*x^4+309*x^3+374*x^2-939*x+273 3908854035023036 m002 (2*Pi^3)/E^Pi+Log[Pi]*ProductLog[Pi] 3908854050124660 m002 -4+5/Pi^6+Sech[Pi]*Tanh[Pi] 3908854055686982 r009 Re(z^3+c),c=-55/102+21/61*I,n=60 3908854064377872 r002 13th iterates of z^2 + 3908854066817659 h001 (5/8*exp(1)+5/8)/(8/11*exp(2)+4/7) 3908854071298322 m006 (exp(Pi)-3)/(5/6/Pi+1/4) 3908854075712437 a007 Real Root Of 186*x^4+789*x^3+109*x^2-673*x-596 3908854078799440 p004 log(34147/23099) 3908854080363645 r005 Re(z^2+c),c=-20/29+11/61*I,n=34 3908854081171225 r009 Re(z^3+c),c=-47/110+5/29*I,n=9 3908854083616068 r005 Re(z^2+c),c=1/9+1/4*I,n=22 3908854095786076 m005 (1/2*Catalan+6/11)/(3/4*gamma-3) 3908854102618002 r005 Im(z^2+c),c=-3/50+25/47*I,n=56 3908854115272643 r005 Re(z^2+c),c=-139/110+23/57*I,n=5 3908854116641611 a001 1/2207*(1/2*5^(1/2)+1/2)^28*3^(3/17) 3908854120982234 r005 Im(z^2+c),c=21/74+10/37*I,n=37 3908854146445023 r005 Re(z^2+c),c=-10/21+26/57*I,n=56 3908854148091055 l006 ln(177/8822) 3908854157153047 m001 (Champernowne+Gompertz)/(1+sin(1)) 3908854166666666 q001 1501/3840 3908854171208525 m001 RenyiParking/Cahen^2/exp(BesselJ(0,1))^2 3908854175638984 r005 Re(z^2+c),c=-8/15+7/54*I,n=18 3908854185279178 r002 48th iterates of z^2 + 3908854187142313 m001 GaussKuzminWirsing*MertensB2+ZetaP(4) 3908854194280573 r005 Re(z^2+c),c=-65/122+11/59*I,n=39 3908854197305026 m008 (3*Pi^6+5/6)/(3/4*Pi^4+3/4) 3908854206087812 a007 Real Root Of 550*x^4-774*x^3+242*x^2-462*x+177 3908854209321558 m001 Landau*PrimesInBinary^Artin 3908854221644450 r005 Re(z^2+c),c=-35/66+9/43*I,n=27 3908854231677092 a007 Real Root Of 43*x^4+216*x^3+421*x^2+959*x+178 3908854240577556 m001 (GolombDickman-Zeta(5))/GAMMA(11/12) 3908854240577556 m001 (Zeta(5)-GolombDickman)/GAMMA(11/12) 3908854247465956 r002 49th iterates of z^2 + 3908854250732124 a001 281/329*832040^(37/47) 3908854257429662 p001 sum(1/(359*n+256)/(625^n),n=0..infinity) 3908854269134744 a007 Real Root Of 166*x^4-533*x^3-90*x^2-712*x+28 3908854270849425 r005 Im(z^2+c),c=1/118+27/55*I,n=62 3908854297895569 m001 (ReciprocalLucas+Salem)/(CareFree+Paris) 3908854304293441 h001 (-8*exp(2)-2)/(-2*exp(1)+7) 3908854307565550 a007 Real Root Of 81*x^4-889*x^3-557*x^2-338*x-102 3908854316841851 r002 58th iterates of z^2 + 3908854321550649 m002 1+4*Pi^4+Tanh[Pi]/4 3908854331979289 m001 1/GAMMA(3/4)^2*BesselK(0,1)^2/ln(gamma)^2 3908854338109467 r005 Re(z^2+c),c=13/40+23/44*I,n=8 3908854349288277 m001 (Trott+ZetaP(3))/(Pi+ErdosBorwein) 3908854367863990 a007 Real Root Of 25*x^4-414*x^3+19*x^2-882*x+366 3908854379402480 r009 Im(z^3+c),c=-19/50+21/58*I,n=27 3908854384773914 r002 45th iterates of z^2 + 3908854391633501 a007 Real Root Of -885*x^4+25*x^3-64*x^2+980*x+415 3908854397854966 r005 Re(z^2+c),c=-7/13+7/45*I,n=19 3908854397975276 r005 Re(z^2+c),c=-33/62+9/49*I,n=27 3908854398727377 r002 51th iterates of z^2 + 3908854398816883 r005 Re(z^2+c),c=41/106+5/37*I,n=5 3908854405249534 r005 Im(z^2+c),c=-105/118+1/34*I,n=18 3908854410843695 a007 Real Root Of 527*x^4+222*x^3+562*x^2-934*x-450 3908854412180548 l006 ln(6149/9090) 3908854417679581 a001 199/196418*610^(13/14) 3908854429985209 r005 Re(z^2+c),c=-4/7+49/115*I,n=62 3908854456924496 m002 -(Log[Pi]*ProductLog[Pi])-Sinh[Pi]/Pi+Tanh[Pi] 3908854475489124 m001 (LandauRamanujan2nd+OneNinth)/(5^(1/2)-Bloch) 3908854481015346 p003 LerchPhi(1/2,6,199/78) 3908854506660937 m001 Pi^(2^(1/2))*GaussAGM^(2^(1/2)) 3908854507531023 p001 sum((-1)^n/(368*n+117)/n/(5^n),n=1..infinity) 3908854523035032 m001 (ln(gamma)+Landau)/(RenyiParking+Thue) 3908854523473589 a007 Real Root Of 152*x^4+150*x^3+346*x^2-858*x+33 3908854551564676 r009 Re(z^3+c),c=-2/5+8/55*I,n=25 3908854555831027 r005 Re(z^2+c),c=-57/106+7/51*I,n=48 3908854590260445 r002 31th iterates of z^2 + 3908854592791775 p003 LerchPhi(1/1024,3,113/178) 3908854593813390 m001 ln(2^(1/2)+1)*(1+3^(1/2))^(1/2)*FeigenbaumD 3908854595154654 m005 (1/2*exp(1)+5/6)/(5/12*3^(1/2)-7/9) 3908854595307764 b008 3*(1+Pi*ArcSinh[23]) 3908854598942881 r008 a(0)=4,K{-n^6,2-3*n^3+7*n^2+7*n} 3908854600416666 a001 1/72*(1/2+1/2*5^(1/2))^50 3908854601706793 m001 (GolombDickman+Stephens)/(5^(1/2)+GaussAGM) 3908854602853016 r005 Im(z^2+c),c=13/86+20/51*I,n=47 3908854616804431 a007 Real Root Of 337*x^4-87*x^3+987*x^2-205*x-244 3908854632027211 m001 GAMMA(13/24)^2*exp(Artin) 3908854641039600 r009 Im(z^3+c),c=-11/21+6/35*I,n=61 3908854646030803 r002 9th iterates of z^2 + 3908854651023361 l006 ln(4606/6809) 3908854652279342 r005 Im(z^2+c),c=31/126+13/42*I,n=56 3908854662589306 m001 (ln(Pi)*Backhouse+FransenRobinson)/ln(Pi) 3908854676887833 b008 5*Tanh[ProductLog[3]] 3908854680756663 a001 5778/89*34^(28/55) 3908854686468180 r009 Re(z^3+c),c=-61/126+10/23*I,n=17 3908854698707660 r005 Im(z^2+c),c=-39/86+3/46*I,n=17 3908854705290730 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)/Khinchin*Landau 3908854723985999 a007 Real Root Of 981*x^4-505*x^3-380*x^2-834*x-321 3908854726422425 l006 ln(196/9769) 3908854733810465 r005 Re(z^2+c),c=-7/13+3/25*I,n=24 3908854740436012 m001 1/Trott^2*CareFree/exp(Zeta(1,2))^2 3908854781553727 r005 Im(z^2+c),c=-9/56+29/48*I,n=56 3908854797356803 m009 (1/3*Pi^2+1/2)/(Psi(1,1/3)-2/5) 3908854802058313 a001 1/5778*(1/2*5^(1/2)+1/2)^30*3^(3/17) 3908854808745925 r002 31th iterates of z^2 + 3908854812618822 r005 Im(z^2+c),c=-63/122+32/63*I,n=26 3908854832152082 r005 Re(z^2+c),c=-31/60+2/7*I,n=33 3908854867505820 r002 6th iterates of z^2 + 3908854867799221 m001 (QuadraticClass+Totient)/(Niven-Psi(2,1/3)) 3908854869703880 g006 -Psi(1,7/10)-Psi(1,4/9)-Psi(1,4/7)-Psi(1,1/5) 3908854883827180 m005 (1/2*exp(1)-1/6)/(3/8*exp(1)-5/7) 3908854888570796 r005 Im(z^2+c),c=-11/46+6/11*I,n=10 3908854893714076 r002 36th iterates of z^2 + 3908854898790937 m001 (arctan(1/3)+PlouffeB)/(Chi(1)+Zeta(3)) 3908854902059282 a001 1/15127*(1/2*5^(1/2)+1/2)^32*3^(3/17) 3908854904568542 r002 28th iterates of z^2 + 3908854909343342 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=28 3908854919141488 a001 (1/2*5^(1/2)+1/2)^12*3^(3/17) 3908854929695011 r005 Im(z^2+c),c=13/74+19/51*I,n=40 3908854939638886 a007 Real Root Of 118*x^4+724*x^3+856*x^2-726*x-224 3908854944928925 a008 Real Root of (5+14*x-x^3) 3908854956256064 a007 Real Root Of 261*x^4+990*x^3-101*x^2+196*x+505 3908854963667199 r009 Re(z^3+c),c=-21/52+3/20*I,n=12 3908854963863283 a001 1/9349*(1/2*5^(1/2)+1/2)^31*3^(3/17) 3908854974507505 r005 Re(z^2+c),c=17/54+1/2*I,n=54 3908854975825868 r009 Re(z^3+c),c=-31/52+41/63*I,n=5 3908854981068131 r002 22th iterates of z^2 + 3908854984406677 a003 cos(Pi*31/77)+cos(Pi*33/70) 3908854987972337 a001 76/55*13^(15/37) 3908854996663624 r009 Re(z^3+c),c=-27/118+52/59*I,n=11 3908855009777807 r005 Im(z^2+c),c=7/26+2/7*I,n=52 3908855013807085 r005 Im(z^2+c),c=-1/30+16/31*I,n=46 3908855018275258 r005 Im(z^2+c),c=-51/58+15/58*I,n=15 3908855022529484 a003 cos(Pi*7/53)/cos(Pi*48/113) 3908855032431814 m005 (1/3*Pi+1/9)/(6*gamma-1/2) 3908855036017134 m001 (Zeta(1,-1)-gamma(2))/(FransenRobinson+Salem) 3908855037141501 r005 Re(z^2+c),c=-5/13+18/35*I,n=25 3908855043073660 r005 Re(z^2+c),c=-13/22+35/79*I,n=21 3908855054015587 m001 (-MinimumGamma+Trott2nd)/(1-FeigenbaumDelta) 3908855054829994 r002 13th iterates of z^2 + 3908855065172667 p002 log(24/(10^(1/4)-17^(1/2))) 3908855067659029 m001 FeigenbaumD+Otter*PrimesInBinary 3908855072995641 m001 5^(1/2)*(Ei(1,1)+GAMMA(7/12)) 3908855076464894 r009 Im(z^3+c),c=-3/86+21/47*I,n=5 3908855093581048 r002 17th iterates of z^2 + 3908855095801584 r002 54th iterates of z^2 + 3908855103294661 p003 LerchPhi(1/1024,3,389/132) 3908855103727978 r005 Re(z^2+c),c=1/4+1/42*I,n=42 3908855120705503 a007 Real Root Of -271*x^4-754*x^3+996*x^2-574*x+772 3908855121722522 r002 13th iterates of z^2 + 3908855130502436 l006 ln(3063/4528) 3908855130551437 a007 Real Root Of -549*x^4+516*x^3-697*x^2+999*x-302 3908855131530196 q001 1055/2699 3908855163791211 a003 sin(Pi*31/95)/cos(Pi*49/114) 3908855166765543 r002 46th iterates of z^2 + 3908855166765543 r002 46th iterates of z^2 + 3908855204243053 r005 Im(z^2+c),c=31/126+17/55*I,n=23 3908855208782080 r005 Re(z^2+c),c=-55/106+16/57*I,n=52 3908855222807962 a001 3571/10946*2178309^(17/35) 3908855224170949 r002 10th iterates of z^2 + 3908855225669252 a001 1/3571*(1/2*5^(1/2)+1/2)^29*3^(3/17) 3908855226642850 r005 Re(z^2+c),c=-15/28+31/59*I,n=21 3908855229583794 r005 Im(z^2+c),c=13/86+20/51*I,n=60 3908855235272972 r005 Im(z^2+c),c=23/70+3/14*I,n=54 3908855245954965 a001 55/199*199^(29/31) 3908855250730397 a005 (1/cos(31/230*Pi))^463 3908855261681720 r002 49th iterates of z^2 + 3908855280985036 a003 sin(Pi*7/115)*sin(Pi*6/91) 3908855282272952 r005 Im(z^2+c),c=2/29+14/31*I,n=37 3908855285767486 m001 (KomornikLoreti-PlouffeB)/(Ei(1)-Zeta(1/2)) 3908855298606118 a005 (1/cos(51/181*Pi))^139 3908855315370717 a007 Real Root Of -479*x^4-592*x^3+330*x^2+966*x+303 3908855316667416 m008 (1/4*Pi+4)/(4*Pi^5+1/6) 3908855318967674 r005 Re(z^2+c),c=-59/94+3/32*I,n=8 3908855320093308 a003 sin(Pi*2/119)*sin(Pi*30/113) 3908855329904793 a007 Real Root Of 25*x^4+987*x^3+370*x^2-490*x-13 3908855342476375 m001 exp(ArtinRank2)^2/FibonacciFactorial/sin(1) 3908855366888766 m005 (1/2*Catalan-3/4)/(7/10*5^(1/2)-9/11) 3908855367293225 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=32 3908855380531623 s002 sum(A012661[n]/(10^n-1),n=1..infinity) 3908855381436412 p002 log(17^(1/2)-19+10^(2/3)) 3908855381737836 m005 (1/2*exp(1)-5/7)/(11/12*5^(1/2)-2/5) 3908855391753847 a007 Real Root Of -251*x^4-968*x^3-114*x^2-696*x-195 3908855392449790 r005 Im(z^2+c),c=13/86+20/51*I,n=51 3908855394801860 r005 Im(z^2+c),c=-5/38+29/53*I,n=22 3908855402602340 m004 -4-125*Pi+(5*Pi*Csc[Sqrt[5]*Pi])/4 3908855411516683 p003 LerchPhi(1/32,3,512/173) 3908855412820699 m001 (Ei(1)+BesselI(0,2))/(Pi^(1/2)-CareFree) 3908855415116962 r005 Re(z^2+c),c=-16/31+18/61*I,n=43 3908855425496679 r002 47th iterates of z^2 + 3908855427654774 m001 Si(Pi)*FeigenbaumC+polylog(4,1/2) 3908855437531899 m001 BesselK(1,1)^ZetaQ(3)-MertensB2 3908855439033911 r002 3th iterates of z^2 + 3908855441611544 a005 (1/sin(64/155*Pi))^947 3908855443253026 m005 (1/3*2^(1/2)+1/6)/(8/9*Catalan+9/11) 3908855453367553 m001 1/GAMMA(17/24)*ln(GAMMA(1/3))^2/GAMMA(5/24)^2 3908855456114073 a007 Real Root Of -104*x^4-443*x^3-184*x^2-157*x+19 3908855464068917 m004 -150/Pi+3*Csc[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 3908855470434351 r009 Im(z^3+c),c=-63/122+13/50*I,n=51 3908855472154833 m001 1/GAMMA(11/12)^2*ln(Niven)/GAMMA(3/4) 3908855490186812 a001 9349/28657*2178309^(17/35) 3908855497100694 r005 Re(z^2+c),c=47/122+17/48*I,n=6 3908855525554906 r005 Im(z^2+c),c=3/22+23/57*I,n=41 3908855529196861 a001 24476/75025*2178309^(17/35) 3908855537475960 m002 6-E^Pi+(4*Pi^5)/3 3908855538405884 a001 39603/121393*2178309^(17/35) 3908855548852913 m005 (1/3*Catalan-3/7)/(5/7*Pi+10/11) 3908855548963684 m001 Riemann2ndZero*Magata^2*ln(GAMMA(19/24)) 3908855549351789 r002 5th iterates of z^2 + 3908855551999724 r005 Re(z^2+c),c=-25/48+7/26*I,n=56 3908855553306397 a001 2161/6624*2178309^(17/35) 3908855572844479 m001 1/sin(1)*Zeta(9)^2*ln(sqrt(Pi))^2 3908855576014922 a007 Real Root Of 263*x^4+745*x^3-939*x^2+576*x-305 3908855585912126 m001 (sin(1)*ZetaQ(4)+Cahen)/ZetaQ(4) 3908855594001203 m001 HeathBrownMoroz*(arctan(1/2)+FeigenbaumAlpha) 3908855610722473 m004 125*Pi+Cos[Sqrt[5]*Pi]^2/4-Log[Sqrt[5]*Pi] 3908855612387775 l006 ln(4583/6775) 3908855628206831 r005 Re(z^2+c),c=-11/20+19/50*I,n=17 3908855640036396 a005 (1/cos(11/100*Pi))^967 3908855648074510 r009 Re(z^3+c),c=-1/16+23/43*I,n=28 3908855652860836 r005 Im(z^2+c),c=1/12+19/43*I,n=52 3908855655066994 r002 38th iterates of z^2 + 3908855655436030 a001 5778/17711*2178309^(17/35) 3908855658638275 r009 Im(z^3+c),c=-11/62+13/30*I,n=8 3908855677153021 a007 Real Root Of 2*x^4-350*x^3+644*x^2-770*x+3 3908855680190922 m001 (Landau-Magata)/(ln(3)-FeigenbaumC) 3908855688799460 m005 (5/6*Pi-5/6)/(2/5*2^(1/2)+4) 3908855692053801 m001 Paris^2*ArtinRank2^2*exp(GAMMA(11/12))^2 3908855695170982 m001 2^(1/3)*(polylog(4,1/2)+Sierpinski) 3908855749589946 r005 Re(z^2+c),c=-13/18+20/127*I,n=34 3908855750420245 r005 Im(z^2+c),c=17/62+9/32*I,n=25 3908855755705315 r005 Im(z^2+c),c=-13/110+27/50*I,n=8 3908855755838236 r005 Im(z^2+c),c=13/86+20/51*I,n=64 3908855768018131 r005 Im(z^2+c),c=13/86+20/51*I,n=55 3908855776579834 r005 Im(z^2+c),c=27/98+19/42*I,n=55 3908855782265192 r005 Im(z^2+c),c=-17/58+3/52*I,n=15 3908855788817393 r002 3th iterates of z^2 + 3908855815412271 a003 sin(Pi*16/97)-sin(Pi*26/75) 3908855825986877 m001 (Pi-exp(Pi))*(2^(1/2)+cos(1)) 3908855839280067 a007 Real Root Of 8*x^4-702*x^3-346*x^2-615*x+335 3908855840218298 r002 27th iterates of z^2 + 3908855854238462 l006 ln(6103/9022) 3908855869744894 a007 Real Root Of -219*x^4-739*x^3+445*x^2+97*x+570 3908855874687276 m001 HardyLittlewoodC5^ArtinRank2*gamma(1) 3908855876000910 r005 Im(z^2+c),c=19/86+23/55*I,n=9 3908855903115930 m001 (GAMMA(23/24)+PlouffeB)/(ln(gamma)-Zeta(1,-1)) 3908855907577014 m001 (ln(gamma)*GaussAGM-Riemann2ndZero)/ln(gamma) 3908855933281097 m001 (Porter+Sierpinski)/(Zeta(3)+Zeta(1,-1)) 3908855938382802 r005 Im(z^2+c),c=13/86+20/51*I,n=59 3908855941656102 m001 (GAMMA(3/4)-Magata)^MadelungNaCl 3908855950377692 a007 Real Root Of 487*x^4+445*x^3-926*x^2-871*x+444 3908855965166092 r009 Re(z^3+c),c=-1/56+41/49*I,n=20 3908855983723516 r005 Im(z^2+c),c=-19/30+1/73*I,n=6 3908855984929385 r002 37th iterates of z^2 + 3908855986213933 a001 123/377*144^(2/55) 3908856001971804 r002 12th iterates of z^2 + 3908856013236993 r005 Im(z^2+c),c=13/86+20/51*I,n=63 3908856033588525 a001 9/5473*10946^(10/17) 3908856036274785 a001 18/1346269*39088169^(10/17) 3908856036275217 a001 18/165580141*139583862445^(10/17) 3908856048060271 m001 1/LambertW(1)^2/FeigenbaumDelta^2*exp(Zeta(7)) 3908856048459081 h001 (-8*exp(4)+5)/(-exp(7)-8) 3908856052322777 a007 Real Root Of 718*x^4-896*x^3-678*x^2-460*x-17 3908856057716527 r005 Re(z^2+c),c=-33/62+6/35*I,n=23 3908856081840816 m004 (5*Sqrt[5])/Pi+24*Csc[Sqrt[5]*Pi] 3908856123659940 r005 Im(z^2+c),c=27/106+13/43*I,n=24 3908856126901098 r005 Im(z^2+c),c=1/12+19/43*I,n=46 3908856132941154 m001 FeigenbaumB^(3^(1/2)*Otter) 3908856148414906 p001 sum(1/(388*n+59)/n/(6^n),n=1..infinity) 3908856150615289 r005 Re(z^2+c),c=-13/25+17/62*I,n=64 3908856151385065 m001 (GAMMA(3/4)-BesselI(0,2))/(GAMMA(5/6)-Thue) 3908856153499868 r005 Im(z^2+c),c=13/86+20/51*I,n=61 3908856160288023 r005 Im(z^2+c),c=5/118+23/49*I,n=41 3908856168838862 r005 Re(z^2+c),c=-29/54+9/62*I,n=50 3908856170840536 r005 Im(z^2+c),c=5/19+12/41*I,n=31 3908856174592446 m001 1/Kolakoski^2/ln(Conway)/GAMMA(7/12) 3908856190529201 r005 Im(z^2+c),c=-2/25+6/11*I,n=40 3908856209534261 r005 Im(z^2+c),c=-23/60+31/61*I,n=3 3908856215281786 r005 Re(z^2+c),c=-7/6+59/238*I,n=4 3908856222631743 r005 Im(z^2+c),c=1/42+13/27*I,n=31 3908856222761083 a007 Real Root Of 140*x^4-20*x^3+366*x^2-503*x-257 3908856226483148 m005 (1/2*2^(1/2)+5)/(4/5*Catalan+8/11) 3908856232946831 r005 Im(z^2+c),c=-8/29+4/63*I,n=4 3908856239117713 r005 Im(z^2+c),c=-17/30+7/99*I,n=52 3908856239963623 r005 Im(z^2+c),c=-7/94+23/43*I,n=29 3908856245674282 m005 (1/3*gamma+1/12)/(-23/72+11/24*5^(1/2)) 3908856266803382 r005 Im(z^2+c),c=13/86+20/51*I,n=57 3908856277528145 r002 33th iterates of z^2 + 3908856280197642 r005 Re(z^2+c),c=-79/126+27/52*I,n=3 3908856294370322 m001 1/GAMMA(5/6)*GAMMA(1/4)^2/ln(sin(1))^2 3908856301440239 m001 GAMMA(1/4)^2/Catalan*exp(Zeta(9)) 3908856315727037 r009 Im(z^3+c),c=-17/38+14/55*I,n=2 3908856323419340 m001 (exp(1/exp(1))+ZetaQ(3))/(1+exp(1)) 3908856327514514 a001 233/123*521^(15/31) 3908856355442953 a001 2207/6765*2178309^(17/35) 3908856356212249 r005 Re(z^2+c),c=11/74+19/29*I,n=32 3908856376487997 a007 Real Root Of 181*x^4-3*x^3+863*x^2-7*x-139 3908856383495621 r005 Re(z^2+c),c=-11/23+15/34*I,n=60 3908856400039458 r005 Im(z^2+c),c=23/90+19/40*I,n=28 3908856405286105 r005 Im(z^2+c),c=-4/29+37/59*I,n=29 3908856432239793 m001 (ln(5)-GolombDickman)/(Lehmer+Tetranacci) 3908856433612829 a001 433494437/521*322^(2/3) 3908856459910812 r002 22th iterates of z^2 + 3908856466425056 a007 Real Root Of 165*x^4+543*x^3-479*x^2-415*x-393 3908856491452414 r009 Re(z^3+c),c=-12/25+11/45*I,n=23 3908856494279309 m001 (-exp(-Pi)+1)/(exp(gamma)+2/3) 3908856502302151 a007 Real Root Of -346*x^4+104*x^3+579*x^2+395*x-241 3908856506668319 r005 Re(z^2+c),c=-57/106+7/51*I,n=39 3908856517259418 m008 (3*Pi^6+5)/(5/6*Pi^2-5/6) 3908856520958557 r005 Im(z^2+c),c=13/86+20/51*I,n=53 3908856524847190 m001 (Pi+Si(Pi))/(GAMMA(3/4)-FeigenbaumAlpha) 3908856527971577 g005 GAMMA(5/8)/GAMMA(6/11)/GAMMA(7/8)/GAMMA(3/7) 3908856532223779 r002 26th iterates of z^2 + 3908856559188075 a007 Real Root Of 211*x^4-455*x^3-746*x^2-552*x+352 3908856580691666 r005 Im(z^2+c),c=13/86+20/51*I,n=62 3908856583450070 l006 ln(1520/2247) 3908856586506460 r005 Re(z^2+c),c=-53/102+13/45*I,n=32 3908856602160679 m001 (Zeta(3)+cos(1/12*Pi))/(ZetaQ(2)+ZetaQ(4)) 3908856627507982 r005 Im(z^2+c),c=-21/38+29/64*I,n=34 3908856635807344 a003 cos(Pi*26/107)-cos(Pi*31/79) 3908856636655059 m005 (1/2*5^(1/2)-1/11)/(7/10*Pi+3/7) 3908856636786908 r005 Im(z^2+c),c=-3/86+23/44*I,n=25 3908856648155314 h001 (-8*exp(7)-8)/(-9*exp(1)+2) 3908856652770297 r005 Im(z^2+c),c=-1/60+25/49*I,n=20 3908856656065642 m001 (Zeta(5)+GAMMA(5/6))/(OneNinth-Robbin) 3908856660726241 b008 ProductLog[ArcCoth[Csch[1/2]]] 3908856668434765 m004 (-2*Sqrt[5])/Pi+125*Pi-Log[Sqrt[5]*Pi]/5 3908856689360670 r005 Re(z^2+c),c=9/23+13/48*I,n=6 3908856694665952 m004 -5+(25*Pi)/Log[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi]^2 3908856705224459 m001 (BesselI(1,1)+Stephens)/(sin(1)+ln(gamma)) 3908856717771687 a001 2971215073/322*123^(3/10) 3908856726176641 r002 20th iterates of z^2 + 3908856730985948 a007 Real Root Of 209*x^4-178*x^3+245*x^2-759*x+265 3908856735733661 r002 5th iterates of z^2 + 3908856743914607 r005 Im(z^2+c),c=7/26+2/7*I,n=56 3908856758858022 a007 Real Root Of 159*x^4+401*x^3-841*x^2+166*x+329 3908856765888607 m009 (1/3*Psi(1,3/4)+1/2)/(5/6*Psi(1,2/3)-6) 3908856772826385 r009 Re(z^3+c),c=-25/54+9/41*I,n=23 3908856778247505 h001 (7/8*exp(2)+7/10)/(4/9*exp(1)+5/8) 3908856794654976 r002 40th iterates of z^2 + 3908856799667231 a007 Real Root Of -142*x^4-504*x^3-132*x^2+810*x+310 3908856804267508 a007 Real Root Of -822*x^4+982*x^3-191*x^2+140*x-65 3908856805565118 m001 MasserGramainDelta^FeigenbaumD-ln(3) 3908856826200966 r005 Im(z^2+c),c=13/122+26/61*I,n=26 3908856834000708 m005 (1/2*Zeta(3)-5/8)/(107/20+7/20*5^(1/2)) 3908856842370115 m001 Riemann1stZero^2/ln(Kolakoski)^2/cos(Pi/12) 3908856850321372 m001 (Lehmer+Sierpinski)/(gamma+CopelandErdos) 3908856856419085 a001 76*(1/2*5^(1/2)+1/2)^16*7^(10/23) 3908856882674596 a007 Real Root Of -246*x^4-824*x^3+326*x^2-650*x+695 3908856890275750 r005 Re(z^2+c),c=-63/122+18/59*I,n=18 3908856906627346 m006 (4/5*exp(Pi)-1/2)/(2*exp(Pi)-1/5) 3908856907014980 r009 Re(z^3+c),c=-45/86+15/53*I,n=38 3908856909112501 m001 1/cosh(1)^2*Trott^2/ln(log(1+sqrt(2))) 3908856914102891 r005 Im(z^2+c),c=5/86+12/25*I,n=11 3908856930867226 m001 (GAMMA(19/24)+Kac)/(1+Zeta(1/2)) 3908856935943949 m001 1/ln(GolombDickman)^2/DuboisRaymond/Lehmer 3908856953740488 r002 5th iterates of z^2 + 3908856968193726 r005 Im(z^2+c),c=4/15+17/59*I,n=27 3908856982210922 r002 13th iterates of z^2 + 3908856986751108 r005 Re(z^2+c),c=-33/62+12/29*I,n=43 3908857010306032 a003 sin(Pi*8/47)*sin(Pi*32/115) 3908857016142593 a001 1322157322203/377*6557470319842^(12/17) 3908857020115001 a001 1/1364*(1/2*5^(1/2)+1/2)^27*3^(3/17) 3908857029608250 r005 Re(z^2+c),c=-57/110+13/46*I,n=35 3908857040173126 a005 (1/sin(85/223*Pi))^987 3908857040659469 m001 GAMMA(3/4)^HardyLittlewoodC3-GAMMA(7/12) 3908857052063325 b008 (-125+EulerGamma)*Pi 3908857055005813 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(5/8*I*Pi),n=60 3908857057606532 m004 -5*Pi+4/Log[Sqrt[5]*Pi]+5*Log[Sqrt[5]*Pi] 3908857069539778 r005 Im(z^2+c),c=13/86+20/51*I,n=49 3908857079156927 a003 sin(Pi*9/86)-sin(Pi*21/83) 3908857080398336 a001 11/34*1597^(1/39) 3908857082977583 r005 Im(z^2+c),c=1/25+28/59*I,n=20 3908857083303419 m008 (Pi-3/4)/(2*Pi^5-1/5) 3908857083708979 m005 (1/3*3^(1/2)+1/8)/(5/8*3^(1/2)+5/7) 3908857106542439 m001 (ln(2^(1/2)+1)+TwinPrimes)/(exp(1)+GAMMA(3/4)) 3908857118375042 h001 (11/12*exp(2)+1/7)/(3/8*exp(1)+3/4) 3908857120636267 r005 Re(z^2+c),c=-63/122+7/46*I,n=8 3908857121765267 r002 30th iterates of z^2 + 3908857131004343 r005 Im(z^2+c),c=-9/122+34/63*I,n=58 3908857131225143 r005 Re(z^2+c),c=43/126+5/31*I,n=4 3908857131834581 a007 Real Root Of -737*x^4+927*x^3+377*x^2+766*x-3 3908857134470263 r005 Im(z^2+c),c=33/118+14/31*I,n=26 3908857134675723 r005 Im(z^2+c),c=-31/50+18/47*I,n=56 3908857135047220 r009 Im(z^3+c),c=-13/15+7/58*I,n=2 3908857139418785 s001 sum(exp(-Pi/3)^(n-1)*A087657[n],n=1..infinity) 3908857139519245 a001 12586269025/521*123^(1/10) 3908857153579650 r005 Re(z^2+c),c=-3/5+19/50*I,n=26 3908857155132484 a001 7/233*28657^(1/4) 3908857173536632 m001 (-CareFree+DuboisRaymond)/(Psi(1,1/3)-exp(Pi)) 3908857186092023 m005 (1/2*Zeta(3)+4/9)/(4/5*exp(1)+1/2) 3908857187527563 m001 Totient^Gompertz+exp(1) 3908857187671418 s002 sum(A018434[n]/(n^2*exp(n)+1),n=1..infinity) 3908857204869535 m001 Lehmer*ln(FibonacciFactorial)/GAMMA(1/6)^2 3908857208058597 a007 Real Root Of 41*x^4-723*x^3+505*x^2-775*x+268 3908857216604515 b008 Sinh[3+E/2] 3908857217396302 h001 (9/11*exp(1)+1/11)/(7/10*exp(2)+3/4) 3908857223937538 m001 Catalan*MertensB2*ThueMorse 3908857238496307 m005 (1/3*gamma+1/7)/(6/11*exp(1)-5/8) 3908857238906767 m005 (1/2*Pi+1/2)/(3/10*exp(1)-2/7) 3908857247319520 r005 Re(z^2+c),c=6/23+23/56*I,n=38 3908857253086419 r004 Re(z^2+c),c=-23/30-7/12*I,z(0)=-1,n=3 3908857267033623 p001 sum(1/(400*n+303)/(3^n),n=0..infinity) 3908857300025742 a001 13*4^(27/34) 3908857303721197 m001 (Weierstrass+ZetaP(2))/(Catalan+Backhouse) 3908857318199636 l006 ln(6057/8954) 3908857320332176 m001 (ln(gamma)-Ei(1,1)*OrthogonalArrays)/Ei(1,1) 3908857327845022 m001 Pi*2^(1/2)/GAMMA(3/4)+Backhouse*DuboisRaymond 3908857340578785 m001 (-BesselI(0,2)+ZetaP(2))/(cos(1)+gamma(1)) 3908857346501853 a001 1/5*196418^(10/41) 3908857348171188 s002 sum(A030505[n]/(n^3*2^n-1),n=1..infinity) 3908857361194151 a005 (1/cos(33/167*Pi))^185 3908857373372506 m001 GAMMA(1/3)*ErdosBorwein^2*exp(sqrt(3)) 3908857380111695 a007 Real Root Of -526*x^4+757*x^3-393*x^2+454*x+295 3908857383640062 m005 (1/2*Pi-5/11)/(1/4*gamma-3) 3908857400800049 a001 75025/7*199^(11/45) 3908857401739118 m006 (3/4*Pi^2+3/5)/(1/3*Pi+1) 3908857401739118 m008 (3/4*Pi^2+3/5)/(1/3*Pi+1) 3908857419651081 r005 Im(z^2+c),c=1/118+27/55*I,n=61 3908857438569289 a003 sin(Pi*7/97)-sin(Pi*19/90) 3908857442539207 r005 Im(z^2+c),c=13/86+20/51*I,n=58 3908857461578627 m005 (1/2*gamma+1/9)/(2/7*Pi+1/8) 3908857469523670 m005 (1/2*3^(1/2)-7/10)/(10/11*gamma-1/10) 3908857472971089 r002 28th iterates of z^2 + 3908857474415482 r001 49i'th iterates of 2*x^2-1 of 3908857479922265 r009 Re(z^3+c),c=-49/94+14/53*I,n=19 3908857486731846 m006 (2/5*ln(Pi)+3/4)/(3/5/Pi-1/2) 3908857487001599 m001 (Pi^(1/2)-Sarnak)/FeigenbaumD 3908857489164065 r002 8th iterates of z^2 + 3908857499305970 a007 Real Root Of 510*x^4+202*x^3-558*x^2-876*x-257 3908857504559931 r009 Im(z^3+c),c=-59/102+5/56*I,n=3 3908857509627727 q001 609/1558 3908857509627727 r002 2th iterates of z^2 + 3908857515332869 m001 (Khinchin-LandauRamanujan2nd)/ZetaQ(2) 3908857520401339 r005 Re(z^2+c),c=-29/40+1/51*I,n=20 3908857523540699 r005 Im(z^2+c),c=-5/18+31/57*I,n=15 3908857534620049 r009 Im(z^3+c),c=-7/62+23/47*I,n=2 3908857541387508 a007 Real Root Of 76*x^4-464*x^3+576*x^2-142*x-173 3908857542501273 r002 4th iterates of z^2 + 3908857557386022 m001 GAMMA(1/4)*FeigenbaumAlpha/exp(Zeta(1/2)) 3908857564357733 l006 ln(4537/6707) 3908857578145688 a007 Real Root Of 200*x^4+896*x^3+377*x^2-231*x+159 3908857588673149 m001 (ln(2+3^(1/2))-Gompertz)/(OneNinth+ZetaP(4)) 3908857599210685 r009 Re(z^3+c),c=-5/66+43/63*I,n=23 3908857602166769 m001 1/GAMMA(1/3)*exp(Robbin)*cos(1) 3908857610486020 r002 59th iterates of z^2 + 3908857626965397 m005 (1/2*Zeta(3)-1/4)/(3*Pi-4/9) 3908857631631143 a007 Real Root Of 584*x^4+662*x^3+282*x^2-854*x-351 3908857642659829 m001 ln(MertensB1)*FeigenbaumAlpha^2/arctan(1/2)^2 3908857647293290 r005 Re(z^2+c),c=-19/34+6/17*I,n=28 3908857651150368 m001 (GAMMA(11/12)-Kac)/(Salem-ZetaP(4)) 3908857664616287 m001 (2^(1/3))^2/LandauRamanujan/ln(sin(Pi/5)) 3908857698171837 a007 Real Root Of -346*x^4+132*x^3+163*x^2+868*x-364 3908857699273543 r005 Re(z^2+c),c=-113/118+7/24*I,n=10 3908857712042660 m001 1/GAMMA(3/4)^2*GAMMA(17/24)/exp(cosh(1))^2 3908857712865625 m001 (ln(Pi)-HardyLittlewoodC5)/(Niven+ZetaP(3)) 3908857717166742 a001 1/7331474697802*3^(23/24) 3908857720019440 m001 Artin^cos(1)*Artin^PrimesInBinary 3908857720512908 r005 Re(z^2+c),c=-9/14+55/173*I,n=63 3908857738295496 r009 Im(z^3+c),c=-7/78+41/63*I,n=2 3908857739423409 r002 38th iterates of z^2 + 3908857764913980 r005 Im(z^2+c),c=4/17+8/25*I,n=32 3908857771735664 r002 18th iterates of z^2 + 3908857774905172 a007 Real Root Of -118*x^4-321*x^3+745*x^2+944*x+683 3908857778542360 r009 Re(z^3+c),c=-19/56+3/62*I,n=4 3908857784873371 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=33 3908857791617687 m006 (3/4*Pi^2+1/6)/(1/5/Pi-2) 3908857797896349 r002 35th iterates of z^2 + 3908857803986977 m005 (-1/20+1/4*5^(1/2))/(7/11*3^(1/2)+1/5) 3908857806402935 m001 (GlaisherKinkelin+Robbin)/(ln(2)-Cahen) 3908857813863910 a007 Real Root Of 975*x^4-781*x^3-920*x^2-247*x+261 3908857824483455 m005 (1/2*Zeta(3)+5/7)/(-127/198+3/22*5^(1/2)) 3908857840538524 m001 GAMMA(1/24)*exp(Porter)^2/GAMMA(5/6) 3908857852909412 r009 Re(z^3+c),c=-23/52+10/51*I,n=15 3908857858788150 m001 (GAMMA(11/12)-Thue)^gamma 3908857858994683 m001 (gamma(2)-gamma)/(-Kac+StronglyCareFree) 3908857869732123 a007 Real Root Of -307*x^4-381*x^3-624*x^2+763*x+378 3908857895429378 m001 (Zeta(1,2)+ErdosBorwein)/(LambertW(1)+ln(Pi)) 3908857896251208 r009 Re(z^3+c),c=-15/29+8/21*I,n=28 3908857898320013 m001 exp(Zeta(7))^2*GaussKuzminWirsing^2/sqrt(Pi) 3908857899139861 m001 (-Pi^(1/2)+Tetranacci)/(3^(1/2)+5^(1/2)) 3908857901905743 b008 4+3*AiryBi[2*Pi] 3908857928786213 m001 (1-ln(2)/ln(10))/(2^(1/2)+Artin) 3908857931248619 r002 12th iterates of z^2 + 3908857937988243 a007 Real Root Of -257*x^4-744*x^3+799*x^2-761*x+380 3908857948288409 a007 Real Root Of -958*x^4+629*x^3-304*x^2+700*x+380 3908857949952856 r005 Im(z^2+c),c=-17/16+28/109*I,n=10 3908857952078428 r005 Re(z^2+c),c=1/9+1/4*I,n=25 3908857958176881 a007 Real Root Of 226*x^4-351*x^3+390*x^2-420*x-250 3908857990411741 r009 Re(z^3+c),c=-33/64+15/53*I,n=57 3908857999644577 s002 sum(A207916[n]/((10^n+1)/n),n=1..infinity) 3908858003672228 r005 Re(z^2+c),c=8/29+2/47*I,n=37 3908858015821600 m001 (Psi(2,1/3)-ln(3))/(GAMMA(23/24)+ThueMorse) 3908858037043347 r005 Re(z^2+c),c=-14/25+15/47*I,n=23 3908858043235061 r005 Re(z^2+c),c=-33/64+21/59*I,n=28 3908858054998201 m001 (Shi(1)-ln(3)*Rabbit)/Rabbit 3908858057391409 a007 Real Root Of 219*x^4+615*x^3-919*x^2+117*x+103 3908858058550486 l006 ln(3017/4460) 3908858065446538 r005 Im(z^2+c),c=15/46+11/51*I,n=58 3908858070637626 s001 sum(exp(-3*Pi/4)^n*A270850[n],n=1..infinity) 3908858086056245 m001 (gamma(3)+ZetaQ(2))/(sin(1)+sin(1/5*Pi)) 3908858088710788 m001 (Pi-ln(2))/(gamma(3)+GolombDickman) 3908858091982749 m005 (1/2*Pi-7/12)/(3/7*gamma-1/2) 3908858098186097 m001 (OrthogonalArrays+Porter)/(Sarnak+Trott) 3908858099259690 m001 (Zeta(3)+Zeta(1/2))/(Rabbit-StronglyCareFree) 3908858099352953 r002 21th iterates of z^2 + 3908858103675048 m001 (gamma+GAMMA(5/6))/(FeigenbaumMu+Kolakoski) 3908858108318013 r005 Re(z^2+c),c=15/58+25/47*I,n=3 3908858108653975 r005 Re(z^2+c),c=-63/118+7/43*I,n=25 3908858125566852 r009 Im(z^3+c),c=-29/66+6/11*I,n=40 3908858134997732 m005 (1/2*5^(1/2)+1/3)/(Pi+4/7) 3908858139492528 a007 Real Root Of -210*x^4-645*x^3+886*x^2+875*x+386 3908858148765938 h001 (1/6*exp(1)+5/8)/(4/5*exp(1)+7/12) 3908858155190123 r009 Im(z^3+c),c=-19/106+16/37*I,n=11 3908858157076197 m005 (1/2*exp(1)-5/11)/(7/9*exp(1)+1/5) 3908858159479330 a003 sin(Pi*1/9)/sin(Pi*39/115) 3908858163368001 r005 Im(z^2+c),c=-79/56+12/59*I,n=5 3908858169015988 r009 Im(z^3+c),c=-17/44+19/53*I,n=19 3908858173816392 r009 Re(z^3+c),c=-10/21+11/47*I,n=45 3908858179927661 g005 GAMMA(1/9)/GAMMA(7/11)/GAMMA(7/10)/GAMMA(7/9) 3908858183278943 r005 Im(z^2+c),c=-131/98+1/5*I,n=4 3908858184877328 r005 Im(z^2+c),c=13/86+20/51*I,n=45 3908858187569121 m001 (-BesselK(1,1)+Kac)/(BesselJ(0,1)-exp(1/Pi)) 3908858201846940 r002 31th iterates of z^2 + 3908858202045083 r009 Im(z^3+c),c=-65/126+3/11*I,n=53 3908858206612434 m005 (1/2*2^(1/2)-1/12)/(9/10*5^(1/2)-5/12) 3908858212392930 r005 Re(z^2+c),c=-55/102+5/42*I,n=49 3908858215502781 m001 RenyiParking^2*exp(HardHexagonsEntropy)/gamma 3908858247945669 m005 (1/2*5^(1/2)-8/11)/(5/11*Catalan+7/12) 3908858248720914 h001 (-2*exp(5)-3)/(-7*exp(7)+6) 3908858264401265 m001 (-Zeta(3)+arctan(1/3))/(2^(1/2)+Chi(1)) 3908858266931517 m001 polylog(4,1/2)*ZetaR(2)^GAMMA(2/3) 3908858297582899 r002 25th iterates of z^2 + 3908858307881277 m001 FeigenbaumD*ln(Porter)^2/Zeta(7) 3908858308542893 m001 (GAMMA(23/24)+Landau)/(BesselJ(1,1)-sin(1)) 3908858315119223 r005 Im(z^2+c),c=-3/122+23/45*I,n=51 3908858317144800 r005 Re(z^2+c),c=-7/15+20/63*I,n=8 3908858333618217 m001 Trott/KhintchineLevy^2*ln(BesselK(1,1)) 3908858336720228 m001 (GAMMA(7/12)+Mills)/(Sarnak+ZetaQ(4)) 3908858349649092 m001 ArtinRank2*CareFree^((1+3^(1/2))^(1/2)) 3908858350544982 m001 1/ln(GAMMA(11/12))^2*BesselJ(0,1)/sin(Pi/12)^2 3908858358311402 r009 Im(z^3+c),c=-9/118+17/38*I,n=12 3908858362790425 a007 Real Root Of 572*x^4-971*x^3-525*x^2-379*x+273 3908858371120201 r005 Im(z^2+c),c=11/78+2/5*I,n=39 3908858381344045 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=29 3908858386896384 a007 Real Root Of 743*x^4-677*x^3-898*x^2-743*x-211 3908858424123266 m001 1/Niven/exp(GAMMA(2/3))^2 3908858434816319 r009 Re(z^3+c),c=-39/98+1/7*I,n=22 3908858436682533 r002 19th iterates of z^2 + 3908858440755544 r009 Re(z^3+c),c=-15/38+29/41*I,n=14 3908858450200436 r005 Re(z^2+c),c=-14/27+13/46*I,n=60 3908858454578201 m001 FeigenbaumDelta*exp(Cahen)*TreeGrowth2nd 3908858469000306 r001 27i'th iterates of 2*x^2-1 of 3908858478609885 r002 49th iterates of z^2 + 3908858486730627 r005 Im(z^2+c),c=31/126+13/42*I,n=55 3908858496593924 s001 sum(exp(-Pi/3)^n*A086756[n],n=1..infinity) 3908858496659899 a001 832040/3*29^(11/14) 3908858503033792 m001 (Si(Pi)+gamma)/(-Backhouse+GaussAGM) 3908858505312885 r005 Re(z^2+c),c=-59/110+9/59*I,n=45 3908858509710774 r009 Re(z^3+c),c=-61/70+39/59*I,n=2 3908858518093733 a005 (1/cos(3/83*Pi))^211 3908858518936583 r002 22th iterates of z^2 + 3908858519556147 r005 Re(z^2+c),c=-7/15+25/54*I,n=53 3908858544382973 a001 76/13*2584^(23/43) 3908858555261255 l006 ln(4514/6673) 3908858563849887 a007 Real Root Of 71*x^4+189*x^3+466*x^2+91*x-26 3908858598961824 m001 1/(2^(1/3))/ln(Riemann1stZero)^2*sin(Pi/5)^2 3908858599092068 r005 Re(z^2+c),c=-9/14+47/163*I,n=38 3908858601731462 r002 36th iterates of z^2 + 3908858601968592 m001 (BesselI(0,1)-exp(1/Pi))/(FeigenbaumD+Paris) 3908858605484305 r002 6th iterates of z^2 + 3908858621496013 m001 1/GAMMA(5/6)^2*GAMMA(11/12)/ln(cos(Pi/5)) 3908858643880735 r005 Re(z^2+c),c=-5/8+32/143*I,n=4 3908858654830913 r005 Im(z^2+c),c=1/42+13/27*I,n=37 3908858659511146 m001 (-arctan(1/2)+Bloch)/(2^(1/3)+sin(1)) 3908858689006593 r005 Re(z^2+c),c=-8/15+11/50*I,n=22 3908858692086137 m001 (Catalan+BesselI(0,1))/(Zeta(1,-1)+Sarnak) 3908858699460957 m005 (1/2*Catalan+7/11)/(1/6*Zeta(3)-3) 3908858707070854 r005 Re(z^2+c),c=1/13+17/46*I,n=22 3908858714466407 m001 1/Ei(1)^2/BesselK(0,1)/exp(sqrt(2))^2 3908858720384446 r005 Im(z^2+c),c=-41/36+12/47*I,n=60 3908858723038102 a007 Real Root Of 185*x^4-512*x^3-846*x^2-935*x+521 3908858730638865 m005 (1/2*Pi-4/7)/(6/11*Zeta(3)-2/5) 3908858740772022 a007 Real Root Of 155*x^4-968*x^3+618*x^2-489*x-347 3908858746568301 a007 Real Root Of -85*x^4+482*x^3-x^2+650*x+285 3908858748899119 r005 Im(z^2+c),c=1/9+19/45*I,n=45 3908858761984316 r005 Re(z^2+c),c=-23/74+24/37*I,n=56 3908858770378252 a003 cos(Pi*2/103)/sin(Pi*6/73) 3908858772183999 r002 4th iterates of z^2 + 3908858784634875 m001 1/TreeGrowth2nd^2/exp(Conway)^2*GAMMA(23/24) 3908858787609786 r002 3th iterates of z^2 + 3908858787892858 r005 Re(z^2+c),c=-3/118+25/32*I,n=24 3908858792989679 r002 37th iterates of z^2 + 3908858798157978 m004 -4+125*Pi+(25*Sqrt[5]*Cos[Sqrt[5]*Pi])/(6*Pi) 3908858801352968 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=26 3908858804566917 l006 ln(6011/8886) 3908858810578089 r005 Re(z^2+c),c=-31/58+15/49*I,n=23 3908858815442895 a007 Real Root Of 193*x^4+543*x^3-787*x^2-39*x-754 3908858817542880 r005 Re(z^2+c),c=-31/60+5/17*I,n=46 3908858847965648 a007 Real Root Of -154*x^4-653*x^3-376*x^2-802*x-438 3908858848900596 r009 Im(z^3+c),c=-11/24+16/51*I,n=43 3908858861773208 r009 Re(z^3+c),c=-33/62+9/34*I,n=61 3908858864119190 m006 (1/2*Pi^2-1)/(2/5*Pi-1/4) 3908858864119190 m008 (1/2*Pi^2-1)/(2/5*Pi-1/4) 3908858865529580 a003 sin(Pi*8/93)/sin(Pi*28/117) 3908858873532620 m001 (exp(Pi)-ln(3))/(-StronglyCareFree+Totient) 3908858875336670 m008 (1/3*Pi+5/6)/(1/2*Pi^6+2/5) 3908858881801321 r005 Re(z^2+c),c=-55/102+1/20*I,n=15 3908858893780838 m005 (1/2*5^(1/2)-3/5)/(4/5*Zeta(3)+4/11) 3908858906498487 a001 1/29*(1/2*5^(1/2)+1/2)^10*123^(6/13) 3908858908707047 r002 24th iterates of z^2 + 3908858909092121 r005 Re(z^2+c),c=-23/60+23/45*I,n=20 3908858913548592 b008 5+36*Sech[1/3] 3908858915631238 m001 (BesselI(0,1)+4)/(GaussAGM(1,1/sqrt(2))+1/2) 3908858926824162 a005 (1/cos(18/181*Pi))^1234 3908858930106733 r005 Re(z^2+c),c=5/48+16/39*I,n=42 3908858933354276 m005 (1/2*gamma+6/7)/(5/12*3^(1/2)-3/7) 3908858940412666 r008 a(0)=4,K{-n^6,6+6*n^3+6*n^2-6*n} 3908858972202126 a007 Real Root Of 148*x^4+575*x^3-62*x^2-114*x+292 3908858978393618 r002 9th iterates of z^2 + 3908858980238196 b008 3+14*CoshIntegral[1/3] 3908858991548513 a001 9349/8*8^(18/31) 3908858993008022 h001 (-8*exp(3)-2)/(-12*exp(1)-9) 3908859000582736 m003 -3*Cot[1/2+Sqrt[5]/2]+36*Coth[1/2+Sqrt[5]/2] 3908859007873151 a007 Real Root Of -258*x^4-823*x^3+528*x^2-696*x+290 3908859021534903 s002 sum(A199391[n]/(16^n),n=1..infinity) 3908859030857727 m001 FeigenbaumDelta-arctan(1/2)*GAMMA(13/24) 3908859035053975 r005 Re(z^2+c),c=-55/102+5/42*I,n=51 3908859046148252 r009 Im(z^3+c),c=-1/9+28/57*I,n=2 3908859051622906 m005 (25/4+1/4*5^(1/2))/(103/140+9/20*5^(1/2)) 3908859063095146 r005 Re(z^2+c),c=-65/118+13/45*I,n=11 3908859071977800 m001 (PlouffeB+Trott)^Conway 3908859081579774 m001 ln(gamma)^2*GAMMA(11/24)*sin(Pi/12)^2 3908859088436426 r002 20th iterates of z^2 + 3908859093018685 p004 log(28837/19507) 3908859095382757 m005 (1/3*3^(1/2)-2/11)/(3/56+3/7*5^(1/2)) 3908859097637966 r005 Re(z^2+c),c=-17/26+33/115*I,n=49 3908859106071378 r005 Re(z^2+c),c=-7/13+1/11*I,n=20 3908859116412231 r009 Im(z^3+c),c=-41/102+7/20*I,n=26 3908859117551945 r002 40th iterates of z^2 + 3908859117551945 r002 40th iterates of z^2 + 3908859121200845 m001 exp(GlaisherKinkelin)^2/Backhouse*Robbin^2 3908859135885005 b008 13+46*ProductLog[1] 3908859141146129 m001 (ln(2)+gamma(3))/(Conway+Weierstrass) 3908859145299657 m005 (1/2*Catalan-6)/(5/9*Zeta(3)+3/4) 3908859147092382 m001 1/Robbin^2/ln(PisotVijayaraghavan)^2/exp(1)^2 3908859148162167 a007 Real Root Of -295*x^4-999*x^3+401*x^2-863*x-296 3908859169568278 m001 (-Zeta(3)+3^(1/3))/(2^(1/3)-BesselI(0,1)) 3908859176653093 a001 9/5473*14930352^(8/17) 3908859180375299 b008 LogGamma[5/252] 3908859183174967 a001 18/514229*53316291173^(8/17) 3908859189527742 m001 OrthogonalArrays/(Champernowne+CopelandErdos) 3908859192285088 r002 28th iterates of z^2 + 3908859192285088 r002 28th iterates of z^2 + 3908859192504934 p003 LerchPhi(1/512,3,56/19) 3908859192546873 r005 Im(z^2+c),c=-31/56+1/44*I,n=8 3908859201068273 r005 Re(z^2+c),c=-27/56+11/48*I,n=3 3908859217368365 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=33 3908859228369902 r005 Im(z^2+c),c=1/118+27/55*I,n=44 3908859231101088 a003 cos(Pi*27/73)*sin(Pi*53/120) 3908859240314189 m006 (exp(2*Pi)+1/3)/(5*Pi-2) 3908859261220496 h001 (7/8*exp(2)+1/8)/(3/8*exp(1)+2/3) 3908859270342670 a007 Real Root Of -951*x^4+720*x^3-866*x^2+101*x+237 3908859277537382 r005 Re(z^2+c),c=-13/25+13/47*I,n=39 3908859280085504 r002 56th iterates of z^2 + 3908859282982083 r002 19th iterates of z^2 + 3908859294037735 r008 a(0)=4,K{-n^6,7*n^3+5*n} 3908859300375551 r005 Im(z^2+c),c=29/70+11/31*I,n=16 3908859305052568 a001 1346269/3*322^(41/53) 3908859306622555 r005 Im(z^2+c),c=-1/31+33/64*I,n=59 3908859317819904 r009 Im(z^3+c),c=-43/110+9/26*I,n=9 3908859326351542 q001 1381/3533 3908859336721103 r005 Re(z^2+c),c=-9/17+10/47*I,n=54 3908859343885998 a001 8/7*1364^(23/47) 3908859344054252 m001 (ln(3)-GAMMA(7/12))/(Backhouse-Porter) 3908859363909770 m001 Riemann2ndZero^2/exp(Si(Pi))^2*Ei(1)^2 3908859379998901 a001 1/76*(1/2*5^(1/2)+1/2)^14*1364^(13/16) 3908859399965123 m001 (Landau+ZetaP(3))/(exp(1)-ln(2^(1/2)+1)) 3908859415559703 m001 (2^(1/2)-Gompertz)/(-Paris+Riemann2ndZero) 3908859421064433 m003 4+Sqrt[5]/64-E^(1/2+Sqrt[5]/2)/40 3908859429185432 r005 Re(z^2+c),c=-22/29+7/47*I,n=10 3908859430656988 r009 Re(z^3+c),c=-13/27+5/42*I,n=11 3908859445295366 r005 Re(z^2+c),c=1/9+1/4*I,n=26 3908859453895353 a007 Real Root Of -183*x^4+982*x^3-896*x^2+200*x+278 3908859468412999 s002 sum(A202611[n]/(n!^2),n=1..infinity) 3908859485232095 a007 Real Root Of 864*x^4-873*x^3-895*x^2-364*x+311 3908859487797328 r005 Im(z^2+c),c=-5/66+27/37*I,n=6 3908859489454880 m001 (LambertW(1)-ln(gamma))/(-ln(5)+Ei(1)) 3908859509145770 a007 Real Root Of 690*x^4-831*x^3+371*x^2-288*x-235 3908859515447426 m005 (1/2*2^(1/2)+2)/(3/7*Catalan+3/10) 3908859517536323 m001 FeigenbaumAlpha*TreeGrowth2nd+FransenRobinson 3908859518292327 r005 Re(z^2+c),c=-11/20+14/57*I,n=18 3908859552114957 r005 Re(z^2+c),c=-13/25+17/62*I,n=61 3908859556314213 l006 ln(1497/2213) 3908859575161153 m001 sin(1)*MinimumGamma+2/3*Pi*3^(1/2)/GAMMA(2/3) 3908859575301803 a001 267914296/521*322^(3/4) 3908859605136671 a001 7/4181*610^(28/57) 3908859624147428 a007 Real Root Of -182*x^4-752*x^3+139*x^2+978*x-725 3908859633223721 r005 Re(z^2+c),c=-10/21+9/22*I,n=26 3908859646498657 b008 1+Sqrt[2*E]+EulerGamma 3908859660913457 s001 sum(exp(-Pi/4)^(n-1)*A018700[n],n=1..infinity) 3908859661176993 m005 (1/2*gamma+4)/(7/9*3^(1/2)-1/4) 3908859663587399 r005 Im(z^2+c),c=13/106+12/29*I,n=39 3908859688413927 m001 exp(log(1+sqrt(2)))*Lehmer*sqrt(1+sqrt(3))^2 3908859693454265 r005 Re(z^2+c),c=-49/90+1/64*I,n=24 3908859707737238 m008 (2*Pi^3+3/4)/(1/6*Pi^6+1/3) 3908859709621707 m001 (Grothendieck+Lehmer)/(BesselJ(0,1)-CareFree) 3908859718867620 a001 76*1346269^(41/44) 3908859753585753 r005 Im(z^2+c),c=13/86+20/51*I,n=54 3908859757443345 r009 Im(z^3+c),c=-25/122+26/61*I,n=9 3908859761233812 a001 233/11*3^(29/52) 3908859763842384 r005 Im(z^2+c),c=5/114+22/47*I,n=33 3908859767065069 a003 sin(Pi*1/45)-sin(Pi*16/105) 3908859768302594 r005 Re(z^2+c),c=-9/16+8/59*I,n=13 3908859780355686 a008 Real Root of (3+2*x-11*x^2+9*x^3) 3908859811910341 a003 sin(Pi*32/111)/cos(Pi*27/62) 3908859814208100 m001 (BesselK(1,1)+FeigenbaumMu)/(Psi(1,1/3)+gamma) 3908859820337050 a007 Real Root Of -387*x^4+799*x^3+633*x^2+816*x+279 3908859824936664 m002 -4-3/Pi^5+Tanh[Pi]/Pi^2 3908859828636507 a007 Real Root Of -203*x^4+894*x^3+187*x^2+749*x-370 3908859837972459 r005 Re(z^2+c),c=-53/54+8/53*I,n=34 3908859846648280 r005 Re(z^2+c),c=-43/118+8/15*I,n=25 3908859883424641 r008 a(0)=4,K{-n^6,-21-2*n^3-32*n^2+64*n} 3908859889291711 r005 Re(z^2+c),c=-65/122+7/62*I,n=16 3908859896218025 r002 33th iterates of z^2 + 3908859896724573 r005 Im(z^2+c),c=-5/8+11/157*I,n=31 3908859903065721 a005 (1/sin(49/209*Pi))^15 3908859912097361 a008 Real Root of (-3+7*x+2*x^2-2*x^4+9*x^8) 3908859920276131 r005 Re(z^2+c),c=7/18+23/63*I,n=64 3908859931101937 m001 1/Porter/exp(CareFree)^2*GAMMA(1/24) 3908859952960107 r002 9th iterates of z^2 + 3908859957414670 r002 18th iterates of z^2 + 3908859963381900 p001 sum((-1)^n/(299*n+245)/(10^n),n=0..infinity) 3908859968679578 b008 Pi+ProductLog[23]/3 3908859977545755 r002 47th iterates of z^2 + 3908859982957821 a008 Real Root of x^4-46*x^2-220*x+93 3908859992326341 a007 Real Root Of -244*x^4-24*x^3-793*x^2-19*x+118 3908859996624260 r002 2th iterates of z^2 + 3908860036973595 m004 (-745*Pi)/6-Cos[Sqrt[5]*Pi]*Cot[Sqrt[5]*Pi] 3908860048667537 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=30 3908860051507594 m001 Artin-CareFree^BesselJ(0,1) 3908860074294469 b008 39+Sech[2]/3 3908860076495016 m001 (Kolakoski-Riemann2ndZero)/polylog(4,1/2) 3908860089617781 m001 (MinimumGamma+ZetaQ(4))/(Pi+BesselK(1,1)) 3908860092416013 m001 (FeigenbaumC-cos(1))/(ReciprocalLucas+Totient) 3908860109718296 m005 (1/2*exp(1)-1/2)/(8/11*gamma-1/5) 3908860114019637 l006 ln(19/947) 3908860114019637 p004 log(947/19) 3908860127102175 r005 Re(z^2+c),c=-41/70+26/53*I,n=16 3908860127926123 a007 Real Root Of 37*x^4-76*x^3-791*x^2+461*x+711 3908860129492438 a007 Real Root Of -459*x^4+945*x^3+416*x^2+899*x+355 3908860147389124 m005 (1/2*exp(1)-7/9)/(5/11*3^(1/2)+7/10) 3908860147754616 r005 Im(z^2+c),c=-31/106+36/61*I,n=56 3908860155195181 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=34 3908860157948328 a007 Real Root Of 980*x^4-320*x^3-308*x^2-493*x+236 3908860158030810 a007 Real Root Of -184*x^4+416*x^3-78*x^2+991*x-396 3908860161188996 r009 Im(z^3+c),c=-12/23+27/62*I,n=46 3908860163918283 h005 exp(cos(Pi*19/53)+sin(Pi*18/47)) 3908860169198888 r009 Im(z^3+c),c=-11/56+38/53*I,n=7 3908860170251592 a005 (1/cos(6/107*Pi))^1416 3908860193266332 r005 Im(z^2+c),c=-45/34+1/20*I,n=9 3908860211348940 a001 13/76*4^(31/52) 3908860213587904 r005 Re(z^2+c),c=-23/44+18/29*I,n=18 3908860224390476 r005 Im(z^2+c),c=13/86+20/51*I,n=41 3908860229107925 a001 9/305*701408733^(6/17) 3908860233819650 a007 Real Root Of -817*x^4-373*x^3-818*x^2+621*x-23 3908860235503310 r009 Im(z^3+c),c=-41/106+19/53*I,n=23 3908860237730567 r009 Im(z^3+c),c=-49/110+9/28*I,n=14 3908860249433438 r009 Re(z^3+c),c=-17/44+7/55*I,n=12 3908860260682507 m001 Pi*exp(Pi)*(Psi(2,1/3)+GAMMA(2/3)) 3908860269015785 a008 Real Root of x^2-x-152401 3908860270595421 m001 (-ln(Pi)+1)/(-Zeta(5)+2/3) 3908860276584347 m005 (1/3*2^(1/2)+1/6)/(3/4*3^(1/2)+1/3) 3908860291615371 m005 (1/3*Pi-2/5)/(3/8*exp(1)+7/11) 3908860297319912 l006 ln(9608/9991) 3908860302006025 r005 Re(z^2+c),c=-49/94+13/49*I,n=40 3908860310971331 r002 36th iterates of z^2 + 3908860313858664 l006 ln(5965/8818) 3908860321915638 m001 (Psi(1,1/3)+3^(1/2))/(KhinchinLevy+Tribonacci) 3908860371719178 a001 8/7*64079^(15/47) 3908860372087514 r005 Im(z^2+c),c=9/46+21/59*I,n=31 3908860386338038 m001 1/GAMMA(1/12)^2/ln(Robbin)^2*log(1+sqrt(2)) 3908860388152922 m001 (PlouffeB+ThueMorse)/(BesselK(0,1)-exp(Pi)) 3908860394377909 a007 Real Root Of 730*x^4+585*x^3+942*x^2+128*x-76 3908860402848514 r005 Im(z^2+c),c=23/118+17/48*I,n=20 3908860417084356 r002 22th iterates of z^2 + 3908860423190988 r005 Im(z^2+c),c=-41/98+10/19*I,n=4 3908860428079772 r002 47th iterates of z^2 + 3908860436204046 r005 Re(z^2+c),c=1/9+1/4*I,n=20 3908860439733283 h001 (-3*exp(2)-5)/(-9*exp(2)-3) 3908860444890721 m001 Niven/ln(GaussKuzminWirsing)*sqrt(1+sqrt(3))^2 3908860448189475 m001 (exp(Pi)+GolombDickman)/(-Porter+Thue) 3908860475066480 m001 GAMMA(23/24)^Thue/MertensB1 3908860480916402 r005 Re(z^2+c),c=-16/31+12/41*I,n=27 3908860488903966 r005 Re(z^2+c),c=-23/38+13/59*I,n=4 3908860493422152 r002 24th iterates of z^2 + 3908860493561363 r005 Re(z^2+c),c=-53/102+17/57*I,n=30 3908860509129910 m002 -5+ProductLog[Pi]+(2*Sech[Pi])/Pi^2 3908860526439750 r002 40th iterates of z^2 + 3908860531702502 a007 Real Root Of -667*x^4+826*x^3+736*x^2-108*x-104 3908860564276764 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=32 3908860567673343 l006 ln(4468/6605) 3908860572179800 m006 (3*exp(Pi)-4/5)/(3/4*exp(Pi)+1/5) 3908860578871823 r009 Re(z^3+c),c=-9/122+21/29*I,n=46 3908860580323833 m001 GAMMA(2/3)/(Pi+FellerTornier) 3908860596699525 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=36 3908860597947959 m001 cos(1/12*Pi)*exp(1/exp(1))/FeigenbaumMu 3908860598079927 a005 (1/sin(43/108*Pi))^424 3908860603717757 m005 (1/3*gamma-1/9)/(5/6*3^(1/2)+7/11) 3908860608261611 r002 14th iterates of z^2 + 3908860608375084 r005 Re(z^2+c),c=-38/31+12/55*I,n=4 3908860613854671 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=36 3908860622861322 m001 (Ei(1)+Zeta(1,2))/(CopelandErdos-Khinchin) 3908860637313221 r005 Re(z^2+c),c=5/12+22/63*I,n=7 3908860643528985 a007 Real Root Of -286*x^4-972*x^3+701*x^2+396*x-447 3908860645223285 m001 ln(2)*gamma(2)*LandauRamanujan2nd 3908860680284993 r005 Im(z^2+c),c=-13/66+18/31*I,n=36 3908860684489231 b008 4-(3*EulerGamma)/19 3908860690028572 r009 Im(z^3+c),c=-29/60+8/25*I,n=19 3908860692970846 m001 (Catalan-ln(5))/(Pi^(1/2)+ZetaQ(4)) 3908860695456508 m001 (Gompertz-Shi(1))/(-Tribonacci+TwinPrimes) 3908860697133108 m001 (Si(Pi)-Zeta(3))/(-gamma(2)+(1+3^(1/2))^(1/2)) 3908860697917434 r004 Im(z^2+c),c=7/22+2/9*I,z(0)=exp(3/8*I*Pi),n=38 3908860703923295 r005 Re(z^2+c),c=-55/122+27/56*I,n=27 3908860705059256 m002 3+4/Pi-Log[Pi]/Pi 3908860716987822 m001 1/ln(ArtinRank2)^2*Cahen^2*GAMMA(3/4) 3908860719240391 p001 sum(1/(493*n+256)/(512^n),n=0..infinity) 3908860723167691 m001 1/exp(BesselJ(0,1))*KhintchineLevy*sin(1)^2 3908860724678054 r005 Re(z^2+c),c=-29/50+7/30*I,n=13 3908860735996410 h001 (-2*exp(2)-5)/(-exp(4)+4) 3908860737923176 m001 (ln(2^(1/2)+1)-FeigenbaumDelta)/gamma(2) 3908860759493670 q001 772/1975 3908860762557897 m001 (ln(gamma)+Landau)/ErdosBorwein 3908860772888615 r009 Im(z^3+c),c=-19/102+25/58*I,n=18 3908860773253470 m001 (GAMMA(2/3)-HardyLittlewoodC3)/Tribonacci 3908860781043051 r002 36th iterates of z^2 + 3908860783877509 r005 Re(z^2+c),c=-7/118+28/43*I,n=11 3908860797586837 r002 40th iterates of z^2 + 3908860817628286 b008 QPochhammer[6/13,Pi/8] 3908860818571586 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=37 3908860821803234 r005 Im(z^2+c),c=-19/70+22/37*I,n=54 3908860836835712 m001 (BesselJ(0,1)-Mills)/(-Rabbit+Sarnak) 3908860848892300 r005 Re(z^2+c),c=-51/106+26/61*I,n=50 3908860851040489 r005 Re(z^2+c),c=-19/34+45/109*I,n=43 3908860869369651 m005 (1/2*Catalan-1)/(4/7*exp(1)-1/6) 3908860878659234 m001 3^(1/3)/(FellerTornier^ln(2^(1/2)+1)) 3908860881397429 a001 2178309/1364*7^(23/50) 3908860890083271 m005 (1/2*Zeta(3)-5/8)/(5/12*exp(1)+5) 3908860893858684 a001 322*1836311903^(13/17) 3908860894614358 m001 1/GAMMA(5/6)*ln(Tribonacci)/sinh(1)^2 3908860898614178 r005 Re(z^2+c),c=-9/16+26/69*I,n=9 3908860902384561 r009 Im(z^3+c),c=-43/114+19/53*I,n=8 3908860919759727 r005 Re(z^2+c),c=37/94+14/43*I,n=11 3908860919907038 m001 Ei(1,1)+FeigenbaumAlpha+KhinchinLevy 3908860928998060 s002 sum(A218186[n]/(16^n),n=1..infinity) 3908860931629188 r005 Im(z^2+c),c=-3/4+47/233*I,n=12 3908860936038172 m001 (GAMMA(2/3)*Kolakoski-GAMMA(5/6))/GAMMA(2/3) 3908860939232366 r009 Im(z^3+c),c=-63/122+16/41*I,n=28 3908860944218692 a007 Real Root Of -306*x^4-985*x^3+818*x^2+x+114 3908860944449010 r005 Im(z^2+c),c=-41/30+32/69*I,n=3 3908860950669268 m001 (-Zeta(3)+1)/(FeigenbaumDelta+1/2) 3908860965168776 m001 Catalan/(Zeta(5)+Mills) 3908860981483354 a007 Real Root Of 294*x^4+959*x^3-713*x^2+112*x-28 3908860996209776 r005 Im(z^2+c),c=-23/114+35/59*I,n=56 3908860998769124 r005 Re(z^2+c),c=1/9+1/4*I,n=30 3908861019320657 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=37 3908861029567700 a001 1/76*(1/2*5^(1/2)+1/2)^23*3571^(3/16) 3908861043058667 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=38 3908861046840578 a001 1/2403763488*610^(17/24) 3908861051871096 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=34 3908861061500000 r005 Re(z^2+c),c=-16/31+3/32*I,n=7 3908861070213768 a007 Real Root Of 507*x^4-548*x^3+6*x^2-639*x+25 3908861075801752 a001 196418/843*199^(30/31) 3908861076337027 p001 sum((-1)^n/(197*n+52)/n/(10^n),n=1..infinity) 3908861077267589 l006 ln(2971/4392) 3908861078333016 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=33 3908861080040432 m001 (BesselI(1,1)-Lehmer)/(MasserGramain-Stephens) 3908861084187129 a001 1/76*(1/2*5^(1/2)+1/2)^17*24476^(7/16) 3908861084246627 a001 1/76*(1/2*5^(1/2)+1/2)^25*9349^(1/16) 3908861086744256 a001 1/76*(1/2*5^(1/2)+1/2)^19*64079^(5/16) 3908861089965005 r005 Re(z^2+c),c=-85/114+10/61*I,n=28 3908861091952096 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=35 3908861097126652 r005 Re(z^2+c),c=1/9+1/4*I,n=29 3908861100410800 m001 (sin(1)+Bloch)/ReciprocalFibonacci 3908861104883468 m005 (1/2*Pi-2/3)/(3/4*Catalan-3) 3908861111809159 r002 3th iterates of z^2 + 3908861112563748 m001 (2^(1/2))^Lehmer/Pi 3908861112563748 m001 sqrt(2)^Lehmer/Pi 3908861125560411 r009 Im(z^3+c),c=-41/106+19/53*I,n=24 3908861130348553 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=31 3908861130749258 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=33 3908861147349669 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=37 3908861152557394 m001 Tribonacci^(Zeta(1/2)*GAMMA(11/12)) 3908861153361917 a001 843/2584*2178309^(17/35) 3908861154661260 r005 Re(z^2+c),c=-31/42+19/60*I,n=7 3908861161698311 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=36 3908861162888918 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=40 3908861165210211 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=41 3908861167556726 r005 Im(z^2+c),c=-19/28+3/41*I,n=39 3908861169913532 a001 4/2178309*317811^(7/29) 3908861182197449 r009 Im(z^3+c),c=-17/62+35/57*I,n=5 3908861183108438 m006 (5/6/Pi+1/5)/(1/6*Pi+2/3) 3908861183923123 a007 Real Root Of 396*x^4-20*x^3+825*x^2-866*x-475 3908861185334458 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=37 3908861187353103 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=41 3908861190675513 r005 Re(z^2+c),c=1/9+1/4*I,n=34 3908861191615875 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=42 3908861193818387 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=38 3908861193929220 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=40 3908861198934746 a007 Real Root Of -172*x^4-858*x^3-586*x^2+716*x+663 3908861202446799 r005 Re(z^2+c),c=1/9+1/4*I,n=35 3908861204739090 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=45 3908861204842444 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=39 3908861205250850 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=41 3908861205421865 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=45 3908861205613746 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=42 3908861205727875 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=43 3908861206191849 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=44 3908861206275068 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=40 3908861206740282 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=46 3908861206916423 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=46 3908861207134104 r005 Re(z^2+c),c=1/9+1/4*I,n=38 3908861207178661 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=42 3908861207211477 r005 Re(z^2+c),c=1/9+1/4*I,n=39 3908861207296972 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=41 3908861207461233 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=43 3908861207462527 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=47 3908861207826327 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=45 3908861207835834 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=49 3908861207887186 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=50 3908861207912429 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=49 3908861207984382 r005 Re(z^2+c),c=1/9+1/4*I,n=43 3908861207995755 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=51 3908861207999110 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=46 3908861208002761 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=47 3908861208007294 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=50 3908861208027747 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=50 3908861208049589 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=46 3908861208051902 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=54 3908861208054790 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=49 3908861208054840 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=53 3908861208055494 r005 Re(z^2+c),c=1/9+1/4*I,n=44 3908861208057268 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=50 3908861208058088 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=54 3908861208062487 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=55 3908861208062805 r005 Re(z^2+c),c=1/9+1/4*I,n=47 3908861208063559 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=51 3908861208064016 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=48 3908861208064967 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=55 3908861208065421 r005 Re(z^2+c),c=1/9+1/4*I,n=48 3908861208066504 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=52 3908861208066691 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=56 3908861208067448 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=54 3908861208067506 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=58 3908861208067545 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=58 3908861208067899 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=59 3908861208068226 r005 Re(z^2+c),c=1/9+1/4*I,n=52 3908861208068267 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=59 3908861208068304 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=60 3908861208068320 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=56 3908861208068372 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=55 3908861208068398 r005 Re(z^2+c),c=1/9+1/4*I,n=42 3908861208068407 r005 Re(z^2+c),c=1/9+1/4*I,n=51 3908861208068408 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=57 3908861208068458 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=55 3908861208068478 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=53 3908861208068488 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=59 3908861208068518 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=58 3908861208068520 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=62 3908861208068524 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=63 3908861208068560 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=59 3908861208068564 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=63 3908861208068570 r005 Re(z^2+c),c=1/9+1/4*I,n=56 3908861208068572 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=64 3908861208068576 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=60 3908861208068577 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=62 3908861208068591 r005 Re(z^2+c),c=1/9+1/4*I,n=57 3908861208068595 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=61 3908861208068596 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=63 3908861208068596 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=64 3908861208068598 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=62 3908861208068599 r005 Re(z^2+c),c=1/9+1/4*I,n=60 3908861208068599 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=64 3908861208068599 r005 Re(z^2+c),c=1/9+1/4*I,n=61 3908861208068600 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=63 3908861208068600 r005 Re(z^2+c),c=1/9+1/4*I,n=53 3908861208068601 r005 Re(z^2+c),c=1/9+1/4*I,n=64 3908861208068601 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=64 3908861208068601 r005 Re(z^2+c),c=1/9+1/4*I,n=62 3908861208068601 r005 Re(z^2+c),c=1/9+1/4*I,n=63 3908861208068604 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=63 3908861208068605 r005 Re(z^2+c),c=1/9+1/4*I,n=59 3908861208068607 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=59 3908861208068608 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=62 3908861208068609 r005 Re(z^2+c),c=1/9+1/4*I,n=58 3908861208068616 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=61 3908861208068619 r005 Re(z^2+c),c=1/9+1/4*I,n=55 3908861208068619 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=64 3908861208068619 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=60 3908861208068626 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=57 3908861208068655 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=61 3908861208068684 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=61 3908861208068689 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=58 3908861208068695 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=57 3908861208068699 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=62 3908861208068714 r005 Re(z^2+c),c=1/9+1/4*I,n=54 3908861208068808 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=60 3908861208068844 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=61 3908861208068912 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=60 3908861208068925 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=56 3908861208069415 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=58 3908861208069416 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=54 3908861208069480 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=52 3908861208069750 r005 Re(z^2+c),c=1/9+1/4*I,n=50 3908861208069787 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=53 3908861208069845 r005 Re(z^2+c),c=1/9+1/4*I,n=49 3908861208070138 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=57 3908861208070388 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=57 3908861208070977 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=51 3908861208071090 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=55 3908861208071779 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=54 3908861208072006 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=53 3908861208072147 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=56 3908861208072376 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=52 3908861208072957 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=50 3908861208073048 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=56 3908861208076171 r005 Re(z^2+c),c=1/9+1/4*I,n=46 3908861208087136 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=51 3908861208087657 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=49 3908861208090615 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=53 3908861208091844 r005 Re(z^2+c),c=1/9+1/4*I,n=45 3908861208096443 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=52 3908861208099147 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=48 3908861208125981 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=52 3908861208128918 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=51 3908861208130494 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=47 3908861208151559 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=48 3908861208166655 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=42 3908861208173860 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=44 3908861208215228 r005 Re(z^2+c),c=1/9+1/4*I,n=40 3908861208218386 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=46 3908861208240897 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=44 3908861208277941 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=45 3908861208289897 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=49 3908861208319853 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=48 3908861208348933 r005 Re(z^2+c),c=1/9+1/4*I,n=41 3908861208591378 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=48 3908861208661046 r005 Re(z^2+c),c=1/9+1/4*I,n=31 3908861208860809 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=47 3908861208886871 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=47 3908861208930141 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=43 3908861209486872 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=45 3908861209627714 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=41 3908861209875571 m001 (ln(2+3^(1/2))-Cahen)/(MertensB1+MinimumGamma) 3908861210017419 r005 Re(z^2+c),c=-9/74+26/43*I,n=8 3908861210436167 r005 Re(z^2+c),c=1/9+1/4*I,n=37 3908861210758243 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=44 3908861211392039 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=37 3908861211843707 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=40 3908861212412984 r005 Re(z^2+c),c=1/9+1/4*I,n=36 3908861212643591 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=44 3908861215904743 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=43 3908861216517525 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=39 3908861217732891 r005 Re(z^2+c),c=1/9+1/4*I,n=33 3908861218397703 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=42 3908861218439634 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=38 3908861220555720 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=43 3908861221429843 a007 Real Root Of 499*x^4+260*x^3+954*x^2+276*x-34 3908861222607755 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=35 3908861223489638 m001 (Si(Pi)-ln(2))/(Otter+ZetaQ(3)) 3908861238952093 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=39 3908861253525964 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=39 3908861257250059 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=36 3908861259460244 r005 Im(z^2+c),c=-101/86+19/61*I,n=13 3908861259627886 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=35 3908861262452059 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=40 3908861270706924 m001 (Catalan+Zeta(1/2))/(GAMMA(17/24)+OneNinth) 3908861271016660 r005 Re(z^2+c),c=1/9+1/4*I,n=32 3908861271501052 a007 Real Root Of -291*x^4-837*x^3+941*x^2-975*x-243 3908861302015746 m009 (4/5*Psi(1,2/3)-1)/(5/12*Pi^2-2/5) 3908861306860962 a007 Real Root Of -273*x^4-883*x^3+870*x^2+499*x-346 3908861325619393 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=38 3908861329028947 r004 Im(z^2+c),c=-4/23*I,z(0)=exp(1/12*I*Pi),n=2 3908861330081988 a007 Real Root Of 90*x^4+285*x^3-84*x^2+483*x-818 3908861339889982 a007 Real Root Of 25*x^4+980*x^3+88*x^2-814*x+37 3908861343419343 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=39 3908861350431139 r009 Im(z^3+c),c=-19/82+17/18*I,n=30 3908861362128595 r005 Im(z^2+c),c=5/34+17/43*I,n=44 3908861367180132 a007 Real Root Of 67*x^4+83*x^3-748*x^2-5*x+725 3908861376913688 a007 Real Root Of 314*x^4+981*x^3-854*x^2+257*x-662 3908861382177222 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=38 3908861389318662 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=34 3908861391373066 m005 (1/2*exp(1)+3/4)/(6*Catalan-1/10) 3908861410346934 r005 Im(z^2+c),c=39/118+5/24*I,n=39 3908861420114958 r002 2th iterates of z^2 + 3908861445606726 b008 Log[E+15*Pi] 3908861450988125 r005 Im(z^2+c),c=-3/62+21/40*I,n=52 3908861461049511 m001 Si(Pi)/FransenRobinson*Lehmer 3908861465315284 a008 Real Root of x^4-8*x^2-44*x-16 3908861469891320 a007 Real Root Of -731*x^4+549*x^3-487*x^2+7*x+127 3908861480974813 a001 1/103664*(1/2*5^(1/2)+1/2)^29*1364^(13/16) 3908861483851440 m001 (Salem-TreeGrowth2nd)/(GaussAGM-MasserGramain) 3908861484207109 r005 Im(z^2+c),c=21/106+16/45*I,n=22 3908861487286965 a007 Real Root Of 947*x^4+887*x^3+547*x^2-34*x-66 3908861493766705 m001 exp(TwinPrimes)^2*FibonacciFactorial/sinh(1) 3908861496680019 r002 44th iterates of z^2 + 3908861496680019 r002 44th iterates of z^2 + 3908861500209055 m004 -125*Pi+(5*Cot[Sqrt[5]*Pi])/2-Tan[Sqrt[5]*Pi] 3908861503321757 a003 cos(Pi*23/70)-sin(Pi*37/103) 3908861520120237 r005 Re(z^2+c),c=-27/52+17/61*I,n=52 3908861522706597 m002 -29-Sinh[Pi]/Log[Pi] 3908861524967164 l006 ln(8153/8478) 3908861542654769 r005 Im(z^2+c),c=1/32+11/23*I,n=21 3908861544165614 r009 Im(z^3+c),c=-29/66+17/52*I,n=37 3908861549515277 a001 5/2207*123^(29/49) 3908861550274183 r002 27th iterates of z^2 + 3908861550753887 r002 16th iterates of z^2 + 3908861556733235 a007 Real Root Of 923*x^4-545*x^3-110*x^2-791*x+337 3908861558469442 a007 Real Root Of 934*x^4-201*x^3-399*x^2-808*x+367 3908861562731927 m001 FransenRobinson^Stephens/arctan(1/2) 3908861572933399 a007 Real Root Of 157*x^4+600*x^3-70*x^2+108*x+674 3908861578917425 a007 Real Root Of -227*x^4-846*x^3+159*x^2+10*x+77 3908861582529039 r005 Im(z^2+c),c=-13/118+37/62*I,n=39 3908861589498629 l006 ln(4445/6571) 3908861590853668 r009 Im(z^3+c),c=-12/23+17/45*I,n=17 3908861599438270 r002 25th iterates of z^2 + 3908861602315640 a001 2584/7*7^(1/34) 3908861621967645 r002 24th iterates of z^2 + 3908861623447252 m009 (6*Psi(1,3/4)+3/4)/(3/4*Psi(1,3/4)-6) 3908861636531462 m001 1/ln(GAMMA(11/12))/MertensB1^2*Zeta(3)^2 3908861640021964 r002 17th iterates of z^2 + 3908861646768647 r002 58th iterates of z^2 + 3908861659258498 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=36 3908861660638445 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=32 3908861665227218 m004 -22/5-(25*Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 3908861674578624 r005 Im(z^2+c),c=6/19+8/41*I,n=17 3908861676300221 r002 38th iterates of z^2 + 3908861676593768 r005 Re(z^2+c),c=-29/118+46/47*I,n=4 3908861687512920 r005 Im(z^2+c),c=-17/94+29/46*I,n=47 3908861706062019 r005 Re(z^2+c),c=-13/30+23/45*I,n=39 3908861717064750 m005 (1/3*2^(1/2)-3/7)/(9/10*5^(1/2)-11/12) 3908861720869392 r002 7th iterates of z^2 + 3908861722726555 a007 Real Root Of -854*x^4-823*x^3+879*x^2+616*x-306 3908861731087388 m001 (DuboisRaymond+MertensB3)/(Pi+BesselJ(0,1)) 3908861733143306 r005 Im(z^2+c),c=-1/44+15/29*I,n=22 3908861755877496 a001 54018521/13*1548008755920^(9/11) 3908861755877497 a001 312119004989/13*39088169^(9/11) 3908861755877498 a001 4106118243/13*7778742049^(9/11) 3908861755894077 a001 23725150497407/13*196418^(9/11) 3908861757142392 r005 Im(z^2+c),c=17/50+21/62*I,n=45 3908861764364846 r002 25th iterates of z^2 + 3908861764469471 a001 433494437/199*199^(6/11) 3908861766045432 r005 Im(z^2+c),c=-1/42+24/47*I,n=55 3908861772656863 r005 Re(z^2+c),c=-51/94+1/17*I,n=38 3908861773028095 r002 17th iterates of z^2 + 3908861780413816 r002 14th iterates of z^2 + 3908861795240296 m005 (1/2*5^(1/2)-7/9)/(2/11*3^(1/2)+5/9) 3908861815899076 a007 Real Root Of 278*x^4-854*x^3+199*x^2-801*x-401 3908861823304888 m001 (Zeta(1,2)+Rabbit)/(Pi-Psi(2,1/3)) 3908861842837112 r005 Re(z^2+c),c=-55/102+5/42*I,n=53 3908861846609350 l006 ln(5919/8750) 3908861847244997 r005 Re(z^2+c),c=1/9+1/4*I,n=28 3908861854011896 m001 ((2^(1/3))+BesselJZeros(0,1))/Zeta(1,2) 3908861858697399 m001 (BesselI(1,1)+GAMMA(13/24))/(Khinchin+Otter) 3908861870338282 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=30 3908861872669415 r009 Im(z^3+c),c=-33/98+23/60*I,n=13 3908861875694259 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=31 3908861879603121 r005 Im(z^2+c),c=-11/14+33/149*I,n=8 3908861906037208 p004 log(28429/19231) 3908861910268593 r005 Re(z^2+c),c=1/9+1/4*I,n=27 3908861922754594 r002 15th iterates of z^2 + 3908861924836475 m001 (Trott2nd+ZetaP(4))/(Artin-OneNinth) 3908861926291892 r005 Re(z^2+c),c=-33/62+11/53*I,n=24 3908861940840175 m001 (BesselI(1,1)-Artin)/(ThueMorse+ZetaP(4)) 3908861946535399 g006 Psi(1,7/11)+Psi(1,6/7)-Psi(1,7/8)-Psi(1,2/5) 3908861954844515 r009 Im(z^3+c),c=-11/102+23/52*I,n=6 3908861957159807 r005 Im(z^2+c),c=-3/50+25/47*I,n=43 3908861960578315 a001 13/47*3^(17/54) 3908861963202207 r002 30th iterates of z^2 + 3908861977299738 m001 (Gompertz-Rabbit)/(Ei(1,1)+FeigenbaumD) 3908861987062359 a001 1/39596*(1/2*5^(1/2)+1/2)^27*521^(15/16) 3908861989299361 m001 FeigenbaumC*(MertensB1-Weierstrass) 3908861991364395 a007 Real Root Of -153*x^4-733*x^3-447*x^2+388*x+287 3908862015789358 m001 Pi*2^(1/2)/GAMMA(3/4)+Artin^GlaisherKinkelin 3908862025327657 r009 Im(z^3+c),c=-5/46+23/34*I,n=2 3908862026270152 a001 18/75025*139583862445^(14/19) 3908862031149720 a007 Real Root Of 187*x^4-247*x^3-330*x^2-625*x-213 3908862070526567 m001 (Kac+LaplaceLimit)/(Otter+PolyaRandomWalk3D) 3908862071478422 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=35 3908862074465836 r005 Re(z^2+c),c=7/19+19/53*I,n=32 3908862078782162 m001 ln(Niven)^2/KhintchineLevy^2*GAMMA(11/24) 3908862102246677 a001 89/45537549124*4^(1/2) 3908862106850855 m001 (ZetaP(2)-ZetaP(4))/(Zeta(1,-1)+MertensB1) 3908862124969772 r002 52th iterates of z^2 + 3908862130599851 r002 19th iterates of z^2 + 3908862132990445 m001 (Catalan-PrimesInBinary)/GlaisherKinkelin 3908862156559677 m001 GAMMA(11/12)/ln(FeigenbaumKappa)^2/cos(1)^2 3908862157930285 a001 144/2207*7^(23/25) 3908862179395083 r002 39th iterates of z^2 + 3908862180740385 m004 5+(375*Pi)/(2*ProductLog[Sqrt[5]*Pi]) 3908862181285673 m001 (ln(5)+ln(Pi)*FeigenbaumAlpha)/ln(Pi) 3908862195667078 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=35 3908862196573750 r002 7th iterates of z^2 + 3908862197789756 r005 Im(z^2+c),c=5/16+7/30*I,n=37 3908862206769534 m001 2*Pi/GAMMA(5/6)-BesselK(1,1)-GAMMA(11/12) 3908862206769534 m001 BesselK(1,1)-GAMMA(1/6)+GAMMA(11/12) 3908862218619172 m001 ln(GAMMA(13/24))^2*Magata/Zeta(1/2)^2 3908862224695868 m001 ZetaQ(4)/(StolarskyHarborth-Champernowne) 3908862225263843 m004 -2/5+125*Pi-Cos[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 3908862225933600 r005 Im(z^2+c),c=11/34+5/16*I,n=21 3908862226397772 r009 Im(z^3+c),c=-45/86+10/43*I,n=54 3908862228557601 m001 BesselK(1,1)^2/exp(Champernowne)^2*sinh(1)^2 3908862235155707 a007 Real Root Of 248*x^4-845*x^3+153*x^2-406*x+180 3908862244346262 r005 Re(z^2+c),c=31/126+33/53*I,n=13 3908862253505675 a007 Real Root Of -215*x^4-989*x^3-555*x^2-107*x-813 3908862255694273 m001 Ei(1,1)^CareFree/(FeigenbaumB^CareFree) 3908862260087523 m001 TwinPrimes/ln(Trott)*GAMMA(1/3) 3908862279657112 m001 ((1+3^(1/2))^(1/2)+Niven)/Thue 3908862306506265 r002 21th iterates of z^2 + 3908862311453681 m001 (BesselI(0,2)+FeigenbaumD)/(2^(1/3)-gamma(2)) 3908862318233585 r005 Re(z^2+c),c=-25/52+15/31*I,n=59 3908862318920670 r005 Re(z^2+c),c=8/19+12/59*I,n=42 3908862319205577 p004 log(15443/14851) 3908862323558329 a001 9/5473*2504730781961^(6/17) 3908862356607293 m001 (GAMMA(17/24)+PrimesInBinary)/(1-BesselI(1,1)) 3908862364098320 r009 Re(z^3+c),c=-53/114+13/58*I,n=14 3908862397563462 m001 (1-Catalan*BesselJ(0,1))/BesselJ(0,1) 3908862398687719 a001 1/505019158607*18^(4/17) 3908862414358021 a001 233/123*1364^(13/31) 3908862414604119 p004 log(32719/22133) 3908862416522839 r009 Im(z^3+c),c=-53/110+15/47*I,n=19 3908862424626358 h001 (-9*exp(3)-6)/(-2*exp(2)+10) 3908862435517557 h001 (4/11*exp(1)+1/8)/(5/6*exp(1)+7/12) 3908862453300686 r005 Im(z^2+c),c=-1/34+19/37*I,n=40 3908862465218799 r005 Im(z^2+c),c=-4/9+3/46*I,n=25 3908862469890947 m005 (1/2*5^(1/2)-1/2)/(37/63+4/9*5^(1/2)) 3908862482943483 r005 Im(z^2+c),c=5/34+15/38*I,n=5 3908862498749105 a007 Real Root Of -976*x^4+665*x^3-480*x^2+246*x+232 3908862499234889 m001 5^(1/2)*Zeta(1/2)-Cahen 3908862499234889 m001 Cahen-sqrt(5)*Zeta(1/2) 3908862501832275 m001 (Artin+FeigenbaumAlpha)/(GaussAGM-Paris) 3908862506931845 p003 LerchPhi(1/10,2,29/57) 3908862515437359 a007 Real Root Of 187*x^4+788*x^3-4*x^2-999*x-437 3908862526325959 r005 Re(z^2+c),c=-139/126+17/50*I,n=6 3908862557617057 r005 Im(z^2+c),c=-7/6+32/173*I,n=48 3908862559796183 m001 GAMMA(5/6)*ZetaQ(3)^(Pi*2^(1/2)/GAMMA(3/4)) 3908862561906855 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=29 3908862575987563 m001 GAMMA(23/24)/ln(GAMMA(1/6))/GAMMA(7/12) 3908862585305574 p003 LerchPhi(1/100,2,383/239) 3908862594952293 a007 Real Root Of 703*x^4+328*x^3-448*x^2-971*x+412 3908862599753893 a003 sin(Pi*3/67)-sin(Pi*18/101) 3908862600375579 a003 cos(Pi*22/59)/sin(Pi*50/107) 3908862604708475 m005 (15/28+1/4*5^(1/2))/(3/4*Pi+4/9) 3908862606652071 r002 36th iterates of z^2 + 3908862614520086 a007 Real Root Of -63*x^4-70*x^3+741*x^2+77*x-494 3908862619375230 r005 Re(z^2+c),c=-53/64+3/10*I,n=6 3908862621953379 l006 ln(1474/2179) 3908862623143934 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=33 3908862633358392 m001 1/2*Chi(1)*2^(2/3)*sin(1/5*Pi) 3908862633763764 r005 Im(z^2+c),c=-11/106+31/56*I,n=41 3908862635443005 m001 sin(Pi/12)/Riemann1stZero^2*ln(sqrt(3))^2 3908862636575077 r002 5th iterates of z^2 + 3908862646977195 m005 (1/2*exp(1)+6/11)/(5/12*5^(1/2)-4/9) 3908862664997558 a007 Real Root Of -68*x^4-42*x^3-327*x^2+985*x-38 3908862670516739 h001 (3/4*exp(2)+9/10)/(1/10*exp(2)+10/11) 3908862678968464 m001 (GAMMA(17/24)-Artin)/(Zeta(3)+GAMMA(5/6)) 3908862689851074 r005 Im(z^2+c),c=-71/106+6/17*I,n=62 3908862689883366 b008 LogIntegral[10/87] 3908862694892827 r005 Re(z^2+c),c=-39/82+9/44*I,n=3 3908862705269101 m001 (Bloch+FeigenbaumMu)/(5^(1/2)-Zeta(3)) 3908862716993303 a001 165580141/521*322^(5/6) 3908862741430582 r002 26th iterates of z^2 + 3908862752580462 m001 (Si(Pi)+3^(1/3))/(-GolombDickman+Porter) 3908862756458312 p001 sum(1/(357*n+256)/(625^n),n=0..infinity) 3908862762986109 m001 ZetaQ(2)^(3^(1/3))*ReciprocalLucas^(3^(1/3)) 3908862798554829 m001 (ArtinRank2-Sarnak)/(TwinPrimes+ZetaQ(3)) 3908862808836736 a007 Real Root Of 167*x^4+413*x^3-850*x^2+336*x-20 3908862818561576 r002 63th iterates of z^2 + 3908862818908151 r009 Re(z^3+c),c=-45/86+9/31*I,n=59 3908862841421658 r005 Re(z^2+c),c=-55/102+5/42*I,n=47 3908862842118754 a007 Real Root Of 93*x^4+181*x^3-881*x^2-682*x-106 3908862876254180 q001 935/2392 3908862876254180 r002 2th iterates of z^2 + 3908862884043594 r005 Im(z^2+c),c=2/5+14/61*I,n=14 3908862889063680 m005 (1/2*gamma+7/10)/(1/7*3^(1/2)-3/11) 3908862889975396 r005 Im(z^2+c),c=4/17+13/46*I,n=8 3908862890830112 a007 Real Root Of -164*x^4-451*x^3+894*x^2+507*x-327 3908862903360127 m008 (5/6*Pi^5-1/5)/(2/3*Pi^4+1/4) 3908862913139570 m001 Salem^2*ln(Riemann1stZero)/Zeta(1,2) 3908862931740288 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=32 3908862937709875 m001 1/CareFree/ln(Conway)^2*TreeGrowth2nd^2 3908862949450327 h001 (5/12*exp(1)+7/10)/(5/9*exp(2)+7/12) 3908862969832021 m001 1/BesselJ(1,1)^2/exp(TreeGrowth2nd)*sinh(1) 3908862975522560 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=31 3908862990053867 m004 -125*Pi+Sqrt[5]*Pi-(15*Cot[Sqrt[5]*Pi])/Pi 3908862998720883 r002 5th iterates of z^2 + 3908863070136432 m001 (FeigenbaumMu+GaussAGM)/(CareFree-FeigenbaumC) 3908863076112485 m005 (1/2*exp(1)-6/11)/(3/7*exp(1)+11/12) 3908863078206446 a001 12586269025/843*123^(1/5) 3908863094210012 r002 29th iterates of z^2 + 3908863095444244 b008 Sqrt[2]+7*InverseGudermannian[Pi/9] 3908863101305169 r002 40th iterates of z^2 + 3908863106951041 r005 Re(z^2+c),c=-23/42+13/54*I,n=18 3908863121019182 a007 Real Root Of -342*x^4+544*x^3-881*x^2+97*x+213 3908863122542439 r009 Re(z^3+c),c=-1/34+11/13*I,n=5 3908863130997185 r005 Im(z^2+c),c=39/110+4/39*I,n=36 3908863134289656 a003 cos(Pi*1/94)*sin(Pi*11/86) 3908863135205522 r005 Re(z^2+c),c=-45/86+14/55*I,n=55 3908863136982144 r005 Re(z^2+c),c=-51/94+3/50*I,n=43 3908863145053259 a007 Real Root Of 529*x^4-212*x^3-255*x^2-447*x+214 3908863150924546 r005 Im(z^2+c),c=13/86+20/51*I,n=37 3908863168126459 r002 32th iterates of z^2 + 3908863168172028 a007 Real Root Of 38*x^4-246*x^3+295*x^2-730*x-346 3908863169392056 r005 Re(z^2+c),c=19/58+4/63*I,n=60 3908863179719344 m008 (Pi^3+1/3)/(5/6*Pi^6+3/5) 3908863181052705 a008 Real Root of x^2-x-153183 3908863181702097 m005 (1/2*exp(1)+1/3)/(4/7*gamma+4) 3908863183384426 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=34 3908863183453349 a007 Real Root Of 819*x^4+50*x^3-292*x^2-802*x+336 3908863188735188 a007 Real Root Of 441*x^4-379*x^3-717*x^2-54*x+143 3908863188832620 a007 Real Root Of -359*x^4+541*x^3+390*x^2+825*x-406 3908863189437190 p003 LerchPhi(1/4,8,70/83) 3908863197020478 m006 (5/6*ln(Pi)+5/6)/(1/2*ln(Pi)+4) 3908863212448438 m001 1/Zeta(3)*KhintchineLevy/ln(sqrt(1+sqrt(3)))^2 3908863219454852 m001 (3^(1/3))^2*Riemann3rdZero*exp(Zeta(7))^2 3908863225255159 m001 LandauRamanujan/MinimumGamma*RenyiParking 3908863233988459 a007 Real Root Of 9*x^4+366*x^3+542*x^2-512*x+77 3908863237909725 r009 Re(z^3+c),c=-39/82+7/30*I,n=54 3908863263908842 r005 Re(z^2+c),c=-10/19+7/30*I,n=39 3908863273024931 h001 (5/7*exp(2)+5/8)/(2/11*exp(2)+1/6) 3908863281982639 a007 Real Root Of -895*x^4-270*x^3-991*x^2+964*x+533 3908863285223848 m005 (1/3*Pi-2/3)/(5/8*Zeta(3)+2/9) 3908863285975617 l006 ln(6698/6965) 3908863302119074 m001 ln(GAMMA(19/24))^2*FeigenbaumC/Zeta(3) 3908863302853606 a005 (1/cos(8/179*Pi))^1302 3908863307720447 r005 Im(z^2+c),c=-55/42+4/55*I,n=14 3908863311338164 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=30 3908863312784460 s001 sum(exp(-Pi/2)^n*A211220[n],n=1..infinity) 3908863336828926 a007 Real Root Of -319*x^4+492*x^3+604*x^2+639*x-364 3908863345800101 r005 Im(z^2+c),c=17/62+35/57*I,n=9 3908863360802750 m008 (1/4*Pi^2+5)/(3/5*Pi^3+1/2) 3908863364122912 m001 GAMMA(11/24)^2/ln(RenyiParking)^2/GAMMA(5/6) 3908863382628155 r005 Re(z^2+c),c=-59/98+8/29*I,n=20 3908863388434109 r005 Re(z^2+c),c=-12/25+16/35*I,n=61 3908863390861026 r005 Re(z^2+c),c=23/74+3/50*I,n=59 3908863394191593 r009 Im(z^3+c),c=-5/22+18/43*I,n=7 3908863403370193 l006 ln(5873/8682) 3908863418255727 h001 (7/11*exp(2)+5/12)/(2/5*exp(1)+2/9) 3908863421529412 r005 Im(z^2+c),c=-3/16+22/39*I,n=24 3908863423943333 r002 5th iterates of z^2 + 3908863426148569 r005 Im(z^2+c),c=27/118+15/46*I,n=51 3908863427238706 r005 Re(z^2+c),c=-7/10+12/95*I,n=8 3908863429232416 r009 Im(z^3+c),c=-19/42+7/22*I,n=29 3908863431790432 a007 Real Root Of -139*x^4-475*x^3+14*x^2-821*x+658 3908863437765038 m001 Zeta(3)^(BesselK(1,1)/StolarskyHarborth) 3908863439035575 r005 Re(z^2+c),c=-15/34+14/27*I,n=49 3908863457882059 r005 Im(z^2+c),c=-1/5+10/17*I,n=50 3908863462684340 m001 (ln(3)-ln(Pi))/(Pi^(1/2)-Lehmer) 3908863470387315 m005 (1/2*3^(1/2)-2/3)/(1/12*Zeta(3)+5) 3908863489805528 r009 Im(z^3+c),c=-15/26+11/38*I,n=44 3908863497973865 a001 4250681/48*34^(8/19) 3908863506712236 r005 Re(z^2+c),c=-29/52+5/31*I,n=15 3908863520158918 v002 sum(1/(2^n*(n^3+2*n^2+5*n+9)),n=1..infinity) 3908863523265456 b008 1-22/E^(3/2) 3908863550677880 a001 3/505019158607*11^(11/14) 3908863571996955 m001 (Catalan+OneNinth)/(Riemann3rdZero+Salem) 3908863573724685 r005 Re(z^2+c),c=-12/23+4/15*I,n=36 3908863588501363 r005 Re(z^2+c),c=41/102+14/61*I,n=55 3908863589315650 m005 (1/2*3^(1/2)-2)/(4/11*gamma-1/2) 3908863597006770 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=28 3908863610801064 a005 (1/sin(31/139*Pi))^129 3908863627649967 a007 Real Root Of 77*x^4+177*x^3-689*x^2-948*x-583 3908863627746485 m001 (Psi(2,1/3)+Zeta(5))/(Zeta(1/2)+ZetaP(4)) 3908863631051230 r005 Re(z^2+c),c=-53/98+5/53*I,n=32 3908863641360097 m002 -5/4-4*Pi^4 3908863650640761 r002 5th iterates of z^2 + 3908863655366436 a007 Real Root Of 660*x^4-299*x^3+705*x^2-898*x-492 3908863657593021 m001 1/ln(GAMMA(5/24))/ErdosBorwein/Zeta(5)^2 3908863659449506 b008 Pi+ArcCot[Zeta[5]] 3908863665010487 a007 Real Root Of -881*x^4+108*x^3-873*x^2-175*x+92 3908863665204320 l006 ln(4399/6503) 3908863672206352 m001 1/exp(GAMMA(1/12))/Champernowne^2*sin(Pi/5) 3908863680059435 m001 (GAMMA(13/24)-Pi^(1/2))/(FellerTornier-Robbin) 3908863684099978 r005 Re(z^2+c),c=1/30+15/23*I,n=2 3908863687861368 a007 Real Root Of 231*x^4+731*x^3-643*x^2-54*x-656 3908863693651058 r009 Im(z^3+c),c=-63/106+12/53*I,n=8 3908863700896071 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=34 3908863709358345 m001 cos(Pi/12)*ln(Riemann1stZero)/cos(Pi/5)^2 3908863709657035 r005 Re(z^2+c),c=3/8+4/13*I,n=49 3908863710311353 a007 Real Root Of -725*x^4+868*x^3+26*x^2+668*x-300 3908863714019021 a003 sin(Pi*12/101)/sin(Pi*31/81) 3908863718936595 m006 (3/4*ln(Pi)+1/6)/(2*ln(Pi)+1/3) 3908863725698011 a007 Real Root Of -337*x^4+821*x^3-734*x^2+225*x+257 3908863732633863 a001 1/3571*3^(17/56) 3908863735903109 m001 (Khinchin+Mills)/(3^(1/3)-BesselK(0,1)) 3908863736019183 m004 -3-125*Pi+Sqrt[5]*Pi-3*Cos[Sqrt[5]*Pi] 3908863774207771 p004 log(28759/577) 3908863774560531 m001 (BesselJ(1,1)+PrimesInBinary)/(gamma+ln(5)) 3908863778627049 a007 Real Root Of -216*x^4-857*x^3+83*x^2+463*x-216 3908863790182799 r009 Re(z^3+c),c=-7/110+22/43*I,n=8 3908863799442246 b008 Pi+ArcCoth[3]^(1/4) 3908863812345956 m001 (1-Backhouse)/(-ErdosBorwein+TreeGrowth2nd) 3908863814706557 r002 23th iterates of z^2 + 3908863816276020 a007 Real Root Of -871*x^4-32*x^3+779*x^2+722*x-379 3908863830977788 r002 49th iterates of z^2 + 3908863831477013 m001 Magata^Champernowne*ReciprocalFibonacci 3908863847131053 r005 Re(z^2+c),c=-19/32+9/56*I,n=13 3908863882173921 a007 Real Root Of 882*x^4-153*x^3+604*x^2-660*x-380 3908863884647262 m005 (1/2*Catalan+5/9)/(7/8*5^(1/2)+7/11) 3908863900039969 r005 Re(z^2+c),c=-33/74+24/53*I,n=26 3908863901380328 p001 sum(1/(436*n+107)/n/(5^n),n=1..infinity) 3908863903940491 m001 1/BesselJ(0,1)/FeigenbaumKappa^2*ln(gamma) 3908863906393757 m001 GolombDickman^MinimumGamma/GAMMA(17/24) 3908863918267227 m001 (-ArtinRank2+GaussAGM)/(BesselI(1,1)-Catalan) 3908863923416705 a005 (1/cos(43/238*Pi))^305 3908863924576258 m001 GAMMA(11/12)^QuadraticClass/FeigenbaumD 3908863931559805 a007 Real Root Of 381*x^4+51*x^3+51*x^2-951*x+352 3908863931971992 g007 Psi(2,3/8)-Psi(13/10)-Psi(2,8/9)-Psi(2,2/7) 3908863937620782 r009 Re(z^3+c),c=-45/64+9/26*I,n=3 3908863951340175 a007 Real Root Of -902*x^4+700*x^3+362*x^2+36*x-2 3908863954554252 m006 (1/5/Pi+2/3)/(5/6*exp(Pi)-3/5) 3908863961427511 r009 Re(z^3+c),c=-25/52+5/21*I,n=34 3908863994362116 r005 Re(z^2+c),c=7/23+3/46*I,n=27 3908864001895133 r009 Re(z^3+c),c=-19/34+10/47*I,n=24 3908864013410645 p003 LerchPhi(1/8,5,447/233) 3908864025491449 m005 (1/3*exp(1)-2/11)/(-43/22+1/22*5^(1/2)) 3908864041090991 a005 (1/cos(13/73*Pi))^398 3908864049929754 m001 polylog(4,1/2)*(MertensB3-gamma) 3908864071890012 m001 (-CareFree+Paris)/(BesselK(0,1)+GAMMA(5/6)) 3908864086384963 r004 Im(z^2+c),c=-1/16-8/15*I,z(0)=I,n=35 3908864088983702 r009 Im(z^3+c),c=-47/102+22/61*I,n=11 3908864097156676 r005 Re(z^2+c),c=-57/94+6/37*I,n=13 3908864111463132 a007 Real Root Of 415*x^4+80*x^3-869*x^2-846*x+449 3908864123524804 m005 (1/2*3^(1/2)+1/3)/(5/12*5^(1/2)-4) 3908864124693303 r005 Re(z^2+c),c=-35/74+11/26*I,n=19 3908864126728425 m001 (CareFree+MasserGramainDelta)/(Trott+ZetaQ(2)) 3908864127132148 a007 Real Root Of -501*x^4+175*x^3+700*x^2+451*x-282 3908864141898574 r005 Re(z^2+c),c=-55/102+2/25*I,n=16 3908864150476421 r005 Re(z^2+c),c=-79/114+3/52*I,n=12 3908864163479772 a001 5/1364*18^(1/45) 3908864164478079 b008 3-6*SinIntegral[(2*Pi)/5] 3908864175619223 r008 a(0)=4,K{-n^6,32-16*n-15*n^2+12*n^3} 3908864185888963 r008 a(0)=4,K{-n^6,53-14*n^3+41*n^2-71*n} 3908864186331482 m001 (GaussAGM-exp(Pi))/(Landau+Trott2nd) 3908864190423924 r005 Re(z^2+c),c=-101/102+9/34*I,n=24 3908864190494959 r002 29th iterates of z^2 + 3908864190931420 l006 ln(2925/4324) 3908864197394688 m002 -1/(3*Pi)+4*Coth[Pi] 3908864198617997 r005 Im(z^2+c),c=17/50+9/52*I,n=19 3908864198974699 m005 (1/3*Zeta(3)+1/8)/(5*exp(1)-1/7) 3908864199553200 r005 Re(z^2+c),c=-53/98+2/21*I,n=47 3908864204308428 a007 Real Root Of -23*x^4-43*x^3-77*x^2-858*x+624 3908864212631739 r005 Im(z^2+c),c=13/86+20/51*I,n=33 3908864224735384 r005 Re(z^2+c),c=-49/86+19/60*I,n=23 3908864227506291 a007 Real Root Of -161*x^4-732*x^3-430*x^2-44*x+266 3908864238082651 r005 Im(z^2+c),c=1/9+19/45*I,n=42 3908864251042554 s002 sum(A252156[n]/(n^3*exp(n)+1),n=1..infinity) 3908864257971550 r005 Im(z^2+c),c=-83/126+5/12*I,n=31 3908864303688447 a007 Real Root Of 388*x^4+250*x^3-701*x^2-803*x+397 3908864317292114 r005 Re(z^2+c),c=-19/36+7/31*I,n=40 3908864344215339 r005 Im(z^2+c),c=-5/122+18/35*I,n=20 3908864364176046 a007 Real Root Of 868*x^4-241*x^3+679*x^2-549*x-353 3908864364542541 q001 1098/2809 3908864366786749 p004 log(19441/13151) 3908864374467248 r002 37th iterates of z^2 + 3908864374467248 r002 37th iterates of z^2 + 3908864385397751 m001 FeigenbaumD/(sin(1/5*Pi)+Paris) 3908864386453447 a003 sin(Pi*6/65)/cos(Pi*16/67) 3908864394691259 r009 Im(z^3+c),c=-4/9+11/34*I,n=40 3908864403334486 r009 Im(z^3+c),c=-5/78+19/25*I,n=4 3908864405592525 m005 (1/2*gamma-7/10)/(2/9*5^(1/2)+5/9) 3908864410854353 r005 Re(z^2+c),c=-59/110+7/46*I,n=44 3908864423853661 m008 (4/5*Pi+5)/(2*Pi^6-2/3) 3908864430729265 r005 Im(z^2+c),c=-21/23+15/53*I,n=4 3908864453260674 a003 sin(Pi*10/71)-sin(Pi*13/84) 3908864494783544 r002 24th iterates of z^2 + 3908864511547912 m006 (5/Pi-2)/(1/6*Pi^2-3/5) 3908864512104576 a007 Real Root Of 576*x^4-204*x^3-232*x^2-854*x-324 3908864519134324 a007 Real Root Of -914*x^4+477*x^3-310*x^2+43*x+114 3908864538308520 r005 Re(z^2+c),c=-21/34+23/68*I,n=39 3908864539064647 r005 Im(z^2+c),c=7/32+17/47*I,n=13 3908864542860569 r005 Re(z^2+c),c=-18/31+24/49*I,n=30 3908864550983464 m001 (Catalan-Psi(1,1/3))/(Pi^(1/2)+Stephens) 3908864556886465 r005 Im(z^2+c),c=1/74+22/45*I,n=30 3908864568005166 r005 Re(z^2+c),c=17/44+5/22*I,n=25 3908864574627893 r005 Re(z^2+c),c=-7/17+26/45*I,n=45 3908864579488222 m005 (47/44+1/4*5^(1/2))/(6/11*Catalan-1/12) 3908864582258081 m008 (3*Pi^2+1/6)/(5/6*Pi^4-5) 3908864593204486 r005 Im(z^2+c),c=-17/30+25/94*I,n=4 3908864596148763 r005 Re(z^2+c),c=-61/118+9/31*I,n=47 3908864601459371 m001 1/GAMMA(17/24)*exp(BesselJ(0,1))*GAMMA(7/12)^2 3908864618270388 m005 (1/2*Catalan+4/5)/(exp(1)+1/2) 3908864629313649 a007 Real Root Of 653*x^4-531*x^3-454*x^2-789*x-286 3908864631077762 a007 Real Root Of 204*x^4+742*x^3-164*x^2+61*x-565 3908864638388735 m005 (1/2*exp(1)+3/7)/(1/4*exp(1)-2/9) 3908864643204220 r009 Re(z^3+c),c=-51/110+11/50*I,n=34 3908864648548432 r009 Re(z^3+c),c=-9/86+32/45*I,n=12 3908864663010112 r009 Im(z^3+c),c=-21/40+11/43*I,n=51 3908864673249767 m001 (GAMMA(2/3)+gamma(3))/(FransenRobinson+Robbin) 3908864693143700 r005 Im(z^2+c),c=13/94+20/39*I,n=15 3908864693385298 a001 1/76*(1/2*5^(1/2)+1/2)^6*199^(2/21) 3908864710036960 r009 Im(z^3+c),c=-53/126+20/59*I,n=24 3908864712146387 r002 46th iterates of z^2 + 3908864719421682 l006 ln(4376/6469) 3908864740737908 m001 (Zeta(1,2)+Trott)/(exp(Pi)+LambertW(1)) 3908864778078215 m001 ln(TwinPrimes)*Riemann1stZero/GAMMA(3/4)^2 3908864803159540 m009 (Psi(1,3/4)-1/6)/(4/5*Psi(1,1/3)-2) 3908864805449936 r009 Im(z^3+c),c=-2/13+7/16*I,n=10 3908864813907721 a007 Real Root Of 561*x^4-796*x^3+747*x^2-949*x+36 3908864837817519 r005 Im(z^2+c),c=7/23+14/57*I,n=46 3908864841393795 m001 GAMMA(11/24)*GAMMA(1/24)/exp(GAMMA(3/4))^2 3908864846971226 r009 Re(z^3+c),c=-5/106+19/45*I,n=3 3908864849122769 r005 Re(z^2+c),c=-55/102+5/42*I,n=55 3908864853683879 m001 (-Riemann2ndZero+Salem)/(Shi(1)+ln(gamma)) 3908864863296510 m001 Zeta(1,-1)^Pi/(Zeta(1,-1)^Totient) 3908864866764189 r009 Im(z^3+c),c=-1/6+16/37*I,n=6 3908864873096002 m001 1/exp(Ei(1))/CopelandErdos^2*Zeta(3)^2 3908864873211543 r005 Im(z^2+c),c=-7/10+16/253*I,n=20 3908864877380260 r005 Im(z^2+c),c=7/122+17/37*I,n=51 3908864878418341 r005 Re(z^2+c),c=-51/98+10/37*I,n=42 3908864899517354 r005 Im(z^2+c),c=1/118+27/55*I,n=34 3908864904009603 r002 42th iterates of z^2 + 3908864904009603 r002 42th iterates of z^2 + 3908864910935154 r009 Im(z^3+c),c=-3/17+13/30*I,n=7 3908864919368349 r005 Re(z^2+c),c=-37/78+29/64*I,n=51 3908864921200018 m001 (sin(1/5*Pi)-ErdosBorwein)/(MadelungNaCl+Thue) 3908864923007571 m005 (1/3*3^(1/2)+1/8)/(10/11*3^(1/2)+2/9) 3908864927075224 a007 Real Root Of -79*x^4-358*x^3-815*x^2+992*x+40 3908864930037091 r005 Im(z^2+c),c=-3/22+27/47*I,n=57 3908864947241524 r005 Re(z^2+c),c=-12/17+7/39*I,n=47 3908864951184768 r005 Im(z^2+c),c=25/82+10/41*I,n=43 3908864963012425 m005 (1/2*Pi-1/12)/(2/7*gamma-6/11) 3908864967663691 s002 sum(A248955[n]/(n^2*exp(n)+1),n=1..infinity) 3908864978852936 r009 Re(z^3+c),c=-61/106+21/37*I,n=24 3908864984709816 l006 ln(5827/8614) 3908864989338840 r009 Re(z^3+c),c=-37/70+1/4*I,n=17 3908864990451202 r009 Im(z^3+c),c=-19/102+25/58*I,n=20 3908864992321493 m001 (Ei(1,1)+Zeta(1,-1))^arctan(1/3) 3908864993898011 r009 Im(z^3+c),c=-19/50+21/58*I,n=26 3908865047884613 r002 64th iterates of z^2 + 3908865051345604 g004 Im(Psi(3+I*25/24)) 3908865061110904 r008 a(0)=4,K{-n^6,17+13*n^3-54*n^2+32*n} 3908865061201029 m001 (MertensB2-Trott2nd)/(Zeta(3)+exp(1/Pi)) 3908865078343752 a007 Real Root Of -166*x^4-748*x^3-603*x^2-867*x-96 3908865086734227 a007 Real Root Of -120*x^4+949*x^3-25*x^2-11*x+59 3908865095681700 r009 Im(z^3+c),c=-31/60+4/15*I,n=62 3908865097126865 r005 Im(z^2+c),c=7/60+23/55*I,n=37 3908865099751158 p001 sum(1/(308*n+257)/(100^n),n=0..infinity) 3908865113911333 a007 Real Root Of -222*x^4+139*x^3+649*x^2+777*x-406 3908865117719939 m001 1/ln(Zeta(9))^2*GAMMA(11/12)^2/sin(1)^2 3908865120558055 a007 Real Root Of 261*x^4+855*x^3-840*x^2-908*x-582 3908865133354929 r004 Im(z^2+c),c=-7/6-10/21*I,z(0)=-1,n=3 3908865143578731 r005 Im(z^2+c),c=41/114+13/58*I,n=53 3908865161016331 r005 Im(z^2+c),c=13/50+13/44*I,n=39 3908865168262336 a007 Real Root Of 26*x^4-17*x^3-233*x^2+855*x-183 3908865186167522 r005 Re(z^2+c),c=-81/86+7/53*I,n=22 3908865194799040 r002 57th iterates of z^2 + 3908865201290788 s002 sum(A033385[n]/(n^2*exp(n)-1),n=1..infinity) 3908865202283537 p004 log(23663/16007) 3908865203974926 m001 HardyLittlewoodC5-ln(2)*Trott2nd 3908865205073029 r009 Im(z^3+c),c=-43/82+16/63*I,n=49 3908865216633242 a003 cos(Pi*3/71)*sin(Pi*4/31) 3908865229453538 r005 Re(z^2+c),c=-75/118+7/44*I,n=15 3908865230963042 h001 (2/5*exp(1)+5/11)/(3/7*exp(2)+7/9) 3908865236531005 a007 Real Root Of -829*x^4+318*x^3+915*x^2+334*x-270 3908865237015064 s002 sum(A093921[n]/(pi^n+1),n=1..infinity) 3908865241418902 r005 Re(z^2+c),c=-29/30+22/69*I,n=6 3908865243881804 r005 Re(z^2+c),c=-61/118+25/56*I,n=19 3908865248470630 m004 5-Log[Sqrt[5]*Pi]+2/ProductLog[Sqrt[5]*Pi]^2 3908865265176653 a007 Real Root Of 167*x^4+631*x^3-20*x^2+129*x-491 3908865268134113 m001 Otter/(TravellingSalesman^FeigenbaumB) 3908865310246457 m002 -(E^Pi/Pi)+2*E^Pi*Coth[Pi] 3908865354602436 m001 BesselK(0,1)/ArtinRank2*ln(sqrt(5))^2 3908865358416412 r009 Im(z^3+c),c=-7/86+43/54*I,n=32 3908865364073914 r009 Im(z^3+c),c=-9/19+7/61*I,n=4 3908865379226277 p002 log(7-8*10^(1/3)) 3908865382656331 r005 Re(z^2+c),c=1/9+1/4*I,n=24 3908865401193758 p003 LerchPhi(1/8,4,179/79) 3908865418600977 m005 (1/2*exp(1)-1/4)/(2/7*Catalan-6/11) 3908865419284295 m001 (Catalan+3^(1/3))/(-GAMMA(11/12)+ZetaP(2)) 3908865426647829 a001 28657/11*2^(24/41) 3908865429253472 r002 34th iterates of z^2 + 3908865437806120 r002 36th iterates of z^2 + 3908865439874675 r008 a(0)=4,K{-n^6,-31+39*n+7*n^2-n^3} 3908865446522229 a007 Real Root Of x^4-522*x^3+137*x^2-212*x-135 3908865449901694 m001 CopelandErdos^Cahen/Psi(1,1/3) 3908865455400221 m004 -2+125*Pi+15*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 3908865456883562 m004 -2+125*Pi+(30*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 3908865458366905 m004 -2+125*Pi+15*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 3908865459087634 a007 Real Root Of 113*x^4+512*x^3+258*x^2+115*x+706 3908865459646663 r002 46th iterates of z^2 + 3908865466214799 p001 sum(1/(551*n+256)/n/(32^n),n=1..infinity) 3908865468071915 q001 1261/3226 3908865490006665 m005 (1/2*gamma-1/8)/(2/11*Zeta(3)+1/5) 3908865492211942 p001 sum(1/(488*n+479)/n/(3^n),n=1..infinity) 3908865494131779 r005 Im(z^2+c),c=-11/42+23/34*I,n=6 3908865494657876 r009 Re(z^3+c),c=-15/34+7/36*I,n=15 3908865499626043 r005 Re(z^2+c),c=-25/46+1/40*I,n=39 3908865506254943 m005 (1/2*5^(1/2)+3)/(5/6*2^(1/2)-1/8) 3908865512202323 r002 38th iterates of z^2 + 3908865542609064 m001 Niven^2*exp(CopelandErdos)^2*Catalan^2 3908865545467627 r005 Re(z^2+c),c=-11/10+74/215*I,n=4 3908865562514864 m005 (1/3*exp(1)-2/3)/(7/11*gamma-3/7) 3908865566225471 r005 Im(z^2+c),c=1/29+28/59*I,n=23 3908865576275799 m001 (3^(1/2)-Zeta(3))/(-Riemann1stZero+Stephens) 3908865580757749 q001 1/2558287 3908865580798391 r005 Re(z^2+c),c=-17/32+11/28*I,n=21 3908865587051427 s002 sum(A289603[n]/(n^3*2^n+1),n=1..infinity) 3908865587825293 m008 (4/5*Pi^3-1/2)/(2*Pi^3+1/6) 3908865596543123 a007 Real Root Of -277*x^4-924*x^3+787*x^2+536*x-448 3908865624908127 a007 Real Root Of 144*x^4+556*x^3+111*x^2+530*x-35 3908865625627576 a007 Real Root Of -154*x^4+289*x^3-436*x^2+820*x+408 3908865630120203 a007 Real Root Of 708*x^4-710*x^3-546*x^2-823*x+431 3908865638727935 a007 Real Root Of 944*x^4-200*x^3-85*x^2-636*x+25 3908865641711192 m005 (1/2*3^(1/2)-4/9)/(8/9*5^(1/2)-10/11) 3908865641841516 r009 Im(z^3+c),c=-61/126+28/59*I,n=25 3908865668958647 a007 Real Root Of 135*x^4+403*x^3-327*x^2+569*x-227 3908865675156172 s002 sum(A255865[n]/(n*2^n+1),n=1..infinity) 3908865690546340 a007 Real Root Of -637*x^4+961*x^3+858*x^2+304*x+60 3908865700288016 r005 Im(z^2+c),c=-21/122+13/22*I,n=18 3908865707372875 m001 (2^(1/3)-Si(Pi))/(Totient+ZetaP(3)) 3908865723010292 h001 (10/11*exp(1)+1/9)/(6/7*exp(2)+3/11) 3908865723225228 r009 Im(z^3+c),c=-1/29+21/47*I,n=5 3908865723311222 r002 14th iterates of z^2 + 3908865773707950 a001 514229/2207*199^(30/31) 3908865774497748 m001 (-ErdosBorwein+Trott2nd)/(3^(1/2)-Pi^(1/2)) 3908865784779294 l006 ln(1451/2145) 3908865794594951 a001 7881196/21*2178309^(19/24) 3908865797509779 a007 Real Root Of 17*x^4+646*x^3-728*x^2-195*x-626 3908865803097546 s002 sum(A203197[n]/((2^n+1)/n),n=1..infinity) 3908865804461650 a001 89/271443*3^(4/25) 3908865817084235 m001 exp(BesselK(1,1))^2*Robbin*sqrt(Pi) 3908865818160385 m001 GAMMA(3/4)^ln(Pi)-(1+3^(1/2))^(1/2) 3908865818160385 m001 GAMMA(3/4)^ln(Pi)-sqrt(1+sqrt(3)) 3908865823488358 m009 (16/5*Catalan+2/5*Pi^2+3/5)/(6*Psi(1,2/3)+3/4) 3908865842430839 r005 Re(z^2+c),c=-67/126+11/58*I,n=27 3908865849829844 a007 Real Root Of 544*x^4-500*x^3+866*x^2-338*x-307 3908865852949958 l006 ln(184/9171) 3908865853036580 m001 arctan(1/3)*GAMMA(5/6)^ErdosBorwein 3908865858687327 a001 102334155/521*322^(11/12) 3908865860435621 r005 Re(z^2+c),c=-57/110+7/23*I,n=25 3908865879194298 r009 Im(z^3+c),c=-1/30+9/20*I,n=12 3908865882249429 r005 Im(z^2+c),c=29/106+10/31*I,n=15 3908865882353173 a007 Real Root Of -947*x^4+118*x^3-286*x^2+796*x+384 3908865883737964 a007 Real Root Of 147*x^4-441*x^3-45*x^2-832*x+355 3908865900861623 m001 1/Zeta(3)^2/exp(Tribonacci)^2*sqrt(5) 3908865903803470 m001 (Catalan+exp(1/Pi))/(-LaplaceLimit+ZetaP(4)) 3908865905325623 a008 Real Root of (-6+3*x-x^2+3*x^3-3*x^4-x^5) 3908865910901799 a005 (1/cos(24/185*Pi))^474 3908865936257236 a008 Real Root of x^4-2*x^2-56*x+16 3908865936271726 r008 a(0)=0,K{-n^6,39+7*n^3+50*n^2-70*n} 3908865948931290 r005 Im(z^2+c),c=13/86+20/51*I,n=50 3908865957148756 m001 Sierpinski/(HardyLittlewoodC5^arctan(1/2)) 3908865959266694 r009 Im(z^3+c),c=-21/118+42/55*I,n=2 3908865969332746 r005 Im(z^2+c),c=-11/114+31/56*I,n=42 3908865969336884 r005 Im(z^2+c),c=-3/58+30/53*I,n=25 3908865972112313 m001 (-MinimumGamma+ThueMorse)/(LambertW(1)-cos(1)) 3908865972584459 m005 (4*Catalan-2)/(2/5*Pi+3) 3908865974607758 r005 Re(z^2+c),c=-45/86+15/59*I,n=39 3908865987954367 m004 -125*Pi+2*Cos[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/2 3908865992961509 r005 Im(z^2+c),c=-4/15+21/37*I,n=20 3908866024389044 l006 ln(5243/5452) 3908866026405964 a007 Real Root Of -220*x^4-672*x^3+889*x^2+845*x+945 3908866042845395 m001 ln(KhintchineHarmonic)*CareFree^2*sqrt(2) 3908866061265624 m005 (1/3*exp(1)+1/2)/(5/7*5^(1/2)+2) 3908866081473530 h001 (9/10*exp(1)+1/4)/(11/12*exp(2)+1/8) 3908866084525809 r009 Re(z^3+c),c=-15/31+8/33*I,n=45 3908866090125730 m005 (3/5*exp(1)-4)/(3/4*2^(1/2)+5) 3908866098673893 r009 Im(z^3+c),c=-10/23+30/53*I,n=62 3908866127673788 m001 (-Mills+Thue)/(3^(1/2)-sin(1/5*Pi)) 3908866156417547 r009 Im(z^3+c),c=-1/23+32/41*I,n=6 3908866164117683 r005 Re(z^2+c),c=-109/114+3/41*I,n=18 3908866167045190 r005 Re(z^2+c),c=-11/29+19/29*I,n=40 3908866175403674 m001 (-Ei(1,1)+ZetaP(4))/(2^(1/2)+5^(1/2)) 3908866177068951 m001 1/ln(Trott)*Riemann3rdZero/sqrt(2) 3908866182182786 r002 45th iterates of z^2 + 3908866188147370 a007 Real Root Of -79*x^4-344*x^3+80*x^2+904*x+209 3908866198869574 p003 LerchPhi(1/125,2,42/83) 3908866212403342 m004 -125*Pi+Sec[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]^2 3908866222275017 p001 sum(1/(597*n+259)/(25^n),n=0..infinity) 3908866237109377 a001 1/39606*(1/2*5^(1/2)+1/2)^14*322^(2/19) 3908866255956327 m001 (MasserGramain+Porter)/(Psi(2,1/3)+Shi(1)) 3908866270662251 m006 (1/3*Pi-1/4)/(2*ln(Pi)-1/4) 3908866274006876 m001 ln(Zeta(3))/GAMMA(7/24)*cos(Pi/5)^2 3908866306305966 r005 Im(z^2+c),c=-1/52+23/40*I,n=22 3908866318967883 q001 1424/3643 3908866320314104 a003 cos(Pi*22/115)-cos(Pi*5/14) 3908866325469275 r002 18th iterates of z^2 + 3908866326777718 r005 Im(z^2+c),c=-4/27+35/59*I,n=30 3908866332163081 r005 Im(z^2+c),c=25/94+5/13*I,n=13 3908866333191621 r005 Re(z^2+c),c=-49/122+27/50*I,n=61 3908866334306093 b008 -2+Cosh[20/3] 3908866334974529 m004 3000/Pi-Cosh[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi] 3908866341309400 r009 Re(z^3+c),c=-37/94+7/51*I,n=18 3908866342280887 r002 15th iterates of z^2 + 3908866365097442 m009 (6*Psi(1,2/3)+1/3)/(2/5*Psi(1,1/3)+3/4) 3908866366272226 m004 -125*Pi+Cos[Sqrt[5]*Pi]+(5*Sin[Sqrt[5]*Pi])/Pi 3908866399499135 r005 Re(z^2+c),c=-21/86+33/58*I,n=10 3908866414687801 m004 -3/2+125*Pi-25*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 3908866414970307 r009 Im(z^3+c),c=-5/106+27/62*I,n=3 3908866418374409 m001 (Magata-Tetranacci)/(Pi+Cahen) 3908866419632274 m004 -3/2+125*Pi-25*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 3908866432823047 p001 sum((-1)^n/(309*n+239)/(6^n),n=0..infinity) 3908866447710260 a007 Real Root Of 567*x^4-246*x^3-797*x^2-969*x+502 3908866448884819 r005 Re(z^2+c),c=-13/24+2/25*I,n=44 3908866452665812 r009 Im(z^3+c),c=-29/66+29/60*I,n=9 3908866453380181 b008 3+5*SphericalBesselY[1,1] 3908866459124171 a001 1346269/5778*199^(30/31) 3908866461453249 r005 Re(z^2+c),c=-41/78+13/50*I,n=27 3908866462318036 a007 Real Root Of -225*x^4-899*x^3+56*x^2+312*x-801 3908866470006732 a007 Real Root Of -264*x^4-758*x^3+806*x^2-813*x+868 3908866478866171 h001 (7/10*exp(1)+1/2)/(7/9*exp(2)+2/5) 3908866486527887 m005 (-17/28+1/4*5^(1/2))/(2/7*exp(1)+5/11) 3908866487311517 r005 Im(z^2+c),c=1/106+29/59*I,n=14 3908866488167342 r005 Re(z^2+c),c=-73/98+1/53*I,n=30 3908866497085288 r009 Re(z^3+c),c=-31/54+19/41*I,n=47 3908866511197908 m001 GAMMA(13/24)*(Gompertz+KomornikLoreti) 3908866513794365 l006 ln(165/8224) 3908866518878330 r009 Im(z^3+c),c=-19/102+25/58*I,n=23 3908866529923726 m003 79/2+Sqrt[5]/32-Log[1/2+Sqrt[5]/2] 3908866530897188 m001 (1/2*Artin-exp(1/2))/Artin 3908866534658965 a001 55/4870847*11^(29/56) 3908866535154517 m001 1/Zeta(9)*exp(BesselK(1,1))^2*sinh(1) 3908866539191681 r002 37th iterates of z^2 + 3908866543477901 r009 Re(z^3+c),c=-25/52+22/49*I,n=10 3908866548961224 r002 15th iterates of z^2 + 3908866572535393 a007 Real Root Of -558*x^4-396*x^3-955*x^2+76*x+165 3908866580389727 m001 (Porter+Sarnak)/(Gompertz-cos(1)) 3908866580788282 s001 sum(exp(-3*Pi)^n*A239568[n],n=1..infinity) 3908866586571868 a001 1/843*(1/2*5^(1/2)+1/2)^9*47^(8/21) 3908866588257168 r002 17th iterates of z^2 + 3908866591214941 l006 ln(5781/8546) 3908866591369732 m001 sin(1)^GaussAGM-Weierstrass 3908866592519775 r005 Re(z^2+c),c=-3/4+16/209*I,n=37 3908866594356158 r005 Re(z^2+c),c=-151/114+3/47*I,n=14 3908866598224591 r009 Im(z^3+c),c=-29/64+20/63*I,n=36 3908866611604367 r002 40th iterates of z^2 + 3908866614732555 s001 sum(exp(-3*Pi)^n*A124089[n],n=1..infinity) 3908866617987083 a007 Real Root Of -93*x^4+79*x^3+504*x^2+807*x-395 3908866618053124 m001 ln(1+sqrt(2))/(Lehmer-exp(Pi)) 3908866618053124 m001 ln(2^(1/2)+1)/(Lehmer-exp(Pi)) 3908866620929027 a001 2178309/9349*199^(30/31) 3908866623146173 r009 Re(z^3+c),c=-53/94+11/43*I,n=60 3908866627457895 r002 37th iterates of z^2 + 3908866635986926 r002 28th iterates of z^2 + 3908866645628361 a007 Real Root Of 908*x^4-542*x^3+781*x^2+33*x-160 3908866653695132 m005 (1/2*Pi+5/8)/(-14/9+4/9*5^(1/2)) 3908866672918458 r009 Im(z^3+c),c=-19/102+25/58*I,n=25 3908866681786984 r005 Re(z^2+c),c=-17/26+5/33*I,n=15 3908866706944154 p004 log(14947/10111) 3908866707451838 m005 (1/2*2^(1/2)-9/10)/(7/11*gamma-5/12) 3908866719937087 a007 Real Root Of 416*x^4-639*x^3-635*x^2-930*x+489 3908866722637249 r009 Im(z^3+c),c=-19/102+25/58*I,n=28 3908866728222631 r009 Im(z^3+c),c=-19/102+25/58*I,n=30 3908866729832355 r009 Im(z^3+c),c=-19/102+25/58*I,n=33 3908866730033590 r009 Im(z^3+c),c=-19/102+25/58*I,n=35 3908866730085437 r009 Im(z^3+c),c=-19/102+25/58*I,n=38 3908866730092646 r009 Im(z^3+c),c=-19/102+25/58*I,n=40 3908866730094307 r009 Im(z^3+c),c=-19/102+25/58*I,n=43 3908866730094564 r009 Im(z^3+c),c=-19/102+25/58*I,n=45 3908866730094617 r009 Im(z^3+c),c=-19/102+25/58*I,n=48 3908866730094626 r009 Im(z^3+c),c=-19/102+25/58*I,n=50 3908866730094627 r009 Im(z^3+c),c=-19/102+25/58*I,n=53 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=55 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=58 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=60 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=63 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=61 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=64 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=62 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=56 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=59 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=57 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=51 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=54 3908866730094628 r009 Im(z^3+c),c=-19/102+25/58*I,n=52 3908866730094633 r009 Im(z^3+c),c=-19/102+25/58*I,n=46 3908866730094634 r009 Im(z^3+c),c=-19/102+25/58*I,n=49 3908866730094640 r009 Im(z^3+c),c=-19/102+25/58*I,n=47 3908866730094808 r009 Im(z^3+c),c=-19/102+25/58*I,n=44 3908866730094866 r009 Im(z^3+c),c=-19/102+25/58*I,n=41 3908866730094945 r009 Im(z^3+c),c=-19/102+25/58*I,n=42 3908866730099964 r009 Im(z^3+c),c=-19/102+25/58*I,n=39 3908866730103017 r009 Im(z^3+c),c=-19/102+25/58*I,n=37 3908866730103679 r009 Im(z^3+c),c=-19/102+25/58*I,n=36 3908866730252411 r009 Im(z^3+c),c=-19/102+25/58*I,n=34 3908866730312729 r009 Im(z^3+c),c=-19/102+25/58*I,n=32 3908866730420212 r009 Im(z^3+c),c=-19/102+25/58*I,n=31 3908866732241632 m005 (1/2*exp(1)+1/5)/(-75/16+5/16*5^(1/2)) 3908866732421881 r002 40th iterates of z^2 + 3908866734748089 r009 Im(z^3+c),c=-19/102+25/58*I,n=29 3908866735649657 r009 Im(z^3+c),c=-19/102+25/58*I,n=27 3908866736511016 r005 Im(z^2+c),c=1/86+22/45*I,n=45 3908866737652304 m001 exp(GAMMA(5/24))*OneNinth/sqrt(5) 3908866739497082 r005 Im(z^2+c),c=-29/42+8/23*I,n=12 3908866741393846 r009 Im(z^3+c),c=-19/102+25/58*I,n=26 3908866763046581 r002 21th iterates of z^2 + 3908866777452206 m001 (3^(1/3)+FeigenbaumC)/(MertensB1+Stephens) 3908866781273705 m001 (-Artin+Sierpinski)/(3^(1/3)-Psi(2,1/3)) 3908866788714650 s001 sum(exp(-3*Pi/4)^n*A177951[n],n=1..infinity) 3908866808829290 r005 Im(z^2+c),c=23/86+17/50*I,n=14 3908866831587891 m001 (gamma(2)+FeigenbaumMu)/(ln(gamma)-Zeta(1/2)) 3908866856764502 m001 (sin(1/12*Pi)-GAMMA(5/6))/(Pi-Catalan) 3908866861454678 l006 ln(4330/6401) 3908866866983906 r009 Im(z^3+c),c=-19/102+25/58*I,n=24 3908866867747406 r009 Im(z^3+c),c=-19/102+25/58*I,n=22 3908866870435221 m005 (1/2*exp(1)+1/7)/(1/11*3^(1/2)-4) 3908866872826790 a003 sin(Pi*16/105)-sin(Pi*12/37) 3908866875091737 m001 (ArtinRank2+Kolakoski)^Magata 3908866876756897 r002 10th iterates of z^2 + 3908866882734812 a001 832040/3571*199^(30/31) 3908866887064624 r002 30th iterates of z^2 + 3908866916281245 r005 Im(z^2+c),c=13/82+17/44*I,n=43 3908866919303808 a007 Real Root Of 157*x^4-30*x^3+380*x^2-766*x-3 3908866922316489 r005 Im(z^2+c),c=-3/40+20/37*I,n=52 3908866929674476 m009 (5/12*Pi^2+3/5)/(4*Psi(1,2/3)-1/5) 3908866943499015 r005 Re(z^2+c),c=-39/64+29/59*I,n=3 3908866960409073 r005 Re(z^2+c),c=-19/36+11/43*I,n=25 3908866971997511 r009 Re(z^3+c),c=-23/48+14/59*I,n=53 3908866982258699 a001 29/196418*1346269^(13/56) 3908866995073891 q001 1587/4060 3908866995073891 r002 2th iterates of z^2 + 3908867007423956 r005 Im(z^2+c),c=31/90+17/57*I,n=42 3908867028137296 a001 192900153618/89*21^(19/20) 3908867031555470 m001 (1-3^(1/3))/(-LaplaceLimit+StronglyCareFree) 3908867041812325 r009 Re(z^3+c),c=-53/126+7/41*I,n=22 3908867046780348 m001 1/cos(1)/ln(GaussKuzminWirsing)^2*sqrt(3)^2 3908867054908625 m004 (25*Pi)/2-Cos[Sqrt[5]*Pi]^2/3 3908867066597800 m001 (2^(1/2)-BesselK(0,1))/(ln(3)+3^(1/3)) 3908867071090780 r005 Re(z^2+c),c=-13/24+1/14*I,n=28 3908867083785641 r002 51th iterates of z^2 + 3908867094392099 r002 16th iterates of z^2 + 3908867100455631 r005 Im(z^2+c),c=-11/18+2/31*I,n=25 3908867112294194 r009 Im(z^3+c),c=-19/102+25/58*I,n=21 3908867119011922 s002 sum(A237122[n]/(10^n+1),n=1..infinity) 3908867133027459 m001 ln(cos(1))/GAMMA(5/6)^2*cos(Pi/5) 3908867135771337 m001 (ZetaP(2)+ZetaP(3))/(LambertW(1)+Zeta(5)) 3908867139274505 h001 (-exp(3/2)+5)/(-7*exp(3)+8) 3908867143945479 a007 Real Root Of -2*x^4-783*x^3-481*x^2-604*x+673 3908867151265004 m001 Bloch/(Mills^CareFree) 3908867168750013 m005 (1/6*exp(1)+4)/(5*gamma-3) 3908867173310775 m005 (1/2*gamma+1)/(6*gamma-1/6) 3908867174763664 r002 13th iterates of z^2 + 3908867188538319 h005 exp(sin(Pi*6/41)+sin(Pi*13/35)) 3908867194447587 m005 (1/2*Catalan+6)/(151/132+5/22*5^(1/2)) 3908867203971570 r009 Im(z^3+c),c=-17/78+25/63*I,n=2 3908867204073743 r005 Re(z^2+c),c=-21/38+2/49*I,n=14 3908867246523301 r005 Re(z^2+c),c=-97/118+12/61*I,n=18 3908867250137447 m005 (1/2*3^(1/2)+9/10)/(7/8*Zeta(3)-3/5) 3908867262066741 a005 (1/cos(10/183*Pi))^1025 3908867277911214 r002 30th iterates of z^2 + 3908867305495141 r005 Re(z^2+c),c=-55/102+5/42*I,n=57 3908867308549638 a007 Real Root Of -37*x^4+37*x^3+647*x^2-77*x+661 3908867312297847 m001 (Zeta(5)-cos(1/12*Pi))/(BesselI(1,2)-Magata) 3908867331949768 s002 sum(A255865[n]/(n*2^n-1),n=1..infinity) 3908867346638750 l006 ln(146/7277) 3908867349843927 m001 (-Bloch+ZetaQ(2))/(Catalan-cos(1/5*Pi)) 3908867352973950 m001 (Ei(1)+Zeta(1,2))/(BesselI(1,2)+Thue) 3908867357946166 a007 Real Root Of -566*x^4+854*x^3+105*x^2+107*x+90 3908867358256374 a001 75025/4*7^(20/53) 3908867360157710 r005 Re(z^2+c),c=-7/13+7/53*I,n=26 3908867398865924 m001 Lehmer/(MasserGramainDelta^ln(2)) 3908867404093044 l006 ln(2879/4256) 3908867416859176 g005 GAMMA(2/11)*GAMMA(4/7)/GAMMA(7/11)/GAMMA(5/8) 3908867425189202 a007 Real Root Of 647*x^4-857*x^3-998*x^2-523*x+393 3908867435510052 a007 Real Root Of -325*x^4+924*x^3-218*x^2-13*x+91 3908867436974126 r005 Re(z^2+c),c=9/22+13/63*I,n=21 3908867460211534 r005 Re(z^2+c),c=-13/24+2/25*I,n=46 3908867506237661 m001 GAMMA(1/4)*Zeta(1,2)*GAMMA(1/12) 3908867527506365 r005 Im(z^2+c),c=13/54+11/35*I,n=31 3908867545231181 q001 7/17908 3908867545427733 r005 Im(z^2+c),c=-4/15+41/57*I,n=9 3908867586754683 r002 56th iterates of z^2 + 3908867590177646 r002 19th iterates of z^2 + 3908867591852265 m005 (1/2*Catalan-5/7)/(1/4*gamma-4/5) 3908867593012046 m001 1/exp(Trott)^2/FeigenbaumD/cos(Pi/12)^2 3908867603216873 m001 (Bloch-exp(Pi))/(-Gompertz+Salem) 3908867608286836 m001 (1-GAMMA(11/12))/(StolarskyHarborth+Totient) 3908867622149669 a001 341/36*2178309^(13/51) 3908867624869547 r005 Re(z^2+c),c=2/27+23/63*I,n=22 3908867632460326 r005 Im(z^2+c),c=13/46+17/63*I,n=23 3908867641918013 r009 Im(z^3+c),c=-65/122+19/56*I,n=7 3908867653346765 r002 23th iterates of z^2 + 3908867668928790 r005 Re(z^2+c),c=-29/54+8/55*I,n=43 3908867679249345 m005 (1/2*exp(1)-5/11)/(2^(1/2)+9/10) 3908867696162449 a007 Real Root Of -219*x^4-659*x^3+634*x^2-305*x+889 3908867698177931 a003 cos(Pi*24/61)/cos(Pi*53/112) 3908867702100911 r005 Re(z^2+c),c=-21/22+4/49*I,n=12 3908867710821749 p001 sum(1/(491*n+256)/(512^n),n=0..infinity) 3908867713651249 r002 54th iterates of z^2 + 3908867713790786 m001 (Cahen+ZetaP(4))/(Si(Pi)+gamma(2)) 3908867723540176 r009 Im(z^3+c),c=-39/122+11/28*I,n=9 3908867747501498 a007 Real Root Of 166*x^4+506*x^3-509*x^2+342*x+581 3908867754668476 s002 sum(A234753[n]/(n^2*exp(n)+1),n=1..infinity) 3908867756586095 a001 11/2584*433494437^(5/22) 3908867767648519 m001 1/2*cos(1/12*Pi)/Pi*3^(1/2)*GAMMA(2/3)*Trott 3908867776132358 a001 32951280099/2207*123^(1/5) 3908867782210144 a007 Real Root Of 109*x^4+327*x^3-611*x^2-802*x+284 3908867784890889 r002 6th iterates of z^2 + 3908867786498554 r005 Im(z^2+c),c=-25/44+33/50*I,n=16 3908867789135138 r005 Re(z^2+c),c=-15/14+46/169*I,n=26 3908867789473649 m001 Ei(1)^BesselI(0,2)/ln(3) 3908867793045643 r005 Re(z^2+c),c=-17/14+31/185*I,n=8 3908867821158297 r002 12th iterates of z^2 + 3908867831488036 r005 Re(z^2+c),c=-41/118+25/39*I,n=46 3908867863244010 r005 Re(z^2+c),c=-51/58+23/57*I,n=4 3908867864683093 r005 Im(z^2+c),c=-21/118+17/25*I,n=62 3908867867251733 s002 sum(A235018[n]/((3*n+1)!),n=1..infinity) 3908867894605456 m001 (Psi(1,1/3)+ZetaQ(3))/Sierpinski 3908867895451596 m005 (3*Catalan+2/5)/(1/3*Catalan+1/2) 3908867896485312 s002 sum(A036528[n]/((2^n+1)/n),n=1..infinity) 3908867932393816 m005 (1/2*Pi+1/3)/(1/6*gamma-7/12) 3908867935835469 a007 Real Root Of 238*x^4+781*x^3-476*x^2+224*x-769 3908867939619465 r005 Im(z^2+c),c=3/20+31/57*I,n=14 3908867949629147 l006 ln(4307/6367) 3908867955402662 r005 Im(z^2+c),c=-11/14+55/141*I,n=4 3908867968700385 a003 sin(Pi*11/83)*sin(Pi*48/115) 3908867968794530 r002 13th iterates of z^2 + 3908867970452262 r009 Im(z^3+c),c=-7/18+14/39*I,n=11 3908867971351039 r009 Im(z^3+c),c=-35/82+7/20*I,n=11 3908867975965569 r009 Im(z^3+c),c=-13/27+5/18*I,n=15 3908867996100613 r009 Re(z^3+c),c=-23/58+31/46*I,n=6 3908868006407391 m001 (ln(2^(1/2)+1)+KomornikLoreti)/(2^(1/3)-gamma) 3908868013812118 h001 (7/8*exp(2)+3/7)/(4/9*exp(1)+5/9) 3908868017424082 r005 Im(z^2+c),c=-7/118+13/21*I,n=53 3908868017464889 r005 Re(z^2+c),c=-23/34+15/74*I,n=30 3908868024196977 m001 (sin(1)+Backhouse)/(-Tetranacci+Totient) 3908868028927631 m004 -4+125/(E^(Sqrt[5]*Pi)*Pi)-5*Sqrt[5]*Pi 3908868032529433 r002 52th iterates of z^2 + 3908868038163686 r002 42th iterates of z^2 + 3908868040321398 a007 Real Root Of -320*x^4+116*x^3+766*x^2+252*x-215 3908868046295904 m001 (-Niven+ZetaQ(4))/(exp(1)+GAMMA(13/24)) 3908868055381481 l006 ln(9031/9391) 3908868055551289 r005 Re(z^2+c),c=-15/28+9/52*I,n=26 3908868059613649 m002 Pi^2*Cosh[Pi]+Pi^5*ProductLog[Pi]*Sinh[Pi] 3908868068419896 m001 (Zeta(1,2)+MinimumGamma)/(Niven-Tribonacci) 3908868069950769 r005 Re(z^2+c),c=13/38+19/51*I,n=55 3908868079626177 r009 Re(z^3+c),c=-19/36+9/35*I,n=44 3908868080543713 r002 33th iterates of z^2 + 3908868082654704 a007 Real Root Of 533*x^4+187*x^3-409*x^2-755*x+334 3908868101328255 r009 Re(z^3+c),c=-43/106+9/59*I,n=20 3908868104528304 r005 Im(z^2+c),c=-2/3+16/171*I,n=4 3908868106266670 r005 Re(z^2+c),c=-55/106+11/62*I,n=5 3908868108002307 r005 Re(z^2+c),c=-2/11+31/63*I,n=2 3908868114711606 a007 Real Root Of 681*x^4-711*x^3-69*x^2-380*x+15 3908868117601100 r002 49th iterates of z^2 + 3908868124739615 m001 Rabbit/exp(Si(Pi))^2*sqrt(5) 3908868126606413 a007 Real Root Of 759*x^4+660*x^3+460*x^2-986*x-434 3908868127831970 r005 Im(z^2+c),c=-43/38+3/62*I,n=31 3908868143779909 r005 Im(z^2+c),c=-23/34+37/117*I,n=21 3908868179528331 m004 -4-125*Pi-Cos[Sqrt[5]*Pi]+6*Cot[Sqrt[5]*Pi] 3908868214015856 m001 1/ln(GAMMA(2/3))/LandauRamanujan^2/Zeta(3)^2 3908868219961799 r005 Re(z^2+c),c=-5/9-23/65*I,n=28 3908868223491113 l006 ln(5735/8478) 3908868225343993 r005 Re(z^2+c),c=33/106+23/53*I,n=36 3908868229573846 m001 Robbin*(Pi*csc(5/12*Pi)/GAMMA(7/12)-exp(1)) 3908868236868480 m001 1/Catalan*Riemann3rdZero^2*ln(sqrt(Pi)) 3908868239023930 r005 Im(z^2+c),c=9/50+19/46*I,n=12 3908868245234267 m002 -5+Pi^4+Pi^6/(3*ProductLog[Pi]) 3908868253825679 m005 (1/2*3^(1/2)-4/11)/(4/11*Pi+1/7) 3908868255517934 r002 56th iterates of z^2 + 3908868279752320 r002 42th iterates of z^2 + 3908868294926810 r005 Im(z^2+c),c=-3/70+12/23*I,n=49 3908868304203799 r005 Im(z^2+c),c=-57/46+11/56*I,n=8 3908868309094515 b008 1/14+ArcCoth[1+Sqrt[5]] 3908868309094515 b008 1/14+InverseGudermannian[Pi/10] 3908868310269280 m001 (Mills+StronglyCareFree)/(Psi(2,1/3)+Si(Pi)) 3908868318918283 r002 7th iterates of z^2 + 3908868339513452 r009 Re(z^3+c),c=-39/98+1/7*I,n=23 3908868357366429 r005 Im(z^2+c),c=15/62+7/20*I,n=10 3908868370963732 a007 Real Root Of -223*x^4-2*x^3-844*x^2+729*x+419 3908868372868396 a003 cos(Pi*17/82)*cos(Pi*36/107) 3908868382248370 m001 GAMMA(1/12)^2/FeigenbaumAlpha/ln(sin(Pi/12)) 3908868383226854 m005 (1/3*Zeta(3)+1/4)/(5^(1/2)-4/7) 3908868394472819 r005 Im(z^2+c),c=-31/30+49/124*I,n=8 3908868400348408 a007 Real Root Of -562*x^4+608*x^3+167*x^2+737*x+312 3908868403518175 m001 1/BesselK(0,1)*exp(Magata)/GAMMA(2/3)^2 3908868408777639 r002 56th iterates of z^2 + 3908868414256536 m001 1/GAMMA(1/6)*Lehmer/exp(Zeta(9)) 3908868418015770 r005 Re(z^2+c),c=31/86+10/27*I,n=9 3908868428679630 l006 ln(127/6330) 3908868430416137 r009 Re(z^3+c),c=-12/23+11/37*I,n=37 3908868457326177 r005 Re(z^2+c),c=-4/3+3/166*I,n=16 3908868461551455 a001 43133785636/2889*123^(1/5) 3908868463602996 r005 Re(z^2+c),c=-9/17+10/47*I,n=48 3908868475460227 m001 (Ei(1)+Tribonacci)^MertensB2 3908868480668349 r005 Re(z^2+c),c=-59/78+1/63*I,n=52 3908868484199802 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)/(Psi(2,1/3)+ln(2)) 3908868487058941 r005 Re(z^2+c),c=-23/62+13/28*I,n=9 3908868527563811 r009 Re(z^3+c),c=-49/118+9/55*I,n=15 3908868535780858 m005 (-1/40+3/8*5^(1/2))/(3*Catalan-2/3) 3908868544266065 m001 (sqrt(2)*sqrt(3)-sqrt(Pi))/sqrt(3) 3908868544266065 m001 1/3*(2^(1/2)*3^(1/2)-Pi^(1/2))*3^(1/2) 3908868548729621 m001 GAMMA(7/12)/exp(FeigenbaumB)*sin(Pi/5) 3908868550690091 m001 (CareFree+Kolakoski)/(Pi+ln(2)) 3908868561552774 a001 32264490531/2161*123^(1/5) 3908868570870224 r005 Im(z^2+c),c=13/118+11/26*I,n=27 3908868576142770 a001 591286729879/39603*123^(1/5) 3908868578271422 a001 774004377960/51841*123^(1/5) 3908868578581988 a001 4052739537881/271443*123^(1/5) 3908868578627299 a001 1515744265389/101521*123^(1/5) 3908868578655303 a001 3278735159921/219602*123^(1/5) 3908868578773928 a001 2504730781961/167761*123^(1/5) 3908868579587001 a001 956722026041/64079*123^(1/5) 3908868581347784 m001 1/TwinPrimes^2*Salem/exp(GAMMA(11/24)) 3908868585159884 a001 182717648081/12238*123^(1/5) 3908868589807660 r005 Re(z^2+c),c=-69/122+13/31*I,n=3 3908868591287555 g006 Psi(1,10/11)+Psi(1,5/8)+Psi(1,5/7)-Psi(1,5/9) 3908868607569863 b008 6^ArcCoth[5]*E 3908868612350631 m001 (ln(2+3^(1/2))-GaussAGM)/(MertensB3-Paris) 3908868612619322 r005 Im(z^2+c),c=9/50+13/22*I,n=11 3908868623356990 a001 139583862445/9349*123^(1/5) 3908868629129311 m001 ln(Zeta(5))*Ei(1)^2/gamma^2 3908868645442205 m001 1/Sierpinski*ln(FeigenbaumB)^2/gamma^2 3908868647074246 a001 3/34*10946^(19/29) 3908868662399335 r005 Re(z^2+c),c=-25/38+14/41*I,n=38 3908868669740834 r002 14th iterates of z^2 + 3908868670540729 r005 Re(z^2+c),c=5/19+1/28*I,n=24 3908868672689553 r002 33th iterates of z^2 + 3908868677179302 a001 317811/1364*199^(30/31) 3908868690577142 v002 sum(1/(3^n*(29*n^2-34*n+14)),n=1..infinity) 3908868698474874 m001 (Zeta(1/2)+Gompertz)/(Zeta(5)-exp(Pi)) 3908868705462201 r009 Im(z^3+c),c=-9/46+11/14*I,n=2 3908868705833793 r002 43th iterates of z^2 + 3908868715048531 m001 (ArtinRank2+OneNinth)/(Si(Pi)+exp(-1/2*Pi)) 3908868730055663 r009 Im(z^3+c),c=-6/23+41/56*I,n=14 3908868738383239 r005 Im(z^2+c),c=5/18+18/53*I,n=14 3908868755575495 r005 Re(z^2+c),c=-55/106+16/57*I,n=64 3908868755754998 h001 (-11*exp(4)+8)/(-7*exp(3)-11) 3908868777954355 m001 (BesselI(1,2)+ZetaP(3))/(Pi+exp(1/Pi)) 3908868788749766 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^Salem/Zeta(1/2) 3908868792227721 b008 14*Sqrt[6]+Sqrt[23] 3908868812239207 m001 (2^(1/2)+3^(1/2))/(Sarnak+StolarskyHarborth) 3908868820699978 m005 (1/2*gamma-2/5)/(11/12*5^(1/2)+4/5) 3908868841303080 m001 (MinimumGamma+Porter)/(RenyiParking+ZetaQ(4)) 3908868845599161 m001 (cos(1/12*Pi)+Trott)/(GAMMA(2/3)+ln(Pi)) 3908868859783449 r005 Re(z^2+c),c=-67/126+9/50*I,n=25 3908868868393953 r005 Re(z^2+c),c=-61/118+13/57*I,n=17 3908868877588380 m005 (1/2*Catalan-9/10)/(8/9*gamma-2/5) 3908868884814367 r005 Re(z^2+c),c=8/21+2/9*I,n=55 3908868885163874 a001 53316291173/3571*123^(1/5) 3908868888132425 p001 sum((-1)^n/(378*n+229)/(3^n),n=0..infinity) 3908868897005084 r005 Im(z^2+c),c=35/122+43/60*I,n=3 3908868911716516 a007 Real Root Of -201*x^4-888*x^3-425*x^2+9*x+418 3908868918587408 a007 Real Root Of -199*x^4+374*x^3+18*x^2+641*x-271 3908868922643630 m001 1/GAMMA(7/24)^2*GAMMA(2/3)*exp(Zeta(7)) 3908868926186026 r002 31th iterates of z^2 + 3908868936296268 h001 (1/3*exp(1)+1/8)/(10/11*exp(1)+1/6) 3908868936296268 m005 (1/3*exp(1)+1/8)/(10/11*exp(1)+1/6) 3908868941586121 m001 1/exp(OneNinth)/MadelungNaCl/GAMMA(1/4)^2 3908868960641558 a003 sin(Pi*8/73)-sin(Pi*20/77) 3908868962466773 p003 LerchPhi(1/10,1,337/122) 3908868963236605 r005 Im(z^2+c),c=-5/7+10/101*I,n=33 3908868999719705 a007 Real Root Of 5*x^4+46*x^3+490*x^2-882*x-417 3908868999745369 r009 Im(z^3+c),c=-9/19+10/59*I,n=3 3908869001099584 r005 Im(z^2+c),c=9/38+11/35*I,n=16 3908869001494841 r002 49th iterates of z^2 + 3908869010760432 r005 Im(z^2+c),c=-21/23+5/18*I,n=23 3908869014971169 r005 Im(z^2+c),c=5/28+2/5*I,n=5 3908869024684520 r002 58th iterates of z^2 + 3908869026992234 m007 (-1/4*gamma-3/5)/(-4/5*gamma-8/5*ln(2)-1/3) 3908869030783341 r005 Re(z^2+c),c=-55/102+5/42*I,n=59 3908869036070216 a007 Real Root Of -281*x^4-997*x^3+337*x^2-203*x+113 3908869036604743 m001 (Si(Pi)+4)/(-FeigenbaumAlpha+4) 3908869049487909 l006 ln(1428/2111) 3908869051786726 m001 (OneNinth-TwinPrimes)/Riemann1stZero 3908869054142309 r005 Re(z^2+c),c=-25/46+1/32*I,n=28 3908869057766313 a007 Real Root Of 111*x^4+412*x^3+127*x^2+993*x+634 3908869071412605 r005 Im(z^2+c),c=1/122+33/64*I,n=16 3908869086509676 r004 Re(z^2+c),c=2/5+9/20*I,z(0)=exp(5/8*I*Pi),n=13 3908869101542023 r005 Re(z^2+c),c=1/60+15/59*I,n=6 3908869173676341 h001 (5/8*exp(2)+5/8)/(3/11*exp(1)+3/5) 3908869196546417 r002 21th iterates of z^2 + 3908869200256935 r005 Re(z^2+c),c=-31/78+17/30*I,n=62 3908869205592248 m001 Zeta(9)^2*Zeta(3)*exp(sinh(1)) 3908869206716352 m002 -3+E^Pi/Pi^3+2/ProductLog[Pi] 3908869209329765 r005 Re(z^2+c),c=-13/10+3/209*I,n=18 3908869209661359 m001 GAMMA(5/6)*StolarskyHarborth^Totient 3908869214008324 b008 EulerGamma*ArcCsc[2*E^2] 3908869220025666 m008 (1/2*Pi^6-3)/(4*Pi^5-2) 3908869225705683 a007 Real Root Of -749*x^4+654*x^3+933*x^2+508*x-2 3908869233118600 r004 Re(z^2+c),c=7/18-2/9*I,z(0)=exp(5/8*I*Pi),n=49 3908869246705269 r008 a(0)=0,K{-n^6,-1-34*n^3+21*n^2+39*n} 3908869248819433 a007 Real Root Of -245*x^4+544*x^3-826*x^2+830*x-225 3908869250013790 m005 (1/3*Pi+2/3)/(2/5*Pi-9/11) 3908869252691210 m005 (1/2*Zeta(3)-1/4)/(4/9*Zeta(3)-4/9) 3908869268611555 r005 Im(z^2+c),c=23/102+8/23*I,n=10 3908869274695110 m005 (1/2*2^(1/2)+1/4)/(2/3*exp(1)+7/11) 3908869275780228 r005 Re(z^2+c),c=-25/46+1/42*I,n=35 3908869282860993 r005 Re(z^2+c),c=-53/98+5/49*I,n=27 3908869284548211 a007 Real Root Of -361*x^4-166*x^3+7*x^2+751*x+291 3908869285414611 r009 Im(z^3+c),c=-1/126+33/41*I,n=50 3908869294307342 m004 -6+18/Log[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 3908869294539764 m005 (1/2*5^(1/2)-7/11)/(1/5*Zeta(3)-4/11) 3908869304980674 p004 log(27409/18541) 3908869305997415 r005 Im(z^2+c),c=37/114+9/41*I,n=47 3908869317054641 r009 Im(z^3+c),c=-25/74+13/34*I,n=15 3908869319473489 a001 1/521*(1/2*5^(1/2)+1/2)^25*3^(3/17) 3908869321494902 r009 Im(z^3+c),c=-1/54+49/61*I,n=64 3908869327455256 l003 BesselJ(3,49/85) 3908869343878336 r005 Im(z^2+c),c=-15/106+7/11*I,n=48 3908869349278891 r005 Re(z^2+c),c=45/122+6/25*I,n=40 3908869350249118 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(5/8*I*Pi),n=61 3908869350496021 r005 Im(z^2+c),c=3/62+20/43*I,n=30 3908869366536094 m001 BesselI(0,1)*(GAMMA(23/24)-exp(sqrt(2))) 3908869370162055 m005 (1/2*exp(1)-3/5)/(6*Pi+4/7) 3908869377706459 r009 Re(z^3+c),c=-49/102+11/43*I,n=18 3908869378753729 r002 5th iterates of z^2 + 3908869390944250 a007 Real Root Of 260*x^4-492*x^3-857*x^2-912*x-261 3908869396999944 m001 (FeigenbaumD+MertensB1)/(Si(Pi)-ln(3)) 3908869399219613 r005 Im(z^2+c),c=1/42+31/45*I,n=3 3908869454201592 a001 7/610*1346269^(1/4) 3908869468302699 m001 (MasserGramain+Totient)/(ln(3)-ErdosBorwein) 3908869480064527 r005 Re(z^2+c),c=-11/122+29/45*I,n=63 3908869485297797 a007 Real Root Of -650*x^4+756*x^3+581*x^2-27*x-39 3908869487022765 v002 sum(1/(5^n*(18*n^2-14*n+54)),n=1..infinity) 3908869513205501 r005 Re(z^2+c),c=-13/24+1/13*I,n=32 3908869516667110 r005 Im(z^2+c),c=-8/11+2/39*I,n=61 3908869521174434 m006 (2/Pi-3/5)/(3/5*ln(Pi)+1/4) 3908869521799787 r005 Im(z^2+c),c=-2/21+31/56*I,n=28 3908869542261797 m001 1/LandauRamanujan^2/exp(Backhouse)^2/cosh(1)^2 3908869551468551 r002 55th iterates of z^2 + 3908869585756240 r005 Re(z^2+c),c=-17/31+1/27*I,n=16 3908869626760435 a005 (1/sin(48/127*Pi))^629 3908869636331465 a007 Real Root Of 452*x^4-880*x^3+595*x^2+261*x-52 3908869654365362 m001 Chi(1)-Sierpinski^GAMMA(13/24) 3908869660095751 r005 Re(z^2+c),c=7/20+2/23*I,n=53 3908869664089848 r005 Im(z^2+c),c=-93/74+7/59*I,n=10 3908869669379448 r002 29th iterates of z^2 + 3908869670021817 r005 Re(z^2+c),c=13/38+5/33*I,n=9 3908869680513298 a003 sin(Pi*22/83)/cos(Pi*29/66) 3908869681561304 m005 (1/2*gamma-5/6)/(2/3*Catalan-3/4) 3908869686175763 r005 Im(z^2+c),c=37/114+13/59*I,n=41 3908869720954776 m001 (exp(1/Pi)-gamma(1))/(gamma(3)+ZetaQ(4)) 3908869722996206 r002 60th iterates of z^2 + 3908869731012061 a003 cos(Pi*16/103)-sin(Pi*37/99) 3908869746565501 m005 (1/2*Pi-7/11)/(7/8*3^(1/2)+7/8) 3908869750644891 m004 -2/5-125*Pi+3*Cos[Sqrt[5]*Pi] 3908869756931570 m001 (FeigenbaumB+FellerTornier)/(Magata-ZetaP(2)) 3908869757632202 m001 1/LambertW(1)*exp(FeigenbaumB)/Zeta(5) 3908869762190722 a007 Real Root Of 254*x^4+905*x^3-327*x^2+278*x+836 3908869775141077 s002 sum(A023887[n]/(16^n),n=1..infinity) 3908869793585060 m004 -6+125*Pi+(Sqrt[5]*Pi)/2+Sin[Sqrt[5]*Pi] 3908869796063986 m001 (2^(1/3)-sin(1))/(cos(1/5*Pi)+MertensB1) 3908869803711094 r002 14th iterates of z^2 + 3908869804267444 m001 (Ei(1,1)+ln(2+3^(1/2)))/(Zeta(3)-cos(1/5*Pi)) 3908869835872796 r002 30th iterates of z^2 + 3908869837082530 r005 Im(z^2+c),c=7/27+8/27*I,n=34 3908869837986711 r005 Re(z^2+c),c=-61/114+15/61*I,n=20 3908869840016343 r005 Re(z^2+c),c=-2/3+56/211*I,n=18 3908869842506089 a007 Real Root Of 549*x^4-958*x^3-135*x^2-376*x+212 3908869854689540 r005 Re(z^2+c),c=-19/42+1/63*I,n=3 3908869861787836 m005 (1/2*exp(1)+2/5)/(6/11*Catalan-5) 3908869862767467 r005 Im(z^2+c),c=-7/12+3/83*I,n=3 3908869872721176 r002 14th iterates of z^2 + 3908869882163463 l006 ln(5689/8410) 3908869886538617 r005 Re(z^2+c),c=1/20+21/34*I,n=28 3908869887885045 r009 Im(z^3+c),c=-21/52+15/43*I,n=22 3908869891436737 l006 ln(108/5383) 3908869891916740 r002 21th iterates of z^2 + 3908869893537048 a007 Real Root Of 630*x^4-744*x^3+983*x^2+336*x-78 3908869898799076 r002 7th iterates of z^2 + 3908869900624534 r002 49th iterates of z^2 + 3908869911400711 r005 Re(z^2+c),c=-25/52+18/59*I,n=13 3908869934442804 r005 Re(z^2+c),c=-61/114+1/9*I,n=10 3908869949462733 r005 Re(z^2+c),c=-29/56+9/34*I,n=22 3908869950182042 r005 Re(z^2+c),c=-9/16+50/103*I,n=46 3908869951937675 r009 Re(z^3+c),c=-29/60+13/59*I,n=17 3908869956890172 r005 Im(z^2+c),c=-41/118+31/50*I,n=43 3908869958877303 a007 Real Root Of -929*x^4+654*x^3-143*x^2+702*x+357 3908869962640417 m001 (Pi+Catalan)/(ArtinRank2+PolyaRandomWalk3D) 3908869964350078 m001 1/ln(PrimesInBinary)^2*MadelungNaCl^2/Zeta(7) 3908869966040698 a007 Real Root Of 248*x^4-966*x^3-876*x^2-236*x+278 3908869991548399 a007 Real Root Of -201*x^4-921*x^3-809*x^2-942*x+597 3908869994176903 a001 1597/7*521^(37/45) 3908869998869655 r002 32th iterates of z^2 + 3908870000534633 r002 11th iterates of z^2 + 3908870009974624 a002 6^(11/12)-10^(1/10) 3908870010496548 r005 Re(z^2+c),c=-27/50+4/37*I,n=48 3908870010830280 r009 Im(z^3+c),c=-19/102+25/58*I,n=17 3908870015813743 r002 28th iterates of z^2 + 3908870016725509 a007 Real Root Of 403*x^4+553*x^3-395*x^2-625*x+25 3908870017347360 m004 -3/5+125*Pi+Cos[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi] 3908870026161825 r009 Im(z^3+c),c=-7/78+17/33*I,n=2 3908870036282179 r002 7th iterates of z^2 + 3908870042086763 r005 Im(z^2+c),c=-23/90+29/48*I,n=13 3908870047073237 r005 Re(z^2+c),c=-59/98+11/41*I,n=20 3908870056018376 a007 Real Root Of 911*x^4-563*x^3-721*x^2-935*x+488 3908870076060670 r005 Im(z^2+c),c=19/70+17/60*I,n=54 3908870106133718 r005 Re(z^2+c),c=-55/102+5/42*I,n=61 3908870106988630 a003 sin(Pi*7/65)-sin(Pi*9/35) 3908870119700038 r005 Re(z^2+c),c=-49/94+4/15*I,n=62 3908870131783207 m001 1/Zeta(3)/ln(FeigenbaumDelta)/sinh(1)^2 3908870144070166 r005 Re(z^2+c),c=-14/29+11/25*I,n=13 3908870148858496 r008 a(0)=3,K{-n^6,-31+29*n+25*n^2-25*n^3} 3908870153498559 a003 cos(Pi*21/104)*cos(Pi*21/62) 3908870161220169 l006 ln(4261/6299) 3908870161220169 p004 log(6299/4261) 3908870163227077 r009 Re(z^3+c),c=-17/40+11/63*I,n=15 3908870167979870 m001 FransenRobinson^GAMMA(19/24)-ln(gamma) 3908870168106464 r009 Im(z^3+c),c=-2/23+25/56*I,n=13 3908870174134460 a007 Real Root Of 222*x^4+662*x^3-732*x^2+493*x+822 3908870178885860 m001 (Zeta(5)-BesselI(0,2))/(Totient+Tribonacci) 3908870200329030 r005 Re(z^2+c),c=-23/44+8/31*I,n=47 3908870204777509 r005 Im(z^2+c),c=-7/10+6/241*I,n=21 3908870213587447 a001 843/8*3524578^(2/23) 3908870216387670 r008 a(0)=4,K{-n^6,4+7*n^3+2*n^2-n} 3908870228402266 a007 Real Root Of 205*x^4+199*x^3-785*x^2-754*x+398 3908870228613444 r002 37th iterates of z^2 + 3908870229519226 m008 (5/6*Pi^5-1/6)/(1/2*Pi^2-5) 3908870231545873 a007 Real Root Of -76*x^4+154*x^3-607*x^2-53*x+83 3908870240299381 a001 11/610*6765^(5/57) 3908870247292556 r002 62th iterates of z^2 + 3908870266693995 m001 (Zeta(3)+ErdosBorwein)/(Rabbit+ZetaQ(3)) 3908870270381395 r005 Re(z^2+c),c=5/17+29/61*I,n=13 3908870270707664 r005 Re(z^2+c),c=-7/27+31/55*I,n=13 3908870275321588 r009 Re(z^3+c),c=-23/60+35/59*I,n=6 3908870278350845 m005 (1/2*5^(1/2)-6)/(7/9*gamma+4/5) 3908870289653062 m005 (1/3*5^(1/2)-1/3)/(1/8*exp(1)+5/7) 3908870299842684 r009 Re(z^3+c),c=-14/31+2/9*I,n=11 3908870321819396 r005 Re(z^2+c),c=1/4+1/42*I,n=49 3908870323170675 r005 Re(z^2+c),c=-29/52+12/29*I,n=36 3908870338021833 r009 Re(z^3+c),c=-3/58+9/25*I,n=6 3908870348118992 b008 13*Sqrt[DawsonF[1/11]] 3908870350828120 a007 Real Root Of 227*x^4+939*x^3+177*x^2-93*x+19 3908870353603494 a007 Real Root Of 294*x^4+318*x^3+817*x^2-538*x-323 3908870354789657 m001 5^(1/2)*Ei(1)/Trott 3908870358316099 r002 50th iterates of z^2 + 3908870370469199 m001 LaplaceLimit^2*Kolakoski^2*exp(GAMMA(1/4))^2 3908870374205877 m001 (Khinchin+QuadraticClass)/(ln(2)+Ei(1,1)) 3908870381843170 a007 Real Root Of -272*x^4-958*x^3+613*x^2+687*x-397 3908870394636862 m001 (-GolombDickman+Rabbit)/(gamma+ln(5)) 3908870397154936 a001 225851433717/2*14662949395604^(20/21) 3908870397154936 a001 4052739537881/2*14662949395604^(6/7) 3908870397154936 a001 10610209857723/2*23725150497407^(13/16) 3908870397154936 a001 10610209857723/2*505019158607^(13/14) 3908870400022031 r005 Im(z^2+c),c=29/126+11/17*I,n=3 3908870409802045 m001 Backhouse^2*exp(Artin)/FransenRobinson^2 3908870410053932 h001 (8/9*exp(1)+1/3)/(1/8*exp(1)+4/11) 3908870431336824 m001 (Shi(1)+gamma(3))/(-Zeta(1,2)+Pi^(1/2)) 3908870433713878 s002 sum(A250788[n]/(pi^n+1),n=1..infinity) 3908870437465207 a007 Real Root Of -240*x^4+905*x^3+675*x^2+876*x-494 3908870445247651 a007 Real Root Of -21*x^4-843*x^3-881*x^2-597*x+630 3908870455842714 m001 GAMMA(1/3)^2*ln(Ei(1))/GAMMA(19/24) 3908870460835146 a008 Real Root of x^4-x^3-14*x^2+8*x-48 3908870465097707 m001 (Catalan+ln(3))/(-2*Pi/GAMMA(5/6)+ThueMorse) 3908870465532721 m005 (1/2*Zeta(3)-8/11)/(1/9*exp(1)-5/8) 3908870470162576 r005 Im(z^2+c),c=7/60+23/55*I,n=45 3908870474011281 r005 Im(z^2+c),c=-73/110+19/56*I,n=25 3908870479367096 r005 Re(z^2+c),c=-16/31+9/59*I,n=8 3908870490929056 m002 (3*Coth[Pi])/(E^Pi*Pi^3*ProductLog[Pi]) 3908870509229228 a007 Real Root Of 681*x^4-600*x^3+503*x^2-821*x+264 3908870526524990 m001 (ln(3)-3^(1/3))/(Cahen+CopelandErdos) 3908870527637533 a007 Real Root Of -489*x^4+450*x^3-423*x^2+650*x+357 3908870528546801 a007 Real Root Of -246*x^4-683*x^3+966*x^2-401*x+311 3908870530438954 h003 exp(Pi*(12^(3/10)+19^(7/10))) 3908870530438954 h008 exp(Pi*(12^(3/10)+19^(7/10))) 3908870534590492 m001 (arctan(1/2)-Zeta(1,-1))/(cos(1/12*Pi)+Cahen) 3908870536064225 r009 Re(z^3+c),c=-13/25+4/13*I,n=40 3908870540214450 m001 (gamma+GAMMA(13/24))/(-Stephens+ZetaQ(3)) 3908870542381163 m008 (3/4*Pi^6-1/5)/(3/5*Pi^5+4/5) 3908870546884585 m001 gamma(1)/(ln(3)+LandauRamanujan) 3908870561793384 m005 (1/2*Zeta(3)-1/5)/(1/11*Zeta(3)+11/12) 3908870571333508 r005 Im(z^2+c),c=3/44+25/44*I,n=20 3908870571909401 r005 Re(z^2+c),c=-1/70+7/40*I,n=8 3908870583280461 a007 Real Root Of 603*x^4-133*x^3-466*x^2-995*x+454 3908870590096521 m001 1/Cahen/Backhouse*ln((3^(1/3))) 3908870591800943 m005 (3/4*Pi-1)/(1/6*exp(1)-4/5) 3908870593132900 r002 64th iterates of z^2 + 3908870596718006 m001 ln(5)^Rabbit*Zeta(1,-1)^Rabbit 3908870597083875 m001 (ln(2)+Champernowne)/(Gompertz-Khinchin) 3908870613532642 r005 Im(z^2+c),c=-19/86+26/35*I,n=17 3908870629910434 m001 GAMMA(5/24)^2*ln(Kolakoski)*Zeta(1,2)^2 3908870634888333 a007 Real Root Of -176*x^4-539*x^3-138*x^2+944*x+362 3908870636214503 r005 Re(z^2+c),c=-59/110+3/26*I,n=20 3908870637334356 r009 Im(z^3+c),c=-5/11+6/19*I,n=28 3908870637700568 r008 a(0)=4,K{-n^6,65-10*n^3+18*n^2-63*n} 3908870653688381 m001 BesselI(0,1)-sin(1/12*Pi)^Paris 3908870661401024 a007 Real Root Of 699*x^4-429*x^3+158*x^2-821*x-387 3908870669866428 m006 (1/6/Pi+2/5)/(5*exp(Pi)+1/5) 3908870679615895 a001 10182505537/682*123^(1/5) 3908870698410557 r005 Re(z^2+c),c=5/102+21/34*I,n=39 3908870699521324 r005 Re(z^2+c),c=-55/102+5/42*I,n=63 3908870713627279 r005 Re(z^2+c),c=-37/82+29/56*I,n=55 3908870714763054 m001 (Robbin-StronglyCareFree)/(Ei(1)+GAMMA(23/24)) 3908870716445345 r005 Re(z^2+c),c=-8/27+30/47*I,n=50 3908870721599109 l006 ln(2833/4188) 3908870730625867 a007 Real Root Of 765*x^4-505*x^3-55*x^2-648*x+274 3908870737425158 a001 3524667*199^(5/11) 3908870745916191 r002 42th iterates of z^2 + 3908870746520144 r009 Im(z^3+c),c=-19/102+25/58*I,n=19 3908870759748687 a007 Real Root Of 190*x^4+789*x^3-16*x^2-619*x+591 3908870762573047 m001 (Catalan-QuadraticClass)/ln(2^(1/2)+1) 3908870770583515 a001 3/1149851*123^(9/16) 3908870773360460 r005 Re(z^2+c),c=-55/102+2/17*I,n=35 3908870784038759 a007 Real Root Of -452*x^4-52*x^3-915*x^2+291*x+261 3908870800250811 r005 Re(z^2+c),c=37/90+10/29*I,n=14 3908870800652120 r005 Im(z^2+c),c=2/25+15/31*I,n=10 3908870801142591 r005 Im(z^2+c),c=1/12+19/43*I,n=49 3908870823962201 a007 Real Root Of -524*x^4-685*x^3-949*x^2+143*x+7 3908870824535436 s001 sum(exp(-Pi/3)^n*A031708[n],n=1..infinity) 3908870824535622 s001 sum(exp(-Pi/3)^n*A156814[n],n=1..infinity) 3908870827478623 r002 25th iterates of z^2 + 3908870827927552 m005 (3/5*Catalan-1/3)/(1/3*Catalan-1/4) 3908870834431301 l006 ln(197/9819) 3908870841557436 r005 Re(z^2+c),c=-17/22+8/69*I,n=32 3908870854900044 m001 (Mills+Totient)/(ArtinRank2-BesselJ(0,1)) 3908870866493701 l006 ln(3788/3939) 3908870878309102 a001 8*39603^(18/49) 3908870899470167 r009 Im(z^3+c),c=-2/15+26/59*I,n=13 3908870912304181 r002 17th iterates of z^2 + 3908870916596226 r005 Im(z^2+c),c=3/74+8/17*I,n=41 3908870922019477 m005 (1/2*gamma-3/8)/(5/9*exp(1)+7/10) 3908870924511868 a007 Real Root Of -393*x^4+536*x^3+259*x^2+221*x+88 3908870929961746 a001 8*5778^(22/49) 3908870933472447 r005 Re(z^2+c),c=21/86+25/51*I,n=38 3908870935492167 m001 (Landau-MertensB3)/(ln(5)+HardyLittlewoodC5) 3908870947253340 m001 BesselI(0,2)/(GolombDickman^ln(Pi)) 3908870949640783 r005 Re(z^2+c),c=-55/102+5/42*I,n=64 3908870952741266 s002 sum(A160212[n]/(n*exp(pi*n)-1),n=1..infinity) 3908870952933829 m001 Pi*(2^(1/2)*Si(Pi)-exp(1/Pi)) 3908870969954195 r005 Im(z^2+c),c=-7/106+32/55*I,n=28 3908870970266108 m001 (ln(5)+Mills)/(RenyiParking-ZetaQ(4)) 3908870980450278 r005 Im(z^2+c),c=-7/74+28/51*I,n=41 3908870985469136 r005 Im(z^2+c),c=35/106+9/43*I,n=58 3908870990201341 r005 Re(z^2+c),c=13/110+17/28*I,n=14 3908870991249758 r005 Im(z^2+c),c=-9/29+14/29*I,n=4 3908870999958622 m003 5/2+(41*Sqrt[5])/64+Cos[1/2+Sqrt[5]/2]/2 3908871015833354 r005 Im(z^2+c),c=-1/23+16/27*I,n=13 3908871024634565 a001 199/28657*9227465^(7/13) 3908871025586521 a001 199/24157817*2504730781961^(7/13) 3908871025587652 a001 199/832040*4807526976^(7/13) 3908871036238266 a001 9349/5*233^(29/52) 3908871086474075 r005 Im(z^2+c),c=-49/102+4/51*I,n=10 3908871096766502 h001 (1/6*exp(1)+4/9)/(7/9*exp(1)+2/11) 3908871101200216 r009 Im(z^3+c),c=-15/34+14/43*I,n=23 3908871104976270 p001 sum(1/(349*n+277)/(6^n),n=0..infinity) 3908871111979114 m001 (Pi-ln(2))/(2*Pi/GAMMA(5/6)+ArtinRank2) 3908871124117777 r005 Im(z^2+c),c=-5/46+23/41*I,n=48 3908871126795675 r002 27th iterates of z^2 + 3908871131136473 m001 (Pi+MasserGramain)/gamma(2) 3908871134837089 r002 14th iterates of z^2 + 3908871152182785 a007 Real Root Of 804*x^4-998*x^3+716*x^2-919*x-547 3908871152440333 r005 Im(z^2+c),c=7/122+17/37*I,n=43 3908871153506466 r005 Im(z^2+c),c=1/16+25/62*I,n=5 3908871175403740 r009 Re(z^3+c),c=-9/20+3/47*I,n=7 3908871175893832 a007 Real Root Of -132*x^4-704*x^3-524*x^2+816*x-34 3908871187050993 m001 FeigenbaumC*exp(Kolakoski)/Zeta(5) 3908871191852620 r005 Im(z^2+c),c=-15/98+11/19*I,n=33 3908871199141470 m005 (1/2*3^(1/2)+1/3)/(3/11*5^(1/2)-11/12) 3908871200774546 a007 Real Root Of 204*x^4+616*x^3-575*x^2+548*x+93 3908871213255228 m001 MertensB3/(gamma(3)+Magata) 3908871221734986 r005 Re(z^2+c),c=-13/24+2/25*I,n=48 3908871234551887 m001 (CareFree+Kolakoski)/(PlouffeB-Thue) 3908871245824016 p003 LerchPhi(1/25,3,403/136) 3908871246760922 r009 Im(z^3+c),c=-47/106+11/34*I,n=21 3908871248652661 a001 7/1597*63245986^(1/4) 3908871249099565 r005 Im(z^2+c),c=6/17+5/59*I,n=13 3908871251728674 a008 Real Root of (-3-3*x+2*x^2+4*x^3-5*x^4+x^5) 3908871258081500 r005 Re(z^2+c),c=-14/27+13/46*I,n=61 3908871278705670 a007 Real Root Of -586*x^4+562*x^3+238*x^2+181*x-127 3908871284501997 a001 1/2207*(1/2*5^(1/2)+1/2)^11*47^(8/21) 3908871285019242 l006 ln(4238/6265) 3908871295027560 a001 281/7*225851433717^(19/24) 3908871309435707 r005 Re(z^2+c),c=-17/36+16/41*I,n=23 3908871311145923 p001 sum(1/(355*n+256)/(625^n),n=0..infinity) 3908871311877563 m001 Paris/exp(LandauRamanujan)/sinh(1) 3908871324004896 r005 Re(z^2+c),c=-21/34+29/93*I,n=14 3908871332153660 m005 (1/2*5^(1/2)-9/11)/(5*2^(1/2)+3/5) 3908871336416885 m001 (Totient+Trott2nd)/(sin(1/5*Pi)+Zeta(1,2)) 3908871336609784 h001 (3/7*exp(1)+4/9)/(4/9*exp(2)+5/6) 3908871338282092 a007 Real Root Of -241*x^4-965*x^3-258*x^2-750*x-361 3908871338455173 m001 GAMMA(11/12)-Pi-MasserGramainDelta 3908871351186519 r005 Im(z^2+c),c=-4/29+26/43*I,n=38 3908871365535846 m001 (MertensB1-Psi(1,1/3))/(-Otter+TreeGrowth2nd) 3908871366575892 r005 Re(z^2+c),c=-55/102+5/42*I,n=62 3908871377829438 r002 63th iterates of z^2 + 3908871402991353 r002 7th iterates of z^2 + 3908871418596833 a007 Real Root Of 134*x^4+515*x^3-118*x^2-197*x+508 3908871421541414 r005 Re(z^2+c),c=15/86+33/59*I,n=35 3908871430176798 b008 3+ArcCosh[3^(1/3)] 3908871432670014 r005 Im(z^2+c),c=-11/74+24/41*I,n=59 3908871449929528 m001 (-2^(1/2)+1/3)/(BesselJ(0,1)+2) 3908871465326062 a007 Real Root Of -282*x^4-997*x^3+446*x^2+72*x-244 3908871474878093 a007 Real Root Of -162*x^4-382*x^3+902*x^2-492*x-700 3908871486760580 s002 sum(A245531[n]/(n^3*2^n+1),n=1..infinity) 3908871487010609 m001 (TreeGrowth2nd+ZetaP(2))/(1+GlaisherKinkelin) 3908871503221467 a003 cos(Pi*8/105)-sin(Pi*14/71) 3908871509892969 r009 Im(z^3+c),c=-1/3+13/41*I,n=2 3908871510459697 a001 7/4181*2971215073^(1/4) 3908871513966664 m001 GAMMA(17/24)^2/Catalan/exp(GAMMA(7/12)) 3908871520897878 s002 sum(A026950[n]/(n^2*pi^n+1),n=1..infinity) 3908871524225384 r008 a(0)=4,K{-n^6,7+4*n^3-6*n^2+9*n} 3908871529521657 r009 Re(z^3+c),c=-21/50+7/44*I,n=6 3908871534482740 r005 Im(z^2+c),c=23/114+14/37*I,n=13 3908871536195520 r001 15i'th iterates of 2*x^2-1 of 3908871539907942 s002 sum(A234753[n]/(n^2*exp(n)-1),n=1..infinity) 3908871543341767 r005 Re(z^2+c),c=17/46+13/64*I,n=58 3908871548656832 a001 7/10946*139583862445^(1/4) 3908871554229718 a001 7/28657*6557470319842^(1/4) 3908871557673952 a001 7/17711*956722026041^(1/4) 3908871558458237 r005 Re(z^2+c),c=-4/9+24/47*I,n=59 3908871560189341 r009 Re(z^3+c),c=-11/26+9/52*I,n=11 3908871565011254 a007 Real Root Of -998*x^4-135*x^3-394*x^2+4*x+77 3908871567877504 l006 ln(5643/8342) 3908871572263959 a001 7/6765*20365011074^(1/4) 3908871579440366 r005 Im(z^2+c),c=5/34+17/43*I,n=43 3908871600385003 r002 16th iterates of z^2 + 3908871617503814 m005 (1/3*exp(1)-2/5)/(4/5*3^(1/2)-1/11) 3908871624855344 r009 Im(z^3+c),c=-9/58+49/64*I,n=18 3908871625067245 r009 Im(z^3+c),c=-15/38+14/29*I,n=6 3908871642652637 r005 Im(z^2+c),c=-9/14+16/221*I,n=48 3908871651569712 a007 Real Root Of -384*x^4+630*x^3+564*x^2+443*x-288 3908871658926650 m001 (Zeta(1/2)+FeigenbaumB)/(Niven-Paris) 3908871659528593 h001 (1/5*exp(2)+4/7)/(1/9*exp(1)+2/9) 3908871672265361 a001 7/2584*433494437^(1/4) 3908871688466100 a003 cos(Pi*17/117)-sin(Pi*39/101) 3908871691033416 m005 (1/3*Zeta(3)+2/7)/(5/7*Pi-4) 3908871692631387 m001 sin(1/12*Pi)/(ZetaP(4)^Shi(1)) 3908871692908496 b008 E^6*Cos[1/4] 3908871697888626 m001 (Shi(1)-gamma(1))/(exp(-1/2*Pi)+FeigenbaumD) 3908871728755347 m001 1/arctan(1/2)/Zeta(1,2)/exp(sqrt(Pi)) 3908871731135828 m001 (TreeGrowth2nd+Weierstrass)/(Zeta(5)+Conway) 3908871735711130 m005 (9/4+1/4*5^(1/2))/(3/4*gamma+2/7) 3908871744338861 m001 1/ln(GlaisherKinkelin)*Cahen/Robbin 3908871746049736 m001 (-GAMMA(5/6)+FeigenbaumMu)/(1+Zeta(1,2)) 3908871752117773 a007 Real Root Of -806*x^4-533*x^3-960*x^2+863*x+471 3908871755180118 r002 4th iterates of z^2 + 3908871771223177 m005 (1/2*exp(1)-1/10)/(7/9*Pi+7/9) 3908871779658926 a007 Real Root Of -225*x^4+664*x^3-352*x^2+98*x+137 3908871788380797 r005 Im(z^2+c),c=-31/26+5/118*I,n=13 3908871798643015 r005 Im(z^2+c),c=3/122+25/52*I,n=52 3908871804937997 m005 (1/2*exp(1)+1/3)/(5*Catalan-1/4) 3908871805835390 m001 1/GAMMA(19/24)^2*ArtinRank2^2*exp(Zeta(3))^2 3908871809947154 r002 61th iterates of z^2 + 3908871824207844 m005 (1/2*gamma+5/7)/(2/5*2^(1/2)+2) 3908871824829836 a007 Real Root Of 20*x^4+779*x^3-91*x^2+674*x-311 3908871826748044 a001 199/987*17711^(7/13) 3908871831888874 m001 1/Salem^2*GaussKuzminWirsing*exp(gamma) 3908871833012308 r002 15th iterates of z^2 + 3908871840816845 r005 Im(z^2+c),c=1/62+25/42*I,n=29 3908871848874671 m001 (Landau+Porter)/(ln(2+3^(1/2))-FeigenbaumC) 3908871858065360 r005 Re(z^2+c),c=-67/118+13/41*I,n=23 3908871864423479 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/8*I*Pi),n=27 3908871881821615 r002 27th iterates of z^2 + 3908871887580452 m001 StronglyCareFree^(Zeta(5)*FeigenbaumMu) 3908871899758954 m005 (1/3*Zeta(3)+2/11)/(6/11*3^(1/2)+6/11) 3908871913511248 r009 Im(z^3+c),c=-15/31+5/17*I,n=52 3908871925703086 r005 Im(z^2+c),c=1/64+18/37*I,n=36 3908871941486254 r005 Im(z^2+c),c=-47/78+21/59*I,n=5 3908871941998518 b008 -39+LogGamma[Sqrt[3]] 3908871964259913 r005 Re(z^2+c),c=-4/25+31/44*I,n=51 3908871965172751 p004 log(31223/21121) 3908871969921709 a001 1/5778*(1/2*5^(1/2)+1/2)^13*47^(8/21) 3908871975618422 r005 Im(z^2+c),c=13/56+33/61*I,n=37 3908871978738117 l006 ln(89/4436) 3908871981653288 r002 27th iterates of z^2 + 3908871982770933 m005 (1/3*Zeta(3)-1/6)/(3/11*Pi-11/12) 3908871989251565 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=29 3908872042051720 m001 (TreeGrowth2nd+ZetaP(2))/(gamma+Niven) 3908872048154695 r002 23th iterates of z^2 + 3908872050688702 r005 Re(z^2+c),c=-12/23+14/53*I,n=52 3908872054738714 a007 Real Root Of -975*x^4-334*x^3-958*x^2-67*x+123 3908872058687740 m005 (1/3*3^(1/2)+1/9)/(9/11*Zeta(3)+7/9) 3908872069923118 a001 1/15127*(1/2*5^(1/2)+1/2)^15*47^(8/21) 3908872076048727 r005 Re(z^2+c),c=11/70+35/61*I,n=61 3908872076651151 a001 322/377*28657^(19/51) 3908872081725128 m001 (Pi^(1/2))^(exp(1/Pi)/gamma) 3908872081725128 m001 sqrt(Pi)^(exp(1/Pi)/gamma) 3908872084285738 m001 (-FeigenbaumAlpha+Magata)/(exp(Pi)+gamma(2)) 3908872084513127 a001 1/39603*(1/2*5^(1/2)+1/2)^17*47^(8/21) 3908872087957361 a001 1/64079*(1/2*5^(1/2)+1/2)^18*47^(8/21) 3908872093530249 a001 1/24476*(1/2*5^(1/2)+1/2)^16*47^(8/21) 3908872095313455 r005 Im(z^2+c),c=-11/106+13/23*I,n=36 3908872096207741 r005 Im(z^2+c),c=19/66+9/34*I,n=41 3908872097824690 m004 -2+125*Pi-Log[Sqrt[5]*Pi]/4+Sin[Sqrt[5]*Pi] 3908872105178747 r005 Re(z^2+c),c=-41/78+9/41*I,n=15 3908872113122628 r005 Re(z^2+c),c=-25/46+1/46*I,n=33 3908872113818243 m001 GAMMA(23/24)^Mills*Weierstrass^Mills 3908872131727390 a001 1/9349*(1/2*5^(1/2)+1/2)^14*47^(8/21) 3908872134495484 r005 Im(z^2+c),c=17/90+9/25*I,n=20 3908872135267986 a007 Real Root Of -10*x^4-397*x^3-239*x^2+21*x+911 3908872145925738 m005 (1/2*3^(1/2)-3/11)/(5/11*2^(1/2)+7/8) 3908872146185591 a007 Real Root Of -200*x^4-532*x^3+969*x^2+12*x+159 3908872153990929 m001 (Zeta(5)+ln(Pi))^MadelungNaCl 3908872163755578 r005 Im(z^2+c),c=13/54+10/29*I,n=14 3908872174805834 a007 Real Root Of -934*x^4+848*x^3+876*x^2+295*x-278 3908872178710750 r005 Re(z^2+c),c=-55/102+5/42*I,n=60 3908872208676194 m005 (1/2*2^(1/2)+1/8)/(6/11*5^(1/2)+10/11) 3908872239115565 a007 Real Root Of -854*x^4+509*x^3-913*x^2+26*x+200 3908872255416672 a001 76/2178309*3^(3/29) 3908872273440081 m001 (3^(1/3)-Zeta(5))/Zeta(5) 3908872284865485 r005 Im(z^2+c),c=-5/27+33/56*I,n=56 3908872303133898 r009 Im(z^3+c),c=-61/126+5/17*I,n=51 3908872321283300 r005 Re(z^2+c),c=-67/98+6/37*I,n=13 3908872322920086 m001 BesselK(0,1)/exp(CopelandErdos)*sinh(1) 3908872334381743 r009 Re(z^3+c),c=-15/31+8/33*I,n=59 3908872340557153 r009 Re(z^3+c),c=-11/23+13/55*I,n=44 3908872357685305 a001 1/141*9227465^(1/4) 3908872358551264 r002 51th iterates of z^2 + 3908872362225312 m001 (MinimumGamma-ZetaQ(2))/(DuboisRaymond+Magata) 3908872393534508 a001 1/3571*(1/2*5^(1/2)+1/2)^12*47^(8/21) 3908872396006365 m001 (1/3)^GAMMA(1/12)/(GAMMA(1/3)^GAMMA(1/12)) 3908872410915854 m001 Salem-Thue^BesselI(1,2) 3908872415320666 a001 1/15129*(1/2*5^(1/2)+1/2)^5*123^(8/23) 3908872416401268 a007 Real Root Of -817*x^4+857*x^3-972*x^2-442*x+46 3908872421082661 l006 ln(1405/2077) 3908872426207726 r002 59th iterates of z^2 + 3908872431158894 m001 polylog(4,1/2)/(exp(1/Pi)^ln(1+sqrt(2))) 3908872431158894 m001 polylog(4,1/2)/(exp(1/Pi)^ln(2^(1/2)+1)) 3908872443446312 m004 -3-(5*Pi)/6+Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 3908872455027208 a007 Real Root Of 497*x^4-531*x^3-404*x^2-970*x+461 3908872463159314 a003 sin(Pi*6/59)/sin(Pi*30/101) 3908872473543272 a001 31622993/161*18^(5/21) 3908872502790143 a001 1926*28657^(2/29) 3908872516107569 m001 (Ei(1)+4)/(sin(1)+2/3) 3908872517349612 r002 22th iterates of z^2 + 3908872519077420 a007 Real Root Of -642*x^4+481*x^3+373*x^2+607*x-308 3908872539601605 a007 Real Root Of -858*x^4-809*x^3-937*x^2+755*x+410 3908872544658026 a007 Real Root Of -397*x^4-327*x^3+901*x^2+622*x-352 3908872555082797 r009 Im(z^3+c),c=-20/31+28/53*I,n=7 3908872555296808 m001 polylog(4,1/2)^MadelungNaCl/cos(1/5*Pi) 3908872555296808 m001 polylog(4,1/2)^MadelungNaCl/cos(Pi/5) 3908872564374890 r005 Re(z^2+c),c=31/98+12/23*I,n=11 3908872576726332 a007 Real Root Of -974*x^4+554*x^3-990*x^2-407*x+48 3908872588126392 m001 Catalan-Pi^exp(1/Pi) 3908872589581171 r005 Re(z^2+c),c=-33/62+4/21*I,n=50 3908872597521322 a007 Real Root Of -867*x^4+788*x^3-111*x^2+841*x+413 3908872598268199 m001 FeigenbaumKappa*ln(Khintchine)*cos(1)^2 3908872610287620 m001 (arctan(1/3)+Pi^(1/2))/(Cahen-OneNinth) 3908872620643036 m001 Bloch^MertensB2-arctan(1/2) 3908872637846847 r005 Im(z^2+c),c=7/44+21/58*I,n=7 3908872641404257 r005 Im(z^2+c),c=31/122+15/31*I,n=41 3908872646038440 r005 Re(z^2+c),c=-111/86+3/59*I,n=30 3908872663107308 r005 Re(z^2+c),c=-3/5+1/7*I,n=6 3908872666336842 m001 (3^(1/2)+Si(Pi))/(Ei(1,1)+ArtinRank2) 3908872692617909 a008 Real Root of x^4-2*x^3-2*x^2-28*x+26 3908872699276927 r002 13th iterates of z^2 + 3908872710153554 m005 (1/2*3^(1/2)+4/9)/(7/9*Pi+10/11) 3908872710463228 m001 (Pi^(1/2)-Landau)/(MertensB1-Stephens) 3908872719976498 p004 log(14243/13697) 3908872720685907 r005 Re(z^2+c),c=4/13+3/28*I,n=2 3908872730271342 m009 (5/6*Psi(1,1/3)-1/4)/(3/5*Psi(1,2/3)+1/4) 3908872732783004 s002 sum(A240231[n]/(pi^n+1),n=1..infinity) 3908872736843709 b008 -4+ProductLog[Csch[3]] 3908872744158615 r005 Re(z^2+c),c=-13/10+3/208*I,n=30 3908872774061421 m003 -23/12+Sqrt[5]/8+6*Tanh[1/2+Sqrt[5]/2] 3908872787122730 r009 Im(z^3+c),c=-8/23+17/45*I,n=17 3908872792174349 r005 Re(z^2+c),c=-67/94+4/35*I,n=21 3908872801113443 m001 FeigenbaumDelta-ln(2)^RenyiParking 3908872801113443 m001 ln(2)^RenyiParking-FeigenbaumDelta 3908872801712182 r005 Im(z^2+c),c=-19/118+37/64*I,n=45 3908872802159864 m001 (Trott2nd+ZetaP(3))/(polylog(4,1/2)-MertensB2) 3908872822398630 m001 (sin(1/12*Pi)+BesselK(1,1))/(Shi(1)+ln(Pi)) 3908872827031779 r002 22th iterates of z^2 + 3908872830424173 a007 Real Root Of 812*x^4+628*x^3+373*x^2-224*x-126 3908872833544732 r009 Im(z^3+c),c=-29/94+40/43*I,n=2 3908872843400341 r005 Re(z^2+c),c=-43/90+13/61*I,n=3 3908872851153312 r005 Re(z^2+c),c=-13/10+3/197*I,n=10 3908872851550041 r002 42th iterates of z^2 + 3908872857047171 r009 Re(z^3+c),c=-13/56+30/47*I,n=2 3908872857885525 m005 (1/3*2^(1/2)+2/11)/(7/11*Catalan-3/4) 3908872866909518 r002 17th iterates of z^2 + 3908872872736661 r002 24th iterates of z^2 + 3908872880958295 r005 Im(z^2+c),c=7/36+19/53*I,n=22 3908872881972892 a008 Real Root of (1+x-3*x^2+3*x^3+2*x^4+2*x^5) 3908872887165771 r005 Im(z^2+c),c=-3/50+9/17*I,n=33 3908872893916343 r005 Re(z^2+c),c=-55/102+5/42*I,n=46 3908872901678657 q001 163/417 3908872909657395 r002 47th iterates of z^2 + 3908872912454428 r005 Re(z^2+c),c=-6/13+29/63*I,n=46 3908872927046502 m001 Zeta(7)^2*ln(Tribonacci)^2/cos(Pi/12) 3908872948973975 m001 1/sin(Pi/12)*ln(Trott)*sqrt(5) 3908872952678369 a007 Real Root Of -569*x^4-588*x^3+839*x^2+855*x-414 3908872970864264 r002 51th iterates of z^2 + 3908872987918070 r002 7th iterates of z^2 + 3908872988274240 m001 (-Trott+ZetaQ(2))/(Chi(1)+MertensB1) 3908873006988548 m008 (3*Pi^5-4/5)/(4/5*Pi-1/6) 3908873008655940 r005 Im(z^2+c),c=-1/66+13/24*I,n=19 3908873011458189 a003 cos(Pi*29/61)*cos(Pi*15/31) 3908873014144340 m001 (HeathBrownMoroz+Thue)/(GAMMA(5/6)-exp(Pi)) 3908873043159985 a001 2/1346269*46368^(7/23) 3908873043271083 a001 2/39088169*2971215073^(7/23) 3908873046832158 r009 Im(z^3+c),c=-37/94+11/31*I,n=21 3908873049150006 r009 Im(z^3+c),c=-11/27+12/35*I,n=12 3908873054383597 m005 (1/2*Catalan-3/8)/(8/9*3^(1/2)+7/12) 3908873055015039 r005 Im(z^2+c),c=-5/42+29/53*I,n=11 3908873055214161 a007 Real Root Of 169*x^4+591*x^3-327*x^2-170*x+175 3908873070157058 s002 sum(A270880[n]/((pi^n+1)/n),n=1..infinity) 3908873077140758 r005 Re(z^2+c),c=-13/24+2/25*I,n=42 3908873109102345 r005 Im(z^2+c),c=3/13+20/51*I,n=13 3908873118575515 a007 Real Root Of -790*x^4+390*x^3+404*x^2+656*x-323 3908873123335499 r005 Im(z^2+c),c=-3/10+14/23*I,n=25 3908873148465178 r005 Re(z^2+c),c=-61/118+16/37*I,n=31 3908873157120535 m001 (-Landau+Paris)/(5^(1/2)-ln(3)) 3908873158465611 r005 Im(z^2+c),c=-7/52+25/43*I,n=38 3908873160996633 r005 Im(z^2+c),c=9/106+22/49*I,n=8 3908873165699373 r005 Im(z^2+c),c=-1/14+7/13*I,n=59 3908873165743672 r009 Im(z^3+c),c=-5/78+26/33*I,n=62 3908873170647931 a007 Real Root Of -887*x^4+202*x^3-988*x^2+607*x+421 3908873172860686 h001 (1/9*exp(1)+9/11)/(8/11*exp(1)+8/9) 3908873180767102 a001 832040/521*7^(23/50) 3908873182268939 r002 57th iterates of z^2 + 3908873190696310 a008 Real Root of x^4+12*x^2-46*x-237 3908873209360053 r002 2th iterates of z^2 + 3908873211759631 a007 Real Root Of 592*x^4-336*x^3-904*x^2-787*x+452 3908873228502483 m001 (Shi(1)+Pi^(1/2))/(-FeigenbaumD+Magata) 3908873239978513 r005 Im(z^2+c),c=-19/90+28/39*I,n=38 3908873254565828 m001 GaussKuzminWirsing^2*exp(ErdosBorwein)/Salem 3908873267651280 a007 Real Root Of 155*x^4+136*x^3+434*x^2-791*x-371 3908873272171000 m001 Zeta(1/2)/Catalan^2*exp(cos(Pi/5)) 3908873272493304 r002 33th iterates of z^2 + 3908873277440784 r002 4th iterates of z^2 + 3908873281299972 l006 ln(5597/8274) 3908873281496146 r005 Im(z^2+c),c=19/64+14/55*I,n=40 3908873283511904 m001 1/LambertW(1)^2*exp(LaplaceLimit)/cosh(1) 3908873298856404 r005 Im(z^2+c),c=-19/94+28/45*I,n=25 3908873317050181 s002 sum(A015138[n]/(pi^n+1),n=1..infinity) 3908873318937452 a007 Real Root Of 16*x^4-105*x^3-461*x^2+728*x-117 3908873326673713 r002 24th iterates of z^2 + 3908873330251374 m001 (GAMMA(2/3)+CopelandErdos)/(Magata+TwinPrimes) 3908873332612060 r002 6th iterates of z^2 + 3908873336542494 m001 (Zeta(3)-exp(1))/(Bloch+Magata) 3908873338899232 p004 log(31019/20983) 3908873355937495 m005 (1/2*gamma+1/8)/(1/4*Pi+3/11) 3908873373762882 a007 Real Root Of 122*x^4-270*x^3+463*x^2-781*x-395 3908873379227794 r005 Re(z^2+c),c=-57/106+7/51*I,n=46 3908873391742455 a007 Real Root Of 751*x^4+957*x^3+595*x^2-690*x-321 3908873396525249 l006 ln(159/7925) 3908873400281736 r005 Im(z^2+c),c=1/78+8/13*I,n=46 3908873410956003 r002 62th iterates of z^2 + 3908873423907777 m005 (1/2*2^(1/2)-1/2)/(4/7*gamma+1/5) 3908873424700193 r005 Im(z^2+c),c=-107/98+3/59*I,n=3 3908873443054023 m001 (-GAMMA(3/4)+ln(Pi))/(LambertW(1)-sin(1/5*Pi)) 3908873443986190 a001 1/167732*(1/2*5^(1/2)+1/2)^20*2207^(4/21) 3908873445942496 r009 Im(z^3+c),c=-4/23+23/53*I,n=7 3908873446288855 m001 (Ei(1)+FeigenbaumDelta)/(Chi(1)+sin(1)) 3908873456790123 r005 Re(z^2+c),c=-51/40+31/36*I,n=2 3908873465938089 a001 45537549124/5*591286729879^(11/15) 3908873465938089 a001 9062201101803/5*433494437^(11/15) 3908873466676812 r005 Re(z^2+c),c=5/17+8/17*I,n=13 3908873499366812 r005 Re(z^2+c),c=-7/13+21/47*I,n=51 3908873503441853 m001 (cos(1/5*Pi)-exp(1/Pi))/(OneNinth+Totient) 3908873504220605 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/12*I*Pi),n=31 3908873506351079 b008 -7+LogGamma[6+Pi] 3908873512901530 m001 (Otter+Porter)/(ln(gamma)-LandauRamanujan2nd) 3908873513651337 a005 (1/cos(34/223*Pi))^320 3908873514281225 a001 1/322*(1/2*5^(1/2)+1/2)^27*3^(23/24) 3908873516215730 h001 (7/8*exp(1)+1/6)/(4/5*exp(2)+3/5) 3908873538406459 h001 (8/11*exp(1)+4/9)/(5/7*exp(2)+11/12) 3908873539812209 a005 (1/cos(5/48*Pi))^25 3908873543373764 r005 Im(z^2+c),c=5/36+21/52*I,n=20 3908873543946210 r005 Re(z^2+c),c=-81/118+17/62*I,n=29 3908873559073270 m001 (FeigenbaumMu-HardyLittlewoodC4)/GaussAGM 3908873560569183 r005 Re(z^2+c),c=-55/102+5/42*I,n=58 3908873569612293 l006 ln(4192/6197) 3908873584104504 a007 Real Root Of -886*x^4-167*x^3-351*x^2-226*x-24 3908873587549271 m001 (arctan(1/3)+Trott2nd)/(LambertW(1)+Zeta(1/2)) 3908873593122725 m004 -6+1250/Pi-Tanh[Sqrt[5]*Pi] 3908873599910858 m001 (sin(1/12*Pi)+GAMMA(17/24)*Paris)/Paris 3908873617127427 r002 47th iterates of z^2 + 3908873618163865 a007 Real Root Of 11*x^4-147*x^3-764*x^2-57*x+103 3908873619720223 r002 4th iterates of z^2 + 3908873625732924 m002 -4+4/Pi^3-Cosh[Pi]/Pi^5 3908873631217682 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(3/8*I*Pi),n=62 3908873633553558 m005 (1/3*3^(1/2)-1/3)/(3/10*2^(1/2)+1/5) 3908873646726889 r005 Re(z^2+c),c=-5/11+1/15*I,n=3 3908873654572570 r002 44th iterates of z^2 + 3908873662242535 m005 (1/2*3^(1/2)+1/8)/(8/11*5^(1/2)+10/11) 3908873663922725 a007 Real Root Of -782*x^4-432*x^3-73*x^2+418*x+167 3908873670029650 r009 Re(z^3+c),c=-45/94+9/38*I,n=45 3908873673845415 r005 Re(z^2+c),c=-23/90+5/8*I,n=63 3908873679454596 m005 (1/2*Catalan+6/11)/(7/8*Pi-2/11) 3908873682871556 r002 51th iterates of z^2 + 3908873689335183 r005 Re(z^2+c),c=-25/48+7/26*I,n=58 3908873693305815 r002 12th iterates of z^2 + 3908873705553953 r005 Im(z^2+c),c=8/29+19/27*I,n=3 3908873714831135 r005 Re(z^2+c),c=-21/82+31/47*I,n=50 3908873716209040 a001 521/1836311903*3^(7/24) 3908873726180801 r005 Im(z^2+c),c=-5/56+17/31*I,n=62 3908873734540973 a007 Real Root Of -247*x^4-942*x^3+240*x^2+483*x-376 3908873734901727 a001 11/8*514229^(14/55) 3908873738735052 m001 GAMMA(7/12)/(GAMMA(3/4)+Khinchin) 3908873738932854 r009 Re(z^3+c),c=-1/66+23/37*I,n=8 3908873753813689 r005 Im(z^2+c),c=-107/126+1/40*I,n=22 3908873755190467 a005 (1/sin(43/125*Pi))^397 3908873766105565 m001 (Lehmer+OneNinth)/(GAMMA(5/6)+LaplaceLimit) 3908873781818926 a005 (1/sin(7/143*Pi))^40 3908873801081292 r005 Re(z^2+c),c=-9/14+57/232*I,n=7 3908873826754056 r002 35th iterates of z^2 + 3908873827023934 r002 54th iterates of z^2 + 3908873832341402 r002 18th iterates of z^2 + 3908873840912722 a007 Real Root Of 855*x^4-209*x^3+970*x^2-730*x-466 3908873862465224 a007 Real Root Of -492*x^4+966*x^3-968*x^2+931*x+581 3908873867846546 r009 Re(z^3+c),c=-59/122+3/43*I,n=14 3908873880909162 r005 Im(z^2+c),c=-7/40+41/63*I,n=5 3908873881893898 r005 Re(z^2+c),c=-45/82+15/47*I,n=21 3908873887667420 s001 sum(exp(-Pi/4)^n*A288717[n],n=1..infinity) 3908873892203174 r002 55th iterates of z^2 + 3908873894440655 r002 16th iterates of z^2 + 3908873910150852 a001 75025/47*521^(51/58) 3908873913637089 m001 (Paris+ZetaQ(2))/(CopelandErdos-Kac) 3908873917110903 r005 Im(z^2+c),c=-39/34+30/109*I,n=12 3908873934464170 m003 179/10+Sqrt[5]/64-Tan[1/2+Sqrt[5]/2] 3908873956066283 r002 37th iterates of z^2 + 3908873964110153 a007 Real Root Of 554*x^4+209*x^3+477*x^2-695*x-345 3908873974883256 r002 18th iterates of z^2 + 3908873984763400 r005 Re(z^2+c),c=-13/10+3/208*I,n=34 3908873993106622 h005 exp(cos(Pi*3/35)/cos(Pi*1/4)) 3908873993184614 a007 Real Root Of -41*x^4+922*x^3-518*x^2+304*x+254 3908874007387587 r009 Im(z^3+c),c=-25/74+13/34*I,n=22 3908874010387797 s002 sum(A039872[n]/(n^3*2^n-1),n=1..infinity) 3908874015596132 p002 log(2-7^(2/3)*5^(3/4)) 3908874020648991 a001 1/76*(1/2*5^(1/2)+1/2)^3*3571^(5/21) 3908874042353018 r005 Im(z^2+c),c=-11/74+26/45*I,n=51 3908874059009256 m001 (Sierpinski+Tetranacci)/(ArtinRank2-Si(Pi)) 3908874083299287 r004 Im(z^2+c),c=-7/12+1/14*I,z(0)=-1,n=60 3908874090612730 r005 Im(z^2+c),c=-25/114+36/49*I,n=47 3908874091258554 a001 1/3009828*(1/2*5^(1/2)+1/2)^28*39603^(1/21) 3908874092088304 r005 Re(z^2+c),c=-51/98+13/29*I,n=63 3908874092818704 a001 1/1149652*(1/2*5^(1/2)+1/2)^8*15127^(20/21) 3908874093632146 a001 1/76*54018521^(4/21) 3908874093750826 a001 1/76*(1/2*5^(1/2)+1/2)^6*39603^(1/21) 3908874094085463 a001 1/4870004*(1/2*5^(1/2)+1/2)^18*64079^(11/21) 3908874101675642 m005 (1/2*gamma-2/3)/(1/4*Zeta(3)+2/3) 3908874103786677 a007 Real Root Of -832*x^4+769*x^3-595*x^2-410*x-4 3908874110481608 r002 53th iterates of z^2 + 3908874113902346 m005 (1/2*Pi-1/5)/(5/6*Pi+8/9) 3908874114304864 m005 (1/2*Pi+1/8)/(10/11*gamma-1/11) 3908874117057964 a001 1/710524*(1/2*5^(1/2)+1/2)^17*9349^(10/21) 3908874118393327 r005 Im(z^2+c),c=-101/122+11/57*I,n=23 3908874119134039 m001 (Khinchin+Paris)/(exp(1/Pi)-Conway) 3908874119366518 r005 Im(z^2+c),c=-39/58+13/43*I,n=45 3908874119767331 m001 1/Riemann1stZero/exp(Paris)/GAMMA(13/24) 3908874131023176 r005 Re(z^2+c),c=-23/42+1/50*I,n=18 3908874142381591 m005 (-7/24+3/8*5^(1/2))/(2/5*2^(1/2)+5/6) 3908874148616238 l006 ln(2787/4120) 3908874160791595 r002 44th iterates of z^2 + 3908874163049498 m009 (20/3*Catalan+5/6*Pi^2+1/2)/(3/10*Pi^2+5/6) 3908874171957923 m001 (-exp(1/exp(1))+Zeta(1,2))/(1-ln(5)) 3908874182034683 r005 Re(z^2+c),c=-1+44/179*I,n=64 3908874187988139 a001 1/1364*(1/2*5^(1/2)+1/2)^10*47^(8/21) 3908874196259815 m001 (GAMMA(1/4)*Backhouse+ThueMorse)/Backhouse 3908874198539303 r002 29th iterates of z^2 + 3908874199100914 m001 (Paris-Tetranacci)/(gamma(2)-FeigenbaumDelta) 3908874199360880 m001 (Stephens-ZetaP(2))/(Zeta(3)+ReciprocalLucas) 3908874203769358 a001 1/39603*2^(29/46) 3908874217690979 a007 Real Root Of -782*x^4-661*x^3-142*x^2+96*x+38 3908874223493827 r005 Re(z^2+c),c=1/9+1/4*I,n=23 3908874231525175 m001 (Zeta(3)+gamma(1))/(MertensB1+Trott2nd) 3908874235047723 m001 2^(1/2)*Pi*csc(11/24*Pi)/GAMMA(13/24)+Salem 3908874246490035 a001 1/76*(1/2*5^(1/2)+1/2)^4*2207^(4/21) 3908874292254813 m001 (GAMMA(2/3)+ArtinRank2)/(KhinchinLevy-Robbin) 3908874293424963 s002 sum(A173992[n]/(n*2^n-1),n=1..infinity) 3908874300466706 r005 Im(z^2+c),c=-33/26+6/49*I,n=15 3908874304412369 r002 16th iterates of z^2 + 3908874318365321 r005 Im(z^2+c),c=13/38+3/31*I,n=21 3908874327178253 a001 1/271396*(1/2*5^(1/2)+1/2)^20*3571^(5/21) 3908874341556246 a007 Real Root Of 812*x^4+610*x^3+984*x^2-425*x-299 3908874343735930 m001 1/ln(GAMMA(7/12))^2*GAMMA(3/4)^2/Zeta(1/2)^2 3908874347806890 a007 Real Root Of -136*x^4+950*x^3-890*x^2+656*x-174 3908874381648318 r005 Im(z^2+c),c=-2/31+23/43*I,n=44 3908874391967700 r009 Im(z^3+c),c=-43/98+13/40*I,n=16 3908874396627694 a007 Real Root Of 137*x^4+420*x^3-659*x^2-912*x-395 3908874400962882 a007 Real Root Of -400*x^4+910*x^3+942*x^2+696*x-461 3908874405531847 r002 57th iterates of z^2 + 3908874407452224 r005 Im(z^2+c),c=33/94+17/59*I,n=53 3908874412533945 b008 -2+Pi^(5/2+E) 3908874414110356 m005 (1/3*exp(1)+1/5)/(3/8*5^(1/2)-5/9) 3908874425978781 m002 -1/4-E^Pi+Pi^4/5 3908874432994658 m001 (2^(1/2)-5^(1/2))/(Catalan+KhinchinLevy) 3908874436597723 r009 Im(z^3+c),c=-59/126+19/62*I,n=53 3908874437193843 r005 Im(z^2+c),c=-49/90+25/53*I,n=55 3908874478503194 r005 Re(z^2+c),c=-23/86+25/46*I,n=7 3908874482481158 r002 41th iterates of z^2 + 3908874486249992 a001 1/11592*2584^(5/26) 3908874486268923 r002 29th iterates of z^2 + 3908874486816037 h001 (2/7*exp(1)+9/10)/(1/11*exp(1)+2/11) 3908874524048561 r005 Im(z^2+c),c=23/122+16/29*I,n=33 3908874527769603 a007 Real Root Of -636*x^4+384*x^3+32*x^2+985*x-398 3908874528323959 r005 Im(z^2+c),c=13/106+12/29*I,n=46 3908874540448018 a007 Real Root Of -405*x^4+30*x^3-126*x^2+779*x+335 3908874541703111 m008 (3/4*Pi^3-4/5)/(3/5*Pi^4-1) 3908874546255480 p004 log(21881/439) 3908874561949859 m001 (-Gompertz+TwinPrimes)/(Ei(1,1)-Si(Pi)) 3908874581356459 a007 Real Root Of -205*x^4+128*x^3+919*x^2+557*x-361 3908874582912170 r005 Re(z^2+c),c=-45/86+11/43*I,n=38 3908874582928755 m001 (1+Zeta(1,2))/(-Pi^(1/2)+ZetaP(3)) 3908874585881008 a008 Real Root of x^5-16*x^3-6*x^2+36*x-6 3908874593814563 m001 1/KhintchineHarmonic/Bloch*ln(Riemann3rdZero) 3908874608258494 m001 GAMMA(1/3)*PisotVijayaraghavan^2*ln(Zeta(7)) 3908874619974384 r002 4th iterates of z^2 + 3908874625089496 a007 Real Root Of 94*x^4+199*x^3-470*x^2+906*x+663 3908874628480656 m001 ln(FeigenbaumKappa)^2*GolombDickman^2*Trott 3908874634285311 b008 8/3+Sqrt[Cosh[1]] 3908874643818799 r005 Im(z^2+c),c=3/52+17/37*I,n=32 3908874650829415 m005 (1/2*Zeta(3)+2/3)/(1/11*exp(1)-4/7) 3908874651095569 m001 (-ln(5)+Ei(1,1))/(exp(1)+Chi(1)) 3908874654739736 a007 Real Root Of 601*x^4-468*x^3+9*x^2-961*x-419 3908874659844834 m001 (FeigenbaumB-FeigenbaumD)/(MertensB3-Thue) 3908874662722513 m005 (1/3*Catalan-1/11)/(3/5*2^(1/2)-3/10) 3908874666237489 r005 Im(z^2+c),c=-7/19+19/36*I,n=11 3908874678566095 r005 Re(z^2+c),c=-57/110+19/58*I,n=3 3908874694665761 r005 Im(z^2+c),c=4/25+21/53*I,n=5 3908874704302042 m001 (Stephens+Trott)/(ln(2+3^(1/2))-Porter) 3908874719516992 r005 Im(z^2+c),c=1/118+27/55*I,n=58 3908874725279643 r009 Im(z^3+c),c=-57/118+18/61*I,n=38 3908874730814462 l006 ln(4169/6163) 3908874739052160 r009 Im(z^3+c),c=-5/56+25/56*I,n=9 3908874739952877 p001 sum(1/(489*n+256)/(512^n),n=0..infinity) 3908874741000637 a007 Real Root Of -77*x^4+514*x^3-375*x^2+965*x+467 3908874742714819 m005 (1/3*3^(1/2)-1/4)/(5*3^(1/2)-2/7) 3908874751816644 a007 Real Root Of 175*x^4+714*x^3+313*x^2+715*x-199 3908874763888809 a007 Real Root Of 494*x^4-834*x^3-676*x^2-523*x+346 3908874764309717 r002 7th iterates of z^2 + 3908874768095959 a007 Real Root Of 175*x^4+550*x^3-561*x^2-325*x-705 3908874771375451 s001 sum(exp(-Pi/3)^(n-1)*A171824[n],n=1..infinity) 3908874779307606 p003 LerchPhi(1/100,3,658/223) 3908874781287049 r005 Re(z^2+c),c=-17/26+2/33*I,n=10 3908874784121689 m002 -Pi^4-Pi^5+Sinh[Pi]+Tanh[Pi]^2 3908874791063375 r008 a(0)=4,K{-n^6,27-40*n+31*n^2-8*n^3} 3908874800507188 p004 log(35837/719) 3908874804152340 m001 (Pi-1)*ln(3)/BesselK(1,1) 3908874811366880 h001 (-3*exp(3)-3)/(-10*exp(1)+11) 3908874820147201 r009 Im(z^3+c),c=-1/78+37/46*I,n=34 3908874877828891 a007 Real Root Of 60*x^4+208*x^3-332*x^2-899*x-26 3908874903274286 a001 199/144*3^(53/56) 3908874913127509 m005 (11/12+1/4*5^(1/2))/(23/132+1/11*5^(1/2)) 3908874918392141 a003 cos(Pi*20/87)*cos(Pi*14/43) 3908874919784258 h001 (1/7*exp(1)+5/7)/(5/6*exp(1)+5/9) 3908874921195632 m001 1/exp(Rabbit)*Conway/GAMMA(13/24) 3908874929275743 r005 Re(z^2+c),c=-15/38+23/59*I,n=2 3908874934012461 a007 Real Root Of 61*x^4+67*x^3-718*x^2-228*x-160 3908874940903126 r005 Im(z^2+c),c=15/62+31/63*I,n=56 3908874949166534 m001 (GAMMA(11/24)+2/3)/(exp(1/2)+5) 3908874965036290 a007 Real Root Of 121*x^4+433*x^3+13*x^2+537*x-487 3908874966289429 m001 (Trott-ZetaP(3))/(FeigenbaumDelta-PlouffeB) 3908874966631289 r002 5th iterates of z^2 + 3908874991151589 a007 Real Root Of -19*x^4+928*x^3+169*x^2+988*x-467 3908874996969333 a007 Real Root Of 631*x^4-660*x^3+976*x^2-974*x-584 3908875010091244 m001 (2^(1/2)-BesselI(1,1))/(GAMMA(7/12)+Cahen) 3908875014043705 l006 ln(6121/6365) 3908875020694515 a001 47/2*377^(25/29) 3908875023119701 l006 ln(5551/8206) 3908875033750785 r002 63th iterates of z^2 + 3908875062845380 r002 49th iterates of z^2 + 3908875069248295 a007 Real Root Of 917*x^4+586*x^3+388*x^2-515*x-247 3908875070632820 r005 Im(z^2+c),c=37/126+10/43*I,n=15 3908875080160810 m001 1/exp(GAMMA(1/12))*Bloch^2*sqrt(3) 3908875087570183 r005 Re(z^2+c),c=-61/114+7/44*I,n=21 3908875087902647 a003 sin(Pi*3/97)/cos(Pi*50/119) 3908875117476575 a008 Real Root of (8+18*x-11*x^2-12*x^3) 3908875127670216 m005 (1/2*exp(1)-5/11)/(5/8*5^(1/2)+11/12) 3908875131927722 a001 11/2*2504730781961^(9/23) 3908875142056643 a007 Real Root Of -732*x^4-153*x^3-693*x^2+860*x+450 3908875143453929 s001 sum(exp(-Pi)^n*A037478[n],n=1..infinity) 3908875143453929 s002 sum(A037478[n]/(exp(pi*n)),n=1..infinity) 3908875161454638 r005 Im(z^2+c),c=-1/106+32/59*I,n=7 3908875163962695 r005 Im(z^2+c),c=-5/62+25/46*I,n=63 3908875167029425 r005 Re(z^2+c),c=-41/86+23/51*I,n=45 3908875173726157 r005 Re(z^2+c),c=-9/20+31/63*I,n=47 3908875184221299 r005 Re(z^2+c),c=-23/78+36/61*I,n=26 3908875188668830 r005 Im(z^2+c),c=39/122+7/33*I,n=28 3908875199137415 l006 ln(70/3489) 3908875205141767 a003 cos(Pi*26/83)-sin(Pi*24/61) 3908875210680066 a007 Real Root Of -845*x^4+835*x^3-516*x^2+933*x-316 3908875221249094 m001 (Ei(1,1)-BesselK(1,1))/(3^(1/3)-arctan(1/2)) 3908875223263603 r009 Re(z^3+c),c=-15/31+24/53*I,n=20 3908875225708796 a007 Real Root Of -486*x^4+675*x^3-832*x^2+108*x+221 3908875230297599 m004 3000/Pi-Log[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 3908875233460836 r005 Re(z^2+c),c=-25/46+1/39*I,n=38 3908875238116713 m001 1/log(1+sqrt(2))^2/Zeta(1/2)^2*ln(sqrt(5))^2 3908875250863710 r009 Re(z^3+c),c=-37/78+13/56*I,n=31 3908875257231667 r002 9th iterates of z^2 + 3908875259846465 m001 Zeta(3)*polylog(4,1/2)^Niven 3908875260181360 m001 (CopelandErdos+GaussAGM)/(ln(5)+GAMMA(5/6)) 3908875261731279 r009 Re(z^3+c),c=-25/122+36/37*I,n=64 3908875289627178 m001 (ErdosBorwein-Landau)/(Pi-BesselK(0,1)) 3908875301788369 r009 Im(z^3+c),c=-41/78+9/41*I,n=2 3908875312987842 r005 Re(z^2+c),c=-61/114+19/62*I,n=21 3908875340386168 h001 (1/4*exp(1)+1/3)/(4/5*exp(1)+5/12) 3908875358801438 v002 sum(1/(5^n+(29*n^2-62*n+72)),n=1..infinity) 3908875361006788 r002 60th iterates of z^2 + 3908875371162920 r005 Re(z^2+c),c=-13/24+2/25*I,n=50 3908875374929882 m004 -3+125*Pi+Log[Sqrt[5]*Pi]^(-1)+Sin[Sqrt[5]*Pi] 3908875377975554 m005 (1/2*Catalan+8/9)/(3/10*5^(1/2)-7/11) 3908875381020451 r002 29th iterates of z^2 + 3908875388568049 a007 Real Root Of 529*x^4+344*x^3+566*x^2-739*x+28 3908875394988116 r005 Re(z^2+c),c=-33/64+17/57*I,n=49 3908875406414575 m001 1/Porter*MertensB1*ln(GAMMA(5/24))^2 3908875426471107 a003 cos(Pi*19/109)*cos(Pi*38/109) 3908875430100452 m005 (1/2*Pi-5/6)/(4/7*exp(1)+1/3) 3908875445213192 a001 1346269/7*47^(7/38) 3908875447644645 a007 Real Root Of -212*x^4-652*x^3+739*x^2+306*x+457 3908875449961455 r005 Re(z^2+c),c=-13/10+3/208*I,n=38 3908875453389371 a007 Real Root Of -134*x^4+722*x^3+954*x^2+566*x-407 3908875469321073 r005 Re(z^2+c),c=-55/102+5/29*I,n=17 3908875476030968 a007 Real Root Of 355*x^4+561*x^3-744*x^2-975*x+453 3908875476864492 h001 (2/9*exp(1)+4/5)/(2/5*exp(2)+7/11) 3908875481195013 r008 a(0)=4,K{-n^6,6+7*n^3+3*n^2-4*n} 3908875488392185 m005 (1/3*2^(1/2)+1/7)/(9/10*exp(1)-7/8) 3908875523804518 m001 ln(5)*(Riemann3rdZero-Sarnak) 3908875533553021 m001 GolombDickman^Totient*Kolakoski^Totient 3908875539092033 r005 Im(z^2+c),c=1/30+19/40*I,n=36 3908875542663528 r009 Im(z^3+c),c=-27/86+6/11*I,n=3 3908875550998120 r005 Re(z^2+c),c=-17/22+14/83*I,n=10 3908875554909526 r002 16th iterates of z^2 + 3908875562808462 r002 51th iterates of z^2 + 3908875578412999 m005 (1/2*exp(1)-1/6)/(Pi-1/11) 3908875583748782 m005 (1/2*Catalan+4/11)/(8/11*exp(1)+1/8) 3908875589023296 r002 57th iterates of z^2 + 3908875606653161 a007 Real Root Of -157*x^4-742*x^3-431*x^2+58*x-851 3908875614324846 a007 Real Root Of -744*x^4+715*x^3+846*x^2+285*x-266 3908875619765226 m005 (1/2*2^(1/2)+3/11)/(3/11*2^(1/2)-7/11) 3908875634654638 m001 GAMMA(5/6)^2*exp(Niven)^2/Pi^2 3908875639120638 a003 cos(Pi*9/49)*cos(Pi*49/101) 3908875646794231 m004 4-(5*Tan[Sqrt[5]*Pi])/(16*Pi) 3908875652228233 r005 Re(z^2+c),c=-55/102+5/42*I,n=56 3908875654124955 b008 1/32+Sin[E^(-1)] 3908875654554728 r005 Re(z^2+c),c=-13/25+10/37*I,n=35 3908875674128127 r005 Re(z^2+c),c=-37/90+21/37*I,n=32 3908875682005405 g001 GAMMA(1/6,52/75) 3908875710068836 m001 (Sarnak-ZetaP(3))/(GAMMA(13/24)-CopelandErdos) 3908875712236801 a007 Real Root Of 188*x^4-928*x^3+89*x^2-572*x-297 3908875727183948 a001 55*76^(24/53) 3908875728882379 a003 cos(Pi*6/35)-cos(Pi*39/113) 3908875733120962 r005 Re(z^2+c),c=-41/78+25/58*I,n=46 3908875734177767 m001 (exp(1)+3^(1/3))/(BesselJ(1,1)+GolombDickman) 3908875737169791 r009 Im(z^3+c),c=-47/82+2/7*I,n=36 3908875739882547 m001 (-Niven+Paris)/(MasserGramain-Shi(1)) 3908875744317998 m005 (1/2*Catalan-10/11)/(2/7*2^(1/2)+3/4) 3908875746914260 r005 Re(z^2+c),c=31/122+1/36*I,n=30 3908875747425891 r005 Im(z^2+c),c=-55/94+17/46*I,n=11 3908875750295482 a005 (1/cos(29/236*Pi))^801 3908875754729754 r005 Im(z^2+c),c=-36/29+25/61*I,n=7 3908875757741937 a007 Real Root Of -254*x^4-785*x^3+633*x^2-776*x-291 3908875761874348 b008 FresnelS[1+EllipticK[1/2]] 3908875766879055 m002 -(Cosh[Pi]*Log[Pi])+16*ProductLog[Pi] 3908875773257470 r008 a(0)=4,K{-n^6,8*n^3-3*n^2+7*n} 3908875780760712 m005 (1/2*3^(1/2)-6)/(3/4*5^(1/2)-4/11) 3908875781254294 r005 Im(z^2+c),c=-115/126+2/63*I,n=12 3908875802186971 r005 Im(z^2+c),c=-15/28+19/61*I,n=4 3908875817915113 r002 31th iterates of z^2 + 3908875820720932 m001 1/KhintchineHarmonic/Backhouse^2/ln(Zeta(7))^2 3908875834814584 a001 76/987*55^(49/50) 3908875835365649 m001 (GolombDickman+Porter)/(Rabbit-ZetaP(3)) 3908875840866920 r005 Re(z^2+c),c=17/54+31/61*I,n=7 3908875841603573 r005 Re(z^2+c),c=-13/10+3/208*I,n=58 3908875842121993 r005 Re(z^2+c),c=-13/10+3/208*I,n=62 3908875843528387 r005 Re(z^2+c),c=-13/10+3/208*I,n=54 3908875856723054 a001 1/29*(1/2*5^(1/2)+1/2)^14*47^(1/13) 3908875856817538 r005 Re(z^2+c),c=-13/10+3/208*I,n=50 3908875869972167 m002 Pi^5+Cosh[Pi]/6+Pi^6*Sech[Pi] 3908875870024591 r005 Re(z^2+c),c=-13/10+3/208*I,n=42 3908875877274726 r009 Re(z^3+c),c=-17/90+57/64*I,n=64 3908875878534825 r004 Im(z^2+c),c=-7/12+1/14*I,z(0)=-1,n=54 3908875882378707 a007 Real Root Of -20*x^4-774*x^3+302*x^2-64*x+435 3908875888605132 r005 Re(z^2+c),c=-13/10+3/208*I,n=46 3908875891218133 a007 Real Root Of 166*x^4+544*x^3-227*x^2+558*x-614 3908875893701520 m001 (2^(1/3))-exp(sqrt(2))-GAMMA(11/12) 3908875895688103 r005 Im(z^2+c),c=-23/18+5/92*I,n=11 3908875901383366 m001 (ln(3)-Ei(1,1))/(arctan(1/3)+Tetranacci) 3908875904832740 a003 cos(Pi*16/105)*cos(Pi*11/31) 3908875904900068 l006 ln(1382/2043) 3908875908362588 a001 9349/3*144^(35/36) 3908875908832878 a003 sin(Pi*7/78)/sin(Pi*30/119) 3908875916257635 m001 (ZetaP(3)+ZetaP(4))/(KhinchinLevy-Landau) 3908875936483950 m005 (1/3*Catalan-2/3)/(3/11*gamma-1/6) 3908875956133510 a008 Real Root of x^2-x-153184 3908875959429627 r005 Re(z^2+c),c=-53/102+19/40*I,n=63 3908875961084172 a003 cos(Pi*1/57)-cos(Pi*26/89) 3908875962622088 r002 3th iterates of z^2 + 3908875963474263 a001 377/103682*76^(17/31) 3908875964832110 r005 Im(z^2+c),c=1/42+25/52*I,n=28 3908875984121321 r005 Im(z^2+c),c=-7/82+21/38*I,n=31 3908875989379236 r005 Im(z^2+c),c=9/46+17/40*I,n=12 3908875991444197 p001 sum((-1)^n/(247*n+237)/(6^n),n=0..infinity) 3908876011026234 r005 Im(z^2+c),c=-3/52+9/17*I,n=39 3908876012216017 m001 1/GAMMA(7/24)^2*exp(Tribonacci)^2*Zeta(1,2) 3908876023676448 m001 (Zeta(1,2)-BesselJ(1,1))/(GAMMA(7/12)-Salem) 3908876029058035 a001 377/7*39603^(28/45) 3908876036659508 r005 Re(z^2+c),c=-27/50+4/37*I,n=30 3908876048730142 r005 Re(z^2+c),c=-85/126+12/53*I,n=37 3908876065824443 r005 Re(z^2+c),c=-14/27+9/32*I,n=42 3908876066449904 r005 Re(z^2+c),c=-63/122+17/58*I,n=45 3908876083267415 a007 Real Root Of 201*x^4+741*x^3-143*x^2+24*x-390 3908876083441094 m001 BesselI(1,2)^(2*Pi/GAMMA(5/6)/Ei(1)) 3908876083441094 m001 BesselI(1,2)^(GAMMA(1/6)/Ei(1)) 3908876086952920 a007 Real Root Of 990*x^4-453*x^3+946*x^2-960*x-39 3908876093082731 a007 Real Root Of 113*x^4+387*x^3-300*x^2-311*x+101 3908876109383174 a007 Real Root Of 54*x^4-951*x^3+977*x^2-498*x-402 3908876113270413 a001 3/10946*2^(21/41) 3908876138836920 r005 Im(z^2+c),c=13/46+16/59*I,n=43 3908876153657840 a007 Real Root Of -215*x^4-556*x^3+921*x^2-724*x+84 3908876153708799 a003 sin(Pi*13/101)*sin(Pi*32/69) 3908876168037245 r005 Re(z^2+c),c=-65/126+6/37*I,n=12 3908876192238673 r005 Im(z^2+c),c=7/58+13/31*I,n=19 3908876192300182 r009 Im(z^3+c),c=-19/82+19/45*I,n=6 3908876192695474 m001 (Cahen+Lehmer)/(ln(2^(1/2)+1)-BesselI(1,1)) 3908876200040804 r005 Im(z^2+c),c=31/118+17/50*I,n=14 3908876203000881 a007 Real Root Of 280*x^4+887*x^3-827*x^2+153*x+842 3908876206036465 r005 Im(z^2+c),c=-14/29+27/56*I,n=18 3908876211641837 r005 Re(z^2+c),c=-8/15+5/38*I,n=8 3908876227862763 r009 Re(z^3+c),c=-13/25+18/47*I,n=26 3908876228030902 r009 Im(z^3+c),c=-15/26+11/38*I,n=40 3908876238420287 s002 sum(A281025[n]/((exp(n)+1)*n),n=1..infinity) 3908876250073039 m001 (Trott+Thue)/(BesselJ(0,1)-Zeta(1/2)) 3908876255233077 r002 7th iterates of z^2 + 3908876256143215 r005 Re(z^2+c),c=7/27+2/63*I,n=56 3908876261119848 m005 (1/2*Catalan-7/10)/(1/7*Catalan-3/4) 3908876266753487 r005 Im(z^2+c),c=-103/78+1/41*I,n=16 3908876270958205 r009 Re(z^3+c),c=-16/31+9/32*I,n=56 3908876283364771 a007 Real Root Of 488*x^4+106*x^3+188*x^2-697*x+226 3908876297943955 r005 Re(z^2+c),c=-27/50+4/37*I,n=55 3908876298403709 m001 ErdosBorwein-StronglyCareFree-TreeGrowth2nd 3908876309985538 m001 GAMMA(1/3)+(3^(1/3))^BesselI(1,1) 3908876321145423 a007 Real Root Of 303*x^4+927*x^3-711*x^2+922*x-905 3908876335367625 a003 cos(Pi*46/111)*cos(Pi*53/117) 3908876339965371 r005 Im(z^2+c),c=-1/12+19/36*I,n=20 3908876342863337 r005 Im(z^2+c),c=8/23+9/64*I,n=35 3908876343521863 m004 -6-5*Sqrt[5]*Pi+(4*ProductLog[Sqrt[5]*Pi])/3 3908876367418180 m001 1/exp(Lehmer)*Cahen^2/BesselJ(0,1)^2 3908876373473176 r005 Re(z^2+c),c=-37/70+12/55*I,n=41 3908876384635357 a003 sin(Pi*16/83)-sin(Pi*25/61) 3908876408781231 r005 Im(z^2+c),c=-39/44+13/58*I,n=8 3908876413981502 a007 Real Root Of -209*x^4-589*x^3+703*x^2-513*x+868 3908876427691613 a001 121393/47*18^(47/50) 3908876436415673 r005 Re(z^2+c),c=-27/50+4/37*I,n=53 3908876454032363 r009 Re(z^3+c),c=-12/19+26/51*I,n=38 3908876455725905 h001 (-3*exp(-3)+9)/(-2*exp(-1)+3) 3908876458502639 r005 Re(z^2+c),c=-19/36+11/49*I,n=48 3908876460949927 r002 14th iterates of z^2 + 3908876466884263 r005 Re(z^2+c),c=-55/106+5/18*I,n=35 3908876472151592 r009 Im(z^3+c),c=-31/118+23/56*I,n=18 3908876474675136 a007 Real Root Of -416*x^4+119*x^3-353*x^2+873*x+412 3908876478847734 m001 (MertensB1-Paris)/(FeigenbaumMu+Gompertz) 3908876483043972 a007 Real Root Of 510*x^4-763*x^3+903*x^2+697*x+77 3908876483216624 r005 Im(z^2+c),c=1/48+23/38*I,n=49 3908876483780984 r005 Im(z^2+c),c=-3/23+4/7*I,n=63 3908876518269416 r005 Re(z^2+c),c=13/110+11/42*I,n=9 3908876523525887 a001 15127/5*1597^(29/44) 3908876525587330 m001 1/sqrt(3)*exp(Niven)^2*sqrt(5) 3908876527425840 r002 48th iterates of z^2 + 3908876530336019 m001 (Mills+Otter)/(ln(gamma)+GAMMA(13/24)) 3908876548307540 r005 Re(z^2+c),c=1/3+17/43*I,n=19 3908876553255999 m001 Trott/Conway/Pi/csc(5/12*Pi)*GAMMA(7/12) 3908876553556356 r002 19th iterates of z^2 + 3908876563342899 p003 LerchPhi(1/125,2,338/211) 3908876582288724 r009 Im(z^3+c),c=-1/30+9/20*I,n=15 3908876592732659 m001 (Psi(1,1/3)-sin(1/5*Pi))/(GAMMA(5/6)+Conway) 3908876596212557 a007 Real Root Of -726*x^4+541*x^3+866*x^2-35*x-134 3908876620532593 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=30 3908876621366837 r005 Re(z^2+c),c=-11/90+61/64*I,n=3 3908876626778848 r005 Re(z^2+c),c=8/27+2/59*I,n=52 3908876636855495 r002 17th iterates of z^2 + 3908876642465981 m001 (Pi^(1/2)-GAMMA(19/24))^FeigenbaumC 3908876643730190 a003 cos(Pi*3/37)*sin(Pi*9/68) 3908876653326746 r002 35th iterates of z^2 + 3908876659220308 r005 Re(z^2+c),c=-29/62+13/31*I,n=28 3908876667465579 m001 (1+Sierpinski*Trott2nd)/Trott2nd 3908876669936432 r005 Re(z^2+c),c=-65/122+8/43*I,n=42 3908876673985754 r005 Im(z^2+c),c=-67/58+9/29*I,n=14 3908876675038656 r005 Re(z^2+c),c=-3/7+19/40*I,n=22 3908876679414795 r002 31th iterates of z^2 + 3908876683655043 m001 Khinchin*(BesselK(0,1)+Riemann1stZero) 3908876687436911 m001 (GAMMA(19/24)+Artin)/(FeigenbaumDelta-Rabbit) 3908876687997591 a007 Real Root Of 147*x^4-824*x^3+46*x^2-469*x-243 3908876691281572 m001 (Trott-ZetaP(2))/(Zeta(3)+gamma(1)) 3908876699738781 l006 ln(191/9520) 3908876711223838 r005 Im(z^2+c),c=-11/31+23/38*I,n=35 3908876713019287 r002 8th iterates of z^2 + 3908876714769253 m001 (Kac+PrimesInBinary)/(Sierpinski+ZetaP(4)) 3908876717408784 a007 Real Root Of -175*x^4+463*x^3+335*x^2+346*x-210 3908876721028959 m001 (3^(1/2)+Otter)/(PlouffeB+Sarnak) 3908876731675884 m004 3/4+(25*Pi)/Log[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi] 3908876745813515 m001 1/exp(Ei(1))/Niven^2/GAMMA(1/12)^2 3908876747129213 p001 sum(1/(560*n+263)/(12^n),n=0..infinity) 3908876754905045 r002 12th iterates of z^2 + 3908876757364499 m001 (LandauRamanujan+ZetaP(3))/(ln(3)+Conway) 3908876759648960 r002 12th iterates of z^2 + 3908876760664397 a007 Real Root Of -692*x^4+591*x^3+179*x^2+977*x+406 3908876760780896 r005 Re(z^2+c),c=-83/114+11/64*I,n=25 3908876791103518 p001 sum((-1)^n/(305*n+236)/(5^n),n=0..infinity) 3908876794048549 l006 ln(5505/8138) 3908876800076657 m001 1/GAMMA(5/24)^2/FeigenbaumB/exp(arctan(1/2)) 3908876809145485 m001 (PlouffeB+Riemann2ndZero)/(Chi(1)-FeigenbaumB) 3908876810915235 r005 Re(z^2+c),c=-63/110+1/47*I,n=12 3908876818212782 r005 Re(z^2+c),c=-17/74+44/53*I,n=12 3908876818589901 m005 (3/5*Pi+4/5)/(1/4*2^(1/2)+1/3) 3908876823092808 h001 (4/9*exp(1)+1/11)/(4/11*exp(2)+7/11) 3908876825442507 m001 (-Kac+PrimesInBinary)/(Psi(2,1/3)+GAMMA(5/6)) 3908876831129759 a001 29/144*17711^(4/59) 3908876845431677 s002 sum(A051474[n]/(n^2*2^n-1),n=1..infinity) 3908876853491144 r005 Im(z^2+c),c=-39/74+2/29*I,n=36 3908876857455094 m001 1/GAMMA(11/12)^2*ln(Trott)^2*GAMMA(5/12) 3908876868307515 r002 40th iterates of z^2 + 3908876872444337 l006 ln(8454/8791) 3908876882586871 r005 Re(z^2+c),c=-31/66+11/26*I,n=19 3908876883271109 m002 -4+(Pi^4*Csch[Pi])/(4*E^Pi) 3908876883743213 a001 11/75025*987^(10/21) 3908876884338233 r002 32th iterates of z^2 + 3908876911885475 a007 Real Root Of 855*x^4+15*x^3-105*x^2-657*x+252 3908876922890025 r005 Re(z^2+c),c=-27/50+4/37*I,n=57 3908876925976965 m001 MadelungNaCl*(3^(1/3)+Kolakoski) 3908876938878976 r005 Re(z^2+c),c=11/60+19/39*I,n=4 3908876939122599 r005 Re(z^2+c),c=-13/24+4/51*I,n=34 3908876939220048 m006 (1/4*Pi^2-2/3)/(1/6*exp(Pi)+3/4) 3908876946406701 r005 Im(z^2+c),c=-3/31+26/47*I,n=45 3908876961757879 a001 1/29*(1/2*5^(1/2)+1/2)^19*18^(1/15) 3908876980494682 m001 1/exp(OneNinth)^2/Champernowne^2*exp(1)^2 3908876981681587 a007 Real Root Of 140*x^4-707*x^3-757*x^2-530*x-137 3908876989665895 m001 Gompertz^Cahen*Gompertz^GAMMA(19/24) 3908876990215286 r005 Re(z^2+c),c=-15/82+41/64*I,n=23 3908877009695984 m001 (Pi^(1/2)+Landau*MasserGramain)/Landau 3908877014453806 m006 (5/6*ln(Pi)-1/6)/(exp(Pi)-3) 3908877034508188 m001 (ln(gamma)+GAMMA(7/12))/(Artin-Champernowne) 3908877039304784 m001 Riemann1stZero/(gamma(2)^Ei(1,1)) 3908877048300330 a001 8/3571*11^(13/56) 3908877055635009 a001 7/377*196418^(1/4) 3908877057121376 r002 17th iterates of z^2 + 3908877070841848 r005 Re(z^2+c),c=1/3+9/58*I,n=4 3908877071685129 m001 (gamma(1)+Champernowne)/(Mills-Trott) 3908877072234579 m001 LandauRamanujan2nd/BesselJ(1,1)*Otter 3908877076605675 m001 BesselJZeros(0,1)*(Backhouse-GAMMA(7/24)) 3908877089721381 r005 Im(z^2+c),c=7/60+23/55*I,n=35 3908877090900710 r005 Im(z^2+c),c=-11/78+17/28*I,n=14 3908877092084718 l006 ln(4123/6095) 3908877093687778 a001 18/75025*987^(17/42) 3908877101239231 a007 Real Root Of -997*x^4-152*x^3-569*x^2-402*x-56 3908877102302067 p001 sum(1/(545*n+492)/n/(25^n),n=1..infinity) 3908877122258481 g006 Psi(1,2/11)+Psi(1,5/8)+Psi(1,3/7)-Psi(1,4/5) 3908877142425205 a007 Real Root Of -193*x^4-784*x^3-90*x^2+341*x+941 3908877149123626 m001 Rabbit/exp(MinimumGamma)/BesselK(0,1) 3908877158663702 r002 12th iterates of z^2 + 3908877175351477 r005 Re(z^2+c),c=-7/15+4/9*I,n=38 3908877176682875 a008 Real Root of (2+4*x+6*x^3-x^4+6*x^5) 3908877193130987 r005 Im(z^2+c),c=-47/114+10/19*I,n=24 3908877193934573 a007 Real Root Of -594*x^4+219*x^3+259*x^2+897*x+338 3908877199587041 r005 Im(z^2+c),c=-3/4+27/73*I,n=6 3908877208110976 r009 Im(z^3+c),c=-8/21+15/43*I,n=6 3908877208180802 m001 (-MinimumGamma+Sarnak)/(2^(1/2)-GAMMA(3/4)) 3908877216437245 a001 18/17711*2178309^(34/47) 3908877224915879 r005 Im(z^2+c),c=9/70+9/22*I,n=29 3908877266027177 a001 11/9227465*24157817^(10/21) 3908877266027185 a001 11/1134903170*591286729879^(10/21) 3908877280702340 m005 (1/3*5^(1/2)+1/3)/(1/5*Zeta(3)-3) 3908877286187980 a007 Real Root Of 464*x^4+260*x^3-819*x^2-612*x+338 3908877286614414 m005 (1/2*exp(1)+6/7)/(1/4*3^(1/2)-1) 3908877294269671 m001 (ThueMorse-Weierstrass)/(GAMMA(11/12)+Landau) 3908877302093410 a007 Real Root Of -383*x^4+509*x^3-689*x^2+748*x+437 3908877329827107 r005 Re(z^2+c),c=-29/56+25/64*I,n=29 3908877341461444 s002 sum(A004408[n]/(n^2*2^n+1),n=1..infinity) 3908877344508721 h001 (-3*exp(6)-8)/(-3*exp(2)-9) 3908877358226351 r005 Im(z^2+c),c=-3/26+9/16*I,n=58 3908877362260739 s002 sum(A281025[n]/(n*exp(n)+1),n=1..infinity) 3908877389634785 r005 Im(z^2+c),c=-47/78+27/61*I,n=54 3908877394744493 a007 Real Root Of 506*x^4+744*x^3+349*x^2-538*x-231 3908877417610646 r005 Re(z^2+c),c=-29/54+9/62*I,n=48 3908877424400643 m005 (1/5*gamma+3/4)/(1/3*2^(1/2)-1/4) 3908877443596642 m001 1/exp(Zeta(7))*Cahen^2*sin(Pi/12) 3908877444447579 a007 Real Root Of -9*x^4-350*x^3+90*x^2+782*x+497 3908877455798875 r005 Re(z^2+c),c=7/74+13/59*I,n=10 3908877505407836 a003 cos(Pi*19/50)+cos(Pi*34/69) 3908877507761151 m001 (Zeta(1/2)+BesselK(1,1))/(ln(2)/ln(10)+Ei(1)) 3908877514534357 r005 Im(z^2+c),c=11/34+21/52*I,n=28 3908877535477841 m001 1/exp(KhintchineLevy)*Si(Pi)^2*GAMMA(11/24)^2 3908877541218584 r009 Im(z^3+c),c=-17/54+20/51*I,n=15 3908877561461140 a007 Real Root Of 174*x^4+861*x^3+730*x^2+194*x+406 3908877562748929 r002 34th iterates of z^2 + 3908877563277010 a001 5/1568397607*2^(5/17) 3908877565313512 r009 Re(z^3+c),c=-35/74+5/22*I,n=22 3908877567854245 l006 ln(121/6031) 3908877574585710 r005 Im(z^2+c),c=-5/106+20/37*I,n=10 3908877602065039 a007 Real Root Of 673*x^4-929*x^3+349*x^2-971*x+366 3908877614549024 s002 sum(A047233[n]/(n*exp(pi*n)-1),n=1..infinity) 3908877631520309 m001 Grothendieck*KomornikLoreti+Sarnak 3908877634018795 r005 Im(z^2+c),c=-2/25+34/55*I,n=28 3908877656965505 m001 Pi*(2^(1/3)+Zeta(1/2)+exp(1/exp(1))) 3908877665139544 r009 Im(z^3+c),c=-1/38+47/63*I,n=4 3908877675303735 r005 Re(z^2+c),c=-5/8+60/193*I,n=34 3908877685140781 r005 Im(z^2+c),c=-22/31+2/9*I,n=11 3908877690657882 l006 ln(2741/4052) 3908877693840106 m008 (1/4*Pi^4-2)/(3/5*Pi^6-5) 3908877695673786 m001 (2^(1/3)+BesselJ(0,1))/(-Kac+OneNinth) 3908877696920598 s002 sum(A283300[n]/(n*exp(n)+1),n=1..infinity) 3908877703683488 r008 a(0)=4,K{-n^6,-19+12*n+22*n^2-3*n^3} 3908877708438054 m001 (LambertW(1)+MertensB1)/(Niven+PrimesInBinary) 3908877718735037 r009 Re(z^3+c),c=-4/19+14/19*I,n=14 3908877722631768 r005 Re(z^2+c),c=-27/50+4/37*I,n=59 3908877724147888 r005 Im(z^2+c),c=-13/10+86/249*I,n=6 3908877724990311 r005 Im(z^2+c),c=-19/34+45/71*I,n=14 3908877725962626 b008 3*Sqrt[5*Sinh[1/3]] 3908877729867111 r005 Im(z^2+c),c=-37/52+12/55*I,n=52 3908877735711399 a007 Real Root Of 644*x^4-492*x^3-933*x^2-714*x+436 3908877760533526 r002 24th iterates of z^2 + 3908877763816375 a007 Real Root Of -214*x^4+123*x^3-725*x^2+963*x-268 3908877783383793 a001 1/36*1597^(19/53) 3908877785621100 r005 Re(z^2+c),c=-10/19+17/61*I,n=25 3908877803757074 a003 cos(Pi*19/48)+cos(Pi*54/113) 3908877811480707 r005 Im(z^2+c),c=-137/118+23/56*I,n=3 3908877817983905 a007 Real Root Of -293*x^4+818*x^3-158*x^2+443*x+253 3908877843218990 m001 BesselJ(1,1)^2*Riemann2ndZero^2/exp(cosh(1))^2 3908877845187977 m001 1/(3^(1/3))/ln(RenyiParking)*GAMMA(13/24) 3908877858692190 r009 Re(z^3+c),c=-9/23+24/35*I,n=31 3908877861939513 a007 Real Root Of 838*x^4-624*x^3+393*x^2-338*x-249 3908877868901219 s002 sum(A108724[n]/(n*exp(pi*n)-1),n=1..infinity) 3908877878152419 a003 sin(Pi*3/73)/cos(Pi*46/117) 3908877885872281 m001 (TravellingSalesman-ZetaP(4))/(gamma(1)+Niven) 3908877886121299 m005 (1/3*2^(1/2)+2/11)/(269/264+7/24*5^(1/2)) 3908877890927057 p004 log(18217/12323) 3908877892212822 r005 Re(z^2+c),c=-13/118+41/63*I,n=44 3908877894080099 r002 46th iterates of z^2 + 3908877897429111 a007 Real Root Of -577*x^4+182*x^3-145*x^2+915*x+36 3908877897999197 r009 Im(z^3+c),c=-2/15+10/23*I,n=4 3908877899378882 a001 89/322*2537720636^(13/15) 3908877899378882 a001 89/322*45537549124^(13/17) 3908877899378882 a001 89/322*14662949395604^(13/21) 3908877899378882 a001 89/322*(1/2+1/2*5^(1/2))^39 3908877899378882 a001 89/322*192900153618^(13/18) 3908877899378882 a001 89/322*73681302247^(3/4) 3908877899378882 a001 89/322*10749957122^(13/16) 3908877899378882 a001 89/322*599074578^(13/14) 3908877901241938 r002 38th iterates of z^2 + 3908877901507539 a001 144/199*(1/2+1/2*5^(1/2))^37 3908877904536355 a007 Real Root Of -211*x^4-565*x^3+841*x^2-625*x+222 3908877904727928 a001 199/55*514229^(52/59) 3908877916585136 b008 ProductLog[29*(4+E)] 3908877921288111 r005 Re(z^2+c),c=-59/122+22/53*I,n=45 3908877934572675 r005 Re(z^2+c),c=-65/122+1/6*I,n=18 3908877935638643 r005 Im(z^2+c),c=-11/90+30/53*I,n=50 3908877935830285 a008 Real Root of x^4-x^3-3*x^2-67*x+134 3908877936077234 b008 2*Sqrt[Pi]+Tan[Pi/9] 3908877939788223 r005 Im(z^2+c),c=7/58+21/53*I,n=10 3908877941268407 r005 Im(z^2+c),c=-115/94+7/58*I,n=44 3908877971425783 m001 (FeigenbaumMu+TreeGrowth2nd)/GAMMA(23/24) 3908877978554079 m001 1/Tribonacci/exp(Si(Pi))^2*cos(1)^2 3908877984950126 r009 Re(z^3+c),c=-1/16+23/43*I,n=26 3908877986325926 m001 (FibonacciFactorial+Kac)/(gamma(3)+Bloch) 3908877987257177 r002 30th iterates of z^2 + 3908877987265324 m001 BesselI(1,1)*(1+3^(1/2))^(1/2)-Landau 3908877988129843 r005 Re(z^2+c),c=-51/56+11/45*I,n=16 3908878002640991 r005 Im(z^2+c),c=13/62+3/8*I,n=13 3908878015475648 r005 Im(z^2+c),c=1/52+17/20*I,n=3 3908878029413892 m001 (5^(1/2)+Zeta(3))/(-ln(3)+KhinchinLevy) 3908878034273410 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(5/8*I*Pi),n=44 3908878036789686 m001 (GAMMA(23/24)-Landau)/Champernowne 3908878044520842 r009 Im(z^3+c),c=-49/102+19/64*I,n=48 3908878045101457 a007 Real Root Of -261*x^4-923*x^3+432*x^2+391*x+734 3908878048142933 r009 Re(z^3+c),c=-5/78+33/59*I,n=22 3908878052777785 a007 Real Root Of 494*x^4+998*x^3+122*x^2-633*x-218 3908878052960497 r002 61th iterates of z^2 + 3908878064403876 m001 (BesselK(0,1)-ln(2)/ln(10))/(-ln(5)+Zeta(1/2)) 3908878066683340 a008 Real Root of x^5-18*x^3-6*x^2+64*x+4 3908878079462900 r005 Im(z^2+c),c=15/64+17/53*I,n=36 3908878085784935 r002 18th iterates of z^2 + 3908878127467964 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=26 3908878129287974 m001 1/GAMMA(1/6)*BesselK(1,1)*exp(GAMMA(17/24)) 3908878142613625 r005 Re(z^2+c),c=-19/34+1/111*I,n=14 3908878162761207 m001 1/MinimumGamma^2/exp(MertensB1)^2/Rabbit 3908878166457695 a005 (1/cos(19/195*Pi))^464 3908878167888945 m001 sin(1)*Gompertz+Magata 3908878172706656 r005 Im(z^2+c),c=39/122+16/47*I,n=19 3908878177455934 m009 (48*Catalan+6*Pi^2-1/6)/(1/4*Psi(1,3/4)+2) 3908878183724114 r005 Re(z^2+c),c=-27/52+12/43*I,n=36 3908878191354529 a007 Real Root Of 970*x^4+383*x^3-54*x^2-935*x-357 3908878222246356 r002 34th iterates of z^2 + 3908878223196163 r005 Im(z^2+c),c=5/114+27/50*I,n=6 3908878223660108 m001 (HardyLittlewoodC3-Kac)/(Ei(1)+polylog(4,1/2)) 3908878225645788 a007 Real Root Of -541*x^4-420*x^3-132*x^2+671*x+270 3908878239088255 s002 sum(A271877[n]/(pi^n+1),n=1..infinity) 3908878247099679 r005 Re(z^2+c),c=31/70+5/24*I,n=35 3908878264372456 a007 Real Root Of 221*x^4-506*x^3+974*x^2-900*x-536 3908878270359029 m007 (-5*gamma-15*ln(2)+5/2*Pi+1/6)/(-3/5*gamma-1) 3908878278382018 a007 Real Root Of -153*x^4+875*x^3-281*x^2+763*x-304 3908878283350579 r005 Im(z^2+c),c=-1/46+27/53*I,n=33 3908878292588858 l006 ln(4100/6061) 3908878293960688 b008 Erfc[3/2+Cos[1]] 3908878295436692 r005 Im(z^2+c),c=31/126+13/42*I,n=50 3908878302893604 m001 (KhinchinLevy+Stephens)/(2^(1/3)-cos(1/5*Pi)) 3908878309689056 p003 LerchPhi(1/512,5,67/88) 3908878317704788 a007 Real Root Of 116*x^4+380*x^3-217*x^2+55*x-855 3908878323935510 a001 341/36*13^(21/38) 3908878327934333 a003 sin(Pi*25/87)-sin(Pi*37/120) 3908878330798477 m001 (2^(1/2)+GAMMA(3/4))/(-Lehmer+TwinPrimes) 3908878337023529 m001 1/GAMMA(5/12)*Riemann2ndZero^2/ln(sin(Pi/5)) 3908878352726510 r005 Im(z^2+c),c=-15/122+13/23*I,n=32 3908878353759754 r002 24th iterates of z^2 + 3908878358673796 r005 Re(z^2+c),c=-7/17+23/45*I,n=35 3908878370887138 m001 TreeGrowth2nd^GAMMA(2/3)/sin(1) 3908878374230699 r009 Im(z^3+c),c=-1/30+9/20*I,n=17 3908878374822876 r005 Re(z^2+c),c=-33/64+7/17*I,n=14 3908878382303634 a007 Real Root Of -754*x^4-462*x^3-688*x^2+629*x+341 3908878388274629 r005 Im(z^2+c),c=7/34+17/49*I,n=32 3908878403249534 a001 47/17711*28657^(2/53) 3908878417310476 m005 (1/2*5^(1/2)-1/6)/(4*gamma+1/8) 3908878431818036 r005 Re(z^2+c),c=-27/50+4/37*I,n=61 3908878432700633 r005 Re(z^2+c),c=-55/102+5/42*I,n=54 3908878444454114 a007 Real Root Of -134*x^4-677*x^3-949*x^2+208*x+189 3908878446951856 m001 1/CareFree^2/Champernowne*exp(GAMMA(1/24))^2 3908878447743942 r005 Re(z^2+c),c=-43/82+5/24*I,n=17 3908878450370985 a007 Real Root Of 585*x^4-417*x^3+606*x^2-895*x-481 3908878450398727 m001 (MasserGramain+Paris)/(BesselI(0,2)-Artin) 3908878453337535 r005 Re(z^2+c),c=-27/50+4/37*I,n=51 3908878472377206 h001 (1/4*exp(1)+5/11)/(6/7*exp(1)+4/7) 3908878475937126 r005 Im(z^2+c),c=-29/25+2/45*I,n=9 3908878485332598 a007 Real Root Of 34*x^4-68*x^3-596*x^2+720*x-78 3908878491015862 r009 Im(z^3+c),c=-23/56+15/43*I,n=8 3908878509730966 m005 (1/3*gamma-1/2)/(3*exp(1)-2/7) 3908878531865302 l006 ln(172/8573) 3908878534267710 r005 Re(z^2+c),c=-45/98+7/61*I,n=3 3908878534307773 p004 log(30271/20477) 3908878538213490 a001 521/196418*3^(6/17) 3908878541608999 m001 1/ln(cosh(1))*GAMMA(23/24)*sqrt(1+sqrt(3)) 3908878559588563 r002 45th iterates of z^2 + 3908878567267522 r008 a(0)=4,K{-n^6,9-8*n^3+7*n^2} 3908878573086344 r009 Im(z^3+c),c=-37/90+10/29*I,n=24 3908878594644189 s002 sum(A226350[n]/(n^2*2^n+1),n=1..infinity) 3908878594822368 l006 ln(5459/8070) 3908878606341737 r002 53th iterates of z^2 + 3908878606422490 r005 Im(z^2+c),c=-13/24+24/55*I,n=10 3908878609663790 r009 Im(z^3+c),c=-29/66+31/61*I,n=12 3908878625346590 a007 Real Root Of 173*x^4+916*x^3+828*x^2-454*x-106 3908878641338988 r009 Re(z^3+c),c=-23/44+7/27*I,n=29 3908878646164226 r005 Im(z^2+c),c=-5/23+35/64*I,n=15 3908878651159366 r009 Re(z^3+c),c=-4/19+31/42*I,n=14 3908878662738885 r009 Re(z^3+c),c=-19/40+10/43*I,n=43 3908878695755607 p004 log(18149/12277) 3908878705096583 g007 -Psi(2,1/12)-Psi(2,1/6)-Psi(2,3/5)-Psi(2,2/3) 3908878706883236 r005 Re(z^2+c),c=-27/50+4/37*I,n=50 3908878707521104 r005 Re(z^2+c),c=-8/13+38/61*I,n=8 3908878713345670 a005 (1/sin(30/211*Pi))^51 3908878719135527 m001 (Khinchin+Riemann3rdZero)/(Ei(1)-KhinchinLevy) 3908878733085183 a007 Real Root Of -918*x^4-46*x^3-696*x^2+903*x+478 3908878749499606 m001 (ln(2)-gamma(2))/(GAMMA(19/24)+GolombDickman) 3908878764490362 r002 33th iterates of z^2 + 3908878765140730 m001 ln(Salem)^2*GolombDickman/BesselK(0,1) 3908878766431147 r002 34th iterates of z^2 + 3908878776570295 l006 ln(6818/10079) 3908878777387414 r009 Im(z^3+c),c=-41/126+19/47*I,n=6 3908878787832672 r002 22th iterates of z^2 + 3908878794927348 m004 125*Pi-(25*Sqrt[5]*Tan[Sqrt[5]*Pi])/(9*Pi) 3908878796177150 m001 (ln(5)-GAMMA(7/12))/(FeigenbaumKappa+Rabbit) 3908878802956859 r005 Re(z^2+c),c=-55/102+5/42*I,n=45 3908878824747687 m005 (1/2*3^(1/2)-2/7)/(4/9*Catalan-5/9) 3908878828400318 m001 (Rabbit-Trott)/(ln(Pi)+Cahen) 3908878835935277 m001 (-cos(1/12*Pi)+OneNinth)/(3^(1/2)+arctan(1/2)) 3908878844228115 m001 (StronglyCareFree-ZetaP(2))/(Conway-PlouffeB) 3908878860983139 m001 (-Sarnak+ZetaQ(3))/(2^(1/2)+PrimesInBinary) 3908878861782501 r002 58th iterates of z^2 + 3908878871844657 r005 Re(z^2+c),c=-27/50+6/55*I,n=36 3908878891998812 m001 KomornikLoreti^(3^(1/2)*FeigenbaumKappa) 3908878892445497 m001 1/OneNinth/GolombDickman*exp(cos(Pi/12)) 3908878915075662 m001 (-BesselJ(1,1)+Bloch)/(GAMMA(2/3)-cos(1)) 3908878920632716 m001 (-ln(5)+ZetaP(4))/(ln(2)-ln(2)/ln(10)) 3908878927759377 r005 Im(z^2+c),c=13/82+17/44*I,n=42 3908878927767031 a007 Real Root Of 688*x^4-257*x^3+255*x^2-897*x-421 3908878933913346 r005 Re(z^2+c),c=-13/24+2/25*I,n=52 3908878940163685 m004 -2/(Sqrt[5]*Pi)+125*Pi-ProductLog[Sqrt[5]*Pi] 3908878945297264 r002 60th iterates of z^2 + 3908878945480848 m001 ln(1+sqrt(2))/(BesselK(1,1)+sqrt(1+sqrt(3))) 3908878945480848 m001 ln(2^(1/2)+1)/(BesselK(1,1)+(1+3^(1/2))^(1/2)) 3908878945696103 m001 (Salem+Tetranacci)/(GAMMA(11/12)-MertensB1) 3908878963002597 a001 1/6*(1/2*5^(1/2)+1/2)^22*18^(8/13) 3908878964504982 r005 Re(z^2+c),c=-27/50+4/37*I,n=63 3908878982027000 r005 Re(z^2+c),c=-7/6+47/231*I,n=20 3908879011390604 m001 Robbin^2*exp(DuboisRaymond)^2/sqrt(1+sqrt(3)) 3908879018974901 r009 Im(z^3+c),c=-1/30+9/20*I,n=13 3908879019378260 p004 log(30203/20431) 3908879022584425 a003 sin(Pi*2/43)/sin(Pi*13/107) 3908879030187573 h001 (2/5*exp(1)+1/11)/(7/9*exp(1)+9/10) 3908879037953293 m001 1/BesselK(1,1)/ln(FeigenbaumDelta)*GAMMA(1/4) 3908879047968837 a007 Real Root Of 593*x^4+811*x^3+792*x^2-485*x-276 3908879049366070 r002 36th iterates of z^2 + 3908879052059257 r005 Im(z^2+c),c=19/60+13/56*I,n=41 3908879053394656 m001 1/ln(Zeta(3))/GAMMA(11/12)/log(2+sqrt(3)) 3908879065849116 m006 (1/Pi-1/2)/(2*exp(Pi)+1/5) 3908879069911987 a007 Real Root Of -170*x^4-805*x^3-690*x^2-319*x+905 3908879080924331 r002 56th iterates of z^2 + 3908879091217028 a001 3/1364*521^(23/50) 3908879092273512 r002 9th iterates of z^2 + 3908879093896982 a007 Real Root Of 119*x^4+566*x^3+400*x^2+254*x+904 3908879109500388 q001 151/3863 3908879110754346 m001 Ei(1)*exp(CopelandErdos)^2/log(1+sqrt(2))^2 3908879111862613 r009 Re(z^3+c),c=-17/50+1/26*I,n=3 3908879120078174 a007 Real Root Of 835*x^4-554*x^3+581*x^2-851*x-474 3908879120348174 r002 17th iterates of z^2 + 3908879127458864 a007 Real Root Of -84*x^4-497*x^3-903*x^2-885*x+265 3908879128930555 r009 Im(z^3+c),c=-13/50+9/22*I,n=5 3908879130770442 r002 62th iterates of z^2 + 3908879133265116 r009 Re(z^3+c),c=-1/17+29/48*I,n=11 3908879135510553 h001 (5/12*exp(1)+1/7)/(1/3*exp(2)+4/5) 3908879148535231 m008 (Pi^4+1/3)/(5/6*Pi^3-5/6) 3908879171126716 r005 Re(z^2+c),c=-49/78+10/61*I,n=15 3908879174079582 m008 (1/2*Pi^4-5/6)/(4*Pi^5+3/5) 3908879188744091 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)/(Robbin^Stephens) 3908879194657912 a001 1/311187*2^(13/46) 3908879208002564 g003 Re(GAMMA(-23/5+I*(-1/4))) 3908879219387162 m005 (1/2*2^(1/2)-2/11)/(-26/77+1/11*5^(1/2)) 3908879220835018 r009 Im(z^3+c),c=-1/30+9/20*I,n=19 3908879252183702 a001 4/233*165580141^(1/23) 3908879259723922 r005 Re(z^2+c),c=-27/50+3/28*I,n=33 3908879281390073 r005 Re(z^2+c),c=7/29+10/19*I,n=43 3908879283818589 r005 Re(z^2+c),c=19/58+5/62*I,n=59 3908879285797544 r005 Im(z^2+c),c=1/70+29/59*I,n=23 3908879287026641 s002 sum(A275047[n]/(n!^3),n=1..infinity) 3908879304515180 b008 38+Pi*ArcCoth[3] 3908879319303796 r002 64th iterates of z^2 + 3908879337791694 m005 (1/2*Zeta(3)+4/5)/(-73/16+7/16*5^(1/2)) 3908879352756930 m001 (exp(1)+Ei(1,1))/(-polylog(4,1/2)+Lehmer) 3908879354954019 m005 (1/2*Catalan-11/12)/(5/8*3^(1/2)+1/11) 3908879356056721 b008 -5/3+9^E 3908879359113516 a005 (1/sin(95/203*Pi))^1632 3908879362270184 r002 44th iterates of z^2 + 3908879364573559 r005 Im(z^2+c),c=-15/122+11/24*I,n=4 3908879366915158 r005 Im(z^2+c),c=-3/122+23/45*I,n=52 3908879367208411 m005 (1/2*Pi+2/3)/(-19/84+5/14*5^(1/2)) 3908879376001210 r005 Re(z^2+c),c=-13/25+17/62*I,n=62 3908879384224644 a002 12^(12/5)+2^(6/7) 3908879386519758 m001 arctan(1/3)/(ArtinRank2^cos(1)) 3908879390601954 m001 (Thue-ZetaP(4))/(Ei(1,1)+Grothendieck) 3908879391818692 r005 Re(z^2+c),c=-4/7+9/61*I,n=13 3908879397634080 m001 (2^(1/3)-Zeta(3))/(CareFree+StronglyCareFree) 3908879399545753 m001 (Zeta(5)-Magata)/(TwinPrimes-ZetaQ(2)) 3908879401706808 a007 Real Root Of 202*x^4+660*x^3-520*x^2-41*x+45 3908879406278128 a007 Real Root Of 745*x^4-342*x^3+700*x^2-919*x-504 3908879410323641 r009 Im(z^3+c),c=-19/102+25/58*I,n=16 3908879424625521 r005 Re(z^2+c),c=-67/122+7/16*I,n=14 3908879437098648 p001 sum(1/(548*n+533)/n/(24^n),n=1..infinity) 3908879445113071 r009 Im(z^3+c),c=-27/118+20/47*I,n=5 3908879452149230 r005 Im(z^2+c),c=-81/118+2/21*I,n=51 3908879455577249 s002 sum(A196261[n]/((2^n-1)/n),n=1..infinity) 3908879459430859 r005 Im(z^2+c),c=25/102+14/47*I,n=4 3908879461308718 r005 Re(z^2+c),c=-29/54+9/62*I,n=38 3908879464552868 r009 Im(z^3+c),c=-5/12+14/41*I,n=24 3908879471816440 r002 29th iterates of z^2 + 3908879489101410 r009 Im(z^3+c),c=-1/30+9/20*I,n=21 3908879506637907 l006 ln(1359/2009) 3908879523111533 r002 15th iterates of z^2 + 3908879535153908 m001 1/Rabbit^2/exp(Backhouse)^2*BesselK(1,1)^2 3908879538880999 m001 (Chi(1)+Catalan)/(TreeGrowth2nd+ZetaQ(3)) 3908879561631195 r009 Im(z^3+c),c=-1/30+9/20*I,n=23 3908879561775969 r002 34th iterates of z^2 + 3908879572684362 r004 Im(z^2+c),c=1/8+5/12*I,z(0)=I,n=26 3908879579478519 r009 Im(z^3+c),c=-1/30+9/20*I,n=25 3908879579493564 a001 1/39596*(1/2*5^(1/2)+1/2)^12*521^(13/21) 3908879580899455 h001 (6/11*exp(2)+7/12)/(1/6*exp(1)+8/11) 3908879583578490 r009 Im(z^3+c),c=-1/30+9/20*I,n=27 3908879584467301 r009 Im(z^3+c),c=-1/30+9/20*I,n=29 3908879584649646 r009 Im(z^3+c),c=-1/30+9/20*I,n=31 3908879584684921 r009 Im(z^3+c),c=-1/30+9/20*I,n=33 3908879584691280 r009 Im(z^3+c),c=-1/30+9/20*I,n=35 3908879584692319 r009 Im(z^3+c),c=-1/30+9/20*I,n=37 3908879584692461 r009 Im(z^3+c),c=-1/30+9/20*I,n=39 3908879584692468 r009 Im(z^3+c),c=-1/30+9/20*I,n=42 3908879584692470 r009 Im(z^3+c),c=-1/30+9/20*I,n=40 3908879584692470 r009 Im(z^3+c),c=-1/30+9/20*I,n=44 3908879584692470 r009 Im(z^3+c),c=-1/30+9/20*I,n=46 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=48 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=50 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=52 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=54 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=56 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=58 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=60 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=62 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=64 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=63 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=61 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=59 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=57 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=55 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=53 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=51 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=49 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=47 3908879584692471 r009 Im(z^3+c),c=-1/30+9/20*I,n=45 3908879584692472 r009 Im(z^3+c),c=-1/30+9/20*I,n=43 3908879584692474 r009 Im(z^3+c),c=-1/30+9/20*I,n=41 3908879584692516 r009 Im(z^3+c),c=-1/30+9/20*I,n=38 3908879584692913 r009 Im(z^3+c),c=-1/30+9/20*I,n=36 3908879584695522 r009 Im(z^3+c),c=-1/30+9/20*I,n=34 3908879584710650 r009 Im(z^3+c),c=-1/30+9/20*I,n=32 3908879584791483 r009 Im(z^3+c),c=-1/30+9/20*I,n=30 3908879585196874 r009 Im(z^3+c),c=-1/30+9/20*I,n=28 3908879587119078 r009 Im(z^3+c),c=-1/30+9/20*I,n=26 3908879595739281 r009 Im(z^3+c),c=-1/30+9/20*I,n=24 3908879604026493 r005 Re(z^2+c),c=-41/66+7/41*I,n=11 3908879615230784 a007 Real Root Of 305*x^4+990*x^3-934*x^2-461*x+392 3908879620855348 r005 Im(z^2+c),c=-7/6+1/198*I,n=48 3908879621920488 v003 sum((1/6*n^3-n^2+155/6*n-1)/n^n,n=1..infinity) 3908879627511476 a003 cos(Pi*2/79)-sin(Pi*23/111) 3908879632068456 r009 Im(z^3+c),c=-1/30+9/20*I,n=22 3908879642855038 r009 Re(z^3+c),c=-1/21+15/61*I,n=2 3908879646855727 r002 48th iterates of z^2 + 3908879659272621 r005 Im(z^2+c),c=-39/82+1/15*I,n=31 3908879661772251 r009 Im(z^3+c),c=-1/64+19/42*I,n=6 3908879666489504 a007 Real Root Of -312*x^4+785*x^3+546*x^2+740*x+260 3908879676167129 a007 Real Root Of 279*x^4-785*x^3-20*x^2-398*x+199 3908879702796001 m001 Lehmer^MasserGramainDelta/(Lehmer^Trott2nd) 3908879703079580 s001 sum(exp(-Pi)^(n-1)*A217390[n],n=1..infinity) 3908879708645496 r005 Re(z^2+c),c=-55/106+16/57*I,n=62 3908879710060762 r008 a(0)=4,K{-n^6,27+8*n-22*n^2-3*n^3} 3908879710401443 a001 1134903170/199*199^(4/11) 3908879711062977 a005 (1/cos(6/127*Pi))^1373 3908879716997317 r008 a(0)=4,K{-n^6,-8*n^3+6*n^2+9*n} 3908879728828268 a003 sin(Pi*9/109)-sin(Pi*13/58) 3908879744965392 a007 Real Root Of 749*x^4-286*x^3-814*x^2-987*x-296 3908879760467701 m001 (-Riemann2ndZero+ZetaP(3))/(exp(1/Pi)-sin(1)) 3908879760922713 m005 (1/2*5^(1/2)-8/9)/(1/11*exp(1)-5/6) 3908879773573400 r009 Im(z^3+c),c=-1/30+9/20*I,n=20 3908879800738449 p001 sum(1/(287*n+163)/n/(6^n),n=1..infinity) 3908879804948454 m001 2*Pi/GAMMA(5/6)*Khinchin*MertensB1 3908879804996973 a003 cos(Pi*10/113)-cos(Pi*23/75) 3908879809162607 m005 (1/2*2^(1/2)-1/2)/(4/11*3^(1/2)-1/10) 3908879812562169 m001 (Lehmer+Weierstrass)/(2^(1/2)+ln(2+3^(1/2))) 3908879819569238 r005 Im(z^2+c),c=-3/4+11/184*I,n=45 3908879836568456 r005 Re(z^2+c),c=-27/50+12/55*I,n=18 3908879846834203 m001 (gamma+Otter)/(Psi(1,1/3)-Shi(1)) 3908879856126340 m001 LandauRamanujan2nd^Grothendieck*GAMMA(23/24) 3908879860708067 q001 1347/3446 3908879882830276 r002 39th iterates of z^2 + 3908879892937433 a007 Real Root Of 288*x^4-x^3-180*x^2-553*x+237 3908879900842917 r002 42th iterates of z^2 + 3908879910051018 m001 1/exp(Ei(1))^2*Cahen*GAMMA(13/24)^2 3908879914656667 m001 1/GolombDickman^2/exp(DuboisRaymond)/cos(1) 3908879922041095 p001 sum(1/(353*n+256)/(625^n),n=0..infinity) 3908879927614579 r005 Im(z^2+c),c=7/26+2/7*I,n=50 3908879939223069 m005 (1/2*2^(1/2)-2/5)/(7/12*exp(1)-4/5) 3908879953557405 m001 GAMMA(11/24)^ln(5)*GAMMA(2/3) 3908879961405355 r002 54th iterates of z^2 + 3908879967737965 r002 55th iterates of z^2 + 3908879969991751 r002 24th iterates of z^2 + 3908879970096373 r005 Im(z^2+c),c=19/110+23/61*I,n=21 3908879973682028 a007 Real Root Of -940*x^4+963*x^3+557*x^2+162*x-184 3908879987238038 r005 Im(z^2+c),c=7/52+22/61*I,n=6 3908880002024723 r005 Im(z^2+c),c=21/74+15/56*I,n=29 3908880013765534 a007 Real Root Of 30*x^4-453*x^3+448*x^2-604*x+194 3908880018803330 r002 55th iterates of z^2 + 3908880023164063 m001 BesselK(1,1)*Lehmer-RenyiParking 3908880033294823 a007 Real Root Of -86*x^4-148*x^3+885*x^2+723*x+542 3908880034673022 m006 (1/5*Pi^2-2)/(3/5*Pi^2+3/4) 3908880034673022 m008 (1/5*Pi^2-2)/(3/5*Pi^2+3/4) 3908880040066722 m008 (5*Pi^4-3/4)/(2/5*Pi^5+2) 3908880046278130 r002 38th iterates of z^2 + 3908880046929885 m001 (Totient+Thue)/(Ei(1)-MertensB3) 3908880055311437 r008 a(0)=4,K{-n^6,5-3*n^3+2*n^2+4*n} 3908880059577586 r002 50th iterates of z^2 + 3908880060014995 r009 Re(z^3+c),c=-5/74+11/18*I,n=42 3908880060340511 m009 (24/5*Catalan+3/5*Pi^2-3)/(1/5*Psi(1,2/3)-4/5) 3908880061034337 r005 Im(z^2+c),c=3/62+20/43*I,n=33 3908880062083461 m001 (Champernowne-Landau)/(Paris+ZetaQ(3)) 3908880070024293 m005 (1/2*2^(1/2)-11/12)/(2/7*5^(1/2)-6) 3908880113779639 m001 (-Zeta(1,2)+1)/(-exp(-Pi)+5) 3908880122745850 r005 Im(z^2+c),c=-7/118+17/32*I,n=48 3908880135856289 h001 (5/7*exp(2)+5/8)/(1/7*exp(2)+5/11) 3908880140112020 a003 cos(Pi*8/67)-cos(Pi*36/113) 3908880161250709 m001 (Bloch-Lehmer)/(PrimesInBinary-Sarnak) 3908880169440818 r005 Im(z^2+c),c=23/118+5/14*I,n=26 3908880198849693 r002 63th iterates of z^2 + 3908880232953160 r002 16th iterates of z^2 + 3908880241664577 l006 ln(6772/10011) 3908880259464413 r005 Re(z^2+c),c=-27/52+13/48*I,n=31 3908880263236837 r009 Im(z^3+c),c=-1/30+9/20*I,n=18 3908880263604496 r005 Re(z^2+c),c=-27/50+4/37*I,n=64 3908880283569016 a007 Real Root Of -860*x^4+344*x^3+443*x^2+478*x-255 3908880291279645 m001 Landau^Grothendieck+ZetaQ(2) 3908880302568686 r005 Re(z^2+c),c=-12/25+17/36*I,n=44 3908880307356680 m001 exp(Si(Pi))^2*Conway/GAMMA(2/3) 3908880320749167 r005 Re(z^2+c),c=-67/126+7/34*I,n=16 3908880324231544 r002 45th iterates of z^2 + 3908880343138026 r009 Im(z^3+c),c=-13/25+22/47*I,n=12 3908880343340042 r005 Im(z^2+c),c=-4/31+21/22*I,n=6 3908880352202849 m001 Chi(1)/Champernowne*Stephens 3908880353975173 r005 Im(z^2+c),c=-11/16+39/125*I,n=60 3908880372879021 r005 Re(z^2+c),c=-5/8+11/76*I,n=6 3908880378062586 m001 MasserGramainDelta^(Paris/ZetaQ(4)) 3908880379650044 m001 (Grothendieck+Magata)/(Riemann1stZero-Thue) 3908880393675890 r002 61th iterates of z^2 + 3908880411873435 r002 34th iterates of z^2 + 3908880412667630 a007 Real Root Of -43*x^4-340*x^3-870*x^2+881*x+458 3908880424044321 r005 Re(z^2+c),c=35/106+13/31*I,n=17 3908880424896929 a007 Real Root Of -227*x^4-634*x^3+872*x^2-398*x+250 3908880426202024 l006 ln(5413/8002) 3908880437323820 s002 sum(A209711[n]/((2^n+1)/n),n=1..infinity) 3908880444197881 r009 Im(z^3+c),c=-29/106+22/45*I,n=3 3908880460783936 r009 Im(z^3+c),c=-7/26+18/25*I,n=40 3908880504123017 m004 (25*Pi)/27+Tanh[Sqrt[5]*Pi] 3908880511420554 r002 57th iterates of z^2 + 3908880523185897 a007 Real Root Of -174*x^4-465*x^3+985*x^2+707*x+563 3908880524599484 r005 Im(z^2+c),c=11/30+13/55*I,n=48 3908880525208506 m001 (Grothendieck+Porter)/(1-FeigenbaumC) 3908880531535038 h001 (10/11*exp(2)+7/10)/(4/11*exp(1)+10/11) 3908880545730434 r002 59th iterates of z^2 + 3908880549278202 h001 (-4*exp(1/3)+2)/(-8*exp(1/3)+2) 3908880553157121 m001 ln(ArtinRank2)^2/Champernowne/GAMMA(13/24)^2 3908880558542545 m001 (GlaisherKinkelin-Pi)/PlouffeB 3908880565121478 r005 Im(z^2+c),c=23/118+23/64*I,n=18 3908880565365387 m001 -cos(Pi/5)/(-cos(1)+1/3) 3908880565365387 m001 cos(Pi/5)/(1/3-cos(1)) 3908880570629333 a001 1/48*610^(16/35) 3908880582284954 r009 Im(z^3+c),c=-17/82+26/61*I,n=16 3908880587366935 r005 Re(z^2+c),c=-29/56+17/60*I,n=38 3908880610484883 m001 (ArtinRank2-MertensB3)/(Zeta(5)+sin(1/5*Pi)) 3908880621731997 r008 a(0)=4,K{-n^6,8+7*n^3+4*n^2-7*n} 3908880634007473 r005 Im(z^2+c),c=-9/28+25/47*I,n=12 3908880635271688 r005 Re(z^2+c),c=-51/94+5/62*I,n=25 3908880655676042 r002 61th iterates of z^2 + 3908880656553651 a007 Real Root Of 927*x^4-504*x^3-403*x^2-501*x-19 3908880659954010 r005 Im(z^2+c),c=27/118+15/46*I,n=56 3908880661733804 a001 329/90481*76^(17/31) 3908880678217699 r009 Im(z^3+c),c=-23/56+15/43*I,n=14 3908880701361846 r005 Re(z^2+c),c=-63/118+10/57*I,n=32 3908880705562866 r005 Re(z^2+c),c=-27/50+4/37*I,n=62 3908880718532806 r009 Im(z^3+c),c=-10/19+15/58*I,n=61 3908880731891298 m005 (1/3*2^(1/2)-1/9)/(7/8*gamma+5/12) 3908880734462399 l006 ln(4054/5993) 3908880757252425 m001 (-BesselI(0,1)+MertensB2)/(2^(1/3)-Si(Pi)) 3908880759483488 r009 Im(z^3+c),c=-39/86+5/11*I,n=6 3908880759501232 m004 -6-125*Pi+625*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 3908880764215317 m001 Pi*2^(1/3)+BesselI(1,2)-GAMMA(13/24) 3908880774491573 m005 (1/2*Catalan-8/11)/(4/5*Zeta(3)-3/11) 3908880790139299 r005 Im(z^2+c),c=-11/18+21/52*I,n=8 3908880805748008 r005 Re(z^2+c),c=-17/66+25/44*I,n=7 3908880818752063 q001 1184/3029 3908880819025073 l006 ln(51/2542) 3908880825245016 p003 LerchPhi(1/100,6,400/233) 3908880825819584 r002 44th iterates of z^2 + 3908880826531243 r005 Im(z^2+c),c=35/106+14/43*I,n=16 3908880835476943 m001 (1-LambertW(1))/(ln(3)+ZetaQ(3)) 3908880863039663 a007 Real Root Of 265*x^4-846*x^3-766*x^2-810*x+478 3908880875719006 m001 (Kolakoski+PlouffeB)/(ln(5)+GAMMA(13/24)) 3908880883113069 m004 -6-125*Pi+625*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 3908880889716056 m001 (exp(1/Pi)+Pi^(1/2))/(ArtinRank2+OneNinth) 3908880899438343 r008 a(0)=4,K{-n^6,2+8*n^3-2*n^2+4*n} 3908880900856150 a005 (1/sin(74/201*Pi))^667 3908880934420124 s002 sum(A258372[n]/(n^3*10^n+1),n=1..infinity) 3908880946295515 r005 Re(z^2+c),c=-17/40+21/55*I,n=9 3908880976529159 a001 233*199^(30/31) 3908880981701006 l006 ln(6749/9977) 3908880981707808 r009 Re(z^3+c),c=-37/110+2/55*I,n=15 3908880996644349 a007 Real Root Of -128*x^4-399*x^3+486*x^2+215*x-533 3908881006498988 r005 Im(z^2+c),c=-2/27+27/50*I,n=56 3908881009416862 r002 3th iterates of z^2 + 3908881020288371 m001 Pi*(ln(2)/ln(10)-Chi(1)+exp(gamma)) 3908881035717464 r002 21th iterates of z^2 + 3908881043551297 r002 14th iterates of z^2 + 3908881046046187 m001 (Shi(1)+ln(2))/(-GaussAGM+GlaisherKinkelin) 3908881049429727 r002 32th iterates of z^2 + 3908881055119702 m005 (4/5*Catalan+1)/(3/4*gamma+4) 3908881055545193 r005 Re(z^2+c),c=-31/58+11/60*I,n=26 3908881057060106 r002 7th iterates of z^2 + 3908881060848766 r009 Im(z^3+c),c=-11/28+13/46*I,n=2 3908881076853575 r002 39th iterates of z^2 + 3908881077413719 m005 (-7/36+1/4*5^(1/2))/(1/8*Catalan+9/11) 3908881082929533 m001 Lehmer-exp(Pi)*DuboisRaymond 3908881108762936 r009 Re(z^3+c),c=-13/27+13/48*I,n=14 3908881117734913 r002 17th iterates of z^2 + 3908881140783904 m001 Pi^(FeigenbaumD/Chi(1)) 3908881159574958 a007 Real Root Of -320*x^4-361*x^3-165*x^2+928*x-36 3908881170039054 r005 Im(z^2+c),c=-33/56+9/26*I,n=3 3908881185388822 r005 Re(z^2+c),c=-65/122+7/36*I,n=26 3908881206089974 r005 Im(z^2+c),c=-7/86+25/46*I,n=48 3908881206540625 m001 (-ErdosBorwein+Khinchin)/(3^(1/2)-Backhouse) 3908881215458338 a007 Real Root Of 627*x^4-757*x^3-875*x^2-478*x-113 3908881220753494 m001 ln(FransenRobinson)^2*Cahen^2/GAMMA(5/6) 3908881225763011 m001 KomornikLoreti/BesselI(1,1)/cos(1/5*Pi) 3908881227711770 r005 Re(z^2+c),c=-31/58+1/7*I,n=7 3908881236026186 r005 Re(z^2+c),c=-57/94+1/21*I,n=10 3908881257642735 r005 Im(z^2+c),c=-87/122+7/47*I,n=39 3908881295141231 r005 Im(z^2+c),c=27/118+15/46*I,n=55 3908881313044195 s001 sum(exp(-Pi)^n*A198551[n],n=1..infinity) 3908881313044195 s002 sum(A198551[n]/(exp(pi*n)),n=1..infinity) 3908881330144451 r005 Re(z^2+c),c=-27/50+4/37*I,n=60 3908881330781945 p001 sum((-1)^n/(315*n+83)/n/(64^n),n=1..infinity) 3908881347200633 a001 2584/710647*76^(17/31) 3908881351348179 m001 (BesselK(1,1)+Bloch)/(TreeGrowth2nd-ThueMorse) 3908881353613913 l006 ln(2695/3984) 3908881361640005 a001 1/4*(1/2*5^(1/2)+1/2)^7*29^(1/2) 3908881377065250 r009 Im(z^3+c),c=-12/23+17/49*I,n=19 3908881389343425 m001 1/2*Zeta(5)*2^(2/3)*Weierstrass 3908881403373951 r009 Re(z^3+c),c=-33/62+20/43*I,n=26 3908881404528518 r005 Im(z^2+c),c=35/94+4/19*I,n=60 3908881405721866 a001 377/7*843^(44/45) 3908881415442896 r002 32th iterates of z^2 + 3908881416013136 a001 4181/7*3571^(23/45) 3908881420535291 r005 Im(z^2+c),c=-15/56+11/19*I,n=37 3908881424812833 r009 Im(z^3+c),c=-51/94+5/16*I,n=9 3908881437512027 r009 Re(z^3+c),c=-5/74+11/18*I,n=44 3908881447208895 a001 55/15126*76^(17/31) 3908881450789258 r002 43th iterates of z^2 + 3908881461799904 a001 17711/4870847*76^(17/31) 3908881470817644 a001 10946/3010349*76^(17/31) 3908881473609816 a007 Real Root Of -964*x^4-634*x^3-407*x^2+837*x+374 3908881477867175 p004 log(29863/20201) 3908881485027139 r005 Re(z^2+c),c=-55/102+5/42*I,n=52 3908881485161864 a001 3010349/34*13^(11/19) 3908881499529598 r009 Im(z^3+c),c=-27/74+17/46*I,n=18 3908881507054900 r005 Re(z^2+c),c=-57/106+7/51*I,n=42 3908881509017401 a001 4181/1149851*76^(17/31) 3908881515306861 r009 Im(z^3+c),c=-15/106+30/41*I,n=13 3908881523933493 a001 121393/7*9349^(4/45) 3908881537418497 r005 Im(z^2+c),c=35/114+15/62*I,n=61 3908881555240018 r005 Re(z^2+c),c=5/86+35/57*I,n=18 3908881557121657 a001 10983760033/6*29^(10/11) 3908881558522860 r009 Im(z^3+c),c=-43/118+3/8*I,n=10 3908881559960014 m001 (Champernowne+ZetaP(3))/(ln(2)-Backhouse) 3908881568719621 m001 (BesselJ(0,1)-ln(5))/(Riemann2ndZero+Stephens) 3908881571226401 r005 Re(z^2+c),c=-53/110+25/64*I,n=28 3908881577324863 p001 sum(1/(522*n+265)/(10^n),n=0..infinity) 3908881581066141 a001 2178309/11*322^(54/59) 3908881590208259 r005 Im(z^2+c),c=1/126+28/57*I,n=34 3908881600552267 g006 Psi(1,2/11)+Psi(1,2/7)-Psi(1,9/11)-Psi(1,3/5) 3908881604822674 r009 Im(z^3+c),c=-1/30+9/20*I,n=16 3908881614631244 r009 Im(z^3+c),c=-31/114+47/63*I,n=40 3908881619949157 a007 Real Root Of 272*x^4+771*x^3-943*x^2+722*x-222 3908881620228481 p004 log(24473/491) 3908881640257756 r005 Re(z^2+c),c=-13/24+2/25*I,n=54 3908881648736926 r005 Im(z^2+c),c=-23/34+19/62*I,n=17 3908881651360741 m005 (1/3*Zeta(3)+2/5)/(4/7*gamma-1/8) 3908881654169803 r005 Im(z^2+c),c=-63/106+1/24*I,n=11 3908881677209320 m001 1/GAMMA(17/24)^2*ln(FeigenbaumDelta)^2*exp(1) 3908881679953401 r005 Im(z^2+c),c=7/60+23/55*I,n=46 3908881680497235 m001 arctan(1/2)^(ln(5)/ln(2+3^(1/2))) 3908881680497235 m001 arctan(1/2)^(ln(5)/ln(2+sqrt(3))) 3908881693044654 m001 ln(3)^TwinPrimes*Ei(1,1)^TwinPrimes 3908881726798586 l006 ln(6726/9943) 3908881736799104 m001 GAMMA(5/6)*Trott^2*exp(cos(1))^2 3908881742991657 a007 Real Root Of -163*x^4-704*x^3-365*x^2-349*x+220 3908881748256547 l006 ln(2333/2426) 3908881761003990 a007 Real Root Of -296*x^4-946*x^3+583*x^2-989*x-170 3908881767200653 r005 Re(z^2+c),c=-57/106+7/52*I,n=25 3908881769383561 m001 (Zeta(1/2)+Backhouse)/(Paris+Trott) 3908881770842431 a001 1597/439204*76^(17/31) 3908881770872715 a007 Real Root Of -87*x^4-323*x^3-225*x^2-960*x+705 3908881771050960 r005 Re(z^2+c),c=-61/102+10/61*I,n=11 3908881805119122 r009 Re(z^3+c),c=-37/110+2/55*I,n=16 3908881806937110 p001 sum(1/(487*n+256)/(512^n),n=0..infinity) 3908881810804836 a001 17711/7*2207^(16/45) 3908881813492148 r005 Im(z^2+c),c=1/14+9/20*I,n=33 3908881822624813 m001 (-Weierstrass+ZetaP(2))/(Otter-Psi(2,1/3)) 3908881838682923 r005 Im(z^2+c),c=-7/90+34/63*I,n=35 3908881859997342 r009 Im(z^3+c),c=-59/122+5/11*I,n=10 3908881861328281 r005 Im(z^2+c),c=-27/70+35/61*I,n=59 3908881863920188 r005 Re(z^2+c),c=29/82+12/53*I,n=8 3908881871160950 r002 26th iterates of z^2 + 3908881876662472 r002 53th iterates of z^2 + 3908881884872334 a007 Real Root Of 475*x^4-455*x^3+535*x^2-857*x-455 3908881907652301 a007 Real Root Of -132*x^4+578*x^3+429*x^2+862*x+309 3908881920174834 a007 Real Root Of -148*x^4+718*x^3+150*x^2+902*x+376 3908881926048818 r009 Im(z^3+c),c=-21/40+13/56*I,n=38 3908881928388750 a003 sin(Pi*9/53)-sin(Pi*19/103) 3908881943153788 r002 49th iterates of z^2 + 3908881943838047 r008 a(0)=4,K{-n^6,20-10*n+17*n^2-17*n^3} 3908881950680552 r002 6th iterates of z^2 + 3908881976298131 l006 ln(4031/5959) 3908881978188444 r002 27th iterates of z^2 + 3908882004055160 r005 Im(z^2+c),c=35/102+10/53*I,n=28 3908882009458892 a007 Real Root Of -159*x^4+942*x^3-74*x^2+777*x+375 3908882018434345 r009 Im(z^3+c),c=-10/31+7/18*I,n=18 3908882040963390 m004 -2+125*Pi+Cos[Sqrt[5]*Pi]/(2*Log[Sqrt[5]*Pi]) 3908882044071800 r005 Re(z^2+c),c=-65/122+8/43*I,n=50 3908882046016589 a001 1364/13*46368^(27/49) 3908882057100173 r005 Re(z^2+c),c=-11/28+33/62*I,n=33 3908882082695252 q001 1021/2612 3908882083118228 r002 52th iterates of z^2 + 3908882103298649 m005 (2*Catalan+1/3)/(31/6+1/6*5^(1/2)) 3908882103859567 r005 Re(z^2+c),c=-27/50+4/37*I,n=58 3908882113567772 m001 Zeta(1/2)/Zeta(3)*arctan(1/3) 3908882114554384 m001 sqrt(3)*(1/3-OneNinth) 3908882119321793 a001 2584/123*123^(4/31) 3908882130119564 m001 (-Zeta(1/2)+Otter)/(Psi(1,1/3)+Zeta(3)) 3908882156898131 r005 Im(z^2+c),c=-121/114+20/59*I,n=8 3908882159801217 m001 ZetaR(2)^BesselK(0,1)*Sarnak^BesselK(0,1) 3908882179452198 a001 7/377*75025^(47/53) 3908882189672138 r005 Im(z^2+c),c=17/126+17/42*I,n=28 3908882193876664 r005 Im(z^2+c),c=-95/126+28/59*I,n=4 3908882203693617 m001 HardyLittlewoodC5-ln(2)-Pi*2^(1/2)/GAMMA(3/4) 3908882212796582 r005 Re(z^2+c),c=-12/17+5/48*I,n=29 3908882216782202 r002 12th iterates of z^2 + 3908882224813120 a007 Real Root Of -424*x^4-86*x^3+827*x^2+966*x+256 3908882228480560 m001 (exp(1/exp(1))+ThueMorse)/(Pi+ln(5)) 3908882254684631 a007 Real Root Of 243*x^4+859*x^3-196*x^2+606*x-63 3908882262288592 r002 25th iterates of z^2 + 3908882263830244 r009 Im(z^3+c),c=-37/70+17/59*I,n=31 3908882275745599 r005 Re(z^2+c),c=-55/102+5/42*I,n=48 3908882282117331 a003 cos(Pi*32/111)-cos(Pi*50/117) 3908882288974465 l006 ln(5367/7934) 3908882290992091 r001 41i'th iterates of 2*x^2-1 of 3908882300139963 a007 Real Root Of 300*x^4+929*x^3-674*x^2+860*x-893 3908882311224993 m006 (3/4*Pi-4/5)/(4*Pi^2+1/3) 3908882311224993 m008 (3/4*Pi-4/5)/(4*Pi^2+1/3) 3908882313852613 r005 Re(z^2+c),c=-27/50+4/37*I,n=52 3908882315207554 a007 Real Root Of -674*x^4-784*x^3+4*x^2+406*x+127 3908882343779950 r005 Im(z^2+c),c=-7/110+37/62*I,n=34 3908882344598282 r005 Im(z^2+c),c=-37/106+13/21*I,n=3 3908882351714059 r005 Im(z^2+c),c=-9/122+7/13*I,n=39 3908882366627635 r002 33th iterates of z^2 + 3908882371911320 a008 Real Root of x^3-x^2+22*x+161 3908882372031037 r009 Im(z^3+c),c=-19/50+21/58*I,n=30 3908882382771104 m001 GaussAGM^Zeta(1/2)*BesselI(0,2)^Zeta(1/2) 3908882383564389 r002 7th iterates of z^2 + 3908882389681109 r005 Im(z^2+c),c=17/90+17/48*I,n=15 3908882397406392 m001 (Sierpinski+Thue)/(Ei(1,1)+Robbin) 3908882398051843 a001 89/9349*47^(55/57) 3908882405369794 a003 sin(Pi*8/51)*sin(Pi*13/42) 3908882414716295 h001 (2/9*exp(1)+6/7)/(3/7*exp(2)+4/7) 3908882416094924 r005 Im(z^2+c),c=13/44+17/40*I,n=57 3908882423914187 r005 Im(z^2+c),c=-10/19+2/29*I,n=33 3908882429742831 s001 sum(exp(-Pi/2)^(n-1)*A225494[n],n=1..infinity) 3908882435720788 r005 Re(z^2+c),c=-61/118+13/44*I,n=39 3908882442947100 r005 Im(z^2+c),c=23/126+23/64*I,n=15 3908882443183933 r009 Im(z^3+c),c=-33/106+24/61*I,n=18 3908882453915922 r002 47th iterates of z^2 + 3908882459788917 m001 1/(3^(1/3))^2*FeigenbaumAlpha^2/ln(Catalan)^2 3908882466214465 a003 cos(Pi*33/104)-sin(Pi*28/73) 3908882467550136 m001 1/GAMMA(7/12)*exp(Rabbit)^2*Zeta(3)^2 3908882477009416 l006 ln(6703/9909) 3908882478507311 a001 76/2178309*1597^(19/58) 3908882480043553 r005 Re(z^2+c),c=2/11+21/58*I,n=14 3908882481771293 a007 Real Root Of 496*x^4+506*x^3+746*x^2-301*x-213 3908882483017215 m001 Pi-ln(2)/ln(10)+gamma/cos(1) 3908882486180587 r005 Im(z^2+c),c=27/118+15/46*I,n=50 3908882488667763 m001 1/Zeta(1/2)/exp(Salem)/cos(1) 3908882494392759 m001 1/FransenRobinson^2*Conway/exp((3^(1/3))) 3908882500157179 r008 a(0)=0,K{-n^6,-58-13*n^3+34*n^2+4*n} 3908882500507231 a007 Real Root Of -189*x^4-659*x^3+392*x^2+552*x+933 3908882503187508 r005 Im(z^2+c),c=17/46+15/62*I,n=59 3908882507770975 a007 Real Root Of 230*x^4+713*x^3-734*x^2-213*x-729 3908882522177280 r005 Im(z^2+c),c=-7/10+23/99*I,n=23 3908882522332250 m008 (5*Pi^3+2/5)/(2/5*Pi^4+4/5) 3908882527359292 r002 21th iterates of z^2 + 3908882547582465 a007 Real Root Of -279*x^4-914*x^3+831*x^2+560*x+38 3908882552483247 r005 Im(z^2+c),c=13/86+20/51*I,n=46 3908882554142537 r002 51th iterates of z^2 + 3908882557267017 a001 1836311903/322*123^(2/5) 3908882571390175 m004 -125/Pi+25*Pi+Sin[Sqrt[5]*Pi]/2 3908882574147712 m005 (-23/4+1/4*5^(1/2))/(5/11*Pi-1/10) 3908882615362727 r005 Re(z^2+c),c=-53/98+2/21*I,n=45 3908882618268461 r002 41th iterates of z^2 + 3908882619510030 r009 Im(z^3+c),c=-21/50+20/59*I,n=10 3908882622871534 m001 (Catalan-gamma(3))/(KhinchinHarmonic+Lehmer) 3908882636153412 m005 (1/2*Zeta(3)-5/7)/(4/7*3^(1/2)-7/10) 3908882648879772 a007 Real Root Of 120*x^4-786*x^3-626*x^2-21*x+148 3908882652769533 r005 Re(z^2+c),c=-17/46+35/61*I,n=38 3908882658339217 m001 (exp(Pi)+Psi(2,1/3))/(Cahen+ZetaP(3)) 3908882676981801 a007 Real Root Of -816*x^4+622*x^3-250*x^2+329*x+223 3908882697983923 r005 Im(z^2+c),c=23/82+28/51*I,n=16 3908882708032034 a007 Real Root Of 871*x^4-628*x^3+582*x^2+245*x-51 3908882751482537 r004 Im(z^2+c),c=-5/24-11/20*I,z(0)=I,n=4 3908882753399776 m001 (Magata+Tetranacci)/(Shi(1)+HardyLittlewoodC4) 3908882766980541 a005 (1/sin(99/203*Pi))^1821 3908882777668691 s002 sum(A050858[n]/(n^2*10^n+1),n=1..infinity) 3908882794098830 r009 Im(z^3+c),c=-37/126+26/63*I,n=6 3908882796258701 r005 Re(z^2+c),c=-15/22+13/70*I,n=30 3908882812206663 r005 Re(z^2+c),c=-21/40+10/41*I,n=47 3908882837862440 m001 sinh(1)^2/GAMMA(5/6)*exp(sqrt(3))^2 3908882838254918 a001 5/11*9349^(19/39) 3908882838562886 g001 Psi(2/7,40/53) 3908882846375220 m001 (Lehmer-Riemann3rdZero)/(gamma(1)+ArtinRank2) 3908882849575137 r005 Im(z^2+c),c=13/66+11/31*I,n=27 3908882855257028 r005 Im(z^2+c),c=-11/50+50/61*I,n=24 3908882856454893 m001 Riemann3rdZero^PlouffeB-TravellingSalesman 3908882858011956 a007 Real Root Of -901*x^4-387*x^3+23*x^2+984*x-344 3908882860178373 m006 (1/2*exp(2*Pi)-5)/(3/5*Pi^2+4/5) 3908882865520289 r005 Re(z^2+c),c=-27/50+4/37*I,n=56 3908882868761381 m005 (1/2*Zeta(3)-1/10)/(1/6*5^(1/2)+10/11) 3908882879484514 r009 Im(z^3+c),c=-61/126+5/17*I,n=54 3908882885769274 r002 7th iterates of z^2 + 3908882897062081 m001 (sin(1)+ln(5))/(ZetaP(2)+ZetaP(3)) 3908882898054077 r009 Re(z^3+c),c=-1/66+38/49*I,n=25 3908882898091828 a007 Real Root Of 625*x^4-347*x^3+588*x^2+246*x-29 3908882898755612 r005 Im(z^2+c),c=27/118+15/46*I,n=52 3908882910525307 h001 (6/7*exp(1)+1/12)/(8/11*exp(2)+4/5) 3908882921005989 a001 3/8*20365011074^(7/9) 3908882922621827 a001 5374978561/72*1836311903^(16/17) 3908882922621991 a001 4870847/144*6557470319842^(16/17) 3908882922624609 a001 23725150497407/144*514229^(16/17) 3908882929132784 a007 Real Root Of 98*x^4+247*x^3-705*x^2-800*x-482 3908882929436194 h001 (9/10*exp(2)+5/12)/(7/12*exp(1)+2/9) 3908882945460816 l006 ln(185/9221) 3908882948039030 m001 (FeigenbaumMu-FellerTornier)/(Mills-PlouffeB) 3908882979017363 a001 7778742049/521*123^(1/5) 3908882987324090 g006 Psi(1,2/11)+Psi(1,3/10)-Psi(1,7/9)-Psi(1,4/5) 3908883002240036 r009 Im(z^3+c),c=-1/30+9/20*I,n=14 3908883004122956 m008 (1/4*Pi^4+1/4)/(2/3*Pi^4-2) 3908883014003453 m001 (Bloch-gamma)/(FeigenbaumKappa+Totient) 3908883022495257 m001 CareFree^2*exp(FeigenbaumAlpha)^2/Ei(1) 3908883024004776 r009 Re(z^3+c),c=-5/106+13/47*I,n=4 3908883034271095 a007 Real Root Of 15*x^4+570*x^3-650*x^2-470*x-673 3908883037742110 m004 -1+(3*Sqrt[5])/Pi-125*Pi+Sin[Sqrt[5]*Pi] 3908883039303465 a007 Real Root Of -618*x^4-47*x^3+87*x^2+892*x+347 3908883042047060 m001 (ln(5)+Riemann2ndZero)/(1-BesselK(0,1)) 3908883048137009 r005 Re(z^2+c),c=-33/82+28/61*I,n=12 3908883054975719 b008 Pi+10*Coth[2/7] 3908883070638988 p002 log(11^(2/3)*(12^(1/3)-19^(1/2))) 3908883092140377 r005 Re(z^2+c),c=-81/118+8/59*I,n=17 3908883099184614 m001 OneNinth^2/LandauRamanujan^2/ln(BesselK(1,1)) 3908883103923137 a001 123/13*2584^(23/30) 3908883113943865 r005 Re(z^2+c),c=29/114+7/15*I,n=43 3908883137319840 r005 Re(z^2+c),c=-69/62+17/54*I,n=4 3908883148444657 a001 1597/11*11^(19/46) 3908883150561614 m001 1/exp(BesselJ(0,1))/Robbin^2/exp(1) 3908883158961115 a008 Real Root of (1+3*x+3*x^2+3*x^3-3*x^4+4*x^5) 3908883160663110 r009 Im(z^3+c),c=-35/122+46/51*I,n=2 3908883170979055 a007 Real Root Of 134*x^4+717*x^3+751*x^2-168*x-592 3908883204239067 r002 41th iterates of z^2 + 3908883209789458 r005 Re(z^2+c),c=-27/50+4/37*I,n=54 3908883213122109 r005 Im(z^2+c),c=-11/78+17/29*I,n=8 3908883213578772 r009 Im(z^3+c),c=-29/60+13/45*I,n=26 3908883216783829 r002 43th iterates of z^2 + 3908883221151385 r005 Im(z^2+c),c=-3/46+25/43*I,n=28 3908883228773392 m001 ln(5)+FeigenbaumB+Porter 3908883232386312 l006 ln(1336/1975) 3908883235019339 a007 Real Root Of 792*x^4+545*x^3-894*x^2-759*x+31 3908883242355131 r005 Im(z^2+c),c=-29/46+3/41*I,n=58 3908883248018562 r005 Re(z^2+c),c=-57/94+5/27*I,n=9 3908883262190731 a001 7/28657*46368^(8/31) 3908883262842120 r002 7th iterates of z^2 + 3908883263275056 s002 sum(A190610[n]/(n^2*2^n+1),n=1..infinity) 3908883281392112 m005 (1/2*2^(1/2)-7/11)/(5/8*3^(1/2)+8/11) 3908883284868229 m005 (1/6*exp(1)+1/6)/(1/4*Pi+4/5) 3908883287097629 m001 exp(GAMMA(5/6))^2/GAMMA(5/12)^2/cos(1) 3908883302784175 r005 Re(z^2+c),c=-23/36+21/62*I,n=48 3908883303217836 m001 gamma(1)^(Khinchin/ThueMorse) 3908883303318640 a007 Real Root Of 297*x^4-413*x^3+650*x^2+97*x-93 3908883305411670 m001 Conway-FeigenbaumDelta-Landau 3908883317072112 r002 64th iterates of z^2 + 3908883318541782 r005 Im(z^2+c),c=-2/17+14/25*I,n=32 3908883326415885 a001 3/167761*3571^(47/50) 3908883327772318 p001 sum((-1)^n/(449*n+253)/(32^n),n=0..infinity) 3908883339946336 m001 (Shi(1)-ln(3))/(-sin(1/12*Pi)+ln(2+3^(1/2))) 3908883352387818 r005 Re(z^2+c),c=3/74+4/13*I,n=12 3908883354918302 m001 1/GAMMA(1/4)/exp(Lehmer)^2*arctan(1/2) 3908883362113373 r005 Im(z^2+c),c=-8/9+7/31*I,n=54 3908883362247216 a001 47/610*514229^(9/19) 3908883366319669 r005 Im(z^2+c),c=29/122+20/63*I,n=30 3908883376785747 r005 Re(z^2+c),c=-47/98+17/39*I,n=35 3908883377474677 r009 Re(z^3+c),c=-37/110+2/55*I,n=17 3908883383482618 r005 Im(z^2+c),c=2/15+19/47*I,n=21 3908883384537559 r005 Im(z^2+c),c=-91/122+5/63*I,n=37 3908883395028978 r005 Re(z^2+c),c=53/118+11/52*I,n=4 3908883402248054 r005 Re(z^2+c),c=-65/98+7/43*I,n=19 3908883418166085 m001 1/Si(Pi)^2*Artin/exp(GAMMA(23/24)) 3908883432241474 a007 Real Root Of 287*x^4-421*x^3-443*x^2-212*x+169 3908883445267355 s002 sum(A040642[n]/(64^n),n=1..infinity) 3908883446261596 m003 5+6*Cot[1/2+Sqrt[5]/2]-Sinh[1/2+Sqrt[5]/2]/3 3908883449351099 r005 Im(z^2+c),c=3/26+13/31*I,n=30 3908883460858550 r005 Re(z^2+c),c=-5/17+29/50*I,n=15 3908883463614584 r005 Im(z^2+c),c=-41/70+27/64*I,n=50 3908883465576293 m005 (23/20+1/4*5^(1/2))/(2*5^(1/2)-1/10) 3908883474222948 h001 (7/12*exp(2)+4/7)/(1/8*exp(1)+10/11) 3908883475059543 r002 23th iterates of z^2 + 3908883486986677 r002 53th iterates of z^2 + 3908883499327083 r005 Im(z^2+c),c=19/66+4/15*I,n=32 3908883500958438 m001 (2^(1/2)-Si(Pi))/(Zeta(1/2)+PolyaRandomWalk3D) 3908883505208401 m005 (1/2*Pi+5/6)/(4*3^(1/2)-7/9) 3908883506874169 m005 (1/2*Pi-5/9)/(-29/60+1/10*5^(1/2)) 3908883513268745 r005 Im(z^2+c),c=-1/50+19/37*I,n=23 3908883517005558 a007 Real Root Of -117*x^4-403*x^3+310*x^2+492*x+432 3908883524995673 a001 76/225851433717*3^(3/22) 3908883526610022 m002 -E^Pi/5+(Pi*Log[Pi])/5 3908883538551864 r005 Re(z^2+c),c=-13/24+2/25*I,n=56 3908883551579971 r005 Im(z^2+c),c=33/94+16/63*I,n=39 3908883562369498 s002 sum(A220037[n]/(exp(pi*n)-1),n=1..infinity) 3908883565417888 a001 610/167761*76^(17/31) 3908883570100670 r005 Im(z^2+c),c=-57/122+4/25*I,n=4 3908883571883031 r009 Re(z^3+c),c=-13/24+28/45*I,n=9 3908883572274313 r005 Re(z^2+c),c=-13/25+14/51*I,n=37 3908883578129386 a007 Real Root Of -179*x^4-690*x^3+317*x^2+902*x-739 3908883580401886 m003 1/12+Sqrt[5]/64+5*ProductLog[1/2+Sqrt[5]/2] 3908883596253906 r005 Re(z^2+c),c=-49/38+1/36*I,n=4 3908883610536500 r009 Re(z^3+c),c=-3/122+9/11*I,n=6 3908883611792762 r005 Re(z^2+c),c=-55/102+5/42*I,n=50 3908883628492550 r005 Im(z^2+c),c=-11/52+31/52*I,n=55 3908883634156632 r002 44th iterates of z^2 + 3908883659451934 m001 (exp(1)-ln(3))/(-BesselI(1,2)+Salem) 3908883672728811 r002 8th iterates of z^2 + 3908883683132883 a007 Real Root Of 16*x^4+621*x^3-194*x^2-845*x-679 3908883685332276 a007 Real Root Of -528*x^4-320*x^3-581*x^2+284*x+193 3908883688046510 m006 (2/3*Pi+3)/(2/Pi+2/3) 3908883728996935 m001 (ReciprocalFibonacci-gamma(3)*Thue)/Thue 3908883743166743 r009 Im(z^3+c),c=-61/98+31/57*I,n=51 3908883744340401 r005 Re(z^2+c),c=-16/31+16/63*I,n=13 3908883754774724 l006 ln(134/6679) 3908883767309795 a007 Real Root Of -602*x^4-366*x^3+12*x^2+957*x-340 3908883773644867 r002 30th iterates of z^2 + 3908883774667077 r005 Re(z^2+c),c=-37/70+22/63*I,n=26 3908883778700582 m005 (1/2*Catalan-6/7)/(4/9*Zeta(3)-7/11) 3908883779133839 m001 (sin(1/5*Pi)*GAMMA(11/12)-Cahen)/sin(1/5*Pi) 3908883779133839 m001 (sin(Pi/5)*GAMMA(11/12)-Cahen)/sin(Pi/5) 3908883781944128 r005 Re(z^2+c),c=-13/10+3/208*I,n=26 3908883788810621 r002 5th iterates of z^2 + 3908883804090552 r005 Im(z^2+c),c=35/114+15/62*I,n=64 3908883812249041 a003 cos(Pi*31/83)/sin(Pi*51/112) 3908883826461413 r002 12th iterates of z^2 + 3908883826879271 q001 858/2195 3908883842475356 v002 sum(1/(5^n*(11*n^2-13*n+62)),n=1..infinity) 3908883875527083 r009 Im(z^3+c),c=-29/66+17/52*I,n=43 3908883883668671 a007 Real Root Of 989*x^4+32*x^3-478*x^2-816*x+367 3908883885615365 a003 cos(Pi*5/82)/sin(Pi*8/99) 3908883892206298 r005 Im(z^2+c),c=15/94+22/57*I,n=25 3908883902161907 a001 3/3571*9349^(21/50) 3908883903915394 r005 Im(z^2+c),c=-13/14+32/131*I,n=16 3908883908153992 r002 44th iterates of z^2 + 3908883918465750 a001 3/3571*24476^(19/50) 3908883932008973 r005 Im(z^2+c),c=17/66+8/31*I,n=8 3908883942916672 a001 1/203*(1/2*5^(1/2)+1/2)^22*7^(5/14) 3908883947395703 r002 14th iterates of z^2 + 3908883958540449 r002 3th iterates of z^2 + 3908883975687624 g006 Psi(1,1/8)-Psi(1,2/9)-Psi(1,6/7)-Psi(1,5/7) 3908883978158606 r005 Im(z^2+c),c=-17/110+31/52*I,n=56 3908883981612437 a001 199/3524578*46368^(14/23) 3908883981833833 a001 199/2971215073*2971215073^(14/23) 3908883992982819 l006 ln(6657/9841) 3908883993971755 r002 36th iterates of z^2 + 3908883996653552 p004 log(30853/619) 3908883999101257 p003 LerchPhi(1/10,4,2/5) 3908884002010509 m004 2+(Sqrt[5]*Pi)/4+Tan[Sqrt[5]*Pi]/6 3908884007549505 h001 (7/10*exp(1)+5/8)/(4/5*exp(2)+5/9) 3908884008941468 m001 Backhouse+Niven+RenyiParking 3908884024885357 a007 Real Root Of -271*x^4-915*x^3+454*x^2-549*x-464 3908884036262221 r005 Re(z^2+c),c=23/86+8/19*I,n=51 3908884036608314 b008 9+Coth[1/3]^3 3908884043585570 r005 Re(z^2+c),c=-8/17+29/61*I,n=54 3908884050837232 m001 (BesselI(1,1)-Pi^(1/2))/(Grothendieck+Mills) 3908884050939366 r002 59th iterates of z^2 + 3908884062790119 r009 Im(z^3+c),c=-25/102+25/62*I,n=4 3908884071729208 m001 1/5*5^(1/2)*cos(1/5*Pi)^HardyLittlewoodC3 3908884077303692 a007 Real Root Of 129*x^4+513*x^3-69*x^2-350*x+209 3908884095697075 m001 (GAMMA(3/4)+5)/(Lehmer+1) 3908884112171508 r005 Im(z^2+c),c=-7/106+15/28*I,n=44 3908884122723042 r005 Re(z^2+c),c=-15/16+15/103*I,n=34 3908884128473796 r005 Im(z^2+c),c=31/126+13/42*I,n=51 3908884133144100 s002 sum(A062046[n]/(n*exp(pi*n)+1),n=1..infinity) 3908884136973855 m001 1/exp(Kolakoski)^2/CareFree^2/GAMMA(23/24)^2 3908884150102181 m001 (OneNinth+Sierpinski)/(BesselI(0,1)-gamma) 3908884181101229 r009 Re(z^3+c),c=-13/27+13/54*I,n=32 3908884181134230 a007 Real Root Of 130*x^4+546*x^3+31*x^2-388*x+270 3908884183953855 l006 ln(5321/7866) 3908884204689050 h001 (2/11*exp(1)+5/9)/(7/9*exp(1)+4/7) 3908884205518447 m001 (arctan(1/3)+Kac)/(exp(Pi)+ln(3)) 3908884206833658 a001 199/610*2^(6/23) 3908884208290771 r009 Im(z^3+c),c=-15/34+12/29*I,n=4 3908884224813324 r002 42th iterates of z^2 + 3908884233603839 r009 Im(z^3+c),c=-12/25+11/37*I,n=56 3908884233775510 m001 Pi+Psi(2,1/3)*(3^(1/2)-cos(1/12*Pi)) 3908884236980184 m005 (1/3*3^(1/2)-3/8)/(1/4*Zeta(3)-9/11) 3908884241484969 r005 Re(z^2+c),c=-27/50+4/37*I,n=49 3908884241570661 m001 (GAMMA(3/4)+Zeta(1,2))/(MertensB1+Weierstrass) 3908884250822231 a007 Real Root Of -566*x^4+570*x^3+462*x^2+139*x+31 3908884260908676 m001 (ln(3)+exp(1/Pi))/(Trott2nd-TwinPrimes) 3908884285394908 r005 Im(z^2+c),c=-65/98+9/53*I,n=25 3908884287129894 m001 FeigenbaumAlpha+cos(Pi/12)+BesselJ(1,1) 3908884287129894 m001 cos(1/12*Pi)+BesselJ(1,1)+FeigenbaumAlpha 3908884289152251 m001 1/ln(BesselK(1,1))^2/Si(Pi)^2*sin(Pi/5)^2 3908884322453223 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)+Mills+Weierstrass 3908884324864788 r005 Re(z^2+c),c=37/126+3/58*I,n=62 3908884333176433 m001 1/cos(Pi/12)^2*GolombDickman^2*exp(sqrt(5)) 3908884333976512 m006 (3/4*exp(Pi)-5)/(3*Pi^2+2) 3908884342748455 r005 Re(z^2+c),c=-21/46+23/56*I,n=21 3908884347225910 s002 sum(A210109[n]/(exp(n)+1),n=1..infinity) 3908884350438349 r005 Re(z^2+c),c=-14/27+3/13*I,n=19 3908884363076129 a007 Real Root Of 369*x^4-909*x^3+195*x^2-428*x-260 3908884372860170 a007 Real Root Of -692*x^4+918*x^3+494*x^2+785*x-421 3908884377917167 r002 55th iterates of z^2 + 3908884415243813 m001 (LandauRamanujan+Paris)/(BesselJ(0,1)+3^(1/3)) 3908884420328168 m001 (-Conway+Kac)/(3^(1/2)+gamma(3)) 3908884420410569 m001 (BesselI(0,1)+GAMMA(13/24))/(-Porter+Sarnak) 3908884451765656 r002 49th iterates of z^2 + 3908884459506969 r002 31th iterates of z^2 + 3908884463942783 r005 Re(z^2+c),c=-7/9+11/68*I,n=14 3908884464768472 a007 Real Root Of -112*x^4-248*x^3+751*x^2+151*x+451 3908884482193460 r005 Im(z^2+c),c=-1/28+17/31*I,n=22 3908884499973069 a007 Real Root Of 511*x^4+604*x^3+873*x^2+39*x-94 3908884502973719 l006 ln(3985/5891) 3908884514870208 a007 Real Root Of 899*x^4-626*x^3-221*x^2-418*x-188 3908884516866087 r005 Re(z^2+c),c=-85/114+13/63*I,n=6 3908884521769720 r005 Re(z^2+c),c=-33/64+16/51*I,n=26 3908884525854695 m001 Niven^Artin/(Riemann2ndZero^Artin) 3908884526842842 a007 Real Root Of 214*x^4+878*x^3-8*x^2-727*x-241 3908884534912840 r005 Im(z^2+c),c=9/62+25/63*I,n=40 3908884539489856 m001 (GAMMA(19/24)-OneNinth)/(3^(1/3)+GAMMA(17/24)) 3908884559376521 m001 Zeta(5)*(HardHexagonsEntropy-Pi^(1/2)) 3908884564262427 m001 (Backhouse-Sarnak)/(Tetranacci-ZetaQ(2)) 3908884586148628 a007 Real Root Of 167*x^4-473*x^3+495*x^2+2*x-107 3908884588067326 r005 Re(z^2+c),c=-59/114+17/59*I,n=62 3908884588622845 a007 Real Root Of -681*x^4-463*x^3+569*x^2+736*x+189 3908884590712636 r002 9th iterates of z^2 + 3908884591904291 r005 Re(z^2+c),c=-47/90+17/63*I,n=32 3908884592993989 m001 FeigenbaumD/ln(PrimesInBinary)^2*GAMMA(5/6) 3908884593909080 r009 Re(z^3+c),c=-37/110+2/55*I,n=18 3908884594891807 p001 sum(1/(292*n+261)/(24^n),n=0..infinity) 3908884608480365 r005 Im(z^2+c),c=27/118+15/46*I,n=60 3908884609944459 r002 14th iterates of z^2 + 3908884616452425 r005 Im(z^2+c),c=-3/110+20/39*I,n=36 3908884632271491 r005 Im(z^2+c),c=-23/50+13/31*I,n=3 3908884655387607 m001 Rabbit^2*exp(Magata)^2/GAMMA(19/24) 3908884658180592 r005 Im(z^2+c),c=-17/86+9/16*I,n=24 3908884663332269 a007 Real Root Of 807*x^4-412*x^3+574*x^2-994*x+38 3908884676058939 r008 a(0)=4,K{-n^6,84-4*n^3+9*n^2-79*n} 3908884681011020 a001 47/832040*2178309^(9/31) 3908884684644072 r005 Re(z^2+c),c=-85/118+18/59*I,n=45 3908884687966266 a007 Real Root Of 531*x^4-944*x^3+509*x^2+247*x-50 3908884695103504 r002 35th iterates of z^2 + 3908884715860645 m001 1/exp(GAMMA(1/3))*Paris/sqrt(3) 3908884730162499 r005 Re(z^2+c),c=-27/44+6/37*I,n=13 3908884733450679 m001 1/Salem*Artin^2/ln(FeigenbaumKappa) 3908884735994712 r009 Re(z^3+c),c=-13/29+17/54*I,n=5 3908884750819680 r005 Re(z^2+c),c=-57/44+1/30*I,n=50 3908884754575099 r009 Re(z^3+c),c=-37/110+2/55*I,n=14 3908884756505147 r005 Re(z^2+c),c=-75/106+12/53*I,n=45 3908884758853225 l006 ln(6634/9807) 3908884767518086 m001 Riemann2ndZero/ln(2)/StronglyCareFree 3908884769443228 a007 Real Root Of 122*x^4+551*x^3+374*x^2+133*x-768 3908884776132316 m001 KhintchineLevy/exp(Si(Pi))^2/RenyiParking 3908884790372840 r009 Im(z^3+c),c=-11/18+30/59*I,n=3 3908884790551964 r005 Re(z^2+c),c=-13/24+2/25*I,n=58 3908884793409630 a001 39603/55*610^(54/55) 3908884801177063 r005 Re(z^2+c),c=-23/34+29/115*I,n=57 3908884808639840 r005 Im(z^2+c),c=37/118+5/21*I,n=35 3908884811174972 m001 (Paris+Sarnak)/(Bloch-MertensB1) 3908884815790216 r002 27th iterates of z^2 + 3908884816446165 a007 Real Root Of 215*x^4+737*x^3-189*x^2+665*x-689 3908884817332617 m001 (2^(1/3)+Zeta(1/2)*Bloch)/Zeta(1/2) 3908884820997817 m001 1/FeigenbaumC*Bloch/exp(GAMMA(5/24))^2 3908884832625700 m001 1/GolombDickman^3/exp(Salem)^2 3908884836062492 r005 Im(z^2+c),c=35/82+15/34*I,n=6 3908884863126391 r002 33th iterates of z^2 + 3908884867368121 r005 Re(z^2+c),c=3/52+43/48*I,n=3 3908884868697006 p004 log(13723/9283) 3908884871064358 r005 Re(z^2+c),c=29/90+47/52*I,n=2 3908884871180996 a007 Real Root Of 916*x^4+791*x^3+748*x^2+216*x-4 3908884885662377 r005 Im(z^2+c),c=-17/86+26/41*I,n=12 3908884930789654 r005 Im(z^2+c),c=7/90+27/61*I,n=20 3908884933456103 m004 -1+125*Pi-(6*Sin[Sqrt[5]*Pi])/5 3908884940216030 r002 13th iterates of z^2 + 3908884949281445 m004 -125*Pi+(6*Sin[Sqrt[5]*Pi])/5+Tanh[Sqrt[5]*Pi] 3908884954121856 m006 (3/5*Pi^2-3)/(5/6*Pi^2-3/4) 3908884954121856 m008 (3/5*Pi^2-3)/(5/6*Pi^2-3/4) 3908884973571608 q001 1553/3973 3908884976934970 r008 a(0)=4,K{-n^6,-51-17*n^3+51*n^2+29*n} 3908884981433674 r009 Im(z^3+c),c=-4/11+10/27*I,n=23 3908884990633638 a001 3/1346269*4181^(43/48) 3908885000922630 a001 408569081798/17*591286729879^(20/21) 3908885004492065 r005 Im(z^2+c),c=-13/98+11/19*I,n=35 3908885004930161 m001 Chi(1)^LambertW(1)/exp(Pi) 3908885008372423 m005 (1/6*Pi+5/6)/(1/3*2^(1/2)+3) 3908885008385867 r009 Im(z^3+c),c=-29/60+17/59*I,n=15 3908885011391176 m001 Trott^Stephens/(Trott^Ei(1)) 3908885019051699 r005 Im(z^2+c),c=-1/48+29/57*I,n=50 3908885027708703 m001 ln(2^(1/2)+1)^Kolakoski/exp(Pi) 3908885030236677 r009 Re(z^3+c),c=-11/26+17/30*I,n=23 3908885050411012 r002 11th iterates of z^2 + 3908885051160990 a007 Real Root Of 352*x^4+737*x^3-x^2-847*x+279 3908885053962649 r009 Im(z^3+c),c=-43/82+16/53*I,n=50 3908885059504038 r005 Re(z^2+c),c=-37/70+14/59*I,n=22 3908885094872800 r002 57th iterates of z^2 + 3908885103273163 r005 Im(z^2+c),c=-3/118+24/47*I,n=34 3908885121747106 m001 Khinchin^GAMMA(5/6)+Thue 3908885122984170 m005 (1/3*3^(1/2)-3/7)/(3*Zeta(3)+1/5) 3908885125757453 r005 Re(z^2+c),c=1/4+1/42*I,n=50 3908885128289210 r005 Im(z^2+c),c=-3/22+28/47*I,n=32 3908885131163266 r005 Re(z^2+c),c=-43/82+12/43*I,n=21 3908885143783312 l006 ln(2649/3916) 3908885144775784 a007 Real Root Of -217*x^4+631*x^3+297*x^2+897*x+348 3908885187612308 a001 3/956722026041*34^(1/16) 3908885201597667 r005 Im(z^2+c),c=1/78+35/57*I,n=33 3908885204348473 r005 Im(z^2+c),c=-31/56+4/57*I,n=41 3908885217455465 m004 5/36+125*Pi-Log[Sqrt[5]*Pi] 3908885229315997 r005 Im(z^2+c),c=-9/82+33/59*I,n=62 3908885230998897 h001 (5/8*exp(2)+1/5)/(5/12*exp(1)+1/10) 3908885242930704 r005 Im(z^2+c),c=-33/28+2/39*I,n=60 3908885246184748 r005 Im(z^2+c),c=7/26+2/7*I,n=57 3908885252513883 r005 Re(z^2+c),c=-27/52+1/30*I,n=9 3908885259966259 r005 Im(z^2+c),c=-3/34+23/42*I,n=53 3908885262121873 a001 1/505019158607*3^(13/21) 3908885298280161 m001 (sin(1)+BesselI(1,2))/(-MertensB2+ThueMorse) 3908885326893622 r009 Re(z^3+c),c=-37/110+2/55*I,n=19 3908885327691835 h001 (-8*exp(3)-6)/(-2*exp(-1)+5) 3908885346515007 r005 Im(z^2+c),c=-11/56+10/17*I,n=12 3908885356065408 m005 (1/3*Catalan+1/10)/(115/126+1/18*5^(1/2)) 3908885380697192 r009 Im(z^3+c),c=-8/31+17/25*I,n=12 3908885388590747 r005 Re(z^2+c),c=-37/70+21/64*I,n=23 3908885390390447 a001 10182505537/2*47^(9/17) 3908885397324438 m005 (1/2*5^(1/2)-4/11)/(6/7*exp(1)-2/5) 3908885400869877 m001 (Khinchin+Kolakoski)/(QuadraticClass+ZetaQ(3)) 3908885407127899 a007 Real Root Of 985*x^4-111*x^3+853*x^2-632*x-407 3908885418220910 m001 (Kac+Riemann2ndZero)/(Psi(2,1/3)-sin(1/12*Pi)) 3908885447975311 a007 Real Root Of 422*x^4+260*x^3+980*x^2-775*x-447 3908885454016951 a001 53316291173/11*18^(13/18) 3908885463597106 a001 47/46368*4807526976^(9/19) 3908885464512490 r005 Re(z^2+c),c=-79/126+19/60*I,n=14 3908885468229343 a007 Real Root Of -138*x^4-675*x^3-277*x^2+946*x-167 3908885471978116 r002 21th iterates of z^2 + 3908885475381317 r005 Im(z^2+c),c=5/34+17/43*I,n=48 3908885475621559 a007 Real Root Of 23*x^4-10*x^3-403*x^2+195*x+953 3908885485825376 a007 Real Root Of -264*x^4-192*x^3+44*x^2+954*x-362 3908885490388268 a007 Real Root Of 186*x^4+733*x^3+233*x^2+967*x+575 3908885490512071 r005 Im(z^2+c),c=-7/94+27/50*I,n=60 3908885512866319 a001 1/5901*(1/2*5^(1/2)+1/2)*843^(1/19) 3908885520459063 r002 36th iterates of z^2 + 3908885530052576 l006 ln(6611/9773) 3908885549737346 a007 Real Root Of 149*x^4+708*x^3+746*x^2+973*x-95 3908885558664813 l006 ln(83/4137) 3908885564690598 r009 Im(z^3+c),c=-49/114+13/40*I,n=5 3908885571869823 r009 Im(z^3+c),c=-31/74+17/50*I,n=33 3908885572829672 r005 Re(z^2+c),c=-13/24+2/25*I,n=60 3908885589379504 s002 sum(A194647[n]/(pi^n-1),n=1..infinity) 3908885590467716 m001 (Magata-Robbin)/(ln(2)-HardHexagonsEntropy) 3908885604859719 m001 Sierpinski^Kolakoski+Grothendieck 3908885612720497 r005 Re(z^2+c),c=-17/26+17/106*I,n=13 3908885618047983 r002 59th iterates of z^2 + 3908885626293402 a007 Real Root Of 320*x^4-755*x^3+775*x^2+156*x-110 3908885631148741 a007 Real Root Of -603*x^4-450*x^3-429*x^2+653*x+308 3908885642291023 a007 Real Root Of 983*x^4+47*x^3+753*x^2-680*x-401 3908885648574863 m001 (ln(2)-ln(5))/(arctan(1/2)-FransenRobinson) 3908885653966081 r002 45th iterates of z^2 + 3908885657392061 a003 cos(Pi*23/63)-cos(Pi*38/77) 3908885669189316 m001 (FellerTornier-exp(-1/2*Pi)*Mills)/Mills 3908885676193778 m006 (2/5*Pi^2-1/4)/(3/4/Pi-1/3) 3908885678605260 m001 (-AlladiGrinstead+Robbin)/(arctan(1/2)-sin(1)) 3908885694250325 m005 (1/2*gamma+6/11)/(-17/88+2/11*5^(1/2)) 3908885695286309 a007 Real Root Of -708*x^4-86*x^3-845*x^2+165*x+205 3908885700916152 h001 (3/10*exp(2)+1/6)/(3/4*exp(2)+5/9) 3908885701641681 m001 (ReciprocalLucas-Tetranacci)/(GAMMA(7/12)-Kac) 3908885708722018 r009 Re(z^3+c),c=-37/110+2/55*I,n=20 3908885715156612 a001 3/1364*64079^(13/50) 3908885727946202 a007 Real Root Of -521*x^4+923*x^3+92*x^2+990*x-444 3908885730204417 m001 1/GAMMA(1/12)^2*Bloch^2*exp(Zeta(1/2)) 3908885731200794 r005 Im(z^2+c),c=-7/78+31/56*I,n=31 3908885735589537 m007 (-3*gamma-6*ln(2)+3/4)/(-1/2*gamma-ln(2)-1/3) 3908885737506013 m001 (Psi(2,1/3)+arctan(1/3))/(ArtinRank2+CareFree) 3908885744590290 r009 Re(z^3+c),c=-53/102+1/5*I,n=32 3908885770423236 p001 sum((-1)^n/(29*n+2)/n/(8^n),,n=0..infinity) 3908885775187489 m005 (5/6*2^(1/2)+1/5)/(1/6*Catalan+1/5) 3908885785107612 m006 (1/2*exp(Pi)-2/3)/(2*ln(Pi)+1/2) 3908885788312860 l006 ln(3962/5857) 3908885795462310 r002 11th iterates of z^2 + 3908885798833941 r005 Re(z^2+c),c=-23/34+17/123*I,n=17 3908885802893240 r005 Im(z^2+c),c=-1/25+19/37*I,n=7 3908885805992767 r009 Re(z^3+c),c=-5/74+11/18*I,n=46 3908885811728807 a001 1346269/47*1364^(21/58) 3908885817782563 a007 Real Root Of 672*x^4+520*x^3-686*x^2-798*x+370 3908885843927540 a007 Real Root Of -147*x^4-344*x^3+899*x^2-166*x-612 3908885845871183 a007 Real Root Of 211*x^4+853*x^3+52*x^2-228*x 3908885848210716 r002 40th iterates of z^2 + 3908885849000593 a007 Real Root Of 173*x^4+442*x^3-848*x^2+55*x-818 3908885871291504 m001 (ln(2)+Zeta(1/2))/(gamma(1)-Champernowne) 3908885877070790 r002 22th iterates of z^2 + 3908885883916081 r002 4th iterates of z^2 + 3908885884602673 a008 Real Root of x^2-x-152403 3908885884660902 m005 (1/3*Pi-1/10)/(7/11*gamma-1/8) 3908885885528652 r009 Re(z^3+c),c=-37/110+2/55*I,n=21 3908885906548035 r005 Re(z^2+c),c=-51/94+3/50*I,n=45 3908885917869637 m005 (1/2*gamma+1/8)/(4/7*2^(1/2)+1/4) 3908885918892266 m001 1/Backhouse^2/ln(Artin)/FibonacciFactorial 3908885940657798 r005 Im(z^2+c),c=1/9+19/45*I,n=49 3908885940942091 r005 Re(z^2+c),c=-14/29+23/53*I,n=52 3908885947618320 r005 Im(z^2+c),c=9/62+25/63*I,n=39 3908885955407271 r002 45th iterates of z^2 + 3908885957961954 r009 Re(z^3+c),c=-37/110+2/55*I,n=22 3908885964023313 r005 Re(z^2+c),c=-11/16+21/64*I,n=20 3908885967666598 r002 19th iterates of z^2 + 3908885969668988 a007 Real Root Of -125*x^4-517*x^3+94*x^2+869*x+265 3908885974192514 r002 61th iterates of z^2 + 3908885978368122 r009 Im(z^3+c),c=-39/94+9/26*I,n=10 3908885983101566 r009 Re(z^3+c),c=-37/110+2/55*I,n=23 3908885984402894 r002 12th iterates of z^2 + 3908885985111678 r009 Re(z^3+c),c=-37/110+2/55*I,n=34 3908885985112735 r009 Re(z^3+c),c=-37/110+2/55*I,n=33 3908885985112818 r009 Re(z^3+c),c=-37/110+2/55*I,n=35 3908885985114069 r009 Re(z^3+c),c=-37/110+2/55*I,n=36 3908885985114929 r009 Re(z^3+c),c=-37/110+2/55*I,n=37 3908885985115416 r009 Re(z^3+c),c=-37/110+2/55*I,n=38 3908885985115658 r009 Re(z^3+c),c=-37/110+2/55*I,n=39 3908885985115765 r009 Re(z^3+c),c=-37/110+2/55*I,n=40 3908885985115807 r009 Re(z^3+c),c=-37/110+2/55*I,n=41 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=52 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=53 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=54 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=55 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=56 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=57 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=58 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=59 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=60 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=64 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=63 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=61 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=62 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=51 3908885985115818 r009 Re(z^3+c),c=-37/110+2/55*I,n=50 3908885985115819 r009 Re(z^3+c),c=-37/110+2/55*I,n=49 3908885985115819 r009 Re(z^3+c),c=-37/110+2/55*I,n=48 3908885985115819 r009 Re(z^3+c),c=-37/110+2/55*I,n=47 3908885985115819 r009 Re(z^3+c),c=-37/110+2/55*I,n=46 3908885985115820 r009 Re(z^3+c),c=-37/110+2/55*I,n=42 3908885985115820 r009 Re(z^3+c),c=-37/110+2/55*I,n=45 3908885985115822 r009 Re(z^3+c),c=-37/110+2/55*I,n=44 3908885985115822 r009 Re(z^3+c),c=-37/110+2/55*I,n=43 3908885985122094 r009 Re(z^3+c),c=-37/110+2/55*I,n=32 3908885985154783 r009 Re(z^3+c),c=-37/110+2/55*I,n=31 3908885985243510 r009 Re(z^3+c),c=-37/110+2/55*I,n=30 3908885985451569 r009 Re(z^3+c),c=-37/110+2/55*I,n=29 3908885985885203 r009 Re(z^3+c),c=-37/110+2/55*I,n=28 3908885986684990 r009 Re(z^3+c),c=-37/110+2/55*I,n=27 3908885987935852 r009 Re(z^3+c),c=-37/110+2/55*I,n=26 3908885989345698 r009 Re(z^3+c),c=-37/110+2/55*I,n=25 3908885989364217 r009 Re(z^3+c),c=-37/110+2/55*I,n=24 3908885993192852 a007 Real Root Of 110*x^4+424*x^3-107*x^2-100*x+887 3908886015620063 a001 341/1201881744*3^(7/24) 3908886025245685 r009 Re(z^3+c),c=-43/94+3/14*I,n=19 3908886031105821 m001 (LaplaceLimit-Totient)/(Zeta(1,2)-Kolakoski) 3908886036343168 r005 Re(z^2+c),c=-13/24+2/25*I,n=62 3908886037780800 r005 Re(z^2+c),c=-27/50+3/28*I,n=35 3908886055173781 r002 35th iterates of z^2 + 3908886067205326 a007 Real Root Of -437*x^4+428*x^3-101*x^2-154*x-9 3908886069546179 a001 440719107401/48*1836311903^(14/17) 3908886069546179 a001 1568397607/144*6557470319842^(14/17) 3908886078122443 r005 Re(z^2+c),c=9/94+45/61*I,n=5 3908886084987984 m001 (ln(2+3^(1/2))+GAMMA(5/6))/(ZetaQ(2)+ZetaQ(3)) 3908886101411721 m001 MasserGramain*Sierpinski^Ei(1) 3908886110321457 m001 1/sin(1)^2/Kolakoski^2/ln(sqrt(Pi)) 3908886111124320 a007 Real Root Of 683*x^4-584*x^3+210*x^2-993*x+375 3908886111982753 l006 ln(5275/7798) 3908886118086520 m001 Ei(1)^2*exp(BesselK(0,1))^2/Zeta(1/2)^2 3908886123849760 r005 Im(z^2+c),c=31/94+11/45*I,n=29 3908886125063911 r005 Im(z^2+c),c=-2/3+49/107*I,n=35 3908886130419109 r005 Re(z^2+c),c=-1/52+43/59*I,n=18 3908886146175361 m001 (PlouffeB+Porter)/(2*Pi/GAMMA(5/6)-Gompertz) 3908886154326597 m001 (Ei(1,1)-BesselJ(1,1)*OneNinth)/BesselJ(1,1) 3908886163780220 h001 (8/9*exp(2)+7/9)/(3/7*exp(1)+5/7) 3908886180586283 m005 (1/2*3^(1/2)+1/6)/(3/4*Pi+2/7) 3908886187760875 m001 (gamma(2)-ln(2^(1/2)+1))/BesselI(0,2) 3908886191527058 s002 sum(A081720[n]/((exp(n)+1)*n),n=1..infinity) 3908886202227403 m001 sin(1/12*Pi)/(Ei(1,1)-QuadraticClass) 3908886203167214 r002 63th iterates of z^2 + 3908886203888867 m001 OneNinth^2*exp(FeigenbaumKappa)/GAMMA(1/12) 3908886209658704 r005 Im(z^2+c),c=-111/110+5/18*I,n=20 3908886218550477 r005 Re(z^2+c),c=-9/17+10/47*I,n=52 3908886221156500 m001 (Si(Pi)+ln(3))/(-GAMMA(5/6)+Artin) 3908886225236468 r005 Im(z^2+c),c=2/21+13/30*I,n=31 3908886243434797 r005 Re(z^2+c),c=-19/110+27/46*I,n=8 3908886245222830 m004 5/6+125*Pi-Log[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 3908886246052825 r002 44th iterates of z^2 + 3908886261067029 m001 (Bloch+ThueMorse)/(exp(Pi)-polylog(4,1/2)) 3908886269895102 r009 Im(z^3+c),c=-51/98+1/4*I,n=52 3908886275554840 r005 Im(z^2+c),c=27/118+15/46*I,n=61 3908886283671242 a001 2139295485799/5*591286729879^(11/13) 3908886290296563 r009 Im(z^3+c),c=-57/110+8/33*I,n=33 3908886295474125 r005 Re(z^2+c),c=-13/24+2/25*I,n=64 3908886296271100 r002 50th iterates of z^2 + 3908886297474188 a007 Real Root Of 794*x^4+218*x^3+958*x^2-998*x-542 3908886306636683 l006 ln(6588/9739) 3908886309225063 a007 Real Root Of -205*x^4+528*x^3+669*x^2+977*x+316 3908886315300811 p002 log(1/11*(19^(1/2)-23)*11^(3/4)) 3908886323588174 r005 Im(z^2+c),c=13/110+25/58*I,n=15 3908886343853101 r005 Im(z^2+c),c=-8/11+8/33*I,n=15 3908886349804703 r005 Re(z^2+c),c=-13/27+2/5*I,n=30 3908886366455302 a001 75025/47*3571^(39/58) 3908886377076756 r005 Im(z^2+c),c=29/118+19/60*I,n=19 3908886377504200 p004 log(21419/14489) 3908886389201349 q001 139/3556 3908886430684973 p001 sum((-1)^n/(358*n+255)/(128^n),n=0..infinity) 3908886431295513 m001 (ln(gamma)-ln(5))/(PlouffeB+ZetaP(4)) 3908886457054378 a007 Real Root Of 667*x^4-183*x^3+300*x^2-608*x-310 3908886463748931 r009 Re(z^3+c),c=-15/46+55/57*I,n=3 3908886482838227 r009 Re(z^3+c),c=-10/29+31/47*I,n=33 3908886484083526 a007 Real Root Of -203*x^4-943*x^3-591*x^2-226*x-782 3908886487324331 m001 1/3*(3^(1/2)*ZetaP(2)+Zeta(1/2))*3^(1/2) 3908886487400647 a001 1/521*(1/2*5^(1/2)+1/2)^8*47^(8/21) 3908886488012630 m001 1/ln(GAMMA(1/4))^2/FeigenbaumKappa*Zeta(1,2)^2 3908886491328072 r005 Im(z^2+c),c=7/60+23/55*I,n=49 3908886521913870 r009 Im(z^3+c),c=-4/29+11/25*I,n=14 3908886523021158 r005 Re(z^2+c),c=-63/122+12/49*I,n=19 3908886524514909 r009 Im(z^3+c),c=-31/64+19/53*I,n=14 3908886540761056 m005 (1/2*Pi-6/7)/(6/7*5^(1/2)-1/11) 3908886541769592 a001 28657/47*9349^(41/58) 3908886541877366 a007 Real Root Of -131*x^4+592*x^3+258*x^2+197*x+76 3908886560473700 r005 Re(z^2+c),c=-65/122+5/27*I,n=30 3908886565088316 m005 (1/2*exp(1)-10/11)/(5/9*5^(1/2)-1/11) 3908886570744528 a001 1346269/47*24476^(15/58) 3908886584992600 r005 Im(z^2+c),c=37/118+17/38*I,n=14 3908886593021201 r005 Re(z^2+c),c=-1/54+4/25*I,n=6 3908886595451381 r005 Im(z^2+c),c=1/62+29/60*I,n=19 3908886608799987 a001 1/72*75025^(11/37) 3908886609634730 r005 Im(z^2+c),c=-2/3+17/227*I,n=38 3908886613434308 a007 Real Root Of 494*x^4-476*x^3+487*x^2-897*x-465 3908886638966399 m001 Zeta(1/2)*FransenRobinson/exp(sinh(1))^2 3908886640964817 r005 Im(z^2+c),c=-3/34+23/42*I,n=57 3908886656994748 r008 a(0)=4,K{-n^6,-40+10*n^3-47*n^2+91*n} 3908886664537320 r005 Im(z^2+c),c=23/64+9/38*I,n=40 3908886682736531 r002 56th iterates of z^2 + 3908886709118487 r002 64th iterates of z^2 + 3908886719082120 m001 (FransenRobinson-Magata)/(Zeta(1/2)+gamma(1)) 3908886728899062 m005 (1/2*Catalan+2/11)/(3/10*Catalan-1/9) 3908886731795284 r005 Im(z^2+c),c=-11/102+19/34*I,n=55 3908886734738873 r005 Re(z^2+c),c=-55/106+7/25*I,n=47 3908886737245919 r005 Re(z^2+c),c=7/36+22/53*I,n=13 3908886748572665 a003 sin(Pi*11/59)*sin(Pi*1/4) 3908886752400340 r009 Im(z^3+c),c=-19/40+16/53*I,n=34 3908886779477471 l006 ln(198/9869) 3908886797936827 r002 33th iterates of z^2 + 3908886799353414 s002 sum(A237060[n]/(exp(pi*n)+1),n=1..infinity) 3908886805453895 r005 Re(z^2+c),c=-13/24+2/25*I,n=63 3908886809098140 a007 Real Root Of 294*x^4-708*x^3+513*x^2+183*x-56 3908886817605860 r002 44th iterates of z^2 + 3908886820975471 a007 Real Root Of 558*x^4-183*x^3+37*x^2-945*x-399 3908886843178729 r009 Im(z^3+c),c=-1/17+15/26*I,n=2 3908886852352189 a007 Real Root Of 753*x^4-731*x^3+20*x^2-186*x-137 3908886854133340 r005 Re(z^2+c),c=-17/36+29/64*I,n=58 3908886875479490 m001 1/exp(sin(Pi/12))/Magata^2*sin(Pi/5) 3908886878157539 a001 1597/47*64079^(49/58) 3908886882551691 a008 Real Root of x^4-2*x^3-41*x^2-5*x+254 3908886887617867 r009 Im(z^3+c),c=-27/62+17/52*I,n=16 3908886889104954 r002 62th iterates of z^2 + 3908886909730358 m001 (exp(Pi)+FeigenbaumDelta)/(Rabbit+ZetaQ(4)) 3908886922393383 p004 log(35339/709) 3908886928225201 m001 (sin(1/12*Pi)+Bloch)/(GaussAGM+MertensB2) 3908886953017210 r005 Re(z^2+c),c=-7/13+7/55*I,n=35 3908886967788848 a005 (1/cos(20/127*Pi))^227 3908886972630231 r005 Re(z^2+c),c=-39/70+1/46*I,n=14 3908886973811532 b008 40+Cos[9] 3908886981227771 l006 ln(7877/8191) 3908886981227771 p004 log(8191/7877) 3908886989617996 a007 Real Root Of 124*x^4+533*x^3+698*x^2-561*x-297 3908886996423467 r005 Re(z^2+c),c=-61/114+13/62*I,n=22 3908887001330555 r005 Re(z^2+c),c=-65/126+19/64*I,n=49 3908887006667665 m001 (Conway+GaussAGM)/(Psi(2,1/3)+BesselK(0,1)) 3908887022088170 m004 (-3*Sqrt[5])/Pi+125*Pi+Log[Sqrt[5]*Pi]/6 3908887028337551 h001 (8/11*exp(1)+2/9)/(2/3*exp(2)+7/10) 3908887036376330 m004 -5+(505*Pi)/4-Cos[Sqrt[5]*Pi] 3908887037868906 r009 Re(z^3+c),c=-7/20+2/23*I,n=3 3908887040036893 a007 Real Root Of 193*x^4+806*x^3-55*x^2-798*x+802 3908887040525304 m002 -1+ProductLog[Pi]+(Sinh[Pi]*Tanh[Pi])/3 3908887041880380 m002 -(Cosh[Pi]/Pi)+Pi^2*Csch[Pi]-ProductLog[Pi] 3908887051036697 m001 (Kac+Paris)/(Pi*2^(1/2)/GAMMA(3/4)-Pi^(1/2)) 3908887055439655 m005 (1/2*exp(1)+5/8)/(3*2^(1/2)+5/6) 3908887058068716 a007 Real Root Of -911*x^4-883*x^3+434*x^2+931*x-37 3908887063052613 a007 Real Root Of -173*x^4-792*x^3-361*x^2+372*x+56 3908887064223942 m008 (4*Pi^6-1)/(1/3*Pi^3-1/2) 3908887081650663 m001 Ei(1)^Niven*GAMMA(19/24)^Niven 3908887088662140 l006 ln(1313/1941) 3908887092246573 r009 Im(z^3+c),c=-47/106+12/37*I,n=33 3908887093386250 p003 LerchPhi(1/5,6,19/35) 3908887098049447 r004 Re(z^2+c),c=1/3-5/18*I,z(0)=exp(5/12*I*Pi),n=3 3908887102477792 r002 4th iterates of z^2 + 3908887103207096 p004 log(15601/313) 3908887116322621 a003 cos(Pi*35/93)/sin(Pi*45/107) 3908887121102896 a007 Real Root Of -53*x^4+26*x^3+680*x^2-996*x-357 3908887123150508 m006 (1/6*ln(Pi)-5/6)/(3/4*Pi-4) 3908887140593630 a005 (1/cos(21/227*Pi))^1053 3908887140863655 r005 Im(z^2+c),c=27/118+15/46*I,n=64 3908887143756038 r002 45th iterates of z^2 + 3908887145888902 m001 Champernowne-FellerTornier*MertensB1 3908887154758439 r005 Re(z^2+c),c=-13/24+2/25*I,n=61 3908887176599462 r002 60th iterates of z^2 + 3908887190931501 r002 15th iterates of z^2 + 3908887220189806 r002 61th iterates of z^2 + 3908887223948497 r005 Im(z^2+c),c=-7/50+23/40*I,n=64 3908887224331796 m005 (1/2*5^(1/2)+4/5)/(4*2^(1/2)-3/4) 3908887227326466 r005 Im(z^2+c),c=-1/82+21/34*I,n=10 3908887240335286 a007 Real Root Of 152*x^4+832*x^3+872*x^2-395*x-662 3908887240676419 r009 Re(z^3+c),c=-10/19+13/42*I,n=46 3908887251844627 m003 7/2+(9*Sqrt[5])/64-2*Cos[1/2+Sqrt[5]/2] 3908887253266372 h001 (7/9*exp(1)+1/6)/(2/3*exp(2)+10/11) 3908887291885708 r005 Im(z^2+c),c=13/98+17/38*I,n=3 3908887292193174 m001 Gompertz*Weierstrass+OneNinth 3908887302921816 h005 exp(sin(Pi*13/57)/cos(Pi*17/50)) 3908887303053729 a007 Real Root Of -706*x^4+447*x^3+992*x^2+835*x+218 3908887308946957 m005 (1/2*5^(1/2)+2/5)/(5/12*3^(1/2)-1/3) 3908887309560422 a007 Real Root Of 280*x^4+876*x^3-749*x^2+197*x-835 3908887309708480 a008 Real Root of x^2-152794 3908887321836322 m001 1/Kolakoski^2/Conway*ln(LambertW(1))^2 3908887322236540 r005 Re(z^2+c),c=-31/58+11/36*I,n=21 3908887339995260 a007 Real Root Of 420*x^4-9*x^3+32*x^2-245*x-111 3908887342886106 m001 GAMMA(13/24)/(Sarnak^Khinchin) 3908887348621976 m001 Artin/(LaplaceLimit^OneNinth) 3908887351200800 a007 Real Root Of 128*x^4-432*x^3+136*x^2-743*x-340 3908887352765409 m001 1/GAMMA(1/6)/KhintchineLevy/exp(GAMMA(2/3)) 3908887358216939 r005 Re(z^2+c),c=-57/106+6/41*I,n=21 3908887361390207 a007 Real Root Of -931*x^4+369*x^3+529*x^2+212*x-164 3908887365156221 r005 Im(z^2+c),c=-5/102+19/36*I,n=31 3908887384676535 r005 Re(z^2+c),c=-57/106+7/51*I,n=44 3908887387872968 a001 1/5778*(1/2*5^(1/2)+1/2)*76^(14/23) 3908887390083220 r002 32th iterates of z^2 + 3908887390851325 m009 (1/5*Psi(1,2/3)-2)/(4/5*Psi(1,2/3)-6) 3908887403513663 m001 (FeigenbaumC-FransenRobinson)/(Pi-Cahen) 3908887404184277 r009 Im(z^3+c),c=-7/22+16/49*I,n=2 3908887407021802 r009 Im(z^3+c),c=-1/70+10/23*I,n=3 3908887409032175 p001 sum(1/(473*n+336)/(2^n),n=0..infinity) 3908887422646285 r005 Re(z^2+c),c=-51/94+4/59*I,n=29 3908887440579203 m001 (ArtinRank2+Mills)/(GAMMA(2/3)-sin(1)) 3908887459835457 r002 33th iterates of z^2 + 3908887487874771 a001 1/15127*(1/2*5^(1/2)+1/2)^3*76^(14/23) 3908887488604600 a007 Real Root Of -477*x^4+612*x^3+586*x^2+829*x-439 3908887490992460 r005 Im(z^2+c),c=-51/98+2/29*I,n=24 3908887497707036 r005 Re(z^2+c),c=-31/48+5/28*I,n=17 3908887502464838 a001 1/39603*(1/2*5^(1/2)+1/2)^5*76^(14/23) 3908887505909085 a001 1/64079*(1/2*5^(1/2)+1/2)^6*76^(14/23) 3908887507531057 m005 (1/2*Zeta(3)-9/11)/(1/4*2^(1/2)-10/11) 3908887508092847 r005 Re(z^2+c),c=-33/74+20/41*I,n=26 3908887511481995 a001 1/24476*(1/2*5^(1/2)+1/2)^4*76^(14/23) 3908887549679286 a001 1/9349*(1/2*5^(1/2)+1/2)^2*76^(14/23) 3908887553034400 r005 Re(z^2+c),c=2/15+24/41*I,n=42 3908887554115987 r008 a(0)=4,K{-n^6,37-4*n^3-14*n^2-9*n} 3908887556150694 r005 Im(z^2+c),c=-85/62+1/56*I,n=6 3908887557330560 m005 (1/2*2^(1/2)+8/11)/(5/6*Catalan-4/5) 3908887557620995 a007 Real Root Of 80*x^4+279*x^3-98*x^2+329*x+770 3908887568899576 r005 Re(z^2+c),c=-49/94+5/23*I,n=19 3908887579815377 m005 (1/2*gamma+4/5)/(3/5*Pi+9/10) 3908887583861559 r005 Im(z^2+c),c=-61/78+1/62*I,n=35 3908887584836341 r005 Re(z^2+c),c=-29/54+8/55*I,n=39 3908887605019964 r002 37th iterates of z^2 + 3908887605920537 m005 (1/2*5^(1/2)+2)/(7/12*Catalan-5/11) 3908887611579519 r002 58th iterates of z^2 + 3908887617229031 m001 BesselK(0,1)/(GAMMA(19/24)^arctan(1/2)) 3908887629125724 r002 2th iterates of z^2 + 3908887633778779 m005 (1/2*gamma+6/7)/(1/8*Zeta(3)+1/7) 3908887634245987 b008 SphericalBesselJ[0,(1+E)*EulerGamma] 3908887646631100 r002 39th iterates of z^2 + 3908887647630174 a007 Real Root Of x^4-229*x^3+798*x^2+91*x+895 3908887648467996 r005 Im(z^2+c),c=1/20+13/28*I,n=40 3908887660584812 l006 ln(115/5732) 3908887660747688 a005 (1/cos(29/179*Pi))^95 3908887672823157 a001 8/271443*2^(11/27) 3908887672907422 a001 3/7*(1/2*5^(1/2)+1/2)^7*7^(10/17) 3908887673110545 m005 (1/3*Zeta(3)+1/12)/(11/45+4/9*5^(1/2)) 3908887673246279 a007 Real Root Of -94*x^4+127*x^3-886*x^2+478*x+332 3908887676963435 a007 Real Root Of 38*x^4-160*x^3-381*x^2-975*x+448 3908887676967776 h002 exp(11^(10/9)+13^(3/2)) 3908887676967776 h007 exp(11^(10/9)+13^(3/2)) 3908887679435223 r002 7th iterates of z^2 + 3908887686380229 r002 21th iterates of z^2 + 3908887696214632 r002 6th iterates of z^2 + 3908887719096851 m003 5/3+Cos[1/2+Sqrt[5]/2]+6*Sech[1/2+Sqrt[5]/2] 3908887747006729 r005 Im(z^2+c),c=5/34+17/43*I,n=47 3908887758175622 r002 54th iterates of z^2 + 3908887761024716 r005 Re(z^2+c),c=-13/24+2/25*I,n=59 3908887769175475 m001 ln(BesselK(0,1))/CareFree/Pi 3908887777463013 r002 32th iterates of z^2 + 3908887786049991 m005 (1/2*3^(1/2)+5/12)/(6*gamma-2/11) 3908887806248384 r005 Re(z^2+c),c=-27/52+17/61*I,n=59 3908887810079947 a001 3571/12586269025*3^(7/24) 3908887811288109 r005 Im(z^2+c),c=31/118+16/55*I,n=19 3908887811487438 a001 1/3571*76^(14/23) 3908887814590450 m001 (Niven-ReciprocalFibonacci)/(Pi-exp(1)) 3908887815760856 m001 (Artin+ErdosBorwein)/(MertensB3-Tribonacci) 3908887844025891 a001 13/4106118243*18^(20/23) 3908887865854288 m001 (KomornikLoreti-Si(Pi))/(-Trott+Trott2nd) 3908887876186339 l006 ln(6542/9671) 3908887898556774 r009 Re(z^3+c),c=-5/74+11/18*I,n=39 3908887903200286 r005 Im(z^2+c),c=-7/6+75/256*I,n=22 3908887918460791 m001 exp(RenyiParking)^2*LaplaceLimit*GAMMA(1/12)^2 3908887934921495 r005 Re(z^2+c),c=-9/14+72/221*I,n=32 3908887938635965 a007 Real Root Of 229*x^4+629*x^3-822*x^2+764*x-349 3908887938916288 m001 (GAMMA(3/4)+ln(Pi))/(TwinPrimes-ZetaQ(2)) 3908887942601675 m005 (1/2*Catalan+5)/(8/11*2^(1/2)-8/9) 3908887947608569 r002 9th iterates of z^2 + 3908887972530625 r009 Re(z^3+c),c=-35/74+23/50*I,n=10 3908888003687711 m005 (1/2*2^(1/2)-6/7)/(1/7*Zeta(3)-5/9) 3908888020700823 m001 (LambertW(1)+Bloch)/(-Khinchin+Trott2nd) 3908888033246099 m005 (1/2*2^(1/2)-10/11)/(1/11*Catalan-3/5) 3908888043791573 r002 32th iterates of z^2 + 3908888048722240 r005 Re(z^2+c),c=23/82+21/46*I,n=21 3908888060337766 a001 123*121393^(13/44) 3908888061446048 r005 Im(z^2+c),c=9/32+3/11*I,n=36 3908888071888116 a001 9349/32951280099*3^(7/24) 3908888072471414 m001 Catalan^2/ln(ErdosBorwein)/GAMMA(5/12)^2 3908888073933370 l006 ln(5229/7730) 3908888076009883 m005 (1/2*Catalan-5/9)/(9/11*5^(1/2)+2/3) 3908888077176110 r005 Re(z^2+c),c=-53/102+13/47*I,n=52 3908888085756141 m005 (1/2*gamma-6/11)/(9/11*2^(1/2)-1/2) 3908888086385628 r005 Im(z^2+c),c=-65/102+9/23*I,n=8 3908888092467062 r009 Im(z^3+c),c=-55/114+13/44*I,n=54 3908888105405955 a007 Real Root Of 852*x^4-507*x^3-562*x^2-516*x-166 3908888106095860 m001 FibonacciFactorial/CopelandErdos*ln(Bloch) 3908888110085413 a001 6119/21566892818*3^(7/24) 3908888115658324 a001 64079/225851433717*3^(7/24) 3908888116471400 a001 167761/591286729879*3^(7/24) 3908888116590027 a001 109801/387002188980*3^(7/24) 3908888116607334 a001 1149851/4052739537881*3^(7/24) 3908888116609859 a001 3010349/10610209857723*3^(7/24) 3908888116611420 a001 930249/3278735159921*3^(7/24) 3908888116618030 a001 710647/2504730781961*3^(7/24) 3908888116663342 a001 271443/956722026041*3^(7/24) 3908888116973909 a001 51841/182717648081*3^(7/24) 3908888119102572 a001 39603/139583862445*3^(7/24) 3908888121440752 m001 (CareFree-GolombDickman)/(ln(5)+BesselJ(1,1)) 3908888122540315 m005 (1/2*Catalan+1/9)/(3/5*3^(1/2)+5/12) 3908888122884540 h001 (5/7*exp(1)+7/8)/(9/10*exp(2)+5/9) 3908888133366276 a007 Real Root Of -131*x^4-640*x^3-491*x^2-64*x-389 3908888133692641 a001 15127/53316291173*3^(7/24) 3908888139926384 p004 log(28979/19603) 3908888140092971 m001 GAMMA(7/12)^Trott2nd/sin(1/12*Pi) 3908888142744055 m001 5^(1/2)*ZetaP(4)+Ei(1,1) 3908888148172156 m008 (1/6*Pi^6+3/5)/(2/5*Pi^2+1/6) 3908888155203831 r005 Im(z^2+c),c=11/32+5/33*I,n=39 3908888167523901 m005 (1/2*2^(1/2)+7/11)/(7/12*3^(1/2)-2/3) 3908888175847479 r005 Im(z^2+c),c=1/94+23/47*I,n=38 3908888180949346 q001 1227/3139 3908888182734056 r005 Re(z^2+c),c=-47/110+21/41*I,n=6 3908888186053554 p003 LerchPhi(1/6,2,293/177) 3908888195607179 r005 Im(z^2+c),c=27/118+15/46*I,n=59 3908888200308660 r005 Im(z^2+c),c=-25/21+11/60*I,n=53 3908888208456043 r005 Re(z^2+c),c=-65/122+8/43*I,n=41 3908888209661877 r002 13th iterates of z^2 + 3908888222935884 a007 Real Root Of 731*x^4-905*x^3-598*x^2-544*x+341 3908888230132981 r002 56th iterates of z^2 + 3908888233694463 a001 2889/10182505537*3^(7/24) 3908888265912250 r005 Im(z^2+c),c=-49/110+11/20*I,n=13 3908888276143635 m005 (1/3*exp(1)+1/6)/(5/6*Zeta(3)-8/11) 3908888282569216 m001 (LandauRamanujan+QuadraticClass)/BesselK(0,1) 3908888301156816 r009 Im(z^3+c),c=-23/64+23/62*I,n=11 3908888304535670 r009 Re(z^3+c),c=-3/5+13/56*I,n=12 3908888307671544 r005 Re(z^2+c),c=-55/118+23/50*I,n=33 3908888309659578 a005 (1/sin(39/107*Pi))^778 3908888320887667 m001 1/ln(Trott)^2/RenyiParking^2/sqrt(5) 3908888360549570 s002 sum(A108858[n]/(n*pi^n+1),n=1..infinity) 3908888388092433 a007 Real Root Of -267*x^4-941*x^3+384*x^2+32*x+390 3908888391929604 m002 -2-2*E^Pi+Pi^2/ProductLog[Pi] 3908888404286036 l006 ln(3916/5789) 3908888428596641 a001 271443/34*21^(12/23) 3908888437274774 a007 Real Root Of 247*x^4+789*x^3-621*x^2+255*x-56 3908888450640457 r005 Im(z^2+c),c=-7/114+27/52*I,n=20 3908888462717492 m006 (1/2*Pi^2+5)/(Pi-3/5) 3908888462717492 m008 (1/2*Pi^2+5)/(Pi-3/5) 3908888506727258 m001 (Psi(2,1/3)+LambertW(1))/(Ei(1,1)+Salem) 3908888511034188 m006 (1/5/Pi+2/3)/(3/5*ln(Pi)-1/2) 3908888515366035 m001 (GAMMA(2/3)-GAMMA(11/12))/(Salem-ThueMorse) 3908888534403720 m001 1/ln(PrimesInBinary)^2*Khintchine^2/cosh(1)^2 3908888543523220 r009 Re(z^3+c),c=-14/31+7/59*I,n=6 3908888563149924 m005 (1/2*gamma-5/8)/(5/11*exp(1)-3/8) 3908888567480967 m001 (Niven+QuadraticClass)/(Zeta(3)-cos(1)) 3908888569759283 m001 (BesselI(1,1)+Artin)/(Tetranacci+Weierstrass) 3908888577811102 r005 Im(z^2+c),c=-7/110+9/16*I,n=16 3908888579548665 s002 sum(A037159[n]/(2^n-1),n=1..infinity) 3908888586961854 a007 Real Root Of -280*x^4-853*x^3+783*x^2-491*x+540 3908888589699664 p001 sum(1/(351*n+256)/(625^n),n=0..infinity) 3908888594486105 r009 Im(z^3+c),c=-12/29+11/32*I,n=17 3908888606108136 a007 Real Root Of 943*x^4+792*x^3+678*x^2+98*x-40 3908888613510969 g005 GAMMA(5/11)/GAMMA(3/11)/GAMMA(1/11)/GAMMA(5/8) 3908888619869589 r005 Im(z^2+c),c=23/110+33/62*I,n=58 3908888623282707 a001 521/5*2584^(43/57) 3908888624333458 r002 22th iterates of z^2 + 3908888635446596 m005 (1/2*3^(1/2)-3/7)/(28/45+2/9*5^(1/2)) 3908888642847034 m001 (Pi*csc(1/24*Pi)/GAMMA(23/24))^GAMMA(7/12)*Pi 3908888642847034 m001 GAMMA(1/24)^GAMMA(7/12)*Pi 3908888649367059 m001 (exp(1/exp(1))+5)/exp(1/2) 3908888658579098 s002 sum(A089810[n]/(n^2*2^n+1),n=1..infinity) 3908888664140165 m009 (4/3*Catalan+1/6*Pi^2+3/4)/(6*Psi(1,3/4)-6) 3908888669267480 l006 ln(6519/9637) 3908888670796288 r009 Im(z^3+c),c=-25/122+20/47*I,n=7 3908888683398326 a001 1836311903/199*199^(3/11) 3908888685355000 m005 (1/2*exp(1)-6/7)/(4/9*Zeta(3)+3/4) 3908888691346253 m001 1/GAMMA(5/6)*ln(GAMMA(11/24))*sin(Pi/12)^2 3908888702986783 s001 sum(exp(-Pi/2)^n*A051201[n],n=1..infinity) 3908888729338180 b008 4+59*Sqrt[43] 3908888731172617 a008 Real Root of x^2-x-153185 3908888736375574 h001 (3/4*exp(2)+11/12)/(5/11*exp(1)+5/12) 3908888747563043 r004 Im(z^2+c),c=7/26+2/7*I,z(0)=exp(3/8*I*Pi),n=61 3908888753075365 p004 log(36607/24763) 3908888753320930 m001 MertensB1^(GlaisherKinkelin/FeigenbaumC) 3908888757193759 r005 Re(z^2+c),c=-13/24+2/25*I,n=57 3908888760062832 r005 Im(z^2+c),c=-3/122+11/25*I,n=5 3908888767251027 m001 Otter+Sarnak^ZetaR(2) 3908888768666699 m005 (1/2*5^(1/2)-10/11)/(7/12*Zeta(3)-1/6) 3908888772783028 a007 Real Root Of -535*x^4-153*x^3+866*x^2+932*x-475 3908888777181956 a007 Real Root Of -870*x^4-333*x^3-884*x^2+976*x+517 3908888777344198 m001 (1+Ei(1))^GlaisherKinkelin 3908888783476971 a007 Real Root Of -898*x^4+757*x^3-219*x^2+635*x-239 3908888784208633 r002 25th iterates of z^2 + 3908888784691508 r005 Im(z^2+c),c=-11/82+17/29*I,n=17 3908888796226236 r005 Im(z^2+c),c=-9/10+36/125*I,n=4 3908888801184037 m004 -1/2+125*Pi-2/ProductLog[Sqrt[5]*Pi] 3908888808386295 r009 Im(z^3+c),c=-15/106+23/28*I,n=6 3908888813959223 m005 (1/2*exp(1)+7/11)/(1/8*Catalan-5/8) 3908888814114013 m001 (BesselJ(0,1)-Shi(1))/(-Lehmer+Totient) 3908888826360717 r002 42th iterates of z^2 + 3908888836085381 m001 (arctan(1/3)-FeigenbaumC)/(Khinchin+Salem) 3908888847381227 l006 ln(147/7327) 3908888853307816 a007 Real Root Of -34*x^4+571*x^3-630*x^2+588*x+361 3908888854716897 r005 Re(z^2+c),c=-65/98+27/59*I,n=7 3908888855252561 m001 Lehmer-ReciprocalFibonacci*Totient 3908888865033944 r005 Im(z^2+c),c=-33/52+18/49*I,n=42 3908888865509387 m001 (Gompertz+Rabbit)/(3^(1/2)+ln(5)) 3908888868436537 r005 Im(z^2+c),c=-65/94+3/53*I,n=43 3908888871784985 r005 Re(z^2+c),c=5/28+9/26*I,n=42 3908888889615867 a001 1/3*(1/2*5^(1/2)+1/2)^14*4^(5/21) 3908888892552568 m008 (3/5*Pi^2+3/4)/(1/6*Pi^4+5/6) 3908888893944713 m001 cos(1)/KhintchineHarmonic*ln(log(1+sqrt(2))) 3908888912081063 p001 sum(1/(485*n+256)/(512^n),n=0..infinity) 3908888917743822 a001 7778742049/843*123^(3/10) 3908888919117147 a001 2207/7778742049*3^(7/24) 3908888920059374 a003 -3/2+cos(5/12*Pi)+cos(2/9*Pi)+1/2*3^(1/2) 3908888939506686 r005 Re(z^2+c),c=-25/56+23/51*I,n=26 3908888945394435 a007 Real Root Of 265*x^4+768*x^3-799*x^2+806*x-639 3908888979929238 r002 47th iterates of z^2 + 3908888983646915 r009 Re(z^3+c),c=-53/122+13/62*I,n=3 3908888997406992 r005 Im(z^2+c),c=27/118+15/46*I,n=63 3908889003348764 r002 36th iterates of z^2 + 3908889008715722 m005 (1/3*3^(1/2)+1/9)/(17/16+5/16*5^(1/2)) 3908889020567874 m005 (1/2*exp(1)-1/12)/(4*Catalan-2/5) 3908889022328782 m004 -24-5*Pi+Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 3908889022634280 m003 -2/5+E^(1/2+Sqrt[5]/2)*Tanh[1/2+Sqrt[5]/2]^2 3908889023025755 a001 11/4181*1597^(15/41) 3908889041524394 r002 54th iterates of z^2 + 3908889043178186 m001 ZetaQ(3)^MinimumGamma*ZetaQ(3)^DuboisRaymond 3908889067910317 l006 ln(2603/3848) 3908889073899527 m001 (2^(1/3)+BesselI(0,1))/(-Mills+TwinPrimes) 3908889079357856 r002 10th iterates of z^2 + 3908889079557030 r005 Im(z^2+c),c=9/29+1/28*I,n=11 3908889085330782 b008 2-73*E^(2*Pi) 3908889085683164 r005 Re(z^2+c),c=-4/7+3/121*I,n=12 3908889119241086 r005 Im(z^2+c),c=27/118+15/46*I,n=62 3908889131074026 a007 Real Root Of 25*x^4-77*x^3-897*x^2-985*x-580 3908889148167735 p001 sum((-1)^n/(529*n+255)/(100^n),n=0..infinity) 3908889150521800 r002 46th iterates of z^2 + 3908889156126507 a007 Real Root Of -317*x^4-987*x^3+916*x^2-341*x-271 3908889168347088 m001 (3^(1/2)-ln(2))/(-gamma(1)+Sierpinski) 3908889182167338 r005 Re(z^2+c),c=-10/19+7/25*I,n=12 3908889183342024 l006 ln(5544/5765) 3908889186156285 a003 sin(Pi*13/97)*sin(Pi*43/106) 3908889194964427 s002 sum(A197572[n]/(2^n+1),n=1..infinity) 3908889196479473 r005 Re(z^2+c),c=-143/122+13/60*I,n=18 3908889200468341 r005 Re(z^2+c),c=23/78+29/52*I,n=48 3908889216473064 a001 505019158607/144*6557470319842^(12/17) 3908889217732771 r009 Im(z^3+c),c=-51/110+15/37*I,n=3 3908889227671222 m001 (FransenRobinson+RenyiParking)/(1-Psi(1,1/3)) 3908889251765740 m009 (3/2*Pi^2-1/3)/(3/4*Psi(1,2/3)-6) 3908889252777399 r002 7th iterates of z^2 + 3908889260106127 r005 Re(z^2+c),c=-67/122+7/60*I,n=8 3908889290821052 m001 GolombDickman^cos(1/5*Pi)/MadelungNaCl 3908889304362797 m006 (5/6*exp(2*Pi)-2/5)/(1/5*Pi^2-5/6) 3908889305559407 r005 Im(z^2+c),c=-2/21+29/51*I,n=30 3908889312012063 r005 Im(z^2+c),c=-9/58+15/26*I,n=36 3908889319639192 a007 Real Root Of 504*x^4+509*x^3+215*x^2-836*x-341 3908889330977633 m001 (1-5^(1/2))/(gamma+Sierpinski) 3908889332234890 r005 Re(z^2+c),c=-53/102+13/47*I,n=57 3908889334869783 r005 Im(z^2+c),c=9/64+17/43*I,n=9 3908889338890731 r005 Im(z^2+c),c=7/34+17/49*I,n=40 3908889371944912 m002 -(Log[Pi]/Pi^4)+Pi^4/(E^Pi*ProductLog[Pi]) 3908889373415672 r005 Im(z^2+c),c=27/118+15/46*I,n=57 3908889377766927 a001 64079*(1/2*5^(1/2)+1/2)^31*3^(9/14) 3908889378718894 a001 192900153618*3^(9/14) 3908889380704004 m005 (1/2*exp(1)-5/12)/(7/8*5^(1/2)+5/11) 3908889381211177 a001 39603*(1/2*5^(1/2)+1/2)^32*3^(9/14) 3908889384333231 p001 sum(1/(577*n+261)/(16^n),n=0..infinity) 3908889390226604 a007 Real Root Of 144*x^4+507*x^3-340*x^2-510*x-136 3908889413887645 r002 46th iterates of z^2 + 3908889424856352 v002 sum(1/(5^n*(3*n^2+49*n+5)),n=1..infinity) 3908889425602750 m005 (1/2*Catalan-5/9)/(6/11*Catalan-1/4) 3908889427808302 s001 sum(exp(-Pi/4)^n*A192475[n],n=1..infinity) 3908889443230126 a001 29/514229*34^(28/51) 3908889451463384 m001 (Ei(1)+gamma(1))/(Weierstrass-ZetaQ(3)) 3908889453918732 r005 Re(z^2+c),c=-27/52+28/59*I,n=7 3908889467964588 l006 ln(6496/9603) 3908889478500178 a001 11/13*34^(23/53) 3908889488942659 r002 17th iterates of z^2 + 3908889494649878 r002 20th iterates of z^2 + 3908889506855097 m001 (arctan(1/3)-exp(1/Pi))/(FeigenbaumD+Trott) 3908889516676098 r009 Im(z^3+c),c=-55/114+17/56*I,n=11 3908889531192623 a007 Real Root Of 920*x^4+106*x^3-604*x^2-733*x+351 3908889536025256 a007 Real Root Of 5*x^4-781*x^3-221*x^2-197*x-90 3908889548454668 m001 (BesselI(1,1)-GAMMA(7/12))/(Kac+Tribonacci) 3908889550365696 m001 (OneNinth-Rabbit)/(exp(-1/2*Pi)+MertensB3) 3908889562420846 a007 Real Root Of 512*x^4-880*x^3+994*x^2-804*x-33 3908889567347136 s002 sum(A242564[n]/(exp(pi*n)+1),n=1..infinity) 3908889573650201 m009 (2/3*Psi(1,2/3)-5/6)/(3/4*Psi(1,3/4)-5) 3908889576089613 m001 1/PisotVijayaraghavan/Champernowne*ln(Ei(1)) 3908889580835206 r002 60th iterates of z^2 + 3908889582331595 m001 1/BesselJ(0,1)^2*CareFree^2*exp(GAMMA(7/12)) 3908889588754172 r008 a(0)=4,K{-n^6,-9+10*n+8*n^2+3*n^3} 3908889602244218 r005 Re(z^2+c),c=-49/94+4/15*I,n=56 3908889609847455 l006 ln(179/8922) 3908889627650933 m005 (1/2*Catalan-2/7)/(4/9*Catalan+4) 3908889630485295 a007 Real Root Of 135*x^4-878*x^3-786*x^2-86*x+203 3908889634665017 r005 Re(z^2+c),c=5/78+23/39*I,n=6 3908889635818307 m005 (1/3*gamma+1/7)/(5*3^(1/2)-1/12) 3908889640171852 r002 36th iterates of z^2 + 3908889653632719 m002 4*Pi^4+(7*ProductLog[Pi])/6 3908889655344813 a007 Real Root Of 111*x^4+226*x^3-807*x^2-128*x-586 3908889663101557 a003 cos(Pi*27/100)*cos(Pi*23/77) 3908889681775380 r009 Im(z^3+c),c=-17/38+9/28*I,n=35 3908889689016684 r005 Re(z^2+c),c=-11/122+32/49*I,n=35 3908889707840087 a008 Real Root of (1+x+4*x^2+6*x^3+6*x^4-2*x^5) 3908889728120120 b008 3+3^(-2/23) 3908889729867056 p002 log(18/(12^(2/3)-7)) 3908889733681314 m001 (Pi+Zeta(1,-1))/(LaplaceLimit+Paris) 3908889735455272 l006 ln(3893/5755) 3908889742382247 a007 Real Root Of -169*x^4-104*x^3-573*x^2+163*x+149 3908889753502567 a007 Real Root Of -917*x^4+284*x^3-788*x^2-25*x+149 3908889789373454 r005 Im(z^2+c),c=-77/114+11/39*I,n=5 3908889791256763 m001 (2^(1/3))^2*ln(KhintchineLevy)^2*sin(1) 3908889792323946 m001 1/exp(FeigenbaumC)/Backhouse^2/GAMMA(5/24)^2 3908889803497406 r005 Im(z^2+c),c=7/26+2/7*I,n=61 3908889808635356 m001 (GAMMA(2/3)+1/3)/(ln(2+sqrt(3))+3) 3908889819528584 m001 (GlaisherKinkelin-ThueMorse)/(Pi-Catalan) 3908889832773574 a005 (1/sin(93/223*Pi))^911 3908889851665325 m001 (Bloch+PlouffeB)/(exp(Pi)+ln(3)) 3908889857589090 a007 Real Root Of -238*x^4-890*x^3+155*x^2+138*x+579 3908889861305718 m005 (1/2*3^(1/2)-1)/(9/10*Pi+3/5) 3908889861916121 r002 9th iterates of z^2 + 3908889862602585 m005 (1/2*gamma+2/5)/(4/5*Zeta(3)+4/5) 3908889864781710 r002 22th iterates of z^2 + 3908889869337375 r009 Im(z^3+c),c=-21/122+23/53*I,n=15 3908889882733479 m001 (FeigenbaumMu+MertensB1)/(Tribonacci-Thue) 3908889883874832 r009 Im(z^3+c),c=-29/66+17/52*I,n=30 3908889884535996 m002 -Pi^5+(5*Pi^6*Coth[Pi])/Log[Pi] 3908889886479991 r009 Re(z^3+c),c=-5/74+11/18*I,n=48 3908889887889759 r005 Re(z^2+c),c=-27/52+27/61*I,n=53 3908889889480842 m005 (1/3*Zeta(3)-3/5)/(2/9*3^(1/2)+1/8) 3908889894531044 r005 Re(z^2+c),c=-15/28+7/44*I,n=47 3908889910351535 h001 (3/5*exp(1)+1/11)/(5/9*exp(2)+3/10) 3908889931942130 m001 (-ln(gamma)+Riemann1stZero)/(Catalan-cos(1)) 3908889944518725 a007 Real Root Of 186*x^4+763*x^3+147*x^2+152*x+495 3908889945335449 m008 (2*Pi^6-1/3)/(5*Pi^2-1/6) 3908889949916988 r005 Im(z^2+c),c=3/70+15/32*I,n=33 3908889952962820 s002 sum(A098665[n]/(10^n+1),n=1..infinity) 3908889959014295 r002 53th iterates of z^2 + 3908889969740585 r005 Im(z^2+c),c=11/38+5/19*I,n=62 3908889978201740 h001 (4/5*exp(1)+4/7)/(9/10*exp(2)+3/8) 3908889979180898 r005 Im(z^2+c),c=19/110+3/8*I,n=38 3908889980785167 r002 52th iterates of z^2 + 3908889998649435 r005 Re(z^2+c),c=-35/66+13/62*I,n=33 3908890006736061 r005 Re(z^2+c),c=-15/32+31/63*I,n=63 3908890012572617 m001 Ei(1)^GAMMA(11/24)/(GAMMA(7/24)^GAMMA(11/24)) 3908890025360719 a007 Real Root Of 181*x^4+859*x^3+840*x^2+836*x-519 3908890030728885 a007 Real Root Of 29*x^4+10*x^3-532*x^2-444*x+220 3908890035486827 r005 Im(z^2+c),c=-65/106+16/41*I,n=47 3908890035974255 r005 Im(z^2+c),c=3/118+25/52*I,n=21 3908890048350440 m001 (exp(-1/2*Pi)+Kolakoski)/(Pi-gamma) 3908890061579876 b008 15*ArcSec[-23]^2 3908890070708877 l006 ln(5183/7662) 3908890097606851 a001 41/48*121393^(11/12) 3908890100665448 a007 Real Root Of 419*x^4+81*x^3-902*x^2-483*x+312 3908890107693925 m005 (1/2*exp(1)-2/9)/(2*3^(1/2)-5/9) 3908890115880434 a007 Real Root Of -95*x^4-386*x^3-50*x^2+150*x+475 3908890120384086 r005 Im(z^2+c),c=1/28+9/19*I,n=44 3908890127761635 r005 Im(z^2+c),c=-17/110+37/63*I,n=27 3908890134489928 a001 46/1515744265389*317811^(13/23) 3908890145388095 r009 Im(z^3+c),c=-17/122+19/41*I,n=2 3908890148388776 m001 (Bloch-FibonacciFactorial)/(ln(5)+arctan(1/3)) 3908890149506035 a007 Real Root Of 188*x^4+641*x^3-402*x^2-57*x+313 3908890153636237 m001 ln(BesselK(0,1))/DuboisRaymond*Zeta(1,2)^2 3908890158620465 m005 (1/2*gamma-1/11)/(2/11*exp(1)-1) 3908890158739829 a007 Real Root Of -97*x^4-181*x^3+980*x^2+818*x+59 3908890163931164 m006 (2/3/Pi-1/6)/(5*exp(Pi)+4/5) 3908890174493676 r005 Re(z^2+c),c=-4/7+16/109*I,n=6 3908890181195938 m001 (Trott+ZetaP(2))/(ln(gamma)-HardyLittlewoodC3) 3908890184588521 r002 9th iterates of z^2 + 3908890194902677 m008 (1/4*Pi^6+3/4)/(2*Pi^3-1/3) 3908890204403833 r009 Re(z^3+c),c=-5/74+11/18*I,n=40 3908890212269322 m001 Robbin^MinimumGamma*TravellingSalesman 3908890222816286 m004 -2+125*Pi+(150*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 3908890225822166 m004 -2+125*Pi+(150*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 3908890234501554 m001 (FeigenbaumDelta+Sarnak)^cos(1/5*Pi) 3908890244875742 m002 (-5*Pi^3)/3+Cosh[Pi]+Tanh[Pi] 3908890250641311 m001 exp(GlaisherKinkelin)/ArtinRank2/GAMMA(1/12)^2 3908890258303641 m001 GAMMA(13/24)/Rabbit*exp(sqrt(2))^2 3908890272337526 l006 ln(6473/9569) 3908890272569083 r009 Im(z^3+c),c=-17/90+41/56*I,n=47 3908890284955258 m001 (-3^(1/3)+Artin)/(Chi(1)+Ei(1)) 3908890288909885 m005 (1/3*Catalan+3/7)/(7/11*5^(1/2)+5/11) 3908890292346428 a007 Real Root Of -628*x^4+885*x^3-396*x^2+793*x+438 3908890294765080 m006 (4/Pi+2/5)/(4/5*exp(2*Pi)-1/3) 3908890295966509 m001 (sin(1/12*Pi)-ThueMorse)/(Zeta(3)-cos(1/5*Pi)) 3908890300596357 r005 Re(z^2+c),c=-10/17+7/44*I,n=13 3908890309743655 r005 Re(z^2+c),c=-13/24+2/25*I,n=55 3908890312416537 r005 Im(z^2+c),c=1/126+25/43*I,n=19 3908890313450012 h001 (4/9*exp(1)+10/11)/(7/11*exp(2)+5/7) 3908890334051005 r005 Im(z^2+c),c=9/122+13/29*I,n=34 3908890348715402 r005 Im(z^2+c),c=-15/26+3/22*I,n=10 3908890384577470 r009 Im(z^3+c),c=-17/64+25/61*I,n=12 3908890397980336 a007 Real Root Of 801*x^4+54*x^3-564*x^2-708*x+341 3908890409114699 m001 (ArtinRank2-Chi(1))/(HardyLittlewoodC3+Otter) 3908890417608974 m001 (LambertW(1)+1/3)/(GaussKuzminWirsing+2) 3908890419084696 r002 9th iterates of z^2 + 3908890440624166 r002 19th iterates of z^2 + 3908890460267446 m002 -1-4/Log[Pi]+Pi^4*Sech[Pi] 3908890465974527 r005 Re(z^2+c),c=-47/62+1/39*I,n=56 3908890468821407 m008 (3*Pi^3+4/5)/(1/4*Pi^6-1/3) 3908890470988806 a007 Real Root Of -176*x^4-788*x^3-513*x^2-245*x+906 3908890477354257 m001 (-FellerTornier+Lehmer)/(Catalan-ErdosBorwein) 3908890478741479 m006 (1/3*ln(Pi)+2/3)/(1/Pi-3) 3908890481562368 a007 Real Root Of -105*x^4-226*x^3+609*x^2-206*x+905 3908890488565927 m001 1/GAMMA(11/12)^2/ln(Rabbit)/sin(Pi/12)^2 3908890491857471 a007 Real Root Of 275*x^4-412*x^3+955*x^2+445*x-3 3908890493243614 r002 30th iterates of z^2 + 3908890496687810 h001 (-7*exp(1/2)+6)/(-4*exp(1/3)+7) 3908890500828332 r005 Re(z^2+c),c=-47/82+1/50*I,n=12 3908890517393396 r005 Im(z^2+c),c=3/22+23/57*I,n=34 3908890521675238 q001 532/1361 3908890534834830 a007 Real Root Of -194*x^4+712*x^3+954*x^2+786*x-491 3908890552905890 a007 Real Root Of -61*x^4-109*x^3+440*x^2-87*x+668 3908890558001997 a005 (1/cos(3/149*Pi))^681 3908890558818949 a001 15127/55*55^(5/57) 3908890563349735 r005 Re(z^2+c),c=-51/94+3/56*I,n=28 3908890566709526 r002 59th iterates of z^2 + 3908890573137320 r005 Re(z^2+c),c=-51/94+2/33*I,n=39 3908890580684253 m001 (OneNinth+Sarnak)/(cos(1/5*Pi)-Gompertz) 3908890583523858 a007 Real Root Of 894*x^4-398*x^3-427*x^2-762*x+366 3908890584664159 h001 (9/11*exp(2)+1/4)/(5/11*exp(1)+3/8) 3908890589563285 a007 Real Root Of 14*x^4+547*x^3-24*x^2-549*x+597 3908890591961342 m001 Pi-exp(Pi)/BesselI(1,1)-GAMMA(17/24) 3908890612028324 m005 (1/2*Zeta(3)+10/11)/(6*gamma+2/5) 3908890613493538 m005 (-13/44+1/4*5^(1/2))/(3/10*2^(1/2)+1/4) 3908890628192362 m001 (Zeta(1/2)+GAMMA(13/24))/(KhinchinLevy+Magata) 3908890632679183 m005 (1/2*exp(1)-1)/(4/7*2^(1/2)-9/10) 3908890633905628 r009 Im(z^3+c),c=-27/56+18/61*I,n=41 3908890635817551 r005 Re(z^2+c),c=-5/27+38/61*I,n=31 3908890637555781 a001 1/40446*(1/2*5^(1/2)+1/2)*5778^(5/19) 3908890638506176 m001 1/Magata^2*ln(Champernowne)^2*Zeta(5) 3908890665173274 s002 sum(A072050[n]/(exp(n)-1),n=1..infinity) 3908890682464319 m001 Zeta(1,2)/(GAMMA(23/24)-Riemann3rdZero) 3908890684540428 m001 TreeGrowth2nd^exp(-1/2*Pi)*arctan(1/2) 3908890691035743 a007 Real Root Of 94*x^4-214*x^3-225*x^2-545*x+258 3908890692044942 m001 1/GAMMA(11/24)*ErdosBorwein/exp(GAMMA(7/12))^2 3908890705027710 r005 Im(z^2+c),c=-41/98+31/57*I,n=47 3908890707958429 r002 8th iterates of z^2 + 3908890714476328 m001 (3^(1/2)+Bloch)/(2^(1/3)-Psi(2,1/3)) 3908890727949362 a001 1/171332*(1/2*5^(1/2)+1/2)*24476^(7/19) 3908890749807466 m002 -3*E^Pi+Pi^5*Csch[Pi]*Log[Pi] 3908890752156443 m005 (1/2*Pi-2/7)/(7/8*exp(1)+10/11) 3908890752456602 a007 Real Root Of -815*x^4-490*x^3-137*x^2+625*x+255 3908890757264700 a007 Real Root Of 214*x^4+93*x^3+85*x^2-91*x-48 3908890769360718 r005 Im(z^2+c),c=-71/52+3/55*I,n=3 3908890783182118 r005 Im(z^2+c),c=-31/106+27/47*I,n=34 3908890784249909 a007 Real Root Of 844*x^4-762*x^3-513*x^2-877*x+447 3908890799957615 r008 a(0)=4,K{-n^6,6+8*n^3-2*n} 3908890808185089 a003 cos(Pi*17/113)-cos(Pi*17/111) 3908890819386373 r002 50th iterates of z^2 + 3908890827255684 m001 (3^(1/3)-Chi(1))/(-MasserGramain+Robbin) 3908890831363891 b008 InverseErf[1/3+Sech[Pi]] 3908890837656993 a001 1364/514229*3^(6/17) 3908890856275996 s002 sum(A187237[n]/(2^n+1),n=1..infinity) 3908890858240280 r002 63i'th iterates of 2*x/(1-x^2) of 3908890859875592 s001 sum(exp(-Pi/4)^(n-1)*A208932[n],n=1..infinity) 3908890865228537 m001 log(2+sqrt(3))*PrimesInBinary^2*ln(sin(1)) 3908890880216985 r005 Re(z^2+c),c=-57/106+3/26*I,n=22 3908890882451170 a001 3/103682*2^(23/53) 3908890882845663 r002 7th iterates of z^2 + 3908890905965911 r005 Re(z^2+c),c=-19/36+13/58*I,n=34 3908890928269573 h001 (4/7*exp(1)+7/8)/(9/11*exp(2)+1/6) 3908890930350518 r005 Im(z^2+c),c=-15/46+8/15*I,n=12 3908890937254304 a007 Real Root Of -821*x^4+941*x^3+153*x^2+155*x-121 3908890937381213 m001 exp(-1/2*Pi)^Gompertz*exp(-1/2*Pi)^ZetaQ(4) 3908890961849891 m001 Lehmer^(exp(1)*BesselI(0,2)) 3908890962385250 m001 (CareFree-Psi(1,1/3))/(Tetranacci+Weierstrass) 3908890970574176 r005 Im(z^2+c),c=19/74+11/24*I,n=33 3908890983834412 a007 Real Root Of 951*x^4-494*x^3+611*x^2-468*x-328 3908890987967944 m001 (arctan(1/3)-GAMMA(7/12))/(Bloch-Weierstrass) 3908891001794806 a007 Real Root Of 233*x^4+878*x^3-40*x^2+273*x-279 3908891006276294 m001 Paris^FeigenbaumDelta*DuboisRaymond 3908891007884082 r002 48th iterates of z^2 + 3908891024318040 m001 (Artin-FibonacciFactorial)/(Zeta(5)+ln(Pi)) 3908891033787067 a007 Real Root Of -483*x^4-311*x^3-783*x^2+608*x+350 3908891043972562 r008 a(0)=4,K{-n^6,9*n^3-6*n^2+9*n} 3908891047392693 r005 Im(z^2+c),c=-16/25+17/42*I,n=24 3908891048001684 r005 Re(z^2+c),c=-8/15+5/29*I,n=27 3908891048553973 m005 (1/2*5^(1/2)+2/7)/(1/9*3^(1/2)+1/6) 3908891071890555 m001 (GAMMA(19/24)+Sarnak)/(TwinPrimes-ZetaP(3)) 3908891074907706 m001 (FeigenbaumMu-cos(1))/(LandauRamanujan+Trott) 3908891081154821 a007 Real Root Of -153*x^4-535*x^3+203*x^2-213*x-168 3908891082447012 l006 ln(1290/1907) 3908891091463659 r005 Re(z^2+c),c=-13/24+2/25*I,n=41 3908891092498702 m001 (BesselI(0,1)-ln(2))/(Ei(1,1)+gamma(1)) 3908891096363713 m001 GAMMA(3/4)^2*GAMMA(1/4)/exp(log(2+sqrt(3)))^2 3908891098732259 r002 45th iterates of z^2 + 3908891098913431 a007 Real Root Of -52*x^4-22*x^3+844*x^2+386*x-561 3908891100677705 r005 Im(z^2+c),c=-11/98+29/59*I,n=7 3908891139418311 r002 47th iterates of z^2 + 3908891148645514 a001 322/377*832040^(37/47) 3908891150012113 m001 (Pi+ZetaR(2))^ln(Pi) 3908891158003584 r002 32th iterates of z^2 + 3908891164615993 l006 ln(8755/9104) 3908891166039217 r005 Im(z^2+c),c=25/118+18/49*I,n=8 3908891172487382 a007 Real Root Of -137*x^4-645*x^3-314*x^2+690*x+956 3908891175421178 r008 a(0)=4,K{-n^6,47-49*n-n^2+15*n^3} 3908891186117873 r005 Re(z^2+c),c=-14/29+15/37*I,n=26 3908891186365908 m006 (2/3*exp(Pi)+1/5)/(4*Pi^2+1/2) 3908891187978102 g005 GAMMA(2/9)/GAMMA(4/11)/GAMMA(3/11)/GAMMA(7/10) 3908891195811720 m001 Zeta(3)*ln(FeigenbaumB)^2*cos(Pi/12) 3908891222741013 b008 11+(31*E)/3 3908891225078684 m001 MertensB1/ln(GlaisherKinkelin)/GAMMA(13/24)^2 3908891256017869 m004 1/3+(5*Cot[Sqrt[5]*Pi])/ProductLog[Sqrt[5]*Pi] 3908891257164123 m001 GAMMA(5/6)/DuboisRaymond^2*ln(Pi)^2 3908891261029791 m001 (3^(1/3))/(BesselJ(1,1)-cos(Pi/5)) 3908891261029791 m001 3^(1/3)/(BesselJ(1,1)-cos(1/5*Pi)) 3908891262353393 m001 (MinimumGamma-Trott2nd)/(sin(1/12*Pi)-Kac) 3908891271445693 a007 Real Root Of -300*x^4-925*x^3+898*x^2-97*x+692 3908891284667247 r005 Im(z^2+c),c=5/32+19/49*I,n=23 3908891312542972 m001 1/exp(Ei(1))^2/LandauRamanujan*GAMMA(1/12)^2 3908891323911111 r005 Re(z^2+c),c=-47/122+22/51*I,n=9 3908891325499582 r009 Re(z^3+c),c=-29/56+17/61*I,n=62 3908891330168828 m001 log(2+sqrt(3))^2*ln(Riemann1stZero)/sinh(1) 3908891343177110 m009 (1/3*Psi(1,2/3)+1/6)/(3/10*Pi^2-6) 3908891346891489 a005 (1/sin(66/193*Pi))^458 3908891361429753 m005 (1/3*5^(1/2)+1/4)/(5/11*Zeta(3)+2) 3908891374417124 r005 Im(z^2+c),c=9/106+26/59*I,n=34 3908891380259576 a007 Real Root Of -645*x^4+656*x^3+742*x^2+669*x-399 3908891392636721 m001 GAMMA(1/12)^2/Tribonacci^2 3908891396756643 r002 64th iterates of z^2 + 3908891403869596 a001 322/55*8^(21/23) 3908891410114155 h001 (7/8*exp(1)+3/11)/(5/6*exp(2)+5/8) 3908891427843780 a007 Real Root Of 162*x^4+707*x^3+104*x^2-886*x-647 3908891429607853 m001 (MasserGramain-MertensB3)/(ln(gamma)+Artin) 3908891480037205 r005 Im(z^2+c),c=4/13+23/56*I,n=62 3908891481915292 r002 39th iterates of z^2 + 3908891482728221 p001 sum((-1)^n/(513*n+497)/n/(25^n),n=1..infinity) 3908891489297268 m005 (1/2*exp(1)-7/12)/(139/132+5/12*5^(1/2)) 3908891501177615 r009 Re(z^3+c),c=-63/122+17/45*I,n=53 3908891514479712 m005 (1/2*3^(1/2)-7/10)/(3/7*gamma+4) 3908891519164210 r005 Re(z^2+c),c=11/40+1/32*I,n=13 3908891521248395 m001 (Tetranacci+Thue)/(arctan(1/3)-MertensB2) 3908891540757346 m001 Pi-Psi(1,1/3)*sin(1)+exp(1/exp(1)) 3908891542237736 m004 -125*Pi+(2*Pi)/Sqrt[5]-Tanh[Sqrt[5]*Pi] 3908891543165560 a007 Real Root Of -221*x^4-834*x^3+50*x^2-409*x-579 3908891549107278 m001 1/Sierpinski^2/ln(Paris)/sqrt(1+sqrt(3)) 3908891553427435 a007 Real Root Of -550*x^4+457*x^3+264*x^2+965*x-432 3908891559436500 m001 (GAMMA(23/24)-Backhouse)/(ln(3)+gamma(3)) 3908891590006196 m001 (5^(1/2)-FeigenbaumC)/(HardyLittlewoodC5+Kac) 3908891592523303 m001 1/LaplaceLimit*exp(DuboisRaymond)*Zeta(1/2)^2 3908891594722824 m001 (gamma(1)+Artin)/(LaplaceLimit+OneNinth) 3908891595750477 a001 1/49*(1/2*5^(1/2)+1/2)^8*7^(13/18) 3908891600781532 r005 Re(z^2+c),c=-29/56+18/55*I,n=26 3908891610960794 m001 ln(Bloch)*FransenRobinson^2*TwinPrimes 3908891638863980 a001 305/38*7^(48/59) 3908891643533681 r002 7th iterates of z^2 + 3908891659432801 m001 (Kac-PlouffeB)/(GAMMA(3/4)-ln(5)) 3908891663005293 r002 29th iterates of z^2 + 3908891689554093 m001 (-Champernowne+Salem)/(Si(Pi)+sin(1)) 3908891698775250 r005 Re(z^2+c),c=7/27+2/63*I,n=40 3908891699346285 r005 Im(z^2+c),c=7/118+11/24*I,n=35 3908891706024772 m008 (4/5*Pi-1)/(2/5*Pi^4-1/4) 3908891708290903 m004 (25*Pi)/6+(5*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi])/2 3908891708582665 r002 40th iterates of z^2 + 3908891718346521 r005 Re(z^2+c),c=-67/126+7/36*I,n=41 3908891727743116 r002 10th iterates of z^2 + 3908891747149627 m005 (1/2*exp(1)+1/10)/(2/9*Zeta(3)-4) 3908891774253245 r009 Re(z^3+c),c=-7/15+11/38*I,n=6 3908891778491475 a007 Real Root Of 190*x^4+988*x^3+799*x^2-581*x+172 3908891784987447 r002 21th iterates of z^2 + 3908891799686687 a007 Real Root Of -653*x^4-66*x^3+326*x^2+976*x+343 3908891803056906 h001 (5/7*exp(1)+2/5)/(7/10*exp(2)+9/11) 3908891806688359 m005 (1/2*gamma+2/9)/(5/8*Zeta(3)+5/9) 3908891810520736 r005 Re(z^2+c),c=-35/82+21/41*I,n=50 3908891811329974 r005 Re(z^2+c),c=13/50+1/31*I,n=38 3908891813154682 r005 Im(z^2+c),c=-11/56+17/30*I,n=27 3908891819129294 m005 (1/3*Catalan-3/4)/(4/33+5/11*5^(1/2)) 3908891838015017 m001 (Backhouse-TwinPrimes)/(ln(3)-Zeta(1,2)) 3908891865932314 m005 (1/2*exp(1)-6)/(3/4*Zeta(3)+2/7) 3908891869826469 r009 Im(z^3+c),c=-55/102+1/8*I,n=22 3908891871925630 r002 10th iterates of z^2 + 3908891877456600 a007 Real Root Of 219*x^4+791*x^3-288*x^2-313*x-708 3908891887999249 r005 Re(z^2+c),c=-49/90+5/42*I,n=19 3908891891954602 m001 (Zeta(1,2)+FeigenbaumKappa)/(cos(1)-ln(5)) 3908891898354633 l006 ln(6427/9501) 3908891899989730 r005 Re(z^2+c),c=31/114+1/25*I,n=41 3908891908078141 m003 -1/2+Sqrt[5]/128+30/ProductLog[1/2+Sqrt[5]/2] 3908891922229971 r005 Re(z^2+c),c=7/78+5/13*I,n=14 3908891934918206 a007 Real Root Of 157*x^4+99*x^3+434*x^2-995*x-453 3908891936931045 a007 Real Root Of -779*x^4-362*x^3-912*x^2+937*x+38 3908891939857755 r005 Re(z^2+c),c=-5/8+1/6*I,n=15 3908891944832493 r002 8th iterates of z^2 + 3908891945403167 a007 Real Root Of -103*x^4-196*x^3+701*x^2-347*x+273 3908891947373234 m006 (3/5*exp(Pi)+2)/(1/5/Pi+4) 3908891948238370 r005 Re(z^2+c),c=-33/62+4/21*I,n=55 3908891956973409 h001 (2/3*exp(1)+1/5)/(3/5*exp(2)+5/7) 3908891964543927 a007 Real Root Of 858*x^4-299*x^3+918*x^2-895*x-528 3908891979847268 m001 (Pi-ln(2)/ln(10))/(Chi(1)-BesselJ(0,1)) 3908891984485608 r008 a(0)=4,K{-n^6,4-13*n^3+14*n^2+4*n} 3908892001014634 a007 Real Root Of 125*x^4+525*x^3+99*x^2-322*x-598 3908892017597050 a001 1/682*29^(39/40) 3908892018380475 r005 Re(z^2+c),c=-7/13+16/35*I,n=44 3908892032003402 r005 Im(z^2+c),c=25/86+1/3*I,n=6 3908892054520260 a007 Real Root Of -139*x^4-574*x^3-223*x^2-572*x-660 3908892057369649 m002 6+Pi^3+Log[Pi]+ProductLog[Pi]/Log[Pi] 3908892072734770 r005 Re(z^2+c),c=29/126+34/63*I,n=3 3908892073895162 a001 31622993/38*76^(8/9) 3908892082765285 h001 (7/12*exp(1)+5/6)/(9/11*exp(2)+1/7) 3908892088922842 r002 56th iterates of z^2 + 3908892091133961 m005 (1/2*Zeta(3)-6/11)/(7/8*gamma+11/12) 3908892091996609 r009 Re(z^3+c),c=-51/106+5/21*I,n=26 3908892097915141 m001 MertensB2/(KhinchinLevy-Zeta(1/2)) 3908892098799949 a007 Real Root Of 443*x^4+442*x^3-354*x^2-906*x-284 3908892103244797 l006 ln(5137/7594) 3908892128506219 m001 (GAMMA(19/24)-exp(1/exp(1)))/ln(2) 3908892134301278 r005 Re(z^2+c),c=-15/28+7/44*I,n=52 3908892139366180 m001 (BesselI(0,1)+ln(2))/(3^(1/3)+FeigenbaumMu) 3908892165779597 m001 (GAMMA(23/24)-TwinPrimes)/(gamma(3)+Zeta(1,2)) 3908892165931028 a007 Real Root Of 270*x^4+871*x^3-893*x^2-559*x+446 3908892167309779 m001 sin(1/12*Pi)*(MertensB2+PlouffeB) 3908892180565384 h001 (2/11*exp(1)+5/7)/(3/10*exp(2)+7/8) 3908892193803098 r002 26th iterates of z^2 + 3908892194907058 a007 Real Root Of -102*x^4-227*x^3+619*x^2-95*x+426 3908892244527267 a007 Real Root Of 267*x^4+965*x^3-195*x^2+369*x-277 3908892268968986 r005 Re(z^2+c),c=-67/118+15/31*I,n=15 3908892270682698 a007 Real Root Of 182*x^4+989*x^3+803*x^2-929*x+678 3908892270823492 m002 -3-4*Pi^4+2/Log[Pi] 3908892271150223 a007 Real Root Of 739*x^4-143*x^3+408*x^2-322*x-214 3908892302619886 m001 GAMMA(1/3)^2/ln(FeigenbaumB)^2*GAMMA(2/3)^2 3908892310890777 r002 42th iterates of z^2 + 3908892312320134 m008 (3/4*Pi^2+1/5)/(2*Pi^4-1/3) 3908892334636601 r008 a(0)=0,K{-n^6,-27+15*n^3-7*n^2+45*n} 3908892336833231 r002 31th iterates of z^2 + 3908892337666380 m001 ln(GAMMA(23/24))^2*Magata/LambertW(1) 3908892356483801 m001 (-gamma(1)+Sarnak)/(Zeta(1/2)-gamma) 3908892359366693 r005 Re(z^2+c),c=-61/118+3/11*I,n=26 3908892369965125 m001 BesselJ(1,1)-Rabbit^cos(1) 3908892371702320 s002 sum(A288311[n]/(n^3*2^n-1),n=1..infinity) 3908892378479788 m001 (-Bloch+MertensB2)/(Chi(1)+BesselK(1,1)) 3908892384525013 r005 Re(z^2+c),c=5/58+28/43*I,n=7 3908892394046162 a001 21/29*23725150497407^(3/7) 3908892394046162 a001 21/29*10749957122^(4/7) 3908892394046165 a001 21/29*33385282^(16/21) 3908892394046303 a001 21/29*4870847^(6/7) 3908892395661192 a003 -1/2-cos(2/9*Pi)-2*cos(13/27*Pi)+cos(1/24*Pi) 3908892411367925 m001 sqrt(3)^GAMMA(11/24)/(sqrt(3)^log(gamma)) 3908892420681131 r005 Im(z^2+c),c=13/86+20/51*I,n=27 3908892431579266 m005 (1/2*Catalan+5/9)/(4/9*Catalan-3) 3908892445545045 l006 ln(3847/5687) 3908892453086316 r009 Im(z^3+c),c=-43/106+6/19*I,n=6 3908892453387232 r002 19th iterates of z^2 + 3908892468202446 m001 (Tribonacci-ZetaQ(4))/(KhinchinHarmonic+Otter) 3908892481998947 v002 sum(1/(2^n+(18*n^2+8*n+29)),n=1..infinity) 3908892482405244 r005 Re(z^2+c),c=-3/82+17/22*I,n=40 3908892498894603 a007 Real Root Of 210*x^4+622*x^3-839*x^2-220*x+82 3908892500773233 s002 sum(A226168[n]/(n^3*10^n+1),n=1..infinity) 3908892502590118 a007 Real Root Of -352*x^4+759*x^3+154*x^2+400*x-217 3908892504216612 a001 1/597*(1/2*5^(1/2)+1/2)*3^(1/3) 3908892508959766 r005 Re(z^2+c),c=6/23+18/29*I,n=4 3908892519430033 r005 Re(z^2+c),c=-67/118+1/30*I,n=12 3908892520111143 r002 63th iterates of z^2 + 3908892525913802 q001 1433/3666 3908892526506187 r002 21th iterates of z^2 + 3908892530649810 m006 (3/5*Pi^2-2/3)/(2/3*Pi-3/4) 3908892530649810 m008 (3/5*Pi^2-2/3)/(2/3*Pi-3/4) 3908892533794149 p001 sum(1/(550*n+257)/n/(32^n),n=1..infinity) 3908892552611136 r009 Re(z^3+c),c=-53/118+11/54*I,n=36 3908892554280938 m001 (-BesselJZeros(0,1)+2/3)/(-exp(1/exp(1))+1) 3908892558618805 r009 Re(z^3+c),c=-43/82+16/63*I,n=36 3908892568549646 m001 Pi*(Psi(2,1/3)+cos(1))*BesselI(0,2) 3908892570538666 a001 47/13*317811^(43/47) 3908892573406299 m001 (Sarnak+ZetaQ(4))/(3^(1/2)+Champernowne) 3908892574931339 m004 -1+125*Pi-(5*ProductLog[Sqrt[5]*Pi])/(3*Pi) 3908892584661773 m001 1/ln(Rabbit)^2*MinimumGamma^2*arctan(1/2)^2 3908892586048718 r002 6th iterates of z^2 + 3908892586455817 m005 (1/2*exp(1)-2/5)/(7/11*Pi+5/11) 3908892589433475 m001 gamma/(Totient^MertensB3) 3908892595666425 r005 Re(z^2+c),c=-13/24+2/25*I,n=53 3908892603768483 m001 Totient/(MertensB1+StolarskyHarborth) 3908892616705373 m001 Thue/exp(-1/2*Pi)/Shi(1) 3908892618351836 r008 a(0)=0,K{-n^6,15-32*n+35*n^2+8*n^3} 3908892619561228 a001 322*3^(3/17) 3908892632121616 a001 3571/1346269*3^(6/17) 3908892645893911 r002 41th iterates of z^2 + 3908892646769583 g007 Psi(2,2/11)+Psi(2,7/9)+Psi(2,1/3)-Psi(2,8/9) 3908892660897273 a007 Real Root Of 363*x^4-787*x^3+636*x^2-533*x-361 3908892668136854 r005 Im(z^2+c),c=27/118+15/46*I,n=58 3908892680514634 m001 GAMMA(19/24)*Riemann1stZero/ln(GAMMA(7/12)) 3908892685395175 r005 Im(z^2+c),c=-41/58+10/21*I,n=7 3908892700045088 r005 Re(z^2+c),c=-57/106+5/24*I,n=18 3908892708118942 m005 (31/44+1/4*5^(1/2))/(4/7*Zeta(3)-4/11) 3908892718909386 m005 (1/2*gamma+11/12)/(5/6*exp(1)+9/11) 3908892720122859 l006 ln(6404/9467) 3908892748601074 r002 29th iterates of z^2 + 3908892774344416 m001 (ln(2)/ln(10)+exp(-1/2*Pi))/(-Conway+ZetaQ(4)) 3908892775361052 a003 cos(Pi*1/28)/cos(Pi*23/55) 3908892788455238 r002 31th iterates of z^2 + 3908892794863872 r002 25th iterates of z^2 + 3908892800171981 r009 Re(z^3+c),c=-5/74+11/18*I,n=50 3908892814059887 m005 (1/2*exp(1)-3/7)/(11/12*exp(1)-1/9) 3908892817523436 r005 Im(z^2+c),c=-33/29+7/34*I,n=52 3908892831234422 r009 Re(z^3+c),c=-7/26+33/46*I,n=47 3908892834891090 m001 PisotVijayaraghavan*Robbin^Otter 3908892858152736 r002 19th iterates of z^2 + 3908892862612645 r005 Im(z^2+c),c=1/114+27/55*I,n=37 3908892862749105 m001 (2^(1/2)-Otter)/(-PlouffeB+StolarskyHarborth) 3908892876874294 r009 Re(z^3+c),c=-33/86+10/63*I,n=3 3908892878022979 r005 Im(z^2+c),c=-135/122+3/64*I,n=11 3908892878373041 m001 1/TreeGrowth2nd*PrimesInBinary^2 3908892890232191 m002 -(Log[Pi]/Pi^6)+ProductLog[Pi]-5*Tanh[Pi] 3908892892933183 m001 (-CareFree+CopelandErdos)/(5^(1/2)-Zeta(5)) 3908892893930476 a001 9349/3524578*3^(6/17) 3908892902147659 p003 LerchPhi(1/125,5,373/195) 3908892909278619 r005 Im(z^2+c),c=-39/110+19/33*I,n=62 3908892921553156 a003 cos(Pi*18/73)*cos(Pi*6/19) 3908892932127874 a001 24476/9227465*3^(6/17) 3908892937700800 a001 64079/24157817*3^(6/17) 3908892938513878 a001 167761/63245986*3^(6/17) 3908892938632505 a001 439204/165580141*3^(6/17) 3908892938649812 a001 1149851/433494437*3^(6/17) 3908892938652338 a001 3010349/1134903170*3^(6/17) 3908892938652706 a001 7881196/2971215073*3^(6/17) 3908892938652760 a001 20633239/7778742049*3^(6/17) 3908892938652768 a001 54018521/20365011074*3^(6/17) 3908892938652769 a001 141422324/53316291173*3^(6/17) 3908892938652769 a001 370248451/139583862445*3^(6/17) 3908892938652769 a001 969323029/365435296162*3^(6/17) 3908892938652769 a001 2537720636/956722026041*3^(6/17) 3908892938652769 a001 6643838879/2504730781961*3^(6/17) 3908892938652769 a001 17393796001/6557470319842*3^(6/17) 3908892938652769 a001 9381251041/3536736619241*3^(6/17) 3908892938652769 a001 10749957122/4052739537881*3^(6/17) 3908892938652769 a001 1368706081/516002918640*3^(6/17) 3908892938652769 a001 1568397607/591286729879*3^(6/17) 3908892938652769 a001 710646/267913919*3^(6/17) 3908892938652769 a001 228826127/86267571272*3^(6/17) 3908892938652769 a001 29134601/10983760033*3^(6/17) 3908892938652772 a001 33385282/12586269025*3^(6/17) 3908892938652793 a001 4250681/1602508992*3^(6/17) 3908892938652934 a001 4870847/1836311903*3^(6/17) 3908892938653898 a001 620166/233802911*3^(6/17) 3908892938660509 a001 710647/267914296*3^(6/17) 3908892938705820 a001 90481/34111385*3^(6/17) 3908892939016389 a001 103682/39088169*3^(6/17) 3908892941145057 a001 13201/4976784*3^(6/17) 3908892953224376 r005 Re(z^2+c),c=8/29+2/57*I,n=17 3908892955735165 a001 15127/5702887*3^(6/17) 3908892969501433 m001 (5^(1/2)*Weierstrass+Kolakoski)/Weierstrass 3908892993472474 r005 Re(z^2+c),c=-33/62+4/21*I,n=57 3908893002836033 a005 (1/cos(5/207*Pi))^1272 3908893011380912 r009 Re(z^3+c),c=-41/114+5/57*I,n=9 3908893031550282 m001 cos(Pi/12)*GAMMA(11/12)^2/ln(log(2+sqrt(3))) 3908893032921190 m005 (1/4*gamma+3/5)/(1/2*Pi+1/3) 3908893040189867 r005 Im(z^2+c),c=-19/74+33/56*I,n=6 3908893045746554 a001 521/55*6765^(9/56) 3908893055737251 a001 1926/726103*3^(6/17) 3908893067686360 a007 Real Root Of 736*x^4-921*x^3+109*x^2-883*x-434 3908893092816362 r005 Re(z^2+c),c=-17/28+9/35*I,n=20 3908893108539594 a007 Real Root Of 232*x^4-361*x^3+651*x^2-971*x-506 3908893111602258 m001 (Catalan+gamma(3))/(-Rabbit+Weierstrass) 3908893112044265 a007 Real Root Of 720*x^4-811*x^3+634*x^2-566*x+156 3908893112419218 l006 ln(32/1595) 3908893124469611 r009 Im(z^3+c),c=-1/82+24/31*I,n=6 3908893128512817 p003 LerchPhi(1/2,5,254/131) 3908893133224467 l006 ln(2557/3780) 3908893135124572 m001 ReciprocalLucas*(2^(1/2)+gamma) 3908893147884746 a007 Real Root Of 289*x^4-449*x^3+420*x^2-520*x-301 3908893163369085 a007 Real Root Of 250*x^4+819*x^3-844*x^2-748*x+522 3908893172181772 p002 log(11^(1/2)-20+12^(3/4)) 3908893177469509 m001 (-DuboisRaymond+Magata)/(2^(1/2)-5^(1/2)) 3908893184663849 a007 Real Root Of -799*x^4-433*x^3+477*x^2+934*x+285 3908893219743204 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=I,n=30 3908893251050815 r009 Im(z^3+c),c=-16/31+4/9*I,n=23 3908893259146385 b008 3+Sqrt[19/23] 3908893271819351 b008 (E+EulerGamma^(-4))/3 3908893273655847 a007 Real Root Of -675*x^4-533*x^3-833*x^2+593*x+343 3908893274856351 r009 Im(z^3+c),c=-15/44+8/21*I,n=15 3908893275888140 r005 Im(z^2+c),c=5/82+31/52*I,n=54 3908893276887277 m005 (1/5*Catalan+3)/(5/6*gamma+1/3) 3908893290254516 r002 23th iterates of z^2 + 3908893299449142 m001 (cos(1)-sin(1/12*Pi))/(Cahen+ZetaP(4)) 3908893302899701 r002 12th iterates of z^2 + 3908893305571631 r005 Re(z^2+c),c=-7/106+35/61*I,n=2 3908893306179405 m001 1/Paris^2*KhintchineHarmonic*exp(GAMMA(7/24)) 3908893319940512 r009 Im(z^3+c),c=-37/58+5/28*I,n=2 3908893336667108 m001 MasserGramainDelta^ErdosBorwein+GAMMA(17/24) 3908893339706326 p001 sum((-1)^n/(373*n+255)/(125^n),n=0..infinity) 3908893341677973 m001 ln(FeigenbaumKappa)/FransenRobinson^2/Pi^2 3908893343317145 a007 Real Root Of -951*x^4+435*x^3-91*x^2+535*x-199 3908893347372926 a007 Real Root Of 388*x^4+659*x^3+652*x^2-145*x-126 3908893362333459 m005 (1/2*gamma+1/8)/(-17/55+1/11*5^(1/2)) 3908893363918567 r005 Re(z^2+c),c=-55/102+2/17*I,n=29 3908893381338337 m001 1/GAMMA(5/12)^2*MadelungNaCl^2/ln(sin(1)) 3908893393485199 m005 (1/2*Pi-10/11)/(2/5*3^(1/2)+1) 3908893395776441 m001 (HeathBrownMoroz+ZetaP(3))/(1+ln(gamma)) 3908893405255016 m001 (ln(2)/ln(10))^(5^(1/2))+FellerTornier 3908893424016793 r002 13th iterates of z^2 + 3908893444749811 r005 Re(z^2+c),c=-15/44+35/59*I,n=44 3908893445798617 h001 (-4*exp(6)-2)/(-6*exp(2)+3) 3908893458067017 a001 3/167761*4^(22/39) 3908893459199704 m001 (5^(1/2)-ln(gamma))/(-arctan(1/2)+Salem) 3908893461913364 r005 Re(z^2+c),c=-51/110+25/59*I,n=19 3908893466107818 a001 1/77*(1/2*5^(1/2)+1/2)^24*11^(4/9) 3908893467394815 m005 (1/2*Zeta(3)-1/6)/(1/7*2^(1/2)-1/11) 3908893467783587 r005 Re(z^2+c),c=-25/46+1/39*I,n=40 3908893483681271 r005 Re(z^2+c),c=-27/50+6/61*I,n=26 3908893485278923 a007 Real Root Of -127*x^4+558*x^3-994*x^2+304*x+307 3908893486819880 m001 RenyiParking^BesselI(0,1)-ln(2)/ln(10) 3908893488253995 r009 Re(z^3+c),c=-65/126+14/51*I,n=60 3908893490630203 m001 (OneNinth-ZetaQ(4))/(gamma(2)-MertensB1) 3908893515128347 a007 Real Root Of 961*x^4-429*x^3+723*x^2+403*x-1 3908893516218947 m001 (FeigenbaumC+FeigenbaumMu)/(sin(1)+cos(1)) 3908893531006735 r009 Re(z^3+c),c=-1/82+43/55*I,n=38 3908893531248879 m001 1/ln(FeigenbaumC)/Kolakoski^2/sin(Pi/12)^2 3908893533381084 r005 Im(z^2+c),c=37/118+8/35*I,n=32 3908893533456101 m001 (Kac-StronglyCareFree)/(ln(gamma)-Zeta(1,-1)) 3908893543747677 r005 Re(z^2+c),c=-55/102+1/61*I,n=17 3908893545697905 r002 18th iterates of z^2 + 3908893547815063 l006 ln(6381/9433) 3908893551139444 a007 Real Root Of 373*x^4+24*x^3-890*x^2-466*x+308 3908893568199086 m001 Tribonacci^Champernowne*Pi*2^(1/2)/GAMMA(3/4) 3908893568712901 r005 Im(z^2+c),c=-13/90+25/42*I,n=8 3908893573964069 r005 Im(z^2+c),c=-7/36+23/40*I,n=33 3908893585063868 r005 Re(z^2+c),c=-77/106+4/53*I,n=45 3908893586763602 b008 E+SinIntegral[(5*Pi)/12] 3908893601541462 m004 -125*Pi+Log[Sqrt[5]*Pi]-25*Pi*Sech[Sqrt[5]*Pi] 3908893602647079 m004 125*Pi+(50*Pi)/E^(Sqrt[5]*Pi)-Log[Sqrt[5]*Pi] 3908893603752698 m004 -125*Pi-25*Pi*Csch[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 3908893611393951 a007 Real Root Of -992*x^4+373*x^3-724*x^2-169*x+90 3908893613828040 m008 (2/5*Pi^4+3)/(1/3*Pi^3+2/5) 3908893615700789 a001 20365011074/2207*123^(3/10) 3908893617074116 a001 843/2971215073*3^(7/24) 3908893635698793 a007 Real Root Of -804*x^4-461*x^3-953*x^2+686*x+405 3908893640306128 a008 Real Root of x^4-2*x^3-2*x^2-17*x-17 3908893647703387 a003 cos(Pi*32/85)/sin(Pi*13/31) 3908893649969735 r002 51th iterates of z^2 + 3908893656116349 m005 (5/6+1/3*5^(1/2))/(3/4*exp(1)+2) 3908893706519477 a007 Real Root Of -505*x^4-122*x^3+439*x^2+944*x-417 3908893709327548 q001 901/2305 3908893709523325 r002 48th iterates of z^2 + 3908893710732319 r002 27th iterates of z^2 + 3908893711715723 r009 Re(z^3+c),c=-35/78+9/16*I,n=18 3908893712917798 r005 Re(z^2+c),c=-53/98+3/31*I,n=31 3908893720059280 r005 Re(z^2+c),c=-129/106+5/33*I,n=10 3908893724902212 r005 Re(z^2+c),c=-16/31+13/44*I,n=49 3908893725695767 r002 42i'th iterates of 2*x/(1-x^2) of 3908893727748876 s001 sum(exp(-Pi/2)^(n-1)*A027787[n],n=1..infinity) 3908893734821265 m001 (-RenyiParking+Salem)/(Chi(1)+sin(1/12*Pi)) 3908893734939953 m001 (Artin+5)/exp(1/Pi) 3908893737019039 r005 Re(z^2+c),c=-45/86+12/47*I,n=45 3908893741161745 a001 2207/832040*3^(6/17) 3908893744826403 h001 (10/11*exp(1)+6/11)/(1/11*exp(2)+1/10) 3908893749255028 r005 Im(z^2+c),c=-37/118+24/37*I,n=63 3908893753381405 r005 Im(z^2+c),c=-17/54+32/53*I,n=18 3908893755647616 r002 10th iterates of z^2 + 3908893775571503 a007 Real Root Of 439*x^4+546*x^3-435*x^2-941*x-279 3908893786932782 m001 (PlouffeB+Tribonacci)/(gamma(2)+BesselK(1,1)) 3908893788635485 r009 Im(z^3+c),c=-25/48+10/43*I,n=46 3908893788857379 m001 GAMMA(11/12)/exp(BesselK(0,1))/sqrt(Pi) 3908893818181482 m005 (1/3*2^(1/2)+2/5)/(7/8*5^(1/2)+3/11) 3908893825039988 l006 ln(3824/5653) 3908893843614148 r009 Im(z^3+c),c=-9/19+13/43*I,n=49 3908893845911995 r005 Re(z^2+c),c=-51/94+4/47*I,n=13 3908893869204277 m001 Porter-Salem^ZetaP(2) 3908893879323362 m001 1/FeigenbaumC*ln(FransenRobinson)/(3^(1/3)) 3908893884795650 r005 Im(z^2+c),c=5/14+11/60*I,n=51 3908893885749585 r009 Im(z^3+c),c=-7/17+27/38*I,n=3 3908893890390849 m001 gamma^2*FeigenbaumDelta^2*exp(sin(1))^2 3908893898606151 m001 (arctan(1/3)-Pi^(1/2))/(GAMMA(23/24)+Khinchin) 3908893898820024 r008 a(0)=4,K{-n^6,1+36*n-48*n^2+23*n^3} 3908893906535470 r008 a(0)=4,K{-n^6,14+5*n+5*n^2-14*n^3} 3908893914064768 r005 Im(z^2+c),c=-39/118+27/44*I,n=26 3908893930974755 m001 (Zeta(3)-ln(2))/(Conway-ZetaQ(4)) 3908893943156105 a007 Real Root Of -550*x^4+207*x^3-278*x^2+949*x-328 3908893946697959 r002 18th iterates of z^2 + 3908893947769502 r005 Re(z^2+c),c=-7/23+31/53*I,n=37 3908893952149554 r005 Re(z^2+c),c=25/62+10/27*I,n=15 3908893962230586 s001 sum(exp(-Pi/3)^n*A162872[n],n=1..infinity) 3908893965419456 r005 Re(z^2+c),c=1/28+17/57*I,n=12 3908893966187490 r005 Im(z^2+c),c=19/66+5/12*I,n=31 3908893973355096 m005 (1/2*3^(1/2)+5/9)/(3*Catalan+8/9) 3908893984909825 a007 Real Root Of -682*x^4+712*x^3+977*x^2+611*x+148 3908893994418820 a005 (1/sin(69/166*Pi))^557 3908893998567307 r009 Im(z^3+c),c=-29/66+17/52*I,n=44 3908894035554871 p003 LerchPhi(1/125,1,440/171) 3908894038794334 a001 46/141*2178309^(17/35) 3908894062622452 r002 4th iterates of z^2 + 3908894103134008 r005 Im(z^2+c),c=-25/82+11/19*I,n=36 3908894106652975 r008 a(0)=0,K{-n^6,-1-30*n-31*n^2+37*n^3} 3908894110260922 r005 Re(z^2+c),c=-12/23+14/53*I,n=48 3908894112638922 r005 Re(z^2+c),c=-14/27+15/53*I,n=50 3908894122417342 r002 24th iterates of z^2 + 3908894124527242 r005 Re(z^2+c),c=-63/122+19/64*I,n=35 3908894141377182 r005 Re(z^2+c),c=5/18+1/23*I,n=57 3908894153006099 m007 (-3*gamma+1/2)/(-1/2*gamma-ln(2)+2/3) 3908894158600776 m001 (exp(1)+2^(1/2))/(-HardyLittlewoodC5+Porter) 3908894158977483 m005 (1/2*5^(1/2)-7/9)/(3/4*3^(1/2)-3/7) 3908894172510465 l006 ln(5091/7526) 3908894187925612 r005 Im(z^2+c),c=5/34+17/43*I,n=52 3908894189948109 r005 Im(z^2+c),c=13/106+12/29*I,n=50 3908894191229802 r002 33th iterates of z^2 + 3908894205356670 r005 Re(z^2+c),c=-41/31+1/12*I,n=28 3908894209179280 a008 Real Root of x^4-x^3-15*x^2+22*x+22 3908894219218056 a007 Real Root Of 988*x^4+300*x^3+199*x^2-917*x-394 3908894235761874 s002 sum(A221732[n]/(n^3*pi^n+1),n=1..infinity) 3908894238018670 p004 log(27763/557) 3908894239427452 a007 Real Root Of -580*x^4+128*x^3+84*x^2+741*x+298 3908894241675254 r005 Im(z^2+c),c=-19/122+23/39*I,n=59 3908894254509126 s002 sum(A221732[n]/(n^3*pi^n-1),n=1..infinity) 3908894288501504 a007 Real Root Of 226*x^4+969*x^3+256*x^2-369*x-242 3908894294647497 r009 Im(z^3+c),c=-31/90+11/29*I,n=17 3908894301124417 a001 53316291173/5778*123^(3/10) 3908894312392701 a003 cos(Pi*5/44)*sin(Pi*10/73) 3908894324974192 a007 Real Root Of 852*x^4+122*x^3-470*x^2-904*x+398 3908894329605906 m001 (Zeta(3)-Tetranacci)/(Trott+ZetaP(3)) 3908894330888940 m001 BesselK(1,1)^Zeta(5)*Robbin 3908894335325289 r002 12th iterates of z^2 + 3908894337028905 r005 Im(z^2+c),c=17/54+6/29*I,n=15 3908894342440177 a007 Real Root Of -765*x^4-373*x^3-612*x^2+537*x+299 3908894344493185 a007 Real Root Of -306*x^4+894*x^3-188*x^2+951*x+461 3908894345961039 m004 -125*Pi-5*Cos[Sqrt[5]*Pi]+6*Tan[Sqrt[5]*Pi] 3908894346827085 m001 ZetaQ(4)^Mills/Lehmer 3908894349013911 a005 (1/sin(83/235*Pi))^221 3908894370319228 r005 Re(z^2+c),c=-13/14+30/169*I,n=6 3908894376330392 r005 Im(z^2+c),c=-16/25+3/41*I,n=38 3908894377706339 r005 Im(z^2+c),c=-13/110+9/16*I,n=46 3908894381495534 l006 ln(6358/9399) 3908894386696179 r002 59th iterates of z^2 + 3908894388217150 r002 43th iterates of z^2 + 3908894390080781 a001 281*2^(10/21) 3908894401126397 a001 139583862445/15127*123^(3/10) 3908894402155802 r005 Re(z^2+c),c=-17/30+31/119*I,n=18 3908894415716490 a001 365435296162/39603*123^(3/10) 3908894417845156 a001 956722026041/103682*123^(3/10) 3908894418155724 a001 2504730781961/271443*123^(3/10) 3908894418201035 a001 6557470319842/710647*123^(3/10) 3908894418211732 a001 10610209857723/1149851*123^(3/10) 3908894418229039 a001 4052739537881/439204*123^(3/10) 3908894418347665 a001 140728068720/15251*123^(3/10) 3908894419160743 a001 591286729879/64079*123^(3/10) 3908894419840423 m001 BesselI(1,1)^ReciprocalLucas/GaussAGM 3908894424733663 a001 7787980473/844*123^(3/10) 3908894425340173 r005 Re(z^2+c),c=-173/122+1/55*I,n=6 3908894425905771 r005 Re(z^2+c),c=-123/122+8/39*I,n=32 3908894435189263 a003 cos(Pi*13/115)*cos(Pi*55/113) 3908894435781935 r005 Re(z^2+c),c=-21/31+6/31*I,n=30 3908894442865592 r009 Re(z^3+c),c=-13/66+41/44*I,n=16 3908894443923547 m001 (Mills+OneNinth)/(Otter+Robbin) 3908894445419405 m001 (MasserGramain+Sarnak)/(ln(5)+Ei(1)) 3908894453774364 g006 Psi(1,9/10)+Psi(1,6/7)+Psi(1,1/6)-Psi(1,9/11) 3908894454683119 a001 3/2207*76^(10/41) 3908894455856913 m001 LandauRamanujan2nd-gamma(1)^Trott 3908894455984778 r005 Im(z^2+c),c=5/34+17/43*I,n=51 3908894457217043 r002 26th iterates of z^2 + 3908894458351674 r005 Re(z^2+c),c=-37/64+7/32*I,n=4 3908894462931022 a001 86267571272/9349*123^(3/10) 3908894465712717 r005 Im(z^2+c),c=-7/46+28/57*I,n=7 3908894470091985 a007 Real Root Of -903*x^4-378*x^3-602*x^2+756*x+386 3908894477844455 m001 ln(TwinPrimes)^2*Robbin/cos(1)^2 3908894478677358 r009 Re(z^3+c),c=-43/110+24/41*I,n=6 3908894480140065 m005 (1/3*Catalan+1/6)/(8/9*Pi-4) 3908894483567958 r005 Re(z^2+c),c=-25/46+1/40*I,n=37 3908894498658675 r005 Im(z^2+c),c=-21/118+29/51*I,n=21 3908894527291075 r002 15th iterates of z^2 + 3908894529064837 m001 RenyiParking^GAMMA(7/12)/GAMMA(13/24) 3908894566935794 r005 Im(z^2+c),c=7/44+17/36*I,n=11 3908894569448439 a007 Real Root Of -189*x^4-600*x^3+338*x^2-984*x-722 3908894585073815 m001 (Pi*2^(1/2)/GAMMA(3/4)+ln(3))/(Artin+GaussAGM) 3908894585414058 l006 ln(3211/3339) 3908894589501376 m001 AlladiGrinstead/(5^(1/2)+Zeta(1,-1)) 3908894600705319 r009 Re(z^3+c),c=-5/74+11/18*I,n=52 3908894603570252 m001 (-Grothendieck+Landau)/(1-ln(2+3^(1/2))) 3908894613000213 a007 Real Root Of 136*x^4-517*x^3-439*x^2-832*x+420 3908894628925652 a007 Real Root Of 231*x^4-91*x^3-296*x^2-505*x-163 3908894629184188 a007 Real Root Of x^4-114*x^3-301*x^2+493*x-516 3908894640875762 a007 Real Root Of 855*x^4+597*x^3+175*x^2-839*x-339 3908894644970678 r002 12th iterates of z^2 + 3908894645484010 m005 (1/2*Pi+8/11)/(4*2^(1/2)+2/9) 3908894660730996 p004 log(28163/19051) 3908894699267063 r005 Re(z^2+c),c=-15/22+47/107*I,n=8 3908894701481113 r005 Im(z^2+c),c=7/66+3/7*I,n=18 3908894702852616 r005 Re(z^2+c),c=-83/114+7/60*I,n=35 3908894713350732 s002 sum(A033841[n]/(exp(n)+1),n=1..infinity) 3908894713761224 m001 exp(Champernowne)*sin(Pi/5)^2 3908894719640068 m005 (1/3*Catalan+1/12)/(1/8*3^(1/2)+7/9) 3908894724739636 a001 32951280099/3571*123^(3/10) 3908894725478367 m001 (exp(Pi)*gamma(2)+GAMMA(5/6))/exp(Pi) 3908894732217100 m001 (ln(2)+exp(-1/2*Pi))/(GAMMA(5/6)+Salem) 3908894745841745 a003 sin(Pi*35/93)/cos(Pi*39/92) 3908894752697206 a007 Real Root Of 595*x^4+345*x^3-386*x^2-953*x+397 3908894758757137 a001 8/2207*47^(21/34) 3908894776031577 r005 Im(z^2+c),c=-41/40+1/4*I,n=52 3908894804426806 m001 (Zeta(1/2)+FeigenbaumD)/(Landau+Sierpinski) 3908894815584118 r005 Im(z^2+c),c=1/118+27/55*I,n=55 3908894815606192 s002 sum(A033841[n]/(exp(n)),n=1..infinity) 3908894822064988 m001 (Cahen+HeathBrownMoroz)/(Mills-Otter) 3908894825485042 r009 Re(z^3+c),c=-15/31+8/33*I,n=58 3908894844312238 m005 (1/2*2^(1/2)-4/11)/(2/15+1/3*5^(1/2)) 3908894845711227 a007 Real Root Of -65*x^4+156*x^3-924*x^2-64*x+127 3908894849333453 r005 Im(z^2+c),c=1/20+13/28*I,n=37 3908894856083569 m008 (2/5*Pi^6-2/3)/(Pi^4+4/5) 3908894873691577 r005 Re(z^2+c),c=25/66+13/41*I,n=41 3908894886264501 a007 Real Root Of -827*x^4+324*x^3+369*x^2+815*x-375 3908894898782093 a007 Real Root Of 849*x^4+323*x^3+963*x^2-359*x-288 3908894906871957 a007 Real Root Of -755*x^4-385*x^3+35*x^2+914*x-322 3908894916707862 m001 (Kolakoski+MertensB1)/(Pi-BesselJ(1,1)) 3908894920773576 r005 Re(z^2+c),c=-31/50+12/19*I,n=8 3908894922363991 s002 sum(A033841[n]/(exp(n)-1),n=1..infinity) 3908894935901242 r005 Im(z^2+c),c=-2/13+37/64*I,n=48 3908894943721961 m001 1/DuboisRaymond^2*ln(Champernowne)/sqrt(2) 3908894944197813 r002 14th iterates of z^2 + 3908894950744082 r005 Re(z^2+c),c=-7/15+7/24*I,n=8 3908894957515540 r005 Re(z^2+c),c=-15/28+7/44*I,n=54 3908894992663657 h001 (1/11*exp(2)+1/8)/(6/11*exp(1)+5/9) 3908894999174828 p001 sum((-1)^n/(483*n+5)/n/(5^n),n=1..infinity) 3908895005359759 m004 125*Pi-Log[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]^2/6 3908895007224155 a007 Real Root Of -389*x^4-x^3-132*x^2+460*x+209 3908895027480869 r005 Re(z^2+c),c=-41/78+19/50*I,n=31 3908895029046572 r005 Re(z^2+c),c=-29/106+16/27*I,n=18 3908895035698591 a007 Real Root Of -993*x^4+612*x^3-233*x^2+915*x+453 3908895043726872 a001 377/5778*7^(23/25) 3908895044629116 q001 127/3249 3908895044629116 r002 2th iterates of z^2 + 3908895047073744 p001 sum((-1)^n/(428*n+247)/(10^n),n=0..infinity) 3908895048506656 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(7/12*I*Pi),n=29 3908895060254174 r005 Im(z^2+c),c=7/60+23/55*I,n=53 3908895068706890 m001 (KomornikLoreti+ZetaP(2))/(BesselI(0,1)-ln(2)) 3908895069638685 m009 (1/3*Pi^2+3/4)/(48*Catalan+6*Pi^2+1/6) 3908895073295088 r005 Im(z^2+c),c=17/54+13/56*I,n=58 3908895073839754 m005 (1/2*Pi+4/7)/(3/10*3^(1/2)-6) 3908895097677096 r009 Im(z^3+c),c=-17/70+5/12*I,n=12 3908895114677695 r005 Re(z^2+c),c=-25/46+1/36*I,n=32 3908895134787882 r005 Re(z^2+c),c=-41/70+11/40*I,n=5 3908895143616592 r005 Im(z^2+c),c=13/38+5/53*I,n=55 3908895150231979 r005 Im(z^2+c),c=-93/94+7/26*I,n=28 3908895150543131 m001 ln(GAMMA(2/3))^2*GAMMA(1/12)^2*LambertW(1)^2 3908895162774055 m001 GAMMA(7/24)*exp(Robbin)*cos(Pi/5)^2 3908895165032091 r009 Re(z^3+c),c=-49/102+7/26*I,n=14 3908895190134344 r005 Re(z^2+c),c=-9/20+23/47*I,n=36 3908895209391015 m005 (1/2*3^(1/2)+5/8)/(2/11*Zeta(3)-3/5) 3908895209816035 s002 sum(A126069[n]/(n^3*2^n+1),n=1..infinity) 3908895221229494 l006 ln(1267/1873) 3908895233164393 a003 cos(Pi*2/9)*cos(Pi*29/88) 3908895240803320 r009 Re(z^3+c),c=-51/106+15/61*I,n=23 3908895245316436 a007 Real Root Of 135*x^4+395*x^3-584*x^2-499*x-953 3908895261173194 m001 (BesselI(0,2)-MasserGramain)/(Pi+Zeta(5)) 3908895262828162 m001 (-DuboisRaymond+OneNinth)/(Catalan-exp(Pi)) 3908895268295637 r005 Im(z^2+c),c=27/118+15/46*I,n=54 3908895268659636 r005 Re(z^2+c),c=-29/56+1/10*I,n=7 3908895271128436 m004 -24-5*Pi+Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 3908895275508318 a003 sin(Pi*22/109)*sin(Pi*25/109) 3908895281777571 m001 (2^(1/3)+Chi(1))/(ArtinRank2+FeigenbaumDelta) 3908895287177284 r002 46th iterates of z^2 + 3908895291648571 r002 27th iterates of z^2 + 3908895304020493 m008 (5/6*Pi^6+4/5)/(3/5*Pi+1/6) 3908895308643613 a007 Real Root Of 988*x^4+185*x^3+576*x^2+41*x-84 3908895315889005 m005 (1/2*exp(1)+1/9)/(5/6*gamma-6/7) 3908895322223326 a001 11/18*(1/2*5^(1/2)+1/2)^4*18^(17/22) 3908895332199252 a007 Real Root Of 161*x^4+468*x^3-418*x^2+616*x-841 3908895347922764 r002 34th iterates of z^2 + 3908895349264777 r005 Im(z^2+c),c=-11/30+34/59*I,n=56 3908895358376010 r002 13th iterates of z^2 + 3908895367873826 r005 Re(z^2+c),c=-31/60+7/22*I,n=30 3908895373673974 m009 (6*Psi(1,3/4)+1/3)/(1/10*Pi^2+3) 3908895379704409 s002 sum(A075049[n]/(n*pi^n+1),n=1..infinity) 3908895380580721 m001 (exp(1)+Paris)/(Rabbit+Trott) 3908895382851966 g007 Psi(2,1/11)+Psi(2,1/8)+Psi(2,1/5)-Psi(2,2/5) 3908895385494642 m001 (Zeta(3)-ln(2)/ln(10))/(GAMMA(5/6)+Salem) 3908895414613983 a001 7/11*(1/2*5^(1/2)+1/2)^7*11^(5/16) 3908895418808805 m001 (ln(Pi)-Artin)/(Conway-Riemann2ndZero) 3908895424608631 a007 Real Root Of 708*x^4-508*x^3-105*x^2-420*x-195 3908895426583614 r005 Im(z^2+c),c=-12/23+33/49*I,n=13 3908895437896389 r005 Re(z^2+c),c=-61/118+8/55*I,n=10 3908895440533178 r005 Im(z^2+c),c=27/70+13/61*I,n=12 3908895442939893 a007 Real Root Of 238*x^4-570*x^3-707*x^2-546*x-145 3908895447628878 m001 Salem^FellerTornier-exp(1/exp(1)) 3908895478860752 m001 GlaisherKinkelin^2/FransenRobinson^2/ln(Niven) 3908895481246160 r005 Im(z^2+c),c=-11/56+31/52*I,n=45 3908895483128232 a007 Real Root Of -214*x^4-796*x^3+13*x^2-335*x+911 3908895489196434 m001 Robbin^FeigenbaumB*Psi(2,1/3) 3908895489353683 m001 (gamma(2)-gamma)/(GAMMA(23/24)+PlouffeB) 3908895493942344 r009 Re(z^3+c),c=-9/118+13/18*I,n=64 3908895496922658 m001 Stephens^ZetaR(2)/CopelandErdos 3908895501015605 r009 Re(z^3+c),c=-53/94+13/51*I,n=43 3908895520719053 a007 Real Root Of 533*x^4-455*x^3-506*x^2-949*x+463 3908895524939226 p003 LerchPhi(1/5,2,397/238) 3908895528422371 a007 Real Root Of -435*x^4+951*x^3-541*x^2+858*x+485 3908895528573534 b008 9*(1-3*E^EulerGamma) 3908895548951109 r005 Re(z^2+c),c=-15/28+7/44*I,n=50 3908895562365396 r005 Re(z^2+c),c=-117/94+17/29*I,n=2 3908895562550748 r005 Im(z^2+c),c=1/110+31/63*I,n=26 3908895576192098 r005 Im(z^2+c),c=-111/110+6/19*I,n=23 3908895582747950 r008 a(0)=4,K{-n^6,8+8*n^3+n^2-5*n} 3908895591987153 m002 2+Pi^4/4+Cosh[Pi]+Log[Pi] 3908895596377880 r009 Im(z^3+c),c=-17/27+1/56*I,n=2 3908895599120122 r009 Re(z^3+c),c=-5/74+11/18*I,n=54 3908895611203205 r005 Im(z^2+c),c=-1/20+12/23*I,n=27 3908895613287817 r005 Re(z^2+c),c=-49/90+3/35*I,n=19 3908895613799272 a007 Real Root Of -266*x^4-851*x^3+722*x^2-39*x+90 3908895614886611 a007 Real Root Of 721*x^4-511*x^3-707*x^2-671*x+384 3908895616282924 r002 61th iterates of z^2 + 3908895621689694 m001 Khintchine/MertensB1/exp(cos(Pi/12)) 3908895627890695 r005 Re(z^2+c),c=-4/17+31/53*I,n=16 3908895629327109 r005 Im(z^2+c),c=11/54+15/43*I,n=44 3908895635932613 a007 Real Root Of 282*x^4+927*x^3-693*x^2+189*x+857 3908895643541562 a007 Real Root Of 156*x^4+885*x^3+925*x^2-672*x-323 3908895672056297 m005 (5/6+1/6*5^(1/2))/(3/11*Zeta(3)-7/11) 3908895679428908 m005 (1/2*5^(1/2)+5/6)/(2*exp(1)-4/9) 3908895680218138 r002 30th iterates of z^2 + 3908895683623223 r005 Im(z^2+c),c=-33/56+1/27*I,n=7 3908895684334865 r008 a(0)=4,K{-n^6,8+n^3+6*n^2-3*n} 3908895715691700 a007 Real Root Of -149*x^4-16*x^3-653*x^2+823*x+424 3908895727306133 r005 Re(z^2+c),c=29/102+1/52*I,n=62 3908895731645871 r005 Re(z^2+c),c=-25/46+5/52*I,n=21 3908895737568014 r005 Re(z^2+c),c=-13/24+2/25*I,n=51 3908895748773454 m004 Log[Sqrt[5]*Pi]^2/6+5/ProductLog[Sqrt[5]*Pi] 3908895751612395 a008 Real Root of (2+6*x+3*x^2+4*x^3+5*x^4-x^5) 3908895751846766 a001 7/196418*2^(2/15) 3908895757191604 r005 Re(z^2+c),c=-13/25+17/62*I,n=63 3908895780080001 m001 (OneNinth+Robbin)/(GAMMA(19/24)+Kolakoski) 3908895784447823 p004 log(28027/18959) 3908895792984173 m001 exp(1/2)/RenyiParking*sqrt(Pi) 3908895798172960 s001 sum(exp(-3*Pi/5)^n*A135108[n],n=1..infinity) 3908895799671239 m001 ln(Pi)*(KhinchinHarmonic-OrthogonalArrays) 3908895817162842 r005 Re(z^2+c),c=-67/114+22/59*I,n=44 3908895823239670 m001 (Shi(1)-Lehmer)^GAMMA(3/4) 3908895824742959 r005 Im(z^2+c),c=-3/23+31/40*I,n=27 3908895834875244 a007 Real Root Of 928*x^4-346*x^3-429*x^2-170*x+131 3908895836449770 m001 (GaussAGM-ZetaQ(2))/(GAMMA(2/3)+Cahen) 3908895840697318 m006 (1/3*Pi-1/3)/(4/5*exp(Pi)-1/4) 3908895842270227 m005 (1/2*exp(1)-1/9)/(6/7*Pi+1/2) 3908895853828627 r005 Im(z^2+c),c=-3/122+23/45*I,n=55 3908895859515359 m001 (gamma(1)*FibonacciFactorial+Artin)/gamma(1) 3908895864214276 a007 Real Root Of -146*x^4+465*x^3-602*x^2+920*x-292 3908895865621058 a001 233/64079*76^(17/31) 3908895887050423 m001 1/GAMMA(3/4)/ln(Champernowne)*Zeta(9) 3908895893163666 a007 Real Root Of 149*x^4-798*x^3-180*x^2-487*x-214 3908895894542036 r005 Re(z^2+c),c=-49/82+9/41*I,n=4 3908895897598065 r009 Im(z^3+c),c=-17/36+19/63*I,n=29 3908895913511553 r009 Im(z^3+c),c=-1/30+21/47*I,n=5 3908895924585520 r002 13th iterates of z^2 + 3908895926544874 r005 Re(z^2+c),c=-63/118+17/56*I,n=23 3908895927412273 r005 Re(z^2+c),c=25/64+3/14*I,n=7 3908895938294751 r009 Im(z^3+c),c=-15/31+10/21*I,n=28 3908895945284061 a003 cos(Pi*26/81)-cos(Pi*5/11) 3908895948009104 r004 Re(z^2+c),c=1/9+1/4*I,z(0)=exp(5/8*I*Pi),n=25 3908895964150934 m001 (Trott2nd-ZetaQ(2))/(GAMMA(3/4)+ln(gamma)) 3908895966736107 a001 196418/7*2^(11/23) 3908895973595283 r009 Re(z^3+c),c=-21/40+3/10*I,n=12 3908895989932468 m004 -21/4+6*ProductLog[Sqrt[5]*Pi] 3908895994904738 m001 ZetaP(3)^KhinchinLevy/(Khinchin^KhinchinLevy) 3908896000516875 m001 GAMMA(1/12)^2/FibonacciFactorial*ln(Zeta(5)) 3908896016455459 a007 Real Root Of 284*x^4+850*x^3-911*x^2+245*x-659 3908896019049800 m001 (exp(1/exp(1))+Gompertz)/(Stephens-ZetaQ(2)) 3908896026741140 r009 Re(z^3+c),c=-5/13+3/25*I,n=5 3908896027522021 r002 48th iterates of z^2 + 3908896031144608 r005 Re(z^2+c),c=-81/118+5/61*I,n=10 3908896043633565 a003 sin(Pi*7/66)/cos(Pi*19/103) 3908896045851696 a007 Real Root Of 307*x^4+924*x^3-987*x^2+501*x+553 3908896051393075 a007 Real Root Of 881*x^4-559*x^3+679*x^2-121*x-205 3908896055694668 p001 sum(1/(483*n+256)/(512^n),n=0..infinity) 3908896067083118 l006 ln(6312/9331) 3908896067212490 m005 (1/2*exp(1)+9/10)/(3*3^(1/2)+7/12) 3908896076533618 m001 (Psi(1,1/3)+Catalan)/(3^(1/3)+exp(1/Pi)) 3908896082129858 m001 GAMMA(13/24)^2*exp(Paris)*log(2+sqrt(3)) 3908896085965658 m001 (GAMMA(23/24)+Cahen)/(Pi+GAMMA(5/6)) 3908896090187500 a007 Real Root Of 231*x^4+896*x^3+7*x^2+73*x-237 3908896098898190 r009 Re(z^3+c),c=-5/74+11/18*I,n=56 3908896100275798 a007 Real Root Of 183*x^4+580*x^3-497*x^2+223*x+383 3908896121093478 r005 Re(z^2+c),c=-51/98+16/59*I,n=44 3908896142740923 r005 Re(z^2+c),c=-49/94+14/51*I,n=30 3908896148323598 h001 (2/11*exp(1)+1/9)/(1/8*exp(2)+5/8) 3908896156497981 m001 ln(Trott)/Kolakoski^2/GAMMA(2/3)^2 3908896195071843 m001 1/ln(FransenRobinson)*Cahen^2/GAMMA(23/24) 3908896212108482 m001 exp(-1/2*Pi)+MertensB1^BesselI(0,1) 3908896217739401 r009 Re(z^3+c),c=-19/52+5/52*I,n=8 3908896241068254 a001 18/17711*75025^(3/25) 3908896253720372 m001 (ErdosBorwein+ZetaP(4))/(ln(3)-GAMMA(11/12)) 3908896258295513 r009 Im(z^3+c),c=-29/66+17/52*I,n=47 3908896267535851 a001 8*322^(33/49) 3908896279510567 l006 ln(5045/7458) 3908896308263865 m001 (Conway-DuboisRaymond)/(Sarnak-TreeGrowth2nd) 3908896320780172 r009 Re(z^3+c),c=-5/74+11/18*I,n=58 3908896325886820 r005 Re(z^2+c),c=-67/126+9/47*I,n=32 3908896347450917 a007 Real Root Of 246*x^4-908*x^3-443*x^2-634*x+364 3908896350820117 r009 Re(z^3+c),c=-5/74+11/18*I,n=63 3908896355422503 r009 Re(z^3+c),c=-5/74+11/18*I,n=61 3908896360846545 h001 (1/5*exp(1)+4/9)/(2/7*exp(2)+5/12) 3908896372957751 r005 Im(z^2+c),c=-1/27+15/29*I,n=33 3908896383558655 r005 Re(z^2+c),c=-51/94+7/43*I,n=17 3908896385566017 m004 -5+6*ProductLog[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi]/4 3908896390576569 a007 Real Root Of -109*x^4+882*x^3-281*x^2+373*x-153 3908896399399923 r009 Re(z^3+c),c=-5/74+11/18*I,n=59 3908896402821479 r009 Re(z^3+c),c=-5/74+11/18*I,n=60 3908896406111402 r005 Im(z^2+c),c=13/122+20/47*I,n=14 3908896409237311 s002 sum(A074401[n]/(n^3*2^n-1),n=1..infinity) 3908896409251741 r009 Im(z^3+c),c=-33/70+13/43*I,n=29 3908896411617679 a005 (1/cos(17/212*Pi))^904 3908896416497566 m001 Pi+2^(1/3)/(2/3*Pi*3^(1/2)/GAMMA(2/3)-Zeta(5)) 3908896418488639 r009 Re(z^3+c),c=-5/74+11/18*I,n=64 3908896422351927 r009 Re(z^3+c),c=-5/74+11/18*I,n=62 3908896437500024 r005 Im(z^2+c),c=-9/56+28/47*I,n=56 3908896448522468 a007 Real Root Of -302*x^4-427*x^3-35*x^2+867*x-301 3908896455693785 r005 Re(z^2+c),c=-37/70+11/56*I,n=23 3908896457083978 p001 sum((-1)^n/(515*n+277)/n/(32^n),n=1..infinity) 3908896464423885 r005 Im(z^2+c),c=-7/102+29/54*I,n=50 3908896500381499 r005 Im(z^2+c),c=-7/6+11/199*I,n=11 3908896501572412 m001 1/3*(Totient-LaplaceLimit)*3^(1/2) 3908896506394985 m001 (BesselI(0,1)-BesselI(1,2))/(-Backhouse+Kac) 3908896508501489 a007 Real Root Of -865*x^4+18*x^3-863*x^2+212*x+236 3908896519203519 a001 1144206275/124*123^(3/10) 3908896538475920 r009 Re(z^3+c),c=-5/74+11/18*I,n=57 3908896542572643 a007 Real Root Of -721*x^4-134*x^3-744*x^2+912*x+479 3908896542658003 m001 ln(Trott)/Champernowne/Zeta(1,2) 3908896548171867 m005 (2^(1/2)+1/6)/(2*gamma-3/4) 3908896550620406 m005 (41/10+1/10*5^(1/2))/(1/3*exp(1)+1/5) 3908896564729742 r005 Re(z^2+c),c=-13/24+2/25*I,n=40 3908896568723946 m005 (1/2*gamma-11/12)/(5/9*2^(1/2)-5/8) 3908896586845331 m005 (1/2*3^(1/2)-10/11)/(6*3^(1/2)+5/8) 3908896604463739 r005 Im(z^2+c),c=39/110+13/56*I,n=53 3908896632821866 a007 Real Root Of 520*x^4-582*x^3+995*x^2-673*x-462 3908896634418462 l006 ln(3778/5585) 3908896648772606 q001 3/76748 3908896663473708 b008 Sqrt[E*Pi]+Tanh[5/2] 3908896692693772 r009 Im(z^3+c),c=-41/98+14/55*I,n=3 3908896702894276 r005 Im(z^2+c),c=1/118+27/55*I,n=29 3908896713701320 a007 Real Root Of -798*x^4+975*x^3-220*x^2+733*x+397 3908896718149523 r005 Re(z^2+c),c=-27/50+4/37*I,n=47 3908896730316311 r005 Re(z^2+c),c=-14/27+13/46*I,n=63 3908896736454545 l006 ln(173/8623) 3908896736454545 p004 log(8623/173) 3908896737092494 r009 Re(z^3+c),c=-19/32+7/29*I,n=23 3908896742839556 h005 exp(cos(Pi*3/55)/sin(Pi*9/35)) 3908896746360785 p001 sum(1/(307*n+257)/(100^n),n=0..infinity) 3908896754121579 r005 Im(z^2+c),c=27/118+15/46*I,n=43 3908896761658287 r009 Im(z^3+c),c=-11/24+5/11*I,n=6 3908896781113587 m001 exp(Pi)/(HardyLittlewoodC5^sin(1/5*Pi)) 3908896790833189 a007 Real Root Of 193*x^4+850*x^3+589*x^2+847*x+20 3908896810545181 a007 Real Root Of 596*x^4-949*x^3+521*x^2-483*x-339 3908896810870287 m005 (2^(1/2)-2)/(2*Catalan-1/3) 3908896814393968 a001 521*(1/2*5^(1/2)+1/2)^2*3^(23/24) 3908896823255668 r009 Im(z^3+c),c=-19/50+21/58*I,n=33 3908896824997624 r005 Re(z^2+c),c=11/94+13/18*I,n=2 3908896841420218 r002 27th iterates of z^2 + 3908896842729666 r004 Im(z^2+c),c=-1/18-9/19*I,z(0)=I,n=9 3908896864266226 m001 (exp(Pi)-ln(2))/(Paris+PlouffeB) 3908896869614389 a007 Real Root Of 968*x^4-484*x^3+621*x^2-526*x-352 3908896874601797 r002 40th iterates of z^2 + 3908896877297886 r009 Re(z^3+c),c=-5/74+11/18*I,n=55 3908896878367586 m001 MadelungNaCl*Si(Pi)^Mills 3908896880940038 h001 (-9*exp(-3)+3)/(-4*exp(-1)+8) 3908896881144240 r002 40th iterates of z^2 + 3908896892620670 r005 Im(z^2+c),c=-5/122+25/48*I,n=57 3908896915955137 r009 Im(z^3+c),c=-25/48+11/54*I,n=25 3908896918550187 m001 (exp(Pi)+ErdosBorwein)/(-Rabbit+ZetaP(4)) 3908896919123545 l006 ln(6289/9297) 3908896922779531 r005 Im(z^2+c),c=-37/30+4/115*I,n=5 3908896926982236 m005 (1/2*Pi-2/7)/(7/9*Catalan-4) 3908896927599241 r002 34th iterates of z^2 + 3908896949289532 r002 44th iterates of z^2 + 3908896957440366 m001 (GAMMA(7/12)+Trott2nd)/(1-BesselK(1,1)) 3908896965881745 p001 sum((-1)^n/(71*n+41)/n/(2^n),n=0..infinity) 3908896967349029 r009 Im(z^3+c),c=-5/86+17/39*I,n=3 3908896972241252 m005 (1/2*5^(1/2)-7/11)/(11/18+5/18*5^(1/2)) 3908896978307659 m001 Tribonacci*exp(ErdosBorwein)/GAMMA(1/24) 3908896979095885 r002 34th iterates of z^2 + 3908896980609636 r009 Im(z^3+c),c=-15/98+7/16*I,n=15 3908896984516698 r002 5th iterates of z^2 + 3908896990484460 b008 36+ArcCosh[11] 3908896991098592 r005 Im(z^2+c),c=13/106+12/29*I,n=45 3908896991273513 r002 6th iterates of z^2 + 3908896992122332 r005 Im(z^2+c),c=1/9+19/45*I,n=53 3908896994914242 a007 Real Root Of -228*x^4-772*x^3+244*x^2-836*x+125 3908897016572406 m005 (1/3*Catalan-1/8)/(-39/7+3/7*5^(1/2)) 3908897028891400 m001 (ReciprocalLucas-Tribonacci)/(Backhouse+Niven) 3908897041982102 a007 Real Root Of -148*x^4-806*x^3-841*x^2+180*x-33 3908897063734782 m005 (1/2*3^(1/2)-5/12)/(3/5*Catalan+3/5) 3908897064563919 r005 Re(z^2+c),c=5/98+37/60*I,n=31 3908897091067949 m001 (HeathBrownMoroz-Riemann2ndZero)/(Pi+5^(1/2)) 3908897103501278 r005 Im(z^2+c),c=-53/40+2/47*I,n=13 3908897113083240 a007 Real Root Of -970*x^4+212*x^3+835*x^2+402*x-17 3908897119631521 m001 (Zeta(5)-GAMMA(5/6))/(GAMMA(19/24)+Salem) 3908897121255377 a007 Real Root Of -593*x^4+943*x^3-472*x^2+163*x+206 3908897121685301 r005 Im(z^2+c),c=1/15+16/35*I,n=17 3908897122591229 m001 MertensB3/(Khinchin+Sarnak) 3908897134531759 r005 Re(z^2+c),c=-133/118+16/55*I,n=4 3908897141634854 r005 Im(z^2+c),c=-3/86+14/27*I,n=35 3908897151294356 r005 Re(z^2+c),c=-9/14+67/222*I,n=47 3908897182357130 a001 4/3*8^(15/29) 3908897190885675 m009 (5*Psi(1,3/4)-3/5)/(3/4*Psi(1,2/3)+4/5) 3908897192897736 r005 Im(z^2+c),c=13/106+12/29*I,n=49 3908897194844718 m001 Cahen/ln(Artin)^2*sin(Pi/5) 3908897197240304 m001 (Zeta(1,2)+CareFree)/Gompertz 3908897202341274 m001 exp(Si(Pi))*GaussAGM(1,1/sqrt(2))/sinh(1)^2 3908897203908887 r005 Im(z^2+c),c=5/34+17/43*I,n=55 3908897206218348 p002 log(6^(1/2)*(11^(1/4)-6)) 3908897207705247 m005 (1/2*Zeta(3)-1/11)/(5/12*3^(1/2)+7/12) 3908897209294205 a007 Real Root Of 253*x^4+830*x^3-618*x^2+222*x+817 3908897210904055 r005 Im(z^2+c),c=-2/3+17/128*I,n=18 3908897214873746 a003 -1/2-2*cos(2/15*Pi)-cos(2/27*Pi)-cos(7/24*Pi) 3908897222160449 r002 12th iterates of z^2 + 3908897229474692 a007 Real Root Of -646*x^4+865*x^3+711*x^2+946*x-515 3908897250284480 m001 (Zeta(5)-Pi^(1/2))/(Pi-2^(1/3)) 3908897251140005 a007 Real Root Of -374*x^4+825*x^3-235*x^2+627*x+339 3908897276793745 a007 Real Root Of 23*x^4-337*x^3-69*x^2-322*x+156 3908897279392065 r005 Re(z^2+c),c=-25/46+4/11*I,n=28 3908897281705990 a007 Real Root Of -201*x^4+276*x^3-59*x^2+987*x+416 3908897299727218 r005 Re(z^2+c),c=1/4+1/42*I,n=51 3908897307171173 r005 Im(z^2+c),c=-5/94+19/36*I,n=52 3908897310704630 m001 (-Niven+ZetaP(4))/(Catalan-MertensB3) 3908897314684815 p001 sum(1/(349*n+256)/(625^n),n=0..infinity) 3908897318513784 r002 27th iterates of z^2 + 3908897321138859 r005 Im(z^2+c),c=5/34+17/43*I,n=56 3908897324177693 r005 Re(z^2+c),c=-8/15+11/61*I,n=38 3908897336077513 r002 14th iterates of z^2 + 3908897336313752 r002 46th iterates of z^2 + 3908897347164257 r005 Im(z^2+c),c=9/58+7/18*I,n=27 3908897347485061 l006 ln(2511/3712) 3908897357009483 m001 sin(1/5*Pi)/(GlaisherKinkelin^GAMMA(13/24)) 3908897362224712 r005 Re(z^2+c),c=-1/10+51/52*I,n=3 3908897370542985 r005 Re(z^2+c),c=-1/90+5/27*I,n=9 3908897371162409 b008 39*(1/10)!! 3908897382496712 m001 (Zeta(1/2)-GAMMA(11/12))/(LaplaceLimit-Mills) 3908897387908935 r005 Re(z^2+c),c=-49/90+1/63*I,n=24 3908897394725266 m004 -4+125*Pi+(6*Sqrt[5])/(Pi*Log[Sqrt[5]*Pi]) 3908897397155133 r005 Re(z^2+c),c=-37/70+12/55*I,n=37 3908897404142939 r005 Im(z^2+c),c=1/9+19/45*I,n=52 3908897406137654 r005 Im(z^2+c),c=-95/78+19/55*I,n=6 3908897410673249 m001 Rabbit*ln(FeigenbaumB)/gamma^2 3908897411642862 r005 Im(z^2+c),c=-1/30+27/52*I,n=29 3908897432474473 a007 Real Root Of 230*x^4+845*x^3-227*x^2+82*x+561 3908897453448507 m009 (4/5*Psi(1,3/4)+2/5)/(2/5*Psi(1,2/3)+5) 3908897465219902 r005 Re(z^2+c),c=-33/62+4/21*I,n=59 3908897471506305 m001 FeigenbaumC^Pi/(KhinchinLevy^Pi) 3908897492681984 a007 Real Root Of 761*x^4-157*x^3-553*x^2-780*x+381 3908897512953122 r005 Im(z^2+c),c=7/60+23/55*I,n=50 3908897513750175 r005 Re(z^2+c),c=-31/60+12/41*I,n=56 3908897520049230 m001 HeathBrownMoroz/FeigenbaumC*Landau 3908897528508078 r005 Re(z^2+c),c=-43/78+16/37*I,n=45 3908897537837009 s001 sum(exp(-Pi)^n*A211532[n],n=1..infinity) 3908897537837009 s002 sum(A211532[n]/(exp(pi*n)),n=1..infinity) 3908897541035590 m005 (1/4*gamma+2/5)/(5*exp(1)+1/3) 3908897541515971 r002 58th iterates of z^2 + 3908897542714099 p004 log(20399/13799) 3908897558928819 l006 ln(141/7028) 3908897561913400 r009 Im(z^3+c),c=-31/102+25/63*I,n=12 3908897563824937 r009 Im(z^3+c),c=-15/98+7/16*I,n=14 3908897566061080 m005 (1/3*exp(1)-2/9)/(3/8*Pi+4/7) 3908897582754543 r009 Im(z^3+c),c=-23/126+19/44*I,n=14 3908897582771562 m005 (1/2*Zeta(3)-1)/(5/9*gamma+7/10) 3908897593120917 r009 Re(z^3+c),c=-5/74+11/18*I,n=53 3908897606062483 r005 Im(z^2+c),c=-6/29+23/37*I,n=45 3908897606925902 r005 Im(z^2+c),c=15/46+12/53*I,n=11 3908897622265249 r009 Im(z^3+c),c=-17/78+11/26*I,n=9 3908897645696731 h001 (9/11*exp(1)+1/12)/(5/7*exp(2)+5/8) 3908897647307965 m001 1/Riemann3rdZero*exp(Rabbit)/(3^(1/3))^2 3908897648599708 a007 Real Root Of -539*x^4+717*x^3+271*x^2+93*x-108 3908897653971049 a007 Real Root Of -805*x^4+538*x^3+752*x^2+685*x-396 3908897656415807 a001 2971215073/199*199^(2/11) 3908897657400640 r005 Re(z^2+c),c=-65/118+11/29*I,n=10 3908897658635151 m001 (Catalan-Ei(1,1))/(-GAMMA(19/24)+Otter) 3908897669065009 r005 Im(z^2+c),c=1/118+27/55*I,n=52 3908897670568810 a001 521/9227465*20365011074^(21/22) 3908897700745812 m005 (1/2*Zeta(3)-3/11)/(-3/55+2/5*5^(1/2)) 3908897717647395 m001 GAMMA(2/3)^2*CopelandErdos^2/ln(sinh(1))^2 3908897719270508 r005 Im(z^2+c),c=-127/106+1/19*I,n=46 3908897737923763 m001 KhintchineLevy^2/exp(FeigenbaumB)^2*Porter 3908897752232845 a007 Real Root Of 421*x^4-611*x^3-476*x^2-636*x+348 3908897775539510 r005 Im(z^2+c),c=-13/102+23/40*I,n=45 3908897775964266 a001 64079/89*13^(31/47) 3908897777418904 l006 ln(6266/9263) 3908897805721164 m009 (1/2*Psi(1,3/4)+5)/(1/2*Psi(1,3/4)+1/3) 3908897813087802 r005 Re(z^2+c),c=-7/10+24/211*I,n=27 3908897840962315 r005 Im(z^2+c),c=6/23+13/44*I,n=30 3908897846019085 m001 (Pi-Psi(1,1/3))/(sin(1)-Zeta(1,2)) 3908897852129493 a001 341/2*1597^(14/19) 3908897855799071 a007 Real Root Of 238*x^4+743*x^3-653*x^2+261*x-190 3908897861404946 m005 (1/3*Zeta(3)-1/8)/(3/5*5^(1/2)-7/11) 3908897872149512 m001 ln(OneNinth)/Kolakoski/GAMMA(1/3)^2 3908897877439929 r005 Re(z^2+c),c=-57/44+1/30*I,n=46 3908897897172463 r005 Re(z^2+c),c=-39/34+4/15*I,n=64 3908897901830828 m004 -2-Cosh[Sqrt[5]*Pi]+(25*Sinh[Sqrt[5]*Pi])/Pi 3908897916275525 r002 23th iterates of z^2 + 3908897942416258 r005 Im(z^2+c),c=17/54+11/35*I,n=16 3908897944634832 r005 Re(z^2+c),c=-19/36+12/53*I,n=33 3908897945718106 s002 sum(A163900[n]/((10^n+1)/n),n=1..infinity) 3908897961465634 m001 BesselK(1,1)^2*Cahen^2*ln(sinh(1))^2 3908897969966620 a007 Real Root Of 591*x^4-738*x^3+21*x^2-612*x-24 3908897971699975 a003 sin(Pi*14/109)*sin(Pi*39/83) 3908898000281592 r005 Re(z^2+c),c=-25/46+1/45*I,n=33 3908898005370376 r002 50th iterates of z^2 + 3908898020121622 s002 sum(A202386[n]/(n*10^n-1),n=1..infinity) 3908898025978248 r005 Im(z^2+c),c=-2/3+12/137*I,n=6 3908898031350242 m005 (1/4*5^(1/2)+3/4)/(1/9*5^(1/2)-7/12) 3908898036145597 r002 44th iterates of z^2 + 3908898039926509 r005 Re(z^2+c),c=-9/14+63/193*I,n=41 3908898040160983 s002 sum(A019224[n]/((exp(n)+1)/n),n=1..infinity) 3908898048390062 m005 (1/2*2^(1/2)-2/7)/(5*5^(1/2)-2/5) 3908898057215012 r005 Im(z^2+c),c=-23/66+6/11*I,n=22 3908898064919261 l006 ln(3755/5551) 3908898065714151 h001 (1/9*exp(1)+7/8)/(2/7*exp(2)+9/10) 3908898068467824 h001 (5/9*exp(1)+11/12)/(3/4*exp(2)+2/3) 3908898082385525 m001 ZetaP(4)^BesselK(0,1)*ZetaP(4)^sin(1) 3908898097429852 a007 Real Root Of -265*x^4-943*x^3+203*x^2-820*x-761 3908898103998899 r005 Im(z^2+c),c=1/9+19/45*I,n=48 3908898107620003 a001 13/9349*11^(25/58) 3908898109340290 r005 Re(z^2+c),c=5/13+19/59*I,n=51 3908898126594104 r005 Re(z^2+c),c=-65/122+7/50*I,n=18 3908898130883395 h001 (2/7*exp(2)+3/5)/(9/10*exp(2)+2/7) 3908898140730640 m001 GAMMA(1/24)^2/exp(LaplaceLimit)*GAMMA(19/24)^2 3908898148501963 m001 Backhouse/GaussAGM(1,1/sqrt(2))/GAMMA(5/24) 3908898151180588 r009 Im(z^3+c),c=-49/102+19/64*I,n=45 3908898168671810 a007 Real Root Of -148*x^4+358*x^3-108*x^2+815*x-320 3908898169007583 a007 Real Root Of -261*x^4+341*x^3-507*x^2+453*x+281 3908898169142893 a007 Real Root Of 274*x^4+883*x^3-710*x^2+227*x+505 3908898171312495 v002 sum(1/(2^n+(32*n^2-53*n+77)),n=1..infinity) 3908898172778020 m005 (1/2*Zeta(3)+1/6)/(1/12*Catalan-3/11) 3908898182412516 m001 1/ln(Cahen)/GaussAGM(1,1/sqrt(2))*Zeta(1/2) 3908898184188198 r005 Re(z^2+c),c=-3/4+41/245*I,n=8 3908898185921529 m001 (CopelandErdos+DuboisRaymond)/(ln(3)+gamma(3)) 3908898194707915 m001 (FeigenbaumMu-Sarnak)/gamma(1) 3908898200726335 r005 Im(z^2+c),c=1/56+21/38*I,n=16 3908898232827418 m001 (-gamma(2)+GAMMA(17/24))/(Si(Pi)-Zeta(1/2)) 3908898233991441 r009 Im(z^3+c),c=-1/126+23/51*I,n=8 3908898250683400 m001 exp(Si(Pi))^2*Champernowne/GlaisherKinkelin 3908898251551594 h001 (6/11*exp(1)+7/12)/(7/11*exp(2)+7/12) 3908898257386955 a005 (1/cos(26/175*Pi))^297 3908898281577213 p004 log(33703/32411) 3908898281955173 r005 Im(z^2+c),c=-3/118+32/61*I,n=7 3908898286561468 m001 (Mills+Stephens)/(gamma(2)-Bloch) 3908898293557570 a007 Real Root Of 570*x^4-748*x^3+783*x^2-134*x-230 3908898302944937 m001 Porter/exp(FibonacciFactorial)^2*GAMMA(1/6)^2 3908898305084745 q001 369/944 3908898305084745 r002 2th iterates of z^2 + 3908898305084745 r002 2th iterates of z^2 + 3908898305084745 r005 Im(z^2+c),c=-17/16+41/118*I,n=2 3908898312127020 r005 Im(z^2+c),c=25/126+5/14*I,n=18 3908898317290610 r005 Im(z^2+c),c=5/34+17/43*I,n=59 3908898320010301 m005 (1/2*Pi+7/11)/(1/10*Zeta(3)+4/9) 3908898320448351 m005 (2*exp(1)+3/5)/(2*gamma-1) 3908898323727861 m001 (Cahen+LaplaceLimit)/(3^(1/2)+ln(5)) 3908898326284417 r005 Re(z^2+c),c=7/27+2/63*I,n=57 3908898342207359 r002 35th iterates of z^2 + 3908898346596982 m004 2+E^(Sqrt[5]*Pi)/2-(25*Sinh[Sqrt[5]*Pi])/Pi 3908898349364655 a001 521/1597*6557470319842^(17/24) 3908898362106080 p001 sum((-1)^n/(551*n+251)/(16^n),n=0..infinity) 3908898364038945 m001 (ln(2+3^(1/2))+Champernowne)/(Landau-ZetaP(3)) 3908898376648287 a007 Real Root Of -257*x^4-820*x^3+816*x^2+116*x-990 3908898382710121 m005 (1/2*2^(1/2)-6)/(2/9*exp(1)+3/4) 3908898392556639 r005 Re(z^2+c),c=29/118+1/64*I,n=7 3908898397865112 a007 Real Root Of 431*x^4+563*x^3+759*x^2-879*x-436 3908898410144256 r005 Re(z^2+c),c=-9/17+10/47*I,n=50 3908898421726925 r002 43th iterates of z^2 + 3908898425286770 l006 ln(4999/7390) 3908898426461537 r005 Re(z^2+c),c=9/26+3/32*I,n=31 3908898439131120 a001 1/377*3^(6/17) 3908898442194005 r005 Im(z^2+c),c=5/34+17/43*I,n=60 3908898483623282 m005 (1/3*Zeta(3)+1/5)/(1/4*exp(1)+6/7) 3908898494631688 r008 a(0)=4,K{-n^6,3-5*n^2+7*n} 3908898499117564 m001 exp(1/Pi)^QuadraticClass+Sierpinski 3908898500376563 r002 47th iterates of z^2 + 3908898502736443 m001 1/GAMMA(13/24)^2/ln(Khintchine)^2*GAMMA(23/24) 3908898508257526 a001 18/233*4181^(7/36) 3908898521085589 a007 Real Root Of -577*x^4-507*x^3-763*x^2+919*x+459 3908898533933862 r002 28th iterates of z^2 + 3908898535592695 m001 (Bloch-exp(Pi))/(-Conway+Sarnak) 3908898537398374 m001 gamma(3)+FeigenbaumAlpha+OrthogonalArrays 3908898553679387 r002 9th iterates of z^2 + 3908898555347675 a007 Real Root Of -58*x^4-104*x^3+344*x^2-404*x+494 3908898560891740 r005 Re(z^2+c),c=-51/94+7/62*I,n=21 3908898565765791 a007 Real Root Of 175*x^4+576*x^3-284*x^2+500*x-160 3908898575863041 v002 sum(1/(2^n+(24*n^2-29*n+65)),n=1..infinity) 3908898576837895 r005 Im(z^2+c),c=1/8+7/17*I,n=29 3908898582999954 r005 Re(z^2+c),c=-61/118+3/31*I,n=7 3908898598485625 r005 Im(z^2+c),c=-1/13+3/5*I,n=34 3908898600440285 r005 Im(z^2+c),c=-67/58+19/63*I,n=18 3908898620098836 r005 Re(z^2+c),c=-25/46+1/39*I,n=47 3908898634314962 r005 Im(z^2+c),c=-85/126+3/59*I,n=35 3908898639298337 m005 (1/2*3^(1/2)+7/12)/(8/11*3^(1/2)-8/9) 3908898642038326 l006 ln(6243/9229) 3908898647506882 m001 1/ln(cos(1))/FeigenbaumD^2/gamma 3908898656001903 a001 271443/233*63245986^(17/24) 3908898674038419 a007 Real Root Of -948*x^4-158*x^3+95*x^2+854*x+332 3908898678356286 r002 31th iterates of z^2 + 3908898688028571 l006 ln(7300/7591) 3908898690112338 a007 Real Root Of 140*x^4+485*x^3-214*x^2+144*x+115 3908898691822372 r005 Re(z^2+c),c=-23/44+13/49*I,n=32 3908898692333088 a008 Real Root of x^2-x-152404 3908898698645882 a001 47/267914296*21^(5/19) 3908898720094618 m001 (sin(1)+Zeta(3))/(-Champernowne+MasserGramain) 3908898743893288 r002 26th iterates of z^2 + 3908898749001010 r005 Im(z^2+c),c=-59/106+10/61*I,n=4 3908898753505638 r005 Re(z^2+c),c=-25/46+1/39*I,n=45 3908898760474773 r009 Im(z^3+c),c=-8/19+21/62*I,n=35 3908898764263133 r005 Im(z^2+c),c=5/34+17/43*I,n=63 3908898783409831 m002 4*Pi^4+Log[Pi]+ProductLog[Pi]/Pi^2 3908898791363136 m004 -2-Sinh[Sqrt[5]*Pi]+(25*Sinh[Sqrt[5]*Pi])/Pi 3908898793318615 r002 26th iterates of z^2 + 3908898794632848 r005 Re(z^2+c),c=-53/98+2/21*I,n=35 3908898795760591 r002 41th iterates of z^2 + 3908898805364258 a007 Real Root Of -216*x^4-726*x^3+524*x^2+466*x+882 3908898806129471 m001 CareFree*ArtinRank2*exp(Zeta(5))^2 3908898808508332 r005 Re(z^2+c),c=-29/54+9/62*I,n=37 3908898808878035 a007 Real Root Of -59*x^4-129*x^3+312*x^2-478*x-566 3908898811647126 r009 Re(z^3+c),c=-15/74+53/62*I,n=4 3908898811794412 m001 1/LambertW(1)^2*ln((3^(1/3)))^2*Zeta(1,2) 3908898819433245 r005 Im(z^2+c),c=1/13+31/53*I,n=13 3908898830655342 r002 7th iterates of z^2 + 3908898835073647 a001 55/2*9349^(1/26) 3908898841085604 r005 Im(z^2+c),c=5/34+17/43*I,n=64 3908898845755299 m001 1/exp(GAMMA(7/24))/GAMMA(1/24)^2/Zeta(1/2)^2 3908898846907044 r004 Im(z^2+c),c=-7/12+1/14*I,z(0)=-1,n=58 3908898848337088 r005 Im(z^2+c),c=7/60+23/55*I,n=57 3908898849474027 r005 Im(z^2+c),c=3/86+24/35*I,n=6 3908898853961354 r002 58th iterates of z^2 + 3908898855330808 m001 MadelungNaCl^Niven/LaplaceLimit 3908898864322379 l006 ln(109/5433) 3908898865114379 r002 42th iterates of z^2 + 3908898874061079 r005 Re(z^2+c),c=-51/94+3/50*I,n=47 3908898874207774 m001 1/ln(GAMMA(7/24))/CopelandErdos*Zeta(5) 3908898885122880 m001 GAMMA(17/24)^2/ln(Tribonacci)^2*Zeta(1,2)^2 3908898886822126 r009 Re(z^3+c),c=-29/50+25/39*I,n=3 3908898890243800 p004 log(12907/8731) 3908898904126522 a001 24476/89*21^(34/39) 3908898920318477 m004 -2+125*Pi+ProductLog[Sqrt[5]*Pi]/8 3908898932038045 r005 Im(z^2+c),c=-3/56+28/53*I,n=50 3908898943540673 b008 -9/20+Sqrt[19] 3908898950962661 r009 Re(z^3+c),c=-5/74+11/18*I,n=51 3908898961070009 a007 Real Root Of 125*x^4+366*x^3-347*x^2+580*x+246 3908898961894022 a008 Real Root of x^4-x^3-15*x^2-5*x+75 3908898975890789 r009 Re(z^3+c),c=-37/82+7/43*I,n=4 3908898979331304 m006 (1/4/Pi+1/2)/(2/3*exp(Pi)-3/5) 3908898983393436 a005 (1/sin(72/211*Pi))^170 3908899001477122 m005 (1/2*gamma-6/7)/(5/6+5/18*5^(1/2)) 3908899011523304 a007 Real Root Of 280*x^4-882*x^3+24*x^2-895*x+35 3908899043270727 r002 10th iterates of z^2 + 3908899062388601 r002 13th iterates of z^2 + 3908899068204761 r005 Im(z^2+c),c=7/26+2/7*I,n=62 3908899069462064 s002 sum(A153156[n]/((pi^n-1)/n),n=1..infinity) 3908899075977257 a007 Real Root Of -231*x^4-705*x^3+911*x^2+620*x+327 3908899088610033 m001 Shi(1)+FeigenbaumC^(3^(1/2)) 3908899092015977 s002 sum(A034064[n]/((2^n-1)/n),n=1..infinity) 3908899093577589 r005 Re(z^2+c),c=-25/46+1/39*I,n=49 3908899115534829 m001 (Zeta(5)*BesselJ(1,1)-ZetaP(2))/Zeta(5) 3908899119608142 r005 Re(z^2+c),c=-25/46+1/64*I,n=31 3908899124917090 r005 Im(z^2+c),c=7/122+17/37*I,n=47 3908899127855959 r009 Im(z^3+c),c=-7/16+17/54*I,n=9 3908899136083208 m001 HardyLittlewoodC5+Landau+Otter 3908899142536789 a007 Real Root Of -246*x^4-709*x^3+728*x^2-772*x+945 3908899152002414 r005 Im(z^2+c),c=-21/122+38/63*I,n=50 3908899152556185 m001 GAMMA(5/6)^2*GaussKuzminWirsing^2*exp(Zeta(3)) 3908899153012694 r005 Re(z^2+c),c=-31/56+17/58*I,n=18 3908899153031652 a001 4/377*10610209857723^(1/23) 3908899155584794 m006 (1/2*Pi^2-3/4)/(2*exp(2*Pi)-2/5) 3908899158141701 r009 Re(z^3+c),c=-33/70+43/52*I,n=2 3908899164137813 m001 (Gompertz+Khinchin)/(Ei(1)-GAMMA(11/12)) 3908899166718850 m001 (GAMMA(5/6)-MertensB2)/(3^(1/3)+cos(1/12*Pi)) 3908899176093589 m001 (Catalan+sin(1/5*Pi))/(Magata+TreeGrowth2nd) 3908899188266123 r005 Re(z^2+c),c=21/86+1/56*I,n=18 3908899193780625 r005 Im(z^2+c),c=-23/34+15/124*I,n=29 3908899194164763 m001 FeigenbaumMu+ZetaR(2)^LambertW(1) 3908899202290472 r005 Re(z^2+c),c=-15/28+10/41*I,n=20 3908899221172664 r005 Im(z^2+c),c=8/29+17/61*I,n=42 3908899225425729 m001 (BesselJ(1,1)+GAMMA(5/6))/(Artin+Trott2nd) 3908899237404420 r002 44th iterates of z^2 + 3908899241549867 a003 sin(Pi*2/99)+sin(Pi*12/113) 3908899249203612 a001 29/2*4181^(18/19) 3908899250565215 r005 Re(z^2+c),c=1/46+7/26*I,n=17 3908899259034083 m005 (1/2*5^(1/2)+7/8)/(8/11*Catalan-2/3) 3908899266252310 m001 (exp(1)+Shi(1))/(-gamma(3)+Paris) 3908899286416076 m001 (Pi-Psi(1,1/3))/(exp(gamma)-gamma(3)) 3908899289040963 r005 Re(z^2+c),c=-17/18+23/186*I,n=42 3908899290278682 p003 LerchPhi(1/16,1,571/213) 3908899291167190 r005 Im(z^2+c),c=1/9+19/45*I,n=56 3908899300557484 a001 3/17711*144^(12/19) 3908899307660927 m005 (1/3*5^(1/2)+1/9)/(9/10*Pi-7/11) 3908899318205819 a001 7/75025*46368^(2/15) 3908899318372928 a001 7/196418*63245986^(2/15) 3908899318390236 a001 7/514229*86267571272^(2/15) 3908899329671516 a007 Real Root Of 418*x^4-367*x^3-39*x^2-79*x+49 3908899334040013 r009 Im(z^3+c),c=-7/82+29/45*I,n=2 3908899344156889 m001 (-gamma(3)+HardyLittlewoodC3)/(exp(1)-ln(3)) 3908899367212652 m002 -2-Pi+Pi^3+Pi^5/E^Pi 3908899378167423 r002 38th iterates of z^2 + 3908899379205270 r009 Im(z^3+c),c=-45/122+19/55*I,n=5 3908899390831537 m001 Robbin*MertensB1/exp(Ei(1))^2 3908899391177320 m005 (1/2*5^(1/2)-1/5)/(1/2*Pi+7/9) 3908899394274803 r005 Re(z^2+c),c=-17/24+13/48*I,n=40 3908899414645359 r005 Re(z^2+c),c=-73/126+6/61*I,n=8 3908899423796743 r005 Im(z^2+c),c=5/34+17/43*I,n=62 3908899492900872 r005 Re(z^2+c),c=-43/74+9/53*I,n=9 3908899494730503 m001 (Robbin-Sierpinski)/(ln(3)-BesselI(1,2)) 3908899495290422 r005 Im(z^2+c),c=1/16+15/34*I,n=12 3908899498473529 r009 Re(z^3+c),c=-53/122+9/29*I,n=2 3908899499838278 a001 17/9*3571^(10/27) 3908899505221502 m001 1/Zeta(5)/ln(GAMMA(13/24))^2/Zeta(7) 3908899513051963 l006 ln(1244/1839) 3908899520189240 r005 Re(z^2+c),c=13/48+23/55*I,n=47 3908899523525043 r005 Im(z^2+c),c=-23/34+3/92*I,n=23 3908899524851330 r005 Im(z^2+c),c=5/34+17/43*I,n=61 3908899534202004 r005 Re(z^2+c),c=-25/46+2/53*I,n=24 3908899564868318 m001 (MertensB1-Niven)/(Champernowne+FeigenbaumMu) 3908899571402352 r005 Re(z^2+c),c=-63/122+10/27*I,n=31 3908899571815479 r005 Re(z^2+c),c=-33/62+4/21*I,n=53 3908899579389061 h001 (6/7*exp(2)+1/8)/(5/11*exp(1)+5/12) 3908899589284245 r005 Im(z^2+c),c=-131/90+2/37*I,n=6 3908899601559120 a001 144/710647*29^(8/41) 3908899602992014 m001 (Pi+2^(1/3)/Chi(1))*sin(1) 3908899603421787 r005 Re(z^2+c),c=-25/26+22/125*I,n=18 3908899607493396 a007 Real Root Of -169*x^4-680*x^3-232*x^2-764*x-600 3908899609698626 a003 sin(Pi*17/96)-sin(Pi*23/62) 3908899612056741 r009 Re(z^3+c),c=-23/56+10/63*I,n=26 3908899618746164 a001 17/9*15127^(17/54) 3908899624920595 r005 Re(z^2+c),c=-5/9-12/89*I,n=15 3908899631245829 a001 1/271461*(1/2*5^(1/2)+1/2)^10*2207^(11/19) 3908899640548555 r005 Re(z^2+c),c=-15/28+7/44*I,n=56 3908899647088698 b008 1/12+KelvinBei[1,1] 3908899659556918 r005 Re(z^2+c),c=-13/24+2/25*I,n=49 3908899669350764 a007 Real Root Of -220*x^4+746*x^3-771*x^2+779*x+472 3908899675560107 r009 Re(z^3+c),c=-13/54+52/55*I,n=2 3908899679645669 a001 1/103689*(1/2*5^(1/2)+1/2)^4*843^(18/19) 3908899684529794 r005 Re(z^2+c),c=-45/86+13/51*I,n=47 3908899703719336 p002 log(-8-5^(1/2)) 3908899712355185 m001 (Champernowne-sin(1))/(-DuboisRaymond+Trott) 3908899715166234 r009 Re(z^3+c),c=-39/98+1/7*I,n=28 3908899718966842 r002 21th iterates of z^2 + 3908899721520792 r005 Re(z^2+c),c=-25/46+1/39*I,n=51 3908899734060539 m001 Catalan^cos(1)*HardyLittlewoodC5 3908899740745689 r002 61th iterates of z^2 + 3908899745294983 r005 Im(z^2+c),c=29/110+7/24*I,n=46 3908899746800162 m001 (-ln(Pi)+Zeta(1,2))/(Psi(2,1/3)+Si(Pi)) 3908899749058168 a007 Real Root Of -42*x^4+397*x^3-813*x^2+737*x+437 3908899759405594 r002 9th iterates of z^2 + 3908899779969477 r009 Im(z^3+c),c=-17/82+26/61*I,n=18 3908899784023825 m001 (Shi(1)+GAMMA(23/24))/(-Mills+Tribonacci) 3908899788098267 h001 (1/6*exp(2)+7/8)/(5/7*exp(2)+1/9) 3908899798256905 m001 Trott^2/Niven*ln(LambertW(1)) 3908899798454611 r005 Re(z^2+c),c=-81/118+10/47*I,n=43 3908899799262107 m004 -6+125*Pi+3*Cot[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 3908899799997078 r005 Im(z^2+c),c=7/90+29/64*I,n=18 3908899802952637 r008 a(0)=4,K{-n^6,-29+56*n-5*n^2-7*n^3} 3908899804823054 p004 log(27551/18637) 3908899812502937 r009 Re(z^3+c),c=-39/94+10/61*I,n=14 3908899814574659 m001 1/MertensB1*exp(DuboisRaymond)*sin(1) 3908899818909593 r009 Im(z^3+c),c=-11/70+45/61*I,n=2 3908899831226931 r005 Im(z^2+c),c=-2/21+16/29*I,n=51 3908899841541368 r005 Im(z^2+c),c=15/58+19/62*I,n=9 3908899841700896 a001 141/2161*7^(23/25) 3908899853201168 m001 GAMMA(17/24)/BesselJ(0,1)^2*exp(gamma) 3908899853893781 l006 ln(186/9271) 3908899862126483 a007 Real Root Of 87*x^4+91*x^3-916*x^2+393*x+656 3908899872155821 a007 Real Root Of 100*x^4-204*x^3+323*x^2-779*x+265 3908899882185617 r005 Re(z^2+c),c=-29/56+14/47*I,n=32 3908899890814602 s001 sum(exp(-Pi)^(n-1)*A022152[n],n=1..infinity) 3908899937343345 m005 (1/2*gamma-1/6)/(3/5*3^(1/2)-8/11) 3908899937827291 r005 Im(z^2+c),c=7/44+11/21*I,n=8 3908899938332711 a001 1/710694*(1/2*5^(1/2)+1/2)^8*5778^(14/19) 3908899951425397 m001 (1+gamma(3))/(GolombDickman+Riemann3rdZero) 3908899956557395 a001 1/1860621*(1/2*5^(1/2)+1/2)^18*15127^(5/19) 3908899958363442 r005 Re(z^2+c),c=-25/48+15/56*I,n=42 3908899962801024 r005 Re(z^2+c),c=-5/56+23/36*I,n=45 3908899967701524 a001 1/4871169*(1/2*5^(1/2)+1/2)^16*39603^(8/19) 3908899969144383 a001 1/123*3010349^(2/19) 3908899969144428 a001 1/123*9062201101803^(1/19) 3908899969795776 a001 1/7881717*(1/2*5^(1/2)+1/2)^19*64079^(6/19) 3908899971280119 r005 Re(z^2+c),c=-7/10+43/229*I,n=45 3908899971548338 a001 1/3010548*(1/2*5^(1/2)+1/2)^11*24476^(12/19) 3908899973176636 a007 Real Root Of 697*x^4+592*x^3+304*x^2-984*x-412 3908899987574321 m001 (-Sarnak+StolarskyHarborth)/(1+Cahen) 3908899990656543 a007 Real Root Of 797*x^4-154*x^3+814*x^2-854*x-486